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ABSTRACT 

An experimental study of the quenching e f f e c t s on the gailvano-

raagnetic and therraoraagnetic p r o p e r t i e s of bismuth s i n g l e c r y s t a l s i s 

presented. Measurements made include components of the magneto-

r e s i s t i v i t y and magnetothermoelectric power tensors a t low and i n t e r 

mediate magnetic f i e l d s f o r samples i n both the annealed and quenched 

c o n d i t i o n s , a t temperatures between 77°K and room temperature. 

Meurked e f f e c t s of quenching on each set of tensor components have 

been observed. A f t e r quenching the anisotropy r a t i o P̂ /̂ of 

the zero f i e l d r e s i s t i v i t y i n v e r t s from 0.9^^6 t o I.030 and the 

thermomagnetic data show a genereil reduction i n magnetic f i e l d 

dependence. The quenching e f f e c t s anneoil out below room tempera

t u r e . 

To allow a d e t a i l e d q u a n t i t a t i v e i n v e s t i g a t i o n , a formalism 

has been developed by which the thermomagnetic data and the predic

t i o n s o f both the phenomenological theory and of the band transport 

theory can be compared on the same basis as the galvanomagnetic 

e f f e c t s . The expressions provide f o r the f i r s t time an a n a l y t i c a l 

e xplanation f o r the Umkehr e f f e c t and lead t o i t s p r e d i c t i o n . The 

occurrence o f Umkehr e f f e c t and si g n r e v e r s a l i n the thermomagnetic 

power of bismuth d i r e c t l y f o l l o w s from the nature of the Fermi 

surface. 

Measurements a t low and intermediate magnetic f i e l d s have 

been analysed i n terms of a two-band m u l t i - v a l l e y Fermi surface 

model, using a least-means-square procedure. Reasonable agreement 



obtains between the model parameters computed from d i f f e r e n t sources.. 

M a g n e t o r e s i s t i v i t y data a t low and intermediate f i e l d s evidence 

c o n s i s t e n t quenching-induced changes on the model parameters. 

Quenching r e s u l t s i n an increase i n c a r r i e r d e n s i t i e s from k,k 10̂ -̂ m ̂  

i n annealed s t a t e t o 4.6 lO^-^m"^ and 5.3 lO^^m"-^ f o r electrons and 

holes r e s p e c t i v e l y . C a r r i e r m o b i l i t i e s i n the xy-plane are reduced 

but those along the t r i g o n a l ( z ) axis are increased s l i g h t l y . The 

energy separation between the band edges increases markedly. 

Quenched-in defects have predominantly a c c e p t e r - l i k e character. 
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CHAPTER I 

INTRODUCTION 

I n t e r p r e t a t i o n of c a r r i e r t r a n s p o r t p r o p e r t i e s on the basis 

o f e l e c t r o n band theory has l e d t o major c o n t r i b u t i o n s i n our under

standing o f the e l e c t r i c a l conduction i n s o l i d s . Certain t r a n s p o r t 

e f f e c t s , p a r t i c u l a r l y the H a l l e f f e c t and magnetoresistance, are 

f r e q u e n t l y used as t o o l s f o r the i n v e s t i g a t i o n o f the Fermi surface 

o f semiraetals and metals. By v i r t u e o f t h e i r unique c a r r i e r proper

t i e s the semimetals bismuth, antimony and eirsenic play a s p e c i a l 

r o l e i n experimental studies o f t r a n s p o r t e f f e c t s . The presence, i n 

these m a t e r i a l s , o f c a r r i e r s w i t h small e f f e c t i v e msisses, high 

c a r r i e r m o b i l i t i e s and long r e l a x a t i o n times r e s u l t s i n large changes, 

as compared w i t h those i n metals, i n the thermoelectric power and 

e l e c t r i c a l r e s i s t i v i t y i n the presence of a magnetic f i e l d . I n 

bismuth i n p a r t i c u l a r the c a r r i e r t r a n s p o r t p r o p e r t i e s are dramatic; 

many o f the fundamental p r o p e r t i e s , among them the H a l l , Ettinghausen, 

Nernst, de Haas - van Alphen, Shubnikov - de Haas e f f e c t s were f i r s t 

discovered i n t h i s semimetal. 

The geO-vanomagnetic e f f e c t s i n semimetals have been extensively 

s t u d i e d . Combined a p p l i c a t i o n of the r e s u l t s of the phenomenologiceil 

theory and band theory has resxxlted i n c o r r e l a t i o n of the experimental 

observations w i t h the main features of the Fermi surface model* Thus 

the low f i e l d tensor components of bismuth (Abeles and Meiboom 195^, 

Z i t t e r 1962, Hartman 1969),> antimony (Oktii and Saunders 1967) and 

eirsenic (Jeavons and Saunders 1969) have been measured and i n t e r p r e t e d 

2 9 NOV 1971 
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.using mxxltivalley, e l l i p s o i d a l Fermi surface models; the marked 

anieotropy o f the galvainomagnetic e f f e c t s i n semimetals iias been 

d i r e c t l y connected t o the Fermi surface topology. As a r e s u l t o f 

these and other extensive s t u d i e s , the features of the low f i e l d 

geilvanomagnetic tensors have been expledned s a t i s f a c t o r i l y . But 

the thermomagnetic e f f e c t s are less w e l l understood and studies of 

these e f f e c t s have c o n t r i b u t e d l i t t l e t o t h i s end. Large, a n i s o t r 

opic m a ^ e t o t h e r m o e l e c t r i c e f f e c t s i n bismuth w i t h unusual f e a t u r e s , 

not h i t h e r t o accounted f o r on a formal batsis, have been observed. 

On magnetic f i e l d reversed the magnetothermoelectric voltage a l t e r s 

f o r c e r t a i n c r y s t a l l o g r a p h i c d i r e c t i o n s (Griineisen and Gielessen 

1936)^ a property u s u a l l y termed the Umkehr or commutation e f f e c t ; 

t h i s behaviour i s p a r t i c u l a r l y marked f o r the thermomagnetic voltage 

mesisured along the y-axis when a temperature gradient i s developed 

along t h a t d i r e c t i o n and the magnetic f i e l d d i r e c t e d e i t h e r along 

the +x or -x axis (Smith e t a l . 1964,, Gitsu e t a l . 197O and Michenaud 

et a l . 197Q); a s i g n r e v e r s a l occurs, when the magnetic f i e l d i s 

made s u f f i c i e n t l y l a r g e ; s t r i k i n g p o l a r diagrams o f the thermoelectric 

voltage have been obtained, when the magnetic f i e l d i s taken around 

the xz-plane. 

A treatment of the thermomagnetic data on a s i m i l a r basis 

as t h a t used f o r the galvanomagnetic e f f e c t s has been considered 

necessary. This should answer the open questions as t o whether the 

i n t e r e s t i n g features observed i n the thermomagnetic power can be 

accounted f o r from the r e s i i l t s o f both the phenomenological theory 

^ d the band theory. One of the o b j e c t i v e s i n t h i s work has been 
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t o develop such a formalism by which the r e s u l t s of the thermomagnetic 

data and the p r e d i c t i o n s o f the phenomenological theory and the estab

l i s h e d Fermi surface model could be r e l a t e d and compared. The basic 

reason f o r t h i s p a r t o f the study has been to l a y a f i r m foundation 

on which t o base a q u a n t i t a t i v e i n v e s t i g a t i o n of the e f f e c t of quenched-

i n defects on the t r ^ p o r t p r o p e r t i e s . 

A l l c r y s t a l l i n e s t r u c t u r e s contain p o i n t defects; i n f a c t , a 

r e a l c r y s t a l without p o i n t defects can not be i n thermodynamic e q u i l i -

bri\im a t temperatures above absolute zero. The presence of p o i n t 

defects f o l l o w s as a c o n d i t i o n of the thermodynamical e q u i l i b r i u m 

and the e q u i l i b r i i u n concentration o f p o i n t defects a t a temperature 

T i s given by (Damatsh and Dienes 1963) 

I = e-^/^^ (1-1) 

where E i s the defect formation energy and k i s Boltmann's constant. 

Equation ( I - I ) shows t h a t the defect concentration i s zero a t 0°K 

and increases as the temperature r i s e s , Thus t h i s equation determines 

the o p t i m a l c o n d i t i o n corresponding t o maximum defect concentration 

a t p r e m e l t i n g temperatxires. An excess of f r o z e n - i n defects can be 

produced a t a low temperature T^ by quenching from a high temperature 

T^ a t which the e q u i l i b r i u m concentration of p o i n t defects i s high. 

The excess defect concentration created through quenching can then 

be used i n the i n v e s t i g a t i o n o f changes induced by p o i n t defects or 

the cheuracteristics o f defects themselves. 



Quenching techniques have been ex t e n s i v e l y employed t o i n v e s t 

i g a t e defect induced changes i n p h y s i c a l p r o p e r t i e s of c r y s t a l l i n e 

s o l i d s . The imperfections introduced i n f l u e n c e most s t r o n g l y those 

p r o p e r t i e s t h a t are s t r u c t u r e s e n s i t i v e , such as density and volume. 

Ea r l y s t u d i e s of p o i n t defects were cairried out on i o n i c c r y s t a l s 

and many p r o p e r t i e s o f colour centres were explained. I n t u r n an 

i n t e r p r e t a t i o n of more complex behaviour of t e c h n i c a l l y important 

substances, such as photographic emulsion and luminescent materials 

r e s u l t e d . S i m i l a r t h e o r e t i c a l and experimental techniques have shown 

t h a t p o i n t defects p l a y an important r o l e i n semiconductors eind i n 

aspects o f semiconductor technology. Point defects and the d i s t o r t e d 

regions around them s c a t t e r the electrons and thus manifest themselves 

i n changes i n the e l e c t r i c a l r e s i s t i v i t y ; by behaving ais acceptors 

and donars they can also change the c a r r i e r d e n s i t i e s . 

Although quenching techniques have been used t o study exten

s i v e l y the behavoiur of f r o z e n - i n defects i n metals, no previous work 

on the group V seraimetals appears t o have been c a r r i e d out. Nor sire 

there d e t a i l e d measurements of the m a g n e t o r e s i s t i v i t y and thermomag

n e t i c power measurements i n metals, although much of the knowledge 

of the behaviour of p o i i t defects has accrued from the d i r e c t approach 

o f r e s i s t i v i t y meajsurementse (see Burton eind Lazarus 1970, f o r a recent 

study and e a r l i e r r e f e r e n c e s ) . I n pure metals the r e s i s t i v i t y changes 

produced by quenching are small. No measurable v a r i a t i o n s are found 

i n the Fermi l e v e l or the Fermi surface or i n the c a r r i e r density. 

Bismuth lends i t s e l f w e l l t o an i n v e s t i g a t i o n of the e f f e c t s 

o f quenched-in defects on the c a r r i e r t r a n s p o r t p r o p e r t i e s . Pronounced 
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-effects might w e l l be a n t i c i p a t e d because the c a r r i e r density i n t h i s 
17 3 

m a t e r i a l i s low (each band contains only k,k x ^0 carr±ers/cnr at 

77°K) and the band overlap i s small ( O.O36 eV). A marked s h i f t i n 

the Fermi l e v e l and i n the c a r r i e r density should ensue from the 

c r e a t i o n o f defects which e i t h e r donate or accept c a r r i e r s . C a r r i e r 

e f f e c t i v e masses are very smsill and the r e l a x a t i o n times long; c a r r i e r 

m o b i l i t i e s are high; quenched-in defects would be expected t o increaise 

the c a r r i e r s c a t t e r i n g and lead t o an a l t e r a t i o n i n the c a r r i e r mobil

i t i e s . Because o f the d i r e c t dependence of most of the tensor comp

onents on the c a r r i e r d e n s i t y and m o b i l i t i e s , measurements of the 

galvanoraagnetic and thermomagnetic e f f e c t s on quenched samples should 

provide q u a n t i t a t i v e i n f o r m a t i o n on the e f f e c t s o f quenched-in defects 

on these parameters. 
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CHAPTER I I 

THE CRYSTAL STRUCTURE AND THE FERMI SURFACE OF BISMUTH 
I INTRODUCTION 

The group - V semimetals bismuth, antimony and arsenic c r y s t 

a l l i s e i n the rhombohedral, A7 structure (space group 3IQ)» which has 

tvo atoms i n each unit c e l l . Their e l e c t r i c a l properties reveal 

c e r t a i n c h a r a c t e r i s t i c s t y p i c a l of metals and others l i k e those of 

semiconductors. For example on the one hand the occurrence of r e l a 

t i v e l y high e l e c t r i c a l conductivity with a positive temperature 

c o e f f i c i e n t , at a l l temperatures resembles metallic behaviour* On 

the other hand c a r r i e r properties, such as density, energy, effect

ive mass and mobility, and t h e i r s e n s i t i v i t i e s to impurities and 

defects are s i m i l a r to those observed i n semiconductors* Because 

there are two atoms i n the unit c e l l , each contributing fi v e valence 

electrons, there are j u s t s u f f i c i e n t electrons to be accommodated by 

the f i r s t f i v e B r i l l o u i n zones* Thus^ depending on the width of the 

gap iMi^^lden conduction and valence bands either semiconducting or 

semimetallic behaviour could r e s u l t * However i n the A7 structure 

semimetallic behaviour i s the rule because there i s a small energy 

overlap between the f i f t h and s i x t h energy bands; t h i s creates equal 

numbers of holes and electrons i n small, nearly e l l i p s o i d a l pockets* 

Cohon, Fal i c o v and Golin (196^) have shown that most of the qualitat

ive features of the energy bands and semimetedlic characters r e s u l t 

d i r e c t l y from the rhombohedral A7 c r y s t a l structure i t s e l f * Therefore 
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i t i s worthwhile examining t h i s p a r t i c u l a r c r y s t a l structure i n more 

d e t a i l , 

I I THE A7 CRYSTAL STRUCTURE 

The space l a t t i c e adopted by bismuth, antimony and arsenic i s 

i n the rhombohedral system, -''•t can be obtained from the cubic l a t t i c e 

by small displacements of the atoms. This i s best i l l u s t r a t e d by 

reference to the NaCl structure, which i s made up of two independent 

face centred cubic l a t t i c e s , one of which contains the cation and the 

other the anion. The A7 structure can be generated by the application 

of two independent distortions, figtire (2-1): 

1 - The s u b l a t t i c e s formed by Na and CI atoms* which i n the 

case of group - V semiraetals are occupied by i d e n t i c a l ions, are 

displaced alon^g a body diagonal with respect to one another. 

2 - A p u l l along the body diagonals to transform each sub-

l a t t i c e into a face-centred rhombohedron. 

The r e s u l t i n g face centred rhombohedral l a t t i c e contains four primitive 

rhombohedral c e l l s , each with two atoms. The primitive rhombohedral 

tra n s l a t i o n vectors can also be generated i n the same way from the 

face-centred cubic structure by including the effect of the distortion. 

They are 

= a^i£ , 1, 1 } 

^2 = a ^ [ 1, 6 , 1] (2-1) 

^ = a ^ [ l , 1» € } 
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where a i s the half of the face-centred cubic l a t t i c e parameter and o 
i s r e l a t e d to the primitive rhombohedral angle « by 

cosoC = (1 + 2 € ) / (2 + £^) (2-2) 

The amoimt of distortion d i f f e r s for each of the elements 

and can be indicated by the primitive rhombohedral angle a and an 

in t e r n a l displacement parameter u (= ̂ ) w h e r e d i s the length of the 

rhoabohedral body diagonal and 2Z i s the smallest distance between 

the two atoms along t h i s diagonal directiour These parameters,, i n 

comparison to the cubic case, for the three isomorphous elements 

bismuth, antimony and arsenic are: 

Element 

B i 57° 19' 0.237 

Sb 57° 14' G.234 

As 54° 10' 0.226 

Cubic 60° 0.250 

The d i s t o r t i o n of bismuth and antimony from a cubic structure i s 

small: some directions, which would be symmetry axes i n a cubic 

stru c t i i r e , s t i l l produce back r e f l e c t i o n Laue X-ray pictures which 

look as i f the symmetry i s preserved. Such directions are usually 

referred to by the prefix "pseudo". An orthogonal set of crystalog-

rphic coordinates i s usually defined as follows. The binary (x) 

a x i s i s normal to any one of the three mirror planes, mutually 

oriented at 120°, which i n t e r s e c t s i n a threefold inversion (si) a x i s . 
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The b i s e c t r i x (y) axis i s i n the mirror plane and completes the r i g h t 

handed orthogonal s e t . However for the A? structure t h i s choice of 

the coordinate system i s not complete; i t introduces ambigiuties i n 

defining the sign of some tensor components and hence the sense of 
ti - »» .. 

e l l i p s o i d a l angle of t i l t (see Oktu 19o7, Oktu and Saunders 19o7» 

Brown et a l 19^)* The usual convention for definition of a right 

handed coordinate system i s based on the geometry of the basis vectors 

of the primitive rhombohedral unit c e l l : the positive 2<«axis i s 

taken along the body diagonal of the primitive rhombohedral unit c e l l 

defined by the l a t t i c e t r anslation vectors a^, a.^ and a^ of equation 

(2 - 1 ) . The y-axis i s then defined by projecting one of the a^ on to 

the trigonal plane: the positive y direction i s taken outward from 

the originf.O of the a^(.(see figure 2-2). A positive x-axis completes 

the right handed set* 

I I I THE BEILLOUIN ZONE 

The B r i U o u i n zone can be obtained by geometrical construction 

i n the reciprocal l a t t i c e . The reciprocal l a t t i c e vectors are defined 

i n terms of the r e a l space vectors by 

a. A ^ 

g. = 2IT - J ^ (2-5) 

When the primitive translation vectors a^^, are substituted into 

equation (2-3), we have for the reciprocal l a t t i c e vectors: 

{ - (1 + t ) , 1, 1 } 

= g o { 1 . - (1 + € ) , 1 } (2-if) 



-10-

where = (1- e ) /a^( £^ - 3€ + 2), The reciprocal l a t t i c e for the 

A7 structure i s also a distortion of the reciprocal l a t t i c e for the 

face centred cubic structure; the cube, and ^ence the B r i l l o u i n zone 

i s compressed along one of the body diagonals. Figure (2-3) shows 

the f i r s t B r i l l o u i n zone constructed inside t h i s s l i g h t l y distorted 

cubic structure* The compression i s along the trigonal (TT) direction. 

The hexagonal faces containing T are s t i l l regular hexagons bwt the 

other s i x hexagonal faces are i r r e g u l a r and the s i x square faces are 

now rectangles. The symmetry elements of the B r i l l o u i n zone are the 

same as those of c r y s t a l l a t t i c e . Therefore the ambiguity of the 

d e f i n i t i o n of a idght handed a x i a l set i n r e a l space i s carried through 

into reciprocal space. I n the mirror plane PTLX (see figure (2-lf) ), 
rotations from the trigonal axle P T by equal amounts i n opposite 

directions are not equivalent. The sense of rotation may be such as 

to t i p the trigonal axis PT towards either the L points or the X 

points. Hence the d i r e c t i o n a l dependence of parameters i n t h i s plane 

must be described with reference to the geometry of the beusis vectors 

of the primitive rhombohedral unit c e l l of the Bravais l a t t i c e . The 

conveasion, defining a positive angle i n the mirror plane, corresponds 

to the t i l t i n g of +y through the f i r s t quadrant toward +z (see figure 

(2-^) ) . Thus the e l l i p s o i d i n t h i s figure has i t s major axes t i l t e d 

by a small positive angle from the b i s e c t r i x direction. These points 

w i l l be used at appropriate places throughout t h i s thesis. 

IV THE FERMI SURFACE OF BISMUTH 

The Pauli exclusion principle determines the way i n which the 

electrons occupy the energy states available to them; the lowest energy 
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States are f i l l e d f i r s t and then the states i n order of increasing 

energy. At the absolute zero of temperature the boundary between 

the occupied and unoccupied states i s sharp; t h i s boundary, which 

occurs a t the constant energy surface, at the so-called Fermi energy, 

i s known as the Fermi surface. For the case of a simple free electron 

gELS, the surfaces of constant energy are spheres i n k-space; and so 

the Fermi surface i s a sphere. Electrons well inside the Fermi 

surface cannot be excited thermally or by e l e c t r i c or magnetic f i e l d s 

becasiise the states within the appropriate energy range are already 

occupied. Only the electrons near the Fermi starface can be excited 

and hence electron treinsport i s mainly due to these electrons. 

This approach of using weakly excited states of c a r r i e r s located i n 

the v i c i n i t y of the Fermi surface i s preferred i n band theory because 

of the d i f f i c u l t i e s i n describing the interactions of the quasi part

i c l e s i n terms of an average f i e l d . However i n a r e a l s o l i d neither 

t h i s i d e a l i z e d spherical Fermi surface nor the simple excitation 

model can be a true description; but the main ideas leading to an 

understanding of e l e c t r i c a l conduction are e s s e n t i a l l y v a l i d and an 

appropriate Fermi surface topology developed along these l i n e s lays 

the foundation for the study of transport properties. 

*̂  Most of the experimental and theoreticed techniques a v a i l 

able for band structure determinations have been employed i n the 

Fermi surface studies of bismuth, i n fa c t , many of them were f i r s t 

discovered i n t h i s semimetal. The de Haas - van Alphen effect 

(Shoenberg 1939, Brandt 196O, Bhargava I967) Azbel' - Kaner cyclo

tron resonance experiment (Aubrey et a l 195'7,, Gait et a l 1959), 
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galvanomagnetic ef f e c t s (Abeles and Meiboom 1956, Z i t t e r 1962, 

Hartman 1969), anamalous shin effect (Aubrey 1961), infrared measure
ments (Boyl et a l 196O) and ultrasonic attenuation (Giura et a l I967) 
to name some have a l l been investigated thoroughly. As a r e s u l t the 

main features of bismuth ' Fermi surface are established (Figure 2-5)» 

The electron Fermi surface consists of three geometrically eqtiivalent, 

extremely prolate e l l i p s o i d s , with each e l l i p s o i d centred about an 

energy minimum at L points on the s i x irregular hexagonal faces of 

the B r i l l o u i n zone. These energy minima l i e i n the three r e f l e c t i o n 

planes. Each electron e l l i p s o i d has one p r i n c i p a l axis coincident 

with an a x i s of two fold symmetry - there are three of these, each 

obtainable from the others by a rotation of + 120° about the trigonal 

axis - while the other e l l i p s o i d p r i n c i p a l axes l i e i n the mirror 

plane. The energy dispersion r e l a t i o n , i n momentum space i s then 

26 = i a i = iOi^^P^^ + «22P2^ + 0<3^Pj2 + 2 0(2^P2P3) (2-5) 

where 1, 2 and 3 r e f e r to the binary, b i s e c t r i x and trigonal axes 

respectively. The OL^^ are the components of the inverse electron 

e f f e c t i v e mass tensor* Geometric equivalence of the electron e l l i p 

soids i s obtained by the application of + 120° rotations around the 

trigoneil as^is. The Fermi surface for the holes consists of a single 

e l l i p s o i d of rotation about the trigonal axis probably s i t e d at T, 

the centre of the two regular hexagonal faces of the B r i l l o u i n zone. 

The energy dispersion r e l a t i o n i n momentum space corresponding to t h i s 

pocket of holes i s 

2€ = i = P,2^ |3,, p / - ^ (2-6) 
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ft mass where the are the components of the inverse hole effective tensor. 

The inverse effective mass tensors 01 and p are related to 

the mobility tensors j l and v for electrons and holes by 

A 0 1 = )i / e t = 

«11 0 0 

0 ^22 « 2 3 

0 cx 
23 « 5 3 j 

(2-7) 

and 

( 3 = V / e r = 

'11 

0 

p . . 0 11 

0 e>. 
33 

(2-8) 

The e l l i p s o i d a l model described by equations (2-5) and (2-6), 

accounts quantitatively for most of the eaperimental data obtained. 

But Lax et a l (I960) have suggested that the energy dispersion relation 
significantly 

of the conduction band deviates'from that of the parabolic = '"2J.p 

iio^da-" model and have used a nonparabolic energy rela t i o n as 

€ ( 1 + 
. — A — 
) = p O p (2-9) 

g 

where € i s a small energy gap between the valence and conduction 

bands. The experimental evidence indicates that the deviation of 

the electron Fermi surface from the e l l i p s o i d a l model i s s l i g h t 

(IQxaikin and Edelinan I965, Bhargava 196*; Brandt 1963 and KorolyuH 1966). 
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The Fermi surface parameters for electrons and holes measured by 

different experimental techniques are l i s t e d i n table (2-1). 

The appropriate relationships for the galvanomagnetic and 

thermomagnetic ef f e c t s based on the e l l i p s o i d a l Fermi surface model 

w i l l now be developed. 
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F i g u r e (2-1) : The r e l a t i o n s h i p between the cubic l a t t i c e 

• and the rhombohedral u n i t c e l l of the A7 s t r u c t u r e . 

Figure'.(2-2) The p r i m i t i v e rhombohedral c e l l s i t e d i n s i d e the 

l a r g e f a c e - c e n t r e d rhombohedron. The p r i m i t i v e 

t r a n s l a t i o n v e c t o r s are denoted by a^ ( i = 1,2,3), 

y a x i s i s chosen by p r o j e c t i n g one of the on to 

( I I I ) plane and the p o s i t i v e d i r e c t i o n p o i n t s out

wards from the o r i g i n 0 of the a^^. 



F i g u r e (2-3) : The B r i l l o u i n zone of the s l i g h t l y d i s t o r t e d 

face centred cubic l a t t i c e of Bismuth. 



F i g u r e ( 2 - ^ ) A b i n a r y plane of the bismuth Brillo'xi.n zone 

shov/ing the c r o s s s e c t i o n of the e l e c t r o n 

Fermi s u r f a c e i n the neighbourhood of one L 

p o i n t . P o s i t i v e t i l t angle i s i n d i c a t e d . 

F i g u r e (2-5) : Gross s e c t i o n of e l e c t r o n and hole e l l i p s o i d c 

i n the t r i g o n a l plane» 
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CHAPTER I I I 

THEORY OF GALVANOMAGNETIC AND THERMOMAGNETIC EFFECT IN BISMUTH 

I INTRODUCTION 

The dnsager formulation of the thennodjrnamics of i r r e v e r s i b l e 

processes has resulted i n a rigorous phenomenological framework for 

defining the magnetotransport co e f f i c i e n t s . I n an ainisotropic medium, 

the k i n e t i c c o e f f i c i e n t s of thermog^vanomagnetic effects are tensors 

defined by the k i n e t i c equations: 

J = a (B) E* + M(B) VT 

q = N (B) E* + L(B) V T 

(3-1) 

which express the e l e c t r i c and thermal current densities as linesir 

combinations of the effective electromotive force E (which includes 

the thermodynamic force associated with the chemical potential of 

the electronic csirriers and plays the role of measurable e l e c t r i c 

f i e l d ) and the temperature gradient V.T. The kine t i c coefficients 

SO defined are: d (B) the e l e c t r i c a l conductivity tensor, M(B) the 

thermoelectric tensor, N(B) the P e l t i e r tensor and L(B) the thermal 

conductivity tensor. 

An analytic calculation of the k i n e t i c coefficients i n 

equation (3-1) based on microscopic theory requires drastic 

s p e c i a l i z a t i o n s and simplifying assumptions. One useful model i s 

due to Sondheimer and Wilson (Wilson 1959)f which assumes conduction 
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by independent quadratic bands of c a r r i e r s of either type each 

achieving equilibrium by a relaxation process and e^ch contributing 

additively to the t o t a l conductivity. However, adthough the simple 

model of spherical energy surfaces employed i s useful for some cubic 

materials, i t f a i l s to provide the anisotropy of gsdvanomagnetic 

e f f e c t s . Some success i n explaining the anisotropic galvanomagnetic 

eff e c t s i n bismuth r e s u l t s from the single valley ellipsoidsil model 

(Jones 1936). In pa r t i c u l a r , the Istrge transverse maignetoresistance 

can be explained, but s t i l l no longitudinal magnetoresistance i s 

predicted. A theory based on a model of several energy extrema at 

equivalent points i n k - space and e l l i p s o i d a l energy surfaces 

centred on these points has been developed by Abeles and Meiboom 

(195^) and Herring (1955). This 'many-valley' model does predict 

the anisotropy associated with galvanomagnetic effects. On the 

basis of t h i s model, quantitative analyses of galvanomagnetic effects 

i n bismuth (Abeles and Meiboom 1956), antimony (Freedman and 

Jiiretschke 1961), Oktu and Saunders 1967) and arsenic (Jeavons and 

Saunders 1969) have been successfully carried out. 

Expressions describing galvanomagnetic and thermomagnetic 

ef f e c t s for such a model w i l l now be derived by adopting the procedure 

of Mackeyand Sybert (I969) to include the effect of therraeil gradients, 

I I DERIVATION OF GALVANOMAGNETIC AND THERMOMAGNETIC TENSORS 

FOR ARBITRARY MAGNETIC FIELDS 

The Boltzraan equation i n the relaxation time formalism for 

the c a r r i e r s takes the form: 
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. v.v + V pf.[-eE - evAB\ + f^/x - 0 (3-2) 

where f^ i s the perturbation of the distribution function from the 

equilibrium value fo. The Boltzmann equation can be solved (Wilson 

1959) by putting: 

= - (p.C) — (3-3) 

where p i s the momentum and C i s a function of the energy £ , For 

e l l i p s o i d a l Fermi surfaces the energy can be written as 

2e = p a . p = p m"̂  p (3-^) 

i n the p r i n c i p a l coordinate system of a par t i c u l a r e l l i p s o i d . By use 

of the equations (3-3) and (3-'*) the transport equation can be written 

as 

I V ( ^ ) + (B ^ c ) - ; f c = 0 (3-5) 

where i s the thermodynamic potential of the c a r r i e r s . Defining 

P as 

P = r + ^ ( £ - f ) V ̂ T 

—* — 1 ~ 
and E = E + e ^ r ' ' 

(3-6) 

equation (3-5) becomes 

- P + (B - C) - pT^ C = 0 (3-7) 

Here a/e % i s replaced by the inverse mobility tensor ja~ i n the 

p r i n c i p l e axis system of an e l l i p s o i d . I n tensor from 
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? = 

^'l ° 0 

0 

0 0 
« 

(3-8) 

Equation (3-7) has a solution for C of the form 

where 

and B = 

G = G^ P 

G = B) -

0 \ 
0 

0 

(3-9) 

(3-10) 

O i l ) 

The positive and negative signs apply for holes and electrons 

respectively. 

The perturbation of the distribution function from equilibrium 

now can be found by substituting equation (3-9) into equation (3-3)» 

when 

(3-12) 

Thus the cuffent density given by 

J = - 2eh' d^P 

becomes 

J = 2eh-Vv P . d5 p 

(3-13) 

(3-1't) 

or using equation (3-6) 
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J = 2e h^j ? d ¥ - 2 ^ d^ p (3-15) 

+ 2e h^ji ^ - f ) V P . G^ V^T | ^ d^p 

we now seek a form of t h i s equation which can be compared d i r e c t l y 

with the phenomenological equation for the current density i n equation 

(3-1). This requires expression of J i n a l i n e a r combination of B 

and V T. To f a c i l i t a t e t h i s a transformation r 

i = ao^ a"^ W (3-16) 

V = ao^ a^ W 

i s introduced Fuchser, Hackey £ U i d Sybert (1970), which transforms the 

integration i n equation (3-15) from e l l i p s o i d a l to spherical surfaces 

where the energy i s expressed by 

2e = a^ W . W (3-17) 

An appropriate change of variables now permits the integration over 

sp h e r i c a l energy surfaces; terms containing multiples of Ŵ Ŵ  for 

i ^ j vanish: E and V^T are independent of energy and can be carried 

outside the in t e g r a l i n vector from. The s i m i l a r i t y to the phenomen

ological equations i s hence achieved by 

(5-18) 

The f i r s t part of equation (3-18) contains only even powers of 
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electronic charge so i t i s additive for different types of c a r r i e r s . . 

But i n the second peirt odd powers are obtained and i t i s necessary to 

distinguish the electron contribution from that of the holes. This i s 

done by introducing Z(= +l) and suffixing ( < - -J ) . The comparison 

of equation (3-l8) with the phenomenological equation (3-1) gives 

5(B) = e . ^^^v,^^^^ ̂  .^/hi:^ i i ) - - " I f 

(3-19) 

k(B) = f l ^ > h - 5 ^kr.^^^^^ ; ( e - i tf^ f f de 

E 3 q ) l i c i t evaluation of cr(B) and M(B) requires knowledge of the energy 

dependence of the relaxation time x • Integration at the Fermi l e v e l 

avoids the complications which a r i s e from the energy dependence of t 

and we obtain for Fermi - Dirac s t a t i s t i c s . 

• (3-20) 

and M(I) = ~ 
ze 

(B) = en^^j^ (;i + B) 

^V2<^e.h> (B) (3-21) 

where F denotes the Fermi - Dirac integrals, and the p a r t i a l reduced 

Fermi energies for electrons and holes are /| g = ^^Jt ' ^ e 

C , are defined as ( c - e ) and ( e - C ) respectively, where e ̂  i s 
H C V c 

the energy of the bottom edge of the conduction band and that of the 

top edge of the valence band. Thus band overlap - A E i s measured from 

the top of the valence band to the bottom of the conduction band 

(Saunders and Oktu 1968). 

Substituting equations (3-l6) and (3-17) into (3-1^) we get 

for the e l e c t r i c current density for a single va l l e y 
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J = 5 (B)E* + -ze a(B) V" T (>-22) r 

The conductivity expression i n i t s compact fonn (5-20) has been 

obtained by Mackay and Sybert (1969) and Aubrey (1971). Furthermore, 

Aubrey, starting from (3-20) has obtained the tensor components of 

0 (B) for ellipsoidal Fermi surface i n a form applicable to arsenic, 

antimony and bismuth. 

We now turn to a description of 0 (B) for the Fermi surface 

of bismuth (see sectn. I I , I V ) i n particular. 

I l l TOTAL CONDUCTIVXTY EXPRESSIONS FOR BISMUTH 

To calculate the t o t a l conductivity of a group of ellipsoids, 
one may assume that the conductivity of each ellipsoid can be calcu
lated separately, the t o t a l conductivity i s then given by summing 
the conductivities of the individual ellipsoids i n a common reference 
system. Because the carrier concentrations i n each ellipsoid i n a 
given band are equal and B i s already expressed i n the crystallo-
graphic coordinate system, the only quantity i n equation (3-20) 

related to an individual ellipsoid i s the mobility tensor ;i. Hence 
i n the crystallographic coordinate system the partial conductivities 
are obtaln:ed when only the mobility tensors are traiisformed into 
this system. Let Rĵ  be a rotation matrix relating the k*^ e l l i p 
soidal principal axis system to the crystallographic axes; then 
the t o t a l conductivity takes the fonn 

0 *(B) = e n^ ^ (R^^ \ - B)'^ 
^ (3-23) 

+ e (v ' + B) ' 
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The matrix for each ellipsoid must now be determined i n the context 

of the known Fermi surface topology. 

For the valence band this i s t r i v i a l because the axis of 
revolution of the hole mobility ellipsoid coincides with $he crystall-
ographic z-axia. Ej^ i s a xxnit matrix and the mobility tensor i s 

V, 0 

0 V. (3-24) 

A transformation 

E ( e) = 0 cose sin( 

0 - sine cos ( 

(3-25) 

around the two fold axis (x-axis) provides the mobilities of one of 
the electron ellipsoids i n the crystallographic coordinate system: 

fi?- = E ' ^ e ) ; i E^(e ) 

0 0 

° ^2 M (3-26) 

0 Mi, ) ^ 

The components i n (3-26) are related to the mobility components i n 

the pilnciple axis system of equation (3-8) by 
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= 1̂ 

• 2 • 2 
=s yi^ cos e + u, sin 

or 

^2 

= - ; i j ) tan 2 

% , 2 
sin i + cos 

(3-27) 

The angle of t i l t i n terms of the mobilities i n crystallographic 

coordinate system i s 

= i tan" -1 
^2->^ 

(3-28) 

Once the position of the f i r s t ellipsoid has been fixed with respect 

to the crystallographic axes, the mobility tensors for the other two 

electron ellipsoids can be expressed i n the same reference system by 

applying a further transformation around the tzlgonal axis; the 

transformation matrix 

E ( i ̂ ) = 
- 1 * 2 0 

2 0 (3-29) 

0 0 1 

brings the other two into the position of f i r s t one and yields the 

mobility tensors.. 

^ I I . I I I ^ 2 j ) ^ I g ( ^ 2 j ^ j (3-30) 
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By substituting equations (3-26), (3-29) and (3-30) into (3-23)i the -

to t a l conductivity tensor i s obtsilned. The to t a l conductivity 

expression i s rather ciunbersome, so the partial conductivity contr

ibutions for the electron ellipsoids are reproduced here from Aubrey 

(1971). 

0*̂ ^ = (;â  + d B^) .g^ 

(7^2 = + d B2) .gl 

0^3 = (̂ 3̂ + d Bp .gl 

^12 = [* >'l^^^2 - >*2̂ 3̂  * ^ ] ^ '̂̂ ^^ 

^ 3 = [ ^ 4 - ? / l * ^ V 3 

^ 1 = [ - ^ 1 ( ^ 2 - ^ 3 ^ * ' * V l ] 

g l = ne [ l . ̂  B̂ 2 . H/>^B/ - 2i^^B^B^ . y.^B^) ] 

and 

O^^- l " = 4(5;., * . M B / ) g l ^ ' " ! (3-32) 

I I I 

I I I 

11,111 
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Here d represents the determinant of equation Or^Q and the 

remaining components can be found from the Onsager relation 

0 (B) = ^ .(-B)* The partial hole contribution i s readily 

obtained from equation (3-3?l) by replacing B by -B and using the 

mobility components ^ 2 ' ̂ 3 ' ̂ 4 " ^ instead of the corresp

onding electron parameters. 

The conductivity expressions i n equation (3-51) and (3-32̂ ) 

relate to the classical range of magnetic fields, quantum effects 

arising at higher fields have not been taken into account. 

IV THE THEBMOMAGNETIC POWEE TENSOE 

To obtain the thermomagnetic power tensor i n a useful form, 

i t i s convenient to write pa r t i a l electron and hole Pj^ thermo

electric powers as 

k 
e 

(3-33) 

and - n 

Then the current density (3-22) i s 

J = o *(B) E* + (P 5 ®(B) + P̂  o "(B) ) V T (3-3if) 
e n r 

where o (B) , a (B) and a (B) represent the tot a l and partial 
electron and hole conductivities respectively. Here the physical 

_ « — 

conditions imply the control of E and V ̂T as independent variables, 

a situation not readily attained i n the laboratory: the practical 
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experimental arrangement for measuring Isothermal coefficients requires 

control of the current density J and the temperatvire gradient ^^T. 

The desired form can be found by mxiltiplying equation (3-3^) by 

o*(B) (or p (B) ), when 

E» = y ^ d ) J - jO*(B) [p^a ®(B) + Pj^ 5^(1) J V̂ T 3 (3-35) 

and then setting the external current J equal to gero. 

E = - p*(B) [P^5®(B)+Pj^S^B) ] V^T]' (>36) 

This equation defines the thermomagnetlc power tensor 01 (B) by 

S (B)= - p*(B) [P^ 0 ®(B) + HB) ] (3-37) 

or i n component form 

(3-37a) 

When the magnetic f i e l d i s zero, this expression reduces to the 

stsmdard form for the thermoelectric power of a two-band conductor 

P o + 0 

^ + a 

V THE LOW FIELD MAGNETORESISTIVITY EXPRESSIONS FOR BISMUTH 

Much of the work presented i n this thesis concerns meeisure-
ments eind analysis of the low f i e l d magnetoreslstivity tensor and we 
now turn to obtain quantitative expressions for this particular case. 
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Although these expressions have been obtained elsewhere (Zitter 1962)-, 
they have not been reached as the limiting case of the general forms 
presented i n the foregoing sections of this chapter. For completion, 
this procedure w i l l now be carried through. But before this can be 
done, i t i s necessary to develop the low f i e l d tensor components by 
the phenomenologicail scheme used by Fumi ( I 9 5 2 ) . 

A - PHENOMENOLOGICAL DEBIVATION OF THE LOW FIELD TENSOE 

COMPONENTS 

The phenomenological theory of low f i e l d galvanomagnetic 

effects as described by Okada (1955) and Juretsckhe (1955) assumes 

Ohm's law to hold for the conductivity tensor '^(B) or i t s reciprocal 

the r e s i s t i v i t y tensor p(B) i n the presence of a magnetic f i e l d . In 

an anisotropic media, these relations can be written 

= (B) Ê  ( i - 1 , 2,3) (3-38) 

or = P i j (5) (3-39) 

where summation i s implied on repeated indices and Ê  and are the 
components of the electric f i e l d and current density i n Cartesian 
coordinates. The effect of magnetic f i e l d i s included i n equations 
(3-38) and (3-39) by making the conductivity and resi s t i v i t y tensors 
general functions of magnetic f i e l d . 

Assuming that a(B) and p (B) w i l l converge for small values 
of B, that i s that ^.B i s much less then mxity, a series expansion 
i n powers of the magnetic f i e l d components i s possible. 
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This amounts to a Taylor series expansion with the coefficients i n the 

general form 

(N) 
B ^ Q N = 0,1,2 ... (3-42) 

The coefficients separate into various groups, each connecting the 
same power of magnetic f i e l d . Experimental studies normally determine 

>N the tensor coefficients P. . ^ ^ up to N=2. For greater values 
l J , K ^ K 2 , , , k j j 

of N, the number of terms Involved makes the task prohibitively d i f f i -

cvilt. The terms ^ / ' ^ i j k ^ ^ i j k k containing up to 

N=2 are often referred to as electrical, Hall and magneto-resistivity 
tensors. Hence the low f i e l d gsdvanomagnetic effects i n bismuth up to 
the B̂  terms i n magnetic f i e l d can be detailed through the determin
ation of the components of these tensors. This i s achieved by the 
restrictions Imposed from the Oiisager reciprocity relation and also 
the invarlance of the tensor components under the point group symmetry 
operations of the crystal (Juretschke 1955). 

The point group 3m isomorphic to bismuth, exhibits a 

centre of inversion and as a result only even rank polar smd odd rank 

axial tensors do not vanish automatically. This, together with the 
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application of the Gnsager relation, P^^(^^ = ^ i ^ " ^ ^ ' 
r e s i s t i v i t y p(B) leads to the following types of tensors with the 
symmetry specifications shown: 

p^?^ = / ^ ^ ( s e c o n d rank symmetric polar tensor) 

p^V. , =-P^« t (Third rank axial tensor) (3-'*3) 

(2) (2) 
P iO'fk^k^ = p permutations of k) (Fourth rank symmetric 

polar tensor) 

I f the symmetric and antisymmetric parts are defined as 

S i j - P i j * P ij,k^k2 W 
( 3 - ^ ) 

^ i d = \ 

equation (3-39) can be written as 

E i = S. . J - + a . .J n (3-^5) 

which simply means that the re s i s t i v i t y tensor can be written as 
the sum of a symmetric and an antisymmetric tensors. Equation 
(5-^5) may further be expressed i n terms of an axied vector* O 

showing that the Joule heat Ê  J i s determined only by the symmetric 
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part of the r e s i s t i v i t y tensor, and also that a magnetic f i e l d perp- -
endicular to the current direction gives rise to an electric f i e l d 
i n a direction perpendicular to i t s e l f and to the current. This 
phenomenon, known as the Hall effect, i s due to the antisymmetric 

part of the r e s i s t i v i t y tensor and i s given here as the product of 

the tensor cfl^ and the f i r s t order term i n B, • The tensor 
(1) 

P . . . i s called the Hall tensor, which i s equivalent to a second 
rank antisymmetric tensor and an axial vector, that i s , i t i s the 
same as the product of two axial vectors. The magnetoresistivity 
tensor P^^l . v. relates a symmetric tensor of second rank S 
(equation (3-^) ) with vector products like B. B. ; i t i s symmetric 

^1 ^2 
with respect to the interchange of suffixes i and j and k̂  and k2 

and may be regarded as relating two symmetric tensors each of rank 

two. 
The non-zero components for the tensors appearing i n i3-^3) 

can be pbtained by group character analysis. The number of indep
endent con^onents are given by, the number of times the to t a l symm
etric representation occurs i n the tensor representation T^(E) of 
the group (Bhagavantam 1966). This i s carried through by the 
formula 

°i " g !• V ^^^^ "^i^^^ ^̂ '̂'̂  

where g i s the order of the group, h^ i s the order of the f^^ 

class i n the group, y^(E) ( i n this case) i s the character of the 
t o t a l symmetric irreducible representations. The number of indep
endent components for a tensor representation of a group i s invarient 
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with respect to the choice of reference frames. So, without loss 

of generality, one can choose Cartesian orthogonal frames. The number 

of non-zero components i s dictated by this choice. 

The Cartesism orthogonal frames employed here are V/C^ and 

xZ/Ĉ  with respect to the crystallographic axes. 

The similarity i n transfcitation properties of the tensor 

components and the coordinate products i n Cartesian orthogonal frames, 

allows the replacement of the tensor components by coordinate products 

of corresponding order and intrinsic symmetry (Juretschke 1952). 

Since even coordinate products are even under the inversion and odd 

ones are odd, the computations csm be carried out with completeness 

i n the subgroup 3ni (or D̂ ) of the group 3ni = 3in x 1 (or D̂ ^ = x l ) . 

The characters "^(R) appropriate to the various tensor 

representations i n equation (3-^3) of the group can be obtained as 

the character products of simpler representations (Bhagavantora 1966). 

The group 3in contains only proper rotations and the corresponding 

character expression for the electrical r e s i s t i v i t y tensor i s 

(R(0) ) = k cos% + 2 cos 0 (3-Wa) 

for the Hall r e s i s t i v i t y tensor 

]j/(R(0) ) = k coe^ 0 + 2 cos 0 + 1 (3-Wb) 

and for the magnetoreslstivity tensor 

'^(R(j2() ) = 16 cos^ 0 + 16 cos^ 0 + k cos^ 0 (3-^c) 
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The characters appropriate to the rotation classes E, Ĉ  , 

of the group Jim^ evaluated for each tensor representation are 

presented i n table (3-1) together with the nuipber of Independent 

components. 

(2) 

example, we now evaluate the characters for the rotation classes and 

Taking the magnetoreslstivity tensor p 7̂  as an 

the momber of Independent tensor components. 

E represents the identity operation: cos 0 =^ ̂  

C3 represents rotation by + : cos 0 = - ̂  

0^ represents rotation by TT : cos 0 = - ̂  

When these results are used with the general character expression (3-48c), 

the characters iJjp(R) for the rotation classes can be obtained as 

'Î P (E) = 16 + 16 + 4 = 36 

.^P (C3) = 16 i'i)^ + 16 (-1)^ + k (-^)2 = 0 

(C2'') = 16 - 16 + if = k 

The t o t a l symmetric Irreducible representations 'I'^(R) equalr unity 
for a l l classes; we can now substitute for Tpp ( E ) , ^piC^) and 
^P (e^^'^) i n 

n. = I ^ hp 'I'P (R) 'I' .(R) 1 g P 1 

where g = 6 , h p i s 1 , 2 , 3 for E, Ĉ  and respectively. The 
number of independent components obtained i s 
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\ = 1.(36) + 2.(0) -H 3.(^) ) = 8 

TABLE (3-1) 

TENSOB 

EEPBESENTATIONS 

(2) 

CLASSES 

E 2Ĉ  3C2 

36 0 if 

NO. OF INDEPENDENT 

COMPONENTS 

Once the number of independent components appropriate to each 
tensor has been fixed, the non-zero components can be obtained by 
demanding the invariance of the tensor conQ)onents under the point 
group symmetry operations. This procedure needs to be carried out 
for a l l the operations of the group, u n t i l the number of independent 
components reduces to those numbers specified i n table(3-l)* 

The procedpre i s straightforward; denoting the Cartesian 

orthogonal conQ)onents of the tensors with the coordinate products 

that are their indices, for the symmetric second rank tensor P 

we have 
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XX 

xy 

xz 

xy 

yy 

yz 

xz 

yz 

zz 

Now the transformation of the coordinates for the symmetry opera-
1 

tions are; for C2! x—» x « y—•-y» z — » -z 

and for C,: x -Jx + "^l-y , y - X -^y , 

-1 

For C2 we can see that the odd product terms of y and z are not 

invariant because they reverse i n sign yielding xy = xz = 0. 

Keeping i n mind that the xy and xz components are zero we have 

for application of C^: 

+ | y 2 + 0 XX 

yy i x ^ Wy^ + 0 

zz zz 

and yz = 0. Since the number of independent components i s known 

to be two, XX must equal yy. Therefore, we have for the coeffic

i e n t scheme 

[ P i j ] -

r p 0 0 11 

0 p^^ 0 

0 0 p 33 

(3-49) 
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S i m i l a r l y for the tensor p^^^ ̂  by adopting the order of 

indices for i as (x, y, z) and for j,k^ as (xx, yx, zx, xy, yy, zy, 

xz, yz, z z ) , the following coefficient scheme i s obtained: 

(1) 

0 p 2 3 , l 

- p 2 3 , l 0 0 0 -Pl 2 , 3 

0 p 2 3 , l . 0 -^23,1 0 0 0 

pl2,3 0 

0 0 

(3-50) 

(2) 
and for p i j j k ^ k ^ the adoption of coordinate replacement for i j 

and k^k^ i s (xx, yy, zz, yz = zy, xz = zx, xy = yx): 

^11 11 ^11. 22 ̂ 11 33 ^^11. 23 0 

PlL,.22 P l l , l l ^11 33 -'^11. 23 ° 

(2) 
[ p i j , k ^ k j = 

^33,11 ^33,11 ^33,33 

.^23,11 ̂ 2 3 , 1 1 ° ''23 , 23 ° 

O O O . 2p 23,23 

O 

23 11 

(3-51) 

the tensor expressions (3-^9), (3-50) and (3-51) can be arranged i n 
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a form suitable to give the t o t a l r e s i s t i v i t y component P.^(B) i n 

a peculiar matrix sum given by Haittnan (1969) 

P(B) = 

11 

o 11 0 

0 P 33 

- ^ 1 2 , 3 ^ 

P l 2 , 3 ^ :P23,1^2 

P 2 3 , l ^ 

^23,1.^2 - ^ 2 3 , 1 ^ 

^ 1 ^ 2 ^ 3 \ 4 ° 

A A A -A 0 ^12 ^11 13 14 

^ 1 ^ 1 ^ 3 ° 

A -A i O A 0 ^41 ^41- 44 

0 0 0 0 A^^ A^^ 

O 0 0 0 ^ 1 4 . ^^.^11-^12 

^ 2 

^3' 

2B2B3 

2B^B1 

2 V 2 

(3-5? ) 

(2) 
Here A^^ (p,q = 1, 6) i s introduced for p ^^^^ . p and q each 

replace the pair of indices i j and k^k^ respectively, the following 

correspondence obtains: 11 = 1, 22 = 2, 33 = 3, 23 = ^, 13 = 31 = 5, 
-(2) 

12 = 21 = 6. The factors 2 i n pY^.k k ^̂ '̂ ^ carried into 
1̂"2 

the magnetic f i e l d components. For the f i r s t two tensors i n equation 
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(3-51) the matrix sum i s applicable, while the l a s t term gives the 

magnetoresistivity contributions to the R ^ j ^ ^ ^ components i n the 

follovdng order P^^(B), P j a ^ ^ ^ ' 3̂3̂ ^̂ * ^23^^^' ^13^^^ '̂=' 

Except for the sign difference i n the expansions (3-'tO) 

and (3-^1)» there i s a complete correspondence between the conduc

t i v i t y and r e s i t i v i t y tensors and both must exhibit exactly the 

same symmetry. Therefore, for the conductivity tensor we have 

(B) 

11 

0 0 

0 0 33. 

° "12.3»3 - ° 23.1^2 

-cr B 
12,3 3 

, cr B -'^ B 
L 23,1 2 23,1 1 

° 23,1^ 

1̂1 ^ 2 ^ 3 

1̂2 ^3 

S i S l ^3 

^1 0 

0 0 0 

0 0 G 

0 M̂f \ v 

B. 

B, 

2B3BJ 

2B3B, 

2=1=2 

(3-530 
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B - GENERAL RELATIONS BETWEEN THE FIEK)S AND THE CURRENT . 

Although the c o e f f i c i e n t scheme obtained i n the previous 

section contains ei l l the required information, i t i s convenient for 

experimental purposes to have e x p l i c i t expressions for the f i e l d and 

current directions. The coefficient tensors ^j^j(B) from equation 

(3-52) can be obtained i n terms of p°'. , P ̂ 4 ̂  1, and A as 
i j Pq 

=-"23,1=2 *2*WV3*2A^1V2 

Pj3(B) = P3J*AJ^B/*AJ,B32*AJ3B32 
(3-54) 

P2,(B) = P,2(-B) 

P3,(B) = P,,(-B) 

Pj^CB) = P23(-B) 

When these are substituted into equation (5-59) we have for the elec

t r i c f i e l d components: 

+ (- P23,lB2 + 2A^^B^B^ + 2A^^ B^B^ ) J3 
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\ = ( -^2 . 3 ^ * ^1^¥l ^ ^ 1 - ^ 2 ^ V2 -̂̂ 1 

(3-55) 

= ( P23^^B2 + 2A^B3B^ * 2A^^B^B2 ) 

* ( 23,1^1 * ^ 1 ^ ^ l ' - * 2 A ^ y 3 ^ '̂ 2 

+ ( P 33 + A3^(B,' B / ) + A33B32 ) 

Thus we have now obtained a basic s e t of equations that w i l l specify 

the low f i e l d galvanomagnetic effects i n bismuth (or any material of 

the crystallographic point group 3ffl)« The scheme i s qaxte general; 

B and J may be directed at any angle to the c r y s t a l a xis. The long 

axis of the sample determines the current direction. I f the samples 

employed are cut along a major crystallographic direction, the current 

density component appropriate to that direction i s readily obtained 

from (3-55)• For an a r b i t r a r y direction they are determined by 

resolving into J ^ , and components. I n principle', two samples 

cut one i n the xy-plane and one other i n the z-direction are 

s u f f i c i e n t to measure a l l the required tensor components of bismuth. 

Goefficients may be i s o l a t e d , by choosing s p e c i a l cases of E, J , B 

orientations, and measured i n turn. 

I n the present study the measurements were carried out on 

three samples cut along major crystallographic directions. This 
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procedure vdJLl be discussed i n the experimental chapter. 

C - DERIVATION OF THE TENSOR COMPONENTS FROM BAND THEORY 

Abeles and Meiboom (1956) f i r s t obtained the twelve low f i e l d , 

conductivity tensor components for bismuth using an e l l i p s o i d a l Fermi 

surface model with zero t i l t angle. They assme only i n t r a v a l l e y 

s cattering of the c a r r i e r s and use the relaxation time approximation. 

E s s e n t i a l l y the vector current contributions for each valley are 

summed i n the frame of the c r y s t a l axes. By a s e r i e s expansion of 

the current density, for low f i e l d cases (>i.B<<1), the conduct

i v i t y components are obtained i n terms of the specified band para

meters. Drabble and Wolf (1956) for bismuth Telluride and l a t e r 

Z i t t e r (1962) for bismuth, using the r e s u l t s of Herring and Vogt 

(1956), have extended the analysis to an anisotropic relaxation-

time tensor t ( e ) and have allowed t i l t of the e l l i p s o i d a l Fermi 

surface pockets. 

A somewhat different and more sa t i s f y i n g approach i s to -

develop the low f i e l d l i m i t from the general conductivity tensor 

(B) given i n the previous section. As an example of the proced

ure followed, the component '^')i(^) taken, and used to obtain 

the low f i e l d tensor coefficients and i n terms of the 

band parameters. Thus from equation (5-5^) we have for the low 

f i e l d case 

°11<»1> = °11 - ^ 1 ^ ' "-56) 

The corresponding tensor component i n terms of the band parameters 
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from equations (3-31) and (3-32) i s 

a^^(B^) = , / < V ^ > - l ^ l S - 3 . , ( . , ^ - . , ^ ) l B , ^ ^^^^ ̂  ^3_^,^ 

^ + + (M2JI3 - Mi,^) ] B̂ ^ 

Putting B^ = 0, we get a^(o) = a^^ ' , 

<̂  l V " ^^1 •*• ̂ 2̂  ^̂ '̂  1 ^^"^^^ 

Solving S^^ from equation (3-56), we obtain 

and constructing - ( ̂ ^^(B^) - ^ equations , 

(3-57) and O 5 8 ) 

S l 1 = - < ^ 1 1 ^ ^ ^ - V - ^ ^ / ^ i ' 

Ne (M^-)^2)% ̂  (5^1-̂ 2)̂ 4^ 

As B^ — > 0, S^^ becomes 

^11= r K - » ^ 2 ^ S * 5̂p,->̂ 2K̂ J 

S i m i l a r l y the r e s t of the conductivity tensor components can be 

obtained as 
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= (^Ne) (p^ + yi^) + Pe , Nep^ + Pe 

°12,5= >̂ 1̂ 2 - ^« ' ^^25.1 = ^^^^^ C(MI^;x2)H3V^ " «̂ ^ ^ 

S^^ = (^Ne) [()i^-;i2)^H3 + (5Mi-}i2^^^^ 

= (^Ne) [(5^^^ + 5 } i / + 2p^p2^>'3 " (^^i+^^aV ̂  * ̂® ^5 

= (^Ne) iix^)x^i)x^ + ^2^^ ''l^ 

S3, = (iNe) KM, * FP;^^ - ;.3,i^'] * Pe ^ ^ ^ ^ 

^55 

S^i^ = (iNe) ;i,>i2^(;j3| - ji^) 

S^, = - ( ^ e ) Ip3(;i,-M2) + Jii^^ ] 

S^^ = - I (iNe) + (^Pe) V3] 

These are the same expressions as those given by Z i t t e r (1962) and 

Hartman (I969). 

The r e s i s t i v i t y tensor components are related to the cond

u c t i v i t y through the r e l a t i o n (^^^(B) Pji^ = ^ relation

ships between the components are given by Juretschke (1955) as 
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^33 ^ ^^P33 ^ ^' 

^12,3 ^ P l 2 , 3 ^ P l l ^ ^' 

^23,1 - . P 2 3 , l ^ P l l - P33' ̂  ^' 

^ 1 = ^ 1 
(3-60) 

12 t ^ 2 * (^23,1/^33 - ) ^ ' 

13 ( P . l l ' ) " ' f ^ 3 ^ ( P l 2 , 3 / P l l ' ) J ' 

31 

^33 = ^ 3 ^ ^ P 3 3 ^ " ' ' 

^41 = ^ ^ ^ l l ^ P l l P33 ) - \ 

^44 . = P33 '̂'̂  f^44 - ^P,12,3p23,l/2Pii 
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Hencevithe r e s i s t i v i t y t e n s o r components i n terms of the 

band p a r a m e t e r s a r e (her e C = P/N) 

11 

P l 2 , 3 = i 7 ( ^ ^ l l ^ 2 - ' ^ ^ l ' ) ^ ^ ^ l ^ V 2 < = ^ l ^ ' ^ ' 

p = {2/lie){]i^ + ]i2+2Cv^) P33 = (l/Ne) (y.3 + CV3) 

^ l = . ̂ t ^ 3 ( ^ r ^ 2 ) ' - ^ ^ 4 ' ^ ^ ^ r V . ^ (.y,+ y 2 ^ 2 c v ^ ) - 2 . 

^ 2 = l i l ^ ^ l ^ ^ ^ l V^4')^2^1-''^2^^,^2 V ^ 4 ' ^ ^ ' ^ ^ ' ^ 3 

2 [ ( ) ̂ 3-2c V3- y^.^] ̂  ( y^+c ) } ( y^+ y2 + 2c ) ^ 

^13 '= •iif^l.^2^.V.^2^-'2°v^^-4(.y^y2-cv^^^y^ + ,̂ ^ 

.(y^+y2 + 2cv^) ^ O-61) 

^31 = . i i e f ' ^ ^ r ^ V . ^ 2 ) ^ ^ 3 - ^ ^ 3 ^ H ' f ^ 3 ^ ^ ^ 1 ^ . ^ 2 ) - ^ 4 ' -

-1 -2 
2cv^.{y3 + 2v3.) ] . (,y^+y2 + 2c ) (y^ + cv^) 

^ 3 • = We^v/^ ^^3^''''3^~^ 

^14 . = We .̂ 4 t ^ l ( ^ - ^2^ ] (y^+y2+.2cv^) 
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V = • '̂'1>'2 ^1(̂ 3+*' 3)] +0^ 1 ^ [ (^1+^2)^^ V3) - Hî ^ ] } . 

(P-I+V^c v^)"2(p3+cv3)"'' 

VI - THE LOW FIELD THEHMOMAGNETIC EIISCTS 

I n general, systematic measurements and analysis of thermomag-

netic e f f e c t s pz^ves to be more d i f f i c u l t than for galvanomagnetic 

e f f e t c s . The f i r s t observation of thermomagnetic effects was actually 

i n bismuth and dates back to I886 ;CEttingshausen and Nerns!tl886),» 

I n t e r e s t i n thermomagnetic effects has been stimulated both from 

th e o r e t i c a l considerations and by possible p r a c t i c a l applications i n 

energy conversion devices. At present the develojanents do not quite 

j u s t i f y the hopes that have been raised for device applications nor 

have the experimental and theoretical analyses been as successful as 

i n the galvanomagnetic e f f e c t s . The success i n measurement and the 

interpretation of precise galvanomagnetic data has extensively contri

buted to our knowledge of the band structure and the mechanisms 

governing the interaction between the c a r r i e r s and l a t t i c e vibrations 

or defects. The d i f f i c u l t i e s associated with thermomagnetic effects 

are mainly of a theoretical nature. As i s well known, the thermo

magnetic ef f e c t s can be attributed to the c a r r i e r diffusion together 

with i n some cases phonon drag e f f e c t s . The r e l a t i v e contributions 

of these two effects are determined by the electron mobilities and 

the l a t t i c e thermal conductivities i n any particular material. Even 
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fpr structures with the highest symmetry, i t has proved d i f f i c u l t to 

separate these two contributions quantitatively: i t i s usual to treat 

each separately* The contributions to the thermomagnetic effect i n 

bismuth due to diffusion of the electronic c a r r i e r s w i l l be treated 

t h e o r e t i c a l l y through the application of equation (3-37)» for a r b i t 

rary f i e l d s , i n a l a t e r chapter. Here the phenomenological low f i e l d 

expressions are developed i n a si m i l a r manner to the galvanomagnetic 

case with a few minor differences. Bhagavantam (1966) l i s t s the non-

vanishing c o e f f i c i e n t scheme for a l l point groups. I n practice, how

ever rather than being specified i n terms of these tensor components 

the thermomagnetic data i s defined primarily by the direction of B 

with respect to the temperature gradient. A definition labelled by 

conventional names i s not suitable and causes ambiguities due to the 

Intermixing of voltages from different order effects i n magnetic 

f i e l d powers. I t w i l l be shown l a t e r that the phenomenological 

theory expressed i n terms of tensor components Indeed predicts the 

peculiar symmetries Involved i n the thennomagnetic effects i n bismuth, 

including the Umkehr e f f e c t . Therefore the best procedure i s to 

perform a straightforward determination of the thermomagnetic tensor 

c o e f f i c i e n t s without attaching conventional l a b e l s to one or another 

type of measurement. I n following sections the expressions suitable 

for a p a r t i c u l a r experimental set up for the measurement of the 

theimomagnetic effects i s obtained and the prediction of an Umkehr 

eff e c t i s b r i e f l y touched upon. 

A - PHENOMENOLOGICAL DERIVATION OF TENSOR COEFFICIENTS 

Starting from eqtiatlon (3-36) i n component form we have 



-k8-

where replaces the components of the temperature gradient i n a 

chosen orthogonal frame. A power s e r i e s expansion for a ^ j ( B ) 

s i m i l a r to that (3-^1) employed for the galvanomagnetic effects i s 

" i j ^ ^ ^ = " i j * " ij,k^Bj^^ * « i j , k ^ k 2 W * • - 3̂-̂ 3̂  

(N) 
which gives the coe f f i c i e n t tensors a . . . , . . The non-

^J»V2 
vanishing components of these tensors are now determined from the 

r e s t r i c t i o n s imposed by the point group symmetry operations of the 

c r y s t a l . The Onsager reciprocity r e l a t i o n for c j|^j(B) d i f f e r s from 

that for P^^(B). As a r e s u l t of t h i s , the symmetric and a n t i 

symmetric parts of '^^^(B) cannot be taken as odd and even functions 

of B respectively. There are no i n t r i n s i c symmetries involved i n 

the tensors and , . The tensor a^f? ^ ,, i s symmetric 

only with respect to the indices k^ and k2» The corresponding 
character expressions 'f'o (E) for the tensors a?'. , ct^?! and 
(2) ^ 

''̂D ( R ( 0 ) ) = '* ooe^0 + k COS0 + 1 

(3-6if) 

(R ^)) a 8 COS ̂0 + 12 cos^jZf + 6 cos^J + 1 

and (R( ̂ ) )= 16 cos V + 24 cos-^0 + 12 008^0 + 2 COS0 

respectively. Using these character expressions i n equation (3-'*7), 

we obtain the characters appropriate to the rotation classes of the 

group 3m. They are presented i n table (3-2) together with the number 
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of Independent components for each tensor. 

TABLE (3-2) 

TENSOR 

REPRESENTATION 

CLASSES 

E 20, 30j 

NO. OF INDEPENDENT 

COMPONENTS 

a(o) 
i d 0 1 

a d ) 

(2) 

27 

5^ 

0 -1 

0 2 10 

I t can be seen from table (3-2) that a complete determination of the 
2 

low f i e l d thermomagnetic eff e c t s up to B terms i n magnetic f i e l d 

requires the measixrement of 16 tensor components. The tensor a (1) 

i s cedled the thex^oelectric power tensor. But now <̂  j • does 

not e n t i r e l y represent a tranverse effect s i m i l a r to the Hall tensor, 

although, i t may be c a l l e d the Nernst tensor. By analogy to the 

galvanomagnetic ef f e c t s the tensor <̂ ^̂ \ . , can be called the mag-

netotheimoelectric power tensor. The coefficient scheme for each 

tensor i s obtained as before by denoting the Cartesian oirthogonal 

components of the tensors by the coordinate products that are thei r 

i n d i c e s . The thermoelectric power tensors i s 

(o) 
id 

(o) 
10 

a 0 
11 

a 0 11 

53 

(>65) 
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and the N e r n s t t e n s o r ( a d o p t i n g the same r e p l a c e m e n t as i n 
1J / 

r 1 

^^11,1 ° ° ^.11,1 -'^23., 1 ° «123 ° 

° -'^11,1 "23,1 

° "32,1 ° -"32,1 ° ° ° 0 0 

(3 = 66 ) 

(2) 
F o r the t e n s o r • u ' t a k i n g the replacement f o r i j 

'^=''^l''2 

as (xx, yy, z z , y z , zx, xy, zy, xz and yx) and f o r k^k^ as 

(xx, yy, z z , y z , zx and xy) we have 

/ ^ ' V 2 

"11,11 " l l 2 2 " l l 3 3 "2223 

" l l 2 2 " n i l " l l 3 3 "2223 ° 

"3311 "3311 "33,33 8 ° 

-^2322 "2322 ° " l 3 , 3 1 ° 

'3131 32,22 

0 0 0 0 -^22,^,23 ' ^ ^ " l l i r " l l 2 2 ) 

-"3222 "3222 ° "3131 ° 

0 0 0 0 a^33^ -a2322 

° 0 0 0 -a2223 ^ ( " l l i r " l l 2 2 ^ 

( 3--67 ) 
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Thus an e x p r e s s i o n s i m i l a r to (3-52) i s o b t a i n e d ; 

a ^{B) = 

" I I ° ° 

0 a 

O 
O 

11 

O a 3 3. 

" l l , l ^ 

- ( ^ l , l V " l 2 , 3 ^ ^ 

-a B 3 2 , 1 2 

( " l 2 , 3 ^ - " l l , 1 ^ 2 ^ -.«23,1^ 

• ^ 1 , 1 ^ 

a B 32,1 1 

" 2 3 , 1 ^ 

°11 °12 °13 -°24 ° ° 

°i2 ^ 1 ^ 3 .^24 ° ° 

D D11 D 31 31 33 

-D D C D O 42 42 85 

•°7 2 °.7 2 ° °5 5 ° 

O D -D 
85 42 

0 O -D ^(D -D ) 24 ^^11 12' 

B. 

2B^B^ 

(3-68 ) 

where D (p = 1, 2 ... g) and S = 1, 2 pq r -» 

f o r a^^^ , , 

6) i s i n t r o d u c e d 

an^ p, q each r e p l a c e the p a i r of i n d i c e s i j and k^k^ 
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respectively. The convention for q i s the same as before and for p 

we write 1 = 11, 2 = 22, 3 = 33, ^ = 23, 5 = 31, 6 = 12, 7 = 32, 

8 = 13 and 9 = 21. The ordinary matrix summation i s v a l i d for the 

f i r s t two tensots and the contributions to "j,j(S) from the l a s t 

term are i n the following order " ^ ^ ( B ) , "32^^^' "33^^ '̂ "23̂ ^̂ * 

"31(B), "i2^^^' V ^ ^ ' "13̂ ^̂  ''2^^^^' 

B GEBERAL RELATIONS BETWEEN THE FIELDS AND TEMPERATURE 

GRADIENTS 

The e x p l i c i t expressions r e l a t i n g the thermoelectric f i e l d 

components E^ to the temperature gradient G^ can be written down 

with the help of equations (3-&) and (3-68), The tensor components 

" ^ j ( B ) from the equation (3-68) are 

= "11 * "11.1=1 * »ilBi' - ̂ ^ B / . D ^ J B / , aD^^B^B, 

"12® =""l1.1»2 * %2.3=3 * ̂ 24*1=3 * "'l1-''l2>^»2 

'"13'̂ > - ""23,1*2 * ="85Vl - ̂ -.2^*2 

"2l'«) = "11,1«2 - "12.3=3 - ^ 2 ^ * 3 * <°11-''l2'*1*2 

"22'5) = "11 - "^^_^B, • D^^B,^ ̂  ̂ ^^^2 ^ „^^3^2 ̂  ^ ^ ^ ^ ^ ^ 

"23<5>-= °23.1=1 * ̂ 2<S2^-B1^> * 2"85=2B5 

"31® = -"32,1*2 * - ^72*1*2 

"32® = "32.1*1 * ''72'*2S') * W 3 

"33® = °33 * * *2'' * V 3 ' 
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By substituting these r e s u l t s for "^jCB) into the equation (3-6?), we 

obtain the following three basic equations: 

^ 1 = ' ° 1 1 * "l1,A • • ' l 1 ^ ' ' * » 1 2 ^ 2 ' * V 3 ' - ^ 2 ' . y 3 ' ' l 

* ' - "11,1=2 * "12,3*3 * ^ 2 ^ = 3 * "'ir''l2>=1*2' °2 

- "23,1=2 * ^85*1*3 - ^'t2»1«2 ' S 

(3-70) 

\ ' "ll,1=2 - "12,3=3 - ^Z'**!*? * <''ir''l2>=1»2 ' "1 

* ' » i i - "11,1=1 * " 1 2 = / * "11=2^* VJ^^^ZW "2 

* •" 23.1=1 *V=2S'>* ̂ 85=2=3 "^3 

% = ' - "32,1=2 * ^55=1=3 - ̂ 72=1=21 S 

* ' "32,1=1* V=2S'>* ̂ 55=2=3' "=2 

* ' " 33 * ' ' 3 l < = l S ' ) * "33=3'' ''3 

These expressionssare quite general; by resolving the f i e l d and temp

erature gradient components on any a r b i t r a r i l y oriented sample i t i s 

possible to deteztnine the co e f f i c i e n t s . The samples are long, thin 

cypizuSit^al or rectangular rods. Thus the sample geometry fixes the 

direc t i o n of with respect to the c r y s t a l axes. The e l e c t r i c f i e l d 

i n the c r y s t a l i s resolved into three mutually perpendicular components. 
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one being p a r a l l e l to the temperature gradient and the other two 

perpendicxilar to i t . 

This i s the equation to be employed i n the experimental work 

on the thermomagnetic effects* We now show that the r e s u l t s of the 

phenomenological theory are consistent with the ejcperimental obser

vations. The Umkehr effect i n bismuth i s observed for the y-axis 

sample thermomagnetic power measurements; figure (5r^^f-) shows the 

sample set up i n r e l a t i o n to the f i e l d quantities E, B and G> The 

req u i s i t e equation i s then 

and also from equation (3-78) we obtain for 

These two equations define "22^^^ ^ 

I f 1 = (0, 0, B^) 

£Uid therefore there i s no Umkehr effect. 

I f B = (B;, , 0, 0 ) 

a ( B ) = ci « a B + D B ^ ^ a (-B^) 22^ r 11 11,l"l 12 1 22^ r 

then the Umkehr effect must occur. 
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Furthermore i n t h i s l a s t equation, as the f i e l d values increase, a 

rev e r s a l of sign for ^2^^1^ possible, i f the sura of 

( a . B + D B ) i s of opposite sign and becomes larger than 

a^^. F i n a l l y i f "22^'^^ v/ritten i n the xz-plane as 

"22^ 9) = - «^^^^B cos e+ D^2^^ cos^ e + D^jB^sin^e 

i t s a t i s f i e s the symmetry relati o n . 

22^ ^ 22^ ^ 

These r e s u l t s are confirmed experimentally (see Chapter V). 

The reraedning chapters of t h i s thesis deal with the experi

mental meeisurement of the galvanomagnetic and thermoraagnetic tensors 

i n annealed and quenched bismuth, and the application of the results 

obtained i n t h i s chapter. 
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CHAPTER IV 

EXPERIMENTAL SYSTEM AND MEASURING PROCEDURE 

I - INTRODUCTION 

The present chapter deals vdth the experimental techniques 

and measuring procedures used for determining the effect of quenching 

on the galvanomagnetic and thermomagnetic properties of bismuth 

single c r y s t a l s . 

Two stringent requirements need to be f u l f i l l e d for a r e l i a b l e 

comparison and assessment of the quenching e f f e c t s . 

1) The gailvanomagnetic and thermomagnetic measurements 

must be performed on the same sample both i n the sinneeiled eind quenched 

conditions without changing the contacts and at the same temperatures. 

2) Because of the quadratic f i e l d dependence of the magnet-

oresistance and magnetothermoelectric power tensor coefficients, a 

fixed SEunple positioning i n the magnetic f i e l d must be achieved for 

measurements i n both conditions. 

Besides these two s p e c i f i c reqiiirements, there are also 

problems common to a l l quenching experiments; achievement of a fast 

cooling rate, prevention of sample contamination and diffusion of 

foreign impurities are among the importauit ones. These points have 

been taken into account i n the design of the experiments. The 

d e t a i l s of the c r y s t a l growth, sample preparation, the measuring 

system and procedures used are presented i n the following sections. 
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I I - CRYSTAL GROWTH 

Bismuth c r y s t a l s were grown from 99.9999 % purity s t a r t i n g 

materisil by a modified Bridgman technique. Bismuth on s o l i d i f i c a t i o n 

expands i n volume (3*3 ^ ) ; c r y s t a l s grown i n r i g i d containers are 

subject to severe s t r a i n . Soft mould containers, such eus tapped 

edumina or bismuth oxide can be used (Vickers and Greenough 19561 

Hurle 1960). Another method of overcoming the problem of straining 

i s to use a smooth-wall(>:conical growth tube where the material i s 

immersed into a s i l i c o n o i l ( Z i t t e r 1962). Expansion on freezing 

i s then no further problem; the c r y s t a l i s able to "sl i d e up" the 

conicfuL wall. 

The bismuth c r y s t a l s used here were grown i n an evacuated 

conical tube; i t was found that prevention of oxidation at the crystal-

glass interface was e s s e n t i a l . The growth tubes made of two smooth 

walled conical pyrex glass fimnels (Figure V l ) . Before use the 

tubes were washed i n 5 ̂  HF, ^3 % HNÔ  and 60 % water followed by 

d i s t i l l e d water and then dried. The precast bismuth rods themselves 

were etched i n dilute n i t r i c acid and washed severed times i n d i s t 

i l l e d water before being put into the c y l i n d r i c a l extension of the 

growth tube. The complete tube was placed inside a furnace. To 

remove any traces of the etching material and v o l a t i l e oxides several 

hovirs of vacuum pumping was carried out below the melting point using 

a diffusion pump. Then the furnace temperature was raised above the 

melting point of bismuth (27'}°C), so that the material melted down 

into the conical part of the tube while being continuously pumped. 

The temperature was raised further to about 6(X)°C and the tube tapped 
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to remove the gas bubbles and to cause the trace of oxide to f l o a t to 

the surf£u:e. The tube weis then sealed i n vacuo and placed i n the 

growth furnace (Figure ^ 2 ) . This furnace had three windings and 

separate controls for the current i n each so that the required temp

erature gradient could be produced. The temperature gradient which 

experience showed gave sa t i s f a c t o r y c r y s t a l growth i s shown i n (Figure 

4-3)• The current through the windings, and hence the s t a b i l i t y of 

the temperature gradient, was controlled by a s o l i d state potentio-

metric device. The growth tube was placed on top of a s t a i n l e s s s t e e l 

rod £md lowered through the temperature gradient at a slow constant 

rate (0.8 mm per hour) by an e l e c t r i c motor coupled through a gear 

system. The c r y s t a l s produced had a conical shape of about 3*5 cm 

diameter and height; they were etched i n dilute n i t r i c acid to reveal 

the grain boundaries, i f any: they usually consisted of two big 

grains. X-ray back r e f l e c t i o n Laue photographs showed l i t t l e i n d i 

cation of t h e i r being strained on the surface (Figure h^k), 

I I I - CRYSTAL ORIENTATION AND SAMPLE PREPARATION 

As described i n chapter I I , for the A? structiire the sign of 

some tensor components can depend upon the chosen right handed (+x, 

+y, +z) a x i a l set for a particuleir c r y s t a l xmder investigation. I n 

the present instance t h i s i s the case for the magnetoresistivity 

tensor components Â ĵ. ^ij.-^* "̂ ^̂  method of a x i a l assignment to 

samples iised here i s now described. 

Bismuth cleaves with r e l a t i v e ease sdong both trigonal and 

pseudotrigonal directions and etching i n both of these planes reveals 
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sets of s l i p l i n e s at 60° (or about 60°) to each other. X-ray Laue 

back r e f l e c t i o n photographs along these directions are also d i f f i c u l t 

to distinguish. As a r e s u l t f use of the cleavage planes i n bismuth, 

i f r e l i e d on alone, can r e s u l t i n misorientation of samples. On the 

basis of the convention for a right handed crystallographic a x i a l set 

the quadrant i n the mirror plane formed by the +y and +z axes contains 

a pseudo-three fold sixis and that formed by the -y and +z axes a 

pseudo-four fold a x i s . X-ray back r e f l e c t i o n Laue photographs of the 

crystsd were taken to establish the crystallographic directions i n 

r e l a t i o n to these two pseudo-symmetry axes. The y-axis picture (Figure 

^ 5 ) i s easy to recognise and there i s l i t t l e chance of confiising i t 

with the pseudo-bisectrix direction, and furthermore X-ray Laue back 

r e f l e c t i o n photographs i n t h i s direction alone can establish the 

c r y s t a l orientation uniquely (Brown et a l . 1968)r» 

Rectangular bar samples (2*5̂  x 0.25 x 0.25 cm), along the 

three major crystallographic directions were spark cut and planed. 

To remove the surface damage due to spsurk planing the samples were 

etched i n dil u t e n i t r i c acid and washed. Ssimple s i z e s were measured 

by a t r a v e l l i n g microscope. 

IV - SAMPLE HOLDER DESIGN 

Different sample holders were employed for galvanomagnetic 

and thermomagnetic effect measurements. Cycling of sample temperature 

between 77°K and 5Mf°K had to be employed during the study. For 

galvEinomagnetic measurements the design of sample holder and sample 

contacts was intended to meet the following requirements: 
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1) Thermal expansion resulting from large temperature changes 

had to be compensated for, otherwise the samples would be strained. 

2) Strong and clean contacts were necessary to give Ohmic 

conductivity during the whole process of quenching. 

3) Sample holder design had to allow very fsist cooling. 

k) I n a l i q u i d coolant medium (either l i q u i d nitrogen or 

water), the temperature gradient between the ssunple ends had to be 

so smeuLl that negligible thermoelectric voltsiges were produced. 

5) The o v e r a l l design had to permit easy sample replacement 

and alignment. 

The sample holder design shown i n figures (^6 . ) was 

found to meet the requirements outlined above s a t i s f a c t o r i l y , after 

several t r i a l designs. I t consisted of two rectangular copper bars, 

screwed onto the sides of a c y l i n d r i c a l syndanyo base. To hold the 

samples copper rods were grooved and f i t t e d with supporting clamps. 
a 

The sample ends were kept i n direct contact with the copper bars by 

the tension of the l i g h t adjustable copper tabs; sample length changes 

due to the thermal expansion were not r e s t r i c t e d . E l e c t r i c a l i n s u l 

ation was provided by the syndanyo base, which was supported by a 

s t a i n l e s s s t e e l tube. The other end of t h i s tube was soldered to 

a brass head enabling accurate rotation of the specimen. Thermo

couple measurements showed that the temperature gradient along the 

sample for a sample current of about 0.6 A was negligibly smaill. 

Besides the previous sample holder design requirements i t 

i s e s s e n t i a l i n thermomagnetic measurements to have an additional 
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heat source and sink, so as to give a steady temperature gradient 

along the sample length. The sample holder b u i l t for t h i s purpose 

was machined from a c y l i n d r i c a l syndanyo rod (see figure 4-7 ) . 

The sample was positioned v e r t i c a l l y with i t s axis p a r a l l e l to that 

of the rod. I t was held between a spring loaded copper plunger with 
prevent 

a recessed end to Jo .ca't.e^i-. the sample gndr sideways movement suid a 

fixed copper heat sink which made good thermal contact with the copper 

base of the s t a i n l e s s s t e e l vacuum jacket. A resistance heater i n 

thermed contact with the top copper plunger formed the heat source. 

The syndanyo rod was supported by a s t a i n l e s s s t e e l tube through which 

the thermocouples and heater leads passed. The whole sample holder 

was enclosed by a s t a i n l e s s s t e e l vacuum jacket. The thermocouple 

leads were passed out from the vacuum jacket through a s e a l which 

comprised of a ring and a pad of neoprene. 

V - SAMPLE CONTACTS 

The sample contacts were spot welded. PlatiBum wires were 

foxind to be the best sample contacts: they bonded ohmicedly and 

suffered no work hardening during the quenching process; platinum 

was used whenever possible. The four-probe configuration usual for 

galvanomagnetic effect measurements was employed; that i s two longi

tudinal contacts, separated by about 2 cm , and two transverse 

contacts centred on the sample. The longitudinal voltage probes were 

positioned well away from the sample ends to minimise Hall f i e l d short

ing (Volger 1950). H a l l voltage measurements were made either using 

the two transverse voltage probes or by balancing out the 'IR' drop 

with a 1 i l rheostat: the l a t t e r case was preferred i f the probe 
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positioning was off-centre. 

VI - MEASURING SYSTEM 

The block diagram shown i n figure ik-8) represents the main 

features of the system used for measuring sample voltages for deter

mination of the galvEinomagnetic tensor coef f i c i e n t s . E s s e n t i a l l y i t 

was the same system as used for measurements of the low f i e l d galvano

magnetic tensor co e f f i c i e n t s i n antimony (Oktu 196?) and arsenic 

(Jeavons I969). 

The potentiometer was a precision instrviment (Pye type 76OO) 

based on the decade principle (see Stout 196O). Switches were employed 

throughout; the smsillest switched voltage step was 0.1 )iV. A Eeithley 

(type ^k^) electronic milliraicrovoltmeter was used as a n u l l detector 

for measurements at the nonovolt l e v e l . This instrument has a sensi

t i v i t y compeirable to the best light-beam galvanometer systems and 

combines the advsintage of fast response, high input resistsmce and 

robustness. The resolution of the instrument was s u f f i c i e n t to detect 

signals below the nonovolt l e v e l with a s t a b i l i t y of 10 nonovolts i n 

2k hotirs. The speed of response was three seconds on the 0.01 micro

volt range and increased to l e s s than 0.5 seconds on the 0.1 micro

vo l t s and higher ranges (see Erdman and Praglin 1964). Because of 

the inherent i s o l a t i o n and l i n e pick-up problems involved i n these 

types of n u l l detectors, the elimination of severe mains pick-up 

required a modification (see Jeavons 1969) mednly confined to some 

is o l a t i o n s such as the mains transformer and the change of the 

o r i g i n a l 50 Hz chopper frequency to a value of 60 Hz. Stray thermal 
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e.m.f.s i n the measuring c i r c u i t were minimised by using copper wires' 

throughout; connections were c a r e f i i l l y cleaned and clamped where 

possible, 'low thermal' solder (70 Sî  Od ^0 % Sn) was used whenever 

soldering was absolutely necessary. 

V I I - SAMPLE CURRENT AND TEMPERATURE GRADIENT CONTROL 

The detection of the small changes i n some tensor components 

due to quenching required accurate voltage measurements. To measure the smal 
components 

'to £in accuracy of ^ % required a system with a resolution of 5 parts 

i n 10^ and thus a d r i f t s t a b i l i t y of approximately 1 i n 10^. The 

usual s t a b i l i t y obtained by manual control of cxirrent was quite 

impractical i n t h i s case. To obtain such a s t a b i l i t y a tran s i s t o r 

i s e d current s t a b i l i z e r (Pedmer I966) was employed. Figure ( V 9 ) 

shows the c i r c u i t diagreun. I n principle the cxirrent s t a b i l i z e r 

acted as a high resistance (about 5G KilO i n s e r i e s with the sample 

so that any tentperature or otherwise induced resistance chsuxge i n 

the measuring c i r c u i t comprises only a very small fraction of the 

t o t a l c i r c u i t resistance; hence fluctuations i n sample current were 

minimised. After a few hours of warm-up a current s t a b i l i t y of better 

than 1 part i n 10^ was achieved. A sample current of about 15A per 

cm^ was passed during the measurements and wsus meeisured from the 

potential drop across a 0.01 J \ . standard resistance. The current 

s t a b i l i z e r , standard resistance, and standard c e l l were a l l kept i n 

an o i l bath to prevent temperature changes i n them. 

Similar s t a b i l i t y and d r i f t reqxiirements applied for the 

control of sample temperature and temperature gradient i n the thermo-
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e l e c t r i c and magnetothermoelectric power measurements. At fixed 

temperatures, ( l i q u i d nitrogen and dry i c e i n acetone) when the 

evacuated s t a i n l e s s s t e e l jacket was immersed d i r e c t l y into these 

l i q u i d s , there was no problem i n obtaining stable temperature grad

i e n t s . But to obtsdn a continuous and slow sample temperature 

change with small thermal gradients, i t was foimd that the best 

r e s u l t was obtained by using the arrangement shown i n figure (4-10). 

I t consisted of small inner suid large outer dewars. The evacuated 

s t a i n l e s s s t e e l jacket was held inside the small dewar covered with 

charcosd. The space between the two dewars was f i l l e d with s o l i d 

CO2 and then l i q u i d nitrogen poured into both the dewars. The whole 

system was f i n a l l y covered by an expanded polystyrene top. This 

arrangement was found to be very effective both i n controlling the 

average sample temperature change and the temperature gradients 

along the sample. The system took more than three days to reach 

room temperature, without creating large temperature gradients and 

there was hardly any need to use the heater. 

V I I I - MAGNETIC FIELD ALIGNMENT AND MEASUREMENT 

The magnetic f i e l d s were obtained from a 4" electromagnet. 

The magnetic f i e l d and the sample were centralized on the axis of 

rotation. The sample alignment i n the magnetic f i e l d was achieved 

mechanically by reference to the plane pole-tip faces, and then 

checked by plotting the magnetoresistance polar diagrams at moderate 

f i e l d s . Because of the quadratic f i e l d dependence of some of the 

low f i e l d tensor components, accurate magnetic f i e l d measurements 

were necessary; a Radio Frequency Labs., Inc. Gaussmeter (type 75O) 
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was used for t h i s purpose. This instrument operated on the Hall effect 

p r i n c i p l e , enabling a sensing element of small physical s i z e to be used 

for f l u x densities. The instrument was capable of maesuring from 0 -

1,000 G on the low range and from 0 - 50,000 G on the high range, both 

these ranges contained twelve subranges. The resolution was l/lOth of 

a sca l e d i v i s i o n , the reproducibility of a measurement being ^ l O t h of 

a scale d i v i s i o n . Thus the reading accuracy varied between + 0.00002 G 

on the low range (O.l G) to + 500 G on the high range (50,000 G). A 

standard 1,000 G magnet and a zero Gauss chamber enabled instrument 

c a l i b r a t i o n before every measurement. 

IX - QUENCHING AND ANNEALING CYCLES AND EXPERIMENTAL 

PROCEDURE 

I n quenching experiments, specimens have to be cooled down 

rapidly from elevated temperatures. The usuad method i s to heat a 

sample either by passing a direct current through the sample or by 

use of a furnace j u s t above a quenching bath and to plunge the sample 

rapidly into the coolant medium. As coolants, depending on the 

required quenching temperature, water, iced brine, l i q i i i d nitrogen 

or l i q u i d helium have often been used. 

I n t h i s work for annealing and quenching purposes the same 

system was used. I t consisted of a specialljr hixilt furnace, with a 

gas supply and a temperature control system attached to i t . I n 

order to secure a fixed sample position with respect to the graduated 

angulso* scale of the maignet turntable, the sample holder head was 

located by an assymmetric screw arrangement. Hence the sample holder 
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could be removed and replaced without readjustment. 

Bismuth oxidizes rapidly on heating. The impurities i n t r o 

duced due to oxidation or atomic diffusion from materials i n contact 

can have a very serious effect on the e l e c t r i c a l properties of the 

sample and hence can e a s i l y conceal the quenched-in properties. To 

assure that the sample surroimdings were free from oxygen, the inner 

furnace tube was sealed against the outside atmospheric pressure 

and heating carried out i n oxygen free nitrogen above atmospheric 

pressure. Two copper constantan thermocouples, precalibrated at 

the melting point of bismuth and spot welded onto the samples were 

used to measure the sample temperature inside the furnace accurately. 

The furnace current and thus the temperature s t a b i l i t y was controlled 

by a Eurotherm TR s e r i e s temperature controller which allowed a 

control accuracy of better than 1 %, 

The procedure followed for annealing and quenching was as 

follows. 

1) The sample holder was put into the furnace and the system 

wsis sealed from the atmospheric pressure. 

2) The nitrogen pressvire was adjusted through a needle vauLve 

to a value s l i g h t l y above atmospheric pressure and then was l e f t 

running. 

3) The furnace current was switched on and slowly increased. 

4) The sample temperature was measured carefidly by the 

thermocouples and f i n a l l y the r i s e i n furnace temperature stopped 

when the sample temperature had reached 26? + 1°C. 
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5) The system was kept running at t h i s temperature for at 

l e a s t 36 hours and then the sample temperatiire lowered slowly to room 

temperature i n steps of 10°C over a period of 6 hoxirs to complete the 

annealing procedure. 

6) For quenching, a f t e r the sample had been kept at the 

premelting temperature for approximately the same time as before, the 

sample holder system was qiiickly transferred into a large l i q u i d 

nitrogen container and i n the mean time the thermocouple voltages 

were recorded on an y - t recorder to indicate the rate of cooling 

during the quench. Tests showed that the welded thermocouples on 

the bismuth sample indicate the sample cooling rate f a i r l y well; 

thermocouples free from a sample showed an instantanious cooling to 

l i q u i d nitrogen temperature. 

Because of the requirements related to the sample alignment 

i n the magnetic f i e l d the sample holder head had to be kept fixed to 

the r e s t of the system and as a r e s u l t , during the sample tremsfer 

from the furnace a l i t t l e sample cooling occured. During the quench 

while the specimen temperature was above the l i q u i d nitrogen temper

ature the system was s t i r r e d . Repeated quenching and annealing cycles 

were performed i n every case to check reproducibility of the r e s u l t s . 

The thermoelectric voltages developed along the sample required 

specied attention since th e i r magnitude for a material l i k e bismuth i s 

very large. At nanovolt l e v e l s t h e i r elimination was es s e n t i a l for 

accurate galvanomagnetic measurements. Thermoelectric volteiges devel

oped along the sample for two reasons. 
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1) There were standing temperature gradients, mainly related, 

to sample holder design and environment. 

2) Temperature gradients resulted from P e l t i e r heating; with 

a magnitude proportional to the sample current. 

Contributions to the sample v61tage from the standing temperature 

gradients can be eliminated by current reversal euid aversiging, but 

P e l t i e r heating i s an intimate part of the Ohmic voltage suid cannot 

be averaged out. This d i f f i c u l t y , i n r e l a t i o n to the sample holder 

design was avoided by employing small saunple currents (0.6 A) and 

performing the galvanomagnetic measurements i n a l i q u i d coolant 

medium, i n f a c t i n either l i q u i d nitrogen or ion-free d i s t i l l e d water. 

To remove the error voltages due to inexact probe positioning and to 

sepeo^ate H a l l and magnetoresistance coefficients (which w i l l be descr

ibed i n the experimental configuration section) both current and 

magnetic f i e l d r e v e r s a l was employed. The measurement procedure was 

as follows. 

1) The apparatus was switched on and l e f t overnight to allow 

i t to e s t a b l i s h s t a b i l i t y . 

2) The magnetic f i e l d orientation was set and the Gaussmeter 

ceilibrated. 

3) The presence of any a.c. pick-up by the millimicrovolt-

meter was checked with an oscilloscope. 

4) The potentiometer was standsirdised, the sample current 

accvirately s et and checked for any longitudinal temperature gradient 

i n the sample. 
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5) The potentiometer was switched to measure the sample 

voltage and the system checked for d r i f t . 

6) The voltages and magnetic f i e l d s were measured at the 

required f i e l d s and directions. 

7) The sample current wsus reversed auad the measurements 

repeated. 

For the ease of thermoelectric and magnetothermoelectric 

power measurements, the steps from 1 to 6 were the same, except that 

i n t h i s case the current control and setting was replaced by the 

control and setting of the temperature and temperature gradients. 



F i g u r e : The pyrex growth tube. 



coi ls 

F i g u r e ( ^ - 2 ) ' : The furnace used f o r growth of bismuth c r y s t a l s . 
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F i g u r e ('4-3) : Furnace temperature gradient. 



a ) 

b ) 

Figure (h--k) t Laue b a c k - r e f l e c t i o n X-^ray photographs of bismuth, 

a) along the binary (x) axis; b) along the 

t r i f f o n a l (z) a x i s . 



Figure (^-5) : Laue back-reflection X-ray photograph along the 

b i s e c t r i x (y) axis. I f the + trigonal (z) i s 

taken to point upward, the + b i s e c t r i x points 

i n t o the figure. 

2 9r^CVi9?i ' 



Figiire (if-6) : The sample holder design used for galvanomagnetic 

measurements. 

F i g u r e (^-7) : The sample holder design used f o r thermoraagnetic 

measurements. 
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F i g u r e ('+-9) : C i r c u i t diagram of the c u r r e n t r e g u l a t o r . 
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F i g u r e (^-10) : System used t o c o n t r o l the temperature v a r i a t i o n 

f o r the thei'iTioelectric pov/er measurements. 
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CHAPTER V 

. THE EXPERIMENTAL CONFIGURATION AND RESULTS 

I INTRODUCTION 

I n t h i s cluapter the procedures used for the determination of the tensor 

components i n re l a t i o n to the chosen sample configurations are described 

and the experimental results presented. The measurements made during 

the course of the experiments include 

1) The galvanoraagnetic tensor coefficients at 77°K and 300°K 

i n the annealed and quenched states. 

2) A continuous set of thermoelectric power measurements 

between 77°K and 500°K. 

3) Certsdn magnetothermoelectric tensor coefficients at "Ŝ K̂ 

and 196°K. 

I n the thermomagnetic effect measurements, besides the i n v e s t i 

gation of the quenching effects on the thermoelectric properties of 

bismuth the interest was also directed to the application of the theoret

i c a l expressions derived for t h i s piuT)OBe i n chapter I I I . As discussed 

previously the peculiar symmetries and the appearance of the Umkehr 

eff e c t i n bismuth provide a very useful means for testing a particular 

model. The most importauat information f o r t h i s purpose can be obtained 

from y-axis samples, thus an extensive investigation of thi s data w i l l 

serve f o r the purposes of 

a) The v e r i f i c a t i o n of the predictions of the phenomenological 
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theory at low f i e l d s . 

b) The comparison of the results of the theory based on the 

established Fermi surface model with the experimental data at i n t e r 

mediate f i e l d s . 

The measurements of the relevant magnetothermoelectric tensor components 

both on annealed and quenched samples at low emd moderate f i e l d s were 

carried out, 

I I - SAMPLE CONFIGURATIONS USED FOR MAQNETORESISTIVITY TENSOR 

MEASUREMENTS 

To measure the low f i e l d galvanomagnetic tensor components, 

d i f f e r e n t experimental configurations have been employed by various 

workers. They a l l aim at the determination of the 12 low f i e l d tensor 

components. The main difference i n choosing a dif f e r e n t configuration 

i s probably a preference between employing the smallest possible number 

of ssimples or gaining the advantage of isolated mesisurements of the 

highest possible number of tensor components. I n thi s work seunples cut 

along each of the three major crystallographic directions have been 

used. The specimen configurations r e l a t i v e to the directions of current 

and applied f i e l d s aire shown i n figure (5-1)• The requisite equations 

fo r each SEimple configuration csin be obtained from equation (3-55) scad 

the procedure for the determination of each one of tensor components 

f o r each sample configuration w i l l now be detailed separately. 

a) The x-axis samples : 

The possible current and magnetic f i e l d components f o r the 

specimen arrangement, shown i n figure (5-1)j are given by 
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J = ( J ^ , 0, 0) and B = (B^, 0, B^) 

and the equations corresponding to the longitudinal eind tranverse 

voltage measurements are (see equation 3-55) 

and 

^2 = " 12,3 ̂ 3 * ' i '5-2) 

The longitudinal voltage measurement Ê  for the magnetic f i e l d direction 

along the x- and z-axes determines the tensor components Â ^ and Â ^ 

respectively. The transverse voltage measurement E^ for a magnetic 

f i e l d d i r e c t i o n along the z-axis determines p ̂ .^ d i r e c t l y , but, for 

the determination of the tensor component Â ,̂ i t i s necessary to perform 

mesusvirements fo r a convenient magnetic f i e l d direction other thsin any 

of the crystallographic euces. I f the magnetic f i e l d makes an single 

0 with thetx-axis i n xz-plane, then the magnetic f i e l d vector can be 

resolved i n t o two components i n t h i s plane : 

= +B cos 0 

B^ = B sin 0 

The equation (5-2) now for these magnetic f i e l d directions takes the 

forms 

£^(0) = t - 3 B sin 0 + 2Â /̂ B̂  cos 0 sin 0 ] 

and 

,2 E, '•^(-0) = I P^2,3 B s i n 0 + 2A^^B cos 0 sin 0 ] 
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The sum of these two equations i s written as 

(E2(0) + £^(-0) ) / (kJ^ cos 0 sin 0) = A^^B^ (5-3) 

The p l o t of t h i s equation f o r varying values can be used to determine 

the tensor component Â ^̂ . I n t h i s case the choice of an angle of 0 = ^5° 

i s probably best f o r maximizing the contribution of the tensor component 

under consideration. Thus from the x-axis sample the tensor components 

P^^i Â ,̂ k^y P^2 3 A^l^ determined without changing the 

sample mounting. 

b) The y-axis samples : 

For the y-axis sample (see figure 5-1) the possible current 

eind magnetic f i e l d components are 

J = ( 0, J^, 0 ) and B = ( B^, B^, 0 ) 

6ind the equations f o r longitudinal and trsinsverse voltage meaisurements 

are 

and 

"̂ 5 = "23,1 ^ * \1 - ^2"' ' ^2 <5-5) 

The tensor components Â ^ determined by performing the 

longitudinal voltage measurements f o r the magnetic f i e l d direction 

along the x- and y-axes respectively. The contribution to the trans

verse voltage from the Hall tensor component can be sepeirated sind 

measured, i f the magnetic f i e l d i s directed at an angle of 45° to one 
2 2 

of the axes i n xy-plsme, because then the term B̂  - B^ i s equsil to 
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zero and there i s no contribution from the tensor component Â |. 

Also the same voltage meatsurement f o r the msignetic f i e l d direction 

along the y-axis enables determination of A^p Hence i n the y-axis 

sample the f i v e tensor components can be isolated and measured 

independently f o r specific magnetic f i e l d directions. 

c) The z-axis samples : 

Fi a n l l y f o r z-sixis samples f o r the current eind magnetic 

f i e l d components we have (see figure 5-1) 

J = (0, 0, J^) and B = (0, B2, B^) 

and the equations f o r longitudinal and transverse voltage measurements 

sire 

2 . . „ 2 
^3 = ^^33 S i V * V 3 ' S 

and 

E2 = J -Â ^ B^^ + 2A^^ B^Bj] (5-7) 

The contributions due to the tensor components Â ,̂ Â ^ and Â ^ can 

be separated and meeisured i n turn by applying the magnetic f i e l d 

along the y- and z-axes fo r longitudinal and transverse voltage meas

urements. The procedure f o r the determination of the tensor component 

Â ^ i s similar to that used f o r Â ;̂ the transverse voltages are measured 

for a f i e l d d irection of 0 and -0 from one of the axes. The magnetic 

f i e l d components can be wr i t t e n as 

B^ = B s i n 0 

B^ = +B cos 0 
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Then the equationH*(5-7) f o r E (+^ ) becomes 

and 

£2(0) = 'I-A^^ B^ sin^^0 + 2Â /̂ B̂  s i n 0 cos 0 J 

E2(-0) = [-Â ^ B^ s i n ^ 0 - 2Â /̂ B̂  sin 0 cos 0] 

The difference of these two equations can be put int o the form 

(£̂ (0) - E2(-0 ) / ihJ^ cos 0 s i n 0) = Â ^ B^ 

and used to determine the tensor component Â .̂ The choice of an 

angle of 0 = 45° i s eigain preferable. 

Due to the type of sample contacts required sind the necessity 

of permanent ssimple mounting, only two types of e l e c t r i c f i e l d measure

ment were possible f o r each sample : one longitudinal, the other 

transverse. The sample configurations chosen here enabled the i s o l a t i o n 

of most of the tensor components, and hence the contributions resulting 

from most tensor components have been measured independently of the 

others. The exceptions are the two tensor components Â^̂. 

An important aspect to be tested i s whether the changes which 

occur i n the e l e c t r i c a l properties of samples on quenching arise from 

p l a s t i c deformation due to uneven temperature changes along the ssunple 

dtiring the quench or i f they truely result from a reversible process, 

such as the creation of point defects. The most important test of t h i s 

i s to repeat the measurements on a given sample i n the annealed and 

quenched conditions created several times i n succession. This procedure 

has been carried through many times : usually a f t e r severed cycles of 
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annealing and quenching, the contacts become noisy and t h i s precluded 

further r e p e t i t i o n . Typical recorded plots of the sample cooling rate 

f o r X, y and z specimens eire given i n figure (5-2). These plots 

represent the voltage drop on copper constantsin thermocouples from 
/ - O o 

576 K to 77 K against the time i n seconds. 

I l l - THE LOW FIELD MAGNETORESISTIVITY TENSOR RESULTS 

The data were f i r s t obtained by measuring the voltaiges corre
sponding to the increase i n magnetic f i e l d strength i n steps of 

-k 

25-10 T . ( I n the experimental work a l l the magnetic f i e l d quanti

t i e s were measured i n units of gauss. But theoretical calculations 

are based on SI units system. Hence from now on the magnetic f i e l d 

quantities w i l l be referred i n t h i s terminology 1 gaus = lo"^^®^® /̂" 

=10 Tesla) and then f o r reversed current and magnetic f i e l d directions. 

The average of the four sets of measurements obtained are plotted and 

presented i n figures (5-3) - (5-lP)» These plots represent the low 

f i e l d measurements on annealed and quenched samples; to show the 

r e l a t i v e change i n magnetoresistivity on quenching, the annealed and 

quenched sample measurements are compared as p. .(B, ) versus B, . The 
I J K K 

plots i n figure (5-3) - (5=flO) demonstrate ain important point : the 
low f i e l d condition (p • B <<1) i s v*U^- " f o r magnetic f i e l d values LJ? ^ 

-if 
ttf i < ^ - - -_-'150.̂ ® T i n bismuth at 77°K. 

The meaisured values of the twelve low f i e l d magnetoresistivity 

tensor components, obtained from several samples i n the annealed sind 

quenched conditions are l i s t e d i n table (5-1)• 
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TABLE (5-1) : Low f i e l d magneto-resistivity tensor components at 77°K. 

z-sample Tensor Components Sample Condition 

%3 Si *33 ^^ 

3.40 152 12.0 20 -19 Anneeded 
z ( l ) 

3.36 133 9^8 23 -14 Q:uenched 

3.42 155 12.5 19.7 -19 Annealed 

3.37 136 10.0 — — Quenched 

3.44 154 12.0 19.3 -17.4 Aimealed 

3.37 132 9.2 13.0 -14.0 Quenched 

z ( l l ) ' 3.45 157 12.2 19.6 -17.1 Annealed 

3.37 130 9.4 23.3 -14.3 Quenched 

3.44 155 12.0 19.0 -17.0 Annealed 

3.38 133 9.0 — — Quenched 

y-sample Tensor Components Sample Condition 

^ 1 ^ 1 *12 ^ 23,1 
A, ̂  41 

3.28 137 170 10.5 18.2 Annealed 
y d ) 

3.46 142 158 Quenched 

3.27 138 173 10.7 19.3 Annealed 

3.48 143 154 8.7 23.0 Quenched 
y ( I l ) 

3.23 138 172 10.9 18.8 Annesiled 

3.47 141 155 8.7 24 .0 Quenched 
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TABLE (5-1) : Low f i e l d magneto-resistivity tensor components at 77°K (Cont) 

x-sample 

:( I ) 

P^ensor Components Sample Condition 

^ 1 ^ 4 ^12,3 

3.22 1̂ 1 30.4 34 -0.20 As grovm 

3.22 138 33 34 -0.21 Annesiled 

3.^5 Iif3 26 36 -0.15 Quenched 

3.27 139 32.5 34 -0.20 Annealed 

3.^8 l42 26.3 36.5 -0.14 Quenched 

3.24 138 32 34 -0.20 Annealed 

3.31 137 26.4 36 -0.14 Quenched 

3.22 138 32.5 34 -0.20 Annealed 

are 10 10-^ and 10" T" for 

P. . , P . . , and A. . respectively. 
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Inspection of the changes Induced by quenching on each tensor component 

does not provide an immediate simple picture: most tensor components 

are reduced but some are increased i n value. An interesting observation 

i s that the anisotropy of the zero-field r e s i s t i v i t y i s lessened: 

P^^ , which i s the smallest component, i s increased and P^^ i s 

decreased. 

As can be seen, certaiin tensor components ( P Â ^ A^^) were 

obtained twice because they are available from measxirements made on 

different seunple configurations. Their values are i d e n t i c a l within 

the experimental error; the homegeneity of the boule i s good. Further 

and even more important, the agreement shows that on quenching the 

different specimens behave i n the same fashion and the number of quen-

ched-in defects i s the same for all of the samples. Another check i s 

available both on the data and indeed on the model i t s e l f . The e l l i p 

s o idal band model for bismuth i s described by eight independent v a r i 

ables ( , 1 t » ^ » » and P). The number of 
2 

measured tensor components up to B terms i n magnetic f i e l d are 12. 

Therefore there must be four i d e n t i t i e s among these tensor components. 

Two of these i d e n t i t i e s are p a r t i c u l a r l y simple and can be used for 

checking the consistency between the measured values of these tensor 

components. These i d e n t i t i e s aire given by Z i t t e r (1962); they are 

expressed i n terms of the conductivity tensor components sus 

'11 * ^ ^ ^ ' 2 3 , 1 ^ 3 / ^ 2 . 3 ^ - ^ ^ ^ 1 ^ 3 1 / ^ 3 3 ^ ^ 

= 3 S ^ 2 - V ( 8 a ^ ^ o^^^^/ 0^2 .3 ° 3 3 ^ ^ 

(5-9) 
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The r a t i o s between the two sides of equations for the measurements i n 

th i s work compute as 0.90 and 1.12 for equation (5-8) and 0,92 and 

I . 13 for equation (5-9) for annesiled smd quenched data respectively. 

These values are consistent within the approximations related to the 

model and the experimenteil errors. 

The signs of the tensor components A^^ and Â ^ were determined 

by examining the r e s u l t s of the measurements corresponding to the 

equations (5-3) and (5-5) i n re l a t i o n to the right handed coordinate 

set (+x, +y, +z) assigned to the samples used. From equation (5-5)» 

for a magnetic f i e l d direction silong the y-axis, we have 

thus the sign of Â ^̂  i s related d i r e c t l y to the signs of and 

and follovtfs immediately. A sim i l a r examination of the res u l t s of 

equation (5-3) evidences the method used to obtain the sign of Â ĵ.* 

For the right-handed a x i a l convention adopted here, both tensor comp

onents were - found to be greater than zero i n the anneeiled and quenched 

conditions. 

The room temperature measurements for the low f i e l d tensor 

components are l i s t e d i n table (5-2). 

TABLE (5-2) ! Low f i e l d magnetoresistivity tensor components at 300°K 

Pl1 P33 -®12,3 '23,1 N l ^ 2 ^ 3 ^1 ^ 3 ^ 4 ^1 *44 

I I . 7 13.8 -0.05 1.62 0.92 1.90 0.24 0.09 2.71 0.27 0.19-0.14 

The units are 10"'̂  m, 10"^ m T"'' and 10~^ m T"^ for 

P^j » P ^ j ^ l j . and A^^ respectively. 
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In d i r e c t contrast to the experimental observations at 77°K, the 

r e s u l t s of the measurements on ainnealed and quenched samples at room 

temperature are equal within the experimental errors. Experiment 

showed that a f t e r quenched samples have been heated up to the room 

temperature and l e f t to s t a b i l i z e for seversil hours, the r e s i s t i v i t y 

had returned e f f e c t i v e l y to the room temperature values i n the 

Einneailed state and further when these samples were taken back down 

to 77°K from room temperature they had r e s i s t i v i t i e s which were 

almost i d e n t i c a l ( % to the values they had had i n the annealed 

conditions. These r e s u l t s imply that the quenched-in defects 

eumesiled out between 77°K aind room temperature. Later i t w i l l be 

shovm i n section I I I of t h i s chapter that the thermoelectric power 

obeys the same rule: annealed and quenched samples are different at 

77°K but have become identicaO. by the time that room temperature i s 

reached. The point w i l l be developed l a t e r . However, the annealing 

behaviour has been investigated s t i l l further. After a sample has 

been quenched to 77°K and l e f t for a short time to achieve eq i i i l i b -

rium, measurements showed that for several minutes the r e s i s t i v i t y 

( P of z-samples slowly increased from the immediate quenched 

value. This change was about However the x- and y-sample 

resistances ( P = P ^ ^ ^ ^ change. No res

i s t i v i t y changes ensued aft e r the samples had been l e f t for many 

hours: i t can be concluded that after the small and rapid change i n 

P subsequent to quenching there i s no appreciable diffusion of 

the quenched-in defects at 77°K i n bismuth. 
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IV - THE MAGNETORESISTIVITY TENSOR AT INTERMEDIATE 

MAGNETIC FIELDS 

Towards the end of t h i s work Dr. J.E. Aubrey (Department of 

Applied Physics, University of Wales I n s t i t u t e of Science and Tech

nology, Cathays Park, Cardiff) kindly supplied to us the res u l t s of 

his derivation of the ma^netoresistivity expressions appropriate to 

the Fermi surface model for the A7 structure semimetals. We kindly 

thank him for h i s kind permission to use h i s r e s u l t s (Aubrey 1971). 

As a r e s u l t , i t was decided to extend the study further and find out 

the way i n which quenching could effect the intermediate maignetic 

f i e l d s data for bismuth. So measurements on the x-axis sample were 

extended to the msignetoresistivity tensor coefficients at intermediate 

f i e l d s both i n the annealed and quenched conditions. The sample 

configuration used wais the ssune as that used for the low f i e l d case; 

thus the measurements of P^^(B^)v and' 9i,1^^3^ tensor components 

could be made at intermediate magnetic f i e l d s . The f i e l d range 

covered was up to 0.5 T , The re s u l t s of the measurements sure presented 
again 

i n figures (5-11') and (5-12). The quenching effects were'found to be 

s•o^rl. pronounced. The analysis of the intermediate f i e l d data, 

based on Dr. J.E. Aubrey's theoretical r e s u l t s , w i l l be provided i n 

the next chapter. 

V - SAMPLE CONFIGURATIONS USED FOR THERMOELECTRIC AND 

MAGNETOTHERMOELECTRIC POWER MEASUREMENTS 

The thermoelectric power measurements were carried out on two 

samples prepared and cut edong the y- and z-axis directions. The two 
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zero-field tensor components " and were mesisured between 

77°K and 300°K i n both ainnealed aind quenched samples. The meaisurement 

sequence followed here was anneeiled-quenched-ainneailed using the proced

ures described previously. For both thermoelectric voltages and temp

erature measurements two precalibrated copper-constantaui thermocouples 

were used. Calibration charts, computed separately for each thermo

couple i n steps of 0.1 °C, were drawn up and used to cailculate the 

temperature gradients and the average sample temperatures. The copper 

leads of the thermocouples were employed for thermoelectric voltage 

measurements along the saimples. Results, converted from Seebeck 

c o e f f i c i e n t s r e l a t i v e to copper to absolute values by subtraction of 

the absolute Seebeck coef f i c i e n t of copper, for ot^^ and " j j ' ^ ® 

given i n figure (5-I3)* The effect of quenching on the thermoelectric 

properties of bismuth i s pronounced and, furthermore the character of 

the induced changes along the y- and z-axis are given i n reverse order, 

as observed for the r e s i s t i v i t y : while the thermoelectric power 

increases i n the y- direction on quenching, a reduction along the z-axis 

occurs. 

The magnetothermoelectric power measurements were also carried 

out on the same specimens. The seimple configuration, the direction of 

the temperature gradient and the plane including the magnetic f i e l d 

directions for these measurements are shown i n figure (.^-Ik), The 

y-aixis sample data includes maignetothermoelectric power measurements 

for magnetic f i e l d directions along +x- and z-axis ais a function of 

magnetic f i e l d s up to 0.5 T and magnetothermoelectric power polar 

diagrams for several constant magnetic f i e l d values. The polar diagrams 
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for "22^^^ ^ ® presented i n figures (5-15) - (5-1^)., 

for both the annealed and quenched conditions. I n quenched y-axis 

samples the magnetic f i e l d d*̂ p>'ride:r{ce are much smaller thein those i n 

annealed samples. This i s emphasised when the magnetic f i e l d i s 

directed along or nearly along the x-axis. I n t h i s configuration the 

magnetic f i e l d depehdehce c-is-> large for the sample i n the annealed 

condition; a f t e r quenching, they are much reduced. Measurements at 

room temperature proved to be ins e n s i t i v e to the magnetic f i e l d 

strength up to a f i e l d value of O.5 T ; t h i s demonstrates that the 

tensor components at t h i s temperature are extremely small. 

Of p a r t i c u l a r i n t e r e s t are f i e l d reverssil effects. When the 

magnetic f i e l d , directed along the x-axis, i s made larger than 0.075T , 

the sign of ^^22^^!^ reverses when the specimen i s i n the annealed 

condition. This effect occurs (see for instance figure 5-1^) whenever 

the magnetic f i e l d i s directed near to the x-axis direction but dies 

away rapidly 2us the f i e l d direction i s deviated from the x-axis; 

furthermore the f i e l d reqtiired to produce sign reversal becomes larger 

the greater the direction of B from the x-axis. The entire effect i s 

i l l u s t r a t e d i n figure (5--19), i n which i s plotted the f i e l d required 

to produce a zero thermoelectric voltage against angle of deviation 

of the applied magnetic f i e l d from the x-axis. I t can be seen that 

there i s a marked difference for t h i s required f i e l d , when the msignetic 

f i e l d i s taken through l8o°. When the sample i s quenched, the smaller 

magnetic f i e l d e f f e c t s can be seen c l e a r l y i n t h i s figure. The required 

f i e l d to produce a zero thermoelectric voltage i s now much greater than 

that for the annealed specimen; for the magnetic f i e l d s available (up to 
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about 0 .5 T ) the sign r e v e r s a l can only be seen for a range of about 
Q for - B . Q 

20 siround the x-aixis At 196 K no sign reversed cam be seen for 

magnetic f i e l d s up to O.5 T even i n the ainneailed specimen. The 

magnetotherraoelectric power polair diagrams for "22^^^ show the 

symmetries predicted by the phenomenological theory presented i n 

chapter I I I , i . e . ^ 22̂ "̂ 3̂̂  = "22^"^3^' "22^''^1^ ^ "22^"^1^ 

and "22^®^ ~ "22^ - Q) where Q i s measured from the z-axis 

aind represents the angle between the meignetic f i e l d direction and 

the trigonal z-axis. 

The low f i e l d tensor components related to the y-axis data 

cam be determined from equation ( 3 - ^ ) ; here the components of the 

magnetic f i e l d B and the temperature gradient G are given by (see 

figure 3-1^) 

B = (B^, 0, B^) and G = (0 , G^, O) 

and the corresponding equation for the thermomegnetic voltage then 

reduces to 

^ 2 = ^«11 - "11,1 1̂ * ^12^1' V 3 ' ^ ^2 

When the magnetic f i e l d i s adong the z-eixis, we have for li^ 

which can be used to determine tensor component D^^. For a magnetic 

f i e l d direction along +x-axis the following equations for 'Z^ are 

obtained 

and 

E2(-B^) = [ a ^ ^ + - 1 1 , 1 ^ ^ V l ' J ^2 



- 8 6 -

The svim of these two equations 

(£^(+8^) + E2(-B^) ) / 2G2 = ( + ^12^1^^ 

determines the tensor component D^^ difference 

( V ^ ^ l ^ - V - « 1 ^ ) / 2 G 2 = a^^^^B^ 

the tensor component - • 

The l i n e a r v a r i a t i o n i n "22^^^ magnetic f i e l d s along the 

X- and z-axis i s presented i n figures (5-2D) and (5-21.).. As i s observed 

from the polar data, the Umkehr effect occurs only along the +x direction. 

A leaist-mean-squares f i t to t h i s data ( l i n e a r and polar) i n terms of the 

bismuth band parameters i s presented i n the next chapter. 

Similair measurements were carried out on the z-axis specimen. 

By use of equation (3-69) i n r e l a t i o n to figure i^-^h) for th i s sample 

configuration, we have 

B = (B^, B^, 0) and G = (O, 0, G^) 

and 

E3 = [ c . 3 3 . D J , ( B / 4 B / ) 1 G 3 

For a f i e l d direction along either of the crystallographic axes (-x or 

- y ) , the tensor component D̂ ^ can now be determined. The resulting 

low f i e l d tensor components at 77°K and 196°K are presented i n table 

(5-3). 
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TABLE ( 5 - 3 ) : The low f i e l d magnetothermoelectric tensor components. 

Tensor Components "11 
a 

11,1 ^12 P13 3̂1 
Temperature 

- ^3 ^ 86 0.53 67.8 -25.0 -61.9 77°K 

Annealed 

- 53 -100 0.24 5.2 -2.2 -8.0 196°K 

r- 47 - 79 0.44 63.2 • -12.3 -58.6 77°K 

Quenched 

r 55 - 96 0.20 4.4 -0.9 -7.2 196°K 

Units 10"^ v A 
- h n 

10 V/T K 10" V/T^ 

Magnetothermoelectric power polar diagrams for a^^(B) i n 

xy- plane are presented i n figure ( 5 - 1 7 ) . Both for annealed 

and quenched specimens the data shows a uniform increase i n f^-^^^S) 

as the f i e l d increases. However, the magnetic f i e l d induced anisotropy 

i s l e s s pronounced for the quenched sample condition. Another import

ant r e s u l t for "•^^(S) i s that i t shows a 3 -fold symmetry i n xy- plane, 

indicating the existence of an Urakehr effect for f i e l d directions along 

the 4-x-axis. 

The phenomenological theory presented i n Chapter I I I , accounts 

quaintitatively for the general features observed here. Indeed the 

measured values (Table 5-3) of «... and D at 77°K for the low 
1 1 , 1 IC. 

f i e l d contributions up to B^ predict a sign reversal i n "22^^1^ 

0.0835 T which i s i n reasonable agreement with the measured value of 

0.075 T. 



a) \ 

\ 

Figure (5-1) The sample c o n f i g u r a t i o n s used f o r the 

galvcinomagnetic e f f e c t measurements, 

a) X-axis sample, b) y-axis sample, 

c) z-axis sample. 





Figure (5-3) - (5-10) 

Typical set of measurements of magnetoresistivity tensor 

components. The gradients of these curves give the low f i e l d 

c o e f f i c i e n t indicated i n figures. The f i l l e d c i r c l e s are the data 

obtained af t e r quenching and the open ones for the sample i n the 

annealed state. (77'*K) 



1.5- 2,0 
magnetic fCeld LTeslo^) 

ia,3 



CTasla) 
3-0 io^T 

25,1 



3 4 



E 
c 

CO 



A 13 



A 31 



A 3 3 





o 

o 
c 

5 

, « 
r-

, r" 

! —N 
>c 

fo
r 0 

>v 
M 

-p T! 
iH 

0) 0) 
e •H 

<H 
;3 O 
w •H 
nS •P 
OJ 0) 
E to 
•p £ •H 
> •H +J 
•P ct 
W •H 
•H 73 
(0 
0) s 1^ O 
+> -p 
0) c 

•H 
-P 

I 

U 
bO •H 



u. o 
C.0 
-p a 
s 
S-i 
CO 
i.t 
0) 
e 
>i 
-p 
•H 
> 
•H 
-P 
•H 
to 
0) 1̂ 
O +J 
(D 

(0 
T3 
H 
(U 
•H 
<M 

O 
•ri 
-P 
<D 
CI 
hO 
(ti 
S 
<D 
•P 
ce 
•H 
<i; B t. 
Oi 
-p 
•H 
JO 
(« 

0 © 

a J-

u 

o ® 

0 © 

0® 

CD 

C 3 

If 

- i t 

a 

a 

O ft) 

•si 
C5 



Q. 
E 
I-

0) 
u 
3 +> Oj 
fn 
0) 
ft 
E 
0) 

+> 
o 
o 
•H 
-P 
O 
c2 

B 
nJ-

(0 
•p 
C • 
0) 
•H 
O 
•H «H tm 
(1) o 
O 

u 
0 
3 
O P^ 
O 
•H 
^. 
-P 
O 
0) H 
0) 
O e u 
0) 

•p 

o 
u 
0) 

I 

0) • 

•H 

I -



3 ^ 

A 

a) 

V 
Figure (5-1^) : The sample c o n f i g u r a t i o n s used f o r the 

thermornagnetic power measurements, 

a) y~axis sample b) z-axis saiiiple. 
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F i ^ r e (5-I5) :, The p o l a r thermomagnetic power data f o r ^22^'^^ ' 

a t 77°K, a) 3 = 0,05 T b) B = O.O?"? T. o o 

Open c i r c l e s correspond t o measurements on 

annealed samples. 



zoo 2 

Figure : The p o l a r therraomagnetic power data f o r (X^pCs) 

a t 77°K, = O.3S T. Open c i r c l e s correspon t o 

measurements on annealed samples. 

+ X 

Figure i^-"^?) '• The thermomagnetic power data f o r s-saaple i n 

xy plane, a t 77°K, 3^ 0.1 T, 



AX 

-80 z 

F i s u r e (5-I8) : The po l a r thermorr^agnetic pov/er data f o r ^22^^' 

at 196°K, a) 3^.==0.ifT b) = O.5 T. 

Open c i r c l e s correspond t o measurements on 

annealed samples. 
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the measurements on annealed sam-oles. 
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CHAPTER VI 

THE COI-IPUTATIGN AND DISCUSSION OF MODEL PARAIffiTERS 

I - INTRODUCTION 

The experimental r e s u l t s presented i n Chapter V for both the 

galvanomaignetic and thermomagnetic effects i n the annealed and quenched 

sample conditions can now be quantitatively discussed on the basis 

of the ^ermi surface model presented i n Chapter I I for bismuth. In 

Chapter I I I , the theoretical expressions at low and intermediate 

f i e l d s have been formulated i n terms of charge c a r r i e r densities and 

mobilities. A comparison between the theory and the experimental 

data requires a f i t to the eqtiqtions involved i n terms of the eight 

band parameters y^, V-^^ Vy y^, v^, v^, N, P for bismuth. 

The determination of these parameters provide, basic information on 

the c a r r i e r transport properties of bismuth and on the effects of 

quenching on them. The procedures leading to the evaluation of these 

eight parameters from the galvanomagnetic data are now detailed. 

I I - METHOD OF COMPUTATION 

Determination of the model parameters from the measured data 

i s a d i f f i c i i l t task. The equations r e l a t i n g these parameters to the 

measixred data are complex. A direct solution by the elimination of 

the unknown i s not only impractical but also the adoption of such a 

procedure would magnify the experimental errors, because the measured 
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Coefficients would then become involved i n equations i n high order 

powers. Also since the model i t s e l f can only be an approximation an 

exact solution cannot exist. One approach would be to take t r i a l 

values f o r the model parameters, substitute them int o the equations 

and t r y to improve the parameters by comparing the calculated values 

fo r the equations with the corresponding measured values. Of course 

t h i s procedure cannot be based on arbitrairy t r i a l and errors adoption 

of a computational method i s necessary. This approach has the added 

advantage that the number of measured coefficients usually exceeds 

the number of unknown. I t i s usual to use a generalized least-mean-

squares f i t of the measurements to the predictions of the equations 

(Jeavons and Saunders 1969}, Hartman 1969'*, where the minimization 

of a function defined by 

2 
SDM = I (6 -1) 

i s required using the variable metric method of Davidpjs (1959)»' 

On s u b s t i t u t i o n of arhitrary values f o r the eight unknown, a calcu

lated value (CAL(J) ) f o r a p a r t i c u l a r equation J i n the set i s 

obtained; CO(J) i s the corresponding measured value. V/j i s a weight 

factor used to put more emphasis on the most accurately measured 

co e f f i c i e n t s , to avoid masking by contributions of the small and 

less precisely determined ones. To perform t h i s computation, a 

Fortran IV programme has been devised: the variables ŷ ,. y^J 

y^, "^-jt '^^1' N and C (the hole to electron carrier density r a t i o 

P/N) are scanned independently, and each time the numerical values 

of the equations are evaluated and then through equation ( 6 -1 ) the 
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best least-mean-squares f i t to the measured data i s assessed. This 

also provides a 'feed-back' control f o r the values over which the 

variables mustbe swept for the minimization of the term SUM i n equation 

( 6 - 1 ) . The result i s a steady progress towards the best approximation. 

The s t a r t i n g t r i a l solutions i n principle could take any value, provided 

that appropriate sweep steps are chosen and a s u f f i c i e n t l y large number 

of cycles i s allowed. At the s t a r t of the solution procedure, a r b i t 

rary values have been assigned for each model parameter. Checks have 

shown that, whatever the i n i t i a l points are, the f i n a l solutions are * 

ijnchanged. The computing programmes used for the assessment of the 

model parameters from the galvanomagnetic and thermomagnetic data 

have essentially the same structure. They are reproduced i n the 

appendix. 

I l l - SOLUTIONS FOR THE GALVANOMGNETIC DATA 

A - Low Field Magnetoresistivity 

A representative set of the low f i e l d , galvanoraagnetic tensor 

components from table ( 5 - 1 ) has been taken (see table 6 - 1) to evaluate 

the band parameters i n the annealed and quenched sample conditions. 

The calculated model parameters f o r quenched and annealed 

bismuth at 77°K and at room temperature are l i s t e d i n table ( 6 - 2 ) . 

These results present f o r the f i r s t time the effect of quenched-in 

defects on the components of the mobility tensors u and v and on 

the c a r r i e r densities i n each beind. For direct comparison with 

other Fermi surface parameters, i t i s often convenient to know the 

components ( "HJ , y^) of the diagonalized tensor; these 
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m o b i l i t i e s along the e l l i p s o i d a l p r i n c i p a l axes are also given i n 

table ( 6 - 2 ) . 

Some physical insight i n t o the effects of quenching can be 

gained by considering the magnetoconductivity; the separate c o n t r i 

butions of the electrons and holes to each coefficient of the msignet-

oconductivity tensor a (B) at 77 K have been calculated from the 

model parsimeters i n table ( 6 -2 ) and are l i s t e d i n table ( 6 - 5 ) . 

Although quenching greatly increases the hole density, the much more 

mobile electrons s t i l l dominate the carrier transport properties i n 

the quenched crystals. I n the coefficients Ŝ ,̂ S^y S^^ holes play 

no part because they are sited i n an e l l i p s o i d of revolution about 

the z-axis. Furthermore, the hole contribution i n Ŝ ^ i s d i r e c t l y 

proportional to the square of the very small component and i s 

negligible. 

Carrier mobilities are somewhat lower i n the xy plane i n 

the quenched state than i n the annealed condition; the quenched-in 

defects play a s i g n i f i c a n t role i n the carrier scattering. The z-

axis m o b i l i t i e s and have been increased s l i g h t l y by quench

ing; t h i s anomalous behaviour i s a direct r e f l e c t i o n of the experi

mental observation that p i s reduced by a small amount ( -3 %) 

a f t e r quenching; the z-axis conductivity 

a^^ = 1 / p ^ ^ = Ne y^ + Pe (6 -2 ) 

i s almost completely dominated by the electron contribution (see 

table 6 -3) and both the electron density N and the mobility tensor 
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component y^ are increased by quenching. Furthermore, on quenching 

both the electrons and holes have increased i n number and also the 

equality between t h e i r densities has been destroyed i n favour of the 

hole population. The quality of f i t as estimated from SUM i s about 

the same f o r the annealed (0.2072) and quenched (0.1925) conditions. 

For the ind i v i d u a l tensor coefficients the f i t , assessed by the 

rat i o s between the calculated and the measured coefficients, i s i n 

general excellent (see table 6 - 3 ) . 

B - Magnetoresistivity Data at Intermediate Fields 

For the intermediate f i f t i d s , the measured data (see figure 5 -

1r1,12) have been used i n conjunction with the magnetoconductivity 

expressions ( 3 - 3 1) and ( 3 - 3 2 ) . I n principle the solutions f o r the 

complete set of model parameters can be obt^ned from the data points 

fo r each raagnetoresistivity components for P^^(B^), and p^^(B^) 

alone. The success and the r e l i a b i l i t y of such a solution then mainly 

depends on the varia t i o n of magnetoresistivity as a function of mag

netic f i e l d . I f t h i s variation i s s u f f i c i e n t l y large and sensitive 

to small t r i a l changes i n each model parameter, such a solution can 

be useful. Here the data f o r raagnetoresistivity components P - i i ^ ^ l ^ 

and p^^(B^) have been u t i l i z e d . The computations have been based 

on 19 of the data points measured as a function of magnetic f i e l d . 

The expressions r e l a t i n g P-^^^l^ ^ l / ^ 3 ^ *° magnetocond

u c t i v i t y components can be obtained through the inversion of 0 (5 ) 

and they are 
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• ^ 1 ^ ^ = ^ / ^ 1 ^ ^ 1 ^ 

(6-3) 

P (B ) = ( o (B )/( ^ (B ) (B ) - ^ (B ) o ) )) 
i r 3 22^ 3^^^ ir^ 3 ' ^ 22^ 3̂ ^ 12^ 3̂ ^ 2r 3'̂  ^ 

The magnetoconductivity terms involved i n equation (6-3) are given by 

a^^(B^) = ney^4|^(y^+3y2+^dB^)(i + ^(3y^y^ + 

+ Pe (6-^) 

' ' l l ^ V = °22^^^=^^N-'^2^^''''^1^2^3^"'' +Pev^(l+v2B2)-'' 

''l2^^3^ = 02^(-B^)= -3ney^y2(l+y^y2^|)"''B^+Pev2(i+v^B^)B^ 

where d i s the determinant of the electron mobility tensor and 

N(=3n), P are the electron and hole carrier densities. The model 

parameters evaluated through a least-mean-squares f i t method are 

l i s t e d i n table ( 6 - ^ ) . The agreement between the measured and the 

calculated data i s i l l u s t r a t e d i n figures (6-1) and (6 -2 ) . 

The solutions obtained from the intermediate magnetores

i s t i v i t y data serve two purposes: to test the a p p l i c a b i l i t y of the 

magnetoconductivity expressions at higher megnetic f i e l d s i n bismuth, 

to assess the quenching induced changes on the model parameters. 

The agreement between the theory and the experiment i s 

excellent. Magnetoresistivity solutions at intermediate f i e l d s are 

consistent with the low f i e l d solutions for both the annealed and 

quenched sample conditions. The quenching induced changes on the 
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model parameters obtained by both methods are i n reasonable agreement; 

the mobility components i n the xy-plane Eire reduced while those along 

the z-axis s l i g h t l y increased; quenching results i n creation of an 

excess number of holes. However the intermediate f i e l d solution 

predicts s l i g h t l y lov/er carrier densities than the low f i e l d data, 

but the prediction of increased c a r r i e r densities for both electrons 

and holes i s consistent. Thus on the basis of magnetoresistivity 

data, the r e s u l t of the introduction of the defects i s to d i s t o r t 

the band edges i n such a way as to increase the band overlap. A 

quantitative assessment of the s h i f t s i n the Fermi levels can be 

obtained d i r e c t l y from the expressions for the density of carriers 

i n a valley containing r el l i p s o i d s . For the conduction band 

(N/r = (^ TT /\?) (2m kT )^/2(m*)^/^ (n ) (6-5) e o e ^ e 

where m̂  ( i n units of 11^) i s the density of states effective mass. 

A similar expression obtgiins for the valence band. The density of 

states effective mass at 77°K can be considered to be unchanged 

from the l i q u i d helium values, an assumption that has proved succ

essful f o r antimony (Saimders and Oktii 1968); the electron value of 

i s taken from Aubrey (196I) as 0.0^2 and that for holes xs^ as 

0.115 from Brandt (196O). The Fermi levels i n the electron and hole 

bands and the band overlap i n bismuth at 77°K before and after quen

ching are given i n table (6-5). The band overlap i s increased by 

13 % on quenching. The increase (27 %) i n energy separation between 

the Fermi l e v e l and the valence band edge i s much larger than that 

(5 %) f o r the conduction band; t h i s r e f l e c t s the finding that after 

quenching the hole concentration .'has increased ^ times more than 
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that of the electrons (table 6-2) and shows that the hole e l l i p s o i d 

expands much more than to the three electron pockets. The basic 

tendency of the quenched-in defects i s to affect the Fermi surface 

as i f they were electron traps. A p a r a l l e l cein be drawn with graphite 

i n which excess holes aire created by both electron and neutron i r r a d 

i a t i o n damage (Blackman, Saunders and Ubbelohde 196I, Corbett 1966, 

Saxmders 1970). 

The Seebeck coefficient data provide further confirmation of 

the nature of the changes at the band edge follov/ing quenching. The 

Seebeck tensor components a and a^^ are related to the isotropic 

p a r t i a l Seebeck coefficients (P^ and P̂ )̂ by equation (3-37b)/ These 

quantities can be wri t t e n i n terms of the carrier mobilities and 

densities as 

^h = 

Pe = 

g^^ (y^+y^+2ce V^) - ^^^^^^^^2^^^^, +'^^^3) 

c'(2 v^y^ - v^( + ^ 

V 3 (y^ ^ y ^ ) - 2 v ^ y^ 

(6-6) 

where e:, the r a t i o of the hole to electron densities, i s 1.0 i n 

annealed and 1.2 i n quenched bismuth. Use of mobilities from table 

(6-2)^ shows that quenching has caused to reduce from -97 yV/̂ K 

to -91 yV/ °K and P̂  from +11 if p V/ °K to 95 y V/ °K at l i q u i d 

nitrogen temperatures. These p a r t i a l Seebeck coefficients have been 

used to calculate the electron and hole Fermi energies on the r e s t r i c 

t i v e assumption of acoustic mode, int r a v a l l e y scattering (S= - 5 - ) from 
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(Gallo et a l 1962, Saunders and Oktii 1968) 

Pe = - i ^ 
e - ( 5 / 2 t s ) F , ^ ^ ^ ( n ^) 

(6-7) 

p̂  = I r (̂ /̂ -̂ ^̂  V2.S - ( V -
(3/2 + s) F̂ 3̂ - ( n j , ) -I 

where n , are the p a r t i a l , reduced Fermi energies of electron and 

holes. The Fermi levels and band overlap calculated by th i s method 

are given i n table ( 6 -5 ) ; although they have a substantially wider 

margin of error than those calculated by the other method they do 

serve to confirm the basic findings from low and intermediate f i e l d 

magnetoresistivity data. As a result of quenching i n bismuth, the 

baxid overlap i s increased; the r e l a t i v e energies of the Fermi le v e l 

with respect to both;band edges increase, that i n the valence band 

markedly: the quenched-in defects show predomiantly acceptor-like 

character. 

IV - APPLICATION TO THE THERMOMAGNETIC DATA 

For the thermomagnetic power data the programme was extended 

so as to f a c i l i t a t e the solutions of the band parameters from linear 

and polar magnetothermoelectric polar plots f o r a'^^iB), The v a r i 

ation of the thermomagnetic power data as a function of magnetic 

f i e l d i s not eis large as the magnetoresistivity data. The quenching 

effects on the thermomagnetic properties of bismuth are dramatic 

(see figures 5- "̂ 5, 16 j and the generail tendency i s towards the 
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reduction of ma^etic f i e l d effects and angular anisotropy i n "22^^^ 

i n xz-plane. For th i s reason, quenched magnetothermoelectric power 

polar data do not allow quantitative assessment of the quenching 

induced changes on the model parsimeters. The only data set i n the 

quenched condition which can be analysed quantitatively i s that for 

°'22^^3^' determination of a set of model parameters based 

on t h i s data w i l l be presented. The data obtained from the z-axis 

sample (see figure 5-17) i n both sample conditions i s again not 

analysable, because hot only are the magnetic f i e l d effects much 

smaller but also the main features of the angular change i n magneto-

thermoelectric power data i n the xy-plane are completed i n about 

3 0 ° angular sections of the plane. However, f o r the y-axis sample . 

i n the annealed state both the linear and polar data show s u f f i c i e n t l y 

large f i e l d or angular dependent variations for analysis to be 

possible. Least-mesin-squares procedure solutions based on these 

data have been obtained f o r both °22^^^ polar plots and '*22̂ "'̂ 1̂̂  

and ^22^^3^' extraordinary changes i n "22 '̂̂ ^ ^ 

plane show both the sign reversed i n magnetothermoelectric power 

sind the characteristic features of the Umkehr effect. A f i t to t h i s 

data i n terms of the model parameters i s a most valuable test for 

the v a l i d i t y of the theory developed for the thermomagnetic effects 

and of the adopted Fermi surface model. For t h i s purpose two of 

the polar data sets have been u t i l i z e d : one for a magnetic f i e l d 

(O.O75T ) j u s t less than that required for observation of sign 

reversal f o r any orientation i n the xz-plane, the other large enough 

(6.38 T) so that sign reversal i s manifested over a large angular 

region i n that plane. The solutions were also extended to the polar 
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plots obtained at 0.68 T by Michenaud et a l (1970) and at 1.00 T by 

Smith et a l (1964): i t i s pertinent to test the theory with these classic 

r e s u l t s , as well as with our own. The shapes of these polar diagrams 

are very sensitive :̂o the directio n , sense and magnitude of the applied 

magnetic f i e l d s . 

For the component 22(^1' ^3^ °^ thermomagnetic tensor 

we have from equation (3-37) 

a22 (B) = P^^(B) (Pg a ^ ^ ( B ) + Pj^ a'^^(B) ) 

+ P IAB) (P^ o !(B) + P, 0^ (B) ) (6-8) 
22 e 22 n 22 

e — h — 

where the p a r t i a l magnetoconductivities o. .(B) and ° . .(B) for 

electrons and holes respectively can be obtained from equations (3-31) 

and (3-32); the t o t a l magnetoresistivities ^ i j ^ ^ ^ ̂ '̂̂ ^ found 

by i n v e r t i n g a^(B). Then the angular dependence of "̂ 22̂ ^̂  

been calculated using equation (6-8) by w r i t i n g the magnetic f i e l d 

i n the xz-plane as 
B^ = BQ cos 0 

B^ = BQ sin 0 

A set of nine model parameters, corresponcSing to the multivalley, 

two c a r r i e r , e l l i p s o i d a l Fermi surface, i s computed, including the 

components of mobility tensors f o r electrons y eind holes v i n the 
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crystallographic freime of reference, two p a r t i a l thermoelectric powers 

P^ and P^ and the car r i e r densities which enter i n t o the magnetothermo

e l e c t r i c power expressions as a r a t i o c(= P/N)i 

To obtain the solutions, a similar least-mean-squares proced

ure has been used to f i t the theory to the polar data for o.^^{0). 

Computations have been performed at 10° intervals i n the xz plane 

around the y-axis; taking the symmetry into account, t h i s provides 

an overdetermined set of 19 effective angular data points from which 

to cailculate the 9 unknowns. A theoretical computation of each 

c 2 2^^j^ carried through by inserting an ar b i t r a r y set of model 

parameters i n t o equation ( 6 - 8 ) , each calculated value i s then divided 

by the corresponding experimental value of the °'22^^J^ next 

used i n equation (6-1) to minimize the term SUM. 

The sam6 procediires apply for linear data for which B i s 

replaced by the appropriate component. 

The f i t s obtained are plotted i n figures (6 -3 ) , iS-k) and 

( 6 - 5 ) , to allow direct comparison with the experimental observations 

of '^^^iB)] the characteristic shapes of the experimental polar 

diagrams, incluciLng the f i n e r -topological deteiils, are reproduced 

by the th e o r e t i c a l l y computed curves. The Umkehr effect and the 

sign reversal have come naturally out of the transport theory with 

the correct magnitude and the orientation dependences. 

The calculated model parameters corresponding to the theoret

i c a l f i t s i n figure (6-3) and ( 6 - 4 ) , (6-5) are collected i n table 

(6-6) and ( 6 - 7 ) . The solutions obtained for band parameters from 
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•different sources are i n reasonable agreement. 

In addition to accoimting f o r the appearance of an Urakehr 

effect i n °'22^^^' theory can also be used to predict which 

other tensor components and experimental configurations should show 

t h i s property. I t i s valuable to set up the procedure prerequisite 

f o r t h i s purpose. Each tensor component a_^^(B) can be decomposed 

i n t o odd and even terms with respect to B. An Umkehr effect i s to 

be expected only i f the pa r t i c u l a r " i - j ^ ^ ^ under study contains 

odd terms. Using equation ( 3 - 3 1) and (3-32) the ful f i l m e n t or 

otherwise of t h i s condition csin be established. As an example, l e t 

us consider those cases i n which the magnetic f i e l d i s directed 

along the x-axis iB^/O, = = 0) while the temperature gradient 

i s established along any of the three major (x, y or z) c r y s t a l l o -

graphic axes and the thermoelectric voltage i s measured along the 

temperature gradient di r e c t i o n * Then 

^ k=1,3 
(even) ,^ e (odd) ^ ^ h(odd) s 

Pik ^ k i ^ ^ h ^ k i ^ 

(6 -9) 

(odd) e(even) h(even) 
- P i k ^^e - k i . ^ ''̂  '^ki > 

Using equations (3 -31) and (3 -32) for s i n equation (6 -9 ) we 

have 



- 1 0 8 -

- a 
e(even) 

32 
a a _ 0 a 
22 33 23 32 

2 P < ( < ^ ^ ^ V ( P . P ^ ) a l ; C o d d ) 
e 32 e h 32 

- a 
e(even) 

32_ 

(6-10) 

a a - a a , 
22 33 23 321 

f 2 P a l i ' ^ ' K ( P . V ) o\l°'^^ e 23 e h -* 

Thus on the basis of the Fermi surface model adopted for bismuth, 

the x-cut sample should not show sin Umkehr effe c t , while the y- and 

Z- cut samples should. By following t h i s procedure through, we have 

ascertained which of the tensor components are expected to exhibit 

the e f f e c t . Those that do are enclosed i n rectangles i n the complete 

scheme below. 

«11 ( B , ) 

( B , ) 

^^31 

a 
11 

S(B^) = a 
21 

a 
31 

( B , ) 

"11 <=3' 

"31 <=3' 

12 1 

" 2 2 < ^ > 

"32<=3' 

"13 

a 2 3 ( B ^ ) 

« 3 2 ^ ^ ^ " 3 3 

<̂  CB ) 
12 2 "13 <^2> 

"22 '^2> 

"32'=2> 

"23 <»2> 

"33 ' ^ a ' 

"12'=?> -13 

"23 <»3' 

"33 <»3> 

(6-11) 
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The occurrence of an Umkehr effect i n "22^ ' ' ' ^1^ already discussed in-

d e t a i l here i s consistent with these predictions. Furthermore, measure

ments on the z-axis sample show the existence of asi Umkehr effect i n 

a ̂ ^(+B^) (see figure 5-1v^0 and the plots presented by Gitsu et a l 

(1970) have shown that a^^(B^) does not show an Umkehr effe c t , as 

predicted here. 

F i n a l l y we turn b r i e f l y to the interesting problem of how . 

the Umkehr effect and the electron Fermi e l l i p s o i d t i l t angle are 

related. This question can be examined by recourse to equations of 

the form of (6-IO). I f the t i l t angle i s set to aero, y becomes 

zero. I n t h i s case the expressions f o r and ^ •^^'^^'^ 

equations ( 3 - 3 1) and ( 3 - 3 2 ) ) show that ^^©(even) ̂ ĝj,Q„,gg ̂ ero and 

th i s leads immediately to the disappearance of the Umkehr effect. 
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F i g u r e ( 6 -3 ) : l i n e a r thei-moraagiietic data f o r . ^ 2 2 ^ " ' ^ 1 ^ * 

p o i n t s on the s o l i d l i n e correspond to the 

t h e o r e t i c a l l y computed v a l u e s ^ a n n e a l e d ) . 

The 



I -

2 
iZ 

c 
C P 

o 

2 

(1) 
c •H 

H 

T ) 
•H 
H 
o 
to 
t) 

si 
•p O 

c 0 
o o 

c 
to c 

n
t 

•H . 
O to 
ft 0) 

0 ) . H 
Si tfl 
EH . > 

• 0) 
- P 

rA (ti 
m H 

' nj O 
f\J H 
0 

IS
O

 

t>> 
;M H 
o H 

t H td 

(C o 
•H -p -P 

(C <U 
-o U 

o 
o 0) 

•rl Si 
-P •P 
0) 
C 0) 
hO 
tC -p 
e o o £ -p 
U 
(1> tJ 

J 3 
-P o 

ft )H [Q 
0$ tl> 
0) ^4 
C! ;H 
•H o 

o 

VD 

<1> 

bO 
•H 



i 

o o 
„ ~ * — ^ 

/ o \ 

.-20 

^ , , ( — { O ? l tu 

-6o( -40 -20 S 

O 0 

-20 -40 -160 I 

-20 0 " - - . -

O 0 

• 0 

-260/' - 1 0 0 0 + 1 0 0 • 1 0 0 0 - 1 0 0 \ - 2 0 0 

" 0" 

• 0 

^+|( 

.. r* - A 0 -1 
— — K • 

1 — 1 

- 2 0 0 / " ' ^ - l o o 0 • + 1 0 0 + 1 0 0 0 - 1 0 0 V 2 0 0 ' 

o f 
/( 

^/ * b o \ . 
\° 

• ° ^ ^ ^ ^ 
0 

° 0 0 0 ° 

r-! 

FH 
EH 

0) E! 
OD s • 
l A •rl . ^< 
0 

e
x

p
e
 

cd 

(0 
ID 

ne
 r-l 

ne
 

(ti 
C-i > 

EH 
T3 

l A • !>- •P 
0 J - ?s 

0 ft 9 
0 ON a 0 

•—\ C
O

 

C
O

 

H 
> J 

H 
+̂  

(0 H 
ni 

H 0 
Q) J 3 •H 0 

•H - P +> 
•H 
G L 

^ 

th
 

0 0 • 
•rl 0 c • P xi 
0 EH • - p 01 

!̂  
to d) t j 
nS xi 
E . EH 0) 

0 0 
10 CO 

T I - 0 0 
0 r-l > ti u nS • 3 u 3 

H ti •rl 
ft 
IN! /— a - P 

0 ' . 0 0 
0 

. 0 ON 0 
r- (C 

4-> ,C! 
rH • P 0 

ti tS •rl 
. 5 

x : 
•H 

• P 

•rl 
. 5 -p 

^—. 0 •O 
pq 0 a T3 (? 

A ! PS 
OJ (ti d 10 

en
 a 

, C 0 0 
0 u !-< 

•A (ti •H 
0 

V ' 10 
0 

W -l-> T ! 
- P EH fl fl) 
0 0 W 

H CO a r> 
ft 0 rH . IH 0 
(-1 0 
nS (0 Xi, 

H . (ti - P 
0 —s 0 •H 
ft 0 a 

•H 

l A 
I 

0 

•H 



-•110-

APPENDIX 

B A N D S T R U C T U R E C A L C U L M I O N (LOW F I E L D GAL V A N O M A G N E T I C D A T A ) 
D I M E N S I O N S ( 8 ) , M A X ( 8 ) , M I M ( 8 ) , S T E P ( 8 ) , C 0 ( 1 2 ) , S U M ( 2 ) , Q ( 1 2 ) , Z { 1 2 ) 

1 H ( 8 ) , S 0 L ( 8 ) , W E { 1 2 ) , W ( 1 2 ) 
I N T E G E R I , J , K , C , U 
R E A L S M A L L 

1 F O R M A T ( 8 E 1 0 . 0 ) 
I I F O R M A T ( 1 2 F 4 . 1 ) 

2 F O R M A T ( 2 D X , • I N I T I A L S O L U T I O N S F I T T E O » / 2 5 X , ' M E A S U . ^ ED C O E F F ' / 
1 ( 2 { 6 E 1 2 . 3 / ) ) ) 

1 0 F O R M A T ( 2 5 X C A L C U L A T E D C O E F F ' / ( 2 { 6 E 1 2 . 3 / ) ) ) 
8 0 F O R M A T ( 2 5 X , • S T E P S • / { 8 E 1 2 . 2 / ) ) 
5 9 F O R M A T ( 2 5 X , • S O L U T 1 O N S • / ( 8 E l O . 2 / ) ) 
4 F O R M A T ( 2 5 X , ' R A T I O E S ' / ( 2 { 6 F 1 2 . 2 / ) ) ) 
5 F O R M A T { 2 5 X , ' S U M ' / ( 2 F 2 0 . 4 ) ) 
3 F O R M A T ( 2 5 X , ' F I N A L S O L U T I O N S ' - / ( 3 E l U . 2 , F 6 . 2 , 4E 1 0 . 2 / ) ) 
6 F O R M A T ( 2 5 X , • M E A S U R E D C O E F F ' / ( 2 ( 6 E 1 2 . 3 / ) ) ) 

R E A D { 5 , 1 1 ) ( W ( K ) , K = 1 , 1 2 ) 
R E A D ( 5 , 1 ) ( M A X ( I ) , 1 = 1 , 8 ) 
R E A D ( 5 , 1 ) ( M I N { I ) , 1 = 1 , 8 ) 

5 0 R E A 0 { 5 , 1 , E N D = 9 9 ) ( S { I ) , I = 1 , 8 ) 
R E A 0 { 5 , 1 ) ( S T E P { I ) , 1 = 1 , 8 ) 
R E A D ( 5 , 1 ) ( C C { I ) , 1 = 1 , 1 2 ) 
S M A L L = 0 . 0 0 1 
H K = O o O 
0 0 7 1 = 1 , 8 
S O L ( I ) = S ( I ) 
H { I ) = 1 

7 C O N T I N U E . 
S U M ( 1 ) = 0 
S U M ( 2 ) = 0 
DO 1 6 C = l , 1 0 
DO 1 9 U = l , 5 0 
DO 1 3 1 = 1 , 8 
S U M { 2 ) = 0 

S ( I ) = S ( I ) + S T E P ( I ) 
I F ( S { I ) . G T . M A X ( I ) ) GO T O 15 
I F { S ( I ) . L T o M I N ( I ) ) GO T O 15 

, C A L L DEV { S , Z ) 
DO 1 8 K = 1 , I 2 ^ 
G ( K ) = { Z { K ) / C O ( K ) ) 
W E ( K ) = ( C { K ) - 1 ) , 
W E { K ) = W I K ) » W E ( K ) 
S U M ( 2 ) = S U f ^ ( 2 ) + W E ( K ) « « 2 

1 8 C O N T I N U E 
I F ( H K . E Q . 1 . 0 ) GO T Q 7 7 
W R I T E { 6 , 2 ) ( C G ( K ) , K = 1 , 1 2 ) 
W R I T E { 6 , 1 0 ) ( Z ( K ) , K = 1 , 1 2 ) 
W R I T E { 6 , 5 9 ) { S C L ( I ) , 1 = 1 , 8 ) 
W R I T E ( 6 , 8 U ) ( S T E P ( K ) , K = 1 , 8 ) 
W R I T E ( 6 , 4 ) ( O I K ) , K = 1 , 1 2 ) 
W R I T E ( 6 , 5 ) ( S U M ( I ) , 1 = 1 , 2 ) 

H K = 1 . 0 . . 
7 7 I F ( S U M ( 1 ) - S U M ( 2 ) ) 1 5 , 1 4 , 1 4 
1 5 I F ( H ( I ) - 2 5 ) 2 1 , 2 1 , 2 2 
2 1 S T E P ( I ) = - S T E P ( I ) 

S ( I ) = S O L ( I ) 
H ( I ) = H { 1 ) + 1 
GO T O 1 3 
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2 2 S T E P d ) = - 0 o 5 ^ ^ S T E P ( I ) 
S { I ) = S O L { I ) 
H ( I ) = l 
GO TO 1 3 

1 4 I F ( S U M ( 2 ) - S M A L L ) 9 , 9 , 2 0 
2 0 S G L ( I ) = S ( I ) 

S U M ( 1 ) = S U M ( 2 ) 
1 3 C O N T I N U E 
1 9 C O N T I N U E 

W R I T E ( 6 , 5 9 ) ( S C L { I ) , 1 = 1 , 8 ) 
W R I T E ( 6 , 8 0 ) { S T E P ( K ) , K = 1 , 8 ) 
W R I T E ( 6 , 6 ) ( C G ( K ) , K = 1 , 1 2 ) 
W R I T E ( 6 , 1 0 ) ( Z ( K ) , K = 1 , 1 2 ) 
W R I T E ( 6 , 4 ) ( Q ( K ) , K = 1 , 1 2 ) 
W R I T E ( 6 , 5 ) ( S U M ( I ) , 1 = 1 , 2 ) 

1 6 C O N T I N U E • , 
9 DO 2 5 1 = 1 , 8 ; 

S ( I ) = S O L ( I ) 
2 5 C O N T I N U E 

S O L ( 4 ) = ( 9 0 . 0 / 3 , 1 4 1 6 ) « A T A N ( ( 2 , 0 * S 0 L ( 4 ) ) / ( S O L ( 2 ) - S O L ( 3 ) ) ) 
W R I T E ( 6 , 3 ) ( S O L ( I ) , 1 = 1 , 8 ) 
W R I T E ( 6 , 1 0 ) ( Z ( K ) , K = 1 , 1 2 ) 
W R I T E ( 6 , 6 ) ( C O ( K ) , K = 1 , 1 2 ) 
W R I T E ( 6 , 4 ) ( Q { K ) , K = 1 , 1 2 ) 
W R I T E ( 6 , 5 ) ( S U M ( I ) , 1 = 1 , 2 ) 
GO TO 5 0 

9 9 S T O P 
END 
S U B R O U T I N E C E V ( A , Z ) 
D I M E N S I O N A ( 8 ) , Z ( 1 2 ) 
R E A L Q 
Q = 1 . 6 
Z ( l ) = ( 2 / ( A ( 5 ) ( A ( l ) + A ( 2 ) + 2 * A ( 8 ) * A ( 6 ) ) ) ) 
Z ( 2 ) = ( 1 / ( A ( 5 ) * Q * { A ( 3 ) + A { B ) » A ( 7 ) ) ) ) 
Z ( 3 ) = ( 4 * ( A ( 1 ) « A ( 2 ) - A ( 8 ) * A ( 6 ) » * 2 ) / ( A ( 5 ) » Q » ( A ( 1 ) + A ( 2 ) + 2 * A { 8 ) » A ( 6 ) ) 

1 * ^ * 2 ) ) 
Z ( 4 ) = ( A ( 3 ) * { A ( 1 ) + A ( 2 ) ) - 2 « A { 8 ) * ^ A ( 6 ) * A ( 7 ) - A ( 4 ) » » 2 ) / ( A ( 5 ) « Q « ( A ( 1 ) + A | 

1 ) + 2 » A ( 8 ) * A ( 6 ) ) * ( A { 3 ) + A ( 8 ) » A ( 7 ) ) ) 

Z ( 5 ) = ( A ( 3 ) * ( A ( 1 ) - A ( 2 ) ) * ^ ' 2 + A( 4 ) » * 2 * ( 5 * A { 1 ) - A ( 2 ) ) ) / ( 2 « A ( 5 ) * a » ( A ( l ) | 

1 A ( 2 ) + 2 * A ( 8 ) « A ( 6 ) ) * ^ * 2 ) 
Z ( 6 ) = { 1 / ( 2 » A ( 5 ) * G ) ) « ( A { 1 ) * ( 3 « A ( l ) * f A ( 3 ) + A ( 4 ) * » 2 ) + ( 2 » A ( l ) + 3 « A ( 2 ) ) « | 

l ( A ( 2 ) « A ( 3 ) - A ( 4 ) r . * 2 ) + 8 ^ ^ A ( 8 ) * A ( 7 ) * A ( 6 ) « » 2 - 2 * ( ( A ( l ) + A ( 2 ) ) * A ( 3 ) - 2 * 
2 A ( 8 ) * A ( 6 ) * A ( 7 ) - A ( 4 ) i»^*2 ) « * 2 / ( A{ 3 ) + A ( 8 ) * A ( 7 ) ) ) / ( A { 1 ) + A ( 2 ) + 2 » A ( 8 ) « - A j 
3 ) ) * » 2 

Z ( 7 ) = ( 2 « { A ( 1 ) * A ( 2 ) » { A ( 1 ) + A ( 2 ) ) + 2 » A ( 8 ) » A ( 6 ) * » 3 - 4 * ( A ( 1 ) » A ( 2 ) - A ( 8 ) « 
1 6 ) * ^ f 2 ) * » 2 / ( A ( l ) + A ( 2 ) + 2 < f A ( 8 ) « A ( 6 ) ) ) / ( ( { A ( l ) + A ( 2 ) + 2 * A ( 8 ) » A ( 6 ) ) * » 2 ) 
2 A { 5 ) « Q ) ) 

Z ( 8 ) = l / ( 2 * A { 5 ) * Q ) » ( 2 * A ( 3 ) ^ t A ( 6 ) * ( A ( l ) + A ( 2 ) ) * { A ( 3 ) + A { 7 ) ) » » 2 + ( A ( 3 ) ^ 
l A ( l ) + A ( 2 ) ) - A { 4 ) ' • ^ » 2 - 2 » A ( 8 ) * A ( 6 ) ^ f ( A ( 3 ) + 2 ^ ^ A ( 7 ) ) ) * A { 4 ) » * ^ 2 ) / ( ( A ( l ) + A ( 
2 + 2 * A ( 8 ) < i A ( 6 ) ) * ( A { 3 ) + A ( 8 ) « A { 7 ) ) * « - 2 ) 

Z ( 9 ) = ( A ( l ) « A ( 4 ) * * 2 ) / ( A ( 5 ) ^ « Q » { A( 3 ) + A ( 8 ) * A ( 7 ) ) » * 2 ) 

Z ( 1 0 ) = - ( A ( 4 ) * ( A ( 1 ) « ( A ( 1 ) - A { 2 ) ) ) / ( A { 5 ) » Q « { A ( 1 ) + A ( 2 ) + 2 « A ( 8 ) * ^ A ( 6 ) ) 

2 » * 2 ) ) 
Z ( 1 1 ) = - ( A ( 4 ) « ( A ( 3 ) « ( A { 1 ) - A ( 2 ) ) + A ( ^ ) » « 2 ) / ( ( A ( 1 ) + A ( 2 ) + 2 * A ( 6 ) * A { 6 ) ) | 

1 ( A ( 3 ) +A ( 8 ) ^ t A ( 7 ) ) « 2 * A ( 5 ) » 0 ) ) 
Z { 1 2 ) = - 1 / ( A ( 5 ) * C ) * ( A ( 1 ) « A ( 2 ) » ( A ( 4 ) * * 2 + 2 « A ( 8 ) * A ( 6 ) » ( A ( 3 ) + A ( 7 ) ) ) + A 

1 8 ) * A ( 6 ) « » 2 ^ f ( ( A ( 1 ) + A ( 2 ) ) * ( A( 3 ) + A ( 7 ) ) - A ( 4 ) « * 2 ) ) / ( ( A ( 1 ) +A ( 2 ) + 2 » A ( 8 ) 
2 ' a ( 6 ) ) « * 2 « ( A ( 3 ) + A ( 8 ) « A ( 7 ) ) ) 

R E T U R N 
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B 1 S H U T H B A N D S T R A C T U R E ( POL AR THL-PsMOMAG!-IET I C D A T A ) 
D IMEMS lO.N S( 1 1 ) , S A X ( 1 1 ) , S I M ( 1 1 ) , S T E P ( 1 1 ) , : 0 ( 7 2 ) , 5 U M ( 2 ) , 0 ( 7 2 ) , 

I Z ( 7 2 ) , H ( 1 1 ) , S O L ( 1 1 ) , l i E ( 7 2 ) , A ( 3 ) , 0 ( 3 ) , SEC9) , S H ( 9 ) , S H T ( 9 ) , b B ( ^ ) 
• 2 R E S ( 9 ) , B ( 3 ) , S r ( 9 ) , S i £ T ( 9 ) , 0 0 ( 3 ) , W ( 1 9 ) 

R l?A L S MALL , P P H , HK, DE L TA , P , FC , F S , TC , TS , P I. , P J , D E G , HH 
I N T E G E R I , J , K , C , U , i M 

1 F O R M A T ( 8 E 1 U . Q ) 

2 F O R M A T ( 2 0 X , ' I N I T I A L S O L U T I D . ^ S F I T T E D ' / 25 X , ' ME A S U R E 3 C O E F F » / 

1 1 9 E 1 2 . 2 / ( l U E i 2 . 2 / ) ) ) 
3 F O R M A T ( 2 5 X , ' F I N A L S O L U T I O M S ' / ( 3 E l l » 3 , F 6 o 2 , 5 E 1 1 , 3 / ) ) 
4 F O R M A T ( 2 5 X , ' R A T I O E S ' / ( 9 F 1 2 . 2 / ( 1 0 F 1 2 . 2 / ) ) ) 
5 F 0 R M A T ( 2 5 X , ' S U f V V ( 2 F 1 5 o 4 ) ) 
10 F O R M A T ( 2 5 X , ' C A L C U L A T E D C O E F F ' / ( 9 E 1 2 . 3 / { I C E 1 2 . 3 / ) ) ) 
1 1 F O R M A T ( i g F ^ . ' l ) • 
59 F O R M A T ( 2 5 X , ' SOLUT 1 OrjS ' / ( l O E i 1 . 3 / ) ) 
8 0 F O R M A T ( 2 5 X , ' S T E P S ' / ( 1 CE 1 0 « 2 / ' ) ' ) 
6 F O R M A T ( 2 5 X , ' M E A S U R E D C O E F F ' / ( 9 E 1 2 , 3 / ( 1 O E 1 2 . 3 / ) ) ) 

R E A 3 ( 5 , l i ) ( W { K ) , K - 1 , 1 9 ) 
R E A D ( 5 , 1 ) ( S A X { I ) , I - l , 1 0 ) 
R E A D ( 5 , 1 ) ( S I M ( I ) , 1 = 1 , 1 0 ) 

5D R E A D ( 5 , 1 , E N D = 9 9 ) ( S ( I ) , I = 1 , 1 0 ) 
R E A D ( 5 , 1 ) ( S T F P ( I ) , 1 = 1 , 1 0 ) 
R E A D ( 5 , 1 ) ( C u ( I ) , 1 = 1 , 1 - ^ ) 
R E A D ( 5 , 1 ) HH 
S M A L L = u . u 0 1 
H K = 0 . 0 

_ . D D 7 1 = 1 , 1 0 
S 0 L ( 1 ) = S ( I ) 
H ( I ) = 1 

7 C O M T I > J U E 
S U H ( 1 ) = 0 
S U M ( 2 ) = 0 
DO 1 6 C = l , 7 
DO 1 9 U = l , 5 0 
DO 1 3 1 = 1 , 1 0 

. I F ( S T E P ( I ) . E y . D » 0 ) G O TO 1 3 
S U M ( 2 ) = 0 
S ( I ) = S ( I ) + H K * S T E P ( I ) 
I F ( S T E P ( I ) . E Q . O . O ) GO TO 1 3 
1 F ( 5 ( I ) o G T . S A X d ) ) GO TO 1 5 
I F ( S { I ) . L T . S I M ( I ) ) GO TO 15 
DO 3 6 J = l , 5 ' 

• A ( J ) = S ( J ) . 
3 6 C O N T I N U E 

D ( i ) = S ( 6 ) 
D { 2 ) = D ( 1 ) 
D ( 3 ) = S ( 7 ) 
D ( 4 ) = 0 . 0 • 
D ( 5 ) = 3 c O * S ( 5 ) , 
P E = S ( 9 ) 
P H = S ( 1 0 ) 
FC = 0 . . ! i 

FS = I . : ' 
B ! i ( 2 ) = 0 . 0 
6 ( 2 ) = 0 . O 
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D E G = - 0 , 1 7 4 5 
DO 1 0 0 K = l , 19 
DEG = LlEG + a . 1 7 4 5 

T C = C O S ( D E G ) 
T S = S I M ( D t G ) 
B ( 1 ) =iiH^^FS^^TC 
B B ( U = - B ( 1 ) 
B ( 3 ) = H i U - F S * T S 
B B ( 3 ) = - B ( 3 ) 
DO 4 7 J = 1 , 9 
S E ( J ) = O . U 
S H ( J ) = 0 , u 
S E T ( J ) = C : . a 
S H T ( J ) = O o O 
R E S ( J ) = 0 . 0 
ST{ J ) =C; .0 

4 7 CONTINUE 
CALL D t V M B , D , S H ) 
CALL D E V ( B B , A , S E ) 
DO 4S J = i , 9 
S H T { J ) = S H T ( J ) + S H ( J ) 
S £ T ( J ) = S E T ( J ) + S E ( J ) 
S E ( J ) = 0 . & 

48 CONTINUE 
CALL S E V ( 3 B , A , S E , 1 . 0 ) 
DO 4 9 J = 1 , 9 
SET( J ) = S E T ( J ) - i - S E ( J ) 
S E ( J)=OoO 

49 CONTINUE 
CALL S E V ( B B , A , S E , - 1 , 0 ) 
DO 6 0 J = l , 9 
S E T ( J ) =SET( J.) + 3E( J ) 

60 CONTINUE 
DO 51 J = l , 9 
ST( J ) = S E T { J ) + S H T ( J ) 

5 1 CONTINUE 
DELTA = S T ( 1 ) * ( S T ( 2 ) « - S T ( 3 ) - S T ( 5 ) * S T ( 3 ) ) + S T ( 4 ) * ( S T ( 6 ) * S T { 5 ) - S T ( 7 ) * 

1 S T ( 3 ) ) + S T ( 9 ) * ( S T ( 7 ) - S T ( S ) - S T ( 2 ) * S T { 6 ) ) 
R ES ( 2 > = ( ST ( 1 ) -> S T ( 3 ) - S r ( 6 ) S T( 9 ) ) / D E L T A 
R E S ( 5 ) = ( S T ( 4 ) * S T ( 6 ) - S T ( 1 ) » S T ( 2 ) ) / D E L T A 

• R E S ( 7 ) = ( S T ( & ) * S T ( 9 ) - S T ( 3 ) * S T ( 4 ) ) / D E L T A 
Z ( K ) =RES ( 7 ) * ( P E S ET { 4 ) + PH^^SHT ( 4 ) ) + R E5 ( 2 ) * ( P E *SE T { 2 ) +P M* S HT ( 2 ) ) + 

1R ES { 5 ) * ( PE - SET ( 8 ) + PH*S HT ( 3 ) ) 
100 CONTINUE 

DO 1 8 K = I , 1 9 
Q ( K ) = ( Z ( K ) / C O ( K ) ) 
W E ( K ) = ( Q ( K ) - 1 ) 
W E ( K ) = W ( K ) < - W E ( K ) 
SUM(2 ) = S U M ( 2 ) + W E ( K ) « - * ^ 2 

18 CONTINUE 
1 F ( H K , E Q . O . O ) S U M ( 1 ) = S U M ( 2 ) 
I F ( SUM( 1 ) - S U r ; ( 2 ) ) 1 5 , 1 4 , 1 4 

15 I F ( H ( 1 ) - i O ) 2 1 , 2 1 , 2 2 
2 1 S T E P ( n = - S T E P ( I ) 

I ) 
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. H ( I ) = H ( I ) + 1 
GO T O 1 3 

2 2 S T E P ( I ) = - 0 o 5 * S T E P ( I ) 
H ( I ) = i 
S ( I ) = S O L ( I ) 
GO T O 1 3 

1 4 I F ( SUM ( 2 ) - S H A L L ) 9 , 9 , 2 : . ; 
2 0 S O L ( I ) = S ( I ) 

H K = 1 . 0 
S U M ( 1 ) = S U M ( 2 ) 

1 3 CONT I N U E 
1 9 C O N T I N U E 

W R I T E ( 6 , 5 9 ) ( S O L ( I ) , I = l , i O ) 
W R I T E ( 6 , 8 0 ) ( S T E P ( K ) ,;< = ! , 1 0 ) . 
W R I T E ( 6 , 4 ) ( Q ( K ) , K = 1 . , 1 9 ) 
W R I T E ( 6 , 5 ) ( S U M ( I ) , I = i , 2 ) 

1 6 C O N T I N U E 
9 DO 2 5 1 = 1 , 1 0 

. S ( I ) = S O L ( I ) 
. 2 5 C O N T I N U E 

W R I T E ( 6 , 3 ) ( S O L ( I ) , 1 = 1 , 1 0 ) 
W R I T E ( 6 , 6 ) { C O { K ) , K = 1 , 1 9 ) 
W R I T E ( 6 , 1 0 ) ( Z ( K ) , K = 1 , 1 9 ) 
W R I T E ( 6 , ' t ) ( Q ( K ) , K = 1 , 1 9 ) 
W R I T E ( 6 , 5 ) ( S U M ( I ) , 1 = 1 , 2 ) 
GO TO 5 0 

9 9 S T O P 
END 
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B I S M U T H B A N D - S T R A C T U R E d U G H F I E L D G A L V A N G M A G N E T I C D A T A ) 

D I M E N S I O N S ( 1 5 ) , S A X { 1 5 ) , S l f ' U 1 5 ) , S T E P ( 1 5 ) , C G ( 1 9 ) , S U i U 2 ) , Q( 1 9 ) , 
1 Z ( 1 9 ) , H ( 1 5 ) , S O L ( 1 5 ) , W E ( 1 9 ) , A ( 5 ) , 0 ( 5 ) , S E { 9 ) , S H ( 9 ) , S H T ( 9 ) , B B ( 3 ) 
2R E S ( 1 9 ) , B ( 3 ) , S T ( 9 ) , S E T ( 9 ) , D D { 5 ) , W ( 1 9 ) , H H ( 1 9 ) 

R E A L S H A L L , P E , P H , H K , D E L T A , P , E C , F S , T C , T S , P I , P J 
I N T E G E R I , J , K , C , U , N 

1 F O R M A T ( 8 E 1 0 . 0 ) 
2 F O R M A T ( 2 0 X , ' I N I T I A L S O L U T I O N S F I T T E D ' / 2 5 X , ' M E A S U R E D C O E F F ' / 

1 ( 9 E 1 2 o 2 / ( 1 0 E 1 2 . 2 / ) ) ) 
3 F O R M A T ( 2 5 X , ' F I N A L S O L U T I O N S ' / ( 3 E 1 0 . 2 , F 6 . 2 , 6 E 1 0 . 3 / ) ) 
4 F O R M A T ( 2 5 X , ' R A T I O S ' / ( 9 F 1 2 . 2 / ( 1 D F 1 2 . 2 / ) ) ) 
5 F 0 R M A T ( 2 5 X , ' S U M ' / ( 2 F 1 5 , 4 ) ) 
1 0 F O R M A T ( 2 5 X , ' C A L C U L A T E D C O E F F ' / ( 9 E 1 2 . 3 / ( rOE12 . 3 / ) ) ) 
1 1 F O R M A T ( 1 9 F 4 . 0 ) 
6 F O R M A T ( 2 5 X , ' M E A S U R E D C O E F F ' / ( 9 E l 2 . 3 / ( 1 O E 1 2 . 3 / ) ) ) 
5 9 F O R M A T { 2 5 X , ' S O L U T I O N S ' / ( I C E 1 D , 2 / ) ) 
8 0 F O R M A T ( 2 5 X , ' S T E P S ' / ( 1 O E 1 0 . 2 / ) ) 

R E A D ( 5 , 1 1 ) ( W ( K ) , K = 1 , 1 9 ) 
R E A D ( 5 , 1 ) ( H I K K ) , K = 1 , 1 9 ) 
R E A D ( 5 , 1 ) ( S A X d ) , I = 1 , 8 ) 
R E A D ( 5 , 1 ) ( S I M ( I ) , 1 = 1 , 8 ) 

5 0 R E A D ( 5 , i , E N D = 9 9 ) ( S ( I ) , I = 1 , 8 ) , -
R E A D ( 5 , 1 ) ( S T E P ( I ) , 1 = 1 , 8 ) 
R E A D ( 5 , 1 ) { C 0 ( I ) , 1 = 1 , 1 9 ) 
S M A L L = 0 . 0 0 1 . 
H K = 0 . 0 

. DO 7 1 = 1 , 8 
S O L ( I ) = S ( I ) 
H ( I ) = 1 

7 C O N T I N U E 
W R I T E ( 6 , 5 9 ) ( S O L ( I ) , 1 = 1 , 8 ) 
B ( 1 ) = 0 . D 
B B ( 1 ) = 0 . 0 
B ( 2 ) = 0 . 0 
B B ( 2 ) = 0 . Q 
S U M ( 1 ) = 0 
S U M ( 2 ) = 0 
DO 1 6 C = l , 5 

, DO 1 9 U = l , 5 0 
DO 1 3 1 = 1 , 8 
S U M ( 2 ) = 0 
S ( I ) = S ( I ) + H K * S T E P ( I ) 
I F ( S { I ) . G T . S A X ( I ) ) GO TO 1 5 
I F ( S ( I ) . L T . S I M ( I ) ) GO TO 1 5 
DO 3 6 J = l , 5 
A ( J ) = S ( J ) 

3 6 C O N T I N U E 
D ( 1 ) = S ( 6 ) 
D ( 2 ) = D ( 1 ) 
D ( 3 ) = S { 7 ) • 
D ( 4 ) = 0 . 0 
D ( 5 ) = 3 . 0 * S ( 5 ) 
DO l . : 0 K = l , 1 9 
B ( 3 ) = W 1 I { K ) 
B B ( 3 ) = - B { 3 ) 
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DO 47 J = i , 9 
SE(J)=OoO 
S H ( J ) = 0 . 0 
S£T(J)=0.0 
SHT(J)=C.D 
S T ( J ) = 0 . 0 

47 CONTINUE 
CALL DEV(B,D,SH) 
DO 66 J = l , 9 . 
S H T ( J ) = S H T ( J ) + S H ( J ) 
SH(J)=<)eO 

66 CONTINUE . , 
CALL DEV(BB,A,SE) 
DO 48 J=1,9 
S E T ( J ) = S e T ( J ) + S E ( J ) 
SE(J)=G.O 

48 CONTINUE 
CALL SEV {B!3,A,SE, 1.0) 
DO 49 J = l , 9 
S E T ( J ) = S E T ( J ) + SE( J) 

. S E ( J ) = 0 . 0 
49 CONTINUE 

CALL SEV{BB,A,SE,-1.Q) 
; DO 60 J = i , 9 

S E T ( J ) = S E T ( J ) + S E ( J ) 
60 CONTINUE 

DO 51 J = l , 9 
S T ( J ) = S E T ( J ) + S H T ( J ) 

51 CONTINUE 
DELTA=ST(1)*(ST(2)*ST(3)-ST(5)*ST(8))+ST(4)»(ST(6)*ST(5)-ST(7)* 

1 S T ( 3 ) ) + S T ( 9 ) * { S T ( 7 ) ^ ^ S T ( 8 ) - S T ( 2 ) * S T ( 6 ) ) 
R E S { K ) = { S T ( 2 ) * S T ( 3 ) - S T ( 8 ) * S T ( 5 ) ) / D E L T A 

i o n CONTINUE 
DO 18 K = l , 1 9 • " 
Q ( K ) = ( R E S ( K ) / C O ( K ) ) 
W E ( K ) = ( Q ( K ) - 1 ) 
WE(K)=W(K)^HVt(K) 
SUM(2 )=SUM(2)+WE(K)<f*2 

18 CONTINUE 
IF(HK.EQ.l.O) GO TO' 8 
H K = l . n . • 
SUM(1)=SUM(2) 
WRITE ( 6 , 10) (RES(K),1<1 = 1,19) 

8 I F ( SUM(i)-SUiM{ 2) ) 15,14,14 
15 I F ( H ( I ) - 1 0 ) 21,21,22 
21 STEP(I ) = - S T E P ( I ) 

S ( I ) = S O L ( I ) 
H ( l ) = H ( I ) + l 
GO TO 13 

22 STEP!I)=-0.5*STEP( I ) 
hi ( I ) = 1 
S ( I ) = S O L ( I ) 
GO TO 13 • 

14 IF(SUH(2 )-SMALL) 9,9,20 
20 S O L ( I ) = S ( I ) 
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• SUM(I)=SUM(2) 
13 COMTINUE 
19. CONTINUE 

WRITE(6,6) (COCK) ,i< = i r 19) 
WRITE(6,10) (RES(K),K^1,19) 
WRITE(6,59) ( S O L ( I ) , 1 = 1,8) 
WR).TE(6,«D) (STEP(K) ,K = 1,8) 
W R I T t ( 6 , ^ ) ( Q ( K ) , K = 1 , 1 9 ) 

^ W R I T t ( 6 , 5 ) ( S U M { I ) , I - l , 2 ) 
16 CONTINUE 
9 DO 25 1=1,8 

S ( I ) = S O L ( I ) 
25 CONTINUE ~ _ . 

SOL( 4) = (9a.0/3.1416 ) i^ATAN{ ( 2 , 0 - S 0 L ( 4 ) ) / ( SOL ( 2 )-SOL (3) ) ) 
WRITE(6,3) { S 0 L ( I ) , I = 1 , 8 ) 
WRITE(6,6) (CO(K),K=1,19) 

. WRITE(6,4) (Q ( K ) , K = 1 , 1 9 ) 
WRITE(6,10) ( R E S ( K ) , K = l , 1 9 ) 
WRITE(6,5)(SUM(I ) , 1=1,2) 
GO TO 50 

99 STOP 
END 
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SUBROUTINE OEV{B,A,S) 
DIMENSION B( 3) , A ( 5 ) , S ( 9 ) 
REAL G,V,0 

. Q= i.6E-19 
V=A ( 1 ) - ( A( 2 )-A( 3) -A( -V) ̂ *^f2 ) 
G = ( 1 o 0 + ( V / A ( 1 ) ) " h ( 1 ) * *J 2 + A ( 1 ) « ( A ( 3 ) «-1 < ( 2 ) * * 2 - 2 * A ( 4 ) * B { 2 ) <̂  P. ( 3 ) + A ( 2 •) * 

1 B { 3 ) * * 2 ) ) 
5 ( 1 ) =( ( A ( l )+Vi>B{ l)-<-2)/G)--A{5)^^Q 
S ( 2 ) = ( ( A ( 2 ) + V B ( 2 ) * 2 ) / G ) A ( 3 ) 3 
S { 3 ) = ( ( A ( 3 ) +V* B ( 3 ) •!;- --̂  2) /G ) ( 5 ) *Q 
S(4)---( (-A(l)i:-(A(4)«3{2)-A(2)*8(3) )+V*B ( 1 ) <-B ( 2 ) )/G ) * A ( 5)«Q 
S ( 5 ) = ( ( A { 4 ) + {V/A(1) )*3{1)+V»^B(2)*B(3) )/G)*A(5)«Q 
S ( 6 ) = ( ( A { I ) * { A ( 3 ) B ( 2 ) -A ( 4 ) *B ( 3) ) + V» B ( 1 ) ( 3 ) ) /G ) - A( 5 ) *Q 
S ( 7 ) - ( ( A { 1 ) ( A ( ̂ )̂ * D ( 2 ) -A ( 2 ) B ( 3 ) ) + V-- B ( 1 ) *B ( 2 ) ) /G ) « A( 5 ) <- g 
S ( 3 ) = ( ( A ( ) - ( V/A ( I ) ) 3 ( 1 ) +V« a ( 2 r^S ( 3 ) ) / G ) <v A ( 5 ) «Q 
S ( 9) = ( { - A( 1 ) * ( A( 3 ) «-B(2 ) -A(4 ) •"-S( 3) ) + V*B( 3 ) <fB( i ) )/G) *A( 5) *Q 
RETURN 
END • • 

SUBROUTINE SEV(B, A, S,P)-
DIMENS ION B ( 3 ) , A ( 5 ) ,S( 9) 
REAL P,G,V,(> -
Q= l.6e-19 
V = A ( i ) «- ( A ( 2 ) ̂  A ( 3) -A ( 4 ) *2 ) 
G=( 1 .O + 0.25-^( 3»A( 1 ) * A ( 3 ) + { V / A ( l ) ) ) » D ( l ) * * 2 + 0 . 2 5 « ( A ( i ) - A ( 3 ) + 

13->( V/A( 1 ) ) )*B(2 )^;*2 + A( i )*A( 2 )<-B( 3)*';-2-p-0.86 4* (A( I ) « A ( 3 ) - ( V / A (1 ) ) : 
2«-B ( 1 ) i^B ( 2 ) + A ( 1) * A ( 4 ) *a ( 2 ) *B ( 3 ) - 1 , 73« P> A ( 1) *A ( 4) <B( 3 ) B( 1) ) 
S ( 1 ) = { 0. 25* ( A (1 ) +3«-A ( 2 ) +4*V*B (• 1 ) **2 ) / G) *A ( 5 ) ̂;-Q 
S ( 2 ) = (0.25<^(3vA( 1 ) + A ( 2 )+4«-V^.^D(2)**2)/G)*A(5)^^Q -
S(3) =( ( A ( 3 ) + V5:B(3)-(^2)/G)*A(5 
S ( 4 ) = ( (L:c432«P^>( A ( l ) -A{ 2 ) )-A( 1) *A(4)« (Oc 864«-P« B ( 1 ) - 0 . 5* B ( 2 ) ) •̂ A (1) 

l ^ f A ( 2 ) * B { 3 ) + y * B ( l )*^B(2) )/G)^fA(5)^^0 
S ( 5 ) = ( { -Uo 5^A ( 4) + 0.. 2 5* ( 3«-A ( 1) *A( 3) + { V/A ( 1 ) ) ) ^fB{ 1 ) - r . . 4 32 * P* (A ( 

1A( 3 ) - ( V/A( 1) ) )«D ( 2) - 864*P^^A( i ) ̂ :-A( 4) *B ( 3 )+V*B( 2 )*B(3 ) ) / &) * A ( 5 )«0. 
S (6 ) = ( (U.S64-P*A( 4)-u.432^^P^>( A( 1 ) « A ( 3 ) - ( V / A { 1) ) ) ( 1) +0.25^( A ( 1 ) 

1*^A( 3 ) +3̂ ;• ( y/A{ 1 ) 1 ) «-B( 2 ) +'0,5*A( 1 ) ̂ Â{ 4) *B( 3 ) +Vf'B( 3)--B ( 1) )/G) <̂  A( 5)«0 
5 (7) = ( (0 , 4 3 2«P*( A ( l )-A(2 ) )+A( 1 ) * A ( 4 ) " ( J . 864«P<-B( D - D . 5* B ( 2 ) ) -

1 A ( 1 ) ^ A ( 2 ) * B ( 3 ) + V - B ( 1)-^B(2) )/G)-A( 5)-»Q 
S ( S) = ( (-0.5<^-A( 4)-Do2 5* ( 3*A( 1 )«A( 3) + ( V'/A( 1 ) ) ) * B ( 1 ) ' + 3 2 * P<- ( A ( 1 ) 

1 !f A( 3 ) - ( V/A( 1 ) ) ) #B(2 ) +r.'.35 4^^P<A( 1 ) * A ( 4 ) -x-3 ( 3 ) + V B ( 2 ) -B( 3 ) ) / G ) * A ( 5 ) 3 
S ( 9) = ( ( 0.364^-Pif A { 4 ) + Vo432*P^ ( A( 1 ) <-A( 3 ) - ( V/A ( 1 ) ) ) K-B( 1) - :;.25»( A( 1 ) 

1^^A( 3 ) + 3̂-M V/A( 1 ) ) )*B( 2)-';),5»A{ 1) - A(4)«-B(3) H-V*B( 3 )*B (1) )/G)<^A(5 )<^0 
RETURN 
END 
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