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ABSTRACT

An experimental study of the quenching effects on the galvano-
magnetic and thermomagnetic properties of bismuth single crystals is
presented. Measurements made include components of the magneto-
resistivity and magnetothermoelectric power tensors at low and inter-
mediate magnetic fields fpr samples in both the annealed and quenched
conditions, at temperatures between 77°K and room temperature.

Marked effects of quenching on each set of tensor components have
been observed. .After quenching the anisotropy ratio 911/ 933 of
the zero field resistivity inverts from 0.9446 to 1.030 and the
thermomagnetic datg show a general reduction in magnetic field
dependence. The quenching effects anneal out below room tempera-

ture.

To allow a detailed quantitative investigation, a formalism
has been developed by which the thermomagnetic data and the predic-
tions of both the phenomenological theory and of the band transport
theory can be compared on the same basis as the galvanomagnetic
effects. The expressions provide for the first time an analytical
explanation for the Umkehr effect énd lead to its prediction. The
occurrence of Umkehr effect and sign reversal in the thermomagnetic
power of bismuth directly follows from the nature of the Fermi

surface.

Measurements at low and intermediate magnetic fields have
been analysed in terms of a two-band multi-valley Fermi surface

model, using a least-means-square procedure. Reasonable agreement



obtains between the model parameters computed from different sources..
Magnetoresistivity data at low and intermediate fields evidence

consistent quenching-induced changes on the model parameters.

25

3

Quenching results in an increase in carrier densities from 4.4 10%m
in annealed state to 4.6 10°°m > and 5.3 102w for electrons and
holes respectively. Carrier mobilities in the xy-plane are reduced
but those along the trigonal (z) axis are increased slightly. The

energy separation between the band edges increases markedly.

Quenched-in defects have predominantly accepter-like character.
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CHAPTER I

INTRODUCTION

Interpretation of carrier tréﬁsport properties on the basis
of electron bahd~theory has led to major contributions in our under-
standing of the electrical conduction in solids. Certain transport
effects, particularly the Hall effect and magnetoresistance, are
frequently used as tools for the investigation of the Fermi surface
of semimetals and metals. By virtue of their unique carrier proper-
ties the semimetals bismuth, antimony and arsenic play a special
role‘in experimental studieé of transport effects. The presence, in
these materials, of carriers with small effective masses, high
carrier mobilities and long relaxation times results in large changes,
as compéred with those in metals, in the thermoelectric power and
electrical resistivity in the presence of a magnetic field. In
bismuth in particular the carrier transport properties are dramatic;
manonf the fundamental properties, among them the Hall, Ettinghausen,
Nernst, de Haas - van Alphen, Shubnikov - de Haas effects were first

discovered in this semimetal.

The galvanomagnetic effects in semimetals have been extensively
studied. Combined épplication of the results of the phenomenological
theory and band theory has resulted in correlation of the experimental
observations with the main features of the Fermi surface model. Thus
the low field temsor components of bismuth (Abeles and Meiboom 1956,
Zitter 1962, Hartman 1969), antimony (Oktii and Saunders 1967) and

arsenic (Jeavons and Saunders 1969) have been measured and interpreted
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using multivalley, ellipsoidal Fermi surface models; the marked
anisotropy of the galvanomagnetic effects in semimetals has been
directly connected to the Fermi surface topology. As a result of
these and other extensive studies, the features of the low field
galvanomagnetic tensors have been explained satisfactorily. But

the thermomagnetic effects are less well understood and studies of
these effects have contributed little to this end. Large, anisotr-
opic magnetothermoelectric effects in bismuth with unusual features,
not hitherto accounted for oﬁ a formal basis, have been observed.

On magnetic field reversal the magnetothermoelectric voltage alters
for certain crystallographic directions (Griineisen and Gielessen
1936), a property usually termed the Umkehr or commutation effect;
this behaviour is particularly marked for the thermomagnetic voltage
measured along the y-axis when a temperature gradient is developed
along that direction and the magnetic field directed either along

the +x or -x axis (Smith et al., 1964, Gitsu et al. 1970 and Michenaud
et al. 1972); a sign reversal occurs, when the magnetic field is

made sufficiently large; striking polar diagrams of the thermoelectric
voltage have been obtained, when the magnetic field is taken around

the xz-plane.

A treatment of the thermomagnetic data on a similar basis
as that used for the galvanomagnetic effects has been considered
necessary. This should answer the open questions as to whether the
interesting features observed in the thermomagnetic power can be
accounted for from the results of both the phenomenological theory

and the 5and theory. One of the objectives in this work has been



to develop such a formalism by which the results of the thermomagnetic
data and the predictions of the phenomenological theory and the estab-
lished Fermi surface model could be related and compared. The basic
reason for this part of the study has been to lay a firm foundation

on which to base a quantitative investigation of the effect of quenched-

in defects on the trgnsport properties.

- A1l crystalline structures contain point defects; in fact, a
real crystal without point defects can not be in thermodynamic equili-
brium at temperatures above absolute zero. The presence of point
defects follows as a condition of the thermodynamical equilibrium
and the equilibrium concentration of point defects at a temperature

T is given by (Damash and Dienes 1963)

e F /KT : (1-1)

3 -
N
where E is the defect formation energy and k is Boltmann's constant.
Equation (1-1).shows that the defect concentration is zero at 0%k

and increases as the temperature rises, Thus this equation determines
the optimal condition corresponding to maximum defect concentration
at premelting temperatures. An excess of frozen-in defects can be
produced at a low temperature Te by quenching from a high temperature
Ta at which the equilibrium concentration of point defects is high.
The excess defect concentrétion created through quenching can then

be used in the investigation of changes induced by point defects or

the characteristics of defects themselves.



Quenching techniques have been extensively employed to invest-
igate defect induced changes in physical properties of crystalline
solids. The imperfections introduced influence most strongly those
properties that are structure sensitive, such as density and volume.
Early studies of point defects were carried out on ionic crystals
and many properties of colour centres were explained. In turn an
interpretation of more complex behaviour of technically importgnt
substances, such as photographic emulsion and luminescent materials
resulted. Similar theoretical and experimental techniques have shown
that point defects play an important role in semiconductors and in
aspects of semiconductor technology. Point defects and the distorted
regions around them scatter the electrons and thus manifest themselves
in changes in the electrical resistivity; by behaving as acceptors

and donars they can also change the carrier densities.

Although quenching techniques have been used to study exten-
sively the behavoiur>of frozen-in defects in metals,'no previous work
on the group V semimetals appears to have been carried out. Nor are
there detailed measurements of the magnetoresistivity and thermomag-
netic power measurements in metals, although much of the knowledge
of the behaviour of point defects has accrued from the direct approach
of resistivity measurements.(see Burton and Lazarus 1970, for a recent
study and earlier references). In pure metals the resistivity changes
produced by quenching are small. No measurable variations are found

in the Fermi level or the Fermi surface or in the carrier density.

Bismuth lends itself well to an investigation of the effects

of quenched-in defects on the carrier transport properties. Pronounced




effects might well be anticipated because the carrier density in this
material is low (each band contains oniy bhoh x 1017 carriers/cm3 at
77°K) and the band overlap is small ( 0.036 eV). A marked shift in
the Fermi level and in the carrier density should ensue from the
creation of defects which either donate or accept carriers. Carrier
effective masses are very small and the relaxation times long; carrier
mobilities are highj; quenched-in defects would be expected to increase
the carrier scattering and lead to an alteration in the carrier mobil-
ities. Because of the direct dependence of most of the tensor comp-
onents on the carrier density and mobilities, measurements of the
galvanomagnetic and thermomagnetic effects on quenched samples should

provide quantitative information on the effects of quenched-in defects

on these parameters.



CHAPTER II
THE CRYSTAL STRUCTURE AND THE FERMI SURFACE OF BISMUTH

I  INTRODUCTION

The'group - V semimetals bismuth, antimony and arsenic cryst-
allise in the rhombohedral, A7 strﬁcture (space group 3m), which has
two atoms in each unit cell. Their electrical properties reveal
certain characteristics typical of metals and others like those of
semiconductors. For example on the one hand the occurrence of rela-
tively high electrical conductivity with a positive temperature
coefficient, at all temperatures resembles metallic behaviour. On
the other hand carrier properties, such as density, energy, effect-
ive mass and mobility, and their sensitivities to impurities anq
defects are similar to those observed in semiconductors. Because
there‘afe two atoms in the unit cell, each contributing five valemce
electrons, there are just sufficient electrons to be accommodated by
the first five Brillouin zones. Thus, depending on the width of the
gap hotiesn the conduction and valence bands either semiconducting or
semimetallic behaviour could result. However in the A7 structure
semimetallic behaviour is the rule because thére is a small energy
gverlap between the fifth and sixth energy bands; this creates equal
numbers of holes and electrogs in small, nearly ellipsoidal pockets.
Cohe¢n, Falicov and Golin (1964) have shown that most of the qualitat-
ive features of the energy bands and semimetallic characters result

directly from the rhombohedral A7 crystal structure itself. Therefore




‘it is worthwhile examining this particular crystal structure in more.

detail.
II THE A7 CRYSTAL STRUCTURE

The space lattice adopted by bismuth, antimony and arsenic is
in the rhombohedral system. It can be obtained from the cubic lattice
by small displacements of the atoms. This is best illustrated by
reference to the NaCl structure, which is made up of two independent
face centred cubic lattices, one of which contains.the cation and the
other the anion. The A7 structure can be generated by the application

of two independent distortions, figure (2-1):

1~ The sublattices formed by Na and Cl atoms, which in the
case of group - V semimetals are occupied by identical ions, are

displaced along a body diagonal with reépect to one another.

2 - A pull along the body diagonals to transform each sub-

lattice into a face-centred rhombohedron.

The resulting face centred rhombohedral lattice contains four primitive
rhombohedral cells, each with two atoms. The primitive rhombohedral
translation vectors can also be generated in the same way from the

face-centred cubic structure by including the effect of the distortion.

They are

ol
"

1 ao{e v 1y 1}

ol |
f

ao{ 1, €, 1} (2-1)

a §1, 1, € }
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where a, is the half of the face-centred cubic lattice parameter and -

is related to the primitive rhombohedral angle & by

cosck = (1+2€)/ (2+ € (2-2)

The amount of distortion differs for each of the elements
and can be indicated by the primitive rhombohedral angle & and an
internal displacement parameter u (= %)h where d is the length of the
rhombohedral body diagonal and 2T is the smaliest distance between
tye two atoms along this diagonal directione Tgese parameters, in
comparison to the cubic case, for the three isomorphous elements

bismuth, antimony and arsenic are:

Element
o .."
Bi 577 19 0.237
i ]
Sb 57° 1is 0. 234
As 54° 16" 0,226
Cubic 60° 0.250

The distortion of bismuth and antimony from a cubic structure is
small: some directions, which would be symmetry axes in a cubic
structure, still produce back reflection‘Laue X-ray pictures which
look as if the symmetry is preserved. Such directions are usually
referred to by the prefix "pseudo". An orthogonal set of crystalog-
rphic coordinates is usually defined as follows. The binary (x)
axis is normal to'ény one of the three mirror planes, mutually

oriented at 120°, which intersects in a threefold inversion (2) axis.



The bisectrix (y) axis is in the mirror plame and completes the right
handed orthogonal set. However for the A7 structure this choice of
the coordinate system is not complete; it introduces ambigiuties in
defining the sign of some tensor components and hence the sense of
ellipsoidal angle of tilt (see Oktu 1967, Oktii and Saunders 1967,
Brown et al 1968). The usual convention for definition of a right
handed coordinate system is based on the geometry of the basis vectors
of the primitive rhombohedral unit cell: the positive z~axis is
taken aloﬁg the body diagonal of the primitive rhombohedral unit‘celi
defined by the lattice translation vectors 21, ;é and"a-3 of equation
(2-1)s The y-axis is then defined by projecting one of the gﬁ on to
the trigonal plane: the positive y direction is taken outward from
the origin:0 of the Eia(see figure 2-2)s A positive x-axis completes

the right handed set.
III THE BRILLOUIN ZONE

The Brillouin zone can be obtained by geometrical comstruction
in the reciprocal lattice, The reciprocal lattice vectors are defined
in terms of the real space vectors by

3. . &
g = am Jf as_ (2-3)
ai(ai A ak)

When the primitive translation vectors Ei’ are substituted into

equation (2-3), we have for the reciprocal lattice vectors:

g, = g, {- (1+ €)1, 1}
B, = g {1 -(1+e) 1} (2-4)
g = g, {1 -(1+6€)]
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where g_ = (1-€) /ao( €.3 - 3€ + 2)s The reciprocal lattice for the
A7 structure is also a distortion of the reciprocal lattice for the
face centred cubic structure; the cube, and hence the Brillouin zone
is compressed along one of the body diagonals. Figure (2-3) shows
the first Brillouin zone comstructed inside this slightly distorted
cubic structure. The compression is along the trigonal (TT) direction.
The hexagonal faces containing T are still regular hexagons but the
other six hexagonal faces are irregular and the six square faces are
now rectangles. The symmetry elements of the Brillouin zone are the
same as those of crystal lattice. Therefore the ambiguity of the
definition of a iight handed axial set in real space is carried through
into reciprocal space. In the mirror plane PTIX (see figure (2-4) ),
rotations from the trigonal axis I' T by equal amounts in opposite
directions are not equivalent. The sense of rotation may be such as
to tip the trigonal axis I'T towards either the L points or the X
points. Hence the directional dependence of parameters in this plane
must be described with reference to the geometry of the basis vectors
of the primitive rhombohedral unit cell of the Bravais lattice, The
convemsion, defining a positive angle in the mirror plane, corresponds
to the tilting of +y through the first quadrant toward +z (see figure
(2-4) )s Thus the ellipsoid in this figure has its major axes tilted
by a small positive angle from the bisectrix direction. These points

will be used at appropriate places throughout this thesis.
IV THE FERMI SURFACE OF BISMUTH

The Pauli exclusion principle determines the way in which the

electrons occupy the energy states available to them; the lowest energy
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states are filled first and then the states in order of increasing
energy. At the absolute zero of temperature the‘boundary between

the occupied énd unoccupied states is sharp; this boundary, which
ococurs at the constant enérgy surface, at the so-called Fermi energy,
is known as fhe Fermi surface. For the case of a simple free electron
gas, the surfaces of constant energy are spheres in k-space; and so
the Fermi surface is a sphere. Electrons well inside the Fermi
surface cannot be excited thermally or by electric or magnetic fields
becasuse the states within the appropriate energy range are already
occupied. Only the electrons near the Fermi surface can be excited
and hence electron transport is mainly due to these electrons.

This approach of using weakly excited states of carriers located in
the vicinity of the Fermi surface is preferred in band theory because
of the difficulties in describing the interactions of the quasi part-
icles in terms of an average field. However in a real solid neither
this idealized spherical Fermi surface nor the simple excitation
model can be a true description; but the main ideas leading to an
understanding of electrical conduction are essentially valid and an
appropriate Fermi surface topology developed along these lines lays

the foundation for the study of tramsport properties.

™ Most of the experimental and theoretical techniques avail-
able for band structure determinations have been employed in the
Fermi surface studies of bismuth, in fact, many of them were first
discovered in this semimetgl. The de Haas -~ van Alphen effect
(Shoenberg 1939, Brandt 1960, Bhargava 1967) Azbel' - Kaner cyclo-

tron resonance experiment (Aubrey et al 1957, Galt et al 1959),




-I2~

galvanomagnetic effects (Abeles and Meiboom 1956, Zitter 1962,
Hartman 1969), anamalous shin effect (Aubrey 1961), infrared measure=-
ments (Boyl et al 1960) and ultrasonic attenuation (Giura et al 1967)
to name some have all been investigated thoroughly. As a result the
main features of bismuth .: Fermi surface are established (Figure 2-5).
The electron Fermi surface consists of three geometrically equivalent,
extremely prolate ellipsoids, with each ellipsoid centred about an
energy minimum at L points on the six irregular hexagonal faces of
the Brillouin zone. These energy minima lie in the three reflection
planes. Each electron ellipsoid has one principal axis coincident
with an axis of two fold symmetry - there are three of these, each
obtainable from the others by a rotation of + 120° about the trigonal
axis - while the other ellipsoid principal axes lie in the mirror

plane. The energy dispersion relation, in momentum space is then

2 2

-— A - 2
2€E = p&xp = (O¢11p1 + 0(22p2 + 0(33p3 +20(23p2p3) (2-5)

where 1, 2 and 3 refer to the binary, bisectrix and trigonal axes
respectively, The cxij are the components of the inverse electron
effective mass tensor. Geometric equivalence of the electron ellip-
soids is obtained by the application of + 120° rotations around the
trigonal axiis. The Fermi surface for the holes consists of a single
ellipsoid of rotation about the trigonal axis probably sited at T,

| the centre of the two regular hexagonal faces of the Brillouin zone.
The energy dispersion relation in momentum space cqrresponding to this

pocket of holes is

- A

- 2 2 2
2€ = P@ P= Py P+ By p2A+ fizzp3 (2-6)
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where the P ij are the components of the inverse hole effectivemgesnséor.

A A
The inverse effective mass tensors X and ‘5 are related to

the mobility tensors.ﬁ and ¥ for electrons and holes by
qq © °

23| - (2=7)

Q
n
%=
~
®
o
]
Q
n
o

| 0 Xz O

and
B °© ©
P=Ver = | 0 By, O | (2-8)
| 0 By

The ellipsoidal model described by equations (2-5) and (2-6),
accounts quantitatively for most of the emperimental data obtained.
But Lax et al (1960) have suggested that the energy dispersion relation
significantly

of the conduction band deviates'from that of the parabolic = ~"13p-

Le.da’, model and have used a nonparabolic energy relation as

A

€1 + & ) =378&07 (2=9)
€g

where €g is a small energy gap between the valence and conduction
bands. The experimental evidence indicates that the deviation of
the electron Fermi surface from the ellipsoidal model is slight

(Khaikin and Edelman 1965, Bhargava 196F, Brandt 1963 and Korolyuls 1966).
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The Fermi surface parameters for electrons and holes measured by

different experimental techniques are listed in table (2-1).

The appropriate relationships for the galvanomagnetic and

s

thermomagnetic effects based on the ellipsoidal Fermi surface model

will now be developed.
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Figure (2-1) : The relationship betwsen the cubic lattice

“and the rhombohedral unit cell of the A7 structure.
B +Z

i e st = et Lt g et st ot e e o 2 = ————— P

<.

Eigureﬂ(2-2) : The primitive rhomﬁoﬁédral cell sited inside the
large face-centred rhSmbohedroﬁ. The primitive
translation vectors are denoted by ;i (1 =1,2,3),
y axis is chosen by nrojecting one of the E; on to
(111) piane and the vositive direction points out-

wards from the origin O of the a,.,




Figure (2-3) :

Thé Brillouin zone of the slightly distorted

face centred cubic lattice of Bismuth.
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Figure (2-4)

Tigure (2-5

A binary plane of the bismuth Brillouin zone

showing the cross section of ‘the electron

Fermi surface in the neighbourhood of one

point., Positive tilt angle is indicated. ;
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CHAPTER III

THEORY OF GALVANOMAGNETIC AND THERMOMAGNETIC EFFECT IN BISMUTH

I INTRODUCTION

The Onsager formulation of the thermodynamics of irreversible
processes has resulted in a rigorous phenomenological framework for
defining the magnetotransport coefficients. In an anisotropic medium,
the kinetic coefficients of thermogalvanomagnetic effects are tensors

defined by the kinetic equations:

T =o@®FE + HB 71
(3-1)
2 =8@E + LB VT

which express the electric and thermal current densities as linear
combinations of the effective electromotive force E. (which includes
the thermodynamic force associated with the chemicai pbtential of
the electronic carriers and plays the role of measurable electric
field) and the temperature gradient UT. The kinetic coefficients
so defined are: g’(ﬁ) the electrical conductivity tensor, ﬁ(ﬁ) the
thermoelectric tensor, N(B) the Peltier tensor and £(B) the thermal

conductivity tensor.

An analytic calculation of the kinetic coefficients in
equation (3-1) based on microscopic theory requires drastic
specializations and simplifying assumptions. One useful model is

due to Sondheimer and Wilson (Wilson 1959); which assumes conduction
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by independent quadratic bands of carriers of either type each
achieving equilibrium by a relaxation process and egqch contributing
additively to the total conductivity. However, although the simple
model of spherical energy surfaces employed is useful for some cubic
materials, it fails to provide the anisotropy of galvanomagnetic
effects. Some success in explaining the anisotropic galvanomagnetic
effects in bismuth results from the single valley ellipsoidal model
(Jones 193%6). In particular, the large transverse magnetoresistance
can be explained, but still no longitudinal magnetoresistance is
predicted. A theory based on a model of several energy extrema at
equivalent points in k - space and ellipsoidal energy surfaces
centred on these points has been developed by Abeles and Meiboom
(1954) and Herring (1955). This 'many-valley' model does predict
the anisotropy associated with galvanomagnetic effects. On the
basis of this model, quantitative analyses of galvanomagnetic effects
in bismuth (Abeles and Meiboom 1956), antimony (Freedman and
Juretschke 1961), Okt and Saunders 1967) and arsenic (Jeavons and

Saunders 1969) have been successfully carried out.

Expressions déscribing galvanomagnetic and thermomagnetic
effects for such a model will now be derived by adopting the procedure

of Mackeyand Sybert (1969) to include the effect of thermal gradients,

II DERIVATION OF GALVANOMAGNETIC AND THERMOMAGNETIC TENSORS

FOR ARBITRARY MAGNETIC FIELDS

The Boltzman equation in the relaxation time formalism for

the carriers takes the form:
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, ;.V rf +V pf.[-efﬁ - eva §] + f1/~c =0 (3=-2)

where f1 is the perturbation of the distribution function from the
equilibrium value fo. The Boltzmann equation can be solved (Wilson

1959) by putting:

£, = - (5.6) 2 fo (3-3)
d€

where ; is the momentum and C is a function of the energy t¢. For

ellipsoidal Fermi surfaces the energy can be written as

2 = pa.p = pu.>D (3=4)

in the principal coordinate system of a particular ellipsoid. .By use

of the equations (3-3) and (3-4) the transport equation can be written

as
SEAlT e +E Ty -8 T (3-5)

vhere % is the thermodynamic potential of the carriers. Defining

P as

- - 1 :

P = E +-e—,1,-(8-9) Vr‘l‘

) ‘ (3-6)

- - 1 7 ‘
and E. = E + ° r§
equation (3-5) becomes

-F+(E -0 - 71T =0 (3-7)

Here fi/e T is replaced by the inverse mobility tensor ;34 in the

principle axis system of an ellipsoid. In tensor from
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o ”” -
2y 0 0
~ . »
p = 0 p, O (3-8)
0 0 "
| ' |
Equation (3-7) has a solution for C of the form
T =G&F | (3-9)
where G = Git + B (3~10)
0 -B3 B2
and B = 53 0 -B, (3-11)
CBZ B1 0 J

The positive and negative signs apply for holes and electrons

respectively.

The perturbation of the distribution function from equilibrium
now can be found by substituting equation (3-9) into equation (3-3),

when

= I3 ifo
f,] = P oo P. -3-8- (3'12)

Thus the cuffent density given by

J

_2en”3 5 £, &p (3-13)
becomes

J

Zeh-Bf;'. ,

or using equation (3-6)
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J = 26 h'3f?r' Be GIE _g-f—° & p (3-15)
. €

, -31 -— T - 2fo .3
e - . A
+ 2eh (e f)?p G VrT — a’p

we now seek a form of this equation which can be compared directly

with the phenomenological equation for the current density in equation
’ - -t

(3-1). This requires expression of J in a linear combination of E

and V T, To facilitate this a transformation

I
P = gc% ;'%31' | (3-16)
T - afalW

is introduced Fuchser, Mackey and Sybert (1970), which transforms the

integration in equation (3-15) from ellipsoidal to spherical surfaces

where the energy is expressed by

2 = a WelW (3-17)

An appropriate change of variables now permits the integration over

spherical energy surfaces; terms containing multiples of wiw j for

-t —
i £ j venish: E and VrT are independent of energy and can be carried
outside the integral in vector from. The similarity to the phenomen-

ological equations is hence achieved by

J = 1872 e b oT (m1m2m3)’} je 3/2(ﬁ-1 + B g E‘

3 J€E
(3-18)
V2 . - 2,2=1 =13 % -
+-;- 36—3- hsn(m1m2m3)%f(e - c)eB/ (p +B) a-a—gde v.T

The first part of equation (3-18) contains only even powers of
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electronic charge so it is additive for different types of carriers. .
But in the second part odd powers are obtained and it is necessary to
distinguish the electron contribution from that of the holes. This is
done by introducing Z(= :‘i) and suffixing (€ - 4). The comparison

of equation (3-18) with the phenomenological equation (3-1) gives

5(B) 16_3'/2— e b2 (m )%j /2(}1-1 + B)-1 afo ds

1B
(3=19)

;4(3) =% -16/7213 -n'(m m2m3)% j (E - C h 3/2("-1 ﬁ)-1 -g_io_ &

Explicit evaluation of o(B) and f’l('ﬁ) requires knowledge of the energy
dependence of the relaxation time g . Integration at the Fermi level
avoids the compiications which arise from the energy dependence of T

and we obtain for Fermi - Dirac statistics.

5B = emy , G 2B (3-20)

S5F.,.6n . ) -
=== 33/2(4"7"; - fin] 6® (3-21)
) F *
/ 223 en

and M(E)

where F denotes the Fermi - Dirac integrals, and the partial reduced

“Zeyh

Fermi energies for electrons and holes are @e n= “®r ° and
9

te
¢, are defined as (¢- z—:c) and (ev - ) respectively, where ¢ . is
the energy of the bottom edge of the conduction band and €y that of the
top edge of the valence band. Thus band overlap - A¢ g is measured. from

the top of the valence band to the bottom of the conduction band

t
(Saunders and Oktii 1968).

Substituting equations (3-16) and (3-17) into (3-14) we get

for the electric current density for a single valley
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op -

hY

‘ (n ) 1
- P I ad E /& e.h A -
J = o0(B)E + ze-'ﬁ?{'ﬁf— - ne’h:; o(B) vrT (3=22)

The conductivity expression in its compact form (3-20) has been
obtained by Mackay and Sybert (1969) and Aubrey (1971). Furthermore,
Aubrey, starting from (3-20) has obtained the temsor components of

& (B) for ellipsoidal Fermi surface in a form applicable to arsenmic,

antimony and bismuth.

We now turn to a description of 6 (B) for the Fermi surface

of bismuth (see sectn. II,IV) in particular.
III TOTAL CONDUCTIVITY EXPRESSIONS FOR BISMUTH

To calculate the total conductivity of a group of ellipsoids,
one may assume thgt the conductivity of each ellipsoid can be calcu-
léted separately, the total conductivity is then given by summing
the conductivities of the individual ellipsoids in a common reference
system. Because the carrier concentrations in each ellipsoid in a
given band are equal and B is already expressed in the crystallo-
graphic coordinate system, the only quantity in equation (3-20)
related to an individual ellipsoid is the mobility temsor p. Hence
in the crystallographic coordinate system the partial conductivities
are obtained when only the mobility temsors are transformed into
this system. Let R_be a rotation matrix relating the k™2 ellip-
soidal principal axis system to the crystallographic axes; then
the total conductivity takes the form

c¥B) = e n, I (R p ﬁk - B)
k
: : (3-23)
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The matrix Rk for each ellipsoid must now be determined in the context

of the known Fermi surface topology.

For the valence band this is trivial because the axis of
revolution of the hole mobility ellipsoid coincides with $he crystall-

ographic z-axis. Rk is a unit matrix and the mobility tensor is

'v1 0 0 W
;J\ = 4] \).1 €] (3"'2‘*)
L 0 0 \)3

A transformation

1 0 0

R 4( 0) = 0 cosb sin® (3-25)

Lo-sine cosf
: J

around the two fold axis (x-axis) provides the mobilities of one of

the electron ellipsoids in the crystallographic coordinate system:

A= BENe) aR(e)
(py O 0 ]

- o B A (3-26)
|0 By P

The components in (3-26) are related to the mobility components in

the principle axis system of equation (3-8) by
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Po= A

P, = PBycosd + pg sin 0

Py = By sin’e  + Bz cos” 6

n, = (}1; - )x;) cosp sino (3-27)
or Fq = Hp, - p3) tan 20

The angle of tilt in terms of the mobilities in crystallographic

coordinate system is

1 My

6 = % tan —— (3-28)
}"2"}13

Once the position of the first ellipsoid has heen fixed with respect
to the crystallographic axes, the mobility tensors for the other two
electron ellipsoids can be expressed in the same reference system by

applying a further transformation around the trigonal axis; the

transformation matrix 3 =z
- % re % 0 .
0 0 1 J

brings the other two into the position of first one and yields the

mobility tensors..

aedIyIII -1,, 2m -1 2
o R(+5) 5 R(: 73“—) ” (3-30)

11*(}11 + 3}12) t L%A(}H'Pa) ¥ % Ay

= iv% (pypy) 10pp) -y,
: 'é By - I, P3

LAA
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By substituting equations (3-26), (3-29) and (3-30) into (3-23), the .

total conductivity tensor is obtained. The total conductivity

expression is rather cumbersome, so the partial conductivity contr-

ibutions for the electron ellipsoids are reproduced here from Aubrey

(1971).
I
()}1
I
CTzz

]

and
I11,III
C711

I,III
7z

11,111
033

1I,III
C712

1I,III
CTZ3

II,III
C731

1I,III
g

ne

_ 3 _d -
7 5 s p1) ByB, + nyBBs 3 [3P1“AB3B1 ]

2 I
(p1 +d B1) g

(p, + 4 Bg) .gI

(pg + d Bg) gt

[+ p1(p432 - PZBB) +d BB, ] .gI (3-31)

[ ;14-%1 B, + d B,B, ].gI

I
[— 3y(BsB, = ,B5) + d BB, ] e

a2 2 _ 2 ]-1
ne [1 + " B, + ;11(}13B2 21,B,B; + pyBy )

G, +p, + 322) g (3-32)

2y II,III

(p3 +d 33 g
r 3 | i II,III
2 F () + By (23 By-dBy)-p o By B1B2]:g

i d yp V3 d 3 II,I1I
[ Oty BTy }11) B,'S pyuBs+d ByB; [

- 3 d d II,III
F%%i(H%'if%%wwfiﬁ%éﬁﬁ%ﬁBPﬂg’

ne [1&(3}11):3+ %1)312 + %(}11}13 + }%) 322 + }11}12332
-1
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Here d represents the determinant of equation (3-26) and the
remsining components can be found from the Onsager relation

(’ij(§9 = 031(43)‘ The partial hole contribution is readily
obtained from equation (3-371) by replacing B by -B and using the
mobility components V1 = 'Va ’ 'V3 ' Y# = O instead of the corresp-

onding electron parameters.

The conductivity expressions in equation (3-31) and (3-32.)
relate to the classical range of magnetic fields, quantum effects

arising at higher fields have not been taken into account.
IV THE THERMOMAGNETIC POWER TENSOR

To obtain the thermomagnetic power tensor in a useful form,
it is convenient to write partial electron Pe and hole Ph thermo=-

electric powers as

5F, . ( 1)
AR
Pe = C [ﬁF% N n.éJ
(3-33)
5E.; (n )
and Ph = - % .—2‘3____2_ -7
5F%~(nh)
Then the current density (3-22) is
T-M®mET L+ ®p @ T G

where 0 °(B) , 6°E) and B(8) represent the total and partial
electron and hole conductivities respectively. Here the physical

-t frond
conditions imply the control of E and V rT as independent variables,

a situation not readily attained in the laboratory: the practical
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experimental arrangement for measuring isothermal coefficients requires
control of the current density‘3 and the temperature gradient v-rT.

The desired form can be found by multiplying equation (3-34) by
A_.'1 A em
5@ (or P (B) ), when

Bo= JF® T- PO s 0@+, "®)I TEI (3-35)

and then setting the extermal current J equal to gzero.

E = - P'® B, G°(B)+ P, 0 58) 1 VrTi\ (3-36)

This equation defines the thermomagnetic power tensor 6 (B) by
i Br= - P (B, 5°(B) + B8 (B (3-37)
e h-
" or in component form

1 B = = PEB (7,0 5,(B) + B oL BN
(3-37a)

When the magnetic field is zero, this expression reduces to the
standard form for the thermoelectric power of a two-band conductor

A Pe 9 + Ph
X = (3-37b)

V THE LOW FIELD MAGNETORESISTIVITY EXPRESSIONS FOR BISMUTH

Much of the work presented in this thesis concerns measure-
ments and analysis of the low field magnetoresistivity tensor and we

now turn to obtain quantitative expressions for this particular case.
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Although these expressions have been obtained elsewhere (Zitter 1962)%
they have not been reached as the limiting case of the general forms
presented in the foregoing sections of this chapter. For completion,
this procedure will now be carried through. But before this can be
done, it is necessary to develop the low field tensor components by

the phenomenological scheme used by Fumi (1952).

A - PHENOMENOLOGICAL DERIVATION OF THE LOW FIELD TENSOR

COMPONENTS

The phenomenological theory of low field galvanomagnetic
effects as described by Okada (1955) and Juretsckhe (1955) assumes
Ohm's law to hold for the conductivity tensor o(E) or its reciprocal
the'resistivity tensor p(ﬁ) in the presence of a magnetic field. In

an anisotropic media, these relations can be written

g = Oij (B) Ej (im1, 2,3) (3-38)

or E, = Pij (B) I (3-39)

where summation is implied on repeated indices and Ei and Ji are the
cémponents of the electric field and current density in Cartesian

coordinates, The effect of magnetic field is included in equations
(3-38) and (3-39) by making the conductivity and resistivity tensors

general functions of magnetic field.

Assuming that O(B) and P (B) will converge for small values
of B, that is that fi.B is much less then unity, a series expansion

in powers of the magnetic field components is possible.
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= (o) (1) (2) _
Gij(B) = Oij - oij,k,] Bk1 - Oij,k,‘ka Bk1 Bka— evse (3-40)

= (o) (1) (2)
Pij(B) = Py + Pij’k1 Bk,] + pij’k1k2 Bk1 Bk2 + oo (3-41)

This amounts to a Taylor series expansion with the coefficients in the
general form
() N p (B
1 ij

Pij,kk :N m [ 3%1...%

172

]E = o N = 0’1,2 ess ! (3-42)

The coefficients separate into various groups, each comnecting the
same power of magnetic field. Experimental studies normally determine

the tensor coefficients pg.‘] K kz . up to N=2., For greater values
k] 1 see N

of N, the number of terms involved makes the task prohibitively diffi-

(1) (2)

o .
cult. The terms pid ' P ij,k1 a.nd p ij,k1k2 containing up to

N=2 are often referred to as electrical, Hall and magneto-resistivity
tensors. ﬁence the low field galvanomagnetic effects in bismuth up to
the 32 terms in magnetic field can be detailed through the determin-
ation of the compenonts'bf these tensors. This is achieved by the
restrictions imposed from the Omsager reciprocity relation and also
the invariance of the tensor components under the point group symmetry

operations of the crystal (Juretschke 1955).

The point group 3m (D3d)’ isomorphic to bismuth, exhibits a
centre of inversion and as a result only even rank polar and odd rank

axial tensors do not vanish automatically. This; together with the
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application of the Onsager relation, fﬂd(ﬁ) = f%i(lﬁ), on the
A -
resistivity P (B) leads to the following types of tensors with the

symmetry specifications shown:

(0) (0)

Pij = P it (second rank symmetric polar tensor)
(lg K, p(;i g, (Third rauk axial tensor) (3-43)

P idakqk, = p ji,(all permutations of k) (Fourth rank symmetric
" polar tensor)

If the symmetric and antisymmgtric parts are defined as

_ (o) (2) .
Sy = Pij * Pijk s kaxz.

(3=-44)
_ A1
and Q. = Pl,],k k,
equation (3-39) can be written as
B} = s.-i:_]~J~j + oing ' (3-45)

which simply means that the resistivity tensor can be written as
the sum of a symmetric and an antisymmetric temsors. Equation

(3-45) may further be expressed in terms of an axial vector.Q

E, = siij + (J Aﬁ)i (3-46)

showing that the Joule heat E:J is determined only by the symmetric
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ﬁart of the resistivity tensor, and also that a magnetic field perp- -
endicular to the current direction gives rise to an electric field

in a direction perpendicular to itself and to the current. This
phenomenon, knoﬁn as the Héll effect, is due to the antisymmetric
part of the resistivity tensor and is given here as the product of
the tensor F§l;,k and the first order term in Bk + The tenmsor
/9(l§,k1 is called1the Hall temsor, which is equiv;lent to a second
rank antisymmetric tensor and an axial vector, that is, it is the

same as the product of two axial vectors. The magnetoresistivity

(2)
1ek,k,

(equation (3-4k) ) with vector products like B, B, j it is symmetric
172

tensor L relates a symmetric tensor of second rank sij

with respect to the interchange of suffixes i and j and k1 and k2
and may be regarded as relating two symmetric tensors each of rank

two.

The non-zero components for the temsors appearing in (3-43)
can be pbtained by group character analysis. The number of indep-
endent components are given by, the number of times the total symm-
etric representation occurs in the tensor representation 1%(R) of
the group (Bhagavantam 1966). This is carried through by the

formula
_ 2 ' Iy
B =g Zp b, B R ¥R (3-47)

where g is the order of the group, hP is the order of the fﬁh
class in the group, Yi(R) (in this case) is the character of the
total symmetric irreducible representations. The number of indep-

endent components for a tensor representation of a group is invarient
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with respect to the choice of reference frames. So, without loss
of generality, one can choose Cartesian orthogonal frames. The number

of non-zero components is dictated by this choice.

The Cartesian orthogonal frames employed here are z//C3 and

x//021 with respect to the crystallographic axes.

The similarity in transformation properties of the tensor
components and the coordinate products in Cartesian orthogonal frames,
allows the replacement of the tensor components by coordinate products
of.corresponding order and intrinsic symmetry (Juretschke 1952).

Since even coordinafje products are even under the inversion and odd
ones are odd, the computations can be carried out with completeness

in the subgroup 3m (or D3) of the group 3m = 3m x i (or D3d = D3 x i)

The characters yZ(R) appropriate to the vari§us tensor
representations in equation (3-43) of the group can be obtained as
the character products of simpler representations (Bhagavantam 1966).
The group 3m contains only proper rotations and the corresponding

character expression for the electrical resistivity temsor is

yg(R(ﬁ) ) = &4 cosZ¢ + 2cos g (3-48a)

for the Hall resistivity tensor

%g(R(ﬂ) ) = lﬁcos2 g +2cosff + 1 (3-48b)

and for the magnetoresistivity tensor

ﬂﬁ(R(ﬂ) ) = 16 cosu g + 16 cos” g +4 cos® g (3-48¢)
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The characters appropriate to the rotation classes E, G3 ’
021 of the group 3m, evaluated for each tensor representation are
presented in table (3-1) together with the number of independent

components.,

(2)

Taking the magnetoresistivity temsor , 13,k as an
: 9

k
172
example, we now evaluate the characters for the rotation classes and

the number of independent tensor components.
E represents the identity operation: cos & = 1
03 represents rotation by + %%—': cos f=-%

C21 represents rotationby 7 : cos F=-1

When these results are used with the general character expression (3-48c),

the characters yp(R) for the rotation classes can be obtained as

Yo (B) = 16 +16 +4 = 36
o (cy) = 16 D16 DP+ b D2= 0
bo (021) = 16=~-16+4 = 4

The total symmetric irreducible representations wi(R) equal/unity
for all classes; we can now substitute for yp (E), wO(CB) and
vp (@21) in

-

ni -

R

z .
o Be Vo (R) v, (R)
where g = 6', he is 1, 2, 3 for E, 03 and 021 respectively. The
number of independent components obtained is
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n = %( 10(36) +2.(0) + 3.(4) ) = 8

TABLE (3-1)
TENSOR CLASSES NO. OF INDEPENDENT
REPRESENTATIONS E 20, 3c2'l COMPONENTS
o (0) ' 6 O 2 2
ij
(1
o 1.k, 9 © 1 2
(2)
p 36 0 L 8
132Kk,

Once the number of independent components appropriate to each
tensor has been fixed, the non-zero components can'be obtained by
aemanding the invariance of the tensor components under the point
group symmetry operations. This procedure needs to be carried out
for all the operations of the group, until the number of independent

components reduces to those numbers specified in table(3-1).

The procedpre is straightforward; denoting the Cartesian
orthogonal components of the tensors with the coordinate products
that are their indices, for the symmetric second rank temsor o (g;

we have
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[ xx Xy Xz
[oi ;j] = Xy Yy yz
Xz yz zz

Now the transformation of the coordinates for the symmetry opera-
tions are; for C;: Xt X g J—2>=Yy 2 = =2

= _
andforCB:x—o -2x + aly,y—» -%x-%y, z— z

For C; we can see that the odd product terms of y and 2z are not
invariant because they reverse in sign yielding xy = xz = O.
‘Keeping in mind that the xy and xz components are zerc we have

for application of CB:
X — % x2 + ‘E y2 + O
Yy — % x2 + 3 y2 + 0

72 — 22

and yz = O, Since the number of independent components is known
to be two, xx must equal yy. Therefore, we have for the coeffic-

ient scheme

[ P
1 0 0]
{o) —
[ piJ]— 0 911 0
19)
| 0 P33




)
j’k1

indices for i as (x, y, z) and for ok, as (xxy, yXy 2Xy XYy ¥y 2¥

Similarly for the tensor f)(; by adopting the order of

Xz, yz, %z), the following coefficient scheme is obtained:

o 0 0 0 0 p23,1 0 pl2,3 O
(1)
[pij k] =lo o) -p23,1 0 o ) -pl2,3 0 )
T
1
0 p23,1. 0 -f23,1 o .0 0 0 oJ
(3-50)
(2)

and for ? ij,k the adoption of coordinate replacement for ij

1k2

and k k, is (xxy ¥y, 22, y2 = Zy, Xz = 2X, Xy = ¥yX):
— -
P11 11 P11 22 P11 33 %P11 23 0 0
11,22 P11,11 P11 33 2P11 23 ° 0
(2) P33,11 33,11 P33,33 ° 0 0
[pidik k)=
P23,11P23,11 ° 2053, 23 © 0
Y © 0 O 20,3 53 P23 11
o 0 0 o . 2p (01147°11 23%
P11,23 " : '

(3-51)

the ‘tensor expressions (3-49), (3-50) and (3-51) can be arranged in

\
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a form suitable to give the total resistivity component F%j(ﬁ) in

a peculiar matrix sum given by Hartman (1969)

—
0 0 0 -
P11 12,383  TP23,1B,
A —
B = 1 4 -
P (8) ° P11 © Py12,353 0 23,151
0 0 o
. B -
i 33 - Pa3,1%2 f23,1%1 °
- - J'
l‘ ) T - -
Bi1 Pia Biz Pag ° ° B2
Bz P Piy Pge ° By?
Ay By Ry, 0 0 0 B, 2
o
- H
Agy Rt O By 0O © 2B,%3
0 0 0 0 Ayy Ay, 28 ,B1
-0 0 0 0 Br, BB -A)| | 2ByB,
Here A (p,q = 1, 6) is introduced for ()(?2 . p and q each
pq 1j.k Kk,

replace the pair of indices ij and k1k2 respectively, the following

correspondence obtains: 11 =1, 22 = 2, 33=3, 23 = L, 13 = 31 = 5,

)
the magnetic field components. For the first two tensors in egquation

12 = 21 = 6, The factors 2 in Fj(i have been carried into
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(3=53) the matrix sum is applicable, while the last term gives the

magnetoresistivity contributions to the ng(g) components in the

following order 011(3), P 22(B), 033(3), P 23(B), 913(3) and

2 2(‘]3) .

Except for the sign difference in the expansions (3-40)

and (3-41), there is a complete correspondence between the conduc-

tivity and resitivity tensors and both must exhibit exactly the -

same symmetry. Therefore, for.the conductivity temsor we have

o(B) =

o o |
‘n © B
© 033'.,
512 543
S11. 543
531 533
Sy O
0 0
0 0

0
-0 B
12,373
g
| 7 23,182
Sy O
S, O
0 0
Sy, ©
0 Sy,

%12,3%3

0

SMJ

0 Sy J"(511"512)_j

=9 23,15

% 23,18
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B =~ GENERAL RELATIONS BETWEEN THE FIEEDS AND THE CURRENT

Although the coefficient scheme obtained in the previous
section contains all the required information, it is convenient for
experimental purposes to have explicit expressions for the field and
current directions. The coefficient tensors piJ(B) from equation

. . 1)
(3-52) can be obtained in terms of (0{ ( and A as
52 i 0 gk, Pq

P 4B = ° %% + A11B12 . A12322 . A13B32 o,
P12(B) = Cag,g + BBy Ay - Ayp) BB,

o 13(B) = =P 23’132 + 28, B,B; + 2 BB,

2B = Pt A12B12 + A11322 + A13332 - 2A4,B,B5

"B = TasaP BB - BBy ¢ 2A,1,B,B5

p33(B) = Pgzt A31§12 + A31322 + A33332 (3-54)
921(B) = 012(-3)

P 31(B) = P 13(_3)

032(B) = 023(-3)

When these are substituted into equation (3-39) we have for the elec-

tric field components:

( 911 + A, B 2 4 A BC4+A e

E 1181 1282 * 385

1

+ ( B, + 2A14B3B1 + (A11 - A12) 3132) J2 (3-55)

Y
12,373

+

(- p23,18; * 2A,,,B5B, + 2h,, BB, ) Jg
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E, = (=P, 3B; # 28,88, + (A, = 4,) BB, )J,
2 2 2
+ oy + ALBS 4+ ALBT 4+ A GBS - 24,,BB, ) J,
+ ( ©..B + A.(B2-B% + 24,BB.)J
23,121 I\ By P 44503 ) Y3

(3-55)

E; = ( Pp3 4B, + 28,B;B, +24, BB, ) J,

+

o 2 2
(- 23’1B1 + A41(B1 - B2 ) + 2A#4BZB3 ) J2

2 2 2
+ ( o0 53 * A31(B1 + B, ) + A3333 ) J3

. Thus we have now obtained a basic set of equations that will specify
the low field galvanomagnetic effects in bismuth (or any material of
the crystallographic point group 3&). The schehe is quite general;
Band J may be directed at any angle to the crystal axis. The long
axis of the sample determines the current direction. If the samples
employed are cut élong a major crystallographic direction, the current
'density component appropriate to that direction is readily obtained
from (3=55). For an arbitrary direction they are determined by
resolving into Jy» J, and J components. In principle, two samples
cut one in the xy-plane and one other in the z-direction are
sufficient to measure all the required tensor components of bismuth.

Goefficients may be isolated, by choosing special cases of E, 3, B

orientations, and measured in turn.

In the present study the measurements were carried out on

three samples cut along major crystallographic directions. This
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procedure will be discussed in the experimental chapter.
c - DERIVATION OF THE TENSOR COMPONENTS FROM BAND THEORY

Abeles and Meiboom (1956) first obtained the twelve low field,
conductivity tensor components for bismuth using an ellipsoidal Fermi
surface model with zero tilt angle. They assume only intravalley
scattering of the carriers and use the relaxation time approximation.
Essentially the vector current contributions for each valley are
summed in the frame of the crystal axes. By a series expansion of
the current density, for low field cases (p.B<<1), the conduct-
ivity components are obtained in terms of the specified band para=-
meters. Drabble and Wolf (1956) for bismuth Telluride and later
Zitter (1962) for bismuth, using the results of Herring and Vogt
(1956), have extended the analysis to an anisotropic relaxation-
‘time tensior T(€c) and have allowed tilt of the ellipsoidal Fermi

surface pockets.

A somewhat different and more satisfying approach is to -
develop the low field limit from the general conductivity tensor
cA’(Tif) given in the previous section. As an example of the proced-
ure followed, the component 011(3) is now taken and used to obtain
the low field tensor coefficients 051 -and S, in terms of the

band parameters. Thus from equation (3-=53) we have for the low

field case

2
T By = Tuq - BBy (3-56)

The corfesponding tensor component in terms of the band parameters
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from equations (3-31) and (3-32) is

2(p,+n,) + nz + 3p,( -pa) B,2
04 (B)) = Mo 1P LR B3 "1"25#}1

L 4 [3p1p3 + (p2p3 - pua)] B,‘2

Putting B, = 0, we get <%1(0) = 0.7

O 41" = 4Ne (p1 + pz) +Pev

Solving S11 from equation (3-56), we obtain
S, = =(9, (B)-o0_ - ')/B2
11 1171 11 1
and constructing - ( 011(B1) - 011'~f )/ B12 from equations .

(3-57) and (3-58)

'y /B2

==( 9B - ¢ 1

511 11
2 2
(P1 -pa) P‘} + (5}11 -PZ )114

b+ Spgpg 4 ("2“3"‘.42) 312

olF

As B1 — 0, 811 becomes

N 2 2
S41= Fo L0y 0y + Omyi )y )

Similarly the rest of the conductivity tensor components can be

obtained as

+ Pev 1

(3-57)

(3-58)
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014 = (3Ne) (p,, + pz) +Pe v, , 0;3: Nep.3 + Pe v

2 2
%12,3= Ne Bqpy = Pe VT4 0oy g = (@Ne) Llnptpy)pspym ] - Pe ¥y Yy

2 2
S4q = (gNe) [(p11p2) By + (5py-pyim,” ]

| 2 2 2 2
S, = (gNe) [(3n1 +3p, 4+ 2p1p2)p3 - (uy#3p)m," 1 + Pe v, vy

513 = (3Ne) Ip1p2(p1 +'p2)] + Pe v13

- ‘:’. 2 2 2
859 = (3e) I(p, + Pa)Rs = Pyl + Pe v vy (3-59)

2
833 = Nep1p4

Sy = (@Ne) ppy (py - py)
Shﬁ = =(zNe) Py Ip3(p1-p2) + p42]
Syy = - [ (ZNe) APoRs + (dPe) v12 v31

These are the same expressions as those given by Zitter (1962) and

Hartman (1969).

The resistivity tensor components are related to the cond-
uctivity through the relation oij(B) P = '] jx¢ The relation-

ships between the components are given by Juretschke (1955) as
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(3-60)
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s = A, . (p,. " -1
41 g11 P11 P33y T,

s = 7 A - /20 . 1
44 . = ‘P11 . P33 Paa T CP12,3P23,17%P1 T
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Hencewthe resistivity tensor components in terms of the

band parameters are {(here C = P/N)

P

P12,3"

. P23,1

12 .

13~

31

33°

14 .

" - Ne

o C 2.2 -1, -2
.2[(ul+pé)u3=20v VT, 1 (u3+cv3) }(ul+u2+2cvl)

23 g -1
e LMy (M) #20 v, "4 luyup=cvy ) (uy+pp+2ev, ) ]

A

. 2Ne

102 -2
, Ne(“1“4 )(u3+cv3)‘

SR - S -2
,_ﬁgvy4lul(ul uz)l(ul+u2+2cv1)

. _ : -1
= (2/Ne) (u'l+lp_2+2C\)l) l, P33 = (1/Ne) (ul3+C\)-'3) _
g

L2 2
(ulpz.pvl )(pl+p2+2cvl) ’
. ,l . .. ..'- . 2 - -l .- _l
— L) - - u.4u_+2cv +
e fugQuptay) =2ev vamp, T (up+uy*2evy) T (ugtevy)
L (w2 A5 mw) ]t 2e v, ) -2
C2Ne tHa Y HITHY) THL Ao TR TRH THyTAC Yy T Ty
Lo, o,
- . + 3 + X -
-.2Ne{“1(3”1“3 My )H21 3u2)(y2u3 M, )¥8cv, v,

1

+p +2¢ vl)._2 ‘ (3-61)
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_ .2 v - 2 “ -1
41 =~ Ve Pyl Ps(py po) + gy 1 (py#py*2cv ) (;13+cv3)

i
[

1 2 - -y 2
= - 5z (yp, Ip, 420 v1(p3+w 3)] +ov “ 1 (p1+;12)(}13+ v3) =Ry 1}e

=2 -1
(py#p %2 v,) (p3+cv 3)

VI - THE LOW FIELD THERMOMAGNETIC E¥FECTS

In general, systematic measurements and analysis of thermomag-
netic effects proves to be more difficult than for galvanomagnetic
effetcss The first observation of thermomagnetic effects was actualiy
in bismuth and dates back to 1886 K@tti@gshausén‘énd Nernst 1886).
Interest in thermomagnetic effects has been stimulated both from
theoretical considerations and by possible practical applications in
energy conversion devices. At present the developments do not quite
justify the hopes that have been raised for device applications nor
have the experimental and theoretical analyses been as successful as
in the galvanomagnetic effects. The success in measurement and the
interpretation of precise galvanomagnetic data has extensively contri-
buted to our knowledge of the band structure and the mechanisms
governing the interaction between the carriers and lattice vibrations
or defects. The difficultieé associated with thermomagnetic effects
are mainly of a theoretical nature. As is well known, the thermo-
magnetic effects can be attributed to the carrier diffusion together
with in some cases phonon drag effects. Thé relative contributions
of these two effects are determined by the electron mobilities and

the lattice thermal conductivities in any particular material. Even
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for structures with the highest symmetry, it has proved difficult to
separate these two coatributions quantitatively: it is usual to treat
each separately. The contributions to the thermomagnetic effect in
bismuth due to diffusion of the electromic carriers will be treated
theoretically through the application of equation (3-37), for arbit-
rary fields, in a later chapter. Here the phenomenological low field
expressions are developed in a similar manner to the galvanomagnetic
case with a few minor differences. Bhagavantam (1966) lists the non-
vanishing coefficient scheme for all point groups. In practice, how-
ever rather than being specified in terms of these tensor components
the thermomagnetic data is defined primarily by the direction of B
with respect to the temperature gradient. A definition labelled by
conventional names is not suitable and causes ambiguities due to the
intermixing of voltages from different order effects in magnetic
field powers. It will be shown later that the phenomenological
theory expressed in terms of tensor compoﬁents indeed predicts the
peculiar symmetries involved in the thermomagnetic effects in bismuth,
including the Umkehr effect. Therefore the best procedure is to
perform a straightforward determination of the thermomagnetic temsor
coefficients withouﬁ attaching conventional labels to one or another
type of measurement. In following sections the expressions suitable
for a particular experimental set up for the measurement of the

thermomagnetic effects is obtained and the prediction of an Umkehr

effect is briefly touched upon.

A - PHENOMENOLOGICAL DERIVATION OF TENSOR COEFFICIENTS

Starting from équation (3=36) in component form we have
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Ei = aij(g) Gj (3=62)

where G, replaces the components of the temperaturé gradient in a

J

chosen orthogonal frame. A power series expansion for & i j(ﬁ)

similar to that (3-41) employed for the galvanomagnetic effects is

: " (o) {1 - (2)
aij(B) = Qo ij + a ij’k1Bk + aij’k1k2Bk1Bk2 + o 7 eee (3-63)
1

which gives the coefficient tensors d(N) + The non-
ij’k1k2 ...QN

vanishing components of these tensors are now determined from the
restrictions imposed by the point group symmetry operations of the
crystal. The Onsager reciprocity relation for o, j(ﬁ) differs from

that for (B)e As a result of this, the symmetric and anti-

P
ij

symmetric parts of ¢ i j(B) cannot be taken as odd and even functions

of B respectively. There are no .:I,ntrinsic symmetries involved in

o) o1 (2)

% .and .
jjan ideky idsk,k,

only with respect to the indices k1 and k2. The corresponding

character expressions ¥, (R) for the tensors Olto'. ’ 0!(1) and

)
ij,k

the tensors ¢© The tensor <« is symmetric

are
1k2
by (R(B)) = boos’d + 4cosf +1

(3-€4)
U)p (R ¢)) = 8c033¢ + 12 cosa¢ + 6 cosf + 1

and v, (R( ¢) )= 16 coshﬁ + 2k c033¢ + 12 0032¢ + 2 cos@
respectively. Using these character expressions in equation (3-47),
we obtain the characters appropriate to the rotation classes of the

group 3m. They are presented in table (3-2) together with the number
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of independent components for each tensor.

TABLE (3-2)
TENSOR CLASSES NO. OF INDEPENDENT
REPRESENTATION E 203 3c% COMPONENTS
(o)
o
1] 9 0 1 2
(1)
o -
3.k, 27 0 1 b
(2)
o ij.k k, 5k 0 2 10

It can be seen from table (3-2) that a complete determination of the

low field thermomagnetic effects up to B2 terms in magnetic field

requires the measurement of 16 tensor components. The tensor a(gg
is called the thermoelectric power temsor. But now Q(I; K does
?

: 1
not entirely represent a tranverse effect similar to the Hall tensor,

although, it may be called the Nernst tensor. By analogy to the

galvanomagnetic effects the temsor a(i; Kk K can be called the mag-
?

12
netothermoelectric power temsor. The coefficient scheme for each
tensor is obtained as before by denoting the Cartesian orthogonal
components of the tensoré by the coordinate products that are their

indices. The thermoelectric power tensors is

T . .
11
(o)
o ij = 0 L 0 (3=65)
0 ) a33d




(1}

(2)
i

(0]
[aiﬁ',k]]=

(1)

ij,kl) is

;11,1 °
'411,1

| © 0‘32,1_

0 0

23,1 %11,

O -
%32,

(2)

For the tensor o,
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11,1 Y23,1
! 0 0
N 0 0

0 %123
T%12,3 0
0 0

, taking the replacement for ij

) k
3.k K,
as (xx, Yy, 2z, Yz, 2X, Xy, 2y, xz and yx) and for klk2 as
(xx, vy, 22, y2, 2x and xy) we have
®31,11 %1122 . %1133 %2223 0 0
1122 %1111 %1133 %2223 ° ©
®3311 . %3311 %33,33 ° ° °
03322 . %2322, O ®13,31 ° °
] |
0 ° 0 %3131 “%33,22
&
0 0 - ; -
° ®22,23 Bloy 1107 %000
O3522 %3222 0 %3131 0 °
0 0 © %1331 ~%3322
i © © S YV K 501117 %122

and the Nernst tensor (adopting the same replacement as in

0](3=65)

(3-67)

)

)
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Thus an expression similar to (3-52) is obtained:

11

12 .

31

42

12

11

(73 23]
[

42 .

72

0 %31,181 (@y5,3837%1,182) %315,
O 1+ - B +a B_). - B B
(ay; 1Bytey;, 3B3) %11,1%1 ®23,1°1
ao -0 B o} B (0]
33 L 32,172 32,171 ]
Diy =Dy, 0 0 | B2
D D 0 0 p_°
13 P24 B,
2
D, 0 0 0 B,
0
D, 0 0 28,8
(368 )
0 . -
(o] DSﬁ D72 2B3Bl
o] 0 D_24 %(Dll-Dl»z) 213132 |
(0]
.D,55 0 (0]
{
° 0 Dgs Py,
° 0 Pyy aDll-DlZH

=1, 2 ... 9) and § =1, 2 ... 6) is introduced

§§§ P, g each replace the pair of indices ij and klk2
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respectively. The convention for q is the same as before and for p
we write 1 = 11, 2 = 22, 3 = 33, kL = 23, 5 = 31, 6 =12, 7 = 32,

8 =13 and 9 = 21. The ordinary matrix summation is valid for the
first two tensots and the contributions to ‘113(5) from the last
term are 1§ the following order a11(B),_ “22(5), a33(B)' %23(3),

BBy 2B, %(E)y (B and o, (B

B GENERAL RELATIONS BETWEEN THE FIELDS AND TEMPERATURE

GRADIENTS

The explicit expressions relating the thermoelectric field

components Ei to the temperature gradient Gj can be written down

with the help of equations (3-62.) and (3-68). The tensor components

a ij(B)~from the equation (3-63) are

- ' 2 2 2
. a - o a . .
< %q(B) = Fap+ %yq,qBy ¥ DgqBy # DBy + DygByn @ 2D, BBy

o (R _'—d
(B) = B

a -
11,152 + 12’333 + znzha B, + (1)11 D, )B,B

173 1277172

53,98, + 2DggBsBy = 2D,B.8,

o5
9q(B) = %y 4By = %5 5By = 2D, ByBy + (D,4-D,,)B,B;

o a 2 2 2

0‘2.2(5) = - 11,181 * D1aBy” # DyqBy” + DygBs® + 20,,B,B,
%3(B) = %3 1By + th(szz‘B*lz) + 2Dg5B,B;

5B = '&32,132 + DggBiBy = 2D5B4B;

&32(-';) = Syp By * Dpp(B,°-B,%) + 258 B,

2

P
wj

-4
n

' 2 2
033 + D31(B1 + 32 ) + D33B3
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By substituting these results for aij(§) into the equation (3-62), we

obtain the following three basic equations:

2 2 2
= a o - ]
E 11 + 11'1B1 + D11B1 + D1232 + D13B3 2D24BZB3 G1

B 1 G

vi- 2% "12,3%

B, + 21324131133 + (1)11-1)12)131132 5

a
11,1

- O -
+[ 23,132 + 2D85B1B3 2Dk23132 ] G3

= - O - 6] - -
By = [= %q,48 12,383 = DB4By + (D14-D,5)BB, 1 G,

B. +D. B2 +D. B2+D Ba+2DanB] a

+ %11 a11,1 1 121 172 1373 23 2

22
o+ ( B, + D42(B2 -B1 ) + 2D85B2B3 I a

a
23,171 3
' (3=70)
E3 = [ - a32,132 + 2D5531B3 - 2D7ZB1BZ] G1
) ' ]
+ [ <132’1B1 + D72(B2 -B1 )+ 2D553233] G2
1 A 2. o 2 2
+ 0‘33 + D31(B1 +B, ) + D33B3 ] G:3

These expressionszare quite general; by resolving the field and temp~
erature gradient components on any arbitrarily oriented sample it is
possible to determine the coefficiénts. The samples are long, thin

cy}d&ixdﬂdal or rectangular rods. Thus the sample geometry fixes the

direction of G, with respect to the crystal axes. The electric field

i
in the crystal is resolved into three mutually perpendicular components,
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one being parallel to the temperature gradient and the other two

perpendicular to it.

This is the equation to be employed in thé experimental work
on the thermomagnetic effects. We now show that the results of the
phenomenolégical theory are consistent with the emperimental obser-
vations. The Umkehr effect in bismuth is observed for the y-axis
sample thermomagnetic power measurements; figure (5-14) shows the
sample set up in relation to the field quantities f, B and G» The
requifite equation is then

R
E, 4358,

and also from equation (3-78) we obtain for E,

2 3
r o - O
By, = 4 %q= Yqq,0B1 + DBy * D385 1 G
These two equations define aaa(ﬁ) as
o (B = o, -oa, B +D,_B2+D,,B°
22 11 11,11 1271 1373
IfB = (0, 0, B,)
o __(B,) = a_ +D BZ= a__(-B,)
2273 11 1373 22" 3
and therefore there is no Umkehr effect.
IfB = (‘§1,o,o)
a(§)=d-dB+DBZ;£a(-§)
221 11 11,11 1271 22" 1

then the Umkehr effect must occur.




Furthermore in this last equation, as the field values increase, a

reversal of sign for <E2(§1) is possible, if the sum of

(o B, +D,_B 2 ) is of opposite sign and becomes larger than
1,1 %1 T P2 B
o,,+ Finally if 022(5) is written in the xz-plane as
: A ) 2 2 2 .. 2
0 = - 0 6 6
a22( ) % a11’1B cos B+ D12B cos + D1BB sin

it satisfies the symmetry relation.

a22(6) = 0L22(11T - 0)

These results are confirmed experimentally (see Chapter V).

The remaining chapters of this thesis deal with the experi-
mental measurement of the galvanomagnetic and thermomagnetic tensors
in annealed and quenched bismuth, and the application of the results

obtained in this chapter.




' CHAPTER IV
EXPERIMENTAL SYSTEM AND MEASURING PROCEDURE

I - INTRODUCTION

- The present chapter deals with the experimental techniques
and measuring procedures used for determining the effect of quenching
on the galvanomagnetic and thermomagnetic properties of bismuth

single crystals.

Two stringent requirements need to be fulfilled for a reliable

comparison and assessment of the quenching effects.

1) The galvanomagnetic and thermomagnetic measurements
must be performed on the same sample both in the annealed and quenched

conditions without changing the contacts and at the same temperatures.

2) Because of the quadratic field dependence of the magnet-
oresistance and magnetothermoelectric power tensor coefficients, a
fixed sample positioning in the magnetic field must be achieved for

measurements in both conditions.

Besides these two specific requirements, there are also
problems common to all quenching experiments; achievement of a fast
cooling rate, prevention of sample contamination and diffusion of
foreign impurities are among the important ones. These points have
been taken into account in the design of the experiments. The
details of the crystal growth, sample preparation, the measuring

system and procedures used are presented in the following sections.
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II - CRYSTAL GROWIH

Bismuth crystals were grown from 99.9999 % purity starting
material by a modified Bridgman technique. Bismuth on solidification
expands in volume (3.3 %); crystals grown in rigid containers are
subject to severe strain. Soft mould containers, such as tapped
alumina or bismuth oxide can be used (Vickers and Greenough 19563
Hurle 1960), Another method of overcoming the problem of straining
is to use a smooth-wallzéonical growth tuﬁe where the material is
immersed into a silicon oil (Zitter 1962). Expansion on freezing
is then no further problem; the crystal is able to "slide up" the

conical wall.

The bismuth crystals used here were grown in an evacuated
conical tube; it was found that prevention of oxidation at the crystal-
glass interface was essential. The growth tubes made of two smooth
walled conical pyrex glass funnels (Figure 4-1). Before use the
tubes were washed in 5 % HF, 35 % HNO3 and 60 ¥ water followed by
distilled water and then dried. The precast bismuth rods themselves
were etched in dilute nitric acid and washed several times in dist-
illed water before being put into the cylindrical extension of the
growth tube. The complete tube was placed inside a furnace. To
remove any traces of the etching material and volatile oxides several
hours of vacuum pumping was carried out below the melting point using
a diffusion pumps Then the furnace temperature was raised above the
melting point of bismuth (2?100), so that the material melted down
into the conical part of the tube while being continuously pumped.

' The temperature was raised further to about 600°C and the tube tapped
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to remove the gas bubbles and to cause the trace of oxide to float to
the surface. The tube was then sealed in vacuo and placed in the
growth furnace (Figure 4-2). This furnace had three windings and
separate controls for the current in each so that the required temp-
erature gradient could be produced. The temperature gradient which
experience showed gave satisfactory crystal growth is shown in (Figure
4-3), The current through the windings, and hence the stability of
the temperature gradient, was controlled by a solid state potentio-
metric device. The growth tube was placed on top of a stainless steel
rod and lowered through the temperature gradient at a slow constant
rate (0.8 mm per hour) by an electric motor coupled through a gear
systems The crystals produced had a conical shape of about 3.5 cm
diameter and height; they were etched in dilute nitric acid to reveal
the grain boundaries, if any: they usually consisted of two big
grains. X-ray back reflection Laue photographs showed little indi-

cation of their being strained on the surface (Figure 4-4).
IIIV- CRYSTAL ORIENTATION AND SAMPLE PREPARATION

As described in chapter II, for the A7 structure the sign of
some tensor components can depend upon the chosen right handed (+x,
+y, +z) axial set for a particular crystal under investigation. In
the présent instance this is the case for the magnetoresistivity
tensor components A14 and A41. The method of axial assignment to

samples used here is now described.

Bismuth cleaves with relative ease along both trigonal and

pseudotrigonal directions and etching in both of these planes reveals
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sets of slip lines at 60° (or about 60°) to each other. X-ray Laue
back reflection photographs along these directions are also difficult
to disfinguish. As a resulty use of the cleavage planes in bismuth,
if relied on alone, can result in misorientation of samples. On the
basis of the convention for a right handed crystallographic axial set
the quadrant in the mirror plane formed by the +y and +z axes contains
a pseudo-three fold axis and that formed by the -y and +z axes a
pseudo-four fold axis. X-ray back reflection Laue photographs of the
crystal were taken to establish the crystallographic directions in
relation to these two pseudo-symmetry axes. The y-axis picpure (Figure
-5) is easy to recognise and there is little chance of confusing it
with the pseudo-ﬁisectrix direction, and furthermore X-ray Laue back
reflection photographs in this direction alone can establish the

crystal orientation uniquely (Brown et al. 1968)s

Rectangular bar samples (2.5 x 0.25 x 0.25 cm), along the
three major crystallographic directions were spark cut and planed.
To remove the surface damage due to spark planing the samples were
etched in dilute nitric acid and washed. Sample sizes were measured

by a travelling microscope.
IV - SAMPLE HOLDER DESIGN

Different sample holders were employed for galvanomagnetic
and thermomagnetic effect measurements. Cycling of sample temperature
vetween 77°K and 544°K had to be employed during the study. For
galvanomagnetic measurements the design of sample holder and sample

contacts was intended to meet the following requirgments:
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1) Thermal expansion resulting from large temperature changes

had to be compensated for, otherwise the samples would be strained.

2) Strong and clean contacts were necessary to give Ohmic

conductivity duriﬁg the whole process of quenching.
3) Sample holder design had to allow very fast cooling.

4) In a liquid coolant medium (either liquid nitrogen or
water), the temperature gradient between the sample ends had to be

s0 small that negligible thermoelectric voltages were produced.

5) The overall design had to permit easy sample replacement

and alignment.

The sample holder design shown in figures (4=6 ) was
found to meet the requirements outlined above satisfactorily, after
several trial designs. . It consisted of two rectangular copper bars,
screwed onto the sides of a cylindrical syndanyo base. To hold the
samples copper rods were grooved and fitted with supporting clamps.
The sample ends were kept in direct contact with the copper bars by
the tension of the light adjustable copper tabs; sample length changes
due to the thermal expansion were not restricted. Electrical insul-
aﬁion was provided by the syndanyo base, which was supported by a
stainless steel tube. The other end of this tube was soldered to
a brass head enabling accurate rotation of the specimen. Thermo-
couple measurements showed that the temperature gradient along the

sample for a sample current of about 0.6 A was negligibly small.

Besides the previous sample holder design requirements it

is essential in thermomagnetic measurements to have an additional
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heat source and sink, so as to give a steady temperature gradient
along the sample length. The samble holder built for this purpose
wes machined from a cylindrical syndanyo rod (see figure 4-7 - ).
The sample was positioned vertically with its axis parallel to that
of the rod. It was held between a spring loaded copper plunger with
a recessed end to Josnh#zi: the sample dwdzmszgeways movement and a
fixed copper héat sink which made good thermal contact with the copper
base of the stainless steel vacuum jacket. A resistance heater in
thermal contact with the top copper plunger formed the heat source.
The syndanyo rod was supported by a stainless steel tube through which
the thermocoupleé and heater leads passed. The whole sample holder
was enclosed by a stainless steel vacuum jacket. The thermocouple

leads were passed out from the vacuum jacket through a seal which

comprised of a ring and a pad of neoprene.

V - SAMPLE CONTACTS

The sample contacts were spot welded. Platimum wires were
found to be the best sample contacts: they bonded ohmically and
suffered no work hardening during the quenching process; platinum
was used whenever possible. The four-probe configuration usual for
galvanomagnetic effect measurements was employed; that is two longi-
tudinal contacts, separated by about 2 c¢cm , and two transverse
contacts centred on the sample. The longitudinal voltage probes were
positioned well away from the sample ends to minimise Hall field short-
ing (Volger 1950). Hall voltage measurements were made either using
the two transverse voltage probes or by balancing out the 'IR' drop

with a 1 f. rheostat: the latter case was preferred if the probe
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positioning was off-centre.
VI - MEASURING SYSTEM

The block diagram shown in figure (4-8) represents the main
features of the system used for measuring sample voltages for deter-
mination of the galvanomagnetic tensor coefficients. Essentially it
was the same system as used for measurements of the low field galvano-
magnetic tensor coefficients in antimony (3ktﬁ 1967) and arsenic

(Jeavons 1969).

The potentiometer was a precision instrument (Pye type 7600)
based on the decade principle (see Stout 1960)., Switches were employed
throughout; the smallest switched voltage step was 0.1 uV. A Keithley
(type 149) electronic millimicrovoltmeter was used as a null detector
for measurements at the nonovolt level. This instrument has a sensi-
tivity comparable to the best light-beam galvanometer systems and
combines the advantage of fast response, high input resistance and
robustness. The resolution of the instrument was sufficient to detect
signals below the nonovolt level with a stability of 10 nonovolts in
24 hours. The speed of response was three seconds on the 0.01 micro-
Avolt raﬁge and increased to less than 0.5 seconds on the 0.1 micro-
volts and higher ranges (see Erdman and Praglin 1964). Because of
the inherent isolation and line pick-up problems involved in these
types of null detectors, the elimination of severe mains pick-up
required a modification (see Jeavons 1969) mainly confined to some
isolations such as the mains transformer and the change of the

original 50 Hz chopper frequency to a value of 60 Hz., Stray thermal




e.m.f.5 in the measuring circuit were minimised by using copper wires
throughout; connections were carefully cleaned and clamped where
possible, 'low thermal' solder (70 % ©d 30 % Sn) was used whenever

soldering was absolutely necessary.
VII - SAMPLE CURRENT AND TEMPERATURE GRADIENT CONTROL

The detection of the small changes in some tensor components
due to quenching required accurate voltage measurements. To measure the small
components
to an accuracy of 1 % required a system with a resolution of 5 parts
in 106 and thus a drift stability of approximately 1 in 106. The
usual stability obtained by manual control of current was quite
impractical in this case. To obtain such a stability a transistor-
ised current stabilizer (Palmer 1966) was employed. Figure (4-9)
shows the circuit diagram. In principle the current stabilizer
acted as a high resistance (about 50 KSU) inseries with the sample
so that any temperature or otherwise induced resistance change in
the measuring circuit comprises only a very small fraction of the
total circuit resistance; hence fluctuations in sample current were
minimised. After a few hours of warm-up a current stability of better
than 1 part inA1O6 wasbachieved. A sample current of about 15A per
cma was passed during fhe measurements and was measured from the
potential drop across a 0.01 f standard resistance. The current

stabilizer, standard resistance, and standard cell were all kept in

an oil bath to prevent temperature changes in them.

Similar stability and drift requirements applied for the

control of sample temperature and temperature gradient in the thermo-
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electric andlmagnetothe;moelectric power measurements. At fixed
temperatures, (liquid nitrogen and dry ice in acetone) when the
evacuated stainless steel jacket was immersed directly into these
liquids, there was no problem in obtaining stable temperature grad-
ients. But to obtain a continuous and slow sample temperature
chaﬁge with small thermal gradients, it was found that the best
result was obtained by using the arrangement shown in figure (4-10).
It consisted of small inner and large outer dewars. The evacuated
stainless steel jacket was held inside the small dewar covered with
charcoal. The space between the two dewars was filled with solid
002 and then liquid nitrogen poured into both the dewars. The whole
system was finally covered by an expanded polystyrene top. This
arrangement was found to be very effective both in controlling the
average sample temperature change and the temperature gradients
along the sample. The system took more than three days to reach

room temperature, without creating large temperature gradients and

there was hardly any need to use the heater.
VIII - MAGNETIC FIELD ALIGNMENT AND MEASUREMENT

The magnetic fields were obtained from a Ln electromagnet.
The magnetic field and the sample were centralized on the axis of
rotation. The sample alignment in the magnetic field was achieved
mechanically by reference to the plame pole-tip faces, and then
checked by plotting the magnetoresistance polar diagrams at moderate
fields. Because of the quadratic field dependence of some of the
low field tensor components, accurate magnetic field measurements

were necessary; a Radio Frequency Labs., Inc. Gaussmeter (type 750)
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was used for this purpose. .This instrument operated on the Hall effect
principle, enabling a sensing element of small physical size to be used
for flux densities. The instrument was capable of maesuring from O -
1,000 G on the low range and from O - 50,000 G on the high range, both
these ranges contained twelve subranges. The resolution was 1/10th of
a scale division, the reproducibility of a measurement being 2/10th of
a scale division. Thus the reading accuracy varied between + 0.00002 G
on the low range (0.1 G) to + 500 G on the high range (50,000 G)e A
standard 1,000 G magnet and a zero Gauss chamber enabled instrument

calibration before every measurement.

IX - QUENCHING AND ANNEALING CYCLES AND EXPERIMENTAL

PROCEDURE

In quenching experiments, specimens have to be cooled down
rapidly from elevated temperatures. The usual method is to heat a
sample either by passing a direct current through the sample or by
use of a furnace just above a quenching bath and to plunge the sample
rapidly into the coolant mediume. As coolants, depending on the
required quenching temperature, water, iced brine, liquid nitrogen

or liquid helium have often been used.

In this work for annealing and quenching purposes the same
system was used. It consisted of a specially built furnace, with a
gas supply and a temperature control system attached to it. In
order to secure a fixed sample position with respect to the graduated
angular scale of the magnet turntable, the sample holder head was

located by an assymmetric screw arrangement. Hence the sample holder
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could be removed and replaced without readjustment.

Bismuth oxidizes rapidly on heating. The impurities intro=
duced due to oxidation or atomic diffusion from materials in contact
can have a very serious effect on the electrical properties of the
sample and hence can easily conceal the quenched-in prpperties. To
assure that the sample surroundings were free from oxygen, the inner
furnace tube was sealed against the outside atmospheric pressure
and heating carried out in oxygen free nitrogen above atmospheric
pressure. Two copper constantan thermocouples, precalibrated at
the melting point of bismuth and spot welded onto the samples were
used to measuré the sample temperature inside the furnace accurately.
The furnace current and thus the temperature stability was controlled
by a Eurotherm TR series temperature controller which allowed a

. control accuracy of better than 1 %.

The procedure followed for annealing and quenching was as
follows.

1) The sample holder was put into the furnace and the system
was sealed from the atmospheric pressure.

2) The nitrogen pressure was adjusted through a needle valve

to a value slightly above atmospheric pressure and then was left
running.
3) The furnace current was switched on and slowly increased.
4) The sample temperature was measured carefully by the

thermocouples and finally the rise in furnace temperature stopped

when the sample temperature had reached 267 + 1%,
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5) The system was kept running at this temperature for at
least 36 hours and then the sample temperature lowered slowly to room

temperature in steps of 10°C over a period of 6 hours to complete the

annealing procedure.

6) For quenching, after the sample had been kept at the
premelting temperature for approximately the same time as before, the
sample holder system was quickly transferred into a large liquid
nitrogen container and in the mean time the thermocouple voltages
were recorded on an y - t recorder to indicate the rate of cooling
during the quench. Tests showed that the welded thermocouples on
the bismuth sample indicate the sample cooling rate fairly well;
thermocouples free from a sample showed an instantanious cooling to

liquid nitrogen temperature.

Because of the requirements related to the sample alignment
in the magnetic field the sample holder head had to be kept fixed to
the rest of the system and as a result, during the sample transfer
from the furnace a little sample cooling occured. ' During the quench
while the specimen temperature was above the liquid nitrogen temper-
ature the system was stirred. Repeated quenching and annealing cycles

were performed in every case to check reproducibility of the results.

The thermoelectric voltages developed along the sample required
special attention since their magnitude for a material like bismuth is
very large. At nanovolt levels their elimination was essential for
éccurate galvanomagnetic measurements. Thermoelectric voltages devel-

oped along the sample for two reasons.
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1) There were standing temperature gradients, mainly related.

to sample holder design and environment.

2) Temperature gradients resulted from Peltier heating; with

a magnitude proportional to the sample current.

Contributions to the sample vdltage from the standing temperature
gradients can be eliminated by current reve;sal and averaging, but
Peltier heating is an intimate part of the Ohmic voltage and cannot
be averaged out. This difficulty, in relation to the sample holder
design was avoided by employing small sample currents (0.6 A) and
performing the galvanomagnetic measurements in a liquid coolant
medium, in fact in either liquid nitrogen or ion-free distilled water.
To remove the error voltages due to inexact probe positioning and to
separate Hall and magnetoresistance coefficients (which will be descr-
ibed in the experimental configuration section) both current and
magnetic field reversal was employed. The measurement procedure was

as follows.

1) .The apparatus was switched on and left overnight to allow
it to establish stability.

2) The magnetic field orientation was set and the Gaussmeter
calibrated.

3) The presence of any a.c. pick-up by the millimicrovolt-

meter was checked with an oscilloscope.

4) The potentiometer was standardised, the sample current
accurately set and checked for any longitudinal temperature gradient

in the sample.




5) The potentiometer was switched to measure the sample

voltage and the system checked for drift.

6) The voltages and magnetic fields were measured at the

required fields and directions.

?7) The sample current was reversed and the measurements

repeated.

For the ¢ase of thermoelectric and magnetothermoelectric
power measurements, the steps from 1 to 6 were the same, except that
in this case the current control and setting was replaced by the

control and setting of the temperature and temperature gradients.




(4-1) : The pyrex growth tube.
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CHAPTER V
THE EXPERIMENTAL CONFIGURATION AND RESULTS

I INTRODUCTION

In this chapter the procedures used for the determination of the tensor
components in Pelation to the chosen sample configurations are described
and the experimental results presented. The measurements made during

the course of the experiments include

1) The galvanomagnetic tensor coefficients at 77°K and 300°K

in the annealed and quenched states.

2) A continuous set of thermoelectric power measurements

between 77°K and 300°K.

3) Certain magnetothermoelectric tensor coefficients at'&&oK

and 196%K.

In the thermomagnetic effect measurements, besides the investi-
gation of the quenching effects on the thermoelectric properties of
bismuth the interest was also directed to the application of the theoret-
ical expressions derived for this purpose in chapter III. As discussed
previously the peculiar symmetries and the appearance of the Umkehr
effect in bismuth provide a very useful meané for testing a particular
model. The most important information for this purpose can be obtained
from y-axis samples, thus an extensive investigation of this data will
serve for the purposes of

a) The verification of the predictions of the phenomenological
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theory at low fields.

b) The comparison of the results of the theory based on the
established Fermi surface model with the experimental data at inter-

mediate fields.

The measurements of the relevant magnetothermoelectric tensor components
both on annealed and quenched samples at low and moderate fields were

carried out,

II- SAMPLE CONFIGURATIONS USED FOR MAGNETORESISTIVITY TENSOR

MEASUREMENTS

. To measure the low field galvanomagnetic tensor components,
different experimental configurations have been employed by various
workers. They all aim at the determination of the 12 low field tensor
components. The main difference in choosing a different configuration
is probably a preference between employing the smallest possible number
of samples or gaining the advantage of isolated measurements of the
highest possible number of tensor components. In this work samples cut
along each of the three major crystallographic directions have been
used. The specimen configurations relative to the directions of current
and applied fields are shown in figure (5-1). The requisite equations
for each sample configuration can be obtained from equation (3-55) and
the procedure for the determination of each one of tensor components

for each sample configuration will now be detailed separately.

a) The x-axis samples :

The possible current and magnetic field components for the

specimen arrangement, shown in figure (5-1), are given by
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J = (Jy5 0, 0)  and B = (8, 0, BB)

and the equations corresponding to the longitudinal and tranverse

voltage measurements are (see equation 3-55)

= | 2 2
E Pan +p.11131 + 11113133 ] J1 (5-1)

and .

E, = I- 012’3 B3 + 2A1431331 J, (5-2)

The longitudinal voltage measurement E1 for the magnetic field direction
along the x- and z-axes determines the tensor coméonents A11 and A13
respectively. The transverse voltage measurement E2 for a magnetic

field direction along the z-axis determines p12;3 directly, but, for

the determination of the tensor component A14’ it is necessary to perform
measurements for a convenient magnetic field direction other than any

of the crystallographic axes. If the magnetic field makes an angle

b @ with the®x-axis in xz-plane, then the magnetic field vector can be

resolved into two components in this plane :

B

1 +B cos £

B B sin @

3

The equation (5-2) now for these magnetic field directions takes the

forms

2
= [- ! i
E2(¢) 012’3 Bsing + 2A143 cos § sin g1 J1

and

. - X
EZ(-¢) = | P12,3 Bsin g + 2A,,B" cos g sin @] J,
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The sum of these two equations is written as

(E,(8) + E () )/ (4, cos fsin ) = A B (5-3)
2 2 1 . 14
The plot of this equation for varying B2 values can be used to determine
the tensor component A, In this case the choice of an angle of g = 45°
is probably best for maximizing the contribution of the tensor component
under consideration. Thus from the x-axis sample the tensor components
Pyq1 A11, A13, 012’3 and A1# can be determined without changing the

sample mounting.

b)  The y-axis samples :

For the y-axis sample (see figure 5-1) the possible current

and magnetic field components are

J=(0,d,,0) and §=(B1,B 0)

2’
and the equations for longitudinal and transverse voltage measurements

are

2
E, = [P +4, B + A BT J, (5-4)

and

2. 322) 1 g (5-5)

= (- P
E B, + Ay, (B 5

3 23,1 1

The tensor components A12 and A11 can be determined by performing the
longitudinal voltage measurements for the magnetic field direction
along the x- and y-axes respectively. The contribution to the trans-
verse voltage from the Hall tensor component can be separated and
measured, if the magnetic field is directed at an angle of 450 to one

of the axes in xy-plane, because then the term B12 - BZZ is equal to
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zero and there is no contribution from the tensor component A#f'
Also the same voltage measurement for the magnetic field direction
along the y-axis enables determination of A4‘. Hence in the y-axis
sample the five tensor components can be isolated and measured

independently for specific magnetic field directions.

¢) The z-axis samples :

Fianlly for z-axis samples for the current and magnetic

field components we have (see figure 5-1)

J = (o, 0O, J3) and B = (0, B, 33)

and the equations for longitudinal and transverse voltage measurements

are
E.= J[p..+A. B2 + A_B°1J (5-6)
5= [p33 4+ 45 By BzsB5 1 J5 :
and
, -
E, = -A41 B,” + 2y, 3233] AJ3 (5-7)

The contributions due to the tensor components A31, A33 and A41 can

be separated and ﬁeasured in turn by applying the magnetic field

along the y- and z-axes for longitudinal and transverse voltage meas-
ufements. The procedure for the determination of the tensor component
Aqq is similar to that used for A14; the transverse voltages are measured
for a field direction of @ and -@ from one of the axes. The magnetic

field components can be written as

Bsin g

v s]
f

ve
]

+B cos #
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Then the equations(5-7) for E2(1¢:) becomes

Ea(ﬂ) = f-A41 e sin12¢ + ZA%B2 sin @ cos g ] J3

and

E(-8) = [-a, B° sin” § - 24,5 sin § cos #] s

The difference of these two equations can be put into the form
L . 2
(Ea(ﬂ) - EZ(-ﬁ )/ (4J3 cos f§ sin ) = A, B

and used to determine the tensor component Ah#' The choice of an

angle of § = 45° is again preferable.

Due to the type of sample contacts required and the necessity
of permanent sample mounting, only two types of electric field measure=~
ment were possible for each sample : one longitudinal, the other
transverse. The sample configurations chosen here enabled the isolation
of most of the tensor components, and hence the contributions resulting
from most tensor components have been measured independently of the

others. The exceptions are the two tensor components A14 and A44.

An important aspect to be tested is whether the changes which
occur in the electrical properties of samples on quenching arise from
plastic deformation due to uneven temperature changes along the sample
during the quench or if they truely result from a reversible process,
such as the creation of point defects. The most important test of this
is to repeat the measurements on a given sample in the annealed and
quenched'conditions created several times in succession. This procedure

has been carried through many times : usually after several cycles of



annealing and quenching, the contacts become noisy and this precluded
further repetition. Typical recorded plots of the sample cooling rate
for x, y and z specimens are given in figure (5-2). These plots
represent the voltage drop on copper constantan thermocouples from

576°K to 77°K against the time in seconds.

IITI - THE LOW FIELD MAGNETORESISTIVITY TENSOR RESULTS

The data were first obtained by measuring the voltages corre-~

sponding to the increase in magnetic field strength in steps of

I+T,.

25-10" (In the experimental work all the magnetic field quanti-

ties were measured in units of gauss. But theoretical calculations
are based on SI units system, Hence from now on the magnetic field

2
quantities will be referred in this terminology 1 gaus = 10—4Weber/m

10-4_Tesla) and then for reversed current and magnetic field directions.
The average of the four sets of measurements obtained are plotted and
presented in figures (5-3) - (5=10): These plots represent the low

field measurements on annealed and quenched samples; to show the

relative change in magnetoresistivity on quenching, the annealed and
quenched sample measurements are compared as _pij(Bk) versus Bi. The

plots in figure (5-3) - (5=30) demonstrate an important point : the

-

- v
low field condition (fi + B <<1) is walid’ -~ for magnetic field values u} ‘o

5]

up toi- +150."° T in bismuth at 77°K.

The measured values of the twelve low field magnetoresistivity
tensor components, obtained from several samples in the annealed and

quenched conditions are listed in table (5-1).
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TABLE (5-1) : Low field magneto-resistivity tensor components at 77°K.

z-samgle

z(1)

z(II)

y-sample

y(I)

ySII)

33
3.40

3436
.42

3437

3o btk
3e37
3045
337
3o 4k
3.38

11

3.28

3.46

3427
3.48
3423
3047

Tensor Components

A Az Ay
152 12.0 20
133 98 23
155 12,5 - 19,7
136 10,0 -~
154 2.0 19.3
132 9.2 13.0
157 12,2 19.6
130 9.4 23,3
155  12.0  19.0
133 9.0  --
Tensor _Components
I PR
137 170 10.5
42 158 --
138 173 10.7
43 15k 8.7
138 172 10.9
141 155 8.7

Ry,
_19

-1

. -1704

-14,0
=171
-14,3
=17.0

141

18.2

19.3
23.0
18.8

24,0

Sample Condition

Annealed
Quenched
Annealed

Quenched

Annealed
Quenched
Annealed
Quenched

Annealed

Quenched

Sample Condition

Annealed

" Quenched

Annealed
Quenched
Annealed

Quenched



TABLE (5-1) : Low field magneto-resistivity temsor components at 77°K (Cont)

Xx-sample Tensor Components Sample Condition
%1 Aq AB Ay Qz&
3.22 141 30.4 34 -0.20 As grown
3.22 138 23 34 -0.21 Annealed
3.45 143 26 36 -0.15 Quenched
x(I)
3.27 139 32.5 34 ~0.20 Annealed
3.48 142 26.3  36.5 -0.14 Quenched
3.24 138 32 34 ~0.20 Annealed
3451 137 26.4 36 =0.14 Quenched
3.22 138 32.5 34 -0,20 Annealed

6 2

1 anm T for

The units are 10-7.n_m, 10-6_0.m T~ and 10

Qij ’ eij,k and Aij respectively.
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Inspection of the changes induced by quenching on each tensor component
does not provide an immediate simple picture: most tensor components
are reduced but some are increased in value. An interesting observation
is that the anisotropy of the zero-field resistivity is lessened:

pi1 , which is the smallest component, is increased and 033 is
decreased.

As can be seen, certain tensor components ( o 11? A11 A41) were
obtained twice because they are available from measurements made on
different sample configurations. Their values are identical within
the experimental error; the homegeneity of the boule is good. Further
and even more important, the agreement shows that on quenching the
different specimens behave in the same fashion and the number of quen-
ched-in defects is the same for all of the samples. Another check is
available both on the data and indeed on the model itself. The ellip-
soidal.band model for bismuth is described by eight independent vari-
ables ( By Byov Bgoa My Ny Vo V3 and P). The number of
measured tensor components up to B2 terms in magnetic field are 12.
Therefore there must be four identities among these tensor components.
Two of these identities are particularly simple and can be used for
checking the consistency between the measured values of these tensor
components. These identities are given by Zitter (1962); they are

expressed in terms of the conductivity tensor components as

S, * 2533 = 35,4 = 25, » (5-8)

{ )]
S.q + HlCo 23,1 813 / <512’3) + (o, 534 / 0'33) (5:9)

3o =Sy 12+ (8o 0,50/ 9455 053]
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The ratios between the two sides of equations for the measurements in
this work compute as 0.90 and 1.12 for equation (5-8) and 0.92 and
7.13 for equation (5-9) for annealed and quenched data respectively.
These values are consistent within the approximations related to the

model and the experimental errors.

The signs of the tensor components A 4 and A41 were determined

1
by examining the results of the measurements corresponding to the
equations (5-3) and (5-5) in relation to the right handed coordinate

set (+x, +y, +2) assigned to the samples used. From equation (5-5),

for a magnetic field direction along the y-axis, we have

2

thué’tﬁe sign of Ay, is related directly to the signs of E; and J,
andﬁfdi;ows immediately. A similar examination of the results of
equation (5-3) evidences the method used to obtain the sign of A,
For the right-handed axial convention adopted here, both tensor comp-
onents were- found tb be greater than zero in the annealed and quenched

conditions.

The room temperature measurements for the low field tensor

components are listed in table (5-2).

TABLE (5-2) : Low field magnetoresistivity tensor components at 300°K

Pl P33 Bipz . Paziq Mg R Az By Ay A Ay Ay
1107 13,8 =0,05  1.62 0,92 1.90 0.2 0.09 2.71 0.27 0,19 -0.7k

The units are 10™7 @ m, 10'6 om 7' and 10'6 gm T2 for

and A,. respectively.

Pij* Pijk i3
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In direct contrast to the experimental observations at 77°K, the
results of the measurements on annealed and quenched samples at room
temperature are equal withiﬁ the experimental errors. Experiment
showed that after quenched samples have been heated up to the room
temperature and left to stabilize for several hours, the resistivity
had returned effectively to the room temperature values in the-
annealed state and further when these samples were taken back down
to 77°K from room temperature they had resistivities which were
almost identical ( ~ 1%) to the values they had had in the annealed
conditions., These resﬁlts imply that the quenched-in defects
annealed out between 77°K and room temperature. Later it will be
shown in section III of this chapter that the thermoelectric power
obeys the same rule: annedled and quenched samples are different at
77°K but have become identical by the time that room temperature is
reached. The point will be developed later. However, the annealing
behaviour has been investigated still further. After a sémple has
been quenched to 77°K and left for a short time to achieve equilib-
rium, measurements showed that for several minutes the resistivity

( P 5

value. This change was about 4%, However the x- and y-sample

3) of z-samples slowiy increased from the immediate quenched

resistances ( o 11 = 022) did not show this time change. No res-

istivity changes ensued after the samples had been left for many
hours: it can be concluded that after the small and rapid change in
Y subsequent to quenching there is no appreciable diffusion of

33
the quenched-in defects at 77°K in bismuth.
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IV - THE MAGNETORESISTIVITY TENSOR AT INTERMEDIATE

MAGNETIC FIELDS

Towards the end of this work Dr. J.E. Aubrey (Department of
Applied Physics, University of Wales Institute of Science and Tech-
nology, Cathays Park, Cardiff) kindly.supplied to us the results of
his derivation of the magnetoresistivity expressions apbropriate to
thé Fermi surface modei for the A7 structure semimetals. We kindly
thank him.for his kind permission to use his results (Aubrey 1971).
As a result, it was decided to extend the study further and find out
the way in which quenching could effect the intermediate magnetic
fields data for bismuth. So measurements on the x-axis sample were
extended to the magnetoresistivity tensor coefficients at intermediate
fields both in the anneale& and quenched conditions. The sample
configuration used was the same as that used for the low field case;
thus the measurements of 011(B1); and’ »Qiﬂ(BB) tensor components
could be made at intermediate magnetic fields. The field range
covered was up to 0.5 T . The results of the measurements are presented
in figures (5-11) and (5-12). The quenching effects wére’fghnd to be
¢zt =2 pronounced. The analysis of the intermediate field data,

based on Dr. J.E. Aubrey's theoretical results, will be provided in

the next chapter.

V - SAMPLE CONFIGURATIONS USED FOR THERMOELECTRIC AND

MAGNETOTHERMOELECTRIC POWER MEASUREMENTS

The thermoelectric power measurements were carried out on two

samples prepared and cut along the y- and z-axis directions. The two
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zero-field tenéor components O 1 and G33 were measured between
77°K and 300°K in both annealed and quenched samples. The measurement
sequence followed here was annealed-quenched-annealed using the proced-
ures described previously. For both thermoelectric voltages and temp-
erature measurememts two precalibrated copper-constantan thermocouples
were used. Calibration charts, computed separately for each thermo-
couple in steps of 0.1 9C, were drawn up and used to calculate the
temperature gradients and the average sample temperatures. The copper
leads of the thermocouples were employed for thermoelectric voltage
measurements along the samples. Results, converted from Seebeck
coefficients relative to copper to absolute values by subtraction of
the absolute Seebeck coefficient of copper, for a11 and a33, are
given in figure (5-13), The effect of quenching on the thermoelectric
properties of bismuth is pronounced and, furthermore the character of
the induced changes along the y- and z-axis are given in reverse order,
as observed for the resistivity: while the thermoelectric power

increases in the y- direction on quenching, a reduction along the z-axis

occurse.

The magnetothermoelectric power measurements were also carried
out on the same specimens. The sample configuration, the direction of
the temperature gradient and the piane including the magnetic field
directions for these measurements are shown in figure (5-14). The
y=-axis sample data includés magnetothermoelectric power measurements
for magnetic field directions along +x- and z-axis as a function of
magnetic fields up to 0.5 T and magnetothermoelectric power polar

diagrams for several constant magnetic field values. The polar diagrams
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for ‘122(5) at 77°K and 196°K are presented in figures (5-15) - (5-18),
for both the annealed and quenched conditions. In quenched y-axis
samples the magnetic fielddepgefiderice are much smaller than those in
annealed samples.. This is emphasised when the magnetic field is
_directed along or neariy along the x-axis. In this configuration the
magnetic fieldde&ﬁﬂehce§h? large for the sample in the annealed
condition; after quenching, they are much reduced. Measurements at
room temperature proved to be insensitive to the magnetic field
strength up to a field value of 0.5 T ; this demonstrates that the

tensor components at this temperature are extremely small.

Of particular interest are field reversal effects. When the
magnetic field, directed along the x-axis, is made larger than 0.075T,
the sign of 022(31) reverses when the specimen is in the annealed
condition, This effect occurs (see for instance figure 5=16) vhenever
thé magnetic field is directed near to the x-axis direction but dies
away rapidly as the field direction is deviated from the x-axis;
furthermore the field requiréd to produce sign reversal becomes larger
the greater the direction of B from the x-axis. The entire effect is
illustrated in figure (5-19), in which is plotted the field required
to produce a zero thermoelectric voltage against angle of deviation
of the applied magnetic field from the x-axis. It can be seen that
there is a marked difference for this required field, when the magnetic
field is taken through 180°. When the sample is quenched, the smaller
magnetic field effects can be seen clearly in this figure. The required
field to produce a zero thermoelectric voltage is now much greater than

that for the annealed specimen; for the magnetic fields available (up to
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about 0.5 T ) the sign r?yersal can only be seen for a range of about
20° around the x—axisbri:; 196°K no sign reversal can be seen for
magnetic fields up to 0.5 T even in the annealed specimen. The
magnetothermoelectric power polar diagrams for 022(3) show the
symmetries predicted by the phenomenological theory presented in
chapter III, i.e.' 522(+133) = a22(-33) , 022(+B1) # a22(-B1)
and “22(9) = “22( T - 8) where 6 is measured from the z-axis

and represents the angle between the magnetic field direction and

the trigonal z-axis.

The low field tensor components related to the y;axis data
can be determined from equation (3=59); here the components of the
maénetic field B and tpe temperature gradient G are given by (see
figure 3-1k4) |

B = (B,, 0, BB) and G = (O, G,y 0)

and the corresponding equation for the thermomegnetic voltage then

" reduces to

2 2
E. = B1 + D,‘}B3 1 G

2 [0‘11

B, + D1

%11,1 ™1 2 2

When the magneﬁic field is along the z-axis, we have for E2

2
E2 = [a11 + D13 33 ] G2

which can be used to determine tensor component D13. For a magnetic

field direction along +x-axis the following equations for E2 are

obtained

, 2
E,(+3,) logq = 4,489 ¥ DB 1 Gy

and

2
[o g+ agq,4By + DB 1 €

2

Ez(-B1)
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The sum of these two equations

2
(E2(+B1) + EZ(-B1) )/ 26, = ( %, + DB, )

determines the tensor component D12 and the difference

(E,(+B,) = E,(-B)) ) / 26, = = &, B,
the tensor component © .
11,1

The linear variation in a22(B) for magnetic fields along the
%- and z-axis is presented in figures (5-2) and (5-21.). As is observed
from the polar data, the Umkehr effect occurs only along the txldirection.
A least-mean-squares fit to this data (linear and polar) in terms of the

bismuth band parameters is presented in the next chapter.

Similar measurements were carried out on the z-axis specimen.
By use of equation (3-69) in relation to figure (5-1%4) for this sample

configuration, we have

B = (B 0) and G = (0, O, G3)

1’ B2’

and

E = [a

5 33 )

2 2
+ D31(B1 + B2 )1 G
For a field direction along either of the crystallographic axes (;x or
;y), the tensor component D31 can now be determined. The resulting

low field tensor components at 77°K and 196°K are presented in table

(5-3) .
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TABLE (5-3) : The low field magnetothermoelectric tensor components.

Tensor Components %4 a33 %141 D12 D13 D31 Temperature
M s

-4 286 0.5% | 67.8 -25.0 -61.9 77°K
_Annealed

- 5% =100 0.24 | 5.2 -2,2 -=8.0 196°K

- 47 - 79 O 4l |63,2 ~12.3 -58.6 77°K
Quenched

-5 -9 0.20 | 4.4 -0.9 7.2 196°K
Units 1070 v/°x 10-4V/T°K 107t v/T° °k

Magnetothermoelectric power polar diagrams for a33(§) in
xy- plane are presented in figure (5-17). Both for annealed
and quenched specimens the data shows a uniform increase in a33(B)
as the field increases. However, the magnetic field induced anisotropy
is less pronounced for the quenched sample condition. Another import-
ant result for a33(B) is that it shows é 3-fold symmetry in xy- plane,
indicating the existence of an Umkehr effect for field directions along

the +x-axis.
The phenomenological theory presented in Chapter III, accounts
quantitatively for the general features observed here. Indeed the

17,1

field contributions up to B2 predict a sign reversal in 022(B1) at

measured values (Table 5-3) of & and D, at 97°K for the low

0.0835 T which is in reasonable agreement with the measured value of

0.075 T.
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Figure (5-1) : The sample configurations used for the .
galvanomagnetic effect measurements,
a) x-axis sample, b) y-axis sample,

c) z-axis sample.
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Figure (5-3) - (5-10)

Typical set of measurements of magnetoresistivity tensor
components. The gradients of these curves give the low field
coefficient indicated in figures. The filled circles are the data
obtained after quenching and the open ones for the sample in the

annealed state. (77°K)
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Figure (5-14) : The sample configuraticns used for the
thermomagnetic power measurements,

a) y-axis sample b) z-axils sample,
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. Figure (5-15) : The polar thermomagnetic power data for a22(§)
at 77%H, a) B,=0.05T b) B =0.0757.
Open circles correspond to measurements on

amnealed samples,
A}
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(5-16) : The polar thermomagnetic power data for Cieﬁ(g)

at 770K, BO = 0.38 7. Open circles correspon to

measurenents on annealed samples.

Figure (5-17) : The thermomagnetic vower data for z-sample in

¥y plane, at 770K, BO = 01 Te




Pigzure (5-18) :

The polar thermomagnetic power data for CKEZ(B)

20

at 196K, a) B .= 04T b) B =0.5T

Open circles correspond to measurements on

annealed samples,
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Figure (5-19) : The rolation between the magnitude and the
direction of the magnetic field vector ia the
G, s
xz plane at 77K, corresponding to a zero

"~ thermoelectric voltage. Cpen circles denote

the measurements on annealed samples.
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CHAPTER VI

THE COMPUTATION AND DISCUSSION OF MODEL PARAMETERS

I - INTRODUCTION

The experimental results presented in Chapter V for both the
galvanomagnetic and thermomagnetic effects in the annealed and quenched
sample conditions can now be quantitatively discussed on the basis
of the Fermi surface model presented in Chapter II for bismuth. Im
Chapter III, the theoretical expressions at low and intermediate
fields have been formulated in terms of charge carrier densities and
mobilities. A comparison between the theory and the experimental
data requires a fit to the equations involved in terms of the eight
band paramete?s u1, lﬁ, ﬁ3' ﬁq, v1, V3, N, P for bismuth.

The determination of these parameters provide basic information on
the carrier transport properties of bismuth and on the effects of
quenching on them. The procedures leading to the evaluation of these

eight parameters from the galvanomagnetic data are now detailed.
II - METHOD OF COMPUTATION

Determination of the model parameters from the measured data
is a difficult task. The equafions relating these parameters to the
measured data are complex. A direct solution by the elimination of
the unknown is not only impractical but also the adoption of such a

procedure would magnify the experimental errors, because the measured
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coefficients would then become involved in equations in high order
powers. Also since the model itself can only be an approximation an
exact solution cannot exist. One approach would be to take trial
values for the model parameters, substitute them into the equations
and try to improve the parameters by comparing the calculated values
for the equations with the corresponding measured values. Of course
this procedure cannot be based on arbitrary trial and'error; adoption
of a computational method is necessary. This approach has the added
advantage that the number of measured coefficients usually exceeds
the number of unknown. It is usual to use a generalized least-mean-
squares fit of the measurements to the predictions of the equations
(Jeavons and Saunders 1969}, Hartman 1969), where the minimization

of a function defined by

) CAL(J) 2
SIM = J[WJ(’I - 73'6'(3) )] (6-1)

is required using the variable metric method of Davidps (1959) ¢

On substitution of arbitrary values for the eight unknown, a calcu-
lated value (CAL(J) ) for a particular equation J in the set is
obtained; CO(J) is the corresponding measured value. V; is a weight
factor used to put more emphasis on the most accurately measured
coefficients, to avoid masking by contributions of the small and
less precisely determined ones. To perform this computation, a
Fortran IV programme has been devised: the variables i%,A ﬁz, ﬁB,
My Voo
P/N) are scanned independently, and each time the numerical values

' VB,,N and ¢ (the hole to electron carrier density ratio

of the equations are evaluated and then through equation (6-1) the




best least-mean~-squares fit to the measured data is assessed. This
also provides a 'feed-back' control for the values over which the
variables mustbe swept for the minimization of the term SUM in equation
(6=1). The result is a steady progress towards the best approximation.
The starting trial solutions in principle could take any value, provided
that appropriate sweep steps are chosen and a sufficiently large number
of cycles is allowed. At the start of the solution procedure, arbit-
rary values have been assigned for each model parameter. Checks have
shown that, whatever the initial points are, the final solutions are °
unchanged. The computing programmes used for the assessment of the
model parameters from the galvanomagnetic and thermomagnetic data

have essentially the same structure. They are reproduced in the

appendixe.

III - SOLUTIONS FOR THE GALVANOMAGNETIC DATA

A - Iow Field Magnetoresistivity

A representative set of the low field, galvanomagnetic tensor
components from table (5-1) has been taken (see table 6-1) to evaluate

the band parameters in the annealed and quenched sample conditions.

The calculated model parameters for quenched and annealed
bismuth at 77°K and at room temperature are listed in table (6-2).
These results present for the first time the effect of quenched-in
defects on the components of the mobility tensors ﬁ and” v and on
the carrier densities in each band. For direct comparison with
other Fermi surface parameters, it is often convenient to know the

i . : T om
components ( o u;, UB) of the diagonalized tensor; these
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mobilities along the ellipsoidal principal axes are also given in

table (6-2).

Some physical insight into the effects of quenching can be
gained by considering the magnetoconductivity; the separate contri-
butions of the electrons and holes to each coefficient of the magnet-
oconductivity tensor o (B) at 77°K have been calculated from the
model parameters in table (6-2) and are listed in table (6-3),
Although quenching greatly increases the hole density, the much more
mobile electrons still dominate the carrier transport properties in
the quenched crystals. In the coefficients 511, 533, 541 holes play
no part because they are sited in an ellipsoid of.revolution about

the z-axis. Furthermore, the hole contribution in S, is directly

31

proportional to the square of the very small component v3 and is

negligible.

Carrier mobilities are somewhat lower in the xy plane in
the quenched state than in the annealed condition; the quenched-in
defects play a significant role in the carrier scattering. The z-
axis mobilities ﬁ} and V3-have been increased slightly by quench-
ing; this anomalous behaviour is a direct reflection of the experi-

mental observation that p 33 is reduced by a small amount (-3 %)

after quenching; the z-axis conductivity

33 = 1 /p33 = Ne u3 + Pe v3 (6=2)

9

is almost completely dominated by the electron contribution (see

table 6-3) and both the electron density N and the mobility tensor
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c¢omponent U, are increased by quenching. Furthermore, on quenching )

3
both the electrons and holes have increased in number and also the
equality between their densities has been destroyed in favour of the
hole population. The quality of fit as estimated from SUM is about
the same for the annealed (0,2072) and quenched (0.1925) conditions.
For the individual tensor coefficients the fit, assessed by the

ratios between the calculated and the measured coefficients, is in

general excellent (see table 6-3).

B - Magnetoresistivity Data at Intermediate Fields

For the intermediate fikéds, the measured data (see figure 5-
13;12) have been used in conjunction with the magnetoconductivity
expressions (3-31) and (3-32). In principle the solutions for the
complete set of model parameters can be obtgined from the data points
for each magnetoresistivity components for p11(B1), and p11(B3)
alone. Tﬁe success and the reliability of such a solution then mainly
depends on the variation of magnetoresistivity as a function of mag-
netic field. If this variation is sufficiently large and sensitive
to small trial changes in each model parameter, such a solution can
be useful. Here the data for magnetoresistivity components p11(B1)
and 011(B3) have been utilized. The computations have been based
on 19 of the data points measured as a function of magnetic field.
The expressions relating 011(B1) and 011(B3) to the magnetocond-
uctivity components can be obtained through the inversion of 3 (B)

and they are
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p11(51) =1/° 11(31)

(6-3)

® 11(B5)

(9 ,5(B)/C 9,1(B) © ,(B)= 9,(BS) 9,.(By) )

The magnetoconducfivity terms involved in equation (6-3) are given by

. 011(B1) = ne1ﬁ+§9(u1+3Lb+thf)(1 + %(3u1u3 + %%)Bi)-1
+Pe v, (6-4)
511(B5) = 9,,(B)= 22 ) (14 BT + Pe v, (14 V3B
012(B3) = 021(-33)= -3neu1Lé(1+u1u2B;)-1B3+Pevf(ﬂ-va;)B3

/

where d is the determinant of the electron mobility tensor and
N(=3n), P are the electron and hole carrier densities. The model
parameters evaiuated through a least-mean-squares fit method are
listed in table (6-4). The agreement between the measured and the

calculated data is illustrated in figures (6-1) and (6-2).

The solutions obtained from the intermediate magnetores-
istivity data serve two purposes: to test the applicability of the
magnetoconductivity expressions at higher megnetic fields in bismuth,

to assess the quenching induced changes on the model parameters.

The agreemént between the theory and the experiment is
excellent. Magnetoresistivity solutions at intermediate fields are
consistent with the low field solutions for both the annealed and

quenched sample conditions. The quenching induced changes on the
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model parameters obtained by both methods are in reasonable agreement;
the mobility components in the xy-plane are reduced while those along
the z-axis slightly increased; quenching results in creation of an
excess number of holes. However the intermediate field solution
predicts slightly lower carrier densities than the low field data,
but the prediction of increased carrier densities for both electrons
and holes is consistent. Thus on the basis of magnetoresistivity
data, the result of the introduction of the defects is to distort

the band edges in such a way as to increase the band overlap. A
quantitative assessment of the shifts in the Fermi levels can be
obtained directly from the expreséions for the density of carriers

in a valley containing r ellipsoids. For the conduction band

/e, = (en /2y (n Y22 7 (n ) (6-5)

where m; (in units of mo) is the density of states effective mass.

A similar expression obtains for the valence band. The density of
states effective mass at ?7°K can be considered to be unchanged
from the liquid helium values, an assumption that has proved succ-
essful for antimony (Saunders and Oktii 1968); the electron value of
m; is taken from Aubrey (1961) as 0.042 and that for holes m; as
0,115 from Brandt (1960). The Fermi levels in the electron and ho.le
bands and the band overlap in bismuth at 77°K before and after quen-
ching are given in table (6-5). The band overlap is increased by
13 % on quenching. The increase (27 %) in energy separation between
the Fermi level and the valence band edge is much larger than that
(3 %) for the conduction band; this reflects the finding that after

quenching the hole concentrationhas increased 4% times more than




that of the electrons (table 6-2) and shows that the hole ellipsoid
egpands much more than to the three electron pockets. The basic
tendency of the quenched-in defects is to affect the Fermi surface

as if they were electron traps. A parallel can be drawn with graphite
in which excess holes are created by both electron and neutron irrad-
iation damage (Blackman, Saunders and Ubbelohde 1961, Corbett 1966,

Saunders 1970).

The Seebeck coefficient data provide further cpnfirmation of
the nature of the éhanges at the band edge following quenching. The
Seebeck tensor components d 11 and d33 are related to the isotropic
. partial Seebeck coefficients (Pe and Ph) by equation (3-3%b), These

quantities can be written in terms of the carrier mobilities and

densities as

b - G 44 U} (U1+u2+203 V1) - 0!.33(111+112)(1_13 + 0‘\’3)
n ¢(2 v, = vo(u +1))
AL LT AR !
(6-6)
» v, (u +ﬁ +2Vv,) =2 d Y 4(ﬁ +E&V)
Pe = %1 V3 HTR 1 33 1 '3 3

Vs (u, + ﬁz) -2y

where ¢/, the ratio of the hole to electron densities, is 1.0 in
annealed and 1.2 in quenched bismuth. Use of mobilities from table
(6-2), shows that quenching has caused B to reduce from =97 Wy K

to =91 W/ °K and B trom +114 » v/ K to 95 wv/ %K at liquid
nitrogen temperatures. These partial Seebeck coefficients have been
used to calculate the electron and hole Fermi energies on the restric-

tive assumption of acoustic mode, intravalley scattering (S= =3) from



-100-

#00°0 7 9¢0°0 - 48¢0°0 2000 7 gto°0 64L0°0 c00*0 3 6L0°0 2Leo*o payousnd
$©00°0 ry 0£0°0 ¢He00 c00°0 3 ¢€L0°0 8£L0°0 ¢00®0 3 410°0 §020°0 paTesuuy
Jemod 8709339 Jamod 89098339 Jamod 309139
OTI309Td oT3ouSeuw OTI309T® oT3oudew DTI308Te oT319useu
-OwIa, -ouBATED —OowIaYT, -OUBATEN -OWIaYy, —-ouBATED
Amwv pueq aouUdTep ; AWHV pueq UOT3ONPUOYH .
: UOTFTPUOD
o o1dueg
( p®) "~ deTasao pusg ( A®) 4LSBqus Tuwxsg

yjnustq psyousnb pue paTesuus ut deTISA0 pueq SY3
pue s98pe pueq SOUSTEA PUB UOTRONPUOD 8y} WOIF UotTjuredss TeAaeT TWISg OUT

¢ (6-9) TIEVL




-101=-

(Gallo et al 1962, Saunders and Oktii 1968)

_ E[ (5/2 + s) Py s (n ) . ]
e i _ . e
2(3/2 + s) F%+s = (n )

Pe =

e

(6-7)
k[ 52es)F . (n)
Ph = 3 [ 3 /248 h - Ny
(3/2 +8) .~ (ny)
where 0 are the partial, reduced Fermi energies of electron and

e,h
holes. The Fermi levels and band overlap calculated by this method

are given in table (6-5); although they have a substantially wider
margin of error than those calculated by the other method they do

serve to confirm the basic findings from low and intermediate field
magnetoresistivity data. As a result of quenching in bismuth, the
band overlap is increased; the relative energies of fhe Fermi level
with respect to both band edges increase, that in the valence band
markedly: the quenched-in defects show predomiantly acceptor-like

character.
IV - APPLICATION TO THE THERMOMAGNETIC DATA

For the thermomagnetic power data the programme was extended
s0 as to‘facilitate the solutions of the band parameters from linear
and polar magnetothermoelectric polar plots for d»za(ﬁ). The vari-
ation of the thermomagnetic power data as a function of magnetic
field is not as large as the magnetoresistivity data. The quenching
effects on the thermomagnetic properties of bismuth are dramatic

(see figures 5- 15, 1 ) and the general tendency is towards the

2 T,

/;;‘»“‘“\m:

& Tqov e
S

oty
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reduction of magnetic field effects and angular aﬁisotropy in_ a22(§)
in xz-plane. For this reason, quenched magnetothermoelectric power
polar data do not allow quantitative assessment of the quenching
induced changes on the model parameters. The only data set in the
quenched condition which can bé analysed quantitatively is that for
022(B3), and the determination of a set of model parameters based
on this data will be presented. The data obtained from the z-axis
sample (see figure 5~47) in both sample conditions is again not
analysable, because not only are the magnetic field effects much
smaller but also the main features of the éngular change in magneto-
thermoelectric power data in the xy-plane are completed in about
300 angular sections of the plane. However, for the y-axis sample .
in>the annealed state both the linear and polar data show sufficiently
large field or angular dependent variations for analysis to be
possible. Least—mean-squares procedure solutions based on these
data have been obtained for both &22(3) polar pléts and 522(+B1)

(

‘and P BB)' The extraordinary changes in dzz(ﬁ) in the xz-
plane show both the sign reversal in magnetothermoelectric power

and the characteristic features of the Umkehr effect. A fit to this
déta in terms of the model parameters is a mbst valuable test for
the validity of the theory developed for the thermomagnetic effects
and of the adopted Fermi surface model. For this purpose two of

the polar data sets have been utilized: one for a magnetic field
(0,075T ) just less than that required for observation of sign
reversal for any orientation in the xz-plane, the other large enough

(6.38 T) so that sign reversal is manifested over a large angular

region in that plane. The solutions were also extended to the polar
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plots obtained at 0.68 T by Michenaud et al (1970) and at 1.00 T by

Smith et al (1964): it is pertinent to test the theory with these classic
results, as well as with our own. The shapes of these polar diagrams

are very sensitive }o the direction, sense and magnitude of the applied

magnetic fields,

For the component a22(B 0, B3) of the thermomagnetic tensor

1’
we have from equation (3-37)

h
0, (B) 0 51(B) (P 0 2(B) + By 9 (B))

+

t e = h =
P (B) (P, 0 5(B) +Py 9. ,(B)) (6-8)

+

= e, - h ,=
p ZB(B)(PéA o 32(13) + P, 032(3) )

where the partial magnetoconductivities <E§(§) and O'Sj(ﬁ) for
electrons and holes respectively can be obtained from equations (3-31)
and (3-32); the total magnetoresistivities pzj(ﬁ) have been found
by inverting St(i). Then the angular dependence of 522(5) has
been calculated.using equation (6-8) by writing the magnetic field

in the xz-plane as

(o2]
[}

B, cos @

By

B, sin g

A set of nine model parameters, corresponding to the multivalley,
two carrier, ellipsoidal Fermi surface, is computed, including the

components of mobility tensors for electrons 1 and holes v in the
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crystallographic frame of reference, two partial thermoelectric powers
Pé and Ph and the carrier densities which enter into the magnetothermo-

electric power expressions as a ratio c¢(= P/N):

To obtain the solutions, a similar least-mean-squares proced=-
ure has been used to fit the theory to the polar data for &az(ﬁ)'
Computations have been performed at 10° intervals in the xz plane
around the y-axis; taking the symmetry into account, this provides
an overdetermined set of 19 effective angular data points from which
to calculate the 9 unknowns. A theoretical computation of each

d 22(¢J) is carried through by inserting an arbitrary set of model
parameters into equation (6-8), each calculated value is then divided
by the correspondiqg experimental value of the a22(¢J) and next

used in equation (6-1) to minimize the term SUM.

The samé procedures apply for linear data for which B is

replaced by the appropriate component.

The fits obtained are plotted in figures (6-3), (6-4) and
(6-5), to allow direct comparison with the experimental observations
of <122(§); the characteristic shapes of the expérimental polar
diagrams, including the finer liopological details, are reproduced
by the theoretically computed curves, The Umkehr effect and the
sign reversal have come naturally out of the transport theory with

the correct megnitude and the orientation dependences.

The calculated model parameters corresponding to the theoret-
ical fits in figure (6-3) and (6-4), (6-5) are collected in table

(6=6) and (6-7). The solutions obtained for band parameters from
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different sources are in reasonable agreement.

In addition to accounting for the appearance of an Umkehr
effect in a22(§), the theory can also be used to predict which
other tensor components and experimental configurations should show
this property. It is valuable to set up the procedure prerequisite
for this purpose. BEach tensor component aij(g) can be decomposed
into odd and even terms with respect to B. An Umkehr effect is to
be expected only if the particular aij(g) under study coﬁtains
odd terms. Using equation (3-31) and (3-32) the fulfilment or
otherwise of this condition can be established. As an example, let
us consider those cases in which the magngtic field is directed

along the x-axis (31#0, B = 0) while the temperature gradient

2= B
is established aléng any of the three major (x, y or z) crystallo-
graphic axes and the thermoelectric voltage is measured along the

temperature gradient direction. Then

(odd { (even) e (odd) h(odd)
'Ly 2B1) = k=1z , 0 ik (P, O i +Py oL )
(6-9)
(0dd) e(even) h(even)
pie P Oy tPhooy )

Using equations (3-31) and (3-32) for V o, S in equation (6=9) we

have



-aggdd) (8,)

]

(0dd)
%22

]

(8,)

(0dd)
%3

(B1)

Thus on the basis

e(even)
035

0 o -
22 33

e(even)

52

2P
023 032 [ e

o o -
22 33

2P
023 032[ e

Oe(ddd)

(Odd)+ (Pe"' Ph) G

o
+ (Pe+ Ph)

h{odd)
32

h(odd)
32

of the Fermi surface model adopted for bismuth,

the x-cut sample should not show an Umkehr effect, while the y- and

Z~- cut samples should.

By following this procedure through, we have

ascertained which of the tensor components are expected to exhibit

the effect. Those that do are enclosed in rectangles in the complete

scheme below.

a(B,)

6 (8,)

11

%21

21

a
1

(8,)

1
(B1)

(B,)

(B

o

o,. (B.)

21

(B,)

31

(B,)

o
11

(B;)

(B,)

(B,)

0,5(34) 13 *71
aaz(Bq) o5 (B1)
a32(B1) 033 (B1)
a12(32) a13 (BZ)
022(32) aég (BZ)
GBZ(BZ) a33 (BZ)
a12(33> “13 (BB)
aaa(BB) a23 (B3)
GBZ(BB) “33 (BB)

(6-10)

(6-11)
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The occurrence of an Umkehr effect in a22(181) already discussed in.

detail here is consistent with these predictions. Furthermore, measure-

ments on the z-axis sample show the existence of an Umkehr effect in
o 33(i—B,I) (see figure 5-17/) and the plots presented by Gitsu et al
(1970) have shown that a11(B1) does not show an Umkehr effect, as

predicted here.

Finally we turn briefly to the interesting problem of how .
the Umkehr effect and the electron Fermi ellipsoid tilt angle are
related. This question can be examined by recourse to equations of

the form of (6-10). If the tilt angle is set to zero, u, becomes

zero. In this case the expressions for 0;2 and 03§I’III (see
equations (3-31) and (3-32)) show that OBS(even) becomes zero and

this leads immediately to the disappearance of the Umkehr effect.



*siutod TejuswTaadXa aY3 03 USTETaJ Ut umoys
m 98 SPISTI OTI2UdeW 93BTPSWIIIUT 3e KTATLSTSOU .

-01auBex 9Y3 J0J sanTes peanduweo A{TeoT39J08y] (Lt=9) 2anStg

(2s2L)  Pl2ia PyRubew
S0 #°0 €0 rAL®] -0
AJ - v ¥ ' ' e .m

£
| &
pevovany 2 «w
———
paiosuuy O 5
] M
hacaug  memen - 5
2 W
Ruasy - " o
]
vy
i | _ 4 T
- 3 -\mw»t@ £o
D & —— = & o o oo O =
2 497

Wy L al -
1



&0

(orsel) Pt Pyrubew

() €0 70

ﬁw&Utw«v®
nﬂsmcct

fsoayl

¥ L]

|
_
“
i
“
}
i

A

‘sgautod TejusliTiadXs U] 03 UOTFETSI UT UMOYS

sJe SPToTy oT4eudew 938TPswIajuUT 38 LJTATISTSSI

-o3sufewr syy J03 santres pajudwod  LTTBOTISIOSYL @ (2-9) Sandty

B

1

O

=]
™

[»]
A2

ot

(Fg)”&  hposisasagpulo 1y

UAI;'LQI



\

© Experimeni

80

-60- .

i !
0] 0.
0 <

1 | i
Q 0 5}3 Q
i

Do (9) @

Figure (6-3) : Iinear thermomzgnetic data for. 0(22(-1‘31). The
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APPENDIX

BAND STRUCTURE CALCUL AT ION (LOW FIELD GALVANOMAGNETIC DATA)
DIMENSION S(8) MAXIB) MIN(8), STEP(8),CO(12),SUM(2),Q(12),2(12),
1H(8) ,SOL(8) yHE(12) ,W(12)

INTEGER I,JyKyCyU

REAL SMALL |

FORMAT (8E10.0)

FORMAT (12F4.1)

FORMAT (20X,'INITIAL SOLUTIONS FITTED!/ 25X, 'MEASURED COEFF !/
1(216E1243/))) |

FORMAT (25X, ' CALCULATED COEFF'/ (2(6E12.3/)))

FORMAT (25X, 'STEPS'/(8E12.2/))

FORMAT (25X, 'SOLUTIONS'/(8E10.2/))

FORMAT (25X, 'RATIOES'/ (2(6F12.2/)))

FORMAT (25X, *SUM! / (2F20.4))

FORMAT (25X, 'FINAL SOLUTIONS'/ (3E10.2,F€e2,4E1002/))

FORMAT (25X,'MEASURED COEFF'/ (2(6E12.3/))) '

READ(5,11) (W(K),K=1,12) .

READ(5,1) (NMAX(I),1=1,8)

READ(5,1) (MINCI),I=1,8)

READ(5,1,END=99) (S(I),1=1,8)

READ(5,1) (STEP(I),1=1,8)

READ(5,1) (CC(I),I=1,12)

SMALL=0.001

HK=Do0

DO 71
SOL(I)
H(I) =1
CCNTINUE
SUM(1)=0
SUM(2)=0

DO 16 C=1,10

DO 19 U=1,50

DO 13 I=1,8
SUM(2) =0
S(I)=S(I)+STEP(1)
IF(S(I)aGToMAX(I)
IF(S(T) LT MIN(T)

1,8
SUI

)

) €O TO 15
) CO TO 15

. CALL DEV (S,Z)

DO 18 K=1,12 : N
QIK)Y={(Z(K)/CO(K)) 4 '
WE(K)=(C(K)=1) |

WE {K) =W {K) #WE(K) '

SUM(2)=SUNM(2)+WE(K) %#2

CONT INUE

IF (HK.EQelsQ) GC TG 77

WRITE(6,2) (CC(K),K=1,12)

WRITE(6,16) (Z(K)yK=1,12)

WRITE(6,59) (SCL(I),I=1,8)

WRITE(6,80) (STEP(K)yK=1,8)

WRITE(644) (Q(K),K=1,12)

NRITE(éyD)(SUN(I),I 142)

CHK=1.0

[F (SUM(1)-SUM(Z2))15,14,14
IF(H{I)=-25) 21,21,22
STEP(I)=-STEP(I)
S{I)=S0L(I)

GO TO 13
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STEP(I)}==0.5#STEP(T)

STI)=S0L({I)’

H{I)=1

GG TO 13

IF(SUM(2)~-SNMALL) 9,9,20

SCL{I)=S¢tIL)

SUMI(1)=SUM(2)

CONTINUE

CONTINUE

WRITE(6,59) (SCL(I),I=1,8)

WRITE(6,80) (STEP(K};K=1,8)

WRITE(6:6) (CC(K)K=1,12)

WRITE(6,10) (Z{K);K=1,12)

WRITE(6,4) (Q(K),K=1,12)

WRITE (6, 5)(SUF(I),I 1,2)

CONTINUE S \
DO 25 I=1,8 : :
S{I)=S0L(I)

CONTINUE

SOL(4;—(QO D/3. 1416)*ATAN((2 Q=SOL{4))/(SOL{2)- SOL(B)))
NRITE(G,IO) (Z(K),K=1,12)

WRITE(6,6) (CO(K),K=1,12)

WRITE(6,44) (Q{K),K=1,12) :
"HWRITE(645)1(SUNM(T),I=1,2) A -
GO TO 50 '
sSTQOP

END

SUBRCUTINE CEV(A,2Z)

DIMENSION A(8),2(12)

REAL Q

Qzlﬂb

Z(1)=(2/7 (A(S)#Qu(A{1)+A(2)+2=xA(8)xA{6))))
Z(2)=(1/(A(5)*Q=(A(3)+A(8)=A(T))))
Z(3)=(4x(A(L)#A(2)-A(8)=xA(6)*22)/(A(5)#Qe{A(1)+A(2)+2=A(8)=A(6]))

1##2))
Z(4)—(A(3)*(A(L)+A(2))-a*ﬂ(S)*A(é)*A(?) ~A(4)eu2)/(A(5)2Q=(A(]1)+A

1)42#A(8)=A(6) )= A(3)+A(8)*A(T)))

ZU5)=(A(3) = (A(L)=A(2))#a2+4A(4)x=2%(5%A{1)=A(2)))/(2#A(5)=Q=(A(1)
LA(2)+2%A(8)xA(6) ) r%2)

Z(6)“(l/(2*A(5)*C))*(A(l)*(S*A(1)*A(3)+A(4)**2)+(2*A(1)+3*A(2))*
LIA(2) #A(3)=A(4) =%2) 48 *A(B)=A(T) Al 6) % =2 2* ((A{L)+A(2))%A(3)-2*
2A(BYA(6)#A(T)=Al4) Ru2)2s2/(A(3)+A(8)%A(T)))/(A(L)+A{2Z) +2%A(8B) %A
3) ) #=2

Z07)=(2%(A(L)=A(2) 2 (A(L)+A(2))+42=A( 8) #A(6)#u3-4a(A{1)=A(2)-A(8])=
16) %#2 ) %82/ (A(L)+A(2)42%A(8)«A(E)) )/ LILALL)I+A(2)+22A(B)2A(6) )#2)

2A(5)1%Q))
7(8)Y=1/(22A(5)=Q) = {25A(3 )22 (6)#(ALLI+A{2) )= (A(3)+A(T)Ina2+(A(2)=

1A(l)+A(2))—A(4)**2*2*A(8)*A(é)*(A(3)+2*A(7)))*A(4)**2)/((A(1)+A(
C242¢A(B)HA(G) ) #(A(3) +A(B)#L(T))wx2)

209)=(A(1) #A(4) #%2) 7 (A(5) Qe A(3)+A(8)=A(T7) ) #x2)
Z(lJ)‘-(A(4)*(A(1)*(A(1)-A(c)))/(A(5)*Q*(A(1)+A(2)+2*A(8)*A(6))

2##2 )} '
Z(ll)=*(h(4)*(A(’)*(A(l)— AL2VI+A(4) 2 2)/ LIA(L)+A(2)+22A(8)#A(6]))
LOA(3)+A(8)#A(T) ) #22A(5)%Q))
Z(lz)=—l/(A(5)*F)*(A(l)4A(2)*(A(4)**7+2*A(8)*A(6)*(A(3)+A(7)))+A
I18)#A(6) w22 ( (ALL)+A(2) )= (AL +A(TI)=A(4)»22))/((A(L)+A(2)+2=A (B}
2A(6) ) xu2=(A(3)+A(8)=A(T))) .
RETURN
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BISMUTH BAMND STPACI!RF(POIAR THERMOMAGHETIC DATA)
DLMAEMSION S(11), (11)STIMILIL)sSTEPLLL),C0(T2),5UM(2),9(72),
LZ(72),HI11), bCL(l‘),«F(?L).F(v),D()),SL(Q),SH(9),§HT(9),bB(3),
2RES(9),0(3),5T(9) 4 SETI9),00(5) W (19)

REAL SMALL yPT,PHyHK, DELTAZPyFCyFS,TC, TS, P1,PJ,DEG, HH
INTEGER T4JyKyCyUy N

FORMAT (BE14.0) _ .

FORMAT (20X, 'INITIAL SOLUTIONS FITTED'/ 25X, 'MEASURED CGEFFY/
LI9EL7 .2/ {10EL262/))) '

FORMAT (25X, 'FINAL SOLUTIONS'/{2FE11:3,F602,5E11.3/))
FORMAT (25X, 'RATIOES'/ (9F12.2/(10F12.2/)))

EORMAT (25X, "SUMY/ (2F15.4)) :
FORMAT (25X, 'CALCULATED COEFF'/ (9F12.2/{1fE12.3/)))
FORMAT (L9F&.7) -

FORMAT (25X, *SOLUTLIONS'/(10E123/))

FORMAT (25x,'5TtPC'/(1G51002/W)

FORMAT (25X, "MEASURED COEFF'/ (2E12.3/(10F12.3/7)))
READ(5,11) (W(K),K=1,19)

READ(5,1) (SAX{I),I= ‘,La)

REAQ( v 1) (SIM (1), I=2,1()

EAD(5,1,END=99) (S(I),I=1,10)

READ(S,l) (STEP(T1),1=1,15)

READ(5,1) (CO(1),1=1,1%)

READ(S5,1) HH

SMALL=0.U01L

HK=0 0 )
DO 7 I=1,41D

SOL(1Y=S(1)

H(T)=1

COHTINUE

SUM(1) =0

SUM(2) =0

DO 16 C=1,7

DO 19 U=1,50

DO 13 1=1,10

CIF(STEP(I)eEUCD)GO TO 13

SUM(Z)=0
S{I)=S(I)+AK=STEP(I)
IFISTEP(I).EQ.D.D) GO T3 13
IF(S{1)eGTeSAX(I)) GO TO 15
ITF(S{I)eLTSIM(TI))Y GO TO 15
D0 36 J=1,5 ?
Al(J)Y=S1J)
CONTIHUE
D(1)=5(6)
DE2)=D(1)
C({3)=5(T7)

(4)—.'#9(,:) : -
D(5)=3.0%S(5)
PE=S(9)
PH=S (1)
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DEG=-3s1745

OO 190 K=1419

DEG=DEL+H.1745
TC=CO5(DLEG)

TS=S1IN(DEG)

BL1) =ilH#FS=TC

BB(1L)==B(1)

B{3)=HH=*FS*TS

BB(3)=-5(3)

O 47 J=1,9

SE(J)=0,1

SH{J) =064

SET(J)=C.0

SHT(J)=0.0 Sl

RES(J)=ite0

STHI)=aaid

47  CONT INUE

CALL DeEV(B,D,SH)

DO 48 J=1,9

cHT(J)=QHT(J)+ H(J)
ET(J)=5 T(J)+ E(J)

| 5E(J)—¢
48 CDNTINUE :
CALL CrV(BB,A,SE,lcQY

49 CONTINL
CALL SE
DO 6%
SET(J)
63 CONTINU
DG 51 J
ST(J)=5
51 CONTINUE
DELTA=ST(1)#(ST(2)%ST(3)=ST(5)%ST(3))+ST(4)*(STL6)=ST(5)=ST(7)*
lfT(’))+ST(9)*(ST(7)*ST(5)—ST(2)*ST(6))
5(2)=(5T(1)=ST(3)=ST(6)*ST(9))/DELTA
S)=(ST(4)*ST(6)-ST(1)1=ST(8))/DELTA
7)=(ST(E)*ST(9)-ST(3)=ST(4))/DELTA
SRES(T)#(PE#SET (4) +PH#SHT (&) J+RES(2) # (PE*SET(2)+PHxSHT(2) )+
5) % (PESET(2)+PHSHT(81)
163 CONTINUE
DO 18 K=1,19
Q{K)=(Z(K)/COIK))
WE(K)=(Q(K)=1)
WE(K) =1 (K) #HE (K)
L SUMLZ)=SUM(2) +HE(K) x#2
18 CONTINUE

[T S of & I G Wi T | B 8

N0
mArwmm
;'i(/’b’)(/‘
|

o
R s)
w

IF(HH,;W.DGC>'sum<1)=SUM(2)
IF (SUM(L)-SUM(Z))15,14,14
5 IF(H(1)=-12) 21,22
1)

J
STEP(1)=—STEP
S(IYy=80L(1)

Ny =
[




22

25

99

-1k

H{I)=H(I )+

GO TO 13
STEP(I)=-0.5%STEP(1)

H(I)=1 :
S{I)=50L(1)

GO TU 13

IF(SUM(2)-SKALL) 9,9,20
SOL(I)=S(I)

lﬁKzloO

SUM({1)=SUM(2)

CONT INUE

CONT INUE

WRITE(6,59) (SOL(1),1=1,10)
WRITE(6,83) (STEP(K),&=1,10)
WRITE(H44) (G(K),K=1,19)
WRITE(64,5)(SUMII),1=1,2)
CONT IMNUE : ’

DO 25 I=1,10

S(I)=50L(1)

CONTINUE

WRITE(6,3) (SOL(I),T=1,15)

WRITE(646) (COIK),K=1,19)
WRITE(6,14) (Z(K)yK=1,19)
WRITE(&;#) (Q(K)7K21919)
WRITE(6,5) (SUM(I)yI=1,2)

GO TO 35
STOP

ENG
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BISHUTH BAND -STRACTURE (HIGH FIELD GALVANDHAGNETIC DATA)

DIMENSION S(15),SAX(15),STM(15),STEP(15),50(19),5Ui(2),Q(19),
120(19),HI15)SOLLLS) yWELL9) 3A(5) 40(5)3SE(9) ySHIG) ,SHTI9) 4BB(2),
ZRES({19),B(3),ST(9)ySET(9)¢DD(5),;W{19)4HHI19)

REAL SHMALL,PEyPHyHK, DELTA,PyFCyFSyTC,y TSy PI,PJ

INTEGER I,JyKysCyU,N

FORMAT (8E10.0)

FORMAT (20X, *INITIAL SOLUTIONS FITTED'/ 25X, *MEASURED COEFF'/
1(9EL12.2/(1DE12.2/)))

FORMAT (25X, "FINAL SOLUTTONS'/(3E10:¢2,F662,6E10:.3/))

FORMAT (25X, "RATIOSY/ (9F12.2/(10F12.2/)))

FORMATI(25X, "SUMY/ (2F15e4))

FORMAT (25X, '*CALCULATED COEFF'/ (9E1243/(10€12.3/)))

FORMAT (19F4,0)

FORMAT (25X, "MEASURED COGFF'/ (9E12.3/(10E12.3/)))

FORMAT (25X, 'SOLUTIONS'/({1CE10.2/)) '

FORMAT (25X, "STEPSt/(1DE1N.2/))

READ(5,11) (¥W(K),K=1,19)

READ(S5,1) (HH{K),K=1,19)

CREAD(5,1) (SAX(I),I=1,8)

50

1

36

READ(5,1,END=99) (S(I),1=1,8) .7
READ(5,1) (STEP(I1),1=1,8)
READ(541) (CO(I),1I=1,19)
SMALL=G.G01

HK=0.17 :

DO 7 I=1,8

SAL(I)=S(1)

H(I)=1

CONTINUE :

WRITE(6,59) (SOL(I1),1=1,8)
B(1)=0.0 ‘
BB(1)=0.0

B(2)=D.

- BB(2)=0.0
- SUM(L) =0
S SuUM(2)=0

DO 16 (;:115

suM(2)1=0 .
S(1)=5(I)+HK=STEP(1).
IF(S(I).GT.SAX(I)) GO TO 15
IF(S(I)oLT.SIM(I)) GO TO 15
00 36 J=1,5

ALJ)=S(J)

CONT INUE

D(1)=5(5)

D(2)=D(1)

0(3)=S(7)

D{4)=7.0 ‘
D(5)=3.0%5(5)

DO 1D K=1,19

B(3)=HH(K)

BB(3)=-B(3)
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DO 47 J=1,9
SE(J)=0.D
SHIJ Y =11 G
SET(J)=0.0
SHT(J) =00
ST(J)=0.0
47 CONTINUE
© CALL DEV(B,D,SH)
DO 66 J=1,9
SHT(J)=SHT(J)+SH(J)
SHIJ) =00
66 CONTINUE
/\LL Dt\/(j I,A SE)
DO 48 J=1,9
SET(J)=SET(J)I+SE(J)
SE(J)=D.9
48 CONTINUE
CALL SFV(BU,A,SE 1 0)
DO 49 J=1,9
SETIJ)=SET(JI+SE(J)
DOSE(J) =060 »
49 CONTINUE _
: CALL SEV(BByAySEs=140)
D0 63 J=1,9 .
-~ SET(JI=SET(JI+SE(J)Y -
60 CONTINUE
DO 51 J=1,9
STIJ)=SET(J)I+SHT(J)
51 CONTINUE
‘DELTA ST{1) = (ST(2)#ST(3)=ST(5)#ST(8))+ST(&)#(ST(6)=ST(5)=-ST(7)+
STI3))+ST() = {ST(T7)#ST(8)=ST(2)%ST(6)) |
Rrb(V)—(5T(2)*>T(3)—ST(8)*°T(S))/DELTA
100 CONTIHUE
DO 18 K=1,19
Q(K)=(RES(K)/CO(K))
WE(K)=(Q(K)=-1)
WE(K)=W(K)*WE(K)
SUM(2)=SUM{2)+WE(K)#=2
18 CONTINUE
IF(HK.EQs1asD) GO TO 8
HK=1.0
SUM(L)=SUiM(2)
© WRITE(6,10) (RES(K),K=1,19)
"8 IF (SUM(L)=-SUM(2))15,14,14 -
15 IF(H(I)-10) 21,21,22
21 STEP(1)=-STEP(I)
S(I)=S0L(1)
H{I)=H(I)+1
GO TO 13
22 STEP(I1)==0.5=STEP(I)
H(I)=1
S(I)=8s0L(1)
GO TO 13
14 IF(SUM(2)-SMALL) 949,20
20 SOL(I)=S(1)
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19

25

99
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S SUM(L)=SuUM(2)

CONTINUE
CONTINUE
WRITE(6,46)
WRITE(G,10)
WRITE(6459)

(CO(K)yK=1419)
(RES(K);K=1,19)
(SOL(I),1=1,8)

WRITE(6,80) (STEP(K),K=1,8)

WRITE(6+4) (Q(K);K=1,19)

HRITE(615)(SUM(I)113192)

CONT INUE

DO 25 I=1,8

S(I)=S0oL(I)

CONT I HUE

WRITE(6,3) (SOL(I),I=1,8)
WRITE(6,6) (CO(K),4K=1;19)
WRITE(G+4) (Q(K),K=1,19)
WRITE(6,10) (RES(K),K=1,19)
WRITE(6,5) (SUM(I),I1=1,42)

GO TO 50

STOP

END

~

SOLL4)=(90.0/3.1416)=ATAN((2

<0=SOL(4))/(SOL(2)~-SOL(3)))
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SUBROUTINE DEVIB,A,S)

DIMENSION B(3),A(5),5(9)

REAL G4V,0Q
- Q=lebE-1Y

V= A(l)"(A( JEA(3)=A(4)%%7)
G=(1, +(V/A(1))vu(l)‘%2+A(l)*(ﬂ(3)tﬂ(7)*' ~2HALG)RB(2 ) %R (3)+A(2) =
(3)“%9))
SILY=C(ALII+VaB (L) #%2) /G )=A(5) %0
(2)-((A( JHVeB(2) % *L)/G)*H(J)*Q
)*(( ACB)I+VRB(3)%22) /G)#A(5)#Q
=0(=-A(1) = (A(4) = 3(;)—A(2)*B(3))+V<B(1)*B(L))/O)*A())*Q
CCACA)+H(V/A02) ) =3 (L) +V#B(2)#B(3))/5)#A(5)#0
CCALL) s (A(3) %0 (2) =A(4)#B(3) ) +V=B(1)1=B(3))/0)= *A(5)#Q
:((A(l)*(A(A)7D(A)-A(2)’U(3))+V~3(‘)*D(D))/o)*A(D)*U
C(B)— (ALG)={V/ACL) ) =B IL)+V=B(2)%B(3))/5) %A (5) =Q
S(Ul‘((—A(l)*(A(ﬁ)%B(Z)—A(4)*B(3))+V*9(3)*B(1))/G)*A(5)*Q
RETURN
END

=

ll:

[ORNRESI 8
Hon

€

DO WD N

~J

@

7

SUBROUTINE SEVI(B,A,S,P)
DIMENSION B(3),A(5),5(9)
REAL P,G,V,Q

Q=lobE—19

VEALT) = (A(2) % Al3)=A(4)2%2)

b (12400252 (3%A(1)xA(3)+(V/A(L)))%B( 1) #%z+0,2 25 {A{1) =A(3)+

(V/A(l‘))vu(é)"’+ (L)nA(’)iu(B)’f? PrGoe8oasx (A(1)2A(3)~(V/A(L1)))

BOL)=B(Z)I+A(L)#A(4) = BI2)#B(3)-1a732PxA(1)%A(4)=B(3)eB(1))

(1)= (3.25%(A(1)+3=4 A(2)+4=VaBl1)==2)/G)=A(5)%Q .

(2): (Ce25%(3%A(1)+A(2)+4%V=B(2)%%2)/G) *A(5)%Q -
SU3)=((A(3)+V=B(3)%52)/5)=A(5)#Q .
S(G)“((L 43 *P*(N(L)—A(E))-A(l)#A(4)*(3:864*P*B(l)—0.5*8(2))+A(1)

1#A(Z2)#B{3)+VeB(L)#B(2))/0)2A(5) %0 :

SIS)I=0{=CobxA(4) 4D 25% (32 A (1) %A(3)+(V/A4(1)))aB(1)~1 2P (A(1 )

LA(3)=(V/A(L) ) )#B(2) ~:aBO4*Px A(x)’A(Q)*B(5)+V*B(Z)*o(B))/G)«A(D)*
S(6)=((Ue864uPsA{ &) =(iob430 4P ( (ACLI=AL3)=(V/A(L)))=B(1) +D.25+(A(1)

1*A(3)+3¥(V/A(l)))*B(Z)¥§n5*A(l)*A(é)*E(3)+V*B(3)*B(l))/G)*A(S)*O
5(7)=((Go432*P*(A(1)7A(2))+A(1)*A(4)*(J.864*P*B(l)f3,5*8(2))—

lA(’)fA(7)*B(3)+V*P(l)*8(7))/6)wA(5)*Q )
(8)—((—p.Sfﬂ(4)-Da_J*(3*A(;)*“(3)+(V/ﬁ(L)))*R(l)+“,+32 *Pe(A{1)

TeA(3)=(V/A(1)))%B(2 )+, 854 %P A (1) »A(4) BU3)+V2B(2) =B 3))/G)2A(5) =]
S(92)=({0864% P*F(a)+,o+3ﬁ*P*(A(l)“A(B)—(V/A(l)))KR(])‘ntzc*(A(l)

l*A(%)+3’(V/\(l)))“8(¢)~):D*A(l)xA(4)“B(3)+V*B(3)*B(l))/b)*A( 5)=Q

HETURN } i
END

]
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