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Abstract

The booetstrap idea in the sense of finite energy sum rules
and the saturation with zero-width resonances are developed
further in the thesis for the reaction_/ip.—¢ o an@ﬁp—jpy
which are identicel in all the three channels and therefore
provide us with a genuine boetstrap of the Regge trajectories,
contrary te, say, the reactien ?f"‘*?f . A set of fourteen
FESR,s for all the invariant amplitudes of the reaction_/yowypo
and also a set of thirteen FESR,s for‘/apwﬁf?in different steps
of approximation have been written down which can be studied
further in different aspects. Notice that a previeusly con-
sidered by other authors reaction nn-—nw finally led to a
special representation, namely the Veneziano model which has
many attractive features. With the appearance of this medel and
the cencept of duality we devoted ourselves to the idea of mass
extrapolation aleng the Regge trajectory, a show-~case of which
is the annihilation pm—3 n  at rest. The Dalitz plot and the
overall normalization fer this process were obtained with a cer-
tain degree of success. An analogous attempt was done for the over-
all normalization of the annihilation precess pp.-, 4 ® at rest.
The new experimental data on the annihilatien process for lew
laboratory momenta of antipreton Plab = 100 - 700 MeV give a
further support te this kind of extrapolation along the Regge
trajectory. These data indicate the existence of angular momenta
upto L = 3 at these near-threshold energies. An impact para-
meter picture with the reasonable radius ef interaction gives
[;;1 y while the explanation within the above model is very
natural since the Regge trajectory o 1is very near to 3 .

A step has alse been done towards the construction of
physical dual resenance models (DRM) with unnatural parity
couplings and without the tachyon states. One of the motivations
has been to see whether these physical requirements give a natural
way to get a double or mere degenerate (w - A2)-trajectory in
3n-channels when one factorizes the states analogous to the de-
generay of the daughters levels.

One has to admit that the unitarization of DRM still re-
mains a preblem. However, from a theoretical point of view the
KSV-program to consider the model as a Born term of a field-
theoretic expansion is the most attractive ome. In admitting this
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program, the best place to look for its predictions is the field
of inclusive experiments beth in purely hadronic and photonic pro-
cesses where one measures the discontinuities. For purely hadronic
reactions in DRM Feynman scaling is obtained provided the trajec-
tory exchanged is associated with the Pomeron with unit intercept.
For photonic processes in DRM the Bjorken scaling is ebtained due
to the existence of current algebra fixed pole. The latter ques-
tion is studied in the thesis in a model where the currents are
included into DRM through a minimal gauge interaction prescription,
in which one has the minimum amount of freedom, and the dual re-
normalization has also been used. With the use of Muellerism the
generalized Bjorken scaling for some quasi-inclusive reactions
has also been obtained. The motivation for the abeove analysis has
been the experimental indication that the nendiffractive part of
the electroproduction structure functiens do show scaling. With-
out the fixed pole responsibility it would be hard to understand
the scaling of the resonant part. Also notice that with the ex-
ception of A ¢3-theory all the other field-theoretic models have
failed to produce Bjorken scaling unless one introduces an un-
justified cutoff and therefore one would like to argue that in
the DRM the renormalizatien term as if replaces this cuteff in
a more natural way.

The above and many other points studied in the young but vast
literature may indicate that the DRM might be "not that far" from
the real werld of hadren physics.
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Chapter I

Introduction

The use of the general principles of S-matrix theory, embodied in the
analyticity, crossing and unitarity, together with the dynamical elements
contained in the Regge pole theory seems to be a promising attempt in the
theory of elementary particles. The resulting scheme may hopefully put
strong enough restrictions on the scattering amplitudes, so that the Regge
trajectories and their residue functions will be uniquely determined. As
a consequence, the spectrum of particles and their couplings may be complete-
ly determined and their footstrap accomplished.

The first approach of this kind was started by De Alfaro et al.1) when
they discovered superconvergence and proposed their use in particle physics.
Their observation was as follows: if for a given process the t-channel heli-
city flip is sufficiently large and the quantum numbers exchanged are such
that the leading Regge trajectory is below a certain value, then the corre-

sponding invariant amplitude A obeys & sumrule of the form

/ Jm ACv,4) dv =0 (1)
~d

where V = %(s -~ u) and s, t, u are the Mandelstam variables. Equation (1.1)

is a consequence of analyticity and Regge asymptotic behaviour and the evalua-
tion of the integral can be performed by means of unitarity. In Ref. 1 and

in the subsequent papers 2) ImA was approximated by a few low-lying reson-
ances, so that the equations result in relations among the parameters of

s- and u-channel resonances. The afoye equation only becomes physically
relevant when some prescription, like the above-mentioned one, is given for
calculating the integral. This is called in the literature the saturation
problem. Saturation in terms of a finite number of resonances has been shown

2)

to lead to difficulties when the equations are asked to be exactly satis-

fied in a certain range of t. To avoid this problem a different type of




saturation philosophy was used in which the high energy part of (1.1) was
explicitly taken into account by the use of Regge theory. Such a philosophy
provides for a method of analytic continuation of equation (1.1) to the
values of t where the integral is meaningless. This analytic continuation
has been derived by subtracting the asymptotic limit from the amplitude

and writing equation (1.1) for the difference and has been first proposed

3) L)

by Igi and rediscovered by many authors and fully exploited by

5)

Dolen, Horn and Schmid in their "finite energy sum rules". These new

sum rules have the form
5 CACEI A

. v
/ynjm4(-y,{)dV= Zﬂ(%) TPy ,(1.2)

v

(4]

where the Regge behaviour

do(t)
InACrt) — = (87 (1.3)

has been used.

In a few cases like 71 N-scattering, the experimental data from both
low energy and high energy fits can be used directly to check the equations.
A more interesting application is to use the low energy data as an inpadt
to predict the relevant parameters of high energy scattering, like the
leading Regge trajectory. This has been done in Ref. 5 for m N-charge ex-—
change scattering. The results of the tﬁ%bugh analysis of Dolen, Horn and
Schmid, not only showed an excellent agreement with experiment but also
made evident a rather surprising property of the Regge representation, i.e.
while the physical amplitude differs from the Regge term in the region of
prominent resonances of the direct channel, the local avarage of the ampli-
tude coincides with the extrapolation of the Regge term up to much lower

energies, This fact nowadays is referred to as the "duality" property.




Since what we need in the sum rule (for low moments) is exactly the average,
this property permits us to cut the integral rather low, thus opening a
number of possible applications.

Another way of exploiting the above equations which is more theoretical

6)

and attractive is the one which was proposed by the authors of and was
called there the bootstrap of Regge trajectories. The general idea of this
approach is that, for some particular reaction for instance mm -+ mw, the
amplitude in the resonance region of the direct channel can be obtained by
use of crossing as the analytic continuation of the Regge amplitude des-
cribing scattering at high energy in the crossed channel. The essence of
the problem lies therfore in finding a trajectory and residue function which
vhen introduced as input reproduces itself consistently. Also one must find
a parametrization of the scattering amplitude which obeys the constraints
of analyticity, unitarity and crossing. The simplest model of such a theory
is the one based on the narrow resonances approximation and, consistently,
on real rising Regge trajectories. In this frame we are provided with a set
of algebraic relations in terms of the Regge parameters only. This model

7)

has also been proposed by Mandelstam

6), 8)-12)

and fully exploited in a series
of papers
For a bootstrap program it turns out that the meson systems are more
adventageous than baryonic ones since the mesonic systems can possess strong
symmetries in all the three channels - & situation that cannot occur with
baryons and also that by an appropriate choice of the reaction one can
suppress the type and the number of intermediate states that can contribute
due to charge conjugation etc. The tﬁ%bugh study of such simple reactions

13)

as mr > mw etc. in 6), 8)-12) finally led Venesiano to write down
a representation for the scattering amplitude which possesses the require-

ments of S-matrix theory in a narrow resonances and a real linearly rising

Regge trajectory approximation. This representation is the so-called



"Venegiano Model" which has been generalized to any number of external
particles, has been given a treatment analogous to the field-theoretic
expansion, for which has been developed an operator formalism, functional

integral technique and has extensively been studied in many aspects - both

L)

theoretically and phenomenologically 1 .
The investigation of the present thesis started when by the use of finite

énergy sum rules (FESR) of equation (1.2) for the theoretical and very simple

+ . .
systems such as 1 > mw, ™ > wX; (XJ = A (2), w(3 )) interesting and

6)

beautiful results were obtained . In chapter II the case of wr - mw is

2

very briefly discussed, in particular the interesting result that for a cer-
tain value of t«2 -0.6 both the left and the right hand sides of eq. (1.2)

2 _ mwz) and a(t) respectively,

which are proportional to (2 m2 +t-3m
vanish.

The natural idea which comes to mind is to follow the same line as in
Ref. 6 and generalize the same considerations for some other reactions as
fyoﬁyoo or/and/jpﬂpﬁn. These reactions are much richer in the sense that a
bigger number of invariant amplitudes and, correspondingly, finite energy
sum rules are at disposal, but they are still the simplest ones in the sense
that all the three channels are identical like the case, say, in mm - 7w.
The hope would be that a thorough study of the whole set of FESR's for all
the invariant amplitudes of such reactions simultaneously might bring further
information towards the accomplishment of a reciprocal bootstrap for mesonic
systems.

By the time the above reactions were under study the Veneziano represen-—

tation 13) was proposed and its generalization for n external scalar par-

k)

ticles 1 makes it, in principle, trivial to write down the amplitudes for
the reactions with spinful external particles starting from the expressions
for the reactions with spinless external particles. Because of the latter we

believe that the study of the above-mentioned reactions at the moment perhaps

carries only an academic interest, although some kinematical aspects and also



the absence of tachyon problems, contrary to the generalizations of Veneziano
model, remain intéresting. In chapters III and IV the results of these studies
for the reactionsjey°4ypo andjc7° *yﬂn are very briefly written down, al-
though they are left incompleted and some further study can still be carried
out.

Appendix A contains some application of the generalized Veneziano model
to hadronic reactions and the construction of some of them.
Chap.5 and Sare devoted to the study of some current amplitudes, where
the currents are included in the dual resonance model for the hadronic ampli-
tudes through the minimal gauge interaction prescription. The sealing property

of such amplitudes in the Bjorken 15)

limit are considered and it comes out
that these amplitudes satisfy the Bjorken scaling due to the existence of

fixed pole in the amplitude with currents which in turn is responsible for the
validity of Fufini-Dashen-Gell-Mann sum rule. The quasi~inclusive processes

with one final hadron detected are also considered through the use of Muellerism.

A vague analogy with the parton model results is obtained.

Appendices A and B consist of the materials of references 16)-22).



Chapter II

The reaction w7 > mw

The most suitable reaction providing for a bootstrap of the rho trajectory
is mm > ww. The T-matrix is described in terms of a single invariant ampli-

tude A(v,t) through

T cupy Epops S fivly fis Ay t)

where the momenta and isospin indices are taken as in Fig. 1

Fca.i
S= Cﬂ*ﬂz)z) {”=(P¢—f3)1, V= ‘%(Is‘u)
The remarkable property of this reaction is that it selects among all
the particles and Regge poles which can be exchanged in all the three channels
those corresponding to I = 1, G = + and normal parity trajectories.
The contribution of the leading Regge pole to the amplitude will be para-

metrized for fixed t and large v as

ol (£) -1

S, L) —p ) £ () , (2.2

with
_.,"7(91('6)

? _ | — e
CH e 7 o (£) (2.3)

We also parametrize the residue function B(t) as

74

(2.4%)
F () ’




where B(t) is an entire function of t.
Regge behaviour and analyticity requirement allow one to write the following

family of sum rules

v o (t)-1
4)dv= ﬁ(” ( ) yht (2.5)
v In AV, naore : '
0
Consider the lowest moment sum rule corresponding to n = 1 in (2.5).
Saturating the left hand side of (2.5) with a singlejﬁ—pole in a narrow re-
sonance approximation and with the definition of couplings as

Goan = f € fh.) (&-ﬁ)n

)

"g/?"w': & rre r(f)e (rep ) Bty ( 7)0—,
andthf;e;}o:jé)n;v‘ﬂg(s ’"“)-—jfﬂo“[ (‘N*é‘ t)-mt],

S= St mt
we get from (2.5) for n = 1 the following expression

2

3 - (f)-’
Camt-3 () () o 2
e e

Equation (2.6) predicts a zero at

v 3 (Be)
=—c9h1/+2=—0‘5 ¢ (2.7)
for the right hand side and the natural explanation is, of course, the zero of
a(t) at that value.

Using crossing and the fact that theja-pole should lie on the Regge

trajectory at the value of t = 302 and using
_cAadd
- 3 ~ | - J , (2.8)
A TR ol x| ~7C (ot-1) xm‘ -l (=5 "“ )
ﬁ
where o' is the slope of the Regge trajectory near s = %fQ’
2
we get %%T ,ﬁ(mp) (2.9)
e — —_— D e e )

T !



which accomplishes the footstrap of th?jO—trajectory in a first stage approxi-
mation.
For the requirement of (2.6) being valid in a certain rnage of variable

t and the following steps of approximation we refer to 6).

Chapter III
The reaction/9°-+/°0

The T-matrix for this reaction can be written in terms of 14 invariant

amplitudes as the following
T= (€ ‘f)[@,.f)(g P)A (v, 4)+ (&2 e, )~ (€ 2)E R )J A(r )
+62)60) ¢ P)EAF €R)ER) Ay + (6 €,) /ﬂ;}
+(e.,a)[(é,m(e, B4+ [ 2)€a)-( pKesa)] A,
e, )R )+ )& 8)[ Ay + ) 2) A+ (60€,) 4,0}
+[E, €,),2)- & &)(&2)] A+ [€e)Er)rec)le, r )14,
+[&6)6a)- (e )6 0) At [€:6)(qn) +E6€ J6R)] Ay 5 3D

where
P- L hr) A 5 1y
=2 Ch+p) -,
L
Sz(ﬂ'fﬂ.) , f

E= (p-p)" S
- ﬂ'[);) ’

{ . = . .
v=L(s-u)= L4 Fig.2

g 4
61(p1), Gg(pz), 63(p3) are the polarization vectors of the/o—mesons and the
isospin indices of the particles are dropped.

These 14 invariant amplitudes are free of kinematical singularities and
therefore appropriate for being used in the sum rules. Notice, that they are
no other (redundant) invariant amplitudes which can be written in terms of

the above 14 amplitudes and therefore the question of which ones of them are



kinematical singularity free does not arise for this reaction (for the reaction
/3P +JP n this question arises. See chapter IV).

The particles and the Regge trajectories which can be exchanged in all
the three channels should have I = 1, G = + and can have natural or unnatural
parity.

In order to write the FESR's (1.2) for this reaction we have to know the
Regge behaviour for each of the invariant amplitudes. One way of finding the
Regge behaviour is i) to write down all the 14 helicity amplitudes f)1)3ﬁ2 0
in terms of these invariant amplitudes ii) find all the parity conserving
kinematical singularity free helicity amplitudes-f‘+ and ¥ where + and - indices
correspond to natural and unnatural parity trajectories and iii) to solve all
the invariant amplitudes in terms of these helicity amplitudes and then reggeize
them 23). In our case we proceed in this way, but since the system of fourteen
equations for the invariant amplitudes is very involved we do not solve them
and leave them simply for the check of their behaviour which we have found
from another method - covariant method of reggeization.

By going to the t-channel centre of mass system, where

(u,O,o f) ’ /Fl=//;d/=/) )
,03/*_ (w, 0, ,—/‘) 17 = 171=7
(‘J ’ 7’¢“’c% ? 7 aa )
and for the helicity states of the polarization vectors we have
(") E(o,j/,z‘,o)
‘"’(")- (£,0,0,-2)

')—)n‘—-(o)— t;l.).f.w&t)

(/’2) (77% 6 ,0,-2'68,)

M= in (3.2)
after some algebra we get for the parity conserving kinematical singularity

—_—

free helicity amplitudes j[ . the following expressions

A0A35‘A1
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12.

The covariant method of reggeization is the following: we exchange a
spin-J-particle in the t-channel of the reaction with all its possible coup-

lings at the two verttces, find the contribution of this exchange to each one
of the invariant amplitudes and then change everywhere J to a(t) and ! 5
e—ina(t) ) t - m

- 1 - h . .
T2 a la Van Hove 2 . The expression for general verttces

2 PIRTIED)

to
and propagators are given in 25). In our case the use of covariant reggeiza-
tion is more advantageous since in order to accomplish the bootstrap we have
finally to connect the two sets of residue functions and the coupling constants
as in (2.9). But the latter has been as an ingredient in this method of reggei-
zation and therefore the crossing between the t- and s-channels becomes almost
trivial.

We start first with the contribution of the natural parity exchanges,
corresponding t9/°(1_) and its recurrences. Everywhere the notation (+) is used
for natural parity exchanges and the notation (-) for the unnatural ones,
corresponding to B(1+) and its recurrences.

Exchanging a spin-J natural parity particle in the t-channel of our reac-

tion we get after some lengthy manipulations the following Regge behaviour
-+ w3 I
At )= ﬁ,(*){ldf(dé—;)(,vz) ;
* [~ o — 2
AT =L CE) };o((o( /)’('/_‘L)
. - !
Af = p(t) %, £ (2
* !
/),,:A,({—) ‘5;(%)0; /
+ .
A=) () o
ch “'—"ﬁ‘['é) Ydof (?) , V)d__g
At < (4) % o (1) (A=) (+ '

Vs

A = ALty Saot (=) (£)°7 , -
o ~ - ) ’
Bf = L(HA = xp (4) }.Z_";( (= )(.1
’91: = ﬁg‘f)}: d(T’;Z} !
=0 Ao 2
l -—
Py " — *V
At = ;L({'/&L{t)—xﬂ,('f))g O‘d(i‘,_') (‘1) ,

i e g e ()
ol —
/’,-f/=/53‘“}§ d(,%) ’ (3.4)



13.

1 glxu(t)

sinma(t)

1

where & = s X = 5-(m 2 _ ms?) and the connection of the residue

; ; = ra = ra
functions and the coupling constants'such as 81 = f2g1 5 86 f1g5 > ete.,

have already been used. f, and f,. are the couplings of spin J particle to}061-

1 2
vertex and 815 & = g3, g), 2 g5 are the couplings to_/UD—vertex 26).

An unnatural parity exchange in the t-channel gives the following Regge

behaviour

-

R RV Ry RN RN A
- - o
/?V / ﬁ%s e (I;‘)

z

)
- -1
)— - - ,
ﬂ3 / ﬂs ) ’4? s /qu, ™~ (I/;) ,

A

[

Vo

The crossing property of invariant amplitudes under v «+»> -v is

A3, A6’ A7, A9, A1O’ A11, A]h = even under s-u crossing ,

A A = odd. (3.6)

A Ays B Ags Apps Ayg

—I’

To write the FESR's for the invariant amplitudes Ai’ i 1,2,..., 1k

N

P, _
we will calculate the contributions of/:> , B(J= 1) and g(Jd=.3 ) exchanges
in the s- and u-channels of the reaction to the imaginary part of these ampli-

tudes. We need the propagator of a spin 3-particle which is
_ 1 ,
f"Le )"Ihlel— 57 [k"“.' Ieﬁ_/ll Kie/'/'K"-‘-/Kkl, KIA/ +/€l./(Kk"/ [[/
#Ren Rygr Rt # Kops Roio Bopo v Reg o R Koo

-—% <k (_'h R(-’IL’ K(e/—f[“[ kf’ﬂ’ Kkl/"Kl'hK‘/[/ka/
* k“e Ki’l’xkh/—#/(kf K."k’Kl‘P’ + Ké( K("f’ Kt'h’
4 Zc’k Rurgr Koot Rog Rie Ry o + K/a( Rupr ket )],
(3.7)

- _ kikR
where RiR = gik 5
mg

The contribution ofjo—exchange in the s-channel to the invariant ampli-

tudes 1is
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/4 { -1
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where a is the slope of the/ -trajectory near the/’ -pole: a(s) - 1 - a(s=m 2),
= Z_*—s_ , L =3m 2 + mc2 and everywhere one has to put s = mf2(3.9).
The contribution of B(Jp= 1+)-excha.nge in the s-channel is
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= 72 [ (5 m Lo Copipr ine-2sa)pl 0
7(a L4 :-»,Bz 4

where a' is the slope of the B-trajectory near the B-pole, 81’.and 82’ are

the residue functions of the B-trajectory,

_ 2
“—{("}'Mo"z)
yz ;'_‘—ﬁ-é-s
¥
(3.11)
z= L.—'
L(1m~5)

and everywhere s has to be put equal to mBE.
The contribution of g(3 )-exchange to the invariant amplitudes has also
been calculated 26).

Now let us write down the set of the lowest moment FESR's i.e. for

n=20or1in (2.5):
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The contribution of g(3 )-exchange can also be included 26) and a typical

contribution to, say, the eighth sum rule of (3.13) is the following:
17 ; mz'

v J‘/z.__i.{é ! J_L / I‘IX
et et L oo 1
0

v
(0o Gt g a)

8av¢
S {apieragar S fak 2ale}
leaul 3 ,‘ v; /%
9. 2
ltawl{gz"g;""?” x’"éai}/g‘; (3.14)
+’—8M{[:u-.)- ]42-_,»}@,
where /1 X 2 e
X'z o+ = ,P:h}_;—]f»;ra_— GZZ_;Y)
2, atps-2
3 ,? ) 2- _.._)(m x! s‘))
S = my

4

The set of FESR's (3.13) can be studied in different stages of approxima-—
tion. For the first step one can ignore the unnatural parity contribution al-
together and put only thejP —contribution in both sides of the sum rules.

One then takes the cut off v to be somewhere between thejﬂ - and the g-poles.
At this stage one can choose a special subset from these equatibns, go to
special values (but not necessarily the same for different equations) of t so
that the right hand sides of them vanish, say, due to sense-nonsence couplings.
One then obtains a set of linear homogeneous equations for the residues Bi,
determinant of which is a function of the external masses m/§ and mdz, the
exchanged particle mass Tpe and t’s. Having chosen special values for the t’s
the determinant is only a function of mc2 and its zeros as a function of
external mass mo2 can be studied x).

Further study of these sum rules has been left incompleted (see the

introduction).

x) As an example, if one puts in the equations (3) and (6) of (3.13) t = -0.6

so that a(t) = 0 and in the equation (9) puts t = 1.6 so that a(t) = 2 then
the condition det = 0 gives m053 800 MeV. Also besides the set (3.13), where
the lowest moment sum rules with n = 0 for Ai, i=1,2,4,5,8,12 and 13 have
been used, one can write down the next set of sum rules with n = 2 for the
above amplitudes and then all the left hand sides have the kinematical

+t - . . .
factor §§___%___§_ analogous to the one in (2.6) and the right hand side

factors a,{o — 1) ete. elso change.
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Chapter IV

The reaction PP >Pn

The kinematics is as

S =
t
V= T:—('-C-“-)‘-‘- Q'F ¢

won
S
j_‘
\
-4+
<~
Nt et
~

The objects exchanged in all three channels again have I = 1, G = + and
can be of both natural and unnatural parity. For this reaction there exist
13 helicity amplitudes which can be most easily understood by comparing with
the reactio%/yp +Jp o, for which there are 14 helicity amplitudes but for the
present reaction the < OOIOO > helicity amplitude vanishes because of parity
conservation sincilap i/bn is an unnatural parity reaction.

The T-matrix for the reaction 1is

—_ # .
T = e/\-{?) éd(f) Eye (/J’) /‘7,“\,‘,/ ) (1)

for which M/!VJ,can therefore be written in terms of 13 independent invariant

amplitudes:

/13 .
Mo, =2 K., At )
U= |

However, for this reaction one can write 36 different Lorentz factors

1
KP“' among which, of course, 23 are linearly dependent through the so—called

"equivalence relations". The question arises: which one of these invariant

27)

amplitudes to Choose? The prescription is the following : in order to
choose the invariant amplitudes which are free of kinematical singularities

one has to write down all the equivalence relations for the Lorentz factors
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ﬁ(};Jand choose among them the ones which can be expressed in terms of the
others without introducing any kinematic factors which can become singular
as the redundant ones and the rest as the Lorentz factors in front of the
corresponding invariant amplitudes.

For our case this Lorentz expansion will be

vel = (é"f‘ A f _fw'-/— é‘ﬂ/' A PP-/)AI(V,{)-/— (éuhgfﬁa/— éaf,@fpu)ﬂz
+ (€opBAL, +Co Q8L ) A+ (€0 8RRy~ €1 8 DEY) Ay
+ (&yp POPu+ En POL ) Art (Cup PoL, - €snltal,) Ay

M,

+ €, BLAL A, + €,,08 0 @ Ayt Cu'v Pa Qi

—+ 6‘,/\//‘, 0/4/0 + GJ’Jﬁ _P A”+ éu’J,,A A’,Z—F— /\/I(,gw-/ 4/3 /
(4.3)

whereNt‘-_-_- epv,\?Qvf,\Ac—‘_'ép&fA y

(b.k)
€vpRA = é%,\,c@/\At ete.

The equivalence relations are obtained from the identities like

_ .
épwo-ez g’dp' o Vrrg'r(”' éﬁd@f;%"’ C',\v&zgo—/,"‘ Gﬁ"“"jtﬁ '( >)

by contracting them with different vectors.

The equivalence relations are the following:
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veRP f= =7 GWPQ + €y RLL, ~ €ipn®rF- +(6?f’)em,,f

€y PAY, = Preiup D + €unPa P~ €p PO Porm F) € oL
€oiv @D (D) €grip O+ €ulp@2F, = €4pQaf, 1 +(QP)ESp &,
1€.mQn QA= -9 [A% @ )] Csty pr[-n2e 2 (ap)] €510 8
+2€, 1 RM- ¢ ) OAf, + I Ep AL,
€ QD0 = o[ Q™ (ap)) €ynp b+ [~ 2242 (AP)] €iiup
~2€,RAR =€ RS+ I EpOLE
4 €00y 20, == [ RS@P] €1, B e [ 42 (£.0)] €014
+ 26,7, Q0Q, -3¢, QPP+ D€8 P2,
4 €vp QPR = a[Q @ P,y P+ [apL(P.A)] €p@  (4.¢)
€y NPR -9 €sp QPP +2€,,0P P ,
4 év/,, PAR, =- [3[’:‘3(&/’} —(PF. /))_"}GJ/J,,A +[-n%2 {/L/’)]Gy,‘,rf
42 €, PABp-2€ p POP, I €0 LAP

$CptpR s = [~20'1 202 +(P0)) s (842027, I
=2 C, PARN~OE NP Pt 2E EnP,

’

4 M, ;J"/. = 1N t [ (QLge P)-0Z%a(rp)|€sip 1’+&[.:fo([’/))]6‘,,%&
+~2p ’,;,-;(g.f/,a(pzy_}e‘,/,ﬁg.. y €, RIQu~Ve,, QLL+ YENQLE,.
~Y Eiphn by ~2€00, PABWRCHTAP, +2 €, P2,

TN o= V0 g,- [0 85002 ) atacap)]ey 1,y B
‘m[’” PN ] s @ = (1% 2(4.9)- (1)) uti &
tY €, RPRp=—y e REL+ 5€,,80F,,

—HEp QDL A&, PARN- RENWPNL+3E,, IS,



23,

N2y - Myl = -0 e+ Q1) €20 +2 D)ERO P,

N\’Qﬁ-/\/r'@‘jz As<‘vh£[)~(6)f) (—'»‘/,5 Q N 9

hld Pl\‘f' Nf’ Q./ = %—[ Azé v QF—(PA )eJ/\, QAJ »

N\,.- f‘,,.-/\/d; PJ = [zéJQQA_(‘QF) éJ’J-fA_(P/))éJ,\/&_I,j
NV’P = /V,, Pir= ‘j)'zéd’pQAf'(Q/’I‘u?, PA+(PA)EQ P
N‘; Ry~ Ny R, = —Q2 Eu'ly PA4+(QP) €yry @A )

Nu’@p- Np@u' = Q" éd’,,f/)—(éf) é,,//,AA ’

Ne Byi+ Ny Be= L[ n%eur, aL(28) €00 80]

N b= M Bur= L[ a2 €0y 88-(Es)esya0)] (4.6)

)
SN 2 D= [-4@0) () ]es @+ [ 202 4 (Py] €5, 0P o
+[420) (8 ] € p QL A4 W0)] €urs 828,
+a[ntoyps)] € &L L +[-4pY] €00 0 4,
+[40Z30nr $@NT €0t Q0 L+ [-94% W@ P)] €0ty 2P,
+ya% «BL) €cp PP, + @) €urn £D Q)

X N|\( ?, QJI=I_—‘((QP)(.[’/\)_]G‘,/_‘,’,Q +[9¢n)) Coy RP B [-2/__'3%-“/{‘[’13}7
CVp@LL+[2A-y(P1)] €y RL B [y P]€, 084,
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¥ N(\QJ‘Y“l = [‘{(Qf)(fﬁ )J éd’upQ‘F ["'VU’/;‘)J cyly QEQ{‘"
+[-anby(Po)] €Sy REL, + [9AL dlen)Jecp AL,
L[yPY) v QD8+ [ n)-vPL y@r)]Eu) NS,

+ [<aen )+ y LH9QP)) ¢op A 5P+ [10F AP )J€ PO,
+[~4QE 4@ F)[eup PAFr+ [ -y (g_f)_} €y, LARY
SN Qo Q=R Q%%-9Q9%ap)] ¢, o B [9@/’)(1’/\)] Eyip @
+[~2RE(a)+ 40 L 9@P)2] Cutup B (4.¢)
+ [-an] €p a2 8pt [8(21)] € 0r & 2R
+[9RY) €yp PP+ [-44%] SHIY 4}
+[-9(at)] ¢ @ADL+ ][ V@'J’/]évﬁ AAPy

By looking at the relations (4.6) it is easy to understand the choice
of invariant amplitudes as in (4.3). Besides, by writing the helicity ampli-
tudes in terms of the expansion (4.3) one can ensure oneself that all the
kinematical factors (sin g)ll_hl (cos §5|A+ﬁ| are correctly reproduced;
another choice of invariant amplitudes would not have these factors which
would be a sign of presence of kinematic singularities in them.

The (s <> u) crossing property of these amplitudes is the following:

A1, A3, A6, A7’ AB’ A11, A12 and A13 are even under v <> -v,

A2, Ah’ 5 A9 and A 10 &re odd.
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We proceed further exactly as in chapter III by writing all the helicity
amplitudes in the t-channel, exchange a particle of spin J in the t-channel
and then find its contribution to each invariant amplitude. The calculations
are lengthy and the equivalence relations (4.6) are to be used extensively
in order to reduce all the redundant K i/which appear at intermediate stages
to the ones chosen in the expansion (4.3).

We shall not write down these lenghty expressions and the final sum rules

26)

analogous to (3.13) and close this chapter by writing the Regge behaviour

of the natural parity (f) - trajectory:
-3
/9’,/43/\/ l/o/()({:) y
d(t)-2
Azl /?S ) 69 ~ Y / )
”oz/(%)—/
B, Ay, Ay Ay, s /

o (¢
/}q , /?/0 ~ V/ )

/ L.
A uo},(é)+ | (%.7)

’

. . . . + .
The behaviour of the 1nvariant amplitude A12/~'va ! may at first glance
seem surprising, but one can check that in the expressions for helicity ampli-

tudes, A, appears always in the combihdtion of A . + v Ah which has no

a+1 apt]

v behaviour anymore. The same situation, i.e. A12/v v , happens for the

12 12

unnatural parity trajectory.
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Chapter 5

DUAL CURRENT AMPLITUDES

29.
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In this and the next chapter we present some progress
which has been obtained in the construction of dual

amplitudes for currents.

One of the most challenging subjects of the dual
resonarice model is the construction of dual amplitudes of
currents which are consistent with current algebra. During
the last few years many attempts have been done in order
to extend the dual resonance model (DPM) of strong inter-
actions in order to include the electromagnetic and weak

1) - 7)

interactions of hadrons.

The construction of a dual current amplitude may be
suggested by the following considerations: First of all,
in a world where hadronic amplitudes are dominated by narrow
resonances, it is natural to assume that currents are also
dominated by narrow resonances. The existence in the
hadronic spectrum of an infinite sequence of vector mesons,
provides us with the frame for such a dominance. Furthermore,
since the form factors are rapidly convergent, we expect that
the current amplitudes can be expressed as sum of poles in
the current mass q2, as well as in the energy variables of

the hadronic channels.

Another quite suggestive argument is given by Bloom

8)

and Gilman , who have analyzed the structure function
\)w2 (v, q2) for inelastic electron-proton scattering (for

notations ef. Appendix B). Considering nJW2 as a function
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2
of scaling variable w’ = EME%M— , they compared in the

same range of o’ the scaliné limit behaviour (i.e. large
values of ¥ and -q2) with the resonance region behaviour,
showing that the smooth curve of the scaling limit averages
the wavy curve of the resonance region (cf. also Rittenberg

9) in this connection). This kind of

and Rubinstein
behaviour is quite analogous to that of finite energy
sum rules for strong interactions and suggests that current

amplitudes actually obey duality.

In attempting to construct a current amplitude in
the framework of DRM one would like to satisfy the following

properties:

(1) absence of moving poles, i.e. no dependence of the
pole positions of the amplitude on the external

momenta,
(ii) planar duality,
(iii) generalized Ward-Takahashi identities,

(iv) good asymptotic behaviour in q2 and in energy

variables and

(v) factorization in the sense that the hadronic spectrum

in any channel be consistent with that of the DRM.

Most of the difficulties lie in the construction of
the off-mass-shell amplitudes and the conserved current

(see chapter VI).
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Up to now a model satisfying all the above requirements
has not been given in the literature = each particular model
is able to reproduce only part of those properties. According
to this fact, the models which havebeen proposed until now
can be essentially grouped into two classes: phenomenological
models which are mainly connected with the properties (i),

(ii) and (iv) ( or even (iii) ) and factorizable models

which enforce the properties (iii) and (v).

1) are based on

Some of the phenomenological models
suitable modifications of the hadronic N-point function,
where some fictitious constant trajectories were introduced.
This automatically insures the.correct pole structure in
all channels, asymptotic behaviour and duality. Of course,
the constant trajectories give rise to fixed power behaviour
in all channels, in addition to Regge behaviour. This feature
is not satisfactory, since one would like the absence of fixed
poles in all channels, except for the channel of two adjacent
currents where the fixed pole is required by current algebra.

Some of these models will be described in more details in

chapter VI,

A phenomenological model has been given by Landshoff

and Polkinghorne 2)

for the two currents-two hadrons amplitude
which incorporates many of the features one usually needs of

a dual current-hadron amplitude. It has infinite number of
poles in the current mass variables; it satisfies the Fubini-
Dashen-Gell-Mann sum rule and gives rise to the desired

Bjorken scaling 15).
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This amplitude for the double spin-flip part of the
scattering of a vector current on hadron is given by the

following expression

W, a/tliol-z Nv(%z) -
/7)0*7/'7»)”"/\//// 0, - (I i,

v )1 ol(t)- (5.1)

RN IS L TRV I T

where

-1

X(L("Lh’)%): ):\1_ %lh'vh. ]

€ + U+ U

and (5.2)
—-m _ 14
2 (U + Ut Uih) N (4, +4s)
Y: |+ ! [+ ——2—
L4 2+ U Uy \+2 ‘

The expression (5.1) is reminiscent of a hadronic

six-point function which is natural, because of its pole-

structure, namely three simultaneous tree-graph poles.

The above amplitude is an example showing how an infinite
sum of resonances with falling form factors as -qa———>-+°°
can build up a scaling function, contrary to previously

proposed diffractive mechanism 10)

for the scaling. However,
the Landshoff-Polkinghorne amplitude does not give a pre-
scription how to build up in general current amplitudes in
the framework of DRM. This is because the model has
factorization only for the leading trajectory. Essentially

on account of this lack of factorization, the construction
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of a current amplitude becomes non-unique, since one would
like to derive any such amplitude from the basic ingredients
like vertices and propagators as it is the case for the dual

models for the purely hadronic reactions 18), 19).

4), 6)

Further, there has been some attempt to construct
the factorizable models. They obtain a conserved vector
current coupling to an arbitrary number of scalar mesons

by making use of the Ward-like identities (see e.g. ref. 19) )
of the DRM. The structure in q2 remains here completely
arbitrary, so that in principle one can construct satis-
factory amplitudes for a single current. For the case of two
currents, however, troubles with the divergence condition

7) 7)

appear . There appear also unphysical singularities in

the channel of two currents whose positions depend on current

masses q12 and q22.

An entirely different approach has been proposed by

Kikkawa and Sato 1) 12)

and by Nambu s who start from the
infinite~component field-theoretical formulation of the dual
model and introduce the conserved vector current according

to the minimal gauge principle as in the ordinary field theory.

However, the amplitudes of this kind contain 7

terms analogous
to the Born term of the usual field theory and therefore

cannot have structure in q2, and besides these terms are

not dual. One could think that the structure in the currents

will come from the higher order terms.
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In the next section we will describe in details how to
include currents according to the above prescription in a
manner nearest to the field theory model %‘P3 » 1.e. write
the dual amplitude for hadrons in the tree-graph form in
the coordinate representation and then replace the space-time

derivations by the covariant ones.,

The technical aspects and applications of this minimal
coupling scheme to deep inelastic inclusive and semi-inclusive

reactions are included in Appendix B (ref. 24) and 25) ).
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The minimal coupling scheme

In the electromagnetic and weak interactions the most
important properties, for instance universality, conservation
laws etc. are treated in a unified manner from the view point
of the minimal gauge principle 13). Here we will establish
the gauge boson theory in the dual resonance formalism of
the hadrons. We shall show thatthe resulting dual current
amplitudes obey the divergence conditions of the conserved
vector currents (CVC) and the current density algebra. In the
present approach we deal only with the covariant tensor
amplitudes and we do not assume the existence of the local
current density operators. Thus the condition of CVC and the
current density algebra are replaced by the divergence con-
ditions and the Ward-Takahashi identities for the covariant
tensor amplitudes. The proof of the current algebra conditions
is presented by making use of the fact that our current ampli-
tudes are gauge invariant, since we have introduced the
non-strong interactions as the minimal gauge interactions 13).
From the high energy behaviour of the current-hadron scatte-
ring (see Appendix B) amplitude we recognize that the two-
current amplitude has a fixed pole singularity in addition
to the moving Regge pole in the complex angular momentum
plane. Both the current algebra conditions and the existence
of the fixed pole singularity make the two-current amplitude

to satisfy the Fubini-Dashen-Gell-Mann sum rule 1"). The
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existence of this fixed pole in turn gives rise 2b), 25)

15)

to
Bjorken scaling of the amplitude and due to this fact

the connection between the threshold behaviour of the

dp:
structure function as @ = ;Z —1 and the power fall-off
of the electromagnetic form factor as -q2——¢w= is different

from the one given by Drell and Yen 16)

8)

Gilman .

and Bloom and

The same happens in the model of Landshoff and Polking-

2), 17)

horne , where the scaling results because of the

existence of the fixed pole.

Throughout this chapter we consider all the particles

as bosons belonging to the nonet representation of SU3 and

lying on the same degenerate trajectory ol (s) = o’ s + o,
= % s + &, with o, 0 and the scale of mass, so that
oL - 1

= 3.

Consider first the pure hadronic amplitude in the

multiperipheral configuration illustrated as in Fig. 1

n-1

RL F) ’ ) ) ' Fn-l

Fig. 1



38.

By use of the operator formalism 18), 19) the scattering

ol
amplitude in terms of vertex functions wvf (’F) and propa-

gator D(s) can be written in the following form

M 8 = ol [VE) Desy V™

(5.3)

D) V] (o>

. oA,
oA
where L/'(P) is the resonance-resonance-particle vertex

defined by

V7h) = Tas exp(-p @) ep (1)
_ _/:(2‘ V(ﬁ) (5.4)

(n)+ (n) . .
CX% are the harmonic oseillator creation

Here szk and

and destruction operators satisfying the commutation relation

& n t
[fcz;:) , (1L; ) ,] ::.-—-ézk»/ éﬁmlt ,

o8 !

(5.5)

M, =1,2, -

ﬁ' = = " _;33 :

[ 4

Z%W‘V is the metric tensor
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and we use the notation
S
7 ) , -
/)L. a/ o (/)‘L) = ﬁ ’
SN ") (5.6)
7. L —= ( L.)IIA. by a(i
f I . "

The indices oLidenote the internal symmetry states. Here
we assume the symmetry group to be SUB' Then the internal

symmetry factor Zx in the expression for vertex function

(5.4) is the 9 x 9 matrix defined by

(7o Jyr= 4T Q)

(5.7)

where ‘)M(denote the Gell-Mann's 3 x 3 unitary spin matrices.

Had we assumed isospin invariance for the states

we would have for ‘7; instead

where ’K; are the isospin matrices.



The propagator D(s) in (5.3) is given by

D(s) = —- /

R — ol(se)

(5.8)

or in the integral form as

1
' —(j(p)—/+ﬂ‘
D(S;):j olx X * (5.9)

c

where the Hamiltonian R of the system is defined as

00 o 7
()" 5 () L )7
/Q - _ 2 “ h a " ac/'_ _ g na™a %1\,(5.10)

"\:l

- 2
and Sy = (,7(+7Lﬂ) )

Let us define now the n-point function G by attaching
the propagators of the external scalar particles to the

amplitude M as:

| o, -

IR )
G Cpo-of)= Tl M (poon

l " (5.11)

1= |

uo.
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This function G can be interpreted as a part of the

Green's function in field theory.

We rewrite further (5.11) in the coordinate represen-

tation by introducing the functions

)= eap (i)

which are the space-time part of the wave function of the
}»th external particle. Then the coordinate representation

of (5.11) will ve

DY) {SIT;‘) Vd“(f'@) (ff”,}[; (’al)t(x)}) ,0>
g

where o{ ( B‘z); V"?D) and D (737') are obtained from
ol('l)l) ; VD/(/?) and D (/72) respectively, by

replacing the momentum ﬁL by the derivative: 3 ak . The

curly brackets in (5.12) indicate that the derivatives inside

the bracket act upon the #f(x) of the same bracket.
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The relation between the momentum representation
(5.11) and the coordinate representation (5.12) of G is,

as usual, given by

4 . v Jodyee el
o 'x Gd‘ d”(x,z)__ @n)? & (Zp)G (k).

(5.13)

It is straightforward now to include the non-strong
interaction by replacing the space-time derivatives fa/\

by the covariant ones according to
3 —> D =ra“2‘e7t(9ﬁ/f(x) ’ 4

where € is the universal coupling constant of the gauge
field Ai_(x) to the hadron system, and f; is the 9 x 9

matrix of SU3 defined as
(7{>‘ )/zzr’:" -7["’/”/

with jﬁd/l(r belng the SU3 structure constants.
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From the expression (5.12) with the change (5.1L)
in it, i.e. from G(x,D), one can construct the current
amplitudes by power series expansion with respect to the

coupling constant €.

The Z,-current amplitude is given by

4. [ T[]
/)al: m? e

0 4
ﬁﬁ' d G(x,2) .15
é‘ﬁﬁ', Chy) - - Jlﬂ,ie(k,g)

tzf =1
S, R) _ FAC £ E(1D)
SAG) — FARN  FAx)

In (5.15) /ékaﬂé)is the Fourier transform of /Zf(X)

and the internal quantum numbers and the momenta of the

where

hadrons are suppressed. In the above, the gauge field.ﬁ%

has been treated as a c~-number,

Finally, the Reggeized Feynman rules for the current
amplitude from the above description can be obtained as
a power series expansion in the coupling constant € of
the vertex function IVYQZU and the propagator [) {562)
through the covariant derivative (5.14). For more details

we refer to 11), 24) and 25).



Instead of the above prescription one could start

12)

from the infinite-component formulation of Nambu and

Miyamoto 20) for the dual resonance amplitudes and include
the currents according to the minimal gauge principle there.

12), 20)

The Nambu-Miyamoto equation for thedual resonance

amplitude is:

(- 0+ R4V 2) = & ¥ 0n® )=

(5 16)

where R Z 2N "L)‘” —‘2 Y3 a(i a(l) ;/\v

h=1 =1
as in (5.10) corresponding to the free Hamiltonian of the

system,

V(XQ = Wf[ 7‘7*(1(/ (5.17)

is the interaction potential

(; (e)= Z l/- [Q(}@y(/(uu),; q(t)ﬁq( LLL])

?(x) is the field corresponding to an external line and 3%”

is the master wave function describing the hadronic system,

hy,
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The gauge current is introduced then in the wave

equation (5.16), according to the transformation (5.14).

The two descriptions to include the currents in DRM
as given above, are identical and give the same Feynman
rules. For simplicity, in the above description we have
ommitted a projection operator /i)21) in the expression
for the interaction potential (5.17). This projection
operator is responsible for keeping the hadronic part of

the amplitude invariant under the duality transformation 21).
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Current Algebra Conditions

Here we shall show that the Ward-Takahashi (W-T)
identities for the current amplitudes, i.e. the following

relations

Y
ﬁl o FE . . - ggz‘ B X‘ --ﬁ—e ceey 4 -
k,ﬁl /\7 [ /((1 (/24"") k[ ): ! ’LZE . )L{SI (5;)\ ’\1(“1-“ {(‘1_ /"E(hu k. kl) ?)

(5.18)

are satisfied in the approach described above. As was

already stated, since we have not assumed the existence
of the local current density operators 22), the current
algebra conditions can be replaced by the Ward-Takahashi

relations (5.18).

Consider the following local gauge transformation on

the gauge field

ﬁf/(xk/gp(x)* LX) A ) ?, €]

(5.19)

where é:(x) is an infinitesimal function of x. In (5.19)
and in the intermediate steps the internal symmetry indices

will be dropped.
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The variation of the function (; ( X, ﬁb{ H},)
(ef. (5.12) and (5.14) ) then will be given by

G =G (v, DrY) - G (x,D{4})

| | & |
3 ok dlpoece) fup) — GO, DLA))
=1 ok L et Fa (rek)

(5.20)

*f‘}.: /0,[7/2\ é(/{)/%p

=

G X, ALA
‘pﬂ/\/l} }) d

where éi(k) and /9ﬁ (P) are the Fourier transforms of
& (x) and /gg/y) respectively.

Taking the functional derivative of the eq. (5.20)

with respect to € (k) gives
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dG

Since the theory is gauge invariant, FE ° 0 and

from (5.21) we obtain

G(Y%L{#})—-ZQ/ /ﬁﬁfﬁ/ = GOUBL)

(5.22)

f’fﬂi r)

This is the basiec formula from which one in the usual manner
can show the current conservation condition and the Ward-

Takahashi identities.

From (5.22) one obtains

/l » C (X %[ﬁ}) =0 (5.23)
NG /
f=0

which when combined with (5.15) gives the current conservation

condition for a single current amplitude:
) d s
B MICR) = 0 (5. 253

By applying the functional derivative of /2/(?) to
eq. (5.22) and using the definition of (5.15) for the current
amplitude, we obtain the Ward-Takahashi identity for the

two-current amplitude ¢
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4 Mﬁf (k,9) = ?%fupy M),

(5.25)

The identity (5.18) for f?-current amplitude is obtained

by taking the repeated derivatives of formula (5.22).

From the W-T identity (5.25) and the definition of

form factor F as
/\45 (kt9)=€ (), F i)

(5.26)

it is straightforward to derive the Fubini-Dashen-

14)

Gell-Mann sum rule.

Consider the two-current amplitude

‘7lﬁf /% _ ?@_‘f,Pz

with qiand a5 being the momenta of the currents, Py and P,

the momenta of spinless hadrons.
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The covariant amplitude ﬁ4/n’can be expanded in

terms of invariant amplitudes as follows:

= ﬁfa ﬂ, € )7,2;7-1})'7‘“ [iju 42
7L..[)/1(A\/ /)3-{- Q/\f» g;—/- Q/L,Quﬂg
+ 8y Aubr Dy LC o+ BB

+ Abﬁ \,C“’g-/-ﬁ/”,\b /

/]
M,

(5.27)

where __}_p: 3’__ </OI "/‘ﬂz) | Q = Z/ (‘/‘ + 7'L))A: (Zz—c/-l'

2
Ve PO ad t=A

Then the current algebra condition (5.25) together with

the definition (5.26) gives:

VA, Cntq gt g (3ren=2 ) B (hiaint)

. B .
+5G~5-t)G :.,92917{%# rt)
(5.28)

50.

y
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)
=1 and l;L —
VA, vh,  r—oe

by the Regge arguments, from (5.28) we obtain

0

If now , which is supported

o AL YRS N tTZ—
Lo Vﬁ’. /3(),)7;/~ %2/7% } = eﬁﬁ)/ /f()5.29>

Y 50

or from the dispersion relation for A1 amplitude one

obtains:
d 1 T L — 7
L fdv £, b0, 8000) = 2e S F 1Y),
T

(5.30)

In this way the conditions for the current amplitude
to satisfy the Fubini-Dashen-Gell-Mann sum rule (5.30)
are tﬁe appropriate analyticity and the fixed power behaviour
0 (-1’7) for the invariaﬂt amplitude Al‘ In the language of
the complex angular momentum this high energy behaviour of
A1 amplitude requires the existence of a fixed pole singulari-
ty at J = 1 in the complex angular momentum plane 23) in
the channel of two charged (neutrino-antineutrino) SU3

currents.

The high energy behaviour of the current amplitude
constructed according to the prescription of this chapter
shows the 7§-behaviour for the A1 amplitude, and therefore
it satisfies the sum rule (5.30). This is included in

Appendix B.



Chapter 6

DUAL CURRENT AMPLITUDES

52.



In this chapter for completeness we shall finally
discuss some other attempts towards the construction of

dual current amplitudes.

Let us consider first the selfconsistent (bootstrap)
factorizable model of Brower and Weis u). The hadronic
character of virtual photon suggests that in a current-hadron
bootstrap theory, the electromagnetic interaction of hadrons
should occur as a subprocess of a factorized higher point
dual function, describing a system of N interacting,
spinless hadrons. This has been the point of view taken in
ref. U4). Strong restrictions are imposed on the current
amplitudes by the requirement that the spectrum of resonances
occurring as poles in q2 and in energy variables to be the
same as the spectrum of the purely hadronic amplitudes. These

consistency conditions, shown diagrammatically for one

current amplitude in Fig. 1,

Fig. 1
include the generalized vector-meson dominance. According

to this bootstrap philosophy, the current amplitudes are

53.
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believed to be completely determined by these conditions.
Quadratic factorization is expected to play the crucial
role, hence the single-current amplitudes must be restricted

So as to yield an acceptable two-current amplitude.

Despite its attractive features, this scheme only
accommodates vector mesons which are universally coupled
and hence fail to give Bjorken scaling 15). The form factors
fall off exponentially and, as was stated in Chapter 5, the
two-current amplitudes do not satisfy the divergence con-
7) 7)

ditions and have unphysical singularities in the channel

of two currents with their position depending on current

masses qi2 and q22.

A modified version of the above-mentioned scheme has

1)

been considered by Brower, Rabl and Weis in a hybrid model
which leads to Bjorken scaling. However, the attractive idea
of a current-hadron bootstrap has to be abandoned and the

factorization is lost.

The form of a dual resonance-dominated amplitude for
currents is certainly extremely non-unique if factorization
and consistency with the hadronic amplitudes are not required.
Nevertheless, it may be useful to put aside these requirements
temporarily and study the general structure of dual resonance-
dominated functions having good large-q2 behaviour and, if
possible, satisfying the requirements of current conservation

and current algebra. Perhaps the most important outcome of
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such a study could be an improved understanding of the role
of high mass vector mesons which could then help to solve
the factorization problem, but such functions are also

interesting and useful from a phenomenological point of view.

A number of such phenomenological approaches have been

1), 2) 1)

proposed Some of these models proposed by Sugawara s

Ohba 1), Ademollo and Del Giudice 1) are based on suitable

modification of the hadronic N-point function 26)

1y ’dtl oluy -l
. e { AR N-~3
'g/\/ (}),)//v)::/o/c [

o (L)

6.1

| -] (6.1)

' ?‘ / L(L'J' ,
z,J

by introducing some fictitious constant trajectories(which

have no physical meaning)for every channel carrying leptonic

quantum numbers according to Fig. 2, for a two-current amplitude:

L = Lo prhon
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which has been obtained from a hadronic six-point function.

From this kind of amplitudes one obtains fixed power
as well as Regge behaviour in all the channels, e.g. Gjé)og
and (o(ﬁ)x' etc. This feature, in spite of its interesting
analogies with some field theory models 27), is not satis-
factory. The form factors in these models are power-behaved
and we note that this power behaviour of the form factors
is correlated with the presence of fixed powers in the
subenergies just as is suggested by some field theory models 27).
Thus, there are two suggested ways in which the compositeness
of the hadrons manifests itself in the non-strong interaction:
(a) the absence of fixed poles except in the two-current
channel and (b) the rapid decrease of the form factors. This

is what happens in the dual amplitudes of the kind described

above.

However, as discussed by Freedman 3), for the kind of
models described above with power-behaved form factors, the
lower trajectories will have a much greater degeneracy than
the corresponding ones of the hadronic spectrum in (6.1). This
by itself would not be a fatal flaw because there exists the
possibility of modifying the hadronic amplitudes, since the
are not yet firmly established. However, the spectrum of
such current amplitudes is internally inconsistent: it is

different in different channels 3).



57 .

1)

Let us next consider the model of Bander which in-

corporates the power fall-off of the form factors, current

14)

Bjorken scaling 15).

algebra sum rule , proper Regge behaviour and also the

The expression for the double spin-flip amplitude of

2

the virtual Compton scattering amplitude A (y, t; Q" q22)

(in the notation of formula (5.27) of Chapter 5, A,-amplitude)

1
is expressed as

Bt e e )= i) (1-dy o)

(6.2)

A L0006, (5,68 12 )t o) (5 7))

_ l(o!.e -2) (%3('-(, a9 ) (v, —1-a,2)) @, (4, 4,5, 2,7.})__} y

where
—o(t)+ ]

/ —ol(§)-
G (5t 55,0) = [ 4w 7l0-0)
0

d&#n,“wqu_%qf)

/ :
0[ o u d, (i-vuu:) U, Uy
[

(6.3)
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The form factor of the first pole obtained from the

expression (6.2) is given by

F (%)= =ohr ()
{—dg(g7) -

FN

The scaling function / ()= L’hél has the

threshold behaviour

Ffe) ~ (e=1)

3= (6.5)

that is in the model of Bander the connection between the
threshold behaviour of the deep inelastic structure funetion

/gffq) and the asymptotic fall-off of the elastic form

16)

factor F(qz) is the same as the Drell-Yan and the Bloom-

8)

relation. Recall that in the parton model treatment
16)

Gilman
of Drell and Yan of the deep inelastic electron-proton
scattering and in the duality (in the sense of finite energy
sum rule used in its extreme form of saturation with only
8)

one pole) approach of Bloom and Gilman the following

relation is satisfied:

(6.6)



where n is the asymptotic power fall-off of the elastiec

form factor
s | FL
/,(6] ) /\L/ _ (/7'2/) (6.7)

and p is the threshold behaviour of the scaling function

F2( )

/:; (LJ) ~ (“’“‘)F

&— 1

It is possible to modify (6.2) and (6.3) in order to

get the following expression for the form factor:

ety (172 P(V/"‘M@Z})
/(/) / (a+l-a(3%)) |5 //f )

(6.8)

The scaling function then satisfies the threshold

behaviour given by

_ V|
Eoe)~ (w-1)""

b— o (6.9)

59.



The expressions of (6.8) and (6.9) again satisfy the

Drell-Yan relation (6.6).

In spite of some nice features of Bander's model
mentioned above, it is completely unsatisfactory because
the amplitude proposed has infinitely degenerate Regge

trajectory (or resonances) even at the leading level.

In the model of Landshoff and Polkinghorne 2) which
was already mentioned in Chapter 5, the amplitude (formula
(5.1) ) is factorizable on the leading trajectory, satisfies
the Fubini-Dashen-Gell-Mann (FDGM) sum rule and the Bjorken
scaling. Furthermore, the amplitude has the important
property that the form factor appearing in FDGM sum rule
is the same as that obtained from the model by taking the
factorized residue on the leading trajectory. Bjorken scaling
arises because of the FDGM fixed pole, although it gives a
non-vanishing contribution in the scaling limit even for the
amplitudes, like the photon scattering, which have vanishing
equal-time commutator . Because of this responsibility of
FDGM fixed pole for the Bjorken scaling of the amplitude,
the Drell-Yan and Bloom-Gilman type of relation (6.6) in this

case takes the following form:
/Q_f./ —

(6.10)

60.
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Recall that the Bloom and Gilman's derivation of
(6.6) was based on the finite energy sum rule for the

F (&) = y w2 scaling function, i.e. on the following

relation:

{_9__/\1 O/V /gesmm,ces :/ﬂ[Cd//j/Ld/)
?2. «

(6.11)

With the extreme duality assumption of saturation with

only one pole (elastic), the left hand side of (6.11) then

gives a contribution proportional to

[Fan) ~ )"

/71/-—)96 (6.12)

The power 2n in (6.12) is exactly the right hand side

of the Bloom-Gilman's relation (6.6).

For the Landshoff-Polkinghorne's amplitude the analogous to
(6.11) relation should have an extra contribution due to the

fixed pole which is now proportional to

—/a0) o [/ "~
s / /72/ (6.13)




Because now (6.13) dominates the contribution of
(6.12), the power n appears on the right hand side of

relation (6.10).

In the case of the minimal coupling scheme for the
current amplitudes (c¢f. Appendix B), although the Bjorken
scaling property of the virtual Compton scattering amplitude
arises because of the Fubini-Dashen-Gell-Mann fixed pole,

the analogous to (6.10) relation has the following form:

g9 2
F*’“’g—”*}‘ (6.14)

In (6.14) the form factor has been defined through

the FDGM sum rule

(0l
5 _e ) }
Dy o8 )} (6.15)

a logarithmic factor log_z(qz) has been neglected in its

asymptotic behaviour, i.e.

. ho1,
o /;1//-%0(/7/2/) SR e

62.
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and the threshold behaviour is the usual one

F(w) ~ ot

- |

(6.17)

The relation (6.14) does not coincide with that of
(6.10) because the amplitude here has a more complicated
singularity structure than single poles and also because

of the effect of the renormalization (counter) term.



64.

More recent attempts

Here we would like to go briefly through some of the
recent attempts in the field of dual current amplitudes.
Since up to now no solution of the problem satisfying all the
requirements, stated at the beginning of Chapter 5, has been
obtained, it seems necessary to try all the possible approaches
with the hope that the final achievement may come as a combi-

nation of some of them,

One of such approaches was proposed by Nielsen, Susskind

and Kraemmer 28)

29)

in the context of combining the parton model
idea and the continuous string picture of hadrons for

the dual models 30).

In such a picture the basic assumptions are that hadrons
are bound states of some constituents called partons and that
these tend to bind themselves in long chains, so that only
the neighbouring partons interact. This implies that, if
one constructs the interaction term in the Lagrangian from
the parton fields, the important Feynman diagrams in the theory

will have a surface-like structure 31)

. In other words, one

can argue that the most important class of diagrams are those
that can be drawn on a simply connected region like a circular
disc or an infinite band and have a certain conformal invariant
property. All these are equivalent to replacing the continuous

string picture of dual models by an infinite but discrete

chain of partons.
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The physical idea in the above approach is that, while
hadrons are emitted from the edge of the Koba-Nielsen 32)
disc, currents emerge from its interior with an amplitude

proportional to a M8bius invariant density. The form factor

in this model is Gaussian:

L (9%) = /7/7”)[7(%)
)

acben i

> R
ne
. |

[«

but is supposed not to be valid for large q2.

The trouble with the above approach is that the arguments
in it are vague and besides its intuitive character does not
permit the consistency of the idea to be checked, there is

no prescription how to build many current amplitudes etec.

However, the physical idea of introducing currents as
attached to the interior of the Koba-Nielsen disc has given

33) - 36)

rise to further developments along this line

The model of Drummond 33) and Rebbi 34) is constructed
along the line mentioned above for the scalar currents. For

n off-mass-shell scalar particles the amplitude is given

by the expression:
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Alier)= ) /7 (Zzz =

where qq are the momenta of the off-mass-shell external
lines and z; are the complex variables running over the

upper half of the complex plane.

The Drummond-Rebbi amplitude (6.19) is free of
unphysical singularities but has increasing spectrum of
states already on the leading trajectory. However, the
factorization is consistent between external and internal
lines, but the spectrum requires two sets of harmonic
oscillators. The expression (6.19) shows explicitly that
the off-mass-shell amplitude is invariant with respect
to all the cyclic and non-cyclic permutations of the ex-
ternal lines. On the mass-shell the amplitude reduces to
the sum of the standard dual amplitudes. While the off-mass-
shell amplitude is dual it contains wrong-signature nonsense
fixed poles which, however, vanish on mass-shell. Therefore
finite energy sum rules cannot be derived for off-shell
process. The form factor is exponential like in 28) and

the photoproduction amplitude, e.g., is given by the expression
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g T P22 T [
I (_oaf):dﬁ)//”(s 4(.&);#”)) e ozm+m /(6 .

which is simply the Virasoro amplitude off-mass-shell and
in the scaling region exhibits a kind of generalized scaling

37)

behaviour for the exclusive reactions

A more sophisticated, mathematically, amplitude has
been given in 36) for off-shell scalar amplitudes which,
unlike the Drummond-Rebbi 33), 34) model - have good facto-
rization property, in the sense that factorization can be
obtained in the space of harmonic oscillators of the con-
ventional dual model, It has no unphysical singularities and
in the two-current channel the amplitude has Regge behaviour
and seems to have no fixed pole, but instead has a singularity
associated with the Pomeron appearing in non-planar loop

37)

diagrams . Other properties of this model have still to

be studied.

In an attempt to construct hadronic vector currents,
Kikkawa and Sakita 35) combine together the method of

Drummond-Rebbi 33), 34)

with the Koba-Nielsen M8bius symmetry
of the integrand, and the Nambu 39) method for constructing

conserved currents.
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This approach gives current amplitudes with proper
factorization and with no moving poles. The gauge invariance
of the amplitude occurs due to the presence of seagull terms.
Because of the latter terms the whole amplitude is not dual
in the sense of sum of s-channel poles being equal to the
sum of t-channel poles. So in this method by duality is
meant the M8bius symmetry of the amplitude. The impression
is, that in such models which are very close in spirit to
the ordinary perturbation theory it is impossible to construct
gauge invariant amplitudes without seagull terms., The form
factor is Gaussian as was the case in the Drummond-Rebbi
model. The Bjorken scaling property of the amplitude has not

yet been studied.

To conclude, we would like to mention that, although
the final solution for the dual current amplitudes seems
still far from being reached, a certain amount of progress
and understanding has been achieved. The elimination of certain
models and the exclusion of a purely diffractive mechanism
for the Bjorken scaling phenomenon are also a part of the

achievements.

The study of current amplitudes provides us with a
better understanding than the Regge theory for the electro-

magnetic processes with an arbitrary photon mass. It may



also provide us with a solution to current algebra equations.
Although the latter motivation emphasizes the importance

of the vector currents, it may still be worthwhile as a
first step to study the academic case of scalar currents,
since in the dual models all the angular momentum states are

on the same footing.

If off-shell dual amplitudes can be obtained for vector
currents satisfying the constraints of current algebra and,
eventually, also of scaling light-cone behaviour, they
could be identified with physical currents HO). Before the
latter hope can be fulfilled the axial vector currents

should also be introduced and the chiral symmetry taken into

account.

69.
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A theory of mass-extrapolation would have
very interesting consequences; symmetry break-
ing and PCAC could be studied qualitatively and
processes like 77 scattering and pn — 37 could be
related to each other. It is our purpose here to
discuss a model that has some encouraging fea-
tures. It is based on the use of Veneziano forms
of scattering amplitudes and, though several
other applications come to mind, we have started
with the showcase of the Veneziano model: pn
threshold annihilation into three pions.

This process was first studied by Lovelace
[1], who used the fact that at threshold the pn
system has the quantum numbers of the pion to
relate this process to 7 scattering, one of the
pions having mass 4M“. However, the method of
"extrapolation"” was arbitrary and no justification
was given - a single #7m Veneziano term was used
but, instead of the leading one, a satellite with-
out the leading trajectory was taken, so the am-
plitude did not have correct Regge behaviour. Al-
though some of the features of the data were
partially explained, in particular the dip in the
centre of the Dalitz plot, the fit was, not sur-
prisingly, unsatisfactory.

Altarelli and Rubinstein [2] conjectured that
for processes like pn — 7-7~7* the amplitude
should have the more general form:

Tn- as) T - o)
nmThem-oag-o)’

A=2Lc¢ )
n,mn

where s and f are the two (™ 7") energies, re-

* Weizmann Fellow 1969-70.

spectively, and o is the p-trajectory. By fitting
all the details of the experimental data, and pay-
ing attention to the constraints from pp annihila-
tion, they found a fit'with C1g9 =1, Cy1 = 1.86,
C3p = 0.5, -0.3 <Cygp, Ca1 <0.2. Here the ratio
of the first two terms is well determined, but
C3g is rather unimportant. Only terms with
n+m < 3 were included in the fit, since only
such terms have a zero at oy = og = 1.5, where
the data show a sharp dip. Although the existance
of a five parameter fit is not without significance,
the shortcoming of this paper is that no explana-
tion was given for having just these terms, or of
the particular coefficients multiplying them. The
aim of this paper is to provide the missing theor-
etical justification for these coefficients.

Our basic philosophy is contained in the as-
sumption that, when the external particles lie on
leading trajectories, a good approximation to the
amplitude is provided by the leading Veneziano
terms or the minimum number when isospin or
helicity restrictions demand more. In some
sense, this principle maximizes duality and also
minimizes the number of degenerate states that
already over-populate the spectrum [3]. There is
even some experimental support for this idea
coming from the Lovelace-Shapiro-Veneziano-
Yellin 77 amplitude [1,4], the fits of Petersen
and T¥rnquist [5], and a posteriori the results of
this paper. However, it follows from our as-
sumption that when an external particle is a
daughter, then several terms will appear with
well determined coefficients.

The task of constructing physically acceptable
5-point functions is not easy. They must satisfy

-
<]
(=]

v .
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the following conditions: all desired poles, lead-
ing Regge behaviour in all channels, no spin-
zero ghosts when trajectories have positive inter-
cepts. One is tempted to attack this problem by
studying purely mesonic processes, e.g. 70 — 777,
and then, by going to s = 472 (M = nucleon mass)
in the 77 channel, projecting out the J = 0 state,
and using factorisation, obtain the desired am-
plitude. This method is appealing since there are
no major pathologies in dual models of mesonic
systems. However, the presence of daughter
degeneracies [3] means that factorisation does
not hold, so we cannot use this method, and must
consider directly the NN — 37 amplitude. Fac-
torisation is then not required, and in addition
we have the considerable computational advantage
that no angular momentum projection is required
since we are at physical threshold. However, we
must use imperfect Veneziano functions, since

it is well known that there are unsolved problems
even for 7N elastic scattering [6].

When spin 3 problems are involved there is
arbitrariness in the choice of which invariant
amplitudes are assumed to be approximated by
leading Veneziano terms. We do not have a com-
plete understanding of this problem, but we adopt
what appear to be a plausible procedure for our
case. We demand that the relevant piece of the
5-point function, i.e. the invariant non-flip am-
plitude, reduces to the leading term in each
channel when we go to a pole on a leading trajec-
tory. In particular, this gives the important
restriction that our amplitude does not have the
nucleon pole in both baryon channels simultane-
ously - since otherwise we would obtain an in-
correct 7N — 7N non-flip amplitude.

We consider first that part of the amplitude
which has poles in the NN channel. This is given
by the Bardacki-Ruegg-Virasoro form [7] ap-
propriate to the configuration of fig. 1, which
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also defines our variables s;j. Using the notation:

Fayg, agg, gy, ags, @15) =

11 dujdug  _q

-1 J

12-1 uéazs'l % @)
00

1- u1u3 ul

% u5“34-1u;‘145'1u§015-1 ,

we take as the leading term for this amplitude
the expression

B m B
afz F(afz, 0153‘1, o341, 045, 0’15'%) )

where oB refers to either the N or the A trajec-
tory. This function has all the desired properties
except that it does not have the lowest a?s pole.
Apart from functions obtained from this by inter-
changing labels we have not found any other ex-
pression with these properties. Note that the ab-
sence of double poles in the baryon channels is
not an input to this term, but is necessitated by
the requirement of correct Regge behaviour,
w%ich 3would ge sgmilt by the replacement of
a15 - by ay5 - 3.

Clearly Bose-statistics demands that we add
to the above expression an identical term with 1
and 3 interchanged. In addition we must add a
term which has spin % poles in the 15 channel.
The obvious way of doing this i.e. symmetrising
in 4 and 5, is of course not satisfactory since it
would eliminate all odd orbital angular momenta
in the pn channel *. Instead we add a term:

B B T B
(034-%)F(a§’2-1, aé’s-l. ags-3, ag5-1, ay5-3),

where the factor 0%34 -  is chosen to eliminate
the double nucleon poles. This does not have
leading behaviour in all channels; for example,
it behaves like sdsp-l when s;5 and s,53 are large
and their ratio is constant. However, we again
believe that it is essentially unique if we demand
leading behaviour in as many channels as pos-
sible. Thus, we take for our amplitude:

B T B
A = afy Flaly, abs-1, agg-t, ags, agg-d) +
B
+ c(ogy-7) X (3

B B'
X F(ai)g‘l) ags-l» a34'%; aZS'l; als‘%) + ...

* We could (and in general should) add terms similar
to those in (3) but with 4 and 5 interchanged, and
multiplied by an arbitrary coefficient. Since we only
consider the J = 0~ state of the NN system the inclu-
sion of such terms would not affect our results.
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where c is a constant, and the terms not written
come from non-cyclic reordering of the external
particles of fig. 1. Note that we have not defined
the overall normalisation in eq. (3); it is not
needed for our purpose.

We must now evaluate A at threshold, i.e.
S45 = 4M2. At this point, assuming linear trajec-
tories of universal slope, it is a good approxima-
tion to take a7, = 3(= a'-411'12) so that our ampli-

tude is given by the residue of the pole at 0’25 = 3.

This immediately eliminates all terms coming
from different reordering in fig. 1, as the only
other reordering which contains the s45 poles
are those having exotic mesons, which we as-
sume do not exist.

After some algebra the result can be cast in
the form of (1) with

Cyo = -3cta?+84+15) - (43+04% 234 +15)
Cyp = 3c(a%+842 +154) '
Cgg=3c + 64 + 21

(CY)
Cgp=9 - 3c(24 +3)
Cgs = 3c(24 +3) - 9
Cpum = 0 otherwise
where
A=-2a'M +2aB(0) - aP(0) - 1, (5)

a' being the universal trajectory slope (= 1/ Zm%).

At a qualitative level we note that the non-zero
Cpm are precisely those required in the fit for
the data [2] except for the absence of C3p and the
undesired presence of a Cg9 term. This is not
trivial since if @"(4M2) had been, say, 4 then a
large number of undesirable terms, not having
the hole at a; = a4 = 1.5, would have arisen.

We can determine our one free parameter, c,
by requiring that Coy = 0. This completely fixes
all the coefficients. For example, taking the A
trajectory for aB, we get ¢ = 1.25, Cjg =1 (this
is just the arbitrary normalisation), Cy1 = 1.80,
Cgg = 0.26, Cg91 = 0. The agreement with the fit
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is remarkable. If instead of A we use the N tra-
jectory we obtain essentially the same results.
This is not because the result is independent of
a~(0) - in fact it depends sensitively on aB(O) -
it just happens that both the A and the N gives
similar answers.

We consider the extent of our agreement, us-
ing only one free parameter, as good evidence
for the validity of using the leading 5-point term.
In principle, if we can eliminate the NN vertex
this theory completely determines the total anni-
hilation rate in terms of #7 scattering length pa-
rameters. We hope to study this problem.

Finally we note that, on models of this type,
because of daughter degeneracy, "mass extra-
polation" does not have a unique meaninzg. For
example, as noted above, a 07, s = 4M* (rm)
system is not equivalenttoa 07, § = amM? (NN)
system!

Two of us (H.R.R. and E.J.S.) are grateful
to the Rutherford Laboratory, where this work
was completed, for hospitality; H.R.R. and M. C.
would like to thank Z. Koba and M. Virasoro for
discussions and E. J.S. would like to thank D.
Fairlie similarly.
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ERRATA

HER.Rubinstein; E.J.Squires and
M.Chaichian

There was an algebraic errosr in the evaluation of the coefficient

- - 1
Cnm’ and eg.4 of ref. ) should be replaced by

C10 = -3C (A2 + [A 4+ 15) - (2A3 + 21A2 + 70A + 75)
3 2 2
c“ = 3C (2A" + 17A° + 38A + 15) - (3A° + 24A + 45)
C = 3C+ (BRA + 21
20 C+ ( 21)
C =-3C(2A+3)+09
21
C = 3C(2Aa+3) -9

22

The value of C required to make C22 = 0 is not altered and with this

PR

value we obtain

[p]
[
=Y
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n
o

3.17, =% = 0.42 and 2L

for the A -trajectory,

(p]
[
b
(@]
[ 3
2
e
L=}

C C C
Ell = 2,32, Eén = 0.77 and Egl =0 for the N-trajectory.
10 10 10

The basic conclusions are not altered; although for the case of the
t;—trajectory the ouantitative agreement is not as good.
We, are grateful to G.H. Thomas and J.Boguta for drawing our attention

to this error.

1) H.R.Bubinstein, E.J.Squires and M,Chaichian, Phys. Letters 30B 191 (1969).
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Abstract

We evaluate the Pn + 3n rate at rest from the
#NN and pnn coupling constants, The model is consistent

with the experimental rate.



1.

In a recent 1etter12 we calculated the final state distribution
in the process Pn + n° a° n” using the Bardeksi=“1egg generalisation
of the Venezianc model. The results were satisfactory and showed
that the model gives good agreement with the data in & local region
of the variables. A morse crucisl test of the model; however, is
whether it extrapolates correctly over a large range of the variables.
A simple example of this is provided by a comparison of the
normalisation of the Pn + 3n amplitude evaluated at the Pn threshold,

1)

i.e. 8,5 = 4 M? in the notation of ref.”’, with the normalisation at

the m-pole, i.e. §,5 = m ?, see fig. 1.

1)

In ref. we write for the non-spin-flip part of the amplitude:

Bn ~ 3 = B(?’(Pu)rs ufps)) By (1)

where g is a constant and Es a combination of tw five-point Veneziano
functions.* We fix B Wy evaluating the residue at the n and p,
see fig, 1.

This gives

- s »2 .

wher and fbﬂ aye the usval couvling constants given by

€ gNNﬂ n

gl:m"/!m = 15 and fzm/un =2,

*Note that the spinor factors arz =stential in givin

[}
[

o

our results which
would be gltered by =2 factnr{mﬂﬂuwﬁﬁ if they were ignored. This
suggests that treatments of baryon ampiitudes which regard the baryons

as spin zero pariticles are likely to be seriously in error,



We can now calculste o, from the expression
Pn + 3n

-

d%p; d*p, d>ps

( xj) o - BB /‘,M- [2
\N¢/ baim o ay T O g(en)? 2we(2n)3 aws(2n)d

# v . 2 N B
(om)s 8% (ps + T2t Pyt -7

—

(3)

w

wvhere v is the relative velocity of the § and n, and where we write 3r

for the n° n° n~ state. On reducing By to a sum of four-point functions

as in ref.l) and doing the necessary integrals we find

v 0.2k
- o= mb (ll»)
<°> PO Mg o (aM?) - 3%+ |Im o (MP)|?

Suppose we ignore Im a and take & straight line for Re aﬂ, then we

obtain Re o (M%) - 3 = C.12 and

v
c %n -+ 3= 17 mb (5)

To compare this number with experiment we nete first that

\'2 v - e v
( E‘> o;gtal is constant in the range 57 to 177 MeV incident
o) i}
energy ', with & valve of 42 mh. The dn total cross-section is about
3}

equal to this”’'; s0c we taun take (%) o'im'al:s 42 mb. The relative

pn

rates for pn annihilation to different final states are known at
thresholdu)P and the »* 7~ =" final stete is about ¢ of the total;, so0
we estimates a value eround 10 mb for % O2n + 3n° The agreement
between this number of the calculated number in (5) is encoursging.

It suggests in particular that Re o (8M2} must be close to 3 and that

m o (4M*} must not be lsrge, i.e. < 0.15. I we teke v straight

line for Im cxﬂJ

Ima (8) =\ (s - an?) , (6)



then this requires A < .04 (CGeV)~2., This is somewhat smaller than
best fits to the lesding Baryen trajectories which require A x0.15,
but not appreciebly so.

We have an independent method of calculating Im a from the decay
of our 07, 8,5 = UM? state. In fact, for the partial-width 0~ + 3n
we have; using the value of B given above,

-3 /& 2
Fo » 3 = 210 (-———gﬁ’é-) GeV (7)

(assuming that all the zouplings of degenerate 0" .aughters to NN are
equal) where 0" refers to the 07, 5 = 4M? meson on the third daughter
trajectory of the pion. Now Im o, is proportional to the total width

k)

but from the known relative rates ' we can estimate

rlotel = 45 p

9) 0" + 3n
= 2
@ 21 (Min ) GeV (8)
Enno-
which corresponds to
. Nt 2
In o (4M%) = k.07 ( LAl ) (9)
L ol

We have no means of knowing Byno? and indeed we recall that the 0°

particie at s = 4M?% is in fact seversl degenerate mesons so this

coupling is & particular and unknown linear combination of the couplings.

However unless it is substantislly less than the coupling of nucleons

to piona, (9) is completely consistent with the limit on Im a, given above,
To sumarise, then, our model does appesr to bz internally consistent

and tc be compatible with the sxperimentel normaliseiion, It predicts

that the &© third dasughter of the n g4 a = 3 has & width lsss than

75 MeV, which is perhaps somewhat surprising.



Finally we consider the analogous problem for the nN + xN amplitude.
As has been pointed out 5)6) this has many defects. However the pp + 2
annihilation rate, which here goes mainly through the third daughter of
the p (we assume a p trajectory a (t) = 3 + 0.9t), is given approximately
correctly by the Veneziano amplitude normalised to the p Regge pole

contribution at t = 0; obtained by the crossed process «N + xN.
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= Abstract

!

We construct al!dual amplitude for 6 pions which contains the
.t . I . .

~normal parity trajectoiies m-Az in the three-body channels and

| i :
p-fo in the two-bod*'pnes._ The leading trajectory is ghost-free

. ] .
and has no parity doub}ing.‘

Taking into actount previous work, a complete solution of
l : .
the construction of ? F pion ‘amplitude with all ‘required physical

properties in the trée approximation is now available.
L
| i
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In two Tecent ﬁape;s [1], [2] a general method of constructing
iamplitudes which obey the restrictions required of physical trajectories, = ¢
that is pasitive intercepts and absencg of ghosts, was proposed., As has
bcen‘shown in thése papers, the proﬁerties of such amplitudes afe basically
different from those of tﬁe simplified models considered up to now [3],
even in the pgoperties of the'leading trajqbéory. Hence the construction
of these amplitudes is of congiderable theoretical interest and they can-

also;be used in phenomenological applications involving several particles

in the final state.

.

A technique was developed which made it possible to construct an
amplitude which described fhe 6 charged pion system, and included the p-£°

trajectory in the two body channels and the w-Ai abnormal parity trajectory

in the three pion ones., Heré-we-apply the method to build amplitudcs which

contain the normal parity w-AZ trajectory in one or more of the three body

channels. At first glance the @onéﬁructicn should follow. trivially from -

the rules established in Ref.1l. However some interesting technical difficul-
ties appear that make the calculations rather cumberseme. |

The main difference from the results of'Ref.'l is-that since B
functions alone Eannﬁt provide antisymmetrical coupling of the momenta [&],
wefmust introduce overall faftors which couple the external momenta through

epsilon tensors. In order to illustrate the procedure, denote the pion momenta
. . A

' .
}

by P;) i=l,.4.,6; and consider the 123 channel as the one in which the w—Az
N ‘o : .

trajectory must appears Then the golldﬁing expression has the desired

properties: - : E -

. i
- [}
Al

©uvpo P1uP2P3p SapyoPaaPspPey ©.(¥120%1230 %561 %23 %2347 % 617347 %345 X 5)

(1)
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I RPN

s onh
e TE AL R T -

| 3
e is
where A = Tr (T 2131415 6=i is the Chan-Paton §sosp1n factor made up of
: 3 s [ ,... [ Y _}_ . ... 2.
isospin Pauli mayr1ces, xij;' mij uij ) uij =5+ sij’ sij = (pi+ pj) :
|
! . 2
X3k = Mgk T %45k ¢ %igk ‘;?ijk Stk Sisn ® = (P Pyt R,
°ij being a p~f trajecto ~§ and aijk being a natural parity trajectory
..' ! ) . .
.with intercept a.,. . The im.. and m. . ‘are determined from the requxre-
. - vijk 1 ijk

ment of Regge behaviour in

leading trajectory, as we n

s

In order to con51der'

fuvpo pluPva3p
‘the B 's,

EuByopdupS

To simplify wri

(this does not affect the j

Beuvpu plup2vp3p Fasyopdapﬁ

S

, | B
$12305 1675234 % 345* %340 *

'
h11 channels, and 51gnature and positivity for the

iw exp1a1n..
It

ting we quote thxs in the case where we take M =

egge behaV1our we need the expansion of .

in terms of the 9 1nvarlants that appear in
0
gument):

¢

Pey® 86123 456

ﬁ

—e SIS TUOT I
xzs‘ﬁsagﬁxefszs TR TACI PP RLIPY
*s345(556*52375234) * 5234£512*545“5345) * 523556 * S12%45)
516512556 * 534523545 * 5434512545 * S345556°23 ‘
(515530545 * S56) * S5e545(553 * 513)) (2)
To illustrate the procedurg we consider the multiperipheral diagram
o o
61 + 2345 which must behave as s 123 where
. [
53¢ = 5 * = and Sie* 5234 Sza5 VS (3)
' %123 © 123
From the B function we oHtain s 7. while the polynomial in eq.(2)
gives a factor . &
- -, "/"/’
/I*
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The first bracket would npp%ar at first sight to be 0(32), which would be

S

123 (534 S16 ~ Saag S230) * 005) S €

| .

disastrous since it would r?qhire mig3® 2 and hence. would not permit an

W or A2 poles However, {he nine variables are not independent but are

related through the conditi%n};hat'the Gram determinant'vanishes; that is

det ﬁT

where the 5x5 matrix D |

D =5

This condition, of cou

!

. |

=0 - o (s)
i ) .o -

|

s, symmetric and the non-zero clements are [S5]:

127 %120 P13 %1237 Sa37 (P1a® 523t Sse” S1237 S23er DisT Sam” 167 Sse
- . " : .I ) ."‘ . . '
D23% S23 D24™ 2347 5237 5347 D25 S3a* S167 Szas™ S23ar D3z” 25y
P34™ 52347 5230 D35” S16” S234” S5t D4s” Sast

rse, reflects the four dimensional nature of .

épace-timc. Taking the limif.(S) of the equation (5), since otherwise it

cannot be solved, we obtain,
order term vanishes and we d
poles to exist,

Working in this way we

in (1) to have léading Regge

e My

M3

m,, =m

34 16

Cone Mygst ]

My34% M3g5 =

S44516 ~ 53455235 = 0(s) so that the second -

?1? require m,,.= 1, allowing the w‘ﬁand A2

see that, in order for the singlc term written

behaviour in all channels, we need

Mg = Meg =1

2

» L - o ©




‘we have lowered these trajeﬁ

‘ coming-from (7j has the

‘trajectory.

so as to have the usual (w
particles of (JP;I).equal %

are ghosts (i.e, have ncgati
This trouble arises, £
! f

and t

€123 €as6 €345 €612
the leading trajectory, by 1

eq. (6) by My 14" 3 (and "3@5

5{ leaéing Regge behaviour in.all chann

term (e.g. (1)) no longer h

(33

cyclically symmetric sum dog

hgve used Myzq =

terms as '"dual" as possible,

any numben

We are thus led to wrii

] A e .
& uvpo ?lup2vp

B{1 - 01?’.1

1l -a

cyclical and

The overall constant g

50

aygr 1 magey 1 -agey 2 -0, 2 -0

H
H
)
{

,;
It

1;:.3J 3= tygq 300 “345)

1
}
|

'
i

s

of course still have 1leading behaviour.

eplacing m

ve residuc);

or example, in the variable s

234

Unforiunately the resulting amplitude, when‘suitably symmetrized
AZ) trdiec;ory, also has a trajectory with

o (25,0, (37,1, (47,0), etc., all of which

234 - from thg

=2(and of cgurse My g5= 2} in

£

fgreater than 3). This makes the individual

|
%.

te for our 6m amplitude’ :

€apyaPdaPsePey ‘ :

. (7)

non-cyclical permutations.
ay be determined, for example, from the wu -+ 3n

- decay rate, Notice that his.amﬁlitude reduces to the original Veneziano

amplitude for w -+ 31, thus ensuring bootstrap consistency.

erms, and can therefore be easily removed, for

= Sj.' This has the effect that an individual

els; the

Here

H . .
tories by the minimum amount needed. (One could

It is nOW‘sfraightfbrward to check that the leading G = -1 trajecctory

(JP, I): assignmentgappropriate to the (w, AZ)




R

‘It is simple to deduce the né -+ np 'amplitude from (7). For
& + ‘ v o -
example the p%~ + %" amplitude becomes:

P =p Ly oo - : .
Te Eulev(guv“Al' pSu‘ﬁVAZ P3vp4uA3 * (p3up3v* p4up4v)A4] (8)

il '
[ ] Vi, .
[

where.we have used the exprc}gion of Capella et al.[6] for the decomposition

of the amplitude into invariants, {The invariants A, are
. A B :

. . PP | ey
A1 = (u2+ 254 - u - %’}{ B(l e 2 - ut) - B(l LT 3.:.“5)} '
. b . T .
§ + (szf Zép -5 - %h){ B(L ~a_ 42 - at) - B[l - a ,'3 - uu)}
' _ “
. o |
' A, =2t{8(1-us,3-a)-B(l-as',z-ut)}:
'+4u{3(1-au,z-ut)-B(1-uu,3-as)}
A; 8 2t { B(l o 8- ]‘n B(l 8y 2- at) }
+ 4s { B(l - ag P2 e ut) -.B(l - Q. 3-- at) }
Ay = (25-1) {.9(1 ~olly3-a)-B(l-ay2-a) }
+(2u-1){n(1-uu,3_-.as)-B(i-uu,1-'at}} - (9)
Using the'forms.(b) and the conne;tion with the helicity -amplitudes given
in Ref,[6], we can obtain thk partial wave amplifudes. It is easily

verified that to leading .order in 'coses (='Zs)
A P AR R ' -
ti1 = | o1 thg = 0 (10)

ensuring the absence of parity doublets, on the w-Az trajcctory.' Since

eq. (10) holds only for the lleading .power of coses, daughter levels may be

e oo = S s g e i 7 ot 2 TR e TV e Y
~ s e TP I AT, TR T e TV R B T e = e TR vy T Kt
Qb oS A S ok S M S Ao L b ST T e = = ¥ " -
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parity degenerate, The res1dues at \the poles of the helicity amplitude

4 . . ) ' v
fll are given by |

Z,(3-12 ]}
2j~1

an

(17 (-1)7) {
showing that our'amplitudes'HaVe no ghosts along the leading trajectory;

Our 6n amplltude autoLat1ca11y has the required Adler zeros, and’
l b
it follows that the same is true for.the mp =+ mp amp11tude obtalned from
|
it (eq. 9)« A further 1mporjant point is that it does not contaln the n-Al

trajectory, so the complete Irplltude should consist. of (7) plus a 6n

amblitude coﬁtaining the ; as its = -1 trajectory. The latter problem
| ! . R
i for the-charged pion case,

has been solved in [1] and [%

Either the 8-pion func tiqﬁ may exhibit the degeneracy which is

suppressed at the 6-pion .Jevel jor it may induce nonleading terms in the

6-pion function through tho bpotstrap principlo, For'examplc the term:

8 A €1o5 sg (Pm P (- Bg) B(2,- 0y, 2 - 0y, 2 - aggr.2 - Ay
4 )54 3 - L 3 - :34, 4 - a345, 1 - adS) + cyclical and
non-cyclical permutations, T (12)

‘doubles the Az, leaves w 4 simple pole and introduces no ghosts at the

level of the leading trajectory.

J.D.D. thanks the Weizminn Institute for their hospitality. M.C,

and E.J.S. thank David Fairlie for discussions.
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ABSTRACT

We evaluate the rate for the reaction Bp + 41 at rest using a six-
point dual model for the singlet term, and the experimental value of
0.25 for the ratio of singlet to triplet cross-sections. The model-

is consistent with the experimental rate.




During the last two years there has been a great deal of Interest in
using the generalised Veneziano mode|(|) and comparing its results with

(2) 40 his

experimental data. The first attempt was due to Lovelace
application of the four-point function to the process Bp + 3n at rest.
Although this four-point function described some of experimental features,

it was not able to predict the overal| decay rate of the reaction. A later
approach, due to Rubinstein et al.(3) used the five-point function, which,
besides giving a good description of the distributions, also gave a reasonable

value for the Sn + 3w decay rate,

Our approach to the process Ep + 41 at rest is in the same spirit as that
of Rubinstein et a!.(S), using a six=-point function here as the starting point
since we have one more pion. As Is well known, the annihilation at rest of
Ep + 4m proceeds from two states, the singlet and the tripiet state. In
either case, the initial state has the properties of an off-shell meson - the

singlet mode behaves like "n" + 4w, and the triplet mode like "o 5 4n,

The amplitude for Ep going to four charged pions, fig.l, can be written

as
M = M"n" + M"p" + other terms
where
Munn = B;(Ps) Yy U(Pﬁ) Annn
- u l..(l)
Mupn = g! V(Ps) Yy U(Pé) Aupu
and at rest (556 = (p5 + p6)2 = 4M2) only these two terms are non-zero.

From the spin-parity (07) of the "n" we write

} WV p @ .
Argn =L Euupg P P2 P3Py Bg (X2 %030 X300 Xass X676 15 X1239%230%305)

2«4

= e€(1234) {86 - B6(I++3) - B6(2++4) + B6(l++3, 24} } eeal2)

where the arguments are given by




Xiomm = | - a (5"+"_
x3'ﬂ' = I - GAZ(SS'H)
Xg =3 - @, (SB*)

and the trajectories by

2 1
aé(s) = 0.48 + a's + 1 0.20 (s-4m«%i
}
(s) = 0,48 + a's + i 0,094 (s=9mm)?
0.14 + a's

a2
aA(s)

with the common slope a' equal to 0.89 GeV_z, and the Imaginary parts zero
below threshold. The anti-symmetry of A"n" under the interchange of
particles I+<»3 and of 2+»4 decouples all the isospin zero particles on the
degenerate w-Az trajectory in the three pion channels, while the epsilon
factor decouples the nucleon pole In the baryon channels. The triplet

contribution can be written as

Anpnu = PI

|1 H H

C + Py D + Ps E veo(3)
where C, D, E are the invariant amplitudes and can be identified with the
appropriate six-point functions.

Now let us evaluate the contribution of the singlet term M"n"' so that

we can find the normalisation constant 8. One of the important ideas in

the Multi-Venezlano model is what Chan(4) calls bootstrap consistency, meaning
that taking the residue of an amplitude at some pole gives exactly the
amplitude for the reduced process, including the normalisation. Therefore we
can evaluate the constant B by going 1o any values of the internal variables

sij at which the amplitude is known. Thus, going to the poles indicated In

fig.2., we obtain the relation

2
= - - \l

9, ¥ .o
A2 pOn pmT




The coupling constant gnNN is known experimentally to be(5)

2

2—
9N

and 9 - and 9 om can be calculated from the corresponding branching ratios

of about 12% and 85% of the total rate o’ respectively. We take the average
total width of the A2 to be(6) 90 MeV. The contribution of the singlet mode

to the cross~section is given by:

Mom o f d3p
(D o=, BB b gm, ]2, 2mUstP-zp) T ——l— ...5)
Pp singlet wp ws R4 n i=1,4 2uw;(277

where mf = pf + mi and v is the relative velocity of the p and p.

We notice that taking the common trajectory siope, a' = 0,89 Gev-z, gives

n

at the pp threshold a (4M2) very close to 3, therefore to carry out the

56
integration over phase space we can make the pole approximation for M"n" at
X = -3, assuming also that Im agé is sufficiently small (which is a posteriori

Justified, see below), Then the integration In eqn.(5) over a 86 function
(which is technically very difficult) is reduced to an integration over a five-

point function, which can be done numerically.

For the triplet mode contribution we notice that a26(4M2) is not sufficiently

close to an integer to justify using a pole approximation similar to that of the
ginglef. Also, since there Is more than one invariant amplitude in eqn.(3) the
relative residues appear as free parameters. (In principle a "p" » 4n
amp|itude could be found from a six-pion amplitude, but even then the

computational problem remains), Therefore we prefer to use the experimental
(5)

ratio
o_.
singlet _ 25
“triplet
Therefore
Yy = (Y [.singlet triptety _ -,v, singlet
(c)opp+4n (c) [opp+4w + opp+4n 1 S(C)Opp+4n «ee (6)




Performing the phase space integral over the singlet amplitude gives

f 2 4 oy dspi - | -7
R |Ap n|2 (2m*% s (P-Ip;) T ————g =0.179.10
4 N i=1,4 2w, (2m)
Substituting everything into eqn.(5), we get at threshold,
v 0.5
(=) o= = ~ mb oo (7)
¢ pprin n 2, _ 1,2 n 2,.,2
(Reu56(4M ) =37 + (Im a56(4M ))
Now we observe that the experimental value of (v/c)(05p+4“) Is approximately
constant in the range 57 - 177 MeV incident energy(7) and equal to 20mb.
Taking im dn(4M2) equal to zero, and Re an(4M2) - 3 equal to -0.13 we get
IV =
\-E) opp—> A 29mb

This shows that within this model taking Re un(4M2) approximately 3 and

Im an(4M2) near zero is compatible with the experimental value.

Giving the imaginary part of the trajectory a value of 0.08 we recover

from egn.(7) the experimental cross-saction of 20mb. However there exists

2

an independent method of calculating Im o (4M ); from the decay width of

""" + 4n. In fact, by extracting the residue from eqn.(7) and factorising

the "n"pp vertex we get

2 gnNN 2

= 1.5 10" —
g"n"NN

P"n"—>4'n ... (8)

Here the couplings of all the degenerate daughters of '"n"-4n have been assumad

equal. Since Im a(4M2) =o' 2M FIﬁxa', and since

total _ -

ann = fopgsgg t Iﬂnnn_*61r too ¥ I‘nnn_mm

we get for the imaginary part,

- g -\2
Im an(4M2) ~ 2.4, 1072 | —ONN_ e (9)




We do not know the coupling g"n"Nﬁ‘ but providing it is rather less than gnNﬁ

this value for the impaginary part is consistent with the value given above.

We should not expect the singlet state, without the triplet, as treated
here, to give perfect agreement with all possible distributions, and in fact
the two-pion mass distributions, fig.3, are not too good. However, as shown
by Hopkinson and Roberfs(a), adding one satellite term of a particular type
can give much better agreemen+(9). Here we have been mainly interested in

the problem of normalisation.

We wish to thank Prof, E. J. Squires for many valuable comments.
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FISURE CAPTIONS
Filg. |. Diagram for the reaction Ep + 47,
Fig. 2. The pole at which the normalisation 8 is determined.

Fig. 3. The two pion mass distributions, with arbitrary normalisation.

Experimental distributions from J. Diaz et. aI.(S).
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SCALING IN THE DUAL RESONANCE MODEL

M. Chaichian
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From a dual amplitude with currents included by the minimal gauge
interaction we obtain, to second order in the strong coupling, scaling

for ©W,, whilst W, vanishes in the scaling limit.




1.

1)

The Bjorken scaling limit has initiated the study of a series of

P~ &
field theoretical considerations ! h)- A common feature for all these
models tc obtain scaling is to impose a cutoff on the transverse momentum.

When no cutoff is used scaling breaks down. An exception is the case

t
;

in ~°, but this is because A3 theory has a good convergence property.

r-')

The parton model'’/ also has a transverse momentum cutoff as its

8)

ingredient. Another approach. based on a dual resonance model point of
view for the parton theory has been used for the case of deep inelastic
region. Here too the normal mode expansion for the hadronic string is

cutoff from the start. There exists, however, no theoretical back-

ground whatsoever for justifying this fundamental assumption of a cutoff.

In this note we study the Bjorken limit of a two currents dual
amplitude where the currents are included in the dual resonance model
according to the minimal gauge interactions prescribed by Kikkawa and
Satog) and 10). We find that to second order in strong interaction
coupling constant the structure function WW, scales : WW, — F,(w), while
W, vanishes : W, - (x2)~* FlQ»). No cutoff has been imposed but the
exponential divergence coming up in the dual loop diagrams has bheen removed
by the renormaslization procedure of Neveu and Scherkll). At this stage
one would like to speculate and conjecture that the strong divergence
appearing in such dual models and its consequent renormglizeti on efifectively
replaces the cutoff needed in the conventional field theoretical
treatments in a natural way.

The reggeized Feynman rules for the current(s) interscting with the

10)

usual dval vertices and propagators are given in in the operator

formalism language.

We calculate the five diagrams (planar) shown in Fig. 1 with the

following notations




2 2
LPNCIRHE 2 ) = PPy Y et g he s
Wo=Xmma (v, k =k =k)
1 0= 1 S W - T ’
m2
W, = Im A, (v, k -k2=k), (1)

2 2
t=(k -k)%, v=y{s-v), P=3( +p,), p; =p =0

1 2
a(s):%s+ao, a <0, ofn®) =
The contribution of diagram 1(a) after renormalization is 10)
( y ! —do—l do—l t5-1
Mug’ = ezngd‘*Q exp(-% InwQ?) [dxdydzw (1-u) (1-v) (1-w)
0
0
P m? ](
; § ——— \Ir(u,w)] - [W(u,w, ,
n=1 i
& Inx Inz £'ny lnu v oy
exp { ‘é (: - e cmenwm st o cemee —-.-..,-.e.;i.— }
Inw > Enw n(l-w)
J’nv fmua klz +k, Inv Invy zu kf --k22. Inx®u - Inxzu
exp { b T T T T i T LY T, Eny .—..-..“..—...,-..-..--—u.-}
2 2iow 2 2inw

{j(’lnu :f 1 2)
PP + ...+~ g } s 2
inw o Inw M°

where v = xyz, W = Xyzu

¥(u,w)
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3.
For © » -, t = fixed behaviour of invariant amplitudes in (2) we
use Mellin transform and find~ for Al amplitude a singularity at B = ~1
(coming from y ~ 1), and B = @ 2 (coming from u = 1), Hence
£~2
Aﬁa) g E-F-'-(—- + B(t)b

V= —c0

The residue of the fixed pole at J = 1, i.e, F(t) coincides with the
expression for the form factor corresponding to Fig. 2 and hence Fubini-
Dashen-Gell-Marm: sum-rule is satisfied. Analogously A( a) amplitude has
B = -land B = ay singularities corresponding to a fixed J = -1 pole

and the usual moving pole.

For the scaling limit we do a Mellin transform with respect to

(-%k2), keeping ——-i—lz-g- = ® constant. The rightmost singularity for both

A, and A, is at B

~1 and therefore we get

W, (0,k2) ~——— F_(w)

’ (3)
W, (v,k%) 3 ()P (w)
12 > oo ]
0 .
~-l-{—§ = w fixed
where
, o a,-1/ 1
F(w) = e®g®mPw fd‘Q, exp(-% lanz)[ dxdzdu w (1 u) °© O n)
1-w

{ e - Gitam )

( Inu > ( Inu Inxzu
PAPRRT S ar— 9
Inw nw 2inw

W = Xzu (%)

1 Inu Inxzu
Fl(w)=e2g2f .....<-—>5<m____ : > .
Inw Inw 2faw
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There seems tc be a similarity with the parton model 7

LR )
i

1 Inu

" Inxzu

o

- = Bn

is interpreted as the fraction of longitudinal momentum
carried by a parton in an infinite momentum frame. F, (w) and F, (w) have

n-1 o
. . o~ + .
a high w behaviour of w and w © respectively.

Proceeding further we find the contribution from diagram 1(») to

give
(o) _
R1o” = 05
A(b) ~ V2 + Regge terms.
1 DV~ =00
i (b) . . .
Since 'OAl —> 0, there exists no form factor corresponding to this
PV—>=-20
amplitude. For inelgstics structure functions we get
(b) _
Vo =0 (5)
b . o\ 20,1
DW; ) —> {k8)™ x a function of w + (k) © ~ x a function of w
kK> -
w fixed

+ lower terms.

Diagram 1{z) gives the contribution
P "ldo“'[.' i, . defor3

< 2
1 =%

(. a D, ~E
Tnl') = (k2) © ¥n -2—J x & function of w + (x2)" © “.&n 5 fx a function of w
> -t

+ lower terms

(6)
w2 20«2

[m&E 7 ©  x e function of w
I’lE A

e A | N 2a_~)
UWé ) = (k%) ° {luk? 1'° % & funchion of w + (x2) ©°

+ lower terms,

From 1(d) and 1(e) we get the contribution

q’ - 20,2
Wf_d) = (k%) 2 x & function of w + (x2)" ° " x function of ®
+ lower terms
- 20,-1
DWéd) = (¥2) 1 ¥ & function of  + (k)" ° " x a function of w

+ lower terms (,.()




and

wﬁe) = 0, uwée) = 0.

In the light of the analysis of Bloom and Gilma.nle) which indicates
that the resonant component of the structure function VW, does show the

scaling property the result of the present note seems interestingw).

The question of whether the sum of higher order diagrams may
restore scaling for W, or even spoil the scaling of UW2 in the present

model, certainly needs further study.

I wish to thank E.J.Squires for meny helpful discussions.
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One would like to ask what could happen in the case of the intercept
of the highest Regge trajectory to be z% s ignoring the problem
of ghosts (m® < 0). Even in this case by putting %, = 3 in the
expressions (3) - (7) one still does not get scaling for W, but

its vanishing as (k2)™1#(u).
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Dashen - Gell-Mann sum rule,




BJORKEN SCALING FOR INCLUSIVE AND QUASI - INCLUSIVE

FROCESSES IN THE DUAL RESONANCE MODEL

M. Chaichian

Mathematics Departiment

Durham University

Durham, U.XK.




ABSTRACT

From a dual resonance model with-gurrents included Ehrbugh_the-minimni o
zauge interaction the deep inelastic electron scattering is consideredo It -

gives the Bjorken scaling for vW, while ¥, vgniéhes; a property which is coﬁhpnai__' |

among the models where the current is coupled to bosons. Scaling occurs because
of existence of current algebra fixed pole. Deep inelastic elecfron-écattering_
with one detected finﬁl state particle is also considered which following Mueller
is connected with the diacontinuitj'of a six-point amplitude. In a special
kinematic region,three out of four strugtufg functions scale because of a fixed
pole,while outside this region the fixed bole cgpnot be responsible for sca;iné
anymore. Then a speculation of Pomeron assignment does show the scaling.
Inelastic Compton scattering is also considered which in the partoh model of
Bjorken and Paschos scales and is proportional to¥W; . This property ie
satisfied in the present model., Electrcn = positron annihilation into hadrons -
is considered without renormalization whose cross section falls off as ;’fo It
is suggested that a proper dual renormalization for self—mass'diagrém of photon
may change this result. ) ) '
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1, INTRODUCTION

There existsthe possibility that the dual resonance model (DRM)1’2)

may finally provide us with a theory of hadronic processes, The

3)

unitarization program to treat the model as a Born term puts it on

E' L
the same focting as a field theory expansion, F@rther, besides some

quantitative agreements of tne model with the data, it reproduces some

4,5)

qualitative features of the hadvoni¢ inclusive reactions such as

6) 7)

Feynman scéling law and the picnization, the limiting fragmentation

8)

and the small transverse momentum of the produced particles etc. .
However, notice that these limiting distributions are obtained when
one puts the intercept ot tne rszlevant Regge trajectory oL, equal to
one, i,e, Pomeron iS§ exchanged, while in the case of usual Regge
trajectories with 0%3&1 exchanged ons gets scaling (generalized) only
for the ratio of differential cross section to total cross section,s’s).
The above-megtioned successes of DRM in purely hadronic exclusive and
inclusive reactions are certainly interested both theoretically and
phenomenologically.

In the processes where currents ars involved theye exisbs a
"similar" kind of scaling behaviour, namely the one originally

9)

predicted by Bjorken for the deep inelastic electroproduction structure

functions for inclusive reactions and its generalization for quasi-

inclusive ones,

10)

Besides the parton modeli which has a transverse momentum cut

off as its ingredient the only fisld ~ theoretical model which gives

the scaling of a% least the structure function V’ME is the sum of

11)

, 3 .
ladder graphs in A(P3=- theory o But this is because )\'f- model is

a supervyenomalizable theory and has good convergence properties, All

2)

the other models1 including tne field=theoretical treatment to parton

model13) also need a transverse momentum cutoff in order to obtain
scaling, When no cutotrf is imposed Bjorken scaling breaks down, Even the
sum ot ah infinite set of renormalized grapns in field theory14) does

15)

not possess scaling. Another spproach based on a DRM point of view




(VF]

for the parton model has been used for the case of deep inelastic region,
Here too, the norwal mode expansion fur the hadronic string is cut off
trom the start, There exists, however, no theoreticalbackground
whatsoever for justifying the crucial assumption of a cutotrf in the
above-mentioned approaches,

From the other side, it is known that the DRM has a cutoft of
the exponential type in the transverse momentum4’8) seealso 16).
This fact already gives a hint that a current amplitude which has the
same property as the DRM for its strong part may have a good'chance to

17) hich

give sepling; in this case the analysis ot Bloom and Gilman
indicates that the resonant component of the structure functions does
show the secaling property could be most naturally understood,

A vast number of prescriptions on how to include the currents in
DRM has been proposed each having its own shortcomings., Among them we
intend to use the one which has the least freedom, One of such models
is the prescription of including the currents . as the
minimal gauge interactions Bf‘_', B&‘_ie ”f‘ proposed by Kikkawa and
Sato18). Unce the minimal gauge prescription is accepted, in
principal everything is fixed and there is no freedom left. The only
ambiguity is the one due tc the renormalization of dual loops19).
Nevertheless, if one takxes the model seriously then it may restrict
the ambiguities in the dual iososp renormalization. Throughout the
present note we renormalize of &vNeveM, and Scherkzo).,

One of the shortcomings ot the present model used here is that
its Born term has only one single pole, say in the s-channel and
therefore has no duality property between s = and t - channels see e.g.21)°
But since we are interested in inclusive reactions and therefore in
the discontinuites of the graphs we shall ignore the above shortcoming
since those graphs simply don't give contribution to the discontinuities
and therefore the whole treatment of the present not is dual in this
sense.

The DRM with currents is the next step tdﬁérds the construction

22) .

of a theoretical frame where one e.g. using Mueller's analysis an
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4.

study all the relevant limits in the same manner as in 4,5,8) for
purely hadronic reagtions, investigate the ejistence or absence of ‘
fixed poles in the awplitudes with currents and in case such amplitudes
satisfy the Bjorken scaling, to #ind the "dynamical" origin of it, It
comes out, fur instance, that suéh amplitudes satisfy Bjorken scaling
and that the existence of current algebra fixed pole for the amplitudes
with two currents is responsible for this scaling (see a similar
situation in 12a)). This is contrary to a "similar" situation in
purely hadronic processes where only Pomeranchuk exchange is responsible
for Feynman scaling law and the limiting distributions 4,5,8), while
the usual Regge trajectories give vanishing contributions in these
limits. This fixed ﬁole responsibility for Bjorkeh scaling in the
language of light’bone expansion would probably mean tnat the Kegge
trajectories have nothingto do with the degree of singularity on the
light cone23)o

In Sec. II we cunsider the twc structure functions W, and v VW,
of inelastic electronscattering, In the model V Wyscales while W,
vanishes, This is a property of all the other models where currents
are coupled to spin zero particles, When a proper URM for fermions
is construcled we suggest the same minimal gauge interaction which
now would couple the current to the tower of fermions will restore
the scaling for W' o

In Sec., III we consider the inelastic electron scattering where
a final state hadron with momentum P’is detected, 1.e.

e + hadron (p) —> e’ + Hadron (p’) + anything.

Following Muellér we connect this process to the discontinuity of a
forward six-point function which we then study. It appears that here
too in the Bjorken limit a fixed pole is responsible for the scaling
behaviour of three out of tne four structure functions v ¥,, vy, vy
and the vanishing of ng reminiscent of the same situation in Sec,II
which was suggested to be due to the coupliné%%ﬁrrents to tower of

bosons rather than to the tower of fermions., Notice, however, that

this fixed pole can be responsible for the above scaling only in a
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special kinematical region or p, p’ = fixed and not large, i.e, when
the detected hadron is very near to the forward directien in the centre
of mass system or is slowly moving in the lab, system, Beyond this

kinema¥ical region, i.e. whers p, p’

is large the fixed pole can not
be responsible for the scaling anymore, In this case, only with the
speculation of assigning the Regge trajectory to a Pomeron with the
intercept cio=1 one gets the above scaling. This is very similar
to the purely hadronic case 4,5) wvhere limiting distributions are
obtained by putting ot,= 1,
Sec, IV is to study the inelastic 'Compton scattering

photon (R) + hadron (P)—-e>phmton‘(h3 + anything,

This reaction is interesting since from the parton model of Bjorken

10)

and Paschos there shoula be a similar scaling law for the structure

functions where the scaling variable now is.lki%%ﬁLE and in addition
from the same parton model one concludes that th; present reaction
should be proportional to the eiectron scattering of Sec., 1II, for
partons of unit charge and spin O or.%.° Both these two results
are also valid within tne model of present paper which may suggest

a deeper analogy with the parton model,

Finally, Sec.V is devoted to the study of high energy behaviour
of electron-pagsitron total annihilation into hadrons. It comes out that
this cro'; section falls off like g’%: This result is incompatible
with the results of other models, In evaluating the above high energy
bghaviour we have not renormalized the amplitude for the self-energy
of virtual photon which has the exponential divergence of the dual
loops., It may happen that a dya! renormaliztion changes the above
high energy behaviour. We hope to study this question further,

Throughout the paper only one leadinyg diagram for each process

is written down and discussed and dots mean non leading diagrams,

I1, DEEP INELASTIC ELECTRON SCATTERING

Consider the virutal Compton scattering averaged and summed over




6

the spins of hadrons corresponding to Fig.1.
ky+ pp—> Ra#+ Py . (2.1)

The notation is the usual one 24)

M (V’{ R ;kti) Ff /9,1' H-I-g,uuﬂ/a
Wo L Im By (v k= k,= k)

Wy= M2 I, A (V5 k= ko= k) -
t= (’?4 ko), v= -‘(-““); P= 3 Cpth)s R pl=m?

3‘8]

ol(s)= 'S +¥s , olg<o , ot (ME)=0 |, oL’=_2'_
The contribution of the last diagram of Fig,1. after the dual loop
renormalization a la Neveu and Scherk 20) is

- o'y’ 4 eap (- &w @) [audydz Wy,
Lol ™ { w1 [ F cuwp™}

-D—xr{i[-&”“z 2 Z_ V‘:’.au 5 ]}

2y +k, &y&xzu Rk b2 - baxau
f){ f Tt + Bk Ay 2 G }
+mgw} , (2.3)
where V= xga P) W.s Xuz L hn ok h
- uh— (W )
Tnw) = exp|[- &z&x/“ +Z— v\(\-w“)u ] )
Pluw)= _u 2in (7 é‘“/ﬁ.w) (2.3

fw)= ﬂ (|—wn) '

Vhevever needed we can use for the loop 1ntegrat.10ns (with the Wick

potation) the following formula
Sl ep - L bwat)= (2
For the large values of a variable s of a function (FC'S,...) we
use the Mellin transform te‘hnlque
~
PAr )= fws,u )P ds
Then the rignt-most s1ngular1ty of Sa(p,“.,) in the plane of the
Mellin transform varlabl\,ﬂ defines the leading high s- behavidur or
the function ‘f(s,“..) .
From (2.3) for V—p=-w, t = fgﬁ?ed behaviour of the invariant aurL-hJu

detined in (2.2) arter the use of Mellin trausform we find for Al

amplitude a singularity aj&ﬁ = = 1{coming fvom ’5{31) corresponding

e ———




to a fixed pole at J = 1 in the angular momeatum plane, and
ﬂ = ol(t) - 2 (coming from U=« 1 region) corresponding to the

usual Regge pole, Hence

f—— ~E ppte)

Vo =0t

)
<) (2.5)

The residue ot the fixed pole at J = 1, i.e, F(t) coincides with
tne expression for the form factor corresponding to Fig. 2 and hence
the Fubini = Dashen - Gell —= Mann sum rule is satisfied. The

expression for the form factor of Fig, 2 is
F(4)=eg ‘/wg expl-{ hwa ’-)//d voud 2 W= Cloy2)® - u) e
[fCw)) {f‘k(u w)]™ [‘f]""}(l )'e-"‘

opft[- BfE e “:’C\it,h,]}

{

(2,6)

with W = xuz
—l—-g-m

LA
and the high t — behviour of it is s (t) (

’z
log~ t) which is the

singularity in Mellin transform variable coming rrom the region of

integration (1-x)2& (1-u) =l oY x (1-2) d-u) 2 | .

Analogously, Alo amplitude has /9 = =1 and B = ol(t) singularities
corresponding to a fixea J = = 1 pole and the usual moving pole,
In the Bjorken scaling limit we put k, = k = /( and do a

2
Mellin transform with respect to (“’k ), keeping =—— =@ fixed,

ki

The might most singularity for both A, and AIO is at /9 = = 1, coming

|

from the region y/’v"1, i.,e, exactly where the current algebra fixed

pole in (2.5) came from, Theretore, we get
Ay O ) g € %0 e L hw@?) [t du g
G=x)* Loy onT Yl o] Wi ™}

bou | (2.7)

where W = x2U |

and an analogous expressiuvn for Al Finally, for the gtructure

0 Q




8

functions we get VW (v, /22)_____) /Zt—[-u) ,

(y/z)———>~’f7(”) ;2
where A
Fo(o)= e m‘w/d’a exp(~ &wal)f drdedu i7 5L g xay

(-wpff Cwi]™ *{[wa,w [PIME (209)
(igj._ﬁi) 5\' ( e~ &u > W= x2u

Feo)= g [ - (4 ) 8Co~ Sw (2.10)

There seems to be a similarity with the parton model if X= ____L% (<1)
is interpreted as the fraction of longitudinal momentum carrled by

a parton in an infinite momentum: frame, As was already mentioned
in the introduction the scaling or Ll@!amd vanishing of W is

typical for the models where the current is attached te Bosons rather

than to fermions,

I1I, BJORKEN SCALING OF QUASI-INCLUSIVE PROCESSES

Consider reactions like

hadron + hadron — /u—/a"' + anything (3.1)
or

e + hadron —0 - ¢’ + hadron + anything . (3.2)
Using the Mueller's analysis we cunnect these reactions to the
discontinuity of a forward six-pcint reaction as shpwn in Fig. 3.
For these processes there are four structure functions Wi ’ Wz,
analogous to the two functions in deep inelastic electron scattering.

v, ,W9

The differnetial cross secticng for the above reactions are proport-—

ional to the tensovwf‘, 25) where

W{w"“(;l‘* kbh-/)w+ (P__ k) (f.. Pkﬁ) W

L (ol Pk L P / ) 2L /
ACHVNG f,gk).,%+,;1{@-r,-g-;w,ff-%ww}u4,,<3.3>

and W/“, = Disc Ml"" s where M,‘w is the forward six-point
amplitude of Fig.3 ,

In a certain region ot kinematical variables



—h"  kep’ Sy
k-’?—-)oo P —7 I 7{.}){ , __/_)"__/g _ 7[4)(0;4/ (304)

from the analogous considerations of the original Bjorken 25), one
would expect to having scaling for all the four . structure functions,

, ! .
namely that W , ( &.p) W, , k') W, and (Lbep ) LAp?))E Wy shoufld

2 I4 /
all becume functions of the ratios “k h'/’ and /P, The purpose
k.p - fZ'/’ kP

of this Sec, is stuay of the above scaling in the aspect of ULKM

of the present paper,

The dual amplitude of Fig. 3(a) gives the following contribution
M kp, bep?, ppt) = £ j9jdqajdxdydzludafdwaxp(—l&WQ“) e
[C1-xy2)(1-«) (o) (i ar)]” 0 e w)l Cwy] {[‘{'(uarw,w)] [p]l’}

{5 w)IP 2 [20, wa] P j
cxp i [- 208 Ty bep[- Ayluver), pp [ Ay bry

+P-P [%ﬁ‘“ ;";' (- ")~ an)WuuanJ} (3.5)

W (l-wh)

{(aw)(?r«+ %ﬂﬂ]ﬁ«fﬁ[”‘ I rp +["£""l‘ L) ] gl s

()

pt)
| [
f + [1+ 954 , ¢ &‘g T bk 3
; f" V+ L) . . )
| Where W = XgEufuvur
Consider the Regge limgt V¥ =k-p, k-/ﬂf—>-0‘and the other
variables fixeda, After Mellin transform we get /5 = = 1 singularity

coming from the region ?Q:T of integration for all the four inwariant

amplitudes

_
M, IR Y SRR VAT I

Regge (3.6)

i,e, There is a fixed pole in the angular momentum plane J ,

For a special case of scaling limit, namely

Bj: _k?;.,eo ; ﬁlﬁ "é/jgz/? E,,a/= fzx'ul ) (3.7)
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again the same region -y/;_ﬂ as in (3.6) gives the singularityﬂ = =1

and one gets the behaviour
Mﬁf“)_——-—a Fpe € oy /’(/szff’/.’,(/ll)-f(ﬂ',/:-fi’/’,.)(k") L (3.8)
J

exactly because of the same fixed pole as in the Regge limit,
Therefore in the limit of (3,7)
v, —> (/{")-‘ F, (O , 09
i, —F, (@, 0") (3.9)
VW, — Fg (w,v )

(w’)?': V,— F, (a,J)

% }
7 _ / I 4 7_ &KV
where Y = k.r, Vv _k-p, Q=== o= =2 o

In the scaling limit ot (3.4) or

/ .
R N and LL=n fued (3.10)

the above fixed pole is not responsible any more for the scaling and

the region of integration xya #1 becomes important and one gets

c"“) ;ﬁ‘,(k) M, /’v(/lz) M"f/u/’«(kt} M3+(/,,./’,fﬂf,.)(/¢ /M7(3 11)

Expression (3,11) shows that only by putting oy=1 i.e, the assignment
ot the Hegge trajectory with a Pomerson can give the scaling of the
structure functions,

The responsibility of the fixed pole for scaling in the region
{3.7) and disappearance of its effect in the regiun (3.10) is
interesting both theoretically and may be experimentally, First of
all, since the fixed pole is dus to existence of the currents in the
amplitude it is not clear why its effect should depend on the varishle
p.p’ which is entirely in the strong part of the amplitude, Uther
more detailed models sucn as parton model or even light cone expansion
technique may shed some light on this question and then perhaps the
origin of fixed poles becomes more clear, Experimentally it may

be interesting since it predicts that if some analysis similar to the
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17)

one done by Bloom and Gilman will become possible in future -
| then in the region {3,10) the resonance component of the structure
| functions will not show the scaling property, contrary to the case
of deep inelastic electron scattering.

The diagram of Fig. 3(b) has no fixed pole in the Kegge limit

and)corresondingly,no scaling property cuming trom the fixed pole.

In the Regge limit, say ¥V = k./) ~—-d,, pther variables fixed we get
C'e) );d‘, do"’ /o ;S / do-!
/
}M #h 1/ 7/ BRIV (3.12)

In the scaling 1limit of pboth (3,7) ana (3.10) we get

(3.13)

Again with °(o= 1 it gives scaling for yM/i y )”W3 and vanishing of

L
W' and ( »v/)=* Wy .

IV, INELASTIC COMPTON SCATTERING

Consider the reaction

photon ( R} + Hadron (p ) — photon (R + anything, (4.1)

The expression from the dual diagram of fig., 4 in the general case of
2 2 : . .
/1 , k¢ 0 s the following
2 2 e} 3

M/l./,/,,v/(kl&,) Q; jd"Q 0»?( bawa )\/ov dxdyde du do-dar W

-1 Y mt mi
QR O (,-w)[f(w)] {[Y’('»’) W)l ‘}

apf[- ka2 W]m[ R2LE T, (hop) [~ R B2 ]

+ r)["”“’]*(k [ &2 4 Lhim g
Al { ff‘r\’;}‘ pwl'f'(g’,ug////‘/'jyf. gf'"*%ﬁ’gvv ).,L }

where W = xyeurww .

o1

If we define the decompositidon of the amplitudes as
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M/‘f"“"' =A/0/‘PV/7"’E'MZ + voe (4.3)

\»r
and Wi = Disc Mz .

10)

from the parton model of Bjorken and Paschos it comes out that (for

:
the case of real photons klz &= 0)

9‘3'\7; = (a factor not depending on&v)%[(/\/)i#(f)<;gf>~ 9
¢.4)
M‘KMQ’ 2 /
/ N
Fo=t | d=@-h)z-2h’ ,V=@R-t)p (4.5)

4V
is satisfied for large values of t, ﬁand L. p with their ratios fixed.
In other words for large values a scaling law is satisfied for the
« N3 o . - . ~ - g
structure function Y Wz with the scaling variable 2L = —i—"?p, ,where X
is the longitudinal fracti¢n of the parton momentum; in the infinite

10)

momentum frame. Frow the same parton model one gets for# W,

structure function of deep inelastic electrons scattering an expression

2
y W, (v, k)= %:f(/v)xaf;(x}< a3, (4.6)
2
| S ."k i
= =3y » By looking at the
expressions (4.4) and (4.6) one sees that the structure functions

with the scaling variable X=

of inelastic Compton scattering has the same analytic dependence as
a function of:s\cla,s the structure function o;ﬁ'r.deep inelastic electron
scattering does as a function ofain the case of partone charge Q;: 6,1,

It would be interesting to study the same question in the DRM

of the present paper in order to reveal deeper analogy with the
%+ ~
parton model, By putting R' =&’ = ¢ in (4,2) and finding M, from

the definition (4,3) we do a Mellin transform with respect to k.k’

a ’ »
keeping -Z%and%fixed, There is a pole at /3 = = 3 coming from

yzualand wve get the limit / '
l\?; — e/q; l('/:../z’)vgjaﬂl"6?‘2'\7’(- dhwa L)/’ ol x of vl - \A7d°’(|-x~zr)d°_
0 9 " i
(12" Crow) [ fewn ] 1] B (o, W) [P T
y & -3 .
blar [ 2 Am:{_ ’] (4,7)
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Surprisingly enough,the variables /Z-fa,nd/zlofin the complicated
expression (4,2) combine just in a manner to give (4.7) depending
only on =% 32’ with D = (k"")f o By looking at (2,7) and (4,7) one
sees that the two expressions are indeed very similar, provided one
changes #esZandwell, Furthermore, assuming the analyticity of the
discontinuity (i F’llz in a pruper region of variable D)a,nd excluding
the end points of the scaling variable 56 = -:é —2&1 €, ’xv$ O and 1

{where JV- function of these end point values and their derivatives

r~ o~ 1
appear) and with the use ot Wz = Disc M =[Disc - A] 2’ X _Disc A
s Ty ’ap'L x_’x
y—o7

* R
[3__ \/\/2] J ., one can convince himself that the two structure
9:——;

functions are indeed proportivnal tu each other,

V. e e"— ANNIHILATION INTO HADRONS

The total cross section of e~ et-= annaihilation into hadrons
26)

is

2
s (k%)= —;— IG(ZJ[Z f'(kl) ) (5.1)

— kpho 2
where MI‘N (LZ)=(3/W _2_:)/—’(/()

In the dual model of the present paper the - *calculation
ot Mf“’ (ILL) is approximated by the discontinuity of the self energy
digram of the wirtual phton, as illustrated in Fig. 5, and its

contribution witnout renormalization is

M, (k)= e? OIYQ-ex/v(-é&WQL)/ {dxdg/ e
K (5.2)
[f(w)] exp[ hlwwj{éwgw } ) 5.2
Vo= Xy

The singularity of Mellin variable is at /3 = —zland therefore

-Jd
f(h")——~—> (k*) "2 , (5.3)
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l

**)

& (hY)—

Ml

(5.3)

This is a Rind of fixed pole behaviour independent of the trajectories

exchanged. The result (5.3) is incompatible with the results of

the other mode1s26) « Notice, however,that the expression (5.2) has

the exponential divergence of the dual loops and has not been renormalized

In evaluation ot (5.3) we have done in fact a simple cutoff of the type
B2 —-¢- x—g(). Ve suggest that a prpper dual renormalization of

the self-mass diagram of photon may change the result (5.3). VWe hope

to study this question further,
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hﬁ=ha.
=Py

Fig, 1. The dual diagram used for the study of Bjorken scaling. Thick
lines are the tower of boson resonances, dots mean non-leading

diagrams.

Ik

f A

Fig. 2. Form factor corresponding hto the last diagram of Fig., 1 through
The Fubini - Dashen - Gell - Mznn sum rule.
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Fig. 3. Diagrams considered Tur the study of Bjorken scaling in deep inel.

electron scattering with one final state hadron detected.
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Fig., 4. Diagram for inelastic Compton Scatbering,

2

Y| | =3 |
=D£S¢.W€,\~O,\,iw

Fig. 5. Diagram for the electron-positicn annihilation into hadrons,




