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ABSTRACT

A phenmomenological snelwsis of pion nuclezon scattering
at high energie~ is presented in termas of soversl abhsorpiivs
models for i) = TN amplitudes. In the past there have been
two popular versions = the wesk-cut model and the sirong—-cut
model, In gencrasl it was difficult to chooss belween these
two very differcnt approsches. However the whole absorpiive
cpproach was tnrown into doubt when better informstion about

the polavizetion in T —>1T n at larger ltl becans svaileble

lagt rear. The naw data im fact eccords with the prediciions
/ - - “ o
of the.p-gp pole {1t of Brrger and Fhillips. Mere rccently

. x4 t -
meesurcunsnbty of the R parsmeter in MM p— W » heve snebdled

[4

the phases of the WN ampliftudes to be doteriminedy, and ogeoin
these sgrse with the Barger-Phillips (B.P) zredicticns but
contradict both twpes of absorption model.

We assunz that the BL.F I = 0 amplitudes sre » reliable
wepresentetio: o these amplitudes, and wg it thoss wit
gsomewhat simpler pareameterization. For our It = 1 smplitudss
we find ihat & w~channel perameterization plus crossing was
nuch preferred tc the usuel direct s-channcl paremcterization,

We find,tr corvzcetly taking inte secount_the_recal parts of the

I, = O non=-1ip amplitude i.e essentizllyr, br ircluding a

ot

P ® r' cut coniribution in the I, = 1 amplitudes, that our
b

8 improved consgiderabls, especially the cherge-cxchonge
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¢ fixoed- polc coupling modcl is by far ithe

Pests Tn gencrcel the datz is reasonsbhly well FTitted spart from
- [] - 5 - . .. LA o -

the high 41 »egion of our elesstic relarization. Dolis is trecsd

back to our rethcr pcor representation of the real purts of the

LY L I I T - Tl o I Y T W S
It = 4 smplitudes. It is unlikely Thav a Ledteor ropresentetion
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ot the It = 0 amplitudes will rencdy this defect, The imog-
iner- purts of these amplitudss sre in zood agrccmsnt wiih

amplitude anulyiis, We conclude that the absorption prescrip-
tion, witi: r..v hypothesis about the chocsing mechanist of the
‘P pole i3 not completely succcasful in explaining the It = 1

emplitudez, It wovks well for the imeginery parts and less se

for the real parts, snd we indicate possible rcazons for this.
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CHAPTER 1




IKTRODUCTIQN

The thecretical study of the inteiactions between
elenentary particles, over & hundred of wﬁich have teen
discovered, involves various stendpoints and technigues.
These can roughly be divided into three branchess=

(&) Quantum Field The y, which deseribes particle
interactions by means of an interaction Lagrangisn comstructed
from the field operators.

(b) S—matrix theory, which astemtz to descrite
inverctetrions in terms of measurable cuantitics only e.g
energy, momenta, spin etce

(e) symmctries. These include Lorentz covariance,
crossing symmetry, spin and isospin groups and SU5 synetry.

Field theoretic models have been outstandingly
successful for electromagnetic intersctions, bul net so
Ter for the sirong interactions. For this reason tie. lattenr
sre almost exclusively studied using the S-mnatrix approach,
slthough some ideas from field theory are sometimes incor--

porated.
Since this thesis concerns itself with certain

aspeclts of the high cenergy physics of the strongly inter-
acting pariticles we shall be sdopting the S-matrix approsci.
The S-~natrix is simply a matrix of the transition

eamplitudes for the strong interactions. & typical list of

-

important properties which the S-matrix ought to satisly

<

would be &=
(a) the superposition principle
(b) Lorentz coveriance

<~“'L \_‘}‘I"FL .
=$/’wn*\f\
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(c) conservetion of probability

(a) short -renge character of the forces

(e) transition amplitudes are the real-
boundary values of analytic functions.

Some consequences of these are the ‘connectedness® of

the S-matrix, the unitarity of the S-matrix

ss* =s% -1, (1.1)
and the fact that the matrix elements depend on the four-—
momenta only through their invariant scalaf prodﬁcts‘

Prousrts (e), together with the hypothesié that there exisis

¢ "physical sheet" of a given invariant, states that on this
sheet continuccion to the resl axis from asbove (the +ie pres—
c-iption) gives us the ﬁhysical transition amplitudéase..

Inmplicis in.this.pastulate is the idea of Ycrossing', which

is the property that transition amplitudes for differcant regions
of the variables sre connected by analytic continuz;ion.

‘The above list of properties of the S-matrix, and their
consequences, are generally agreed to be the basic requirenents
of an S-matrix theory., However so far the theory does not have
much dynamicsl content. To remedy this two slightly more |
controversial postulates are added as reguirements of the S

matrix., They are usuuslly called Maximal Analyticity of the
First and Second kinds (hereafter abbrevisted to Mai and Ha2)

(see refe 4).
MA1. postulates that the only singularities ip the complex

-

energy variables of the invariant amplitucées derived from the

]

connected parts of the S-matrix are the poles corresponding
to stable and unstable particles, together wiih those singul--

arities generzted from these poles by the requiremcnta of
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unitaerity and crossinge

HA2 peostulates thet the S-matrix is continusble through--
out the conplex angular-momentum plane, w;tn only isolatec sing-
ularities.

he consegences of these postulates for general scatt-—
éring processes (connected parts) is guite complicated (ref. 5}
and fer reaching. By far the most common and useful applications
so. frr have been to the 2 particle - 2 particle process {the
four-line connected part).

As the energy is incressed more and more 'communicating'
caannclis become open, and since each appears discontinucusiy it
iwplies that the scattering amplitude A(s,t) hes cuts et these
th~cshoids. In terms of the usuel s,t,u Mandelstam v~riables,
}A4 gives the scattering'amplitﬁde;A(s,t) the analytic structure
depicted in fig.(1),(for fixed t).

/ 8 plane . fig.(1)
[/ \
N S __
' = < —g é §—§i _ ",} \ L pZZIIr I { fixed t)
Fomm e om— - \-____1“___:_7
o e Y 8y, B_
. . ’ /

We can then write a dispersion relation for A(s,it) (sece

refsel 42,5)
o

A(s L}"__ 4)@25 4 1 :D_g,(z;,(:) 5(7: ? (D ( (T) dzli.

1 \ Zé - Z(, T '. Z
ZR. "ZL

in the z, (=cos€%) plane, where D is the discontinuity across

the R.H cut, Du the discontinuity acrossg the L.H cut, and Zn
corresponds Lo Gos Iy to U The sbove forma assumss that ‘A(s,tﬂ
)

> 0 as 5> 00,




s T e
If the ssvmptotic behaviour of A(s,t) is IA(s,tﬂ—u§-h!h €
3 ro . . . .
(€20) as |s|-+ 00 then we can now write & dispersion integrsl
. n .
for A(s,t)/8 * we get, neglecting the pole terms for the

momenty and with z = 24

< —e )
N-1{ <y ’ i
Aeo=3 50+ 2" D04 4 (DG e | oo
Py T g Zh (=) zN(Z'-2) |
-Z v

Thexn(‘t) are the subtraction constants and are essentially
arbitrary. However MA2 tells us how to remove this arbitrariness,
and ttus completes the dynsmical content given to the theoxry by
Hat.

Using s=channel uniterity, Froissart (ref.7) has shown

thav for finite range strong interacticn forces we Lave the bcund

!A(_s,t)_l < constant X slagas ’ for t<£0, (14)
i

which implies that we need only twe subtractionse.

PARTTAL WAVE AMPLIVUDES AND THE COMPLEX ANGULAR MONMENTUM PLANI

The asmplitude A(s,t,u) can be expanded in & series of any
set of complete orthogonal funtions, but the most cominon and
convenient choice is the set of angular momentum eigenfunctions.
Thue & t-chsnnel partial wave amplitude is defined by the 'partial

wave projectiont, ( for spinless particles)
+ i _
A - A D (. .
_ AZCt) = "-;_i—ﬂ' A\(S(Z&,L), t) IL (Z(:) OLZC (1 e5)
~1
f(‘)r l’—‘-Oy1:g2goo-Q (-3

The corresponding partial wave series is

2.
Ase = fomm > (22 1) A0 P @) (1.6)

Le=o
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This repressntation will break down at the ncarest o or u
singularity. However we can still define the partial wave
anplitudes by (1.5) cven when (1.6) diverges, If we substitui::

(1.3) into (1.5) we cbtain (see ref.2)

A= L, H (216 + 0D, (=0 Q) & 1.

which is valid for 1> N. Here zozmln(zR, zL).
Because of the factor (=1)1 the R.H side 0f{1.7) is not
suitable for continuation in the complex angular momentun vlane,

This difficulty is overcome by defining the "signatured partial

wave amplitudeg"
)

x / : ’ / /
Kle)- £, f (D@D (=@ e)ds (o

which are now suitable for continuation in 1. Equation (1.8) is
known as the 'Fréissart-Gribov' projection. The actual amplitude

is then given by

Ai,b)= {"[AYZ,E) + AY—Z, c):, + -:% [H'(z,e) - A—(—Z, 6’}] (1.9)

The partial wave projection (1.8) introduces kirematical

zeros and sometimes branchpoints over and above the dynamical

singularities. It is often desirable to remove these thresliold
singularities hy defining the 'reduced’ partial wave amplitudes

(ref.2, &ls .-efs.11,1,2,1.3.)

(U /—\ ((5) /Ch {(1si0,

In terms of partial wave amplitudes elastic unitarity takes

the simple form
aa i 2
Tn AT @©

QCI/C ’Aﬁ((i) (1a11)
Jt

i




and so we& cah write

208,E)

e . . e — i 44
ALCE) — X (1.42)

1 ) :
where P = th/(t)ﬁ', snd (S;'(t) is a reletivistic phase shift.

o continue to complex 1 we make use of A2, The first
step is to perform & uommenfeld-uatson transformation (reﬁs.1.2)
on each of the amplitudes A (s,t) separately. Although A (t,l)
have been shown to be analytic in 1 only for Re 1> N, Mi2 alloms
us to assume that A;(t,l) can be continued to the left at least
as far as Re 1 = =}, even though they may have singularities in
this nev reglon. MA2 tells us to expect contributionse fronm
isolated singularities end it is these which are then identirfied
with the subtraction terms in the dispcriion relation (1.5). For

reletivistic scattering the expected singularities ure poles uand

cuts. Iv this way ve obtain

}/'l'(.DO
A (s6) = eme |@udAEe) P B, (-=.)
~ - i SM,TU

%I E) -
STe j‘ (QQH)A @ L) ¢ Ze)dl (1.13)
sinTfQ

— T ‘?_CQ,Z—: ©)+1) ﬁf(e) P: (-2.) /sm Tok ).

where we have exhirited only one cut with branch point at X (t)
'»

and with discontinuity A (1,t)s The behaviour of this cut term
dersnds on the behaviour of the discontinuity A st the branch
p01nt 0( (t), 1£ N 1s rinite there we get an asymptotic benaviour

0 T .
of &Y 1oz 5. 11 & ~ [L— )] (£>0) thon the cut ternm is

&) 1+
~ s‘x‘/) (log &) §

The lust term of (1.13) is the conteibuticn from the 'Regge!




. By T
poles (ref.ili), with positions and residues £,(t) =nd F&;(tﬂ
respectively. LIf we have just a single Regge pole of definite

sigoature s then 1ts contribution to the full amplitude is

At = 1] Net) + 4K (2.0

whs -

(1.14)

. oL {E — (e
~ =% (_s_‘ O™ 4 4
S0 So sin oL

where 8, is a quantity with the dimensions of s.
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THis IMFORTARCS OF CUTS

it w;s o1iginally thought that cut contributicns to an
amplitude were not very important, and most of the early theory
and phevomerolryicel fits concentrated on Regge poles only.
Howvever it Lecame increessingly obviousy both theoretically and
phenomenologically, %that the pure Regge pole model was deficient
in many respects. These discrepancies and/or inadequacies are

most'nrtiurally' explained by including these cut contributicns.

As will be shown later, a Regge cut contribution nas the form

ey XLt
#Ms) 8¢ )‘/ log s (241)

and witohout assuming a spewific wordel for cuts, very little is
known sbout the size nor tane t dependence of the function F(t).
The cohvicus difference vet.~en poles snd cuts is ths Factor

log s. However for the ehergy rénge that has been experimentally
explored, and with the errors involved, this factor -is so 'milg'
that its presence is difficult to detect. Thua if F(t) turned out
te be 'large' we would not be able fo disentangle the pole Irom
the cut. To resolve this difficuliy we must decide what proverties
to impose on Regge poles. These will be sumperized briefly :

(a) Cenmnection of poles with particleas.

It secnc reagonable to use only Regge pole. trajectories
which contain cstablished resonances. An exeeption is the Pomeron,
whick may or may not be associated with the f or f'. Thus we
egplu e th se¢. of such poles as tbc.F w’, Pt etce for which
there is doubtful evidence,

(b) rhase,
*his is gilven by the signature factor 4 € cmi(and thus

depends on of cionea. This is the same for all helicity anplitude
¥ v

(e) Brergy dependence,

I} 2 :';‘!.-xf:‘-‘ o<(:-i
dofdt oc §%©-2 s*®

o oC
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(d) Fectorisatinn.
If ab-» cd is ithe t channel process then the % channel

Regge ressidue factorises o

Bt =ﬁab(t)/3d(t)o

This property relates different processes.
(e) Exchange degenerrcy.

The argument for this comes from dualitw,which requires
the choosing nonsense mechanism. However this is not finally
settled. |
(£) Wrong signeture ronsense zeros.

If the residue {5 {t) hus & zero then via I’actorisation
these: propogate to other processes. This causes difficulties in the
understanding of cross-ove,- phesomena in ﬁﬂ, K and'ﬁNg N elastic
scattering.

Given these: properticwv there are geveral features of
experimertal data which cause trouble for the puré pole model.
wWe mention briefly a few of them.

(2) CEX polarizaticn.

Since the JD is the onlwy known particle which can be
exchanged in Tf}»—+7ﬁ% then the helicity amplitudes have the same
phuse, and so the polarization should be zZsro. This is contrery
‘to data. FOI'.Tﬂ)-% 'Ylom one can appeal to a second .e'\.2 trajectory
i.e & split Ap 3 to give us a non-zero polarization. R 'f”,
() Crossover mechanisme

The crossover tetween do /dt(Pp) and do/dt(pp) is
explaingd by & zZeroe in the @ non-flip residue. Using factorisation
it can Le shown thst this must be a universal zero. It is observed
in Kip scattering but not univercally,

(c¢) Pion conspiracys.

+ - a
For bhoth pn-» np and ?713 - TTn e‘aicn—cons_iratar ¢ as vwell
-&J P g gy R
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gs & 1l exchange are reguired to fit the data, but the zsro {on
deep minimun) needed in the T residue is again propogoted by
factorisation, which contradicts other data.
(d) ¥issing dips.

WSNZ give a neai explanstion of divs. However some

reactions deo not have dips and unsatigfactory arguments have to

be invoked to explain this (e.g important.contributions from /\r
or Nh’)
(e) Serpukhov deta (25-65 Gev/c).

Regge pole theory predicts a steady decrease of c. bus
ke Zata is essentially flat. A sum of Regge poles gives

0}-==‘25.CE SJ&;(O)—-1

W2 expect the pemeron P to have K(0) =1 and other leading vole
corrections to have o(‘-'(O)_ 2 0.5. However the data é'uggests a
contri-ation with o (0) az 0.8 and is thus incompatible with the
known Regge trajectoriles,
(£) Exotie exchanges.

There are no known Regge poles for exchanges with "exotich
guantwa numbers i.e those not included in the usual Gg and gyg
Quarci,/"model configurations. Multi-Regge cuts can have exotic

cxpact
quantum nunbers, so one might/\these reactions to be pure 'Regie

- + -
cut', An example 1s M p—» M % (cdouble charge exchange) with

lesding cut P @f .

'

“he inclusicn of cuts remedies several of these defects,
¥rom a theoretical standpoint cuts are not only desirable but
necessarys. Tinis is most cleerly exhibited by considering the
left-lend discontinuity of the signatured partial wave amplitudes.

AT A

W show explicitls in Appendix A that




: m—t
R, DU /
m| B ﬂ,t) = _l ds’ (— - R —
T BE) % | %W)“Pk szjb(sc
4wt

(2.2)

v, €)
+Ié,7rz _Qtiq: Q(H‘ )O-«—G’/ m)/o (s, 4u-t-5")

ety
A (D)
for the seattering of spinless, equal mass particles. Here fku

is the so-culled 'iinird double spectral function' (third dsf)

and vx(t) are given v
v (€) = -'2-_ (42— €) EVECE+Ln?) (2.3)

An snalogous result holds 6@ the general case with unequal masses

and spin (see refol) = -

(’:(S tcl

Tom A‘ZJ-(E) L.H: dzt :DSH (5 €) §,\>\ (zc) O(,,\,\' (ze)

A
32T

A-u .
+ LD :D“H (s6) éo,\-x (ze) 0‘«1}\’ (-z.)
b(©

. J
4‘@%‘ Az ﬁH(Su)eax(zQ

1= Ef-é7f(:F—¢:)
2

The equation (2.2) is important for two roasons:=-

(2.4)

(a) the appearance of the third dsf f%u in the second term of (2.2)
This term vanishes for physical 1 values i.e at right signature
points, but is finite at wrong signature points. Also since the
third dsf does 10t sxist for norn=relativistic scattering then this

latter term is & purely relativistic effsct,
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(v) the finite ranges of integration.

This is very important since it implies that the L.l.
discontinuity is « regular function ot 1 in the whole finite
plene, =xcept .cr the poleé of Ql (at negative integer values of
1) in the second term. Having finite ranges means that (2.2) can
be continued as it atands below Re 1 > N, right down to Re 1< {.
This is not necessarily true for the R,H, discontinuity since
this iwvolves an infinite range of integration (see Appendix A),
and 80, 'a priori', it is only defined for Re 1> N.

Thus il svpears that the L.H. discontinuity of E?(l,t)
(and therefore of ﬁt(t,t)) .8 fixed poles at the wrong signature
(wsS) negative integers (ncnsense 1), It can be shown that the
remainder of the L.H. cut and the R.H. vut cannot give a cancelli-
ingkbntribution except poeribiv at isolated values of t. Since
the L.H. discontinuity in t of At(l,t) nas fixed poles at nonsense
1 it follows that At(l,t) itself has these fixed 1 plane poles
w™ nonsense W3S .

It is well known that fixed poles contradict the elastic
unitarity equation (continued)(see (1.11))(since the L.H., side
of (1.11) is & simple pole and the R.d. side a double pole) in
the absence of cuts. If we iterate this procedure we end up with
an essential singularity (the so-called 'Gribov disease').

Ve can get round this difficulty by postulating a
Superconvergence relation (SCR) i.e that the residue of the fixed
pole vanishes. however it can be shown, at least for some values
of t; that this requirement can not be met (refs.i1,2). Thus in
generai these wrong signeture fixed poles (commonly called
Gribev-Pomeranchuk (G.F) poles (ref.f)) cannot be made to disappear
by S.Co.R. Mor this reason unitarity then demands that cuts should

exist, since the R.H,terms of (1.14) then bave to be evaluntced 0N
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different sides of the cut, so that the pole will only appear in

one ter. (with the cut shielding the other).

Apart fron vielating unitarity these fixed poles ceuse
trouble wher v« consider the scattering of particles with spin.
In this case, the Tirst fixed pole now occurs at J = max(C + 0o,

’ 1 2,

-

Oy+ o;) - 1=0~- 1 iastead of at J = -4 for the apinless case,

But a fixed pole @t & = OG- 1 gives an asymptotic behaviocur 36;1
and so for particles with 0> 2 we get an immediate centradiction
with the Froicssart bound (egne(1.4)).

%2 mentioun vere that these f;xed poles do not contribute
to the agymptotic vpeiv:viour o1f the physical zmplitude., This
follows immediately Trom cune(1.%).

In the preceding analysis of the continuation of (2.2)
from Re 1> N down to the l=7t the effects of moving cuts was
neglected. In the preseﬁce of these cuts it night e possible
that as J is reduced enother cut in the t planc might overlap

+
th2 L.He cut &ndé su DisctB'(l,t) L.y DoW might not be given by

0]

the R,H. side of (2.2) alone, and the reasoning lLsading to th
GeP poles might no longer bhe valid. Similarly for the essentisl
singularity argument. However as shown by Mandelstam and Wang
(ref.15) the movements of the cuts are not such as to affect the
G.P fixed polee argument but ther de get rid of the essential
'singularity argunent. This agrees with the work of Jones and

Teplitz (refe1t), who approached the problem vis the N/ method.

GibiioRkal, PROZ: RTINS

.we can geir further insight into the relevionship between
1 and % plane singulerities by considering the Froissart-Gribov

projection in sore ceteil. Using (1.10) 2qne. (1.8) cen be written
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B (gt =L | Dye) Q, i_{__,q_\ ds
[L’.)Tz pA'A . c):‘" 2

4m* C‘( g Z

e
P
+
—
f
m
=
I
B
=/
=
™
—’
\'U)
fou]
el
~
&

where :D- ( s, (:) DS (S‘(z, 6’), 6) —-t 'Du_ (5 (-z, t)) (:)

liere L is defi:uzd by a finite integrsl and so is meromorpihic
in the whole 1 plane except for poles at the negative integers,
All other singularities of Bt com¢ from Dt.. Since a2 can ne ss
large aa we plezse -e see that these singulerities depend only
on the ssymptotic beraviour of Dt(s,t) for s 0@ i.e the hié-:l'{ energsr
behaviour of the absorptive partu in the 8 and u channel,

The sbtove rcpresentation is velid for Re 1> M, and in genersal,
of course, N is a functior of ¢, N =X{t).

(e (®)

Thus supvose Dse )Nb (log s) (s—=> 00) then we get the

00
—AL-14+ (&) §(€)
f ds § (,(),og, S)
&

vihich gives singulerities in the 1 plane of the form

b(£)
(o{(b) _ L‘)H'S

and 1?(6’) 153/ (ol((:) -f,) for Re § (t)

integral

+ other terms , Tor Re§(t) # —~1

and these of course correspcnd to cuts in the 1 plane.
. =4(8)
Thus A(s,t)~r 5 / log & corresponds to a cut in the 1 plene
of the form B(t} log{et€)- 1). Notice that this is infinite at the
breanch p01nn. This festure is discussed bhelow.

Similar consicerations epply when £(s.t) is a2 continuous

superposition of Regge lt‘:S €

~ { /0(12 e) s* a(é




e
[
\J1

which gives a singulerity like
04, (6)
e _p (L)
2= 2

ana this is the form of & Regge cut in the 1 plane starting c.uoi-_t)

+ other terms,

As it stands (2.5) is & valid representstion for Re 1> K
and in this case D hes branch points only for 3 umzo In the cont-
inustion of D to Re L« we cucounter nevw singularities in the
plane. These must be l-&epzndent singularities otherwise they
could not disappear suddéenly from the phvsical shezet of the t
plane as Re 1 is incressed sbove K, This follows from the continuit:
thecrem for functions of two or more complex variables. These new
singulezvities thus must be singular surfaces t =¢(l). These can

disappear (as Fe 1 increases sbove M) from the phvsical shced nly

thr2ough the brench points on the resl azis. Conversely as 1 i35
reduced singulariiies in the t plane will emerge from the inelastic

L3 PN

thresholds. In pearticular, cuts in the 1 plone will uanifest tiene-
selves @s cuts in the { plane, which will emerge fro. the inslastic
thresholds.

Not much of a generel noture ean ve said sbout these 1
plane cuts, and to dete there is no precise prescription for cslc-
ulating them i.e very little is known about the discontinuity
ecross these cuts. However Bronzzn and Joneg (ref.17) showed that
the discontinuity is singulear at the end point and that it also
vaenishes thers,

They did this by cousidering,; in the t plane, the seperste
contributions from the threshold cuts and the cut zenerated by
the! 1 plene cut ~ in fig(2) CUT 1 and CUT 2 respectively. licre teos

ti ave thekiastic and inelastic thresholde regpectivelyr, IT X’(t,lj

is the discoatinuity zcross CUY 2 then we have




9(¢',,JZ>— B(¢g,4)=2:¥(610) (2.7)

and frem elustic uniteritv. we have

B¢, 0)— B(t,,0)=4iv™"* B(£' )B4, 0 (z2.8)

Ve

where V = q2 = (t~tﬁ)/u.
'
& &® i
EZZ 2777777 7T T T T T T T I CUT 2
e
Ce ;CI S

fig(2)
Using these equatious they proved that 3’ must be singular

&t t = t (1) and also tha'. Y vanished at t = t,(1). It wes shown

thet this implied that the discontinuitv of the corresponding cut
in the 1 plane alsu vanished at .ts eni point.

Without loss of generalitvy we can thus write

Buw = Clew—¢] + f&©)  (8>0) (o)
for t near tc(l),and where £(t) is regular at t = tc(l)e The cont=
ribution of the cult tc the full amplitude A(s,t), as s —> 00 , is

cuT A . €) 1+
. [
A 5,6) ~~ C s / (»@og 5‘) (2.10)
and thics differs from the usual form by the presence of ﬂ & 0 in
the denominctor. This is not very important phenomenologicslly but

is very importsnt theorztically. None of the standard methods
(discussed later) lLave this form (they all have 8= 0) and so

casts doubt on the theoretical Justification for these models.

THE ATS LODIY

The first model for actually calculsting cuts was given

by Amati, Fubini and Stanghellini (ref.18):; - thce AFS model.
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They considersd the cquation expressing elastic unitarity

in the 3 cnanned -

DLSCSA(S:(?)- _‘L_ L A (s, C) A (s,t,) (2.31)

321TJ-'
which holds exactly for s< SI wvhere SI iz the first inelszstic
threshold, and where t1 and t2 are subject to

E(E,t,,6)= —(B+E+ )+ 26+ 266+ 2L, 2 0 (2.12)

The R.H. side of (2.11) corresponds to the diagram fig.(3a).

6
/-\\ —— s .
(A) (\) pa R
» o~ (~w = Regge pole )

fig.(3a) | £ig.(3b)

Regarding both A, &nd A, as givcu by Regge poles (rig.(3p))

.A; CS,f'TL)S:_:’w C.(e) s

we get

Dise, Alse) ~ ('fsfo(.(t,)wcz@’z)- 1] C ()0 (L’) 9(5\ dEdt, (2.13)
J S /2

Notice that elthough (2.11) holds exactly only for 8< 8y

; (€;)

we have used it for z-> 00 in (Z2.13),
Assuming the &; are real the form (2.13) gives a cut with
branch point at
ot () = mo,x o, ()4 K, (E)— 1] (2.14)

with 1;1 and ’ch subject to 5?@0, With linear forms Tor the ‘s,

K () = o (0) +0(E,:—,nd s-»00, we get

. ot €
D{.scs A (5,6) ~ F((:) S ()/ @\.ﬂ S (2.15a)
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e

_ ¢/
0‘1_‘;(5) = %@+ o (O)—1T + _ %Xy . € (2.150)

wvhere ) p

The relation between t, t1, t2, at the maximum in (2.1L) is
1 i 1
(~t,)% + (=t2)2-= (=t)% ; for meximum.,
An attractive property of the AFS model is that the cut

contribution dces not inveolve any new parameters = both F(t)
andcxc(t) can be expressed in terms of the Regge pole parameters
Cy anﬁlxi, Notice however that ¥(t) involves a complex conjug-
ation Cje

However, as we show below, this AFS cut does not exist
on the physicel shees sirc: i% is cancelled by higher order
unitary contributions. T:c examine in detail the reasons for
this cancellation recourse was made to psrturbation theorys
waere the prescription for calculating the amplitude for a
'*Feynman diagram'! is known exacilyv. However the disadvantage
here is that, for strong interactions, the perturﬁation series
/vor the full amplitude) cannot necessarily be expected to
converge, and so the numerical values of individual terms hsave

no special significance. But it is expected that the analvtic

properties of these terms will exhibit important general prop-—
erties of the full amplitude. Since complicated Feynmam diagrams
* are mathematicalily complicated, the discussion usually confines

itself to simple disgrais end iterations and suma of these.

The amplitude for a general ladder diagram can be written

_ 4 4p.
F o Lim ﬂLR'““”d’Rr 2-16)

g-—+o" T‘T (Cvzr._._.mzagn (_5)

=1

for eguel mass. spinless particles. Here k1,°&.‘,kj denote the

J independent loop momenta snd the 9's the momenta of the internal

lines,




-~
2

It caii be gshown that the leading behaviour of a laddcer with

n rungs (f£ig(la)) is g2 (X(t) log 8)™" for s—> 05 .
8 (n=1)!

t L . € X><
— i z...:n.. e ) '

fig{lLa) £ig(lLb)

Here K(t) is 2 two-aimensional integral over the contracted box

diagram fig(ub)° If we sum over &ll ladders, we get the contrib-

=2, 2 _«(€)

tion ~1
ution Z__giEK(e)f"%S]ﬂ = @57 a@=-1+K®

n=q S ',\41—1)!

which gives Regge be,aviour [ref.19). Thus we have s model for &
t channel Regge pole ¢
€ — .
— = + T + o

. sule—

The diagram consldered by AFS is essentially that depicted

in fig(5a).
e

l E
—-E—) _A._..___.-.__..._Q- L..__-_-_.w_-__b—.
sT
™M
fig(5a) fig(5b)

As. a Foymap diasgram fig(5a) mskes contributions to several
Munitery' disgrems (finite number, if N,M are finite) e.g fig(5a)
shows its contribution to the unitary diggram :ZII:X:ZI:tZ::
end fig(5b) a contridution te === .

AFS took only the first contributicn, and negiected all the
others. Recslling the correspondence hbebtween ladder sums (Fevnman)

and Reége poles we would expect that
i

;—' EENERN !«AN\_J
N,M IMW'I
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Howeiver it can be shown (ref.5) that the asymptotic behav~
iour o thé AFS diagram is log s / 33 independent of K end N, and
s0 the sum also hes this behaviour. This is a fixed cui benaviour
and not a movi,ng cut. But retaining only the contributions to the
2 particle unitaiy diasgram seems to give ﬁs the moving cut tehav-
iour 5“49 log s. Obviously something in the complete contribution
has eancelled this. Mandelstam proved this explicitly (ref.20)
when he showed that the contribution from fig{5a) was cancelled
by a contribution from fig(5b). He went on to show thait the cancell.
ation mechanism would not work if instead of the above diagram we

congsidered the Ycrons" diagram f£ig(6).

fig(6) fig(7)
It is unlikely thait this cut is cancel.izd by higher order diagrons.

Tre essential pioperty of this diagram is the presence of the
tnird double spectral function. The simplest diagram with a third
des.f is fig(7) and this has a simple fixed pole at 1 = -1, irom
the G,P analyslis. The actual diagrams studied by Mandelstam were

those of fig(8).

\.

A
(&

o

r1g(8) ()

¥ig{&a) is simply an iteration of fig(7) and so has a double

pole at 1 = ~1. Pig(8b) is really an infinite sum of disgrems and
Mandelstsm conszidered the contributions of tihis sum to the 3 part-

icle interimediate state unitury diagrain. He vias able to show that




o
-

fiz(8)b pogsesed & cut in the 1 plene whose discontinuity had

a double pole ut 1 = -1 and that the sum of the disgrsms fig(8)a
and £ig(8)b had no dcuble pole at 1 = -1 on the phvsical sheet
of the 1 plane. However the sum still possesed a simple pole

8t 1 = =1 on the prhysical sheet, and it does have a double

role on the opposits unphwvsical sheet of the 1 plane cut. Thus
it was shown that the effect of the cut was to prevent the
gimpla pole from becoming an essential singularity via iter-
ation. Tue ssme type ¢f reasoning applies to the poles at

1l = =3, ~55e000 1n the even signature amplitude, and at 1

-2, =b4jyeees in the o’d signsiure amplitude, where higher order

cr

cusy are vrasumably svailable,

Thus it was shown that the AFS diasgrem did nci give rise
t. a cubt on the physicesl 3.cet. However it does give a cul on
the vaphysical elastic sheet of the s plane. This follows

impediately from

A('E)‘(s,t) = A“)-(s,t) - 2i Disc A(s,t)
(2)

vhere A(1) is the amplitude on the physical sheet and A is
“its continuation through the elastic cut 50<'S'< Sye
Nevertheless there is a simllarity between the AFS

and Mandelstom dlagrnmsg If for simplicity we consider the

GQlagrams N
|S HINR N
N \/
S VANA
(a) (b) (e)

then it can be shova that (a) has the asyintotic behaviour

. TN a7
Crl ) (Llog s)i*ey 42
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The coefficlents CN(t) are associsted wiih the contracted diuge-
ram (¢, evaluated with two-dimensional momenta. \ihen we sum over
N we get a cut ti:t is analogous to that of (b) on the elastic
unphys.cal sheoat. This ia ﬁlausible because (c) is also the
contracted diagrem corresponding to (b). Notice however the

important differencu: that the AFS cut involves a complex conj-
ugation while the Mandelstam cut doces not, On this basis the

‘crosgs’ dnes not seem to play much of a purt, other than
actually generating a cut on the physical sheet. This suggests
that the 'c¢cross' is a manifestation of somethdng more basice.
Intuitivellr, on the Glavher !wref.24) or Parton picture, we

would get the 'cross' structure in & diazgram such as

L=

T~
and the cut would then be a result of the compositness of
particles. At least it suggests that the existence of cuts
depends intimately on the structure of the scattering particles
(ref.1).

An illuminating method of discussing the Mandelstam
diagrem (aud others) is the: 'Reggeon Calculus' developed by
Gribvov (ref.22). This is a mixed Feynman-tegge method which
avoids the need of having some 'elementary particle’ model
of Regge: poles, such s an infiriive sum of ladders. Gribov

studied the disgram £ig(10) for luvrge s, and found that the

v

h

discussion was much faciliteted by the use of the *Sudakov!

[4

varisbles (rerf.23).




Py ki A///”__‘\‘\\\ R.. b,

> > F21 ~E——> <
h-klQx\\hszéilg\‘_—“’/g:j;? ,}{/;i'kz

q=R

/ R > >
ps= h 9 pi- ""‘V"b' 2~ P hl”'q/-k P4é 4+ P 2
fig(10) |

The amplitude for fig(10) is (see egn.{2.16))

Al = i X j LR A%, d%, RiR, (2.17)
JJ or

oV 1’) [} R d\p'l 1, 1)2 129 q-k) and the

where R = R, (L,, X

d's are the propogators =f the .nternal lines. With suiteble.

assunptions Gribov obtaiued

Als,6) = 's'fd 2, a'\TT(q/,R> E § (2.18)

where ET" 37, are the ususl sigi.ture factors, and N g represents -

T+T2

the integral over the left-hend cress (the rlght-hand cross

¢ives a similar result). Taking the discontinuity of (2.18)

we have

D TmA=_1 |d?& N5 Sas Re(§_§ ) (zu19)

Ja,

l

lSI

and inserting this in the Frolssart-Gribov projection gives

A:T G(, (r( R, Nm; Re (& E,,) (2.20)
| J T—-(T +'3';_-1)

This gives ua Lhe expected cut, whose position is the

game as the AFE cut.

A more dCuﬂllequalySiS of‘A%Trillustrates well the imp-
iz

[ 3 o3 Ll ¥ aan oy ? B> oy - s 1 - & t 3
ortance of thhe 'eross' (or nonzero tnird double spectral function)

We have N (t') €, /,(,’2_) = (&s‘ A1 (S,,C“, c, ,(:,,) (2.21)
A




where A, is the Reggeon-particle scattering amplitude of the

1
".:.;‘. gl i o
left--h.:nd cross Iéa
£ == -
—> —_—X T
A i
| S4

Because of tiea crosaA1 has &8 non-zero third d.s.f.

i.e it has both left and right-hand cuts. The contour of

integration is illustrated sbove, If there was no cross the
amplitude 4, woulé only have the right-hand cut and so the
contour can te closvd in the wpper-half plane, Since A, ~~

1/sf for large s, then N vanlishes and so there would be no

1
cut. (A Regge pole behaviour of A1 ancunts to a renormaliz-

viion of the pole.)
The reason why the usual AFS calculation gives an
apparently non-zero result on the physicsl sheet is that they

cunsider only the on-massw-shell effects. In fact the ofr-mass-

shell part cancels the on-mass-shell contribution. This is
demonstrated very simply in the paper by Rothe (ref.24). His
method, however, is much less general then Gribov's..

From the sbove analysis we sce thet i~

v (g) the signature of the cut is given by
}J: 281 .»62

This follows immedistaly from (2.18).

(b) from the Sommerfeld-Viatson integrel, A(s,t) is given by

A@Jt) « I'&TAT?T s'= Jcm‘?_t_ (dj N:}v,. grsv Re <§ﬂ§-r;>
! J —3 R
) J— (5-+0~1)

and this of course represents & cut in the J-nlane storting at




J = mex (51\k ) +J ((q-h) ) = 1) &nd with discontinuity

JOWQ-L NZ—::& §:r s Re( S)'J'. §°’1)

Neglzcting the singularities °fivﬁtfhis would give the

given by

familiar cut contribution (for large s)

) o S Nog 8 (= 7y

However as discusscd earlier this contradicts the Bronzan-
Jones condition, derived from crossed channel elastic unitarity.
In this respect the simple cross graph is inadequate, It also
fails in thas the cut does not perform the necessary duty of
properly eliminatiny the “Gribov disease" of an essential .
singularity at J = -1 (rcf.25). The proper incorporetion of

t channnel uniterity however would reqvire iterations of the

zimple croszss graph, IPF’ac1 an infinite sum of graphs does

correct the above two deficiencies,

LR XXX
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THE ADSORPTION AND mIKONiL MODEL

Although the theory gives us insight into the general
properties of cul- it does not provide a method for calculating
them. 5 reumei , this, several models have been proposed, most
of which agreec to leading order. The basic idea is to write
the full smplitude #s & power series, identify the lowest
ordsr term as the 'lorn term' (usually a Regge pole) and the
highe: order terms as cuts,

A8 glready noted the AFS model was the first and this

was en attempt to unitarize the Regge exchange: contribution.

The unitery equaticns may Le vritten (in an obvious notation)

= Tox T+ (o@ Ton Tan  (elaatie) (5.0)
2.4 - .+4Lf

Tw T, = Re(T xToo + Top X Tap)

+}__—_ o(CE —[—bn an (inelastic) {3.2)
Nt a,b

Foir our purposes we may regard a and b as two particle
states and na n-particle state,
The AFS (or multiperipheral) assumption concerning the

- production amplitudes Man is

Saxzmcugs

. <
Z J\d’i}r MM‘ A '/Lm = Lm P+ low~lying cui
\

Nsc

E: -[d i) Ma“ M ba = Rab—" low-lying cut

:“,:CL b

(3.3)

where P is the Pomeron (leading contribution for elzstic scatte=
ering) and R is the leading Regge pole contributions to the

scattering a-> b,



V]
-d

If we identify T, with ¥ . then gquations.(igi)

In® s InD + Py p

' - LW (39“»)
"m T,y & Im R, + 2Re(P' K Rab)

These are the AFS equciions. The: Regge pole appesrs. as the
Yoverlap'! function. £iso note the complex conjugation (ref.26).
If we take P imaginary, P = iIm P, then (3.4) reduce to

Inm Taa ~ InP +InPxXInP

UNITARITY (2.8)
I 9 . ~ Im R, + 2Inm PXIa R_
iy ab ab

Thus the 'cut' terms 5dd o tuLe legge pole terms,
This is to be compared with the Absorpticn Model result,
which we now c¢escribe. The abgorsption «fiect 1 dve to tha
existence of many open ChuﬂﬂClE which counpete with the one undsr
consideration, In generel & sing.e guazi two body production
chanpel constitutes only a smell fraction of the total inelastic
cross=-section, More complex finel state con;*"ul ations also exist
with apprecisble cross-sections, Intuitivelly one would expect
these more complex reasctions (o be initiated by collisions with
small impact parameters (small angular momentwm) and thus these
collisions would be lezss likely to participate in the two-body
‘reachionsSe Yhua wne would expect that the lower partial waves
would be redaced relzaiive ta those given by & simple peripheregl
model, and thai the high pertial waves are essentizlly unchenged,.
This is the sbsorpiive effect. The prescription for tsking this

into account was given by Sopkovitdr (refe27) and ref.28.

and the Afb is that given by 2 multiperiphsrel wmodel (usuallv @

o

egge pole).

'o—\
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If we make the usuel assumption that

J J ot o a9 PR
Sea & Spp ™ 1+ 2ipho)etic ( p =203%)

then (3.6) reduces to (refom) o
A (w =A (s (:)+ Jr dde, A s)A (s,tz)G_U_’f_). (3.7)
K b
-S

where K = - (L * t + ﬁz) + 2(t LR ttz), + l{."t.t,‘;t,z/s ol 3.8)
The form (3.7) holds for large s and small t, t'L 2 t2 and ths

second tersm corresponds to the disgram

E,

-_— e e E— e e e e - e— = =

If we use simple Regge pole foris for the amplitudes in

tlL.e second term, say

Als, O————C ‘”b(. e

Tt /2 X (L)

{430 we get the contribution (with & (t) = X (0) +ol'%)

1. 66s (S/So 6-“[/2)0%(5)

81 i+ oG (log s, — T/2)

X (€)= o (D o4 (0) =1 + (o bf (o + %))

where

In deriving (3.9) we used the result (refs.32, 33)

. f _ X '1
fJ d, " ag T EOEE [oh &
K"/z A L

uhich we then spprozimeted with

e b; b; C/‘ (!),"'!' bﬂ.‘)
(bi+ b)

e h NE N . e s o beeiames et o
Here A U) 4 v,-r,_x,lo,\‘a}“;,. end 5 a1 + 26 8. vie hove also
=

i 7 b e e - . . e by s e Y e e o w/ e
asauned that &, and &, wra anall compared with 1.05( 850
P

s



The cut contribution (3.%) is exactly the kind of tern

that i eapectcd from CGribev's znalysis.

In the abov: derivsition spin was neglected but its inclusion

causes no pro-iem. Briefly, we only need to make the change

F ( z) = dt‘l‘“(z) and then use the formula

Z(Qd +:L)d_ W Lz) (z,) d’P (z,)= 2 8@ ( o+ }«'cﬁl-f- p”@)

'ﬂ' /_\“/1.

where /_\(z Z,,Z,_) —_ 1--' «z -—‘..1 -+ ZZZ,
and the angles ¢; are given by \I‘ufo’l)
. ., Vi 5=
e"¢' = (zz_'n ZZ, A %) (1-z2) IQ“ZO ete.

The final veault is

cuT d:
AHS (s,€) = [0(2 G(.Z,_ o fusfeg (z“s>Al*s-‘4J‘3}‘4 ..L,s)

Psl% Ibn | |
X O) cos(#»¢,+f«’¢z~+£~"¢a) (3.10)
A""t.

where H_ denotes (!A., bas f.;,g }44), the helicities of the particles
wrefs.9, 10) and ﬁ&:_- f‘l"i*n. , }*I= Pg._/x,, ) /.w:)us-pé
There is one more affect that is usually considered., It
was assumed that elastic scattering in the final and initial
channels dominated the correcticns to inelestic amplitudes.

" This gave us the sxXpression

Abs. \
A b /-\ab + Aaa,Aa,b + LA&.B Abb

ab (_ ok l:)
If we inelicde other intermediate gtat .'f: tnis
generelizses to
Abs
wb A“b - c(A Aa{, -+ A‘L[) L\bb)+ LZ A AcA (3.12)

CEFC;,

ilowever there ias no rigoursus way of estimaticg this new
term, 1t iz sssuwed (Michigan group, ref.29) that it can be aco-
ounted Tor by multiczl-ing the elastic ceorreciion toirms by a

Tacter )\ , Which is cxpected to e of creder 2.
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Thus the modified Abscrption result is
A‘bs "2 81 . a el K 3 e
Ky me Ay +2iha®a (8,7 4y = 4%) (3.13)

Note that A may depend on spin, and in gereral mayr be a complex
function of s and t. However it is usually sssumed wo be . recl
constante.
. 1
If we put Aab = Rab (Regge pole) and A% = iIm P then

wve get (dropping the A rfactor for the moment)

Abs ' )

Aab _ Rab - 2In P X Rab

. . (3e1l4)
=> Ina%A ImR, -2InPx InR, (Absorptive)

Thig la tc be contrasteéd with the 'unitarity correction', ecn.
(3u5)a which has the opposite sign for the cut corraction. fhis
d: tference also arises 1n the elastic case = the eilonsl nodel

of Arnold (ref.30) (%o be described below) which gives

Spg =k ¥ 21A = exp( 21iP)

and so Inm Aaa =In P -IcPX InP (Eikonal) (3015)

The: sign given by the Absorptive-Bikonal model ({3.44),
(3.15)) is definitely preferred, both experimentelly and theor-—

etically (refs.22, 26).

This contradicticn between the two prescriptions wasa

resolved by Ceneschi (refe31, 37) who pointed cut that the ldent—

Y]

ification Tan_av M-n for the production amplitudes used in

[9)

deriving the unitarity correction should be replaced by

1 1
o F z -
e .
Tan = Sga Man Spn (3.16)

SAneoe the ahenprntdos R, e 17 mryad? S S . .
since the gidsorpelon nodsl seams pleusihls for inclastic scati-

ering. (2.16) sayrs that the phvsical procuction vmplitude T

-
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To obtain the Ffirst crder corrections ©o the dominant Regge
pole contributions we must also take into account correc-ions
of the same order in the production amplitudes Tan’ It is
assuned that the eguations (3.3) still hold. %e have to jecida

=4y

what to take for 8§ and &s & first approximation we put Spﬂgs
nn : -~

1 i.e we assume: that sabsorption inm production channels is

1
negligible, Also we take S = 1 + 21P which gives Szaz 1 + iP,

8
so thet
{ >~ \
T, =~ (1 +1P) B et )
Putting this in (3.1) md using (3.3) we get
InT,, =InP +P X P=2InPXInP 4 eoe
= ImP < Re (PX P) + esoe (5#18)

wviidy agrees with the elkonal model eqn.(3°15)o

For two body inelastic scattering we have

T ~ M

an ™ Manx P+ 11\5"011}i< P‘ah

an+.l.

and putting this in (3.2) and using (3.%) again we end up with

_ 4 e _
In T,y = Im Ry, + 2Re (_Rab X P ) = 4Im Ry, XInP 4 eeo

= In Rah + 2Re (Ra-bx P) + ooe (301i9)

which zgrees with the absorptive prescription (391h).
_ Thus the use of absorptive corrections 1is consistent
with unitarity. Absorptive corrcctions %o produciion amplitudes
together with unitarity reproduce the sboorptive correections: o
the two body inelastic scattering amplitude. Similarly for clastic
scattering and the eikonal prescription. Note that the above
derivation was independent of P being imaginerye.

It is important to point cut that the above derdvation

dezls only witlh the imaginary part of the smplitvde —~ it does not



------

tell us the corrections to the real part. In this respect the

absorptive and eikonsl prescriptions go further thon uniaritye

IHE EIXONAL MODIL

The impact parameter b is defined by the equation

J=qp = 3 (3.20)
where dg is the c.m 3 momentum,

The partial wave series with spin is

Al 8,t) -.6TTZ(2J+1)AH(S) @ i (z) (3.21)
We make the following replacements in (3 .21), which are valid

Yor |al—» o0 and [tI<< |g| =

(1) (z )—> J_ [(J-u)] (Bessel function of
order F‘ }
wore = |pe M i feal= | s bl
(2) Z——aqudb (zJAJ)
J ) o

(3)  ag(s) = (exp(218y(s))~ 1)/21 p(s)

——->(exp(1'XH£s,b)) ~ 1)/21p(s) (p(=) “?'%?

xﬂ(s,b) is called the eikonal function (see ref.i).

Equation (3.21) then becomes

AHS(S, £) = 4T($Lfo[)db [4 - LX(S b):, F’ f-——(-:)

— 41Tsrbdb X4 0= X - Ll ..,]J;w-/--u)
o 21! 3i -n

(Herc we have toksn Z, = coOs e = 1+t/2€;2 which gives 8~ cin @

A
2
~ (=t)7/g_ for smell t , end so (J+5)8 = b (~8)%.)

in potentisl scattering (ref.21) we have
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(Y]

Bem

owJ‘ (b8) A, (50 (sew)

Xy, (sb)=_1

SIS
- 0D

and taking the inverse of this we gst

Auise = 47—§fbcuw (sb)J (b47E) (s

Thus we identify the first term of (3.22) with the 'Born term'.
1f we regard this as & Regge pole amplitude then the higner
order terms will give us cutse.

In elastic Séattaring we expect the Pomeron P, the P!
arid possibly the P"' {o be the contributing Regge poles, Thus
ve take -

' "
ABOTR | AP 4 aB'h AP L AF gay (

N
[ ]
D)
wn

-~/

% (s = ___fawA (s,e)d (647€) (x.26)

which gives

KL (o0 s [ bab Xy 4 4 {XTX o S R

The X 'a are of course matrices in helicity space.
The first term of (3.27) gives us back the Regge pole
emplitudes, while the second term gives us the first (dominani.)

cut contribution ¢ - 0

A= ames [ sdb [ X5XF), Tr (6FD)
O LY
= 2ms dedt, bdb Ty (bIE) X
s 5 L( C .

YRS ) V= i
Fs 4 J

XA(SL)T:; g(b‘_})Ab(‘stJ_ \bJ e) (3025)

For- elastic scattering the flip cmplitude is very smnall s0 we can



X — / - ” f o a - al hl 3 P— P A - o4
take p= po = ‘.k o IFor thes non-rlip amplituds p= 0, and by using

the fcrmule

j bdb T, ()T (BB T (b FE) = 2 (K (39)

28
T K

where K iz given by (3' 8), we get

cutr(®

rcLL dt, A (SC)A (st.) e(K) (3.30)
‘/z.

—oO

non=-11 ip ILT("

Similerly for the higher order cuts.

We can zxitend the sbove to inelastic processes with

quentum number exchsnge Ty s-irg absorptive corrections

| .
Thus Cad Jd .J
>SS Ay =4y (3021)

and writing 8% = exp(i'X.E), (X'F: = eikonal for elastic scatle-

ering) we have

JAES ' L
Ay = exp(iXE) (exp(i'X,R) - 1)/21/) s f = 2(15_/532

. "2
wherex R = eikonal for inelastic scatteringe. (303 )
Meking this replacement we have the 'Distorted Rorn

Wave'! approximation (refel) = .

AHS( L) = AT‘”rf db ei)(,;[,,_ eixq:}%(bf:f?) (3433)

In expanding

s .XE .",[ ;7 . .
fe -] X+ e XX + Xe (i Xe)+ ...
]

we meke the appreximation of neglecting the Regge-Regge cuts,

since they are lowsr lying then the Regge~Pomeron cuts. i'nus


http://Regge.-Pome.ron

(3633) reduces to

An (50 = 47s | bdbfX ot 10, Xt Xa (.. ] 0
¢ - (3.35)

Comparing this with (3.27) we see that the first cut term has

no 2 in the dencmirator and sc the anslogovs result %o (3.30)
o

is cur (1) A R £,
— . A A K) 5 ..
A}son-fliS’SJ t> - 2 T\'&S J. d'tl ou"l (Sltl) L Sitl) _%_(Vz_. (3.36)

which is exectly the same as the cut term in the absorption

madel result egn.(3.7). AP is of course the Regge: pole amplitude

-

e oua o . .
for the ineliamrtic procesc and A p is given by

X§ (e = 1 [ae T (b5 AL 60 G

o (G

L=

For the purposes of calculatior the forms (3°27) and

(3.35) are much easier to handle: sinee they do not'involve the:

cuantity 9(:;) cos (pd + W+ K'¢;), which is aifficult to

' ! t 3

menipulate. Also the higher crder iterms sre much easier to obtain.
It is instructive ta consider these results for very

simple paremeterizations of the Regge poles. If we neglect the
P' and P% we can put

(3.,8)

2 - 15,3 explct) , c© = a v g(log(s/s ) = 1TW/2)

F.S =
++ T

where we have taken ofp(%) = 1 +og(t), and s, =1 (Gev/e)?.

If we consider MW charge exchange thea R§ zj)pole, end we take

C. b
i b aame
AL, =10 ¢ (e

(3.39)
where ¢, = &, +c£é(lag afso - iT/2)

- V4 - / K I,\‘
- = & J(iveg s/a = AM/2
eo = By +a%(xtg s/8y = iM/2)



\ie uge the impor‘i;;;-..ﬂni: formul:e¢ (sec ref 039)
@)

Ct L - — = m P" b/4c
J;e )T (bFE) At =) 2) /aj[ <
and the inverse (3»14\!}
w-b’Ac L B : N T M Tl o
je ()% " T, (be)bdb= 0¥ (402§ [@cy* e ]
) ac

to get the eikonals corrsaponding to tne &bove amplitudes @

X P . - B

w =_top . e
gMNcC
. op(o) 2
. - T ? —“’/4C
X/f:: i(>’1 (_é_,e /2 —g—_ i
So gT(SC‘

, /2 \Xo — b}
R P R W
S, | W, ¥Msc, -

{(5.04)

Inserting these inm (3.35) wa easily gé'h

ol (o) 22 x(1)c
. G e n
16, (..)° Z(m) 3 G2 (
' __ X(z)
A+— = LGI( >€(°) ( XG}) (m - cj‘ © C

S (S Cat

As

Holt2)

where Xg;') = c,‘lc/(ncAI-v»c) s "51 )-_- /( ne, +C)o
Xe iAXg
In (3.42) we huve included a )\ factor ( e — 8 =)

L]

If we just keep the first two terms in (3.42) we get
cC &
ol (0) - T Z
A, ~ (. { ab_ >\6‘1—< ¢ )8"* |
g ~C )

(o) c 92 Lal €
A--}--—N (C C..) "(’y € >\C7-r C > L GHC Z

~ J' -
l Qe Cc,+<C




and with c, &= C,=x C x4, o, = b, A =2azands_ =1 we find

2

thaet A nas a zero at t = =0.2% while A+_ has & zero at t = «C,5

¥

This is roughly viat is required,
We cia get an estimate of the cut terms =t t = 0.
If r = )\G'T/(S'n'c},z 1.3 we find at t = O
o (0) o0 n mn
A++ (6-‘-’0) = L(..-) ¢ G"»] Z (—1) T
n=c (m+1)!
and so JPolel:|Tcutel =114t - (4 - ™ F)/r & 1:0.4l,
Thus at £ = 0 we expect the cut contribution to be LLSS of the
poles
The relativ-. sizes ¥ the cut terms are as follows:
(with pole = +i)
(1) = =0.65 )

c(2) = +0.28 and so retaining just three
C(3) = =0.094 terms gives Y cuts = -0.46,
c(L4) = +0.024 a goad epproximation,

-

rith A =1 the corresponding velues ere

C(1) = =0.32

¢(2) = +0.07 which gives ) cute = 25%,

C(3) = =0.011

The above estimates show that keeping Jjust the first
. term may not be & good approximatiou.

Avay irom t == O the cut contribution will decreszse
slower than the pole a.g comparing the pole and the firsh cul
the effective % dependence is essentially

ct |,

Pole 3 Cut = e LCU/2

and so a2s Jtl gets larger, the ecut will sventuslly dominnte

the pole.



Thus these models differ only very slightly. The

eikone.” method is more general since it allows one to caiculate

4

cuts in elastic s—attering (PX P cuts) snd Regge-Regge cuis
(RXR), and ti~ eikonal "Distorted Born Viave' prescription

gives the PXR cuts. This is to be contrzsted with the Absorption
model which gives nu: prescription for calculating PX P or RX R

cuts. In our later ciscussion we confine ourselves to the

eikonsl method,

In the calculation of cuts one has to make cerizin

zgsumptions. These 2,¢ ¢

(a) nature sf input trajectories i.e whether the pole residues
contain o factors.

(~) the form of the Pomer. . ¢.g fixed pole (reto43) or finite
slopef .

(c) the. form of the residue e.g zxponential etc,

(&) whether to iaclude Regge-Regge: cuts (R1X.R2) where neither
R1or R2 is the Pomeron.

The central issue is (a).

SENSE ~ NORSSISE FACTORS

¥e have seen that in general the partiasl vieve amplit-

2 J g .
ude A” hos Tixed poles or inverse square root singularities at

wrong=-signaiure nongense points, However st right-signature
nonsense points w2 czn invoke: SCR, which thus gives AJ finite

at nonsense (M) »oints, snd A~ (J-J )2 &t sense-nonsense (sn)
points Jo‘ Se neglecﬁing the third cdouble spectral function

effecig at wrong~signature wes can say thoit tho I legge residue ﬁII

.
fu ~ (o =32



at sn points, at least for the right=signature points, Then

using factorization we have

ﬁ’ ssrz‘nn = (Bsn)aoc (ot =3,

Thus either ﬁnn or [% vanishes as (o( o o)o The former csase:

a8
is known as the chiocosing=-sense mechanism, in that the traject-
ory couples to the ss. amplitude and decouples from the nn.

suplitude. If (5 __ .~ (ot =J ) then the trajectory is said to

be nomsensc~choosing.

For the wrong-signature nonsense points the residue
i zeneral has fixed poles (o(.-J ) “1 2% nn. points, Whll\. at
sne points it behaves as (o(-J )" z » and is finite &t ms. voints

This is the fixzed-pole coupling,

The fo-l_lo-wing teble gives a summary of 1ae behaviour

of the residucs and amplitudes as the trajectory passes through

& nonsense point J, (refs.i,12,35)

RESIDUE MECHANNISM
nn sn 88
(=7 ) (=7 )% 1 Sense-
Yo o choosing. right-
1 signature,
Zz Nonsexnse--
1 (_0( 'Jo) ( -Jo) choosing,.
-1 -3 Fixed-pole wrong=
(X 'Jo) (x “Jo) s couplinge. } signatuies
APLITUDE MECHANISH
nn sn 8s
-t Sense= '
(x “Jo) i (ot "Jo) ' choosinge
rign Gon
4 1 1 Nonsenser slgnatura.
choosinge. )
1 4 1 Fizsd~-pole 1 VLoD
‘coupling. ! fignaliulC,



due =zt the

b

If we neglec’s the fixed-pole in the res

wrong=-signature points (weak third d.s.f. effecta), the residue
behaves as the corresponding right-signature point, and the

amplitude is the samc ocxcept for an extra zero-(o(-Jo) from he
gignature factor § » Thus, neglecting third d.c.f. effects, the

- table becones

MECHANISM AMPLITUDE
nn sn CEE
chosoing, (Y F (T
Nonsense= § g ?
choosinge

As an example consicer TT N charge-exchange., Only tihe

P Regge: pole may be exXchanged and o = 0 is a wrong-signature
-8

points t W-\\W\/V\< )
—_
p / F n

The two amplitudes;Ait) and Agf) are se and gn ammiitudes resp-

ectively (a2t & = 0), Vie now have

RCHANTSH (1) (t) ’
MECHANTISH A++ _ A+__

r\
Sense(8) 1 X veak third

Nonsense(N) ol e desefs affects

R

i

o
N

Fixcd-pole
lcouplimg;(]’.i‘aP) 1

-

atrong tnira
doszo ef'f':j\’:ts

There are two schools of thought on the nature of the
pole inputs (refs.t 38).
(a) Argonne 3chool,

The Argonre nodel (refa.30,34) zssumes the existence of

W

Wi N7 (] M orme) seamoy ey s P . .
WSNZ (wrong slgnature nonsense zeros) and so the residue of the



Regge pcle contains an o factor. Sc¢ in the convoluticn which
generates the cut (see eqn.(3.7)) /R 1es a zero and one would
thus expect the inteygral to be correspondingly smaller due to
internel cancellation - 'weak cuts®, Since the cutas inte fere
destructively (Ael being mainly imaginary) their effect is to
displace these zeros only slightlwy. The cut contributicn is

smaller for helicity flip amplitudes because they do not have
the lower partial waves, which reguire large absorption corr-
ections. Thus zerous in non=-flip amplitudes are displaced more
than those in flip ampliitudes. A by-product of this is Fhat

the =210 in do/dt is converted into a dip, as generally reg-

aired by the data.

Ir general the structure of differentisl cross-
sections derives from WENZ in ‘the pole input with cuts being
just snall coréectiona.

(b) lichigan schoole

In contrest the Michigan model (ref.29) deces not
assume nonsense zeros, The cuts obtained from the convolution
are thus correspondingly stronger and their destructive inter-
ference with the pole can generate dips in the differential
cross section. Yo get even stronger cute they used the X
faclor. We have already seen in our example with x =2 that
we expect a dip 2t t = =0,55 if the flip amplitude is domin-

ant, and & dip 2t t = =0,21 if the non-flip is dominani. If

both are important we expeet noe dips at 2ll,

ach of these schools have their respective successeés

in various roecti

o}

na (see any review of Regge phenomsiiology CeF

ref.%6) znd their differences are not vet finslly settlede



EBIKONAL FORMULGA FROM PERTURBATION THLORY

The eikonal approximation (ean.{(3.22)) can be derived
by considering e certain class of VFeynnan diagrams = nors®
precisely it involves the following (refs.L0,41)

(a) we consider generaliced ladder graphs only =

~NoA oA "G

> T oo T i
- Ky n | i | !

%A A A A %n

N L o h

P2 P+

where (i1gooegin) is some permutation of (1,2500e9m)0

+b) we drop terms quadrstic in q's in thie 'nucleon' propogators.

Y& corsider ssalar particles only i.e a ¢3 wheorye

The full emplitude is then given by the sum of all

such econtribusions i.e

l.‘

§ s Whore @n = Z 'l‘

perias

It can be shown (see refs.hO,41 and references within) that,

for large s,

3

ih ol 11 l J‘vn( b)eexp(ib.gq) d2_t_),
(2Ts)R

wheve ¢ = py=p, wnd W) = _4__ | V(g;) esp{-iheg,) &g

. 2
(277)
y N o / - . A
and jhe V\gd) sre the meson propogotors.

The Eiﬂ‘ can noew be ecsily done, and giveo

b

A . . [
T . = . oC {\”‘“}7\ lb._g)(elx - 1) 4

| e



-

Teking g as axis we nave exp(ib.g)= exp(ibf%.cos0), and using

2w
d?g =b db @6 and  J (bd=t) = _i |exp(ib/=%.cos6)
2
o
we: finally obtain
00
| ix /I .
Toypl8st) OC )b ab (e = 1) J(V/=t) (3eld4)
(»]

which is the eikonal result derived earlier (egn.(3.22)).

It can be shown that the form (3.44) is still veliid
even if V(qz) had no poles i.e that the perticular tunctional
form of V is not{ essential - we reguire only an adequate beh-

2 . -
evigur as q —» 00 o Thus we could take V to be a sum of ludders

i.c & Regge poley, which tallies with our previous eikénsal

medels Notice however that the: genereslised ludders ere closed

cwvler s <> u crossing, so if we require this condition %o be
gatisfied by she Lernel V(qz) then we should also include
tvisted ladders in our definition of V(qa). This entails the
inclusion of many more diagrams.

The: main drawback with the 'genersliscd ladders’ is
that they include planar diegrams, which ought not contribute
to the cut, Also it would seem that we ought to include t-
iterations of the ladders, which correspond to & renormalization
of the poles ahd cuis, snd so our input into the eikonal moderl
should be "bare" Reggeons, not the phrsical Reggeonwz, The
situation is thus rether complicated.

An alternative to the generalized ledders rethod ia

given by ref.l2 which considers disgrams such as




il

whera the twe pazrticle form factor of the Regge coupling is
exhibised explieitlye The leading order behaviour ig obteined
from Giagrams. wii . nested® couvlings, which are the non-planar
diagrevs (the disgrem above is equivalent to the Mandelstam

a

diagram)e Ve aga

Flu

n obtain the eikonsl result.



CHAPTER L4



Vie apply the generel theory to WX charge-exchenge. This
process is particularly casy sinee theé quantum nuabers are

such that only one known particle, Lhe‘p s £&n be exchang

L-.l

2@,
Indeed this is one of the main ressons w y—TtH scattering has
plaved a major rcle in high energy phenomenologys

It has been studied by a large number of authors., A
TN charge-exchange fit with only & simple f) pole (roef."L)
gives a good fit to the differential cross section but of
course zereo polarization, Various P + F fits have Lbﬁﬂ mad
(r,.u.45,u6;u7) and these give reasonable resulis, Barger and
Phillips (ref.y8) used 5 poles (P, P! P"’f’ s P ") in simultane
eously fitting high energy data and finite energy sum rules
t» the low energy (£ 2 ch) vhase shifts, &«nd obtelszd o very
good fit to the elastie and charge~ecxcange data, including_a
positive pesk to the CEX polarization, &s reguired by the new
CERN dstae. Severel fits using cuts have been made (e .8 refs.
29,3 49) but these weren't very satisfectory, espoecielily the

charge-exchange pelarization. Because of the large smount of
do /dt and polarization dsts, and also some data on the R
peramcter (PCf;JO/’lt hés been possible to anwlyse the TN

emplitudes directly at the given energr 6 Gev/e (seec refs.51,52).
The Bargzor-Phillins (hercefter denoted BY) cmplitudes cgree

well with thesce deterninaitionse

Vie Legin with & brief review of the theory of TN
scattoring (for a fuller cdizcussion see env standard fezl e.g

refo.%). The TH scativering anpiitude is the natrix vlement

betwesn Dirae spincre (for the fingl ond inltisl naucleon shetes)



L6

of the esmplitude
T = A( S;t) - %i B(ﬂ,t) KO(Q-l'KlQ) (,1'-01)

where A and T are the inveriant smplitudes (scalar) intro-
duced by Chew et al;,xtkare the Dirac mestrices and a4 Qo
are the pion four-momenta in the initial and final states,
The helicity amplitudes T++ and T_P_ arc obtalned by a suit=
eble cholee of the Dirac spinors - eigenstates of spin
elongz the nucleon's direction of motion in the c.m frene
(this direction in of course diff‘e_re'nt for the various
channels, and the »opropricie eigenatates must be worked out
for each channel).

In terms of A and B the helieitv amplitudes for

“he t-channel procesa Tuw—»NN are (ref.1%)

t . _
A'(%%ZOO = 2p (A - My Do co:setB)
(1) 3
K33 oo = 9t®sinS,B (L4e2)

where L;Lp2 = t--J.a.m2 R l;q2 = t-h,.;,z and ccsze_h = (s=u)/Lpa.
(m is the mess of the nucleon, (L the mass of the pion).
It is usuasl to introduce: instead of A the
combinaticn A' = A - mq/p.coset}a, ) (L4a3)
Por the s-channel T N—> TN the helieity amplitudes

are

s) o . 2
AS;-\-O'.,_%O = cog( G/a).[&uA + B(s-m "V'Q)]
(Loly)
<) ’ n 2 4
Aééi_%o= ain(e/Z).[A(sm?‘-f)mm S"'"m""\" )]/82

where cos(8/2) = (zzmt)"/x o 61n(9/2) = (-st)?/x (0 = 8,)

s o1
and e = [S - {m +}A)d] [S - (m "H)"_! .
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If Py is.the momentum of the incident pion in the laboratory

framc then it is easy to show that
2 2
x ;'umgpL _(L.5)

Using the reiult x2 + 8t = (m2-|¢2)2-su end the identity

um2(12+ st) - t (s + mZe 2)2 = (umzn t) x°  we can write
n= ¢

the s—-channel heli.ity amplitudes in terms of the A' and B
amplitudes
’
A;g)+0 = §12+ gt) |2mAY - t (o + mz-'Ag)B
L4 X 2
bn“= t
. (Lo6)
1
= ()% |at{n + m2='L2) - __2n (x2+ st)B|:
“0’-0 X - ——23._—-
| hn“- %

where ¥ - 3% is the nuel~on helicity in the s-channel centre:

of msss system, We shall arop the O subscripts and the (s)
superscript in the subsequent formulsc, since weﬁshall be
dealing only with s-channel amplitudes,

Throughout this chapter we shsll be concerned meinly
with the charge-exchange resction TF-b-—91T°n, end to & lesser
extent with the elastic reactions Tfrp —é'ﬁ:po

The amplitudes for these reactions are not independent

but are connected by isospin invariance in the following way

T Al

1
3

+ +
AT v->T p)
AT n—>Tn) = v3 al

where the supersorints rafer ino t-channel isospin Itz 0s1.

We shall henceforth work with the ampiitudes A®, A’

°

We naprsmeterize the amplitudes A"g B1 in terms of a

}9 Regge pole. The Regge poles which contribute to the A°



anplitude sre the Fomeron P, the P' (or £) and the P%(ref.2),

A tyrical expression for a .P Regge pole is

o .°‘ . -T2
F:-—Gn FQX)(;T;J)( ): LGe‘ t.(o; Trd;ri (°>

where we have written the residue rs(t) as Geat, Mo ) is

!

some function of ti= trajectorwy o(?::: 2 + t. It contains
factors such as (o{ + 1), (A + 3) etec. to prevent "ghosts" i.e
poles arigsing from the term cos(lTo/2) at = -1, =3 etc
(negative t). We srs interested in the region 0> t> -2 (Gev/e)?
so that we need revain onlv the fdctor (o + 1) to a good
approximation. The factor (o 4+ 1)/cos(lTX/2) is then a slowly
decreasing (with (t!) function and tc = good approximation

may be abscrbed into the exponential U‘ﬂ‘ (a>0) for 0> t> -2,
M o) will also contain & factor o if the P chooses nongense

(at & = 0). Thus a good spproximaticon tc the JO Regge pole lis
: ot ~ LTl /2 X
Fo= (Ge™ x. e s (L.8)
So
for & nonsense-choosingﬂo

So for the invariant amplitudes A', B we take

o/, (0)
/7, c(: -2 e
Ql‘r’lA(g,t) = A (e K "/s . D(e
- ” (4e9)
end
. € — (M (o) o, (©)
B(st) = B, e ¥ Eo(_s__)“. A
giving ftor the full amplitudes
1€ h /- N
A ):_— L(_)ﬁz-l-st)l( Li > AXQQ'L o (§+m- *)30( 8
S 4i-€ s
(lL,,’lO)

L

4 (Q) — - 7]! & 0) & . 4 ¢
A+_ = i_!_-_g ((3 & )9( Avuse (Ei—mz—k.:) @ 47 £ ol <x2+ s‘t)f?.cl
Se



where c,(e(t) =O(€(O)+ O(Q‘t
cy = h:g + °(€ (log s/.?.‘_J - 1TT/2) (i =1,2)

and s =1 (Gev/c)2 throughout.
The (e) superseript is to remind us that the R H.S

is the: e pole contribution to the full amplitude, The sbove

forms are for a nonsense-choosing (R For a sense=choosing f’
therc is no & factor in the Ay terms and for a fired-pole

coupling there are no o factors in either of ths A or Bo

terms,.

For the purposes of ealculating cuts the ahove forns
were simplified by meking the epproximations

2 2 2 2

2 o
X+ ctex = s ,s+m-f;.2zxzs,um-tzhm“(h,ﬂ,

which are valid for lérge s and small t. We then get

1© ~°TV9- MQ(O) ¢t N
A, =~ ( s.,) 0% € —Z% B, €

o (0)
AL@ ~ LJ’E ( “’”“/‘s) [A o, € 8,0, et ]

S¢

The normslizstien of these amplitudes will be given later.
Beforas wa can proceed to the calculation of cuts we must first

decaerihes the It = 0 samplitudes A.2+.

IJU = O AMPLITUDZS

Qur perticulur representation of the It =0 amplit-
udes is governed mainly br the requirsment of simpliciiy. Ve
thercTfore chose to parameterize them directly as Zegpe poles
(v.'it!ao-u‘i; CroLsing ) ard used a simple form of the common P + A

2.

parsmeterization ag & starting point, Our proesdurs wWas o

\
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rcgard the It = 0 B.P amplitudes {ref. L8) as “"data" an? to
fit these with our relativelr simple representation,. To do
this we proceedcd in two wawrs =

Kethod (a) ~« 'n the first we took the If = 0 amplitudes to

be: & sum of two terms which look like the Reggps Pomeron nlus
a P' term, Our philosophw here was to regard this simplwy as

& functional representation of the B.P smplitudes without
identifving the terms as P and P', In this sense the gquestien
of including PP, IPPl;eve, P'P, P'PP,...etc. cuts does not
srise,

Method (b) -~ in the second = 1i4 identify the terms as-P.and

P' and so we also included the cut terms PP,PPP;...,P'P.P'TP,

200 @tCe

These methods will be described belowe.

We required a simple renresentation (Rezge pole X polwy—

aomisl in t) <o that we could calculate the cuts snalwticslly,

We expect () = 1 +&' t with oLl = 0,5 (Gev/c)™2 and
P

Kpi(t) = Kpe + ALy t with 0, (0) 2 0.5 and A pr = 1.0
(GGV/C)-zo £ rough comparison of this representetion with the
real and imesginary wvsirts of the B.P It = 0 amplitudes suggested
that a better £it would be cbtained by taking & ne-compensation
P' contributinne. This is moat clearly scen in the behaviour

of the real nart of the B,P It = 0 non~-flip amplitude, which
for the lower enzvgizs at least (up to avproximately 6 Gev/c)
hzs 8 zero sround t & =1.,0 (gcv/c)20 This feature can not be
reproduced if the O(P‘ factor were shsent, Accordinpgle we

chose® a no-compensation PY in cur fitu, even when we included

cuts, This in fact sprees with most pole perameterizations of



U

the I, = 0 amplitudea (see ref.Lu8). The sddition of = P¢

contribution did not significantly improve the I, = Q fits,

and since its in2lusion would have made the2 cut caleulations

even 20re caimlicated, we felt justified in neglecting it.

Before ve describe the methods (&) and (b), we give
first the B,P representstion of the I, ,= O amplitudes, for the
L

sake of completeness.

B P AMYLITUDES (T, = o)

These are given by (ref.L8)

L r , o) -
B.P3+ = §x2+ st)? %QMA'G - (8 + mz-—'u,“)t B° J
X Lun?'- t
(Lo43)
B.P:_ = (~t)* [ 8 + i = '.LZ)A'O on(x°4 st BO]
X ng- t
where — .
'o D v K --(.T\—dt/z 1 2 0(\./2
A = Z =0 e (V - ),
¢ - (1 = p,P*,p"
o B —Te /2y 2 2 \¥ifa—1
B® = 2 —five (=)
(
end where V = (8 - u)/Un = (s - P.,z)/2m + t/Lm
=nd V = o+ $/Lme The of, ﬁi, Y. (1 =T, P, P") are
given by Xp = 1.0 + 0.36%, o(p,.-_ 0,56 + 0,86t, o(P,, = he
[N
[SP - 1:2°5 32914-)10
0 ! >
ﬁ'.,, = a7 e0°) 7tsin(Tl‘o<’Po/2) [r (1 - é;oc,,,)]
l?'P" = 49,8 e2°31t
L’P = 24,6 a°0b v Mot el 81%
12
sz = (22.2 + 16,9 eO”}“) 21T, 2) [r'(‘; - J0l50)



(%) ]
(B

We now de_scz?j.b-::r our pzrameterization of the It = O amplitudes.

OUR MUDELS (&) AND (») OF THE I, = G AMPLITUDZ

Methe: (a) - e adopted the following representsation

cst _ ’pl(o)
= ioyse” + E,s,e¥ o( ( m’s)

A, S
_ % (Loth)
/\ '| . ‘45 -infa %p(9)
-1 LCys + F, s, e o{P (e )
Zm l_ Se
where 3 = by + a'x:, (1log sx/s0 - iT0/2)

. ’ '
Cg = Mg + ol .{log s;/szo - 1T/2) etc.

oLp(t) =1 +oit

i
o(P,(t) =o<P.(o) +0lpet

end s =° (Gev/e)? throughout

The resl and imaginary- varts of these amplitudes were
fltted to their 2P It = 0 counterparts for t valiuves in the
range 02 3> -1 (at intervals of 0.05) and for the incident
ricn labersatory momenta

Dr = 205,50056.0,40,0,13.5,18.2 (Gev/c)

(Reeall that Py, & x/2m == 8/2m) . Results sre shown in Fig.5 .

In this fit we have 11 parametersd The actusl fitting

. . \
methods. used sare descriled in Chapter 5.) - see Table (1).

Jethed (b)

Thic is more complicated becauss of the addition of

cuige In thia case the Iy == 0 amplitude is given by

-.th

(\-!-.4—\

o
5

—
<

x"? P L P } 1T 6
} Hy

‘1_5 Y .‘; ('
(Lol5)

For the '"Porn’ term we again take the forau (Letlh) ios we write
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+4 i P++ + P++

[N
»”
]

(4.16
o Born )

: + pt
R L E et

c,t - et K 0)
B A ¢ 5% -iT/2 _ ph
where P = iopse © , PY, = E s Kpie ° (e o8/8,)

and correspondingiy for P ; P! _ (ean.(Lo1h))o
c
The eikenal Xy is obtained by taking the Fourier—
Besazl transform of these 'Born' terms
o
o J— o Bom
XHS = J__ dt U—F(b\]“e) AHS (Le17)

§S
-0

which gives, by using tae rszsrlt (3.40),
o . P ,PI
X +4+ — X +4 -+ X e

o C N F P’
X+- P—9 >\,i-' + X

~~
I
°
-
[}
[w)

~’

+—
where
P . - %/46
X++ = (,0"1-_ e ?
g7(C3 ( )
Kpi O
P/ | it ' —bes [
X++= Eos_:O_(e ‘ /z_i c / O(P,(O)-‘O_(éf - —---lz2 -O_(_é_/
8TsCs So Cs +/cz ]
X+_ e ___z CQ . _b_ [ ....e_/...__..__.
Im. g % oy
f Olpl(o)

P | = - b4 , ey
Kiom_fse (€Ms) €7 bl ao-2 (28] %
am.$Ti5.C; Se 2 Ce T/

The first term of (4.15) gives us back the '"Born’
term I + P'. The evaluatior of the other terms of (Le15), of
- fn . - . \
the form(ﬂj1/h§){kf }H’ is complicatad by the fact that the
s

eikonzlg are cctuslly matrices in helicitv spoue, Thus we vrite



Xo = FX?Hr X:—

° T A
X, X°. (41%)
By perity invariance we know that the fuil amplitude A;; has
: 1
the symnmetr
y b A° - A°
“ eacs
(L4.20)
Ao = .-Ao
A= -
snd similarly for AL .
8 -

We therefore sssume that the eikonals X?lsalso' obavw
this symmetry to ensure that each term of (L4.15) will have
this symmetry and therefore: the whole sum., Thus

xX°= [ X Xi-

— x:- i+ (h°21|)

Since we know that the non-flip part is much grester
[~]
than the flip part, which means that 'X?H.l > |X+—l s We can
2
neglect termas of order 'X:..] and higher, Thus we get to a

good approximation

(] ~ 0
[- Q(°)“J+_ ~ m (Xij‘-' X -

If we were to include >\ factors we should multiply

(Lho22)

) - —2 \ 0 :
the above by ( )\_H)n 1 ana (XjH)n 2X+= respectively, In cur

fits they were included and restricted to the range 1< A < 2
[~} [+
but in fzct both >‘-H- and >\+_ took on the value 1.0 in sur

best fit, so from now on we will omit them.

We considsr first the non-flip cut terns of (L.15).
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RON~FLIP CUTS(++) I. = O

t

The first cut contribution is given by
Cs,(1) = 4Ts f bdb i (%) Jo(6F®) (hos)
where (‘XH) Q( ) + 2X X + + (X‘:;)z

In practice all these terms were retained. For the higher

order terms (n > 2) we made: the further approximation

(XL)“ ~ (X + (X XE, )

i.e we dropped terms of order (')(_':‘,_)2 and higher, since the
Pomeron P dominates the P*, '

Thus we are 1eft with three types of cut terms to
calculate g= (X ‘,)m'1 and (n + 1)( XP yr X++ s which cont-
e : 2 . ]
ribu“s te C_ (n), and (X_H_) which contributes to C_ (1)

only, We deesl with each separately.

(4) MULTI-POMEZRON CUTS( ++)

We have
.N (fXP n-1 : n -(n+1)b /4C3
=t =
(n+1)! " Qn+1)| nc3)<8’1rc3> (4.25)

Doing the integrel ('4.15:) (LTt sf'b db...) using the

pesult (3.40) we get the multi-Pomeron contribution

(n+1) . c;(:/(nﬁ)
P++ = _tOrsS. ) (Lo28)
(n+4) an)‘ gﬂca
(2) MULTI-FOMERON @ P-PRINE CUTS( ++)
\ !/ 7
Writing 6 = Ape (©) — «p’f Cs

(Lo27)



L&
we have

"
£TC; Y gTFSL

y (-—dfh o ps(0) ~ b*/4h o3 [ +(4‘ )S] (L.28)

and so using the result (3.40) we obtain

. - /(0)
(wm) / _c‘n'/z O(P
P++®P++_ ) Eso(e
Q‘KC_;

Qn+1)'

s X

So
‘ he. eh,,‘: [(6-hss8)+ £ (-5, h2 )]
vheve hyy = ch;//(ncS+ 03).

(3) P-PRIME @ P-PRIME CUT( ++)

- 2“ /(O)
werave ¢ (X%} = i AR (e ‘s) X
] T 2! . So

$TSCs
—2b"/acs

X e [6‘ +26‘6’(b2)+5 (— bz>:l (Le31)

and using result(3.40) again we get

(L4e29)

(Lo30)

ZD(PI(O)
P":'@ = L gbnsg (—LWZ

cst/ 2
[0'11+U'1,_(:+ U b ]
4 srtscs

(4.32)
V.

n= S — &,¢5 (51 zCs-/?-)

U, = &e¢f (Szcs.-&)
2
Vs = Sicd /e

So the total non-fiip cut contribution is

aO (P(n”) (ﬂ\ ++> + ; P++ (14433)
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and the R.H.S is given by equations (4.26),{4.29) and (}.32),

The total non-flip amplitude is

= ¢ o Zi
Ay, =P, +P +C2 _ (4.30)

++ ++
] .
where P++ and P}  are given in eagn. (L+16),

In practice only the first three terms of the sum in

Ci* were kept, The resl snd imaginary parts of A2+ as jtiven

bv (4.34) were then fitted to their B,P counterparts over the
Game range of t and p; values used in method (a)e

Notice that the cut terms do not introduce any new

o o
perameters (apart from X+4_, 4+ - )+ The results of this fit
are given in Taeble(1) and Fig 6.

To give some ldea of the magnitude of these cuts we

give a rough estimate of the cuts P(ﬁ), 2p P ana P'(2) 4t
Py = 6 Gev/c md t = 0 , which are to be compared with

I B‘.Pi._(t = 0) &~ 750 and Re B.PL(t = 0) & =150, We find

P&i)cs -1101 2P**P;+Aag 50(4 - 1) , P;&z)gs +18

i.e Izr. 0&3)(1) ~ =160 ; Re c.(.g)(ﬂ) o~ 68 4

‘We now indicate the snalogous results for the flip cuts,

FLIP CUTS (4=) I =0

t

We. have indicated above that we have, to a gocod

[ey],_~ ) s

We mske the further approximation of putting Agpp & 7(++

approximation,

so that we need to celculate the exprsseion



\./ (\'.\) i“ (n+1) (XH- (X+_ -+ XP ) (L.35)

(et D!
to obtain c _(x+ from
o0
C:e(n) = hﬂsfb ab v 7, (v/=%)
(o)

We again use the result (3.40) to obtain

heo
C,,_(“)- J-¢ )" [L_CLS e 4
2m.n! 81(03 cz (4.36)

(e Y7 R M s o)

(

-6 so

where
g=°(f(0)“20(‘;1/C6 84=—0(:)//C2

| . (Lo37)
L\43 = C4C3 /CY\C4,+ C:) hég = CéC;/(Y\Cé'f' Cg)

The total flip awplitude is then given by

A"*_ =P,_ +P_ 4 Z c® (n) | | (4.38)
A=

Here again we retained only the first three terms of the sum

when fitting the real and inaginery parts of this amplitude
to their B.P counterparts., The results are given in Table (1)

and Fig.6 .

IMPACT PARAMETER ANFLITUDES FOR It = 0

We give here the formulse for the: impact-naraneter
amplitudes for thes two cases (a) and (b). These are defined

by the eguation
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X (b =L f 1 AL GO T (b))
s

Thus for case (a) we have simplwy

(5 | (@)
j-+ (s,b) = X++ + X = Xos (4.440)

+%
(@

thus defining )C¢+ .

For case (b) we have approximatelw

— o (b) . . X© ®
X«.‘:._‘, ~ ¢ (1 - 9‘ * )

=o(b) o (b olb) (b
and X+.. = +- +

o® xo¥ o(s)

= X,. © ( i x:f”) (lobi1)

We can now turn to the calculstion of the It =1 cuts,

I, =1 CUTS

From the A',B parameterization of the p vole (L.12)

we can obtain (by using the result (3.40)) the p eikonals
)L? ¢ Gefined bw

Xf,s = MSJ&C AL, Je (bFE) (4.h2)
Ve get -
XS, = (€5 x [3’ +(28)% + (TS ]

(L ols3)

XS =§j,;§‘%;(ewzs'~;>e')§ [@ +( 9) ]



2 2
-b /Llc -b /L‘-cn
where 31 = A°X1_e 1 % Boxze 2
¥ - A xe P bey gy e D7kC,
2~ To"3 : o'ly
2
~b“ /e
53 = B Xge 2

2 2
2%/4¢ %/4c

2 2
=b“/he =b“/lhic
9, = Ao'f}e 1+ Bo?he 2

and where

X4 =_CL1Q>ZQ(0)—°_C(‘é) ) X2
Xa= =g /et ,Xo= 113(0(6(0) ) Xg= —d'
mcz

Y1=.i{<9ze(0)—;391_€> ) yz-—f<o< (o) Qoz>

Cl cl

_ N
= 1 o(e(o) 2%&)

2. 2
mCs

Ye= —otf /et Ya= oG /ct (i i)

Note that these formulse are for & nonserz--choosing
.P « The other cases that we will discuss viz, sense P ena
the fixed-pole coupling, are eaaily obtained as special cases
of this nonsense case,
| Since we will eventually use these formulae to conrpare

these different P inputs together with the different inputs
- for the I, = O amplitudes (methods (a) and (b)) we shall give

below the most general results, These apply directly to & non-

sense-choosing P ipput together with method (b) for the I, =0
amplitudes, The verious other models then follow easily from
these general results b+ msking a few minor modifications,

which we sh2ll indicate at the appropriate place.

We will include the: enhancement factors )\.H.s >\+—



&1

(denotea )\1 . >\g_ respectively) to allow for diffractively
produced intermediate states (>\ = 1)

We stesrt from the eguation

oo .

A1H$(5,6)=4Trs deb{%ﬁ-&- L[)\X°X]+.._+ 3 [A X9 7(9]+., %J =)
s Hs nl

© (Loh5)

The first term Jjuul gives us back the P pole contribution

(4o12), Consider the first cut ccntributicn., As before, we
get

[Ax X" ] = ék,xLXE,, — X XE

(L.L6)

aexe], = xS+ o xa X,

o P e14
since X' = X' + X » We make the approximation of

P v P
neglecting X+_ compared with X+_ s 50 that (LL.L;6) becomes

(AXXE], XS, (X XE,) — el X XS
(447)
~ i XS (P, +XT)+ A X XE,

i[Axex]

—+-
0 P
For the higher order terms we make the approximation XzX )

end we write '

O]~ X, ("
m' -+t ol (L.18)
L GO x| & xS (XY
m ! A4 ! '

Thus in 811 we need to egleculate the cut contributions

from the genersl terms (L.18), together with the isolated toras
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MK XX, — XX O XX
' (Loh9)

We will conside:r each separatelw,

NON~-FLIP CUTS: It =1

(1) MULTI-POMERON 6 RHO NON-FLIP CUTS.
P e
X,H,is given in (L.18b) and X.H b,-:' (L.43). We have

_Q)\ xe (XP Y\= L>\ —LK'/a
I ~) gTs M| ?Kca>

X e—-nbﬂca { 3‘1*({—‘{_(22)32."' (:;bz) 3'3}.

Doing the integration in (L.L45), using the result (3.40) with

‘I'_I = 0, we obtain, afte.r some manipulation, the contribution

++(n) = M (ﬁ( LW/1_> Q(o)

X { A oel"*3t( w,+ uu(:) + B, eh“t(u,,—l- Uy,E + untz )

(4 .50)
where L|-13 = C, Cz ) l’\,_3 = C,C3
ne 4+ Cy NCy+Cy

ans wy= hg (Xi=haXs) | ta = hyy (XamhusXa+2h5 X5)
= =y X; U= hyy (Hhys Xs = X,)
U3 = l’\i; Xs‘
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(2) P-PRIN® @ RHO NON-FLIF CUT.

p’
‘This is- the term LX|X++X o We have

- oty (0)4 o (0) 2

) o i e P —b/-’LC

{ )\| X$+Xi+ = le; Eoso <€ CW/2_S_> . e SX
@rs) cs S

{“k ) § Hn( )Sa+ (b V'Y }

We. obtain the contribution ( F, = Q)

( (,Tf/ de(°)+ °<P' (o)x |
| (4o51)

x[A, e“'s”(g‘,+ st £+ Bt ol + fuE 4 )]

where "\‘s = (CCs ) "\,_s = GCCq
¢ +Cs- Ca+Cs

ana {, = his [%,86= his (X848 X3) + 2hg 5:X3 ]
fn= hos [ 4 his 5. X5 — 52X, — § X3 ]
1y = b 8. X
bt = has[ 8%, has(Xa8:+ X4, )+2hzs(><55,+>qs) Chis§Xs
Do = os [ Ahog (Xe 6,7+ Xe82) = (Xa 524 X 8= 1€h2 6,Xs
fas = has [ X8t Xe8s = Thas §,X5]
Jar = = his %56,

5, ¢ 82 are given by (L ,27) snd the X's br (LAkL)
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N\ 4P
(3) EXTRA CONTRIBUTION TO THE NON-FLIP CUT FROH --chX Ke

This is given by

cEx -—LIT/':. oL (0 )
- ) ()
?Trc4 So
(h.52)

X [Ao eh‘4t( l|+%(zt—+?l3 tz) + 8o ekne(gl, +3,,C+313(:2>]

whers t\H = C'S;ﬂ. ) "\24 = GG

St o4 ey

anu the gij's are given by

%" = h; (RY:‘ k‘* - y|> %:u = '“; (2Y4 l"14-_'\lz.)

%n = ‘\\i (4Y3 "\14— Yl) 1 %n = 'f\134 (4\/4 l'\v}." a.)

%IS = "\i Y3 . Qa3 = "‘i y4

Thus the total non-flip amplitude which we used is

given by ,
4 A (e)
A++ = Z CH(“) + C + + C +4 (L 53)
A1(€) C
where A is given by(4.10), C (n) br (L.50), by (u.,1)
and Cﬁ by (he52)0 We expect the contribution C++ to be
small, In practice only a finite number of terms in the infinite

sum were retained,
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(%)

FLIP CUTS: I,G = 1

(4) MULTI-POMEROY ® RHO FLIP CUTS.

Ve get tiese from the general expression

b Ay (xP.) = A

;lm n" 8TS (8‘1(%

@—LW /1 Q_(O)e_nbz/ti»a.. _2[3_ ] [ e, + (‘;4@_2> 82]

Doing the integration in (4.45), where now F_ =1, we get the

contribution

_mz o((o)
C () = rn'. TYC:>( / > o)

o Aoeh.ge@“i_% 9+ 8,5 g gut)]

where the coefficients qi;) are given by

qu= e (= 2ha¥) | gu= ba (=2ha¥e)

Y2 = _L‘g Y 4=~ lf:g Ys

and h13, h23__ are given in eqn.(L.50).

(2) P-PRIME @ REO TFLIP CUT.

.\ P ye |
This is the: tera (,)\,_X_H X+_ s, which is given bw

X

{ >\ X 7( N — E,Sc M2 (e_ (/2 s
@“S>22m05
~b/acs |

X € ._;1_,1[95 (8 )(98+88)+( )95]

30(6(0)"' ‘XP’ (O)



and gives the contribvbution

p’ __ X o (0)4 (x'p,(o)
CE.: = —EOSC>\2_ J—t’ (e—tﬂ/:l _S_) ¢ X
s Am So
(Le53)

X [Aoeh'se(b,.+ b,,t} b E) + Boeh’st(b2.+bnt+ bl,;(:z):l
end the coefficients by, era given by

by = his [ Y18, = 2hs (15,4, 8) +6h3 ;5.

b= h& [ Ghis Ya6. = ¥,6. - Y,8, ]

Bl5= i"f; Y3 Sz_

‘-2

bay = has[ Va8~ 2hag (Vo824 Y,8,) + ¢ W2 Y5, |
bn = [":5 [6”‘15\/4 0 — Y28, —\/4_5‘1

bl?, = L\fs Yq.. Sl .

' . P )(e
(3) EXTRA CONTRIBUTION TO THE FLIP CUT FROM c>\. X+_ ++

This is given by

: : o, (0)
Cf)i — (,}\1 J:“t _Co><e—tﬁ/2i> e X

2m \§Tc} So

(L.56)
€ 2
)< [ AO e"“’t (q,u""an,t_) + 80 ehm (0"1(+Q1).t+ a13 ot )]
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where the aij arc given by
2 . 12 '
oy = hy (X,—2h, X3) Qg = hae (X,_—SZ‘\14X4-+ 6‘\24-,)(5—)
4 :
Ap = — L‘H X3 2= hi (Gha Xs— Xo)

6
Aoz = L\14 ><5-.

Thus the: total I, =1 flip amplitude: which we used is

t
given by

A © = 4 EX
A= A+ > .+ C +C- usn
n=1

(e ‘ 1 ) P
where Al_ 18 given by (L.10), C, () vy (u.su),Ce_ by

EX :
{4.55) ond C4_ by (4.56). Again we retaincd only a finite

number of te.ﬁns in the infinite sum,

The equations above. ((4.50) = (4.57)) apply Jdirectlr
for the nonsense-choosing P input., To obtain the ecj,uatinns
appropriate for a sensc-choosing f and those for a fixed-
pole ccupling we need only make changes in the expressions

appearing in (L.4lL). The subsecouent formulae remain unchenged,

We: give these changes below.

 SENSE-CHOQSING

X, =4/e, 5 X5 =0 , ¥, =1/c;'2 , Y. =0. (4.58)

The others remain unchanged,

PIXED-PCLE CCUTLING

2 2 2.3
X, =1/¢;, 5 X, = 1/l c5) s Xz =0, X = 1/(Ln c?) ¢ Xg =0

= 1/0,% 9 ‘l?p-) = -'i/cg 9 ‘f3 = 0 9 Y.u = O (.3 ()-“659‘/‘

v
- 4

1
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Recsll that egn.(L4.h45) is derived from the formulsa
4 S ;Y ©
AHs(s,t) = 41Tsjbd1> e xX° J_FL((:J-T:) (4.60)
()
and the corresponding expression for the A° amplitude iu

A 60 = 471'5&]50(5[1 ~e ] To (b76)  (uasny

(]
In the approach sdopted in method (a) for the I, =0

amplitudes (L4 .61) becomes
o © =o (@) |
AHs(s,t) = 4Ts f b db X‘;s J; (6J=E) (Lo62)
0

where iﬁ::)is given by (L .40). Compering (L4.62) with (4.61)
shows that for method (a) equation (4.60) reduces to
o0
A1Hs(s,t) = 47rsfbdb [-X9(1+L7<'°‘“’)] I (bi=E)
‘ o | He (L4.63)

so that in this case we have only one cut term, Thus when methcd
(a) is adopted for the It = 0 amplitudes the It = “ amplitudes
are given by (L4.53) and (L4.57) with only one term of the inf-
inite sum included. Thus in this case (4.53) end (L4.57) reduce

to 0 ' ¢
' A4++ = A:,,',Q + C1+ (1) + C$+ .
, Method (a)
L= A‘,,fe)+ Ci.(n+c¥ (obL)

where we have also neglected the small corrections CExo

Bguations (L4.6L4) were the ones used in refe53.
Vihen method (b) is adopted for the I, = O amplitudes
the whole sum in (L.53) and (4.57) should be included, but

in practice only the first thrce terms were retained.
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t = 1 ILTPACT PARAMATER AMPLITUDZG

These are of course defined by

'X,1Hs (s,b) = %S_j de ALS (sjt) U—F (bie) (4o65)

Using method (a) for the I, = 0 amplitudes we ged

X:__,, = '\++ ('f—i' )\XOW
Xl_ = Xe (1+ A, Xom

lethod (&) (4.66)

o ()
where we have included the )\ factors, and X’++ is given in

(L4ol0) e

For method (b) we have approximstely

1 A v E n(b) . o®
X = Xouk M XL X+ 2 6 XE (ke S)+ ...

o(b) .
. (1- )‘+)\e‘x()

Method (b) (1.67)
o()

Xio= X0 (4=h+h ™)

(b) ‘
and 7C++ is given by (L4.17) when we *ncludn cuts in the

It = 0 amplitudes,

DISCUSSION

The above formalism is based on our choice of paramet-—
erizing the t~chammel amplitudes (A', B) in terms of a p Regge
pole; We then used crossing to give us the s-channel amplijitudes
(La€)s This is more exact than using a& direct s—channel param-

eterization, since it correcily tekes account of the kinemat-

leal factors, Also it is essential for a sense»choosing'f) ?



since the of factor appears in the B amplitude but not in the
A%, and this 'mixing' cannot be reproduced by a direct s-channel
paremeterization, We did in fsct try diruect s=channel parsm-—

eterization, together with a few other varieties, namel,
] (¢)
A1 ¢ —(."/1 O(Q( )
() A =i(e™s
So

ot A
[Aool e — :Doolee ]
{ . oly(0) £ '

4 . -l. oL, (o) .
(2) A++ _ (8 Wh}i e [AOO( eCi|(':= (TDOO(QQC"‘:]

y ) o (0) 3t

which are to be compared with equations (L4 .12). All were found
to give inferior fits., The s-channel parameterizaition and the
form (1) above gave much poorer fitg. It is interesting that
the form (2) above, which looks very much like the A', B form
(4e12), gave a slightly inferior fit even though it has two

extra parameters, The use of the A', B form resulted in much

the best fits,
A crucisl feature of the A', B parameterization is

the:appearanc¢ of the factor t in the B part of A1+. The inp=-
ortance of the t factor can be seenm as follows, Consider the
non-flip amplitude A1+ of (L4.12). The: magnitude of A  is fixed
by the t = O data (i.e do"/dt in the forward direction). As
|t| is ipcreased the B term takes over and becomes dominant.

However the dominant cut contribution comes from the small

[t! region and so is determined by the A' contribution (the

cuts from the B part are relntivelly small, at least in the
range C < lt1 €£1.0, even though |B°|>> IAOI o Thus we have the



possibility that the A" contribution will die away quickly
(i.e h, lerge) thus allowing the pole contribution of the

B part to quickiy dominate and also giving the dominant cut
& slightly z::eper slope. There is thus & separation of dome-

inant pole effects from dominant cut effects which can,
roughly speaking, sadjust themselves independantly to give
the best fit, Also, since the pole contributionr in B is
relativelw large for ltl> 0,2 the cut contribution is not
completely dominant in this region, With direct s-—channel
parameterization w2 do not have this freedom,

In the flip amjlitade the A" and B terms are on an
equal footing in that their cut contributions eare similar in
form, However since 'Bbkg>'Ab;the doninent pole and cut conte
ributions come from the B term, Because of the factor V-t
these flip cuts will be relat'vely sualler than the non-flip;
cuts, since the nain contribution to the cut comes from the
small [t region,

In general the presence of o factors in the pole

input reduces the magnitude of the cuts, since & zero in the
pole amplitude will reduce its contribution to the eikonal
(egn.(L.42)). Thus we can expect the strongest cuts in the

fixed=-pole coupling case, and the weakest in the choosing-
nonsense case,

Finallw, we give below expressions for the exper-
imental observalles,which exhibit the amplitude normalizations

and 2milis.

de fos (@] = gomm [ A"+ A" | o



-O—T = 0-3%93 Im A_H_((T*—‘O) (L.69)
QMPL

2 Im (A,, Aj;) (L070)
AL+ 1A

P

where m is the mass of the nucleon and Py, is the laboratory

momentw.a of the incident pion. (If qa is the c.m pion momentum
y 2 _ 2

ther qu =k L, ‘°

Our isospin ampli“udes are
A(rtp— ) = A F A
A (T p=10) = vz A’

(4e71)

With the &bove normealizationa our amplitudes are dimensionless.



CHAPTER 5



GENERAL DISCUSSION AND AMPLITUDYE ANALVYSIS

There are_four main characteristics of MN data

which have to be explained:

(1) A aip in do/dt (CEX) at t =~ -0.6 (Gev/c)Z.

(ii) A relatively large positive polarization in TN CEX
for It' = Oel-l- - 0050

(iii) the so-called 'crossover'. This refers to the fact
that
+ -
do (1%) — do (w7p)
d€ de

changes sign around |tl & 0.1 = 0.2, for a large range

of encrgies,

(iv) the mirror symmetry of Tf+p and M p elastic polariz-
etion, over a large range of t values (at least up to

1t = +1.5).

Since the elastic amplitudes depend directly on
A% while the CuX amplitudes depend only indirectly on A°
(through the inclusion of cuts) we expect that the propertiss
(1ii) 2na (iv) above would be more sensitive to the structure
of the It = Oamplitudes3

More precisely, since

ig (%) o A, F 1+lz+ K_s A

wa have

[@— (%) @(ﬂ)] o Re AL, Re A%, +
de b L
+ Im / -‘H- I A?H- + Re Al_ Ke Ai, + In A:._Im Ai_

(51)



By far the most important term here (at least for
Q T, o L [ o [~ 1
smati (t]) is Im A++Im A,, » and so a crossover at [t

0ot = 0,2 impl<es thet Im Al+ should change sign in this

region ( Im.hi+ does not change sign here)., Date shows

there is no other crossover and so the right hand side of
(5.4) should heve unly the single zero,.

We can gain further insight into the expected behsa-

viour of the A1 amplitudes by considcring the expression
for the elestic nolarization,

Since P oC 1a (4, Azm) we have

P () o [ T A% Re A% = Re AT T A% +
+ Im AL Re Ao ~— Re AL_L I A:-].T. [InA:, QeAi_

— Re A:,..‘_IM Ai- + Im AL, ReAL_— Re AL,,IM Ai_]

(5.2)
The lest two terms in each square bracket are smell

compared with the first two terms, so we can write

PGER) o [ TmAS, Re AS.— Re A% T Al
* [IMA_O‘__‘_ Re Ay_— Re AS, T Al_] (5.3)

The: most striking aspect of the elestic polarization

data is the almost perfect mirror svimetry of P(Trtrp) and

P(MT " p). This implies that the first bracket in (5.2) is
very small compered with the sccond bracket, even for lzrge

(tl, which mesns that A1+ must not aprroach zero too

.- . P
3 e LT



quickly as ltl increases., If it does then the symmetry
wili be badly broken.
The deta shows an spproximate double zero at

1
Apm

|tl ~ 0.6 = 0,7 . A strong double zero .in Re (i.e

Re Alu relatively large for |tl> 0.7) would achieve this
and indeed this is how the B,P It = 1 amplitude behaves,
This corresponds feirly closely to the amplitude analysis
of Halzen-Micheel (ref,51) and Kelly (ref. 52). However
see later for a fuller discussion.

The expressior rfor tre charge-exchange polarization

gives

Platp =) o [ToAL, ReAb— ReAl Tl ] (59

The data shows a zer. around |tl| =~ 0.6-0.7, and

since we expect Re Ai» to have a zero in this region, this

implies that one or both of Re A1+, Im Al_ should have =
zero here, Amplitude eanalysis gives Im Al_ a zero at Jtl| =

-

1

0.6 and Re A
++

a zero at |t| = 0.7 - 0.8 (cf. Kelly).

N1t & - 8 y 1 1
Thus zeros in all three of Re A++, Re.A+_ and I Al_

in this rezion s¥pleins the rather pronounced dip in the CEX

differential cvross section dsta, the non-vanishing of Inm A1+

mzking this a true dip, not = zero,
Thus the data and amplitude analwvsis suggest that

we r<quire the following structure

Im A1+ - a zero at t » <0,15
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1
Re A =~ mno zerc for It £ 0.5
Im AL -~ & zero gt ta =0.6
Re Al_ - epproximate double zero at t = -J.6,

With a P trajectory o(e% 0.6 + t , the fixed-pole

coupling f) contribution gives a zero at t ~ =0.6 only in

the real parts of the amplitudes, while for a sense--cl.oosing
g we have single zeros at t = =0,6 in Re A' and Im B, and
a double zero in Re B, Since the ratio sB/A' is large this

mezns that effectively Re A1+ and Im Ai_ will have a single

zaro while Re'Al_

will have a double zero. A nonsense-

chocsing f> pole gives a doup}e zero in the resl sarts and

a single zero¢ in the imaginary parts of the amplitudes.
Since the general effect of cuts is to pull in zeros

it would appear at first sight thét the sense ar:.. nonsense

inputs 2re to be favoured, at least for the flip amplitude,

if the flip cuts are small, In fact no flip cuts at all

would seem to be best. The non-flip amplitude could be exp-

~lained if we. had

|Im CUT_H_|>>

Re CUT++
(5.5)

annd also
small,

Re:CUT++

In fact this latter condition was not satisfiad in

cur sense and nonsense fits so that ths zero of RG'A1+ was

pulled in téo far. This led to a poor CEX polarizstion

precdiction and also meant that both ocur Im Al+ and Re A1+



were too large at ta~ -0.6, thus £illing in the dip in the
differential eross section.

However both of the above conditions scemed to be
satisfied in our fixed-pole coupling (F.P) case, Also the

real perts of the cut contributions changed sign at It] ~
Otk = 0.6 which mrint that the zeros in the real parts were
charged into approximate double zeros, even though their
magnitules weré too small,

The conditlons (5.5) are precisely the effects
brought about by t!e incluzion of the real part of the: It.= 0]

non-flip =zmplitude, This can btz demonstrated as follows 3

We can write (see eqn.(L.45))

. 4 o
Xiu: X f. X++ X++ (506)

where, for the purposes of illustretion, we have taken only
{ ©

the first cut term, and neglected )L _7(4“_ and the A

factor. |

Fron (5.6) we get

I’“ X-Cr:-r = —In X1+I""Xi+ + Re Xl+ QQX?H

() (2) (5.7)
Re X7 = — Re X3, T X5, — Tm X1, Re XS,
(3) (&)

We denote the four terms on the R.H.S by-(1),(2),
(3),(4) as indicated,
Recall that the actuzl cut contribution to the fuill

emplitude is given by



o0

1 O\
CDLC++ -~ 47(3 fbd[) (‘-X1+ X,++> Jo(bﬁ) (5o:)
v

T¢ simplify matters we may now confine ourselves
to the forwerd direction, where Jo(b\/-t) =1, (t = 0}, so

that the cut contribution: is essentiallv proportional to the

' _x‘i xo .
area contaired by the curve (A A,, ., The presence of the

facitor b does not alter our conclusions,.
The first term (1) above has & positive peak at

small b, a zero at b=~ 0.4 fm., thereafter remaining negative,
and the net contributicn t< Im Cut.++ is negative, The term
(2) is negative for smsil b , with a zero at b &~ t.1 fn.,
and positive thereaftgr. The contribution to Im Cut++ is
again negative, so the two contributions enhance to strengthen
the cut in the imaginary part of the amplitude,

The cese with the real part is different. The term
(3) has & negative peak at smell b and goes rapidly to zero
with increasing b. The term (4) has a small negatiﬁe peak for
smell b , a zere at around b & O.l fm., a pcsitive bump, and
a zero at b & 1.2 fm, The net effect is to weaken slightlw
the ecut in the real part.

Thus we sce the importance of including the real
prert of the It = O amplitudes, In this way we can expect a
seperation of zeros in the real and imaginary parts of the
It = 4 non-flipg amplitude, This is important to avoid & zero
in the cherge-exchange polarizaticn around t = =-0,3, and
hencé a negative pezk at t & ~0.5 (both contrary to data)

which were predicted bv the older Absorption model fits (c.g

refe.29,34).



It should be noted here that since it is the P!
that plzws the nsjor role in determining the resl part of
the I, = O non-flip amplitude, the extr= terms (2) and (L)
above stem mainly from the f?ED P* cuts 3~ hence the Iap-

ortance of including such cuts,

A similsr argument applies to the flip amplitude,

giving
lIm.Cut+_l;g> lRe Cut+_

Despite the advantages noted above, the propértv
|Im cut] 3> |Re Cut| also has its disadvantages. The magnitude
oY ‘he cut has to be relatively large to give the requirasd
structure of zeros in the amplitudes. However because of
thc shellowei slope of the cuts the higher Jt| @ata is elszo

important in determining tﬁis'magnitddeL In particular_the

higher |tl parts (ltl32 O.4) of the imaginary parts of the
emplitudes Al:; can be almost completelw accouri~z:d for by
the cut contributions. This forces the nole contribution
in this region to be small. This in turn means that the
vole contribution to the real parts of the amplitudes is
small, end since lRe.Cutl is too small to mske up the
difference we find fhat the real parts of the smplitudes
are too small in the high |tl region. Thus we expect the
imaginary parts to be well fitted but the real parts to be
poorly fitted by this model, and this is indeed found to
be: so. The model is thus forced to 'explain' the high |tl|
data essentially using only the imaginary parts, This is

a2 severe restriction especislly in fitting the polarization
data, which depenq sensitively on the interplay between the

real and imeginary parts.
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* This deficiener is most apparent in the high |4l

region of the elastic polarization., The most deminant

contributioms {o this come from the terms Im AZ+ Re A1
end e A% o Al (see eqn.(5.3)). Since in our model we
4 +- -
1

find Re A+_ is smail, the latter term dominates., However
to get the requirad double zero we need a zero in Re.A2+
around t = -0,6 « This zero dces not occur in the B,P

I, = O amplitude, but the analwysis of Kellwy (ref.52) gives

t
Re A:+ a2 zero at t & -0.8 . The model of the It = 0 amp-

litudes adopted vy Hartlv and Kane (ref.54) gives Re-A:+
e zero at t & =0,/ ané thcir magnitude of Re A2+ for

[t| > 0.7 is relatively large, If Re-A:+ does in fact have

this zero then the two Jominsnt terms Im Ao Rz A1 and
- - ++ -
Re A2, In A1 will add consructively for |43z 0.7, snd if

this zero 1s sbsent thev will interfere destructively for
ltl 2 0.7 . In the model of Hartlew and Kane the term
Re:A:+ Im Al_ in fact gives by far the major contribution
to the elastic polarization for |t} 32 0.7 .

The above suggests that a_‘better' model would
be’ to have cuts only in the imaginary parts of the amplitudes.
This would zccord with our discussion of the unitarity
equation and absorption (see Chapter 3), and indeed this

trpe of modol has been suggested (ref.55).

In the procedure adopted by us to calculate the
elasﬁic volarizaticn we took the actual B.P It = 0 amplitudes
(2nd not our fit to theme amplitudes) so that the two ternms
ebove intcrfered destructivelw, at lcast in the range

0.6 <t} €1.1 o Our elastic polerization is therefore poor



for large Itl, because of the non-dominance of the term
In A%, Re A] . It will be recalled that for both sanse-
choosing and nc.usense-choosing f) s the real part of the
flip smplitu.d.- Re Al__ in.a pure pole model (i.e no cuts)
does indeed have a double zero b t & -C.6, and in an
attempt to emphasize this double zero we accordingly put
)\2 = 0 1.¢ we had non-flip cuts only. This improved the
fite slightly, and all our scnse and nonsense fits whieh

w2 describe here had )\2 = 0,

We now desc:ibe ouvr methods of fitting,.
METHQDS

Using method (a) “or the I, =0 'amplitudcs we used
only one cut term in the It =0 emplitudes, corresponding
to the usual sbsorptive prescr iptio-r. Using method (b) for
the It = Q0 armlitudes we used two slightl— different modeis
for the It = 1 amplitudes corresponding to keeping one or
three cut terms respcctively. This was to exanine if the
slightly different cut s$ructures pia;r,red & significant role.
We found that the cone cut structure was in fact preferred,
and indeced gave the best results of all, (Since l‘l Cutl >
|5 cuts| we é:cpected the A factérs to be smaller, and this
was indeed the case.)

Thus zltogether we examined nins different models for

the It = 1 amplitudes, which we summarize below :



I'Z; = 0 Amps, It = O Anmps,
Ne Cuts 3 cut terms
Method (a) Method (Db)
\ / | \\
It = 1 Amps, i It = 1 Ampse It = 1 Amps,
1 Cut tern 3 Cut terms 1 Cut term
F.P F.P P
. f inputy S f inputq{ S f inputd S
N N N
(4) (B) (c) -

ihere F.P denotes the fixed-pole coupling, S denotes a
sense~choosing and N denotos a nonsense=-choosing p- These
nine models Zall into three groups, which we indicate by
(4),(B),(C), and within each group we have the ttree diff-
erent Ja pole inputs.

The I, =1 smplitudes obtained from these nine

t
models were used to compare the calculated diffe-:ntial
cross section end polarization with the T N charge-axchange
data over a range of pion momenta between 5.85 and 18,2 Gev/c
and for 0L [t 2.2 (Gev/c)a. These amPlitud‘e.s were then
used with the B.P I, = O amplitudes to ‘predict' the elastic
polerization. ‘ '

In 211 our least xzminimisations we used the CERN
MINUIT programe.
It = O AMPLITUDES

Aracm—

In method (a) we fitted the reasl and imaginary parts

of the expressions (L.14) to their B,P I, = O counterparts,

t
for t values in the range 02t ~-1.0 at intervals of 0.05,
and for the momentum values r, = 2e555005600,310,0413.3,1802

(}QV/Co



In this fit we had eleven parameters

/ ‘4
O-T, ﬁlop Cog Fo’“P'(O)g «PQQ h39 hl-l-’ hsg h6? “P

At cach poi vk we calculeted the quantity

- -

Q = (xy= 3,)% + (3/%; = 1)? (1 =1,2,3,4)

x. = Im B.P°

X .‘) -

. O
4 Re B,P+_ s
xu = In B.Pz_ s and the y's are the counterparts of our

amplitudes (Le.14)o The second term in Q; was included to

£ = O amplitudes. We then

erphasize sny zerns in the B,P I

mirimized the quantity
xz
= Z[(Q1+ Q,z) + 100 (q3+ Qu)]

where the sum runs over £ll t points and &ll energies
considered, The factor 100 wes included to compensate for
the small magnitude of the flip quantities. The results of

this minimizetion are shown in Table{1) and Fig 6.

For method (b), where we now include cut terms, we
used exactly the same procedure as above, except that now
the y's refer to equetions (4.34) and (4.38). The results
of this fit are given in Table(4)and Fig 6.

I, = 1 AMPLITUDES

t

We used our I, =1 amplitudes (L4Ls53) and (4.57) to
fit.the TT N charge-exchange: differential cross section and

polzrization data, The data uscd was ss follows ¢
dor /a3t 5 pp = 5085,5.9510.0,43.3,13.3,18.2,18.2 Gev/c

and for all t velues quoted (raxlt] = 2.25 (GGV/C)Z)e

(Y]



&L

MM p—>Tn) ; = 5.0, 8.0 Gev/e

Py,
and for t values 0< Itlg 1,75 (Gc:-v/e:)2 °

The total number of data points used wes 115,

We initially fitted the real and imaginary parts of
our It = 1 amplitudes to the corresponding B.P quentities,
This was done to avoid any secondary minima in a least X"
fit to the experimentel data.

In all these fits the solution was ehcouraged to
give a crossover somewhere in the range 0,1< It|<‘0.2. This
wes achieved by adding to the usual X.z a8 quantity propor-
tionsl to the square of [da /dt(1T+p) - do /dt(TT'p)] vize

2 z -8 1 0 1 o
F~ = %.10 [Re‘A_H_Re A+++ Inm A.H_Im A+++

+ Re Al

o 1 )
+__Re A +_+ Im A _’_Im A_'__]

evaluated for t 'values in the range =01 3 t 2 ~0,2 at
intervels of 0.01, and for each energy considerex, The numner-—
ical factor above seemed to be a convenient choice, In this
way all our models gave a crossover at a value of t in the
interval (=0.,1,=-0.2). This is essentially equivalent to

Im A1+ having & zero at t & -0,2 . It is clear that & cross-—
over in the interval 01 £ |41 0.2 gives a minimum of F2'.
'The inclusion of this quantity also helps in avoiding second-
ary mninima,

We had 16 polerization data points. These points place _

& severe restiriction on the behaviour of the real end imaginery

"

parts of the amplitudes., To compensate for their small number
(as comparcd to 99 do /dt deta points) and tc emphasize thein

restriction on the smplitudes we accordinglvy enhanced the



polarization x> by a factor te

Thus, for each energy, we calculatsd

0-2
X = Z[ *(de) + 102 (0| + +> F°
o ltl=o-1
and the tZt: X2 ss S 2 Ab= 0.0

all energies

2
The 7<- eppearing above is defined os usgual by

2 2
X = (Exnerimental - Calculated)

Error

For esch of our nadels we minimized the guantity sz °

,2
The actual Jdata 7& is of course given by

> |x (;g) + X*(Re)
all  alTl t de
energies points

and it is this quantity that we guote in our rcsults,

RESULTS AND CONCLUSIONS

It = 0 AMPLITUDES

METHOD (&) ¢ NO CUTS,

As can be scen from Filg. 6 we get quite a good fit
to the non-flip amplituds, and & rzasonable fit to the flip
amplitude., However the flip fit is net reslly crucial as most
of fﬁe effects ars dominated by the non-flip part.

Co’ Fo,dp,

P,(O), an b3, hu hr, hg, and the folleving bounds were

The fit involves 11 paraneters O, “o’

imposcd ;

, .
0< p €1,0 , 0L <A (0) <06, W<o<,,4<..n .



The results are given below.

METHOD (b) : % CUT TERMS,

Again we get quite é good fit to the non-flip «mplit-~
ude, end a reasonable fit to the flipr emplitude. The struciure
of the non-flip fit is slightly different however in that
(et 6 Gev/c for exzmple) Re Az+ has a zero at t & =0,7 and
another st t & =1,.3, while Im A3+ hes a zero at t & ~\,7.
The zero of Re A3+ et t ~ 0,7 is in sgreement with th
snalwsis of Kelly (ref.52) but is not present in the B.P
g 1plitude, In this fit we also used X factors, which werc
bounded br 1 < A <€ 2, but both /\_H_ and A — took the minikg-
um velue of unity, This fit thus essentizlly had only the 11
narameters above, subjeet to the same bounds as nathod (a).
The results sre shown in FIG.6 .

The parsmeter wvalues in the best fit for these two

methods sre given below,

It = 1 AMPLITUDES

Cur nine models can conveniently be divided inte three

groups, denoted (4),(B),(C).

- (&) NO CUTS IN I, = O AMPLITUDES FIT.

t
ONE CUT TERM IN THE It = 1 AMPLITUDES FIT.

THREZ p INPUTS : - F.P, S, N (A, = O FOR §, K)
(where F.P denotes fixed-pole coupling, 3 denotes senss-—

hoosing . snd N denotes nonsensa-choosing p ).
c s .



(B) 3 CUT TERMS IN I, = O AMPLITUDES FIT,

t
5 CUT TERMS IN THE I, =1 AMPLITUDES FIT,

%
THREE p INPUTS : - F.P, SN (A, = 0 FOR §, W)

(C) 3 CUT TERMS IN THER I,

1 CUT TERM IN THE It = 1 AMPLITUDES FIT,.

= O AMPLITUDES FIT,
THREE p INPUTS : - F.P, S, N (A, =0 FOR 8, N)

In each It = 1 amplitudes fit we hed eight param-
eters, the P vole paremeters Ay, By, hy, hy, 0(9(0), o(é
end the A factors )\1, Aa (XZ being fixed at zero for all
S and N casea).,

Trs 'best fit' perameter values for medels (4),(B)
and (C) are given in Teble (2). In all three cases the par-

ameters were subject to the following bounds

0.45€ %(0)€ 0.6 o.ego(e’s 14, m.os)ur £2.0

.2
end h1:’2>0 (see ref.i9).
The results of model (A) are depicted in Figs.l - L
The results of model (C) are also depicted in Figs.i - L4
where they depert from model (A). The results of model (B)
ere not given since they &re very similar to those of model

(8).in 211 respects.



PARAMETER VALUES FOR THE I

b

= 0 AMPLITUDHES ¥IT

METHOD ( =)

METHOD (b)

. 19.92{mb) 24..20(mb
T 0.3893 0.3893
E, — Lb3.31(mb) . 77.68(mp)

0.3893 0.3893
Co éozaégnm 6.28:]:’{!“1)!
_ 0.3893 0.3693
F, — 2.736(mb) — 5,223(nmp)
0.3893 0.3893
, ‘.
Xp 0.487 0543
o, (0) 04549 0.5uL
/
o b 1,10 1.C8
hy 2,02 4.08
by, 0.227 1.25
hg 2.10 0.012
h6 0.0 0.0
o
A as 0.0 1,0
(o] o)
A . 0.0 1-U

TABLE (1)



PARAMETER VALUZES FOR THE I

= 1 AMPLITUDES TIT

Model (A)
A B, h, h, o0 o N \,
FoP | 30.4 | 256 | 7.L0 | 3.15 [0.453 | 0.8 | 1.63. 1.33
s 36.9' 322 | 7028 | 3,11 |0.559 | 0.8 | 1.7 0
N 20,9 | 301 | 4.77 | 2.43 [0.555 | 0.8 | 408 | O

2
The Data X were 283, 627, 630 for F,P, 8, N respectivelw.

Model (B
/
Ac: Bo h1, hz OCQ(O) “e )\l )\1
F.P 29.4 | 249 6,96 | 3.41 [0.455 |0.824 | 4.46 | 1.24
S 19.9 | 300 5¢33 | 2.57 [0.558 | 0.8 1.37 0
N 354 348 7«75 3.19 [0.5€3 0.8 1.61 0
N .
The Deta X were 219,596,611 for F.P, 8, N respectively.
Modei C
/
Ao Bo h1 h2 O(Q(O) °<g AI )‘z
F.P 28 .1 L7 7.27 | 314 |0.L54 0.833] 1.15 | 1.02
S 18,9 297 6.45 | 2.67 |0.561 0.8 | 1.10 0
K L. | 318 8.4t | 3.16 |0.570 0.8 | 1.29 0

2
The Data X were 225, 550, 562 for F.P, S, N regpectively,

TABLE (2)

o
(\s]




It will be seen that in 211 three models the fixed-
pole courling solution is by far the best, with not much to
choose betwcen she sense and nonsense cases, and with model
(C) teing t%.z best overail,

As can be seen from the fits the gcneral proverties
of the solutions (A),(B),(C) are Qery similar, so that the

following genersl remarks will apply to &ll three,

FIXED-POLE COUPLING SOLUTIONS,

Ve obtain good fits to the differentisl cross section
deta (Fig . 4 ) , with 2 dip at t a -0.56 which seems to be
stationary with increacing 2ncrgv. The fit is slightlx tob
small st large |tl and the smaller energies.

The charge-exch.wuge polarizetion is alse well fitted,
except possibly in the very small |t| region, where our fits
seem too large. (FIGS. 2(a) ant 2(b) ).

The crossover is at t a -0.1 at 5.85 Gev/c and moves
out with energr to t« -0.22 at 18.2 Gev/c, Thiz also seems
to be in accord with the elastic data.

Using the B,P I, = O amplitudes, the elastic polar-

t
ization prediction is poor at largc ltl. As already noted
this is due to the smallness of Re Al_ at large |t|. Vie also
used Hartley-and Xane's I, =0 amplitudes (refa54), where
Re A2+ hes a zero at + o -0.7 4 with our It = 1 amplitudes
to calculate the szlastic polarization a2t 6 Gev/c. This gave
a better fit Hut again the mirror svmmetry was quite badly
broken.

A similar result was obtained when we used our fit
(method (L)) to the I, = O snplitudes, which also has s zerc

o
in Re A++ Et t -~ "007 o

Both of thess were very pcor for high |t|(|tl;3 1.5).


http://polariz.it

(8]
-

SENSE AND NONSENSE SOLUTIONS

These were very similar and so are discussed together.
Recall thst these solutions had no flip ~suts. This rneant that
Re Al_had a double zero &t t ~ =0,6 and Im Al_a single zero.
However the pole contribution in this region wes so small
that ’Al_l was practicelly negligible. This egein meant that
the elastic polarization was badly fitted for high [ti(kI»0.7).

In a1l the S and N models we obtained & satisfuctory
crossover : at t &« -0,1 for 5.85 Gev/c, mdving out to t & =0,22
for the sense case, and t =~ -0.,14 for the nonsensc case, ai
1.2 ftev/c.

However, in both of these cases, pulling in the zero

in Im A1+ also pulled in the zero of Re sl too fan ( at t =

++
~0.35 for 6 Gev/c in fhe-sense cese, and t & =0.27 for 6 Gev/c
in th> nonsense ease) with the result that Re A1+ was too
large at t &~ -0.6 a2nd consequently filled in the dip caused
by the vanishing of the: flip amplitude, As a resilt our fits

to the differential cross scction displaved hardly anr dip,

and were poor at large [tl ([t| 3> 0.6). The proximity of the
zerog in In A1+ end Re A1+ gave: a poor fit to the charge-~
exchange polarization, although these fits did not give the
large negative peak at t &~ -0.5 , as predicted br the older

- absorption fits, As already noted this is due to the incluszion

of a reel psrt (essentially P') to the I, = O amplitude, which

t
keeps these zeros apart.,

The data fits for models (A) a2nd (C) are given in Figs.
1 -3 o Pigsol(a){b)show that the I, = 1 rhases for the F.P

cage are in good agreement with recent determinstions, and
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are similar to the B.P phases, even st low encrgies where
one would expect the approximations used to calculnte the
cuts to break down. Thew also show that the imaginary parts

are in bett:r sgreement than the real parts,

In Figs. 5 we display impact parameter amplit-
udes at & Gev/c¢ for our various fits, where they are comp-
ered directlv with the forms obtained from the B.P amplitudes.
These latter were obtained from Barger and Halzen (ref, 56).
(Notice that we have X = 2A; ). Thesc may be compared with
the results obtaincd br Kelly (ref.52), where his definition
of impact parazeter asmplitude 1iffers from ours by a factér 20

We obtein quite good agreement, bearing in mind
the discrepancies betwe.- the B.P and Kelly evaluations. We
again see that the imaginary'parts are in very good agree-
ment, and it is precisely theas that are peripheral i.e
dominated bv corntributions around b a1 fermi, The real parts
arc poorly fitted because thev are not peripheral, although
our fits seem to be. This disererancr at low b stems mainly
from the fact that the reel parts of our amplitudes are poor
for high ltl.

In an ettempt to circumvent the above difficulties
we nmade two ﬁinor modifications of our treatment. The first
concerns the sbsoluie phase of the It = 0 amplitudes, This
is known experimentallws onlvy at t = 0, from the optical
theorem =nd Coulomh interference neasurcments (ref.51), and _
corresponds to predominantly imaginarr amplitudes. Vie may
thus include & factor exp(iat) in these amplitudes without

spoiling this result., As far azs the I enplitudes are

g =7
concerned this onlv alters the phases of the cut terms, and




is equivalent to taking complex )\ factors )\ - >\ exp(iat),
Alt-rnatively we could have started with the hwpethesis of
complex >\ faclora, on the grounds that there 1s no nsed for
the: P and ¥* couplings to anpesr in the same ratio in diff-
raction processes and elastic processes. Indeed there is
evidence from fits to inelastic reactions that the P coupling
is less strong in general than its elastic coupling e.g the
cross sections of MN-—> T N# are much smaller than MN- T N
(se¢ ref,57), where the N¢ are verious I = % resonsnces.
There is also esvidence from the study of inclusive reactions
(see e.g ref.58).lowever “his made onlv a slight improvsment
in the fits (Xz dropped by approximatelv by 7%) and made no
significant differsnce to our amplitudese _

The sccond crncerns the validity of the B.P I =0
amplitudes, particularlr at larger I+l Comparison of the B.P
amplitudes with those obtained by Kellw (at 6 Gev/c) shows _
that the maia discrepancy is the behaviour of Re A3+ o Kellr's
analysis gives Re Ai+ a dip in the forward dircetion, a zerc
at t =~ =-0,8 , and a larger magnitude oversll, This is in
contrest to Re B.P:+ which hes no dip, no éero until t = =1.1
and a smaller megnitude., We thus tried fitting a rough
estimate of Kellr's amplitudes with our parameterization
(4.18) of the I, = 0 amplitudes at 6 Gev/c., We were not able

to. rcprodude thz dip in Re Ai_._ nor the relativelr large

0

was reascnably well
++

magnitude of Re Ai+ at small ltl, Im A
fitted, However vwic were able to reproduce the zero in Re A3+
at t & ~0.8 and the relatively large magnitude of Re.A2+

for [tl > 0.8 by including cuts, but then the fit to Im AT

suffered from having an approximste double zcro at t=x -0,6.
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With this rather unsatisfectory fit to Kellw's
It .~ 0 amplitudes we tried fitting the differentisl cross
section data cf TTN CEX at 5.85 Gev/c. We obtainecd quite
a geod fit, but with do/dt slightly too small at lsarge ltl,
as in the other fits. The TN CxX polarizstion prediction
gave & positive nesk at small lt| znd a zero at ¢t x 0.5 &
We calculated the elastlce polarization using our estimeate cf
Kellv's smplitudes and obtained » good prediction for
ltl £ 0.6 , tut for larger ltl the prediction was rather
erratic and the mirror svmmetry Was badlw broken. The resal
and imezginsrv paris of nu~r It = 1 amplitudes were rather
0dd. Im A1+ had 2 zero et t =~ -0.35 but the crossocver was
gt t ~ -0.1 , while Re Al_ had neither a single zZero nor a
double zero st t ~ -0,3 . Im A' ana Re A1 were both
A ++
rezsonablyw good. _
This =znalwsis illustrates well the sensitivitsy
of the resulis on the form chosen for the It = 0 amplitudes

and should perhaps serve a2s a warning agsinst drewing hesty

conelusions.

COKNCLUSIONS

Tne work presented in this thesis has assumed
throughout thsat the B.P emplitudes are relisble, In ary case
they are the best available, and seem to be in accord with

the dats up to energies of %0 Gev/c or so. On this assunption

™

we conclude thzt the z2bsorption prescription, with anw
Lypothesis about the choosing mechanism of the P pole, is
vnatle to explain the It =1 TN amnlitudes with comnloie
success, but thut the strong-cut model (F.F) is br fer the

best. We were able to obtain very good agrecment for the



,.
i
T

imaginary parts of the amplitudes, and this makes contact
with our discussion of the unitaritv eguation and absorption
in Chapter 3. The real perts for large lol were rather poorg
especially Re Al_ » and &s a consequence our elastic poiar-
ization was rather poor for large [tl. The choosing sense
and choosing nonsense models, even with non-flip cuts only,
suffered from the preximity of the zeros in Im A1+ end Re A1+
which filled in the dip in do /dt =2nd gave a poor charze-
exchange polarization,

It scems unlikelv that a better representation of
th=2 It = 0 amplitudes will remedy this defect in the real perts
of the It = 1 amplitudes. It is known of course that our
present metheds for calculating cuts are incomplete, sinee
the cuts violate the Btonzan—Jones condition (see Chapter 2),
but the inference seems to be that until we have a better
understanding of cuts the absorption prescription works well
for the imaginary parts, and less so for the real rzrts of the

It = 1 amplitudes, if we exclude extre ad-hoc hypothesis.




I'IGURE CAPTIONS

Charge—exchange differentisl cross-sections. Dsis from
M.A,Wahlig and I.Mannelli, Phys.Rev 168, 1515 (1968)
and P,Sonderegger et.al., Phys.Leite 20, 75 (196€),

All curves rclate to model (A) ekcept those explicitly
labelled (C) which rcfer to model (C)o The S and N
curves for model (C) are not shown being only very
slightly better than those of (A),

Charge—-exchange Polarization. Date from P,Sondsregase
CERN 1971. Fig.2(s) gives the results of model.(A)
while Fig.2(b) gives those of model (C)., _
'n:p Polarization., Data from M,Borghini et.al. Phre.
Lett. 31B, 405 (1970) end Phys.Lett. 36B, 5,493 (1971)
The curves apply directly to model (A). Model (C) fits
are practically indistinguishable from theaes

The veal and imaginary parts of the It.= 1 amplitudes
et ineident lab, momentum 2.5, 6.0 Gev/c. FNote that

cur amplitudes are dimensionless. The curves aprlwy
directly to model (A). Model (C) curves are practically
indistinguishable from these, being only slightly
better at larger |tl values,

The rezl end imaginary parts of the It =1 impact~-
varameter amplitudes &t incident lab. momentum 2,5,

6.0 Gev/c. Note that X = 2Ay. All curves relate to
model (A) or (C) except those explicitlr labelled (C)
which refer to modsl (C), being sufficicntly different
from the model (A) case,

The real and lmaginary parts of the It = 0 amplitudes.
It exhibits our fits (z) and (t) to the B,P I, =0

amplitudess
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We glve here the proof of the expraasion for the
discontinuities of the signatured partizl wave amplitudas
(see egn.(2.2) of the main text),

Vie start with the Froisssrt-Gribov formula
+ T N g
Aﬁ(t) =_1_f DS (Z,t) QL(Z) dZ (Ao’i)
_ 16TT* J,

(¢}
where

Dr(2,6) = Dy (26)* D (-2,6) (a2

We can write a fixed - s dispersion relation for Dso

D (st)=1 | Pse(s,6) dt + ‘11F f Psu (s.u) du!

mJ ¢-¢ T (4.3)

and a fixed-u dispersion relation for Du(u,t)

: ’_ ,
Do) =1 | Lus(sid ds! ¢ 1 | Pue(we’) db
T /- 13 ‘-
S S E € (A.h)
Wie require Du( -z,t), and since z €» -z coriesponds to

& > u we: can write D (-z,t) = D (s,t), vhere

D (st)=1 f Pus (si)ds’ 4 1 [ puc (st d¢'
11y

S’-—- w ™ (:/“ € W =Y
(Aeb}
We put s' <> u' in the first term here, and using
' Psu = ]ous we get
Du (—-Z,(:—) =1 | Psu (u)s) du.’+ _lfg,-dt, (s.t) '
Tw—uw T e —¢ (4.6)

For simplicity we consider equal mass scalar particles,
In this case the bounderiss of tho spectrcl functions are

given by the conditicn K = O, where



K = K(tst1 ,t(.—_,,S) = 6z+tT+(f:—2(bC,+qtz+ t(fz)--(:é’,(,’z/li? (Aa7)

which gives the usual result (see ref.3) that the boundary

is given by

t = Lty + 0482 / (s - un®) = p(s) , sey. (A.8)

If we include the possibility of bound state poles then

t, = n2 (if not , t, = Ll-mz), and we get

v(s) = tn® + Lot / (s - 4n?) . (A49)

-

In the equsal mass cése this 1s the boundary for all the
gspectral functions. '

Thus writing u = Lmz- s -1t , we have

00

Dio =1 f {0 peo) o
b )

Tt - €
(A.40)

W+S+Et—-4m?

+—1—f°o { Psuls,w) £ Py ("‘”S);duj
m b(s) T ’

This shows immzdiztcly that Ds_(z,t) has cuts in t := the
first term has the cut t > b(s) , while the second term has

the cut t € -s + Ln®- b(s) 1i.e
t € -s 4o / (& - Ln?) (A.11)

Since £ 3 Lunz and the maximum of the right-hand side of

(A.11) is ~8m° , these cuts are therefore
9

t> Ln® anda t < -8m° (Aa12)

From (A.1) we see that .A::( t) must also hzve these cuts.
+
However A (%) elso has the cuts of Gu{z) vize. the cuts (~1,1)

and (~-og ,-1 }o However we can eliminate the discortinuity O



g o

L
o

< +
z € =1 by considering instesd of Aj(t) the amplitudes B,(%)
where + + og
Bp(t) = a,(t)/q} (Ae13)

end we now *+«ve the following result

DLsct [‘f;zz(tm)) 61(1 +_32s ) ] = 6 (4M1_ 5- (:) X

E=4e’+i0
X (- qz(e)) —1 -—czimz (Ae1l)

Since

+ I‘oo +
B,(6)=_1_ j D, (s QL 1+_S_'_) ds’ (4.15)

et EY] * 2
it Y2 C& _ 2&, Qc‘,
+ t
vie see that the disconsinuity 1__ Disct[B'(!.,t)] = Imn B (L4,%)
21 t+10

invelves

-1 Disc, [‘l 22@ D J {_ Disc, [@- QQQL] .D:(S,(:-CO) +-

b+¢.0 ";"' ttio
- . t/, ..
i [(‘, 2QQ_Q] , _‘f__])csct [Ds (S‘)C-I-LO):]
trio 2
) (A01 D)
We consider first the discontinuity of (A.15) ascross the Left-

hend cut t € 0. The first term of (A.1€) gives

f@(z;m o) (- LrP< 1-6%)33(5;@-@@

.:zc /em 297
4ad-€
=1 _45 1B (-1-2as )D (s', €-0)  (aa47)
an 23 (gt =4

+
For the second term of (A.16) we require ;L,Disct[D:(s',t+iOﬂ

21 13

and this is given by

{Psu(s',/l-m?»_ (:-s') + }()m (4»#-—(’:—5',5’)} @( C-s’/— 4m )

- 4m*

11 = - o S . s 2
where the function comee from the condition (A.11).



So the second term gives
K]

4 Q) e depulones)])

l% aze 24 s“dot s dui/
) (A.18)
Because of the.e) function only those valuczs of s' in the
renge [v_ﬁt), v+(t)] will contribute, where vu(t) are the
roots of the ecquation
t + 8+ Lo*/(s'- 4n?) = O (A1)

i.0 v (1) = Hin®- t) & 3VE(s 4 2a®)

So (A.18) reduces o

L[U+(e). QQ<1+S‘ );f) (s, 4m-t= s) P (4M -t-s°, S),g

2
fen” 2% QZQ (A.20)
This can be simplified further. Let &' = um“- t - 8",
Then if s' = ve(t) then §' = ?,(t), ard go the limits
v;(t)-e»vz(t) fer s'—= 8'. So the sceond isoerm of (A.20) can
be re-writton

u
! f —dz’ _1 Q£< 1-_25’ ),o (57, 4m*-¢-5")
fert* v gq}
+

af‘

(A.21)

Q, <4+ )( e‘"‘)'o (5 4wi=t-3)

1

——

U.'q.
s

and so (A.20) beocores

PAG, -
L[t 1 Q142 [17 €] o (5 ni-6-5)
) 2 gt 24 (4.22)
U‘_@l\ Vol

Thus from (A.22) 2nd (A.17) we get for the left-hand

discontinuitys



1C0

- 4m-t
r_ + k
T i_B—(Q,(:)i = 1 (LSI 1 P ( -5 )D-(s (.--LO)
de.v.cor 321( z)z
J(6) ,
.1_‘__1’1Q 1+S)1 em (sh4nb-5")
v_@ ' (4.23)

which is egustion (2.2) of the text.

The situation with the Right-hand cut discontiauitvy
is different. Ther2 is no term analogous to the first term of
(A.23) since for t 2 Ln? aud s> umz, e(unz- t-8')=0,
The second term would iuvolve _21_ Disc, [D (s? ,U.L_LO\]

i

+})ln
which is ecual to

/ : f ’ 2 4 EPTIRY
s'-4m*
and the © function comes from the condition t B(s) (sce

eqn.(A.9)). Thus the discontinuity venishes unless

t > L + Lo/(s'~ un?)

i.e s'> Lm? + umq/(t - L;mz) = vo;(t) 8ay, (A.25)

So we: have for the Right-hand discontinuvity

T8 -1 [ 4. . Qy(" %)?pst(sge)i Pub_(s',f:% .

CORT TN o ;m(’ b Yt
V(&) (Ae25)

which does not invelve a term with & finite rarnge of integration.
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