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ABSTRACT

This thasis deals with some applications of Reqge Theory to

K 2 p and pp elestic scattering.

Chapter one is an introduction. The important results and
problems of Regqe theory are discusssd, together with some recent

developmants,

In chapter two a model incarporating doubled trajectories is
proposed and compared to K 2 p s2lestic scattering data. The model
supports t channel helicity conservation for the pomeron near the
forward direction. The results for K = p aqree in part with those of
Hayot and Nevelet at 10 GeV/c, and those for K + p agree well with the

CERN beta phase shift soclution at 2.5 Gev/c.

In chapter three a j-plane analysis technique is intraduced.
It is applied to pp elastic scettering, where the results do not allow
an imterpretation Iin terms of simple poles. Evidence is presented
that the curvature of the pp total cross section is not due to exchange

degeneracy breaking.

In chapter four the j=plane structure of pp scattering in the
absorption model is investigated. Many of the puzzling features of ths

results of chapter three are explained.

Chapter five 1s concerned with ths recent data on pp scatterinag

-at high eneroies. Several models which have bean propossd to explain

these data sre discussed, and soma conclusions are drawn.
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1.1 Reage thsory

The complex angular mementum plans has besn central in most
recent approaches to strong interection physiecs. In Regge theory,
scattering amplitudes are analytic functions of the anqulsr momontum j,
and a particle of mass m lies on a Regge trajoctory e(t), whers the spin
of the particle ia@z(mz)° The partisl weve aemplitude then has a pole
at J = @(t) and it i the exchange of these Regge Poles which is
supposed to dominate tho amplitudos at high onergies.

A Regge trejectory ot(t) hes occociated with It a signature T ,
which may be <1 or =1 (called svon or odd wignaturc respectively).
In general many particles will lic on the geme trajectory, but only
pacticles of even (odd) spin cen lie on @ trajectory of even (edd)
signaturs.

If a trajectory ec(t) is allowed by ite guentum numbars to be
exchanged in the process sb -« a'b’, then its contribution to the

amplitude for this process st high enerqgies is given by

Pt (8,t) = A (t) ¥xBP=s () (%) (k) (1.1)
This is often represented by the diagrem in fig.(l.l). Here

&a(t) is the signesture factor

~(Ro(E)
Aa(t) = -(€ + Teg ) (1.2)
ein (moec(t)) ol 67t
T ia the signsturas of the trajsctory, KM (x)

is the residue function, and So ig the scele Pactor.

Properties of the trsjectory function

(i) e&(t) is univercel, that is it depends on tho quantum numbers, but

not on the external particles.
(11) &(t) is an enalytic function of t, except for a cut on the pesitive
real axis starting at the t chenncl threshold t. . (In all ceses

relevant to this thesis Yy ® Am%ﬁu




(ii1i) As mentioned above, =& particle of mass m which liess on the
trajectory has spin o u:x(mz)p and satisfies

(=1) = To
(iv) Uniterity,via the Froissart Bound, i.s.

Or & (log s)? (1.3)

implies that (o) £ 1

(v) Experimentslly it is found that trajoctories seem to be linear:
in t up to the highest spins detected.
(vi) From the above properties it can be deduced that &(t) is a

Herglotz function of t fer ¢t < ¢

TH®
Using (v) and (ii) we may write Ega disporsoion rolation
, 1 , Emot(®)
() =2 efo) ¢o’t o 2 dt mt’-—t (1.4)
from which Tru
oo
Ao __,jdtMﬁl. (1.5)
ge" ™ (#-%)
™

(Note that this result is unchanged if a subtraction is necessary
in the integral in e.g. .(1.4).)
Unitarity requires that
Ima(t) > 0 (1.6)
which implies
gﬂﬁigl > 0 fPorell ¢ < trn (1,7)

dt
i.8. that «x(t) is a Herglotz function. This property will bs useful in

calculating Regge Cut disconfinuities.

Propesrties of the Residue Function
(1) Apart Prom Kinematic singqularitiss, which may be removed explicitly,

cht) is a real snalytic function of %, except for a cut slong the
positive real axis starting at tTH“

(11) K(xab g a’b"(‘t:) factorises into functions at the vertices of
fig.(1.1) i.e.

Kmab - a’b’ (t) = b,maé‘it)xubﬁ’ (t) (1.8)



(11i) For = particle of mass m on the trajestory «, Km(mz) is
proportional to its coupling constant.

(iv) Behevicur near Inteaqral Velues of o

when the initial state of a progess can couple to s particls
of spin j, but the final state eannot, j is knoun as & sense-nonsenss
point, and vice verga. If both initisl end final etates can couple,
Jj is =a sense-gense point, and if neither, j 18 a nonsense-=nonsensse
point. Values of j to which sither the initial or final state cannot
couple sre known collectively ss nonsense valuss., Vaeluas of
satisfying
(-1)) = T
erc known as right-eignature points, and valuss not satisfying this
are wrong=asignature poinis,
We consides the behavieour of tho leading Regge Polo econtributions

to helicity amplitudos which are senss-8en8®, ssnse=nonsense, and

nonsense-nonsense at oc(¢t) = n (n'integer).

Rgs /Soz ngs (%o A (1.9)
% 8n,

Rgn ™ lee=n)® § ¥, n‘(§=;)°‘ (1.18)

Ann ~ (6 = n) '6 ot Hmﬂﬂ(%;)@( (1.11)

The factors (& = n)ég (e¢ = n) come from the bshaviour of the
rotation functions d’i;(ﬂ) near j = n (ses ref.1). (1.10) implies, by

analyticity of Asng that
sn %
Y o ~ (et = n) near & = N (1.12)

and since by facterisation
z{mseb,mnn = ( B,o‘sn)Z ~ (ot = n) (1.33)

wither Ko(ss or ¥ mnn must contain a factor (e« = n).

If «(t) is a right signature pofint with t < © 8m85 must vanish,
sinca otherwise Aas would have the pole in the signature factor,
implying tha existunce of a particls of imeginazxy mass, called a ghost

or techyon. At wrong-signaturo points, however, K  does not have a



pole, so that one of tha amplitudes will vanish at these points. Such
behaviour is known as a Wrong Signature Zero, and has bsen extensively
used to explain the dips found in tha differentisl cross sections of
many processes at ¢ =-~0.6 G«evzn where ons expacts &p = a.
Unfortunately for this explenation, it can ba shown from unitarity
(9,20) that there ars also fixed poles et these points, but the effect
of these poles is difficult to estimate, and they are often neglected.
(21)

In any case Mandslstam has arqued that they ars shielded (ioe,.

moved onto unphysical shests) by Regge Cuts.



1.2 Problems of Regge Pole Theory

(i) The Charge Exchange Polarisation

The process np = Tlong known a8 T N charge exchanqge, has
attracted a great deal of attentlon, sinee the only known trajectory
which is allowed to be sxchanged ie the p. Regge theory therefore
pradicts the following fotma for tﬁe invariant amplitudss A’ ,B (see

section 2.1) at high snerygys

A (spt) = Aa(t) ¥, (¢) %o)“v’ (¢) (1.14)
o (o0t) = A0 B0 G e (1.15)

The polarisation parameter is given by
do ’
P i 2C(s,t) Im(A7B%) (1.15)

{where C(s,t) contains only kinematic factors) so that the prediction

of Regge Theory is

PR = X H®B, ) G T (1gy D

E 0 (1n17)

Experimentally, however, the polarisation is quite large and
positive over a wide range of s and t.

To explain this phenomenon some authors (3, 4, 5, 22) have postulated
the existence of another trajectory, called the .f, » half a unit below
the Vﬂ in the angular momentum plane, i.s.

o (o) = 0 (1.18)

P
with which they are sble to fit all the available data. Such an

explanation cannot be completely dismissed; especielly in the light of
the discovery of an apparently suitable candidsts for this particlsgzz)a

although the coupling of this experimental Jo’ to TR appears to
be small.

fMany more recent attempts to solve this problem have involved Reqgge
cuts, and in particular the absorption model. (for a list of some of

the references see ref.l2), These have all failed to reproduce the


http://Aj.it

angular structure of the date, producing quite unnascessary wild
fluctuations and zeros. The amplitude analysis by Halzen and
michaal(zs) of the w N system hes shown that the emplitudes produced
by these models ars alsoc wrong, &nd it seems thet this explanation is
not correct. It may be, however, that Reqge cuts are still the ansuwer,
and that it is merely the absorption model which is too crude to be

useful in calculating such a sensitive paremeter as the polarisstion,
(ii) The crossaver phenomenen.

The diffsrential cross sections for w¢p and T=p are found
experimentally to be equal at tc ¥ 0,16 GcV’z independent of smerqy.
The semes result is found in Kp end pp scattaring.

Consider s an example 7w p scattering. The allowed exchanges are

"Ep = Pef3Ip (1.19)

and it i3 quite sasy to show that for the quantity

A% (r) a L (np) - ( wep) (1.20)
to veanish st t = tc’ it is necessary that the P residue has a zsro
there, i.e.

b’?(tc) = 0 (1.21)
from Kp and pp one may deduce & similar zero in the w residue.

The problem arises when we use facterisation to predict similar
zeros in ®p —~ pn and Fp— ‘Rop,, where expsrimentally
none are abservad.

Regge cut models have been used to explain this phenomenon. In
these models crossover zeros are generated by cancellations between the
pole and cut terms. The problem with this explanation is that, since
the enorgy depsndence of the pols and cut ars not the same, the crossover
zero should mows with enargy. Phenomenologically this is not a-serious
problem, since the rate at which the zero moves will be depandent only
on log 3, but it seems an odd coincidence that the ;ero remaing in the

sama position for all processes.




(1i1) Ihe Pion Conspiracy Problem

We just mention this for completencss, as snother well=known
problem of Regge pole theory caused by factorication. Thse subject is
discussed in detail in ref.(12),

What happens is that angqular momentum. conservetion and the
unnatursl parity of the pion imply that its contribution te ths
pProcesses ¥p = n°n and np = pn, smong others, should vanish
in the forward directicn. Experimentally, however, the differential
cross sections for these processes exhibit sherp forward spikes of
width about m % s for which the most naturel explanation sesms to be
the pion oxchango.

Tha conepisaey oxplanstion (56, 57) soquirsos the invention of an
sven-parity "congpirator" with the same rosidus and trajectery as the
plon at ¢ = 0, which allows the angular mementum constraint to be
satiafied while the pion is finito at ¢t © O,

Apart from the Pact that no sush sealar particle has been absorved,
this explanation runs into serious trouble throeugh Factoriaatinn(se)o
This implies that the forward cross sections for wN - p&  and
N - ad should venish, which experimentally does not seem to be
the case.

Cut models have also been put forward as a solution to this problem.
Extremely strong cuts are nacessary, in soms cases ths enhancement
factor A being as much as 3.5 (see, for example ref.(59)), which is

somewhat difficult %o justify.




1.3 Duality

It is well known that at low energies ths scattezing amplitude
is conveniently described by a sum of s channel resonances, whereas at
high energies the exchange of t channel Regge poles provides a more
economical description. For inteormediate energy regions, it might be

thought reasonable to take a sum of these descriptions;
Als,t) = AR®99%(g ¢y , pfe@senance ., (1.25)

This approach, called the Interfersnce model, wes criticised by

Dolen, Horn & Schmid(a)° They added the known rescnances in
Kep — %% to the f Regge=Pole amplitude obtained from a high-

enerqy fit, and found that the sum was much larger than the actusl
amplituds. This led them to fermulate the principle of Duality, that
the s=channal resonances are contained in the techannel Reqge Poles,
and vice versa. The interference model is then wrong because it commits
double counting.

Important to this sort of Duality is the concept of the Finite
Energy Sum Rule. We consider the contour C of fig.(1.2) in ths complex

plane, where the variable v, defined by

8 = U
250

is convenient because of its simple crossing behaviour. We write

(1.26)

\" =

Cauchy®s theorem for v™A (v,t) around the contour es

§Vn A(v,t) dv=0 (1.27)
c

If A is an amplitude with Regge asymptotic behaviour,(ses s.q.(1.4))

i.e,

~ (Tox
Alvey —~C = ¥, (6) e’_ + Lo v (1.28)
lvides » Sin Tt




we may substitute this form for A(v,t) on the large circle (radius N)

we obtain the following sum rules

N
L _ X () N5
‘)TH *

Now since at low energies A(v,t) is given by the direct channel

resanances, if we choose N sensibly we may write

" 2 %o N
| __ ResoNANCE _ .
et '\)nd'\) 1m A ('U)t) XN+ 1 (1.30)
'uTH X

This means that the Regge Pole term averages the direct channel
resonances. This defines what is known as Global Duslity.

Finite Energy Sum Rules can also be used to predict high anargf
parameters from the behaviour of direct channel resonsnces at low

energies. For exempls, if we define

N
[ RESONANCE (1.31)
Sn (k) = qon |Wndy ImA (v,8)
Vry

and consider, for example, TR-p ﬂ>1T°n, whers only tha.do can be

exchanged, we find, from e.q. (1.30)

& (t) = {mel)Sm = (n+1)Sn (1.32)
S Sn = Sm

The values of * o (t) found in this way agree well with those
obtained from high energy fits.

At this stege a problem arises, namely the role of the pomeron in
these sum rules. If we consider, for example,K+p scattering, therse
are no known direct-channel resonances, but the high energy behaviour
is supposed to be pomeron dominated. E.q.(1.30) clearly cennot bs mads

to work in these circumstances.




= 10 -

(18,16) is to suppose that the

The usual salution to this problem
pomeron does not contribute to these sum rUles. This appears fairly
reasonabls, as the pomeron is clearly a different singularity from other
Regge poles. It must also be pointed out that, as well as the pomeron
on the right hand side of e.q.(1.30) we have omitted background terms
on the laft hand side. In refs.(15,16) it was suggested that these
terms are dual to each other. A conjecture which is supparted by the
experimantal observation that processes dominated by the pomeron at high
enargiss appear to have a larqge smount of background in the resonance
region, and vice versa,

We are then left with only known resanances on the left hand side
of (1.30), and known trajectories on the right hand side.

With this provision, the sum rules imply very strong constraints
on the Regge Pole parameters. Consider elestic Kep secattering, which
as mentioned above, 1s exotic, that is it hes no direct channel resonances

that can be made from thres quarks. The allowed t channel exchanges are

Lo ws f5 Ays s0 substituting inte e.q. (1.30) we obtain

O(x(e)
€) N
? It =0 (1.33)
Xx () +n+|

X=p,0,f A,

Since, to have any significance at all, the Sum Rule cannot depend
critically on N, we must have some of the «'s egual. In fact, by
consideration of other processes alsp, we can show thati

(1.34)
p )= oy ()= XL k) = (g VMO fov all £

and also that

K‘P(f) ‘f"b/w ) = Kaz(‘t’) + 6{; (€) ’Fﬁ alft &.

These results are known collectively as Exchange Degeneracy. The




fact that the Lo ¥ f and A2 particles all lie close to tha same line
x(t) = 3 et (1,35)

is a considsrable success for this picture. Ths situation for the
residues is less clear; as they cannot be extracted fram data in a
model indspendent way, and the matter is still a subject of controversy.
The flatneas of thea pp and K¢p total cross soctipns, however, suggests
that Exchange degeneracy is at least approximately trus at t = 0.

The status of Ragge outs in the Sum Rules is another problem. It

has been shown (13,14)

that most current cut models ars difficult to
accommodate “in the Sum Rules. The equations are complicated and need
to be calculeted numerically, but it doea sesm that cut models are not

easy to include.




l.4 Vensziano Model
(17)

Veneziano constructed the following functioni

V (S,t) = l"(n-ws ) r‘(M"' at)_ (1036)
nmp [ (p-og-oe)

where n, m; p are integer constants, and o:s(s), ut(t) are respectively

s and t chennel trajectory functions. If we take a sum of such terms:

(1.37)
V)< D Comp Vomp(5:t)
nm,p
with Cnmp constants, then amplitudes of the forw
Alsstou) = V(syt) ¢ V(tyu) ¢ V(s,u) (1.38)

may be constructed, which have the correct crossing and asymptotic

behaviour, and are explicit solutions of the Finite Energy Sum Rule.(1.29).
The drawback of &his formula is that the resonance poles lie on the

real axis and have zero width. This means that the smplitude cennot

have Regge asymptotic behaviour on the real axis, and also that it

violates unitarity. Attempts to construct simple unitarised Venezisno

models(la)

have usually caused the slegent duality properties of the
amplitude to be lost.

A very attractive idees (for references see ref.(18)), is that the
Venaziano model, or something like it, can be considered ss the first
term in a Born series, and that unitarity will be recovered when the
whole series has been calculated. Unfortunately, progress on this front
has been slow, and we confine ourselves to consideration of e.q.(1.38).
We perform an asymptotic expansion of e.q.(1.36) along a lins

L€
x, = lxje s €> 0, e} ~> oo (1.39)

and hope that the resulting form is not altered too much by unitarisation.




For this purpose we use Stirling's formuls

M) ~ vac e - 2(2‘%) (1.40)

I2]e0

together with the welleknown result

Nz) r@-2) = _rx (1.41)

Sin, T2

and obtaln

- n-m~p-1 -lm A-p+n
Vnmb(s;'(:) ~—— ) - e [“5] b (1.42)
logl-»o0 [y -m41) sinmieg
In the case of a linear trajectory
x (s) = & ¢ &S (1.43)
this becomes
m-b- —il'l’db -
Xy P e [o(éS]“t ptn (1.44)
V'""b (s,6) ~ P (otg—m+1) ST
la] >0 t t
We now require that the leading asymptotic behaviour be
(¢ :
Vimp(s,t) —~ - % (1.45)
which gives the constraint
(1.46)

Pb>n,

In the case of the leading trajectory, p = n and we obtain



_ m<) -I'.“’Kg , o(t .
Vnm‘;(s,t) L ") e (els) (1.47)
Islooo P log-me)simwe

We see that this gives Regge bshaviour with residue

N+
m P (o -m+1)
and the additional result
(1.49)

='L,
S Xs

The integer m determines the mechanism, i.e. the bshaviour of

Xm(t) at integer values of uft(t).



1.5 Doubled Trajectory models

As may be sesn from section (1.2) the main praoblems of Regge Pole
theory arise through factorisation, namely the croasover zero and the
pion conspiracy problem. Also, if one imposes duality, exchange
degensracy in TR -»TTRK constrains the p and f residues to be equal,
which implies via factorisation that the P choosas nonsense at
«,(t) = 0in T p-»>K% , and therefore that the differential
cross section for this process should venish at t= «0.6 GeVv? ,
instead of merely having the dip which is observed.

(6)

This evidence led Johnson and Squires to question factorisation,

and the observation of a split A2 meson provided a natural explanation

(3)

of nonsfactorising residues. By invoking su and exchange degeneracy
in the KK system, they were led to conclude that all other trajectories,
and in particular the S » are also split. They wers then able to
formulate & model for Wh-—>R°n , and confront it with the data.

The obvious objection to this model is that the p meson is not
observed to be split, but Rittenberg and Rubinstein(7) showed in a bR
Veneziano emplitude that doubled trajectories could occcur, and that the
doubling should not appear at the lowsst particle on the trajectory.

Four benefits were immediately obtained from this model.

(1) It was possible to have a non-zero amplitude in T p->W%n at
O('P(t) = 0 without breeking Exchangs Degenerscy in TWR->wy .
(i1) The crossover zero was explained as a cencellation between the two
~ components of the g meson. As the splitting of trajectories was small,
this 2ero did not move significently with energy.

(iii) The pélarisation was generated by interference between the two
components,

(iv) A more genasral benefit wee that Johnson and Squires were able to
use the simple Veneziano residues (see e.q. (1.48)) and still generate
the considerable structure required by the deta. That single Veneziano
terms have insufficient structure to fit the data was shown, for

example, by Berger and Fox(ﬁﬁ).



The model was thus qualitatively very successful, snd succesded
in Pitting the aveilable data satisfactorily.

Of course, the A2 meson has since bsen shown not to be split,
removing some of the justification for this modsl. The fsilure of cut
models to explain the structure of the cherge exchange polarisation,
or to provide an elegant explenation of the energy=-indspendent
behaviour of dips and zeros in cross sections, however, suggests that
the model is still worth considering.

In Chapter 2 we spply a modified version of the modsl to sz
elastic scettering,where the crossover is particulerly well defined.
In this process many Regge poles can be exchanged,so that there is no
need to split the trajectoriss to explain the polarisation, and indeed,

since the A2 is no longer split, there is no justificetion for doing sa.



1.6 Reqgge Cuts

Regge cuts, which have been mentioned ssveral times in the preceding
sections as & solution to the problems of Regge Pole theory, are
generated by the simultaneous exchange of two or more trsjectories. We
shall consider only two-reggeon cuts, for which fig.(1.3a) is the gsneral
disgram. The contribution of this diegram may be svaluated by means

of the Reggeon Calculus of Gribov(lo)

» and we shall later quote the
result.

We consider first the box diai;ram in fig.(1.30). This might be
expected to be the simplest contribution to the two-reggeon cut
emplitude, but in fect it does not contribute at all, snd the reasons
for this are important. (For a useful review of the situation ses
ref.(11)).

It is most convenisnt to transform the integral over the loop
four-momentum in fig. (l.3c) into an integral over the invariants
qulz’ quzz, qxz, qx,z, where q_ is the four-momentum of particle (or

reggeon) c. (This procedure was introduced by Rothe(62)). The

transformation involves a Jacobien, J, given at large enargies by

J = 82A (¢, £ t,) (1.50)
2 2 2
uhere A = £ e t)% e t)0 -2 (bt) ¢ bty o tyt)  (L.51)
2 .
and ti = Q4 (1.52)

We assume for simplicity that the internal particles x,x’ are
identical spin-zero mesons of mass m. At the vertices of the diagram
there are coupling functions 940 which are related to the factorised

Reggeon residues of e.gq. (1.8) by

-

Al

X
xct;_ () = 3"_('ti-1mz) (1.53)

giving the contribution of the diagram as



ab-mfb’: ; da 2 dgz. dt 4t 9(3\)
Box | GEmtvie)(gtmieie) | TR X
~o0
G (tD)+0G (§,) -1 (1.54)
XS 2 gl“an: )3.(tu@:,)gz“z-,¢:)32(‘:2\‘1/‘2‘, )

Consider, for exemple, the inteqral ovar qxzu As the coupling
functions 9; have only a right<hand cut in tha-qx2 plane, the
integration passes above the pole in the propagator snd above the cuts
in the coupling functions which depend on qxz. Since the coupling
functions are assumed to go to zero at largs qxz, we mey complete the
contour in the upper half plane, and the integrstion thersfore venishes,

We see from this discussion that a necessary condition for a
diagrem to contribute is that it has both left=hand and right-hand
cuts. This means that the bubbles at the top and bottom of fig.(1.3a)
must have third double-gpectral functions. The simplest contribution
to the top bubble wifh this property is shown in fig.(1.3d).

The Reqgeon calculus provides us with a general expression for

fi1g.(1.3a). We merely quote the result, which is

o
AR ey = Hat dt. T AR (& tnta )Ny (t £nt2)x
o
s \(t)+0(t,) (1.55)
< L@k 1) ()

where A&“‘&‘z are, as usual, the signature factors of the
exchanged reggeons. - -
aq’ bt

The functions N and

oz oot are known as

Gribov Vertices. They are obtained by integrals of the complats
particle-reggeon scattering smplitudes at the vertices of fig.(1.3a),

for exemple fig. (1.3b).




aot, -5Q otz

aa’
Ny, rtut) = [ ds A (Si,t5t,,¢2) (1.56)

c

with a similar expression at the lower vertex. C is the contour of
al’
fig.(1l.4a), and ﬁ‘uaqz. is real for t bslow threshold.

1P A%l ™ 802 pag no singularities in the lower half plane,

the contour C may be distorted to enclose the right hand cut, becoming

4

c of fig.(l.4b). (This assumption is somewhat dubious - see ref.

(11)). The vertex thesn becomes

oo
-7

aa aaﬂ'bafd
(i) = 20 [ds,ImA 2(siytibunty) (15T

Stu

o
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The Absorption Model
If we assume that e.q.(1.57) is correct,we can approximata the
integration by a pole contributien. Calling ths internal perticle x

(fig.1.3c) we obtain

aa’
Nv((“l

X:f () 2(;:,(61) (1.58)

We see that this does not lead to a diagram like fig.(1l.3s) since
we have now put the internel particles on the mass shell. Such
diagrems sre used to represent the emplitude, but must not be
interpreted as Feynman qraphs.

The amplitudes resulting from (1.58) are known as the absorption
model. An alternative approach is to sum over all allowed intermediste
states x. This is known as the strong absorption medel, bat in practicg
it is usually approximated by multiplying the absorption model by a
constant factor. The justificaetion for this procedurs is by no means
obvi;Ls.

I we consider elastic scattering, and take x = e, we obtain,

for identimal trajectories

ez a -
N«“ s X:a'(fl) Kf:“'(f?_)
(1.59)

Taking a similar expression for the lower vertex, we obtain

o
ab-ab L O(A) ob3aP  ab-sab
Ao G0) = 5 |Oidts TR ) 8577 lead
~co
ot (b )+ (€2)

X B tNB,lk2) S
(1.60)
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ab-3ab
where « is the residue function for ab elastic

scattering, This result is identicel to thet of the eikonal model.
(see ref.12 for a review).
The term Absorption Model comes from the impact parameter

representation. This is obtained by thes Hankel transfoem

o

Alsb) = | VT8 VT Alet) I, (bvF) e

1]

Pure Regge-poles are central in impact-paremeter spece

A - /2
A(s,b) ~ ¢ (ro comst.) (1.62)

but when cut corrections have been included, it is found that the
central part has besn "ebsorbed awsy" and contributions coms only
from the large = b "paripheral" amplitude. This is equivalent to the
high partial waves, (1.61) being the high energy limit of the partial

wave series.
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Figures for Chapter 1

1.1 Exchange of the trajectory ot(t) in the process ab - a’b’

1.2 The integration contour for the derivatiion of the Finite

Energy Sum Rule,

1.3 (8) Exchange of the two-reggeon cut, generated by ths trajectories

oy and &y in the process ab — a’b’ .

(b) The particle-reggeon smplitude e, a’o:2 used in the
calculation of the upper vertex in fig.(l.3a).

(e) The pole contribution to fig.(l.3b), used in the derivation
of the absorption model.

(d) The simplest contribution to the upper vertex in fig.(1l.3a)
which doss not cause the cut emplitude to vanish.

(e) The box diagram which does not produce a Regge cut.

1.4 (a) The contour for the integration in the Gribor Vertex
calculation,
(b) The contour of fig.(l.4a) after deformation as discussed in

the text.



fig. (1.1)

fig. (1.2)




(a) (b)

{c)

(e)
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4
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Chapter 2. DOUBLED TRAJECTORIES AND KZp ELASTIC SCATTERING

Introduction

sz scattering affords an opportunity to test the various
assumptions and prejudices current in Regge theory. - There is a
. very pronounced crossover (see section 1.2(1i)), the Kep channel is
exotic, and there are good date on differsntial, total and polarised
cross sectiona over & largs onaergy range, while the spin structure
is not so complicated as to ran@ar analysis impossible. |
In section (2.1) we introduce the amplitudes and'fornallsm to
be used, snd in séctinn (2,2) we discuss the ambiguities involved in
Regge paramstrisations of these emplitudes. In section (2.3) we"
introduce a simple model with doubled trajectoriess and describe a
fit to the data. In sactions (2.4) and (2.5) weo compars the |
amplitudes obtaiﬁed in this way with the results of Heyot and Navalet(za)

(29,

for K-p at 10 GeV/c, snd phase-shift analysis 30) for Kep at

2.5 GeV/c. Conclusions are drawn in section (2;6).




2.1 Amplitudes and formslism

in K:p scattering there are two indspendsnt helicity amplitudes.

In the 8 channal we take these to be

Poo(8ot) = Tou o (a5t) (2.1)

F(08) = Tgah(e,t) - (2.2)

The normalisation of these amplitudes is defined so thats

: 2 2

- Ir,, () = o le, (o5t (2.3)
PA o am [r, (s,t) F,_ (s58)] (2.4)
Oror * ic’-:— m e, (s;0) (2.5)

We cannot insert Regge pole expressions into these amplitudes
directly, because they contain kinematic singularities. If we remove
these kinematic,sinqularities, we are left with the invariant '

(S 19) (Rctually AR’ is singular st t 4'“20 but

amplitudes A, B
this is so far from the s channel physicel region that it does not
affect the analysis). The advantage of these A’ , B amplitudes is that
they are proportional to the t ch;nnel helicity non=-flip and flip
amplitudes respectively.

The relations batwsen f_, f _and A', B are

m . t w_ I8 gl (2.6
foy = o coede (W gy A5, 6] )

f,_ “.: = 8ind® [Ajs "'C:Ii'ﬁ %_3_5_:_3; B} (2.'})

for the purposes of partial wave snalysis, the scalar amplitudes

_f1, fz and fy0 are usually used. Thess are related to f¢¢, f’_ by




parti

where

25

foo = (fl s FZ) cos38
f_ = (f’l = FZ) sin% Q
f = fl¢f‘2 cos ©
g =~f, sin®

The reason for using these emplitudes

al wave series. Ffor ¢
PV
2 (spot) = ;E; (25 +1)T
P\V
J

(2.8)

(2.9)

(2.10)

(2.11)

is that thay simplify the

(fAnV e 2), this is

3 (s) Cﬂj

(@) (2.12)
fd.\l P\I

but for f,q it may bs written in terms of Legendre polynomials

cg

2.
E ﬁl ¢ 1) flﬁ(s) ¢

1=0

P(s,t)

<

g(ert) = Z(f'h(S) = f, (s)> Pl' (cos®)

&=y
1,3 _ g
fl 4 (s) = T¢: ¢ To-=
1 21812

1 fl— (a)] Pl(cosg) (2.13)
(2.14)

(2.15)

=1 ) (2.16)



The partial waves fl* (s) are most easily projected from Peofy

i .
Plg (8) = s}g d(cos® ) (f‘,‘(spt)Pl(cosS) < fz(s,t) 9131(5'056)] (2.17)

-1
For cempleteness we also define the spin ssymmetry and rotation

parameters A, R, The usual definition of these isi

: 2 2
A _ lflz P | 52 _ (2.18)
Ie1° » igl

iel® + ol

Some authors use the following definitions, howevert

2 2
AHEL = |f++‘ = If+=u

(2.20)
2 2
lf“ |© - lf‘é_]
2 . %
R = Re (f+¢f¢— ) (2.21)
HEL
l? 2., e, | 2
<*$ ' L O
These definitions differ only by a rotation,since
Al s Ay Cos® RugL 8in® : (2.22)
R S—AHEL sin® < RHEL cos © (2.23)

so that near the forward direction the definitions ars esquivalent.




2,2 Ambiguitios in Rogae Anelysis

In processes, such as szp where the date ara insufficient te
determine all the emplitudes, thsre ere two poseible procedurss.

Either we make soms assumptions which detezmine the emplitudes in &
perticular model, or we consider only quantities which are net dependent
on the smbiguity. In Kip ve find that thers are two smbiguities. We
shall eliminate one by the sssumption of Regge theory, and discuss

the other in more dstail.

Wo have introduced the amplitudes A’ ,B, which are complex, so
that four £sal numbezs st sach value of s,t completely dstermine.the
system. The data, however provide only two numbers at each s,t , namely
the differential erass section énd polacisation, . In the apecial ocase
t ﬁ'ep ué have alsc the total crose section, but since the
polarisation vaniéhes idontically bscause of anqular momentuwm censervation,
there are still only twe resl numbers determined by the dsta.

As we sre going to work in the Pramewosk of Regge theory, we have;
imposed upon us, ths ralatioﬁ betwasn the phese and energy dependence of
each Regge pole, dé?inad by the signature Paotor and ( E;f“ o This
meang that we have onz embiguity removed Po® us, leaving one remaining.
This was elegantly isolated in rof.(24), where the following definitions

were mades
e = A S (2.24)

b = J:?_ F’QI ° t/ad)? B (é.zs)
2m (1 = t/40%) o

These amplitudes a;b have the advantage that they appecs

synattricelly in the differentisl croes section. -i.e.

E . oc(jai? o el (2:26)
alse -g{' s 2ola(sb ) , (2.27)
where c = 1. 4m2 . o (2.28)

' 2
16T P



This mesns that the differential cross section and polarisation
are invariant under ths transformation

a ©— acesX ¢ besink (2.29)

b > -asin¥ <+ bcosX (2.30)

which is & rotation in the spin flip = non=flip plene.

" An immediate advantage of thig approach is that Ehe cohstzaint
1mposed by Regge theory is perticularly s!.mplg ﬁamely that X depends
only on t. Thie ::l.s becauss it must riot effect the ( ,3,5)91 enargy
de;pendani:s of the amplitudb. | o

Anaiyticiﬁir:!.mpliés furthar. constraints. Becouss the emplitude
is analytic (exé@pt at ¢ «&az'),’, but b conteins kinomatic singuleiitios,
it is nacassary that X censol these in (2.29), thet i wo sequire
b 8inX to be enalytie, 1.0.. |

. ) _ -
B & p£(1 ¢ t/4q )é 8inX analytic (2.31)
2m (1 = t/almz.)_ '

Hence wo doducoe that

einX ., Yf resrts0 - (2.32)
N _ :
and ’ 2 é’ 2 ‘
sinX ~ (1 ¢ ¢/4q°) noeE ¢t o =4q | (2.33)

(2.32) and (2.33) éorreapond to boheviour in the forward end backuward
dilréat.!,bn roopoctively. Sinco our fit is teo i,ha forward direetion,
u'si.ng t channel Regge polos, we applied eonly thfs constraint (2.32), by.
Poreing .

X))~ =t nearts0 | (2.34)

 The backward direction should be sufficiently fer from the ‘region

of interest for the b‘éhaﬂoqr (2:33) to have little effect.

The singularpity et ¢t = 4m2 in (2.31) is, of cousse, present in A’

g0 does not have to bo cancolled by sinX




We shall adopt a specific form for the meson residues, so thers
will be no room fop arbitrary rotation angles thers. It will be
convenient to rotats the pomeron residua functions, since for them we
have ne theory. We may determine a starting-point for the retation by
the convention that X(t) = O corresponds to t channel helicity
'~ conservation bp (spt) = O.

It is also useful to determine the relation between s channel and
t channel helicity censervation in terms of these varisbles. If uwe
call Poi » P¢z the pomeron contributions to the s channel helicity
non-flip and flip amplitudes respactively, it is natural to define an

S channel rotation angle X s(e:,t:), analagous to e.qs.(2.29, 2.30) by

P¢i (§ot)

P¢2 (sst)

tan X,s(s,t) = (2.35)

so that X;S(sgt) = 0 corresponds to s channel heslicity conservation.

The relation between this snd the t chennsl angle is

tan X _(s,t) = wiandP o tan ¢ (2.36)
T = P tang@ tany (t
where N {1 q2 mz)é, (a.14)

(see appendix)

We ses that s and t channel'helicity conasrvation are equivalent

only in the forward direction, and since

ten 10 ~ Vet (2.37)
=t->0
they quickly become different as [t| increeses. For t char~2l helicity

conservation, we ses that

tan X, "C (s,t) = p tendD (2.38)

so that the two essumptions become further apart with increasing esnergy.
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2.3 The Madsl

The trajectories which may be exchanged in K:p elsstic scattering
are

Kep o P 3P s w ¢ £ < A (2.39)

We have sean in Chaptsr 1 that there is evidence, both theorstical

and experimental; that ths messon trajectories are degeneratse

op(t) = o0 (t) = o (¢) = o:fo (t) = o (t) (2.40)

2
so we adopted this in our model.

Because: .our model wss explicitly constructed with meson residuss
which do not factorise, we cannot use information from the charge
exchange processes K"p-*>ﬁ°n or K°n-*>K°p to seperate the u
contribution from the‘P s or the fo from the A2° We therafore worked
only with the linsar combinations

v

Pt (2.39)

AZ ¢ fo : (2.40)

whaere V and T stand respectively for Vecter and Tensor mesons.

T

We used the varisble

V = 8 =u (1.26)
TR

which produces a better low snergy expansion than s (see ref.12), and

therefore parametrised the invariant amplitudes as

AT (vot) = 251X1(t) yi(t) (2.41)
i =PV,T

B(v,t) 2 ) A8y w1 (2.42)

1 = pprT

As usual, /81 is the signaturs factor

A1 = it |, Ty (2.43)

- e

Sin R ey




where, of course, the signatures of the trajectories are

T =G, = 1 (2.44)

T, = - (2.45)

In terms of this parametrisation the mechanism for the production
of the crossover is extremely simple. The quantity lk-%% defined in

0.q. (1.20) is given by

_Ag_: = 4 (¥ ¥, * _Ezﬁpfgv) e RE(%; A (2.46)

where C is definad in e.q. (2.28) and

2
E = iy nL_b (1 + t/4q )’} (2.47)
2mv (1 = t/4n?)

Since the crossover occurs near the forward direction; the
contribution of the second term in (2.46) is expected to be small so
that the zero should be apparent in the firat term. A zero in K’p
would produce a dip in the K+p crosa section which does not accur, so
the conclusion is that Kv(t) vanishes for ¢ % -0.16 Gevz. In
practice this zaro will be shifted slightly by the presance of the
second term, but because the quantity E2 necessarily venishes like t
in the forward direction, its effect at ¢ = =0.16 Gevz is exnpected to
be small.

The quantity A-g% anables us to check the validity of the '
simple pole model. If we plot log( Zlfﬁf ) against log (s) at fixed t,
8.q. (2.46) predicts that we should see a straight line of slope
(60)

ot ¢ o:p-2. This has bsen done by Schmid » and his results are shown
in f1g.(2.11). The data may be sean to be perfectly consistsit with this

simple power law from P, = 9.5 to 15 GeV/c. (the highest momentum for

L
which sufficiently accurate data were available), and from t = 0 to
t = =1.0 Gevz. The curves for =0.6 £ t § «0.4 GeVZ, where the

statistics are bsst, are in particularly good agreement.
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1t seems;, therefors, that the deta on differentisl cross sections
are encouragingly suggestive of a simple pole modsl. Indeed, it is
puzzling what has happenad to the cut contribution, if it is =
significant part of tho amplitude. Unfortunately the polarisation
data are not sufficiently accurate to apply a similar tast to the tensor
terms in any meaningful way, but it does appear thet, in this process

at least, cuts play a relatively minor rols,




= 33 =

The Mesons

Our modsl has doubled trejectories, and the simplest way of
schisving this is to make each meson residue a sum of two Veneziano

terma of the form (ses 1.48)
c (¢ = constant) (2.48)

AU ORI

with s = 1/’

This form has zeros when

u(t) = m-1’ m=2g Py - 1 1. (2.49)

which cencel the poles at altarnate integers in the signature factor.
The resulting emplitude thus has poles for positive integer ex(t),
starting at &x(t) = m or m ¢1 depending on the signature of the
trajectory.

Since the lowest perticle on sach trajectory is not observed to bs
doubled we arranged that, of the two terms constituting each residue,
one had the lowest particle and the other did not. ue were thus led to

the following forms for the residues

b‘v(t) = Ev1 . ng (2.50)
Pl + 1) P (x = 1)

(¢) = E vi_ Ev? (2.51)

By

P (x) M = 1)

¥ (0 = §11_ 12 (2.52)
() Pec = )

pT(t) a Br1 872 (2.53)
f () Ml - 1)

The 8 parameters {8 gﬁ; are coupling constants, to be determined
by fits to the data.
We fixed the meson trajectory at
e{t) = 0.5 ¢+ 0.9¢ (2.54)

in accordance with exchange degeneracy (see s8.q. 2.40).




As a preliminary step we fitted thess forms to the residuss from
ref,(24), and were sncouraged by the reasonable fits obtained, as
these residues show considerable structure. This proceduse was not
entirely satisfactory, howsver; because the fitting pruvsadu., wes ot
eble to disceiminate bestween reglons where it was necossary to fit
closely, such ss fog I{v(t) near the crossover region, and regions
where a rough approximation was edequatéo such ae for the @ rosidues
near the forward direction. Conssquently we fitted the date directly,

end for this it wes neoessary to construct a parametrisation for the

pomeron,




.The Pomeron

In accordance with the above discussion we made t channel helicity
conservation for the pomeron correspond to %(t) = 0. In teims oi the

residues, this gave

b’p(t) =6':(t) cos ~(t) (2.55)

where B’E(t) is the unrotsted non flip residue. We paramsetrised
it as
2] . a,t +a tz
b’p(t) = Ac! 2 (2.57)
This corresponds to the usual idea of a pomeron central in
impact-parameter space.

We perametrised %:(t) as a polynomial, end included the kinematic

J:? singularity mentioned in e.q. (2.34).

*x(t) = \!‘:'t“('ae.1 * %t 0%3(:2) (2.58)

We tried 1ntroduding a cubic term inte this expression but found
no impzovement in the fit.
We used a linear trajectory

ozp(t) = 1¢o:';t (2.59)

allowing u; to be a free pasrameter. Our pomeron parametrisation thus

had 7 free paramaters = A, a1,, azg %1, %9 %3, @:p’ = to be determined

from the data.

Tt chowld be poiwted out that tHa % dcﬂ&wd Abo-ve
s & votaton of s pomerow velative o ¥ha maswns,
and (6 wob He Sams as Hhe % defined ow page 29 ,

Liith Canwot . of owmee, oo determuned by A to
the dota.




Date

We fitted all available data in the range

2 £ PL\< 16 GeV/c

02t 2 =1.5 GeV2

The sources ere listed in ref.26, and the numbers of experiments are

summarised in Table (2.1).

Tsble 2.1

Data on K 2 p Elastic Scattering

Measurement Number of Experiments
Kep K «p
Gror 4 3
o 9 5
P 3 2

In all there were 589 data points. Normalisation errors in the data,
which reflect the difficulty of accurately counting the flux in the beam,
wsre revesled by_differéncas betwasn experiments by differont qroups at
similar energies. For example, there is a factor of about 1,3 batween

the K ¢+ p differentiel cross section date of deBaere et al, et P, = 3.46 GeV/c

L
end thet of Banaigs et al. at P = 3.55 CeV/c (26). One possible way of

déaling with these aystematic'errors is to assign each experiment an
arbitrary normalisafion paremeter, to be determined by the fit. We did
.not use this procedurs, since it ppssesses the inherent danger of allowing
the model té introduce an altogether spurious enerqy dependence. lUe

relied instead on fitting a lerge amount of data, end expected that the

normalisation errors would to some extent averags out.




Fitting Procedure

We minimised N?p dofined by

x? = ;gi: %% (cale) = %% (expt) 2 + [P(calc) = P(expt) 2
ot S%% (expt) 8 P(expt)
Z [G’T(calc) =0y (expt) 2
¥ 8 lexpt) (2.60)
s .

We used the CERN minimisation progrem MINUIT, which is a
combination of a randomessarch routine and e modified Rosenbrock
co-ordinate variation program(sl). The action of MINUIT is summarised
in the flow=diagram of fig.(2.12).

Rs starting=-values for the paremeters, we took the vslues obtained
from fits to the residues from ref.(24). About 1000 iterations were
required to reach a solution, and only one good fit was obtained.

Although the number of free parameters - 15 - was rather large,
certain of them were determined in a straightforward way by the gross
features of the data.

The pomc;ron perameter A was determined by the asymptotic K ¢ p

total cross section, since

Ke
O'TO'FF' (¢0) = %‘- . (2.61)

The forward dirsction vector meson residue was then determined by

the difference between the K-p and K¢+p tatel cross sections

GrorK = P) = Trgr(K ¢ p) = mY¥, (0) o(0)-~1

——d ¥, - i‘?v,‘,) (2.62)

As the arrors on totel cross sections ars amall the sguations

(2.61), (2.62) were well-determinsd. A further condition on 8’v was

obtained from the crossover at tR -D.ZGsvz.' This implies
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2
¥, (k) = 03 t = -0.2 Cev

or ?v1 ¢o<(m=1)gvz = 0 . (2.63)

As was previously suggasted, this zero wes moved slightly by the
pres;nce of flip terms, but (2.63) represents e very useful constraint
in restricting the movement of persmeters.

With the non=Ff1lip pomeron and véctor=meson peremeters more or lass
fixed by the total cross saction snd crossover, constréinta were
imposed on the tadsoﬁ meson residue by the value of the K o p total
and forward K p differsntial cross sections,effectively reﬁoviqg two
more parametafso | |

Our Pit thus had ten paeaﬁatare with which to fit the bolarisaﬁion
date, end the angular structure of the di?forential cross sagction.

In addition to e.q.(2.46), threa additionnl quantities may be

définsdn

d g gy,

- 2cZ(8§ . Ezﬁi)l&ﬂ? v, 4-""?(’3;51)(5;,5'7 . Ezﬁpﬁﬁ X

L= P,V,T SEVIVE S\ '(2_64)
ZrE 2 P (kep) o PR (kop)
= 4 (¥ By "5TPP) v &*%p m(&:&T ) (2.65)

do do .
APp ot 8 P 3t (Kep) = P 3t (Kep)

='4CE[.(xp§v Bgv@p N I (‘gigv)
* (EvﬁT =KTﬁ'v)v2“ m ('S:XT)] (2‘.66)

where C and E are defined in (2.28) and (2.47) respectively.
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Since the meson non flip residues are constrained as describad
in the previous discussion, they may be treoated as known in the above
three equetions.

The pomeron parameters 849 85 %ﬁ, Wyp Mg WETS determined largely
by the differential cross section and polarisstion data over ths whole
renge of t, and the meson flip residue paremeters meinly by the
polarisatiﬁn. 1t should be smphasised that, in a simple pole model,
the pomeron is not predominaently a forward direction effect, and in fact
. because of its small slope, contributes more st larga‘t relative to the
masons, than in the forward dirsciion. (In cut models,of course, this
is not true, since amplitudes generated by for exemple the absorption

model fall off mors slowly with t than the pole contributions).




- 40 -

Results

The best leasst=squares fit to the data gava'u? = 1.8 per point
and the following parameter values.

For the pomeron
’ -
o, = 0.32

A o 9919 81 = 2.39 s 002

82
% = -l x 102, 2, = =02, 2 = 0,46

Fer the Vector meson

K\I‘i = 103 K\'z = 106

L

(Su'i = 23, 5\,2

and for the tsnsor meson

2.8

——

1 =12 ¥ = 5.3

T2

(=4

@n = 85, (-g-TZ =45

Fits to differentisl cross section and polarisation at intermediate
ensrgies are ghown in figs. (2.1, 2.2) and to the total cross sections
in fig. (2.3). The model sgreed well with the data over the whole range
of energy considered., A larga proportion of the %2 came from the
normalisation errers mentioned above. We estimated that, if normalisation
errors were tmken into sccount, we would have‘ﬁ?ﬂ: 1.2 psr point; which
is a reasanable fit.

The Meson Residues

In fig.(2.5) the meson residues ars compared with these of the
effective pole model of ref.(24). The agreement is seen to be good for
the non=flip residues, espscially near the forward direction. The flip
residues are in poorer agraeement. In general, a8 was mentioned above,
they are less well determined than the non-flip residues, and near t » O

they are not determined at all, because their contribution to the

observables vanishes kinematically.




It should bs noted that these residuas are not very compatible
with exchange degesneracy. That the non flip residues are nearly equal
at t = 0 1s not surprising, since thet is necessary to esnsure the
flatness of the K M p total cross section, Oup results at larger ¢

(27)

support the assertion than in a pure pole medel exchange degensracy

cannot hold away from the forward direction.
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The Pamaron

The unrotated non flip residue U:(t) we obtained was the same as
that of ref.(24). We tried a fit with a, fixed squal to zero, but
found that the fit wes considerably worse.

The very small value (=1 x 10“2) obteined for %, indicates
support for t channsl hélicity conservation for (it £ 0.5 Gavz. This
is illustrated in fig.(2.4), where the harametég'ﬂb(sgt), which is
defined in e.q.(2.35), is plotted at =10 GeV/c. Also plotted is
the t channel helicity conservation curve, defined in e.q. (2.38). It
can be seen that our fit is even further from s channel helicity
conservation Gz (sot) = 0) then is the T.C.H.C. curve. Some suppert for
our 3%(t) is obtainad from consideration of the CERN ﬁ phase shift
analysis, in section (2.4).

The pomaron siaps ap’ is simply related to the shrinkage of the
forward peak in the K ¢+ p differential cross section._ Since, in our
model; the mesons are sxchange degenerate at t = 0, ws expect tha pomeron

to dominate thare, so we can write

da

Tt Ke+p) = F (v) sz“p(t) “?'

(2.67)

(where F(t) is a complicated function depending on K:(t), %x(t), and
kinematic factors). Putting in the lineasr form @(p(t) =1 ¢ “F,’ t we

obtain

98 . F(r) sBPE

To obtain the slope of the forward peals we take logs, differentiate,

and evaluate at ¢t = 0, giving
F!(o

b(s) = dt (109 qt £, o

s 2«; log s (2.68)

t=0

so0 that the rate of shrinkage of the forward pesk is proportional tao u;.
This meens that the value of up’ obtained from the data is largely model-
independent, and in fact any model assuming pomeron dominance of K ¢« p

will give the same reault.



Conclusions

We have formulated a simple model, involving doubled trajectories,
which avoids the factorisation problems discussed in section (1.2). The
model provides a satisfactory Fit to K 2 p elastic scattering data in

the rangs 2 & PL € 16 CeV/e, and 0 € It} € 1.5 Gevz,

Our parametrisation of the residues leads to a déterminétion of
%{t) which supports t channel helicity conservation for the pomeron
near the forward direction.

In the next two sections, we make use of the amplitudes obtained
from this model, Although the fact that it fits the available data
cannot be interpreted as convincing evidence for the physical reality
of this model, it is useful because it provides a smooth parametrisation
of the data in terms of Regqqe amplitudes, which cen be used in testing

(65),

genaral hypotheses (such as that of Zarmi or the sssumptions made

by amplitude analysts; such as Heyot and Navelet in the next section.
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2,4 Comparison with the Amplitude Analysjis of Heyot & Navelet
(28)

Heyot and Navelet performed an amplitude snalysis of the KN

system at PL 2 10 GeV/c. As thers are data on an insufficient number
of parameters to completely detarmine all the amplitudes, ihey were
forced to make some assumptions,

They used amplitudes miop Miap which are pespectively s channel
helicity non-flip and Plip amplitudes of total isospin I in the t
channel. If bev(Ka) is the amplitude for K = p = K = p, and mfﬁv(ﬁo)
that for K = p —> K'n (p,v = 2), then

" (K™) = é(w;lv ¢ m;V) | (2.69)

= 1
m/M (K®) = m,w

These amplitudes are normalised such that

da 2

2
= lM°¢|

im__| (2.70)

§

. .
2IM (m¢¢m¢=) (2.71)

The assumptions that they made were as follows:

(1) In an amplitude anslysis of the ®WN sYatam(ze)

the I =1 flip
amplitude was found to have the behaviour expected of a simple Regge-=pole.
By analogy, assumption (i) is

1 =17C@( :
M = ]mq__ ‘ e (i)

-1

(i1) The K = p'f>?°n differential cross section deta has a forward dip,

indieating a dominant flip amplitude, therefors

lm;H » |m? (11)

L4

(This cen ebviously not hold mear t = O, whaere mél vanishes).



(111) They essumed that the pomeron conserves s channel helicity, and

that the pomeron is dominant at P_ = 10 GeV/c, hence

DRE NI (111)

< =

(this assumption i{s certainly wrong for I(t1 2 0.6)

They then wrote

0 0 ivg
m-M-' = ﬂm¢¢l e

and obtained the following formulae

0 d -
Im, 1 = 2 S )

1 . dd ,=o
m¢=ﬂ = dt (K )

and sinT(f + &) = P(K - p) J%‘é%%%;l;

In fig. (2.6) we compare the results of this analysis with the

K =« p non flip amplitude in our model. It may be seen that for
im mo*(K = p) the agreement is good, whsreas for Ram¢‘(K - p) the

amplitudes do not agree. The reason for this is that Heyol and Navelest

had no justification for neglecting Mgg compared with Mlﬂ e If uwe

write

0 1]
M¢_ = ﬂlﬂ¢_ l e

"

we obtain for the K = p polarisation
1
ﬂm+_ﬂ slin‘ﬂ'(ﬁ ¢ &) ¢ |m2=\91nn ($+ o)

»]
im.t

P(K™ ) = 2 (2.72)
This means that the result for the phase of m¢g was incorrect,
giving rise to a wrong reel part. Becsuse this amplitude is nearly
purely imaginary, being pomeron dominated, this error did not significantly
affect the imaglinary partf
Hayot and Navelet also extracted what they palled the "Reqge
Term", by assuming that the K + p differentisl cross section is given

by the pomeron alone.- This gave
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Im ml (Regge) = {;[ gg (K =«p) = ,/'3% (K +p) ] (2.73)

This, nat surprisingly, has a zero at t = =0,16 Gavzg since the
K ¢ p and K =« p differential cross sections are equal there. If we

write
dd

W - ’-gg (ke p) = - _ (2.74)
fg—t(x=p) +[§%(K¢p)

and approximaté the denominator by the pomeron contribution, (assumed

imaginary and conserving s channel helicity) we obtain

0
Imm_ (Regge) ¥ Im V.o (2.75)

where V¢¢ is fhe vector meson contribution to the non=flip amplitude.

Our Regge term contains also the tensor contribution, and does not have

L)

a zero at t = =0.16 Gevz. The Regge term in our mode

(2)

and Heyot and
Nevelet's analysis are compared in fig.(2.6).

The valus of our smooth paremetrisation in testing analyses of this
kind is evidbnt. As our amplitudes fit all the available data, they

can only be excluded by an analysis whose physical assumptions are

radically different from ours.
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2.5 Comparison with K ¢ p phass shift analysis

5ince the K ¢+ p channal is exotic, smooth Regge=like bshaviour of

the cross sections has alreedy set in for P, ®% 2GeV/c, which was the

L
lowest momentum we considered in oug fit. There has also heen much
activity in the fisld of phase-shift analysis; whers the search for

. -2

exotic resonances such as the £ ;, has led to solutions being produced

up to P = 2.5 Gav/c(29°30).

We thus have an opportunity to compare
the phase shifts directly with our results, without the need to invoke
Finite Energy Sum Rules.

We econsidered projecting out the partial waves from our amplitudes,
but since we had no model for backward scattering, we were unable to do
this in a meaningful way. Instead we compared amplitudes directly.

This sort of comparison wes psrformed by Daum et 31(24) at
P = 1.45 GeV/c with their effective pole model. Since then phase
shift solutions have become aveilable at higher energlea, from which we
expect more fruitful comparisons.

1t is useful to compars quantities which are invariant under the
rotation %. Wa therefore define ﬂs(s,t) by

(R9F¢¢)2 + (Ref‘”)2

'ﬁ(st) =
s'® (1nf, )7 )2

(2.76)

¢ (Imf¢=

This may easily be seesn to be. independent of Xb(s,t)g defined in e.q.
(2.35), and therefors cennot depend on %{t) either.

e first describe the phase shift solutions available at
PL > 2 Cav/c, end then compare them with our model. We cannot compere
our model for %(t) with solutions which do not agree with our ﬂs(s,t)p

.80 we made & direct comparison of the s channel amplitudes f*#(s,t),

féﬂ(s,t).




The Phegs Shift Solutions

(1) The CERN Solutione

Albrow et a1(29) performad a conventional energy-independent
phase-shift analysis of elastic K ¢ p scattering from thssshald up to
PL = 2.5 GeV/c. They used data on unpolarised and polarised
differsntial cross sections, total and elastic cross sections; and also
real parts of the Porward amplitude R8f¢¢(890)9 teken from the dispersion
relation calculations of Martin and Perrin(ss).

In this type of analysis, the partial wave series (2.13, 2.14) 1§
written down end truncated at some 1 = lmax; The resulting amplitudes
are fitted to the data at each enerqy independently, using the partial
waves f1: (s) as paraﬁeters. The solution obtained in this way is by no

21 1

mesns unique, in fact there are of the ordar of 2° max’ solutions at

(63)

each energy » and sven thess depand on the choise of lma N

X
Albrow et al. included up fo H (1max = 5) waves in their solution
at the highest momenta considared. At each momentum they obteinad 200
solutions, which they linked in enerqgy by the "shortest path" method(31),
which selects solutions giving greatest continuity. Three distinct
solutions were obtained, which the authors called &, Pgb’. Of these,

ot and ¥ wera nearly identical at the highest momenta, especially near

the forward dirsction.

(11) The AEE solution

Miller ot 31(30) used the "Accelerated Convergencé Expansion" of

Cutkosky and 080(32) to perform an analysis in the same enerqy range as

the CERN qroup.

In this methad the complax = plane is conformally mapped onto a
plans in which the partial wave series is maximally convergent. Thia
procedurs has the advantage that much feswer partial waves (and therefore
parameters) are required than in .conventional methods, although it does

have the serious drawback that the simplicity of the unitarity

constraint 7,4 € 1 (see s.q. (2.16)) is lost in the process.




Miller et al. 6btainad a unique solution at sach snergy, which
resembles the CERN & and ¥ solutions. In gensrel the ACE solution
gave a better fit to the dats, pa;ticularly the polarisation near the
forward direction, than the CERN solutions (see fig. (2.7)). When
the partial waves were reconstructed from the ACE expansion, it was
found that the series converged rather slowly, so that the CERN workers

has apparently included too few terms in their fit.
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Tha Comparison

It is convenient firast to compare quantities inveriant under the
rotation ‘X.s(spt).. Since the CERN & and 8§ end the ACE solutions
resamble one another, we compare our solution with CERN @ and ACE
only. (These are labslled 'R', 'B', 'A' on the ﬁiagrama).

In Pig. (2.9) we compsre the quantity ﬂs(s,t), defined in e.q.
(2.76) at Pl = 2.5 GeV/c. We see that our solution is in fairly
good agresment with CERN p » but hopelessly different from ACE. (All
gsolutions agree atjt = 0 beceuse -they fit total aﬁd forward differential
cross sections with ths two parameters Ref¢¢p Imf¢’, leaving no room
for ambiquity). The fact that these results for ds(s,t) are so |
differant means that we cannot ascribe the differences in amplitudes to
just s channel or t channel helicity conssrvation. To consider the
subject in more detail we must look at the amplitudes directly.

In fig. (2.8) the s channel helicity emplitudes f.‘, f  are plotted

-
at PL = 2.5 GeV/c. We ses immediately that for the non flip amplitude
there is no disagrsement. It is particulerly interesting that all
solutions'agree for Ref¢’(s,o).. Both phese=shift groups fitted dispersion
relation real parts, although in KN these are somewhat dubiogus, since

they depend on the parametrisation adopted for the unphysical region in
the integration. In fect this ambiguity is the reason for the small
difference between the ACE and CERN values for Ref¢+(s,o), brought about
by the fact that their input values were from different sourcas. Our
value, which comes only from the totel and forward differential cross

sections, egrees with the CERN value(33)

» indiceting that dispersion
relations provide no extra information in this problem.

It is in the flip amplitudes that the differences are really
aéparant. In the ACE solution Im€+_ is very small for all t. This has
been put forward as suggestive of s channel helicity conservation, both
by the CERN group(zg) and Cutkosky(SQ). This interpretation runs into

trouble, however, when we demand compatibility with K - p data, and



particularly the crossover zero at t R -0.16 Gevz. Since this zero
must be present in ths vector meson term, we would expect to sse a dip
in Ref _ in this region (as the pomeron real component 6ught @o be
small near the forward direction). In our model, which does not have
8 channel helicity conservation, this problem does not arise.

The small Imf b In the ACE=typs solutions has also been said to

(29)

suggest exchange degeneracy +« Since, away from the forward direction,
there are contributions to Imf _ from both R’ and B (see e.q. (2.7)),
this degenerscy would be true for both ¥ and ﬁ residues, so that we
would again expect te see a dip in the RefW near the crossover point.
Another phsnomendlogical'poﬁnt is worth mentiening. Davier and

(64)

Harari have shown that in impact parameter space the‘meson
contribution te K 2 p appears to be peaked around b = 1f, In terms of
= 2.5 GeV/cy, 1

partial wave this is, at P 5. The CERN partial

L peak'a5
wavé solutions, however, only go out to 1max = 5, so that they must
miss a considerable part of the meson amplitude. It may bs that all
partial wave analysis which truncates the series at a fixed 1 has a
built-in prejudice against such psripheral amplitudes.

These arguments have depended to some extent on the pomsron having
a small real part. It is, of course;, possible that the pameron at low
energies does not behave like an ordinary Regge=pole, that 1s,it does
not have the usual Regge relationship between its phase and its enerqgy
dependence. If this were true, direct comparison of Regge fits with
phase shift solutions would not be possible, at any rate until we have
a more complete theory for the pomeron.

Some of the ambiquities that have been mentioned would bs resolved
by measurement of either the spin asymmetry parameter A, or thes rotation
parameier R (defined in e.qs. (2.18, 2.19) respectively). Although
measurement of these parameters is extremely difficult, as it requires
a double-scattering experiment, it would be very worthwhile, because

the predictions of the various solutions are wildly different.




As an oxample, in fig. (2.10) we show the predictions of all the
amplitudes for the asymmetry A &t PL 2 2.5 cev/c;' It can be seen
that even s very low=precision oxperiment would provide & means of
distinguishing ‘the two typaes of solution. _

We conclude thet our model egress remarkably well with the CERN
ﬁ solution, It differs from the ACE solutfon, end the CERN e, ¥
solutions, largely in the phase of the flip amplitude, These last

thres solutions do not seem very,cqmpatiblé with simple Regge idess.




2.6 Canclusions

(1) Our simple model with non-factorising residuss providss a
aatiasfactory fit te K2 p élabtic.scatt@ring data. Our
determinetion of %(t) supﬁarﬁa t channel helicity conservation
near the forward direction,

‘ (ii) Our model égrees with the. results of Heyot and Navelet(za) for
the Imaginary part of the K = p non=flip amplituda at
P, = 10 CeV/c, but not for the real part of thet amplitude.
This has besen tracaﬁ?to an errcneous essumption in ref.(28).

(iii)The"Ragga Term' in ref.(28) is in fact just the vactor‘meson
contribution, It does not agree with the ﬁaggs term in our
modalgmhich also cqntaina the tensor mesons. .

(iv) Our modsl sgrees with all asvailable phase shift solutions for
the K ¢ p non-flip amplitude at P, = 2.5 GeV/é. For the flip
amplitude our model ag'rees with CERN ﬁ » but not with ACE or
CERN o, § . The last three solutions do not seem easily
compatible with Regge theory, and in particular appear to requ;re
the pomeron to have a large real componsnt.

Doubled trajsctory models make the need for cuts lass evident.
They satisfactorily explain such featufés a8 the crossovar zero
and dips in cross sections in e way which allows these features
quite naturglly to be indapeﬁdent ué anargy -~ a phenomenon which
cut models naed to work hard to achisve.

That cuts must be present in Regge amplitudes, if only to shield
wrong=signatuce fixed polas,.is'naverthelasa now widely sccepted.
The validity of currently availeble cut models, such as the
absorption model, is, however, opan to dnubt, and the predictions
of these modela, particularly for the t-dependence of amplitudes,

are somewhat suspect.
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The one place whers the effect of cuts ought to be unambiguous
is in the energy dependence of amplitudes. The enexgy
dependence produced by a cut is quite different from that
produced by a pole, particularly if the cut discontinuity is not
strongly peaked, o

The best place to study energy dependences 1s whera thege are
good deta over a large range of energy. With the ﬁeﬁ data from
Serpukov end ISR, pp elastic scattering now satisfiss this

criterion, and it s the subject of the next chaptes,
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Figures for Chapter 2

Comparison of our fit with K ¢+ p and K = p differential cross
sactions at P, = 4.6 and 3.46 GaV/c rsspectively.
Comparison of our fit with K ¢ p srd K - p polarisations at
3,75 and 2,08 GeV/c respectivsly.
Comparison of our fit with K ¢ p and K = p total cross sections
from P = 2 to 16 GeV/c.
The perameter %/ (s,t),defined in the text, at p_ = 10 GeV/e.
The solgq line corresponds to our fit, and the broken line to
t chennel helicity conservation.
Comparison of the residuss in our model with those of ref.(24).
Continuoug lineé and dots ere vector meson residues, broken
lines and circles are tensor meson residucs.
Comparison of the K - p s=channel non flip emplitude in our model
with the amplitude analysis of ref.(28). The solid lines are our
model, broken lines and dots from ref.(28). Curves 1 and 2 are
the meson cunfributinns to the Imaginary part of the smplituds,
Comparison of fits to K ¢ p polarisation at PL = 2,5 GeV/c. The
cufvés shown are cut model (labelled R), the ACE phase shift
solution (labelled A)-and the three CERN phase shift solutions
(1abelled oty p v & ).
Comparison of the 8 channel helicity emplitudes for K + p from our
model with the ACE (labelled A) and CERN ﬁ (labelled ﬁ ) phase
shift solutions. | |
Comparison of the predictions for the parameter ﬁs(s,t) defined in
the text of our model with ths ACE and CERN ﬁ' phaee shift solutions.
Comparison of the predictions for the asymmetry paremeter A of our
model with the ACE and CERN phase shift solutions.

dg

The Simple-pole fits to &>§I » defined in the text, of ref.(60).

The flow<diagram for tha CERN minimisation program MINUIT.
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CHAPTER 3. J PLANE ANALYSIS OF PP ELASTIC SCATTERING

INTRODUCT ION

The evidance for the esxistence of Regge Cuts is at best indiractg_
and comprises mainly the failure of the simple Regge Pole model to
explain various feetures of the data, as discussod in section (1.2).
Other explenations have, however, been put forwafd. (See, far axample,
ssction (1.2), Chapter 2, end ref.(67)). It is possible that cuts
have 8 much smaller effect than is ueﬁa;ly suppoaed,-in which cese
their detection will be rather difficult.

Another difficulty with Regge Cuts is that we reqlly do not have
much idee how to cslculats them. The absorption prescription, although
precise, has a somewhat dubious de:;vationpand in any case does not
provide quantitative fits to the data unless the cut amplitudes are
multiplied by an arbitrary parameter. Such models then have great
freadom and little piadictiva power, which is an entirely unsetisfactory
situation. A remark, made by Lovalaceeaa) about the Michigan cut
model, is warth quoting.

"The whole history of Physics tells ms that a theory with few
parameters which worls only in simple situations, is more likely to be
basically correct than a theory with meny parameters which works only
in complicated situations."

We are therefore led to search for cuts in situations where the theory
is more substantial, and the data less ambiguous. Here we may take a
lesson from Reggs Pole theory, whose chief prediction is the snerqgy
depandence of cross sectione; which on ths whole is well supported by
the data, whereas the t-dependeﬁce, which is largely arbitrary in the
theary, has caused most of the problems. The situation is much the same
for Regge Cuts. We do not know their prediction for t-dependsnce with
any reliaﬁility, but, since the positions of cut branch points are

known, we have much mors information about their structure in energy.




It theréfora makes sense to look for cute in the energy dependsnce
of cross sactions. Of course, polos will atill bs present, and to
unravel the cuts from the poles a considereble smount of good data,
over a large energy range, is necessary. Although such an idesal situation
is far from being-realiaedp aince the data from Sarpukov, ISR and NAL
have becoms availabls, ths procedure is certeinly worth trying for
elastic pp séatiering. This process has the additional advantage of
being exotic, so that the contribution of the Regge Poles, especiaslly
to the total cross section, is éxpacted from Exnhaﬁge Degeneracy to. bse
small. This means that cuts should bs partisularly easy to detect.

The main disadvantage of proton-protoh scattering ie that thore
are a large number of independent helicity amplitudes - five in the
elastic process. Good dats are available only on total and differsntial
crass sections, so that it is not poaeiblé to determine all the
amplitudes, This is not @ serious drawback es far as this chapter is
concerned, howsver, because poles and braneh points in the j=plane have
the same position in all amplitudes, and we are not concerned with
t-dependences. (we shell show in the nexf chapter that, at ensrgies
where the pomeron can be considered to dominste, we cen reduce the
amplitudes to a single real nbmbef, although for this procedurs some
approximations muet be made).

In section (3.1) we define the amplitudes end farmalism that will
be used. Sections (3.2, 3.3) deal with our analysis of the total end
slastic differential cross ssctions ;egpectively, and in:.section (3.4)

the results sre discussed end concluaioné drawn.
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3.1 Amplitudes and Formelism

There sre five indspondent helicity smplitudes in elmstic pp

scattering., We tske these to be T¢°¢¢, T¢=¢=9 T¢¢==, T¢==¢9 and

T*¢¢_ (in the s channel). The normalisation is chosen so that

dd 1 E , 2
= 2 T (spt) (3.1)
dt 167 o%s pvAS
MmNAE
1 o
and O, = § im {1,..(s,0)] (3.2)
T q J;‘ [ f“\r‘v o
v
where M\WA 0 are helicity indices.
The:contribution of a Regge trajectory & to one of these
amplitudes may be written as (sew 8.q. (1.1)).
POLE . o x(t)
T,m\o' (spt) = »Z (¢) S (3.3)

MYNT
and we write the contribution of a cut in the form of the integqral of

1tsidiscont1nu1ty

cuT %ot | |
TPW (s5t) = §dJ p o (Jet) e’ (3.4)
_ oo fr»hf , _
(Thei functions QFUM and e contain kinematic factors, which

are not important in this discussion, as the s-dependence, in which we
are intersstad, is displayed explicitly).
The amplitude will in general be a sum of terms like a.gs. (3.3,

3.4). Ue-combine bdth these forms by writing

_amax
T/sn;»\o' (8st) =J\dj sJ _-C/“‘\Jko" (Jot) (3.5)
- 09 .



In this representation, poles sppear as 8 ~functions in 3,,“,,\‘ 9
and cuts as continuous functions with ©-functions at the branch

points, i.e.

T, POLE - &t . )
pmvrg (Jst) Twrs™ 8 (J = () S
'Cﬁf,‘\J,L, (gst) = . é@'\‘gpt) © (egyq(t) = 9) (3.7)

Substituting s.q. (3.5) into @.qs.(3.1, 3:2) we abtain

| g _ A ® max 2-1-
dt o2 dj s ¥ (Jet) _ (3.8)
- 0D -
(4] = 1 umax . ’ |
Toos g o B (3.9)

whare

max-j
£ (Jot) = 1:1-‘ E i Tuude (3 + Lot) g (J = Lt)  (3.10)
PN (o

ma&-J)
snd  B(J) = %Z ImECM.‘,fw (3,0 ) (3.11)
P |

and where we have used (from e.q.A.9))
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Since a particular trajectory, such as the N contributes in
the seme way to the j-dependence of all the amplitudes, the j dependence
of & (j,t) and ‘3 (j) is expacted to be rather simple, whereas the
t-dependence is expected to be too complicated to yisld much infosmation.

It might be thought possible to invert e.qs. (3.8, 3.9) to obtain

B (4ot)s ﬁ(j) direct from the data. Unfortunately this is not so,
for the following reason. If we put x = 2log(s) end k = “max.j in

for example, 8.q. (3.8) ws obtain

co
‘g‘% = [} («max‘.q )X dit e-kx x (ze‘max*pt) . (3013)
]

The integral will be immedietely recognised as the Laplsce transform,

of which the inverse is, of couras, well known. We obtain

c e i .
8(jpt> -= ——1"‘—' dx 3-(J ¢ 1)3( %—: (axg t) (3014)
2K 1
C = jeo

and since neither the differential nor the total crosa section {s
defined for complex log(s), this expression is of no use in determining
¥, and less direct methods nesed to be employed.

Tha method we shall use in the next two sections is to perametrise -
¥ and ﬁ in vaerious ways, and determine the paramsters by fitting
e.qgs, (3.85 and (3.9) to the dats. We shall always use forms for d and
ﬁ for which the integrals in e.gs. (3.8, 3.9) can be performed

analytically, since this considerably simplifies the procedure.




3.2 The Total Cross Section

Date

Table (3.1) lists the sources and ranges of dats used, The data
are plotted in fig.(3.1). The circles are from ref.(36), black dots
from ref.(37), and trisngles from ref.(38). It may bs seen that the
Serpukov data of ref.(37) sgree well with the older date of ref.(36)
in the region 30 € s < 51 Gavz, where there is considereble overlap.
The data from ISR are somewhat isolated, end have such large errors
that they cannot be expacted to yleld much informetion. |

Since this work was finished, new data have become availeble from

(46) and NAL(67). The pressnt experimental situation at Serpukov

ISR
energies and above is shown in fig.(3.8), end it may be seen that the
very high snergy date are by no means consistent. These dita may

affect our conclusions only for the pomaroh. since by that energy the
meson geRtributions have become naegligible, but ﬁoro likely they: require

a reappraisal when tha very high energy dafa are known with more

certainty. Thas methods are, in any case, still worthwhile.

Table 3.1
The PP Total Cross Section

S 2 Number of
MIN (Gev©®) MAX points ' Reference
16.54 50.58 11 Foley (36)
29.96 14,4 | 10 Denisov (37)
"(Serpukov)
949.0 2808 3 Barbiellini (38)
(I.5.R.) '
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Table 3.2

The PP Elastic Differential Cross Sectign

s, Number of | Normalised Refarence

MmIN  (CeV™) MAX points ?

14.64 48.01 90 Yes. " Foley (a1)
28.47 | 46.80 35 Yes Allaby - (42)
102.0 131.2 - - No Beznogikh  (43)

. ' (Serpukov)
462,0 2808 - No Holdsr  (44) -
: (IoS'oR'e)

Models
In slastic pp scattering the allowed exchanges are

pp = P+f§A2=‘in o : (3.15)
We have already discussed the idea that the meson trajectorises are

exchange degsnsrate, and under this assumption only two trajectories

should contribute and it is logical first to consider the form

o’T(s) = '1; (as®™ + B8s%2 ) | (3._16)l

We fitted this form to the dets, and found the best-fit paremeters
to be . |
*

« = 1.0 I 0,05

« = 0.0 % 0.1 " (3.17)
These results are at first somewhat surprising. Although the first
term is naturally associated with the pomeron, one would expact

o, % 0.5 to correspond to the mesons.



O0f course, exchange deqeneracy predicts that the mesons should
not contribute to the pp total cross section, since the pp channel is
exotic, so perhaps this result is not so surprising. To verify it we
tried a fit of the form

GT(s) = %- (As ¢+ B 5 . ¢ ) (3.18)

The best Pit had the following parameter values, and a mean

%2 of 0.25 per point.

A = 37.920.3mb
B = 2.2 24.4mb  (3.19)
C = 3.3 213.4mb

This result confirms_e.q. (3.17), in the sense that the parameter
8, which represents tHe-meson_couplingp is entirely consiéta&t with;zerd.
. The fact that the pp total cross section is nbt entirely flat up
to Serpukdv energies has; in the past, usually been interpreted as
evidence of a small amount of exchange desgeneracy breaking. An sxample
- of this is the fit of Barger et 51(35), who parametriséd both the.pp and

pp totel cross sections as

GTUT(S) A + Bs (3.20)
and found for pp
A = 3703 mb

B = 15.6mb (3.21)

These fits sre compared in fig.(3.1). Our fit, of e.qs. (3.18,
3.19) is labelled I, and that of Barger et al is labelled II. It may be
saen thaf curve 1 is distinctly superior in its ability to fit both the
low enerqy data and the high=snergy end of the Serpukov data. These
results indicate that the date prefer a singulerity neer j = O to one

near § = 4.



We are left with the prablem of identification of the j = 0
singularity. The obvious candidéta,the pion, cannot cantribute
beceuse it has the wrong signature and parity.

To obtain more information we tried a continuum fit, using the
form of e.q. (3.9) with o o T 1, 1.8

o) = | ey edp) (3.22)

- g2
We parametrised P as a polynomial in (§ = 1)1

n .
B - Z b, (J - 1)K (3.23)

k =0

This parametrisation has the adbantage that, when the integral has

been performed, the expression for .O‘T(s) is linear in the b's. In

fact
n
O’T(s) a Zbk (-)k ki [—1_(1:_9_3] k +1 - (3.24)
k=20

and the b's can then be determined by a linear least aquares fit. To
maintain the same number of parameters as for the simple pole fit, we
chose n = 3._'Tha best fit is shown as curve III in fig. (3.1) and the
best Fit @ (j) is shown in fig. (3.2).

Ae expected B (j) has a sherp peek st j = 1, which may be
interpreted as an attempt to simulats the appéaranca of a 8=function.
There is, however, a_btuadar péak in the region -1 8 J ¢ 0, which
reproduces the same structure as the 8 =function at j = 0 in the

previous fit.




We see from fig. (3.1) that curve III provides as good a fit to
the low-energy and Serpukov date as curve I, and that it is again
superior to curve Il in its sbility to fit the high-ensrgy Serpukov
points, in the reqion of s = 100 Gevz. The fall in curve III at
ISR energies is caused by the fact that @(J) is necaessarily finite
at j = 1, wharsas the data require a S -function.

1t is difficult to estimate whether the width of the peak at
-1 § J€§ 0in 6(_1).19 required by the data, or mersly a consequence
of the.polynomial parametrisation. The latter explanation is probably
more likely, because we have already shouwn that the data can be fitted

with 8 8§ <function, but curve III shows that this is by no means

nscessary,
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3.3 The Differential Cross Section

Data

The data used ape summarised in table (3.2). The 'conventional’
data, from refs. (41, 42) wers in the form of points in the rangse
0 >t > =0.8 GeV2D those from ref. (43) were slope peremeters for
data in the renge 0 > t > =~ 0,13 GBVZQ and those from ref. (44) were

slope paremeters in the ranges 0 > t > = 0.15 Gev2 and =0.15 2 t » =0,5

Gevz.

There is evidence for a systematic ofror in the data from raf.(43).
In fia. (3.9) the alépé parsmeter b is plotted, and it ﬁay be seen that
the data of ref. (43) are too lerge by 0.4 Gev™2, This {s consistent
with the possible systematic error of 0.3 l:a\l'2 quated in that paper.
Accordingly we adjusted the slope parameters from ref.(24) to bring

them into line with the data from other sources,

Interpolation and normalisation of data

Data from refs. 41 and 42 were interpolated in tito obtain values
from t = <0.0% at intervals of 0,05 to t = - 0.4 GeVZ.

In the region 0 > t » = 0.4 log dg/dt is nearly linear in t, but
it has been shown (45) that even at quite low snergies (at least down to
the lowest Serpukov energies, i.e. s = 30 Gevz) log do/dt exhibits a
change of slope near t = «0.15 Gevz. Consequently, we simultenecusly
smoothed and 1nterholated the data by fitting log do/dt with cubic

polynomials in t, i.e. we wrote

3
dg k
log 3 = g: a t (3.25)
k =0

and determined the a's by linear least squares. We used all the data

for  lt{< 0.4, plus that with the next largest value of t.
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For data from ref.(41) a slight vari&tion of fhis procedurs wes
adopted, There are two ssts of meesursments by the same group st the
same energies, but performed at different times, so that thair
normalisations are slightly different. One set deals with small t
( 1tV.§ D.2) and the other with larger t (although there is some
overlap). In o;dar'to meke best use of fhesa deta, we used both sets
simultaneously, allﬁwing e relative normalisation factor. We fitted

the small t deta with

3
ddg k
log el E 8, t | | (3.26)
k=20

and the large t data with
. 3 |
dg k
log il N ¢ z 8, t | (3.27)
k = O

using the same a’s. The parameter N was thus determined to give the
smoothest interpolation bestwesn the smell snd large t results. In Qome
cases thers was overlap between the tuwo expsriments, and the method
could be tested by examination. In such ceses it wes found to be
satisfactory. N was never as large @s the published relastive
noémalisgtion error.

Date from refs. (43, 44) were interpolated by means of the slope
parsmeters, and normalised by thefopticai theorem to the total cross
seckion fit I of fig. (3.1). Several conaidera#ions arase from this
procéduran

The behaviour of a helicity amplituds nesr the physical region

boundsry t = O is (39)
TﬁmAU (8ot) ~ (v __t)l“=ﬁl : . (3.28)
t~o0

-where &« = A-¢ and B = fa=w



This mesans that, of the five independent amplitudes, three =

s and T - are finite at t = 0. Only the

s T
&b Sodo S

completely elastic amplitudes = T = howsver; contribute

o T
L

to the optical theorem, i.e.

1
161'zq25

£ (s,0) = [ enaleson? 17, (ss0)1? + IT”“(s,O)IZJ (3.29)

and

6.(s) = —— 1 1, (8,000 T, (s,00] | (3.30)

qVe ®

Consaquently, 1f'we wish to use the total cross secfion for
normalisation of differential cross section dets, we are going to have

to neglect not only ReT and ReT p» but also ReT and ImT 9
Povd ©= L2 Ll

$o L4 Ll

compared with ImT¢¢¢¢ and ImT°¢¢_ .

It can be shown by dispersion relation calculations(40), that this
procedure is suspect for s .s 70 Ge\l2D so we did not attempt to
normalise any data for s < 1Dd GeUz. This meant thet we did not usée
.a conaiderable amount of the date from Serpukov, but there was no way we
cauld use these data without the danger of introducing a apurious dip

into the differential cross section at s %y 60 Ga\lz.

Serpukov data wsre used only at t = =0,05 GsV2 and t = 0.1 Gsvz,
since the experiments did not extend beyond t = -D.13'GaV2. The axtent-
of the ISR data veried with enerqy, being at the leasst out to
t = =0.25 Gavzg and at most to the largest |t| considered. No

extrapolated dats were used, since, even near t o 0 there is no way of

doing this consistently.



Fitting Procadure

We worked at fixed t, fitting the interpolated data with functions
continuaus in s, This meant that at each t we obtained parameter
valuaes, and were thus able to determine ocur parametera as functions of
t. The remarkable continuity of these parameters (see, for example,
figs. (3.4, 3.5)) is encouraging svidence of the consistency of our
interpolation procedures.

Because our interpolation was in t, and our fits were in s, there
wes necessarily a large scatter in the dsta points (ses figs. (3.3, 3.6)),
which was especially troublesome at small t, where there were fewest
points, We were therefore forced to keep the numbers of our parametera
to a minimum s0 as to reproduce the broad features of the data, without
fitting the statistical fluctustions. Consequently we rejected
parametrisations which fitted so well that the mean X? was very much

less than unity.

Models
(1) Pole Modsls
In the same wey as for the total cross section, the natural
model to try firat is a sum of poles. For each amplitude we used a

two-pole model

(o) = or (t) &, (t)

T uvas ® uvha (t) 8 * By (t) (3.31)

Here aﬂnmc. (t), b}uﬁur (t) are complex functions of t containing

kinematic factors as well as the Reqge residues and signature factors,



o« M0 =

This gives,for the differential cross section (by s.q. (3.1))

2
8

where, using e.q. (3.12)

1 2
Apgt) = 2= 2 bepurg (01

PMVAYT
- 2
hplt) = o5 . lopune (8
MVAT
and A, (t) = i Z Re | a (t) b A (t)]
nd P42 o [/ww (NG

If m1(t) is the leading trajectory, at high enough energies the
third term in e.q. (3.32) will become negligible, so that only a two-
term fit to the differential cross section will be appropriate,
Accordingly we tried verious two and three term fits, and found in all
cases that the lesding trejectory m1(t) was well fitted by a straight
line of intercept 1.0 @nd slope 0.15, and we mgintained this form in
subsequent fits.

Using the information gained from the total cross section, we were

led to try a fit with e.q. (3.32), where as mentioned above

&, (t) = 1.0+ 0,15t
and we used ths usual meson trajectory
@(2(1'.) = 005 * Uogt

The first term of e.q. (3.32) then corresponds to the (pomeron)2
term, the second to pomeron x meson interference, and the third to the
Gnesan)2 term. If the j = 0 singularity discovered in the total cross
section is slso included, then its interference with the pomeron will

contribute to the third term, end it will also generate a term like

26z, (t) &, (t)ee, (t) 2, (t)
dd L[Aﬂ(t) s | o AL (t) 8 | 2 s Ay(t) s 2 J (3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3,37)




e M =
s 1% 4y interference with the mesons, and a term liks 5”2 by itself,
both of which should be negligible. _

The resulting best fit hed a mean X? of 1.5 per point,and is
compared ta ths data in fig. (3.3), The paremeters are plotted as
functions of t in fig. (3.4). The fit is quite satisfactory, but as
wa shall show, there are certain constrailntes which thes psrameters ought
to obey, but which are violated for some values of t.

The first two constraints which may be obtained from e.gqs. (3.32 -

3.35) ars trivial

Ay (8) 3 0 N (3.38)

Ayp(t) 2 0 (3.39)

and it may be seen from fig.(3.4a) that they are easily satisfied.
It is possible, howsver, to deduce a third, less trivial constraint as
follows,

We write Por bravity

H 3 ('MD‘U pAyd“ ) (3«40)

and we define the phases of the functions 8 fuAg 0 b!_%w‘g in e.gs.(3.33,

3.34) by
a,(t) 5 la,(t)] e 0utt) (3.41)
i, (t)
by(t) & b, (t)l € (3.42)
With these definitions we abtain
Ap(t) = %—,‘-t Z la, 4 Ib0 cos (B, - B 3.43)

H




from which ws muy deduce that

2

Rlg = A RgRp =

1 . 2 2 .
— 2 fa o lla b, | cos (@, =B )cos (O, =HF,. ) -1{al lof | (3.44)
aw2 (an wl ey 1oy H = PH K H H H J

HoH'

henca, using trigonometry

2 1 2 2
Apg = BRy4hp, € Ppe. Zg"HN bl g j 1Byl = lagd” by J
’ ’

HoH

since the right hand side of e.q. (3.45) is symmetric in H and H' we can

interchange them without altering the result, i.ae.

2 1 2 2
Riz = Mgahyy € :’ir;zz @“H'“ byl Loublonl - foy2) Tl 7]
HpH’

Averaging e.qs. (3.45) and (3.46) then gives

2 1 2
Aig = Myqhpg - o E | oy tiogr = toyeql 1)
HpH ’

= A2 S 4a A

which is the required constraint.

The squality in e.q. (3.48) holds only under the following unlikely’

conditions

(1) 0, = le for all H. This is in direct conflict with Reage
Theory, and the interprstation of ths terms as a pomsron ano a meson

/’

(11)

a

HE = l;2ﬂ| for all Hy H
aH: th

(3.45)

(3.48)

(3.47)

(3.48)
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The j = 0 singularity contributes to the total cross section
with the same sign as the pomeron, so that its imaginary part is
positive. Since ths pomeron contribution ought to be nearly purely
imaginary, the j = 0 singularity should have a positive intarferance
with the pomeron, reinforcing the inequality in e.q. (3.48).

In Pig. (3.5) we have plotted the ratio A12 / 2(A )%, which

11A22
should be less than unity by e.q. (3.48). It may be seen that the
constraint is violated at t = = 0.2 Gevzgland only just satisfied for
- 0,152t > -0,3 cev’. |
To investigate the significance of this result we tried to fit
the data with the constraint (3.48) satisfied. There were several ways
we might have attempted this, but since the tendency to break it sesmed
to come from tha dip in Azz(t) near t = =0,2 Gav2 (see fig. 3.4a)) we
fitted the data with Azz(t) fixed as the best linear fit to log A22
through the first two end last two points,shown as the solid line in
fig. (3.4a). Thé equation of this line is

Ry,(t) = 729 exp (3.9 t) (3.49)

We found that A12(t) was now much smaller, and it is shown as bhlack
dots in fig. (3.5). The fitshowever, wes considerably worse, espacially
for the data at lower energies. The two fits are compared at

t = "002 GGV2

in fig. (3.6), and it may be seen that improved date in
the low enerqy region, or any data at all in the Serpukov region, would
distinquish bstween them.

This discussion illustrates the importance of accurate data at
lower energies in meking full use of the new very high-ensrqv data. It
is an unfortunate reflection of the present system of priorities that the

most useful experiments at energies below Serpukov were performed in

1963 and 19654,
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(11) Continuum Models

we performed a fit with the form of e.q. (3.8) using

&max = 19 i.e,
1
I RO R I (3.50)
= 0

In the same way as for the totel cross section, we parametrised

¥ (jot) as a polynomial in (j = 1)1

: n
¥(ist) = Z HONTEEIY | (3.51)
k=0
which gave in an analagous way to e.q. (3.24)
det o (=) 1Tk
a = 2, ket G (8 ['1'5?;”5 (3.52)
k =0

and we fitted this form to the data as befors. Taking a cubic (n = 3)
form for ¥ we obtained a fit whose mean X? was 1.1 per point. The
best Pit ¥ (j,t) is shown in fig. (3.7) at t = = 0.1 and t = = 0.25 GevZ,
It may be seen that thers is a distinct tendsncy to peek at j = 1 and
j ¥ 0.5, in agféemant with the pole models previcusly discussed.

We also tried a Pit with a quartic form for ¥ . Although, as one
might expect with five parameters at sach velue of &, the pesrameters
wers somewhat poorly detsrmined, the pesk at j = 1 did show a distinct
tendsncy to move out with t; and in:fact the position of the peak

closely obeyed the relation

jpEAK (t) = 1 L4 U.Z t . (3053)

Of course, the cubic & could not exhibit this behaviour, because
a cubic is anly allowed two peeks if one of them is at the extreme end

of the integration region.
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We wers again faced with the question of whether the width of the
peeks in ¥ (jot) wes a conssquence of the date or of the parametrisation.

Wa therefore tried a fit with a sum of terms of the gaussian form

(3 = 5 (/e )

a,dn
where
m
§Uet) = 31 ¥ (5et) (3.55)
i=1 '
This form has the property that
B,(st) —= c(t) 8 (4= 4,08 (3.56)
4. o0
i

With this form, the expresasion for the differential cross section

is somewhat more complicated

m
do _ 1
dt T 2 Zaci(t) ®

=1

(4, log 8)® ¢ 2(5,(t) = 1)log s

Erfc (Ai log s + Y

i
(3.57)

This has more (3) parameters per term than the previous models used,
s0 we tried a two=term fit with 411 fixed equal to zero for all t. This
gave 5 parametersi Cq» j19 Cys jzpiA 2 at esach value»of t, and in each
case we found 4&2 = 0 and the s8ame solution as for previous two-pole

fits.




3.4 Concluzions

(i) The curvature of the pp total cross section is better fitted
by a pole at j = O than at j = 4. A broader pesk in the region
-1 £ j & 0 also provides a good fit. This indicates that exchange
degeneracy may not be broken in pp scattering in the forward direction,

but lower-lying sinqularities may be important.

(ii) Simple Regge poles cannot explain the differential cross
section data at the larger values of t. Inclusion of the lower=lying

ainqularities discussed above only make matters warss.

(iii) We found no svidence that the differential croes.section data
require a continuous j = plang structure, i.e. the singularities look

more like poles than cuts,

(iv) Improved accuracy of data at presently-accessible ensrgies

would make much more conclusivs statements possible.

In the next chapter we consider the j = plane structure to be
expected in pp scattering, and compare it with ths results of this

analysis.
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3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9
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Figures for Chepter 3

The pp total cross section. Curve I is ths three=parametsr fit

of e.q. (3.18), curve Il is the fit of Barger st al and curve III
is the continuum Fit of e.qs. (3.22, 3.23).

The function ﬁ (j) for the total cross section fit of e.qs. (3.22,
3.23). ' |
The three-term fit of s.q. (3.32) to the pp differentiel cross
sesction.

The parameters of the three-term fit to the differential cross

section.

"(a) The parameters A11(t) and Azz(t)o

(b) The parémater A12(t).

The ratio A12'/ 2 (A11A22)% for the three=term fit of e.q. (3.32)
and for the similar fit when A22 is constrained as described in the

text.

A comparison of the unconstrained and constrained fit to the
differential cross aecti&n at t = - 0.2 Gevz.

The form of ¥ (jot) for the differential cross section fit of
e.qs. (3.50, 3.51) at t = =0.1 GeV’ and t = =0.25 GevZ,

The pp and Pp total cross sections at Serpukov snergies and above,

The dats on the pp slope parameter b, Figurs from ref. (44),
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CHAPTER 4.  ¥HE J-PLANE_STRUCYUHE DF PP ELASTIC SCATTERING IN THE
ABSORPTION MODEL

INTRODUCT ION

In tha previous chapter we obteined information from the date avout
the j=plane sinqularities which are important in pp alastic scattering.
In particular we found that the deta wers not consistent with aimpls
poles correspending to the exchangs of the known maesonz and £he pomeron.
Tha discontinuitiss found, however, wars strongly poskad and lookad
moee like poales then cuts,

Daspites its drowbecks, (swe wsection 1.2)), we asxpect thut the
absorption madel, derived in section {1.6), will supply soms information
about the j-plane structure of Regge Cuts. 0OF course, bBecauss the
absorption modal does not provide dstsiled fits te the date unless
multiplied by arbitrery (actors, wa know tﬁat it cennot ba tha whole
answer, but we hope thet it will at leest provide sewe cluss.

That tha absorptien codel should not be intarprsted as anything
other than a very erpude First uppruximation is iilusirated by Brenzen

and Jones c@ndition(sg)

o obtalned from unitarity, that the twn-rvaggeon
cut discontinuity wmust venish and be singulaer at tha branch peint. In
the absorption model, as wo shall show, the disesntinuity ic both finite

and non=singuler. White(7u)

has shown that unitarity is recovered when
one considers the two=reggeon cut in the two particle = two roggeon
amplitude and in the four reggeon amplitude, as well as in the four
particle amplituds. Thia means, for example, that the cut must
contribute to the Gribov Vertex in e.qo (1.56).

In this chapter ws investigate the j=plans sizusturvo of “r elestic
scattering oeneratsd by ths pomsron and meson pelos and ths corvesponding
cuts., We expect that the absorption model will throw some light on the

form of the cut discontinuitiss, without making detailed numericsl

calculations.
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In soection (4.1) wo define the guantitiss and introducwe tie
formalism with which we are going to woxk. In sectien (4.2) we
propose & simple model and use 1t to esleculate cub discentinuities.
Wg compars tho resulis from this miedel with our previous deductions
about the jepleone structure in section (4.3), and in section (4.4)

we discuss the rosults and draw some conclusions.
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4.1  Formalism sud Dof initicng

From a.g. (1.1) we write ihes contribution of & Regge Pole o

tc an elastic pp non-flip amplitude ao

A (sot) = B (o) g PP e T (4.1)

(The resson we anly consider non=flip amplitudes will becoms
apparent in the next ssection).

In the absorption model, the contribution of the cut genarated
by the trejectoxries et and o1, to the gemo amplitude ie, from e.us.

2
(1.55; 1.59)

° AY
¢ S B, ‘ ) oy (t3 « or, ()1
Alaleot) = 532 \‘ dtgdty 7o 54@)%%{,,_)5@?(%)552(&2) a

)

(402)
wheve A (£, o tz) is defincd in @.q. (1.51).
The position of ths branch point is
Oy (¢) = max Gx1(t1) ¢<m2(t2) =1) {(4.3)
undsr tho condition
At tgo tz) = 0 (4.4)

To obtain the discontinuity form of e.q. (3.4) it is necessary to

change varisbles from tyo t, in e.q. (4.2) to

j = m1(t1) & mz(tz) = 1 (4.5)

k =

aq(t1) - ezz(tz) (4.6)




We know that we can do this because the trajectovisy wese
Herglotz functions of t, es we discussed in section (1.1 (vi)).

The Jacobian for the transfoimation is

- 7 ! .
o st 5 &% (4.71)

“ d (k)

and, if we define for convenience

g () = /Smkwk)g;: (t,) (4.8)

we can write that

oyr(t)
A;:z (spt) = dj s ©., (Jot) (4.9)
=eo
with R
L o (3(J ¢k 2 1)) g, (B(J =k o1))
Typldot) o —"=5 dk __ — e (4.10)
32 .
T &y &y N
QJ - 9

If the trajectories ere linear

&, (t) = o « t (4.11)

”~
KO ® K

we find from e.qs8. (4.3, 4.4) that the branch puint for tha (1,2) cut
is

et

_ ®q S (4.42)
oy (8) = ey o ey = 1 e o« v,

which reducss in the specisl case of identical trajectoriss o

- i - .
LI (¢) = 2 = 1 % > @:1‘«: (4,13)

i0




4.2 The Modsl

Since we are not interasted Jn elebosate quantitative Fits to the
date it is sensible to cheese ths model Lo be tho slmsplest poessible.
we did this es followa:

(1) 1In the provious chapter we found svidenca thet the prmgran
slops is rather small;, so that the pomsron ought to be puroly imaglnary;
at least near the forwerd dirvection. Conssguently we parometrissd the
pomeron contribution to an s channel non-flip smplitude as

- b, (68 o, = 1)
B P
9 (S 8y = 1% e (4.94)

(with gpo by resl constants)

(14) We assumed thet the pomeron conserves 8 channal helicity,
this ought to be fairly reasconable near ths forward direction.

(141) ue chose the pomeron trajectory to heve the linear form

&, (¢) = 1 < 0.15¢ (4,15)

(iv) We assumed exchange degsneracy for the mesons, with a linear

trajectory,which we took as

oy (£) = 0.5 ¢ 0.9¢ - (4.96)

In Chapter 3 we ssw that the deta show no svidence of axchange
deqganeracy breeking in the forward direction, so wse choge th® meson

contribution to the non=Flip amplitude to bo

- b, (&, = %)
m .
gy @) = <Yy e (4.17)

(with KEP by ®eal constants)
(v) we considezod only the non-flip meson contributions. Thio
. should not effect the total cross section, but it moans that, in the

differenticl cross ssction, wo have nsglocted (mgson)2 torme, 88 theat

our modsl cannot be roliasble at low snergies.
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We can immediately calsulate the pnsitions of the braench points

fram .08, (40159 40169 40129 4013)9 Th@y are

54 and
@xpp(t) 1 ¢ 0.07 % (4,18)
@zpm(t) = 0,5 ¢ 0,13 ¢ (4.99)
mmm(t) = 0,45 ¢ (4.20)

Wwe did not calculate the effects of cuts gensrated by three or

more trajectories. The cut generated by n identical reggeons with

(11)

trajectory « has hranch point

et () = s ( t/nz) an ¢ 1 (4.21)

which,for linear trajectories, reduces to

!
o (£) = nle, = 1) ¢ 1 o % t (4.22)

We see that for multi=pemeron cuts

@(4’
P -
& n () = 1 ¢« — ¢ (6.23)

wheroas For multi-mesen cuts

&/
oy (8) 2 1 < % s == ¢ (4.24)

so that multi-pomeron cuts condense on j = 1 and may well be

important, whoreas multi-meson cuts are low=lying and should be

ingignificant, Multi-roggeon cuts can be calculated in the sikonsl
medol, where it can be shomn(12)
cut docreases rapidly with n. It seems fairly reassonsbls; '..refors,

to essume that the major contribution to the discontinulty struoture

comes from two-regpeon cuts,

thet the contribution of the n-pomerchn



In this model the discontinuitise can bg calculated asnalytically.
In practics, @.q. (4.90) is not the easisst way to proceed, but it is

mote sStralghtforward to use ths representation
e’

N T ld Tp(of Y, & T8 ) 4, (b §=TE;) (8.25)
w2
c

in 8.g. (4.2), thsn perform the t, end t2 integretions explicitly.

1

The results are as Followss

For the two-pomeron cut

¥ 2 bp (4 = 1)
Epp (§po8) = = & oy e (4.26)

kY4 &’

For the pomeron-meson cut

ms = oty
- “C ST e t bpozm & bm@cp
. p &gy o P " oxp | &’ <© &~ (j =« 3| =
tpm(‘]gt) p m

16K (o ¢ &%)

: _
x g (2 fef /m,.p T (e (8)) ) (4.27)

_ 6t 4 &/
with ¢ = (bp = bm) P M

m’p o ot

m
And for the two-meson cut

=2
L BT (8.28)

We note that although the discontinuitiss of the identical-particle

cuts sre indopendent of t, their contributions to the amplitude will

depond on ¢, sinee the integrations in ®.q. (4.9) wrun up %o & t)o

CUT(
We oee elso that the Bronzan and Jones conditien iz indoed vialatod, as

mentioned in tha intreduction to this chapter.




4.3 Comparison with the Datg Analysis of Chapter 3

(1) The Total Cross Section

If we write the total cross section in tha fozm of e&.q. (3.9),

wa obtain from @.qs. (4,26 = 4.29) the following prediction for b@ (j)s

=2 w2 :
- ¥ by (§=1) ¥ by
(j) 7 Kpg(k‘i)m 53%?;7; o © @(1=J)°%ﬁﬁr o " 8(-y)
(4.30)
We see that the cut contributions are peaks of width
'ﬁ’i = 1/b1 (1 = P, m) (4.31)

et Joi end j = 0. There is no meson coﬁtribution because of
gxchange degeneracy, and the pomeron-meson cut is sbsent for the seme
reason. We sse that the singularities are in just the right places to
explain the structups found in section (3.2).

To investigate the widths of the pesks, we adopted the persmeter
valugs Pound in section (3.3). We used exponential fits to the

parameters A11(t)9 Azz(t) (defined in e.q. (3.32)), and abtainad

A11(t) = 68 exp ( 8.9 t) . (4.32)

A22 (t) = 730 exp ( 3.9 ¢t) (4.33)
This gave in @.qs. (4.14, 4.17)
& 30 (4.34)

b, = 2 (4.35)

or, for the widths of the pesks in p (3)

&, = 0.03 (4.36)

By = 0.5 (4.37)

The nacrrownese of the psek at §j = 1 implies that, in a fit of the

form of, for exemple 8.9. (3.23), the cut term would be impossible to

distinguish from the pele, and we would just see a pesk of reduced height.



Our model therefore predicts precissly the j=planc structure
found for the totasl cross soction in chaoptor 3, in porticulor & vory
narrow peak at § = 1 and s broader structure for § & 0, with Rothing
in between.

The model has s Pusther foaturo, howover, whieh ig thot tho
negative sign of the sccend taem in 0.q. (4.30) poovides @ natuzol
maechanism for the recontly-messurad ricing tetel croes sesiion. Hedeed,
if by and by are fixed at the volues in o.gs. (4.34, 4.3%5), there ere
only two parameters in o.q. (4.30) = S’p and ?m = which mey ks
determined from low-onergy dato alone.

ARs we have mentionod provisusly, this modol is tee crudo to malks
detailed fits worthwhile, 8o we just cenatrained the modal to fit the
dataat s = 20ands = 900 CeVl. On integrotien, ©.q.(4.30) gives

=2 =2
0. (a) = 8 - -KI——— (b o-lags)"‘i ¢ e a=1(b ¢1oge)°1
T P 2R e:’p P 32w Gx'ﬁ M

By evaluating this equation at tha two values of s ws obtaingd

Ep = 131 (4.39)

—~

Im = 218 (4.40)
which means that

dT (eo) = 51 mb. (4.41)

This fit is compared with the dsta in fig. (4.1), whero woe have
also shown curve I from chapter 3 for cemparison. We eee that; by
fitting the low enerqy data alone, our model prodicts s rising totol
croas section at ISR energies. That it deos not riloo ss fast oz tho
latest date indicates the limitations of ths model, slthough, ec Ray be
seen from the figure, the sxperimontsl situatien is not yet by eny saens
resolved. The function [ (j) corresponding to thioc curvo is shcum in
fig. (4.2). (The arrow at j = 1 indicatos tho position ef tho §~funation

due to tha pomeron pole).

(4.38)



(ii) The Differential Cross Section

Rs discussed in section (4.2 (v)), our model cannot be
correct at low snergies;, because we have neglected most of the
(meson)2 terms. The singularities will still be in the right placss,
of course, but will heve the wrong magnitudes. The effects of tha
various interference terms are aomowhat-complicated, but cen be
calculeted from e.q. (3.10). Because of the etrongly peaked nature of
the pomeron-mesan cut in e.q. (4.27), - if bp s 30 and bm = 2 then |
zhm ~ 326(J=1) it is peasonable to naglect the Beasel function.
This means that we cen write the contributions of s pole and a general
two=reqqeon cut to the function T (j,t) as, respectively

b,e’ t
T (5t) = ¥ B(J-e(t) o (4.42)

where n = P or M, and

T_(jot) = Q e bnm - “rm @) ° (“nm(t) = J) (4.43)
nm nm
where nym = P or M and U}RQnm are complex constants,
Substituting these forms into e.q. (3.90) we obtain the following
formulee (dropping the 1/4% for conveniences)s

For the interference between the n and m poles
" (b &’ «b e’ )t
E o mllot) =re(¥ ¥ ) e 7 " T T e2)ea -x) (4.44)

(this is of course just the ordinary 2-pole interference)

For the interference between the n pole snd the m=p cut

b (2j=an-etm(0)) b
e

¥ psmpUot) = Re(@ % ) e ™

(4.45)

n %t @ e (8o (8) = 2))
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And Ffor the intsrference hetween the k-n cut and tha m-p cut

(where . n > @:mp)

(bkn * bmp)j - (bkn @:kn(o) ¢+ b e (0))

¥ (Jot) = Re(Qk: Qe mp mp

knxmp mp

(b, - b (6 =) (bp = Bin) @y =

)
(e kn =~ “mpZkn * - ™ )8 Qukn¢ o -2j)

(4.46)

These functions are again peaked, and the positions of the peaks are
given by the 8§ and @ functions. Bacause of exchenge degenerscy and

the Imaginary pomsron, we have tha following expressions:

gp = 1 18,1

K m = = uKmﬂ
Qpp = -1 Ioppﬂ
Upm = gy
Oy = 4 10y |

from which we may deduce that

Re (B By) = Re (8, Qp,) = Re (¥ 0yp)

#

& - L.
= Re (¥ Q) = Re (QpyQy,) mndpm)

Re (Q

= 0 : (4.47)

and hence that
5 pxm(jl?t) = 8 pxpm(JDt) = Kmxpm(.jbt)

= ¥ mom(3ot) = Bpoxpn(Jot) = Yymxpm(dot)

]
o

(4.48)
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In table (4.1) those terms which do not vanish, with tha positions

and siqns of their peeks, ars listed.

TABLE 4.1

Non=Vanishing Termg in the PP Differential Cross Section

Term Peak Sign
Pxp § o= ey (t) +
Mo M I o= ey (t) » ¢
PP i PP I o= egy(t) v
mm % mm J o= ot (t) *
PM 3 PM J o= etg(t) +
P x PP o= ey(t) ooty (t)) -
P x MM I o= #lep(t) @ e (t)) +
M x PM o= ey (2)s et (t)) -
PP x MM Jo= gleyp(t) o ey () -

Thess singularities are displayed in fig. (4.3). The locstion of.
the pomeron-meson pole interference term, which vanishes in this model,
ies also included, as the dot-dash lina.

We can now interpret the three-pole fit of ®.q. (3.32) in terms of
this model. Ths fact that A12(t) is consistent with zero for small t is
explained by the fact that there is no singularity near j = 0.75 in fig.
(4.3). A% larger t, A12(t) is built up from the sffects of sevarsl
terms close together. Similsrly A11(t) has three contributory terms.

In this model, of course, there is no reason for e.q. (3.48) to apply.




e 00 =

4,4 Conclusions and Discussion

We have Pormulasted a very simple mode}l, which satisfactorily
axplains the jeplane strusture found in chapter 3; both for the taotel

and differentisl cross sactions.

(1) For the total cross section, the j =¥ 0 singularity discoversed in
chapter 3 is identified with a meson-meson cut.

(11) when constrained to fit data at energies at and below Serpukov,
the model predicts that the total cross séction should rise at
ISR enerqgies, as has been recently observed.

(141)The constraint of e.q. (3.48), which caused trouble for a simple
pole interpretation of the fit of e.q. (3.32), does not apply to
this model, Both A11(t) and A12(t) are built from a number of
closely-situated terms.

(iv) The smell value of A12(t) near t = 0 is expiained because the
model has no sinqularity near j = 0.75.

(v) All cut discontinuities except the meson-meson cut, are strongly
peaked at their branch points, thus explaining the pole-=like
structure found in chapter 3. This property of the model implies
that, if it is cerrect, the methods of chapter 3 will have trouble
obtaining definite resultsysince in any continuous parametrisation
the leading cuts will look like poles.

Whilst we must admit that this model is by no means the only possible
explanation of thess effects, the sase with which it sccounts for them

is nonethaless remarkable.




Figures for Chapter 4

4,1 Comparison of the model of e.q. (4.38) for ths total cmess section
(cueve C) with the data. Curve I from chapter 3 is also shown.

4.2 The function 'ﬁ (j) for the curve C of fig. (404)0

4.3 The joplane structurs of the differential cross section. Solid
lines are positive contributions, broken lines are neqative. The

dot=dash line is the locstion of ths pomeron-meson interfsrence

temm, if it were present.
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CHAPTER 5,  THE PP DATA AT VERY HIGH ENERGIES AND CONCLUDING REMARKS
INTRODUCTION
(46,73,74)

The recent experiments at ths CERN intersecting sterage rings
have caused a great desl of theoretical and phesnomenologicel activity,
In this chapter we discuss some of the esxplanations thst have baen
proposed, and consider the present state of the situstion.

Perhaps the most unexpected of the results is tha spparent sharp
rises in the total cross section ebove s = 500 Gevz° The rise sppesars

to have the form

o ~ (log 8)2 - (5.1)

8 == €9

and ths modsle that we shell discuss may bs divided into two groups -
those that refain this property as o goes to infinity, and those for
which 9 flattens off and tends to a constant from below.

In section (5.1) we review the sxpsrimental situation, and list
the important features of the data. The various models sgs described

in sactions (5.2 = 5.4), and section (5.5) is e general discussion.




5.1 The Expsrimental Situation

The prominent festurss of the data are as followss

(L) The total cross section rises by about 4 mb betwesn s = 548 Gev2
end s = 2776 Gevz.(sae fig. (5.1)).

(11) The differential cross sectien is approximately sxponential in t
.For seven orders of magnitude. (see fig; (5.2)). |

(111)There is a bresk in the slope of the differesntial cross section
which ramains conatant in position at t & -=0.15 Gav2 for all
snergiss.

(iv) The mean differential cross section slope for 1t I' < 0,15 cev2

2 2

varies from 11.8 GeV * to 13.1 GeV=2 between s = 548 GeVY“ and

8 = 2776 Gevzg whereas that for tl > 0.15 Gavz is approximately
constant at 10.8 GeV°2 in this snargy range.
(v) The differsntisl cross section shows a dip-bump structure fox

large (t! . The position of the dip is constant at t = 4.3 Ca\l2D

but the height of the bump decreases with energy. (see fig. (5.2)).
(52)

that, above s 3 20 vazg the dats are well described by

Leader and Maor analysed the total cross section., They found

g, (8) = C o+ D (log (s/s)) )? (5.2)
where

C = 38.4 mb

D = 0,49 mh

s = 122 Gev2 (5.3)

They also pointed out that, if we defins the differentisl cross

sectian slops by

b(sst) = ¢ (log &) (5.4)

then if e.q. (5.2) is true, it can be shown(54) that

b(s;0) ~~ (log 8)? (5.5)
8 8o

Now in point (iv) abovs we mentioned that b(e,t) is approximatsly
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independent of s for larger [(ti! . This means that, as energy
increases, a slope break at small §¢t{ will develop. Thus thare

is a correlation betwseen the slope break and the rising total uross

sgction.




5.2 Ffigld Thoorstical Models

The modal of Cheng, Walker and NU(SS) dessrves to be mentionesd
fFirsty, since it waes propused before tha new data bescame auailabla(75)a
It is based on the impact picturs of high energy scattering deiivad
from quantum field theory.

| The model is supposed to apply to all hadrons at suFFiciantly
high enargies. In a particular scattering process, sach hadron is
considered as a superposition of virtual states with short lifetime.
in the rest-frame of the other hadron, however, the lifetimes of the
virtual states are appreciable. Lorentz contraction deforms each
virtual state into a thin panceks, which can be separated into an
sbaorbing core of radius R A R, log 59(RD constant); and a partially
absorbing fringe whose width is constant at sbout 1 f. The prodictiuns
of this model at very high ensrgies are as follows,
(1) Total cross sections for all hadron=hadron scattering prucesses

becams equal at infinite energy.

(11) All total cross sections riss like (log 5)2 with ensrgy,
(111)Elastic cross sections approach one half of total cross ssctions,

i.8.

dEL/ gT — % (5.86)
8 <00
(iv) There is a forward pesk in elastic scattering procsesss, and =
dip=bump structuse at large ([t . The diffraction pesk shrinks
and the dip moves to smaller [tl as energy incressesa.
For an elastic channel | the authors constructed an aﬁpiitude

l’ﬂ\j (sy & ) having the above asymptotic properties. They weote

2
MJ(.BD% ) H (5.7)

where t =2 = B (5.8)
o




and c% (j) = Aj saé . g;%gg Im mj (s,0) (5.9)

The sﬂ% term in 8.q. (5.9) was added to patch up the fit to the
date at lowsr snergises, since mJ (8, & ) is supposed to be mn esymptotic
amplituds.

The model satisfactorily fits all ths available hadron=hadren
elastic scattering and total cross sectlion date at and above Sewpukov
energies. It must be pointed out, howsver, that the s“% term in e.q.
(5.9), which is quite arbitrary, is essential to the total cross section
fits.

This model is extremely interesting from ths point of view that it
predicted the rising total cross section, but it ssems that the enafgy
region in which it should be valid has not yst been reached. Its

interpretation in terms of the theory of hadrona is also unclesar.
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5,3 The Tripls Pomeron Vertex

(71,72) have pointed out that the new dats can be

Some authors
interpreted in terms of the triple pomerom vertex. It turns out that
if this vartgx is non-zero at ¢ = 0, then its contribution to the
pp'inelastic cross ssction, and therefors also to the total cross
section, rises logarithmically with energy.

On the other hand,it is well known that if the pomeron is a
"factorising Regge Pole with unit intercept, unitsrity forces the triple
pomeron vertex to vanish at ¢t = 0. The two papers differ in their
solutions to this problem. Kaidalov et a1(71) made the assumption thsat
the pomeron intercept is alightly less than unity, wheresas Ametl st 31(72)
used @ pomeron with unit intercept, snd imposed unitarity by introducing
sbsorptive cuts in the s channal, Both thess models were able to fit

the total .and differential cross sections;, and at present ths data ars

not good enough to differentiate betwesn them.
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5.4 The Reggeon Calculus

In chapter 1 we used the Reggeon Calculus to construct the
absorption model for the two-reggeon cut. An advantage of this cut
prescription is that it introduces no extra free parametsrs not
contained in the pole parametrisation. It is, howesver, unsatisfactory
in some respects, and it might be attractive to try a mare
phenomenological approach, by parametrising the Gribov Vertex and
determining its form by fits to the data. It is then necessary to
include more complicated cut terms. Those which contribute to order
1/loq s have been calculated by Ter-Martyrosien, and these ars shown
in fig. (5.3). The vertices involved are g(t), the usual pameron =
two proton vertex, N(t, t1, tz)p the two pomgron = two proton vertex
discussed in chapter 1, [ (%, teo tz)p the thres pomaron vertax, and
C(%p to tyo tao t4)9 the five pomeron vertex.

This has been dons independently by Pajares and Schiff(49) and

Sukhatme and Ng(so)

in two basically similar papsrs which differ mainly
in the parametrisations adopted for the vertices. Both obtainad
adequate fits to the dats with an asymptotic pp total cross section of
about 60 mb., somewhat higher than that found in chapter 3. This is a
result of the inclusion of the multiple scattering temms.

The abthors point out that the rising total cross section and
dip<bump structure of the differential cross section are inavitable
cdnsequences of the Gribov approachu. The slope bresk is not, howsver,
and in fact is not prssent if only ths two pomeron cut is considered,

but is generatsd by the additional terms in fig.(5.3 (c) = (f) ).
| In contrast to the previous models discussed, this approach

predicts

&/ O —— (5.40)
8 —{>od
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5.5 Discussion end Conclusions

These models are not all incompatible. For example, Amati et a1(72)

used absorptive cuts in their paper to recover unitarity, and might
instead have used a Reggeon Calculus model for their cut corrections.
Similasly, instead of & simpls pole pomeron,the authors (49950) 4.

section (5.4) might have used a more complicated sinqularity. Either

of these procedures; of course, would have produced & model with many

free paramsters.

The significance of the new date seems to bs that some modifications
of our ideas about the pomeron are necessary. It should not, however,

‘be forgotten that more preecise knowledge about the pomeron at high
enerqgies should enable us to obtain more unambiguous information about
the mesons at lower anergies. To this end it would be extramely useful
if conventional accelerators were used for the high=precisiaen sxpsriments
on low=snergy pp scattering which are now possible. Unfortunately, such -
expeciments are not as prestigious as less precise ones at ultra-high
energies.

Perhaps we should have included the pomeron in section (1.2) as one
of the problems of Regges Theory. As it was originally invented to
explain the apparently constant total cross sections, there seems no
reason for the pomeron to retain its simple pole form now that the high
energy structure of total cross sections is known to be markedly differsnt
from what wes formerly thought. The most hopseful results seem to have
come from Dual Field Theory, where a pomeron-=like singularity esmerges as
a natural result of the pragramme. (See,for example, ref. (77)).

In future, Regge phenomenolegy will be increesingly concerned with
very high energies, and particulerly inclusive and multi-particle
processes. Whilst much useful information will undoubtedly be gained in
this way, no compléote description of strong intersctions will bae possible
until the problems of two body scattering have been solved, and in

particular those discussed in section (1.2). To this end more realistic
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cut models are required, as well as a hetter knowledge of possible
low=1ying trajectoriss such as the Jo’ o« Finally, until we have more
coherent ideas sbout the nature of the pomeron, all Regge fits will be

to a lesser or greatsr extent ambiguous.
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APPEND] ELASTIC SCATTERING KINEMATICS

We consider the process

19 <+ 2 — 3 @ E
where m(1) = m(3) & m
and m(2) = m(s) g p

Particle (1) is the target,and particle (2) the 'beem'.

The Mandelstam variables s, t; u for this process are definad by

: 2 2
g = (91 S Pz) = (93 ¢ P4) (R.1)
2 2
b = (P1 ¢ P3) = '(Pz + 94)
2 _ 2
u = (91 ¢.94) = (P2 + P3)
Consarvation of snergy-momentum glves
P1 & Pz v Py e P, = 0 (A.2)
which implies that
2 o t o u = 2(mf ep?) (A.3)
We define the laboratory (LAB) frame by
P, (LaB) = 0 (A.4)
end the centre of mass (CM) frame by
B,cm) « po(cm) = 0 (A.5)
We call the LAB energy and three-momentum of the beem w and gL
respectively, i.e.
P,(LAB) = ( W o p) (A.6)

with P = 181
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We call the CM three-momentum of ths target q, i.e.

Po(m) = =P, (M) = g (R.7)

In terms of these variablas the following relations may be

deduced
a=m2+P2¢2me (A.8)
and q = mP / e (A.9)
The s channel CM scattering angle © is defined by
cos® = = EL(CM)' '91 (cm) (R.10)
g, (Cm)I1 2, (Cm)
which reduces to
c0s® = 1 + t/2¢g° (A.11)
The following relations may be obtained
8in’4® = <t/ & q (A.12)
2 2
cos3® = 1+t/4q (R.13)

It is also useful to introduce a variable J° o defined by

P = (m + W, ) / Js* (R.14)
or alternatively

O = (e q2 / mz)é (R.15)
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