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ABSTRACT

The main original contributions of this thesis are presented
in Chapters 1I, III and 1V, each of which is largely self-contained,
but which are all directed at particular aspects of the same problem,
the prediction of the pressure on an airfoil in symmetrical transonic
flow. Chapter I sets this problem in its relation to transonic
aerodynamics and provides accounts of various studies which are used
in subsequent chapters with only limited explanation. Chapters II
and III are devoted to extending the theory of Cole and Royce for
transonic flow past an axisymmetric body, first to two-dimensional
transonic flow past a thin airfoil, and then to flow past a thin
planar delta wing. Chapter IV examines a different type of approxi-
mation which has received considerable attention, the parabolic
equation approximation. It is shown how to remove certain deficlencies
of methods based on this approximation, but one of the consequences
is to cast doubt on the reliability of the method which appeared

to give closest agreement with experiment.
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CHAPTER I

TRANSONIC AERODYNAMICS FOR STEADY FLOW,.

In this chapter we review the small perturbation theory
of transonic flow, and present in some detail accounts of
those parts of it which are both used and extended in subse-
quent chapters. The intention is to set the subsequent
work in context. and also eliminate the need to give more

than a brief reference when established methods are employed.




§l. Introduction, The equations and boundary conditions

This work is concerned almost entirely with external aero-
dynamics and primarily with the flow past thin airfoils; intermal
aerodynamics enters only indirectly in the assessment of data
derived from wind tunnels. The term transonic applies when the
velocities in the flow field are in the neighbourhood of the local
sound speed, the speed at which small disturbances propagate
through the fluid, and the essential feature is the existence of
both subsonic and supersonic regions., The typical situation is
that of a body advancing into still air at nearly sonic speed, or
as observed from a reference frame fixed in the body, a near sonic
stream of air being perturbed by the presence of the body.

The equations of motion of a viscous, compressible, heat
conducting gas, regarded as a continuum, are well established [' ].
Almost certainly these describe the transonic situation indicated
above, but they are of such complexity that drastic simplification
is required to make progress towards a solution. It is usual to
assume that viscosity and heat conduction are only significant
in narrow layers, boundary layers and shocks, aﬁd to eliminate
the corresponding terms in the equations, This is the inviscid
model. In it, the boundary layers are accounted for by relaxing
the no-slip condition, and the shocks, by allowing surfaces of

discontinuity in the fluid. It seems likely that this model is



not valid at large distances from the airfoil, and attempts have
been made to include viscosity [2] ’ [3]. However, experiment
indicates that the model yields useful results in the neighbour-
hood of the airfoil, and it may be that the inviscid far field
theories have some significance in an intermediate region. We
confine ourselves to investigations within the inviscid theory.
The flow of an inviscid, non-conducting perfect gas is governed

by:

the continuity equation

~—
.
~—

D o = -,V

~—

-

Dt

the momentum equation
Dy =-1Vp L2,
Dt r

and the energy equation
D s :-o0 ==
D¢t

where w is the velocity, P the den'sity, p the pressure, S the
entropy and EDt = _%‘t +u.V |

These equations do not apply at shocks. Instead we have the
corresponding jump relations. In terms of velocity components,
these are accounted for by the continuity of the component tan-

gential to the shock, and the shock polar, [ll-] 0

Vo { L2/0e)] Uf = U U + 2} = U u U -G L4

——

where U, is the incident velocity, U, ,Vz are respectively the



parallel and perpendicular components of the ‘Velocity
behind the shock, c is the speed of sound, and asterisks denote-
critical values.

For steady flow, equations (1,1) - (1.,3) reduce to"

Vipu) = O L5
exw =5 Ve +z Vet it weVry 16
(x-V)S =0 L7
From (1.6), (1.7) and the first law of thermodynamics,(or for (1.8)
simply by conservation of energy )
I + +£u* = H 18
and
w x (:-J- = VH — TVS '__i
where H is constant along streamlines, I is the enthalpy per unit
2
mass and T temperature, L =¢ /(y“) for adiabatic flow of
a perfect gas and from (1.5), taking -V  of (1.8)
(2V) 42" = " Ve 110

For a small perturbation of a uniform stream, noting that from
the energy derivation (1.8) is valid across shocks, we have that

H is constant throughout the fluid and (1.9) reduces to

-1 VS 1.1

U x w
Lo ~

Assuming the body causes relatively small departure from a uniform
stream we write g = Uw + v and take Ju |« Us. Choosing

the direction of Ux as the x- axis, substituting in (1.10) and



using (1.8), after rearrangement we have

2) PV . W _ M? w Yol wr o, =0 W] du

) v 2 Us 2 Us 2z
s L0 ) (3 3) ~Llea)Es
iGN

where U = (4,vw) and M, = Us /e, o

Consider the two-dimensional case when there is no dependence
on z, and suppose M, = | . Retaining only the linear terms,
the equation (1.12) reduces to %’é’ = O , It is evident that
higher order terms must be retained. However, the slow attenua-
tion of the disturbance in the y direction, implied by this result,
is a feature of the actual flow. The breakdown of the linearised
theory is not so evident in the general casej; nevertheless a non-
linear equation is still required.

For M near one, any shocks occuring are necessarily
weak, and as entropy changes are of order M=1)? » the flow
is irrotational to second order, and we may introduce a potential,
writing U = U, VSZJ . To deduce the appropriate form of the
transonic small disturbance equation one requires estimates of the

relative orders of magnitude of the velocity components and their



derivatives, In two~dimensional flow, one such estimate is pro-
vided by the characteristics of the system consisting of (1.10)
and the condition of irrotationality. Taking the velocity in polar

form ($, 8) » the compatability relation
Ldy o op [
v do gt ~c?

may be simplified when ’ iffi |« 1 by writing

Aci, = cl/—c;' , c;,z— c* = (¥+1) (}*A?, + O Ar;/z)
wherérhsterisk denotes the critical value, when g = c . It
reduces to the form

/(Y-rl)Ai/ ‘_l: d A‘l/ = + | .
2 db

(7/

) 3,
Integrating we have that v/ has the same order as (“/Um).

Now the linearised form of the condition expressing no flow normal
to the thin airfoil, indicates v = O(xr) , where T is the
thickness ratio; taken with the irrotationality condition it suggests

the following scaled variables

X = x g’ = <" y L =T

N ’ he ’

The scaled variables are regarded as order one as ~ T —> O , These

estimates, together with the assumption that in the three-dimensional
case w= Q(v) , are sufficient to show that on the right hand

side of (1.12)



is the only term which is as large as the left hand side terms.

Consequently, the transonic small disturbance equation is

> z Pu
(1-m2) %+ %’ v 3= Melyedly, 45

or in terms of the perturbation potential

(-M) P v Py + Po = KB P 2

with kK = M2 (Y+1). Equation(l.13) is also valid for axisymmetric flow.
The axisymmetric case has been treated more systematically

by Cole and Messiter [5] . They obtain the relation between

longitudinal and transverse velocity components by assuming the

non~-degeneracy of the shock polar in scaled variables, and beyond

this, only require that the resulting small perturbation equation

should not degenerate, In the scaling, the body radius & replaces
<" used above, The vorticity and entropy changes arise auto-

matically as part of the procedure. The equations are derived

effectively for Mw=/ and there is an element of indeterminacy

in the value of k for M, # | , which can only be settled by

developing the theory for higher powers of (Mw— I) . The value

of k arising from the above procedure gives a good approximation

to the variation of the critical pressure coefficient with Mw

as shown by Spreiter [6] . He also noted that the corresponding

choice in the shock polar gives exact values for the velocity jump

at normal shocks,

The transonic approximation to the shock polar follows from

(1.4) by taking <, from (1.8) and retaining only the largest



terms., It is

(1=m2)( @Y = & )r (9 —27) + (98- 92)= 5 (oYl 0)

where superscripts denote values on opposite sides of the shock.
The relative merits of the different possible values of k are also
discussed, from a physical standpoint, by Oswatitsch (7]
connection with different forms of similarity parameter, a con-
cept introduced in §2,

In establishing the small perturbation equations, we have not
treated explicitly the origin of the perturbation, the boundary
condition of no flow normal to the thin airfoil or slender body.
The approximation of this condition constitutes an essential part
of the determination of higher approximations to the system of
equations, as is apparent in l:sj] . However, for @ it is
sufficient to retain the leading term exactly as in subsonic aero-
dynamics. For the thin airfoil y=7Tf(x,%) , the condition
is

¢‘j = T ;F(x,z/o-) on !j:O 115

the error in transfe%ing the boundary condition from the airfoil
to y=0 being higher order in T . For a slender body of

revolution, the condition takes the different form

27T @, = 51Q,(*) on T=& |, as &§>0 Li6

2
where & Q(x) 1is the area of cross-section at the station x ’

and = (y* r22)"

The local pressure coefficient CP = ( pP- Poo)/ ( "5/3.,, U.:), also

114



follows by retaining the largest terms in the Bernoulli equation,

For a thin airfoil
Cp = _2u/an = = L@, 11

again evaluated on Y=O , rather than on the airfoil., For a

slender body of revolution

Co = ~2WU, -~ (v*WI/UL = -R¢. — @& 118

here evaluated on the body surface, the ¢.,.2 term being re-

tained because of the singularity in ®- on the axis,



§2 The similarity and equivalence rules

The mathematical problem posed by the equations (1.13), (l.14),
either of the boundary conditions (1.15), (1.16) and the condi-
tion V@ - O at large distances from the body, apparently depends
on the parameters M. , ¥ and either o, or & . However
it is possible, by similarity rules, to relate flows having different
parameter values, provided certain groupings of parameters are the
same. One parameter, the chord length, has already been removed
from the problem by choosing it as the unit of length; ¥, o and
& are ratios specifying thickness, span and slenderness respectively.

For the thin wing, writing

¥l
i
N

go= th=-walPy , 2 ={11-Mal}"2

= T 2(%,q,Z .
4 fli-m3) 1" v 7.2 T

then (1.,13), (1.14) and (1.15) reduce to-

sqn (1-M5) @ex + 57399 + Pss (¥+1) Ms T

'I_ M2 l3/z ¢§ SZ):'E'?:
oo

Sgn(l—M:)(@,-:') %) f(‘“ ) (—m é):;z
(Y+/) bqw

AT (P2 82)(PE - BT
g_)g = :F ('SE- ,c_—,iT-IE,I/,_) oh H=O

Thus depends on two groups of parameters, and these are chosen
P

as



2
P Ma =

- 2/ [M": (¥+ ’) T] ‘/30_
[ P’l; (Y+1)x ]

o
ol
S
Qi
]

2.2
Now the scaled variables (2.1) give no indication of magnitude;
the magnitude of ¢, was estimated in the derivation of (1.13)
as T as M, | , and this suggests writing
Y= /%], Z = 2/0e) , X=% , P = PAILI
giving

~ A~

- i, gxx * $YY + ézz = CEX éxx

-5 (B - B ) (BY - B (E- B = 1@ ENE-E)

From this form

2/3
<

N T G =
where C p =~ 2 $x i C, p is the reduced variable normally
used in the presentation of results. The terms of (2.3) are of
order one, and §, = O at sonic speed; in the two-dimensional
case <& = oo , and disappears as a parameter.
For axisymmetric flow one needs to make assumptions about the
behaviour of @ near the axis, because of the singularity there. The

derivation is given in ['5] . The result is
| - “ 2 § ~ s
TGt K Qo g[8 M )] = C (R

- M2 —| .
- —= T 2.5
where ¥ ME (Y41 5% =2

However its range of validity is more restricted than the thin




I3

wing result. A discussion of its deficiencies when M, # | is
presented in [ 3 1, 09l

For slender bodies it is possible to derive another relation
between different flows, the equivalence rule. This is a direct

consequence of the relation

P = @, (x; 3,2) + ﬂ(x) 2.6

where @, is a potential for the cross-flow (in the (y,z) plane

3 2
at the station = ) which satisfies ('3'31 * {zz) @,=0 and the

boundary conditions implied by those on @ , and further 3(1)
depends only on the cross-sectional area. Thus 3(*) may be deter-
mined from the axisymmetric flow past the so-called 'equivalent
body', For small departures from circu;ar cross-section the relation
(2.6) . follows from the analysis of Cole and Messiter [5] y but
to treat thin airfoils an alternative approach seems necessary.
That adopted by Oswatitsch [7] L 0] and Heaslet and Spreiter
[11] , is to apply Green's theorem in a (y,z) plane at the
station x to equation (1.13), regarding the term on the right
hand side as a distribution of sources. The analysis is carried
out for My=! , though Heaslet and Spreiter take care in showing
this gives the limit for ™., —> It | and also make explicit the
assumptions concerning shocks. Taking the difference between the
equation for ¥  and that for QD@) , the potential for the
body of rewolution:

-2 = 2. -2 + 5[ [P pee -0 oy mdnde
2.7

where the integral is taken over the region externmal to the res-



pective bodies; the subscript 2 denotes the two-dimensional
cross-flow potential, and /9,1 = T 4+, - 27T, cos(6-6,) with
(+,8)  the polar co-ordinates of (y,2), and T,,6, current
co-ordinates in the integration.

Oswatitsch argues that far from the body @, — CP,(:’ has
an oscillatory character, and that it is O( c“?’.x) » So that
the main contribution to the integral in (2.7) arises from the
region T, <O , and this is assessed by using ., 97‘:)
for @, @ . Comparison is made with the results of linearised
theory, though this hardly tests the crucial question about
whether the non-linearity has been successfully treated.

Heaslet and Spreiter adopt a similar approach, but attempt
a more mathematical treatment, The method for a symmetrical air-

foil is as follows. First express @, as a Fourier series.

S(=) v
(2)1 = ‘9%1:\ f : tﬂ(", Z,) eaj (T"-i— Z':' - 2T2,COSB)/. dz,

~S(x)

where <(=) is the span at station == | s(x) =0(c) , {1 = 2F

with £ from (1.15) and
f SN ™ ¢os m(8-6,}
{(TST" EKT‘) m
T,
emj fT2s m2 2 2+ Cos(B-G,}}V" :%
_ 7.)" cos m (6-6,)
tgr -2 (7] e
- i >T'
Then for T > S |
N - < |1m
@, = = S(x) Poj”r + g;' Q,,, (<) (%) Cos Amb 2.8

Iy



where
S} d
ST =, m _z,
Qam - bLT M ,_Ss(,d 'ﬂ(x’z') (S) S
and
Slx)
S'x) = S T L2(=, =) de, ,
—S(x)

Oo
[ <4 : R [ X T,
@, = i S lms + FG ) +:Z Lo 2mb G (<, %)
=
where, by expanding the kermel as

tﬂ(x,z,) = Z T's\‘ Azn(")(%)zh

we have h
A ¢ nt
Fx,3g) = e (Qni/))“‘[ (T)l l ;
An+i "
G, (= % Z A n <) [ 2m 2n- l( )m— E;L—znﬂ(—) 2\11_15;!] :

Now, we may obtain an approximation to J » the integral on the

right hand side of (2.7), by using the series expansions (2.8),

©) _ (o)

(2.9) and replacing @ by ?, +@“ -,

Sx{ [ Zo?_ q;.m(") cos ZmP, (%)Z‘"]z
+ (a) [z a, L (x) cos ZmB.( ) m]} {’03/2,. _T,drd6,

+ ('overfeqf)




le

cE (02 ([ 2 mE). P

+ Z c052m9 G( %)]2

€r 8 s ‘
r 2 [ 7 1 (?) + Pl )
N cos 2m0. ' 1. ™ .,dr,dO
R 5)]} b
In this last integral, it may be objected that we have included

gp:” qoi"i terms in the interior of the equivalent body,

but their contribution is O((S‘I:)S (&3 S’c)z) and may be neglected.

By performing the 0, integration it may be deduced that the T,
integration in the first part of the expression for J con-
verges provided @~ T - with WwN>o as T oo .

At this stage, Heaslet and Spreiter, employ the following

estimates:

a, = Oks) , o = Oes) F =06, 6,= 06 2.10

and deduce

J = O(TIS* 'f)o'ﬂs) 2.

As the terms of (2,7) apart from the integral, are O (;CS) it
follows that as a first approximation @ =@, + @“’) M .
For points in the neighbourhood of the body

o9 - @ = fm @ @l

tT»0C
which gives a function g(z) depending only on the cross-sectional
area, and hence the result (2.6). Although the estimates (2.1C),

(2.11) seem reasonable, it should be noted that this stage of the




argument falls short of rigorous justification.



§3 Methods of solution of the equations

The similarity and equivalence rules enhance the value of
particular solutions of the boundary value problems pesed by
(1.13) - (1.16), but do not provide them. One may seek self-
similar solutions, but as the equations are non-linear, there is
no possibility of building up general solutions by superposition.

An important solution of this type is that for axisymmetric
flow at ™M, = |/ provided by Guderley and Yoshihara [12]
and further investigated in references [3] , [/4—] . For this
solution

P = Tmfm(Z)

where Z = (Y-t—l)-VB (”'/;r“) , m=3n-2 and ™ = #/7,

It gives the asymptotic solution of the equations as T— o

the far field. An account of other self-similar solutions is included
in the article by Spreiter in [1s] .

Another approach is to note that (1. 13) is linear in the
second derivatives, and does not contain x,y,z explicitly, so that
for two-dimensions, application of the Legendre transformation
[le] will result in a linear equation.

This idea is embodied in the hodograph transformation, which
uses either U = qeos8 , V=g sinf or ¥, 8 as the independent
variables. The transformation may be applied to (1.5) before the
assumptions of only small departure from a uniform stream, [‘_’] .
The dependent variable is taken as either the stream function W

or ¢ = xU + \le - @(x,j) s or simply as the velo-




city potential @ ( x, *j) . Approximatiofs to the gas law

may be used to simplify the analysis, the most notable being the
Karman-Tsien approximationy, and that of Tomotika and Tamada ['8:] s
though Chaplygin has solved the full equation by separation of
variables, and an infinite set of solutions is available, Li7] .
Even with the possibility of superposing solutions, serious diffi-
culty arises with the boundary conditions, and the technique
adopted is either to find the solution which reduces to the flow
past the given body as Mw = O s Or as in [18] P o)
produce a reasonable flow in the hodograph plane and deduce to
what body it corresponds. For all cases, there is the restriction
that the Jacobian of the transformation must not vanish. Lines
along which the Jacobian vanishes are known as limit lines and
these must not penétrate the flow field, In its simplest form the

Jacobian is

D = - _;'?qf{ (%)z + (1 “"Z":)f? )1

so that there is no possibility of limit lines in purely subsonic

flow. Unfortunately, limit lines appear for quite low free stream

Mach numbers; in the case of a circular cylinder in a uniform stream
they are present at Mo =06, The above mentioned applications of

the hodograph method are thus restricted to the lower transonic regime,
which is basically high subsonic flow. This prompts comparison with the
Rayleigh~Janzen expansion of $ as a power series in Mo . Com-
parison of the Karman-Tsien approximation shows it is only correct to
order P1: «» For the Tomotika and Tamada solutiong, limit lines

arise near M, = 0-75 | but by this value, the predicted




1o

velocity distribution shows a sharp fall at about 60% chord, and
presumably such a result is beyond the range of validity of a
truncated Me expansion.

The middle transonic range, when shocks occur in the middle
of the airfoil, is the most intractable of all. The method of
recasting the small disturbance equation (1.13) as an integral
equation seems the most promising approach, but there is still
a wide gap between experiment and the theories of Oswatitsch

[19] and Spreiter, Alksne and Hyett [20] . References to
semi-empirical methods of bridging the gap are given in A, B,
Tayler's article in [21]

For thin airfoils in a near sonic stream, the flow is in the

upper transonic regime and hodograph methods again find application.

The basic equation involved is Tricomi's

and it is derived by writing

v = 93,8, 5 =r§=<¥+')"°( q;), §=6=
in the hodograph equation for N4 » and then retaining the largest
terms as T—> O ., A similar equation may be derived for the
Legendre transformed potential §5 . It corresponds to the trans-
onic small disturbance equation (1.13).
The Tricomi equation has formed the basis for extensive inves-
tigations [22] . The separation of variables solutions, corres-

ponding to the Chaplygin solutions, are discarded in favour of

o~ fand 2 ~
solutions of the form 7“:{:"(!) s 4= 75&73 ; fn is a




ot

hypergeometric function, and it is possible to construct solutions
by superposition. Care is still required to avoid limit lines

within the flow field; the Jacobian now takes the form

- (7+') _ 2
D = P {v - 2w}

where asterisks denote- critical values, The difficulty with
boundary conditions encountered at lower free stream Mach numbers
persists, and prevents direct solution for a given profiie. How-
ever, with sonic free stream, we need only coﬁsider the flow field
up to the last characteristic that meets the sonic line, the
limiting characteristicy the upstream flow field is independent,
and the flow downstream of the limiting characteristic may be
calculated by a different method, Questions of existence, unique-
ness and whether the problem is properly posed are discussed in
[23] . Certain problems with simple boundary conditions (i.e.
straight boundaries or free streamlines) have been solved, and these
fulfil two useful functions, First, we have accurate solutions
with which to check more approximate methods, and secondly, solu-
tions for simple wind-tunnel flows provide information on the
nature of wind-tunnel interference effects.

A numerical method has been proposed by Dorodnicyn l:ZgJ
which is applied in the physical plane, and can in principle deal
with three-dimensional flow past general profiles, However, in
practice, it has only been applied to two-dimensional flows,
and even then only to shapes for which a choice of 'natural' co-

ordinates, depending on the boundary, reduces the computation
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involved. For two dimensions the method is as follows. The

equations are recast in the form

2
S Gamsuwwn) = Flopau ), s haM
j:l 'axj
and integrated with respect to one variable, say x, ; the values
of w, (=, ,%;) are interpolated from a set of functions
u; G=,) giving the values at certain stations X, = >, .

This leads to a system of ordinary differential equations for

Uy (%) which may be solved by routine methods. For
sonic flow the method is applied only to the region upstream of
the limiting characteristic, whose location arises out of the
method of solution. Downstream of the limiting characteristic
it is suggested that the method of characteristics be employed.

Despite the impressive mathematics associated with the pre-

ceeding methods, they do not meet the engineers' need for a reason-
able prediction of the pressure for three-dimensional flow past
a typical airfoil. To make further progress, it seems at present,
that we must relinquish the idea of solving for the whole flow field
the boundary value problems posed by (1.13) - (1.16). Such
an attitude has been adopted in a class of methods which we
designate 'regional linearisation methods'. These assume that in
the region néar the airfoil, the equation (1.13) may be replaced
by a linear approximate equation, and that this may be so
selected that it provides the dominant contribution to

the flow field near the airfoil. Basically, there are two ways
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of approximating the non-linear term of (1.13). The first way
replaces (.. by a known function, and gives a parabolic equation;
the second replaces @_ and gives the possibility of a changing
type, elliptic-hyperbolic, equation. In sections §4, §5 we give
an account of investigations into each of the respective ways of

making the approximation.




84, The parabolic equation approximation

Oswatitsch and Keune [25] initiated the 'regional linearisation'
method, after considering the experimental results for sonic flow
past a slender, parabolic arc, body of rewolution. They noted that
over the front half of the body the acceleration was approximately

constant, and suggested the equation

>

(;D—rr +_‘.T- (PT = A@x

as a model for equation (1.13) in the neighbourhood of the air-

foil. As the parabolic equation allows no upstream influence, a
condition of vanishing disturbance of the uniform stream at infinity,
implies @, =0 at x=0 , the origin being at the leading edge of
the airfoil.. Physically this might appear unreasonable. However

by introducing at %x=0 a typical distribution of velocity encountered
in experiment, it was shown that the error was around 5% at a point
midway between the tip and maximum thickness, Near the tip the

error will be larger, but as the small disturbance equation is not
uniformly valid, inaccuracy there is inevitable.

The preceeding approximation is involved in all the parabolic
equation methods, and it may be noted that it is less justified in
two-dimensional problems. The solution of (4.1) subject to
boundary conditions of vanishing disturbance at infinity, and con-

dition (1.16) is straightforward.

P = - f—‘n -[, Q) o(x-%,7)d} (x>0) 4.2
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where o-(x-g,r) Rl exP(m) )

This leads to an expression for the perturbation speed at the

body T = Sl(x) :
. (x Q'(x) s
x, & = X -/ PANASCI BN |

t S'x Q“('x'.) - Q“(E)d}

TRk -t t ofs)

Iy
w

The choice of A requires care. Fortunately, at the maximum of
Q) , A disappears from the expression (4.3), which reduces
in g choce.,
the effect of errors. Two procedures are considered; both use the
above theory to determine the flow up to the sonic line, and then
employ a modification of the method of characteristics suitable
for transonic flow., The first procedure determines the values of
T on the sonic line by the characteristics method. and
chooses A to give the best agreement with the values obtained
from (4#.2)., The second determines ¢, on the body by the charac-
teristics method and chooses A to give the best agreement with
the values from (4.3). The first was preferred on the grounds
that the distribution along the sonic line is of decisive impor-
tance for the velocities downstream, It also seems more practical
for body shapes different from the parabolic arc. The procedure
is laborious and subsequent developments, having less regard for
the behaviour off the body surface, determine A more simply, L=z 6] .
For the half parabolic arc body considered in [25] agreement with

experiment is highly satisfactory.

25
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Maeder and Thommen, employing the same approximations, extended
the method to M_# ! , and also treated the two-dimensional case,
[27] . However their choice for A was dubious. and, in the
two dimensional case, the comparison with experimental results was
unimpressive., In a subsequent paper [1‘8] s Simultaneously with
Hosokawa [7«‘7] , they clarified the choice of A . Maeder's account
of this approach in [217 draws on both papers and relates them
to the'local linearisation' method of choosing A , due to Spreiter

[30] . The idea is to use the model equation

,ﬁ: Praw * Py T Paz A, = 0O bk,
choose /3., A so that this best reproduces the y,z variation
of @ , and then calculate a correction term ¢(=)=® ~ @ ,
to give values of ¢, on the body. Maeder expresses this in
ry

b
terms of the stream density ,. Writing @=@ +1 , by using Greens

theorem, we have
I = K(f T(E,7,Z) G(x-},\j‘?,z-g) dE.d7.dZ

where

T(Y,9,2) = [@+)Ma @5 - Ay + [ﬁ:—(I-M;)]cpgs ,

G(",g,Z) satisfies (4.4) with the right hand side replaced by
3()&(y)&z) , and P, satisfies the boundary conditions on @ .
Consequently

,/$°z Ixx. - AIK + (I«js + Izg) = —r(x,\j,z) .5

to the
and the perturbationAstream density may be written




(I - M:) ¢’LK - (Y+) M; 90*- ?‘-“’L =/3: ¢sz_k¢l=¢ —(I33+I!1)
© & B
This is an exact deduction from the transonic small disturbance

equation (1.13), apart from possible contributions from weak shocks.,

Now if in (4.5), (=, \j,z) is independent of Y,Z  then I‘_‘:1 +In=O

and (4.6) becomes an ordinary differential equation for Px .
Physically one would expect to minimise the dependence of I on

Ys 2 for points near the body by making T  and its normal
derivative vanish at the body. Unfortunately, with only two dis-
posable constants, this can only be achieved at one point, and

not on the whole body. Maeder, considering two-dimensional flow
argues that this is best done a:::onic point., For a parabolic arc
alrfoil, the agreement with experiment is excellent, and the non-
linear form of equation (4.6), neglecting I“*-Izz , gives the
possibility of a jump in @, analogous to a shock at the rear of
the airfoil., However, as one changes the airfoil shape, agreement
with experiment rapidly detériorates.

The 'local linearisation' method (Spreiter [3c] ) is a device
to overcome the restriction of having only two disposable constants.
To obtain ¢, at a point of the airfoil, one uses the equation
(4.4) and determines /3,,A to give the best approximation to
the full equation (1.13) in the immediate neighbourhood of the
point under observation. To follow the Maeder [21] method would
be very laborious, and Spreiter adopted the choice !G: = |-MZ s

A= Q"‘fl)H: @ x

17



which is equivalent to the Maeder choice for a parabolic arc air-
foil., Thus, applying the method for a two-dimensional thin airfoil

in a sonic stream, we have:

P z=ol = - =3 dt | S0 oeT, g dy 4

where f(87)=f() is the local slope of the airfoil, and o is the
source-type solution of (4.4) given in (4.2); now writing () for

@, (z=0) and replacing A by ¥+!)u'(=) ,

- >
W) = d S £(3)

[mO+) Wt e ) {x-317 ’
an ordinary differential equation which gives the wvelocity at the
airfoil surface,

This 'local linearisation' approach is general, in the sense
that it gives values of the reduced pressure coefficient 5,, in
good agreement with experiment for a variety of shapes in both
two-dimensional and axisymmetric flow, and even for 3-dimensional
flow past planar wings agreement is fair. However, by using a
simplification of the Maeder fiU] choice of 3, , A , one is
paying less attention to flow off the body, and furthermore by
using a local choice the implied model for the overall flow must
be crude for the calculation at many points on the body. This
last approximation is the difference between 'local' and 'regional'
linearisation. Mathematically the method lacks a firm basis, a

matter which we consider in Chapter IV,

238
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The results of the parabolic equation approximation may be
summarised as follows. For near sonic flow, the constant A methods
L2s57,028],[29] give good results for two-dimensional airfoils
and bodies of rewvolution generated by a parabolic arc. For different

shapes, to obtain good agreement with experiment one must use the
'local linearisation' method, [30] ,[ q] . For three dimensional
flow one may use the foregoing results with the equivalence rule

§ 2, or use the extension to thin planar wings of the 'local linear-
isation' method, [31]1. This last method reduces to the two-dimen-
sional case for infinite aspect ratioc , and gives analytic results
for a restricted class of small aspect ratio wings; otherwise it
requires a considerable amount of computing for results of uncertain
accuracy. One case treated analytically, the small aspect ratio,
thin elliptic cone-cylinder has results significantly different
from those predicted by use of the equivalence rule.

Finally we remark that Hosokawa has applied his method to

lifting airfoils, and unsteady motion, while Teipel has applied
Spreiter's ideas to unsteady motion. Accounts of these further

applications of the parabolic equation approximation are available

in [Ql] .




§5. The mixed-type equation approximation

The mixed-type equation approximation was proposed by Cole

and Royce [32] . 1t is based on the model equation

(py\j T Pra = at (x-b) @, 5.1

so that in (1.13), {Q@+!) Ml @, - (1-M2)} has been replaced

by a’(x-b) » where x=b gives the sonic point, and the

form of the approximation implies accelerated flow over the body.

As with the other model equation, the first problem investigated

was that of sonic flow past a body of revolution. To relate this
problem to subsequent work we introduce a different choice of axes,
using cylindrical polar co-ordinates, with z along the axis of

the body., T= (X‘+3‘Yh‘ and the origin of co-ordinates at the

sonic point. Thus the position of the body relative to the axes is

a matter for calculation. The equation (5.1) becomes

i -
Prr ¥ 7@, — &2 P, =0 52
and the boundary conditions are taken as vanishing disturbance at
infinity upstream of the sonic line, and the condition on the

body (1.16),
2RT @, = 8 Q'(z+b) on T=8 as 820, 5.3

The solution is sought in the form of an integral of a line of

sources, but the change in type of the equation introduces complications.

The sources may be derived by replacing the right hand side of

30
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equation (5.2) by = &t).§(z-Z) and using Hankel transforms; they

take the following different forms in the hyperbolic (z > %:;_I‘)
and elliptic (z < of ) regions respectively:

] X

i e 007
P = @ , <0
o} ,3$>0
Pe =
-1
% (’J'(x1 )"’)-Z>O 54
where X = (z+Z--“£")/(QJ§'z) and 2 gives the position of

the source on the axis. This feature gives rise to a singularity
in the potential formed by an integral of sources along the body
axis, and a further term must be added so that the equation (5.2)
is satisfied in the whole flow field. The potential satisfying

equation (5.2) and the boundary conditions is
i ° >
P o= 5 Tel by (F-2) + fb TQ) @ (ryz;2)dd e z< Y

aZ‘-2

=370 by(=-%) + | T@e (e

e <T
+ g TR) P, (T, z52)d3 for =2

(-]

where 27 1(z) = Q'(z+b). 55

For both cases in (5.5), as Y—>O

@, (T,2) = ‘r<z)\qnj<b+z) "S Th-TE) 4y +§T2;"T’("dz

€<r 2 -z -2

+ o(l).,__,o 5_é

It remains to choose a* and b . As the flow near the body is

dominated by the first term of (5.6), Cole and Royce chose b such




that T'(e) =0 , and then took o*= M+1) P, (v.,b) where
T, is the body radius at =z =0 . This choice implies
b is independent of the thickness ratio of the thickness ratio
& , as it should to satisfy the similarity law, but the choice

of a* means (CDZ)baJ, does not satisfy the similarity law (2.5).
Another feature is that predicted values of the sonic point are

slightly aft of ==0 , contrary to what one might expect on

physical grounds,

For bodies of revolution given by:

[~ @)~ (-+0)"] 1 <%

Mo

T(z+b) =
[L@+b) - (=+B)" 1] Trax > 2

wion

agreement between predicted values of C. with those from
experiment is good for n=2 and t, A > “a s though it deter-
iorates as r_ moves forward. However, considering the
whole range of shépes. the results are superior to all the para-
bolic approximations except that of Spreiter.

The extension of the mixed type equation approximation to
flow past thin wings, in both two-dimensional and finite aspect

ratio situations, is presented in Chapters II and III.
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CHAPTER II

AN APPROXIMATE SOLUTION FOR TWO-DIMENSIONAL TRANSONIC

FLOW PAST THIN AIRFOILS.

In this chapter we develop the second type of regional
linearisation approximation, outlined in Chapter I, §5.
The work constitutes an extension of the method initiated
by Cole and Royce, in their treatment of axisymmetric

flow.
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§ 1, INTRODUCTION.

The small disturbance equations for transonic flow are well established,
but owing to their non-linearity, the derivation of exact solutions is a
formidable task. A few such solutions have been obtained using the hodograph
plane in which the equations become linear, but as the body profile cannot be
specified a priori, this approach offers little scope for general airfoil
shapes., Confronted with this situation, it is natural to ask whether it is
possible to approximate the non~linear term, so that the equations become
linear, and yet still retain sufficient accuracy in the prediction of
surface pressure on typical airfoil shapes to give a useful engineering
approximation,

To investigate this possibility, consider a uniform stream, flowing
in the positive z direction of a rectangular cartesian system (x, y, z),
past either a slender body lying along the z axis, or a thin airfoil which
is everywhere close to the Oxz plane. For steady, isentropic, compressible
flow we may introduce a potential

U (= + @l=.y,=)

and as Uw approaches the speed of sound, the small disturbance equation,

reduces to the transonic equation

Pre v L0 = @+ = {OrMip. - 0-M2)} . s 1,1

For the derivation of this equation,see for example, reference (l]. One

has the choice of approximating either @P=z or {{F+1)M%@. - (M3}

The first step was taken by Oswatitsch & Keune [2), who considered sonic
(M = 1) flow past a slender, parabolic body of revolution, and noted that
in practice, the acceleration was nearly constant for fluid near the surface
of the forward half of the body. Accordingly the non-linear term ( ¥+! )Ma@ @R

was replaced by K @, , giving the equation
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¢#x * ?'A‘J = K ?Z hg-

which may be readily solved. The calculated pressure distribution was in
promising agreement with experimental results. However, it should be noted
that éven in this favourable case, the approximate equation is valid only in
the immediate neighbourhood of the body. It is this relative insensitivity
to poor approximations away from the body which provides the basis for further
development., Maeder & Thommen [3] employing the same approximation for

() Mo @, Pzz , retained the ( | — M5 ) @,, term, thus extending
the theory to cover the whole Mach number range. The method was applied to
both two-dimensional thin airfoils and slender bodies of revolution, but for
bodies with maximum thickness forward of centre, computed values differed
considerably from experimental ones. Miles [ h] made the following
criticisms: (1) that at Me = 1, a mixed type elliptic-hyperbolic equation
had been replaced by a parabolic one; (2) that for bodies of revolution at
large distances the solution differed from the asymptotic solution provided
by Guderley & Yoshihara [5] H (3) the method failed to account for a
region at some distance from the body in which non-linear effects were of
decisive importance., However, Cole pointed out that no finite drag could be
associated with the asymptotic field, énd suggested that there is no simple
relation between the field near the body, and the far field, but that conditions
near the body are of primary importance in determining the pressure. It would
appear that the region of criticism 3 accounts for criticism 2, At least at
the present stage, we must be content to assume this.,

In [ 6] s> Cole & Royce initiated the second type of approxjmation'to the
non-linear term, by replacing (¥+!) Mo Pz Pue by az @, 0
The case considered was that of sonic flow (M, = 1) past a slender body
of revolution, for which the equation is

= 2 =z
?;% +¢ﬁ‘1 Q.Z¢z M
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This approach meets Miles! first criticism, in that it preserves the elliptic-
hyperbolic type of the equation. The analysis is not so simple as for the
first type of approximation, but gives quite good agreement with experiment
for a variety of smooth slender bodies. However, the simpler analytic results
of [3] have attracted all further development.

Maeder & Thommen [7] improved their earlier work, by showing how the
choice of K might best be made, and also calculated a correction term, The
sonic point 2* is given by { (1-MZ) - )y },=°= O , being the
solution of the approximate linearised equation, while K was chosen as

{(YH) %:7_ } y=0 +« The correction term was simultaneously derived
in a different manner by Hosokawa [8 ] . He assumed @ = ¢+ ’
where @, is the solution given in [3] o Having obtained the appropriate
changing type equation for 3 from 1.1, he argued that the behaviour of 9
is largely one dimensional in the neighbourhood of the body, and that 9
may be taken as a function of z only. With this assumption, the equation is
readily integrated, and a quadratic equation for the velocity Q= results.

The constant of integration is chosen so that g, = O at z¥, and the choice
Cof sign is made so that P, +9, Z O according as the flow is
supersonic or subsonic. For the case of a two-dimensional parabolic arc thin
airfoil agreement with experiment is excellent, but as the position of maximum
thickness moves forward it deteriorates rapidly. In the axisymmetric case at
Mo =1, gven for the parabelic arc the results are little better than [3] o
Maeder & Thommen's analysis [7] showed that the errors largely stemmed from
the failure of @, » to represent the solution sufficiently accurately,
esﬁecially near the sonic point.

An alternative improvement on [3] which exploits the insensitivity to poor
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approximations away from the body has been developed by Spreiter & Alksne.

For Mgg === 1, the choice of K in the expression for the velocity at the
airfoil surface is made as K = (¥+I) Mq ®Pz. at each point of the airfeil,
so giving an ordinary differential equation for @, luso o For M e away
from one, a similar "local linearisation" technique is applied to the classical
subsonic and supersonic theories. This method has been applied to two-
dimensional thin airfoils [9] s, slender bodies of revolution [10] and
wings of finite span [11] o It gives good agreement with experiment over

a wide range of shapes, but there are a mumber of objections, The criticism
concerning the use of 1,2 as an approximation to 1.1 has already been included.
In ad&ition, the method has the disadvantages that it requires a different
treatment for differemt ranges of Mach number, so that the simple covering of
the Mach range provided by [37] is lost, and also that for three dimensional
‘problems it requires considerable numerical work. The principal objection ta
the method from a mathematical standpoint however, is thaﬁ it is basically
inconsistent, K is taken as a constant until after the formal solution to ;Ehe
differential equation 1.2 is obtained and then is allowed to vary with z. If
one assumes at the outset that K is a function of z teo be found, a formal

solution may stilJ. be derived, For M, = 1, the respective formal solutions

are:
. o U _Flo) _ F'(¥)
X constant: ¢z,!=° = \Ff—-lz{ E j J?JE} ..t.&
) - -VYs 1S FO_F Fal. -
EEECHENRAWESS $7 % i AEEE

where 7(}) = ;‘%} .
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F(z) is the local slope of the airfoil, and z = O at the leading edge.

It is evident that although 1.5 reduces to l.4 when K(z) is a constant, if

we regard them as equations for"u(z), where U (z) = P= |5=° s
and K(z) = (X44\ 1%% , then they are quite different. Consequently

we cannot yet regard agreement with experiment as a justification for the
Spreiter theory, because it may have arisen bhecause of the cancellation of
the physical error by the mathematical error, and it is desirable to find an
alternative model for which a mathematically consistent theory may be
developed. That proposed by Cole & Royce [fS] has the attractive feature
that it preserves the structure of the equation, and for the axisymmetric case,
the results of the mathematically consistent theory, are as encouraging as
those of the Spreiter & Alksne work, particularly when the maximum disturbance
occurs towards the rear of the body. In this paper, we extend the Cole &
. Royce method to include two dimensional shapes in order to test thq accuracy
of the method for the extreme case of airfoils with finite aspect ratio.
The approach in this work is similar to that of Cole & Royce. Their model
.is one of accelerated flow, so that the flow is subsonic over the forward part
of the airfoil, and supersonic behind, and the technigque is to represent the
body by sources in a manner analogous to subsonic theory. Extension to two-
dimbnsions is, in principle, simple, The point sources are integrated to give
line sources, and the same technique is applied. However, as the subsonic
and supersenic sources have different forms, an additional term is necessary
to give a continuous potential, and establishing that the two expressions for the
potential join smoothly constitutes the main difficulty of the work. The general
results are applied to the particular case of airfoils given by polynomials,
and for powers up to the sixth, the tables provided make the calculation of

pressure distributiens on such airfoils quite easy.

-
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The Cole & Royce approximate transonic equation for axisymmetric flow

at M, =1 1is
?T‘r + %’?‘1’ = a}z¢zz

Il\)
N
[

where z = 0 at the sonic point, and by use of Hankel transforms, the

following point source solutions have been derived:

for {>0 _ 2432 __a_?E’-
Q(H) = ZZ {[z-z +a%'*_ft]2_avr"z}ua. 3 \F‘-)\]Z"'q—ir

. 0 > VES I+ 8 2.2
for I<o $e) = - A - z+ 3 - 2,3

47 L3 {{z_ 2 _@2‘.:.]2_ a,_‘_,z}llz

The two dimensional form of equation 2.1

Pyy —a*z @z = © 2:4

obtained by regarding @ as independent of =, corresponds to choosing Pz
N 4

a
88 Qarye)in the non-linear term (¥+)Mw @2 @, of the two —
dimensional transonic equation, where z =0 is the sonic point. Since
o0
Q(E), Q‘(H) — 0 &S x3>+ o then PE)= %:n' S-co $ee) da is
00
a solution of 2.4 for <O , and @(H) = 'il:"f_,o $ (H) .dx a solution

for Z >0 The factors Y2 are introduced so that the potentials' represent
unit sources., Further it is convenient to define @ (E) =0 for § 2 O ,

and @ (H) = 0 for <o, Now (E) and @ (H) may be expressed in terms of
elliptic integrals. For ]<o0 , the integral for @ (E) takes two forms

according as z % Q.
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For z2==-8< 0,
@(g) = /mr g{(J"w's'He"} {Z(K E)'kﬁK} 2.5
where K(k), E(k) are complete elliptic integrals, with k = E}%%-&-—G—‘ ’ 9’%3
For z>» O
() = — &= - . -(1- 246
@ (&) e A G {2E, -2 F - 0-\)} 2.8

where Ex , Fx are the incomplete elliptic integrals
Vi IR
]

B [y, - { -ttt

B (k, ) = |

andk* =1 =X , ¢=(@"+¥* A& {6, A= 23-A

Miz =1 Yi= L%z , ® = ¥4 9%

The integral for @ (H) takes the simpler forms

12 N
) = | " [{( FrZr- 9‘}""( = {(=rr-8} E] L B> H T

o) , VE <P+ T

(=-E)"-6°

- 3 z
where K, E are complete elliptic integrals with k = W=+ P~ 0 ’

6= %8

In the Cole and Royce work, it was necessary to introduce a solution,

a*r?*
singular on the surface z = A The significance of this is discussed

LY
later. Here, we simply note that the line z = o‘zﬂ corresponds to the

L ¥ N
surface 2z = a'zf » and investigate the possibility of solutions singular

2,8
on this line, Putting h = af;s - 2, and seeking solutiens which are functions
of h only, Jlhl is found as the solution. Though not singular itself, the

derivatives are,
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;
If we further seek solutions of the form (zl)’“f (%) , where
— A
%= ‘—“(fg—).,f— s of which \’\hl is a particular case, then two

independent solutions ensue. For 2 < 0, § < O the first takes the
form 2.5, while for z> 0., 4> 0 the second takes the form 2.7.

It will be noted that the first gives a solution for z > 0,' Z> 0,
‘and likewise the second for 3 < 0, 2z < 0, but these are of no help

in satisfying boundary conditions.
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Consider
3 a
o - | BENET + (20004 |, Wz 11
-39 s
g ) RO {wE) +@HI}dS 21" <z 2:1b
b

Where in 3,1b, the Cauchy Principal value is taken at Z = 0.
This potential may be regarded as due to a line of sources along y = 0, and

by analogy with subsonic theory, we expect -Q(Z) to be the local slope of

. . \ e 2o} [ . .
the airfoil., The additional term s J%_-H -2 . is :Lntrodu;ced
anticipating difficulty in establishing continuity across z = % .

It stems from the effective doubling in strength of sources in passing from
the subsonic to supersonic regime. Any discontinuity at y =0, z =0

propogates along the characteristic through the point, i.e., along
R .
ay

zZ= i .

The proof of the existence of the integrals of 3.1 is straightforward
when z # %ﬂz + For 3.la consider the cases z 0 separately; for
z < 0, using 2.5, the integrand has an integrable singularity at 4 = O,
For 3.1b using the expressions 2,6 and 2.7, it may be shown that the integrand
behaves like ' at the origin, so that the principal value is required, As
h = a‘;‘aiz - 0, these considerations are no longer applicable, The
examination of the behaviour of @ and its derivatives is quite involved and
is not given here,

7.

as required by the physical situation. Thus, the necessity for the addition of

L. . a*y*
The conclusion is that @, , :'?‘ and -.%g‘- are continuous across z = 3-J

the term >

2 0@ [Fd o
—— V= = >z

a_-l.t<z
S =
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to the potential due to the sources alone is established., This is a natural

extension of the Cole & Royce work, as it is the = integral of the log \z‘g‘:ftl
_term which they+had to:add.. ... -~ - -

. g a*y* . . . 2?1
We now examine the velocities, for z # » beginning with

3y
2,,2
It is convenient to consider separately the ranges z <0, %34 >z > © ,
and z > %31 °
l. 20, Interchanging the order of integration and differentiation, and
using expressions for the derivatives of elliptic integrals (see [12] or
[13] ), it may be shown
b

2. , o) 6 _ . (.8 QFY)
2y Vorss &ﬂgg{eu(\rfwg)‘}"‘{zK 'k‘ } 4

3.2

_ 4\¥s
- {er+@ewpy

When s # 0, as 1 - 0, k* =O() and 2(k-E) - (32) 5= o5,

where X

Thus, for s# 9, y # 0 the integrand in 3.2 is bounded at ¥ = 0; furthermore
it is continuous for 8 < ¥ < b, so that the integral is defined, f‘or y =0,
the integrand has a singularity at §¥ = s, whére k = 1, Consider the behaviour
of 3,2 as y=> 0, Since s# 0, the first term vanishes., In the integrand K

has a singularity like log y, but it is multiplied by y, and so makes no

contributiony E — 1, Thus

b b
2% £69) ay . L 4s & = obsir oo §—s]
?Y 2 S el A4S (24)*y 5-s) % ["“”L ay VE ,
fad ~ LES) as y->o

When s = O, the integral in 3.2 makes no contribution, as y —~» O, but the

first term gives £1.(0). Thus for z < O, P%g’- = Q&) as y—> 0. 3.3



46

5 2P, .
2, 07'511 > 2% 0. An expression for 3% has been derived; by

returning to the definition of % (E), for use in 3.1, and interchanging
orders of integration and differentiation, Like the potential in this
range, it may be reduced to a single integral, with incomplete elliptic
integrals in the integrand, but it is unwieldy.: However it is fairl;.r
easy to show that the only possibility of a singularity in the integrand

occurs at ¥ =0, and if it occurs, it is certainly integrable.

3, Z - azi-‘jzz kl> O Writing & = a,(i) + dz (E) s Where
b @=-0)*
4,0 = | 208)ek)ds L) = [ 2l pend?
. L, e w_al(z))
we require ’at}az - ‘P‘mo ( % € + o
3 £

Now, by the approach indicated in case 2, it may be shown

L =8 ; > — (4=N=23)(2E, = 14+),)|d¥
= J; 49#(,4‘)/\ [ (2-20+302K ~ ( (25, ]

The only singularity of the integrand is at ¥ = 0, For small ¥
d/lN h' A ~ 2AJW/ , ch-A ~ AR (ﬁ,z)? ) >\' ‘Ph’13

Thus the integrand _"‘A\J_T; R near ¥ =0,and 3y has the form

a, 6 | ay L
31 EIG(S) + T £ \JTLI{d-ﬁE + O(e) 3.l

where G, (y) is a bounded function of y, independent of € ,

Also, using the results for derivatives of elliptic integrals, as in

case 1, ol
w, _ atmer) o (Taw o g e
2y o L= e/rfl"‘ LR T i(uzwz)‘—e‘}"‘{\ k‘)E ( k") }

here k2. GEG3)-6°

g+ )~ 0"
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K~
Near 4 = O, A the integrand ~ Lo £20 f_ze, : 2" , and thus %‘% has the
form
W, . S (t=-67) + 4y Guly) — Dolayy . 40
2y [t—6az]"™ ! ™ 3.5

where G, (y) is a bounded function of y independent of €,

Adding 3.4 and 3.5 and taking the limit-& -> O, we obtain a well defined

expression for %ﬁz o Further, as y > 0 it follows

36
Equations 3,3 and 3.6 indicate that N(=) must be taken as the local
slope of the airfoil, in order to satisfy the boundary condition of tangential
flow. The usual approximation of applying the condition at y = O rather than
at the airfoil surface, is made, the error being at most of second order,
However, it should be noticed that although we have established the
existence éf a continuous velocity field which satisfies the boundary
condition on the body, we have failed to satisfy the condition of vanishing
disturbances at large distances. For consider ?5?‘ in the region of %‘> =,
The additional term in the potential gives a vel<.>city %% which is non-
zero as y ~»®@, for z finite, while the integral gives a velocity which makes
no contribution as y—>®, This inability to satisfy boundary cénditions need
not be surprising, if we recall that the equation 2.4 is a valid approximation
only in the neighbourhood of the body. |
The examination of 22* follows a similar pattern to that for }—Jg‘ .
However, some of the expressions are lengthy, so it is proposed to give only the

values as y-¥ O, these being the expressions of practical interest.,

For z< 0, |
b .
a0 . o (8 E K
’3 = o Ity - q
£ yso = avs * l’r(ago. }{@'g__\rs') +(\E+\l§)}d}‘ M

o
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2 4 \¥s
where k = ("\;?_;'E)z and the Cauchy principal value is taken at ¥ = s,
The range 0 <z < %a is not required as y = Q. For z> 0, we
consider the range ‘3':3‘ € 2, as y = 6, 3?1 has the form lim £-so0
{ p%%'(i) + ‘aa‘(s’} s as there are /Z singularities in each of the parts, if

we put € = 0, The resulting expression for the velocity is

b 2E, — 2N F = (1=A)
’2@13 (z>o) = ) 2 __Q_é_.‘f) [ - | ]
22 lyeo - é—ﬂ on Pz (Y -v) +4—Tk'3z){(3 ~2A* 3N R = (L-n Mg H-XD}
2 (“.ag 1 - ki
Toan), —zmz(z-z){zﬁK'(m&)E}ﬂ WE] o a8

where it is understood that A, is evaluated at y = 0, and in the second
integral k *= (%;_—g—}.z.

For analytic work, 3.8 is rather clumsy, and it is frequently better to
return to the double integral implied in the definition., However, if we remove
the contribution from {L (0), so that the remaining integrands are no longer
singular at §= Q, it is quite ammenable to computation.

Some difficulty is experienced near z = O, as can only be expected from

our previous comments about behaviour at the sonic point,
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8 4

Behaviour in the neighbourhood of the sonic points, its prediction and

the choice of the value of a*> ,

The aim here, .is to show that, near the origin, 3,7 has the form

- - 2y

37. \j_ }l/a. L la
20%h) [20'C)
- - s v

and similarly that 3.8 has the form
Q?_?" = {-—I—)”Q’J— 'O'E-zd}}
oz 3=O L”z ] ) b) b _Q_"éj)
£ g a8 - (80 o

L;Jh.
so that we establish the continuity of ’5El La,,at the origin, obtain
TP

its value 'az lgso » and also the value of 32
z=z0

\3=O °

For consistency, should vanish, as we have taken

2.0

the origin at the sonic point, and this gives the means of determining b, i.e..
the equation _Q._é-_l'_:) + §L —f_):'f_}'_) d¥
L2 o x7= 42
The value of };—g'i \'r_z is required, because we choose to make a*Z
the best approximation to C(+l)M: ®?. at the sonic point., This is the choice
made by Maeder & Thommen [7] » to make their correction term minimum, except
that they require to choose a point which gives the best value of (‘o’-rl)"'l: P2z,
rather than (+)Ma Pz .

From this choice we obtain the equation for ®

@%){nw zﬂ-,ib) f 2&1"(—3)&} .

To proceed with our stated intention, consider equation 3.7. In the

integral, split the range of integration at A As we are considering s > 0,
© we take I > >»s :

2 ) 7963 E K _1_3) K
“2= y=o = ‘&ug‘ +?‘1?3; Y {(ﬁ-m + (5 +V5 ) & Z“f {({i -¥3) (\IS'-NE di
A




X ™
A 2N el
In the second term, for sufficiently small 2 —Q-f'}) = MZ_O( 3) 1 !@) ’
over the range of integration.

Now define
E(s) = 2w [ {(JS & T (ﬁKwa)}“ - F 1

E.6) = § leer + (ﬁw—)}} » >0 ez

W

and note also, that since 7 s s the third term of 4.4 may be written

b
2 @) Ty
L vl
E 114 '} 1 z a 5_)‘1/1
+ —=__} = w (3
where (% -5 S +45) i o (
a. = R
= = O T &7
the coefficients Q, being a, = T , o, ) =
Thus 4.4 may be written
oo b
= n 2y gy
L A 3 + = 2 as/z_( 26 ) d
i ’az‘d é MG) 7 neco " ¥4 }

Now it may be shown that

5/
2 5) = 2| (1« - ——Z—K]
EG)-~ % mewIs 6= % L0+BE- g
complete
where k’* = é":\[‘%i » and K, E are glllptlc integrals, modulus k-

By using series expansions for the elliptic integrals, we obtain

E.§) = -1 +4(5/ + oG
BBl = 1~ %) + 06

ARG)= B5)-BIE, ) = & [ 76+ BIE - G-BK] @

- i 3s J

(2n~1) ':7»—7_ " (2n-3)

+ OG™)

|
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and hence

3s  _ T
.G = o3 ~ 7 aw F O6™)

Using these expansions in L.6

. o) _ bl n0%) L[
" 20 [ - _g)_nu7/+z:(,) (.z__,+ Emdﬂ

2z l‘d" o 2

s | sL0 30 3 ,M.Q_(o)327' E ]

+ o™

Now, 7 was chosen arbitrarily, so the right hand side must be independent
of Y s and in particular, the coefficients of the powers of s, must be

independent of 7T e Thus

b b €3
29, - (0l = - 2ty _ o -d3
>z _1 z% ) = Sf z go ¥ d;‘ v Sa 3
e 2 oy [0 26Y gy o o { Qeb) 1n'a,),g‘>_23"§)d;}
K +1, =% wl Tk b b ¥E

where # denotes the finite part.
Having established the result for z -+ 0= , we now consider the

behaviour of 3.8, as z ot,

. 3 € 34.¢)
d=z Y=o €50
In this case, for ’%.Zf(s) it is convenient to return to the form provided in

the definition of (J,(s) , and from this we obtain

2Q,€) = 2 I . z + % +x* .d=
_S_z‘ P SE d? —(7-6' )g‘ {(Z } xz'Jl-i—A_? '}',/;_

Also 20, (s) 2 (% 0 - Q&)
20 - I 2o {ae k- e far ~ 26
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The method is essentially the same as that for z < o, in that we divide the
range of integration { n %—%' & ) so that we may employ a Taylor expansion
of @) near the origin, although the £ limit alters the form a little,

For / >>7>>2

o 2 7 xl)dx
7 * 277, miy  (=+T+=),
%TL d}n&})i {(iz-sij)uiaz}”’ ) Zo(' m ! %‘&d}'} s T Ev=Poarl
and
o Zz
2 o6 - ; Lo LS{UALIS et
?gmfzﬁk (E+EIE} 42 - z 5 Oz BB BEE Yy -
Now putting
(e (C (ze¥a] de o2 (C2E K- Nzwa)sog__}
Vo @ = ‘g:‘l"o {—T—\'S‘ d}g‘ {(z‘}'x1)1+4,}‘z}3/" tx 5;._ 27 (=-7%)
Ve = 2 (T (24 ¥ =) dx ny
A 2 i
beZ
u == Sl {28 K= B+NEF ™y _  m3o
i "o 2 (1-7)
U = O 4.8

we may now write

2 = TS IEL S ) -Q'(o)'“
h %S yeo S ¥ Q‘(}g f@-T- %432} meo V G)
oz By, ke
nN=o n!
Now it may be shown
= -2 2 N7
RGN {(\F“—z+7+dz)lE,,-4.\E}
U, = - %

-
-



where Fy , Ey are the incomplete elliptic integrals, defined in 2.6, with

N = Voy+z — \(E
! V7 ¥z + V2 '

As 2>z » by expanding the integrand, it is easily established that

2 b x ¥ -\-xz) dx
d _(1_3 (Z.+
T(S; }- ( )57 f(z*}—x‘)"ﬂcrz}”z

b . 4,10
R B A

Further, by employing expansions for incomplete elliptic integrals [131
when ), = Vzvr= -2

Vo7ez + VE
o= E o+ GFU-) (3T ol
FPo- ¥+ 6% 6% + 287
and hence
V.G = -1+ 5+ ol
VGl = - &5+ 2) ¥ Ol6M

If in 4.9, we now take the two infinite series, and write them as

2 &) _Ev‘;(?l L » where I, = (7W£Vm @/* é”mzm—ium)

then using the above approximations

Zz s
t —
T o = - 7/1 -+ Z 73/:. 4 O (z )
- ) a3 = /2.
I t 7 = + 7;(: ‘;7-‘/:. + O (’Z } . 1='|:——=° 11

Now consider I, (m> /). Expanding the integrand in V, ( 57) s for small

z; form > it may be shown

m-1

! -2 b a
Iy = (Q'r‘n-l) 7 - %— (2'"'3)7 z + o)

bol2
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Using the expansions 4.10, 4.11, 4.12 in 4.9

2. . X
o 2 — —_ Ko¥¢ ) [} Vs ™ l —3/ ]
9Z ly=o [ —?;1 - 209" + g,z(‘” _(:;(?l (sz " ii"l{;,—tdf

+ E[I_L_(g) - 3_4_1_',@/*.32@:”‘11@/2 3 c-:nd;]
M=2Z

4 73/1 3% m! (am 3’ 2 3 %A

+ o

Now 7 was chosen arbitrarily, so the right hand side must be independent of 7

and in particular the coefficients of the powers of z must be independent of 2

Thus
b b ,
P.) _ n nE3) = - .O.(_-L) _ o'ty d¥
;_?;1 , ‘1._.-0 - y 3 S‘O Y JE h'/" Ko 3‘/1
Yo 2 _‘_{-QH) 2.0 _ ((20'¢Y) 43}
> 3Z=:o . = - 3[ % L ‘—gglld}. Y 75 —l:?/,_ lo'h' S; 3.,,_

which completes the proof of equations 4.la, A4.1lb, and consequently of L.2,

which gives b, and 4.3 which gives a .
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§5, The calculation of pressure distribution on the airfoil.

In this section, we collect the results required for the calculation of
pressure distributions on thin airfoils having small slope, and then apply the

method to the particular class of airfoils whose slopes are given by pelynomials

The non-dimensional pressure distribution Cp = % /o E: is given by
Cp= -2 '%Q;]%_o , to the usual linear approximation.

According to the transonic similarity rules, the quantity

~  _ (Y+0)”?
Co = = Ch

should be independent of the thickness ratio T , and in our approximation this
is the case. For the purpose of comparison with other work, results are given
in terms of C, .

Suppose the local slope of the airfoil -Q("-) = TA w) s then equation

L .2 becomes

b ’
_5'-/’- + S‘o — 43 = O 5,1
and the value of a , from 4.3, is given by
(Y«H) T B*®
where R? = /ﬁ__{ wEh 2wl __S 2 u"(-¥) al:f} 2:2
AL b"/z_ Llh' Elh'
Using these results in 3.7 and 3.8, we obtain
~ b
C (a<o) = ~28%-~w) | o (Twa)f E K
P( <o B{ = t z.ﬁgo 5 {(\J}-\E) + (ﬁ+\r§)}d}' 5,3

Ce (z50) = =2 E{D(s) - =ty ~f =l {2k - (sza)E}az}
20&
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where 1lim £ > © is understood, and D(e&) takes the alternative forms

4R

-

b o0
g Lu‘(—}’) 5\ ('Z+§ +'J=1) 0[;:;
o 1 (z~¥-x*)*+ L=z}
Ea éa

%]»b wl3) { 2Ey - 20 R, - (=) ]“
Nd, 82(Jz7y -2 +m{ (3-20M43N) 2F, — (6 -A-2)(RE,~ 1 +),)}

5.5b

The forms 5.3, 5.4 are not immediately useful for numerical calculation.
However, if the case w (z) = 2™ , o€ m < | can be treated, then the
remaining numerical intégrations are straightforward, We illustrate this by
the example of a polynomial for w (z), the case w(z) = constant being the

extreme case from the point of view of singular integrands.

N
Suppose then, that w-(z) = 2. w"@) —72{:
n=o ¢

First consider 5.3

R eeo) = = 2A [ w@ N “(o) “'}
Cp (=<0) = ‘g{‘?: + o 2 N g{(ﬁ = ety

mz=O

This may be written

~ N !
A ") o n-g s
Co (<o) = - 2—5 :L; 5——;,—— €0 b *E,. (%) 5,6
where K _(s) = —-‘-.+Lg + K }é}
° o= {(& G) T (F+vE)) ¥
I
= 'L‘ E n-|
SO A i = R i LR 521
Next consider 5.4
2 { %{NXK—(\IZNEE}JZ—
€ z~
) {28 K-\ \l'zE} Foi
- el [ BTG e - 4] vy [y o)

|l
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N n
= wi). = =+ ¥ = l:f_ z 4 5 +xt
D() S d‘gS e i@-?—x")’?}«p?z}'m’ % al Sd;g YJ‘J‘ (Z-}—z"’l'f’lp}'z}”h
Define
vl . 245 4xt +£S{za\<-uz+rzls} _ _L]
VL §) = \.’«il“o [,—,E dZS * et +h32y” LT 22(2-3) ¥z
- 5.8

I 3" 1E,,—2)\,F; = (-
Vi@ = %jm)[ v {22 v3x] 2R, —(e-x.-kz)&'ir'“:’}]-‘“

L (5+=
222
A 2n-—

Un = [-—J + %—_\,S ( iy {2&\( (t:+|E}.dt] ,m >0

Uo = O
5,10

Then substituting in 5.4
2A ¥ Wil 4y U
Ce (z>0) —-él ;u: "‘—r?? [6!) Ln iVn.Ga) + = n] 11

Now E, (S), V, (2z) may be evaluated analytically. The results have been
quoted in §4 (near L.6, 4.9), together with those for E, (s), V,(2z), U, .
The actual evaluation is straightforward except for U, which requires a
little ingenuity, but it is tedious and is not included.,

Vi (z)y n»1 , may be readily computed, and the analytic evaluation of
V, (2z) serves as a check on accuracy. In 5.11, the argument is (?ﬁ) s so that
for accurate work, V, (z) must be generated for each particular case. However,
a table is provided for n= l.., 5, and for typical values of the argument,

U, may be derived by comsidering AU, = U, -U,_, , which may

be readily computed., Values of U, ...Ug are given.




3%

G)
n-1 o

E, (s) may be derived by considering A4k, ()= E.6)-s E

Then AR, () = 4 | PT{@+BE + @3-F) K] d¥

and it is convenient to consider the form
AEe) = 3" & (@R - (kI
+ 2 1 fEenE S @r-0R3INTR

The situation for E, (s) is the same as that for V,, (z). For accurate work it
n=1...5 , and typical

must be generated for each particular case, but for

values of (% ) a table is provided.

Finally; we use the expressions for fé’p in 5.6, 5.11, and the tables

to consider members of a class of airfoils investigated experimentally by Michel,

Marchsud & Le Gallo [14] .

The airfoils are given by

Z)_ (2™
\j = A 2t [ ({2) (2{) ] 5,12
where Z = o at the leading edge, and also for the reversed form
"z’
y = A 16[("5‘.‘ (,"‘3.7.’)]
The chord is 2¢ , and the thickness ratio Z is given by
n"ﬂ-/(n—l)
= T
A = 2ln-1)
In terms of the notation of this work
z.+]=)"-" J
[' - n ( for maximum thickness aft.

n'n/(n-'))

~SLE) = 7 (1(71.-!)
n~i
[2(1- %é) - ’] for maximum thickness forward,
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The experimental work was performed for values of n = 3z, 3,38, 6.05
which give maximum thickness at 50%, 60%, 70% chord respectively, and 40%,
30% chord when reversed, Spreiter [9] and Thommen [15] also considered these
airfoils., For simplicity, so that we may use the tables we only consider

integer values of n.

FExample
When n = 2, e e 22 [1-2(2F)] s At wE)
From 5.1, b= %2 ., From 5.2 B= (2/)"™
2 ¢ ) %3
Then 5.6 gives  Cola<o) = ~2(4)*{ &) E.&) + &&)°ER)}

and hence EP (z<a) = %{('ﬁ—s\%;)K - (""E)E}

Also 5.11 gives C,(=>0) = - 2 () { (%)% V. (&) - @) [-&)*V, &) +=2y [}

and hence Eo (250) = - % { (7% 413 )2E, - (/7% -VRJ1E - 2% ]

The resulting distribution is plotted in Fig.l.

For other values of n, the calculation is equally straightforward, and
although the numerical work becomes heavier, it is certainly a matter for a desk

machine, The cases n =6 , n = 3 have been evaluated, and the resulting

distributions are plotted in Figs 2...5.
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§¢ Conclusion.
This work considers the possibility of using the equation
9053 = o'z P,
as an approximation to the transonic small disturbance equation for a sonic
stream flowing past two dimensional thin wings.,

It has been shown that it is possible to derive a unique @ simply by
satisfying the equation, and the boundary conditions on the body. The value
of @ is chosen so that az constitutes the best linear approximation to
{riMZ e } y=o in the neighbourhood of the sonic peint. However, this
potential unlike the three dimensional solution of which it is the integral,
does not give vanishing disturbances at large distances, This feature draws
attention to the assumption implicit in all the linearised approximatioens,
that it is sufficient to approximate the equation correctly in the immediate
neighbourhood of the body to derive surface pressures, It is not regarded as
a serious defect. Physically, in the transonic regime, the influence of a
body does extend to large distances in the direction normal to the flow.

The pressure distributions obtained by the present method are given in
Figs 1-5, together with the theoretical distributions of Spreiter [9:] and
Maeder & Thomnmen [3] s and the experimental distributions of Michel [lh] .
Agreement with experiment is not so good as that of Spreiter's work [:9]
for maximum thickness forward, but for maximum thickness towards the rear, it
is at least equal if not better. In 1:16] some doubts have been raised about
the experimental results but they do not seem to justify regarding differences
between thebry and experiment for maximum thickness aft as due to experimental
error, while ignoring the error in other cases. However, as explained in the

introduction, the theoretical basis of Spreiter's methed is suspect. The present
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results are better than those of the mathematically consistent theory of
Maeder & Thommen [37] , though the method lacks the sase of application of [3] .
The improvements on [3] given in [71 and DB] provide better agreement
with experiment for the parabolic-arc thin airfoil and neighbouring profiles.,
However,; in the axisymmetric case [8] s the results constitute little
improvement on [3] s and are inferior to those of Cole & Royce [6] .

It is considered that, in the two dimensional case, in view of the
case of application of [3] and its improvements, the advantage in using
the present method is perhaps marginal, However, the reasonable agreement with
experiment when the maximum disturbance (i.e. maximum thickness) is towards
the rear, together with the excellent results of [6] for the axisymmetric
case with maximum disturbance towards the rear, suggest that for three-
dimensional shapes satisfying this condition, fairly accurate results may be
obtained, One such shape is the delta, and it is hoped to consider, in a

later paper, the application of the present approach to this shape.
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Table 1. U, integrals '
U, = —1-27324
U, = —1-13177
U, = —1-08650
U, = —1-06433
U, = —1-05119
Table 2. E,(s) tntegrals
s Ey(s) E\(9) Ey(s) Ey(s) Ey(s) Ey(s)
0-0 - 1-00000 1-00000 0-33333 0-20000 0-14286 0-11111
01 —1-02651 0-92261 0-40103 0-23131 0:16082 0-12356
0-2 —1.05655 0-83935 0-45311 0-27223 0-18655 0-14085
03 -1-09110 0-74920 0-48750 0-31769 0-22130 0-16570
04 -1-13160 0:65016 0-50137 0-36107 0-26384 0-20026
05 —-1-18034 0-53935 0-408073 0-39471 0-30963 0:24449
0-6 - 1-24113 0-41208 0-44927 0:40753 0-34916 0-29356
0-7 -1.32122 0-25973 0-36615 0-38294 0-36470 0-33343
08 -~1-43698 0-06352 0-21898 0-20078 0-32106 0-32859
09 —1-64126 —0-06734 0-06356 0-12859 0-18091

~0-23462

- O
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Table 3. V,(z) integrals

6é

Analytic integration

Numerical integration

A

r

z Vol2) Pi(2) T"y(2) Va(2) Vil2) Vil2) V(z)
02 - 0-95493 0-57219 0-57130 0-25809 0-16387 0-11956 0-09403
04 —0-91769 0-46410 0-46384 0-21906 0-14165 0-10428 0-08244
06 —0-88611 0-40031 0-40018 0-19309 0-12605 0-09333 0-07404
08 —0-85867 0-35657 0-35651 0-17420 0-11440 0-08499 0-06755
1-0 —0-83461 0-32417 0-32410 015960 0-10523 0-07837 0-06239
1-2 —0-81322 0-29883 0-29883 0-14795 0-09785 0-07302 0:05819
1-4 —0-79393 0-27839 0-27839 0-13840 0-09174 0-06850 0-05462
1-6 - 077642 0-26152 0-261562 0-13038 0-08652 0-06468 0-05163
1-8 - 0-76044 0-24720 0-24720 0:12350 ° 0-08212 006143 0-04908
2:0 —0-74574 0-23491 0-23491 0-11758 0-07824 0-055857 0-04679
2:2 ~0-73218 Identical 0-22422 0-11236 0-07480 0:05602 0-04482
2:4 —0-71957 with 0-21480 0-10772 0:07181 0-05379 0:04304
28 —0-70779 numerical 0-20646 0-10364 0-06907 0-05182 0-04144
2-8 —0-69678 result to  0-19894 0-09994 0:06665 0-04997 0-04000
30 —0-68647 5 decimal 0-19220 0-09658 0-06443 0-04832 0-03864
3-2 —0-67673 places 0-18602 0-09352 0-06245 0:04686 0-03750
34 —0-66730 0-18035 0-09072 0-06061 0-04545 0-03635
36 —0-65877 0:17526 0-08817 0-05889 0-04418 0-:03533
38 —-0-65050 0-17049 0-08582 0-05730 0-04304 0-03444
40 - 0-64267 0-16609 0-08359 0-05583 0-04195 0-03355
42 —0-63516 0-16202 0:08155 0-05449 0-04093 0-03272
4-4 —0-62796 0-15820 0-07964 0-05322 0-03998 0-03196
4-6 -0-62115 0-15463 0-07786 0-05201 0-03909 0:03126
4-8 —~0-61459 0-15132 0-07620 005093 0-03826 0:03062
50 —0-60829 0-14821 0-07461 0-04985 0-03743 0:02998
52 - 0-60224 0-14521 0-07315 0-04889 0:03673 0:02941
54 —0:59645 0-14241 0-07175 0-04794 0-03603 0-02884
56 —0:59085 0-13980 0-07041 0-04705 0-08533 0-02833
58 - 0-58560 0-13732 0-06914 0:04622 0:03470 0-02782
60 —0-58028 0-13490 0:06793 0:04545 0-03412 0-02731
6-2 —0-57525 0-13267 0-06685 0-04469 0-03355 0:02687
64 —0-57041 0-13051 0:06576 0-04393 0-03298 0-02G42
66 - 0-56570 0-12847 0-06468 0-04323 0-03247 0-02604
68 —0-56118 0-12650 0:06373 0:04259 0-03202 0-02559
70 . —0-55672 0-12459 0-08277 0-041956 0-03151 0-02521
72 —0-55246 0-12280 0-06190 0-04138 0-03107 0-02489
74 —0-54832 0-12109 0-06099 0-04074 0-03062 0-02451
7-6 —0-54431 0-11943 0:06016 0-04023 0-03018 0-02419
78 —0.54043 011784 005933  0-03966  0-02979  0-02387
80  ~0-53661 011631 005857 003915 002941  0-02353
82 —0-53291 0-11486 0-05781 0:03864 0-02903 0-02324
84 ~0-52929 011345 0-05710 0-03820 0-02871 0-02298
86 - 0-52578 0-11205 0-05640 0-03775 0-02833 0-02266
88 —0-52235 0-11071 0-05577 0-03731 0-02801 0-02241
90 —0-51804 0-10944 0-05513 0-03686 0-02769 0-02215
9-2. —0:51579 0-10823 0-05449 0-03641 0-02737 0-02190
94 - 0-51261 0-10702 0-06389 0-03603 0-:02706 0-02166
9:6 - 0-50049 0-10587 0-06329 0-03565 0-02674  0-02145
98 ~0-50643 0-10479 0-05271 0-03527 0-02648 0-02120
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§7  Appendix

The behaviour of the potential (3.1) as l %;l"zl‘* O,
First consider h = %;z -z >0 ; the integral in (3.la)
may be written:
("2 nwpee - =(] - [)a m-r)jm i
-b’zn( JOF T\ T : ) Teor e rmir g eal”
70
where I >> 8§ > JR . Replacing £1(-¥) by its Taylor
series for the range (0, 8 ), the second part of the integral takes
the form
7 et 276 A, (5,h) 72
nzo
where
, 8z ° njm x* dx
A (s.h) = — £az.§ (et iy

Interchanging the order of integration, performing the ¥ -integration

and expanding for small h , it may be shown that

A = - 2:3. hllk + doo(s) + o(cl (5)h + O(‘q")

©

i

A, x, (8) + %,6)h + O

(n>1) A, = Ao (8) + %m(B)h + OW)

where 0<Mn(5) depend only on & , being definite integrals.

The absence of powers of h" in An (n>1) is established by

69



induction; by comparison with /-\, it may be shown

O € Xne £ %, i

Q:f. x
Now consider h' = =z - 7,,':3 > O ; the expression

(3.1b) may be recast in the form

(23

b
_ . E ; a3 ** dx
¢1 = 'g\r—:lo { na S; AE.Q( E) g; {(:J-\—E—h')z +4‘§z}3/z

=-6)

20@) 2J2z - : . 1Y }JZ}
+ ~ )-8 .
g RaZ {{crzwz)‘-ez}"l\( LGB0 E

1.5

Reasoning as for the case h > O s the first of these integrals

may be written

b (8
8= g x* dsx
22 1 d5 N6 - _ o
Ta E; So { (x> +8-R) 44527
+ 3 el B, sk, )
n=o " 1.6
where
.S ® 2 d
B, (50,0 = 22 (gp g —=d

R b (Gt +5-h) +4¥=]



N/

Consider B

©

: interchanging the order of integration and

performing the ¥ -integration,

B, = 2 (Le - If)@))

where -
Q) & , ; RV O [ P lo h'”
I, = FVz-h - 2V R — 2V=z-%' fan (Jz~h') * J_h“&nf z€
- (1‘ I
and by expanding I, in powers of h
— (, ] 2
T - I = % @) - «,6) k + Ok
By integration and expansion the contribution JE) from the
hyperbolic (3770) sources may be reduced to
2 [ ZE Y2 ' } ) +O
{n@) 2 i g“j(—_/ew) + O (K™ g h)i 1 elf
so that
fim (I(i) + B, (&h',i)) = ot (8) = o,6) W+ O 1.7
£-2»0
For Bﬁ (n>1) we may take the € limit, and use
B, (s,h", 0) The integral involved in B (5, k', 0) is
the same as that for An(S,h) , so that
B, (5,n 0] = %@ - %6 H + Ok pAL

The induction argument ensures a regular expansion in powers of

h' for B, (m>1)

» so that




B, (5,h,0) = @ - «,Elh + OWY 1.7

We can now deduce the required properties of ¢’1 as
lhl — O . From (7.3) we see the necessity for the
addition of the term 3{;_ L20) { in the expression for ¢, in
the region h>0 , (equation (3.1a)); it removes the singularity
as h->o0

From (7.1), (7.2), (7.3) and (7.5), (7.6), (7.7) we have

R P T AT

! Y dgﬂ —E x_,_ = 3/

H:T%O e L; ( e § e eE)T 4 A%} ’
+ 3 e « )

One expects this value to be independent of & , a point which
can in principle be verified by partial integration. The result is

valid for all § >0 , and it happens that o,.&)/, x,,(8) > O

as &> Ot » so using (7.4) we have that

P . ¢ 82 b g ( E) > x* dx

m B o= —= | 4o g ' =

hlso Ta L ieAHE) v L1
Thus the potential is continuous across =z = . Now
consider 2P as lhl - o

Y
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From (7.1), (7.2), (7.3) and (7.5), (7.6), (7.7), differentiating

we have
4 3 - ( 13 d
. _ Zz ot 2 (x* 2
tm S5 - - 222 gag.m-g).g SLoe Bl ator
thj»o J s 4 16<+38)" + 1{.’52}
2 0o (n)
+2 7 2 e« (5)
n=o
Thus ;ﬁ is continuous across =z = %9 . However
d°|(5) is no longer bounded as &-» ; the limit is
independent of & and may be written
b %o
: ) <2 Sy x* >
‘th :5?1 = - _"r_(zq 2 %j ;{ gc‘gﬂ(*?)g 3 ix +l})>r_ c:lxs/l ,
oo Y ) T e84 £ 52)
where ¥ denotes the finite part of the integral.

The continuity of

from the continuity of

4.
K-r4
>4
2y

2,2
across z = %# may be established

by the following argument. ?51

satisfies the differential equation (2.4) away from the line

z
z_ = T—S

region z >0

F A
teristics to =z = =4

A

. The characteristics of (2.4) are real in the

,» and we may draw the neighbouring charac-

2

for both h %0 . Along the

neighbouring characteristics, considering y >0 , the

following compatability condition applies:

T3
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u -~ Lﬁ = constant

where

g = i\i = a—¢2- vV = ?fl
wlon avz ? °=z

characlerishe

For finite <T , it is possible to obtain the constants of
integration from the values on the airfoil, and as the airfoil is
smooth the difference in constants for neighbouring characteristics
on either side of z = %%31 may be made arbitrarily small.
Thus the continuity of Vv  across the curve =z = %?1 implies

the continuity of « .



CHAPTER III

AN APPROXIMATE SOLUTION FOR TRANSONIC FLOW PAST THIN

SYMMETRICAL DELTA WINGS.

In this chapter, we extend the method of approximation
used in Chapter II, to treat a three-dimensional problem,

the flow past a planar wing.
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§1. Introduction

The prediction of the pressure distribution on an airfoil
in transonic flow is of obvious engineering interest. With supersonic
aircraft it is no longer desirable to simply design to reduce transonic
effects to a minimum. The design must be essentially for supersonic
flow, with only sufficient attention to transonic effects to awvoid
drastic pressure changes; for this one needs to calculate the pressure
on a given airfoil in the transonic regime.

The ultimate aim must be an unsteady theory, taking account
of non-linear effects. However, even the steady, symmetrical flow
problem has proved difficult, and most of the work has been confined
to either two-dimensional or axisymmetric flow. Hodograph methods
[l] have provided some accurate solutions in the two-dimensional case.
The computational method of Dorodnieyn ' s employed by Chushkin
[‘3] for two-dimensional flow, also takes account of the whole
flow field, but for a general, three-dimensional profile, the demands
on the machine appear prohibitive. The methods more suited to
practical application involve a greater degree of approximation,
and only aim to produce reasonable results for the flow field in
the immediate neighbourhood of the airfoil. A review of various
approximate methods for symmetrical flow was given in Chapter I,
and some discussion of their relative merits was under taken in

Chapter II, § 1. Reference E#] gives further detail of these
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methods, and also considers lifting airfoils and unsteady flow.
It is now proposed to employ the second type of regional linear-
isation approximation, ['5], L6] in a three-dimensional situation.

One standard form of the transonic, small disturbance equation

(1-M2) P + gy + &, = ML (1) BB 1

where X, ¥,z are rectangular co-ordinates, X is in the direction
term

of the mainstream, @(X,Y,Z) gives the small disturbanceAin the flow

potential U (X+ &) and U, ,M, are respectively the

velocity and Mach number of the undisturbed flow upstream of the

airfoil. The shocks which occur are weak and only appear as

surfaces of discontinuity of velocity. separating regions of

potential flow. The simplified transonic shock relation and this

form of the small disturbance equation are available in the review,

Spreiter [7]1 .

The present approach considers ™M, = and assumes accelerated
flow over the airfoil., At M,=/ shocks are expected to be confined
to the rear of the airfoil and their effect is disregarded. The
approximation, for points in the neighbourhood of the airfoil, is
to replace the §x in the non-linear term of (1.1) by a linear
function of X ., This then is the model situation investigated;
for convenience a different choice of co-ordinates is adopted
with the origin on the centre cliord of the airfoil ; and = in

the direction of the mainstream.



§2, The model boundary value problem.

The velocity field for flow past the airfoil is derived from
a potential U, (z "'¢("¢.\j,2)) « The delta wing lies in the plane
Oxz , Oz lies along the centre chord, and the origin is

a distance b along the centre chord. The wing is symmetrical

about the plane y = O ; suppose its upper surface is given by
y - x Flx,z) = O

where T is the thickness ratio, and the leading edge by

The equation modelling the transonic flow is taken as

Pix * Py = &= Pz 21
For boundary conditions on P » we use the condition of no
velocity normal to the airfoil surface, and a tentative condition
that the perturbation velocities derived from @ » become small
at large distances for z <O . [lhus
f¢x t m @y tnr(i +@,1 =0 on the airfoil,} 2.2a

P Py P -0 at oo For zZ<oO.

T3
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where (7 ,m 'n) are the direction cosines of the normal to

the airfoil surface.
Equations (2.1), (2.2a) are suitable for slender bodies as

well as thin wings; the restriction to thin wings enters as we

take
_ 2f of
( {, m, n) = ( - T 5 , I, -T33 )
and then consider T small., Regarding the derivatives of

as small, and retaining only the largest terms, conditions
® g y 44 »

: (2 .23) become

k)
Py =0T 3 on 4= TH=z),
2.2b
¢x,¢3,¢z — 0 at o0 for z<oO |

< so that we require % </ .,

Note that %‘f o<

Point source solutions of(2.l) situated on the y=0 plane

are
- ar
¢(H) = - (‘l"’g 4:'_ ) P (Z>o) ,
2 {[z-2- 20| a2}
(z+2 - &)
Ple) = = =~ - = (2<0)
42 42{[z-2- g.: :(—cL‘f’Z}V:L _
2.3
where s (=-2)t 4yt , and the source is
situated at z=4 |, x = 2 .
Adopting a similar approach to Ch.IL p a8 T/ | ye

seek an approximation to the solution of (2.1), (2.2) in the form :



ob

= L X L X L ~art
P = 7= SD'JC({,y)WE) dZ.d7 + 3% gbx(o,y)zﬂﬂlz % 'd7 ,

-0

¢ = = gwla'c(z,ﬂ.cp(s).dg.d? vt [ R oo dd

D,

oh
‘ —_— a‘l‘.l
f Rl Tenstgl=ElY
- 2.4
where
cb denotes the semi-span of the airfoil at =z =0 |,
o, denotes that region of the planform for which §<O
and o, denotes the intersection of the cone

of dependence of the field point (x,y,z) with that region of -
the planform for which £ > O .

(We take planform to mean the projection of the airfoil
surface on the plane y =0 ). The log terms are included to

2.,

make the potential continuous across the line 2 = a?,_,'g s as
in Ch I .
The cone of dependence of a point (x,y,z) may be deduced
from the vanishing of the denominator of @(4) , which indicates
the cone of influence of a source. A source at (. v Yo ,?o) influences

downstream points (x,y,z) satisfying

E o~ E = E =+ (y-yl 2.5

and conversely all points ( x,, 3,,2,,) upstream of (x, 3,2) and
satisfying (2.5), influence (=, Y ,2) . It may readily be
verified that (2.5) defines a characteristic surface of equation

(2.1). Ve only use sources for which Yo = O . The cone of

g0
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dependence of (<, Y, z) intersects the plane y = O in
points (7 , 0, Z) satisfying

[G@=-8)»r - y* }'/z = 9-x right hand branch

‘[ %1 (=- &) - ljl}vz = x-7 left hand branch
and the region of dependence ) is defined by

{& (z-8r-y' 1" > 1=-71 . 2.6

The situation for small Y is illustrated in Fig. 1; h'=z-%3
The domain of integration in (2.4), D, » varies
according to the intersection of & and the planform. For a
delta wing, the field points with z, x >O give rise to
3 cases (A) x+2%lW <eb (B) 3W~x <ob<x+3lk (c) 3lw-=>ob
(see Fig, 2, drawn for simplicity for y= o ).
The quantity of engineering interest is the non-dimensional

5
pressure distribution C'P = =2 'sg['g.,‘l . This is derived
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from the Bernoulli equation, on the assumption that the derivatives
of P are small, so that quadratic terms may be neglected,
This assumption is involved in the form of the boundary conditions
(2.2b), In linearised gerodynamics, it is the practice to replace
quantities which should be evaluated at the airfoil surface, by
their values at 'j=o . In the present problem, as a? depends
on T s T cannot be simply scaled out of the boundary value pro-
blem for @ , and it is not obvious that the classical approxi-
mation remains valid. Accordingly we evaluate quantities required
on the airfoil, at y=<T , and so retain an indication of the
errors involved, when using values at Y =0 .,
Although in principle, once X (2,7) is found in terms
of J?x,z) we may obtain the pressure distribution from (2.4),
in practice, the singularities in the integrands make it desirable
to simplify the expressions by analytical methods. Accordingly
we are interested in the asymptotic behaviour as T-=O,
It is convenient to introduce the following notation for the
various limit processes involved :
L ,f7 : { and b4 integrations,fz z-differentiation
L : tmrso | L3 tim >80 and LL @ = aft (ef,‘,.'¢) ete. 2.7
The order is important, since some processes do not commute.
In this notation Ch. Il was concerned with ft fz of; Lo af, in
evaluating the surface pressure. In practice f;i; 1; f;g; s and

similar orders were used, and this merely necessitated the use of
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p rincipal values, the penalty for the interchange of non-commutative
processes, We do not escape so lightly in the present case,

To proceed with the evaluation of the asymptotic behaviour

of %g, y=t o Wwe must make further assumptions about f .
The two simplest alternatives are
o0

X(3,7) = T X(2,5) = = §° Xy 2" 2.8

i(g);) = ‘tI(Z,}) = T ,,.Z'to x7m Zm 2.9
We have. introduced T anticipating the relation between X({7) and
the local airfoil slope; In; is - independent of <, % ’
and similarly X »m is independent of <z ,{ . We also write
X (37%) = nf;o ;:ia Zom?"4"  where  Xam are constants.

If the choice of the form for X is made on physical grounds,
(2.8) must be used. The reason for this stems from the wish to
truncate the series after a few terms. Truncating the 7 series
implies having only simple spanwise thickness distributions
available as approximations. This seems preferable to having
simple chordwise approximations, since apart from the wing tip,
the practical chordwise thickness distributions are more complicated
than the spanwise ones.

Mathematically, the choice effectively determines the order
of limiting processes, and the physically preferable choice leads
to the more involv'ed analysis, since by 1 @ (£) may be evaluated

in terms of elementary functions, whereas {7 @) requires elliptic
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integrals. Accordingly, we first examine the case x(Z,7)= constant,
aiming to replace 7, f, [7 "{5 by f, 2.4 L. wherever
possible. Then, with this as guide, we treat the more general

shapes given by (2.8), by aiming for the order lp; Le [7 L .
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§3. Verification of the formal solution,

Before getting involved in the main task of developing
. 2 .
asymptotic forms of >Z » @ number of points must be
cleared up. We need to establish that the integrals in (2.4)
converge, and that the potential so defined gives a continuous
velocity field., We also need to check that this potential
satisfies the boundary conditions, and to obtain the relation
3 2 .
between X  and 3‘."5 . The choice of values for a and

b is deferred until the asymptotic forms of the pressure

distribution are available., However, it is necessary to have some

estimate of the relation between o« and T . We assume
a>> T , but that &«—=>O as T—>O0 3 the two-dimensional
. . U2
relation is a ~ T .

First then we examine the convergence of the integrals in
a

(2.4), For =z < —‘-:3

a(b+3) _

Sz) X(2,2) @w© dld, = ,( dg f Z)JC(Z,7) PE).dy

) K - (bt 3.1

—

As 7_6'(2,7) is continuous in the closed region o) , it is
sufficient to consider the case ;E'(Z,7)= | . One may express
f7 P(E) in terms of standard elliptic integrals, and thus
show that this provides an integrable function for f! .
For = > %3 ,» the integral over D, in (2.4) has
the same form as (3.1). The only possible singularity of @(g) in
this case arises from near {= O . By subtracting a term

'/g [Z X(2,7) cp(E)]Z_+° from the integrand, the resulting
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double integral is made convergent. However, we must add the
integral of this term, and this is divergent unless we modify
D, . Now consider the integral over J), . As mentioned

in §2, there are three cases to consider,

-“le. reﬂl'on @z (Sha‘]ed)

The various limits of integration may be deduced from (2.6) and
the equation of the edges of the delta 2 = to(b+tZ) . The

figures are drawn for a field point (x,<T,z) 3T is small and

a
6 = ?:E ’ Za ) gz are given by
2_a > 2
B = d= - {6+ 3 (bs2-x) }u with x'= %
B, = v - 160 + &(beZ +x)P" 3.2

The only possible singularities of .{7 x(z,7)<p(H) are at £ =0 ’
and on the characteristic surface. For X(3,7) in the form
(2.8), f7 X(2,2) PH) may be evaluated in terms of
elliptic integrals. This provides an integrand for f; which

is integrable, except at 4 =O . By using 4[7 { xG»)px)

- é’ [Z X(2,7) ¢(”)];_m} the singularity is removed, The term we
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must add to compensate gives a divergent integral. However, by

modifying the regions of integration oD, , ch so that
for b , ~h$2<-£ and for &, , € s L<@@-6)" | the
integrals with Y 2 behaviour are defined. Furthermore, it

transpires that f; [2 X(2,2) 90('5)];40: -{7 [2XG5) ?’(”)Jg_,o for

each of the cases A B, 6 C so that in (2.4), if we use
modified regions o) (g) , aZ)2 (g) the two contributions
combine to give a finite value as &£ - O . This corresponds

to the Cauchy principal value employed in the two dimensional
case,
We have not yet considered the terms
I = % 0 Xontyl=-Fle 23
The addition of these terms ensures the continuity of the potential
and its first derivatives across = = %_1'31 3 the proof is similar
to the corresponding two-dimensional analysis, Ch, II, §7. Considering

g

aty?
z-% o+t » for sufficiently small values of Z = %

the region of integration oDz must be as in case A. Thus the main

difference from the two-dimensional case is the finite range of

-integration required for ) » The remainder of the proof is
2 1

routine and is omitted.

Now consider the boundary conditions. To satisfy these

22 2 as T O

By analogy with classical aerodynamics we expect

X (z,x) = 2 .?—‘-z_f 3.4
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and this is indeed the case. We outline the derivation; the
asymptotic methods are considered in greater detail in subsequent

2,2
sections. Denote 2 by fj . Then for %j -z <0

L [ sa]yzz = L:EJZ (2, Z, sa(s)) + ol] asx»o

Now
6 X:

~ vy v.

Z? "{.7 PE) ~ s {(J%—\FE)TH-613 LZ;H.. ixg + 921_(\,-5_\;})1} )
vhere ao _ TR
s = -2 , X3 < Lla+Z2-x) X, = F (bt

To perform the < integration, note that although X;>O as

>0 | X, » 8 and for points on the airfoil

X. >0 (i=3, 4.) , 80 that the essential contribution comes from an

integrand
2 6
s { (B VRt + 0]
Integrating and letting 06— O it follows
4] - -5 as T>O0

For =z > aT:_ﬂl s in the integrals for “% ):{i‘j SD] .. first take

out those parts of the integrands which give rise to the singularities
at { =0 for the unmodified regions oD, , D,

This need only be done for a region independent of Y in the
immediate neighbourhood of £=0 . The remaining integrals
are defined over o0, and OD,L separately. The term

which needs to be added to compensate makes o u contribution

as T = O, The integrand. in the o), integral has no singularities
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in the domain of integration, and applying ,{; produces a
factor 6 , which means there is only an o(// contribu-
tion to % [ '{y @]y:_c as T->0O . The {, integral,

in if's inteqrand
with modified integrand has no singularities,apart from that on the

characteristic surface. First consider 7(‘(5*,7) = _NQE) ;
[7 @(1) may be expressed in terms of elliptic integrals in very

similar manner to the two-dimensional case , Ch.JL . Dividing

)

the region D, by the line J = c < (2-6)*, the { integrals
over the part J<c make only o(1) contributions
to ‘-:T; [ ?5? yur as <T—>O . The main contribution in
each of the cases A, B, C comes from a term
2 (=-8)* x + % f(z- &)= 071" 2.5
Py ;j S; d? _Q_(Z)?(H).cg, 22

x - % {@=-E-9%]"
The introduction of X (Z,7) for NE) will not alter the
order of the contribution for ¢ <c . But c can be made

arbitrarily close to Z., (c<(ﬁ.-6)’as t-of; this means the value of

X(3,2) must be correspondingly close to X (£,x) for
the range ( c, (=-9)? ) . Consequently the value of
= [%‘? y=z as T-O0 is given by (3.5), with
NE)= (02, =) ; and this value is known from the two-

dimensional case. Thus

‘3_92] — 5 (= x) as T->o0o
y=tT

This result is now established for both =z >0 and ZzZ <0 .



Consequently to satisfy the boundary condition on the airfoil
X (z, x) must satisfy (3.u).

There remains the behaviour of the velocities at infinity.
As the potential is an integral over a finite range of the axisym-
metric case, these still become vanishingly small. The finite
term in the two-dimensional case stems from the infinite range
of integration. However, as the equation (2.1) is not a reasonable
model to the transonic equation at large distances, it is question-

able to regard this behaviour as having any significance.

9o
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§ 4, Asymptotic behaviour of 3@; ye as T-—>O for X =X,

(order of operations .f;__fz_-[g_fz_ )

Having established that the integrals (2.4) provide a solution
to the boundary value problem, we now undertake the programme

indicated at the close of § 2, and begin with the pilot case X =X__.

First consider the term added to ensure continuity

X.. (7 -
ca i .
I, = = = %a&glz-zl-b ,

L 200 (), o)
af I = T Lo Koo S.« dz = -~ X, [(‘qr_'!—: e
z o AT Yok {Z - %}[(x_7)l+‘jz]} ZTTO.JE \’T'Le;&:(b*x‘)
where S = -2 x = o x' and h=s+%“
Now consider
b o(b-¥)
- X 2
B = =x.2 [af P(E).dy
e - (b-3%)
where ¥ =-Z . Changing to order of operations f7 f;, .{z 0
and performing the % integration ( fg) ’
pA 2 4 FEe
B = —'_%x“{a_\l-ﬁ[l'an :}ﬁ] -QI—OBZ}
e E (bea)
where
b "
b, = f flbes+0 -2+ o~ 4s (b-%) T ¢4
o 4 7 »
ot kY 2 "/1
B, = fo {[bes+0=2% +Eo+xr T ~4s(b-%)] dy

lf‘

91



A straightforward attempt to expand the integrands to determine

f.,_ fails; there is a non-uniformity arising from the
neighbourhood of 7 = o (b-s) . Consider o@, s and
write 7= o2 , & = ¥, v= YU

b 2 "I/Z
OB, = o jo {lb+s-7 +a* (o] - 4s(b-7)} dy’
Now split the range of integration at b-s = af , o<p<I

The contribution from the outer part may be obtained by direct

expansion of the integrand:

(( +f

b-s+af o

P ( ) ) (( . )1 ) _’/1
. -1 2a(6-x)*+ ) +a* ((»-> +T ‘

o | + }

)lb 7 s| { ('b-s_:)’)z d7

b-s-&

= oy (__s(b-s)){ |+ O(a*?). [1+oam]}

ap

For the contribution from the inner part, put b-s-—7'=&7 » b-s-x'= A,
Thus the contpjbution from the range (b-s-3°, b-s+&7) becomes
i
o [ {5 asareTy + 235 (A v 2354 4557
-aP"'

kS

+ hs(-2a5+33Y) + a (t'l+A,"-—26.}'A,+<'171)1} 3 |

Now using the assumption @ >» * , and expanding the integrand,

we have .
af

O’g ’{71+4,5A‘2}—IIZ{I 1—0(&)}6{5

- p

= &3 (ﬁ) {1+ Oo@@*?)+ o«-u}_

One expects the terms in a - to cancel, since P is



arbitrary. Certainly, taking p = 2 s on adding the contribu-

tions we have

OQ' =

b-s

- [03(—61—/\?—) + O(aﬂaja)

We introduce the following notation

Ax(Z) = btJ+x’

4.3

and omit the argument whenever its value can be deduced from the

context. Thus in the expression for o@, , A,

The f.,_. behaviour of <31

manner to o@, ’

"
Now z. glﬂn

(A—. l') and (L. 2)

LT ?_? =
T 9z 1 y=7
aty*
The region =z > 77_3
ob
= -?— xao S\
'7{2 Io AT “ob
- z Xoo
b waJn
. o_?. k"
where h = =z - T‘i

Again consider

dz

{=z - %l[(x—7)"+‘jz]}

[ + &) ][Ik + % (bax')]
[0 = o) INT - & (b-»)

denotes A ‘65‘).

is obtained in a similar

In case C , I > %2 lbt "-", the integrand is non-singular,
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and the interchange of .f,_ , [7 is justified. Howevgr in
other cases, another limit process is required to define the
I integral, and the result is only formal. The result

may be verified by actually evaluating I° before applying

L, .

- t o (b-¥)
We how treat dB(e) = 2w Xoo ’%z S'z d¥ g SD(E).d? .

—~o (b=¥)
There is involved here an additional limit process, fg because
in (2.4) we must take the contributions from @(E) and @01

together to form a principal value. Proceeding formally, we..ch&nge

the order of operations to Jf f f f and carry out f ,[z :

Be = 1x“{ g [ {0+ SO rpr2) ]b%

b+7/e—

g [-{5-w+ So-rfaar=F "]

—ob

The contribution for the upper limits of the ¥ integration (for Yy=T )

b - ° , , a
= ‘tfﬁae -GL (\:,7'-..2)"17’ —a£h<b+7+2) 47 +O(a)}

= X o tg[Z) + O@)}

where we have expanded the integrand, and used the assumption a>»7T ,

?

The contribution from the lower limits of the ¥-integration

«b Va . a /.
%ﬁ’ [ (=W +£)+4.22}/ with  €=50-x),
'T‘ -o'

is different for the cases A, B ,C depending on whether
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the integrand with € = O has singularities within the range
of integration. In the absence of such singularities one may
expand the integrand in powers of € ; when present they indicate
sources of non-uniform behaviour. The cases A,B have the
points t = £y within the range of integration. A

typical contribution involving a source of non-uniformity is

%f{b-x’)

1 = g f (er=n+e) &ZE}_Vl.At
N
To obtain the behaviour as €O s Dut u= t-JR' » and split
the range at w = 81/1-6 . For the inner part of the range, i.e.
near « =0 , putting & = €£" U , and then expanding

the integrand, one obtains the contribution

L (R fE ) ¢ O * Oy, ocses

For the outer part of the range, expanding the integrand directly,
one obtains a contribution

-8

" ey x) - JR' ) _ (S ).r O®) + OE™
T (‘—*{(b-»% I 2w by 1w '

Thus ; 1
oL u’) v = 4 (M) + o()) >0
I -zmt ﬁrj ( = El/; 2‘“’? 9"‘{(5-1')4.\]-};' as .

Using this approach, it may be shown:
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ob . =Yz
gb {(tr-Wegfrize} ldy

o 2{ 2 R o (sb-3)"— =* }
) Z{E' &3 & —z"L) T &3 ( (c-médi')‘—x‘)

+ o(l) as £330

’

in case A , which has both &= *{l in the range,

= 2{ g Ay (& ) * 1 fog ( (;J;‘;)(%-\ji :l:‘)) }

+0o(l) as =0

in case B , which has & =-J} in the range, and
- 3{ b ((.%__ﬂ;#o-l:) -»xz)} + oll) a5 €30
Py 2vh (%_JTII-GL)I— x™

in case C , which has no source of non-uniformity in the
range,

Collecting terms, for order of operations lp.,, fi -{7 aé a{z »
we have

in case A

vy . T Xeo [ 2 Lh' _a__ (b= 2R} = =2 ofl)
Be) = Z21 6 b (T'; i"‘) T &3(@5 +20n)- x‘)+ e

s () - 0w ]

2
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in case B

X., | h' 1 A

in case C

Be = = { 5 &3((%””")1"“) + oll),,, + a 2bnZ)

2Tma (%JE’—G‘I;,)"—"—"
+ O @Y

4.6C

< . . E
Now we treat the remaining contribution to §£9=t s

He) = TXeo 2 {w JUR D

27 2z

Case A

(x,0,z)

R Y C R L

- Xe 2 dZ {HNMZ_CZ) }
Hel e —f@ai,z_e% Dol {2t hz

e

where 6 = is evaluated at y=T

£ = % (7 - x) » and the limits of integration have been
obtained using (2.6).
To simplify M E) we first note the & — integrand is even

in [ , so that ¢ integration need only be taken over
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the range 0, 1@-v&)~06*}". We tow interchange <5 , and
the € integration; there is no contribution from differentiating
the upper limit, since (i - W)’és at ¢ = {(\I‘i—\l_s)z—el}'/l
and the singularity in the { integrand is weak. By performing

we T
the 4 integration, and then differentiating,reduce /¢ to

ez -8 )=—6% 1" "
2 o0
KHe) = - 322

= e ) {(_z_ez_ tz_+£)z_ A.Ez}'h.

The asymptotic behaviour of the integral as £ —> O may be deduced
by splitting the range of integration at ¥ - g° s where

Y = { @z -VE)*~ 0} . Away from Y , the outer part of the

integral, write T = Y — ¢ s, and expand the integrand
for small ¢ ; near ¥ , put vE £ = Y-¢ and then
expand the integrand; O < & < % for the validity

of the expansions.

Thus
- - 2t X I ih' (1)
s} = = Zreo AL + o
Hel Ta 2R {7"7 T g £>o
L. TA
Case B. First consider x'<b.

B (x'<b)
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fl_G'A €] - )t
J;{ _ tx“ > z M (\E_ Jen)
€ = =% = dE 42
~{@-VEr @i £
l%- ' ( "]8_"4'—".") (_l)(h’*z-t‘) )
* f dk S 22§ 7-e2)* 4221 )
Cu:A (E) 7 ~b)
where _Z' satisfies
Tt k3 ‘/1
Z = = - {o+ NG 48
and A, was defined in (4.3) ,
As in case A, one may interchange —%—z and the & inte-
gration, since at = [ @z-ve)-8% " , (= - Jiier)= €  ana at
£ = TAGE) , V2~ Breer) =2, = 2 yxib)= 7’-13 so that
the contributions from differentiating the limits of £ integration
are zero. Performing the < integration, and then fz one
obtains . a A ]
de () (evaluated in case A), § a ()
S ig=-vE)- 67"
which may be expanded in € in a
YA (?.
straightforward manner, and then integrated, and g (E‘ } which
again may be expanded in £ in a straightforward manner.
Thus
' ao b e’ ,
j{(e) = zxoo{_ A &7 4—h%}_ g (1( )+Vk )
aT 2Vp’ vz € VR = % (b-x)
(= ~ Joer)”
- l/z
- { (m-bters % oxb)~hz(E +x-b)f
?~b

+ O(l) £E->0 } 4.78
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Now consider x> b ; the ranges of integration are the

same, though now A, (&) is negative. Thus He) is

given by (4.7B).

B (')(,') b)

x>k

Case C . Consider the case 0O« x'< b ; the other caseAgives

the same result for HE)

=0
Z:¢
{1
H ) + X, » ~%7A, (6 AN
(2 = L Ao
a™ = ( S e Ty & ) a2
_?AI(Z,_) &:AI(E) 7'-[:
ag = - e 2
+ % A,z M (v= - Jo%er) (—l)(h'+g_b?-)
4 23 {(h'-+ -t 22 1

‘G{'Ax(fl ©

The expression may be simplified in a similar way to cases A, B.

There is no source of non-uniformity, and to obtain 'meo'. H(é)
£

one may put € =0 .
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-V

He) = - = { g {(z 8- t+;—e—-x’-b)‘—l‘(:—:-x'-b)z}_cl.t
—i(bh.)
¥AG) ,
+ {(2—9 b +;;_‘f'x—‘>) [p(— *"’L)Z}.&t
K b-x)

+ 5 {’aj(gf't“f‘”)-:— ) + o(l)a_;o}

ThF- <
L.1C
on mble th ibuti 2| £
e may now assemble the contributions to 3Z lysx Tom
(4.5), (4.6) and (4.7). Letting &€ —>O gives a well defined
velocity in each case. However, we are interested in the behaviour
as T > O » and in this 1limit the regions in which cases
A, B apply become vanishingly small. Consequently we need only
2 .
assemble i?; y== in case €, for which
op , otT '
- °T x. { (__E_) 2
2% Iy 2% {"3 oie) ¥ 0@
EAL(;L) -l/1
™ e v et
E(L'x‘)
anG)

. L g
{(z-0-t* ¢t/ sx-b e bz (b ve-b)Y A }

pt)—

a (\nnx')

We need the asymptotic forms o6f the integrals. First note that

the integrands are singular at @ A @) and a@A.(4) ;5 an

"o
L.

[21 SEP 1967
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attempt at a straightforward expansion in powers of a fails

due to a non-integrable singularity arising at a A; (3} |, (i=12).

Changing the integration variable to T = &/z *+x'-b , the
limits of integration become o, 4 . Now split the

range of integration at 2 - a = O<p < i . For the
outer part if‘a? ) 4T » expand directly for small & 5
for the inner part, put aT = £ -7 , and then expand

the integrand. Thus the last integral has the asymptotic form
o &3(—__) + O(a—@vga)
a A=)

and a similar result applies for the other. The term O(a&ga’ was

obtained taking P==%1 ; it is not based on an assumption

that terms involving p must cancel,

Thus
EJNE ~ by (2] + Olatoys|
2z ly.z at A (=) Az / ;

i —12 e = X, { katmga -2 gaﬁ(&:i;z x'l)—i—Oﬂx &3@)} ’
b.9C
since a = %? . Note that this result is the same as that
for z < &X° , equation (u.4),

4
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3
§ 5. Expressions for 3‘? Jy=x as integrals of standard elliptic

integrals , (X =Xy , order of operations [7 Le f; L2 )

We now turn to the more practical order of operations, and

first deal with the case when X is a function of £ only,

X(2,7) = Xy
Applying fz to the expression for @ | (2.4.) » in the
case = < 8 we have
o= LI +8 5.1
where ,fz I° is given by (4.l), and

g-a(b ¥)
b = Z'r ?'Zf 45 Lo - (6-3) )4

Changing to order of operations f; «(’7 fz R .{’7 L. @E) may

be expressed in terms of elliptic integrals. Define

X, (8 = FALY | X v) = TAL) | 4= X/ie e -RR

5.2
and
N>
: : _ "
F. = F(k,—{ﬁ_z,‘b.) = g i (-uwy(l-kw) ) du
wlul k1= L A
pAT Lot x (el
= _L. P .‘ -'1 2 2 2

E, E(k’(u Lya) = f (1-u®)™* (1= KW dy

° 5.2 0
F, E being incomplete. elliptic integrals,
Then

0@ = 2_"&_( IOK(G3+G)JZ
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where

L

G = -~ { F: + F-s -8 =
¢ AR {er+ (B+ENT2 [ (rs +07Lys?" { 0%+ (3 -v3)4"

2 (V+3) X; }
. 2
{6+ E+EPT {[s+ 0% ¥+ X ]~4¥st

5.3

If in (5.3) we let o — , and then put 06=0 , We
recover the two dimensional result, equation(3.7)of Ch.IL ., Strictly,
it is not permissible to put 0=0 » since we need the value
of ’%ﬁ at y="t and a—-> 0 with T .
However the consequences are not serious. They are accounted for

by taking the principal value of the integral.

For =z > 0%,
L e = LI, + L. (Be + He) S

where Z, I, is given by (4.5), 12 is the limit
associated with taking the principal value and @) , #(e) are
the contributions arising from the integrals over the modified
regions d), , d, respectively in (2.u4). xﬁ and £

have been interchanged.

Now

& (b-%)

Be) = 52 gi d¥ . X, (_a(w) PE)dy

Again changing to order of operations fg f} f; , after some tedious
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manipulation, .f’ fz P(E) may be expressed in terms of

standard elliptic integrals.

Define
Y = 2% (ce3y) ad Y=t (is1,2)
. X‘ .+?
% - - = Y£
Ei= E(k, ) , F: = F(K,T;) R f W
5.5
h k*= I1=AF =(®l*f-\d")v4L A z V2 Vgr- ® A= 2y -A
where o, Y , 9 , . 2q +A
xlhl‘_'l , YL'.—. L;z , @: Eﬁ-ez—z
The notation differs only slightly from Ch IL . There, we
treat only the case Y. = [ , so the suffix ¢ ‘is redundant
and the asterisk is written. as a subscript
Then
b 4
P — X — (M, +M.)d}
o@ &) AT a &; o7 Zg 2A*(2¢~A) 56
where
* ("'A'z) Y.,
H N = 2- E;_‘f - 2 )\, F - ; Va2,
. v z)\n_\(._:.}l/,_ {' + )\,Y,.;"}’
and
*+@)(= +¥ + 0%
Mb = (q )(z ) { (3 -‘2)"_’.3)\‘;)2’5‘{*

8?‘9'

o _U=N)Y )
(-.)(A—A.-h)(l"-: 1().*Y;*)(1+x.\1‘)}"‘}

If we let o> © ,and put 8=0  (5.6) reduces to the
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expression in equation (3.8) of Ch IL .
Now consider the contribution from the sources @(H) ; as in
8 4 there are three cases A,B,C
Case A N o x+2 { =)™~ sz}'/z. 0.
T v o H).
\H(E) = 2_1; 57_ . C'Z-Ioz ’L_,‘i{@_“\,})z_eil'h ¢ 7
Putting E = F(7-%) » and differentiating
~ W=-0)*
He) = E{@, + S; Xy, (A, +N,).d8 5.7A
where
I % S O with = (=-6)
@, = o
@ {44z (=+ 8)}
and .
= -E)-0* 1"
A =% 20 ewma
- I U Ll VY ) (..E_Z;f’;)gf’}
228 {(=+)-07" L [ G- E)*- 0%} (2-VF)*~ 03 ,
2 2 °
AN, = 5 ) e(H).de = 5.9
- i(&_ﬁ)"_ e?-}'/z. —_—
with
! ! z-\]?)z— 0"
F() = F K i U = _ (‘r
' ( R ) E, E(\(,l) anJ k @_11-\]?)1— 9*
0=0 it

Note that (5.7A) is independent of o If we put

reduces to the corresponding expression in equation (3.8) of Ch.I
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Case B

2 o (o12)
He) = ;—“%Z{f a2 Xy § -

€ x - % fWz-J)-p}

g‘(‘rZ'e)l 2 *ﬂi{(ﬁ_\,‘z)’-_ezl'&

dZ_J'r'oz } @D (H). d7

- * - T [@2-JT)L 6%
Differentiating
_ w=z-0)*
HHe =0 [ x, o n)u

Q
+ G,-®, + S‘a on (.A.,_ +_/13)Jz 5.8

where ®, , _/L' , _/Lz are given by (5.8), and it may

be shown that :

®1 - ®s = O )

1) - Z-p* (i
N = ! . (= -\2) i FY _ _Z ZLB gY

‘ Zadf @2+ ) -6 | {(=-V2)*- 6%} {=-8) -0}
+ {_(z'Z--el)(z+3Z-bt—X;.L)+/L29"} X, }
L3 0t H reedt)= 077 o 2-6%x2)2 422 1™

. 0] =0 _ _ X, i
wth  F' = Flke) | E7 = E(x,8) o "{——___@;-m‘-e‘}"l’( 3,40,

54
Case C

7 o(b43) b (b43)

) -]
jo[(f-) = ';,-‘— '3'2.{ Sa d?

+ g 47
Lo (b 42) S S

@8 nx vE{-E-et

+ S- 42 Y } X,, o) .df

2 * - %= 0t



and in a similar manner to the previous cases it may be shown

w=-0)" %
T He) = O + §z X, (N, + )4+ gxog (A, A R)

Zl
Fo X )& .

It remains to show that 08(2) given by (5.6), and HE) given
by (5.7) tend to a finite value when fa is taken, as indicated

in (5.4). The analysis is straightforward;

E . & -
a@(s) = = xo!l Z Sgn(\ﬂ')(;‘—m’) ea-gi + O¢)

{og

LATa& {=z0 i=1
as £€->0 -
3
and from ‘/Ql(zj , only ,/L, , _/[_1 give rise to singular
terms as € >0 » So that the loge terms cancel in each of

the cases A ,B,C
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P
86. Expressions for S%lg:z as integrals of standard elliptic

integrals ( X = {7/ Xis , X=7" Xy , order of operations

forms of the
The analysis of § 5 may be repeated for other, function. QX(Zy).
The work is laborious. The cases (a) X(33) = I/ X and
@) ;x(g’7) = 7‘ j{zg have been considered, and the results

are presented below. Case (a) is needed for a diamond spanwise

cross-section, and (b) for a parabolic arc, as may be seen from
(3.4).
For =< 8%

y f; ®» = & + f; I 6.1

where, in case (a)

< L1 - TXe fy Chy Tl T e

Ame [h+ (=) T
+ o Sl 2(btx') o
‘[E (F \ﬂ; f'an 1 ; +2I’ JE
and 6.2
da
T .

"@ = 1'““'(; Xee ix(é3—élp+265) +-:1(W3+V4-2W5)}d}' . €.3a
In this last expression G, is given by (5.3) with Xg= &%
(definition), and

. s-¥+ 0" +% ‘= 5)
W. = 0 ¢ = W = o (E7345),
: (=ha) Yo = R e e ire)
bk

In case (b)

Lob Zx b+ a}c-t{b—z')z
f‘ I =fz-1.1 =~ A Na { a + _ eajl ‘1 + le‘l(b'fx')z/

T e -t ac(bx -1 Qo'(bfx’))}
+ 2 (b 2elerd + fan




1O

and
= I_M g Xae { ¥ +6Y) + x(65+6,) + %(W3+W,~—2ws)}cl§
.3b
In this last expression &, | W, have been defined already and
ALZ) | S-E ‘f’ez F 2 23"
= - — - .- V5 +V5)*+ 0 E,
& 2o L@ ewre oy ¢ T 1 3
& X 25 (JE+vs)
f[s+§+6’+x I k¥s 1"
For z>0% £5s

Lo - LT v Lld Ko b4

where in case (a).

2.7 = £ I"= X, -0 ’lh’ o) K- b+ )]/

2
2ATwa _ %X’t]z

ﬁ

" g ! / - %"x’)‘-“—f"J[JZw%u'f/ f
S N B e A s

b
ﬂ(s) = 21‘(0. (E xl! {W[(QH:+H3— Hla. T 2HS) '+(2M. st‘M,‘_‘fzﬂs)]

+ T [wm+ W, -2ws] }d; ¢.8a

and ﬁ@/ is the contribution from the @(H) sources, being
different for cases A,B,C . Note W, is still defined by

(6.4), since s=-z , and E= -2
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In case (b)

£, I1=41 = t_xﬂ{- hob | £ Rt (R b S5 ’

ANa a 2\!7;1 (\m -91?6)'-_ ?_;:0},‘ 2

- 2% ‘_ q_,:g-z —x‘)l
T 'p"ﬂ/i l } 6.7k

h' - 9%_?"(b+x’)z

‘B(s) = ‘2:0_ (b Iu{ & i [__ﬂé EY — 0+ 3~ 32-“"“
e

o Lt L (hy-arfr 2A*(29-4)

(0% 5-2 4}z - 4 } g
| - 2A* (29 - -Al(=z+¥+8Y M, J+—~(L\/3 LA‘) 63 ’
| 22"
| and for .H(E) there are again 3 cases to consider.

Consider WE in case (a). The regions of integration
are unchanged from the X, case, but the factor 121 causes
a slight modification.
Case A (< >Vw)
- (=-0)*
2 | ochx X L@ :
T ﬂ(e) - a zl[.\ri(ﬁ-}s)}‘,z 'i + € x'z 2%—/].,dz ,
Case A (¥ <Vi')
Am ey = e Xalteerlx
T Y€ o Tim@EeO)t
(R-2)°
(=-6) ' A
R Y W A EIC B VAT
-gr) " e
6.9A
Case B ( ¥ >) —
WH() - ~hx x,’; [?=€li-8)l] s + .(- -B): I d?
€ * i/wz(ﬁw)}"‘ 2 xl! xSl
+I Xy [x(Aaths)+ 2 Ws [ d3 ,




Ha

Case B (JZ > iy -4 >0)

S [2= @z-0)° &-8)*
%%rj&) . ocax XplE@or] 5 [
g,

o [igz (var0)]% 2 : I,', Qx._/].,dz
+ " ‘[
(J-E_gi,,,):. ‘3 ("1 +“/L ar ‘/\/ ] d?

- [ .
] X [ (A=A, +2A6) + 2 (Wo-2w)]d)

Case B (\}Z‘— %")J}‘)

" z =-86)?
gﬁ(ﬁ = ~hx X [2==-0)"] o + f

a {fwi(ﬁfe)}'/’ 2 xl;.lx./].,dz

Wr-29*
(- &=
)

G, -x [2"—ﬂ-s -%z Ws ]d?

(h-az 2
* i Xiy e (s =N, +205)+ 2, (wa-2we) [

6.918
Case C (J}‘ > \m_gi‘)
27 chx X [2e@z-07] o (=-0)*
== = w N .
= A C o Jhex (o)l 2 2 X 2=, dE
3, (-2 )
AR S 7T R PENYS ¥ Y AT RN
(h-2x)* 3. +a=:z(ws'2ws)]dz
2 ‘
+ L x; [x(JLS.__/L,*+2,/L5)+ %-}(Ws-;l,./“_ 'ZWS)J.JZ
Case C (‘E"“—i‘>J?,)
vz-9)* Wr-3=)*
a7 cin Xt [Z2=Gz-0)] ? y i
= He = pol Z:ﬁ = 0" 7 -4-(“3*,; 2%, df T !x,, [x 24, -5, W ]d7
.ax )2 ]

+ f g [ (A -+ 20.) + L (W20 ] dF

+ j -X;; [X(As.ﬁkfz-ﬂs)"' %1.([«/3 +'«/,,—2w5)lol§
) ¢.9¢
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In these expressions JQJ is given by (5.9), and W,

in case (b) :

by (6.4).
Now consider J(@}

Case A
X (v=-8)*
ar 20 X l2=@z-00] - . .
T He = -7 75 i:rz (ez+6)1* 2 +!xiz{ét(’*'*‘-l)*"m"m’)}-‘”
6.10A .
where
o, amE (= +vE) O { (ealE)s 8 vLEw}
b= by s al {Ez+E)*+0%}" Fi ! PE :
6.11A
Case B
2% . 2 B0 o [2= @00 o
? \/{(Ej = - X = {A'\ri (G+e)}'lz' —2'
vE-8)*
Ll N S R CURY B A& B W b
3
+ f xz; { &:. (L, "'Ls) + % W, + x* (-ﬂ-z +~/L3)}d?
£ * t.108
where

23 (v +\3) o "
RIS = e A L T s

- X (-2 +06%+X) } (€ =3,4,5)
=z +7-6=x2)*- A?z}'/"
Case C

6.1l B

?

T He) =~ &8 xn[h@—-e)l‘] T
T VB fhiE (e8]t 2

vE-§)* '
’ f xl; %‘(Ll‘* L:.) + %t (‘/L' +JL1)}JZ

g,

- {

f Z. v
L {201+ 3 1, + (g ) FlE + | X {2 (0 L) £ty Joe i
&

6.10¢
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The behaviour as g-—- O , required for JZ @ in (6.6),
is similar to that for X(%7)= X, - Thus as g -0
(6.8a) and (6.9) give a finite velocity for case (a), and

(6.8b) and (6.10) give a =~ finite velocity for case (b).




§ 7. %‘g,a:t

Asymptotic behaviour of

as tT-» O

( X = Xox

{; Z‘: £7 -{z

order of operations

).

We now examine the behaviour of the
as <T-o0 .
since we assumed <T small to derive t
boundary condition (2.2b).
estimate of the velocity perturbation on
First consider

X,2) =X,

b
behaviour of  § G; d% in order t

given by (5.3). There is a source of no

Further, since

; for =z<0*

2e

dE

fyev

expressions for

This involves no further physical assumption,

he épproximate form of the

a-?.

represents an
the airfoil |
we need the

o deduce that of a@

n-uniformity near ¥=-s ,

and a direct expansion of the integrand for small =T is not
adequate.
We split the range of integration at s & , where &-0 as
-0 in such a way that %% = O . Thus
b g~ 5 s+&
g xo; G.: AE = ( y S-oS S‘s-S )x“ G‘: d¥ Z__'
For the range (s-8,s+3) :
'_kl - o 6") W‘_ = Ml. . XL. = O(,
( » fl+,u‘}/" {(JE—\E)"+8"+X§}V" )
E. = w (I+ O(a‘)) F = ‘o"ﬁ /—":—:’;‘——-} (1 +0aY)
c L+o(a) 1 |1+ 2EE-E) |, 2

[ (8715

¢ T T ALY (JE+E)

W;) t gt ¢ T G

-

For the ranges (o, s-5§) and (S+$,L) ;
k* = 0w , w, = O(as)
E. = w + O(E)

F. W, + O((%-) z)

[« Y. 4 =
2=8& —0 as 0.

.}

Hs.
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. - [1+0( { . QJE(JE—JE)W,*&_M.}
‘ b ¥ (JE +r) W5 &) 4es © VT+VE
Thus b
[(x.cda = g + g 12
where

(313

90 = (5 o HEE) - w)dx (v om) |

ﬂ.(zl - be w; JE -8 3
‘ o O3 2J§(JE+J§)((\I§-\;§)‘+6‘ * J'H )JE(H—O( )

Now by expanding and integrating

g = Xy (e-x) X (1406) + O@) | where XexXil3s),

2s
and
@ _ acf _ LUE-RIE)  (° Xyes) - Xf) 4
. = 3 { X, ) foﬁ( = ) +§° —f?s—_\ﬁ_‘— &
- [" Xy Y g 8 @
o (V¥ +\§) 9" QTE +(3 +O(&3)} 3
where
o S Xy 6" ! d§
3 o [E+EP el {(5-G)lrett | @8)% 00 r AP 28
@ 5 Sb 1 e G 2T (J5-%) +6° d¥
1 = ‘ ) WE+®) [{Eew) 0T L (5-vE )T BFIGeNxIT2 2%
To deal with 3?” , Write

xog (_i) = xng ("S) - (E—S) xo;(‘S) ¥ (E_s)l %(-E)
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b

c}f“)=(|+0(e‘))_;{ g - = dE
J(FE+){ (JE-05)"+ 07} (3-8 )+ 820X 1] 24E

b
' dx
g, T+ {0} 2 1

b
. { - ' 4 (Vb-v5) V3
The second integral = go (m, - t) N‘s'-J'fl% + ZL.S Paa(——(?zi—’)
The first integral may be expressed + O@&)
b
g 1 JE - 3 d¥
25 { (-8 )5+ 0 {(€3-E ) 024X 20F

L lbs (Jo-¥8) ) + o (1)
Ls &3( X* (VL +45) >0

To evaluate this, the integral must have its range split twice;
at s x § where §>0 & > &, as T-»0, and within

this at st §, , where 8,0 , 7K §, K& as T- 0,

’

Using this device, this last integral may be shown to be-

& .
3{ .( ' J_E_ + = sddd + 0(”
) 255 (JF - 3) I -vsl 2y WS A s) T>o0

so that collecting terms

@) . a) ° 1 _ i | L Vb 5
3= ('*Ow}) X‘{ g((ﬁﬂ's)" A.S)NENEIIE stf"ﬂ &S

o

b 3
2 ¥ ! KL
A, (=s) L 2VE (VE -VE)|E-vsl 2% .

The device of splitting the range of integration twice may be
a)
employed to show 9: = o(t) . The expression for
4)
ﬂ( was only derived for xoz = | ; for I,)Z = (E'S)

(8

it may be shown by similar analysis



lig

g = Xty (5 )</+om) + ofa)

and for xog = (?—SFX(-EI

¢ = % [P xe) sp(s)dE + 0@

Consequently for general ;rog we have

)

9. = X, >_<;{ ;’:—(_S) +tg - "E(”(};"Fs)z M m)}
_
=

_ b
+ X0 %Y. sqn(3-s) d3

- XO;C-S) X Pog(

Thus collecting terms, using (4.1), (5.1), (5.3), (6.2), and

simplifying, we obtain

kN ;2

‘F PR
LA\P=-57 — XK 1
(

ol

2wa B0l - 0 €5 za(a,j

T ?Z y=t S)

! - | ab-s)->]
+-X&bﬂ.2a[ 23*&b4)&3-7§;7_~

— b - S-Q-X)]
&73(\: S—-x
b
+ & X(o)(-2bs) +2a§(L-E)%(—‘s)san(f-s}df + o@l,
This agrees with the result (4.4) derived using the other order

of operations.
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Now consider X (Z,2) = X, for z > 6% f;@ is
given by (5.‘4), so that we need the behaviour of 58(5) given by
(5.6) and HE) given by (5.7) as © -> 0O . As explained

in &4 we need only consider case C.
Although the expression for a@ looks fierce it is really
quite tame, because there are no sources of non-uniformity as
T > O . One can derive asymptotic forms of M; , H. .

but it is simpler to return to the definition of B as a

double integral. Straightforward expansion quickly yields

b
2 X O'(\:"E) by
e O S v ol
T
We now write (5.7¢) in the form
w=-8)* z-6)*
2Ta \H 2% X (=)
— ) = = a0+ : A, dd
K {4 (=-0)1" g Xpy afl dd + ; X,y oty

%

-

Straightforward expansion gives

2.
X3 aAs ¢ + g Xy a_/\.,‘_.dz .
° 1.5

(=-8)?

§ X, aN; I = - X, = & 2 %’ + 0@ |, (i=1,2),
S

We now examine

(M, afsaz (A gien by 59)

°
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There is a non-uniformity arising from near Zl . Accordingly
we split the range of integration at z-6 , where
&§ » 0 as T>O0 | but &>>a and £{,-2+8>0

For the range <z—8,Z.) s
®, = O k*= Q)

? b

F:” = sm ' @, + OE) E(‘J = sn'® + Ol |,

aldl, = ~a N+ an? + 06

where ©) i

DY |
= — sin”' @, - &
: e (e »)

and

“ &, {_ “ (z-3-0%)(= +32 -0 = X7)- 426"
22 § (m4E)= 02} § @2 E)R 07} Q- 011 2 4 2- i) 422 b

For the range (o, z-8) ,

- X3 _ a .
® = tamer - OB , k=00

Es(') = F3(” + O((%D = &4 t O(é)z) ’ OL-/L3 = a-'/L(zn"'O((%}z) .

Then, retaining terms larger than o ( 6_) ,
% 5 ) 5 & _)
U x, ez = = § x,an®ar + goxos al, dI +o@
o z_a
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'Z' © % &3
Now S Lo “--n.-;).dz = xoz(’-)g 80-./1;’.&2 + O ()

z-8 z-

and with some effort the integral may be evaluated:

4 } ) i
X = Xa A F AT e Rl
& z

z-

—-—

where A, = A, (=) .

For the other contpibution to (7.6) write

gl s s
T ' (n)
g Io{ a__/]_: AZ = Z g xoz OL_/L3 d? s
[ n=2 e
where
o ¥ x, o ) 0 L 0 X5 ) d
& d 3-8 -0} T Nz-2) -0 -X,
= ————.5———— - - 1 7 T 21l — ’
S: a N, & So {(ﬁ“m‘-e‘}"‘( L+ {(\rz,m‘-a*}’*{(m\l?)-a-x;}’)2-.;
' I E R LS 29iA
g a N 42 =f ey B: (\IE_-J?H('&-\I?)—G-X;} &
o o 3 1@ =01 § (@)= 01 f @ et P B 07 R
-Zl gl 2 1.
Vom0 (e B T { G 0 i 6 P e e X
2, &)
§ a S &3
s, 1
- Xoz B 2(z-2-06%) d?

eI Y TR RS L R Y R B o 1 [T s
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- ¥/ sfraiﬁht&rward
() ) nfeqrats
“The A N may be evaluated by expansion and integration but
! ] L4 A y y/\
the _/\e." , _/L(f‘ (nfegals require the ranges split near ¢ to

evaluate certain items.

Collecting terms we obtain the value of S; xo;aJl_-, d¢  from
(7.6). A similar result holds for g}'{oz all, di ; and collecting
the various contributions and simplifying, (7.5) gives j"{(o) .
Finally we add the contribution 09(;_) from (7.4) and .lo,_ Io

from (4.5), to obtain

2R  ? = a Xz} 2 a’[(bvz)— <]
T 3% y=< * : ) €03 (\5"'1)

& X, G {(orelly L (el

(b+=z)
Lo~ Rl

x b
+ & Xel.2bx + & | XE) h(bi2)dr + af&:m 2(b-1)d¥

where X (2 . (3-2)" = Xg — X, (=) - (2-2) Xy (=),
Note that this is the same expression as for =< O , (7.3)

and it agrees with (4.9c), a particular case derived using a

different order of limiting processes.
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)
§ 8. Asymptotic behaviour of 3‘2 y=z _as Tt —=> 0O

( X = Xz +12! Xt

2 x=xoz+71Il§ )

One may next proceed, in a similar manner, to derive the
asymptotic values as - O for cases (a) and (b) treated in
§ 6. However, it is possible to use the order of operations

0{7 f.c '[Z .{z to obtain these expressions, and this
reduces the effort required. The approach is similar to that in

€ 4 and most of the detail is omitted.

First consider X (2,7) = (X * me) + (x,;' +ZI.T)I7] . 8.1
The value of %‘Z y=7 has already been derived for X, + X, ¢
in § 7. We present all the results together for convenience,

and begin with those for =z <O

X : 2mae 2 = X, a{2tn 2 lb-sP-="11 ol

oo T 2z In-_--c ©0 b-s

b

ey S g
+ ofal
& [(b-sV= =]

&3 b~s
s o _ & [Q;~$)—>¢ 1
+ o 90-3 m] G‘ZS(E .s)e:j

= o [25(b-2s)~ 3 b 4s? +7s\§]} + 0@l |

8.2

—
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For =>0 » as in § 4, the analysis is quite different
from that for =z < 0O , but the results are the same if one
recalls S =-Z .

If we now regard (8.1) as a particular case of

o
W

1(3,7) = X, + 71 X3

.4

we may put the results (8.2) in the form:

2Wa 2@ e a_l[(\,u)‘.x"]
T BZly=t 24 { _X“(z), {)0-3 b+z
+ X, ((b-*z)ﬂnl o Lk [S:*:)"" I e ﬁrﬂ b:: *: + 2z)

+ x (z)(c‘(h*rz)‘ﬂati _%M’J + o (b+2z))

btz 2 ’k_'l

. I.‘; (z](g;,_(B*z)l‘&nj &L (btz)on] &-‘eoj (btz)= x

+ Z(35 +7bz +4.z1))} + o@)
8.4

The expression is valid for all = on the airfoil.

It is now a relatively simple matter to extend (8.4) to the general

case (8.3). The reason for this is that it is sufficient to
find B—i ye e for

X(z,9) = @273 @=) + 17 X0;2)

where

(=20 ¥, Q) = X, = X! ~ @z,
d o X () r X - XG) - @-2) Xy le)




I2s

. S
Now the factor (z~%) eliminates the non-uniform behaviour
to the order of approximation in @ required so we may use
1@ x; xﬁ:({; . The outcome is that we must add to (8.u4).

b
& | X (0i2) C2bs) + 2] (b-3) %, €5,2) squ(5-s) d

- %'0;z) sk’s + & g'“aeﬂ-s,z)(\,-z)‘s«sncs—s)di}

when z=-35<0.
and

& {%(0,%). 2bx + 2] (b-5)X(52) +4 [(b2)X (2;2).42

s X0 o v o [EnAG-DW + o[ Xe2005H|
) when =z >0, 8.5
The two expressions are different forms of the same function of
=z , and they agree with the particular cases (7.3), (7.7)
obtained using the different order f; f-,, f7 L=
Equations (8.4) and (8.5) give the velocity for a delta wing
of diamond spanwise section, but fairly general chordwise section:
there are limitations in that we assum .«g==5%.x; and
I,';I = gg, (I,';) are finite.

A delta wing with parabolic arc spanwise section

kS
XU .9) = g+ 7 Xu 8.6
may be treated in a similar manner. The resulting expression for

the velocity is .
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AwRaA  d - . brz)- x
T "_z;':i = 2a { X,; @) 'Po’j & Lbrz/-x' ¢ 1

Tz

+ X (e oy BT gy bz )

+ xu (=) O'z((\o'\'Z)l'eag a_‘[(:::)’.x"] T 5 (35*+ I0bz 'réz"))

+ le;lz) %‘((51-2)3&3 a"-[(:*z__z_bfl .3&3 brzex' | 9.0%hyz)

b+z-x'
+ (%\:’1— g_f\;"z + b2 +52%) )}
z
+ a{x‘,(O,z).Zsz + 2 gb% (-¥ z)(b—?)df + 4 _( 3 (3,2)(b4Z)d7

+ 27 3—_553351(0,2) + S x, -%,z)(b-3)° d¥ +5—‘J‘x(?z)a:+!) JZ}
%.7

The equation (8.7) is valid for all = on the airfoil, and it
checks with the expression obtained using the analysis for =z<o .

As the results (8.4) - (8.6) apply for small T it seems
natural to relate them to the transonic equivalence rule [ 8 ]
which applies to the non-linear transonic small disturbance equation
and is valid for <"c small.

At this stage it seems worthwhile to point out that although

the expressions for %Lt have been derived for *T—>0O ,
. . . - ao
our expansions are essentially in terms of a = = .

The equivalence rule relates the potential @(X,g,z) to a
harmonic cross-flow Pio .Y 32) in the (x,ﬂ) plane at

z as follows:

P, y,z2) = Pap (%Y =)+ ﬂ(")

and it further asserts that 3@ ) is the same function for all
slender bodies.
We first calculate the respective cross-flows. The boundary

value problem is
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kS

Voo, = 0 |, @ -0 as T —
On  y=0 ?y = O %] >o(btz) , ij =T 2—7{ el < o(btz)
Thus
T 32 = 3 ((m) X (=, 5) |
T 3z ly.o - 2z ) o Chre) =7 e’j I~ "7 .

For the diamond cross-section

2t e, - 2 2 P 2 XY (bre) < (haz)i]
g | 7 e gl v o Xy gl
; 2 X, — g |BTZ-%|
+ xoz(z){o'(b+2)'éoﬁ[°‘(b*z)—x]—20’(5**2) = lay M”x.’
+ Xt @i %‘(b+z)‘&3 [o¥(brz)onr] ~ ’3{003 .(hg;f
-3 ot(be) b gg
Also if y = T 5(2) (l 0"[;‘4—:)) gives the shape of the
airfoil ,
xoz = 2 ﬂl(z) » x; = -2 JZ (L+Z)
and the area of cross-section S&) = 2vre el . (b-t-z) .

Note that g(’) must have a factor Q:i-Z) to ensure
finite slope at the tip.

For the parabolic arc section

T | - & (0,61 + (h12) X2) + 0 Tore X, o) +%('=+=)’Jg;<‘=)€;3[omz-ﬁxﬂ

T

Y=o
btz-x
+ T,,(z) ( 2o (btz) - > fdj b:z+x )

b x . 2
+ xzz(z)( 3 ‘[ b::+x 3(—203(51‘2)3-#:: o—?(b-nz))) .
¥.8b
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>
Also if y = é(z) (/" "o-‘(b+z)1) gives the shape of

the airfoil

, . 43
Io; = 2 ‘e (z} N (=3 ng = - 2 d= ( (b-\z)")
<
and the area of cross-section S@E) = 3°°% €e)  (b+2) .
lg(z) must now have a factor (b1z)* to ensure finite

slope at the tip.

Now integrating by parts
b

bz (2 *,(0;z)r b X:(o;z)) * S (I:.-E)(BEU(-S,Z) + o (b-3) x;'(-x‘z))dg

+ 2 [ 6D (2 %@2) + D)X @) &

-t g" ")) -S"@)  _ 2 gz ') - S g,

o Z+3 o =z-23

—h(b+22) Xoo - 2(b+22)o X, -2 (b*+ &bz + 2% X% ,

and

2bz (%, (0,2) + 4 o b %, 00 Z’) + 2 S {952 + & o (320} 8

+ 4 g {(Bf?) xo(?,z) + (L;Z) c"‘i‘z(zaz)} d¢

b ’ = g ‘ .
= - 4 f SY)-S@ . 2 S S'G) =S @y, + 4 X, (b+z)

gT =z +§ oT z-3

+ ot xlz (3‘3’. + [0b=z + él!j + 13 o* ‘xﬂ.,z (?—3_ (b__‘_z)3 + —;: EB
+ l—_,:_' b2 + b=+ “%23)_
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If we now insert these results, and (8.8) in the expressions(8.4),(8.5),

(8.7) we obtain

2P . 20°_ Wi + e ¢
vz LJ-_"I: B 9z . vz oz
Y=o
8.9
for both cross-sections. In this equation,
"b g - .L.. ] x
§£z‘° = Ix S (=) {bg T ,
2@° ! Y > S-S
Z s miTe iyt ) YT
-2 gz sl - s"=) JZ}
© Z"'Z 3.10

~ 2
\ and

for case (a), diamond

£ = o X' (56-Skae32) eXi =-24. {bfz) .ila

for case (b), parabolic arc

i - iy’ gl
b o= ox, 3(3vise) ko ok =2%(E)

Now (8.10) is the solution of (2.1) for axisymmetric flow derived
by Cole and Royce [e] . Consequently if E=0 , as it
does for a wedge or parabolic arc chordwise section, with diamond
spanwise section, (8.9) corresponds to the equivalence rule
developed for the nonlinear transonic small disturbance equation.
However, in general 'g ¥ o , and as the terms in (8.4) and
(8.7) are each derived by two substantially independent ways, which
check, one is prompted to examine the proof of the equivalence rule

to see why it does not carry over to the equation (2.1). Before




embarking on this, we note that the choice of @ and b in

(8.9) has yet to be made. If we choose b  such that -%E; yeo = o)
z=0

which is the consistent procedure, then we lose transonic similarity

because b will depend on @ and hence on T . An alternative

is to take the sonic point where S'= 0 » corresponding to

the Cole and.Royce procedure for the equivalent axisymmetric body.

A reasonable choice for @* would then be

(1,1 = (_Y+l) ’_3:9 )
y=

2=

o

o
which implies that ac is a function of c® (Y+1) T .
The Cole and Royce choice of a does not seem appropriate as

it is associated with the flow on the axisymmetric body, and not
with the flow at some distance where one might expect some relation
to the planar case. The suggested choice leads to an expression

for the reduced pressure distribution of the form

£ ]
C = g:_l)__ (~ 2 '_3_? ) = 6'—-;(2)-5) + 0(6-)

13 ’?_‘1,3 3z.y=c.

where & = (Y+1)®x”™ & , which is consistent with the
similarity rule. With the Cole and Royce choice of b one would
expect to reproduce transonic equivalence, apart from a different
value of & . Why, then, does it fail to appear?

One of the main difficulties of transonic flow is to assess

the cuhulative effect of the small non-linear terms at large distances

from the body. In their accounts of the equivalence rule, Oswatitsch

E 9 3 and Guderley [‘l:} use physical arguments.
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Heaslet and Spreiter [:3] proposed to give the rule a better
basis. Retaining the nonlinear term, and taking account of shocks,
they produce: an integral equation (equation (2.7) of Chapter I).
Then, by using an iterative method, similar to that used in
linearised theory, they produce a term which is expected to be the
start of an asymptotic expansion. But does this straightforward
iteration procedure give a solution of the non-linear equation?
To set up the transonic small disturbance equation it is necessary
to scale the co-ordinates, Cole and Messiter ['0] , and it
seems likely that this should be done when assessing the contribution
of sources over an infinite region of integration. The problem

of assessing the terms in the integral equation of L2] is then
rather more difficult.

An illustration of the possible mechanism arises if we apply
the Heaslet and Spreiter method to the model equation (2.1). The
integral equation is obtained as before, and we have to assess
the value of the integral. For simplicity consider a rectangular

planform, wedge chordwise section, and rectangular spanwise section;

@w = T j‘ JZ S“"d7 @(E) , with SD(E.} 3\V€h L:] (2-3)_

!
The equivalent-body potential is P = et S‘JZ ¢(E.). , with
o
I now simply Jz?+ﬂ‘ . The integral term of the

equation is an integral over the region of the plane = = constant,

external to the respective bodies:
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S S

where (v, 8 ,Z ) are cylindrical co-ordinates corresponding to

(x.y, z) . This is required to be smaller than the terms
retained, i.e. < o<T . Consider @, — Py for large
T, ;

Pw ~ Pe

= 2te g 2 L r e ( ez +.. dy
o A-g Ao -O'{ (z+z —O—.;‘_T'z).ikZz_}Vz {(z.,,_?,-“.?'_l' )i!l,zz
where € = - 2 7%, ¥ 71 . Thenas T,— oo there
is a term o¢ Va* » and this gives the possibility that

T o« o which would alter the iteration.
It is, of course, no proof that the range of validity suggested
in [8] is wrong. The model equation does not describe the physical
situation at large distances from the body, even if the above

analysis were made rigorous.
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§ 9. Conclusion

The original aim in developing this method was to provide a
relatively simple means of predicting pressure distributions for wings
whose aspect ratio, though fairly small, might be beyond the range
of validity of the transonic equivalence rule,l:3] . Two particular
spanwise cross-sections for a delta wing have been considered in
detail. Rather surprisingly, for small aspect ratio, the results
do not agree with the equivalence rule, and it is far from certain
that the disagreement stems from the use of the model equation (2.1).
Arguments have been put forward which bring into question previous
estimates of the range of validity of the equivalence rule.

In an experimental study of the equivalence rule applied to
elliptic cone-cylinders Page (11] obtained small differences between
measured values and equivalence predictions, but there was no striking
variation with chordwise station. However, consideration of this one
particular shape seems insufficient to decide the issue, especially
as special conditions apply at the shoulder and the tip.

There is a lack of published experimental work for direct comparison
of the results of the present method. This is understandable if one
assumes the transonic equivalence rule has a fairly large range of
validity. However, it should be noted that the equivalent-body of
revolution may have a shape outside the range for which axisymmetric
theories have been checked against experiment. This factor considerably
reduces the value of indirect comparison, even assuming the airfoil

lies within the range of validity of the equivalence rule.
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Although there are a number of theories which in principle can
be extended to three dimensional flow, published work seems limited
to that of Spreiter and Alksne ['Qj] . This method is quite involved,
except in very particular cases; for the elliptic cone cylinder it
disagrees with the equivalence rule results, and in the other cases
there is a lack of comparison with experiment. There is no case
suitable for comparison with the present method.

A further point of discussion is the relation of the three-
dimensional theory to the two extreme cases, two-dimensional flow,
and axisymmetric flow. Starting with the model equation (2.1),
there are two stages of approximation. The first is the assumption

T << , & >>T  required to develop the planar, or thin wing,

theory, and it excludes the possibility of recovering the axisymmetric

case for which o~ 7T . The second stage occurs much later when
we assume ac =0 as T->0 . Immediately prior to this
we may let o - ©0 and recover the two dimensional case [5] .

At this stage we could also employ computational methods for finite
values of ac~ , and allow small variation from the delta planform by
modifying o . Different planforms could be treated using similar
analysis. However for airfoils intermediate between the two extreme
cases, the limitations of the model equation would be pronounced.

As a final comment, one would expect the assumption that the tran-
sonic equation changes type at the plane z=0, imposes severe

restrictions on the accuracy of the method, and even for small aspect

ratio progress probably depends on the refinement of the model



135

equation, rather than the calculation of further terms of the

asymptotic expansion.
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CHAPTER IV

THE PARABOLIC EQUATION APPROXIMATION IN TRANSONIC FLOW

In this chapter, we return to the first type of regional
linearisation approximation mentioned in Chapter I. The
aim is to determine the reason for the quite good agreement
with experiment of Spreiter's 'local linearisation' method,
(I §4). We take up the suggestion made in Chapter II §1,
and reduce a fairly general form of the parabolic approxima=-
tion, to a particular boundary-value problem encountered by
Maeder and Thommen in the -method described in Chapter I 6§44,

This provides a mathematical basis from which to assess

Spreiter's method.

13d
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1. INTRODUCTION

Among the various methods for predicting the surface pressure on
two-dimensional airfoils for near sonic flow, the method of Spreiter and
Alksne [1] seems at first sight the most attractive. For typical non-lifting
airfoils it gives the best agreement with experiment, but unfortunately it
has the serious drawback that its mathematical basis is suspect.

The method may be described as follows. The transonic small dis-

turbance equation for sonic flow

Q’yy =(r+n§ § (1.1

is approximated by the parabolic equation

Pyy = P, (1.2)

A being a constant to be chosen. The boundary conditions are taken as:

QD 7 gpy -0 ag 2z » -, and as y =+ o ’

F(z) 0gzg2 as
- y—-+0 . (1.3)
Py {o 2 <0

Here (2,y) is a coordinate system, fixed relative to the leading
edge of the airfoil (0,0), with z positive in the downstream direction, and
parallel to the undisturbed mainstream. The flow is assumed to be inviscid,

and the velocity at any point of the fluid is derived from the potential
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Uw(z +4§), where U°° is the speed of the airfoil relative to;undisturbed
fluid upstream. All lengths have been made non-dimensional with 1, where
21 is the length of the airfoil, and F(z) is the slope of the airfoil.
The parabolic nature of equation (1.2) allows no upstream influence, so
only the regidn z £ 2 is of interest, and furthermore it means that the
flow in the region y 2> O is independent of that for y £ O. From this
independence, it follows that one may treat lifting airfoils by the theory
developed for symmetrical airfoils as noticed By Randall [2], and this is
the reason for the boundary condition <Py -0 for =z < 0. However, such
a condition is physically unrealistic for non-symmetrical airfoils, and
one hopes to be able to relax it in later work.

Suppose P(z,y;A) is the solution of equation (1.2) satisfying
the boundary conditions (1.3), then there remains the choice of a suitable
value of the constant A. Maeder and Thommen [3] take its value as
(v + 1)?)22(2*,0;K), whefe asterisk * denotes the value at the sonic point;

determined from {,",\Z(z*,() A) =0, In

a sense,
one cannot obtain good agreement with experiment simply by choosing another
value. To overcome this difficulty, Spreiter [1] takes A as

vy + 1) QDZZ(Z,O;K), and then uses this in the formal expression for

qu(y = 0) to obtain a simple differential equation for QDz(y = 0), Thus

A is held constant until a formal solution is obtained, but is then allowed
to vary with =z.

The justification of this technique consists of rewriting equation

(1.1) as



Pyy - 2P, - {(Y + g, - x} ¢, (1.4

and then applying generalised forms of Green's theorem to obtain

Z 00 z
<P=-zx'1g F(E)o(Z=0) .4k -1AS sz o f.d} (1.5)

o

where O = 7»1/2 {’-Ht(z -E)} -1/2 expl-A(y -2 )2/{”(2' -¥ )} ]
and f = {(Y + 1) @zz - )\} @Z .

Apart from neglecting possible contributions from shock waves, equation (1.5)
follows from equation (1.1) without approximation. The argument is now that
at any particular station z, by choeosing A = (y + 1) q>zz(y = 0) we may
neglect the double integrai, and still obtain a reasonable value for

q@z(y = 0), a de?ice which is most successful when applied to the 2z
differentiated form of equation (1.5). Applying this argument at each
station z, one obtains the differential equation for @Z(y = Q) mentioned

in the description of Spreiter's technique. ,

Although this justification avoids the obvious inconsistency
displayed in the initial description, the validity of the assumption that
the contribution from the double integral may be neglected, is mathematically
no more justifiable than holding A constant and then varying it when con-
venient. It would be more satisfying if A could be treated as a function of
z throughout the analysis. Then the only issue would be whether equation
(1.2) with A a function of z, provides a reasonable model of the physical
situation, and this could be assessed by comparison with experiment. Such a

treatment is presented below.

o



2. GENERAL ANALYSIS

We consider only symmetrical airfoils, and formulate the problem
for - o < y < o so that we may take over the analysis of Maeder and Thommen.

We take as the equation modelling (1.1)

where K(z) > 0, so that we assume accelerated flow in the region under con-

sideration. The boundary conditions are :
¢z,¢y—>0 as z»-oo , andalsoas | y | +o ,
gDy-F(z) as y—=-0 , foro0gzg2 . (2.2)
K(z) is to be determined by requiring

K(z) = (v + 1) u'(2) (2.3)
where u(z) denotes the perturbation velocity at the airfoil surface
gb l _ y and prime denotes the derivative.
zly =0
If we take z as a function of some variable § » then equation
(2.1) may be written

provided = K(z). For monotonic distributions u(z), K(z) # 0, and the

dz
dg

condition inverts to give 2

S(z)=g % . (2.5)

0
The boundary value problem pg@sed by equation (2.4), together with the
boundary conditions (2.2) written in terms of ¥ , is that solved by Maeder

and Thommen [3], in the particular case of a sonic free stream. Thus

Iy
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P ly o= " ﬁ/z g P(2(6)) {E- ¢t} V2 at
o}

and

13
%g =0 = -n’”a{ o) 82, g Fr(z(t)) {¥ -t} 22 (t)at = 2 (dz)° (2.6)

2z |y=0 at
0

In the particular case g% = A this reduces to the result given in [3]. If
we now use the condition (2.3) in equation (2.6), and write the whole in
terms of u(z), an integro-differential equation for u results. Alternatively,

we may regard z as a function of E . From equation (2.3)

% 2
(v + Du =g (g%) ak | (2.7)
g

and substituting in equation (2.6) we obtain

az) (° faz) 2 -1/2 RSN 1/2

3?) g (Ef b = -(y + Dm {F(O)-E + SF'(Z(t)){E—t} 2" (t) dt}
£ o

s _ dz _ ' cr s .
Writing = c17 ' T " 028(37) it is possible to absorb any constant

o ———

factor on the right hand side, and obtain the equation in the form

” -

/. 7 o~
e ((worte - 2@ Q6D pmw e
7 2 {- _t}l/z
H* 5 17
T{)(2z). 1In this case c 3/2 =(y+ DTn

2
and €41C5 = 1., For equations such as (2.8) questions of existence and

1/2

i

where we have taken F(z)

uniqueness have yet to be settled. It is proposed to obtain numerical
solutions by an iterative method similar to that used in the proof of ex-
istence for a linear Volterra equation.

For later reference we express u and z in terms of g{? )

7
(v + NDu = <, g [g'(t)]a.dt , 2 = g(7 ) . (2.9)
3*

142
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%, THE WEDGE AND PARABOLIC ARC ATRFOILS

First consider the case of the wedgeT for which F(z) = F(0). The
solution may be obtained directly from the integro-differential equation

for u, using the conditions that the sonic point is at the shoulder (u

0

at z = 1) and the stagnation point is at the leading edge. (u = -U_at z = 0).
However, to lead on to the method in the general case, we proceed from equation
(2.8). Putting g'(m) = H(7)/ 71/2 it may be easily shown that

Eg'(t)]2 dt by ¥(% ),

3

- 7
H(/y) = - {3 log ('7/7*)} 1/3 , and if we denote g
then Y = {3 log (’7/’7 *)} 1/3. Using the boundary conditions, it soon follows

that
S'_Y exp(-v3/6)v dv
(1-2)= ‘-2

2 ; , (ocz<1) . (3.1

S exp(-v’/6)v dv
Q

This relation has been derived by Thommen (private communication) but it was

regarded as the solution to a different problem. The upper limit of inte-

gration o« is strictly only valid as the thickness ratio T - 0, and Y , which

is negative, is related to u by equation (2.9). The right hand side of

equation (3,1)'may be expressed in terms of the incompiete gamma function.

Our interest lies in the pressure distribution p(z), and for ease of comparison

with other work, we use the conventional reduced pressure coefficient

~ 1/3 _2/3 2 ~ 1/3 _2/3
= ’ s .C = 0 . = -
Cp (y +1 ) T Cp where P p/l'2 7 U Now Cp ?u(y+1) T
= - 2n—1/3Y y so that equation (3.1) becomes
(1 - Z) = I(-ES- CP 3 3) (3-2)

where I denotes the I(x,p) function of Pearson's Tables [4]. The plot of

~t

Cp against z is displayed in Fig 1.

T The wedge 18 reqarded ds the Sorward half of an arrfoil »length Rt.
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Fujure. 1 EP('I-) for a thw wedtse \:ro{ile,
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Q 0.5 1.0
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—_—— - Spreter  [1]

------ Guderlej % Yoshihare [BJ
P\—ngn," me.H\od .

(o] Expenrﬁent , Knechtel [13] , T=0-079



Now consider the parabolic arc airfoil for which F(z) = 2¢(1 - z).

Equation (2.8) reduces to

7

7
]
g'g Eg'(e)]z.de + 1/7'/1 = S -—5491—;72 .de (3.3)
” {7 - o}
. . 3 2 2.2 .
where in this case ¢, = 2°(y + 1)°T/n. As mentioned already, we proceed

by iteration, regarding the right hand side of equation (3.3) as a pertur-

bation term. The successive approximations {gn} are given by

7 7 g (@
' ' 2 _ -1/2
gan Lg n+1(e)] 48 = -9 +§ {? 9}172 ae , (3.4)
7n
and {7 *n} by 7*
n
-{%*} -1/2 +g g',(®) {9- e} 12 40 . (3.5)
(o]

It might be thought that the wedge solution would provide a

s

suitable 8y but the position of the sonic point precludes this. It is better

to use a value of g'o(37) corresponding to the Maeder and Thommen approximation

L3], which is simply g‘o(;7) = 2, Then, from equation (3.4)

7
&9 87 8.12(9)’de=_{7}-1/2+ gﬁ{y-e}”/‘?.de

7*
where B = 2. In terms of {_Yn}
1/2
ay
1 -1/2 1/2
— Y, = - + 2B
(d7 ) 1777 7

Integrating and writing w = B 7 '

Y13/3 = log éﬁa - bw + 2w + bwt - 2w,
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Since B = 2, w* = 1/2 and so

g8'(%) = CH A 1)7-1/'2 { 3(log by - 87 + 872 + 3/2)} -1/3
Note the formal resemblance of Y1 to Spreiter's expression for 8 on the
same profile, equation (53) of [1]. If we adopt the unsystematic approach
of using g'o rather than g'1 to obtain z in terms of ;7 s then we recover
Spreiter's expression. A similar relation exists for the case of the wedge.
To continue the dtéeration, we must resort to numerical integration,
and for this it is convenient to work in terms of Hn(7) = 71/2g'n(7).

Equation (3.4) gives

7 , n/2
2 e _ 1/2 . 2
Hn+1(7) g . Hn+1(e)"e’ = =1 +7 g 2Hn(7 sin“a)da
9' o
n/2

Denoting >
g . 2Hn(751n a).do by Qn(7) we have

7

YEH = g {-1 + 91/2Qn(9)} 2 %9 = log (7/7*) + Pn(7) (3.6)
A

where

7 2 1/2
Pn = g {Qn (8) - 28 Qn(e)} ae . (3.7)
7

In terms of Y and Q,

- 1/2 y ,
+1 1/2 1/2
Hn+1 - ( dn7 ) 7 = {—1 * 7 Qn(7)} / Yn+’| (3.8)
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This ds the basic formula for computing. At each stage the value of‘7*

must be determined from

1/2

-1+ (92 q (g% =0 , (3.9)

It is impracticable to generate all approximations previous to
the nth to obtain each value of Hn’ and the scheme adopted was to inter-

polate in tables of Qn,iPn and use equation (3.8) to obtain the Hn+1

required to evaluate Hn The number of stations of ;7 employed was

+8°
varied as a check, and the results are expected to be accurate to 10/0 .

_2.22/3,

The reduced pressure distribution is given by Cp = -1/3Y and the

~
plot of Cp against z is presented in Fig 2.

TABLE 1
The Wedge Profile

z El(Spreiter) E'(Present)

p p

0.092 2.63 3.00
0.147 2.45 2.75
0.219 2.26 2.50
0.307 2.08 2.25
0.408 1.90 2.00
0.518 1.71 1.75
0.628 1.53 1.50
0.732 1.3k 1.25
0.825 1.14 1.00
0.900 0.93 0.75
0.955 0.71 0.50
0.989 O.h44 0.25
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Ffﬁure 2. 6? (z) for a ?qra‘aoln‘c arc Pro'File.
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0 0.5 1O
z—> 0
————— SPreil'er [v].
Present method .
o Exlaer\rﬁenl: , Michel et dl. [5]

T = 0.l
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TABLE 2

The Parabolic Arc Profile

z f -E;(Spreiter) —G;Present)
0-256 —la24 ' - 1473
0.394 -0.49 -0.91
0.614 0.46 0.12
0.799 1.15 0.85
0.964 1.69 1.4k
1.118 2.16 1.93
1.264 2.59 2.38
1.401 2.96 2.78
1.533 3.3 3.4
1,661 3.64 3.48
1.784 3.94 3.80

4. OTHER AIRFOIL PROFILES

For general profiles we must return to equation 2.8. 1In terms
of Hn the iterative equation becomes
7 n/2
2 y de _ 1/2 , , 2 .2
Hn+1(7 ) g Hn+,](9) T - 0D ” g ®) [gn(7 sin a)].EHn(731n a)da

X
7 © (4.1)
The equations for computation take the same form as for the parabolic arc

airfoil (3.7, 3.8, 3.9) but the value of Qn(7;) is now given by

n/2
Qn = - g ﬂ'[gn(7 sinzoc)]. 2Hn(7sin2a). do (4.2)
)
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We consider the Michel, Marchaud and Le Gallo airfoils, given by

n-1
X[1-0n3 2 maximum thickness aft (4.%a)
_ 2
N = .01
X (n(1 - E)-1] maximum thickness forward . (4.3b)
/(n=1)
where A = == .
2(n - 1)

If, as for the parabolic arc case, we use a linear initial
approximation gé(?;) = B, we have Y = B(z - 2*) = (y + 1)u/b2 , and a suitable
value of B may be determined by the Maeder and Thommen theory [3].

For the airfoil with maximum thickness aft (4.3a)

, Y ; n/2 . 2 y n-2 % 5
Y13 = 2% g {_ _5&4_ %(-n—’l) S (E-EM) . 2[37 sina.da} d7 (4.4)
i 2 »
7* 0 :

This may be integrated analytically, and using equation (3.9) to determine a

value for;,* , after seme manipulation we obtain

L n-1 L 2 .
Y13 _ 3A2[log(7/7*) _ 2r'(z)rl(n+‘l)(_[§2) L ] (r(z)r‘(nﬂ)} . ] (4.5)
(n-DMn-%5)\ 2 2(n=1) l Mn-%) 2(n=-1)

Now 6; = 2/TEV3 Y1 y 80 that this again is the same as Spreiter's result, if
67 is replaced by z.The sysfematdc approximation to z follows readily using
equation (3.8).

For airfoils with maximum thickness forward (4.3b) we obtain results
having the same relation to Spreiter's as those for maximum thickness aft.
Fortunately equation (3.9) has only one root in the length of the airfoil, so
that although the algebra is heavier, the method carries through in a straight-

forward manner. However, the linear initial approximation is not very suitable,

and to obtain accurate walues many iterations would be needed.
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5. DISCUSSION

The printipal object of this work was to examine the reasons
for the quite good agreement between the theoretical work of Spreiter[1]
and the experimental results due to Michel, Marchaud and Le Gallo. [5]. By
eliminating certain assumptions whose influence could not be assessed, it
was hoped that the theoretical method could be put on a sounder basis. The
consequence of this approach may be seen in Figs.1 and 2; the degree of
agreement between theory and experiment is less satisfactory, so that the
agreement achieved in [1] is to some extent fortuitous.

The relationship between the present method and Spreiter's is
quite simple. The latter may be regarded as a first approximation to the
present method, since it corresponds to taking the velocity as given by the
first iteration in the solution of the integral equation (2.8), while using
the initial or zeroth approximation for the associated value of z. However,
it is not a very satisfactory approximation, as can be seen from Tables 1
and 2. The excellent agreement between values of pressure drag obtained
from Refs. [1] and [6] is due to a cancelling of positive and negative errors,
and this cannot be expected for every profile.

There still remains the question of the usefulness of the parabolic
equation model in simulating the physical situation. There are three possible
sources of disagreement betweén tﬁeory and experiment: (i) failure of the
transonic small disturbance equation to represent the important features of
the flow; (ii) failure of the parabolic equation to provide a good approximation

to the transonic equation; (iii) failure of the experimental model tests to
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give values of pressure corresponding to free flight. That the second of
these is not solely responsible for the major part of the differences is
established by the case of the wedge.

Assessment of the theory must involve comparison with exact
solutions of the transonic flow equations and experimental results. Only
for the case of the wedge, is there a theory which may be regarded as close
to the exact solution, the hodograph plane solution of Guderley and Yoshihara
(6] mentioned above. For this case, the present theory is an improvement on
[1], although complete agreement is not obtained. The remaining difference
must be attributed to the implicit assumptions concerning the dependence of

99 on y, which are common ﬁo all the parabolic approximations so far developed.
For other cases, we can only compare with experiment, and as mentioned already,
the present theory gives worse agreement with the experimental results [5]
than the Spreiter theory [1]. However, the reliability of the experimental
results has not gone unchallenged. A full discussion of the experimental
results is not attempted hére, but for completeness we indicate certain
difficulties.

The Michel [5] airfoils were simulated by a tunnel wall bump
technique, and compared with a mid-tunnel test case. Further experiments by
Carrol and Anderson [7] indicate errors due to the wall boundary layer. The
agreement with the mid-tunnel test case could be due to more pronounced
tunnel wall reflection errors in this case. A systematic study of tunnel wall
reflection errors has been undertaken by Spreiter, Smith and Hyett [8]. An
application of Guderley [9] and Barish [10] theories predicts a pattern of

errors similar to the differences between the theoretical results [1] and



experiment. However the physical explanation advanced earlier in [8] would
only account for an opposite pattern, and it seems a pity that the Barish
form of the correction, equation (11) of [8] was not checked experimentally.

Questions of a different type are raised by the case of the wedge.
Spreiter has discussed this matter in [11] and [8]. Briefly, the problem is
that there are differences between theoretical results which may be regarded
as accurate (Guderley and Yoshihara [6], Helliwell and Mackie [12]) and the
experimental values of Knetchel [13], and these differences cannot be accounted
for by the quantitative theories of wind tunnel interference of Marschner [14]
and Morioka [15]. The differences may be due to the sharp shoulder, but Fig 2
suggests a more general effect.

In view of these difficulties, we cannot yet regard the difference
between theory and experiment as largely due to either the failure of the
parabolic equation as a model of the full transonic equation, or the failure

of the transonic equation to represent the physical situation for free flight.
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