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Abstract

This theslis is primarily concerned with the
Absorption Model for high energy scattering, and in
particular the application of the Absorption Model to the
processes Nucleon-Nucleon charge exchange, and Nucleon-
Antinucleon charge exchanges

In the first chapter, a review of the development of
the one particle exchange model of high energy scattering
is given. The difficulties of the earlier applications
are discussed, and the role of absorptive corrections in
resolving these difficulties is outlined.

In Chapter 2, the mathematical framework for adding
absorptive corrections to one particle exchange
contributions is given. The original prescription due
to Sopkovich is discussed, and recent approaches to the
problem are reviewed.

In Chapter 3%, the Absorption Model is applied to the
process of neutron-proton backward scattering, or charge
exchange. It is found that one-pion exchange in the
Absorption Model gives a good fit to the charge exchange

peak at small angles, but there is disagreement with
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experiment at large angles. Rho-meson exchange is found
to be unsatisfactory. The energy dependence of one-meson
exchange in the Absorption Model is investigated.

In Chapter L, the Absorption Model is applied to
Nucleon-Antinucleon charge exchange. Good agreement with
experiment is obtained. The sensitivity of the results
to the precise model of elastlc scattering is investigated.

In Chapter 5, we discuss various refinements to our
work in Chapter 3, to see if better large angle results
can be obtained.

In our concluding chapter, the Absorption Model is
compared with the Regge pole exchange model, and the

possibility of combining the two approaches is discussed.
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CHAPTER 1

THE EVOLUTION OF THE PRRIPHERAL MODEL



It was first suggested by Chew and Low (1) that the
exchange of pions in inelastic pion-nucleon collisions
should give dominant contributions to the cross-section for
low values of momentum transfer. The standard plausibility
argument for this assertion is as follows: if we consider
the scattering of two spin-zero particles of equal mass,
with the exchange of a scalar particle mass p, then the
contribution to the differential cross-section 1is
proportional to g*/(42 + u2?)2, where A? = [L-momentum
transfer]?, and g® is the coupling constant of the exchange
particle to the external particle. Thus, if g is small, and
we consider a region where A% is small, then the size of the
denominator gives rise to the expectation that the term will
be dominant.

The motivation for this suggestion was to develop a
method of extrapolation for the pole terms arising from
single particle exchange forces, and in this way to obtain
the coupling constants from residues of the poles
corresponding to the given particle exchanges.

This concept was extended to form the basis of a
phenomenological calculation of strong-interaction high
energy inelastic processes which are sharply peaked in the
forward direction - the peripheral processes - by Drell(2),

and Salzman (3).
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These calculations had some successy; but these successes
were far from quantitative or uniform. In particular,
careful calculations of one-particle exchange diagrams for
realistic processes, i.e. those involving spin, demonstrated
that the above plausibility argument could in certain
circumstances be very misleading. Perhaps the most
dramatic instance of this is the one-pion contribution to
neutrpn—proton charge exchange. If we were to follow on
naive plausibility argument,namely treating the neutron,
proton and pion as scalar particles, we should find close
agreement with the experimental angular distributions. A
realistic calculation shows, however, gross qualitative
dlisagreement with the observed data. Indeed, it was found
as a general feature that the proper inclusion of spins and
parities, internal and external,; gave rise to a much broader
angular distribution than that expected from the simple
denominator argument.

It was suggested by Ferrari and Selleri (L) that
agreement could be obtained by inserting a form factor
dependent on momentum transfer. While such form factors
can exist and indeed have a very important role in the

electromagnetic interactions, the proposal was unsatisfactory
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for the follow ing reasons.

Firstly, because there was no attempt to obtain these
form factors theoretically - they were merely inserted to
give a good fit to the experimental data. It was found
that, to obtain a reasonable fit, the dependence of these
form factors on momentum transfer was very s trong, and
indeed completely masked the momentum transfer dependence
of the input, one-particle exchange, term. Thus it is hard
to see just what value such an approach hase. There are
also further criticisms. Consider the processes

NN - N*N (a) where N is the Nucleon

and NN - NN* (b) and N* the 3,3 Resonance.

Ferrarli and Selleri (i) were able to obtain a good fit to
process (a) with one pion excnange and their ad hoc form
Tactors. But an identical form factor is required for the
vertex N n*x, and so the Ferrari-Selleri theory gives tie
same predictious for processes (a) and (b). Process (b)
has, however, a smaller cross-section than (a), and is much
mar e sharply peaked.

So far, in discussing the evolution of the peripheral
model, we have concentrated on a comparisoh of its predictions
with experiment. But a theory must not only be satisfactory

in comparison with experiment, it must also conform to basic
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conservation laws, for instance probability (in the form of

unitarity), and those implied by the Lorentz group.

One finds that the straight one particle exchange
mod el frequently gives rise to violation of unitarity
bounds for low partial waves e.g. Gottfried and Jackson find
that for the process ®p = pp at 4 Gev/c a violation of the
unitarity bound for s and p waves. The unitarity bound is
exceeded for s waves by a factor approximately 200, and for
p waves by about 10. Of course, these violations and the
prediction of too flat an angular distribution are not
unconnected. Since the large angle scattering is from low
partial waves, it is clear that a model which gives a large
contribution to these will have difficulty in giving a
largely peaked angular distribution.

The answer to this dilemma was proposed by Gottfried
and Jackson (5) and independently by Durand and Chiu (6).
The intuitive basis of their proposal, a revival of an
original idea and formalism given by Sopkovich (7), was as
follows. At energies in the Gev ranges, inelastic channels
are open, and these channels compete both in the initial and
final states for their share of the total cross-section.
Nowy it is reasonable to suppose that such inelastic

processes, particularly those complex processes involving
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genuine many particle final states, i.e. not quasi 2-body
processes,; should be initiated by collisionshinvolving low
partial waves. And conversely, we should expect that

this competition in low partial waves due to many competing
open channels will imply a reduction in the low partial
wave interactlon amplitude to any given channel, while
leaving higher partial waves largely unchanged.

Thus, an effect has been introduced which is intuitively
reasonable, and which offers hope of reducing the excess over
unitarity bounds of low partial waves and of producing a
change in the angular distributionsy; collimating them in the
forward direction. It is now necessary to translate this
idea into mathematical formalism permitting us to make
calculations to test the idea. A prescription for taking
into account the effects of competing channels, and
parameterising them in terms of elastic scattering was given
by Sopkovich, and rederived by Gottfried and Jackson, and
Durand and Chiu. We shall give details in the following

chapter.



CHAPTER 2

THE ABSORPTION MODEL
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We shall first discuss the original construction of
a prescription to take into account the absorptive effects
of many competing channels on the one-particle exchange
contribution, following the treatment due to Jackson (5).
Such a modified peripheral model is now usually known as
the Absorption Model. The terms prescription and
construction are used advisedly, for the Absorption Model
is dependent on many assumptions and approximations, and
few of them are to be regarded as altogether well-founded.
However, since an exact solution would require the
solutién of coupled multi-particle; multi-channel
equations, armd this is a very distant goal, we must expect
that any useful result will involve crude approximations
in its derivation.

The first version of the Absorption Model is essentially
a distorted wave Born approximation, mare familiar to
Nuclear and Atomic Physics than to High Energy Physicse
Consider the scattering of spinless particles a+b - c+4d,
where the force is approximated by one-particle exchange.
In potential language; the potential V giving rise to the
transition is well represented by its first Born
approximation. Let U'*) and U} be the remaining

interactions between a and b, and ¢ and d, respectively.
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Thus U¢*) and U{-) are the potentials which give rise to
the elastic scattering a + b - a + by, and ¢ + d » ¢ + d.
Since in any application of the peripheral model, the
cross-sections considered are much smaller than the
elastic scattering cross-sections, the appropriate case
to consider is Vv <€ U(t) o

From Gell-Mann - Goldberger scattering theory (8),
the scattering amplitude to all orders in U(:) and first

order in V 1s given by

Moy = < ¥ V] w00 (2.1)

where Wf(') and wi(+) are the eigenstates of the

Hamiltonian corresponding to Uu¢-) and utt) respectively.

That is
(+) < ! (+)
¥, = ¢, + U .
1 1 E - (H-V) + in 1
(2.2)
(~) ! (=)
Vor™l = b 4 Ut e
£ t E - (H-V) - in> £
where s ¢f are plane wave eigenstates

of the non-interacting
’ ¢i Hamiltonian Hy, = H - u - v.

and B is the energy s H the total Hamiltoniany and m
is a small quantity, defining by its sign whether the wave
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function has ingoing or outgoing boundary conditionss
+ for outgoing, - for ingoing.

At high energies and small momentum transfer one can
use the approximation for the wave functions developed by
Glauber (9) from the W.K.B. approximation. Since this
involves the use of the impact parameter formalism, it is
natural to convert the partial wave sum over all angular
momenta to an integral over all impact parameters. This
may be done at small scattering angles by using the
asymptotic formula Py(cos 0) = Jo((2¢ + 1) sin £6),
where Pb is the Legendre Polynomial of order £, and Jo is
the c¢ylindrical Bessel function. Hence the partial

wave sum Moy = 2(2¢ + 1)Ay Pg(cos 0) (2.3)

becomes Moy = 2g2 fcmbdb A(x) Jo (wx) (2.4)
o

where b is the impact parameter, q the centre of mass

momentum, w = 2 sin £6 and X = gb. After manipulation

we may retrieve the partial wave sum by inspection.

In order to relate U(:> to high energy elastic
scattering we must allow them to be complex - and in
constructing the Bra (final state) we must use the complex
conjugate of the potential. The wave functions in the

centre of mass frame are then given by
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wé{(g,z) = exp[ig.x] exp[- %+ [ U (b+z' )dz' ] (2.5)

+ 0

where v+ 1s the relative velocity of the particles,
g+ and g- are the initial and final 3-momenta,

and we have assumed one 3-dimensional degree of freedom z

A g_+ + g—.
chosen ajong kK = g+ + g- 3} k = ————— . The impact

g+ + Q-
parameter vector b is perpendicular to _I__Q ’
and the position vector r =Db + gz.

In this approximation the scattering amplitude becomess

Mey = jmdzb] dz exp[iA.b] V(b+kz) x exp[- %—f U (b+kz' *dz']
o - 00 Z

2
x exp[ - %+] g+ (_‘r_a_+£z")dz"] (2.6)

=00

where A is the 3-momentum transfer. Now we note that
N A
v U(b+kz)dz = 26(b) (2:7)
- 00

where 6(b) is the phase shift of a wave packet travelling

through a potential U at impact parameter b, and

B(b) = j'oov(gﬂc_z)dz (2.8)

- 00
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is the unmodified Born approximation for the partial wave
amplitude corresponding to the potential V.

To obtain some simple relation from (2.6) for the
distorted wave Born approximation, the unmodified Born
approximation, and the elastic scattering phase shifts,
further assumptions must be made. Two possible
assumptions will give the desired simplification.

Firstly, if we assume that U¢*) = U{-), and v+ = v- ,

then (2.6) reduces to

Mey = 2acf Jo (8b) 6230 (P) g (1) ab (2.9)
(o}
& * 1
where A =Yq(1 - cos 6) = 2q sin 16.

Thus, by comparison with the partial wave sum and its
integral representationy; we find that the effect of the
initial and final state interaction is to multiply the
partial wave Born amplitude Be for the transition by the
partial wave s-matrix for elastic scattering,se, of the
particles in the initial (final) state. The modified
partial wave amplitude A& is given by Ae = SeB&, which
we rewrite as

+ 1
A, =8,2 B, S,? (2.10)

to compare with the case of non-identical initial and

final states.
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When U¢*) £ U¢-), one can only simplirfy (2.6) if the
range of V is much less than that of U'*) or U¢-). 1In

this case; (2.6) becomes

Mo, = 2ﬂjﬁobdb Jb(Ab)B(b)exp{%[26(+)(b)+26(')(b)]} (2.11)

(o]
(+) 1 [T g0 (pan
- 00
0 A
and 28(7) (b) = - %;j ot =) (b+kz)az,
-00

f.e0 8*) (b) and 6¢~) (b) are the phase shifts for the
elastic scattering of the particles in the initial and
final states respectively. The modified Born term is then

given by
1% £\%
A, = (8,)%2 B, (5,)%, (2.12)

which is the original prescription given by Sopkovich (7).
Sg' and Sg' are the partial wave S matrix elements for
elastic scattering in the initial and final states.

Now for most applications - though not our own work

on charge exchange processes - there is no reason to belileve

the near equality of U¢*) and U{-). Thus in using equation
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(2.12), one is assuming the range of V is much smaller
than that of U(*) ana u(-). This is in general very
far from the case. Characterizing the range of an exchange
particle by its Compton wavelength, the range of V for one
pion exchange is 1.4F, whereas optical models for N-N
elastic scattering give a range for U of the order of 1F.
However, it is possible that this criticism may not
be too important in practice; Durand (private
communication) has carried out a number of numerical
computations in potential theory,; using potentials V and
U, for V less than U, but violating the range assumptién
required for equation (2.12). He finds that, though in
these circumstances equation (2.12) is not a good
approximation for the modified partial waves, on summing
up the partial waves given by (2.12) there is a strong
cancellation of errors and a very good approximation to
the exact amplitude is obtained for small angle scattering.
Another criticism of the preceeding derivation is the
use of the Schr8dinger equation with an optical potential
which, though it may give a good representation of the
angular distribution for scattering, does not necessarily
give good information on the wave functions - a situation

known to obtain in Nuclear Physics (C.F.Clement, private
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communication). Furthermore, one can object to using
the Schrddinger equation to obtain results which will be
used in a highly relativistic situation.

We now consider briefly the result of the absorptive
modifications given by equation (2.12). To do this, we
must know the elastic scattering phase shifts in the
initial and final states. However we may note immediately
that since Dnée.> 0, any inelasticity in the elastic
scattering must reduce the Born terms. It must be
emphasized that these cannot be predicted, but must be
analyzed from elastic scattering data. This immediately
raises a problem for inelastic processes, since it is
impossible to devise an elastic scattering experiment for
the final states of any inelastic interaction - this point
will be discussed further when we review work on inelastic
processes. In any cases thorough and reliable phase
shift analyses are difficult and complicated matters, the
complexlity increasing rapidly with energy and hence the
number of significant partial waves. In practice; we
find it necessary to rely on very crude models to obtain

results for elastic phase shifts above about 1 GeV.
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To be specificy; we sketch one such model belows.

The Gaussian model

The elastic scattering diffraction peak above 1 or

2 GeV is well parametrized by the exponential form

do do
- - = &2t (2.13)
at at £=0

where t is the (L-momentum transfer)?, negative in the

physiecal region, and a positive function of S. We then

make the following approximationss

a) assume that equation (2.13) holds for all t, not

just in the diffraction peake.

b) suppose that the forward amplitude (which is
largely imaginary) is exactly imaginaryy; and further,

that this is true of the amplitude at all angles.
c¢) neglect spin.

It is then possible to obtain an analytic expression for
the partial wave S-Matrix by using the impact parameter
formalism. From the above assumptions and the Optical
Theorem, the amplitude M(ty;q), where q is the centre of

mass momentum, is given by
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io

M(tsq) = —tob 4 o2t (201L)
L
But  M(t,q) = - ig f bab Jo (W=t) (e210(P) 4y, (2.15)
. |

where, by comparison with equation (2.14), &(b) must be
pure imaginary. Now, equation (2.15) is a Fourier-

Bessel transform and may be inverted. Ir

b(y) = f a(x) Jo(xy)dx,
(o]
then the inverse is
a(x) = f b(y) Jo(xy)dy-
[o]

Hence, from (2.15)

o0 a
210(0) 4 _ %f N AT oy — o2 =1 1. (w=Eb)
. . L .
(o]

(2.16)

But the Fourier-Bessel transform of a Gaussian is

itself a Gaussians

1
f e—aszb(xy) x ax = — ¥ /b2 5

o 2a
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G218(0) _y _ Ctot o—b%/2a . (2.17)
L®a

giving

Remembering € = gb, we haves

&2
: o - 5w
s, = 210 -4 _ ot o 280" | (2.18)

Lma

which is the Gaussian model for elastic diffraction
scattering.

Re-writing more simply, we have

2
g = 1 - 0e”Ye (2.19)

where C £ 1 for unitarity.

To revert to our original question, how are the Born
partial waves modified by the initial and final state
effects? For p-p scattering at 10 GeV, with this crude
molel of elastic scattering, C =~ 0.9 ¢+ thus the S-wave
Born term for an initial and final Nucleon-Nucleon state
is diminished to %5 of its original wvalue. All the
partial waves are reduced, but the higher partial waves are
reduced correspondingly less,; since Se -+ 1 as € - we

Thus, the effect suggested at the end of Chapter 1, the

strong suppression of low partial waves by the initial
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and final state interactions, is a consequence of the
Absorption Model. This effect of reducing lov partial
waves can be thought of as giving a longer range to the
"centre of gravity'" of the exchange forces, and the
effectively longer range forces then giving rise to a more
sharply collimated scattering peak.

At this point we shall reverse the historical order
for the sake of completenessy; and discuss some recent
approaches to the derivation of absorptive corrections to
one-particle exchange terms. Though the absorption model
has had considerable success, the derivation of a model
for high energy processes by the use of potential-theory
is somewhat unsatisfactory, as pointed out above. For
this reason a number of authors - Sqguires (10, 11, 12),
Ball and Frazer (13), Omnes (14), Dietz and Pilkuhn (15,16),
Trefil (17) and Watson (18) - have sought to give a
derivation without recourse to potential models.

The most significant ingredient of these approaches
is the attempt to include absorptive corrections by
considering the Unitarity equation with inelastic inter-
mediate states. In some approaches, the one-particle.
exchange, or pole, driving terms are also modified by being

cast into a unitarized form, a device we shall discuss in
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the context of the K-matrix formalism. A natural
framework for the problem is the N/D formalism of Chew
and Mandelstam (19). This is used by Squires, and Ball
and Frazer. There is a correspondence, which we shall
discuss, between the N/D and the K-matrix methods. The
latter is used by Dietz and Pilkuhn, and by Watson.
Trefil uses both formalisms.

We will consider the many-channel case, and denote
the s cattering amplitude in the partial wave ¢ by Af(s)g

Writing

A%(s) = x%s) Dé(e) (2,20)

where for the n channel case,A; N and D are n x n matrices,
s being (centre of mass energy)?. De(s) is a real
analytic function in s, except for the unitarity cut on the
positive real axis extending from the lowest threshold to
infinity. Similarly, Ne(s) is real analytic except for a
left hand cut and, pessimistically, possible poles on the
left.

To obtain a tractable form for the Unitarity equation,
and hence avoid complicated integral equations, the analysis
has to be restricted to 2-particle intermediate states.

The Unitarity condition on A% is

Im A% = A% p a® (2.21)

)
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where (g4 =034 (s - §4)P3P 5 3

th

s, is the threshold for the i channel,

i

k 1
Py = (2 f 2 is the phase space factor in the ith channel,
s

ki is the modulus of the 3-momentum in the centre of mass
frame.
Combining (2.20) and (2.21) we have

m p° = pxé. (2.22)

Writing a dispersion relation for D in terms of Im D, and

assuming that one subtraction is sufficient, we have

8 - 8o o ds' P N(s')
D=1~-~—T"—
= v j (s' - 8)(s' - s0) (2.23)
Threshold

where we have narmalised D(so) = 1, so below threshold.

Following Dalitz (20), we obtain the connection with

the K-matrix method. Using (2.22), D

Re D - 1BN

L J

' A=NReD-1EN)"" .
Define X = N(Re D)”' ,
then A = X(I - 1EX)""

(2.24)

This is just the multi-channel K-matrix equation (20, 21).
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The Unitarity of the S-matrix corresponding to A is
assured provided that K is real hermitean.

We must now consider what approximations to introduce.
In the spirit of peripheralism - or, in analyticity
language, the dominance of the near-by singularities in the
left - the singularities of N are approximated by one
particle exchange forces. Now it is necessary to make
some further assumptions to simplify equation (2.24).

Consider some transition Asz. Then we have

) e, 2 ¢ ¢ 2 ¢
Im Ajp = (A )¥Py Ay, + (Ag2)*Paohon + }: (A1n)*PnnAn2

n>2
(2.25)
Ball and Frazer truncate this already approximate Unitarity
equation by neglecting EZ: s loeo 2ll the "indirect"
ns>2
couplings between channels 1 and 2. They are then able

to obtain a form resembling (2.12).

A, =(8,,)2% B(8,,)% (2.26)
where
e 1 AW'Dy 4 (W')Daa (W') dise [BE(W")]
BY = — (2.27)
oxi W' - W
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and W is the total energy in the centre of mass frame,

. 1 aw' aisc [BYw')]
BY(W) = —
2ri W' - W
Left

= one particle exchange term.

Now we must ask in what circumstances will (2.26)
yvield the Sopkovich prescription (2.12). Clearly we
require 8¢ = 8% . By inspection of (2.27) we see that
this will be the case for D (W') not significantly
different from 1. This will be true in high partial waves,
where we shall only see the tail o« the strong interaction
forces, and in any given partial wave if the forces are
weako So the unfortunate conclusion is that the work of
Ball and Frazer can only give a simple prescription for the
absorptive modifications where these are small, which is
not, of course, the case of interest. Omnes obtains a
similar result, which gives a simple expression (in fact
the Sopkovich prescription) only in the case of weak
absorption.

We noted above that Ball and Frazer truncated the

Unitarity equation to the two-channel case. But even at
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energies about 2 GeV,; elastic scattering plus one inelastic
channel is a poor approximation. The approximation
becomes rapidly worse as the energy increases past the
threshold for higher inelastic channels. Indeed,
truncating the system to a two-channel one is in direct
contradiction to the effect we are seeking to describe, i.e.
the effects of many competing channels. However, even if
we restrict ourselves to two particle channels, for most
processes of interest the large number of channels open at
energies greater than 2 GeV becomes an embarrassment.

For instance, consider the k*p reaction at 3 GeV/c laboratory
momentum. One finds that the elastic scattering, plus the
following three quasi two-particle processess- k'p - kn¥,
k*p » k*n, k*p - k¥n*, account for only 50% of the total
cross-section (16).

To include a large number of such channels explicitly
requires a knowledge of the coupling constants involved,
and of course assumptions about the particle exchange terms
dominating in each case. There is thus a danger of
introducing so many unknowns that the problem becomes a
complicated and devious form of curve-fitting.

Squires (10, 11) suggested a way out of this dilemna.

His proposal was essentially that we should assume the
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elements of N to be of equal modulus but random in sign,

except that Ni = N..o The assumption of random

J Ji
distribution of sign for the matrix elements of N gave him a
method for estimating their total effect. He was then able
to obtain an expression for the off-diagonal amplitude in
terms of the elastic scattering amplitude, and the off-
diagonal N-matrix element, which was approximated by a one-
particle exchange term. Essentially, the relationship
between this and the uncorrected peripheral model is as
follows - in the lattery N is given by cross-channel poles,
whilst D is put equal to 1. By making the random phase
approximation, one is able to parameterize D in terms of
the elastic scattering amplitude, while using the same
approximation for N.

Assuming the phase shift for elastic scattering to be
purely imaginary, we have for the partial wave amplitude
Al
e exp(- 2r%) -1

Ay o= - (2.28)
21

where Y% is the (imaginary) phase shift. Squires then
shows that the off-diagonal element of the scattering

amplitude is given by
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. (1 + exp(- 2v%))2
Aygp = {
L

} Bf;(pole) (2.29)
£
where B,, (pole) is the one-particle exchange term.

Thus, once agains a correction formula has been
obtained which agrees with the Sopkovich prescription in the
limit of weak absorption, i.e. small ¥ We note, however,
that the maximum absorption possible, as ¥ - «, s %x. This
is most unfortunate since, as we remarked in Chapter 1, it
is quite possible for the S wave to exceed unitarity bounds
by factors as large as 200. We must therefore examine the
assumptions further.

The r andom sign hypothesis and the assumption of existence
of sufficient numbers of channels required to validate the
above statistical arguments will certainly be incorrect at
low energies, when only a few inelastic channels are open.
However, even at quite moderate energies (5 to 10 GeV),
these seem gquite plausible assumptions, the plausibility of
the random phase assumption being enhanced by crossing-matrix
arguments (Squires, private communication). But at
presently attainable energies the assumption of equal
magnitude for the matrix elements of N is clearly false.

For example, in nucleon-nucleon scattering a small number



25.

of inelastic channels seem to dominate up to 30 GeV,
these channels being characterized by energy independent
"total" cross-sections and vacuum guantum numbers in the
t-channel. These circumstances are perhaps connected by,
for example, Pomeranchuk dominance.

Saquires (12) has since suggested that the failure of
formula (2.29) to give strong absorptive effects is due
to making the unphysical assumption about equal magnitude
for all N matrix elements,and then analysing the experimental
situation, to which these assumptions do not apply, to
obtain the absorptive corrections. He has further suggested
that this may be improved in cases where we know a small
number of known channels to be important, and where we can
have some hope of calculating these processes with the
peripheral model as a basis. The remaining inelastic
channels are treated in the random phase approximation.
This method ensures in practice that the final result
obeys unitarity but still has the vital property that it
enables inelastic processes to be calculated from a
knowledge of the peripheral terms, and of the elastic
scattering phase shift.

Squires has also suggested that the input pole terms

should be approximately unitarized before taking into
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account absorptive correctionsy; and that the N/D
determingntal method should be used for this purpose. It
is perhaps simpler to look at this problem in the K-matrix
formalism, which is, as we have pointed out, equivalent

to setting K = N/Re D . Since we are considering
unitarisation in the absence of competing channels, let us,
for simplicity, consider the one-channel case.

Then

and in the 1imit of small Ae, A& = Ke = B&o We make the

identification Kz = B& and obtain
A, =B, + 1B, A, (2. 30)
which, given Be real, ensures the unitarity of Ae. We

then consider iterating (2.30), and see that on unitarisation
of the Born term is equivalent to taking a new set of
perturbation diagrams, essentially a set of ladder graphs.

Consider equation (2.30) diagrammaticallys we have

3>
(c
i
(=Y
*
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Iterating,

—e— = = - -

Because equation (2.30) gives an output within
unitarity bounds; even with input Born terms Be that far
exceed the unitarity bound, this treatment of the Born

term is often referred to as self-damping.



CHAPTER 3

THE ABSORPTION MODEL AND

NEUTRON-PROTON CHARGE EXCHANGE
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In this chapter, we present part of our work on the
Absorption Model for the neutron-proton backward (or
charge exchange) peak. The work presented should not be
thought of only in connection with this very interesting
process but also as an investigation of the Absorption
Model, e.g. we consider the guestion of whether the
Absorption Model can change the energy dependence of the
pole terms. We first briefly review the experimental
situation. Then we consider the effect of absorptive
modification on the one plon exchange contribution, and
compare these results with experiment. We also discuss
the effect of absorption on rho-meson exchange (R.M.E.),
and investigate the effect of absorptive damping on the
energy dependence of the R.M.E.

The experimental situation up to 1962 has been reviewed
by Wilson (22)3y subsequent experiments on n-p charge
exchange have been performed by Friedes, Palevsky et al (23)
at 3.0 GeV/c lab. momentum, and Manning et al (24) at
8,0 GeV/co We are here only concerned with relativistic
energies, and will discuss the data in the GeV range.

It is found that the charge-exchange peak is small

compared with forward elastic scattering, e.g. at 3.7 GeV/c.
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9 (6 =0

charge exchange 2.8 millibarns/Steradian
an

do _
whereas —_ pp(e—o) ~ 15 mb/St.

an

The most interesting feature of the charge-exchange peak

is the extreme sharpness of the angular distribution.

A measure of the sharpness of this peak is the width of

the differential cross-section at half height, which is

a 0.02 (GeV/c)? at 3.7 GeV/c, and varies little with energy.
This should be compared with a half width of 0.1 (GeV/c)?
at 3.7 GeV/c for pp scattering.

To orientate ourselves about the ranges of force
corresponding to this sharp distribution, consider the
naive medel of spinless one-particle exchange discussed
in Chapter 1. In this crude malel, we find that 1 pion
exchange gives a fairly close fit to the shapes it has
a half width of 0.008 (GeV/c)?, whereas p exchange gives
a half width of approximately .25 (GeV/c)Z2.

Finally, to gain some insight into the exchange
mechanism, we must consider the energy dependence of the

process, and also what information the optical Theorem
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can furnish on the phase of amplitude. It is found (24)
that the peak is fitted by

do (t:O)
— ~ §-2 R
dt
for 1.26 GeV/c < Pygp < 8 GeV/c ,

i.e. over the whole range of relativistic data. Now, for
the exchange of a partlcle, spin. J, we have the asymptotic

formula

doc
— ~ g2d-2 . (3.1)
at

Thus the observed d ependence implies that, if single
particle exchange forces are responsible, the significant
exchange is of spin zero.

We must now enquire what information is avalilable on
the phase of the amplitude. This is important because
an unmodified O.P.E. gives a real contribution to the
charge exchange (C.E.) amplitude, and the simple Gaussian
mal el for the plane wave elastic scattering S-matrix
leaves the phase real after absorptive modification.

Consider isotopic (I)-spin invariance for Nucleon-
Nucleon scattering. This relates the physical N-N

scattering amplitudes to My and Mys which are the amplitudes
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for total I-spin I =0 and I = 1, in the direct channels

Mpp(e, DP+D = P+D) = My 3 (3.2)
M p (0 14D - n4p) = 3(M + Wo) (3.3)
Méx(e, n+p - p+n) = an(ﬂ - 0)

= 2(My - Mo) 3 (3e4)

0 is the centre of mass scattering angle. Thus by
knowing Otot(np) and otot(pp), the optical Theorem gives
us the imaginary part of the spin-averaged forward
amplitude for n-p charge exchange, and 1its contribution

to the forward differential cross-sections

a0 900 fa(0,04(m) - opey(me)) ¥
an opt L7

Inserting the experimental values for Oiot 2% 37 GeV/c

lab. momentum gives

do (6=0) |

— ex = 0.27 mb/Ste

an opt
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But the experimental value is

aa (6=0)

— X = 2.8 mb/sto
an

In the absence of strong spin dependence, this indicates
that t he forward amplitude for n-p charge exchange is

mainly real.

The inadequacy of unmodified one pion exchange (0.P.E)

The analysis of the experimental data given above is
suggestive of an 0.P.E. mechanism for charge exchange -
charge exchange requiring an I = 1 meson to carry charge
in the t-channel. But in our brief discussion of the
range of the forces required to give the observed angular
distribution we considered only a scalar system. A
realistic calculation shows that 0.P.E. glives rise to a
charge exchange amplitude which is identically zero in the
forward direction.

The Feynman diagram we consider is

;?' v
b rokom.
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where p and q are the initial L4 momenta of the incident
proton and neutron, and q' and p! are the final L, momenta
of the outgoing proton and neutron respectively - all
these being defined in the centre of mass frame.

The above diagram helps to clarify the somewhat
confusing terminology for this process. One may speak
of the backward n-p amplitude, or as in equation (3.4), the
charge exchange amplitude. The relationship of the angles
corresponding to the two ways of loocking at the phenomenon
is then clears Dbackward n-p scattering becomes forward
n-p charge exchange scattering. So, in the centre of
mass frame, an elastic scattering angle (® - ) corresponds
to a charge exchange scattering angle of 6. In future we
shall use the charge exchange angle. Thus, in fig (3.1);

1 corresponds to forward charge exchange, or backward

P=D
elastic scattering.

Now the above diagram gives the following contribution
to the centre of mass amplitude, using the notation of

Cziffra, Macgregor, Moravcsik and Stapp (26): -

Ceg?m® | W,(p)vsun(p)u (a)vsug, (a')
2k2 R Xo = X

Mg, pg(Psarp’a’) = -

(35)
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where ur(p) etc. are the Dirac L spinors, spin index r;

u?
X = cos © 9 X =1+ — 3
¢ m (21{2)

B is the pion mass, k the centre of mass 3-momentum,
m is the nucleon mass, E the total energy of one nucleon,
g the rationalised ®-N coupling constant, = 1L.l,
and ¢ 1s an isospin factor.
To show that this term vanishes in the forward
direction it 1is only necessary to consider the expression

for the vertex,

. (p)Ys w.(p') (3.6)

where Er and L satisfy their respective Dirac equations,
G(p) (F-m =0 (3.7)

and (' - m) u,(p') =0 (3.8)

B = PoX - PoYo

Multiplying (3.7) on the right by ¥s ur,(p') and (3.8) on

the left by Er(p)Yg, we obtain

T,.(0) (F - m)1, u,,(p') = O (3.9)
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and u, (D)5 (B' - mu,, (p') = 0O (3.10)

Adding and rearranging equations (3.9) and (3.10):
— 1 -
u,(p) ¥s u,. (p') = " w,(p) (BYs + ¥s B') u,.(p') (3.11)
m

Since Y, anticommutes with Yos Yis Yo» Yz, we have

Ys B ==-8 Ys

Substituting this into equation (3.11),
T _

u,(P)¥s u,(p') = . u,(P)Ys (B' - Bu,,(p') . (3.12)

To simplify (3.12) further, we require an explicit
representation of the ¥ matrices and lL-spinors. This is
not necessary for our present purpose, since we see that
in the forward direction p = p' and therefore Z' - ¥ = O.
Thus we find that both the vertex factors of equation (3.5)
vanish in the forward direction, establishing our assertion
that the 0.P.E contribution vanishes at 6 = O. The above
analysis also demonstrates a very pertinent pointi- the

vanishing of the amplitude for 6 = 0 cannot be changed by

any allowed (i.e. non-singular) form factor.

Absorptive corrections to 0.P.E.

We now discuss the effect of the initial and final

state corrections to the 0.P.E. model for n-p charge exchange.
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These corrections are introduced via the Sopkovich
prescription (2.12). We must first obtain the partial
wave amplitudes for this process. We use the conventional
singlet-triplet notation of Stapp (27)3 this has the
advantage that the angular momentum decomposition is
naturally in terms of the orbital angular momentum £, which
is in the spirit of the derivation of (2.12). The elegant
helicity formalism of Jacob and Wick (28) gives rise to an
angular momentum decomposition in terms of J, the total
angular momentum.

We give a brief account of the notation here, leaving
the details to Appendix 1. To describe the spin of the
system, the scattering matrix M is sandwiched between states
of total intrinsic spin and the projection of this spin

along some arbitrary direction -

< S,SZ|M|S',SZ' >

Now for N-N scattering S can only be O or 1. Fur ther-
more, for p-p scattering, statistles and conservation of
parity forbid transitions between singlet and triplet spin
states. The s ame rule applies to n-p scattering in the

limit of I-spin conservation.




Thus we can write the amplitude in spin space as a

L x I matrix,

MSS 0 0 0
0o My 4 Mio M4 -4
M= 0 Mo 1 Moo Mo -+ (3.13)

0 M- 14 M-40 M-1—4

where the indices on the 3 X 3 sub-matrix refer to the
projection of the spin in the final and initial states
respectively, and MSS is the singlet-singlet amplitude.
Of these, only 5 are independent - the number is reduced

by the following relations from rotational invariance.

Moqq = My Mo1 = = Mo-1
(3.14)
Mog4 = Mi-q4s Mo = = Moyo
From time reversal we have (29)
Mi1 = My-1 = Moo =N2 cot ©6(Myo + Moyq) (3.15)

The differential cross-sectioni s given by

do 2 2
El- = ’12‘|M11l + %IMOOI + %IMSSI

2 ) 2
+ 'é‘IM1o|

2 2
+ ¥lMoq |+ EMi-y] (3.16)
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Following C.M.M.S. (see also Grashin (30)), equation
(3.5) becomes; in the singlet-triplet notation and taking
the (I = 1) -(T = 0) combinations

Mg, = -(g/um)o/2m

M1 4

i

-(g®/hm)a(1 - x)/LE

Moo

-(g?/m) ox/ 28 (3:.17)
Mio = Moy = (£2/Lx) ¥2 sin © a/LE

My -4

-(g?/um)a(1 + x)/LE

So

do
— (&2 /ux)2 (a/2E)? , (3.18)
an

where recalling the previous definitions for convenience

2
)
X = cos 0O, Xo =1 + —

2'k2

9

© the centre of mass charge exchange angle,
k the centre of mass momentum,

1 - x

a = ——— , E =Nm2 + kK2 .



39

We now require the partial wave decomposition of the
M matrix, and the partial waves corresponding to (3.17).
The diagonal terms of M are expanded in terms of Pe(x);
the terms with one unit of spin-flip, e.ge Mos s in terms of
Pe‘(x); and those terms representing double spin-flip, e.g.
My-1s in terms of Pca(x)e P&m(x) are the associated
Legendre functions, as defined in Blatt and Weisskopf (31).
For a fixed value of total angular momentum J there are two
possible values for the orbital angular momentum ¢ (in either
initial or final state): € = J; and ¢ = J * 1. This
second class can only occur in the triplet state, and by
conservation of parity the two classes cannot be coupled.

By conservation of total angular momentum J and its
projection M, the partial waves have the angular momentum
structure < €, S, J, M|R]e', s', J, M > , where s = s'
since for the case of interest singlet-triplet transitions

are forbidden. Then for the class € = J we have

<J, 0, 3, M [R] 3, 05 3, M> =aj (3.19)

<d 1y I MRl 3 1, T, M > =0y =0y, (3.20)

and for € =J %1 we have

<T 1,1, I, W|R| T71,1, 3, M> (3.21)

I
£

by time reversal = o (3.22)



< T +151s Iy M |R| T +1, 1, J, M >

I
Q
|

T = %e,e—1
(3.23)

<T-1,1, T, M |R| -4, 1, 3, M >

1
1>

eT = %, 841

(3e24)

We note that all the partial waves are diagonal in ¢,
except for a’, where the initial and final states differ by
2 units of orbital angular momentum.

The rather complicated partial wave decomposition of

M is then (27)

2 2¢ + 1

Mg(6) = ()71 )" By(6) —— a, (3.25)
£=0
= 42 28+1
R (G PR

£ =0

" <:fi1>‘x6,e-1 - %[(8+1)(4+2)]%a‘+1 - %[(6—1)e]%a4-1 },

(3.26)



.

o0

' 2+1 2
Moo (6) = (ik)-1z Pe(e)[ (’i")o‘e,zm +(5>°‘e,e-1 +
0

+ 3l (e+1) (£42) 1221 %[(e-a)el%a‘-‘} , (3.27)

e =

: _ 1
N2 [/ 28+1 N2 /e—1 N2 Fes2 \% ,
= e F TN T ) %0 TS ) T
Lo\ e(e+) ’ Lo\ ¢ ’ I\ &+ _

N2 /e-1 ?
—— (——) ae—1}, (3‘28)
n L

= - N2 /e42
Moq(0) = (ik)™' Z 1(6) (+ ) e o4 T

N2 N2
Mio(8) = (ik)™' i Pe‘(e)[ mn e, 41 n “e,e-1 T

£ =1

1
N2 /e+2 \2 N2 /[ -1 \2
, _(____ > o _(__ ) ae-1]’ (3.29)
L \ ¢+1 L ¥/
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o0

1
Mi-4(6) = (ik)_1 Z Pez(e){ (M)ae,e_m
-+

£ .=2

22 +1 1 1 e
T\ pe(err) [et T e Tesemt T [ (e+1) (£+2)] 70

i, %[(e-«)e]'%ae*1} ; (3.30)

the above summations extend over both even and odd £, since
the charge exchange amplitude is a combination of I = 1 and
I =0

From C.M.M.S. (26) for one pion exchange, the (I = 1) -

(I =0)a's ares~

Op opq = - 3;%%1[%1 (%) - Q,(%0)] (3031)
Of oy = - %%?[Q&(XO) - Qp_y (%0) ] (3.32)
0, =- %%?[mm (%) + (£+1)q,_y (%0) -

- (2¢+1)Q,(x0) ] (3. 33)
TP }%{?[J(JH)J% « [z, (xa) + Gy (x0)

- QQJ(XO) (3° 3“-)
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p ik(&2/un)
a, = ——E————[(XO - 1) (%) -8, ] (3.35)
660 is the Kronecker delta,

and the Qz(xo) are the Legendre functiormsof the
2nd kind as defined in Morse and Feshbach (32).

To introduce absorptive corrections using (2.12), we
use empirical studies of p-p diffraction scattering
(expecting n-p to be similar), in which the phase shift at
a given energy is assumed to depend on the orbital
angular momentum € only - i.e. the assumption of spin
independences The unmodified and modified partial waves
diagonal in € - P%) ae,&’ ae,e+1; ae’8_1 - which we
represent as be and Ae respectively are then simply related
by (2.12)s

A

whereas aJ is modified by

J s o N5 /
.A = SJ—1 (o4 SJ+1 [ (3037)

We s tress that 1t would not be correct simply to
expand M in terms of Legendre functions P,, P,'s and P2

and damp the coefficients according to £, since some
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coefficients contain coupling from ¢ -» & I 2. Thus mis-
treating the coupling terms would violate the time-reversal
symmetry of the S-matrix, and equation (3.15) would not be
satisfied.

The modification of the partial wave amplitudes and
their resummation is not possible by analytic means, and
it was therefore necessary to do this by computer. Details
will not be given here, except to renark;gie basic
techniques for minimising the complexity of these summations
when the exchange force has a longer rm ge than the

absorptive corrections.

Writing the unmodified, or pole, amplitude M' = z Mf ,

&
and the final amplitude M,
£
max Tmax
P P
M= M - Z M, + Z J.se' M, «f's"'& , (3.38)
£=0 £ =0
where £ is the partial wave where the absorption has

max

become negligible. Then it is not necessary to sum over all
significantly large partial waves, but only over those which

are significantly modified. A very slight error - an end

effect - is introduced in this way, since in }: M&

2
max + 1



there will be terms connecting to ¢ and &m -1 The

max ax

programme was constructed so that the phenomenological
fits to S& were input data, which allowed us to investigate
the sensitivity of the output to the exact form of Se.

The phenomenological model first used is due to
Serber (33), who constructed an optical potential - imaginary
Yukawa at short range and imaginary Gaussian at long range -
which gives excellent fit to the p-p data at a wide range
of angles and energies. This gives, of course, purely
imaginary phase shifts. In the impact parameter (b)

formalism, the phase shift
8(b) = ix (b)s «x(b) real
In the region 0 < b < .33F
x(b) = =(1 + %A%b2)en vA b + TA%D2 ,
where A, the inverse range of the Yukawa potential is
1.34 F~', and v is Euler's constant ~ 0.557.

. . 12 1. _OA212
oL g218(b) _ 5, = c2(1 + %A%b?)endivAb _-20%D (3.39)

The first factor - 0 as b - 0, and the second - 1 as b = O3
so this model gives full absorption of the S-wave.
At long range; b =2 1.1F ,

242
X(b) = Ae_l P

H
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where A = 454, and N2 = 1,22, Serber gives numerical

values fér interpolation in the region 0.337 < b € 1.1F
It is not surprising, since the above rather complicated

form fits the exponential peak, that the result resembles
the Gaussian form (2.19) with C = 1.

The cross-sections for n-p charge exchange predicted
from 0.P.E. with Serber damping are shown by the solid
lines in figures (3.2) and (3.3) for 3.7 and 8.0 GeV/c
respectivelyo. Also shown are the experimental results of
Friedes (23) and Manning (24), and the unmodified O.P.E.
cross-sections (dashed line). It can be seen that the
absorptive damping of 0.P.E. produces remarkable changes.
The.dip at eex = 0 is converted into a very narrow peak -
which gives a good fit to the experimental angular
distribution out to the half-width. The magnitude of the
vnmodified 0.P.-E. is greatly reduced at wider angles, but
leaving a broad secondary maximum which is not seen
experimentally.

We must now consider in a little mare detail the origin
of the results shown. Unfortunately this must be done
numerically, and we here summarize and discuss our results.
The narrow forward peak comes dominantly from the MSS and

Moo amplitudes. If we consider these amplitudes in terms
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Fig. (3.2)

n-p Charge exchange at 3.7 GeV/c. The solid line refers
to the Absorptively modified O.P.E. exchange, the dashed
line to the unmodifled 0.P.E. exchange.
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n-p charge exchangeat 8.0 GeV/c . The solid line refers
to the Absorptively modified 0.P.E. e xchange, the dashed
line to the unmodified O.P.E. exchange.
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of partial waves, we see that the vanishing of both these
from unmodified 0.P.E. (as demonstrated earlier in this
Chapter) is due to the S-wave contribution being of
opposite sign to the other partial waves, which sum to
cancel the S-wave contribution identically in the forward
direction. The absorptive corrections remove the S-wave
terms, but the higher partial waves still sum to give a
non-vanishing contribution. This can be seen from
equation (3.39) or the simpler (2.19),; since absorption
decreases steadily as € increases. Thus, the absorptive
corrections destroy the balance of terms which caused MSS
and Moo to vanishy; and these terms now give a sharp peak
in good agreement with the small angle experimental data.
The secondary bump comes mainly from the Mi-4 amplitude.
My -4 9 damped or undamped,; vanishes at 6 = 0 because dof
rotational invariance. One need only consider the partial

sum (3.417) for My-¢, which is in terms of Pca(e): now

2¢+1 (&-m)! =% m
P, (6) =|: :I sin™e ——-‘—i—-——m P,(cos 8)s thus
bx  (e+m)! d(cos 0)
the sin?6 factor in all terms of M;-4 gives a vanishing

amplitude at © = 0, independent of the dynamics. The My -4
amplitude from undamped 0O.P.E. gives a large contribution

to %%, and after damping still gives a significant
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contribution at large angles. It is worth pointing out

that the partial wave sum for Mi-4 is for € > 2, and at

3.7 GeV/c the absorption, complete in the S-wave, has dropped

to a factor of 75% for the D wave. It does not appear

possible to suppress the My-4 contribution with any spin
independent set of Se consistent with elastic scattering.

To summarize the results of our calculation, we may
conclude: -

1) Absorptive modification (damping) goes far to reconcile
O.P.E. with experiment. We have good agreement in
angular distribution and magnitude down to the half-
width. This is true at 3.7 GeV/c and 8.0 GeV/c,
indicating a good it to the experimental energy
dependence. Since unmodified O.P.E. fits the experi-
mental E-dependence, this means that absorptive
modifications have not significantly changed the E-
dependence. A secondary peak is, however, predicted

and not seen experimentally.

2) Thebecondary peak is a spin-flip effect, coming mainly

from the My-1 (double spin~-flip) amplitude.

3) The My~ terms follow directly from the spin dependence

of 0.P:Eey and it cannot consistently be removed by spin
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independent absorptive modifications.

L4) Finally, we -stress that such agreement as we obtain
is in no sense due to curve fitting with arbitrary

parameters.

We now consider rho meson exchange (R.M.E.) separately.
Many R.M.E. models use a Reggeized psy but it is far from
clear how far the effects of initial and final state absorption
are implicitly included in a Regge pole. This is a point
we shall discuss later, and we therefore only consider here
"elementary R.M.E." Undamped R.M.E. is known to have

unacceptable energy dpeendence; and would give

do
X . constant, (equation (3.1))3 whereas experimentally
dt
doeX 1
~ . It is important to investigate whether the
dt S

absorption model can change this behaviour. Furthermore,
at any particular energy, R.M.E. illustrates the general
case of short range, spin independent charge exchangesy it
is therefore interesting to see how strongly the angular

distribution is altered by damping.

Near 6 = 0y the elementary R.M.E. amplitude for charge

exchange 1s,to a good approximation (exactly at © = 0), both
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spin independent and determined by the vector NNp coupling.

It has the form (Perring and Phillips (3L))

2 1 (m+E) 2 k2 x?
a=——-—{-———+1+2x+———-—}/(x1 - X),

Lx 2B ok 2(E+m)?
(3.40)
2 =
where 7y is the NNp vector coupling constant,
m 2
and X1 =1 +°p /21{2 °
In terms of the M-matrix, My, = Moo = -M = a, and the

ss
spin-flip terms are zero. This is therefore spin

independent in the sense of forward charge exchange.

In the small angle approximation considered here, the
coupling between different orbital angular momenta is
negligible. We set aJ = Qo From Perring and Phillips,
the (I =1) - (I = 0) combination for the unmodified R.M.E.

partial waves is thens-

2\ k2 +82
ac = i02<'—'> Quc(x‘l)

L Bk

Q
fl

(&+1)Qe_1 (X1) + eQ‘8+1 (X1)
€8 - ( > = ) 26 + 1

2 1
g o41 = i°2<— ———-———{[(2&+1)mE+E2]Qe(x1) + [ (3e+4) k>

Lr / Bk(2¢+3)

- (e) Bm*xday , (x0)]

)
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r2 1
%e,6~1 =i°2(g>m {[2€mE - B2]Q,(x4) + [(3e~1)x?

+ ¢(BE-m)®x4]Q, ,(x1) - (E-m)35,, }

The partial waves are then modified as for 0.P.E., and
resummed to give the Absorption Model amplitude for R.M.E.
The resultant unmodified and modified cross-sections for n-p
charge exchange are shown in figures (3.4) and (3.5) for Poab

= 3.7 and 8.0 GeV/c respectively. We have taken

2
% = 2.0, but little confidence should be attached to this

value as there is considerable disagreement in the literature.
Our conclusions are, however, unaffected by the exact

. 2
numerical value for —

hr °
As expected, absorptive corrections narrow the R.M.E.
peak. For instance, at 8 GeV/c the unmodified half-width
is ~ 15°, which is reduced by absorptive modifications to
~ 10%°, This modified value is still far from the
experimental half-width of ~ 3°.

Absorption greatly reduces the magnitude of the R.M.E.

contribution,; decreasing %%(6:@ by a factor of about 14
in this case. This is much greater than for 0.P.E.s where

2
|M1_1| is reduced by factors of less than 2 up to 10°.
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The reason for the the much more severe reduction for
R.M.E. is that the p has a much shorter range than the =«
(approximately .28F compared with 1.LF). Since

absorption is stronger in low partial waves, most of the
significant partial waves for p exchange are severely
damped. However, for = exchange at 3.7 GeV/c, at an
impact parameter of 1.4F corresponding to ¢ = 7, 90% of

the undamped partial wave survives after damping. Thus we
see that the contribution of high mass exchange particles
is much mare reduced by absorption than the contribution of

low mass exchange.

Energy dependence in the Absorption Model

The most significant conclusion to be drawn from the
R.M.E. results concerns the effect of absorptive modifications
on the energy dependence of the p exchange contribution.

We observe from p exchange that

do do

— (8=0) —(6=0) ~ 108t 3.7 GeV/c ,
an unmodified [ ANt modified

do A0 /n_

m—— (6:0) —'(6—0) o 1L|.0L|.at 8.0 GeV/C °
aa unmodified/ dfl modified

Thus we find, numerically, that to a very good approximation
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(i.e. within 3% for the cross-section and 1.5% for the
amplitude) the absorptive corrections just scale the
amplitude down by the same amount at the two different

energies. This means that the modified terms have the

same_energy dependence as the unmodified pole terms.

We can investigate how this comes about using the
impact parameter formalism discussed in Chapter 2.

Consider first equation (3.40)s

7 1 (m+E)?
a = — —{—————+1+2x+ }/(x1-x)
Lx 2B 2K 2(B+m)?

Rearranging we have

2 1 { [.(m+E)2+2k?

a(t,k = - - 2 ] —X)
) hr 2B 2k? T +.2(rn+E)2 /(X1

+[' °- 2:»:;)2 ) z(iz)a ] } (3-41)

We note that the second term of equation (3.41) simply
represents additional S and P-wave terms, which vanish as
kK- oo The neglect of these terms gives a good
approximation in the GeV range; e.g. at 8 GeV/c the

approximation introduces an error of only L% in the undamped
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amplitude. We therefore restrict ourselves to considering

the energy dependence of

2 (m+E)?2 +2k?
k) = — — . , -
2(t,k) { 2k? v 2(m+E)2 }/(

Lx 2E
(3.42)

which we write more simply as a(t,k) = F(k)/(x,-x).

1 1 m 2
We rewrite as , where w = 2 sin 36, 2 = -,
X4 =X e2 +u? ok?

Now, the essential tool for our analysis is the

identity (35)
1 o0

=j £ de Jo (we)Ko (&) (3.43)

g2 +0?

Where Ko 1s the modified Hankel function of zero order.

Comparing (3.43) with the partial wave integral (3.l4)

[so]

Mpy = 2[ e d¢ Jo(we)A(e),
o]
where &€ = kb, € is the orbital angular momentum, k the
centre of mass momentum and b the impact parameter,

we find the partial wave amplitude A(£€) corresponding to
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1 Ko (e€)
an amplitude is —————., Since F(k) is not a
g2 +uf 2

function of ®w it can be treated as a miltiplicative factor
which can then be ignored for the moment, remembering that

the partial amplitude corresponding to -ELE%— is then
£° +w

P(K)Ko (02)
2

Writing (3.43) in terms of the impact parameter b,

1 [so]

m
=k2f b ab Jo (wk b) Ko(—eb
e +w? N2

o)
where wk = N -t.

Now we can obtain the modified amplitude by absorptive
corrections to the partial wave amplitude introduced via

(2.12).
% 0) L iETE w2 0\ T = e v s
b) NS (b b b) = b )s(p) .
Ko(Jz > 1 KOCM ) Ot Ko(efz >
Thus

[o5s] m - o0
kaf b db Jo(b\r-t)Ko<J_‘9' b ] > kaj b db Jo(b\fff)Ko(f.'Q. b>s(b) )
) 2 .
o o N2
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and the p amplitude ( 3.42 ) is given by

a(tsk) = F(k)k2[mb db Jo (b\f:?)Ko(Elﬂ b> . (3.444)
: N2

o}

The amplitude after corrections, amOd(t,k) iss -

amod(t,k) = F(k)kaf °°b db Jo(bsl'-—t‘)Ko(;E- b) S(b) (3.45)
. 2

o
Let us consider the energy dependence of (3.4li) and (3.45)

. [o's) m
at fixed t. j b db Jo (W=E)Ko/ -2 b\ is manifestly

: N2
O .

independent of k, and therefore the energy dependence of
a(tsk) is entirely contained in F(k)k?.

We can now see clearly under what circumstances
absorptive modifications can leave the energy dependence of

the exchange terms unaltered. Consider (3.45)s the

unmodified part of the integrand b Jb(bf:iva(/TQ g) is
: N2

independent of k for fixed t. Thus if S(b), the S-matrix

in impact parameter representation, is independent of k,

co m
then the integral j‘ b db Jb(bJ—t)Kb(/—Q %) S(b) is
. N2
o)

mod

independent of k, and the energy dependence of a  (t,k) is
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ldentical with the unmodified amplitude, the E-dependence
being in both cases contained entirely in F(k)k2.

We now see the reason for the numerical result for
R.M.E. Serber’s model for pp elastic scattering givés'
S(b) independent energy, and we see from the above analysis
that this is the crucial factor which gives an unmodified
energy dependence.

The assumption of energy independence for high energy
scattering is certainly in the spirit of the crude models
used to obtain Sy ﬁowever, even if we take into account
the energy dependence of the angular distribution in p-p
scattering, our conclusions are not materially altered.
For simplicity, consider the Gaussian model (2.17)

s(b) =1 - OTot e_bz/2a « A logarithmic shrinkage of

Lmra

g% corresponds to an E-dependence of a of the form

a~ . &n E. This logarithmic modification will not
significantly affect a power dependence on E, from the
exchange particle.

We conclude that elementary R.M.E., damped or undamped,
is an untenable model for n-p charge exchange.

Now, the above analysis is specific to the case of the

p exchange contribution to n-p charge exchange, and we must
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ask whether the result may be generalised. The first
observation to make is that the result may be generalised
to a more complex amplitude than the spin independent p
case,; which has no angular dependence in the numerator.

The analysis given above goes through with no
modificationy, for an amplitude of the form

v

(1))
a(t,k) = F(k) s Vv integer (3.46)
e° +

This follows from the generalised version of identity (3.L43)3;

namely

= s"f Te ae 3, (we) K (ee) (3.47)

(o]

2 2

which is the Weber-Schafheitlin equality (35).

That our result for the energy dependence of (3.42)
may be generalised to amplitudes of the form (3.46) need not
surprise us. We have already seen numerically that the
energy dependence of the 0.P.E. terms is not changed by
absorptive modificationy and recalling the undamped O0.P.ERE.
amplitudes (3.17),; we observe that all these may be expressed
in terms of (3.46).

This still does not constitute a complete generalisation -

in particular it is necessary to know 1f any given amplitude
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has exceptional low partial wave terms, and whether these
can be neglected to a good approximation, exact in the
high energy limit. It does not seem possible to come to
any general conclusion on this point.

However, fér a number of particular processes with
given exchange, (e.g. the p contribution to ®p charge
exchange and N - ®IN*) it has been seen numerically that
the E-dependence is not significantly changed by absorptive
corrections. The exceptional terms of these amplitudes
can be neglected, and our analysis explains how these
results come about. Even through this result may not
hold for a general casey, the fact that it holds in a number
of specific instances demonstrates that the Absorption
Model cannot, in general, work for high spin exchanges.

Essentlially, one is saying that the unacceptable
E-dependence of high spin exchanges cannot be put right by
absorptive corrections. A resolution of this could be
achieved by treating high spin exchanges as Regge poles;
though the relation between absorptive corrections and

Reggeization is not yet understood.



CHAPTER L

NUCLEON-ANTINUCLEON CHARGE EXCHANGE

IN THE ABSORPTION MODEL
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Having considered nucleon-nucleon charge exchange,
it is of interest to consider the cross-channel process,
nucleon-antinucleon charge exchange, in the Absorption
Model. We can make clear the significance of this
comparison as follows:- any given one meson exchange
givesy; up to a phase, the same contribution to the process
np - pn as to the process pﬁ - nn. As remarked in
Chapter 1, 1t is precisely for this reason that a one
meson exchange model, even with arbitrary form factors does
not satisfactorily account for both the direct and cross-
channel processes in nucleon-nucleon scattering.

However,; in the case of the Absorption Model, it is
inevitable that different results will be obtained for
the two channels, since elastic N-N and N-N scattering
are different. It is therefore of conslderable interest
to see how far 0.P.E. in the Absorption Model will account
for the reaction pp - nn, and to compare this with the
results discussed in the previous chapter for np - pn.
Of course, any I =1 exchaﬁge in the t-channel can
contribute to both these processesy; and by restricting
ourselves to 0.P.E. we are not, even in the context of the

"nearest singularity" philosophy, telling the whole story.
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However, the conclusion we draw from our discussion of the
energy dependence of R.M.E. in Chapter 3 is that the
inclusion of any of the known I = 1 mesons other than the
pion will give rise to an energy dependence which cannot
fit experiment.

The experimental situation with regard to pp -» mn is
much less satisfactory than for pn - np. The only published
data in the GeV region is by the C.E.R.N. group (36) at
3.0 and3.6 GeV/c. This allows a comparison with the pn - np
case, for which data exists at these energies. It is found
that the forward differential cross-section is of the same
order as that for forward n-p charge-exchange, but the
angular distribution is much wider in the pp - nn case.

The C.E.R.N. results, taken together with unpublished
data at 1 GeV/c and 7 GeV/c, show an energy dependence

do

consistent with one pion exchange, i.e. JFf A g~2

(D.R.0.Morrison, private communication). It is unfortunately
not possible to say anything very definite about the phase

of the spin averaged forward pp - nn amplitude. The

errors on both otot(pﬁ) and ctot(pﬁ) are of the same order

as the difference, and it would be equally consistent with

present data for the amplitude to be purely real or purely

imaginary.
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We will now discuss in a 1little more detail the
assertion that the contribution from a given meson exchange
to np and pp charge exchange is up to a phase the same.

We shall apply the argument given by ILeader and Slansky (37)
relating pp - pp and pn -» pn to the charge exchange case.
Consider in the S channel DN = Npe (Lo1)

In the t channel we have (order important)

np - pn. (L4.2)
Now consider in the S channel pp — nNn. (Lo 3)
In the t channel we have np - Np. (L4oly)

Now by operating on the final state of (L.2) to

exchange the particles e.g. by G-parity, we have (L.l)3;

and by crossing back to the S cahnnel we obtain pp - nn,
times the phase picked up in transforming |pn > to |np >.
Remember that we are allowed to carry out such operations
as G-conjugation on the np state in the t channel if this is
a well defined state - this is of course the case when we
have one given meson exchange in the t channel. Now the
guestion is, what is the phase we pick up in going from

pn > to |np >? This transformation can be accomplished
by space exchange and spin exchange. Now for ® in the

t channel, the space and spin angular momentum state of the
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NN 1is 'Sp,. Remembering N and N have opposite parity,
the total parity of the system is (—1)6+1; and the singlet
state is antisymmetric under spin exchange. Thus for NN
coupled to a pion, (space exchange) x (spin exchange) gives
a phase of (-1) x (-1) = + 1. Consider now the NN system
coupled to a ps here the angular momentum state of NN is
33y + 3Dy & This gives the s ame parity but we are now in

a triplet spin state, i.e. symmetric under spin exchange.
So the phase relating pn - np and pp » nn for p exchange
is(-1) x (#1) = =1,

So we have shown that

M(pn - np3 = exchange) = +M(pp - nn; = exchange)

M(pn —» npsy p exchange) = -M(pp —» nn; p exchange).

This checks with the line reversal arguments of Sharp and
Wagner (38) who find, for an exchange meson of Isotopic Spin
= I, G-parity = G, that the relation between the NN and NN

one pole amplitudes is

M(NN - NN3 I,G exchange) = [(—1)IG]M(Nﬁ - NNj I,G exchange)
(Le5)

That equation (L.5) involves G-parity should not

surprise us. To obtain pp » nn from pn - np, we had to
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change lpﬁ > = Iﬁb > ¢ and the G operator can do this,
since G|p>=|n> and @lh > = -|p > (39). G-parity
of course plays a similar role in the NN system to the
Paull principle in the NN system. Without an analogue
for the Pauli principle in the NN case, we should have a
different number of independent amplitudes in the s and

t channels.

After the above analysis we can consider the 0.P.E.
Absorption Model for pp - nn. We already have the
unmodified partial waves, and need now only consider
phenomenological models for pp elastic scattering which
is, by I spin invariance, identical to nn scattering. We
will use two models for pﬁ elastic scattering:s the
Gaussian model (2.19), and a phenomenological model due to
Chretien (4O) which gives a good fit to pp scattering at
the energies we shall consider. Since these models, though
similar, are not identical, we can investigate the
sensitivity of our results to the precise form for Se.

Svensson (41) has determined the parameters of the
Gaussian model (2.19),

-ve?

S& =1 - Ce 9
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to fit pﬁ scatterings he finds C = 41, and ¥ = 0.0335 and
0.0271 at 3.0 and 3.6 GeV/c respectively.

The model due to Chretien gives, for purely imaginary

e’
Se = &, for £ < 6max - 27 ;
1= »
=1 = — (g - emax) s Tor e -2 < &< 3
=1, for ¢ > & 3 (4. 6)

where at 3.0 GeV/c, € = 0,150, A = 2.53, Coox = 8,03,
This gives, in general terms, a form for S& similar to the
Gaussian models low partial waves are strongly absorbéd,
and the absorption decreases steadily over a region of
"thickness" 2A, going to zero for £ = emax°

This gives a good fit to %% over the first two
decades, but at wider angle gives diffraction minima.
Chretien then fits the wider angle data by adding a real
part to the phase shift, which he finds to be -45.1,
=37:75 =29:8, =215, =124, =2.25, +4o7y +5olty; +2.6, +0.2,
respectively, for € from 0 to 9. We consider both the

pure imaginary S& model, and the inclusion of a real part for

Se °

-
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The details of the calculation are the same as for
the pn -» np process discussed in Chapter 3. We now
discuss the results. In figure (L4.1) we show the 0.P.E.

results with Gaussian damping, and the experimental
do

results (36), for 5t ° Since the experimental results
for %% were obtained by combining the 3.0 and 3.6 GeV/c

data (to improve statistics), we simply display these
points, together with the theoretical curves at 3.0 and
3.6 GeV/c. We see that, for -t > 0.1 (GeV/c)2, we
obtain good agreement with experiment in both the
magnitude and angular distribution. At 0 £ -t < 0.1
(GeV/c)?, we predict structure for which there is no
evidencey on the other hand, it would not be inconsistent
with the present data for such structure to existe.

We now investigate the sensitivity of the calculation
to the precise form of Seo In figure (L.2) we show the
predictions for Gaussian damping; the Chretien model with
purely imaginary phase shifts, and with real and imaginary
phase shifts., We note that all models for Se give very
similar results. This is encouragings since we must
necessarily use a crude model for the elastic scattering
phase shifts; extreme sensitivity to the exact form would

not allow meaningful calculations.
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Cross-section %% for p+p - n+n. The upper and lower
curves are the theoretical predictions of O.P.E. with
Gaussian damping for 3.0 and 3.6 GeV/c, respectively.
The data points, from reference 36 are combined results
of runs at 3.0 and 3.6 GeV/c.
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Finally, in figure (L.3),; we compare the modified
0.P.E. molel for pn = np and for pp - nn. The solid line
(i) is the exponential fit to the experimental results of
Palevsky (23) et al at 3.0 GeV/c. This is compared with
the 0.P.E. predictions for pn - np at 3.6 GeV/c to avoid
crowding on the graph at small angles. Since the
absorptive corrections in the NN systema re qualitatively
similar to those in the NN system, it is not surprising
that the result of the pp - nn calculation has several
points of similarity with that of the pn - np calculation.
Both have a sharp peak for -t < 0.02 (GeV/c)2, due mainly
to the amplitudes MSS and Moo . Both have a wide
secondary maximum, given mainly by the M;-4 double spin-
flip amplitudes The experimental data does not, however,
display the same similarities. For pp - nn, the agreement
of theory and experiment is due mainly to the second
maximums the predicted forward peak is not confirmed. For
n =+ np, the forward peak is the one point of agreements
the second maximum conflicts strongly with experiment. We
not e from figure (L.3) that we could not have obtained good
agreement for pE -+ m if we had used the damping parameters

appropriate to pn - np. The weaker absorption in the NN
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do

system would have given gg for Pp » nn four to five

times larger than experiment, for -t > 0.2 (GeV/c)2.

Thus one pion exchange in the Absorption Model does

not explain the difference between pﬁ and pn charge

" exchange. Some possible reasons are the followings

1)

3)

The absorptive corrections to low partial waves are much
stronger for ﬁﬁ - nn, at the energies considered,; because
of the annihilation channels open to the NN system. Thus
the neglect of short-range exchange forces may be a
better approximation for pp - nn.

The two processes have different u channel contributions.
The nearest n channel singularity for the NN system is
the deuteron pole, while for the NN it is the pion pole.
This could be important at larger angles.

As mentioned above, the one meson contribution to the
two processes can differ in sign, depending in general on
the G-parity of the exchange mesons. This makes it
possible for other meson exchange contributions to the
amplitude, neglected here; to add constructively in one
case, and d estructively in the other.

Finally we reiterate that O.P.E. with absorptive

corrections is in good agreement in both magnitude and

angular distribution with the experimental results for

pﬁ - nn, except perhaps at very small momentum transfers.

This agreement does not rely on any adjustable parameters.




CHAPTER 5

MODIFICATIONS TO THE ABSORPTION

MODEL FOR n-p CHARGE EXCHANGE
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In this Chapter, we consider a number of possible
additions and modifications to our work in Chapter 3.
The object of the exercise is to see if any plausible
modifications of the 0.P.E. Absorption Model can improve

the agreement with the wider angle np - pn data.

Spin-dependent damping

In Chapter 3, we remarked that no spin-independent
parameterization of the elastic scattering phase shifts can
remove the secondary bump from the large My-4 amplitude in
absorptively modified 0.P.E. For the sake of completeness,
we now consider spin-dependent possibilities. The analysis
is in no sense exhaustive, and we have no experimental
justification for supposing there to be strong spin
dependence here. The spirit of the investigation is merely
to see whether this is a possible resolution of the
discrepancy wlth experiment.

We consider the partial wave undamped O.P.E.
contributions to Mj-qo. We note that the strongest
contribution is from Op e ™ this is at least four times
larger than any of the other partial waves. Thus, we

increase the damping in « to see if this can glve better

€54

agreemente.
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However, since our damping factors are the partial
wave S-Matrix elements for the elastlic scattering, we
cannot change one partial wave without compensating changes
in another if we want to keep agreement with elastic
scattering. We choose the most advantageous case. We
note that “c,e contributes most strongly to M;-, from

0.P.E., and a, £+ gives the smallest contribution. We
9

therefore increase damping on o s While decreasing the

£,4

damping on o by a corresponding amount. This keeps

£yL+1
the same total cross-section for elastic scattering; it
cannoty however, simultaneously preserve the original
angular distribution for elastic scattering.

We check how much this is changed by reconstructing
the elastic scattering from our partial wave S-Matrix

elements. We show the results of a 10% increase in the

Serber damping of the 0.P.E. contribution to o for the

'Y
process pn - np at 3.7 GeV/c.
£ do (spin independent do (10% increase in
- dfl damping) al a, , damping)
(Gev/c)? ’
mb/st mb/st
0 2,140 2.3l
. 0065 1.34 1.27
. 0262 1.4 1.36
-2 0588 1.95 1.85
«10oL2 2.08 1.96
1622 1.93 1.78
« 4090 1.10 0.93

l
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The elastic scattering was little changeds out to
-t = 0.4 (GeV/c)? there is 2% difference in the spin-
independent and spin-dependent cases. We observe that,
although the secondary maximum is reduced, the change
is not significant. This conclusion is not altered
for an a damping increase of 30, and a corresponding

€58

decrease in « damping. Por this larger damping,

€ £ +1
the diffraction peak is considerably different from the
spin-independent case - the differential cross-section

rises by 50% at -t = .35 (GeV/c)2.

The above discussion does not exhaust the possibilities
of spin-dependent damping. It does however, show that

it is unlikely to be the answer to the problem.

u-channel poles

In Chapter L, we suggested that the u-channel poles
could be significant for pn — np (since the nearest
pole is the pion), but not for pp - nn (where the

nearest pole is the deuteron). We here investigate this




possibilitys we shall relate the u-channel O.P.E.
contribution to the already known t-channel contribution.
This can be done by looking at the I =1 and I =0
contribufions separately, and using anti-symmetry. For

gimplicity, we consider only MSs .

Consider first an I = O scalar exchange, with g°

chosen to give

1 o0
Mo = = ) (264108, (x0)B, ()
. e=0

Xo =X

This is a forward t-channel poleo.

Now relate this to an I =1 exchange, using a

(1), (2

w

factor. Then the forward pole in the I = 1
state just gives the same contribution, amd (-3) times

this in the I = O state. So we now have

-

(5.1)
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M__(I=0) = - (5.2)

Now, the backward contribution is just the term we
add to make (5.1) and (5.2) anti-symmetric under interchange

of X » =X o S0, adding the u-channel poles, we have

( ) 1 1

M I =1) = +

S8 Xo~X  Xo+X
3 b)

Mss(I = 0) =- +

Xo-X Xo+X .

Taking the appropriate combinations, (3.2), (3.3), and

(3.4) 5 to obtain the physical channels, we have

1 1
M. (PP) = + =2 Z (2¢+1)Q, (%0) P, (%) »

Xo—-X Xo +X

even £

because the terms with (-x) cancel in odd partial waves,
and add in even partial waves, since Pe(-x) = (—1)6Pk(x).
Similarly,
1 2

+
Xo=X  Xo+4X

1
I

Mss(np — np)

Z (2641)By (x)Q, (X0)=3)  (26+1)Q, (%) Py (%)
even £ odd ¢ '
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2 1

M_.(np - pn)
Xo -X Xo +X

Z (26+1) P, (x)Q, (x0) + 32 (26+1)Q, (%0) By (%)

even é odd <

(5.3)

Now compare (5.3) with the t-channel contribution to

np =» pny, i.e. with

2

= 2)  (2)Q, (xR, (x) -
alle

The prescription for the inclusion of the u-channel

contribution 1is now clear. If the t-channel pole gives

z a, P&’ then adding the u-channel contribution turns
alle
this into

1 3
2}: aeP6+2ZaePc.
evené odd e
Effectively then the u-channel contribution just adds

3 Z - z to the t-channel contribution. This gives

odd even
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a cancellation of odd and even € at cos 6 = 1, with a
build up into a reinforcement at the backward limit

cos O ——=13 as is expected from a backward pole.

Modifying the partial wave sum as shown above, we

calculate the absorptively modified 0.P.E. amplitude with
the u~channel contribution included. We show the results
in the following table, compared with the absorptively
modified t-channel 0.P.E. resultss both for 3.7 GeV/c.

_t (GeV/c)? %% (t-;?zg?el %% (t- ag?og§channe1

Millibarns/steradian

0 2.140 2.1,.2
. 00655 135 1.33
. 0262 ynn 1.38
.0588 1.95 1.8L
- 104 2.08 1.9L
- 162 1493 1.78
0233 1.66 1.01,.8
«315 137 1.14

As expected; the u-channel contribution becomes more
important at larger angles. The secondary maximum from
My -4+ is, however, hardly affected, and the disagreement

with experiment persists.



76.

Self-damping effects in absorptively modified QO.P.E.

As remarked in Chapter 2, one possible approach to the
Absorption Model is via the K-Matrix formalism.
We recall that the partial wave amplitude (which is
in general many-channel) can be written, (2.24), as

£

p) X

=~ & - 12X%)

and if X is real symmetric, then A® satisfies the full
unitarity condition. Now, though (2.24) gives us a simple
requirement to satisfy unitarity, we are no further on
unless we have a dynamical model for.§6. The K-Matrix
formalism can, however, form the framework for an
approximation scheme which ensures that the input Born
terms satisfy unitarity bounds, and this is the way we use
it here.

We noted in Chapter 2 that, for the one-channel case,
in the limit of small A%, we can identiry x° with the
Born termige + and elastic unitarity 1s then satisfied.
This identification is, of course, an assumption when
used outside the small A® 1imit:s we sball make this

assumption, to satisfy unitarity bounds.



77

It must be stressed that absorptive modifications
via the Sopkovich prescription (2.12) do not force the

| Born amplitude to satisfy unitarity, or to be within
unitarity bounds. In most cases studied,; however,
absorptive corrections do give rise to an amplitude
satisfying unitarity boundse. In this section we impose
unitarity bounds by considering (2.24) in the one-channel
casey, and making the assumption;g6 =‘§€. Since we only
use the one-channel case, we ignore the effects of
competing channels. To take into account their effecty
we apply the Sopkovich prescription (2.12). We investigate
whether the identification of the 0.P.E. Born term with
.KC (self-damping), and the inclusion of absorptive
corrections, helps to bring the wider angle predictions of
0.P.E. into agreement with experiment for np - pn.

It is not clear, in combining self-damping with the
absorptive effects due to competing channels, whether one

should self-damp the Born term before applying absorptive

corrections (which we shall call pre-K), or whether one
should apply absorptive corrections to the Born term and
then self-damp the modified amplitude (post-K).

We consider both the pre-K and post-K procedures,

and find that in- this particular case there is not much

differences,
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Considering only the contribution of 0.P.E. to the
charge exchange scattering, damped or undamped; denoted
By, (i.e. ignoring the contribution to the diffractive

forward scattering) we have

® = /o B

(5.4)
B 0

for the L4 partial waves diagonal in £; where T11B and

T22B correspond to pn - np and np - np respectively, and

B

Ti2- and T21B correspond to pn - np and np - pn.

Then we have, using equation (2.30),

(1 + 129

= 1+ (.::!:B)2 (5'5)
NOW, (.‘T‘B)z - B2 0
o B
14+ (292 = /1482 0
o] 1+B2
e (1 (gB)"’)_-1 = /(1+B2)"! 0

0 (1+82)"1
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R L CPE B -
o (-] — B = ! 0
1+(T)2 1+B2 1+B?
' + i
B B?
0 0
1+B2 1482
(5.6)

Thus the self-damped partial wave amplitude corresponding

to a Born term (5.4) - damped or undamped - is

B

T = 9 (5'7)
1+B2

where we note that this gives no charge-exchange
imaginary parte. We obtain essentially the same result
for the coupled ¢ = Jf1 partial waves the above analysis
goes through formally, with B a 2x 2 matrix.

We now present the results of the pre-K and post-XK
calculations; and compare them with our original 0.P.E.
Absorption Model (A.M.) calculation for pn - np, at
3.7 GeV/c. The damping factors are in all cases the

Serber results used in Chapter 3.
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-t (Gev/c)? %% (A.M.) %% (pre-K) %% (post-K)

(millibarns/steradian)

0 2,140 2,89 2N
. 0065 103l 1063 1036
. 0262 1oLl 1.148 1.143
. 0588 1.95 1.83 1.92
1042 2,08 1.86 2.03
«1622 1.93 1.66 1,87
. 11090 1.10 <777 1.03

The first observation is that the secondary bump is
essentially untouched. We therefore see that self-
damping cannot remove the wide angle discrepancy between
the predictions of O.P.E. with absorptive modifications,
and experiment. From the above table it can be seen that
the post-K treatment has even less effect than pre-K.

The reason for this is simple - equation (5.7) shows that
the sméller the input term, the less difference self-
damping makes. Since absorptive corrections already
reduce the Born terms considerably, subsequent self-

damping makes little difference.

®-p interference

Finally, we remark briefly on an effect which

absorptive modifications can produce. This 1is the.
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possible interference, after absorptive modification, of
two different exchange contributions which do not
interfere before damping. (We thank H. H8gaasen for drawing
our attention to this possibility).

The undamped ® and p contributions to n-p charge
exchange do not interfere. This can best be seen in the
helicity formalism - see Muzinich (42) - of the five

19293’)-'-!5) 9

R contributes only to ¢2 =¢a e ¢4 =3 = s = Oo

independent helicity amplitudes ¢, (i

p contributes to ¢a = =pay o1 = ¢33, and also to ¢so. The
non-interference of the undamped = and p contributions
depends on ¢2ﬂ = ¢4ﬂ, and ¢2p = —¢4p. This balance of
terms does not in general survive absorptive corrections.

Investigating this for the specific pn -» np case, we
found the w-p interference differential cross-section to
be positive and sharply peaked for small angles, broad and
negative for larger angles. This effect could cancel the
broad secondary maximum from damped 0.P.E.

The previous objections to R.M.E. remain, and agree-
ment with experiment cannot be obtained by using elementary
p exchange. As a basis for a phenomenological

investigation, we gave the p-nucleon coupling constant an
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energy dependence such that the R.M.E. contribution had

the same energy dependence as that of 0.P.E. We then
found that by varying the coupling constants, excellent
agreement with experiment could be obtained. However this
required a coupling constant g®NN® of 9.85, compared with
the established value of 1hol)e

The above example is not put forward as a convincing
model of the process pn - np, but only as an indication
that interference of different exchange particles after
damping could form the basis for a model. Ascribing a
'/Peab dependence to the p coupling constant is, of course,
guite arbitrary. It might, however, form the basis for an
analysis in terms of a Reggeized p contribution, or

possibly Reggeized p + Az .

It should be noted that, even if a justification for
the above model for pn - np could be found, we would then
be in difficulties with regard to our model for pp - nn.
From the analysis in Chap ter L of the relation between
meson exchanges in the NN and NN systems, we see that the
sharply constructive interference of ® and p in NN now
becomes destructive in NN. Applying the same model to
pﬁ -» nn, we then predict a very small differential cross-

section at small angles, in strong disagreement with experiment.



CHAPTER 6

CONCLUDING REMARKS
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We shall first comment on the applications of the
Absorption Model by other workers. There are a number éf
excellent reviews of these applications, by Jackson (43),
and Drell and Hearn (L) amongst others. We shall
therefore give only a very brief discussion.

The Absorption Model has been applied to a large
number of peripheral processes,; €.8. Kp - PPy K P - ®°n,
xp - xN%*, ®p — pN#*, mp —» WN, NN - NN*¥, NN - N*N¥*, Kp - K*N,
Kp » KN¥%. These calculations have been performed at a
wide range of incident momenta - usually in the range
2 to 8 GeV/co.

In a number of cases, quite excellent agreement with
experiment has been obtained. The 0.P.E. absorption
model for ®p = pp gives agreement with the experimental
differential cross-sections,; both in magnitude and angular
distribution. The decay correlations and energy dependence
are also well predicted. Similarly excellent results are
obtained for mp - pN#*, NN - NN*, and NN - N*N. In some
of the peripheral reactions treated by the Absorptiom Model -
®"p » ®°n and =xp - wN - very poor results are, however,

obtained.
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We must ask if there is any explanation for the
excellent agreement in one set of processes, and the bad
agreement in the other set. One observes that in all
cases where the meson exchange is taken to be a vector or
higher spin meson, bad agreement results. Our analysis
of the effect of absorptive damping on energy dependence
explains one of the sources of disagreement. In those
cases where selection rules forbid the exchange of a
pseudo~scalar mesony, e.g. =% p - ®"°n, and the lowest
mass meson allowed is a vector, e.g. the p-meson, poor
agreement with experiment is found.

The inference we draw is that absorptive corrections
do have an important role in simple one-particle exchange
mal els, and that the success of the one-pion exchange
contribution with absorptive corrections is unlikely to
be fortuitous. However the one meson exchange model does
not appear to give a good representation of the dynamics
when the exchange meson is of spin one or greaters This
is not surprisings the divergence assoclated with
exchanges of spin greater than one is a major topic in
Dispersion Theory, and the idea of the Regge pole was

suggested to overcome this problem.
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The Regge pole exchange model has had considerable
success of late - see for example the work of Phillips
and Rarita (45) on ®p charge exchange and xp - nn, where
the exchange considered is a Reggelized p or As. However
we must ask whether a Reggeized ® model would be
successful for such processes as =D = PP» We note that
such a procedure would not be expected to change
significantly the results of the elementary one pion
exchange, at least at small momentum transfers. This is
because we know that the pion has spin zero at t = .02
(GeV/c)2. Even with a slope for the pion Regge trajectory
of 1 (GeV/c)2, a(t) would not be too different from O for
small values of -t. Now, since Reggeization of the pion
is not expected to significantly change its contribution,
agreement with experiment cannot be obtained in a large
number of cases, unless absorptive corrections are
included.

We must therefore ask whether the Regge pole model
and the Absorption Model should be combined. It has not
yvet been resolved whether such a procedure would be
consistent. The problem is simply that it is not clear

how far Reggeization already includes absorptive corrections.
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Consider the Pomeranchuk pole. It is postulated that
this pole controls the high energy behaviour of elastic
scattering and total ¢ ross-sections. To do this,
Pomeranchuk exchange must represent the effect of all open
channels. Thus the Pomeranchuk pole, asymptotically at
least, does not require the addition of modifications due
to dompeting channels. On the other hand, we have the
problem of the plon already discussed.

If the combination of Regge exchange and absorptive
damping is shown to be a consistent procedure, then this
could afford some hope of resolving the problem of the
secondary bump, predicted by 0.P.E. in the Absorption Model
for pn -+ np. As remarked in the final section of
Chapter 5, the interference, after damping, of another
exchange can remove the secondary maximum due to the O.P.E.
contribution from M;-4. It is possible that by combining
a Reggeized p with the 0.P.E. contribution, and by
including absorptive correction, a full explanation of n-p

charge exchange could be obtained.
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Appendix

We outline the derivation of the partial wave
decomposition of the singlet-triplet amplitudes, (3.25 -
3.30), following the treatment given by MacGregor,

Moravesik and Stapp (L46).

The S-Matrix, by definition, depends only on the
asymptotic form of the wave function; it is a transformation
in the spin-angle variables, the radial dependence being
essentially known. To simplify matters, the radial part
ieje(kr) is suppressed, where je(kr) is the spherical
Bessel function. Specifically |&, mj; Syemy3 Soems >
represents the state with spin guantum numbers (S;, my)
and (Sz, mp) for the first and second particles respectively,
and a spatial dependence Y?(6,¢)(ieje(kr)), Y? being the
spherical Bessel function defined in (31). The symbol
< &ymy Sqpmy} Sg,m2l¢> will represent the ampllitude of
this state.

Since the asymptotic out-going part of ieje(kr) is
e T /21 kpr, the scattering amplitude becomes in this

conventions
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m4 My
fs182(6,¢) = E;; Y2(6’¢)< €smy Sy My P SzmeIBlMN>
€,m
1
= —— <6,¢|6,m >< £,m3y Sysmy3 Sos mzlglbn>
2ik
1
= —— < Oy035 Sqomy SaerLBIh“> 9 (A1)
2ik

where we have set < 8,6/¢,m > = Y§(6,¢); and the Einstein
summation convention, and the completeness relation
£,m ><¢,m| = 1, have been used. In the above con&ention,
the s tate represented by 16',¢' > is (Ux)~' times a plane
wave moving in the direction 6'¢' - which can be seen from
the Gegenbauer expansion (31),
exp(ik' .r')

PEEACRACHRACEDE — . @2

£,m

R is the operator in spin-space having matrix elements which,
except for a normalisation factor, are the scattering
amplitudes for individual initial and final spin states.

M is a spin matrix, having matrix elements which are exactly
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the scattering amplitude in various final spin states for
fixed initial spin states.
Combining these definitions with (A.1) and (A.2), we
have
L

— <6 ¢|gle o' > (A.3)
21k

=
i

We consider M in the singlet-triplet representation,
and take matrix elements of R with respect to states
characterized by quantum numbers J, £, S and M. M is the
z-component of total angular momentum J, and S is O or 1

for singlet or triplet states respectively. This gives

Lr
> = — < 0,03 s,mslgle',¢'; S'ym' >

< S,mSLMls',m' in S

S

Ly
= —— < 0503 Ssms €,3" J,M >< ‘6’S",J9M|B,|5"S"'9J'sM' >
2ik

X < c',slnyJ',M'le'yq)'§ S',m's > (Ao)_l.)
The transformation functions in (A.lL4) are sums of
products of spherical harmonics and Clebsch-Gordon

coefficients,
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< 0503 Sym |£,8",T,M > = < 6,0[&,m >< £,m; s,msle,s",J,M >

ss!

z Y5(6,0) C,g(J5Ms mym)d
m
(A.5)

where CeS(J’M5 m,ms) = < £&,m3 S,ms|6,S,J,M > is the

Clebsch-Gordon coefficients as defined in (31).

Equations (A.4) and (A.5) allow the M matrix elements
to be expressed as R matrix elements < e,S,J,MLgle',S',J',M>°
Total angular momentum J and its projection M are conserved,
so these matrix elements vanish unless J = J'y, M = M's.
The matrix elements are also independent of M, by rotational
invariance. Por a fixed total angular momentum J, we

then have the following possible values of 23

L = Jy and ‘6=Ji1o

The second class can only occur in the triplet case. The
two clésses cannot be coupled (conservation of parity).
Anti-symmetry for the p-p case precludes coupling between
singlet and triplet statess the addition of isospin

invariance gives this condition for the n-p case.



We then have the set of matrix elements
< £,S,J;M|R|&',8,T,M > given in equations (3.19) to
(3.2L) . For the class ¢ = J,

< J909J9M|BI JgO,J’M > = OCJ

< To1,TM|B|T51,0,M > =0, 1 =a,, .
For the class ¢ = dJ £ 1,

< T E1,1,TMR|T 7 1:1,T,M> =a”

< T + 1,15 TMR|T + 1,1,T5M >

il
S

eT = %p,e-1 ?

< T = 1,1,3,MR|T - 1,1,3,M >

H
Q

eJ = %e,e41 °

9.

(3.19)

(3.20)

(3.22)

(3.23)

(3.24)

By carrying out the arithmetic implied in (A.4) and (A.5),

and using the notation (3.19 - 3.24), the partial wave

expansion of the M matrix, eguations (3.25) to (3.30), is

obtained.
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Receritly it has been realised that one-particle
exchange reactions can be severely modified by
absorption in the initial and final states 1-5), At-
tempts have been made to explain the backward
peak in high-energy n-p scattering 6) by one-me- .
son exchange processes 7-11), but none have
considered the effect of absorption. The latter is

* a particularly favourable process in which to con-

P

sider damping, since both the initial and final

state interactions are quite well known, (in con-

trast to other situations that have been studied 1-5)),
In the present letter we calculate this damping

effect for one-pion exchange (OPE) and p-meson

exchange (RME), ‘with absorption deduced from

p-p diffraction scattering 12, 13), We find that

damping goes a long way toward reconciling OPE

' with experiment, though a significant discrepancy
“remains. For elementary RME, damping does not

* From Ootober 1964, at Department of Mathematics,
The University, Durham. )

62

change the unacceptable energy-dependence. Set-
ting this aside, RME illustrates short-range spin-
independent charge-exchange ; damping narrows
the corresponding peak but not nearly-enough to
fit the data.

The problem is to combine two interactions,
the absorption U that gives diffraction scattering
and the exchange interaction V. To first order in
V, the correct amplitude is -

Ty = Vo (o 01y ®y )

_ in the notation of ref. 14, where Xi(+) and xf(') are

appropriate initial and final eigenstates of scatter--

" “ing with U. We shall ignore the second term in

eq. (1), which describes backward scattering fron
the absorptive potential itself (see, -however ref. :
16). The other term we calculate by the Sopko- .
vich 1) preseription: the Born amplitude for V be-:
tween initial partial wave a and final partial wave
b is multiplied by /(SpiSal, where S,1 and Spf are
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RME

180 0 60
Ocm (deg)

Fig. 1. n-p backward scattering at 2.85 GeV. The ex-
perimental points are from ref. 6. Damped and un-
damped cases are distinguished by solid and dashed
ourves respectively, The RME cages are scaled down

the S-matrix elements for scattering with U in
the initial and final channels. For pure diffraction
scattering, each of the latter has the form S=
exp(-2x), where iy is the imaginary phase shift,
This prescription has not been formally justified
for the situation of interest, where V has longer
range than U, but is claimed to be a good approxi-
mation at small angles 3), Furthermore, an argu-
ment 16) based on the coupled-channel N/D method
and a random phase approximation also gives this .
prescription, in the case of pure imaginary phase
shifts.

Consider first OPE. The céntribution to the
n-p scattering amplitude from the backward pole
has the form

Mgg = -(g%/4n) a/2E ,
Myy = -(g%/4m) a(1+ X)/4E

Myg = (g%/4n) ax/2E , @)
Mg = Mop = -(&%/4n)/2 sin 6 a/4E
My_y = -(g¥/47) a(1- x)/4E \

in the conventional singlet-triplet notatmn 17)
Here x cos 68, a = (1+x)/(x5+x), Xo'=

1+my, /Zp 0 is the c.m. angle, p is the rela-
tive momentum, g%/4n = 14.4 is the pion-nucleon
coupling constant and E = J(mN2+ pz) The cor-

- responding differential crbss-section is: -

\

. N PR
~ -
4 e ,,’OPE
~
’
~ ’
N o
- v
2 PN
\
% / ~
5 N
3 / RME

N

—

~
.

RME

180 . 170 160
O m (deg)

Fig. 2. n-p backward scattering at 7 GeV. Solid and
dashed curves denote damped and undamped cases re-
spectively. The RME curves are scaled down by &

da/dQ = (g2/4m)2 (a/2E)2 . 3)

Reggeized OPE would give almost exactly the
same, in the region of interest close to the pole.
There are several remarkable things about OPE.

" The cross section vanishes at 8 = 1800 where ex- _

perimentally there is a peak; at other angles it
becomes much bigger than this peak; it is strong-
ly spin-dependent (the double-spin-flip term Mg
accounts for half of do/dQ near 1800°).

To introduce damping we use empirical studies
of p-p diffraction scattering (expecting n-p to be
similar), in which the phase shift is assumed to be
pure imaginary and to depend only on orbital an-
gular momentum L. We decompose the Born am-
plitudes of eq. (2) into partial waves: terms cor-
responding to scattering with L are modified by
factors exp (—2xL): terms which couple L to L+ 2

have factors exp (-~ xz, - Xr.+2). It would not be cor-..

réct simply to exga.nd M in terms of Legendre
functions Py, Pyl and P72 and to damp the co-
efficients according to L, since some coefficients
contain couplings to L+ 2. (Thus mistreating the * -

* . coupling terms would violate the t1me reversal
- symmetry of the S-matrix).

The resulting cross section is shown in figs.
1 and 2, for 2.85 and 7 GeV respectively. The
damping factors are from Serber's model
(ref. 13 gives similar results); this model was
not strictly designed to match diffraction scatter-
ing at the lower energy, but we expect it to in-
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troduce little error. It gives almost 100% absorp-

tion for L =0, decreasing steadily as L increases,

Bare OPE cross sections are also shown.

It can be seen that absorptive damping produces

remarkable changes. It converts the dip at ¢ =
1809 into a narrow peak, similar to experiment
out to the half-width, and greatly reduces the
cross section at wider angles; but it leaves a

broad second maximum that is not observed. The

first peak comes mainly from Mgg and Mgq
damping destroys the balance of terms which pre-
viously made them vanish at 180%, The second
peak is in fact not surprising: it comes from
Mj_1, which has to vanish at ¢ = 180° for invari-
ance reasons and is large in bare OPE, It cannot
be removed by any set of x7 consistent with total

cross sections: its presence follows directly from

the spin-dependence of OPE. Any model which
neglects spin 18) will not have this term, but will
be misleading.

We have also considered a form factor in bare
OPE ; plausible form factors depress the second
peak only a little. The second peak may however
be cancelled by some unknown background effect,
as in ref. 7.

Consider now RME. Many RME models use a
Reggeized p, but it has not been clarified how far
the effects of damping are implicitly included in a
Regge pole. We therefore apply damping only to
"elementary'" RME. The latter is known to have
unacceptable energy dependence; however, it is
interesting to consider whether damping affects
this behaviour. Furthermore, at any particular
energy, RME illustrates the general case of a
short-range spin- independent charge-exchange;
it 1s interesting:to see how strongly the angular
. distribution is altered by damping.
© Near # = 1809, the elementary RME amplitude

- from the backward pole is, to a good approxima- -~

_ tion (exact at 1800), both spin-independent and
determined by the vector NNp coupling. It has the
form

2
% 2E Tt +1-2ws 2(E+m ) /),

@
_where fz/ 47 is the NNp vector couphng constant
which we take to be =2; x1 =1+mp 2/2p2 H other
notation as in eq. (2). In terms of the M-matrix,
. My = Myg = - Mgg = a and spin-{lip terms = 0;

_ thisis spin-independent in the senge of a forward

.charge-exchange. .

We introduce damping as before (though now

* there are no L — L=+ 2 couplings); the resultant
bare and damped RME cross sections are illus-
trated in figs. 1 and 2. Note that damping does

"84

not change the energy-dependence at 6 = 1800 for

the examples shown. This result can easily be

shown in general, by using an integral represen-
tation for the partial wave sum as in refs. 3 and

5. Thus elementary RME remains physically un-

tenable. .

The OPE and RME amplitudes, bare or damped,
are real and do not interfere. Of course we may
expect other contributions too. In particular, the
difference of total cross sections o (pp) - op(np)
implies a small imaginary amplitude, spin inde-
pendent in the same sense as RME, which does not
interfere with either OPE or RME, At 2.85 GeV,
this last contribution gives about 0.3 mb/sr at
6 = 180°, which would bring OPE closer to experi-
ment at this angle.

Our results indicate these conclusions ¢
1. Damping goes far to reconcile OPE with experi-

ment, but leaves a secondary peak which is not

observed. - '

2. This second peak is a spin-flip effect.

3. Damping does not change the energy-dependence
of OPE or RME.

4, The overall magnitude of RME is more strong-
ly reduced than OPE, because of its shorter
range.

5. Damping narrows the elementary RME peak,
but not enough to fit experiment.

Finally, we stress that our treatment of damp- ~
ing depends on no arbitrary parameters.

|

We are grateful to Dr. E. J. Squires for sug-
gesting this investigation, and to Mr.D. G, Suther-
land for a helpful conversation. One of us (G.A.R.)
thanks D.S.L.R. for financial support.

1) N.J.Sopkovich, Nuovo Cimento 26 (1962) 186,
2) A.Dar et al., Phys.Rev, Letters 12 (1964) 82,
3) L.Durand and Y.T.Chiwx, Phys, Rev. Letters 12
(1964) 399,
* 4) M.H.Ross and G.L.Shaw, Phys.Rev. Letters 12
(1964) 627.
5) K,Gottfried and J.D.Jackson, CERN preprint
TH-428 (1964),
6) H.Palevsky et al., Phys.Rev. Letters 9 (1962) 509,
7 R.J.N. Phillips, Physics Letters 4 (1963) 19,
8) I,J.Muzinich, Phys.Rev.Letters 11 (1963) 88.
9) R.J.N.Phillips, Phys.Rev. Letters 11 (1963) 442,
10) M. M, Islam and T.W. Preist, Phys,.Rev. Letters mn:
(1963) 444.
11) A,Ahmadzadeh, Phys,Rev.134 (1964) B633
12) R.Serber, Rev. Mod. Phys.36 (1964) 649,
13) A.D.Krisch, Phys.Rev. Letters 11 (1963) 217,
14) M. Gell-Mann and M. L, Goldberger, Phys.Rev.9i
(1953) 398,
16) D.V.Bugg, Physics Letters 7 (1963) 365.
16) E.J.Squires, Edinburgh, preprint (1964),

~17) M. H. MacGregor et al,, Ann, Rev.Nuol.Sef. 1\0

(1960) 291,
18) R, C.Arnold, UCLA preprint (1964).



Volume 20, number 2

PHYSICS LETTERS

1 February 1966

NUCLEON-ANTINUCLEON CHARGE EXCHANGE IN THE ABSORPTION MODEL

R. J. N. PHILLIPS
A.E.R.E., Harwell

and

G. A. RINGLAND
Department of Mathematics, University of Durham

Received 7 January 1966

The results of an absorptive model calculation of the reaction p+p — n+i at 3.0 and 3.6 GeV/c are pre-
sented. Good agreement with experiment is obtained for -t > 0.1 (GeV)2; at smaller angles there is a pos-

gible discrepancy.

In this letter we report a calculation of nu-
cleon-antinucleon charge exchange scattering,
p+P —n+M, assuming one-particle exchange
plus absorptive corrections [1].

We consider only one pion exchange. Though
other mesons such as p and Ag can contribute to
this process, those with spin greater than zero
give an unacceptable energy dependence if treated
as elementary particles. It has been found that
elementary p exchange plus absorptive correc-
tions gives the wrong magnitude and angular dis-
tribution, as well as the wrong energy dependence,
for np [2] and 7p [3] charge exchange. Reggeizing
p and Ay can correct the energy dependence, but
the consistency of adding absorption corrections
to a Regge pole is still uncertain.

After decomposing one pion exchange into par-
ticle waves [4] we introduce absorptive correc-
tions using the original Sopkovich prescription [5]

T = exp(i8a) Tp exp(idp) ,

where T is the corrected partial wave amplitude,
Tp is the unmodified (Born) amplitude, 5, and &),
are the phase shifts for elastic scattering in the

initial and final states. To obtain elastic phase
shifts in the GeV region, one must resort to
phenomenological models. We assume a Gaussian
model which gives

exp(218;) = 1 - Aexp(-yL2)

with L the orbital angular momentum. Svensson
[6] has determined the parameters from pp elas-
tic scattering: A=1, v = 0.0335 and 0.0271 at
3.0 GeV/c and 3.6 GeV/c respectively. Charge-
independence gives the same phase shifts for ni
scattering,

The results of our calculation, using the Gaus-
sian model phase shifts and a pion-nucleon cou-
pling g2 = 14,4, are shown in fig. 1. The experi-
mental points are from ref. 7, and represent an
average over the data at 3.0 and 3.6 GeV/c. It
can be seen that, for -£ > 0.1 (GeV/c)2, there is
good agreement with experiment in both magni-
tude and angular distribution. At small momen-
tum transfers, however, the theory predicts
structure for which there is no experimental evi-
dence.

We have tried other models for the elastic
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