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ABSTRACT 

The main o r i g i n a l contributions of t h i s thesis are presented 

in Chapters I I , I I I and IV, each of which i s largely self-contained, 

but which are a l l directed at p a r t i c u l a r aspects of the same problem, 

the prediction of the pressure on an a i r f o i l i n symmetrical transonic 

flow. Chapter I sets t h i s problem in i t s relation to transonic 

aerodynamics and provides accounts of various studies which are used 

in subsequent chapters with only limited explanation. Chapters I I 

and I I I are devoted to extending the theory of Cole and Royce for 

transonic flow past an axisymmetric body, f i r s t to two-dimensional 

transonic flow past a thin a i r f o i l , and then to flow past a thin 

planar delta wing. Chapter IV examines a different type of approxi­

mation which has received considerable attention, the parabolic 

equation approximation. I t i s shown how to remove certain deficiencies 

of methods based on t h i s approximation, but one of the consequences 

i s to cast doubt on the r e l i a b i l i t y of the method which appeared 

to give closest agreement with experiment. 



CHAPTER I 

TRANSONIC AERODYNAMICS FOR STEADY FLOW. 

In t h i s chapter we review the small perturbation theory 

of transonic flow, and present i n some d e t a i l accounts of 

those parts of i t which are both used and extended i n subse­

quent chapters. The intention i s to set the subsequent 

work in context and also eliminate the need to give more 

than a b r i e f reference when established methods are employed. 
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§1. Introduction. The equations and boundary conditions 

This work i s concerned almost e n t i r e l y with external aero­

dynamics and primarily with the flow past thin a i r f o i l s j i nternal 

aerodynamics enters only i n d i r e c t l y i n the assessment of data 

derived from wind tunnels. The term transonic applies when the 

v e l o c i t i e s i n the flow f i e l d are in the neighbourhood of the l o c a l 

sound speed, the speed at which small disturbances propagate 

through the f l u i d , and the e s s e n t i a l feature i s the existence of 

both subsonic and supersonic regions. The t y p i c a l s i t u a t i o n i s 

that of a body advancing into s t i l l a i r at nearly sonic speed, or 

as observed from a reference frame fixed i n the body, a near sonic 

stream of a i r being perturbed by the presence of the body. 

The equations of motion of a viscous, compressible, heat 

conducting gas, regarded as a continuum, are well established 
[»]. 

Almost c e r t a i n l y these describe the transonic si t u a t i o n indicated 

above, but they are of such complexity that d r a s t i c s i m p l i f i c a t i o n 

i s required to make progress towards a solution. I t i s usual to 

assume that v i s c o s i t y and heat conduction are only s i g n i f i c a n t 

i n narrow l a y e r s , boundary lay e r s and shocks, and to eliminate 

the corresponding terms in the equations. This i s the i n v i s c i d 

model. In i t , the boundary layers are accounted for by relaxing 

the no-slip condition, and the shocks, by allowing surfaces of 

discontinuity in the f l u i d . I t seems l i k e l y that t h i s model i s 



not v a l i d at large distances from the a i r f o i l , and attempts have 

been made to include v i s c o s i t y However, experiment 

indicates that the model y i e l d s useful r e s u l t s i n the neighbour­

hood of the a i r f o i l , and i t may be that the i n v i s c i d f a r f i e l d 

theories have some significance i n an intermediate region. We 

confine ourselves to investigations within the i n v i s c i d theory. 

The flow of an i n v i s c i d , non-conducting perfect gas i s governed 

by: 

the continuity equation 

D ^ = -/oVi* KJ_ 

the momentum equation 

0. u = - J- Vp i l l , 
D t ~ ^ 1 

and the energy equation 

£ s - o 
D t 

3 
— f 

where a i s the ve l o c i t y , p the density, p the pressure, S the 

entropy and %t ~ \t^~^ • 

These equations do not apply at shocks. Instead we have the 

corresponding jump r e l a t i o n s . In terms of velocity components, 

these are accounted for by the continuity of the component tan­

gential to the shock, and the shock polar, , 

V* { [ V ( Y + i J ] U,1 - U.Ui + c ? } - ( u . - u j ' f u . U i - c : } L± 

where U, i s the incident v e l o c i t y , U a , V x are respectively the 
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p a r a l l e l and perpendicular components of the velocity 

behind the shock, c i s the speed of sound, and asterisks denote 

c r i t i c a l values. 

For steady flow, equations (1.1) - (1.3) reduce to 

V(/*a) = 0 1 5 , 

(tL'V)S = O hi . 

From (1.6), (1.7) and the f i r s t law of thermodynamics,^or for (1.8) 

simply by conservation of energy ) 

I +• t ."l = H - L i 

1.1 
and 

U x ur = X/H - T V S 

where H i s constant along streamlines, I i s the enthalpy per unit 

mass and T temperature, for adiabatic flow of 

a perfect gas and from (1.5), taking • V of (1.8) 

For a small perturbation of a uniform stream, noting that from 

the energy derivation (1.8) i s v a l i d across shocks, we have that 

H i s constant throughout the f l u i d and (1.9) reduces to 

tt x o j = - T V S i n 

Assuming the body causes r e l a t i v e l y small departure from a uniform 

stream we write u. ~ L/^ •+- or and take Jirj« . Choosing 

the direction of U» as the -ac-axis, substituting i n (1.10) and 
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using (1.8), a f t e r rearrangement we have 

(I - M w j _ + - +• - - n ~ LO^U U m
 + — y. + ^ T " U£ -I 

where If = (u.irw/j and = U<*>/c„ . 

Consider the two-dimensional case when there i s no dependence 

on z, and suppose M,,, -* / . Retaining only the l i n e a r terms, 

the equation (1.12) reduces to -ay = ° . I t i s evident that 

higher order terms must be retained. However, the slow attenua­

tion of the disturbance i n the y direction, implied by t h i s r e s u l t , 

i s a feature of the actual flow. The breakdown of the l i n e a r i s e d 

theory i s not so evident i n the general case; nevertheless a non­

l i n e a r equation i s s t i l l required. 

For Moo near one, any shocks occuring are necessarily 

weak, and as entropy changes are of order (M — / ) 3 , the flow 

i s i r r o t a t i o n a l to second order, and we may introduce a p o t e n t i a l 

writing xr = Vcp . To deduce the appropriate form of the 

transonic small disturbance equation one requires estimates of the 

r e l a t i v e orders of magnitude of the velocity components and t h e i r 



derivatives. In two-dimensional flow 9 one such estimate i s pro­

vided by the c h a r a c t e r i s t i c s of the system consisting of (1.10) 

and the condition of i r r o t a t i o n a l i t y . Taking the velocity in polar 

form ( ^ f i ) , the compatability r e l a t i o n 

J_ dsz = + / _ _ J r l _ 

may be sim p l i f i e d when I ̂  ~iC I <^ ' by writing 

A ^ = f-c* , <f- c z = (y + 0 <f.Ay -•-Of ay*J 
an. 

where^asterisk denotes the c r i t i c a l value, when cj, = c . I t 
reduces to the form 

J 
,J4 

Integrating we have that v/i)^ n a s ^ e same order as y/UoJ • 

Now the l i n e a r i s e d form of the condition expressing no flow normal 

to the thin a i r f o i l , indicates ir = 0(x) , where r i s the 

thickness r a t i o ; taken with the i r r o t a t i o n a l i t y condition i t suggests 

the following scaled variables 

The scaled variables are regarded as order one as ' -> O . These 

estimates, together with the assumption that i n the three-dimensional 

case w = O (ir) , are s u f f i c i e n t to show that on the right hand 

side of (1.12) 
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i s the only term which i s as large as the l e f t hand side terms. 

Consequently, the transonic small disturbance equation i s 

or i n terms of the perturbation potential 

with K = Mjt (Y+'j . Equation(1.13) i s also v a l i d for axisymmetric flow. 

The axisymmetric case has been treated more systematically 

by Cole and Messiter . They obtain the r e l a t i o n between 

longitudinal and transverse velocity components by assuming the 

non-degeneracy of the shock polar i n scaled variables, and beyond 

t h i s , only require that the resulting small perturbation equation 

should not degenerate. In the s c a l i n g , the body radius & replaces 

t used above. The v o r t i c i t y and entropy changes a r i s e auto­

matically as part of the procedure. The equations are derived 

e f f e c t i v e l y for I and there i s an element of indeterminacy 

in the value of k for M w ^ I , which can only be s e t t l e d by 

developing the theory for higher powers of (M„-'J . The value 

of k a r i s i n g from the above procedure gives a good approximation 

to the variation of the c r i t i c a l pressure c o e f f i c i e n t with M«, t 

as shown by Spreiter • He also noted that the corresponding 

choice i n the shock polar gives exact values for the velocity jump 

at normal shocks. 

The transonic approximation to the shock polar follows from 

(1.4) by taking from (1.8) and retaining only the largest 
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terms. I t i s 

(i - ̂ ) ( - <£ r • - < • j * t »f - *w - x w ^ t f -
where superscripts denote values on opposite sides of the shock. 

The r e l a t i v e merits of the different possible values of k are also 

discussed, from a physical standpoint, by Oswatitsch i n 

connection with different forms of s i m i l a r i t y parameter, a con­

cept introduced in §2. 

In establishing the small perturbation equations, we have not 

treated e x p l i c i t l y the origin of the perturbation, the boundary 

condition of no flow normal to the thin a i r f o i l or slender body. 

The approximation of t h i s condition constitutes an e s s e n t i a l part 

of the determination of higher approximations to the system of 

equations, as i s apparent i n . However, for <p i t i s 

s u f f i c i e n t to retain the leading term exactly as i n subsonic aero­

dynamics. For the thin a i r f o i l ^ = " r ^ ( 5 C i % ) * t n e condition 

i s 

9^ = T f ( x , z / f f ) on i j = 0 U5 

r 

the error i n transfering the boundary condition from the a i r f o i l 

to y = O being higher order i n ~t . For a slender body of 

revolution, the condition takes the different form 
2 - ~ r <£)T = <5l Q'(xJ on f = <§ , a s S-> O I- lb 

where & Q(x-) i s the area of cross-section at the station ~x- , 

and i " = ( y 1 + a * ) " * . 

The l o c a l pressure c o e f f i c i e n t also 



follows by retaining the largest terms in the Bernoulli equation. 

For a thin a i r f o i l 

again evaluated on y = ° » rather than on the a i r f o i l . For a 

slender body of revolution 

here evaluated on the body surface, the <p^. term being re­

tained because of the si n g u l a r i t y i n <P-r on the a x i s . 



§ 2 The s i m i l a r i t y and equivalence rules 

The mathematical problem posed by the equations (1.13), (1.14), 

either of the boundary conditions (1.15), (1.16) and the condi­

tion V<$Z> ~» O at large distances from the body, apparently depends 

on the parameters M« , ̂  and e i t h e r <r, ~c or S . However 

i t i s possible, by s i m i l a r i t y r u l e s , to rel a t e flows having different 

parameter values, provided certain groupings of parameters are the 

same. One parameter, the chord length, has already been removed 

from the problem by choosing i t as the unit of length; ~cj <r and 

S are r a t i o s specifying thickness, span and slenderness respectively. 

For the thin wing, writing 

y = I h - M i l T y , 5 = H i - M i l } * * , -x. = X 

then (1.13), (1.14) and (1.15) reduce to 

/ i i l l ) — (2 J \2- /•—U) — bl \1 / — (I) — U)»z 
S | j n 0 - M £ ) ( p s - p a j ( 9 - - 9 * ) -*-(<p^-<p-) 

^5 = f (~ >^Piir^ on y = O 

Thus ^> depends on two groups of parameters, and these are chosen 

as 
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a 
1V3 

Now the scaled variables (2.1) give no indication of magnitude; 

the magnitude of <p^ was estimated in the derivation of (1.13) 

as " £ V s as / , and t h i s suggests writing 

giving 
^ +~ s*- ^ 

2.3 

From t h i s form 

where C p
 = ~" 2. ̂  » C p i s the reduced variable normally 

used i n the presentation of r e s u l t s . The terms of (2.3) are of 

order one, and ^ =• O at sonic speed; i n the two-dimensional 

case o- « 00 t and disappears as a parameter. 

For axisymmetric flow one needs to make assumptions about the 

behaviour of <p near the a x i s , because of the singularity there. The 

derivation i s given in £ 5 ~] . The r e s u l t i s 

where I t e - ^ < r + /; 8* • ^ -

However i t s range of v a l i d i t y i s more r e s t r i c t e d than the thin 



wing r e s u l t . A discussion o f i t s def ic iencies when M t e ^ I i s 

presented m 

For slender bodies i t i s possible to derive another r e l a t i o n 

between d i f f e r e n t f lows , the equivalence r u l e . This i s a d i r ec t 

consequence o f the r e l a t i on 

where <px i s a po ten t i a l f o r the cross-flow ( i n the ( y , z ) plane 

+ J 9 a = 0 and the 

boundary conditions implied by those on <p , and f u r t h e r cjfr) 

depends only on the cross-sectional area. Thus may be deter­

mined from the axisymmetric f low past the so-called 'equivalent 

body 1 . For small departures from c i r c u l a r cross-section the r e l a t i on 

(2.6) . fo l lows from the analysis o f Cole and Messiter L^J , but 

to t r ea t t h i n a i r f o i l s an a l te rna t ive approach seems necessary. 

That adopted by Oswatitsch [ V ] , [ i o ] and Heaslet and Spreiter 

£. 1 ' I , i s to apply Green's theorem i n a ( y , z ) plane at the 

s t a t ion x to equation (1 .13) , regarding the term on the r i g h t 

hand side as a d i s t r i b u t i o n o f sources. The analysis i s car r ied 

out f o r = / t though Heaslet and Spreiter take care i n showing 

t h i s gives the l i m i t f o r M o ~* ' - , and also make e x p l i c i t the 

assumptions concerning shocks. Taking the d i f ference between the 

equation f o r f> and that f o r (fi>^ , the po ten t i a l f o r the 

body o f r evo lu t ion : 

where the i n t eg ra l i s taken over the region external to the res-



pective bodies, the subscript 2 denotes the two-dimensional 

cross-flow p o t e n t i a l , and / ° * = r : i - t-V-2Tr ( cos(8-6,J wi th 

(T, 8) the polar co-ordinates o f ( y t z ) 9 and T, ,6, current 

co-ordinates i n the i n t e g r a t i o n . 

(?) 

Oswatitsch argues that f a r from the body <p^ — has 

an o s c i l l a t o r y character, and that i t i s OCa^cp^ ) , so that 

the main cont r ibut ion to the in t eg ra l i n (2 ,7) arises from the 
to) 

region T, < cr 9 and t h i s i s assessed by using <f>^ , <p*. 

f o r <p t (p&> . Comparison i s made wi th the resul ts o f l inear i sed 

theory, though t h i s hardly tests the c ruc i a l question about 

whether the non- l inea r i ty has been successfully t rea ted . 

Heaslet and Spreiter adopt a s imi l a r approach, but attempt 

a more mathematical treatment. The method f o r a symmetrical a i r ­

f o i l i s as f o l l o w s . F i r s t express <px as a Fourier ser ies . 

-SCx.) 

where S(TC) i s the span at s ta t ion , =0(<j) y SX. = Zf 

with f" from (1.15) and 

J> _ - V /Z r ôS m(6-Bj 

&rtj [ T 1 + r , 1 - 2TT, coslB-Qjp ~ < 

Then f o r "f > S , 
CO 
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where 

<5M) 

and 

S'(*) - [ t - Q 4*, 
-S(x) 

and f o r T < S 

where, by expanding the kernel as 

we have 

Now, we may obtain an approximation to J , the i n t eg ra l on the 

r i g h t hand side o f ( 2 . 7 ) , by using the series expansions ( 2 . 8 ) , 

(2 .9) and replacing cp by <p^ +• 9 " ' - <p*} . 

foverfe«f) 



it, 

S ITS 

ro=' 

In t h i s l a s t i n t e g r a l , i t may be objected that we have included 

9 C ' 9?*! terms i n the i n t e r i o r o f the equivalent body, 

but t h e i r contr ibut ion i s O ((stf ( (Ujsr j j and may be neglected. 

By performing the 8, in tegra t ion i t may be deduced that the f ; 

in tegra t ion i n the f i r s t part o f the expression f o r vT con­

verges provided 9?toU- T " n w i th N > o as r->-00 

At t h i s stage, Heaslet and Sprei ter , employ the fo l lowing 

estimates: 

and deduce 

As the terms o f (2 .7) apart from the i n t e g r a l , are O (TSJ i t 

fo l lows that as a f i r s t approximation <p - <px f <pla) — 

For points i n the neighbourhood o f the body 

<p(o) - <f> «" ^ irn. <Z>lo)-

which gives a funct ion g (x.) depending only on the cross-sectional 

area, and hence the resu l t ( 2 . 6 ) . Although the estimates (2.1C), 

(2.11) seem reasonable, i t should be noted that t h i s stage o f the 



argument f a l l s short o f rigorous j u s t i f i c a t i o n . 



f < 3 

§3 Methods o f so lu t ion o f the equations 

The s i m i l a r i t y and equivalence rules enhance the value o f 

pa r t i cu l a r solutions o f the boundary value problems posed by 

(1.13) - (1 .16) , but do not provide them. One may seek s e l f -

s imi l a r solut ions , but as the equations are non-l inear , there i s 

no p o s s i b i l i t y o f bu i ld ing up general solutions by superposit ion. 

An important so lu t ion o f t h i s type i s that f o r axisymmetric 

f low at 1^*,= / provided by Guderley and Yoshihara C ' ^ l , 

and fu r the r invest igated i n references C1 3 ~1 , [ • For t h i s 

solut ion 

where I = ( V * ' ) " ' ' 3 , m = 3n - 2 a n d n = ± h . 

I t gives the asymptotic solut ion o f the equations as "T-* °o f 

the f a r f i e l d . An account o f other s e l f - s i m i l a r solutions i s included 

i n the a r t i c l e by Spreiter i n 

Another approach i s to note that ( 1 . 13) i s l i n e a r i n the 

second der iva t ives , and does not contain x , y , z e x p l i c i t l y , so that 

f o r two-dimensions, appl ica t ion o f the Legendre transformation 

[ j f e j w i l l r e su l t i n a l i nea r equation. 

This idea i s embodied i n the hodograph transformation, which 

uses e i the r U = <^tos0 , V = <̂  smfi or £^ 6 as the independent 

var iables . The transformation may be applied to (1.5) before the 

assumptions o f only small departure from a uniform stream, 

The dependent variable i s taken as e i the r the stream func t ion "V 

or 9 = D c U + i j V - ( J y ) s or simply as the velo-



c i t y po ten t i a l . Approximations to the gas law 

may be used to s i m p l i f y the analysis , the most notable being the 

Karman-Tsien approximation, and that o f Tomotika and Tamada 

though Chaplygin has solved the f u l l equation by separation of 

variables, and an i n f i n i t e set o f solutions i s avai lable , 

Even wi th the p o s s i b i l i t y o f superposing solu t ions , serious d i f f i ­

cu l ty arises wi th the boundary condit ions, and the technique 

adopted i s e i ther to f i n d the solut ion which reduces to the flow 

past the given body as M„ -> O , or as i n , to 

produce a reasonable flow i n the hodograph plane and deduce to 

what body i t corresponds. For a l l cases, there i s the r e s t r i c t i o n 

that the Jacobian o f the transformation must not vanish. Lines 

along which the Jacobian vanishes are known as l i m i t l ines and 

these must not penetrate the flow f i e l d . In i t s simplest form the 

Jacobian i s 

so that there i s no p o s s i b i l i t y o f l i m i t l ines i n purely subsonic 

f l o w . Unfortunately, l i m i t l ines appear f o r quite low free stream 

Mach numbers; i n the case o f a c i r c u l a r cyl inder i n a uniform stream 

they are present at M<» = 0 " & . The above mentioned applications o f 

the hodograph method are thus r e s t r i c t ed to the lower transonic regime, 

which i s bas ical ly high subsonic f l o w . This prompts comparison wi th the 

Rayleigh-Janzen expansion o f $ as a power series i n M„ . Com­

parison o f the Karman-Tsien approximation shows i t i s only correct to 

order M M . For the Tomotika and Tamada so lu t ion , l i m i t l ines 

arise near M M

 s 0-75 , but by t h i s value, the predicted 
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veloci ty d i s t r i b u t i o n shows a sharp f a l l at about 60% chord, and 

presumably such a resu l t i s beyond the range o f v a l i d i t y o f a 

truncated H w expansion. 

The middle transonic range, when shocks occur i n the middle 

o f the a i r f o i l , i s the most in t rac tab le o f a l l . The method o f 

recasting the small disturbance equation (1.13) as an in t eg ra l 

equation seems the most promising approach, but there i s s t i l l 

a wide gap between experiment and the theories o f Oswatitsch 

C ' f - I and Sprei ter , Alksne and Hyett C 2 0 ^ . References to 

semi-empirical methods o f br idging the gap are given i n A. B. 

Tayler 's a r t i c l e i n 

For t h i n a i r f o i l s i n a near sonic stream, the flow i s i n the 

upper transonic regime and hodograph methods again f i n d app l i ca t ion . 

The basic equation involved i s Tricomi's 

%9 - ? = ° 
and i t i s derived by w r i t i n g 

y - y ( ? J ) , 7 - J , 3*6*** 

i n the hodograph equation f o r ~\f/ , and then re ta in ing the largest 

terms as t -> O . A s imi l a r equation may be derived f o r the 

Legendre transformed po ten t i a l <p . I t corresponds to the t rans­

onic small disturbance equation (1 .13) . 

The Tricomi equation has formed the basis f o r extensive inves­

t iga t ions C ^ - ^ l . The separation o f variables so lu t ions , corres­

ponding to the Chaplygin so lu t ions , are discarded i n favour o f 

solutions o f the form ^ » * f n f e ) , %~ ^ /^J* ; f n i s a 



hypergeometric f u n c t i o n , and i t i s possible to construct solutions 

by superposit ion. Care i s s t i l l required to avoid l i m i t l i ne s 

w i t h i n the f low f i e l d ; the Jacobian now takes the form 

where asterisks denote c r i t i c a l values. The d i f f i c u l t y w i th 

boundary conditions encountered at lower f ree stream Mach numbers 

pers i s t s , and prevents d i rec t so lu t ion f o r a given p r o f i l e . How­

ever, wi th sonic f ree stream, we need only consider the f low f i e l d 

up to the l a s t charac ter i s t ic that meets the sonic l i n e , the 

l i m i t i n g characteristic;- the upstream flow f i e l d i s independent, 

and the f low downstream o f the l i m i t i n g character is t ic may be 

calculated by a d i f f e r e n t method. Questions o f existence, unique­

ness and whether the problem i s properly posed are discussed i n 

£"2.33 . Certain problems wi th simple boundary conditions ( i . e 

s t r a igh t boundaries or f ree streamlines) have been solved, and the 

f u l f i l two useful func t ions . F i r s t , we have accurate solutions 

wi th which to check more approximate methods, and secondly, solu­

t ions f o r simple wind-tunnel flows provide information on the 

nature o f wind-tunnel interference e f f e c t s . 

A numerical method has been proposed by Dorodnicyn C^^.] , 

which i s applied i n the physical plane, and can i n p r i n c i p l e deal 

wi th three-dimensional f low past general p r o f i l e s . However, i n 

p rac t i ce , i t has only been applied to two-dimensional f lows , 

and even then only to shapes f o r which a choice o f ' n a t u r a l ' co­

ordinates, depending on the boundary, reduces the computation 
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involved. For two dimensions the method i s as fo l l ows . The 

equations are recast i n the form 

r ( •x. x-I , 1 * 

and integrated wi th respect to one va r iab le , say 3 c a ; the values 

o f u_. f t , 7 x^) are interpolated from a set o f functions 

( i - ^ x , ) g iv ing the values at cer ta in stations = 

This leads to a system o f ordinary d i f f e r e n t i a l equations f o r 

U^K (x-,) which may be solved by rout ine methods. For 

sonic f low the method i s applied only to the region upstream o f 

the l i m i t i n g cha rac te r i s t i c , whose locat ion arises out o f the 

method of so lu t ion . Downstream of the l i m i t i n g character is t ic 

i t i s suggested that the method of character is t ics be employed. 

Despite the impressive mathematics associated wi th the pre-

ceeding methods, they do not meet the engineers' need f o r a reason­

able predic t ion o f the pressure f o r three-dimensional f low past 

a t y p i c a l a i r f o i l . To make fu r the r progress, i t seems at present, 

that we must re l inquish the idea o f solving f o r the whole f low f i e l d 

the boundary value problems posed by (1.13) - (1 .16) . Such 

an a t t i t ude has been adopted i n a class of methods which we 

designate ' regional l i nea r i s a t i on methods'. These assume that i n 

the region near the a i r f o i l , the equation (1.13) may be replaced 

by a l inea r approximate equation, and that t h i s may be so 

selected tha t i t provides the dominant cont r ibu t ion to 

the f low f i e l d near the a i r f o i l . Bas ica l ly , there are two ways 



of approximating the non-linear term of (1 .13) . The f i r s t way 

replaces (J&x.x by a known func t ion , and gives a parabolic equation; 

the second replaces Cpx and gives the p o s s i b i l i t y o f a changing 

type, e l l i p t i c - h y p e r b o l i c , equation. In sections §H, §5 we give 

an account o f invest igat ions in to each o f the respective ways of 

making the approximation. 



§ U. The parabolic equation approximation 

Oswatitsch and Keune CiS] i n i t i a t e d the ' regional l i n e a r i s a t i o n 1 

method, a f t e r considering the experimental resul ts f o r sonic flow 

past a slender, parabolic arc, body o f r evo lu t ion . They noted that 

over the f r o n t h a l f o f the body the acceleration was approximately 

constant, and suggested the equation 

as a model f o r equation (1.13) i n the neighbourhood o f the a i r ­

f o i l . As the parabolic equation allows no upstream inf luence B a 

condit ion o f vanishing disturbance o f the uniform stream at i n f i n i t y , 

implies at x = 0 , the o r i g i n being at the leading edge o f 

the a i r f o i l . - Physically t h i s might appear unreasonable. However 

by introducing at -x--0 a t y p i c a l d i s t r i b u t i o n o f ve loc i ty encountered 

i n experiment, i t was shown that the error was around 5% at a point 

midway between the t i p and maximum thickness. Near the t i p the 

er ror w i l l be l a rger , but as the small disturbance equation i s not 

uniformly v a l i d , inaccuracy there i s i nev i t ab l e . 

The preceeding approximation i s involved i n a l l the parabolic 

equation methods, and i t may be noted that i t i s less j u s t i f i e d i n 

two-dimensional problems. The solut ion o f (4.1) subject to 

boundary conditions o f vanishing disturbance at i n f i n i t y , and con­

d i t i o n (1.16) i s s t ra igh t forward . 

9TT + ^ 9v A.I 
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where < T ( - S , T ) = _ L _ e x p ( _ l A l l j ^ 

This leads to an expression f o r the perturbation speed at the 

body T = 8, (-x.) j 

The choice o f \ requires care. Fortunately, at the maximum o f 

Q'(x-) , ~\ disappears from the expression ( 1 . 3 ) , which reduces 
in it's choice. 

the e f f e c t o f errors Two procedures are considered; both use the 

above theory to determine the f low up to the sonic l i n e , and then 

employ a modif ica t ion o f the method o f character is t ics sui table 

f o r transonic f l o w . The f i r s t procedure determines the values o f 

T <p on the sonic l i n e by the character is t ics method, and 

chooses A to give the best agreement wi th the values obtained 

from ( 4 . 2 ) . The second determines <px on the body by the charac­

t e r i s t i c s method and chooses A to give the best agreement wi th 

the values from ( 4 . 3 ) . The f i r s t was preferred on the grounds 

that the d i s t r i b u t i o n along the sonic l i n e i s o f decisive impor­

tance f o r the ve loc i t i e s downstream. I t also seems more p r ac t i c a l 

f o r body shapes d i f f e r e n t from the parabolic arc . The procedure 

i s laborious and subsequent developments, having less regard f o r 

the behaviour o f f the body surface, determine A more simply, C^-fcjf 

For the h a l f parabolic arc body considered i n C 2 ^] agreement wi th 

experiment i s highly s a t i s f ac to ry . 
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Haeder and Thommen, employing the same approximations, extended 

the method to I , and also treated the two-dimensional case, 

However t h e i r choice f o r A was dubious and,in the 

two dimensional case, the comparison wi th experimental resul ts was 

unimpressive. In a subsequent paper C ^ l * simultaneously wi th 

Hosokawa , they c l a r i f i e d the choice o f A . Maeder's account 

o f t h i s approach i n / ] draws on both papers and relates them 

to t he ' l oca l l i n e a r i s a t i o n ' method o f choosing A , due to Spreiter 

. The idea i s to use the model equation 

choose /3„ , A so that t h i s best reproduces the y,z var ia t ion 

o f <p , and then calculate a correct ion term ^("O— f> ~ ft, , 

to give values o f 9>x on the body. Maeder expresses t h i s i n 
pa > 

terms o f the stream density A . Wri t ing <p * 9*1 + 1 • by using Greens 

theorem, we have 

I = Iff GU-*,i-7,*-?)dU7.dS 
— <X> 

where 

Gt-x,y,-z) s a t i s f i e s (1.4) wi th the r i g h t hand side replaced by 

S(x.) Sfy) S(z) , and ft s a t i s f i e s the boundary conditions on ft 

Consequently 

to Vina 
and the perturbation.stream density may be w r i t t e n 



This i s an exact deduction from the transonic small disturbance 

equation (1 .13) , apart from possible contr ibut ions from weak shocks. 

Now i f i n ( 4 . 5 ) , TC^, i s independent o f then I ^ j ^ r , * 

and (4 .6) becomes an ordinary d i f f e r e n t i a l equation f o r ^-x. . 

Physically one would expect to minimise the dependence o f I on 

y,-z f o r points near the body by making T and i t s normal 

der ivat ive vanish at the body. Unfortunately, wi th only two d i s ­

posable constants, t h i s can only be achieved at one p o i n t , and 

not on the whole body. Maeder, considering two-dimensional flow 
the. 

argues that t h i s i s best done at A sonic p o i n t . For a parabolic arc 

a i r f o i l , the agreement wi th experiment i s excel lent , and the non­

l inea r form o f equation ( 4 . 6 ) , neglecting 1 ^ + I z x , gives the 

p o s s i b i l i t y o f a jump i n 9>x analogous to a shock at the rear o f 

the a i r f o i l . However, as one changes the a i r f o i l shape, agreement 

wi th experiment rap id ly deter iora tes . 

The ' l o c a l l i n e a r i s a t i o n 1 method (Spreiter 1^°] ) i s a device 

to overcome the r e s t r i c t i o n o f having only two disposable constants. 

To obtain <p^ at a point o f the a i r f o i l , one uses the equation 

(4 .4) and determines /3„ , A to give the best approximation to 

the f u l l equation (1.13) i n the immediate neighbourhood o f the 

point under observation. To fo l low the Maeder C ^ ' l method would 

be very laborious, and Spreiter adopted the choice /3* = / - M * t 



which i s equivalent to the Maeder choice f o r a parabolic arc a i r ­

f o i l . Thus, applying the method f o r a two-dimensional t h i n a i r f o i l 

i n a sonic stream, we have: 

where f 0 ,7)=-fftj i s the l o c a l slope o f the a i r f o i l , and <r i s the 

source-type solut ion o f (4 .4) given i n ( 4 . 2 ) ; now w r i t i n g Ufa) *or 

9 5 ^ ( 2 = 0 ) and replacing \ by ( Y + ' ) u 7 ^ , 

.. , , = - ' 4 f f » ) .v 

an ordinary d i f f e r e n t i a l equation which gives the ve loc i ty at the 

a i r f o i l surface. 

This ' l o c a l l i n e a r i s a t i o n ' approach i s general, i n the sense 

that i t gives values o f the reduced pressure c o e f f i c i e n t C p i n 

good agreement wi th experiment f o r a var ie ty o f shapes i n both 

two-dimensional and axisymmetric f l o w , and even f o r 3-dimensional 

f low past planar wings agreement i s f a i r . However, by using a 

s i m p l i f i c a t i o n o f the Maeder [2. '3 choice o f /3„ , X t o n e is 

paying less a t tent ion to f low o f f the body, and furthermore by 

using a l oca l choice the implied model f o r the ove ra l l f low must 

be crude f o r the ca lcula t ion at many points on the body. This 

l a s t approximation i s the d i f ference between ' l o c a l ' and ' r eg iona l ' 

l i n e a r i s a t i o n . Mathematically the method lacks a f i r m basis , a 

matter which we consider i n Chapter I V . 



The r e s u l t s o f the p a r a b o l i c equation approximation may be 

summarised as f o l l o w s . For near sonic f l o w , the constant A methods 

[.2.51 ,£ 2-81, £291 give good r e s u l t s f o r two-dimensional a i r f o i l s 

and bodies o f r e v o l u t i o n generated by a p a r a b o l i c a r c . For d i f f e r e n t 

shapes, to o b t a i n good agreement w i t h experiment one must use the 

' l o c a l l i n e a r i s a t i o n * method,, , C ̂ 1 . For three dimensional 

flow one may use the foregoing r e s u l t s w i t h the equivalence r u l e 

§ 2, o r use the extension t o t h i n planar wings o f the " l o c a l l i n e a r ­

i s a t i o n 1 method, C"3l] . This l a s t method reduces t o the two-dimen­

s i o n a l case f o r i n f i n i t e aspect r a t i o , and gives a n a l y t i c r e s u l t s 

f o r a r e s t r i c t e d class o f small aspect r a t i o wings; otherwise i t 

r e q u i r e s a considerable amount o f computing f o r r e s u l t s o f uncertain 

accuracy. One case t r e a t e d a n a l y t i c a l l y , the small aspect r a t i o , 

t h i n e l l i p t i c cone-cylinder has r e s u l t s s i g n i f i c a n t l y d i f f e r e n t 

from those p r e d i c t e d by use o f the equivalence r u l e . 

F i n a l l y we remark t h a t Hosokawa has a p p l i e d h i s method t o 

l i f t i n g a i r f o i l s , and unsteady motion, w h i l e T e i p e l has a p p l i e d 

S p r e i t e r ' s ideas t o unsteady motion. Accounts o f these f u r t h e r 

a p p l i c a t i o n s o f the p a r a b o l i c equation approximation are a v a i l a b l e 

i n [ 2 1] . 
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15. The mixed-type equation approximation 

The mixed-type equation approximation was proposed by Cole 

and Royce C^2] . I t i s based on the model equation 

so t h a t i n (1.13), {(JC-n) M « <f>^ - ( i - M i ) } has been replaced 

by a.i(x.-t>) , where ->i= b gives the sonic p o i n t , and the 

form o f the approximation i m p l i e s accelerated flow over the body. 

As w i t h the o t h e r model equation, the f i r s t problem i n v e s t i g a t e d 

was t h a t o f sonic flow past a body o f r e v o l u t i o n . To r e l a t e t h i s 

problem t o subsequent work we introduce a d i f f e r e n t choice o f axes, 

using c y l i n d r i c a l p o l a r co-ordinates, w i t h z along the a x i s o f 

the body.,, T = (?<?'+^)'/*~ and the o r i g i n o f co-ordinates a t the 

sonic p o i n t . Thus the p o s i t i o n o f the body r e l a t i v e t o the axes i s 

a matter f o r c a l c u l a t i o n . The equation (5.1) becomes 

and the boundary c o n d i t i o n s are taken as vanishing disturbance a t 

i n f i n i t y upstream o f the sonic l i n e , and the c o n d i t i o n on the 

body (1.16), 

'2 T\ f 9> T = S*"Q'(z + b) o n T = S as S-+0 . 5.3 

The s o l u t i o n i s sought i n the form o f an i n t e g r a l o f a l i n e o f 

sources, but the change i n type o f the equation introduces c o m p l i c a t i o n s . 

The sources may be derived by r e p l a c i n g the r i g h t hand side o f 



equation (5.2) by — &(T). SU-I) and using Hankel transforms; they 

take the f o l l o w i n g d i f f e r e n t forms i n the hyperbolic > I 

and e l l i p t i c < ~£ ,/ regions r e s p e c t i v e l y : 

22 ( V - / ) " 1 ' * > 0 

O , I < O 

9 e -
o , ?> o 

where X - + T£')/(7 Jf*.) and Z gives the p o s i t i o n o f 

the source on the a x i s . This f e a t u r e gives r i s e t o a s i n g u l a r i t y 

i n the p o t e n t i a l formed by an i n t e g r a l o f sources along the body 

a x i s , and a f u r t h e r term must be added so t h a t the equation (5.2) 

i s s a t i s f i e d i n the whole f l o w f i e l d . The p o t e n t i a l s a t i s f y i n g 

equation (5.2) and the boundary c o n d i t i o n s i s 

<P = i T ( p ) ^ ( ^ - z ) + f T(Z) 0 E( T.*;£).d* for 2 < 2 

where 2TVT(*) = Q'(* + b>). 

For both cases i n ( 5 . 5 ) , as r-» O 

I t remains t o choose a* and t> . As the flow near the body i s 

dominated by the f i r s t term o f ( 5 . 6 ) , Cole and Royce chose t> such 



t h a t 'T'(o) - O „ and then took a* = +')<?>„ (r0)fc>) where 

yo i s the body radius a t -z. = O „ This choice i m p l i e s 

fc> i s independent o f the thickness r a t i o o f the thickness r a t i o 

8 , as i t should t o s a t i s f y the s i m i l a r i t y law, but the choice 

o f CL means does not s a t i s f y the s i m i l a r i t y law ( 2 . 5 ) . 

Another f e a t u r e i s t h a t p r e d i c t e d values o f the sonic p o i n t are 

s l i g h t l y a f t o f -z.= o , con t r a r y t o what one might expect on 

p h y s i c a l grounds. 

For bodies o f r e v o l u t i o n given by: 

agreement between p r e d i c t e d values o f Cp w i t h those from 

experiment i s good f o r n = 2. and > f though i t deter­

i o r a t e s as r moves forward. However, considering the 

whole range o f shapes, the r e s u l t s are s u p e r i o r t o a l l the para­

b o l i c approximations except t h a t o f S p r e i t e r . 

The extension o f the mixed type equation approximation t o 

flow past t h i n wings, i n both two-dimensional and f i n i t e aspect 

r a t i o s i t u a t i o n s , i s presented i n Chapters I I and I I I . 
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CHAPTER I I 

AN APPROXIMATE SOLUTION FOR TWO-DIMENSIONAL TRANSONIC 

FLOW PAST THIN AIRFOILS. 

In t h i s chapter we develop the second type o f r e g i o n a l 

l i n e a r i s a t i o n approximation, o u t l i n e d i n Chapter I , §5. 

The work c o n s t i t u t e s an extension of the method i n i t i a t e d 

by Cole and Royce, i n t h e i r treatment o f axisymmetric 

flow. 



§ 1. INTRODUCTION. 

The small disturbance equations f o r t r a n s o n i c f l o w are w e l l e s t a b l i s h e d , 

but owing t o t h e i r n o n - l i n e a r i t y , t h e d e r i v a t i o n of exact s o l u t i o n s i s a 

formidable task. A few such s o l u t i o n s have been obtained using the hodograph 

plane i n which the equations become l i n e a r , but as th e body p r o f i l e cannot be 

s p e c i f i e d a p r i o r i , t h i s approach o f f e r s l i t t l e scope f o r general a i r f o i l 

shapes. Confronted w i t h t h i s s i t u a t i o n , i t i s n a t u r a l t o ask whether i t i s 

possible t o approximate the non-linear term, so t h a t t h e equations become 

l i n e a r , and y e t s t i l l r e t a i n s u f f i c i e n t accuracy i n the p r e d i c t i o n o f 

surface pressure on t y p i c a l a i r f o i l shapes t o g i v e a u s e f u l engineering 

approximation. 

To i n v e s t i g a t e t h i s p o s s i b i l i t y , consider a uniform stream, f l o w i n g 

i n the p o s i t i v e z d i r e c t i o n o f a rec t a n g u l a r c a r t e s i a n system ( x , y, z ) , 

past e i t h e r a slender body l y i n g along the z a x i s , o r a t h i n a i r f o i l which 

i s everywhere close t o t h e Oxz plane. For steady, i s e n t r o p i c , compressible 

f l o w we may introduce a p o t e n t i a l 

and as UU approaches the speed o f sound, the small disturbance equation, 

reduces t o th e t r a n s o n i c equation 

For the d e r i v a t i o n of t h i s equation,see f o r example, reference One 

has the choice of approximating e i t h e r o r 

The f i r s t step was taken by Oswatitsch & Keune £2], who considered sonic 

(M w = l ) f l o w past a slender, p a r a b o l i c body o f r e v o l u t i o n , and noted t h a t 

i n p r a c t i c e , t h e a c c e l e r a t i o n was n e a r l y constant f o r f l u i d near the surface 

o f t h e forward h a l f of t h e body. Accordingly the non - l i n e a r term ( X-*- I )M^^9>, 

was replaced by K <p^_ , g i v i n g t h e equation 



9^ + 9^- *?* h£ 

which may be r e a d i l y solved,, The c a l c u l a t e d pressure d i s t r i b u t i o n was i n 

promising agreement w i t h experimental r e s u l t s . However, i t should be noted 

t h a t even i n t h i s favourable case, the approximate equation i s v a l i d only i n 

the immediate neighbourhood of t h e body. I t i s t h i s r e l a t i v e i n s e n s i t i v i t y 

t o poor approximations away from the body which provides the basis f o r f u r t h e r 

development. Maeder & Thommen [3~} employing the same approximation f o r 

(y+i) M«*> 9> z f r e t a i n e d t h e ( I - M̂ , )g>^ term, thus extending 

the theory t o cover t h e whole Mach number range. The method was a p p l i e d t o 

both two-dimensional t h i n a i r f o i l s and slender bodies of r e v o l u t i o n , but f o r 

bodies w i t h maximum thic k n e s s forward o f centre, computed values d i f f e r e d 

considerably from experimental ones. M i l e s made the f o l l o w i n g 

c r i t i c i s m s : (1) t h a t a t Moo = 1, a mixed type e l l i p t i c - h y p e r b o l i c equation 

had been replaced by a p a r a b o l i c one; (2) t h a t f o r bodies o f r e v o l u t i o n a t 

l a r g e distances t h e s o l u t i o n d i f f e r e d from t h e asymptotic s o l u t i o n provided 

by Guderley & Yoshihara [ 5 ] ; (3) the method f a i l e d t o account f o r a 

r e g i o n a t some distance from the body i n which n o n - l i n e a r e f f e c t s were o f 

d e c i s i v e importance. However, Cole pointed out t h a t no f i n i t e drag could be 

associated w i t h t h e asymptotic f i e l d , and suggested t h a t t h e r e i s no simple 

r e l a t i o n between the f i e l d near the body, and the f a r f i e l d , but t h a t c o n d i t i o n s 

near the body are of primary importance i n determining the pressure. I t would 

appear t h a t the r e g i o n o f c r i t i c i s m 3 accounts f o r c r i t i c i s m 2. At l e a s t a t 

the present stage, we must be content t o assume t h i s . 

I n £ 6 ] , Cole & Royce i n i t i a t e d the second type o f approximation t o t h e 

non-linear term, by r e p l a c i n g 

The case considered was t h a t of sonic f l o w (M ̂  =1) past a slender body 

of r e v o l u t i o n , f o r which t h e equation i s 



This approach meets M i l e s ' f i r s t criticism.., i n t h a t i t preserves the e l l i p t i c -

h y p e r b o l i c type of the equation* The a n a l y s i s i s not so simple as f o r the 

f i r s t type of approximation, but gives q u i t e good agreement -with experiment 

f o r a v a r i e t y o f smooth slender bodies. However, the simpler a n a l y t i c r e s u l t s 

of [3 3 have a t t r a c t e d a l l f u r t h e r development. 

Maeder & Thommen £ 7 ] improved t h e i r e a r l i e r work, by showing how the 

choice o f K might best be made, and also c a l c u l a t e d a c o r r e c t i o n term. The 

sonic p o i n t z* i s given by { ( \ - - 6f+0c>,* T = O , being the 

s o l u t i o n o f the approximate l i n e a r i s e d equation, w h i l e K was chosen as 

{ . ( i f * ' ) 9*1 z z } j j s Q . The c o r r e c t i o n term was simultaneously derived 

i n a d i f f e r e n t manner by Hosokawa [ S 3 • He assumed 9 * ^' 3 » 

where <f>{ i s the s o l u t i o n given i n j | » Having obtained the a p p r o p r i a t e 

changing type equation f o r <j from 1.1, he argued t h a t the behaviour o f ^ 

i s l a r g e l y one dimensional i n t h e neighbourhood of the body, and t h a t ^ 

may be taken as a f u n c t i o n o f z o n l y . With t h i s assumption, t h e equation i s 

r e a d i l y i n t e g r a t e d , and a quadratic equation f o r the v e l o c i t y ^ x r e s u l t s . 

The constant o f i n t e g r a t i o n i s chosen so t h a t g x = 0 a t z*, and t h e choice 

of s i g n i s made so t h a t ^ i z + 3^ ^ 0 according as the f l o w i s 

supersonic or subsonic. For the case o f a two-dimensional p a r a b o l i c arc t h i n 

a i r f o i l agreement w i t h experiment i s e x c e l l e n t , but as the p o s i t i o n o f maximum 

thi c k n e s s moves forward i t d e t e r i o r a t e s r a p i d l y . I n the axisymmetric case a t 

M n = 1 , qven f o r the p a r a b o l i c arc the r e s u l t s are l i t t l e b e t t e r than [_3~] > 

Maeder & Thommen*s a n a l y s i s showed t h a t t h e e r r o r s l a r g e l y stemmed from 

the f a i l u r e o f <p( , t o represent t h e s o l u t i o n s u f f i c i e n t l y a c c u r a t e l y , 

e s p e c i a l l y near the sonic p o i n t . 

An a l t e r n a t i v e improvement on £33 which e x p l o i t s the i n s e n s i t i v i t y t o poor 



approximations away from the body has been developed by S p r e i t e r & Alksne. 

For s^s 1, the choice o f K i n the expression f o r the v e l o c i t y a t the 

a i r f o i l surface i s made as K = ( V - H ) a t each p o i n t of t h e a i r f o i l , 

so g i v i n g an o r d i n a r y d i f f e r e n t i a l equation f o r ' ^ o r ^ 0 0 a w a y 

from one, a s i m i l a r " l o c a l l i n e a r i s a t i o n 1 ' technique i s a p p l i e d t o t h e c l a s s i c a l 

subsonic and supersonic t h e o r i e s . This method has been a p p l i e d t o two-

dimensional t h i n a i r f o i l s [° 1 , slender bodies o f r e v o l u t i o n [ l o j and 

wings of f i n i t e span [ l l j • I t g ives good agreement w i t h experiment over 

a wide range o f shapes, but there are a number o f o b j e c t i o n s . The c r i t i c i s m 

concerning the use o f 1.2 as an approximation t o 1.1 has already been i n c l u d e d . 

I n a d d i t i o n , t h e method has the disadvantages t h a t i t r e q u i r e s a d i f f e r e n t 

treatment f o r d i f f e r e n t ranges of Mach number, so t h a t the simple covering o f 

th e Mach range provided by \_3~] i s l o s t , and also t h a t f o r t h r e e dimensional 

problems i t r e q u i r e s considerable numerical work. The p r i n c i p a l o b j e c t i o n t o 

th e method from a mathematical standpoint however, i s t h a t I t i s b a s i c a l l y 

i n c o n s i s t e n t , K i s taken as a constant u n t i l a f t e r the f o r m a l s o l u t i o n t o t h e 

d i f f e r e n t i a l equation 1.2 i s obtained and then i s allowed t o vary w i t h z. I f 

one assumes a t t h e outset t h a t K i s a f u n c t i o n o f z t o be found, a f o r m a l 

s o l u t i o n may s t i l l be d e r i v e d . For K w = 1 , t h e r e s p e c t i v e f o r m a l s o l u t i o n s 

are: 

X constant: a>\ = - % f - - f - ^ L # } 1^ 

K - K ( Z ) C p ^ o ^ 1 ^ \ ~ 7 = = i ) \ l £ 

where ? 0 ) = f - f . 
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F(z) i s the l o c a l slope of the a i r f o i l , and z = 0 a t the leading edge. 

I t i s evident t h a t although 1.5 reduces t o 1.4 when K(z) i s a constant, i f 

we regard them as equations f o r U. ( z ) , where t t ( z ) = ljj a° » 

and K(z) = ()T-H^ , then they are q u i t e d i f f e r e n t . Consequently 

we cannot y e t regard agreement w i t h experiment as a j u s t i f i c a t i o n f o r t h e 

S p r e i t e r t h e o r y , because i t may have a r i s e n because o f the c a n c e l l a t i o n o f 

th e p h y s i c a l e r r o r by the mathematical e r r o r , and i t i s d e s i r a b l e t o f i n d an 

a l t e r n a t i v e model f o r which a mathematically c o n s i s t e n t theory may be 

developed. That proposed by Cole & Royce [̂ 6 J has the a t t r a c t i v e f e a t u r e 

t h a t i t preserves t h e s t r u c t u r e of t h e equation, and f o r the axisymmetric case, 

the r e s u l t s of t h e mathematically c o n s i s t e n t theory, are as encouraging as 

those of the S p r e i t e r & ALksne work, p a r t i c u l a r l y when the maximum disturbance 

occurs towards the r e a r o f the body. I n t h i s paper, we extend the Cole & 

Royce method t o i n c l u d e two dimensional shapes i n order t o t e s t the accuracy 

o f the method f o r t h e extreme case o f a i r f o i l s w i t h f i n i t e aspect r a t i o . 

The approach i n t h i s work i s s i m i l a r t o t h a t o f Cole & Royce. Th e i r model 

i s one o f accelerated f l o w , so t h a t the f l o w i s subsonic over the forward p a r t 

o f the a i r f o i l , and supersonic behind, and the technique i s t o represent t h e 

body by sources i n a manner analogous t o subsonic t h e o r y . Extension t o t w o -

dimensions i s , i n p r i n c i p l e , simple. The p o i n t sources are i n t e g r a t e d t o g i v e 

l i n e sources, and t h e same technique i s a p p l i e d . However, as the subsonic 

and supersonic sources have d i f f e r e n t forms, an a d d i t i o n a l term i s necessary 

t o g i v e a continuous p o t e n t i a l , and e s t a b l i s h i n g jihat the two expressions f o r the 

p o t e n t i a l j o i n smoothly c o n s t i t u t e s the main d i f f i c u l t y o f the wprk. The general 

r e s u l t s are a p p l i e d t o the p a r t i c u l a r case of a i r f o i l s given by polynomials, 

and f o r powers up t o t h e s i x t h , the t a b l e s provided make the c a l c u l a t i o n o f 

pressure d i s t r i b u t i o n s on such a i r f o i l s q u i t e easy. 



S 2. The approximate equation and t h e source s o l u t i o n s . 

The Cole & Royce approximate t r a n s o n i c equation f o r axisymmetric f l o w 

a t M M = 1 i s 

2.1 
where z = 0 a t the sonic p o i n t , and by use o f Hankel transforms, the 

f o l l o w i n g p o i n t source s o l u t i o n s have been der i v e d : 

f o r Z>0 _ ( + Z -

, v?< vr+ «v 2.2 

The two dimensional form of equation 2.1 

(pyy - dtr. 9>z-r. = ° 

obtained by regarding <p as independent o f x , corresponds t o choosing (p^ 

as ^ n t h e n o n - l i n e a r term (y+1) p** of "the two — 

dimensional t r a n s o n i c equation, where z =0 i s the sonic p o i n t . Since 

$Jfe>, £<H) -* O as x ^ t e o t h e n 9 ( E ) « VTT >-«o $<e) d* i s 

a s o l u t i o n of 2.4 f o r Z < 0 , and <? (H) - ZTT $ M-d* a s o l u t i o n 

f o r £ > o . The f a c t o r s ^Zit are introduced so t h a t the p o t e n t i a l s represent 

u n i t sources. Further i t i s convenient t o d e f i n e 9 (E) = 0 f o r I > O , 

and (H) = 0 f o r £ ^ O . Now (p (E) and $9(H) may be expressed i n terms o f 

e l l i p t i c i n t e g r a l s . For £ < 0 , the i n t e g r a l f o r p (E) takes two forms 

according as z 0 o 



U1 

For z = - s < 0, 

where K ( k ) , E(k) are complete e l l i p t i c i n t e g r a l s , w i t h k = f j ^ j g ^ g * 9 

For z > o 

air A (2jy-/\) 1 * * •* 

where E# , F* are the incomplete e l l i p t i c i n t e g r a l s 

* - E 7k.) - 1 , F* = I { ' , H * H f l r t } * 

The i n t e g r a l f o r <p (H) takes t h e simpler forms 

? to) 

where K, E are complete e l l i p t i c i n t e g r a l s w i t h k = ^ y ^ ^ a — j j l 

I n the Cole and Royce work, i t was necessary t o in t r o d u c e a s o l u t i o n , 
a*Tx 

s i n g u l a r on the surface z = £ . The s i g n i f i c a n c e o f t h i s i s discussed 

l a t e r . Here, we simply note t h a t the- l i n e z = -jpi corresponds t o the 

surface z = ~£ , and i n v e s t i g a t e t h e p o s s i b i l i t y o f s o l u t i o n s s i n g u l a r 

on t h i s l i n e . P u t t i n g h = - z, and seeking s o l u t i o n s which are f u n c t i o n s 

o f h o n l y , i s found as the s o l u t i o n . Though not s i n g u l a r i t s e l f , t h e 

d e r i v a t i v e s are. 



I f we f u r t h e r seek s o l u t i o n s o f 

? * (*? I " * ' o f w h i c h 

independent s o l u t i o n s ensue. For z 

form 2.5, w h i l e f o r z> 0 , Z> 0 t h e 

I t w i l l be noted t h a t t h e f i r s t 

and l i k e w i s e the second f o r ? < 0, 

i n s a t i s f y i n g boundary c o n d i t i o n s . 

t h e form **" £ (•y) » where 

i s a p a r t i c u l a r case, then two 

< 0» ? < 0 the f i r s t takes t h e 

second takes the form 2.7. 

gives a s o l u t i o n f o r z>0, £ > 0, 

z < 0, but these are of no help 



\ 3 A p o t e n t i a l d e r i v e d by s u p e r p o s i t i o n o f the two-dimensional sources. 

Consider 

-b 

Where i n 3»lb, the Cauchy P r i n c i p a l value i s taken a t £ =0. 

This p o t e n t i a l may be regarded as due t o a l i n e o f sources along y = Q, and 

by analogy w i t h subsonic t h e o r y , we expect -fife) t o be t h e l o c a l slope o f 

t h e a i r f o i l . The a d d i t i o n a l term ^ " 7 ^ y/^f-z i s introduced 

a n t i c i p a t i n g d i f f i c u l t y i n e s t a b l i s h i n g c o n t i n u i t y across z = 

I t stems from the e f f e c t i v e doubling i n s t r e n g t h o f sources i n passing from 

th e subsonic t o supersonic regime. Any d i s c o n t i n u i t y a t y = 0, z = 0. 

propogates along the c h a r a c t e r i s t i c through the p o i n t , i . e . along 

z = "V . 
The proof of the existence o f the i n t e g r a l s o f 3.1 i s s t r a i g h t f o r w a r d 

when z ^ -̂ 3 , For 3«la consider the cases z o separately; f o r 

z < 0, using 2.5, t h e in t e g r a n d has an i n t e g r a b l e s i n g u l a r i t y a t I =0. 

For 3.1b using the expressions 2,6 and 2.7* i t may be shown t h a t t h e i n t e g r a n d 

behaves l i k e a t the o r i g i n , so t h a t the p r i n c i p a l value i s r e q u i r e d . As 

h = ~J?~^ *"* 0, these considerations, are no longer a p p l i c a b l e . The 

examination of the behaviour o f <p and i t s d e r i v a t i v e s i s q u i t e i n v o l v e d and 

i s n ot given here. 

The conclusion i s t h a t , and are continuous across z = 

as r e q u i r e d by the p h y s i c a l s i t u a t i o n . Thus, the necessity f o r the a d d i t i o n o f 

th e term f „ „,. . , *. 
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t o the p o t e n t i a l due t o the sources alone i s e s t a b l i s h e d This i s a n a t u r a l 

extension of the Cole & Royce work, as i t i s t h e •» i n t e g r a l o f the l o g | •* - ^ I 

t erm which they:-,had t o : add;;. .. • • , 

We now examine t h e v e l o c i t i e s , f o r z F beginning w i t h ^ 

I t i s convenient t o consider separately t h e ranges z < 0, -J^J >* ^ 0 , 

and z > «jr-3 « 
z < 0. Interchanging t h e order o f i n t e g r a t i o n and d i f f e r e n t i a t i o n , and 

using expressions f o r t h e d e r i v a t i v e s of e l l i p t i c i n t e g r a l s (see £l2j or 

{l31 ) , i t may be shown 

1*2 

where 1c = {8*- + (vTS+>Is)a} ' 

When s jl 0, as I -» 0, k * = Oft*) and 2(R-E) - ( 7 ^ . j E = 0(1). 

Thus, f o r s 7̂  9, y ^ G the i n t e g r a n d i n 3.2 i s bounded a t 1 =0; furthermore 

i t i s continuous f o r Q 4 S ^ b, so t h a t the i n t e g r a l i s d e f i n e d . For y = 6, 

t h e i n t e g r a n d has a s i n g u l a r i t y a t J = s, where k = 1. Consider the behaviour 

of 3.2 as y-> 0, Since s f 0, the f i r s t term vanishes. I n the i n t e g r a n d K 

has a s i n g u l a r i t y l i k e l o g y, but i t i s m u l t i p l i e d by y, and so makes no 

c o n t r i b u t i o n ; E —•» 1. Thus 

When s = 0, the i n t e g r a l i n 3«2 makes no c o n t r i b u t i o n , as y-» 0, but the 

f i r s t term gives SX.{&). Thus f o r z £ ~*-£!(?) as y-> 0. 3̂ ,3. 
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20 > z ̂  0„ An expression f o r ^ has been d e r i v e d , by-

r e t u r n i n g t o the d e f i n i t i o n of ^ ( E ) , f o r use i n 3«1» and interchanging 

orders of i n t e g r a t i o n and differentiation» L i k e the p o t e n t i a l i n t h i s 

range, i t may be reduced t o a s i n g l e i n t e g r a l , w i t h incomplete e l l i p t i c 

i n t e g r a l s i n the i n t e g r a n d , but i t i s unwieldy; : However i t i s f a i r l y 

easy t o show t h a t the only p o s s i b i l i t y o f a s i n g u l a r i t y i n the integrand 

occurs a t 1 =0, and i f i t occurs, i t i s c e r t a i n l y i n t e g r a b l e . 

3. z - ff= k'> 0. W r i t i n g <px = , where 

we r e q u i r e ^ m f m ( l&i <*) f 1£*-(t) J 

Now, by t h e approach i n d i c a t e d i n case 2, i t may be shown 

The only s i n g u l a r i t y of the i n t e g r a n d i s a t 5 = Q, For small ^ 

Thus the i n t e g r a n d ~ -G&J © . 4 near 5 = 0 ,and 2 # has the form 

where G,(y) i s a bounded f u n c t i o n o f y, independent o f fc . 

Also, using the r e s u l t s f o r d e r i v a t i v e s of e l l i p t i c i n t e g r a l s , as i n 

case 1. 



Near I = °»yythe i n t e g r a n d ~ v»-g» "t > a n d t h u s h a s t h e 

form 

•ajj 11 - 8 / ^ 1 ^ ^ * 3 3.5 

•where G t ( y ) i s a bounded f u n c t i o n o f y independent o f £ . 

Adding 3.4 and 3«5 and t a k i n g the l i m i t • • e . - v 0, we o b t a i n a w e l l d e f i n ed 

expression f o r ^ * . Fur t h e r , as i t f o l l o w s 

-» Site) 

Equations 3,3 and 3.6 i n d i c a t e t h a t Site) must be taken as the l o c a l 

slope o f the a i r f o i l , i n order t o s a t i s f y the boundary c o n d i t i o n o f t a n g e n t i a l 

f l o w . The usu a l approximation of applying t h e c o n d i t i o n a t y — Q r a t h e r than 

a t the a i r f o i l surface, i s made, the e r r o r being a t most o f second order. 

However, i t should be n o t i c e d t h a t although we have es t a b l i s h e d the 

existence o f a continuous v e l o c i t y f i e l d which s a t i s f i e s the boundary 

c o n d i t i o n on t h e body, we have f a i l e d t o s a t i s f y t h e c o n d i t i o n o f vanishing 

disturbances a t l a r g e distances. For consider i n the r e g i o n o f ^ ^ . 
silo) B The a d d i t i o n a l term i n t h e p o t e n t i a l gives a v e l o c i t y -^S - which i s non­

zero as y-»Q0, f o r z f i n i t e , w h i l e t h e i n t e g r a l gives a v e l o c i t y which makes 

no c o n t r i b u t i o n as y-»<fl. This i n a b i l i t y t o s a t i s f y boundary c o n d i t i o n s need 

not be s u r p r i s i n g , i f we r e c a l l t h a t the equation 2.4 i s a v a l i d approximation 

only i n the neighbourhood of t h e body. 

The examination o f f o l l o w s a s i m i l a r p a t t e r n t o t h a t f o r . 

However, some o f the expressions are le n g t h y , so i t i s proposed t o g i v e only t h e 

values as y-*Q, these being t h e expressions of p r a c t i c a l i n t e r e s t . 

F or z < 0, 

i ^ , i r b ^ r e > k i , v o „ 
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where k = (vJ!+>Js)* a n ^ the Cauchy p r i n c i p a l value i s taken a t i = s, 

The range 0 < z < -37 i s not r e q u i r e d as y -> 0. For z > 0, we 

consider t h e range %S 2, as y - v 9. Ig? 1 has the form l i m £. -> o 

{ + 5 ^ ' } * a s there are s i n g u l a r i t i e s i n each o f t h e p a r t s , i f 

we put £ = 0, The r e s u l t i n g expression f o r the v e l o c i t y i s 

where i t i s understood t h a t X, i s evaluated a t y - 9, and i n t h e second 

i n t e g r a l k » . ( i ^ \ 

For a n a l y t i c work, 3.8 i s r a t h e r clumsy, and i t i s f r e q u e n t l y b e t t e r t o 

r e t u r n t o t h e double i n t e g r a l i m p l i e d i n the d e f i n i t i o n . However, i f we remove 

t h e c o n t r i b u t i o n from -ft - ( o ) , so t h a t the remaining integrands are no longer 

s i n g u l a r a t % — 0, i t i s q u i t e ammenable t o computation. 

Some d i f f i c u l t y i s experienced near z = 0, as can only be expected from 

our previous comments about behaviour a t the sonic p o i n t . 



% 4 Behaviour i n the neighbourhood of t h e sonic p o i n t s , i t s p r e d i c t i o n and 
the choice of the value o f «tx . 

The aim here, - i s t o show t h a t , near the o r i g i n , 3»7 has the form 

and s i m i l a r l y t h a t 3.8 has the form 
so t h a t we e s t a b l i s h the c o n t i n u i t y o f l^oat "the o r i g i n , o b t a i n 

i t s value ^ z | <j = o , and also the value o f zrr% | «̂ =o . 

For consistency, the value of J y=o should vanish, as we have taken 
Z s O 

the o r i g i n a t the sonic p o i n t , and t h i s gives the means of determining b, i . e . 

the equation 

i.2 

The value o f | 1*° i s r e q u i r e d , because we choose t o make a-*"2-

t h e best approximation t o (V+/)M» <P^ a t the sonic p o i n t . This i s t h e choice 

made by Maeder & Thommen , t o make t h e i r c o r r e c t i o n term minimum, except 

t h a t they r e q u i r e t o choose a p o i n t which gives the best value of (lr+l)Meo , 

r a t h e r than C M M « <px . 

From t h i s choice we o b t a i n the equation f o r <x* : 

To proceed w i t h our s t a t e d i n t e n t i o n , consider equation 3.7. I n t h e 

i n t e g r a l , s p l i t the range of i n t e g r a t i o n at y . As we are considering s -> 0» 

we take / » ? » s . 

At,. A-
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I n the second term, f o r s u f f i c i e n t l y small 7 -^-6^ * 2- > 

over the range of i n t e g r a t i o n . 

Now d e f i n e 

and note a l s o , t h a t since 7 » s , the t h i r d term of 4.4 may be w r i t t e n 

where 

3-M 
t h e c o e f f i c i e n t s being a ° » -> ' 

Thus 4.4 may be w r i t t e n 

Now i t may be shown t h a t 

where k; - iwfT 3" ' a n t* ^' ^ a r e
A

e H i p t i c i n t e g r a l s , modulus k 

By using s e r i e s expansions f o r the e l l i p t i c i n t e g r a l s , we o b t a i n 

= - i - _ 2£ , _ L _ + o(*»*) 
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and hence 

Using these expansions i n 4.6 

a ~m = r - - - c ^ y * + f c- ir^1 £^, + -k L 

^ L "7^ t r 2
c ~ J J 

Now, ^ was chosen a r b i t r a r i l y , so the r i g h t hand side must be independent 

of y , and i n p a r t i c u l a r , the c o e f f i c i e n t s of the powers o f s, must be 

independent of J . Thus 

1=o * z= o 

where ^ denotes the f i n i t e p a r t . 

Having e s t a b l i s h e d the r e s u l t f o r z -» O"" , we now consider the 

behaviour o f 3.8, as h 0+, 

i s I . i n { + 

I n t h i s case, f o r i t i s convenient t o r e t u r n t o the form provided i n 

the d e f i n i t i o n of Cl,Cs\ . ) a n d f r o m t h i s w e o b t a i n 

Also 
7 ) ^ a - r r j . Z2(-z.-Z) <- J 



?2 

The method i s e s s e n t i a l l y t h e same as t h a t f o r z < o, i n t h a t we d i v i d e t h e 

range of i n t e g r a t i o n (in ^ . ' ^ J so t h a t we may employ a Taylor expansion 

of Sl(?) near the o r i g i n , although the £ l i m i t a l t e r s the form a l i t t l e . 

For / » J » ~*-

and 

Now p u t t i n g 

^ 2 

we may now w r i t e 

a "22 

h. = 0 to. • 

Now i t may be shown 
W / * l ^ Fv 

U. * - % 
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where F* , E* are the incomplete e l l i p t i c i n t e g r a l s , defined i n 2.6, w i t h 

As 7 > z , by expanding the i n t e g r a n d , i t i s e a s i l y e s t a b l i s h e d t h a t 

F u r t h e r , by employing expansions f o r incomplete e l l i p t i c i n t e g r a l s £l3^{ 

when A, = ^ ~ ^ 

f . - 5 * | ) H +(fi f + . o ( s r ; 

and hence 

v.® - -' + 5 • + o(^j*; 

I f i n 4.9, we now take the two i n f i n i t e s e r i e s , and w r i t e them as 
oO 

e«r r m , where 1 , - ( 7 ^ § / + ^ r - ^ J 
vn-=o 

then using the above approximations 

Mow consider I w (m > I )« Expanding the integrand i n , f o r small 

z, f o r m > I i t may be shown 



Using t h e expansions 4.10, 4.11, 4.12 i n 4.9 

r - -n-<°j 

7 

7 

Now ^ was chosen a r b i t r a r i l y , so t h e r i g h t hand side must be independent o f J 

and i n p a r t i c u l a r the c o e f f i c i e n t s of the powers o f z must be independent of ^ 

Thus 

which completes the proof of equations 4.1a, 4.1b, and consequently of 4.2, 

which gives b, and 4.3 which gives a. . 
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§5* The c a l c u l a t i o n o f pressure d i s t r i b u t i o n on the a i r f o i l . 

I n t h i s s e c t i o n , we c o l l e c t the r e s u l t s r e q u i r e d f o r t h e c a l c u l a t i o n o f 

pressure d i s t r i b u t i o n s on t h i n a i r f o i l s having small slope, and then apply t h e 

method t o the p a r t i c u l a r class of a i r f o i l s whose slopes are given by polynomials 
p - poo 

The non-dimensional pressure d i s t r i b u t i o n Cp = , ' i s given by 
"5. p><*> «M 

Cp = - 2 . "Sjfi* | , t o the usual l i n e a r approximation. 

According t o the t r a n s o n i c s i m i l a r i t y r u l e s , the q u a n t i t y 
? _ fr+'>'/3

 r 

should be independent o f t h e thickness r a t i o T , and i n our approximation t h i s 

i s the case. For the purpose of comparison w i t h other work, r e s u l t s are given 

i n terms of C p . 

Suppose the l o c a l slope o f t h e a i r f o i l Sl(?) = T /\ Ur& t then equation 

4«2 becomes 

5*1 

and the value of a. , from 4*3» i s given by 

a 3 = (y^-,)r B 5 

W h e r S = - ?J-[H) , f b ^ 
^ 1 b ^ L'/x 4 T 1 7^ - J 

Using these r e s u l t s i n 3*7 and 3«8, we o b t a i n 

C r ( x > o ) . - * | { D W - * f + i f - ^ ^ K - ^ E l d j } 



where l i m £ -* o i s understood, and D(e.) takes the a l t e r n a t i v e forms 

5.5b 

The forms 5»3> 5.4 are not immediately u s e f u l f o r numerical c a l c u l a t i o n . 

However, i f the case 0J~ ( z ) = z"1
 ) o^L m <- I can be t r e a t e d , then the 

remaining numerical i n t e g r a t i o n s are s t r a i g h t f o r w a r d . We i l l u s t r a t e t h i s by 

t h e example o f a polynomial f o r ux(z), the case u r ( z ) = constant being the 

extreme case from t h e p o i n t of view of s i n g u l a r i ntegrands. 
N 

Suppose then, t h a t 4J-(Z) = Z T or" 1^/ ^' 

F i r s t consider 5.3 

This may be w r i t t e n 

K 

5*Z 

Next consider 5.4 



. + r + ~* 
r>h. 

Define 

5.? 

I E . - * A, F, - - i 

^ 2 

o 

U 6 = o 
J.10 

Then s u b s t i t u t i n g i n 5.4 

Now E e ( S ) , V 0 ( z ) may be evaluated a n a l y t i c a l l y . The r e s u l t s have been 

quoted i n §4 (near 4.6, 4.9), together w i t h those f o r E, ( s ) , V, ( z ) , U, . 

The a c t u a l e v a l u a t i o n i s s t r a i g h t f o r w a r d except f o r U | which r e q u i r e s a 

l i t t l e i n g e n u i t y , but i t i s tedious and i s not included. 

( z ) , n >/ , may be r e a d i l y computed, and the a n a l y t i c e v a l u a t i o n o f 

V, ( z ) serves as a check on accuracy. I n 5.11* the argument i s (\ J , so t h a t 

f o r accurate work, V n ( z ) must be generated f o r each p a r t i c u l a r case. However, 

a t a b l e i s provided for- n = 1 ... 5* and f o r t y p i c a l values of the argument* 

may be d e r i v e d by considering A U ^ = U a - Uy^, , which may 

be r e a d i l y computed. Values of U, ...Us are given. 
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E n ( s ) may be derived by considering A E ^ t e ) * EL a(s)-s ^ n ^ f K 

T H E N A ^ M = ^ £' Vx{ + tfI-v/ifJK}.<tf 

and i t i s convenient t o consider the form 

<. i> Jo 

The s i t u a t i o n f o r E h ( s ) i s the same as t h a t f o r V n ( z ) . For accurate work i t 

must be generated f o r each p a r t i c u l a r case, but f o r n = /.. . 5T , and t y p i c a l 

values o f (\j a t a b l e i s provided. 
.—' 

F i n a l l y , we use the expressions f o r Cp i n 5.6, 5.H» and the t a b l e s 

t o consider members o f a class of a i r f o i l s i n v e s t i g a t e d experimentally by M i c h e l , 

Marchaud & Le Gallo (lh J . 

The a i r f o i l s are. given by 

A u [ ( a ) - ( in 

where * = o a t the l e a d i n g edge, and also f o r the reversed form 

Y - A .n [o -!)-(/- fef] 
The chord i s it , and the thickness r a t i o T i s given by 

A « R 
Z(n-i) 

I n terms of the n o t a t i o n o f t h i s work 

.+k in--' 
_ , , / yj^^-'h (t'~'n (^£r) J f o r maximum thickness a f t . 

f o r maximum thickness forward, 
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The experimental work was performed f o r values o f n = z, 3*38, 6.05 

which give maximum thickness a t 50$, 60$, 70$ chord r e s p e c t i v e l y , and 40$, 

30 % chord when reversed. S p r e i t e r [9~\ and Thommen [ l 5 ^ also considered these 

a i r f o i l s . For s i m p l i c i t y , so t h a t we may use the t a b l e s we only consider 

i n t e g e r values of n. 

Example 

When„ = 2, - f t W - 2 * ' D - 2 ( ^ 4 ] * * * 
From 5.1, b = . From 5.2 B = ( z/£) > / x 

Then 5.6 gives C P ^ < o j - - z(i)*{ - ft®**,®} 

and hence C p fx<o) = % { ( i ^ - J K - ( I + ^ ) E } 

Also 5.H gives C>>°) = - 2 ( ^ { ( ^ j ' ^ V ^ I - ^ L - i i V ^ J ^ ^ l l 
andhence cp (*>o) = - ^ { <\fiT >̂ + ^ ) ~ -vPt)^* - ^ } 

The r e s u l t i n g d i s t r i b u t i o n i s p l o t t e d i n F i g . l . 

For other values o f n, t h e c a l c u l a t i o n i s e q u a l l y s t r a i g h t f o r w a r d , and 

although the numerical work becomes heavier, i t i s c e r t a i n l y a matter f o r a desk 

machine* The cases n = 6 , n = 3 have been evaluated, and the r e s u l t i n g 

d i s t r i b u t i o n s are p l o t t e d i n Figs 2...5. 
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%(, Conclusions 

This work considers the p o s s i b i l i t y o f using the equation 

as an approximation t o t h e t r a n s o n i c small disturbance equation f o r a sonic 

stream f l o w i n g past two dimensional t h i n wings. 

I t has been shown t h a t i t i s pos s i b l e t o de r i v e a unique <f> simply by 

s a t i s f y i n g the equation, and the boundary c o n d i t i o n s on the body. The value 

o f a* i s chosen so t h a t â z. c o n s t i t u t e s the best l i n e a r approximation t o 

{(yi-i)M» } i j = 0 i n t h e neighbourhood of the sonic p o i n t . However, t h i s 

p o t e n t i a l u n l i k e the t h r e e dimensional s o l u t i o n o f which i t i s the i n t e g r a l , 

does not g i v e vanishing disturbances a t l a r g e distances. This f e a t u r e draws 

a t t e n t i o n t o t h e assumption i m p l i c i t i n a l l the l i n e a r i s e d approximations, 

t h a t i t i s s u f f i c i e n t t o approximate the equation c o r r e c t l y i n t h e immediate 

neighbourhood of the body t o d e r i v e surface pressures. I t i s not regarded as 

a serious d e f e c t . P h y s i c a l l y , i n the t r a n s o n i c regime, the i n f l u e n c e of a 

body does extend t o l a r g e distances i n the d i r e c t i o n normal t o the f l o w . 

The pressure d i s t r i b u t i o n s obtained by t h e present method are given i n 

Figs 1-5, t o g e t h e r w i t h the t h e o r e t i c a l d i s t r i b u t i o n s of S p r e i t e r £9] and 

Maeder & Thommen % and t h e experimental d i s t r i b u t i o n s of Mich e l £l4^ • 

Agreement w i t h experiment i s not so good as t h a t of S p r e i t e r f s work j [ 9 l 

f o r maximum thickness forward, but f o r maximum thickness towards the r e a r , i t 

i s a t l e a s t equal i f not b e t t e r . I n some doubts have been r a i s e d about 

the experimental r e s u l t s but they do not seem t o j u s t i f y regarding d i f f e r e n c e s 

between theory and experiment f o r maximum thickness a f t as due t o experimental 

e r r o r , w h i l e i g n o r i n g the e r r o r i n other cases. However, as explained i n the 

i n t r o d u c t i o n , t h e t h e o r e t i c a l basis of S p r e i t e r ' s method i s suspect. The present 
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results are better than those of the mathematically consistent theory of 

Maeder & Thommen [3"] , though the method lacks the ease of application of \_3j . 

The improvements on £3"] given i n [_7l and provide better agreement 

with experiment f o r the parabolic-arc t h i n a i r f o i l and neighbouring p r o f i l e s . 

However, i n the axisymmetric case , the results constitute l i t t l e 

improvement on [3"} * and are i n f e r i o r t o those of Cole & Royce \_6j . 

I t i s considered t h a t , i n the two dimensional case, i n view of the 

case of application of [_3] and i t s improvements, the advantage i n using 

the present method i s perhaps marginal. However, the reasonable agreement with 

experiment when the maximum disturbance ( i . e . maximum thickness) i s towards 

the rear, together with the excellent results of £6^ f o r the axisymmetric 

case with maximum disturbance towards the rear, suggest that f o r three-

dimensional shapes sa t i s f y i n g t h i s condition, f a i r l y accurate results may be 

obtained. One such shape i s the delta, and i t i s hoped to consider, i n a 

l a t e r paper, the application of the present approach to t h i s shape. 
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Table 1. Un integrals 

= - 1 27324 
Ut =-113177 
V3 = - 1 08650 
U, = - 1 06433 
C7, =-105119 

Table 2. En(s) integrals 

a .*.(*) Et(s) *•(•) Et(s) 

00 - 1 00000 1-00000 0-33333 0-20000 0-14286 o - i i m 
01 - 1 02651 0-92251 0-40103 0-23131 0-16082 0 12356 
0-2 - 1 05655 0-83935 0-45311 0-27223 0 18655 0-14085 
0-3 -109110 0-74920 0-48750 0-31769 0-22130 0-16570 
0-4 -113160 0-65016 0-50137 0-36107 0-26384 0-20026 
0-6 - 1 18034 0-53935 0-49073 0-39471 0-30963 0-24449 
0-6 -1-24113 0-41208 0-44927 0-40753 0-34916 0-29356 
0-7 -1-32122 0-25973 0-36616 0-38294 0-36470 0-33343 
0-8 -1-43698 006352 0-21898 0-29078 0-32106 0-32859 
0-9 -1-64126 -0-23462 -005734 0 06356 012869 0 18091 



Table 3. Vn(z) integrals 

Analytic integration Numerical integration 

z VJLt) T7,(*) Vt{z) V3(z) V,(z) T'5(2) 

0-2 -0-95493 0-57219 0-57130 0-25809 0 16387 011956 009403 
0-4 -0-91769 0-46410 0-46384 0-21906 0-14165 0-10428 008244 
06 -0-88611 0-40031 0-40018 0-19309 0 12605 009333 007404 
0-8 -0-85867 0-35657 0-35651 0 17420 011440 008499 006755 
10 -0-83461 0-32417 0-32410 0-15960 0-10523 007837 0-06239 
1-2 -0-81322 0-29883 0-29883 0 14795 0-09785 007302 005819 
1-4 -0-79393 0-27839 0-27839 0-13840 009174 006850 005462 
1-6 -0-77642 0-26152 0-26152 0-13038 0-08652 006468 005163 
1-8 -0-76044 0-24720 0-24720 0-12350 ' 0-08212 006143 0-04908 
20 -0-74574 0-23491 0-23491 011758 007824 005857 004679 
2-2 -0-73218 Identical 0-22422 011236 0-07480 005602 004482 
2-4 -0-71957 with 0-21480 0 10772 007181 005379 0-04304 
2-6 -0-70779 numerical 0-20646 0-10364 006907 005182 004144 
2-8 -0-69678 result to 0-19894 009994 0-06665 004997 004000 
30 -0-68647 6 decimal 0 19220 0-09658 0-06443 004832 003864 
3-2 -0-67673 places 0-18602 009352 0-06245 004686 003750 
3-4 -0-66750 

places 
0-18035 009072 000061 0-04545 0-03035 

3-6 -0-65877 0-17526 008817 005889 004418 003533 
3-8 -0-65050 0-17049 008582 005730 004304 0-03444 
40 -0-64267 0-16609 0-08359 0-05583 0-04195 003355 
42 -0-63516 0-16202 0-08155 005449 004093 003272 
4-4 -0-62796 0 15820 007964 005322 0-03998 003196 
4-6 -0-62115 --- 015463 007786 005201 003909 003126 
4-8 -0-61459 0-15132 007620 005093 003826 003062 
50 -0-60829 0 14821 007461 0-04985 0 03743 0-02998 
5-2 -0-60224 0-14521 007315 0-04889 003673 002941 
5-4 -0-59645 0-14241 007175 0-04794 0-03603 0-02884 
5-6 -0-59085 0-13980 007041 0-04705 0 08533 002833 
5-8 - 0-58550 0-13732 006914 0-04622 003470 0-02782 
60 -0-58028 0-13490 006793 0 04545 003412 002731 
6-2 -0-57525 0 13267 0-06685 0-04469 003355 002687 
6-4 -0-57041 0-13051 006576 0-04393 0-03298 002642 
6-6 -0-56570 0-12847 0-06468 0-04323 003247 0-02604 
6-8 -0-56118 0 12650 006373 0-04259 0-03202 002559 
70 -0-55672 0-12459 006277 004195 003151 0-02521 
7-2 -0-55246 0 12280 006190 004138 003107 002489 
7-4 -0-54832 012109 006099 004074 003062 002451 
7-6 -0-54431 011943 006016 004023 003018 0-02419 
7-8 -0-54043 011784 005933 0-03966 002979 002387 
80 -0-53661 011631 005857 003915 0-02941 002355 

8-2 -0-53291 011486 005781 003864 0 02903 002324 
8-4 -0-52929 0-11345 005710 0 03820 002871 002298 
8-6 -0-52578 011205 0-05640 003775 002833 002266 
8-8 -0-52235 011071 005577 003731 0-02801 002241 
90 -0-51904 0-10944 0-05513 003686 0-02769 002215 
9-2 -0-61579 0-10823 0-05449 003641 002737 002190 
9-4 -0-51261 0-10702 005389 003603 002706 002165 
9-6 -0-60949 0-10587 005329 003565 0-02674 002145 
9-8 -0-50643 0-10479 005271 003527 002648 0-02120 
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§7 Appendix 

The behaviour of the potential (3.1) as 1 ̂  - ̂  1 —> Q . 

Fi r s t consider K * ~ z > O ; the i n t e g r a l i n (3.1a) 

may be w r i t t e n : 

11 

where I » S » vHh . Replacing f l ( - ^ J by i t s Taylor 

series for the range ( o , 6 ) , the second part of the integral takes 

the form 

where 

,sa- Jo Jo i (x? + 1 + + kin} 

Interchanging the order of integration, performing the 1 -integration 

and expanding f o r small K , i t may be shown that 

A c = " i h" 1 + <*oo(s) + <x01(s).W + O^) 

A, = * I O ( s ) +• «u(s)M +• 

where °̂ wm depend only on S , being d e f i n i t e integrals. 

The absence of powers of \\/x i n A n (ti>/) i s established by 
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induction; by comparison with A, i t may be shown 

Now consider K = _̂ ~ X > O 

(3.1b) may be recast i n the form 

; the expression 

f t, oo 

^ f d l . i l ^ ) . I - — 1 % 

+ f 7U? Li B*} 

7.S 

Reasoning as for the case K > O , the f i r s t of these integrals 

may be written 

[ dS..QB) x. ax. 

n = o 7 ,6 

where 
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Consider B c : interchanging the order of integration and 

performing the ^ -int e g r a t i o n , 

B. - 4 ( I > - I » 
where 

and by expanding 1 Q i n powers of h 

By integration and expansion the contribution from the 

hyperbolic sources may be reduced to 

so that 

£.-*• o 

For B h l^>i) we may take the £ l i m i t , and use 

6> n(&,h',o) . The i n t e g r a l involved i n B^fS, h.',o) i s 

the same as that for A^(S^h) , so that 

B, ( s , w » = <(sj - *t,(s).w" + 0(w') H i 

The induction argument ensures a regular expansion i n powers of 

h for B n ( n > i ) , so that 



We can now deduce the required properties of as 

\ K. I —* O . From (7.3) we see the necessity for the 

addition of the term %_ -Q.(p).Jh i n the expression for <px i n 

the region K>o , (equation (3.1a)); i t removes the s i n g u l a r i t y 

as W -* O 

From (7.1), (7.2), (7.3) and (7.5), (7.6), (7.7) we have 

One expects t h i s value to be independent of & , a point which 

can i n p r i n c i p l e be v e r i f i e d by p a r t i a l integration. The resu l t i s 

va l i d f o r a l l 8 > O t and i t happens that ^ o c . f e i , <Xlo(s)-> O 

as S 0 + , so using (7.4) we have that 

x. . dx 
•5/2. 

- ^ 

Thus the potential i s continuous across ~z. - . Now 

consider as I h 1 —*• O 
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From (7.1), (7.2), (7.3) and (7.5), (7.6), (7.7), d i f f e r e n t i a t i n g 

we have 

{ 2- - _ 

thi-*o n 
5i .2 £ 
7TQ. 4-

5/i 

Thus - j , ^ i s continuous across - ^ 

c<o|(s) i s no longer bounded as & O ; the l i m i t i s 

independent of S and may be written 

However 

4mi 
l h l - * o 

where If denotes the f i n i t e part of the i n t e g r a l . 

The continuity of across -z.--j^ may be established 

from the continuity of ^ v t* i e ^°^ o w^ n& argument. <fox 

s a t i s f i e s the d i f f e r e n t i a l equation (2.4) away from the l i n e 

^ " h. . The characteristics of (2.4) are r e a l i n the 

region z > O , and we may draw the neighbouring charac­

t e r i s t i c s to z. = for both Vi % O . Along the 

neighbouring characteristics, considering lj > O , the 

following compatability condition applies: 



u - Co nsf'ant 

where i = r *L u = ^ v = 12* 

For f i n i t e t , i t i s possible to obtain the constants of 

integration from the values on the a i r f o i l , and as the a i r f o i l i s 

smooth the difference i n constants for neighbouring characteristics 

on either side of 2. = may be made a r b i t r a r i l y small. 

Thus the continuity of V across the curve "Z ~ 7£r implies 

the continuity of u. 



CHAPTER I I I 

AN APPROXIMATE SOLUTION FOR TRANSONIC FLOW PAST THIN 

SYMMETRICAL DELTA WINGS. 

In t h i s chapter, we extend the method of approximation 

used in Chapter I I , to t r e a t a three-dimensional problem, 

the flow past a planar wing. 



lb 

h 1. Introduction 

The prediction of the pressure d i s t r i b u t i o n on an a i r f o i l 

i n transonic flow i s of obvious engineering i n t e r e s t . With supersonic 

a i r c r a f t i t i s no longer desirable to simply design to reduce transonic 

effects to a minimum. The design must be essentially f o r supersonic 

flow, with only s u f f i c i e n t attention to transonic effects to avoid 

drastic pressure changes; f o r t h i s one needs to calculate the pressure 

on a given a i r f o i l i n the transonic regime. 

The ultimate aim must be an unsteady theory, taking account 

of non-linear e f f e c t s . However, even the steady, symmetrical flow 

problem has proved d i f f i c u l t , and most of the work has been confined 

to either two-dimensional or axisymmetric flow. Hodograph methods 

[̂ 1~] have provided some accurate solutions i n the two-dimensional case. 

The computational method of Dorodnieyn , employed by Chushkin 

£ 1*3 for two-dimensional flow, also takes account of the whole 

flow f i e l d , but f o r a general, three-dimensional p r o f i l e , the demands 

on the machine appear p r o h i b i t i v e . The methods more suited to 

p r a c t i c a l application involve a greater degree of approximation, 

and only aim to produce reasonable results f o r the flow f i e l d i n 

the immediate neighbourhood of the a i r f o i l . A review of various 

approximate methods fo r symmetrical flow was given i n Chapter I , 

and some discussion of t h e i r r e l a t i v e merits was under taken i n 

Chapter I I , \ 1. Reference [ 4 l gives further d e t a i l o f these 



methods, and also considers l i f t i n g a i r f o i l s and unsteady f l o w . 

I t i s now proposed t o employ the second type o f r e g i o n a l l i n e a r ­

i s a t i o n approximation, C ^ l j C ^ l i n a three-dimensional s i t u a t i o n . 

One standard form o f the t r a n s o n i c , small disturbance equation 

i s 

where X^Y,Z are rec t a n g u l a r co-ordinates, X i s i n the d i r e c t i o n 
term 

o f the mainstream, gives the small disturbance Ai"n the flow 

p o t e n t i a l U e 0 ( X + $ ) and U*, , M w are r e s p e c t i v e l y the 

v e l o c i t y and Mach number o f the undisturbed flow upstream o f the 

a i r f o i l . The shocks which occur are weak and only appear as 

surfaces o f d i s c o n t i n u i t y o f v e l o c i t y , separating regions o f 

p o t e n t i a l f l o w . The s i m p l i f i e d t r a n s o n i c shock r e l a t i o n and t h i s 

form o f the small disturbance equation are a v a i l a b l e i n the review, 

S p r e i t e r 

The present approach considers M w - f and assumes accelerated 

flow over the a i r f o i l . At M^*/ shocks are expected t o be confined 

t o the r e a r o f the a i r f o i l and t h e i r e f f e c t i s disregarded. The 

approximation, f o r p o i n t s i n the neighbourhood o f the a i r f o i l , i s 

t o replace the $ x i n the no n - l i n e a r term o f (1.1) by a l i n e a r 

f u n c t i o n o f X . This then i s the model s i t u a t i o n i n v e s t i g a t e d ; 

f o r convenience a d i f f e r e n t choice o f co-ordinates i s adopted 

w i t h the o r i g i n on the centre chord o f the a i r f o i l , and z i n 

the d i r e c t i o n o f the mainstream. 
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§2. The model boundary value problem. 

The v e l o c i t y f i e l d f o r flow past the a i r f o i l i s derived from 

a p o t e n t i a l U w - i - <pL*,^, *.)) . The d e l t a wing l i e s i n the plane 

OXT. , Oz. l i e s along the centre chord, and the o r i g i n i s 

a distance t> along the centre chord. The wing i s symmetrical 

U, 

about the plane LJ = O ; suppose i t s upper surface i s given by 

where x i s the thickness r a t i o , and the l e a d i n g edge by 

The equation modelling the t r a n s o n i c flow i s taken as 

9 x x + <P^ = a 1 * 9?« 7^ 

For boundary c o n d i t i o n s on <p , we use the c o n d i t i o n o f no 

v e l o c i t y normal t o the a i r f o i l s urface, and a t e n t a t i v e c o n d i t i o n 

t h a t the p e r t u r b a t i o n v e l o c i t i e s derived from <f> , become small 

at l a r g e distances f o r z < O . Thus 

t <p^ +• m gj^ + 7i ( i + <f>^ ) ~ O on the a i r f o i l 

<p^_ , <f>^ . 9? z -» O ok °o for z.<o . 
2.2< 



where ( t ,tn , n ) are the d i r e c t i o n cosines o f the normal t o 

the a i r f o i l s urface. 

Equations ( 2 . 1 ) , (2.2a) are s u i t a b l e f o r slender bodies as 

w e l l as t h i n wings; the r e s t r i c t i o n t o t h i n wings enters as we 

take 

and then consider X s m a l l . Regarding the d e r i v a t i v e s o f 

<p as s m a l l , and r e t a i n i n g only the l a r g e s t terms, c o n d i t i o n s 

. ̂ 2 .2a) become 

> 2. 
, 9 a , Cpx —*• O at oo j-or T.<0 

Mote t h a t | j °c so t h a t we r e q u i r e \ ^ 1 

Point source s o l u t i o n s o f (2.l) s i t u a t e d on the y = ° plane 

are 

9 > M = - ' ^ } ( t > o ) t 

where T 1 r ( x - ^ ) 1 + y l
 f and the source i s 

s i t u a t e d at -z = Z , - X . - j . 

Adopting a s i m i l a r approach t o Ch. IE , as * * ' , we 

seek an approximation t o the s o l u t i o n o f ( 2 . 1 ) , (2.2) i n the form : 



sis1 

<8, ' -<rb 

. O l U 
2 > iy 1 

-orb 

where 

crt denotes the semi-span o f the a i r f o i l a t ~z. - O , 

oZ), denotes t h a t region o f the planform f o r which ^ < 0 

and <3a denotes the i n t e r s e c t i o n o f the cone 

o f dependence o f the f i e l d p o i n t (-x.,y,z.) w i t h t h a t region o f 

the planform f o r which Z > O 

(We take planform t o mean the p r o j e c t i o n o f the a i r f o i l 

surface on the plane u = O ) . The l o g terms are included t o 

make the p o t e n t i a l continuous across the l i n e Z = ijj , as 

i n Ck. IE . 

The cone o f dependence o f a p o i n t f - x . ^ z . ) may be deduced 

from the vanishing o f the denominator o f <piH) „ which i n d i c a t e s 

the cone o f i n f l u e n c e o f a source. A source at (*-c , y„ i n f l u e n c e s 

downstream p o i n t s s a t i s f y i n g 

^ - = i i(*-*.)* +• ( y - y . ) 1 } z 

and conversely a l l p o i n t s ( x C ) y o > ^ 0 ) upstream o f (x, i j , z ) and 

s a t i s f y i n g ( 2 . 5 ) , i n f l u e n c e ^ . I t may r e a d i l y be 

v e r i f i e d t h a t (2.5) defines a c h a r a c t e r i s t i c surface o f equation 

( 2 . 1 ) . We only use sources f o r which y 0 = O . The cone o f 



dependence o f f , -z.) i n t e r s e c t s the plane tj * O 

po i n t s (j,o,i) s a t i s f y i n g 

{ («fx - JJ) 1 - yx = J-*- r i g h t hand branch 

{ £t (tz-Jif1 - u * } V i = l e f t hand branch 

and the region o f dependence 3) i s defined by 

i n 

2.6 

Fiqure 1 

The s i t u a t i o n f o r small ij i s i l l u s t r a t e d i n F i g . 1 ; h' = z ~ ^ 

The domain o f i n t e g r a t i o n i n (2.'4), <&z » v a r i e s 

according t o the i n t e r s e c t i o n o f and the planform. For a 

d e l t a wing, the f i e l d p o i n t s w i t h z , ̂  > O give r i s e t o 

3 cases (A) x + |JTi' < (B) f Jh'~x <<rk<*+f Jh'(c) |J£'-*->» 

(see F i g . 2, drawn f o r s i m p l i c i t y f o r ij = O ) . 

The q u a n t i t y o f engineering i n t e r e s t i s the non-dimensional 

pressure d i s t r i b u t i o n C — — 2 ^ 1 . This i s derived 
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from the B e r n o u l l i equation, on the assumption t h a t the d e r i v a t i v e s 

o f <p are s m a l l , so t h a t quadratic terms may be neglected. 

This assumption i s in v o l v e d i n the form o f the boundary c o n d i t i o n s 

(2.2b). I n l i n e a r i s e d aerodynamics, i t i s the p r a c t i c e t o replace 

q u a n t i t i e s which should be evaluated a t the a i r f o i l s urface, by 

t h e i r values a t y = O . I n the present problem, as a 1 depends 

on ~c , ~c cannot be simply scaled out o f the boundary value pro­

blem f o r <p , and i t i s not obvious t h a t the c l a s s i c a l approxi­

mation remains v a l i d . Accordingly we evaluate q u a n t i t i e s r e q u i r e d 

on the a i r f o i l , a t y= x , and so r e t a i n an i n d i c a t i o n o f the 

e r r o r s i n v o l v e d , when using values a t y = O . 

Although i n p r i n c i p l e , once X (%,•?) i s found i n terms 

o f i/VxjZ.) we may o b t a i n the pressure d i s t r i b u t i o n from (2.U), 

i n p r a c t i c e , the s i n g u l a r i t i e s i n the integrands make i t d e s i r a b l e 

to s i m p l i f y the expressions by a n a l y t i c a l methods. Accordingly 

we are i n t e r e s t e d i n the asymptotic behaviour as x -> o. 

I t i s convenient t o introduce the f o l l o w i n g n o t a t i o n f o r the 

various l i m i t processes i n v o l v e d : 

i.( , ty : £ and y i n t e g r a t i o n s , ^ z - d i f f e r e n t i a t i o n 

4 : *W~-»0 , o^,.: {imcr-tto and ixtr<p ~ X z ( ^ v f p ) e t c . 2.1 

The order i s important, since some processes do not commute. 

In t h i s n o t a t i o n CW. IL was concerned w i t h ix / z £„. JLy i n 

ev a l u a t i n g the surface pressure. I n p r a c t i c e / x £g Xr i.g.i.y » and 

s i m i l a r orders were used, and t h i s merely ne c e s s i t a t e d the use o f 



p r i n c i p a l values, the penalty for the interchange of non-commutative 

processes. We do not escape so l i g h t l y i n the present case. 

To proceed with the evaluation of the asymptotic behaviour 

°f ^ z / y = r » w e must make further assumptions about X 

The two simplest alternatives are 

' n=.o 

x ( i t 7 ) = t x u . y ) = * f x ^ r 

We have, introduced "c anticipating the rela t i o n between XtZ,j) and 

the l o c a l a i r f o i l slope; -X-ng ' s independent of "c , y , 

and s i m i l a r l y Xy^ i s independent of t. , I . We also write 
DC OO 

X (Zry) * 22 2 where %nm are constants. 

I f the choice of the form for X i s made on physical grounds, 

(2.8) must be used. The reason for t h i s stems from the wish to 

truncate the s e r i e s a f t e r a few terms. Truncating the y s e r i e s 

implies having only simple spanwise thickness distributions 

available as approximations. This seems preferable to having 

simple chordwise approximations, since apart from the wing t i p , 

the p r a c t i c a l chordwise thickness distributions are more complicated 

than the spanwise ones. 

Mathematically, the choice e f f e c t i v e l y determines the order 

of l i m i t i n g processes, and the phys i c a l l y preferable choice leads 

to the more involved a n a l y s i s , since £^ <p> (E) may be evaluated 

in terms of elementary functions, whereas ~£y requires e l l i p t i c 



i n t e g r a l s . Accordingly, we f i r s t examine the case JC(Z,y>)= constant, 

aiming t o replace ^ / z ^ by f? £x /g / x wherever 

p o s s i b l e . Then, w i t h t h i s as guide, we t r e a t the more general 

shapes given by ( 2 . 8 ) , by aiming f o r the order £^ / T / 



§3. V e r i f i c a t i o n o f the formal s o l u t i o n . 

Before g e t t i n g i n v o lved i n the main task o f developing 

asymptotic forms o f » a number o f p o i n t s must be 

cleared up. V/e need t o e s t a b l i s h t h a t the i n t e g r a l s i n (2.4) 

converge, and t h a t the p o t e n t i a l so defined gives a continuous 

v e l o c i t y f i e l d . We also need t o check t h a t t h i s p o t e n t i a l 

s a t i s f i e s the boundary c o n d i t i o n s , and t o o b t a i n the r e l a t i o n 

between X and ^ . The choice o f values f o r a and 

t> i s deferred u n t i l the asymptotic forms o f the pressure 

d i s t r i b u t i o n are a v a i l a b l e . However, i t i s necessary t o have some 

estimate o f the r e l a t i o n between «. and ~c . We assume 

<x » ~c , but t h a t <x -* o as t -» O ; the two-dimensional 

r e l a t i o n i s a. ~ t ' / a . 

F i r s t then we examine the convergence o f the i n t e g r a l s i n 

( 2 . 4 ) . For z < 

r — r° p*e>+?) _ 

As JC i s continuous i n the closed region c0( , i t i s 

s u f f i c i e n t t o consider the case X ( £ , ^ = / . One may express 

£ <P(eJ i n terms o f standard e l l i p t i c i n t e g r a l s , and thus 

show t h a t t h i s provides an i n t e g r a b l e f u n c t i o n f o r 

For ~2L > ^ , the i n t e g r a l over cO, i n (2.4) has 

the same form as ( 3 . 1 ) . The only p o s s i b l e s i n g u l a r i t y o f <y£>(E) i n 

t h i s case a r i s e s from near = O . B y s u b t r a c t i n g a term 

'^[iXd, y) 9>lE^]i^0 from "the i n t e g r a n d , the r e s u l t i n g 



double i n t e g r a l i s made convergent. However 9 we must add the 

i n t e g r a l o f t h i s term, and t h i s i s divergent unless we modify 

<Q, . Now consider the i n t e g r a l over oO^ . As mentioned 

i n §2, t h e r e are three cases t o consider. 

region. 

O 

B_ C_ 
The various l i m i t s o f i n t e g r a t i o n may be deduced from (2.6) and 

the equation o f the edges o f the d e l t a J = -o-(b+?) . The 

f i g u r e s are drawn f o r a f i e l d p o i n t ( X . , t , z ) yt i s small and 
(LX. 

6 = T ; Z, , lz are given by 

The only p o s s i b l e s i n g u l a r i t i e s o f 3f fa,^) <£> (W are a t I-O , 

and on the c h a r a c t e r i s t i c surface. For DCCl,y) i n the form 

( 2 . 8 ) , ty JCCl.j) ^CH) may be evaluated i n terms o f 

e l l i p t i c i n t e g r a l s . This provides an integrand f o r which 

i s i n t e g r a b l e , except at Z-O . B y using £} 1^ {X(2,?)<p(n) 

— j \j X(2,y) < P ' H ) 3 ^ 0 } the s i n g u l a r i t y i s removed. The term 

3-2 

we 
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must add to compensate gives a divergent i n t e g r a l . However,, by 

modifying the regions of integration J), , oDz so that 

for J), , - k < i and for Q , £ *2<(f*-0)* 9 the 

integrals with behaviour are defined. Furthermore„ i t 

transpires that / ? [ i ~XLl,?) pCe)]^* ^ [2 Xtf.<?) 9>M\+Q
 F O R 

each of the cases AfBFC so that i n ( 2 . ^ ) p i f we use 

modified regions the two contributions 

combine to give a f i n i t e value as £ -> O . This corresponds 

to the Cauchy p r i n c i p a l value employed i n the two dimensional 

case. 

We have not yet considered the terms 

The addition of these terms ensures the continuity of the potential 

and i t s f i r s t derivatives across ~z- ~ » the proof i s s i m i l a r 

to the corresponding two-dimensional a n a l y s i s , Ch. I I , §7. Considering 

x - V 4 Q + , for s u f f i c i e n t l y small values of ^ ~ 

the region of integration oOz must be as i n case A. Thus the main 

difference from the two-dimensional case i s the f i n i t e range of 

^ -integration required for J), . The remainder of the proof i s 

routine and i s omitted. 

Now consider the boundary conditions. To s a t i s f y these 

. t ^ as ^ - * 0 

By analogy with c l a s s i c a l aerodynamics we expect 

is 
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and t h i s i s indeed the case. We o u t l i n e the d e r i v a t i o n ; the 

asymptotic methods are considered i n greater d e t a i l i n subsequent 

sections. Denote — by . Then f o r - -z < o 

Now 

v/here 

8 ^T" 

To perform the I i n t e g r a t i o n , note t h a t although Xt- O a s 

and f o r p o i n t s on the a i r f o i l 

X: > O ^ = 3̂ 4.) , so t h a t the e s s e n t i a l c o n t r i b u t i o n comes from an 

integrand 

i (vis -- J s r + e ' ] 

I n t e g r a t i n g and l e t t i n g i t f o l l o w s 

For z > , i n the i n t e g r a l s f o r " r f / j ^ y = r f i r s t take 

out those p a r t s o f the integrands which give r i s e t o the s i n g u l a r i t i e s 

a t ? ~ O f o r the unmodified regions oDt , <&x 

This need only be done f o r a reg i o n independent o f i n the 

immediate neighbourhood o f £ = O . The remaining i n t e g r a l s 

are defined over cZ), and tZ^ separately. The term 

which needs t o be added t o compensate makes o 0) c o n t r i b u t i o n 

as ~c -> O . The. integrand^, tn Hie 3), i n t e g r a l has no s i n g u l a r i t i e j 



i n the domain o f i n t e g r a t i o n , and applying </y produces a 

f a c t o r 6 , which means there i s o n l y an o[l) c o n t r i b u ­

t i o n t o -% { ̂  <^>]lj=x
 a s t~*0 . The & x i n t e g r a l , 

in it's integrand. , 

w i t h modified integrand has no s i n g u l a r i t i e s A a p a r t from feh.at' on the 

c h a r a c t e r i s t i c s urface. F i r s t consider X (£7 y) = _Q (g) . 

X <P(H) may be expressed i n terms o f e l l i p t i c i n t e g r a l s i n very 

s i m i l a r manner t o the two-dimensional case , Ch. I t . D i v i d i n g 

the region <2)a by the l i n e Z = c < QJz.-6)x
t the / i n t e g r a l s 

over the p a r t £<c make only 0(1) c o n t r i b u t i o n s 

"to ~k I I f 7 as ~ -»O The main c o n t r i b u t i o n i n 

each o f the cases A } B f C comes from a term 

The i n t r o d u c t i o n o f XC^y) f o r -Q^J w i l l not a l t e r the 

order o f the c o n t r i b u t i o n f o r / < c . But c can be made 

a r b i t r a r i l y close t o Z., (c<(Ji-0f<«s -c+oj\ t h i s means the value o f 

X(Z, y) must be correspondingly close t o DC (£,*•) f o r 

the range ( c , - 8)z) . Consequently the value o f 

'•^c T^y J^-,. a s t - * 0 i s given by ( 3 . 5 ) , w i t h 

SIC?) ~ X(Z, ; and t h i s value i s known from the two-

dimensional case. Thus 

JL f~*& ] —> i X^,x) ^ t-*o 

This r e s u l t i s now es t a b l i s h e d f o r both -z. > o and -z. < o . 



Consequently t o s a t i s f y the boundary c o n d i t i o n on the a i r f o i l 

X(-z.,ic) must s a t i s f y ( 3 . 4 ) . 

There remains the behaviour o f the v e l o c i t i e s a t i n f i n i t y . 

As the p o t e n t i a l i s an i n t e g r a l over a f i n i t e range o f the axisym-

met r i c case, these s t i l l become va n i s h i n g l y s m a l l . The f i n i t e 

term i n the two-dimensional case stems from the i n f i n i t e range 

o f i n t e g r a t i o n . However, as the equation (2.1) i s not a reasonable 

model t o the trans o n i c equation at l a r g e distances, i t i s question­

able t o regard t h i s behaviour as having any s i g n i f i c a n c e . 
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I 4. Asymptotic behaviour o f as -c-* o f o r X = Xe 

(order o f operations jy /r £x /z ) 

Having established t h a t the i n t e g r a l s (2.4) provide a s o l u t i o n 

t o the boundary value problem, we now undertake the programme 

i n d i c a t e d a t the close o f § 2, and begin w i t h the p i l o t case X-X0 

-t. 3, 
The region z. < ~ l 

F i r s t consider the term added t o ensure c o n t i n u i t y 

i i = ^ f - " Y ^ L - , f c 1 

where s = - z ? ; t = cr x' and K = s +• ^ 

Now consider 

where I = - £ . Changing t o order o f operations £y {? /z , 

and performing the X i n t e g r a t i o n 

where 



A s t r a i g h t f o r w a r d attempt t o expand the integrands t o determine 

ix f a i l s ; there i s a non-uniformity a r i s i n g from the 

neighbourhood o f y - cr(b-s) . Consider <?9, , and 

w r i t e y ~ <y y , a - ~ , x. - %• ; 

Now s p l i t the range o f i n t e g r a t i o n a t b - s - a } o < p < i 

The c o n t r i b u t i o n from the o u t e r p a r t may be obtained by d i r e c t 

expansion o f the integrand: 

For the c o n t r i b u t i o n from the i n n e r p a r t , put b-s-^'=a^ f b-s-x-'= A, 

Thus the c o n t r i b u t i o n from the range ( b - s - 2 p
? t>-s+-5.p) becomes 

°" i { ^ ^ ^ ' " i + (A?+v*-2*Ly 

Now using the assumption a » -c , and expanding the i n t e g r a n d , 

we have 
- p-i 

<r { ; X HSAM"'" [ / 1- 0 ( a ) ] 

= ^ ( ^ J {/ + 0 ( a ^ J + 0(*>}. 

One expects the terms i n cL^'~p* t o cancel, since p i s 



<?3 

ar b i t r a r y . Certainly s taking p = l/k , on adding the contribu­

tions we have 

s, - - hi^r) + 0 ( a V } • 
V/e introduce the following notation 

and omit the argument whenever i t s value can be deduced from the 

context. Thus i n the expression for ? /\t denotes /\(£-S*). 

The / x behaviour o f fi8A i s obtained i n a similar 

manner to «8( , 

Now 

(4./) and (>i..2) 
/- H I , . , - £ + £ So rom 

The region z > Again consider 
^.4 

OP 

where k = 

In case C ^ >TTi' > ^ lb± *-'f^ the integrand i s non-singular, 



and the interchange of / z , i.y i s j u s t i f i e d . However i n 

other cases, another l i m i t process i s required to define the 

I 0 i n t e g r a l , and the res u l t i s only formal. The result 

may be v e r i f i e d by actually evaluating I a before applying 

\Je. how tr e a t dbfe) - ^ \. \ ^ \ 9>iz).dj 

There i s involved here an additional l i m i t process, ft because 

in (2.4) we must take the contributions from <?>(e) and <p(-H' 

together to form a p r i n c i p a l value. Proceeding formally. We change 

the order of operations to tz £? / 2 and carry out t^X^ : 

-erfc, & 

The contribution for the upper l i m i t s o f the £ integration ( f o r y x T ) 

where we have expanded the integrand, and used the assumption a » T . 

The contribution from the lower l i m i t s of tine ^-integration r 

i s d i f f e r e n t f o r the cases A , B ,C depending on whether 



the integrand with £ = O has s i n g u l a r i t i e s within the range 

of integration. In the absence of such s i n g u l a r i t i e s one may 

expand the integrand i n powers of £ ; when present they indicate 

sources of non-uniform behaviour. The cases A,B have the 

points t = - vlTi within the range of integration. A 

ty p i c a l contribution involving a source of non-uniformity i s 

To obtain the behaviour as £ -» O , put u.- t-Jh' , and s p l i t 
14-8 

the range at u. = E . For the inner part o f the range, i . e . 

near u. - O , putting U. s £ / z D 9 and then expanding 

the integrand, one obtains the contribution 

For the outer part o f the range, expanding the integrand d i r e c t l y , 

one obtains a contribution 

J. U / Yd--')--IV ) - _L ^ ( i ^ l + o C f J + CWJ 

T h U S I - ht- t~(-i*-) + ^ 4 , f J £ ^ ^ ) + .(t) as » C . 

Using t h i s approach, i t may be shown: 
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-orb 

* ) Jh' £'V 

in case A t which has both t=i<[W in the range, 

in case 

4 

which has £ = -JT7 in the range, and B 

0/ £->0 

in case C , which has no source of non-uniformity i n the 

range. 

Collecting terms, for order of operations £vif_ £y £g £^ , 

we have 

in case A 
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in case B 

m case C 

Now we treat the remaining contribution to > 

Mic) = l i I - f <f>i»)MAy . 

Case A 

(rl)(W+?-tx) 

where o = '5T i s evaluated at - t , 

» and the l i m i t s of integration have been 

obtained using (2.6). 

To simplify we f i r s t note the t - integrand i s even 

in t , so that t integration need only be taken over 

4=o 



the range O , i (viz-vft)1-- Q 1}^. 'We tiow interchange 1 ^ , and 

the b integration; there i s no contribution from d i f f e r e n t i a t i n g 

the upper l i m i t , since (J2 - vfsN^t 1) = £ at t * {(fz - v/1)1- fl1} '2" 

and the sin g u l a r i t y i n the / integrand i s weak. By performing 
we 

the 2 integration, and then differentiating Areduce Mfe) to 

The asymptotic behaviour of the int e g r a l as £ —> O may be deduced 

by s p l i t t i n g the range of integration at V - £S , where 

Y = { (ti-Jl)*"-B*}"2- . Away from Y , the outer part of the 

i n t e g r a l , write T - Y — t , and expand the integrand 

for small £ ; near V , put t/T t = Y-1 and then 

expand the integrand; O < & < X/x f o r the v a l i d i t y 

o f the expansions. 

Thus 

U,• . B _ 2r X O Q J__ J J^k' , + o(l) 
£->0 

Case B . F i r s t consider :x' < b 



f/i,w <?- k ) 

where /, s a t i s f i e s 

and /\, was defined i n (4.3) . 

As i n case A, one may interchange and the t i n t e ­

g ration, since at t = [ (Jz- ) l - ^ j ' ' 1 ^ f/z - v/iF+fc"1 )*= £ and at 

fc = ¥MZ) , C V i - ^ ' r . / , = ( E + ~'-b) = so that 

the contributions from d i f f e r e n t i a t i n g the l i m i t s of t integration 

are zero. Performing the / inte g r a t i o n , and then £^ one 

obtains. 

( di( ) 
-m-JD-e1}"* 

(evaluated i n case A), J dh C ) 

which may be expanded i n £ i n a 

straightforward manner, and then integrated, and J <tfcf } which 

again may be expanded i n £ i n a straightforward manner. 

Thus 



loo 

Now consider ^' > b ; the ranges of integration are the 

same, though now f\,i*-) i s negative. Thus J/(t) i s 

given by (4.7B). 

i 
Ml 

1= t 

x'>fc> 

Case C . Consider the case o < b ; the other case^gives 

the same resul t for M(e) 

* - £ 

f * f s dt 

izo-

The expression may be simplified i n a similar way to cases A, B. 

There i s no source of non-uniformity, and to obtain 

one may put £. = O 



lot 

Thus 

x r r ^ A ) 
fly— . . i -

~3§» I 
One may now assemble the contributions to | T from 

(4.5), (4.6) and (4.7). Letting £ -> o gives a well defined 

velocity i n each case. However, we are interested i n the behaviour 

as t -» O , and i n t h i s l i m i t the regions i n which cases 

A, B apply become vanishingly small. Consequently we need only 

assemble 1z.L=-c in case C, for which 

I f ttx'} 

We need the asymptotic forms of the integrals. F i r s t note that 

the integrands are singular at and Q-fli an 

2 1 SEP W67 
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attempt at a straightforward expansion in powers of a. f a i l s 

due to a non-integrable s i n g u l a r i t y a r i s i n g at a- hi (£] , (i~i,z). 

Changing the integration variable to T = ^/s. + '*-'-b> , the 

l i m i t s of integration become O } ?, . Now s p l i t the 

range of integration at ^ - 5.p O < p < I . For the 

outer part ^ ( ) dT , expand d i r e c t l y f o r small «- ; 
o 

for the inner part, put 5. T = i, - T , and then expand 

the integrand. Thus the l a s t i n t e g r a l has the asymptotic form 
cr + 0 ( a & g - ) 

and a similar r e s u l t applies for the other. The term Ofah^a.) was 

obtained taking p = ; i t i s not based on an assumption 

that terms involving p must cancel. 

Thus 

i s = x a o f u tf-) - ^ i — - — ) + 

since a - ^ . Note that t h i s r e s u l t i s the same as that 

for z < — , equation (4.4). 
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§5. Expressions f o r t>z.\^x as integrals of standard e l l i p t i c 

integrals . (X = Xei t order of operations £y £x £j ) 

We now turn to the more p r a c t i c a l order of operations, and 

f i r s t deal with the case when i s a function of I only, 

Applying to the expression f o r <p , (p-b-) , i n the 
case z < 0 1 we have 

L ?> = L £ + & 

where ^ Jo i s given by (4.1), and 

,U /-e»(t-?l pt» / - C ( b - J I 

Changing to order of operations / z , ^ «/t ) may 

be expressed i n terms of e l l i p t i c i n t e g r a l s . Define 

5.2 i 
and 

g. 2 ii 

F"} E being incompJete. e l l i p t i c i n tegrals. 

Then 

X TT a. -0 



/o4 

where 

5.3 

4-

I f i n (5.3) we l e t o- -> °o , and then put 9 = O , We 

recover the two dimensional r e s u l t , equation(3.7jof Ch.3T . S t r i c t l y , 

i t i s not permissible to put B - O t since we need the value 

of 1 ^ at y= ~c and a.-* O with ^ 

However the consequences are not serious. They are accounted for 

by taking the p r i n c i p a l value of the i n t e g r a l . 

For z > B5", 

where Ia i s given by (4.5), / t i s the l i m i t 

associated with taking the p r i n c i p a l value and a8(z) , -H(z) are 

the contributions arisi n g from the integrals over the modified 

regions 3), , 62)* respectively i n (2.4). ott and / z 

have been interchanged. 

Now 

Again changing to order of operations i$ ty , a f t e r some tedious 
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manipulation, 9 ^ m a v b e e x P r e s s e d i n terms of 

standard e l l i p t i c i n tegrals. 

Define 

S.5 

where I - X,1 , cj, = ( © V r / 4 , /\ = ft ftf^S) , A, = | ^ 

2 . 

The notation d i f f e r s only s l i g h t l y from CK I t . There, we 

treat only the case X = f , so the s u f f i x i i s redundant 

and the asterisk i s written as a subscript 

Then 

where 
0-V) X 

5.4 

and 

Mi = ~ - f fr-IV^N^ + 

I f we l e t c —> oo , and put 8 = O (5.6) reduces to the 



loi, 

expression i n equation (3.8) of CW H . 

Now consider the contribution from the sources <£>(H) ; as i n 

$ 4 there are three cases /\ , B f C 

Case A ^ # ^ + g_ { ( « ^ . 8 » J ^ 

Putting t = I (y ~ , and d i f f e r e n t i a t i n g 

where 

and 

with 

Note that (5.7A) i s independent of o- . I f we put 0 = O i t 

reduces to the corresponding expression i n equation (3.8) of CK.3E 
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Case B 

L \ \ 9>M.d? 

D i f f e r e n t i a t i n g 

where © ( ? J\_f f J\_^ are given by (5.8), and i t may 

be shown that ; 

- ©, = o , 

= ' ( m F W - EL" 

I «ra - J ! ) l - 8 l } { ( r t+Jif-e 1}"' 1- [ ? - e l - x ^ - 1 

Case C 

J 7 „ _ x r , _ ret* ft*!1^ J 



and i n a similar manner to the previous cases i t may be shown 

™ - 0, + LA, + JlJ + [Sc., 

I t remains to show that oB(z) given by (5.6), and M(d given 

by (5.7) tend to a f i n i t e value when i s taken, as indicated 

i n (5.4). The analysis i s straightforward; 

and from J^(z) 9 only _ y l , give r i s e to singular 

terms as t-»o , so that the l o g t terms cancel i n each of 

the cases A B , C 
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5 6. E x p r e s s i o n s f o r -a-ae. Ih = g as i n t e g r a l s o f standard e l l i p t i c 

i n t e g r a l s ( X = I ? I , ̂ s ? a ^ 2 ? , order o f o p e r a t i o n s 

£-c iy ^-z. . ) 
•Jorms <sf Hne. 

The a n a l y s i s o f § 5 may be repeated f o r o t h e r A f u n c t i o n 

The work i s l a b o r i o u s . The c a s e s (a) XCZ,^) = \?\ and 

(b) 0CU,y) = J* -X z ? have been c o n s i d e r e d , and the r e s u l t s 

a r e presented below. Case ( a ) i s needed f o r a diamond spanwise 

c r o s s - s e c t i o n , and ( b ) f o r a p a r a b o l i c a r c , as may be seen from 

( 3 . 4 ) . 
For z < e \ / z <p = cB + t I U. 

where, i n case ( a ) 

and 
6.2. 

.b 
X , I 3C (Q, - Q. + ) +- -4- (\J. 4- I./ _ "9 L/ )? Wfc-

I n t h i s l a s t e x p r e s s i o n <5t- i s given by (5.3) with X 5 = ^ 

( d e f i n i t i o n ) , and 

In c a s e (b) 



no 

and 

I n t h i s l a s t e x p r e s s i o n &. j W; have been d e f i n e d a l r e a d y and 

.X; + 
f 

For 2 > 6 l 6.5 

where i n c a s e ( a ) 

6.7.« 
^ - •- * t j i > - z -• • 

t 

and >Af(^ i s the c o n t r i b u t i o n from the £>fnj s o u r c e s , being 

d i f f e r e n t f o r c a s e s A, B , C , Note i s s t i l l d e f i n e d by 

(6.H), s i n c e s = - z , and J = - £ 
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I n case (b) 

X-na. i a. ^ J 

_ 2*. 6.7L 

and f o r t h e r e a r e again 3 c a s e s to c o n s i d e r . 

Consider i n case ( a ) . The r e g i o n s of i n t e g r a t i o n 

a r e unchanged from the 3C o 2 c a s e , but the f a c t o r I?I causes 

a s l i g h t m o d i f i c a t i o n . 

Case A ( " > J w ) 

Case A (*l<fk') 

Case B ( ¥>>/£'J 
6. 9 A 
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Case B ( J l ( > ft - > o j 

£ a. 

Case B ¥>J$) 

Case C (Jgt> V k - ^ ) 

6. <? B 

•+- J X(J J> ̂  3 --/U + 2AS) + |, (W3 +1< -2 U5) 
Case C ( ^ > J | ) 

i s 
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I n t h e s e e x p r e s s i o n s Jl- i s given by ( 5 . 9 ) , and by ( 6 . ^ ) . 

Now c o n s i d e r M{i) i n case ( b ) : 

Case A 

6./CM 

where 

L - L = - 4 - / ™«*+#> ( M M ' l V l 

fe. // 4 
" 7 

Case B 

l-K i. 
(el 

where 

Case C 6- f / B 

(>. IOC , 



lit* 

The behaviour a s £ -> O > r e q u i r e d f o r i^<p i n ( 6 . 6 ) , 

i s s i m i l a r t o t h a t f o r X.(2>?) = 3C 0^ . Thus as £ -> O , 

(6.8a) and (6.9) give a f i n i t e v e l o c i t y f o r case ( a ) , and 

(6.8b) and (6.10) g i v e a f i n i t e v e l o c i t y f o r case ( b ) . 



us. 

§ 7. Asymptotic behaviour o f oz l^n as t-»o ( X = X B 5 , 

order o f o p e r a t i o n s £g it. )_. 

We now examine the behaviour o f the e x p r e s s i o n s f o r 1f[,/ 1 |_. r 

a s n->o • T h i s i n v o l v e s no f u r t h e r p h y s i c a l assumption, 

s i n c e we assumed x. s m a l l to d e r i v e the approximate form o f the 

boundary c o n d i t i o n ( 2 . 2 b ) . F u r t h e r , s i n c e a.1 r e p r e s e n t s an 

estimate of the v e l o c i t y p e r t u r b a t i o n on the a i r f o i l t = 5- —*0 as x-kd. 

F i r s t c o n s i d e r 3C(£, j) - X t 3 J f ° r "z< 0* we need the 

behaviour of i G J i i n order to deduce t h a t o f £ 
o 

given by ( 5 . 3 ) . There i s a source o f non-uniformity near 5= - s , 

and a d i r e c t expansion of the integrand f o r s m a l l "C i s not 

adequate. 

We s p l i t the range o f i n t e g r a t i o n a t s ± £ , where $-* o as 

t -* o i n such a way t h a t °-/s -* O . Thus 

f b x« Gc jit = ( f 4 +• L - C ) ^ ^ 
o 

For the range ( s - S , s + S j ; 

= K - ( / + 0 ( a * ) ) , FT - i ^ j-il^j0,a^) 

For the ranges ( , o > s - s > ) and (s-fS, t>) ; 



ilt> 

Thus 

where 

Now by expanding and i n t e g r a t i n g 

J 1 0 J 2 s i s 

and 

where 

ft-) 

To d e a l with <^ , w r i t e 

Now i f X 0 ? = I , 



in 

4$ 
5 ( V U ^ ) 1 

The second i n t e g r a l = ^ / - ~—) - J _ 41 •+• J -

The f i r s t i n t e g r a l may be expressed -V- OQ*-) 

To e v a l u a t e t h i s , the i n t e g r a l must have i t s range s p l i t t w i c e ; 

a t s ± S, where S^O 5, )>> a , as t-»0) and w i t h i n 

t h i s a t S ± , where S a-> O , r « Sz « 5. a s t - » o . 

Using t h i s d e v i c e , t h i s l a s t i n t e g r a l may be shown to be 

so t h a t c o l l e c t i n g terms 
v. 

>Tb+>fs 

+ 3_ + y f ! J * 

The d e v i c e of s p l i t t i n g the range o f i n t e g r a t i o n t w i c e may be 

employed to show = O ("c j . The e x p r e s s i o n f o r 

was only d e r i v e d f o r ~ ' ; f o r = ( $ ~ s ) 

i t may be shown by s i m i l a r a i i a l y s i s 

1 



and f o r DCfl? = ( S - s ) 1 3£(q\ 

o 

Consequently f o r g e n e r a l X Q | we have 

a 

Thus c o l l e c t i n g terms, u s i n g ( 4 . 1 ) , ( 5 . 1 ) , ( 5 . 3 ) , ( 6 . 2 ) , and 

s i m p l i f y i n g , we o b t a i n 

- ^ . . - -* r/L ^ ..<A 
-r 

<>i «•> J ( b - s j 
4. _ 1 J/ / & - S +x* 

S - x ' 

o 
2 

Th i s agrees w i t h the r e s u l t (4.4) d e r i v e d u s i n g the other order 

o f o p e r a t i o n s . 



u4? 

Now c o n s i d e r lCtl,y) - X 0 J f o r -z. > d\ {.-z.<p i s 

given by(5.4^ so t h a t we need the behaviour o f <^( £J given by 

(5.6) and Mfe) given by (5.7) as x. -* O . As e x p l a i n e d 

i n § 4 we need only c o n s i d e r c a s e C. 

Although the e x p r e s s i o n f o r o9 looks f i e r c e i t i s r e a l l y 

q u i t e tame, because t h e r e a r e no s o u r c e s of non-uniformity as 

T -* O , One can d e r i v e asymptotic forms of Mt- ? Ht- , 

but i t i s s i m p l e r to r e t u r n to the d e f i n i t i o n o f 3d as a 

double i n t e g r a l . S t r a i g h t f o r w a r d expansion q u i c k l y y i e l d s 

Vk now w r i t e ( 5 . 7 c ) i n the form 

0 ° "7. S 

S t r a i g h t f o r w a r d expansion g i v e s 

We now examine 



There i s a non-uniformity a r i s i n g from near 2{ . Accordingly 

we s p l i t the range o f i n t e g r a t i o n a t z - S , where 

S h> o as t -v o but 6 » 5 . amd £-x + s > o 

For the range (-z. - S f ) , 

«» * O(l) , k* = 0(si 

/> (°) / /- • -/ 1 
= TTNIW?) ( % M 

where 

and 

71°' ^3 (»-g-P»)(* + 3 ? - 8 * - X > ) - 4 ? 6 > j 

For the range ( O, - S ) , 

= T T T - ^ r - ^ - Off) , OOJ 

Then, r e t a i n i n g terms l a r g e r than o (a.) ? 

7.6 



Ill 

Now T *oi *.A?M = Xttrt\' aj£\U + OV 
•Z.-S -Z.-S 

and w i t h some e f f o r t the i n t e g r a l may be e v a l u a t e d : 

•z-S 2. z I J 
+ ofe) +- o((%rj 

where ft, - A, (*.) . 

For the o t h e r c o n t r i b u t i o n to (7.6) w r i t e 

where 



IX-L 

. i . 0 sVfaiqkt forward 

'he j _/L; a may be evaluated by^expansion and i n t e g r a t i o n nut 

l4>e _A*',_/Lf' inteyJs r e q u i r e the ranges s p l i t near ^ to 

e v a l u a t e c e r t a i n items. 

C o l l e c t i n g terms we o b t a i n the value o f J 3COJ a-h3 d£ from 

( 7 . 6 ) . A s i m i l a r r e s u l t holds f o r \ X. q-A^AX '•> a n d c o l l e c t i n g 

the v a r i o u s c o n t r i b u t i o n s and s i m p l i f y i n g , ( 7.5) g i v e s M(p) 

F i n a l l y we add the c o n t r i b u t i o n from (7.4) and / X XA 

from ( 4 . 5 ) , to o b t a i n 

+ X 

0 o 

f. i 

where 36 (7) . ( J - * ) 1 - XoS ~ X 0 J H - 3C0'? W . 
Note t h a t t h i s i s the same e x p r e s s i o n as f o r z < O r (7.3) 

and i t agrees with ( 4 . 9 c ) , a p a r t i c u l a r c a s e d e r i v e d u s i n g a 

d i f f e r e n t order o f l i m i t i n g p r o c e s s e s . 
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§ 8 . Asymptotic behaviour o f -a-zN-r as ~c —»O 

( x = 3c01 + i»i x,t , x = xQt + y- Xzt ) 

One may next proceed, i n a s i m i l a r manner, to d e r i v e the 

asymptotic v a l u e s a s "E -*• O f o r c a s e s ( a ) and (b) t r e a t e d i n 

I 6. However, i t i s p o s s i b l e to use the order o f o p e r a t i o n s 

i.y iy. / z to o b t a i n t h e s e e x p r e s s i o n s , and t h i s 

reduces the e f f o r t r e q u i r e d . The approach i s s i m i l a r to t h a t i n 

§ 4 and most o f the d e t a i l i s omitted. 

F i r s t c o n s i d e r X (2,?) - (X00 + + K + ? X, ) • i d 
"SO I 

The value o f | has a l r e a d y been d e r i v e d f o r Xao + 'XolZ 

i n § 7. We pr e s e n t a l l the r e s u l t s together f o r convenience, 

and begin with those f o r ~z. < o ; 

T - 3 x l a = r I * H b - s i 

T j " «• J b - s 

+ ^ e r (.b - ^ S / i ' > 

+ o ( a ) , 

J C(t - s)*-x'*] j b - S 

« . 2 



For -z. > O , as i n $ the a n a l y s i s i s q u i t e d i f f e r e n t 

from t h a t f o r 2. < o > but the r e s u l t s a r e the same i f one 

r e c a l l s s a — z 

I f we now regard (8.1) as a p a r t i c u l a r c a s e o f 

= + '7' s 3 

we may put the r e s u l t s (8.2) i n the form: 

~— ~ = <t a. -f h —^ 

f ( % b l
+ 7 b r + 4-*^ J + o(a) . 

The e x p r e s s i o n i s v a l i d f o r a l l 2 on the a i r f o i l . 

I t i s now a r e l a t i v e l y simple matter to extend (8.1) to the g e n e r a l 

case ( 8 . 3 ) . The reason f o r t h i s i s t h a t i t i s s u f f i c i e n t to 

f i n d f o r 

where 
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Nov/ the f a c t o r (z.- <? 1 e l i m i n a t e s the non-uniform behaviour 

t o the order o f approximation i n a. re q u i r e d so we may use 

<^y ^-c £z. • The outcome i s t h a t we must add t o ( 8 . 4 ) . 

" 36,% ;x; <rk*S -H <r f ̂  Sf.V-'S. x) (W-D^U ($-s) «/& } 
o 

wVien x = - s < 0 . 
and 

O o ° 

wiiea x. > o „ S.S 

The two expressions are d i f f e r e n t forms o f the same f u n c t i o n o f 

Z , and they agree w i t h the p a r t i c u l a r cases ( 7 . 3 ) , (7.7) 

obtained using the d i f f e r e n t order if i-c iy 

Equations (8.4) and (8.5) give the v e l o c i t y f o r a d e l t a wing 

o f diamond spanwise s e c t i o n , but f a i r l y general chordwise s e c t i o n : 

there are l i m i t a t i o n s i n t h a t we assume "X^ - ^ ?(os and 

3C*j = ^ (0Ci} ) are f i n i t e . 

A d e l t a wing w i t h p a r a b o l i c arc spanwise s e c t i o n 

may be t r e a t e d i n a s i m i l a r manner. The r e s u l t i n g expression f o r 

the v e l o c i t y i s . 
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T -bx 3 r t - ] ^ ^ 

4- ( i | b' f « + /<Lb** + / J 

-> a o J 
S.7 

The equation (8.7) i s v a l i d f o r a l l z on the a i r f o i l , and i t 

checks w i t h the expression obtained using the a n a l y s i s f o r -z.<o 

As the r e s u l t s (8.4) - (8.6) apply f o r small T i t seems 

n a t u r a l t o r e l a t e them t o the trans o n i c equivalence r u l e C 8 1 

which a p p l i e s t o the non - l i n e a r t r a n s o n i c small disturbance equation 

and i s v a l i d f o r x'^cr small. 

At t h i s stage i t seems worthwhile t o p o i n t out t h a t although 

the expressions f o r ~^&7z\y*T have been derived f o r "C-^ O 9 

our expansions are e s s e n t i a l l y i n terms o f o. - f r ^ 

The equivalence r u l e r e l a t e s the p o t e n t i a l <j> tx.t\^,i) t o a 

harmonic cross-flow (*». y ;"z) i n the fc, y ) plane a t 

•Z. as f o l l o w s : 

and i t f u r t h e r a sserts t h a t ^ f c i i s t n e same f u n c t i o n f o r a l l 

slender bodies. 

We f i r s t c a l c u l a t e the re s p e c t i v e cross-flows. The boundary 

value problem i s 



V VXD ~ 0 , <P-r -> O as T °0 

Thus 

1 -<r(b +r) ' 

For the diamond cross-section 

- i - ^ « > 1 } ^ 

Also i f y = t &(*) (l- y ' ^ ^ J gives the shape o f the 

a i r f o i l 

and t h e area o f cross-section Sfc.) = 2 t o - (fca + z.) . 

Note t h a t ^6*) must have a f a c t o r QsVzj t o ensure 

f i n i t e slope at the t i p . 

For the p a r a b o l i c arc s e c t i o n 



U8 

Also i f u = t &(*.)( I ~ c r x f | s + - z ) 1 j gives the shape of 

the a i r f o i l 

and the area of cross-section S (̂ -J = "3 • ̂ b+z) . 

must now have a factor ( b ^ z . ) * to ensure f i n i t e 

slope at the t i p . 

Now integrating by parts 

\ O 7 ' ' O 

J 0 - * - t l o"c J 

- k. Xe'« - 2 n> + 2*;<r3C*x - 2 < V + ^ b z i-7^)o-X,*J f 

and 

o 

+ (3b* +- /ob* 4- + | ^ ( % ( b * * ) 3 4 i b 3 



I f we now i n s e r t these r e s u l t s , and (8.8) i n the expressions(8.4),^8.S) j 

(8.7) we o b t a i n 

TCr 
+ t-Z. ^ 2 A-7V 

f o r both cross-sections. I n t h i s equation, 

and 

f o r case ( a ) , diamond 

f o r case ( b ) , p a r a b o l i c arc 

Now (8.10) i s the s o l u t i o n o f (2.1) f o r axisymmetric f l o w derived 

by Cole and Royce Consequently i f ^ - O , as i t 

does f o r a wedge or p a r a b o l i c arc chordwise s e c t i o n , w i t h diamond 

spanwise s e c t i o n , (8.9) corresponds t o the equivalence r u l e 

developed f o r the n o n l i n e a r t r a n s o n i c small disturbance equation. 

However, i n general ¥ O t a n d a s the terms i n (8.4) and 

(8.7) are each derived by two s u b s t a n t i a l l y independent ways, which 

check, one i s prompted t o examine the proof o f the equivalence r u l e 

t o see why i t does not c a r r y over t o the equation ( 2 . 1 ) . Before 
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embarking on t h i s , we note t h a t the choice o f a. and b i n 

(8.9) has yet t o be made. I f we choose b such t h a t y=c, = O 

which i s the con s i s t e n t procedure, then we lose transonic s i m i l a r i t y 

because b> w i l l depend on a. and hence on x . A n a l t e r n a t i v e 

i s t o take the sonic p o i n t where o = O , corresponding t o 

the Cole and Royce procedure f o r the equivalent axisymmetric body. 

A reasonable choice f o r a.1 would then be 

a" = CV+0 ) 
which i m p l i e s t h a t o_c- i s a f u n c t i o n o f O"* (Y+0 T 

The Cole and Royce choice o f a,1 does not seem appropriate as 

i t i s associated w i t h t h e flow on the axisymmetric body, and not 

w i t h the f l o w a t some distance where one might expect some r e l a t i o n 

t o the planar case. The suggested choice leads t o an expression 

f o r the reduced pressure d i s t r i b u t i o n o f the form 

c p - ( - 2 HZ,..) - sf(*•;*) + °C5' 

where <y - (V+• I )'/3 x1/3 or , which i s c o n s i s t e n t w i t h the 

s i m i l a r i t y r u l e . With the Cole and Royce choice o f b one would 

expect t o reproduce t r a n s o n i c equivalence, apart from a d i f f e r e n t 

value o f ol" . Why, then, does i t f a i l t o appear? 

One o f the main d i f f i c u l t i e s o f t r a n s o n i c f l o w i s t o assess 

the cumulative e f f e c t o f the small non-linear terms a t l a r g e distances 

from the body. I n t h e i r accounts o f the equivalence r u l e , Oswatitsch 

C 1 1 and Guderley C I ] use p h y s i c a l arguments. 



Heaslet and S p r e i t e r proposed t o give the r u l e a b e t t e r 

b a s i s . Retaining the nonlinear term, and t a k i n g account o f shocks, 

they produce^ an i n t e g r a l equation (equation (2.7) o f Chapter I ) . 

Then, by using an i t e r a t i v e method, s i m i l a r t o t h a t used i n 

l i n e a r i s e d t h e o r y , they produce a term which i s expected t o be the 

s t a r t o f an asymptotic expansion. But does t h i s s t r a i g h t f o r w a r d 

i t e r a t i o n procedure give a s o l u t i o n o f the non-linear equation? 

To set up the trans o n i c small disturbance equation i t i s necessary 

t o scale the co-ordinates, Cole and Messiter L>0~J ? and i t 

seems l i k e l y t h a t t h i s should be done when assessing the c o n t r i b u t i o n 

o f sources over an i n f i n i t e r egion o f i n t e g r a t i o n . The problem 

o f assessing the terms i n t h e i n t e g r a l equation o f C'O i s then 

r a t h e r more d i f f i c u l t . 

An i l l u s t r a t i o n o f the possible mechanism a r i s e s i f we apply 

the Heaslet and S p r e i t e r method t o the model equation ( 2 . 1 ) . The 

i n t e g r a l equation i s obtained as before, and we have t o assess 

the value o f the i n t e g r a l . For s i m p l i c i t y consider a re c t a n g u l a r 

planform, wedge chordwise s e c t i o n , and r e c t a n g u l a r spanwise s e c t i o n ; 

The equivalent-body p o t e n t i a l i s <p^ - 2 a-T , w i t h 
o 

T now simply yfxF+ij^ . The i n t e g r a l term o f the 

equation i s an i n t e g r a l over the region o f the plane z = constant, 

e x t e r n a l t o the re s p e c t i v e bodies: 



T = a. -z. 

where ( t , are c y l i n d r i c a l co-ordinates corresponding t o 

( x , i j , z ) . This i s r e q u i r e d t o be smaller than the terms 

r e t a i n e d , i . e . « cr x . Consider <£>w — <p& f o r l a r g e 

- 2 t c t f j _ r ^ < ^ - ^ 

i 

where £ = - 1 j -x.{ -\- . Then as T, —* oo there 

i s a term °£ '/a.1 , and t h i s gives the p o s s i b i l i t y t h a t 

T oc or -c which would a l t e r the i t e r a t i o n . 

I t i s , o f course, no proof t h a t the range o f v a l i d i t y suggested 

i n i s wrong. The model equation does not describe the p h y s i c a l 

s i t u a t i o n a t l a r g e distances from the body, even i f the above 

a n a l y s i s were made r i g o r o u s . 



I 9. Conclusion 

The o r i g i n a l aim i n developing t h i s method was t o provide a 

r e l a t i v e l y simple means o f p r e d i c t i n g pressure d i s t r i b u t i o n s f o r wings 

whose aspect r a t i o , though f a i r l y s m a l l , might be beyond the range 

of v a l i d i t y o f the t r a n s o n i c equivalence r u l e , . Two p a r t i c u l a r 

spanwise cross-sections f o r a d e l t a wing have been considered i n 

d e t a i l . Rather s u r p r i s i n g l y , f o r small aspect r a t i o , the r e s u l t s 

do not agree w i t h t h e equivalence r u l e , and i t i s f a r from c e r t a i n 

t h a t the disagreement stems from the use o f the model equation ( 2 . 1 ) . 

Arguments have been put forward which b r i n g i n t o question previous 

estimates o f the range o f v a l i d i t y o f the equivalence r u l e . 

In an experimental study o f the equivalence r u l e a p p l i e d t o 

e l l i p t i c cone-cylinders Page OQ obtained small d i f f e r e n c e s between 

measured values and equivalence p r e d i c t i o n s , but there was no s t r i k i n g 

v a r i a t i o n w i t h chordwise s t a t i o n . However, c o n s i d e r a t i o n o f t h i s one 

p a r t i c u l a r shape seems i n s u f f i c i e n t t o decide the issue, e s p e c i a l l y 

as s p e c i a l c o n d i t i o n s apply a t the shoulder and the t i p . 

There i s a lack o f published experimental work f o r d i r e c t comparison 

of t h e r e s u l t s o f the present method. This i s understandable i f one 

assumes the t r a n s o n i c equivalence r u l e has a f a i r l y l a r g e range o f 

v a l i d i t y . However, i t should be noted t h a t the equivalent-body o f 

r e v o l u t i o n may have a shape outside the range f o r which axisymmetric 

t h e o r i e s have been checked against experiment. This f a c t o r considerably 

reduces the value o f i n d i r e c t comparison, even assuming the a i r f o i l 

l i e s w i t h i n the range o f v a l i d i t y o f the equivalence r u l e . 
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Although there are a number o f t h e o r i e s which i n p r i n c i p l e can 

be extended t o three dimensional f l o w , published work seems l i m i t e d 

except i n very p a r t i c u l a r cases; f o r the e l l i p t i c cone c y l i n d e r i t 

disagrees w i t h the equivalence r u l e r e s u l t s , and i n the other cases 

there i s a lack o f comparison w i t h experiment. There i s no case 

s u i t a b l e f o r comparison w i t h the present method. 

A f u r t h e r p o i n t o f discussion i s the r e l a t i o n o f the t h r e e -

dimensional theory t o the two extreme cases, two-dimensional f l o w , 

and axisymmetric f l o w . S t a r t i n g w i t h the model equation ( 2 . 1 ) , 

there are two stages o f approximation. The f i r s t i s the assumption 

X « l 5 or » T r e q u i r e d t o develop the pl a n a r , or t h i n wing, 

t h e o r y , and i t excludes the p o s s i b i l i t y o f recovering the axisymmetric 

case f o r which cr ~ t . The second stage occurs much l a t e r when 

we assume a.<y —v O as x O Immediately p r i o r t o t h i s 

we may l e t o- —* co and recover the two dimensional case 

At t h i s stage we could a l s o employ computational methods f o r f i n i t e 

values o f acr , and allow small v a r i a t i o n from the d e l t a planform by 

modifying a~ . D i f f e r e n t planforms could be t r e a t e d using s i m i l a r 

a n a l y s i s . However f o r a i r f o i l s intermediate between the two extreme 

cases, the l i m i t a t i o n s o f the model equation would be pronounced. 

As a f i n a l comment, one would expect the assumption t h a t the t r a n ­

sonic equation changes type a t the plane 2: = O j imposes severe 

r e s t r i c t i o n s on the accuracy o f t h e method, and even f o r small aspect 

r a t i o progress probably depends on the refinement o f the model 

t o t h a t o f S p r e i t e r and Alksne [ . 2 ] This method i s q u i t e i n v o l v e d , 



equation, r a t h e r than the c a l c u l a t i o n o f f u r t h e r terms o f the 

asymptotic expansion. 
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CHAPTER IV 

THE PARABOLIC EQUATION APPROXIMATION IN TRANSONIC FLOW 

In t h i s chapter, we r e t u r n t o the f i r s t type o f r e g i o n a l 

l i n e a r i s a t i o n approximation mentioned i n Chapter I . The 

aim i s t o determine the reason f o r the q u i t e good agreement 

w i t h experiment o f S p r e i t e r ' s ' l o c a l l i n e a r i s a t i o n * method, 

( I % ' • * ) , We take up the suggestion made i n Chapter I I §1, 

and reduce a f a i r l y general form o f the p a r a b o l i c approxima­

t i o n , t o a p a r t i c u l a r boundary-value problem encountered by 

Maeder and Thommen i n the method described i n Chapter I §4. 

This provides a mathematical basis from which t o assess 

S p r e i t e r ' s method. 



1. INTRODUCTION 

Among the various methods f o r p r e d i c t i n g the surface pressure on 

two-dimensional a i r f o i l s f o r near sonic flow, the method of S p r e i t e r and 

Alksne [ 1 ] seems a t f i r s t s i g h t the most a t t r a c t i v e . For t y p i c a l n o n - l i f t i n g 

a i r f o i l s i t gives the best agreement w i t h experiment, but u n f o r t u n a t e l y i t 

has the serious drawback t h a t i t s mathematical basis i s suspect. 

The method may be described as f o l l o w s . The transonic small d i s ­

turbance equation f o r sonic flow 

f = (Y + 1) $ $ (1.1) z y y *z *zz 

i s approximated by the parabolic equation 

cp = X <2> (1.2) T^yy T^Z 

A oeing a constant to De cnosen. i n e boundary c o n d i t i o n s a r e t.akcen a s : 

<p , <p -* 0 as z — - oo , and as y -» 
z y 

C F(z) 0 < z < 2 
0 z < 0 

a s y -* 0 (1.3) 

Here (z,y) i s a coordinate system, f i x e d r e l a t i v e t o the lea d i n g 

edge of the a i r f o i l ( 0 , 0 ) , w i t h z p o s i t i v e i n the downstream d i r e c t i o n , and 

p a r a l l e l t o the undisturbed mainstream. The flow i s assumed t o be i n v i s c i d , 

and the v e l o c i t y a t any p o i n t of the f l u i d i s derived from the p o t e n t i a l 



U (z + $ ) , where U i s the speed of the a i r f o i l r e l a t i v e to.undisturbed 

f l u i d upstream. A l l lengths have been made non-dimensional w i t h 1, where 

21 i s the l e n g t h of the a i r f o i l , and F(z) i s the slope of the a i r f o i l . 

The p a r a b o l i c nature o f equation (1.2) allows no upstream i n f l u e n c e , so 

only the reg i o n z ̂  2 i s of i n t e r e s t , and furthermore i t means t h a t the 

flow i n the reg i o n y > 0 i s independent of t h a t f o r y ^ 0. From t h i s 

independence, i t f o l l o w s t h a t one may t r e a t l i f t i n g a i r f o i l s by the theory 

developed f o r symmetrical a i r f o i l s as no t i c e d by Randall [2], and t h i s i s 

the reason f o r the boundary c o n d i t i o n <p -» 0 f o r z < 0. However, such 

a c o n d i t i o n i s p h y s i c a l l y u n r e a l i s t i c f o r non-symmetrical a i r f o i l s , and 

one hopes t o be able t o r e l a x i t i n l a t e r work. 

Suppose ^ ( z i y j ^ ) i s the s o l u t i o n o f equation (1.2) s a t i s f y i n g 

the boundary c o n d i t i o n s (1.3)» then there remains the choice of a s u i t a b l e 

value of the constant X. Maeder and Thommen [33 take i t s value as 

(Y + 1 ) 0 (z*,0;\), where a s t e r i s k * denotes the value a t the sonic p o i n t , 
7 ZZ 

determined from (p^iz*,Q;X) =0. I n a sense, t h i s i s the best choice and 

one cannot o b t a i n good agreement w i t h experiment simply by choosing another 

value. To overcome t h i s d i f f i c u l t y , S p r e i t e r [1] takes X as 

(Y + 1) Q> (z,0;X), and then uses t h i s i n the formal expression f o r 
ZZ 

<jp z(y = 0) t o o b t a i n a simple d i f f e r e n t i a l equation f o r *pz(y = 0). Thus 

X i s h e l d constant u n t i l a formal s o l u t i o n i s obtained, but i s then allowed 

to vary w i t h z. 

The j u s t i f i c a t i o n o f t h i s technique c o n s i s t s of r e w r i t i n g equation 

(1.1) as 
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and then a p p l y i n g generalised forms of Green's theorem t o o b t a i n 

$ = - 2X~1 T Z
 F U ) < r U = 0) .&l - -\/\\ d l T o - f . d ! , 

J n J-oo -oo 
(1.5) 

IO —oo —oo 

where cr= \ 1 / 2 { ^ ( z - J ) } " l / 2 exp[-X(y -I ) 2 / {k(z - J ) } ] 

and f = { ( r + D $ z z - X} $ z 

Apart from n e g l e c t i n g possible c o n t r i b u t i o n s from shock waves, equation (1.5) 

f o l l o w s from equation (1.1) without a p p r o x i m a t i o n The argument i s now t h a t 

a t any p a r t i c u l a r s t a t i o n z, by choosing X = ( y + 1 ) $ ( y = 0 ) w e may 
zz 

neglect the double i n t e g r a l , and s t i l l o b t a i n a reasonable value f o r 

$ (y = 0 ) , a device which i s most successful when a p p l i e d t o the z 

d i f f e r e n t i a t e d form of equation ( 1 . 5 ) . Applying t h i s argument a t each 

s t a t i o n z, one obtains the d i f f e r e n t i a l equation f o r <|> (y = 0) mentioned 
z 

i n the d e s c r i p t i o n of S p r e i t e r ' s technique. , 

Although t h i s j u s t i f i c a t i o n avoids the obvious inconsistency 

displayed i n the i n i t i a l d e s c r i p t i o n , the v a l i d i t y of the assumption t h a t 

the c o n t r i b u t i o n from the double i n t e g r a l may be neglected, i s mathematically 

no more j u s t i f i a b l e than h o l d i n g X constant and then v a r y i n g i t when con­

venie n t . I t would be more s a t i s f y i n g i f X could be t r e a t e d as a f u n c t i o n of 

z throughout the a n a l y s i s . Then the only issue would be whether equation 

(1.2) w i t h X a f u n c t i o n of z, provides a reasonable model of the p h y s i c a l 

s i t u a t i o n , and t h i s could be assessed by comparison w i t h experiment. Such a 
treatment i s presented below. 
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2. GENERAL ANALYSIS 

We consider only symmetrical a i r f o i l s , and formulate the problem 

for - oo < y < oo so that we may take over the analysis of Maeder and Thommen. 

We take as the equation modelling (1 .1) 

9 y y = K ( Z ) 9> b ( 2 . 1 ) , 

where K(z ) > 0, so that we assume accelerated flow i n the region under con­

sideration. The boundary conditions are ; 

Qj ,<2> - » 0 as z -» - oo , and also as I y I -» » » 
T z i y 

Cp - F ( z ) as y - 0 , for 0 < z < 2 . (2 .2) 

K(z) i s to be determined by requiring 

K(z) = ( Y + 1) u ' ( z ) (2 .3) 

where u(z) denotes the perturbation ve l o c i t y at the a i r f o i l surface 

^ z l y = 0 ' a n C * P1"-""6 denotes the derivative. 
I f we take z as a function of some variable £ , then equation 

(2 .1) may be written 
9 > „ - 9 t « • « 

provided ~ = K ( z ) . For monotonic d i s t r i b u t i o n s u ( z ) , K(z ) 4 0, and the 

condition inverts to give 

5 ( . ) = f g f l y • (2 .5) 

The boundary value problem p©sed by equation ( 2 . ^ ) , together with the 

boundary conditions (2 .2) w r i t t e n i n terms of ̂  , i s that solved by Maeder 

and Thommen [ 3 ] , i n the pa r t i c u l a r case of a sonic free stream. Thus 
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H - o - - f F U ( t , ) i £ - t } ~ 1 / 2 d t 

and 

d£ 
d fU- -«-,/2{HO, r 1 / 2 • f » • ( . « » { j - t } - 1 ^ . ( t „ t . m ^ f s ) . ( 2 . 6 , 

o 
dz 

In the part i c u l a r case -^j = X t h i s reduces to the result given i n [ 5 ] . I f 

we now use the condition (2 .3) i n equation ( 2 . 6 ) , and write the whole i n 

terms of u(z), an i n t e g r o - d i f f e r e n t i a l equation for u results. Alternatively, 

we may regard z as a function of 1 . From equation (2 .3) 

(Y + Du = l (§f) d£ (2 .7) 

and substituting i n equation (2 .6) we obtain 

(||) 2 - * f = -<Y - D n - l / 2 { F ( 0 ) . r l / 2
 + j V ( B ( t ) ) { r - t } l / 2 . . ( t ) d t ] 

I * 

Writing t= c^y , g = c^g(^ ) i t i s possible to absorb any constant 

factor on the r i g h t hand side, and obtain the equation i n the form 

where we have taken F(z) = ?rXX(z). In t h i s case - (y + 

and = 1. For equations such as (2 .8) questions of existence and 

uniqueness have yet to be settl e d . I t i s proposed to obtain numerical 

solutions by an i t e r a t i v e method similar to that used i n the proof of ex­

istence for a linear Volterra equation. 

For l a t e r reference we express u and z i n terms of g ( ^ ) : 

(Y + Du = c f [ g ' ( t ) ] 2 . d t , z = z ( y ) . (2 .9) 
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3- THE WEDGE AND PARABOLIC ABC AIRFOILS 

F i r s t consider the case of the wedgeT for which F(z) = F(O). The 

solution may be obtained d i r e c t l y from the i n t e g r o - d i f f e r e n t i a l equation 

for u, using the conditions that the sonic point i s at the shoulder (u = 0 

at z = 1) and the stagnation point i s at the leading edge, (u = -U at z = 0 ) . 

However, to lead on to the method i n the general case, we proceed from equation 

( 2 . 8 ) . Putting g ' ( y ) = H ( ^ ) / ^ 1 < / 2 i t may be easily shown that 

K(.y) = - ^ 3 log 3 » a n d i f w e denote ^ L g ' ( t ) ] 2 dt by Y ( ^ ) , 

then Y = £ 3 log ( y / y . Using the boundary conditions, i t soon follows 

that 
\ exp(-v / 6)v dv 

(1 - Z) = ^~ , f ( 0 < Z < | ) . (3 .1) 
T exp(-v / 6)v dv 
i o 

This r e l a t i o n has been derived by Thommen (private communication) but i t was 

regarded as the solution to a d i f f e r e n t problem. The upper l i m i t of i n t e ­

gration oo i s s t r i c t l y only v a l i d as the thickness r a t i o X -» 0, and Y , which 

i s negative, i s related to u by equation ( 2 . 9 ) . The r i g h t hand side of 

equation (3°'0 ro^y be expressed i n terms of the incomplete gamma function, 

Our interest l i e s i n the pressure d i s t r i b u t i o n p(z), and for ease of comparison 

with other work, we use the conventional reduced pressure coefficient 

C = (y +1 ) 1 / 3 T ~ 2 / / 5 C , where C = p/k /o U2oo . Now C = - 2 u ( Y + 1 ) 1 / 3 Z ~2^3 

P P P * f °° P 
-1 /3 

= - 2n Y , so that equation (3»1) becomes 
(1 - z) = I ( t J - Cp

3, - 1) (3 .2) 

where I denotes the I(x,p) function of Pearson's Tables Ik]. The plot of 

Cp against z i s displayed i n Fig 1. 

t The wedoe e r e j a ^ e d « f o - * « 4 W f «f «« a,rfo''1 . X t • 
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Now consider the parabolic arc a i r f o i l for which F(z) = 2tr(1 - z ) . 

Equation (2 .8) reduces to 

g' { [g'(e)] 2.de + 1 A * = \ •g-'-9' ; > g .de (3 .3) 

3 2 2 2 

where i n t h i s case c^ = 2 (y + 1) T A. As mentioned already, we proceed 

by i t e r a t i o n , regarding the r i g h t hand side of equation (3«3) as a pertur­

bation term. The successive approximations { g n ^ are given by 
ft 2 -1 /2 ^ B ' n ( 8 ) 

/n 

and * n ] by * 

^ o 

I t might be thought that the wedge solution would provide a 

suitable g Q, but the position of the sonic point precludes t h i s . I t i s better 

to use a value of S' 0(^) corresponding to the Maeder and Thommen approximation 

[3 l» which i s simply g ' Q ( ^ ) = 2. Then, from equation (J.k) 

b V ? ^ s ,
1
2 ( e ) , d e ^ - ^ } _ i / 2

 + £ p { ? - e } - V 2 . d e 

^* o 

where p = 2. In terms of {Y } 

/dY \ 1 / 2 _ / ^ 

Integrating and w r i t i n g w = p ̂  , 

Y^ / 3 = log ffl - W + 2w2 + W - 2w*2 . 



Since p = 2, w* = 1/2 and so 

B \ ( y ) = - D^"' l / 2 { 3(iog ^ - 8 ? + 8 ^ 2 + 3 / 2 ) } " 1 / 3 

Note the formal resemblance of to Spreiter's expression for on the 

same p r o f i l e , equation (53) of [ 1 ] . I f we adopt the unsystematic approach 

of using g' Q rather than g'^ to obtain z i n terms of J , then we recover 

Spreiter's expression. A similar r e l a t i o n exists for the case of the wedge. 

To continue the i t e r a t i o n , we must resort to numerical integration, 
1/2 , an d for t h i s i t i s convenient to work i n terms of ^ ( ^ ) = ^ ^'n^/^' 

Equation (Ji.k) gives 

? _n/2 

Denoting 
7 
n/2. 

y 3 , n+1 

^ 2H n(^sin 2a).da by Q n ( ^ ) we have 

^ + e
l / 2 Q n ( e ) } 2 ^ = log { J / y + ) + P n ( ^ ) (3 .6) 

% 
where y 

P n = \ { Q n 2 ( 9 ) " 2 e " ' l / \ ( e ) } d e • (3-7) 

In terms of Y and Q, 



This i s the basic formula for computing. At each stage the value of 

must be determined from 

-1 + ( ? * ) 1 / 2 V ? * > = 0 * ( 3 ' 9 ) 

I t i s impracticable to generate a l l approximations previous to 

the n^*1 to obtain each value of Ĥ , and the scheme adopted was to i n t e r ­

polate i n tables of Q , P and use equation (3«8) to obtain the H 
n n n+1 

required to evaluate H n +g- The number of stations of J employed was 

varied as a check, and the results are expected to be accurate to 1 ° / o . 

The reduced pressure d i s t r i b u t i o n i s given by C = - 2 . 2 2 / ^ i t and the 
P 

plot of against z i s presented i n Fig 2. 

TABLE 1 

The Wedge P r o f i l e 

z C (Spreiter) P c" (Present) P 

0.092 2.63 3.00 

0.1V? 2.45 2.75 
0.219 2.26 2.50 

0.307 2.08 2.25 
0.J+08 1.90 2.00 
0.518 1.71 1.75 
0.628 1.53 1.50 

0.732 1.3^ 1.25 
0.825 1.00 
0.900 0.93 0.75 
0.955 0.71 0.50 

0.989 0.¥t 0.25 
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TABLE 2 

The Parabolic Arc P r o f i l e 

z -C (Spreiter) 
P 

-C Present) 
P 

0« J.56 - I - Z £ - I . 73 
0.394 -0 .49 -0.91 
0.614 0.46 0.12 

0.799 1.15 0.85 
0.964 1.69 1.44 
1.118 2.16 1.93 
1.264 2.59 2.38 
1.401 2.96 2.78 

1.533 3-31 3-14 
1.661 3.64 3.48 
1.784 3.94 3.80 

4. OTHER AIRFOIL PROFILES 

For general p r o f i l e s we must return to equation 2 .8 . In terms 
of H the i t e r a t i v e equation becomes n 

n/2 
/ ) ) \ H n + 1 ( 9 ) " I = _ - n - ( 0 ) " f - f I , C g n ( 7 s i n 2 a ) ] . 2 H n ( ^ s i n 2 a ) ( 

r 0 (4.D 

The equations for computation take the same form as for the parabolic arc 

a i r f o i l (3 '7» 3'8, 3»9) but the value of Qn(^J> ) i - s n o w given by 
n/2 

Qn = - I ' Cg n(^ sin 2 c c ) ] . 2 H n ( ^ s i n 2 a ) . da (4 .2) 
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We consider the Michel, Marchaud and Le Gallo a i r f o i l s , given by 

~ z n _ 1 

A [1 - n(-) ] maximum thickness a f t (k.Ja) 
J l ( z ) = J 2 n-1 

& [n(1 - maximum thickness forward , (k.yo) 
,* nn/(n-D 

where A = . 

2(n - 1) 

I f , as for the parabolic arc case, we use a linear i n i t i a l 

approximation gHy) = Pi we have Y = (3(z - z*) = (y + 1)u/c,> , and a suitable 

value of 0 may be determined by the Maeder and Thommen theory [33* 

For the a i r f o i l with maximum thickness a f t (k.3a) 

Y l = 3 K 2 ^ £ - - 1 ^ |(n - 1 ) f (P^2
Sin a j ^ . 2 P ^ s i n a . d a | 2 ^ (k.k) 

r 

This may be integrated a n a l y t i c a l l y , and using equation (3*9) to determine a 

value f o r ^ * , a f t e r some manipulation we obtain 

1 ' ' (n-Dr(n-^)U/ ! ( n - l ) t r ( n - i ) J 2(n-1) J 

~ / "3 

Now 0^ = 2/TI , so that t h i s again i s the same as Spreiter's r e s u l t , i f 

(3^ i s replaced by z. The -systematic approximation to z follows readily using 

equation ( 3 . 8 ) . 

For a i r f o i l s with maximum thickness forward (^.3b) we obtain results 

having the same r e l a t i o n to Spreiter's as those for maximum thickness a f t . 

Fortunately equation (3-9) has only one root i n the length of the a i r f o i l , so 

that although the algebra i s heavier, the method' carries through i n a st r a i g h t ­

forward manner. However, the linear i n i t i a l approximation i s not very suitable, 

and to obtain accurate stalues many i t e r a t i o n s would be needed. 
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5. DISCUSSION 

The pri n c i p a l object of t h i s work was to examine the reasons 

for the quite good agreement between the theoretical work of S p r e i t e r [ l ] 

and the experimental results due to Michel, Marchaud and Le Gallo. [5 ]« By 

eliminating certain assumptions whose influence could not be assessed, i t 

was hoped that the theoretical method could be put on a sounder basis. The 

consequence of t h i s approach may be seen i n Figs. 1 and 2; the degree of 

agreement between theory and experiment i s less satisfactory, so that the 

agreement achieved i n [1] i s to some extent fo r t u i t o u s . 

The relationship between the present method and Spreiter's i s 

quite simple. The l a t t e r may be regarded as a f i r s t approximation to the 

present method, since i t corresponds to taking the ve l o c i t y as given by the 

f i r s t i t e r a t i o n i n the solution of the in t e g r a l equation ( 2 . 8 ) , while using 

the i n i t i a l or zeroth approximation for the associated value of z. However, 

i t i s not a very satisfactory approximation, as can be seen from Tables 1 

and 2. The excellent agreement between values of pressure drag obtained 

from Refs. [11 and [6] i s due to a cancelling of positive and negative errors, 

and t h i s cannot be expected for every p r o f i l e . 

There s t i l l remains the question of the usefulness of the parabolic 

equation model i n simulating the physical s i t u a t i o n . There are three possible 

sources of disagreement between theory and experiment: ( i ) f a i l u r e of the 

transonic small disturbance equation to represent the important features of 

the flow; ( i i ) f a i l u r e of the parabolic equation to provide a good approximation 

to the transonic equation; ( i i i ) f a i l u r e of the experimental model tests to 
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give values of pressure corresponding to free f l i g h t . That the second of 

these i s not solely responsible for the major part of the differences i s 

established by the case of the wedge. 

Assessment of the theory must involve comparison with exact 

solutions of the transonic flow equations and experimental results. Only 

for the case of the wedge, i s there a theory which may be regarded as close 

to the exact solution, the hodograph plane solution of Guderley and Yoshihara 

[6] mentioned above. For t h i s case, the present theory i s an improvement on 

[ 1 ] , although complete agreement i s not obtained. The remaining difference 

must be at t r i b u t e d to the i m p l i c i t assumptions concerning the dependence of 

on y, which are common to a l l the parabolic approximations so far developed. 

For other cases, we can only compare with experiment, and as mentioned already, 

the present theory gives worse agreement with the experimental results [5] 

than the Spreiter theory [ 1 ] . However, the r e l i a b i l i t y of the experimental 

results has not gone unchallenged. A f u l l discussion of the experimental 

results i s not attempted here, but for completeness we indicate certain 

d i f f i c u l t i e s . 

The Michel [5] a i r f o i l s were simulated by a tunnel wall bump . 

technique, and compared with a mid-tunnel test case. Further experiments by 

Carrol and Anderson [7] indicate errors due to the wall boundary layer. The 

agreement with the mid-tunnel test case could be due to more pronounced 

tunnel wall r e f l e c t i o n errors i n t h i s case. A systematic study of tunnel wall 

r e f l e c t i o n errors has been undertaken by Spreiter, Smith and Hyett [ 8 ] . An 

application of Guderley [91 and Barish [10] theories predicts a pattern of 

errors similar to the differences between the theo r e t i c a l results [1] and 
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experiment. However the physical explanation advanced e a r l i e r i n [8] would 

only account for an opposite pattern, and i t seems a p i t y that the Barish 

form of the correction, equation (11) of [8 ] was not checked experimentally. 

Questions of a d i f f e r e n t type are raised by the case of the wedge. 

Spreiter has discussed t h i s matter i n [11] and [ 8 ] , B r i e f l y , the problem i s 

that there are differences between theoretical results which may be regarded 

as accurate (Guderley and Yoshihara [ 6 ] , H e l l i w e l l and Mackie [12]) and the 

experimental values of Knetchel [ I 3 l i and these differences cannot be accounted 

for by the quantitative theories of wind tunnel interference of Marschner [14] 

and Morioka [ 1 5 ] . The differences may be due to the sharp shoulder, but Fig 2 

suggests a more general e f f e c t . 

In view of these d i f f i c u l t i e s , we cannot yet regard the difference 

between theory and experiment as largely due to either the f a i l u r e of the 

parabolic equation as a model of the f u l l transonic equation, or the f a i l u r e 

of the transonic equation to represent the physical s i t u a t i o n for free f l i g h t . 
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