Formations and reactions of allenes

Greaves, Peter Michael

How to cite:
Greaves, Peter Michael (1967) Formations and reactions of allenes, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8569/

Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.
FORMATIONS AND REACTIONS
OF
ALLENES

THESIS
PRESENTED FOR THE
DEGREE
OF
DOCTOR OF PHILOSOPHY
IN THE
UNIVERSITY OF DURHAM

BY
PETER MICHAEL GREAVES
JULY 1967
ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to Prof. S. R. Landor for introducing him to the basic concepts of modern organic chemistry, and for his subsequent supervision throughout the course of this work. To the North Atlantic Treaty Organisation who, through the Science Research Council, made available the studentship enabling this work to be undertaken, and to Dr. E. Mooney of Birmingham University for some of the n.m.r. spectra.
ABSTRACT

Aryl and alkyl 1-bromoallenes, 1-iodoallenes, 1,1-dibromoallenes and 1-halo-1-deuteroallenes have been prepared; the mechanism of their formation and their spectroscopic properties are discussed.

Conversion of propargylic alcohols to 1-cyanoallenes either directly or via the corresponding allenic bromides is described. The mechanism of formation of cyanoallenes and their spectral properties are discussed. 1-Cyanoallenes have been converted to enamines, to allenic amides and to allenic acids. Evidence for the structures of dimerisation products of 1-cyanoallenes is presented.

1,4-Elimination reactions of 1-bromoallenes are shown to give alkenynes in good yield. 1-Bromoallenes form Grignard compounds and these are reacted with carbon dioxide, water, oxygen and acetone to give mixtures of acetylene and allenic products.
Contents

<table>
<thead>
<tr>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloallenes</td>
</tr>
<tr>
<td>Cyanoallenes</td>
</tr>
<tr>
<td>Enamines</td>
</tr>
<tr>
<td>Grignards</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Bromoallenes</td>
</tr>
<tr>
<td>Mechanism of 1-bromoallene formation</td>
</tr>
<tr>
<td>1,1-Dibromoallenes</td>
</tr>
<tr>
<td>3,3-Dialkyl-1-iodoallenes</td>
</tr>
<tr>
<td>Infra-red spectra of 1-haloallenes</td>
</tr>
<tr>
<td>N.M.R. of 1-haloallenes</td>
</tr>
<tr>
<td>1-Cyanoallenes</td>
</tr>
<tr>
<td>Preparation of cyanoallenes</td>
</tr>
<tr>
<td>Spectra of 1-cyanoallenes</td>
</tr>
<tr>
<td>Preparation of cyanoacetylenes</td>
</tr>
<tr>
<td>Dimers of allenic cyanides</td>
</tr>
<tr>
<td>Enamines from allenes</td>
</tr>
<tr>
<td>Mechanism of enamine formation</td>
</tr>
<tr>
<td>N.M.R. of enamines</td>
</tr>
<tr>
<td>Enamine from an acetylene</td>
</tr>
<tr>
<td>β-Ketonitriles from cyano-enamines</td>
</tr>
<tr>
<td>1,4-Elimination of 1-haloallenes</td>
</tr>
<tr>
<td>Hydrolysis of 1-cyanoallenes</td>
</tr>
<tr>
<td>Grignard reactions of 1-bromoallenes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of 3,3-dialkylprop-1-yn-3-ols</td>
</tr>
<tr>
<td>Preparation of 1-bromoallenes</td>
</tr>
<tr>
<td>Preparation of 1-iodoallenes</td>
</tr>
<tr>
<td>Preparation of 1-bromoalk-1-yn-3-ols</td>
</tr>
<tr>
<td>Preparation of 1,1-dibromoallenes</td>
</tr>
<tr>
<td>Preparation of deuterated acetylenic alcohols and haloallenes</td>
</tr>
<tr>
<td>Preparation of 1-cyanoallenes from acetylenic carbinols</td>
</tr>
<tr>
<td>Preparation of 1-cyanoallenes from 1-haloallenes</td>
</tr>
<tr>
<td>Cyclobutane dimers of 1-cyanoallenes</td>
</tr>
<tr>
<td>Enamines from allenes</td>
</tr>
<tr>
<td>Enamine from acetylene</td>
</tr>
<tr>
<td>Preparation of cyanomethylene ketones</td>
</tr>
<tr>
<td>Preparation of allenic amides</td>
</tr>
</tbody>
</table>
Experimental (cont'd)

1,4-Elimination of 1-haloallenes 257
Grignard reactions of 1-bromoallenes 269

Spectra

Infra-red spectra 288
Ultra-violet spectra 319
N.M.R. spectra 328

References 342
PART I

INTRODUCTION
HALO-ALLENES

Many attempts in the past to prepare and identify allenic compounds failed for lack of adequate methods to detect and unequivocally prove the presence of cumulative double bonds. Twenty years ago infra-red spectroscopy provided such a method when it was found that non-symmetrical allenes absorbed strongly in the 1920 - 1980 cm\(^{-1}\) region; this absorption is readily distinguishable in the presence of most other absorbing frequencies.

It is probable that prior to 1930 allenic halides were present in products obtained by many workers\(^1\)\(^-\)\(^6\) but were not identified as such, e.g. in 1929 Krestinski and Kostovskaia\(^3\) tried to rearrange 2,5-dimethylhex-3-yn-2, 5-diol using phosphorus tribromide and claimed to obtain mixtures of three compounds, two of which were identified as 2,5-dibromo-2,5-dimethylhex-3-yn and 3,4-dibromo-2, 5-dimethylhexa-2,4-diene. The third component was tentatively assigned the allenic structure, 2,3-dibromo-2,5-dimethylhexa-3,4-diene on the basis of degradative oxidation.

-7-
In 1935 Ford, Thompson and Marvel \(^7\) carried out a similar reaction using 2,2,6,6-tetramethyl-3-phenylhept-4-yn-3-ol. They obtained a product, which had a high molecular refraction, and which was slow to react with silver nitrate; this data would fit the allenic compound, 5-bromo-2,2,6,6-tetramethyl-3-phenylhepta-3,4-diene, but hydrolysis using moist silver oxide regenerated the starting alcohol which led these authors to the conclusion that the product was the acetylenic bromide 3-bromo-2,2,6,6-tetramethyl-3-phenylhept-4-yne.

As the hydrolysis of 1-bromoallenes by means of silver oxide has now been shown to yield acetylenic carbinols \(^8,9\) it is probable that Ford, Thompson and Marvel \(^7\) had obtained the allenic bromide; infra-red spectroscopy would have proved this point beyond doubt.
Nearly thirty years later Bohlmann and Kieslich reacted phosphorus tribromide and 1,4-bis-(2,2,6,6-tetramethylcyclohexyl)-buta-1,3-diene and obtained the diallenic dibromide 1,4-bis-(2,2,6,6-tetramethylcyclohexylidene)-2,3-dibromobuta-1,3-diene, the compound having the expected ultra-violet spectrum for the dibromoallenes but not the dibromodiacetylene.

An attempt was made to prepare an arylallenic chloride by reacting phosphorus trichloride and 1,3,3-triphenylprop-1-yn-3-ol in 1923 by Mourreux, Dufraisse and Machall; they obtained a solid product which was said to be 3-chloro-1,3,3-triphenylprop-1-yne, however a similar reaction using phosphorus tribromide gave a product which Jacobs and Petty later considered to be 1-bromo-1,3,3-triphenylpropa-1,2-diene.
The first reports of the formation of some allenic chlorides by the action of phosphorus trichloride on propargylic alcohols appeared in 1934, when Hurd and Jones treated 1-ethynylcyclohexanol with thionyl chloride and pyridine at 50 - 60°C and reported the presence of small quantities of cyclohexylidenevinylchloride in the main product, \(\alpha \)-chlorovinylcyclohexene.

\[
\begin{align*}
\text{C} & \equiv \text{CH} & \text{SOCl}_2 & \rightarrow & \text{C} & \equiv \text{CH}_2 + \text{C} & = \text{CHCl} \\
\text{OH} & & & & & & \\
\end{align*}
\]

This reaction was repeated by Bhatia, Landor and Landor at different temperatures (between 0 and 80°C) and they obtained up to 25% of the allenic chloride, the major product being ethynylcyclohexene.

\[
\begin{align*}
\text{C} & \equiv \text{CH} & \text{SOCl}_2 & \rightarrow & \text{C} & \equiv \text{CH} & \text{C} & = \text{CHCl} \\
\text{OH} & & & & & & \\
\end{align*}
\]

A fairly pure sample of the allenic chloride was obtained by removing terminal acetylenes as their insoluble silver salts. Hennion and Lynch in 1960 found that, on varying the conditions, the optimum yield of chloroallene was obtained when an ether-pyridine solution was used at 3°C. They obtained a product by fractionation followed by chromatography on alumina, which was 86% pure by g.l.c.
Sobotka and Chanley15 reacted the stearically blocked molecule 1-ethynyl-2,6,6-trimethylcyclohexanol with thionyl chloride in presence of pyridine to obtain 54\% of an unidentified product which on hydrolysis with silver oxide gave the starting material; a modification of their method by Bhatia, Landor and Landor8 gave 60\% of a product with similar physical properties, this was shown to be 2,2,6-trimethylcyclohexylidenevinyl chloride by means of infra-red spectrophotometry.

\[
\begin{align*}
\text{SOCl}_2 & \quad \rightarrow \\
\text{C} & \equiv \text{CH} \\
\text{OH} & \\
\end{align*}
\]

The same authors8 obtained 91\% yield of silver chloride and the starting carbinol when the chloride was refluxed with alcohol/silver nitrate. They suggested the rearrangement was due to an S_N^2 mechanism in which coordination of the chlorine to silver was followed by an attack of a water molecule.

\[
\begin{align*}
\text{R} & \quad \text{Cl} \quad \rightarrow \\
\text{Ag} & \\
\text{R'} & \quad \text{O-H} \\
\text{H} & \\
\end{align*}
\]
The action of thionyl chloride on prop-1-yn-3-ols was found to be a general method for the preparation of d-poly-substituted 1-chloroallenes.

The chloroallenes were identified by infra-red spectroscopy with λ_{max} 1945 ($\text{C} = \text{C} = \text{C}$) and 735 cm$^{-1}$ ($\text{C} = \text{C} - \text{CHCl}$); these compounds had shown only end absorption in the ultra-violet region.

In 1955 Jacobs, Teach and Weiss 17 reported the formation of 1-chlorohexa-1,2-diene from reaction of hex-1-yn-3-ol with thionyl chloride in diethyl ether/di-isopropyl ether solvent,

\[
\text{CH}_3\text{CH}_2\text{CH}_2 - \text{CH} - \text{C} = \text{CH} \rightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{CH} = \text{C} = \text{CHCl} \quad 40\%
\]

\[
+ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH} - \text{C} = \text{CH} \quad \text{Cl}
\]

This work was followed in 1960 by a detailed study 18 of reactions of secondary acetylenic carbinols with thionyl chloride, in which solvent and temperature were varied. In this work Jacobs, Petty and Teach found that the ratio of allene to acetylene could be raised as high as 3:1 using diethylcarbitol as solvent. Separations were by gas chromatography.
Bhatia, Landor and Landor proposed a mechanism in which a chlorosulphite intermediate could react by an S_N^1, S_N^2', or $S_N^{i'}$ process, then by use of optically active compounds showed an $S_N^{i'}$ to be the favoured path.

\[
\begin{align*}
\text{R} & \quad \text{C} - \text{C} \equiv \text{CH} \quad \text{S} \quad \text{Cl} \\
& \quad \text{R'} \quad \text{O} \quad \text{S} \quad \text{Cl} \\
& \quad \text{O} \quad \text{S} \quad \text{Cl}
\end{align*}
\]

Other workers had been pursuing alternative methods of preparing 1-haloallenes; thus in 1935 Favorskii and Favorskaya reacted 3-methylbut-1-yn-3-ol with concentrated hydrochloric acid, ammonium chloride and different copper catalysts. Using cuprous chloride they obtained some conversion to 1-chloro-3-methylbuta-1,2-diene whilst cupric salts gave 3-chloro-3-methylbut-1-yne.

\[
\begin{align*}
\text{CH}_3 & \quad \text{C} - \text{C} \equiv \text{CH} \quad \text{Cu}^+ \quad \text{CH}_3 & \quad \text{C} = \text{C} = \text{CHCl} \\
& \quad \text{CH}_3 \quad \text{OH} & \quad \text{CH}_3 \quad \text{Cl} \\
\text{CH}_3 & \quad \text{C} - \text{C} = \text{CH} \quad \text{Cu}^{++} \quad \text{CH}_3 & \quad \text{C} - \text{C} \equiv \text{CH} \\
& \quad \text{CH}_3 \quad \text{OH} & \quad \text{CH}_3 \quad \text{Cl}
\end{align*}
\]

-13-
A more detailed account of this reaction was given by Favorskaya in 1939. She reacted 3-methylbut-1-yn-3-ol, concentrated hydrochloric acid, cuprous chloride and ammonium chloride by shaking the mixture for 30 min. when working up showed the product to be mainly 3-chloro-3-methylbut-1-yne in 63% yield, however 4 hr. shaking or 18 days standing gave 1-chloro-3-methylbuta-1,2-diene in yield of up to 65%, further standing led to rearrangement product 1-chloro-3-methylbuta-1,3-diene.

\[\begin{align*}
\text{CH}_3\text{C} - \text{C} = \text{CH} & \quad \text{18 days standing} & \quad \text{CH}_3\text{C} = \text{C} = \text{CHCl} \\
\text{CH}_3\text{OH} & \quad \frac{4 \text{ hr. shaking}}{} & \quad \text{CH}_3\text{Cl} \\
\text{30 min. shaking} & \quad \frac{}{} & \quad \\
\text{CH}_3\text{C} - \text{C} \equiv \text{CH} & \quad \text{18 days standing} & \quad \frac{\text{further standing}}{} \\
\text{CH}_3\text{Cl} & \quad \frac{}{} & \quad \text{CH}_2 = \text{C} - \text{C} = \text{CHCl} \\
\end{align*} \]

Similar work was done using 3-methylpent-1-yn-3-ol and 3-ethylpent-1-yn-3-ol.
There is no evidence that any of these compounds were obtained pure and it is probable that they were contaminated with acetylenic compounds.

A similar series of reactions was carried out by Favorskaya in 1940 using different haloacids.

Using concentrated hydrobromic acid she obtained 1-bromo-methylbutha-1,3-diene from 3-methylbut-1-yn-3-ol irrespective of the conditions employed, this does not agree with the present work.

Using hydriodic acid and 3-methylbut-1-yn-3-ol she obtained a dark unstable liquid, the components of which could not be separated by distillation. She suggested that the product was a mixture of 1-iodo-3-methylbuta-1,
2-diene and 1-iodo-3-methylbuta-1,3-diene, however the evidence for this rested only on degradative oxidation.

\[
\begin{align*}
\text{CH}_3\text{C} - \text{C} = \text{CH} + \text{HI} & \rightarrow \text{CH}_3\text{C} = \text{C} = \text{CHI} + \text{CH}_2\text{C} - \text{CH} = \text{CHI} \\
\text{CH}_3\text{ OH} & \rightarrow \text{CH}_3
\end{align*}
\]

Hennion, Sheahan and Maloney 25 studied the reaction between 3-methylbut-1-yn-3-ol and concentrated hydrochloric acid. They found that using only concentrated hydrochloric acid they obtained 3-chloro-3-methylbut-1-yne in poor yield, however addition of calcium chloride gave high yields of the same chloroacetylene. They repeated Favorskaya's work 20 but used a catalytic amount of copper bronze and obtained 1-chloro-3-methylbuta-1,2-diene and 1-chloro-3-methylbuta-1,3-diene.

\[
\begin{align*}
\text{CH}_3\text{C} - \text{C} = \text{CH} + \text{GaCl}_2 & \rightarrow \text{CH}_3\text{C} = \text{C} = \text{CH} \\
\text{CH}_3\text{ OH} & \rightarrow \text{CH}_3\text{ Cl}
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3\text{C} - \text{C} = \text{CH} + \text{CuCl, Cu} & \rightarrow \text{CH}_3\text{C} = \text{C} = \text{CHCl} \\
\text{HCl} & \rightarrow \text{CH}_3
\end{align*}
\]
The infra-red spectrum of the purified product showed it to be free from acetylenic or diene impurities. The same authors25, rearranged the acetylenic chloride by stirring it with concentrated hydrochloric acid, cuprous chloride and ammonium chloride, to give allenic chloride (33\%) together with some starting material (8\%).

\[
\begin{align*}
\text{CH}_3 & \quad \text{CuCl} \quad \text{HCl} \\
C - C \equiv CH & \rightarrow & C = C = \text{CHCl} \\
\text{CH}_3 \quad \text{Cl} & & \text{CH}_3
\end{align*}
\]

They suggested a chelate type intermediate was responsible for the conversion

\[
\begin{align*}
\text{CH}_3 & \quad C - C \equiv CH \\
\text{CH}_3 \quad \text{Cl} & & \left[\begin{array}{c} \text{CH}_3 \\
C - C \equiv CH \\
\text{CH}_3 \quad \text{Cl} \end{array} \right] \quad \left[\begin{array}{c} \text{CH}_3 \\
C = C = \text{CH} \\
\text{CH}_3 \quad \text{Cl} \end{array} \right]
\end{align*}
\]

These claims were contradicted by Bergmann and Herman26 who in 1951 repeated the experiment using calcium chloride and claimed to get the isomeric 4-chloro-3-methylbuta-1,2-diene. This is the only report of a 4-chloroallene being obtained from this reaction, no infra-red or other spectral data was given. Results by Hennion and Boisselle27 in 1961 throw considerable doubt on the work of Bergmann and Herman, since tertiary acetylenic chlorides were obtained in good yields.
Jacobs and Brill28 gave the first authentic report for the preparation of a 1-bromoallene in 1953. They refluxed propargyl bromide with cuprous bromide and obtained the allenic bromide by careful fractionation.

\[
\text{BrCH}_2 - \text{C} = \text{CH} \xrightarrow{\text{CuBr}} \text{H}_2\text{C} = \text{C} = \text{CHBr}
\]

An arylallene bromide was prepared in 1960 by Pansevich-Kolyada29, he reacted 1,1-diphenylprop-1-ol with bromine in different solvents and was able to prepare 1-bromo-3,3-diphenylpropa-1,2-diene. No yields or spectral data were given and the only evidence of the structure is bromine analysis and the fact that oxidation gives benzophenone. His quoted melting point is some 20\textdegree less than that obtained in the present work (61\textdegree cf. 81\textdegree).

\[
\begin{align*}
\text{Ph}_2\text{C} - \text{CH}_2\text{CH}_3 \xrightarrow{\text{Br}_2, 80\% \text{HAc}} & \text{Ph}_2\text{C-CHBrCH}_3 \xrightarrow{\text{Br}_2, \text{UV}} \left\{ \text{Ph}_2\text{C-CHBrCH}_2\text{Br} \right\} \\
\rightarrow & \left\{ \text{Ph}_2\text{CBr.CHBrCH}_2\text{Br} \right\} \rightarrow \text{Ph}_2\text{C} + \text{CHBrCH}_2\text{Br} \xrightarrow{\text{KOH}} \text{Ph}_2\text{C} = \text{C} = \text{CHBr}
\end{align*}
\]

Allenic iodides have received very little attention prior to the work by Baker, Landor, Landor and Patel30. In 1884 Henry31 refluxed propargyl bromide with sodium iodide in acetone and obtained what he thought was propargyl iodide.
In light of later work by Jacobs and Brill 28 it seems likely that Henry had a mixture of allene iodide and propargyl iodide. These latter workers prepared an equilibrium mixture of iodoallene in different ways

1) \(\text{BrCH}_2\text{C} = \text{CH} + \text{NaI} \) in anhydrous ethonol, 3 days, room temperature.

2) \(\text{BrCH}_2\text{C} = \text{CH} + \text{NaI} \) in acetone below 20°

3) \(\text{BrHC} = \text{C} = \text{CH}_2 + \text{NaI} \) in acetone, reflux 20 hrs.

Respective yields were 31, 23, and 34% of a mixture which in each case had the same composition, (verified by infra-red spectra). This led the authors to conclude that the reaction was via the acetylenic iodide which then rearranged to give allene-acetylene equilibrium.

\[
\begin{align*}
\text{CH} & \equiv \text{C} - \text{CH}_2\text{Br} & \xrightarrow{\text{NaI}} & \text{CH} \equiv \text{C} - \text{CH}_2\text{I} \\
\text{CH}_2 & = \text{C} = \text{CHBr} & \xrightarrow{\text{NaI}} & \text{CH}_2 = \text{C} = \text{CHI}
\end{align*}
\]

In 1955 Hatch and Mangold 32 confirmed the presence of allene in samples of propargyl iodide prepared in this way. They showed that the allene band was present in the infra-red spectra of the product but absent in the starting material. Jacobs and Petty 16 reacted 3-bromo-3-methylbut-1-yne with sodium iodide in acetone and after 3 days got 68%
of a product which was mainly the 1,3-diene but contained some allene and acetylene, attempts at distillation led to explosions.

The experiment was repeated reducing the time to 4 hr. when 38\% of a product believed to be mainly allenic iodide was obtained.

\[
\begin{align*}
\text{CH}_3\text{C} \equiv \text{CH} & \xrightarrow{\text{NaI}} \text{CH}_3\text{C} \equiv \text{CH} \xrightarrow{} \text{CH}_3\text{C} = \text{C} = \text{CHI}
\end{align*}
\]

Favorskaya \(^2\) obtained a mixture of 1-iodo-3-methylbuta-1,2-diene and 1-iodo-3-methylbuta-1,3-diene on reacting 3-methylbut-1-yn-3-ol with hydriodic acid.

Baker, Landor, Landor and Patel \(^3\) reacted secondary propargyl alcohols with triphenylphosphite methiodide in dimethylformamide and obtained good yields of pure allenic iodides. Until the present work there has been no method of preparing pure 1-iodo-3,3-dialkylallenes.

A number of authors \(^3\) - \(^4\) have studied the addition of halogens and haloacids to conjugated enynes and have found allenes among the products. None of these methods are of preparative importance.

\[
\begin{align*}
\text{HC} \equiv \text{C} - \text{CH} = \text{CH}_2 & \xrightarrow{\text{HX}} \text{H}_2\text{C} = \text{C} = \text{CH} - \text{CH}_2\text{X} \\
\text{HC} \equiv \text{C} - \text{CH} = \text{CH}_2 & \xrightarrow{\text{X}_2} \text{XCH}_2 - \text{HC} = \text{C} = \text{CHX} + \text{others}
\end{align*}
\]
CYANOALLENES AND CYANOACETYLENES.

Cyanoacetylenes were first synthesised in 1915 by Grignard \(^41\) and his co-workers, they reacted cyanogen chloride with acetylenic Grignard compounds,

\[
R - C \equiv CMgBr + CICN \rightarrow R - C \equiv C - CN
\]

This remained for many years the only method of obtaining such compounds. In 1946 Johnson \(^42\) attempted to prepare cyanoacetylenes from the corresponding haloacetylenes, he reacted 1,4-dibromobut-2-yne and 1,4-dichlorobut-2-yne with cuprous or potassium cyanides and found that no acetylenic cyanide was formed although extensive reaction and decomposition took place.

Newman and Wotiz \(^43\) first prepared cyanoacetylenes from the corresponding haloacetylenes in 1949. They found that haloacetylenes with at least three methylene groups between the point of unsaturation and the halogen atom, would undergo exchange when heated in acetone with potassium or sodium iodide, to give the corresponding iodoacetylene.
This iodide was then refluxed with acetone/water solution of potassium cyanide when the cyanoacetylene resulted.

\[C_2H_5-C \equiv C-(CH_2)_3-I + \text{NaI} \rightarrow C_2H_5-C \equiv C-(CH_2)_3-CN \]

The same authors also prepared 1-cyanohept-2-yne by refluxing a mixture of cuprous cyanide and 1-bromohept-2-yne in xylene for 1 hr., the same bromide gave no cyanide when treated with aqueous potassium cyanide.

\[C_4H_9-C \equiv C-CH_2-Br + \text{CuCN} \rightarrow C_4H_9-C \equiv C-CH_2-CN \]

In 1953 Eglington and Whiting obtained 5-cyanopent-1-yne in 75% yield by refluxing an ethanolic solution of potassium cyanide with pent-4-ynyltoluene-p-sulphonate.

\[CH \equiv C-(CH_2)_3-O-SO_2-CH_3 + \text{KCN} \rightarrow HC \equiv C-(CH_2)_3-CN \]

Wotiz and Hudack obtained a mixture from the reaction of 1-bromo-oct-2-yne and cuprous cyanide in p-cymene which was thought to consist of 1-cyano-oct-2-yne as the main product and some 3-cyano-octa-1,2-diene. The only evidence for the latter was a split band at 1960 cm\(^{-1}\) in the infra-red spectrum. Later work has shown that 1-cyanoallenes do not have a split allene band, and it is therefore likely that more than one allene was present.
The work of Wotz and Hudack 45 was repeated in 1959 by Schlogl and Orgler 47 and they obtained only 32% of 1-cyano-oct-2-yne.

In 1957 Smith and Swenson 48 prepared what was probably the first pure allene cyanide, but obtained only a 4% overall yield. They prepared the acetylenic carbinol pent-2-yn-3-ol from Grignard compound of methylacetylene and acetaldehyde, this was reacted with phosphorus tribromide and gave 3-bromopent-2-yn. The bromide was refluxed with cuprous cyanide in dry benzene giving a mixture of the two cyanides, 2-cyanopent-2-yn and 2-cyanopenta-2,3-diene, they were unable to separate this mixture by physical means but found that on treatment of 3-cyanopent-2-yn with sodium methoxide rearrangement to the allene took place.

\[
\begin{align*}
\text{CH}_3-\text{C} & \equiv \text{C} - \text{MgBr} & \text{CH}_3-\text{CHO} & \rightarrow \text{CH}_3-\text{C} \equiv \text{C} - \text{CHCH}_3^\text{OH} \\
\text{PBr}_3 & \rightarrow \text{CH}_3-\text{C} \equiv \text{C} - \text{CHCH}_3^\text{Br} & \text{CuCN} & \rightarrow \text{CH}_3-\text{C} \equiv \text{C} - \text{CHCH}_3^\text{CN} \\
& + & \text{CH}_3-\text{C} = \text{C} = \text{C} - \text{CN} \\
\text{NaOMe} & \rightarrow \text{CH}_2\text{C} = \text{C} = \text{C} - \text{CH}_3
\end{align*}
\]
Schlogl and Orgler proposed an allene cyanide as an unisolated intermediate in their preparation of octan-1, 2,3-tricarboxylic acid:

\[
\begin{align*}
\ce{C5H11 C≡C - CH2N(CH3)3+} &\xrightarrow{\text{KCN}} \ce{C5H11 - C≡C - CH2CN} \\
\ce{C5H11 - C = C = CHCN}
\end{align*}
\]

This addition of hydrogen cyanide to the allenic system is rather surprising and in the present work no such addition has been observed.

Kurtz, Gold and Disselnkotter prepared a mixture of 1-cyanoallene and 3-cyanoprop-1-yne by refluxing a mixture of propargyl chloride, cuprous chloride and hydrogen cyanide:

\[
\begin{align*}
\ce{CH ≡ C - CH2Cl} &\xrightarrow{\text{HCl \CuCl}} \ce{CH ≡ C - CH2CN} \\
\ce{CH2 = C = CHCN}
\end{align*}
\]

-24-
A similar reaction using propargyl bromide and cuprous cyanide was carried out in 1961 by Reddy, Mandell and Goldstein who obtained the same mixture, these workers interpreted the N.M.R. spectrum of the mixture as being consistent with the 3-cyano-prop-1-yne but the typical allene band at 1950 cm$^{-1}$ in the infra-red spectrum was not explained. (see discussion p. 97)

Laws prepared a series of 1-cyanoallenes using two methods (a) tertiary acetylenic alcohols with concentrated hydrochloric acid, cuprous cyanide and potassium cyanide gave a mixture of 1-cyanoallene and 1-chloroallene which could be separated by distillation.

\[
\begin{align*}
R & \quad C - C = CH \\
& \quad (b) \quad R'/\ \ OH
\end{align*}
\]

(b) Secondary acetylenic alcohols were converted to the 3-chloroacetylenes which were treated with cuprous cyanide in benzene to give cyanoallenes.
These reactions gave only poor yields of impure allene cyanides and will be discussed in the light of the present work.

In 1965 Brannock and Burpitt \(^5\) made a 3,4-pentadiene-nitrile by a novel type of Claisen rearrangement.

\[
\text{CH}_3 (\text{CH}_2)_2 \text{CO.NH.CH}_2 \text{C} = \text{CH} \xrightarrow{\text{COCl}} \text{CH}_3 \text{CH}_2 - \text{C} \xrightarrow{\text{NET}_2} \text{CH}_2 \text{C} = \text{C} \xrightarrow{\text{HC} \equiv \text{C}} \text{CH}_2
\]

They gave infra-red and N.M.R. data which supported this structure.
ENAMINES FROM ALLENIC AND ACETYLENIC NITRILES.

Enamines 53 have come into prominence in recent years and provide interesting new paths in organic synthesis, particularly since their alkylation reactions developed by Stork 54. The enamines derived from reaction of simple cyclic ketones with simple amines are well known in the literature, but consist mainly of permutations of only a few ketones with a limited number of amines.

The first general synthesis of enamines was discovered by Mannich and Davidson 55 in 1936, they found that secondary amines and aldehydes reacted in the cold, in presence of potassium carbonate to give a 1,1-diamine, which on distillation yielded an enamine.

\[CH_3CH_2CH_2CHO + 2 \text{N} \xrightarrow{K_2CO_3} CH_3CH_2CH-C\text{CH}_2 \text{N} \]

In case of ketones it was found necessary to use a higher temperature and calcium oxide. This reaction was not found to be successful with many ketones e.g. diethylketone, acetophenone, benzophenone etc. Aliphatic ketones often gave an aldol condensation product.
In 1955 Leonard, Hay, Fulmer and Gash 56 developed a method of oxidising cyclic amines by mercuric acetate to give cyclic enamines.

![Chemical structure diagram]

Addition of amines to activated double bonds have been known for a long time e.g. Holley & Holley 57 in 1949 added methylamine to ethyl acrylate and obtained ethyl \(\beta \)-methylaminopropionate

\[
\text{H}_2\text{C} = \text{CHCOOEt} + \text{MeNH}_2 \rightarrow \text{MeNH.CH}_2\text{CH}_2\text{COOEt}
\]

and in 1958 Eglington, Jones, Mansfield and Whiting 58 applied this reaction to an activated allene double bond to obtain an enamine from an allene

\[
\text{H}_2\text{C} = \text{C} = \text{CHCOOEt} + \text{N}
\]

thus obtaining ethyl-\(\beta \)-piperidinocrotonate from ethyl-buta-2,3-dienoate.

In 1964 Stirling 59 investigated the addition of sulphur nucleophiles to allenic and acetylenic sulphones.
He assigned structure (A) on the basis of n.m.r. spectra and assumed isomerisation of the terminal acetylenic sulphone to the allene before reaction. He states that the position of protonation of the allene (C3) is in accordance with "Ingolds 60 rule" i.e., protonation occurs rapidly to give the isomer of lesser thermodynamic stability; and since the sulphonyl group is a powerful electron acceptor it distorts the electron distribution over carbons 1, 2 and 3 so that the electron density is greatest at C3. However it should be noted that Ingolds rule is applied to mesomeric anions and the allene system is not a system of this type.

He found that when the sulphone (D) was treated trans addition to give the cis product was observed and assigned
structure (C). In the many examples of addition of thiols to acetylenes which have been studied, addition was always found to be trans, in spite of variation of adduct and substrate. This was accounted for on the basis of maximum separation of the entering nucleophile, and the electron pair displaced from the triple bond, together with the known configurational stability of the vinyl carbanions.

Isomers (A) and (C) were transformed to the trans product (B) by sodium methoxide, thus giving the more thermodynamically stable product.

Continuing his studies Stirling reacted phenylsulphonylpropadiene with dibenzylamine and found that trans-2-dibenzylamino-1-phenyl-sulphonylpropene was the sole product.

\[
\begin{align*}
\text{PhSO}_2\text{CH} = \text{C} = \text{CH}_2 & \quad \text{HN}(\text{CH}_2\text{Ph})_2 \\
\text{PhSO}_2 & \quad \text{Me} \\
\text{H} & \quad \text{C} = \text{C} \quad \text{N}(\text{CH}_2\text{Ph})_2
\end{align*}
\]

His interpretation of these results was that this could be obtained by addition at \(C_2\) followed by protonation at \(C_3\). This was shown to be unlikely by use of deuterium labeled dibenzylamine, n.m.r. analysis of the product showed that "scrambling" had taken place.
If \(\text{PhSO}_2\overset{\cdot}{\underset{\cdot}{C}} = \overset{\cdot}{\underset{\cdot}{N-}}(\text{CH}_2\text{Ph})_2 \) was reacted with \(\text{PhCH}_2\text{ND} \) little scrambling occurs showing that no hydrogen-deuterium exchange takes place, hence the deuterium must be introduced during the actual addition mechanism and cannot be introduced by addition to a mesomorphic carbanion at a later stage, hence an internal proton transfer mechanism is almost certain. Our results throw a new light on this work and the full implications are discussed later.
GRIGNARD REACTIONS
OF ALLENES AND ACETYLENES

In 1935 it was reported by Ford, Thompson and Marvel\(^7\) that allenic compounds were amongst the products from the Grignard compound of the acetylenic bromide (I) with water or carbon dioxide.

\[
\begin{align*}
(CH_3)_3 C - C \equiv C - C - Br + Mg & \rightarrow (CH_3)_3 C - C \equiv C - MgBr \\
Ph & (CH_3)_3 C - C \equiv C - MgBr
\end{align*}
\]

(a) \(+ CO_2 \)

\[
\begin{align*}
(CH_3)_3 C - C = C = C & \equiv COOH \\
\text{Ph} & C (CH_3)_3
\end{align*}
\]

(b) \(+ H_2O \)

\[
\begin{align*}
(CH_3)_3 C - CH = C = C & \equiv C - COOH \\
\text{Ph} & C (CH_3)_3
\end{align*}
\]

The structures were identified by the analysis of ozonolysis products. It is possible, however, that the allenic products were due to presence of undetected allenic bromide in the starting product (see p.2).

Danehy and Nieuwland\(^6\) reported coupling of acetylenic Grignard compounds, i.e.

\[
R - C \equiv C - MgBr \rightarrow R - C = C - C \equiv C - R
\]

and later work by Campbell and Eby\(^5\) showed that tertiary acetylenic chlorides coupled easily with alkylmagnesium compounds to give acetylenic hydrocarbons

\[
R - C \equiv C - CCl R_2 + R'MgBr \rightarrow R - C \equiv C - CR_2R'
\]

Structures were proven by physical constants, analysis and hydrogenation; however, since spectroscopic data was not
available the presence of allenes cannot be ruled out. Zakhavova referred the presence of allenic and acetylenic isomers in the product from the reaction of ethyl magnesium bromide with 3-chloro-3-methyl-3-ethyl-hex-4-yne.

\[
\text{Me} \quad \text{EtMgBr} \quad \text{Me} \quad \text{Me} \quad \text{Me}
\]

\[
\text{Me} - \text{C} = \text{C} - \text{C} - \text{Cl} \quad \xrightarrow{\text{Et}} \quad \text{Me} - \text{C} = \text{C} - \text{C} - \text{Et} + \quad \text{C} = \text{C} - \text{Et}
\]

Wotz in 1951 showed that a mixture of acetylenic and allenic hydrocarbons was obtained on hydrolysis of the Grignard reagent from bromopropynes.

\[
R - \text{C} = \text{C} - \text{CH}_2\text{MgBr} \quad \xrightarrow{\text{H}_2\text{O}} \quad R - \text{CH} = \text{C} = \text{CH}_2 + R - \text{C} = \text{C} - \text{CH}_3
\]

\[
R - \text{CH} - \text{C} = \text{CH} \quad \xrightarrow{\text{H}_2\text{O}} \quad \text{RCH} = \text{C} = \text{CH}_2 + \text{RCH}_2 - \text{C} = \text{CH}
\]

He suggested the rearrangements could proceed via the following scheme:

\[
R - \text{C} = \text{C} - \text{CH}_2\text{MgBr} \quad \xrightarrow{\text{MgBr} \quad \text{H}_2\text{O}} \quad R = \text{C} = \text{C}-\text{CH}_3
\]

and

\[
R - \text{CH} - \text{C} = \text{CH} \quad \xrightarrow{\text{H}_2\text{O}} \quad \text{RCH}_2\text{C} = \text{CH}
\]

in each case the products were identified by infra-red spectroscopy.

A similar reaction of the Grignard compound with carbon dioxide gave rise to mixtures of acetylenic and
The acids were separated by fractional crystallization and characterised by physical constants, ozonolysis and infrared spectra. Whereas 2-bromooct-3-yn gave only 9% of the allenic acid, 2-bromo-2-methyloct-3-yn gave only the allenic acid, this was explained on the basis of steric effects.

Propargylic bromides were shown to be coupled with acetylenic Grignard compounds by Gensler and Thomas, they used a cuprous chloride catalyst and prepared pentadeca-6,9-diyne and 1-chlorohexadeca-7,10-diyne from 1-bromooct-2-yn and the corresponding Grignard compound.

Gaudemar in 1956 reacted propargyl bromide with alkyl Grignard compounds at -10 to -15° in etherial solution, he found that mixtures of allenic and acetylenic hydrocarbons were formed in good yield (80%).

Yields of allene were Bu 80%, Bu 80%, Am 75%, Ph 35%.

He reported that propargyl Grignard compounds condensed
with aldehydes or ketones to give alcohols which contained no CH$_2$C\equivCC(OH)RR' and with carbon dioxide to give two products: HC≡C-CH$_2$COOH and a compound which was undoubtedly the allene.

Serratosa71b reported that propargyl bromide reacted with alkyl magnesium bromides in ether below 0° to give initially a bromopropargyl magnesium bromide, this subsequently formed an allenic carbene which added to another molecule of the alkyl Grignard to give an allene Grignard which on hydrolysis gave an allene hydrocarbon.

\[\text{RMgBr + BrCH}_2\text{C≡CH} \rightarrow \text{BrCH}_2\text{C≡CMgBr} \rightarrow \text{CH}_2\text{=C=C} : \]

Goodson72 showed that allenic halides could be made to form Grignard compounds when reacted with magnesium in tetrahydrofuran, he found them reactive to water and solid carbon dioxide but not to alkylhalides.

He used the allenic chloride, 2,2,6-trimethylcyclohexylidenevinyl chloride and, on reacting its Grignard complex with water, obtained a mixture of 1-ethynyl-2,2,6-trimethylcyclohexane and 1-vinylidene-2,2,6-trimethylcyclohexane in about 35% yield.
Reaction with carbon dioxide led to a mixture of allenic and acetylenic acids.

Patel4 obtained similar results using 2,2,6-trimethyl-cyclohexylidenevinyl bromide.
PART II

DISCUSSION.
Preparation of Haloallenes.

The reaction of 3,3-dialkylprop-1-yn-3-ols with hydrogen bromide was first carried out by Favorskaya in 1940. She used hydrobromic acid and 3-methylbut-1-yn-3-ol and stated that only 1-bromo-3-methylbuta-1,3-diene was obtained.

\[\text{Me}_2\text{C(OH)C} = \text{CH} \rightarrow \text{CH}_2\text{C(Me)} - \text{CH} = \text{CHBr} \]

Moulin reported that using dry hydrogen bromide the product was a mixture of 1,3-dibromo-3-methylbut-1-ene and 3-methyl-1,2,3-tribromobutane. These results are not consistent with the present work.

Patel and Whiter showed that the reaction of hydrobromic acid with acetylenic carbinols gives impure 1-bromoallenes contaminated by unsaturated carbonyl compounds as shown by an infra-red band at 1685 cm\(^{-1}\) and ultra-violet absorption at 224-228 m\(\mu\). The reaction did not go to completion even after shaking for 2 weeks. However in the presence of cuprous bromide, ammonium bromide and copper powder as catalysts goods yields of 1-bromoallenes were obtained after 1-6 hr. preferably at a temperature of 40\(^\circ\).

Further work described in this thesis has shown that excellent yields of pure 1-bromoallenes may be obtained at room temperature (25-27\(^\circ\)) by the following procedure.
1. 3-Methylbut-1-yn-3-ol, 3-methylpent-1-yn-3-ol and 3-ethylpent-1-yn-3-ol best gave 1-bromoallenes as follows:-

The acetylenic alcohol (1 eq.) was added over 5 min. to a stirred mixture of cuprous bromide (0.5 equiv.), ammonium bromide (0.5 equiv.), copper powder (lg.) and 45% or 48% hydrobromic acid (2 eq.)

The mixture was vigorously stirred at room temperature (25 - 27°C), but stirring was interrupted from time to time to allow a lighter organic layer to separate. The organic layer was tested by infra-red spectroscopy and this proved to be the most convenient method of following the reaction. The strong 3400 cm⁻¹ (OH) band being replaced by a strong 1950 cm⁻¹ (C=C=C) absorption band. When the reaction was complete the mixture was decanted through a sintered glass filter funnel into a separating funnel and the lower layer of acid removed. The remaining upper layer of 1-bromoallene was washed several times with 45% hydrobromic acid until the acid washings no longer showed a purple colour, indicating that all the copper salts had been removed. After drying over a mixture of magnesium sulphate and sodium carbonate, filtration gave 85 - 95% of the 1-bromoallene. The products gave only one peak on g.l.c. and the infra-red spectra contained no bands in the 1600 - 1700 cm⁻¹ region (C=C).
Reaction times varied between $\frac{1}{2} - 2\frac{1}{2}$ hr. depending on (a) the efficiency of the stirring, (b) the scale of the reaction and (c) the substitution on the alcohol. The optimum conditions are shown in the table.

<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Bromo-3-methylbuta-1,2-diene</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>1-Bromo-3-methylpenta-1,2-diene</td>
<td>1</td>
</tr>
<tr>
<td>1-Bromo-3-ethylpenta-1,2-diene</td>
<td>1\frac{1}{2}</td>
</tr>
</tbody>
</table>

The reaction time was considerably longer if the reagents were not stirred extremely vigorously; stirring normally regarded as efficient was found to be inadequate. This is probably due to the fact that the reaction mixture tends to separate into an aqueous and non aqueous phase, the reaction taking place in the aqueous phase.

It was surprising that shaking did not give good results (except on a small scale); this was probably due to the fact that the shakers employed had only a slow oscillation time. The use of a supersonic dispenser would probably result in even shorter reaction times. Large scale reactions took longer than small scale reactions due to the fact that efficient mixing is more difficult to achieve on a large scale.

Acetylenic alcohols with larger substituents are less soluble in hydrobromic acid and consequently take longer to react under standard conditions. Solutions of hydrobromic
acid in glacial acetic acid resulted in faster reaction times, but the progress of the reaction was difficult to follow, the products were much inferior in purity and separation of the products from acetic acid was sometimes difficult.

2. More vigorous conditions were employed with alcohols with larger substituents, e.g. 3,4,4-trimethylpent-1-yn-3-ol and 3,5-dimethylhex-1-yn-3-ol - cuprous bromide (0.75 equiv.), ammonium bromide (0.5 equiv.) and 55-60% hydrobromic acid (2.5-3 equiv.) with temperatures up to 400 were used. Mono and di-isopropylethynyl carbinols tend to give 1,4-dienes as byproducts and in these cases it is better to keep the temperature below 300 and use slightly longer reaction times.

3. Secondary acetylenic alcohols of higher molecular weight were best converted to 1-bromoallenes by use of 60% hydrobromic acid and shaking for 12 - 24 hr. The resulting monoalkylbromoallenes are contaminated with 5 - 10% of the corresponding acetylenic bromides which are difficult to remove by fractionation but do not usually interfere in subsequent reactions.

Most of the simple 3,3-dialkylbromoallenes were obtained in high yields within two hours of starting the reaction and of such high purity that no further purification was necessary; they can now be considered to be readily available starting materials.
Whiter attempted to prepare arylbromoallenes but met with only moderate success. Although the main products obtained by Whiter were shown to be bromoallenes they contained sufficient impurities so that no reliable analyses or spectral data could be recorded. Attempts at purification of these arylbromoallenes led to fast decay of the allenic band at 1950 cm^{-1} in the infra-red spectra indicating that these compounds were unstable.

In the present work three arylbromoallenes were prepared in excellent yield and high purity and the compounds were found to be far more stable than had previously been believed. (A sample of 1-bromo-3,3-diphenylpropa-1,2-diene has been kept unchanged in the refrigerator for several months.)

It was reasoned that the solution to the problem of preparing these compounds lay in preventing the allenic bromide, once formed, from reacting further with the hydrogen bromide. Removal of the product immediately after its formation was achieved by the presence of an immiscible, non-polar solvent which does not react with hydrogen bromide. Light petroleum ether was chosen as the arylbromoallenes are very soluble in this solvent whereas the acetylinic carbinols used as starting materials are considerably less soluble.
In addition this solvent is easily removed after completion of the reaction. 60\% hydrobromic acid was used in order to complete the reaction as quickly as possible, the method being as follows:-

An ice cold mixture of cuprous bromide (1 equiv.), ammonium bromide (1 equiv.), copper powder (1 g., catalytic) and 60\% hydrobromic acid (4 equiv.) was stirred and a suspension of the acetylenic carbinol (1 equiv.) in light petroleum ether was added. The reaction was stirred vigorously at 0° and the upper layer was examined by infra-red spectroscopy in the usual manner. Reaction was complete after approximately 1 hr. and the organic layer was separated from the aqueous part and the latter was extracted with light petroleum, the petroleum fractions were combined, dried by shaking with magnesium sulphate and evaporation gave the pure 1-bromoallene.

Infra-red and ultra-violet spectral data are shown in Table I. All the 1-bromoallenes show an absorption maximum at 204-6 m\(\mu\) in the ultra-violet spectrum (Whiter reported 201-2 m\(\mu\) but the present data has been carefully checked and is considered more reliable.)
TABLE I

Infra-red and Ultra-violet Absorptions of Arylbromoallenes.

<table>
<thead>
<tr>
<th>R, R'</th>
<th>Yield</th>
<th>I.R.No.</th>
<th>γ_{max} cm$^{-1}$</th>
<th>λ_{max}</th>
<th>ε</th>
<th>λ_{max}</th>
<th>ε</th>
<th>λ_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph H</td>
<td>95%</td>
<td>1 1950, 1500, 1450, 1190, 756, 705, 685</td>
<td>205</td>
<td>17,730</td>
<td>268</td>
<td>14,210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph Me</td>
<td>90%</td>
<td>2 1955, 1500, 1450, 1158, 765, 730, 690</td>
<td>206</td>
<td>16,860</td>
<td>272</td>
<td>11,570</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph Ph</td>
<td>84%</td>
<td>3 1945, 1600, 780, 710, 685.</td>
<td>205</td>
<td>30,340</td>
<td>230 sh</td>
<td>14,200</td>
<td>281</td>
<td>12,040</td>
</tr>
</tbody>
</table>

Infra-red and ultra-violet Absorptions of other 1-Bromoallenes.

<table>
<thead>
<tr>
<th>R, R'</th>
<th>Yield</th>
<th>I.R.No.</th>
<th>γ_{max} cm$^{-1}$</th>
<th>λ_{max}</th>
<th>ε</th>
<th>λ_{max}</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me H</td>
<td>41%</td>
<td>1950, 1195, 840, 680</td>
<td>204</td>
<td>5,200</td>
<td>215sh</td>
<td>3,500</td>
<td></td>
</tr>
<tr>
<td>H Pr</td>
<td>67%</td>
<td>1950, 1190, 830, 690</td>
<td>206</td>
<td>7,200</td>
<td>215sh</td>
<td>4,700</td>
<td></td>
</tr>
<tr>
<td>Me Et</td>
<td>90%</td>
<td>1950, 1165, 730</td>
<td>205</td>
<td>9,570</td>
<td>217-23sh</td>
<td>6,150</td>
<td></td>
</tr>
<tr>
<td>Me But</td>
<td>78%</td>
<td>1950, 1155, 728</td>
<td>206</td>
<td>9,000</td>
<td>224</td>
<td>6,600</td>
<td></td>
</tr>
<tr>
<td>Bui Bui</td>
<td>52%</td>
<td>1965, 1165, 720</td>
<td>206</td>
<td>9,090</td>
<td>230</td>
<td>9,000</td>
<td></td>
</tr>
</tbody>
</table>
A shoulder at 215 m\(\mu\) in the ultra-violet spectrum is typical for 3-monoalkyl-1-bromoallenes and this is bathochromically displaced to 217-23 m\(\mu\) in the ultra violet spectrum of 3,3-dialkyl-1-bromoallenes, 1-bromo-3,4,4-trimethylpenta-1,2-diene shows a clear maximum at 224 m\(\mu\). It is surprising that haloallenes show ultra-violet absorption in this region at all as the only conjugation is between the unbonded electrons of the bromine and the 1,2-\(\pi\) electrons as in vinyl bromide which does not show a maximum or shoulder in the ultra-violet spectrum.

\[
\begin{align*}
\text{C} & \quad \text{C} \\
\text{Br} & \\
\end{align*}
\]

It is considered that there is a non-bonded interaction between the bromine 3d. electrons and the 2,3-\(\pi\) electron system.

\[
\begin{align*}
\text{C - C} & \quad \text{C} \\
\text{Br} & \\
\end{align*}
\]

This interaction may also account for the unusual intensity of the 1950-60 cm\(^{-1}\) absorption in the infra-red spectrum (page 69).
Mechanism of 1-bromoallene formation.

Evans75 has shown that the reaction catalysed by cuprous bromide is highly stereospecific and that the configuration of the resulting bromoallene is the same as that of the starting acetylenic carbinol. This was done by reacting the Grignard compound of the bromide with carbon dioxide and comparing the allenic acid produced with the acid from carbonation of an allenic chloride of known configuration.

\begin{align*}
(+)-\text{alcohol} & \rightarrow (-) \text{-allenic bromide} \rightarrow (-) \text{allenic acid.} \\
(-)-\text{alcohol} & \rightarrow (+) \text{-allenic bromide} \rightarrow (+) \text{allenic acid.}
\end{align*}

R(-)-alcohol \rightarrow (S)-(\text{-})\text{-allenic chloride} \rightarrow (+)\text{-allenic acid}

therefore (+)-allenic bromide has the S configuration.

Acetylenic carbinols and cuprous salts usually form cuprous acetylides; under strong acid conditions cuprous acetylides are usually decomposed but there was no evidence available which excluded the transient formation of cuprous acetylides during the reaction. To test this 1-deuteroethynyl carbinols were prepared and converted to 1-bromo-1-deuteroallenes in isotopically normal aqueous hydrobromic acid.
No hydrogen-deuterium exchange took place and this excludes the possibility of transient formation of cuprous acetylene during the reaction.

It has been established that the cuprous bromide plays an essential role in the reaction mechanism and the only alternative to the formation of a cuprous acetylide is the formation of a \(\sigma^- \)-Cu complex.

Three possible reaction mechanisms which involve a \(\sigma^- \)-Cu complex may be considered:

(i) Formation of bromoacetylene (\(S_N^1 \)) followed by rearrangement to bromoallene (\(S_N^1 \)).
The acetylenic bromide could then undergo S_N^{1}' reaction as follows:

\[
\begin{array}{c}
\text{R} \\
\text{C} - \text{C} \equiv \text{CH} \\
\text{R'} \downarrow \text{Br} \rightarrow \text{Cu-Br} \\
\text{Br}
\end{array}
\quad \rightarrow
\begin{array}{c}
\text{R} \\
\text{C} = \text{C} = \text{C} \\
\text{H} \downarrow \\
\text{Br}
\end{array}
\]

Such a path may be discounted on the following grounds.

(a) Such a reaction would be expected to give racimisation or inversion, not retention of configuration.

(b) Rearrangements of 3-haloacetylenes to 1-haloallenes have been reported $^{25, 28}$, but reactions are slow and do not go to completion. Only traces of 3-bromoacetylenes have been encountered in this work either during or on completion of the reaction ($< 1-2\%$).

(c) As there is no build up of 3-bromoacetylene during the reaction the first stage must be considerably slower than the second stage and therefore rate determining. In that case addition of cuprous salt should not affect the overall rate of reaction, whereas in fact it is known to produce a 10-100 fold increase in reaction rate.
(d) The neopentylcarbinium ion usually undergoes a Wagner-Meerwein type of rearrangement. In 3-tert-butylethynyl carbinols an S_{N1} reaction would lead to a neopentylcarbinium ion, and the expected rearrangement products are never found, indeed compounds of this type usually give the least by-products.

\[
\begin{align*}
\text{CH}_3 - & \text{C} - \text{C} - \text{C} \equiv \text{CH} & \text{SN}_1 & \text{CH}_3 - & \text{C} - \text{C} - \text{C} \equiv \text{CH} \\
\text{CH}_3 & & & \text{CH}_3 & & \text{CH}_3 & & \text{CH}_3 & \end{align*}
\]

(ii) the S_{N2}' mechanism

This would lead to retention of configuration, since the two sets of π bonds being at right angles to each other, the
bromine ion would be required to attack from the same side as the protonated hydroxyl group leaves. However this mechanism does not involve cuprous bromide which has been shown to play an important part in the reaction.

(iii) The S_N mechanism.

This mechanism seems to fit the known facts best, and utilize the complex of copper which is known to be formed in strong acid solution.

$$\text{HBr + CuBr} \rightarrow \text{H}^+\text{[CuBr$_2$]}^-$$

i.e.

\[\text{R}^\cdot\text{C-}\text{C=CH} \quad \xrightarrow{S_N} \quad \text{R}^\cdot\text{C=C=CH} \quad \text{Cu-}\text{Br} \quad + \text{HO=CuBr} \]

It has been shown by Demetriou that 20% hydrobromic acid gives incomplete reaction even after several days, and also leads to exchange of acetylenic proton with deuterium in D$_2$O/HBr. Cuprous acetylide formation therefore slows down the reaction, presumably by competing with the π-Cu complex formation. The basic copper bromide formed is probably reconverted to cuprous bromide by excess hydrobromic acid.

$$[\text{HO-} \text{Cu-Br}]^- + \text{HBr} \rightarrow [\text{CuBr}_2]^+ + \text{H}_2\text{O}$$
1,1-Dibromoallenes.

1,1-Dibromoallenes are reported for the first time in this work. Previously Roedig and Niedenbruck had prepared 1,1-dichloro-3,3-diphenylallenes by elimination of hydrogen chloride from 1,1,2-trichloroprop-2-enes with sodium ethoxide.

\[
\begin{align*}
\text{R} & \quad \text{CH} \quad \text{CCl} = \quad \text{CCl}_2 \quad \xrightarrow{\text{NaOEt}} \quad \text{R} \\
& \quad \text{R} \quad \text{R}
\end{align*}
\]

The starting materials for this reaction are not readily available.

1-Bromopropargylic alcohols were prepared by the action of sodium hypobromite on ethynylcarbinols. Best yields (~90%) and purest products were obtained by adding an ice cold solution of sodium hypobromite over 8 hr. to the ice cold acetylenic carbinol, and stirring vigorously all the time.

The 1-bromopropargyl alcohols were shown to be pure by infra-red spectra and gas liquid chromatography.
1-Bromo-3,3-dialkylprop-1-yn-3-ols with concentrated hydrobromic acid, cuprous bromide, ammonium bromide and copper gave products which contained the desired 1,1-dibromoallene, but which were not very pure. It was difficult to follow reaction by means of infra-red spectroscopy as the density of the starting material was such that two layers did not form easily. The reaction was therefore carried out in the presence of light petroleum ether which extracted the product as it was formed and prevented it from reacting further with hydrobromic acid.

Furthermore the light petroleum ether layer could easily be removed from the top of the reaction mixture for infra-red examination. 60% hydrobromic acid resulted in complete reaction in the shortest time; however, 1,1-dibromo-3-methylbuta-1,2-diene was best prepared by using 45% hydrobromic acid, as impurities tended to form rather easily with 60% hydrobromic acid.

The ultra-violet spectra of the 1,1-dibromoallenes is very similar to that of the 1-bromoallenes but the extinction coefficients are generally higher. (Table II).
Table II.

Ultra-violet spectra of 1,1-dibromoallenones.

\[
\begin{align*}
\text{R} & \quad \text{C} = \text{C} = \text{C} & \quad \text{Br} \\
\text{R'} & \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>I.R.No.</th>
<th>Yield</th>
<th>λ_{max}</th>
<th>ϵ</th>
<th>λ_{max}</th>
<th>ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Me</td>
<td>8</td>
<td>62%</td>
<td>206</td>
<td>13,040</td>
<td>215sh</td>
<td>9,990</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>9</td>
<td>67%</td>
<td>206</td>
<td>13,850</td>
<td>215sh</td>
<td>10,000</td>
</tr>
<tr>
<td>Me</td>
<td>But</td>
<td>10</td>
<td>69%</td>
<td>206</td>
<td>16,290</td>
<td>218sh</td>
<td>10,000</td>
</tr>
<tr>
<td>H</td>
<td>Prn</td>
<td>11</td>
<td>31%</td>
<td>205</td>
<td>10,000</td>
<td>215sh</td>
<td>7,700</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>12</td>
<td>60%</td>
<td>207</td>
<td>24,000</td>
<td>289</td>
<td>6,000</td>
</tr>
</tbody>
</table>
1,1-Dibromoallenes are probably formed by the same mechanism proposed for the formation of 1-bromoallenes.
3,3-Dialkyl-1-iodoallenones.

The first general preparative method for 1-iodoallenones was due to Baker, Landor, Landor and Patel. A solution of triphenylphosphinite methiodide in dimethylformamide with a secondary propargylic alcohol at 80 - 100° gave good yields of 1-iodoallenones. It was thought that the mechanism was $S_N^{i'}$ or S_N^2, both mechanisms requiring the formation of an alkoxyphosphorus intermediate as an essential step in the mechanism of the reaction.

$S_N^{i'}$

\[
\begin{align*}
R &\quad \text{H} \\
\text{Me} &\quad \text{OPh} \\
\text{PhO} &\quad \text{P}^+ \\
\text{I} &\quad \text{OPh}
\end{align*}
\]

\[
\begin{align*}
R &\quad \text{C} \equiv \text{CH} \\
\text{H} &\quad \text{OP}^+ \\
\text{PhO} &\quad \text{Me} \\
\text{OPh}
\end{align*}
\]

S_N^2

\[
\begin{align*}
\text{R} &\quad \text{C} \equiv \text{CH} \\
\text{H} &\quad \text{I}^- \\
\text{Ph-O-P} &\quad \text{OPh} \\
\text{Me}
\end{align*}
\]

\[
\begin{align*}
\text{R} &\quad \text{C} = \text{C} = \text{CHI} \\
\text{H}
\end{align*}
\]
These workers found that 3,3-diarylprop-1-yn-3-ols did not react with this reagent and this may be due to steric hindrance since the oxygen of the tertiary alcohol cannot approach close enough to the phosphorus of the tri-phenylphosphite methiodide for co-ordination to take place.

Other workers had tried to prepare allenic iodides by reacting propargylic bromides with sodium iodide in acetone, but had obtained only poor yields of very impure and unstable products. Favorskaya had obtained mixtures of 1-iodo-3-methylbuta-1,2-diene and 1-iodo-3-methylbuta-1,3-diene on reacting 3-methylbut-1-yn-3-ol with hydriodic acid but she was not able to isolate the allenic iodide.
As a consequence of the work on 1-bromoallenes and 1,1-dibromoallenes it was decided to see if the reaction could be extended to the preparation of 3,3-dialkyl-1-iodoallenes. 3,4,4-Trimethylpent-1-yn-3-ol was reacted with 45% hydriodic acid in presence of cuprous iodide, ammonium iodide and copper powder, some allene formation was found but the product was very dark and highly contaminated with impurities showing bands at 1650 cm\(^{-1}\) in the infra-red spectrum. These probably arose from attack of hydriodic acid on the iodoallene or by rearrangement reactions.

\[
\text{Bu}^+ \text{Me} / \text{C} = \text{C} = \text{C} \langle \begin{array}{c} \text{H} \\ \text{I} \end{array} \rangle \xrightarrow{\text{HI}} \text{Bu}^+ \text{Me} / \text{C} = \text{C} = \text{CI} \langle \begin{array}{c} \text{CH}_2 \\ \text{I} \end{array} \rangle
\]

\[
+ \text{Bu}^+ \text{Me} / \text{C} = \text{CI} = \text{CH}_2 \text{I}
\]

\[
+ \text{Bu}^+ \text{Me} / \text{CH} = \text{CI} = \text{CHI} \ etc.
\]

It was therefore decided to use the petroleum ether technique. 3,4,4-Trimethylpent-1-yn-3-ol in petroleum
ether with 45% hydriodic acid for 18 hr. gave 40% of the starting alcohol and 50% of the required allenic iodide. Increasing the strength of the hydriodic acid to 60% reduced the reaction time to 6 hr. and increased the yield of iodoallene to 76%.

Table III summarises the conditions used for these preparations. In all cases elevated temperatures (> 20°) lead to formation of by-products which are difficult to remove.
Table III.

Preparation of 1-Iodo-3,3-dialkylallenes.

![Chemical Structure](attachment:image)

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>Carbinol</th>
<th>CuI</th>
<th>HI</th>
<th>Moles</th>
<th>Moles</th>
<th>Moles</th>
<th>Strength</th>
<th>Time</th>
<th>Yield</th>
<th>I.R.No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Me</td>
<td>.2</td>
<td>.2</td>
<td>.4</td>
<td>45%</td>
<td>2 hr</td>
<td>Highly impure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Me</td>
<td>Me</td>
<td>.2</td>
<td>.2</td>
<td>.4</td>
<td>45%</td>
<td>2 hr</td>
<td>61%</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>.15</td>
<td>.15</td>
<td>.3</td>
<td>45%</td>
<td>2 hr</td>
<td>62</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Et</td>
<td>Et</td>
<td>.15</td>
<td>.15</td>
<td>.3</td>
<td>45%</td>
<td>3 hr</td>
<td>65</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Me</td>
<td>Bu⁺</td>
<td>.1</td>
<td>.1</td>
<td>.15</td>
<td>45%</td>
<td>18 hr</td>
<td>50</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Me</td>
<td>Bu⁺</td>
<td>.1</td>
<td>.1</td>
<td>.2</td>
<td>60%</td>
<td>6 hr</td>
<td>76</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **a.** no solvent used
- **b.** solvent partition method
- **c.** 50% recovered alcohol
It has previously been reported \(^3\) that 1-iodoallenes have no absorption in the ultra-violet region, but the present work shows that this report is erroneous and in fact mono-alkylallenes show an absorption at \(\lambda_{\text{max}}\) 207\(\mu\) and \(\lambda_{\text{max}}\) 235-9\(\mu\) whilst dialkyliodoallenes have a \(\lambda_{\text{max}}\) 206-7\(\mu\) and \(\lambda_{\text{max}}\) 246-8\(\mu\). Again it is not known what the cause of the absorption is, other than to postulate a similar non-bonded interaction to that of the allenic bromides. (Table IV.)
Table IV.

Ultra-violet Absorption of 1-Iodoallenes.

\[
\begin{align*}
R & \quad H \\
\text{C} = & \quad \text{C} \\
R' & \quad \text{I}
\end{align*}
\]

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>λ_{max}</th>
<th>ε</th>
<th>λ_{max}</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Me</td>
<td>207</td>
<td>14,000</td>
<td>235</td>
<td>5,000</td>
</tr>
<tr>
<td>H</td>
<td>Prn</td>
<td>207</td>
<td>12,700</td>
<td>239</td>
<td>4,000</td>
</tr>
<tr>
<td>Me</td>
<td>Me</td>
<td>206</td>
<td>15,875</td>
<td>246</td>
<td>9,525</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>206</td>
<td>15,560</td>
<td>247</td>
<td>6,645</td>
</tr>
<tr>
<td>Et</td>
<td>Et</td>
<td>207</td>
<td>17,053</td>
<td>248</td>
<td>6,963</td>
</tr>
<tr>
<td>Me</td>
<td>But</td>
<td>207</td>
<td>18,475</td>
<td>247</td>
<td>7,171</td>
</tr>
</tbody>
</table>
Mechanism.

By analogy with the mechanisms proposed for the formation of 1-bromoallenes it seems probable that the mechanism of formation of iodoallenes is as follows:

\[
S_{N,i}^{1'}
\]

Only traces (< 2%) of 3-iodoacetylenes are found in the products and in the reaction mixture.

The Infra-red Spectra of 1-Halloallenes.

Characteristic bands in the infra-red spectrum, in order of decreasing wave number, these are 3050w, 1950-1975s, 1130-1190s, and either 720-730 (1-bromo-3,3-dialkylallenes) or 830-855 and 680-700 (1-bromo-3-alkylallenes) or 780-820 and 710-715 (1-iodo-3,3-dialkylallenes) or 870-885 and 830-840 cm\(^{-1}\) (1-iodo-3,3-dialkylallenes). This is clearly shown in Tables V and VI. These bands may be assigned with some certainty to the following vibrational modes:

- 3050 cm\(^{-1}\) = C - H stretching mode
- 1940-1965 cm\(^{-1}\) C = C = C stretching mode
- 1130-1190 cm\(^{-1}\) = C - H(X) in plane deformation mode
Table V.

Infra-red Spectra of 1-Bromoallenes.

![Chemical structure](image)

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>Wave Numbers cm<sup>-1</sup></th>
<th>cm<sup>-1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Me</td>
<td>1950</td>
<td>1160</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>1950</td>
<td>1165</td>
</tr>
<tr>
<td>Et</td>
<td>Et</td>
<td>1950</td>
<td>1160</td>
</tr>
<tr>
<td>Me</td>
<td>Bu<sup>i</sup></td>
<td>1950</td>
<td>1160</td>
</tr>
<tr>
<td>Me</td>
<td>Bu<sup>t</sup></td>
<td>1950</td>
<td>1155</td>
</tr>
<tr>
<td>Pri</td>
<td>Pri</td>
<td>1950</td>
<td>1165</td>
</tr>
<tr>
<td>Bu<sup>i</sup></td>
<td>Bu<sup>i</sup></td>
<td>1965</td>
<td>1165</td>
</tr>
<tr>
<td>Bu<sup>t</sup></td>
<td>Bu<sup>t</sup></td>
<td>1940</td>
<td>1135</td>
</tr>
<tr>
<td>H</td>
<td>Me</td>
<td>1950</td>
<td>1195</td>
</tr>
<tr>
<td>H</td>
<td>Et</td>
<td>1950</td>
<td>1190</td>
</tr>
<tr>
<td>H</td>
<td>Pr<sup>n</sup></td>
<td>1950</td>
<td>1190</td>
</tr>
<tr>
<td>H</td>
<td>Pr<sup>i</sup></td>
<td>1950</td>
<td>1195</td>
</tr>
<tr>
<td>H</td>
<td>Ph</td>
<td>1950</td>
<td>1190</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>1955</td>
<td>1160</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>1945</td>
<td>1165</td>
</tr>
</tbody>
</table>
Table VI.

Infra-red Spectra of 1-Iodoallenes.

\[
\begin{align*}
\text{Table VI.} & \\
\text{Infra-red Spectra of 1-Iodoallenes.} & \\
\text{Wave Numbers cm}^{-1} & \\
\text{R} & \text{R'} & 1955 & 1135 & 750 & 710 \\
\text{Me} & \text{Me} & 1955 & 1130 & 780 & 715 \\
\text{Me} & \text{Et} & 1950 & 1130 & 800 & 710 \\
\text{Et} & \text{Et} & 1945 & 1160 & 1110 & 885 & 835 \\
\text{H} & \text{Me} & 1940 & 1160 & 1100 & 870 & 840 \\
\text{H} & \text{Et} & 1940 & 1160 & 1100 & 870 & 830 \\
\text{H} & \text{Pr}^n & 1940 & 1160 & 1100 & 870 & 830 \\
\end{align*}
\]

-64-
Out of plane = C - H(X) deformation modes are difficult to assign but tentative placings are:

1-bromo-3-alkylallenes 880 and 840 cm\(^{-1}\)
1-iodo-3-alkylallenes 880 and 835 cm\(^{-1}\)
1-iodo-3,3-dialkylallenes 720 - 800 cm\(^{-1}\)

The two inplane and the two out-of-plane vibration modes seen in the monoalkylallenes are due to there being two allenic hydrogens with different surroundings, i.e.

\[
\begin{array}{c}
R \\
\text{C} = \text{C} = \text{CHBr} \\
\text{H}
\end{array}
\quad \text{and} \quad
\begin{array}{c}
\text{Br} \\
\text{RHC} = \text{C} = \text{C} \\
\text{H}
\end{array}
\]

To test these assignments a series of 1-deuteroallenes was prepared and the ratio \(\frac{\nu_H}{\nu_D}\) was compared with the theoretical value of 1.36. (Table VII.) The theoretical value was derived as follows:

\[
\sqrt{\frac{\nu}{H}} = \frac{1}{2\pi c} \left(\frac{f}{\mu_H} \right)^{\frac{1}{2}} \quad \sqrt{\frac{\nu}{D}} = \frac{1}{2\pi c} \left(\frac{f}{\mu_D} \right)^{\frac{1}{2}}
\]

\(c = \text{velocity of light}; \ f = \text{force constant of bond, assume}\)
\(f_H = f_D; \ \mu = \text{reduced mass of a system A, B defined}\)
\[
\mu = \frac{M_A \cdot M_B}{M_A + M_B}
\]
Thus
\[
\frac{\sqrt{H}}{\sqrt{D}} = \frac{\mu_D}{\mu_H} = \frac{\frac{M_C \cdot M_D}{M_C + M_H}}{\frac{M_C + M_D}{M_C \cdot M_H}} = \frac{M_D}{M_C + M_D} \cdot \frac{M_C + M_H}{M_H}
\]

\[
\frac{\sqrt{H}}{\sqrt{D}} = \sqrt{\frac{2.13}{14.1}} = 1.36
\]

1-Chloro-3,4,4-trimethylpenta-1,2-diene: The 3070 cm\(^{-1}\) = C - H stretching band moves to 2300 cm\(^{-1}\) on deuteration, the 1180 cm\(^{-1}\) = C - H in place deformation band moves to 890 cm\(^{-1}\) on deuteration. The out-of-plane = C - H deformation band moves off scale and its shift therefore cannot be measured. It is thought that the 740 cm\(^{-1}\) band which on deuteration appears at 710 cm\(^{-1}\) is the = C - Cl stretching mode. (It is known that C - Cl stretching in CHCl\(_3\) moves on deuteration.)

1-Bromo-3-methylpenta-1,2-diene: The 3050 cm\(^{-1}\) =C-H stretching band moves to 2300 cm\(^{-1}\) on deuteration, the 1180 cm\(^{-1}\) =C-H in plane deformation band shifts to 870 cm\(^{-1}\). There is no clear band which may be assigned to the out-of-plane deformation. The 720 cm\(^{-1}\) band moves only slightly on deuteration and cannot be due to =C-H, it is thought that this band may be a =C-Br stretching mode.
Table VII.

Comparison of 1-Haloallene and 1-Deutero-1-Haloallene Spectra.

<table>
<thead>
<tr>
<th></th>
<th>Me(\cdot)C=(\cdot)C(\cdot)H</th>
<th>Me(\cdot)C=(\cdot)C(\cdot)D</th>
<th>(\nu_H)</th>
<th>(\nu_D) (calc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me(\cdot)C=(\cdot)C(\cdot)Cl</td>
<td>But(\cdot)C=(\cdot)C(\cdot)Cl</td>
<td></td>
<td>1.34</td>
<td>1.36</td>
</tr>
<tr>
<td>3070 cm(^{-1})</td>
<td>2300 cm(^{-1})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1180 cm(^{-1})</td>
<td>890 cm(^{-1})</td>
<td></td>
<td>1.33</td>
<td>1.36</td>
</tr>
<tr>
<td>830 cm(^{-1})</td>
<td>off scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Me(\cdot)C=(\cdot)C(\cdot)H</td>
<td>Et(\cdot)C=(\cdot)C(\cdot)Br</td>
<td></td>
<td>1.33</td>
<td>1.36</td>
</tr>
<tr>
<td>3050 cm(^{-1})</td>
<td>2300 cm(^{-1})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1180 cm(^{-1})</td>
<td>870 cm(^{-1})</td>
<td></td>
<td>1.36</td>
<td>1.36</td>
</tr>
<tr>
<td>Me(\cdot)C=(\cdot)C(\cdot)H</td>
<td>H(\cdot)C=(\cdot)C(\cdot)I</td>
<td></td>
<td>1.34</td>
<td>1.36</td>
</tr>
<tr>
<td>3100 cm(^{-1})</td>
<td>2300 cm(^{-1})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1160 cm(^{-1})</td>
<td>900 cm(^{-1})</td>
<td></td>
<td>1.29</td>
<td>1.36</td>
</tr>
<tr>
<td>880 cm(^{-1})</td>
<td>off scale</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Infrared Spectra of 1-Haloallenenes

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ1 (nm)</th>
<th>ε1</th>
<th>Δ1/2 (cm⁻¹)</th>
<th>λ2 (nm)</th>
<th>ε2</th>
<th>Δ2/2 (cm⁻¹)</th>
<th>λ3 (nm)</th>
<th>ε3</th>
<th>Δ3/2 (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Chlorohexa-1,2-diene</td>
<td>a</td>
<td>965</td>
<td>12.8</td>
<td></td>
<td>840</td>
<td>23.2</td>
<td></td>
<td>745</td>
<td>111</td>
</tr>
<tr>
<td>1-Bromohexa-1,2-diene</td>
<td>b</td>
<td>1970</td>
<td>23.2</td>
<td></td>
<td>830</td>
<td>30.9</td>
<td></td>
<td>745</td>
<td>193</td>
</tr>
<tr>
<td>1-Iodohexa-1,2-diene</td>
<td>b</td>
<td>1970</td>
<td>12.5</td>
<td></td>
<td>830</td>
<td>33.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Chloro-3,4,4-trimethylpenta-1,2-diene</td>
<td>c</td>
<td>950</td>
<td>12.6</td>
<td></td>
<td>830</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Bromo-3,4,4-trimethylpenta-1,2-diene</td>
<td>c</td>
<td>955</td>
<td>1975</td>
<td>40.5</td>
<td>830</td>
<td>23.5</td>
<td>57.1</td>
<td>830</td>
<td>24.6</td>
</tr>
<tr>
<td>1-Bromo-3-methylpenta-1,2-diene</td>
<td>c</td>
<td>1975</td>
<td>1955</td>
<td>47.5</td>
<td>830</td>
<td>24.6</td>
<td>12.6</td>
<td>830</td>
<td>1955</td>
</tr>
<tr>
<td>1-Iodobuta-1,2-diene</td>
<td>b</td>
<td>1975</td>
<td>1950</td>
<td>1975</td>
<td>830</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* λ = apparent extinction coeff at wave number in mole⁻¹ cm⁻¹. Δ = corresponding half bandwidth in cm⁻¹.

* 10 solution in nujol, 0.1mm cell.
† also ε₈₈₀ = 32.4 Δ₁/₂ 8
1-Iodo-3-methylbuta-1,2-diene: The two \(\equiv \text{C}-\text{H} \) groups may be considered as isolated modes as cis-trans and coupled vibration will be negligible. The two 3100 cm\(^{-1} \) \(\equiv \text{C}-\text{H} \) stretching modes are superimposed in the hydrogen form, but on deuteration the \(\equiv \text{C}-\overset{1}{D} \) stretching band moves to 2500 cm\(^{-1} \). The in plane deformations are assigned to 1160 cm\(^{-1} \) \(\equiv \text{C}-\overset{1}{I} \) and 1110 cm\(^{-1} \) \(\overset{1}{R}>\text{O=C} \), the former moves to 900 cm\(^{-1} \) on deuteration. The out-of-plane vibration modes are assigned to 880 cm\(^{-1} \) \(\equiv \text{C}-\overset{1}{I} \) and 850 cm\(^{-1} \) \(\overset{1}{R}>\text{O=C} \), the former moves off-scale on deuteration, the latter is only slightly displaced.

As may be seen from Table VIII the infra-red stretching frequency at 1950 cm\(^{-1} \) \(\equiv \text{C=C=C} \), is exceptionally intense in the 1-bromocallenone, especially when compared with the corresponding chloro or iodoallenes. This is thought to be a consequence of the halogen \(-\text{H} \) non-bonded interaction already discussed (p.44) which is greatest for bromine as chlorine is too small for adequate overlap and iodine too diffuse.

The 1,1-dibromocallenone show only the characteristic 1950 cm\(^{-1} \) absorption in the infra-red region; (Table IX.) the intense absorption shown by these compounds in the 755-
750 cm$^{-1}$ region is stronger than the band as shown by the monobromoallenes (720-730 cm$^{-1}$) and it is possible therefore to tentatively assign this mode to a \equivC–Br stretching vibration.
Table IX.

Infra-red Spectra of 1,1-Dibromoallenes.

![Chemical Structure](image)

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>Wave Numbers in cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Me</td>
<td>1960 1013 779 735</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>1960 740</td>
</tr>
<tr>
<td>Me</td>
<td>Buᵗ</td>
<td>1950 1120 830 745</td>
</tr>
<tr>
<td>H</td>
<td>Prⁱ</td>
<td>1955 1200 835 750</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>1950</td>
</tr>
</tbody>
</table>

a This compound shows absorption at 775; 760; 740 and 694 cm⁻¹.
Nuclear Magnetic Resonance of 1-Haloallenes.

The data from a number of different 1-haloallenes has been collected in Table X and has allowed a number of general conclusions to be formed.

![Chemical structure](image)

The above compound is taken as a convenient skeleton for reference, all compounds of this type are simple \(\text{AM}_mX_x \) systems.

Chemical Shifts.

1. The absorption of the \(^1\text{C} \) Protons is usually in the region of \(\gamma = 4.1 \) for bromoallenes and \(\gamma = 4.4 \) for iodoallenes, these values are consistent with the differences in electronegativity of bromine and iodine. The exception is in \(\text{Ph}_2\text{C} = \text{C} = \text{CHBr} \) where the \(^1\text{CHBr} \) absorption is \(\gamma = 3.65 \), this is probably due to a deshielding effect of the phenyl groups.
2. The 4C protons usually absorb at $\tau=7.8-8.2$, this is in fair agreement of the position calculated using Shoolery's additive constants ($\tau \approx 8.2$).

3. The 6CH$_3$ absorption is fairly constant at $\tau=8.1-8.22$, which is about the expected position for a methyl group attached to a double bond.

4. The 5CH$_3$ absorption is in the normal position of $\tau=8.92$.

Spin-spin Coupling and Coupling Constants.

The system shows the usual couplings between 4CH, 5CH, coupling constants were found to be $J \approx 7.5$ c.p.s., and 4CH, 6CH $J \approx 0.5$ c.p.s. In addition there is a long range coupling between 1CH and 4CH; and 1CH and 6CH coupling constants were found to be $J \approx 2.3$ c.p.s. In all cases where the 1C proton was replaced by 1C deuterium or 1C bromine the long range coupling vanished, thus proving that it was caused by the 1C proton. Couplings constants of the type 1CH, 3CH are usually high with coupling constants in the order of $J \approx 6$ c.p.s.

1-Bromobuta-1,2-diene CH$_2$CH = C = CHBr has a rather more complex spectrum as it is an ABX$_3$ system. The corresponding 1-chlorobuta-1,2-diene has been examined in detail by
Manatt and Elleman 80 and Snyder and Roberts 81 and all 20 of the bands have been assigned. The spectra consists of two sets of two superimposed quartets, \(\tau \), centred on \(\tau = 4.15 \) and \(\tau_3 = 4.71 \). \(\tau_4 \) the methyl group shows as a doublet of doublets at \(\tau = 8.27 \) and \(\tau = 8.3 \). \(J_{4,1} = 2.5 \text{ c.p.s.} \); \(J_{4,3} = 7.5 \text{ c.p.s.} \); \(J_{1,3} = 6 \text{ c.p.s.} \).
Table X.

NUCLEAR MAGNETIC RESONANCE DATA OF 1-HALO-ALLENES.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\tau) Value</th>
<th>Spin-spin coupling constants in c.p.s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br-CH=CHMe</td>
<td>(\tau_1 = 4.09) (doublet of quartets)</td>
<td>(J_{1,3} = 5.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(J_{1,4} = 2.6)</td>
</tr>
<tr>
<td></td>
<td>(\tau_2 = 4.68) (quartet of doublets)</td>
<td>(J_{3,1} = 5.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(J_{4,1} = 2.6)</td>
</tr>
<tr>
<td></td>
<td>(\tau_4 = 8.22) (doublets of doublets)</td>
<td>(J_{4,3} = 6.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(J_{4,1} = 2.6)</td>
</tr>
<tr>
<td>6Me Br-CH=CHMe</td>
<td>(\tau_1 = 4.1) (sextet)</td>
<td>(J_{1,4} = 2.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(J_{1,6} = 2.3)</td>
</tr>
<tr>
<td></td>
<td>(\tau_4 = 8.19) (quartet of doublets)</td>
<td>(J_{4,5} = 7.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(J_{4,1} = 2.2)</td>
</tr>
<tr>
<td></td>
<td>(\tau_6 = 7.6-8.4) (doublet of triplets)</td>
<td>(J_{6,1} = 2.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(J_{6,6} = 0.5)</td>
</tr>
<tr>
<td></td>
<td>(\tau_5 = 8.93) (triplet)</td>
<td>(J_{5,4} = 7.5)</td>
</tr>
</tbody>
</table>
\[\begin{align*}
\text{BrCD}=\text{C}=\text{C}.\text{CH}_2\text{Me} & \quad \tau_4 = 7.87 \text{ (quartet)} \\
1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad \tau_6 = 8.14 \text{ (singlet)} \\
\text{BrCH}=\text{C}=\text{C}.\text{CH}_2\text{Me} & \quad \tau_1 = 4.0 \text{ (pentet)} \\
1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad \tau_4 = 7.85 \text{ (quartet of doublets)} \\
\text{BrCH}=\text{C}=\text{C}.\text{Bu}^t & \quad \tau_1 = 4.17 \text{ (quartet)} \\
1 & \quad 2 & \quad 3 & \quad 5 & \quad \tau_6 = 8.21 \text{ (doublet)} \\
\text{BrCH}=\text{C}=\text{C}.(\text{Bu}^t)_2 & \quad \tau_1 = 4.16 \text{ (singlet)} \\
1 & \quad 2 & \quad 3 & \quad 5 & \quad \tau_5 = 9.2 \text{ (singlet)}
\end{align*} \]
cont'd/...

\[\text{BrCH}=\text{C}=\text{CPh} \]

\[\begin{array}{c}
\gamma_1 = 3.65 \text{ (singlet)} \\
\gamma_4 = 2.72 \text{ (multiplet)}
\end{array} \]

\[\begin{array}{c}
\text{CH}_3\text{CH}=\text{C}=\text{CHBr} \\
X B A
\end{array} \]

\[\begin{array}{c}
\gamma_x = 8.24 \text{ (doublet of doublets)} \\
\gamma_B = 4.72 \text{ (two quartets)} \\
\gamma_A = 4.15 \text{ (quartet of doublets)}
\end{array} \]

\[\begin{array}{c}
J_{XB} = 7.2 \\
J_{XA} = 2.5 \\
J_{BX} = 7.2 \\
J_{AX} = 2.5 \\
J_{AB} = 6.0
\end{array} \]

\[\begin{array}{c}
\text{ICD}=\text{C}=\text{CH},\text{CH}_3 \\
1 2 3 4
\end{array} \]

\[\begin{array}{c}
\gamma_3 = 6.99 \text{ (quartet)} \\
\gamma_4 = 8.93 \text{ (doublet)}
\end{array} \]

\[\begin{array}{c}
J_{3,4} = 4.2 \\
J_{4,3} = 4.2
\end{array} \]

\[\begin{array}{c}
\text{ICH}=\text{C}=\text{C Me}_3 \\
1
\end{array} \]

\[\begin{array}{c}
\gamma_1 = 4.5 \text{ (septet)} \\
\gamma_4 = 8.2 \text{ (doublet)}
\end{array} \]

\[\begin{array}{c}
J_{1,4} = 2.3 \\
J_{4,1} = 2.3
\end{array} \]
<table>
<thead>
<tr>
<th>Compound</th>
<th>δ</th>
<th>J 1,4</th>
<th>J 1,6</th>
<th>J 4,5</th>
<th>J 4,1</th>
<th>J 4,6</th>
<th>J 6,1</th>
<th>J 6,4</th>
<th>J 5,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{ICH} = \text{C} = \text{C} \cdot \text{CH}_2 \text{Me})</td>
<td>6</td>
<td>4.38</td>
<td>2.3</td>
<td>7.9</td>
<td>8.9</td>
<td>0.5</td>
<td>2.3</td>
<td>0.5</td>
<td>8.9</td>
</tr>
<tr>
<td>(\text{ICH} = \text{C} = \text{C} \cdot \text{Me})</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{ICH} = \text{C} = \text{C} \cdot \text{CH} = \text{Br})</td>
<td>6</td>
<td>7.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>7.3</td>
</tr>
<tr>
<td>(\text{ICH} = \text{C} = \text{C} \cdot \text{Me})</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{ICH} = \text{C} = \text{C} \cdot \text{H}_2 \text{Me})</td>
<td>6</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>7.3</td>
</tr>
<tr>
<td>(\text{ICH} = \text{C} = \text{C} \cdot \text{Me})</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
cont'd...

\[
\begin{align*}
\text{Br}_2\text{C}=&=\text{C} - \text{Me} & \tau_6 &= 8.08 \text{ (singlet)} \\
1 & 2 & 3 & 6 & \tau_5 &= 8.85 \text{ (singlet)}
\end{align*}
\]
1-CYANOALLENES.

Preparation of 1-Cyanoallenes from Acetylenic Alcohols.

A preliminary investigation by Laws showed that a number of 1-cyanoallenes could be prepared by two methods, one of which was applicable only to 3-alkylcyanoallenes, the other only to 3,3-dialkylcyanoallenes.

Laws found that poor yields of 1-cyanoallenes together with the corresponding 1-chloroallenes could be obtained by reacting 3,3-dialkylpropyn-3-ols with hydrochloric acid, cuprous cyanide and potassium cyanide. It was found necessary to use a large excess of hydrochloric acid at elevated temperatures. Sulphuric acid, formic acid and acetic acid in place of hydrochloric acid did not give cyanoallenes, but hydrobromic acid yielded some cyanoallenes together with 1-bromoallene, from which it could not be separated readily.

In the present work the tertiary acetylenic alcohol was reacted with cuprous cyanide (1.5 eq.), potassium cyanide (1.0 eq.), copper (catalytic) and concentrated hydrobromic acid (2.5 sq. 48%w/w) for 3 days. It was found that good yields of pure 1-cyanoallenes could be
obtained. Unchanged starting material could be recovered in a pure state, and except in one case 1-bromoallene was not formed, Table XI shows the yields of allenic cyanide by this method.

Mechanism.

The mechanism favoured here is on S_{N1}' type, similar to the one proposed for the 1-bromoallene formation

![Chemical structure](image)

This type of mechanism would account for the fact that only the hydrogen halides give allene formation, since sulphuric acid and other acids would not allow formation of cyanocuprite or bromocyanocuprite complexes.
Table XI.

1-CYANOALLENES FORMED BY REACTION OF ACETYLENIC CARBINOL WITH HBr.

![Chemical structure](image)

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>Yield %</th>
<th>Reaction Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Me</td>
<td>30</td>
<td>76 hr</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>51</td>
<td>67 hr</td>
</tr>
<tr>
<td>Et</td>
<td>Et</td>
<td>75</td>
<td>76 hr</td>
</tr>
<tr>
<td>Me</td>
<td>Bu^i</td>
<td>40</td>
<td>72 hr</td>
</tr>
<tr>
<td>Me</td>
<td>Bu^t</td>
<td>25</td>
<td>90 hr</td>
</tr>
</tbody>
</table>
The following equilibria are probably established as a slight excess of hydrobromic acid is added to the rest of the reagents

(i) $\text{KCN} + \text{HBr} \rightleftharpoons \text{KBr} + \text{HCN}$

(ii) $\text{CuCN} + \text{HBr} \rightleftharpoons \text{H}^+ (\text{CuCNBr})^-$

(iii) $\text{H}^+ (\text{CuCNBr})^- + \text{CN}^- \rightleftharpoons \text{Br}^- + \text{H}^+ [\text{Cu(CN)}_2]^-$

The cyanocuprite ion then reacts with the acetylenic carbinol to give the 1-cyanoallene.

A large excess of hydrobromic acid forces the equilibrium of (ii) to the left and leads to increasing quantities of 1-bromoallene in the product

Similarly a large excess (5 fold) of hydrochloric acid gives equal quantities of 1-chloroallene and 1-cyanoallene as would be expected from a similar mechanism:
Laws showed that 3-chloroacetylenes reacted with cuprous cyanide under the reaction conditions used here to give 1-cyanoallenes and suggested that the reaction of the alcohol with cuprous cyanide would proceed by initial formation of the 3-haloacetylene.

\[
\begin{align*}
R & \quad C - C \equiv CH \quad \rightarrow \quad R \quad C = C = C \\
R' & \quad OH \quad \uparrow \quad Cu \quad Cl \quad \rightarrow \quad \rightarrow \quad \rightarrow \quad R' \quad C = C = C \\
\end{align*}
\]

However, 3-chloroacetylenes are never completely converted to 1-cyanoallenes - some 3-haloacetylene is always recovered; since little or no 3-haloacetylene was found in the product this mechanism seems unlikely. Also it would require a slow
initial formation of a 3-bromo-propyne followed by a fast
conversion to 1-cyanoallene, this is unlikely as under parallel
conditions 1-bromoallenes are formed up to 70 times faster
using hydrobromic acid and cuprous bromide.

Secondary acetylenic alcohols did not give 1-cyanoallenes
by this method

\[
\begin{align*}
RCH - C & \equiv CH \quad \xrightarrow{\text{OH}} \quad RCH = C = CHCN \\
\end{align*}
\]

This is probably due to the hydroxyl group being more
firmly bound in the secondary alcohols; in the case of the
preparation of 1-bromoallenes this was overcome by using 60%
hydrobromic and excess CuBr but a similar increase in
concentration of cyanocuprile was ineffective in the prepara-
tion of 3-monoalkyl-1-cyanoallenes.
Preparation of 1-Cyanoallenes from 1-Bromoallenes and Cuprous Cyanide.

A general method for the preparation of cyanides is the treatment of a bromide with cuprous cyanide in benzene. Several attempts were made to prepare 1-cyanoallenes by heating 1-bromoallenes with cuprous cyanide in various solvents (benzene, acetone, alcohol silicone fluid, etc) but in all cases 1-cyanoallene formation was negligible.

When 1-bromoallenes were heated with dry cuprous cyanide a vigorous reaction occurred at elevated temperature (110°) which resulted in the elimination of hydrogen cyanide to give alken-yne; this reaction will be fully discussed in section IV of this thesis. However, highly stearically crowded molecules such as 1-bromo-3,4,4-trimethylpenta-1,2-diene and 1-bromo-3-tert-butyl-4,4-dimethylpenta-1,2-diene did give the corresponding 1-cyanoallenes in 60% and 90% yield respectively.

A simple four centre transition state best accounts for the formation of cyanoallene under these conditions:

\[
\begin{align*}
R & \quad C = C = C \quad H \\
RCH_2 & \quad Br
\end{align*}
\]

\[
\begin{align*}
R & \quad C = C = C \quad H \\
RCH_2 & \quad CH_2
\end{align*}
\]

\[
\begin{align*}
R & \quad C = C = C \quad \text{CN} \\
CH_2 & \quad Br \quad \text{Cu} \\
& \quad \text{some alken-yne}
\end{align*}
\]
Laws prepared some 3-monoalkyl-1-cyanoallenes by converting monoalkylprop-1-yn-3-ols to the corresponding 3-chloroalk-1-yne and by heating the chloroacetylene with cuprous cyanide in benzene

$$\text{RCH} - \text{C} = \text{CH} \xrightarrow{\text{CuCN}} \text{RCH} - \text{C} = \text{CH}$$

This method gave only poor yields of impure 1-cyanoallenes.

It was felt that a better method for the preparation of 3-monoalkyl-1-cyanoallene could be found and it was reasoned that an inert solvent of high dielectric constant was needed to dissolve both cuprous cyanide and 1-bromoallene. Such a solvent would have to be easily removable from the product and N,N-dimethylformamide was found to be suitable. The following procedure gave excellent yields of 1-cyanoallenes:

Pure, dry dimethylformamide and dry cuprous cyanide are stirred until a partial solution is effected. 1-Bromoallene was added to this solution and the solution rapidly became dark. Excess cuprous cyanide dissolved quickly and heat was evolved. The contents of the flask were not allowed to rise above 50\(^\circ\) during this initial exothermic reaction, then when the initial
evolution of heat stopped, the flask and contents were maintained at 50-60° for 1-2 hr. The solution was cooled and ether added until the turbidity produced by this addition was only just permanent (the addition of too much ether led to the formation of two layers which made working up difficult). The ether/dimethylformamide solution was then slowly added to a large volume of rapidly stirred water when copper salts were precipitated and an ether layer separated. The ether layer was removed and the aqueous suspension was filtered then extracted several times with ether, ether solutions were combined and washed 10-15 times with cold water to remove any residual dimethylformamide; efficient washing at this stage leads to a considerably improved product. The ether solution was then dried (MgSO₄) and distilled to give excellent yields of pure 1-cyanoallenes; Table XII contains a list of cyanoallenes prepared by this method.
Table XII.

1-CYANO-ALLENES FROM 1-BROMOALLENES.

\[R'CH=CH=CH_2 \]

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>Method</th>
<th>Yield</th>
<th>(n_D^{25})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Me</td>
<td>a</td>
<td>40</td>
<td>1.4840</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>a</td>
<td>51</td>
<td>1.4800</td>
</tr>
<tr>
<td>Et</td>
<td>Et</td>
<td>a</td>
<td>60</td>
<td>1.4718</td>
</tr>
<tr>
<td>Me</td>
<td>Bu^1</td>
<td>a</td>
<td>50</td>
<td>1.4685</td>
</tr>
<tr>
<td>Me</td>
<td>Bu^t</td>
<td>a,b</td>
<td>65</td>
<td>1.4725</td>
</tr>
<tr>
<td>Pr^i</td>
<td>Pr^i</td>
<td>a</td>
<td>61</td>
<td>1.4650</td>
</tr>
<tr>
<td>Bu^i</td>
<td>Bu^i</td>
<td>a</td>
<td>60</td>
<td>1.4745</td>
</tr>
<tr>
<td>Bu^t</td>
<td>Bu^t</td>
<td>b</td>
<td>90</td>
<td>1.4750</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>a</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Me</td>
<td>a</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Et</td>
<td>a</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Pr^i</td>
<td>a</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Pr^n</td>
<td>a</td>
<td>60</td>
<td>1.4750</td>
</tr>
<tr>
<td>H</td>
<td>Ph</td>
<td>a</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Method a Allene bromide + cuprous cyanide in D.M.F.
Method b Allene bromide + cuprous cyanide, no solvent
* see text.
An attempt was made to prepare allene cyanide (1-cyanoprop-1,2-diene) by reacting the dimethylformamide azeotrope of 1-iodoprop-1,2-diene with cuprous cyanide in the usual manner. Elemental analysis and infra-red spectra showed a mixture of 1-cyanoprop-1,2-diene and 3-cyanoprop-1-yne in the ratio 7:3 resulted (estimated by n.m.r.) This could be due to the initial iodoallene containing some 3-iodoprop-1-yne. Work by Baker, Landor, Landor and Patel \(^{30}\) has shown that the iodopropadiene always contains at least 20% of 3-iodoprop-1-yne.

Attempts to separate pure 1-cyanoprop-1,2-diene by removing the 3-cyanoprop-1-yne as its insoluble silver salt were unsuccessful. After three washings with ammoniacal silver nitrate the ratio of the allene to acetylene remained unchanged even though large quantities of silver acetylide were precipitated. This suggests an equilibrium of the type

\[
\text{CH}_2 = \text{C} = \text{CHCN} \quad \underset{\text{NH}_3}{\xrightarrow{\text{CN} - \text{CH}_2 - \text{C} \equiv \text{CH}}} \quad \text{CN} - \text{CH}_2 - \text{C} \equiv \text{CH}
\]

which is re-established after the removal of some of the acetylene by the precipitation of its silver salt.
Mechanism of Reaction.

It has been discovered as a direct consequence of this work that a solution of cuprous cyanide in N,N-dimethylformamide yields several crystalline complexes; S.R. Landor and V.C. Patel \(^{82}\) are at present working in these laboratories to try and elucidate the structure of these compounds. When 1-bromoallenes are added to a solution of cuprous cyanide in dimethylformamide an exothermic reaction immediately results and quickly proceeds to completion. 1-Bromoallenes of higher molecular weight require heating at 50–60° for about 2 hr. to ensure maximum conversion to 1-cyanoallene.

The choice of reaction mechanisms seems to lie between simple substitution of cyanide for bromide (or other halide) and an elimination reaction giving a carbene which then attacks cyanide. It was found that some alkenyne (10–15\%) was formed at the same time as 1-cyanoallene, but since the latter is shown by separate experiments to be stable to heat in the presence of cuprous cyanide, the alkenyne must be formed from the 1-bromoallene.

(a) Four-Centre Reaction.

\[
\begin{align*}
\text{R} & \quad \text{C} = \text{C} = \text{C} \quad \text{H} \\
\text{R'} & \quad \text{CN} \quad \text{Br} \quad \text{Cu} \\
\end{align*}
\overset{\rightarrow}{\longrightarrow}
\begin{align*}
\text{R} & \quad \text{C} = \text{C} = \text{C} \quad \text{H} \\
\text{R'} & \quad \text{CN} \\
\end{align*}
\]

+ alkenyne
(b) **Carbene Formation.**

\[R - C \equiv C = C - H \xrightarrow{R'} \rightarrow R' + \text{alkenyne} \]

However when a 1-bromo-1-deuteroallene was reacted with cuprous cyanide and worked up in aqueous solution only 1-cyano-1-deuteroallene was formed, no exchange between deuterium and hydrogen occurred, this therefore precludes a carbene mechanism.

Cuprous cyanide dissolves readily in dimethylformamide to form a complex and it would be difficult for the large complex molecule to lie flat across the 1-bromoallene, thus the normal elimination mechanism (see p.150) is prevented and a substitution reaction occurs. Under similar conditions cuprous iodide and cuprous bromide which are not soluble in dimethylformamide yield en-ynes (see page 154) due to the fact that they do not form complexes with dimethylformamide hence can lie flat across the bromoallene molecule.
Infra-red and Ultra-violet Absorption of 1-Cyanoallenes.

1-Cyanoallenes have very intense absorption bands in the infra-red spectrum at 2230-50 and 1955-80 cm\(^{-1}\). The former is due to stretching mode of the conjugated cyanide and the latter to the allene group. In addition to these very strong bands weaker absorption occurs at 790 and 760-770 cm\(^{-1}\) (3,3-dialkylallenes) and 865-870 and 725-40 cm\(^{-1}\) (3-alkylallenes).

That the lower of each of these pairs of bands is due to a hydrogen deformation mode is fairly certain, since on conversion of 1-cyano-3-methylpenta-1,2-diene to 1-cyano-1-deutero-3-methylpenta-1,2-diene the 760 cm\(^{-1}\) band moves off scale.

All the 1-cyanoallenes show a maximum in the ultra-violet region at 207-9 m\(\mu\) extinction coefficients being in the region of 10,000. This may be compared with \(\text{\(d\) - \(\text{\(\beta\)}\)}\) unsaturated cyanides which absorb at 215-17 m\(\mu\)\(^{84}\).

Table XIII shows these spectral characteristics.
Table XIII.

Infra-red and Ultra-violet Spectra
of 1-Cyanoallenes.

\[
\begin{align*}
R & \quad R' & \quad \gamma_{\text{max}} \text{ cm}^{-1} & \quad \lambda_{\text{max}} \text{ m } \mu & \quad \epsilon \\
\text{Me} & \quad \text{Me} & 2245 & 1950 & 790 & 207 & 10,000 \\
*\text{Me} & \quad \text{Et} & 2245 & 1955 & 790 & 760 & 207 & 10,000 \\
\text{Et} & \quad \text{Et} & 2240 & 1955 & 790 & 207 & 10,140 \\
\text{Me} & \quad \text{Bu}^i & 2245 & 1960 & 765 & 207 & 10,150 \\
\text{Me} & \quad \text{Bu}^t & 2250 & 1960 & 765 & 207 & 10,000 \\
\text{Pr}^i & \quad \text{Pr}^i & 2250 & 1955 & 770 & 207 & 10,880 \\
\text{Bu}^i & \quad \text{Bu}^i & 2250 & 1980 & 760 & 207 & 11,010 \\
\text{Bu}^t & \quad \text{Bu}^t & 2235 & 1970 & 760 & 207 & 11,050 \\
\text{H} & \quad \text{Me} & 2225 & 1965 & 860 & 730 & 207 & 9,730 \\
\text{H} & \quad \text{Et} & 2235 & 1950 & 865 & 725 & 207 & 11,100 \\
\text{H} & \quad \text{Pr}^n & 2255 & 1970 & 730 & 207 & 9,000 \\
\text{H} & \quad \text{Pr}^i & 2250 & 1965 & 870 & 740 & 208 & 8,600 \\
*\text{H} & \quad \text{Ph} & 2250 & 1155 & & 209 & 14,800 \\
\end{align*}
\]

* in the 1-deutero form the 760 cm\(^{-1}\) is absent.
+ i.r. lower bands obscured by phenyl absorption,
u.v. also has bands \(\lambda_{\text{max}} 244 \text{ m } \mu, (\epsilon, 7,860); 272 \text{ m } \mu, (\epsilon, 5,170); 283 \text{ m } \mu, (\epsilon, 5,180)\)
Nuclear Magnetic Resonance Spectra of 1-Cyanoallenes.

Table XIV shows the n.m.r. spectra of several 1-cyanoallenes. It is worth noting that the hydrogen on C₁ of the allene which also bears the cyanide is at a much higher field than the corresponding allenic hydrogen in the 1-haloallenes. Obviously this cannot be explained on the basis of electronegativities as the cyanide group has a much greater electronegativity than the halides, and the signal should therefore be below $\tau = 4$. This high value is probably due to the hydrogen lying in the shielding cone of the cyanide, and the result is a balance between the two effects.

![Diagram of 1-Cyanoallene](image)

The 1,4⁻ and 1,3⁻ spin-spin coupling constants of protons in the 1-cyanoallenes are 3-3.5 c/sec. and 6 c/sec. respectively, the 1,4⁻ coupling constants being considerably higher than the 2-2.4 c/sec. of the corresponding 1-bromoallene. 4,6-spin-spin coupling was not observed with the resolution of the 60 M. C instrument. This is in contrast to the 1-bromoallenes which gave 4,6-coupling constants of 0.5 c/sec. It
is interesting also to note that the methyl protons in the t-butyl group (\(\tau = 8.75-8.8 \)) were deshielded relative to the methyl protons in the t-butyl group of 1-bromoallenes (\(\tau = 9.15-9.2 \)).

The n.m.r. spectrum of a mixture of 1-cyanoprop-1,2-diene and 3-cyanoprop-1-yne showed the ratio of the compounds to be 7:3. A low field triplet \(\tau = 4.3 \) was obviously the \(C_1 \) allenic proton coupled with the two \(C_3 \) allenic protons \(J = 6 \) c/sec. The other two \(C_3 \) allenic protons showed at \(\tau = 5.4 \) and are split into a doublet by the \(C_1 \) proton.

1-Cyanobuta-1,2-diene has a similar spectrum to the other 1-substituted buta-1,2-dienes; it is an \(ABX_3 \) system showing a multiplet at \(\tau = 5.0 \) (\(\text{\(C\(_{\text{CH}} \))} \)) two quartets, a multiplet at \(\tau = 4.37 \) (\(\text{\(C\(_{\text{H}} \))} \)), two quartets and a pair of doublets \(\tau = 8.17, \tau = 8.30 \) (\(\text{\(C\(_{\text{CH}_3} \))} \)). The coupling constants are \(J_{4,1} = 3 \) c/sec.; \(J_{4,3} = 7.5 \) c/sec.; \(J_{1,3} = 6 \) c/sec.

Pasternak and Pfeiffer \(^{86}\) claimed to have prepared 1-cyano-3-methylbuta-1,2-diene, 1-cyano-3-methylpenta-1,2-diene and 1-cyano-propa-1,2-diene. These authors reacted 3-bromoacetylenes with hydrogen cyanide in the presence of cuprous bromide and obtained 1-cyanoallenes. Yields were not stated and they described the mechanisms as being complex and varied. They isolated a dimer of 1-cyano-3-methylbuta-
<table>
<thead>
<tr>
<th>Compound</th>
<th>Value</th>
<th>spin-spin constant</th>
<th>coupling constant in MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me-C=C-CN</td>
<td>(\tau_4 = 8.2) (doublet)</td>
<td>(J_{4,1})</td>
<td>3</td>
</tr>
<tr>
<td>Me-C=C-H</td>
<td>(\tau_1 = 5.1) (heptet)</td>
<td>(J_{1,4})</td>
<td>3</td>
</tr>
<tr>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MeCH(_2)C=C-CN</td>
<td>(\tau_5 = 8.92) (triplet)</td>
<td>(J_{5,4})</td>
<td>7</td>
</tr>
<tr>
<td>MeCH(_2)C=C-H</td>
<td>(\tau_6 = 8.18) (doublet)</td>
<td>(J_{6,1})</td>
<td>3</td>
</tr>
<tr>
<td>(5 4)</td>
<td>(\tau_1 = 7.88) (quartet of doublets)</td>
<td>(J_{4,5})</td>
<td>7</td>
</tr>
<tr>
<td>(5 4)</td>
<td></td>
<td>(J_{4,1})</td>
<td>3</td>
</tr>
<tr>
<td>(5 4)</td>
<td>(\tau_1 = 4.9) (sextet)</td>
<td>(J_{1,4})</td>
<td>3</td>
</tr>
<tr>
<td>(5 4)</td>
<td></td>
<td>(J_{1,6})</td>
<td>3</td>
</tr>
<tr>
<td>(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MeCH(_2)C=C-CN</td>
<td>(\tau_5 = 8.93) (triplet)</td>
<td>(J_{5,4})</td>
<td>7</td>
</tr>
<tr>
<td>MeCH(_2)C=C-D</td>
<td>(\tau_6 = 8.15) (singlet)</td>
<td>(J_{4,5})</td>
<td>7</td>
</tr>
<tr>
<td>(5 4)</td>
<td>(\tau_4 = 7.92) (quartet)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table XIV.

N.m.r. of 1-Cyanoallenes.
\[\begin{align*}
\text{Et} & \quad \tau_5 = 8.9 \text{ (triplet)} \\
\text{MeCH}_2\text{C} = \text{C} = \text{CN} & \quad \tau_4 = 7.9 \text{ (quartet of doublets)} \\
5 & \quad J_{5,4} = 7 \\
4 & \quad J_{4,5} = 7 \\
3 & \quad J_{4,1} = 3.5 \\
2 & \quad J_{1,4} = 3.5
\end{align*} \]

\[\begin{align*}
\text{CH}_3 & \quad \tau_6 = 8.8 \text{ (singlet)} \\
6\text{CH}_3\text{C} = \text{CH}_3\text{CN} & \quad \tau_4 = 8.25 \text{ (doublet)} \\
4 & \quad J_{4,1} = 3 \\
3 & \quad J_{4,1} = 3
\end{align*} \]

\[\begin{align*}
\text{CH}_3 \text{Bu}^t & \quad \tau_5 = 8.75 \text{ (singlet)} \\
\text{CH}_3\text{C} = \text{C} = \text{C} = \text{H} & \quad \tau_1 = 4.83 \text{ (singlet)} \\
5 & \quad J_{1,4} = 3 \\
4 & \quad J_{1,4} = 3
\end{align*} \]

\[\begin{align*}
\text{H}_2\text{C} = \text{C} = \text{C} = \text{H} & \quad \tau_3 = 5.4 \text{ (doublet)} \\
3 & \quad J_{3,1} = 6 \\
2 & \quad J_{1,3} = 6
\end{align*} \]

\[\begin{align*}
\text{CH}_3\text{CH} = \text{C} = \text{CHCN} & \quad \tau_4 = 8.23 \text{ (pair of doublets)} \\
4 & \quad J_{4,1} = 3 \\
3 & \quad J_{4,3} = 7.5 \\
2 & \quad J_{3,4} = 7.5 \\
1 & \quad J_{3,1} = 6 \\
\tau_3 = 5.0 \text{ (two quartets)} \\
2 & \quad J_{1,3} = 6 \\
1 & \quad J_{1,4} = 3
\end{align*} \]
1,2-diene which was claimed to be 1,2-di-(cyanomethylene)-3,3,4,4-tetramethylcyclobutane, but the present work shows this to be erroneous.

Preparation of 1-Cyanoacetylenes.

A literature survey\(^{82a}\) shows that few methods for the preparation of 1-cyanoacetylenes are available at the present time. It was therefore decided to try to extend the methods used for the preparation of 1-cyanoallenes to the preparation of cyanoacetylenes. 1-Bromoacetylenes may conveniently be prepared by the action of sodium hypobromite on the alkyne, or by decomposing the acetylenic Grignard compound with bromine.

\[
\begin{align*}
\text{R} - \text{C} &= \text{CH} \quad (a) \quad \text{NaOBr} \\
\text{R} - \text{C} &= \text{Br} \quad (b) \quad \text{Grignard} + \text{Br}_2
\end{align*}
\]

The bromoacetylene was then heated with cuprous cyanide in dimethylformamide and worked up in the same manner as for the 1-cyanoallenes.

\(\beta\)-Bromophenylacetylene was converted to \(\beta\)-cyanophenylacetylene in 70% yield; a higher boiling fraction which later solidified was shown to be 1,4-diphenylbuta-1,3-diyne by analysis and ultra-violet spectrum.
Thus it can be seen that a coupling reaction has taken place.

\[
\begin{align*}
\text{C} \equiv \text{C} \quad \text{Br} & \quad \text{CuCN} \quad \text{D.F.M.} \\
\text{C} \equiv \text{C} & \quad \text{C} \equiv \text{C} \\
+ & \quad \text{C} \equiv \text{CCN}
\end{align*}
\]

Use of nitrogen or other inert gas would probably prevent this coupling as it is almost certainly due to an oxidative mechanism requiring oxygen.

After the present work had been completed a preliminary report by the Russian worker Sladkov and Ukhim described
B-bromophenylacetylene, obtained by the action of bromine on the cuprous salt of phenylacetylene.

\[
\text{PhC} \equiv \text{C} - \text{Cu} + \text{Br} \rightarrow \text{PhC} \equiv \text{CBr}
\]

They reacted this with cuprous cyanide in dimethylformamide and obtained \(\text{B-cyanophenylacetylene} \), however no details were given.

\[
\text{PhC} \equiv \text{C} - \text{Br} \xrightarrow{\text{CuCN, D.M.F.}} \text{PhC} \equiv \text{CCN}
\]

This reaction is of interest since during the present work similar conditions were used.
DIMERS OF ALLENIC CYANIDES.

It was found during the course of the present work on allenic cyanides, that l-cyano-3-methylbuta-1,2-diene deposited crystals after standing for 3-4 weeks. These crystals showed the following physical constants: γ_{max} 2252 and 2235 (-CN); 1680 and 1650 (C=C); λ_{max} 281 mμ (ε, 11,420) and melting point 81°.

In 1964 a preliminary communication by Pasternak and Pfeiffer reported the isolation of a dimer of l-cyano-3-methylbuta-1,2-diene.

They claimed that by analogy to compounds prepared by Bertrand, their compound was 1,2-di-(cyanomethylene)-3,3,4,4-tetramethylcyclobutane.

![Chemical Structure](image)

Pasternak and Pfeiffer claimed that the spectral data obtained for this compound supported the above structure; ultra-violet
absorption λ_{max} 285 mμ (no extinction coefficient given); infra-red absorption, doublets at $\tilde{\nu}_{\text{max}}$ 2230 (-CN) and 1650 cm$^{-1}$ (C=C), and n.m.r. absorption at 5.0 p.p.m. (ethylenic) and 3.35 p.p.m. (non-ethylenic), the melting point was given as 73.5°. We thus concluded that our compound was the same as the one obtained by the French workers 86; the difference in melting points could be due to impurities in their compound. (The elemental analysis for our compound fitted the theoretical value more closely than the one obtained by the French workers.)

The n.m.r. spectrum showed six peaks, four of which at $\tau = 8.7, 8.6, 8.02$ and 7.75 were clearly three proton signals (as shown by the intgram), and corresponded to four magnetically different methyl groups; the other two peaks at $\tau = 6.6$ and 5.04 were single proton signals. This spectrum is not of the pattern expected for a compound whose structure is as proposed by the French workers.

All the possible dimer structures are discussed here, rearrangements of initially formed dimers to other structures might occur but such structures will be ignored as they would not possess the extensive conjugated systems which
would give absorption at $\lambda_{\text{max}} \approx 281 \text{ m}\mu$ in the U.V. The following structure would more or less fit the infra-red and ultra-violet spectral data, but can be eliminated on the basis of n.m.r. spectral data.

There are three possible stereoisomers, depending on the orientation of the cyano-methylene groups, i.e. cis-cis, trans-trans or cis-trans. In the cis-cis and trans-trans forms all the methyl groups are magnetically equivalent hence would give one signal in the n.m.r., not four; these forms can be ruled out. The cis-trans form should give signals for two non-equivalent methyl groups but not four, and should also give two signals for ethylenic protons. This stereoisomer cannot therefore be the correct formulation.
This isomer should give one C≡N stretching band in the infra-red absorption spectra and an absorption maximum in the ultra-violet spectrum at $\lambda_{\text{max}} = 240$ m μ. Both the cis and trans forms of (II) would give rise to only two magnetically different methyl groups, and only one single proton signal. Hence this type of structure can also be ruled out.
On initial examination of this structure it appears that there are only two different kinds of methyl group, however closer examination shows that all four methyl groups are magnetically non-equivalent. Methyl group 2Me will be different surroundings to 1Me due to proximity of a hydrogen or cyano group. Either 3Me or 4Me will be cis to the ring cyano group whilst the other one is trans.

\[\text{i.e.} \quad \begin{array}{c}
\text{H} \\
\text{NC} \\
\text{3 Me} \\
\text{4 Me}
\end{array} \]

3Me is cis to cyano group. 4Me is trans to cyano group.

Thus the methyl groups 3Me and 4Me lie in different parts of the cyanide deshielding zone (see later).

In structure (III) there are two magnetically different single protons, i.e. a ring proton of higher field and an ethylenic proton of lower field.

So far this type of structure agrees well with the known data; however, two sterioisomeric forms, III A and III B are possible.
The dipole moment of the dimer was determined experimentally and found to be 3.2D. A calculation of dipole moments expected for structures III A and III B was carried out on the following basis: literature values for the group moments of cyanide are rather perplexing, aliphatic cyanide is given as 4.0D (vapour) or 3.7D (solution); CH$_3$CH = CHCN is given as 4.5D (vapour) and CH$_2$= CH - CH = CHCN is given as 3.9D (vapour). It is not stated whether or not these cyano compounds are pure cis or pure trans or mixtures of cis and trans, quite apart from possible contributions of S-cis and S-trans conformations. It was decided to use a value of 4.0D for the group moment of =CHCN and 3.7D for CHCN. No figures were available for the group moment of the isopropylidene group in conjugation.
with a nitrile - and this moment was designated as X.

Its approximate magnitude may be deduced from the following considerations which also permit differentiation between stereoisomers III A and III B. As this is an induced dipole it must be in the same sense as the cyanide dipole.

Thus for III A

\[\mu^2 = (4 \cos 60 - 3.7 \cos 56)^2 + (4.0 \sin 60 + X)^2 + (3.7 \sin 56)^2 = 3.2^2 \]

\[0 + (3.46 + X)^2 + 9.4 = 10.24 \]

\[(3.46 + X)^2 = 10.24 - 9.4 \]

\[3.46 + X = \pm 0.84 \]

\[X = 2.60 \]

or \[X = -4.32 \]
for isomer III B

\[\mu^2 = (4 \cos 60 - 3.7 \cos 56)^2 + (4.0 \sin 60 - x)^2 + (3.7 \sin 56)^2 = 3.2^2 + (3.46 - x)^2 + 9.4 = 10.24 \]

\[3.46 - x = \pm 0.86 \]
\[x = +2.6 \]
\[\text{or } x = +4.32 \]

As already stated the direction of the isopropylidene moment must be in the same sense as that of the cyanide, it follows therefore that structure III B is correct and the dimer is
An interpretation of the n.m.r. spectrum satisfactorily accounts for structure III B (but not III A). The signal at $\tau = 8.7$ is due to Me protons (a) which are trans to the cyanide group on C_3, the signal slightly downfield from this at $\tau = 8.6$ is due to Me protons and cis to the cyanide group on C_3 and lies in the deshielding zone of this cyanide. The signal at $\tau = 8.02$ is due to Me protons (c) and is in the normal position for a methyl group on a conjugated system, the other "ethylenic" methyl, Me (d) is directly in the deshielding cone of the cyanomethylene cyanide group and it is found downfield at $\tau = 7.75$.

The proton at $\tau = 6.6$ is the ring-proton on C_1 and is somewhat deshielded due to the proximity of the cyano group also on C_1, the low field proton at $\tau = 5.04$ is due to the cyanomethylene proton, which is deshielded by the double bond and by the cyanomethylene cyano group.
Structure III B also explains the infra-red spectra and the following assignments may be made. The doublet in the region of 2240 cm\(^{-1}\) is due to absorption by the saturated ring cyanide on C\(_3\) at 2252 cm\(^{-1}\) and the unsaturated cyanide of cyanomethylene at 2235 cm\(^{-1}\). Similarly the doublet in the double bond region is due to the isopropylidene double bond at 1680 cm\(^{-1}\) and the cyanomethylene double bond at 1650 cm\(^{-1}\).

The corresponding dimer of 1-cyano-3-methylpenta-1,2-diene shows similar infra-red and ultra-violet absorption i.e. \(\nu_{\text{max}}\) 2245 s (cyanide); 2220s (conjugated cyanide); 1665s (isobutylidene double bond); 1630s cm\(^{-1}\) (cyanomethylene double bond); \(\lambda_{\text{max}}\) 283 M\(\mu\) (\(\mathcal{E}, 18,300\)) and is considered to be 2-(2-butylidene)-1-cyano-3-cyano-methylene-4-ethyl-4-methylcyclobutane. However since the alkyl groups are different and racemic cyanoallene was used a mixture of stereoisomers must be present, i.e. IV a, b, c and d.
The dimer of 1-cyano-3-ethyln-penta-1,2-diene may be considered to have the structure 1-cyano-3-cyanomethylene-4,4-diethy1-2-(3-pentylidene)cyclobutane (V) since it has similar infra-red and ultra-violet spectra to the previous dimers (III B) and (IV).
i.e. ν_{max} 2240 s (cyanide); 2215 s (cyanomethylene cyanide); 1650 s (isopentylidene double bond); 1625 s cm$^{-1}$ (cyanomethylene double bond); λ_{max} 283 mμ (ε, 17,000).

The n.m.r. spectrum is reasonably consistent with the above structure and shows $\tau = 8.7-9.3$ a multiplet from protons of four methyl groups split into triplets, $\tau = 7.2-8.55$ a multiplet from protons of four methyl groups split into quartets, an unexplained doublet $\tau = 6.65$ from the proton on ring carbon C$_1$, and two unexplained peaks making one $\tau = 5.14$ and $\tau = 4.75$ assigned to the cyanomethylene proton.

The structure of this compound is based mainly on analogy to the original structure (III B), the n.m.r. pattern being too complex for definite assignments.
In 1913 Lebedev \(^{88, 89}\) prepared the first cyclobutane by dimerisation of an allene and started a controversy which lasted for over 50 years as many workers in this field were not convinced that the structure of his product was a cyclobutane. From allene Lebedev isolated what he considered to be 1,2-dimethylenecyclobutane (as expected from a diradical mechanism).

\[
2 \text{CH}_2 = \text{C} = \text{CH}_2 \rightarrow \text{C} = \text{CH}_2 \rightarrow \text{CH}_2
\]

Although the oxidative and reductive methods which he used to prove this structure were not absolutely conclusive, later work has completely validated his results.

E. Vogel \(^{90}\) in 1955 still contested the cyclobutane structure but in 1956 Blomquist \(^{91}\) synthesised 1,2-dimethylenecyclobutane by an unambiguous route, thus ending the controversy:
Dimerisation of 1,1-dimethylallene gave at least two of three possible head to head isomers.

Head to head is defined as

\[
\begin{align*}
\text{b} & \quad \text{a} \\
\text{a} & \quad \text{c} \\
\text{b} & \quad \text{a}
\end{align*}
\]

or

\[
\begin{align*}
\text{b} & \quad \text{a} \\
\text{a} & \quad \text{c} \\
\text{b} & \quad \text{a}
\end{align*}
\]

(see Fig. I), but it is possible that smaller amounts of the third dimer was present.

Williams and Sharkey 92 working with allene in the vapour phase obtained an 85:15 ratio of the 1,2- and 1,3-dimethylenecyclobutanes, which indicates that at higher temperatures the dimerisation is less stereo-selective.

Jacobs and Petty 93 showed that the major dimer from 1-bromo-3,3-dimethylallene was the di-isopropylidene form.
in which the ring bromines were trans to each other (ozonolysis gave α,β-dibromosuccinic acid) and that a second dimer had two possible structures

\[
\begin{align*}
\text{Me}_2\text{CHBr} & \quad \text{Me}_2\text{CHBr} \\
\text{Me}_2\text{CH} & \quad \text{Me}_2\text{CH}
\end{align*}
\]

however McClenon 94 has since shown that both of these alternatives are present.

It has been noted that the major products of dimerisation of allenes are head to head products (see Fig. I),

\[
\begin{align*}
R'\quad R_2\quad R_3 \quad R_4 & \quad R_1R_2\quad CR_3R_4 \\
R_2\quad R_4 & \quad R_1R_2\quad CR_3R_4 \\
R_1R_2C & \quad R_3R_4
\end{align*}
\]

the only exception being the dimer from 1,2-difluoroallene, which gives the head to tail isomer as the major product. This structure has been clearly shown by infra-red and nuclear magnetic resonance spectroscopy.
<table>
<thead>
<tr>
<th>ALLENE</th>
<th>TYPES OF DIMER FORMED</th>
<th>REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_2$C=CH$_2$</td>
<td>[Diagram]</td>
<td>89-92.</td>
</tr>
<tr>
<td>Me$_2$C=C=CH$_2$</td>
<td>[Diagram]</td>
<td>97,98.</td>
</tr>
<tr>
<td>MeCH=C=CHMe</td>
<td>[Diagram]</td>
<td>89.</td>
</tr>
<tr>
<td>Et$_2$C=C=CH$_2$</td>
<td>[Diagram]</td>
<td>99.</td>
</tr>
<tr>
<td>Me$_2$C=C=CHBr</td>
<td>[Diagram]</td>
<td>93.</td>
</tr>
</tbody>
</table>

Fig. 1
(a) defined as head to head
(b) defined as head to tail

Fig. 1
The present work has shown that 1-cyano-3,3-dimethylallene also gives the head to tail dimer as the major product.

As yet there has been no explanation of this anomaly, but it is possible that if the diradical is formed and has a fairly long lifetime then a weak bonding or attraction between the hydrogen and fluorine atoms (or the hydrogen and the cyano group) would tend to stabilise the conformation in the head to tail form.
However since this free radical mechanism is most favourable with low-polar structures, an ionic mechanism is more likely with such strongly polarised molecules.
ENAMINES FROM ALLENES.

In the present work a number of 1-cyanoallenes were reacted with different amines. The reaction was carried out by adding amines to the stirred 1-cyanoallene and moderating the reaction by cooling in a water-bath to keep the temperature below about 60° (some of the ensuing reactions were highly exothermic). If the reaction was not moderated the same products resulted but were much darker in colour and contained high molecular weight impurities. The same products in the same ratios were obtained if the reaction was carried out under reflux in ethereal solution.

The reaction with ammonia was best carried out by heating the 1-cyano-3-ethylpenta-1,2-diene to about 60° and passing dry ammonia gas continuously (ammonia was obtained from a reservoir of slowly evaporating anhydrous liquid ammonia). With lower members of the cyano-allenes, e.g. 1-cyano-3-methylbuta-1,2-diene dimerisation of the allene competed with the reaction with ammonia. At room temperature the addition of ammonia was very slow (1-2% after 6 hr.) The addition of amines to 1-cyanoallenes gave two products which could easily be separated by fractionation, these
resulted from the addition of nitrogen to C_2 and protonation at either C_1 (type A) or C_3 (type B), the product of type B being invariably the higher boiling compound. (See Table XIV)

\[
\begin{align*}
\text{Type A.} & & \text{Type B.} \\
\begin{array}{c}
\text{R} \\
\text{CH-CN}
\end{array} & & \begin{array}{c}
\text{R} \\
\text{CH-CN}
\end{array}
\end{align*}
\]

Both types of enamines are stable under the reaction conditions used and do not isomerise (as shown by separate experiments); they are therefore probably formed by different mechanistic pathways.
Table XIV.

COMPARATIVE YIELDS OF ENAMINES ISOMERS FROM CYANOALLENES.

<table>
<thead>
<tr>
<th>Cyanide</th>
<th>Amine</th>
<th>Yield Type A</th>
<th>Yield Type B</th>
</tr>
</thead>
<tbody>
<tr>
<td>R R'</td>
<td>R" R'"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H Pr↓↓</td>
<td>Et Et</td>
<td>74%</td>
<td>90%</td>
</tr>
<tr>
<td>Me Me</td>
<td>Et Et</td>
<td>8%</td>
<td>76%</td>
</tr>
<tr>
<td>Me Me</td>
<td>(CH₂)₅ NH</td>
<td>8%</td>
<td>75%</td>
</tr>
<tr>
<td>Me Et</td>
<td>Bu↑↑ H</td>
<td>-</td>
<td>80%</td>
</tr>
<tr>
<td>Me Et</td>
<td>Et Et</td>
<td>72%</td>
<td>17%</td>
</tr>
<tr>
<td>Me Et</td>
<td>(CH₂)₅ NH</td>
<td>-</td>
<td>75%</td>
</tr>
<tr>
<td>Me Et</td>
<td>(CH₂)₅ NH</td>
<td>8%</td>
<td>81%</td>
</tr>
<tr>
<td>Et Et</td>
<td>H H</td>
<td>-</td>
<td>60%</td>
</tr>
<tr>
<td>Et Et</td>
<td>Et Et</td>
<td>70%</td>
<td>*</td>
</tr>
<tr>
<td>Et Et</td>
<td>(CH₂)₅ NH</td>
<td>*</td>
<td>66%</td>
</tr>
<tr>
<td>Et Et</td>
<td>iso C₉H₁₀ NH</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Et Et</td>
<td>C₉H₁₀ NH</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Me But</td>
<td>Et Et</td>
<td>-</td>
<td>43%</td>
</tr>
<tr>
<td>Me But</td>
<td>(CH₂)₄ NH</td>
<td>-</td>
<td>83%</td>
</tr>
<tr>
<td>Me But</td>
<td>(CH₂)₅ NH</td>
<td>58%</td>
<td>23%</td>
</tr>
<tr>
<td>Pri Pri</td>
<td>Et Et</td>
<td>16%</td>
<td>54%</td>
</tr>
</tbody>
</table>

* not isolated pure.

a, b yields not accurate.
Addition of the nitrogen to C_2 initially gives an anion best represented as (I); the charge is delocalised through molecular orbitals embracing C_1, C_2 and the nitrogen atom, but there will be no delocalisation to C_3 since the C_2-C_3 π-orbital is at right angles to this delocalised orbital.
Thus only after a 90° rotation about the C₁-C₂ bond can delocalisation occur to give carbanion II.

It seems probable that an intra-molecular proton transfer from the nitrogen to the either C₁ or C₃ then takes place to form enamine type A or B respectively. The different ratios of types A and B in the product are explained in the following manner:- After the initial opening of the d-P bond to give the carbanion I the quaternary nitrogen is in a state of sp³ hybridisation and rotation about the C₂-N bond can occur, if this rotation is fast the hydrogen will be conformationally favourably placed for transfer to the negatively charged C₁ thus giving a type A enamine. However if the rotation about the C₂-N bond is slow then the proton transfer will be slow since only when the hydrogen is opposite to the electron pair of the C₁ sp³ orbital will transfer occur. This allows rotation round the C₁-C₂ bond and after a 90° rotation maximum overlap of \(\pi \)-orbitals gives a distribution of negative charge, part of which will reside on C₃. Internal proton transfer to C₃ then gives the thermodynamically more stable type B compound.

The factors which affect the rotation about the C₂-N bond are (a) The inertia of the group about its axis of
rotation i.e. smaller more symmetrical groups will rotate quickly – this explains the preponderance of type A enamines with diethylamine; unsymmetrical, larger groups have a higher moment of inertia and hence rotate more slowly thus giving more time for the other (C₁-C₂) bond to rotate, thus tending to give a mixture of types A and B. (b) Stearic interaction between R' and R" and R"" would tend to hinder rotation thus again a mixture results.

These observations are apparently contradicted by the results obtained when either R" or R"" or both are hydrogen i.e. in the case of the amines being n-butylamine and ammonia, when fast rotation would be expected to lead to formation of type A enamine, in fact type B is formed exclusively. This is best explained by prototropic rearrangement to the imine which allows the more thermodynamically more stable type B to form from the type A enamine.

\[
\begin{align*}
\text{Type A} & & \text{Type B.} \\
R' \text{C} = \text{C} - \text{CH}_2\text{CN} & \leftrightarrow & R' \text{CH}_2 \text{C} - \text{CH}_2\text{CN} & \leftrightarrow & R' \text{CH} = \text{CHCN} \\
R' \text{NH} & & R' \text{N} & & R' \text{H} \\
R" & & R" & & R" \\
\end{align*}
\]
The imine structure has actually been detected by nuclear magnetic resonance in the case of 2-amino-1-cyano-3-ethylnpent-1-ene (see later).

The two cases of 2-amino-1-cyano-3-ethylnpent-1-ene, and 2-(n-butylamino)-1-cyano-3-methylpent-1-ene clearly show that extended conjugation stabilises the amino forms relative to the imino form of these type B enamines, since very little of the imino form is detected in the former (1 part in 8) and none in the latter at all. This is clearly shown by infra-red, ultra-violet and n.m.r. spectra. This is paralleled by the stabilisation of enols by conjugation (e.g. acetylacetone or ethylacetoacetate).

The high wavelength absorption of type B enamines in the ultra-violet region (260-284m) is due to the presence of an extended conjugated system due to resonance forms of the type

\[
\begin{align*}
R & \quad \text{CH} - \quad \text{C} = \quad \text{C} - \quad \text{N} \\
R' & \quad \text{R}'' \\
R'' & \quad \text{N} \\
R'' & \quad \text{CH} - \quad \text{C} - \quad \text{C} = \quad \text{C} - \quad \text{N}
\end{align*}
\]
since α-β unsaturated cyanides would be expected to absorb about 215-17 mμ 84.

The two different types of enamine can be readily distinguished by means of their infra-red and ultra-violet spectra (Table XV and Table XVI). Type A enamines show an absorption at 2250-2290 cm⁻¹ (unconjugated cyanide) and a weak absorption at 1625-1675 cm⁻¹ (unconjugated double bond), they have a weak ultra-violet absorption at 203-7 mμ (ε, 5,000), and in some cases a weaker secondary absorption at 233-46 mμ (ε, 2,000). In contrast the type B enamines show an exceptionally intense infra-red absorption at 2200-2210 cm⁻¹ (conjugated cyanide) and another exceptionally intense band at 1560-1595 cm⁻¹ (double bond conjugated to cyanide); their ultra-violet spectra show a strong absorption in the 261 mμ region (secondary nitrogen) or 273-84 mμ region (tertiory nitrogen).
Table XV.

INFRA-RED AND ULTRA VIOLET SPECTRA OF

TYPE A ENAMINES.

\[
\begin{align*}
R & \\
\text{C} & = C - \text{CH}_2\text{CN} \\
R & \text{N} \\
R'' & R'''
\end{align*}
\]

<table>
<thead>
<tr>
<th>Cyanide</th>
<th>Amine</th>
<th>(\lambda_{\text{max}} \text{cm}^{-1})</th>
<th>(\lambda_{\text{max}})</th>
<th>(\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me Me Et Et</td>
<td>2280, 1675, 740</td>
<td>203</td>
<td>4,820</td>
<td>235</td>
</tr>
<tr>
<td>Me Me (CH(_2)_5NH</td>
<td>2250, 1660, 740</td>
<td>203</td>
<td>5,235</td>
<td>236</td>
</tr>
<tr>
<td>Me Et Et Et</td>
<td>2250, 1650, 735</td>
<td>204</td>
<td>5,040</td>
<td></td>
</tr>
<tr>
<td>Me Et (CH(_2)_5NH</td>
<td>2260, 1675, 740</td>
<td>205</td>
<td>4,000</td>
<td>233</td>
</tr>
<tr>
<td>Et Et Et Et</td>
<td>2250, 1650, 730</td>
<td>204</td>
<td>6,640</td>
<td></td>
</tr>
<tr>
<td>Et Et iso C(9)H({10}) NH</td>
<td>2290, 1650, 750</td>
<td>207</td>
<td>14,530</td>
<td></td>
</tr>
<tr>
<td>Me Bu(^t) (CH(_2)_5NH</td>
<td>2270, 1625, 760</td>
<td>203</td>
<td>5,130</td>
<td>246</td>
</tr>
<tr>
<td>Pri Pri Et Et</td>
<td>2280, 1645, 775</td>
<td>203</td>
<td>6,860</td>
<td></td>
</tr>
</tbody>
</table>
Table XVI.

INFRA-RED AND ULTRA-VIOLET SPECTRA

OF TYPE B ENAMINES.

\[
\begin{align*}
R &\quad \text{CH.C} = \text{CHCN} \\
R' &\quad \text{N} \\
R'' &\quad R'''
\end{align*}
\]

<table>
<thead>
<tr>
<th>Cyanide</th>
<th>Amine</th>
<th>(\gamma_{\text{max}}) cm(^{-1})</th>
<th>(\lambda_{\text{max}})</th>
<th>(\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R R' R''</td>
<td>R''''</td>
<td>2210s, 1580vs, 1097</td>
<td>720, 273</td>
<td>24,300</td>
</tr>
<tr>
<td>H Pri Et Et Et</td>
<td></td>
<td>2205s, 1580vs, 860</td>
<td>750, 276</td>
<td>19,750</td>
</tr>
<tr>
<td>Me Me (CH(_2))(_5)NH</td>
<td></td>
<td>2205s, 1595vs,</td>
<td>737, 261</td>
<td>19,500</td>
</tr>
<tr>
<td>Me Et Bu(^n) H</td>
<td></td>
<td>2197, 1570</td>
<td>730, 276</td>
<td>19,700</td>
</tr>
<tr>
<td>Me Et Et Et Et</td>
<td>Et</td>
<td>2197, 1570</td>
<td>730, 276</td>
<td>19,700</td>
</tr>
<tr>
<td>Me Et (CH(_2))(_4)NH</td>
<td></td>
<td>2210, 1575</td>
<td>720, 274</td>
<td>22,500</td>
</tr>
<tr>
<td>Me Et (CH(_2))(_5)NH</td>
<td></td>
<td>2210, 1580</td>
<td>277, 18,700</td>
<td></td>
</tr>
<tr>
<td>Et Et H H</td>
<td></td>
<td>2200, 1585</td>
<td>760, 261</td>
<td>18,300</td>
</tr>
<tr>
<td>Et Et (CH(_2))(_5)NH</td>
<td></td>
<td>2210, 1575</td>
<td>740, 276</td>
<td>23,700</td>
</tr>
<tr>
<td>Et Et isoC(_9)H(_10)NH</td>
<td></td>
<td>2210, 1580</td>
<td>750, 274</td>
<td>16,000</td>
</tr>
<tr>
<td>Me Bu(^t) Et Et</td>
<td>Et</td>
<td>2210, 1580</td>
<td>750, 282</td>
<td>18,260</td>
</tr>
<tr>
<td>Me Bu(^t) (CH(_2))(_4)NH</td>
<td></td>
<td>2200, 1570</td>
<td>720, 279</td>
<td>21,000</td>
</tr>
<tr>
<td>Me Bu(^t) (CH(_2))(_5)NH</td>
<td></td>
<td>2210, 1580</td>
<td>284</td>
<td>16,000</td>
</tr>
<tr>
<td>Pri Pri Et Et</td>
<td>Et</td>
<td>2200, 1560</td>
<td>725, 277</td>
<td>22,500</td>
</tr>
</tbody>
</table>
Nuclear Magnetic Resonance Spectra of Enamines.

1. 2-(n-Butylamino)-1-cyano-3-methylpent-1-ene.

\[
\begin{align*}
\text{CH}_3 & \quad 3 & 2 & 1 \\
\text{CH} - C = \text{CHCN} \\
\text{CH}_3 \text{CH}_2 & \\
\delta & \alpha & \beta & \gamma \\
\text{CH}_3 \text{CH}_2 \text{CH}_2 \text{CH}_2 & \\
\text{H}
\end{align*}
\]

n.m.r. 21.

The methyl groups 5CH\textsubscript{3} and 8CH\textsubscript{3} show up as overlapping triplets \(\tau = 9.1\), \(J_{\text{CH}_3 \text{CH}_2} = 6\) c.p.s., methyl group 6CH\textsubscript{3} shows as a doublet at \(\tau = 8.85\), \(J_{\text{CH}_3 \text{H}} = 8\) c.p.s. An overlapping quartet and triplet \(\tau = 8.3 - 8.75\) are the \(\beta\) and \(\gamma\) methylenes of the n-butylamino, a pentet at \(\tau = 6.9 - 7.4\) consists of the \(\alpha\)-methylenes of the butylamino and the methine. A singlet at \(\tau = 6.26\) is due to the ethylenic hydrogen shielded by cyanide, and a broad peak \(\tau = 5.2 - 5.6\) is the proton on nitrogen, probably coupled to the \(\alpha\)-methylene of the n-butylamino group.
2. 1-Cyano-2-(diethylamino)-3-methylpent-2-ene.

![Chemical structure diagram]

n.m.r. 22.

Two triplets at $\tau = 8.8 - 9.2$ indicate $^5\text{CH}_3$ and $^3\text{CH}_3$,

$^J\text{CH}_3$, $^J\text{CH}_2 = 7$ c.p.s., a singlet or possibly a very closely split triplet at $\tau = 8.2$ is given by $^6\text{CH}_3$, a very small coupling across the double bond to $^4\text{CH}_2$ could account for the triplet $^J < 0.5$ c.p.s. A quartet centred on $\tau = 7.75$ is $^4\text{CH}_2$ split by $^5\text{CH}_3$, $^J_{4,5} = 7$ c.p.s., a quartet of doublets $\tau = 7.37$ is due to the methylene groups of the diethylamine, where it is proposed that a partial double bond character of the $^2\text{C} - \text{N}$ bond is enough to hold the methylene groups next to the nitrogen, in different surroundings, and lead to their non-equivalence. A singlet at $\tau = 7.04$ is $^1\text{CH}_2\text{CN}$.
3. **1-Cyano-2-(diethylamino)-3-methylpent-1-ene.**

\[
\begin{align*}
\text{CH-CN} & \quad \text{3CH} = \text{CH-CN} \\
\text{CH} & \quad \text{C} \quad \text{CH} \\
\text{CH}_2\text{CH}_2 & \quad \text{CH} \\
\text{CH}_3 & \quad \text{CH} \\
\end{align*}
\]

n.m.r. 23

Showed a triplet centred on \(\tau = 8.95 \), \(^5\text{CH}_3 \) split by \(^4\text{CH}_2 \) \(J_{5,4} = 7 \) c.p.s.; a triplet centred on \(\tau = 8.86 \), \(^\beta\text{CH}_3 \) split by \(^\alpha\text{CH}_2 \) \(J_{\beta,\alpha} = 7 \) c.p.s. A doublet \(\tau = 8.64 \) due to \(^6\text{CH}_3 \) split by the methine \(J_{6,3} = 8 \) c.p.s. and a doublet of quartets \(\tau = 8.2 \) due to the \(^4\text{CH}_2 \) split by \(^5\text{CH}_3 \) \(J_{4,5} = 7 \) c.p.s. further split by the methine \(J_{4,3} = 8 \) c.p.s.; a sextet of doublets centred on \(\tau = 7.3 \) due to splitting of the methine by the \(^6\text{CH}_3 \) and \(^4\text{CH}_2 \) \(J_{3,6} = 8 \) c.p.s. \(J_{3,4} = 8 \) c.p.s. further split by long range coupling to \(^1\text{CH} \) \(J_{3,4} = 2.5 \) c.p.s.; a quartet centred on \(\tau = 6.75 \) due to the methylene of the ethylamino group split by the \(^\beta\text{CH}_3 \), \(J_{\alpha,\beta} = 7 \) c.p.s., and finally a doublet \(\tau = 6.23 \) due to \(^1\text{CH-CN} \) split by long range coupling to \(^3\text{CH} \) \(J_{1,3} = 2.5 \) c.p.s.
4. 1-Cyano-3-methyl-2-piperidino-pent-1-ene.

\[
\begin{array}{c}
\text{CH}_3 \\
\text{CH} - \text{C} = \text{CHCN} \\
\text{CH}_2 \text{CH}_2 \\
\end{array}
\]

n.m.r. 24.

A triplet \(\tau = 9.05 \) \(\text{CH}_3 \) split by \(4\text{CH}_2 \) \(J_{5,4} = 7 \ \text{c.p.s.} \) is mixed with a low intensity triplet which may be caused by non-equivalence due to restricted rotation, a doublet \(\tau = 8.7 \) due to \(6\text{CH}_3 \) split by methine \(J_{6,3} = 7 \ \text{c.p.s.} \), a quartet \(\tau = 8.5 \) due to \(4\text{CH}_2 \) split by \(5\text{CH}_3 \) is hidden under the broad envelope of the \(\beta \) and \(\gamma \) methylene groups of the piperidine but the intergram clearly shows 8 protons, similarly the sextet of doublets \(\tau = 7.1 \) is partially hidden by the broad envelope of the \(\delta \) methylenes of the piperendene ring (\(\tau = 6.7 - 6.95 \)) but it can clearly be seen \(J_{3,6} = J_{3,4} = 7 \ \text{c.p.s.} \) and \(J_{3,1} = 1.8 \ \text{c.p.s.} \) the latter being due to long range coupling of the methine with the ethylenic proton. A doublet \(\tau = 6.03 \) is due to long
range coupling of the ethylenic proton $^1\text{CHCN}$ with the methine $J_{1,3} = 1.8 \text{ c.p.s.}$

5. **1-Amino-3-ethylpent-1-ene.**

\[
\begin{array}{c}
\text{CH}_3\text{CH}_2 \quad \text{CH} - \text{C} = \text{CHCN} \\
\text{CH}_3\text{CH}_2 \\
\text{NH}_2
\end{array}
\]

n.m.r. 25

A multiplet $\tau = 9.1$ is the $^5\text{CH}_3$ split by $^4\text{CH}_2$ with some contribution from other methyl groups, possibly from other tautomer (i.e. imine form) $J_{5,4} = 7 \text{ c.p.s.}$ A multiplet at $\tau = 8.5$ indicates quartet of doublets of $^4\text{CH}_2$ split by $^5\text{CH}_3$, $J_{4,5} = 7 \text{ c.p.s.}$ and further split by the methine $J_{4,3} = 2 \text{ c.p.s.}$ The expected pentet of doublets due to the methine split by $(^4\text{CH}_2)_2$ and long range coupling to the ethylenic proton cannot be seen, it is probably so broadened by interaction with the nitrogen protons as to be smoothed out completely. A triplet $\tau = 6.2$ is due to the ethylenic proton $^1\text{CHCN}$ being split by the nitrogen protons.
\(J_{\text{H,NH}_2} = 1 \text{ c.p.s.}, \) a doublet at \(\tau = 5.83 \) is due to a contribution from the imino form \(- \text{C} - \text{CH}_2\text{CN} \)

\(J_{\text{H}_3\text{NHa}} = 0.5 \text{ c.p.s.} \) Two broad humps at \(\tau = 5 - 5.8 \) are due to \(\text{NH}_2 \) and NH. A total integrant of the region \(\tau = 6.2 - 5 \) gives three protons as would be expected from a tautomeric system

\[
\begin{align*}
- \text{C} - \text{CH}_2\text{CN} & \xrightarrow{\text{H}} - \text{C} = \text{CHCN} \\
\text{NH} & \quad \text{NH}_2
\end{align*}
\]

The integrant also shows that the ratio of the amino to imino forms is about 7:1. (This is in carbon tetrachloride, infrared an liquid phase shows no imino form.)

6. 1-Cyano-2-(diethylamino)-3,4,4-trimethylpent-1-ene.

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH} - \text{C} = \text{CHCN} \\
\text{But} & \quad \text{N} \quad \beta \quad \alpha \beta \\
\text{CH}_2\text{CH}_2 & \quad \text{CH}_2\text{CH}_3
\end{align*}
\]

n.m.r. 26.

Showed a singlet \(\tau = 9.03, \text{ But} \), a multiplet \(\tau = 8.85 \) for the diethylamino methyl groups (possibly non-equivalent due to restricted rotation), a doublet \(\tau = 8.5 \) \(^6\text{CH}_3\) split
by methine $J_{6,3} = 7.2$ c.p.s. a quartet $\gamma = 7.55$ due to the methine ^2CH split by $^6\text{CH}_3$. The diethylamino methylenes $\gamma = 6.6$ show a multiplet again probably a result of restricted rotation, and a singlet $\gamma = 6.3$ due to ethylenic $=\text{CHCN}$.

Stirling 6 reacted phenylsulphonylpropadiene with N-deutero-dibenzylamine and obtained an addition product which contained 25% of the deuterium in the 1 position and 75% of the deuterium in the 3 position.

\[
\begin{align*}
\text{PhSO}_2\text{C} = \text{C} - \text{CH}_2 + \text{ND(CH}_2\text{Ph})_2 & \rightarrow \text{PhSO}_2\text{C} = \text{C} - \text{CH}_3 + \text{PhSO}_2\text{C} = \text{C} - \text{CHD}_2 \\
\text{H} & \quad \text{D} \\
\quad & \quad \text{N} \\
(\text{CH}_2\text{Ph})_2 & \quad (\text{CH}_2\text{Ph})_2
\end{align*}
\]

100%D 75%D 25%D

Reactions of the isotopically normal product with N-deutero-dibenzylamine gave a product which showed little exchange to have taken place.

\[
\begin{align*}
\text{PhSO}_2\text{C} = \text{C} - \text{CH}_3 + \text{ND(CH}_2\text{Ph})_2 & \rightarrow \text{little H-D exchange} \\
\text{H} & \quad \text{N} \\
\quad & \quad (\text{CH}_2\text{Ph})_2
\end{align*}
\]

He interpreted these results to show that proton transfer occurs after the addition of the nucleophile by means of an internal proton transfer in the adduct i.e.
Only if such equilibria are present can the statistical distribution of deuterium occur i.e. 75% on C₁ and 25%D on C₂, and the fact that the isotopically normal adduct shows little exchange was interpreted by Stirling to show that the exchange must be by multiple internal proton transfer otherwise a much greater proportion of deuterium would be introduced into the adduct.

The small amount of deuterium which is introduced in the case of the isotopically normal adduct may be explained by an exchange of the type:

\[
\text{PhSO}_2 \cdot C = C \cdot CH_2 + ND(\text{CH}_2 \cdot \text{Ph})_2 \rightleftharpoons \text{PhSO}_2 \cdot C = C \cdot ND(\text{CH}_2 \cdot \text{Ph})_2 + \text{H} \cdot C = C \cdot \text{NH}(\text{CH}_2 \cdot \text{Ph})_2
\]
These interpretations are not in accordance with our work, if such equilibria are established then the thermodynamically more stable compound (type B) should be exclusively formed. Our experiments have shown that pure adducts of type A or type B in contact with excess amine do not isomerise, again if such equilibria were established isomerisation would be expected.

The enamine nitrogen is considerably less basic than the nitrogen of the nucleophile (amine), therefore proton abstraction by the amine would be expected and not an internal proton transfer from the carbon to the nitrogen of the enamine. Thus a larger proportion of deuterium (than explained on statistical addition grounds) would be expected to enter the molecule via such a mechanism.

It is possible that the 75:25 distribution of the deuterium is entirely coincidental, due to formation of a mixture of type A and type B adduct. In the series of cyano enamines which have been prepared in this work, identification of types A and B is easily carried out by spectroscopic examination and it is possible that Stirling's compounds have no intense bands which could be used for identification. (No infra-red or ultra-violet spectral data is given in any of Stirling's papers).
When Stirling reacted his allenic sulphone with dibenzylamine he obtained a product m.p. 104° which was sometimes obtained in a form m.p. 111°, this is the product which when recrystallised was identified as trans-2-dibenzylamino-1-phenylsulphonyl propene by means of n.m.r. spectra. It is possible that on reacting the sulphone with deuterobenzylamine the n.m.r. was carried out on the crude material and unknown to Stirling this was a mixture of types A and B adducts.

Enamine derived from β-cyanophenylacetylene.

The addition of diethylamine to β-cyanophenylacetylene gave the enamine under similar conditions to those used for 1-cyanoallenes.

\[
\text{Ph} - \overset{\equiv}{\text{C}} - \text{CN} + \text{Et}_2\text{NH} \rightarrow \text{Ph} - \overset{\equiv}{\text{C}} = \text{CHCN}
\]

The proposed internal proton addition mechanism would lead to cis addition to give

```
Ph
\overset{\equiv}{\text{C}} = \text{CN} \quad \text{Et} \quad \overset{\equiv}{\text{C}} = \text{CN}
\text{Et} \quad \text{Et}
```

\[\text{Ph} - \overset{\equiv}{\text{C}} - \text{CN} \quad \text{Et} \quad \overset{\equiv}{\text{C}} = \text{CHCN} \]
Spectral evidence can be used to prove this structure. Stirling 106 and Huisgen 107 have shown that cis addition products are formed from the nucleophilic addition of secondary amines to acetylenes and that the trans product (activating group and nucleophile are trans) is always obtained. Only in the case of primary amines does a cis-trans equilibrium result, this presumably being due to the initial trans product forming an imine-type intermediate.

![Chemical structure](image)

Enamine Derived from β-Cyanophenylacetylene.

The methods applied by Stirling 106 and Huisgen 107 for determining configuration are peculiar to the type of molecules used by these workers and cannot be applied in the present case, however a novel method for finding the configuration has been worked out for 1-cyano-2-amino-alk-1-enes.

The cis and trans forms can be written
Models show that the methylene of the amino group falls directly in the deshielding zone of the cyano group in the cis addition product thus the proton resonance signal of the methylenes would be shifted downfield relative to the corresponding signal in the trans form.

Reaction under aprotic conditions yields a product which has a sharp n.m.r. spectra.

A triplet $\gamma = 8.89 \ (N-CH_2-CH_3)$, $J_{CH_3,CH_2} = 7 \text{ c/sec.}$, a quartet $\gamma = 6.92 \ (N-CH_2-CH_3)$, $J_{CH_2,CH_3} = 7 \text{ c/sec.}$, a singlet $\gamma = 6.0 \ (C=CH-CN)$, and a multiplet $\gamma = 2.57 \ (Ph)$. This was believed to be the trans product.

If the reaction is carried out under conditions where protons are available (e.g. in methanol) then external proton transfer can give the cis product.
The n.m.r. of the product obtained using such conditions (reaction carried out in methanol) was similar to that obtained from the product under aprotic conditions except that two quartets were shown for the \(\delta \)-methene protons, the new quartet appearing 13 c/sec. downfield from the original one.

The ratio of cis to trans isomers was shown by planimetric measurements to be 1:4.
Preparation of β-Ketonitriles from Cyano-enamines.

Aliphatic and aromatic β-ketonitriles have previously been prepared by Claisen ester type condensations of nitriles having active α-methylene groups and either esters (J.B. Dorsel and S.M. McElvain 108) or nitriles (A. Dornow, I. Kulilche and F. Boxmann 109), but these methods are of limited synthetic value.

e.g.

\[\text{C}_6\text{H}_5\text{COOC}_2\text{H}_5 + \text{RCH}_2\text{CN} \xrightarrow{\text{NaOEt}} \text{C}_6\text{H}_5\text{COCHRCN} \quad 50-60\% \]

\[\text{C}_6\text{H}_4\text{CN} + \text{CH}_3\text{CN} \xrightarrow{\text{NaNH}_2} \text{C}_6\text{H}_4\text{C} = \text{NHCH}_2\text{CN} \rightarrow \text{C}_6\text{H}_4\text{COCH}_2\text{CN} \]

In 1959 M. E. Kuehne 110 prepared a limited number of cyclic β-Ketocyanides from the corresponding cyclic ketone. A ketone is reacted with a secondary amine, e.g. pyrrolidine, and the resulting enamine treated with cyanogen chloride and hydrolysed with dilute mineral acid to give the cyano ketone.
The preparation of cyano enamines from allenic cyanides followed by hydrolysis provides the first convenient general synthesis for cyanomethylene ketones of the type

\[
\begin{align*}
\text{CHCOCH}_2\text{CN} & \quad \text{from ketones} \quad \text{C} = 0 \\
\end{align*}
\]

ca 30% overall yield.

The type A and type B enamines lead to the same cyano ketone on refluxing with dilute hydrochloric acid for 1 hr.
TABLE XVII

YIELDS OF CYANOKETONES FROM DIFFERENT ENAMINES

\[
\begin{array}{c}
\text{Type} & \text{R} & \text{R}' & \text{R}'' & \text{R}''' & \text{time} & \text{Yield} \\
A & \text{Me} & \text{Et} & \text{Et} & \text{Et} & 2.5\text{hr} & 55 \\
B & \text{Me} & \text{Et} & \text{Et} & \text{Et} & 2.5\text{hr} & 60 \\
B & \text{Me} & \text{Et} & (\text{C}_5\text{H}_{10}) & & 1\text{ hr} & - \\
A & \text{Me} & \text{Et} & (\text{C}_5\text{H}_{10}) & & 1\text{ hr} & 84 \\
A & \text{Et} & \text{Et} & \text{Et} & \text{Et} & 1\text{ hr} & 78 \\
B & \text{Et} & \text{Et} & \text{H} & \text{H} & 1\text{ hr} & - \\
B & \text{Me} & \text{Bu}^\dagger & \text{Et} & \text{Et} & 2\text{ hr} & 25 \\
B & \text{Me} & \text{Bu}^\dagger & (\text{C}_5\text{H}_{10}) & & 2\text{ hr} & 49 \\
A & \text{Me} & \text{Bu}^\dagger & (\text{C}_5\text{H}_{10}) & & 2\text{ hr} & - \\
B & \text{Me} & \text{Bu}^\dagger & (\text{C}_5\text{H}_{10}) & & 2\text{ hr} & 52 \\
\end{array}
\]

- yield not determined accurately
TABLE XVIII

INFRA-RED AND ULTRA-VIOLET SPECTRA OF β-KETOCYANIDES

\[
\begin{align*}
\text{R} & \quad \text{R'} & \quad \lambda_{\max} & \quad \lambda_{\max} & \quad \varepsilon \\
\text{Et} & \quad \text{Me} & \quad 2260,1730,780 & \quad 232\text{mu} & \quad 2,880 \\
\text{Et} & \quad \text{Et} & \quad 2280,1730,785 & \quad 232\text{mu} & \quad 4,415 \\
\text{Me} & \quad \text{Bu} & \quad 2280,1730,710 & \quad 234\text{mu} & \quad 3,225 \\
\text{Ph.CO.CH}_2\text{CN} & & \quad 2280,1700,755 & \quad 204\text{mu} & \quad 15,820 \\
& & & \quad 245\text{mu} & \quad 11,600 \\
& & & \quad 282\text{mu} & \quad 2,636 \\
\end{align*}
\]

-149-
1,4-Eliminations of 1-haloallenes.

S.R. Landor and P.F. Whiter \(^{111}\) have recently shown that under basic conditions 1-haloallenes give 1,1-elimination of the hydrogen halide to form allenic carbenes, which can then add on electrophilically to any electron source i.e. double bonds etc. Some of Whiters products were found to contain from 1 - 6\% of hydrocarbon ey-yne, presumably originating from a 1,4-elimination.

\[
\begin{align*}
\text{H} & \quad \text{a} & \quad = \text{C} = \text{C} : \quad \text{addition to} \quad \text{double bonds} \\
\text{H} & \quad \text{Cl} & \quad \text{b} & \quad \text{C} \equiv \text{CH} \\
\end{align*}
\]

Thus under strong basic conditions the 1,1-elimination is a more highly favoured process than the 1,4-elimination.

During the present work on 1-cyanoallenes attempts were made to prepare 1-cyanoallenes from 1-bromoallenes by heating, either alone or in a solvent, with cuprous cyanide. It was found that very little allenic cyanide resulted, but a low boiling compound was often formed, sometimes with explosive force.
If the apparatus was modified and a slow continuous distillation occurred then the low boiling product could often be collected, and was shown to be the hydrocarbon en-yne mixed with hydrogen cyanide. The en-yne could be obtained in a pure form by redistillation of this mixture. (Table XIX.)

If the 1-bromoallene is heated with cuprous cyanide in N,N-dimethylformamide then the main product is the corresponding 1-cyanoallene and only about 15% of the en-yne is formed. If however the 1-bromoallene is heated in N,N-dimethylformamide with other cuprous salts (e.g. cuprous halides) then the main product is the en-yne.

\[
\begin{align*}
R' & \quad C = C = C \quad \text{Br} & \quad \text{CuCN} \quad \text{dry} & \quad R' \quad C - C \equiv \text{CH} \\
R & \quad \text{H} & & \quad R
\end{align*}
\]

\[
\begin{align*}
R \quad C = C = C \quad \text{Br} & \quad \text{CuCN} \quad \text{D.M.F.} & \quad R \quad C = C \quad \text{CH} \quad \text{CN} \\
R' & \quad \text{H} & & \quad R' \quad \text{H}
\end{align*}
\]

\[
\begin{align*}
R \quad C = C = C \quad \text{Br} & \quad \text{CuI} & \quad R \quad C - C \equiv \text{CH} \\
R' & \quad \text{H} & & \quad R'
\end{align*}
\]
TABLE XIX.

ENYNES FROM 1-HALOALLENES AND CUPROUS SALTS.

<table>
<thead>
<tr>
<th>Allenic</th>
<th>Bromide</th>
<th>Cuprous Salt</th>
<th>Solvent</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr<sup>n</sup></td>
<td>H</td>
<td>CuCN</td>
<td>-</td>
<td>50%</td>
</tr>
<tr>
<td>Me</td>
<td>Me</td>
<td>CuCN</td>
<td>-</td>
<td>22%</td>
</tr>
<tr>
<td>Me</td>
<td>Me</td>
<td>CuI</td>
<td>D.M.F.</td>
<td>57%</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>CuCN</td>
<td>-</td>
<td>57%</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>CuI</td>
<td>D.M.F.</td>
<td>50%</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>AgCN</td>
<td>-</td>
<td>21%</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>CuBr</td>
<td>D.M.F.</td>
<td>60%</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>CuCl</td>
<td>D.M.F.</td>
<td>40%</td>
</tr>
<tr>
<td>Et</td>
<td>Et</td>
<td>CuCN</td>
<td>-</td>
<td>44%</td>
</tr>
<tr>
<td>Et</td>
<td>Et</td>
<td>CuI</td>
<td>D.M.F.</td>
<td>61%</td>
</tr>
<tr>
<td>Me</td>
<td>But</td>
<td>CuCN</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td>Me</td>
<td>But</td>
<td>CuI</td>
<td>D.M.F.</td>
<td>63%</td>
</tr>
</tbody>
</table>

* Gave 60% 1-cyano-3,4,4-trimethylpenta-1,2-diene.
Heating the 1-bromoallene with cuprous iodide with no solvent gives only a small amount of en-yne, possibly because the hydrogen iodide liberated attacks any en-yne to give unsaturated iodo compounds, (in D.M.F. the hydrogen iodide seems to form a solvated complex which does not attack en-ynes.)

Mechanism.

It was first thought that when heated with cuprous cyanide, 1-bromoallenes would form 1-cyanoallenes which then underwent elimination of hydrogen cyanide, thus accounting for the formation of the latter compound.

\[
\begin{align*}
\text{Me} & \quad C = C = C \quad \text{Me} \\
\text{Me} & \quad \text{Br} \quad \text{CuCN} \quad \text{Me} \\
\text{Me} & \quad C = C = C \\
\text{Me} & \quad \text{CN} \\
\text{Me} & \quad C \quad \text{CH}_2 \\
\text{Me} & \quad C \quad \text{equiv CH} \\
\text{Me} & \quad \text{H} \quad \text{H} \quad \text{CH}_2 + \text{HCN}
\end{align*}
\]

however heating 1-cyanoallenes alone and with cuprous salts showed that only polymerisation occurred, thus proving that the allenic cyanide was not an intermediate in the elimination.

A cyclic mechanism best explains this 1,4-elimination. The bromine atom co-ordinates with the copper of the cuprous salt, then if a suitable hydrogen atom is available on C₄ an
eight or nine membered cyclic transition state can occur, when elimination at the 1 and 4 protons leads to the separation of hydrogen cyanide or hydrogen halide and production of the en-yne.

\[
\begin{align*}
R' & \quad \text{H} \\
\text{C} = C = C & \quad \text{Br} \quad - \text{HCN} \\
R'' & \quad \text{N} = \text{C} - \text{Cu} \\
\text{C} & \quad \text{C} = \text{CH} \\
R'' & \quad \text{R''''} \\
\text{C} = C & \quad \text{Br} \quad - \text{HI} \\
\text{C} & \quad \text{H} \\
R & \quad \text{I} - \text{Cu} \\
R'' & \quad \text{R''''}
\end{align*}
\]

The different course of the reaction of 1-bromo-allenes with cuprous cyanide and cuprous iodide in dimethylformamide solvent is best explained by the fact that cuprous cyanide complexes strongly with dimethylformamide thereby being prevented from lying flat across the bromoallene, where as the cuprous iodide complex with dimethylformamide appears to be weak, thus allowing preferential complexing with the 1-bromoallene. Cuprous cyanide is very soluble in N,N-dimethylformamide and on standing precipitates a number of solid complexes which are now being examined by Landor
and Patel. Cuprous iodide is almost insoluble in dimethylformamide, but dissolves when 1-bromoallene is added.

When 1-bromo-3-methylpenta-1,2-diene is reacted with cuprous iodide in N,N-dimethylformamide at 80° an en-yne mixture consisting of two products in the ratio 12:88 is formed. Preparative g.l.c. separation followed by spectroscopic examination showed these to be 2-ethylbut-1-en-3-yne (910 cm⁻¹, C = CH₂) and trans-3-methylpent-3-en-1-yne (820 cm⁻¹, C = CH).

With cuprous cyanide alone, the temperature necessary for reaction is 115° and at this or higher temperatures three products in the ratio 6:74:20 were formed. These were separated by preparative g.l.c. and shown to be 2-ethylbut-1-en-3-yne, trans-3-methylpent-3-en-1-yne and cis-3-methylpent-3-en-1-yne respectively.

This could be explained by a kinetically controlled reaction at the lower temperature, with the methyl groups on C₃ and C₄ trans i.e. in the lowest energy state and a thermodynamically controlled reaction at the higher temperature giving an equilibrium mixture of cis- and trans-methyl groups on C₃ and C₄.
Similarly 1-bromo-3-ethylpenta-1,2-diene with cuprous iodide at 80° gave one product only which was considered to be trans-3-ethylpent-3-en-1-yne having the ethyl group on C₃ and the methyl group on C₄ in the trans positions.

\[
\begin{align*}
R & \quad C = C = C' \\
H & \quad C - C = CH
\end{align*}
\]

\[
\begin{align*}
R & \quad C = C = C' \\
H & \quad C - C = CH
\end{align*}
\]

\[
\begin{align*}
R & \quad C = C = C' \\
H & \quad C - C = CH
\end{align*}
\]

\[
\begin{align*}
R & \quad C = C = C' \\
H & \quad C - C = CH
\end{align*}
\]

R = Me or Et

All the en-ynes showed strong terminal acetylenic bands 3300 vs (C ≡ CH) and 2100m (C ≡ C) cm⁻¹. The double bond showed only a weak band in the region of 1630 cm⁻¹. Terminal methylene groups were detected or proven absent by the very strong 900 cm⁻¹ (=CH₂) absorption assignment of cis or trans structure was based on 845 (cis) and 820 (trans) cm⁻¹ bands. (Table XX.)
Table XX.

INFRA-RED AND ULTRA-VIOLET SPECTRA OF
EN-YNES.

\[
\begin{align*}
R & \quad \text{R'} \quad \text{R''} & \quad \nu_{\text{max}} \, \text{cm}^{-1} & \quad \lambda_{\text{max}} & \quad \varepsilon & \quad \lambda_{\text{max}} & \quad \varepsilon \\
H & \quad H & \quad \text{Et} & 3300, 2090, 1635, 740 & 223 & 12,900 \\
H & \quad \text{Et} & \quad H & 3300, 2090, 1635, 955 & 223 & 12,900 \\
\text{Me} & \quad H & \quad H & 3300, 2100, 1625, 900 & 222 & 11,000 & 236 & 9,700 \\
\text{Me} & \quad H & \quad \text{Me} & 3310, 2100, 1620, 820 \\
\text{Me} & \quad \text{Me} & \quad H & 3310, 2100, 1640, 845 & 222 & 8,900 \\
\text{Et} & \quad H & \quad H & 3310, 2100, 1620, 909 \\
\text{Et} & \quad \text{H} & \quad \text{Me} & 3300, 2100, 1630, 840 & 222 & 13,800 \\
\text{Bu}^t & \quad H & \quad H & 3300, 2100, 1630, 910 & 210 & 7,200 & 218 & 10,000 & 226 & 7,400 \\
\end{align*}
\]
Hydrolysis of 1-Cyanoallenes.

At the present time the only method for the preparation of allenic acids is due to Jones, Witham and Whiting.\(^{1,2}\) They reacted acetylenes with nickel carbonyl

\[
\text{Me}_2\text{C}C\equiv\text{C} = \text{CH}_2 \overset{\text{Ni(CO)}_4}{\rightarrow} \text{Me}_2\text{C} = \text{C} = \text{CH}_2
\]

It was thought that hydrolysis of 1-cyanoallenes would provide a convenient route for the synthesis of allene-1-carboxylic acids.

\[
\text{RR'}\text{C} = \text{C} = \text{CHCN} \rightarrow \text{RR'}\text{C} = \text{C} = \text{CHCOOH}
\]

However, attempts at hydrolysis using mineral acids, alkalis and bases did not prove satisfactory. The products in most cases being mixtures of unchanged allene cyanide and dark high molecular compounds containing no carbonyl band. Dimers of the allene cyanides were recovered from the high molecular weight material in the cases of 1-cyano-3-methylbuta-1,2-diene, 1-cyano-3-methylpenta-1,2-diene, and 1-cyano-3-ethylpenta-1,2-diene.
1-Cyano-3,4,4-trimethylpenta-1,2-diene gave an allenic acid, on heating the cyanide at 90° for 48 hr. in 30% sodium hydroxide.

\[
\begin{align*}
\text{Bu}^t & \quad \text{C} = \text{C} = \text{C} & \quad \text{CN} \\
\text{Me} & \quad \text{C} = \text{C} = \text{C} & \quad \text{H}
\end{align*}
\]

It is possible that less sterically blocked molecules dimerise and polymerise faster under hydrolysis conditions than hydrolysis, and more sterically blocked molecules, e.g. 1-cyano-3-t-butyl-4,4-dimethylpenta-1,2-diene show low solubility and hence react slowly.

An oxidative hydrolysis using alkaline hydrogen peroxide gave good yields of allenic-1-amides in all cases except the monoalkyllallene cyanides and the 3,3-dimethyl- and 3-ethyl-3-methyl-allene cyanide, it is suspected but not proven that in these cases some addition to the unsaturated centre is taking place.
The allenic amides were all stable crystalline white solids and had characteristic spectral bands, ν_{max} 3200-3410s a doublet (two N-H stretching bands), 1950-1980s (allene), 1650-1675s (the Amide I band, C=O), 1600-1630s (Amide II band, N-H bonding). λ_{max} 208-211m μ. (Table XXII.)
Table XXII.

INFRA-RED AND ULTRA-VIOLET SPECTRA
OF ALLENIC AMIDES

\[
\begin{align*}
\text{R} & \quad \text{R'} & \lambda_{\text{max}} \text{ in } \text{cm}^{-1} \\
& & \text{N-H stretch} & \text{Amide I} & \text{Amide II} & \lambda_{\text{max}} & \mathcal{E} \\
\text{Et} & \quad \text{Et} & 3400 & 3200, & 1670, & 1625 \\
\text{Me} & \quad \text{Bu}^t & 3400 & 3200, & 1670, & 1625 & 209 & 13,000 \\
\text{Pr}^t & \quad \text{Pr}^t & 3400 & 3210, & 1655, & 1630 & 210 & 15,000 \\
\text{Bu}^t & \quad \text{Bu}^t & 3410 & 3210, & 1655, & 1625 & 211 & 10,140 \\
\text{Bu}^t & \quad \text{Bu}^t & 3410 & 3200, & 1675, & 1600 & 208 & 8,150
\end{align*}
\]
Grignard Reactions of 1-Bromoallenes.

Wotiz, Matthews and Leib113 proposed that propargyl magnesium bromide existed in two resonance forms, i.e.

\[
\begin{align*}
&\left[H - C \equiv C - CH_2 \right] + \\
&\left[H - C = C - CH_2 \right]
\end{align*}
\]

The corresponding allene magnesium bromide would also be expected in this form. Support for the above was obtained when in 1951 Wotiz and Palchak114 found that treatment of the Grignard compound of 2-bromo-2-methyloct-3-yne with carbon dioxide gave the allenic acid 2-methylocta-2,3-dien-4-carboxylic acid,

\[
C_4H_9 - C \equiv C - CBrMe_2 \xrightarrow{\text{Mg}} CO_2 \xrightarrow{\text{OC}} C_4H_9 - C = C = CMe_2 \xrightarrow{\text{COOH}}
\]

the authors thought that the acetylenic acid was not formed due to steric factors.

In considering an allenic Grignard compound three forms must be taken into account.
Thus if an electrophile E attacks the Grignard three products may result.

In practice usually one or two of these products predominate depending on the electrophile used, i.e. in addition of carbon dioxide products (a) and (c) result; treatment with oxygen gives mainly product (b), treatment with acetone gives mainly product (c). The reasons for these differences are as yet unknown.

When Goodson treated 2,2,6-trimethylcyclohexylidene-vinyl magnesium chloride with carbon dioxide he obtained by extraction with sodium hydroxide, a neutral fraction and an acid fraction. The acid fraction consisted of a mixture of allenic and acetylenic acids which Goodson proposed to
have been formed by prototropic rearrangement during the alkaline extraction.

\[\begin{align*}
\text{[Diagram of molecular structure]} & \quad \overset{\text{20H}}{\leftrightarrow} & \text{[Diagram of molecular structure]} \\
\text{[Diagram of molecular structure]} & \quad \overset{\text{2H}^+}{\leftrightarrow} & \text{[Diagram of molecular structure]}
\end{align*} \]

This being based on the prototropic rearrangement of buta-2,3-dienoic acid reported by Eglington, Jones and Mansfield.\(^{16}\) and Whiting.\(^{58}\)

\[\text{CH} = \text{C-CH}_2\text{CO}_2\text{H} \xrightarrow{\text{K}_2\text{CO}_3} \text{CH}_2 = \text{C-CHCO}_2\text{H} \xrightarrow{\text{K}_2\text{CO}_3} \text{CH}_3 - \text{C}\equiv\text{CO}_2\text{H} \]

In later experiments Goodson extracted the mixture with aqueous sodium carbonate and found that although the extracted portion had a band at 2200 cm\(^{-1}\) (-C=C-) the acid remaining in the neutral portion did not, this he believed confirmed his view that the acetylenic acid was formed by prototropic rearrangement during extraction.

During the present work it has been conclusively shown that the mixture of acetylenic and allenic acids results
from a rearranged Grignard compound and the "rearrangement" during extraction is the result of a separation due to differences in acidities.

Allenic bromides react smoothly with magnesium, both in tetrahydrofuran and ether, to give the corresponding Grignard products, the magnesium is never completely used up even if a slight molar deficiency is used.

After formation the Grignard compound was cooled and a steady stream of dry carbon dioxide gas was passed through the suspension. When reaction was complete dilute hydrochloric acid was added, the etherial solution separated and dried. The infra-red spectra of this mixture was compared with that of the same mixture which had been shaken with sodium hydroxide and reacidified without separating, no change was observed thus prototropic rearrangement does not occur.

With the lower members of the series only a mixture of allenic and acetylenic acids can be isolated, no effective means of separation has yet been found. (Preparative thin layer chromatography holds out the best chance but has not yet been tried.)
Table XXIII.

ALLENIC GRIGNARDS + CARBON DIOXIDE

\[\text{R}_1 \quad \text{R}_2 \quad \text{Yield of mixed acid} \quad \text{Allenic acid obtained pure} \]

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>Yield of mixed acid</th>
<th>Allenic acid obtained pure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Me</td>
<td>28%</td>
<td>No</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>13-60%</td>
<td>No</td>
</tr>
<tr>
<td>Et</td>
<td>Et</td>
<td>49%</td>
<td>No</td>
</tr>
<tr>
<td>Me</td>
<td>But</td>
<td>45%</td>
<td>Yes</td>
</tr>
<tr>
<td>Pri</td>
<td>Pri</td>
<td>40%</td>
<td>Yes</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>18%</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table XXIV.

INFRA-RED AND ULTRA-VIOLET SPECTRA

OF ALLENIC ACIDS

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>(\lambda_{\text{max}})</th>
<th>(\varepsilon)</th>
<th>(\lambda_{\text{max}})</th>
<th>(\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>But</td>
<td>3400-2500, 1960, 1700, 835</td>
<td>212</td>
<td>11,550</td>
<td></td>
</tr>
<tr>
<td>Pri</td>
<td>Pri</td>
<td>3400-2600, 1975, 1700, 850</td>
<td>213</td>
<td>9,850</td>
<td></td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>3400-2500, 1950, 1695</td>
<td>207</td>
<td>32,000</td>
<td>248</td>
</tr>
</tbody>
</table>
The more sterically hindered compounds may be separated by extraction with sodium bicarbonate the acetylenic compound being preferentially extracted, however as yet only the allenic acid has been obtained pure, and this in only three cases. (Table XXIII.)

The high boiling hydrocarbon mixture obtained when the same Grignard compound was reacted with different electrophiles was thought to be due to the coupling of the bromide with previously formed Grignard compound. In several reactions the high boiling hydrocarbon mixture has been isolated, in one case the mixture was separated by preparative g.l.c. and one component was found to have \(\nu_{\text{max}} \) 3300 ms (C ≡ CH), 3110 w (C ≡ C) and 1960 w cm\(^{-1}\) (C = C = C), it is possible that this is a hydrocarbon of the type

![Chemical Structure]

Allenic acids are found to have \(\nu_{\text{max}} \) 3300-2500 us (hydrogen bonded OH), 1950 s (C = C = C) and 1700 s (C = O) cm\(^{-1}\).
\(\lambda_{\text{max}} 212-3 \mu \) for alkyl substituted compounds, and
\(\lambda_{\text{max}} 207 \mu \) and \(\lambda_{\text{max}} 248 \mu \) for the phenyl substituted compound. (Table XXIV.)

Reaction with Oxygen.

Reaction of the oxygen nucleophile with allenic Grignard compounds leads to formation of the corresponding acetylenic alcohol in about 48% yield.

\[
2 \left(\begin{array}{c}
R \\
C - C \equiv CH \\
R'
\end{array} \right) + O_2 \xrightarrow{2 H^+} 2 \left(\begin{array}{c}
R \\
C - C \equiv CH \\
R'
\end{array} \right) OH
\]

the main by-product is the previously mentioned hydrocarbon mixture. In some reactions unexplained carbonyl bonds appeared in infra-red spectra of products but no carbonyl compound was obtained pure. The acetylenic alcohols were identified by comparing infra-red and g.l.c. spectra with those of authentic compounds.

Reaction with Acetone.

3-methylpenta-1,2-diene-1-magnesium bromide was reacted with acetone at 5°, working up after decomposing the magnesium complex with dilute hydrochloric
acid gave a main fraction of 3-methylhept-3-yn-2-ol along
with other volatile products, no allenic compound was
obtained ν_{max} (I.R. 77.) 3400 (3) (-OH).
PART III.

EXPERIMENTAL.
EXPERIMENTAL

Infra-red spectra were determined with a Perkin-Elmer Infracord spectrometer. The abbreviations vs, s, m, w and vw are used to indicate the strength of the infra-red absorption bonds, i.e. very strong, strong, medium, weak and very weak respectively. Ultraviolet spectra were determined on absolute alcohol solutions with a Bausch and Lomb Spectronic 505 recording spectrometer. Nuclear magnetic resonance spectra were determined in carbon tetrachloride or deuterochloroform solution using either a Varian A40 or a Perkin-Elmer R10 spectrophotometer. A Griffin and George Mk. II chromatographic apparatus was used to determine gas liquid chromatograms (g.l.c.), glass columns (6' x 0.25") being employed, the nitrogen flow rate was 2 l./hr. unless otherwise stated. Melting points were determined on a Reichert-micro-Kofler block and are uncorrected.

Solvents designated as dry had been dried with sodium wire, N,N-dimethylformamide being dried by azeotropic distillation from benzene.
Preparation of 3,3-dialkylprop-1-yn-3-ols.

1) 3-Ethylpent-1-yn-3-ol.

Anhydrous liquid ammonia (3.5 l.) was added to a 5l flask contained in a well lagged box. The flask was fitted with an acetylene gas inlet which dipped below the surface of the ammonia, a mechanical stirrer, a dropping funnel, and a calcium oxide guard tube. Ferric nitrate (0.3 g) was added to the stirred ammonia followed, after a few minutes, by the addition of sodium (55.2 g., 2.4 mole) in small pieces. When about half the sodium had been added the passage of acetylene gas was started, (the cylinder gas being purified by passing through two traps cooled to -40°, then through two wash bottles containing concentrated sulphuric acid and finally through a calcium oxide U tube.)

The mixture was stirred, and acetylene was passed until the original deep blue solution had changed, first to a white suspension (sodamide), then to a dark grey suspension of sodium acetylide, (approx. 4-6 hr.)

Diethyl ketone (172 g., 2.0 mole) was then added drop-wise over 2 hr. and the mixture stirred a further 3 hr.
while continuing to pass acetylene. After addition of ammonium chloride (134 g., 2.5 mole) over 30 min. the flask was removed from its lagging and stood outside in a water bath until the ammonia had evaporated, ether (300 ml.) was then added and the contents of the flask filtered, the solid residue of sodium chloride was washed several times with ether and the combined etherial solutions dried (MgSO₄).

Distillation, after first removing the ether, gave a small forerun of diethyl ketone followed by 3-ethylpent-1-yn-3-ol (102 g., 72%), b.p. 61.5-62.5⁰/40mm., \(\nu_{\text{max}} \) 3400vs (-OH), 3300s(C≡CH), and 2100w(C≡C) cm\(^{-1}\); g.l.c. (silicone oil 100⁰) showed only one peak, t, 5.5 min.

2. Pent-1-yn-3-ol.

Sodium acetylide (from sodium 56 g., 2.2 mole, in liquid ammonia 3.3 l) and propionaldehyde (116 g., 2.0 mole) after working up in the usual manner gave pent-1-yn-3-ol (63 g., 38%), b.p. 121⁰/760 mm., \(\nu_{\text{max}} \) 3400vs(-OH), 3300s(C≡CH), and 2100w(C≡C) cm\(^{-1}\); g.l.c. (silicone oil: 100⁰) showed only one peak, t, 3 min.
3. **3,4,4-Trimethylpent-1-yn-3-ol.**

Sodium acetylide (from sodium 58 g., 2.5 mole, in liquid ammonia 3 l.) and tert-butyl methyl ketone (200 g., 2.0 mole) after working up in the usual manner gave 3,4,4-trimethylpent-1-yn-3-ol (210 g., 83%), b.p. 62°/36 mm., ν_{max} 3400vs(-OH), 3300s(C≡CH), and 2100w(C≡C) cm$^{-1}$; g.l.c. (silicone oil, 100°) showed only one peak, t, 6.3 min.

4. **3,5-Dimethylhex-1-yn-3-ol.**

Sodium acetylide (from sodium 29 g., 1.25 mole, in liquid ammonia 2 l.) and 4-methylpentan-2-one (100 g., 1 mole) after working up gave 3,5-dimethylhex-1-yn-3-ol (77 g., 61%) b.p. 56°/20 mm., ν_{max} 3400s(-OH), 3300s(C≡CH) and 2100w(C≡C) cm$^{-1}$; g.l.c. (silicone oil, 100°) showed only one peak, t, 6.25 min.

5. **3-Isopropyl-4-methylpent-1-yn-3-ol.**

Sodium acetylide (from sodium 25.3 g., 1.1 mole, in liquid ammonia 2 l.) and di-isopropylketone (114 g., 1 mole) after working up gave 3-isopropyl-4-methylpent-1-yn-3-ol (101 g., 72%), b.p. 67/69°/
22 mm., ν_{max} 3400s(-OH), 3300s(C=OH) and 2100w(C=C) cm$^{-1}$
g.l.c. (silicone oil, 120$^\circ$) showed one peak, t, 6.5 min.

6. **3-Isobutyl-5-methylhex-1-yn-3-ol.**

Sodium acetylide (from sodium 58 g., 2.5 mole in liquid ammonia 3.5 l) and di-isobutyl ketone (288 g., 2 mole) after working up gave
3-isobutyl-5-methyl-hex-1-yn-3-ol (103 g., 32%), b.p. 74-75$^\circ$/9 mm.; ν_{max} 3400s(-OH), 3300s(C=CH) and 2100w(C=C) cm$^{-1}$;
g.l.c. (silicone oil, 120$^\circ$) gave only one peak, t, 15 min.
Preparation of 3-alkyl and 3,3-dialkyl-1-bromoallenes.

1. 1-Bromo-3-methylbuta-1,2-diene.

(a) 3-Methylbut-1-yn-3-ol (67.2 g., 0.8 mole) was added to a mixture of powdered cuprous bromide (40 g., 0.28 mole), powdered ammonium bromide (32 g.), copper powder (2 g.) and concentrated hydrobromic acid (48% w/w, S.G. = 1.5, 192 ml., 1.7 mole). The stirred mixture was warmed to 30° for 1 hr. The upper layer then showed no \(\gamma_{\text{max}} \) 3400 cm\(^{-1}\) (OH). The mixture was cooled, filtered, the residue washed with petroleum ether, the filtrate separated, and washed with 48% hydrobromic acid until the lower acid layer shows no violet colouration. The upper layer was dried (NaHCO\(_3\), MgSO\(_4\)), and fractionated giving 1-bromo-3-methylbuta-1,2-diene b.p. 53-54°/60 mm. (90 g., 77%) (Found: C, 41.0; H, 4.9; Br, 54.0. \(\text{C}_5\text{H}_7\text{Br} \) requires C, 40.8; H, 4.8; Br, 54.4%). \(\gamma_{\text{max}} \) 1950vs (C=C=C), 1160vs, 1050vs, 750vs and 730 cm\(^{-1}\); \(\lambda_{\text{max}} \) 205m\(\mu \) (9,570), \(\lambda_{\text{shoulder}} \) 214-6m\(\mu \) (\(\epsilon \),10,050).

(b) 3-Methylbut-1-yn-3-ol (21 g., 0.25 mole) was added to a mixture of powdered cuprous bromide (14.3 g., 0.1 mole),

-176-
powdered ammonium bromide (9.8 g., 0.1 mole) copper powder (5 g.) and concentrated hydrobromic acid (4.5% w/w 62 ml. 0.5 mole). The mixture was stirred vigorously for 1 hr. at room temperature when the upper layer was found to contain no ν_{max} 3400 cm$^{-1}$ (–OH) on I.R. examination. The mixture was filtered, separated, the upper organic layer washed several times with concentrated hydrobromic acid, and dried (MgSO$_4$, Na$_2$CO$_3$). The product was found to be pure 1-bromo-3-methylbuta-1,2-diene (33 g., 90%) and had identical spectra with that of the pure distilled product from (a) g.l.c. (silicone oil, 80$^\circ$) showed only one peak, t, 8 min.

2. 1-Bromo-3-methylpenta-1,2-diene.

(a) 3-Methylpent-1-yn-3-ol (14.7 g., 0.15 mole) was added over 6 min. to a vigorously stirred mixture of cuprous bromide (7.5 g., 0.052 mole), ammonium bromide (6 g.) copper powder (0.3 g.) and concentrated hydrobromic acid (48% w/w, 36 ml. 0.32 mole) at 30$^\circ$. When the addition was complete the stirring was continued for $\frac{3}{4}$ hr. Working up gave 1-bromo-3-methylpenta-1,2-diene
(17 g., 73%) b.p. 51-52.5°/24 mm. (Found: C, 44.4; H, 5.6; Br 49.6. C₆H₉Br requires C, 44.8; H, 5.6; Br, 49.7%).

νₘₐₓ (I.R. 19), 1950 vs (C=C=C), 1165 vs and 730 vs cm⁻¹, λₘₐₓ 205 mµ (Ε, 7,100), λ⁰ₕ₉ₜ 217-223 mµ, (Ε, 6,150), g.l.c. (dinonyl phthalate, 82°) showed only one peak t, 12.5 min.; n.m.r. (n.m.r. 1), showed a triplet Τ = 8.93 (CH₃, CH₂ C=C=CH), JCH₃,CH₂ 7.5 c.p.s., a doublet of triplets Τ = 7.6 - 8.4 (CH₃ =C=C=CH), JCH₃,Η 2 c.p.s., JCH₃,CH₂ 0.5 c.p.s.; a quartet of doublets Τ = 8.19 (CH₃CH₂ C=C=CH)

JCH₂,CH₃ 7.5 c.p.s., JCH₂,Η 2.2 c.p.s., and a 1:5:10:10:5:1 sextet Τ = 4.1 (CH₃CH₂(CH₃)C=C=CH), JΗ,CH₃ 2.3 c.p.s.

JΗ,CH₂ 2.3 c.p.s. Double resonance of the CH₃ -C=CH group causes collapse of the sextet to a triplet.

(b) 3-Methylpent-1-yn-3-ol (49 g., 0.5 mole), was added to a mixture of powdered cuprous bromide (36 g., 0.25 mole), powdered ammonium bromide (20 g., 0.22 mole), copper powder (1 g) and concentrated hydrobromic acid (45% w/w., 124 ml., 1 mole) and the mixture stirred vigorously for 1 hr. at room temperature. Working up in the usual manner gave pure 1-bromo-3-methylpenta-1,2-diene (68 g., 85%) which had identical spectra to the pure distilled product from (a) g.l.c.

(dinonylphthalate, 82%) gave only one peak to 12.5 min.
3. 1-Bromo-3-ethylpenta-1,2-diene.

3-Ethylpent-1-yn-3-ol (56 g., 0.5 mole), cuprous bromide (28.9 g., 0.2 mole) ammonium bromide (20.0 g., 0.2 mole) copper powder (2.8 g) and concentrated hydrobromic acid (45% w/w, 124 ml., 1.0 mole) at 40° for 1½ hr. gave 1-bromo-3-ethylpenta-1,2-diene (56.9 g., 65%) b.p. 74°/30mm. (Found: C, 47.8; H, 6.2; Br, 45.9. C7H11Br requires C, 48.0; H, 6.3; Br, 45.7% nD 24 1.5015. λ_{max} 1950vs (C=C=C); 720 cm$^{-1}$ λ_{max} 206.5μ. (ε, 7,800) λ$_{\text{shoulder}}$ 220μ (ε, 7,700); g.l.c. (silicone oil: 151°) gave only one peak, t, 9½ min., n.m.r. (n.m.r.2) showed a triplet $\tau = 8.94$ (CH$_3$CH$_2$-C=C=C), J$_{CH_3,CH_2}$ 7.5 c.p.s.; a quartet of doublets $\tau = 7.85$ (CH$_3$CH$_2$-C=C=CH), J$_{CH_2,H}$ 2.2 c.p.s., J$_{CH_2,CH_3}$ 7.8 c.p.s.; and a 1:4:6:4:1 pentet, $\tau = 4.0$ (CH$_3$CH$_2$C=C=CH) J$_{H,CH_2}$ 2.2 c.p.s.

(b) 3-Ethylpent-1-yn-3-ol (11.2 g., 0.1 mole) was added to a mixture of cuprous bromide (7.2 g., 0.05 mole), ammonium bromide (4 g., 0.044 mole) copper powder (0.2 g) and concentrated hydrobromic acid, (45% w/w, 16.2 ml., 0.2 mole) and the mixture stirred vigorously for 1.5 hr. at room temperature. Working up in the usual manner gave pure 1-bromo-3-
ethylpenta-1,2-diene (15.4 g., 88%), which had identical spectra to the pure distilled product from (a) g.l.c. (silicone oil, 150°) gave only one peak, t, 9.6 min.

4. 1-Bromo-3,4,4-trimethylpenta-1,2-diene.

3,4,4-Trimethylpent-1-yn-3-ol (63 g., 0.5 mole), cuprous bromide (85 g., 0.59 mole), ammonium bromide (42 g.) copper powder (6 g) and concentrated hydrobromic acid (48% w/w., 180 ml. 1.6 mole) warmed to 40° and stirred for 2 hr. gave 1-bromo-3,4,4-trimethylpenta-1,2-diene (73.2 g., 78%), b.p. 45-47°/5 mm. (Found: C, 50.5; H, 7.1; Br, 42.3. C₈H₁₃Br requires C, 50.8; H, 6.9; Br, 42.3%) \(\gamma_{\text{max}} \) 1950vs (C=C=C), 1155vs and 728vs cm⁻¹; \(\lambda_{\text{max}} \) 206 m\(\mu \) (E, 9,000), \(\lambda_{\text{max}} \) 224 m\(\mu \) (E, 6,600); n.m.r. showed a singlet \(\gamma = 9.15 \) (But), a doublet, \(\gamma = 8.21 \) (CH \(\text{C}=\text{C}=\text{Me} \) But), and a quartet \(\gamma = 4.17 \) (CH \(\text{C}=\text{C}=\text{Me} \)), \(J_{\text{H,Me}} \) 2.0 c.p.s.

g.l.c. (diononylphthalate; 100°) showed only one peak, t, 20 min.

5. 1-Bromo-3,5-dimethylhexa-1,2-diene.

3,5-Dimethylhex-1-yn-3-ol (31.5 g., 0.25 mole), cuprous bromide (8.425 g., 0.3 mole), ammonium bromide (21 g.), copper powder (3 g) and concentrated hydrobromic acid (48% w/w., 90 ml., 0.8 mole) warmed to 40° and
stirred for 2 hr., gave 1-bromo-3-5-dimethylhexa-1,2-diene (32 g., 60%) b.p. 50-51°/7 mm. (Found: C, 50.8; H, 7.12; Br 42.4. C₈H₁₃Br required C, 50.8; H, 6.9; Br, 42.3%) \(\nu_{max} \) 1950s (C=C=C); 1160s and 730~ cm⁻¹. \(\lambda_{max} \) 204m\(\mu \) (\(\epsilon, 8,900 \)). \(\lambda \) shoulder 225m\(\mu \) (\(\epsilon, 5,850 \)). g.l.c. (silicone oil: 80°) showed one main peak, t, 28 min.

6. 1-Bromo-3-isopropyl-4-methylpenta-1,2-diene.

4-Methyl-3-isopropylpent-1-yn-3-ol (56 g., 0.5 mole), cuprous bromide (68 g., 0.47 mole) ammonium bromide (36 g.), copper powder (6 g.) and concentrated hydrobromic acid (48% w/w, 144 ml., 1.27 mole) at 40° for 3 hr. gave 1-bromo-3-isopropyl-4-methylpenta-1,2-diene, (66.2 g., 82%) b.p. 49-50°/6mm. (Found: C, 53.6; H, 8.1; Br, 39.7. C₉H₁₅Br requires C, 53.2; H, 7.5; Br 39.3%) \(\nu_{max} \) 1950s (C=C=C) 1660vw (C=C), 1165s and 895 cm⁻¹ w (CR₃CH₂) \(\lambda_{max} \) 204m\(\mu \) (\(\epsilon, 9,750 \)) \(\lambda \) shoulder 219-233m\(\mu \) (\(\epsilon, 6,850 \)); g.l.c. (dinonylphthalate; 100°) showed only one peak, t, 20 min.

7. 1-Bromo-3-isobutyl-5-methylhexa-1,2-diene.

3-Isobutyl-5-methylhex-1-yn-3-ol (51.0 g. 0.3 mole), cuprous bromide
(20.0 g., 0.14 mole), ammonium bromide (12.0 g., 0.12 mole) copper powder (2.0 g) and concentrated hydrobromic acid (45% w/w., 72 ml., 0.6 mole) at 40° for 20 hr. gave 1-bromo-3-isobutyl-5-methylhexa-1,2-diene (36.1 g., 52%) b.p. 66°/1.7 mm (Found: C, 57; 57.2; H, 8.2; Br, 34.6. C_{10}H_{19}Br requires C, 57.1; H, 8.2; Br, 34.6%), ν_{max} 1965s (C=C=C); 1390m, 1370m, 1165m, 720s cm^{-1} λ_{max} 206m μ (ε, 9,090), 230m μ (ε, 9,000); g.l.c. (G.E.O. 100; 120°) t, 18 min.

8. 1-Bromo-3-t-butyl-4,4-dimethylpenta-1,2-diene.

3-t-butyl-4,4-dimethylpent-1-yn-3-ol (25.2 g., 0.15 mole), cuprous bromide (25.5 g., 0.178 mole), ammonium bromide (13.5 g), copper powder (2 g.) and concentrated hydrobromic acid (48% w/w, 54 ml., 0.48 mole) 17 hr. at 40° gave 1-bromo-3-t-butyl-4,4-dimethylpenta-1,2-diene (7.2 g., 21%) b.p. 70-74°/5 mm. (Found: C, 57.2; H, 8.2; Br, 35.2. C_{11}H_{19}Br requires C, 57.1; H, 8.3; Br, 34.6%), ν_{max} 1940ms (C=C=C), 1135s and 720s cm^{-1} λ_{max} 205m μ (ε, 12,100), λ_{max} 227m μ (ε, 7,400); n.m.r. showed a singlet τ = 9.2 (Bu_{2}^t C=C=CH Br) and a singlet τ = 4.16 (Bu_{2}^t C=C=CH Br).
9. 1-Bromobuta-1,2-diene.

A mixture of but-1-yn-3-ol (35 g., 0.5 mole) cuprous bromide (72 g., 0.5 mole) ammonium bromide (45 g.), copper powder (5 g.) and concentrated hydrobromic acid (48% w/w, 180 ml., 1.6 mole), shaken for 4 hr. at room temperature, left overnight, and then shaken for a further 2 hr. concentrated hydrobromic acid (60% w/w, 60 ml., 0.75 mole) was added and the mixture shaken for 4 hr. Working up gave 1-bromobuta-1,2-diene, b.p. 62.5-63°/168 mm. (27.1 g., 41%). (Found: C, 36.4; H, 4.0. C₄H₅Br requires C, 36.1; H, 3.8%), νₚₚₚ max 3200w (C=CH), 1950s (C=C=O), 1195vs, 840vs and 680vs cm⁻¹; g.l.c. (silicone oil; 90°) gave one main peak t, 9 min. and one other peak for 3-bromobutyne (1-2%) t, 5.5 min. λ max 201m μ (ε, 5,200), λ inifl. 215m μ (ε, 3,500)
n.m.r. a doublet of doublets at _TD; 8.22 (Me CH=C=CH) J₄,1 2.6 c.p.s. a doublet of quartets at _TD; 4.09 (MeCH=C=CH) J₃,1 5.8 c.p.s. and a doublet of quartets at _TD; 4.68 (Me CH =C=CH) J₄,1 6.9 c.p.s.

10. 1-Bromopenta-1,2-diene.

Pent-1-yn-3-ol (21g., 0.25 mole) cuprous bromide (36g., 0.25 mole) ammonium bromide (24.5 g.
0.25 mole) copper powder (4 g.) and concentrated hydrobromic acid (60% w/w 96 ml., 1.24 mole) at room temperature for 9 hr. gave 1-bromopenta-1,2-diene b.p. 62°/66 mm. (20.5 g. 56%), (Found: C, 41.0; H, 5.1; Br, 53.1. C_5H_7 Br requires C, 40.9; H, 4.8; Br, 54.4%) \(\nu_{\text{max}} \) 1950s (C=C=C), 1190vs, 850vs and 690vs cm\(^{-1}\) \(\lambda_{\text{max}} \) 205m \(\mu \) (\(\epsilon, 7,000 \)) \(\lambda_{\text{infl}} \) 215m \(\mu \) (\(\epsilon, 5,500 \)); g.l.c. (silicone oil, 104°) showed one main peak (99%) at 5 min. and a small peak at 2\(\frac{1}{2} \) min. (<1%, 3-bromopentyne).

11. 1-Bromohexa-1,2-diene.

Hex-1-yn-3-ol (49 g., 0.5 mole), cuprous bromide (67 g., 0.47 mole), ammonium bromide (45 g.), copper powder (5 g.) and concentrated hydrobromic acid (60% w/w, 180 ml., 2.3 mole) shaken at room temperature for 10 hr. left overnight and then shaken for a further 3 hr. gave 1-bromohexa-1,2-diene b.p. 51-52.5°/22 mm. (53.5 g., 67%) (Found: C 45.5; H, 5.9; Br, 49.1. C_6H_9Br requires C, 44.8; H, 5.6; Br 49.6%), \(\nu_{\text{max}} \) 1950s (C=C=C), 1190vs, 830 and 690 cm\(^{-1}\) \(\lambda_{\text{max}} \) 206m \(\mu \). (\(\epsilon, 7,200 \)). \(\lambda_{\text{infl}} \) 215m \(\mu \). (\(\epsilon, 4,700 \)).
12. 1-Bromo-4-methylpenta-1,2-diene.

4-Methylpent-1-yn-3-ol (39.2 g., 0.4 mole) cuprous bromide (58 g., 0.4 mole) ammonium bromide (40 g., 0.4 mole) copper powder (4 g) and concentrated hydrobromic acid (45% w/w, 248 ml; 2 mole) shaken at room temperature for 42 hr. then hydrobromic acid (60% w/w, 25 ml. 0.35 mole) was added and the mixture shaken for a further 4 hr. gave 1-bromo-4-methylpenta-1,2-diene (23 g., 35%); b.p. 60-62°/35 mm. ν_{max} 1950s (C=C=C); 1195s, 855s, 704s cm$^{-1}$ no band at 3300 cm$^{-1}$ (C≡CH); g.l.c. (dinonyl phthalate, 120°) showed only one peak, t, 5\oline{1} min.

13. 1-Bromo-3-phenylpropa-1,2-diene.

3-Phenylprop-1-yn-3-ol (19.8 g., 0.15 mole) was added to an ice cold mixture of cuprous bromide (20 g., 0.14 mole), ammonium bromide (13.5 g.), copper powder (2 g.), and concentrated hydrobromic acid (60% w/w, 56 ml., 0.7 mole) over 10 minutes with hand shaking and cooling in ice. The mixture was kept in an ice bath an extra 40 min. with occasional shaking by hand. The mixture was filtered, the solid washed with a little light petroleum spirit and the filtrate extracted with light petroleum spirit
(4 x 10 ml.). The organic layer was separated and washed with 45\% hydrobromic acid until the acid layer was no longer coloured violet, then dried over a mixture of magnesium sulphate and anhydrous sodium carbonate.

Removal of the petroleum spirit under reduced pressure gave pure 1-bromo-3-phenylpropa-1,2-diene (28 g., 95\%),

(Found: Br, 40.7; C_{9}H_{7}Br requires Br, 41.0\%) \(\lambda_{\text{max}} \) (I.R.1.), 1950vs (C=C=C), 1500s, 1450s, 1190vs, 756vs, 705vs, 685vs, cm\(^{-1}\). \(\lambda_{\text{max}} \) 205m\(\mu \), (\(\varepsilon \), 17,730); \(\lambda_{\text{max}} \) 268m\(\mu \), (\(\varepsilon \), 14,210).

14. 1-Bromo-3-phenylbuta-1,2-diene.

3-Phenylbut-1-yn-3-ol

(29.2 g., 0.2 mole), was added to an ice cold mixture of cuprous bromide (36 g., 0.25 mole) ammonium bromide (15 g.), copper powder (2 g.) and concentrated hydrobromic acid (60\% w/w, 56 ml., 0.7 mole) over 10 min. with stirring, then light petroleum spirit (20 ml.) was added and stirring continued in an ice bath for 35 min. The mixture was filtered, the solid washed with a little petroleum spirit and the filtrate extracted with light petroleum spirit (4 x 15 ml.). The organic layer was separated and washed with 40\% hydrobromic acid until the acid layer was no longer coloured violet, then
dried (MgSO₄/Na₂CO₃). Removal of the petroleum spirit under reduced pressure gave pure 1-bromo-3-phenylbuta-1,2-diene (37.7 g., 90%), (Found: Br, 37.8; C₁₀H₉Br requires Br, 38.2%). ν max (I.R.2), 1955s (C=C=C), 1500s, 1445s, 1158s, 765vs, 730vs, 690vs cm⁻¹ λ max 206m μ, (ε, 16,860); λ max 272m μ (ε, 11,570.)

15. 1-Bromo-3-diphenylpropa-1,2-diene.

3,3-diphenylprop-1-yn-3-ol (10.4 g., 0.05 mole) in 50 ml. light petroleum spirit was added to an ice cold mixture of cuprous bromide (10.7 g., 0.075 mole), ammonium bromide (4.9 g.), copper powder (1 g.) and concentrated hydrobromic acid (60% w/w., 20 ml., 0.25 mole) over 5 min. with constant stirring, then stirring continued at 0° for 2½ hr. The mixture was filtered, the solid washed with a little petroleum spirit, the organic layer was decanted and the aqueous layer extracted with petroleum spirit (3 x 10 ml.), the petrol solutions were combined and washed with 45% hydrobromic acid until the acid layer was no longer coloured violet, then dried (MgSO₄, Na₂CO₃ and active Al₂O₃). Slow evaporation of the petrol under reduced pressure gave white crystals of 1-bromo-3,3-diphenylpropa-
1,2-diene (11 g., 84%) m.p. 81.5-82°. (Found: C, 66.0; H, 4.3; Br, 29.7. C_{15}H_{11}Br requires C, 66.5; H, 4.1; Br, 29.5).

ν_{max} (I.R.3), 1945 ms (C=C=C); 1600 m (aromatic); 780 s; 710 s; and 685 cm\(^{-1}\). λ_{max} 205 m μ (ε, 30,340), λ_{shoulder} 230 m μ (ε, 14,200), λ_{max} 281 m μ (ε, 12,040). n.m.r. (n.m.r.3), showed a singlet γ = 3.65 (C=C-H) and a multiplet of 10 protons γ = 2.72 (Ph\(_2\) C=C).
Preparation of 3,3-dialkyl-1-iodoallenes

1) 1-Iodo-3-methylbuta-1,2-diene.

(a) Cuprous iodide (16.8 g., 0.2 mole), ammonium iodide (29.0 g., 0.2 mole), copper powder (1 g.) and concentrated hydriodic acid (45% w/w., 76 ml., 0.4 mole) were stirred together at room temperature and 3-methylbut-1-yn-3-ol (16.8 g., 0.2 mole) was added over 5 min., after stirring for 2 hr. light petroleum ether (50 ml.) was added and the mixture filtered. Extraction of the organic layer with light petroleum (2 x 20 ml) followed by drying (MgSO₄) and evaporation yielded a product which contained 1-iodo-3-methylbuta-1,2-diene as shown by νₘₐₓ 1950 s. cm⁻¹, but was highly contaminated with double bond products as shown by νₘₐₓ 1650 s 1600 s cm⁻¹. These impurities could not be removed by careful fractionation.

(b) Cuprous iodide (16.8 g., 0.2 mole), ammonium iodide (29.0 g., 0.2 mole), copper powder (1 g) and concentrated hydriodic acid (45% w/w., 76 ml., 0.4 mole) were stirred at room temperature and a solution of 3-methylbut-1-yn-3-ol (16.8 g., 0.2 mole) in light petroleum ether (30 ml) was added in one portion. Stirring was continued and at
intervals of \(\frac{1}{4}, 1, 1\frac{1}{2}, \) and 2 hr. small portions of the organic upper layer were examined by I.R. spectroscopy. The I.R. spectra showed decreasing intensity of the 3400 (OH) band and increasing intensity of the 1950 cm\(^{-1}\) (C=C=C) band until at 2 hr. reaction was considered complete.

The suspension was filtered and the filtrate extracted with light petroleum ether (3 x 20 ml). The organic extracts were combined and dried (MgSO\(_4\)). Distillation after first removing the petroleum ether gave a small fore-run of 3-methylbut-1-yn-3-ol max 3400s (-OH), 3300s (C=CH), and 2100w (C≡C) cm\(^{-1}\) followed by pure 1-iodo-3-methylbuta-1,2-diene (23.7 g., 61%) bp. 56°/20 mm, (Found: C, 30.8; H, 3.6; I, 65.7. C\(_5\)H\(_7\)I requires C, 30.9; H, 3.6; I, 65.4%) \(\lambda_{\text{max}} \) (I.R.\(_4\)) 1955s (C=C=C), \(\lambda_{\text{max}} 246m \) (E, 9,595). g.l.c. (silicone oil, 100°) gave only one peak, \(t, 9.5 \) min. n.m.r. (n.m.r.\(_4\)), showed a doublet centred on \(\tau = 8.23 \) ((CH\(_3\))\(_2\) C≡C=CH) \(J_{\text{CH}_3,\text{H}} = 2.3 \) c.p.s. and a heptet centred on \(\tau = 4.5 \) ((CH\(_3\))\(_2\) C≡C=CH) \(J_{\text{H,CH}_3} = 2.3 \) c.p.s.

2. 1-Iodo-3-methylpenta-1,2-diene.

Cuprous iodide (28.5 g., 0.15 mole), ammonium iodide (28.5 g., 0.15 mole), copper powder (1 g.) and concentrated hydriodic acid (45% w/w, 57 ml., 0.3 mole) were stirred at room temperature and a solution of
3-methylpent-1-yn-3-ol (14.7 g., 0.15 mole) in light petroleum ether (30 ml) was added in one portion. After stirring for 6 hr. I.R. examination of the upper layer showed no band at 3400 cm\(^{-1}\) (–OH). The suspension was filtered and the filtrate extracted with light petroleum ether (2 x 30 ml) the organic extracts were combined and dried (MgSO\(_4\)). Distillation after first removing the light petroleum gave a small fore-run followed by 1-iodo-3-methylpenta-1,2-diene (19.1 g., 62%) b.p. 55°/6 mm, (Found: C, 34.4; H, 4.5; I, 61.1. C\(_6\)H\(_9\)I required C, 34.6; H, 4.4; I, 61.0%). \(\lambda_{\text{max}}\) (I.R.) 1950s (C=C=C), 1130 vs, 780 m, and 709(vs cm\(^{-1}\), \(\lambda_{\text{max}}\) 206 m\(\mu\), (\(\varepsilon\), 15,560), \(\lambda_{\text{max}}\) 247 m\(\mu\), (\(\varepsilon\), 6,645). g.l.c. (silicone oil, 100°) gave only one peak, t, 17 min. n.m.r. (n.m.r.5) showed a triplet centred on \(\tau = 8.93\) (\(\text{CH}_3\text{CH}_2\text{CH}_2\text{C}=\text{CH}\)) \(J_{\text{CH}_3,\text{CH}_2} = 8.9\) c.p.s.; a triplet of doublets centred on \(\tau = 8.22\)

\[
\begin{align*}
\{ \text{CH}_3 \text{CH}_2 \text{CH}_2 \text{C}=\text{CH} \} & \\
\{ \text{CH} \text{CH}_2 \text{CH}_2 \text{C}=\text{CH} \} & \\
\{ \text{CH}_3 \text{CH}_2 \text{CH}_2 \text{C}=\text{CH} \} &
\end{align*}
\]

\(J_{\text{CH}_2,\text{CH}_2} = 0.7\) c.p.s; \(J_{\text{CH}_2,\text{H}} = 2.3\) c.p.s., a quartet of a doublet of quartets, centred on \(\tau = 7.9\)

\[
\begin{align*}
\{ \text{CH}_3 \text{CH}_2 \text{CH}_2 \text{C}=\text{CH} \} & \\
\{ \text{CH}_3 \text{CH}_2 \text{CH}_2 \text{C}=\text{CH} \} & \\
\{ \text{CH}_3 \text{CH}_2 \text{CH}_2 \text{C}=\text{CH} \} &
\end{align*}
\]

\(J_{\text{CH}_2,\text{CH}_3} = 0.7\) c.p.s., and a sextet centred on \(\tau = 4.38\)

\[
\begin{align*}
\{ \text{CH}_3 \text{CH}_2 \text{CH}_2 \text{C}=\text{CH} \} & \\
\{ \text{CH}_3 \text{CH}_2 \text{CH}_2 \text{C}=\text{CH} \} & \\
\{ \text{CH}_3 \text{CH}_2 \text{CH}_2 \text{C}=\text{CH} \} &
\end{align*}
\]

\(J_{\text{H},\text{CH}_3} = 2.3\) c.p.s.
3. 1-Iodo-3-ethylpenta-1,2-diene.

Cuprous iodide (2.85 g., 0.15 mole), ammonium iodide (21.7 g., 0.15 mole), copper powder (1 g) and concentrated hydriodic acid (45% w/w., 57 ml., 0.3 mole) were stirred at room temperature and a solution of 3-ethylpent-1-yn-3-ol (16.8 g., 0.15 mole) in light petroleum ether (30 ml.) was added in one portion. After stirring for 3 hr. I.R. examination of the organic layer showed no band at 3400 cm\(^{-1}\) (-OH). The suspension was filtered, and the filtrate extracted with light petroleum ether (2 x 30 ml) the organic extracts were combined and dried (MgSO\(_4\)). Distillation after first removing the light petroleum gave a small forerun followed by 1-iodo-3-ethylpenta-1,2-diene (21.6 g., 65%) b.p. 60°/5.5 mm. (Found: C, 37.8; H, 5.0; I, 57.2. \(\text{C}_{7}\text{H}_1\text{I}\) requires C, 37.9; H, 5.0; I, 57.1%) \(\lambda_{\text{max}}^{\infty}\) (I.R.6), 1945s (C=C=C) 1125s, 710vs cm\(^{-1}\) \(\lambda_{\text{max}}^{207\text{m} \mu}\) (\(\varepsilon\), 17,053), \(\lambda_{\text{max}}^{248\text{m} \mu}\) (\(\varepsilon\), 6,963). g.l.c. (silicone oil, 100°) gave only one peak, t, 28.5 min.

4. 1-Iodo-3-4,4-trimethylpenta-1,2-diene.

(a) Cuprous iodide (190 g., 0.1 mole), ammonium iodide (14.5 g., 0.1 mole), copper powder (1 g) and concentrated hydriodic acid (45% w/w.,
28.5 ml., 0.15 mole) were stirred at room temperature and a solution of 3,4,4-trimethylpent-1-yn-3-ol (12.6 g., 0.1 mole) in light petroleum ether (30 ml) was added in one portion. After stirring for 18 hr. I.R. examination of the organic layer still showed a band at 3400 cm\(^{-1}\) (OH). The suspension was filtered and the filtrate extracted with light petroleum ether (2 x 30 ml). The organic extracts were combined and dried (MgSO\(_4\)). Distillation after first removing the light petroleum gave a forerun of the starting product (5.0 g., 40%) followed by 1-iodo-3,4,4-trimethylpenta-1,2-diene (12 g., 51%) b.p. 62\(^0\)/5mm. (Found: C, 40.7; H, 5.7; I, 54.1; C\(_8\)H\(_{13}\)I requires C, 40.7; H, 5.6; I, 53.8%) \(\lambda_{\text{max}}\) (I.R.7), 1948m (C=C=C), 1120vs, 825m, 711s cm\(^{-1}\), \(\lambda_{\text{max}}\) 207m \(\mu\) (\(\varepsilon, 18,475\)), \(\lambda_{\text{max}}\) 247m \(\mu\) (\(\varepsilon, 717\)). g.l.c. (silicone oil, 100\(^0\)) showed only one peak, \(t, 32.5\) min. n.m.r. (n.m.r.6) showed a singlet \(\delta = 8.9\), (Bu\(^+\)C(\(\text{CH}_3\))=C=CH), a doublet centred on \(\delta = 8.23\). (CH\(_3\)C(Bu\(^+\))=C=CH) \(J_{\text{CH}_3\text{H}} = 2.2\) c.p.s., and a quartet centred on \(\delta = 4.43\). (CH\(_3\)C(Bu\(^+\))=C=CH) \(J_{\text{H},\text{CH}_3} = 2.2\) c.p.s.

(b) A similar experiment using concentrated hydriodic acid (60% w/w/ml., 0.2 mole) showed removal of the 3400 cm\(^{-1}\) (OH) after only 6 hr. and working up gave an identical product (18 g., 76%).
C. Preparation of 1-Bromo alk-1-yn-3-ols.

1. 1-Bromo-3-methylbut-1-yn-3-ol.

An ice cold solution of sodium hypobromite, (made from addition of bromine 84 g., 0.503 mole, to an ice cold solution of sodium hydroxide 63 g., 1.5 mole in water 100 ml, and ice 150 g.) was added to 3-methylbut-1-yn-3-ol (42 g., 0.5 mole) stirred at 5°C, over 4 hr. The mixture was stirred a further 1 hr. whilst being allowed to reach room temperature.

The heavy organic layer was separated, dissolved in ether, washed with water (3 x 50 ml) then dried (MgSO₄). Removal of ether under vacuum gave 1-bromo-3-methylbut-1-yn-3-ol (62 g., 76%) νmax 3400vs (-OH), 2220s (-C≡C-) cm⁻¹; g.l.c. (silicone oil, 120°C) gave only one peak, t, 3.5 min.

2. 1-Bromo-3-methylpent-1-yn-3-ol.

Sodium hypobromite (from bromine 84 g., 0.503 mole, sodium hydroxide 63 g., 1.5 mole water, 100 ml., and ice 150 g) was added to 3-methylpent-1-yn-3-ol (49 g., 0.5 mole) at 5°C, over 4 hr., working up in the usual manner gave 1-bromo-3-methylpent-1-yn-3-ol (87 g.,
95%), $\nu_{\max} 3400$ vs (-OH), 2220 s (-C=C) cm$^{-1}$ g.l.c. (silicone oil, 150°) gave only one peak, t, 3.5 min.

3. 1-Bromo-3,4,4-trimethylpent-1-yn-3-ol.

Sodium hypobromite (from bromine 42 g., 0.252 mole, sodium hydroxide 31.5 g., 0.76 mole water 60 ml and ice 130 g) was added to 3,4,4-trimethylpent-1-yn-3-ol (31.25 g., 0.25 mole) at 0° over 4 hr. working up gave 1-bromo-3,4,4-trimethylpent-1-yn-3-ol (37 g., 72%) $\nu_{\max} 3450$ vs (-OH), 2215 s (C=C) cm$^{-1}$ g.l.c. (silicone oil, 120°), gave only one peak, t, 15.5 min.

4. 1-Bromohex-1-yn-3-ol.

Sodium hypobromite (from bromine 25.2 g., 0.15 mole; sodium hydroxide 18.9 g., 0.24 mole; water 20 ml., and ice 50 g.) was added to hex-1-yn-3-ol (14.7 g., 0.15 mole) at 5° over 3 hr., working up gave 1-bromohex-1-yn-3-ol (21.2 g., 80%) $\nu_{\max} 3370$ s (-OH), 2210 s (C=C) cm$^{-1}$; g.l.c. (silicone oil, 100°) gave only one peak, t, 4 min.

5. 1-Bromo-3,3-diphenylprop-1-yn-3-ol.

Sodium hypobromite (from bromine 16.1 g., 0.1 mole) sodium hydroxide 12.1 g., 0.34 mole,
water, 30 ml., and ice 70 g. was added to 3,3-diphenylprop-1-yn-3-ol over 10 min. at 5°.

After stirring for 5 hr. a semi solid organic layer resulted, on testing this was found to be a mixture of the expected product and starting material. The organic layer was ether extracted (50 ml) and the ether solution recycled with sodium hypobromite (0.1 mole) at 5°C stirring being continued over night. Working up in the usual manner gave 1-Bromo-3,3-diphenylprop-1-yn-3-ol (25 g., 86%). \(\gamma_{\text{max}} \) 3400s (-OH); 2210m (C≡C); 1640m and 1600m (aromatic C=C) and 1175m, 1000m, 732s, and 700s, (mono substituted benzene) cm\(^{-1}\).
D. Preparation of 1,1-dibromo-alk-1,2-dienes.

1. 1,1-dibromo-3-methylbuta-1,2-diene.

1-Bromo-3-methylbut-1-yn-3-ol (8.15 g., 0.05 mole) in light petroleum ether (20 ml), was added to a stirred suspension of cuprous bromide (3.6 g., 0.025 mole), ammonium bromide (2.0 g., 0.025 mole); copper powder (.2 g) and concentrated hydrobromic acid (45% w/w., 12.4 ml., 0.1 mole) at 5°.

The mixture was stirred at room temperature for 1.5 hr., filtered, and the filtrate extracted with light petroleum ether (2 x 20 ml), evaporation of the solution after drying (MgSO₄Na₂CO₃) followed by distillation gave, 1,1-dibromo-3-methylbuta-1,2-diene (7.2 g., 62%) b.p. 34-38°/0.3mm (Found: C, 26.4; H, 2.7; Br, 71.2. C₅H₆Br₂ requires C, 26.6; H, 2.7; Br, 70.8%) distillation at higher temperatures leads to some rearrangement.) \(\nu_{\text{max}} \) (I.R.8.), 1960vs (C=C=C), 1013s, 779s, 735vs cm⁻¹; \(\lambda_{\text{max}} \) 206m μ, (ɛ, 13,040); \(\lambda_{\text{inf}} \) 215m μ, (ɛ, 9,990); g.l.c. (silicone oil, 120°) gave only one peak t, 11.3 min.

2. 1,1-dibromo-3-methylpenta-1,2-diene.

1-Bromo-3-methylpent-1-yn-3-ol (8.9 g., 0.05 mole) in light petroleum ether (20 ml)
was added to a stirred suspension of cuprous bromide (3.6 g., 0.025 mole), ammonium bromide (2 g., 0.025 mole) copper powder (0.2 g.) and concentrated hydrobromic acid (60% w/w., 10 ml., 0.125 mole at 5° and stirred for 15 min. at 5° followed by stirring for 45 min. at room temperature.

The mixture was filtered, the filtrate extracted with light petroleum ether (3 x 20 ml) and the organic layer dried (MgSO₄/Na₂CO₃). Distillation after first removing the petroleum ether gave 1,1-dibromo-3-methylpenta-1,2-diene (9.5 g., 79%) b.p. 64°/2 mm (Found: C, 29.7; H, 3.5; Br, 66.8. C₆H₈Br₂ requires C, 30.0; H, 3.3; Br, 66.7%) λ max (I.R.9), 1960vs (C=C=C), 740vs cm⁻¹; λ max 206m μ (ε, 13,850); λ infl. 215m μ (ε, 10,000); g.l.c. (silicone oil, 120°), gave only one peak, t, 18 min. n.m.r. (n.m.r.7), showed a triplet centred on τ = 8.89 (5CH₃₄CH₂C(6CH₃)=C=CBr₂) J 5,4 7.3 c.p.s., a triplet centred on τ = 8.0 (6CH₃C(Et)C=C=CBr₂) J 6,4 0.5 c.p.s. and a quartet centred on τ = 7.7 (5CH₃₄CH₂C(CH₃₃)C=C= CBr₂) J 4,5 7.3 c.p.s. (should be quartet of quartets but is not resolved).

3. 1,1-dibromo-3,4,4-trimethylpenta-1,2-diene.

1-Bromo-3,4,4-trimethylpent-1-yn-3-ol (15.3 g., 0.075 mole) in light...
petroleum ether (20 ml) was added to a stirred suspension of cuprous bromide (7.2 g., 0.05 mole), ammonium bromide (4 g., 0.05 mole), copper powder (.5 g) and concentrated hydrobromic acid (60% w/w., 16 ml., 0.2 mole) and the mixture stirred at room temperature for 1 hr. Working up in the usual manner gave 1,1-dibromo-3,4,4-trimethylpenta-1,2-diene (13.9 g., 69%) b.p. 42-44°/0.45 mm. (Found: C, 35.8; H, 4.4; Br, 59.6. C₈H₁₂Br₂ requires C, 35.8; H, 4.8; Br, 59.5%) \(\lambda_{\text{max}} \) (I.R.10), 1950vs (C=C=C), 1120s, 829s, and 745vs cm⁻¹ \(\lambda_{\text{max}} \) 206m \(\mu \) (E, 16,290) \(\lambda_{\text{shoulder}} \) 218m \(\mu \) (E, 10,000) g.l.c. (silicone oil 120°) gave one main peak, t, 28 min., with a small peak on the trailing edge (less 5%) which may by 1,3-dibromo-3,4,4-trimethylpent-1-yn. n.m.r. (n.m.r.2) showed two peaks \(\gamma = 8.85 \) (Bu⁺ C(CH₃)C=CBr₂) and \(\gamma = 8.08 \) (CH₃ C (Bu⁺)C C Br₂).

4. 1,1-dibromohexa-1,2-diene.

1-Bromohex-1-yn-3-ol (17.7 g., 0.1 mole) in light petroleum ether (20 ml) cuprous bromide (14.4 g., 0.1 mole), ammonium bromide (10 g., 0.125 mole), copper powder (0.5 g.) and concentrated hydrobromic acid
(60% w/w., 40 mls., 0.5 mole) were shaken in an oscillating shaker for 48 hr. then the product worked up in the usual manner giving 1,1-dibromohexa-1,2-diene (7.6 g., 31%) b.p. 35°/2 mm. (Found: C, 29.5; H, 3.3; Br, 66.6 C₆H₈Br₂ requires C, 30.0; H, 3.3; Br, 66.7% ν_{max} (I.R.11), 1955 s (C=C=C), 1199 vs, and 835 s cm⁻¹; λ_{max} 205 mµ (ε, 10,000) λ shoulder 215 mµ (ε, 7,700) g.l.c. (silicone oil 120°), gave only one peak, t, 6.5 min.

5. 1,1-Dibromo-3,3-diphenylprop-1,2-diene.

1-Bromo-3,3-diphenyl prop-1-yn-3-ol (14.35 g., 0.5 mole), in light petroleum (50 ml) was added to an ice cold mixture of cuprous bromide (10.7 g., 0.075 mole), ammonium bromide (4.9 g., 0.05 mole) copper powder (1 g.) and concentrated hydrobromic acid (60% w/w., 20 ml., 0.25 mole) and stirred for 3 hr. Evaporation after first extracting with petroleum ether (3 x 25 ml) and drying (MgSO₄/Na₂CO₃) yielded yellow crystals (10.4 g., 60%) which on recrystallisation from light petroleum gave white needles m.p. 91-2°. (Found: C, 51.2; H, 2.9; Br, 45.6. C₁₅H₁₀Br₂ requires C, 51.4; H, 2.9; Br, 45.7% ν_{max} (I.R.12) 3050vw (aromatic C-H), 1945 s (C=C=C), 777 s, 740 s and 694 s cm⁻¹ λ_{max} 207 mµ (ε, 24,000), λ_{max} 289 mµ (ε, 6,000).
Preparation of Deuterated acetylenic alcohols and haloallenes.

1. 1-Deuterobut-1-yn-3-ol.

But-1-yn-3-ol (105 g., 0.15 mole) in dry ether (30 ml) was added over 30 min. to a stirred solution of ethyl magnesium bromide (0.4 mole), made from ethyl bromide (43.6 g., 0.4 mole), magnesium (9.6 g., 0.4 mole) and ether (300 ml.). When addition of the carbinol was complete the suspension was stirred at reflux temperature for 1 hr. before being cooled to 20° when deuterium oxide (18 ml., 0.9 mole) was added over 30 min.

The suspension was again heated to reflux and vigorously stirred for 3 hr. then cooled and decomposed with hydrochloric acid (10 ml., 1:1).

The mixture was filtered, ether extracted (3 x 50 ml), dried (MgSO₄) and distilled after first removing ether, giving 1-deuterobut-1-yn-3-ol (8 g., 75%) b.p. 108°/750 mm.

This was found to be completely deuterated in the 1 position and also had some -OD content which could be removed by treating with dilute acid. \(\nu_{\text{max}} \) (I.R.14), 3400s (-OH), 2610s (-C≡C-D), 2510m (-OD), 1995s (-C≡C-D), cm⁻¹ g.l.c. (silicone oil 60°) gave only one peak, t, 6 min. n.m.r.
(n.m.r. 9), showed on a doublet centred on $\tau = 9.14$
$\left(4\mathrm{CH}_3 - 3\mathrm{CH.(OH)C:CD}\right)$, $J_{3,4}$ c.p.s., a singlet $\tau = 7.75 \left(-\mathrm{C-OH}\right)$, and a quartet centred on $\tau = 7.34 \left(4\mathrm{CH}_3 - 3\mathrm{CH(OH)}\mathrm{C:CD}\right)$, $J_{4,3}$ 3.6 c.p.s.

n.m.r. after shaking with D_2O showed an identical spectrum except for complete removal of the $\tau = 7.75 \left(-\mathrm{C-OH}\right)$ band.

2. 1-Deutero-3-methylpent-1-yn-3-ol.

3-Methylpent-1-yn-3-ol

(15 g., 0.15 mole) in dry ether (30 ml) was added over 30 min. to a stirred solution of ethyl magnesium bromide (0.4 mole) (made from ethyl bromide (43.6 g., 0.4 mole). When addition of the carbinol was complete the suspension was stirred at the reflux for 30 min. before being cooled to 20° when deuterium oxide (20 ml., 1 mole) was added over 15 min. The suspension was then vigorously stirred for 3 hr. before being decomposed with hydrochloric acid, (10 ml., 1:1), filtered, ether extracted (3 x 50 ml), and dried (MgSO$_4$).

Distillation after first removing the ether gave 1-deutero-3-methylpent-1-yn-3-ol. (14 g., 87.5%) b.p. 121°/760 mm. This was shown to be completely deuterated in the 1 position by
\(\nu_{\text{max}} \) (I.R.15), 3400vs (-OH), 2600s (C=C-D), 1975s
(C=C-D) g.l.c. (silicone oil 80\(^0\)) showed only one peak, t,
3.1 min. n.m.r. (n.m.r.10), showed a triplet centred on
\(\tau = 8.95 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{D} \end{array} \right)(\text{CH}_3)(\text{OH})\text{C}=\text{CD} \)
\(J_{4,5} = 6.5 \) c.p.s.; a
singlet \(\tau = 8.52 \left(\begin{array}{c} \text{CH}_3 \\ \text{C} \\ \text{H}_5 \end{array} \right)(\text{OH})\text{C}=\text{CD} \); a quartet centred on
\(\tau = 8.27 \left(\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{C} \end{array} \right)(\text{OH})\text{C}=\text{CD} \),
\(J_{5,4} = 6.5 \) c.p.s.; and a
singlet \(\tau = 7.39 \) (C-OH).

3. 1-Deutero-3,4,4-trimethylpent-1-yn-3-ol.

3,4,4-Trimethylpent-1-yn-3-ol (20 g., 0.15 mole) was added over 30 min. to
a stirred solution of ethyl magnesium bromide (0.4 mole) and
after refluxing for 30 min. then cooling deuterium oxide
(20 ml., 1 mole) was added. Working up after stirring for
3 hr. gave 1-deutero-3,4,4-trimethylpent-1-yn-3-ol (18 g.,
85.7\%) b.p. 142\(^0\)/760 mm. This was shown to be completely
deuterated in the 1 position by \(\nu_{\text{max}} \) (I.R.16) 3450m (-OH);
2600s (C=C-D); 1960m (C=C-D) cm\(^{-1}\) g.l.c. (silicone oil 100\(^0\))
showed only one peak, t, 6.3 min.; n.m.r. (n.m.r.11) showed
a singlet \(\tau = 9.38 \) (Bu\(^\text{t}\)C(CH\(_3\))2(OH)C=CD), a singlet \(\tau = 9.15 \)
(CH\(_3\)C(Bu\(^\text{t}\))(OH)C=CD); and a singlet \(\tau = 8.81 \) (C-OH).
4. 1-Deutero-1-iodobuta-1,2-diene.

Triphenylphosphite methiodide (60 g., 0.14 mole) was dissolved in dry N,N-dimethylformamide (66 ml.) and stirred at 80° when 1-deuterobut-1-yn-3-ol (7.1 g., 0.1 mole) was added, the mixture was stirred at 80° for 40 min. and then about 35 ml. liquid was distilled off at reduced pressure (ca. 20 mm). This distillate was added to water (100 ml) when a heavy oil separated; the mixture was ether extracted (3 x 25 ml) and the combined ether layers washed with water (12 x 40 ml) to remove any N,N-dimethylformamide, the etherial solution was dried (MgSO₄) and evaporated giving 98% pure 1-deutero-1-iodobuta-1,2-diene (7.3 g., 40%) \(\gamma_{max} \) (I.R.18), 2,300m (=C-D); 1950s (C=C=C); 900m and 820s (C-D inplane deformation); and 790s cm⁻¹ g.l.c. (silicone oil 80°) showed only one peak, t, 9 min. n.m.r. (n.m.r.12), showed a doublet centred on \(T = 8.93 \) (CH₃CH=C=CDI), J_CH₃_H 4.2 c.p.s.; and a quartet centred on \(T = 6.99 \) (CH₃CH=C=CDI), J_H_CH₃ 4.3 c.p.s.

5. 1-Bromo-1-deutero-3-methylpenta-1,2-diene.

1-Deutero-3-methylpent-1-yn-3-ol (4 g., 0.04 mole) was added to a mixture
of cuprous bromide (2.1 g., 0.014 mole), ammonium bromide (1.7 g., 0.017 mole) copper powder (0.2 g.) and concentrated hydrobromic acid (48% w/w., 10.5 ml., 0.088 mole) and stirred vigorously at room temperature for 25 min. when the infra-red spectrum of a small sample showed complete absence of the 3400m (—OH) bond. The mixture was filtered and separated, the aqueous portion being extracted with light petroleum, the organic layers were combined and washed with concentrated hydrobromic acid (45% w/w., 10 ml) and dried (MgSO₄/Na₂CO₃). Distillation after first removing the petrol gave 1-bromo-1-deutero-3-methylpenta-1,2-diene (4 g., 62%) b.p. 60°/30 mm. Jₘₐₓ (I.R.20), 2300w (≡C—D); 1950s (C=C=C); 955s; 870s (—C≡C—D in plane deformation) and 7.5 m cm⁻¹ g.l.c. (silicone oil 82°) showed one main peak, t, 15 min, n.m.r. (n.m.r.13) showed a triplet centred on T=8.94 (₅CH₃₄CH₂C
(CH₃)=C=CDBr) J₄,5 7.5 c.p.s.; a singlet T = 8.14 (₅CH₂C
(C₂H₅)=C=CDBr; and a quartet centred on T = 7.87 (₅CH₃₄CH₂C
(CH₃)=C=CDBr), J₅,₄ 7.5 c.p.s.

6. 1-Chloro-1-deutero-3,4,4-trimethylpenta-1,2-diene.

1-Deutero-3,3,4-trimethylpent-1-yn-3-ol (6.3 g., 0.05/ mole) and thionyl
chloride (8.3 g., 0.07 mole, purified by Cottle's method) were dripped slowly and simultaneously into dry refluxing dioxon (150 ml.) After addition was complete the mixture was stirred for two min. then cooled to room temperature before adding dry pyridine (7.9 ml.). The suspension was stirred for 30 min. then ether (300 ml) was added, the suspension was filtered washed with 2.5 N hydrochloric acid (5 x 100 ml), then 2N sodium bicarbonate solution (2 x 20 ml), finally with water (5 x 100 ml) then dried (MgSO₄).

Distillation after first removing the ether gave 1-chloro-1-deutero-3,4,4-trimethylpenta-1,2-diene (4.8 g., 31%) b.p. 145.50°/760 mm.

The product was contaminated with the acetylenic impurity 3-chloro-1-deutero-3,4,4-trimethylpent-1-yne, in quantities which grew less as distillation proceeded, the purest cut contained only 2% of this acetylenic impurity. \(\nu_{\max} \) (I.R. 22), 2310w (C≡C-D), 1950s (C≡C=O); 890vs (-CD in plane deformation); 710vs (C-Cl) \(\text{cm}^{-1} \); g.l.c. (silicone oil 120°), showed one main peak, \(\tau \), 21 min. and another peak (less than 3%) \(\tau \), 117 min. (the acetylenic impurity). N.m.r. (n.m.r. 14), showed a singlet \(\tau = 9.36 \) (Bu\(^t\)C(CH\(_3\))=C=C≡CD), and a singlet \(\tau = 8.93 \) (Bu\(^t\)C(CH\(_3\))=C=C≡CD).
Preparation of 1-cyanoallenes from acetylenic carbinols.

1. 1-Cyano-3-methylbuta-1,2-diene.

Cuprous cyanide (30 g., 0.3 mole), potassium cyanide (13 g., 0.2 mole), copper powder (0.5 g.) and 3-methylbut-1-yn-3-ol (17 g., 0.2 mole) were placed in a flask fitted with mechanical stirrer and dropping funnel, and stirred until a cream-like consistency was obtained. The flask was then surrounded by an ice-bath, and concentrated hydrobromic acid (45% w/w., 62 ml., 0.5 mole) was added dropwise over 45 min; the flask was left in the gradually warming bath whilst the contents were stirred for 76 hr., when saturated sodium bicarbonate solution (150 ml.) was added. The mixture was filtered, the solid washed with ether and the filtrate extracted with ether (4 x 30 ml.) the ethereal solutions were combined and washed with water (2 x 15 ml.) then dried (MgSO₄/Na₂CO₃). Distillation after first removing the ether gave a forerun of 3-methylpent-1-yn-3-ol (2.5 g., 14.7%) b.p. 35°/14 mm \(\nu_{\text{max}} \) 3400 s (-OH); 3300 s (-C≡CH); 2100 w (-C≡C-) cm\(^{-1}\) followed by 1-cyano-3-methylpenta-1,2-diene (5.5 g., 30%) b.p. 50-55°/10 mm. (Found:
C, 77.3; H, 7.7; N, 15.1. C₆H₇N requires C, 77.4; H, 7.6; N, 15.0%). νmax (I.R.23) 2245 vs (-CN), 1950 vs (C=C=C); and 790 cm⁻¹ λmax 207 m μ (ε, 10,000); g.l.c. (diononylphthalate, 120°) showed only one peak, t, 10 min. n.m.r. showed a doublet γ = 8.2. ((CH₃)₂C=C=CH-CN) J₄,1 3 c.p.s., and a heptet γ = 5.1. ((CH₃)₂C=C=CH-CN) J₁,4 3 c.p.s.

2. 1-Cyano-3-methylpenta-1,2-diene.

Cuprous cyanide (30 g., 0.3 mole), potassium cyanide (13 g., 0.2 mole), copper powder (0.5 g.) and 3-methylpent-1-yn-3-ol (20 g., 0.2 mole), were mixed together and cooled as before and concentrated hydrobromic acid (45% w/w., 62 ml., 0.5 mole) added over 45 min. stirring being continued for 67 hr. The reaction mixture was worked up as previously described when distillation gave a forerun of 3-methylpent-1-yn-3-ol (2 g., 10%) b.p. 30/6 mm νmax 3400s (-OH); 3300s (-C=CH); 2100w (-C=C-) cm⁻¹ followed by 1-cyano-3-methylpenta-1,2-diene (11 g., 51%) b.p. 54-55/6 mm (Found: C, 77.3; H, 8.4; N, 13.1; C₇H₉N required C, 78.5; H, 8.5; N, 13.1%). νmax (I.R.24) 2245s (-CN); 1955s (C=C=C); 760m, and 790m cm⁻¹; λmax 207 m μ (ε, 10,100) g.l.c. (dienoylphthalate, 120°) gave only one peak, t, 19 min.
n.m.r. (N.R.M.15), showed a triplet centred on \(\tau = 8.92 \)
\((5CH_3CH_2CH_2CH_2CH=CN) \), \(J_{5,4} = 7 \) c.p.s.; a doublet
centred on \(\tau = 8.18 \)
\((CH_3CH(CH_3)=C=CHCN) \), \(J_{6,1} = 1 \) c.p.s.
a quartet of doublets centred on \(\tau = 7.88 \)
\((5CH_3CH_2CH_2CH=CHCN) \), \(J_{4,5} = 7 \), \(J_{4,1} = 3 \) c.p.s.; and a sextet centred
on \(\tau = 4.9 \)
\((CH_2CH_2CH=CHCN) \), \(J_{1,4} = 3 \) c.p.s. \(J_{1,6} = 3 \) c.p.s.

3. 1-Cyano-3-ethylpenta-1,2-diene.

Cuprous cyanide (30 g., 0.3 mole) potassium cyanide (13 g., 0.2); copper powder
(0.5 g.) and 3-ethylpent-1-yn-ol (22.4 g., 0.2 mole) were mixed together and cooled as before and concentrated hydro­
bromic acid (45% w/w., 62 ml., 0.5 mole) was added over 45
min., stirring being continued for 76 hrs. The reaction
mixture was worked up as previously described when distilla-
tion gave a forerun of 3-ethylpent-1-yn-3-ol (2 g., 9.5%)
b.p. \(3^0/5 \text{mm} \) \(\nu_{\text{max}} = 3400 \text{s} \) (OH), \(3300 \text{s} \) (C=CH), 2100w (C=C-)
\(\text{cm}^{-1} \), followed by 1-cyano-3-ethylpenta-1,2-diene (17 g., 75%)
b.p. \(71^0/5\text{mm} \) (Found: C, 79.2; H, 9.2; N, 11.6. \(C_8H_{11}N \)
requires C, 79.3; H, 9.2; N, 11.6%); \(\nu_{\text{max}} \) (I.R.25), 2240vs
(-CN), 1955vs (C=C=C), and 790s cm\(^{-1}\); \(\lambda_{\text{max}}\) 207m \(\mu\)
(\(\varepsilon, 10,140\)); g.l.c. (dinonylphthalate, 120\(^{\circ}\)) showed only one peak, \(t\), 30 min. n.m.r. (n.m.r.16) showed a triplet centred on \(\tau = 8.9\) \((\frac{5}{3}CH_3CH_2)C=C=CHCN\), \(J_{4,5} = 7\) c.p.s.; a quartet of doublets centred on \(\tau = 7.9\) \((\frac{5}{3}CH_3CH_2)C=C=CHCN\), \(J_{4,5} = 7\) c.p.s., \(J_{4,1} = 3.5\) c.p.s. and a pentet centred on \(\tau = 4.75\) \((Et_2C=C=CHCN), J_{1,4} = 3.5\) c.p.s.

4. 1-Cyano-3-4,4-trimethylpenta-1,2-diene.

Cuprous cyanide (30 g., 0.3 mole), potassium cyanide (13 g., 0.2 mole), copper powder (0.5 g) and 3,4,4-trimethylpent-1-yn-3-ol (25.2 g., 0.2 mole) were mixed together and cooled as before and concentrated hydrobromic acid (45% w/w., 62 ml., 0.5 mole) was added over 45 min., stirring being continued for 90 hrs. The reaction mixture was worked up as previously described when distillation gave 3,4,4-trimethylpent-1-yn-3-ol (15 g., 60%) b.p. 60\(^{\circ}\)/28 mm. \(\nu_{\text{max}}\) 3400s (-OH), 3300s (-C=CH), 2100w (-C=C-) cm\(^{-1}\). followed by 1-cyano-3,4,4-trimethylpenta-1,2-diene (3.3 g., 25%) b.p. 75\(^{\circ}\)/9 mm (Found: C, 79.8; H, 9.6; N, 10.3. \(C_{9}H_{13}N\) requires C, 79.9; H, 9.7; N, 10.4%); \(\nu_{\text{max}}\) (I.R.27), 2250s (-CH), 1960s (C=C=C), and

-210-
765 m \text{ cm}^{-1}; \lambda_{\text{max}} 207 \text{ m} \mu (\varepsilon, 10,000); \text{ g.l.c. (dinonylphthalate } 120^\circ) \text{ gave only one peak, t, 24 min. n.m.r. (n.m.r. 17)showed a singlet } \tau = 8.8 (\text{ Bu}^t \text{ C(Me)}=\text{C}=\text{CHCN}); \text{ a doublet centred on } \tau = 8.25 (\text{ Bu}^t \text{ C(Me)}=\text{C}=\text{CHCN}) \ J_{4,1} = 3 \text{ c.p.s. and a quartet centred on } \tau = 4.83 (\text{ Bu}^t \text{D(Me)}=\text{C}=\text{CHCN}), \ J_{1,4} = 3 \text{ c.p.s.}

5. 1-Cyano-3,5-dimethylhexa-1,2-diene.

Cuprous cyanide (30 g., 0.3 mole), potassium cyanide (13 g., 0.2 mole) copper powder (0.5 g.) and 3,5-dimethylhex-1-yn-3-ol (25.2 g., 0.2 mole) were mixed and cooled as before and concentrated hydrobromic acid 45\% w/w., 62 ml., 0.5 mole) was added over 45 min. and stirring continued for 72 hrs.

The reaction mixture was worked up as previously described when distillation gave a forerun of 3,5-dimethylhex-1-yn-3-ol (64 g., 25\%) b.p. 52^\circ/15 \text{ mm. } \nu_{\text{max}} 3400s (-\text{OH}), 3300s (-\text{C:CH}) \text{ and } 2100w (-\text{C}\equiv\text{C}-) \text{ cm}^{-1}; \text{ followed by a mixture of 1-bromo-3,5-dimethylhex-1,2-diene and 1-cyano-3,5-dimethylhexa-1,2-diene b.p. 55^\circ/6-7 \text{ mm } \nu_{\text{max}} 2245m (-\text{CN}), 1960s (\text{C}=\text{C}=:\text{O}) \text{ cm}^{-1} \text{ g.l.c. (dinonylphthalate, } 120^\circ) \text{ gave two peaks in ratio } 1:2, \text{ t, 20 min. (1-bromo-3,5-dimethylhexa-}
1,2-diene) and t, 46 min. (1-cyano-3,5-dimethylhexa-1,2-diene); both compounds were proved by g.l.c. with admixtures of authentic compounds. The third fraction was pure 1-cyano-3,5-dimethylhexa-1,2-diene (10.8 g., 40%) b.p. 60-65°/1mm (Found: C, 79.8; H, 9.5; N, 10.3. C₉H₁₃N requires C, 79.9; H, 9.7; N, 10.4%) \(\gamma_{max} \) (I.R.26), 2245 (=CN), 1960s (C=C=C), and 765m cm⁻¹; \(\lambda_{max} \) 207m μ (ε, 10,150) g.l.c. (dinonylphthalate, 120°) gave only one peak, t, 46 min.
Preparation of 1-cyanoallenes using 1-bromoallenes
and cuprous cyanide (no solvent).

1-Cyano-3,4,4-trimethylpenta-1,2-diene.

1-Bromo-3,4,4-
trimethylpenta-1,2-diene (37.8 g., 0.2 mole) and anhydrous
cuprous cyanide (20 g., 2.2 mole) were stirred together at
115° for 3½ hours. The mixture was allowed to cool, ether
(30 ml) added to precipitate any copper salts, and then
filtered. Distillation after first removing ether gave
1-cyano-3,4,4-trimethylpenta-1,2-diene (16.5 g., 61%) b.p.
70-4°/7-8mm. (Found: C, 79.8; H, 9.6; N, 10.3. C9H13N
requires C, 79.9; H, 9.6; N, 10.4%) \(\gamma_{max} \) (I.R.27), 2250s
(-CN), 1960s (C=O=C) and 765m cm\(^{-1}\); \(\lambda_{max} \) 207m \(\mu \) (\(\epsilon \), 10,000).
g.l.c. (dinonylphthalate 120°) gave only one peak, t, 24 min.

1-Cyano-3-tertbutyl-4,4-dimethylpenta-1,2-diene.

1-Bromo-3-tert-
butyl-4,4-dimethylpenta-1,2-diene (9.5 g., .041 mole) and
anhydrous cuprous cyanide (5.0 g., .055 mole) were stirred
together at 125° for 2 hrs. The mixture was allowed to cool,
ether added to precipitate copper salts and filtered.
Distillation after first removing the ether gave 1-cyano-3-
terbutyl-4,4-dimethylpenta-1,2-diene (6.2 g., 86%) b.p. 92-4°/0.4 mm. (Found: C, 81.8; H, 10.7; N, 7.5; \(C_{12}H_{19}N \) requires C, 81.3; H, 10.8; N, 7.9%) \(\nu_{\max} \) (I.R. 30), 2235 s (\(-CN\)), 1970 w, 1945 s (C=C=C), and 760 cm\(^{-1}\); \(\lambda_{\max} \) 207 m \(\mu \) (\(\varepsilon \), 11,050), g.l.c. (silicone oil 152°) gave only one peak, t, 40 min. n.m.r. (n.m.r. 18), showed two singlets \(\gamma = 8.75 \) (\(\text{Bu}^t_2\text{C}≡\text{C}≡\text{CHCN} \)) and \(\gamma = 4.83 \) (\(\text{Bu}^t_2\text{C}≡\text{C}≡\text{CHCN} \)).
Preparation of 1-cyanoallenes from 1-bromoallenes

using N,N-dimethylformamide solvent

1-Cyano-3-methylbuta-1,2-diene.

Anhydrous cuprous cyanide
(45 g., 0.5 mole) was added to dry N,N-dimethylformamide
(120 ml) and 1-bromo-3-methylbuta-1,2-diene (49 g., 0.33
mole) was added slowly so the temperature did not rise above
35° and the mixture stirred at 35-40 for 2 hrs. allowed to
cool and ether (50 ml) added. The solution was then slowly
added to vigorously stirred water (500 ml) the resulting
suspension was stirred until the solid was no longer sticky
then allowed to settle. After filtration the aqueous
solution was extracted with ether (4 x 30 ml), the solid was
stirred with ether (3 x 20 ml) and the suspension filtered.
Distillation, after drying the combined ethereal solutions
and removing ether gave 1-cyano-3-methylbuta-1,2-diene (12.5
g., 40%) b.p. 55°/9 (Found: C, 77.3; H, 7.7; N, 15.1; C₆H₇N
requires C, 77.4; H, 7.6; N, 15.0%) \(\nu_{\text{max}} \) (I.R.23), 2245 vs
(-CN), 1950s (C=C=C), and 790 cm⁻¹ \(\lambda_{\text{max}} \) 207m \(\mu \) (C, 10,00);
g.l.c. (dinonylphthalate 120°) showed only one peak, t, 10 min.
1-Cyano-3-methylpenta-1,2-diene.

Anhydrous cuprous cyanide (45 g., 0.5 mole) was added to dry N,N-dimethylformamide (120 ml.) and the mixture stirred at 55-60° when 1-bromo-3-methylpenta-1,2-diene (54 g., 0.33 mole) was added over 5 min. The mixture was stirred at 53-60° for 2 hrs., allowed to cool and ether (100 ml) added; working up after pouring into vigorously stirred water (1000 ml) gave 1-cyano-3-methylpenta-1,2-diene (18 g., 51%) b.p. 55°/16mm. (Found: C, 77.3; H, 8.4; N, 13.1. C₇H₉N requires C, 78.5; H, 8.5; N, 13.0%)

ν max (I.R.24), 2245s (-CN); 1955s (C=C); 760m and 790cm⁻¹; g.l.c. dinonylphthalate, 120°) gave only one peak, t, 19 min. n.m.r. (n.m.r.15).

1-Cyano-3-ethylpenta-1,2-diene.

Anhydrous cuprous cyanide (65 g., 0.7 mole) was added to dry N,N-dimethylformamide (200 ml) and the mixture stirred at 55-60° when 1-bromo-3-methylpenta-1,2-diene (58.2 g 0.33 mole) was added over 5 min. The mixture was stirred at 55-60° for 2 hrs. cooled and ether (100 ml) added. The solution was then slowly poured into vigorously stirred water (1000 ml), filtered ether
extracted (3 x 100 ml), the ethereal solution washed with water (12 x 100 ml) and dried (MgSO₄).

Distillation after first removing the ether gave 1-cyano-3-ethylpenta-1,2-diene (25 g., 60%) b.p. 65°/7 mm. (Found C, 79.2; H, 9.2; N, 11.6. C₈H₁₁N requires C, 79.3; H, 9.2; H, 11.6% \(\nu_{\text{max}} \) (I.R.25) 2240s (-CN); 1955s (C=C=C); and 790 cm⁻¹; g.l.c. (dinonylphthalate 120°) showed only one peak, t, 30 min. n.m.r. (n.m.r.16).

1-Cyano-3,5-dimethylhexa-1,2-diene.

Anhydrous cuprous cyanide (4.50 g., 0.5 mole) was added to dry N,N-dimethylformamide (150 ml) and the mixture stirred at 55-60° when 1-bromo-3,5-dimethylhexa-1,2-diene (25 g., 0.2 mole) was added over 5 min. The mixture was stirred at 55-60° for 2 hrs., cooled, ether added (100 ml), the solution slowly drowned into vigorously stirred water (1000 ml), filtered, ether extracted (3 x 100 ml), the etherial solution was washed with water (10 x 100 ml) then dried (MgSO₄). Distillation after first removing the ether gave 1-cyano-3,5-dimethylhexa-1,2-diene (12.8 g., 50%) b.p. 65-70°/2 mm. (Found: C, 79.9; H, 9.6; N, 10.3, C₉H₁₃N requires C, 80.0; H, 9.7; N, 10.4%). \(\nu_{\text{max}} \) (I.R.26), 2250s (-CN), (C=C=C), and 760 cm⁻¹ g.l.c. (dinonylphthalate, 120°) gave only one peak, t, 45 min.
1-Cyano-3,4,4-trimethylpenta-1,2-diene.

Anhydrous cuprous cyanide (45 g., 0.5 mole) was added to dry N,N-dimethylformamide (150 ml) and the mixture heated to 55-60° when 1-bromo-3,4,4-trimethylpenta-1,2-diene (25 g., 0.2 mole) was added over 5 min. The mixture was stirred at 55-60° for 2 hrs., cooled, ether (100 ml) added, drowned in vigorously stirred water (1000 ml), filtered, ether extracted (3 x 100 ml), the ethereal solution washed with water (10 x 100 ml) and dried (MgSO₄). Distillation after first removing the ether gave 1-cyano-3,4,4-trimethylpenta-1,2-diene (15.5 g 65%), b.p. 80°/mm. (Found: C, 79.8; H, 9.6; N, 10.3. C₉H₁₅N requires C, 79.9; H, 9.7; N, 10.4%) \(\nu_{\max} \) (I.R. 27) 2240 s (-CN), 1955 vs (C=C=C), and 770 cm⁻¹, g.l.c. (dinonylphthalate 120°) showed only one peak, t, 34 min.

1-Cyano-4-methyl-3-isopropylpenta-1,2-diene.

Anhydrous cuprous cyanide (12 g., 0.13 mole) was added to dry N,N-dimethylformamide (75 ml) and heated to 50-55° when 1-bromo-4-methyl-4-isopropylpenta-1,2-diene (20.3 g., 0.1 mole) was added over 5 min. The mixture was heated at 50-55° for 3 hrs., cooled, ether (30 ml) added, the solution drowned into
vigorously stirred water (500 ml), filtered, ether extracted (3 x 100 ml.), the ethereal solution washed with water (10 x 100 ml) and dried (MgSO₄). Distillation after first removing ether gave 1-cyano-4-methyl-3-isopropylpenta-1,2-diene (9.1 g., 61%) b.p. 80°/5mm. (Found: C, 80.4; H, 10.0; N, 9.4; C₁₀H₁₅N, requires C, 80.5; H, 10.1; N, 9.4%) \(\lambda_{\text{max}} \) (I.R. 28), 2250 s (-CN); 1955 s (C=C=C) and 770 cm⁻¹, \(\lambda_{\text{max}} \) 208 m \(\mu \) (E, 10,880) g.l.c. (dinonylphthalate, 120°) gave only one peak, t, 30 min.

1-Cyano-3-isobutyl-5-methylhexa-1,2-diene.

Anhydrous cuprous cyanide (9 g., 0.1 mole) was added to dry N,N-dimethylformamide (30 ml) and heated to 55-60° when 1-bromo-3-isobutyl-5-methylhexa-1,2-diene (11.6 g., 0.05 mole) was added over 5 min. The mixture was stirred at 55-60° for 2 hrs., cooled, ether (10 ml) added and the solution drowned into vigorously stirred water (200 ml), filtered, ether extracted (3 x 50 ml), the ethereal layer was washed (6 x 50 ml) and dried (MgSO₄). Distillation after first removing the ether gave 1-cyano-3-isobutyl-5-methylhexa-1,2-diene (5.5 g. 60%) b.p. 80°/2.6 mm. (Found: C, 80.8; H, 10.6; N, 8.8; C₁₂H₁₉N requires C, 81.3;
H, 10.8; N, 7.9%) \(\gamma_{\text{max}} \) (I.R. 29), 2250 s (-CN); 1980 s (C=C) and 760 cm\(^{-1}\); \(\lambda_{\text{max}} \) 207 m\(\mu \) (\(\epsilon \), 11,010); g.l.c. (dinonylphthalate 120\(^\circ\)) showed only one peak, t, 132 min.

1-Cyanoprop-1,2-diene.

Anhydrous cuprous cyanide (9 g., 0.1 mole) was added to dry N,N-dimethylformamide (50 ml.) and the mixture heated to 40-45\(^\circ\) when 1-iodoprop-1,2-diene. 3-iodopropyne (70:30) (16.6 g., 0.1 mole) was added over 2 minutes and the mixture stirred at 40\(^\circ\) for 1\(\frac{1}{2} \) hr., cooled, ether added and the solution drowned into vigorously stirred water (500 ml.), filtered ether extracted (4 x 30 ml), the etherial solution washed with water (10 x 100 ml) and dried. Distillation after first removing the ether gave a mixture of 1-cyanoprop-1,2-diene and 3-cyanoprop-1-yne (2.1 g., 30%).

(Found: C, 74.0; H, 4.6; N, 21.3. \(C_{4}H_{5}N \) requires C, 73.9; H, 4.6; N, 21.5%) \(\gamma_{\text{max}} \) 3300m (C=CH), 2225s (CN), 1900m cm\(^{-1}\). N.m.r. showed a doublet \(\tau = 5.4 \) (\(=\text{CH}_{2} \)), \(J_{\text{CH}_{2},H} = 6 \) c/sec, a triplet \(\tau = 4.3 \) (\(=\text{CHCN} \)), \(J_{H,\text{CH}_{2}} = 6 \) c/sec. A triplet at \(\tau = 5.6 \) (\(=\text{CH} \)), \(J_{H,\text{CH}_{2}} = 6 \) c/sec and a doublet 7.5 (\(=\text{CNCH}_{2} \)), \(J_{\text{CH}_{2},H} = 6 \) c/sec. indicated the presence of propargyl cyanide, planimetric measurements indicates that the ratio of allene to a acetylene was 7:3. Attempts to remove
the acetylene by washing with silver nitrate solution were unsuccessful.

1-Cyanobuta-1,2-diene.

Anhydrous cuprous cyanide (45 g., 0.5 mole) was added to dry N,N-dimethylformamide (200 ml) and the mixture heated to 40-45° when 1-bromobuta-1,2-diene (40 g., 0.3 mole) was added over 5 minutes and the mixture stirred at 40-45° for 2 hr., cooled, ether (70 ml) added, the solution drowned into vigorously stirred water (1000 ml), filtered, ether extracted (3 x 100 ml), the etherial solution washed with water (10 x 100 ml) and dried (MgSO₄). Distillation after first removing the ether gave 1-cyanobuta-1,2-diene (14.7 g., 55%) b.p. 100°/760 mm. (Found: C, 76.2; H, 6.1; N, 17.5; C₆H₇N requires C, 76.0; H, 6.3; N, 17.7%) \(\lambda_{\text{max}} \) 2225s (CN); 1965s (C=C=C) 860m and 730cm⁻¹. \(\lambda_{\text{max}} \) 207mμ (ε, 9,730). g.l.c. (silicone oil 60°) showed only one peak, t, 4 min.

1-Cyanopenta-1,2-diene.

Anhydrous cuprous cyanide (45 g., 0.5 mole) was added to dry N,N-dimethylformamide (200 ml) and the mixture heated to 45-50° when 1-bromopenta-1,2-diene (44.1 g.,
0.3 mole) was added over 5 min. and the mixture stirred at 45.50° for 2 hr. cooled, ether (70 ml) added, the solution drowned into vigorously stirred water (1000 ml) filtered ether extracted (3 x 100 ml), the etherial solution washed with water (10 x 100 ml) and dried (MgSO₄). Distillation after first removing the ether gave l-cyanopenta-1,2-diene (15.4 g., 55%), b.p. 40⁰/5-6 mm. (Found: C, 77.2; H, 7.5; N, 14.9. C₆H₇N requires C, 77.4; H, 7.6; N, 15.0%) Λ max 2220s (CN) 1950s (C=C=C); 865m and 725m. cm⁻¹ Λ max 207m μ (ε, 11,100). g.l.c. (silicone oil 120°) showed only one peak, t, 8 min.

l-Cyanohexa-1,2-diene.

Anhydrous cuprous cyanide (8.9 g. 0.1 mole) was added to dry N,N-dimethylformamide (50 ml) and heated to 50-55° when l-bromohexa-1,2-diene (8 g. 0.05 mole) was added, the mixture was stirred at 50-55° for 3 hrs. cooled, ether (20 ml) added and the solution was drowned into vigorously stirred water (200 ml) filtered, ether extracted (3 x 50 ml) the etherial layer washed with water (10 x 50 ml) and dried (MgSO₄). Distillation after first removing the ether gave 1-cyanohexa-1,2-diene (3 g., 60%) b.p. 80°/15 mm. (Found: C, 78.8; H, 8.6; N, 12.6. C₇H₉N requires C, 78.5; H, 8.5; N, 13.0%) Λ max (I.R. 31), 2255s (-CN); 1970s (C=C=C),
and 730 cm\(^{-1}\) \(\lambda_{\text{max}}\) 207m\(\mu\) (\(\varepsilon\), 9,000); g.l.c. (dinonylphthalate, 120°) showed only one peak, t, 16 min.

1-Cyano-4-methylpenta-1,2-diene.

Anhydrous cuprous cyanide (9.8 g., 0.11 mole) was added to dry N,N-dimethylformamide (40 ml) and heated to 60° when 1-bromo-4-methylpenta-1,2-diene (13 g., 0.075 mole) was added. The mixture was stirred at 60° C for 2 hrs. cooled, ether (15 ml) added, filtered, ether extracted (3 x 50 ml), the etherial layer was washed with water (7 x 50 ml) and dried (MgSO\(_4\)). Distillation after first removing the ether gave 1-cyano-4-methylpenta-1,2-diene (4.4 g., 55%) b.p. 75°/20 mm. (Found: C, 78.3; H, 8.4; H, 13.0. \(\text{C}_7\text{H}_9\text{N}\) requires C, 78.5; H, 8.5; N, 13.1%) \(\lambda_{\text{max}}\) (I.R.32), 2250s (-CN); 1965s (C=C=C); 870s and 740s cm\(^{-1}\) \(\lambda_{\text{max}}\) 208m\(\mu\) (\(\varepsilon\), 8,600); g.l.c. (dinonylphthalate, 120°) gave only one peak, t, 12 min.

1-Cyano-3-phenylpropa-1,2-diene.

Anhydrous cuprous cyanide (22.5 g., 0.25 mole) was added to dry N,N-dimethylformamide (75 ml) and the mixture stirred at room temperature when 1-bromo-3-phenylpropa-1,2-diene (19.5 g., 0.1 mole) was added over 5 min.
The mixture becomes warm and was cooled to 5°, stood in a cool place for 15 min. ether (20 ml.) added, the solution drowned into vigorously stirred water (500 ml), decanted through a filter, the filtrate ether extracted (3 x 20 ml), the etherial solution washed with water (10 x 100 ml) and dried (MgSO₄). Evaporation gave a brown oil which was found to be 1-cyano-3-phenylpropa-1,2-diene (10.5 g., 74%) \(\nu_{\text{max}} \) (I.R.33) 3310 m (aromatic CH), 2250 s (CN), 1955 m (C=C=C), 1680, (C=C impurity), 1630, 1600 m (aromatic C=C), 1500 s, 1450 s, 695 vs cm., \(\lambda_{\text{max}} \) 209m \(\mu \), (E, 14,800); 244m \(\mu \) (E, 7,860); 272m \(\mu \), (E, 5,170), 283m \(\mu \), (E, 5,180).
Cyclobutane Dimers of 1-Cyanoallenes.

1. 1-Cyano-3-cyanomethylene-4,4-dimethyl-2-isopropylidene-cyclobutane.

1-Cyano-3-methylbuta-1,2-diene was allowed to stand for about 6-8 weeks in a cool place, after which time crystals formed. The crystals were washed with, then recrystallised from light petroleum ether, giving white needles m.p. 85° (Found: C, 77.5; H, 7.6; N, 14.9. C_{11}H_{14}N₂ requires C, 77.4; H, 7.6; N, 15.0%); ν_max (I.R.34), 2252s (CN): 2235s (conj. CN); 1680vs (conj. C=C); 1650vs (conj. C=CN) cm⁻¹; λ_max 281m μ, (ε, 11,420); dipole moment in benzene solution 3.20 D. n.m.r. (n.m.r.19) shows four singlets Τ = 8.68; Τ = 8.6; Τ = 8.2; Τ = 7.75 representing four methyl groups in different surroundings, a doublet Τ = 6.6 (C_H_CN) and a singlet Τ = 5.05 (=CH-CN).

2. 2-(2'-butylidene)-1-cyano-3-cyanomethylene-4-ethyl-4-methylcyclobutane.

1-cyano-3-methylpenta-1,2-diene was allowed to stand for about 10 weeks in a cool place, during which time the liquid was seen to become very viscous. This viscous liquid was distilled at low pressure giving 2-(2'-butylidene)-1-cyano-3-cyanomethylene-4-ethyl-4-methyl-
cyclobutane, b.p. 180°/1 mm. (Found: C, 79.16; H, 8.1; N, 13.12. C_{14}H_{18}N_2 requires C, 78.55; H, 8.4; N, 13.08%)

\[\nu_{\text{max}} \text{(I.R.35)} \] 2245s (CN); 2220s (conj. CN); 1665vs (conj. C=C); 1630s (conj. C=C-CN); and 800 cm\(^{-1}\); \(\lambda_{\text{max}} \) 282m\(\mu\), \((\varepsilon_1, 18,300) \).

1 - Cyan.o-3-cyonomethylene-4,4-diethyl-2-(3'-pentylidene)-cyclobutane.

1-Cyano-3-ethylpenta-1,2-diene was allowed to stand for about 14 weeks in a cool place, during which time the liquid was seen to become very viscous. This viscous liquid was distilled at low pressure and after a forerun of 1-cyano-3-ethylpenta-1,2-diene, gave 1-cyano-3-cyanomethylene-4,4-diethyl-2-(3'-pentylidene)-cyclobutane b.p. 150°/0.5 mm. (Found: C, 79.4; H, 9.1; N, 11.4. C_{16}H_{22}N_2 requires C, 79.3; H, 9.1; N, 11.6.) \(\nu_{\text{max}} \text{(I.R.36)} \) 2240s (CN); 2215s (conj. CN); 1650s (conj. C=C); (conj. C=C-CN); and 800cm\(^{-1}\)

\(\lambda_{\text{max}} \) 283m\(\mu\), \((\varepsilon, 17,000) \) n.m.r. (n.m.r. 20) showed a multiplet \(\tau = 9.0 \) (methyl groups), a multiplet \(\tau = 7.2 - 8.55 \) (methylene groups), a doublet \(\tau = 6.56 \) (CHCN), a singlet \(\tau = 5.14 \) (C=CH-CN) and a singlet \(\tau = 4.75 \).
ENAMINES FROM ALLENES

1-Cyano-2-(diethylamine)-4-methylpent-1-ene.

Redistilled diethylamine (1.5 g., 0.02 mole) was added slowly with cooling to 1-cyano-4-methylpenta-1,2-diene (1.6 g., 0.015), the mixture was then refluxed gently for 12 min., cooled and excess diethylamine removed by evaporation under reduced pressure. The product was then distilled giving, after a small forerun, pure 1-cyano-2-(diethylamine)-4-methylpent-1-ene (2.4 g., 89%), b.p. 106°/0.45mm. (Found: C, 73.3; H, 11.3; N, 15.4. C_{11}H_{20}N_{2} requires C, 73.3; H, 11.2; N, 15.68%);

ν_{max} (I.R.37). 2210s (conj. -CN), 1580vs (C=C-C-CN) 1097m; 720 cm$^{-1}$ λ_{max} 273mμ (ϵ, 34,300).

1-Cyano-2-(diethylamino)-3-methylbut-2-ene.

Redistilled diethylamine (2.1 g., 0.03 mole) was added slowly with cooling to 1-cyano-3-methylbuta-1,2-diene (1.86 g., 0.02 mole) the mixture was then refluxed gently for 15 min., cooled and excess diethylamine removed by evaporation under reduced pressure. The product was then distilled giving, after a small forerun, pure 1-cyano-2-(diethylamino)-3-methylbut-2-
c.ene (2.5 g., 74%), b.p. 46°/0.25mm. (Found: C, 72.2; H, 10.7; N, 17.0. \(C_{10}H_{18}N_2 \) requires C, 72.2; H, 10.9; N, 16.9%)

\(\gamma^\text{max} \) (I.R.38) 2280s (-CN); 1675w (C=C); 900m; 815m; 790m; 740m cm\(^{-1}\) \(\lambda^\text{max} \) 203m \(\mu \) (\(\varepsilon, 4,820 \)), \(\lambda^\text{infl.} \) 235m \(\mu \) (\(\varepsilon, 1,160 \)).

1-Cyano-3-methyl-2-piperidinobut-2-ene and 1-cyano-3-methyl-2-piperidinobut-1-ene.

Redistilled piperidine (2 g., 0.024 mole) was added slowly with cooling to 1-cyano-3-methylbuta-1,2-diene (2 g., 0.021 mole), over 5 min. and the mixture stirred at room temperature for 10 min. Excess piperidine was removed by evaporation under reduced pressure. Distillation under reduced pressure gave three fractions;

(i) was shown to be 1-cyano-3-methyl-2-piperidinobut-2-ene (0.3 g., 8%) b.p. 74°/4mm. (Found: C, 74.1; H, 10.1; N, 15.8; \(C_{11}H_{18}N_2 \) requires C, 74.2; H, 10.1; N, 15.7%); \(\gamma^\text{max} \) (I.R.39), 2250m (-CN); 1660w (C=C); 740 cm\(^{-1}\) \(\lambda^\text{max} \) 203m \(\mu \) (\(\varepsilon, 5235 \)), \(\lambda^\text{max} \) 236m \(\mu \) (\(\varepsilon, 3,140 \)).

(ii) was shown to be a mixture of 1-cyano-3-methyl-2-piperidinobut-2-ene and 1-cyano-3-methyl-3-piperidinobut-1-ene (0.9 g., 24%); \(\gamma^\text{max} \) 2250w (-CN); 2205m (conj. - CN); 1606w (C=C); 1580s (C=C-CN); \(\lambda^\text{max} \) 203m \(\mu \) (weak), \(\lambda^\text{max} \) 276m \(\mu \) (strong)
(iii) was shown to be 1-cyano-3-methyl-3-piperidinobut-1-ene (2.5 g., 66%) b.p. 86–90°/0.38mm. (Found: C, 74.0; H, 10.1; N, 15.8. \(\text{C}_{11}\text{H}_{18}\text{N}_{2} \) requires C, 74.2; H, 10.1; N, 15.7%)

\[\lambda_{\text{max}} (\text{I.R.}40) 2205s \text{ (conj. CN); 1580vs (C=C-CN); 860m; } 750w \text{ cm}^{-1} \lambda_{\text{max}} 276m \mu (\varepsilon, 19,750). \]

2-(n-Butylamino)-1-cyano-3-methylpent-1-ene.

Redistilled n-butylamine (1.5 g., 0.02 mole) was added slowly with cooling to 1-cyano-3-methylpenta-1,2-diene (1.6 g., 0.015 mole), the mixture was then refluxed gently for 5 min., cooled, and excess n-butylamine removed by evaporation under reduced pressure. Distillation gave 2-(n-butylamino)-1-cyano-3-methylpent-1-ene (2.4 g., 80%) b.p. 110–12°/0.2mm. on standing this solidifies m.p. 51–2° (Found: C, 73.6; H, 11.4; N, 15.4. \(\text{C}_{11}\text{H}_{20}\text{N}_{2} \) requires C, 73.3; H, 11.2; N, 15.5%). \(\lambda_{\text{max}} (\text{I.R.}41), 3350m \text{ (NH); 3080w (C=CH); 2205vs } \text{ (conj. CN); 1650w (NH); 1595vs (C=C-CN); 737w cm}^{-1} \lambda_{\text{max}} 261m \mu (\varepsilon, 19,500). \) n.m.r. (n.m.r.21), was complex, consisting of triplets centred on \(\tau = 9.1 \) (\(\text{CH}_{3}-\text{CH}_{2} \)) mixed with (\(\text{N-CH}_{2}\text{CH}_{2}\text{CH}_{2} \text{CH}_{3} \)), \(\text{J}_{\text{CH}_{3}\text{CH}_{2}} = 6/c.r.p.s.; \) a doublet centred on \(\tau = 8.85 \) (\(\text{CH}_{3}-\text{CH} \)), \(\text{J}_{\text{CH}_{3}\text{H}} = 8/c.r.p.s., \) a quartet mixed with a triplet \(\tau = 8.3 - 8.75 \) (\(\text{CH}_{3}\text{CH}_{2} \) and the \(\beta \) and \(\gamma \) methylenes of the
n-butylamino), a pentet \(\tau = 6.9 - 7.4 \) (probably the \(\alpha \)-methylene of the n-butylamino and the methine), a singlet \(\gamma = 6.26 \) (=CH \(\mathrm{CN} \)) and a broad peak \(\tau = 5.2 - 5.6 \) (NH coupled with the \(\alpha \)-methylene of the n-butylamino)

1-Cyano-2-(diethylamino)-3-methylpent-2-ene and 1-cyano-2-(diethylamino)-3-methylpent-1-ene.

Redistilled diethylamine (3.4 g., 0.06 mole) was added slowly with cooling to 1-cyano-3-methylpenta-1,2-diene (3.5 g., 0.033 mole), the mixture was then refluxed gently for 1 hr., cooled, and the excess diethylamine removed by evaporation under reduced pressure. Distillation gave three fractions:

(i) was shown to be 1-cyano-2-(diethylamino)-3-methylpent-2-ene (4.2 g., 72%) b.p. 63°/0.2mm. (Found: C, 73.2; H, 11.3; N, 15.4; \(C_{11}H_{20}N_2 \) requires C, 73.3; H, 11.2, N, 15.5%) \(\lambda_{\text{max}} \) (I.R.42), 2250m (-CN); 1650w (C=C) cm\(^{-1}\)

\(\lambda_{\text{max}} \) 204m \(\mu \) (\(\varepsilon \), 5,040). n.m.r. (n.m.r.22) showed two triplet \(\tau = 8.8 - 9.2 \) (CH\(_3\)CH\(_2\) - C and CH\(_3\)CH\(_2\)N), \(J_{\text{CH}_3,\text{CH}_2} = 7 \) c.p.s., a singlet (possibly a closely split group) \(\tau = 8.2 \) (CH\(_3\) - C\(\equiv \)), a quartet centred on \(\tau = 7.75 \) (CH\(_3\)CH\(_2\)-C) \(J_{\text{CH}_2,\text{CH}_3} = 7.5 \) c.p.s., a quartet of doublets centred on
\[\gamma = 7.37 \text{ (N -CH}_2 \text{ CH}_3) \quad J_{\text{CH}_2, \text{CH}_3} = 7 \text{ c.p.s.} \] (the further splitting of the quartet may be due to partial double bond character of the \(^2\text{C-N}^1\) bond thus leading to non equivalence of the methylenes of the diethylamine); and a singlet \(\tau = 7.04 \text{ (} - \text{CH}_2 \text{ CH}) \).

(ii) was shown to be a mixture of \(1\)-cyano-2-(diethylamino)-3-methylbut-2-ene and \(1\)-cyano-2-(diethylamino)-3-methylbut-1-ene. (0.4 g., 7\%), \(\gamma_{\text{max}} \) 2250w (-CN); 2197m (conj. -CN); 1650w (C=C); 1570s (C=C-CN) cm\(^{-1}\); \(\lambda_{\text{max}} \) 203m \(\mu \) (weak) \(\lambda_{\text{max}} \) 276m \(\mu \) (strong).

(iii) was shown to be \(1\)-cyano-2-(diethylamino)-3-methylbut-1-ene (1.1 g., 17\%) b.p. 100\(^\circ\)/0.2mm; (Found: C, 73.2; H, 11.1; N, 15.6. \(\text{C}_{11}\text{H}_{20}\text{N}_2 \) requires C, 73.3; H, 11.2; N, 15.6\%); \(\gamma_{\text{max}} \) (I.R.43), 2197s (conj. -ON); 1570vs (C=C-CN); 785w; 730 cm\(^{-1}\) \(\lambda_{\text{max}} \) 276m \(\mu \) (L, 19,700). n.m.r. (n.m.r.23), showed a triplet centred on \(\tau = 8.95 \text{ (CH}_3\text{CH}_2-C) \quad J_{\text{CH}_3, \text{CH}_2} = 7 \text{ c.p.s.} \); a triplet centred on \(\tau = 8.86 \text{ (CH}_3\text{CH}_2\text{N), } J_{\text{CH}_3, \text{CH}_2} = 7 \text{ c.p.s.} \); a doublet centred on \(\tau = 8.64 \text{ (CH}_3\text{CH), } J_{\text{CH}_3, \text{H}} = 8 \text{ c.p.s.} \); a quartet of doublets centred on \(\tau = 8.2 \text{ (CH}^3\text{CH}_2\text{CH-}) \quad J_{\text{CH}_2\text{CH}_3} = 7 \text{ c.p.s.} \quad J_{\text{CH}_2\text{H}^2} \text{ c.p.s.} \); a sextet
of doublets centred on $\nu 7.3 \ \{(CH_3 \ CH-C=CH) \ \} \ \ J_{H,CH_3} = J_{H,CH_2} = \ \{(CH_3 \ CH_2) \ \}$

8 c.p.s., \(J_{H,H} = 2.5 \) c.p.s. (long range coupling); a quartet centred on \(\gamma = 6.75 \ (CH_3CH-N) \ \ J_{CH_2,CH_3} 7 \) c.p.s. and a doublet centred on \(\gamma = 6.23 \ (CH-C=CN) \ \ J_{H,H} 2.5 \) c.p.s. (long range coupling).

1-Cyano-3-methyl-2-pyrrolidinopent-1-ene.

Redistilled pyrrolidine (2.0 g., 0.025 mole) was added slowly to a solution of 1-cyano-3-methylpent-1,2-diene (2.1 g., 0.02 mole) in dry ether (10 ml.). After the initial vigorous reaction had subsided the solution was refluxed for 1 hr. before removing pyrrolidine by evaporation under reduced pressure. Distillation gave one product, 1-cyano-3-methyl-2-pyrrolidinopent-1-ene (2.9 g., 75%) b.p. 110°/0.2mm. (Found: C, 74.2; H, 9.9; N, 15.7. \(C_{11}H_{18}N_2 \) requires C, 74.1; H, 10.2; N, 15.7%) \(\nu_{\text{max}} \) (I.R.44), 2210vs (conj. -CN); 1575vs (C=C-CN); and 720s cm\(^{-1}\) \(\lambda_{\text{max}} \) 274m\(\mu \), (\(\epsilon \), 22,500).

1-Cyano-3-methyl-2-piperidinopent-1-ene and 1-cyano-3-methyl-2-piperidinopent-2-ene.

Redistilled piperidine (3.51 g., 0.06 mole) was added slowly with cooling to 1-cyano-3-methyl-
penta-1,2-diene (3.5 g., 0.05 mole) after the initial reaction had subsided the mixture was heated on a boiling water bath for 30 min. then excess piperidine was removed by evaporation under reduced pressure. Distillation gave three fractions:

(i) was shown to be 1-cyano-3-methyl-2-piperidinopent-2-ene (0.5 g., 8%) b.p. 79°/3 mm. (Found: C, 74.2; H, 10.2; N, 14.0. C₁₂H₂₀N₂ requires C, 75.0; H, 10.5; N, 14.6%)

\(\nu_{\text{max}} \) (I.R. 45) 2260 m (-CN), 1675 m (C=C) cm\(^{-1}\) \(\lambda_{\text{max}} \) 205 m \(\mu \) (\(\epsilon \), 4,000) \(\lambda_{\text{max}} \) 232-3 m \(\mu \) (\(\epsilon \), 2,300).

(ii) was shown to be a mixture of 1-cyano-3-methyl-2-piperidinopent-2-ene and 1-cyano-3-methyl-2-piperidinopent-1-ene (0.2 g., 3%) b.p. 79-110°/0.3 mm \(\nu_{\text{max}} \) 2260 m (-CN); 2210 s (conj. -CN); 1675 w (C=C); and 1580 s (C=C-CN) cm\(^{-1}\) \(\lambda_{\text{max}} \) 205 m \(\mu \) (weak); \(\lambda_{\text{max}} \) 277 m \(\mu \) (strong).

(iii) was shown to be pure 1-cyano-3-methyl-2-piperidinopent-1-ene (5 g., 81%) b.p. 110°/0.3 mm (Found: C, 74.9; H, 10.5; N, 14.6. C₁₂H₂₀N₂ requires C, 75.0; H, 10.5; N, 14.6%)

\(\nu_{\text{max}} \) (I.R. 46), 2210 vs (conj. -CN); 1580 vs (C=C-CN) cm\(^{-1}\), \(\lambda_{\text{max}} \) 277 m \(\mu \), (\(\epsilon \), 18,700). n.m.r. (n.m.r. 24). The expected
triplet at $\gamma = 9\ (\text{CH}_3-\text{CH}_2)$ is not clear as other bands are present. A doublet, $\gamma = 8.7\ (\text{CH}_3-\text{CH}_2)$, $J_{\text{CH}_2,\text{H}} = 7\ \text{c.p.s}$ confirms the methyl split by methine. The expected quartet $\gamma = 8.5\ (\text{CH}_2-\text{CH}_3)$, $J_{\text{CH},\text{CH}_2} = 7\ \text{c.p.s.}$ is hidden by the broad envelope due to the β and γ methylenes of the piperidine ring ($\gamma = 8.4$), but the intogram clearly shows 8 protons at this point. The methine shows up as a sextet of doublets $\gamma = 7.1\ (\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}=\text{CN})$, $J_{\text{H},\text{CH}_3} = J_{\text{H},\text{CH}_2} = 7\ \text{c.p.s.}$, $J_{\text{H},\text{H}} = 1.8\ \text{c.p.s.}$ but is partially hidden by the broad envelope of the α-methylenes of the piperidine ring ($\gamma = 6.8$). A doublet $\gamma = 6.03$ shows the ethylinic hydrogen ($\text{CH}-\text{C}=\text{CH}_2\text{CN}$), $J_{\text{H},\text{H}} = 1.8\ \text{c.p.s.}$ split by long range coupling to the methine proton.

2-Amino-1-cyano-3-ethypent-1-ene.

Anhydrous ammonia gas (obtained by controlled evaporation of anhydrous liquid ammonia) was passed through 1-cyano-3-ethypenta-1,2-diene (6.0 g., 0.05 mole) at room temperature, after 10 hr. infra-red examination showed little or no reaction had taken place. The 1-cyano-3-ethypenta-1,2-diene was then heated to 60-70° and passage of ammonia continued, examination after a further 4 hr. showed complete absence of the allene bond.
The reaction mixture was cooled, and distilled giving 2-amino-1-cyano-3-ethylpent-1-ene (4.1 g., 60%) b.p. 90°/0.2mm. (Found: C, 69.5; H, 10.4; N, 20.1. \(\text{C}_8\text{H}_{14}\text{N}_2 \) requires C, 69.5; H, 10.2; N, 20.3%). \(\nu_{\text{max}} \) (I.R.47) 3430m, 3350s, 3220m (N-H stretchings); 2200s (conj. - CN); 1645s (NH deformation) and 1585s (C=C-CN) cm\(^{-1}\) \(\lambda_{\text{max}} \) 261m\(\mu\) (E, 18,300). The n.m.r. (n.m.r.25) indicated that the compound was present in the amino (enamine) and the imide forms in a ratio of about 7:1. A multiplet at \(\tau = 9.1 \) indicated a methyl group split by methylene (\(\text{CH}_3\text{CH}_2^- \)) \(J_{\text{CH}_3,\text{CH}_2} = 7 \) c.p.s. with smaller contributions from a different methylene group. A multiplet \(\tau = 8.5 \) indicates a quartet of doublets (\(\text{CH}_3\text{CH}_2\text{CH} \)) \(J_{\text{CH}_3, \text{CH}_2} = 7 \) c.p.s. \(J_{\text{CH}_2, \text{H}} = 2 \) c.p.s., the expected pentet split further by long range coupling with the ethylinic proton at \(\tau = 7.2 - 3 \) is absent, the intagram shows that this could be mixed with the multiplet at \(\tau = 8.3 \). A triplet at \(\tau = 6.2 \) (CN \(\text{HC} = \text{C} - \text{NH}_2 \)) \(J_{\text{H}, \text{NH}_2} = 1 \) c.p.s., a doublet \(\tau = 5.83 \) (CN \(\text{H}_2\text{C} - \text{C}=\text{NH} \)) \(J_{\text{H}, \text{NH}} = 0.5 \) c.p.s. and broad humps \(\tau = 5 - 5.5 \) (\(\text{NH}_2 \), \(\text{NH} \)) integrate to give the expected 3 protons for the system \(\xrightarrow{\text{C-CH}_2\text{CN}} \text{C = CHCN} \).
Redistilled diethylamine (2.85 g., 0.04 mole) was added slowly with cooling to 1-cyano-3-ethylpenta-1,2-diene (4 g., 0.034 mole) after the initial vigorous reaction was completed the mixture was heated on a boiling water bath for 15 min., cooled and excess diethylamine removed by evaporation under reduced pressure. Distillation gave 1-cyano-2-(diethylamino)-3-ethylpent-2-ene (5 g., 70%) b.p. 58°/0.2mm. (Found: C, 74.2; H, 11.2; N, 14.6. \(C_{12}H_{22}N_2 \) requires C, 74.2; H, 11.4; N, 14.4%). \(\lambda_{\text{max}} (\text{I.R.} 48) \) 2250m \((-\text{CN}) \), 1650w (C=C) cm\(^{-1}\) \(\lambda_{\text{max}} \) 204m \(\mu \), (\(\epsilon \), 6,640). A later fraction indicated that a small quantity of 1-cyano-2-(diethylamino)-3-ethylpent-1-ene had been formed (UV showed a small hump at 274m \(\mu \) and I.R. indicated conjugated CN (2200 cm\(^{-1}\)) but the quantity was too small to isolate pure.

Redistilled piperidine (3.4 g., 0.04 mole) was added slowly with cooling to 1-cyano-3-ethylpenta-1,2-diene (4 g., 0.034 mole) after the initial reaction had subsided the mixture was heated on a boiling water bath for 30 min., cooled and the excess piperidine was
removed by evaporation under reduced pressure. Distillation
gave 1-cyano-3-ethyl-2-piperidinopent-1-ene (6 g., 81%) b.p.
125°/0.1 mm. (Found: C, 74.8; H, 10.7; N, 14.4. \(\text{C}_{13}\text{H}_{22}\text{N}_{2} \)
requires C, 75.7; H, 10.8; N, 13.6%) \(\gamma_{\text{max}} \) (I.R. 49), 2210 s
(conj. CN), 1575 vs (C =C-CN) cm\(^{-1} \). \(\lambda_{\text{max}} \) 276 m\(\mu \), (\(\varepsilon \), 23,700).

1-Cyano-3-ethyl-2-(1,2,3,4-tetrahydroisoquinolino)-pent-1-ene
1-Cyano-3-ethyl-2-(1,2,3,4-tetrahydroisoquinolino)-pent-2-ene

Redistilled 1,2,3,4-tetrahydroisoquinoline (2.2 g.,
0.015 mole) was added slowly with cooling to 1-cyano-3-ethyl-
penta-1,2-diene (2.0 g., 0.016 mole), infra-red examination
after 0.5 hr. showed complete removal of the allene band.
After several hours in a refrigerator crystals began to form
in the liquid. The crystals were removed by filtration,
washed with light petroleum ether and recrystallised from
aqueous alcohol. The crystals were found to be pure 1-cyano-
3-ethyl-2-(1,2,3,4-tetrahydroisoquinolino)-pent-2-ene \(\gamma_{\text{max}} \)
(I.R. 50), 2290 m (CN); 1650 m (C=C); 1600 w (aromatic C=C); 940 s
and 750 vs cm\(^{-1} \) \(\lambda_{\text{max}} \) 207 m\(\mu \) (\(\varepsilon \), 14,530). The mother liquors
consisted of an oil which was only very slightly soluble in
light petroleum, this fraction was boiled with light petroleum
and the solvent portion decanted away. Removal of the solvent
from the oil resulted in nearly pure 1-cyano-3-ethyl-(1,2,3,4-
tetrahydrosquinoquinolino)-pent-1-ene \(\nu_{\text{max}} \) (I.R. 51) 2210 (conj. CN); 1580vs (C=C-CN) and 750vs cm\(^{-1} \) \(\lambda_{\text{max}} \) 274m \(\mu\), (\(\varepsilon, 16,000 \)).

1-Cyano-3-ethyl-2-(1,2,3,4-tetrahydroquinoquinolino)-pent-1-ene.

Redistilled 1,2,3,4-tetrahydroquinoline (2.2 g., 0.015 mole) was added to 1-cyano-3-ethylpenta-1,2-diene (2 g., 0.016 mole), the mixture rapidly darkened but after 6 hr. there was no reduction in the intensity of the 1950 cm\(^{-1} \) band, (C=C=C) and no indication of enamine formation.

1-Cyano-2-(diethylamino)-3,4,4-trimethylpent-1-ene.

Redistilled diethylamine (2.2 g., 0.03 mole) was added to 1-cyano-3,3,4-trimethylpenta-1,2-diene (3.6 g., 0.027 mole) and the mixture heated on a boiling water bath for 2.5 hr. The mixture was cooled and excess diethylamine removed by evaporation under reduced pressure. Distillation gave a forerun of the starting product followed by 1-cyano-2-(diethylamino)-3,4,4-trimethylpent-1-ene (2.5 g., 46%), b.p. 110°/0.5mm. (Found: C, 74.9; H, 11.5; N, 13.6. C\(_{13}\)H\(_{24}\)N\(_2\) requires C, 74.9; H, 11.6; N, 13.5%) \(\nu_{\text{max}} \) (I.R. 52). 2210s (conj. CN) 1580s (C=C-CN) cm\(^{-1} \) \(\lambda_{\text{max}} \) 282m \(\mu\), (\(\varepsilon, 18,260 \)) n.m.r. (n.m.r. 26)
showed a singlet $\tau = 9.03$ (Bu$^+$), but the expected triplet for $(\text{CH}_3-\text{CN}_2-N)$ at $\tau = 8.85$ showed up as five or more bands. This is probably due to magnetic non equivalence of the methyl groups. A doublet $\tau = 8.5$ (CH$_3$-CH-C) $J_{\text{CH}_3\text{H}} = 7.2$ c.p.s., a quartet $\tau = 7.55$ (CH$_3$-CH-C) $J_{\text{H},\text{CH}_3} = 7.2$ c.p.s. The expected quartet $\tau = 6.6$ (CH$_3$CH$_2$-N) again shows as a more complex multiplet due to magnetic non equivalence of the methylene groups; a peak $\tau = 6.3$ shows (CH-C=CHCN).

1-Cyano-2-pyrrolidino-3,4,4-trimethylpent-1-ene.

Redistilled pyrrolidine (1.7 g., 0.025 mole) was added slowly with cooling to 1-cyano-3,4,4-trimethylpenta-1,2-diene (2.7 g., 0.02 mole) and after the initial vigorous reaction was completed the mixture was heated on a boiling water bath for 1 hr., after cooling, the excess pyrrolidine was removed by evaporation under reduced pressure. Distillation gave 1-cyano-2-pyrrolidino-3,4,4-trimethylpent-1-ene (3.5 g., 83%) b.p. 120$^\circ$/2 x 10$^{-2}$ mm. (Found: C, 75.9; H, 10.9; N, 13.4. C$_{13}$H$_{22}$N$_2$ requires C, 75.7; H, 10.8; N, 13.6%). γ_{max} (I.R.53) 2200vs (conj. CN); 1570vs (C=C-CN); 760s; 720s cm$^{-1}$ λ_{max} 279m μ, (E, 21,000).
Redistilled piperidine (2 g., 0.025 mole) was added to 1-cyano-3,4,4-trimethylpent-1,2-diene (2.7 g., 0.02 mole) and the mixture was heated on a boiling water bath, for 2.5 hr. After cooling, the excess piperidine was removed by evaporation under reduced pressure; the resulting viscous liquid was allowed to stand in a refrigerator, when after some time crystals appeared. The mixture was recrystallised from an ethyl alcohol/water mixture yielding 3 crops of 1-cyano-2-piperidino-3,4,4-trimethylpent-2-ene (2.5 g., 55%) m.p. 45° (Found: C, 75.7; H, 10.9; N, 12.6. \(\text{C}_{14} \text{H}_{24} \text{N}_2 \) requires C, 76.3; H, 11.0; N, 12.7%) \(\lambda_{\text{max}} \) (I.R.54) 2270m (-CN) 1625m (C=C); 760m cm\(^{-1}\) \(\lambda_{\text{max}} \) 203m \(\mu \), (\(\varepsilon \), 5,130), \(\lambda_{\text{max}} \) 246m \(\mu \), (\(\varepsilon \), 2,880).

After crystals had ceased to appear from the mother liquor an oil was precipitated by addition of water, the oil was separated, dissolved in ether, washed with water and dried (MgSO\(_4\)). Removal of the ether gave 1-cyano-2-piperidino-3,4,4-trimethylpent-1-ene (1.0 g., 23%) (Found: C, 76.4; H, 10.8; N, 12.5. \(\text{C}_{12} \text{H}_{24} \text{N}_2 \) requires C, 76.3; H, 11.0; N, 12.7%), \(\lambda_{\text{max}} \) (I.R.55); 2210vs (conj. CN); 1580vs (C=C-CN) cm\(^{-1}\) \(\lambda_{\text{max}} \) 284m \(\mu \), (\(\varepsilon \), 16,000).
Redistilled diethylamine (2.0 g., 0.028 mole) was added slowly with cooling to 1-cyano-3-isopropyl-4-methylpenta-1,2-diene (3.0 g., 0.015 mole); after the initial reaction was over the mixture was heated on a boiling water bath for 6 hr. the mixture was cooled and excess diethylamine was removed by evaporation under reduced pressure. Distillation gave a small forerun followed by three fractions:--

(i) was found to be 1-cyano-2-(diethylamine)-3-isopropyl-4-methylpent-2-ene (0.7 g., 16%) b.p. 65-60/0.1 mm. (Found: C, 74.8; H, 11.7; N, 14.0. \(C_{14}H_{26}N_{2} \) requires C, 75.6; H, 11.8 N, 12.7%) \(\lambda_{\text{max}} \) (I.R.56) 2280\(\text{m} \) (CN); 1645\(\text{m} \) (C=C) cm\(^{-1} \) \(\lambda_{\text{max}} \) 203\(\text{m} \) \(\mu \), (\(\epsilon \), 6,860).

(ii) was found to be a mixture of 1-cyano-2-(diethylamino)-3-isopropyl-4-methylpent-2-ene and 1-cyano-2-(diethylamino)-3-isopropyl-4-methylpent-1-ene by \(\lambda_{\text{max}} \) 2280\(\text{w} \) (CN) 2200\(\text{m} \) (conj. CN), 1645\(\text{w} \) (C=C), 1560\(\text{m} \) (C=C-CN) cm\(^{-1} \) \(\lambda_{\text{max}} \) 203\(\text{m} \) \(\mu \) (weak) \(\lambda_{\text{max}} \) 277\(\text{m} \) \(\mu \) (strong).

(iii) was found to be 1-cyano-2-(diethylamino)-3-isopropyl-4-methylpent-1-ene (2.3 g., 54%) b.p. 115\(^{\circ} /0.15\text{mm.} \) (Found: C, 75.1; H, 11.8; N, 13.3. \(C_{14}H_{26}N_{2} \) requires C, 75.6; H, 11.8;
N, 12.6%); \lambda_{\text{max}} (I.R. 57) 2000s (conj. CN) 1560s (C=O-CN)
\text{cm}^{-1} \lambda_{\text{max}} 277\mu, (\epsilon, 22,500).
ENAMINES FROM ACETYLENES.

\[\text{3- Bromophenylacetylene.} \]

An ice cold solution of sodium hypobromite (prepared by addition of bromine 33.6 g., 0.201 mole, to an ice cold solution of sodium hydroxide 25.2 g., 0.625 mole in water, 50 ml. and ice, 100 g.) was added to vigorously stirred, ice cold phenylacetylene (20.4 g., 0.2 mole) over 3 hr. The mixture was stirred a further 1 hr. whilst being allowed to reach room temperature. The heavy organic layer which separated was dissolved in ether, washed with water (3 x 50 ml.) and dried (MgSO\(_4\)).

Removal of the ether under reduced pressure gave \(-\text{bromophenylacetylene} (34 \text{ g., 94\%}), \nu_{\text{max}} 3080 \text{m} \text{(aromatic C-H)}; 2210 \text{m} \text{(conj. CN)}; 1600 \text{m} \text{(aromatic C=C)}; 755 \text{s and 690s cm}^{-1}; \text{g.l.c. (silicone oil, 120°) showed only one peak, t, 27 min.}"

\[\text{Cyanophenylacetylene.} \]

Anhydrous cuprous cyanide (10 g., 0.11 mole), was added to dry N,N-dimethylformamide (50 ml.) and bromophenylacetylene (18.1 g., 0.1 mole) was added to the stirred suspension, the temperature not being allowed to
exceed 50°. The resulting solution was stirred at 50° for 1½ hr., cooled and ether added, the solution was then slowly poured into vigorously stirred water (500 ml.) and the resulting suspension was stirred until the solid was granular in form. After filtration and subsequent washing of the solid with ether, the filtrate was extracted with ether (3 x 20 ml.) and the etherial solution washed with water (10 x 100 ml) before being dried (MgSO₄). Distillation after first removing the ether gave a small forerun followed by two fractions:

(i) was found to be cyanophenylacetylene (9.0 g., 70%), b.p. 65°/1mm., the liquid collected solidified m.p. \(\lambda_{\text{max}} ^{3050w} \) (aromatic C-H), 2290vs (conj. CN), 2155m (conj. C≡C), 1600m (aromatic C=C), 760s and 688s cm\(^{-1}\), \(\lambda_{\text{max}} ^{207m} \mu \), (\(\varepsilon \), 22,580); 211m \(\mu \), (\(\varepsilon \), 22,260); 249m \(\mu \), (\(\varepsilon \), 13,870); 262m \(\mu \), (\(\varepsilon \), 21,900) and 275m \(\mu \), (\(\varepsilon \), 15770).

(ii) was found to be 1,4-diphenylbuta-1,3-diyne (2 g., 16%), b.p. 85-90°/0.3mm., this gave white crystals on recrystallisation from light petroleum-ether m.p. 84-5°. (Found: C, 94.9; H, 4.9. \(\text{C}_{16}\text{H}_{10} \) requires C, 95.0; H, 5.0%); \(\lambda_{\text{max}} ^{3090m} \) (aromatic C-H); 2170w (-C≡C-); 1600m (aromatic C=C); 760s
and 690s cm\(^{-1}\). \(\lambda_{\text{max}}\) 204m \(\mu\), (\(\varepsilon\), 42,830); 218m \(\mu\), (\(\varepsilon\), 32,320); 228m \(\mu\), (\(\varepsilon\), 28,700); 248m \(\mu\), (\(\varepsilon\), 27,480); 260m \(\mu\), (\(\varepsilon\), 27,070); 288m \(\mu\), (\(\varepsilon\), 21,010); 297m \(\mu\), (\(\varepsilon\), 17,170); 306m \(\mu\) (\(\varepsilon\), 31,520); 317m \(\mu\), (\(\varepsilon\), 13,330) and 327m \(\mu\), (\(\varepsilon\), 29,490). Literature values for 1,4-diphenylbuta-1,3-diyne.

\(\beta\)-(Diethylamino)-\(\beta\)-phenylocrylonitrile.

Redistilled diethyamine (1.6 g., 0.022 mole) was added slowly with cooling to cyanophenylacetylene (2.54 g., 0.02 mole) and after the initial reaction had ceased the solution was heated on a boiling water bath for 0.5 hr. Excess diethyamine was removed by evaporation under reduced pressure and distillation of the residue gave \(\beta\)-(diethylamino)-\(\beta\)-phenylocrylonitrile (2.3 g., 82.5\%) b.p. 137\(^{\circ}\)/0.15 mm. m.p. 71\(^{\circ}\). (Found: C, 78.0; H, 7.8; N, 14.2.

\(C_{13}H_{16}N_2\) requires C, 78.0; H, 8.1; N, 14.0\%); \(\lambda_{\text{max}}\) (I.R.58), 2210s (conj. CN); 1570vs (C=C-CN) 780m; 726m; and 700 cm\(^{-1}\), \(\lambda_{\text{max}}\) 205m \(\mu\), (\(\varepsilon\), 13,090) \(\lambda_{\text{max}}\) 280m \(\mu\), (\(\varepsilon\),12,180). n.m.r. indicated that the product was pure trans (with respect to nucleophile and activating groups). A triplet \(\tau = 8.89\) \((CH_3CH_2N)\) \(J_{CH_3,CH_2} = 7\) c.p.s., a quartet \(\tau = 6.92\) \((CH_3CH_2N)\) \(J_{CH_2,CH_3} = 7\) c.p.s., a singlet \(\tau = 6.0\) (\(= \text{CHCN}\)) and an aromatic multiplet \(\tau = 2.57\) (Ph-C).
Redistilled diethylamine (.8 g., 0.011 mole) was added slowly to a solution of cyanophenylacetylene (1.27 g., 0.01 mole) in methanol (5 ml); after refluxing for 10 min. the excess solvent was removed under high vacuum. n.m.r. showed the product to be a mixture of cis and trans (with respect to nucleophile and activating group). \(\beta \)-diethylamino-\(\beta \)-phenylacrylonitrile in a ratio of about 15:85. The quartet of the amino methylenes showed as two distinct quartets, the cis form being 17 c.p.s. downfield due to deshielding by the cyano group when in the cis configuration.
1-Cyano-3-methylpent-2-one.

(a) 1-Cyano-2-(diethylamino)-3-methylpent-2-ene (9.0 g., 0.05 mole) was stirred with 5% hydrochloric acid (50 ml.) at 100° for 2.5 hr. The mixture was cooled, extracted with ether (3 x 15 ml.) and dried (MgSO₄). Distillation after first removing the ether gave 1-cyano-3-methylpent-2-one (3.5 g., 55%); b.p. 70°/0.5 mm (Found: C, 67.1; H, 8.7; O, 13.0; N, 11.2. C₇H₁₁ON requires C, 67.2; H, 8.9; O, 12.8; N, 11.2%). ν_max (I.R. 59), 2280 m (-CN); 1730 vs (C=O) and 780 m cm⁻¹. λ_max 232 mμ (ε, 2,880) g.l.c. (silicone oil 150°) gave only one peak, t, 5 min.

(b) 1-Cyano-2-(diethylamino)-3-methylpent-1-ene (9.0 g., 0.05 mole) was stirred with 5% hydrochloric acid (50 ml.) at 100°C for 2.5 hr. The mixture was cooled, extracted with ether (3 x 15 ml.) and dried (MgSO₄). Distillation after first removing the ether gave 1-cyano-3-methylpent-2-one (3.8 g. 60%) which had identical spectra with the product from the first experiment.
(c) 1-Cyano-3-methyl-2-piperidino-pent-1-ene (1.0 g., 0.005 mole) was stirred with 5% hydrochloric acid (10 ml.) at 100° for 1 hr. The mixture was cooled, extracted with ether (3 x 10 ml.) and dried (MgSO₄). Removal of the ether gave a pale brown liquid which had identical spectra with the products from the previous experiments.

(d) 1-Cyano-3-methyl-2-piperidino-pent-2-ene (7.0 g., 0.04 mole) was stirred with 5% hydrochloric acid (50 ml.) at 100° for 1 hr. The mixture was cooled, extracted with ether (3 x 15 ml.) and dried (MgSO₄). Distillation after first removing the ether gave 1-cyano-3-methylpent-2-one (4.2 g., 84%) which had identical spectra with the products from the previous experiments.

1-Cyano-3-ethylpent-2-one.

(a) 1-Cyano-2-(diethylamino)-3-ethylpent-2-ene (5.0 g., 0.025 mole) was stirred with 5% hydrochloric acid (50 ml.) at 100° for 1 hr. The mixture was cooled, extracted with ether (3 x 15 ml.) and dried (MgSO₄). Distillation after first removing the ether gave 1-cyano-3-ethylpent-2-one (2.8 g., 78%) b.p. 65°/0.4 to 0.5 mm. (Found: C, 69.0; H, 9.4; O, 11.6; N, 10.0. C₈H₁₃ON

-248-
requires C, 69.0; H, 9.4; O, 11.5; N, 10.1; \(\lambda_{\text{max}} \) (I.R. 60),
2275m (CN); 1725s (C=O) and 780 cm\(^{-1}\); \(\lambda_{\text{max}} \) 232\(\mu \), (\(\varepsilon \), 4,415)
g.l.c. (silicone oil, 150°) gave only one peak, t, 6 min.

(b) 2-Amino-1-dyano-3-ethylpent-1-ene (0.7 g., 0.005 mole) was stirred with 5% hydrochloric acid (10 ml.) at 100° for 1 hr. The mixture was cooled, extracted with ether (3 x 10 ml.) and dried (MgSO\(_4\)). Removal of the ether gave a product with identical spectra to the previous product.

(c) 1-Cyano-3-ethyl-2-(1,2,3,4-tetrahydroisoquinolino)-pent-1-ene (1.0 g., 0.004 mole) was stirred with 5% hydrochloric acid at 100° for 2 hr. The mixture was cooled, extracted with ether (3 x 10 ml.) and dried (MgSO\(_4\)). Removal of the ether gave a product which was nearly identical to the previous products but showed slight traces of the starting product.

(d) 1-cyano-3-ethyl-2-(1,2,3,4-tetrahydroisoquinolino)-pent-2-ene (1.0 g., 0.004 mole) was stirred with 5% hydrochloric acid at 100° for 2 hr. The mixture was cooled, extracted with ether (3 x 10 ml.) and dried (MgSO\(_4\)), removal of the ether gave a product which was identical with the previous ones.
1-Cyano-3,4,4-trimethylpenton-2-one.

(a) 1-Cyano-2-(diethylamino)-3,4,4-trimethylpent-1-ene (6 g., 0.03 mole) was stirred with 5% hydrochloric acid at 100° for 2 hrs. Examination showed only partial hydrolysis had taken place, the strength of the acid was increased to 10% and the mixture re-heated for a further 2 hrs. after working up in the usual way the product was found to be a mixture of 1-cyano-3,4,4-trimethylpenton-2-one and 1-cyano-2-(diethylamino)-3,4,4-trimethylpent-1-ene by ν max (I.R.61), 2270w (CN); 2210s (conj. CN); 1730s (C=O) and 1580s (C=C-CN) cm⁻¹.

(b) 1-Cyano-2-piperidino-3,4,4-trimethylpent-1-ene (4.4 g., 0.02 mole) was stirred with 10% hydrochloric acid (.50 ml.) at 100°C for 2 hr. The mixture was cooled, extracted with ether (3 x 15 ml.) and dried (MgSO₄). Distillation after first removing the ether gave 1-cyano-3,4,4-trimethylpenton-2-one (1.5 g., 49%) b.p. 80°/0.15mm. (Found: C, 70.6; H, 9.7; O, 10.4; N, 9.3. C9H15ON requires C, 70.6; H, 9.8; O, 10.4; N, 9.2%) ν max 2270m (CN) 1730s (C=O) cm⁻¹, λ max 234m μ, (ε, 3,225); g.l.c. (silicone oil 150°) showed only one peak, t, 9 min.
(c) 1-Cyano-2-piperidino-3,4,4-trimethylpent-2-ene (1.1 g., 0.005 mole) was stirred with 10% hydrochloric acid (10 ml.) at 100° for 2 hr. The mixture was cooled, extracted with ether (3 x 10 ml.) and dried (MgSO₄). Evaporation of the ether gave a product with identical spectra to the previous one.

(d) 1-Cyano-2-pyrrolidino-3,4,4-trimethylpent-1-ene (4.2 g., 0.02 mole) was stirred with 10% hydrochloric acid (50 ml.) at 100° for 2 hr. The mixture was cooled, extracted with ether (3 x 15 ml.) and dried (MgSO₄). Distillation after removing the ether gave 1-cyano-3,4,4-trimethylpentan-2-one (1.6 g., 52%), which was identical to the product from experiment b.

Benzoylacetonitrile.

β-(diethylamino)-β-phenylacrylonitrile (2.5 g., 0.0125 mole) was stirred with 10% hydrochloric acid (40 ml.) at 100° for 4 hrs. The mixture was cooled, extracted with ether (3 x 10 ml.) and dried (MgSO₄). Evaporation of the ether gave a solid which was recrystallised from aqueous alcohol. The compound was shown to be benzoylacetonitrile (1.8 g., 82%) m.p. 80-1° (Found: C, 74.5; H, 4.7; O, 11.1; N, 9.7. C₉H₇ON requires C, 74.5; H, 4.81; O, 11.0; N, 9.7%)

λ_max (I.R.62), 2265m (CN); 1730s (C=O) cm⁻¹. λ_max 204m μ, (ε, 15,820); λ_max 245m μ (ε, 11,600); λ_max 282m μ (ε, 2,636).
PREPARATION OF ALLENIC-1-AMIDES
FROM 1-CYANOALLENES.

4-Ethylhexa-2,3-dienamide.

1-Cyano-3-ethylpenta-1,2-diene
(3.0 g., 0.025 mole) was dissolved in absolute ethanol (1 ml.)
to which 6N sodium hydroxide (1 ml.) had been added. The
solution was stirred and hydrogen peroxide (30% w/v; 100
Volume; 12 ml.) added over 4 min. The reaction became very
vigorous and caused the solution to boil, when the initial
reaction had subsided the solution was stirred at 80° for 1 hr.
On slow cooling of the solution white crystals of the amide
separated, these were removed by filtration, washed with a
little ether, and recrystallised from aqueous alcohol.
(Further cooling and evaporation of the mother liquors
deposited more crystals which were washed with ether,
recrystallised and combined with the first crop.) The combined
crop was dried in vacuo at 60° (2 g., 57%) m.p. 138-9°.
(Found: C, 68.9; H, 9.4; O, 11.4; N, 10.2. C₈H₁₃ON requires
C, 69.0; H, 9.4; O, 11.5; N, 10.1%) vₘₐₓ (I.R.63) 3410vs,
3210vs (N-H stretch); 1970s (C=C=C); 1660s (C=O, amide I
band); 1630s (NH deformation, amide II band); 905m; and
843s cm⁻¹; λₘₐₓ 208m μ (ε, 14,600).

-252-
4.5.5-Trimethylhexa-2,3-dienamide.

1-Cyano-3,4,4-trimethylpenta-1,2-diene (4 g., 0.03 mole) was dissolved in absolute ethanol (12 ml.) to which 6N sodium hydroxide (1 ml.) had been added. The solution was stirred and hydrogen peroxide (30% w/v., 100 volume; 12 ml.) added in two equal portions. The reaction became very vigorous and caused the solution to boil, when this initial vigorous reaction had subsided the solution was maintained at 80° by external heating and stirred for 1 hr. On slow cooling of the solution white crystals separated, these were removed by filtration, and a further crop obtained by evaporation and cooling of the mother liquors. The two crops were combined, recrystallised from aqueous alcohol and dried in vacuo at 60° (3.2 g., 70%). (Found: C, 70.4; H, 9.7; O, 10.8; N, 9.0. C₉H₁₅ON requires C, 70.5; H, 9.8; O, 10.5; N, 9.1%) \(\gamma_{\text{max}} \) (I.R.64), 3400s, 3200s (N-H stretching); 1975m (C=C=C); 1670s (C=O, amide I band); 1625s (N-H deformation, amide II band); 890m; 712s cm⁻¹. \(\lambda_{\text{max}} \) 209m \(\mu \), (ε, 13,000); n.m.r. (n.m.r. 27) showed a singlet \(\gamma = 8.85 \) (Bu⁺), a doublet centred on \(\gamma = 8.15 \) (Bu(\text{Me})C=C=CH), \(J_{\text{CH₃},H} = 3 \) c.p.s., a quartet centred on \(\gamma = 4.5 \) (C=C=CH), \(J_{H,\text{CH₃}} = 3 \) c.p.s., and a broad hump \(\gamma = 4.0 - 4.6 \) (NH₂).
4-Isopropyl-5-methylhexa-2,3-dienamide.

1-Cyano-3-isopropyl-4-methylpenta-1,2-diene (1.5 g., 0.01 mole) was dissolved in absolute ethanol (6 ml.) to which 6N sodium hydroxide (0.6 ml.) had been added. The solution was stirred and hydrogen peroxide (30% w/v.; 100 volume; 5 ml.) was added in one portion. The reaction became very vigorous and caused the solution to boil, when the initial vigorous reaction was over the solution was maintained at 80° by external heating and stirred for 1 hr. On slow cooling of the solution white crystals separated, these were filtered off, washed with a little cold water and dried in vacuo at 60° (1.1 g., 65%) m.p. 112-3°. (Found: C, 71.93; H, 10.42; O, 9.34; N, 8.31. C_{10}H_{17}ON requires C, 71.81; H, 10.25; O, 9.57; N, 8.53.)

ν_{max} (I.R.65), 3400s, 3210s (NH stretching); 1955s (C=C=C); 1655s (C=O, amide I band); 1630s (NH deformation, amide II band); 840s; 640s cm$^{-1}$. λ_{max} 210mμ, (ε, 15,000).

4-Isobutyl-6-methylhepta-2,3-dienamide.

1-Cyano-3-isobutyl-5-methylhexa-1,2-diene (0.9 g., 0.005 mole) was dissolved in absolute ethanol (4 ml.) to which 6N sodium hydroxide (0.5 ml.)
had been added. The solution was stirred and hydrogen peroxide (30% w/v.; 100 volume; 3 ml.) was added in one portion, the reaction became very vigorous and caused the solution to boil, when the initial vigorous reaction had subsided, the solution was maintained at 80° by external heating and stirred for 1 hr. On cooling no crystals were observed, but after standing 5 hr. in a cool place, white crystals were deposited, these were removed by filtration, washed with a little water and dried in vacuo at 60°. (0.6 g., 61%); m.p. 93-4°. (Found: C, 72.4; H, 10.5; O, 8.2; N, 7.0. \(\text{C}_{12}\text{H}_{21}\text{ON} \) requires C, 73.9; H, 10.8; O, 8.2; N, 7.1%); \(\chi_{\text{max}} \) (I.R. 66), 3410s, 3210s (N-H stretching); 1960s (C=C=C); 1655s (C=O, amide I band); 1625s (N-H deformation, amide II band) cm\(^{-1}\), \(\chi_{\text{max}} \) 211m\(\mu \), (\(\epsilon \), 10,140).

4-Tert-Butyl-5,5-dimethylhexa-2,3-dienamide.

3-tert-Butyl-1-cyano-4,4-dimethylpenta-1,2-diene (1.0 g., 0.006 mole) was dissolved in absolute ethanol (4 ml.) to which 6N sodium hydroxide (5 ml.) had been added. The solution was stirred and hydrogen peroxide (30% w/v.; 100 volume; 3 ml.) was added in one portion, the solution grew only slightly warm so after 15 min. more hydrogen peroxide (3 ml.) was added. The solution
was maintained at 80° and stirred for 45 min., when on cooling only a small quantity of solid was deposited and the solution had a strong smell of organic cyanide. Absolute ethanol (3 ml.), 6N sodium hydroxide (0.5 ml.) and hydrogen peroxide (2 ml.) were then added and the solution stirred at 80° for a further 1 hr. On cooling an oily liquid separated, which after the whole solution had been in a cool place for 8 day changed into white crystals. The crystals were removed by filtration and when water was added to the mother liquor a further crop was obtained. The combined crop of crystals was washed with water and recrystallised from aqueous alcohol. (0.8 g., 70%). m.p. 96°. (Found: C, 72.3; H, 10.7; 0, 8.2; N, 6.8. C₁₂H₂₁ON requires C, 73.9; H, 10.8; O, 8.2; N, 7.2%); Vₘₐₓ (I.R.67), 3410s, 3200s (N-H stretching); 1945m (C=C=C); 1675s (C=O, amide I band); 1600s cm⁻¹. (NH deformation, amide II band); λₘₐₓ 208m μ, (ε, 8,150).
1.4-Elimination reaction of 1-Bromoallenes.

2-Methylbut-1-en-3-yne

(a) 1-Bromo-3-methylbuta-1,2-diene

(6.0 g., 0.04 mole) and anhydrous cuprous cyanide (4.5 g., 0.05 mole) were heated very slowly, in an apparatus set for distillation, until a product b.p. 55° distilled. The product after washing with water (2 x 10 ml.), drying (MgSO₄) and redistilling was found to be 2-methylbut-1-en-3-yne (0.6 g., 22%) \(\lambda_{\text{max}} \) (I.R. 68) 3300 vs (C=CH); 2100m (C=C); 1625vs (C=C) and 900vs cm⁻¹ (C=CH₂). \(\lambda_{\text{max}} \) 222m μ² (E, 11,000); \(\lambda_{\text{max}} \) 236m μ² (E, 9,700). g.l.c.

(silicone oil, 18°) gave only one peak, t, 12 min. One peak was also given on admixture with authentic specimen.

(b) 1-Bromo-3-methylbuta-1,2-diene (6.0 g., 0.04 mole) and cuprous iodide (10.5 g., 0.055 mole) were heated slowly, in an apparatus set for distillation, at a bath temperature of about 100° a very vigorous reaction occurred (some experiments became uncontrollable) and a small quantity of distillate was collected, iodine vapour and a fuming gas were also evolved.

Infra-red examination of the product indicated that no en-yne was present; g.l.c. examination (silicone oil, 80°) showed the product to be a complex mixture of six or more components.
(c) 1-Bromo-3-methylbuta-1,2-diene (15 g., 0.1 mole) and cuprous iodide (19 g., 0.1 mole) in dry N,N-dimethylformamide (50 ml.) were stirred at 80° for 1 hr. The apparatus was then set for vacuum distillation and the product was slowly distilled at about 10-20mm pressure, the portion condensing in a trap cooled to -50° being collected. Redistillation of this trap fraction after drying (MgSO₄) gave 2-methylbut-1-en-3-yne (4.0 g., 57%) b.p. 32-33°/750mm. \(\lambda_{max} \) 3300 vs (C≡CH); 2100m (C≡C); 1625vs (C≡C); and 900vs cm⁻¹ (C=CH₂) \(\lambda_{max} \) 222mp, (ε, 11,000); \(\lambda_{max} \) 236mp, (ε, 9,700). g.l.c. (silicon oil, 18°) gave only one peak, t, 12 min., one peak was also given on admixture with authentic sample.

(d) 1-Bromo-3-methylbuta-1,2-diene (49 g., 0.33 mole) was added slowly to a stirred solution of anhydrous cuprous cyanide (45 g., 0.5 mole) in dry N,N-dimethylformamide (120 ml.) and the mixture stirred at 30-45° for 2 hr. The apparatus was then set for vacuum distillation and the product was distilled at about 10-20mm. pressure, the portion condensing in a trap cooled to -50° being collected. Redistillation of this trap fraction after drying (MgSO₄) gave 2-methylbut-1-en-3-yne (4.5 g., 12%), the spectra and g.l.c. of which were identical with those previously obtained.
The residue (ca 80 ml.) from the distillation was worked up in the way previously described for the preparation of 1-cyanoallenes and gave 1-cyano-3-methylbuta-1,2-diene (12.9 g. 42%); ν_{max} 2245vs (CN); 1950s (C=C=C); and 790 cm$^{-1}$.

3-Methylpent-3-en-1-yne.

(a) 1-Bromo-3-methylpenta-1,2-diene (16.1 g., 0.1 mole) and anhydrous cuprous cyanide (10 g., 0.11 mole) were heated at 115° for 10 min. and then the apparatus was set for distillation and a low boiling product was collected. Redistillation of this product gave hydrogen cyanide, (1.3 g., 46%) b.p. 28° and the en-yn product (4.8 g., 58%) b.p. 62-65°/750mm. (Found: C, 90.15; H, 9.9. C$_6$H$_8$ requires C, 90.1; H, 9.9%); ν_{max} 3300vs (C≡CH); 2110m (C≡C); 1620m (C=C) 910m (C=CH$_2$); and 825m cm$^{-1}$. (C=CH); λ_{max} 222m(Σ, 8,900); g.l.c. (silicone oil, 18°) gave three peaks, t, 8 min., (6%), 2-ethylbut-1-en-3-yne; t, 10 min., (74%), trans-3-methylpent-3-en-1-yne; t, 13 min., (20%), cis-3-methylpent-3-en-1-yne. These three isomers were separated by preparative g.l.c. (20 ft. x 3/8" column filled with 15% silicone oil on carbowax, 30°); 2-ethylbut-1-en-3-yne λ_{max} (I.R.69), 3330vs (C≡CH); 3100w (C=CH$_2$); 2340w (overtone); 2100w (-C≡C); 1800m (overtone of vs.900); 1750w (combustion overtone) 1620 vs
g.l.c. (silicone oil, 18°) gave only one peak, t, 8 min. trans-3-Methylpent-3-en-1-yne ν_{max} (I.R. 70), 3300 vs (C=CH); 2340 w (overtone); 2100 m (-C≡C); 1850 w (combination overtone); 1630 w (conj. C=C); 1040 s; 940 m; 820 vs cm$^{-1}$. (no 900 cm$^{-1}$ band C=CH$_2$). g.l.c. (silicone oil, 18°) gave only one peak, t, 10 min. cis-3-Methylpent-3-en-1-yne ν_{max} (I.R. 71), 3320 vs (-C=CH); 2340 w (overtone); 2105 s (C≡C); 1855 w (combination overtone); 1675 m (overtone of 839 vs); 1645 m (conj. C=C); 1010 s; 839 vs; 750 m cm$^{-1}$; g.l.c. (silicone oil, 18°) gave only one peak, t, 13 min.

(b) 1-Bromo-3-methylpenta-1,2-diene (8.05 g., 0.055 mole) and cuprous iodide (10.5 g., 0.055 mole) were heated slowly in an apparatus set for distillation. At a bath temperature of about 140° a vigorous reaction took place, iodine vapour and a fuming gas being liberated, the small quantity of distillate collected showed no trace of en-yne and the g.l.c. showed a complex mixture with at least six components.

(c) 1-Bromo-3-methylpenta-1,2-diene (5 g., 0.03 mole) was heated with silver cyanide (4 g., 0.03 mole) at 130° for 5 hr. The apparatus was then set for distillation and only 0.75 g.
of a product (which was found to be 70% en-yne and 30% starting product) \(\lambda_{\text{max}} \) 3300 vs (C=CH); 2100 m (C=C) and 1950 m cm\(^{-1}\) (C=C=C); \(\lambda_{\text{max}} \) 222 m \(\mu \), (\(\xi \), 5,500) was obtained.

(d) 1-Bromo-3-methylpenta-1,2-diene (5 g., 0.03 mole) was heated with cuprous bromide (4.3 g., 0.03 mole) at 100\(^{\circ}\) for 4 hrs. infra-red and g.l.c. examination showed the mixture to be mainly starting product with some rearrangement products, but no trace of en-yne was observed.

(e) 1-Bromo-3-methylpenta-1,2-diene (24 g., 0.15 mole) and cuprous iodide (28.5 g., 0.15 mole) were stirred in dry N,N-dimethylformamide (72 ml.) at 80\(^{\circ}\) for 2\(\frac{1}{2} \) hr. The apparatus was then set for vacuum distillation and the product was slowly distilled at about 10-20mm pressure, the portion condensing in a trap cooled to -50\(^{\circ}\) being collected. Redistillation of the trap fraction after drying (MgSO\(_4\)) gave the en-yne product (6.1 g., 50%) b.p. 63\(^{\circ}\)/760mm. Infra-red and ultra-violet spectra were similar to the sample obtained from (a), but g.l.c. (silicone oil, 18\(^{\circ}\)) showed only two peaks, t, 8 min., (12%), 2-ethylbut-1-en-3-yne; and t, 10 min., (88%), trans-3-methylpent-3-en-1-yne. Mixed g.l.c. (silicone oil, 18\(^{\circ}\)) of this product in turn with authentic
samples of 2-ethylbut-1-en-3-yne and trans-3-methylpent-3-en-1-yne gave enhancement of the t, 8 min. and t, 10 min. peaks respectively. No trace of the cis-3-methylpent-3-en-1-yne was indicated.

(f) 1-Bromo-3-methylpenta-1,2-diene (20.1 g., 0.125 mole) and cuprous bromide (21.75 g., 0.15 mole) were stirred in dry N,N-dimethylformamide (100 ml.) at 56° for 2 hr. Working up in the usual manner gave a mixture of en-ynes (6 g., 60%), the g.l.c. of which showed (silicone oil, 18°) three peaks, t, 8 min., (15%), 2-ethylbut-1-en-3-yne; t, 10 min. (72%), trans-3-methylpent-3-en-1-yne and t, 13 min. (13%), cis-3-methylpent-3-en-1-yne. Admixture with authentic samples of each en-yne gave enhancement of the expected peak in each case.

(g) Similarly a reaction using cuprous chloride in place of cuprous bromide gave 40% mixture of en-ynes in the same proportions as (f).

(h) 1-Bromo-3-methylpenta-1,2-diene (53.8 g., 0.33 mole) was added slowly to a stirred solution of anhydrous cuprous cyanide (45 g., 0.5 mole) in dry N,N-dimethylformamide (200 ml.) and the mixture stirred at 55° for 1½ hr. The
apparatus was then set for vacuum distillation and the product was distilled at about 10-20mm pressure, the portion condensing in a trap cooled to -50° being collected. Redistillation of this trap fraction after drying (MgSO₄) gave the en-yne mixture (4.0 g., 15%) which was shown by spectra and g.l.c. to be 2-ethylbut-1-en-3-yne (6%), trans-3-methylpent-3-en-1-yne (74%) and cis-3-methylpent-3-en-1-yne (20%).

The residue from the distillation (120 ml.) was worked up in the way previously described for preparation of 1-cyanoallenes and gave 1-cyano-3-methylpenta-1,2-diene (18.0 g., 51%); νₘₐₓ 2245 vs (CN); 1955 vs cm⁻¹. (C=C=C).

3-Ethylpent-3-en-1-yne.

(a) 1-Bromo-3-ethylpenta-1,2-diene (8.75 g., 0.05 mole) and anhydrous cuprous cyanide (5.0 g., 0.056 mole) were heated at 115° for 15 min. and then the apparatus was set for distillation and the low boiling product was collected. Redistillation of this product gave hydrogen cyanide (0.5 g., 37%) b.p. 28°/750mm and the en-yne product (2.1 g., 45%); b.p. 85°/760mm. (Found: C, 89.0; H, 10.5.
C_7H_{10} requires C, 89.4; H, 10.6%; \nu_{\text{max}} 3300\text{vs} (\text{C} \equiv \text{CH}); 2100\text{m} (\text{C} \equiv \text{C}); 1630\text{w} (\text{C} = \text{C}); and 840 \text{cm}^{-1} (\text{C} = \text{CH}^{-}); \lambda_{\text{max}} 222\text{m} \mu (\varepsilon, 13,800). g.l.c. (silicone oil, 20^\circ) showed two components, t, 25 min. (85%), trans-3-ethylpent-3-en-1-yne and t, 30 min. (15%), cis-3-ethylpent-3-en-1-yne.

(b) 1-Bromo-3-ethylpenta-1,2-diene (8.75 g., 0.05 mole) and cuprous iodide (9.5 g., 0.05 mole) were stirred in dry N,N-dimethylformamide (30 ml.) at 80^\circ for 1\frac{1}{2} \text{hr.} The apparatus was then set for vacuum distillation and the product was slowly distilled at about 10-20\text{mm} pressure, the portion condensing in the trap cooled to -50^\circ being collected. Redistillation of the trap fraction after drying (MgSO}_4 gave pure trans-3-ethylpent-3-en-1-yne (2.9 g., 61%) b.p. 85^0/750\text{mm.} \nu_{\text{max}} (\text{I.R.}73) 3300\text{vs} (\text{C} \equiv \text{CH}); 2100\text{m} (-\text{C} \equiv \text{C}-); 1630\text{w} (\text{C} = \text{C}); and 840 \text{cm}^{-1} (\text{C} = \text{CH}^{-}). \lambda_{\text{max}} 222\text{m} \mu, (\varepsilon, 13,800); g.l.c. (silicone oil, 20^\circ) gave only one peak, t, 25 min.

(c) 1-Bromo-3-ethylpenta-1,2-diene (58.2 g., 0.33 mole) was slowly added to a stirred solution of anhydrous cuprous cyanide (65 g., 0.7 mole) in dry N,N-dimethylformamide (200 ml. and the mixture stirred at 55-60^\circ for 2 \text{hr.} The apparatus was then set for vacuum distillation and the product distilled
at about 15-20mm pressure, the portion condensing in a trap cooled to -50° being collected. Redistillation of this trap fraction gave the en-yne (4.4 g., 14%) which had identical spectra and g.l.c. to the product from (a).

The residue from the distillation (120 ml.) was worked up as previously described for the preparation of 1-cyanoallenes and gave 1-cyano-3-ethylpenta-1,2-diene (25 g., 60%);
\[\text{J}_{\text{max}} 2240 s (\text{CN}); 1955 s (\text{C=C=C}); \text{and } 790 m \text{ cm}^{-1}. \]

2-t-Butylbut-1-en-3-yne.

(a) 1-Bromo-3,4,4-trimethylpenta-1,2-diene when heated with anhydrous cuprous cyanide gives 1-cyano-3,4,4-trimethylpenta-1,2-diene in about 60% yield. (See section on 1-cyanoallenes p.87).

(b) 1-Bromo-3,4,4-trimethylpenta-1,2-diene (8.75 g., 0.05 mole) and cuprous iodide (9.5 g., 0.05 mole) were stirred in dry N,N-dimethylformamide (30 ml.) at 80° for 1½ hr. The apparatus was then set for vacuum distillation and the product slowly distilled at about 5mm pressure, the portion condensing in a trap cooled to -50° being collected. After drying (MgSO\(_4\)) redistillation using a spinning band apparatus gave 2-t-butylbut-1-en-3-yne (3.5 g., 63%) b.p. 93-5°/750mm.
(Found: C, 88.4; H, 11.5. C₈H₁₂₂ requires C, 88.1; H, 11.9%)

νₘₐₓ (I.R.72), 3300vs (C≡CH); 2100m (C≡C); 1630s (C=C);

and 910vs cm⁻¹ (C=CH₂). λₘₐₓ 210mμ, (ε, 7,200) λₘₐₓ 218mμ (ε, 10,000); λₘₐₓ 226mμ, (ε, 7,400);
g.l.c. (silicone oil 80°) gave only one peak, t, 4 min.
1,4-ELIMINATION REACTION OF 1-IODOALLYNES.

2-Methylbut-1-en-3-yne.

(a) 1-Iodo-3-methylbuta-1,2-diene gave a violent reaction on being heated with cuprous cyanide, the small portion of distillate collected showed evidence of en-yne formation ν_{max} 3300 (C≡OH); 2100 (C≡C); and 1630 (C=C).

(b) 1-Iodo-3-methylbuta-1,2-diene (19.4 g., 0.1 mole) and cuprous iodide (19 g., 0.1 mole) in N,N-dimethylformamide (100 ml.) gave 2-methylbut-1-en-3-yne identical in spectra to the sample obtained in the earlier experiments. (3.7 g., 55%).

3-Methylpent-3-en-1-yne.

(a) 1-Iodo-3-methylpenta-1,2-diene gave an almost uncontrollable reaction on being heated with cuprous cyanide. Again the distillate collected showed large en-yne content.

(b) 1-Iodo-3-methylpenta-1,2-diene (20.8 g., 0.1 mole) and cuprous iodide (19 g., 0.1 mole) in N,N-dimethylformamide (100 ml.) gave trans-3-methylpent-3-en-1-yne contaminated with a small amount of 2-ethylbut-1-en-3-yne. (4.2 g., 52%).
2-t-Butylbut-1-en-3-yne.

1-Iodo-3,4,4-trimethylpenta-1,2-diene (12 g., 0.05 mole) and cuprous iodide (10 g., 0.11 mole) in N,N-dimethylformamide (100 ml.) gave 2-t-butylbut-1-en-3-yne. (3 g., 55%).

Action of heat on a mixture of 1-Cyano-3-methylpenta-1,2-diene and cuprous salts.

(a) 1-cyano-3-methylpenta-1,2-diene (2.7 g., 0.025 mole) and cuprous cyanide (2.3 g., 0.025 mole) were heated at 130° for 3 hrs. No low boiling en-yne fraction could be collected. The mixture (a black, sticky gum) was extracted with 40°-60° petroleum ether and yielded a little of the dimer 2-(2'-butylidene)-1-cyano-3-cyanomethylene-4-ethyl-4-methylcyclobutane, characterised by λ_{max} 2260s (CN); 2250s (conj. CN); 1660s (conj. C=C); and 1630s (conj. C=CHCN) cm$^{-1}$ λ_{max} 282mμ, (E, 11,400).

(b) 1-cyano-3-methylpenta-1,2-diene and cuprous bromide gave the same result as (a).

(c) 1-cyano-3-methylpenta-1,2-diene and silver cyanide gave the same result as (a).
GRIGNARD REACTIONS OF 3-DIALKYLALLENIC MAGNESIUM BROMIDES.

A. Reaction with Carbon Dioxide.

Reaction of 3-Methylpenta-1,2-diene-1-magnesium bromide with carbon dioxide.

(a) Magnesium turnings (1.83 g., 0.075 mole), dry tetrahydrofuran (40 ml) and a crystal iodine were placed in a dry flask through which a current of dry, oxygen-free nitrogen was passed. A few milliters of a solution of 1-bromo-3-methyl-penta-1,2-diene (12.0g., 0.075 mole) in dry tetrahydrofuran (20 ml) were added to the flask, then after about 5 min. when formation of the Grignard compound had started, the bromoallene solution diluted with a further amount of tetrahydrofuran (100 ml) was added dropwise at a rate just sufficient to keep the mixture refluxing gently. When addition of the bromoallene solution was complete the mixture was stirred and maintained at a gentle reflux by external heating for 1 hr. The suspension was then cooled to about -5° and a rapid stream of dry carbon dioxide gas was passed for 2-3 hr. Dilute hydrochloric acid was then added slowly until
complete solution of the inorganic salts was obtained. The mixture was separated, the aqueous portion was extracted with ether (2x20 ml) and this was added to the tetrahydrofuran solution. The organic solution was washed with water then extracted with sodium bicarbonate solution (10x20 ml). The sodium bicarbonate extracts were combined, washed with ether (20 ml) then cooled and acidified with cold dilute hydrochloric acid, the acidified mixture was then extracted with ether (3x20 ml) the ether extract was washed with water and dried (MgSO₄). Evaporation gave a brown viscous liquid (5.9g, 60%) which was found to be a mixture of 4-methylhexa-2,3-dienoic acid and 4-methylhex-2-ynoic acid \(\nu_{\text{max}} \) 3400-2400 vs (hydrogen bonded OH); 2220 m (C=C); 1960s (C=C=C) and 1750-1670 vs (C=O) cm⁻¹. The neutral fraction was examined after distillation and the product was found to be a high boiling hydrocarbon but no pure sample could be isolated.
(b) The above reaction was repeated using ether (200 ml) in place of tetrahydrofuran, working up gave the same acid mixture (4.2 g. 43%).

(c) The reaction was repeated, adding solid carbon dioxide instead of passing the dry gas. Working up showed the presence of the low boiling hydrocarbons 3 methylpenta-1,2-diene and 3-methylenept-1-yne and a small amount of acid mixture. (1.5 g. 13%).

(d) The reaction was repeated using ether (200 ml) and passing carbon dioxide at 0°, after working up the product was found to be identical with that from experiment (b).

(e) The reaction was repeated using ether (200 ml) and passing carbon dioxide at 10°, after working up the product was found to be identical with that from experiment (b).
Reaction of 3-methylbuta-1,2-diene-1-magnesium bromide
With carbon dioxide.

Magnesium turnings (3.7g. 0.15 mole), dry ether (80 ml) and a crystal of iodine were placed in a dry flask through which a slow current of dry, oxygen-free nitrogen was passed. A few milliliters of a solution of 1-bromo-3-methylbuta-1,2-diene (21g. 0.15 mole) in dry ether (60 ml) were added, then after about 10 mins, after reaction had started, the remaining solution was added dropwise at such a rate to cause the reaction mixture to reflux gently, after the addition was completed the suspension was stirred and refluxed gently for 1hr. The suspension was cooled to 0° and dry carbon dioxide was passed at such a rate to keep the temperature between 0° and 5°, when the mixture showed no further tendency to heat up the gas was passed at a faster rate for 0.5hr. The mixture was then cooled and dilute hydrochloric acid was added until all the inorganic salts had dissolved, the organic layer was separated, washed with water, then extracted with sodium bicarbonate, extracts were combined washed with
ether (20 ml) then cooled and acidified with dilute hydrochloric acid. The acidified mixture was extracted with ether (3x20 ml), the ether extract washed with water then dried (MgSO₄). Evaporation gave a brown oil which was found to be a mixture of 4-methylpenta-2,3-dienoic acid and 4-methylpent-2-ynoic acid (4.8g. 28%); ν_max 3400-2500vs (hydrogen bonded − OH); 2250s (conj C=C); 1950m (C=C=C); 1800-1650vs (C=O)cm⁻¹.

Reaction of 3-Ethylpenta-1,2-diene-1-magnesium bromide with carbon dioxide

Magnesium turnings (1.83g. 0.075 mole). dry ether (80 ml) and a crystal of iodine were placed in a dry flask through which a slow current of dry oxygen free nitrogen was passed. A few millitiers of a solution of 1-bromo-3-ethylpenta-1,2-diene (13.2g. 0.075 mole) in ether 120 ml were added, then after about 10 mins when formation of the Grignard reagent had started, the rest of the solution was added dropwise at a rate just sufficient to keep the mixture refluxing gently, when addition of the solution was complete the mixture was stirred at a gentle reflux for 1 hr. After cooling to 0° dry carbon dioxide gas was passed for 2 hrs. at a rate which did not allow
the temperature to rise above 5°, the mixture was then acidified with dilute hydrochloric acid until the inorganic salts had dissolved and the ether layer separated. The etherical solution was washed with water then extracted with sodium bicarbonate solution (6 x 30 ml). The sodium bicarbonate extracts were combined, washed with ether than acidified with dilute hydrochloric acid. The acidified mixture was extracted with ether (3 x 20 ml), the ether extract washed with water and dried (MgSO₄). Evaporation gave a brown oil which was found to be a mixture of 4-ethylhexa-2,3-dienoic acid and 4-methylhexa-2-ynoic acid (5.5g., 49%) \(\gamma_{\text{max}} 3400-2500 \text{ vs (hydrogen bonded OH), 2240 s (C=C); 1960m (C=C=O); and 1790-1650 vs (C=C) cm}^{-1}.\)
Reaction of 3,4,4-trimethylpenta-1,2-diene-1-magnesium bromide with carbon dioxide.

Magnesium turnings (1.83 g. 0.075 mole), dry ether (60 ml) and a crystal of iodine were placed in a dry flask through which a dry current of oxygen free nitrogen was passed. A few milliliters of a solution of 1-bromo-3,4,4-trimethylpenta-1,2-diene (15 g. 0.075 mole) in ether (140 ml) was added and after about 10 mins, when the Grignard reagent had started to form the rest of the solution was added dropwise at a rate just sufficient to keep the mixture refluxing gently, when the addition was complete the suspension was stirred at a gentle reflux of 1 hr. The suspension was cooled to 0°C and dry carbon dioxide gas was passed at such a rate as to keep the temperature between 0°C and 5°C, and then
more quickly for a further 1 hr. The mixture was then acidified with dilute hydrochloric acid until the inorganic salts had dissolved, then the ether layer was separated. The etherical solution was washed with water then extracted with sodium bicarbonate solution (5 x 30 ml), the sodium bicarbonate extracts were combined, washed with ether, acidified with dilute hydrochloric acid and ether extracted (3 x 30 ml). The etherical solution was washed with water and dried (MgSO₄). Evaporation gave a brown oil which was found to be a mixture of 4,5,5-trimethylhex-2-ynoic acid (5.7 g., 45%) \(\gamma_{\text{Max}} \)
3400–2600 vs (hydrogen bonded -OH); 2240 cm⁻¹ (C=C); 1955m (C=C=C); 1790–1650 vs (C=O). The acid mixture was dissolved in ether and extracted with sodium bicarbonate solution (3 x 10 ml). The ether residue was dried (MgSO₄) and on evaporation gave the pure 4,5,5-trimethylhexa-2,3-dienoic acid. The sodium bicarbonate extract was acidified, extracted with ether and the process repeated, the cycle was carried out four times. The first three times the residue was pure allenic acid, but the fourth
time a mixture of allenic and acetylenic acids resulted.

The allenic acid was recrystallised from pentane m.p. 48-9°
(lit. 47-8°) ν_{max} (I.R. 74) 3400-2500s (hydrogen bonded
OH); 1960s (C=C=C); 1700s (C=O); 1115m; and 835 m cm$^{-1}$.

λ_{max} 212mμ, (ϵ, 11,550).

Reaction of 3-Isopropyl-4-methylpenta-1,2-diene-1-magnesium bromide with carbon dioxide.

Magnesium turnings (1.83 g. 0.075 mole), dry tetra-
hydrofuran (50 ml) and a crystal of iodine were placed in
a dry flask through which a current of dry oxygen free
nitrogen was passed. A few milliliters of a solution of
1-bromo-3-isopropyl-4-methylpenta-1,2-diene (15.1 g. 0.075
mole) in dry tetrahydrofuran (20 ml) were added, and after
about 10 mins, when formation of the Grignard reagent had
started the rest of the solution was added dropwise at such
a rate as to maintain the suspension at a gentle reflux.

When addition of the solution was complete, more tetrahydro-
furan (30 ml) was added and the suspension stirred at reflux
temperature for 1 hr. The suspension was cooled to 0°
and a slow stream of dry carbon dioxide gas was passed at such a rate as to maintain the temperature between 0° and 4°, when the temperature of the reaction ceased to rise a rapid stream of carbon dioxide was passed for 2 hrs. The mixture was then acidified at 5° with dilute hydrochloric acid until the inorganic salts had dissolved, then the ether layer was separated. The ethereal solution was washed with water then extracted with sodium bicarbonate solution (5 x 30 ml). The sodium bicarbonate extracts were combined, washed with ether, acidified with dilute hydrochloric acid and ether extracted (3 x 30 ml), the ethereal solution was washed with water and dried (MgSO₄). Evaporation gave a light yellow oil which was found to be a mixture of allenic and acetylenic acids (5.0g. 40%) \(\nu_{\text{max}} 3300-2500 \text{vs (hydrogen bonded OH)}; 2260 \text{ m and } 2220, \text{m (C=C)}; 1965 \text{s (C=C=C)} \text{ and } 1740-1670 \text{vs (C=O)} \text{cm}^{-1} \). The acid mixture was dissolved in ether and extracted with sodium bicarbonate solution (3 x 10 ml). The ether solution was dried and on evaporation yielded pure 4-isopropyl-5-methylhexa-2,3-dienoic acid. The sodium bicarbonate extract was acidified, extracted.
with ether and the process repeated, the cycle was carried out four times, the fourth time the ether solution yielded a mixture of allenic and acetylenic acids. The total yield of allenic acid was (3.8 g, 30%). The allenic acid was recrystallised from hexane m.p. 53.5° - 54.5° (Found C, 70.6; H, 9.4; O, 19.0. \(\text{C}_{10}\text{H}_{16}\text{O} \) requires C, 71.4; H, 9.5 0, 19.1%) \(\nu_{\text{max}} \) (I.R. 75) 3400-2600 vs (hydrogen bonded -OH); 1975 s (C=C=C); 1700 vs (C=O); 850 m; 792 m. cm\(^{-1}\) \(\lambda_{\text{max}} \)

Reaction of 3-phenylbuta-1,2-diene-1-magnesium bromide with carbon dioxide.

Magnesium turnings (3.7 g, 0.15 mole), ether (50 ml) and a crystal of iodine were placed in a dry flask through which a slow stream of dry, oxygen-free nitrogen was passed. A few milliliters of a solution of 1-bromo-3-phenylbuta-1, 2-diene (2.44 g, 0.12 mole) in ether (50 ml) were added and after about 10 mins. when formation of the Grignard reagent had started the rest of the solution diluted with ether (100 ml) was added dropwise at such a rate as to maintain
the solution at a gentle reflux. When addition of the solution was complete the solution was allowed to cool, then cooled to 0° and a current of dry carbon dioxide was passed at such a rate as to keep the temperature between 0° and 5°, when the temperature of the reaction ceased to rise carbon dioxide was passed for 2hrs. The solution was then acidified at 5° with dilute hydrochloric acid until the inorganic salts had dissolved then the ether layer was separated. The ethereal solution was extracted with sodium bicarbonate solution (5 x 30 ml), the sodium bicarbonate extracts were combined, washed with ether, acidified with dilute hydrochloric acid and ether extracted (3 x 30 ml), the ethereal solution was washed with water and dried (MgSO₄). Evaporation of the ether left a yellow solid (3.5g. 18%) m.p. 108-10° which on recrystallisation from aqueous alcohol or ether petroluem spirit gave pure 4-phenylbuta-2,3-dienoic acid m.p. 129-30°

\[\text{max} \] (I.R.76) 3400-2500s (hydrogen bonded -OH); 1950s (C=O); 1695vs (C=O); 1600w (aromatic C=C); 767s and 690s cm⁻¹, \(\lambda_{\text{max}} \) 207 m\(\mu \), (\(\epsilon \), 32,000); \(\lambda_{\text{max}} \) 248 m\(\mu \), (\(\epsilon \), 15,470).

-281-
B. Reaction with Oxygen.

Reaction of 3-methylpenta-1,2-diene-1-magnesium bromide with oxygen.

(a) Magnesium turnings (4.8g., 0.2 mole), dry ether (30 ml) and a crystal of iodine were placed in a dry flask through which a slow current of dry oxygen-free nitrogen was passed. A few milliliters of a solution of 1-bromo-3-methylpenta-1,2-diene (32.2g., 0.2 mole) in dry ether (20 ml) were added to the flask, then after about 5 mins. when formation of the Grignard compound had started the bromoallene solution was added dropwise at a rate just sufficient to keep the mixture refluxing gently. When addition of the bromoallene solution was complete the mixture was stirred and maintained at a gentle reflux (by external heating) for 1 hr. The suspension was cooled to -5° and dry oxygen was passed, slowly at first then more rapidly, for 2 hrs., the cooling bath being removed after the first hr. The suspension was again cooled and dilute hydrochloric acid was added until all the inorganic salts had dissolved, the mixture was separated, the aqueous portion was extracted.
with ether (2 x 20 ml) the ether solutions were combined and dried (MgSO₄). Distillation after first removing the ether gave 3-methylpent-1-yn-3-ol (9.4 g., 48%) \(\nu_{max} \) 3400 vs (OH), 3300 vs (C=CH), 2110 w (C=C); g.l.c. (silicone oil, 80°) gave only one peak, t, 7 min.; g.l.c. of mixture with authentic 3-methylpent-1-yn-3-ol also gave only one peak, t, 7 min. Careful fractionation of the residue gave a mixture of two compounds b.p. 57°/11 mm which could not be separated.

\(\nu_{max} \) (I.R. 78) 3330 vs (C=CH), 3120 w (C=C), 1965 w (C=C=C) cm⁻¹, g.l.c. (dinonyl phthalate, 80°) showed two compounds t, 31 min, t, 43 min in the ratio of about 7:2.

(b) In another similar experiment the Grignard compound was formed over 4 hr. and gave a large proportion of the latter two compounds in the same proportion. (8.4 g., 52%).

Reaction of 3-ethylpenta-1,2-diene-1-magnesium bromide with oxygen.

Magnesium turnings (2.4 g., 0.1 mole), dry ether (20 ml) and a crystal of iodine were placed in a dry flask through which a slow current of oxygen-free nitrogen was passed.
A few milliliters of a solution of 1-bromo-3-ethylpent-1,2-diene (17.5 g., 0.1 mole) in dry ether (15 ml) was added, after about 10 mins. when formation of the Grignard compound had started, the rest of the solution, diluted with dry ether (100 ml) was added dropwise at a rate just sufficient to keep the mixture refluxing gently. The mixture was then stirred for 1 hr. cooled and dry oxygen passed for 1.5 hr. at about 5°; after stirring for a further 0.5 hr. the mixture was acidified at 5-10° with dilute hydrochloric acid until all the inorganic salts had dissolved. The ether layer was then separated, the aqueous portion was ether extracted (3 x 15 ml), the ether layers combined, washed with a little water and dried (MgSO₄). Distillation after first removing the ether gave a first fraction of 3-ethylpent-1-yn-3-ol (5.1 g., 45%), νmax 3400 vs (-OH), 3300 vs (C=CH), 2120 w (C=C) cm⁻¹. g.l.c. (silicone oil, 100°) gave only a peak at t, 5.5 min. The second fraction again proved to be on an inseparable mixture of two compounds νmax 3330 vs (C=CH), 3120 w (C=C), 1960 w (C=C=C) cm⁻¹.
C. Reactions with Active Hydrogen.

Reaction of 3-Methylpenta-1,2-diene-1-magnesium bromide with Water.

(a) Magnesium turnings (1.8g., 0.075 mole), dry ether (20ml) and a crystal of iodine were placed in a dry flask through which a slow current of dry oxygen-free nitrogen was passed. A few milliliters of a solution of 1-bromo-3-methylpenta-1,2-diene (12g., 0.075 mole) in dry ether (10 ml) was added, then after about 10 min when formation of the Grignard compound has started, the rest of the solution diluted with dry ether (30 ml) was added dropwise at a rate just sufficient to keep the reaction going, when all the solution had been added the mixture was stirred for 1 hr. at room temperature before cooling to 5° and adding water (20 ml). The suspension was then acidified with dilute hydrochloric acid until the inorganic salts had dissolved, the organic layer was separated, washed with water and dried (MgSO₄). Distillation after first removing the ether gave a mixture of 3-methylpenta-1,2-diene and 3-methylpent-1-yne (2.5g., 41%), b.p. 67°/760 mm. g.l.c. showed the ratio of products to be 3:1.
(b) Magnesium turnings (1.8g., 0.075 mole), dry ether (20 ml) and a crystal of iodine were placed in a dry flask, through which a slow stream of oxygen-free nitrogen was passed. A few milliliters of a solution of 1-bromo-3-methylopenta-1,2-diene (12g., 0.075 mole) in ether (10 ml) was added. After about 10 min when the formation of the Grignard compound had started the rest of the solution was added dropwise, the solution being allowed to reflux vigorously, when addition was complete the suspension was heated under reflux for 1 hr. cooled to 5° and water (20 ml) added. Working up as above gave the same mixture of 3-methylopenta-1,2-diene and 3-methylopent-1-yn.

D Reaction with Ketones.

Reaction of 3-Methylopenta-1,2-diene-1-magnesium bromide with Acetone.

Magnesium turnings (2.4g., 0.1 mole), dry ether (25 ml) and a crystal of iodine were placed in a dry flask through which a slow stream of oxygen-free nitrogen was passed. A few milliliters of a solution of 1-bromo-3-methylopenta-1,2
-diene (16.1 g., 0.1 mole) in ether (50 ml) was added, after about 10 min when formation of the Grignard compound had started, the rest of the solution, diluted with ether (100 ml) was added dropwise at a rate just sufficient to keep the reaction refluxing gently, the mixture was then stirred for 30 mins. cooled and dry redistilled acetone (6.4 g., 0.11 mole) was added slowly. The mixture was then refluxed for 1.5 hr. cooled to 5° and acidified with dilute hydrochloric acid until all the inorganic salts had dissolved. The ether layer was separated, washed with water and dried (MgSO₄).

Distillation after removing the ether gave a low boiling fraction which was shown to be a mixture of four products followed by 2,5-dimethylhept-3-yn-2-ol (4.4 g., 31%) b.p. 94-100°/1.5 mm. recrystallised from hexane m.p. 41°

\(\nu_{\text{max}} (\text{I.R.77}) 3400\text{s} \ (-\text{OH}) \ 2260\text{w} \ (C=C), \ 940\text{m} \ \text{cm}^{-1} \).
PART IV

SPECTRA
<table>
<thead>
<tr>
<th>I.R.</th>
<th>Compound Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-Bromo-3-phenylpropa-1,2-diene</td>
</tr>
<tr>
<td>2</td>
<td>1-Bromo-3-phenylbuta-1,2-diene</td>
</tr>
<tr>
<td>3</td>
<td>3-3-Diphenylpropa-1,2-diene</td>
</tr>
<tr>
<td>4</td>
<td>1-Iodo-3-methylbuta-1,2-diene</td>
</tr>
<tr>
<td>5</td>
<td>1-Iodo-3-methylnpta-1,2-diene</td>
</tr>
<tr>
<td>6</td>
<td>1-Iodo-3-ethylpenta-1,2-diene</td>
</tr>
<tr>
<td>7</td>
<td>1-Iodo-3,4,4-trimethylnpta-1,2-diene</td>
</tr>
<tr>
<td>8</td>
<td>1,1-Dibromo-3-methylbuta-1,2-diene</td>
</tr>
<tr>
<td>9</td>
<td>1,1-Dibromo-3-methylpenta-1,2-diene</td>
</tr>
<tr>
<td>10</td>
<td>1,1-Dibromo-3,4,4-trimethylpenta-1,2-diene</td>
</tr>
<tr>
<td>11</td>
<td>1,1-Dibromohexa-1,2-diene</td>
</tr>
<tr>
<td>12</td>
<td>1,1-Dibromo-3,3-diphenylpropa-1,2-diene</td>
</tr>
<tr>
<td>13</td>
<td>1-Bromo-1-chloro-3-methylpenta-1,2-diene</td>
</tr>
<tr>
<td>14</td>
<td>1-Deuterobut-1-yn-3-ol</td>
</tr>
<tr>
<td>15</td>
<td>1-Deutero-3-methylpent-1-yn-3-ol</td>
</tr>
<tr>
<td>16</td>
<td>1-Deutero-3,4,4-trimethylpent-1-yn-3-ol</td>
</tr>
<tr>
<td>17</td>
<td>1-Iodobuta-1,2-diene</td>
</tr>
<tr>
<td>18</td>
<td>1-Deutero-1-iodobuta-1,2-diene</td>
</tr>
<tr>
<td>I.R.</td>
<td>Name</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>19</td>
<td>1-Bromo-3-methylpenta-1,2-diene</td>
</tr>
<tr>
<td>20</td>
<td>1-Bromo-1-deutero-3-methylpenta-1,2-diene</td>
</tr>
<tr>
<td>21</td>
<td>1-Chloro-3,4,4-trimethylpenta-1,2-diene</td>
</tr>
<tr>
<td>22</td>
<td>1-Chloro-1-deutero-3,4,4-trimethylpenta-1,2-diene</td>
</tr>
<tr>
<td>23</td>
<td>1-Cyano-3-methylbuta-1,2-diene</td>
</tr>
<tr>
<td>24</td>
<td>1-Cyano-3-methylpenta-1,2-diene</td>
</tr>
<tr>
<td>25</td>
<td>1-Cyano-3-ethylpenta-1,2-diene</td>
</tr>
<tr>
<td>26</td>
<td>1-Cyano-3,5-dimethylhexa-1,2-diene</td>
</tr>
<tr>
<td>27</td>
<td>1-Cyano-3,4,4-trimethylpenta-1,2-diene</td>
</tr>
<tr>
<td>28</td>
<td>1-Cyano-3-isopropyl-4-methylpenta-1,2-diene</td>
</tr>
<tr>
<td>29</td>
<td>1-Cyano-3-isobutyl-5-methylhexa-1,2-diene</td>
</tr>
<tr>
<td>30</td>
<td>1-Cyano-3-t-butyl-4,4-dimethylpenta-1,2-diene</td>
</tr>
<tr>
<td>31</td>
<td>1-Cyanohexa-1,2-diene</td>
</tr>
<tr>
<td>32</td>
<td>1-Cyano-4-methylpenta-1,2-diene</td>
</tr>
<tr>
<td>33</td>
<td>1-Cyano-3-phenylpropa-1,2-diene</td>
</tr>
<tr>
<td>34</td>
<td>1-Cyano-3-(cis-cyanomethylene)-4,4-dimethyl-2-isopropylidenecyclobutane</td>
</tr>
<tr>
<td>35</td>
<td>1-Cyano-3-(cis-cyanomethylene)-4-ethyl-4-methyl-2-(2'butylidene)-cyclobutane</td>
</tr>
</tbody>
</table>
I.R. 36 1-Cyano-3-(cis-cyanomethylene)-4,4-diethyl-2-(3'-pentylidene)-cyclobutane

37 1-Cyano-2-(diethylamino)-4-methylpent-1-ene

38 1-Cyano-2-(diethylamino)-4-methylpent-2-ene

39 1-Cyano-3-methyl-2-piperidinobut-2-ene

40 1-Cyano-3-methyl-2-piperidinobut-1-ene

41 2-(n-Butylamino)-1-cyano-3-methylbut-1-ene

42 1-Cyano-2-(diethylamino)-3-methylpent-2-ene

43 1-Cyano-2-(diethylamino)-3-methylpent-1-ene

44 1-Cyano-3-methyl-2-pyrrolidinopent-1-ene

45 1-Cyano-3-methyl-2-piperidinopent-2-ene

46 1-Cyano-3-methyl-2-piperidinopent-1-ene

47 2-Amino-1-cyano-3-ethylpent-1-ene

48 1-Cyano-2-(diethylamino)-3-ethylpent-2-ene

49 1-Cyano-3-ethyl-2-piperidinopent-1-ene

50 1-Cyano-3-ethyl-2-(1,2,3,4-tetrahydroisoquinoline)-pent-2-ene

51 1-Cyano-3-ethyl-2-(1,2,3,4-tetrahydroisoquinoline)-pent-1-ene

52 1-Cyano-2-(diethylamino)-3,4,4-trimethylpent-1-ene
I.R. 53 1-Cyano-2-pyrrolidino-3,4,4-trimethylpent-1-ene
54 1-Cyano-2-piperidine-3,4,4-trimethylpent-2-ene
55 1-Cyano-2-piperidine-3,4,4-trimethylpent-1-ene
56 1-Cyano-2-(diethylamino)-3-isopropyl-4-methylpent-2-ene
57 1-Cyano-2-(diethylamino)-3-isopropyl-4-methylpent-1-ene
58 β-(Diethylamino)-β-phenylacrylonitrile
59 1-Cyano-3-methylpentan-2-one
60 1-Cyano-3-ethylpentan-2-one
61 1-Cyano-3,4,4-trimethylpentan-2-one
62 Benzoylacetonitrile
63 4-Ethylhexa-2,3-dienamide
64 4,5,5-Trimethylhexa-2,3-dienamide
65 4-Isopropyl-5-methylhexa-2,3-dienamide
66 4-Isobutyl-6-methylhepta-2,3-dienamide
67 4-t-Butyl-5,5-dimethylhexa-2,3-dienamide
68 3-Methylbut-3-en-1-yne
69 3-Ethylbut-3-en-1-yne

-291-
70 trans-3-Methylpent-3-en-1-yne
71 cis-3-Methylpent-3-en-1-yne
72 3-t-Butylbut-3-en-1-yne
73 trans-3-Ethylpent-3-en-1-yne
74 4,4,5-Trimethylhexa-2,3-dienoic acid
75 4-Isopropyl-5-methylhexa-2,3-dienoic acid
76 4-Phenylbutan-2,3-dienoic acid (Solution in chloroform)
77 2,5-Dimethylhept-3-yn-2ol
78 Hydrocarbon from coupled Grignard.
-294-
IR 18

IR 19

IR 30

WAVELENGTH (MICRONS)

ABSORPTION
IR 34

IR 36

IR 38
WAVELLENGTH (MICRONS)

-317-
<table>
<thead>
<tr>
<th>U.V.</th>
<th>Compound Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-Bromo-3-phenylbuta-1,2-diene</td>
</tr>
<tr>
<td>2</td>
<td>1-Bromo-3,3-diphenylpropa-1,2-diene</td>
</tr>
<tr>
<td>3</td>
<td>1-Iodo-3-methylbuta-1,2-diene</td>
</tr>
<tr>
<td>4</td>
<td>1-Iodo-3-methylpenta-1,2-diene</td>
</tr>
<tr>
<td>5</td>
<td>1-Iodo-3-ethylpenta-1,2-diene</td>
</tr>
<tr>
<td>6</td>
<td>1-Iodo-3,4,4-trimethylpenta-1,2-diene</td>
</tr>
<tr>
<td>7</td>
<td>1,1-Dibromo-3-methylbuta-1,2-diene</td>
</tr>
<tr>
<td>8</td>
<td>1,1-Dibromo-3-methylpenta-1,2-diene</td>
</tr>
<tr>
<td>9</td>
<td>1,1-Dibromo-3,4,4-trimethylpenta-1,2-diene</td>
</tr>
<tr>
<td>10</td>
<td>1-Cyano-3-methylpenta-1,2-diene</td>
</tr>
<tr>
<td>11</td>
<td>1-Cyano-3,5-dimethylhexa-1,2-diene</td>
</tr>
<tr>
<td>12</td>
<td>1-Cyano-3-t-butyl-4,4-dimethylpenta-1,2-diene</td>
</tr>
<tr>
<td>13</td>
<td>1-Cyano-3-(ciscyanomethylene)-4,4-dimethyl-2-isopropylidene-cyclobutane</td>
</tr>
<tr>
<td>14</td>
<td>1-Cyano-3-cyanomethylene-4-ethyl-4-methyl-2-(2'butylidene)cyclobutane</td>
</tr>
<tr>
<td>15</td>
<td>1-Cyano-3-cyanomethylene-4,4-diethyl-2-(3'pentylidene)-cyclobutane</td>
</tr>
</tbody>
</table>
U.V. 16 1-Cyano-3-methyl-2-piperidinobut-2-ene
17 1-Amino-1-cyano-3-ethylpent-1-ene
18 1-Cyano-2-(diethylamino)-3-ethylpent-2-ene
19 1-Cyano-3-ethyl-2-piperidinobut-1-ene
20 1-Cyano-2-(diethylamino)-3,4,4-trimethylpent-1-ene
21 β-Diethylamino-β-phenylacrylonitrile
22 β-Cyanophenylacetylene
23 1-Cyano-3-ethylpentan-2-one
24 4-Ethylhexa-2,3-dienamide
25 4,5,5-Trimethylhexa-2,3-dienamide
26 3-t-Butylbut-3-en-1-yne
27 4,5,5-Trimethylhexa-2,3-dienoic acid
28 4-Isopropyl-5-methylhepta-2,3-dienoic acid
<table>
<thead>
<tr>
<th>N.M.R.</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-Bromo-3-methylpenta-1,2-diene</td>
</tr>
<tr>
<td>2</td>
<td>1-Bromo-3-ethylpenta-1,2-diene</td>
</tr>
<tr>
<td>3</td>
<td>1-Bromo-3,3-diphenylpropa-1,2-diene</td>
</tr>
<tr>
<td>4</td>
<td>1-Iodo-3-methylbuta-1,2-diene</td>
</tr>
<tr>
<td>5</td>
<td>1-Iodo-3-methylpenta-1,2-diene</td>
</tr>
<tr>
<td>6</td>
<td>1-Iodo-3,4,4-trimethylpenta-1,2-diene</td>
</tr>
<tr>
<td>7</td>
<td>1,1-Dibromo-3-methylpenta-1,2-diene</td>
</tr>
<tr>
<td>8</td>
<td>1,1-Dibromo-3,4,4-trimethylpenta-1,2-diene</td>
</tr>
<tr>
<td>9</td>
<td>1-Deutero-3-methylbuta-1-yn-3-ol</td>
</tr>
<tr>
<td>10</td>
<td>1-Deutero-3-methylpent-1-yn-3-ol</td>
</tr>
<tr>
<td>11</td>
<td>1-Deutero-3,4,4-trimethylpent-1-yn-3-ol</td>
</tr>
<tr>
<td>12</td>
<td>1-Deutero-1-iodobuta-1,2-diene</td>
</tr>
<tr>
<td>13</td>
<td>1-Bromo-1-deutero-3-methylpenta-1,2-diene</td>
</tr>
<tr>
<td>14</td>
<td>1-Chloro-1-deutero-3,4,4-trimethylpenta-1,2-diene</td>
</tr>
<tr>
<td>15</td>
<td>1-Cyano-3-methylpenta-1,2-diene</td>
</tr>
<tr>
<td>16</td>
<td>1-Cyano-3-ethylpenta-1,2-diene</td>
</tr>
<tr>
<td>17</td>
<td>1-Cyano-3,4,4-trimethylpenta-1,2-diene</td>
</tr>
<tr>
<td>18</td>
<td>1-Cyano-3-t-butyl-4,4-dimethylpenta-1,2-diene</td>
</tr>
</tbody>
</table>
N.M.R. 19 1-Cyano-3-(cis-cyanomethylene)-4,4-dimethyl-2-isopropylidene-cyclobutane
20 1-Cyano-3-(cis-cyanomethylene)-4,4-diethyl-2-(3-pentylidene)-cyclobutane
21 2-(n-Butylamino)-1-cyano-3-methylbut-1-ene
22 1-Cyano-2-(diethylamino)-3-methylpent-2-ene
23 1-Cyano-2-(diethylamino)-3-methylpent-1-ene
24 1-Cyano-3-methyl-2-piperidinopent-1-ene
25 2-Amino-1-cyano-3-ethylpent-1-ene
26 1-Cyano-2-(diethylamino)-3,4,4-trimethylpent-1-ene
27 4,5,5-Trimethylhexa-2,3-dienamide
28 1-Ethynyl-1-t-butylethylene oxide

31. L. Henry, Ber., 1884, 17, 1133.
76. B. Demetriou and S.R. Landor, unpublished work.
82. R. Landor and V.C. Patel - unpublished work.
95. Ref. 91.