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ABSTRACT

The spectral representation of gravity and magnetic fields shows
that the mathematical expressions describing these fields are the
result of the convolution of factors which depend on the geometry
of the causative body, the physical properties of the body and the
type of field being observed. If a field is known then it is
possible to remove or alter these factors to map other fields or
physical parameters which are linearly related to the observed field.
The transformations possible are: continuation, reduction to the pole,
converting between gravity and magnetic fields, converting between
components of measurement, calculation of derivatives and mapping
magnetization and density distributions and relief on interfaces.
Digital Wiener filters, designed using a least squares error criterion,
provide an accurate method for effecting these transformations. If
the field to be transformed is contaminated by noise anomalies, whose
average autocorrelation function can be estimated, then the Wiener
filter can be optimized to suppress this noise.

The British Isles resulted, in Lower Palaeozoic times, from the
collision of two continental masses. Consideration of published
geological, aeromagnetic, gravity and crustal seismic data suggests
that the Midland Valley of Scotland and Northern Ireland overlies the
suture of this ocean closing process. Ophiolite zones on either side
of the Midland Valley suggest the location of ancient diverging sub-
duction zones and the Midland Valley graben appears to be down faulted
as.a result of compression between the two converging continents,

It is possible to relate the tectonic, stratigraphic and igneous
features of the area to this model and to use the model to predict and
to use the geophysics to locate, previously unknown features. The
post Carboniferous features in the area appear to be related to

continental drifting of BEurope from America.
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CHAPTER 1

THEORY OF LINEAR TRANSFORMATIONS OF GRAVITY AND MAGNETIC FIELDS IN

TERMS OF FOURIER ANALYSIS

T Introduction

This study investigates the application of Wiener filters to
linear transformations of gravity and magnetic fields.

Linear systems (Hsu, 1970, p.121) are those systems in which
linear transformations are performed and such systems obey two

basic laws.

input linear output

- —

e, system Te

——ed

(1) If the inputs e1(t) and ez(t) to the system yield outputs

r1(t) and rz(t) then the Principle of Superposition states that the

inputs can be combined or added in any order and they will yield the

same output.

ie€e e (t) + ez(t) = r1(t) + r2(t)

i

and ez(t) + e1(t) rz(t) + r1(t)

(ii) 1If e1(t) -—9:H(t) then by the Principle of Homogeneity

k1e1(t) — k2r1(t) vhere k1 and k2 are equal constants.

Linear transformations may be accomplished in many ways including
electronic processing, matrix transformations and by numerical eval-~
vation of analytical expressions. This study is concerned with the
digital filtering approach.

This chapter develops the theory of linear transformations of
gravity and magnetic fields in terms of the spectral representation
of these fields. 'This approach allows a unified appreciation of
the possible transformations and the frequency response of the
necessary operators. Although parts of the theory presented have

been published previously the account below is considered more

complete and to raise several new points. féﬁﬁﬁgﬁﬁ?ﬁﬁﬁ
2 { SEP1972

Da6TI0E
LiaaseyY



2o

Later chapters review how this theory has been applied in the

past and demonstrate the applicability of Wiener filters.

1.2 Derivation of Expressions for the Spectra of Gravity and

Magnetic Tields

Gudmundsson (1966) has derived the expression for the spectrum
of a two dimensional (i.e. independent of y) magnetic anomaly and
has given without proof the generalized expressions for three
dimensional gravity and magnetic anomalies., These expressions are
derived fully h:»re., The approach differs from that of Gudmundsson
(1966) and resembles the method used by Bhattacharyya (1966) in
deriving the expression for the magnetic anomaly due to a prism.
10201 Gravity Field

The gravitational potential due to a density distribution

(=,8,2) at a point (x,4.h) above the distribution is
P 3

o) _ob _ ob

Ues=6 [ [[pean ___didads o
S e w1

where (*,3,2) are the co-ordinates of an elemental mass unit and G

is the universal gravitational constant. Z is positive downwards.
The inner part of equation (1=1) is in the form of the

convolution integral (Hsu, 1970, p.90) i.e.
ob

o0
( f p(‘*.ﬂ-zl__ lc’«o’ﬁ E ﬁ(ka\jnl)% R(’i.jﬂ‘l“é (1=2)
—odoad [P r(y-A)(z-h) )3

where X denotes convolution and

R (X, \j’ vl —L.\l == . --—--.—El._ e e

- i,
Coer = w2 (2-W)7]"2

The convolution theorem (Hsu, 1970, p.90) states that if two
terms are convolved in the space domain then they are multiplied in
the frequency domain (and vice versa). By taking the Fourier

Transform of both sides of (1-1) we obtain

US(LMU—: W= Gf[)-fu,u-,z} Q(‘A,\J‘,Z-L\\O‘Z (1=3)
]
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where u,v are angular frequency co-ordinates,
~J (u.:(-c—u-\j) d

olu,2) :_J_];g(x. gz} e

and Uiﬁushk) and R{w,2-k)  are similarly the Fourier transforms

xdy

of their space domain counterparts.
Bhattacharyya (1966), using an integral expression given by

Erdelyi (1954) has showm that

L
0 L.(U&)L'“-"_')) —(L—k)(u,'--ﬂl"-)?—
b .C .o'xd\\j: 21Te
[x>+ g2 «@-h)]h (W ooy
-8 -

ol
o
This is the expression for the Fourier transform of R(x, y,z-h)

- - (2-h) (u.l-ur‘)"l
So Uj(u,kf.‘«\l:.'Z'lTG(f)(u,u,z?. e . CIZ_

o~

(1=4)

fur—or)h

The vertical component is the normally measured component of
gravity and this can be obtained by differentiating the expression

for the gravitational potential (equation (1-4)) with respect toh .

)

—(=z-h)(wr +\J’"')ii

Ge (wioy W) = 2MG Powviz)e z (1=5)

o
This is the expression given (without proof) by Gudmundsson (196G).
102:2 Magnetic Field

The magnetic potential due to a magnetization distribution

Mg (2,8,2) at (0.4 h)  is

L

Um = f JNI rm(az./s.z)_z L dxdadz (1=6)
ARwtad [ -y + (4-8) 4 (z-W)'] "2

whereé%} is the directional derivative in the direction of magnet-

ization L,M,N are the direction cosines of the direction of magnet-

ization (taken as constant), thus

0 = LD 4 MDD 4+ NI

%_i\ A= DY Dz
Equation (1-6) has an identical form to equation (1=1) (except



for the directional derivative) so by the same derivation as was

used for the gravity anomaly

3
<0 =(2-h) (W tvi)

Um (u.v,h):% [m“(u,u?,z)_e__*____ . dz

¥

[

.
( LL'L-iL?") &

(1-7)

It can be shown (Hsu, 1970, p.88) that where g and G are

Fourier transforms of each other

-.a_ﬁaju.G ?_35‘]0’6
% Y

So equation (1~7) can be expressed.

z-h) (wriot)d

oD
Unn (wuin)= [ LM v+ N ‘“'"‘)%'me(u.v.z). e
0o

FRESE

To convert the expression for the magnetic potential into the
expression for the magnetic field intensity it is necessary to
differentiate in the direction of the component of the field that

is being measured.

iee. Mo k) =~’§7§\ Um @0 h)

where.Q_ is the directional derivative in the direction of the
5
component of the field being measured.

: 2 = 22 )
i S5 = &5 e M%‘».

vhere l,m.n are the direction cosines of the component being

measured. So by the same argument as above
Myw,oh) = arr[jLusjMore (@] [jLusjmuen( weeo)i ]

! " -(z-h) (uerw)k
‘@t;m - fmn(u.,u-,z), € dz (1-8)
°

This is equivalent to the expression given (without proof) by
Gudmundsson (1966) in the case of a constant direction of magnet-

ization.

b



1.3 Generalization of the Expressions for the Spectra in Terms

of Equivalent Layers

It is well established in geophysical literature (for example
see Roy (1962)) that a density distribution P42} has an equive
alent surface density distribution o (*.4.d) on a surface at depth
d , which gives the same gravity anomaly. This surface dis-
tribution of density is called the 'equivalent layer'.

Similarly a magnetization distribution ma. (xy.2) may be
replaced by a surface distribution of magnetization ™s (x,j,d)

The expression for the gravity and magnetic potentials due to

these surface distributions are,

oD

Ug Geigh) = G{ J L0 _, -d=dp (1-8)
e T LRIV R C RN
and
S
Um@egb) =9 11 _ms(*ad) . dade (1=9)

Tt gt "

By using the same mathematical approach as used in determining

the generalized expression for the spectra equations (1-8) and (1=9)

may be used to develop the expressions for the spectra in terms of
equivalent layers. The theory is the same except that it is no

longer necessary to integrate with respect to z »

L
—-(d-k} ‘( \,\_1—*\1"“_\ z

Gf(w, b = 217G (w, 0 d) € (1=10)

MF{(A.V‘, Wy = 27 [:J.LW";\M" +N(LU"‘7“L‘]- [::\'E-'“L"'Jmu" h(uuu-h)"‘«].
—(d-LY (w L-uu‘)la.
_Mslu,md) € i (1-11)

1y
lnraor) @

5



Equations (1-10) and (1=11) are the expressions for the spectra
of gravity and magnetic fields in terms of equivalent layers and
apply to all gravity and magnetic fields.

If the same bodies cause the gravity and magnetic anomalies and
the density and the magnitude and direction of the magnetization are
constant throughout the bodies the gravity and magnetic equivalent

layers may be related by using Poisson's relationship, which states
Mea .V Ufj = Gp Um (1=12)

Where h@ and U, are the gravity and magnetic potentials and M is
the magnetization which can vary in magnitude but not in direction
G is the universal gravitational constant and © is the density of
the body which must vary so thathy!//o is constant everywhere.

Equation (1=12) can be written

Ma (¢ L+th+k<hﬂ. /Lgfh +\j§£h'*biaﬁﬁ\ = C}/DLhn
o D>e r-()‘:x YA

Where L,M;N are the direction cosines of the direction of magnetization.
This reduces to
Urn = Ma 3 Ug
GP ok T
X is in the direction of magnetization.

This equation has the same form as equation (1-6) used in deriving
the magnetic spectra, It relates the magnetic potential to the
gravity potential and indicates that we could do the entire calculation
using the density distribution (in the case of constant density and

magnetization) provided we allow for the constant hﬁa/GyD.

Thus
g (W, o d) = Ma G, d)

GP

So obviously hﬂs(vgj,d) and‘j-fi.ﬂ.df must be the same functions

(1=13)

except for a acaling factor,
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i.e. Mg (%.y,d) = my LELY.d) (1=14)
0y (X.qhd) = P, L 4.d) (1-15)

where l.(u,ﬂ,d) is the function defining the spatial distribution.

Equations (1-13), (1-14) and (1-15) relate the gravity and
magnetic equivalent layers where the same bodies cause the anomalies
and the density and magnetization is the same.

In a general geological situation the densities and magnet-
izations are not constant for all the bodies present. However,
if we can assume the direction of magnetization is constant over the
whole area and the densities and magnitudes of magnetization are
constant for each individual body, the equivalent layer would be the
sum of the individual equivalent layers of each isolated anomaly.
Thus the general properties of equations (1-10) and (1-11) are true
for any area where the above geological conditions occur.

1.4 Transformations Possible with Gravity and Magnetic Fields

The significance of equations (1-10) and (1-11) lies in the
insight they give into transformations on gravity and magnetic fields.
These expressions may be considered as the multiplication of

several factors.

ie.e,
Gw .m0y = ATGe. o (w,nh), H(w,v k)
N\f(“t"'-"): am D, (“.‘-").Da (u,\r)._[(u,\r)‘ms (W, h). H(w,n k)
where
i:G scaling factors

. N 1%
D,z Cjlw+jMU+N(u+02)3] factor for direction of magnetization.

Dy=[jLusiMu s n(utses)i]

factor for direction of measurement
..b\(u,l.-étf")..i

H= & depth factor

G = 0‘("‘-0".\\) '

ims = Mg ( w,7, W) equivalent layer factors



I = L " an extra factor distinguishing magnetic
(Vo) ™
fields from gravity fields
Now by the convolution theorem multiplication in the frequency
domain is equivalent to convolution in the space domain so gravity
and magnetic fields are the result of convolution of the above
factors. So
G w,4y0)= AaTGexH (3,4, h)2 (3¢ 4,h)
Me(3.4.0) = AT D (0,4) 3 D (o, gL (o, )¢ H (2,4 h )3 Ms (4, h)

where 3¢ denotes convolution.

It is possible to remove the effect of any of these factors from
the spectrum by dividing the spectrum by the factor it is desired to
remove., This is equivalent to convolving in the space domain by an
operator (or filter) whose frequency response is the inverse of that
of the factor it is desired to cancel out. Similarly it is possible
to add the effect of a factor by multiplying the spectrum by the
frequency response of that factor or by convolving in the space
domain by a filter with that frequency response.

Hsu (1970) p.133 shows that the convolution of two functions h (t)
and ¥: (%) to give £ }),
ieee Fo(t) = fit)2%h (1) (the order of £ (t) and h ()
are interchangeable) is a linear system where L\({) is the unit
impulse response of the system. Thus the convolution of two functions
is a linear transformation and, all the following transformations
involving convolutions are linear transformation.

The various methods of filtering and their advantages are dis-
cussed later. For the present discussion it will be assumed that
we have the means to design filters with any desired frequency response

and to perform the appropriate convolution operations.
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Such filtering operations have relevance in the following
transformations:

(i) Continuation of Potential Fields

Dean (1958) was the first to point out that convolving a
magnetic or gravity field with a filter whose frequency response is
h(wrroy)i
c transforms the field into what the field would be at a
level h above or below the level of the original observed field.
h is positive for downward continuation.
(ii) Reduction to the Pole

By convolving the magnetic field with a filter whose frequency

response is
L
(Lr+or)? (Uv 19 s
[jLlw +jM\I+N(u‘-ﬂr")L‘J [1dw mu *n(u.‘w‘)%]

The magnetic field is reduced to what the magnetic field would be at
the north magnetic pole. Baranov (1957) was the first to realize that
such a 'reduction to the pole' operation is possible. Spector and
Grant (1970) report using a frequency domain approach to perform this
operation.
(iii) Converting One Component of Measurement into Another
By filtering out the effect of the D,factor (the factor for
direction of measurement of the magnetic field) and filtering 'in' a
factor for a new direction of magnetization, the field will be trans-
formed into the field measured in the new direction of measurement.
The frequency response of such a filter would be:-

[ 2w +im'ven'(uiaw)y]

[lﬁu, -olmu’-fn(uu.wu')!';]

where.ﬁqnﬂﬂm are the direction cosines of the original direction of
measurement;
ALym',n" are the direction cosines of the new direction of

measurement.
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(iv) Converting Magnetic Fields into Gravity Fields and Vice Versa

By reducing the magnetic field to the pole and filtering with
a filter with response the Inverse factor of T . The magnetic
field is transformed into the form of a gravity field. It will
differ by the scaling factor |i| /G/) for each anomaly with magnet-
ization M and density /.J « The frequency response of such a filter

will be .
( W9 vl)‘&

[JLU.-QJMW?N(U,L-QV&)“L]. [jlurjmw-m(uwua)’&]

This transformation can only be done realistically where the
direct~ion of magnetization is constant over the area being considered
and is knowm.

Gravity fields may be transformed into the form of magnetic fields.
For example, to convert a gravity field into the form of a magnetic
field at the north magnetic pole with vertical magnetization the
filter would have frequency response, (W< U’")Jz‘

Each anomaly with magnetization M and density V& would have its
magnitude scaled by a factor GpP/IM|.

(v) Calculating the Vertical Derivatives of Potential Fields
By differentiating equations (1-9) and (1-10) with respect to h
we introduce a factor into the spectra.
Ln
[—:’-‘ (wv+ur) ’-]
where n is the order of the vertical derivative.

Thus by convolving with filters which have the appropriate
response it is possible to calculate the required vertical derivatives
of gravity and magnetic fields.

(vi) Horizontal Derivatives of Potential Fields
Hsu (1970) p.87 shows that if F(») has Fourier transform F(w)

F™(3) has Fourier transform (jw)" F(w).



Mo

Thus the required filter to calculate the nth horizontal

derivative in the X or Y directions has response
G or ot

(vii) Miscellaneous Filtering Operations

It may be desired to remove certain frequencies from a magnetic
or gravity map. In such a situation the frequency response of the
filter must be decided and when this is done the filter can be applied.
Hall (1968) reports using such a filter to separate deep anomalies
(low frequency) from shallow high frequency anomalies.

Fuller (1967) gives the frequency response of a filter capable

of enhancing trends in certain directions (a strike filter).

1.5 Inverse Problems in Gravity and Magnetic Interpretation

Consideration of the spectral representation of specific
situations allows us to devise methods of solving certain inverse
problems in gravity and magnetic interpretation.
1¢51 The Linear Inverse Problem

If the density/D and the magnetization m,are constant throughout

the bodies being considered expressions (1=5) and (1-8) become

\ ~ —(2-w) (Wr4u )i ,
Gy (w,uW) = QTTGP(S(W"»ZW’ Gz (1=16)

(]

and

L
M‘[‘ _/Ll.U""\\} = 270 M {:J Lw -+J Mu+ I\I(uﬁ-«u‘)"],[“){ W+ ; l\'\\_r.”\),[:\,kv,iol'y-] .
Lfzbh) (W0t i |

J( Sh,vzVe .Gz (1=17)

[¢]

where ?{3ugy2§ is a geometrical factor defining the shape of the

body.
(e = (2-h) ()T ‘
Let S 7) & dz o= Ko
5

The term XK(w,w h) has been evaluated by Bhattacharyya (1966)

for finite prisms with vertical sides. Gudmundsson (1966) gives

the solution for a two dimensional dipping prism.
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It will now be shown how it is possible to solve directly for
the magnetization of a prism using filtering methods. In the
following argument only a magnetized rectangular prism is considered.
The reasoning is equally valid for other geometrical shapes and for
gravity anomalies although in these situations some of the factors
will be different.

Using Bhattacharyya's (1966) results the expression for the
spectrum of the magnetic field due to a finite prism, widths 2a and
2 , depth h  and thickness T isi=

M;(u;”‘.\w):_ 2T M. D 0,5, D, (u,v). I.I.n (w3, (u,a). S, (u,b),T{Lg,\.-;t)

(1-18)
the factors D, b, I, H have the same definitions as previously.
Mo = magnetization of the prism
S, = 5‘2£€39) = factor for width in direction
S.t SG‘(LTEQ = factor for width in direction
T= (1- eji(i;*uq%) =  thickness factor

Written in the space domain equation (1-18) is
M;(x,'j.\\\ = 2 Ma¥ D, (x,y)* D) L) %I(x,j)-}é Hgrh) S o,a)% Sy (y 5y % T gt)

As in the case with the equivalent layers the magnetic field

of a prism is the result of convolving several factors.
As previously convolving with specific filters allows us to

remove factors. If the angle of magnetization and the depth and

thickness of the prism are known it is possible to design a filter

with frequency response

l | | | | !
T Tonr) Dlu,ed Duww) Hiaakh) T(unt) (1-19)

If these terms are removed from the spectrum we are left with:-

M';(u,u—,\\\, = QAT Mg Su'n(uo\)_, S_W\CU‘B)
u A

wherebﬂ} is the filtered spectrum.
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The space domain equivalent of equation (1-20) (i.e. the result
of convolving a filter whose frequency response is defined by equation
(1-19) with the original magnetic anomaly) would be a rectangular box
car function vhose height is directly proportional to the magnet-
ization of the prism and whose sides exactly define the edges of the
prism. 'This is so because the space domain equivalent of a %2%%??
function is a rectangular pulse function (Hsu, 1970, p.112).

Thus it is possible to solve directly for the magnetization and
position of the prism.

If the magnetic field is the result of several magnetic prisms,
all with the same depth, thickness and direction of magnetization
the output after convolving the field with the filter described above
will be a series of rectangular box car functions defining the positions
of the prisms and the height of each box car will be proportional to
the magnetization of the prism it corresponds to. This is true because
we are dealing with a linear system (Hsu, 1970, p.121) and with linear
systems and inputs and outputs are additive. This is the principle
of super=-position.

1.5.2 The Non Linear Inverse Problem
Direct Solution for the Shape of a Body causing a Gravity
or Magnetic Anomaly

In theory it is not possible to use a linear method to solve
directly for the shape of a body causing a gravity or magnetic anomaly.

This can be demonstrated by considering the case of a magnetized
prism. Ideally by specifying all the variables except one we would
hope for a unique specification of the remaining variable. VWhen
solving for the shape of a prism we wish to calculate either the
depth h or the thickness t. In the expression for the spectrum of

the prism (equation (1-18)) both the depth and thickness factors



U,

@

contain an expression of the form € vwhere & 1is a constant and
W 1s the frequency variable. Although it may be possible to
remove all factors except the depth factor, the remaining expression

G
in the space domain is of the form Attt

(this is the Fourier transform of €*”). This is not a linear
expression for the constant a.

As any body may be considered as a summation of prisms of
infinitely small width this argument for the non-=linearity of the
solution of the shape is general.

However, it is possible to solve for the shape using linear
methods if we make an approximation. DPeters (1949) was first to
describe this method. It is developed here in spectral terms for
the magnetic case. The mathematics is analogous for the gravity case.

Fig. 1=1

p(’(. ‘S:L\)

e e e - 22

The magnetic potential at point P(x,q.h) due to the distribution

of magnetized rocks shown in Fige 1=1 is:i=

- LI LW )
d
Um(x-ﬂ.k)=4ﬂm[_a%j jj dudad¥ l.zj (o
- -3 GL-e)+ (‘3‘;@);-5(1-){) ] 2z=h

The important approximation for the next step is the condition
jJLi<¢<d . TFrom examples later it will be shown that this approxi-

mation is not as critical as it may appear.




15

If this approximation holds then equation (1-21) becomes:-
&0 <0
U(J&.tﬂ.\\)riaﬁv\‘f\[.a; 1,( Jl' _L=m) dlet-d@m“_ | 1
‘a? | €‘“‘°\3‘+(3-ﬁ)‘¢tz-d)‘]‘t

=Dt

(1-22)
Z2=th

This expression for the magnetic potential has exactly the same
form as the potential due to a surface distribution of magnetization
and in fact

Mg (%, gh) = m. L (3Y)

Similarly for the gravity case
G (% g ) = 2. LbuY)
Thus the equivalent layer is a direct reflection of an approx-
imation to the undulations on an interface.
The problem thus becomes a linear one as the gravity and magnetic

fields have a convolution factor directly related to the shape.
G, () = amG P Lt g) e Ui ) (1-23)
M‘ (x.\ﬁ. L\) = QﬁM&GD\ (nl%)xbg (’Lc‘j\*r(x'ej\)%Ltl.j)’fH‘nnS."{,]_zq)

Equations (1-23) and (1-24) can be solved by deconvolving the
appropriate factors (as in solving for the magnetization) so that
only the L(Jf-.g) term remains.

There are two additional applications of equations (1-23) and
(1-24).

If the anomaly is caused by a layer of constant vertical thick-
ness the spectrum of the layer is effectively the difference in the
spectra of the two interfaces where one has 2 depth t (t is the
vertical thickness of the layer) below the other. This introduces an

extra factor; & (we L?E>l
- W< &
T(v,t)= (V-¢&

into the spectrum.

This factor must also be deconvolved vhen such layers are being

mapped.



Yhere the body causing a gravity or magnetic anomaly is finite
in all directions it can be regarded as the field of the difference
in the fields of two interfaces. In this situation L(ucﬂ) will

represent an approximation to the vertical thickness of the body.

16,
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CHAPTER 2
OF METHODS FOR PERFORMING L R_TRANSFORMATIONS OF GRAVITY
AND MAGNETIC FIRLDS

2.1 Introduction

The methods for linear transformations of gravity and magnetic
fields have shown a steady evolution since the first realization
that such transformations are analytically possible. Barly work
consisted of numerical attempts to evaluate integral expressions
and was restricted in pre-computer days by the need to keep cal-
culations to a minimum. The advent of computers and the knowledge
that the transformations are a filtering operation allowed direct
design of filters both in the space and frequency domains. Recent
work has concentrated on methods of filtering designed for optimum
speed and accuracy. This chapter reviews this development.

202 Development of the Analytic Theory of Linear Transformations

HMuch of the theory and many of the ideas for the transformations
of gravity and magnetic data can be traced to Evjen (1936). Evjen
determined potential fields at lower levels by a Taylor (or Maclaurin)
expansion which expressed the continued field in terms of the original
field and its derivatives. He gives relationships expressing all
the higher derivatives in terms of the second horizontal derivatives
and the vertical gradient of the original field. Evjen quotes the
analytical expression for upward continuation and by differentiating
it he obtains an analytical expression for the vertical gradient of
the field.

Peters (1949), in what is basically an extension of Evjen's
(1936) work, gives analytical expressions for upward and downward
continuation, vertical gradient and the components of the field

expressed in terms of the original observed field.
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Henderson and Zeitz (1949) perform upward continuation with
total fields. The formula they use has the same form as the one
used by Peters (1949) for vertical fields. Tt has been suggested
by Grant and West (1967) p.220 and p.314 that total field can not
be used in continuation processes,however Henderson (1970) has
published a detailed vindication of his theory including a proof
of the often quoted upward continuation formula.

Bullard and Cooper (1949) derive the analytic expression for
downward continuation.

Hughes and Pondrom (1947), Affleck (1948) and Skeels and
Watson (1949) give expressions relating the various components of
gravity and magnetic fields.

Baranov (1957) has used Poisson's relationship between gravity
and magnetic fields to produce the relationship between the magnetic
field for inclined magnetization and what the magnetic field would
be for vertical magnetization. This process has become known as
'reduction to the pole'.

Bott, Smith and Stacey (1966) give the analytic expression to
convert a two dimensional magnetic anomaly into a gravity anomaly.
Their method can be extended to three dimensions and does not require
that the anomaly be magnetized in the direction of measurement as
Baranov's (1957) method does. This type of transformation has
become known as a 'pseudo gravity' transformation.

Grant and West (1967) give a summary of the mathematics presented
by many of these workers.

2.3 Surface Fitting Methods for Numerically Performing Transformations

The formulae given by the authors listed in the previous section
can all be evaluated by conventional numerical techniques. The

method used by many authors was to nunerically fit a surface defined
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by a mathematical function to a finite area of the observed data.
The mathematical functions were chosen to simplify numerical
evaluation of the analytic expressions approximated by these
functions. Many workers have extended this idea to produce
numerical sets of coefficients which, when convolved with the
field data, effectively combine the surface fitting and numerical
evaluation of the relevant expressions to produce an approximation
to the transformed field.

This section reviews these methods.

Peter's (1949) fitted least squares polynomials through his
observed data which allowed evaluation of the derivatives necessary
for his transformations.

Henderson and Zeitz (1949) approximated the field by a Fourier
Bessel series which allowed the second vertical derivative to be
calculated.

Elkins (1951) and Rosenbach (1954) approximate the field by a
power series and calculate orthogonal second horizontal derivatives
of this power series. The second vertical derivative can then be
obtained from Laplace's equation. In a similar application,
Bhattacharyya (1969) uses bicubic spline functions to obtain the
horizontal derivatives.

Henderson (1960) continues the field upwards to several
different levels by a method similar to Peters (1949). He then fits
a polynomial through the field at different levels and extrapolates
it to get the downward continued field. By differentiation of the
polynomial he obtains the vertical derivatives of the field.

Tomoda and Aki (1955) and Tsuboi and Tomoda (1958) have
approximated the field by a function of the type

bij Sin(x=) . Sin(y)
3¢ 9
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and have shown that this allows a simple analytic formula represent-
ation of the upward and downward continued fields. Tsuboi, Oldham
and Waithman (1958) and Oldham (1967) publish coefficient sets to
evaluate these formulae.

Ring residual methods, such as described by Griffin (1949)
consist of removing the average field surrounding a point from the
field at the point. This is effectively fitting a plane surface to
what is considered to be the regional anomaly. A method of fitting
a least squares polynomial to the observed field in order to estimate
the regional has been described by Grant (1957).

The density or magnetization distribution causing gravity and
magnetic fields is not unique and for any observed field a distribution
may be calculated on any horizontal surface below the level of obser-
vations which gives the same field as the observed. Roy (1962) gives
a proof of this. Some workers have used computed equivalent layer
distributions to recompute fields with different characteristics.

Talwani (1964) considers the contours of a gravity map as re=-
presenting the density distribution of an equivalent layer and he
computes the field at a higher level by calculating the effect, at the
higher level, of laminae with the density distribution given by the
contours,

Bott (1967) computes an equivalent layer of differently magnet-
ized blocks by solving a set of simultaneous equations relating the
magnetization of the blocks to the observed magnetic field. Bott's
method can be used to calculate sets of coefficients. Ingles (1971)
has extended Bott's matrix method to gravity fields and has used it to
convert between gravity and magnetic fields as well as to perform con-
tinuation operations.

Tsuboi and Fuchida (1938) have expressed the equivalent layer for

a gravity field in terms of a double Fourier series and they show that
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the gravity field at different levels may be calculated by multiplying

[]
2 &
h(ut2u )t ere h is the continuation distance

each term by &
(4 v downwards) and U and ¢ are the frequencies in the x and y
directions.

Danes (1962) also uses the Fourier series method for continuation.
Danes has worked out factors by which the terms of the Fourier series
must be multiplied to convert it to the Fourier series of the
derivatives of the field.

Bhattacharyya (1965) has performed reduction to the pole trans-
formations by multiplying Fourier series by appropriate factors.

The Fourier series method is a filter method in principle because
different frequency components are multiplied by different factors to
perform the transformation. This is what happens in a filtering
operation in which a set of filter coefficients with a known frequency
response are convolved with a signal. The filter method for perform-
ing transformations, which has superseded the Fourier series method,
is reviewed in the following section.

2.4 Linear Transformations as a Filtering Operation

Swartz (1954) appears to have been the first to realize that
calculation of residuals and derivatives using grids of coefficients
are convolution operations in which the output can be predicted from
a knowledge of the frequency response of the filter being applied.
Dean (1958) gives a clearer and more detailed account of the trans-
formations of gravity and magnetic fields as filter operations.
Byerly (1965) has added some details to Dean's (1958) discussion.

Various workers such as Mesko (1965), (1966) and Dampney (1966)
have studied the coefficient sets published by previous workers by
comparing the computed frequency response of these coefficients with

the analytic frequency response of the operation. Mesko (1965) and
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Dampney (1966) have used the property that residual, derivative

and continuation coefficients have circular symmetry and they have
only considered it necessary to compute the radial frequency response.
Much more meaningful studies have been done by Darby and Davies (1967)
and Fuller (1967) who have computed the two dimensional frequency
responses of various published coefficient sets. From their results
it can be seen that some of the published methods deviate markedly from
the theoretical response both in radial variations and by being non-
symmetric.

As an improved method of calculating coefficient sets Dean (1958),
Dempney (1966), Fuller (1967), Darby and Davies (1967), Zurflueh (1967)
and Agarwal = and Ial (1971) have used the direct design method of
computing filter coefficients which have known frequency responses.

A full development of the theory is given below because none of
these authors has considered every aspect,

Fuller (1967) has given the following mathematics for symmetric
filters. The theory developed here is completely general.

The two dimensional convolution integral is

C(x.y) = f&j”{("‘-ﬁ)' b(x-"*-j'ﬁ) c‘udﬁ (2-1)

where b(-?ttd) is the input data

c(x, ‘j) is the output data

£(3:Y) is the filtering function

To evaluate (2-1) numerically it is necessary for'F(’C.n)to

exist over a finite range of x and y; i.e. it is necessary for f(x.ﬂ)
to be zero for |=C.\>}X and|Yy|»Y . Generally this is not so in
gravity and magnetic filtering operations and f(Jt.g) must be trun-
cated. The problem of truncation is considered in a later section

and for this development we shall assume that the above limits hold.
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Thus

Y x

CoLy) = ){‘J‘ f@&,ﬁ),b(u-a.-ﬁ-p)dddﬁg (2-2)
AL

If 'F(“,‘,j) and b (3¢, ‘j) are sampled at discrete constant

intervals (2-2) can be expressed numerically.
y X

A\_’ Axn
M ESY Z RkAx,hAj). Ib(x-kéx.’s""éﬂ) Axdy

ne ~ X KX
As oxn

vhered 3 and A\j are the sample intervals in the 3¢ and N) directions.

By letting As= 4Ay:1 we have

Y x
=) 3 fkn): bW, y-n) (2-3)
a2~y kz-¥

vhere F(k.n) are the filter coefficients.

Equation (2-3) is the general space domain expression relating
the input of a two dimensionall digital filter to its output. If the
input and desired output are known then a set of simultaneous equations
is established and they can be solved to give the filter coefficients.
If the number of equations is greater than the number of filter
coefficients then a least squares solution can be obtained. A
variation of this approach is fully investigated in Chapter 4 which
studies the application of Wiener filters.

Alternatively the filter coefficients may be calculated using
Fourier transforms. The convolution theorem shows that convolution
in the space domain is equivalent to multiplication in the frequency

domain so the frequency domain equivalent of (2-1) is
Cluw)= F(u,v). B(w,v) (2-4)

The capitals denote the Fourier transforms have been taken; for

example ‘F(ﬁ-.j) and F(w,r) are related by the Fourier transform pair.

FCV--U’)=J J'fu.\j)_ e-“uwa)éxd'j (2-5)

~nY _a
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(2-6)

0

Fawr). e " du dv

fouy) = f&[

- .
Thus if the frequency response of a filter F v ) is known

equation (2-6) can be evaluated to give £ (J\'..‘j) the space domain

filtering function.
To evaluate (2-6) numerically the maximum frequency we may

consider is the Nyquist frequency defined by the sample interval
The Nyquist frequency ANf =,’.= 0.5 cycles per data interval.
With

Ax .
The Nyquist frequency is explained more fully later.

digitized data we have to consider
Wws= amw {x
a7 ftj

where fx and fy are in units of cycles per data interval.

The expression fof'_5 equation (2-6) in digital form is

{(k‘f\)~z Z_I,TT Freafa, mafy).

== 25 - -of
e A“\s e’ Af’b

[c_os(zrt'ahg k‘).cos(:mmAFjl’\) = Sin(am & af k). Sin(arrmaly )

(f

(2-7)

+ J cos{an? afx V) St.n(;u m Ag‘jh)-}j Sl‘n(lﬁell{u k). cos (Amm L\(j V\)JA'{:L A{:J

where F({afimak)is the digitized frequency response of the filter

Equation (2-7) is the general expression to calculate a filter

with a desired frequency response.
Because of the radial symmetry of coefficients whose frequency

response is real it is only necessary to calculate the coefficients
The rest can be

in half a quadrant of the grid of coefficients.

determined by symmetry.
No worker appears to have used the direct Fourier method to design
Equation

filter coefficients whose response includes complex terms.

(2-7) shows that this is possible and the theory in Chapter 1 shows

that there are several transformations where this could be desirable.
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As both equation (2-3) and equation (2-7) are numerical attempts
to evaluate the convolution integral the accuracy of the filter is
improved by keeping Ax and Alj as small as possible while keeping
the number of coefficients and their areal spread as large as
possible. The coefficients designed by this method may not be
the optimum for the transformation. The problem of optimum filter
design is considered in Chapter 4.

As pointed out by Dean (1958) and Darby and Davies (1967) the
radial symmetry of some transform operations allows these trans-
formations to be considered in terms of zero order Hankel trans-

equivalent
formations (the cylindrical polar co-ordinate/of Fourier Transforms).
Although Darby and Davis (1967) and Lavin and Devane (1970) have
managed to use Hankel transformations for some problems the method
lacks generality because they are difficult to evaluate except for
simple cases and the theory is difficult to adapt to data on a
rectangular grid.

2,5 Filtering in the Frequency Domain

Since convolution in the space domain is equivalent to multi-
plication in the frequency domain (see Chapter 1) it is possible to
convolve two functions by taking the Fourier transformations of both
functions (their transfer functions), multiplying the resultant
transforms and then performing an inverse transformation of the result
to give the convolved output in the space domain. Until the advent
of the Fast Fourier Transform (FFT) technique (Cooley and Tukey,1965)
this method was considerably more time consuming than conventional

convolution. Cochran et al. (1967) have shown for two dimensional

real data with N2 points that the number of multiplications involved
in using the FFT method to filter in the frequency domain is of the

order (l/.N ll°f]z~" ﬁN’-) whereas filtering in the space domain with an
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operator with M2 coefficients requires M2N2 multiplications. Thus
with very large numbers of coefficients the FFT method will be con-
siderably faster. In cases where the coefficient array is relatively
small the advantage is less spectacular. For example when convolving
a 128x128 array with an 11x11 filter the FFT method is 4 times faster
than the convolution method which takes about 60 seconds CPU time
for this operation on an IBM360/67 computer.

The FFT method also has the advantage that extremely complicated
filters may be designed directly and accurately from their known
frequency response.

Black and Scollar (1969) give a discussion of the application
of the method to two dimensional geophysical filtering and Spector
(1968) and Kanasewich and Agaxwal (1970) report using the method
for reduction to the pole transformations.

However, transforming a finite function into the frequency
domain using the FFT assumes that the space domain function is
periodically repeated and if there is a step at the boundary of the
original function (i.e. the starting and finishing levels of the
function are different) then oscillations are produced in the com-
puted spectrum. To eliminate these, regional trends must be removed
from the data before the transformation. Lven this may not completely
eliminate a step at the edge and in any case the apparent regional
may vary with the length of the data. TFor these reasons, adjacent areas
of data processed with the FFT method may not match at the boundaries.

A practical. problem is that published computer algorithms for
the FFT (Robinson, 1967 , IBM, 1968) require data with dimensions
vhich are a power of 2. Black and Scollar (1969) have developed
a method where the dimensions of the data may be highly composite
(the product of many =small prime factors) but even this is not always

convenient.
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Because of the theoretical and practical difficulties which
have to be faced when using the frequency domain method of filtering,
in order to achieve a modest reduction in computer time, the author
prefers the space domain method of filtering. As shown in Chapter
L the space domain method produces accurate results.

2.6 Concluding Remarks

It must be realized that all the methods reviewed in this
chapter constitute numerical attempts to evaluate infinite integrals
using finite amounts of data. Consequently even though excellent
results may be obtained the output can never be as the theoretical
output would be. For this reason, if curve matching interpretive
techniquesare to be used on transformed data, it is best to apply
the same transformation to the model data so that the distortion will

be the same.
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CHAPTER 5
PRACTICAL PROBLEMS TO BE CONSIDERED WHEN APPLYING FILTER METHODS

Digital filtering is effectively an attempt to numerically
evaluate infinite integrals and as with all numerical methods it
is important to understand the limitations and problems.

3.1 Converting the Data to a Regular Grid

Digital filter methods require the signal to be sampled on a
equispaced grid (generally, but not necessarily cartesian). This
process is called digitizing.

The straightforward method of superimposing a grid over a contour
map and mentally interpolating the values at the corners of the grid
can cause errors because:

(i) the contouring may not be exact

(ii) the mental interpolation may not be exact
Such errors are a problem when a form of high pass filtering is applied
which emphasizes small irregularities.

Recently various attempts have been made to apply computers to
convert irregularly spaced field data to regularly spaced data. Most
of these methods (which have been reviewed by Walterss 1969 ) consist
of fitting mathematical surfaces through groups of points. Visually
satisfactory results are generally obtained when the results are con-
toured.

Methods more relevant to aeromagnetic surveys have been developed
by Bhattacharyya (1969) and Naudy (1970). They use all the information
along parallel flight lines and fit curves perpendicular to the flight
lines to grid the data.

Cubic spline interpolation (Bhattacharyya, 1969) has been used

in this thesis to convert irregularly spaced data along profiles to

regularly spaced data.
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However, even with computer gridding of the data it may still
be necessary to apply some smoothing to the data (see below).

3.2 Effects of Digitization

3.2.1 Aliasing

Blackmen and Tukey (1958) p.31 and Jenkins and Watts (1968) p.51
have considered the effects of sampling continuous signals at uniform
intervals and have shown that the maximum frequency which can be

uniquely defined by a sampled signal is the Nyquist frequency.

fdf =.J_
24t

vhere At is the sample interval. This frequency is also called the
folding frequency because if the spectrum of such a sampled series
is calculated it is symmetric about Nf. TFrequencies equispaced on
either side of Nf are indistinguishable from each other. This
effect is known as aliasing. Thus in any analysis with digitized
data either the frequencies above the Nyquist frequency must be
removed or their effects must be insignificant. In the analysis of ‘
gravity and magnetic fields the spectrum is dominated by the e-hcu&w‘)i
term vhere h is the depth. This in general makes the higher fre=
quencies insignificant relative to the lower frequencies, thus the
aliasing problem is not critical although it should not be completely
disregarded. The phenomenon of aliasing also determines the
minimum grid spacing practical for a set of data. Obviously this
interval can not be less than the interval of measurement of the
original data.

It is difficult to decide how to apply such a criterion to an
aeromagnetic survey with continuous data along parallel lines.
Strictly, the minimum grid interval allowable is equal to the line
spacing. If the lines are flown perpendicular to the strike of the

anomalies so that the high frequency trends perpendicular to the flight
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lines are negligible then a grid spacing closer than the flight
line interval should sample the field adequately and without aliasing
errors.
30202 GibWs Phenomenon

Another effect of having the data in digital form, so that the
higher frequencies are not specified, is that it is never possible
to exactly obtain as output a function which in theory we would
expect. This effect is called Gibb's phenomenon (Hsu, 1970, p.253).
It is most noticeable where the output should be a step function.
In this case the actual output is a step function with ripples before
and after the step. The ripples can be decreased by making the

sample interval smaller but they can never be completely eliminated.

3e3 Truncation Effects

The spectral effects of truncating infinite functions were first
considered by Blackman and Tukey (1958). Jenkins and Watts (1968)
give a clearer and more detailed account of the theory.

The effects can be considered thus:

If 9(t) is an infinite function and is only known in the interval
we consider the signal to be multiplied by w(t) vhere w(t) is a data
window (also called a lag window).
Sr(t) = S(). w(t)
where S; (t) is the truncated signal and
wit) o ItieTh

=0 |t>T/a
From the convolution theorem we know that multiplication in the

time domain is equivalent to convolution in the frequency domain so
Sr(f)=I S(j).w(-f-g) dfj
-cd
where Sy({) , S({) and W (f) are the Fourier transforms of Sv(+), S(L)

and W(t). W({) is called a spectral window.
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This means that truncating a signal results in its spectrum
being filtered by w () . Ideally this filtering effect should
be a minimum i.e. w({) should be a spike (corresponding to w(t)
being infinite and always equal to 1. i.e. an infinite length of S(t)).

The figures shown on p.2u46 of Jenkins and Watts (1968) and p.15
of Blackman and Tukey (19538) show some common spectral windows. It
can be seen that the windows with the narrowest central peak (i.e.
the closest to the ideal unit spike) have the largest side lobes.
These side lobes cause what is called '"leakage'. This is because
these side lobes are convolved with the true spectrum to cause
oscillations in the estimated spectrum (this is called a loss in
stability).

Windows with a broader central peak have smaller side lobes and
cause less oscillation on the estimated spectrum but the spectral
estimates in this case have the finer detail smoothed out (this is
called a loss in fidelity).

The design and choice of a perfect window must allow for these
two conflicting effects as well as the nature of the true spectrum.

Both Blackman and Tukey (1958) and Jenkins and Watts (1968)
admit that the best window for a particular situation has to be
chosen by an empirical approach.

The windows which have had the most general use in gravity and
magnetic applications (see Gudmundsson (1966), Fuller (1967),
Kanasewich and Agarwal (1970)) and which have been used successfully
by the author are, in their two dimensional digital form:
Rectangular Window

w(kn) =1 For Ikl & x
Inl<Y

=0 otherwise
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Hamming Window

W (kyn) = o-sgvo-gecosr['z_i‘iiﬂﬂ:% for k| £ X
(K= +v*) int< Yy

= O otherwise

Hanning Window

ﬁ_(fs"’*_“"’}_l for IKI & X
(x> -+%"™) Int & Y

w(k,n):z 0-5(1 + cos
= O otherwise

It does not seem possible to give an exact criteria for choosing
wvhen to use a particular window. As a general rule the rectangular
window is best for very long records, the Hamming window is best
for intermediate length records and the Hanning window is best
for short records. 'Short' and 'Long' are used here in a purely
relative sense.

Obviously S(t) should be as long as possible.

In this thesis truncation has relevance in the calculation of
filter coefficients. There are two distinct situations.
a) Caloulation of Filter Coefficients by the Fourier Transform Method:

The coefficients calculated by the Fourier transform method will
be exact but there may be too many of them. If it is desired to
shorten the spread of the coefficients it will have to be done by
applying a data window. The window will have to be chosen to give
the least distortion of the frequency response of the coefficients
avay from the ideal frequency response of the filter.

An example of the effects of truncation on the frequency response
of an operator is given by Fuller (1967) Fig. 32, Fuller truncates
a set of ideal downward continuation coefficients using the Hanning
window. He truncates to an unrealistically short spread and causes

severe distortion in the spectrum.
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b) Calculating Coefficients in the Space Domain:
In the case where we calculate a set of coefficients to transform
a known input into a desired output we are calculating a filter whose
frequency response is the frequency response of the transformation.
If either the input or the desired output are infinite then they must
be truncated with a data window. They must be truncated so that
their spectra are not distorted otherwise the problem will be in-
correctly specified and the calculated coefficients will not be correct.
It is important to note the subtle difference in truncating the
coefficients after they have been calculated (Case (a)) and truncating
the signal and output before calculation of the coefficients (Case (b)).

3.4 Edge Effects

When applying sets of coefficients to data there is always a loss
of coverage because the centre coefficient and hence the last output
point can not be at the edge of the map without the surrounding
coefficients being off the edge of the data. This effect can be
reduced by using smaller (and hence less accurate) sets of coefficients
near the edge of the data or by extrapolating the data so that it is
possible to calculate filtered values up to the edges.

The author has used an inverted mirror image (i.e. treated the
data as a repeated odd function) for extrapolation purposes. This
gives a smooth function with the same trend as the original data at
the edges of the map.

3.5 Smoothing

Because downward continuation and derivative filters are high
pass filters it is often necessary to apply some form of smoothing
to remove high frequency noise from the data as this noise may be
excessively exaggerated by the transformation. Noise in magnetic

and gravity fields may be caused by geological structures shallower
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than the structures of interest or by errors in the original
measurements or compilation.

Bullard and Cooper (1948) suggest convolving the data by a
function with frequency response EEX‘A$WMere J is an arbitrary
factor which specifies the degree of smoothing. This is effect~
ively an application of the error function.

Dampney (1966) suggests using a low pass filter to cut out
frequencies for which the noise level exceeds the signal level.

The process of digitizing is a form of filtering and some of
the high frequencies may be suppressed by increasing the grid size.

Linear methods such as these generally distort part of the
signal anomalies because there is always spectral overlap between
the signal and the noise,

A non-linear method, described by Naudy (1967) has been used
effectively by the author to remove spike type errors from profiles.
Nandy's method detects the spikes using a width criterion and removes
them by fitting a curve through them. Tlemethod is frequency
independent and removes all the spike or none of it. A computer
program NLFILT has been written to do this.

Clarke (1969) gives a method for calculating optimum downward
continuvation and derivative filters when the statistical characteristics
of the signal and noise are known. An investigation of this approach
and other methods of noise removal are given in Chapter 6.

3.6 Characteristics of Coefficients

A computer program COEFF has been written to evaluate equation 1-7
and has been used to calculate sets of coefficients for several import-=
ant transformations whose frequency responses were derived in Chapter 1.
The numerical behaviour of these coefficients allows certain limits

to be anticipated in the performance of these filtering operations.
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Although only the coefficients for profiles are considered the
same general comments apply to two dimensional coefficients.
3.6.1 Downward continuation

Sets of downward continuation coefficients were calculated for
continvation intervals of h = 1,2,3,4,5 grid wnits. For this
example 211 coefficients were calculated. The behaviour is similar
for other numbers of coefficients, the only difference being the
greater the number of coefficients, the more accurately the con=
tinued field is calculated. Each set of coefficients consists of an
alternating set of positive and negative coefficients which have a
hyperbolic decay in amplitude. Fig. 3=1a shows a plot of these
amplitudes. Only half the coefficients are shown because they are
symmetric about the centre.

A critical factor is that the numerical value of the coefficients
become impractically large for continuation distances greater than
2 grid intervals., These large values of the coefficients enormously
magnify small data errors. This is a direct result of the fact that
the frequency response of a downward continuation filter increases
exponentially with the continuation distance. The maximum continuation
distance appears, for practical purposes, to be 2 grid intervals.

The general shape of the decay envelope of the coefficients
suggests that the values in the immediate vicinity of the point at
which the filtered value is being calculated are the most important.
3.6.2 Upward Continuation

Fig. 3=1b shows a plot of the amplitudes of a set of upward con-
tinuation coefficients for continuation distances h = 1,2,3,4,5 grid
units. There is no problem about the magnitude of the coefficients
because upward continuation is a stable low pass operation. The
coefficients are broad and slowly varying and this suggests the areal

extent of the operators may be important.
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3,603 Differentiating and Integrating Operators

In 1.4 it is shown that vertical derivatives introduce a
factore-;—i [ w&)%'j into the spectrun of the field. (M is the
order of the derivative).

Vertical derivatives are high pass filters and their coefficients
have a similar behaviour to downward continuation coefficients.

Vertical integration introduces a factor the inverse of the
factor above into the spectrum. Coefficient sets to perform
vertical integration are low pass filters and have the same numerical
behaviour as upward continuation filters.
3.6.4 Phase Filters

Filters vwhose frequency response involves complex terms of the
type (u;tjb)|k , Buch as reduction to the pole filters, cause a phase
shift in the data. Fig. 3-1c shows a plot of the amplitudes of a
set of phase filters. The increasing asymmetry of the coefficients
for increasing phase shifts suggests an increase in the difficulty of

the transformation.
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CHAPTER 4

TRANSFORMATIONS OF GRAVITY AND MAGNETIC FIELDS USING WIENER FILTERS

L. General Theory

A Wiener filter is a filter which converts a given input inte
a desired output such that the sum of the squares of the differences
between the desired output and the actual output is a minimum.

The theory of such filters was originally developed in terms
of integral calculus by Wiener (1949). Clarke (1969) gives an
outline of Wiener's theory applied to two dimensional signals.

Suppose the input to a linear system is denoted b(xyland a

weighting function f(x.4)is sought for which

Clxy)= [ I ghb'.g').b(x.-w,3-3‘)6%‘&3'

will closely approximate some desired output function d(x, wﬂ\ °
We wish to find F(l.'j\ which minimizes the mean square error between

the desired system output and the actual output i.e. minimizes

er*(x. 4= [ d(x.\@) -C (xnj)]z
The bar denotes that averages are taken.

By defining the autocorrelation

§II (3¢, ‘ju) = b by, b Geto, y- \30)

and the crosscorrelation

P (xeye) = d0uy) bex-xe,y-yo

then
e (g = §,, (002 [ ey Fas(xiygrdoedy’

*;Cm :f wﬁ"ﬂn'x foryn 8, ooxrygr)dady dxr dy

By variational methods it can be shown that the f(,4) which

minimizes e,"(x.*j) must satisfy the equation

oy o= [ [ Roog) B, (% grig) Gy
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This is known as the Wiener Hopf equation.

The work of Robinson and Treitel (1967) and Robinson (1967) has
been largely responsible for Wiener's theory being adapted to data in
digital form and for its application to the computer processing of
seismic data.

The mathematics given below follows the method developed by
Treitel and Robinson (1966) who presented it in the context of single
channels of data being filtered by one sided operators (considering
only past values of the signal). The theory given here has been
extended to two dimensional data where the filter considers the signal
surrounding the point at which the signal is being transformed.

The Problem:

To convert the digital signal b(xy) with dimensions 2J+/, 3K+i

where -} € X £} and-keYe< k  into the desired digital output dpev
J J (<)

with dimensions 2j+am+i, ak+an+t vyhere -(J+ m) £ X & (J-rm)
and -(k-ﬂ'\)é_-\/é (k.fy\).

with digital filter coefficients f(, 4, with dimensions 2m+i, 2n+i

where -mg Xem and-nevyen o Such that the Error Energy is a
minimum

where

mey na4k

Error Energy [= Z Z (d&y = Cwm )1 (4-1)

Xz o Yz-n-K
vhere C(y,,)is the result of the two dimensional convolution

C(x,y) = Z Z {(S'L) b(X-S,‘;-t) ("I""z)

S:-W\ t=-n
To determine the filter coefficients which give the minimum error

energy we take partial derivatives of (4=~1) with respect to the filter

coefficients and equate to zero i.e.

VV\'fJ

"

- L Z [d(x\l) i Z ‘C(S.t).b(X-S.‘l-t))1° (4-3)

rLJ) S--m tr-n

)(z-w\-J \[_-V\

("D(x-i, w-j\) =0
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This gives
Mty ntlk M*J

Y Z d(" ). bw -C \:-J\+ 5_ Z

XZem J -n-k x:—M-J \‘:_V\~l/\ (Ll"'Ll‘)
o (BB o0 b, bt iy 0

M*.-.i n-ﬂk
N (4-5)
¢11(‘- S,y k) Z . Z b(X—s,\(-t)- b(x—s,‘(-t) 7

X= =M~y yz-n-k
is the autocorrelation of the input,

™y nalk
¢'DI (¢ .j) = }_ Z d(X-snl-t}. b(x-i,\‘-j) (4-6)

X--M-j ‘(-I-V\-K

is the cross correlation of the desired output and the input.
Substituting (4-5) and (4-6) into (4-4) we obtain

py (6,30 = Z Z {(s,t), ?511 ¢-5,j-1) (4-7)

Sz-m ‘t:-h

This is the digital equivalent of the Wiener Hopf equation.

The set of simultaneous equations given by (4=7) can be solved
to give the filter coefficients.

Clarke (1969) who has used Wiener theory to design downward con-
tinuation and derivative filters performs his filtering operations in
the frequency domain. Clarke shows that the transfer function of a

Wiener filter is

vhere
TPo:  is the Fourier transform of the
crosscorrelation of the desired output and the input.
[°r; is the Fourier transform of the autocorrelation of the input.
This study is concerned with the space domain application of Wiener
filters. The frequency domain approach suffers from the disadvantages
discussed in 2«5 and the problems of finding Fourier transforms of the

relevant autocorrelation functions.
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The solution of (4-7) will be considered separately for profiles

and maps.
(i) One Dimensional Data

For one dimensional data equation (4=7) reduces to

¢ox (L) = ZM fs ¢1‘I(L'5) (4=8)

Sz-m
.\

®DI (“5 = Z ) cl(x). \D(x-i)

5(: —V'V\—-J-
is the crosscorrelation between the desired output and the

input and .
Laa |

¢n(¢'5)= Z_ _ \D(X—S).\D(x—[)

x=-w-]
is the autocorrelation of the input

Equation (4-8) can be written out fully
'(é*\)?gn""\ + {(-"“') ¢n(-"'-")" ¥(-m4z)¢u(-”\*13+ ------- -+ {(M\¢,,(M\ = ¢DI {-m)
{(' ”‘)%‘.‘(’M‘“)-i F(-n«)%_“_w ) +{('M<2\ ¢[l(-h-ﬂ)-f I +'FN\ ¢11(M"):¢D[('V"‘“)
'{(—M)¢u("“‘)"{(-"H'\¢u(.m_l)+F(-m41)¢11(,m ) I S --l—{m ¢II('“'2):¢DL(—M1 7_) (4-9)

o nro ol « Fomed o+ - -+ B g s

{(’M)qsu(m) +ﬁ'""')¢“f""-"f’{'\"“"")@Il(m-x)+ R C,bl[(-M : .®'i>1 ()

Now the autocorrelation function is even i.e. ¢H (-L) = ¢1 ()

so equation (4=9) can be written in matrix form

I T

p— , ;
Dz == Oy p(-m dli(-wul\, Cee e ¢u(m) \c(hﬂ\ ¢nr(~~\,
O";" i .. o "
T SN o) aiL (\"’""'\ """ ¢11(m-l) -{:(-N'hl) @bl(—nol),
Qo amy ce
PiE L Qutpeeay Duigemy B 2| | fromit it (o [ 1=10)

.

Oripm-n Ot1fmm Dty v v v o Ozpoma)| | Frmal] | Botpn

I@Iib\) @'LL(M‘H @12’.[\-\-1‘ [T (;ﬁ:.,_(»-m) {.\(”‘) @I)i()
L ' B SRR B i

The high degree of symmetry of the autocorrelation matrix (called

a Toeplitz structure) has been used by Levinson (1947) to devise an

efficient recursive technique for solving the set of simultaneous

equations defined by (4-10). The Levinson routine allows over 200
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coefficients to be calculated in less than 10 seconds on an
IBM 360/67 computer and only requires m2 storage locations (where
m is the number of unknowns) compared with m3 storage locations
required by conventional algorithms for solving simultaneous
equations.,

A computer routine EUREKA which solves simultaneous equations
using the Levinson method has been published by Robinson (1967).
This subroutine has been incorporated by the author into a computer
program WIEN1D vhich calculates one dimensional sets of Wiener filter
coefficients.
(ii) Two Dimensional Data

Consideration of the symmetry conditions of equation (4.7)
simplifies its solution. Tige 4«1 shows the autocorrelation matrix

a) General Case

The two dimensional autocorrelation function displays the symmetry

¢II (k) = ¢11 (-5r-k)

Thus the matrix of the autocorrelation function is symmetric about a
principal diagonal. A subroutine GELS has been published by IBM (1968)
to solve simultaneous equations with this property.

b) Symmetric Case

In cases where the input has an axis of symmetry the autocorrelation

function becomes symmetric.

e G (i) = B (11 i)

In this situation the autocorrelation matrix can be partitioned
into submatrices and the matrix of submatrices has Toeplitz symmetry.
A recursive solution to this problem has been developed by Wiggins
and Robinson (1965) and a subroutine NORME has been published by

Robinson (1967) to apply this method.
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A computer routine WIENZD has been written by the author to
calculate two dimensional Wiener filter coefficients for the
general case.

It is important to realize that the Wiener filter does not
guarantee a perfect output but only the optimum, according to the
least error energy criteria, for a fixed number of coefficients.

In general the performance of a Wiener filter improves as the
number of coefficients increases., This characteristic has been
investigated by Treitel and Robinson (1966) for one dimensional data
and confirmed by the author for two dimensional data. A feature of
this improvement is that it tends to become insignificant after a
certain size of filter has been reached. This optimum size varies
with the problem.

The original theory of Wiener was developed for the statistical
processing of infinite signals and hence the Wiener Hopf equation
involves averages of the correlation functions. TFor the digital
processing of gravity and magnetic data it is necessary to make two
important assumptions to compensate for the fact that infinite signals
are not being processed and that it may not be possible to determine
average correlation functions.

The first approximation is to assume that if coefficients are
calculated using fields due to model bodies which have the approximate
average dimensions of the bodies causing the field to be transformed
then these coefficients can be applied to such data.

The second approximation involves the truncation of the model
fields used for calculating the coefficients. Gravity and magnetic
fields normally decay slowly away from the centre of the causative
body and it is impractical to perform the model transformation on

very long signals. Rather than simply to cut off the model fields
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at their edges it has been found better to truncate the input signal
and the desired output signal by multiplying by a data window (see 3.3).
The Hamming window, as discussed below, has been found to give good
results.

Extensive tests by the author, including the examples given later
in this thesis, indicate that these approximations are justified.

L2 Applications of One Dimensional Wiener Filters

The theoretical magnetic profiles used on this section and in
various other examples throughout this thesis were calculated using
a computer program MAG2D which is based on the method of Talwani (1964).

A similar computer program GRAV2D based on the method of Talwani,
Worzel and Landisman (1959) has been used to calculate synthetic gravity
data.,

Both MAG2D and GRAVZ2D were originally written as part of the
author's M.Sc. project (Gunn, 1967).
4.2.1 The Linear Inverse Problem

Digital Wiener filters were originally written to remove rever-
berations from seismic records (Robinson, 1967). After a seismic
explosion, the sharp impulse of energy travels through the earth and
may be multiply reflected in such a2 way that the signal arriving at
the geophone is of little value to the seismic interpreter.- Seis-
mologists are able to define the filtering properties of a given set
of layers with reasonable precision and their problem has been to
design a finite length inverse filter to remove these effects.
Robinson gives the theory to calculate an exact inverse filter to a
known impulse response but the method is mainly of theoretical interest
because the resultant inverse filter may have an infinite length. A
more practical solution to the problem has been found by calculating
the Wiener filter to convert the impulse response of the earth's

filtering effect as closely as possible into a unit spike. The
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resultant filter, called a deconvolution filter, is the optimum
least squares finite length inverse filter.

This method of designing inverse filters has a direct application
on the solution of the linear inverse problem in gravity and magnetic
interpretation. The theory in 1.5.1 showed that the gravity or
magnetic field of a prism is the result of the convolution of
several factors and that convolution of the field by the appropriate
inverse factors will give as output a square wave vhose amplitude
is directly proportional to the density or magnetization of the
prism and whose edges outline the edges of the prism.

Several applications of Wiener filters to solving the linear
inverse problem will now be demonstrated and discussed.
4,2.,1.1 Solving for the Magnetization of Vertically Magnetized

Vertical Dykes

The Problem: to calculate, using a magnetic profile, the
magnetizations of a series of infinite, vertically magnetized, vertical
dykes all at depth 4 units and with different widths.

The solution of this problem involves a downward continuation
of L4 units (see equation 1-18). As such a large continuation is
extremely sensitive to data errors, coefficients were calculated for
a continuation distance of 2 units and when they were applied to the
profile being filtered a zero was inserted between each coefficient.
This effectively made the continuation distance 4 units but still
gave an output value for each input value.

The computer program WIEN1D was used to calculate and apply the
appropriate filter coefficients.

The input to WIEN1D was specified thus:

input signal - the magnetic field over a vertically magnetized

infinite vertical prism, depth 2 units, width 9 units,

magnetization 0,001 emu.

]

BXZ B-J, B-J-H, BJvAz_BuBJ—l BJ’-:,BJ'
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desired output - scaled magnetization of the model prism

Dy = Doy, Dagae, Dgea oo oo 00 Dg e D52, Dy, D
= O, O, O, ... UL o, o0, ©O
LD = length of desired output = LB
LA = number of filter coefficients to be calculated = 211

(it is not necessary for LA to equal LB)

The | 's in the desired output indicate that the magnetization
of the model prism used to calculate the coefficients is to be
regarded as a standard of unity. The 9 values of | represent a
square wave with the width of the model prism.

The set of Wiener filter coefficients calculated to shape the
input signal into the desired output are the optimum coefficients
(in the least square sense) to deconvolve all factors except the width
factor and the magnetization factor from the input magnetic profile.
These coefficients will deconvolve the same factors from any other
profile and the results of such an operation are shown in Fig.i=2.

The magnetic profile over four vertically magnetized infinite vertical
prisms has been converted into a set of square waves where, as expected,
the width of the square wave outlines the positions of the prisms and
the amplitudes of the square waves are directly proportional to the
magnetizations of the prisms.

The small ripples at the corners of the square waves are due to
Gibb's phenomenon. They could be reduced but not eliminated by
reducing the sample interval to 1 unit. This would require a contin-
vation distance of 4 units and for the reasons given above this is not
desirable.

The dimensions of the model body used for calculating the co=-
efficients were chosen to be an approximate average of the dimensions

of the bodies causing the profile to be filtered. This ensured that
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the filter was to some extent designed for the particular problem.

In seismology & finite length wavelet is being deconvolved but
in gravity and magnetic applications the areal extent of the anomaly
that is the input signal may cause problems. As gravity and
magnetic anomalies decay slowly away from the central peak it may
be necessary to truncate the anomaly. If the truncation is done at
points before the field has decayed to an insignificant level a step
-is left at the ends of the input signal and the filter designed will
be the inverse of the input signal complete with steps. This will
give spurious ripples in data processed with this filter. It has
been found that truncation of the data using a Hamming window provides
the smoothing necessary to preserve the spectral characteristics of
the input signal so that the designed filters produce good results.

In the example of Fig. 4-2 a Hamming window was used to truncate
the input signal. In this application it was found that an
application of a rectangular window gave almost identical results.
This was because the field on the flanks of the input signal had
decreased to a very small level (0.1% of the maximum). Truncation
does however become important where the rate of decay is slower. The
effects of truncation are discussed more fully in 4.3.
4,2.1.,2 Calculation of the Magnetization of a Vertical Infinite

Dyke with Inclined Magnetization

To calculate the magnetization of a non vertically magnetized
dyke the method of specifying the input and desired output to WIEN1D
are the same as for the vertically magnetized case except that the
input signal must be the magnetic field of a prism whose direction of
magnetization is the same as that of the dykes to be filtered.

Fig. 4-3 shows the results of applying a set of coefficients

calculated in this manner.
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The oscillations due to Gibb's phenomenon are again noticeable
and in this example they are antisymmetric with respect to the square
waves.

A low amplitude long wavelength regional slope can be noticed
in the output. This is the result of the inability of the finite
length filter, operating on a finite length of data, to correctly
phase shift and integrate all the frequency components of the signal
necessary to give an exact output. It has been found in practice
that this discrepancy increases as the dip angle of the field diverges
from 90°¢.

Truncation of the input signal is important for non vertical
magnetization because the field decays more slowly than for vertical
magnetization and it approaches the zero level from different sides of
the zero line.

Robinson and Treitel (1966) show that the performance of a one
dimensional Wiener filter may be improved by lagging the output relative
to the input. This corresponds to a filter in which the point at which
the filtered value is being calculated is not at the centre of the
operator. It is obvious that the optimum Wiener filter for a trans-
formation involving no phase shift (i.e. transformations whose frequency
response have no complex terms), must be symmetric about the central
point because oniy such coefficients have zero phase shift. The
calculations in 3.6.4 show that the theoretical coeffic ients for a
transformation involving a complex term of the type (Cl-+J’D) W are
antisymmetric about the central coefficient and it would appear that
the optimum Wiener filter for such a transformation should have the
same type of symmetry.

To test this reasoning the optimum lag position was calculated

for the set of coefficients to perform the transformation of Fig.lL-3.
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Wiggins and Robinson (1965) describe a technique which they call
'Simpson sideways recursion' which allows a rapid determination of
the optimum lag position for the output of a Wiener filter. Robinson
(1967) has published a subroutine (SIDE) which performs the Simpson
recursion nethod and this has been incorporated by the author into a
computer program (SHIFTY).

Fig. 4-4 shows a plot of the normalized error energy for different
output lags. The normalized error energy I is the value of the aver-
age squared error divided by the zeroth lag of the desired output's
autocorrelation function. For a perfect filter E= 0, and E= 1
for the worst case.

Fig. 4-L shows that for the example considered the optimum lag
position is almost immaterial because of the large flat minimum of
normalized error energies. The fact that the optimum lag position is
slightly different from the position corresponding to a centred
operator is thought due to the effects of truncating the input signal.

Tig. 4= is considered to verify that centred operators are the
optimun (or very close to it) for all filter transformations using
profiles of gravity and magnetic data.
4.2.1.3 Calculation of the Magnetization of Blocks with a Finite

Vertical Thickness

To use WIENTD to calculate coefficients to solve for the magnet-
izations of finite blocks of known depth, thickness and direction of
magnetization the input signal Bx must be themagnetic field over such
a block. The resultant coefficients will deconvolve the same factors
as in the two previous examples but will also deconvolve the thickness
factor.

Fig. 4-5 shows the magnetic field due to a series of vertically
magnetized blocks and the magnetization profile obtained by applying

a Wiener filter. The differences in the levels of the plateaus of
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the output correspond to changes of magnetization in adjacent blocks,
The oscillations in the output are due to Gibb's phenomenon.

The absolute values of the calculated magnetizations are not
correct although the relative changes between the levels of the
plateaus still accurately reflect the changes of magnetization
between adjacent blocks. This discrepancy is caused by the in-
ability of the finite length filter to exmctly numerically evaluate
the infinite convolution integral and by the method of extrapolation
used at the ends of the data. WIEN1D automatically extrapolates
the signal to be filtered by taking inverted mirror images about

the end points.

B-m-t)= 2.8 m) - Bim-t)
1ee- B(mast) = 2.8(m) - B(m-t)
Although this allows filtered values to be calculated for all
points of the original profile the accuracy naturally decreases
towards the ends,

The filter applied to the signal in Fig. 4-5 has a spread of
210 points on either side of the point where the operator was applied
and thus the filtered output was effected by the extrapolated data.
It is considered preferable to suffer a loss in accuracy than to have
no output at all.

The filtering operations described in this section could be used
to determine magnetizations of rocks in areas where the geometry of
the rocks is well known. For example in shield areas, where most
rocks outcrop at the surface, magnetization profiles could be pro=-
duced to outline the rock masses and to allow an approximate identi-
fication of rock types.

Bott (196 ) has used the matrix method to study the magnet-
izations of layers of lava causing sea floor magnetic anomalies.

Wiener filters could also be applied to this problem.



4.2.2 Transformations of Gravity and Magnetic Fields

In 1.4 the transformations possible with gravity and magnetic
fields were discussed in terms of the convolution operations
necessary to perform such transformations. In 2.4 it was shown
that filter coefficients for the transformations may be calculated
by solving a set of simultaneous equations in vwhich the input and
output of the transformation are related by the filter coefficients.
In this section the Wiener filter variation of this method is
investigated. By using an original field and a transformed field
as the known input and the desired output to WIEN1D a set of
generally applicable coefficients for the transformation can be
calculated, In the previous section the Wiener filter was used
to deconvolve certain factors from the profile. In this section
it is used to add convolution factors as well as remove them.

The following examples demonstrate how effective this method is.
4,2.2.1 Reduction to the Pole

Fig. 4-6 shows an example where the magnetic field due to a non
vertically magnetized body has been converted to what the field would
be if the body were vertically magnetized. This is an example of
a reduction of the magnetic field to the magnetic pole. The co-
efficients to effect this transformation were calculated using
WIEN1D with the following specifications:

input signal: a profile of the magnetic field over a vertical prism

depth to the top of 2 units, width 9 units and an infinite depth to
the bottom. The strike of the magnetic profile was 65°E of
magnetic north and the dip of the Earth's field was 65° downwards.

desired output: the magnetic field over the same body as in the

input signal but with the inclination of the earth's field at 90°.

The magnetization of the body was the same as the body in the input

signal.
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The length and sample interval parameters were the same as
used in the examples of the magnetization calculations.

Both the known input and the desired output were tapered by
a Hamming window,

It should be noted that, because the profile over the body
is not towards magnetic north, the dip of magnetization in the
body is not 65° but the resolved component of the earth's field
in the direction of the profile. This factor is automatically

compensated for in the evaluation of the coefficients.

4.,2,2.2 Converting Components of Measurement

Tig. 4=7 shows an example where the horizontal magnetic field
due to a body has been converted by filtering into the total field
due to the body (which in this case is the same as the vertical
field since the body is vertically magnetized). Again the co-=
efficients were calculated by using WIEN1D to perform a similar
transformation on model data. Any other conversion between

components of measurement may be done similarly.
Lo2.2.3 Converting Magnetic Fields into Gravity Fields

Fige 4=8 shows an example where a magnetic field has been con-
verted into a gravity field. The transformation gives the true
shape of the anomaly but numerically underestimates the field by a
constant amount., This happens because the operation is effect=-
ively an integration of the long wavelength components of the
magnetic field and the finite set of filter coefficients under=-
estimates their effect.
4,2.,2.4 Calculation of Vertical Derivatives

From 1.4 it can be seen that the magnetic field of a vertically
magnetized body is equivalent to the first vertical derivative of

the gravity anomaly of the same body multiplied by a scaling factor.
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The frequency response of the appropriate one dimensional gravity

to magnetics transformation is

Mu

PRI

Gp

The coefficients for such a transformation can be used to
calculate the vertical gradient of profile data.

There are several ways of extending this principle to calculate
the second vertical derivative. Convolving the vertical gradient
coefficients with themselves gives a set of second derivative
coefficients. The vertical gradient coefficients can be used to
calculate the vertical gradient of the magnetic anomaly and a set of
Wiener filter coefficients to convert the gravity anomaly into the
vertical gradient of the magnetic anomaly will be a set of second
derivative coefficients. Simply applying a set of vertical gradient
coefficients twice to the same data gives the second vertical deriv-
ative of the data.

The outputs of vertical derivative operations performed by the
methods described must be corrected for the scaling factor and con-
verted to the correct units by dividing by the data grid interval.

Fig. 4-9 shows an example of how vertical gradient and second
derivative filters may be used to resolve two interfering anomalies
by suppressing the long wavelengths. The second derivative in this
example was calculated by applying the vertical gradient coefficients

twice.

520

A computer program SPECT1 has been used to calculate the amplitude

spectrum of the vertical gradient coefficients used in the example
of Fig. 4=9. The resultant spectrum,shown in Fig. 4-10 consists of
a straight line with gradient hﬂlcyo o Thus in this example the
Wiener method produces a filter vhose frequency response closely

approximates the theoretical response.
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This method could be used to calculate the m /e ratio for real
anomalies although it should be remembered that for one dimensional
data ™ will be the component in the plane of the profile.

The same general comments apply to two dimensional data but

1
-
NOT.

the radial frequency ‘w>+u™’ must be considered instead of W .

4.3 Two_Dimensional Wiener Filters

The gravity and magnetic fields of prismatic bodies which have
been used in this section were calculated using the computer programs
GRAVPR and MAGPR., The basic subroutines for these programs were
written by Mr. A. Goodacre of the Geology Department, University of
Durham (see Goodacre, 1972).

The calculation of two dimensional Wiener filters involves an
extra problem because a rectangular grid of coefficients is being
designed to convert a rectangular grid of input points into a rect-
angular grid of output points. As the theoretical impulse responses
of most coefficient sets involved in gravity and magnetic transform-
ations have some form of radial symmetry this rectangular effect
causes a distortion of the output. The discussion below illustrates
this effect and shows how it may be reduced by applying a two-dimensional
truncation window with radial symmetry.

The computer program WIENZ2D was used to calculate a 13x15 filter to
deconvolve the gravity field of a prism with top at 0.4 km, and bottom
at 10 km to obtain the density distribution. The gravity field over
a 5x5 prism with depth to the top of O.Lkm and depth to the bottom
of 10 km. was used as the model field for the calculations. This
filter was applied to the gravity field over a 7x5 prism which had
its top and bottom at the same depths as the original model body.

Fig. L-11b shows the output where an unalterated square grid of

field values has been used as the input in the filter calculations.



Fige b=11a Gravity field over a 5x7 km. prism, depth
to top O.4 km., depth to bottom 10.0 km.,
with density contrast 0.1 gm./cc. :
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Fig. 4-11c shows the output where a two dimensional Hamming window
has been applied to the input. Although both outputs give a good
representation of the density distribution, the output in the un-~
tapered case is markedly more oscillatory and asymmetric than in
the tapered case. This is due to both the effect of a step at
the edge of the data and the effect of the input signal being
square. The output from the tapered case does not suffer from
these effects but a low amplitude long wavelength seems to be
superimposed over the entire output. This is apparently a result
of the fact that the Hanming window smooths the spectrum of the
function it is applied to. 'This low amplitude effect is noticeable
in the examples of one dimensional filtering in which the Hamming
window was used.

Fuller (1967) has studied the properties of two dimensional sets
of filter coefficients by computing their TFourier transforms and com~
paring them with the ideal frequency responses of the operations.

A computer program SPECT2, based on the theory published by Fuller,
has been written to compute the Fourier transform of two dimensional
digital data and has been used to calculate the amplitude spectra of
the two Wiener filters discussed above., The results are shown in
Fig. L4-12.

These spectra are basically similar but differ slightly in the
region of the higher frequencies. They also tend to lose their
radial symmetry in the region of the higher frequencies.

Although both spectra have similar numerical values to the
theoretical frequency response of the transformation they become
markedly different in the region of the higher frequencies. These
deviations are not serious because, as the example presented show,

the filters give good results.
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Fuller (1967) has derived amplitude spectra for coefficient
sets derived by Peters (1949), Henderson and Zeitz (1949), Elkins
(1950), Rosenbach (1953) and Henderson (1960) all these exhibit
the same defects, often in a more severe form. Even the filter
coefficients derived by Fuller (1967) using the Fourier transform
method deviate from the ideal frequency response and show an
asymmetry for the higher frequencies. These effects seem character-
istic of two dimensional grid coefficient sets.

Fig. 4-13 shows an example vhere the magnetization of a prism,
magnetized in a non vertical direction with a declination and
inclination different from the earth's field, has been calculated
by Wiener filtering. Fig. 4-14 shows an example of a reduction to
the pole transformation.

In both these examples the low amplitude long wavelength
discrepancy, noticed in the study of profile transformations, is
present. Ixamples of reduction to the pole transformations given
by Baranov (1957) who used a filter method, Bhattacharyya (1965) who
has used a Fourier analysis method and Spector (1968) who has used the
Fourier transform method all show this effect.

Loy Conclusions

The examples shovm in this chapter have shown that Wiener filter-
ing is a straightforward and accurate method for effecting trans-
formations of gravity and magnetic fields, In several instances the
output of the filter deviated from the true output by small amounts.
This is not to be unexpected when attempting to perform an infinite
integral type transformation with finite sets of filter coefficients
and would probably happen in a worse form when using other methods

which are not designed for the situation as the Wiener filters are.
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The greatest errors occur when the integration of long vave-~
length effects are concerned i.e. when compensating for dip in the
direction of magnetization or converting magnetic anomalies to
gravity anomalies, In none of these examples has the distortion
been serious and the long wavelength effects become part of the

regional background.
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CHAPTER 5

APPLICATION OF FILTERS TO INTERPRETATION OF GRAVITY AND

MAGNETIC DATA

5.1 Direct Interpretation of Gravity and Magnetic Data

The theory showing that the undulations of a contact surface
or layer or the vertical thickness of a layer may be approximately
mapped by convolution methods was derived in 1.5.2. The studies
described in this section demonstrate that accurate results may
be obtained by the application of Wiener filters to these problems.

Serbulenko (1965) has realized the possibility of using Wiener
filters to map an interface using a gravity profile. He assigns a
mathematical expression to represent theoretical probability model of
the relief of the boundary and obtains a series expression for the
impulse response of the required filter, The success of Serbulenko's
method depends on assigning correct values to the statistical parameters.
It is not known if the method works because no examples are given.
5¢1«1 Test of Linearity

Because the mapping problem is approximately linear Wiener filter
coefficients for the transformation may be calculated using the same
approach as in Chapter 4,i.e. using a model transformation in which a
given input is related to a known desired output.

To test the linearity of the response,a Wiener filter was applied
to the problem of calculating the depths to the bottoms of magnetic
prisms where the depths to the tops were knowm,

To calculate the filter coefficients the known input Bx to WIEN1D
was specified as the magnetic field over a vertically magnetized prism
with a depth to the top of 2 units, a vertical thickness of 4 units

and a width of 9 units. The desired output Dx was specified as a
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series of 9 values of 4 flanked by zeros. The desired output
represents the vertical thickmess of the prism and the calculated
coefficients thus transform the field into a representation of this
thickness.

‘ Figo. 5-1 shows the results of applying these coefficients to a
set of vertically magnetized prisms which have the same depth to the
top as the model prism. It can be seen that the calculated thick=-
ness is almost exactly correct for the prism with a vertical thick-
ness of 4 units. This prism has the same thickness as the model
prism and this agreement is to be expected. For prisms thinner
than 4 units the calculated thicknesses over estimate the true
thickness but never by more than 10%. Gibb's phenomenon becomes
very noticeable for very small thicknesses because the higher
frequencies become more important and digitization prevents them
being adequately defined. For the priesm of thickness 6 units the
thickness is underestimated by 10% of the true thickness.

Qualitatively it appears that the errors increase more rapidly
vhen the true thickness exceeds that of the model used for calculating
the coefficients. It should be noted that these errors are a
relatively small percentage vhen expressed in terms of the depth
from the plane of observation to the bottom of the prism.

Thus it may be concluded that Wiener filtering can give good
estimates of the vertical thicknesses of the bodies causing anomalies
when the coefficients are designed with a knowledge of the approximate
dimensions of the bodies. An analysis of percentage errors, such as
has been done with the examples of Fig. 5.1 would allow correction
factors to be calculated to refine the output.

The following section demonstrates the accuracy of Wiener filters

for mapping in more general applications.



8-

~ — —=True Depth

Computed Depth

. Units of Distance are Arbitrary

Test of the linearity of the output of a Wiener [ilter.
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prisms which all have their top surface 2 units »eiow
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to their bottom surface.



5:1.2 Examples of Mapping

Figs. 5=-2 and 5=3 show examples where Wiener filters have been
used to map interfaces causing gravity and magnetic anomalies. To
correctly scale the calculated profiles it has been necessary to
know the density and magnetization contrasts and the depth at one
point on the interface. In practice this information would have
to be obtained from a drill hole or by a detailed interpretation of
part of the profile by amother method. One such method is demon-
strated in 7.2.

The results of these mappings give very good agreement with the
true shape of the body. The small oscillations near the ends of the
body are probably due to Gibb's phenomenon,

Fig. 5= shows an example where the Wiener filter method has given
a good estimate of the vertical thickness of a body of constant
vertical thickness but varying depth, by transforming the magnetic
profile over such a body.

Two dimensional interfaces may also be mapped. Fige 5=5 illustrates
an example where the gravity anomaly over a hemispherical shaped body
has been used to map the bottom surface of the hemisphere. The gravity
field over the hemisphere was calculated using a computer program
THIRIM, written by Follman (1969) and based on the method of Talwani
and FEwing (1960).

During the preparation of the examples presented above it was
found that the accuracy of the output varied slightly with the model
used to calculate the coefficients. As to be expected, it was found
that for the best results the model used should have the same
approximate vertical thickness and position of top and bottom as the
body to be mapped. This allows better averages of the correlation

functions to be obtained for calculating the filter coefficients.
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501.3 Conclusions

The accuracy of the output of the Wiener filter direct inter-
pretation method as demonstrated above is sufficient for most inter-
pretation purposes. The results could be improved by an iterative
technique. The results of the first output could be used to compute
a profile to be compared with the original profile and the residual
errors could be reprocessed with the filter coefficients to calculate
corrections to the previous results. This process could be repeated
until a suitable level of agreement is reached between the observed
and calculated profile.

Such iterative techniques, but based on different principles,
have been developed by Bott (1960), Tanner (1967) and Laving (1971).

5.2 Automatic Interpretation of Anomalies over Dykes using

Matched Filters

For a given digital waveform, the digital filter, (subject to the
constraint that the energy of its coefficients is unity), which gives
the maximum output amplitude possible, has an impulse response which
is the reverse of the waveform being filtered. Such filters, dis-
cussed by Treitel and Robinson (1969), are called matched (or cross-
correlation) filters and the maximum output amplitude property allows
an automatic method for interpreting the anomalies due to dyke like
bodies.

A computer program MATCH has been written to crosscorrelate the
anomaly profile due to an infinite vertically magnetized vertical
dyke with the anomaly profiles due to other infinite vertically
magnetized vertical dykes with different depth width ratios. Fig.5=6
shows a plot of the maximum outputs obtained for each correlation.

As expected themaximum maximum output (or maximum correlation)

occurred with the dyke with the same depth and width as the dyke
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being interpreted. The point of maximum match also gives the centre
of the dyke.

To interpret infinite dykes with a dip or non vertical magnet-
ization the process would have to be performed using autocorrelation
functions instead of anomaly profiles because as shown in 6.3.2.1
the autocorrelation function of an infinite dyke depends only on its
depth and width. Also for the method to be applied to real data
linear regional trends would have to be removed from the profiles.
This could be achieved by calculating derivatives and performing
the interpretation using the derivatives.

Although the method works (at least in the noise free case) the
development was not pursued further because of its excessive computer
time requirements. The example shown required 14 minutes CPU time
on an IBM 360/67 computer. This time could be reduced by using less
frequently sampled curves for the crosscorrelations but it is felt
that alternative automatic interpretive methods (e.g. Butler, 1970)
provide more practical ways for interpreting the anomalies due to dykes.

503 Depth Determinations using Myler's Relationship

Slack et al. (1967) describe a method which they claim can identify
the type of body causing an anomaly and calculate its depth by using
combined measurements of total field and vertical gradient.

The basis of their method is as follows:

Many structures produce magnetic anomalies which can be mathematically
expressed in the form

F=K/rm (5-1)

magnitude of the magnetic anomaly

vhere f
K

a constant which depends on geometry, magnetization

and the direction of the earth's field.

I = distance from detecting element to centre of body

N = an exponent depending on geometry



Por such fields it can be proved

IF F .
x§%+‘3ﬂ+,§%§ =z -nfF (5-2)

X and \\,3 are distances measured horizontally along the 3¢ and
Y axes from the centre of the anomalous structure. & is the
vertical distance from the centre of the structure to the point at
which the anomaly is measured. Equation 5.2 is known as Hyler's
relationship.

If the field and the vertical gradient are measured, and the
horizontal derivatives are calculated at different points, sets of
linear equations are obtained which allow the calculation of Z and A,

Slack et al. state thath = 2 for a horizontal cylinder, n = 3
for a sphere and that © is independent of Z and diagnostic for the
depth=width ratio of prismatic bodies. They combine this anomaly
identification with the depths determined using & to produce
geological interpretations of aeromagnetic data.

The theoretical basis of this interpretation has been seriously
questioned by La Fehr (in Steenland, 1968) who has shown that W is
in fact depth dependent for many shapes and Z is the depth to the
centres of the causative bodies and not the tops as Slack et al. have
taken for their interpretations.

The principles of the method however do have applications provided
that its limitations are realized. From the formulae published by
Heiland (1963) and Jacobs (1963) it can be seen that:

For magnetic anomalies:

N = 1 for lines of magnetic poles
N = 2 for isolated magnetic poles
N = 3 for dipoles and spheres
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Tt should be noted that W is not equal to 2 for horizontal magnetic
cylinders as stated by Slack et al. This can be confirmed using the
formula for the field over a horizontal cylinder published by Parker
Gay (1963).

For gravity anomalies

2] 1 for point source
" = 2 for infinite horizontal line source
In cases where these configurations of poles approximate geological
shapes Euler's relationship can be useful.
If the vertical gradient and field are known at two levels over

the maximum of an anomaly (the point where its horizontal derivatives

are zero) then

OF.
5-3)
€
52 - 2 %]
£ 02
e nN= Z  2F (54
F 9

where

Z = depth to centre of body
N = decay exponent
F. = field at first level

OF = vertical gradient of field at first level
f, = field at second level

OF. = vertical gradient of field at second level

A2 = vertical distance between two levels of the

field being used
If a field is known on one level then the other field and vertical
gradient values necessary to solve equations 5.3 and 5.4 may be

calculated by filtering methods (see Chapter 4).



An application of this method will now be demonstrated.

For two dimensional dyke like bodies with an elongation in the
direction of magnetization and a depth width ratio greater than 1
a line of poles approximation may be used. As a test example a
magnetic profile striking 342°-was calculated across an infinite
vertical dyke depth 30 units, width 10 units in a field with
declination 350° and dip 70° downwards. As the strike of a profile
diverges from the plane of the azimuth the apparent dip of the field
in the plane of the profile approaches 962 and in fact becomes 90°
when the profiles are perpendicular to the plane of the azimuth.
Thus in the example being considered the dip of the field in the
plane of the profile is close to 90; and only the magnetic poles
induced on the top of the body should have any effect. The line of

poles model should be valid in this situation.

6l

To numerically interpret the anomaly the field 4 units higher was

calculated by modelling and the vertical gradients of the fields at
the upper and lower levels were calculated by filtering.

The values obtained were

F = 24.3 gammas Fa = 20.6 gammas
OF = 0.752 gammas/unit Of = 0.590 gammas/unit
5z <z
AZ = L units
Z =1k x 0,590 = 2,36 = 32,8 units
0,590 =20.6 x 0,752 0.590=0,662
23.E
1 = 32.8 x 0,752 = 1,05
23.4

The M parameter estimated (1.05) gives almost exact agreement
with the theoretical value for a line of poles. The depth of 32.8

units is reasonable because the magnetic pole approximating the top
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of the body would be expected to be below the top of the body causing
the anomaly.
From the figures in the calculation however it can be seen that
small inaccuracies in the estimated vertical gradients would cause large
errors in the estimated depth. It must be concluded that for real data

incorporating regional effects and noise it may be impractical to apply

the method.
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CHAPTER 6

OPTIMUM DIGITAL FILTERS

6.1 Imtroduction

Gravity and magnetic interpretation is often hindered by the
presence of anomalies caused by bodies other than those of interest.
It is not possible to completely eliminate these noise anomalies
by linear filtering without distorting the signal anomalies because
there is always spectral overlap between the signal and noise.

If the autocorrelation of the noise can be estimated it is possible
to design, according to a least squares criteria, an optimum
Wiener filter such that the signal suffers minimum distortion while
the noise is reduced by as much as possible.

6.2 Theory of Optimum Wiener Filters in the Presence of

Autocorrelated Noise

The following theory, for the design of two dimensional Wiener
filters in the presence of autocorrelated noise, has been adapted
from the treatment given by Treitel and Robinson (1966) for one
dimensional seismic applications.

We assume that the two dimensional digital signal b(x.)is
embedded in stationary noise Uxy)which has a known autocorrelation

function (ﬁuu. The digital signal to be processed S(x.v)is the sum

J
i

of the signal and noise (which are assumed to be uncorrelated).

i.e. S, v) = bgoyy + Uoo)
We wish to design a digital filter according to two criteria:

(i) Shape the digital signal B(XN)(with dimensions 2 j-+!,  k+!

where -}« X &) and -k £/ & Kk into the desired digital output d(x,+)
with (dimensions 2J'+:1vm-t y 2k4angi where —(jam)<Ex L (jimd

and - (kin &% 2 ‘k-n' such that the Error Energy is a minimum.
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(ii) Produce as little output power as possible when the stationary
noise is the only input. The power of a signal is the sum of the
squares of its amplitudes.

The quantity to be minimized is:

I = (sum of squared errors between the desired output and the
filtered signal wavelet)
+ Y (Power of filtered noise)
Y is a weighting parameter whose magnitude depends on the problem.

Written mathematically

o ok
[= 3 3 (- Con)+VE[NeD]

X=-m-'! ‘lv-V\-“/\

where E{ } denotes the ensemble average
and

M) = ‘F.’\S,t,\_ U(x-s, - &)

™13
™1s

n
s

S —na L =iy

CJXpQ and-ﬂg¢q have the same meaning as in 4.1.
Using the same approach as in 4.1, i.e. taking the partial
derivatives of I-with respect to the filter coefficients and equating

to zero, the following set of simulteneous equations is obtained.

(/ﬁbz(‘:'j) = Z }: -F(S't)'[(/érl (C'S.j‘k)'w¢unj (C-S,l-k)] (6-'2)
Szt frah )

The matrix of the right hand side of this equation has the same
symmetry properties as the matrix of equation (4=7) and may be solved
by the same methods.

The computer programs WIEN1D and WIEN2D have been generalized to
be capable of caiculating Wiener filter coefficients in the presence

of autocorrelated noise.
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Clarke (1969) has published the theory for the calculation of
optimum Wiener filters to be applied in the frequency domain. The

transfer function of an optimum Wiener filter is:

Hopt (o) = Por(wo)
=8 (w, o) + V Pun (W, o)
where
P

11 is the power spectrum of the autocorrelation of the input

r1 is the power spectrum of the crosscorrelation of the input
and desired output

i’8n i the power spectrum of the autocorrelation of the noise
As remarked in 4.1 the frequency method can be difficult to apply.

This chapter demonstrates the generality and relative simplicity of

the space domain approach and also emphasizes the importance of the

weighting parameter Y , a factor which Clarke (1969) has ignored.

6.3 Estimation of Average Noise Autocorrelation Functions

For the theory derived in the previous section to be correct in
the statistical sense the correlation functions used for solving
equation (6~2) should be averages.

In Chapters L4 and 5 it was demonstrated that the average co-
relation functions involving the input and the desired output can be
approximated using the fields over bodies which have the approximate
average dimensions of the bodies causing the field to be transformed.

Noise anomalies in magnetic data are most often caused by
intrusions and lava flows which can be approximated by prism type
bodies and layers of poles and dipoles. In such situations it is
possible to obtain realistic estimates of the noise autocorrelation.
Although the following discussion is mainly concerned with magnetic
examples, the theory is equally valid, in fact simpler, for gravity

applications.
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6.3-.1 Autocorrelation Function of Fields due to Three Dimensional
Bodies

6.3.1.1 Prisms

Spector and Grant (1970) have studied the power spectra of
ensembles of prism type bodies (with a known direction of magnet-
ization) and they use the assumption that the expected power density
function is equal to the ensemble average of the power spectrum.
(The power spectrum is the square of the Fourier amplitude spectrum).
By reducing the magnetic field to the pole and by assuming that the
parameters in the expression for the spectrum hawe rectangular
frequency distributions they obtain an analytic expression for the
power spectrum in terms of the mean values of the parameters causing
the field. Although the assumption of rectangular frequency dis-
tributions for the variables appears an oversimplification, tests
by Spector and Grant (1970) on the power spectra of real data
confirm the validity of their approximations.

Because the autocorrelation function 9511 is related to the
power spectrum !H(uJ!Lby the Wiener Khintchine theorem (Hsu, 1970,

p.98) .

7 ,
: ¢rr T PAwW e ? ™ du

il.e.
the average autocorrelation of the noise can be determined from a
pover spectrum calculated using estimated averages. Spector and
Grant (1970) demonstrate that logarithmic power spectra may be used
to estimate average signal and noise parameters for survey data.
603.1.2 Poles and Dipoles

The average autocorrelation function of the field is not equal to
the autocorrelation function of the field caused by a body whose

parameters are the average of those of the bodies causing the field
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except in the limiting case where all the bodies are identical
(this property can be seen in the formula published by Spector and
Grent (1970)). This condition, however, is closely approximated
when the dimensions of the bodies causing the noise are such that
they can be approximated by poles and dipoles i.e. when the depth
is large and the block size is small.
Clarke (1969) has derived the autocorrelation function for a
random distribution of point masses on a plane. It is the same
as the autocorrelation function of a single point source multiplied
by a scaling factor. Similarly it can be shown that the auto=
correlation functions of random distributions of poles and dipoles
(with constant direction of magnetization) on a plane are the same
as those of single poles and dipoles multiplied by scaling factors.
Spector and Bhattacharyya (1966) derive the expressions for the
autocorrelation functions of point poles and dipoles and these could
be used to calculate the form of model noise autocorrelations. The
amplitudes of the autocorrelation functions estimated in this way
would not be correct but this is not important because, as is shown
below, the weighting function) in equation (6-2) is the critical factor,
No published method is known to the author for calculating an
autocorrelation function of a field caused by an assemblage of three
dimensional bodies with random directions of magnetization. It
could possibly be estimated by calculating the autocorrelation
function of an assemblage of randomly distributed model bodies with
random directions of magnetization. It could also be estimated by
autocorrelating data known to be caused by such noise.
6.3.2 Autocorrelation Functions of Fields due to Two Dimensional Bodies
An important property of the autocorrelation functions of fields
due to two dimensional bodies is that they are independent of the

direction of the component of measurement and the direction of
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magnetization. This can be shown by considering the generalized

spectral representation of these fields (equations (1=8) and (1=9)).
The power spectrum is the square of the Fourier amplitude spectrum
and is independent of any directional term in the two dimensional
case. As the autocorrelation is related to the power spectrum
through the Wiener Khintchine equation the autocorrelation must
also be independent of the direction terms., This fact greatly
simplifies noise modelling for the two dimensional case as only

the geometry of the noise bodies needs to be considered.
6039291 :Dykes

Bruckshaw and Kunaratnum (1963) have shown that for any
infinite dipping dyke with a horizontal top there is a vertical
infinite dyke with the same depth and width, but not necessarily the
same direction of magnetization, which gives the same magnetic field.
Thus the autocorrelation function of infinite dykes must be independent
of the dip of the dyke and depend only on the depth, width and the
effect of the magnetization as a scaling factor.

As the depth width ratio of the dyke increases the anomaly due
to the dyke becomes similar to the anomaly due to a thin sheet at
the same depth. This approximation becomes valid when the depth width
ratio is greater than 1, and in such cases the autocorrelation function
depends only on the depth of the dyke and a scaling factor.

Usually the dykes in a dyke swarm causing noise on a magnetic
profile all occur at the same depth and have widths which are small
with respect to the survey height. In such situations the auto-
correlation of the anomaly due to a vertically magnetized, vertical,
infinite, thin dyke, with its top at the same depth as the dyke
swarm, would give a good estimate of the shape of the noise auto-

correlation.
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6.3.2.2. Lava Flows

A lava flow causing an irregular magnetic field can be approx-
imated by a layer of differently magnetized blocks or dipoles.
If the lateral magnetization variation in the lava flow is random and
rapid then the form of the noise autocorrelation may be estimated
by calculating the autocorrelation of the field due to a single
vertically magnetized block or dipole with the same depth and
vertical thickness parameters as the lava flow.

Naidu (1967) has derived the expression for the autocorrelation
of the potential field due to a random distribution of sources in a
vertical plane.

6.4 Fxamples of Optimum Wiener Filtering

Fig. 6-1 shows an example where an optimum Wiener filter has
been applied to remove the effects of a small shallow block from the
magnetic profile over a deeper, relatively large vertical dyke.

To calculate the filter coefficients, the input signal was taken
as the anomaly over the dyke and the noise was taken as the anomaly
over the block. The desired output was specified as the anomaly
over the dyke, The filter was thus designed specifically to suppress
the effects of the block relative to the effects of the dyke.

Fig. 6=1 shows how critically the appearance of the filtered
output depends on the weighting factor V which determines the
relative reduction of the noise power. To determine the optimum )
a compromise choice must be made between noise reduction and signal
distortion. This choice is best made by visual inspection of
different outputs.

From the theory given in 6.3.2 the coefficients calculated for
this example are generally applicable to situations where random
distributions of similar blocks overly random distributions of

infinite dykes with the same depths and widths as the model dyke
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Application of an optimum Wiener filter to separate the
macnetic effects of a block type body and a vertical dyke.
Top ciagram shows original combined eifects of the bodies.
Bottom diagram shows the results of applying Wiener filters
calculated using different values of pp , the noise reduction
factor.
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of Fig. 6=1. This is verified by the example shown in Fig. 6=2
where these coefficients have been successfully applied to suppress
the noise due to such a random distribution of blocks overlying a
dipping dyke which has the same depth and width as the vertical
dyke used to calculate the coefficients.

6.5 Other Work on Optimum Filters

Clarke (1969) has designed optimum downward continuation and
derivative filters using the frequency domain alternative for Wiener
filtering. Clarke in practice only deals with an example where the
noise is white (i.e. the noise power is equal at all: frequencies) and
his method is difficult to extend to more general applications.

Strakhov (1966a,b) has developed a filtering scheme in which the
filter coefficients are designed under two constraints:

a) the distortion of the signal is a minimum

b) the variance of the noise is reduced by a given factor
Strakhov's filter is thus designed on similar principles to the Wiener
filter. Naidu (1966), (1968) has successfully applied Strakhov's
method.

Spector (1968) estimates the noise component of the logarithmic
power spectrum of magnetic fields visually. By subtracting this
component from the spectrum and transforming the field back into the
gpace domain a form of optimum filtering is achieved. It is difficult
to estimate the amount of signal distortion with this method.

Matched filters, discussed by Treitel and Robinson (1969) in a
seismic context, are a form of optimum filter which are designed to
give the largest possible output value for a given input. The
matched filter for a waveform is the reverse waveform of itself and
the output is thus its autocorrelation function. If autocorrelated

noise is present the matched filter may be designed to allow for it.
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Tests by the author have shown that in practice the matched filter
provides a good method of noise suppression but the output waveform

becomes very broad and this significantly reduces its usefulness.

6.6 Concluding Remarks

The theory and examples presented have demonstrated the use of
space domain Wiener filters in providing an optimum separation between
the effects of two different types of bodies. The same principles
can be extended to apply this method to any field transformation;
for example to suppress noise during a gravity to magnetics trans-
formation or when an interface is being mapped directly from gravity
or magnetic data.

The discussion above was concerned with geologic noise. If the
noise is caused by measurement and compilation inaccuracies and can
be regarded as white the method can still be applied. In such a
situation the noise waveform must be represented by a unit spike (a
unit spike contains equal amounts of all frequencies (Hsu, 1970, p.102)
and is thus spectrally identical to white noise except for a scaling
factor). It would be necessary to conduct tests to determine the

optimm weighting factor Y for the white noise suppression.



CHAPTER 7

MULTICHANNEL WIENER FILTERS

7a1 Introduction to Theory

Many linear systems have multiple inputs and outputs, all of
vhich are interrelated. Such systems are called multichannel systems
and as with single channel systems appropriate filtering operations
on the input channels can yield output data which presents the dis~
tribution of parameters in a mamner not obvious in the input data.

The design of digital multichannel Wiener filters has been
described by Robinson (1967), Galbraith and Wiggins (1968), Davies
and Mercado (1968) and Treitel (1970) and is a straightforward
extension of the theory for single channel Wiener filters.

An outline of this theory is presented below.

We wish to operate on a set of digital inmputs b@,s) (¢ is
the input channel index, $ is space coordinate), with a digital filter

4&@,3) to produce a set of desired digital outputs Ckﬁs) such that
the average squared difference between the actual output U(j.s)and
the desired output is a minimum. Tig. 7.1 shows a block diagram of
the input output relationships in the case where there are three input
and three output channels.

&¢§)= input on C*h channel.

'&(dj): filter for L' input a.ndlj‘L output channel

j(j§)= output on J*L'channel
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Mg, 7-1 Block diogram illustraeting a smultichannel filtering
syster with three iuput and three ouiput channels.
. . - = Q
(Diagram reproduced from Galbraith and Wigsins (1968)).
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By taking partial derivatives of the equation for the squared
error with respect to each filter coefficient and equating each of
these equations to zero the system of multichannel normal equations
which allow calculation of the filter coefficients is obtained.
For the case with ¥ input channels of length £ , and n
output channels where the filters for each channel are to

consist of m+1 coefficients, the normal equations are
o)
(e

where the autocorrelation

“.C(i,cl,k). Ree,ps-wy= Geg, p.s) (7-1)

0

ARdE

R(L, p,s-k) = Z b(L, -k, b(P,{—s)

and the crosscorrelation

Cq(ol/,p,s) = Z’_ d(cl.{).b(_P,i-s)
t

The symmetry properties of the normal equations, when expressed
in matrix form, have been used by Wiggins and Robinson (1965) to
devise a recursive method for their solution. Robinson (1967) has
published subroutine WIENER which incorporates this method and can -
calculate multichannel Wiener filter coefficients. The author has
written a computer program MULTIW based on WIENER, which as well as
calculating the filter coefficients, applies them to multichannel data.

7.2 Detection of Anomalies with a given lMagnetization-Density Ratio

If a random distribution of block type bodies of known depth,
thickness and direction of magnetization occurs and gravity and
magnetic profiles are available over the bodies then it is possible
to design a multichammel filter to detect the bodies with a given

magnetization=-density ratio.
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To caleculate such a filter the input to MULTIW must be specified
as the gravity and magnetic fields over such a block and the desired
output must be specified as a square wave whose width is equal to the
width of the hlock. The resultant filter will thus deconvolve the
appropriate factors from the two input channels and add the outputs
in such a way that the desired square wave occurs as the output.

Tig. 7.2 demonstrates applications of such a filter which when
applied to test data generates the desired square wave vhen a
particular magnetization-density ratio is detected. It should be
noted that the sgquare wave outlines the causative body regardless of
its width. In cases vhere coincident gravity and magnetic anomalies
occur and the magnetization density ratio differs from the target
ratio, the output deviates from a square wave.

The amplitude of the square vwave output is scaled relative to
the amplitude of the model square wave used in the calculation of the
coefficients by the proportion that the magnetization and density of
the detected bodies are different from the magnetization and density
of the model bodies being used for the coefficient calculation.

Such a filter method, as the one demonstrated in this section,
could be applied in an area where numerous dykes occur but only those
with a particular magnetization density ratio are of economic interest.

It is thought that this method using multichannel filtering to
detect predetermined ratios of physical properties could probably be
extended to include combined analysis of gravity, magnetic and
electromagnetic results. Such an approach could identify the type
of rock causing the anomalies. The application of the method to
processing multichannel electromagnetic results is beyond the scope

of this thesis but it would be well worth a separate study.
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7.3 Optimum Strike IMiltering

Chapter 6 discussed the adaption of the Wiener filter method to
provide an optimum separation between two types of anomalies. Multi-
channel Wiener theory allows filters to be designed which provide an
optimun resolution between anomalies with different strikes. General
purpose strike filters have been designed by Fuller (1967), however
the filters described in this section are optimum (in the least squares
sense) and the design incorporates information about the type of
anomalies to be separated as well as their strikes.

Galbraith and Wiggins (1968) discuss the application of multi-
channel Wiener filters to filtering events with different moveout on
seismic records, Their theory can be adapted to gravity and magnretic
applications.

We consider the multichannel input b(é,s) to consist of two parts,
the signal S(i,s) and the noise N(,s)

i.e. Dl,s) = Sci,s) + MCL,s)

tHle wish to design a filter such that the signal is distorted by the
least possible amount according to the least squares criterion and
that the noise power is reduced by as much as possible. Assuming

that the signal is not correlated with the noise we have

e SiG NOISE
Reegiy = R¥Ce 50+ VRS
3 L SiG
and Grepit)= RO sy

)  is the weight of the noise reduction
These relations can be substituted in the multichannel normal
equations (7-1) to give a set of simultaneous equations for the
calculation of multichannel Wiener filters in the presence of auto-
correlated noise. The computer program MULTIW has been generalized

to include this case.
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Multichannel correlation functions consist of series of cross—
correlations and autocorrelations between the various input and output
channels, If these channels consist of gravity or magnetic profiles
over two dimensional bodies, then, providing that all the bodies
have the same dip and direction of magnetization the same properties
will apply for multichannel correlation functions as deduced in
Chapter 6 for single channel correlation functions of fields over
two dimensional bodies. This means that model correlation functions
may be calculated using vertical magnetization instead of inclined
magnetization and for the calculation of correlation functions of
fields over infinite dykes the fields over vertically magnetized
vertical dykes may be used.

An application of multichannel strike filtering will now be
demonstrated,

The problem is to resolve the effects of two sets of dykes striking
in different directions. The dykes of interest have depth 4 units, width
1 unit and strike at right angles to the direction of the profiles. The
dykes to be filtered have depth 4 units, width 0.7 units and strike
at 45° with respect to the profiles. Both sets of dykes have vertical
dips and are magnetized by induction in a field dipping 65° in the plane
of the profiles.

To calculate coefficients to perform this separation the input
signal vas specified as a set of three profiles over a dyke with the
same dimensions as the dykes of interest. The position of the dyke
was the same for all three profiles thus modelling a situation where
the strilke of the dyke is at right angles to the profile. The desired
output was specified as a single profile over the dyke. The noise was
specified similarly to the signal except that the positions of the dykes

were offset relative to each other to simulate a strike at 45° relative
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to the profiles, Because the correlation functions are independent
of the dip of the field it has been possible to use the fields
over vertically magnetized bodies for the model fields.

Fig. 7=3 illustrates an example where the filter coefficients
calculated in the manner described above have been successfully
applied to separate non~vertically magnetized dykes with different
strikes. It has been found by testing that the optimum visual
resolution of the two types of anomalies can be improved by
empirical variation of the noise reduction weighting factorV .

As with other methods of optimum filtering the applicability
of this method depends on how well the average correlation functions
of the signal and noise are estimated. In well defined situations,
such as in the example presented above, the correlation functions
can be realistically estimated from model fields and useful sets

of filter coefficients can be obtained.

7.4 Comments

One possible application of multichannel filtering which has
not been investigated is the combined analysis of gravity and magnetic
profiles to map interfaces, Because the gravity and magnetic profiles
contain the same information about the interface it is concluded that
no significant improvement would be gained over results obtained by
averaging separate mappings using gravity and magnetic profiles.
A similar conclusion has been reached by Davies and Mercado (1968)
who have compared multichannel seismic deconvolution results with

those obtained from the averages of single channel deconvolutions.
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CHAPTER &

EXAMPLES OF THE APPLICATION OF WIENER FILTERS TO REAL DATA

8.1 Reduction to the Pole and Magnetization Caleculation for an

Anomaly in the English Lake District

An aeromagnetic anomaly from the northern end of the English Lake
District was chosen to test the Wiener filter method for reduction to
the pole and magnetization calculation. A profile, digitized from
the Aeromagnetic Map of Great Britain (1964), is shown in Fig. 8~1a.
The data of this profile was converted to the regular spacing
necessary for filtering using the computer program SPLINE, which applies
the cubic spline method of interpolation (Bhattacharyya, 1969).

The anomaly was assumed to be magnetized solely by induction in
the earth's field and the symmetry of the anomaly obtained by the
reduction to the pole process tends to confirm this (Fig. 8-1b).

The form of the anomaly suggests that it is caused by a vertical
prism type body with a finite depth extent and Fig. 3¢ shows a
magnetization profile assuming that the top of the body is 100 metres
below ground surface and its bottom is 10 km, below ground surface.

The depth estimate for the top of the body is based on geological
conditions outcropping in the area (Bastwood et al., 1968) which suggest
the anomaly may be due to Ordovician Borrowdale Volcanic rocks masked
by a thin cover of Carboniferous and Triassic sediments. The study

of the magnetic basement in the area, described in the next section,
indicates that 10 km,is a reasonable limit to the bottom of the body.

Tests on model bodies show the accuracy of the depth to the bottom
is not very critical for magnetization determinations in situations
with the dimensions being.considered. The magnetization profile has
the square wave form expected although it has high frequency effects

caused by data noise.
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Bush (1971) conducted ground magnetometer surveys over the anomaly
and has performed a detailed analysis of his results. Bush concluded
that the anomaly is caused by rocks of the Borrowdale Volcanic Series
in a steeply dipping limb of an eroded anticline, Bush used several
methods of interpretation and decided that the magnetization is in=-
duced with a magnitude of 0,0009 emu and that the body has a depth
of burial of 200=300 metres below ground level and its depth extemt
is approximately 6 lm,

Nesbitt (1965) studied the magnetic properties of the Borrowdale
Volcanic Series and has shown that the magnetization is predominantly
induced with a magnitude of 0.0008 emu.

The slightly lower estimate of 0.0007 emu obtained by the Wiener
filter method is probably the result of assuming a depth extent larger
than it really is.

8.2 Basement Mapping for the Southern Uplands and Solway Firth

A striking feature of the aeromagnetic map for the south of Scotland
and the north of England (published by the Geological Survey of Great
Britain, 1964) are the alternating belts of high and low values of the
magnetic field. These zones, approximately 40 km. wide and striking
with a Caledonoid trend are particularly noticeable in the region of
the Southern Uplands between the Midland Valley and the Solway Firth,

The geology of the Southern Uplands has been described by Greig
(1971) and consists of tightly folded Lower Palaeozoic sedimentary rocks.

Walton (1965), from palaeogeographic studies, has deduced the
position of an axial rise influencing sedimentation in Ordovician times.
This rise corresponds in position with the magnetic high over the Southern
Uplands.

The existence of this rise is confirmed by seismic evidence

published by Agger and Carpenter (1964) which shows a rise in the non
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sedimentary crust beneath the Southern Uplands.

The gravity studies of Bott (1965) indicate a sedimentary basin
corresponding to a magnetic low positioned over the Solway Firth.

Thus the regional magnetic anomalies over the Southern Uplands
appear to reflect undulations on a magnetic basement.

Walton (1963) has reinterpreted the structure of the sedimentary
rocks of the Southern Uplands and disagrees with the ideas of Peach
and Horne (1899) that they consist largely of isoclinal folds. Walton
considers the dominant structural features to be a series of faulted
monoclines., There is no magnetic evidence relating to these mono-
clines and this suggests that the magnetic basement and the overlying
sediments may have reacted differently to the compression which has
obviously occurred within the Southern Uplands. The magnetic basement
appears to have merely buckled as a result of crustal shortening whereas
the Lower Palaeozoic sediments have undergone both thrusting and folding.

This section demonstrates the application of the Wiener filter
method to the mapping of the magnetic basement.

For the interpretation the hasement was assumed to be uniformly
magnetized in the direction of the earth's field.

The profile shown in Fig. 8-2 was digitized at points where the
contour lines crossed the line of the profile and the spline interpolation
routine was used to convert the data to a regular spacing. The computer
program WIENID was used to produce a depth profile assuming that the
magnitude of the magnetization was 0,001 emu., To convert this result
into a true depth profile it is necessary to know the depth at one
point on the profile and the magnetization of the basement. In this
situation these parameters were unknown so a non=linear optimization
routine was written to solve for the three unknowns i.e. the constant
regional background, the magnetization and the depth to one point. The

computer program written, MINIM, incorporated the non=linear optimization
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routine MINUIT published by CERN (1970) and used the relative depths
calculated by WIEN1D, WIEN1D took 20 seconds to perform the
filtering operating and MINIM took 4O seconds to calculate the
three unknowms.

Fig. 8-2 shows the calculated depth profile. Al=Chalabi (1970)
has interpreted part of the same area using a non-linear optimization
routine in which the magnetization (direction and magnitude), regional
background, and all the depth points were treated as variables.
Al=Chalabi obtained a direction of magnetization closely corresponding
with that of the earth's field but the magnetization value he obtained
(0,001 emu) differs from the value obtained in the example above.

As was shown in Chapter 1, the thickness of a layer and its
magnetization are both scaling factors of the equivalent layer for a
magnetic field and it must be expected that for thin layers their
product is the important factor and not their individual values.

This means that a large broad minimum would be expected in any least
squares attempt to optimize these factors, This effect could cause
the discrepancy.

Laving (1971) has interpreted the Solway Firth anomaly using
different set values of magnetization. The profiles determined by
Laving (1971), Al-~Chalabi (1970) and in Fig., 8=2 are all basically
the same in shape but differ in amplitude due to the different values

of magnetization used.

8.3 Density Deconvolution and Mapping of the Weardale Granite

Gravity surveys of the Northern Pennines of England,summarized by
Bott (1967b),revealed a gravity low which suggested the presence of a
granitic intrusion (the Weardale Granite). Subsequent drilling at
Rookhope encountered granite at a depth of 380 metres below the ground

surface.



85,

Bott (1967b) has interpreted gravity profiles across the Weardale
granite using end corrections and has shown that it approximates a
prism with its bottom at approximately 10 km.

The gravity field over the Weardale Granite has been used to test
the density deconvolution method developed in 4.3.

The gravity map of the Weardale Granite (Fig. 8-3) was digitized
on a 2.5 km grid and Fig. 8=4 shows the result of applying a filter
designed to calculate the density distribution assuming that the top
of the body is at O.4 km. and the bottom is at 10 km.. If the granite
was caused by a prism type body with these dimensions then the output
of the filter operation would be a plateau of constant density values
outlining the areal position of the prism. The calculated output
only approximates this and this is thought to be the result of relief
on the top of the granite.

It was shown in Chapter 5 that the output of a deconvolution
process in an application such as described above gives a very good
approximation to the shape of a body. To convert from the demsity
contours of Fig. 8=4 into contours of relative relief the following
relationship applies:

Thickness of Prism used to calculate coefficients

depth = -
density contrast of body

X difference in computed density between two points

Bott (1967b), from a consideration of density data and his
quantitative interpretation considers a possible density contrast of
the Weardale Granite to be 0.13 gm./cCee. In the example shown in
Fige 8=l this is very close to the computed density difference between
the level in density over the Weardale Granite and the background level.
However, when attempting to calculate a depth contour map of the Wear~

dale Granite using a density contrast of 0.13 gm./cc. and tying all
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calculations to the known depth of the granite in the Rookhope
borehole, some of the depths came out above the ground surface.
This is probably due to regional effects being superimposed on the
gravity field. It could also be due to the fact that the topography
is irregular in the area of the survey., The free air gravity
correction does not alter the level of the observation point so the
observed field is effected by varying distances from the top of the
body. It is also possible that there are density inhomogeneities
in the granite and surrounding sediments.

Gibb's phenomenon may account for some irregularities in the
napped surface.

Nevertheless it is considered that the density deconvolution
method provides a better detailing of the Weardale Granite than the

original gravity map.

8.4 Removal of White Noise from a Magnetic Field

TFige O~3 shows the part of the Aeromagnetic Map of Great Britain
(published by the Geological Survey of Great Britain (1964)) which
covers the area underlain by the Weardale Granite. The magnetic effects
of the granite are almost completely obscured by secondary magnetic
features and although some of these can be related to Tertiary dykes
the distribution of the noise anomalies appears,to a first approx-
imation, to be random.

To enhance the effects of the Weardale Granite an optimum Wiener
filter was designed to suppress random noise relative to the magnetic
effects of a prism with the dimensions deduced by Tanner (1967) from
an interpretation of the gravity field over the Weardale Granite.

The design of optimum filters was discussed in Chapter 6 and the
computer program WIENZ2D is capable of calculating and applying such

filters. The filter was designed to provide an optimum separation



87,

between the magnetic effects of a prism (depth O.4 km., vertical
thiclmess 10 km., north south width 20 km., and east west width
20 km. magnetized by induction) from vhite noise. White noise
is completely random noise containing equal amounts of all frequencies.
A unit spike has the same frequency spectrum as white noise (Hsu 1970,
P.102) and it is thus possible to specify the noise to be removed as
a unit spike,

It proved necessary to vary the noise reduction factor to achieve
a visually optimum noise removale The filtered map, shown in Fig. 8=5,
reveals a low amplitude negative anomaly corresponding to the Weardale
Granite and indicates that even though the model used for the noise
is an approximation the method can provide useful results.

The contour map of Fig. 8=5 was automatically plotted using a
modification of the computer program published by Holroyd and

Bhattacharyya (1970).

8.5 TFiltering Operations on the Magnetic and Gravity I'ields Over a

Postulated Tertiary Intrusion in Northern Ireland

The gravity and aeromagnetic maps of Northern Ireland (published
by the Geological Survey of Northern Ireland, 1967, 1971) reveal large
co-incident gravity and magnetic anomalies centred on Dromore, County
Tyrone. Interpretation of these anomalies in 9.6 suggests they are
caused by a buried Tertiary igneous centre. In the examples discussed
below, gravity and magnetic profiles across the Dromore Intrusion have
been used to demonstrate the application of Viener filters to the
resolution of anomalies.

The magnetic profile over the intrusion (Fig., 8-6) is dominated
by the effects of a reversely magnetized Tertiary dyke swarm which
obscure the anomaly due to the intrusion. Tollowing the theory

given in Chapter 6 it has been possible to design an optimum /iener filter
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to suppress the effects of these dykes and to enhance the effects of
the intrusion.

The signal to be enhanced was specified as the profile over a
magnetic prism with depth 0.3 km., width 25 km., and vertical thick-
ness 10 km. These parameters were estimated from the quantitative
interpretation of the gravity anomaly in 9.5.

The noise was specified as the magnetic field over a 0.1 kme
thick, vertical, vertically magnetized dyke with its top at ground
surface. The shape of the autocorrelation function of such a dyke
is the same as the average autocorrelation function of a random series
of dykes such as cause the noise on the profile.

The filtered profile shown in Fig, 3~6, in which the effects of
the dykes have been successifully removed, confirms the validity of
the models used to calculate the optimum filter coefficients,

The remaining examples in this section demonstrate the high pass
filtering effects of dovmward continuation and vertical gradient
operators. The design of such filters was described in Chapter k.

Fig. 8=7 shows a gravity profile over the intrusion along the
same line as the magnetic profile. Several bulges on this profile
suggest the presence of other bodies besides the intrusion. The
gravity field continued dowm 1 km. (Fig. 8~7) effectively resolves
these anomalies and allows a better appreciation of which effects are
due to the intrusion and which are not. Although the continuation
distance is greater than the depth to the top of the body interpreted
in 9.6 the continued field has remained stable. This is because a
profile across a body with finite lateral extent is being treated and
the end effects effectively remove some of the sharpness (high

frequency content) from the anomaly.
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Also shown in Fige 8=6 are calculated vertical gravity gradient
profiles. Both vertical gradient profiles were computed using the
same filter coefficients but with a different effective spacing of the
digitized points on the profile. The results demonstrate a little
appreciated feature of filter coefficients i.es the values computed
for the vertical gradient are not numerically equal even after the
normalizing effect of the sample interval is compensated for. The
results are similar however and the discrepancy can be atiributed to
numerical effects of approximating an integral expression with different
sized finite elements. In terms of frequency response, altering the
sample interval alters the effect of the filter operator on the
different wavelengths because the frequency response of the operator is
related to the size of the sample interval.

The vertical gradient profiles have isolated the smaller anomalies
noticed on the downward continuation profile and have completely

eliminated the effects of the intrusion.

8.6 Summary and Conclusions Concerning the use of Wiener Filters for

Transforming Gravity and Magnetic Fields

The test examples demonstrated with model and real data show that
the Wiener filter method is a simple and accurate method for performing
any transformation of a gravity or magnetic field which involves a
convolution type operation. Although Viener filter theory was
originally developed for the statistical processing of stationary
signals the approximations which have been necessary to adapt the
method to processing non stationary signals with finite length
operators do not appear to be critical.

In the examples of applying optimum filtering to separate two
types of anomalies it has been necessary to assume models for the

average signal and noise waveforms. Even though only simple
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representations of the true situations have been made the results, which
may deviate from the output of an exact optimum filter, provide useful
resolution of anomalies.

There are several other possible applications of Wiener filters
to the processing of gravity and magnetic fields.

Gravity and magnetic terrain effects are the result of integrations
of topographic effects and it would be possible to use the computer
programs WIEN1D and WIENZ2D to compute such effects by using the
modelling principle to obtain suitable coefficients.

Wiener's (1949) original work included the design of inter=
polation and extrapolation methods and the programs developed could
be applied to these uses,however the altermative interpolation and
extrapolation routines which have been used in the examples demon=-
strated appear adequate for gravity and magnetic applications and
are simpler to apply.

A separate study of the application of Wiener filters to the
processing of electrical and electromagnetic survey results would be
worthwhile because the theory is similar to gravity and magnetic field

theory and similar transformations should be possible.
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CHAPTER 9

REGIONAL GEOFHYSICAL INTERPRETATION OF THE MIDLAND VALLEY

IN SCOTLAND AND NORTHERN IRELAND

9.1 Introduction

9.1.1 Previous Geological and Geophysical Studies

The Midland Valley of Scotland and Northern Ireland (Fig.9.1)
is a graben-like tract approximately 80 km. wide separating the
crystalline and metamorphic Caledonian rocks of the highlands from
the relatively unmetamorphosed Lower Palaeozoic rocks of the Southern
Uplands to the south., The rocks within the area have been subjected
to complex phases of deformation and intense igneous activity, much
of which is unique to the area.

The aim of this study has been to combine known geology with
geophysical data to determine the subsurface distribution of rock
types and to attempt to reconstruct the geological history of the
region. The area considered in detail is confined to Scotland and
Northern Ireland because this is the extent of the detailed geophysical
coverage.

General accounts of the geology of the Midland Valley in Scotland
are given by Macgregor and Macgregor (1948) and Craig (1965).
Charlesworth (1963) desoribes the geology of the Midland Valley in
Ireland. The geology of the relevant areas is shown in the 1:63,360
and 1:253,440 sheets published by the Geological Surveys of Scotland
and Northern Ireland. The 1:625,000 and ‘#1584,000 sheets published
by the Geologlcal Survey of Great Britain allow an appreciation of the

regional setting of the area.
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A summary of the previous geophysical work in the area is given

in Appendix 1.

Although the general area has been studied since the days of
Hutton, it is only comparatively recently that comprehensive attempts
have been made to deduce the regional structure and geological history
of the zone. Kennedy (1958) was responsible for the first detailed
attempt and mainly concentrated on deformational episodes. George
(1960), using stratigraphic evidence, differs from Kennedy in several
important conclusions. Anderson and Owen (1968) have produced a
summary of previous work and have incorporated some ideas of their own,

Wilson (1966) postulated, using faunal, tectonic and stratigraphic
evidence, that the northern and southern parts of the British Isles
were once separated by an ocean (the proto-Atlantic Ocean) which has
since been destroyed by a continental drifting process in which the
British Isles resulted from the welding together of the land masses
on different sides of the ocean. Several recent workers have combined
Wilson's idea with the concepts of plate tectonics (summarized by
Oxburgh, 1971) to produce models for the evolution of the Midland Valley

and surroundingareas. These ideas are discussed in 9.3,

% 1.2 Comments on Interpretation Methods Used
9¢102.1 Qualitative Interpretation
Although the geological history of the Midland Valley is complex,
the emplacement of the various rocks and the tectonic events of the
area tend to be confined to definite geological episodes. To attempt
to simplify the interpretation of the area the data available has been
used to produce a series of maps showing the known and postulated
features which, in the author's opinion, correspond to these episodes.
These maps, which are discussed in detail in the following sections,
show the positions of present day faults in instances where they are

considered relevant to the distribution of the rock types. Also shown
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on the maps are lines of "magnetic trend''s, These correspond to regions
vhere there are sharp changes in magnetic gradient,; places of maximum
gradient, and also where there is a change in the character of the
magnetic anomalies. Such effects can be generated by faults, geological
contacts or changes in the geometry of the causative body. It has been
necessary to use personal judgement in determining these trends.
Automated methods for trend analysis of magnetic maps have been attempted
by Hall (1964) and Agarwel and Kanasewich (1971) using correlation
methods. However the anomalies of the Midland Valley are too small to
be adequately digitized for such a method to be applied.

The features postulated on the following sheets are the result of
an interpretation and must be regarded as such. The reasons for the
interpretation are given and where possible, quantitative interpretation
of the significant anomalies has been performed. Magnetic interpretation
of this type cannot be automated and involves a knowledge of the type
of magnetic anomalies to be expected for the magnetic latitude of the
survey area. Magnetic fields over common geophysical models, such as
dykes, thin slabs, and prisms, have been calculated by Vacquier et al.
(1949), Reford (1964) and Andreasen and Zeitz (1969) for various angles
of magnetization and are useful for gaining a feel for the anomalies to
be expected in a particular area.

It is difficult to determine the boundary of a rock from a qualitative
interpretation of magnetic data. The position of the maximum gradient
(the zero second derivative contour position) is a good first approx-
imation to the edge of a magnetic body and this has normally been used
in the interpretation unless other evidence was available.

Transparent overlays of the geophysical maps were prepared at the
same scale as the 1:253,440 geological maps and this enabled immediate
identification of many of the gravity and magnetic features and in many

instances subsurface extensions to the known distributions of rock types
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éould be made.

It is stressed that the interpretation is a regional study and
for this reason it has been necessary to delete many of the smaller
features.

90102.2 Quantitative Interpretation

The quantitative interpretation of gravity and magnetic profiles
in this study were performed using non linear iterative techniques.
Digitized field values were input to computer programs which iterated
until the body shape (for a specified number of body corners),
magnetization, and a constant background field level, were obtained
such that the sum of the squares of the differences between the observed
field values and the calculated field values was a minimum for a certain
number of iterations. The application of such methods has been studied
by Al=Chalabi (1970).

The programs used by the author, viz., OPTM2D, OPTMPR, OPTGPR
combine subroutines to calculate the magnetic and gravity effect of arbitrary
shaped two dimensional bodies and prisms with MINUIT, an optimization
routine developed by CERN (1970).

The author has used the option which incorporates the Rosenbrock
(1960) method of rotating co-ordinates and this is considered to give
satisfactory results.

The interpretations obtained using such methods are not necessarily
correct as it is possible that the convergence has been to a local
minimum in the least square error hyperspace. The solutions presented
however are geologically reasonable and give an idea of the dimensions
of possible structures.

901.3 Filtered Aeromagnetic Map of the Midland Valley

Figo 9«2 shows the aeromagnetic map over the Midland Valley in

Scotland and Northern Ireland., This map is characterized over a

large part of its area by intense short wavelength anomalies which obscure












much of the significant detail of tho area., These effects are mainly
due.to near surface lava flows, the most noticeable of vhich are the
Tertiary Volcanics in Antrim, the Lower Carboniferous basalts of the
Clyde Valley and the Lower Old Red Sandstone basalts and andesites.

To enable identification of the more important regional features
of the aeromagnetic map an upward continuation filtering process was
applied to the magnetic data and the resultant map is shown in Fig.9-3.
Details of the production of this map are given in Appendix 2. The
map approximates the magnetic field continued to a level 2 km. above
the flight level of the original survey (vhich vas 1000 feet above
ground level). Many significant features havé been revealed vhich
will be referred to in the following sections.

Another filtered map of the area has been prepared by Hall and
Dagley (1970) which successfully delineates large scale features.

This map is considered to be complementary to the author's as the
gridding interval and the filter coefficients used are such that the
features detected are almost an order of magnitude larger than those

in Figo 9"3 o

9.2 lower Palaeozoic Features

The features considered relevant to the Ordovician and Silurian

rock distribution in the Midland Valley are showvn in Fig. 9-k.
9.2.1 Southern Uplands

The Southern Uplands is characterized by a marked linear magnetic
high flanked by two megnetic lows. This anomaly was considered in
detail in 8.2 and its most likely cause is a smooth rise in a magnetic
basement rather than a fault or igneous feature. The nature of the
magnetic basement and the sedimentary troughs occurring over the magnetic
lows are relevant to the idea of the closing proto Atlantic Ocean and

they will be discussed in 9.3.
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9.2.2 Southern Uplands Fault Zone

The Lower Ordovician (Arenig) Ballantrae Igneous Complex
(Greig, 1971) consists of a sequence of black shales and cherts over-
lying spilitic lavas, layered gabbroic rocks and peridotites. This
is the classic type-section of an ophiolite assemblage and as dis=-
cussed by Dewey and Bird (1971) and Coleman (1971), such a sequence
corresponds to the vertical section of oceanic crust deduced from
geological and geophysical evidence. The current concept is that
ophiolite complexes are wedges of oceanic crust, tectonically emplaced
by thrusting, scraping or welding, at the positions where lithospheric
plates were underthrust at continental margins.

The Ballantrae complex is considered to mark the position of a
mobile continental margin which occurred in Lower Ordovician times and
although the areal outcrop of these rocks is small they are extremely
significant, especially as they appear to be part of a zone, which,
from geophysical evidence, extends across Scotland a.nd Northern Ireland.

The Ballantrae complex causes an intense magnetic high which
Powell (1970), by ground measurements of susceptibility, has related
mainly to the serpentinized gabbros and in places to the spilitic lavas.
The magnetic anomaly can be traced continuously south westwards into
Ireland and this is considered to be a subsurface extension of the
ophiolitic rocks.

The Ballantrae gabbros cause a gravity anomaly (5 milligals)
which can be seen in the gravity map published by McLean and Qureshi
(1966), ‘There is no distinct line of gravity anomalies associated
with the proposed ophiolitic rocks in Northern Ireland but consider-
ation of the densities of the rock types occurring indicate that the
obscuring effects of near surface low density rocks may be the reason.

Fig. 9-5 shows gravity and magnetic profiles across Northern Ireland
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and postulated geological cross sections., The density values have
been taken from Cook and Murphy (1952) and Powell (1970).

The gravity profile across Antrim is dominated by the low density
sediments and salt deposits which have been proved by drilling
(Bullerwell, 1964), It is possible, and there is a slight suggestion
on the profile, that there is a gravity high obscured by the steep
regional gradient on the south side of this gravity low.

Further west in Fermagh and Armagh there is a general rise in
gravity along the postulated line of the ophiolites. The postulated
geological section across this area shows how low density Carboniferous
sediments may cancel any possible gravity high.

Several distinct trends in the gravity and magnetic map can be
correlated with known faults. These are shown in Fig. 9-4.

A quantitative interpretation of the magnetic anomaly in the North
Channel (Profile EF) is shown in Fig. 9-6. This interpretation is
complicated by the presence of the magnetic low south of the Southern
Uplands fault. As has been mentioned by Powell (1970) this low may
be partly due to a polarity effect of the bottom of the magnetic rocks
but it is also partly due to the effects of the structured low discussed
in 8.2. |

For the interpretation, the magnetization of the ophiolitic rocks
has been assumed to be induced. It is well known (Vine and Mathews,
1963) that rocks of the sea floor acquire a significant permanent
magnetization during their formation. There is however a decrease in
amplitude of the magnetic anomalies away from the mid-oceanic ridges
vwhere they are formed. This suggests a temporal decay of the permanent
magnetization of these rocks and Banerjee (1971) has suggested a possible
viscous decay mechanism. For this reason it is considered that any
permanent magnetization of the Ordovician ophiolites would now be

negligible.
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The computer routine to calculate the 6 sided body whose profile
fits best with the observed profile has produced a realistic slab
type body dipping northwards. The spike on the bottom of the body
is not considered significant. From the appearance of this model
and the correlation of faults and trends in Ireland the body is
considered to consist of two wedge like rock masses with the northern
one faulted to a lower level than the southern one.

The abrupt lateral changes in intensity along this zone are
thought to be due to the effects of later NS faulting causing relative
displacement between sections of the ophiolitic material.

In several places along this zone intense local magnetic anomalies
occur and over the land areas these generally coincide with slight
gravity highs. None of these are well enough defined for a quantitative
interpretation to be attempted and there are several possibilities for
their origin. They may be fragments of gabbro faulted to a relatively
higher level than in the surrounding ophiolites. This is what appears
to have happened at Ballantrae. They may also be caused by localized
thickening in the spilitic lavas originally deposited in depressions
in the sea floor. Such thickenings of lava are known to account for
many of the local magnetic anomalies of the ophiolitic Troodos Igneous
Complex of Cyprus (Gass, 1972).

The magnetic anomalies in the zone which continues north eastwards
along the Southern Uplands fault from the Ballantrae area can be
closely correlated with outcrops of 0ld Red Sandstone lavas and these
are considered to be the main cause although this does not preclude
the presence of ophiolitic material at depth.

A narrow intense magnetic peak occurs along the line of the South-

ern Uplands fault extending north-westwards from Biggar. This anomaly is
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similar in form and amplitude to the magnetic anomalies over known
occurrences of serpentine intruded up the Highland Boundary Fault

plane and it is thought probable that this anomaly is due to serpentine
intruded up the plame of the Southern Uplands fault. A profile (shown
in Fig. 9=7) has been taken in a N-S direction across this feature at
a point where it is relatively isolated. Because of the complicated
non-linear regional background a quantitative interpretation has not
been attempted but it is obvious that if the magnetization is by
induction then the general form of the anomaly corresponds, according
to the model curves published by Reford (1964), to a south dipping
dyke. Thus the Southern Uplands fault in this region appears to be

a thrust from the south.

Continuation of the Southern Uplands fault eastwards from the end
of the 'serpentine anomaly' is tenuous. There is no geophysical
evidence for its continuvation as the pair of faults reaching the sea
near Dunbar. From the alignment of magnetic trend directions it seems
to the author that the Southern Uplands fault flexes northwards and,
obscured by the more recent volcanic rocks of the Garleton Hills,
continues out into the North Sea in a north easterly direction. These
trend directions are supported by marine sparker profiles conducted by
Eden (1970). Also the large magnetic low of the Southern Uplands
continues in this direction.

The elongate magnetic anomaly over the sea (crossed by Profile CD)
could be due to another wedge of ophiolitic rocks. An interpretation
of the anomaly is shown in Pig. 9-8.

To simplify the optimization process the cause of the anomaly was
assumed to be an infinite dipping dyke. As Bruckshaw and Kunaratnam
(1963) have shown, the dip of the angle of magnetization and the dip of

the dyke are interchangeable in the mathematical expression for the field
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over such a dyke. If the dyke is assumed to be vertical with an
unknown direction of magnetization then the depth and width of such
a dyke can be determined unambiguously by curve fitting methods.

The regional field about the anomaly being interpreted is com-
plicated due to the fact that the anomaly occurs at the junction of
the regional magnetic low and the magnetic effects of rocks within
the Midland Valley., Attempts were made to let the optimization routine
select a regional background at the same time as it interpreted the
anomaly. First a quadratic regional was tried and then a linear one.
The method failed to converge to a reasonable answer in these
situations and it was necessary to assume a regional gradient and to
let the program calculate the optimum vertical dyke and constant
background level of the field. By assuming induction in the earth's
field the dip of the dyke was then calculated.

Thus the Southern Uplands fault appears to be the southern boundary
of a zone of semi parallel faults bounding lenticular shaped wedges of
ophiolitic material. Such a pattern is entirely consistent with what
would be expected at a zone of underthrusting where ophiolitic material
is tectonically emplaced.

It should be noted, as reviewed by Anderson (1965), the only firm
evidence for the location of the Southern Uplands fault in Ireland is
given by the geophysical data.

9.2.3 Highland Boundary Fault Zone

The Highland Boundary fracture zone in Scotland, described in
detail by Anderson (1947), is marked along most of its course by
serpentine intrusions which can be identified on the aeromagnetic map
as sharp linear magnetic highs. The form of these anomalies in many
places is consistent with that of a dyke dipping northwards and this

implies that the present attitude of the Highland Boundary fault
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corresponds to a thrust from the north. This conclusion agrees with
the work of Ramsay (1964), who by studying deformed Lower Old Red
Sandstone pebbles concluded that the main movement of the Highland
Boundary Fault was a thrust in Middle 0ld Red Sandstone times. This
thrust may well have been along the line of a thrust originally
developed in Arenig times as suggested by Kennedy (1958).

The thin zone of rocks of the Highland Border, described by
Anderson (1947) as spilites, black shales, and cherts, fit the des-
eription of ophiolitic material and suggest that this area may have
once been a zone where oceanic material underthrust continental material.

Alternative explanations are possible for the position of these
rocks. Shackleton (1958) suggests that the Arenig rocks of the High-
land Border may have been thrust into their present position on an
overturned limb of the Tay Nappe. dJohnson and Harris (1967) have
compared the folding style, orientation and direction of facing of the
Dalradian and Arenig rocks and from similarities they conclude that both
these rocks have undergone the same movements. This evidence supports
the ideas of Shackleton. Borradaile (1972) has suggested that the
Highland Border spilites may correlate with similar rocks he has mapped
at Loch Avich within the Highlands. Nevertheless it is still possible
that the Highland Border Arenig rocks were emplaced in an underthrust-
ing process which caused the observed isoclinal folding.

The Highland Boundary Fault can be traced to the Isle of Bute but
its extension further west is neither geologically nor geophysically
obvious. The classical path of the fault, as drawn in most references
to the area, is either through or around Arran and then between the Mull
of Kintyre and Sanda Island, entering Northern Ireland at Cushendall.
Recent unpublished marine gravity,magnetic and sparker work by McLean

et al. of the Geology Department of the University of Glasgow has shown
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that there is no geophysical evidence for the Highland Boundary fault
along this line., They conclude that the fault is stepped south along
a series of north south faults. Suggestions of the existence of such
faults can be seen on the aeromegnetic map. McLean et al'’s results
are extremely significant and as an extension to their ideas the author
proposes that, in keeping with the idea that the Highland Boundary
marked a zone of underthrusting, the southwards offset of the fault
line may be due to a tear in the lithospheric plate at this point.

The Tertiary Igneous complex of Arran may have been intruded up this
line of weakness.

Profile GH over the magnetic anomaly in the North Channel has been
interpreted in Fig. 9-9. The interpretation of this anomaly has been
complicated by surrounding anomalies but the general form of the shape
obtained is consistent with a wedge of ophiolitic material. As this
anomaly lines up with what is considered to be the Highland Boundary
Fault in Ireland it is considered to be part of the same zone.

The Highland Boundary Fault is considered to enter Northern Ireland
at Cushendall (Charlesworth, 1963, p.128) and its extension further
west is thought to be marked by the fault between the Tyrone Igneous
Complex and the Dalradian rocks to the north. '

The rocks of the Tyrone Igneous Complex have been described by
Hartley (1933) and more recently in greater detail by Cobbing, Manning
and Griffith (1963) and Cobbing (1964). They consist of black shales
and cherts overlying spilitic lavas and layered gabbros and thus appear
to be ophiolitic. They also have small stocks of granite intruded
into them, similar to the =small granite intrusives of Ballantrae.

There is a definite zone of high magnetic and gravity values over
this area and the south westwards continuation of the anomalies suggests

a subsurface continuation of the Tyrone igneous rocks in this direction.
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Murphy (1952) has also made this suggestion. This continuation is
obscured to some extent by the magnetic effects of a Tertiary dyke
swarm and the gravity and magnetic effects of a large sub circular
anomaly (the Dromore Intrusion) thought due to a Tertiary igneous
centre which did not reach the surface (see 9-7).

Along the line marked by Upper and Lower Lough Erne the character
of both the magnetic and gravity field changes abruptly and this
probably corresponds to a fault line.

Along the southern boundary of the Tyrone Igneous complex is an
intense magnetic high which appears too sharp to be a polarity effect
of the southern margin of these rocks. As this zone corresponds with
a linear belt of gravity highs the source rocks may be gabbro or peridotite.
From the geology mapped by Cobbing (1964) the spilites, shales, and cherts
occur to the north of the outcrop and the layered gabbros occur along
the southern margin. Thus it seems that the ophiolite section has
been tilted on its side with its top to the north. In such circum-
stances a band of gabbro or peridotite would be expected in the region
of the linear anomalies.

The narrow intense anomaly can be traced beneath the Tertiary Antrim
plateau basalts to the @ast. The continuation of the ophiolitic rocks
of the Tyrone Igneous complex eastwards under the Antrim lavas is also
suggested by a faint trend of gravity highs and the trend of other
magnetic highs. The upward continuation map suggests a magnetic dis-
continuity along the southern margin of this zone. The map of the sub-
Cretaceous basement published by Charlesworth (1963) p.353 also suggests
a zone of faulting along this line.

It is reasonable, within the context of plate tectonics, to expect
the ophiolitic rocks of the Highland Border to mark a zone of northwards

underthrusting. Such a possibility raises the question of the 'Tyrone
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‘Central Inlier' which is an area of Dalradian metamorphic rocks
entirely surrounded by the ophiolitic rocks. The relationship
between the two groups of rocks is uncertain (Cobbing et al.,1963,
Cobbing, 1964). If this region is a zone of underthrusting then it
is possible that this inlier has ophiolitic material beneath it. The
grade of the metamorphism within the Dalradian rocks of the inlier is
higher than in the Dalradian rocks to the north and this has been taken
by Cobbing (1964) as proof that the Highland Boundary fault is a normal
fault and that vertical movement on its southern side has brought the
deeper, more metamorphosed basement to the surface. However even if
some vertical movement has occurred this is not inconsistent with the
idea of underthrusting along the Highland Border.

Fig, 9~5 shows gravity and magnetic profiles across both the northern
and southern belts of postulated ophiolitic material and possible
geological cross sections, It can be seen that in general comparable
anomalies occur in the two regions. Because of the complicated shapes
possible, the interfering effects of other rock types and the known
irregular composition of ophiolitic rocks, detailed analysis of these
profiles has not been attempted.

The Highland Border ophiolites appear to be of Aremig to Llanvirn
age (Downie et al., 1971) although it is possible that some of the lower
members have an Upper Cambrian age. The exact age of the Tyrone igneous
rocks, which were shown above to be part of the same zone, is not definite
either although a graptolite found by Hartley (1936) suggests a Llandeilo
age for the shales. The underlying spilites could well be of Arenig age.
If the shales and spilites originated on an oceanic sea floor in Arenig-
Llandeilo times the pre Caradocian folding in these rocks (Kennedy,1958)

could have occurred during the underthrusting along the Highland Border.



An Arenig age for the Ballantrae ophiolites is well established
(Greig, 1971) and the post Arenig, pre Caradocian folding in these
rocks could also have occurred during underthrusting.

Thus, although there is some uncertainty in the exact dates it
is likely that the northern and southern belts of ophiolitic material

vhich flank the Midland Valley were formed contemporaneously.

93 Relationship of the Midland Valley to the Proto=Atlantic Ocean

9:3.1 Introduction

Following the stimulus given by Wilson's (1966) idea of a proto-
Atlantic Ocean and the possible mechanism for its closure suggested
by plate tectonics, the geology of the central British Isles has
been re-appraised by Dewey (1969), (1971), Dewey and Pankhurst (1970),
Fitton and Hughes (1970), Ziegler (1970) and Bird, Dewey and Kidd
(1971) who have related the igneous, stratigraphic and structural
features of the area to the motion of lithospheric plates being
thrust under continental land masses as the continents converged.

The case for a plate being thrust northwards under the Scottish
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Highlands has been convincingly postulated by Dewey and Pankhurst (1970)

to explain some of the orogenic and igneous features of the area.
Fitton and Hughes (1970) have shown from petrochemical analyses that
the regional variation in magma type in the Ordovician volecanic rocks
of England is consistent with that produced from a plate thrust
southwards.

The author agrees with Wilson's (1966) hypothesis and with the
ideas that oceanic crust was overridden from the north and south.
None of the above authors however have considered any geophysical
evidence nor the relationship of the Midland Valley to their models
in any detail. This section critically examines their ideas in this

context.
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90.3.2 Dewey's Model and its Problems

Dewey (1971) describes a model for the Lower Palaeozoic evolution
of the Highlands, the Midland Valley and the Southern Uplands in which,
during the ocean closing process, oceanic crust was destroyed by under=-
thrusting along two diverging Benioff zones; a northern one which
occurred along the southern margin of the Midland Valley and a southern
one which occurred just north of the Lake District (Fig. 2 of Dewey
(1969)). The Southern Uplands according to this idea, overlies a
remnant of oceanic crust.

Ziegler (1970) considers that an Ordovician geosyncline immediately
south of the Southern Uplands fault (the Moffat Geosyncline) and a
Silurian geosyncline just north of the Lake District locate the
positions of the zones of underthrusting of Dewey's model.

There are severe objections to considering the Southern Uplands
as an area underlain by oceanic crust in Ordovician times.

Powell (1971), reviewing a range of geophysical interpretations
points out that the evidence indicates the Southern Uplands are under=
lain by a crust of nommal continental thickness (30 km) and that
thickening by compression from an oceanic crust (average thickness 7 km)
is unreasonable. Powell (1971) omitted to mention the work of Agger
and Carpenter (1965) who have analysed several crustal seismic re-
fraction profiles (their locations are shown in Fig. 9-10). Their
estimates of crustal thicknesses in the area however confirm the
results mentioned by Powell (1971). Thus if the Southern Uplands
were originally oceanic then this wide area (100 km) must have since
been converted to continental material and there is no obvious reason,
according to Dewey's model, why this should have happened.

Andesite volcanics (of Caradocian age) occur at Bail Hill near
Sanquar within the Southern Uplands (Eyles in Pringle, 1948).

Andesites occur over regions where oceanic crust underthrusts continental
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crust (Wright, 1971). Dewey (1971) admits that the Bail Hill rocks
would not be expected over an area of oceanic ecrust and postulates
their present position to be the result of a moving sea floor. It
is difficult to imagine this happening with Dewey's model because

the andesites occur between two plates being underthrust in different
directions away from the andesites.

Dewey does not adequately explain the presence of the Highland
Border ophiolite suite. The interpretation above has shown these to
form an extensive zone with the Scottish belt being stepped south near
Arran and then continuing underneath the Antrim lavas to the relatively
complete ophiolitic sequence of Tyrone.

Dewey (1971) imagines the Midland Valley to form a shelf between
the Highlands and the Southern Uplands. Seismic reflection studies
over the Peru~Chile trench (Scholl, 1970) show a shelf type block
occupying a position similar to Dewey's model of the Midland Valley so
the basic idea appears reasonable., It is conceivable that the Highland
Boundary serpentines were intruded up a major crustal fracture but it
is difficult to account for the black shales, cherts, spilites and layer-
ed gabbros unless they are wedges of ophiolitic material emplaced at a
zone of underthrusting.

The similar age of the two zones of ophiolitic rocks appears to
preclude the possibility that the northern belt marked an earlier sub-
duction zone which was later stepped south.

The Southern Uplands is characterized by extensive Lower 0Old Red
Sandstone granite intrusions (Greig,1971) which would be expected over
an area of continental crust rather than oceanic crust.

The diagramatic representation of the gravity field over the area
of interest, shown in Fig. 9=10, has been prepared from previous
compilations (De Bruyn (1959, Charlesworth (1963) p.175) and from more

recent surveys by McLean and Qureshi (1966) and Bott (1968).
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There is no gravity high over the Southern Uplands such as would

be expected over a thin oceanic crust or a crust formed from dense

basic material. The Midland Valley however, as noted by Mclean and

Qureshi (1966), does coincide with a large regional gravity high which

is much greater if the low density sediment infill of the Midland

Valley is compensated for, Similarly there is a gravity high over

the Midland Valley in western Northern Ireland. As mentioned previously

low density sediments and salt are probably responsible for the gravity

low over Antrim. 'The gravity high within, and on the flanks of the

Irish Sea is probably caused by thin crust (Bott, 1968), possibly re=-

sulting from the present day continental drifting of Europe from America.
The objections to Dewey's model and the indications, from gravity,

that a thin or dense crust occurs beneath the Midland Valley have in-

duced the author to consider the possibility that the Midland Valley

may mark the suture left during the ocean closing process.
90303 The Midland Valley as an Oceanic Remnant

If the Midland Valley overlies the junction between the two con-
tinents, originally on either side of the proto-Atlantic Ocean, then
the two belts of ophiolitic material are simply evidence for two zones
of underthrusting of lithospheric¢ plates, one to the north along the
Highland Boundary and one to the south along the Southern Uplands fault.
The evidence discussed above suggests that both the Highland Boundary
fault and the Southern Uplands fault are reversed faults. A graben,
flanked by reversed faults, pushed down by compression between two
continental masses would act as a sediment trap in exactly the same
way as the Midland Valley has done.

The gravity high over the Midland Valley does not necessarily mean
that it is underlain by oceanic crust at the present day as it may
indicate continental crust which has incorporated large amounts of

hasic material, possibly by a viscous spreading of the adjacent
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continental crust into the space where the oceanic would occur. Such
a spreading mechanism has been postulated by Bott (1971) in a different
context,

The extremely active Lower Old Red Sandstone and Lower Carboniferous
volcanism, which is largely confined to the Midland Valley area (Craig,
1965) could be the result of a thin crust or a largely basic crust.
Squeezing or the viscous flow mechanism postulated above could have
initiated the volcanism. Xenoliths of gabbro (Francis, 1965) and
ultrabasic material (Chapman, 1971) found in Lower Carboniferous lavas
may be fragments of the oceanic crust.

Kennedy (1958) has discussed a late Silurian phase of folding
which does not effect rocks within the Midland Valley apart from the
Hagshaw Hills, Pentland Hills region which can be regarded as part of
a zone welded onto the Southern Uplands crustal plate. This late
Silurian folding has effected the entire Southern Uplands region and
the Lake District (Anderson and Owen, 1968). This evidence suggests
that the Midland Valley formed one crustal block and that the Southern
Uplends and the Lake District formed another.

Thus the features of the Midland Valley appear consistent with
the idea that it, rather than the Southern Uplands, marks the remnant

of the proto-Atlantic Ocean.

9.3.4 Reinterpretation of Dewey's Evidence

If Dewey's hypothesis is incorrect then alternative explanations
must be found for the features he cites as evidence.

The Ordovician sediments near the southern margin of the Midland
Valley consist of shell beds and conglomerates interbedded with grey-
wackes and this evidence and sediment transport directions indicate
that the area was a rapidly subsiding trough with a shoreline to the

north. The obvious interpretation of this shoreline with the Moffat
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geosyncline to the south is to regard this as the position where a
plate was thrust northwards. However, as Fitton and Hughes (1970)
suggest; in the final stages of the closing of the proto=Atlantic
Ocean flysch wedges from the rapidly eroding highlands could have
completely covered a northern trench along the Highland Border and
have formed a shoreline north of Ballantrae. Scholl (1970) mentions
that in places the Peru=Chile trench has been completely filled with
sediments from the Andes,

The author considers that the Southern Uplands ﬁay have formed
a broad shelf between the Moffat geosyncline and the postulated island
arc at the Lake District (Fitton and Hughes, 1970). A similar sit-
uation to that showm in the section across the Puerto Rico Trench,
as determined by Talwani, Sutton and Worzel (1959), is envisaged.

This would provide a suitable depositional enviromment for the Upper
Ordovician black shales and cherts and occasional volcanism would
explain the spilites.

A puzzling major feature is the elongate magnetic high (Fig. 9-10)
over the Southern Uplands. The author has performed a quantitative
interpretation of this feature (8.2) and considers it to be caused
by undulations on a magnetic basement, between depths of 5 km., and 10 km.,
which has a magnetization of at least 0.001 emu. The deduced depth
profile confirms the position of an axial rise and its two flanking
depressions which have been deduced by Walton (1965). This structure
may reflect broad warping of the crust caused by compression. The late
Silurian folding (Anderson, 1965) which caused a series of faulted and
folded monoclines was obviously a compressional effects The Silurian
geosyncline north of the Lake District could be the result of sediments
deposited in a crustal downwarp rather than in a zone of plate consumption.

The cause of what appears to be a relatively uniform magnetic

basement over such a large area is not obvious.
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It is conceivable that this layer is a relic of an earlier ocean floor
formed before the plate was stepped back to the Moffat trench. Possibly
material rising from an underthrust plate could have converted the

Southern Uplands to its present continental thickness,

9.3.5 Continuation of the Midland Valley into Western Ireland

Although western Ireland is outside the area of this study, any
model proposed for the Midland Valley in Scotland and Northern Ireland
must be compatible with the geology further west,

George (1960), Charlesworth (1963) and others have considered that
the Midland Valley continues to Clew Bay where Lower Palaeozoic rocks
occur in a graben type structure flanked by ultrabasic material. However,
an alternative explanation is required if this area is to fit with the
closing ocean model, because immediately south of Clew Bay, at Connemara,
is a large area of rocks which have been convincingly identified as
Dalradian and correlate with those occurring north of Clew Bay
(Shackleton, 1961). Dewey (1971) has postulated that the Clew Bay area
may mark the position of a marginal basin where oceanic crust was
generated behind a zone of plate consumption. The gravity high over
the area (Fig. 9=10) is consistent with the idea that it overlies oceanic
cruste.

On the basis of the sparse geophysical evidence available, Dewey,
following the ideas of Leake (1963), considers that the Southern Uplands
fault, and hence the position where his plate began its northwards descent,
continues from Upper Lough Erme to Galway Bay south of Connemara.

The author agrees with the marginal basin concept but prefers an al-
ternative explanation for the position of the Midland Valley.

In Fig. 9-10 the area outlined in Northern Ireland shows the extent
of the aeromagnetic coverage. The area outlined in Central Ireland has

been covered by a ground vertical field magnetometer survey (Murphy,1952).
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There is an unfortunate gap in the magnetic coverage in the important
area west of Northern Ireland,

The two large north-south faults in Central Ireland (Fig. 9-10)
have been postulated by Russell (1968) after a study of the alignment
of lead zinc mineralization in the area. Russell did not consider
any geophysical evidence and several striking coincidences are apparent.
The long magnetic high, after continuing across the British Isles for
300 km. terminates along the line of Russell's eastern fault. These
faults also straddle a zone of high gravity and a magnetic anomaly
which has become known as the Stokestown anomaly (Murphy, 1952). The
faults also approximately straddle a large regional magnetic anomaly
further south.,

The zone of high gravity over the Midland Valley in Northerm
Ireland appears to be stepped southwards between the faults in the
Stokestown area. There is also a zone of high gravity extending towards
the sea in County Clare.

These features suggest to the author that the Midland Valley may
have been stepped south around Connemara by transform faults,

Several other features are consistent with the idea that the Mid-
land Valley, or its structural equivalent, occurs south of Connemara.

A change in the nature of the magnetic basement is evidenced by
the transition from an irregular field north of an east west line from
Galway Bay to Russell's western fault, to a smooth field south of this
line.

Spilites of possible Arenig age have been found on islands south of
Connemara (McKee and Burke, 1957).

There is intense Lower Carboniferous volcanism near Limerick on the
eastern side of the County Clare gravity high (Charlesworth, 1963).

This volcanism is similar to the Iower Carboniferous volcanism of the

same age which occurs in the Midland Valley of Scotland (Francis, 1965).
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Because of the quality of the data the transform fault idea must
be regarded as a suggestion. The idea is feasible on geological
grounds and a similar stepping of the zone of oceanic closing occurs
in the junction between the Churchill and Superior provinces of the
Canadian Shield (Gibb and Walcott, 1971). It will be difficult to
prove or disprove these faults on geologic evidence because they
presumably ceased moving in the Upper Ordovician and hence are covered

by later sediments.
9.3.6 Conclusions

The author considers that the arguments given above indicate that
the Midland Valley, and not the Southern Uplands, overlies a remmnant of
oceanic crust, compressed between two converging continental land masses.

FPig. 9=11 illustrates, in diagram form, the author's ideas of the

geological history of the area., These events are summarized below.

Ordovician

Arenig: (A) Formation of proto-Atlantic Ocean by generation of oceanic
crust at an oceanic ridge. Deposition of black shales and cherts on
oceanic sea floor. Sediments deposited in a vast fan over the northern
edge of the continental shelf. Process probably initiated during Cembrian.
Post Arenig-Pre Caradoc: (B) Initiation of closing of the proto-Atlantic
Ocean. Underthrusting occurs at continental margins causing folding

of shales scraped off sea floor. Ophiolitic mass detached from oceanic

crust and welded onto southern continental mass.

Caradoc-Ashgill: (C) Final stages of closing of the proto-Atlantic
Ocean. Orogeny in the Highlands causes mountain building, metamorphism
and igneous intrusions. Flysh wedges from Highlands build out over
oceanic crust to Ballantrae where greywackes are deposited in a trench.
Volcanism due to south going plate causes the Bail Hill, Lake District

and other volcanic rocks. The Highland Boundary serpentine may have
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heen a result of plate movement é.t this stage.
Silurian: (D) Broad warping of the crust and depositién wvithin the
hoilowéo' The flgure 1llustrates the sect:l.on in Northern Ireland.
Snapp:.ng of the oceanic crust occurs along the northern margin.

Lower Old Red Sandstone: (E) Late Silurian compress:l.on, folding and

faulting with thrusting along the northern and southern boundaries of
the Midland Valley causing a graben. Erosion from the Highlands and

the Southern Uplands fills the depression.

9.4 Iower Old Red Sandstone Features

The features, known from geology and deduced from geophys;i.cs wh:.ch
are considered relevant to the Lower 0ld Red Sandstone period are éhown
in Fig., 9~12.

The aeromagnetic map shows a line of magnetic highs in th'e north east
corner of the Southern Uplands and as some of these correlaﬁe m.'bh out=
crops of granite the remainder are probably also due to granite.

It is possible that other unknown granites occur within the South-
ern Uplands because the studies of Powell (1970) have sho;rh that they
do not always have a magnetic expression. |

The filtered aeromagnetic map (Fig. 9=3) reveals a str:.k:mg series
of magnetic highs which tend to align along a known ant:.cl:l.ne (the
Ochil=8idlaw anticline) in the north of the Midland Valley and its
south easterly extension as suggested by Anderson and Owen (1968).

The evidence for the proposed flexure in the trend of the anticline

in the centre of the Midland Valley is the abrupt difference :|.n the
overlying lower Carboniferous sediments on either side of a north south
line which runs approximately through Lanark. To the west occur thé
Clyde Plateau lavas vhich thin rapidly eastwards and in the same

stratigraphic horizon to the east oil shale formations occur.
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This 'Lenark Line' has been investigated by Hall (1971) using
seismic refraction methods which have confirmed the thinning of
Léwer Carboniferous sediments over this rise.

The D'Arcy Noo.1A drill at Salsburgh reported by Falcoln and Kent
(1960) supposedly found Lower Old Red Sandstone lavas at a depth of
LOOO feet., This indicates a rise in the level of these rocks compared
with adjacent areas,

The southernmost magnetic high along this line is caused by the
Middle Old Red Sandstone Distinkhorn Granite vhich has granodioritic
affinities (Macgregor and Macgregor, 1948).

The magnetic high straddling the Ochil fault corresponds to 0Old
Red Sandstone diorite intrusions and as noted by MeQuillin (1970) the
form of the anomaly suggests that the intrusion causing the anomaly
has had its southern half downfaulted.

The anomaly on the Ochil fault, the one south of the Firth of Tay
and the one near Montrose, correspond in position to localities where
Giekie (1899), using local geological evidence, has postulated the
presence of volcanic centres which gave rise to the extensive wvolcanics
of the area. Thus it seems likely that these anomalies, and the others
of the area, are caused by late stage granodioritic intrusions related
to the source of the volcanic rocks., This is what appears to have
happened in the Cheviot Hills and Glencoe (Mercy, 1965, p.256) and
both of these volcanic centres give pronounced magnetic anomalies.

The most striking magnetic feature of the whole area is the large
sub circular magnetic anomaly centred approximately on Armadale. The
results of a qualitative interpretation of a north=south profile over
this anomaly are shown in Fig. 9=13. The magnetic profile was calculated
by using the spline subroutine (SPLINE) to interpolate between.contour

lines. The section shown with the profile incorporates known geology
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and results obtained from interpretations described elsewhere in this
chapter.

The non linear optimization program OPIMPR was used to calculate
a magnetic prism vhose calculated effect gives the best least squares
fit to the observed profile, Only field values which were considered
to be relatively free from the effects of other bodies were selected
to be used in the least squares interpretation.

Although only a profile has been analysed this is considered
adequate because the form of the anomaly suggests that the causative
body must have a roughly square plan and as the profile crosses the
centre of the body, fitting a prism is considered to adequately com=
pensate for end effects,

The magnetization of the body was assumed to be induced in the
earth's field. 'This is suggested by the form of the anomaly and
probable because, as Strangeway (1967) hes discussed, large igneous
intrusions cool relatively slowly forming larger mineral crystals which
tend not to retain a strong remanent magnetization.

The agreement between the calculated and observed anomalies is
considered reasonable and most discrepancies can be attributed to the
effects of known or deduced rock occurrences, notably the Carboniferous
dykes, the edges of the Midland Valley Sill and a possible Carboniferous
lava flow (see 9.5)s The anomaly over the Ochil Fault is partly due to
the Old Red Sandstone lavas and partly due to the diorite intrusion
mentioned above.

The calculated depth to the top of the intrusion (40,000 feet) is
not unreasonable, especially as the most recent estimate of the thickness
of the Lower Red Sandstone in the Strathmore region is 40,000 feet.
(Armstrong and Paterson, 1970).

Unpublished gravity results collected by Dr, W. Bullerwell of the

Institute of Geological Sciences indicate that there is a gravity high
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corresponding to the magnetic anomaly and this suggests similarities
with the Distinkhorn Granite which also causes a gravity and magnetic
high. The gravity high over the Distinlchorn Granite can be seen on
the map published by McLean and Qureshi (1966).

The only other large anomalies causing both gravity and magnetic
anomalies in the area are the Tertiary igneous centres such as Arran
(as showm on maps published by Powell (1970)). As the Armadale
magnetic high is away from the line of the other Tertiary centres,
and as it does not appear to be associated with any Tertiary dyke
swarm as the other centires are, it is not considered to be of Tertiary
age, In the opinion of the author the anomaly probably marks a volcanic
centre similar to others on the line described above.

The four small magnetic highs to the north of the anticlinal axis
may also be due to volcanic centres but could also be due to local
thickenings or increases in magnetization of the lavas.

The Lower Old Red Sandstone lavas along the southern boundary of
the Midland Valley give significant magnetic anomalies but this is not
s0 noticeable along the northern boundary of the area although the
magnetic field over the Ochil=Sidlaw lava fields does have a distinct
character. Stubbs (1957) has studied the palaeomagnetism of these
rocks and has found that the lower lavas are magnetized in a direction
L46° west of south with a downwards inclination of 54° with approximately
fifty per cent reversals. The higher lavas are more erratically
magnetized. Possibly the relatively random magnetic effects may cencel
and prevent definite anomalies over the lavas.

The sections of the lavas drawn by Armstrong and Paterson (1970)
show the lavas fingering out towards the limbs of the Ochil=Sidlaw
anticline and this suggests that the lavas, fed by the centres mentioned,
built a ridge of volcanic material which during subsequent folding

controlled the location of the anticline.
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From the magnetic maps it is not obvious whether the change in
magnetic character along the Angus and Kincardine coastline is due to
lavas terminating or due to downfaulting.

In western Northern Ireland there are small outcrops of andesite
which suggest there may be extensive subsurface lava beds similar to
those occurring in Scotland. Although there is no obvious geophysical
evidence for this,the gravity and magnetic maps show the locations of
two centres which may be associated with the lavas. The locations
of these features are shown in Fig. 9=12. The western one is
indicated by a magnetic anomaly but no gravity anomaly wvhereas the
reverse is true for the other,

The Middle Old Red Sandstone was climaxed by an orogeny which
caused the folding in the Ochil-Sidlaw snticline and the adjacent
Strathmore syncline. Ramsay (1964) has shown that this folding was
predominantly the result of north-south compression within the Midland
Valley.

The marked flexure in the line of volcanic centres appears to
reflect the change in the width of the Midland Valley. They may
follow a line of maximum bending of the oceanic crust compressed with=
in the Midland Valley. Such a line would provide a zone of weakmess

for the intrusion of the igneous centres.

9.5 Carboniferous Igneous Activity

9.5.1 Introduction

The Carboniferous period was marked by two episodes of igneous
activity within the Midlamd Valleys The first phase caused alkali
basalt lavas and silis and occurred mainly in Lower Carboniferous times
(the Calciferous Ssndstone Series subdivision of the Geological Survey
of Scotland), although there is evidence (Francis, 1965, p.359) that

similar volcanism continued throughout the Carboniferous. The second
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phase is evidenced by a series of east west trending quartz dolerite
dykes and associated sills, of late Carboniferous, possibly early
Permian age, which occur over a wide area in Scotland and Northern

Eﬂ.gland o

Comprehensive accounts of these igneous periods are given by

Macgregor (1948), Francis (1965), Francis (1967) and Francis (1968).
9.5.2 Alkali Dolerite Phase

The alkali dolerite igneous features which are discernable on
the aeromagnetic map are shown in Fig. 9-14. The Clyde Plateau lavas
in the western Midland Valley appear to thin eastward against the
north south rise postulated in the previous section. This rise,
probably due to an Old Red Sandstone anticline appears to have
influenced Carboniferous sedimentation and tectonism. Mapped fold
axes in Carboniferous rocks east of this feature parallel the rise.
Isopach maps published by Kennedy (1958) and Goodlet (1957) show
the sedimentation also paralleling the fold. However as mentioned by
Francis (1965) p.349 the: figures used for these maps are not reliable.

The filtered aeromagnetic map shows three circular magnetic highs
within the Clyde Plateau lavas which correlate with mapped outecrops
of agglomerate. The northermmost anomely, corresponding to Meikle
Bin, also has a pronounced gravity high as can be seen on the maps
published by McLean and Qureshi (1966). The remaining two magnetic
highs do not appear to correlate with gravity highs. It is suggested
that these three magnetic highs mark the positions of central type
volcanoes whose lava flows fed the Clyde Plateau lava fields. The
relative importance of these postulated igneous centres and the
numerous volcanic necks which have been mapped in the area (Francis,

1965, p.374) is not kmown.
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The Garleton Hills complex is another such volcanic centre and
although it does not give such a pronounced magnetic high it cam be
related to several lava flows and sills (see Fig. 9-14). Two sills are
postulated extending north east under the sea from the Garleton Hills.
The northern one is confidently identified as a sill because its
anomaly is surrounded by a magnetic low which indicates a relatively
small vertical thickness. A small island at its northern end consists
of quartz dolerite, The magnetic feature immediately to the south
has also been identified as a sill or lava flow but confirmation of
this is not so obvious and there is a slight possibility that it may
be cansed by ophiolitic material as it lies along the line of the
Southern Uplands fault.

The magnetic data supports the suggestion of Francis (1961) that
the Garleton Hills complex is connected at depth with the lavas of the
Burntisland area. The continuation of these rocks further west is
uncertain but is suggested by the general character of the magnetic
field,

9.5:.3 Quartz Dolerite Phase

As discussed by Anderson (1951) the Upper Carboniferous igneous
activity is related to a north south tensional relief of pressure
(Anderson.'s Borcovician stress system) which was responsible for a
series of east west faults, east west quartz dolerite dykes and
several large sills which have been fed by the dykes.

The igneous activity associated with this period is extremely
widespread and extends at least from Aberdeenshire to Durham.

Anderson (1951) has demonstrated that the faulting and the dyke
intrusion are contemporaneous and in many places the faults act as
channelways for the dykes. The faults are extremely numerous in the

central part of the Midland Valley and the northernmost of this suite,
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and probably the largest, is the Ochil fault which has an estimated
downthrow to the south of 10000 feet (Francis and Read, 1970) and is
associated with quartz dolerite intrusions.

The aeromagnetic map and the filtered aeromagnetic map both
suggest that the main structural control of the distribution of the
Clyde Plateau lavas in the south west Midland Valley is the Inchgotrick
Fault which appears to continue eastward almost to the Firth of Forth.
The geological map of the area shows several faults of small lateral
extent which correlate with the extended line of the Inchgotrick Fault
as suggested by the aeromagnetic data but along large parts of this line
no faults have been mappeds The northern side of the Inchgotrick
Fault is the downthrown side and it is obviously a major fault.

A structural symmetry is suggested by the Ochil Fault and the
Inchgotrick Fault and the area between the two appears to be a down-
faulted graben which hes been internally disturbed by numerous smaller
east west faults.

Francis et al. (1970) have postulated that the Ochil Fanlt was
moving continuously from the Upper 0ld Red Sandstone through the
Carboniferous., It is difficult to date the Inchgotrick Fault precisely
but a similar age is very likely and it may be a result of the same
structural event as the Ochil Fault.

Fig. 9=15 shows the igneous features of the Upper Carboniferous
period which have been deduced from the aeromagnetic data. The dis-
tribution of these rocks is largely as known from geological evidence
but the geophysical data does indicate several seaward extemnsions.

The dykes within the Midland Valley tend to occur in swarms which
suggest some local condition. There is one such swerm through the
centre of the region between the Ochil Fault and the Ipchgotrick Fault

and these dykes feed the Midland Valley Sill, It is conceivable that
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these dykes may be related to the large magnetic anomaly vhich under-
lies this area but the studies of 9.4 suggest that this feature is
older,

The two dyke swarms in the north east corner of the Midland
Valley coincide with the culminations in the Strathmore Syncline
which have been mapped by Ammstrong and Paterson (1970) and this
suggests that they may be intruded up tensional cracks in local
flexures,

9.5.4 Origins of the Carboniferous Igneous Activity

The Carboniferous igneous features of the Midland Valley are
anomalous because they cannot obviously be related to the initial
formation of the Midland Valley as earlier igneous features can or to
the opening of the North Atlantic as later features can., Stress
relief has been a major controlling factor for the Upper Carboniferous
activity and may have also initiated the Lower Carboniferous famlting
and volcanism. Possible causes for these tensional effects are a
slow doming of the crust as a late reaction to the closing of the
Proto=Atlantic Ocean or the effects of Hercynian movements (Anderson
and Owen, 1968),

9.6 Post Carboniferous Features

Many of the post late Carboniferous features in the Midland Valley
area have a north to north westerly alignment which is in marked
contrast to the predominantly north easterly to easterly trend of the
Caledonian and Hercyniem features. These more recent trends can be
ascribed to the effects of the continental drifting of Europe away
from America., Russell (1972) elaborates on this hypothesis. The
resulting tension and subsequent viscous spread of the continental
crust towards the oceanic crust, as envisaged by Bott (1971), was

probably responsible for the dykes, faults and sedimentary basins
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with the north easterly alignment.

The Irish Sea may have been formed during this stretching process
which may have thinned the crust and formed a hollow in which the
sediments were deposited. It is likely that the North Channel is a
similar feature although it may be partly fault bounded. A magnetic
trend aligned with the east coast of Antrim suggests a possible fault.
Charlesworth (1963) p.433 favours the faulting model and mentions
several faults along the coastline which may be associated with the
movement. The interpretation of magnetic amnomalies in the North
Channel (9.2) indicated downfaulting of the order of 2 km..

There are numerous other sedimentary basins which were probably
formed in a similar way, for example the Upper Carboniferous Coal
Measures basin around Falkirk, the Permian Mauchline Basin and the
sedimentary basins indicated on either side of Arran by gravity data
(McLean's results in Powell (1970)).

Cloos (1939) p.500, 512 has suggested that the Antrim lavas have
been preserved by downfaulting between meridional faults. The
linear boundaries and associated faults of these lavas (Charlesworth,
1963, p.313), and the gravity gradients paralleling the boundafies
suggest that this is so.

The lateral changes in intensity along the magnetic anomaly
maxrking the Southern Uplands ophiolite zone probably mark faults from
this tectonic episode.

The Tertiary Period (Richey et al., 1961, Stewart, 1965) was marked
by spectacular igneous activity in the form of intrusive centres,
plateau basalts and dyke swarms. These features are probably also
related to the effects of continental drift. The figures quoted by
Allison (1936) for crustal stretching and dyke intrusion on the west

coast of Scotland support the drift concept.



12k

As mentioned previously (9.2) the igneous centre of Arran may be
on the site of an older (Ordovician) tear in the lithospheric plate.
There is magnetic evidence for the continuation of Arran into Ailsa
Craig which is the small granite island to the south of Arran. The
connection between the two is even more obvious in the gravity data
collected by McLean (shown in Powell (1971)).

The extensive Tertiary dykes of the Midland Valley are related
to the igneous centre of Mull, They give negative anomalies because,
as Bruckshaw and Robertson (1949) have shown, they are reversely magnet-
ized. These dykes are associated with a set of north westerly trending
faults within the Midland Valley (Anderson, 1951).

The lavas of the Antrim Flateau are also reversely magnetized
(Hospers and Charlesworth, 1954) and the magnetic highs around the
edges of the lava field are merely polarity effects. TFowler and

polarity changas
Robbie (1961) report finding normal megnetization and Such , may account
for the irregular nature of the field over the lava.

An anomalous feature of the aeromagnetic map is a linear positive
anomaly trending from the Irish coast near Newcastle north westwards
underneath the Antrim lavas. The f.‘orm of the anomaly suggests that it
is caused by a dyke and it has a Tertiary trend, but, in contrast to
other Tertiary dykes, it is positively magnetized. This dyke which
appears larger than most of the other Tertiary dykes may mark a fissure
which acted as a feeder for the Antrim lavas.

Charlesworth (1963) po.l11 has postulated the' presence of a Tertiary
igneous centre beneath the Tardree Fhyolite but although the magnetic
map of Northern Ireland shows a positive magnetic amomaly over the
rhyolite it is difficult to confirm the existemce of an intrusion.

The positive part of the anomaly appears confined to the region over

the contact between the rhyolite and the basalt and this suggests



that the magnetization contrast at this contact causes the anomaly
because an intrusion would cause an anomaly which is positive over
a larger area, There is no definite gravity evidence to indicate
an intrusion.

The most striking feature of the gravity field of westerm
Northern Ireland is the large positive gravity anomaly centred on
Dromore. This feature is not obvious on the aeromagnetic map because
it is obscured by the magnetic effects of a Tertiary dyke swarm
however filtering of a magnetic profile in 9.5 and the upward con-
tinuation map (Fig. 9.3) reveal the presence of a large magnetic
anomaly coincident with the gravity anomely.

Although the form of the gravity contours suggest that the
anomaly may be the composite effect of the fields due to two separate
bodies the vertical gradient and downward continuation filtering
demonstrated in 9.5 show that the irregularities of the field are
due to smaller additional masses and that the main anomaly is due to
one large mass.

The only large intrusions in the area causing positive gravity
and magnetic anomalies are the Tertiary igneous centres such as
Slieve Gullion and Carlingford and as the Dromore Imtrusion underlies
a2 Tertiary dyke swarm trending north westwards from these centres to
Barnesmore where Charlesworth (1963) p.411 has postulated another
buried Tertiary centre, it seems reasonable to suppose the Dromore
Intrusion is also a buried Tertiary centre. Fig. 105 of Charlesworth
(1963) illustrates the distribution of known dykes and igneous centres
in Northern Ireland. These features may all lie along a tensional
fracture line resulting from crustal creep towards the Atlantic
(cofo Bott (1971)).

1250

A large olivine dolerite sill of probable Tertiary age (Charlesworth,
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1963, p.313) occurs in Carboniferous rocks to the west of the Dromore
intrusion and may be related to it, The gravity contours suggest
they may be related. There does not appear to be a magnetic
anomaly associated with the sill,

Murphy (1952) considers the Dromore Intrusion to be caused by a
buried mass of Ordovician age but part of the mass appears to occur
north of the Highland Boundary famlt and part occurs to the south of
ite It is very difficult to explain such a body of Ordovician age
if the Highland Boundary famlt marks the position of a subduction zone
as has been postulated in 9.3,

Fig. 9=-16 shows the results of a quantitative interpretation of a
gravity profile over the Dromore Intrusion using the computer program
OPTGPR which gpplied the non linear optimization routine to obtain the
prism whose gravity field gives the best least squares fit with the
observed gravity field, By letting the depth to the bottom of the
prism be an unconstrained parameter a good fit to the observed data
was obtained after the computer program had iterated to a solution with
depth to the top 0.1 km., depth to the bottom 25 km., and a density
contrast 0.06 gm/cc.. By constraining the depth to the bottom of the
prism to be 10 km. an equally acceptable visuel fit of the observed
and calculated data was obtained with an estimated depth to the top
of 0.3 km, and a density contrast of 0.13 gm./¢c.. This is the
solution illustrated in Fig. 9=16. These examples illustrate the
range of possible solutions for the Dromore gravity anomaly.

The geological section shown in Fig. 9=-16 illustrates by showing
the possible density values (taken from Murphy (1952)), that the gravity
anomaly may be the combination of the effects of an intrusion, ophiolitic
material and a dolerite sill. All these rock types may have the same
density and all are expected to occur in the area. The boundaries

illustrated between these three rock types in Fig. 9-16 are speculative.
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The magnetic anomaly calculated assuming the shape determined
from the gravity interpretation is significantly wider than the
observed magnetic anomaly and this suggests that the intrusion may
have a central magnetic core rather than being uniformly magnetized.
This i1s a plausible explanation becamse as Charlesworth (1963) p.li11
has described, many of the Tertiary centres in the area have under-
gone successive injection of cone sheets.

Fige 9=17 shows the location of the features described in this

section.

9.7 Concluding Comments Concerning the Structure and History

of the Midland Valley

This study has related the major geological and geophysical
features of the Midland Valley to three main tectonic episodes viz.
the closing of the Proto-Atlantic Ocean, the effects of the
Hercynian Orogeny and the opening of the present Atlantic Ocean.

The consistency of the interpreted structures with the postulated
models suggests that these models are valid but further work is
necessaxry to confirm them. In particular, a seismic study of the
crustal structure beneath the Midland Valley could confirm the
proposed oceanic origin of this crust. Seismic reflection profiles
through the North Channel would probably locate the true paths of
the Highland Boundary Fault and the Southern Uplands fault and
determine the angles of their fault planes. An aeromagnetic survey
of the Republic of Ireland would EJ.most certainly reveal the position

of the western extension of the Midland Valley.
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APFENDIX 1

Summary of Previous Geophysical Surveys in the Midland Valley

of Scotland and Northern Ireland

Magnetic Surveys:

1.
20

o

o

e

6.

7e

Ground magnetic surveys in Ayrshire (Park, 1961).
Study of magnetic profiles over Carboniferous dykes (Powell,1963).
Aeromagnetic maps for Scotland and Northern Ireland published

by the Geological Surveys of Great Britain and Northern Ireland.

Report on ground magnetometer surveys and é. discussion of the

aeromagnetic map for the Stirling area (McQuillin,1970).

Report of ground magnetic surveys near Ballantrae and an
interpretation of several features of the aeromagnetic map
(Powell, 1970).

Marine magnetic profiles in the Firth of Forth (Eden,1970).

Unpublished marine magnetic profiles in the Firth of Clyde
and around Arran by Dr. A. McLean et al., of the University

of Glasgow.

Gravity Surveys:

1e

2o

3o

Reconnaissance gravity survey of Northern Ireland (Cook and
Mul'phy, 1952)0

Unpublished regional gravity survey of the Midland Valley in
Scotland by Dr. W. Bullerwell of the Institute of Geological

Sciences.

Detailed gravity survey of Northern Ireland described by

Bullerwell (1964).



129.

L. Gravity surveys of the western Midland Valley in Scotland,
described and interpreted by Mclean (1966), McLean and
Qureshi (1966) and Qureshi (1971).

5. Marine gravity surveys around Arran., The results are shown

in Powell (1970).

Seismic Surveys:
1. Investigation of seismic velocities and seismic reflection

profiles in the central Midland Valley by Hall (1970), (1971).
2. Sparker seiemic survey of the Firth of Forth by Eden (1970).

3. Unpublished sparker surveys in the Firth of Clyde by

Dr., A. Mclean et al., of the University of Glasgow.
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APPENDIX 2

Filtering of Two Dimensional Data and Production of Contoured Maps

Various computer routines were written for the production
processing of aeromagnetic data.

Initially it was intended to digitize aeromagnetic data along
straight lines at the points where the contour lines crossed these
straight lines and to use a spline interpolation method (c.f.
Bhattacharyya, 1969) to convert this data to accurate data in gridded
form., Although a computer routine was written to do this, the
University of Durham d-mac digitizer was inconvenient to use for
digitizing the data because of the extensive computer routines
needed to correct digitizing mistakes. In practice it proved
significantly faster to digitize manually on a regular grid. As
only low pass filtering operations were attempted this was sufficient-
ly accurate.

The aeromagnetic map of the Midland Valley in Scotland and
Northern Ireland was digitized on a 2 km. grid and the digitized
points stored on punched cards. As the flight line spacing of the
data is 2 km. this is the minimum grid size which will avoid aliasing.

The computer program CONV2D was used to apply two dimensional
filter coefficients to this data. Iow pass and upward continuation
coefficients published by Fuller (1967) were tried. It was found
that the low pass filter, which had a very sharp frequency cut off,
produced a smooth but unrealistic looking filtered field. The upward
continued field (for a continuation of 2 km.) however showed realistic
looking anomalies and the noise anomalies were sufficiently suppressed.

To contour the filtered data the computer contouring routine
published by Holroyd and Bhattacharyya (1970) was adapted to the

computer system at the University of Durham (Programs SPLINE 2 and
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GONTOR). This necessitated modification of the plotting statements
and the correction of several basic logic errors in the published
program (such as a missing subroutine, BLINE), Although the
contouring program worked it was impractical to use because the
calculations had to be performed on the IBM 360 computer and the
plotter pen movements had to be punched on cards, and subsequently
fed into the IBM 1130 computer which controlled the plotter. The
number of punched cards required was prohibitive.

For the production of contour maps of the filtered data a
program was written to plot the numerical values of the filtered
output on a regular grid (Program PLOTIT)., This greatly simplified
the manual contouring process.

Recently the IBM 360 computer has been adapted to allow on line
plotting and the contouring program is now convenient to use.

Examples of the outputs of CONTOR and PLOTIT are given in

Figs. 8=5 and L4=11b.
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APPENDIX 3

Sumary of Computer Programs Used

Copies of programs listed below which are not included in this
thesis are available in bound form, complete with instructions, in
the Geology Department,; University of Durham. The section numbers
given with each program refer to the main reference to the program

given in the thesis.

GRAV2D computes gravity effect of arbitrary shaped two dimensional

polygonal body. (4.2)

MAG2D computes magnetic effect of arbitrary shaped two dimensional
polygonal body. (4.2)

GRAVPR computes gravity effect of a prism. (4.3)
MAGPR computes magnetic effect of a prism., (4.3)
THIRDM computes gravity effect of an arbitrary shaped three

dimensional body. (5.1.2)

OoPTM2D non=linear optimization routine to find shape and magnet-
ization of a two dimensional body causing a magnetic

anomaly, (9e1e202)

OPTGPR non=linear optimization routine to compute dimensions and

density of a prism causing a gravity anomaly. (901.2.2)

OPDBMPR non=linear optimization routine to compute dimensions and

magnetization of a prism causing a magnetic anomaly. (9.1.2.2)

SPLINE converts irregularly spaced points along a profile to

regularly spaced points. (8.1)



SPLIN2

CONTOR

PLOTIT

NLFILT

CONV1D

CONV2D

WIEN1D

WIEN2D

MULTIW

SHIFTY

MINIM
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calculates bicubic spline coefficients for regular grids

of data. (Appendix 2)

contours regularly gridded data. (Appendix 2)

plots numerical values of regularly gridded data.

(Appendix 2)

performs non-linear filtering on profile data. (3.5)

convolves one dimensional filter coefficients with profile

data.

convolves two dimensional filter coefficients with grid

data., (Appendix 2)

calculates and applies one dimensional Wiener filter

coefficients (listing enclosed)e (4o1) and (6.2)

calculates and applies two dimensional Wiener filter

coefficients (listing enclosed)e (4¢1) and (6.2)

calculates and applies multichannel Wiener filter

coefficients (listing enclosed)e (7.1) and (7.3)

calculates and applies one dimensional Wiener filter

coefficients for optimm lage (4e2.1.2)

non=linear optimization routine to compute depth and
magnetization of a layer for which the relative relief

is known. (8.2)

matched filter method to find the depth and width of a

dykee (59 2)



COEFF

SPECT1

SPECT2

computes one dimensional filter coefficients using the

Fourier transform method. (3.6)

computes phase and amplitude spectrum of profile data.
(lhe25203)

computes amplitude spectrum of two dimensional gridded

data using the Fourier transform method. (4.3)

0T W,
. 2 1SEP$972
L{BRARY.
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PRIOGRAM: MULTIW

CALCULATES AND APPLIES MULTICHANNEL WIENER FILTERS
H2S CPTICN TO ALLOW FOR AUTOCORRELATED NRISE
P.JsGUNN GEQLOGY DEPARTMENT UNIVERSITY 0OF DURHAM

ste 2 3 2 2 oo 3K e ok sk v e o sfe o ot e ol ke sl e o ok o 3 sl ode st oo e e ool ol ol o e o s sl ol sl oo o e sk ke e ek e e ke e ook ok ek

INPUT !

e sbe wle odo nis
eIl

SPEC.CARD 1 {4&411.) IS,IE¢JS,JE

S — 1s=1
TE=NUMBER OF INPUT SIGNAL CHANNELS
JS=NUMRER OF FIRST VALUE OF INPUT SIGMAL TO BE CONSIDERED
JE=NUMBER OF LAST VALUE OF INPUT SIGNAL TG BE CONSIDERED

SPIC.CARD 2 (211" 4Fl .1) LR,LW,FLOOR
mmmm=—==-=~ LR=LENGTH OF DESIRED FILTER

LW=1r

FLOCR=LOWER 30UND FOR FILTER ERROR (NDRMALLY = o,7 )

SPFC.CARD 3 (I17) N
mm———————=-  N= NUMBER OF INPUT SIGNAL CHANNELS

DATA CARDS INPUT SIGNAL ,THERE ARE N CHANNELS OF INPUT SIGNALS.

||||||||||| THEY ARE FED IN OME AFTER THE OTHER IN FORMAT{(17°F8.1)
AND 999S$9G. IS PUNCHED IN THE POSTTION IMMEDIATFLY
FOLLOWING THE LAST VALUE FOR A CHANNMEL., THE NEXT
(CHANNEL STARTS ON A NEW CARD

N

SPEC.CARD 4 (I1°)
= NUMBER OF DESIRED QUTPUT CHANNELS

———————————

DATA CARDS DESIRED DQUTPUT CHANNELS IN SAME FORMAT AS INPUT SIGNAL

e, rAOND & Y =5 B 1Y TA S




OO0 OO0 N

JUTPUT

" D1 ke - ——

S rﬁ CARD &

ODATA CARDS

DATA CARDS

N . - g o —— ———

TFORMAT

~
(&)

A NOISE REDUCTION FACTOR

(1223 N (ONLY IF GAL.GT.T)

M= NUMBER (OF NOISE CHANNELS.N MUST EQUAL THE NUMBER
n

INPUT SIGNAL CHANNELS

(ONLY IF GA.GT.t) AVERAGE NODISE STGNAL IN SAME
AS THE INPUT SIGNAL AND WITH SAME DIMENSIONS
AS THE INPUT SIGNAL

SIGNAL TO BE FILTERED IN SAME FDRMAT AS INPUT SIGNAL
AND WITH SAME NUMBER CF CHANNELS

REPEAT WITH CARDS FCGR ADDITIONAL SIGNALS 70 BE PROCESSED

WITH THE SA

o3 e ok o ok

Ak k

s i e
foxiosg ek

DOURLE
1227017

e e e

-

LY 228

DOUBLE PRECISION FLOBR,GA,

READ(541) IS,
FORMATI(4TL )
FORMAT{ZI1 . ,F
READ(5,2) LR
“EAD(S5,41) N
K="

na 1.
CALL IN
L="
L=1+1
XXXLL)Y=P(J)

N s

IT=1,N
{P,yLX

L"H-rx

IF{I-.LT.IS.0R,

K=K+1
’é"

D A Y JE I S

de oo ole she e

PRECISION X

ME SET OF FILTER CODEFFICIENTS

SELF EXPLANATORY PRINTED QUTPUT

dokk ok kK

*m.g.v*wﬁmxav “
{2500l ) o PUT Yy v.m&wﬁny
utx..mmam B™)ySSSIILNT)

xﬁ
mﬁmu.mamtf

5050 50

Zy

'\)Lh

IE,JS,JE

17.1)

s LW,FLOCR

)

[.GT.IE) GO TO 167

C




[AY]

~J

(Y

w B

©pt
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V=V4ed
XX{K,M)=XXX({J)
CONTINUE
CEADIS,2) N

K=

on 3 [=1,N
CALL INM (P,yL2Z)
L=

hn 571 J=1,L2Z
L=L+1
ZZ7(L)=P{J)
K=K+2

N=

00 4 1 J=1,L2
M=M4 ] :
221K M)=Z2Z2(F)
CONTINUE

M=N

N=TE-1S+1
LY=JE-JS+]

X

9
7

1=
J=

XIKY=XX{Js 1)
WRITE(&,271)

FORMAT{1X, ' X IN MULTIPLEXED MODE

[X=LX*N
WRITE(6,272){X(T),I=1,1X)
FORMAT(1Xs1 F12.5)

K=

N3 1. 4 J=1,L2
0N 104 J=1,M
K=K+1

Z{KY=72Z(J, 1
WRITE( &2 2)

FORMAT{1X,//° Z TN MULTIPLEXED MODDE

[1=LZ2%M

LIDBDYTESLS L 27 29VvE720TY_1T-=1_1274

')

")




READ(5,3) GA
2 FORMAT(F1Lo1)
CALL ZFRO (IX,T)
LXN=LX
IF{GA-LE.. ) GO TQ 5
READ(5,1) N
HRITE(6,5¢ 1 1) GA
5.1 FORMAT(LIX, "WEIGHT CF NOISE REDUCTICN = 9,F15,2)
K=
Do 317 I=1,N
CALL IN (PyLXN)
L=
DD 511 J=1,LXN
L=L+1
511 SSS(L)Y=2(U)
K=K+1
Mgz
20 411 J=1,LXN
MS=MS+1
SS{K,MS1=8SS{J)
CONTINUE
MOTE THAT NOISE MUST HAVE SAME LENGTH AS SIGNAL
K="
DN 113 T=1,4X
DD 113 J=1,4N
K=K+1
13 TiIK)=SSUJd,.1)
WRITF(6,212)
217 FORMAT{1X,"' NOISE IN ™MULTIPLEXED MODE?')
I X=L X*!
WRITE(S,2.2) (TIT),1=1,51X)
5. WRITE(S6,2:.6) NoyLXyM,LZ
CALL WIEMER (NpelLXeXsMoLZyZyLRLWsFLCOR,
ILFyFeSelY Y SHyLXN,TLGA)
LEI=LE
..U,Hq.mnmu«vav Zo_..\_w_lXo.—.No—n_Nwﬁnio_r_u¢_|<
Z2 5 FORMAT(1IX,1"T1 )
LE=LF
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ARITF (46,24 4) LF
2 5 FORMATI(1IX,//¢ ACTUAL OUTPUT IN MULTPLEXED MODE LENGTH =7,1%)
WRITE (6,2 2) (F(TI),I=1,LF)
LY=LY=*M
WRITE (642¢ %) LY
EORMAT(1Xs//7' COMPUTED MULTICHAMNEL FILTER IN MULTIPLEXED MODE?,
1:5)
WRITE (642'2) (Y{I)pI=1,LVY)
WETITE(,,277)
2 7 FAORMAT(1X,' NORMALIZED MEAM SQUARE FILTER ERRQORS?)
WRITE(6,2 2) {E(I),I=1,LE)
K=
& DO &6 2 MM=1.N
CaLL IN (PLX)
LF=LE
NS=LF
NE=LX+LF~1
PO & 3 1=1,LF
TINE+T)=2.D. %P{LX)=P(LX~-1)
£ 2 TINS-T1)=2,0 %P(1)-P(1+1)
KK=LF-2
0N 611 I=1,LX
KK=KK+1
611 TIKK)I=P(TI)
LT=LX42%LF-2
WRTTE( 6,6t T)
& 7 FORMAT(1IX,'SINGLE CHANNEL 0OF EXTRAPOLATED INPUT')
WRITE(H,272)IT(T),1=1,1L7)
L=.
DO 6 & J=1,LT
L=L+1
XXX(L)Y=T{J)
K=K+1
M=
DO 6 5 J=1,L7
M=p+ ]
XX(KyM)=XXX{J)
CONTINUE
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03 627 I=1,LT

D3 61 J=1,N

K=K+1

Ay=XxX(J, 1)

LX=N=HLT

WRTITE(&E462 )

FORMAT(1X, ' INPUT IN MULTICHANNEL MODE')
WRITE(&42.2) (X({K)K=1,LX)
LY=LT+LF-1

M=1

CALL BRAIMY [(MyNsLFsFsNglsLXyXsY)
WRITE(H,6i"5)

FORMAT(IX, ' MULTICHANNEL QUTPUT?Y)
HWRITE(64202)(Y(I),I=1,LY)

K=
G TO &'
CaLL EXIT
END

J0UBLE PRECISION FUNCTIONM SPUR(N,A)
DCHBLE PRECISION A(N,N)

SPUR= 47D

N3 1 I=1,N

SPUR=SPUR+A(I,I)

BETURN

END

SURRDUTINE REMAV (LY,Y,AVERAG)
NOUSLE PRECISTION YI(2)

m." 031

peole I=i,Ly

S=S+Y(1I)

AVERAG=S/FLOAT(LY)

02 I=1,LY

YIT)=VY{I)-AVERAG

RETURN
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SUBROUTINE IN(X,sLX)
COUBLE PRECISION X{1)
I7="

1=17+1

I7T=1+9

READ(5,7 %) (X(L)4L=I,1T)
FORMAT(1.F8,1)

PO 2.0 L=1,I%
TF(X{L)=9999GG.) 27" 41,1
CONTINU®

6N TN 17

LX=L-1

RETURN

END

SUBROUTINE WIENFR (NeLXyXeMyLZyZsLR,LW,FLOOR,
_.._nqﬂ-mn_!<<<<rﬁ‘_!XZoXZam.Pv
VERSION | OF SUBRROUTINE WEINER
DIMENSION X(N,UX)9Z{MyL2Z)F(MyN,LR)
DIMENSION E{LR)yY{MsLY)y SINNX{SXLR+6)+MN*{LR+2)
+23%MEM)
DOYBLE PRECISION FLOOR,P(S . ),GA
DOYBLE PRECISION
XEE)9Z (1) o FUI) s 801 )Y (1)eS(T)oXN(L)
NN=NxN
MNLR=NN*LR
MN= M N
1R=1
IA=1+NNLR
IB=]A+NNLR
1AP=T84+ANNLR
1BP=1AP+NNLR
TVA=IBP+NNLR
IVB=TVA+NN
IDA=TVB4+NN

v ™ ¥ PN A = Rthy
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1CB=TCA+NN

IG=IC8+NN

JCF=IG+MN%ELR

1GAM=ICF+MN

TH=TGAM+MN

TFGT=TH+M#=M

CALL HEAT(Myl L7432 9Mel ol ZeZs1,SUIH))
IF{LW.LE. 1} L=LE

IGZ=1G+MN*[ W

1FZ=TR+NN#LHW

mmua_nzo Aw.ﬂaHe.DZDoﬁZa_lj_..n _IDV ._("_li
TF{LWaGTo1oANDS LW LToLR) CALL ZERG (MN%=({LR-LW),
SUIGZ)Y)

IF{LWeGTol1oANDoLWLLToLR) CALL ZERD (NN:{(LR-LW),
S{TRZY)

IFILW.GT.1.ANDs LW« GE.LR) L=LF

CALL HEAT(MeloyLZsZyNsl,yLXyXsLyS{IG))

CALL HEAT (N, L oL XsXgNylylXyXolLS{IR))

WRITEF{6y4) (S{J)sd=1,L)

CALL HEAT (Ns1LXNyXNyNy1,LXNysXN,L,P)

oo o200 I=1,.L

SIE)=S{IV+GA*P(])

HRITF(6,4) (S(J)ed=1,L)

FCRMAT(1IX,1.F1,1)

TF(LWsLF.1.0R.L,LEs1) GO TD 2

DN 1 K=2,L

IGK=TG+MN={K=1}

IRK=TR+NNH (K1}

DOUBLE PRECISION WINDOW

WINDDW=1,D ~DFLDAT(K~-1)/DFLOAT(LW-1)

CALL SCALE (WINDOW,MN,SCIGK))

CaLlL SCALE (WINDOWSNMN,S{IRKI)

CALL RECUR (NyMtR,S,SUIHY,SIIG)FLOORLLF,F,E.S{IA),
IS(IBYS(TIAP) ,S{IBP)S{IVA)S(IVB)},S{IDA),S({IDB),S(ICA),S({ICB),
2SUICFY,SLIGAM) ,STIFGT))

LV=LX+LF-1

CALL BRAINY {(MyNyLFsFsNelsLXaX,yY)

RETURM

bt

o
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SUBROUTINE RECUR (NyMyLR4RyHG,FLOOR,LF,F,E,

HﬁamoDVqmﬁo<>n<mqD>¢UWeﬁDqﬁW«ﬂﬂ;@DZoﬂmﬂv

DOUBLE PRECISION
FIFaNsLRIyRINSNJLR) ,GIMyN,LR) ,HI{M, M),
DAZ‘ZQrmaabﬁAZwZ.rﬁvc@~2¢2eﬁ%gn@ﬁa2o2arﬁv
VA(NSNY VBIN.MN) 4DA(N,N),DB{N,N) '
CAINGNY,CBINyN) sCFIMyN)yGAMIM, N} '
FGTIM,M),E(LR)

DCUSLE PRECISICN FLOOR

CALL ZERQO (N=N=LR,A)

CALL ZERO (N#AN*LP,R)

CALL ZERQO {M=N*LR,F)

DN 2 1=1,N

DO 1 J=1,4N

VA(T3Jd)=F(14J,1)

<maMc&vﬂanwL¢Hy

AlIsT,1)=1.D"

P{lslei)=1o00"

CalLt MﬁngHnﬁanﬂchﬁv

WP vl DN e

LF=1

CALL HEAT (MyN,1,F,MyNs1,G42,FGT)
E(i)=

H 1.0 -SPURIM,FGT)/SPUR({M,H)

IF(E(L).LE.FLOORIRETUAN

IF (LR,EQ.1) RETURN

DO 9 L=2,LR

CaLl ZERD (N=N,DA)

CALL MOVE (MXN,G{1s14+L),GAM)

Do 5 T=14N

2 4 LI=i,L

LD=L-L1I+1

D 4 K=1,N

29 2 J=1,N
DALTJ)I=DA(T, )=A(T 4K, LI}*R{KyJoLD)
PO &4 J=1,M

GAM{J, IV =GAM{J, T1-F(J,Ky,LII*R{K,I,LD)
D3 5 J=1,N

DR{J,1)=DA(T1,J)

~ a0 M~ e rarervm 2 AL AY  moa LaMm ™ oA N

14



CALL SIMEQL{NsN,CB,VA,DB)
CaLl MODVE (N®N*L,A,AP)
CALL MOVE (N*N=xL,8,8P)
Nt 7 J=1,4N
N0 7 K=1,N
DN 6 LI=1,1
LD=L-LI+1
NG A I=1,4N
ST deLI)=A{T,JsLI)+CAIIK)%XBP(K,JsLD)
WAHnquH-"GAmeqﬁH-+ﬁmangv%DV*X‘L~FOv
DO 7 I=1,N. .
VA{T,J)=VA(I,J)=-CA(I,K})=*DB(K,J)
7 VB{I,4)=VB(I,J)-CBII,K)*DA(K,J)
CALL SIMEQL(MyN,CF,V8,GAM)
DO 8 Li=1,L
LD=L-L1+]
DO 8 J=1,N
DO 8 K=1,N
Na 9 I=1,M
9 F{loJelLI)=F{IoJdyLI)+CF(],K)%B(K,JeLD)
CALL HEAT {(MyNyLsFyMeNsLsG,1,FGT)
E{L)=
1 1.D -SPUR(MGFGT)/SPURIM,H)
LRITE(6,107 ) LeE(L)
N FGIMAT(:Xs11 4F1Z2.5)
LF=L
TFIE(L) . LEL.FLOOR) RETURN
9 CONTINUE
RETURN
END

o>

4

SUBROUTINE HEAT(NRXsMCX o LX s X NRY ¢NCY, LY,Y,LG,G)
COUBLE PRECISION

2 X{NRX MCEX LX) g YINRYZNCYSLY) s GINRX,
INRY,LLG)

~ A d ¢ - ome gy 4 AT AP Boh i V2 L1 PN ~ s
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e

nn
ne
no
DO
LRDOT=MIN (LY, LX=J+1)

Do I=1,LD0T

K=l+J=-7
GIMeNaJY=GIMyNoJI+X (ML ,K)EY({N,L,1)
RTTURN

ZND

F b | et et b ek
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SUBROUTINE ZERC (LX,X)
COUBLE PRECISION X{ILX)
E(LXL.LELT) RETURN
DY I=1,LX

X(I)=.,"D

RETUSN

FND

SUBROUTINE SCALE (S,LX,X)
CCUSLE PRECISION X(LX),S
DAl J=1,LX

X{TY=S=xX(1)

RETURN

END

SUBROUTINME BRAINY (NRA,NCA,LA,A,NRB,NCR,LR,B,C)

DCUYRLE PRECISION

2 A(NRAGMCALLA) RINCANCB,LR),CINPA,

P YNTLETS - &




b

-

DO 1 J=1,LB

K=1+J4-1

D3 1 M=1,NRA

7O 1 N=1,NC8

DO 1 L=1,NCA
CUANIKI=C U g Ny KI+A(M, L, I)*¥B(L,NsJ)
RETURN

END

SUBROUTINE SIMEQL(HM,NyA,B8,C)

DOUBLE PRECISIGN S(25,25)

DOUBLE PRECISION
AlMoNIZBINgN) ,C{¥yN)

CALL MOVE (N*N,8,S)

CaLt ™MAINE (N,S,8)

DI 1 I=1,¥

DO 1 J=1,N

AlTad)="6D:

D3 1 K=1,N

S(T,JY=A(T,J}+C{T,KI*XB{K,J)

CALL MOVF (N*N,S,B)

RETURN

ZND

SUBROUTINE MAINE (My,A,8)

VERSION 1 OF SUBROUTINE MAINE

SYMMETRIC MATRIX IMVERSION RY THE ESCALATOR METHOD
DNDURLE PRECISION A(1),B(1),EK

B{l)=i.D /Al1l)

IF(N.EQo1) RETURN

NN=N*N

20 5 I=2,NN

PO




]

(RS

W

Mtiz=M+(M=1 ) %N

EX=A(MM)

DO 1 I=14K

DO 1 J=1,K
MI=M+(]-1)%*N
T3=I+4(J=-1)*N
JH=d+{M-1) %N
EK=EK-A(MI)=B(1J)*A{JIM)
B{iMM)=1,D"/FK

DY 2 I=1,K
TM=T+(M~1)%N

DD 27 J=1,K
Td=1+0J-1)=%N
JH=J+{M=1 %N
SIMI=B(IM)=B(TIJ)*A(IM)/EK
MTI=M+(]-1)=N
B{MI)=8B(1IM)

no 4. I=1,K
IM=f+(M=-1)*N

DD 4  Jd=1,K
MJ=M+(J=-1) %N
IJ=1+(3-1)%
REIJY=B(TIJ)+R{TIM)I=BIMIV*EK
CONTINUE

FETURN

END

SUBROUTINE MOVE (LXsXsY)
DOURLE PPECISION X(LX),Y(LX)
o0 1 I=1,LX

Y{rr=x(uj

FRETUPN

END

T
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