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ABSTRACT 

A model f o r the pion-production amplitude i s developed i n which 

i t i s possible to calculate the t o t a l and d i f f e r e n t i a l cross-

sections f o r d i f f e r e n t assumed forms of the pion-pion 1 = 0 , 

b-wave amplitude. The two f i n a l state pions i n the process 

n p re."1 TC n are considered as an I = 0, scalar, spin-zero 

system o- with a continuous mass spectrum - the 'mass' "being 

the di-pion invariant mass; and the model consists of 

assuming the peripheral in t e r a c t i o n f o r a l l p a r t i a l waves other 

than that corresponding to the S-wave o- n f i n a l state. For 

thi s 'lowest' p a r t i a l wave, a phenomenological form i s derived 

by assuming that of the three particles i n the f i n a l state, 

only the two pions, i n an I = 0 S-wave, provide an important 

f i n a l state interaction. I f the further assumption i s made 

that t h i s f i n a l state interaction can be 'factored' from the 

rest of the amplitude, then an I = 0, S-wave x>ion-pion 

phase-shift with a negative scattering length and which turns 

up through zero i s found to reproduce quite well the pion-

production d i f f e r e n t i a l cross-section data. I t i s also shown 

from t h i s model that almost any low-energy pion-pion interaction 

could be compatible with the low-energy t o t a l production cross-

sections . 



Corroboration f o r this type of phase-shift i s sought i n the 

pion-nucleon p a r t i a l wave 'discrepancy' analysis. By-

increasing the parameterisation of the pion-pion amplitude 

i n t h i s analysis, such a 'turn-over' type of phase-shift i s 

found as well as a very negative solution with a large 

negative scattering length, and no turn ever, and the solutions 

previously found from this analysis with positive scattering 

lengths. The very negative solution i s rejected as being 

incompatible with the pion production d i f f e r e n t i a l d i s t r i b u 

tions calculated from our model. 

The ABC effect i s discussed i n terms of the two enhancement 

factors usually assumed f o r t h i s analysis. I t i s shown that 

for a phase-shift which passes through zero, these two factors 

are not equivalent and i t i s not clear which - i f either -

should be used. 

The p o s s i b i l i t y of a CDD pole i n the 1 = 0, si-wave pion-pion 

p a r t i a l wave has recently been suggested. Both the model 

proposed f o r the pion-production amplitude, and the 

'discrepancy' analysis are adapted to incorporate this possib

i l i t y . I t i s found that at least three types of resonating 

phase-shifts - two similar to those found by Lovelace et a l 

and one similar to that obtained by V/olf - could be compatible 



with the low-energy pion-production and pion-nucleon scattering 

data. 

F i n a l l y , a survey i s given of the other methods f o r obtaining 

the form of the low-energy pion-pion interaction. By discussing 

the possible sources of error inherent i n these calculations, some 

f a i r l y general conclusions are drawn and compared with the results 

of the above analyses. 
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12. 

I - INTRODUCTION 

1. Strongly Interacting Particles 

At the present time i t i s usually accepted that the forces 

between particles f a l l into four classes, g r a v i t a t i o n a l , weak, 

electromagnetic and strong, depending on t h e i r strength. The 

most widely studied of these has been the electromagnetic force 

which, i n the quantised theory, i s propagated by the exchange of 

zero mass photons between two charged p a r t i c l e s , the zero mass 

condition implying that the force has an i n f i n i t e range. 

However, i t i s clear that one cannot explain the properties of 

nuclear interactions i n terms of these electromagnetic forces 

since the nuclear forces are known to operate only over a very 

short range and even between the charged proton and the neutral 

neutron. In order to account f o r this strong, short range force 

between the p a r t i c l e s comprising the atomic n u c l e i i , Yukawa* i n 

1955 introduced the hypothesis of heavy quanta, which to s a t i s f y 

the experimental information require a mass about two hundred times 

heavier than the electron. I f one assumes that the interactions 

between these heavy quanta i f and. a nucleon N i s the result of 

v i r t u a l processes of the type N ^ N ' + -?t ( i . e . assuming a Yukawa 

coupling) then angular momentum conservation implies that these 

quanta should have integer spin and hence they must obey Bose 

WW 
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s t a t i s t i c s . Also from a study of the two nucleon potential and 
from the empirical evidence that the nuclear forces are charge 
independent i t may be concluded that a t r i p l e t of such particles 
should ex i s t , one p o s i t i v e l y charged, one negatively charged and 
a neutral member z. 

In 1947 Powell and his fellow workers^ using very sensitive 

photographic plates exposed to cosmic radiation at high a l t i t u d e s , 

detected tracks of charged particles i n the emulsion which induced 

nuclear disintergations or emitted secondary particles when they 

came to rest. These strongly interacting particles with zero 

spin and a mass of 139*59 Mev. may be i d e n t i f i e d as the heavy-

quanta postulated by Yukawa, and have now become known as 

pi-mesons or pions. 

Since that time many more strongly i n t e r a c t i n g particles have been 

sought i n experiments with cosmic rays, bubble chambers and 

p a r t i c l e accelerators, and there now exists good evidence f o r more 

than f i f t y such particles which are i d e n t i f i e d by t h e i r mass and 

spin and various in t e r n a l quantum numbers such as isospin and 

strangeness. These quantum numbers, with t h e i r corresponding 

conservation laws f o r strong interactions, are assigned to account 

f o r the observed production of only certain particles i n any strong 

i n t e r a c t i o n process. 
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A l l of the strongly interacting particles may be c l a s s i f i e d into 

the two general species of baryons and mesons. The baryon class 

consists of the nucleons, that i s the neutron (n) and proton ( p ) , 

a hyperon singlet, doublet and t r i p l e t , carrying a quantum number 

of strangeness -1, -2, -1 respectively, as well as the nucleon and 

hyperon resonances. The meson class, u n t i l six years ago, consisted 

only of the pion t r i p l e t (TT +, -ic"" —jr°) and the 'strangeness' carrying 

kaon doublet with i t s anti-kaon counterpart. I n the past few years, 

however, there has been a great increase i n the 'discovery' of new 

mesons. Almost a l l of these are meson resonances, that i s they 

decay v i a strong interactions i n t o other mesons. Some of these 

resonances are well established, such as the JO and the K* etc., but 

the existence of many i s s t i l l open to question. One possible reason 

fo r t h i s i s that unlike the study of meson-baryon interactions, where 

data can be obtained by scattering mesons o f f nuclear targets i n the 

large p a r t i c l e accelerators, no mesonic targets exist (mesons have a 
—S 

li f e t i m e of about 10 seconds), so that no similar study can be 

performed for meson-meson interactions. Perhaps this w i l l be possible 

when machines are b u i l t which can clash two mesonic beams together, 

but f o r the present, and f o r some time to come, meson-meson i n t e r 

actions must be interpreted either from the f i n a l state interactions 

of i n e l a s t i c meson-baryon scattering experiments, meson decays, etc. 

or from a dispersion theory analysis of meson-baryon scattering. 
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However, before any detailed discussion can be given of the approxi

mations and models used i n the theoretical calculation of these 

processes, i n particular those involving pions and nucleons, we 

must give a b r i e f introduction to the S-matrix and the concept of 

the complex energy plane *. 
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Introduction to the S-matrix 

The ea r l i e s t method of calculating scattering processes between 

strongly interacting particles was analogous to the procedure so 

successfully adopted i n electromagnetism where, since the time of 

Maxwell, the electromagnetic force has been considered i n terms 

of a f i e l d . This f i e l d i s quantised by the use of a Lagrangian, 

the form of which i s taken from classical physics. A solution of 

the equations thus formed i s produced as a perturbation expansion 

i n powers of the square of the electromagnetic coupling constant 

( i . e . the e l e c t r i c charge) which i n rationalised units has a value 

There are inherent d i f f i c u l t i e s i n t h i s perturbation expansion. 

In p a r t i c u l a r there exists the problem of u l t r a - v i o l e t divergences, 

but, at least i n p r i n c i p l e , t h i s can be overcome by renormalisation 

techniques and the smallness of the above constant means that the 

f i r s t few terms of the expansion, which i n practice i s a l l that can 

be calculated, give a very accurate r e s u l t 6 . However, i n such a 

f i e l d theory f o r strongly i n t e r a c t i n g p a r t i c l e s , the square of the 

equivalent coupling constant i s of the order of f i f t e e n and therefore, 

except under very special conditions, one should not expect an 

analogous perturbation expansion to be a good approximation, even 

i f the corresponding Lagrangian could be correctly surmised. 
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In the l a s t decade a theory has been devised which attempts to 
calculate the t r a n s i t i o n amplitudes d i r e c t l y , without requiring 
a knowledge, or even the existence of a Lagrangian and i t s 
constituent f i e l d s . These t r a n s i t i o n amplitudes are the elements 
of the S-matrix. 

For a scattering process i n which the forces are of s u f f i c i e n t l y 

short range the i n i t i a l and f i n a l states can be assumed to consist 

of free particles which may be specified by the momentum of each 

pa r t i c l e together with the discrete quantum numbers of spin, isospin 

etc. I f one represents such an i n i t i a l state by |n^> , where n 

denotes a l l the quantum numbers i d e n t i f y i n g the state, the super

position principle of quantum mechanics allows the f i n a l state to 

be written as S | n j > where 3 i s a linear operator. 

The pro b a b i l i t y that a measurement on the f i n a l state gives a 

result corresponding to the i n i t i a l state [ m> i s given by the 

square of the modulus of the matrix element, 

a 

Thus, assuming that the states \ m'̂> form a complete orthonormal 

set conservation of p r o b a b i l i t y implies that 

where Sr denotes the adjacent of S; so that the operator S i s 

unitary. Furthermore, i f L i s a proper Lorentz transformation 

such that 



18. 

r e l a t i v i s t i c invariance requires that 

I <"'\ S 1 «'>\Z •= \ < H 51 " > I 2 " 
and the phase of the matrix element can be chosen so that 

S | »'> = S 1 " > 
from which i t follows that f o r spinless particles the matrix 

elements depend on the four momenta of the particles only through 

t h e i r invariant scalar products, and f o r particles with spin the 

matrix element i s composed of a number of such invariant functions 

m u l t i p l i e d by certain vector or spinor terms. For example, the 

'two-to-two 1 S-matrix element < re, p,( | 5 i Pi PzV which describes 

the scattering of two spinless particles into a f i n a l state of 

two spinless particles w i l l be a function only of the i n v a r i a n t s 7 

p.* = - ™? , i -- 1,1, "5, H ~ ( L I ) 
where m̂  and p_̂  are the mass and four momentum of the i ^ 1 p a r t i c l e , 

s = -(p, + p j 2 

t = -(P, - P 3 ) 2 - (1.2) 

u = -(p, - P^)" 

and even these are not a l l independent since the overall energy-

momentum conservation condition 

P, + P 2 = P 3 + P^ - (1-3) 
implies that 

2 2 2 2 s + t + u = m + m_ + m + m - (1.4) 
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I t i s convenient to separate the S-matrix into two parts by 
subtracting o f f the term when the particles do not interact at 
a l l , i n which case the t r a n s i t i o n probability w i l l be unity of 
the particles i n the i n i t i a l and f i n a l states are id e n t i c a l and 
zero otherwise. Thus we can write 

S i f . f a > * ^ r s i M i I r,rx> + - ( 1 . 5 ) 

where 'JL i s the i d e n t i t y operator and the d-functions coming from 

translational invariance specify t o t a l energy-momentum conserva

t i o n . The scattering cross-section i s related to the scattering 

amplitude F(s,t,u) where 

F = < i M r „ f ^ | f , r » > - ( 1 . 6 ) 

by the equation 

= & T ^ W I ASL^f/^ - ( 1 . 7 ) 

where ^ and are the centre of mass momenta of a p a r t i c l e i n 

the i n i t i a l and f i n a l states respectively, V/ i s the centre of mass 

energy and -H. i s the sol i d angle i n the f i n a l state. I n deriving 

equation ( 1 . 7 ) a covariant normalisation of the states has been 

used, i . e . 
^r>\f > = CXT)1 2 P w V(F-lP') _ ( 1 < 8 ) 

The unitary condition f o r the operator S and equation ( 1 . 5 ) produce 

the following r e l a t i o n f o r the amplitude F, 

A M 4 i ™ > - « i f t l t f l * f t > * = k A ^ S ^ - ^ * - ( 1 . 9 ) 

* <ftftl^|i«.J«l
,><r,r*l'$lh>iV 
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where the star denotes the complex conjugate. Above the energy-
threshold f o r in e l a s t i c scattering new terms must be added to the 
r i g h t hand scale of this u n i t a r i t y r e l a t i o n , equation ( l . 9 ) , s i n c e 
a l l intermediate states w i l l occur which are allowed by energy 
conservation and quantum number selection rules. This implies 
a change i n the l e f t hand side of equation ( 1 . 9 ) and suggests that 
a scattering matrix element has a s i n g u l a r i t y at each energy 
corresponding to a threshold f o r a new allowed physical process. 
Thus, these thresholds are branch points of the amplitude F, with 

branch cuts conventionally drawn along the real axis i n the complex 
2 

energy squared plane, s = V/ . These branch cuts allow the 

amplitude to be single valued on a Riemann surface. By demanding 

that none of these cuts are crossed, a single sheet of th i s surface 

i s defined which i s called the physical sheet when the physical 

scattering amplitude i s a boundary value on the real cut of the 

amplitude on this sheet. 

The physical amplitude that gives <Cfifii)^&\r,fi> i s defined as 

the l i m i t onto the real axis of the complex s-plane from above, 
f(f,U^t,cJ)- F (%-H£J-LIUL) - ( 1 . 1 0 ) 

£->at 

I t i s believed that this i s related to the amplitude f o r 

< f, | ̂  I Ci Pi, by analytic continuation, the l a t t e r being the 

l i m i t of the same analytic functions onto the cut from below. 

This i s the property of 'hermitian a n a l y t i c i t y ' . Thus the l e f t 

hand side of equation ( 1 . 9 ) i s the discontinuity of the amplitude 

across the branch cuts. I f the symmetry condition 
< * l s U > - s U > 
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i s true then this discontinuity i s twice the imaginary part of 

the amplitude, but this condition holds generally only f o r 1 two-

to-two 1 p a r t i c l e scattering. 

Besides these branch points, with t h e i r corresponding branch cuts 

of the amplitude. F i n the complex s-plane, i t can sometimes 

happen that except for energy conservation a one p a r t i c l e state 

of mass m , say, could be reached from the i n i t i a l two p a r t i c l e s 
state, i n which case the amplitude P(s,t,u) has a pole s i n g u l a r i t y 

2 

at an unphysical value of the variable s = ma below the f i r s t 

threshold. These s i n g u l a r i t i e s are represented diagrammaticaliy 

i n figure ( l . l ) . 

FIGURE 1.1 

s-plane 

2 (mn + m0) I 1 2 s m s 
x 
t 

pole elastic 
threshold 

f i r s t 
i n e l a s t i c 
threshold 

second 
ine l a s t i c 
threshold 

In t h i s discussion of the S-matrix various general properties have 

been assumed which can be enumerated as follows! 
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i forces are of short range 

i i the superposition principle of quantum mechanics 

i i i p r o b a b i l i t y conservation 

i v r e l a t i v i s t i c invariance 

v t r a n s i t i o n amplitudes are the values of analytic 

functions on real boundaries. 

The f i f t h of these i s often stated as the condition of causality 

and the existence of macroscopic time, but although i t i s usually 

believed that t h i s implies v. i t i s d i f f i c u l t to prove rigorously. 

In the following discussion i t i s hoped to i l l u s t r a t e the physical 

consequence of analytic continuation i n the variables s, t and u 

together with assumption v. i n the context of two-to-two p a r t i c l e 

amplitudes f o r spinless, equal mass pa r t i c l e s . 

I f F(s,t,u) i s the amplitude f o r the physical scattering process 

the energies P^^°^ an^ the momenta p* of the four particles must 

be r e a l . I n the equal mass case t h i s implies 

S>^-w i
j t t i o , u ̂  o . - ( 1 . 1 2 ) 

I f s, t>and by condition ( l . 4 ) > u are considered as complex 

variables then by analytic continuation to the region 

t > s <; o , IA ^ o - ( 1 . 1 3 ) 

property v. implies that the resultant function F, evaluated i n 

a suitable l i m i t onto t h i s region i s the physical scattering 
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amplitude f o r the process 

0 i * ^3 — ^ ^ + - (1.14) 

where the bar denotes the a n t i - p a r t i c l e . Similarly by analytic 

continuation to the region 

U > Ur^- t o , t s£ o - ( 1 . 1 5 ) 

the function F, again evaluated i n a suitable l i m i t , now gives 

the physical scattering amplitude f o r the process 
O I + A Q — A 2 + AT, _ (1.16) 

These 'crossing relations' thus state that the same analytic 

function can be used to describe three d i f f e r e n t physical processes 

by a suitable choice of s, t and u. In figure ( 1 . 2 ) are sketched 

the physical regions f o r these three processes i n which s, t or u 

denote the square of the centre of mass energy, i.e. the so called 

s, t and u channels. 

FIGURE 1.2 

\ / \ / \ 
\ / \ 
\ / 
/ \ 
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I t should be noted that by using the u n i t a r i t y equation (1.9) 
f o r processes (1.14) and (1.16) and the crossing relations i t 
i s possible to deduce further s i n g u l a r i t i e s of the amplitude 
F(s,t,u). For example i n the equal mass case there w i l l be 
branch points at 

t = 4m2, (l+)2» ••• 
2 2 ~ (1.17) 

u = 4m , ( I u ) , ... 

where I . and I are the f i r s t i n e l a s t i c thresholds f o r processes t u 
2 

(1.14) and ( l . l 6 ) respectively; and possibly poles at t = m̂  , 
2 

u = m 
u 

For a fi x e d value of u (at u = U q, say,) the branch points w i l l 

appear i n the s-plane at 

s = -u , 4m2 - u - ( I . ) 2 , - (1.18) o o x t »'*' 
and the pole at 

2 2 s = 4 m - u - m , - (1.18) ^ o t • N 

These s i n g u l a r i t i e s a r i s i n g from the s arid t 'channels' f o r a 

fixed real value of u are sketched i n figure (1.5). 

FIGURE 1.5 

s-plane 
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I t w i l l be assumed, for the lack of any evidence to the contrary, 

that the S-matrix i s an analytic function with only these singul

a r i t i e s that are demanded by u n i t a r i t y . This i s the postulate 

of 'maximum a n a l y t i c i t y * . 

In the next section dispersion relations w i l l be introduced which, 

with the u n i t a r i t y conditions, define a set of dynamical equations 

f o r the physical amplitudes. 
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Dispersion Relations, P a r t i a l Wave Amplitudes and the 
N/P Equations 

I f figure ( 1 . 3 ) represents a l l the s i n g u l a r i t i e s of F ( s , t , U Q ) 

on the physical sheet then by an application of Cauchy's 

theorem one obtains an expression of F ( s , t , U Q ) i n the form 

n,,t,-.> - (1.20) 

where C i s the contour shown i n figure (1.4) 

I f F(s',t',u n) -^O as | s ' l J - ( 1 . 2 1 ) 

then by allowing the radius of the contour to tend to i n f i n i t y , 

equation (1.20) becomes 

s-~f sTH.-t^+-.f ""-J , - +
l i r; ^ * \ u ) - ( 1 . 2 2 ) 

which can be rewritten i n the neater form 

v;here F and F, are the discontinuities of F across the r i g h t and s t 
l e f t hand cuts respectively, and g and g are constants. This i s 

s u 

usually known as a "dispersion r e l a t i o n " since a similar form was 

f i r s t used i n the theory of dispersion of l i g h t i n optics. Similar 

expressions can be w r i t t e n keeping t or s fixed instead of u. 



FIGURE 1.4 

27. 

S plane 

Contour C 

Note that the discontinuity F i s exactly the expression given 

by the u n i t a r i t y equation ( 1 . 9 ) . Thus, f o r two p a r t i c l e 

elastic scattering, ignoring i n e l a s t i c processes 

which with a similar expression f o r F̂_ i n equation ( l . 2 j ) gives 

an inhomogeneous int e g r a l equation f o r F(s,t,u). However, i n 

physical applications one cannot ignore i n e l a s t i c processes i n 

the u n i t a r i t y r e l a t i o n and to solve the equations rigorously one 
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should write down equations analogous to (1.23) f o r a l l i n e l a s t i c 

processes and solve the i n f i n i t e set of coupled equations simult

aneously. Obviously t h i s i s impossible, and so one must make 

approximations, either by ignoring i n e l a s t i c processes, or by 

otherwise assuming the form of F and F above the i n e l a s t i c 
S t 

thresholds, and performing an i t e r a t i o n procedure f o r F(s,t,u). 

Since approximations must be made i n the solution of these 

dispersion relations i t i s often preferable to use dispersion 

relations f o r the p a r t i a l wave amplitudes which are defined as 

follows. I n the centre of mass frame of reference, f o r equal 

mass particles one can write 

where (f and <9 are the momentum and scattering angle respectively. 

The p a r t i a l wave amplitude f„(s) i s defined by the r e l a t i o n 

where F^(Cos<9) are Legendre polynomials and F(s,Cos®) has been 

written f o r F(s,t,u). The function F(s,Cos &) can be wri t t e n as 

where the series converges for physical s and complex Cos & , but 

only inside a certain e l l i p s e . 

s = 4(q + m ) 

t = - 2 q 2 ( l - Cos 9) 

u = - 2 q 2 ( l + Cos ©) 

- (1.25) 

- (1.26) 

L--o * 
- (1-27) 
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i n practice, since the p a r t i a l wave amplitudes have the threshold 

behaviour 

f ^ s j ~ q f o r small q, 

the p a r t i a l wave expansion has the advantage that generally a few 

terms of the series w i l l be s u f f i c i e n t to approximate the whole of 

the amplitude F(s,Cos 6 ) at low energies, although i t must be noted 

that the truncated series, as a ru l e , does not have the same 

analytic continuation as the whole amplitude. A further advantage 

i s that f o r each p a r t i a l wave, the u n i t a r i t y condition takes on a 

p a r t i c u l a r l y simple form. For instance f o r the scattering of two 

spiniess particles 

X ^ ( s ) - T k J ^ U ^ V ) , - (1.28) 

where R|(s) i s the r a t i o of t o t a l to elasti c p a r t i a l wave cross 

sections. Note that the amplitude f ^ ( s ) can be written as 

\M -_ rtir p Z t - (1.29) 

where c^(s) i s called the p a r t i a l wave phase s h i f t which from 

(1.28) i s real below the i n e l a s t i c threshold. 

I f t h i s amplitude i s decomposed into the r a t i o of two functions 

and , i. e . 

where N^(s) has only the l e f t hand cut of the function and Dy(s) 

has only the r i g h t hand cut, then 
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Im N £(s) = i . f ( s ) D £ ( a ) f o r s < s L 

= 0 f o r s ^ s T 
( 1 . 3 1 ) 

i f s i s the s t a r t of the l e f t hand cut; and L 
r 

Im Dg(s) = - ^ ( s ^ J i G p R ^ ) f o r s > 4m' 

= 0 f o r s t\m 
(1.32) 

I f i s assumed to vanish at i n f i n i t y then by an application of 

Cauchy's theorem one obtains 

J s'-s c'- S . - -
-<JO - * * 

and by normalising a r b i t r a r i l y to unity at s = S q, Cauchy's 

theorem f o r the function { \ - l ) / ( s - S q ) leads to the r e s u l t 

^ - J ^ . J «• £ 7 ^ ) - (1-34) 

Thus the phase s h i f t ^ ( 3 ) G 0 U1 (1 be calculated from equations 

(1.29), (1.30), (1.53) and (1.34) given the discontinuity of the 

amplitude across i t s l e f t hand cut, which corresponds to the 

interaction potential i n a non-rel:vfcivistic scattering problem, 

and the i n e l a s t i c i t y factor R^(s). 

A f u l l e r discussion of the 'N over D' equations w i l l be given i n 

the Appendix, p a r t i c u l a r l y f o r the case when the functions do not 

have the asymptotic properties assumed above. However, i t i s 

worth mentioning here that i n dispersion r e l a t i o n theory generally 
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i f the amplitudes F do not tend to zero at i n f i n i t y , functions 

of the form ( F ( s ) - F ( S Q ) ) / ( S - S Q ) which do have the correct 

asymptotic l i m i t s must be used. Thus, before the equations can 

be solved completely, the value of the function must be given at 

certain a r b i t r a r y "ooints s , the subtraction points. * o 

So f a r only spinless particles have been considered i n th i s b r i e f 

introduction to the S-matrix and dispersion relations. However 

when one considers the scattering of particles with spin, certain 

complications are introduced. For instance, i n the case of pion-

nucleon scattering the t r a n s i t i o n amplitude i s written i n terms of 

two invariant functions A and B such that 

F(s,t,u) = u(p 4) [ A ( s , t , u ) - £i Y r ( p f + p ^ ) B ( s , t , u ) ) u ( p 2 ) 

- (1.35) 

where u(p^) and u(p^) ai'e four-spinors representing the i n i t i a l and 

f i n a l state nucleons with spin -g- and four-momenta p^ and p^, and 

are the well known gamma matrices. I f the amplitudes f o r TC+p 

and K p elastic scattering are denoted by the subscripts + and -

respectively, then crossing symmetry implies 

< P 3 P 4 1 ^ + I P I P 2 > = < - p 3 ' P 4 l * - | " p l ' p 2 > " ( l'^ 6 ) 

and i t i s often helpful to define new invariant functions 
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A + = ^ ( A _ + A + ) ; A " = t ( A _ - A + ) - (1.37) 

and s i m i l a r l y B + and B f o r which i t may bs shown from (1.36) that 

A + , B + are symmetric under crossing and A , B are antisymmetric. 

I t i s also often convenient to work with amplitudes defined i n terms 

of eigenstates of isotopic spin. In the case of pion-nucleon 

scattering the i t l system has values of isospin I = -g-, 3/2. With 

the help of (I.37) z&y l j e shown that these pion-nucleon isospin 

amplitudes can be expressed i n terms of the above crossing-symmetric 

and antisymmetric amplitudes as 

i 5/ 2 + A 2 = A + 2A"; A = A - A" - (1.38) 

with i d e n t i c a l expressions f o r B , B . For the pion-jjion system, 

since the pion has unit isospin, there are three pion-pion isospin 

amplitudes corresponding to I = 0,1,2. The relationship between 

these and the amplitudes f o r the scattering of pions i n d e f i n i t e 

charge states i s discussed i n d e t a i l i n Appendix 1. 

In the next section we shall describe how the ideas and techniques 

sketched here are u t i l i z e d to derive information on the form of the 

pion-pion interaction from the available experimental data. In 

pa r t i c u l a r , we shall be concerned with the 1 = 0 amplitude T° -

which seems to be dominant at low energies - and since we s h a l l be 
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r e s t r i c t i n g our discussion to such low energies, the pion-pion 

interaction should he p r i n c i p a l l y i n the S-wave. 
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Some Studies of the Pion-Pion Interaction 

A knowledge of the pion-pion interaction i s of basic importance i f 

one i s ever to understand f u l l y the interaction of elementary particles 

Since there i s no direct way at present of performing a pion-pion 

scattering experiment, information on the pion-pion scattering 

amplitude must "be inferred from the studies of various scattering-

processes on which experimental data i s available. A measure of 

the size of the low-energy pion-pion interaction i n a state of 

angular momentum I and isospin I may be given by the scattering 

length a ̂  which i s defined as 

I lim A / ( k 2 )
 ( . 

l 6 T T k 

where k i s the magnitude of the centre of mass three momentum and 

A £^ i s the pion-pion p a r t i a l wave amplitude. I n in t e r p r e t i n g 

experimental data the low energy phase-shift i s frequently param-

eterised i n terms of t h i s scattering length as 

fJFTj?^"0* ' /-V- fc* - ( 1 . 4 0 ) 

This i s the so-called scattering length approximation. For the 

S-wave amplitude ( I = 0) a two parameter form - the effective 

range approximation - i s also often used i n which 
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Cot Ce - (1.41) 

where r i s the effective range. The Chew-Mandel stain e f f e c t ed & 

ive range formula i s another useful parametric form 

T ^ T ^ ^ K - pr^ + n j = U J I K + Y K ^ J - (1.42) 

which can be derived from the N over D relations with the l e f t 

hand s i n g u l a r i t i e s replaced "by a pole at - °° . 

Much hard work has been done i n attempting to calculate the size 

of these S-wave scattering lengths and many methods of varying 

degrees of accuracy have been proposed f o r analysing the available 

data. Unfortunately, the results of these calculations are by no 

means consistent and one must examine the approximations inherent i n 

these various methods before the form of the pion-pion int e r a c t i o n 

can be f i r m l y established. One of these methods analyses the low-

energy S- and P-wave pion-nucleon data by using a p a r t i a l wave 

dispersion r e l a t i o n i n which the pion-pion interaction appears 
— 1 

through the crossed channel process TCH.-*-NN . This dispersion 

r e l a t i o n can be written as 

*.£<->- ^ i " * I P - ' 1 ^ * tp^Sl^ •J}"1- . (1.43) 
where f ̂  + (s) i s the p a r t i a l wave amplitude of t o t a l angular 

momentum, J = I - j> and £ i s the o r b i t a l angular momentum. The 
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term B (s) coming from the direct and crossed channel Born pole 

terms, together with the integrals over the r i g h t hand u n i t a r i t y 
2 2 cut (in + yt^) s < oo and the cut 0 ̂ ' s ̂  (ru - [+) coming from 

the crossed terms, may be evaluated i n terms of the reasonably well 

known pion-nucleon data. In this manner, the value of $ ( s ) , 
< t 

"Che so called discrepancy, may be determined. However ( s ) 

is the contribution to the dispersion r e l a t i o n from the l e f t hand 
2 ? 

cut - ao < s ̂  0 and the c i r c l e !s| = m - A*- induced from the 

p a r t i a l wave decomposition. These contributions arise from the 

crossed process TT n-*• Iffi which, from u n i t a r i t y , has a phase equal 

to the pion-pion phase-shift, at least between the two- and the 

four-pion thresholds. Taking the crossing-symmetric «N charge 

combination given by (1.37) i t i s possible to estimate J D Q +
+ ( S ) i n 

terms of a low energy 1 = 0 , S-wave pion-pion interaction. By 

parameterising t h i s pion-pion contribution and f i t t i n g the discrepancy 

to the values given by the rest of the dispersion i n t e g r a l , i t i s 

possible to derive information on the form of the low-energy pion-
i " it 

pion amplitude. I t was found by Hamilton et a l and Spearman 

that the best f i t to the data with <^Q +
+ described i n terms of a 

simple parameterisation of the 1 = 0 , S-wave pion-pion amplitude 

gave a value f o r a Q° of 1.} - 0.4 ^. 
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A similar value f o r a^ has "been suggested by Abashian, Booth 
12. 3 

and Crowe from a study of the He momentum spectrum i n the 

proton-deuteron scattering process 

p + d — ^ H e + 2 TC 

A prominent bump appears i n this spectrum which corresponds to 

a di-pion invariant mass of around 3^0 Mev. This i s the so-called 

ABC effect and seems d i f f i c u l t to explain unless a strong 1 = 0 , 

S-wave interaction i s assumed. With an enhancement factor given 

by the square of the 1 = 0 , S-wave amplitude multiplying the three-

p a r t i c l e (''He + 2~K) phase-space i t has been found that this bump 

may be reproduced with a value f o r the scattering length |aQ°|of 

2 i i r " 1 . 

Another reaction which ha.s received much attention i n the search 

f o r the form of the pion-pion interaction i s the pion-production 

process 

vhe usual model f o r investigating this process has been the peripheral 

model which assumes that the single pion exchange pole s i n g u l a r i t y 

i s the dominant term of the pion-production scattering amplitude 

at least i n certain regions of the momenta. With this model, one 

can obtain the pion-production cross-section cr from the r e l a t i o n 
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J<rx = ^ f V < ^ J 3 ^ ^ ^ b J t ^ ^ ^ ' ^ ^ U - (1-44) 

where P̂ JQ.-̂  a r e " t n e magnitudes of the laboratory three momenta of 

the r e c o i l nucleon and the ingoing pion and f = 7fR \ ~£Z> l 

where i s the rationalised renormalised pseudoscalar coupling 
2 

constant. The square of the momentum transfer ^ i s equal to 

2m(\ fw%- p ^ - m) and , k are the pion-pion centre of mass 

scattering angle and magnitude of the r e l a t i v e three momentum 

respectively. Ceolin and S i r u f f u l i n i * used equation (1.44) with 

the pion-pion isospin amplitudes A"*" parameterised by Chew-

Mandelstam effective range formulae (1.4?) to calculate the low-

energy t o t a l pion-production cross-sections. They found that the 

values of a o° suggested from the "K N partial-wave discrepancy 

analysis and the study of the ABC effect were too large to f i t the 

experimental cross-sections and suggested that agreement could only 

be reached f o r a Q° 1. I t i s also probably f a i r to say that even 

with a small scattering length, equation (1.44) f a i l s to reproduce 

very closely the energy dependence of the low-energy t o t a l cross-

sections. The reason fo r t h i s may well be that the assumption of 

a dominant single pion exchange diagram i s not j u s t i f i e d over the 

whole region of the momenta considered, and that there are s i g n i f i c a n t 

contributions from other more distant s i n g u l a r i t i e s corresponding 

to forces of shorter range. However the centrifugal barrier tends 

to shield states of high angular momentum from these shorter range 
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forces and i t should be reasonable to suppose that f o r such states 

the peripheral interaction i s , i n f a c t , dominant. 

In Chapter I I we present a phenomenological analysis of the process 

ic p -*>• 7 t + TI n near the production threshold which u t i l i z e s the 

above argument f o r states of higher angular momentum. The two 

f i n a l state pious are treated as a single spin zero system, o~ , with 

1 = 0 but with a continuous mass spectrum^and the process TC p cr n 

is decomposed into p a r t i a l waves. I t i s supposed that, because of 

the centrifugal barrier damping of more distant s i n g u l a r i t i e s , a l l 

the p a r t i a l waves other than that corresponding to the & n S-wave 

f i n a l state may be taken to have the values given by the single-pion 

exchange graph. For this other p a r t i a l wave with the &n S^-wave 

f i n a l state (and therefore by p a r i t y conservation the TSN-P i n i t i a l 

state) a phenomenoiogical form i s proposed by assuming that of the 

three f i n a l state particles only the two pions have an appreciable 

f i n a l state interaction. Thus the only r i g h t hand cut of th i s 

amplitude considered i s associated with the two-pion interaction 

(assumed to be i n an 1 = 0 , S-wave) and can be removed by multiplying 

by an appropriate factor - the D function a r i s i n g i n an N/D solution 

f o r the 1 = 0 , S-wave pion-pion amplitude. I f one further assumes 

that t h i s f i n a l state interaction can be factored from the rest of 

the amplitude so that the amplitude's dependence on the square of the 
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2 di-pion centre of mass energy (3"" comes only from the f i n a l state 
interaction then the effect of the l e f t hand s i n g u l a r i t i e s can be 
approximated by a constant parameter C. By combining a l l these 
p a r t i a l waves i t i s easily seen from the model that by varying this 
parameter C, p r a c t i c a l l y any type of pion-pion interaction with a 
large or small, positive or negative, scattering length can be 
compatible with the TC p -**- *" n t o t a l cross-sections. 

I t must be noted that the t o t a l cross-sections f o r the production 

process K N -*--mc N are not the best means of investigating the 

pion-pion interaction since they involve an integration over the 

variables defining the di-pion system. A better method i s to 

consider the d i f f e r e n t i a l pion-production cross-sections, f o r which 

i n recent years some f a i r l y detailed measurements have been 

performed'*'1 '6 . An i n t e r e s t i n g feature of the iz p ~5> ~rt + i t n 

and Tt ~p -3- °n cross-sections i s a peaking i n the neutron 

energy dist r i b u t i o n s corresponding to the highest available value 

of the di-pion invariant mass. This effect i s p a r t i c u l a r l y marked 

fo r incident pion k i n e t i c energies between 350 and 450 Mev and cannot 

be reproduced either by a s t a t i s t i c a l (phase-space) d i s t r i b u t i o n or 

by a peripheral model calculation. Also the apparent absence of 

any such peaking f o r the process ft p TC p suggests that 

the effect i s due to the presence of a strong 1 = 0 interaction. 
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A moderately successful attempt to derive these d i f f e r e n t i a l 

d i stributions has been made by Goebel and fcichnitzerir who proposed 

a s t a t i c model comprising a single pion exchange diagram and a 

rescattering diagram where the scattering i s p r i n c i p a l l y due to 

the {3,3) resonance. Also Olsson and Yodh have t r i e d to f i t 

production cross-sections from an isobaric model ( TZ N i t TC Tt N ) , 

v;here the N* i s the 1 3>3' isobar or the I = vf, J = ji S-wave K N 

interaction, which includes interference terms and the angular 

momentum dependence of the isobar decay. The model can account 

f o r the experimental dis t r i b u t i o n s i n both the reactions Tf+p -9- T C + TX. 

-rc p "ft n but without a pion-pion interaction i t s i n a b i l i t y 

to f i t the data on n p -s> + Tt n again i s suggestive of the 

presence of a strong TC + 7V. interaction i n th i s reaction. 

The phenomenological model which we propose above f o r this process 

iK. p TK n can also be used to study the peaking i n the 

d i f f e r e n t i a l cross-sections. By suitably parameterising the pion-

pion 1 = 0, S-wave amplitude and adjusting -che parameters so that 

the calculated values f o r the distributions give an optimum f i t to 

the experimental data, i t i s possible to deduce information on the 
c o 

1 = 0, S-wave pion-pion phase-shift © 0 • I 1 1 Chapter I I I i t i s 

shown that t h i s procedure indicates that t h i s phase-shift i s i n i t i a l l y 

negative (with a negative scattering length a °) but soon turns over, 
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passing through zero and becomes positive. 

We cannot be sure that our assumptions f o r the phenomenological 

form of the lowest 7c p 3? n p a r t i a l wave are t o t a l l y j u s t i f i e d , 

but evidence f o r a negative scattering length a Q° from various 

analyses of the forward pion-pion dispersion r e l a t i o n leads 

us to investigate more f u l l y other methods f o r studying the pion-

pion interaction - i n particular the pion-nucleon p a r t i a l wave 

discrepancy analysis. We f i n d that by increasing the parameterisa-

t i o n of the pion-pion amplitude i n th i s analysis, besides the 

solutions previously found with positive scattering lengths, a 'turn

over 1 phase-shift (similar i n i t s gross features to that obtained 

above) i s also produced as well as a very negative solution with a 

large negative scattering length. This very negative solution i s 

rejected as being incompatible with the pion-production d i f f e r e n t i a l 

d i s t r i b u t i o n s calculated from our model, since t h i s implies a 'bump' 

i n the neutron energy spectrum which i s not observed experimentally. 

This i s l i k e l y to occur irrespective of the detailed parameterisation 

of the lowest TC p -SP- 3- n p a r t i a l wave. We also discuss the two 

enhancement factors that are usually assumed f o r the analysis of the 

ABC effect and we note that i f the phase-shift passes through zero 

these two factors are not equivalent and i t i s not clear which - i f 

indeed either - should be used. 
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We end Chapter I I I b y considering the p o s s i b i l i t y of a CDD pole 

i n the 1 = 0 , S-wave pion-pion p a r t i a l wave amplitude. Such a 

p o s s i b i l i t y has been suggested recently by several authors from 
c O 

diff e r e n t theoretical•standpoints. I f the phase-shift i s 

indeed of the turn-over type i t i s tempting to Delieve, by 

analogy with the s i t u a t i o n of the P̂  ̂  7TN p a r t i a l wave phase-shift, 

that t h i s i s indicative of a CDD pole. Certainly such a p o s s i b i l i t y 

must be considered and we discuss i n some length how the inclusioii 

of a CDD pole would affe c t the model we have proposed f o r the pion-

production amplitude, the pion-nucleon p a r t i a l wave discrepancy 

analysis and the calculation of the ABC eff e c t . Having incorporated 

the necessary modifications, we show that the two resonating types of 
r 0 4 i 

phase-shift 6 q obtained by Lovelace et a l from a backward pion-

nucleon dispersion r e l a t i o n analysis, as well as the £°-resonance 

solution of Wolf , can a l l be compatible with the available data 

on pion-production, low energy pion-nucleon and proton-deuteron 

scattering. 

F i n a l l y i n chapter IV we survey the knowledge of the low-energy pion-

pion interaction which has been obtained from past studies. These 

include analyses of the three pion decay modes of the K and >\ mesons 

and the K ̂  decays K —5» -KK , as well as pion-pion dispersion 

r e l a t i o n calculations, current algebra predictions and the TL^-K^ 

mass difference interpreted i n terms of the two-pion decay mode of 
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the -meson. Although the various results of these calculations 

are often contradictory, by investigating the assumptions and 

approximations used i n these studies we deduce some f a i r l y general 

conclusions which we compare with the results obtained from our 

analyses. 



C H A P T E R TWO 

PIOW PRODUCTION IN A MODIFIED PERIPHERAL MODEL 
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I I - PION PRODUCTION IN A MODIFIED PERIPHERAL MODEL 

The Peripheral Model 

A knowledge of the low energy pion-pion phase s h i f t s , i n particular 

t h e i r scattering lengths, i s of basic importance i n the interpreta

t i o n of many phenomena involving pions and nucleons. Unfortunately 

th i s important problem of the pion-pion interaction at low energy i s 

s t i l l some way from being s a t i s f a c t o r i l y resolved. For instance, 

on the one hand there i s evidence of a large 1 = 0 , S-wave pion-pion 

scattering length ( a Q ) from the ABC anomoly i n the He spectrum of 

proton-deuteron reactions and the pion-nucleon dispersion r e l a t i o n 
10 |l 

'discrepancy' analysis by Hamilton et a l and Spearman. On the 

other hand there i s the calculation by Ceolin and S t r o f f o l i n i of 

the low energy t o t a l cross sections f o r the process p ~^ + TE. N 

using a peripheral model, which seems to exclude any value of a.Q° 

measured i n natural units ("tl = = c = l ) that i s greater than one. 

In order to t r y to reconcile these r e s u l t s , l e t us f i r s t consider i n 

d e t a i l the description of in e l a s t i c processes by peripheral 

diagrams. 

An int e r a c t i o n i s said to be peripheral when i t i s propagated by 

the least massive system which can be exchanged between the c o l l i d i n g 

p a r t i c l e s . I n many cases this least massive system w i l l be a 

single p a r t i c l e , and 'peripheral' i s often used to describe any 
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single p a r t i c l e exchange interaction. Exchanged systems correspond 
to the ' l e f t hand' si n g u l a r i t i e s of the scattering amplitude, and 
are the means by which forces can be transmitted. From the 
Uncertainty Principle i t follows that the range of the force i s '-' E 
where E i s the t o t a l energy needed to produce the exchanged system, 
so that peripheral diagrams with low energy exchanged systems corres
pond to long range forces. 

I t should be noted that the long range forces•should alone be s u f f i c 

ient to determine the scattering f o r particles i n states of high 

o r b i t a l angular momentum since the centrifugal barrier shields these 

states from the unknown short range interactions. This i s because 

particles with a high r e l a t i v e angular momentum 'see1 each other only 

at a distance and consequently are l i t t l e affected by forces which 

act only over a short distance. 

The analytic scattering amplitude i s determine through the Cauchy 

relations by pole and branch cut s i n g u l a r i t i e s . The residues of 

the poles and the discontinuities across the branch cuts are 

proportional to products of S-matrix elements (or t h e i r analytic 

continuations). These products may often be seen to be bounded, 

for example by the U n i t a r i t y conditions, so that the reciprocal 

dependence on distance which favours nearby s i n g u l a r i t i e s w i l l not 

be overwhelmed by an increasing strength of sin g u l a r i t y with distance 
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In two-to-two p a r t i c l e scattering the one p a r t i c l e exchange diagram 

corresponds to the f i r s t term i n a perturbation expansion which, as 

stated i n the introduction, i s of doubtful value as an approximation 

to the whole amplitude f o r strongly i n t e r a c t i n g processes. Never

theless i t can be of use i n practical applications i f care i s taken 

to use i t i n approximating the amplitude only i n certain regions of 

the variables where th i s interaction i s known to dominate. For 

example, i f instead of the complex energy plane we consider the 

complex Cos 6 plane where © i s the centre of mass scattering angle 

then the physical region corresponds to the real l i n e from -1 to +1. 

For the case of equal mass scattering the exchange of a single 
2 

p a r t i c l e of mass m̂  corresponds to a pole at t = m̂  i n the complex 
2 2 

energy plane or at Cos & = 1 + m̂  /2q i n the complex Cos & plane. 

I f m̂  i s small t h i s pole i s seen to l i e near the real l i n e 

-1 ^ Cos <9 ̂  1. Also i f the next exchanged system has a mass 

which i s much greater than m̂  then the si n g u l a r i t y i n the Cos © 
plane due to thi s exchanged system w i l l either be a pole or a branch 

mo 
cut at 1 + — d e p e n d i n g on whether the exchanged system consists 

2q 2 

of one or more pa.rticles, which w i l l be much further away from the 
2 2 

physical region than 1 + m̂  /2q . Under these circumstances i t 

should be reasonable to approximate the scattering amplitude i n the 

physical region near Cos 6 = 1 by thi s single pole. Note also that 

as the magnitude of the three momentum of ea.ch p a r t i c l e i n the centre 
2 2 

of mass, q, increases the pole at 1 + /2q moves nearer to Cos® = 

(as, of course, do the other s i n g u l a r i t i e s ) so enhancing i t s effect 
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on the physical scattering amplitude near there. 

The description of i n e l a s t i c processes by peripheral diagrams was 

f i r s t introduced by Chew and Low who proposed a method of extrapol

ating from the physical to the unphysical region i n order to gain 

information on cross-sections which cannot be measured d i r e c t l y under 

Laboratory conditions. Their method employed t h i s f act that a 

diagram with a one p a r t i c l e exchange contributes a pole to the 

amplitude of a physical process i n the physical variable corresponding 

to the squared four momentum of the exchanged p a r t i c l e . As i n the 

case of two-to-two p a r t i c l e scattering t h i s pole i s situated at an 

unphysical value of the variable to which i t i s related, but again, 

the exchange of the l i g h t e s t allowed p a r t i c l e w i l l r e s u l t i n a pole 

which i s nearest to the physical region. In p r i n c i p l e , at least, 

this pole can be reached by extrapolating from the physical region, 

and i t s residue, which w i l l be proportional to the amplitude f o r 

processes involving the exchanged p a r t i c l e , can be determined. In 

this way i t i s possible to derive information about scattering 

processes which cannot be reproduced experimentally. 

I f the pole si n g u l a r i t y i s the one which i s nearest to the physical 

region and i f the exchanged p a r t i c l e i s so l i g h t that the distance 

from the pole to the physical region i s small then, as discussed 

above, i t may be expected that i n the physical region near the pole 

the peripheral i n t e r a c t i o n i s dominant. This i s p a r t i c u l a r l y true 

vJsUhe exchanged p a r t i c l e i s a pion, the l i g h t e s t of the known 
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strongly interacting p a r t i c l e s . 

Note that the nearby physical region corresponds to a quasi-real 

exchanged p a r t i c l e , that i s to a small momentum transfer i n the 

vertex where this p a r t i c l e i s emitted. Thus, again i f the 

exchanged p a r t i c l e i s l i g h t , i t may be reasonable to calculate the 

functions entering the vertices of a peripheral diagram as i f the 

intermediate p a r t i c l e was i n f a c t r e a l . This i s the 'pole approx-
13 

iiuation' of Ferrari and S e l l e r i . I n S-matrix language the pole 

contribution to the amplitude has a residue given by a product of 

S-matrix elements which have one of the particles o f f i t s mass s h e l l , 

that i s with a squared mass equal to the squared momentum transfer 

t < 0. I f the amplitude i s considered i n the region where t i s 

close to zero and the physical mass, m, of the exchanged p a r t i c l e 

i s small, the 'pole approximation' i s equivalent to saying that 

there i s negligible difference between these S-matrix elements and 
2 

those a n a l y t i c a l l y continued to m . 

Hov/ever these arguments f o r the dominance of the peripheral diagram 

are only q u a l i t a t i v e because terms such as 'small momentum transfer' 

and 'physical region near the pole' cannot be precisely defined. 

I t may be that i n the calculation of t o t a l cross-sections f o r 

processes such as i f f n*"* "i using a pole model the dominance of 

the peripheral interaction i s not so uniformly pronounced over the 

physical region considered as was supposed. In calculating these 

cross-sections one needs to integrate the square of the t r a n s i t i o n 
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amplitude over a range of values fo r the square of the momentum 

transfer, and thi s range may include a region which i s not dominated 

by the peripheral in t e r a c t i o n . 

Nevertheless fo r states of high o r b i t a l angular momentum i t may be 

seen that the scattering amplitude i s well approximated by processes 

involving low momentum transfer since the centrifugal barrier shields 

these states from the unknown short range forces. As an example, 

consider the scattering amplitude f o r the scattering of spinless, 

equal mass particles to be determined from the l e f t hand s i n g u l a r i t i e s 

by a series of poles, i . e . 

1 t . - t 

Thus the p a r t i a l waves are given by the equation 

V * = ^ « l \ ( ' * M ^ M fc- J ^ ( . - e ^ 0 

where [<i^ are the Legendre functions of the second kind. By 

inspection we see that 
2 2 £ 

i. f o r small q the p a r t i a l waves behave l i k e (q ) 
- I -1 

i i . f o r large t ^ they behave l i k e ( t ^ ) 

From ii. i t i s clear that f o r large i one need only consider the 

sin g u l a r i t i e s near the physical region, i.e. f o r small t ^ . Hence 

we should expect that c o l l i s i o n s between particles i n states of high 

angular momentum (large t ) would be reasonably estimated by the 
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peripheral diagram - th i s "being the nearest s i n g u l a r i t y to the 

physical region. 

For t h i s reason, i n the next two sections, the peripheral c o n t r i 

bution to the process TV'f -» i w i l l be calculated e x p l i c i t l y 

f o r each o r b i t a l angular momentum state, and we shall assume that 

the contribution to the t o t a l cross-section f o r each value of the 

o r b i t a l angular momentum i n the f i n a l state, except the lowest, i s 

given by th i s one pion exchange graph alone. This i s because the 

pion-exchange diagram has a pole which i s near the physical threshold 

f o r the f i n a l state. f o r t h i s 'lowest p a r t i a l wave1 corresponding 

to the S-wave f i n a l <?-N state, and by pa r i t y conservation to the 

P it N i n i t i a l state, a phenomenological form w i l l be discussed 

i n Section 4- In terms of this model we w i l l show that the t o t a l 

pion-production cross-section data can i n fa c t be reconciled with 

a large pion-pion 1 = 0, S-wave scattering length. 
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B-Matrix Elements 

I f p ajnd q represent the four momenta of the ingoing nucleon and 

meson respectively and p', q| , the outgoing nucleon and meson 
if 2M 

then from Moller's formula the S-matrix elements fo r the process 

•rtN-^-TTTTN may be wr i t t e n i n terms of ̂ £^1 "the Lorentz invariant 

scattering amplitude as 

o . V . v i s i ^ > ' l ^ g ^ ' ^ ' y ' ' h ) ^ ^ i - ( 2 . 1 ) 

where E, e', W, W^ , ŵ  are the energies of the f i v e p a r t i c l e s , 

i.e. 
/ 2 2\'/l_ E = (p + m j 

I 2 A'1
 + w = (q + f*- ), etc. 

Considering only the single pion exchange diagram shown i n figure 

(,2.1) Fjr..^ w i l l contain a factor F-̂  ̂  the invariant pion-pion 

amplitude normalised between states J.q̂  ( q^ /* i n the overall 

centre of mass frame. However, since P^^1 i s an invariant i t may 

be calculated i n any Lorentz frame of reference and f o r convenience 

i t w i l l be evaluated i n the pion-pion centre of mass system 

FIGURE 2.1 
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The i n e l a s t i c cross-sections are given by the r e l a t i o n 

where v = W f / e u 

To f a c i l i t a t e the 'p a r t i a l wave analysis' the two pion system w i l l 

be regarded as a single system cr with a d e f i n i t e value of spin 

and a 'mass' , where «r i s the t o t a l energy of the two pions i n 

tne i r own centre of mass system. 3y thio means the contribution 

to these crosa-sections f o r each value of the o r b i t a l angular 

momentum of the k IT i n i t i a l state or 3f iT f i n a l state may be deter

mined. To do t h i s , however, we need to evaluate the Jacobian J 

which expresses the three p a r t i c l e element of phase space given i n 

(2 .2) i n terms of the two pa r t i c l e phase space factor f o r the & N 

f i n a l state such that 

(2 .3) 
fT _ j_ Jo.z £fl. d 

where q = q^ + q 2; - (2 .4) 

and d-D-T5 = d(Cos9.K ) d ^ K where 9 K , ^ are the polar angles 

of the r e l a t i v e three-momentum of the wo pions measured i n t h e i r 

ov.ii centre of mass system. 

From equation (2 .4) i t follows that 

d ^ ; . ^ ' , J , f / . « » , y ' - (2 .5) 



55-

where ,q are measured i n any frame of reference. Since 
d q"̂  /ŵ  and d q^ /ŵ  are invariants t h e i r product i s also an 

invariant and as such may also be evaluated i n any reference frame; 

e.g. 

= k 4 ' L . / k i i
 = K r ^ r L . . ( 2 . 6 ) 

where emir refers to the di-pion centre of mass frame i n which 

ŵ' = ™2 ~ ° r / 2 . In t h i s frame of reference 

I f , ' ) 3 " = ^ " k * ^ s ^ > 

/ 3 -s>'\ 2 so that (d q ),„._ = ^ dkcLfJ-w 

and *!f'.<*!# = Cfc xJkaA,).(ay) t w,,/( f l-/ ay- - ( 2 . 7 ) 

Momentum four-vectors are defined as ffn= ( , P,, = '<• Pc ) so that 
2 -» 

P.P = -m = "M» -'P'oPo . Hence i n the di-pion centre of mass frame 

where <f' = o and q' = c we have the r e l a t i o n 
so that 

(2 .8) 

since d^q' i s co-variant. 

I n the overall centre of mass system i t follows that 

jfcj.Sft = */<r^ <*Y - ( 2 . 9 ) 

where ŵ  and ŵ  are the energies of the f i n a l state pions 

measured i n this system and 
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where w i s the t o t a l energy of the two pions considered, as a 

single system of 'mass1 °" , 

i.e. w' = w + ŵ  = (q. + ©" ) • 

Therefore 

J > y g ^ > ^ j£„ J > j y y / 
(any1' C«T (a*)4 *°- Owf a* \ a«' / - t>2.ii; 

Aw/ ' -
and by multiplying the S-matrix element i n ( 2.l) by / ' 1 "w2 \ 3 t h i s 

V 2w' J 
may be written as a pseudo two-to-two matrix element 

< r V K - M I S j ff> = i H 4 < S W - r ' - » ' J F *' - (2.12) 

i n which case using equation ( 2 . 1 l ) the cross-section (2 .2) may be 

writ t e n as 

= ( w i F t i r r ( r , r r u , ) ^ t:^j££i. - (21.) 

where the l a s t bracket i s the usual two p a r t i c l e element of phase 

space. 

Before discussing the p a r t i a l wave analysis of the matrix elements 

f o r the process if ft-*- i t i s necessary to approximate the pion-

pion scattering amplitude i n the following way. We are interested 

i n deriving an expression f o r the inela.stic cross-sections at low 

values of T L , the incident pion k i n e t i c energy. As shown i n 

Appendix I I the maximum value of the t o t a l pion-pion centre of mass 

energy c r ^ i s an increasing function of T L . Hence for values 
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of T L up to 400 Mev the two-pion centre of mass energy cr has a 

range of values from the two pion threshold 2yiA (:s 279 Mev) to 

about 417 Mev. In thi s low energy range i t should be reasonable 

to approximate the pion-pion amplitude by the S-wave amplitude 

alone. In th i s approximation the S-matrix element (2.12) i s 

independent of the angles <5n and SO that the integration 

over SLu i n (2.13) j u s t gives the numerical factor 4"̂  ; and the 

two p a r t i c l e system & can be considered f o r the purpose of p a r t i a l 

wave analysis as a scalar, spin zero system of mass a" . I t must 

be stressed that we are not presupposing the existence of the so-

called 'sigma resonance' i n pion-pion S-wave scattering. We are 

merely considering the two pion f i n a l state as a single system with 

spin zero and a mass which ranges from 2^- up to ̂ max. 

In the process •*>~n't~K w the pion-pion scattering amplitude 

contained i n (^.12) i s the combination of isospin amplitudes 

t T q + t T x + l / 6 T 2 

where T q , , a r e the amplitudes f o r scattering between states of 

isospin I = 0 ,1 ,2 respectively. As discussed i n the Appendix, 

because of the Pauli Principle, i s a sum only of the odd p a r t i a l 

waves t = 1,3> etc. so that t h i s term drops out i n the above approx

imation. Also there i s some reason to believe that the 1 = 2 pion-

pion in t e r a c t i o n i s less important than the 1 = 0 interaction at low 

energies. For instance the t o t a l cross-section f o r the i n e l a s t i c 
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process ? ~* ~* V n may be reproduced quite well i n the medium 

energy range by a peripheral diagram which, f o r this process, i s 

a function of the amplitude alone. The experimental cross-

sections may be f i t t e d with the 1 = 2 interaction characterised 

by an S-wave scattering length with values | a Q \ ̂  0.6. This 

i s i n agreement with most calculations f o r this amplitude at low 

energies. To simplify the low energy analysis therefore, we shall 

assume the 1 = 2 interaction i s negligible i n the following 

discussion. 

These approximations imply that the invariant pion-pion amplitude 

F T
L i n (2 .12) w i l l be proportional to the 1 = 0, S-wave p a r t i a l 

wave, and hence the 7fN and ô N states must have a t o t a l isotopic 

spin of I = | only. 
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P a r t i a l Wave Analysis 

In order to calculate the peripheral contribution to each p a r t i a l 

wave for the two-to-two matrix element defined i n (2.12) and the 

contributions of these p a r t i a l waves to the cross-sections given 

by (2.13) we shall use the h e l i c i t y formalism of Jacob and Wick . 

The i n i t i a l and f i n a l states i n the centre of mass frame can be 

labelled by the t o t a l energy E, the angular momentum J and i t s 

t h i r d component M, together with X , the h e l i c i t y of the nucleon . 

The p a r i t y of each state i s given by 

nucleon. Also the S-matrix element f o r the process '̂ N-> o- N 

defined by such states can be written i n terms of sub matrix elements 

of d e f i n i t e values of E and J by the r e l a t i o n 

- (2.14) 

where i s the p a r i t y operator, * ] 2
 a r e t i i e i n - t r i n s i c p a r i t i e s 

of the two particles i n the state and s = -g- i s the spin of the 

(2.15) 

Using the notation 

= + K > t - (2.16) 
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i t w i l l be seen that a l l four elements of t h i s submatrix, S ^, 
++' 

S+̂ > S ^, S ^ may be expressed i n terms of two eigen values of S*̂. 

Since the submatrix i s unitary these eigen values are of the form 

s, where S i s a real phase, and we shall denote the two eigen

values by the phases , depending on whether J = £ + -§• or £ 

where 2. i s the o r b i t a l quantum number. Neglecting the i n t r i n s i c 

p a r i t y factors, from equation (2 .14) we see that the states 

have p a r i t y ( -1) ^ f o r the 1* N i n i t i a l state. Also, since "or 

i s composed of two pseudo-scalar pions, cr w i l l have opposite 

i n t r i n s i c p a r i t y to that of the pion so that f o r the orN f i n a l 
T - i T + i . 

states (2 .17) w i l l have p a r i t y - ( -1) + 2 = ( -1) 8. In 

terms of the states (2 .17) 

w i l l have the phase where I = J - i s the o r b i t a l angular 

momentum of the i n i t i a l state, and 

w i l l have & ̂1 with £ = J + -g- = i + 1 . Assuming p a r i t y 

conservation we see that 

^ - (2.18) 
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In order to relate the matrix element i n (2.12) to these phase 

s h i f t s £ g + # , t = 0>1j2 ••• w e must expand i t i n terms 

of submatrices - This i s done i n two stages. We can write 

<r'j \,\S\r}^> * ^ t f , ' ( r » > - r , - > ' ) C v v ' ) , / , " ( f f ' ) " < ^ ^ c | s ( w ) l « ' « N . > - (2.19) 

where G 4" are the scattering angles measured i n the overall centre 

of mass frame of reference i n which f, F; v, v ; are the magnitudes 

of the r e l a t i v e three momenta and velo c i t i e s of • p'j ̂ 'respectively. 

The S-matrix element on the r i g h t hand side of equation (2.19) can 

then be wr i t t e n i n terms of the submatrix elements as 

(2.20) 

1 ~* 

where the functions d are defined i n reference 25. Therefore 

combining equations ( 2 . 1 2 ) , (2.19) and (2.20) we have 
«• fvv TFF' 7 1 o\ ux~-vW - ( 2« 2 1) 

From equation (2.13) and Appendix I I I we see that the spin averaged 

d i f f e r e n t i a l cross-sections are given by the r e l a t i o n 

t ' l V ^ r ^ ' -(2-22) 

where the sum denotes an average over the h e l i c i t i e s of the i n i t i a l 

states and a summation over the f i n a l states; and 
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I f we define the p a r t i a l wave amplitudes f° r t n e i n e l a s t i c 

process Hubert* i n terms of the phase-shifts ^ + as 

i „ ' " > - > - (|, - (2.24) 

then, "by combining equations (2.18), ( 2 . 21 ) , (2.23) and (2.24) and 

using the values 

y = (T* . ' , + ' V ) - (2.25) 

where J = £ + -g- and P ^ = alfUĉ xs)/<1(&»<S>) where Pt are Legendre 

polynomials, the following relations may be obtained 

f , - = ^ ( ^ - ! U ^ . ) { ^ ^ M ) ^ ^ - ( 2 - 2 6 ) 

where z = Cos <9 . A more helpful way of w r i t i n g (2.26) i s 

f 4 . = Cf.-ff^ ^•/.*' £ / " ( 2 ' 2 7 ) 

where $ ( = 2 ^ f t X , ^ - ^ f e. T^M 
(2.28) 

and 

which, with the orthogonality property 

— i 

give the inverse relations 
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Combining (2.22) and (2.28) and performing the spin averaging the 

d i f f e r e n t i a l cross-sections f o r the process 7T W-̂ C? N may f i n a l l y 

be expressed i n terms of the p a r t i a l waves as 

and the t o t a l cross-sections as 

(2.3D 

cr y = ^ ^ ^ C ^ > l * ^ l * i l ^ ^ r 3 ̂ J^T - (2.52) 

We are now i n a position to determine the peripheral contribution to 

each p a r t i a l wave f o r the process n H + ? H . To do t h i s l e t 

us return to the invariant amplitude F^^ . The general form of 

•^XtV w i l l be a product of factors (including spinors) with the 

i n i t i a l ( f i n a l ) state variables on the r i g h t ( l e f t ) . For the p e r i 

pheral diagram sketched i n figure (2 .1) the in t e r n a l pion l i n e with 

momentum A = p - p' and mass ̂  has associated with i t a propagator 

factor • The nrM vertex i s represented by the term 

-115ir q k ( ^ l i where K i s the form factor normalised such that 
u 
O 

K(- A ^) = 1 , and g i s the unrationalised coupling constant 
2 

(g ~ 14 .6) ; and for the four pion vertex there i s 
2 2 

A( e-^,Cos©7r ; ^ ) which i s the invariant amplitude f o r pion-pion 

scattering with the £5. ̂- dependence indicating that one of the 

pions i s o f f the mass s h e l l . For the external nucleon lines we 

write the spinors U-^P) on the r i g h t and uy(f'K" ̂ X.) on the 

l e f t . Collecting these terms together we obtain f o r the peripheral 
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diagram 
(A 

- (2.33) 

where £ i s a product of Ciebsch Gordan coefficients which determine 

the contribution f o r each isospin state. 

I n the pole approximation of Ferrari and S e l l e r i discussed i n the 
2 

f i r s t section of th i s chapter we can consider that f o r small 2 i 

the functions entering the numerator of the r i g h t hand side of 

equation (2.33) have the values given by the on-the-mass-shell 

functions, i . e . 

where A( <s^, Cos Bn ) i s the on-the-mass-shell amplitude f o r pion-

pion scattering. I n performing the p a r t i a l wave analysis i t was 

also assumed that, f o r the process ir"p-»it' tit"n at low energies, this 

amplitude A could be approximated by the I = o, s-wave amplitude 

K ( A 2 ) = 1 

A( a-^Cos Bn ; A. 2 ) = A( O> COS ) 

A ( <r ) defined i n terms of the phase s h i f t 5" °(a- ) by the 

re l a t i o n 

- (2.34) 

in'which case C = 2 . J 2 / 3 and we obtain 

° A «- j . .. 1 - (2.35) 
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I f we take the spinors 

7^ 
/-H,-KWl.\ 

to represent the two h e l i c i t y states of the nucleon, where 

n = 

u 

8TI W 

and 

?/lPl> w h e n from (2.23) and (2.27) we f i n d 

= (s.-u s~"--^ ^ i ^ ; (wp. P / F ^ : ) ̂  £ ? j 

Hence ^ ( p e r i p h e r a l ) = g l / ^ ^ 2 + 2j 

f ^ p e r i p h e r a l ) = g 2 / ^ 2 + 2^ 

wnere g n = 
6 ft 

(2.37) 

and i t follows from equation (2.30) that the peripheral contribution 

to each p a r t i a l wave i s given by 

f (peripheral) = ^ [ 3 , 9 t W * " ( 2 ' 3 8 ) 

where 4 n(z) are Legendre functions of the second Kind, and 
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z o - (2.39) 
— t 

As a check on our p a r t i a l wave analysis we c a l c u l a t e d the t o t a l 

cross-sections f o r n p •» -*+i\ n given by equation (2.32). 

This c a l c u l a t i o n r e q u i r e s a knowledge of the ir-ft 1 = 0 , S-wave 
2 

phase s h i f t s over a continuous range of values of <r . We used 

an N/D decomposition f o r t h i s amplitude since t h i s form w i l l be 

required i n the next s e c t i o n ; and assumed t h a t the amplitude on 

the l e f t hand cut t o be approximated by a s i n g l e d e l t a f u n c t i o n , 

i . e . 

From equation (1.33), i f D( O" ) i s normalised t o u n i t y at 
2 2 , cr = <5* then 

A °( cr2) = - i 16 TV 2 r ^ 2 - cr 2) o p - (2.40) 

P 

N( o r 2 ) _ 16 TT P A 2 
- (2.41) 

and from equation (1.34) 

D( < r 2 ) . 
• 

(2.42) 

where d = 
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and ^ , the pion masa, has been taken as u n i t y . 

2 
Values f o r P and e~ of168 and -396 r e s p e c t i v e l y were taken 

P 

which, corresponding t o Spearman's s o l u t i o n (4) f o r h i s 

'Discrepancies' a n a l y s i s , give a s c a t t e r i n g l e n g t h f o r a Q° of I.29 

i n n a t u r a l u n i t s . I t should be noted t h a t the cross-sections given 

by equation (2.32), summing over a l l n N -> &• N p a r t i a l waves, and 

using the N/D decomposition (2.41) and (2.42) should be i n close 

agreement w i t h the values obtained from the Ceolin and S t r o f f o l i n i 
. - . . ,. . . x . o . . . 2 . _.. . . c a l c u l a t i o n , equation (1.44)> using a Q = l.i^9> a

0 = u. Tins i s 
because both c a l c u l a t i o n s use a s i m i l a r p e r i p h e r a l approximation to 

the i n v a r i a n t amplitude Fxjy (see equation (2.33)). Also the 

Chew-Mandelstarn e f f e c t i v e range formula w i t h which they approximate 

the pion-pion amplitudes are derived from these N and D equations 

by assuming the d e l t a f u n c t i o n s i n g u l a r i t y to be a t - 00 so t h a t N 

i s a constant. There should be very l i t t l e d i f f e r e n c e , t h e r e f o r e , 

between t h i s e f f e c t i v e range formula and our one pole approximation 
2 

w i t h 0" = -396. By making a simple l i n e a r i n t e r p o l a t i o n of the 
P 

Ceolin and S t r o f f o l i n i r e s u l t s obtained from a ° = 1, 1.5 and 
o 2 + o 2 a = -0.54 "to the values a = 1.29, a = 0 we found t h a t the o 0 ' o 

cross-sections agreed t o w i t h i n f i v e per cent. These r e s u l t s are 

represented i n f i g u r e (2.2) together w i t h the experimental observa-

t i o n s f o r these cross-sections. 
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Parameterisation of the P]_]_ P a r t i a l Wave 

The extent of the disagreement of a p e r i p h e r a l c a l c u l a t i o n of the 

TV"p K + n t o t a l cross-sections using a l a r g e s c a t t e r i n g 

l e n g t h (a ° > l ) compared w i t h the experimentally observed values 

i s c l e a r l y demonstrated i n f i g u r e (2.2). This disagreement may 

be due t o the assumption of dominance of the p e r i p h e r a l i n t e r 

a c t i o n over the whole range of values f o r the squared momentum 

t r a n s f e r ( ^ ) considered i n determining these cross-sections. 

However, as already mentioned, the c e n t r i f u g a l b a r r i e r s h i e l d s 

s t a t e s of nigh angular momentum from the unknown short range f o r c e s , 

and so f o r these states the amplitudes should be w e l l approximated 

by processes i n v o l v i n g only long range i n t e r a c t i o n s , t h a t i s by 

processes which give r i s e to the s i n g u l a r i t i e s close t o the 

phy s i c a l r e g i o n . This p h y s i c a l region i s bounded by the threshold 

value f o r the <5 N f i n a l s t a t e , and the s i n g u l a r i t y nearest t o t h i s 

i s the pole coming from the s i n g l e pion exchange diagram. I t 

f o l l o w s , t h e r e f o r e , t h a t i n attempting to improve the r e l i a b i l i t y 

of the cross-section c a l c u l a t i o n one might s t i l l assume t h a t t h i s 

p e r i p h e r a l diagram should give reasonable estimates f o r the 'higher 

p a r t i a l waves', defined i n terms of the o r b i t a l angular momentum of 

the f i n a l s t a t e , although t h i s may not be the case f o r the lower 

p a r t i a l waves. 
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I n p r a c t i c e we s h a l l take 'higher 1 to mean a l l waves except t h a t 

corresponding t o the f i n a l s t a t e w i t h the lowest value of o r b i t a l 

angular momentum, i . e . the cr N S-state. By p a r i t y conservation 

t h i s corresponds to the P i n i t i a l 7\ N s t a t e and since the 
C. J — _L 

two pions are considered to be i n a pure 1 = 0 s t a t e t h i s w i l l be 

the P 2 J _ 1 2 1 - 1 ( i , e- t h e p n ) 7 ( 1 5 s t a t e . Prom t a b l e (2.1), 

i n which the p e r i p h e r a l c o n t r i b u t i o n s t o the IT p ? r + "K ~n t o t a l 

c r oss-section are given f o r values of the angular momentum of the 

i n i t i a l s t a t e , i t i s seen t h a t the c o n t r i b u t i o n f o r t h i s P̂ ^ 

i n i t i a l s t a t e (which i n the n o t a t i o n of the l a s t s e c t i o n i s the 

f ^ "KN-=> 3- N p a r t i a l wave) gives by f a r the l a r g e s t e f f e c t . 

TABLE 2.1 

i 
212 Mev 268 Mev 324 Mev 375 Mev 

0+ 0.008 0.047 0.098 0.135 
" 1+ 0.002 0.004 0.009 0.013 

2+ - - 0.001 0.003 

1- 0.182 0.638 0.970 1.171 

2- 0.007 0.035 O.O69 0.095 

3- - 0.005 0.010 0.017 
^Tx i n mb 0.210 0.778 1.257 1.582 
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I f we are not t o assume t h a t the p e r i p h e r a l i n t e r a c t i o n i s dominant 
2 2 

f o r the P amplitude we must derive some form f o r f (W , ) 

which i s suggested by a phenomenological study of t h i s i n e l a s t i c 

process. We s h a l l do t h i s i n two stages. F i r s t l y , we must 

n o t i c e t h a t the expansion of the i n v a r i a n t s c a t t e r i n g amplitude 

i n t o p a r t i a l waves introduces c e r t a i n kinematic s i n g u l a r i t i e s . 

These can be determined f o r each wave, and from Appendix I I I we see 
2 2 

t h a t f £ + can be w r i t t e n i n terms of hg+(\} fa~ ) , the p a r t i a l wave 

amplitude f o r 7T IT cr N which i s f r e e from r i g h t hand kinematic 

s i n g u l a r i t i e s , i n the form 
e± tt w v E + m v^«4;; 

Secondly, i n order to derive a phenomenological form f o r h + we 

must consider the dynamical s i n g u l a r i t i e s of t h i s amplitude. We 

are concerned w i t h the c a l c u l a t i o n of cross-sections f o r values of 

the i n c i d e n t pion k i n e t i c energy up t o 400 Mev, which i s the th r e s h o l d 

f o r N* production. Below t h i s t h r eshold i t w i l l be assumed t h a t 

the only f i n a l s t a t e r e a c t i o n between the three p a r t i c l e s i f ,K ,N 

i s the i n t e r a c t i o n between the two pions so t h a t the only r i g h t hand 
2 2 

dynamical s i n g u l a r i t y of h ^ ± w i l l be the cut i n or from 4 f*- to 

i n f i n i t y . By U n i t a r i t y the phase of the amplitude on t h i s cut w i l l 

j u s t be the phase of the two-pion i n t e r a c t i o n S O ° the e l a s t i c 1 = 0 , 

S-wave pion-pion phase s h i f t . We can make use of t h i s i n the 

f o l l o w i n g way. I f we define the f u n c t i o n T(<T ) such t h a t 
T ( ^ ) = C — 1 J -(2-44) 
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and i g n o r i n g i n e l a s t i c c o n t r i b u t i o n s to the pion-pion i n t e r a c t i o n 
2 2 -1 2 above the f i r s t i n e l a s t i c threshold 0" 5: l 6 y * , then T ( 0 " ) has 

the same phase S q ° as h ̂  + 0 n the r i g h t hand c u t , a.nd t h e r e f o r e 
2 

the product h^ +.T has only the l e f t hand s i n g u l a r i t i e s i n W and 
°" . Thus, f o r a f i x e d value of the square of the o v e r a l l centre 

2 ^ 

of mass energy W = V/ ( s a y ) , the p a r t i a l wave amplitude 
2 2 

h (W , cr ) may be w r i t t e n i n the form 
£ + N 0 ' 

* V " J ——r 1 1: ^ ' - ( 2 . 4 5 ) 

I f the integrand of t h i s equation were known, the i n t e g r a l could 

be evaluated and would provide us w i t h the f u n c t i o n a l form of h 
I + 

U n f o r t u n a t e l y , t h i s integrand i s not known and so to proceed'further 

we s h a l l assume t h a t the r i g h t hand side of equation ( 2 . 4 5 ) can be 
2 

approximated by a constant C f o r each value of W • i n which case 

we o b t a i n 
h ^ +(W o

2, cr2) = C. T _ 1 ( tr 2) - ( 2 . 4 6 ) 

This approximation of the i n t e g r a l over the l e f t hand cut by a 

constant i s the same as t h a t used i n d e r i v i n g the Chew-Mandelstam 

e f f e c t i v e range formula from the one pole approximation of equations 

( 2 . 4 1 ) and ( 2 . 4 2 ) by assuming t h a t the d i s c o n t i n u i t y across the cut 
2 

can be approximated by a d e l t a f u n c t i o n s i n g u l a r i t y a t 0" = - =o . 

Unlike the other approximations made i n d e r i v i n g t h i s model, which 

were based on p h y s i c a l i n t u i t i o n , t h i s assumption i s made because 
2 2 

of a lack of knowledge of Im h + ( ^ 0 > °~ ) f ° r negative values of 
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& , and i s , t h e r e f o r e , a possible source of e r r o r . We s h a l l 

r e t u r n to t h i s p o i n t again i n the next chapter. 

I t should be noted t h a t T( S" ) as defined i n ( 2 . 4 4 ) i s the 

Omnes-Mushkelishvilli form f o r the D-function a r i s i n g i n an N/D 

s o l u t i o n f o r the 1 = 0 , S-wave pion-pion s c a t t e r i n g amplitude. 

Hence, combining equations ( 2 . 4 3 ) and ( 2 . 4 6 ) the phenomenological 

form which we s h a l l use f o r the p a r t i a l wave amplitude corresponding 

to the P ^ i n i t i a l s t a t e i s 

-Kw\0 = 5_.fpi.± - ( 2 . 4 7 ) 

2 

where C i s an a r b i t r a r y constant f o r each value of V/ . We can 

adjus t t h i s constant to o b t a i n a good f i t to the data f o r the 

iK p ~K n t o t a l cross-sections a t each value o f the i n c i d e n t 

pion k i n e t i c energy and i n t a b l e ( 2 . 2 ) we l i s t these values of C f o r 

the one pole approximation t o the pion-pion amplitude given i n the 

l a s t s e c t i o n . 

TABLE 2.2 

TT i n Mev c 2 

240 0.5 + 0.5 

268 1.9 + 1.9 

296 4.3 + 3.0 

324 9-7 + 3.5 
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With the freedom of choosing the value of C at each energy the 

t o t a l cross-sections can be reproduced f o r p r a c t i c a l l y any 1 = 0 

S-wave pion-pion phase s h i f t w i t h a s c a t t e r i n g l e n g t h which i s 

e i t h e r large or small. Thus, t h i s model which should be a b e t t e r 

approximation t o the amplitude f o r the process Tt~p-*- 7 T + " ~ n than 

the unmodified pole approximation has the advantage t h a t i t can 

r e c o n c i l e a large pion-pion s c a t t e r i n g l e n g t h a o° w i t h the data 

f o r the i n e l a s t i c t o t a l cross-sections. On the other hand, by j u s t 

f i t t i n g t o the t o t a l cross-sections, the model i s unable to give us 
o o 

any i n f o r m a t i o n on the shape of the 1 = 0, S-wave pha,se s h i f t o o 

2 

since one i n t e g r a t e s over the whole allowed range of o" . I t i s 

c l e a r l y seen, however, t h a t t h i s model i s also a p p l i c a b l e to the 

study of the d i f f e r e n t i a l cross-sections given by JJClko-1-
2 

which are defined a t each value of _ f l and c . j n the next 

chapter we s h a l l discuss the values f o r the pion-pion phase s h i f t 

obtained by f i t t i n g the experimental data f o r the d i f f e r e n t i a l 

cross-sections from t h i s model, and then compare these r e s u l t s w i t h 

the values obtained from some other t h e o r e t i c a l c a l c u l a t i o n s . 
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I l l - DIFFERENTIAL PRODUCTION CROSS-SECTIONS & THE PION-PION INTERACTION 

1. D i f f e r e n t i a l Pion-Production Cross-Sections 

I n the past few years some extensive experimental analyses have 

been performed f o r the s i n g l e pion-production processes irN->"^T N 

at low energies. For instance Barish et.al-'^ have measured the 

d i f f e r e n t i a l cross-sections f o r p o s i t i v e pions, protons and 

neutrons r e s u l t i n g from i n e l a s t i c Tr"p c o l l i s i o n s a t 310 Mev t o 

454 Mev i n c i d e n t pion k i n e t i c energy. The pion source was an 

i n t e r n a l t a r g e t of the Berkeley 184 in c h synchro-cyclotron and 

the pion beam was focused a t a l i q u i d hydrogen t a r g e t . The 

energy d i s t r i b u t i o n s of the f i n a l s t a t e p a r t i c l e of i n t e r e s t were 

measured at a series of angles defined i n the l a b o r a t o r y frame f o r 

-fl +n n, "rt°rt°n, T\ rc°p f i n a l s t a t e s . I t was observed t h a t the 

d i s t r i b u t i o n s of the f i n a l s t a t e nucleon show a strong preference 
— o o 

f o r low centre-of-mass neutron energies i n both K K n and n n n 

f i n a l s t a t e s . This e f f e c t was not present i n the observed proton 

d i s t r i b u t i o n f o r the TV 7t°p r e a c t i o n which, i f one assumes the pion-

pion i n t e r a c t i o n i s responsible f o r the enhancement of these 

d i f f e r e n t i a l cross-sections, corresponds t o a dominant 1 = 0 pion-

pion i n t e r a c t i o n . This i s because the + T ) s t a t e i s a 

combination of a l l three i s o t o p i c spin states I = 0, 1 and 2, and 

( -fi° of the 1 = 0 and 2 sta t e s w h i l s t ( TC n°) i s a combination 

o n l y of the 1 = 1 and 2 s t a t e s . 
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The observed peaking of the neutron d i s t r i b u t i o n a t the lowest 

neutron centre of mass energy ( i . e . the highest a v a i l a b l e values 

of the pion-pion energy ) was also observed by K i r z et a l l f a f o r 

the process "K p-> T T + t V
 n a t i n c i d e n t pion k i n e t i c energies 

between 550 and 450 Mev. This i s a d e f i n i t e d e v i a t i o n from the 

behaviour expected on the basis of a s t a t i s t i c a l (phase-space) 

d i s t r i b u t i o n or a p e r i p h e r a l model c a l c u l a t i o n . A f u r t h e r p o i n t 

of i n t e r e s t i s the apparent absence of any observable e f f e c t s of 

the very strong 1 = 0 low energy pion-pion i n t e r a c t i o n suggested 

by the r e s u l t s of Abashan, Booth and Crowe I Z . That i s , there i s 

no evidence of a 'bump' i n the d i s t r i b u t i o n s corresponding t o low 

values of the pion-pion t o t a l energy (<r ) which i s so marked i n 

the ^He d i s t r i b u t i o n s i n proton-deuteron s c a t t e r i n g . We s h a l l 

show i n t h i s s e c t i o n t h a t these d i s t r i b u t i o n s may be explained i n 

terms of the model f o r the TT p-s» ~K+K n t r a n s i t i o n amplitude which 

was proposed i n the l a s t chapter. 

The model consisted of t a k i n g the p e r i p h e r a l c o n t r i b u t i o n f o r p a r t i a l 

waves corresponding to a l l values of the crN f i n a l s t a t e o r b i t a l 

angular momentum except the lowest - the f ^ p a r t i a l wave amplitude -

which i s defined by the Ŝ - 8f N f i n a l s t a t e and the P-̂ - * N i n i t i a l 

s t a t e . For t h i s p a r t i a l wave a phenomenological form was proposed 

which, w i t h the p e r i p h e r a l c o n t r i b u t i o n s to the other waves, was 

able t o reproduce the experimental data f o r the TT p _ > "^ +^ n t o t a l 

cross-sections. This was possible because the la c k of knowledge of 

the f amplitude f o r negative values of cr^ allowed us to introduce 
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a parameter t o approximate the l e f t hand i n t e g r a l i n equation ( 2 . 4 5 ) • 

The parameter, we assumed, had the value necessary so t h a t the p a r t i a l 

wave sum ( 2 . J 2 ) f i t t e d the experimental data. I f , as we b e l i e v e , 

t h i s model i s a good approximation to the if p-*""f + K n t r a n s i t i o n 

amplitude at low energies and low momentum t r a n s f e r , i t should be 

possible t o reproduce a t l e a s t the main features of the neutron 

energy d i s t r i b u t i o n s found by Barish et a l a t various s c a t t e r i n g 

angles. Also since these d i s t r i b u t i o n s are described i n terms of 
2 

v a r i a b l e s which define d e f i n i t e values of & , i t may be possible to 

deduce the shape of the pion-pion 1 = 0 , S-wave phase s h i f t £ o°(cr 2) 

near t h r e s h o l d . This was not possible by f i t t i n g to the t o t a l cross-

sections alone since i n t h a t case an i n t e g r a t i o n over the whole allowed 

range of values f o r & was r e q u i r e d , and the parameter C was used to 

'normalise' the r e s u l t to the experimental value. 

The i n e l a s t i c neutron energy d i s t r i b u t i o n s f o r the process iv p - ^ n + ^ n 

at various values of the s c a t t e r i n g angle measured i n the l a b o r a t o r y 

frame of reference are c a l c u l a t e d from our model i n the f o l l o w i n g way. 

I f dJL = d ( C o s 0 ) d ^ and d J i L = d( Cos <S>L)d ̂ L where {&,</>), ( G^, <f> 

are the s c a t t e r i n g angles measured i n the o v e r a l l centre of mass frame 

and the l a b o r a t o r y frame r e s p e c t i v e l y , then i n Appendix I I i t i s shown 

th a t 

where TVT i s the k i n e t i c energy of the outgoing neutron and P„, * 

are the magnitudes of the three momenta of the i n g o i n g pion and out-
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soing neutron a l l measured i n the l a b o r a t o r y frame of reference. 

(As before p,p' are the magnitudes of the r e l a t i v e three momenta 

of the i n i t i a l pion and proton, and f i n a l two pion system cr and 

neutron states measured i n the o v e r a l l centre of mass system.) 

Therefore from (3.1) and ( 2 . 3 1 ) we have t h a t 

= . ! # a C ^ 0 f ( t ^ . - l f ( €. o,3T^)r | & ^ ^ - ( 3 . 2 ) 

where C i s the i n e l a s t i c cross-section defined i n terms of x 
q u a n t i t i e s measured i n the l a b o r a t o r y frame of reference. For 

the Tv p -> «r N p a r t i a l wave amplitudes we s h a l l use the form 

derived i n the l a s t s e c t i o n , i . e . 

f o r a l l \L+ and a l l except 1-, 

where % -

and | a » - V 3 J S j P ^ -gl - (3.4) 

and f o r f ^ _ we s h a l l assume the form 

( 3 - 5 ) 

where D ° i s the D-function a r i s i n g i n an N over D s o l u t i o n f o r o 0 

Q 

the pion-pion 1 = 0 , S-wave amplitude A q . From these equations 

i t i s c l e a r t h a t each p a r t i a l wave w i l l have the phase S o° (the 

1 = 0 , S-wave pion-pion p h a s e - s h i f t ) since t h i s i s the phase of A 
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i n (5.4) and l/D ° i n ( J . 5 ) - Also each p a r t i a l wave other than 

f n w i l l have a f a c t o r s i n S ° since t h i s i s a f a c t o r of A °. l - o o 

We wish to study the d i f f e r e n t i a l cross-sections c l H / J T * J -ft~u given 

by the model f o r various assumed forms of the pion-pion S-wave 

i n t e r a c t i o n . I n order t h a t the phase-shift has s u f f i c i e n t 

freedom we use a two pole s o l u t i o n of the N over D equations so 

t h a t 

E l a s t i c u n i t a r i t y f o r the pion-pion amplitude A o° requires t h a t 

^ A°° - ^ W - c r * > 4 - - ( 3 - 7 ) 

which i n terms of the Sf over D decomposition ( A
0° = W/̂ ) im p l i e s 

t h a t 

- m - ' * ^ , + _ (3.8) 

so t h a t 

and t h e r e f o r e 

A » > , = l ^ g l V ^ / - ( 3 . 1 0 ) 

(3j?) 
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By t a k i n g d i f f e r e n t values f o r <r*, Y^, f 0 , various forms 

f o r the amplitude A^0 and hence f o r the phase-shift cT 0 may be 

produced. For each set of values o"*", o"̂ -, 1*2' w e evaluate 

the p a r t i a l wave amplitudes ( 3 * 3 ) and ( 3 ' 5 ) and determine the value 
2 

of the parameter C by f i t t i n g the p a r t i a l wave sum ( 2 . 3 2 ) to the 

value of the t o t a l cross-section given by Barish et a l . A s e l e c t i o n 

of these s o l u t i o n s i s given i n ta b l e (3»l) and the phase s h i f t s 

generated by these pole p o s i t i o n s and residues are given i n f i g u r e 

(1.1). 

Equation (3«2) then allows us t o i n v e s t i g a t e the d i f f e r e n t i a l cross-
iLer 

sections , ^ given by our model f o r various assumed forms of 

the pion-pion 1 = 0 , S-wave i n t e r a c t i o n . I n f i g u r e (3«2) we show 

the neutron energy d i s t r i b u t i o n s a t various angles f o r the process 

T p -» ~K+ n n at 374 Mev i n c i d e n t pion energy which are computed 

f o r the phase s h i f t s shown i n f i g u r e ( j . l ) . I t should be mentioned 

t h a t , i n f i t t i n g to the t o t a l cross-section, only the absolute value 

of C i s determined, not the s i g n , so t h a t i n d e r i v i n g the d i f f e r e n t i a l 

cross-sections both the values t C must be considered. We show i n 

f i g u r e (3«2) the d i s t r i b u t i o n s corresponding t o the sign of C which 

gives the 'b e t t e r ' agreement w i t h the experimental data. 
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TABLE j . l 

Solution 
Number 

Pole Positions 
2 ? 

^ 1 S 
Residues 
r r 
1 1 2 

Scattering 
1ength a 0 

0 

ICI 
at 

374 Mev 

(C [ 
at 

417 Hev 

1 -36 -4 120 -36 -1.66 3.68 3-48_ 

2 -36 -4 48 -12 -0.33 6.5"6 

3 -156 -36 520 -128 +O.32 1.08 

4 -596 - 168 0 +I .29 4.00 

From these results i t may be seen that the various two-pole solutions 

f o r the pion-pion amplitude give widely d i f f e r i n g shapes f o r the 

d i f f e r e n t i a l cross-sections. One of these, solution 1, i s i n good 

agreement with the experimental data. This solution can reproduce 

the preference the neutron d i s t r i b u t i o n shows f o r low centre of mass 

momentum, although i t should be noted that i t does not reproduce the 

increase i n the d i f f e r e n t i a l cross-sections near threshold which i s 

shown by the experimental .lata at values of the laboratory scattering 

angles above 30°• However a... discussed l>y Barish et a l t h i s increa.se 

i s perhaps not due to the process ~rc p ^ + n but to some back

ground effects and i n general the data below a value of the neutron 

k i n e t i c energy T,T around 4-0 Hev should be treated with reservations. 

http://increa.se
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Experimentally the peaks i n the in e l a s t i c neutron di s t r i b u t i o n s at 
low centre of mass momenta seem to disappear at incident pion energies 
above 450 Kev. I t has been suggested that t h i s behaviour i s suggestive 
of a nucleon isobar threshold effect rather than a strong 1 = 0 pion-
pion interaction. In the derivation of our model we have considered 
the f i n a l state pion-pion interaction i n d e t a i l , but unlike the work 
of Goebel and Schnitzer 1 7, e x p l i c i t consideration of the f i n a l state 
pion-nucleon interaction has been neglected. We believed t h i s could 
be j u s t i f i e d so long as we were considering values of the incident 
p i on ki n e t i c energy below 4^0 Kev, which i s the threshold f o r N*(3»3) 
production. Even above th i s threshold, we f i n d there i s f a i r 
agreement of the data f o r i n e l a s t i c neutron distributions at 417 Kev 
with the distributions computed from our model using the pion-pion 
parameters of solution 1. These d i s t r i b u t i o n s , shown i n figure 
(3.3), appear to indicate therefore that i n the context of our model, 
H* production i s not an important contribution to these d i f f e r e n t i a l 
cross-sections at 417 Mev. 

The modification of the peripheral model by pararneterising the 

'lowest p a r t i a l wave' f ^ , which i s the amplitude most l i k e l y to be 

poorly approximated by the peripheral interaction alone has enabled 

us to f i t the low energy experimental data quite well using a specific 

pion-pion phase s h i f t . The detailed consideration of the pion-pion 

interaction has allowed us to obtain information about the pion-pion 
2 

phase s h i f t over a range of values of . This i s unlike the work 

of many authors who use the peripheral model to obtain only an 
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average value of the pion-pion cross-section; and i t also d i f f e r s 

from the s t a t i c motel of Goebel and Schnitzer which i n effect assumes 
2 2 

that the S-wave pion-pion cross-section is proportional to X s / °" 
^ 2 2 2 and the P-wave cross-section to ^p ( <3" _ 4^. )/& with Xs, 

constants. 

I t should be noted that because of the simple two pole solution f o r 

the pion-pion amplitude and the li m i t e d computing time available v/e 

are unable to say that the phase s h i f t given by solution 1 i s the 

only type of pion-pion interaction which i s compatible with the 

data, even though from the large number of phase s h i f t s considered 

this was the only satisfactory solution. Also the approximation of 

the f ^ p a r t i a l wave i n terms of the parameter C would have to be 

j u s t i f i e d more f u l l y before we could safely i n f e r from the model that 

the d i f f e r e n t i a l pion-production cross-sections were consistent with 

one par t i c u l a r 1 = 0 S-wave pion-pion interaction. 

A close study of the d i f f e r e n t i a l cross-sections computed from our 

model does however indicate some f a i r l y general results. I f , as has 

been supposed, a l l the ic N 3 ? N p a r t i a l waves except f are v/e 11 

approximated by the peripheral interaction then certain approximate 

bounds can be placed on | Sin &0°\ ".nd |f | by f i t t i n g to the 

experimental data. For instance 
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and I f J i s an increasing function of «" " such that 

2 < 1 **/*)l/|$J»l=«--v^|£2.r at T = 374 Mev - (3.12) 

These relations hold irrespective of the detailed parameterisation 

f o r f but are a consequence of 

i. assuming a l l p a r t i a l waves except f ^ a.re reasonably-

approximated by the peripheral diagram; and 

ii. f has the phase o 0 f o r physical values of °~ . 

The phase s h i f t given by solution 1 i s seen to sa t i s f y these bounds 

and, as the solution which corresponds to the best f i t to the 

d i f f e r e n t i a l cross-sections determined from our model (as formulated 

i n the previous sections), i t i s worthy of some discussion. I n the 

next section we shall compare this 1 = 0 , S-wave phase-shift with 

results obtained from some other theoretical calculations, and also 

discuss phase-shifts which are compatible with modifications to the 

parameterisation of the model. 
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Comparison with some other studies of the Pion-Pion Interaction 

The pion-pion 1 = 0 S-wave phase s h i f t given by solution 1 i n the 

la s t section has some int e r e s t i n g features. 

i . I t has a scattering length a^ 0 = -1 .7 ( i n natural 

u n i t s ) . 

ii. S o° passes through zero near ^ = 10 / / -^ 

and i i i . S^0 reaches a maximum of 50° near ^ = 16 ^. 

The negative scattering length of -1 .7 i s i n agreement with some 

values which have been obtained from forward pion-pion elast i c 
•2.0 

scattering dispersion relations. For instance L J Rothe 

evaluated the high energy contribution to the dispersion integral 

by assuming that the high energy behaviour of the forward 

scattering amplitude i s dominated by a few leading crossed-channel 

Regge poles and used the available experimental information on the 

t o t a l cross-sections to compute the low energy contribution. He 

found the scattering length a 0 to have a value of -1 .7 
o -U.j 

As a check on his method he evaluated the 1 = 1 S-wave amplitude 

at threshold and found a ̂  to have the small value of -0 .4 compared 

to the value of zero imposed by the Pauli Principle. 

Pisut, .Bona and Lichard have also computed the S- and P- wave 

pion-pion scattering lengths from dispersion relations f o r forward 

scattering. Their method damps the high energy contribution to 
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the dispersion integral but instead requires a knowledge of the 
2 

amplitude at ̂  = 2 ( i . e . a subtraction constant). This constant 

was calculated from dispersion relations using the pion-pion phase 

s h i f t s of Wolf "which, i t should be noted, contain the £L°(720 Mev) -

an S-wave resonance. They obtained the results a Q° = -1.3 - 0 .6 , 

a Q
2 = 0.38 - 0.2 and a 1 = 0.037 - 0.004- Pisut, Bona and Lichard 

is 

also considered the sum rules proposed by Adler from Current Algebra 

considerations which relates the g^/gy r a t i o to the TTTC cross-

section, i . e . 
*T if-rx ^ ° ° / - ( 3 . 1 3 ) 

where S" + ( c" + + ) i s the t o t a l cross-section f o r scattering of a 0 0 

zero mass T (7V +) on a physical 7C+ meson, and g^ i s the r a t i o n 

alised renormalised t l coupling constant. They observed that i f 

the above values f o r the scattering lengths are used th i s sum rule 

may be s a t i s f i e d with an I = 0 S-wave phase s h i f t which i s i n i t i a l l y 
negative then turns over and becomes large and positive i n the region 

2 2 

o" 25 • This i s similar to the phase s h i f t given by our 

solution 1. 

I t should also be said that there are certain s i m i l a r i t i e s between 

properties i . and i i . of th i s solution 1 and the phase-shifts 

obtained by Lovelace, Heinz and Donnachie 2 1 using dispersion 

relations f o r 7v N scattering i n the backward direction. They used 

a method due to Atkinson and considered the r e l a t i o n 
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2 where "0 = q , the square of the r e l a t i v e three momenta and 
V o = - ̂ + ^•//4./n~ i s the position of the single nucleon pole. 
Im F ( V ) i n the second term i s the imaginary part of the backward 
scattering KH amplitude and G(*v') i s the backward amplitude f o r 
the process '<*"K-*NN. The 'discrepancy' which i s the l a s t term 
on the r i g h t hand side of ( 3 . I 4 ) , i s obtained by using the experi
mental values f o r the other terms. 

Lovelace, Heinz and Donnachie used the data on the XN phase s h i f t s 

up to 600 Mev and the backward d i f f e r e n t i a l cross-sections f o r 

higher energies to put bounds on the amplitudes. Using the (+) 

isospin combination which gives the 1 = 0 NN -> ~KH amplitude on the 

l e f t hand cut, the phase between the i v n and M thresholds may be 
c 0 i d e n t i f i e d with 6 i f one ignores i n e l a s t i c effects and the o 

contributions from the higher pion-pion p a r t i a l wave phase-shifts. 

They found from t h i s that two types of phase-shift 5" 0 s a t i s f y the 

experimental information: one with a negative scattering length 

which turns up through zero, and the other with a positive scattering 

length. The former phase-shift, therefore, has properties similar 

to i . and i i . of our solution 1. However they also found that both 

types of phase s h i f t resonate ( i . e . pass through ^/2) which i s 

contrary to property i i i . of our solution 1. This they conclude 

i s evidence 'beyond a l l reasonable doubt' f o r the S-wave 

o~ -resonance. 
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In connection with the above i t should be noted that the property 

i i i . of our solution 1 is not r e a l l y determined by f i t t i n g the pion-

production cross-sections, which uses values of ̂  Q° from threshold 

to <3" = 420 Mev, but comes from our parameterisation of the pion-

pion amplitude i n terms of a simple two-pole N function. I t i s 

possible that by using a more sophisticated analysis f o r the pion-

pion S-wave amplitude rather than t h i s two pole approximation there 

could exist a resonance above 420 Mev but below th i s value the phase-

s h i f t and D-function would be similar to the two pole solution. 

There i s the further p o s s i b i l i t y that i f the G~-resonance does exist 

and the phase-shift i s of the 'turn-over' type then by analogy with 

the it N-P̂ ^ amplitude there may exist a CDD pole i n the pion-pion 

scattering amplitude . This ODD pole would affect the parameterisa

t i o n , and perhaps the results, of our model a.nd we shall consider 

t h i s p o s s i b i l i t y i n the next section. 

There have been numerous other theoretical predictions of the 1 = 0 

S-wave pion-pion interaction, many of them i n disagreement with our 

solution 1. We shall discuss these i n some d e t a i l l a t e r . However, 

the corroboration of the results obtained from our model f o r pion-

production and the results of forward pion-pion dispersion relations 

encourages us to take another look at two important methods of 

obtaining information on the pion-pion amplitude, namely the pion-

nucleon p a r t i a l wave dispersion r e l a t i o n 'discrepancy' analysis and 

the ABC effect i n the Ĥe di s t r i b u t i o n s i n proton-deuteron scattering, 

to see whether the results of these analyses could be compatible with 
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the solution 1. 

For the 'discrepancy' analysis we use the dispersion r e l a t i o n 

derived by T D Spearman" f o r S-wave pion-nucleon scattering 

amplitudes. These relations emphasise the better known low 

energy pion-nucleon data ( i n pa r t i c u l a r the scattering lengths) 

and stress the low energy contribution from the two pion exchange 

term. This i s done by defining the function 

V " - - (3.15) 

i i 

where ^ = I -1—(«"** S) 3 1 - (j . 1 6 ) 

and f i s the K N S-wave scattering amplitude with isospin I i n 

which case by considering the si n g u l a r i t i e s of f ^(s) and B(s) we 

can write £*(j.» ,-.S» RT,CI. C'M 

" J isO'iU'''-̂  s, J . I wn'ii n'-o 

where A f ^(s') i s the discontinuity i n f ^ ( s / ) across the c i r c l e o o 
/ 2 \ id 

s = (m - l ) e , and R q i s the residue of a possible pole at the 
o r i g i n . Since 

. + t^CM *, ~A s « c — r " ( 3' 1 8 ) 

a l l the terms on the l e f t hand side of (3.17) can be evaluated i n 

terms of the low energy pion-nucleon data f o r values of s above 
2 

(m + l ) = 59•6 to 76 (say) and by using the crossing relations 
o 

for values of s below (m - l ) = 32.2 to 20 (say). The l e f t hand 
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side of (3.17) therefore can be evaluated i n the regions 

20 s 52.2 
- (3.19) 

and 59.6 <. s <c. 76 

The c i r c l e cut arises from the crossed channel process TTW Ml i n 

such a way that low energies i n t h i s channel correspond to a range 

of values on the f r o n t of the c i r c l e . Thus the fro n t of the c i r c l e 

j ^ l ^ 60° i s re s t r i c t e d to low energy crossed channel reactions and 

arises primarily from the two pion exchange. The contribution to 
+ 

the discrepancies JD~(s) given by thi s part of the c i r c l e to the 

t h i r d term on the r i g h t hand side of (3«17)> JD^(s), may be 

writ t e n as 
- (3 .20) 

v/here ^ " ( s j t ' ) are appropriate kernels and f ^ ( t ' ) are the relevant 

h e l i c i t y amplitudes f o r the 'crossed' process ~*"NFT. I t can be 

argued that t h i s term «f) (s) should contain the predominant energy 

dependent effect of the discrepancies J9(s) i n the regions (3•19) 

corresponding to the nearby s i n g u l a r i t i e s , i . e . the long range forces. 

I t may be reasonable therefore to approximate the other terms on the 

ri g h t of equation (3.17) by a constant and the energy dependence of 

the l e f t hand side may be equated to ( s ) . I n turn t h i s may 
^ I 

provide information on the pion-pion phase-shift 6 j since by 

u n i t a r i t y , the phase of the h e l i c i t y amplitude f - ^ ( t ) i n the region 

4 /*• ̂  a; t ^ 16 /* w i l l be £ ( t ) . This i s also the phase of 



95. 

(D "*") where D ^ ( t ) i s the D-function a r i s i n g i n an N over D J J 
solution f o r the pion-pion scattering amplitude. Jt) '"(s) 

corresponds to isospin I = 0 i n the itn-^NN channel i n which, from 

the Pauli Principle only even values of the angular momentum J occur 

For low energies i n this channel, therefore, one might expect only 

the S-wave, f+°> should be important so we attempt to f i t the data 

f o r «5C)+(s) using only t h i s S-wave term. For thi s case f °(t) and 

D °(t) ̂  have the same phase on the r i g h t hand cut so that the 

product f+°.Do° has only the l e f t hand s i n g u l a r i t i e s . Writing a 

dispc-rsicn r e l a t i o n f o r the product f ,D with two subtractions to 

improve the convergence we obtain 

f 0 =. 7T£ ( T ) f 3>> ̂ f > > + * & ^ F > " ) ) t"-- o 

t =0 

- (3-21) 

30 where the subtraction constants have been calculated by Menotti, 

and Im f °(t) i s determined f o r 0 < t ^ 4 - l/m^ hy the Born 

term and f o r t < 0 by the analytic continuation of the pion-nucleon 

data. We can now compare the r i g h t hand side of equation (3 .17) 

with the l e f t hand side given by a constant and equation (3.20) 

using (3.21) f o r d i f f e r e n t forms of the pion-pion D-function. 

'A/hen a one pole approximation to the N/D pion-pion dispersion 

relations was used reasonable agreement was found f o r a pion-pion 

interaction corresponding to solution 4 of the l a s t section, 

iiowever, the one pole approximation i s too r e s t r i c t i v e to produce 

any but the simplest type of phase-shifts. I t cannot, f o r instance 
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produce a phase-shift which passes through zero. Therefore, i n 

repeating Spearman's analysis we use a two pole approximation to 

the pion-pion amplitude similar to that considered i n the l a s t 

section. With t h i s extra parameterisation of the pion-pion 

amplitude, three general shapes f o r the phase s h i f t & o° are found 

to give agreement with the discrepancy data which i s as good, i f 

not better, than that found by Spearman. The pole positions and 

residues f o r these satisfactory phase s h i f t s (which are sketched 

i n figure (3 -4) ) are given i n table ( 3 . 2 ) . Figure (3»5) shows 

the discrepancies oU(s) generated by these three pion-pion 

solutions. 

Note that solution (a) i s similar to solution ( l ) of the l a s t 

section so that a phase-shift which starts negative (with a negative 

scattering length) and then becomes positive could be compatible with 

both the pion-production data and the forward pion-nucleon dispersion 

r e l a t i o n analysis. This 'turn-over' type of phase-shift was 

previously suggested by Hamilton et a l who employed the conformal 

mapping 

1 - (v + l F 
A = * ^ 
' 1 + (v + l ) 2 

to transform the physical sheet of the v (= q ) plane into the 

i n t e r i o r of the unit c i r c l e \*\\ ̂  1. By approximating N Q ° ( V ) 

by « o + they found two phase-shifts similar to our solutions 

(a) and (b) s a t i s f i e d t h e i r discrepancy analysis. Spearman, i n his 
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a n a l y s i s on the other hand, r e j e c t e d the 'turn-over 1 s o l u t i o n 

since i t d i d not give such a close f i t to the discrepancy data as 

the one pole W-function approximation. However, by i n c r e a s i n g 

the parameterisation of the pion-pion amplitude a i l three 

s o l u t i o n s ( a ) , (b) and (c) are seen to give s a t i s f a c t o r y agreement 

w i t h the data. 

TABLE 5.2 

S o l u t i o n 
Number 

Pole P o s i t i o n s 
2 2 

1 2 

Residues S c a t t e r i n g 
l e n g t h 

o 
a 
0 

a -42 -450 0.7 -6 -0.4 

b -42 -450 0.7 -2.5 1.9 

c -42 -450 0.8 -2 -6.8 

The other evidence f o r the 1 = 0 S-wave pion-pion i n t e r a c t i o n which 

we s h a l l consider i n t h i s s e c t i o n i s t h a t coming from the experiments 

of Abashian et a l on p + d ^ He + 2 A r e a c t i o n s . 'They measured 

the r e c o i l spectum of He ions produced a t a f i x e d angle and f i x e d 

energy of the i n c i d e n t proton and found there was a pronounced peak 

above the phase-space curve i n the momentum range corresponding to 

energies j u s t above the two pion t h r e s h o l d . No such peak was 

observed i n the analogous experiment f o r p + d -*JH+2"K i m p l y i n g 

t h a t i f the peak i s caused by a pion-pion i n t e r a c t i o n , t h i s i n t e r -
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a c t i o n i s i n an I = 0 s t a t e . 

To analyse the data many authors have expressed the f i n a l s t a t e 

i n t e r a c t i o n by an enhancement f a c t o r modifying the phase-space 

d i s t r i b u t i o n This enhancement f a c t o r i s obtained i n the same 

way as we derived a phenomenological form f o r the TV N-»> of N p a r t i a l 

wave h^ ( <5" ) . The amplitude f o r the process p + d -*-̂ He + 2 A 

considered as a f u n c t i o n of o" ̂ , A(cT~), w i l l have a branch cut 
2 2 2 f o r values of <s~ >r 4 ^ i where as before i s the square of the 

t o t a l centre of mass energy of the two pions. I f the only f i n a l 

s t a t e i n t e r a c t i o n considered i s the two pion i n t e r a c t i o n then the 
2 2 2 phase of t h i s amplitude f o r 4/"- ^ -S? 16/* from u n i t a r i t y 

2 
10/* 

d e f i n i n g the f u n c t i o n 

w i l l be <$ o°; where 16/*-^ i s the f i r s t i n e l a s t i c t h r e s h o l d . By 

3 C ^ ) - V\ ^.^)U^) J - (3.22) 

and i g n o r i n g i n e l a s t i c e f f e c t s , the product A.D has only the l e f t 
2 o o hand s i n g u l a r i t i e s i n cr f since D has the phase - a on the r i g h t , 

so t h a t we can w r i t e 

T t t r t l 7 7 " ^ - ( 3 . 2 3 ) t.H. 

w i t h possible subtractions t o ensure the convergence of the i n t e g r a l . 

I n d e r i v i n g a phenomenological form f o r the K of N p a r t i a l wave 

h^ the i n t e g r a l i n equation (2.45) which i s analogous to (3.23) was 
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replaced by a constant. Also i n the 'discrepancy' analysis 

equation (3.23) was discussed i n the form (3.21). I n t h a t case, 

however, the i n t e g r a l could be evaluated "by making an a n a l y t i c 

c o n t i n u a t i o n of the experimental pion-nucleon data t o determine 

the 7T7v NW h e l i c i t y amplitude Im f +°(t /'). For the process 

p + d 5̂»-̂ ::Ie + 2TC the u s u a l l y assumed forms f o r the phase-space 

enhancement f a c t o r s are 

i . | A Q ° I ^ where A q ° i s the pion-pion 1 = 0 

S-wave amplitude 

or i i . I C / D Q ° ( <3"̂ ) j where Do°((r ̂ ) i s the D-function 

a r i s i n g i n an N/D s o l u t i o n f o r the amplitude 

A q ° and C i s a constant. These enhancement f a c t o r s are equivalent to 
o 2 o 2 approximately the i n t e g r a l i n (3- 23) by N Q (s~ ) i n i . (where N ( ) 

i s the W-function corresponding t o D q°( °"^)) and by a constant G i n 

ii. I t has been pointed out by Shearman" t h a t since A ° = N °/D °, e " o o ' o 

so long as W'o° i s a slowly v a r y i n g f u n c t i o n there w i l l be l i t t l e 

d i f f e r e n c e between i . and i i . , i . e . between N/D and C/D. However, 

i f the W-function i s not slowly v a r y i n g i . and i i . w i l l provide very 

d i f f e r e n t types of enhancement f a c t o r , and thex-e i s no way of t e l l i n g 

i f one type i s pr e f e r a b l e t o the other. Unfortunately i f the phase 

s h i f t Sq° passes through zero (such as s o l u t i o n 1 of the l a s t s e c t i o n 

and s o l u t i o n (a) of t h i s ) then assuming the absence of CDD poles, the 

W-function w i l l pass through zero a l s o , and hence i s not a slowly 

v a r y i n g f u n c t i o n to be w e l l approximated by a constant. Thus there 

i s no way of t e l l i n g which o^^he enhancement f a c t o r s i . or i i . - i f 
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e i t h e r - we should use to examine the c o m p a t i b i l i t y of the ' t u r n 

over' type of phase-shift w i t h the ABC e f f e c t . 

One remark might be made here about the ABC e f f e c t . The e x p e r i 

mental data sketched i n f i g u r e (3.6) seem to show a 'dip' a t a value 

of cr = 340 Mev. This 'dip' as v/ell as the threshold peak could be 

reproduced by an enhancement f a c t o r of type i . f o r a phase-shift 

which has a large negative s c a t t e r i n g length and passes through zero 

at cr = 340 Mev, when one ' f o l d s i n 1 the experimental r e s o l u t i o n . 

Thus i f one favours the enhancement f a c t o r of type i . i t should be 

possible f o r the 'turn-over' type of phase-shift to reproduce even 

the small d e t a i l s of the data. However i t must be stressed t h a t 

the enhancement f a c t o r must be j u s t i f i e d much more f u l l y before any 

i n f o r m a t i o n on the pion-pion i n t e r a c t i o n can be deduced. 

This method of deducing enhancement f a c t o r s f o r f i n a l s t a t e e f f e c t s 

by equations of the form (3.22) and (3.23) always has t h i s a r b i t r a r i 

ness unless the i n t e g r a l over the l e f t hand s i n g u l a r i t i e s i s known, as 

i n the case of equation (3«2l) f o r the discrepancies a n a l y s i s . 

Presumably a b e t t e r approximation t o the h^ * N p a r t i a l wave 
3 

amplitude and the p + d He + 2-rc amplitude t h e r e f o r e would be t o 

replace the i n t e g r a l over the l e f t hand s i n g u l a r i t i e s i n (2.45) s-nd 

(3.23) by one or more poles. I n t h i s case we would o b t a i n 
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(z 
(3.24) 

and 

I n the absence of i n f o r m a t i o n on these l e f t hand s i n g u l a r i t i e s we 

can consider the residues and p o s i t i o n s of these poles t o be 

a r b i t r a r i l y chosen to give good agreement w i t h the experimental 

data f o r any of the three types of phase s h i f t compatible w i t h the 

discrepancy a n a l y s i s , i . e . s o l u t i o n s ( a ) , (b) or ( c ) . 

Note t h a t the phase-shifts (a) and (b) s a t i s f y equation ( 3 . 1 l ) , 

the bounds on the pion-pion phase-shift 6 q obtained from the pion-

production data which are independent of the d e t a i l e d parameterisa-

t i o n of h^ , the ~k N ? N p a r t i a l wave. The t h i r d phase-shift 

(c) however, because of i t s r a p i d l y decreasing behaviour would produce 

a sharp peak i n the p K ^ n d i f f e r e n t i a l cross-sections near 
2 2 

<5" = 5 /* • This would occur since a l l the TVIT-*- 2f ~$$ p a r t i a l waves 

other than the wave are approximated by the p e r i p h e r a l c o n t r i b u 

t i o n s which are p r o p o r t i o n a l t o b i n & Q ° - As 6 o ° passes through 

- ~K/2 and approaches - "ft these p a r t i a l waves would o s c i l l a t e between 

zero and some maximum value, thus producing a peak i n the d i f f e r e n t i a l 

d i s t r i b u t i o n s . This peak i s not observed experimentally. Of course, 

i f the phase-shift decreases very r a p i d l y t h i s peak may be so sharp 

t h a t i t would be d i f f i c u l t to detect w i t h i n the experimental r e s o l u t i o n . 

However t h i s would correspond t o an u n r e a l i s t i c a l l y large s c a t t e r i n g 
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l e n g t h and would probably not s a t i s f y the V/igner c o n d i t i o n on the 

slope of the phase-shift. We conclude t h e r e f o r e t h a t t h i s type 

of phase s h i f t ( c ) i s not compatible w i t h the pion-production data. 
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A GDI) Pole i n the 1 = 0 S-Wave Pion-Pion I n t e r a c t i o n ? 

I n the l a s t two sections we discussed a t some l e n g t h the i n f o r m a t i o n 

on the low energy pion-pion i n t e r a c t i o n which may be i n f e r r e d from 

i . the pion production data using the model proposed 

i n Chapter I I 

i i . pion-nucleon p a r t i a l wave d i s p e r s i o n r e l a t i o n 

analysis 

and i i i . the JHe spectrum i n proton-deutaron c o l l i s i o n s . 

By making the simplest parameterisation of the p 7rN-*- & N p a r t i a l 

wave i n terms of the f i n a l s t a t e pion-pion i n t e r a c t i o n , a, 'turn-over' 

type of phase-shift was seen to give reasonable f i t s t o the energy 

d i s t r i b u t i o n s of the i n e l a s t i c neutron i n the -?v_p -»-7v+ n ~n r e a c t i o n 

Also t h i s type of phase-shift was one of three which were seen t o give 

s a t i s f a c t o r y agreement w i t h the 'discrepancy' analysis of the pion-

nucleon s c a t t e r i n g data. However i t was noted t h a t no i n f o r m a t i o n 

could be deduced from the ABC e f f e c t i n the process p + d ^Ke + 2n 

unless assumptions were introduced about the form of the enhancement 

f a c t o r used to modify the phase-space c o n t r i b u t i o n . I t was pointed 

out t h a t these assumptions were s i m i l a r t o those made i n the parameter 

i s a t i o n o f the P-^ TTN-*- O- N p a r t i a l wave i n Section 4 °f Chapter I I , 

and t h a t since we have no i n f o r m a t i o n about the i n t e g r a l s over the 

l e f t hand s i n g u l a r i t i e s i n equations (2.45) and (3-23) we may 

a r b i t r a r i l y assiune t h e i r forms t o be those r e q u i r e d t o f i t the data. 
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\7e see t h e r e f o r e t h a t the two phase-shifts (a) and (b) given by 

the discrepancy analysis which s a t i s f y the f a r i l y general bounds 

( j . l l ) could be compatible w i t h the TT p -9- " ^ + 7 v ~ n d i f f e r e n t i a l 

cross-sections and the ABC e f f e c t . 

So f a r i n t h i s discussion of a two-pion f i n a l s t a t e i n t e r a c t i o n 

i n the various processes 

7T _p TV + TV ~ N 

TV -rt - (3-25) 

pd \e + 2n 

we have ignored the p o s s i b i l i t y of CDD poles i n the 1 = 0 S-wave 

pion-pion amplitude. This p o s s i b i l i t y would a f f e c t the various 

mathematical models used to e x t r a c t i n f o r m a t i o n on the pion-pion 

i n t e r a c t i o n from these processes and may also produce r a t h e r 

d i f f e r e n t r e s u l t s . The e f f e c t t h a t a CUD pole would have on the 

various models may be demonstrated i n the f o l l o w i n g way. 

For the case of e l a s t i c s c a t t e r i n g of a s t a t e |a> t o a s t a t e 

the D-function i n an N over i) decomposition f o r the amplitude, i s 

constructed t o have only the r i g h t hand s i n g u l a r i t i e s ( a r i s i n g from 

e l a s t i c u n i t a r i t y ) and the N-function has the remaining s i n g u l a r i t i e s -

n e c e s s a r i l y on the l e f t . However when the s t a t e | a > can s c a t t e r 

i n t o other states \ b > the u n i t a r i t y c o n d i t i o n implies the e x i s t 

ence of other r i g h t hand branch points (and branch cuts) corresponding 
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t o the thresholds f o r i n e l a s t i c processes. Bjorken has extended 

the N over D decomposition t o construct the coupled s c a t t e r i n g 

amplitude f o r these processes so t h a t they s a t i s f y a n a l y t i c i t y 

and u n i t a r i t y . He w r i t e s the amplitude f o r the s c a t t e r i n g process 

.( -J 
• 2-

i —s— j , . (cr ) , i n terms of mat r i x N and I) f u n c t i o n s as 

A i ^ ) = N c ^ ) - (3.26) 

where the N-matrix elements N „ have only the l e f t hand s i n g u l a r 

i t i e s and the D-matrix elements have only the r i g h t hand s i n g u l a r 

i t i e s such t h a t 

where Pi^) are k i n e m a t i c a l f a c t o r s (such as + -—- \ — ? 
' J v 1 6 ^ * °" 

f o r pion-pion s c a t t e r i n g ) . The subscripts i and j range over a l l 

the coupled channels, but f o r the present example i t w i l l be 

s u f f i c i e n t t o consider only two channels. 

I f we denote the two-pion s t a t e by the s u b s c r i p t " 1 " then the pion-

pion amplitude A( un. n) w i t h i n e l a s t i c i t y may be w r i t t e n as 

. V ^ V n . (J_26) 

11 D D - D D 
11 22 n.2^21 

and by i d e n t i f y i n g "2" w i t h e i t h e r p n or NN or pd 'He' we may 

denote any of the amplitudes f o r the processes (3«28) as a f u n c t i o n 
2 , 

o i cr by 

*21 = 5~~D D D " ( 5 ' 2 9 ) 

^11^22 ^12^21 
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I n most cases i f the coupling between channels i s very weak ( i . e . 

i f to a good approximation one can ignore i n e l a s t i c e f f e c t s ) D, 12 
and ^>2\ w^^- ^ e s m & H s ° t h a t 

and A 2 1 ~ N 2 l / D 1 1 

(3-30) 

so long as D i s of the order of u n i t y . (Note t h a t i n t h i s case 

N i s approximately the l e f t hand i n t e g r a l i n (2.45)5 (3«2l) or 

(3.23) depending on which of the three processes (3.25) we are 

considering, and the two enhancement f a c t o r s f o r the ABC e f f e c t 

discussed i n the l a s t s e c t i o n are found by t a k i n g H to be equal 

to or a constant.) However even i n the case of weak coupling 

between channels i f there i s a zero i n D„_ a t some p o i n t &~, then 
d.d. a 

the small terms D.,„, D__, etc. near o-1" must be of the same order 12 21 a 
as ^22* Using a l i n e a r form f o r w e w r i t e 

A 1 ( ~ - (3.31) 

^" ~ (3.32) 

I n other words pole terms - known as CDD poles - are introduced 

i n t o the one channel N and D f u n c t i o n s . 
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I t i s perhaps more usual t o c a l l a pole a GDI) pole i f i t i s i n s e r t e d 

a r b i t r a r i l y i n t o the s i n g l e channel If or D f u n c t i o n s r a t h e r than 

i n t o both the N and D f u n c t i o n s ' . However i n the f u l l e r 

d iscussion of t h i s problem wriich we give i n the Appendix i t i s shown 

th a t a l l three ways of i n s e r t i n g ODD poles i n t o the one channel N 

over D equations may be equivalent under c e r t a i n c o n d i t i o n s . 

From the above simple i l l u s t r a t i o n using the two channel If over D 

equations i t may be seen t h a t i f there e x i s t s a CDD ambiguity i n 

pion-pion 1 = 0 b-wave s c a t t e r i n g , the i)-i'unction we must use i s 

V = D l - / 2 - (5.53) 
a 

where i s given by 

- l _ * - ( 5 - 3 4 ) 

and If may be approximated by one or more poles as before. Also 

we see from (^.32) t h a t t h e phase-space enhancement f a c t o r f o r the 

ABC e f f e c t i n t h i s case w i l l be given by 

N. 21 «• - . 
^ - (5-35) 
D 

o 

and the phenomenological form which we use f o r the parameterisation 

of the P i r N 3f N p a r t i a l wave h^ w i l l be 

V = N21 f J L f l L - (3.36) 
D ° o 
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where the residues n2]_»n2i and the f u n c t i o n s N and N may be 

chosen to give good agreement w i t h the experimental data. 

The p o s s i b i l i t y of a ODD pole i n the 1 = 0 S-wave pion-pion 

i n t e r a c t i o n has been suggested by several authors r e c e n t l y . I n 

p a r t i c u l a r the 'turn-over' shape of the phase-shift <S q ° found by 

Lovelace, Heinz and Donnachie from a d i s p e r s i o n r e l a t i o n a nalysis 

of the pion-nucleon s c a t t e r i n g data i n the backward d i r e c t i o n may 

be thought t o i n d i c a t e the existence of a CDD pole. To see t h i s 

l e t us consider the one channel N over D f u n c t i o n s (3»3l) i n the 

form 

A l l " = - (3.37) 
D + d 

- 2 ^ 2 cr _ cr 
o 

where again we r e f e r the reader to the Appendix i n which we show 

the equivalence of the two forms (3.3L) and ( 3 * 37) • Cle a r l y A ^ 
2 2 1 w i l l have a zero a t cr = <s~ and i f d i s small the denominator of o 

37) w i l l pass through zero near & . Thus a corresponding 

phase-shift which passes through zero and near-by through ~^/2 may 

be the r e s u l t of a CDD pole, although of course t h i s shape could 

also occur because of the d e t a i l e d dynamics of the s c a t t e r i n g process 

without the existence of such a pole i n the s i n g l e channel N over D 

equations. I t i s p e r t i n e n t t o mention however t h a t the only case 

i n which a known physi c a l phase-shift seems to have t h i s type of 
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behaviour i s the ^ I * CT- N p a r t i a l wave and t h a t from the 

c a l c u l a t i o n s performed by Coulter and Shaw i t would appear t h a t 

'free parameters' i n the form of a CDD pole have t o be introduced 

i n order to produce the experimentally observed p h a s e - s h i f t . 

Reasons f o r a CDD pole i n the 1 = 0 S-wave pion-pion p a r t i a l wave 
o 3* A have also been put forward by Atkinson and Halpern . Their 

arguments assume t h a t the observed nonet of 2 (=J ) p a r t i c l e s i s 

the Regge recurrence of a nonet of 0 + e x t i n c t bound s t a t e s , and 

th a t these l a t t e r can be c a l c u l a t e d i n a dynamical 0 0 (3-channel 

c a l c u l a t i o n ) . I n the l i m i t o f exact SU(3) symmetry they f i n d t h a t 

A q ° contains a CDD pole which they b e l i e v e may w e l l survive SU(3) 

symmetry breaking e f f e c t s . I t i s also i n t e r e s t i n g t o note t h a t 

i f these 0 e x t i n c t bound st a t e s or ghost bound states ( i . e . poles 

w i t h zero residues) do ' e x i s t ' they have the same e f f e c t as proper 

bound states i n determining the asymptotic behaviour of the phase-

s h i f t from Levinson's theorem. I n t h i s case, from the arguments 

given by R o t h l e i t n e r and Stech and l a t e r by Squires , i f the 

phase-shift i s p o s i t i v e a t t h e f i r s t i n e l a s t i c threshold then i t i s 

known t h a t a CDD pole must be i n s e r t e d i n t o the one channel N over 

D equations, without any a d d i t i o n a l assumptions about SU(3) symmetry 

or breaking e f f e c t s . The f i r s t i n e l a s t i c threshold i s the f o u r 
2 2 

pion t h r e s h o l d , °" =16/**-. Our r e s u l t s and those of most 

authors favour a pha.se-shift which i s p o s i t i v e here, \so t h a t the 

'existence' of such a bound s t a t e would imply a CDD pole. 
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For these reasons we compute the r e s u l t s obtained from the pion-

nucleon p a r t i a l wave discrepancy analysis assuming the existence 

of a CDD pole i n the 1 = 0 o-wave pion-pion s c a t t e r i n g amplitude. 

Using the D-function D q° given by equations (3»33) and (3«34) i n 

the discrepancy analysis - equations ( j . 2 l ) and (3.20) - a t l e a s t 

three types of phase-shifts are found t o give good agreement v/ith 

the experimental data f o r t h i s simple form. The three phase-shifts 

shown i n f i g u r e (3-7) u s e a two pole approximation t o the f u n c t i o n 

given i n (3.54) • '-The parameters of these s o l u t i o n s are given 

i n t a b l e (3-3). 

TABLE 3.3 

S o l u t i o n 
Number 

Pole p o s i t i o n s ( N ^ ) 
0 0 

<r ̂  cr •-
1 2 

Residues (N-^) JDD pole 
p o s i t i o n 

3-cr a 

CDD pole 
residues 
n d 

A -36 -156 1.9 -2.1 11.6 1.50 0.02 

B -36 -156 5.1 -4.6 12.4 2.30 1.61 

C -36 -156 -15.4 14.1 27.6 -82.5 -16.0 

From the preceding discussion i n Section 2 i t i s c l e a r t h a t because 

of our la c k of Knowledge of the d e t a i l e d dynamics of the processes 
- + - 3 
p n n and p + d ^He + 2T\ - e x h i b i t e d by our a r b i t r a r y 

parameterisation of the ' l e f t hand 1 s i n g u l a r i t i e s - any of the three 

phase-shifts could s a t i s f y the pion-production data and the ABC 
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e f f e c t . ( i n f act using (3.36) and (3.35) f o r the TTN-^- <r N 

p a r t i a l wave h^ and the ABC enhancement factor respectively, 

the extra parameters enable us to f i t the present data with If 

and approximated by constants.) Thus the phase-shifts (A) 

and (B) which are the two ' -resonance' solutions found by Heinz 

Lovelace and Donnachie with negative and positive scattering 

lengths respectively may also be compatible with the ABC ef f e c t , 

pion-production cross-sections and the low energy pion-nucleon 

data used i n the discrepancy analysis. This i s also true f o r 

phase-shift (c) which possesses a resonance at a much higher 

energy - the £ °(720 Mev) perhaps. 

Let us summarise our results. I n the case that there exists no 

'free parameters', i.e. ODD poles, i n pion-pion S-wave scattering 

we f i n d two types of phase-shift which could be compatible v/ith 

the pion-production cross-section data, the ABC effect and the 

low energy pion-nucleon data. I f , on the other hand, we assume 

the existence of a CDD pole we f i n d at least three resonating 

types of phase-shift which could be compatible with these 

experimental observations, and that two of these are similar to 

the solutions found by Lovelace, Heinz and Donnachie from a 

dispersion r e l a t i o n analysis of pion-nucleon data i n the backward 

direction. I t i s perhaps useful to stress again that the reason 

we are unable to f i n d a unique solution i s that our lack of 

knowledge of the dynamics of the various processes allows us to 
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introduce parameters which we can vary to f i t the available data. 

Only i f various assumptions are made about these processes, which 

may or may not be j u s t i f i e d , could any more r e s t r i c t i v e information 

be obtained about the 1 = 0 S-wave pion-pion phase-shift. However 

not a l l the available evidence on the pion-pion interaction has 

been considered here. I n the next chapter we shall give a survey 

of other studies which have been made to obtain information on t h i s 

interaction and compare the results of these studies with the 

results given here. 



C H A P T E R F O U R 

SURVEY OF THE INFORMATION AVAILABLE 
ON THE PION-PION INTERACTION 
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IV - PURVEY OF THE INFORMATION AVAILABLE ON THE PION-PIOIi INTERACTION 

1. Dispersion Relation Analyses and Current Algebra Techniques 

Our aim i n t h i s concluding chapter i s to give a survey of the 

di f f e r e n t information available on the pion-pion interaction 

pointing out possible sources of error made i n i t s i n t erpretation. 

In the l i g h t of this survey, together with the results and discus

sion given e a r l i e r i n t h i s thesis, i t may be possible to draw some 

general conclusions about the pion-pion 1 = 0 , S-wave amplitude. 

I t must be stressed that, because of the large amount of apparently 

c o n f l i c t i n g evidence, any conclusions that are made must, of 

necessity, be only tentative. 

I n any survey of the pion-pion i n t e r a c t i o n , the pion-nucleon 

dispersion r e l a t i o n analyses must be given some prominence since 

the large amount of 'reasonably accurate' data on the pion-nucleon 

system allows one, at least i n p r i n c i p l e , to derive more detailed 

information on the pion-pion interaction than i s usually possible. 

The p a r t i a l wave dispersion r e l a t i o n discrepancy analysis has already 

been discussed at some length, but one or two remarks about this 

analysis may be i n order here. In the derivation of the discrepancy 

£>(s) i n equation (5•17) i t was supposed that the energy dependent 

contribution was that coming from the f r o n t of the c i r c l e , i . e . 

<£) ( s ) , and that the other contributions (from the short range 
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forces) could "be well approximated by a constant. This may be i n 

error, although i t was found" that giving these other contributions 

some simple energy dependence (such as a distant pole), made l i t t l e 

difference to the f i t s to the data. Also the inclusion i n the 

analysis of the pion-pion 6 = 2 p a r t i a l waves, which have so f a r 

been neglected, may provide rather d i f f e r e n t results. For instance 

i t i s usually assumed that the inclusion of these D-waves would 

improve the f i t of the discrepancies to the experimental values i n 

the higher energy range 1 0. However, i t i s probably f a i r to say 

that the inclusion of £ = 2 p a r t i a l waves at low energies where they 

are damped considerably by the centrifugal b a r r i e r should have l i t t l e 

e ffect. 

The dispersion r e l a t i o n analysis of the backward pion-nucleon 

scattering amplitude has been studied by Lovelace, Heinz and 
2.1 

Donnachie . Here again the better known pion-nucleon data provides 

a means of obtaining an estimate of the low energy pion-pion interactions. 

As i n the case of the p a r t i a l wave dispersion r e l a t i o n analysis, the 

p a r t i a l waves with t ^ 2 are neglected as are any four-pion i n e l a s t i c 

effects. The pion-pion phase s h i f t i s given by the phase of the 

backward scattering amplitude on the l e f t hand cut. Lovelace et a l . 

admit that while there i s s u f f i c i e n t experimental data, the calculation 

of the pion-pion phase-shift from this analysis i s delicate, and they 
sought to reduce the possible errors by using dispersion relations 

+ — 

f o r the P and P pion-nucleon isospin amplitudes together. As a 
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check on the numerical errors, they f i t t e d the data i n 184 d i f f e r e n t 

ways. Bij f i t t i n g the F + data up to 600 Mev, two types of pion-pion 

1 = 0 , S-wave phase-shift were found, one with a positive scattering 

length (aQ° ~ 0.7 y ^) with a resonance at 430 t 70 Mev of width 

400 + Mev and the other with a negative scattering length which 

turns over, passing back through zero near 350 Mev and resonates at 

680 + 85 Mev with a width 75O t 50 Mev. Lovelace et a l state that 

the evidence favouring a resonance rather than a large scattering 

length interaction seems to come ch i e f l y from TT p data on the upper 

slope of the N* (1236) resonance which would explain why i t had not 

been obtained i n e a r l i e r analyses using only low energy data. They 

believe that there i s evidence beyond a l l reasonable doubt from this 

work f o r the existence of an I = 0, S-wave resonance and suggest that 

the very large width would make i t d i f f i c u l t to pick out from phase 

space i n most other calculations. 

At f i r s t sight i t might appear that dispersion r e l a t i o n techniques 

could also be usefully applied to the pion-pion p a r t i a l wave ampli

tudes. The f i r s t i n e l a s t i c threshold i s r e l a t i v e l y distant from the 

elastic threshold and crossed channel reactions which provide the 

' l e f t hand forces' may themselves be wri t t e n as a sum involving pion-

pion p a r t i a l waves. This sum i s the analytic continuation of a 

Legendre expansion to regions well outside the formal region of 

convergence so that cut-off parameters must be introduced into the 

integ r a l equations. When one approximates the Legendre expansion 
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by the P-v/ave term alone and attempts to calculate the P-wave 

amplitude assuming that the p -meson i s the dominant force term, 

one has the simple bootstrap type of mechanism, the p -meson i n 

the crossed channel providing, i n pr i n c i p l e , the force f o r the 

creation of a p -resonance i n the direct channel. This was 

successfully accomplished by Chew and Mandelstam . However, when 

a more rigorous treatment of the in t e g r a l equation was attempted by 

considering the S- and P-waves together, the f> -meson was produced 

only when a bound slate was produced i n lhe 1 = 0, S-v/ave amplitude. 

This ha.s been re-investigated recently by Kyle, Martin and Pagels 

who found that a P-v/ave resonance was accompanied by unphysically 
41-

large S-wave amplitudes. On the other hand, Bransden and Moffat 

performed a similar analysis using dispersion relations f o r the 

inverse p a r t i a l wave amplitudes. They obtained a P-wave resonance 

near 700 Mev and an S-wave solution with scattering lengths i n 

agreement with Schnitzer, i.e. a Q° = 0.5, a ^ = 0.16. 

The main d i f f i c u l t y with these pion-pion p a r t i a l wave dispersion 

relations i s the determination of the discontinuity across the 

l e f t hand cuts. An understanding of the short-range forces which 

for 6-wave amplitudes are not damped by the centrifugal barrier i s 

required before this type of analysis could be considered adequate 

fo r a detailed study of S-wave pion-pion scattering. 
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A dispersion r e l a t i o n f o r the forward pion-pion scattering amplitude 

however does not suffer from the above d i f f i c u l t y . The discontinuity 

across both the l e f t and r i g h t hand cuts from the optical theorem can 

be wr i t t e n i n terms of the t o t a l pion-pion cross-sections. The 

calculations of this dispersion r e l a t i o n by Rothe and by Fisut, 

bona and Lichard have also been discussed e a r l i e r . V/hen Rothe 

introduced a large 1 = 0 , S-wave pion-pion interaction into the 

dispersion integral by assuming a constant phase-shift of K/A i n 
2 2 2 the energy range cr = 5A* to AO . the additional contribution 

to the scattering length a.^0 was found to be as large as +0.9 \ 

t h i s , together with an estimated error of +0.1 ^ a r i s i n g from 

possible effects i n the 1 = 2 amplitude, led Rothe to suggest that 

These large errors, i n particular that coming from the assumed form 

of the low energy 1 = 0 , S-wave phase s h i f t , indicate the approximate 

nature of t h i s result. Nevertheless, the calculation of the 1 = 1 , 

S-wave scattering length a ̂  (which should be zero) using similar 

approximations led to the quite acceptably small value of -0.4 f* ̂ • 

Pisut, Bona and Licha.rd used a subtracted form of the dispersion 

r e l a t i o n f o r the forward pion-pion scattering amplitude which greatly 

depressed the high energy behaviour. For the low energy form of the 

t o t a l pion-pion cross-sections they employed a scattering length 
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approximation and obtained 

o = -1.3 - 0.6 -1 a o 
2 = +0.38 - 0.2 /* -1 - (4.2) 

and a o 

where the errors were due only to the errors of the subtraction 

constant. The errors due to inaccuracies i n the cross-sections 

were said to be much smaller than these. 

Although neither of the above analyses used a detailed shape f o r 

the pion-pion phase-shift which was consistent with the negative 

scattering length, the in t e r e s t i n g point i s the measure of agreement 

obtained f o r the value of a ° using rather d i f f e r e n t methods and 
o ° 

input data. On the other hand, another recent calculation of 

the pion-pion scattering lengths using forward pion-pion dispersion 

relations by Meiere and Sugawara suggests that a Q should be small 

and positive. This calculation required that the high energy l i m i t 

of the pion-pion cross-sections be the same i n a l l three isospin 

channels and that the scattering becomes asymptotic f a r i l y rapidly 

above the f> and f° resonances i n the respective channels. Meiere 

and Sugawara used a once subtracted dispersion r e l a t i o n and the phase 

representation for the crossing symmetric forward pion-pion amplitude 

and an unsubtracted dispersion r e l a t i o n f o r the crossing a n t i 

symmetric amplitude. The only pion-pion resonances considered were 

the and f°; and the S-wave interactions, described by ef f e c t i v e -

range expansions - with effective ranges between 0 and 2 js- \ were 
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assumed to dominate the low energy region. From t h i s analysis 

they obtained the values 

a Q° = 0.25 - 0.08 a Q
2 = 0.00 - 0.03 - (4.3) 

and suggested that the unknown details of the high energy scattering 

are r e l a t i v e l y unimportant i n t h e i r determination of these scattering 

lengths. I t should be noted, however, that t h e i r dispersion 

integrals are not so heavily damped at high energies as that of 

Pisut et a l . 

Both sets of authors, Pisut et a l and Meiere and Sugawara have also 
/ 

considered the sum-rule derived by Adler from current algebras 

which relates the Â/ĝ . r a t i o \p the pion-pion t o t a l cross-sections. 

Using t h e i r values f o r the scattering lengths Pisut et a l found t h i s 
S o which i s i n i t i a l l y 

negative becoming positive and possessing the e° resonance. 

However, th i s i s f a r from being uniquely determined. Only the 

square of the 1 = 0 , S-wave amplitude i s used i n the sum rule so that 

a resonating phase-shift with a positive scattering length and 

subsequent 'dip' such as that obtained by Wolf would give very 

similar results. So too would a large phase-shift instead of an 

£° resonance. Also Meiere and Sugawara re-writing the Adler sum-

rule i n a d i f f e r e n t form obtained the result 

2 a Q ° - 5a Q

2 » 0.7 r

_ 1 - (4-4) 
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which i s compatible with t h e i r values of the scattering lengths. 

The sum rule i s f o r pion-pion scattering with one pion o f f i t s 

mass s h e l l . Both sets of authors have made some corrections f o r 

t h i s , but they are corrections rather more to the kinematics than 

to the detailed dynamics. This i s probably adequate f o r the 

approximate discussion of the int e g r a l over the cross-sections 

given by the sum-rule. There i s , however, another method f o r 

deriving the pion-pion scattering lengths from current algebras 

i n which the off-the-mass shell corrections must be considered 

more closely. 

Current algebra techniques, together with the hypothesis of a 

p a r t i a l conserved axial-vector current (PCAC) have been employed 

by Weinberg ̂ 6 and others * 7 to derive the scattering lengths for 

the scattering of a 'pion 1 o f f any target p a r t i c l e i n the l i m i t 

of the i n i t i a l and f i n a l state 'pions* having zero four-momentum 

(and therefore zero mass). When the target p a r t i c l e i s much 

heavier than the physical pion-mass this l i m i t might be assumed 

to make l i t t l e change i n the low energy scattering amplitude, and 

simple approximations f o r the extrapolation to the physical thres

hold i n th i s case lead to scattering lengths i n remarkable agreement 

with the experimental data. Unfortunately, i n the case of the pion-

pion scattering, t h i s extrapolation may make a s i g n i f i c a n t difference 

to the results and i t i s not clear how i t should be performed. 

Weinberg has assumed that the scattering amplitude can be expanded 
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i n powers of s, t and u ( i n the standard notation) and that one 

can neglect a l l powers higher than the f i r s t . By f i t t i n g the 

co-efficients of this expansion to the values of the amplitude 

given by current algebras and Adler's self-consistency conditions, 

Weinberg obtained the S-wave scattering lengths 

a Q° = 0.2 f - 1 ; a Q
2 = -0.06 r'1

 - (4-5) 

I t has been pointed out that the assumption of t h i s power series 

expansion holding up to and somewhat beyond threshold, clearly 

violates u n i t a r i t y Weinberg has remarked that his small 

scattering lengths coiild be due to the fact that by w r i t i n g such 

an expansion one has already assumed them to be negligible. 

Iliopoulos has used a more f l e x i b l e parameterisation of the pion-

pion amplitude which allows f o r the elastic u n i t a r i t y branch cut. 

I n doing t h i s he introduced further co-efficients which cannot a l l 
o 2 be determined and obtained a family of solutions f o r a and a o o 

We connect these solutions by the r e l a t i o n 

(1.18 + a Q
2 ) 2 = (0.74 + 0.62 x n °) 2 + 0.52 - (4.6) 

similar conclusions have also been reached by J bucher and C H Woo5 

This problem of the pion-mass extrapolation has been considered i n 

an alternative way by the use of dispersion r e l a t i o n techniques . 

These suggest that corrections to the current algebra results are 

not l i k e l y to be s i g n i f i c a n t as long as the o-wave pion-pion 
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interaction i s r e l a t i v e l y weak. Such dispersion r e l a t i o n analyses 

must necessarily be rather approximate. We conclude therefore that 

while current algebra techniques may give useful results f o r meson 

baryon scattering, no r e l i a b l e predictions have yet been obtained 

f o r pion-pion scattering lengths. 
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Pion Production and f i n a l State Interactions i n Decay Processes_ 

Vie shall review i n t h i s section the information on the pion-pion 

interaction which may be obtained from the pion production process 

T T + N - ^ T C + T C + N - (4.7) 

and the decay processes 

K - ^ 2 7 r + e + ^ 

K 3 * 
- (4.8) 

1 5 T T 
2 n K 

We have discussed at some length the interpretation of the process 

TT N -» re K by the peripheral diagram and modifications to i t , and 

we noted i n Chapter I I that such a diagram could be the dominant 

interaction i n certain regions of the variables but that these 

regions were poorly defined. I t i s worthwhile mentioning that while 

care must be exercised i n i t s application the peripheral model has 
O 2. "2. 

been successful i n determining the and f mesons. Wolf has 

extended th i s use of the periphera.1 model (with the modifications 

suggested by Ferrari and Seller! ) to perform a pion-pion phase-

s h i f t analysis from the pion production data taKen at several Gev. 

incident pion energy. This analysis gave phase-shifts which 

contain both the ̂ -resonance with a mass of 7b0 Mev and a f u l l 

width at half maximum of 170 Mev, and the f°-resonance (an I = 0, 
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D-wave resonance) with a mass of 1250 hev and a width of 140 Hev. 

The results f o r the 1 = 0 , S-wave phase-shift, however, are not so 

clear cut. At low values of the di-pion mass an effective range 

formula was used with a scattering length a o° assumed from the ABC 
+ " l o~ 

data of 2 - 1 f*- This parameterisation f o r S q gave satisfactory-
agreement with the experimental data on the TT p ^*-7V+TT n cross-
sections although this i s not very accurate i n the low di-pion mass 
region. I t should be noted that, since only the pion-pion cross-
sections are used m t h i s peripheral calculation, a negative 
scattering length of the same order of magnitude would probably 
have provided similar results; hence the phase-shift S Q ° at low 
energies i s hardly determined from t h i s analysis. At higher 
energies, Wolf determined £>o° by f i t t i n g to the forward-backward 
assymetry parameter R / T +_ • This parameter i s defined as 

«-« (5* < (ft, >*/J ~ " ( 4 - 9 ) 

the r a t i o of the forward to backward scattering of the two f i n a l 

state pions, and i s found to be large (~ O.4 to 0.6) i n the 

di-pion energy range from 600 to 900 Mev. This e f f e c t , Wolf and 

others claim, can only be explained by assuming the existence of 

a resonance i n the 1 = 0 , S-wave pion-pion amplitude with a mass 

of about 740 Mev and a width of y0 Mev. Recently Bander and Shaw 

considered t h i s effect using a peripheral model with absorption and 

found that a phase-shift of ~ +60° gave as good a f i t as did a 



resonance i n tn i s energy raru-;e. They ruled out a negative phase-

s h i f t of ~ -60° by examining the dist r i b u t i o n s i n 8,, as a 

function of the di-pion mass. 

Goebei and Schnitzer 1 7 have considered the pion-production process 

using a s t a t i c model calculation which includes both a direct 

'knock-on' single pion exchange diagram and a re-scattering diagram, 

where the re-scattering i s due to the ltf*(3»3) resonance. By 

f i t t i n g t h i s model to the T*+ angular d i s t r i b u t i o n i n the process 

i \ p -=s=- + TY n at 430 Mev they found 

2a ° + a 2 = 1.16 and a,1 = 0.07 M~' - (4-10) 
O O 1 ' \T / 

From the t o t a l Tr +p i n e l a s t i c cross-section at 470 Mev they found 
2 

two acceptable values f o r a Q , i.e. 0.16 and -0.14 which gave 

values f o r a Q° of 0.50 and O.65 respectively. The model seems to 

reproduce reasonably well the n p -**• 1* + K n angular d i s t r i b u 

tions at 370 Mev and the t o t a l cross-section up to about $00 Mev, 

although i t should be said that t h i s data i s not p a r t i c u l a r l y 

accurate (an e a r l i e r calculation with t h i s model, using e a r l i e r 

data, produced a negative value fo r a °) and that i n the range 200 

to 300 Mev the f i t to the t o t a l cross-section i s not much better 

than the immodified peripheral calculation. I t would be interesting 

to see i f similar results are obtained from a r e l a t i v i s t i c treatment 

of t h i s model; and certainly u n t i l such a treatment i s performed 
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the values quoted above must be only t e n t a t i v e . 

Let us now t u r n t o the meson decay processes. Various, r a t h e r 

approximate, methods have been introduced to derive i n f o r m a t i o n 

on the pion-pion i n t e r a c t i o n from the processes K - S ^ J T V and 

^ 3TC . For instance the f i n a l s t a t e i n t e r a c t i o n s i n the 

three pion decay modes of the K-meson have been studied by Khuri 

and Treiman using d i s p e r s i o n r e l a t i o n techniques. By adopting 

c e r t a i n approximations they are l e d to a set of l i n e a r i n t e g r a l 
+ 

equations f o r the K decay amplitudes i n which the kernels 

depend on the pion-pion S-wave s c a t t e r i n g amplitudes. By assuming 

a s c a t t e r i n g l e n g t h i n t e r a c t i o n f o r these pion-pion amplitudes, and 

f i t t i n g the shape of the decay spectra by an i t e r a t e d s o l u t i o n f o r 

these i n t e g r a l equations, they found &^ - a Q° was p o s i t i v e and 

of the order of 0.7 ^. S i m i l a r r e s u l t s were obtained by 

Sawyer and Wali also using d i s p e r s i o n r e l a t i o n methods. 

The three pion decay modes of K and "| mesons have also been studied 

using a model i n which these decays proceed through a resonant 

1 = 0 , S-wave pion-pion i n t e r a c t i o n . Brown and Singer found 

t h a t good agreement could be obtained w i t h a l l the a v a i l a b l e data 

on the K and ^ spectra and branching r a t i o s i f the d i - p i o n 

resonance (sigma) has a mass of 400 Mev and a width of 75 to 100 1'iev. 
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i'adeev equations have also oeen used t o o b t a i n i n f o r m a t i o n on the 

pion-pion i n t e r a c t i o n from a study of these three pion decay modes. 

Unf o r t u n a t e l y no c l e a r r e s u l t s have emerged. For instance Prasad 

obtained a good f i t to the data only w i t h a cr -type resonance i n 

tne 1 = 0 , S-wave pion-pion amplitude while I/unn and Ramachandran 

found a s c a t t e r i n g l e n g t h i n t e r a c t i o n was s a t i s f a c t o r y w i t h 

s c a t t e r i n g lengths of a Q° = 0.3, a Q
2 = 1 . 5 f o r K decays and a Q° = 0.1 

2 
a^ =1.75 f o r v] decays. A large 1 = 2, ia-wave s c a t t e r i n g l e n g t h , 

2 si 

, was also found by Barbour and Schult who obtained a f i t to 
2 2 o 2 the data w i t h (a ) - ( a ) ~ 2 . v o o 

The only decay process of the type meson mesons + leptona f o r which 

any sizeable amount of data i s a v a i l a b l e i s the so c a l l e d K ̂  

decays, i . e . K T T 7r e v where e and v represent the e l e c t r o n ( or 

p o s i t r o n ) and neu t r i n o r e s p e c t i v e l y . Jacob, Matioux ?nd Omnes and 

l a t e r Maksymowicz 6' have t r e a t e d the f i n a l s t a t e i n t e r a c t i o n of t h i s 

process by assuming t h a t ihe f i n a l s t a t e i n t e r a c t i o n can be 'factored 

o f f from the decay mechanism, i . e . t h a t the only s i n g u l a r i t y the 

amplitude has as a f u n c t i o n of the two-pion i n v a r i a n t mass i s the 

r i g h t hand u n i t a r i t y branch cut . This ' f a c t o r i n g o f f of the f i n a l 

s t a t e i n t e r a c t i o n i s s i m i l a r to the assumption made i n d e r i v i n g the 

phenomenological form f o r the TY N ~& N p a r t i a l wave i n 

Section 4 of Chapter I I and means t h a t i n w r i t i n g a d i s p e r s i o n 
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r e l a t i o n f o r the amplitude the i n t e g r a l over the l e f t hand s i n g u l 

a r i t i e s may be approximated by a constant. With t h i s assumption 

the K - ^ • T T 7 T e ̂  i n v a r i a n t amplitude i s of the form G/D ° where 
' o 

D 0 i s the j j - f u n c t i o n a r i s i n g i n an N over D s o l u t i o n f o r the pion-

pion s c a t t e r i n g amplitude. 

A somewhat d i f f e r e n t approach f o r d e r i v i n g the decay amplitude has 

been t o consider the a n a l y t i c c o n t i n u a t i o n of the amplitude f o r the 

process K + (e v) -=?-~nfi . Kacser, Singer and Truong 6^ have assumed 

an unsubtracted d i s p e r s i o n r e l a t i o n f o r t h i s amplitude i n which the 

d i s c o n t i n u i t y across the r i g h t hand cut i s given by u n i t a r i t y and 

t h a t across the l e f t hand cut i s given by the crossed process 

K + -^f- ~K + (e ) . A f t e r n e g l e c t i n g various terms which they 

believe to be small, they f i n a l l y obtained a form f o r the it rrn Q-O 

amplitude i n terms of D q° and D.̂ , the D-functions, a r i s i n g i n an N 

over D s o l u t i o n f o r the 1 = 0 , S-wave and the 1 = 1 , P-wave pion-

pion amplitudes. The best f i t s f o r t h i s amplitude to the a v a i l a b l e 

experimental data on the two-pion spectra were obtained w i t h a pion-

pion s c a t t e r i n g l e n g t h a o° of 1 - 0.3; although t h i s s o l u t i o n gave 

a decay r a t e which i s approximately f i v e times l a r g e r than t h a t 

observed experimentally. Thus the amplitudes derived could have 

the r i g h t energy dependence but are then wrong i n t h e i r absolute 

value by over a f a c t o r of two. 
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F i n a l l y , i n t h i s survey of the a v a i l a b l e i n f o r m a t i o n on the pion-

pion i n t e r a c t i o n , we must mention the - K ?° mass d i f f e r e n c e . 

Recent experimental r e s u l t s have i n d i c a t e d t h a t t h i s mass d i f f e r e n c e 

i s ^'^^t^, where "C.̂  i s the l i f e t i m e of the K^-meson^ 3. A 

t h e o r e t i c a l study of t h i s d i f f e r e n c e has been made by Kang and 
if 

Land who assume t h a t i t i s due p r i m a r i l y to the self-energy of 

the a r i s i n g from the two pion s t a t e w i t h 1 = 0 . The mass 

d i f f e r e n c e i n t h i s case i s r e l a t e d to the ~K form f a c t o r 

which can be w r i t t e n i n terms of the pion-uion D-function, D °. 
1 o 

This was c a l c u l a t e d by o b t a i n i n g s e l f - c o n s i s t e n t s o l u t i o n s t o the 

N over D equations f o r the pion-pion amplitude A q ° i n which the 

d r i v i n g forces were tslcen t o be the exchange of a yJ -meson and an 

assumed S-wave i n t e r a c t i o n . Kang and Land obtained the value of 

A M = -0.5 ^ f o r a negative s c a t t e r i n g length a °, the phase-

s h i f t t u r n i n g up through zero w i t h a value of 0° - 10° near 500 Mev; 

and found t h a t p o s i t i v e s c a t t e r i n g lengths l e d to p o s i t i v e mass 

d i f f e r e n c e s . 

Kang and Land also considered the model proposed by Barger and 

Kazes 6* , l a t e r developed by N i a h i j i m a 6 ' and considered r e c e n t l y 

i n an approximate form by Truong 6 7, which uses the a n a l y t i c 
2 2 1 

p r o p e r t i e s of the f u n c t i o n l$(a' ) D ( c r ) ] " to o b t a i n the 

K-, ° - K ° mass d i f f e r e n c e as 
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A h = --gCot S (M ) + c o r r e c t i o n terms due t o an i n t e g r a l 

over the l e f t hand s i n g u l a r i t i e s 

Taking i n t o account the c o r r e c t i o n terms and possible pole c o n t r i b 

u t i o n s from zeros i n the N and D f u n c t i o n s , Kang and Land found 

t h i s r e l a t i o n gave the same numerical r e s u l t s as before. Rockmore 

and Yao on the other hand, also using s e l f - c o n s i s t e n t s o l u t i o n s 

to the N and i) f u n c t i o n s , found the zero i n the I"T f u n c t i o n to be 

below the ph y s i c a l threshold and obtained a pion-pion 1 = 0 , S-wave 

amplitude which has a p o s i t i v e s c a t t e r i n g l e n g t h . The sign of the 

s c a t t e r i n g l e n g t h , of course, i s dependent on the sign of the N 

f u n c t i o n so t h a t the only d i f f e r e n c e i n these two c a l c u l a t i o n s i s 

the p o s i t i o n of the zero i n the N f u n c t i o n which i s determined by 

the d e t a i l e d d e s c r i p t i o n of the d r i v i n g forces assumed f o r the 

pion-pion i n t e r a c t i o n . 

This concludes our survey of the a v a i l a b l e i n f o r m a t i o n on the low-

energy pion-pion i n t e r a c t i o n . The large volume of l i t e r a t u r e has 

by no means been exhausted, but we hope t h a t a t l e a s t the more 

' r e l i a b l e 1 techniques f o r e x t r a c t i n g i n f o r m a t i o n have been covered 

The c o n t r a d i c t o r y r e s u l t s obtained by d i f f e r e n t authors only serve 

to show how d i f f i c u l t i s t h i s problem and how unwise we should be 

i n summarising these r e s u l t s i f we were t o make any but r a t h e r 

t e n t a t i v e statements about the form of the low-energy 1 = 0 , S-wave 

pion-pion p h a s e - s h i f t . Perhaps the only p o i n t on which the various 
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studies described i n t h i s Chapter are i n agreement i s the r a t h e r 

basic one t h a t a pion-pion i n t e r a c t i o n does e x i s t . I t would be 

extremely d i f f i c u l t to account f o r so many of the observed e f f e c t s 

i n the various s c a t t e r i n g processes unless some kind of pion-pion 

i n t e r a c t i o n were operative. 
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Conclusions 

I n t h i s concluding s e c t i o n we should l i k e t o compare the r e s u l t s 

presented i n the e a r l i e r Chapters of t h i s t h e s i s w i t h the various 

analyses sketched i n . the preceeding two sections. To do t h i s , l e t 

us f i r s t of a l l make one or two f a i r l y general remarks about the 

r e s u l t s presented i n the above survey. I t i s i n t e r e s t i n g t o note, 

f o r instance, t h a t where the method allows a d e t a i l e d study of the 
_ r» 0 

1 = 0, 3-wave pion-pion phase-shift over a range of values of 

the d i - p i o n energy, i t appears t h a t Sin S^ 0 i s p o s i t i v e and perhaps 

f a r i l y l a r g e , somewhere i n the range above 400 Mev. We have seen 

t h a t the 1 = 0 , 5-wave amplitude A^0 i s f r e q u e n t l y presumed t o 

possess e i t h e r the c - or the £°-resonance i n which case the phase-

s h i f t passes upwards through an odd m u l t i p l e of ^/^ - probably 

Where such resonances are not r e q u i r e d to f i t the data, 

a s c a t t e r i n g l e n g t h i n t e r a c t i o n has u s u a l l y been assumed, w i t h the 

s c a t t e r i n g lengths sometimes found to be p o s i t i v e and at other time 

negative. When i s p o s i t i v e the phase-shift i s taken t o be 

s t e a d i l y i n c r e a s i n g , while negative values f o r a Q
0 are obtained 

e i t h e r when the high energy e f f e c t s are h e a v i l y damped or when 

there i s s u f f i c i e n t parameterisation of the amplitude f o r the phase 

s h i f t to t u r n up through zero and become p o s i t i v e . Thus the 

a v a i l a b l e i n f o r m a t i o n on the pion-pion i n t e r a c t i o n seems t o support 
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a phase-shift which i s p o s i t i v e somewhere i n the range above 400 Hev. 

I n connection w i t h t h i s i t i s worth mentioning t h a t i f the phase-

s h i f t i s indeed i n i t i a l l y negative and t h e r e a f t e r turns up 

through zero then a s c a t t e r i n g l e n g t h approximation to t h i s type 

of i n t e r a c t i o n could, i n c e r t a i n c a l c u l a t i o n s , q u i t e mistakenly lead 

to p o s i t i v e values f o r the s c a t t e r i n g l e n g t h a o° by averaging the 

e f f e c t of the i n t e r a c t i o n over a range of energies. 

With t h i s p r o p o s i t i o n t h a t the phase-shift b^" i s e v e n t u a l l y 

p o s i t i v e , we should l i k e t o suggest t h a t the a v a i l a b l e i n f o r m a t i o n 

on the pion-pion i n t e r a c t i o n could be compatible w i t h e i t h e r of two 

shapes f o r the low-energy 1 = 0 , 3-wave pion-pion phase-shift. 

These are: 

i . a p o s i t i v e phase-shift characterised by a p o s i t i v e 

s c a t t e r i n g l e n g t h of 1 - 0.3 ^ ^ 

i i . a negative phase-shift of -1.7 + o*5 w k i c n soon turns 

over and becomes p o s i t i v e . 

The f i r s t of these types of phase-shifts could be i n agreement w i t h 

a l l the d i f f e r e n t c a l c u l a t i o n s considered i n the survey (because of 

t h e i r approximate nature) except perhaps those by Rothe and by 

Pisut et a l ' using forward pion-pion d i s p e r s i o n r e l a t i o n s and by 

Kang and Land k H on the K-. ° - K„° mass d i f f e r e n c e . These three 
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c a l c u l a t i o n s however, as we have seen, are by no means f r e e from 

c r i t i c i s m . For instance, we noted t h a t Rothe found a large 

a d d i t i o n a l c o n t r i b u t i o n to the s c a t t e r i n g l e n g t h a^ 0 when he 

assumed a large 1 = 0 , S-wave i n t e r a c t i o n . A more d e t a i l e d consid

e r a t i o n of the phase-shift S^ 0 t h e r e f o r e might lead t o a p o s i t i v e 

r a t h e r than a negative value f o r t h i s s c a t t e r i n g length. On the 

other hand, p i s u t et a l used a h e a v i l y damped form of the forward 

pion-pion d i s p e r s i o n r e l a t i o n which was, t h e r e f o r e , le.-js dependent 

on the shape of the phase-shift so t h a t t h e i r negative value f o r 

a^ 0 should perhaps be more convincing. However, i n damping the 

i n t e g r a l , they were forced to introduce a s u b t r a c t i o n constant 

which was evaluated using the phase-shifts derived by Wolf. I n 

t h i s h i g h l y damped form the equation i s p a r t i c u l a r l y s e n s i t i v e to 

the value of the s u b t r a c t i o n constant and i t i s not impossible to 

b e l i e v e t h a t e r r o r s i n the Wolf phase-shifts could produce l a r g e 

e r r o r s i n t h e i r value f o r the s c a t t e r i n g l e n g t h . Also the 

c a l c u l a t i o n by Kang and Land of the K^° - K^0 mass d i f f e r e n c e may 

w e l l be i n e r r o r . Their c a l c u l a t i o n involved s e l f - c o n s i s t e n t 

s o l u t i o n s of the N over D equations f o r the pion-pion amplitude 

A °, and found t h a t N had a zero above th r e s h o l d and t h a t a ° i s o o 
negative. On the other hand, as we have already pointed out, 

68 0 

iockmore and Yao , using s i m i l a r s e l f - c o n s i s t e n t s o l u t i o n s f o r A Q , 

found the zero i n I T to be below threshold and a Q° to be p o s i t i v e . 

Thus these c a l c u l a t i o n s f o r the - mass d i f f e r e n c e i n d i c a t e 
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t h a t the pion-pion phase-shift i s e i t h e r of type i . or i i . but 

cannot r e a l l y support one r a t h e r than the other. 

The other low-energy p h a s e - s h i f t , i i . , which we suggest could be 

compatible w i t h the a v a i l a b l e data i s one which i s i n i t i a l l y 

negative, but which then turns over and becomes p o s i t i v e . This 

type of phase-shift we have seen i s compatible w i t h the backward 

pion-nucleon d i s p e r s i o n r e l a t i o n analysis of Lovelace et a l z ' and 

also w i t h our r e - c a l c u l a t i o n f u r Lh« o-wave piun-nucleon d i s p e r s i o n 

r e l a t i o n 'discrepancies'. Because of the la r g e amount of reasonably 

accurate pion-nucleon s c a t t e r i n g data, these analyses, at l e a s t i n 

p r i n c i p l e , should provide somewhat more r e l i a b l e r e s u l t s than other 

more t e n a t i v e methods. Of these other methods, we have already 

mentioned how some form of s c a t t e r i n g l e n g t h approximation f o r t h i s 
Q 

type of phase-shift might mistakenly lead t o p o s i t i v e values f o r a Q 

i n c e r t a i n cases. These could presumably include the model f o r the 

pion-production amplitude of Goebel and Senn i t z e r 1 7 and the forward 

pion-pion d i s p e r s i o n r e l a t i o n analysis of Meiere and Sugawara i n 

which the di s p e r s i o n i n t e g r a l s are poorly convergent. V/e should 

l i k e to propose, t h e r e f o r e , t h a t some authors have not obtained t h i s 

type of s o l u t i o n f o r S Q ° because t h e i r parameterisation of the 

amplitude A 0 was i n s u f f i c i e n t to allow f o r i t . We could perhaps 

go f u r t h e r and suggest t h a t whenever the parameterisation of the 

amplitude has been s u f f i c i e n t , t h i s type of ph a s e - s h i f t , i i . , i s 
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almost always found as a possible s o l u t i o n . I f t h i s i s the case, 

then only the current algebra p r e d i c t i o n s of Weinberg and others ' 

need to be s e r i o u s l y considered here as evidence against a negative 

s c a t t e r i n g l e n g t h ; but even f o r these, i f one assumes the pion-

pion i n t e r a c t i o n t o be n o n - n e g l i g i b l e , so t h a t the u n i t a r i t y branch 

cut becomes important, we have seen t h a t a negative s o l u t i o n f o r 

a ° i s j u s t as possible as a p o s i t i v e one. Thus we conclude t h a t o 
e i t h e r type of phase-shift i . or i i . could be compa.tible w i t h the 

a v a i l a b l e i n f o r m a t i o n on the lov-encrgy pion-pion. i n t e r a c t i o n . 

The value of 1 - O.J A1 ^ f o r the s c a t t e r i n g l e n g t h of s o l u t i o n i. 

i s suggested by the d i s p e r s i o n r e l a t i o n analyses of pion-nucleon 

backward s c a t t e r i n g amplitude and the p a r t i a l wave amplitudes. 

The approximate nature of the other 'less r e l i a b l e ' c a l c u l a t i o n s 

i s such t h a t we believe t h i s i s q u i t e a r e a l i s t i c value f o r the 

p o s i t i v e s o l u t i o n . For the other s o l u t i o n , i i . , i t i s more 

d i f f i c u l t to put bounds on the size of the negative s c a t t e r i n g 

l e n g t h . However, f o r a negative phase-shift which soon turns over 

and becomes p o s i t i v e , the s c a t t e r i n g length i s no longer a very good 

guide to the low-energy i n t e r a c t i o n . we would suggest t h a t the 
+ 1.3 value found by Rothe of -1.7 ' i. is a f a i r measure of the size - u.5 

of a ° f o r t h i s s o l u t i o n , i i . , where the e r r o r s admit both the o ' ' 
values obtained from the turn-over s o l u t i o n s of the two pion-

nucleon d i s p e r s i o n r e l a t i o n analyses. 
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We have not y e t considered, the question of e i t h e r a f - or an 

e°-resonance i n the pion-pion 1 = 0 , S-wave partial-wave amplitude. 

The existence of the £°-resonance was suggested i n order t o account 

f o r the size of the r a t i o of forward to backward s c a t t e r i n g of pions 

m tne process irN T R T if . However i t has r e c e n t l y . been shown 

i n a p e r i p h e r a l model which includes absorption e f f e c t s , t h a t the 

phase-shift need be no l a r g e r than 60° t o account f o r t h i s r a t i o . 

Hence the usefulness of p o s t u l a t i n g the existence of an £° resonance 

i s not now very great. Also "Ciie success ox t h e postulated —rsson— 

ance i n accounting f o r the pion spectra i n K 3 n and 1 3 7 1 decays 

i s perhaps not t h a t s i g n i f i c a n t . Three body i n t e r a c t i o n s are 

n o t o r i o u s l y d i f f i c u l t t o handle, and a f u l l e r a n alysis of these 

decays very p o s s i b l y could lead to non-resonating s o l u t i o n s f o r the 

1 = 0 , S-wave pion-pion amplitude. Nevertheless the existence of 

a pion-pion 1 = 0 , S-wave resonance from the work of Lovelace, 

Heinz and Donnachie on backward pion-nucleon d i s p e r s i o n r e l a t i o n s 

i s d i f f i c u l t t o r e f u t e and the evidence one way or another from 

other c a l c u l a t i o n s i s very i n c o n c l u s i v e . We would summarise t h i s 

s i t u a t i o n , t h e r e f o r e , as f o l l o w s . I t seems q u i t e possible t h a t a 

pion-pion 1 = 0 , S-wave resonance does e x i s t but, before t h i s matter 

i s r e a l l y put beyond any reasonable doubt, strong c o n f i r m a t i o n should 

be provided both from b e t t e r analyses of other processes and by 

repeated analyses of the data on the pion-nucleon s c a t t e r i n g amplitude 

i n the backward d i r e c t i o n taken to even higher energies. 
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f i n a l l y l e t us consider these conclusions i n the context of our 

phenomenological analysis of the process TV p n taken 

near the pion-production t h r e s h o l d . The basis of t h i s a n a l y s i s 

consisted of t r e a t i n g f o r m a l l y the two pion system i n the f i n a l 

s t a t e as though i t were a s i n g l e system & with aero i s o s p i n and 

angular momentum but w i t h a continuous mass spectrum. I n t h i s 

case, the production process becomes rr p a- n. A p a r t i a l wave 

decomposition was made of the amplitude f o r t h i s process and a l l 

the p a r t i a l wave amplitudes, except t h a t f o r which the <? n s t a t e 

i s i n the S-v/ave, were given the values obtained from the s i n g l e 

pion exchange graph. The remaining amplitude, w i t h the S-wave 

<r n f i n a l s t a t e (the f ^ i n the n o t a t i o n of Chapter I I ) was 

c a l c u l a t e d by assuming t h a t of the three p a r t i c l e s i n the f i n a l 

s t a t e , only the two pions provided an important f i n a l s t a t e 

i n t e r a c t i o n since the energies considered were below the N* 

production threshold. Thus the only r i g h t hand cut of t h i s 

amplitude i s associated w i t h t h i s two pion i n t e r a c t i o n (which i s 

assumed t o be i n an I = 0, 3-wave s t a t e ) . By m u l t i p l y i n g by the 

D-function a r i s i n g i n an N over D s o l u t i o n f o r the 1 = 0, S-v/ave 

pion-pion amplitude, t h i s r i g h t hand cut was removed and the e f f e c t 

of the l e f t hand cuts was approximated by s. constant parameter C. 

A l l the p a r t i a l waves were then combined and the d i f f e r e n t i a l cross-

s e c t i o n f o r the production process was c a l c u l a t e d i n terms of the 

various parameters involved i n the c a l c u l a t i o n . 



143. 

'i'he c a l c u l a t e d values f o r the d i f f e r e n t i a l cross-sections were 

compared w i t h the experimental data, and the parameters d e f i n i n g 

the pion-pion amplitude and the value of C were adjusted t o give 

an optimum f i t . Using t h i s q u i t e reasonable model f o r the low 

energy pion-production amplitude, i t was found t h a t the d i f f e r e n t i a l 

pion-production cross-sections a t 374 Mev could be reproduced 

s a t i s f a c t o r i l y w i t h a non-resonating pion-pion 1 = 0 , S-wave 

phase-shift only of type i i . , i . e . i n i t i a l l y negative, t u r n i n g 

over and becoming p o s i t i v e . Two other processes, low-energy 

pion-nucleon S-wa.ve s c a t t e r i n g and the ABC e f f e c t were also 

examined and were shown t o be consistent w i t h a phase-shift of t h i s 

turn-over type. 

Of the two types of low energy phase-shift i . and i i . , given by 

the analyses considered i n the previous two sections, we would 

suggest t h e r e f o r e t h a t the low energy pion production data perhaps 

favours type i i . , a t l e a s t f o r non-resonating s o l u t i o n s . Unfortun

a t e l y , we are unable to say anything stronger than t h i s because, 

although i t seems a q u i t e reasonable approximation to replace the 

e f f e c t of the l e f t hand cuts i n (2.45) by a constant parameter at 
2 

l e a s t over the small range of & we are considering, i t would be 

unwise t o draw any hard and f a s t conclusions from a model i n which 

there i s even an element of doubt. 
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I t has been suggested from a study of the possible d r i v i n g forces 

t h a t a pion-pion resonance can only be produced i n the 1 = 0 , 

3-wave p a r t i a l wave amplitude by the i n t r o d u c t i o n of f r e e param-
70 

e t e r s , i . e . a ODD pole . An a l t e r n a t i v e parameterisation of the 

pion-pion phase-shift was made, t h e r e f o r e , i n which the e f f e c t of 

i n c l u d i n g a CDD pole was taken i n t o account. I n Section 3 of 

Chapter I I I , we discussed how such a CDD pole would a l t e r the 

various analyses of the data on the low energy pion-production 

cross-sections, proton-deuteron s c a t t e r i n g and the low energy 

S-wave pion-nucleon s c a t t e r i n g amplitude. Here again, a s o l u t i o n 

of the turn-over type was obtained which was consistent w i t h a l l 

three processes, but i n t h i s ca.se eq u a l l y acceptable s o l u t i o n s 

w i t h p o s i t i v e s c a t t e r i n g lengths were also found without any 

f u r t h e r a l t e r a t i o n of our model. Thus, f o r a resonating amplitude 

which contains a CDD pole, we conclude t h a t e i t h e r type of phase-

s h i f t S Q° found by Lovelace, Heinz and Donnachie from pion-nucleon 

s c a t t e r i n g data i n the backward d i r e c t i o n could be compatible w i t h 

low energy pion-production data. We also note t h a t such phase-

s h i f t s could be compatible w i t h the ABC e f f e c t , the pion-nucieon 

'discrepancy' analysis and probably most of the other methods 

discussed i n t h i s Chapter f o r d e r i v i n g the pion-pion i n t e r a c t i o n . 

http://ca.se
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F i n a l l y , we must mention a suggestion due to Chew t h a t i f there 

e x i s t s one or two ghost hound states i n the 1 = 0 , S-wave pion-

pion amplitude (due to the backward i n t e r c e p t s of the P and p' 

Regge t r a j e c t o r i e s a t negative values of <3" ̂ ) the phase-shift 
12. 

might be expected to decrease r a p i d l y to - ^ or -2~K . Cook 

has proposed t h a t t h i s could be compatible w i t h the data f o r 

various processes such as K ^ decays and the three pion decays 

of the K and f| mesons. However, the worK of Atkinson and 

Halpern shows t h a t the existence of ghost bound states could also 

imply the existence of CUD poles which would a f f e c t the assymptotic 

behaviour of & Q°• Also from our analysis of the low energy pi o n -

production data i n terms of the modified p e r i p h e r a l model, t h i s 

type of phase-shift would produce one or more 'bumps' i n the 

d i f f e r e n t i a l production cross-sections a t low values of the squared 

d i - p i o n energy ( ̂  ) which are not observed experimentally. This 

r e s u l t i s independent of the d e t a i l e d parameterisation of the P 

i r " p ^» n p a r t i a l wave and we would suggest th e r e f o r e t h a t t h i s 

type of phase-shift could be r u l e d out. 

We have seen t h a t i t i s not y e t possible t o p r e d i c t w i t h any 

c e r t a i n t y the form of the low-energy pion-pion i n t e r a c t i o n . 

Perhaps u s e f u l i n f o r m a t i o n could be obtained from a much r e f i n e d 

v e r s i o n of the model proposed by Goebel and Schnitzer. Also i t 
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might prove possible i n the f u t u r e to produce accurate p r e d i c t i o n s 

on the s c a t t e r i n g lengths by p r o v i d i n g some means of reducing the 

pion-mass e x t r a p o l a t i o n d i f f i c u l t i e s i n curr e n t algebra techniques, 

i i more l i k e l y prospect i s t h a t by b e t t e r analyses of the various 

processes discussed i n t h i s t h e s i s , together w i t h more accurate and 

p l e n t i f u l ctata, one s p e c i f i c type of pion-pion phase-shift w i l l be 

suggested. However, the conclusions reached i n t h i s t h esis are, 

we b e l i e v e , the extent of the present knowledge on the low-energy 

pion-pion i n t e r a c t i o n . 
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APPENDICES 

The pion-pion Amplitude 

The S-matrix element f o r the pion-pion s c a t t e r i n g process sketched 

i n Figure ( A I . 1 ) 

qx(<=<) + 42(/3>) c i ; . / ( ^ ) + q 2 ' ( S ) - ( A l . l ) 

i s given i n terms of the i n v a r i a n t amplitude A by the r e l a t i o n 

< % * ; J: £ | S ft.-= + 
- (j>l-2) 

where the pseudo-scalar pi-mesons w i t h i s o t o p i c spin one, are 

denoted by t h e i r three-momenta and i s o s p i n indices °<,^/S ,X , & , 

A c a n 1 3 6 w r i t t e n i n terms of three independent scalar 

f u n c t i o n s as 

A<Y*£ = £*f + A n ^ v ^ + A
m i s <^/V - ( A l - 3 ) 

which i s r e l a t e d to the f a c t t h a t , assuming charge independence 

one has three p o s s i b i l i t i e s f o r the t o t a l i s o t o p i c spin I = 0,1,2. 
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d e f i n i n g the i n v a r i a n t s s, t , u by the r e l a t i o n s 

s + <12) = ~ ( q 1 ' + q 2' )' 

t = - 4 / ; 2 = - ( q 2 - q 2 ^ - (A l . 4 ) 

- , I 2 , 1 2 

such t h a t s + t + u = 4 ^ 2 - ( A l . 5 ) 

where jj- i s the mass assumed from independence t o be the same f o r 

each pion; then i t f o l l o w s from the pro p e r t y of crossing symmetry 

xor the amplitude A ohat 

A I ( s , t , u ) = A i ; r ( t , s , u ) = A m ( u , t , s ) = A ].(s,u,t) = - ( i l l . 6 ) 

kT1(u,s,t) = A I ] ; i ( t , u , s ) 

i . e . A i s i n v a r i a n t under the interchange of any of the e x t e r n a l 

p a r t i c l e s . 'i'he three amplitudes A^, A , C a n b e e x P r e s s e ( ^ 

i n terms of the amplitudes which corresponds t o a d e f i n i t e value 

of t o t a l i s o t o p i c spin I by means of the p r o j e c t i o n operators f o r 

the various i s o s p i n s tates 

so t h a t A = 55^ - (A1.8) 
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where T = 3^ + A.^ + A 

T = A I I I I I - ( A l . 9 ) 

T - A I I + A X 1 1 

For the coupling of two p a r t i c l e s the wave f u n c t i o n i s given by 

• I I , - T T 7 l C ( I ' I > 1 " ' I3 1> I3 2. I5 ) V T 1 t I 2 I ( A L I O ) 

1 2 
and f o r the case of both p a r t i c l e s being pions v/here I = 1 = 1 

1 2 
and I , ,1, ransre over +1,0,-1 the Clebsch-Gordon c o - e f f i c i e n t s 

5 t> 
have the values given i n ( A L U ) 

1 = 2 

1 = 1 

1 = 0 

h - 1 

•3 . ^ 

1. 2 

2. 3 

1 = 0 

2.- 3 

•3. 

( ' - T i ) ( l - l s l 
•* - 2 . 3 

1.. 2. ( A L I I ) 

Therefore a s s o c i a t i n g 7 1 + w i t h the wave f u n c t i o n - l*f-• -, » 0 

w i t h ^ _ and TC w i t h 'f (where the phase convention of 1, u 1 , - i 
73 Condon and Shortley has been assumed) the amplitudes f o r the 
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various p h y s i c a l processes can be w r i t t e n i n terms of the i s o t o p i c 
o X 2 spin amplitudes T , 'f , T as 

TT - n + 
7t 

+ 
K 

+ 
") = T 2 

A( 
+ 

TC ~ TL 
o 

TL 
+ n 0 ) = * r 2 + i T 1 

A( 
0 

7t K 
0 

TL 
0 

TL 
0 
) = f l 2 + iT° - (A1.12) 

A( 7L + TL - — 7L + ") = 1/6T2 + -IT 1 

A( + 
Tt TL - TL 0 n °) = - i r 2 + 

I n the mass centre the three i n v a r i a n t s ( A l . 4 ) can be w r i t t e n i n 

terms of k, the magnitude of the three momentum of each p a r t i c l e , 

and 0 A the angle of s c a t t e r i n g as 

- _ _ 2 .2 2s s = <r = 4 ( k + ) 

t = -2kA(l - CosQ* ) - (A1.13) 

u = - 2 k ^ ( l + CosQ K ) 

which are the same equations as derived i n Chapter I f o r the example 

of equal mass s c a t t e r i n g . However, since pions obey iiose s t a t i s t i c s , 

when the pion-pion amplitude i s expanded i n pg„rtial wa.ves the 

im p o s i t i o n of the P a u l i P r i n c i p l e , which demands t h a t the composite 

v/ave f u n c t i o n must be symmetric under the interchange of the 

c o n s t i t u e n t pions, l i m i t s the summation to include states of only 
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odd angular momentum and odd i s o s p i n or even angular momentum and 

even i s o s p i n ; t h a t i s to say 

[ r ( k ^ C o s O n ) = <-?EE ^ ( 2 2 + 1 ) A £
I ( k 2 ) P i ( C o s 0 7 . ) - (A1.14) 

ll even, I even 
i odd, I odd 

where each p a r t i a l wave can be w r i t t e n i n terms of a p a r t i a l wave 

phase-shift as 

I 2 

where (k ) i s the r a t i o of the t o t a l partial-wave cross-section 

to the e l a s t i c cross-section. 
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Kinematics of the I n e l a s t i c Processes 

I n t h i s s e c t i o n we s h a l l give some u s e f u l r e l a t i o n s between 

va r i a b l e s defined i n the o v e r a l l centre of mass system and 

q u a n t i t i e s defined i n the l a b o r a t o r y system f o r the process 

Ti( q ) + N(p) Tc(q^ ) + 7C (q g' ) + N(p' ) - (A2.1) 

and the associated process 

T t ( q ) + I T ( p ) a 1 ( q / ) + JMCP' ) - ( A 2 . 2 ) 

where cr^q') represents 7t(q^ ) + 7C ( q ^ ) considered as a s i n g l e 

system of 'mass' cr . Only those r e s u l t s which are required i n 

the t h e s i s are presented here. For a f u l l discussion of the 

kinematics of such production processes as (A2.l) we r e f e r the 
IS 

reader t o an e x c e l l e n t e x p o s i t i o n given by F e r r a r i and S e l l e r i 

I f PIIIP'IQ.-^ jQ-p >o/ a r e taken to be the f o u r momenta of the 

p a r t i c l e s as i n d i c a t e d i n (A2.1) and (A2.2) the usual Lorents 

i n v a r i a n t q u a n t i t i e s can be v / r i t t e n as 

s = - ( p + q) = - ( p + q 1 + q 2 ) = -(p + q ) 

t = -(p - p ' ) 2 - "U ~ q( - ^ f - - ( q - q ' ) 2 - (A2.3) 
/ ' \ 2 ,-/ / \2 // \ 2 u = - ( q - p ) = - { ^ + q 2 - p) = - ( q - V) 

where use has been made of the energy-momentum conservation 

conditions 
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p + q f i 
p + q 

*1 

- (A2.4) 

I f - p i s taken as the mass of each pion- and m the mass o-f -nueleon 

then i n the centre of mass system (p* + "q" = 0) f o r process 

(A2.2) 

P = ( i E , p ) ; p' = ( i E ' , p / ) 

q = ( i w , - p ) ; q' = (iw',-p') 

so t h a t 

.3- 2 - 2 v 2 2 -.2 E = m + p ; E = m + p' 

w 

where 

2 2 -2 ,2 2 - 2 = ^ » . + p ; w' = c r + p 

s = VJ = (E + v/) = m + fJ- + 2p + 2Ew 

? o _ ?-
= (,£'+ w') = + a - + 2p y + 2E w' 

(A2.5) 

(A2.6) 

P = / P~i ; p ' = | p"'| - (A2.7) 

Therefore, i f 

CosO = - (A2.8) 

P.P' 

we can w r i t e 

,2 , m . .2 2 . 2 , .-2 
(A2.9) 
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and 

t = - ̂ 2 = 2(m 2 + p p / CosQ - E.E') - (A2.10) 

From energy conservation 

E + w = fi' + w' - ( A 2 . l l ) 

i t f o l l o w s t h a t 

w' = (W2 + < r 2 - m2)/2W - (A2.12) 

and hence 

p' 2 = [(W + < r ) 2 - m2 j [ (W - c r ) 2 - m 2]/4W 2 - (A2.13) 

from which i t may be seen t h a t c , the pion-pion centre of mass 

energy has a range of values from the two pion threshold 2 up 
_ 2 

to i t s maximum value (W - m) corresponding to p' = 0 . 

I n the l a b o r a t o r y frame of reference i n which the nucleoli N(p) 

i s a t r e s t (p = 0) i t can be deduced t h a t 

the k i n e t i c energy o f ' ~ t ( q ) , T T = (W2 - (m + ^ ) ) 2 / 2 m 

the three momentum of~n.(q), q = ( T ( T T + 2m)) 2 

i i L L 

the k i n e t i c energy of I ^ p ' ) , T^. = /±.^/2m 

and the three-momentum of N ( p / ) , p,T = (T, T(T. R + 2m)) s 

(A2.14) 

The maximum value of the pion-pion centre of mass energy ''"max. can 

be expressed i n terms of TT by the r e l a t i o n 

http://A2.ll
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x = (2mT + (m + ̂  ) ) 2 + m - (A2.1S) 

so t h a t m a x i s a n i n c r e a s i n g f u n c t i o n of T . Also i n the 
L 

la b o r a t o r y frame 0 , the s c a t t e r i n g angle between p ' and "q" i s 

defined by the equation 

2p NQ L CosOL = <s-Z - + 2 T N ( T L + m + r ) - (A2.16) 

from which i t f o l l o w s t h a t 

cAo-'-jljl. = ckcr-'1- jaCrtoo ±4 = a d Cc*sS>L) £4l -• '•c*<9'} 

where, because of the d e f i n i t i o n of 0 , d SL = -d(CosO )d 4. 
Jj L h Li 

Therefore from (A2.10) 

- (A2.18) 

and from (A2.14J 

Jo-"1-JIV - z ™ j _ a L dLlTi - (A2.19) 

Hence the d i f f e r e n t i a l cross-sections f o r the process * N •*- ~k. TC n 
2 2 

defined i n the centre of mass system, d " " x / d a " d-O- , can be 
p 

expressed i n terms of d~~ cr~x/dT d -H- , the d i f f e r e n t i a l cross-Is Jj 

sections measured i n the l a b o r a t o r y frame of reference as 

P"̂ ' ci V v - (A2.20) 
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Z7 
Kinematic S i n g u l a r i t i e s of the "ft jT-g- S- IT P a r t i a l V.'ave Amplitudes 

For a f i x e d value of the energy &~ the d i f f e r e n t i a l cross-section 

f o r the process I\T-> 3?- N i s defined i n the centre of mass system 

by the r e l a t i o n ~~ ~~ 

^ w y - ^-'P I FLvt\ - (A3.1) 

where the sum represents an average over the i n i t i a l spin sta,tes 

cuid a suiTrniatiOii over the f i n a l spin s t a t e s . F \ i s r e l a t e d 
a c 

to two i n v a r i a n t amplitudes A and B by the equation 

^ T = \ C / ) [ A ( ^ ^ ^ V F F + U f ^ O ^ V ^ C ^ ^ - ) ] ^ ) _ (A3.2) 

However, we may also w r i t e the d i f f e r e n t i a l cross-section i n the 

centre of mass system i n the form 

where 

and ? are the p a u l i spin matrices, X , X are two-spinors. We 
£L C 

may t h e r e f o r e r e l a t e F to f by the convention 

and by a l i t t l e manipulation, f-j_ and f may be r e l a t e d to the 
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i n v a r i a n t f m i c t i o n s A and B i n the f o l l o w i n g manner 

- (A3.6) 

From the Mandelstam hypothesis we w i l l assume t h a t these i n v a r i a n t 

f u n c t i o n s s a t i s f y s p e c t r a l representations such t h a t 

O'-w-Xs'-s) 

and there e x i s t s a s i m i l a r expression f o r B. Equation (A3-7) can 

be r e - w r i t t e n i n the form 

G(«,6,^ = ^ ^ t ' + ̂  f ^ / i i ! ^ + - (A3.8) 

and s i m i l a r l y f o r B ( s , t , u ) , where 

- (A3.9) 

s'- s J
 Ki +1'+ s - S_ 

2 2 2 and = 2m + p + 

ivfote t h a t from crossing symmetry 
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depending on whether A(Bj i s symmetric or antisymmetric under 

crossing. 

Prom equations (2.J0) and (A3.6) the p a r t i a l wave amplitudes f + 

are defined i n terms of A and B by the equation 

\ ± - f ^ ( A ^ . + z w ^ . j ] _ ( A 3 . l l ) 

where 

-1 

I n order to determine the kinematic s i n g u l a r i t i e s of these p a r t i a l 

waves, we consider the f u n c t i o n s A^ / ( p p') » Bg / ( p p') 

Prom equations (A3.8), (A3.9) and (A3.IO) i t f o l l o w s t h a t we can 

w r i t e A^ / ( p p ' ) ^ as 

where 

I t w i l l be seen t h a t I ^ contains no s i n g u l a r i t i e s other than those 

a r i s i n g from vanishing denominators i n the Mandelstam r e p r e s e n t a t i o n . 

http://A3.ll
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Dmce 

7, 

the i n t e g r a l i n (A3.I4) w i l l vanish a t p = 0, p ' = 0 l i k e 

(p p ') so t h a t no pole i s introduced by d i v i d i n g by t h i s f a c t o r . 

Also, since 1^ i s a f u n c t i o n only of even powers of (p p') no 

branch points occur a r i s i n g from these kinematical f a c t o r s . 

Hence A ̂  / ( p p ' ) ^ 8jad s i m i l a r l y / ( p p ' ) ^ are f r e e from k i n e 

m a t i c a l s i n g u l a r i t i e s and t h e r e f o r e from equation ( A J . l l ) we can 

define f u n c t i o n s h such t h a t 
It 

h 

:which are a n a l y t i c i n p and p'" except f o r branch cuts from -m̂  

to - c*> and dynamical s i n g u l a r i t i e s . 
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'i'he N over D Equations and ODD Poles 

We wish to a i s c u j s the p a r t i a l wave s c a t t e r i n g amplitude A ( s ) i n 

a one channel formalism. Frye and Wamock75" have developed 

coupled i n t e g r a l equations i n terms of N and D funct i o n s t o 

c a l c u l a t e the amplitude A and have introduced a complex phase 

s h i f t £ = oi + ±f*> to denote the i n e l a s t i c c o n t r i b u t i o n s to 

the u n i t a r i t y equation a r i s i n g above the f i r s t i n e l a s t i c t h r e s h o l d . 

Chew and iMsndelstam have also devised, i n t e g r a l equations f o r A ( S J 5 

but i n t h e i r case they introduce the i n e l a s t i c i t y by the f u n c t i o n 

rt(s) which i s the r a t i o of the t o t a l to the e l a s t i c cross-sections. 

.Ve s h a l l denote by £(s) the phase-suift of the scattering-

amplitude i f we are concerned w i t h an e l a s t i c system, the r e a l 

p a r t of the phase-shift i f we are using the Frye-W'amock equations, 

and the phase of the amplitude i n the Ohew-Kandelstam equations. 

Let us w r i t e 

A(s) = N( 3)/D(s) - (M.l) 

where i'j(s) has oni,y the l e f t :iand cut and D(s) has only the r i g h t 

hand cut. We s h a l l c o n s t r u c t the J- f u n c t i o n so t h a t i t tends to 

a r e a l constant a t i n f i n i t y ; hence l)(s) must s a t i s f y the f o l l o w i n g 

c o n d i t i o n s : 
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i . I t must have the phase £ (s) f o r ŝ , < s-^ 0^. 

i i . I t must have a zero corresponding to each p a r t i c l e 

pole of A whether the p a r t i c l e i s 'elementary 1 or 

not . 

i i i . I t must tend t o a. constant a t i n f i n i t y . (By the 

Riemann-Schwartz p r i n c i p l e t h i s constant must be 

r e a l and i t may be normalised to one.) 

Condition i . i s s a t i s f i e d i f we w r i t e D i n terms of cD where 

J f r O = ^ , t " v * C - ( M . 2 ) 

However oD(s) has no zeros so we must m u l t i p l y JD(s) by the f a c t o r 

I T (s - p.) where n denotes the number of p a r t i c l e poles (on the 
i - 1 1 a 

p h y s i c a l sheet) whether elementary or not. I f we assume t h a t 

£(co) = nix then i t i s seen t h a t i n order t o s a t i s f y c o n d i t i o n i i . 

we must d i v i d e the product <S(s). (s - p^) by a polynomial of 

degree m + n^ = (say ) . Thus, we can w r i t e the D-function which 

s a t i s f i e s c o n d i t i o n i . to i i i . a s 

D(s) = lzl . £ ( 0 - (A4 . 3 ) 

A- 1 

v;here the s . w i l l be taken to be a r b i t r a r y . Note t h a t since 

itf = jV.D, N(s) w i l l i n general share the same poles as D(s), (CDD 

p o l e s ) . 
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I t i s e a s i l y seen t h a t "chese pole p o s i t i o n s s . are i n f a c t 

a r b i t r a r y . Fox example, i f n = 1, i l and D have one pole each. 

Since D tends to r e a l constant a t i n f i n i t y , IinD -is- 0 and i t f o l l o w s 

by a s u i t a b l e n o r m a l i s a t i o n of ~D t h a t an unsubtracted d i s p e r s i o n 

r e l a t i o n can be w r i t t e n f o r D - 1. Also, since ImD = ^ N f o r 

s >• from u n i t a r i t y , where ^ i s a c e r t a i n k i n e m a t i c a l term 

(e.g. a = —!_ 1 s-*~~x f o r equal mass spinless p a r t i c l e s ) • 

H(s) 0 f o r s-*-«o and th e r e f o r e itf(s) s a t i s f i e s an unsubtracted 

d i s p e r s i o n r e l a t i o n . From the Cauchy representations of D and Itf, 

we o b t a i n 

D ( B ) = 1 + ^ V , - ^ \ r, - 7 T T -

= -=£7- - ^ f — J x ' 

- ( M . 4 ) 

v/here a^ and b^ are the CDD parameters and i s the a r b i t r a r y pole 

p o s i t i o n . Now i f one forms 

D 2 ( s ) = 

N 2 ( s ) = 

s - s l D(s) s - S 2 
D(s) 

s " S l N(s) s " S 2 
N(s) 

- (A4.5) 

by d i r e c t s u b s t i t u t i o n i n t o (A4o5) w e see t h a t 

(A4.6) 
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where 

a l + ^ S 2 " s l ) + 

'2 
A s ' ) H L ( 8 ' ) 

ds' 
ST

 S " S l 

and K = \ + ( s 1 - s 2 ) / i t ^ 
<=> Im A(s')D ( s ' ) 

- ds ' 
s' - 8, 

(A4-7) 

so t h a t s 1 i s t r u l y a r b i t r a r y , 

However i f we define so t h a t e i t h e r a^ or b^ i s zero then we 

can w r i t e equations (A4.6) e i t h e r as 

D 2(s) . 1 + 
a - s 

I m A ( s ' ) D ( s ' ) 
V s ) - ̂  .1 r - 2 — d s 

s - s 

(A4.8) 

where we have w r i t t e n s f o r s„5 or as 
o Z 

D 2(s) 
/ ( s ' ) N 2 ( s ' ) 

0.3 
Je T s - s 

s - s B 0 

f H A ( O B 2 ( B ' ) 
ds 

(A4-9) 

where s,, i s w r i t t e n f o r s„ (s,, •< s„), is ^ is 1 
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I n (A4.3) a and 3 Q are the two CDD pole parameters, and i n (A4.9) 

b and s are the two parameters. Note t h a t s i s the -position of ±5 B 
a p a r t i c l e pole. I f s^ ŝ ,, the two forms (A4.4) a n < * (A4«9) 

are e q u i v a l e n t . However, i f the e f f e c t of a^ and b^ i s t o produce 

a zero i n D (s) at Re s s , the n a r t i c l e pole i s t h a t of a 1 B 1 

resonance and neces s a r i l y has complex (on the second Riemann 
is 

sheet). I n t h i s case, equations (.4.4.9) would have to be modified. 

D'rom the above discussion i t can be seen t h a t the three forms of 

i n t r o d u c i n g CDD parameters i n t o the N and D equations, i . e . (A4>4)> 

(A4.8) and (A4.9) are g e n e r a l l y equivalent. The a r b i t r a r i n e s s of 

s^ i n (A4.4) means t h a t only two parameters are introduced by a CDD 

pole i n t h i s form, j u s t as i n (A4.8) and (A4«9)« 

I f we reconsider the decomposition of A(s) i n terms of n/d where 

d has no poles but can have any number of s u b t r a c t i o n s , then we 

must w r i t e 

d(a) = D(s) TT (s - s.) - (A4.10) 

n n 

I t f o l l o w s , t h e r e f o r e , t h a t He d(s) s and Im d/s - 5 - 0 as 

s «* , so t h a t there e x i s t s a d i s p e r s i o n r e l a t i o n f o r d w i t h 

n^ s u b t r a c t i o n s . From the equations f o r jtf and D i t may be seen 

d i r e c t l y t h a t n and d s a t i s f y the equations 
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d(s) = 1 + f t (s - s ) + l v o 
n 

+ s*rj. (s - s ) 
o' 

TV 

n „ oo c 
ds n 

S T ( S' - B ) (a' - B O ) 

n - 1 
n ( s ) = /i± + /? 2(s - S q ) + ... + / n (s - S Q ) G + 

n o 
(s - s ) c /° . , Im A(s / ) d ( s ' ) o' I as •—•—•—- n 

( B # " S ) ( S ' - B O ) 

One may also show t h a t S q , the s u b t r a c t i o n p o i n t , i s a r b i t r a r y 

and t h a t the s parameters ^ i , / ^ i are determined by the residues 
xc 

of the CDD poles, e.g. a ,b i n (A4.4) . 
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