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ABSTRACT 

Aryl and ~yl 1-bromoallenes, 1-iodoallenes, 

1,1-dibromoallenes and 1-halo-1-deuteroallenes have been 

prepared; the mechanism oft heir formation and their 

spectroscopic properties are discussed. 

Conversion of propargylic alcohols to 1-cyanoallenes 

either directly or via the corresponding allenic bromides 

is described. The mechanism of formation of cyanoallenes 

and their spectral properties are discussed. 1-0yanoallenes 

have been converted to enamines, to allenic amides and to 

allenic acids. Evidence for the structures of dimerisation 

products of 1-cyanoallenes is presented. 

1,4-Elimination reactions of 1-bromoallenes are shown 

to give alkenynes in good yield. 1-Bromoallenes form 

Grignard compounds and these are reacted with carbon dioxide, 

water, oxygen and acetone to give mixtures of acetylene and 

allenic products. 
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HALO-ALLENES 

Many attempts in the past to prepare and identify allenic 

compounds failed for lack of adequate methods to detect and 

unequivocally prove the presence of cumulative double bonds. 

Twenty years ago infra-red spectroscopy provided such a 

method when it was found that non-symmetrical allenes absorbed 

strongly in the 1920 - 1980 cm-1 re~on; this absorption is 

readily distinguishable in the presence of most other 

absorbing frequencies. 

It is probable that prior to 1930 allenic halides were 

present in products obtained by many workers· 1- 6 but were not 

identified as such, e.g. in 1929 Krestinski and Kostovskaia 3 

tried to rearrange 2,5-dimethylhex-3-yn-2, 5-diol using 

phosphorus tribromide and claimed to obtain mixtures of three 

compounds, two of which were identified as 2,5-dibromo-2,5-

dimethylhex-3-yne and 3,4-dibromo-2, 5-dimethylhexa-2,4-diene. 

The third component was tentativeiy assigned the allenic 

structure, 2,3-dibromo-2,5-dimethylhexa-3,4-diene on the basis 

of degradative oxidation. 

-7-



+ Me~C = C(Br)C(Br) = CMe2 

+ Me2C = C = C(Br)C(Br)Me2 

In 1935 Ford, Thompson and Marvel 7 carried out a 

similar reaction using 2,2,6,6-tetramethyl-3-phenylhept-4-yn-

3-ol. They obtained a product, which had a high molecular 

refraction, and which was slow to react with silver nitrate; 

this data would fit the allenic compound, 5-bromo-2,2,6,6-

tetramethyl-3-phenylhepta-3,4-diene, but hydrolysis using 

moist silver oxide regenerated the starting alcohol which led 

these authors to the conclusion that the product was the 

acetylenic bromide 3-bromo-2,2,6,6-tetramethyl-3-phenylhept-

4-yne. 

CMe3 I 
Me3cc = c - fPh 

OH 

CMe
3 I 

Me CO :CO - Ph 
I 
Br 

As the hydrolysis of 1-bromoallenes by means of silver 

oxide has now been shown to yield acetylenic carbinols 8 , 9 it 

is probable that Ford~ Thompson and Marvel 7 had obtained the 

allenic bromide; infra-red spectroscopy would have proved 

this point beyond doubt. 

~-



CMe3 I 
C - Ph 
I 
OH 

PBr3) 

10 
Nearly thirty years later Bohlmann and Kieslich reacted 

phosphorus tribromide and 1,4-bis-(2,2,6,6-tetra­

methylcyclohexyl)-buta-1,3-diene and obtained the diallenic 

dibromide 1,4-bis-(2,2,6,6-tetramethylcyclohexylidene)-2, 

3-dibromobuta-1,3-diene, the compound havingthe expected 

ultra-violet spectrum for the dibromoallenes but not the 

dibromodiacetylene. 

OH HO ~ A 
a~ = c - c = OPBry, ~a = ~r- ~r= ~u 

An attempt was made to prepare an arylallenic chloride 

by reacting phosphorus trichloride and 1,3,3-triphenylprop-

1-yn-3-ol in 1923 by Mourreu, Dufraisse and Machall 11 ; 

they obtained a solid product which was said to be 3-chloro-

1,3,3-triphenylprop-1-yne, however a similar reaction using 

phosphorus tribromide gave a product which Jacobs and Petty 16 

later considered to be 1-bromo-1,3,3-triphenylpropa-1, 2-diene. 

Ph - C :: C 

-9-



The first reportsof the formation of some allenic 

chlorides by the action of phosphorus trichloride on 

propargylic alcohols appeared in 1934, when Hurd and Jones 12 

treated 1-ethynylcyclohexanol with thionyl chloride and 

pyridine at 50 - 60° and reported the presence of small 

quantities of cyclohexY.~nevinylchloride in the main product, 

~-chlorovinylcyclohexene. 

OC;;CH 

OH 

This reaction was repeated by Bhatia, Landor and Landor 

S,l3 at different temperatures (between 0 .and 80°) and they 

obtained up to 25% of the allenic chloride, the major product 

being ethynylcyclohexene. 

O.C:: CH 

OH 
SOCl OC:; CH 
---=2-+) ·. 

A fairly pure sample of the allenic chloride was obtained 

by removing terminal acetylenes as their insoluble silver 

salts. Hennion and Lynch 14 in 1960 found that, on varying 

the conditions, the optimum yield of chloroallene was obtained 

when an ether-pyridine solution was used at 3°. They 

obtained a product by fractionation followed by chromatography 

on alumina, which was 86% pure by g.l.c. 

-kQ-



Sobotka and Chanley l5 reacted the stearically blocked 

molecule 1-ethynyl-2,6,6-trimethylcyclohexanol with thionyl 

chloride in presence of pyridine to obtain 54% of an 

unidentified product which on hydrolysis with silver oxide 

gave the starting material; a modification of ib.eir method 

by Bhatia, Landor and Landor 8 gave 60% of a product with 

similar physical properties, this was shown to be 2,2,6-

trimethylcylohexylidenevinyl chloride by means of infra-red 

spectrophotometry. 

SOCl~) +6C=CHC1· 

The same authors 8 obtained 91% yield of silver 

chloride and the starting carbinol when the chloride was 

refluxed with alcohol/silver nitrate. They suggested the 

rearrangement was due to an ~ 2' mechanism in which co­

ordination of the chlorine to silver was followed by an 

attack of a water molecule. 

R r'c1~ 
". /\. / Ag c = c = c -----+) 

R 

" a c = CH 

/tt- " R' \ H 
0-H 

/\ 
R' OH 

I 
H 

.:..u-



The action of thionyl chloride. on prop-1-yn-3-ols was 

found to be a general method for the preparation of d­

polysubstituted 1-chloroa11enes. 

The chloroallenes were identified by infra-red 

spectroscopy with~x 1945 (C=C9C) and 735 cm-1 (C=C:CHCl); 

these compounds had shown only end absorption in the ultra­

violet region. 

In 1955 Jacobs, Teach and Weiss 17 reported the 

formation of 1-chlorohexa-1,2-diene from reaction of hex-

1-yn-3-ol with thionyl chloride in diethyl ether/di-isopropy1 

ether solvent, 

CH3CH2CH2- YH - c = CH 
OH 

) CH3CH2CH2CH = C = CHCl 40% 

+ CH
3

CH2CH2?H-C a CH 
C1 

This work was followed in 1960 by a detailed study 18 

of reactions of secondary acetylenic carbinols with thiony1 

chloride, in which solvent and temperature were varied. In 

this work Jacobs, Petty and Teach found that the ratio of 

allene to acetylene could be raised as high as 3:1 using 

diethylcarbitol as solvent. 

chromatography. 

-12-
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Bhatia, Landor and Landor 8 proposed a mechanism in 

which a chlorosulphite intermediate could react by an 

~1, ~2', or ~i' process, then by use of optically active 

compounds showed an ~i' to be the favoured path. 

R 
\ ~ 
/c - c = CH 

R' I r; o_ s- c1 
"' 0 

S..._i' 
-N ) 

R 

"' / 
C = C = CHCl 

R' 

Other workers had been pursuing alternative methods 

of preparing 1-haloallenes; thus in 1935 Favorskii and 

Favorskaya l9 reacted 3-methylbut-1-yn-3-ol with concentrated 

hydrochloric acid, ammonium chloride and different copper 

catalysts. Using cuprous chloride they obtained some 

conversion to 1-chloro-3-methylbuta-1,2-diene whilst cupric 

salts gave 3-chloro-3-methylbu~-1-yne. 

~-C-C=CH 
CH ........... 

3 OH 

eu++ 
--=-=--~) CH 

3'c - c _ CH 
/ \ 

CH3 Cl 

-13-



A more detailed account of this reaction was given 
20 . 

by Favorskaya in 1939. She reacted 3-methylbut-1-yn-

3-ol, concentrated hydrochloric acid, cuprous chloride and 

ammonium chloride by shaking the mixture for 30 min. when 

working up showed the product to be mainly 3-chloro-3-

methylbut-1-yne in 63% yield, however 4 hr. shaking or 18 

days standing gave 1-chloro-3-methylbuta-1,2-diene in yield 

of up to 65%, further standing led to rearrangement product 

1-chloro-3-methylbuta-1,3-diene. 

18 days standing 

4 hr. shaking > 

30 min. shaking 

further 
standing 

CH2 = f - C = CHCl 

ms 
Similar work 21 , 22 was done using 3-methylpent-1-yn-3 

-ol and 3-ethylpent-1-yn-3-ol 

-14-



.R R 

" \ c c - CH ) C = C = CHCl (I) 
/I / 

R' OH R' 
R 

" + c c - CH 

R(l 
Cl 

R = CH3 ) yield of I = 15% 

~ R' = C2H5 
) 

R = R' = C2H5 yield of I = 30% 

There is no evidence that any of these compounds were 

obtained pure and it is probable that they were contaminated 

with acetylenic compounds. 

A similar series of reactions was carried out by 

Favorskaya 23 in 1940 using different haloacids. 

Using concentrated hydrobromic acid she obtained 

1-bromo-methylbuta-1,3-diene from 3-methylbut-1-yn-3-ol 

irrespective of the conditions employed, this does not agree 

with the present work. 

Using hydriodic acid and 3-methylbut-1-yn-3-ol she 

obtained a dark unstable liquid, the components of which 

could not be separated by distillation. She suggested 

that the product was a mixture of 1-iodo-3-methylbuta-1, 

-15-



2-diene and 1-iodo-3-methylbuta-1,3-diene, however the 

evidence for this rested only on degradative oxidation. 

CH:{ HI ~ 
C-C=CH 

/ \ 

?H3 
+ CH2 = C - CH = CHI 

CH
3 

OH 

Hennion, ~heehan and Maloney 25 studied the reaction 

between 3-methylbut-1-yn-3-ol and concentrated·hydro­

chloric acid. They found that using only concentrated 

hydrochloric acid they obtained 3-chloro-3-methylbut-1-yne 

in poor yield, however addition of calcium chloride gave 

high yields of the same chloroacetylene. They repeated 

Favorskaya's work 20 but used a cataly~ic amount of copper 

bronze. and obtained ·1-chloro-3-methylbuta-1,2-diene and 

1-chloro-3-methylbuta-1,3-diene. 

CH3 CH3 
\ CaClg ) \ 
c - c iii CH c - c - CH 

/ \ / 

CH3. OH CH3 \ 
Cl 

CH3, CuC1 1 Cu.~ 
~ ..... 

c c CH c = c = CHCl - HCl 
/ \ / 

CH3 OH CH3 

~16-



The infra-red spectrum of the purified product showed it 

to be free from acetylenic or diene impurities. The same 

authors 25 , rearranged the acetylenic chloride by stirring it 

with concentrated hydrochloric acid, cuprous chloride and 

ammonium chloride, to give allenic chloride (33%) together 

with some star~ing material(8%). 

CHX Cua! 
CH3 

) ' a - a - CH Hal a = a = CHal 
/ \ I 

CH3 CH3 a1 

They suggested a chelate type intermediate was responsible 

for the conversion 

CH~ 
a-a!!CH 

CH, \ 

3 a1 

CH3 
'o a - !! CH 

CH/ \ 
3 01 Cu-01 

H 
~ 

a 
' a1 

These claims were contradicted by Bergmann and Herman 26 

who in 1951 repeated the experiment using calcium chloride 

and claimed to get the isomeric 4-chloro-3-methylbuta-1,2-diene. 

This is the only report of a 4-chloroallene., being obtained 

from this reaction, no infra-red or other spectral data was 

given. Results by Hennion and Boisselle 27 in 1961 throw 

considerable doubt on the work of Bergmann and Herman, since 

tertiary acetylenic chlorides were obtained in good yields. 

-17-



Jacobs and Brill 28 gave the first authentic report for 

the preparation of a 1-bromoallene in 1953. They refluxed 

propargyl bromide with cuprous bromide and obtained the 

allenic bromide by careful fractionation. 

BrCH2 - C c; CH CuBr) 

· An arylallene bromide was prepared in 1960 by Pansevich­

Kolyada 29 , he reacted 1,1-diphenylprop-1-ol with bromine in 

different solvents and was able to prepare 1-bromo-3,3-

diphenylpropa-1,2-diene. No yields or spectral data were 

given and the only evidence of the structure is bromine 

analysis and the fact that oxidation gives benzophenone. 

His quoted melting point is some 20° less than that obtained 

in the present work (61° cf. 81°). 

Al1enic iodides have received very little attention prior 

to the work by Baker, Landor, Landor and Patel 30 In 1884 

Henry 3l ref1uxed propargy1 bromide with sodium iodide in 

acetone and obtained what he thought was propargyl iodide. 

-18-



In light of later work by Jacobs and Brill 28 it seems likely 

that Henry had a mixture of allene iodide and propOrgyl 

iodide. These latter workers prepared an equilibrium 

mixture of iodoallene in different ways 

i) BrCH2C • CH + Nai in anhydrous ethonol, 
3 days, room temperature. 

2) BrCH2C 6 CH + Nai in acetone below 20° 

3) BrHC = C = CH2 + Nai in acetone, reflux 20 hrs. 

Respective yields were 31,23, and 34% of a mixture which 

in each case had the same composition, (verified by infra-red 

spectra). This led the authors to conclude that the reaction 

was via the acetylenic iodide which then rearranged to give 

allene-acetylene equilibrium. 

CH = C - CH2Br Nai ) CH : C - CH2I 

1~ Nai CH2 = C = CHBr ) CH2 = C = CHI 

In 1955 Hatch and Mangold 32 confirmed the presence of 

allene in samples of proporgyl iodide prepared in this way. 

They showed that the allene band was present in the infra­

red spectra of the product but absent in the starting 

material. Jacobs and Petty 16 reacted 3-bromo-3-methylbut­

l-yne with sodium iodide in acetone and after 3 days got 68% 

-19-



of a product which was mainly the 1,3-diene but contained 

some allene and acetylene, attempts at distillation led to 

explosions. 

The experiment was repeated reducing the time to 4 hr. 

when 38% of a product believed to be mainly allenic iodide 

was obtained. · 

Favorskaya 23 obtained a mixture of 1-iodo-3-methyl­

buta-1,2-diene and 1-iodo-3-methylbuta-1,3-diene on reacting 

3-methylbut-1-yn-3-ol with hydriodic acid. 

Baker, Landor, Landor and Patel 30 reacted secondary 

propargyl alcohols with triphenylphosphite methiodide in 

dimethylformamide and obtained good yields o£ pure allenic 

iodides. Until the present work there has been no method of 

preparing pure 1-iodo-3,3-dialkylallenes. 

A number of authors 33 - 40 have studied the addition of 

halogens and haloacids to conjugated enynes and have found 

allenes among the products. None of these methods are of 

preparative imp~rtance. 
HX 

HC - c - CH = CH2 x2 
HC - c - CH = CH2 ) 

H2C = C = CH- CH2X 
XCH2 -HO = C = agx + others 

-20-



CYANOALLEN.ES AND CYANOACETYLENES. 

Cyanoacetylenes were first synthesised in 1915 by 

Grignard 41 and his co-workers, they reacted cyanogen 

chloride with acetylenic Grignard compounds, 

R - C _ :CJ.~gBr + CICN --~> R-c-c-CN 

This remained for many years the only method of obtaining 

such compounds. In 1946 Johnson 42 attempted to prepare 

cyanoacetylenes from the correspondingnaloacetylenes, he 

reacted 1, 4-dibromobut-2-yne and 1, 4-dichlorobut-2-yne 1·ri th 

cuprous or potassium cyanides and found that no acetylenic 

cyanide -vms formed although extensive reaction and 

decomposition took place. 

Ne1'l1Uan and I'Jotiz 43 first prepared cyanoacetylenes 

from the corresponding haloacetylenes in 1949. They 

found, that haloacetylenes with at least three methylene 

groups between the point of unsaturation and the halogen 

atom, would undergo exchange when heated in acetone 1·Ti th 

potassium or sodium iodide, to give the corresponding 

iodoacetylene. 

- 21 -



This iodide was then refluxed with acetone/water solution 

of potassium cyanide when the cyanoacetylene resulted. 
KCN 

The same authors 43 also prepared 1-cyanohept-2-yne by 

refluxing a mixture of cuprous cyanide and 1-bromohept-2-yne 

in xylene for 1 hr., the same bromide gave no cyanide when 

treated with aqueous potassium cyanide. 

c4H
9
- C ·: C - CH2Br CuCN) c

4
H

9
c a C - CH2CN 

In 1953 Eglington and Whiting 44 obtained 5-cyanopent-1-yne 

in 75% yield by refluxing an ethanolic solution of potassium 

cyanide with pent-4-ynyltoluene-p~solphonate 

CH 5 C ~(CH2 ) 3 - 0 - S02- CH
3 

KCN ) HC 5 C -(CH2)
3

CN 

Wotiz and Hudack 45 obtained a mixture from the reaction of 

1-bromo-oct-2-yne and cuprous cyanide in p-cymene which was 

thought to consist of 1-cyano-oct-2-yne as the main product 

and some 3-cyano-octa-1,2-diene. The only evidence for the 

latter was a spli~ band at 1960 cm-l in the infra-red 

spectrum. Later work 46 has shown that 1-cyanoallenes do 

not have a split allene band, and it is therefore likely that 

more than one allene was present. 

-22-



The work of Wotz and Hudack 45 was repeated in 1959 by 

Schlogl and Orgler 47 and they obtained only 32% of 

1-cyano-oct-2-yne. 

In 1957 Smith and Swenson 48 prepared what was probably 

the first pure allene cyanide, but obtained only a 4% overall 

yield. They prepared the acetylenic carbinol pent-2-yn-3-ol 

from Grignard compound of methylacetylene and acetaldehyde, 

this was reacted with phosphorus tribromide and gave 

3-bromopent-2-yne. The bromide was refluxed with cuprous 

cyanide in dry benzene giving a mixture of the two cyanides, 

2-cyanopent-2-yne and 2-cyanopenta-2,3-diene, they were 

unable to separate this mixture by physical means but found 

that on treatment of 3-cyanopent-2-yne with sodium methoxide 
.. 

rearrangement to the allene took place. 

CH C C M B mryCHo) CH3- C =- C - fHmL 3 - e - g r --, 
OH 

CuCN) 
CEL- C C - CHCH 
---, - I 3 

CN 

+ 

NaOMe) 

-23-



Schlogl and Orgler 47 proposed an allene cyanide as 

an unisolated intermediate in their preparation of octan-1, 

2,3-tricarboxylic acid 

COOH 
I 

KCN) 
C~- C s C - CH2CN 

1l 
C~- C = C = CHCN 

C5Hll- VH - CH - CH2COOH 
COOH 

This addition of hydrogen cyanide to the allenic system 

is rather surprising and in the present work no such addition 

has been observed. 

Kurtz, Gold and Disselnkotter 49 prepared a mixture of 

1-cyanoallene and 3-cyanoprop-1-yne by refluxing a mixture 

of proporgyl chloride, cuprous chloride and hydrogen cyanide. 

HCN 
CuCl _) 

-24-
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A similar reaction using propargyl bromide and 

cuprous cyanide was carried_out in 1961 by Reddy, Mandell 

and Goldstein 50 who obtained the same mixture, these 

workers interpreted the N.M.R. spectrum of the mixture as 

being consistant with the 3-cyano-prop-1-yne but the typical 

allene band at 1950 cm-1 in the infra-red spectrum was not 

explained. (see discussion p. ~7 ) 

Laws 5l prepared a series of 1-cyanoallenes using 

two methods (a) tertiary acetylenic alcohols with concen-

trated hydrochloric acid, cuprous cyanide and potassium 

cyanide gave a.mixture of 1-cyanoallene and 1-chloroallene 

which could be separated by distillation. 

R 

"c -
R'/ \ 

OH 

C = CH 

(b) Secondary acetylenic alcohols were converted to the 

3-chloroacetylenes which were treated with cuprous cyanide 

in benzene to give cyanoallenes. 

R" 
C-O=CH 

/ \ 
H OH 

/' 

-25-



These reactions gave only poor yields of impure allene 

cyanides and will be discussed in the light of the present 

work. 

In 1965 Brannock and Burpitt 52 made a 3,4-pentadiene­

nitrile by a novel type of Claisen rearrangement. 

C = CH.CH.CN. 
I 
Et 

They gave infra-red and N.M.R. data which supported this 

structure. 

-26-



ENAMINES FROM ALLENIC AND ACETYLENIC NITRILES. 

Enamines 53 have come into prominence in recent years and 

provide interesting new paths in organic synthesis, particularly 

since their alkylation reactions developed by Stork 54. The · 

enamines derived from reaction of simple cyclic ketones·with 

simple amines are well known in the literature, but consist 

mainly of permutations of only a few ketones with a limited 

number of amines. 
w~ d~ve/opecl 

The first general synthesis of enamines liffi:B aiseev!ePOEl: by 

Mannich and Davidson 55 in 1936, they found that secondary 

amines and aldehydes reacted in the cold, in presence of 

potassium carbonate to give a 1,1-diamine, which on distillation 

yielded an enamine. 

e.g. 
H 

H 

~CH2CH-pn(=> 

0 --~) ~CH2CH = CH-0 
In case of ketones it was found necessary to use a higher 

temperature and calcium oxide. This reaction was not found 

to be successful with many ketones e.g. tliethylketone, 

acetophenone, benzophenone etc. Aliphatic ketones often 

gave an aldol condensation product. 

-27-



In 1955 Leonard, Hay, Fulmer and Qash 56 developed a 

method of oxidising cyclic amines by mercuric acetate to give 

cyclic enamines. 

co Hg{0Acl 2~ 
Addition of amines to activated double bonds have been 

known for a long time e.g. Holley & Holley 5? in 1949 added 

methylamine to ethyl acrylate and obtained ethyl 

~-methylaminopropionate 

) 

and .in 19~ Eglin4rton, Jones, Mansfield and_ Whiting 5S applied 

this reaction to an activated allene double bond to obtain an 

enamine from an allene 

H2 O=<Ji;,C!!COOEt + 0 
H 

c-a,o = C!!COOEt 

obtajning ethyl-~piperidinocrotonate from ethyl-buta-2, 

) 

thus 

3-dienoate. 

In 1964 Stirling. 59 investigated the addition of sulphur 

nucleophiles to allenic and acetylenic sulphones 
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PhS02CH = C = CH2 

1 

) 

(D) 

PhS02CH2r = CH2 
SPh 

ll 
PhS02 ..,.Me 

'c = c 
H- 'SPh 

. ll 
PhS02 .... SPh 

'c = c 
H / 'Me 

(A) 

(B) 

(C) 

He assigned structure (A) on the basis of n.m.r. spectra and 

assumed isomerisation of the terminal acetylenic sulphone to 

the allene before reaction. He states that the position of 

protonation of the allene (C3) is in accordance with "Ingolds 
60 rule" i.e. protonation occurs rapidly to give the isomer of 

lesser thermodynamic stability; and since the sulphonyl group 

is a powerful electron acceptor it distorts the electron 

distribution over carbons 1,2 and 3 so that the electron 

density is greatest at 03. However it should be noted that 

Ingolds rule is applied to mesomeric anions and the allene 

system is not a system of this type. 

He found that when the sulphone (D) was treated trans 

addition to give the cis product was observed and assigned 
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structure (C). In the many examples of addition of thiols 

to acetylenes 61 which have been studied, addition 1-1as all·rays 

found to be trans, in spite of variation of adduct and 

substrate. This was accounted for on the basis of maximum 

separation of the entering nucleophile, and the electron pair 

displaced from the triple bond, 62 together with the knolm 

configurational stability of the vinyl carbanions. 

Isomers . (A) and (C) ·were transformed to the trans 

product (B) by sodium methoxide, thus giving the more thermo­

dynamically stable product. 

Continuing his studies Stirling 63 reacted phenyl­

sulphonylpropadiene with dibenzylamine and found that trans-

2-dibenzylamino-1-phenyl-sulphonylpropene was the sole 

product. 

1 2 3 
PhS02CH = C = CH2 

HN( CH~Ph) ~ )o 

PhS02 
'\ 

,.,a 
H 

His interpretation of these results was that this could be 

obtained by addition at c2 followed by protonation at c3. 

This was shown to be unlikely by use of deuterium labled 

dibenzylamine, n.m.r. analysis of the product showed that 

"scrambling" had taken place. 
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If PhS0
2 'a 

H -

.,.. N- ( CH2Ph) 2 was reacted with (PhCH~ little 
=a 

'Me 

scrambling occurs showing that no hydrogen-deuterium exchange 

takes place, hence the deuterium must be introduced during 

the actual addition mechanism and cannot be introduced by 

addition to a mesomeric carbanion at a later stage, hence an 

internal proton transfer mechanism is almost certain. Our 

results throw a new light ·on this work and the full implications 

are discussed later. 
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GRIGNARD REACTIONS 

OF ALLENES AND ACETYLENES 

In 1935 it was reported by Ford, Thompson and Marvel? 

that allenic compounds were amongst the products from the 

GDgnard compound of the acetylenic bromide {I) with water or 

carbon dioxide. 

{a) +co, 

{b) 

Ph Ph 
C : C - 'c - Br + Mg ~ { ~) 3 C - C : C - C - MgBr 

c(CH ) C {CH3)3 
3 3 Ph 

I 
{CH3)3 C - C = C = C 

booH 'c{CH
3

)
3 

,.Ph 
{~):5 C - CH = C = C "-

C {~)3 

The structures were identified by the analysis of ozonolysis 

products. It is possible, however, that the allenic products 

were due to presence of undetected allenic bromide in the 

starting product {see p.2). 

Danehy and Nieuwland 64 reported coupling of acetylenic 

Grignard compounds, i.e. 
Cu + 

R-C : C - MgBr ) R - C e C - C ; C - R 

and later work by Campbell and Eby65 showed that tertiary 

acetylenic chlorides coupled easily with alkylmagnesium 

compounds to give acetylenic hydrocarbons 

R - C : C - CCl R2 + R'MgBr --7 R - C : C - CR2R' 

Structures were proven by physical constants, analysis 

and hydrogenation; however, since spectroscopic data was not 
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available the presence of allenes cannot be ruled out. 

Zakhavova 66 reported the presence of allenic and acetylenic 

isomers in the product from the reaction of et~ magnesium 

bromide with 3-chloro-3-methyl-3-ethyl-hen-4-yne. 

Me .Me 
t EtMgBr _ \ 

Me - C = C - C - Cl ) Me - C = C - C - Et + 
I I 
Et Et 

Me 
\ 

Et 
c = 

/ 
c = c 

Me 
/ 

\ 
Et 

Wot.iz67 in 1951 showed that a mixture of acetylenic and allenic 

hydrocarbons was obtained on hydrolysis of the Grignard reagent 

from bromopropynes. 
HO 

2 ) R - CH = C = CH2 + R - C : C - ~ 

H 0 

R-CH-C:CH 
I 

2 ) RCH = C = CH
2 

+ RCH
2 

- . C ~ CH 

MgBr 

He suggested the rearrangements could proceed via the 

following scheme: 
- C _ C CH

2 
+ R = C ;: C-CH3 

MgBr~RCH=C=CH 

C = C = CH2 

R - CH - C - CH --..,) _ H20 ) 
+ 

and ~-CH-C:CHJ 
&gBr RCH = C = CH RCH = C = CH2 

in each case the products were identified by infra-red spectres-

copy. 

A similar reaction 68- 70 of the Grignard compound with 

carbon dioxide gave rise to mixtures of acetylen~ and 
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· allenic acids. 

.... R-C 
R-C=C-CHMgBr 

- 2 > 
= C - CH2COOH + R? = C = CH2 

COOH 

n..... n.... :g. ' R = ".t'r, ~·jju or Am. 

The acids were separated by fractional crystallization 

and characterised by physical constants, OJPnolysis and infra-

red spectra. Whereas 2-bromooct-3-yne gave only 9% of the 

allenic acid, 2-bromo-2-methyloct-3-yne gave only the allenic 

acid, this was explained on the basis of stearic effects. 
CH

3 
Mg CH 

_ ' n (' / 3 
- e = C - f - CH3 CO ) C 4H9~ / C = C = C, 

Br 2 COOH CH
3 

Propargylic bromides were shown to ')e. couple' with 

acetylenic Grignard compounds by Gensler and Thomas, 71 they 

used a cuprous chloride catalyst and prepared pentadeca-6,9-

diyne and l-chlorohexadeca-7,10-diyne from l-bromooct-2-yne 

and the oorresponding Grignard compound. 

Gaudemar 71ain 1956 reacted propargyl bromide with alkyl 

Grignard compounds at -10 to -15° in etherial solution, he 

found that mixtures of allenic and acetylenic hydrocarbons were 

formed in good yield (80%). 

RMgBr· + BrCH2-c:CH ---7 RCH2C=CH = RCH=C=CH2 

Yields of allene were Bfr 80%, B~ 80%, ~ 75%, Ph 35%. 

He reported that prQpargyl Grignard compounds condensed 
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with aldehydes or keto~es to give alcohols which contained 

no CH3c=cc(OH)RR' and with carbon dioxide to give two products:­

HC:C-CH2COOH and a compound which was undoubtedly the allene. 
7lb Serratosa reported that propargyl bromide reacted 

with alkyl magnesium bromides in ether below 0° to give initially 

a bromopropargyl magnesium bromide, this subsequently formed 

an allenic carbene which added to another molecule of the 

alkyl Grignard to give an allene Grignard which on hydrolysis 

gave an allene hydrocarbon. 

BMgBr + BrCH
2

C:CH > BrCH2C;:CMgBr---+ CH
2
::C=C: 

RMgBr · 
1

R hydrolysis 
__ _,} CH

2
::C=C, CH

2
=C=CHR. 

MgBr 

Goodson 72 showed that allenic halides coUld be made to 

form Grignard compounds·when reacted with magnesium in 

tetrahydrofuran, he found them reactive to water and solid 

carbon dioxide but not to alkylhalides. 

He used the allenic chloride ,2,2,6-trimethylcyclo­

hexylidenevinyl chloride and, on reacting its Grignard complex 

with water, obtained a mixture of 1-etbynyl-2,2,6-trimethyl­

cyclohexane and l-vinylidene-2,2-6~trimethylcyclohexane in 

about 35% yield. 

) = C = CH2 + Ce CH 
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Reaction with carbon dioxide led to a mixture of allenic and 

acetylenic acids. 

Patelq-:1'$ obtained similar results using 2,2,6-trimethyl-

cyclohexylidenevinyl bromide. 
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PART II 

DISCITSSION. 



Preparation of Haloallenes. 

The reaction of 3,3-dialkylprop-1-yn-3-ols with hydrogen 

bromide was·first carried out by Favorskaya 23 in 1940. She 

used hydrobromic acid and 3-methylbut-1-yn-3-ol and stated 

that only 1-bromo-3-methylbuta-1,3-diene was obtained. 

) 

Moulin 73 reported that using dry hydrogen bromide the 

product was a mixture of 1,3-dibromo-3-methylbut-1-ene and 

3-methyl-1,2,3-tribromobutane. These results are not 

consistent with the present work. 

Patel and Whiter 24 showed that the reaction of hydro-

bromic acid with acetylenic carbinols gives impure 

1-bromoallenes contamjnated by unsaturated carbonyl compounds 

as shown by an infra-red band at 1685 cm-l and ultra-violet 

absorption at 224-22~ mp. The reaction did not go to 

completion even after shaking for 2 weeks. However in the 

presence of cuprous bromide, ammonium bromide and copper 

powder as catalysts goods yields of 1-bromoallenes were 

obtained after 1-6 hr. preferably at a temperature of 40°. 

Further work described in this thesis has shown that 

excellent yields of pure 1-bromoallenes may be obtained at 

room temperature (25-27°) by the following procedure. 



1. 3-Methylbut-1-yn-3-ol, 3-methylpent-1-yn-3-ol and 

3-ethylpent-1-yn-3-ol best gave 1-bromoallenes as follows:-

The acetylenic alcohol (1 eq.) was added over 5 min. to 

a stirred mixture of cuprous bromide (0.5 equiv.), ammonium 

bromide (0.5 equiv.), copper powder (lg.) and 45% or 48% 

hydrobromic acid (2 eq.) 

The mixture was vigorously stirred at room temperature 

( 25 - 27°), but stirring was interrupted from time to time to 

allow a lighter organic layer to separate. The organic layer 

was tested by infra-red spectroscopy and this proved to be the 

most convenient method of following the reaction. The strong 

3400 cm-1 (OH) band being replaced by a strong 1950 cm-l 

(C=C=C) absorption band. When the reaction was complete the 

mixture was decanted through a sintered glass filter funnel 

into a separating funnel and the lower layer of acid removed. 

The remaining upper layer of 1-bromoallene was washed several 

times with 45% hydrobromic acid until the acid washings no 

longer showed a purple colour, indicating that all the copper 

salts had been removed. After drying over a mixture of 

magnesium sulphate and sodium carbonate, filtration gave 85 -

9 5% of t he 1-bromoallene. The products gave only one peak on 

g.l.c. and the infra-red spectra contained no bands in the 

1600- 1700 cm-l region (C=C). 
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Reaction times varied between t - 2t hr. depending on 

(a) the efficiency of the stirring, (b) the scale of the 
e11t1 

reaction and (c) the substi tuftell. on the alcohol. The 

optimum conditions are shown in the table. 

Time (hr) 

1-Bromo-3-methylbuta-1,2-diene 

1-Bromo-3-methylpenta-1,2-diene 

1-Bromo-3-ethylpenta-1,2-diene 

t 

Yield 

90% 

85% 

88% 
The reaction time was considerably longer if the reagents 

were not stirred extremely vigorously; stirring normally 

regarded as efficient was found to be inadequate. This is 

probably due to the fact that the reaction mixture tends to 

separate into an aqueous and non aqueous phase, the reaction 

taking place in the aqueousphase. 

It was surprising that shaking did not give good results 

(except on a small scale); this was probably due to the fact 

that the shakers employed had only a slow oscillation time. 

The use of a supersonic dispehser would probably result in 

even shorter reaction times. Large scale reactions took 

longer than small scale reactions due to the fact that 

efficient mixing is more difficult to achieve on a large 
. 

scale. 

Acetylenic alcohols with larger substituents are less 

soluble in hydrobromic acid and consequently take longer to 

react under standard conditions. Solutions of hydrobromic 



acid in glacial acetic acid resulted in faster reaction 

times, but the progress of the reaction was difficult to 

follow, the products were much inferior in purity and separa­

tion of the products from.acetic acid was sometimes difficult. 

2. More vigorous conditions were employed with alcohols 

with larger substituents, e.g. 3,4,4-trimethylpent-1-yn-3-ol 

and 3,5-dimethylhex-1-yn-3-ol- cuprous bromide (0.75 equiv.), 

ammonium bromide ( 0. 5 equi v.) and 55-60% hydrobromic acid 

(2.5-3 equiv.); with temperatures up to 400 were used. 

Mono and di-isopropylethynyl carbinols tend to give 1,4-dienes 

as biproducts and in these cases it is better to keep the 

temperature below 300 and use slightly longer reaction times. 

3. Secondary acetylenic alcohols of higher molecular weight 

were best converted to 1-bromoallenes by use of 60% hydro­

bromic acid and shaking for 12 - 24 hr. The resulting 

monoalkylbromoallenes are contaminated with 5 - 10% of the 

corresponding acetylenic bromides which are difficult to 

remove by fractionation but do not usually interfere in 

subsequent reactions. 

Most of the simple 3,3-dialkylbromoallenes were obtained 

in high yields within two hours of starting the reaction and 

of such high purity that no further purification was 

necessary; they can now be considered to be readily avail­

able starting materials. 
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Whiter 74 attempted to prepare arylbromoallenes but 

met with only moderate success. Although the main products 

obtained by Whiter were shown to be bromoallenes they 

contained sufficient impurities so that no reliable analyses 

or spectral data could be recorded. Attempts at purifica-

tion of these arylbromoallenes led to fast decay of the 

allenic band at 1950 cm-1 in the infra-red spectra indicating 

that these compounds were unstable. 

In the present work three arylbromoallenes were 

prepared in excellent yield and high purity and the compounds 

were found to be far more stable than had previously been 

believed. (A sample of 1-bromo-3,3-diphenylpropa-1,2-diene 

has been kept unchanged in the refrigerator for several 

months.) 

It was reasoned that the solution to the problem of 

preparing these compounds lay in preventing the allenic 

bromide, once formed, from reacting further with the hydrogen 

bromide. Removal of the product immediately after its · 

formation was achieved by the presence of an immiscible, non­

polar solvent which does not react with hydrogen bromide. 

Light petroleum ether was chosen as the arylbromoallenes are 

very soluble in this solvent whereas the acetylinic carbinols 

used as starting materials are considerably less soluble. 
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In addition this solvent is easily removed after completion 

of the·reaction. 60% hydrobromic acid was used in order 

to complete themaction as quickly as possible, the method 

being as follows:-

An ice cold mixture of cuprous bromide (1 equiv.), 

ammonium bromide (1 equiv.), copper powder (1 g., catalytic) 

and 60% hydrobromic acid (4 equiv.) was stirred and a 

suspension of the acetylenic carbinol (1 equiv.) in light 

petroleum ether was added. The r eaction was stirred 

vigorously at 0° and the upper layer was examined by infra-

red spectroscopy in the usual manner. Reaction was 

complete after approximately 1 hr. and the organic layer 

was separated from the aqueous part and the latter was 

extracted witn light petroleum, the petroleum fractions 

were combined, dried by shaking with magnesium sulphate 

and evaporation gave the pure 1-bromoallene. 

Infra-red and ultra-violet spectral data are shown in 

Table.:!. All the 1-bromoallenes show an absorption 

maximum at 204-6m fl in the ultra-violet spectrum (Wh.i ter 

reported 20l-2m)l but the present data has been carefully 

checked and is considered more reliable.) 

-42-



TABLE I 

Infra-red and Ultra-violet Absorptions of Arylbromoal~enes. R, , H 
C=C=C 

Fi:' ' Br 
I Ymax cm-1 A max [_ ).max "max R R Yield I.R.No. E. 

Ph H 95% 1 1950, 1500, 1450, 1190, 756, 205 17,730 268 14,210 
705, 685. 

Ph Me 90% 2 1955, 1500, 1450, 1158, 765, 
730, 690. 

206 16,860 272 11,570 

Ph Ph 84% 3 1945, 1600, 780, 710, 685. 205 30,340 230 14,200 281 12,040 
sh 

Infra-red and u1 tra-violet Absorptions_Qf __ o_ther_l-Bromoallenes. R, , H 
,,C=C=C 

R 'Br 
, 

~max cm-1 ) max {. A max f.. R R Yield I.R.No. 

H Me 41% 1950, 1195, 840, 680 204 5,200 215sh 3,500 
n 

H Pr 67% 1950, 1190, 830, 690 206 7,200 215sh 4,700 

Me Et 90% 1950, 1165, 730 205 9,570 217-23sh 6,150 

Me But 78% 1950, 1155, 728 206 9,000 224 6,600 

Bui Bui 52% 1965, 1165, 720 206 9,090 230 9,000 

_A?!;_ 



- ' 

A shoulder at 215 m p in the ultra-violet spectrum is 

typical for 3-monoalkyl-1-bromoallenes and this is batho­

chromically displaced to 217-23 mp in the ultra violet 

.spectrum of 3,3-dialkyl-1-bromoallenes, 1-bromo-3,4,4-

trimethylpenta-1,2-diene shows a clear maximum at 224 ID)l. 

It is surprising that haloallenes show ultra-violet absorption 

in this mgion at all as the only conjugation is between the 

Unbonded electrons of the bromine and the 1,2-~ electrons 
I 

as in vinyl bromide which does not show a maximum or shoulder 

in the ultra-violet 

It is considered that there is a non-bonded interaction 

between the bromine 3d. electrons and the 2,3-7T electron 

system. 

~:~;~ 
~I 

I I 

This interaction may also account for the unusual 

intensity of the 1950-60 cm-1 absorption in the infra-red 

spectrum (page b9 ). 
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Mechanism of l-bromoa1lene formation. 

Evans ?5 has shown that the reaction catalysed by 

cuprous bromide is highly stereospecific and that the 

configuration of the resulting bromoallene is the same as 

that of the starting acetylenic carbinol. This was done by 

reacting the Grignard compound of the bromide with carbon 

dioxide and comparing the allenic acid produced with the acid 

from carbonation of an allenic chloride of known configuration. 

(+)-alcohol (-) -allenic bromide ----- (-) allenic acid. 

(-)-alcohol (+) -allenic bromide ----- (+) allenic acid. 

R(-)-alcohol --- (S)-(-)-allenic chloride ----- (+)-allenic acid 

therefore (+)-allenic bromide has the S configuration. 

Acetylenic carbinols and cuprous salts usually form 

cuprous acetylides; under strong acid conditions cuprous 

acetylides are usually decomposed but there was no evidence 

available which excluded the transient formation of cuprous 

acetylides.~ during the reaction. To test this 1-deuteroet~l 

carbinols were prepared and converted to 1-bromo-1-deutero­

allenes in isotopically normal aqueous hydrobromic acid. 
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R R D 
\ CuBr. HBr, \ / 
c - c - CD c = c = c 

"' 
. H20 I '\. 

R' Br OH 

No hydrogen-deuterium exchange took place and this excludes 

the possibility of transient formation of cuprous acetylides 

during the reaction. 

It has been established that the cuprous bromide plays 

an essential role in the reaction mechanism and the only 

alternative to the formation of a cuprous acetylide is the 

formation of a II - Cu complex. 

c 
Cu ( Ill 

c 

Three possible reaction mechanisms which involve a JT-Cu 

complex may be considered: 

(i) Formation of bromoacetylene (~1) followed by rearrange­

ment to bromoallene (~i'). 

R R 
\ H+ 

C C = CH ) 
/ \ 

R' OH 

\+ Br-
C - C = CH ) 

/ 
R' 

+ 
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R' 

R 
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R Br 



The acetylenic bromide could then undergo ~i' reaction as 

follows: 

R· 

'c .(?'=: CH 
R{ \") ~ (:., 

Br ~ Cu-Br 
I 

Br 

) 

R 
\ c 
/ 

R' 

Such a path may be discount.ed on the following grounds. 

(a) Such a reaction would be expected to give racimisation 

or invertion, not retention of configuration. 

(b) Rearrangements of 3-haloacetylenes to 1-haloallenes have 

been reported 25, 28 , but reactions are slow and do not go to 

completion. Only traces of 3-bromoacetylenes have been 

encountered in this work either during or on completion of 

the reaction ( < 1-2%). 

(c) As there is no build up of 3-bromoacetylene during the 

reaction the first stage must be considerably slower than the 

second stage and therefore rate determining. In that case 

addition of cuprous salt should not affect the overallrate 

of reaction, whereas in fact it is known to produce a 10-100 

fold increase in reaction rate. 
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(d) The neopentylcarboni~ ion usually undergoes a Wagner-

Meerwein type of rearrangement. In 3-tert-butylethynyl 

carbinols an ~1 reaction would lead to a neopeniylcarbonium 

ion, and the expected rearrangement products are never found, 
. ~~ 

indeed compounds of~is type usually/the least by-products. 

S 1 /
CH3 + 

N 
CH-~> CH-C-C-C:CH 

(ii) the ~2' mechanism 

C- H 

\sr:-: 

I I 

CH3 CH3 

R' /H 
... c c c 

R' "'Br 

This would lead to retention of configuration, since the 

two sets of )l bonds being at right angles to each other, the 
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bromine ion would be required to attack from the same side 

as the protonated hydroxyl group leaves. However this 

mechanism does not involve cuprous bromide which has been 

shown to play an important part in the reaction. 

(iii) The ~i' mechanism. 

This mechanism seems to fit t he 

known facts best, and utilize the complex of copper which 

is known to be formed in strong acid solution. 

HBr + CuBr 

i.e. 

R"'-. ~ 
C-C=C-H 

/ -
R''' ~ /0~~-Br 

H Br 

s i' 
a )' 

R 

' c 
/ 

R' 
+ HO=CuBr 

It has been shown by Demetriou 76 that 20% hydrobromic 

acid gives incomplete reaction even after several days, and 

also leads to exchange of acetylenic proton with deuterium 

in D20/HBr. Cuprous acetylide formation therefore slows 

down the reaction, presumably by competing with the Tr -Cu 

complex formation. The basic copper bromide formed is 

probably reconverted to cuprous bromide by excess hydrobromic 

acid. -[Ho - Cu - Brj + HBr -~) [cuBr 2) + H
2
o 
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1,1-Dibromoallenes. 

1,1,-Dibromoallenes are reported for~e first time in 

this work. Previously Roedig and Niedenbruck 77 had 

prepared 1,1-dichloro-3,3-diphenylallenes by elimination of 

hydrogen chloride from 1,1,2-trichloroprop-2-enes with 

sodium ethoxide 

= 

The starting materials for this reaction are not readily 

available. 

1-Bromopropargylic alcohols were prepared by the action 

of sodium hypobromite on ethynylcarbinols. Best yields 

(~go%) and purest products were obtained by adding an ice 

cold solution of sodium hypobromite over 8 hr. to the ice 

cold acetylenic carbinol, and stirring vigorously all the 

time. 

The 1-bromopropargyl alcohols were shown to be pure by 

infra-red spectra and gas liquid chromatography. 
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1-Bromo-3,3-dialkylprop-1-yn-3-ols with concentrated 

hydrobromic acid, cuprous bromide, ammonium bromide and 

copper gave products which contained the desired 

1,1-dibromoallene, but which were not very pure. It was 

difficult to follow reaction by means of infra-red 

spectroscopy as the density of the starting material was 

such that two layers did not form easily. The reaction 

was therefore carried out in the presence of light petroleum 

ether which extracted the product as it was formed and 

prevented it from reacting further with hydrobromic acid. 

~rthermore the light petroleum ether layer could 

easily be removed from the top of the reaction mixture for 

infra-red examination. 60% hydrobromic acid resulted in 

complete reaction in the shortest time; however, 1,1-dibromo-

3-methylbuta-1,2-diene was best prepared by using 45% 

hydrobromic acid, as impurities tended to form rather easily 

with 60% hydrobromic acid. 

The ultra-violet;·spectra of the 1,1-dibromoallenes is 

very similar to that of the 1-bromoallenes but the extinction 

coefficients are generally higher. (Table II). 

-51-



Table II. 

Ultra-violet spectra of 1.1-dibromoallenes. 

R R' I.R.No. Yield A max E. Ama.x [ 

Me Me 8 62% 206 13,040 215sh 9,990 

Me Et 9 67% "206 13,850 215sh 10,000 

Me But 10 69% 206 16,290 218sh 10,000 

H Prn ll 31% 205 10,000 215sh 7,700 

Ph Ph 12 60% 207 24,000 289 6,000 
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1,1-Dibromoallenes are probably formed by the same 

mechanism proposed forfue formation of 1-bromoallenes. 

R ,. ~ 
C - C :: C - Br 

R'/'\ I /"! 
-.0 ~ Cu - Br 

H/ f 
Br 

~i' 
:) 
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3.3-Dialkyl-1-iodoallenes. 

The first general preparative method for 1-iodoallenes 

was due to Baker, Landor, Landor and Patel 3°. · A solution 

of triphenyl-phosphite methiodide in dimethylformamide with 

a secondary propargylic alcohol at 80 - 100° gave good 

yields of 1-iodDallenes. It was thought that the 

mechanism was ~i' or ~2, both mechanisms requiring the 

formation of an alkoxyphosphorus intermediate as an 

essential step in the mechanism of the reaction. 

R H "' / 0 

R 
'\ ~ 

R 
Me, i _,.,. OPh 

P+ 
/ \'-

C-C=CH 
/ -

_ _,> H \J_ ~ 
o-p+-I-

\ 

) p = C = CHI 
PhO I -

OFh 

R 
' c -
/I 

H 0 
.+ 

C: CH 

' I-

Ph-0-P, 
I OPh 
Me 

/1" 
PhO Me O~h 

H 

.) 
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k 
These workers 30 found that 3,3-di~ylprop-1-yn-3-ols did 

not react with this reagent and this may be ·due to ste-ric 

hind-rance since the oxygen of the tertiary alcohol cannot 

approach close enough to the phosph·orus of the tri­

phenylphosphite methiodide for co-ordination to take place. 

Other workers 28 , 3l, 32 had.tried to prepare allenic 

iodides by reacting proporgylic bromides with sodium 

iodide in acetone, but had obtained only poor yields of 

very impure and unstable products. Favorskaya 23 had 

obtained mixtures of 1-iodo-3-methylbuta-1,2-diene and 

1-iodo-3-methylbuta-1,3-diene on reacting 3-methylbut-1-

yn-3-ol with hydriodic acid but she was not able to isolate 

the allenic iodide. 
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As a consequence of the work on 1-bromoallenes and 

1,1-dibromoallenes it was decided to see if the reaction 

could be extended to the preparation of 3,3-dialkyl-1-iodo-

allenes. 3,4,4-Trimethylpent-1-yn-3-ol was reacted with 

45% hydriodic acid in presence of cuprous iodide, ammonium 

iodide and copper powder, some allene formation was found 

but the product was very dark and highly contaminated with 

impurities showing band·s at 1650 cm-l in the infra-red 

spectrum. These probably arose from attack of hydriodic 

acid on the iodoallene or by rearrangement reactions. 

But 
.......... 

c = 
.Me/ 

c = c 
H 

/ 

'-..· 
I 

HI ) 

+ But 

+ 

........ 

Me/ 

But 

' 
Me/ 

c· = CI - CH2I 

CH - CI = CHI etc. 

It was therefore decided to use the petroleum ether 

technique. 3,4,4-Trimethylpent-1-yn-3-ol in petroleum 
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ether with 45% hydriodic acid for 18 hr.gave 40% of the 

starting alcohol and 50% of the required allenic iodide. 

Increasing the strength of the hydriodic acid to 60% reduced 

the reaction time to 6 hr. and increased the yield of 

iodoallene to 76%. 

Table III summarises the conditions used for these 

preparations. In all cases elevated temperatures (> 20°) 

lead to formation of by-products which are difficult to 

remove. 
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Table III. 

Preparation of 1-Iodo-3.3-dialkylallenes. 

R H 

" I c = c = c 
/ " R' I 

R R' Moles Moles Moles Strength Time Yield I.R.No. 
Carbinol Cui HI HI 

a Me Me .2 .2 .4 45% 2 hi: Highly 
impure 

b Me Me .2 .2 .4 45% 2 hr. 61% 4 

b Me Et .15 .15 .3· 45%. 2thr. 62 5 

Et Et .15 .15 .3 45% 3hr. 65 6 

be Me But .1 .1 .15 45% 18kr 50 7 

b Me But .1 .1 .2 60% 6 hr. 76 7 

a. no solvent used 
b. solvent partition method 
c. 50% recovered alcohol 
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It has previously been reported 3& that 1-iodoallenes 

have no absorption in the ultra-violet region, but the 

present work shows that this report is erroneous and in 

fact mono-alkylallenes show an absorption at Amax 207m~ 

and A max 235-9m p whilst dialkyliodoallenes have a A max 

206-?m )l and A max 246-Sm p. Again it is not known what 

the cause of the absorption is, other than to postulate a 

similar non-bonded interaction to that of the allenic 

bromides. (Table IV.) 
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Table IV. 

Ultra-violet Absorption of l-Iodoa1lenes. 

R ·H 
\ / c = c = c 

R( "I 
R R' A max ~max 

H Me 207 14,000 235 5,000 

H n . Pr 207 12,700 239 4,000 

Me Me 206 15,875 246 9,525 

Me Et 206 15,560 247 6,645 

Et Et 207 17,053 248 6,963 

.. Me But 207 18,475 247 7,171 
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Mechanism. 

By analogy with the mechanisms proposed for the 

formation of 1-bromoallenes it seems probable that the 

mechanism of formation of iodoallenes is as follol'rs: 

R 
" ..r:::-. C-C=CH / -

R ~~ I 
1 ~ Cu I 

H t 
I 

R"'-. 

R' 
C = C = CHI 

/ 

Only traces (<21o) of 3-iodoacetylenes are found in 

the products and in the reaction mixture. 

The Infra-red Spectra of 1-Halloallenes. 

Characteristic bands in the infra-red spectrum, in 

order of decreasing wave number, these are 3050w, 1950-

1975s, ll30-ll90s, and either 720-730 (1-bromo-3,3-

dialkylallenes) or 830-855. and 680-700 (1-bromo-3-

alkylallenes) or 780-820 and 710-715 (1-iodo-3,3-
. 1 

dialkylallenes) or 870-885 and 830-840 em- (1-iodo-3,3-

dialkylallenes). This is clearly shown in Tables V and 

VI. These bands may be assigned "tori th some certainty to 

the following vibrational modes: 

-1 3050 em 
1940-1965 cm-l 

1130-1190 cm-l 

= C- H 

c = c = c 
~ C - H(X) 
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stretching mode 
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Table v. 

Infra-red Spectra of 1-Bromoa11enes. 

R R' Wave Numbers cm-1 

Me Me 1950 1160 1050 750 730 
Me Et 1950 1165 730 
Et Et 1950 720 
Me Bui 1950 1160 730 
Me But 1950 1155 728 
Pri Prr 1950 1165 728 
Bui Bui 1965 1165 720 
But But 1940 1135 72Q 

H Me 1950 1195 890 840 680 

H Et 1950 1190 870 850 690 
H Prn 1950 1190 880 830 690 

H Pri 1950 1195 855 704 

H Ph 1950 1190 

Me Ph 1955 1160 
Ph Ph 1945 1165 
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Table VI. 

R 

Me 

Me 

Et 

H 

H 

H 

R' 

Me 

Et 

Et 

Me 

Et 

Infra-red Spectra of 1-Iodoallenes. 

1955 

1955 

1950 

1945 

1940 

1940 

R H " / c = c = c 
/ ' R' I 

Wave Numbers cm-1 

1160 

1155 

1160 
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1135 

1130 

1130 

lllO 

1100 

1100 

750 

780 

800 

885 

870 

870 

710 

715 

710 

835 

840 

830 



Out of plane = C - H(X) deformation modes are difficult 
to assign but tentative placings are: 

1-bromo-3-alkylallenes 

1-iodo-3-alkylallenes 

l-iodo-3,3-dialkylallenes 

0 -1 88 and 840 em 

880 and 835 cm-l 

720 - 800 cm-l 

The two inplane and 1he two out-of-plane vibration modes seen 

in the monoalkylallenes are due to there being two allenic 

hydrogens with different surroundings, i.e. 

R 

" / 
H. 

C = C = CHBr and RHO = C = C 

Br 
/ 

' H 

To test these assignmen~s a series of 1-deuteroallenes 

was prepared and the ratio 9~ was compared with the 

theoretical value of 1. 36·. (Table VII.) The theoretical 

value was derived as follows: 

1 (f )t ~ =--
H 21(0 )lH 

y = .!_(:_)t 
D 21'\C p. 

D 

c = velocity of light; f = force constant of bond, assume 

)l = reduced mass of a system A, B defined 

~ MA. ~ 
)J. = ---
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Thus 

-)H .)(D Me· M:o· Me +MH ~in· Me +I\ 
= = 

Yn fJH Me.+Me Me· I\ Me+~ ~ 

)H 2 • 13 1.36 
7;; = = 

14 • 1 

1-ehloro-3,4.4-trimethylpenta-1,2-diene: The 3070 cm-1 

= e - H stretching band moves to 2300 cm-1 on deuteration, the 

1180 cm-1 = e - H in place deformation band moves to 890 cm-1 

on deuteration. The out-of-plane = e - H deformation band 

moves off scale and its shift therefore cannot be measured. 

It is thought that the 740 cm-1 band which on deuteration 

appears at 710 cm-l is the = e - e1 stretching mode. (It is 

known that ·e- Cl stretching in CHe1
3 

moves on deuteration.) 

'1-Bromo-]-methylpenta-1.2-diene: The 3050 cm-l =e-H 

stre~ching band moves to 2300 cm-l on deuteration, the 1180 

cm-1 =e-H in plane deformation band shifts to 870 cm-1 • There 

is/no clear band which may be assigned to the out-of-plane 

deformation. The 720 cm-1 band moves only slightly on 

deuteration and cannot be due to =e-H, it is thought that 

this band may be a =C-Br stretching mode. 



Table VII. 

Comparison of 1-Ha1oal1ene and 

1-Deutero-1-Haloallene Spectra. 

Me......._ ........ H Me, ,.....D ~ t C=C=C t C=C=C 
Bu ..,. 'c1 Bu ~ 'c1 

3070 -1 em • 2300 -1 1.34 em 

1180 -1 em • 890 .cm-1• 1.33 

830 -1 em • off scale 

Me- ,.....H Me......... ,.....D 
C=C=C C=C=C 

Et..,.,.. 'Br Et,...... 'Br 

3050 -1 2300 -1 1.33 em • em • 

1180 -1 870 -1 1.36 em • em • 

Me......... _,H Me, ,.....D 
C::C=C, C=C=C 

H - I H- 'I 

3100 cm-1 • 2300 cm-1 • 1.34 

1160 -1 em • 900 cm-1 • 1.29 

880 cm-1 • off scale 
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~g (cak.) 

1.36 

1.36 

1.36 

1.36 

1.36 

1.36 



Table VIII 
* Infrared Spectra of 1- Halohal1enea 

{ ... apparent extinction coeff at ·wa.ve ·number ~in· mo1e1ciii1 • Llt"" corresponding half bandwidth in ciii1 • 

1-Chlorohexa-1,2-d.iene a E 1965 ... 12.8 ~i 15, (. 840 ... 23.2 ~i20J !..745.,. 111 ~i 12 

. 1970 830 . 745 -
1-Bromohexa-1,2-d.J.ene £ .,. 23.2 At 15J ( = 30.9 6i15J ( = 193 6i 12 

830 . 
1,-Iodohexa-1, 2-diene b t_1950.,. 12.5 

(_ 1955.,. 40.5 

L 1955.,. 47 ~5 

1-Chloro-3,4,4-trimethylpenta-1,2-d.iene c 

1-Bromo-3,4,4-trimethylpenta-1,2-diene 

1-Bromo-3-1llethylpenta-1,2-diene 

l~Iodobuta-1,~-diene 

£_1975 ... 57.1 

t,1950.,. 12.6 

Llt 15; L = 33.9 

830 .A.b. 15; L = 23.5 
2 

.6t 15; ~830 ... 24.6 

At 15; 

.at 15J (. 
830 

... _ 105 

* 10 solution in nujol, O.lmm cell. t also £.860
... 32.4 L\i 8 

..6tl0; 

l'lt a, t74o ... 152 

Ll t 8J t730
a 133 

cr25= 69.2 

i a;t 

a T. L. Jacobs, w. L. Petty and E. G. Teach, J. Amer. Cham Soc., 1960, 82,4090. 

b C. S. L. Baker, P~ D~ Landor and A. N. Patel, J. Chem Soc., 1965, 4348. 
(and S. R .. Landor} 

6* 20 

6t 12 

.At 15 

c Y. R. Bhatia, P. D. Landor and S. R. Landor, J. Cham Soc., 1959, 24; R. D. J. Evans and s. R. Landor, ibid, 
1965, 2553 

~ 
~ 
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750 cm-l region is stronger than the band 88 sh01n1 by the 

monobromoallenes (720-730 cm-1) and it is possible there­

fore to tentatively assign this mode to a =C- Br stretching 

vibration. 
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.Table IX. 

Infra-red Spectra of l,l-Dibromoa1lenes. 

R R' 

Me Me 

Me Et 

Me But 

H Pri 

Ph a Ph 

1960 

1960 

1950 

1955 

1950 

Wave Numbers in cm-1 

1013 

1120 

1200 

779 

830 

835 

a This compound shows absorption at 775; 
760; 740 and 694 cm-1• 

-T1-

735 

740 

745 

750 



Nuclear Magnetic Resonance of l-Ha1oa1lenes. 

The data from a number of different 1-haloallenes has 

been collected in Table X and has allowed a number of general 

cohclusions to be formed. 

The above compound is taken as a convenient skeleton for 

reference, all compounds of this type are simple AMmXx 

systems. 

Chemical Shifts. 

1. The absorption of the lc Protons is usually in the 

region of 1:4.1 for bromoallenes and T:4.4 for iodoallenes, 

these values are consistent with the differences in electro-

negativity of bromine a::td iodine. The exception is in 

Ph2C = C = CHBr where the = lCHBr absorption is :r: 3.65, 

this is probably due to a deshielding effect of the phenyl 

groups. 
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2. The 4c protons usually absorb at li:7.8-8.2, this is in 

fair agreement of the position calculated using Shoolery's 

additive constants ( T~8.2). 

3. The ~3 absorption is fairly constant at T=8.1-8.22, 

~hich is about the· expected position for a methyl group 

attached to a double bond. 

4. The 5CH3 absorption is in the normal position of:r:8.92. 

Spin-spin Coupling and Coupling Constants. 

The system shows the usual couplings between 4CH, 5CH 

coupling constant·s were found to be J ~ 7. 5 c.p. s., and 4CH, 

6CH J-::::=. 0. 5 c.p .• s. In addition there is a long range 

coupling between 1CH and 4CH; and 1CH and 6CH coupling 

constants were found to be J ~ 2.3 c.p.s. In allmses where 

the 1c proton was replaced by 1c deuterium or 1c bromine the 

long range coupling vanished, thus proving that it was caused 

by the 1c proton. Couplings constants of the type 1CH, 3CH 

are usually high with coupling constants in the order of 

J ~ 6 c.p.s. 

1-Bromobuta-1,2-diene CH3CH = C = CHBr has a rather 

more complex spectrum as it is an ABX3 system. The corres-

ponding 1-chlorobuta-1,2-diene has been examined in detail by 
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Manatt and Elleman 80 and Snyder and Roberts 81 and all 20 

of the bands have been assigned. The spectra consists of 

two sets of two superimposed quartets, 1r, centred on 1r = 
4.15 and I 3 on I = 4. 71. I 4 the methyl group shows as 

a doublet of doublets at ~ = 8.27 and 1i= 8.3. J4,1 = 

2.5 c.p.s.; J 4, 3 = 7.5 c.p.s.; J 1 , 3 = 6 c.p.s. 
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Table X. 

.s Compound 

Br-CH=C=CHMe 
1 2 3 4 

6Me 

NUCLEAR MAGNETIC RESONANCE DATA 

OF 1-HALO-ALLENES. 

I Value 

'l=4.09 (doublet of qu~rtets) 

'T 3=4.68 (quartet of doublets) 

'*=8.22 (doublets of doublets) 

Br-CH::C=C-CH~e 'T 1 =4.1 (sextet) 
l 2 3 4 5 

-r
4
=8.l9 (quartet of doublets) 

1r6=7.6-8.4 (doublet of triplets) 

1r5=8.93 (triplet) 

-76-

Spin-spin coupling 
constants in c.p.s 

Jl,3 5.8 

Jl,4 2.6 

J3,l 5.8 

J4,l 2.6 

J4,3 6.9 

J4,1 2.6 

J1,4 2.3 

Jl,6 2.3 

J4,5 7.5 

J4,l 2.2 

J6,l 2.0 

J6,~ 0.5 

J5,4 7.5 



6~e 
BrCD=C=C.CH2Me 

1 2 3 4 5 -

,CHt1e 
BrCH=C=C 

' CH~e 
1 2 3 4 5 

6 
,Me 

BrCH=C~C, 
But 

1 2 3 5 

T _ 7.87 {quartet_) 
4-

1i6= 8.14 (singlet) 

1r5= 8.94 (triplet) 

~1= 4.0 (pentet) 

,..4= 7.85 (quartet of doublets) 

~5= 8. 94 (triplet) 

'1= 4.17 (quartet) 

lr6= 8.21 (doublet 

1 5= 9.15 (singlet) 

t 
BrCH=C=C-(Bu )2 1r1= 4.16 (singlet) 

1 2 3 5 
115= 9.2 (singlet) 
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Jl,4 2.2 

J4,5 7.8 

J4,1 2.2 

J5,4 7.5 

Jl,6 2.0 

J6,1 2.0 



cont' d/ ••• 

BrCH=C=CPh 
2 

l 2 3 4 

CH
3

CH=C=CHBr 

X B A 

1i = 3.65 (singlet) 
1 

lr4= 2.72 (multiplet) 

I= 8.24 (doublet of.doublets) 
X 

··= 4.72 (two quartets) 
B 

I= 4.15 (quartet of doublets) 
A 

T = 6.99 (quartet) 
3 

11 = 8.93 (doublet) 
4 

li = 4.5 (septet) 
l 

1i4= 8.2 (doublet) 
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JXB 7.2 

JXA 2.5 

JBX 7.2 

JAX. 2.5 

JAX. 2.5 

JAB 6.0 



cont' d/ ••• 

6 
Me 
I 

ICH::C=C.CH~ie 

1 2 3 4 

5But 
\ 

ICH=C=C-Me 
l l34 

5But 
CICD=C=b-Me 

1 2 3 4 

6
Me 
' 

5 

Br2C=C=CCHJ1e 

1 2 3 4 5 

'1= 4.38 (sextet) 

'4= 7.9 (quartet of doublet 
of quartets) 

""I= 8.22 (doublet of triplets) 
6 

T 5= 8.93 (triplet) 

T 1= 4.43 (quartet) 

T 4= 8.23 (doublet) 

.,.. 5= 8. 9 (singlet) 

114= 8.93 (singlet) 

T5= 9.36 (singlet) 

T4= 7.7 (quartet) 

I= 8.0 (triplet) 
6 

T = 8.89 (tripiet) 
5 

Jl,4 2.3 

Jl,6 2.3 

J4,5 8.9 

J4,1 2.3 

J4,6 0.5 

J6,1 2.3 

J6,4 0.5 

J5,4 8.9 

Jl,4 2.2 

J4,1 2.2 

J4,5 7.3 

J6,4 0.5 

J 5,4 7.. 3 



cont' d/ ••• 

5But 
' Br2C=C=C - Me 

1 2 3 6 

116= 8.08 (singlet) 

'5= 8.85 (singlet) 

-80-



1-CYANOALLENES. 

Preparation of 1-Cyanoallenes from Acetylenic Alcohols. 

A preliminary investigation by Laws 5l showed that a 

number of 1-cyanoallenes .could be prepared by two methods, 

one of which was applicable only to 3-alkylcyanoallenes, 

the other only to 3,3-dialkylcyanoallenes. 

Laws found that poor yields of 1-cyanoallenes 

to·gether with the corresponding 1.-chloroallenes could be 

obtained by reacting 3,3-dialkylpropyn-3-ols with hydro-

chloric ~cid, cuprous cyanide and potassium cyanide. 

It was found necessary to use a large excess of 

hydrochloric acid ~t elevated temperatures. 

acid, formic acid and acetic acid in place of 

Sulphuric 

hydrochloric acid did not give cyanoallenes, but hydro­

bromic acid yielded some cyanoallenes together with 

1-bromoallene, from which it could not be separated 

readily. 

In the present work the tertiary acetylenic alcohol 

was reacted with cuprous cyanide (1.5 eq.), potassium 

cyanide (l.o eq.), copper (catalytic) and concentrated 

hydrobromic acid (2.5 sq. 48%lv/w) for 3 days. It was 

found that good yields of pure 1-cyanoallenes could be 
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obtained. Unchanged starting material could be 

recovered in a pure state, and except in one case 

1-bromoallene was not formed, Table XI shows the yields 

of allenic cyanide by this method. 

Mechanism. 

The mechanism favoured here is on ~i' type, similar 

to the one proposed for the 1-bromoallene formation 

R R 
/H 

" ~ ' c - c - C H ) c = c = c 
R'/1~ ~utCN 

/ " R' CN 
Ifo~ 

t 
CN 

This type of mechanism would account for the fact 

that only the hydrogen halides give allene formation, 

since sulphuric acid and other acids would not allow 

formation of cyanocuprite or bromocyanocuprite complex 

ions. 
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Table XI. 

1-CYANOALLENES FORMED BY REACTION OF 

ACETYLENI C CARBINOL WITH HBr. 

R'-.. 
C-C=CH 

/ -
R' I 

OH 

R R' 

Me Me 

Me Et 

Et Et 

Me 

Me 

Yield % 

30 

51 

75 

40 

25 

-83-

Reaction 
Time 

76 hr 

67 hr 

76 hr 

72 hr 

90 hr 



The following equilibria are probably established 

as a slight excess of hydrobromic acid is added to the 

rest of the reagents 

(i) KON + HBr ~ 

(ii) CuON + HBr ~ 

KBr + HON 

H+ ( CuCNBr)-

(iii) H+ (CuCNBr)- + ON-~ 

The cyanocuprite ion then reacts with the acetylenic 

carbinol to give the 1-cyanoallene. 

A large excess of hydrobromic acid forces the 

equilibrium of G±V to the left and leads to increasing 

quantities of 1-bromoallene in the product 

> 

R 

' 
/ 

R' 
c = c = 

Similarly a large excess (5 fold) of hydrochloric acid 

gives equal quantities of 1-chloroallene and 1-cyano­

allene as would be expected from a similar mechanism:-
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) 

> 

Laws 51 showed that 3-chloroacetylenes reacted with 

cuprous cyanide Under the reaction conditions used here to 

give 1-cyanoallenes and suggested that the reaction of the 

alcohol with cuprous cyanide would proceed by initial forma­

tion of the 3-haloacetylene 

C _ CH ) 

R 
' c - c -
/ 

R' I 
X 

R 
..... 
,c 

R' 
= c = c 

H 
/ 

'\ 
CN 

However 3-chloroacetylenes are never completely converted to 

1-cyanoallenes - some 3-haloacetylene is always recovered; 

since little or no 3-haloacetylene 1vas found in the product 

this mechanism seems unlikely. Also it would require a slow 
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initial formation of a 3-bromo-propyne followed by a fast 

conversion to 1-cyanoallene, this is unlikely as under parallel 

conditions 1-bromoallenes are formed up to 70 times faster 

using hydrobromic acid and cuprous bromide. 

Secondary acetylenic alcohols did not give 1-cyanoallenes 

. by this method 

R~- C:CH r 
OH 

RCH = C = CHCN 

This is probably due to the hydroxyl group being more 

firmly bound in the secondary alcohols; in the case of the 

preparation of 1-bromoallenes this was overcome by using 60% 

hydrobromic and excess CuBr but a similar increase in 

concentration of cyanocuprite was ineffective in the prepara­

tion of 3-monoalkyl-1-cyanoallenes. 
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PreAaration of 1-Cyanoallenes from 1-Bromoallenes 

and Cuprous Cyanide. 

A general method for the preparation of cyanides is the 

treatment of a bromide with cuprous cyanide in benzene. 

Several attempts were made to prepare 1-cyanoallenes by 

heating 1-bromoallenes with cuprous cyanide in various solvents 

(benzene, acetone, alcohol silicone fluid, etc.) but in all 

cases 1-cyanoallene formation was negligible. 

When 1-bromoallenes were heated with dry cuprous cyanide 

a vigorous reaction occurred at elevated temperature (110°) 

which resulted in the elimination of hydrogen cyanide··,. to give 

alken-ynes; this reaction will be fully discussed in section 

IV of this thesis. However, highly stearically crowded mole-

cules such as 1-bromo-3,4,4-trimethylpenta-1,2-diene and 1-bromo-

3-tert-butyl-4,4-dimethylpenta-1,2-diene did give the corres­

ponding 1-cyanoallenes in 60% and 90% yield respectively. 

A simple four centre transition state best accounts for 

the formation of cyanoallene under these conditions 

R H 
/ 

'c = c = = c = c 
I 

RCH2 
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Laws 51 prepared some 3-momoalkyl-1-cyanoallenes by 

converting monoalkylprop-1-yn-·3-ols to the corresponding 

3-chloroalk-1-yne and by heating the chloroacetylene with 

cuprous cyanide in· benzene 

auCN 
R?H - a = CH --~> RfH - a = CH benzeae 

OB Cl 

R 

' a 
/ 

H 

This method gave only poor yields of impure 1-cyanoallenes. 

It was felt that a better method for the preparation of 

3-monoalkyl-1-cyanoallene could be found and it was reasoned 

that an inert solvent of high dielectric constant was needed 

to dissolve both cuprous cyanide and 1-bromoallene. Such a 

solvent would have to be easily removable from the product and 

N,N-dimethylformamide was found to be suitable. The following 

procedure gave excellent yields of 1-cyanoallenes:-

Pure, dry dimethylformamide and dry cuprous cyanide are 

stirred until a partial solution is effected. 1-Bromoallene 

was added to this solution and the solution rapidly became dark • 

. Excess cuprous cyanide dissolved quickly and heat 'tvas evolved. 

The contents of the flask were not allowed to rise above 50° 

during this initial exothermic reaction, then when the initial 
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evolution of heat stopped, the flask and contents were 

maintained at 50-60° for 1-2 hr. The solution was cooled 

and ether added until the turbidity produced by this addition 

was only just permanent_ (the addition of too much ether led to 

the formation of two layers which made working up difficult). 

The ether/dimethylformamide solution was then slowly added to 

a large volume of rapidly stirred _water when copper salts were 

precipitated and an ether layer separated. The ether layer 

was removed and the aqueous suspension was filtered then 

extracted several times with ether, ether solutions were 

combined and washed 10-15 times wi~h cold water to remove any 

residual dimethylformam~de; efficient washing at this stage 

leads to a considerably improved product. fhe ether solution 

was· then. dried (MgSo4) and distilled to give excellent yields 

of pure l-cyanoallenes; Table XII contains a list of cyano­

allenes prepared by this method. 
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Table XII. 

1-CYANO-ALLENES FROM 1-BROMOALLENES. 

R R' Method Yield n25 
D 

Me Me a 40 1.4840 
Me Et a 51 1.4800 
Et Et a 60 1.4718 
Me Bui a 50 1.4685 
Me But a,b 65 1.4725 
Pri Pri a 61 1.4650 
Bui Bui a 60 1.4 
But But b 90 1.4745 

* H. H a 
H Me a 55 
H Et a 55 
H Pri a 55 
H Prn a 60 1.4750 

H Ph a 70 

Method a Allene bromide + cuprous cyanide in D.M.F. 
Method b Allene bromide + cuprous cyanide, no solvent 

* see text. 
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An attempt was made to prepare allene cyanide (1-cyano­

propa-1,2-diene) by reacting the dimethylformamide azeotrope 

of 1-iodopropa-1,2-diene with cuprous cyanide in the usual 

manner. Elemental analysis and infra-red spectra showed a 

mixture of 1-cyanopropa-1,2-diene and 3-cyanoprop-1-yne in 

the ratio 7:3 resulted (estimated by n.m.r.) · This could be· 

due to the initial iodoallene containing some 3-iodoprop-1-yne. 

Work by Baker, Landor, Landor and Patel 
30

has shown that the 

iodopropadiene always contains at least 20% of 3-iodoprop-1-yne. 

Attempts to separate pure 1-cyanopropa-1,2-diene by 

removing the 3-cyanoprop-1-yne as its insoluble silver salt 

were kuccessful. After three washings with ammoniacal silver 

nitrate the r~tio of the allene to acetylene remained unchanged 

even though large quantities of silver acetylide were 

precipitated. This suggests an equilibriwnof the type 

CH2 = C = CHCN > CN - CH
2 

- C _ CH 

which is re-established after the removal of some of the 

acetylene by the precipitation of its silver salt. 
. ' 
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Mechanism of Reaction. 

It has been discovered as a direct consequence of this 

work that a solution of cuprous cyanide in N,N-dimethylforma­

mide yields several crystalline complexes; S.R. Landor and 

V.C. Patel 82 are at present working in these laboratories to 

try and elucidate the structure of these compounds. When 

1-bromoallenes are added to a solution of cuprous cyanide in 

dimethylformamide an exothermic reaction immediately results 

and quickly proceeds to completion. 1-Bromoallenes of higher 

molecular weight require heating at 50-60° for about 2 hr. to 

ensure maximum conversion to 1-cyanoallene. 

The choice of reaction mechanisms seems to lie between 

simple substitution of cyanide for bromide (or other halide) 

and an elimination reaction giving a carbene which then attacks 

cyanide. It was found that some alkenyne (l0-15%) was formed 

at the same time as 1-cyanoallene, but since the latter is 

shown by separate experiments to be stable to heat in the 

presence of cuprous cyanide, the alkenyne must be formed from 

the 1-bromoallene. 

(a) Four-Centre Reaction. 

R H R H 
~a c-c/ ' / 

= ) c = c = c 
R'/ 

- ~ / ' ~~~~ R' ~ 
Cu + alkenyne 



(b) aarbene Formation. 

H 
I 

a > 
"Br 

R 

" a = a = a: 
R/ 

jaN 
R 

" 
/ 

R' 
a = a = 

alkenyne 

R '\+ 1' 
~ a - a = a 

/ -
R' 

= a = a 
H 

/ 

' CN 

However when a l-bromo-1-deuteroallene was reacted with 

cuprous cyanide and worked up in aqueous solution only 1-cyano­

l-deuteroallene was formed, no exchange between deuterium and 

hydrogen occurred, this therefore precludes a carbene 

mechanism. 

Cuprous cyanide dissolves readily in dimethylformamide to 

form a complex and it w auld be difficult for the large complex 

molecule to lie flat across the 1-bromoallene, thus thenormal 

elimination mechanism (see p .l S 0) is prevented and a substi tu-

tion reaction occurs. Under similar conditions cuprous 

iodide and cuprous bromide which are not soluble in dimethyl­

formamide ~ yield en-yne~ (see pageJ~) due to the fact that 

they do not form complexes with dimethylformamide hence can 

lie flat across the bromoallene molecule. 
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Infra-red and Ultra-violet Absorption of l-Cyanoa1lenes. 

1-Cyanoallenes have very intense absorption bands in the 

infra-red spectrum at 2230-50 and 1955-80 cm-1 • The former 

is due to stretching mode·of the conjugated cyanide and the 

latter to the allene group. In addition to these very strong 

bands weaker absorption occurs at 790 and 760-770 cm-1 

(3,3-dialkylallenes) and 865-870 and 125-40 cm-1 (3-alkylallenes). 

That the lower of each of these pairs of bands is due to a 

hydrogen deformation mode is fairly certain, since on conver-

sion of 1-cyano-3-meth~enta-1,2-diene to 1-cyano-1-deutero-3-

methylpenta-1,2-diene the 760 cm-1 band moves off scale. 

All the 1-cyanoallenes show a maximum in the ultra-violet 

region at 207-9 mp extinction coefficients being in the region 

of 10,000. This may be compared with d..- j3 unsaturat.ed 

cyanides which absorb at 215-17 mp ~4 

Table XIII shows these spectral characteristics. 
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Table XIII. 

Infra-red and Ultra-violet Spectra 

of l-Cyanoa1lenes. 

R'\. /H 
c = c = c 

R'/ "\.CN 

R R' y ma:X. em -1 Amax.t 

Me Me 2245 1950 790 207 10,000 
*Me Et 2245 1955 790 760 207 10,000 
Et Et 2240 1955 790 207 10,140 
Me Bui 2245 1960 765 207 10,150 

Me But 2250 1960 765 207 10,000 
Pri Pri 2250 1955 770 207 10,880 
Bui Bui 2250 1980 760 207 11,010 
But But 2235 1970 760 207 11,050 

H Me 2225 1965 860 730 207 9,730 

H Et 2235 1950 865 725 207 11,100 

H Prn 2255 1970 730 207 9,000 
HJ Pri 2250 1965 870 740 208 8,600 

+H Ph 2250 1155 209 14,800 

* in the l-deutero form the 760 cm-1 is absent. 

+ i. r. lovrer bands obscured by phenyl absorption, 

u.v. also has bands ~max 244 m p., ( (. ' 7 '860) ; 

272m f-' ( (..' 5,170); 283m p., ( L, 5,180) 
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Nuclear Magnetic Resonance Spectra of 1-ayanoallenes. 

Table XIV shows the n.m.r. spectra of several 1-cyano-

allenes. It is worth noting that the hydrogen on a1 of the 

allene which also bears the cyanide is at a much higher field 

than the corresponding allenic hydrogen in the 1-haloallenes. 

Obviously this cannot be explained on the basis of electro- · 

negativities as the cyanide group has a much greater electro-
. 

negativity than the halides, and "he signal should therefore be 

below '= 4. This high value is probably due to the hydrogen 

lying in the shielding cone of the cyanide, and the result is 

a balance between the two effects. 
~--
I ' .......... 

/ H I ' ' 

I ' ' = a"' : ,deshi~lding 
I '-. 

,----- _q~-------~-J 
\ ~ IN 

·. ""· I 

\; ..., : 
' "'' The 1,4- and 1,3- s~in~spin coupling constants of protons 

in the 1-cyanoallenes are 3-3.5 c/sec. and 6 c/sec. respect­

ively, the 1,4- coupling constants being considerably higher 

than the 2-2.4 c/sec. of the corresponding 1-bromoallene. 

4,6-spin-spin coupling was not observed with the resolution of 

the 60 M. a instrument. This is in contrast to the 1-bromo~ 

allenes which gave 4,6-coupling constants of o.5 c/sec. It 

-96-



is interesting also to note that the methyl protons in the 

t-butyl group ( li= 8.75-8.8) were deshielded relative to 

the methyl protons in the t-butyl group of 1-bromoallenes 

( I = 9.15-9. 2). 

·The n.m.r. spectrum of a mixture of 1-cyanoprop~-1,2-

diene and 3-cyanoprop-1-yne showed the ratio of the compounds 

to be 7:3. A low field triplet \ = 4.3 was obviously the 

cl allenic proton coupled with the two c3 allenic protons 

J = 6 c/sec. The other two c3 allenic protons showed at 

\ = 5.4 and are split into a doublet by the cl proton. 

1-Cyanobuta-1,2-diene has a similar spectrum to the 

other 1-substituted buta-1,2-dienes; it is an ABX3 system 

shOI>Ting a multiplet at I= 5.0 (=C(~3) two quartets, a 

multiplet at. I= 4.37 (=C~~), two quartets and a pair of 

doublets I= 8.17, 8. 30 (=C-CH3). The coupling constants 

are J 4 ,1 = 3 c/sec.; J 4, 3 = 7.5 c/sec.;. J 1 , 3 = 6 c/sec. 

Pasternak and Pfeiffer 86 claimed to have prepared 

1-cyano-3-methylbuta-1,2-diene, l~cyano-3-methylpenta-1,2-

diene and 1-cyano-propa-1,2-diene. These authors reacted 

3-bromoacetylenes with hydrogen cyanide in the presence of 

cuprous bromide and obtained 1-cyanoallenes. Yields were 

not stated and they described the mechanisms as being complex 

and varied. They isolated a dimer of 1-cyano-3-methylbuta-
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Table XIV. 

N.m.r. of 1-Cyanoallenes. 

Compound Value spin-spin coupling 
constant in clsec. 

Me, ....eN \4 = 8.2 (doublet) J4,1 3 
..,C=C=C, 

Me H '1 = 5.1 (heptet) Jl,4 3 
4 3 2 1 

6 T 5 = 8.92 (triplet) J5,4 7 
Me 
I ,CN T 6 = 8.18 (doublet) J6,1 3 MeCH2 C=C=C, 

5 4 3 2 1 H \4 = 7.88 (quartet of J 7 doublets) 4,5. 

J4,1 3 

T1 = 4.9 (sextet) Jl,4 3 

Jl,6 3 

6 
Me '5 = 8.93 (triplet) J5,4 7 
I ~ 

MeCH2C=C=C, T 6 = 8.15 (singlet) 
5 4 3 2 1 D 

14 = 7.92 (quartet) J4,5 7 
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cont' d ••• 

Et 1 5 = 8.9 (triplet) J5,4 7 
I CN 

MeCH C=C=c' 14=7.9 (quartet of J4,5 7 2 . ' doublets) H 
5 4 3 2 1 J4~1 3.5 

1'1 = 4.75 (pentet) Jl,4 3.5 

CH3 16 = 8.8 (singlet) 
6 } 

14 = 8.25 (doublet) J4,1 3 CH3-~-CH3CN , 
(quartet) Jl,4 3 Me-C=C=O, "T 1 = 4.83 

H 
4 3 2 1 

t 
CN '5 ~ 8.75 (singlet) CH3 Bu 

I I I 

CH3-P - 0=0=(\H "1 = 4.83 (singlet) 

CH3 
5 3 2 1 

,ON T3 = 5.4 (doublet) J3,1 6 
H20=0=0, 

T1 = 4.3 (triplet) Jl,3 6 H 
3 2 1 

· CH
3 

CH=O=CHCN - (pair of J4,1 3 '4 = 8.23 
doublets) 

4 3 2 1 J4,3 7.5 

T3 = 5.0 (two 
quartets) J3,4 7.5 

J3,1 6 

11 = 4.37 .(two 
quartets) Jl,3 6 

Jl,4 3 
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1,2-diene which was claimed to be 1,2-di-(cyanomethylene)-

3,3,4,4-tetramethylcyclobutane, but the present work shows 

this to be erroneous. 

Preparation of 1-Cyanoacetylenes. 

A literature survey 82a shows that few methods for the 

preparation of 1-cyanoacetylenes are available at the present 

time. It was therefore decided to try to extend the methods 

used for the preparation of 1-cyanoallenes to the preparation 

of cyanoacetylenes. 1-Bromoacetylenes may conveniently be 

prepared by the action of sodium hypobromite on the alkyne, 

or by decomposing the acetylenic Grignard compound with 

bromine. 

(a) NaOBr 
R-C-~ RC _ C - Br 

(b) Grignard + Br2 

The bromoacetylene was then heated with cuprous cyanide in 

dimethylformamide and worked up in the same manner as for the 

1-cyanoallenes. 

)B-Bromophenylacetylene was converted to)B-cyanophenyl­

acetylene in 70% yield; a higher boiling fraction which later 

solidified was shown to·be 1,4-diphenylbuta-1,3-diyne by 

analysis and ultra-violet spectrum. · 



u.v. of product of . 83 
u.v. of 1,4-diphenylbuta-1,3-diyne 

Amax E.. t\max f.. 

204 m p. 42,830 

218 m )l 32,320 

228 m p 28,700 227 m }J- 30,200 

248 m p. 27,480 248 mp 29,510 

260 m)l 27,070 260 mJl 29,510 

288 m )l 21,010 287 mp. 22,390 

297 m ).l 17,170 296 m p. 19,050 

306 m Jl 31,520 306 mp 33,880 

317 m )l 13,330 316 m)l 14,450 

327m p 29,490 327 mp 31,620 

Thus it can be seen that a coupling reaction has taken place. 

a _ c - Br 
CuCN 

D.F .J'I1. 

+ C ::: CCN 

Use of nitrogen or other inert gas ·would probably prevent 

this coupling as it is almost certainly due to an oxidative 

82b 
mechanism requiring oxygen. 

After the present work had been completed a preliminary 

85 
report by the Russian worker Sladkov and Ukhim described 
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B-bromophenylacetylene, obtained by the action of bromine on 

the cuprous salt of phenylacetylene. 

PhC : C - Cu + Br PhC : CBr 

They reacted this with cuprous cyanide in dimethyl­

formamide and obtained)-cyanophenylacetylene, however no 

details were given. 

CuCN,. D.M.F. 
PhC : C - Br PhC : CCN 

This reaction is of interest since during the present 

work similar conditions were used. 

_1()7\_ 



DIMERS OF ALLENIC CYANIDES. 

It was found during the course of the present work on 

allenic cyanides, that l-cyano-3-methylbuta-1,2-diene 

deposited crystals after standing for 3-4 v1eeks. These 

crystals showed the following physical constants: Ymax 2252 

and 2235 ( -CN); 1680 and 1650 ( C=C); A max 281 m )l 

( l.., 11,420) and melting point 81°. 

In 1964 a preliminary communication by Pasternak and 

Pfeiffer 86 reported the isolation of a dimer of l-cyano-3-

methylbuta-1,2-diene. 

They claimed that by analogy to compounds prepared by 

Bertrand, their compound was 1,2-di-(cyanomethylene)-3,3,4,4-

tetramethylcyclobutane. 

Me ---cHON 

CN 

Pasternak and Pfeiffer claimed that the spectral data obtained 

for this compound supported the above structure; ultra-violet 
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absorption ~max 285m p (no extinction coefficient given); 

infra-red absorption, doublets at Ymax 2230 (-CN) and 1650 

cm-l (C=C), and n.m.r. absorption at 5.0 p.p.m. (ethylenic) 

and 3.35 p.p.m. (non-ethylenic), the melting point was given 

as 73.5°. We thus concluded that our compound was the same 

as the one obtained by the French workers 86 ; the difference 

in melting points could be due to impurities in their com-

pound. (The elemental analysis for our compound fitted the 

theoretical value more closely than the one obtained by the 

French workers.) 

The n.m.r. spectrum showed six peaks, four of which at 

1r = 8.7, 8.6, 8.02 and 7.75 were clearly three proton 

signals (as shown by the inttgram), and corresponded to four 

magnetically different methyl groups; the other two peaks 

at lr= 6.6 and 5.04 were single proton signals. This 

spectrum is not of the pattern expected for a compound whose 

structure is as proposed by the French workers. 

All the possible dimer structures are discussed here, 

rearrangements of initially formed dimers to other structures 

might occur but such structures will be ignored as they 

would not possess the extensive conjugated systems which 
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would give absorption at Amax 281 mp in the U.V. The 

following structure would more or less fit the infra-red 

and ultra-violet spectral.data, but can be eliminated on 

the ·basis of n.m.r. spectral data. 

Me CHON 

CHON 
Me 

(I) 

There are three possible stertoisomers, depending on 

the orientation of the cyano-methylene groups, i.e. 

cis-cis, trans-trans or cis-trans. In the cis-cis and 

trans-trans forms all the methyl groups are magnetically 

equivalent hence would give one signal in the n.m.r., not 

four; these forms can be ruled out. The cis-trans form 

should give signals for two non-equivalent methyl groups 

but not four, and should also give tv10 signals for ethylenic 

protons. This stereoisomer cannot therefore be the correct 

formulation. 
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H 

~-----+-CN 

c 
Me/ \ 

Me 

(II) 

This isomer should give one C : N stretching band in the 

infra-red absorption spectra and an absorption maximum in 

the ultra-violet spectrum at ~ max 240 m P.· Both the 

cis and trans forms of (II) would give rise to only two 

magnetically different methyl groups, and only one single 

proton signal. 

ruled out. 

Hence this type of structure can also be 

H 

(III) 
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On initial examination of this structure it appears 

that there are only two different kinds of methyl group, 

however closer examination shows that all four methyl 

groups are magnetically non-equivalent. Methyl group 2Me 

will be different surroundings to 1Me due to proximity of 

a hydrogen or cyano group. Either ~e or ~e will be cis 

to the ring cyano group whilst the other one is trans. 

i.e. 

3 Me---

4 Me 

H 

~e is cis to cyano group. 

~e is trans to cyano group. 

Thus the methyl groups ~e and 4-Me lie in different 

parts of the ·Cyanide deshielding zone (see later). 

In structure (III) there are two magnetically different 

single protons, i.e. a ring proton of higher field and an 

ethylenic proton of lower field. 

So far this type of structure agrees well with the known 

data; however, two sterioisomeric forms, III A and III .B 

are possible. 
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Me 

H 

' • 
Me 

(III A) 

/ c 
' CN 

H 

H 

Me 

(III B) 

..,..CN 
c 
t 
H· 

The dipole moment of the dimer was determined experi­

mentally and found to be 3.2D 87• A calculation of dipole 

moments expected for structures III A and III B was carried 

out on the following basis:- literature values for the 

group moments of cyanide are rather perplexing, aliphatic 

cyanide is given as 4.0D (vapour) or 3.7D (solution); 

CH3CH = CHON is given as 4. 5D (vapour) and CH2= CH - CH = 

CHCN is given as 3.9D (vapour). It is not stated whether 

or not these cyano compounds are pure cis or pure trans or 

mixtures of cis and trans, quite apart from possible 

contributions of S-cis and S-trans conformations. It was 

decided to use a value of 4.0D for the group moment of 

=CHCN and 3. 7D for CHCN. No figures were available for 

the group moment of the isopropylidene group in conjugation 
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with a nitrile - and this moment was designated as X. 

Its approximate magnitude may be deduced from the following 

considerations which also permit differentiation between 

sterioisomers III A and III B. As this is an induced 

dipole it must be in the same sense as the cyanide dipole. 

Thus for III A 
/ 

~~0 CN/ 
Me I// 

c, 
Me·· / H 

/ 

/ 
/ 

H 
_...., CH3 .r: 

/ CN c 

56:/ 
\ ~ !3-7 CH3 

The expected dipole;moment p is given by 

p 2 = (4 cos60-3.7 cos56) 2 + (4.0 sin 60+X) 2 + (3.7sin56) 2=3.22 

o + (3.46 + x) 2 + 9.4 = 10.24 

(3.46 + x) 2 

(3.46 + X) 2 

3.46 + X 

X 

or X 

= 

= 

= 

= 

= 

10.24 - 9.4 

.84 

+ .86 -
- 2.60 

- 4.32 
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for isomer III B 

;i2 = (4 cos 60~3.7 cos 56) 2 + (4.0sin60-x) 2 +(3.7sin56) 2=3.22 

+ (3.46 - x) 2 + 9.4 =10.24 

3.46 ...;, X + = .86 

X = + 2.6 

or x = + 4.32 

As already stated the direction of the isopropy.lidene 

moment must be in the same sense as that of the cyanide, it 

follows therefore that structure III B is correct and the 

dimer is 
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H 

(a) 

c" 
CN 

(b) Me-- -

Me (d) 
H c/ 

CN "Me 
(c) 

An interpretation of the n.m.r. spectrum satisfactorily 

accounts for structure III B (but not III A). The 

signal at I = 8. 7 is due to Me protons (a) l·Thich are trans 

to the cyanide group on C , the signal Slightly dovmfield 
3 

from this at I= 8.6 is due. to lYle protons and cis to the 

cyanide group on c
3 

and lies in the deshielding zone of this 

cyanide. The signal at ll = 8.02 is due to Me protons (c) 

and is in the normal position for a methyl group on a conjuga~ 

system, the other "ethylenic" methyl, Me (d) is directly in 

the deshi~lding cone of the cyanomethylene cyanide group and 

it is found dmmfield at T = 7. 75. 

The proton at ll = ·6.6 is the ring-proton on C and is 
1 

somewhat deshielded due to the proximity of the cyano group 

also on C , the low field proton at 1r = 5.04 is due to the 
1 

cyanomethylene proton, which is deshielded by the double 

bond and by the cyanomethylene cyano group. 
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Structure III B also explains the infra-red spectra 

and the following assignments may be made. The doublet 

in the region of 2240 cm-l is due to absorption by the 

saturated ring cyanide on c
3 

at 2252 cm-1 and the unsatur­

ated cyanide of cyanomethylene.at 2235 cm-1 • Similarly 

the doublet in the double bond region is due to the 

isopropylidene double bond at 1680 cm-l and the cyanomethy­

lene double bond at 1650 cm-1 • 

The corresponding dimer of 1-cyano-3-methylpenta-1,2-

diene shows similar infra-red and ultra-violet absorption 

i·. e. .) 2245 s (cyanide); 2220s (conjugated cyanide); max 

1665s (isobutylidene double bond); 1630s cm-1 • (cyanomethy-

· lene double bond); A max 283 Mp ([, 18,300) and is 

considered to be 2-(2-butylidene)-1-cyano-3-cyano-methylene-

4-ethyl-4-methylcyclobutane. However since the alkyl 

groups are different and racemic cyanoallene was used a 

mixture of sterioisomers must be present, i.e. IV a, b, c 

and d. 
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Me H Me H I c; c.........._ 
Et~- CN ---eN 

/Me ...--Et H-· c H~ C, 
CN ' Et CN Me 

(a) (b) 

Et H Et ,H 
/ 

Me-- c-.. CN Me-- c..__ CN 

Me _:, Et 
H~ c/ H-" c, 

'Et CN Me 

(c) (d) 
lV 

The dimer of 1-cyano-3-ethy1penta-1,2-diene may be 

considered to have the structure 1-cyano-3-cyanomethy1ene -

4,4-diethy1-2-(3-pentylidene)-cyclobutane (V) since it has 

similar infra-red and ultra-violet spectra to the previous 

dimers (III B) and (IV). 

E H 
I 

c...._ 
Et·' 4 3 CN 

1 2 ,......- Et 
H ·' -· c 

CN 'Et 

(V) 
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i.e. ) max 2240s (cyanide); 2215s (cyanomethylene 

cyanide); 1650s (isopentylidene double bond); 1625s cm-1 

( cyanomethylene double bond); A max 283 m p ([, .17 ,0~0). 

The n.m.r. spectrum is reasonably consistant with the above 

structure and ~hows 1r = 8.7-9.3 a multiplet from protons 

of four methyl groups split into triplets, -r= 7.2-8.55 a 

multiplet from protons of four methyl groups split into 

quartets, an unexplained doublet T = 6.65 from the proton 

on ring carbon c1 , and two unexplained peaks making one 

proton T = 5.14 and I= 4. 75 assigned to the cyanomethy-

lene proton. 

The structure of this compound is based mainly on 

analogy to the original structure (III B), the n.m.r. 

pattern being too complex for definite assignments. 
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In 1913 Lebedev 88 , 89 prepared the first cyclobutane by 

dimerisation of an allene and started a controversy which 

lasted for over 50 years as many workers in this field were 

not convinced that the structure of his product was a 

cyclobutane. From allene Lebedev isolated what he. 

considered to be 1,2-dimethylenecyclobutane (as expected 

from a diradical mechanism). 

0: 

Although the oxidative and reductive methods which he 

used to prove this structure were not absolutely conclusive, 

later work has completely validated his results. 

E. Vogel 90 in 1955 still contested the cyclobutane 

structure but in 1956 Blomqu.ist 9l synthesised 1, 2-dimethy­

lenecyclobutane by an unambiguous route, thus ending the 

controversy: 
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Dcoo Et 

COO Et 
LiAIH4 

DCH20H 

CH20H 
PBr3 

DCH2Br 

CH2Br 

+ 
DCH2 NEt~/EtOH DCH~ Me3 

AEQ_ 
CH2N Me2 CH2. 

Dimerisation of 1,1-dimethylallene gave at least two 

of three possible head to head isomers 

Head to head is defined as head to tail is defined 

b a a b b a 

bp<a a~<b 
"' c 

b ' a 
or 

b a a b a b 
I c; / 

c c, 
b ' a 'b a a b 

as 

(see Fig. I), but it is possible that smaller amounts of the 

third dimer was present. 

Williams and Sharkey 92 working with allene in the 

vapour phase obtained an 85:15 ratio of the 1,2- and 1,3-

dimethylenecyclobutanes, which indicates that at higher 

temperatures the dimerisation is less stereo-selective. 

Jacobs and Petty 93 showed that the major dimer from 

l-bromo-3,3-dimethylallene was the di-isopropylidene form 



in which the ring bromines were trans to each other (ozon­
(:t) 

olysis gave ~-dibromosuccinic acid) and that a second dimer 

had two possible structures 

0 Me Me2 CHBr Me2... CH2Br 
H --- 2 

BrPCMe
2 H:PC = CH2 

+ or 
Br---

C Me2 H Br \ 
Me 

however McClennon 94 has since sho1in that both of these 

alternatives are present. 

It has been noted that the major products of dimerisa­

tion of allenes are head to head products (see Fig. I), 

the only exception being the dimer from 1,2-difluoroallene, 

"i'rhich gives the head to tail isomer as the major product. 

This structure has been clearly shown by infra-red and 

nuclear magnetic resonance spectroscopy. 
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MeCH=C=CHMe (a) MeHn:'\. CH3 . 

\re c~ 

(a) 

Me
2

C=C=CHBr 

-ll9-

Me 
Me o;:::CHBr 
H Br CMe2 

REF. 

Me 89-92. · 

CH24e 
CH2 e 

97,98. 

89. 

99· 



(a) defined as head to head 

(b) defined as head to tail 
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) 
H2ITCF2 
F CH2 

2 

The present work has shown that 1-cyano-3,3-dimethylallene 

also gives the head to tail dimer as the major product. 

> 

As yet there has been no explanation of this anomaly, but 

it is possible that if the diradical is formed and has a 

fairly long lifetime then a weak bonding or attraction 

between the hydrogen and fluorine atoms (or the hydrogen 

and the cyano group) would tend to stabilise the conforma-

. tion in the head to tail form. 

? 
H, c 

tf\ H I1CF2 a c F 
H/" f 

2 . 
I ) 

F 
~ ' . F2 CH2 c C H 

/ ~ I 
F c 

\ 
H 
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. 
HCNC 

I 

' ' CH3 
c :::::::-....1 
~c 

' ex, 

) 

However since this free radical mechanism is most favourable 
. ~low polerl.t~ 

with J:G~1 polai structures}an ionic mechanism is more likely 

with such strongly polarised molecules 

H "· /F . 
c = c = c 

H( \ " F 

F •• ,, H 
/ 

c = c = c 
F( "'-H 

c 

c 

H 
/ 

"' CN 

R 
/ 

' R 

/F 
H, c ... 

' ~ " c - C F 

HI 
) 

F, 
' ' ' c- c~ H 
.J c~ 

H 

) I 
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ENAMINES FROM ALLENES. 

In the present work a number of 1-cyanoallenes were 

reacted with different amines. The reaction was carried 

out by adding amines to the stirred 1-cyanoallene and 

moderating the reaction by cooling in a water-bath to keep 

the temperature below about 60° (some of the ensuing 

reactions were highly exothermic). If the reaction was not 

moderated the same products resulted but were much darker in 

colour and contained high molecular weight impurities. The 

same products in the same ratios were obtained if the reaction 

was carried out under reflux in etherial solution. 

The reaction with ammonia was best carried out by 

·.heating the 1-cyano-3-ethylpenta-1, 2-diene to about 60° and 

passing dry ammonia gas continuously (ammonia was obtained 

from a reservoir of slowly evaporating anhydrous liquid 
0 

ammonia). With lower members of the cyan~-allenes, e.g. 

1-cyano-3-methylbuta-1,2-diene dimerisation of the allene 

competed with the reaction with ammonia. At room temperature 

the addition of ammonia was very slow (1-2% after 6 hr.) 

The addition of amines to 1-cyanoallenes gave two products 

which could easily be separated by fractionation, these 
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resulted from the addition of nit~ogen to c2 and protonation 

at either c1 (type A) or c3 (type B), the product of type B 

being invariably the higher·boiling compound. (See Table XIV) 

R 

" C = C - CH2CN 
/ I 

R' N 
I \ 

R" R"' 

Type A. 

R 

" CH- C = CHCN 

R' 
I I 

N 
I \ 

R" R"' 

Type B. 

Both types of enamines are stable under the reaction 

conditions used and do not isomerise (as shown by separate 

experiments); they are therefore probably formed by different 

mechanistic pathways. 

-124-



Table XIV. 

COMJ?ARATIVE YIELDS OF ENAMINES ISOMERS 

FROM CYANOALLENES. 

Cyanide Amine 
R R' R" R" 

H Pr~ Et Et 
Me Me Et Et 
Me Me (CH2)5 NH 

Me · Et Bun H 

Me· Et Et Et 
Me Et ( CH2) 5 NH 

Me Et (CH2).5 NH 

Et Et H H 
Et Et Et Et 
Et Et (CH2)5 NH 

Et Et iso C9Hl0 NH 

Et Et C9Hl0 NH 

Me But Et Et 
Me But (CH2)4 NH 

Me But (CH2)5 NH 
i Pri Et Et Pr· 

* not isolated pure. 
a, b yields not accurate. 

+ 

"A" 

Yield 
Type A 

74% 
8% 

72% 

8% 

70% 

* 
a 
0% 

58% 
16% 
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R 

' CH-C=CHCN 
R.' I 

N 
I \ 

R" R" I 

"B" 

Yield 
Type B 

90% 

78% 
80% 
17% 
75% 
81% 
60% 

* 
66% 

b 

0% 
43% 
83% 
23% 
54% 



R 

' c = C = CHCN ~ 
1' / 

R' 
N-H 

/ ' R" R" I 

R 
' C = C - CH = 

R~ \ 
+N-H , \ 

R" R" I 

R I 
' -C = CH- C - CHCN 

, 1 
R' +N-H 

(I) 

R ,_ 

" \ R" R" I 

190° rotation 

C - C = CHCN 
/ ' 

R
1
H- N 

' ........_ R'" 
:R' 

(II) 

) 

Type A. 

R, 
CH- C = CHCN 
I l 

R' N 
~ '\ 

R" R" I 

Type B. 

Addition of the nitrogen to c2 initially gives an anion 

best represented as (I); the charge is delocalised through 
c.~ a n-o 

molecular orbitals embracing c1 , c2 and theAnitrogen atom, 

but there will be no delocalisation_ to c3 since the C2-c3 

)T-orbital is at right angles to this delocalised orbital. 
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Thus only after a 90° rotation about the c1-c2 bond can 

delocalisation occur to give carbanion II. 

It seems prQbable that an intra-molecular proton 

transfer from the nitrogen to the either cl or c3 then takes 

place to form enamine type A or B respectively. The 

different ratios of types A and B in the product are 

explained in the following manner:- After the initial 

opening of the d..-P bond to give the carbanion I the 

quaternary nitrogen is in a state of sp3 hybridisation and 

rotation about the c2-N bond can occur, if this rotation is 

fast the hydrogen will be confmrmationally favourably placed 

for transfer to the negatively charged cl thus giving ~ type 

A enamine. However if the rotation about the c2-N bond is 

slow then the proton transfer will be slow since only when 

the hydrogen is opposite to the electron pair of the c1 sp3 

orbital will transfer occur. This allows rotation round 

the c1-c2 bond and after a 90° rotation maximum overlap of 

If-orbitals gives a distribution of negative charge, part of 

which will reside on c3• Internal proton transfer to c3 
then gives the thermodynamically ~ stable type B compound. 

The factors which affect the rotation about the C2-N 

bond are (a) The inertia of the group about its axis of 
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.l 

rotation i.e. smaller more symmetrical groups will rotate 

quick~y - this explains the preponderance of ~ype A enamines 

with diethylamine; unsymmetrical, larger groups have a 

higher moment of inertia and hence rotate more slowly thus 

giving more time for the other (c1-c2) bond to rotate, thus 

tending to give a mixture of types A and B. (b) Stearic 

interaction between R' and R" and R"' would.tend to hinder 

rotation thus again a mixture results. 

These observations are apparently contradicted by the 

results obtained when either R" or R"' or both are hydrogen 

i.e. in the case of the amines being n-butylamine and ammonia, 

when fast rotation would be expected to lead to formation of 

type A enamine, in fact type B is formed exclusively. This 

· is best explained by prototropic rearrangement to the imine 

which allows the more thermodynamically more stable type B to 

form from the type A enamine. 

R 
' c = c 

R~ I 
NH 

~ 

R" 

Type A 

R 
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' CHC = CHCN 

. / I 
R' N 

I ' R" H 

Type B. 



The.imine structure has actually been detected by 

nuclear magnetic resonance in the case of 2-amino-1-cyano-3-

ethylpent-1-ene (see later). 

The two cases of 2-amino-1-cyano-3-ethylpent-1-ene, and 

2-(n-butylamino)-1-cyano-3-methylpent~l-ene clearly show that 

extended conjugation stabilises the amino forms relative to 

the imino form of these type B enamines, since very little of 

the imino form is detected in the former (1 part in 8) and 

none in the latter at all. This is clearly shown by infra-

red, ultra-violet and n.m.r. spectra. This is paralleled 

by the stabilisation of enols by conjugation (e.g. acetyl­

acetone or ethylacetoacetate). 

The high wavelength absorption of type B enamines in 

the ultra-violet region (260-284m) is due to the presence of 

an extended conjugated sys.tem due to resonance forms of the 

type 

R r/ 
r;N 

cP 

c = c 
R' 

"\ 
CH­

/ I . "' c:N H. 
, ' 

R" R" I 

R, 
( ) CH - C-

R'/ II 
N+ 

/ ' R" R" I 
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since ~-~ unsaturated cyanides would be expected to absorb 

about 215-17 mp 84 . 

The two different types of enamine can be readily 

distinguished by means of their infra-red and ultra-violet 

spectra (Table XV and Table XVI). Type A enamines show an 

-1 ( ) absorption at 2250-2290 em unconjugated cyanide and a 

weak absorption at 1625-1675 cm-l (unconjugated double bond), 

they have a weak ultra-violet absorption at 203-7 m ~ 

(~, 5,000), and in some cases a weaker secondary absorption 

at 233-46 mp (£, 2,000). In contrast the type B enamines 

show an exceptionally intense infra-red absorption at 2200-

2210 em -l (conjugated cyanide) and another exceptionally 
. -1 

intense band at 1560-1595 em (double bond conjugated to 

cyanide); their ultra-violet spectra show a strong absorption 

in the 261 mp region (secondary nitrogen) or 273-84 ID)l 

region (tertiory nitrogen). 
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Table X:V. 

INFRA-RED AND ULTRA VIOLET SPECTRA OF 

TYPE A ENAMINES. 

R 
' C = C - CH2CN 

R/ ~ 
/ \ 

R" R"' 

Cyanide Amine ~ max cm-l Amax [, A max c 
R R' R" R" I 

Me I"le Et Et 2280, 1675, 740 203 4,820 235 1,160 

Me Me (CH2) 5NH 2250, 1660, 740 203 5,235 236 3,140 

Me Et Et Et 22~0, 1650, 735 204 5,040 

Me Et (CH2)5NH 2260, 1675, 740 205 4,000 233 2,300 

Et Et Et Et 2250, 1650, 730 204 6,640 

Et Et iso C9Hl0 NH 2290, 1650, 750 207 14,530 

Me But (CH2) 5NH 2270, 1625, 760 203 5,130 246 2,880 

Pri Pri Et Et 2280, 1645, 775 203 6,860 
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Table XVI. 

INFRA-RED AND ULTRA-VIOLET SPECTRA 

OF TYPE B ENAMINES. 

R'""-
CH.C = CHON . 

/ I 

R' N 
~ ' R" R"' 

Cyanide Amine Ymax cm-1 A max [ 

R R' R" R" I 

H Pri Et Et 2210s, 1580vs, 1097 720 273 24,300 

lYie Me ( CH2) 5NH 2205s, 1580vs, 860 750 276 19,750 

Me Et Bun H 2205s, 1595vs, 737 261 19,500 

Me Et Et Et 2197 ' 1570 730 276 19,700 

Me Et ( CH2) 4NH 2210 ' 1575 720 274 22,500 

Me Et (CH2) 5NH 2210:' 1580 277 18,700 

Et Et H H 2200 ' 1585 760 261 18,300 

Et Et (CH2) 5NH 2210 ' 1575 740 276 23,700 

Et Et isoC9H10NH 2210 ' 1580 750 274 16,000 

Me But Et Et 2210 ' 1580 750 282 18,260 

Me ... Bu t ( CH2) 4NH 2200 1570 720 279 21,000 

Me But ( CH2) 5NH 2210 ' 1580 284 16,000 

Pri Pri Et Et 2200 ' 1560 725 277 22,500 
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Nuclear Magnetic Resonance Spectra of Enamines. 

l. 2-(n-Butylamino)-1-cyano-3-methylpent-1-ene. 

n.m.r. 21. 

The methyl groups·5CH
3 

and ~CH3 show up as overlapping 

triplets 'r = 9.1, JCH CH = 6 c.p.s., methyl group 6CH
3 

shows 
3 2 

as a doublet at 1r = 8.85, JCH H = 8 c.p.s. An overlapping 
3, 

quartet and triplet 1r= 8.3 - 8.75 are the P and ~ methylenes 

of the n-butylamino, a pentet at 'T = 6. 9 - 7. 4 consists of 

the ~-methylenes of the butylamine and the methine. A singlet 

at lr = 6.26 is due to the ethylenic hydrogen shielded by 

cyanide, and a broad peak I= 5. 2 - 5. 6 is the proton on 

nitrogen, probably coupled to the ~ -methylene of the n-buty-

lamino group. 



2. 1-Cyano-2-(diethylamino)-3-methylpent-2-ene. 

1 
CH2CN 

n.m.r. 22. 

~ 5CH S Two triplets at t = 8.8 - 9.2 indicate 
3 

and CH
3

, 

J CH3 , CH2 = 7.c.p.s., a singlet or possibly a very closely 

split triplet at lr= 8.2 is given by 6CH3, a very small 

coupling across the double bond to 4CH2 could account for 

the triplet J"<o.s c.p.s. A quartet centred on I= 7.75 

is 4CH2 split by 5CH3, J 4, 5 = 7 c.p.s., a quartet of doublets 

-r = 7.37 is due to the methylene groups of the diethy}a-

mine, where it is proposed that a partial double bond 

character of the 2c - N bond is enough to hold the methylene 

groups next to the nitrogen, in different surroundings, and 

lead to their non-equivalence. 

1 CH2CN. 
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3. 1-Cyano-2-(diethylamino)-3-methylpent-1-ene. 

1 
CHCN 

n.m.r. 23 

4CH 
2 

ShoY.Ted a triplet centred on l= 8.95, 5CH
3 

split by 

J 5, 4 = 7 c.p.s.; a triplet centred on I= 8.86, 

~CH3 split byoLCH2 J13 ,o(. = 7 c.p.s. A doublet I= 8.64 

due to 6CH3 split by the methine J 6 , 3 = 8 c.p.s. and a 

doublet of quartets ~ = 8.2 due to the 4CH2 split by 5CH
3 

J 4, 5 = 7 c.p.s. further split by the methine J4,3 = 8 c.p.s.; 

a sextet of doublets centred on ~ = 7.3 due to splitting of 

the methine by the 6CH3 and 4cH2 J 3 , 6 = 8 c.p.s. J 3, 4 = 
8 c.p.s. further split by long range coupling to 1CH 

J 3 , 1 = 2.5 c.p.s.; a quartet centred on 1r = 6.75 due to 

the methylenes of the ethylamino group split by the ~CH3 , 

J~,~ = 7 c.p.s., and finally a doublet 1r = 6.23 due to 
1CHCN split by long range coupling to 3CH J1 , 3 = 2.5 c.p.s. 
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4. 1-Cyano-3-methyl-2-piperidino-pent-1-ene. 

n.m.r. 24. 

A triplet 1r= 9.05 5CH3 split by 4CH2 J 5, 4 = 7 c.p.s. 

is mixed with a low intensity triplet which may be caused 

by non-equivalence due to restricted rotation, a doublet 

lr= 8.7 due to 6CH3 split by methine J6 , 3 = 7 c.p.s., a 

quartet 1r = 8.5 due to 4CH2 split by 5CH3 is hidden under 

the broad envelope of the ~ and o methylene groups of the 

piperidine but the inte~gram clearly shows 8 protons, --similarly the sextet of. doublets \ = 7.1 is partially 

hidden by the broad envelope of the d methylenes of·the 

piperendene ring (i = 6.7 - 6.95) but it can clearly be 

seen J 3 6 = J 3,4 = 7 c.p.s. and J 3,1 = 1.8 c.p.s. the latter 
' ' 
being due to long range coupling of the methine with the 

ethylenic proton. A doublet I= 6. 03 is due to long 
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range coupling of the ethylenic proton 1CHCN with the 

methine J1 , 3 = 1.8 c.p.s •. 

5. 1-Amino-3-ethylpent-1-ene. 

n.m.r.25 

A multiplet ll= 9.1 is the 5CH3 split by 4CH
2 

with 

some contribution from other methyl groups, possibly from 

other tautomer (i.e. imine form) J 5, 4 = 7 c.p.s. A 

multiplet at ~= 8.5 indicates.quartet of doublets of 4CH2 
split by 5CH3, J 4, 5 = 7 c.p.s. and further split by the 

methine J4, 3 = 2 c.p.s: The expected pentet of doublets 

due to the methine split by (4CH2) 2 and long range coupling 

to the ethylenic proton cannot be seen, it is probably so 

broadened by interaction with the nitrogen protons as to· be 

smoothed out completely. A triplet I= 6. 2 is due to the 

ethylenic proton 1CHCN being split by the nitrogen protons 
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JH NH = 1 c.p.s., a doublet at ~= 5.83 is due to a 
, 2 

contribution from the imino form - C - CH2CN NI! -
Two broad humps at I= 5 - 5.8 are JH NH = 0.5 c.p.s. 

2" 2 
due to NH2 and NH. A total integram of the region 

'f = 6.2 - 5 gives three protons as would be expected from 

.a tautomeric system 

- C = CHCN 
I 

NH2 

The inttgram also shows that the ratio of the amino to imino 

forms is about 7:1. (This is in carbon tetrachloride, infra-

red 6n liquid phase shows no imino form.) 

6. 1-Cyano-2-(diethylamino)-3.4.4-trimethylpent-1-ene. 

n.m.r.26. 

Showed a singlet I= 9.03, But, a multiplet I= 8.85 

for the diethylamine methyl groups (possibly non-equivalent 

due to restricted rotation), a doublet I= 8. 5 6CH3 split 
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by methine J6, 3 = 7.2 c.p.s. a quartet 1r= 7.55 due to the 

methine 3CH split by 6CH3• The diethylamine methylenes 

,-= 6.6 show a multiplet again probably a result of restrictec 

rotation, and a singlet lr= 6.3 due to ethylenic = CHCN. 

Stirling 63 reacted phenylsulphonylpropadiene with 
e. 

N-deu~o-dibenzylamine and obtained an addition product 

which contained 25% of the deuterium in the 1 position and 

75% of the deuterium in the 3 position 

. PhS02.... ,CH3 PhS02, ,mm2 
+ ND(CH2Ph) 2---7 

1
C=C, + C=C, 

D N H / N 
' ' (Ch2Ph) 2 (CH2Ph) 2 

75%D 25%D 

Reaction of the isotopically normal product with 

N-deutero-dibenzylamine gave a product which showed little 

exchange to have. taken place 

PhS02 
' 

H./ 
c + ND( CH2Ph) 2 -~> little H-D exchange 

at c1 and c3 

t't~J;co.tl'i\~ 
He interpreted these results iTe sae1r that proton trans-

fer occurs after the addition of the nucleophile by means 

of an internal proton transfer in the adduct i.e. 
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PhSO ~ , Ph.so2. fH2 
C=C=CH2 -~) C=C+n ) 

H"' H"' 'N(CH!h~ 

PhS02.. tl~ 
D_- C- C 

I \ 
H N(CH

2
Ph) 2 

Only if such equilibria are present can the statistical 

distribution of deuterium occur i.e. 75% on c1 and 25%D on c2, 

and the fact that the isotopically normal adduct shows little 

exchange was interpreted by Stirling to show that the exchange 

must be by multiple internal proton transfer otherwise a much 

greater proportion of deuterium would be introduced into the 

adduct. 

The small amount of deuterium which is introduced in the 

case of the isotopically normal adduct may be explained by an 

exchange of the type 
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These interpretations are not in accordance with our work, 

if such equilibria are established then the thermodynamically 

more stable compound (type B) should be exclusively formed. 

Our~periments have shown that pure adducts of type A or 

type B in contact with excess amine do not isomerise, again 

if such equilibria were established isome~isation would be 

expected. 

The enamine nitrogen is considerably less basic than the 

nitrogen of the nucleophile (amine), therefore proton 

abstraction by the amine would be expected and not an internal 

proton transfer from the carbon to the nitrogen of the enamine. 

Thus a larger proportion of deuterium (than explained on 

statistical addition grounds) would be expected to enter the 

molecule via such a mechanism. 

It is possible that the 75:25 distribution of the 

deuterium is entirely coincidental, due to formation of a 

mixture of type A and type B adduct. In the series of cyano 

enamines which have been prepared in this work, identification 

of types A and B is easily carried out by spectroscopic 

examination and it is possible that Stirling's compounds have 

no intense bands which could be used .. for identification. (No 

infra-red or ultra-violet spectral data is given in any of 

Stirling's papers). 
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When Stirling 63 reacted his allenic sulphone with 

dibenzylamine he obtained a product m.p.l04° which lvas sometimes 

obtained in a form m.p.lll0
, this is the product which when 

recrystallised was identified as trans-2-dibenzylamino-1-

phenylsulphonyl propene by means of n.m.r. spectra. It is 

possible that on reacting the sulphone with deuterobenzylamine 

the n.m.r. was carried out on the crude material and unknown 

to Stirling this was a mixture of types A .and B adducts. 

Enamine derived frompLcyanophenylacetylene. 

The addition of diethylamine to ~-cyanophenylacetylene 

gave the enamine under similar conditions to those used for 

1-cyanoallenes. 

Ph - C = C - CN + Et~ ---;) Ph- C = CHCN 
I 

N, 
Et/ Et 

The proposed internal proton addition mechanism would 

lead to cis addition to give 

Ph, 
c 

./ 
Et-N 

I 

Et 

= c 
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Spectral evidence can be used to prove this structure 

Stirling 106 and Huisgen 107 have shown that cis addition 

products are formed from the nucleophilic addition of secondary 

amines to acetylenes and that the trans product{activating 

group and nucleophile are tran~is always obtained. Only in 

the case of primary amines does a cis-trans equilibrium result, 

this presumably being due to the initial trans product forming 

an imine-type intermediate 

Ph X Ph rotation Ph H 

' ./ "a ' / c = c . ~ - CH2X c = c 
/ " ~ N:~ / 'x HN, H H-N 

R R R 

Enamine Derived from§- Cyanophenylacetylene • 

. The methods applied by Stirling 106 and Huisgen 107 for 

determining configuration are peculiar to the type of molecules 

used by these workers and cannot be applied in the present case, 

however a novel method for finding the configuration has been 
cdk-

worked out for 1-cyano-2-amino~=enes. 

The cis and trans forms can be written 
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Ph CN ' /· a = a 
/ '\ 

,.....N H 
,CH2 "CH 

CN3 ' 2 
CH3 

trans 

and 
Ph, 1 H 

a= a 
/ ' ,N" a~ CH ~ 

, 2 . CH
2 

N 

~ 6r3 
cis 

Models show that the · methylene of the amino group falls 

directly in the deshielding zone of the cyano group in the cis 

addition product thus the proton resonance signal of the 

methylenes would be shifted dovmfield relative to the corres-

pending signal in the trans form. 

Reaction under aprotic conditions yields a product which 

has a sharp n.m.r. spectra. 

A triplet -r= 8.89 (N-CH~3 ) JCH CH = 7 c/sec., 
c.. 3' 2 

a quartet ir= 6.92 (N-CH2-CH3) JCH CH = 7 c/sec., a 
H · 2' 3 

singlet I= 6.0 (a=a CN), and a multiplet 1 = 2.57 (Ph). 

This was believed to be the trans product. 

If the reaction is carried out under conditions where 

protons are available (e.g. in methanol) then external proton 

transfer can give the cis product. 
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Ph - C sC­
I 
N-H 

R-, 
R' 

Ph H+ 
\ - ~ c = c 
+ 'eN 

R'' ~- H 
R 

Ph 

"' -----7 c = 
/ 

N 
R'' ' 

R 

The n.m.r. of the product obtained using such conditions 

(reaction carried out in methanol) was similar to that 

obtained from the product under aprotic conditions except that 

two quartets were shown for the ~-methene protons, the new 

quartet appearing 13 c/sec. downfield from the original one. 

The ratio of cis to trans isomers was sho~m by plQnimetric 

measurements to be 1:4. 
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Preparation of Q-Ketonitriles from Cyano-enamines. 

Aliphatic and aromatic ~Metonitriles have ~reviously 

been prepared by Claisen ester type condensations of nitriles 

having active ~-methylene groups and either esters (J.B.Dorsel 

and S.I'-1.McElvain 108) or nitriles (A. Dornow, I. Kulilche and 

F. Boxmann l09), but these methods are of limited synthetic 

value, 

In ·i959 M. E. Kuehne 110 prepared a limited number of 

cyclic ~~tocyanides from the corresponding cyclic ketone. 

A ketone is reacted with a secondary amine, e.g. pyrrolidine, 

and the resulting enamine treated with cyanogen chloride and 

hydrolysed with dilute mineral acid to give the cyano ketone. 

CN 
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The preparation of cyano enamines from allenic cyanides 

followed by hydrolysis provides the first convenient general 

synthesis for cyanomethylene ketones of the type 

R 
"\ 

from ketones C = 0 

R, HCl 
/ QHCOCH2CN ~ 

R' 

R . 
' anune 

CH-C=CHCN 4-( --

Rt"' I 
N 

I \ 
R R 

ca 30% overall yield. 

/ 
R' 

R 

' C=C=CHBr 
/ 

R' 1 CuCN 

R, 

.R' 

C=C=CHCN 
I 

The type A and type B enamines lead to the same cyano 

ketone on refluxing with dilute hydrochloric acid for l hr. 
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TABLE XVII 

TIELDS OF CYANOKETONES FROIVI DIFFERENT ENMUNES 

R'CH - C = CHCN > R 'CHCOCH CN 
R'" ' 

R ,., 2 
,.N, 

R" R" 

Type R R' R" R"' ·time Yield 

A ' Me Et Et Et 2.5hr 55 

B Me Et Et Et 2.5hr 60 

.B Me Et (C5Hl0) 1 hr -
A Me Et (C5~0) 1 hr 84 

A Et Et Et Et 1 hr 78 

B Et Et H H . 1 hr 

B Me B~ Et Et 2 hr 25 

B Me B~ (C5Hl0) 2 hr ,49 

A Me B~ (C5Hl0) 2 hr 

.B Me B~ (C5Hl0) 2 hr 52 

'jielJ not cleferm•lleJ e~.auroll~ 

........ 
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TABLE XVIII 

INFRA-RED AND ULTRA-VIOLET SPECTRA OF §-KETOCYANIDES 
I 

R, 
CO. CH2CN CR. 

" R' 

R· R' :{mQX ~m~ 

Et Me 2260,1730,780 232mu 2,880 

Et Et 2280,1730,785 232mu 4,415 

Me B~ 2280,1730 710 234mu 3,225 

Ph.CO.CH2CN 2280,1700,755 204mu 15,820 

245mu 11,600 

282mu 2,636 
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1.4-Eliminations of 1-haloallenes. 

S.R. Landor and P.F. Whiter 111 have recently shown 

that under basic conditions 1-haloallenes give 1,1-elimination 

of the hydrogen halide to form allenic carbenes, which can 

then add on electrophilically to any electron source i.e. 

double bonds etc. Some of Whiters products were found to 

contain from 1 - 6% of hydrocarbon ey-yne, presumably 

originating from a 1,4-elimination. 

H = c C: addition to a = 
= c c ) double bonds) = H 

Cl b H 
) c - CH = 

1 - 6% 

Thus under strong basic conditions the 1,1-elimination 

is a more highly favoured process than the 1,4-elimination. 

During the present work on 1-cyanoallenes attempts were 

made to prepare 1-cyanoallenes from 1-bromoallenes by heating, 

either alone or in a solvent, with cuprous cyanide. It was 

found that very little allenic cyanide resulted, but a low 

boiling compound was often formed, sometimes with explosive 

force. 
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If the apparatus was modified and a slow continuous 

distillation occurred then the low boiling product could 

often be collected, and was shown to be the hydrocarbon 

en-yne mixed with hydrogen cyanide. The en-yne could be 

obtained in a pure form by r.edistillation of this mixture. 

(Table XIX.) 

If the 1-bromoallene is heated with cuprous cyanide 

in N,N-dimethylformamide then the main product is the 

corresponding 1-cyanoallene and only about 15~ of the en-

yne is formed. If however the 1-bromoallene is heated in 

N,N-dimethylformamide with other cuprous salts (e.g. cuprous 

halides) then the main product is the en-yne. 

R' .......__ 

/c 
R 

R 
....... 

c 
/ 

R' 

Br 
= c = c/ 

" H 

Br 
= c = c/ 

= c = c 

" H 

Br 
/ 

" H 

CuCN 
dry 

CuCN 
) 

D.r-1. F. 

Cui ) 
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TABLE XIX. 

ENYNES FROM 1-HALOALLENES AND CUPROUS SALTS. 

Allenic Bromide Cuprous Salt Solvent Yield 

,r 

R R' 

Prn H CuCN 50% 

Me Me Cu CN 22% 

Me Me Cu I D.M.F. 57% 

Me Et CuCN 57% 

Me Et Cui D.M.F. 50% 

Me Et Ag CN 21% 

Me Et Cu Br D.M.F. 60% 

Me Et Cu Cl D.M.F. 40% 

Et Et CuCN 44% 

Et Et Cui D.M.F. 6l% 

Me But CuCN * 
Me But Cu I D.M.F. 63% 

* Gave 60% 1-cyano-3,4,4-trimethylpenta-1,2-diene. 
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Heating the 1-bromoallene with cuprous iodide with no 

solvent gives only a small amount of en-yne, possibly because 

the hydrogen iodide liberated attacks any en-yne to give 

unsaturated iodo compounds, (in D.M.F. the hydrogen iodide 

seems to form a solvated complex which does not attack 

en-ynes.) 

Mechanism. 

It was first thought that when heated with cuprous 

cyanide, 1-bromoallenes would form 1-cyanoallenes which then 

underwent dimination of hydrogen cyanide, thus accounting for 

the formation of the latter compound. 

Me Br Me""- CN Me 
' / / "' c = a = a" CuCN)_ c = c = c ---7 c - c - CH 

/ 
Me( ' // 

Me H H CH2 

+HCN 

however heating 1-cyanoallenes alone and with cuprous salts 

showed that only polymerisation occurred, thus proving that 

the allenic cyanide was not an intermediate in the elimination. 

A cyclic mechanism best explains this 1,4-elimination. 

The bromine atom co-ordinates with the copper of the cuprous 

salt, then if a suitable hydrogen atom is available on c4 an 
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eight or nine membered cyclic transition state can occur, 

when elimination at the 1 and 4 protons leads to the 

separation of hydrogen cyanide or hydrogen halide and 

production of the en-yne. 

R' H ~ "-c ~ c1 

C/~ '=\Br HI •v ~ -
R l ~H~ 

R'" I - Cu 

R' 

"" C-C::CH q 
... a 

R" \ 
R"' 

The different course of the reaction of 1-bromo-allenes 

with cuprous cyanide and cuprous iodide in dimethylformamide 

solvent is best explained by the fact that cuprous cyanide 

complexes strongly with dimethylformamide thereby being 

prevented from lying flat across the bromoallene, where as 

the cuprous iodide complex with dimethylformamide appears to 

be weak, thus allowing preferential complexing with the 

1-bromoallene. Cuprous cyanide is very soluble in 

N,N-dimethylformamide and on standing precipitates a number 

of solid complexes which are now being examined by Landor 
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and Patel. Cuprous iodide is almost insoluble in 

dimethylformamide, but dissolves when 1-bromoallene is 

added. 

When 1-bromo-3-methylpenta-1,2-diene is reacted with 

cuprous iodide in N,N-dimethylformamide at 80° an en-yne 

mixture consisting of two products in the ratio 12:88 is 

formed. Preparative g.l. c. separation follol·Ted by 

spectroscopic examination showed these to be 2-ethylbut-

1-en-3-yne (910 cm-1 , C = CH2) and trans-3-methylpent-3-en-

( -1 ) 1-yne 820 em , C = CH • 

With cuprous cyanide alone, the temperature necessary 

for reaction is 115° and at this or higher temperatures 

three products in the ratio 6:74:20 were formed. These 

were separated by preparative g.l.c. and shown to be 

2-ethylbut-1-en-3-yne, trans-3-methylpent-3-en-1-yne and 

cis-3-methylpent-3-en-1-yne respectively. 

This could be explained by a kinetically controlled 

reaction at the lower temperature, with the methyl groups on 

c3 and c4 trans i.e. in the lowest energy state and a 

thermodynamically controlled reaction at the higher 

temperature giving an equilibrium mixture of cis- and trans-

methyl groups on c3 and c4. 
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Similarly 1-bromo-3-ethylpenta-1, 2-diene w·i th cuprous 

iodide at 80° gave one product only which was considered to 

be trans-3-ethylpent-3-en-1-yne having the ethyl group on 

03 and the methyl group on o4 in the trans positions 

R 
\ 

0 
11 

. I ~"B: 
Me \ 

H 

Me 

R =Me or Et 

) 

) 

R 
' 0-C=CH 

I/ -

c 
I \ 

Me H 

R 

' C- C CH It -
c 

H / \ 
Me 

cis 

trans 

All the en-ynes showed strong terminal acetylenic bands 

3300 vs (C : CH) and 2100m (C : C) -1 em The double bond 
-1 showed only a weak band in the region of 1630 em . Terminal 

methylene groups were detected or proven absent by the very 

strong goo c~-l (=CH2) absorption assignation of cis or trans 

structure was based on ·845 (cis) and 820 (trans) cm-l bands. 

(Table XX.) 
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Table XX. 

INFRA-RED AND ULTRA-VIOLET SPECTRA OF 

EN-YNES. 

R 

' ~C-C~CH ·~ 

c 
R( \ 

R" 

R R' R" v -1 max em ~max [ ~max [. 

H H Et 3300, 2090, 1635, 740 223 12,900 

H Et H 3300, 2090, 1635, 955 223 12,900 

Me H H 3300, 2100, 1625, 900 222 11,000 236 9;700 

Me H Me 3310, 2100, 1620, 820 

Me Me H 3310, 2100, 1640, 845 222 8,900 

Et H H 3310, 2100, 1620, 909 

Et H Me 3300, 2100, 1630, 840 222 13,800 

But H H 3300, 2100, 1630, 910 210 7,200 218 10,000 

226 7,400 

-157-



Hydrolysis of 1-Cyanoallenes. 

At the present time tne only method for the preparation 

of· allenic acids is due to Jones, VIi tham and Whiting 112. 

They reacted acetylenes with nickel carbonyl 

M~ c..= c.:=- c~ 
s.. a. 

It was thought that hydrolysis of 1-cyanoallenes would 

provide a convenient route for the synthesis of allene-1-

carboxylic.acids. 

RR I c = c - CHCN -~} RR'C = C = CHCOOH 

, Hovrever attempts at hydrolysis using mineral acids, alkalis 

and bases did not prove satisfactory. The products in 

most cases being mixtures of unchanged allene cyanide and 

dark high molecular compounds containing no carbonyl band. 

Dimers of the allene cyanides were recovered from the high 

molecular weight material in the cases of 1-cyano-3-

methylbuta-1~2-diene, 1-cyano-3-methylpenta-1,2-diene, and 

1-cyano-3-ethylpenta-1,2-diene. 
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1-Cyano-3,4,4-trimethylpenta-1,2-diene gave an allenic 

acid, on heating the cyanide at 90° fbr 48 hr. in 3Q%sodium 

hydroxide. 

/CN 
c 

' H 

) 

,£t is possible that less ste~rically blocked molecules 

dimerise and polymerise faster under hydrolysis conditions 

than hydrolysis, and more stearically blocked molecules, 

e.g. 1-cyano-3-t-butyl-4,4-dimethylpenta-1,2-diene sho"t·T low 

solubility and hence react slowly. 

An oxidative hydrolysis using alkaline hydrogen perox-

ide gave good yields of allenic-1-amides in all cases except 

the monoalkylallene cyanides and the 3, 3-dimethyl- and 

3-ethyl-3-methyl-allene cyanide, it is suspected but not 

proven that in these cases some addition to the unsaturated 
'\ 

centre is taking place. 
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Table XXI. 

TIELDS OF ALLENIC AMIDE FROM ALLENIC CYANIDE 

R CN R, 
CONH 

" / 
I 2 

c = c = c H202 c = c = c 
/ " / ""-H R' H > R' 

R Et Me Pri Bui But 

R' Et But Pri Bui But 

% Yield 70 70 41 70 

The allenic amides were all stable crystalline white solids 

and had characteristic spectral bands, .) 3200-3410s a max 

doublet (tw·o N-H stretching bands), 1950-1980s (allene), 

1650-1675s (the Amide I band, 0=0), 1600-1630s (Amide II band, 

N-H bonding). A 208~2llm n. (Table XXII.) max r-
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Table XXII. 

INFRA-RED AND ULTRA-VIOLET SPECTRA - , I 

OF ALLENIC AMIDES 

R R' 
:"'\ . -1 ·Y maX: J.n em 

-N-H stretch Amide I .. Amide II A £ max 

Et Et 3400 3200, ,1670, 1625 

Me But 3400 3200, ,1670, 1625 209 13,000 

Pri Pri 3400 3210, ,1655, 1630 210 15,000 

Bui Bui 3410 3210, ,1655, 1625 211 10,140 

But But 3410 3200, ,1675, 1600 208 8,150 
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Grignard Reactions of 1-Bromoallenes. 

Wot~z, Matthews and Leib 113 proposed that propargyl 

magnesium bromide existed in two resonance forms, i.e. 

H- c = c - CH2 

~1 
+ 

MgBr 
H- ' 

0 = c = CH2 

The corresponding allene magnesium bromide would also be 

expected in this form. Support for the above was obtained 

when in 1951 Wotiz and Pa1chak 114 found that treatment of 

the Grignard compound of 2-bromo-2-methyloct-3-yne vri th 

carbon dioxide gave the allenic acid 2-methylocta-2,3-dien-

4-carboxy1ic acid, 

Mg 
c4H9 -- C _ C - CBrMe2 002 ) c4H9 - ~ = C = CMe2 

COOH 

the authors thought that the acety1enic acid was not formed 

due to ste.ric factors. 

In considering an allenic Grignard compound three forms 

must be taken into account. 
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R 7T R R ~-

' " ' c = c = CH < '> c C: CH ~ CHC c ,- -~ ~ -, 
R' + R' R' 

MgBr +r-lgBr +r-igBr 

Thus if an electrophile E attacks the Grignard three products 

~ · may result. 

R ·H R R 
' I ,. 

' c = c = c C-C=CH CH-C=CE 
/ '\ I. - I -

a E R' l R' E 
(.a) (b) (c) 

In practice usually one or two of these products 

predominate depending on the electrophile used, i.e. in 

addition of carbon dioxide products (a) and (c) result; 

treatment with oxygen gives mainly product (b), treatment 

with aceton~ gives mainly product (c). The reasons for 

these differences are as yet unknown. 

When Goodson ll5 treated 2,2,6-trimethylcyclohexylidene­

vinyl magnesium chloride with carbon dioxide he obtained by 

extraction with sodium hydroxide, a neutral fraction and an 

acid fraction. The acid fraction consisted of a mixture 

of allenic and acetylenic acids which Goodson proposed to 
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have been formed by prototropic rearrangement during the 

alkaline extraction. 

(;c 20H (Ac = CHCOOH .... = C C02 ' 

~z : C - COOH ' cJ:~=c- C02 '2H+ 

This being based on the prototropic rearrangement of 

buta-2,3-dienoic acid reported by Eglington, Jones and 
S'8 

Mansfield B=6 and Whib~~. 

CHC0 2H K2C~3 CH
3 

- C :CC0
2
H 

~ 

In later experiments Goodson extracted the mixture 

with aqueous sodium carbonate and found that although the 

extracted portion had a band at 2200 cm-l (-C:C-) the acid 

remaining in the neutral portion did not, this he believed 

confirmed his view that the acetylenic acid was formed by 

prototropic rearrangement during extraction. 

During the present 1vork it has been conclusively shovm 

that the mixture of acetylenic and allenic acids results 
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from a rearranged Grignard compound and the "rearrangement" 

during extraction is the result of a separation due to 

differences in acidities. 

Allenic bromides react smoothly with magnesium, both in 

tetrahydrofuran and ether, to give the corresponding 

Grignard products, the magnesium is never completely used up 

even if a slight molar deficiency is used. 

After formation the Grignard compound was cooled and a 

steady stream of dry carbon dioxide gas was passed through 

the suspension. vfuen reaction was complete dilute hydro-

chloric acid was added, the etherial solution separated and 

dried. The infra-red spectra of this mixture was compared 

with that of the same mixture which had been shaken with 

sodium hydroxide and reacidified without separating, no 

change was observed. thus prototropic rearrangement does not 

occur. 

\'lith the lower members of the series only a mixture of 

allenic and acetylenic acids can be :iEiolated, no effective 

means of separation has yet been found. (Preparative thin 

layer chromatography holds out the best chance but has not 

yet been tried.) 
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Table XXIII. 

ALLENIC GRIGNARDS + CARBON DIOXIDE 

R )i 
'-c : c =· c co 
/ ' + 2 

R' MgBr· 

R · R' Yield of mixed acid Allenic acid obtained pure 

Me Me 28% No 

Me Et 13-60% No 

Et Et 49% No 

Me But 45% Yes 

Pri Pri 40% Yes 

Me Ph 18% Yes 

Table XXIV. 

R R' 

Me But 

Pri Pri 

Me Ph 

INFRA-RED AND ULTRA-VIOLET SPECTRA 

OF ALLENI C ACIDS 

.) em-1 
Y max 

3400-2500, 1960, 1700, 835 
3400-2600, 1975, 1700, 850 
3400-2500, 1950, 1695, 
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212 11,550 
213 9,850 
207 32,000 248 15,470 



The more stetrically hindered compounds may be 

separated by extraction with sodium bicarbonate the acety-

lenic compound being preferentially extracted, however as 

yet only the allenic acid has been obtained pure, and this 

in only three cases. (Table XXIII.) 

The high boiling hydrocarbon mixture obtained when the 

same Grignard compound was reacted with different electro-

philes was thought to be due to the coupling of the bromide 

with previously formed Grignard compound. In several 

reactions the high boiling hydrocarbon mixture has been 

isolated, in one case the mixture was separated by 

preparative g.l.c. and one component was found to have 

~ 3300ms(C = CH), 3110w(C ~C) and 1960w cm-l (C = C =C), max 
it is possible that this is a hydrocarbon of the type 

Et 
'a c _ CH 
/a 

Me C H 
II 
c 
h 
c 

I '\ 
Et Me 

Allenic acids arefound to have ~ 3300-2500us max 

(hydrogen bonded OH), 1950s(C = C =C) and 1700s (C = O)cm-1 • 
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A max 212-3mp for alkyl substituted compounds; and 

A max 207m p.. and ,\ max 248m p for the phenyl substituted 

compound. (Table XXIV.) 

Reaction with Oxygen. 

Reaction of the oxygen nucleophile with 

allenic Grignard compounds leads to formation of the corres­

ponding acetylenic alcohol in about 48% yield. 

R ,_ 2 H+ 
2 

1
0 - C _ CH + 0

2 
R' 

R 

' 2 
1
c C _ CH 

R' \ 
OH 

the main by-product is the previously mentioned hydrocarbon 

mixture. In some reactions unexplained carbonyl bonds 

appeared in infra-red spectra of products but no carbonyl 

compound was obtained pure. The acetylenic alcohols were 

identified by comparing.infra-red and g.l.c. spectra with 

those of authentic compounds. 

Reaction with Acetone. 

3-methylpenta-1,2-diene-1-magnesium 

bromide was reacted with acetone at 5°, working up after 

decomposing the magnesium complex with dilute hydrochloric 

0 

-168-



vl-. • .__. ftlatt1• ~··• aa aunio ...,._. -.. 
o\taiu4 ;)Ali (r .. a.n~J )400(1) (.mt). 





EXPERIMENTAL 

Infra-red spectra were determined with a Perkin-

Elmer Infracord spectrometer. The abbreviations 

vs, s, m, w and vw are used to indicate the strength 

of the infra-red absorption bonds, i~e. very strong, 

strong, medium, weak and very weak respectively. Ultra­

violet spectra were determined on absolute alcohol 

solutions with a Bausch and Lombe Spectronic 505 

recording spectrometer. Nuclear magnetic resonance 

spectra were determined in carbon tetrachloride or 

deuterochloroform solution using either a Varian A40 or 

a ~erkin-Elmer RlO spectrophotometer. A Griffin and 

George Mk. II chromatographic apparatus was used to 

determine gas liquid chromatograms (g.l.c.), glass 

columns (6' x 0.25") being employed, .the nitrogen flow 

rate was 2 1./hr. unless otherwise stated. Melting 

points were determined on a Reichert-micro-Kofler block 

and are uncorrected. 

Solvents designated as dry had been dried 1rith 

sodium wire, N,N-dimethylformamide being dried by 

ayeotropic distillation from benzene. 
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Preparation of 3.3-dialkylprop-1-yn-3-ols. 

1) 3-Ethylpent-1-yn-3-ol. 

Anhydrous liquid ammonia (3.5 1.) 

was added to a 51 flask contained in a well lagged box. 

The flask was fitted with an acetylene gas inlet which 

dipped below the surface of the ammonia, a mechanical 

stirrer, a dropping funnel, and a calcium oxide guard tube. 

Ferric nitrate (0.3 g) was added to the stirred ammonia 

followed, after a few minutes, by the addition of sodium 

(55.2 g., 2.4 mole) in small pieces. When about half the 

sodium had been added the passage of acetylene gas was 

started, (the cylinder gas being purified by passing through 

two traps cooled to -40°, then through two wash bottles 

containing concentrated sulphuric acid and finally through 

a calcium oxide U tube.) 

The mixture was stirred, and acetylene was passed 

until the original deep blue solution had changed, first to 

a white suspension (sodamide), then to a dark grey suspension 

of sodium acetylide, (approx. 4-6 hr.) 

Diethyl ketone (172 g., 2.0 mole) was then added drop­

wise over 2 hr. and the mixture stirred a further 3 hr. 
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while continuing to pass acetylene. After addition of 

ammonium chloride (134 g., 2.5 mole) over 30 min. the flask 

was removed from its lagging and stood outside in a water 

bath until the ammonia had evaporated, ether (300 ml.) was 

then added and the contents of the flask filtered, the 

solid residue of sodium chloride was washed several times 

with ·ether and the combined etherial solutions dried (Mgso
4
). 

Distillation, after first removing the ether, gave a 

small forerun of diethyl ketone followed by 3-ethylpent-l­

yn-3-ol (102 g., 72%), b.p. 6l.5-62.5°/40mm., V max 3400vs 

(-OH), 3300s(C:CH), and 2l00w(C:C) cm-1 ; g.l.c. (silicone 

oil 100°) showed only one peak, t, 5.5 min. 

2. Pent-l-yn-3-ol. 

Sodium acetylide (from sodium 56 g., 2.2 

mole, in liquid ammonia 3.3 l) and propionaldehyde (116 g., 

2.0 mole) after working up .. in the usual manner gave pent-l­

yn-3-ol (63 g., 38%), b.p. l2l0 /760 mm., ~max 3400vs(-OH), 

3300s(C:CH), and 2l00w(C:C) cm-1 ; g.l.c. (sili~one oil: 

100°) showed only one peak, t, 3 min. 

~173-



3. 3.4.4-Trimethylpent-1-yn-3-ol. 

Sodium acetylide (from 

sodium 58 g., 2.5 mole, in liquid ammonia 3 1.) and tart­

butyl methyl ketone (200 g., 2.0 mole) after working up in 

the usual manner gave 3,4,4-trimethylpent-1-yn-3-ol (210 g., 

83%), b.p. 62°/36 mm., .) max 3400vs(-OH), 3300s(C:CH), and 

2100w(C:C) cm-l g.l.c. (silicone oil,l00°) showed only 

one peak, t, 6.3 min. 

4. 3.5-Dimethylhex-1-yn-3-ol. 

Sodium acetylide (from sodium 

29 g., 1.25 mole, in liquid ammonia 2 1.) and 4-methylpentan-

2-one (lOOg., 1 mole) after working up gave 3,5-dimethylhex-

1-yn-3-ol (77 g., 61%) b.p. 56°/20 mm., ~ max 3400s(-OH), 

3300s(C:CH) and 2100w(C:C) cm-1 ; g.l~c. (silicone oil, 100°) 

showed only one peak, t, 6.25 min. 

5. 3-Isopropyl-4-methylpent-1-yn-3-ol. 

Sodium acetylide (from 

sodium 25.3 g., 1.1 mole, in liquid ammonia 2 1.) and di­

isopropylketone (114 g., 1 mole) after working up gave 

3-isopropyl-4-methylpent-1-yn-3-ol (101 g., 72%), b.p. 67/69°/ 
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22 mm., ~max 3400s(-OH), 3300s(CsCH~ and 2100w(C:C) cm-1 

g.l.c. (silicone oil, 120°) showed one peak, t, 6.5 min. 

6~ 3-Isobutyl-5-methylhex-1-yn-3-ol. 

Sodium acetylide (from 

sodium 58 g., 2.5 mole in liquid ammonia 3.5 1) and di­

isobutyl ketone (288 g., 2 mole) after working up gave 

3-isobutyl-5-methyl-hex-1-yn-3-ol (103 g., 32%), b.p. 74-75°/ 

9 mm.; ~ 3400s(-OH), 3300s(C:CH) and 2100w (C=C) cm-1 ; max 
g.l.c. (silicone oil, 120°) gave only one peak, t, 15 min. 
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Preparation of 3-alkyl and 

3,3-dialkyl-1-bromoallenes. 

1. 1-Bromo-3-methylbuta-1.2-diene. 

(a) 3-Methylbut-i-yn-3-ol 

(67.2 g., 0.8 mole) was added to a mixture of pow·dered 

cuprous bromide (40 g., 0.28 mole), powdered ammonium 

bromide ( 32 g.), copper pow·der ( 2 g.) and concentrated 

hydrobromic acid (48% w/w, S.G. = 1.5, 192 ml., 1.7 mole). 

The stirred mixture wasvarmed to 30° for 1 hr. The upper 

layer then showed no ~ ma~ 3400 em -l. ( OH) • The mixture 

was cooled, filtered, the residue washed with petroleum 

ether, the filtrate separated, and washed with 48% hydro-

bromic acid until the lower acid layer shovTs no violet 

colouration. The upper layer was dried (NaHC0
3

, Mgso
4

), 

and fractionated giving l-bromo-3-methylbuta-1,2-diene b.p. 

53-54°/60 mm. (90 g., 77~~) (Found: C, 41.0; H, 4.9; Br, 

54 .•. 0 c
5
H7Br requires C, 40.8; H, 4.8; Br, 54.4%) • ...) max 1950vs 

( C=C=C) , 1160vs, 1050vs, 7 50vs and 730 em-\ A max 205m p 

( 9, 570), A shoulder 214-6m p (L, 10,050). 

(b) 3-Methylbut-1-yn-3-ol (21 g., 0.25 mole) 1vas added to a 

mixture of p0v1dered cuprous bromide (14.3 -g., 0.1 mole), 
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powdered ammonium bromide (9.8 g., 0.1 mole) copper powder 

(5 g.) and concentrated hydrobromic acid (4.5% w/w 62 ml. 

0. 5 mole). The mixture was stirred vigorously for 1 hr. 

at room temperature when the upper layer was found to 

contain no lmax 3400 cm-1 (-OH) on I.R. examination. The 

mix~ure was filtered, ::eparated, the upper organic layer 

washed several times i-Ii th concentrated hydrobromic acid, 

The product was found to be 

pure 1-bromo-3-methylbuta-1,2-diene (33 g., 90%) and had 

identical spectra with that of the pure distilled product 

from (a) g.l.c. (silicone oil, 80°) showed only one peak, 

t, 8 min. 

2. 1-Bromo-3-methylpenta-1.2-diene. 

(a) 3-Methylpent-1-yn-3-ol· 

(14.7 g., 0.15 mole) was added over 6 min. to a vigorously 

stirred mixture of cuprous bromide (7.5 g., 0.052 mole), 

ammonium bromide (6 g.) copper powder (0.3 g.) and concen­

trated hydrobromic acid (48% w/w, 36 ml. 0.32 mole) at.30°. 

When the addition was complete the stirring was continued 

for i hr. Working up gave 1-bromo-3-methylpenta-1,2-diene 
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· (17 g., 73%) b.p. 51-52.5°/24 mm. (Found: C, 44.4; H, 5.6; 

Br 49.6. c6H9Br requires C, 44.8; H, 5.6; Br, 49.7%). 

~max (I.R. 19)., 1950vs (C=C=C), 1165vs and 730vs cm-1 , 

A max 205m p (L, 7 ,100), A shoulder 217-223m Jl' ([, 6,150), 

g.l.c. (dinonyl phthalate, 82°) showed only one peak t, 12.5 

min.; n.m.r. (n.m.r. 1)., showed a tripletT= 8.93 (QH
3 

· 

CH2 C=C=CH), JCH CH 7.5 c.p.s., a doublet of triplets 
3' 2 

T = 7.6 - 8.4 (CH3 =C=C=CH), JCH H 2 c.p.s., JCH CH 
3' 3' 2 

0. 5 c. p. s. ; a quartet of doublets \ = 8.19 ( CH
3

CH2 C=C=CH) 

JCH CH 7.5 c.p.s., JCH H 2.2 c.p.s., and a 1:5:10:10:5:1 
2' 3 2' . 

sextet 11= 4.1 (CH3CH2(CH3)C=C=CH), JH,CH 2.3 c.p.s. 
3 

JH CH 2.3 
' 2 

c.p.s. Double resonance of the gH
3 

-C=C group 

causes collapse of the sextet to a triplet. 

(b) 3-Methylpent-1-yn-3-ol (49 g., 0.5 mole), was added to 

a mixture of powdered cuprous bromide (36 g., 0.25 mole), 

powdered ammonium bromide (20 g., 0.22 mole), copper powder 

(1 g) and concentrated hydrobromic acid (45% w/w., 124 ml., 

1 mole) and the mixture stirred vigorously for 1 hr. at room 

temperature. Working up in the usual manner gave pure 1-

bromo-3-methylpenta-1,2~diene (68 g., 85%) which had identical 

spectra to the pure distilled product from (a) g.l.c. 

(dinonylphthalate, 82%) gave only one peak to 12.5 min. 
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3. 1-Bromo-3-ethylpenta-1.2-diene. 

3-Ethylpent-1-yn-3-ol (56 g., 

0.5 mole), cuprous bromide (28.9 g., 0.2 mole) ammonium 

bromide ( 20.0 g., 0. 2 mole) copper polvder ( 2.8 g) and 

concentrated hydrobromic acid (45% w/w. 124 ml., 1.0 mole) 

at 40° for lt hr. gave 1-bromo-3-ethylpenta-1,2-diene, (56.9 

g., 65%) b.p. 74°/30mm. (Found: C, 47.8; H, 6.2; Br, 45.9 

c7H11Br. requires C, 48.0; H, 6.3; Br, 45.7% nD24 1.5015 • 

.; max 1950vs (C=C=C); 720 cm-1 Amax 206.m)l· a:, 7,800) 

Ashou~der 220my. (E_, 7,100); g.l.c. (silicone oil: 15_1°) gave 

only one peak, t, 9t min., n.m.r. (n.m.r.2) showed a triplet 

lr = 8.94 (CH3CH2-C=C=C), JCH CH 7.5 c.p.s.; a quartet of 
3' 2 

doublets \ = 7.85 ( CH3CH2 -C=C=CH), J CH H 2. 2 c.p. s., 
. 2' 

JCH CH 7.8 c.p.s.; and a 1:4:6:4:1 pentet,-r = 4.0 
2' 3 

(CH3CH2 C=C=CH) JH,CH
2 

2.2 c.p.s. 

(b) 3-Ethylpent-1-yn-3-ol (11.2 g., 0.1 mole) was added to 

a mixture of cuprous bromide (7.2 g., 0.05 mole), ammonium 

bromide (4 g., 0.044 mole) copper powder (0.2 g) and concen­

trated hydrobromic acid, (45% w/w., 16.2 ml., 0.2 mole) and 

the mixture stirred vigorously for 1.5 hr. at room tempera-

ture. Working up in the usual manner gave pure 1-bromo-3-

-179-



ethylpenta-1,2-diene (15.4 g., 88%), which had identical 

spectra to the pure distilled product from (a) g.l.c. 

(silicone oil, 150°) gave only one peak, t, 9.6 min. 

4. 1-Bromo-3,4.4-trimethylpenta-1,2-diene. 

3,4,4-Trimethylpent-

1-yn-3-ol (63 g., 0.5 mole), cuprous bromide (85 g., 0.59 

mole), ammonium bromide (42 g.) copper powder (6 g) and 

concentrated hydrobromic acid (48% w/w. 180 ml. 1.6 mole) 

warmed to 40° and stirred for 2 hr. gave 1-bromo-3-4,4-

trimethylpenta-1,2-diene (73.2 g., 78%), b.p. 45-47°/5 mm. 

(Found: C, 50.5; H, 7.1; Br, 42.3. c8H13Br requires C, 

50.8: H, 6.9: Br, 42.3%) ~ 1950vs (C=C=C), ll55vs and - max 

728vs· cm-1 ; A max 206 m p ([, 9,000), A max 224 m 1 (E, 6,600); 

n.m.r. showed a singlet\= 9.15 (But), a doublet,T = 8.21 (CH 

C=<J~e But), and a quartet I= 4.17 (£H=C=CMe), JH,Me 2.0 c.p.s. 

g.l.c. (dinonylphthalate; 100°) showed only one peak, t, 20min. 

5. 1-Bromo-3.5-dimethylhexa-1.2-diene. 

3,5-Dimethylhex-1-yn-3-ol 

(31.5 g., 0.25 mole), cuprous bromide (8.425 g., 0.3 mole), 

ammonium bromide (21 g.), copper powder (3 g) and concentrated 

hydrobromic acid (48% w/w., 90 ml., 0.8 mole) warmed to 40° and 
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stirred for 2 hr., gave 1-bromo-3-5-dimethylhexa-1,2-diene 

(32 g., 60%) b.p~ 50~51° /7 mm. (FoWld: C, 50.8; H, 7 .12; 

·Br 42.41. c8H13Br required C, 50.8; H, 6.9; Br,· 42.3%) 

J max 1950s (C=C=C); 1160s and 730~ cm-1• J\ max 204m )1· 

((., 8,900),. A shoulder 225my (l_, 5,850)~ g.l.c. (silicone 

oil: 80°) shovred one main peak, t, 28 min. 

6. 1-Bromo-3-isopropyl-4-methylpenta-1,2-diene. 

4-f.Tethyl-3-

isopropylpent-1-yn-3-ol (56 g., 0 .• 5 mole),· cuprous bromide 

(68 g., 0.47 mole) ammonium bromide (36 g.), copper powder 

(6 g.) and concentrated hydrobromic acid (48% w/w, 144 ml., 

1.27 mole) at 40° for 3 hr. gave 1-bromo-3-isopropyl-4-

methylpenta-1,2-diene, (66.2 g., 82%) b.p. 49-50°/6mm. 

(Found: C, 53.6; H, 8.1; Br, 39.7. c9H15 Br requires 

-ll, 53.2; H, 7.5; Br 39.3%) y max 1950s (C=C=C) l660vw (C=C), 

li65s and 895 cm-l w (CR1R2~CH2 ) A max 204mp (L, 9,750) 

A shoulder 219-233my (l, 6,850); g.l.c. (dinonylphthalate; 

100°) showed only one peak, t, 20 min. 

1. 1-Bromo-3-isobutyl-5-methylhexa-1.2-diene. 

3-Isobutyl-5-

methylhex-1-yn-3-ol (51.0 g. 0.3 mole), cuprous bromide 
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(20.0 g., 0.14 mole), ammonium bromide (12.0 g., 0.12 mole) 

copper powder (2.0 g) and concentrated hydrobromic acid (45% 

w/w., 72 ml., 0.6 mole) at 40° for 20 hr. gave 1-bromo-3-

isobutyl-5-methylhexa-1,2-diene (36.1 g., 52%) b.p. 66°/1.7 

mm (Found: C,. 57; 57 .2; H, 8.2; Br, 34.6. c10H19 Br requires 

C, 57.1; H, 8.2; Br, 34.6%), Y max 1965s (C=C=C); 1390m, 

1370m, 1165m, 720s cm-l A max 206m p (l.., 9,090), 230m )1 

~' 9,000); g.l.c. (G.E.O. 100; 120°) t, 18 min. 

8. 1-Bromo-3-t-butyl-4.4-dimethylpenta-1,2-diene. 

3-t-butyl-4,4-

dimethylpent-1-yn-3-ol (25.2 g., 0.15 mole), cuprous bromide 

(25.5 g., 0.178 mol~), ammonium bromide (13.5· g), copper 

powder (2 g.) and concentrated hydrobromic acid (48% w/w, 54 

ml., 0.48 mole) 17 hr. at 40° gave 1-bromo-3-t-butyl-4,4-

dimethylpenta-1,2-diene (7.2 g., 2r%) b.p. 70-74°/5 mm. 

(Found: C, 57.2; H, 8.2; Br, 35.2. c11H19Br requires C, 

57.1; H, 8.3; Br, 34.6%), ~max 1940ms (C=C=C), 1135s and 

720s cm-1 ~max 205mp ([, 12,100), Amax 227mp ({., 7,400); 

n.m.r. showed a singlet-r= 9.2 (Bu~C=C=CH Br) and a singlet 

1r = 4.16 (Bu~C=C=CH Br). 
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9. 1-Bromobuta-1,2-diene. 

A mixture of but-1-yn-3-ol (35 g., 

0.5 mole) cuprous bromide (72 g., 0.5 mole) ammonium bromide 

( 45 g.) , copper pov1der ( 5 g.) and concentrated hydrobromic 
-

acid (48% w/w, 180 ml., 1.6 mole), shaken for 4 hr. at room 

temperature, left overnight, and then shaken for a further 

2 hr. concentrated hydrobromic acid (60% w/w. 60 ml., 0.75 

mole) was added and the mixture shaken for 4 hr. Working up 

gave 1-bromobuta-1,2-diene, b.p. 62.5-63°/168 mm. (27.1. g., 

41%). (Found: C, 36.4; H, 4.0. c4H5Br requires C, 36.1; 

H, 3.8%), Y max 3200w · (C;CH), 1950s ( C=C=C), 1195vs, 840vs 

and 680vs cm-1 ; g.l.c. (silicone oil; 90°) gave one main 

peak t, 9 min. and one other peak for 3-bromobutyne (1-2%) t, 

5.5 min. A max 201m )l (C, 5,200), Ainfl. 215m p ([, 3,500) 

n.m.r. a doublet of doublets at ll= 8.22 (Me CH=C=CH) J 4,1 
2.6 c.p.s. a doublet of quartets at -r= 4.09 (MeCH:C=CH) 

J 3, 1 5.8 c.p.s. and a doublet of quartets at T = 4.68 (Me CH 

=C=CH) J4, 1 6.9 c.p.s. 

10. 1-Bromopenta-1.2-diene. 

Pent-1-yn-3-ol (2lg., 0.25 mole) 

cuprous bromide ( 36g., 0. 25 mole) ammonium bromide ( 24.5 g. 
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0.25 mole) copper powder (4 .g.) and concentrated hydrobromic 

acid (60% w/w 96 ml., 1.24 mole) at room temperature for 

9 hr. gave 1-bromopenta-1,2-diene b.p. 62°/66 mm. (20.5g. 

56%), (Found: C, 41.0; H, 5.1; Br, 53.1. c5H7 Br requires 

C, 40.9; H, 4.8; Br, 54.4%) Ym 1950s (C=C=C), 1190vs, . ax 

850vs and 690vs cm-l A 205m u (L, 7,000) t\. fl 215m u . max 1 ~n • r 

([, 5,500); g.l.c. (silicone oil, 104°) showed one main peak 

(99%) t, 5 min. and a small peak at t, 2t min. (<1%, 3~bromo­

pentyne). 

ll. 1-Bromohexa-1,2-diene. 

Hex-1-yn-3-ol (49 g., 0.5 mole), 

cuprous bromide (67 g., 0.47 mole), ammonium bromide (45 g.) 

copper powder (5 g.) and concentrated hydrobromic acid (60% 

1.:r/w, 180 ml., 2.3 mole) shaken at room temperature for 10 hr. 

left overnight and then shaken for·a further 3 hr. gave 1-

bromohexa-1,2-diene b.p. 51-52.5°/22 mm. (53.5 g., 67%) 

(Found: C 45.5; H, 

H, 5.6; Br 49.6%), 

cm-l A max 206mp. 

5.9; Br, 49.1. c6H9Br requires C, 44.8; 

Y max 1950s (C=C=C), 1190vs, 830 and 690 

(l, 7, 200). A . fl 215m P· (L, 4, 700). 
~n • 
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12. 1-Bromo-4-methylpenta-1.2-diene. 

4-Methylpent-1-yn-3-ol 

(39.2g. 0.4 mole) cuprous bromide (58 g., 0.4 mole) ammonium 

bromide (40 g., 0.4 mole) copper powder (4 g) and concentrated 

hydrobromic acid ( 45% 1·1/w, 248 ml; 2 mole) shaken at room 

temperature for 42 hr. then hydrobromic acid(60% w/w, 25 ml. 

0.35 mole) was added and the mixture shaken for a further 

4 hr. gave 1-bromo-4-methylpenta-1,2-diene (23 g., 35%); b.p. 

60-62°/35 mm. Y max 1950s (C=C=C); 1195s, 855s, 704s cm-l no 

band at 3300 cm-l (C:CH); g.l.c. (dinonyl phthalate, 120°) 

showed ohly one peak, t, 5-!- min. 

13. 1-Bromo-3-phenylpropa-1.2-diene. 

3-Phenylprop-1-yn-3-ol 

(19.8 g., 0.15 mole) vms added to an ice cold mixture of 

cuprous bromide (20 g., 0.14 mole), ammonium bromide (13.5 g.), 

copper powder (2 g.), and concentrated hydrobromic acid (60% 

w/w, 56 ml., 0.7 mole) over 10 minutes with hand shaking and 

cooling in ice. The mixture was kept in an ice bath an extra 

40 min. with occasional shaking by hand. The mixture was 

filtered, the solid washed with a little light petroleum 

spirit and the filtrate extracted with light petroleum spirit 

-185-



(4 X 10 ml.). The organic layer 1·ras separated and washed 

with 45% hydrobromic acid until the acid layer was no longer 

coloured violet, then dried over a mixture of magnesium 

sulphate and anhydrous sodium carbonate. 

Removal of the petroleum spirit under reduced pressure 

gave pure 1-bromo-3-phenylpropa-1,2-diene (28 g., 95%), 

(Found: Br, 40.7; c9H7Br requires Br, 41.0%) ) (I.R.l.), 
max 

1950vs (C=C=C), 1500s, 1450s, 1190vs, 756vs, 705vs, 685vs, 

cm-1 . Amax 205mp., ({.., 17,730);1\max 268mp, ([., 14,210). 

14. 1-Bromo-3-phenylbuta-1.2-diene. 

3-Phenylbut-1-yn-3-ol 

( 29.2 g., 0. 2 mole), vras added to an ice cold mixture of 

cuprous bromide (36 g., 0.25 mole) ammonium bromide (15 g.), 

copper powder (2 g.) and concentrated hydrobromic acid (60% 

w/w, 56 ml., 0.7 mole) over 10 min. with stirring, then light 

petroleum spirit (20 ml.) was added and stirring continued in 

an ice bath for 35 min. The mixture was filtered, the solid 

washed with a little petroleum spirit and the filtrate 

extracted with light petroleum spirit (4 x 15 ml.). The 

organic layer was se~arated and washed with 40% hydrobromic 

acid until the acid layer was no longer coloured violet, then 
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Removal of the petroleum spirit 

under reduced pressure gave pure 1-bromo-3-phenylbuta-1,2-

diene (37.7 g. 90%), (Found: Br, 37.8; c10H9Br requires 

Br, 38.2%). ~max (I.R.2)., 1955s (C=C=C), 1500s, 1445s, 

1158s, 765vs; 730vs, 690vs cm-l A 206m u, ([, 16,860); max r 

A max 272m )1 (l, 11,570.) 

15. 1-Bromoi~-diphenylpropa-1.2-diene. 

"'' 3,3-.tliphenylprop-1-

yn-3-ol (10.4 g., 0.05 mole) in 50 ml. light petroleum spirit 

was added to an ice cold mixture of cuprous bromide (10.7 g., 

0.075 mole), ammonium bromide (4.9 g.), copper powder (1 g.) 

and concentrated hydrobromic acid (6o% w/w., 20 ml., 0.25 

mole) over 5 min. with constant stirring, then stirring 

continued at 0° for 2f hr. The mixture was filtered, the 

solid washed ~dth a little petroleum spirit, the organic layer 

was decanted and the aqueous layer extracted \nth petroleum 

spirit (3 x 10 ml.), the petrol solutions were combined and 

washed with 45% hydrobromic acid until the acid layer was no 

longer coloured violet, then dried (Mgso4 , Na2c~3 and active 

Al2o
3
). Slow evaporation of the petrol under reduced 

pressure gave white crystals of 1-bromo-3,3-diphenylpropa-
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( . d) 0 1,2-diene 11 g., 84~ m.p. 81.5-82 • (Found: C, 66.0; 

H, 4.3; Br, 29.7. c15H11Br requires C, 66.5; H, 4.1; Br, 

29.5). 

~max (I.R.3), 1945ms (C=C=C); 1600m (aromatic); 780s; 

710s; and 685 cm-1 . ,\max 205m p ({.., 30,340) ,\houlder 230mp 

(l, 14,200), ~max 28lmp ((, 12,040). n.m.r. (n.m.r.3), 

showed a s~glet lr= 3.65 (C=C-~) and a multiplet of 10 

protons I= 2. 72 (Ph2 C=C). 
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Preparation of 3.3-dialkyl-1-liodoallenes 

1) 1-Iodo-3-methylbuta-1.2-diene. 

(a) Cuprous iodide (16.8 g., 

0.2 mole), ammonium iodide (29.0 g., 0.2 mole), copper 

powder (1 g.) and concentrated hydriodic acid (45% w/vr., 

76 ml., 0.4 mole) were stirred together at room temperature 

and 3-methylbut-1-yn-3-ol (16.8 g., 0.2 mole) was added over 

5 min., after.stirring for 2 hr. light petroleum ether 

(50 ml.) was added and the mixture filtered. Extraction of 

the organic layer with light petroleum (2 x 20 ml) followed 

by drying (Mgso
4

) and evaporation yielded a product which 

contained 1-iodo-3-methylbuta-1, 2-diene as shown by ~max 
1950s. cm-1 , but was highly contaminated ~rith double bond 

products as shown by ~max 1650s 1600s cm-l. These 

impurities could not be removed by careful fractionation. 

(b) Cuprous iodide (t6.8 g., 0.2 mole), ammonium iodide 

(29.0 g., 0.2 mole), copper pov-rder (1 g) and concentrated 

hydriodic acid (45% w/w., 76 ml., 0.4 mole) were stirred at 

room temperature and a solution of 3-methylbut-1-yn-3-ol 

(16.8 g., 0.2 mole) in light petroleum ether.(30 ml) was 

added in one portion. Stirring was· continued and at 

-189-



intervals of t, 1, 1t., and 2 hr. small portions of the 

organic upper layer were examined by I.R. spectroscopy. 

The I.R. spectra showed decreasing intensity of the 3400 

· (OH) band and increasing intensity of the 1950cm (C=C=C) 

band until at 2 hr. reaction was considered complete. 

The suspension was filtered and the filtrate extracted 

with light petroleum ether (3 x 20 ml). The organic 

,extracts were combined and dried (MgS04). Distillation 

af~er first removing the petroleum ether gave a small fore­

run of 3-methylbut-1-yn-3-ol max 3400s (-OH), 3300s (C=CH), 

and 2100w (CsC) cm-1 followed by pure 1-iodo-3-methylbuta-1,2-

diene (23.7 g., 61%) bp. 56°/20 mm, (Found: C, 30.8; H,. 3.6; 

I, 65.7. c5H7I requires C, 30.9; H, 3.6; I, 65.4%}·Jmax 

(I.R.4) 1955s (C=C=C), Amax 246m p ({_, 9,595). g.l.c. 

(silicone oil, 100°) gave only one peak, t, 9.5 min. n.m.r. 

(n.m.r.4), shovred a doublet centred on I= 8.23 ((c!!3) 2 
C=C=CH) J~,H = 2.3 c.p.s. and a heptet centred on 

J = 4.5 ((CH3) 2C=CdJ!!) JH,~= 2.3 c.p.s. 

2. 1-Iodo-3-methylpenta-1.2-diene. 

Cuprous iodide (28.5 g., 

0~15 mole), ammonium iodide (28.5 g., 0.15 mole), copper 

powder (1 g.) and concentrated hydriodic acid (45% vr/w, 57 ml., 

0.3 mole) were stirred at room temperature and a solution of 
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3-methylpent-1-yn-3-ol (14.7 g., 0.15 mole) in light 

petroleum ether (30 ml) was added in one portion. After 

stirring for 6 hr. I.R. examination of the upper layer showed 

no band at 3400 cm-l (-OH). The suspension was filtered and 

the filtrate extracted with light petroleum ether (2 x 30 ml) 

the organic extracts v-rere combined and dried (MgSO 
4
). 

Distillation after first removing the light petroleum gave a 

small fore-run followed by 1-iodo-3-methylpenta-1,2-diene 

(19.1 g., 62%) b.p. 55°/6 mm, (Found: C, 34.4; H, 4.5; 

I, 61.1. c6H9I required C, 34. 6; H, 4. 4; I , 61. 0%) t max (I· R.5) 

1950s ( C=C=C), 1130vs, 780m, and 70,9( vs 

ct., 15,560), Xmax 247mp, ct, 6,645). 

-1 \ em , I\ max 206m p, 

g.l.c. (silicone oil, 

100°) gave only one peak, t, 17 min. n.m.r. (n.m.r.5) shmved 

J = 
8.9 c.p.s.; 

-H 

CH3,CH2 
a triplet of doublets centred on ll= 8.22 

~ CH3' f=C=C' ~ 
(CH-CH ) 

3 2 . 

J CH3 ,CH2 = 0.7 c.p.s; 

of quartets, centred on J= 7.9 · 

J 1 J CH2 , ~ = 8.9 c.p.s., CH2,H - 2.3 c.p.s. 

c.p.s., and a sextet centred on T = 4. 38 

J H,CH
3 

= 2.3 c.p.s. 
H,CH2 
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3. 1-Iodo-3-ethylpenta-1.2-diene. 

Cuprous iodide (2.85 g., 

0.15 mole), ammonium iodide (21.7 g., 0.15 mole), copper 

powder (1 g) and concentrated hydriodic acid (45% w/w., 

57 m.f·, 0.3 mole) were stirred at room temperature and a 

solution of 3-ethylpent-1-yn-3-ol (16.8 g., 0.15 mole) in 

light petroleum ether (30 ml.) was added in one portion. 

After stirring for 3 hr. I.R. examination of the organic 

layer showed no band at 3400 cm-1 (-OH). The suspension was 

filtered, and the filtrate extracted with light petroleum 

ether (2 x 30 ml) the organic extracts were combined and 

dried (Mgso4). Distillation after first removing the light 

petroleum gave a small forerun followed by 1-iodo-3-ethyl­

penta-1,2-diene (21.6 g., 65%) b.p. 60°/5.5 mm. (Found: C, 

37.8; H, 5. 0; I. 57. 2. c7H1I requires C, 37. 9; H, 5. 0; 

I, 57.1%) Y (I.R.6)., 1945s (C=C=C) ll25s, 710vs cu-1 
max · 

Amax 207my., (f., 17,053), Amax248my., ([., 6,963). g.l.c. 

(silicone oil, 100°) gave only one peak, t, 28.5 min. 

4. l-Iodo-3-4.4-trimethylpenta-1,2-diene. 

(a) Cuprous iodide 

(190 g., 0.1 mole), ammonium iodide (14.5 g., 0.1 mole), 

copper powder ( 1 g) and concentrated hydriodic acid ( 45% w/w., 
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28.5 ml., 0.15 mole) were stirred at room temperature and a 

solution of·3,4,4-trimethylpent-l-yn-3-ol (12.6 g., 0.1 mole) 

in light petroleum ether (30 ml) was added in one portion. 

After stirring for 18 hr. I.R. examination of the organic 

layer still showed a band at 3400 cm-l (OH). The suspension 

was filtered and the filtrate extracted with light petroleum 

ether (2 x 30 ml). The organic extracts were combined and 

dried (Mgso4). Distillation after first removing the light 

petroleum gave a forerun of the starting product (5.0 g., 40%) 

followed by'l-iodo-3,4,4-trimethylpenta-1,2-diene (12 g.,51%) 

b.p. 62°/5mm. (Found: C, 40.7; H, 5.7; I, 54.1; c8H13r requires 

C, 40.7; H, 5.6; I, 53.8%) Y (I.R.7), 1948m (C=C=C), max 

ll20vs, 825m, 7lls cm-1 , A max 207m p (E., 18,475), A max 247m p 
([, 7171). g.l.c. (silicone oil, 100°) showed only one peak, t, 

32.5 min. n.m. r. (n.m.r. 6) show·ed a singlet T = 8. 9, 

(ButC(CH
3

)=C=CH), a doublet centred on lr= 8.23. (CH
3

C(But)= 

C=CH) JCH H = 2.2 c.p.s., and a quartet centred on 1r= 4.43 
t 3 

(CH3C(Bu ) =C=C=~) JH CH = 2.2 c.p.s. 
' 3 

(b) A similar experiment using concentrated hydr·i-odic·· .: acid 
38 

(60% w/w./ ml., 0.2 mole) showed removal of the 3400 cm-l (OR) 

after only 6 hr. and -vrorking up gave an identical product 

( 18g.' 76%). 
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C. Preparation of 1-Bromo alk-1-yn-3-ols. 

1. 1-Bromo-3-methylbut-1-yn-3-ol. 

An ice cold solution of 

sodiUm hypobromite, (made from addition of bromine 84 g., 

0.503 mole, .to an ice cold solution of sodium hydroxide 63g., 

1.5 mole in water 100 ml, and ice 150 g.) was added to 

3-methylbut-1-yn-3-ol (42 g., 0.5 mole) stirred at 5°C, over 

4 hr. The mixture was stirred a further 1 hr. whilst being 

allowed to reach room temperature. 

The heavy organic layer was separated, dissolved in 

ether, washed with water (3 x 50 ml) then dried (Mgso4). 

Removal of ether under vacuum gave 1-bromo-3-methylbut-1-yn-

3-ol (62 g., 76%) Y 3400vs (-OH), 2220s (-C:C-) cm-1 ; 
max 

g.l.c. (silicone oil, 120°) gave only one peak, t, 3.5 min. 

2. 1-Bromo-3-methylpent-1-yn-3-ol. 

Sodium hypobromite (from 

bromine 84 g., 0.503 mole, sodium hydroxide 63 g., 1.5 mole 

water, 100 ml., and ice 150g) was added to 3-methylpent-1-

yn-3-ol (49 g., 0.5 mole) at 5°, over 4 hr., working up in 

the usual manner gave 1-bromo-3-methylpent-1-yn-3-ol (87 g., 

-194-



) -1 
95%), Y max 3400vs (-OH), 2220s (-CcC) em g.l.c. (silicone 

oii, 150°) gave only one peak, t, 3.5 min. 

3. l-Bromo-3.4.4-trimethylpent-1-yn-3-ol. 

Sodium hypobromite 

(from bromine 42 g., 0.252 mole, sodium hydroxide 31.5 g., 

0.76_mole water 60 ml and ice 130 g) was added to 3,4,4-

trimethylpent-l-yn-3-ol (31.25 g., 0.25 mole) at 0° over 4 hr. 

working up gave 1-bromo-3,4,4-trimethylpent-1-yn-3-ol (37 g., 

72%) Jmax 3450vs (-OH), 2215s (C:C) cm-l g.l.c. (silicone 

oil, 120°), gave only one peak, t, 15.5 min. 

4. l-Bromohex-1-yn-3-ol. 

Sodium hypobromite (from bromine 

25.2 g., 0.15 mole; sodium hydroxide 18.9 g., 0.24 mole; water 

20 ml., and ice 50 g.) was added to hex-1-yn-3-ol (14.7 g., 

0.15 mole) at 5° over 3 hr., working up gave 1-bromohex-1-

yn-3-ol (21.2 g., 80%) ~max 3370s (-OH), 2210s (C=C) cm-1 ; 

g.l.c. (silicone oil, 100°) gave only one peak, t, 4 min. 

5. 1-Bromo-3-3-diphenylprop-1-yn-3-ol. 

Sodium hypobromite (from 

bromine 16.1 g., 0.1 mole) sodium hydroxide 12.1 g., 0.34 mole, 
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water, 30 ml., and ice 70 g. was added to 3,3-diphenylprop-

1-yn-3-ol over 10 min. at 5°. 

After stirring for·5 hr. a semi solid organic layer 

resulted, on testing this was found to be a mixture of the 

expected product and starting material. The organic layer 

was ether extracted (50 ml) and the ether solution recycled 

with sodium hypobromite (0.1 mole) at 5°C stirring being 

continued over night. Working up in the usual manner gave 

1-Bromo-3,3-diphenylprop-1-yn-3-ol (25 g., 86%). ;>max3400s 

(-OH); 2210m (C::C); 1640m and 1600m (aromatic C=C) and 1175m, 

lOOOm, 732s, and 700s, (mono substituted benzene) cm-1 • 
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D. Preparation of l,l-dibromo-a1Ntl.2-dienes. 

1. l,l-dibromo-3-methylbuta-1,2-diene. 

1-Bromo-3-methylbut-

1-yn-3-ol (8.15 g., 0.05 mole) in light petroleum ether 

(20 ml), was added to a stirred suspension of cuprous brDmide 

(3.6 g., 0.025 mole), ammonium bromide (2.0 g., 0.025 mole); 

copper powder (.2 g) and concentrated hydrobromic acid (45% 

w/w., 12.4 ml., 0.1 mole) at 5°. 

The mixture '\vas stirred at room temperature for 1. 5 hr., 

filtered, and the filtrate extracted with light petroleum 

ether (2 x 20.m1), evaporation of the solution after drying 

(Mgso4Na2co
3

) followed b! distillation gave, 1,1-dibromo-3-

methy~buta-1,2-diene (7.2 g., 6c%) b.p. 34-38°/.3mm (Found: 

C, 26.4; H, 2.7; Br, 71.2. c5H6Br2 requires S, 26.6; H, 2.7; 

Br, 70.8%) distillation at higher temperatures leads to some 

rearrangement. ) ~ (I. R. 8.) , 1960vs ( C=C=C) , 1013s, 779s, max 
735vs cm-1 ; )..max 206m p., ([., 13,040); A inf. 215m y, ([, 9, 990); 

g.l.c. (silicone oil, 120°) gave only one peak t, 11.3 min. 

2. l,l-dibromo-3-methylpenta-1.2-diene. 

1-Bromo-3-methylpent­

l~yn-3-ol (8.9 g., 0.05 mole) in light petroleum ether (20 ml) 
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was added to a stirred suspension of cuprous bromide (3.6 g., 

0.025 mole), ammonium bromide (2 g., 0.025 mole) copper 

powder (0.2 g.) and concentrated hydrobromic acid (60% w/w., 

10 ml., 0.125 mole at 5° and stirred for 15 min. at 5° 

followed by stirring for 45 min. at room temperature. 

The mixture was filtered, the filtrate extracted with 

light petroleum ether (3 x 20 ml) and the organic layer dried 

Distillation after first removing the 

petroleum ether gave 1,1-dibromo-3-methylpenta-1,2-diene 

(9.5 g., 79%) b.p. 64°/2 mm 

c6H8Br2 requires C, 30.0; H, 

1960vs (C=C=C),·740vs cm-1 ; 

215mp ct, 10,000); g.l.c. 

(Found: C, 29.7; H, 3.5; Br, 66.8. 

3.3; Br, 66.7%) y (I.R.9), max 

t\max 206mp (E, 13,850); Ainfl. 

(silicone oil, 120°), gave only 

one peak, t, 18 min. n.m.r. (n.m.r.7), showed a triplet 

centred on 1r= 8.89 (5CH
3

4CH2c( 6CH3)=C=CBr2) J 5, 4 7.3. c.p.s., 

a triplet centred on t= 8.0 (6CH3C(Et)C=C=CBr2) J6, 4 0.5 

T . 5 4 c.p.s. and a quartet centred on = 7.7 ( CH3 CH2C(CH3)C=C= 

CBr2) J
4

,
5 

7.3 c.p.s. (should be quartet of quartets but is 

not resolved). 

3. 1,1-dibromo-3,4.4-trimethylpenta-1,2-diene. 

1-Bromo-3,4,4-:­

trimethylpent-1-yn-3-ol (15.3 g., 0.075 mole) in light 
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petroleum ether (20 ml) was added to a stirred suspension 

of cuprous bromide (7.2 g., 0.05 mole), ammonium bromide 

( 4 g., 0. 05 mole), copper po·vrder (. 5 g) and concentrated 

hydrobromic acid (60% w/w., 16 ml., 0.2 mole) and the 

mixture stirred at room temperature for 1 hr. lforking up 

in the usual manner gave l,l-dibromo-3,4·,-4-trimethylpenta-

1,2-diene (13.9 g., 69%) b.p. 42-44°/0.45 mm. (Found: C, 

35.8; H, 4.4; Br, 59.6. C8H12Br2 requires C, 35.8; H, 4.8; 

Br, 59.5%) :{ (I.R.lO), 1950vs (C=C=C), 1120s, 829s, and max 

7 45vs cm-1 A max 206m p (E., 16,290) A shoulder 218m )l 

((, 10,000) g.l.c. (silicone oil 120°) gave one main peak, 

t, 28 min., with a small peak on the trailing edge (less 5%) 

which may by 1,3-dibromo-3,4,4-trimethylpent-1-yn. n.m.r. 

(n.m.r.2) showed two peaks lr = 8.85 (But C(CH3)C=C=CBr2) and 

Y = 8. 08 ( CH
3 

C (But) C C Br 2) • 

4. l,l-dibromohexa-1.2-diene. 

1-Bromohex-1-yn-3-ol (17.7 g., 

0.1 mole) in light petroleum ether (20 ml) cuprous bromide 

(14.4 g., 0.1 mole), ammonium bromide (10 g., 0.125 mole), 

copper pOvTder ( 0. 5 g.) and concentrated hydrobromic acid 
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( 60% whv., 40 mls., 0. 5 mole) were shaken in an oscillating 

shaker for 48 hr. then the product worked up in the usual 

manner giving 1,1-dibromohexa-1,2-diene (7.6 g., 31%) b.p. 

35°/2 mm. (Found: C, 29.5; H, 3.3; Br, 66.6 c6H8Br2 requires 

C, 30.0; H, 3.3; Br, 66.7%) ~ (I.R.ll), 1955s (C=C=C), max 

1199vs, and 835s cm-1 ; /\max 205mp. (l., 10,000) A shoulder 

215mp (E, 7,700) g.l.c. (silicone oii 120°), gave only one 

peak, t, 6.5 min. 

5. l,l-Dibromo-3.3-diuhenylprop~l.2-diene. 

1-Bromo-3,3-diphenyl 

prop-1-yn-3-ol (l4.35 g., 0.5 mole), in light petroleum 

(50 ml) was added to an ice cold mixture of cuprous bromide 

(10.7 g., 0.075 mole), ammonium bromide (4.9 g., b.05 mole) 

copper poi-rder (1 g.) and concentrated hydrobromic acid (60% 

w/w., 20 ml., 0.25 mole) and stirred for 3 hr. Evaporation 

after first extracting with petroleum ether (3 x 25 ml) and 

drying (MgS0
4

/Na2co
3

) yielded y·ellow crystals (10.4 g., 60%) 

which on recrystallisation from light petroleum gave white 

needles m.p. 91-2°. (Found: C, 51.2; H, 2.9; Br, 45.6. 

c15H1ifr2 requires C, 51.4; H, 2.9; Br, 45.7%) .) max (I.R.l2) 

3050vw (aromatic C-H), 1945s (C=C=C), 777s, 740s and 694s 

em-1 ,\max 207mp ([, 24,000), ~ max 289mp (l, 6,000). 
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Preparation of Deuterated acetylenic alcohols and haloallenes. 

1. '1-Deuterobut-1-vn-3-ol. 

But-1-yn-3-ol (105 g., 0.15 mole) 

in dry ether (30 ml) was added over 30 min. to a stirred 

solution of ethyl magnesium bromide (0.4 mole), made from 

ethyl bromide. (43.6 g., 0.4 mole), magnesium (9.6 g., 0.4 

mole) and ether (300 ml.). When addition of the carbinol 

was complete the suspension was stirred at reflux temperature 

for l hr. before being cooled to 20° when deuterium oxide 

(18 ml., 0.9 mole) was added over 30 min. 

The suspension was again heated to reflux and vigorously 

stirred for 3 hr. then cooled and decomposed with hydrochloric 

acid (10 ml., l;l). 

The mixture was filtered, ether extracted (3 x 50 ml), 

dried (MgS04) and distilled after first removing ether, giving 

l-deuterobut-l-yn-3-ol (8 g., 75%) b.p. 108°/750 mm. 

This was found to be completely deuterated in the 1 

position and also had some -OD content which could be removed 

by treating with dilute acid. Y (I.R.l4), 3400s (-OH), max · 

2610s (-C:C-D), 2510m (-OD), 1995s (-C:C-D), cm-l g.l.c. 

(silicone oil 60°) gave only one peak, t, 6 min. n.m.r. 
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(n.m.r. 9), showed on a doublet centred on -r= 9.14 

(4CH3- 3CH.(OH)C:CD), J 3, 4 c.p.s., a singlet li= 7.75 (-C-OH), 

and a quartet centred on T= 7.34 (4CH
3

3CH(OH)C::CD), J 4 ,
3 

3.6 c.p.s. 

n.m.r. after shaking with n2o showed an identical 

spectrum except for complete removal of the if= 7.75 (-C-OH) 

band. 

2. 1-Deutero-3-methylpent-1-yn-3-ol. 

3-Methylpent-1-yn-3-ol 

(15 g., 0.15 mole) in dry ether (30 ml) was added over 30 min. 

to a stirred solution of ethyl magnesium bromide (0.4 mole) 

(made from ethyl bromide (43.6 g., 0.4 mole). llhen addition 

of the carbinol was complete the suspension was stirred at 

the reflux for 30 min. before being cooled to 20° when 

deuterium oxide.(20 ml., 1 mole) was added over 15 min. 

The suspension was then vigorously stirred for 3 hr. before 

being decomposed v1ith hydrochloric acid, (10 ml., 1:1), 

filtered, ether extracted (3 X 50 ml), and dried (MgS04). 

Distillation after first removing the ether gave 1-deutero-

3-methylpent-1-yn-3-ol. (14 g., 87.5%) b.p. 121°/760 mm. 

This was sho1'm to be completely deuterated in the 1 position by 
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Ymax (I.R.l5), 3400vs (-OH), 2600s (-C:C-D), l975s 

(-C:C-D) g.l.c. (silicone oil 80°) showed only one peak, t, 

3.1 min. n.m.r. (n.m.r.lO), showed a triplet centred on 

11 5 ·4 3 = 8.95 ( CH3 CH2 D(CH3)(0H)C=CD) J 4, 5 6.5 c.p.s.; a 

singlet 1r= 8.52 (CH3c(c2H5)(0H)C:CD); a quartet centred on 

,-= 8.27 ( 5CH34CH2C(CH3)(0H)C=CD), J 5, 4 6.5 c.p.s.; and a 

singlet I= 7. 39 ( C-OH). 

3. l-Deutero-3.4.4-trimethylpent-1-yn-3-ol. 

3,4,4-Trimethyl­

pent-l-yn-3-ol (20 g., 0.15 mole) was added over 30 min. to 

a stirred solution of ethyl magnesium bromide (0.4 mole) and 

after refluxing for 30 min. then cooling deuterium oxide 

( 20 ml., 1 mole) was added. Uorking up after stirring for 

3 .hr. gave l-deutero-3,4,4-trimethylpent-1-yn-3-ol (18 g.'· 

85.7%) b.p. 142°/760 mm. This was shown to be completely 

deuterated in the l position by V (I.R.l6) 3450m (-OH); max 
2600s (C:C-D); l960m (-C:C-D) cm-1 ~.l.c. (silicone oil 100°) 

showed only one peak, t, 6.3 min.; n.m.r. (n.m.r.ll) showed 

a singlet 1r= 9.38 (Bu~C(CH3 )(0H)C:CD), a singlet\= 9.15 

(CH
3

C(But)(OH)C:CD); and a singlet li = 8.81 (C-OH). 
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4. 1-Deutero-1-iodobuta-1,2-diene. 

Triphenylphosphite 

methiodide (60 g., 0.14 mole) was dissolved in dry N,N-dimethyL 

formamide (66 ml.) and stirred at 80° when 1-deuterobut-1-yn-

3-ol (7.1 g., 0.1 mole) was added, the mixture was stirred at 

80° for 40 min. and then about 35 ml. liquid vTas distilled off 

at reduced pressure (ca.20 mm). This distillate 1·ras added to 

water (100 ml) when a heavy oil separated; the mixture was 

ether extracted (3 x 25 ml) and the combined ether layers 

washed with water (12 x 40 ml) to remove any N,N-dimethyl­

formamide, the etherial solution was dried (Mgso4) and 

evaporated giving 98% pure 1-deutero-1-iodbuta-1,2-diene 

(7 .3 g., 4Cffo) .) max (I.R.l8), 2,3QOm (=C~~); 1950s (C=C=C); 

900m and 820s (C-D inplane deformation); and 790s cm-l 

g.l.c. (silicone oil 80°) showed only one peak, t, 9 min. 

n.m.r. (n.m.r.l2), showed a doublet centred on T= 8.93 

(CH3CH=C=CDI), JCH H 4.2 c.p.s.; and a quartet centred on 
3' 

/' = 6.99 (CH3CH=C=CDI), JH,CH
3 

4.3 c.p.s. 

5. 1-Bromo-1-deutero-3-methylpenta-1.2-diene. 

1-Deutero-3-

methylpent-1-yn-3-ol (4 g., 0.04 mole) was added to a mixture 
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of cuprous bromide (2.1 g., 0.014 mole), ammonium bromide 

(1.7 g., 0.017 mole) copper povrder (0.2 g.) and concentrated 

hydrobromic acid (48% 1v/w., 10.5 ml., 0.088 mole) and 

stirred vigorously at room temperature for 25 min. 1vhen the 

infra-red spectrum of a small sample showed complete absence 

of the 3400m (-OH) bond. The mixture was filtered and 

separated, the aqueous portion being extracted w·i th light 

petroleum, the organic layers were combined and washed with 

concentrated hydrobromic acid (45% w/w., 10 ml) and dried 

(MgS04/Na2co
3
). Distillation after first removing the petrol 

gave 1-bromo-1-deutero-3-methylpenta-1.,.2-diene (4 g., 62%) 

b.p. 60°/30 mm. ~ (I.R.20), 2300w (:C-D); ·1950s (C=C=C); max 
( ) -1 955s; 870s -C=C-D in plane.deformation and 7.5 m em g.l.c. 

(silicone oil 82°) showed one main peak, t, 15 min, n.m.r. 

(n.m.r.l3) shovred a triplet centred on Tc8.g4 (5CH3
4CH2C 

(CH
3

)=C=CDBr) J4 , 5 7.5 c.p.s.; a singlet!= 8.14(CH3c 
(C

2
H

5
)=C=CDBr; and a quartet centred on I= 7.87 (5CH3 

4QH2C 

(CH
3

)=C=CDBr), J 5, 4 7.5 c.p.s. 

6. 1-Chloro-1-deutero-3.4.4-trimethylpenta-1,2-diene. 

1-Deutero-

3,3,4-trimethylpent-1-yn-3-ol (6.3 g., 0.05/ mole) and thionyl 
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chloride (8.3 g., 0.07 mole, purified by Cottle's method) 

were dripped slowly and simultaneously into dry refluxing 

diaxon (150 ml.) After addition was complete the mixture 

was stirred for ti'ro min. then cooled to room temperature 

before adding dry pyridine (7.9 ml.). The suspension was 

stirred for 30 min. then ether (300 ml) was added, the 

suspension vras filtered washed with 2. 5 N hydrochloric acid 

(5 x 100 ml), then 2N sodium bicarbonate solution (2 x 20 ml), 

. finally with water (5 x 100 ml) then dried (MgS04). 

Distillation after first removing the ether gave 1-chloro-

1-deutero-3,4,4-trimethylpenta-1,2-diene (4.8 g., 31%) b.p. 

145.50°/760 mm. 

The product vras contaminated with the ace-tylenic impurity 

3-chloro-1-deutero-3,4,4-trimethylpent-1-yn~ in quantities 

which grew less as distillation proceeded, the purest cut 

contained only 2% of this acetylenic impurity. ) max (I.R.22), 

2310w (C:C-D), 1950s (C=C=C); 890vs (-CD in plane deforma­

tion); 710vs (C-Cl) cm-1 ; g.l.c •. (silicone oil 120°), 

showed one main peak, t, 21 min. and another peak (less than 

3%) t, 117 min. (the acetylenic impurity). N.m.r. (n.m.r. 

14); showed a singlet T= 9.36 (ButC(CH3)=C=CDCl), and a 
. . t 

singlet I= 8.93 (Bu C(CH3)=C=CDC1). 
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Preparation of 1-cyanoallenes from acetylenic carbinols. 

1. 1-Cyano-3-methylbuta-1,2-diene. 

Cuprous cyanide (30 g., 

0.3 mole), potassium cyanide (13g., 0.2 mole), copper powder 

(0.5 g.) and 3-methylbut-1-yn-3-ol (17 g., 0.2 mole) were 

placed in a flask fitted with mechanical stirrer and 

dropping funnel, and stirred until a cream-like consistency 

was obtained. The flask was then surrounded by an ice-bath, 

and concentrated hydrobromic acid (45% w/w., 62 ml., 0.5 mole) 

was added dropwise over 45 min; the flask was left in the 

gradually w~rming bath whilst the contents were stirred for 

76 hr., when saturated sodium bicarbonate solution (150 ml.) 

was added. The mixture was filtered, the solid washed with 

ether and the filtrate extracted with ether (4 x 30 ml.) the 

etherial solutions were combined and washed with water (2 x 

Distillation after first 

removing the ether gave a forerun of 3-methylpent-1-yn-3-ol 

(2.5 g. 14.7%) b.p. 35°/14 mm ~max 3400s (-OH); 3300s 

(-C:CH); 2100w (-C:C-) cm-1 followed by 1-cyano-3-methyl­

penta-1,2-diene (5.5 g., 30%) b.p. 50-55°/10 mm. (Found: 
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C, 77.3; H, 7.7; N, 15.1. C6H7N requires C, 77.4; H, 7.6; 

N, 15.0%) 9max (I.R.23) 2245vs (-<IN), 1950vs (C=C=C); and 

790 em -l ,\ max 207m p ( £., 10,000) ; g .1. c. ( dinonylphthalate, 

120°) showed only 

doublet T = 8.2. 

heptet I= 5.1. 

one peak, t, 10 min. n.m.r. show·ed a 
4 3 2 1 ( ( 0!!3) 2C=C=CHCN) 

( ( CH
3

) 2C=C=CHCN) 

2. 1-Cyano-3-methylpenta-1,2-diene. 

J 4,1 3 c.p.s., and a 

J1 , 4 3 c.p.s. 

Cuprous cyanide (30 g., 

0.3 mole), potassium cyanide (13 g., 0.2 mole), copper powder 

(0.5 g,) and 3-methylpent-1-yn-3-ol (20 g., 0.2 mole), were 

mixed together and cooled as before and concentrated hydro­

bromic acid (45% w/w., 62 ml., 0.5 mole) added over 45 min. 

stirring being continued for 67 hr. The reaction mixture 

was worked up as previously described when distillation gave · 

a forerun of 3-methylpent-1-yn-3-ol (2 g., 10%) b.p. 30°/6 mm 

V max 3400s (-OH); 3300s (-C=CH); 2100w (-C=C-) cm-l followed 

by 1-cyano-3-methylpenta-1,2-diene (11 g., 51%) b.p. 5~-55°/ 

6 mm (Found: C, 77.3; H, 8.4; N, 13.1; c7H9N required C, 

78.5; H, 8.5; N, 13.1%) .Jmax (I.R.24) 2245s (-CN); 1955s 

(C=C=C); 760m, and 790m cm-1 ; ~max 207m p (l, 10,100) g.l.c. 

(dinenylphthalate, 120°) gave only one peak, t, 19 min. 

-208-



n.m.r. (N.R.M.l5), showed a triplet centred on,-= 8.92 

( 5 4 3 (6 ) ) CH3 CH2 C CH3 =C=CHCN , J 5, 4 7 c.p.s.; a doublet 
6 centred on II= 8.18 ( CH3C(Et)C=C=CHCH), J6 ,1 c.p.s. a 

quartet of doublets centred on i(= 7.88 (5CH
3

4CH2C(CH
3

)=C= 

CHCN), J 4, 5 7 c.p.s., J 4, 1 3 c.p.s.; and a sextet centred 

on 1'= 4.9 (CH3CH2C(CH3)=C=g.HCN), J1 , 4 = 3 c.p.s. J1 , 6 = 

3 c.p.s. 

3. l-Cyano-3~ethylpenta-1.2-diene. 

Cuprous cyanide (30 g., 

0.3 mole) potassium cyanide (13 g., 0.2); copper powder 

(0.5 g.) and 3-ethylpent-1-yn-ol (22.4 g., 0.2 mole) were 

mixed together and cooled as before and concentrated hydro­

bromic acid (45% w/w., 62 ml., 0.5 mole) was added over 45 

min., stirring being continued for 76 hrs. The reaction 

mixture was worked up·as previously described when distilla-

tion gave a forerun of 3-ethylpent-1-yn-3-ol (2 g., 9.5%) 

b.p. 30°/5 mm ) max 3400s (-OH), 3300s (-C=CH), 2100w (-C:C-) 

cm-1 , followed by 1-cyano-3-ethylpenta-1,2-diene (17 g., 75%) 

b.p. 71°/5mm (Found: C, 79.2; H, 9.2; N, 11.6. C8H11N 

requires C, 79.3; H, 9.2; N, 11.6%); )max (I.R.25), 2240vs 
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( -CN)., 1955vs ( C=C=C), and 790s cm-1 ; A max 207m p 

([, 10,140); g.l.c. (dinonylphthalate, 120°) showed only 

one peak, t, 30 min. n.m.r. (n.m.r.l6) showed a triplet 

centred on T = 8. 9 ( 5CH3 
4cH2) 2 C=C=CHCN), J 4, 5 = 7 c.p. ~·; 

a quartet of doublets centred on 1i=7.9 (5CH
3

4CH2) C=C=CHCN),. 

J 4, 5 = 7 c.p.s., J 4•1 = 3.5 c.p.s. and a pentet centred on 

jl = 4.75, (Et2C=C=CHCN), J1, 4 = 3.5 c.p.s. 

4. 1-Cyano-3-4.4-trimethylpenta-1.2-diene. 

Cuprous cyanide 

(30 g., 0.3 mole), potassium cyanide (13 g., 0.2 mole), 

copper powder (0.5 g) and 3,4,4-trimethylpent-1-yn-3-ol 

(25.2 g., 0.2 mole) were mixed together and cooled as before 

and concentrated hydrobromic acid (45% w/w., 62 ml., 0.5 

mole) was added over 45 min., stirring being continued for 

90 hrs. The reaction mixture was worked up as previously 

described when distillation gave 3,4,4-trimethylpent-1-yn-3-

ol (15 g., 60%.) ·b.p. 60°/28 mm. J max 3400s (-OH), 3300s (-C= 

CH), 2100w (-C:C-) cm-1 . followed by 1-cyano-3,4,4-trimethyl­

penta-1,2-diene (3.3 g., 25%) b.p. 75°/9 mm (Found: C, 

79.8; H, 9.6; N, 10.3. c9H13N requires C, 79.9; H, 9.7; 

N, 10.4%); ·Ymax (I.R.27), 2250s (-CH), 1960s (C=C=C), and 
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765m cm-
1

; A max 207mp ({_, 10,000); g.l.c. (dinonylphthalate 

120°) gave only one peak, t, 24 min. n.m.r. (n.m.r. 17) 

showed a singlet I= 8.8 (But C(r-ie)=C=CHCN); a doublet 

centred on 11= 8.25 (But C(Me)=C=CHCN) J4 ,1 = 3 c.p.s. and 

a quartet centred on'\= 4.83 (ButD(Me)=C=CHCN), J1 ,
4 

~ 

3 c.p.s. 

5. 1-Cyano-3.5-dimethylhexa-1.2-diene. 

Cuprous cyanide (30 g., 

0.3 mole), potassium cyanide (13 g., 0.2 mole) copper powder 

(0.5 g.) and 3,5-dimethylhex-1-yn-3-ol (25.2 g., 0.2 mole) 

were mixed and cooled as before and concentrated hydrobromic 

acid 45% w/w., 62 ml., 0.5 mole) was added over 45 min. and 

stirring continued for 72 hrs. 

The reaction mixture 1-ras vlOrked up as previously 

described when distillation gave a forerun of 3,5-dimethylhex-

1-yn-3-ol (64 g., 25%) b.p. 52°/15 mm.; max 3400s (-OH), 

3300s (-C:CH) and 2100w (-C~C-) cm-1 ; followed by a mixture 

of 1-bromo-3,5-dimethylhex-1,2-diene and 1-cyano-3,5-

dimethylhexa-1,2-diene b.p. 55°/6-7 mm ~ 2245m (-CN), max 
1960s (C=C=C) cm-1 g.l.c. (dinonylphthalate, 120°) gave two 

peaks in ratio 1:2, t, 20 min. (1-bromo-3,5-dimethylhexa-
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1,2-diene) and t, 46 min. (1-cyano-3,5-dimethy1hexa-1,2-

diene); both compounds were proved by g.1.c. with admixtures 

of authentic compounds. The third fraction vms pure 1-cyano-

3,5-dimethy1hexa-1,2-diene (10.8 g., 40%) b.p. 60-65°/lmm 

(Found: C, 79.8; H, 9.5; N, 10.3. c9H1! requires C, 79.9; 

H, 9.7; N, 10.4%) ~max (I.R.26), 2245 (=CN), 1960s (C=C=C), 

and 765m cm-1 ; ~ 207m u (E, 10,150) g.1.c. (dinony1ph-max /. 

tha1ate, 120°) gave only one peak, t, 46 min. 
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Preparation of 1-cyanoallenes using 1-bromoallenes 

and cuprous cyanide (no solvent). 

1-Cyano-3.4.4-trimethylpenta-1.2-diene. 

1-Bromo-3,4,4-

trimethylpenta-1,2-diene (37.8 g., 0.2 mole) and anhydrous 

cuprous cyanide (20 g., 2.2·mole) were stirred together at 

115° for 3t hours. The mixture "t•ras allo-vred to cool, ether 

(30 ml) added to precipitate any copper salts, and then 

filtered. Distillation after first removing ether gave 

1-cyano-3,4,4-trimethylpenta-1,2-diene (16.5 g., 61%) b.p. 

70-4°/7-8mm. (Found: C, 79.8; H, 9.6; N, 10.3. c9H13N 

requires C, 79.9; H, 9.6; N~ 10.4%) ~max (I.R.27), 2250s 

(-CN), 1960s (C=O=C) and 765m cm-1 ; A max 207mp (l, 10,000). 

g.l.c. (dinonylphthalate 120°) gave only one peak, t, 24 min. 

1-Cyano-3-tertbutyl-4,4-dimethylpenta-1,2-diene. 

1-Bromo-3-tert­

butyl-4,4-dimethylpenta-1,2-diene (9.5 g., .041 mole) and 

anhydrous cuprous cyanide (5.0 g., 055 mole) were stirred 

together at 125° for 2 hrs. The mixture was allowed to cool, 

ether added to precipitate copper salts and filtered. 

Distillation after first removing the ether gave 1-cyano-3-
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terbutyl-4,4-dimethylpenta-1,2-diene (6.2 g., 86%) b.p. 

92-4°/0.4mm. (Found: C, 81.8; H, 10.7; N, 7.5; c12H19N 

requires C, 81.3; H, 10.8; N, 7 .9%) ~max (I.R.30), 2235s 

(-CN), 1970w, 1945s (C=C=C), and 760 cm-1 ; ~max 207mp. 

([, 11,050), g.l.c. (silicone oil 152°) gave only one peak, 

t, 40 min. n.m.r. (n.m.r.l8), showed t~vo singlets T = 8. 75 
t . t 

(Bu 2c=C=CHCN) and I= 4.83 (Bu 2c=C=CHCN). 
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Preparation of 1-cyanoallenes from 1-bromoallenes 

using N,N-dimethylformamide solvent 

1-Cyano-3-methylbuta-1.2-diene. 

Anhydrous cuprous cyanide 

(45 g., 0.5 mole) was added to dry N,N-dimethylformamide 

(120 ml) an.d 1-bromo-3-methylbuta-1,2-diene (49 g., 0.33 

mole) was added slowly so the temperature did not rise above 

35° and the mixture stirred at 35-40 for 2 hrs. allowed to 

cool and ether (50 ml) added.. The solution was then slo1'11y 

added to vigorously stirred water (500 ml) the resulting 

suspension was stirred until the solid was no longer sticky 

then allowed to settle. After filtration the aqueous 

solution was extracted with ether (4 x 30 ml), the solid was 

stirred with ether (3 x 20 ml) and the suspension filtered. 

Distillation, after drying the combined ethereal solutions 

and removing ether gave l-cyano-3-methylbuta-1,2-diene (12.5 

g., 40%) b.p. 55°/9 (Found: C, 77.3; H, 7.7; N, 15.1; C6H7N 

requires C, 77.4; H, 7.6; N, 15.0%) Y max (I.R.23), 2245vs 

(-CN), 1950s (C=C=C), and 790 cm-l ~ 207m u (£, 10,00); max 1 

g.l.c. (dinonylphthalate 120°) showed only one peak, t, lO min. 
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l-Cyano~3-methylpenta-1.2-diene. 

Anhydrous cuprous cyanide 

( 45 g., 0. 5 mole) w·as added to dry N ,N-dimethylformamide 

(120 ml.) and the mixture stirred at 55-60° when 1-bromo-3-

methylpenta-1,2-diene (54 g., 0.33 mole) was added over 5 min. 

The mixture was stirred at 53-60° for 2 hrs., allowed to cool 

and ether (100 ml) added; working up after pouring into 

vigorously stirred water (1000 ml) gave 1-cyano-3-methylpenta-

1,2-diene (18 g., 51%) b.p. 55°/16nim. (Found: C, 77.3; H, 

8.4; N, 13.1. c7H9N requires C, 78.5; H, 8.5; N, 13.0%) 

Y max (I.R.24), 2245s (-CN); 1955s (CCC); 760m and 
. -1 0) 790cm ; g.l.c. dinonylphthalate, 120 gave only one peak, 

t, 19 min. n.m.r. (n.m.r.l5). 

1-Cyano-3-ethylpenta-1,2-diene. 

Anhydrous ·cuprous cyanide 

(65 g., 0.7 mole) was added to dry N,N-dimethylformamide 

(200 ml) and the mixture stirred at 55-60° when 1-bromo-3-

methylpenta-1,2-diene (58.2 g 0.33 mole) was added over 5 min. 

The IDixture was stirred at 55-60° for 2 hrs. cooled and 

ether (100 ml) added. The solution was then slm'lly poured 

into vigorously stirred water (1000 ml), filtered ether 
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extracted (3 x 100 ml), the ethereal solution washed with 

water (12 x 100 ml) and dried (Mgso
4

). 

Distillation after first removing the ether gave 1-cyano-

3-ethylpenta-1,2-diene (25 g., 60%) b.p. 65°/7 mm. (Found C, 

79.2; H, 9.2; N, 11.6. C8H11N requires C, 79.3; H, 9.2; 

· H, 11.6%) ..; max (I.R.25) 2240s (-CN); 1955s (C=C=C); and 

790 cm-1 ; g.l.c. (dinonylphthalate 120°) showed only one 

peak, t, 30 min. n.m.r. (n.m.r.l6). 

1-Cvano-3.5-dimethylhexa-1.2-diene. 

Anhydrous cuprous cyanide 

(4.50 g., 0.5 mole) was added to dry N,N-dimethylformamide 

(150 ml) and the mixture stirred at 55-60° when 1-bromo-3,5-

dimethylhexa-1,2-diene (25 g., 0.2 mole) was added over 5 min. 

The mixture was stirred at 55-60° for 2 hrs., cooled, ether 

.added (100 ml), the solution slowly drowned into vigorously 

stirred water (1000 ml), filteTed, ether extracted (3 x 100 

ml), the etherial solution was washed with water (10 x 100 ml) 

then dried (IvigSO 4) , Distillation after first removing the 

ether gave 1-cyano-3,5-dimethylhexa-1,2-diene (12.8 g., 50%) 

b.p. 65-70°/2 mm. (Found: C, 79.9; H, 9.6; N, 10.3, C9H13N 

requires C, 80.0; H, 9.7; N, 10.4%). ~ (I.R.26), 2250s max 

(-CN), (C=C=C), and 760 cm-1 g.l.c. (dinonylphthalate, 120°) 

gave only one peak, t, 45 min. 

·' 
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1-Cyano-3.4.4-trimethylpenta-1,2-diene. 

Anhydrous cuprous 

. cyanide (45 g., 0.5 mole) was added to dry N,N-dimethylforma­

mide (150 ml) and the mixture heated to 55-60° when 1-bromo-

3,4,4-trimethylpenta-1,2-diene (25 g., 0.2 mole) 1vas added 

over 5 min. The mixture was stirred at 55-60° for 2 hrs., 

cooled, ether (100 ml) added, drowned in vigorously stirred 

water (1000 ml), filtered, ether extracted (3 x 100 ml), the 

ethereal solution washed vri th water (10 x 100 ml) and dried 

Distillation after first removing the ether gave 

l-cyano~3,4,4-trimethylpenta-1,2-diene (15.5 g 65%), b.p. 

80°/mm. (Found: C, 79.8; H, 9.6; N, 10.3. c
9
H13N requires 

. C, 79.9; H, 9.7; N, 10.4%) ~ (I.R.27) 2240s (-CN), 1955s max 
(C=C=C), and 770 cm-1 , g.l.c. (dinonylphthalate 120°) showed 

only one peak, t, 34 min. 

1-Cyano-4-methyl-3-isopropylpenta-1,2-diene. 

Anhydrous cuprous 

cyanide (12 g., 0.13 mole) was added to dry N,N-dimethylforma­
o 

mide (75 ml) and heated to 50-55 when l-bromo-4-methyl-4-

isopropylpenta-1,2,diene (20.3 g., 0.1 mole) was added over 

5 min. 
. 0 

The mixture was heated at 50-55 for 3 hrs., 

cooled, ether (30 ml) added, the solution drowned into 
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vigorously stirred water (500 ml), filtered, ether extracted 

(3 x 100 ml.), the etherial solution washed with water 

(10 x 100 ml) and dried (Mgso
4
). Distillation after first 

removing ether gave l-cyano-4-methyl-3-isopropylpenta-1,2-

diene (9.1 g., 61%) b.p. 80°/5mm. (Found: C, 80.4; H, 10.0; 

. N, 9.4; c10H15N, requires C, 80.5; H, 10.1; N, 9.4%) t max 

(I.R.28), 2250s (-CN); l955s (C=C=C) and 770 cm-1 , A max 
208mp (L, 10,880) g.l.c. (dinonylphthalate, 120°) gave only 

one peak, t, 30 min. 

l-Cyano-3-isobutyl-5-methylhexa-1,2-diene. 

Anhydrous cuprous 

cyanide (9 g., 0.1 mole) was added to dry N,N-dimethylforma­

mide (30 ml) and heated to 55-60° when l-bromo-3-isobutyl-5-

methylhexa-1,2-diene (11.6 g., 0.05 mole) vras added over 5 min. 

The mixture was stirred at 55-60° for 2 hrs., cooled, ether 

( 10 ml) added and the solution drmmed into vigorously stirred 

water (200 ml), filtered, ether extracted (3 x 50 ml), the 

etherial layer was washed ( 6 x 50 ml) and dried (IVIgso4). 

Distillation after first removing the ether gave 1-cyano-3-

isobutyl-5-methylhexa-1,2-diene (5.5 g. 60%) b.p. 80°/2.6 mm. 

(Fo,und: C, 80.8; H, 10.6; N, 8.8; c12H19N requires ~' 81.3; 
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H, 10~-8; N,7.9%) V max (I.R.29),, 2250s (-CNi); lL980s (C!J'=C::C) 

and 76(] emt~·; ,\-max 2.'0J7m, )1 (£,1 ll,,OlLO~) ;, g-.1-.c!~ (d!in~li?h­
thalate 120P) showed only one peak" t" 132 .m:tn·· 

..... ~ . . . . . .. . . . . . . . . . . . . 

1-cryanopropa•1,2-diene. 

Anhydrous cuprws cyanide: { 9 g.;., 

0~1 m.ole) was added to; dry N:·,N-dime:thy:l:formamide (50 mJ.:.;} 

and the md.x:ture. hew.ted to> 40-45°) when. JI.-iodopropa-ll.,-.2:-.di.ene~ 

:>-:t.o.daprapyn.e> (70):30l) (lL6.~6l g·;~ Oi~lL mole) was addedl over 2 

m.d.nutes and tb.e mixture stirred at 40P) for lLi- ll!:r~~ cooill.ed!;· 

e:theF add-ed and the solution drown.e:d into, vigo.~ousJly stirred 

wate:·r- (500 mill.); :tril tared ether extracted (4 x 30 ml), the 

eth&rial solution. washed with water (lOl x lLOOl m.JL) and d"ried; 

Distillatioru after first removing the ether gave a mixture of 

Jl~c:yanopropa-JL; 2.~diene and :>-cymtOJprop-lL-yn:.a (2".:]. g., 3~). 
. - . -

(F·ound:; ca;,1 74.~-());, H, 4.-;6;; _NT, 2];3~ a
4
myvf requires: C;fJ 73.;.9; 

H, 4-~-6i;; w, 21;5%) )>max 3300m (c:cB)" 2225s (CNi) tJ _lL9.00m cm-I.; 

N~mi~r; showed a doublLert;\= 5;.4 {=C!2) J0~'"Er = 6i c/se:e.~ a 

triplet I = 4~ 3 (=C~) JH, ~ = 6 e./see·. A tripiet mt 

T = 5·~6 (;C!) JH,~ = 6l e/se:c;· and a doublet 7;5 (elf~~) 

JJ~_,Hr = 6 e/sec:. indicat.ed the presence of ~apargyl 

cyanide, p]an~etric measurements indicates that the 

rati.o; of allene to a e:e:.tylene: vma 7:3; Attempt:s: to remov;e 
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the acetylene by washing with silver nitrate solution were 

unsuccessful. 

1-Cyanobuta-1.2-diene. 

Anhydrous cuprous cyanide (45 g., 0.5 

mole) was added to dry N,N-dimethylformamide (200 ml) and the 

mixture heated to 40-45° when 1-bromobuta-1,2-diene (40 g., 

0.3 mole) was added over 5 minutes and the mixture stirred at 

40-45° for 2 hr., cooled, ether (70 ml) added, the solution 

drowned into vigorously stirred water (1000 ml), filtered, 

ether extracted (3 x 100 ml), the etherial solution washed 

with water (10 x 100 ml) and dried (Ivlgso4). Distillation 

after first removirig the ether gave 1-cyanobma-~~-diene 

(14.7 g., 55%) b.p. 100°/760 mm. (Found: C, 76.2; H, 6.1; 

N, 17.5; c6H7N requires C, 76.0; H, 6.3; N, 17.7%) t max 

2225s ( CN); 1965s ( C=C=C) 860m and 730cm -l. A max 207m p 

([, 9,730). g.l.c. (silicone oil 60°) showed only one peak, 

t, 4 min. 

1-Cyanopenta-1.2-diene. 

Anhydrous cuprous cyanide (45 g., 0.5 

mole) was added to dry N,N-dime~hylformamide (200 ml) and the 

mixture heated to 45-50° when 1-bromopenta-1,2-diene (44.1 g., 

-221-



0.3 mole) was added over 5 min. and the mixture stirred at 

45.50° for 2 hr. cooled, ether (70 ml) added, the solution 

drowned into vigorously stirred water (1000 ml)filtered ether 

extracted (3 x 100 ml), the etherial solution washed with 

water (10 x 100 ml) and dried (Mgso4). Distillation after 

first removing the ether gave l-cyanopenta-1,2~diene (15.4 g., 

55%), b.p.· 40°/5-6mm. (Found: C, 77.2; H, 7.5; N, 14.9. 

c6H7N requires 

1950s ( C=O=C); 

C, 77.4; H, 7.6; N, 15.0%) imax 2220s (CN) 

865m and 725m. cm-l A max 207m )l (t, 11,100). 

g.l.c~ (silicone ·oil 120°) showed only o'ne peak, t, 8 min. 

1-Cyanohexa-1.2-diene. 

Anhydrous cuprous cyanide (8.9 g. 0.1 

mole) was added to dry N,N-dimethylformamide (50 ml) and 

heated to 50-55° when 1-bromohexa-1,2-diene (8 g. 0.05 mole) 

was added, the mixture was stirred at 50-55° for 3 hrs. 

cooled, ether ( 20 ml) added and the solution 1-ms drowned into 

vigorously stirred ~~ter (200 ml) filtered, ether extracted 

(3 x 50 ml) the etherial layer washed with water (10 x 50 ml) 

and dried (MgS0
4
). Distillation after first removing the 

ether gave 1-cyanohexa-1,2-diene (3 g., 60%) b.p. 80°/15 mm. 

(Found: C, 78.8; H, 8.6; N, 12.6. c7H9N requires C, 78.5; 

H, 8.5; N, 13.0%) Ymax (I.R.31), 2255s (-CN); 1970s (C=C=C), 
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and 730 cm-l A max 207m p (C, 9,000); g.l. c. ( dinonylph­

thalate, 120°) showed only one peak, t, 16 min. 

1-Cyano-4-methylpenta-1.2-diene. 

Anhydrous cuprous cyanide 

(9.8 g., 0.11 mole) was added to dry N,N-dimethylformamide 

(40 ml) and heated to 60° when 1-bromo-4-methylpenta-1,2-diene 

(13 g., 0.075 mole) was added. The mixture was stirred at 

60° C for 2 hrs. cooled, .ether (15 _ml) added, filtered, ether 

extracted ( 3 x 50 ml) , the etherial layer was vrashed with 

water (7 x 50 ml) and dried (Mgso4). Distillation after 

first removing the ether gave 1-cyano-4-methylpenta-1,2-diene 

(4.4 g., 55%) b.p. 75°/20 mm. (Found: C, 78.3; H, 8.4; 

H, 13.0. c7H9N requires C, 78.5; H, 8.5; N, 13.1%) J max 

(I.R.32), 2250s (-CN); 1965s (C=C=C); 870s and 740s cm-l 

~ max 208m 1 (E., 8,600); g.l.c. (dinonylphthalate, 120°) 

gave only one peak, t, 12 min. 

1-Cyano-3-phenylpropa-1.2-diene. 

Anhydrous cuprous cyanide (22.5 

g., 0.25 mole) was added to dry N,N-dimethylformamide (75 ml) 

and the mixture stirred at room temperature when 1-bromo-3-

phenylpropa-1,2-diene (19.5 g., 0.1 mole) was added over 5 min. 
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The mixture becomes warm and was cooled to 5°, stood in a 

cool place for 15 min. ether (20 ml.) added, the solution 

drowned into vigorously stirred water (500 ml), decanted 

through a filter, the filtrate ether extracted (3 x 20 ml), 

the etherial solution washed with water (10 x 100 ml) and 

dried (MgSO 
4
). Evaporation gave a brmm oil Hhich was found 

to be 1-cyano-3-phenylpropa-1,2-diene (10.5 g., 74%) ~max 
(I.R.33) 3310 m (aromatic CH), 2250s (CN), 1955m (C=C=C), 

1680, (C=C impurity), 1630, 1600m (aromatic C=C), 1500s, 

1450s, 695vs em., ,\max 209my, (E, 14,800); 244m)l (£,7,860); 

272m p, ((., 5,170), 283m 1' (l., 5,180). 
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Cyclobutane Dimers of 1-Cyanoallenes. 

1. 1-Cyano-3-cyanomethylene-4.4-dimethyl-2-isopropylidene­
cyclobutane. 

1-Cyano-3-methylbuta-1,2-diene was allowed to 

stand for about 6 - 8 weeks in a cool place, after which time 

crystals formed. The ~ystals were washed with, then 

recrystallised from light petroleum ether, giving white 

needles m.p. 85° (Found: C, 77.5; H, 7.6; N, 14.9. c11H14N2 
requires C, 77.4; H, 7.6; N, 15.0%); ~ (I.R.34), 2252s max 
(CN): 2235s (conj. CN); 1680vs (conj. C=C); 1650vs (conj. 

C=C-CN) cm-1 ; A max 28lmp, (£, 11,420); dipole moment in 

benzene solution 3.20 D. n.m.r. (n.m.r.l9) shows four singlets 

I= 8.68; T = 8.6; T = 8.2; I= 7.75 representing four 

methyl groups in different surroundings, a doublet -r= 6.6 

(C:ffCN) and a singlet T = 5.05 ( = CH CN). 

2. 2-(2'-butylidene)-1-cyano-3-cyanomethylene-4-ethyl-4-
methylcyclobutane. 

1-cyano-3-methylpenta-1, 2-diene vTas 

allowed to stand for about 10 weeks in a cool place, during 

which time the liquid was seen to become very viscous. This 

viscous liquid was distilled at low pressure giving 

2-(2'-butylidene)-1-cyano-3-cyanomethylene-4-ethyl-4-methyl-
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cyclobutane, b.p. 180°/1 mm. (Found: C, 79.16; H, 8.1; 

N, 13.12. c14H18N2 requires C, 78.55; H, 8.4; N, 13.08%) 

~max (I.R.35) 2245s (CN); 2220s (conj. CN); 1665vs 

( conj. C=C); 1630s ( conj. C=C-CN); and 800 em-\ A max 282ID)U, 

(£ ' 18' 300) • 

1 - Cyan.o-3-cyonomethylene-4.4-diethyl-2-(3'-pentylidene)­
cyclobutane. 

1-Cyano-3-ethylpenta-1,2-diene was allowed to 

stand for about 14 weeks in a cool place, during which time 

the liquid was seen to become very viscous. This viscous 

liquid was distilled at l01.; pressure and after a forerun of 

1-cyano-3-ethylpenta-1,2-diene, gave 1-cyano-3-cyanomethylene-

4~4-diethyl-2-(j'-pentylidene)-cyclobutane b.p. 150°/0.5 mm. 

(Found: C, 79.4, H, 9.1; N, 11.4. c16H22N2 requires C, 79.3; 

H, 9.1; N, 11.6.) Y max (I.R.36); 2240s (CN); 2215s (conj. 

CN); 1650s (conj. C=C); (conj. C=C-CN); and BOOm cm-1 

~max 283mp, (t, 17,000) n.m.r. (n.m.r. 20) sho-v1ed a 

multiplet\= 9.0 (methyl groups), a multiplet I= 7.2-8.55 

(methylene groups), a doublet -r = 6.56 (CHCN), a singlet 

I = 5.14 (C=GgCN) and a singlet I= 4.75. 
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EN.ANINES FRml ALLEIIJES 

1-Cyano-2-(diethylamine)-4-methylpent-1-ene. 

Redistilled 

diethylamine (1.5 g., 0.02 mole) 1vas added slowly with cooling 

to 1-cyano-4-methylpenta-1,2-diene (1.6 g., 0.015), the 

mixture was then refluxed gently for 12 min., cooled and 

excess diethyl~ine removed by evaporation under reduced 

pressure. The product was then distilled giving, after a 

small forerun, pure 1-cyano-2-(diethylamine)-4-methylpent-1-

ene (2.4 g., 89%), b.p. 106°/.45mm. (Found: C, 73.3; H, 11.3; 

N, 15.4. c11H20N2 requires C, 73.3; H, 11.2; N, 15.68%); 

) max (I.R.37). 2210s (conj. -CN), 1580vs (C=C-C-CN) 1097m; 

720 cm-l A max 273m }2 ([., 34,300). 

1-Cyano-2-(diethylamino)-3-methylbut-2-ene. 

Redistilled 

diethylamine (2.1 g., 0.03 mole) was added slowly with cooling 

to 1-cyano-3-methylbuta-1,2-diene (1.86 g., 0.02 mole) the 

mixture was then refluxed gently for 15 min., cooled and 

excess diethylamine removed by evaporation under reduced 

pressure. The product was then distilled giving, after a 

small forerun, pure 1-cyano-2-(diethylamino)-3-methylbut-2-
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c:..·.ene (2.5 g., 74%), b.p. 46°/0.25mm. (Found: C, 72.2; 

H, 10.7; N, 17.0. c10H18N2 requires C, 72.2; H, 10.9; 

N, 16.9%) ~ (I.R.38) 2280s (-CN); 1675w (C=C); 900m; max 

815m; 790m; 740m cm-l ~ max 203m y. ([, 4,820) ,Ainfl. 235m? 

([' 1,160). 

1-Cyano-3-methyl-2-piperidinm::.but-2-:-~:·.ene and 1-cyano-3-
methyl-2-piperidinobut-1-ene. · 

Redistilled piperidine (2 g., 

0.024 mole) was added slowly with cooling to 1-cyano-3-

methylbuta-1,2-diene (2 g., 0.021 mole), over 5 min. and the 

mixture stirred at room temperature for 10 min. Excess 

piperidine was removed by evaporation under reduced pressure. 

Distillation under reduced pressure gave three fractions; 

(i) was shown to be 1-cyano-3-methyl-2-piperidinobut-2-ene 

(0.3 g., 8%) b.p. 74°/4mm. (Found: C, 74.1; H, 10.1; N, 15.8; 

c11H18N2 requires C, 74.2; H, 10.1; N, 15;7%); ) max (I.R.39), 

2250m (-CN); 1660w (C=C); 740 cm-1 Amax 203mp. ((., 5235), 

A max236m y.. (L, 3,140) • 

(ii) was shown to be a mixture of 1-cyano-3-methy1-2-

piperidinobut-2-ene- and 1-cyano-3-methyl-3-piperidinobut-1-ene 

(0.9 g., 24%); Ymax 2250w (-CN); 2205m (conj. - CN); 1606w 

( C=C); 1580s ( C=C-CN); A max 203m y. (weak), A max276m }l (strong) 
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(iii) was shown to be 1-cyano-3-methyl-3-piperidinobut-1-ene 

(2.5 g., 66~) b.p. 86-90°/0.38mm. (Found: C, 74.0; H, 10.1; 

N, 15.8. c11H18N2 requires C, 74.2; H, 10.1; N, 15.7%) 

) max (I.R.40) 2205s (conj. CN); 1580vs (C=C=CN); 860m; 

750w cm-l A 276m u (E.., 19,750). max ; 

2-(n-Butylamino)-1-cyano-3-methylpent-1-ene. 

Redistilled 

n-butylamine (1.5 g., 0.02 mole) was added slow·ly with 

cooling t.o 1-cyano-3-methylpenta-1, 2-diene (1. 6 g., 0.015 

mole), the mixture was then refluxed gently for 5 min., cooled, 

and excess n-butylamine removed by evaporation under reduced 

pressure. Distillation gave 2-(n-butylamino)-1-cyano-3-

methylpent-1-ene (2.4 g., 80%) b.p. 110-12°/0.2mm. on 

standing this solidifies m.p. 51-2° (Found: C, 73.6; 

H, 11.4; N, 15.4. C11H20N2 requires C, 73.3; H, 11.2; 

N, 15.5%). ~ (I.R.41), 3350m (-NH); 3080w (C=CH); 2205vs max 
( conj. CN); l650w (NH); l595vs ( C=C-CN); 737w em -l A max26lm p. 

(f., 19,500) •· n.m.r. (n.m.r.2l), was complex, consisting of 

triplets centred on I= 9.1 ( CH3-CH2) mixed with (N-CH2CH2CH2 

CH
3
), JCH

3
CH

2 
= 6/c.p.s.~ a doublet centred on 1i = 8.85 

(CH
3
-CH), JCH

3
H = 8/c.p.s., a quartet mixed with a triplet 

f= 8.3-8.75 (CH3CH2 and the~and~ methylenes of the 
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n-butylamino), a pentet lr= 6.9- 7.4 (probably the 

oC...- methylene of the n-butylamino and the methine), a singlet 

1'~ 6.26 (=qg CN) and a broad peak -r= 5.2- 5.6 (~coupled 

with the oL-methylenes of the n-butylamino) 

and 1-c ano-2-

Redistilled diethylamine 

( 3. 4 g. , 0. 06 mole) 1·ras added slowly with cooling to 1-cyano-

3-methylpenta-1,2-diene (3.5 g., 0.033 mole), the mixt~e 

was. then refluxed gently for 1 hr., cooled, and the excess 

diethylamine removed by evaporation under reduced pressure. 

Distillation gave thre·e fractions:-

(i) was shown to be 1-cyano-2-(diethylamino)-3-methylpent-

2-ene (4.2 g., 73~) b.p. 63°/0.2mm. (Found: C, 73.2; 

H, 11.3; N, 15.4, c11H20N2 requires C, 73.3; H, 11.2, 

N, 15.5%) V max (I.R.42), 2250m (-CN); 1650w (C=C) cm-1 

~ max 204mp· ([, 5,040). n.m.r. (n.m.r.22) showed two 

triplet T = 8. 8 - 9. 2 ( CH3CH2 - C and CH3CH2N) , J CH
3

, CH
2 

= 

7 c.p.s., a singlet (possibly a closely split group) li= 8.2 

(cg
3
- C=), a quartet centred on -r= 7.75 (CH3CH2-C) 

JCH CH = 7.5 c.p.s., a quartet of doublets centred on 
2' 3 
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1r = 7.37 (N -CH2 CH3) JCH
2

,CH
3 

= 7 c.p.s. (the further 

splitting of the quartet may be due to partial double bond 

character of the 2c-N1 bond thus leading to non equivalence 

of the methylenes of the diethylamine); and a singlet 

1r = 7.04 ( - CH2CH). 

(ii) was shown to be a mixture of 1-cyano-2-(diethylamino)-

3-methylbut-2-ene and 1-cyano-2-(diethylamino)-3-methylbut-

1-ene. (0.4 g., 7%), ~max 2250w (~CN); 2197m (conj.-CN); 

1650w (C=C); 1570s (C=C-CN) cm-1 ; A max 203mp (weak) 

A max 276m p (strong). 

(iii) was shown to be 1-cyano-2-(diethylamino)-3-methylbut~ 

1-ene (1.1 g., 17%) b.p. 100°/0.2mm; (Found: C, 73.2; 

H, 11.1; N, 15.6. c11H20N2 requires C, 73.3; H, 11.2; 

N, 15.6%); y· (I.R.43), 2197s (conj. -ON); 1570vs (C=C-CN); max 
785w; 730 cm-l A 276m u (£, 19,700). n.m.r. (n.m.r.23), max / 
showed a triplet centred on-r = 8.95 (CH3CH2-C) JCH

3
,CH

2 
= 

7 c.p.s.; a triplet centred on 1r = 8.86 (CH3CH2N), JCH
3

,CH
2 

= 7 c.p.s. a doublet centred on II= 8.64 (CH3CH), JCH
3

,H = 

8 c.p.s; a quartet of dQublets _centred onT = 8.2 

JCH CH = 7 c.p.s. 
2 3 
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of doublets centred oniq.3 (CH . ) 
( 3 CH-C=CH) 
(CH3CH2 ) 

J H,CH
3 

8 c.p.s., JH H = 2.5 c.p.s. (long range coupling); a quartet 
' 

centred on I= 6. 75. (CH3CH2N) JCH
2

,CH 7 c.p.s. and a 

doublet centred on~~ 6.23 (CH-C=CHCN5 JH,H 2.5 c.p.s. 

(long range coupling). 

1-Cyano-3-methyl-2-uyrrolidinopent-1-ene. 

Redistilled 

pyrrolidine (2.0 g., 0.025 mole) vras added slowly to a 

solution of 1-cyano-3-methylpenta-1,2-diene (2.1 g., 0.02 

mole) in dry ether (10 ml.). After the initial vigorous 

reaction had subsided the solution vras refluxed for 1 hr. 

before removing pyrrolidine by evaporation under reduced 

pressure. Distillation gave one product, 1-cyano-3-methyl-

2-pyrro1idinopent-1-ene ( 2. 9 g., 755~) b.p. 110°/0. 2mm. 

(Found: C, 74.2; H,9.9; N, 15.7. c11H18N2 requires C, 74.1; 

H, 10.2; N, 15.7%) I (I.R.44), 2210vs (conj. -ON); 1575vs max 

(C=C-CN); and 720s cm-l Amax 274m y, (l, 22,500). 

1-Cyano-3-methyl-2-niperidinopent-1-ene and 1-cyano-3-methyl-
2-piperidinopent-2-ene. 

Redistilled piperidine (3.51 g., 

0.06 mole) was added slowly with cooling to 1-cyano-3-methyl-
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penta-1,2-diene (3.5 g., 0.05 mole) after the initial 

reaction had subsided the mixture was.heated on a boiling 

water bath for 30 min. then excess piperidine was removed 

by evaporation under reduced pressure. Distillation gave 

three fractions: 

(i) was shown to be 1-cyano-3-methyl-2-piperidinopent-2-ene 

(0.5 g., 8%) b.p. 79°/3mm. (Found: C, 74.2; H, 10.2; 

N, 14.0. c12H20N2 requires C, 75.0; H, 10.5; N, 14.6%) 

V max (I.R.45) 2260m (-CN), 1675m (C=C) cm.-1 A max205mp. 

([, 4,000) A max 232-3m p- ([, 2,300). 

(ii) was shown to be a mixture of 1-cyano-3-methyl-2-

piperidinopent-2-ene and 1-cyano-3-methyl-2-piperidinopent-

1-~ne (0.2 g., 3%) b.p. 79-110°/.3mm V 2260m (-CN); max 
-1 

2210s (-conj -CN); 1675w (C=C); and 1580s (C=C-CN) em 

A max 205m p (weak); t\ max. 277m J- (strong). 

(iii) was shown to be pure 1-cyano-3-methyl-2-piperidinopent-

1-ene (5 g., 81%) b.p. 110°/0.3mm (Found: C, 74.9; H, 10.5; 

N, 14.6. c12H2aN2 requires C, 75.0; H, 10.5; N, 14.6%) 

) (I.R.46), 2210vs (conj. -CN); 1580vs (C=C-CN) cm-1 , V max 
A 277m u, (£, 18,700). n.m.r. (n.m.r.24). The expected max 1 
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triplet at I= 9 (CH
3

-CH-2) is not clear as 

are present. A doublet, 1r= 8.7 (CH
3

-CH-) 

other bands 

JGH H = 7 c.p.s 
3' 

confirms the methyl split by methine. The expected quartet 

11 = 8.5 (CH3-CH2 -) JCH CH 7 c.p.s. is hidden by the 
. 2' 3 

broad envelope due to the {3and i methylenes of the piperidine 

ring ( \'" = 8.4), but the intigra..m clearly shows 8 protons at 

this point. The methine shovTs up as a sextet of doublets 
- (CH .._ 
I = 7 .1 ( CH 3 CH ..... Gg - C=CH (J".N) J H CIL = JH CH = 7 c. p. s. 

3 2 1 ' 5 ' 2 
JH H = 1.8 c.p.s. but is partially hidden by the broad 

' 
envelope of the ~-methylenes of the piperidine ring CT = 6.8: 

A doublet ir= 6.03 shows the ethylinic hydrogen (CH-C=C~ CN), 

JH H = 1.8 c.p.s. split by long range coupling to the methine 
·' 

proton. 

2-.Am:ino-1-cyano-3-ethylp.ent-1-ene. 

Anhydrous ammonia gas 

(.obtained by controlled evaporation of anhydrous liquid 

ammonia) vras passed through 1-cyano-3-ethylpenta-1,2-diene 

(6.0 g., 0.05 mole) at room temperature, after 10 hr. infra-

red examination showed little or no reaction had taken place. 

The 1-cyano-3-ethylpenta-1,2-diene was then heated to 

60-70° and passage of ammonia continued, examination after a 

further 4 hr. showed complete absence of the allene bond 
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The reaction mixture was cooled, and 

distilled giving 2-amino-1-cyano-3-ethylpent-1-ene (4.1 g., 

60%) b.p. 90°/0.2mm. (Found: C, 69.5; H, 10.4; N, 20.1. 

C8H14N2 requires C, 69.5; H, 10.2; N, 20.3%) ) max (I.R.47) 

3430m, 3350s, 3220m (N- H stretchings); 2200s (conj. - CN); 

1645s (NH deformation) and 1585s ( C=C-CN) cm-l A max 261m y 

(l, 18,300). The n.m.r. (n.m.r.25) indicated that the 

compound was present in the amino (enamine) and the imide 

forms in a ratio of about 7:1. A multiplet at I= 9.1 

indicated a methyl group split by methylene (CH
3

CH2-) 

JCH CH = 7 c.p.s. with smaller contributions from a 
3' 2 

different methylene group. A multiplet~= 8.5 indicates a 
CH quartet of doublets (CH3CH2CH) JCH

2
, 3 = 7 c.p.s. JCH

2
, 

H = 2 c.p.s., the expected pentet split further by long range 

coupling with the ethylinic proton at I= 7. 2 - 3 is absent, · 

the intigram shows that this could be mixed vTi th the multiple 

at T = 8. 3. A triplet at T = 6. 2 ( CN gc =C -NH2) 

1 c.p.s., a doublet T = 5.83 (CN H2C -C::NH) 

c.p.s. and broad humps lr= 5 - 5.5 (NH2, =NH) intigrate to 

give the expected 3 protons for the system -C-CH2CN'-C = CHCN 
II ~f. 
NH NH

2 
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1-Cyano-2-(diethylamino)-3-ethylnent-2-ene. 

Redistilled 

diethylamine (2.85 g., 0.04 mole) was added slo~tTly with 

cooling to 1-cyano-3-ethylpenta-1,2-diene (4 g., 0.034 mole) 

after the initial vigorous reaction vms completed the mixture 

"ras heated on a boiling water bath for 15 min., cooled and 

excess diethylamine removed by evaporation under reduced 

pressure. Distillation gave 1-cyano-2-(diethylamino)-3-

ethylpent-2-ene (5 g., 7o%) b.p. 58°/0.2mm. (Found: C, 74.2; 

H, 11.2; N, 14.6 •. c12H22N2 requires C, 74.2; H, 11.4; 

N, 14.4%) t max (I.R.48) 2250m (-ON), 1650w (C=C) cm-l A max 

204mp, ([, 6, 640). A later fraction indicated that a small 

quantity of 1-cyano-2-(diethylamino)-3-ethylpent-1-ene had 

been formed (UV showed a small hump at 274m~ and I.R. 

indicated conjugated ON (2200 cm-1 ) but the quantity was too 

small to isolate pure. 

1-Cyano-3-ethyl-2-piperidinonent-1-ene. 

Redistilled piperidine 

(3.4 g., 0.04 mole) was added slmqly with cooling to 1-cyano-

3-ethylpenta-1,2-diene (4 g., 0.034 mole) after the initial 

reaction had subsided the mixture was heated on a boiling 

water bath for 30 min., cooled and the excess piperidine was 
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removed by evaporation under reduced pressure. Distillation 

_ gave 1-cyano-3-ethyl-2-piperidinopent-1-ene (6 g., 81~) b.p. 

125°/0.lmm. (Found: C, 74.8; H, 10.7; N, 14.4. c13H22N2 
requires C, 75. 7; H, 10.8; N, 13.6%) V max (I.R.49), 2210s 

(conj. CN), 1575vs (C =C-CN) cm-1 . Amax 276my., (E.., 23,700). 

1-C 
1-C 

Redistilled 1,2,3,4-tetrahydroisoquinoline (2.2 g., 

0.015 mole) was added slowly with cooling to 1-cyano-3-ethyl­

penta-1,2-diene (2.0 g., 0.016 mole), infra-red examination 

after 0.5 hr. sho1·red complete removal of the allene band. 

After several hours in a refrigerator crystals began to form 

in the liquid. The crystals were removed by filtration, 

washed with light petroleum ether and recrystallised from 

aqueous alcohol. The crystals were found to be pure 1-cyano-

3-ethyl-2-(1,2,3,4-tetrahydroisoquinolino)-pent-2-ene )max 

(I.R.50), 2290m (ill~); 1650m (C=C); 1600w (aromatic C=C); 940s 

and 750vs cm-l A max 207m y (£, 14,530). The mother liquors 

consisted of an oil which was ohly very slightly soluble in 

·light· petroleum, this fraction was boiled with light petroleum 

and the solvent portion decanted away. Removal of the solven 

from the oil resulted in nearly pure 1-cyano-)-ethyl-(1,2,3,4-
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tetrahydriosoquinolino)-pent-1-ene Y (I.R.51) 2210 
max 

(conj. CN); 1580vs (C=C-CN) and 750vs cm-l A 274m u, max /-
(f_, .16 ,000). 

1-Cyano-3-ethyl-2-(1,2,3.4-tetrahydroauinolino)-uent-1-ene. 

Redistilled 1,2,3,4-tetrahydroquinoline (2.2 g., 0.015 

mole) was added to 1-cyano-3-ethylpenta-1,2-diene (2 g., 

0.016 mole), the mixture rapidly darkened but after 6 hr. 

there was no reduction in the intensity of the 1950 cm-1 band, 

(C=C=C) and no indication of enamine formation. 

1-Cyano-2-(diethylamino)-3.4.4-trimethylpent-1-ene. 

Redistilled 

diethylamine (2.2 g., 0.03 mole) was added to 1-cyano-3,3,4-

trimethylpenta-1,2-diene (3.6 g., 0.027 mole) and the mixture 

heated on a boiling water bath for 2.5 hr. The mixture was 

cooled and excess diethylamine removed by evaporation under 

reduced pressure. Distillation gave a forerun of the 

starting product followed by l-cyano-2-(diethy1amino)-3,4,4-

trimethylpent-l-ene (2.5 g., 46%), b.p. 110°/0.5mm. (Found: 

C, 74.9; H, 11.5; N, 13.6. c13H24N2 requires C, 74.9; 

H, 11.6; N; 13.5%) V max (I.R.52). 2210s (conj. CN) 1580s 

(C=C-CN) cm-1 A 282m 1], (l_, 18,260) n.m.r. (n.m.r.26) max F-
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showed a singlet 1r = 9.03 (But- ), but the expected triplet 

for (CH3-cN2-N) at 11~8.85 showed up as five or more bands 

this is probably due to magnetic non equivalence oft he methyJ 

groups. A doublet ll = 8.5 (CH
3

-CH-C) JCH H = 7.2. c.p.s. 
3 

a quartet T = 7. 55 ( CH3-CH-C) JH CH = 7. 2 c.p. s. The 
' 3 

expected quartet T = 6. 6 ( CH3CH2 -N) again shoi,rs as a more 

complex multiplet due to magnetic non equivalence of the 

methylene groups; a peak I = 6. 3 shows ( CH-C=CHCN). 

1-Cyano-2-pyrrolidino-3,4.4-trimethylpent-1-ene. 

Redistilled 

pyrrolidine (1.7 g., 0.025 mole) was added slowly with 

cooling to 1-cyano-3,4,4-trimethylpenta-1,2-diene (2.7 g., 

0.02 mole) .and after the initial vigorous reaction 1·ras 

completed the mixture vras heated on a boiling water bath for 

1 hr., after cooling, the excess pyrrolidine was removed by 

evaporation under reduced pressure. Distillation gave 

1-cyano-2-pyrrolidino-3,4,4-trimethylpent-1-ene (3.5 g., 835~) 

. o; -2 ( o b.p .. 120 2 x 10 mm. Found: C, 75.9; H, 1 .9; N, 13.4. 

c13H22N2 requires C, 75.7; H, 10.8; N, 13.65h) V max (I.R.53) 

2200vs (conj. CN); 1570vs (C=C-CN); 760s; 720s cm-l ~max 

279m p, (f.., 21,000). 
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1-Cyano-2-piperidino-3.4.4-trimethylpent-1-ene and 1-cvano-2-
piperidino-3,4.4-trimethylpent-2-ene. 

Redistilled piperidine 

(2 g., 0.025 mole) was added to 1-cyano-3,4,4-trimethylpenta-

1,2-diene (2.7 g., 0.02 mole) and the mixture was heated on a 

boiling water bath, for 2.5 hr. After cooling, the excess 

piperidine was removed by evaporation under reduced pressure; 

the resulting viscous liquid was allowed to stand in a 

refrigerator, when after some time crystals appeared. The 

mixture was recrystallised from an ethyl alcohol/lvater mixture 

yielding 3 crops of 1-cyano-2-piperidino-3,4,4-trimethylpent-

2-ene (2.5 g., 55%) m.p. 45° (Found: C, 75.7; H, 10.9; 

N, 12.6. c14H24N2 requires C, 76.3; H, 11.0; N, 12.7%) ) max 

(I.R.54) 2270m (-CN) 1625m (C=C); 760m cm-l A max 203mp, 

(f., 5,130), A max 246m y, (£, 2,880). 

After. crystals had ceased to appear from the mother 

liquor an oil was precipitated by addition of water, the oil 

was separated, dissolved in ether, washed ·with water and dried 

(MgSO 
4

) • ·. Removal of the ether gave 1-cyano-2-piperidino-

3,4,4-trimethylpent-1-ene (1.0 g., 23%) (Found: C, 76.4; 
.. 

H, 10.8; N, 12.5, C12H24N2 requires C, 76.3; H2 11.0; 

N, 12.7%), ~ (I.R.55); max 
2210vs (conj. CN); 1580vs (C=C-CN) 

em - 1 . A 284m u, ( l, 16, 000) • max / 

-240-



1-C 
1-C 

Redistilled diethylamine (2.0 g., 0.028 mole) was added 

slowly with cooling to 1-cyano-3-isopropyl-4-methylpenta-1,2-

diene (3.0 g., 0.015 mole); after the initial reaction was 

over the mixture was heated on a boiling water bath for 6 ht. 

the mixture was cooled and excess diethylamine was removed by 

evaporation under reduced pressure. 

forerun followed by three fractions:-

Distillation gave a smal 

(i) was found to be l-cyano~2-(diethylamine)-3-isopropyl-4-

methylpent-2-ene (0.7 g., 16%) b.p. 65-6°/0.1 mm. (Found: 

C, 74.8; H, 11.7; N, 14.0. c14H26N2 requires C, 75.6; H, 11.8 

N, 12.7%) :; max (I.R.56) 2280m (CN); 1645m ·(C=C) cm-l A max 

203m p, ( t., 6, 860) . 

(ii) -vms found to be a mixture of 1-cyano-2-(diethylarnino)-3-

isopropyl-4-methylpent-2-ene and 1-cyano-2-(diethylamino)-3-

isopropyl-4-methylpent-1-ene by i max 2280w· ( CN) 2200m 

( conj. CN), 1645i'l ( C=C), 1560m ( C=C-CN) cm-l ~ max 203m f 

(weak) )\ max 277m f (strong) • 

(iii) was found to be 1-cyano-2-(diethylamino)-3-isopropyl-4-

methylpent-1-ene (2.3 g., 54%) b.p. 115°/0.15mm. (Found: C, 

75.1; H, 11.8; N, 13.3. c14H26N2 requires C, 75.6; H, 11.8; 
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N, 12.6%); { (I.R.57) 2000s (conj. CN) 1560s (C=C-cN) 
max 

1 \ . 
em- ,. max 277m y., (E., 22, 500), 
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ENAIJIINES FROM ACETYLENES. 

0- Bromophenylacetylene. 

An ice cold solution of sodium hypo­

bromite. (prepared by addition of bromine 33.6 g., 0.201 mole, 

to an ice cold solution of sodium hydroxide 25.2 g., 0.625 

mole in water, 50m1. and ice, 100 g.) was added to vigorously 

stirred, ice cold phenylacetylene (20.4 g., 0.2 mole) over 

3 hr. The mixture was stirred a further 1 hr. whilst being 

allowed to reach room temperature. The heavy organic layer 

which separated was dissolved in ether, i·Tashed 11i th water 

(3 x 50 ml.) and dried (Mgso4). 

Removal of the ether under reduced pressure gave 

-bromophenylacetylene (34 g., 94%), J max 3080m (aromatic 

C-H); 2210m (conj. CN); 1600m (aromatic C=C); 755s and 690s 

cm-1 ; g.l.c. (silicone oil, 120°) showed only one peak, t, 

27 min. 

Cyanophenylacetylene. 

Anhydrous cuprous cyanide (10 g., 0.11 

mole), was added to dry N,N-dimethylformamide (50 ml.) and 

bromophenylacetylene (18.1 g., 0.1 mole) was added to the 

stirred suspension, the temperature not being allowed to 
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exceed 50°. The resulting solution vTas stirred at 50° for 

lt hr., cooled and ether added, the solution was then slo1"lly 

poured into vigorously stirred water (500 ml.) and the 

resulting suspension was stirred until the solid was granular 

in form. After filtration and subsequent -vrashing of the 

solid with ether, the filtrate was extracted w·i th ether 

( 3 x 20 m.l. ) and the etherial solution washed vTi th water 

(10 x 100 ml) before being dried (Mgso4). Distillation after 

first removing the ether gave a small forerun followed by two 

fractions:-

(i) was found to be cyanophenylacetylene (9.0 g., 70%), b.p. 

65°/lmm., the liquid collected solidified m.p.; 3050w max 

(aromatic C-H), 2290vs (conj. CN), 2155m (conj. C:C), 1600m 

(aromatic C=C), 760s and 688s cm-1 , A max 207m 1' (L, 22, 580); 

2llmJ1, (l., 22,260); 249mp, (£, 13,870); 262m.?, (£, 21,900) 

and 275m p, (f_, 15770). 

(ii) was found to be 1,4-diphenylbuta-1,3-diyne (2 g., 16~), 

b.p. 85-90°/0.3mm., this gave white crystals on recrystallisa­

tion from light petroleum~ether m.p. 84-5°. (Found: C, 94.9; 

H, 4. 9. c16H10 requires C, 95.0; H, 5.0%); ~max 3090m 

(aromatic C-H); 2170w (-C:C-); 1600m (aromatic C=C); 760s 
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-1 A and 690s em . max 204m p, (E., 42,830); 218m y, (£. ' 32' 320); 

228m p, ( l., 28' 700); 248m p, (L, 27,480); 260m y., (f.., 27 ,070); 

288m p., (l, 21,010); 297m )1, (£, 17,170); 306mp (£, 31,520); 

317m p, ( l.' 13,330) and 327mp., (£., 29,490). Literature 

values for 1,4-diphenylbuta-1,3-diyne. 

P-(Diethylamino)JSLnhenylocrylonitrile. 

Redistilled diethyla­

mine. (1.6 g., 0.022 mole) was added slowly with cooling to 

cyanophenylacetylene (2.54 g., 0.02 mole) and after the initial 

reaction had ceased the solution was heated on a boiling water 

bath for 0.5 hr. Excess diethylamine was removed by evapora-

tion under reduced pressure and distillation of the residue 

gave~(diethylamino)-~phenylacrylonitrile (2.3 g., 82.5%) b.p. 

137°/0.15mm. m.p. 71°. (Found: C, 78.0; H, 7.8; N, 14.2. 

c13Hi6N2 requires C, 78.0; H, 8.1; N, 14.0%); ) max (I.R.58)., 

2210s (conj. CN); 1570vs (C=C-CN) 780m; 726m; and 700 cm-1 , 

A max 205m p., (£, 13,090) A max 280m y-, ([.12,180). n.m.r. 

indicated that ·the product was pure trans (with respect to 

nucleophile and activating groups). A triplet J = 8.89 

(Qg
3

CH2N) JCH CH = 7 c.p.s., a quartet~= 6.92 (CH3CH2N) 
3' 2 . 

JCH CH = 7 c.p.s., a singlet'\= 6.0 (= cgm~) and an aromatic 
2' 3 

multiplet\= 2. 57 (Ph-C). 
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-(diethylamine)- -phenylacrylonitrile. 

Redistilled diethyla­

mine (.8 g., O.Oll mole) was added slowly to a solution of 

cyanophenylacetylene (1.27 g., 0.01 mole) in methanol (5 ml); 

after refluxing for 10 min. the excess solvent uas removed 

under high vacuum. n.m.r. showed the product to be a mixture 

.of cis and trans (with respect to nucleophile and aclivatery 

group). ~-diethylamino~phenylacrylonitrile in a ratio of 

about 15:85. The quaxtet of the amino methylenes showed as 

two distinct quartets, the cis form being 17 c.p.s. downfield 

due to deshielding by the cyano group 1·rhen in the cis config­

uration. 
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PREPARATION OF CYANOI.VIETHYLENE KETOI\fES 

FRQI\i CYANO EN.A1\1INES. 

1-Cyano-3-methylnenton-2-one. 

(a) 1-Cyano-2-(diethylamino)-3-

methylpent-2-ene (9.0 g., 0.05 mole) was stirred with 5% 

hydrochloric acid (50 ml.) at 100° for 2.5 hr. The mixture 

was cooled, extracted w·i th ether ( 3 x 15 ml.) and dried 

(MgS0
4
). Distillation after first removing the ether gave 

1-cyano-3-methylpenton-2-one (3.5 g., 55%); b.p. 70°/0.5mm 

(Found: C, 67.1; H, 8.7; 0, 13.0; N, 11.2. C?H11oN requires 

C, 67 .2; H, 8.9; O, 12.8; N, 11.2%). :) (I.R.59), 2280m max 
(-CN); 1730vs (C=O) and 780m cm-1 • ~max 232mp (!, 2,880) 

g.l.c. (silicone oil 150°) gave only one peak, t, 5 min. 

(b) 1-Cyano-2-(diethylamino)-3-methylpent-1-ene (9.0 g., 

0.05 mole) was stirred with 55'~ hydrochloric acid (50 ml.) at 

The mixture was cooled, extracted with 

ether (3 x 15 ml.) and dried (Mgso4). Distillation after 

first removing the ether gave 1-cyano-3-methylpenton-2-one 

(3.8 g. 60%) which had identical spectra with the product 

from the first experiment. 
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(c) 1-Cyano-3-methyl-2-piperidino-pent-1-ene (1.0 g., 

0. 005 mole) "ras stirred with 5% hydrochloric acid ( 10 m.l. ) at 

100° for 1 hr. The mixture was cooled, extracted with ether 

(3 x 10 ml.) ~d dried (Mgso4). Removal of the ether gave a 

pale brown liquid which had identical spectra with the 

products from the previous experiments .. 

(d) l-Cyano-3~methyl-2-piperidino-pent-2-ene (7.0 g., 0.04 

mole) was stirred with 5% hydrochloric acid (50 ml.) at 100° 

for 1 hr. The mixture ivas cooled, extracted ivi th ether 

(3 x 15 ml.) arid dried (~~so4 ). Distillation after first 

removing the ether gave 1-cyano-3-methylpent-2-one (4.2 g., 

84%) which had identical spectra with the products fram the 

previous experiments. 

1-Cyano-3-ethylpenton-2-one. 

(a) 1-Cyano-2-(diethylamino)-3-

ethylpent-2-ene (5.0 g., 0.025 mole) was stirred with 5% 

hydrochloric acid (50 ml.) at 100° for 1 hr. The mixture 

·was cooled, extracted with ether (3 x 15 ml.) and dried 

(Mgso4). Distillation after first removing the ether gave 

1-cyano-3-ethylpenton-2-one (2.8 g., 78%) b.p. 65°/0.4 to 

0.5mm. (Found: C, 69.0, H, 9.4; 0, 11.6; N, 10.0. C8H13oN 
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requires C, 69.0; H, 9.4; 0, 11.~; N, 10.1); ~max (I.R.60), 

2275m (CN); 1725s (C=O) and 780 cm-1 ; A max 232m 1' (£, 4,415) 

g.l.c. (silicone oil, 150°) gave only one peak, t, 6 min. 

(b) 2~Amino-l-dyano-3-ethylpent-l-ene (0.7 g., 0.005 mole) 

was stirred 1vith 5% hydrochloric acid (10 ml.) at 100° for 

1 hr. The mixture was cooled, extracted with ether (3 x 10 ml. 

and dried (Mgso
4
). Removal of the ether gave a product with 

identical spectra to the previous product. 

(c) l~Cyano-3-ethyl-2-(1,2,3,4-tetrahydroisoquinolino)-pent-

1-ene (1.0 g., 0.004 mole) WaS stirred I'Tith 5% hydrochloric 

acid at 100° for 2 hr. The mixture vTas cooled, extracted 

with ether (3 x 10 ml.) and dried (:r.Igso4). Removal of the 

ether gave a product which was nearly identical to the 

previous products but showed slight traces of the starting 

product. 

(d) 1-cyano-3-ethyl-2-(1,2,3,4-tetrahydroisoquinolino)-pent-

2-ene (1.0 g., .004 mole) was stirred with 5% hydrochloric 

acid at 100° for 2 hr. The mixture was cooled, extracted 

with ether (3 X 10 ml.) and dried (MgS04), removal of the 

ether gave a product vmich was identical with the previous 

ones. 
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1-Cyano-3.4.4-trimethylpenton-2-one. 

(a) 1-Cyano-2-(diethyl­

amino)-3,4,4-trimethylpent-1-ene (6 g., .03 mole) was stirred 

with 5% hydrochloric acid at 100°'for 2 hrs. Examination 

showed only partial hydrolysis had taken place, the strength 

of the acid was increased to 10% and the mixture re-heated 

for a further 2 hrs. after working up in the usual way the 

product was found to be a mixture of 1-cyano-3,4,4-trimethyl­

penton-2-one and 1-cyano-2-(diethylamino)-3,4,4-trimethyipent-

1-ene by t (I.R.61), 2270w (CN); 2210s (conj. CN); 1730s max 
(C=O) and 1580s (C=C-CN) cm-1 • 

(b) 1-Cyano-2-piperidino-3,4,4-trimethylpent-1-ene (4~4 g., 

0.02 mole) was stirred ~dth 10% hydrochloric acid (.50 ml.) 

at 100°0 for 2 hr. The mixture was cooled, extracted vath 

ether (3 x 15 ml.) and dried (Mgso4). Distillation after 

first removing the ether gave 1-cyano-3,4,4-trimethylpenton-

2-one (1.5 g., 49.%) b.p. 80°/0.15mm. (Found: C, 70.6; 

H, 9.7; 0, 10.4; N, 9.3. c9H15oN requires C, 70.6; H, 9.8; 

0, 10.4; N, 9.2%) t max 2270m (CN) 1730s (C=O) cm-1 ., A max 

234mp, ([, 3,225); g.l.c. (silicone oil 150°) shdMed only 

one peak, t, 9 min. 
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(c) 1-Cyano-2-piperidino-3,4,4-trimethylpent-2-ene (1.1 g., 

0.005 mole) was stirred with 10% hydrochloric acid (10 ml.) 

at 100° for 2 hr. The mixture was cooled, extracted vTi th 

ether (3 x lOml.) and dried (MgS04). Evaporation of the ether 

gave a product with identical spectra to the previous one. 

(d) 1-Cyano-2-pyrrolidino-3,4,4-trimethylpent-1-ene (4.2 g., 

0.02 mole) was stirred with 10% hydrochloric acid (50 ml.) at 

100° for 2 hr. The mixture was cooled, extracted with ether 

(3 x 15 ml.) and dried (MgS04). Distillation after removing 

the ether gave 1-cyano-3,4,4-trimethylpenton-2-one (1.6 g., 

52%), which was identical to the product from experiment b. 

Benzoylacetonitrile. 

~-(diethylamino)~-phenylacrylonitrile 

(2.5 g., 0.0125 mole) was stirred with 10% hydrochloric acid 

(40 ml.) at 100° for 4 hrs. The mixture was cooled, extracted 

with ether (3 x 10 ml.) and dried (Mgso4). Evaporation of 

the ether gave a solid which was recrystallised from aqueous 

alcohol. The compound vTas shown to be benzoylacetonitrile 

(1.8 g., 82%) 0 m.p. 80-1 (Found: C, 74.5; H, 4.7; 0' 11.1 

N, 9.7. c
9
H

7
0N requires C, ·74.5; H, 4.81; 0, 11.0; N, 9.7%) 

y max (I.R.62), 2265m (CN); 1730s (C=O) cm-1 • A max 204m)l, 

(f_, 15,820); Amax 245m p ([, 11,600); Amax 282m y ((, 2,636). 
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PREPARATION OF ALLENIC-1-AMIDES 

FROM 1-CYANOALLENES. 

4-Ethylhexa-2,3-dienamide. 

1-Cyano-3-ethylpenta-1,2-diene 

(3.0 g., 0.025 mole) w-as dissolved in absolute ethanol (i ml.) 

to which 6N sodium hydroxide (1 ml.) had been added. The 

solution was stirred and hydrogen peroxide ( 30% 1r/v; 100 

Volume; 12ml.) added over 4 min. The reaction became very 

vigorous and caused the solution to boil, when the initial 

reaction had subsided the solution was stirred at 80° for 1 hr. 

On slov.r cooling of the solution white crystals of 1he amide 

separated, these were removed by filtration, washed with a 

little ether, and recrystallised from aqueous alcohol. 

(Further cooling and evaporation of the mother liquors 

deposited more crystals which were washed vii th ether, 

recrystallised and combined with the first crop.) The combined 

crop was dried invacuo at 60° (2 g., 57%) m.p. 138-9°. 

(Found: C, 68.9; H, 9.4; O, 11.4; N, 10.2. c8H13oN requires 

C, 69.0; H, 9.4; 0, 11.5; N, 10.1%) Ymax (I.R.63) 3410vs, 

3210vs (N-H stretch); 1970s (C=C=C); 1660s (0=0, amide I 

band); 1630s (NH deformation, amide ti band); 905m; and 

843s em -l; A 208m u (£, 14,600). max / 
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4.5.5-Trimethylhexa-2.3-dienamide. 

1-Cyano-3,4,4-trimethylpenta-

1,2-diene (4 g., .03 mole) was dissolved in absolute ethanol 

(12 ml.) to vrhich 6N sodium hydroxide (1 ml.) had been added. 

The solution was stirred and hydrogen peroxide (30~ w/v., 

100 volume; 12 ml.) added in tv;o equal portions. The reactio 

became very vigorous and caused the solution to boil, when this 

initial vigorous reaction had subsided the solution was 

maintained at 80° by external heating and stirred for 1 hr. 

On slow cooling of the solution white crystals separated, 

these were removed by filtration, and a further crop obtained 

by evaporation and cooling of the mother liquors. The two 

crops were combined, recrystallised from aqueous alcohol and 

dried in vacuo at 60° (3.2 g., 70%). (Found: C, 70.4; H, 9.7; 

0, 10.8; N, 9.0. c
9
H15oN requires C, 70.5; H, 9.8; 0, 10.5; 

N, 9.1%) :;max (I.R.64), 3400s, 3200s (N-H stretching); 1975m 

(C=C=C); 1670s (C=O, amide I band); 1625s (N-H deformation, 

amide II band); 890m; 712s cm-1 • A max 209mp, (i, 13,000); 

n.m.r. (n.m.r. 27) show·ed a singlet I= 8.85 (But), a doublet 

centred on I= 8.15 (Bu t(Me)C=C=CH), JCH
3

,H = 3 c.p.s., a 

quartet centred onl= 4.5 (C=C=~), JH,CH
3 

= 3 c.p.s., and 

a broad hump 11= 4.0- 4.6 (~2 ). 
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4-Isopropyl-5-methylhexa-2,3-dienamide. 

1-Cyano-3-isopropyl-

4-methylpenta-1, 2-diene (1. 5 g., 0.01 mole) 'ivas dissolved in 

absolute ethanol (6 ml.) to which 6N sodium hydroxide (0.6 

ml.) had been added. The solution was stirred and hydrogen 

.peroxide (30% w/v.; 100 volume; 5 ffil.) was added in one 

portion. The r eaction became very vigorous and caused the 

solution to boil, when the initial vigorous reaction was over 

the solution was maintained at 80°_by external heating and 

stirred for 1 hr. On slow cooling of the solution white 

crystals separated, these were filtered off, v1ashed with a 

little cold water and dried in vacuo at 60° (1.1 g., 65%) 

m.p. 112-3°. (Found: C, 71.93; H, 10.42; 0, 9.34; N, 8.31. 

c10H17oN requires C, 71.81; H, 10.25; O, 9.57; N, 8.53~~) 

V max (I.R.65), 3400.s, 3210s (NH stretching); 1955s (C=C=C); 

1655s (C=O, amide I band); 1630s (NH deformation, amide II 

band); 840s; 640s cm-1 • Amax 210mp, ([, 15,000). 

4-Isobutyl-6-methylhenta-2.3-dienamide. 

1-Cyano-3-isobutyl-5-

methylhexa-1,2-diene (0.9 g., 0.005 mole) was dissolved in 

' absolute ethanol (4 ml.) to which 6N sodium hydroxide (0.5 m1.: 
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had been added. The solution was stirred and hydrogen 

peroxide (30% w/v.; 100 volume; 3 ml.) was added in one 

portion, the reaction became very vigorous and caused the 

solution to boil, when the initial vigorous reaction had 

subsided, the solution was maintained at 80° by external 

heating and stirred for 1 hr. On cooling no crystals 1·1ere 

observed, but after standing 5 hr. in a cool place, white 

crystals 1•rere de:posi ted, these w·ere removed by filtration, 

washed with a little water and dried in vacuo at 60°. (0.6 g., 

61%); m.p. 93-4°. (Found: C, 72.4; H, 10.5; 0, 8.2; N, 7.0. 

c1~21oN requires C, 73.9; H, 10.8; 0, 8.2; N, 7.lf;); ~max 
(I.R.66), 3410s, 3210s (N-H stretching); 1960s (C=C=C); 1655s 

(C=O, amide I band); 1625s (N-H deformation, amide II band) 

cm-l A max 211m;, (L, 10,140). 

4-Tert-Butyl-5.5-dimethylhexa-2.3-dienamide. 

3-tert-Butyl-l­

cyano-4,4-dimethylpenta~l,2-diene (1.0 g., .006 mole) was 

dissolved in ab.solute ethanol (4 ml.) to which 6N sodium 

hydroxide (5 ml.) had been added. The solution was stirred 

and hydrogen peroxide ( 30% w/v.; 100 volume; 3 ml.) 11as added 

in one portion, the solution grew only slightly warm so after 

15 min. more hydrogen peroxide (3 ml.) was added. The solution 
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was maintained at 80° and stirred for 45 min., when on 

cooling only a small quantity of solid was deposited and the 

solution had a strong smell of organic cyanide. Absolute 

ethanol (3 ml.), 6N sodium hydroxide (0.5 ml.) and hydrogen 

peroxide (2 ml.) were then added and the solution stirred at 

80° for a further 1 hr. On cooling an oily liquid separated, 

which after the whole solution had been in a cool place for 

8 day changed into white crystals. The crystals were 

removed by filtration and when 1vater was added to the mother 

liquor a further crop was obtained. The combj_ned crop of 

crystals vras washed 1·1i th .1·m ter and recrystallised from aqueous 

alcohol. (0.8 g., 70%). m.p. 96°. (Found: C, 72.3; H, 10.7; 

0, ·8.2; N, 6.8. c12H210N requires C, 73.9; H, 10.8; O, 8.2; 

N, 7.2%); ~max (I.R.67), 3410s, 3200s (N-H stretching); 

1945m (C=C=C); 1675s (C=O, amide I band); 1600s cm-1 • 

(NH deformation, amide II band); A max 208mjl, ~' 8,150). 
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(e) ].-Bromo .... ;-.methy].but&-]."2-dliene 

(o;;.Q) g~; 0-~.04 mO'I.e) and ~drou·s e~ous eyalllide (4·~,5 g;~ 

0;-;0.'5- moil.e) were heated very slowly, in an apparatus: set 

for distil].at:ll.on,1 untiJl. a produet. b-~p·~· 55° diatil].edJ: 

The p:·roduet: ai't-e~· washing with water (2 x ].0) mJL~), drying; 

(Mg;SOl
4

) and red.'i.stilling was found to b.e 2~..DI.e~Jl.butfi.-].-etJJ. 

-3-yn.e (Q-;6. g;~-~ 22%)';• ~ msrx (I~:R;68) y.;oovs (a =c:e); 
2ll.c:wJm (<r:CJ;) ;: J!..&25:w~ (C=C) and 900vs am-JL;. {C:CEL)~ A . --z maoc 

22?Jn ~i ctfl ll~OOO); Ama.x 236m pJ;· (l.; 9;700)'~! g;·;n:c; 

(silicone oil!.·; JL8°) gave only one peak;' t; JL2 mi.Il!~· One 

]?:eak. w:as aJLs:o) gi vem em admixture~ wi t!n autfuentic spacim.e~· 

(b) JL-B~omo,...~e.t!ey,i]but&-].··:2-diene: (6i~()) g;·~·; 0;04 molll.e) 

an.d cuprous io.d:fi.de (].0'~·5 g:~-~ QJ~055 molle)) were heated s].ow~~ 

:lin:. an apparatus set for di.stillation,, at a bath. temperature 

a£ about ].Q:QlG> a very vigorous reaction. occurred {som.e 

exper~ents: became uncontrollablie) and a smalJL quantity 

o:ff.' distillate was eolll.ected~ iodine vap:our and a :ft1)'11lding 

gas· were a.Jl.so e:wo.itvedl-;· 

Infra-red examination of the p:cr:-oduc:t indieated that 

ruC!JJ. en.-yne. was pmesent:;. g;~JL;·e-; examination. (sd.Jli.eone odl., 

soP) ·showed! the }2:troduct t:a be a c:ompil.ex mixture ~ au 



(c) 1-Bromo-3-methylbuta-1,2-diene (15 g., 0.1 mole) and 

cuprous iodide (19 g., 0.1 mole) in dry N,N-dimethylformamide 

(50 ml.) were stirred at 80° for 1 hr. The apparatus was 

then set for vacuum distillation and the product was slowly 

distilled at about 10-20mm pressure, the portion condensing 

in a trap cooled to -50° being collected. Redistillation of 

this trap fraction after drying (Mgso4) gave 2-methylbut-1-en-

3-yne (4.0 g., 57%) b.p. 32-33°/750mm. ~max 3300vs (C:GH); 

2100m (C:C); 1625vs (C=C); and 900vs cm-1 . (C=CH2) A 
max 

222mp, .(l, 11,000);.)\max 236my, (!., 9,700). g.l.c. (silicon 

oil, 18°) gave only one peak, t, 12 min., one peak 1-1as also 

given on admixture with authentic sample. 

(d) 1-Bromo-3-methylbuta-1,2-diene (49 g., 0.33 mole) was 

added slowly to a stirred solution of anhydrous cuprous 

cyanide (45 g., 0.5 mole) in dry N,N-di~ethylformamide 

(120 ml.) and the mixture stirred at 30-45° for 2 hr. The 

apparatus was then set for vacuum distillation and the product 

was distilled at about 10-20mm. pressure, the portion 

condensing in a trap cooled to -50° being collected. 

Redistillation of this trap fraction after drying (Mgso4) 

gave 2-methylbut-1-en-3-yne (4.5 g., 12%), the spectra and 

g.l.c. of which were identical with those previously obtained. 
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The residue (ca 80 ml.) from the distillation v~s worked 

up in the way previously described for the preparation of 

1-cyanoallenes and gave 1-cyano-3-methylbuta-1,2-diene (12.9g. 

42%); Ymax 2245vs (CN); 1950s (C=C=C); and 790 cm-1 . 

3-Methylpent-3-en-1-yne. 

(a) 1-Bromo-3-methylpenta-1,2-diene 

(16.1 g., 0.1 mole) and anhydrous cuprous cyanide (10 g., 

0.11 mole) were heated at 115° for 10 min. and then the 

apparatus was set for distillation and a low boiling product 

was collected. Redistillation of this product gave hydrogen 

cyanide 1 (1.3 g., 46%) b.p. 28° and the en-yn product (4.8 g., 

58%) b.p. 62-65°/750mm. (Found: C, 90.15; H, 9.9. C6H8 

requires C, 

1620m (C=C) 

90.1; H, 9.9%); t max 3300vs 

910m (C=CH2); and 825m cm-1 • 

(C:CH); 2110m (C:C); 

( C=CH-); A 222m \l max 1 

(L, 8,900); g.l.c. (silicone oil, 18°) gave three peaks, t, 

8 min., (6%), 2-ethylbut-1-en-3-yne; t, 10 min., (74%), trans-

3-methylpent-3-en-1-yne; t, 13 min., (20%), cis-3-methylpent-

3-en-l-yne. These three isomers were separated by preparative 

g.l.c.- (20ft. x 3/8" column filled with 15% silicone oil on 

carbowax, 30°); 2-ethylbut-1-en-3-yne max (I.R.69)., 3330vs 

(C:CH); 3100w (C=CH2); 2340iv (overtone); 21001v (-C:C); 1800m 

(overtone of vs. gOO); 1750vT (combustion overtone) 1620 vs 
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g.l.c. (silicone 

oil, 18°) gave only one peak, t, 8 min. trans-3-I·Iethylpent-

3-en-1-yne :) max (I.R. 70), 3300vs ( C:CH); 2340i·T (overtone); 

2100m (-C::C); 1850-vT (combination overtone); 1630w (conj. C=C); 

1040s; 940m; 820vs cm-1 . (no 900 cm-1 band C=CH2). g.l.c. 

(silicone oil, 18°) gave only one peak, t, 10 min. cis-3-

Methylpent-3-en-1-yne ~max (I.R.71), 3320v~ (-C=CH); 2340w 

(overtone); 2105s ( C::C); 1855-vT (combination overtone); 1675m 

(overtone of 839vs); 1645m (conj. C=C); 1010s; 839vs; 750m 

cm-1 ; g.l.c. (silicone oil, 18°) gave only one peak, t, 13 

min. 

(b) 1-Bromo-3-methylpenta-1,2-diene (8.05 g., 0.055 mole) 

and cuprous iodide (10. 5 g., 0.055 mole) were heated slo-v1ly 

in an apparatus set for distillation. At a bath temperature 

of about 140° a vigorous reaction took place, iodine vapour 

and a fuming gas being liberated, the small quantity of 

distillate collected shOiied no trace of en-yne and the g.l.c. 

showed a complex mixture vri th at least six components. 

(c) 1-Bromo-3-methylpenta-1,2-diene (5 g., 0.03 mole) \vas 

heated with silver cyanide (4 g., 0.03 mole) at 130° for 5 hr. 

The apparatus was then set for distillation and only 0.75 g. 
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of a product (which was found to be 70% en-yne and 30% 

starting product) tmax 3300vs (C:~d); 2100m (C:C) and 1950m 

cm-l (C=C=C); A 222m u, (t, 5,500) was obtained. max 1 

(d) 1-Bromo-3-methylpenta-1,2-diene (5 g., 0.03 mole) 11as 

heated ~orith cuprous bromide (4.3 g., 0.03 mole) at 100° for 

4 hrs. infra-red and g.l.c. examination shov1ed the mixture 

to be mainly starting product with some rearrangement product~ 

but no trace of en-yne was observed. 

(e) 1-Bromo-3-methylpenta-1,2-diene (24 g., 0.15 mole) and 

cuprous iodide (28.5 g., 0.15 mole) were stirred in dry 

N,N-dimethylformamide (72 ml.) at 80° for 2t hr. The 

apparatus was then set for vacuum distillation and the produci 

was slow·ly distilled at about 10-20mm pressure, the portion 

condensing in a trap cooled to -50° being collected. 

Redistillation of the trap fraction after drying (Mgso4) 

gave the en-yne product (6.1 g., 50%) b.p. 63°/760mm. Infra-

red and ultra-violet spectra were similar to the sample 

obtained from (a), but g.l.c. (silicone oil, 18°) showed only 

two peaks, t, 8 min., (12%), 2-ethylbut-1-en-3-yne; and t, 

10 min., (88%), trans-3-methylpent-3-en-1-yne. Mixed g.l.c. 

(silicone oil, 18°) of this product in turn i"li th authentic 
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samples of 2-ethylbut-l-en-3-yne and trans-3-methylpent-3-

en-l-yne gave enhancement of the t, 8 min. and t, 10 min. 

peaks respectively. 

1-yne was indicated. 

No trace of the cis-3-methylpent-3-en-

(f) l-Bromo-3-methylpenta-1,2-diene (20.1 g., 0.125 mole) 

and cuprous bromide (21.75 g., 0.15 mole) were stirred in dry 

N ,N-dimethylformamide (100 ml.) at 56° for 2 hr. l,·forking up 

in the usual manner gave a mixture of en-ynes (6 g., 60%), the 

g.l.c. of which showed (silicone oil, 18°) three peaks, t, 8 

min., (15%)-, 2-ethylbut-l-en-3-yne; t, 10 min. (72%), trans-

3-methylpent-3-en-l-yne and t, 13 min. (13%), cis-3-methyl­

pent-3-en-l-yne·. Admixture with authentic samples of each 

en-yne gave enhancement of the expected peak in each case. 

(g) Similarly a reaction using cuprous chloride in place of 

cuprous bromide gave 40% mixture of en-ynes in the same 

proportions as (f). 

(h) l-Bromo-3-methylpenta-1,2-diene (53.8 g., 0.33 mole) 

was added slowly to a stirred solution of anhydrous cuprous 

cyanide (45 g., 0.5 mole) in dry N,N-dimethylformamide 
' 

(200 ml.) and the mixture stirred at 55° for lt hr. The 
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apparatus was then set for vacuum distillation and the 

product was distilled at about 10-20mm pressure, the portion 

condensing in a trap cooled to -50° being collected. 

Redistillation of this trap fraction after drying (Ngso
4

) 

gave the en-yne mixture (4.0 g., 15%) which i1as shoim by 

spectra and g.l.c. to be 2-ethylbut-1-en-3-yne (65&), trans-3-

methylpent-3-en-1-yne (74%) and cis-3-methylpent-3-en-1-yne 

( 20%). 

The residue from the distillation (120 ml.) 1:-ras 1·10rked 

up in the way previously described for preparation of 

1-cyanoallenes and gave 1-cyano-3-methylpenta-1,2-diene 

. (18.0 g., 51%); t max 2245vs (CN); 1955vs cm-1 . (C=C=C). 

3-Ethylpent-3-en-1-vne. 

(a) 1-Bromo-3-.e.thylpenta-1, 2-diene 

(8.75 g., 0.05 mole) and anhydrous cuprous cyani.de (5.0 g., 

0.056 mole) were heated at 115° for 15 min. and then the 

apparatus was set for distillation and the l01v boiling product 

was collected. Redistillation of this product gave hydrogen 

cyanide (0.5 g., 37%) b.p. 28°/750mm and the en-yne product 

(2.1 g., 45%); b.p. 85°/760mm. (Found: C, 89.0; H, 10.5. 
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C7H10 requires C, 89. 4; H, 10. 6%) ; V max 3300vs ( C~CH) ; 
2100m (C:C); 1630w (C=C); and 840 cm-l ( C=CH-); A 22?mn max .........,.. 

(£, 13,800). g.l.c. (silicone oil, 20°) sho-.;·Ted two 

components, t, 25 min. (85%), trans-3-ethylpent-3-en-1-yne 

and t, 30 min. (15%), cis-3-ethylpent-3-en-1-yne. 

(b) 1-Bromo-3-ethylpenta-1,2-diene (8.75 g., 0.05 mole) and 

cuprous iodide (9.5 g., 0.05 mole) were stirred in dry 

N,N-dimethylformamide (30 ml.) at 80° for lt hr. The 

apparatus was then set for vacuum distillation and the 

product was slowly distilled at about 10-20mm pressure, the 

portion condensing in the trap cooled to -50° being collected. 

Redistillation of the trap fraction after drying (r.TgS04) gave 

pure trans-3-ethylpent-3-en-1-yne (2.9 g., 61%) b.p. 85°/ 

750mm. Ymax (I.R.73).3300vs (C::CH); 2100m (-C:C-); 1630w 

(C=C); and 840s cm-l (C=CH-). A max 222m/, ([, 13,800); 

g.l.c. (silicone oil, 20°) gave only one peak, t, 25 min. 

(c) 1-Bromo-3-ethylpenta-1,2-diene (58.2 g., 0.33 mole) was 

slowly added to a stirred solution of anhydrous cuprous 

cyanide (65 g., 0.7 mole) in dry N,N-dimethylformamide (200 ml. 

and the mixture stirred at 55-60° for 2 hr. The apparatus 

was then set for vacuum distillation and the product distilled 
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at about 15-20mm pressure, the portion condensing in a trap 

cooled to -50° being collected. Redistillation of this 

trap fraction gave the en-yne (4.4 g., 14%) which had 

identical spectra and g.l.c. to the product from (a). 

The residue from the distillation (120 ml.) was w·orked 

up as previously described for the preparation of 1-cyano­

allenes and gave 1-cyano-3-ethylpenta-1,2-diene (25 g., 60%); 

J max ·2240s (CN); 1955s (C=C~C); and 790m cm-1 • 

2-t-Butylbut-1-en-3-yne. 

(a) 1-Bromo-3,4,4-trimethylpenta-

1,2~diene when heated with anhydrous cuprous cyanide gives 

1-cyano-3,4,4-trimethylpenta-1,2-diene in about 60% yield. 

(See section on 1-cyanoallenes p.87). 

(b) 1-Bromo-3,4,4-trimethylpenta-1,2-diene (8.75 g., 0.05 

mole) and cuprous iodide (9.5 g., 0.05 mole) 1·rere stirred in 

dry N,N-dimethylformamide (30 ml.) at 80° for lt hr. The 

apparatus was then set for vacuum distillation and the 

product ·slotrly distilled at about 5mm pressure, the portion 

condensing in a trap cooled to -50° being collected. After 

drying (Mgso
4

) redistillation using a spinning band apparatus 

gave 2-t-butylbut-1-en-3-yne (3.5 g., 63%) b.p. 93-5°/750mm. 
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(Found: C, 88.4; H, 11.5. C8H22 requires C, 88.1; H, 11.~6) 

j (I.R.72), 3300vs (C:CH); 2100m (C:C); 1630s (C=C); max 

and 910vs em -l ( C=CH2). A max 210m y, ([, 7, 200) A max 218m p 
( [, 10,000); Amax 226m y, (E., 7, 400); g.l. c. (silicone oil 

80°) gave only one peak, t, 4 min. 
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1.4-ELIMINATION REACTION OF l-IODOALLE1TES. 

2-Methylbut-1-en-3-yne. 

(a) 1-Iodo-3-methylbuta-1,2-diene 

gave a violent reaction on being heated with cuprous cyanide, 

· the small portion of distillate collected showed evidence of 

en-yne formation ;max 3300 (CmCH); 2100 (C:C); and 1630 (C=C). 

(b) 1-Iodo-3-methylbuta-1,2-diene (19.4 g., 0.1. mole) and 

cuprous iodide (19 g., 0.1 mole) in N,N-dimethylformamide 

(100 ml.) gave 2-methylbut-1-en-3-yne identical in spectra to 

the sample obtained in the earlier experiments. (3.7 g., 55%). 

3-Methylpent-3-en-1-yne. 

(a) 1-Iodo-3-methylpenta-1,2-diene 

gave an almost uncontrollable reaction on being heated with 

cuprous cyanide. Again the distillate collected shoued 

large en-yne content. 

(b) 1-Iodo-3-methylpenta-1,2-diene (20.8 g., 0.1 mole) and 

cuprous iodide (19 g., 0.1 mole) in N,N-dimethylformamide 

(100 ml.) gave trans-3-methylpent-3-en-1-yne contaminated uith 

a small amount of 2-ethylbut-1-en-3-yne. (4.2 g., 53~). 
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2-t-Butylbut-1-en-3-yne, 

1-Iodo-3,4,4-trimethylpenta-1,2-

diene (12 g., 0.05 mole) and cuprous iodide (10 g., 0.11 

mole) in N,N-dimethylformamid~ (100 ml.) gave 2-t-butylbut-

1-en-3-yne. (3 g., 55~~). 

Action of heat on a mixture of 1-Cyano-3-methylpenta-1,2-
diene and cuprous salts. 

(a) 1-cyano-3-methylpenta-1,2-diene 

(2.7 g., 0.025 mole) and cuprous cyanide (2.3 g., 0.025 mole) 

were heated at 130° for 3 hrs. No low boiling en-yne 

fraction could be collected. The mixture (a black, sticky 

gum) was extracted with 40°-60° petroleum ether and yielded 

a little of the dimer 2-(2'-butylidene)-1-cyano-3-cyanomethy­

l~ne-4-ethyl-4-methylcyclobutane, characterised by ;max 

2260s (CN); 2250s (conj. CN); 1660s (conj. C=C); and 1630s 

(conj. C=CHCN) cm-1 A max 282m~, (L, 11,400). 

(b) 1-cyano-3-methylpenta-1,2-diene and cuprous bromide 

gave the same result as (a). 

(c) 1-cyano-3-methylpenta-1,2-diene and silver cyanide gave 

the same result as (a). 
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GRIGNARD REACTIONS OF 3-DIALKYLALLENIC 
1- I'·1AGN:GSim.; BRDr.fiDES. 

A. Reaction ~>Ti th Carbon Dioxide. 

Reaction of 3-I-Iethylpenta-1,2-diene-1-magnesium 
bromide with carbon dioxide. 

(a) I•1agnesium turnings (1.83g., 0.075 

mole), dry tetrahydrofuran (40 ml) and a crystal iodil1e 1·Jere 

placed in a dry flask through which a current of dry, 

oxygen-free nitrogen was passed. A few millilters of a 

solution of 1-bromo-3-methyl-penta-1,2-diene (12.06., 

0.075 mole) in dry tetrahydrofuran (20 ml) w·ere added to 

the flask, then after about 5 min. when formation of the 

Grignard compound had started, the bromoallene solution 

diluted ~>Ti th a further amount of tetrahydrofuran (lCC rnl) 

was added dropwise at a rate just sufficient to keep the 

mixture refluxing gently. l;lhen addition of the bromoallene 

solution was complete the mixture was stirred and maintained 

at a gentle reflux by external heating for lhr. 

The suspension was then cooled to about -5° and a rapid 

stream of dry carbon dioxide gas·was passed for 2-3hr. 

dilute hydrochloric acid was then added slowly until 
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complete solution of· the inorganic salts was obtained. 

The mixture was separated, the aqueous portion was 

extracted with ether (2x20 ml) and this was added to the 

tetrahydrofuran solution. The organic solution was 

washed w·i th -vmter then extracted "tvi th sodium bicarbonate 

solution (10x20 ml). The sodium bicarbonate extracts 

were combined, washed with ether (20 ml) then cooled and 

acidified with cold dilute hydrochloric acid, the acidified 

mixture 1vas then extracted with ether ( 3x20 ml) the ether 

extract was vmshed i·rith water and dried (l\1gS04). 

Evaporation gave a brow.a. viscous liquid ( 5. 9g. 60~~) t·Thich 

was found to be a mixture of 4-methylhexa-2,3-dienoic acid 

and 4-methylhex-2- ynoic acid :J 3400-2400 vs 
max 

(hydrogen bonded OH); 2220 m (C=C); 1960s (C=C=C) and 
-1 

1750-1670 vs (C=O) em The neutral fraction Has 

examined afte:-c distillation and the product '·ras fou..nd to 

be a high boiling hydrocarbon but no pure Sai•lple could 

be isolated. 
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(b) The above reaction l:Tas repeated 

using ether ( 200 ml) in place of tetrahdrofuran, 1·rorking 

up gave the same acid mixture (4 .• 2g. 43%). 

(c) The reaction was repeated, 

addint; solid carbon dioxide instead of pas sin:::. t;J.e dry gas. 

Horking up sho~·red the presence of the low boiling 

hydrocarbons 3 methyl pen ta-l, 2-diene and 3-meth:>rlpent-1-yne 

and a small amount of acid mixture. (1. 5g. 13~:). 

(d) The reaction 1vas repeated 

using eti1er ( 200 ml) and passing carbon dioxide at 0° 

after working up the product was found to be identical 

with that from experiment (b). 

(e) The reaction was repeated 

using ether (200 ml) and passing carbon dioxide at 10° 

after working up the product was found to be identical 

Ttrith that from experiment (b). 
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Reaction of 3-methvlbuta-1,2-diene-1-maRnesium bromide 
With carbon dioxide. 

r-lag!lesium turnings (3. 7g. 0.15 mole)' 

dry ether (80 ml) and a crystal of iodine were placed in a 

dry flask through which a slovr current of dry, oxygen-free 

nitrogen was passed. A few milliliters of a solution of 

1-bromo-3-methylbuta-1,2-diene (2lg. 0.15· mole) in dry 

ether (60 ml) were added, then after about 10 mins, after 

reaction had started, the remaining solution vras added 

dropwise at such a rate to cause the reaction mixture to 

reflux gently, after the addition was completed the 

suspension v-ras stirred and refluxed gently for lhr. 

The suspension was cooled to 0° and dry cardon dioxide 

was passed at such a rate to keep the temperature betvreen 

0° and 5° , when the mixture showed no further tendency to 

heat up the gas was passed at a faster rate for 0.5hr. 

The mixture vras then cooled and dilute hydrochloric acid 

was added until all the inorganic salts had dissolved, the 

organic layer vras separated, washed with \·rater, then extracted 

with sodium bicarbonate, ext:L~acts v.rere combined vrashed 1·Ti th 
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ether (20 ml) then cooled and acidified with dilute 

hydrochloric acid. The acidified mixture 1vas extracted 

with ether ( 3x20 ml), the ether extract washed vli th water 

then dried (Mgso4). Evaporation gave a brown oil w'hich 

was found to be a mixture of 4-methylpenta-2,3-dienoic acid 

and 4-methylpent-2-ynoic acid (4.8g. 28%); ) 3400-max 

2500vs (hydrogen bonded- OH); 2250s (conj C=C); 

1950m (C=C=C); 1800-1650vs (C=O)cm-1 · 

Reaction of 3-Ethylpenta-1.2-diene-1-magnesium 
bromide with carbon dioxide 

Magnesium turnings (1.83g. 0.075 mole). 

dry ether (80 ml) and a crystal of iodine were placed in a 

dry flask through which a slov1 current of dry oxygen free 

nitrogen was passed. A few millitiers of a solution of 

l-bromo-3-ethylpenta-1,2-diene (13.2g. 0.075 mole) in .ether 

120 ml were added, then after about 10 mins "tvhen formation 

of the Grignard reagent had started, the rest of the 

solution was added dropwise at a rate just sufficient to 

keep the mixture refluxing gently, when addEion of the 

solution was complete the mixture was stirred at a gentle 

reflux for 1 hr. Afer cooling to 0° dry carbon dioxide 

gas was passed for 2 hrs. at a rate vlhich did not all01v 
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the temperature to rise above 5°, the mixture was 

then acidified with dilute hydrochloric acid until 

the inorganic salts had dissolved and the ether 

layer separated. The etherical solution was washed 

with water then extracted with sodium bicarbonate solution 

(6 X 30 ml). The sodium bicarbonate extracts were 

combined, ~>rashed with ether than acidified w·i th 

dilute hydrochloric acid. The acidified mixture was 

extracted with ether (3 x 20 ml), the ether extract 

washed with water and dried (MgS04). Evaporation 

gave a brown oil which was found to be a mixture of 

4-ethylhexa-2,3-dienoic acid and 4-methylhexa-2-ynoic· acid 

(5.5g., 49%) 'i max 3400-2500 vs (hydrogen bonded 

OR), 2240 s (C=C); 

16 50 VS · ( C::C) 

l960m (C=C:C); 

-1 
em • 
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Reaction of 3,4,4-trimet~ylpenta-1,2-diene-1-magnesium 
bromide with carbon dioxide. 

Magnesium turnings (1,83 g. 0.075 mole), 

dry ether (60 ml) and a crystal of iodine were placed 

in a dry flask through which a dry current of oxygen 

free nitrogen was passed. A few milliliters-of a 

solution of 1-bromo-3,4,4-trimethylpenta-1,2-diene 

(15 g. 0.075 mole) in ether (140 ml) was added 

and after about 10 mins, when the Grignard reagent 

had started to form the rest of the solution was 

added dropwise at a rate just sufficient to keep 

the mixture refluxing gently, when the addition 

was complete the suspension was stirred at a gentle 

reflux of 1 hr. The suspension was cooled to 0° 

and dry carbon dioxide gas was passed at. such a rate 

as to keep the temperature betvreen 0 ° and 5°, and then 
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more quickly for a further 1 hr. The mixture was then 

acidified with dilute hydrochloric acid until the inorganic 

salts had dissolved, then the ether layer was separated. 

The etherical solution was washed with water then 

extracted with sodium bicarbonate solution (5 x 30 ml), the 

sodium bicarbonate extracts were combined, washed with 

ether, acidified with dilute hydrochloric acid and 

ether extracted (3 x 30 ml). The etherical solution was 

washed with water and dried (MgS04). Evaporation gave 

a brown oil -vrhich 1vas found to be a mixture of 4, 5, 5-

trimethylhex-2-ynoic acid (5.7 g., 45%f 

3400-2600vs (hydrogen bonded -OH); 2240:m (C=C); 1955m 

(C=C=C); 1790-1650vs (C=O). The acid mixture was 

dissolved in ether and extracted with sodium bicarbonate 

solution (3 x 10 ml). The ether residue was dried 

(MgS0
4

) and on evaporation gave the pure 4,5,5-trimethylhexa 

-2,3-dienoic·acid. The sodium bicarbonate extract was 

acidified, extracted uith ether and the process repeated, 

the cycle was carried out four times. The first three 

times the residue was pure allenic acid, but the fourth 
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time .a mixture of allenic and acetylenic acids resulted. 

The allenic acid was recrystallised from pentane m.p. 48-9° 

~ max(I.R.74) 3400-2500s (hydrogen bonded 

OH); 1960s (C=C=C); 1700s (C=O); lll5m; and 835 m cm-1 • 

Amax212m}', · (!, 11,550). 

Reaction of 3-Isopronyl-4-methylpenta-1,2-diene-1-magnesium 
bromide with carbon dioxide.· 

Magnesium turnings (1.83 g. 0.075 mole), dry tetra-

hydrofuran (50 ml) and a crystal of iodine were placed in 

a dry flask through which a current of dry oxygen free 

nitrogen was passed. A few milliliters of a solution of 

1-bromo-3-isopropyl-4-methylpenta-1,2-diene (15.1 g. 0.075 

mole) in dry tetrahydrofuran (20 ml) were added, and after 

about 10 mins, when formation of the Grignard reagent had 

started the·rest of the solution was added dropwise at such 

a rate as to maintain the suspension at a gentle reflux. 

i·lhen addition of the solution 1.vas com2lete, more tetrahydro-

furan (30 ml) was added and the suspension stirred at reflux 

temperature for 1 hr. The suspension was cooled to 0° 
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and a slow stream of dry carbon dioxide gas was passed at 

such a rate as to maintain the temperature betw·een 0° and 4°, 

1vhen the :temperature of the reaction ceased to rise a rapid 

stream of carbon dioxide \•laS passed for 2 hrs. The 

mixture was then acidified at 5° with dilute hydrochloric_ 

acid until the inorganic salts had dissolved, then the ~ther 

layer was separated. The etherial solution was washed 

with water then extracted with sodium bicarbonate solution 

(5 X 30 ml). The sodium bicarbonate extracts w·ere combined, 

1vashed with ether, acidified with dilute hydrochloric acid 

and ether extracted (3 x 30 ml), the etherial solution was 

washed with water and dried (Mgso4). Evaporation gave a 

light yellow oil which was found to be a mixture of allenic 

and acetylenic acids (5.0g. 40%) ~ 3300-2500vs (hydrogen max 

Bonded OH); 2260 m and 2220 ,m ( 0=0); 1965s· ( 0=0=0) and 

1740-1670vs (O=O)cm-1 • The acid mixture vTas dissolved in 

ether and extracted with sodium bicarbonate solution 

(3 X 10 ml). The ether solution vras dried and on evaporation 

yielded pure 4-isopropyl-5- methylhexa-2,3~dienoic acid. 

The sodium bicarbonate extract "Iivas acidi~ied, extracted 
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with ether and the process repeated, the cycle was carried 

out four times, the fourth time the ether solution yielded 

a mixture of allenic and acetylenic acids. The total yield 

of allenic acid vras ( 3. 8 g. 30%) • The allenic acid was. 

0 0 recrystallised from hexane m.p. 53.5 - 54.5 (Found C, 

70.6; H, 9.4; O, 19.0. C H 0 requires C, 71.4; H,9.5 
10 16 2 

0' 19.1%) ) (I.R. 75) 3400-2600vs (hydrogen bonded 
max 

-1 \ 
-OH) ;. 197 5s ( C=C=C); l700vs ( C=O); · 850m; 792m. em • 1\ 

213 In f , ( l , 9' 8 50) • 

Reaction of 3-phenylbuta- 1.2-diene-1-magnesium 
oromide with carbon dioxide. 

Magnesium turnings (3.7g. 0.15 mole), ether (50 ml) 

and a crystal of iodine were placed in a dry flask through 

max 

which a slow stream of dry, oxygen-free nitrogen was passed. 

A few milliliters of a solution of 1-bromo-3-phenylbuta-1, 

2-diene (2.44g. 0.12 mole) in ether (50 ml) were added and 

after about 10 mins. when formation of the Grignard reagent 

had started the rest of the solution diluted with ether 

(100 ml) was added dropwise at such a rate as to maintain 
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the solution at a gentle reflux. tlhen addition of the solutio 

was complete the solution was allowed to cool, then cooled to 

0° and a current of dry carbon dioxide was passed at such a 

rate as to keep the temperature between 0° and 5°, wnen the 

temperature of the reaction ceased to rise carbon dioxide was 

passed for 2hrs. The solution was then acidified at 5° 

with dilute hydrochloric acid until the inorganic salts had 

dissolved then the ether layer was separated. The etherial 

solution was extracted with sodium bicarbonate solution 

(5 x 30 ml), the sodium bicarbonate extracts were combined, 

washed with ether, acidified with dilute hydrochloric acid 

and ether extracted (3 x 30 ml), the etherial solution was 

washed with water and dried (MgS0
4
). Evaporation of the 

ether left a yellow solid ( 3. 5g. 18%) m. p. 108-10° vrhich 

on recrystallisation from aqueous alcohol or ether petrolium 

spirit gave pure 4-phenylbuta-2,3-dienoic acid m.p. 129-30° 

v ·max 
(I.R.76) 3400-2500s (hydrogen bonded -OH); 1950s 

_(C=C=C); 1695vs (C:O); 1600w (aromatic C=C); 767s and 690s 

-1 \ 
em • , 1\ 

max 
207 mt , <£, 32,000); .A 

max 
248 m r, ( [., 

15,470). 
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B. Reaction with Oxygen. 

Reaction of 3-methylpenta-1,2-diene-l-magnesium 
bromide with oxygen. 

(a) Magnesium turnings (4.8g., 0.2 mole), dry ether 

(30 ml) and a crystal of iodine were placed in a dry flask 

through which a slow current of dry oxygen-free nitrogen was 

passed. A few milliliters of a solution of 1-bromo-3-

methylpenta-1,2-diene (32.2g., 0.2 mole) in dry ether (20 ml) 

were added to the flask, then after about 5 mins. when 

formation of the Grignard compound had started the bromoallene 

solution was added dropwise at a rate just sufficient to 

keep the mixture refluxing gently. tlhen addition of the 

bromoallene solution was complete the mixture was stirred 

and maintained at a gentle reflux (by external heating) for 

1 hr. 0 The suspension was cooled to -5 and dry oxygen was 

passed, slow·ly at first then more rapidly, for 2 hrs., the 

cooling bath being removed after the first hr. The 

suspension was again cooled and dilute hydrochloric acid w-as 

added until all the inorganic salts had dissolved, the 

mixture was separated, the aqueous portion was extracted 
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with ether ( 2 x 20 ml) the ether solutions vTere combined 

and dried '(Mgso
4
). Distillation after first removing the 

ether gave 3-methylpent-l~yn-3-ol (9.4g., 48%) l 3400vs 
max 

(OH), 3300vs (C=CH), 2110w (C=C); g.l.c. (silicone oil, 80°) 

gave only one peak, t, 7 min.; g._l. c. of -mixture with 

authentic 3-methylpent-1-yn-3-61 also gave only one peak, t, 

7 min. Careful fractionation of the residue gave a mixture 

of two compounds b.p. 57°/11 mm which could not be separated 

) (I.R.78) 3330 vs (C::::CH), 3120w (C=C), 19651v Y max 
-1 0 

(C=C=C) em • , g.l.c. (dinonyl phthalate, 80 ) sh01-1ed t1-ro 

compounds t, 31 min, t, 43 min in the ratio of about 7:2. 

(b) In another similar experiment the Grignard 

compound was formed over 4 hr. and gave a large proportion 

of the latter tw·o compoUnds in the same proportion. 

(8.4g., 52%). 

Reaction of 3-ethyluenta-1. 2-diene-1-magnesium bromide 

with oxygen. 

Magnesium turnings (2.4g., 0.1 mole), dry ether (20 ml) 

and a crystal of iodine w·ere placed in a dry flask through 

which a slow current of oxygen-free nitrogen was passed. 
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A few milliliters of a solution of 1-bromo-3-ethylpents-1, 

2-diene (17.5g., Ool mole) in dry ether (15 ml) was added, 

after about 10 mins. when formation of the Grignard compound 

had started, the rest of the solution, diluted with dry ether 

(100 ml) was added dropwise at a rate just sufficient to keep 

the mixture refluxing gently. The mixture was then stirred 

for 1 hr. cooled and dry oxygen passed for 1.5 hr. at about 

0 
5 ; after stirring for a further 0.5 hr. the mixture was 

acidified at 5-10° with dilute hydrochloric acid until all 

the inorganic salts had dissolved. The ether layer was then 

separated, the aqueous portion was ether extracted (3 x 15 ml), 

the ether layers combined, washed with a little water and 

dried (MgSO 
4

) Distillation after first removing the ether 

gave a first fraction of 3-ethylpent~l-yn-3-ol (5.lg., 45%), 

-1 
3400vs (-OH), 3300vs (C=CH), 2120w (C=C) em • g.l.c. 

max 
0 

(silicone oil, 100 ) gave only a peak at t, 5.5 min. The 

second fraction again proved to be on an inseparable mixture 

of two compounds V 
-1 

(C=C=C) em • 

max 
3330vs ( C=CH), 3120 w( C=C), 1960vT 
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C. Reactions with Active Hydrogen. 

Reaction of 3-Methylpenta-1.2-diene-1-magnesium 

bromide with \'later. 

(a) Magnesium turnings (l.Bg., 0.075 mole), dry ether 

(20ml) and a crystal of iodine were placed in a dry flask 

through which a slow current of dry oxygen-free nitrogen was 

passed. A fe~or milliliters of a solution of 1-bromo-3-methyl-

pen ta-l, 2-diene (12g., 0. 075 mole) in dry ether (10 ml) vras 

added, then after about 10 min "tvhen formation of the Grignard 

compound has started, the rest of the solution diluted 1vi th 

dry ether (30 ml) was added dropwise at a rate just sufficient 

to keep the reaction going, when all the solution had been 

added the mixture was stirred for 1 hr. at room temperature 

before cooling to 5° and adding water (20 ml). The 

suspension was then acidified with dilute hydrochloric acid 

until the inorganic salts had dissolved, the organic layer was 

separated, washed with 1vater and dried (r-~gSO ) • 
4 

Distillation 

after first removing the ether gave a mixture of 3-methylpenta 

-1,2-diene and 3-methylpent-1-yne (2.5g., 41%), b.p. 67°/760 

.mm. g.l.c. sho\ved the ratio of products to be }:1. 
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(b) Magnesium turnings (1.8g., 0.075 mole), dry ether 

(20 ml) and a crystal of iodine were placed in a dry flask, 

through which a slow stream of oxygen-free nitrogen was 

passed. A few milliliters of a solution of 1-bromo-3-

methylpenta-1,2-diene (12g., 0.075 mole) in ether (10 ml) 

was added. After about 10 min when the formation of the 

Grignard compound had started the rest of the solution was 

added dropwise, the solution being allowed to reflux 

vigerously, when addition was complete the suspension was 

heated under reflux for 1 hr. cooled to 5° and water (20 ml) 

added. i'lorking up as above gave the same mixture of 

3-methylpenta-1,2-diene and 3-methylpent-1-yne. 

D Reaction with Ketones. 

Reaction of 3-Methylpenta-1,2-diene-1-magnesium 
bromide with Acetone. 

Magnesium turnings (2.4g., 0.1 mole), dry ether (25 ml) 

and a crystal of iodine were placed in a dry flask through 

which a slow stream of oxygen-free nitrogen was passed. A 

few milliliters of a solution of 1-bromo-3-methylpenta-1,2 
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-diene (16. lg., 0.1 mole) in ether (50 ml) was added, after 

about 10 min vrhen formation of the Grignard compound had 

started, the rest of the solution, diluted 1·1i th ether (100 ml) 

was added dropwise at a rate just sufficient to keep the 

reaction refluxing gently, the mixture was then stirred for 

30 mins. cooled and dry redistilled acetone (6.4g., 0.11 mole) 

was added slowly. The mixture -vras then refluxed for 1. 5hr. 

cooled to 5° and acidified with dilute hydrochloric acid 

until all the inorganic salts had dissolved. The ether 

layer was separated, washed ui th water and dried (T<lgSO ) • 
4 

Distillation after removing the ether gave a lorT 

boiling fraction which was shown to be a mixture of four 

products followed by 2,5-dimethylhept-3-yn-2-ol ( 4.4g., 31%) 

b.p. 94-100°/1.5mm. recrystalised from hexane m.p. 41° 

-1 
(I.R.77) 3400s (-OH) 2260w (C=C), 940m em 

max 
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PART IV 

SPECTRA 



I.R. 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

ll 

12 

13 

14 

15 

16 

17 

~· 18 

INFRA-RED SPECTRA 

1-Bromo-3-pheny1propa-1,2-diene 

1-Bromo-3-phenylbuta-1,2-diene 

3-3-Dipheny1propa-1,2-diene 

1-Iodo-3-methylbuta-1,2-diene 

1-Iodo-3-methylpenta-1,2-diene 

1-Iodo-3-ethy1penta-1,2-diene 

1-Iodo-3,4,4-trimethy1penta-1,2-diene 

1,1-Dibromo-3-methylbuta-1,2-diene 

1,1-Dibromo-3-methy1penta-1,2-diene 

1,1-Dibromo-3,4,4-trimethy1penta-1,2-diene 

1,1-Dibromohexa-1,2-diene 

l,l-Dibromo-3,3-dipheny1propa-1,2-diene 

1-Bromo-1-chloro-3-methy1penta-1,2-diene 

1-Deuterobut-1-yn-3-o1 

1-Deutero-3-methy1pent-1-yn-3-o1 

1-Deutero-3,4,4-trimethy1pent-1-yn-3-ol 

1-Iodobuta-1,2-diene 

1-Deutero-1-iodobuta-1,2-diene 

-288-



·r.R. 19 

20 

2l 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

1-Bromo-3-methy1penta-1,2-diene 

1-Bromo-1-deutero-3-methy1penta-1,2-diene 

1-Ch1oro-3,4,4-trimethy1penta-1,2-diene 

1-Ch1oro-1-deutero-~,4-trimethy1penta-1,2-diene 

1-Cyano-3-methy1buta-1,2-diene 

1-Cyano-3-methy1penta-1,2-diene 

1-Cyano-3-ethy1penta-1,2-diene 

1-Cyano-3,5-dimethylhexa-1,2-diene 

1-Cyano-3,4,4-trimethy1penta-1,2-diene 

1-Cyano-3-isopropy1-4-methy1penta-1,2-diene 

1-Cyano-3-isobuty1-5-methylhexa-1,2-diene 

1-Cyano-3-t-buty1-4,4-dimethy1penta-1,2-diene 

1-Cyanohexa-1,2-diene 

l-Cyano-4-methy1penta-1,2-diene 

1-Cyano-3-pheny1propa-1,2-diene 

1-Cyano-3-(cis-cyanomethy1ene)-4,4-dimethy1-2-isopropy-

lidenecyc1obutane 

35 1-Cyano-3-(cis-cyanomethy1ene)-4-ethy1-4-methy1-2-

(2'buty1idene)-cyclobutane 
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I .R. J6 l-Cyano-3-(cis-cyanomethy1ene)-4,4-diethy1-2-(3'-

pent1y1idene)- cyc1obutane 

37 1-Cyano-2-(diethy1amino)-4-methy1pent-1-ene 

38 l-Cyano-2-(diethy1amino)-4-methy1pent-2-ene 

39 1-Cyano-3-methyl-2-piperidinobut-2-ene 

40 1-Cyano-3-methy1-2-piperidinobut-1-ene 

41 2-(n-Buty1amino)-1-cyano-3-methy1but-1-ene 

42 l-Cyano-2-(diethy1amino)-3-methy1pent-2-ene 

43 l-Cyano-2-(diethy1amino)-3-methy1pent-l-ene 

44 l-Cyano-3-methyl-2-pyrro1idinopent-1-ene 

45 1-Cyano-3-methy1-2-piperidinopent-2-ene 

·46 1-Cyano-3-methy1-2-piperidinopent-l-ene 

47 2-Amino-1-cyano-3-ethy1pent-1-ene 

48. 1-Cyano-2-(diethylamino)-3-ethy1pent-2-ene 

49 l-Cyano-3-ethyl-2-piperidinopent-1-ene 

50 1-Cyano-3-ethyl-2-(1,2,3,4-tetrahydroisoquino1ine)-

pent-2-ene 

51 1-Cyano-3-ethyl-2-(1,2,3,4-tetrahydroisoquino1ine)-

pent-1-ene 

--
s 52 l-Cyano-2-(diethy1amino)-3,4,4-trimethy1pent-1-ene 
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I .R. 53 

54 

55 

56 

1-Cyano-2-pyrro1idino-3,4,4-trimethy1pent-1-ene 

1-Cyano-2-piperidine-3,4,4-trimethy1pent-2-ene 

1-Cyano-2-piperidine-3,4,4-trimethy1pent-1-ene 

1-Cyano-2-(diethy1amino)-3-isopropy1-4-methy1pent-

2-ene 

57 1-Cyano-2-(diethy1amino)-3-isopropy1-4-methy1pent-

1-ene 

58 ~-(Diethy1amino)-P-pheny1acry1onitri1e 

59 1-Cyano-3-methy1pentan-2-ene 

60 1-Cyano-3-ethy1pentan-2-one 

61 1-Cyano-3,4,4-trimethy1pentan-2-one 

62 Benzoy1~cetonitri1e 

63 4-Ethy1hexa-2;3-dienamide 

64 4,5,5-Trimethy1hexa-2,3-diendmide 

65 4-Isopropy1-5-methylhexa-2,3-dienamide 

66 4-Isobuty1-6-methylhepta-2,3-dienamide 

67 4-t-Buty1-5,5-dimethylhexa-2,3-dienamide 

68 3-Methy1but-3-en-1-yne 

69 3-Ethy1but-3-en-1-yne 
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70 trans-3-Methylpent-3-en-l-yne 

71 cis-3-Methylpent-3-en-l-yne 

72 3-t-Butylbut-3-en-l-yne 

73 trans-3-Ethylpent-3-en-l-yne 

74 4,4,5-Trimethylhexa-2,3-dienoic acid 

75 4-Isopropyl-5-methylhexa-2,3-dienoic acid 

76 4-Phenylbutan-2,3-dienoic acid (Solution in chlorafann: 

77 2,5-dimethylhept-3-yn-2ol 

78 Hydrocarbon from coupled Grignard. 
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ULTRA-VIOLET SPECTRA 

u.v. 1 1-Bromo-3-phenylbuta-1,2-diene 

2 1-Bromo-3,3-dipheny1propa-1,2-diene 

3 l-Iodo-3-methy1buta-1,2-diene 

4 · l-Iodo-3-methy1penta-1,2-diene 

5 l-Iodo-3-ethy1penta-1,2-diene 

6 1-Iodo-3,4,4-trimethy1penta-1,2-diene 

7 1,1-Dibromo-3-methy1buta-1,2-diene 

8 1,1-Dibromo~3-methy1penta-1,2-diene 

9 1,1-Dibromo-3,4,4-trimethy1penta-1,2-diene 

10 1-Cyano-3-methy1penta-1,2-diene 

11 1-Cyano-3,5-dimethy1hexa-1,2-diene 

12 1-Cyano-3-t-buty1-4,4-dimethy1penta-l,-2-diene 

13 1-Cyano-3-(ciscyanomethy1ene)-4,4-dimethy1-2-isopropy-

1idenecyc1obutane 

14 1-Cyano-3-cyanomethy1ene-4-ethy1-4-methy1-2-(2'buty-

1idene)cyciobutane 

15 1~Cyano-3-cyanomethylene-4,4-diethy1-2-(3'penty1idene)-

cyc1obutane 
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U.V. 16 1-Cyano-3-methy1-2-piperidinobut-2-ene 

17 1-Amino-1-cyano-3-ethy1pent-1-ene 

18 1-Cyano-2-(diethylamino)-3-ethylpent-2-ene 

19 1-Cyano-3-ethy1-2-piperidinobut-1-ene 

20 1-Cyano-2-(diethy1amino)-3,4,4-trimethylpent-1-ene 

21 ~-Diethylamino-~pheny1acrylonitri1e 

22 ~Cyanophenylacetylene 

23 1-Cyano-3-ethylpentan-2-one 

24 4-Ethylhexa-2,3-dienamide 

25 4,5,5-Trimethy1hexa-2,3-dienamide 

26 3-t-Butylbut-3-en-1-yne 

27 4,5,5-Trimethylhexa-2,3-dienoic acid 

28 4-Isopropyl-5-methylhepta-43-dienoic acid 
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N.M.R. 

NUCLEAR MAGNETIC RESONANCE SPECTRA 

1 

2 

3 

4 

5 

6 

7 

8 

1-Bromo-3-methy1penta-1,2-diene 

1-Bromo-3-ethy1penta-1,2-diene 

1-Bromo-3,3-dipheny1propa-1,2-diene 

1-Iodo-3-methy1buta-1,2-diene 

1-Iodo-3-methy1penta-1,2-diene 

1-Iodo-3,4,4-trimethy1penta-1,2-diene 

1,1-Dibromo-3-methy1penta-1,2-diene 

l,1-Dibromo-3,4,4-trimethy1penta-1,2-diene 

9 1-Deutero-3-methy1bat-1-yn-3-o1 

10 1-Deutero-3-methy1pent-1-yn-3-o1 

11 l-Deutero-3,4,4-trimethy1pent-1-yn-3-o1 

12 1-Deutero-1-iodlobuta-1,2-diene 

13 1-Bromo-1-deutero-3-methy1penta-1,2-diene 

14 1-Ch1oro-1-deutero-3,4,4-trimethy1penta-1,2-diene 

15 1-Cyano-3-methy1penta-1,2-diene 

16 l-Cyano-3-ethy1penta-1,2-diene 

17 1-Cyano-3,4,4-trimethy1penta-1,2-diene 

18 1-Cyano-3-t-buty1-4,4-dimethy1penta-1,2-diene 
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N.M.R. 19 1-Cyano-3-(ciscyanomethy1ene)-4,4-dimethy1-2-

isopropy1idenecyc1obutane 

20 1-Cyano-3-(ciscyanomethy1ene)-4,4-diethy1-2-

(3-penty1idene)-cyc1obutane 

21 2-(n-Buty1amino)-1-cyano-3-methy1but-1-ene 

22 1-Cyano-2-(diethy1amino)-3-methy1pent-2-ene 

23 1-Cyano-2-(diethy1amino)-3-methy1pent-1-ene 

24 l-Cyano-3-methy1-2-piperidinopent-1-ene 

25 2-Amino-1-cyano-3-ethy1pent-1-ene 

26 1-Cyano-2-(diethy1amino)-3,4,4-trimethy1pent-1-ene 

27 4,5,5-Trimethylhexa-2,3-dienamide 

28 1-Ethyny1-1-t-buty1ethy1ene oxide 
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