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ABSTRACT 

This thesis deals with some applications of ftegge Theory to 

K * p and pp e l a s t i c scattering. 

Chapter one is an introduction. The important results and 

problems of Regge theory are discussed,, together with some recent 

developments„ 

In chapter two a model incorporating doubled t r a j e c t o r i e s i s 

proposed and compared to K = p ela s t i c scattering data. The model 

supports t channel h e l i c i t y conservation for the pomeron near the 

forward direction,, The results for K •= p agree i n part with those of 

Heyot and Navelet at 10 GeV/c„ and those f o r K * p agree well with the 

CERN beta phase s h i f t solution at 2.5 GeV/c. 

In chapter three a j-plana analysis technique i s introduced. 

I t i s applied to pp el a s t i c scattering,, where the results do not allow 

an interpretation i n terms of simple poles. Evidence is presented 

that the curvature of the pp t o t a l cross section is not due to exchange 

degeneracy breaking. 

In chapter four the j-plane structure of pp scattering in the 

absorption model i s investigated. Many of the puzzling features of the 

results of chapter three are explained. 

Chapter f i v e i s concerned with the recent data on pp scattering 

at high energies. Several models which have bean proposed to explain 

these data are discussed? and soma conclusions are drawn. 
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1 . 1 Raoqe theory 

Tha complex angular momentum plane has b@sn central i n most 

recent approaches to strong interaction physics,, In Regge theory^ 

scattering amplitudes are analytic functions of the angular momentum j a 

and a p a r t i c l e of mess m l i e s on a Ragg© tra j e c t o r y @<(t)p where the spin 
2 

of the p a r t i c l s is ®c(m )„ The p a r t i a l wave amplitude then has a pole 

at J 3 <&(t) and i t i s the exchange of these ReQgs Poles which i s 

supposed to dominate the amplitudes at high ©nergi©8« 

A Rsgg® traje c t o r y ©t(t) has ooGociatsd with i t a signature D 

which may be « 1 or ~ 1 (called ovon og odd signature r®spsctivaly)o 

In gensral many particles w i l l l i s on the am® trajectory,, but only 

p©rticlaa of ©v@n (odd) spin can l i s on s ferajaetory of even (odd) 

signature. 

I f a traje c t o r y ©c(t) i s allowed by i t s quantum numbers to be 

exchanged i n the process ab -o a'b'p than i t s contribution to the 

amplitude for th i s process at high energies i s given by 
Ast (s„t) . A« ( t ) tf « a b ^ a ' b ' ( t ) (|~) * ( t ) 

bo 

This is often represented by the diagram in f l g . ( l < > l ) o Hare 

-̂ ©{(t) i s the signature factor 
3 ° ̂  * ' (1.2) 

sin ( x ©t(t)) 
T̂ e< is the signature of the trajectory© c*^ ^ ) 

is th© residue function,, and So i s the scale factor. 

Properties of the trajectory function 

( i ) ©<(t) i s univeroalp that i s i t depends on the quantum numbers,, but 

not on the external pa r t i c l e s . 

( i i ) ®c(t) is an analytic function of t , except f o r a cut on the positive 

real axis s t a r t i n g at the t channel threshold t ^ . ( I n a l l cases 

relevant to t h i s thesis t ^ H a 4(5^). 
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( i i i ) As mentioned above9 a p a r t i c l e oP mass m tshich l i e s on the 
2 

traject o r y has spin or a «(m ) 0 and s a t i s f i e s 

(=1)°" s "G« 

( i v ) U n i t a r i t y p v i a th© Froiseart Boundc 

(3V ^ (log s ) 2 (1.3) 

implies thatoc(o) 1 

(v) Experimentally i t i s found that t r a j e c t o r i e s seem to be linear 

in t up to the highest spins detected, 

( v i ) From th® above properties i t can be deducod that e«(t) i s a 

Herglotz function of t fe? t < t T H„ 

Using (v) and ( i i ) we may write tho dispo^Qion eolation 

«(t) a «<o) ««'t »kUt' SUSHIS (1 84) 

from which *«• 
r °* 

.n , 1 i s« n< J*/1) ^ 
d t " 

(Note that t h i s result i s unchanged i f a subtraction i s necessary 

in the int e g r a l i n e.o,*, (1.4).) 

U n i t a r i t y requires that 

In «(t) > 0 (1.6) 

which implies 

d no((t) > 0 for a l l t < t T H (1.7) 
d t n 

i.e. that ©c(t) i s a Herglotz function. This property w i l l be useful i n 

calculating Regge Cut discontinuities,, 

Properties of the Residue Function 

( i ) Apart from Kinematic s i n g u l a r i t i e s ^ which may be removed exp l i c i t l y * * 

g ( t ) i s a real analytic function of t 0 oxcept for e cut along the 
<X 

positive real axis s t a r t i n g at t . ^ . 

( i i ) % a b ~°* a b ( t ) factorisss into functions at the vertices of 

fig.(1 . 1 ) i.e. 
if ~* a'b' (t> ° C § ' ( t ) * « b 5 ' ( t ) ( 1 * 8 ) 



2 (Hi) For a p a r t i c l e of mass m on the traje c t o r y CK6 ^ (m ) i s 
proportional to i t s coupling constant, 
( i v ) Behavieug near Inteqgal Values of et 

ulhan th© i n i t i a l stats of a process can couple to a p a r t i c l e 

of spin jp but the f i n a l stat© cannot p J i s known as a senss^nonssnss 

points and vice vsfsa. I f both i n i t i a l end f i n a l states can couple 0 

j is a sen8a=>9©nss po i n t s and i f neither^ j i s a none®nae=nonsansa 

point. Values of j to which ©ithe? the i n i t i a l or f i n a l stats cannot 

couple are known c o l l e c t i v e l y as nonsense values 0 Values of j 

satisfy i n g 

(~DJ n ^ 
aro known as eighthsignatuee points 0 and valuQS not sa t i s f y i n g t h i s 

aee uirong^signatusa points. 

We consido? the behaviour of tho leading Regg® POIQ contributions 

to h e l i c i t y amplitudes which ara sens@»sen88c 8®n8e°nonBensec and 

nonsens©~nonsenB@ at «t(t) a n (n intsge&)o 

a ^ x y 8 8 ( I f (1.9) 
ss « it tx So ' 
A (et => n)* & ̂  X 8 n i S v« /, sn ® o? ° ct {^) (1.10) 

*„„ ~ ^sAV" 
The factors (ec •= n ) ^ 0 (<& ° n) come fsom the behaviour of the 

rotation functions d ^.(8) neas j a n (mm® r e f . l ) . (1,10) implies 0 by 

a n a l y t l c i t y of A g n C that 

^ fij
3n ^ (« - n ) ^ near o? n n (1.12) 

and since by fa c t o r i s a t i o n 

either 8" 3 8 or X* n n must contain s factor (®c = n). 

I f ©<(t) i s a r i g h t signature point with t < 0 6" S S must vanish^ 

since otherwise A a g mould have ths pole i n the signature factors 

Implying tha axistunee of a p a r t i c l e of imaginary massp called a ghost 

or tachyon. At uiEong=signaturo points^ houj©ver0 ^ ^ doss not have a 



polsp so that one of the amplitudes w i l l vanish at thsse points. Such 

behaviour is known as a Wrong Signature Zerofl and has been extensively 

used to explain the dips found i n the d i f f e r e n t i a l cross sections of 
2 

many processes at t s = 0.6 (aeV g tah©rs one expects ©t^ s Q„ 

Unfortunately f o r t h i s explanation,, i t can be shown from u n i t a r i t y 

(9 920) that ther@ ae© also fixed poles et these points^ but the e f f e c t 

of these poles i s d i f f i c u l t to estimates and they are often neglected.. 
(21) 

In any case POandelstam ' has argued that they are shielded ( i . e . 

moved onto unphysical sheets) by Regge Cuts. 



5 

1.2 Problems of Recipe Pole Theory 

( i ) The Charge Exchange Polarisation 

The process TT~P ~<> TC °np known as UN charge exchange^ has 

attracted a great deal of attentions since the only known traje c t o r y 

which i s allowed to be exchanged i s the j>. Regge theory therefore 

predicts the following forms fo r the invariant amplitudes A' BB (see 

section 2,1) at high energy: 

A'(s„t) = Aj.it) ^ ( t ) ( | 0 ) ^ ( t ) (1.14) 

8 ( s P t ) . ^ ( t ) £ ( t ) (| o)«^(*M (1.15) 

The polarisation parameter i s given by 

P ~ s 2C(s,t) Im(A'B«) (1.16) 

(where C ( s p t ) contains only kinematic factors) so that the prediction 

of Regge Theory i s 

* ft ' 2 C I <*> P± <*> ff* * I m < 8 V ^ 
§ 0 (1.17) 

Experimentally B however*, the polarisation i s quite large and 

positive over a wide range of s and t . 

To explain t h i s phenomenon some authors ( 3 e 4 S St 22) have postulated 

the existence of another trajectory^ called the j>' 0 half a unit below 

the i n the angular momentum plane 0 i.e. 

« (o) • 0 (1.18) 

with which they are able to f i t a l l the available data. Such an 

explanation cannot be completely dismisssdp especially i n the l i g h t of 
(22) 

the discovery of an apparently suitable candidate f o r t h i s p a r t i c l e \ 

although the coupling of t h i s experimental ^a' to inr appears to 

be small. 

Many more recent attempts to solve t h i s problem have involved Regge 

cutSp and i n p a r t i c u l a r the absorption model, ( f o r a l i s t of some of 

the references see ref.12). These have a l l f a i l e d to reproduce the 

http://Aj.it
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angular structure of the data p producing quite unnecessary wild 

fluctuations and zeros. The amplitude analysis by Halzen and 
(23) 

Michael of the w IM system has s ho tun that the amplitudes produced 

by these models ere also wrongj, and i t seems that t h i s explanation i s 

not correct. I t may be? however0 that Regge cuts are s t i l l the answer^ 

and that i t i s merely the absorption model which i s too crude to be 

useful i n calculating such a sensitive parameter as the polarisation. 
( i i ) The crossover phenomenon0 

The d i f f e r e n t i a l cross sections f o r n*p and w°p are found 
2 

experimentally to be equal at t - =0o16 QzSf independent of energy. 

The same re s u l t i s found i n Kp end pp scattering. 

Consider as an example Tf p scattering. The allowed exchanges are 

TC-P a P « f * j 9 (1.19) 

and i t i s quite easy to show that f o r th© quantity 
^ d t ( 7 ° 3 dt ( TC=P) " dt ( P ) U°20) 

to vanish at t s t » i t i s necessary that the a residue has a zero 

there 0 i.e. 

^ ^ ( t 0 ) . 0 (1.21) 

From Kp and pp one may deduce a similar zeso i n the w residue. 

The problem arises when w© use f a c t o r i s a t i o n to predict similar 

zeros i n "fir p —o ji n and ft p — o TC°pff where experimentally 

none are observed. 

Regge cut models have been used to explain t h i s phenomenon. In 

these models crossover zeros are generated by cancellations between the 

pole and cut terms. The problem with t h i s explanation i s t h a t s since 

the snorgy dependence of the pole and cut are not the sama0 the crossover 

zero should mo©e with energy. Phenomenologlcally t h i s i s not a serious 

problems since the rate at which the zero moves w i l l be dependent only 

on log s 0 but i t seams an odd coincidence that the zero remains i n the 

same position f o r a l l processes» 



V 

( i i i ) The Pion Conspiracy Problem 

We ju s t mention t h i s Fat complstanossp as another well»known 

problem of Ragge pole theory caused by faetorioation,, The subject is 

discussed i n d e t a i l i n r e f . ( 1 2 ) D 

What happens i s that angular momentum.conservation and the 

unnatural pa r i t y of the pion imply that i t s contribution to the 

processes 2fp —<=> TC n and np =c=> pn0 among others^ should vanish 

i n the forward d i r e c t i o n . Exp@rim©ntally0 howeverp the d i f f e r e n t i a l 

cross sections f o r these processes exhibit sharp forward spikes of 
2 

width about m ̂  D for which the most natural explanation sesms to be 

the pion oxchangQo 

The conspiracy explanation (56 0 57) requires the invention of an 

@ven°parity "conspirator" with ths earns rosidu® and tr a j a c t e r y as th© 

pion at t a 0 0 which allows tho angular memantum constraint to be 

s a t i s f i e d while the pion i s f i n i t e at t c 0 0 

Apart from the fact that ne sush sealer p a r t i c l e has been obsorvsdp 

t h i s explanation runs into serious trouble through f a c t o r i s a t i o n 

This implies that the forward cross sections f o r n N - o J > A and 

NN -o should vanish 0 which experimentally does not seem to be 

the case. 

Cut models have also been put forward as a solution to t h i s problem. 

Extremely strong cuts are necessary c i n some cases the enhancement 

factor A being as much as 3„5 (see 0 f o r example r s f 0 ( 5 9 ) ) P which i s 

somewhat d i f f i c u l t to j u s t i f y . 
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1.3 Duality 

I t Is well known that at low energies the scattering amplitude 

is conveniently described by a sum of s channel resonances9 whereas at 

high energies the exchange of t channel Regge poles provides a more 

economical description. For intermediate energy regions p i t might be 

thought reasonable to take a sum of these descriptions; 

A(a,t) * A R e ^ e ( e 8 t ) * A R e s o n a n c e ( s , t ) (1.25) 

This approach*, called the Interference modal, was c r i t i c i s e d by 
(8) 

Dolen 0 Horn & Schmid . They added the known resonances i n 

T?~p —c K°n to the >̂ Regge=Pole amplitude obtained from a high-

energy f i t 9 and found that the sum was much larger than the actual 

amplitude. This led them to f©Emulate the pr i n c i p l e of Duality, that 

the s-channel resonances are contained i n the t-channel Regge Poles s 

and vice versa. The interference model i s then wrong because i t commits 

double counting. 

Important to t h i s sort of Duality i s the concept of the F i n i t e 

Energy Sum Rule. We consider the contour C of fig.(1.2) i n the complex 

plane£, where the variable v» defined by 

v . I f i * (1.26) 

i s convenient because of i t s simple crossing behaviour. We write 

Cauchy's theorem f o r vnA (v»t) around the contour as 

i> » n A N , t ) ch>= O (1.2?) 

I f A i s an amplitude with Regge asymptotic behaviour^(see e.q.(1.4)) 

i.e. 

A(-o.t) 
-cTtoc 

Sin TEQJ 
cx 
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we may substitute t h i s form f o r A(v»t) on the large c i r c l e (radius N) 

we obtain the following sum rule8 

I 
n + i 

& It) N < X ( t ) 

(1.29) 

TH 
Now since at low energies A ( v 0 t ) i s given by the di r e c t channel 

resonancesD i f we choose N sensibly we may write 

.o((t) 
(1.30) I 

n-n <x(t)+n+i 
T H 

This means that the Regge Pole term averages the direc t channel 

reeonances. This defines what i s known as Clobsl Duality. 

F i n i t e Energy Sum Rules can also be used to predict high energy 

parameters from the behaviour of di r e c t channel resonances at low 

energies. For example^ i f we define 

N n+i 
'SESONAMC& (1.31) 

and considers f o r examples H=p - o f t n, where only the J) can be 

exchanged; we f i n d , from e.q. (1.30) 

( t ) (m » 1) Sm - (n » 1) Sn 
Sn - Sm 

(1.32) 

The values of oc . ( t ) found i n t h i s way agree well with those 

obtained from high energy f i t s . 

At t h i s stage a problem arises f f namely the role of the pomeron i n 

these sum rules. I f we consider^ f o r example„K*p scattering„ there 

are no known direct=channel resonances0 but the high energy behaviour 

i s supposed to be pomeron dominated. E.q.(1.30) cl e a r l y cannot be mads 

to work i n these circumstances. 
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The usual solution to t h i s p r o b l e m^^ 8*^ i s to suppose that the 

pomeron does not contribute to these sum rules. This appears f a i r l y 

reasonable p as the pomeron i s cl e a r l y a d i f f e r e n t s i n g u l a r i t y from other 

Regge poles. I t must also be pointed out tha t , as well as the pomeron 

on the r i g h t hand side of e.q.(1.30) we have omitted background terms 

on the l e f t hand side. In refs.(15,16) i t was suggested that these 

terras are dual to each other. A conjecture which i s supported by the 

experimental observation that processes dominated by the pomeron at high 

energies appear to have a large amount of background In the resonance 

region, and vice versa. 

We are then l e f t with only known resonances on the l e f t hand side 

of (1.30), and known t r a j e c t o r i e s on the r i g h t hand side. 

With t h i s provision, the sum rules Imply very strong constraints 

on the Regge Pole parameters. Consider e l a s t i c K+p scattering, which 

as mentioned above, i s exotic, that ie i t has no direc t channel resonances 

that can be made from three quarks. The allowed t channel exchanges are 

J* , w, f , A 2, so substi t u t i n g i n t o e.q. (1.30) we obtain 

= O (1.33) 

Since, to have any significance at a l l , the Sum Rule cannot depend 

c r i t i c a l l y on N, we must have some of the ee's equal. In f a c t , by 

consideration of other processes also, we can show thatt 

(1.34) 

<*/> C±) = W w (t) = CVf (*) = oĈ Gfc)*» fa ail t 

and also that 

These results are known c o l l e c t i v e l y as Exchange Degeneracy. The 
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f a c t that the J3» utp f and particles a l l l i e close to the same l i n e 

et(t) =J h * t (1.35) 

i s a considerable success f o r t h i s picture. The s i t u a t i o n f o r the 

residues i s less clear* as they cannot be extracted from data i n a 

model independent way* and the matter i s s t i l l a subject of controversy. 

The flatness of the pp and K+p t o t a l cross sections,, however* suggests 

that Exchange degeneracy i s at least approximately true at t a 0. 

The status of Regge outs i n the Sum Rules i s another problem. I t 
has been shown 14) fchat m o g ^ c u r r e n t c u t m 0 d 8 l a are d i f f i c u l t to 

accommodate in the Sum Rules. The equations are complicated and need 

to be calculated numerically* but i t doas seem that cut models are not 

easy to include. 
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1.4 Veneziano Model 

(17) 
Veneziano ' constructed the following functions 

Y ( r(n-^)P(m-«,) (1.36) 

where nt mt p are Integer constants* and ft ( s ) g «i(t) a n raspeotively 

a and t channel t r a j e c t o r y functions. I f we take a sum of such terras s 

(1.37) 

with Cnmp constants, then amplitudes of the fose 

A ( s c t c u ) s V(s,t) * V(t„u) * V(s,u) (1.38) 

may be constructed^ which have the correct crossing and asymptotic 

behaviour» and are e x p l i c i t solutions of the F i n i t e Energy Sum Rule.(1.29). 

The drawback of fchis formula i s that ths resonance poles l i e on the 

real axis and have zero width. This means that the amplitude cannot 

have Regge asymptotic behaviour on the r e a l axis, and also that i t 

violates u n i t a r i t y . Attempts to construct simple unitarised Veneziano 
(18) 

models have usually caused the elegant d u a l i t y properties of the . 

amplitude to be l o s t . 

A very a t t r a c t i v e idea ( f o r references see ref.(18))» i s that the 

Veneziano model, or something l i k e i t * can be considered as the f i r s t 

term i n a Born series, and that u n i t a r i t y w i l l be recovered when the 

whole series has been calculated. Unfortunately, progress on t h i s f r o n t 

has been slow, and we confine ourselves to consideration of e.q.(1.38). 

We perform an asymptotic expansion of e.q.(1.36) along a l i n e 
ie 

oc s l o c i e I € > Op Kxl-oee (1.39) 
s s s 

and hope that the resulting form i s not altered too much by un i t a r i a a t i o n . 
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For t h i s purpose we use S t i r l i n g ' s formula 

together with the well-known result 

P W P O - * ) - — — ( 1- 4 1 ) 

sin. "ti 

and obtain 

In the case of a linear t r a j e c t o r y 

0 C B ( 8 ) ° ^SO * *S S ( l t 4 3 > 

t h i s becomes 

We now require that the leading asymptotic behaviour be 

which gives the constraint 

(1.46) 
t > * n . 

In the case of the leading t r a j e c t o r y p p e n and we obtain 



- 14 -

We see that t h i s gives Regge behaviour with residue 

J L S l J (1.48) 
f(o(t-m*0 

and the additional result 

(1.49) 

The integer m deteroines the mechaniamo i , e . the behaviour of 

X _(t) at inteeer values of o r . ( t ) . 
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1.5 Doubled Trajectory models 

Aa may be seen from section (1.2) the main problems of Regge Pole 

theory arise through factorisation,, namely the crossover zero and the 

pion conspiracy problem. Also, i f one imposes duality? exchange 

degeneracy i n TCTC-&TCTT constrains the p and f residues to be equal,, 

which implies via f a c t o r i s a t i o n that the J> chooses nonsense at 

« ^ ( t ) a 0 i n Tt""j»-*TC°n B and therefore that the d i f f e r e n t i a l 

cross ssction f o r t h i s process should vanish at t * -0.6 G»eV2 « 
instsad of merely having the dip which i s observed. 

Thie evidence led Johnson and S q u i r e s ^ to question f a c t o r i s a t i o n , 

and the observation of a s p l i t meson provided a natural explanation 
(3) 

of non«#factoriaing residues. By invoking su and exchange degeneracy 

in the K£ system? they mere led to conclude that a l l other t r a j e c t o r i e s , 

and i n p a r t i c u l a r the , are also s p l i t . They mere then able to 

formulate a model f o r ll~|>-s>x0rt , and confront i t with the data. 

The obvious objection to t h i s model i s that the J> meson i s not 
(7) 

observed to be s p l i t s but Rittenberg and Rubinstein v ' showed i n a bTC 

Veneziano amplitude that doubled t r a j e c t o r i e s could occur, and that the 

doubling should not appear at the lowest p a r t i c l e on the t r a j e c t o r y . 

Pour benefits were immediately obtained from t h i s model. 

( i ) I t was possible to have a non-zero amplitude i n TC~{s(T°tn at 

oc^(t) = 0 without breaking Exchange Degeneracy i n TTlt->inr • 

( i i ) The crossover zero was explained as a cancellation between the two 

components of the J) meson. As the s p l i t t i n g of t r a j e c t o r i e s wae small, 

t h i s zero did not move s i g n i f i c a n t l y with energy. 

( i i i ) The polarisation was generated by interference between the two 

components. 

( i v ) A more general benefit was that Johnson and Squires were able to 

us8 the simple Veneziano residues (see e.q. (1.48)) and s t i l l generate 

the considerable structure required by the data. That single Veneziano 

terms have i n s u f f i c i e n t structure to f i t the data was shown, f o r 
example; by Berger and F o x ^ ^ . 
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The model was thus q u a l i t a t i v e l y very successful 0 and succeeded 

i n f i t t i n g the available data s a t i s f a c t o r i l y o 

Of course» the meson has since been shown not to be 9 0 1 i t o 

removing some of the j u s t i f i c a t i o n f o r th i e modelo The f a i l u r e of cut 

models to explain the structure of the charge exchange polarisation,) 

or to provide an elegant explanation of the energy-independent 

behaviour of dips and zeros i n cross sections^ however^ suggests that 

the model i s s t i l l worth considering. 

In Chapter 2 we apply a modified version of the model to K*p 

ela s t i c scattering,where the crossover i s p a r t i c u l a r l y well defined. 

In t h i s process many Regge poles can be exchanged08o that there i s no 

need to s p l i t the t r a j e c t o r i e s to explain the polarisation^ and indeedj> 

since the A_ i s no longer s p l i t s there i s no j u s t i f i c a t i o n f o r doing so. 
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1.6 ReoQB Cuts 

Regge cuts c which have been mentioned several times i n the preceding 

sections as a solution to the problems of Regge Pole theory 0 are 

generated by the simultaneous exchange of two or more t r a j e c t o r i e s . Ule 

s h a l l consider only two-reggeon cuts 9 f o r which fig.(1.3a) i s the general 

diagram. The contribution of t h i s diagram may be evaluated by means 

of the ReggBon Calculus of G r i b o v ^ 0 ^ , and we s h a l l l a t e r quote the 

re s u l t . 

We consider f i r s t the box diagram i n f i g . ( l , 3 c ) . This might be 

expected to be the simplest contribution to the two-reggeon cut 

amplitude 9 but i n fact i t does not contribute at a l l e and the reasons 

f o r t h i s are important. (For a useful review of the s i t u a t i o n see 

r e f . ( l l ) ) . 

I t i s most convenient to transform the in t e g r a l over the loop 

four-momentum i n f i g . (1.3c) in t o an in t e g r a l over the invariants 
2 2 2 2 

q«l * q«2 * ^x 9 ''x' * w n 8 r e °.c * a four-momentum of p a r t i c l e (or 
(62) 

reggeon) c. (This procedure was introduced by Rothe ) . The 

transformation involves a Jacobian p J, given at large energies by 

J a s 2 A ( t , t j , t 2 ) (1.50) 

where \ = t 2 • t j 2 + t ?
2 - 2 (tt± * t t j + t ^ t j ) (1.51) 

and t A a q ^ 2 (1.52) 

We assume f o r s i m p l i c i t y that the in t e r n a l p a r t i c l e s x,x' are 

id e n t i c a l spin-zero mesons of mass m. At the vertices of the diagram 

there are coupling functions g^ p which are related to the factorised 

Reggeon residues of e.q. (1.8) by 

AX 

(1.53) 

giving the contribution of the diagram as 
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a b W d ^ d ^ L , , 9(0 
" B O X J « > V i * x ^ - « * - < 0 I A T ' D T 2 ^ X 

— CO v 

^ . > « 2 ( t 2 ) - | (1.54) 
2 

Considers for example, the i n t e g r a l over q . As the coupling 
x 

2 
functions g^ havs only a right-hand cut i n the q^ plane, the 
integration passes above the pole in the propagator and above the cuts 

2 
in the coupling functions which depend on . Since the coupling 

2 
functions are assumed to go to zero at large q , we mey complete the 

x 
contour i n the upper half plane, and the Integration therefore vanishes. 

We see from t h i s discussion that a necessary condition f o r a 

diagram to contribute i s that i t has both left-hand and right-hand 

cuts. This means that the bubbles at the top and bottom of fig.(1.3a) 

must have t h i r d double-spectral functions. The simplest contribution 

to the top bubble with t h i s property i s shown i n f i g . ( 1 . 3 d ) . 

The Reggeon calculus provides us with a general expression f o r 

fig . ( 1 . 3 a ) . We merely quote the r e s u l t , which i s 

<4M>> (I.)' 
< * . < t , ) + « i ( t i ) ( 1 > S 5 , 

where are, as usual, the signature factors of the 

exchanged reggeone. 
M OAf .bb' 

The functions and *V „ _ are known as Of, #2 «e*s. 
Crlbov Vertices. They are obtained by integrals of the complete 

particle-reggeon scattering amplitudes at the vertices of f i g . ( 1 . 3 a ) , 

f o r example f i g . (1.3b). 
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^ . ^ C t ^ . t t ) * Ids, .A U „ t ; t , , t z ) (1.56) 

with a si m i l a r expression at the lower vertex. C i s the contour of 

f i g . (1.4a)j, and i s real f o r t below threshold. 

I f A8*! 8 has no s i n g u l a r i t i e s i n the lower half plane, 

the contour C may be distorted to enclose the r i g h t hand c u t s becoming 

c' of fig.(1.4b). (This assumption i s somewhat dubious - see r e f . 

(11)). The vertex then becomes 

oJL' 
ZL |ds,XmR (Snt;t nti) ( 1' 5 7 ) 
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The Absorption Modal 

I f we assume that e.q.(1.57) i s correctswe can approximate the 

integration by a pole contribution,, Calling the i n t e r n a l p a r t i c l e x 

(fig.1.3c) we obtain 

We see that t h i s does not lead to a diagram l i k e fig.(1.3e) aince 

we have now put the i n t e r n a l particles on the mass s h e l l . Such 

diagrams are used to represent the amplitudes but must not be 

interpreted aa Feynman graphs. 

The amplitudes resulting from (1.58) are known as the absorption 

model. An alternative approach i s to sum over e l l allowed intermediate 

states x. This i s known as the strong absorption model, bat i n practice 

i t i s usually approximated by multiplying the absorption model by a 

constant factor. The j u s t i f i c a t i o n f o r t h i s procedure i s by no means 

obvious. 

I f we consider e l a s t i c scattering, and take x = a, we obtain, 

f o r i d e n t i c a l t r a j e c t o r i e s 

(1.59) 

Taking a s i m i l a r expression f o r the lower vertex, we obtain 
O 

ab-»a.b 
I t * ) * 

-co 

(1.60) 
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where 0« i s the residue function f o r ab e l a s t i c 

scattering. This res u l t i s i d e n t i c a l to that of the eikonal model, 

(see ref.12 f o r a review). 

The term Absorption Model comes from the impact parameter 

representation. This i s obtained by the Hankel transfosm 

r 

6f£ f£ Ate,t) o 0(b^) (1.61) 

Pure Regge-poles are central i n impact^parameter space 

A(*,b) ~ & (r„ const.) ( I - 6 2 ) 

but when cut corrections have been included e i t i s found that the 

central part has been "absorbed away" and contributions corns only 

from the large - b "peripheral" amplitude. This i s equivalent to the 

high p a r t i a l waves, (1.61) being the high energy l i m i t of the p a r t i a l 

wave series. 
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Fiaures f o r Chapter 1 

1.1 Exchange of the tra j e c t o r y «(t) i n the process ab ~e» a'b'. 

1.2 The Integration contour for the derivation of the F i n i t e 

Energy Sum Rule. 

1.3 (a) Exchange of the two°reggeon cutp generated by the tr a j e c t o r i e s 

oĉ  and o^s i n the process ab —«- a'b' . 

(b) The particle-reggeon amplitude ex^-o a'ocj used i n the 

calculation of the upper vertex i n fig.(1.3a). 

(c) The pole contribution to f i g . ( 1 . 3 b ) 0 used i n the derivation 

of the absorption model. 

(d) The simplest contribution to the upper vertex i n fig.(1.3a) 

which does not cause the cut amplitude to vanish. 

(e) The box diagram which does not produce a Regge cut. 

1.4 (a) The contour f o r the integration i n the Gribor Vertex 

calculation. 

(b) The contour of fig.(1.4a) a f t e r deformation as discussed i n 

the t e x t . 



f i g . (1.1) 

f i g . (1.2) 
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f i g . (1.4) 
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Chapter 2. DOUBLED TRAJECTORIES AND K-o ELASTIC SCATTERING 

Introduction 

K»p scattering affords an opportunity to test the various 

assumptions and prejudices current i n Regge theory. There ia a 

very pronounced crossover (see eection l , 2 ( i i ) ) 0 the K*p channel i s 

exotic, and there are good data on d i f f e r e n t i a l * t o t a l and polarised 

cro88 sections over s large energy range c tahile the spin structure 

ie not so complicated as to render analysis imposslbleo 

In section (2.1) ess introduce the amplitudes and formalism to 

be used, and i n section (2.2) me discuss the ambiguities involved i n 

Regge parametrlsations of these amplitudes. In section (2.3) we 

introduce a simple model with doubled t r a j e c t o r i e s and describe a 

f i t to the data. In saetions (2,4) and (2.5) m compare the 

amplitudes obtained i n thie way with ths results of Heybt and Navelst 

f o r K-p at 10 GeV/c, and phase-ehift analysis (29°*°) for Kop at 

2.5 GeV/c. Conclusions are drawn i n section (2.6). 



2.1 Amplitudes and formalism 

In K=p scattering there are two independent h e l i c i t y amplitudes, 

In the s channel we take these to be 

The normalisation of these amplitudes i s defined so t h a t i 

dtf a Jf ( s , t ) l 2 • |f ( e 9 t ) | 2 (2.3) 
dA + + *" 

P ~, - 2IW ( f ^ ( e p t ) f ^ ( s 0 t ) ] (2.4) 

tfT0T * ^ I M ( 8 > 0 ) < 2 ' 5 ) 

Ule cannot insert Regge pole expressions into these amplitudes 

d i r e c t l y , because they contain kinematic s i n g u l a r i t i e s . I f we remove 

theee kinematic^singularities, we are l e f t with the invariant 

amplitudes A' , B 1 9 ̂  (Actually A' i s singular at t a 4m2, but 

t h i s i s so f a r from the e channel physical region that i t does not 

affect the analysis). The advantage of these A' , B amplitudes i s that 

they are proportional to the t channel h e l i c i t y non-flip and f l i p 

amplitudes respectively. 

The relations between f , f and A' D B are 

f a m s 
+ = 4 T I Js* 

in$8 - if? q 2 1 • t/4q* B ] (2.7) 

For the purposes of p a r t i a l wave analysis, the scalar amplitudes 

f^t, ?2 and f,g are usually usedo These are related to f ^ , f + _ by 



f s ( f . •> f . ) cos£® (2.8) 

f + _ = ( f x - f 2 ) sin£® (2.9) 

f = f ̂  * f j cos ® (2.10) 

g = - f 2 sin© (2.11) 

The reason f o r using these amplitudes i s that they simplify the 

p a r t i a l save series» For f ( M CV = = ) 0 t h i s i s 

P ( s 0 t ) * > (2j * 1) T j (s) ^ J ( 0 ) ( 2 . 1 2 ) 

but f o r f»g i t nay be written i n terms of Lagsndre polynomials 

P ( s 8 t ) = * 1 ) f l o ( a ) * 1 f l - ( s ) ] P i < c o s 0 ) < 2 a 3 > 

1 8 0 
49 

g<8pt) * 2 j ( f l +
( 8 ) ~ f l - ( S ) ) P / ( C ° S e ) ( 2 ° 1 4 ) 

1 4 
where f. * (•) » T 4 * T (2.15) 



•=• 2 6 «=» 

The p a r t i a l waves f ^ + (s) are moat easily projected from f ^ f j 

f x * (s) * ' £ 1 d(cos®) [ f 1 ( s l ) t ) P l ( c o s 0 ) * f2(s„t) P^Ccos©)] ( 2 . 1 7 ) 

- t 

For completeness ise also define the spin asyomsetry and rotation 

parameters Ap R. The usual d e f i n i t i o n of these isu 

»fl2 - I Q » 2 

I f J 2 * I g l 2 

2Re (fo») 
J f f l 2 * | g i 2 

( 2 . 1 8 ) 

( 2 . 1 9 ) 

Some authors use the following d e f i n i t i o n s 0 houeven 

I V I 2 * KJ 2 

R H E L S
 2 " 8 ( F ~ F + - } ( 2 . 2 1 ) 

I v i 2 • i v i 2 

These d e f i n i t i o n s d i f f e r only by a rotationssince 

A = A H £ L Cos© * R H E L s i n 9 ( 2 . 2 2 ) 

R S - A ^ L sin© • R H E L cos 9 ( 2 . 2 3 ) 

so that near the forward direction the d e f i n i t i o n s are equivalent 
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2.2 Ambiguities i n RQQQQ Analysis 

In processes,? such as K*p0 rahere the data aea insuff i c i s n t to 

deterrains a l l ths esiplltudesp there aee ttao possible procedures. 

Either toe make soros assumptions rani eh dstsraina the amplitudes i n a 

parti c u l a r medolp or as consider only quantities which are not dependent 

on the ambiguity. In K*p a@ f i n d that those are tiso ambiguities 0 Ule 

s h a l l eliminate one by the assumption of Regge theory? and discuss 

the other i n mors d e t a i l . 

We have introduced the amplitudes A' DBe which are ooraplex9 so 

that four real numbers at each value of s#t completely determine the 

system. The data 0 hociaver provide only too numbers at each s s t p namely 

the d i f f e r e n t i a l orosa section and polarisation. In the special case 

t s eD m have also the t o t a l cross section 0 but since the 

polarisation vanishes l d s n t i c a l l y because of angular momentum conservation,, 

there are s t i l l only ttao r e a l numbers determined by ths data. 

As BIS are going to work i n the framstaork of Regge theory p we havsj, 

imposed upon us 0 the r e l a t i o n betoaen the phase and energy dependence of 

each Regge poles defined by the signature factor and ( ~ e " ) K ° This 

means that we have one ambiguity removed fos ua D leaving one remaining» 

This mas elegantly isolated i n raf»(24)9 ahere the following d e f i n i t i o n s 

titers made* 

a s A' (2.24) 

b . P L <* » B (2.25) 
2ra ( 1 ~ t/4m2) 

These amplitudes a pb have the advantage that they appe>c£ 

syna6trieally i n the d i f f e r e n t i a l cross section, i . e . 

dt c ( |a| 2 * |b| 2 ) (2.26) 

also p J n 2elm(ab°) (2.27) at 

where c s 1 - t/4m (2.28) 
IB I t P 
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This means that the d i f f e r e n t i a l cross section and polarisation 

are invariant under the transformation 

a ~o a c o s % « b sin£ (2.29) 

b -o =a s i n X * b cosX (2.30) 

tahich i s a rot a t i o n i n the spin f l i p => non-fl i p plane 0 

An immediate advantage of t h i s approach i s that the constraint 

imposed by Regge theory i s p a r t i c u l a r l y siraple 0 namely that X depends 

only on t o This i s because i t must not af f e c t the ( "~f* energy 

dependence of the amplitude. 

Analytieg&$-implies further constraints. B©causa the amplitude 
2 

a i s analytic (except at t B 4m ) D but b contains kinematic singulafcitiosp 

i t i s naessaary that & eaneol thsao i n (2»29)s that i s iso require 

b sinX to be a n a l y t i e 0 ioQ.o 

B f * P L <1 * a i n % analytic (2.31) 
2m (1 - t/4m 2) 

Hence tae deduce that 
n o a i e t o Q (2.32) 

^ 2m 

and . l 2 

s i n % ~ (1 * t A q ' ) * noer t • =4q 4 (2,33) 

(2.32) and (2,33) correspond to behaviour i n the fertuard and backward 

directions respectively. Since our f i t i s to the forward direet&enp 

using t channel Rogge polos 0 m applied only the constraint (2.32) D by 

forcing 

% ( t ) 'V ^ = t * near t a 0 (2.34) 

The backward dire c t i o n should be s u f f i c i e n t l y f a r from the region 

of interest f o r the behaviour (2.33) to have l i t t l e e f f e c t . 

The s i n g u l a r i t y at t o 4m i n (2.31) i @ 9 of ooureee present i n A' 

so does hot have to bo caneolled by &lx\K . 
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UUe sha l l adopt a specific form f o r the meson residues s so there 

w i l l be no room fo r a r b i t r a r y rotation angles there* I t w i l l be 

convenient to rotate the pomeron residua functions s since f o r them we 

have no theory. Ule may determine a starting-point f o r the rotation by 

the convention that X ( t ) ~ 0 corresponds to t channel h e l i c i t y 

conservation b ( s 0 t ) a 0. P 
I t is also useful to determine the r e l a t i o n between s channel and 

t channel h e l i c i t y conservation i n terms of theae variables. I f we 

c a l l P ̂  » P.8 the pomeron contributions to the s channel h e l i c i t y 

n on-flip and f l i p amplitudes respectively,, i t i s natural to define an 

S channel rotation angle X _(spt)» analagous to e.qs.(2.29, 2.30) by 
S 

tan % s ( s , t ) = P + - ( 8 f l t ) (2.35) 
P.! (».t) 

so that X ( as>t) s 0 corresponds to a channel h e l i c i t y conservation. 

The r e l a t i o n between t h i s and the t channel angle i s 

tan % ( s 9 t ) . v°tan*9 • t a n % ( t ) (2.36) 
1 - js tan£0 t a n % ( t ) 

2 2 h 

where | (1 * q /m V (a. 14) 

(see appendix) 
Ute see that s and t channel h e l i c i t y conservation are equivalent 

only i n the forward dir e c t i o n ^ and since 

ten £0 /v, \/=t' (2.37) 
=t-o 0 

they quickly beeome d i f f e r e n t as ItJ increases. For t ehan~sl h e l i c i t y 

conservation 0 we see that 

t a n % 8
T C H C ( s 9 t ) * ^ tan£Q (2.38) 

so that the two assumptions become further apart with increasing energy. 
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2.3 The Model 

are 

The t r a j e c t o r i e s which may be exchanged i n K~p el a s t i c scattering 

K*p a P * J> * ui * f * A 2 (2,39) 

We have seen in Chapter 1 that there i s evidencep both theoretical 

and experimental, that the meson t r a j e c t o r i e s are degenerate 

o c ^ ( t ) * Otjt) = 0( A ( t ) « ©cf ( t ) » oc ( t ) (2.40) 
2 o 

so we adopted t h i s i n our model. 

Because our model was e x p l i c i t l y constructed with meson residues 

which do not f a c t o r i s e 0 we cannot use information from the charge 

exchange processes K~p-oK°n o? K*n-oK°p to separate the ui 

contribution from the ̂  s or the f Q from the A^. We therefore worked 

only with the linear combinations 

V 1 J3+ w (2.39) 

T * A_ * f (2.40) 
" £. O 

where V and T stand respectively f o r Vector and Teneor mesons. 
Ule used the variable 

v a 3 - u (1.26) 
2S0 

which produces a better low energy expansion than s (see ref.12), and 

therefore parametrised the invariant amplitudes as 

A/ ( V p t ) r J i ^ K t ) ^ M ( 2 , 4 1 ) 

i = P,VPT 

B(v,t) > J ^ i # i ( t ) V * i - ( t ) " 1 (2.42) 

i = PsVpT 

As usualj, /Si i s the signature factor 

- B" 1 I C C <* * Vl (2.43) 
Sin W.©^ 
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where, of course, the signatures of the t r a j e c t o r i e s are 

"C p = TJ T = 1 (2.44) 

TJ » -1 (2.45) v 

In terms of t h i s parametrisation the mechanism fo r the production 

dt of the crossover i s extremely simple. The quantity & ~ f defined i n 

e.q. (1.20) i s given by 

where C i s defined i n e.q. (2.28) and 

E . & PL <1 * (2.47) 
2mv (1 - t/4m2) 

Since the crossover occurs near the forward d i r e c t i o n , the 

contribution of the second term i n (2.46) i s expected to be 3mall so 

that the zero should be apparent i n the f i r s t term. A zero i n }f 

would produce a dip i n the K+p cross section which does not occur, so 
2 

the conclusion i s that If ( t ) vanishes for t % -0.16 GeV . In 
practice t h i s zero w i l l be shifted s l i g h t l y by the presence of the 

2 
second term, but because the quantity E necessarily vanishes l i k e t 

2 

in the forward d i r e c t i o n 0 i t s effe c t at t % -0.16 GeV i s expected to 

be small. 
do 

The quantity 8 n a o * e a u s t o check the v a l i d i t y of the 

simple pole model. I f we plot log( A — ) against log (s) at fixed t , 

s.q. (2.46) predicts that we should see a s t r a i g h t l i n e of slope 

<x * cCp-2. This has been done by Schmid^ 6^, end his results are shown 

in fig.(2.11). The data may be seen to be perfectly consistent with t h i s 

simple power law from a 1,5 to 15 Gev/c. (the highest momentum f o r 

which s u f f i c i e n t l y accurate data were available), and from t * 0 to 
2 2 t a -1.0 GeV . The curves f o r -0.6 •$ t4 -0.4 GeV , where the 

s t a t i s t i c s are best, ars i n p a r t i c u l a r l y good agreement. 
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I t seems p the re fores, that the data on d i f f e r e n t i a l cross sections 

are encouragingly suggestive of a simple pole model. Indesdp i t i s 

puzzling what has happened to the cut contribution^ i f i t is a 

si g n i f i c a n t part of the amplitude.. Unfortunately the polarisation 

data are not s u f f i c i e n t l y accurate to apply a similar test to the tensor 

terms i n any meaningful u)ay0 but i t does appear that« i n thi s process 

at least,, cuts play a r e l a t i v e l y minor role» 
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The Mesons 

Our model has doubled t r a j e c t o r i e s ^ and the simplest way of 

achieving t h i s i s to make each meson residue a sum of two Vsneziano 

terms of the form (see 1.48) 
c (c s constant) (2,48) 

v ( t ) = p W t ) Hi • 1> 

with s s o 

This form has zeros when 

Ot(t) = m - 1, m - 2, etc. (2.49) 

which cancel the poles at alternate integers i n the signature factor. 

The resulting amplitude thus has poles f o r positive integer tt(t), 

s t a r t i n g at 6<(t) « m or m *1 depending on the signature of the 

tra j e c t o r y . 

Since the lowest p a r t i c l e on each tr a j e c t o r y i s not observed to be 

doubled we arranged t h a t p of the two terms constituting each residue, 

one had the lowest p a r t i c l e and the other did not. We were thus led to 

the following forms f a r the residues 

j j x ( t > 

a 8v1 • 
P («x «• 1) 

©7v2 
F («x - D 

(2.50) 

s ft v1 * Iv2 (2.51) 
ncoc) P(« -D 

• 5 T1 * 8T2 (2.52) 
D 

a &T1 * 5T2 (2.53) 
JM«) P(« - D 

The 8 parameters |&o|&| are coupling constants,, to be determined 

by f i t s to the data. 

We fixed the meson trajectory at 

««(t) s 0.5 * 0.9 t (2.54) 

in accordance with exchange degeneracy (see e.g. 2.40). 
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As a preliminary step we f i t t e d these forms to the residues from 

r e f . ( 2 4 ) 0 and w@r@ encouraged by the reasonable f i t s obtained^ as 

these residues shout considerable structure,, This procedure was not 

e n t i r e l y satisfactory^ howav©rp because the f i t t i n g prtaadu . - j WCS not 

able to discriminate between regions ahero i t am neeossary to f i t 

c l o s s l y 0 such as f o r \ f v ( 0 near the crossover region,, and regions 

where a rough approximation was adequateD such as f o r the jS residues 

near the forward dir e c t i o n . Consequently we f i t t e d the data d i r e c t l y 0 

and f o r t h i s i t aas neoessary to construct a paremetrisation f o r the 

pomeron. 
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The Pomeron 

In accordance with the above discussion we mads t channel h e l i c i t y 

conservation for the pomeron correspond to % ( t ) a 0, In tui-ms thb 

residues, t h i s gave 

<t) = 5°p(t) cos - * ( t ) (2.55) 

tyhere o^°(t) is the unrotated non f l i p residue. We parametrised 
i t as 

tfjj(t) = A ca»* * ̂  (2.57) 

This corresponds to the usual idea of a pomeron central i n 

impact°>parameter specs. 

We parametrised % ( t ) as a polynomial,, and included the kinematic 

^P? si n g u l a r i t y mentioned i n e.q. (2.34). 

- * ( t ) f? («*, * <• ^ t 2 ) (2.58) 

We t r i e d introducing a cubic term into t h i s expression but found 

no improvement i n the f i t . 

We used a linear t r a j e c t o r y 

<x ( t ) s 1 *«'t (2.59) P P 
allowing «^ to be a free parameter. Our pomeron parametrisation thus 

had 7 free parameters - As â o â p %j» st^ - to be determined 

from the data. 

£fc skould fat* pcV*.+«*l owt iA*-t % d«.fU*4flt *.bove 
f* ft. vot«cHevft. o f <ttui pom^ovt. vektistt to "»&s sv»«60w&, 
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Oata 

UJe f i t t e d a l l available data i n the range 

2 $ ?L4 16 Gev/c 

0 £ t £ -1.5 GeV2 

The sources are l i s t e d i n ref.26, and the numbers of experiments are 

summarised i n Table (2.1). 

Table 2.1 

Data on K ° p Elastic Scatterino 

Measurement Number of Experiments 

K * p K - p 

GTOT 4 3 

dor Q c 
dt 

P 3 2 

In a l l there were 589 data points. Normalisation errors i n the data, 

which r e f l e c t the d i f f i c u l t y of accurately counting the f l u x i n the beam* 

were revealed by differences between experiments by d i f f e r e n t groups at 

similar energies. For example,, there i s a factor of about 1.3 between 

the K • p d i f f e r e n t i a l cross section data of deBaere at a l , at P̂  * 3.46 GeV/c 
(26) 

and that of Banaigs et a l . at P̂  B 3.55 GeV/c . One possible way of 

dealing with these systematic errors i s to assign each experiment an 

arb i t r a r y normalisation parameter, to be determined by the f i t . We did 

not use t h i s procedure, since i t possesses the inherent danger of allowing 

the model to introduce an altogether spurious energy dependence. UJe 

rel i e d instead on f i t t i n g a large amount of data, and expected that the 

normalisation errors would to some extent average out. 
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F i t t i n q Procedure 
2 

We minimised % defined by 
X 2 . f * (calc) - 42 ( s x p t } l 2 • f p ( c l c ) - P(.xpt)] 

1 «S <•>*> J L «p(«pt) J 
V T ( c a l e ) = ^ T ( e x p t ) 

(2.60) 

8 

Ue used the CERN minimisation program NINUIT, which i s a 

combination of a random-search routine and a modified Roeenbrock 

co-ordinate variation program^6^„ The action of WINUIT i s summarised 

i n the flow-diagram of fig.(2.12). 

As starting-values f o r the parameters, ws took the values obtained 

from f i t s to the residues from ref.( 2 4 ) . About 1000 it e r a t i o n s were 

required to reach a solution, and only one good f i t was obtained. 

Although the number of free parameters - 15 - was rather large, 

certain of them were determined i n a straightforward way by the gross 

features of the data. 

The pomeron parameter A was determined by the asymptotic K * p 

t o t a l cross section, since 

< T ! $ < « > - ga_ ( 2 . 6 1 ) 

The forward direction vector meson residue was then determined by 

the difference between the K-p and K*p t o t a l cross sections 

( f T Q T ( K - p) - tfTQT(K * p) * . t f y (0) « ( 0 ) - 1 

Ae the errors on t o t a l cross sections are small the equatione 

(2.61), (2.62) were we11-determined. A further condition on y v was 
2 

obtained from the crossover at t % -0.2GeV . This implies 
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^ y ( t c ) a Os t -Ss. =0.2 GeV2 

or J y 1 *©<(«=1) J y 2 a 0 (2.63) 

As was previously suggested^ t h i s zero was moved s l i g h t l y by the 

presence of f l i p terms 0 but (2.63) represents a very useful constraint 

i n r e s t r i c t i n g the movement of parameters 0 

With the non=flip poms ran and vector-meson parameters more or less 

fix e d by the t o t a l cross section and crossover? constraints were 

imposed on the tensor meson residue by the value of the K •» p t o t a l 

and forward K = p d i f f e r e n t i a l cross sactionspeffeetively removing two 

more parameters. 

Our f i t thus had ten parameters with which to f i t the polarisation 

data 0 and the angular structure of the d i f f e r e n t i a l cross section. 

In addition to e.q.(2.46)„ three additional quantities may be 

defined! 

L f * * OHO 

i.P.V.T ,»•"«» u > 6 4 ) 

EP £ S P £ (K-P) . <ft (K.p> 

where C and E are defined i n (2.2B) and (2.47) respectively. 
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Since the meson non f l i p residues are constrained as described 

in the previous discussion e they nay be treated as known i n the above 

three equations. 

by the d i f f e r e n t i a l cross section and polarisation data over the whole 

range of t , and the meson f l i p residue parameters mainly by the 

polarisation. I t should be emphasised tha t , i n a simple pole model, 

the pomeron is not predominantly a forward dire c t i o n e f f e c t , and i n fact 

because of i t s small slope, contributes more at large t r e l a t i v e to the 

masons, than i n the forward dir e c t i o n . ( I n cut models,of course, t h i s 

i s not true, since amplitudes generated by f o r example the absorption 

model f a l l o f f more slowly with t than the pole contributions). 

The pomeron parameters .0 a,, ^ , T^, "Kj were a determined largely 
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Results 

The best leasts-squares f i t to the data gave ̂  • 1.8 per point 

and the following parameter values. 

For the pomeron 

< = 0.32 

A a 9.1, a 1 s 2.3, a 2 a 0.2 

tt,^ = - 1 . K 1 0 ° , ^ E -0,2, -J^ • 0,46 

For the Vector meson 

*v1 = 1 0 8 5v2 a 1 ' 6 

Fv1 * 2 3> ?v2 S 2 ' 8 

and f o r the tensor meson 

? T 1 • 12, ? T 2 = 5.3 

frl 3 8 5 9 £ T 2 = 4 5 

F i t s to d i f f e r e n t i a l cross section and polarisation at intermediate 

energies are shown i n f i g s . (2.1, 2.2) and to the t o t a l cross sections 

i n f i g . (2.3). The model agreed well with the data over the whole range 
2 

of energy considered. A large proportion of the % came from the 
normalisation errors mentioned above. We estimated that? i f normalisation 

2 

errors were taken into account, we would have % 7& 1.2 per point, which 

i s a reasonable f i t . 

The Meson Residues 

In f i g . ( 2 . 5 ) the meson residues are compared with those of the 

eff e c t i v e pole model of r e f . ( 2 4 ) . The agreement i s seen to be good f o r 

the non-flip residues, especially near the forward d i r e c t i o n . The f l i p 

residues are i n poorer agreement. In general, as was mentioned above, 

they are less well determined than the non-fli p residues, and near t Q 0 

they are not determined at a l l , because t h e i r contribution to ths 

obsarvables vanishes kinematically. 
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I t should be noted that these residues are not very compatible 

with exchange degeneracy. That the non f l i p residues are nearly equal 

at t s 0 i s not surprising^ since that i s necessary to ensure the 

flatness of the K p t o t a l cross section. Our results at larger t 
(27) 

support the assertion than i n a pure pole model exchange degeneracy 

cannot hold away from the forward d i r e c t i o n . 
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The Pameron 

The unrotated non f l i p residue V°(t) we obtained was the same as 

that of ref.(24). We t r i e d a f i t with fixed equal to zaro 8 but 

found that the f i t was considerably worse. 
=2 

The very small value ( = 1 x 1 0 ) obtained f o r ̂  indicates 

support f o r t channel h e l i c i t y conservation f o r M 4 0.5 GeV . This 

is i l l u s t r a t e d i n fig.(2.4)„ where the parameter % ( s g t ) , which i s 
3 

defined i n e.q.(2.35) 9 i s plotted at P L m 10 Gev/c. Also plotted i s 

the t channel h e l i c i t y conservation curve? defined i n e.q. (2.38). I t 

can be seen that our f i t i s even further from e channel h e l i c i t y 

conservation (% ( s 0 t ) s 0) than i s the T.C.H.C. curve. Some support f o r 

our % ( t ) i s obtained from consideration of the CERN j& phase s h i f t 

analysis e i n section (2.4). 

The pomeron slisps «^ i s simply related to the shrinkage of the 

forward peak i n the K <• p d i f f e r e n t i a l cross section. Since 0 i n our 

model9 the mesons are exchange degenerate at t = 0„ we expect the pomeron 

to dominate there 9 so we can write 
•~ (K + p) F ( t ) S 2 t XP ( t ) = 2 (2.67) 

(where F(t ) i s a complicated function depending on tf°(t)s> x , ( t ) p and 

kinematic f a c t o r s ) . Putting i n the linear form o* p(t) = 1 * oc^ t we 

obtain 

$ * F ( t ) at 

To obtain the slope of the foriserd pe&3 we take logs* d i f f e r e n t i a t e ^ 

and evaluate at t = Q0 giving 

b(a) i ^ (log ^ f ) l = * 2 * p ' l o g s (2.68) 

t = 0 

so that the rate of shrinkage of the forward peak i s proportional to 

This means that the value of ©t̂  obtained from the data i s largely model-

independent c and i n fact any model assuming pomeron dominance of K + p 

w i l l give the same res u l t . 



Conclusions 

We have formulated e simple modelp involving doubled trajectories,) 

which avoids the f a c t o r i s a t i o n problems discussed i n section (1.2). The 

model provides a satisfactory f i t to K «=> p e l a s t i c scattering date i n 

the range 2 $ P L $ 16 Cev/c and 0 ^ I t l 1.5 Cev2. 

Our parametrisation of the residues leads to a determination of 

•xXt) which supports t channel h e l i c i t y conservation f o r the pomeron 

near the forward d i r e c t i o n . 

In the next tato sect ions p we make use of the amplitudes obtained 

from t h i s model. Although the fact that i t f i t s the available data 

cannot be interpreted as convincing evidence f o r the physical r e a l i t y 

of t h i s modelp i t i s useful because i t provides a smooth parametrisation 

of the data in terms of Regge amplitudes^ which can be used i n testing 

general hypotheses (such as that of Zermi^ 5^) or the assumptions made 

by amplitude analysts p such as Heyot and Navelet i n the next section. 
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2.4 Comparison with the Amplitude Analysis of Heyot & Navalet 

(28) 
Hsyot and Navelet performed an amplitude analysis of the KN 

system at * 10 GeV/c. As there are data on an i n s u f f i c i e n t number 

of parameters to completely determine a l l the amplitudes 9 they were 

forced to make some assumptionso 

They used amplitudes M*+J) which are respectively s channel 

h e l i c i t y non-flip and f l i p amplitudes of t o t a l isospin I i n the t 
channel. I f flfl (K°) i s the amplitude f o r K - p —s> K = p„ and m (K°) 

JA V yte v 
that for K - p —o K°n ( yu.Dv B * ) c then 

n 0 0 = h (w1 * m° ) (2.69) /&v ' 

m (K°) B m1 

v ysav 

These amplitudes are normalised such that 

drf . M , 2 .„ , 2 
dt s 

= 2im (mm* ) (2.71) 

The assumptions that they made were as follows 8 
(28) 

( i ) In an amplitude analysis of the WN system* ' the 1*1 f l i p 

amplitude was found to have the behaviour expected of a simple Regge=pole. 

By analogy 9 assumption ( i ) i s 

( i i ) The K - p-oK°n d i f f e r e n t i a l cross section data has a forward dip, 

indicating a dominant f l i p amplitude), therefore 

(This can obviously not hold near t o 0 P where M vanishes). 
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( i i i ) They assumed that the pomeran conserves s channel h e l i c i t y s and 

that the pomeran is dominant at P̂  = 10 GeV/c? hence 

K J » Kl\ cm) 
( t h i s assumption is certainly wrong f o r i t I 0.6) 

They then wrote 
0i 

e 
and obtained the following formulae 

KJ • 2 is? «•' 
I " 1 . . I • /I? <*°) 

and sinT?(0 + ®) a P(K - p) /dtf/dt (\C) 
tfdo/dt (Ro ) 

In f i g . (2.6) we compare the results of t h i s analysis with the 

K - p non f l i p amplitude i n our model. I t may be seen that f o r 

IM M^tK - p) the agreement i s good,, whereas f o r Reffl^+(K = p) the 

amplitudes do not agree. The reason f o r t h i s is that Heyot and Navelet 
0 1 had no j u s t i f i c a t i o n f o r neglecting ffl^ compared with M + = . I f we 

write 

we obtain f o r the K = p polarisation 

ft m ̂  ft sin TT (0 * @<) * |m° |sin TL * «) 
P(K" ) * 2 ™ (2.72) 

This means that the result f o r the phase of W ̂  was incorrect? 

giving rise to a wrong real part. Because t h i s amplitude i s nearly 

purely imaginary,, being pomeron dominated,, t h i s error did not s i g n i f i c a n t l y 

a f f e c t the imaginary part. 

Heyot and Navelet also extracted what they called the "Regge 

Term",, by assuming that the K + p d i f f e r e n t i a l cross section i s given 

by the pomeron alone. This gave 



46 

Im Wl°+ (Regge) » £ (K - p) fdgT 
'dt (K * p) (2.73) 

This, not surprisingly,, has a zero at t » -0.16 GeV „ since the 

K « p and K » p d i f f e r e n t i a l cross sections are equal there. I f we 

write 

(K - p) 
* <K-p) - * < I C p > 

(K - p) • » (K • p) 
(2.74) 

and approximate the denominator by the pomeron contribution, (assumed 

imaginary and conserving s channel h e l i c i t y ) we obtain 

Im ffl (Regge) % Im V (2.75) 

where V is fehe vector meson contribution to the non-flip amplitude. 

Our Regge term contains also the tensor contribution,, and does not have 
2 (1) a zero at t s -0.16 GeV . The Regge term i n our modelx ' and Heyot and 

(2) 
Navelet's analysis are compared i n f i g . ( 2 . 6 ) . 

The value of our smooth parametrisation i n testing analyses of t h i s 

kind i s evlatent. As our amplitudes f i t a l l the available data, they 

can only be excluded by an analysis whose physical assumptions are 

rad i c a l l y d i f f e r e n t from ours. 
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2.5 Comparison with K » p phase s h i f t analysis 

Since the K • p channel i s exotiCp smooth Regge°like behaviour of 

the cross sections has already set i n f o r P̂  2GeV/cs which was the 

lowest momentum we considered i n our f i t . There has also been much 

a c t i v i t y i n the f i e l d of phass=shift analysis? where the search f o r 

exotic resonances such as the <£ g has led to solutions being produced 
(29 30) 

up to s 2,5 GeV/c 9 . We thus have an opportunity to compare 

the phase s h i f t s d i r e c t l y with our r e s u l t s p without the need to invoke 

F i n i t e Energy Sum Rules. 

tile considered projecting out the p a r t i a l waves from our amplitudesp 

but since we had no model f o r backward scattering^ we were unable to do 

th i s i n a meaningful way. Instead we compared amplitudes d i r e c t l y . 
(24) 

This sort of comparison was performed by Daum et a l at 

PL s 1.45 GeV/c with t h e i r e f f e c t i v e pole model. Since then phase 

s h i f t solutions have become available at higher energies, from which we 

expect more f r u i t f u l comparisons. 

I t i s useful to compare quantities which are invariant under the 

rot a t i o n %. We therefore define $ (s»t) by 
8 

rf.U.t) = ^ ~ * ~ ( 2 ' 7 6 ) 

(Imf ) Z * (Imf ) Z 

This may easily be seen to be independent of % {s9t)9 defined i n e«q* 

(2.35)j> and therefore cannot depend on % ( t ) either. 

Uia f i r s t describe the phase s h i f t solutions available at 

P̂  2 GeV/cp and then compare them with our model. We cannot compare 

our model fo r % ( t ) with solutions which do not agree with our $ (s,t)p 

so we made a direct comparison of the s channel amplitudes f + + ( s p t ) p 
f (Spt). 



The PhBsa 3hiPt Solutions 

(1) The CERN Solutione 

(29) 

Albrow et a l performed a conventional energy-independent 

phase-shift analysis of e l a s t i c K * p scattering from thssstoBid up to 

PL = 2.5 GeV/c. They used data on unpolarised and polarised 

d i f f e r e n t i a l cross sections, t o t a l and e l a s t i c cross sections,, and also 

real parts of the forward amplitude Ref (s,o), taken from the dispersion 
(33) 

r e l a t i o n calculations of Martin and Perrin . 

In t h i s type of analysis, the p a r t i a l wave series (2.13, 2.14) i s 

written down and truncated at some 1 a 1 . The resulting amplitudes 
max 3 

are f i t t e d to the data et each energy independently, using the p a r t i a l 
waves f ^ (s) as parameters. The solution obtained i n t h i s way i s by no 

21 +1 
means unique, i n fa c t there are of the order of 2 max solutions at (63) each energy , and even these depend on the choise of 1 max 

Albrow et a l . included up to H (1 s 5) waves i n t h e i r solution 
max 

at the highest momenta considered. At each momentum they obtained 200 
(31) 

solutions, which they linked i n energy by the "shortest path" methodv , 

which selects solutions giving greatest continuity. Three d i s t i n c t 

solutions were obtained, which the authors called «,|J, }f. Of these, 

eSand Jf were nearly id e n t i c a l at the highest momenta, especially near 

the forward dir e c t i o n . 
( i i ) The ACE solution 

f i l l e r et a l ' used the "Accelerated Convergence Expansion" of 
(32) 

Cutkosky and Deo to perform an analysis i n the same energy range as 

the CERN group. 

In t h i s method the complex z plane i s conformally mapped onto a 

plane i n which the p a r t i a l wave series i s maximally convergent. This 

procedure has the advantage that much fewer p a r t i a l waves (and therefore 

parameters) are required than i n conventional methods, although i t does 

have the serious drawback that the s i m p l i c i t y of the u n i t a r i t y 

constraint t\ l t 4: 1 (see e.q. (2.16)) i s l o s t i n the process. 
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m i l l e r et a l . obtained a unique solution at each energy? which 

resembles the CERN ©r and $ solutions. In general the ACE solution 

gave a better f i t to the data 9 p a r t i c u l a r l y the polarisation near the 

forward direction,, than the CERN solutions (see f i g , (2.7)). When 

the p a r t i a l waves were reconstructed from the ACE expansions i t was 

found that the series converged rather slowly p so that the CERN workers 

has apparently included too few terms i n t h e i r f i t . 
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The Comparison 

I t is convenient f i r s t to compare quantities invariant under the 

rotation % (spt)o Since the CERN ©c and & and the ACE solutions 
s 

resemble one another, we compare our solution with CERN ^ and ACE 

only, (These are labelled 'R'0 'A' on the diagrams). 

In f i g . (2.9) we compare the quantity /5 ( s , t ) , defined i n s.q. 
s 

(2.76) at PL s 2.5 GeV/c. We see that our solution i s i n f a i r l y 

good agreement with CERN ^ , but hopelessly d i f f e r e n t from ACE. ( A l l 

solutions agree at t = 0 because they f i t t o t a l and forward d i f f e r e n t i a l 

cross sections with the two parameters Ref^, I m f ^ f leaving no room 

for ambiguity). The fact that these results f o r 0 _ ( s p t ) are so 
3 

di f f e r e n t means that we cannot ascribe the differences i n amplitudes to 

jus t s channel or t channel h e l i c i t y conservation. To consider the 

subject i n more d e t a i l we must look at the amplitudes d i r e c t l y . 

In f i g . (2.6) the s channel h e l i c i t y amplitudes f . f are plotted 

at PL = 2.5 Gev/c. We see immediately that f o r the non f l i p amplitude 

there i s no disagreement. I t i s p a r t i c u l a r l y interesting that a l l 

solutions agree f o r Ref + +(s,o). Both phase-shift groups f i t t e d dispersion 

r e l a t i o n real parts, although i n KN these are somewhat dubious, since 

they depend on the parametrisation adopted f o r the unphysical region i n 

the integration. In f a c t t h i s ambiguity i s the reason f o r the small 

difference between the ACE and CERN values f o r R e f + + ( s , o ) , brought about 

by the fact that t h e i r input values were from d i f f e r e n t sources. Our 

value e which comes only from the t o t a l and forward d i f f e r e n t i a l cross 
(33) 

sections, agrees with the CERN value , indicating that dispersion 

relations provide no extra information i n t h i s problem. 

I t i s i n the f l i p amplitudes that the differences are r e a l l y 

apparent. In the ACE solution Imf i s very small f o r a l l t . This has 
+•» 

been put forward as suggestive of s channel h e l i c i t y conservation, both (29) (34) by the CERN group and Cutkosky v . This interpretation runs into 
trouble, however, when we demand compatibility with K - p data, and 
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p a r t i c u l a r l y the crossover zero at t % -0.16 CeV . Since t h i s zero 

must be present i n the vector meson term c we would expect to see a dip 

in Ref in t h i s region (as the pomeron real component ought to be 

small near thB forward d i r e c t i o n ) . In our models which does not have 

s channel f e l i c i t y conservation, t h i s problem does not arise. 

The small Imf i n the ACE-type eolutions has also been said to 
(29) 

suggest exchange degeneracy . Since, away from the forward d i r e c t i o n , 

there are contributions to Imf^_ from both A' and B (see e.q. (2.7)), 

t h i s degeneracy would, be true f o r both % and |J residues, so that we 

would again expect to see a dip i n the Ref near the crossover point. 

Another phenomenological point i s worth mentioning. Oavier and 

H a r a r i ^ 4 ^ have shown that i n impact parameter space the meson 

contribution to K - p appears to be peaked around b a 1f. In terms of 

p a r t i a l wave t h i s i s , at ? L s 2.5 GeV/c, l p e a ( < % 5. The CERN p a r t i a l 

wave solutions, however, only go out to l f f l a x
 s 5, so that they must 

miss a considerable part of the meson amplitude. I t may be that a l l 

p a r t i a l wave analysis which truncates the series at a fixed 1 has a 

b u i l t - i n prejudice against such peripheral amplitudes. 

These arguments have depended to some extent on the pomeron having 

a small real part. I t i s , of course, possible that the pomeron at low 

energies does not behave l i k e an ordinary Regge-pole, that i s , i t does 

not have the usual Regge relationship between i t s phase and i t s energy 

dependence. I f t h i s were true, direct comparison of Regge f i t s with 

phase s h i f t solutions would not be possible,, at any rate u n t i l we have 

a more complete theory f o r the pomeron. 

Some of the ambiguities that have been mentioned would be resolved 

by measurement of either the spin- asymmetry parameter A, or the rot a t i o n 

parameter R (defined i n e.qs. (2.18, 2.19) respectively). Although 

measurement of these parameters i s extremely d i f f i c u l t , as i t requires 

a double-scattering experiment, i t would be very worthwhile, because 

the predictions of the various solutions are w i l d l y d i f f e r e n t . 
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As an oxemple, i n f i g . (2*10) we show the predictions of a l l the 

amplitudes f o r the asymmetry A at a 2.5 Gev/c. I t can be seen 

that even a very low°preciaion OHpsriraant would provide a means of 

distinguishing the too types of solution, 

U)@ conclude that our model egress remaskably well with the CERN 

P solution. I t d i f f e r s from the ACE solution* and the CERN « 0 

solutions? largely i n the phase of the f l i p amplitude. These l a s t 

three solutions do not seem very compatible raith simple Regge ideas. 
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2.6 Conclusions 

( i ) Our aimpIs model with non-factorising residues provides a 

satisfactory F i t to K * p e l a s t i c scattering data<> Our 

determination of % ( t ) supports t channel h e l i c i t y conservation 

naer the forward d l r e c t l o n 0 

( i i ) Our model agrees with the results of Heyot and Navelet^ 2 3^ f o r 

the Imaginary part of the K « p non~flip amplitude at 

P L a 10 GeV/c, but not f o r the real part of that amplitude,. 

This has been traced to an erroneous assumption i n re f . ( 2 8 ) . 

( i i i ) The 'Regge Term' i n ref.(28) i s i n fact j u s t the vector meson 

contribution. I t does not agree with the Regge term i n our 

model,which also contains the tensor mesons. 

( i v ) Our model agrees with a l l available phase s h i f t solutions f o r 

the K * p non-flip amplitude at * 2.5 GeV/do For the f l i p 

amplitude our model agrees with CERN p , but not with ACE or 

CERN « 0 §f o The la s t three solutions do not seem easily 

compatible with Regge theory, and i n particular appear to require 

the pomeron to have a large real component. 

Doubled tr a j e c t o r y models make the need f o r cuts lass evident. 

They s a t i s f a c t o r i l y explain such features as the crosaovar zero 

and dips i n cross sections i n a way which allows these features 

quite naturally to be independent of energy » a phenomenon which 

cut models need to work hard to achieve. 

That cuts must be present i n Regge amplitudes, i f only to shield 

wrong«signatuse fixed poles, i s nevertheless now widely accepted. 

The v a l i d i t y of currently available cut models, such as the 

absorption model, i s , however, open to doubt, and the predictions 

of these models, p a r t i c u l a r l y f o r the t-dependence of amplitudes, 

are somewhat suspect. 
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The one place where the e f f e c t of cute ought to be unambiguous 

is in the energy dependence of amplitudes 0 The energy 

dependence produced by a cut i s quits d i f f e r e n t from that 

produced by a pole, p a r t i c u l a r l y i f the cut discontinuity i s not 

strongly peaked. 

The best place to study energy dependences i s where these are 

good data over a large range of energy. With the new data from 

Serpukov and ISR, pp e l a s t i c scattering now s a t i s f i e s t h i s 

c r i t e r i o n , and i t i s the subject of the next chapter. 
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Figures f o r Chapter 2 

2.1 Comparison of our f i t a i t h K + p and K ° p d i f f e r e n t i a l cross 

sections at = 4,6 and 3.46 GeV/c respectively. 

2.2 Comparison of our f i t with K * p amd K => p polarisations at 

3.75 and 2.08 GeV/c respectively. 

2.3 Comparison of our f i t with K * p and K = p t o t a l cross sections 

from P̂  • 2 to 16 GaV/c. 

2.4 The parameter X ( s 0 t ) 9 d e f i n e d i n the t e x t p at P. a 10 GeV/e. 

The s o l i d l i n e corresponds to our f i t p and the broken l i n e to 

t channel h e l i c i t y conservation. 

2.5 Comparison of the residues i n our model with those of ref.(24 ) . 

Continuous lines and dots are vector meson residues^ broken 

lines end c i r c l e s are tensor meson residues. 

2.6 Comparison of the K - p s-channel non f l i p amplitude i n our model 

with the amplitude analysis of ref . ( 2 8 ) . The s o l i d lines are our 

model, broken lines and dots from r e f . ( 2 8 ) . Curvss 1 and 2 are 

the meson contributions to the Imaginary part of the amplitude. 

2.7 Comparison of f i t s to K * p polarisation at P̂  * 2.5 GeV/c. The 

curves shown are out model (labelled R) D the ACE phase s h i f t 

solution (labelled A) and the three CERN phase s h i f t solutions 

(labelled «, jg „ g" ). 

2.8 Comparison of the s channel h e l i c i t y amplitudes f o r K + p from our 

model with the ACE (labelled A) and CERN p> (labelled j£ ) phase 

s h i f t solutions. 

2.9 Comparison of the predictions f o r the parameter # _ ( s 9 t ) defined i n 

the text of our model with the ACE and CERN ̂  phase s h i f t solutions. 

2.10 Comparison of the predictions f o r the asymmetry parameter A of our 

model with the ACE and CERN phase s h i f t solutions. 
fief 

2.11 Ths Simple-pole f i t s to & ^ s defined i n the te x t * of re f . ( 6 0 ) . 

2.12 The flow-diagram f o r the CERN minimisation program MINUIT. 
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CHAPTER 3. J PLANE ANALYSIS OF PP ELASTIC SCATTERING 

INTRODUCTION 

The evidence f o r the existence of Regge Cuts i s at best indirectp 

end comprises mainly the f a i l u r e of the simple Regge Pole model to 

explain various features of the data? as discussod i n section (1.2). 

Other explanations have? however? been put forward. (See, f o r example,, 

section (1.2)j, Chapter 2? and r e f . ( 6 7 ) ) . I t i s possible that cute 

have a much smaller e f f e c t than i s usually supposed* i n which case 

t h e i r detection w i l l be rather d i f f i c u l t . 

Another d i f f i c u l t y with Regge Cuts ia that we r e a l l y do not have 

much idea how to calculate them. The absorption prescriptions although 

precise? has a somewhat dubious derivation?and i n any case does not 

provide quantitative f i t s to the data unless the cut amplitudes are 

mul t i p l i e d by an a r b i t r a r y parameter. Such models then have great 

freedom and l i t t l e predictive power? which i s an e n t i r e l y unsatisfactory 
(•68) 

s i t u a t i o n . A remark? made by Lovelace about the Michigan cut 

model? is worth quoting. 

"The whole history of Physics t e l l s as that a theory with few 

parameters which works only i n simple situations? i s more l i k e l y to be 

basically correct than a theory with many parameters which works only 

in complicated situations." 

We are therefore led to search f o r cuts i n situations where the theory 

i s more substantial,, and the data less ambiguous. Here we may take a 

lesson from Regge Pols theory? whose chief prediction i s the energy 

dependence of cross sections? which on the whole ie well supported by 

the data? whereas the t-dependence? which i s largely a r b i t r a r y i n the 

theory? has caused most of the problems. The s i t u a t i o n i s much the same 

fo r Regge Cuts. We do not know t h e i r prediction f o r t-dependence with 

any r e l i a b i l i t y ? but? since the positions of cut branch points are 

known? we have much more information about t h e i r structure i n energy. 
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I t therefore makes sense to look f o r cuts i n the energy dependence 

of cross sections. Of course* poles w i l l a t i l l be presents end to 

unravel the cuts from the poles a considerable amount of good data, 

over a large energy range, i s necessary. Although such an ideal s i t u a t i o n 

i s f a r from being realised, since the data from Serpukov, ISR and NAL 

have become available 0 the procedure i s c e r t a i n l y worth t r y i n g f o r 

e l a s t i c pp scattering. This process has the additional advantage of 

being exotic, so that the contribution of the Regge Poles, especially 

to the t o t a l cross section, is expected from Exchange Degeneracy to.be 

small. This means that cuts should be p a r t i c u l a r l y eaey to detect. 

The main dieadvantage of proton-proton scattering i s that there 

are a large number of independent h e l i c i t y amplitudes - f i v e i n the 

el a s t i c process. Good data are available only on t o t a l and d i f f e r e n t i a l 

cross sections, so that i t i s not possible to determine a l l the 

amplitudes. This i s not a serious drawback as f a r as t h i s chapter i s 

concerned, however, because poles and branch polnte i n the j~plane have 

the same position i n a l l amplitudes, and we are not concerned with 

t-dependencee. (We s h a l l ehow i n the next chapter th a t , at energies 

where the pomeron can be considered to dominate, we can reduce the 

amplitudes to a single real number, although f o r t h i s procedure some 

approximations must be made). 

In section (3.1) we define the amplitudes and formalism that w i l l 

be used. Sections (3.2, 3.3) deal with our analysis of the t o t a l and 

el a s t i c d i f f e r e n t i a l cross sections respectively, and i n section (3.4) 

the results are discussed and conclusions drawn. 

http://to.be
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3.1 Amplitudes and Formalism 

There are f i v e independent h e l i c i t y amplitudes i n e l a s t i c pp 

scattering. Ute take these to be T « T B 1 p T „ and 

T ( i n the 8 channel). The normalisation i s chosen so that 

* • w: I "V- H 2 ( 3- 1 ) 

and CTT * — ~ ^ Im [ t ^ U . O ) ] (3.2) 

where P^Kjf are h e l i c i t y indices. 

The: contribution of a Regge traje c t o r y Ot to one of these 

amplitudes may be written as (see e.q. (1.1)). 

- 7" ( t ) s " ( t ) ( 3 - 3 ) 

and we write the contribution of a cut i n the form of the int e g r a l of 

i t s discontinuity 

CUT iT^CUT^^^ 
V * * ( 8 p t ) = H J A ( J . t ) « J (3.4) 

(The*functions fl and p . _ contain kinematic factors, which 

are not important i n t h i s discussion,, as the s-dependence, i n which we 

are interested, i s displayed e x p l i c i t l y ) . 

The amplitude w i l l i n general be a sum of terms l i k e s.qs.(3.3, 

3.4). We combine both these forms by w r i t i n g 

f^mex 
T

r » A * <••*> s dj sJ V ^ k ( f ( j f t ) (3.5) 
-00 
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In t h i s representation? poles appear as S-functions i n ^ ^ a ^ ? 

and cuts as continuous functions with ©-functions at the branch 

points? i.e. 

^ P 0 L E ( i t ) I" . ( t ) S ( J -oc(t)) (3.6) 

(3.7) 

Substituting s.q. (3.5) int o e.qs.(3.1 0 3.2) we obtain 

do; 
dt 

0* max 

— CO 

s 2 J $(3„t) (3.8) 

1 
s 

« max 
dj eJ p'(J) (3.9) 

where 

tf(J.t) 
4TC £ ™ j 

max=J 
dl ^ v X o . ( j • l,t)U / w vx, r(j - l.t) (3.10) 

W J -(* ) 
N max-j' 

and pa) « I r a C c ^ T v <jf°>] (3.11) 

and where we have used (from e.g.A.9)) 

1 
2 (3.12) 

3-0*9 
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Since a par t i c u l a r t r a j e c t o r y , such as the J9 , contributes i n 

the same way to the J»dependencs of a l l the amplitudes, the j dspendence 

of ff(jpt) and |$ ( j ) i 3 expected to be rather simple, whereas the 

t-dependence i s expected to be too complicated to y i e l d much information. 

I t might be thought possible to invert e.qs. (3.8, 3.9) to obtain 

$ ( j o t ) , j£(j) direc t from the data. Unfortunately t h i s i s not ao e 

f o r the following reason. I f we put x • 21og(s) and k » ec - i i n , 
max « 

for exampls, e.q. (3.8) we obtain 
08 

f t n e (W^* I dft e" k x }f (2« m e x-k 0t) (3,13) 
'o 

ThB in t e g r a l w i l l be immediately recognised as the Laplace transform, 

of which the inverse i s , of course, well known. We obtain 

n c + i«» 

2 I t i 
J " ( j * 1)X dO* / X . N / - SA\' 
d x 8 dt * e 9 *' (3»1*) 
C •= i*» 

and since neither the d i f f e r e n t i a l nor the t o t a l cross section i s 

defined f o r complex l o g ( s ) , t h i s expression i s of no use i n determining 

i f ' , and less direct methods need to be employed. 

The method we s h a l l use i n the next two sections i s to parametrise 

# and j& i n various ways, end determine the parameters by f i t t i n g 

e.qs. (3.B) and (3.9) to the data. We s h a l l always use forme f o r i f and 

{£ f o r which the integrals i n e.qs. (3.8, 3.9) can be performed 

a n a l y t i c a l l y , since t h i s considerably s i m p l i f i e s the procedure. 
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3.2 The Total Cross Section 

Data 

Table (3.1) l i s t s the sources and ranges of data used. The data 

are plotted i n f i g . ( 3 . 1 ) , The c i r c l e s are from ref. (36),, black dots 

from r e f . ( 3 7 ) p and triangles from ref ° (38) 0 I t may be seen that the 

Serpukov data of ref.(37) agree s e l l with the older data of ref.(36) 
2 

i n the region 30 < s < 51 Gev , where there Is considerable overlap* 

The data from I5R are somewhat isolated; and have such large errors 

that they cannot be expected to y i e l d much information. 

Since t h i s work was finished^ new data have become available from 

ISR^ 4 6^ and NAL^ 7\ The present experimental e i t u a t i o n at Serpukov 

energies and above i s shown i n fig.(3.8)» and i t may be eeen that the 

very high energy data are by no means coneistento These data may 

affect our conclusions only f o r the pomeron» since by that energy the 

meson contributions have become ne g l i g i b l e , but more l i k e l y they;require 

a reappraisal when the very high energy data are known with more 

certainty. The methods are* i n any case, s t i l l worthwhile. 

Table 3.1 

The PP Total Cross Section 

S 2 
WIN (GeV) MAX 

Number of 
points Reference 

16.54 5Q.58 11 Foley (36) 

29.96 114.4 10 Oenieov 
(Serpukov) 

(37) 

949.0 2808 3 B a r b i e l l i n i 
(I.S.R.) 

(38) 
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Table 3.2 

The PP Elastic D i f f e r e n t i a l Cross Section 

WIN (GsV ) MAX 
Number of 

points 
Normalised 

? 
Reference 

14.64 48.01 90 Yea Folay (41) 

28.47 46.80 35 Yes Allaby (42) 

102.0 131.2 -•• No Beznogikh (43) 
(Serpukov) 

462.0 2808 No Holder (44) 
(I.S.R.) 

Models 

In e l a s t i c pp scattering the allowed exchanges are 

pp a P * f * A 2 = ^ - w (3.15) 

Uie have already discuesed the idea that the mason tr a j e c t o r i e e are 

exchange degenerate, and under t h i s assumption only two t r a j e c t o r i e s 

should contribute and i t i s l o g i c a l f i r s t to consider the form 

<rT(s) * s 
1 ( As«1 * Bs«2 ) (3.16) 

We f i t t e d t h i s form to the data, and found the b e s t - f i t parameters 

to be 

1.0 - 0.05 

e 0.0 * 0.1 (3.17) 

These results are at f i r s t somewhat surprising. Although the f i r s t 

term i s naturally associated with the pomeron, one would expect 

«2 » 0.5 to correspond to the mesons. 
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Of course^ exchange degeneracy p r e d i c t s t h a t the mesons should 

not c o n t r i b u t e t o the pp t o t a l cross section,, since the pp channel i s 

e x o t i c 0 so perhaps t h i s r e s u l t i s not so s u r p r i s i n g . To v e r i f y i t we 

t r i e d a f i t o f the form 

< f T ( s ) = J- C A s * B s°° 5 * C ) (3.18) 

The best f i t had the f o l l o w i n g parameter v a l u e s e and a mean 
2 

% of 0.25 per p o i n t . 
A « 37.9 - 0.3 mb 

B = 2.2 - 4.4 mb (3.19) 

C « 31.3 * 13.4 mb 

This r e s u l t confirms e.q. (3.17), i n the sense t h a t the parameter 

8 e which represents the meson coupling,, i s e n t i r e l y c o n s i s t e n t w i t h zero. 

The f a c t t h a t the pp t o t a l cross s e c t i o n i s not e n t i r e l y f l a t up 

to Serpukov energies has„ i n the past* u s u a l l y been i n t e r p r e t e d as 

evidence of a small amount of exchange degeneracy breaking. An example 
(35) 

of t h i s i s the f i t o f Barger e t a l a aho parametrised both the pp and 

pp t o t a l cross sections as 

O T 0 T ( s ) = A * B a " 0 , 6 (3.20) 

and found f o r pp 
A = 37.3 mb 

B = 15.6 mb (3.21) 

These f i t s are compared i n f i g . ( 3 . 1 ) . Our f i t * o f e.qs. (3.18, 

3.19) i s l a b e l l e d I , and t h a t of Barger e t a l i s l a b e l l e d I I . I t may be 

seen t h a t curve I i s d i s t i n c t l y s u p e r i o r i n i t s a b i l i t y t o f i t both the 

low energy data and the high=energy end o f the Serpukov data. These 

r e s u l t s i n d i c a t e t h a t the data p r e f e r a s i n g u l a r i t y near j s 0 t o one 

nsar j = 
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We are l e f t w i t h the problem of i d e n t i f i c a t i o n of the j s 0 

s i n g u l a r i t y . The obvious candidates the p i o n 0 cannot c o n t r i b u t e 

because i t has the wrong aignature and parity.. 

To o b t a i n more i n f o r m a t i o n we t r i e d a continuum f i t p using the 

form of e.q. (3.9) w i t h ec = 1 p l.So ^ max 

C f T ( 9 ) n 1 I d J 8 J ^ ( j ) (3.22) 

We parametrised j& as a polynomial i n ( j - 1 ) i 

n 

£ ( j ) = JT^ b k ( j = 1 ) k (3.23) 

k = 0 

This parametrisation has the advantage that» when the i n t e g r a l has 

been performed, the expression f o r &j(s) i s l i n e a r i n the b's. I n 

f a c t 
n 

<r j M . £ \ <->k « hsr. ] k * 1 <"*> 
k = 0 

and the b's can then be determined by a l i n e a r l e a s t squares f i t . To 

maintain the same number of parameters as f o r the simple pole f i t * we 

chose n = 3. The best f i t i s shown as curve I I I i n f i g . (3.1) and the 

best f i t ( j ) i s shown i n f i g . ( 3 . 2 ) . 

As expected j& ( j ) has a sharp peak a t J * 1* which may be 

i n t e r p r e t e d as an attempt t o simulate the appearance o f a S = f u n c t i o n . 

There i s , however* a broader peak i n the region -1 ̂  J 4 0» which 

reproduces the same s t r u c t u r e as the S - f u n c t i o n a t j a 0 i n the 

previous f i t . 
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We see from f i g . (3.1) t h a t curve I I I provides as good a f i t t o 

the low=anergy and Serpukov data as curve I 0 and t h a t i t i s again 

supe r i o r t o curve I I i n i t s a b i l i t y to f i t the high=energy Serpukov 
2 

p o i n t s , i n the region of s « 100 GeV . The f a l l i n curve I I I a t 

ISR energies i s caused by the f a c t t h a t | J ( j ) i s n e c e s s a r i l y f i n i t e 

a t j = 1 9 whereas the data r e q u i r e a § = f u n c t i o n . 

I t i s d i f f i c u l t t o estimate whether the width of the peak a t 

=1 $ j 4> 0 i n | J ( J ) i s required by the d a t a c or merely a consequence 

of the polynomial parametriaation. The l a t t e r e x planation i s probably 

more H k e l y c because we have already shown t h a t the data can be f i t t e d 

w i t h a S = f u n c t i o n p but curve I I I shows t h a t t h i s i s by no means 

necessary. 



3.3 The D i f f e r e n t i a l Cross Section 

Data 

The data used aae summarised i n t a b l e ( 3 , 2 ) . The 'conventional' 

data,, from r e f s . (41 p 42) were i n the form of points i n the range 

0 > t > -0.6 GeV p those from r e f . (43) were slope parameters f o r 
2 

data i n the range 0 > t > - 0.13 GeV „ and those from r e f . (44) were 
2 

8lope parameters i n the ranges 0 > t > - 0.15 GeV and -0.15 > t > -0.5 

There i s evidence f o r a systematic e r r o r i n the data from r e f . ( 4 3 ) . 

w i t h the possible systematic e r r o r o f 0.3 GeV quoted i n t h a t paper. 

Accordingly we adjusted the slope parameters from r e f . ( 2 4 ) t o b r i n g 

them i n t o l i n e w i t h the data from other sources« 

I n t e r p o l a t i o n and n o r m a l i s a t i o n of data 

Data from r e f s . 41 and 42 were i n t e r p o l a t e d i n t t o o b t a i n values 
2 

from t * -D.05 at i n t e r v a l s of 0.05 t o t » = 0.4 CeV . 

I n the region Q > t > - 0.4 log do/dt i s nearly l i n e a r i n t , but 

i t has been shown (45) t h a t even a t q u i t e low energies ( a t l e a s t down t o 
2 

the lowest Serpukov energies,> i . e . s •» 30 GeV ) l o g do/dt e x h i b i t s a 
2 

change of slope near t = -0.15 GeV . Consequently, we simultaneously 

smoothed and i n t e r p o l a t e d the data by f i t t i n g log do/dt w i t h cubic 

polynomials i n t p i . e . we wrote 

GeV 

In f i g . (3.9) the slope parameter b i s p l o t t e d s and i t may be seen t h a t 

the data o f r e f . (43) are too l a r g e by 0.4 GeV . This i s c o n s i s t e n t 
-2 

3 
log dd 

d t a. t (3.25) 

k s 0 

and determined the a's by l i n e a r l e a s t squares. We used a l l the data 

f o r l t i < 0.4, plus t h a t w i t h the next l a r g e s t value of t . 
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For data from r e f . ( 4 l ) a s l i g h t v a r i a t i o n of t h i s procedure was 

adopted. There are two sets o f measurements by the same group a t the 

same energies 0 but performed a t d i f f e r e n t times^ so t h a t t h e i r 

normalisations are s l i g h t l y d i f f e r e n t . One s e t deals w i t h small t 

( H I ^ a n c l t n a otheE w i t h l a r g e r t (although there i s some 

o v e r l a p ) . I n order t o make best use of these data, we used both seta 

simultaneously; a l l o w i n g a r e l a t i v e n o r m a l i s a t i o n f a c t o r . We f i t t e d 

the small t data w i t h 

3 

k a 0 

and the large t data w i t h 

3 

^ f a N * H %tk (3-27) 

k • 0 

using the same a's. The parameter N was thus determined t o give the 

smoothest i n t e r p o l a t i o n between the small and large t r e s u l t s . I n some 

cases there was overlap between the two experiments, and the method 

could be te s t e d by examination. I n such caees i t was found t o be 

s a t i s f a c t o r y . N was never as l a r g e as the published r e l a t i v e 

n o r m a l i s a t i o n e r r o r . 

Date from r e f s . (43, 44) were i n t e r p o l a t e d by means o f the slope • 

parameters; and normalised by the o p t i c a l theorem t o the t o t a l cross 

s e c t i o n f i t I of f i g . ( 3 . 1 ) . Several considerations arose from t h i s 

procedure. 
The behaviour o f a h e l i c i t y amplitude near the p h y s i c a l region 

(39) 
boundary t * 0 i s x ' 

( v T " 3 ) f * " ^ (3.28) 
) 

where « = ^ - d* and |S = ^ - v • 

T^wAo" (s»t) 
t " H . o 
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This (roans t h a t 0 o f the f i v e independent araplitudes p three = 

T o T „ and T - are f i n i t e a t t * 0. Only the 

completely e l a s t i c amplitudes = T D T ^ •= however s c o n t r i b u t e 

to the o p t i c a l theorem^ ioe . 

and 

(T ( s ) s « J _ _ I m [ T ( s p 0 ) o T ( s p 0 ) ) 1 (3.30) 
T **** J 

Consaquanfcly 9 i f we wish t o use the t o t a l cross s e c t i o n f o r 

n o r m a l i s a t i o n o f d i f f e r e n t i a l cross s e c t i o n data* as are going t o have 

t o neglect not only ReT and ReT ^ D but also ReT ^ and ImT B 

compared w i t h ImT and ImT , . 

I t can be shown by d i s p e r s i o n r e l a t i o n c a l c u l a t i o n s ^ 4 0 ^ , t h a t t h i s 
2 

procedure i s suspect f o r s ^ 70 Gev „ so we d i d not attempt t o 
2 

normalise any data f o r s < 100 GeV , This meant t h a t we d i d not use 

a considerable amount o f the data from Serpukov 0 but there was no way we 

could use these data without the danger o f i n t r o d u c i n g a spurious d i p 
2 

i n t o the d i f f e r e n t i a l cross s e c t i o n a t s % 60 Gel/ . 
2 2 Serptikov data wars used only at t • >0.05 GeV and t a 0.1 GeV „ 

2 

since the experiments d i d not extend beyond t = -0.13 Gel/ « The e x t e n t 

o f the ISR data v a r i e d w i t h energy D being at the l e a s t out t o 

t = -0.25 GeV o and a t most t o the l a r g e s t | t | considered. No 

s x t r a p o l a t e d data were used* s i n c e D even near t a 0 there i s no way of 

doing t h i s c o n s i s t e n t l y . 
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F i t t i n g Procadure 

we worked at f i x e d t , f i t t i n g the i n t e r p o l a t e d data w i t h f u n c t i o n s 

continuous i n s. This meant t h a t at each t we obtained parameter 

values, and were thus able t o determine our parameters as f u n c t i o n s of 

t . The remarkable c o n t i n u i t y of these parameters (see, f o r example, 

f i g s . (3.4, 3.5)) i s encouraging evidence of the consistency of our 

i n t e r p o l a t i o n procedures. 

Because our i n t e r p o l a t i o n was i n t s and our f i t s were i n a, there 

was necessarily a large s c a t t e r i n the data p o i n t s (see f i g s . (3.3, 3 . 6 ) ) , 

which was e s p e c i a l l y troublesome a t small t 9 where there were fewest 

p o i n t s , we were t h e r e f o r e f o r c e d t o keep the numbers o f our parameters 

t o a minimum so as t o reproduce the broad f e a t u r e s of the data, w i t h o u t 

f i t t i n g the s t a t i s t i c a l f l u c t u a t i o n s . Consequently tae r e j e c t e d 
2 

parametrisatione which f i t t e d so w e l l t h a t the mean % was very much 

less than u n i t y . 

Models 

( i ) Pole Wodels 

In the same way as f o r the t o t a l cross s e c t i o n , the n a t u r a l 

model t o t r y f i r s t i s a sum of poles. For each amplitude we used a 

two-pole model 

«.(t) c o ( t ) V** (s,t) * >tfXo" (t) * br*" ( t ) 9 ( 3 , 3 1 ) 

bjtvX<r a r e complex f u n c t i o n s of t c o n t a i n i n g 

kinematic f a c t o r s as w e l l as the Haqge residues and signature f a c t o r s . 
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This g i v s s p f o r the d i f f e r e n t i a l cross s e c t i o n (by e.q. (3 . 1 ) ) 

& - 1 - f A dt g 2 [ A 1 1 
2«,(t) e?1(t)4«.(t) 2« 

( t ) s 1 * A 1 2 ( t ) s 1 1 A 2 2 ( t ) s ' " J (3.32) 

where,, using e.q. (3.12) 

A l 1 ( t ) 

A 2 2 ( t ) 

J a ^ . w ( t ) 

and A ( t ) 

fiAVkff 

( t ) 

(3.33) 

(3.34) 

(3,35) 

I f & , j ( t ) i s the leading t r a j e c t o r y ? a t high enough energies the 

t h i r d term i n e.q. (3.32) w i l l become n e g l i g i b l e p so t h a t only a two-

term f i t to the d i f f e r e n t i a l cross s e c t i o n w i l l be app r o p r i a t e . 

Accordingly we t r i e d various two and three term f i t s 8 and found i n a l l 

cases t h a t the leading t r a j e c t o r y ^ ( t ) was w e l l f i t t e d by a s t r a i g h t 

l i n e of i n t e r c e p t 1.0 fend slope 0.15p and we maintained t h i s form i n 

subsequent f i t s . 

Using the i n f o r m a t i o n gained from the t o t a l cross section,, we were 

l e d t o t r y a f i t w i t h e.q. (3„32) c where as mentioned above 

( t ) s 1.0 • 0.15t (3.36) 

and we used the usual meson t r a j e c t o r y 

« 2(t) = 0.5 + 0.9t (3.37) 

The f i r s t term of e.q. (3.32) then corresponds t o the (pomeron) 

term,, the second t o pomeron x meson interferencBp and the t h i r d t o the 
2 

(meson) term. I f the j • 0 s i n g u l a r i t y discovered i n the t o t a l cross 

s e c t i o n i s also included^ then i t s i n t e r f e r e n c e w i t h the pomeron w i l l 

c o n t r i b u t e t o the t h i r d t e r m s and i t w i l l also generate a term l i k e 
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g " *s by i n t e r f e r e n c e w i t h the mesons, and a term l i k e s by i t s e l f , 

both of which should be n e g l i g i b l e . 
2 

The r e s u l t i n g best f i t had a mean % of 1.5 per p o i n t 0 a n d i s 

compared to the data i n f i g . ( 3 , 3 ) . The parameters are p l o t t e d as 

fun c t i o n s of t i n f i g . (3„4). The f i t i s q u i t e s a t i s f a c t o r y 0 but as 

we s h a l l show, there are c e r t a i n c o n s t r a i n t s which the parameters ought 

to obey, but which are v i o l a t e d f o r some values of t . 

The f i r s t two c o n s t r a i n t s which may be obtained from e.qs. (3.32 -

3.35) are t r i v i a l 

A ^ ( t ) * 0 (3o38) 

A 2 2 ( t ) 0 (3.39) 

and i t may be seen from f i g . ( 3 . 4 a ) t h a t they are e a s i l y s a t i s f i e d . 

I t i s pos s i b l e , however* t o deduce a t h i r d , leas t r i v i a l c o n s t r a i n t as 

f o l l o w s . 

We w r i t e f o r b r e v i t y 

H s (/»»V,A,tf') (3.40) 

and we define the phases of the f u n c t i o n s a ^ ^ ^ o b ^ ^ - i n e.qs. (3.33, 

3.34) by 

a H ( t ) a | a H ( t ) i e i 0 » ( t )
 ( 3 „ 4 1 ) 

b H ( t ) a l b H ( t ) J e n ( 3 c 4 2 ) 

With these d e f i n i t i o n s we ob t a i n 

A 1 2 ( t > " h L ,aH< » V C O S ( ® H " V 3 ' 4 3 > 
U 
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from which we may deduce that 

A12 " 4 A11A22 * 

'—2 O a H J | b H H V n V l C 0 3 (®l 

hence, using trigonometry 

ATS 
A12 -^11 A 2 2 * — 2 Zf -H l l bHH V l I V I ~ I 8 / I V i ' J 

HnH 

since the r i g h t hand side o f e.q. (3.45) i s symmetric i n H and H' we can 

interchange them with o u t a l t e r i n g the r e s u l t , i . e . 

12 4 A11A22 ^ ^ J J v H V I l aHU bHl " I V l 2 ! bHl 2 J 

H,H' 

Averaging e.qs. (3.45) and (3.46) then gives 

A12 " "11*22 4 " 7 2 Y 0 a H HbH.'l " K ' H b

H 8 ) Bit 4 = J 
H,H 

$0 

(3.46) 

(3,47) 

s b A 4 4 A ^ A 0 0 ^ 12 11 22 (3.40) 

which i s the required c o n s t r a i n t . 

The e q u a l i t y i n e.q. (3.48) holds only under the f o l l o w i n g u n l i k e l y 

c o n d i t i o n s 

U) 0 H
 3 # H f o r a l l H» This i s i n d i r e c t c o n f l i c t w i t h Regge 

Theory? and the i n t e r p r e t a t i o n o f the terms as a pomaron ana a meson 

( i i ) 
V 

bH f o r a l l H, H 
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Tha j = 0 s i n g u l a r i t y c o n t r i b u t e s t o the t o t a l cross s e c t i o n 

w i t h the same si g n as the pomeron s so t h a t i t s imaginary p a r t i s 

p o s i t i v e . Since the pomeron c o n t r i b u t i o n ought t o be nearly purely 

imaginaryj, the j = 0 s i n g u l a r i t y should have a p o s i t i v e i n t e r f e r e n c e 

w i t h the pomeron p r e i n f o r c i n g the i n e q u a l i t y i n e.q. (3.40). 

In f i g . (3.5) we have p l o t t e d the r a t i o / 2 ( A
1 1

A 2 2 ^ » w n i c n 

should be less than u n i t y by e.q. (3.48). I t may be seen t h a t the 
2 

c o n s t r a i n t i s v i o l a t e d a t t = - 0.2 GeV „ and only j u s t s a t i s f i e d f o r 

- 0.15 ^ t ^ -0.3 GeV2. 

To i n v e s t i g a t e the s i g n i f i c a n c e of t h i s r e s u l t we t r i e d t o f i t 

the data w i t h the c o n s t r a i n t (3.48) s a t i s f i e d . There were seve r a l ways 

we might have attempted t h i s , but since the tendency t o break i t seemed 
2 

to come from tha d i p i n A 2 2 ( t ) near t a -0,2 GeV (see f i g . 3.4a)) we 

f i t t e d the data w i t h A ^ t ) f i x e d as the best l i n e a r f i t t o log A 2 2 

through the f i r s t two and l a s t two pointSjShown as the s o l i d l i n e i n 

f i g . (3.4a), The equation o f t h i s l i n e i s 

A 2 2 ( t ) = 729 exp (3,9 t ) (3.49) 

Ule found t h a t A 1 2 ( t ) was now much smaller,, and i t i s shown as black 

dots i n f i g . ( 3 . 5 ) . The f i t 9 h o w e v e r p was considerably worse p e s p e c i a l l y 

f o r the data at lower energies. The two f i t s are compared at 
2 

t = -0.2 GeV i n f i g . ( 3 . 6 ) s and i t may be seen t h a t improved data i n 

the low energy r e g i o n , or any data a t a l l i n the Serpukov region,, would 

d i s t i n g u i s h between them. 

This discussion i l l u s t r a t e s the importance o f accurate data a t 

lower energies i n making f u l l use o f the new very high-energy data. I t 

i s an unfortunate r e f l e c t i o n of the present system of p r i o r i t i e s t h a t the 

most u s e f u l experiments at energies below Ssrpukov were performed i n 

1963 and 1 9 6 5 ( 4 1 ^ . 
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( i i ) Continuum Models 

We performed a f i t w i t h the form of e.q. (3.8) using 

o< - 1« i . e . max 
1 

$ = \ d j & ( J . t ) s 2 J = 2 (3.50) dt 
« - oo 

In the same way as f o r the t o t a l cross s e c t i o n , we parametrised 

#(j»t) as a polynomial i n ( j - 1 ) i 
n 

yu.t) = j n c k ( t ) ( J - 1 ) k ( 3 o 5 1 ) 

k = 0 

which gave i n an analagous way t o e.q. (3.24) 

k = 0 

and wa f i t t e d t h i s form t o the data as before. Taking a cubic (n = 3) 
2 

form f o r 2f u>e obtained a f i t whose mean % was 1.1 per p o i n t . The 

best f i t i f ( j p t ) i s shown i n f i g . (3.7) a t t = - 0.1 and t = - 0.25 GeV 

I t may be seen t h a t there i s a d i s t i n c t tendency t o peak at j = 1 and 

j % 0.5, i n agreement w i t h the pole models p r e v i o u s l y diecussed. 

Uie also t r i e d a f i t w i t h a q u a r t i c form f o r . Although, as one 

might expect w i t h f i v e parameters at each value of fc, the parameters 

were somewhat poorly determined, the peak at j a 1 d i d show a d i s t i n c t 

tendency t o move out w i t h t , and in,: f a c t the p o s i t i o n of the peak 

c l o s e l y obeyed the r e l a t i o n 
J'PEAK ( t ) = 1 * °' 2 t ( 3 , 5 3 ) 

Of course, the cubic # could not e x h i b i t t h i s behaviour, because 

a cubic i s only allowed two peaks i f onB o f them i s at the extreme end 

of the i n t e g r a t i o n r e g i o n . 

2 
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We were again faced w i t h the question of whether the width of the 

peaks i n $(j„t) was a consequence of the data or o f the parametrisation. 

We t h e r e f o r e t r i e d a f i t w i t h a sum of terms of the gaussian form 

- ( ( j - j ^ t ) ) / ^ ) 2 

J f \ ( j p t ) = e (3.54) 

where 
m 

& < J . t ) - £ y ^ J p t ) (3.55) 

i = 1 

This form has the property t h a t 

5 i ( j p t ) — 0 - C ^ t ) S ( j - j i ( t ) ) . (3.56) 

l 
With t h i s form, the expression f o r the d i f f e r e n t i a l cross s e c t i o n 

i s somewhat more complicated 
m 

H f t 1 _ ( A , log s ) 2 « 2 ( . j . ( t ) - D l o g s / j . ( t ) - 1 

i = 1 
(3.57) 

This has more (3) parameters per term than the previous models used 0 

so we t r i e d a two-term f i t w i t h f i x e d equal t o zero f o r a l l t . This 

gave 5 paramBtersi » j^n c^s ^ 2 a** e a c ^ v a l U B °f t p and i n each 

case we found ^ - 0 and the same s o l u t i o n as f o r previous two-pole 

f i t s . 



3.4 Conclusions 

( i ) The curvature of the pp t o t a l cross s e c t i o n i s b e t t e r f i t t e d 

by a pole at j * 0 than a t j = \> A broader peak i n tha region 

-1 -4 j -\£ 0 also provides a good f i t . This i n d i c a t e s t h a t exchange 

degeneracy may not be broken i n pp s c a t t e r i n g i n the forward d i r e c t i o n ^ 

but l o w e r - l y i n g s i n g u l a r i t i e s may be important. 

( i i ) Simple Regge poles cannot e x p l a i n the d i f f e r e n t i a l cross 

s e c t i o n data at the l a r g e r values of t . I n c l u s i o n of the l o w e r ~ l y i n g 

s i n g u l a r i t i e s discussed above only make matters worse. 

( i i i ) We found no evidence t h a t the d i f f e r e n t i a l cross s e c t i o n data 

r e q u i r e a continuous j - plans s t r u c t u r e , i . e . the s i n g u l a r i t i e s look 

more l i k e poles than c u t s . 

( i v ) Improved accuracy of data a t presently-accessible energies 

would make much more conclusive statements p o s s i b l e . 

I n the next chapter we consider the j - plane s t r u c t u r e to be 

expected i n pp s c a t t e r i n g ^ and compare i t w i t h the r e s u l t s o f t h i s 

a n a l y s i s . 
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Figures f o r Chapter 3 

3.1 The pp t o t a l cross s e c t i o n . Curve I i s the three-parameter f i t 

of e.q. (3.18), curve I I i s the f i t o f Barger e t a l and curve I I I 

i s the continuum f i t of e.qs. (3.22, 3.23). 

3.2 The f u n c t i o n ^ ( j ) f o r the t o t a l cross s e c t i o n f i t of e.qs. (3.22, 

3.23). 

3.3 The three-term f i t o f e.q. (3.32) t o the pp d i f f e r e n t i a l cross 

s e c t i o n . 

3.4 The parameters of the three-term f i t to the d i f f e r e n t i a l cross 

s e c t i o n . 

(a) The parameters A^ ( t ) and A22(t)o 

(b) The parameter ^ ^ ( t ) * 

3.5 The r a t i o A 1 2 / 2 ( A ^ A ^ ) ^ f o r the three-term f i t of e.q. (3.32) 

and f o r the s i m i l a r f i t when A ^ i s constrained as described i n the 

t e x t . 

3.6 A comparison of the unconstrained and constrained f i t t o the 
2 

d i f f e r e n t i a l cross s e c t i o n a t t = - 0.2 GeU . 
3.7 The form of & (j»t) f o r the d i f f e r e n t i a l cross s e c t i o n f i t of 

2 2 e.qs. (3.50, 3.51) at t = -0.1 GeV and t » -0.25 GeU . 

3.8 The pp and pp t o t a l cross sections at Serpukov energies and above. 

3.9 The data on the pp slope parameter b. Figure from r e f . ( 4 4 ) . 
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CHAPTER 4 . THE J°PLANE STRUCTURE: DF PP_ELASTIC_jaCATTERING IN THE 
ABSORPTION MODEL" ^ 

INTRODUCTION 

In the p rev ious c h a p t e r use obta ined i n f o r m a t i o n Psora the date about 

the j=p lana s i n g u l a r i t i e s u h i e h a re important i n pp e l a s t i c s m a t t e r i n g . 

In p a r t i c u l a r w© found t h a t the data were not c o n s i s t e n t w i th s imple 

po les cor respond ing to the a H c h B n q o of tha known masons and tho pem©ron„ 

The d i s c o n t i n u i t i e s foundp homever p wars s t r o n g l y pgekad and looked 

mora l i k e pa .Las then c u t s . 

Das pit,® i t s dsarabacksp (as© s e c t i o n 1,2 ) ) 3 WQ a x p a c t thut tha 

a b s o r p t i o n model p d e r i v e d i n ©ac t ion ( 1 „ 6 ) D w i l l aupply soma i n f o r m a t i o n 

about the j - p l a n e s t r u c t u r e of R©gga C u t s 0 Of c o u r a e p because the 

a b s o r p t i o n modal does not p r o v i d e d e t a i l e d f i t s te the date u n l e s s 

m u l t i p l i e d by a r b i t r a r y fac te i?B f l we know t h a t i t cannot b© thta whole 

answerp but we hopa t h a t i t m i l l a t l e e s t p r o v i d e soma c l u e s , , 

That th» a b s o r p t i o n corifil ahuuld not be i n t e r p r e t e d as any th ing 

o thar than a vory crud© f i r s t approximat ion i s i l l u s t r a t e d by Brranxai! 

( 69 ) 

and J o n e s c o n d i t i o n B ob ta ined from u n i t a r i t y p t h a t the tuici-rsggeon 

c u t d i s c o n t i n u i t y must v a n i s h a n d be s i n g u l a r a t tha branch peint= In 

the a b s o r p t i o n mod®l p as tva s h e l l shouip t h e d i s c o n t i n u i t y io both f i n i t e 

and n o n = s i n g u l a r c White has shown t h a t u n i t a r i t y i s r e c o v e r e d when 

one c o n s i d e r s the ttao-reggeon c u t in t h e two p a r t i c l e = two raggeon 

ampl i tude and i n the f o u r reggeon a m p l i t u d e 0 as m i l as i n t h a f o u r 

p a r t i c l © amplitude,, T h i s means 0 f o r s x a m p l e p t h a t tha c u t must 

c o n t r i b u t e to t h e Gr ibov V e r t e x i n e 0 q D ( 1 0 5 6 ) 0 

I n t h i s c h a p t e r is© i n v e s t i g a t e the j = p l a n s s t r u c t u r e n p . p a l o s t i c 

s c a t t e r i n g generated by this pomeron and meson po los and the c o r r e s p o n d i n g 

c u t S o We axpeet tha t th@ a b s o r p t i o n model w i l l throe) some l i g h t on the 

form of the c u t d i s c o n t i n u i t i 3 8 c w i thout making d e t a i l e d n u m e r i c a l 

c a l c u l a t i o n s o 
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In s o e t i o n ( 4 „ 1 ) d e f i n e ths q u a n t i t i e s and i n t F O r i u u H the 

formal ism wi th which oss ate going to tuosko In n s c t i e n ( 4 0 2 ) WQ 

propose n s i m p l e modal and u s a i t to c a l e u l a t e c u t d i s c o n t i n u i t i e s c 

We compejre the srasulfeB f?om t h i s m e d a l w i th our p r e v i o u s deduc t ions 

about th® j ^ p l e n e a t£uctu?e i n s e c t i o n ( 4 0 3 ) c and i n seefcien ( 4 0 4 ) 

t»© d i s c u s s the r e s u l t s and drats soma c o n c l u s i o n s s 
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From a . q . ( 1 . 1 ) ms w r i t s i:hn c o n t r i b u t i o n uf a Regge P a l e ct^ 

to an e l a s t i c pp n o n ^ f l i p ampl i tuds an 

A , <»„t) «, i % U) - U.D 

(The reason we on ly c o n s i d e r n o n = f l i p ampl i tudes w i l l become 

apparent i n the next s@ct ion)„ 

In the a b s o r p t i o n models the c o n t r i b u t i o n of t h s c u t genera ted 

by t h B t r a j e c t o r i e s end to the, samo ampl i tude i e p from e . q s . 

(1 =55r. 1 , 59 ) 

( 4 . 2 ) 

lyhers A ( t p t^ 0 t 2 ) i s d e f i n e d i n e „ q 0 ( 1 , 5 1 ) , 

Ths p o s i t i o n o f the branch p o i n t i s 

"CUT ^ " m S K ^ 1 ^ 1 ^ * C { 2 ^ t 2 ^ * 4 , 3 ^ 

under thtj c o n d i t i o n 

A(t e t ^ t 2 ) n 0 ( 4 . 4 ) 

To o b t a i n th© d i s c o n t i n u i t y farm of e . q . ( 3 . 4 ) i t i s n e c e s s a r y to 

change v a r i a b l e s from t^D t , i n e . q , ( 4 . 2 ) to 

^ ( t ^ ) * « 2 ( t 2 ) = 1 ( 4 . 5 ) 
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We know t h a t tu@ ean do t h i s because the t r a j e G t o i ' i a a ut-s 

H e r q l o t z f u n c t i o n s o f t 0 as ui© d i s c u s s e d i n s e c t i o n (1.1 ( v i ) ) o 

Tha J a c o b i a n fas? t h s t r a n s f o r m a t i o n i s 

1 0 t 2 ) I 

( 4 , 0 

andp i f we d e f i n e f o r c o n v s n i e n c e 

Jk " V 
- k ( t k > l f % < V 

( 4 , 8 ) 

tse can w r i t e t h a t 

A ° 2 ( 8 p t ) S 

^ C U T ( t ) 
( 4 . 9 ) 

w i th 

« 1 2 ( J » t ) « 
32 71 

1 - J 

dk 
g ^ ( $ ( j * k * 1 ) ) g 2 . k o 1 ) ) 

e t ^ « ' 2 

j - 1 

I f t h s t r a j e c t o r i e s e re l i n e a r 

( 4 . 1 0 ) 

" k ( f c ) " « k 0 * « k * 
( 4 . 1 1 ) 

we f i n d from e . q s . (4 .3 ; , 4 . 4 ) t h a t th© branch p o i n t f o r tha ( 1 0 2 ) c u t 

i s 

* 1 2 ( t ) S ^10 * ^20 
1 « HUL2 t ( 4 . 1 2 ) 

« ' 1 * « " 2 

which reduces i n t h s s p e c i a l c a s e of i d e n t i c a l t r a j e c t o r i e s i a 

^ ( O s 2 « 1 0 1 * 2 « ' i * ( 4 , 1 3 ) 
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4 .2 The Plods! 

Sine® we are not int .ssrasted i n a l a b o ? a t s quantitat.1v/o f i t s to the 

da ta i t i s s e n s i b l e to choose t h s tnodal to be thto aimplt /et p o s s i b l e * 

ul® d id t h i s as f o l l o w s ? 

( i ) In the p r o v i a u s c h a p t e r ras found ev idence t h a t the pnmunor, 

s l o p e i s r a t h e r s m a l l c so t h a t the pomsran ought to b© p u r e l y imaginary 

a t l e a s t nfias? the fo 'e iard d i r e c t i o n . . Cnnasquent ly me p a r a m e t r i s e d the 

pomeron c o n t r i b u t i o n to an & c h a n n e l n o n - f l i p ampl i tude ©a 

b p ( « p - 1 ) 
g P P ) * i ¥ p ® ( 4 , 1 4 ) 

( w i t h ^ _ b B r a e l c o n s t a n t s ) 

( i i ) We assumed t h a t thia p&mtavan c o n s e r v e s s c h a n n e l h a i i c i t y a 

t h i s ought to be f a i e l y r e a s o n a b l e near the forward d i r e c t i o n . , 

( i i i ) Uls chos® th© pomaron t r a j e c t o r y to hava th® l i n e a r form 

©?p ( t ) - 1 o 0o15 t ( 4 . 1 5 ) 

( i v ) We assumed exchange degeneracy f o r the mesons? w i th a l i n e a r 

t r a j e c t o r y p u i h i c h a© took as 

& m ( t ) M 0„5 * 0 .9 t (4oD6) 

In Chapte r 3 ty© saw t h a t the d a t a shots no Qv/idenee of S K C h a n g e 

degeneracy b reak ing i n the fox-ward d i r e c t i o n ^ so use chose tho? meson 

c o n t r i b u t i o n to the non=-f l ip ampl i tude to bo 

( w i t h U QO b m !?eal c o n s t a n t s ) 

( v ) DJB consid@s?Qd on ly the n o n « f l i p meson c o n t r i b u t i o n s . Th io 

s h o u l d not e f f e c t the t o t a l c r o s s s a c t i e n p b u t i t means t h s t 0 i n t h e 

d i f f e r e n t i a l c e o s a ©©efcion 0 taa have n s g i a c t s d (meson)" so t h a t 

our modal cannot bs r e l i a b l e a t low energ ies» 

http://itat.1v/o
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UJe can immediately c a l c u l a t e the p o s i t i o n s rsf t h s branch point;) 

from e . q s . ( 4 0 1 5 s 4 . 1 6 P 4 „ 1 2 0 4 0 1 3 ) 0 They are 

®c p p( t ) ^ 1 * 0 o 0 7 t ( 4 . I B ) 

®<p f f l(t) a 0 . 5 * 0 . 1 3 t ( 4 . 1 9 ) 

« m ( | | ( t ) • 0 o 4 5 t ( 4 , 2 0 ) 

ids d id not c a l c u l a t e the e f f e c t s of c u t s genera ted by th ree o r 

more t r a j e c t o r i e s . The c u t genera ted by n i d e n t i c a l eegqeons wi th 

( 1 1 ) 

t r a j e c t o r y « has branch po in t 

®?n ( t ) * rm ( t / n 2 ) •=• n * 1 ( 4 . 2 1 ) 

mhichpfor l i n e a r t r a j e c t o r i e s „ reduces to 

@< ( t ) a n(e< - 1 ) * 1 * a ' t ( 4 . 2 2 ) n o n \ / 

Ws so© t h a t f o r «nj l t i~pomeron c u t s 

whereas fop siulti^fliQsen c u t s 

@{/ 

« n n <t) » 1 - § • t ( 4 o 2 4 ) 

so tha t multi~pomeron c u t s condense on j a 1 and may w a l l b@ 

important^ whereas raulti°meson c u t s a re le ia=ly ing and s h o u l d be 

i n s i g n i f i c a n t . Multi=r©gg@on c u t s can be c a l c u l a t e d i n the © i k e n e l 

(12 ) 

medslp uihorQ i t can be shoran t h a t the c o n t r i b u t i o n tjf fcho ci^prsfiteron 

c u t d e c r e a s e s r a p i d l y raith n D I t seems f a i r l y r e a s o n a b l y " ..ujrefoitej, 

to assum© t h a t the major c o n t r i b u t i o n te the d i s c o n t i n u i t y at^uofcups 

comes from tuje^reggeon c u t s . 
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In t h i s model ths d i s c o n t i n u i t i e s can be c a l c u l a t e d a n a l y t i c a l l y ^ 

In p r a c t i c e o s . q . ( 4 . 1 0 ) i s not the e a s i e s t way to proceed,, but i t i s 

mora s t r a i g h t f o r w a r d to use t h s representation 

X 

i n s . q . ( 4 . 2 ) p than perform t h s t^ and i n t e g r a t i o n s ® x p l i c i t l y ( 

The r e s u l t s are as fol lows8 

f o r the tistO"pomeron c u t 

2 

F p p ( j e t ) B » i 
b D ( J - 1 ) 

32K &' 
( 4 0 2 6 ) 

F o r the pomeron^meson c u t 

P 
' * fit' P M 

QWP 

1 6 R ( « ' p * . « ' w ) 

x J I 2 

taith e s ( b p = b^) 

/ t 
/« P ffl 

« p w n 
« ' p «' 

*pp ( 4 o 2 7 ) 

And f o r the tiuo^meson c u t 

m 
( 4 . 2 8 ) 

We note that a l though the d i s c o n t i n u i t i e s of the i d e n t i c a l = p a r t i c l e 

c u t s are indspsndent o f t D t h e i r c o n t r i b u t i o n s to t h s ampl i tude m i l l 

dopend on fcD s i n e s th® i n t e g r a t i o n s i n e . q . ( 4 < , 9 ) run up to « ^ u ^ . ( t ) o 

Wis ©Q® a l s o t h a t the Bronzan and Jones c o n d i t i o n i s indQQd v.ltalatQdp as 

mentioned i n ths i n t r o d u c t i o n to t h i s c h a p t e r . 
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4„ 3 Comparison with the Data AnalV3is of Chapter 3 

( i ) The Total Cgosa Section 

I f tsis writ® the t o t a l cross section i n the form of e.q. (3.9)0 

uia obtain from e .qs. (4.26 «= 4.29) the fo l lowing predict ion f o r |§ ( j ) > 

(4.30) 

We 388 that the cut contr ibut ions are peaks of width 

A . a 1/h ( i m P e « ) (4.31) 
i i 

at j a 1 @nd j « 0. There i s no meson cont r ibut ion because of 

exchange degeneracy^ and the poraeron-flseson cut i s absent f o r the seme 

reason, We see that the s i n g u l a r i t i e s are i n j u s t the r i g h t places to 

explain the s tructure found i n section (3 ,2 )„ 

To investigate the widths of the peaks9 we adopted the parameter 

values found in section ( 3 . 3 ) . We used exponential f i t s to the 

parameters A ^ C t ) ^ A

2 2 ^ (defined in e.q. ( 3 . 3 2 ) ) 0 and obtained 

A 1 1 ( t ) • 68 exp ( 8.9 t ) (4.32) 

A 2 2 ( t ) • 730 exp ( 3.9 t ) (4.33) 

This gave i n e.qs. (4.14, 4.17) 

b p & 30 (4.34) 

b f f l ^ 2 (4.35) 

o r p f o r the widths of the peaks i n ^ ( j ) 

& p 0.03 (4.36) 

«&m S5 0,5 (4.37) 

Th® narrowness of the peak at j • 1 implies thotp i n a f i t o f the 

f e rn o f p f o r example e 0 q . (3 .23) p the cut term would be impossible to 

d i s t ingu ish from the pele p and we would Just see a peak of reduced height . 
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Our model therefore predicts precisely the j °p lane s tructure 

found f o r the t o t a l cross section i n chapter 3 0 i n pa r t i eu lo r q vory 

narrow peak at J « 1 and a broader s t ructure f o r J <S 0 ( wi th nothing 

i n between. 

The model has a f u r t h e r f oat una 0 hotsoveep which io fcfrat tte) 

negative sign of tho second tQSfli i n g .q . (4.30) provides a natural 

mechanism f o r the recsntly^msesurod r i o i n g t o t a l csoeo cession. Sted©ed0 

i f bp and b f f l are f i x e d at the values i n e.qs. (4.34 0 4 .35) D thes€ &B9 

only two parameters i n e .q. (4.30) °» p and 3 f m •= which may tea 

determined from low-enargy dato alone. 

As we have raantioned pravi9uely 0 t h i s model i s tee ctudo te tasks 

deta i led f i t s tsorthahile p ao us j u s t certateainod tho ctoetel to f i t tk@ 
2 

data at s a 20 and a • 100 CeV . On int@$?ation 0 e .q o (4 o 30) § iv@ 

V 8 )
 - *P " zfSTZr ( b p • log . ) • 3 5 ^ — s ' ( b m • log , ) (4.38) 

By evaluating t h i s equation at the two values of s ess o&tain@d 

tfp » 131 (4.39) 

* N » 218 (4.40) 

which means that 

d" T (<*>) - 51 mb. (4.41) 

This f i t i s compared wi th the data in f i g , (4.1 )D tsfossre wo have 

also shown curve I from chapter 3 f o r comparison, we see thatp by 

f i t t i n g the low energy data alone 0 our model predicts a r i s i n g t o t a l 

cross section at ISR energies. That i t dsos not r ioo as f a s t oa the 

l a t es t data indicates the l i m i t a t i o n s of the models although,, ao raoy be 

seen from the f i g u r e 0 the experimental s i t u a t i o n ia not yet by @ny <cas>na 

resolved. The func t ion ^ ( j ) corresponding to th io curvo i s shesa bn 

f i g * ( 4 . 2 ) . (The arrow at j = 1 indicates tho pos i t ion ©? tho S^Pfewvaftisn 

due to the pomeron po le ) . 



( i i ) The D i f f e r e n t i a l Cross Section 

As discussed In section (4.2 (v))» our model cannot be 

correct at low energies 0 because we have neglected most of the 

(meson) terms. The s ingu la r i t i e s w i l l s t i l l be i n the r i g h t places, 

of course,, but w i l l have the wrong magnitudes. The e f feo t s of the 

various interference terms are somewhat complicated,, but can bo 

calculated from e.q. (3 .10) . Because of the Qtrongly peaked nature of 

the pomeron-meeon cut i n e.q. (4 .27) 0 - i f b_ a 30 and b « 2 then 
h m 

^ p m e 2 6 ( j - 1 ) „ i t ± 9 reasonable to neglect the Bessel f u n c t i o n . 

This means that we can wri te the contr ibut ions o f a pole and a general 

two-reggeon cut to the func t ion V ( J e t ) asD respectively 

b 6*' t 

C n ( j , t ) = S ( J - « n ( t ) ) a n " (4.42) 

where n a P or Plj and 

V ( J . t ) . Q . " " • 0 " "™" < 0 ) ) 9 * 0 (*•«) nm nm 

where npm = P or ffl and Jf PQ are complex constants. 
n nm 

Subst i tu t ing these forms into e.q. (3.HO) we obtain the fo l lowing 

formulae (dropping the 1/41C f o r convenience)! 

For the interference between the n and m poles 
# (b « ' • b * ' ) t 

I m J J - * * 8 R B ( * n * m > a " n m m * ( 2 J . « . . , ) (4.44) 

nxm n m n m 

( th i s i s of course Just the ordinary 2«pole interference) 

For the interference between the n pole and the m=p cut 

nxmp mp w n 

(4.45) 
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And f o r the interference between the k=n cut and the m«=p cut 

(where @<, 5> e< ) kn mp 

<bun * b ) j - (b «c (Q) * b « (0)) 
»/• / . . \ * m n \ kn mp kn kn mp mp 

knxmp J C kn mp' 

(4.46) 

These functions are again peakedp and the positions of the peaks are 

given by the § and ® funct ions . Because of exchange degeneracy and 

the Imaginary pomaronp we have the fo l lowing expressions! 

p * i U p l 

Qpp = - i I Qpp I 

Q
Pm

 a » qpJ 
Qma i i Q

W J 
from which we may deduce that 

Re ( K p & V ) - R e ( « p Q p m ) = Re ( Q p p ) 

= 0 (4.47) 

and hence that 

¥ P X | y ) ( J P t ) s 8 P X P m ( J » t ) = tfBXpn(Jpt> 

8 # mxwivi^^^ = ^ p p x p w ^ p t ^ 3 ^mxm^9^ 

= 0 (4.48) 
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In table (4,1) those terms which do not vanish^ wi th the positions 

and signs of t h e i r peaks„ are l i s t e d . 

TABLE 4.1 

Non°Vani3hinQ Terras i n the PP D i f f e r e n t i a l Cross Section 

Term 

P k P 

M » M 

pp « pp 

mm st M M 

pw x Pro 

P X PP 

p x mm 

PI x PHI 

pp x mm 

Peak 

= «p ( t ) 

s « p p ( t ) 

* 

= * f e p ( t ) * O t p p ( t ) ) 

* i (0 tp( t ) * « W B ( t ) ) 

« £ ( * m ( t ) « « p n ( t ) ) 

= * ( « p p ( t ) • « i w ( t ) ) 

Sign 

These s i n g u l a r i t i e s are displayed i n f i g . ( 4 . 3 ) . The locat ion of 

the pomeron-»meson pol© interference term p which vanishes i n t h i s models, 

i s also included, as the dot-dash l i n e . 

Ufe can now in te rpre t the t h r e e ° p o l e f i t of e.q. (3.32) i n terms of 

th i s model. Tha f a c t that A ^ ( t ) i s consistent with zero f o r small t i s 

explained by the f a c t that there is no s i n g u l a r i t y near j * 0.75 i n f i g . 

( 4 . 3 ) . At larger t B A ^ ( t ) i s b u i l t up from the e f f ec t s of several 

terms close together. S imi l a r ly A ^ ( t ) has three contr ibutory terms. 

In t h i s modelp of course p there i s no reason f o r e.q. (3.48) to apply. 
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4.4 Conclusions and Discussion 

We have formulated a very simple mode&p which s a t i s f a c t o r i l y 

explains the j °p l ane s tructure found i n chapter 3 0 both f o r the t o t a l 

and d i f f e r e n t i a l cross sections. 

( i ) For the t o t a l cross section,, the j ^ Q s ingu l a r i t y discovered i n 

chapter 3 i s i d e n t i f i e d wi th a msson«meson cu t . 

( i i ) When constrained to f i t data at energies at and below Serpukovp 

the model predicts that the t o t a l cross section should r ise at 

ISR energies,, aa has been recently obssrvsd. 

( i i i ) The constraint of e.q. (3 .48) p which caused trouble f o r a simple 

pole in te rpre ta t ion of the f i t of e.q. (3 .32) p does not apply to 

t h i s model. Both A ^ ( t ) and A ^ ^ t ) are b u i l t from a number of 

elosely=situated terms. 

( i v ) The small value of A ^ 2 ( t ) near t * 0 i s explained because the 

model has no s i ngu l a r i t y near j = 0.75. 

(v) A l l cut d i scont inu i t ies except the meson=-meson c u t s are s t rongly 

peaked at t h e i r branch points,, thus explaining the po le - l ike 

s tructure found in chapter 3. This property of the model implies 

thatp i f i t i s correct^ the methods of chapter 3 m i l l have trouble 

obtaining d e f i n i t e resultSpsines in any continuous parametrisation 

the leading cuts m i l l look l i k e poles. 

Whilst ute must admit that t h i s model i s by no means the only possible 

explanation of these e f f e c t s 0 the ease wi th which i t accounts f o r them 

i s nonetheless remarkable. 
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Figures f o r Chapter 4 

4 01 Comparison of the model of e 0 q g (4,38) f o r the t o t a l es©ss section 

(curva C) wi th the data. Curve I from chapter 3 i s also shown„ 

4.2 Th© func t ion j§ ( j ) f o r the curve C of f i g . ( 4 . 1 ) . 

4.3 The j=plane s t ructure of the d i f f e r e n t i a l cross sect ion. So l id 

l inss are posi t ive cont r ibut ions 0 broken l ines are negative. The 

dot°dash lin@ i s the locat ion of the pofneron^mseon interference 

term p i f i t mere present. 
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CHAPTER 5, THE PP DATA AT VERY HIGH ENERGIES,.AND.JOJCLUPINE. JigMARKS 

INTRODUCTION 

The recent experiments at the CERN intersect ing storage rings(^££,73^74) 

have caused a great deal of theore t ica l and phenomenological a c t i v i t y * 

In t h i s chapter we discuss some of the explanations that have been 

proposed,? and consider the present state of the s i t u a t i o n . 

Perhaps the most unexpected of the resul ts i s the apparent sharp 
2 

r i se in the t o t a l cross section above s s 500 GeV „ The r i se appears 

to have the form 

2 
o*T ( log s) (5,1) 

and the models that w© s h a l l discuss may be divided in to two groups « 

those that re ta in t h i s property as q goes to i n f i n i t y p and those f o r 

which tij f l a t t e n s o f f and tends to a constant from below. 

In section (5,11) we review the experimental s i tuat ion, , and Hat 

the important features of the data. The various models are described 

in sections (5,2 = 5,4)j> and section (5.5) i s a general discussion., 
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5o1 The Experimental S i tua t ion 

The prominent features of the data are as follows8 
2 

( i ) The t o t a l cross section rises by about 4 mb between s = 548 Gel/ 

and s s 2775 GeV2.(see f i g . ( 5 . 1 ) ) . 

( i i ) The d i f f e r e n t i a l cross section i s approximately exponential in t 

f o r seven orders of magnitude, (see f i g . ( 5 . 2 ) ) . 

( i i i ) There i s a break i n the slope of the d i f f e r e n t i a l cross section 
2 

which remains constant i n pos i t ion at t ^ =0.15 Gel/ f o r a l l 

energies. 
2 

( i v ) The mean d i f f e r e n t i a l cross section slope f o r I t 8' < 0.15 Gel/ 
varies from 11.8 G@V~ to 13.1 GeV~ between s a 548 Gel/ and 

2 2 a - 2776 GeV „ whereas that f o r JU > 0.15 Gel/ i s approximately 
=2 

constant at 10.8 Gel/ i n th i s energy range. 
(v) The d i f f e r e n t i a l cross section shows a dip=bump structure f o r 

2 
large I t ! . Ths pos i t ion of the dip i s constant at t s -1„3 Gel/ „ 

but the height of the bump decreases wi th energy, (aae f i g . ( 5 . 2 ) ) . 
(52) 

Leader and Msor analysed th© t o t a l cross sect ion. They found 
2 

thats above s § 20 Gel/ 0 the data are wel l described by 

tfT (s) m C * D (log ( s / s o ) ) 2 (5.2) 

where 

C a 38.4 mb 

D a 0.49 mb 

s s 122 Gel/2 (5.3) o 

They also pointed out thatp i f we define the d i f f e r e n t i a l cross 

section slope by 

b ( a . t ) i ^ ( log (5.4) 

then i f e.q. (5.2) i s t r ue p i t can be shown^ 4 ^ that 

b(s p 0) (log s ) 2 (5.5) 
S -CJ©3 

Now i n point ( i v ) above we mentioned that b ( s 5 t ) i s approximately 
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independent of s f o r larger lit I <> This means tha t 0 as energy 

increases, a slope break at small HO w i l l develop. Thus there 

is a cor re la t ion between the slope break and the r i s i n g t o t a l cross 

sectiono 
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5.2 f i u l d Thooretical Models 
oKaStK^ . I M J I C ••—••!•.w. , T " - s i r am g-n '•• i r r - n - i H U B 

(55) 
The modal of Chengp Walker and Ulu deserves to be mentioned 

(75) 

Firsts since i t mas proposed before the new data became svai labla 0 

I t i s based on ths impact picture of high energy scat ter ing devivod 

from quantum f i e l d theory. 

The model i s supposed to apply to a l l hadrons at s u f f i c i e n t l y 

high eftargiss. In a pa r t i cu la r scat ter ing process 0 each hadron i s 

considered as a superposition of v i r t u a l states wi th short l i f e t i m e * 

In the rest=frame of the other hadron,, however^ the l i f e t i m e s of the 

v i r t u a l states are appreciable. Lorentz contract ion deforms each 

v i r t u a l state in to a t h i n pancake9 which can be separated in to an 

absorbing core of radius R tss R q log S s > ( R O constant^ and a p a r t i a l l y 

absorbing f r i n g e whose width i s constant at about 1 f . The predictions 

of t h i s model at very high energies are as f o l l o w s . 

( i ) Total cross sections f o r a l l hadrdn=hadron scat ter ing processes 

become equal at i n f i n i t e energy, 
2 

( i i ) A l l t o t a l cross sections r i se l i k e (log s) with energy, 

( i i l ) £ l a 3 t i c cross sections approach one ha l f of t o t a l cross sections*, 
i o S a 

d E L / d7 - — E > £ (5.6) 

s =o@9 

( i v ) There is a forward peak i n e l a s t i c scat ter ing processes., and e 

dipsbump structure at large HQ « The d i f f r a c t i o n paak shrinks 

and the dip moves to smaller St J as energy increases c 

For an e l a s t i c channel j the authors constructed an amp.*' itude 

Mj ( 3 o ^ ) having the above asymptotic propert ies . They wrote 

• fiVl^So & ) 
do I J 
dt 3 ' 

n s 

(5 .7) 

2 

where t a « & (5.8) 
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and dL ( j ) s A . s j 
-4 4.893 Im m. (s„0) (5 .9) 

s 

The s term i n e.q. (5 .9) was added to patch up the f i t to this 

date at loutar energies^ since Mj (b p & ) i s supposed to b© an asymptotic 

amplitude. 

The model s a t i s f a c t o r i l y f i t s e l l the available hadron-hadron 

e l a s t i c scat ter ing and t o t a l cross section data at and above S&spukov 

•4 

energies. I t must be pointed out D however? that the s 2 term i n e.q. 

(5.9)0 which i s quite arbi trary, , i s essential to the t o t a l cross section 

f i t s . 

This model i s extremely in teres t ing from the point of view that i t 

predicted the r i s i n g t o t a l cross section,, but i t seems that the energy 

region i n which i t should be v a l i d has not yet been reached. I t s 

in te rp re ta t ion i n terms of the theory of hadrona is also unclear. 
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5,3 The Tr ip le Pomeron Vertex 

(71 72) 

Some authors 0 have pointed out that the new data can be 

interpreted i n terms of the t r i p l e pomerora vertex. I t turns out that 

i f th i s vertex i s non<=zero at t = 0 P then i t s cont r ibu t ion to the 

pp ine las t i c cross seetion D and therefore also to the t o t a l cross 

section^ rises logar i thmica l ly wi th energy. 

On the other handpit i s we l l known that i f the pomeron is a 

f ac to r i s i ng Regge Pole wi th un i t intercepts, u n i t a r i t y forces the t r i p l e 

pomeron vertex to vanish at t = 0. The two papers d i f f e r i n t h e i r 
(71) 

solutions to t h i s problem, Kaidalov at a l made the assumption that 
(7 

the pomeron intercept i s s l i g h t l y lees than unityp whereas Ameti et &1 

used a pomeron wi th u n i t in te rcep t c and imposed u n i t a r i t y by introducing 

absorptive cuts i n the s channel. Both these models were able to f i t 

the t o t a l and d i f f e r e n t i a l cross sections D and at present the data are 

not good enough to d i f f e r e n t i a t e between them. 
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5-4 The Regoeon Calculus 

In chapter 1 vse used the Reggeon Calculus to construct the 

absorption model for the two~reggeon cut . An advantage of t h i s cut 

prescr ip t ion i s that i t introduces no extra free parameters not 

contained in the pole parametr isat ion. I t i s 0 howevarD unsat is factory 

in some respects B and i t might be a t t r a c t i v e to t ry a more 

phenomenological approach, by parametrising the Gribov Vertex and 

determining i t s form by f i t s to the data. I t i s then necessary to 

include mora complicated cut terms. Those which contribute to order 

1/log s have been ca lcu la ted by Ter=Martyrosian p and these are shown 

in f i g . ( 5 . 3 ) . The v e r t i c e s involved are g ( t ) „ the usual pomecon = 

two proton vsrtexp N( t 0 t^B t j J o the two pomeron ° two proton vertex 

discussed in chapter 1D P ( t p t^g t^)o the three pomeron ver tax 9 and 

C(tp t^p tgo t jp t ^ ) 0 the f i ve pomeron vertex. 

(49) 

This has been dons independently by Pajareo and S c h i f f v ' and 

Sukhatme and N g ^ ^ in two b a s i c a l l y s i m i l a r papers which d i f f e r mainl 

in the parametrisations adopted for the v e r t i c e s 0 Both obtained 

adequate f i t s to the data with an asymptotic pp t o t a l cross sect ion of 

about 60 mbop somewhat higher than that found in chapter 3. This i s a 

r e s u l t of the inc lus ion of the multiple sca t te r ing terms. 

The authors point out that the r i s i n g t o t a l c ross sect ion and 

dip=bump structure of the d i f f e r e n t i a l cross sect ion are inev i tab le 

consequences of the Cribov approach. The slope break i s notp however,, 

and in fac t i s not present i f only the two pomeron cut i s considered,, 

but i s generated by the addi t ional terms in f i g 0 ( 5 0 3 (c ) - ( f ) } . 

In contrast to the previous models discussed,, t h i s approach 

predicts 

tfEL / rfT = —o 0 (5.-3 0) 
s =o@s> 
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5 0 5 Discussion and Conclusions 

(72) These models are not a l l incompatible. For example^ Amati e t a l x 

used absorptive cuts in the i r paper to recover u n i t a r i t y , and might 
instead have used a Reggeon Calculus model for the i r cut corrections„ 
S imi lar lyo instead of a simple pole pomeronpthB a u t h o r s ( 4 9 ° 5 0 ) ^ n 

sect ion (5o4) might have used a more complicated s i n g u l a r i t y . E i t h e r 
of these procedures p of course p would have produced a model with many 
free parameters. 

The s ign i f i cance of the new data seems to be that some modif ications 

of our ideas about the pomeron are necessary. I t should notp however^ 

be forgotten that more p r e c i s s knowledge about the pomeron at high 

energies should enable us to obtain more unambiguous information about 

the mesons at lower energ ies . To t h i s end i t would be extremely usefu l 

i f conventional acce lera tors were used for the high°prscision experiments 

on low°energy pp sca t te r ing which are now possibleo Unfortunately 0 such 

experiments are not as prest ig ious as l e s s prec ise ones at u l t r a h i g h 

energies . 

Perhaps we should have included the pomeron in sec t ion (1 .2) as one 

of the problems of Regge Theory. As i t was o r i g i n a l l y invented to 

explain the apparently constant to ta l cross s e c t i o n s p there seems no 

reason for the pomeron to re ta in i t s simple pole form now that the high 

energy structure of t o t a l cross sect ions i s known to be markedly d i f fe rent 

from what was formerly thought. The most hopeful r e s u l t s seem to have 

come from Dual F i e l d Theory 0 where a pomeron=like s i n g u l a r i t y emerges as 

a natura l r e s u l t of the programme. (See p fo r example? r e f . (?7) )„ 

In futureo Rsggs phenomenology w i l l be increas ing ly concerned with 

very high energ ies 0 and p a r t i c u l a r l y inc lus ive and multi«=particle 

processes. Whilst much useful information w i l l undoubtedly be gained in 

t h i s way0 no complete descr ip t ion of strong in terac t ions w i l l be possib le 

u n t i l the problems of two body sca t te r ing have been so lved ; and in 

p a r t i c u l a r those discussed in sect ion (1„2 ) . To t h i s end more r e a l i s t i c 
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cut models are required,, as wel l as a better knowledge of possible 

low=lying t r a j e c t o r i e s such as the « F ina l lyo u n t i l uie have more 

coherent ideas about the nature of the pomeron0 a l l Rsgge f i t s w i l l be 

to a l e s s e r or greater extent ambiguous0 
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Figures fog Chapter 5 

5.1 The new data on tha np total cross s e c t i o n . 
2 

5.2 The pp e l a s t i c d i f f e r e n t i a l cross sect ion at s s 2776 CsV . 

5.3 The Reogeen Calculus diagrams which contribute to order 1/log s<> 
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APPENDIX, ELASTIC SCATTERING KINEMATICS 

We cons ids? the process 

1 * 2 - o 3 * 4 

where m(1) - m(3) g m 

and m(2) - m(4) s 

P a r t i c l e (1) i s the target p and p a r t i c l e (2) the "beam'. 

The Wandelstam var iab les s * t 9 u for t h i s process are defined by 

3 S (P 1 * P 2 ) 2 = ( P 3 * P 4 ) 2 (A.1) 

t « (P 1 * P 3 ) 2 = ( P 2 + P 4 ) 2 

U n (P 1 « P 4 ) 2 = ( P 2 * P 3 ) 2 

Conservation of snergy^momentum gives 

P1 * P 2 * P 3 * P 4 ~ ° ( A ° 2 ) 

which implies that 
2 2 

a * t « u = 2( m <• ^ ) (A„3) 

We define the laboratory (LAB) frame by 

(LAB) s 0 (A.4) 

and the centre of mass (CM) frame by 

J?-, (cm) * P 2 (cm) » 0 (A.5) 

Ule c a l l the LAB energy and three-momentum of the beam w^ and P^ 

r e s p e c t i v e l y p i . e . 

P 2 (LAB) s ( w L p P L ) (A.6) 

with P. - | p. I L ^ L 
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We c a l l the CM three-momentum of the target q s i . e . 

i 1 (cm) s =f 2 (cm) = q (A.7) 

In terms of these var iab les the following re la t ions may be 

deduced 
2 2 

a = m +|4 + 2 m w L (A.8) 

and q a m P L / JT (A 6 9) 

The s channel CN scat te r ing angle © i s defined by 

£ 2 ( C H ) . ^ ( 0 1 ) ( A o 1 Q ) 

which reduces to 

cos 9 = 1 + t / 2 q 2 (A„11) 

The following re la t ions may be obtained 

©in 2 £® = - t / 4 q 2 (A.12) 

cos 2 £ 9 3 1 * t / 4 q 2 (A.13) 

I t i s a lso usefu l to introduce a var iab le ^9 p defined by 

^ = (m * w L ) / f p (A.14) 

or a l t e rna t i ve ly 

JO = (1 * q 2 / m 2 )^ (A-15) 
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