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ABSTRACT

A model for the pion-production amplitude is developed in which
it is possible to calculate the total énd differential crogs-
sections for different assumed forms of the pion-pion I = O,
b-vwave amplitude. The two final state pions in the process

. e~ y -
mp = N T n gre considered as an I = 0, scalar, spin-zero

o~

system & with a continucus mass spectrum - the 'mass' being
the di-pion invariant mass; and the model consists of

assuming the peripheral interaction for all partial waves other
than that corresponding to the S-wave © n final state. For
this 'lowest! partial wave, a phenomenological form is derived
by assuming that of the three particles in the final state,
only the two pions, in an I = 0 BS-wave, provide an important
final state interaction. If the further assumption is made
that this final state interaction can be 'factored! from the
rest of the ampiitude, then an I = 0, S-wave plon-pion
phase-shift with a negative scattering length and which turns
up through zero is found to reproduce quite well the pion-
production differential cross-section data. It is also shown
from this model that almost any low-energy plon-pion interaction
could be compatible with the low-energy total production cross-

sections.



Corroboration for this type of phase-shift is sought in the
pion-nucleon partial wave 'discrepancy' analysis. By
increasing the pzrameterisation of the pion-pion auplitude

in this analysis, such a 'turn-over' type of phase-shift is
Tound as well as a very negative solution with a large
negative scattering length, and no turn cver, and the solutions
previously found from this analysis with positive scattering
lengths. The very negative solution is rejected as being
incompatible with the pion production differential distribu-

tions calculated from our model.

The ABC effect is discussed in terms of the two enhancement
factors usually assumed for this analysis. It is shown that
for a phase-shift which passes through zero, these two factors
are not equivalent and it is not clear which - if either -

should be used.

The possibility of a CDD pole in the I = 0, S-wave pion-pion
partial wave nas recently been suggested. Both the model
proposed for the pion-production amplitude, and the
‘discrepancy' analysis are adapted to incorporate this possib-
ility. It is found that at least three types of resonating
phase-shifts - two similar to those found by Lovelace et al

and one similar to that obtained by Wolf - could be compatible



with the low-energy pion-production and pion-nucleon scattering

data.

Yinally, a survey is given of the other methods for obtgining

the form of the low-energy pion-pion interaction. By discussing
the possible sources of error inherent in these calculations, some
fairly general conclusions are drawn and compared with the results

of the above analyses.
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CHAPTER ONE

INTRODUCTION
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I - INTRODUCTION

Strongly Interacting Particles

At the present time 11 is usually accepted that the forces
between particles fall into four classes, gravitational, weak,
electromagnetic and strong, depending on their strength. The
most widely studied of these has been the electromagnetic force
which, in the quantised theory, is propagated by the exchange of
zerc mass photons between two charged particles, the zero mass

condition implying that the force has an infinite range.

However, it is clear that one cannot explain the properties of
nuclear interactions in terms of these electromagnetic forces
since the nuclear forces are known to operate only over a very
short range and even between the charged proton and the neutral
neutron. In order to account for this strong, short range force
between the particles comprising the atomic nucleii, Yukawa1 in
1935 introduced the hypothesis of heavy quanta, which to satisfy
the experimental information require a mass about two hundred times
heavier than the electron, If one assumes that the interactions
between these heavy quanta 70U and a nucleon N is the result of
virtual processes of the type N = N+ - (i.e. assuming a Yukawa

coupling) then angular momentum conservation implies that these

quanta should have integer spin and hence they must obey Bose
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statistics. Also from a study of the two nucleon potential and
from the empirical evidence that the nuclear forces are charge

independent it may be concluded that a triplet of such particles
should exist, one positively charged, one negatively charged and

a neutral member 2.

In 1947 Powell and his fellow workers? using very sensitive
photographic plates exposed to cosmic radiation at high altitudes,
detected tracks of charged particles in the emulsion which induced
nuclear disintergations or emitted secondary particles when they
came to rest. These strongly interacting particles with zero
spin and a mass of 139,59 Mev. may be identified as the heavy
quanta postulated by Yukawa, and have now become known as

pi-mesons or pions.

Since that time many more strongly interaciing particles have been
sought in experiments with cosmic rays, bubble chambers and
particle accelerators, and there now exists good evidence for more
than fifty such particles4which are identified by their mass and
spin and various internal quantum numbers such as isospin and
strangeness., These quantum numbers, with their corresponding
conservation laws for strong interactions, are assigned to account
for the observed production of only certain particles in any strong

interaction process.
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All of the strongly interacting particles mey be classified into

the two general species of baryons and mesons. The baryon class
consists of the nucleons, that is the neutron (n) and proton (p),

a hyperon singlet, doublet and triplet, carrying a quantum number

of strangeness -1, -2, -1 respectively, as well as the nucleon and
hyperon resonances. The meson class, until six years ago, consisted
only of the pion triplet <1f+) 1(‘;7r°) and the 'strangeness' carrying
kaon doublet with its anti-kaon counterpart. In the past few years,
however, there has been a great increase in the 'discovery'! of new
mesons. Almost all of these are meson resonances, that is they

decay via strong interactions into other mesons. Some of these
resonances are well established, such as the , and the K* etc., but
the existence of many is still open to question. One possible reason
for this is that unlike the study of meson-baryon interactions, where
data can be obtained by scattering mesons off nuclear targets in the
large particle accelerators, no mesonic targets exist (mesons have a
lifetime of about 10-8 seconds), so that no similar study can be
performed for meson-meson interactions. Perhaps this will be possibile
when machines are built which can clash two mesonic beams together,
but for the present, and for some time to come, meson-meson inter-
actions must be interpreted either from the final state interactions
of inelastic meson-baryon scattering experiments, meson decays, etc.

or from a dispersion theory analysis of meson-baryon scattering.
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However, before any detailed discussion can be given of the approxi-
mations and models used in the theoretical calculation of these
processes, in particular those involving pions and nucleons, we
must give a brief introduction to the S-matrix and the concept of

the complex energy plane ;.
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Introduction to the S-matrix

The earliest method of calculating scattering processes between
strongly interacting particles was analogous to the procedure so
successfully adopted in electromagnetism where, since the time of
Maxwell, the electromagnetic force has been considered in terms

of a field. This field is quantised by the use of a Lagrangian,
the form of which is taken from classical physics. A solution of
the equations thus formed is produced as a perturbation expansion
in powers of the square of the electromagnetic coupling constant

(i.e. the electric charge) which in rationalised units has a value

e = Va7,

There are inherent difficulties in this perturbation expansion.

In particular there exists the problem of ultra-violet divergences,
but, at least in principle, this can be overcome by renormalisation
techniques and the smallness of the above constant means that the
first few terms of the expansion, which in practice is all that can
be calculated, give a very accurate resulté. However, in such a

field theory for strongly interacting particles, the square of the

equivalent coupling constant is of the order of fifteen and therefore,

except under very special conditions, one should not expect an
analogous perturbation expansion to be a good approximation, even

if the corresponding Lagrangian could be correctly surmised.
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In the last decade a theory has been devised which attempts to
calculate the transition amplitudes directly, without requiring

a knowledge, or even the existence of a Lagrangian and its
constituent fields. These transition amplitudes are the elements

of the S-matrix.

For a scattering process in which the forces are of sufficiently
short range the initial and final states can be assumed to consist
of free particles which may be specified by the momentum of each
particle together with the discrete quantum numbers of spin,; isospin;
etc. If one represents such an initial state by |{n > , where n
denotes all the quantum numbers identifying the state, the super-
position principle of quantum mechanics allows the final state to

be written as S {n_> where S is a linear operator.

The probability that a measurement on the final state gives a
result corresponding to the initial state [ m > is given by the

square of the modulus of the matrix element,
_<:W\|S‘|W;>.

Thus, assuming that the states | m> form a complete orthonormal
set conservation of probability implies that

S's =Sst=1
where S' denotes the adjacent of S; so that the operator S is
unitary. Furthermore, if L is a proper Lorentz transformation

such that

Lim> = |m'>
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relativistic invariance reguires that

| <mi S > = [ <misin>|®
and the phase of the matrix element can be chosen so that

Zw'} Sin'> = <miSin> |
from which it follows that for spinless particles the matrix
.elements depend on the four momenta of the particles only through
their invariant scalar products, and for particles with spin the
matrix element is composed of a number of such invariant functions
multiplied by certain vector or spinor terms. Yor example, the
'two~-to-two! S-matrix element <:F%Palfgl p, P> which describes
the scattering of two spinless particles into a final state of

two spinless particles will be a function only of the invariants

'F,Lz = _.\m'-:"‘ R L=1,2,3 4 - (l.l)
where m, and p, are the mass and four momentum of the ith particle,
2
s = -(p, +p,)
2
t = -(p, - p,) - (1.2)
2
u = -(p, - p,)

and even these are not all independent since the overall energy-
momentum conservation condition

P, +P, = P, + P, - (1.3)
implies that

s+t+u = m° +m +m +m - (1.4)
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It is convenient to separate the S-matrix into two parts by

subtracting off the term when the particles do not interact at
all, in which case the transition probability will be unity of
the particles in the initial and final states are identical and

zero otherwise. Thus we can write
Lor |SiP P> = <P direa>+ - (1.5)
+ @™ §¥een-aer) <ae e

where 1 is the identity operator and the S-functions coming from
translational invariance specify total energy-momentum conserva-
tion. T'he scattering cross-section is related to the scattering

amplitude F(s,t,u) where

Fz <nreSlee> - (1.6)
by the equation
. N
& = (‘31527,%1 ‘g-dtn'l“ K. - (1.7)

where 'g'and ¢ are the centre of mass momenta of a particle in
the initial and final states respectively, W is the centre of mass
energy and J1 is the solid angle in the final state. In deriving
equation (1.7) a covariant normalisation of the states has been
used, i.e.

L'l e = ax) 2 SFF) - (1.8)

The unitary condition for the operator S and equation (1.5) produce

the following relation for the amplitude F,
| 2o i {4k R
e flee>- <anlflan>= L [ oo iy, (L)

x <ffy) kb, ><rre (] lr, kS
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where the star denotes the complex conjugate. Above the energy
threshold for inelastic scattering new terms must be added to the
right hand scale of this unitarity relation, equation (1.9),since
all intermediate states will occur which are allowed by energy
conservation and quantum number selection rules. This implies

a change in the left hand side of equation (1.9) and suggests that

a scattering matrix element has a singularity at each energy
corresponding to a threshold for a new allowed physical process.
Thus, these thresholds are branch points of the amplitude F, with
branch cuts conventicnally drawvn along the real axis in the complex
energy squared plane, s = w2. These branch cuts allow the
amplitude to be single valued on a Riemann surface. By demanding
that none of these cuts are crossed, a single sheet of this surface
is defined which is called the physical sheet when the physical
scattering amplitude is a boundary value on the real cut of the

amplitude on this sheet.

The physical amplitude that gives <:P3ﬁ,n4‘fﬂfz:> is defined as

the limit onto the real axis of the complex s-plane from above,
F-(pl\-stlca.i) = Lm-.t F s+ ig ¢, u.) _(1.10)
Ear N
It is believed that this is related to the amplitude for
<<Pdﬁ!'§|f;P47; by asnalytic continuation, the latter being the
limit of the same analytic functions onto the cut from below.
This is the property of 'hermitian analyticity'. Thus the left

hand side of equation (1.9) is the discontinuity of the amplitude

across the branch cuts. If the symmetry condition

<algjb> = <blsla>
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is true then this discontinuity is twice the imaginary part of
the amplitude, but this condition holds generally only for !'two-

to-two! particle scattering.

Besides these branch points, with their corresponding branch cuts
of the amplitude F in the complex s-plane, it can sometimes

happen that except for energy conservation a one particle state

of mass ms, say, could be reached from the initial two particle
state, in which case the amplitude F(s,t,u) has a pole singularity
at an unphysical value of the variable s = ms2 below the first
threshold. These singularities are represented diagrammatically

in figure (1.1).

PIGURE 1.1
s-plane
2 2

m_ (ml + m2) I
S x T : e e
pole elastic first second

threshold inelastic inelastic

threshold threshold

In this discussion of the S-matrix various general properties have

been assumed which can be enumerated as follows:
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i forces are of short range

ii the superposition principle of quantum mechanics
iii  probability conservation

iv relativistic invariance

v transition amplitudes are the values of analytic

functions on real boundaries.

The fifth of these is often stated as the condition of causality
and the existence of macroscopic time, but although it is usually
believed that this implies v. it is difficult to prove rigorously.
In the following discussion it is hoped to illustrate the physical
consequence of analytic continuation in the variables s, t and u
together with assumption v. in the context of two-to-two particle

amplitudes for spinless, equal mass particles.

If F(s,t,u) is the amplitude for the physical scattering process

A+ A, — A+ Ay - (1.11)
the energies pi(o) and the momenta'ﬁz of the four particles must
be real. In the equal mass case this implies

S 4m* t Lo, wus<o, - (1.12)

If s, t,and by condition (1.4), u are considered as complex
variables then by analytic continuation to the region

t>24m’ s<o, ugo - (1.13)

property v. implies that the resultant function ¥, evaluated in

a suitable limit onto this region is the physical scattering
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amplitude for the process
v By —> By Ay - (1.14)
where the bar denotes the anti~-particle. Similarly by analytic
continuation to the region
U= 4w S<o , Exo - (1.15)
the function ¥, again evaluated in a suitable limit, now gives

the physical scattering amplitude for the process

A+ Ay —= A,+AA - (1.16)

function can be used to describe three different physical processes
by a suitable choice of s, t and u. In figure (1.2) are sketched
the physical regions for these three processes in which s, t or u

denote the square of the centre of mass energy, i.e. the so called

8, t and u channels.

FIGURE 1.2
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It should be noted that by using the unitarity equation (1.9)
for processes (1.14) and (1.16) and the crossing relations it
is possible to deduce further singularities of the amplitude
F(s,t,u). For example in the equal mass case there will be
branch points at

4m2’ (It)2’ cee

ot
1f

- (1.17)

u

2 2
an’y (1,07, ..
where It and Iu are the first inelastic thresholds for processes
(1.14) and (1.16) respectively; and possibly poles at t = mt2,

For a fixed value of u (at u = U say,) the branch points will

appeer in the s-plane at

2 2
s -u, 4m° - u - (It) s - (1.18)

and the pole at

s = 4m2 -u, -m - (1.18)

t -

These singularities arising from the s and t !'channels! for a

fixed real value of u are sketched in figure (1.3).

FIGURE 1.3
s-plane
U TS i, 4m* Ig
— e
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It will be assumed, for the lack of any evidence to the contrary,
that the S-matrix is an analytic function with only these singul-
arities that are demanded by unitarity. This is the postulate

of 'maximum analyticity'.

In the next section dispersion relations will be introduced which,
with the unitarity conditions, define a set of dynamical equations

for the physical amplitudes.
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Dispersion Relations, Partial Wave Amplitudes and the
/D Equations

If figure (1.3) represents all the singularities of F(s,t,uo)
on the physical sheet then by an application of Cauchy's

theorem one obtains an expression of F(s,t,uo) in the form

Fls by = 2 [ Flita - (1.20)

where C is the contour shown in figure (1.4)

If F(s’,t/,un) -0 as |s'|—= =0 - (1.21)
then by allowing the radius of the contour to tend to infinity,

equation (1.20) becomes

. 3 2 o> -
Flstuy=3_ 4 3 .o e =
(s, ) S-nd " SrlU ~ 4w} Fame | Eiss_f—-:'\ +7-:1_|'.Cfd$’ F;_(ELTZ_'?\ - (1.22)
Wt - Zu, -
which can be rewritten in the neater form
~ %51 - F(‘ l: “ { o '
l-(s,_(:,u,,): = e-m" - _fds <(s)t,0,) + ;-‘fdf' a(ilé:") - (1.23)
bt LR

where Fs and Ft are the discontinuities of F across the right and
left hand cuts respectively, and 8 and g, are constants. This is
usually known as a "dispersion relation'" since a similar form was

first used in the theory of dispersion of light in optics. Similar

expressions can be written keeping t or s fixed instead of u.
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FIGURE 1.4

S plane

Contour C

Note that the discontinuity FS is exactly the expression given
by the unitarity equation (1.9). Thus, for two particle

elestic scattering, ignoring inelastic processes

. ) L ~qm* , * "
E(S_t_u.) =2t Tm Fs,6 u) = E_;,..IS:;;‘S' fJAF(s,E,u’)F(S.E,“ - (1.24)

which with a similar expression for F, in equation (1.23) gives

t
an inhomogeneous integral equation for F(s,t,u). However, in

physical applications one cannot ignore inelastic processes in

the unitarity relation and to solve the equations rigorously one
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should write down equations analogous to (1.23) for all inelastic
processes and solve the infinite set of coupled equations simult-
aneously. Obviously this is impossible, and so one must make
approximations, either by ignoring inelastic processes, or by
otherwise assuming the form of FS and Ft above the inelastic

thresholds, and performing an iteration procedure for F(s,t,u).

Since approximatione must be made in the solution of these

dispersion relations it is often preferable to use dispersion
relations for the partial wave amplitudes which are defined as
follows. In the centre of mass frame of reference, for equal

mass particles one can write

s = 4(a® + )
t = —-2q2(l - Cos ®) - (1.25)
u = -2q2(1 + Cos @)

where § and @ are the momentum and scattering angle respectively.
The partiasl wave amplitude fﬂ(s) is defined by the relation
)
) - 1 . . .13 _ .
9 = % [.acca 8) F U5, cs0) Ty (cae) (1.26)
where PL(Cos ®) are Legendre polynomials and F(s,Cos @) has been

written for F(s,t,u). 'The function F(s,Cos &) can be written as

F(s, Gs®) = lé(zﬂ.n) _fe(s)'—a(usa) S - (1.27)

where the series converges for physical s and complex Cos @ , but

only inside a certain ellipse.
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In practice, since the partial wave amplitudes have the threshold
behaviour
fz(s) ~ qza for small q,

the partial wave expansion has the advantage that generally a few
terms of the series will be sufficient to approximate the whole of
the amplitude F(s,Cos @) at iow energies, although it must be noted
that the truncated series, as a rule, does not have the same
analytic continuation as the whole amplitude. A further advantage
is that for each partial wave, the unitarity condition takes on a
particularly simple form. For instance for the scattering ot two
spinless particles

Tnfs | GOIRE, smer (4
where Rl(s) is the ratio of total to elastic partial wave cross
sections. Note that the amplitude fl(s) can be written as
in.s‘l(‘l

L8 - (1.29)

Z2e  AS-4mt

Gy
where ﬂ(s) is called the partial wave phase shift which from

(1.28) is real below the inelastic threshold.

If this amplitude is decomposed into the ratio of two functions
N} and ?ﬂ’ il.e,
N,(s)/ -
f,(s) = "4 : - (1.30
where Nl(s) has only the left hand cut of the function and D!(s)

has only the right hand cut, then
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Im NE(S) =L"fg(S)D2(S) for s< s

L
=0 for s » s - (1.31)
L
if L, is the start of the left hand cut; and
! i 9 . 2
In Dp(s) = -Np(s) Z5 JEE=" R, (5) for s = 4m : |
- (1l.32

= 0 for s « 4m

If Nyis assumed to vanish at infinity then by an application of

Cauchy's theorem one obtains

- (1.33)

S S i i
Np(‘) = i/“ (dv' T N (8) = ./‘KJ A"L{Z(S ):Dl(f)

;Jw s'~-§ J oo [

and by normalising D,arbitrarily to unity at s = 8, Cauchy's

theorem for the function (D, - 1)/(s - so) leads to the result

~ o ?(I" o T0)
= q- e | oo LT jazend Nle .
P i =~ j"m“ T Y| - (1.34)

Thus the phase shift gi(s) could be calculated from equations
(1.29), (1.30), (1.55) and (1.34) given the discontinuity of the
amplitude across its left hand cut, which corresponds to the
interaction potentizl in & non-rel<tivistic scattering problem,

and the inelasticity factor R,(s).

A fuller discussion of the 'N over D' equations will be given in
the Appendix, particularly for the case when the functions do not
have the asymptotic properties assumed above. However, it is

worth mentioning here that in dispersion relation theory generally
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if the amplitudes F do not tend to zero at infinity, functions
of the form (P(s) - F(so))/(s - so) which do have the correct
asymptotic 1limits must be used. Thus, before the equations can
be solved completely, the value of the function must be given at

certain arbitrary points 8 the subtraction peints.

S0 far only spinless particles have been considered in this brief
introduction to the S-matrix and dispersion relations. However
when one considers the scattering of particles with spin, certain
complications are introduced. For instance, in the case of pion-
nucleon scattering the transition amplitude is written in terms of

two invariant functions A and B such that

F(s,t,u) = u(p,) [A(s,5u) - 35 ¥ (pf* + 0" )B(s,%,u) Julp,)

- (1.35)
where u(pz) and u(p4) are four-spinors representing the initial and
final state nucleons with spin § and four-momenta p, and Py and ¥p
are the well known gamma matrices. If the amplitudes for 7r+p

and & p elastic scattering are denoted by the subscripts + and -

respectively, then crossing symmetry implies

PPy | M| P> = PRy | | PP - (1.36)

and it is often helpful to define new invariant functions
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2= g(a_+a); a0 = H(a_-4) - (1.37)
and similarly B" and B” for which it may be shown from (1.36) that

+ _+ . . . - - s .
A, B are symmetric under crossing and A , B8 are antisymmetric.

It is also often convenient to work with ampiitudes defined in terms

of eigenstates of isotopic spin. In the case of pion-nucleon

scattering the n N system has values of isospin I = %, 3/2. With

2

g
ot
3
J
¥
=
-~
(0]

the help of (1.37) i h pion-nucleon isospin
amplitudes can be expressed in terms of the gbove crossing-symmetric

and antisymmetric amplitudes as

a2 = At 4oy A = KT -4 - (1.38)

A 5/2

with identical expressions for B

v
=

. For the pion-pion system,
since the pion has unit isospin, there are ihree pion-pion isospin
amplitudes corresponding to I = 0,1,2. The relationship between
these and the amplitudes for the scattering of pions in definite

charge states is discussed in detail in Appendix 1.

In the next section we shall describe how the ideas and technigues
sketched here are utilized to derive information on the form of the
pion-pion interaction from the available experimental data. In
particular, we shall be concerned with the I = O amplitude ° -

which seems to be dominant at low energies ~ and since we shall be
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restricting our discussion to such low energies, the pion-pion

interaction should be principally in the S-wave.
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Some Studies of the Pion-~Pion Interaction

4 knowledge of the pion-pion interaction is of VLasic importance if

one is ever io understand fully the interaction of elementary particles.

Since there is no direct way at present of performing a pion-pion
scattering experiment, information on the pion-pion scattering
amplitude must be inferred from the studies of various scattering
processes on which experimental data is available. A measure of
the size of the low-ensrgy pion-pion interaction in a sitate of
angular momentum { and isospin I may be given by the scattering
I C .o
length a { which is defined as
I, 2
s A k
. I _ lim '} () (1.39)
PEL T kw0 — '
lowk
vhere k is the magnitude of the centre of mass three momentum and
I . . . . g . .
A g is the pion-pion partial wave amplitude. In interpreting
experimental data the low energy phase-shift is frequently param-

eterised in fterms of this scattering length as

T2
k I _ ] '
k= pr Cot &y - ,le[%f - (1.40)

This is the so-called scattering length approximation. Yor the
S-wave amplitude ( { = 0) & two parameter form - the effective

range approximation - is also often used in which
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k ' i 1.‘ .
e cof € = ez * 78 ,Tli“m) - (L1.41)

I . o . 2
where ro is the effective range. The Chew-Mandelgtam effect-

ive range formula is ancther useful parametric form

—k ‘L _ 2 ke
e &FS, = fMaz * Rm J%‘,I»'“ﬁ"*@*) - (1.42)
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which can be derived from the N over D relations with the left

hand singularities replaced by a pole at - =0

Much hard work has heen done in attempting to calculate the size
of these S-wave scattering lengths and many methods of varying
degrees of accuracy have been proposed for analysing the available
data. Unfortunately, the results of these calculations are by no
means consistent and one must examine the approximations inherent in
these various methods before the form of the pion-pion interaction
can be firmly established. One of these methods analyses the low-
energy S~ and P-wave pion-nucleon data by using a partial wave
dispersion relation in which the pion-pion interaction appears

— 4 . .
through the crossed chamnel process TR-»NN . This dispersion
relation can be written as

R ¢ F () el
T P ( 1 Im v
Y R e /J‘ PO - (1.43)

tawpyr 57 S

m
vhere f l(s) is the W™ N partial wave amplitude of total angular

€+

momentum, J = € —'§ and ¢ is the orbital angular momentum. The
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term B +(s) coming from the direct and crossed chammnel Born pole

terms, together with the integrals over the right nand unitarity
2 2
cut (m +m)” g s < o0 and the cut 0 ¢ s € (m ~ p)” coming from

the crossed terms, may be evaluated in terms of the reasenably well

K

\
/

)

is the contribution to the dispersion relation from the left hand

known picn-nucleon data. In this manner, the value of
H

&)

| +

ll\(
. . s , L . T,
the so called discrepancy, may be determined. However (

14

4
D

1+

2 2

cut -0 < s < O and the circle Is| = m - @  induced from the
partial wave decomposition. 'hese contributions arise from the
crossed process ﬁw‘a-ﬂﬁ-which, from unitarity, has a phase equal

to the pion-pion phase-shift, at least between the two- and the
four-pion thresholds. Taking the '+' crossing-symmetric TN charge

combination given by (1.37) it is possible to estimate ;‘OO

++(s) in
terms of a low energy I = 0, S-wave pion-pion interaction. By
parameterising this pion-pion contribution and fititing the discrepancy
to the values given by the rest of the dispersicn integral, it is
possible to derive information on the form of the low-energy pion-
pion amplitude. It was found by Hamilton et alIo and Spearman"

that the best fit to the data with ;DO++ described in terms of a
simple parameterisation of the I = 0, S-wave pion-pion amplitude

gave a value for aoo of 1.3 : 0.4 f*_l.
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o . 0 — . .
A similar value for 8y has been suggested by Abashian, Booth
. 12 3. .
and Crowe = from a study of the ’He momen tum spectrum in the
proton-deuteron scattering process

p+4d —= 3He + 2T

A prominent bump appears in this spectrum which corresponds to

a di-pion invariant mass of arcund 300 hev. This is the so-called
ABC effect and seems difficult to explain unless a strong I = O,
S-wave interaction is assumed. With an enhancement factor given
by the square of the I = 0, S-wave amplitude multiplying the three-
particle (BHe + 27) phase-space it has been found that this bump

mzy be reproduced with a value for the scattering length ja © of
Lo
+ -1

i

Lnother reaction which has received much attention in the search

et

for the form of the pion-pion interaction is the pion-production

T+ N == = + T + N

“he usual model for investigating this process has been the peripheral
model which assumes that the single pion =xchange pole singularity

is the dominant term of the pion-production scattering amplitude

at least in certain regions of the momenta. With this model, one

N . . . . (k-3
can obtain the pion-production cross-section T from the relation
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2 2 k3
"‘6’\( - "‘/ ‘F P S Rt " ‘13‘0 < ' .
= g s 2 |, = IN °rA% CsOx|dCno - (1.4
LISRTSYS il ey Toma® @oFy. Stv_n +A% 9 A'C O | x (1.44)

where pN,qL are the magnitudes of the laboratory three momenta of
. B . . . - 2 _\__ G.v'ABQ-
the reccil nucleon and the ingoing pion and f = Zw \ Tm

where G 1is the rationalised renormalised pseudoscalar coupling

T

. 2 .

constant. The square of the momentum transfer A" is equal to
2 ( m’_— . 2 \ a3 O 1. - the = LR . Ao £ o
m J +*py - m) and Ox, k are the pion-pion centre of mass
scattering angle and magnitude of the relative three momentum

.. - ~ o S R Anoa e AL ) ) { 5\ :
respectively. Ceolin and Siroflolinl used eyuation (l.44) w
. . . . . 13 ra .1 A
the pion-pion isospin amplitudes A™ parameterised by Chew-
Mandelstam effective range formulae (1.42) to calculate the low-
energy total pion-production cross-sections. They found that the

o . . .

values of a, suggested from the ™YW partial-wave discrepancy
analysis and the study of the ABC effect were too large to fit the
experimental cross-sections and suggested that agreement could only
. S . 0 . SO
be reasched for a, < 1. It is also probably fair to say that even
with a small scattering length, equation (1.44) fails to reproduce
very closely the energy dependence of the low-energy total cross-
sections. The reason for this may well be that the assumption of
a dominant single pion exchange diagram is not justified over the
whole region of the momenta considered, and that there are significant
centributions from other more distant singularities corresponding
to forces of shorter range. However the centrifugal barrier tends

to shield states of high angular momentum from these shorter range



forces and it should be reasonable to suppose that for such states

the peripheral interaction ig, in fact, dominant.

In Chapter I1 we present a phenomenological analysis of the process
T p = ¥ ™ “n near the production threshold which utilizes the
above argument for states of higher angular momentwn. The two

final state pions are treated as a single spin zero system, &, with
I = 0 but with & continuous mass spectrum,and the process = p > n
is decomposed into partial waves. It is supposed that, because of
the centrifugal barrier damping of more distant singularities, all
the partial waves other than that corresponding to the &n S-wave
final state may be taken to have the values given by the single-pion
exchange graph. For this other partial wave with the &n S.-wave

1

final state (and therefore by parity conservation the 1<N-Pll initial
state) a phenomenological form is proposed by assuming that of the
three final state particles only the two pions have an appreciable
final state interaction. Thus the only rignt hend cut of this
amplitude considered is associated with the two-pion interaction
(assumed to be in an I = O, S-wave) and can be removed by multiplying
by an appropriate factor - the D function arising in an N/D solution
for the I = 0, S£-wave pion-pion smplitude. If one further assumes

that this final state interaction can be factored from the rest of

the amplitude so that the amplitude's dependence on the square of the
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)
di-pion centre of mass energy & comes only from the final state

)
interaction then the effect of the left hand singularities can be
approximated by a constant parameter C. By combining all these
partial waves it is easily seen from the model that by varying this
parameter C, practically any type of pion-pion interaction with a

large or smally positive or negative, scattering length can be

compatible with the w p -= ™' = "n total cross-sections.

It must be noted that the total cross-sections for the production
process TN > nx ¥ are not the best means of investigating the
pion-pion interaction since they involve an integration over the
variables defining the di-pion system. A better method is to
consider the differential pion-production cross-sections, for which

in recent years some fairly detailed measurements have been

15, 16 . A - \ - + -

performed . an interesting feature of the ™ p —» ™ T
- o o s . - .

and W p - W T n cross-ssctions is a peaking in the neutron
enargy distributions corresponding to the highest available value
of the di-pion invariant mass. This effect is particularly marked
for incident pion kinetic energies between 350 and 450 Mev and carnot
be reproduced either by a statistical (phase-space) distribution or
by & peripheral model calculation. Also the apparent absence of

any such peaking for the process ™ p - T Wcop suggests that

the effect is due to the presence of a strong I = O interaction.
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A moderately successful attempt to derive these differential
distributions has been made by Goebel and schnitzer' who proposed

a static model comprising s single pion exchange diagram and a
rescattering diagram where the scattering is principally due to

the ¥%(3,3) resonance. Also Olsson and Yodh '™ have tried to fit
production cross-sections from an isobaric model (N> 7t N¥» W N),
where the N* is the '3,3!' isobar or the I = %, J =% S-wave ® N
interaction, which includes interference terms and the angular
momentum dependence of the isobar decay. The model can account

+

3 . . . . . . . + 0
for the experimental distributions in both the reactions w™p-= ™ W 'p,

+ + _+ . . . ) s . . o
wp-=> T K n but without a pion-pion intersction its inability
. . - -t - S .
to fit the data on T p == ™ T n again is suggestive of the
+ _ - . . . .
presence of a strong W W 1interaction in this reaction.
The phenomenological model which we propose above for this process
- + - Y R T .

X p - X K n can also be used to study the peaking in the
differential cross-sections. By suitably parameterising the pion-
pion I = 0, S-wave amplitude and adjusting the parameters so that
the calculated values for the distributions give an optimum fit to
the experimental data, it is possible to deduce information on the
3 . . . o o ; e s
I = 0, S-wave pion-pion phase-shift 8() . In Chapter IIT it is
shown that this procedure indicates that this phase-shift is initially

negative (with a negative scattering length aoo) but soon turns over,



passing through zero and becomes positive.

Vie cannot be sure that our assumptions for the phenomenclogical

form of the lowest = p —— & n partial wave are totally justified,
but evidence for a negative scattering length aoo from various
analyses of the forward pion-pion dispersion relationﬂtza leads

us to investigate more fully other methods for studying the pion-
pion interaction - in particular the pion-nucleon partial wave
discrepancy analysis. We find that by increasing the parameterisa-
tion of the pion-pion amplitude in this analysis, besides the
solutions previously found with positive scattering lengths,a 'turn-
over! phase-shift (similar in its gross features to that obtained
above) is also produced as well as a very negative solution with a
large negative scattering length. This very negative solution is
rejected as being incompatible with the pion-production differential
digtributions calculated from our model, since this implies a 'bump!
in the neutron energy spectrum which is not observed experimentally.
This is likely to occur irrespective of the detailed parameterisation
of the lowest = p —= & n partial wave. Vie also discuss the two
enhancement factors that are usually assumed for the analysis of the
ABC effect and we note that if the phase-shift passes through zero
these two factors are not equivalent and it is not clear which - if

indeed either - should be used.
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We end Chapter IIlby considering the possibility of a CDD pole

in the I = 0, S-wave pion-pion partial wave amplitude. Such a
possibility has been suggested recently by several authors from
different theoretical . standpoints. If the phase-shift SOO is
indeed of the turn-over type it is tempting to pelieve, by

analogy with the situation of the P KN partial wave phase-shift,

11
that this is indicative of a CDD pole. Certainly such a possibility
must be considered and we discuss in some length how the inclusion

of a CDD pole would affect the model we have proposed for the pion-
production amplitude, the pion-nucleon partial wave discrepancy
analysis and the calculation of the ABC effect. Having incorporated
the necessary modifications, we show that the two resonating types of
phase-shift Soo obtained by Lovelace et al.ﬂ from a backward pion-
micleon dispersion relation analysis, as well as the E(D—resonance
solution of Wolf‘az, can all be compatible with the available data

on pion-production, low energy pion-nucleon and proton-deuteron

scattering.

Finally in Jchapter IV we survey the knowledge of the low-energy pion-
pion interaction which has been obtained from past studies. These

include analyses of the three pion decay modes of the K and 1 mesons

and the KZ€4 decays K == WneV , as well as pion-pion dispersion
relation calculations, current algebra predictions and the KlO-KZO

mass difference interpreted in terms of the two-pion decay mode of
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the Klo—meson. Although the various results of these calculations
are often contradictory, by investigating the assumptions and
approximations used in these studies we deduce some fairly general
conclusions which we compare with the results obtained from our

analyses.



CHAPTER TWO

PION PRODUCTION IN A MODIFILD PERIPHSRAL MODEL



IT - PION PRODUCITION IN A MODIFIED PERIPHERAL MODEL

The Peripheral Model

A knowledge of the low energy pion-pion phase shifts, in particular
their scattering lengths, is of basic importance in the interpreta-
tion of many phenomena involving pions and nucleons. Unfortunately
this important problem of the pion-pion interaction at low energy is
still some way from being satisfactorily resolved. For instance,
on the one hand there is evidence of a large I = 0, S-wave pion-pion
scattering length (aoo) from the ABC anomoly in the 2He spectrum of
proton-deuteron reactionsﬂand the pion-nucleon dispersion relation
'discrepancy! analysis by Hamilton et al® and Spearman.'l On the

other hand there is the calculation by Ceolin and Stroffoliniwof
the low energy total cross sections for the process ™ p - Tt+'“--n
using a peripheral model, which seems to exclude any value of aoo
measured in natural units (= m = ¢ = 1) that is greater than one.
In order to iry to reconcile these results, let us first consider in

detail the description of inelastic processes by peripheral

diagrams.

An interaction is said tc be peripheral when it is propagated by
the least massive system which can be exchanged between the colliding
particles. In many cases this least massive system will be a

single particle, and ‘'peripheral' is often used to describe any
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single particle exchange interaction. Exchanged systems correspond
to the 'left hand' singularities of the scattering amplitude, and

are the means by which forces can be transmitted. ¥rom the
Uncertainty Principle it follows that the range of the force is h'E_l,
where E is the total energy needed to produce the exchanged system,

so that peripheral diagrams with low energy exchanged systems corres-

pond to long range forces.

It should be noted that the long range forces should alone be suffic-
ient to determine the scattering for particles in states of high
orbital angular momentum since the centrifugal barrier shields these
states from the unknown short range interasciions. This is because
particles with a high relative angular momentum 'see! each other only
at a distance and consequently are little affected by forces which

act only over a short distance.

The analytic scattering amplitude is determine through the Cauchy
relations by pole and branch cut singularities. The residues of
the poles and the discontinuities across the branch cuts are
proportional to products of S-matrix elements (or their analytic
continuations). These products may often be seen to be bounded,
for example by the Unitarity conditions, so that the reciprocal
dependence on distance which favours nearby singularities will not

be overwhelmed by an increasing strength of singularity with distance.
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In two-to-two particle scattering the one particle exchange diagram
corresponds to the first term in a perturbation expansion which, as
stated in the introduction, is of doubtful value as an approximation
to the whole amplitude for strongly interacting processes. Never-
theless it can be of use in practical applications if care is taken
to use it in approximating the amplitude only in certain regions of
the variables where this interaction is known to dominate. For
example, if instead of the complex energy plane we consider the
complex Cos & plane where © is the centre of mass scattering angle
then the physical region corresponds to the real line from -1 to +1.
For the case of equal mass scattering the exchange of a single

corresponds to a pole at t =m 2 in the complex

particle of mass m 1

1
energy plane or at Cos® =1 + m12/2q2 in the complex Cos € plane.

If my is small this pole is seen to lie near the real line

-1 < Cog® = 1. Also if the next exchanged system has a mass m,

which is much greater than m. then the singularity in the Cos ©

1

plane due to ghis exchanged system will either be a pole or a branch
m

cut at 1 + 5253 depending on whether the exchanged system consists

of one or moge particles, which will be much further away from the
physical region than 1 + m12/2q2. Under these circumstances it
should be reasonable to approximate the scattering amplitude in the
physical region near Cos € = 1 by this single pole. Note also that
as the magnitude of the three momentum of each particle in the centre

of mass, q, increases the pole at 1 + m12/2qZ moves nesrer to Cos & =1

(as, of course, do the other singularities) so enhancing its effect
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on the physical scattering amplitude near there.

The description of inelastic processes by peripheral diagrams was
first introduced by Chew and Lowlswho proposed a method of extrapol-
ating from the physical to the unphysical region in order to gain
information on cross-sections which cannot be measured directly under
Laboratory conditions. Thelr method employed this fact that a
diagram with a one particle exchange contributes a pole to the
amplitude of a physical process in the physical variable corresponding

As in the

P | L P I - A
uared four momentum of th
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to the sg
case of two-to-two particle scattering this pole is situated at an
unphysical value of the variable to which it is related, but again,
the exchange of the lightest allowed particle will result in a pole
which is nearest to the physical region. In principle, at least,
this pole can be reached by extrapolating from the physical region,
and its residue, which will be proporiional to the amplitude for
processes involving the exchanged particle, can be determined. In
this way it is possible to derive information about scattering

processes which cannot be reproduced experimentally.

If the pole singularity is the one which is nearest to the physical
region and if the exchanged particle is so light that the distance
from the pole to the physicel region is small then, as discussed

above, it may be expected that in the physical region near the pole
the peripheral interaction is dominant. This is particularly true

wen the exchanged particle is a pion, the lightest of the known
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strongly interacting particles.

Note that the nearby physical region corresponds to a quasi-real
exchanged particle, that is to a small momentum transfer in the
vertex where this particle is emitted. Thus, again if the
exchanged particle is light, it may be reasonable to calculate the
functions entering the vertices of a peripheral diagram as if the
intermediate particle was in fact real. This is the 'pole approx-
imation! of Ferrari and Selleri ™ In S-matrix language the pole
contribution to the amplitude has a residue given by a product of
S-matrix elements which have one of the particles off its mass shell,
that is with a squared mass equal to the squared momentum transfer
t <0. If the amplitude is considered in the region where t is
close to zero and the physical mass, m, of the exchanged particle
is small, the 'pole approximation' is equivalent to saying that
there is negligible difference between these S-matrix elements and

those analytically continued to m2.

However these arguments for the dominance of the peripheral diagram
are only quaiatative because terms such as 'small momentum transfer!
and 'physical region near the pole' cannot be precisely defined.

It may be that in the calculation of total cross-sections for
processes such as Tp > " using a pole model the dominance of
the peripheral interaction is not so uniformly pronounced over the

physical region considered as was supposed. In calculating these

cross-sections one needs to integrate the square of the transition



51.

amplitude over a range of values for the sguare of the momentum
transfer, and this range mey include a region which is not dominated

by the peripheral interaction.

Nevertheless for states of high orbital angular momentum it may be
seen that the scattering amplitude is well approximated by processes
involving low momentum transfer since the centrifugal barrier shields
these states from the unknown short range forces. As an example,
consider the scattering amplitude for the scattering of spinless,
equal mass particles to be determined from the left hand singularities
by a series of poles, i.e.

(g ()

F(Srt) =2( 1
T, -t
i

Thus the partial waves are given by the equation

Sy |
§9 = = w00 % [ do) Tl T2

R =, & —t“.—, i
Zi;‘ b 27," Q£(1? +)
where Qﬂ_are the Legendre functions of the second kind. By
inspection we see that

i. for small q_2 the partial waves behave like (q2)z

ii.  for large t; they behave like (ti)_L -1

From ii. it is clear that for large { one need only consider the
singularities near the physical region, i.e. for small ti. Hence
we should expect that collisions between particles in states of high

angular momentum {large £ ) would be reasonably estimated by the
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peripheral diagram - this being the nearest singularity to the

physical region.

For this reason, in the next two sections, the peripheral contri-
bution to the process Tp > ®*n" M will be calculated explicitly
for each orbital angular momentum state, and we shall assume that
the contribution to the total cross-section for each value of the
orbital angular momentum in the final state, except the lowest, is
given by this one pion exchange graph alone. This is because the
pion-exchange diagram has a pole which is near the physical threshold
for the final state. For this 'lowest partial wave! corresponding
to the S-wave final'E‘N\state, and by parity conservation to the
sz_ _ 11YN‘initia1 state, a phenomenological form will be discussed
in Section 4. In terms of this model we will show that the total

pion-production cross-section data can in fact be reconciled with

a large pion-pion I = O, S-wave scattering length.



N

55.

S-Matrix Elements

If p and q represent the four momenta of the ingoing nucleon and

/

2
then from Moller's formula® the S-matrix elements for the process

fiL’ the Lorentz invariant

meson respectively and p', qi y 0, the outgoing nucleon and meson
KN -> TN N may be written in terms of F

scattering amplitude as
[
vy} 4 > = < 21‘_)454(?+ ‘Pl’ L ’)__Fi'___—-
<e'y)3.| S|ty P e - (241)

/
where E, E , w, w{ ’ wé are the energies of the five particles,

i.e.

)
E = (p 2 + mz) *
. ‘tl

w o= (q 2 +f*%, etc.

Considering only the single pion exchange diagram shown in figure

(2.1) F will contain a factor Ey‘L the invariant pion-pion

£i
amplitude normalised between states qu ‘qg > in the overall
centre of mass frame. However, since F7‘L is an invariant it may

be calculated in any Lorentz frame of reference and for convenience

it will be evaluated in the pion-pion centre of mass system

FIGURE 2.1
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The inelastic cross-sections are given by the relation

@) VFel® o 4B 43 4y
Oy = wayeploa/ g\ 2P 2% 2% - (2.2
g J' VvV 32EED w.’«-ﬂ{& (P AL O @n)? () (2n)? ( )

where vV = W"P'/Ew

To facilitate the 'partial wave analysis' the two pion system will
be regarded as a single system © with a definite value of spin

and a 'mass' &, where ¢ is the total energy of the two pions in

momentum of the w H initial state or & i final state mey be deter-
mined. Yo do this, however, we need to evaluate the Jacobian J

which expresses the three particle element of phase space given in
(2.2) in terms of the two particle phase space factor for the & N

final state such that

3 3, >, 3, 3>,
A6 A 4 T ada 4P 4G y
@am?® @) @x) (en)* 2% @xP @n)? - (2.3)
/
where q’ = qf + Q3 - (2.4)
and d0x = d{Cos®, )dge where 6. , $x are the polar angles

of the relative three-momentun of the two pions measured in their

own centre of mass system.

From equation (2.4) it follows that

d'gr. 4°3 = 83 49 - (2.5)
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where Q

j-»'

—/
1y ,q2 ,q are measured in any frame of reference. Since

3on

/ﬁ and d 4y /w are invariants their product is also an

invariant and as such may also be evaluated in any reference frame;

e.g.

Jl-n'l oll—::zl 32 Jz-w 3y Yedr

_:f" . ??l {d }cmw (0"/7_ {d ld? }cv\x _ (2.6)
where cmw refers to the di-pion centre of mass frame in which
wl =) = 6/2. 1In this freme of reference

l%’li = '77:,,1- = O;‘Z‘,-/*‘L = k? (“\1)

so that (d3'cfl' ) = kdkdne

and —1 “”' = (K dk Mw)-(d‘i’)m/ Ay - (2.7)
Momentum four-vectors are defined as P = (¥, B=ik ) so that
P.P = —m2 = FPPF-BP, . Hence in the di-pion centre of mass frame
where @’ = o and q! =& we have the relation

(49 ) omm = &E%* = 4kde/
so that

‘277’ JH'L = (h/o_ d_n..“) 4Y 3 )Uﬂ
w0 e - (2.8)
= (K dx) (d*9) any framme

. 4 s . .
since d'q° 1is co-variant.

In the overall centre of mass system it follows that

J‘S’I""; ¢ = ®, NI k/ A.ﬂ.-n- 43? det }(10 9') _ (2.9)
LT d Nex )

vhere w{ and wé are the energies of the final state pions

measured in this system and

54,3 '
G =L ) o Dy : (2.10)
203 §) it 2 - (2.
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where w 1is the total energy of the two pions considered as a

single system of 'mass! ¢ ,

. / / / >, 2 2 %
i.e. wio=wl o+ wg = ( + @ )°.
Therefore
&l.&, ﬁ{ — "/_____.mt .J_‘.’.-z. ‘.‘_{_l.“- .‘i’?’ d_!?-:l ( q‘“"’ll“’;.) ’ A
Gt @)t @' T %o @it Gu  2n 2w 245" - (2.11)
P ) . . - . Lo 7 - N - Aw./ -w/ 17 .
and by multiplying the S-matrix element in (2.1) by (' 1 2 )" this
2w’
may be written as a pseudo two-to-two mstrix element
4 4 Fei
P YL ne)|Sjpe> = i)' S(erp-rly) & - (2.12)
¥ ’ ' ' ?.JWEE'uu'

in which case using equation (2.11) the cross-section (2.2) may be

written as

L L2
- ('L'n)" l F.;.. | » , J;‘ETL do® J'SF)/ J's.,l
& = o S Pta-p-y’ N by 2T dn.(d°Ff . _Z _ 1%
* Vo lLEELW! §( rE 7) e (an)? "((ﬂp ans (2.13)

where the last bracket is the usual two particle element of phase

space.

Before discussing the partial wave analysis of the matrix elements
for the process WH > & N it is necessary to approximate the pion-
pion scattering amplitude in the following way. Vle are interested
in deriving an expressicn for the inelastic cross-sections at low
values of T, , the incident pion kinetic energy. As shown in

Appendix II the meximum value of the total pion-pion centre of mass

energy o

nax 1S an increasing function of T, . Hence for values
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of T, wup to 400 Mev the two-pion centre of mass energy o has a
range of values from the two pion threshold 2m(= 279 Mev) to
about 417 Mev. In this low energy range it should be reasonable
to approximate the pion-pion amplitude by the S-wave amplitude
alone. In this approximation the S-matrix element (2.12) is
independent of the angles &x and %n- so that the integration
over .y in (2.15) Jjust gives the numerical factor 4w ; and the
two particle system & can be considered for the purpose of partial
wave analysis as a scalar, spin zero system of mass & . It must
be stressed that we are not presupposing the existence of the so-
called 'sigma resonance' in pion-pion S-wave scattering. We are
merely considering the two pion final state as a single system with

spin zero and a mass which ranges from 2/ up to 9 max.

In the process * P >T'T N the pion-pion scattering amplitude

contained in (2.12) is the combination of isospin amplitudes

o

T+ 50+ 1/6132

where To’Tl’TZ are the amplitudes for scatiering between states of

isospin I = 0,1,2 respectively. As discussed in the Appendix,

because of the Pauli Principle, T, is a sum only of the odd partial

1
waves £ = 1,3, etc. so that this term drops out in the above approx-
imation. Also there is some reason to believe that the I = 2 pion-

pion interaction is less important than the I = O interaction at low

energies. For instance the total cross-section for the inelastic
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process 1‘+F"’“+“n‘ may be reproduced quite well in the medium
energy range by a peripheral diagram which, for this process, is

a function of the T2 amplitude alone. The experimental cross-
sections may be fitted with the I = 2 interaction characterised

by an S-wave scattering length with values |a02 \$ 0.6. This

is in agreement with most calculations for this amplitude at low
energies. To simplify the low energy analysis therefore, we shall

assume the I = 2 interaction is negligible in the following

discussion.

These approximations imply that the invariant pion-pion amplitude
b

FKWL in (2.12) will be proportional to the I = 0, S-wave partial

wave, and hence the N and TN states must have a total isotopic

spin of I = % only.
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Partial Wave Analysis

In order to calculate the peripheral contribution to each partial
wave for the two-~to-two matrix element defined in (2.12) and the
contributions of these partial waves to the cross-sections given

by (2.13) we shall use the helicity formalism of Jacob and Wick?s

The initial and final states in the centre of mass frame can be
labelled by the total energy E, the angular momentum J and its
third component M, together with N, the helicity of the nucleon

The parity of each state is given by

T8
PleTMA> =100 e 3,m 2> - (2.14)

where ® is the parity operator, 71 72 are the intrinsic parities

of the two particles in the state and s = & is the spin of the
nucleon. Also the S-matrix element for the process T N-> N
defined by such states can be written in terms of sub matrix elements

of definite values of E and J by the relation

<E’T‘M'X¢‘S‘l5 ITMAS> = S(E—E') S'S'S' M (\c\ S'I]\q>. - (2.15)
Using the notation

ST_ = <\g=+'/1\S'T\\“="'I/1>') w.f: - (2.16)

4+ =)
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it will be seen that all four elements of this submatrix, S+J

+?
J J o d . . . J
S+_, S +! 5__ may be expressed in terms of two eigen values of §°.

Since the submatrix is unitary these eigen values are of the form

:§
gt where & 1is a real phase, and we shall denote the two eigen-
values by the phases SLr,Si_ depending on whether J = € + % or € - 3,

where € is the orbital quantum number. Neglecting the intrinsic

parity factors, from equation (2.14) we see that the states

VTMeta> £ \TM >

- (2.17)
have parity (—l)J * % for the TN initial state. Alsc, since &
is composed of two pseudo-scalar pions, & will have opposite
intrinsic parity to that of the pion so that for the N final
JI% JIi
states (2.17) will have parity - (-1)° * ® = (-1)° -~ 2, In
terms of the states (2.17)
{<vmrml - <am 0} 8 {ITmen >+ (13m0
will have the phase SZ+ where £ = J - % is the orbital angular
momentum of the initial state, and
f<Tamet]+ <30 )1 S L 1TMES> Sl Tms s>
/
will have Sel with ¢ =J +% = £ + 1. Assuming parity
conservation we see that
T . < e
S++ = - S..-S._ = Vz. Lz“’e" an(e,“')_)
( T - (2.18)
T . C, )
Sy - = - S_+ = Y5 (Lugz_-- _ Az..é‘“,,,)_‘)



61.

In order to relate the matrix element in (2.12) to these phase
shifts S€+) gh40_ , { =0,1,2 ... we must expand it in terms

of submatrices S;Y\‘. This is done in two stages. We can write
A )y Voo _\-t
<p'y 2l Seg ha> =) §9 (peg ey’ ) (v') (7)) Lod M s(w) loeXD> 1 (2.19)

where G)% are the scattering angles measured in the overall centre

of mass frame of reference in which 7 Fiv, v’ are the magnitudes
of the relative three momenta and velccities of e,9 ;Piyfrespectively.
The S-matrix element on the right hand side of equation (2.19) can

then be written in terms of the submatrix elements as

L\C\J
<a¢\ |swWioed> =5 ﬁ.(ﬂ*')ékc\ST\\«>J (‘9) ? - (2.20)

T
where the functions ci\J* are defined in reference 25, Therefore

combining equations (2.12), (2.19) and (2.20) we have

"n\. r’—r"

s W

[3 ~e = (2'21)
2L1+'/L)<>\ST|\ >ol (‘9) Sl )51

From equation (2.13) and Appendix III we see that the spin averaged
differential cross-sections are given by the relation
d'es,
de*dn

= %\-5-(046—)\

”,R o - (2.22)

where the sum denctes an average over the helicities of the initial

states and a summation over the final states; and

[

‘g‘ = - FX:,\—
ANa e~ - (2.23)
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If we define the partial wave amplitudes ;§ZQ+ for the inelastic
process TN-=> &N in terms of the phase-shifts ge+ s

. 'L&’.—gl*.
(WL ® = e b
&u b o) — 1% - (2.24)

then, by combining equations (2.18), (2.21), (2.23) and (2.24) and

using the values

?L‘ )

AT = e o (-
i? r 3
B ) _ . / ‘ .
ay o, = T sad (Pex,+7') - (2.25)
where J = ¢ + % and Pﬂ‘r = dG(cno)/d(we) where P, are Legendre

polynomials, the following relations may be obtained
_g ‘ i

a (£, ey - ) ('Ph.("\ - T (z)) Cos

cf - (2.26)

/
LR+ Py(2) ) Sen @/, @”

%— ('Fe‘f (21«) ) (

A more helpful way of writing (2.26) is

where z = Cos@.

§.,_+ = ('Q {') Cos 9y
_id - (2.27)

(£-8,) sinory =

f,. =
. 2 , ! =Z ¢ m!
where  § = = §, Ty (=) - = fo. Py (2
- (2.28)
e b= % CRACE '91;*?[(")
which, with the orthogonality property
! ( ,
§ dz T (=) (Py (2 - {Pl—-(l‘) = Skl - (2.29)
give the inverse relations
) - (2.30)

+

f
fo = % § az (8000« £,7,02



Combining (2.22) and (2.28) and performing ths spin averrging the
differential cross-sections for the process w N3 N may finally
be expressed in terms of the pertial waves as

A-’;J‘;' B (1= (wie 1y 2 cgmt
P Igb‘ [LQ*‘)-P(&.)- ) 4 4 -%(-‘()»:_,s )] iz(z)l ot/

de”‘J ° . o > _ (2.51)
. n \O'." N . '
2451 - § i seoBlal [ e
and the toctal cross-sections as
O = j’aw Frs = [lean] £ 0Wie) |3 L [£ a9 |* ) det g ]
- v (& )- w-04 ] el =% - (2.22)

We are now in a position to determine the paripheral contribution to

each partisl vave -S“C-f for the process wN-= & N. To do this let

s . . L ; -
us return to the invariant amplitude F, . The general form of
Fx._\: will be a product of factors (including spinors) with the

initial (final) state variables on the right (left). For the peri-
pheral diagram sketched in figure (2.1) the internal pion line with

. ! . . Y :
momentum A = p - p and mass M has a.socisted with 1t a propagator

L o T dimn 2 - . - y -
factor o Coy The nwHN vertsex is representsd by the term
W1 -1 ~ Ty - T 1 a a1
~ilew g ¥y K (&%) where K is the form factor normalised such that

(-4 ) =1, and g is the unrationalised coupling constant

(g = 14.6); =and for the four pion vertex there is

. 2 2 " . v . . ) . .
4( & “,008Ox ; & ) which is the invariant amplitude for pion-pion
scattering with the I\ T~ dependence indicating thet cne of the
pions is off the mass shell. For the externsl nucleon lines we

write the spinors W) on the right and Wy ) S U‘f\'o) on the

left. Collecting these terms together we obtain for the peripheral
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diagram

<) AL @oniat) Y uy

L “l’\-ld = Ca‘ ngjk( z k3
F\i\.\(" phaas] ) \L{ PO _ (2.33)

where ( 1is a product of Clebsch Gordan coefficients which determine

the contribution for each isospin state.

In the pole apvroximation of Ferrari and Selleri discussed in the
first section of this chapter we can consider that for small A 2
the functions entering the numerator of the right hand side of
equation (2.33) have the values given by the on-the-mass-shell

functions, i.e.

K(AZ) = 1

A(e",Cos 8, 5 A %) - A(e

Cos O )

where A( o, Cos 8x ) is the on-the-mass-shell amplitude for pion-
pion scattering. In performing the partial wave analysis it was
also assumed that, for the process T e—=>T'tn at low energies, this

amplitude A could be approximated by the I = o, s-wave amplitude

AOO(<52) defined in terms of the phase shift S;O(a'z) by the

relation
R’ (=) 16T s =
v = 0
o (o stapt - (2.34)
in which case € = 2i2/3 gnd we obtain
—L 2z - AJ ()
Fa, = 3 & (%o A }us, - (2.35)

‘A"+/A-1
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If we take the spinors

( Nyt ) .
. -n,+in,
JE+m T JE-ym ( )

i N3ty
= U_{p) = *
usle) J2(ny+1) @_ (n.,+| ) { /g(n,ﬂ) =4 (-".+M-z)
E4m ning Erm Vig 1
to represent the two helicity states of the nucleon, where
T = 3/1P), vhen from (2.23) and (2.27) we find

2/ BR Aao — = +wm iy - ':. 5
giy = (5ird)cm% = e B LD (p’/“ —F/E '“)cos% (2.36)

SEW (A% M) Eldm

& m
and
F_,_L_ Sen® _£¥ 2, J—— Aa —_—
- 2= - § - + W, - /34878 A, —-]E-‘-m - clem & -l
Bnw ( ' §) BTW (A"-&,A‘) e E'+m e E+m $n%, 2 4
-e 3 neri Ca ) — g . o]
Hence fl(pvrlphcral) = 1/( A2 . p 4)
. . g - -
fz(perlpheral) = 2/(A 2, /AZ)
where g = %ilengp [EXM __A: - (2.37)
1 3 E4m gRw -

]
_g/smﬂ"s £4m A
E +m TIrW

il

8o

and it follows from equation (2.3%0) that the peripheral contribution

to each partigl wave 1s given by

f / 1_(periplrlera.l) = —1-:—;—?, [ g, @, (=) —'—%"'QLLZJJ - (2.38)

where Q(Z) are Legendre functions of the second kind, and
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2 = EE'- m:_.—_rﬁ, - (2.39)
[

As a check on our partial wave analysis we calculated the total
cross-sections for =« p - L T given by equation (2.32).
This calculation requires a knowledge of the «® I = 0, S-wave
phase shifts over a continuous range of values of 6’2. We used
an N/D decomposition for this amplitude since this form will be
required in the next section; and assumed that the amplitude on
the left hand cut to be approximated by a single delta function,

i.e.
Aoo( 52) - i16wA S( = - o_pz) - (2.40)

From equation (1.33), if D( & 2) is normalised to unity at

c‘2= d‘zthen
P
2
N &%) = 16WP/(G_2_J2) - (2.41)
p
and from equation (1.34)
[ ek
. . A___z_-p;‘::;h)lof&\.-,‘)
D(o‘z) = 1 - '",L,r A - (2.42)

[

where A = o tind
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and Mo the pion mass, has been taken as unity.

Values for [' and sz 0f168 and =396 respectively were taken
which, corresponding to Spearman's solution (4) for his
'Discrepancies! analysis, give a scattering length for aoo of 1.29
in natural units. It should be noted that the cross-sections given
by equation (2.32), summing over all wN-> & N partial waves, and
using the N/D decomposition (2.41) and (2.42) should be in close
agreement with the values obtained from the Ceolin and Stroffolini
calculation, equation (1.44), using a0° = 1.29, a02 = 0. This is
because both calculations use a similar peripheral approximation to
the invariant amplitude F\gu (see equation (2.33)). Also the
Chew-Mandelstam effective range formula with which they approximate
the pion-pion amplitudes are derived from these N and D equations
by assuming the delta function singularity to be at -« so that N
is a constant. There should be very little difference, therefore,
between this effective range formulz and our one pole approximation
with Jbz = -396. By making a simple linear interpolation of the

Ceolin and Stroffolini results obtained from a ° 1, 1.5 and

o
2 + o] 2 -
a, = ~0.54 to the values a, = 1.29, a, = 0 we found that the

cross-sections agreed to within five per cent. These results are

represented in figure (2.2) together with the experimental observa-

15,26
tions for these cross-sections.
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Parameterisation of the P1; Partial Wave

The extent of the disagreement of a peripheral calculation of the
" p> K * % "n total cross-sections using a large scattering
length (aoo > 1) compared with the experimentally observed values
is clearly demonstrated in figure (2.2). This disagreement may
be due to the assumption of dominance of the peripheral inter-
action over the whole range of values for the squared momentum
transfer ( A 2) considered in determining these cross-sections.
tHowever, as already mentioned, the centrifugal bvarrier shields
states of nigh angular momentum from the unknown short range forces,
and so for these states the amplitudes should be well approximated
by processes involving only long range interactions, that is by
processes which give rise to the singularities close to the
physical region. This physical region is bounded by the threshold
value for the S N final state, and the singularity nearest to this
is the pole coming from the single pion exchange diagram. It
follows, therefore, that in attempting to improve the reliability
of the cross-section calculation one might still assume that this
peripheral diagram should give reasonable estimates for the 'higher
partial waves', defined in terms of the orbital angular momentum of
the final state, although this may not be the case for the lower

partial waves.
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In practice we shall take 'higher' to mean all waves except that
corresponding to the final state with the lowest value of orbital
angular momentum, i.e. the & N S-state. By parity conservation
this corresponds to the P2J _1 initial 7t N state and since the

two pions are considered to be in a pure I = 0 state this will be

the P, (i.e. the Pll) TN state. From table (2.1),

J=1,2I =1

in which the peripheral contributions to the =« p -~ AT 7 "n total

cross-section are given for values of the angular momentum of the

initial state, it is seen that the contribution for this P11

initial state (which in the notation of the last section is the

fl— TN =& N partial wave) gives by far the largest effect.

TABLE 2.1
flegen " 8 42
TL
L+ 212 Mev 268 Mev 324 Mev 375 Mev
O+ 0.008 0.047 0.098 0.135
1+ 0.002 0.004 0.009 0.013
2+ - - 0,001 0.003
1- 0.182 0.638 0.970 1.171
2- 0.007 0.035 0.069 0.095
3= - 0.005 0.010 0.017
Sx in mb 0.210 0.778 1.257 1.582




T1.

If we are not to assume that the peripheral interaction is dominant
for the Pll amplitude we must derive some form for fl_(wz,d'z)
which is suggested by a phenomenological study of this inelastic
process. We shall do this in two stages. Firstly, we must
notice that the expansion of the invariant scattering amplitude EL
into partial waves introduces certain kinematic singularities.
These can be determined for each wave, and from Appendix III we see
that fe-_r can be written in terms of hei(wg, crz), the partial wave
amplitude for ®* N =» & N which is free from right hand kinematic

a2t
7

singularities, in the form~

0 e S e - (2.43)

Secondly, in order to derive a phenomenological form for h we

¢t
must consider the dynamical singularities of this amplitude. We

are concerned with the calculation 6f cross-sections for values of

the incident pion kinetic energy up to 400 Mev, which is the threshold
for N¥ production. Below this threshold it will be assumed that

the only final state reaction between the three particles « ,nw ,N

is the interaction between the two pions so that the only right hand
dynamical singularity of hﬂt will be the cut in 5'2 from 4,A2 to
infinity. By Unitarity the phase of the amplitude on this cut will
just be the phase of the two-pion interaction Soo the elastic I = O,

S-wave pion-pion phase shift. VWie can make use of this in the

following way. If we define the function T(G’Z) such that

T(e*) = oy {'(‘r as)f (g (d?(«" g “'1} - (2.44)

;_,—
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and ignoring inelastic contributions to the pion-pion interaction

above the first inelastic threshold 0'2?; 16/A2, then T-l(d‘2) has
0 ) . ;

the same phase 50 as n2'+ on the right hand cut, and therefore

the product h +.T has only the left hand singularities in W2 and

L

6—2. Thus, for a fixed value of the square of the overall centre

of mass energy w2 = wo‘ (say), the partial wave amplitude

La]
h (Woz, o °) may be written in the form

g +

5‘ T{s'*) Tm hlt(w:' f_‘_,-n.)

LH. 2

h, (o) Tle) = do'* - (2.45)

If the integrand of this equation were known, the integral could

be evaluated and would provide us with the functional form of hl 4+

Unfortunately, this integrand is not known and so to proceed further
we shall assume that the right hand side of equation (2.45) can be
approximated by a constant C for each value of W52;‘ in which case
we obtain

2

(wo , 9—2) = C. T-l(d—z) . (2.46)

r:
This approximation of the integral over the left hand cut by a
constant is the same as that used in deriving the Chew-Mandelstam
effective range formula from the one pole approximation of equations
(2.41) and (2.42) by assuming that the discontinuity across the cut
can be approximated by a delta function singularity at 52 = - e,
Unlike the other approximations made in deriving this model, which
were based on physical intuition, this assumption is made because

2

of a lack of knowledge of Im he*_(wO , 0“2) for negative values of
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2 v s . ;
¢, and is, therefore, a possible source of error. We shall

return to this point again in the next chapter.

It should be noted that T( 6"2) as defined in (2.44) is the
Omnes-Mushkelishvilli form for the D-function arising in an N/D
solution for the 1 = 0, S-wave pilon-pion scattering amplitude.
Hence, combining equations (2.43) and (2.46) the phenomenclogical
form which we shall use for the partial wave amplitude corresponding

to the Pll initial state is

ey = S |Exm P - (2.47)

where C is an arbitrary constant for each value of wg. We can
adjust this constant to obtain a good fit to the data for the

=« "p > ™ X Tn total cross-sections at each value of the incident
pion kinetic energy and in table (2.2) we list these values of C for
the one pole approximation to the pion-pion amplitude given in the

last section.

TABLE 2.2

T, in Mev c?
240 0.5 + 0.5
268 1.9 + 1.9
296 4.3+ 3.0
324 9.7 + 3.5
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With the freedom of choosing the value of C at each energy the
total cross-sections can be reproduced for practically any I = O
S-wave pion-pion phase shift with a scattering length which is
either large or small. Thus, this model which should be a better
approximation to the amplitude for the process vt_p-*'7‘+ ™ "n than
the unmodified pole approximation has the advantage that it can
reconcile a large pion-pion scattering length aoo with the data

for the inelastic total cross-sections. On the other hand, by just
fitting to the total cross-sections, the model is unable to give us
any information on the shape of the I = 0, 5-wave phase shift 800
since one integrates over the whole allowed range of 6'2. It is

clearly seen, however, that this model is also applicable to the

d

study of the differential cross-sections given by indo*
which are defined at each value of L and 2. In the next

chapter we shall discuss the values for the pion-pion phase shift
obtained by fitting the experimental data for the differential
cross~-sections from this model, and then compare these resulis with

the values obtained from some other theoretical calculations.



CHAPTER THREE

DIFFERENTIAL PRODUCTION CROSS-SECTIONS
AND THE PION-PION INTERACTION
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111 - DIFFERENTIAL PRODUCTION CROSS-SBCYIONS & THE PION-~-PION INTERACTION

1. Differential Pion-Production Cross~Sections

In the past few years some extensive experimental analyses have
been performed for the single pion-production processes XH-=>TXTN
at low energies. For instance Barish et.alfs have measured the
differential cross-sections for positive pions, protons and
neutrons resulting from inelastic ®p collisions at 310 Mev to

454 Mev incident pion kinetic encrgy. The pion source was an
internal target of the Berkeley 184 inch synchro-cyclotron and

the pion beam was focused at a liquid hydrogen target. The
energy distributions of the final state particle of interest were
measured at a series of angles defined in the laboratory frame for
x'nn, 71°%°n, ®r% final states. It was observed that the
distributions of the final state nucleon show a strong preference
for low centre-of-mass neutron energies in both x®"n and n°r°n
final states. This effect was not present in the observed proton
distribution for the W-Kop reaction which, if one assumes the pion-
pion interaction is responsible for the enhancement of these
differential cross-sections, corresponds to a dominant I = O pion-
pion interaction. This is because the ("+7T-) state is a
combination of all three isotopic spin states I = 0, 1 and 2, and
(%°n°) of the I = O and 2 states whilst (* w°) is a combination

only of the I = 1 and 2 states.
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The observed peaking of the neutron distribution at the lowest
neutron centre of mass energy (i.e. the highest available values
of the pion-pion energy ) was also observed by Kirz et al' for
the process T p-> LA &t incident pion kinetic energies
between 350 and 450 Mev. This is a definite deviation from the
behaviour expected on the basis of a statistical (phase-space)
distribution or a peripheral model calculation. A further point
of interest is the apparent absence of any observable effects of
the very strong I = O low energy pion-pion interaction suggested
by the results of Abashan, Booth and Crowe'* . That is, there is
no evidence of a 'bump' in the distributions corresponding to low
values of the pion-pion total energy (o ) which is so marked in

the 5

He distributions in proton-deuteron scattering. We shall
show in this section that these distributions may be explained in

terms of the model for the ™ p- " % "n transition amplitude which

was proposed in the last chapter.

The model consisted of teking the peripheral contribution feor partial
waves corresponding to all values of the F N final state orbital
angular momentum except the lowest - the fl- partial wave amplitude -
vhich is defined by the Sl— & i final state and the Pli—TrN initial
state. For this partial wave a phenomenological form was proposed
which, with the peripheral contributions to the other waves, was

able to reproduce the experimental data for the K_p'>'ﬂ+77-n total

cross-sections. This was possible because the lack of knowledge of

the fl— amplitude for negative values of o? allowed us to introduce
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a parameter to approximate the left hand integral in equation (2.4%).
The parameter, we assumed, had the value necessary so that the partial
wave sum (2.32) fitted the experimental data. If, as we believe,
this model is a good approximation to the K‘_p—TT+7‘_n transition
?mplitude at low energies and low momentum transfer, it should bve
possible to reproduce at least the main features of the neutron
energy distributions found by Barish et al at various scattering
angles., Also since these distributions sre described in terms of
variables which define definite values of 6‘2, it mey be possible to
deduce the shape of the pion-pion I = 0, S-wave phase shift So°(o—2)
near threshold. This was not possible by fitting to the total cross-
sections alone since in that case an integration over the whole allowed

o 2 . .
range of values for O was required, and the parsmeter C was used to

'normalise! the result to the experimental value.

The inelastic neutron energy distributions tor the process ® p- Lk

at various values of the scattering angle measured in the laboratory
frame of reference are calculated from our model in the following way.

If dn = d(Cos@ )d$ and dn; = a(Cos GL)de where (&, ¢), (GL,95L)
are the scattering angles measured in the overall centre of mass frame
and the lavoratory frame respectively, then in Appendix IT it is shown

that

7P

imp,,’,l_ - (3.1)

AT, dn, = detdn

where TN is the kinetic energy of the outgoing neutron and RN’71

are the magnitudes of the three momenta of the ingoing pion and out-
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£oing neutron all measured in the laboratory frame of reference.
(As before 5,51 are the magnitudes of the relative three momenta
of the initial pion and proton, and final two pion system & and

neutron states measured in the overall centre of mass system.)

Therefore from (3.1) and (2.31) we have that

z
o 2 4T ( imry Y, )
dTedi.  dodn \ TEar

" ‘Eé:,'a[ “.“).F(l«n)—*‘ t -F(Q-l)f ] ’e_(t)' F}'{‘:ZMfNit - (5'2)

W

ftn*>g*

L+ ;:-g;— C 8oy, = Fleey-] s R =)

= e
where c& is the inelastic cross-section defined in terms of
quantities measured in the laboratory frame of reference. For
the ﬁ—p - & N partial wave amplitudes we shall use the form
derived in the last section, i.e.
¥-E = 9@l + 4, @, (=) - (3.3)

*
for all § + and all ¢ - except 1-,

4 = 24 [enq P /m As
where % YR e T

and 9 = - [FRgp [Em B - (3.4)

E W

and for f we shall assume the form

g = S |E'tm 7 - (3.5)
- DA E+m W
where DoO is the D-function arising in an N over D solution for
the pion-pion I = 0, S-wave amplitude AOC. Ffrom these equations

it is clear that each partial wave will have the phase 500 (the

I =0, S-wave pion-pion phase-shift) since this is the phase of Aoo
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in (3.4) and 1/D ° in (3.5). Also each partial wave other than
fl- will have a factor sin SOO since this is a factor of AOO.

We wish to study the differential cross-sections d@;/UIVJJlk given
by the model for various assumed forms of the pion-pion S-~wave
interaction. In order that the phase-shift has sufficient
freedom we use a two pole solution of the N over D equations so

that

, Vi Vs X
N(e?) = WI6T {o—‘—o','l- * c-";b",,"} Lokase a;’)c-,-‘_ <o

- (3.6)

Elastic unitarity for the pion-pion amplitude AOO requires that

Q ] 2 o -
Tem. A, = e 52’7’_"_?_ lA;_, ‘ s ol > 4 = (3'7)

which in terms of the N over D decomposition (AOO = N/D) implies

that
_ N ey
™D = e e - (3.8)
so that
z 2 od
oZe, T, N(e) fux |
Re _— \——.K—y R __ do ¢
4 ol [c-'l,_,_-,—l)(a—'id"‘;) (5'/9)
‘//
snd therefore
N r-—a.. “ga < o
L N - E——— = T < Lo gwua - L
Ao () = /:D - RaD. - NTz l st & = (5 10)

Ry %
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By taking different values for o, 07;, Yl, I',, various forms
for the amplitude Aoo and nence for the phase-shift 5;0 may be

N L3 =
produced. For each set of values ©. S5 T

X F2, we evaluate

1?
the partial wave amplitudes (3.3) and (35.5) and determine the value
of the parameter 02 by fitting the partial wave sum (2.32) to the
value of the total cross-section given by Barish et al. A selection
of these solutions is given in table (3.1) and the phase shifts

generated by these pole positions and residues are given in figure

(3.1).

Equation (3.2) then allows us to investigate the differential cross-

ALC-" >
dTud,

sections given by our model for variocus assumed forms of
the pion-pion I = 0, S-wave interaction. 1In figure (3.2) we show

the neutron energy distributions at various angles for the process

" p > W ®n at 374 Mev incident pion energy which are computed

for the phase shifts shown in figure (3.1). It should be mentioned
that, in fitting to the total cross-section, only the absolute value
of C is determined, not the sign, so that in deriving the differential
cross-sections both the values T ¢ must be considered. We show in

figure (3.2) the distributions corresponding to the sign of C which

gives the 'better' agreement with the experimental data.
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TABLE 3.1

Solution |Pole Positions Hesidues Scattering Ic 1ct
Numbex o 5 r r l%ngth at at
AR ~ o b o K
61 5 1 5 ao 374 Mev JALlT lev
1 -36 -4 120 -36 -1.66 3.68 3.48 _
2 -36 -4 48 -12 ~-0.33% 6.56
3 -156 -36 520 -128 +0.32 1.08
il -396 - 168 0 +1.29 4.00

From these results it may be seen that the various two-pole solutions
for the pion-pion amplitude give widely differing shiapss for the
differentisl cross-sections. One of these, solution 1, is in good
agreement with the experimental data. Tiis solution can reproduce
the preference the neutron distribution shows for low centre of mass
momentum, although it should be noted that it does not reproduce the
increasse in the differential cross-sections near threshold w.iich is
shiovn by the experimental data at values of the laboratory scattering
angles zbove 300. However a.. discussed by Barish et al this increase
is perhaps not due to the process = p > K W'y baut to some back-

ground effects and in gsneral the data below s value of the neutron

kinetic energy TN around 40 Mev sho.ld be treated with reservations.

A
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Experimentally the peaks in the inelastic neutron distributions at

lov centre of mass moments seem to disapvesr at incicent pion energies
above 450 Kev, It has been suggested that this behaviour is suggestive
of a nucleon isobar threshold effect rather than a strong I = 0 pion-
pion interaction. Inn the derivation of our model we have considered
the final state pion-pion interaction in detail, but unlike the work

of Goebel and Schnitzer‘7

, explicit consideration of the final state
pion-nucleon interaction has been neglected. We believed this could
be Justified so long as we were considering values of the incident
pion kidetic energy below 400 Mev, which is the threshold tor N*(3,3)
production. Even above this threshold, wve find there is fair
agreement of the data for inelastic neutron distributions at 417 Mev
with the distributions computed from our molel using the pion-pion
parameters ¢f solution 1. These distributions, shown in figure

(

N* production is not an important contribution to these differential

.3), appear to indicate therefore that in the context of our model,

SN

cross-sections at 417 Mev.

The modification of the peripheral model by parameterising the

'lowest partial wave! f which is the amplitude most likely to be

l_"
poorly approximated by the peripheral interaciion alone has enabled

us to fit the low energy experimental data quite well using a specific
pion-pion phgse shift. The detailed consideration of the pion-pion
interaction has sllowed us to obtain information about the pion-pion

L 2 i .
phase shift over a range of values of & . This is unlike the work

of many authors who use the peripheral model to obtain only an
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average value of the pion-pion cross-section; and it also differs
from the static mocel of Goebel and Schnitzer which in effect assumes
e . o ) . . 2 2
that the S-wave pion-pion cross-section is proportionzl to Ms / o
2

2 :
znd the P-wave cross-section to Xp (&° - 4/\»2)/0' 2 with Ms, Xp

constants.

It should be noted that because of the simple two pols solution for
the pion-pion amplitude and the limited computing time available we
re unable to say that the phase shift given by solution 1 is the

only type of pion-pion interaction which is compatible with the

o
&
o+
&
]

ven though from the large number of phase shifts considered
the only satisfactory solution. Also the approximation of
the partial wave in terms of the parameter C would have to be
Justified more fully before we could safely infer from the model that
the aifferential pion-production cross-sections were consistent with
cne particular I = 0 S~-wave ypion-pion interaction.

)

A close gtudy of the differential cross-sections computed from cur
molel does nowever indicate some fairly general results, If, as has
been supposed, all the xN-» &N partial waves except fl— are well
aprroximated Ly the peripherzl interaction then certain approximate

. N ; . 0j . e .
bounds can be placed on |Sin SO | <nd (fl | by fitting to the

experimental data. For instance

0-3 < \SW\S:I K oy c'l~€,u~1'

-~ ’

Q < | ka:\ £ -6 ; G'ILN q,v.L
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]

116, lfl \ is an incresasing function of 4 such that

2 g | § (= %*P‘)l/’§\£11=$‘-zr‘) €258t I, = 374 Mev - (3.12)

These relations hold irrespective of the detailed parameterisation

for f but are a conseguence of

1-

i. assuming all partisl waves =xcept fl are reasonably
approximated by the peripheral diageam; and

s . S.° . . . 2

ii. f. has the phase o for physical vsiues of ¢ —,

0

The phase shift given by solution 1 is seen to safisfy these bounds

r

and, as the sclution which corresponds to the best fit to the
differential cross-sections determined from our model (as formulated
in the previous sections), it is worthy of some liscussion. In the
next section we shall compare this I = O, S-wave phase-shift with
results oblained from some other theoretical calculations, and also
discuss phase-shifts which ore compatible with modifications to the

parameterisation of the model.
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2. Comparison with some other studies of the Pion-Pion Interaction

The pion-pion I = 0 S-wave phase shift given by solution 1 in the

last section has some interesting features.

i. It has a scattering length acé = ~1.7 (in natural
units).

- 0 2 2

ii. So passes through zero near & = 10+

‘. . - 2 2
and iii. Soo reaches a maximum of bOO near ¢ = 16/A .

The negative scattering length of -1.7 is in asgreement with some
values which have been obtained from forward pion-pion elastic
scattering dispersion relations. For instance L J Rothezo
evaluated the high energy contribution to the dispersion integral
by assuming that the high energy behaviour of the forward
scattering amplitude is dominated by a few leading crossed-channel
Regge poles and used the available experimenial information on the

total cross-sections to compute the low energy contribution. He

+1.3
-0.5°

As a check on his method he evaluated the I = 1 S-wave amplitude

found the scattering length aoo

to have a value of -1.7

at threshold and found aol to have the gsmall value of -0.4 compared

to the value of zero imposed by the Pauli Principle.

Pisut, Bona and Lichardlq have also computed the S5- and P- wave
pion-pion scattering lengths from dispersion relations for forward

scattering. Their method damps the high energy contribution to
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the dispersion integral but instead requires a knowledge of the
amplitude at o2 = 2 (i.e. a subtraction constant). This constant
was calculated from dispersion relations using the pion-pion phase
shifts of Wolf ““which, it should be noted, contain the €°(720 Mev) -
an S-wave resonance. They obtained the results aoo = =1.3 ! 0.6,

2

a” =0.38 % 0.2 and a 1

. L = 0.037 T 0.004. Pisut, Bona and Lichard

28
also considered the sum rules proposed by Adler from Current ilgebra
considerations which relates the gA/gV ratio to the WW cross-

section, i.e.

-]
L J Nt Ny L - ++
\ %A/ = —— ) —i ( a‘:‘ (st} — o’o l&”’)) )
fon = (5w) W | / - (3.13)

where 0"0+_( o“o++) is the total cross-section for scattering of a

Zero mass W’('W+) on a physical T ' meson, and g, is the ration-

alised renormalised X N coupling constant. They observed that if

the above values for the scattering lengths are used this sum rule

may be satisfied with an I = O S-wave phase shift which is initially

negative then turns over and becomes large and positive in the region
6'2 = 25 f~2. This is similar to the phase shift given by our

solution 1.

It should also be said that there are certain similarities between
properties i. and ii. of this solution 1 and the phase-shifts
obtained by Lovelace, Heinz and Donnachie *' using dispersion
relations for w N scattering in the backward direction. They used

a method due to Atkinsonlqand considered the relation

. L
%L + P w'l’m Flve) ' i T N dv' )
Re FOV) = 35, ¥ % v Yt G-(%—\\,— - (3.14)
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where V = q2, the square of the relative three momenta and

vo = -,*=+/:/4w& is the position of the single nucleon pole.

Im F(v‘) in the second term is the imaginary part of the backward
scattering wi amplitude and G(~') is the backward amplitude for
the process THN->NN. The 'discrepancy' which is the last term

on the right hand side of (3.14), is obtained by using the experi-

mental values for the other terms.

Lovelace, Heinz and Donnachie used the data on the wN phase shifts
up to 600 Mev and the backward differential cross-sections for
higher energies to put bounds on the amplitudes. Using the (+)
isospin combination which gives the I = O NN > ® % amplitude on the
left hand cut, the phase between the wmn and NN thresholds may be
identified with Soo if one ignores inelastic effects and the
contributions from the higher pion-pion partial wave phase-shifts.
They found from this that two types of phase-shift 5;0 satisfy the
experimental inforiation: one with a negative scattering length
which turns up through zero, and the other with a positive scattering
length. The former phase-shift, therefore, has properties similar
to 1. and ii. of our solution 1. Heowever they also found that both
types of phase shift resonate (i.e. pass through 7(/2) which is
contrary to property iii. of our solution 1. This they conclude

is evidence 'beyond all reasonable doubt'! for the S-wave

6" -resonance.
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In commection with the above it should be noted that the property
iii. of our solution 1 is not really determined by fitting the pion-
production cross-sections, which uses values of'tgoo from threshold
to & = 420 Mev, but comes from our parameterisation of the pion-
pion amplitude in terms of a simple two-pole N function. It is
possible that by using a more sophisticated analysis for the pion-
pion S-wave amplitude rather than this two pole approximation there
could exist a resonance above 420 Mev but below this value the phase-
shift and D-function would be similar to the two pole solution.

There is the further possibility that if the & -resonance does exist
and the phase-shift is of the !turn-over' type then by analogy with
the WVN—Pll amplitude there may exist a CDD pole in the pion-pion
scattering amplitude . This CDD pole would affect the parameterisa-

tion, and perhaps the results, of our model and we shall consider

this possibility in the next section.

There have been numerous other theoretical predictions of the I =0
S-wave pion~-pion interaction, many of them in disagreement with our
solution 1. We shall discuss these in some detail later. However,
the corrobvoration of the results obtained from our model for pion-
production and the results of forward pion-pion dispersion relations
encourages us to take another look at two important methods of
obtaining information on the pion-pion amplitude, namely the pion-
nucleon partial wave dispersion relation 'discrepancy' analysis and
the ABC effect in the 3He distributions in proton-deuteron scattering,

to see wnether the results of these analyses could be compatible with




the solution 1.

For the 'discrepancy' analysis we use the dispersion relation

derived by T D Spearman“

for S-wave pion-nucleon scattering
amplitudes. These relations emphasise the better known low
energy pion-nucleon data (in particular the scattering lengths)
and stress the low energy contribution from the two pion exchange

term. This is done by defining the function

%:('S) = 'F:(s) /B(s) - (3.15)
" ;/1
where BGY = ((sm ey ) e 5) ] - (3.16)

and fOI ig the " N S-wave scattering amplitude with isospin I in

which case by considering the singularities of fOI(s) and B(s) we

i 2 fm ="
can write o fi&ﬁl— ﬁ* m?“‘ .y £ ,&g(ﬂ
Re qo( - /x .S‘*” Jeeo) by | K L_ vy 18(s'3 ) C5t5) 31 G )
d - (3.1
L R s oty uy T O01T)
B\ L9 s anl .|, 1) (5h0)

where Af_ (s') is the discontinuity in fOI(sl) across the circle
- 1)e*?, and R is the residue of a possible pole at the

origin. Since

_ Tw &:/B Aer read s .2("‘*'\1-

Re Q:

- .18
= Lm»‘}: /= By read 5 € (m-dY (3.18)

all the terms on the left hand side of (3.17) can be evaluated in
terms of the low energy pion-nucleon data for values of s above
(m + 1) 59.6 to 76 (say) and by using the crossing relations

for values of s below (m - l) = 32.2 to 20 (say). The left hand



side of (3%.17) therefore can be evaluated in the regions

- (3.19)

The circle cut arises from the crossed channel process wx - NN in
such a way that low energies in this c¢hannel correspond to a range
of values on the front of the circle. Thus the front of the circle
¢l =< 60° is restricted to low energy crossed channel reactions and
arises primarily from the two pion exchange. The contribution to
+
the discrepancies ,D'(s) given by tnis part of the circle to the
+
third term on the right hand side of (3.17), CD":(S), may be

written as

<
4 max .'t
Do = [ @ = Gea) T80
xR o i
’h
+ , +
where Ki'(s,t ) are appropriate kernels and £, (t') are the relevant

- (3.20)

helicity amplitudes for the 'crossed' process wT ~NN. It can be
argued that this term cf)"(s) should contain the predominant energy
dependent effect of the discrepancies JJ(s) in the regions (3.19)
corresponding to the nearby singularities, i.e. the long range forces.
It may be reasonable therefore to approximate the other terms on the
right of equation (2.17) by a constant and the energy dependence of
the left hand side may be equated to af),”(s). In turn this may

I .
provide information on the pion-pion phase-shift Y since by

J
unitarity, the phase of the helicity amplitude £2°(t) in the region

4 p 2 < t < 16 /\*2 will be <E>JI(1;). This is also the phase of
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(DJI)-l where DJI(t) is the D-function arising in an N over D

. . . . . . +
solution for the pion-pion scattering amplitude. ;E> (s)

corresponds to isospin I 0 in the wn- NN channel in which, from

It

the Pauli Principle only even values of the angular momentum J occur.
For low energies in this channel, therefore, one might expect only
the S-wave, f+°, should be important so we attempt to fit the data
for DT(s) using only this S-wave term. For this case f+o(t) and
Do \t)-l have the same phase on the right hand cut so that the
product f+O.D ° has only the left hand singularities. Writing a

&)

improve the convergence we obtain

a o 2 LT C%n

£ = Yo | YeRfo + e (R ) J g

- Yenr o : - -21
+ - 4t 3‘{ S“'M' DIE) Im §, () (3 )
. Al -————-——"’———' T
L r e {e'-t) (k- ") o

30

where the subtraction constants have been calculated by Menotti,
and Im f+o(t) is determined for 0 < t < 4 - l/m2 by the Born
term and for t < 0 by the analytic continuation of the pion-nucleon
data. We can now compare the right hand side of equation (3.17)
with the left hand side given by a constant and equation (3.20)

using (3%.21) for different forms of the pion-pion D-function.

When a one pole approximation to the N/D pion-pion dispersion
relations was used reasonsble egreement was found for a pion-pion
interaction corresponding to solution 4 of the last section.
nowever, the one pole approximation is too restrictive to produce

any but the simplest type of phase-shifts. It caumnot, for instance,
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produce a phase-shif't which passes through zero. Therefore, in
repeating Spearman's analysis we use a two pole approximation to
the pion-pion amplitude similar to that considered in the last
section. With this extra parameterisation of the pion-pion
amplitude, three general shapes for the phase shift 800 are found
to give agreement with the discrepancy data which is as good, if
not better, than that found by Spearman. The pole positions and
residues for these satisfactory phase shifts (which are sketched
in figure (3.4)) are given in table (3.2). Figure (3.5) shows
the discrepancies giks) generated by these three pion-pion

solutions.

Note that solution (a) is similar to solution (1) of the last

section so that a phase-shift which starts negative (with a negative
scattering length) and then becomes positive could be compatible with
both the pion-production data and the forward pion-nucleon dispersion
relation analysis. This 'turn-over'! type of phase-shift was
previously suggested by Hamilton et al who employed the conformal
mapping

. _ 1 - (v + 1}
V\ 1+ (v+1)%

to transform the physical sheet of the v (= q2) plane into the

= o

interior of the unit circle {4l € 1. By approximating Noo(v)
by ot 41q they found two phase-shifts similar to our solutions

(a) and (b) satisfied their discrepancy analysis. Spearman, in his
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analysis on the other hand, rejected the !'turn-over' solution
since it did not give such a close fit to the discrepancy data as
the one pole N-function approximation. However, by increasing
the parameterisation of the pion-pion amplitude all three
solutions (a), (b) and (c) are seen to give satisfactory agreement

with the data.

TABLE 3.2

Solution Pole Positions Residues ?:z;zﬁring
Number C__12 c_22 nAﬂL ‘ngf aoo

a -42 -450 0.7 -6 -0.4

b -42 -450 0.7 -2.5 1.9

c -42 =450 0.8 -2 -6.8

The other evidence for the I = O S-wave pion-pion interaction which
we shall congider in this section is that coming from the experiments
of abashian et al onp+d = 3He + 2R reactions. They measured
the recoil spectum of 3He ions produced at a fixed angle and fixed
energy of the incident proton and found there was a pronounced peak
above the phase-space curve in the momentum range corresponding to
energies just above the two pion threshold. No such peak was
observed in the analogous experiment for p + d = 3H + 2R implying

that if the peak is caused by a pion-pion interaction, this inter-
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action is in an I = O state.

To analyse the data many authors have expressed the final state

interaction by an enhancement factor modifying the phase-space

31,32

>

digstribution™’. This enhancement factor is obtained in the same
vay as we derived a phenomenclogical form for the w N= & N partial
wave hl_(d‘z). The amplitude for the process p + d 4-5He + 2%
considered as a function of 6‘2, A(G’z), will have a branch cut

for values of 6‘2 > 4rh2, where as before c? is the square of the
total centre of mass energy of the two pioms. If the only final
state interaction considered is the two pion interaction then the
phase of this amplitude for 4/~2 < 0'2 < l6/~2 from unitarity

will be <SOO; where 16,A2 is the first inelastic threshold. By

defining the function

d"'—d'sl) "“’l _E:E-’i——
36y = oame 2 g‘; = Yo ] - (3.22)

and ignoring inelastic effects, the product A.D has only the left
hand singularities in 0‘2, since D has the phase - §;° on the right,

so that we can write

. - D) T ALY
Ay = T -(;.“ _—_—__a"—- — = de¢’ - (3.23)

with possible subtractions to ensure the convergence of the integral.

In deriving a phenomenological form for the = N-—= & N partial wave

h,_ the integral in equation (2.45) which is analogous to (%.23) was



101.

replaced by a constant. Also in the 'discrepancy! analysis
equation (3.23) was discussed in the form (3.21). In that case,
however, the integral could be evaluated by making an analytic
continuation of the experimental pion-nucleon data to determine
the 7vn > NN helicity amplitude Im f+o(t/). For the process

3

o+ d —="He + 2 the usually assumed forums for the phase-space

enhancement factors are
. of 2 . o . : . .
i. lAO where Ao is the pion-pion I =0

S-wave amplitude

or i,  |¢/p ()| ¢ wnere D (s 2} is the D-function

arising in an N/D solution for the amplitude
Aoo and C is a constant. These enhancement factors are equivalent to
approximately the integral in (3.23%) by Noo(ﬁ'z) in i. (where Noo(d'z)
is the N-function corresponding to Doo(cr2)) and by a constant C in
ii. It has been pointed out by Spearman” that since AOO = NOO/DOO,
so long as NOO is a slowly varying function there will bhe little
difference between i. and ii., i.e. between N/D and C/D. However,
if the N-function is not slowly varying i. and ii. will provide very
different types of enhancement factor, and there is no way of telling
if one type is preferable to the other. Unfortunately if the phase
shift Soo passes through zero (such as solution 1 of the last section
and solution (a) of this) then assuming the absence of CDD poles, the
N-function will pass through zeroc also, and hence is not a slowly

varying function to be well approximated by a constant. Thus there

is no way of telling which gfthe enhancement factors 1. or ii. - if
L
&

?
Y
4 SEP W /)

Wy
i

Ll
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either - we should use to examine the compatibility of the 'turn-

over' type of phase-shift with the ABC effect.

One remark might be made here about the ABC effect. The experi-
mental data sketched in figure (3.6) seem to show a 'dip! at a value
of 6 = 340 Mev. This 'dip' as well as the threshold peak could be
reproduced by an enhancement factor of type i. for a phase-shift
which has a large negative scattering length and passes through zero
at & = 340 Mev, when one 'folds in' the experimental resolution.
Thus if one favours the enhancement factor of type i. it should be
possible for the 'turn-over' type of phase-shift to reproduce even
the small details of the data. However it must be stressed that
the enhancement factor must be justified much more fully before any

information on the pion-pion interaction can be deduced.

This method of deducing enhancement factors for final state effects
by eguations of the form (3.22) and (3.23) always has this arbitrari-
ness unless the integrzl over the left hand singularities is known, as

in the case of equation (3.21) for the discrepancies analysis.

Presumably a better spproximation to the hl- ® N> & N partial wave
amplitude and the p + d —= 3He + 2= amplitude therefore would be to

replace the integral over the left hand singularities in (2.45) and

(3.23) by one or more poles. In this case we would obtain
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In the absence of information on these left hand singularities we
can consider the residues and positions of these poles to be
arbitrarily chosen to give good agreement with the experimental
data for any of the three types of phase shift compatible with the

discrepancy analysis, i.e. solutions (a), (b) or (c).

Note that the phase-~shifts (a) and (b) satisfy equation (3.11),

the bounds on the pion-pion phase-ghift 800 obtained from the pion-
production data which are independent of the detailed parameterisa~
tion of hl-’ the P11 T N = &N partial wave. The third phase-shift

(c) however, because of its rapidly decreasing behaviour would produce

. - + - . . .
a sharp peak in the w p- ™ 7 n differential cross-sections near

2 2 . . . ; ~ .
s =5p . This would occur since all the wN- & N partial waves
other than the P11 wave are approximated by the peripheral contribu-
tions which are proportional to Sin 800. As SOO passes through

- T/2 and approaches - N these partial waves would oscillate between
zero and some maximum value, thus producing a peak in the differential
distributions. This peak is not observed experimentally. 0f course,
if the phase-shift decreases very rapidly this peak may be so sharp
that 1t would be difficult to detect within the experimental resolution.

However this would correspond to an unrealistically large scattering
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3
length and would probably not satisfy the 'w'igner3 condition con the
slope of the phase-shift. We conclude therefore that this type

of phase shift (c¢) is not compatible with the pion-production data.
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A

A CDD Pole in the I = O S5~Wave Pion-Pion Interaction?

In the last two sections we discussed at some length the information

on the low energy pion-pion interaction which may be inferred from

i. the pion production data using the model proposed

in Chapter II

ii. pion-nucleon partial wave dispersion relation

analysis
and 1iii. the 3He spectrum in proton-deuteron collisions.

By making the simplest parameterisation of the ¥ nl-> & N partial

11
wave in terms of the final state pion-pion interaction, a !'turn-over!
type of phase-shift was seen to give reasonable fits to the energy
distributions of the inelastic neutron in the w p > 7" 1 "n reaction.
Also this type of phase-shift was one of three which were seen to give
satisfactory agreement with the 'discrepancy' analysis of the pion-
nucleon scattering data. However it was noted that no information
could be deduced from the ABC effect in the process p + d-a-jﬂe + 27
unless assumptions were iniroduced about the form of the enhancement
factor used to modify the phase-space contribution. It was pointed
out that these assumptions were similar to those made in the parameter-

isation of the P wi{=+ o N partial wave in Section 4 of Chapter II,

il
and that since we have no information about the integrals over the

left hand singularities in equations (2.45) and (3.23) we may

arbitrarily assume their forms to be those required to fit the data.
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Ve see therefore that the two phase-shifts (a) and (b) given by
the discrepancy analysis which satisfy the farily general bounds
(3.11) could be compatible with the w p = ™ =~ n differential

cross-sections and the ABC effect.

S50 far in this discussion of a two-pion final state interaction
in the various processes
X p -—=> T'+W n
Ny - 7T - (3.25)

pd - 3He + 2

we have ignored the possibility of CDD poleéwin the I = 0 S-wave
pion-pion amplitude. This possibility would affect the various
mathematical models used to extract information on the pion-pion
interaction from these processes and may also produce rather
different re;ults. The effect that a CDD pole would have on the

various models may be demonstrated in the following way.

For the case of elastic scattering of a state {a> to a state {a >
the D-function in an N over D decomposition for the amplitude, is
constructed to have only the right hand singularities (arising from
elastic unitarity) and the N-function has the remaining singularities -
necessarily on the left. However when the state (a> can scatter
into other states \b> the unitarity condition implies the exist-

ence of other right hand branch points (and branch cuts) corresponding
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to the thresholds for inelastic processes. Bjorkegghas extended
the N over D decomposition to construct the coupled scattering
amplitude for these processes so that they satisfy analyticity

and unitarity. He writes the amplitude for the scattering process

i -3, Aij(6‘2), in terms of matrix N and D functions as

-1
ALY = Nyl TGOl - (3.26)

where the N-matrix elements Nij have only the left hand singular-
ities and the D-matrix elements have only the right hand singular-

ities such that

®
S ot g Ni." (' ) fi(_a") de

’DLi(‘rl§ = L.S - TR o (o tany( o't oyt - k3'27)
A
where /0.(0'2) are kinematical factors (such as*u—%— SEE{
J 16nd e
for pion-pion scattering). The subscripts i and j range over all

the coupled channels, but for the present example it will be

sufficient to consider only two channels.

If we denote the two-pion sitate by the subscript "1" then the pion-
pion amplitude A(wmr »=xw) with inelasticity may be written as

NppDop = NypDyy
Ay = === s - (3.28)
11922 = Diolsy

and by identifying "2" with either = p n or NN or pd 'EHe' ve may

denote any of the amplitudes for the processes (3.28) as a function

of o 2 by

21 o - (3.29)
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In most cases if the coupling between channels is very weak (i.e.

if to a good approximation one can ignore inelastic effects) D12

and D21 will be small so that

~ N
Al 11/1)11

- (3.30)

4 ~ N
and A21 21/D1l

8o long as D2 is of the order of unity. (Note that in this case

2

N, is approximately the left hand integral in (2.45), (3.21) or

(3.23) depending on which of the three processes (3.25) we are
considering, and the two enhancement factors for the ABC effect

discussed in the last section are found by taking N to be equal

21

to Nll or a constant.) However even in the case of weak coupling

. . . . - - 3
between channels if there is a zero in Do at some point o_, then
(="

the small terms D D etc. near G; must be of the same order

12" 721

as D . Using a linear form for D2 we can write

22 2
A N, - é:" y ( )
= - - (3.31
" Dy ~ a‘.f_d_‘k
N.. - 3
PR A A2
Aa.\ ~ d
2, - Tt - (5“32)

In other words pole terms - known as CDD poles - are introduced

into the one channel N and » functions.



It is perhaps more usual to call a pole a CDD pole if it is

arbitrarily into the single channel ¥ or D functions rather

109.

inserted

than

into both the N and D functionsbhat However in the fuller

discussion of this problem wiich we give in the Appendix it is shown

that all three ways of inserting CDD poles into the one channel N

over D equations may be equivalent under certain conditions.

From the above simple illustration using the two chamnel N over D
equations it may be seen that if there exists a CDD ambiguity in

pion-pion I = O S-wave scattering, the D-function we must use 1is

p° D ¢
= T T 7 - (3.5
o 1 e (3.33)
a
where Dl is given by
p L"'l"r‘t HWJO"L G"Ll_] Nl"c.-“"_a" ;
L R i E I Pt - (5.34)
and Nl may be approximated by one or more poles as before. ilso
we see from (3.32) that the phase-space enhancement factor for the
ABC effect in this case will be given by
N n
B - N 2
21 &= Oa i .
=5 - (5.35)
D
0

and the phenomenological form which we use for the parameterisation

of the P

11 will be

xN = & N partial wave h1




wnere the residues n and the functions N2 and § 1 may be

01721 1 2

chosen to give good agreement with the experimental data.

The possibility of a CDD pole in the I = 0 S-wave pion-pion
interaction has been suggested by several authors recently. In
particular the !'turn-over'! shape of the phase-shift Soo found by
Lovelace, Heinz and Donnachie from a dispersion relation analysis
of the pion-nucleon scattering data in the backward direction may
be thought to indicate the existence of a CDD pole. To see this
let us consider the one channel N over D functions (3.31) in the

form

11 T - (3.37)

where again we refer the reader to the Appendix in which we show

the equivalence of the two forms (3.31) and (3.37). Clearly A

. 2 2 . 1. .
will have a zero at &° = 66 and if 4 is small the denominator of

11

(3.57) wiil pass through zero near 552. Thus a corresponding
phase-shift which passes through zero and near-by through 'N/Z nay
be the result of & CID pole, although of course this shape could

also occur because of the detailed dynamics of the scattering process
without the existence of such a pole in the single channel N over D
equations. It is pertinent to mention however that the only case

in which a known physical phase-shift seems to have this type of



111.

behaviour is the Pll w H= & N partial wave and that from the

6
calculations performed by Coulter and Shaw3 it would appear that
'free parameters' in the form of a CDD pole have to be introduced

in order to produce the experimentally observed phase-shift.

Reasons for a CID pole in the I = O S-wave pion-pion partial wave
Aoo have glso been put forward oy Atkinson and Halpernai Their
arguments assume that the observed nonet of 2+(=JP) particles is
the Regge recurrence of g nonet of 0t extinct bound states, and
that these latter can be calculated in a dynamical O O (3-channel
calculation). In the limit of exact SU(3) symmetry they find that
AOO contains a CDD pole which they believe may well survive SU(3)
symmetry breaking effects. It is also interesting to note that

if these 0" extinct bound states or ghost bound states (i.e. poles
with zero residues) do 'exist' they have the same effect as proper
bound states in determining the asymptotic behaviour of the phase-
shift from Levinson's theorem. In this case, from the arguments
given by Rothleitner and Stech® and later by Squiresqo, if the
phase-shift is positive at the first inelastic threshold then it is
known that a CDD pole must be inserted into the one channel N over
D equations, without any additional assumptions about SU(3) symmetry
or breaking effects. The first inelastic threshold is the four
pion threshold, &2 = 16/*2. Qur results and thosq.of most
authors favour a phase-shift which is positive here,é§o that the

'existence' of such a bound state would imply a CDD pole.

\
A
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For these reasons we compute the results obtained from the pion-

nucleon partial wave discrepancy analysis assuming the existence

of a CDD pole in the I = 0O s-wave pion-pion scattering amplitude.

Using the D-function 560 given by equations (3.33) and (3.34) in

the discrepancy analysis - equations (3.21) and (3.20) - at least

three types of phase-shifts are found to give good agreement with

the experimental data for this simple form.

The three phase-shifts

shown in figure (3.7) use a two pole approximation to the function

N, given in (3.34).

in table (3%.3).

The parameters of these solutions are given

TABLE 3.3
I ‘ . cDD pole CDD pole
Solution |Fole Positions (N)) |Residues (Ny) [Foo.iion | residues
Number 5 2 & 2 T/ P /st = n d
1 2 ! a

A -36 -156 1.9 | -2.1 11.6 1.50 | 0.02

B -36 156 5.1 | -4.6 12.4 2.30 | 1.61

c -36 “156  |-15.4 | 14.1 27.6 | -82.5 | -16.0

From the preceding discussion in Section 2 it is clear that because

of our lack of xkmowledge of the detailed dynamics of the processes

T p > xT

" nagndp+d >

He + 2R

- exhibited by our erbitrary

parameterisation of the 'left hand' singularities - any of the three

phase-shifts could satisfy the pion-production data and the ABC
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effect. (In fact using (3%.36) and (3.35) for the " N> &N

partial wave h. and the ABC enhancement factor respectively,

1-
the extra parameters enable us to fit the present data with NZl
and N,, approximated by constants.) Thus the phase-shifts (4)
and (B) which are the two 'S -resonance'! solutions found by Heinz
Lovelace and vonnachie with negative and positive scatiering
lengths respectively may also be compatible with the ABC effect,
pion-production cross-sections and the low energy pion-nucleon
data used in the discrepancy analysis. This is also true for

phase-shift (C) which possesses a resonance at a much higher

energy - the g€ °(720 Mev) perhaps.

Let us gummarise our results. In the case that there exists no
'free parameters', i.e. CDD poles, in pion-pion S-wave scattering
we find two types of phase-shift which could be compatible with
the pion-production cross-section data, the ABC effect and the
low energy pion-nucleon data. If, on the other hand, we assume
the existence of a CDD pole we find at least three resonating
types of phase-shift which could be compatible with these
experimental observations, and that two of these are similar to
the solutions found by Lovelace, Heinz and Donnachie from a
dispersion relation analysis of pion-nucleon data in the backward
direction. It is perhaps useful to stress again that the reason
we are unable to find a unique solution is that our lack of

knowledge of the dynamics of the various processes zllows us to
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introduce parameters which we can vary to fit the available data.
Only if various assumptions are made about these processes, which
may or may not be justified, could any more restrictive information
be obtained about the I = 0 S-wave pion-pion phase-shift, However
not all the available evidence on the pion-pion interaction has
been considered here. In the next chapter we shall give a survey
of other studies which have been made to obtain information on this
interaction and compare the results of these studies with the

results given here.



CHAPTER FOUR

SURVEY OF THE INFORMATION AVATLABLE
ON THE PION-PION INTERACTION
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IV - SUiVsY OF THE INFORMATION AVATLABLE ON THE PION-PIOL Ta1KRACLTON

1. Dispersicon Helation Analyses and Current Algebra Technigues

Our aim in this concluding chapter is to give a survey of the
different information available on the pion-pion interaction
pointing out possible sources of error made in its interpretation.
In the light of this survey, together with the results and discus-
sion given earlier in this thesis, it may be possible to draw some
general conclusions about the pion-pion I = O, S-wave amplitude.

It must be stressed that, because of the large amount of apparently
conflicting evidence, any conclusions that are made must, of

necessity, be only tentative.

In any survey of the pion-pion interaction, the pion-nucleon
dispersion relation analyses must be given some prominence since

the large amount of 'reasonably accurate! data on the pion-nucleon
system allows one, at least in principle, to derive more detailed
information on the pion-pion interaction than is usually possible.
The partial wave dispersion relatﬁon discrepancy analysis has already
been discussed at some length, but one or two remarks about this
analysis may be in order here. In the derivation of the discrepancy
BD(s) in equation (3.17) it was supposed that the energy dependent
contribution was that coming from the front of the circle, i.e.

;E%és), and that the other contributions (from the short range




forces) could be well approximated by a congtant. This may be in
error, although it was found” that giving these other contributions
some simple energy dependence (such as a distant pole), made little
difference to the fits tc the data. Also the inclusion in the
analysis of the pion-pion £ =2 partial waves, which have so far
been neglected, may provide rather different results. For instance
it is usually assumed that the inclusion of these D-waves would
improve the fit of the discrepancies to the experimental values in
the higher energy range‘o. However, 1t is probably fair to say
that the inclusion of f = 2 partial waves at low energies where they
are damped considerably by the centrifugal barrier should have little

effect.

The digpersion relation analysis of the backward pion-nucleon
scattering amplitude has been studied by Lovelace, Heinz and
Donnachiezj. Here again the better known pion-nucleon data provides

a means of obtaining an estimate of the low energy pion-pion interactions.
As in the case of the partial wave dispersion relation analysis, the
partial waves with é = 2 are neglected as are any four-pion inelastic
effects. The pion-pion phase shift is given by the phase of the
backward scattering amplitude on the left hand cut. Lovelace et al.
admit that while there is sufficient experimental data, the calculation
of the pion-pion phase-shift from this analysis is delicate, and they
sought to reduce the possible errors by using dispersion relations

. + - . . . ; .
for the F and F pion-nucleon isospin amplitudes together. As a
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check on the numerical errors, they fitted the data in 184 different
WEYS . By fitting the F data up to 600 Mev, two types of pion-pion
I = 0, S-wave phase-shift were found, one with a positive scattering

length (aoo ~ 0.7 -l) with a resonance at 430 ¥ 70 Mev of width

+ 400

400 _ 150

Mev and the other with a negative scatiering length which
turns over, passing back through zero near 350 Mev and resonates at
680 * 85 Mev with a width 750 ¥ 50 Mev. Lovelace et al state that
the evidence favouring a resonance rather than a large scattering
length interaction seems to come chiefly from =« p data on the upper
slope of the N* (1236) resonance which would explain why it had not
been obtained in earlier analyses using only low energy data. They
believe that there is evidence beyond all reasonable doubt from this
vork for the existence of an I = 0, S-wave resonance and suggest that

the very large width would make it difficult to pick out from phase

space in most other calculations.

At first sight it might appear that dispersion relation techniques
could also be usefully applied to the pion-pion partial wave ampli-
tudes. The first inelastic threshold is relatively distant from the
elastic threshold and crossed channel reactions which provide the
'left hand forces' may themselves be written as a sum involving pion-
pion partial waves. This sum is the analytic continuation of a
Legendre expansion to regions well outside the formal region of
convergence so that cut-off parameters must we introduced into the

integral equations. When one approximates the Legendre expansion
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by the P-wave term alone and attempts to calculate the P-wave
amplitude assuming that the /’—meson is the dominant force term,
one has the simple bootstrap type of mechanism, theA/Q-meson in
the crossed channel providing, in principle, the force for the
creation of a./’—resonance in the direct channel. This was
successfully accomplished by Chew and Mandelstam #'. However, when
a more rigorous treatment of the integral equation was attempted by
considering the 5- and P-wsves together?zthe’ﬂ -meson was produced
ountd slate was produced in thie I = G, S-wave awplilude.
%3
This has been re-investigated recently by Kyle, Martin and Pagels
who found that a P-wave resonance was accompanied by unphysically
L. . _ 44
large S-wave amplitudes. On the other hand, Bransden and Moffat
performed a similar analysis using dispersion relations for the
inverse partial wave amplitudes. They obtained a P-wave resonance
near 700 Mev and an S-wave solution with scattering lengths in

agreement with Schnitzer, i.e. aoo = 0.5, ao2 = 0.16.

The main difficulty with these pion-pion partial wave dispersion
relations is the determination of the discontinuity across the
left hand cuts. An understanding of the short-range forces which
for v-wave amplitudes are not damped by the centrifugal barrier is
reguired before this type of analysis could be considered adequate

for a detailed study of S5-wave pion-pion scattering.
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A dispersion relation for the forward pion-pion scattering amplitude

however does not suffer from the above difficulty. The discontinuity

across both the left and right hand cuts from the optical theorem can
be written in terms of the total pion-pion cross~sections. The
. - . . . . 20 1 [
calculations of this dispersion relation by Rothe and by Pisut,
. Lo ' ) . . .
Bona and Lichard have also been discussed earlier. VWWhen Rothe
introduced a large I = O, S-wave pion-pion interaction into the
dispersion integral by assuming a constant phase-shift of ‘K/Z in

2 2 o . .
the energy range © = 5,*2 to 40 ¢, the additional contribution

to the scatterihg length aoo was found to be as large as +0.9 r*—l,
this, together with an estimated error of +0.1 [*—1 arising from

possible effects in the I = 2 amplitude, led Rothe to suggest that

103 "l

O 5 /l)— - (4'1)
These large errors, in particular that coming from the assumed form
of the low energy I = O, S-wave phase shift, indicate the approximate
ngture of this result. Nevertheless, the calculation of the I = 1,
S-wave scattering length aol (which should be zero) using similar

approximations led to the quite acceptably small value of -0.4 r*-l.

Pisut, Bona and Lichard used a subtracted form of the dispersion
relation for the forward pion-pion scattering emplitude which greatly
depressed the high energy behaviour. Yor the low energy form of the

total pion-pion cross-sections they employed a scattering length
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approximation and obtained

;1.3 Y006 p7t

W
]

- (4.2)
+0.38 T 0.2 47t

©
B
jo R
o
[}

where the errors were due only to the errors of the subtraction
constant. The errors due to inaccuracies in the cross-sections

were saild to be much smaller than these.

Although neither of tiie above analyses used & detailed shape for

the pion-pion phase-shift which was copsistent with the negative
scattering length, the interesting point is the measure of agreement
cbtained for the value of aoo using rather different methods and
input data. On the other hand, another recent calculation of

the pion-pion scattering lengths using forward pion-pion dispersion

relations by Meiere and Sugawara4

s-suggests that aoo should be small
and positive. This calculation required that the high energy limit
of the pion-pion cross~sections be the same in all three isospin
chanmnels and that the scattering becomes asymptotic farily rapidly
above the /) and £° resonances in the respective chammels. Meiere
and Bugawara used a once subtracted dispersion relation and the phase
representation for the crossing symmetric forward pion-pion amplitude
and an unsubiracted dispersion relation for the crossging anti-
symmetric amplitude. The only pion-pion resconances considered were
the Vi and fo; and the S-wave interactions, described by eiffective-

. . o . -1
range expansions - with effective ranges between O end 2 M s were
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assumed to dominate the low energy region. From this analysis

they obtained the values

a - 0.25 ¥ 0.08 ,A‘l; a02 = 0.00 T 0.03 ,»'1 - (4.3)

and suggested that the unknown details of the high energy seattering
are relatively unimportant in theilr determination of these scattering
lengths. It should be noted, however, that their dispersion
integrals are not so heavily damped at high energies as that of

Pisut et al.

—

Both sets of authors, Pisut et al and Meiere and Sugawara have also

/

/
i

considered the sum-rule derived by Adler""g from current algebras
which relates the gA/gv ratio éo the pion-pion total cross-sections.
Using their values for the scaétering lengths Pisut et al found this
sum-rule to be satisfied with a phase-shift goo which is initially
negative becoming positive and possessing the gzo resonance.
However, this is far from being uniquely determined. Only the
square of the I = 0, S-wave amplitude is used in the sum rule so that
a resonating phase-shii't with a positive scattering length and
subsequent 'dip!' such as that obtained by Wolf 2% would give very
similar results., 50 too would a large phase-shift instead of an

go resonance. Also Meiere and Sugawara re-writing the Adler sum-~
rule in a different form obtained the result

o 2

-1
2ao - oa ~= 0.7 p

- (4.4)
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which is compatible with their values of the scattering lengths.
The sum rule is for pion-pion scattering with one pion off its
mass shell. Both sets of authors have made some corrections for
this, but they are corrections rather more to the kinematics than
to the detailed dynamics. This is probably adequate for the
approximate discussion of the integral over the cross-sections
given by the sum-rule. There is, however, another method for
deriving the pion-pion scattering lengths from current algebras
in which the off-the~mass shell corrections must be considered

more closely,

Current algebra techniques, together with the hypothesis of a

partial conserved axial-vector current (PCAC) have been employed

by Weinberg46 and others*’ to derive the scattering lengths for

the scattering of a 'pion' off any target particle in the limit

0f the initiasl and final state 'pions' having zero four-momentum

(and therefore zero mass). When the target particle is much
heavier than the physical pion-mass this limit might be assumed

to make little change in the low energy scattering amplitude, and
simple approximations for the extrapolation to the physical thres-
hold in this case lead to scattering lengths in remarkable agreement
with the experimental data. Unfortunately, in the case of the pion-
pion scattering, this extrapolation may make a significant difference
to the results and it is not clear how it should be performed.

Weinberg has assumed that the scattering amplitude can be expanded
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in powers of s, t and u (in the standard notation) and that one
can neglect all powers higher than the first. By fitting the
co-efficients of this expansion to the values of the amplitude
given by current algebras and Adler's self-consistency conditions‘,"i

Weinberg obtained the S-wave scattering lengths

1

a~ = 0.2 p77; a” = -0.06 M - (4.5)

It has been pointed out that the assumption of this power series
expansion holding up to and somewhat beyond threshold, clearly
violates unitarity“q. Weinberg has remarked that his small
scattering lengths could be due to the fact that by writing such
an expansion one has already assumed them to be negligible.
Iliopoulos‘ﬁ has used a more flexible parameterisation of the pion-
pion amplitude which allows for the elastic unitarity branch cut.
In doing this he introduced further co-efficients which cannot all
be determined and obtained a family of solutions for aoo and ao2.

e connect these solutions by the relation

(1.18 + a02)2 = (0.74 + 0.62 x aoo)z + 0.52 - (4.6)

_ . . o
similar conclusions have also been reached by J bucher and C H WOOS .

This problem of the pion-mass extrapolation has been considered in
. . . — . sl

an alternative way by the use of dispersion relation techniques .

These suggest that corrections to the current algebra results are

not likely to be significant as long as the S-wave pion-pion
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interaction is relatively weak. Such dispersion relation analyses
must necessarily be rather approximate. We conclude therefore that
while current algebra techniques may give useful results for meson
baryon scattering, no reliable predictions have yet been obtained

for pion-pion scattering lengths.
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Pion Production and Final State Interactions in Decay Processes

We shall review in this section the information on the pion-pion

interaction which may be obtained from the pion production process
T+ N> 1™ + ™ + N - (4.7)

and the decay processes

j 324

K = 2% + e + ¥
K — 3%
- (4.8)

Vl — 3T

Klo-%r 2
We have discussed at some length the interpretation of the process
T - n R by the peripheral diagram and modifications to it, and
we noted in Chapter II that such a diagram could be the dominant
interaction in certain regions of the variables but that these
regions were poorly defined. It is worthwhile mentioning that while
care must be exercised in its application the peripheral model has
been successful in determining the Y and £° mesons. Wolf “* has
extended this use of the peripheral model (with the modifications
suggested by Ferrari and Selleri's) to perform a pion-pion phase-
shift analysis from the pion production data taken at several Gev.
incident pion energy. This analysis gave phase-shifts which
contain both the /D—resonance with a mass of 760 Mev and a full

width at half maximum of 170 Mev, and the fo-resonance (an I =0,
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D-wave resonance) with a wass of 1250 Mev and a width of 140 mev.
The results for the I = 0, 5-wave phase-shift, however, are not so
clear cut. At low values of the di-pion mass an effective range
formula wes used with a scattering length aoo assumed from the ABC
data of 2 £ 1 f*al. This parameterisation for Soo-gave satisfactory
agreement with the experimental data on the “rp J>'W+1T-n Ccross-
sections although this is not very accurate in the low di-pion mass
region. It should be noted that, since only the pion-pion cross-
sections are used in this peripheral calculation, a negative
scattering length of the same order of magnitude would probably
have provided similar results; hence the phase-shift SOO at low
energies is hardly determined from this analysis. At higher

energies, Wolf determined Soo by fitting to the forward-backward

assymetry parameter Rif+‘T . This parameter is defined as
-
R = = (8r < Wh)-0;, (87r>7'/z) k-8 \
0% (65 < T/2)+ o5 (On >T4) F+3 - (4.9)

the ratio of the forward to backward scattering of the two final
state pions, and is found to be large (—~ 0.4 to 0.6) in the
di-pion energy range from 600 to 900 Mev. This effect, Wolf and
others > claim, can only be explained by assuming the existence of
a resonance in the I = 0, S-wave pion-pion amplitude with a mass

of about 740 Mev and a width of Y0 Mev. Recently Bander and Shawss

considered this effect using a peripheral model with absorption and

found that a phase-shift of ~ +60° gave as good a fit as did a
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resonance in ftnis energy range. They ruled out =z negastive phase-
. 0 o . s .
shift of ~ =60 by examining the distrivutions in @x as a

function of the di-pion mass.

. - . 17 . o . .
Goebel and Schnitzer =~ have considered the pion-production process
using a static model calculation which includes both a direct

'knock-on'! single pion exchange diagram and a2 re-scattering diagram,

SN

where the re-scattering is due to the N*(4.3%) resonance. By
e . " + D S L
fitting this model to the = angular distribution in the process

'R_p = =~ r"n at 430 Mev tney found

. o] . _ . l _ -1 . \
2a " +a = 1.16 and a” = U.07 p - (4.10)

From the total 'ﬁ+p inelastic cross-section at 470 Mev they found

two acceptable values for a02, i.e., 0.16 and -0.14 which gave

values for aoo of 0.50 and 0.65 respectively. The model seems to
reproduce reasonably well the n p -= rt 5 angular distribu-
tions at 370 Mev and the total cross-section up to about 500 Mev,
although it should be said that this data is not particularly
accurate (an earlier calculation with this model, using earlier
data, produced a negative value ror aoo) and that in the range 200
to 300 ifev the fit to the total cross-section is not nmuch better
than the unmodified peripheral calculation. It would be interesting
to see if similar results are obilained from a relativistic treatment

of this model; and certainly until such a treatment is performed
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the values quoted above must be only tentative.

Let us now turn to the meson decay processes. Various, rather
approximate, methods have been introduced to derive information
on the pion-pion interaction from the processes K - 3w and

n = 3n. For instance the final state interactions in the
three pion decay modes of the K-meson have been studied by Khuri

o 4. . . . . . .

and Treiman  using dispersion relation techniques. By adopting
certain approximations they are led to a set of linear integral

+
equations for the X —= 3« decay amplitudes in which the kernels

o

epend on the pion-pion S-wave scattering amplitudes. By assuming
a scattering length interaction for these pion-pion amplitudes, and
fitting the shape of the decay spectra by an iterated solution for
these integral equations, they found a02 - aoo was positive and

of the order of 0.7 f~_l. Similar results were obtained by

55
Sawyer and Wali also using dispersion relation methods.

The three pion decay modes of K and | mesons have also been studied
using a model in which these decays proceed through a resonant

. . . . - o 6 -
I =0, S-wave pion-pion interaction. Brown and Singer found
that good agreement could be obtained with all the available data

on the K and « spectra and branching ratios if the di-pion

resonance (sigma) has a mass of 400 Mev and & width of 74 to 100 Mev.



Fadeev equations have also veen used to obtain information on the

pion-pion interaction from a study of these three pion decay modes.

~ . s7
Unfortunately nc clear results have emerged. For instance Prasad

obtained a good fit to the data only with a o -type resonance in

1 - -~ P . . . . - 1 Y 21
the T = 0, S-wave pion-pion amplitude while Dunn and Ramachandran
found a scattering length interaction was satisfactory with

scattering lengths of aoo = 0.3, a 2 = 1.5 for X decays and aoo = 0.1

o
aoz = 1.75 for i? decays. A large I = 2, S-wave scattering length,
aog, was also found by Barbou? and Schultsq who obtained a fit to
the data with (302)2 - (a00)2»~ 2.

The only decay process of the type meson = mesons + leptons for wnich
any sizeable amount of data is available is the so called Ké?4
decays, i.e. K-> w# ev where e and v represent the electron (or
positron) and neutrino respectively. Jacob, Mahoux and Omneséaand
later Maksymowiczéi have treated the final state interaction of this
process by assuming tnat the final state interaction can be 'fectored
offt from the decay mechanism, i.e. that the only singularity the
amplitude has as a function of the two-pion invariant mass is the
right hand unitarity branch cut. This 'factoring off!' of the final
state interaction is similar to the assumption made in deriving the
phenomenological form for the P11 N > &N partial wave in

Section 4 of Chapter 1I and means that in writing a dispersion
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reiation for the amplitude the integral over the left hand singul-
arities may be approximated by a constant. With this assumption
the KX -»7Ar® eV invariant amplitude is of the form C/DoO where

o

DO is the w-function arising in an H over D solution for the pion-

pion scattering amplitude.

A somewhat different approach for deriving the decay amplitude has
been to consider the analytic continuation of the amplitude fér the
process K + (ev) =>T7n , Kacser, Singer and Truong62 have assumed
an unsubtracted dispersion relation for this amplitude in which the
discontinuity across the right hand cut is given by unitarity and
that across the left hand cut is given by the crossed process

K+® = w + (ev). After neglecting various terms which they
believe to be small, they finally obtained a form for the K-> AT eV
amplitude in terms of Doo and Dll, the D-functions, arising in an N
over D solution for the I = 0, S-wave and the I = 1, P-wave pion-
pion amplitudes. The best fits for this amplitude to the available
experimental data on the two-pion spectra were obtained with a pion-
pion scattering length aoo of 1 % 0.3; although this solution gave
a decay rate which is approximately five times larger than that
observed experimentally. Thus the amplitudes derived could have
the right energy dependence but are then wrong in their absolute

value by over a factor of two.



Finally, in this survey of the available information on the pion-

. . . . O .. 0
pion interaction, we must mention the K, -~ k

) , 2SS difference.

Recent experimental results have indicated that this mass difference
3

is _0'5/“517 where 'El is the lifetime of the Klo—mesone . A

theoretical study of this difference has been made by Kang and
9]
Land  who assume that it is due primarily to the self-energy of
.0 o . . .
the Kl ariging from the two pion state with I = O. The mass
o . - . - 0 .
difference in this case is related to the Kl ™™ form factor
LN ) 1 —_—— ] oo - . . . O
which can be written in terms of the pion-pion D-function, DO .
This was calculated by obtaining self-consistent solutions to the
- ) . . . o . . ,
N over D equations for the pion-pion amplitude Ao in which the
driving forces were taken to be the exchange of a ,? -meson and an
assumed 5-wave interaction. Kang and Land obtained the value of
-1 . . . o}
AM=-0.5T for a negative scattering length a, the phase-
o e o N s 0 + .0 c 3
shift turning up through zero with a value of 0O - 10" near 500 Mev;
and found that positive scattering lengths led to positive mass

differences.

Kang and Land also considered the model proposed by Berger and

Kazes 65, later developed by Nishijima°‘ and considered recently
. . . 47 . .
in an approximate form by Truong , which uses the analytic

properties of the function [N(G‘Z)D(G'E)] ! 4o obtain the

Klo - K2o mass difference as
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Al = -5Cot SO (M) + correction terms due to an integral
over the left nand singularities

Taking into account the correction terms and possible pole contrib-
utions from zeros in the N and D functions, Kang and Land found
this relation gave the same numerical results as before, Rockmore
and Yaoé? on the other hand, also using self-consistent solutions
to the N and D functions, found the zerc in the N function to be
below the physical threshold and obtained a pion-pion I = 0, S-wave
amplitude which has a positive scattering length. The sign of the
scattering length, of course, is dependent c¢n the sign of the N
function so that the only difference in these two calculations is
the position of the zero in the N function which is determined by
the detailed description of the driving forces assumed for the

pion-pion interaction.

This concludes our survey of the availabvle information on the low-
energy pion-pion interaction. The large volume of literature has
by no means been exhausted, but we hope that at least the more
Ireliable! techniques for extracting information have been coveredéq.
The contradictory results obtained by different authors only serve
to show how difficult is this problem and how unwise we should be
in summarising these results if we were to make any but rather
tentative statements about the form of the low-energy I = 0, S-wave

pion-pion phase-~shift. Perhaps the only point on which the wvarious
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studies described in this Chapter are in agreement is the rather
basic one that a pion-pion interaction does exist. It would be
extremely difficult to account for so many of the observed effects
in the variocus scattering processes unless some kind of pion-pion

intersction were operative.
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Conclusions

In this concluding section we should like to compare the results
presented in the earlier Chapters of this thesis with the various
analyses sketched in. the preceeding two sections. To do this, let
us first of all make one or two fairly general remarks about the
results presented in the above survey. It is interesting to note,
for instence, that vhere the method allows & detailea stuay of the

I = 0, 5-wave pion-pion phsase-shift Sno over a range of values of
the di-pion energy, it appears that Sin 800 is positive and perhaps
farily large, somewhere in the range above 400 Mev. VWie have seen
that the I = 0, S-wave amplitude AOO is frequently presumed to
possess either the 6 - or the Eo-resonance in which case the phase-
shift passes upwards through an odd multiple of ‘W/Z - probably
+l.7‘/2. Where such resonances are not required to fit the data,

a2 scattering length interaction has usually been assumed, with the
scattering lengths sometimes found to be positive and at other times
negative. When aoo is positive the phase-shift is taken to be
steadily increasing, while negative values for aoo are obtained
either when the nigh energy effects are heavily damped or when
there is sufficient parameterisation of the amplitude for the phase-

shift to turn up through zero and become positive. Thus the

available information on the pion-pion interaction secems to support



a phase-shift which is positive somevhore in th

m
]

anze above 400 Mev,.
In connection with this it is worth mentioning that if the phase-
shift Soo is indeed initially negative and thereafter turns up
through zero then a scattering length approximation to this type

of interaction could, in certain calculations, quite mistakenly lead
to positive values for the scattering length aoo by averaging the

effect of the interaction over a range of energies.

With this proposition that the phase-shift SOC is eventually
positive, we should like to suggest that the available informetion
on the pion-pion interaction could be compatible with either of two
shapes for the Jow-energy I = O, S5-wave pion-pion phase-shift.

Yhese are:

i. a positive phase-shift characterised by a positive
. + -1
scattering length of 1 - 0.3 m
. . . + 1.3 L .
ii. a negative phase-shift of -1.7 _ 0.5 which soon turns

over and becomes positive.

The first of these types of phase-shifts could be in agreement with
a1l the different calculations considered in the survey (because of
their approximate nature) except perhaps those by Rothe ** and by
Pisut et aliq using forward pion-pion dispersion relations and by

4

0 o) a 3
on the K,” - X mass aifference. These three

Kang and Land ® 1 K,
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calculations however, as we have seen, are by no means free from
criticism. For instence, we noted that Rothe found a large
additional contribution to the scattering length aoo wheﬁ he

assumed a large I = 0, S-wave interaction. A more detailed consid-
eration of the phase-shift SOO therefore might lead to a positive
rather than a negative value for this scattering length. On the
other hand, Pisut et al used z heavily damped form of the forward
pion-pion dispersion relation which was, therefore, leus dependent

on the shape of the phasge-shift sc that their ncgative value for

6]
-

aoo should perhaps be more convincing. However, in dsmping the
integral, they were forced to introduce a subtraction constant
which was evaluated using the phase-shifts derived by Wolf. In
this highly damped form the equation is particularly sensitive to
the value of the subtraction constant and it is not impossible to
believe thai errors in the Wolf pnase-shifts could produce large
errors in their value for the scattering length. Also the
calculation by Kang and Land of the Klo - K2o nass difference may
well be in error. Their calculation involved self-consistent
solutions of the N over D equations for the pion-pion amplitude
AOO, anda found that N had a zero above threshold and that aoo is
negative. On the other hand, as we have already pointed out,
lockmore and Yaoei using similar self-consistent solutions for AOO,

found the zerc in ¥ to be below threshold and aoo to be positive,

hus these calculations for the Klo - Kzo mass difference indicate
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that the pion-pion phase-shift is either of type i. or ii. but

cannot really support one rather than the other.

The other low-energy phase-shift, ii., which we suggest could be
compatible with the available deta is one which is initially
negative, but which then turns over and vecomes positive. “his
type of phase-shift we have seen is compatible with the backward
pion-nucleon dispersion relation analysis of Lovelace et al? and
also with our re-~calculation fur the S-wave pion-nucleon dispersion
relation 'discrepancies!. Because of the large amount of reasonably
accurate pion-nucleon scattering data, these analyses, at least in
principle, should provide somewhat more reliable results than other
more tenative methods. Of these cther methods, we have already
mentioned now some form of scattering length approximation for this
type of phase-shift might mistakenly lead to positive values for aoC
in certain cases. These could presumably include the model for the
pion-production amplitude of Goebel and Schnitzer '7 and the forward
pion~-pion dispersion relation analysis of Meiere and Su,g_gzam.wara"f in
which the dispersion integrals are poorly convergent. We should
like to propose, therefore, that some authors have not obtained this
type of solution for SOO because their parameterisation of the
amplitude Aoo was insufficient to allow for it. Wie could perhaps
go further and suggest that whenever the parameterisation of the

amplitude has been sufficient, this type of phase-shift, ii., is
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almost always found as a possible solution. If this is the case,
then only the current algebra predictions of wWeinberg and othersuh
need to be seriously considered here as avidence against a negative
scattering length; but even for these, if one assumes the pion-
pion interaction to be non-negligible, so that the unitarity branch
cut becomes important, we have seen that a negative solution for

o . . . g ,
ao is Jjust as possible as a positive one. Thus we conclude that

either type of phase-shift i. or ii. could be compatible with the

The value of 1 = 0.3 f‘—l for the scattering length of solution i
1s suggested by the dispersion relation analyses of pion-nucleon
backward scattering amplitude and the partial wave amplitudes.
The approximate nature of the other 'less reliable' calculations
is such that we believe this is quite a realistic value for the
positive solution. For the other solution, ii., it is more
difficult to put bounds on the size of the negative scattering
length. However, for a negative phase-shift which soon turns over
and becomes positive, the scattering length is no longer a very good

guide to the low-energy interaction. We would suggest that the

+ 1.3
~ 0.5

of aoo for this solution, ii., where the errors admit both the

value found by Rothe of -1.7 is a fair measure of the size

values obtained from the turn-over solutions of the two pion-

nucleon dispersion relation analyses,
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We have not yet considered the question of either a o - or an
o} . 3 . - . . .
€ "-resonance in the pion-pion I = 0, S-wave partial-wave amplitude.
o . v .0 .
The existence of the & -resonance was suggested in order to account
for the size of the ratio of forward to backward scattering of pions
. s N 52 . . -
in the process WHN == ww N However it has recently been shown
in a peripheral model which includes absorption effects, that the
. 5° necd ) 0 - - .
phase-ghift ~ need be no larger than 60  to account for this ratio .
o . . ; . el
Hence the usefulness of postulating the existence of an € resonance

is not now very great. Alsc the success of the postulated & -reson-
ance in accounting for the pion spectra in K- 3w and { & 3% decaysg
is perhaps not that significant. Three body interactions are
notoriously difficult to handle, and a fuller analysis of these

decays very possibly could lead to non-resonating solutions for the

I = 0, S-wave pion-pion amplitude. Nevertheless the existence of

W

pion-pion I = 0, S-wave resonance from the workh of Lovelace,
Heinz and Dommachie on vackward pion-nucleon dispersion relations
ig difficult to refute znd the evidence one way or another from
other calculations is very inconclusive. We would summarise this

situation, therefore, as folliows. It seems guite possible that a

pion-pion I = 0, S-wave resonance does exist but, before this matter

is really put beyond any reassonable doubt, strong confirmation should

be provided both from better analyses of other processes and by
repeated analyses of the data on the pion-nucleon scattering amplitude

in the backward direction taken to even higher energies.
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Mnally let us consider these conclusions in the context of our
phenomenological analysis of the process ™ p = * xn taken
nesr the pion-production threshold. The basis of this analysis
consisted of treating formally the two pion system in the final
state as though it were a single system & with zero isospin and
angular momentum put with a continuous mass spectrum. In this
case, the production process becomes 1T p = & n. A partial wave
decomposition was made of the amplitude for this process and all
the partial wave amplitudes, except that for which the & n state
ig in the S-wave, were given the values obtained from the single
pilon exchenge graph. The remaining amplitude, with the S-wave

¥ n tinal state (the £, in the notation of Chapter II) was

1-
calculated by assuming that of the three particles in the final
state, only the two pions provided an important final state
interaction since the energies considered were below the N*
production threshold. Thus the only right hand cut of this
amplitude is associated with this two pion interaction (which is
assumed to be in an I = 0, S-wave state). By multiplying by the
D-function arising in an N over D solution for the I = O, S-wave
pion-pion amplitude, this right hand cut was removed and the effect
of the left hand cuts was approximeted by & constant parameter C.
A1l the partial waves were then combined and the differential cross-

section for the production process was calculated in terms of the

various parameters involved in the calculation.
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“he calculated values for the differential cross-sections were
compared with the experimental data, and the parameters defining
the pion-pion amplitude and the value of C were adjusted to give

an optimum fit. Using this gquite reasonable model for the low
energy pion-production amplitude, it was found that the differential
pion-production cross-sections at 374 Mev could be reproduced
satisfacterily with a non-resonating pion-pion I = O, S-wave
phase-shift only of type ii., i.e. initially negative, turning
over and becoming positive. '"wo other processes, low-energy
pion-nucleon S-wave scattering and the ABC effect were also
examined and were shown to be consistent with a phase-shift of this

turn-over type.

0f the two types of low energy phase-shift i. and ii., given by

the analyses congidered in the previous iwo sections, we would
suggest therefore that the low energy pion production data perhaps
favours type ii., at least for non-resonating solutions. Unfortun-
ately, we are unable to say anything stronger than this because,
although it seems s quite reasonable approximation to replace the
effect of the left hand cuts in (2.45) by a constant parameter at
least over the small range of 6’2 we are considering, it would be
unwise to draw any hard and fast conclusions from a medel in which

there is even an element of doubt.
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It has been suggested from a study of the possible driving forces
that a pion-pion resonance can only be produced in the I = O,

S-wave partial wave amplitude by the introduction of free param-

. - 70 ; - . .
eters, i.e2. a CJD pole’ . An alternative parameterisation of the

pion-pion phase;shift waé~made; therefbre, in which the effect of
including a CLD pole was taken into account. In Seection 3 of
Chapter IIT, we discussed how such a CDD pole would alter the
various analyses of the data on the low energy pion-production
cross-sections, proton-deuteron scattering and the low energy
S-wave pion-riucleon scattering amplitude. Here again, a solution
of the turn-over type was cbtained which was consistent with all
three processes, but in this case equally acceptable solutions

with positive scatiering lengths were also found without any
further alteration of our model. Thus, for a resonating amplitude
which contains a CDD pole, we conclude that either type of phase-
shift 500 found by Lovelace, Heinz and Donnachie from pion-nucleon
scattering data in the backward direction could be compatible with the
low energy pion-production date. We also note that such phase-
shifts'could be compatible with the ABC effect, the pion-nucleon
'discrepancy! analysis and probably most of the other methods

discussed in this Chapter for deriving the pion-pion interaction.
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Finally, we must mention a suggestion due to Chew-w that if there
exists one or two ghost bound states in the I = 0, S-wave pion-
pion amplitude (due to the backward intercepts of the P end P’
Hegge trajectories at negative values of 6'2) the phase-shif't 560
might be expected to decreasse rapidly to - ® or -27W , Cook"?
has proposed that this could be compatible with the data for
various processes such as X ¢4 decays snd the three pion decays
of the K and ¥ mesons. However, the worx of atkinson and

Hr:l.lperﬂ58 shows that the existence of ghost bound states could also

imply the existence of CLD poles which would affect the assymptotic

. . ~ O . — )
behaviour of 86 . Also from our analysis of the low energy pion-
production data in terms of the modified peripheral model, this

type of phase-shift would produce one or more 'bumps' in the

differential production cross-sections at low values of the squared

di-pion energy ( 5'2) which are not observed experimentally.  This
result is independent of the detailed parameterisation of the P11

® p = & n partial wave and we would suggest therefore that this

type of phase-shift could be ruled out.

We have seen that it is not yet possible to predict with any
certainty the form of the low-energy pion-pion interaction.
Perhaps useful information could be obtained from a much refined

version of the model proposed by Goebel and Schnitzer. Also it
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might prove possible in the future to produce accurate predictions
on the scatitering lengths by providing some means of reducing the
pion-mass extrapolation difficulties in current algebra techniques.
4 more likely prospect is that by beiter analyses of the various
processes discussed in this thesis, together with more accurate and
plentiful aata, one specific type of pion-pion phase-shift will be
suggested. However, the conclusions reached in this thesis are,

we believe, the extent of the present knowledge on the low-energy

pion-pion interaction.



APPENYNDICES



148.

APPENDICES

The Pion-rion amplitude

FIGUHs Al,1 Yy

The S-matrix element for the pion-pion scattering process sketched

in Figure (al.1)

\ , N ’,: .
ql(c() + qz(/‘“") — q.L (\6) + (12 lg) - (Al'l)

is given in terms of the invariant amplitude A by the relation

<Z AT
<7UX 7zg( S |]’n°‘17z ‘(;> g Z'jg‘;, +

- (4l1.2)
Aa& %4

+ c@«ﬂqg (9:+ 72" 7' 7’-) \)_s_w_u__:‘

where the pseudo-scalar pi-mesons with isotopic spin one, are

_—
dencted by their three-momenta q; znd isospin indices 0(,/4 , X, &,

A dffKé can be written in terms of three independent scalar

functions as

Lupys - As s Sxg + AIIgd\’SS + AT Sug c{/x - (81.3)

which is related to the fact that, assuming charge independence

one nas three possibilities for the total isotopic spin I = 0,1,2.

).
#1s¥

/

,’Z)fs 7';’5
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Vefining the invariants s, %} E‘by the relations

- 12 _ ¢ ’ 1,2
5 = _(ql + q2) = -(ql + q2 )
— ; 2 2
t = -(ag -a % = -(a,-a)) - (81.4)
— /2 y
u = (4 - g-" = =(a, -a
| - = = 2 -
such that s + t +u = 4 p - (81.95)

where P is the mass assumed from independence to be the same for
each pion; then it follows from the proverty of crossing symmetry

n X s N
for thce amplitude & that

A_(s,t,u) = A,I(t,s,u) = AIII(H’E;E) = AI(E;E;%) = - (11.6)

l.J
]
:J:

is invariant under the interchange of any of the external

particles. “he three amplitudes AI, & A can be expressed

I’ "I1I
in terms of the amplitudes TI which corresponds to a definite value

of total isotopic spin I by means of the projection operators for

the various isospin states

P %8, L.,
Po- B8, O - Sag Siv) - (a1.7)
P2 = %‘( gd}( g/sg + g,,(g g/gx) - % go«fs g\{g

so that A

= T11 .
=. TP - (A1.8)
I=0



BAI + AII
Arp - AII]:
Arr + A
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- (41.9)

For the coupling of two particles the wave function is given by

TII. =

3

and for the case of both particles

1

2
da I,7,I
an 5 11

= . 1.2 1.2 .
gy (T 1714 1,1, ’13) TI]:I LY 212
3,15 3 73

range over +1,0,-1 the

have the values given in (A1.11)

being pions where I1 = I°

2 2 2
I =1 1 =0 I.7 = -1
3 3 3
[ (1+ T3)(2+ x3) (2-T3)(2+¢ T5) (i-T3)(2-Ts)
I=2 3. 4 _ 2-3 T2, 2.3
i 1+ I3)(2-7,) I3.T> (I—‘Iz\g 2+ T3)
I=1 |- 2.2 2 2.2
! ,
i- Ty)(2-7T (I-'.T;)S:-fI:) @+ I3)(ivT;)
I=20 2. 3 - ) 2-73

s

N + L ) .
Therefore associating 78U with the wave function - N

with ‘fl

;0

and TU  with \rl

y=1

1,1’

- (41.10)

= 1

Clebsch-Gordon co-efficients

- (a1.11)

710

(where the phase convention of

Condon and Shortley73 has been assumed) the amplitudes for the
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various physical processes can be written in terums of the isotopic

spin amplitudes To, Tl, T2 as
+ + . + o+
A(Tf“ TT.-.?TL-K.') - |112
T e P 2 ]
a(meT T T ) o T
o) o} o o 5 o
A T T T 2p° 4 4 - (Al.12)
A + - + - e 1l 1,0
AT m 7 =7 w) = 1/67° + ¥ + 30
Mt ™= n®x% - -%T2 + 40°

In the mass centre the three invariants (Al.4) can be written in
terms of k, the magnitude of the three momentum of each particle,
and @, the angle of scattering as

5= % L 4k p

T = -2k°(1 - CosOx ) - (A1.13)

li

—_— 3
u -2k“(1 + Cos@ x )

wvhich are the same equations as derived in Chapter I for the example
of equal mass scattering. However, since pions obey bLose statistics,
when the pion-pion amplitude is expanded in partiel waves the
imposition of the Pauli Principle, which demands that the composite
wave function must be symmetric under the interchange of the

constituent pions, limits the summation to include states of only



odd angular momentum and odd isospin or even angular momentum and
even isospin; that is to say
TI(k2 Cos@g ) = é , (22 +1) A I(kz)r‘ (Cos@._ ) - (Al1.14)
’ " - 2 2 0S8 r - . 4
¢ even, I even
¢ odd, I odd
where each partial wave can be written in terms of &z partial wave

phase-shift as

T
T — ' |kEepr 1Y . T T,
A = 75 s o7 sin 8T R () - (A1.15)

where ReI(kQ) is the ratio of the total partial-wave cross-section

to the elastic crosg-section.
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2. Kinematics of the Inelastic Processes

In this section we shall give some useful relations between
variables defined in the overall centre of mass system and

quantities defined in the laboratory system for the process

m(a) + N(p) = w(qf )+ 7w(ag ) + W(p") - (42.1)
and the associated process

T(q) + N(p) = &F(q7) + N(p") - (82.2)

where & (q’) represents 7t(q£ ) + T (qé ) considered as a single
system of 'mass! C . Only those results which are reguired in
the thesis are presented here. For a full discussion of the
kinematics of such production processes as (42.1) we refer the
reader to an excellent exposition given by Ferrari and Sellerim .

If p,q,p’,qf ,q; ,q° are taken to be the four momenta of the

particles as indicated in (A2.1) and (42.2) the usual Lorentz

invariant quantities can be written as

2 \2

s=-(p+a)"=-(0 +qf +a, )" =-(p +a')
2 2

t=-(p-2)"=-(a-q -9a5) =-(a-a)° - (a2.3)
2 / 2 4 N 2

u=-(¢-p)" =-(a] +a; -0)=-(a -p)

where use has been made of the energy-momentum conservation

conditions
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p+q = p + q/
l 7 - (112.,4)
g = ql + \-_‘_2

If- p is taken as the mass of each pion- and m the mass of muecleon

then in the centre of mass system (§ + @ = 0) for process
(A2.2)
R
p = (igp); » = (iE,p") _
- (42.5)
-, R
a = (iw,-p)s o' = (iw',-p")
sc that
2 2 - .2 2 =2
BT = m" + p%; = m +p
- (42.6)
2 2 = 2 2 =2
wooo= pmT o+ D W = o +D
where
— - — - -
p = Ipl ; p’' = |pl - (a2.7)

Therefore, if

Cos@ = PP - (a2.8)

we can wvrite

2 —
s 2 W = (B+w) = m2 + ;AQ + 2p2 + 2BEw

(A2.9)

2 _ 2 ,
+2p' + 28w/’

1]
—
o)
+
£
|
2
+
]



and

t = -4A° - 2n® + 77/ Coso - £.8") - (42.10)
from energy conservation

E+w = B +w’ - (42.11)
it follows that

W' o= (W &2 -t/ - (a2.12)
and hence

FLA. [(w o) o n? L w-o)? - m2]/4\‘l2 - (42.13)

from which it may be seen that ¢, the pion-pion centre of mass
energy has a range of values from the two pion threshold 2 # wup

. N 0
to its maximum value (W - m) corresponding to /" = 0.

In the laboratory frame of reference in which the nucleon N(p)
is at rest (P = 0) it can be deduced that

(W2 - {m +/A))2/2m

the kinetic energy of T(q), T

ft

L

the three momentum of ®(g), q. = (T, (T, + om) )2
L LD - (a2.14)
the kinetic energy of ¥(p’), T, = & </2m

1
and the three-momentum of W(p’), Py = (TN(TN + 2m))"

The maximum value of the pion-pion centre of mass energy © max. can

be expressed in terms of TL by the relation


http://A2.ll
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1
S max = (ZmTL + (m +-fx)2)2 +m - (42.19)

30 that ©® mgx is an increasing function of TL. also in the

laboratory frame OL, the scattering angle between’ﬁ" and G is

defined by the equation

2par COSOL - 2. ,uz + 2TN(TL +m + M) - (42.16)

from which it follows that

dotd N = ol gltess) dF = YA J(C“-“”\DD{"IL‘“H&)

= = 2¢9y, 42 dewso) - (42.17)

where, because of the definition of 6., d = -d(CosOL)d %L.

L’
Therefore from (42.10)

2. - PN%{_ JA‘J.
demdfl. = —, 45 - (42.18)
and from (A2.14)
K = 2m O P A a
dord. = =T g, 4dTa - (A2,19)

Fe'

Hence the differential cross-sections for the process x N = wnN
. . 2 g sy 2
defined in the centre of mass system, d x/d e d£. , can be

2
expressed in terms of d~ d'x/dTNd.lll, the differential cross-

sections measured in the laboratory frame of reference as

JLCT' - = 1 .
> = P® d, - (42.20)

o L 2m e, 9, dTud L,
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7
Kinematic Singularities of the Ti-= & N Partial lave Amplitudes2

For a fixed value of the energy ¢ the differential cross-section

for the process * = & N is defined in the centre of mass system

by the relation

doy, t - =
in & w)” =F l F;-\L\ - (a3.1)

where the sum represents an average over the initial spin states

PO R S U 1 f
sl & SUWim&aTvioil OVEX is related

to two invariant amplitudes A and B by the equation
F‘;“\‘ = KXSP') [A(‘.t.‘*) X + '«.(7,"47,’)’»}(;\("‘-‘5(9,(:)“)](,\(:) - (£3.2)

However, we may also write the differential cross-section in the

centre of mass system in the form

-/ 7} i+
o = RIS - w23
‘\l’lLeI‘e
-+ - - .7
fin. = X (4,60 T__';I v K 00) TF Y%, - (23.4)

2> . . . - . .
and @& zre the rauli spin matrices, X _, X o &re two-spinors. We

a

may therefore relate F to f by the convention
T R 7 B - (43.5)

and by a little manipulation, fy and f, may be related to the
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invariant functions A and B in the following manner

I

fo- e (n BT R(EE )

- (A3.6)

-—l—. = /s — im -
,97_ = Y{_’W\,(-Il\ S;‘E\p - R\ zwr')

From the Mandelstam hypothesis we will assume that these invariant

functions satisfy spectral representations such that

A(f:b, ““3 = '/'ﬂl _(dt'fd“, qiur_’_':") -+ |/-K‘— §45'FJE' qu(s"{_')

TR Y FFY N —
LR itetm) GOt

) - (43.7)
+Y 2 o del a3, (! s’ ala torvne
" g ‘(‘ (utuy(sts) * (P )

and there exists & similar expression for B. Equation (43.7) can

be re-written in the form

. i i TR . '
At ) = e Jo A0 o e Al (ki) - (13:9)
and similarly for B(s,%t,u), where

pls ) = '/Tcgac' Az (5,¢) -+'/«f4u' By (L))
) (s,

els wat'as- =

- (1&3.9)
ﬂz(‘- u') = '/rr §dc' Q_M ""l/‘n g&b' Gz-;(b',u')

St M'—f‘:""s‘i

and = = 2m2+ r2+a-2

Note that from crossing symmetry
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/A (s,€) = x7, (s,t) - (43.10)

depending on whether 4(B) is symmetric or antisymmetric under

crossing.

From equations (2.30) and (A3.6) the partial wave amplitudes ié+

are defined in terms of A and B by the esquation

(. Caw ! \ __rj;; / \ ) _
£ = Lo (2w - FlEn (Aeaw®e )] - (301)
where
. I
(A ED = gd*ﬁ(") (A; B) - (43.12)
=1

In order to determine the kinematic singularities of these partial
Y —_
waves, we consider the functions 4, /(e p') , By /(p p')a .
From equations (A3.8), (43.9) and (A3.10) it follows that we can
.2 __,'.E
write A, /(p p)° as

Ayl
(FE)t

Jx S at' 2, (s, ¢) T (£)5) - (83.15)

where

~
o6 = o (i ( o ety
L) = Erpe i D)\ Grmmiirres | inpnrneweee) - (43.14)

It will be seen that Ia» contains no singularities other than those

arising from vanishing denominators in the Mandelstam representation.
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vince

P D) A=
{2 o Q,ly

- c&_—x,

the integral in (A3.14) will vanish at p = 0, p ' = O like
(5 ;/)t so that no pole is introduced by dividing by this factor.

Also, since I, is a function only of even powers of (p p’) no

12
branch points occur arising from these kinematical factors.
Hence & ¢ /(5 _1;')1 and similarly B, /(5 5’ )1 are free from kine-

matical singularities and therefore from equation (43.11) we can

define functions h o+ such that

h Etm W ‘?‘()_-&
¢t - El4m Pt —=

Fent

2
‘which are analytic in p2 and pf” except for branch cuts from -m"

to - ob and dynamical singularities.
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Lo s : © ey 7
The W over U wguations and CDD Poles *

We wish to discuss the partial wave scattering amplitude A(s) in

a one channel formalism. Frye and Wernock =~ have developed
coupled integral equatioms in terms of M and D functions to
calculate the amplitude A and have introduced a complex phase
shift § = o + H& to denote the inelastic contributions to

the unitarity equation arising above the first inelastic threshold.
Chew and Mand tam 18V 1so deviged
but in their case they introduce the inelasticity by the function
R(s) which is the ratio of the total to the elastic cross-sections.
s+e shall denote by S(s) the phase-snift of the scattering
amplitude if we are conczrned with an elastic system, the real
part of the phase-shift it we are using the Frye-Warnock equations,

znd the phase of the amplitude in the Chew-lhandelstam equations.

Let us write

A(s) = 1(s)/D(s) - (n4.1)
where n(s) has only %the left sand cut and D(s) has only the right
hand cut. We shall construct the J-function sc that it tends to
a2 real constant at infinity; hence D(s) must satisfy the following

conditions:



i. Tt must have the phase § (s) for s, < s< <o,

ql
ii. Tt must have a zero corresponding to each particle

pole of A whether the particle is 'elementary' or

not.

iii. It must tend to a constant at infinity. (By the
Riemann-Schwartz principle this constant must be

real and it may be normalised to one.)
Condition i. is satisfied if we write D in terms of o) where

Sts") ds!

Blo = el (7 5 - G

However dJ)(s) has no zeros so we must multiply D(s) by the factor
n

[
T (s - pi) vhere n_ denotes the number of particle poles (on the
-]

B

physical sheet) whether elementary or not. If we assume that

S(OU) = m® then it is seen that in order to satisfy condition ii.
Ag

we must divide the product ¢®(s). ET (s - Pi) by a polynomial of

degree m + ny = n_ (say). ‘"hus, we can write the D-function which

B

satisfies condition i. to iii.as

g
_TT (S‘P;‘)
D(s) = b= .i’)(s) - (44.3)
n&
T
vhere the sj will be taken to be srbitrary. vote that since

¥ = A.D, W(s) will in general share the same poles as D(s), (CDD

poles).



It is easily seen that tnese pole positions sj are in fact
arbitrary. For example, if n_ = 1, ¥ and D have one pole each.
Since U tends to real constant at infinity, ImD = 0 and it follows
by & suitable normalisation of 1 that an unsubtracted dispersion
relation can be written for D - 1. Also, siﬁce ImD = A& N for

8 >8n from unitarity, where V4 is a certain kinematical term

(e.g. P -k e for equal mass spinless particles):
W(s) == 0 for s—s~ec and therefore H(s) satisfies an unsubtracted
dispersion relation. From the Cauchy representations of U and N,
we obtain

T ps) NS
bk + = S /’{u ds!

s— 5, S sts

I}
o]
+

D(s)

LA e - (84e4)
N(s) Lo [ AN

£~5, ' _on cie &

ds!

where &y and bl are the CDD parameters and s, is the arbitrary pole

1
position. Now if one forms
5 - 8,
D,(s) = S—_—S—ZD(S)
s - s - (44.5)
1
Ny(s) = = W(s)
2
by direct substitution into (A4.5) we see that
_ Az =0 {s') Nz.(") ,
P = T e v F—
- (A4.6)

y - e , g° T ALY DY)
NL(S = s + Ve ds
* -

s!-¢




where

@
i

1

© Im A(s’)Dg(s')

and b,
<

—co l

so that s, is truly arbitrary.

S, - * NN (s’
=a + (s, -5s,) + 27 As )N2(S : ds’
2 1 2 1 K i
STS-S

3 - 4
b, + (sl - 52)%ﬁ ( - ds

164.

- (44.7)

However if we define g, so that either a_ or b. is zero then ve

2 2 2

can write equations (A4.6) either as

ob I /
D2(S) 1+ 2 +_-71-( f /)(s )NZ(S ) ds’
5 - 8 . /

ol s’ - 8
© Im A(s’)D.(s")
N, (s) = L 2 ds '
2 ™ ]
~go s - s
where we have written so for 52; or as
o / /
Dy(s) =1 += /%)
ol8) =1+ ; ds
oy s’ -8
® In (¢ )D,(s")
N(S)= b +l- f m A 28 ds
2 -_— - P
s - 8y J oo s’ -8

a . 3 . " ; < .
where s is vritten for s, (s, ST)

- (44.8)

- (84.9)



165.

In (A4.8) a and s are the two CDD pole parameters, and in (44.9)

b and 3 are the two parameters. Note that SB is the position of

a particle pole. If s, << s, the two forms (44.4) and (A4.9)

B T’

are equivalent. However, if the effect of ay and b1 is to produce

a zero in Dl(s) at Ré_sB > sp the particle pole is that of a

resonance and necessarily has s_ complex (on the second Riemann

B

sheet). In this case, equations (44.9) would have to be modified.

From the above discussion 1t can be seen that the three forms of
introducing CDD parameters into the N and » egquations, i.e. (44.4),
(44.8) and (A4.9) are generally equivalent. The arbitrariness of
s, in (#4.4) means that only two parameters are introduced by a CDD

pole in this form, just as in (A4.8) and (24.9).

If we reconsider the decomposition of A(s) in terms of n/d where
d has no poles but can have any number of subtractions, then we
must write
Ne
a(s) = D(s) 11 (s - s) - (A4.10)
:\:l
n, n,
It follows, therefore, that Re d(s) ~s ~ and Im d/s =~ — O as
g8 = <0, s0 that there exists a dispersion relation for d with

a, subtractions. From the equations for W and D it may be seen

directly that n and d satisfy the equations
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n
d(s) = 1 + dl(s - so) + o +0<n.c(s - so) ¢+

n
C

nC 0 .
L (e -8 J 4o /(8 n(s”)
n Sy (s’ - 8) (8 - so)

- (Ad11)

n -1
n(s) = A+ /2(s-so)+...+/$n (S_So)c N

n

o N
(s =s)°¢ [ .+ Im A(s’)d(s’)
+ o ds "

n - (s’ - s) (s - so) ¢

One may also show that 8y the subtraction point, is arbitrary

and that the 8. parameters i, /5i are determined by the residues
L
c

of the CUD poles, e.g. a;,b, in (Ad.4).

1
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