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Summary 

The work described i n t h i s thesis can be conveniently divided 

i n t o two parts: (a) Azomethine (largely diphenylketimine) derivatives 

of l i t h i u m , zinc and boron and (b) Oxyazoraethine (largely pyridine-2-

aldoxime) derivatives of Group I I I elements. 

(a) Trimethylborane with diphenylketimine gave an adduct 

Ph2C:NH,BMe^ which at l60° eliminated methane forming Ph2C:NBMe2. 

Triethylborane with diphenylketimine at 160° gave the imine Ph2C:NCHPh2. 

Organozinc compounds react with diphenylketimine at ca, hO^ to 

give the dimeric derivatives (Ph2C:NZnR)2 which react with pyridine to 

form Ph2C:NZnR,2py. I n studies on reactions between organozinc compounds 

and n i t r i l e s , diethylzinc and phenyl cyanide at l60° were shown to give 

triphenyltriaaine whereas diphenylzinc sind phenyl cyanide at 20° form 

an adduct which rearranges at 100° affording bis-diphenylketiminozinc 

Methyl-lithium reacts with diphenylketimine and tetramethyIguanidine 

below room temperature yielding the derivatives (Ph2C:NLi)^ and 

iil/ie^)^GtULl^^. The former forms 1:1 complexes with pyridine and 

tetrahydrofuran. Phenyl cyanide and methyl-lithium give the related 

(PhCMe:NLi)j^. 

The reactions between diphenylketimine and compounds BX^ (where 

X = F, Cl, NMe^i OMe and H) have also been studied. I n two cases (X = F 
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and H) adducts Ph2C:NH,BX^ were isolated; the borane adduct l o s t 

hydrogen at 120° to form the borazine (Ph^CHNBH)^. I n two other cases 

(X = CI and NMe2)> impure tris-diphenylketiminoborane was obtained. Pure 

tris-diphenylketiminoborane and diphenylketiminoboron diheilides were 

subsequently obtained from the reaction between diphenylketirainolithium 

and boron halides, 

(b) Pyridine-2-aldoximates Ĉ N̂CH:N0MMe2 of boron, aluminium, 

galliixm, indium and thalliiun have been prepared from the reactions 

between the oxime and Group I I a l k y l s . The derivatives of eJLuminium, 

indium and thallium are diraeric i n benzene solution. Spectroscopic 

evidence i s presented i n support of six-membered (MON)^ ring structures 

vd.th possible int e r a c t i o n between the metal atom and the pyridine ring 

nitrogen. The gallium derivative appears to dissociate i n solution and 

the boron derivative i s monomeric. 
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1. Introduction. 

This thesis i s concerned with the preparation and co-ordination 

chemistry of certain, azomethine derivatives R̂ C:NMR' and oxyazomethine 
d. n 

derivatives R_C:NOMR' of the elements l i t h i u m , zinc, boron, aluminium, 2 n I I I > 

gallium, indium and thallium. Although such derivatives of these 

elements were hit h e r t o largely unknown, the chemistry of related amino 

derivatives R̂ NMR̂  and alkoxy derivatives ROMR̂  has l a t t e r l y been the 

subject of much research. The following pages are therefore devoted to 

a review of the methods of preparation, structures, and co-ordination 

chemistry of amino and alkoxy derivatives of elements of Groups I , I I 

and I I I of the Periodic Table. Aspects of the co-ordination chemistry 

of the parent organometallic compounds sire also discussed. Derivatives 

of Group I I I elements are discussed f i r s t as i n some respects t h e i r 

chemistry i s simpler than that of th e i r Group I or Group I I counterparts, 

2. The preparation of amino and alkoxy derivatives of Group I I I . 

The main preparative routes to amino derivatives of the type 

R̂ NMR̂  are as follows, 

(a) by reaction between a metal a l k y l or hydride and a secondary 
. 1 

amxne 
R^ + R̂ NH — ^ R̂ NMR̂  + R'H (R* = a l k y l or H) 

2 
(b) by the action of an amine on a metal halide or t h i o l 

R^MCl + 2R2NH — ^ R2NMR̂  + R̂ NHHCl 

R̂ MSR" + R2NH — > R2NMÊ  + R"SH 
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(c) by the action of a grignard reagent on a metal halide^*^*^ 

R̂ NMX̂  + 2R«MgX — ) R^KR'^ + mgX^ 

(d) by the action of a metal halide on an aminolithium^ 

R̂ MX + R^NLi — ^ R̂ NMR̂  + LiX 

(e) by the exchange reaction between a t r i a l k y l and a tris-amino 
7 

derivative, 

2R^ + (R^N)^ — > 3^^^'2. 

Similar preparative routes have been used to prepare the bis-amino 

^̂ 2''̂ ^ 2^^' and tris-amino compounds ( R ^ ) ^ , The alkoxy derivatives are 

prepared s i m i l a r l y , using alcohols instead of amines, 

3* The stmctures of amino and alkoxy derivatives of Group I I I , 

The amino and alkoxy derivatives of Group I I I metals of the type 

R̂ MNR̂  and R̂ MOR (where R and R' are a l k y l or aryl) are either monomeric 

(M = B) or dimeric (M = A l , Ga, I n , T l ) . Where the derivative i s 

dimeric the structure consists essentially of a four membered metal 

nitrogen or metal oxygen r i n g , 
R R R 
\ / ^ 

/ \ /' / \ /' 
\ / V \ / V 

T I I 
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A structure of the type I enables both the metal and the nitrogen to 

make use of a l l t h e i r available tetrahedral sp^ o r b i t a l s . A l l the 

elements of Group I I I have a strong tendency to expand their covalency 

to four and t h i s i s most marked with aluminium e.g. even trimethyl 

aluminium i s dimeric. 

k. Factors a f f e c t i n g the degree of association of amino and alkoxy 

derivatives. 

Organometcillic compounds of a Group I I I (acceptor) atom bound to a 

Group V or Group VI (donor) atom have been observed as monomers, dimers, 

trimers, tetramers, and polymers. The factors which affect the degree 

of association are as follows, 

(a) Electronic. 

The monomeric nature of the boron compounds R̂ BNR̂  and R̂ BOR may 

be contrasted with the dimeric nature of the aluminium analogues 

(R^A1NR2)2 and (R^AIOR)^. This difference i s due in'part to the p^ - p̂ ' 

bonding which can occur between the boron and the nitrogen atoms. For 
8 

example Me2BNMe2 i s monomeric and the B-N force constant (from i t s 

Raman Spectrum) i s consistent with a B=N multiple bond. Similarly 

(Me^N)^ i s monomeric the bond order being 1/3 and t h i s i s reflected i n 

a diminution of r e a c t i v i t y i . e . no complex formed with trimethylamine. 

When r e l a t i v e l y electronegative groups are bound to boron e.g. 

Cl^BNMe^ co-ordinative saturation i s achieved by dimerisation. This 

compound can be obtained i n two forms; the very reactive l i q u i d monomer 
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which slowly changes i n t o an unreactive s o l i d dimer, 

(b) Ste r i c , 

Bulky groups R and R» i n general favour low degrees of association. 

For example whereas dimeric Me NBC 1 appears to be the more stable form 
^ ^ CH, 

a t room temperature, P r ^ C l ^ , Bu^NBCl^ and / ^^^-^ exist solely i n 
the monomeric state, 

(c) Entropy, 

Entropy always favours low degrees of association since the number 

of independent molecules i s then at a maximum i . e . dimers are preferred 

to trimers or polymers withi n a given phase, 

(d) Valence Angle Strai n , 

There must necessarily be greater valence angle s t r a i n i n dimers 

than i n trimers.or higher homologues. This i s tolerated more readily 
10 

by larger elements than those of the f i r s t period. 

(e) Nature of the Reaction Intermediate, 

The factors outlined so fair as affecting the state of association 

of amino or alkoxy derivatives determine which oligomer w i l l be 

therraodynamically the most stable. However, a less stable product may 

be obtained as a res u l t of the reaction path. Polymeric intermediates 

formed by an intermolecular condensation, would favovir polymers, 

tetramers and trimers as the isolated species. Similarly a monomeric 

intermediate, formed by an intramolecular condensation would favour 
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the dimer as the associated species. I t i s i m l i k e l y that three monomeric 
intermediates would associate to the trimer. Thus most of the organo-

metallic-amino compounds are monomers, dimers or polymers whereas the 
11 12 13 dialkylphosphino compounds of dimethyl-boron, aluminium, gallium 

13 
and indium are observed as trimers, tetramers and polymers. 

Examples of the effec t of the reaction path are observed i n the 

preparation of Ĥ BNMê  and H^AINMe^. I f Ĥ BI'TMê  i s prepared from the 
l 4 15 

adduct H^NMe2H ' or from sodium borohydride and dime thy lammonium 
chloride then an equilibrium mixture of monomer and diraer i s obtained. 

15 

However, the reaction of with NMê H gives both trimer (.lie^BE^)^ 

and the equilibrium mixture of monomer and dimer. I f i s allowed 

to react with the equilibrium mixture trimer i s produced, but no trimer 
l6 

i s formed when Ĥ BNMê  i s heated alone. The preparation of the trimer 

(H2AlNMe2)^ from LiAlH^ and Me2NHHCl might involve five-co-ordinate 

aluminium i n a polymeric intermediate. Five-co-ordinate boron must be 

excluded and t h i s difference might explain the difference between the 

degrees of association of the borane and silane. Similarly as the 

compound'''' Ĥ̂ GaCNMê )̂  i s unstable above -63° so H2GaNMe2 v/as predicted''^ 

to be diraeric i f prepared from Me^,GaH^ and Me2NH on the basis of i t s 

probable reaction intermediate Me2NH,GaĤ . This has indeed been shown 

to be the case,''^ When the state of association i s dependent upon the 

nature of the reaction intermediate then the product i s not necessarily i n 

the most favoured state•thermodynamically. These general principles are 
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discussed below with reference to appropriate elements of Groups I , I I 
and I I I . 

B. Review of compounds of Group I I I elements. 

1. Boron. 

(a) Adducts of organoboranes. 

Trialkylboranes form complexes of varying strength with amines. 

The heat of dissociation of the complexes of trimethylborane and non 
19 

s t e r i c a l l y hindered amines are generally about 1? k.cal./mole, however 

when the a l k y l groups attached to either boron or nitrogen are large 

then the complex i s more easily dissociated. Thus although triethylamine 

i s a stronger base than trimethylamine with respect to proton acceptance 

the AH (k.cal./mole) values for the adducts with trimethylborane are 

Me^NMe^ 17*6 and Me^NEt^ 10. Similarly although a-picoline i s 

a stronger base than pyridine, the pyridine complex with trimethylborane 

i s much more stable than the a-picoline complex.^^ An interesting 
21 22 

series of addition compounds betv/een cyclic imines (CH^) NR ' 
(x = 5 , 4, 3 and 6 and R = H, Me) and trimethylborane have shovm that 
the s t a b i l i t y of the complex where R = M e i s x = 3 ' / ' 4 > 5 > 6 and 

R = H, x = 4 > 5 " > 6 > 3 » The complete reversal i n position of the 3" 

membered ri n g upon substituting a methyl fo r a proton on the nitrogen i n 

t h i s series i s due to large s t e r i c interaction.. This effect becomes 

more pronounced as the r i n g size increases, thereby leading to a 
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systematic decrease i n s t a b i l i t y . Only i n the case of the 3-membered 
r i n g does methyl substitution r e s u l t i n a more stable addition compound. 
For the ether r i n g compoimds, methyl substitution results i n decreased 
s t a b i l i t y , the decrease becoming progressively larger as the r i n g size 
increases. "Ehe r e l a t i v e s t a b i l i t y of adducts of trimethylborane^^ have 
been determined by observing the proton chemical s h i f t s of the B-CĤ  
attached protons i n dichloromethane using the solvent as an i n t e r n a l 
reference standard. No s h i f t was observed when a 1:1 mixture of d i -
ethylether and trimethylborane was observed vindicating the observation 
that no inte r a c t i o n between the components occurs. The rela t i v e 
s t a b i l i t i e s of the complexes were: Me^ EtMe^N > E t ^ > Et20, 
(b) Aminoboranes« 

Thermal decomposition of the complex R̂ NHBÊ  occasionally under 

pressure results i n the formation of a borazene (̂ 2̂'̂ P̂x 

i n t e r e s t has been i n the value of x and the bond order of the B-N bond. 

The simplest borazene^^ (HJ'fBH ) has recently been prepared by the 

action of sodamide on the diammonate of diborane, i n l i q u i d ammonia, 
1, NH 

NaNH2 + BH2(NH^)2BH^ ^ ^^2^^^2^x 

and X i s mainly 5» although small yields of the dimer and trimer and 

minute traces of the tetramer were detected. The extent of association 

decreases as hydrogen i s substituted by a l k y l groups: thus N-methyl-
26 

aminoborane i s trimeric (H^BNHMe)^, and reversible monomer-dimer 
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14 27 28 
e q u i l i b r i a may be realized with H2BNMe2, MeHBNMe2, Me2BNHMe, and 

29 
Mê BNĤ . A l l known tetrasubstituted aminoboranes (R̂ BNR̂ ; R,R* = 
a l k y l or aryl) appear to be monomeric.^ Several high temperature 

reactions of trimethylborane have afforded a variety of heterocyclic 
30 

products: 

M e ^ 
BMe 

The monomeric species R2BNR̂  are stabilised not only s t e r i c a l l y 

but also co-ordinative saturation of both boron and nitrogen i s 

achieved by formation of a B=N multiple bond. However the large dipole 
- + 

expected f o r the formula R2B=NR̂  i s very considerably reduced by 

unsymmetrical electron sharing i n the sense B—N owing to the electro-
31 

negativity difference between boron and nitrogen. However the fact 

remains that the B-N bond order i s greater than one. Indeed f o r 

Ph(Cl)BNMe2 i t has been shown that the substantial potential barrier 

to r o t a t i o n about the B-N bond i s due to a large measure of p^ - p^ 

bonding rather than s t e r i c r easons.Where tv/o dif f e r e n t a l k y l 

groups are attached to boron i . e . R̂ NBR'Ph two isomers liave been 

obtained which are i n equilibrium.^ I t has been suggested that the 

cis-trans isomers equilibrate by rota t i o n about the B-N bond. The 

double bond character B=N i s enhanced i f the organic group attached to 



- 9 -

boron i s a phenyl, i n which case the B-N stretch frequency has been 
- 1 

assigned at 1470 cm. , The B-N stretching frequencies have been 
33 34 35 - 1 assigned by several workers ' * and found to vary from l470 cm. 

i n the above compound to 135O cm, i n Mê BNPĥ . Azomethine derivatives 

of boron, which are analogous to borazenes have been prepared by the 

hydroboration of a cyanide. ' ' ̂  

MeCN + Me3H ^(MeCH:NBMe^)^ 
2 25 2 2 

I n a l l cases the derivatives were associated and i n some instances 

cis ajid trans isomers were present which on occasion were separable. 

A l k y l migration across a cyanide was found not to occur. 

Dehydrogenation or dealkylation of - a borazene would give a monomeric 

borazine R-N-B-R' i f no association occurred. However u n t i l recently-

a l l knovm borazines were tr i m e r i c , the simplest example borazole (HBNH)^ 

being isoelectronic with benzene. This series of compounds has been 
39 

extremely well reviewed. Recently however two monomeric borazines 
40 

have been prepared, by refl u x i n g a benzene solution of pentafluoro-

boron dichloride and a primary aromatic amine: 
CgF^Cl^ + ArNH^ > CgF^=NAr 

( I ) Ar = pCĤ OCgĤ  

(CD Ar = mesityl. 

Product ( I ) was accompanied by of the dimer, whereas ( l l ) gave solely 

the monomer. The BN stretching vibration i n ( I ) i s infrared inactive but 
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the Raman absorbtions occur at I703 ('''̂BN) and 171O (''°BN). I t i s 
thought that the B-N bond i n ( I ) i s non polar due to the electron with­
drawing power of CgF^ which would strengthen the two possible BNit 
bonds. ( I ) forms a cr y s t a l l i n e 1:1 adduct with pyridine showing that 
a degree of unsaturation exists. 

41 

A number of bis-aminoboranes (RR'N)2BR" have been prepared . A l l 

are monomeric in d i c a t i n g s i g n i f i c a n t p a r t i a l double bond character 

between boron and nitrogen. Recent new methods of preparation have 

sho\m that i n t e r e s t i n t h i s f i e l d i s being maintained. Borazine reacts 
42 

with primary amines: 
(HBNH)^ + 3RNH2 :» 3HB^ 

NHR 

Dimethylamino-organoboranes can be obtained by heating t r i s -
43 

dime thy laminoalane v/ith alkylboroximes, 

J)kl{me^^ + (RBO)^ 3.RB(NMe2)2 + [Me2NA10]^ 

Bis(-alkylamino)arylboranes undergo a general transamination reaction 
44 

\\d.th primary or secondary amines. Thermal decomposition of the 
derivatives PhB(NHR)2 gave the cyclic borazole ^' (PhBNR)^. Tri s -

41 
aminoboranes iR^) ^ have been prepared by numerous routes as shown 
i n Figure 1, many of which are involved i n other systems. Recent 

44 
methods of preparation have involved transamination and the reaction 

43 
between trisalkoxyboranes and trisdimethylaminoaluminium. They are 



3 

w 
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i 

a l l monomeric due to the p a r t i a l double bonding between the boron and 
nitrogen s a t i s f y i n g the electron deficiency of boron, Trisdimethyl-
aminoborane has a tr i g o n a l planar arrangement of three nitrogen atoms 

about the boron atom. The B-N bond length i s 1»46A*'and the B-N-C 
47 o angles are 120 . 

2 . Aluminium. 

(a) Adducts of organoalanes. 

Aluminium alkyls and hydrides form stronger co-ordination 

complexes with oxygen and nitrogen containing bases than do the 

corresponding boron derivatives. Whereas ether does not co-ordinate 

to trimethylborane, Me^lOEt^ has a heat of co-ordination of 11*2 

k,cal, mole , 
48 

The f i r s t amine complexes of organoalanes, Hy»IAl(p-tolyl)^ and 

H^,AlPh^ were described by Krause and Dittmar i n 1930. The f i r s t 

iiras said to darken v/hen heated above 120° but no decomposition 
products were i d e n t i f i e d . Since then many 1:1 complexes have been 

12 49 50 51 

isolated * ' and some complexes are known i n which the aluminium 

atom i s f i v e co-ordinate.^^'•^•^'•^^ 
(b) Aminoalanes. 

Wiberg as reported by BBhr'^^ has also studied amine-organoalane 

complexes and t h e i r thermal decomposition. His proposed reaction 

scheme i s as follows although very l i t t l e supporting evidence i s 

produced. 
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H^AlUe^ - - 2 2 ^ (H2NAlMe2)^ : | | ^ (HNAlMe)^ (AM) ^ 

MeNH2AlMe^ — ^ (MeNHAIMe2)^ ^ (MeNAlMe)^ 

49 56 57 

Similar systems have been studied by several workers. ' ' The 

complexes Me^,AlR^ and th e i r derivatives (R^A1R2)^ can also be 

prepared from the reaction between the aluminium hydride and organo-
c-o 

l i t h i u m or mercury compoimds. The amine alanes R2NA1R̂  l i k e the 
aminoboranes R2NBR̂  show a decrease i n the extent of the i r association 

59 

ajs a l k y l groups are substituted f o r hydrogen. Thus H2NAIH2 i s 

polymeric, Me2NAlH2''̂  and Me2AlNH2^'' are trimeric and the t e t r a -

organo substituted derivatives are dimeric.''^*^^ There i s no evidence 

f o r double bonding i n any of the compounds of the aluminium series 

or any of the similar compounds formed by the Group I I I B elements 

Ga, I n , T l ; they a l l associate. They are not affected by trimethyl­

amine nor are they s i g n i f i c a n t l y dissociated on vaporisation. 

The rather i n t e r e s t i n g compoiind dime thy la luminium aaide 
(Me„AlN,), has recently been prepared and presumably contains a six 

2 3 3 

membered (AIN)^ r i n g . The analogous azomethine derivatives 

R2C:NA1R^ are however a l l dimeric. These have been prepared by the 

migration of an a l k y l group or a hydrogen atom across a n i t r i l e . ' ' 

RON + R^Al ^ ^ 0 - ^ ^ > (RRiC:NAIRy2 

pn° 
RON + Me2AlH (RCH:NAlRy2 
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The reaction of triethylaluminiura vdth n i t r i l e s occurs i n a 
s l i g h t l y d i f f e r e n t manner to that of the other organo-aluminium 
compounds studied. Ethylene was evolved and hydrogen migration 
occurred. 

PhCN + Et^Al > (PhCH:NAlEt2)2 + Ĉ Ĥ  

Whereas the aminoalanes (R^NAlRp^ reveal the effect of bond 

angle s t r a i n i n that c r y s t a l glass l i q u i d change occurs when 

heated slowly the azomethine alanes (R^CrNAlRp^ ̂ ° even though 

the greater s t r a i n expected to be present i n the alkylidene amino 

compounds should make a t r a n s i t i o n to a polymeric glass more l i k e l y . 

Thermal decomposition of the aminoeilanes MeNHAlMep, EtNHAlH , 

MeNHAlEtCl and MeNHAlPh^ have resulted i n evolution of hydrocarbon 

or hydrogen and formation of the oligomeric derivatives (RNAIR')^. 

When R=R' = Ph a cr y s t a l l i n e tetramer i s obtained but when ortho-

substituents are present on the amine, the crystalline dimers 

(Ph^AlNHAr)^ are o b t a i n e d . T h e tetramers have a cubic structure 
67 

having twelve essentially equal Al-N bond lengths. 

(c) Alkoxyalanes. 

Dimethylaluminium methoxide i s a cyclic trimer as i s d i et h y l -

aluminium methoxide, but diethylaluminium ethoxide and t-butoxide 

are dimeric. These compounds i l l u s t r a t e the s t e r i c factor governing 

association, there being less st e r i c interference between bulky 



- 14 -

substituents i n a dimer than i n the corresponding trimer. A dimer i s 

obtained from triethylaluminn um and 2-ethoxyethanol, the ethereal 
68 

oxygen atoms not being involved i n co-ordination. Similar alkoxides 

are obtained from the addition of an organoaluminium compound across 

a carbonyl e.g. the dimeric compound (Ph2C(Me)0AlMe2)2 ^̂ een 
isolated from the reaction between benzophenone and trimethyl-

, . . 69 aluminium. 

3. Gallium, Indium and Thallium, 

The trimethyl derivatives of gcillium, indium and thallium are rather 

poor acceptors. Trimethylgallium though a stronger acceptor than 

trimethylboron, i s weaker than trimethylaluminium, The rather unstable 
70 

ether complex of trimethylindium may be separated i n t o i t s components 
by f r a c t i o n a l condensation while triraethy1thallium may be separated from 

i t s very unstable ether complex Me^Tl,0Et2 by d i s t i l l a t i o n irnder 
71 

reduced pressure. Recent proton magnetic resonance studies have 
related the chemical s h i f t of the Ga-CĤ  attached protons to the 

72 73 s t a b i l i t y of the complex. Dimethylamine complexes of Mê Ga, 
74 74 

Me^In and Me^Tl have been described, the f i r s t two eliminating 

methane at 120° and l40° respectively to y i e l d the dimeric derivatives 
(Me2MNMe2)2 which exist i n both cr y s t a l l i n e and glassy forms. I t i s 

75 

believed that the l a t t e r consist of cyclic oligomers or polymers. 

The thallimn complex Me2NHTlMe^ decomposes on heating to methane, 

thallium and unidentified materials. I t has been prepared however 
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from the reaction between dimethylthallitam bromide and dimethylamino-
74 

l i t h i u m . I t i s also dimeric. 

The thermal decomposition of trimethylgallium-amine complexes 

RR'NHGaMê  occurs smoothly at temperatures between 70° and 130°. The 

loss of methane from the co-ordination compounds of trimethylboron 

with ammonia, methylamine and dimethylamine requires much higher 

temperatures than are necessary to decompose those of aluminiiun and 

gallium. The boron compounds decompose at 280-333°j whilst those of 

aluminium appear to be somewhat less stable than t h e i r gallium 

analogues, t h e i r decomposition temperatures being 57-70° (NH^), 

55-57° (NH^Me) and 90-120° (NHMe^) i n contrast to 70°, 120-130° and 

115-130°, The stabilities'''^ of the amine complexes of trimethyl-

gallium are predicted by p,m,r, to be Mê NH > NĤ '-̂  MeNĤ . 

The polymeric materials (MeGaNH) and (MeGaNMe) are almost 
X y 

cer t a i n l y formed when the dimeric species (Me2GaNH2)2 and (Me^GaNHMe)^ 

are heated to above l40° and 180° respectively. A l l compounds of the 

type (R^^^^^ M = A l , Ga, I n , T l are dimeric; only i n the case of 

the boron analogues are monomeric species knovm. 
76 

Diethylgallium azide Et^GaN^ has recently been prepared' by 

allowing t r i e t h y l g a l l i u m to react with chloroaaide. The product i s 

trimeric i t s structure i s presumed to be based upon a six raerabered 

Ga-N r i n g . 
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N, Et Et ,N y / 
Et L i Et •^a .Gâ  
Et V\ Et 

N 
il N 

Two analogous azomethine derivatives of gallium (PhGH:NGaEt2)2 
t 77 and (BU GH:NGaEt2)2 "^^^ been prepared ' by the thermal decomposition 

of the adducts RCNGaEt^. Upon heating to 150° ethylene was evolved 

and hydrogen migration occurred. 

o 
RON + Et^Ga ^ > (RCH:NGaEt2)2 ̂  ^2^4 

Other n i t r i l e - a l k y l g a l l i u m complexes were thermally decomposed 

but no hydrogen or a l k y l migration occurred. The complexes tended 

to dissociate i n t o the components p a r t i c u l a r l y under reduced pressure 

when heated. Methane elimination sometimes occurred with the formation 

of polymeric materials ailthough triraethylgallium polymerised phenyl 

cyanide to 2 , 4 , 6-triphenyltriaaine (PhCN)^. 
78 79 The alkoxides (RgMOMe) of gallium and thallium are diraeric 

74 

whereas dimethylindium methoxide l i k e the aluminium analogue i s 

a cycl i c trimer. 

Trime thylgallium,'''^ indium''^ and thallium^*^ a i l l react with acetyl-

acetone to give methane and chelate monomers. 
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0—CMe 
/ w 

Me_M CH 
^\ / 

0=GMe 

Trimethylgallium also reacts with salicylaldehyde with the 

elimination of methane and formation of a similar chelate monomer. 

With dimethylethanolamine however, which might be expected to form a 

chelate compound, a dimeric product i s obtained which forms a dimethiodide 
rpO 

with methyl iodide. The complex i s formulated as, 

CĤ CĤ NMê  

Me-Ga ĜaMe_ 

^0 
CĤ CĤ NMê  

A similar dimer i s obtained from triethylaluminium and 2-

icel 
81 

68 
ethoxyethanol, although the acetylacetone derivatives of d i a l k y l 
aluminium are postulated as monomers. 

0~CCH, 
/ \ \ 5 

R_A1-CR» =CHR" + CĤ COCĤ COCH, R'GHiCHR" + R^Al OPH 
2 3 2 3 \ / / 

0—'CCĤ  

An in f r a r e d spectroscopic study of some dimethyl-gallium and 
82 

-aluminium derivatives of oxy acids has shown that the dimeric 
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acetates contain bridging acetate groups i n an eight-membered cyclic 

structure. However on similar evidence some acetoxy boranes R2B00CCĤ  

have been assigned monomeric structures. The lowered carbonyl 

stretching frequency indicated the presence of a chelating acetate 

group. The r e l a t i v e i n t e n s i t y of the band due to ̂  (C=0) i n 

Me2B00CCH^ remained constant over a large concentration range i n 

solution suggesting the absence of an acetate bridged dimer. 

C, Zinc, 

1, Adducts of organozinc compoimds. 

The f i r s t i ndication of the existence of co-ordination complexes 
84 

of organozinc compounds was the observation of Frankland i n l859, that 

the use of dimethyl- or diethylether as a solvent greatly f a c i l i t a t e s 

the formation of dimethylzinc from zinc and methyl iodide, but that 

complete separation of ether from the product was impossible. The 
Of. 

MepO/Me Zn system has recently been reinvestigated by Thiele, who 

has demonstrated the formation of a 1:1 complex. However a complete 

separation was achieved by d i s t i l l a t i o n of the complex through an 

e f f i c i e n t fractionating column, A series of l i q u i d adducts \in.th cyclic 

ethers was also reported v/hich although d i s t i l l a b l e at atmospheric 

pressure without decomposition, dissociated i n benzene solution. The 

strength of the bond between the dimethylzinc and the ether molecules 

and the p o s s i b i l i t y of co-ordination of a. second ether molecule was 

found to increase from ethylene oxide to pentamethyleneoxide. Only 1:1 
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complexes were formed with ethylene oxide and trimethylene oxide, whereas 
with tetrahydrofuran and pentamethylene oxide 2:1 complexes are obtained. 
On s t e r i c grounds the reverse trend might have been expected and i t was 
concluded that the major influencing factor was the orientation and 
chciracter of the oxygen o r b i t a l s , which vary with the r i n g size of the 
ether. 

DimethyIzinc yields c r y s t a l l i n e and presumably chelate, 1:1 

complexes with 1,4-dioxan and 1,4-thioxan. These cannot be d i s t i l l e d 

without decomposition. Aliphatic ethers l i k e 1,2-dimethoxyethane y i e l d 

l i q u i d complexes containing two ether molecules to one zinc atom. The 

complexes can be d i s t i l l e d without decomposition, but they dissociate 
86 

i n benzene solution i n t o a 1:1 complex and free ether. Similar 1:1 

complexes of diarylzinc compounds with 1,4 dioxan have been reported?*^ 

With t e r t i a r y amines, dimethylzinc yields definite co-ordination 

complexes. One or two molecules of trimethylamine react virith one 

molecule of dimethylzinc to give l i q u i d adducts, the 1:1 complex 

d i s t i l l i n g without decomposition at 84° whereas the 1:2 d i s t i l l s at 84*5° 

suggesting that dissociation i n t o the 1:1 complex and free amine takes 

place; such a process i s observed when the 1:2 complex i s dissolved i n 

benzene. Triethylamine and pyridine afford only 1:2 complexes, which 

are a l i q u i d and c r y s t a l l i n e s o l i d respectively; both dissociate i n 

benzene solution y i e l d i n g the respective amine and the 1:1 complex. 

Similar c r y s t a l l i n e 1:1 chelate complexes of dimethylzinc with 
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N,N,N',N'-tetramethylethylenediamine, 2,2'-bipyridyl and 1,10-
88 phenanthroline can be sublimed without decomposition i n vacuum. The 

rate of reaction of the co-ordination complexes with a i r i s greatly 

reduced compared to that of dimethylzinc, i n fact i t i s reported that 

the chelate complexes can be handled i n a i r f o r a short time vri-thout 

noticable decomposition. Recently the 2,2'-bipyridyl, and 1,10-

phaianthroline complexes of various organozinc compounds have been 

prepared and have been the subject of an u l t r a - v i o l e t and v i s i b l e 
89 

spectroscopic study. The colour of the complexes was found to depend 

on the electronegativity of the a l k y l group and the conclusion reached 

was that the spectra are due to a charge-transfer process involving 

donation of electrons from the ZnR2 group i n t o the lov;est unoccupied 

molecular o r b i t a l s of the ligand. Unlike the similar beryllium 

complexes however, the i n t e n s i t y of the charge-transfer band increases 

with increasing electronegativity of R, and i t i s suggested that 

p a r t i c i p a t i o n of the '3d' o r b i t a l s of zinc i s important. 
F i n a l l y a series of complexes of di-n-butylzinc, diphenylzinc and 

bis-pentafluorophenylzinc with a variety of donor ligands has been 
90 

described. I t was found that the increasing electronegativity of the 

a l k y l group attached to zinc brings about a corresponding increase i n 

electron a f f i n i t y of the vacant o r b i t a l s of the zinc atom, causing i t 

to become a stronger electron acceptor. 
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2, OrKanozinc amides and alkoxides. 
91 

Dimethylzinc r e a c t s vri.th dimethylamine i n a 1:1 molar r a t i o t o 

y i e l d only the i n s o l u b l e , i n v o l a t i l e and e v i d e n t l y polymeric b i s - d i m e t h y l -

aminozinc together w i t h unreacted dimethylzinc. I t i s unknown whether 

the bis-amino-compound i s formed by d i s p r o p o r t i o n a t i o n of (MeZnNMe2)^ or 

by f u r t h e r r e a c t i o n of t h i s w i t h dimethylamine. The l a t t e r i s u n l i k e l y 
92 

since the r e c e n t l y described e t h y l ( d i e t h y l a m i n o ) z i n c i s sai d t o be 

st a b l e i n the presence of excess diethylamine. The s o l i d a l k y l 

(diphenylamino)zinc compoundsRZnNPh^ (R = Me, E t , Pr^ Bu'̂ , Ph) and 

l i q u i d e t h y l z i n c diethylamine are dimeric i n benzene s o l u t i o n and 

presumably have the s t r u c t u r e 

Ph Ph 
R-Zn ^Zn-R 

/ \ Ph Ph 

The zi n c compounds show no molecular weight t r e n d vri.th concentration, 

and i n the s o l i d s t a t e they are stable c r y s t a l l i n e s o l i d s . Consequently 

the zinc atoms can apparently withstand considerable valence angle 

s t r a i n which must be expected t o e x i s t i n such a s t r u c t u r e . The presence 

of c o - o r d i n a t i v e l y unsaturated zinc i n these compounds i s r e f l e c t e d i n 

the f a c t t h a t they d i s p r o p o r t i o n a t e on heating t o dimethylzinc and b i s -

aminozinc, and t h a t they r e a c t w i t h p y r i d i n e i n the molar r a t i o 1:1 t o 

give dimethylzinc and the pale yellow complex ^•aJ^'?\i.^^, Pyridine 



- 22 -

i n excess y i e l d s the b r i g h t yellow Mepy^ZnNPh^. 

Whereas the amino d e r i v a t i v e s of zinc are dimeric and r a t h e r 
91 

unstable t o d i s p r o p o r t i o n a t i o n , the alkoxides are tetrameric and the 

simpler examples e.g. MeZnOMe and MeZnOCMe^ sublime unchanged. The 

a l k y l z i n c alkoxides are prepared by slow a d d i t i o n of the al c o h o l to the 

zinc a l k y l a t about - 80° , both being d i l u t e d w i t h an i n e r t solvent, 

R^Zn + R'OH ^ RZnOR'(l) + RH 

The product ( l ) i f monomeric, would contain a c o - o r d i n a t i v e l y unsaturated 

zinc atom bound t o an oxygen atom of pronounced donor character. The 

replacement of an a l k y l group of R^Zn by the alkoxy group OR' r e s u l t s 

i n an increase both i n acceptor power of the metal and i n donor 
68 

character of the oxygen. This e f f e c t r e s u l t s i n Et^AlOCH^CH^OEt 

having s t r u c t u r e I r a t h e r than I I despite the f a c t t h a t two moles of 

chelate monomer would have greater entropy than one of dimer. 
OCHGHOEt ^0 CH 

E t ^ A l ^ A l E t ^ E t A l 
^ 0 0 CH 
CH2CH20Et Et 

I I I 

Dim e r i s a t i o n of the alkoxides RZnOR' would leave :the zinc only 

three co-ordinate smd the oxygen w i t h a lone p a i r of el e c t r o n s . 

Consequently f u r t h e r a s s o c i a t i o n occurs t o give the tetrameric species 

shown below i n which both the zinc and oxygen are ̂ -co-ordinate. The 

2 
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I 

/ 
(MeZnOMe)^ HMHStieanr a CBSptncfr 

Ourham. (965 
Zn-C. 194, 0-C,l-46: Zn-0, i07i 
Average angles in -cubf. 96'at oxygen, 64'at zinc 

s t r e n g t h of these d a t i v e bonds i s shown by the recovery of a l k y l z i n c 

a lkoxides unchanged from s o l u t i o n s t o which p y r i d i n e has been added, 

although displacement does take place when the alkoxy group i s replaced 

by the l e s s basic phenoxy group, 
Ph 

Me C py 
(MeZnOPh), Enl^ine^ \ / 

py 0 Me 
Ph 

The stronger Lewis base ^-dimethylamino-pyridine y i e l d s a c r y s t a l l i n e 

adduct w i t h methylzinc methoxide only on account of i t s r e l a t i v e l y low 
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s o l u b i l i t y . I n s o l u t i o n the adduct i s d i s s o c i a t e d very l a r g e l y to f r e e 

base and tetramer. 

T h e o r e t i c a l l y a l k y l z i n c alkoxides could be obtained by the a d d i t i o n 
93 

of R-Zn across a carbonyl group. However i t has been found t h a t only 

diphenylzinc adds across benzophenone t o give the diraeric (PhZnOCPh^)2. 

Dimethylzinc does not r e a c t and d i e t h y l z i n c gives ethylene and t r i m e r i c 

e t h y l z i n c diphenylmethoxide. 

The r a t h e r i n t e r e s t i n g a l k y l z i n c d e r i v a t i v e s of 2-dimethylamino 

ethanol (RZnOC2H^NMe2)are t r i m e r i c , do not form methiodides, have 

r e l a t i v e l y h igh m e l t i n g p o i n t s and c r y s t a l l i s e w e l l . They are believed 

t o c o n t a i n 3-co-ordinate z i n c . 

.0. /NMe_ 
• Me^N—>Z^ \ Z f r 

CH 

2 ^ Z n - ^ ^CH^ i 2 
m 

Reactions between zinc a l k y l s and phenyl isocyanate, g i v i n g 
9k 

a n i l i d e s PhNH«CO«R a f t e r h y d r o l y s i s were described t h i r t y years ago 

but no intermediate products were i s o l a t e d . Recently methyl and e t h y l 

isocyanates were shown t o be converted i n t o t h e i r triraers i n the presence 

•of d i m e t h y l - and d i e t h y l z i n c . However phenyl isocyanate reacted w i t h 

d i e t h y l - or diphenylzinc upon heating i n benzene t o y i e l d the c r y s t a l l i n e , 
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t e t r a m e r i o products [EtZn(NPh)CQEt]^ and [PhZn(NPh)cCPhj^ the former 

was a l s o obtained from the r e a c t i o n between d i e t h y l z i n c and p r o p i o n a n i l i d e 

w i t h ethane e v o l u t i o n . The products of a d d i t i o n of RZnOR* and RZnKR^ t o 

isocyanates and s i m i l a r conipounds liave also been described but no 
92 

molecular weights were reported. 

D. L i t h i u m . 
L i t h i u m a l k y l s , amides and alkoxides have been r e l a t i v e l y l i t t l e 

s t u d i e d compared t o the G-roup I I and G-roup I I I d e r i v a t i v e s * due 

presumably t o the greater coii5)lexity and r e a c t i v i t y o f the l i t h i u m 

conjiounds. Methyl- and e t h y l - l i t h i u m are i n v o l a t i l e s o l i d s and the 

c r y s t a l s t r u c t u r e s o f both these compounds have been determined by 

X-ray a n a l y s i s . M e t h y l - l i t h i u m ^ ^ consists of tetramers (MeLi)^ i n which 
the l i t h i u m atoms occupy the corners o f a tetrahedron and the methyl 

96 

groups are l o c a t e d over t h e face centres. E t h y l - l i t h i u m has a more 

con5)licated c r y s t a l s t r u c t i i r e based however on s i m i l a r t e t r a m e r i c u n i t s . 

Systems o f e l e c t r o n d e f i c i e n t bonding have been discussed f o r both 

s t r u c t u r e s . I n contrast n - b u t y l - l i t h i u m i s a colourless l i q u i d soluble 

i n p a r a f f i n solvents. The various states of association o f l i t h i u m 

a l k y l s are given i n the t a b l e below. 
L i t h i u m a l k y l State of as s o c i a t i o n Solvent 

t - B u t y l ^ ^ hr CgHg and CgH^^ 
98 

n-Butyl 
6 C^Hg and CgH^2 

99 
E t h y l ^ ^ 6 CgHg and Ĉ Ĥ 2 

Methyl'' 3 
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A benzene s o l u t i o n of e t h y l - l i t h i u m absorbs t r i e t h y l a m i n e and 

a t low r a t i o s of base t o e t h y l - l i t h i u m , c o - o r d i n a t i o n of the base t o the 
99 

i n t a c t e t h y l - l i t h i u m hexamer occurs. As the r a t i o base/hexamer r i s e s , 

the hexamer d i s s o c i a t e s i n t o the co-ordinated dimer ( E t y J L i E t ) ^ (see 

below), which may be f u r t h e r solvated a t higher base concentrations. 

r 
NEt^ 

The i n f o r m a t i o n i n the l i t e r a t u r e on the s t a t e of as s o c i a t i o n of 

l i t h i u m alkoxides LiOR and amides LiNR^ i s r a t h e r sparse. L i t h i u m 

t e r t i a r y butoxide i s hexameric i n the vapour phase and also i n 

benzene'''̂ '̂  and cyclohexane,''^^ whereas the isopropoxide has been found 

t o have a s t a t e of association of about eleven i n cyclohexane. The 

lower alkoxides are i n s o l u b l e i n ether and apparently polymeric. The 
105 

c r y s t a l s t r u c t u r e of l i t h i u m methoxide ^ shows the l i t h i u m atoms i n a 

plane w i t h methoxide groups above and below t h a t plane having four 

oxygen atoms co-ordinated t o each l i t h i u m atom and vice versa. 

No systematic study of the molecular complexity of the amino 

l i t h i u m compounds LiNR2 has been c a r r i e d out and although many have been 

used i n ' t h e p r e p a r a t i o n of amino d e r i v a t i v e s of other elements, fev; 

have been i s o l a t e d and characterised, Dimethylaminolithium i s a reagent 
lO f̂ 

much used i n preparing dimethylamino d e r i v a t i v e s from h a l i d e s . 
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C H 
(Me2N)2CCl C l " + 21A}iKe^ ^ ̂  > (Me2N)^C + 2LiC l 

R. T. 

I t i s i n f e r r e d t o be polymeric due t o i t s i n s o l u b i l i t y i n hydro-
105 

cairbons and very s l i g h t s o l u b i l i t y i n ethers. An amino d e r i v a t i v e of 

l i t h i u m which i s dimeric i n benzene s o l u t i o n has been prepared from the 

r e a c t i o n between hexamethyldisilazane and phenyl-lithium.''*^^ 
Me^i-NH-SiMe^ + PhLi — > CgH^ + (Me^i-NLi-SiMe^)^ 

L i t h i u m alkoxides and amides are postulated as intermediates i n the 
1O7>108 109 a d d i t i o n r e a c t i o n s of l i t h i u m a l k y l s across a carbonyl or azomethine 

bond. 
HO 

RLi + R'R"C=NR'" > (RR'R"CN(R"«)Li) - ^-^ RR'R"CNHR'" 

+LiOH 

(1) C.H. 
RR'CO + L i C ^ 2 ^ > RR«C(OH)CHCH 

55 2 h r . 
(2) H O 



EXPERIMENTAL 
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Experimental methods and apparatus. 

N i t r o g e n Supply. 

The n i t r o g e n used was p u r i f i e d by passing the gas through a furnace 

c o n t a i n i n g 'BTS' c a t a l y s t ' a t ca. 100°, then through molecular sieve 

(type 5A), and f i n a l l y through two traps a t -196° . P e r i o d i c a l l y the 

c a t a l y s t was regenerated w i t h hydrogen and the molecular sieve d r i e d 

by pumping a t 300°' . 

Glove Box. 

Samples f o r a n a l y s i s and i n f r a r e d spectra were t r a n s f e r r e d and 

manipulated under a n i t r o g e n atmosphere i n a glove box of the con­

v e n t i o n a l type. The n i t r o g e n was p u r i f i e d as described above, and a 

smal l pump f i t t e d i n s i d e the box provided a continuous r e c y c l i n g of 

n i t r o g e n tiirough the p u r i f i c a t i o n system when the box was not i n use. 

Copper p i p i n g was used outside the box, t o avoid the d i f f i c u l t y caused 

by the p e r m e a b i l i t y of P.V.C. tub i n g t o oxygen. 

110 
Vacuum System. 

A vacuum system (Photograph I ) was i n h e r i t e d from Dr. J.E. Lloyd 

and used f o r the manipulation of many of the compounds used i n the 

present i n v e s t i g a t i o n . I t consisted of three sections: a, storage 

s e c t i o n ; b, gas measuring s e c t i o n ; and c, f r a c t i o n a t i o n s e c t i o n . 

a. The storage s e c t i o n had large (3 l i t r e ) bulbs f o r the storage 

of gases, e.g. diborane, and smaller (100 c.c.) bulbs f o r the storage 
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c. The f r a c t i o n a t i o n s e c t i o n consisted of four U-traps connected 
by greased T-taps. Several i n l e t p o i n t s were f i t t e d using S19 and Bl4 
sockets, and evacuation was accomplished using a r o t a r y o i l pump and a 
mercury d i f f u s i o n pump. A r o t a r y o i l pump was also used f o r the 
secondary vacuum l i n e c o n t r o l l i n g the mercury r e s e r v o i r s . 

Reactions were u s u a l l y c a r r i e d out i n a double Schlenk tube, the 

compounds being p u r i f i e d by r e c r y s t a l l i s a t i o n i n one of the limbs. Some 

re a c t i o n s were done i n sealed tubes so t h a t when the r e a c t i o n was 

complete the tube was attached through a s u i t a b l e adapter t o the vacuum 

l i n e and the volume of gas produced, measured. The tubes were then 

sealed under vacuum, t r a n s f e r r e d t o a glove box, opened and the 

contents scraped i n t o a small two-necked f l a s k . This v/as removed from 

the glove box, and the s o l i d compound t r a n s f e r r e d under a flow of 

n i t r o g e n i n t o a double Schlenk tube, and subsequently p u r i f i e d . 

I n f r a r e d Spectra, 

I n f r a r e d spectra (range 2 t o 25 microns) were recorded e i t h e r on 

a Grubb-Parsons GS2A pri s m - g r a t i n g spectrophotometer or Sx)ectromaj5ter. 

Samples of i n v o l a t i l e materieils were i n the form of n u j o l mulls or 

l i q u i d f i l m s . Gases v;ere recorded using a 10 cm. potassium bromide c e l l . 

Vapour phase spectra of only s l i g h t l y v o l a t i l e compounds were obtained 

using a Perkin-Elmer heated gas c e l l w i t h potassium bromide v/indows. 

Nuclear Magnetic Resonance Spectra. 

These were recorded e i t h e r on a Perkin-Elmer RIO spectrometer or 
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on an A.E.I. R.S,2. spectrometer operating a t 60 Mc./s. Samples were 
di s s o l v e d i n deutero-benzene, w i t h tetramethyIsilane as a reference 
compound. The sample tubes were f i l l e d by s y r i n g i n g the sample 
s o l u t i o n through a c o n s t r i c t i o n against a counter current of n i t r o g e n , 
i n t o the tube c o n t a i n i n g a s u i t a b l e q u a n t i t y of tetra m e t h y I s i l a n e . 
F i n a l l y , the tubes were sealed o f f a t the c o n s t r i c t i o n under n i t r o g e n . 

Mass Spectra. 

Mass spectra were recorded on an A.E.I. M.S.9 instrument a t 70 eV 

and an a c c e l e r a t i n g p o t e n t i a l of 8 kV, using a source temperature of 

130-250° and electromagnetic scanning. Compounds were introduced using 

a heated i n l e t system or d i r e c t probe a t temperatures up t o 200°, 

A n a l y t i c a l Methods. 

Carbon and Hydrogen A n a l y s i s . 

Analyses f o r these elements were c a r r i e d out i n t h i s department 

by v a r i o u s members of the a n a l y t i c a l s t a f f . Some compoiuids prepared 

i n the course of t h i s work were too a i r s e n s i t i v e t o permit analysis 

by conventional combustion methods. 

Hydrolyses, 

Organic groups attached t o aluminium an,d zinc were determined by 

h y d r o l y s i s and measurement of the hydrocarbon evolved. The compounds 

were e i t h e r t r a n s f e r r e d i n the glove box, or, on the bench, under 

n i t r o g e n , t o a small two-necked f l a s k attached t o the vacuum l i n e . The 
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compounds were hydrolysed w i t h a few c.c. of 2-methoxyethanol followed 
by d i l u t e s u l p h u r i c a c i d , run i n t o the f l a s k through a dropping f u n n e l . 
The gases evolved were f r a c t i o n a t e d and measured i n the gas bur e t t e 
using the Tbepler pump. 

Zinc A n a l y s i s . 

The organic matter i n the hydrolysate, obtained as described above, 

was destroyed by b o i l i n g w i t h a mixture of n i t r i c and sulphuric acids 

almost t o dryness, and the r e s u l t i n g v/hite s o l i d was dissolved i n a 

minimal amount of d i l u t e s u l p h u r i c a c i d and made up t o 500 mis. using 

d i s t i l l e d water. A 50 ml. a l i q u o t was taken and the pH adjusted t o 

k»5 using a known volume of 0»5N sodium hydroxide s o l u t i o n . The zinc 

s o l u t i o n s were f u r t h e r b u f f e r e d t o a pH of 5-6 using hexamethylene-

tetraraine, and then t i t r a t e d w i t h 0»01M "EDTA" s o l u t i o n using x y l e n o l 

orange as i n d i c a t o r . The end p o i n t was given by a sharp change from 

red t o straw yellow. 

Aluminium, Gallium and Indium Analyses. 

For aluminium, g a l l i u m and indium s o l u t i o n s i t was found preferable 

t o use a "back t i t r a t i o n " technique. A f t e r a d j u s t i n g the pH w i t h 

hexamethylenetetramine an excess of 0«01M "EDTA" s o l u t i o n v;as added, 

f o l l o w e d by sever a l drops of 0*2^ x y l e n o l orange i n d i c a t o r . The 

s o l u t i o n was then t i t r a t e d w i t h 0«01M zinc acetate s o l u t i o n u n t i l the 

yellow colour changed sharply t o red. 
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Organo-gallium and indium compounds are not. completely hydrolysed by 
d i l u t e a c i d s . Consequently t h e i r d e r i v a t i v e s were b o i l e d f o r several 
hours w i t h concentrated h y d r o c h l o r i c a c i d t o e f f e c t complete cleavage 
of a l k y l groups. 

Boron An a l y s i s . 

The sample was burned i n an apparatus described and i l l u s t r a t e d i n 

a Ph.D. t h e s i s i n I963 by Dr. J. Graham of t h i s l a b o r a t o r y . 

The compound was v/eighed i n a small g e l a t i n e capsule f i l l e d i n the 

glove box. The amount used was up t o 0«1 gm. A 3 l i t r e dropping funnel 

was purged w i t h oxygen, and 30 c.c. i^ater placed i n i t . The g e l a t i n e 

capsule was placed i n a platinum gauge container together v/ith a smEill 

piece of f i l t e r paper t o act as a fuse. This v;as l i t and q u i c k l y placed 

i n the dropping f u n n e l . A f t e r a few seconds the compound burned vd.th a 

b r i g h t green flame. V/hen the combustion was complete, the dropping 

f u n n e l was shaken t o dissolve the combustion products. The contents were 

then r i n s e d i n t o a f l a s k , made up t o a standard volume and t i t r a t e d 

against standard 0«1N caustic soda i n the presence of mannitol w i t h 

bromothymol blue as i n d i c a t o r . 

L i t h i u m A n a l y s i s . 

The l i t h i u m content of a compound was determined by flame photometry. 

The l i t h i u m compounds prepared were hydrolysed by water and then b o i l e d 

w i t h concentrated n i t r i c a c i d t o destroy any organic matter. The 

s o l u t i o n was evaporated almost t o dryness, and the r e s u l t i n g white s o l i d 
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•dissolved i n d i s t i l l e d water and made up t o 250 ml. This s o l u t i o n was 

in t r o d u c e d i n t o a non-luminous flame and the i n t e n s i t y of the l i g h t 

e m i t t e d was measured by means of a p h o t o e l e c t r i c c e l l attached t o a 

suspension galvanometer. This i n t e n s i t y was then compared w i t h t h a t 

e m i t t e d by a s e r i e s of standard l i t h i u m s o l u t i o n s . 

N i t r o g e n A n a l y s i s . 

N i t r o g e n was determined by the normal K j e l d a h l method. A sample 

was destroyed using concentrated s u l p h u r i c a c i d u n t i l a l l the n i t r o g e n 

v;as reduced t o ammonia. This vas then t r a n s f e r r e d t o a small Kjeldaihl 

f l a s k , made a l k a l i n e w i t h c a u s t i c soda and b o i l e d . The ammonia was 

steam d i s t i l l e d i n t o a f l a s k c o n t a i n i n g a known volume of standard a c i d . 

A f t e r h a l f the s o l u t i o n had been d i s t i l l e d the remaining a c i d was 

t i t r a t e d w i t h standard a l k a l i . 

Molecular Weights. 

Molecular weights were determined where possible c r y o s c o p i c a l l y 

i n benzene. The benzene, of a n a l y t i c a i l reagent p u r i t y , was d r i e d over 

sodium wire and c a l i b r a t e d ( i n respect of i t s f r e e z i n g p o i n t constant) 

using f r e s h l y sublimed biphenyl. The usual Beckmann apparatus was used, 

and since most of the compounds were a i r s e n s i t i v e , a slow current of 

dry n i t r o g e n was psissed through the apparatus during each determination. 

This d i d not cause a s i g n i f i c a n t l o s s of solvent by evaporation. 



-35 -

Preparation o f S t a r t i n g M a t e r i a l s , 

M e t h y l - l i t hium. 

M e t h y l - l i t h i u m was prepared by the r e a c t i o n o f methyl c h l o r i d e 

w i t h l i t h i u m metal, i n ether as solvent. The methyl c h l o r i d e was 

supplied under pressure i n a c y l i n d e r . The apparatus consisted of a 

one l i t r e three^necked f l a s k f i t t e d w i t h a s t i r r e r , a c o l d f i n g e r 

condenser maintained a t -78°, and an i n l e t f o r the methyl c h l o r i d e . 

A f l o w meter was used t o t e l l approximately the r a t e o f passage of the 

methyl c h l o r i d e . The exact amount used was determined by weighing the 

c y l i n d e r • before and a f t e r the experiment. The l i t h i u m was supplied i n 

a wax which was washed o f f w i t h ether before use. The apparatus was 

purged w i t h pure n i t r o g e n before s t a r t i n g the preparation. 

L i t h i u m {M^. g, ) and ether (50G c,c, ) were placed i n the r e a c t i o n 

f l a s k . Methyl c h l o r i d e (50 g,) was passed i n t o the r e a c t i o n mixture 

over a p e r i o d of 2 hours. The r e a c t i o n s t a r t e d immediately. When the 

r e a c t i o n was conplete, t h e s o l u t i o n o f m e t h y l - l i t h i u m was f i l t e r e d from 

l i t h i u m c h l o r i d e and tmreacted l i t h i u m metal, and stored as an ether 

s o l u t i o n . A n a l y s i s , by a c i d h y d r o l y s i s w i t h subsequent measurement o f 

the methane evolved, found i t t o be 1 •2M i n d i c a t i n g a y i e l d o f 6C^, 

Diphenylmeroury, 

Diphenylmercury was prepared i n 90-95?^ y i e l d by the reduction of 
111 

phenyl mercuric c h l o r i d e w i t h hydrazine hydrate i n b o i l i n g methanol, 

f o l l o w e d by c r y s t a l l i s a t i o n and sublimation o f the product (as colourless 
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needles* m.p. 123° - 12^°). As diphenylmercury i s somewhat se n s i t i v e t o 
l i g h t , t u r n i n g yellow when exposed t o l i g h t f o r several days, i t was 
stored i n the dark. 

Diphenylzinc* 

This compound was prepared by a m e t a l - a r y l exchange r e a c t i o n 
112 

between zinc and diphenylmercury. 

Diphenylmercury (15 g. ) and zinc dust (12 g.) were placed i n 

a two-necked f l a s k w i t h d r y xylene (75 c.c. ) , and the f l a s k purged w i t h 

n i t r o g e n . The f l a s k was f i t t e d w i t h a n i t r o g e n i n l e t , and an o u t l e t 

on the top o f the condenser. The xylene was r e f l u x e d f o r several hours 

then f i l t e r e d hot under a n i t r o g e n atmosphere. The colourless c r y s t a l s 

o f d iphenylzinc were f i l t e r e d and washed several times w i t h hexane 

before being pumped dry under vacuum. The y i e l d of diphenylzinc was 

5 g. (80?S), and the m.pt. 105-106° ( L i t . , 105-106°), 
Trimetbylborane. 

Trimethylborane was prepared by the r e a c t i o n of methylmagnesium 

bromide w i t h boron t r i f l u o r i d e d i e t h y l ether complex* 

The apparatus consisted o f a one l i t r e three-necked f l a s k f i t t e d 

w i t h a s t i r r e r , a p r e s s u r e - e q u i l i b r a t e d dropping funnel and a c o l d 

f i n g e r condenser. The o u t l e t o f the condenser was connected t o two 

t r a p s , t h e f i r s t a t -78°; the second a t -196°. The apparatus was 
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purged w i t h n i t r o g e n before the prepar a t i o n began. 

The G-rignard reagent MeMgBr was prepared from magnesium (9*0 g.) 

and methyl bromide (35 g« ) i n ether (250 ml. ). Boron t r i f l u o r i d e ether 

conplex (30 g. ) was added dropwise w i t h s t i r r i n g . The t r i m e t h y l borane 

formed, c o l l e c t e d i n the l i q u i d a i r t r a p . The product was f r a c t i o n a t e d 

through a t r a p a t -110° and c o l l e c t e d i n a t r a p a t -135°» The y i e l d o f 

tri m e t h y l b o r a n e was 2*5 l i t r e s (90%), 

Dimethylaluminium hydride. 

This was prepared by the r e a c t i o n o f l i t h i u m aluminium hydride w i t h 

trimethylaluminium. ̂  ̂  ̂  

L i t h i u m aluminium hydride (10 g . ) , dry cyclohexane (50 ml.) and 

trim e t h y l a l u m i n i u m (10 g. ) were placed i n a t h i c k - w a l l e d Pyrex tube 

f i l l e d w i t h n i t r o g e n . The tube was sealed o f f and heated f o r 2?(. hours 

a t 70°. The tube was opened and the cyclohexane and dimethylaluminium 

hydride d i s t i l l e d under vacuum, i n t o a two-necked f l a s k . The concentration 

o f t h e s o l u t i o n was determined by hyd r o l y s i n g a known volume o f s o l u t i o n 

and measuring the mixture o f hydrogen and methane evolved. The y i e l d 

o f dimethylalumi.ni.um hydride was 7 g« (^5%)* 

Boron t r i - i o d i d e . 

T his was prepared by the r e a c t i o n o f l i t h i u m borohydride w i t h 

xodine. 
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I n an atmosphere of n i t r o g e n , l i t h i u m borohydride (6 g.) was 
added slowly t o i o d i n e (90 g.) i n hexane (200 c . c ) . The mixture was 
s t i r r e d f o r 2k hours, a f t e r which time a colourless s o l u t i o n was 
obtained. This s o l u t i o n was f i l t e r e d and a f t e r some of the solvent had 
been removed by d i s t i l l a t i o n boron t r i - i o d i d e m.p. ^9° ( l i t . ^9°) 
c r y s t a l l i s e d . The y i e l d of boron t r i - i o d i d e was l8 g. (52^). As boron 
t r i - i o d i d e i s s e n s i t i v e t o l i g h t , i t was st o r e d i n the dark. 

115 

Diphenylketimine. 

Phenyl cyanide (51 g.) v/as added w i t h s t i r r i n g t o phenyl magnesium 

bromide (90 g.) i n ether (800 m l . ) . The s o l u t i o n was hydrolysed using 

methanol and v i g o r o u s l y s t i r r e d f o r e i g h t hours. A f t e r f i l t r a t i o n the 

excess methanol and ether were removed by d i s t i l l a t i o n a t atmospheric 

pressure l e a v i n g impure diphenylketimine. This was p u r i f i e d by vacuum 

d i s t i l l a t i o n (b.p. 90-95°X n™*)' The y i e l d was 70 g. (77^). 

Acetoxime-o-methyl ether. 

Acetoxime (100 g.) was dissolved i n a s o l u t i o n of sodium hydroxide 

(220 g.) i n water (750 c . c ) , and methyl sulphate (252 g.) ^̂ fas added 

\d.th s t i r r i n g during kO minutes w i t h occasional water c o o l i n g . S t i r r i n g 

was continued f o r a f u r t h e r 30 minutes a f t e r which the upper l a y e r was 

separated, d r i e d x-dth anhydrous magnesium sulphate and f i n a l l y 

f r a c t i o n a t e d through a 10 i n c h column packed w i t h glass h e l i c e s . The 

y i e l d of acetoxime-o-raethyl ether b.p. 72-73°/760 mm. was hO g. (35%)• 
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117 Trisdimethylaminoborane, was prepared from the d i r e c t r e a c t i o n 
between dimethylamine and boron t r i c h l o r i d e i n hexane a t -78°, The 
s o l u t i o n was f i l t e r e d t o remove the amine hydrochloride and t r i s ­
dime thy laminoborane p u r i f i e d by f r a c t i o n a l d i s t i l l a t i o n . 

. Pyridine-2-aldoxime was p u r i f i e d by r e c r y s t a l l i s a t i o n from benzene 

whereas benzaldoxime was p u r i f i e d by d i s t i l l a t i o n . 

Dimethylzinc was prepared by Dr. D. RLdley by the r e a c t i o n of 

zinc w i t h dimethyImercury and was p u r i f i e d by f r a c t i o n s i l d i s t i l l a t i o n . 

The trimethylaluminium, t r i e t h y l a l u m i n i u m and d i e t h y l z i n c were 

g i f t s from E t h y l Corporation and Borax Consolidated L t d . They were 

p u r i f i e d by d i s t i l l a t i o n and s t o r e d under n i t r o g e n i n two-necked f l a s k s 

f i t t e d w i t h t e f l o n sleeves. 

T r i m e t h y l and t r i e t h y l g a l l i u m were prepared (by Dr. J.R. Jennings) 

by the r e a c t i o n of g a l l i u m w i t h the corresponding d i a l k y l mercury 

compound and p u r i f i e d by f r a c t i o n a l d i s t i l l a t i o n . 

Trimethylindium was prepared by Dr. O.T. Beachley from the r e a c t i o n 

of an indium-mcignesium a l l o y w i t h methylchloride i n ether. The ether 

was removed by f r a c t i o n a l d i s t i l l a t i o n w i t h benzene, and the t r i m e t h y l ­

indium was stored i n ampoules. 

Diborane had been prepared by the r e a c t i o n of l i t h i u m aluminium 

hydride w i t h boron t r i f l u o r i d e d i e t h y l ether complex, and was p u i a f i e d 

by f r a c t i o n a l d i s t i l l a t i o n . 
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Phenyl and a l k y l cyanides were p u r i f i e d by f r a c t i o n a l d i s t i l l a t i o n 

from phosphorus pentoxide. 

The solvents v/hich were used were d r i e d and stored over sodium 

w i r e , or i n the case of ethers d i s t i l l e d from l i t h i u m auLuminium hydride 

and then stored over sodium. Pyridine cannot be p u r i f i e d by t h i s method 

and was r e f l u x e d w i t h s o l i d caustic soda, and, a f t e r f r a c t i o n a t i n g 

through an e f f i c i e n t column, stored over sodium hydroxide p e l l e t s . 
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Reactions of diphenylketimine w i t h a l k y l z i n c compounds. 

Reaction of diphenylketimine w i t h dimethylzinc. 

Dimethylzinc (1»06 g., 11»1 m.moles) was condensed on to diphenyl­

ketimine (l»6 g., 9*1 m.moles) a t -196° i n a sealed tube, and warmed 

t o 30°. Methane (0»l6 g., 8»8 m.moles) was evolved, i d e n t i f i e d by i t s 

i n f r a r e d spectrum, l e a v i n g a yellow s o l i d which was p u r i f i e d by 

r e c r y s t a l l i s a t i o n from a toluene-hexane mixture. The s o l i d was methyl-

(a-phenylbenzylideneamino)zinc dimer, (Ph^CsN-ZnMe)^ decomp. 80°. 

(Found: Zn, 2^«9; hydrolysable methyl, 5*70^; M, 501. ^28\6^^^2 

r e q u i r e s Zn, 25*1; hydrolysable methyl, 5*76^; M, 520). 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l m u l l contained 

bands a t 1311m, 1280m, 1265m, 1245rn, 1l90vw, 1178w, 1151m, 107^m, 1028m, 

1000m, 969m, 9^2s, 917m, 906m, 885sh, 8̂ 3w, 78ls, 773sh, 725m, 697vs, 

658s, 622w, 5̂ 2m, 520w, 505vw, ̂ 56w and kk9vi cm. 

Reaction of diphenylketimine w i t h d i e t h y l z i n c . 

D i e t h y l z i n c (l»^ g., 12 m.moles) was condensed on to diphenyl-

ketiraine (2«17g. 12 m.moles) a t -196° i n a sealed tube and v/armed t o 

70°. Ethane (0«29 g., 9*6 m.moles) was evolved, l e a v i n g aninvolatiie yellow 

s o l i d . A f t e r p u r i f i c a t i o n by r e c r y s t a l l i s a t i o n from a toluene-hexane 

mix t u r e , the pale yellow s o l i d was i d e n t i f i e d as ethyl-(a-phenylbenzyl-

idenearaino)zinc dimer, (Ph2C=N.ZnEt)2, decomp. 85°, (Found: Zn, 23'4; 

hydrolysable e t h y l 10.5?̂ ; M, 5^9. C^H^Zn2N2 requires Zn, 23»8; 
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hydrolysable e t h y l 10.6%; M, 55O). 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l mull contained 

bands a t l6l1vs, 1597s, 1575m, l493w, l445s, I366ra, 13li«i, 1284m, 

1263m, 1247sh, 1193m, 1179m, 1l60ra, 1101m, I062s, 1029m, lOOIw, 971vw, 

944m, 908w, 892m, 846vw, 787m, 778m, 758w, 700s, 674w, 663m, 622m, 

604w, 52IW and 505w cm."'' 

Reaction of diphenylketimine w i t h diphenylzinc. 

Diphenylketimine (0*9 g., 5 m.moles) i n toluene (10 c.c.) was added 

t o diphenylzinc (l«1 g., 5 m.moles) i n toluene i n one limb of a double 

Schlenk tube. The s o l u t i o n was warmed t o 40°, On removal of toluene 

a white s o l i d phenyl-(a-phenylbenzylideneamino)zinc dimer, (Ph^CsN.ZnPh)^, 

m.pt. 132°crystallised [Found: Zn, 20*2; C, 69'0; H, 5-06?̂ ; M, 651. 

C^gH^Zn^N^ re q u i r e s Zn, 20*3; C, 70*8; H, 4.66%; M, 644]. 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l mull contained 

bands a t l607vs, 1567s, 154lsh, l451vs, 1368ra, 1307vw, 1259w, 1242m, 

1l90ra, II76W, 1157m, 1070m, 1029m, lOOOw, 9709vw, 944m, 930w, 909m, 

886m, 846w, 787m, 766m, 725m, 697VS, 676m, 662m, 642m and 621m cm."'' 

Thermal, decomposition of phenyl-(a-phenylbenzylidenamino)zinc. 

A sample of phenyl-(a-phenylbenzylideneamino)zinc (2 g., 5 m.moles) 

was di s s o l v e d i n toluene (30 c.c.) and heated t o 80° w i t h s t i r r i n g . A 

white s o l i d p r e c i p i t a t e d from the s o l u t i o n . The s o l i d was found t o be 

bis d i p h e n y l k e t i m i n o z i n c , {'Ph^C=N)^n, m.pt. 260°. decomp. (Found: 
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Zn, 15«2; C, 73-1; H, h'k^%^, C^gH^QZnN requ i r e s Zn, 15'4; C, 73'^; 

H, 4.709^). 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l mull contained 

bands a t l600vs, 1575s, 1560sh, lif49vs, l425m, 1368m, 131%, 1287ra, 

1265m, 1248ra, I19OW, 1153w, 1076m, 1071sh, I058w, 102%, lOOlm, 999w, 

972w, 947m, 926w, 919in, 886w, 850m, 789m, 776m, 725s, VOkvs, 672m, 

667s, 62IW, 5^1ni, 529m, ̂ 59m and 439m cm. 

Reaction between methyl-(a-phenylbenzylideneamino)zinc and p y r i d i n e . 

(a) With an excess. 

When excess dry p y r i d i n e (2*4 g., 30 m.moles) was added t o methyl-

(a-phenylbenzylideneamino)zinc (2«6 g., 10 m.moles) i n benzene (10 c.c.) 

a deep yellow colour developed. A d d i t i o n of hexane caused the 

c r y s t a l l i s a t i o n of methyl-(a-phenylbenzylideneamino)zinc b i s - p y r i d i n e , 

Mepy22nNCPh2, m.p. 139°, which was r e c r y s t a l l i s e d from a benzene-hexane 

mix t u r e . [Found: Zn, 15*5; hydrolysable methyl, 3'5%', m, k28, 

C^^H^y^^n r e q u i r e s Zn, 15*6; hydrolysable methyl 3*69»; M, 4l8.] 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l mull contained 

bands a t l6l3vs, l603s, 1577m, l466s, 1370m, 1312w, 1285m, 1258m, I2l8w, 

1193W, ll79w, 1157W, 1139m, I075sh, 1071m, 1039m, 1031m, lOlOw, I007w, 

9/f3m, 908m, 888m, 787sh, 78ls, 758m, 750m, 698vs, 675w, 667w, 657m, 

622m, 517m, 503m and kk3m cm. 

(b) With 1 mol. p y r i d i n e . 

R e p e t i t i o n of the above experiment using 1 mol. of py r i d i n e per 
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mol. of N-methylzinc diphenylketimine i n benzene gave on a d d i t i o n of 

hexane a p r e c i p i t a t e of the adduct Ph2C:NZnMe,2py, m.p. 139°, vrith an 

i d e n t i c a l i n f r a r e d spectrum t o t h a t j u s t described. 

Reaction of phenyl cyanide w i t h d i e t h y l z i n c . 

A mixture o f d i e t h y l z i n c (l«2 g., 10 m.mole) and phenyl cyanide 

(1*0 g., 10 m.mole) which was l i q u i d a t l8° and which could be made 

from the components without any apparent e v o l u t i o n of heat, had ^ 

the i n f r a r e d spectrum a t the same frequency (2229 cm. ) as phenyl 

cyanide i t s e l f . The mixture turned red v/hen heated t o l60°, and on 

c o o l i n g deposited c r y s t a l s which a f t e r r e c r y s t a l l i z a t i o n from hot 

benzene were i d e n t i f i e d as 2 , 4 , 6 - t r i p h e n y l t r i a z i n e (PhCN)^ m.p. 234° 

( l i t . , 232). (Found: 0, 80.3; H, 4*6; N, 15*2%. Gale, f o r 

C^^H^^^: C, 81-6; H, 4-9; N, 13-59̂ ) • 

Reaction of phenyl cyanide w i t h diphenylzinc. 

Phenyl cyanide (1*0 g., 10 m.mole) was added by syringe t o a 

suspension of diphenylzinc (2*2 g., 10 m.raole) i n toluene (20 c.c.) a t 

-78°i The mixture v/as warmed t o 20°, the s o l u t i o n was f i l t e r e d and 

toluene was removed under vacuum. The viscous l i q u i d residue wcis 

i d e n t i f i e d as the adduct, PhCN,ZnPh2 (Found: Zn, 20-0%; C^^H^^Zn 

re q u i r e s Zn, 20*3^). 

The i n f r a r e d spectrum recorded as a l i q u i d f i l m contained bands a t 

3077VS, 2994s, 2967sh, 2259vs, l600s, 1577m, 1562sh, l493s, l48ls. 
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I451s, I429vs, 1335w, 1294ffl, 1264sh, 1250s, 1195m, 1l8lm, ll67m, 1099m, 

1080vs, 1053m, 1029s, 1000m, 925m, 843w, 793m, 759vs, 728vs, 706vs, 

686vs, 667m, 625w;, 551vs and 443s cm. 

Thermal decomposition of PhCN.ZnPh^. A sample of the adduct PhCNjZnPh^ 

when h e l d a t 100° under n i t r o g e n gave a yellow glue which s o l i d i f i e d on 

c o o l i n g . The crude m a t e r i a l was washed several times i n toluene and the 

residue i d e n t i f i e d by i t s m.p. (260° decomp.) and i n f r a r e d spectrum as 

b i s ( d i p h e n y l k e t i m i n o ) z i n c . 

Mixtures of te r t i a r y - b u t y l cyanide with diethylzinc, dimethylzinc and 

diphenylzinc. 

Diethylzinc (1*2 g., 10 m.moles) and t-butyl cyanide (0«8 g., 

10 m.raole) were heated together at l60°. Ethylene (0-028 g., 1 m.mole) 

was evolved and i d e n t i f i e d by i t s infraired spectrum, and most of the 

t-butyl cyanide (0«76 g., 9*5 m.mole) was recovered. The residue was 

a small quantity of brown glue. No reaction was observed v;hen equimolar 

mixtures of Et^Zn and Bu^CN were heated i n boiling toluene or t e t r a -

hydrofuran for 3 or 4 days. 

No reaction occurred between Bu^CN and either Me2Zn or Ph^Zn when 

mixtures were subjected to similar conditions to those used with Et^Zn. 

The infrared spectra of the mixtures Bu^CN + R^Zn (R = Me, E t or Ph) a l l 

had •the same frequency (2235 cm. ) as t-butyl cyanide i t s e l f . 
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Reactions of ketimines vri.th m e t h y l - l i t h i u m 
Reaction of diphenylketimine w i t h m e t h y l - l i t h i u m . 

Diphenylketimine (0*9 g., 5 m.moles) i n d i e t h y l ether (10 c.c.) was 

added s l o w l y by syringe t o m e t h y l - l i t h i u m (0«1 g., 5 m.moles) i n d i e t h y l 

e t h e r (15 c c ) , i n a double Schlenk tube a t -78°. The s o l u t i o n 

developed a b r i g h t red colour and methane was evolved. Removal of the 

ether gave a yel l o w s o l i d which was p u r i f i e d by washing v/ith hot hexane 

and toluene. The yellow s o l i d was di p h e n y l k e t i m i n o l i t h i u m , Ph2C:NLi, 

ra.p. 260° w i t h decomposition. CFoxind: L i , 3*68; C , 8l«0; H, 3•0^%. 

C ^ ^ ^ Q N L I requires L i , 3'74; C , 83-4; H , 5»3^. 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l m u l l contained 

bands a t l620vs, 1596s, 1578s, l493s, 1374s, 13l4m, 1287w, 1242s, 1198w, 

1176m, 1157W, 1074m, 1030m, 1004w, 936ra, 922w, 903s, 900sh, 848vw, 

788s, 778s, 722m, 708vs, 703VS, 682m, 667m, 640vs, 623w, 603m, 518s, 

472ra, and 447w cm. The product was i n s o l u b l e i n hexane, benzene and 

toluene, and a f t e r i s o l a t i o n from ether would not red i s s o l v e . 

Reaction of d i p h e n y l k e t i m i n o l i t h i u m w i t h p y r i d i n e . 

A s o l u t i o n of p y r i d i n e (0'.4 g., 5 m.moles) i n d i e t h y l e t h e r (10 c.c.) 

was added by syringe t o a s o l u t i o n of di p h e n y l k e t i m i n o l i t h i u m (0«93 g., 

5 m.moles) i n d i e t h y l ether (25 c . c ) . On removal of some of the ether, 

deep red c r y s t a l s of diphenylketimino^-ithium p y r i d i n e (Ph2C:NLipy)^ 

m.p. 108-110° appeared. [Found: L i , 2-70; C , 81-5; H, 5'45%. 
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C^gH^^^Li req u i r e s L i , 2.64; G, 81.5; H, 5'66$^]. 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l mull contained 

bands a t l6l6vs, l600s, 1578m, l488m, l466s, 1304w, 12l8m, 1190vw, 

1174w, 1l49w, 1072m, I034ra, I027w, I005w, 930m, 893s, 846w, 789m, 782m, 

775sh, 769s, 751m, 700vs, 675sh, 667m, 633s, 621m, 592w and 467s cm."'' 
The adduct dissolved i n benzene but a f t e r a short time i t d i s -

p r o p o r t i o n a t e d t o give p y r i d i n e , i d e n t i f i e d by i t s u l t r a v i o l e t spectrum, 

and a yellov/ p r e c i p i t a t e of a-phenylbenzylideneaminolithium i d e n t i f i e d 

by i t s i n f r a r e d spectrum. 

Reaction of d i p h e n y l k e t i m i n o l i t h i u m w i t h t e t r a h y d r o f u r a n . 

Tetrahydrofuran (0*7 g., 10 m.moles) i n d i e t h y l ether (10 c.c.) wsis 

added by syringe t o d i p h e n y l k e t i m i n o l i t h i u m (l«9 g., 10 m.moles) i n 

d i e t h y l ether (20 c . c ) . A f t e r removal of most of the solvent, hexane 

was added which caused the c r y s t a l l i s a t i o n of the orange adduct 

(Ph5C=NLi.THF) , m.p. 127? [Found: G, 77*4; H, 7*35; L i , 2'(>3%' 

C^^H^gNOLi re q u i r e s C, 78-7; H, 6.95; L i , 2.70%]. 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l mull contained 

bands a t l6l8vs, 1595m, 1575ra, 1309w, 1284w, 1229m, 1175w, 1157w, 1073m, 

1043m, 1028w, lOOOw, 97IVW, 978m, 901m, 855w, 786m, 769s, 720m, 700vs, 
—1 

677m, 638VS, 620w, 595wj 542m and 468ra cm. The adduct, l i k e the 

p y r i d i n e adduct, dissolved i n benzene and a f t e r a short while d i s -

p r o p o r t i o n a t i o n occurred and the yellow s o l i d a-phenylbenzylideneamino-

l i t h i u m p r e c i p i t a t e d . 
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The r e a c t i o n of d i p h e n y l k e t i m i n o l i t h i u m w i t h 2,2*-bip3rridyl 
i n d i e t h y l ether gave a black s o l u t i o n . Removal of ether gave a black 
t a r s o l u b l e i n toluene. 

Reaction o f tetramethylguanidine w i t h methyl-lithixim. 

Tetramethylguanidine (1*2 g., 10 m.moles) was dissolved i n d i e t h y l 

ether (10 c.c.) and cooled t o -78°. M e t h y l - l i t h i u m (0*22- g., 10 m.moles) 

i n d i e t h y l ether (30 c.c.) was added by syringe w i t h s t i r r i n g . On 

warming t o ca. -4.0° methane was evolved and a white s o l i d slowly 

deposited which was p u r i f i e d by r e c r y s t a l l i s a t i o n from toluene. The 

s o l i d was N-lithio-N',N',N" ,N"-tetramethylguanidine dimer [{}ie^)^Cimj±]^t 

decon?). 120°. [Found: C, 47'7; H, 9*28; N, 34*5; L i , 5*9^; M, 232. 

C ^ ^ 2 ^ j L i r e q u i r e s C, 49:6; H, 9*92; N, 34.7j li, 3'79fo; M, 242]. 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l l mull contained 

bands a t l632vs, 1508m, 1377m, 1285s, 1236m, 1212m, 1138m, 1096m, 1055vs, 

987m, 910m, 894sh, 76ls, 735w, 722w, 591s, 548s and 506m cm."'' 

Reactions o f N - l i t h i o - N * ,N* ,N" ,N"-tetramethylguanidine ?ra.th donor molecules. 

I n separate experiments p y r i d i n e , t e t r a h y d r o f u r a n and ethylene 

g l y c o l dimethyl ether (IO m.moles) were dissolved i n d i e t h y l ether 

(10 c.c.) and added t o N-lithio-N',N',N" ,N"-tetramethylguanidine 

(10 m.moles) i n d i e t h y l ether (30 c.c.). The ether was removed by 

vacuum d i s t i l l a t i o n and toluene (l0 c.c.) added. From hot toluene 

c o l o u r l e s s c r y s t a l s of N-lithio-N',N',N" ,N"-tetramethylguanidine were 
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obtained. No adducts were i s o l a t e d under the conditions t r i e d . With 
2 , 2 ' - b i p y r i d y l the s o l u t i o n f i r s t developed a red colour and a f t e r a few 
minutes, turned black. Removal of ether y i e l d e d a black t a r soluble i n 
toluene. 

Reaction of phenylcyanide w i t h m e t h y l - l i t h i u m . 

M e t h y l - l i t h i u m (0*22 g., 10 m.moles) i n d i e t h y l ether (30 c.c.) 

was slowly added by syringe t o phenylcyanide (I'O g., 10 m.moles) i n 

d i e t h y l ether (20 c.c.) cooled t o -78° i n one limb of a double Schlenk 

tube, the s o l u t i o n s being v i g o r o u s l y s t i r r e d . The s o l u t i o n on X'/arming 

t o room temperature developed a b r i g h t red colour. Removal of the ether 

y i e l d e d a yellow foam which a f t e r being washed w i t h b o i l i n g hexane and 

toluene and s t i r r e d v i g o r o u s l y gave a yellow pov/der. The s o l i d was 

a-raethyIbenzylideneaminolithium (Ph(Me)G:NLi) , m.p. 196°. [Found: 

G, 77'5; H, 5*98; L i , 5*55%. GgHgNLi requires G, 76.8; H, 6.40; 

L i , 5-60%.] 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l mull contained 

bands a t l629m, 1592m, 1565m, 1513s, l493s, 1351s, 1319s, 1300s, 1287s, 

1235m, 1185W, 117OW, I074ffl, 1029m, lOOOw, 980m, 917w, 885w/, 862m, 800m, 
—1 

775s, 752s, 717sh, 7OO sh, 625m, 588m and 513vw cm. 

The product was i n s o l u b l e i n hexane, benzene and toluene, and a f t e r 

i s o l a t i o n from ether would not r e d i s s o l v e . Under the same conditions 

used above, i t was found t h a t methyl and e t h y l l i t h i u m would not rea c t 

vri.th t - b u t y l cyanide. 
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Reactions of d i p h e n y l k e t i m i n o l i t h i u m w i t h boron h a l i d e s . 
Reaction of d i p h e n y l k e t i m i n o l i t h i u m w i t h boron t r i f l u o r i d e . 

Boron t r i f l u o r i d e d i e t h y l etherate ( 2 * 8 g., 2 0 m.moles) was 

slowly added by syringe t o a s o l u t i o n of diphe n y l k e t i r a i n o l i t h i u m 

( 3 * 7 S»» 2 0 m.moles) i n d i e t h y l ether (40 c.c.) cooled t o - 7 8 ° i n one 

limb of a double Schlenk tube, the s o l u t i o n being vigorously s t i r r e d . 

On warming t o room temperature the deep red s o l u t i o n became colourless 

and a yellow s o l i d p r e c i p i t a t e d . The ether was removed by vacuum 

d i s t i l l a t i o n l e a v i n g a yellow s o l i d i n s o l u b l e i n b o i l i n g toluene and 

which would not sublime a t temperatures up t o 2 6 0 ° a t 1 0 ^ m.m. pressure. 

Reaction of d i p h e n y l k e t i m i n o l i t h i u m w i t h boron t r i c h l o r i d e . 

Boron t r i c h l o r i d e ( 3 » 7 g., 2 0 m.mole) ;vas condensed onto a s o l u t i o n 

of d i p h e n y l k e t i m i n o l i t h i u m ( 3 * 7 g., 2 0 m.mole) i n d i e t h y l ether (40 c.c.) 

cooled t o - 1 8 0 ° i n one limb of a double Schlenk tube. The s o l u t i o n 

was allowed t o warm t o room temperature and s t i r r e d v igorously. The deep 

red s o l u t i o n became co l o u r l e s s and a yellow s o l i d p r e c i p i t a t e d . The 

ether was removed by vacuum d i s t i l l a t i o n and toluene ( 6 0 c.c.) v/as 

added. A f t e r r e f l u x i n g the toluene f o r f i v e minutes the s o l u t i o n was 

f i l t e r e d and allowed t o co o l . From the hot toluene s o l u t i o n colourless 

c r y s t a l s of diphenylketiminoboron d i c h l o r i d e Ph2C:NBCl2, m.p. 3 0 5 - 3 0 9 ° 

vri-th decomposition were obtained. [Found: C , 5 9 * 1 ; H, 3 * 9 6 ; C I , 2 4 « 5 ^ . 

C ^ ^ H ^ Q N B C I^ r e q u i r e s C , 5 9 - 5 ; H , 3 - 8 2 ; C I , 2 7 - 0 ? ^ ] . 
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The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l m u l l contained 

bands a t l6o8s, 1590vs, 1578s, l449s, 1335m, 1304m, 1272m, 1195w, 1172vw, 

1l6lvw, I076w, 1045m, 1021s, lOOOw, 935s, 898s, 870s, 862sh, 851m, 826s, 

779m, 766w, 712m, 703m, 685ra, 666vw, 635vw, 6l5vw, 56ls, 532m and 

488w cm."'' 

The compound was sta b l e t o a i r and water. 

Reaction of d i p h e n y l k e t i m i n o l i t h i u m w i t h boron t r i b r o m i d e . 

D i p h e n y l k e t i r a i n o l i t h i u m (3*7 g., 20 ra.moles) i n d i e t h y l ether 

(40 c.c.) was cooled t o -l80° i n one limb of a double Schlenk tube. Boron 

t r i b r o m i d e (5*0 g., 20 m.moles) was added by syringe and the mixture wsis 

allov/ed t o weirm t o room temperature w i t h constant s t i r r i n g . At ca. -70° 

the deep r e d s o l u t i o n became colourless and a yellow s o l i d p r e c i p i t a t e d . 

The eth e r was removed by vacuum d i s t i l l a t i o n and the r e s u l t a n t mixture 

was r e f l u x e d w i t h toluene (15 c.c.) f o r two minutes and f i l t e r e d . On 

co o l i n g t o room temperature the toluene s o l u t i o n y i e l d e d colourless 

c r y s t a l s o f diphenylketiminoboron dibromide, m.p. 173° w i t h 

decomposition. [Found: C, 43*6; H, 3.7; Br,y^»9 %i M ( c r y o s c o p i c a l l y 

i n benzene)690.C2gH2QN2B2Br^ re q u i r e s : 0,44*4; H, 2.85; Br,2,.5*6%; 

M, 702]. 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l mull contained 

bands a t l6o8sh, 1586vs, 1567sh, 1560vs, 1335s, 1321s, 1299m, 1276m, 

1205m, 1193m, 1163s, ll47s, ii09ra, 1079W, 1050m, 1032w, lOIOvs, 98OW, 

966sh, 926s, 894ffl, 820m, 794m, 780s, 7̂ 6m, 730m, 712m, 699vs, 680m, 667w, 
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64lni, 6l7w, 595m, 562s and 536m cm. The product was stable t o a i r 
and water. 

Reaction of d i p h e n y l k e t i m i n o l i t h i u m vri.th boron t r i - i o d i d e . 

D i p h e n y l k e t i m i n o l i t h i u m (5»7 g,, 20 m,moles) i n d i e t h y l ether 

ikO CO.) was cooled t o -l80° i n one limb of a double Schlenk tube. 

Boron t r i - i o d i d e (7»8 g., 20 m.mole) i n toluene (10 c.c.) was added by 

syringe and the mixture was allowed t o warm t o room temperature v/ith 

vigorous s t i r r i n g . The deep red s o l u t i o n became colourless and a yellow 

s o l i d p r e c i p i t a t e d . The ether was removed by vacuum d i s t i l l a t i o n and 

then a f u r t h e r 10 c.c, of toluene was added. The toluene was v/armed 

t o 60° and f i l t e r e d . A d d i t i o n of hexane caused the p r e c i p i t a t i o n of 

diphenylketiminoboron d i - i o d i d e , Ph^CiNBI^ decomp, 200°. [Found: 

0,27*5; H, 2*31; 1,57*5^; M ( c r y o s c o p i c a l l y i n benzene), . 871. 

^26^20^2^if 27'8; H, 2-25; I , 57-1?̂ ; M, 890]. 

The i n f r a r e d spectriim of the s o l i d recorded as a n u j o l m u l l contained 

bands a t l602s, 156^, lH5vs, I30W, 12l8m, 1151m, 1112vs, 1087sh, 

IO78VS, 1070sh, 1037W, 1015m, 1000s, 929m, 898m, 865m, 847w, 789m, 
—1 

763ra, 725m, 695VS, 631s and 550 cm. 
The product was r a p i d l y decomposed by water and moist a i r . 

Reaction between d i p h e n y l k e t i m i n o l i t h i u m and boron t r i b r o m i d e . 

Boron t r i b r o m i d e (0*8 g., 3«2 m.moles) i n toluene (10 c . c ) was 

added by syringe t o a s o l u t i o n of di p h e n y l k e t i m i n o l i t h i u m 
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(1«9 g., 10 m.moles) i n d i e t h y l ether c . c ) , pre v i o u s l y cooled t o 
-78°, i n one limb of a double Schlenk tube, the s o l u t i o n being 
v i g o r o u s l y s t i r r e d t o promote mixing. As the s o l u t i o n warmed t o room 
temperature the deep red s o l u t i o n .turned s l i g h t l y yellow and l i t h i u m 
bromide p r e c i p i t a t e d . The ether was removed by vacuum d i s t i l l a t i o n and 
hexane (30 c . c ) and toluene (5 c,c.) were added. A f t e r the s o l u t i o n 
was f i l t e r e d from l i t h i u m bromide and cooled t o -78°, t r i s - d i p h e n y l -
k e t i m i n o borane c r y s t a l l i s e d . At room temperature i t i s a wax, 
CFound: C, 81.7; H, 6.04; N, 7*5^. C^^H^N^ requires C, 8k'9; 
H, N, 7'6?^]. 

The i n f r a r e d spectriim of the m a t e r i a l recorded as a l i q u i d f i l m contained 

bands a t 3067s, 3030s, 2963m, 2955s, 2865m, l667vs, l60ifw, 1585m, 

l497m, 1451s, 1358m, 1295s, 1258sh, 124lvs, 1202s, 1l83s, 1l49m, 1130w, 

1090VS, 1047m, 1009m, 979ra, 967vw, 952vw, 917s, 892s, 876m, 829w, 

775s, 750m, 74lm, 702s, 695s, 680vs, 658m, 647m, 638m, 6l2s, 6o6m, 600sh, 

568m and 557m cm. 

A mass spectrum of the compound gave a strong peak a t 18O i . e . Ph2C:N 

and peaks r e s u l t i n g from the fragmentation of t h i s group. 

Reaction between tris-diphenylketiminoborane and boron t r i f l u o r i d e . 

Boron t r i f l u o r i d e d i e t h y l etherate (0*95 g., 6 m.moles) v/as 

added t o a s o l u t i o n of tris-diphenylketiminoborane ( l ' 8 4 g., 3 m.moles) 

i n toluene (20 c . c ) a t room temperature i n one limb of a double 

Schlenk tube. No r e a c t i o n occurred. The s o l u t i o n was v/arraed t o 70° 



w i t h vigorous s t i r r i n g and a white s o l i d of diphenylketiminoboron 

d i f l u o r i d e Ph^CcNBF^, m.p. i S t " s l o w l y p r e c i p i t a t e d . [Found: 0,66*9; 

H, f 3 8 ; F, 16'8^. C^^I^QNBF^ r e q u i r e s C, 68*1 ; H, f 3 7 ; F, l 6 - 6 ^ ] . 
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Reactions of diphenylketimine and BX^ compounds. 

Reaction between diphenylketimine and diborane, 

Diborane (0'05g., 1«8 m,moles) was condensed on t o diphenyl­

ketimine (0«6 g,, 3*3 m,moles) i n hexane (15 c c ) at -196° i n a sealed 

tube and warmed t o room temperature w i t h shaking, A white s o l i d 

p r e c i p i t a t e d and hydrogen (0-0008 g,, 0*4 m,moles) was evolved. The 

s o l i d adduct, Ph^CtNHjBH^ decomp. ca. 95°, was p u r i f i e d by v/ashing v/ith 

toluene. [Found: C, 81*6; H, 7.53; B, 5.5?^, Ĝ Ĥ̂ N̂B requires 

C, 80.0; H, 7*2; B, 5-6^]. 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l mull contained 

bands a t 3257m, 24l0m, 2288m, 2252m, l620s, l603sh, -1582m, l499s, 13l4ffl, 

1289sh, 1280s, 1193s, 1188s, 1176s, 1l48vB, 1085m, I066w, 1047w, 1038m, 

1007m, 972s, 933m, 894ra, 858m, 850m, 824w, 788s, 752s, 736s, 721m, 700vs, 

696sh, 667w, 630ra, 6l7w, 602w, 56lw, 546m and 448m cm. 

The adduct was i n s o l u b l e i n hexane, benzene and toluene and reacted 

w i t h acetone and water. 

Thermal decomposition of Ph^CiNHjBH . A sample of the adduct (3*9 g., 

20 m.moles) when heated a t 120° i n a sealed tube f o r two hours formed 

hydrogen (0-03 g., 15 m.moles) and N-tri-diphenylmethylborazole 

(Ph2CHNBH)^ ra.p. 104°, i s o l a t e d as colourless c r y s t a l s a f t e r r e -

c r y s t a l l i s a t i o n from a toluene-hexane mixture. [Found: C, 8l»6; 

H, 6.85; N, 7.04^. C^^^^ r e q u i r e s C, 80-8; H, 6.22; N, 7«2^]. 
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Parent peak i n mass spectrum a t 579*3201, c a l c u l a t e d 579'3l88. 
The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l m u l l contained 
bands a t 2525m, 2433m, 2kOkm, l495s, 1355vs, 1335s, 1312m, 1263m, 
1176s, 1170s, ll i f 9 s , 1l42sh, 108lm, 1063s, 1032s, I003w, 975w, 962w, 
952w, 923w, 909m, 900s, 826w, 760m, 735s, 698vs, 667w, 663w, 638v;,;, 
6l7vw, 6l1m and 585s cm. 

The borazine when heated t o 130° f o r kS hours formed diphenylmethane 

b.p, 80° a t 10 ̂  mm. i d e n t i f i e d by i t s . i n f r a r e d and proton magnetic resonance 

spectrum. 

Reaction of diphenylketimine m.th trimethylborane, 

Trimethylborane (0'62 g., 11 m.mole) was condensed on t o diphenyl­

ketimine (2'06 g., 11 m.mole) i n 20 ml. pentane a t -196°. The mixture 

was allowed t o warm t o room temperature when the adduct Ph^CsNH.BMe^ 

p r e c i p i t a t e d as a white s o l i d which was characterised by i t s i n f r a r e d 

spectrum. 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l m u l l contained 

bands a t l604vs, 1564s, 1543ms, 1319m, 1297s, 1276s, 1284s, 1203m, 

1193m, 1157m, l l l l w , 1081s, 1055s, 1031m, 1026m, lOOOra, 998m, 986m, 

96OW, 951m, 922w, 897s, 855VW, 849vw, 79lw, 782s, 769m, 757m, 733w, 

727w, 694vs, 662vw, 623m, 607vw, 570 vw and 535 cm. 

Trimethylborane could be pumped r e a d i l y from the adduct a t room 

temperature, the d i s s o c i a t i o n pressure a t 23*5° was 28 m.m. Vapour 
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pressures i n the temperature range 0 44° can be represented t o 

w i t h i n 1 mm. by the equation log^Qp(mm.) = 4.220 - ^^'^ . 

Thermal decomposition of PhgC=NH.BMe^. Triraethylborane (O.56 g., 

10 m.raole) was condensed on t o diphenylketimine (I.81 g., 10 m.mole) a t 

-196° i n an evacuated tube, and the mixture was then held a t l60° f o r 

24 h r . Methane (0.019 g., 1*l6 m.mole) was recovered from the tube and 

i d e n t i f i e d by i t s i n f r a r e d spectrum, together w i t h some unchanged 

trimethylborane (O.32 g., 5*7 m.mole). The residue, a brown, s o l i d , was 

d i s s o l v e d i n hot benzene to give colourless c r y s t a l s of dimethyl-(a-

phenylbenzylideneamino)borane, Ph2C=NBMe2, m.p, 173° on c o o l i n g , 

[Found: B, 4-8; N, 6.3^, C^^^gBN requires B, 4*9; N, 6.3?^], 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l m u l l contained 

bands a t l662s, 1597w, 1580w, l488m, l439m, 1337m, 1295m, 1280s, 1166m, 

I152w, ll24w, mOw, 1087m, I074ffl, 1054s, 1024s, 1014s, 952m, 932w, 9lOw, 

897VW, 848w, 839w, 800m, 756ra, 74lm, 7 3 % , 717sh, 706s, 696m, 592m, and 
-1 

537m cm. 

Reaction of diphenylketimine w i t h t r i e t h y l b o r a n e . 

TriethyIborane (O.98 g,, 10.0 ra,mole) was condensed on t o diphenyl­

ketimine (1.81 g,, 10.0 m,mole) a t -196° i n an evacuated tube, which was 

sealed and held a t 155° f o r one week. The v o l a t i l e contents of the tube 

were then t r a n s f e r r e d t o a vacuum l i n e and i d e n t i f i e d by t h e i r i n f r a r e d 
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spectra as ethylene (O.I6 g., 5*8 m.mole) and t r i e t h y l b o r a n e (0«62 g., 
6«3 m.raole). The r e s i d u a l i n v o l a t i l e yellow s o l i d was dissolved i n 
hexane from which c r y s t a l s , m.p, 152-153*5°, separated on c o o l i n g which 
were i d e n t i f i e d as the ketimine Ph2C:NGHPh2. [Found: C, 89*4; H, 5^3; 
N, 4.5^. C^gH^^N requ i r e s C, 89*8; H, 6-0; N, 4.0^]. 
The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l m u l l contained 
bands a t l628vs,.1592s, 1570m, l488s, 11l6m, 1290sh, 1280s, 1250m, 1178m, 
1152m, 1073m, 1036ra, 1028s, 102lsh, 667w, 658m, 640m, 6l9m, 606m and 
594s cm,"'' 

Reaction of diphenylketimine w i t h triphenylborane, 

O?riphenylborane and diphenylketimine were recovered unchanged a f t e r 

being heated together t o l60° f o r several hours. No evidence of adduct 

fo r m a t i o n was found, but a f t e r several days' heating a t l60° a trace of 

benzene was detected i n the r e a c t i o n mixture, v;hich s t i l l , hov/ever, 

consisted e s s e n t i a l l y of the s t a r t i n g m a t e r i a l s . 

Reaction of diphenylketimine w i t h trimethoxyborane, 

Diphenylketimine (5*4 g., 30 m.moles) was placed i n a two-necked 

f l a s k f i t t e d w i t h a r e f l u x condenser and dropping f u n n e l , and warmed 

t o 70°. Trimethoxyborane (1*0 g., 10 m.moles) was added dropwise and 

the r e s u l t i n g mixture was r e f l u x e d f o r 4 hours. On removal of unreacted 

triraethoxyborane a brown l i q u i d remained';. on heating a t 100° a t 

lO"-^ ram. diphenylketimine (5 g., 27*6 m.moles) d i s t i l l e d and l e f t a 

small amount of an i n v o l a t i l e brown s o l i d which contained boron. 
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Reaction of diphenylketimine w i t h tris-dimethylaminoborane, 

Tris-dimethylaminoborane (1.4 g,, 10 m,moles) was placed i n a two-

necked f l a s k f i t t e d w i t h a r e f l u x condenser and diphenylketimine 

(5»4 g,, 30 m,moles) added. The mixture was s t i r r e d and heated t o 150° 

f o r 36 hours, Dimethylamine was given o f f i d e n t i f i e d by i t s i n f r a r e d 

spectrum and the s o l u t i o n turned dark brown. On d i s t i l l a t i o n the 

s o l u t i o n y i e l d e d tris-dimethylaminoborane (0.085 g,, O.57 m,moles) and 

diphenylketimine. The remaining dark brovm viscous l i q u i d wajs dissolved 

i n a toluene/hexane mixture, f i l t e r e d and pumped dry. The i n f r a r e d 

spectrum of the l i q u i d showed a strong C:N s t r e t c h i n g v i b r a t i o n a t 
—1 —1 

1667 cm, , however another was observed a t I603 cm, i , e . Pĥ C:!̂ !!. 

[Found: C, 78.5; H, 4.87; B, 2.29^. C^gH^N^ requires C, 84.9; 

H, 5'44; B, 2. 

Reaction of diphenylketimine w i t h boron t r i c h l o r i d e . 

Diphenylketimine ( l 4 g,, 77 m,moles) was dissolved i n hexane 

(200 c c ) and cooled t o - 7 8 ° , Boron t r i c h l o r i d e (1*4 g,, 13 m,moles) 

was passed through the hexane s o l u t i o n v j i t h vigorous s t i r r i n g , A white 

s o l i d , diphenylketimine hydrochloride, p r e c i p i t a t e d . The hexane wais 

removed by d i s t i l l a t i o n , T?he r e s i d u a l mixture was s t i r r e d w i t h benzene 

(20 c c ) and f i l t e r e d . Removal of the benzene by pixmping l e f t a viscous 

l i q u i d from which diphenylketimine d i s t i l l e d out at 100° a t 10 ̂  mm, 

pressure. The i n v o l a t i l e m a t e r i a l which remained contained boron and 

i t s i n f r a r e d spectrum showed two C:N s t r e t c h i n g v i b r a t i o n s a t I667 and 
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and 1603 cm. The m a t e r i a l was presumed t o be tr i s - d i p h e n y l k e t i m i n o -
borane contaminated w i t h diphenylketimine. 

Reaction of diphenylketimine w i t h boron t r i f l u o r i d e . 

Diphenylketimine (l»8 g., 10 m.moles) i n d i e t h y l ether (20 c . c ) 

was added t o boron t r i f l u o r i d e d i e t h y l ether complex ( l « 4 g,, 10 m.moles) 

i n d i e t h y l ether (20 c c ) i n one limb of a double Schlenk tube, the 

s o l u t i o n being v i g o r o u s l y s t i r r e d t o promote mixing, A white s o l i d , 

diphenylketimine boron t r i f l u o r i d e Ph2C:NH,BF^ p r e c i p i t a t e d immediately. 

The s o l i d » . p u r i f i e d by washing w i t h ether,began t o decompose a t 

ca. 180° and f i n a l l y l i q u e f i e d a t 207°. [Found: G, 62*8; H, 4.13; 

F, 24.3; N, 5*6^. G^yi^^NBF^ req u i r e s G, 62.6; H, 4*41; F, 22.9; 

N, 5'^6$^]. 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l m u l l contained 

bands a t l628vs, 1592s, 1572m, 1504m, 1330m, 1319m, 1282s, 1l90m, 

1l82ra, 1170s, 1l43s, 1121s, 1087s, 1070s, 1031m, 1001m, 978sh, 963s, 

935s, 915s, 899m, 851m, 794s, 769vw, 750m, 724m, 704s, 694m, 667w, 

655w, 6l1vw, 592s, 565vw and 551m cm. 

Reaction of diphenylketimine w i t h t r i m e t h y l g a l l i u m , 

T r i m e t h y l g a l l i u m (0.6 g,, 5 m,moles) was condensed on t o a 

s o l u t i o n of diphenylketimine (0*9 g., 5 m.moles) i n hexane (20 c.c.) 

at -196°. The mixture was allowed t o v;arm t o room temperature when the 
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adduct Ph2C:NH,GaMe^ p r e c i p i t a t e d as a white s o l i d , [Found: hydrolysable 
methyl 5*03^; M (cryoscopic i n benzene), 301, Ĉ Ĥ̂ QNGa requires 
hydrolysable methyl, 5.07^; M, 296,] 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l mull contained 

bands a t 3279m, l6o45, 1576s, l466sh, l451s, 1393s, 1379sh, 1326w, 

1295W, 1236m, 1186m, 1176m, I16IW, I089sh, 1079w, 1032w, I002w, 975w, 

935m, 9l4m, 875s, 792s, 763s, 737sh, 730s, 720sh, 698vs, 672w;, 635m, 

583VW, 54lvs and 510m, cm. 

Reaction of diphenylketimine w i t h t r i e t h y I g a l l i u m . 

T r i e t h y l g a l l i u m (0.8 g,, 5 m,mole) was condensed on to diphenyl­

ketimine (0 .9 g,, 5 m,mole) i n hexane (20 c c . ) at -196°in one limb of 

a double Schlenk tube. The mixture was allov/ed t o warm t o room 

temperature. The hexane was removed by vacuum d i s t i l l a t i o n y i e l d i n g the 

adduct Ph2C:NH,GaEt^, 

The i n f r a r e d spectrum recorded as a l i q u i d f i l m contained bands a t 

3268m, 1603s, 1574s, l495ra, 1451s, l420sh, I393s, 1374sh, 1325w, 1290w, 

1236s, 1183m, 1l6lm, I076ra, 1031m, lOOim, 990m, 952m, 932m, 906m, 875s, 

843w, 787s, 764s, 738w, 725m, 697vs, 64ls, 6l4sh and 526s cm,"^ 

Reaction of d i p h e n y l k e t i m i n o l i t h i u m and ga l l i u m t r i c h l o r i d e , 

a-Phenylbenzylidenearainolithium (3.7 g,, 20 m.moles) i n ether 

(40 c c ) v/as cooled t o - l80° i n one limb of a double Schlenk tube. 
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Gallium t r i c h l o r i d e (3*5 g., 20 m.moles) i n hexane (20 c.c.) and ether 
(3 c . c ) was added by syringe and the mixture was allov/ed t o v/arm t o 
room temperature w i t h constant s t i r r i n g . At ca. -80° the red. colour 
disappeared and a yellow s o l i d p r e c i p i t a t e d . At room temperature the 
ether was removed by vacuum d i s t i l l a t i o n and toluene (15 c . c ) wais 
added. A f t e r b o i l i n g the toluene f o r two minutes the mixture was 
f i l t e r e d and on co o l i n g colourless c r y s t a l s of a-phenylbenzylidene-
aminogallium d i c h l o r i d e , ra.p. 272° were formed, [Found: C, 49*5; 
H, 3.42; CI, 22.4^; E, c r y o s c o p i c a l l y i n benzene 601, ^^gH^QN^^a^Gl^ 
r e q u i r e s C, 48.6; H, 3.2O; C I , 21-8^; M, 642], 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l mull contained 

bands a t l605sh, 1591vs, 1577sh, 1566vs, 1326m, 1295ra, 1271m, 1250sh, 

II8IVW, 1l63w, 1076W, I029:v, 1001W, 975sh, 958m, 925sh, 919w, 886vw, 

925w, 790sh, 786s, 767m, 730sh, 708vs, 698vs, 680m, 667w, 621vw, 

553w and 463w cm. 
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Reactions of aldoximes \rith Group I I I a l k y I s . 

Reaction of pyridine-2-aldoxime w i t h trimethylborane. 

Trimethylborane (0»43 g., 7.6 m.moles) was condensed on t o 

pyridine-2-aldoxime (0.8 g., 6*6 m.moles) and toluene (20 c.c.) a t -196° 

i n a sealed tube. Upon warming t o 90° the pyridine-2-aldoxime dissolved 

t o give a c l e a r yellow s o l u t i o n and t h i s s o l u t i o n v/as l e f t a t 90° f o r 

sev e r a l days. Methane ( C I O g., 6.3 m.moles) i d e n t i f i e d by i t s 

i n f r a r e d spectrum was evolved and a f t e r concentration of the s o l u t i o n by 

removal of h a l f the solvent by vacuum d i s t i l l a t i o n small c r y s t a l s of 

o-dimethylboron pyridine-2-aldoxirae C^jNCR-.NOBMe^, m.p. 132° formed. 

[Found: B, 6.6; N, 17*0^; M (cryoscopic i n benzene), I69. 

GgH^^N^BO re q u i r e s B, 6*7; N, 17*:^; M, l 6 2 ] . 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l m u l l contained 

bands a t l 6 l 5 s , 1567W, 1534m, l 4 8 l s , 1330m, 1304vs, 1287vs, 1267m, 1253m, 

1232w, II89VW, 1l6lm, li34ffl, 1111s, 1094vs, 1081s, I062vs, 1044s, 1026s, 

985VS, 971s, 934s, 909m, 899VS, 868s, 820w, 79lm, 774s, 767vs, 750m, 

699s, 664vw, 570s, 546w, 489m and 447w cm."'' 

Reaction of pyridine-2-aldoxime vri.th trimethylaluminium, 

Trimethylalurainium (0*75 g., 10.4 m.moles) was added dropwise by 

syringe t o a suspension of pyridine-2-aldoxime (l»2 g., 10 m.moles) 

i n toluene (20 c . c ) a t -78° i n one limb of a double Schlenk tube. 
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On warming and s t i r r i n g the aldoxime dissolved t o give a yellow 
s o l u t i o n which became colo u r l e s s as methane was evolved. A f t e r 
c oncentration of the s o l u t i o n by removal of some of the solvent by 
vacuum d i s t i l l a t i o n , small c r y s t a l s of dimeric o-dimethylaluminium 
pyridine-2-aldoxime (C^^NCH:N0AlMe2)2 were formed. The product 
decomposes on heating u n t i l i t melts a t 115° w i t h f r o t h i n g , [Found: 
A l , 15*1; hydrolysable methyl, 17*2^; M (cryoscopic i n benzene), 348, 
^16^22^4^''"2°2 ^^^^^^^'s ''3'2; hydrolysable methyl, l6.95^; M, 356]. 
The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l m u l l contained 
bands a t l605s, 1582w, 1553m, 1353m, 1302w, 1267w, 1224m, 1l86m, 1152w, 
1115s, 1093VS, 1052w, 1028w, 1017m, 987W, 927m, 898m, 789m, 770s, 
746m, 725sh, 703vs, 671vs, 666vs, 639s, 562w, 539^*, 5l6m and 485m cm."'' 
The product d i d not form a methiodide. 

Reaction of pyridine-2-aldoxime w i t h triethylaJLuminium, 

Triet h y l a l u m i n i u m ( I ' l g,, 10 m.moles) was added dropwise by 

syringe t o a suspension of pyridine-2-aldoxime ( l » 2 g,, 10 m,moles) i n 

toluene (20 c c ) a t -78° i n one limb of a double Schlenk tube. On 

v/arming and s t i r r i n g the aldoxime dissolved t o give a yellov/ s o l u t i o n 

which became colo u r l e s s as ethane wsis evolved. The toluene was removed 

by vacuum d i s t i l l a t i o n t o give the viscous l i q u i d o-diethylaluminium 

pyridine-2-aldoxime (G^2^.NGH:NOAlEt2) The r a t i o of aluminium t o 

liydro l y s a b l e e t h y l was 1:1.98. 



- 65 -

The i n f r a r e d spectrum recorded as a l i q u i d f i l m contained bands a t : 

1:603s, 1572W, 152(.5m, 1351m, 1303w, 1251w, 1231m, 1187m, 1154w, 1 1 1 1 s , 

1 0 9 2 V S , IO48W, 1027w, 1015S, 987w, 970s, 920m, 899m, 789m, 772s, 7h.8m, 

720s, 7OOVS, 668vs, 665vs, 632m, 568m, 5Z^0m, 510m, 2j.90m, and 2j52w cm."'' 

Reaction o f syn-benzaldoxime w i t h trimethylaluminium. 

Trimethylaluminium (0*75 g., 10*4 m.moles) was added dropwise 

by syringe t o a s o l u t i o n o f sjm-benzaldoxime (1*2 g., 10 m.moles) i n 

ether (20 c.c,) a t -78° i n one limb o f a double Schlenk tube. On warming 

methane was evolved. Removal o f the solvent by vacuum d i s t i l l a t i o n 

y i e l d e d the viscous l i q u i d o-dimethylaluminium benzaldoxime (CgH^CH: 

NQABle^) which was p v i r i f i e d by r e c r y s t a l l i s a t i o n from hexane at -78°. 

The product gave a r a t i o o f aluminium t o hydrolysable methyl of 1:1*97. 

The i n f r a r e d spectrum recorded as a l i q u i d f i l m contained bands a t 

3021m, 2921^5, 2890sh, 2825m, l605m, 1577m, 1l^93m, 1l,.55s, I376w, 13l6m, 

1300sh, 1205s, II64W, 1099w, 1076m, 1029s, 972m, %Ovvi, 921w, 897m» 

870sh, 850s, 816m, 78lm, 7585, 692vs, 668s, 568w, 5Zt.8w, 505m, and 

yJi-W cm."'' 

Reaction o f pyridine-2'-aldoxime w i t h t r i m e t h y l g a l l i u m . 

T r i m e t h y l g a l l i u m (0*99 g* > 8*7 m.moles) was condensed a t -196° on 

t o a f r o z e n suspension o f pyridine-2-aldoxime ( l * 0 6 g., 8*7 m.moles) 

i n toluene (20 c.c.). On warming and s t i r r i n g the aldoxime dissolved 

t o give a yel l o w s o l u t i o n which on e v o l u t i o n o f methane became 
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c o l o u r l e s s . The solvent was removed by vacuum d i s t i l l a t i o n l e a v i n g a 
viscous l i q u i d which a f t e r repeated washings w i t h b o i l i n g hexane gave 
a white powder. The s o l i d was o-dime thy I g a l l i u m p3rridine-2-£ildoxime 
(C^H^NGH:N0GaMe2)^.^ m.p. 35°. [Found: G, 44*9; H, 5.23; Ga, 31.1^; 
M (cryoscopic i n benzene), 335. *^-i6^22^4^^2°2 ^> ^5*5; 

H, 5*0; Ga, 31»6^; M, 4 4 l ] . 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l m u l l contained 

bands a t l603vs, 1579vs, 1566sh, 1547s, l495m, l480s, l471sh, l436s, 

1379w, 1350m, 1327w, 1303ra, 1326w, 1224s, 1200s, ll49m, IHOvs, 1087vs, 

1050s, 1030m, 995s, 979s, 907s, 882ra, 772vs, 743vs, 731vs, 695vs, 

686sh, .667s, 635s, 629sh, 6l9m, 588s, 535m, 516m and 463m cm."'' 

Reaction of pyridine-2-aldoxime w i t h t r i m e t h y l i n d i u m . 

Triraethylindium ( l . l 7 g., 7*3 m.moles) i n toluene (20 c . c ) was 

added by syringe t o a suspension of pyridine-2-aldoxime (O.89 g,, 

7«3 m,moles) i n toluene (20 c c ) a t -78°, On warming and s t i r r i n g the 

aldoxime dissolved t o form a yellov; s o l u t i o n which on e v o l u t i o n of 

methane became c o l o u r l e s s . A f t e r concentrating the s o l u t i o n by 

removal of some of the solvent by vacuum d i s t i l l a t i o n , small c r y s t a l s 

of o-dimethylindium pyridine-2-aldoxime (C^I^J^CH:N0InMe2)2 separated. 

The product had m,p, l64°, [Found: N, IO.3; I n , 42.4^; M 

(cryoscopic i n benzene), 539. ^i6^22^4'''^2^2 ^» 

k3'^o', M, 532], 
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The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l mull contained 
bands a t l601s, 158lsh, 1535m,̂  1526m, l478s, 1339m, 1 3 ^ , 1302w, 
1236w, 1247s, 1l45m, 1l12sh, 1110s, 1088vs, 1037w, 1012m, 1000w, 900s, 
887m, 787m, 771m, 751w, 703m, 685s, 667m, 634s, 524s, 5l6m and 48lw cm,"'' 

Reaction of pyridine-2-aldoxime vri.th t r i m e t h y l t h a l l i u m . 

T r i m e t h y l t h a l l i u m (1*7 g,, 6.9 m.moles) i n ether (10 c c . ) was 

added dropwise by syringe t o a suspension of pyridine-2-aldoxime 

(0«83 g., 6*8 m.moles) i n ether (20 c.c.) a t room temperature i n one 

limb of a double Schlenk tube. A white s o l i d immediately p r e c i p i t a t e d 

which evolved methane and deposited a yellow s o l i d . The s o l i d o-

dimethyl t h a l l i u m pyridine-2-aldoxime (C^2,.'^GH:NOTlMe2)2 in.p. 139° was 

r e c r y s t a l l i s e d from a t e t r a h y d r o f u r a n - d i e t h y l ether mixture. 

[Found: C, 27»2; H, 3*32; N, 7»7%; M (cryoscopic i n benzene), 696. 

^16^22\^2°2 ^' 27-0; H, 3-1; N, 7-9^, M, 7IO]. 

The i n f r a r e d spectrum of the s o l i d recorded as a n u j o l m u l l contained 

bands a t 1590s, 1570sh, 1505s, l424w, 1323m, 1239vw, 1217w, 1l47m, 

1098m, 1053VS, lOOOvs, 995w, 987VW, 897m, 867w, 788m, 776s, 74lm, 7l8vw, 

679s, 666w, 624m, 544ra and 524w cm. 

Reaction of acetoxime-o-methyl ether w i t h trimethylaluminium. 

Trimethylaluminium (0*7 g., 10 m.moles) was added by syringe t o 

a s o l u t i o n o f acetoxime-o-methyl ether (0*9 g., 10 ra.moles) i n hexane 

(20 c.c.) i n one limb of a double Schlenk tube. The s o l u t i o n was 
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s t i r r e d for f i v e minutes, f i l t e r e d and cooled to -78° when a white sol i d 
c r y s t a l l i s e d . On warming to room temperature the crystals melted to 
form the viscous l i q u i d adduct Me^CiNOMejAlMe^. [Found: A l , l6»8; 
hydrolysable methyl 27.8?^; M, l6^. C^^gNAlO requires A l , I7.O; 
hydrolysable methyl 28*3^; M, 159.] 

The infrared spectrum recorded as a l i q u i d f i l m contained bands at 

3005sh, 2933VS, 2890s, 2825s, 1639s, I466m, 1^39s, 1379s, 1279ni, 1190s, 

1083m, 1023s, 986ra, 917m, 893w>8AOw, 8o6w, 702vs, 632s, 526m and 

435w cm. 

Thermal decomposition of Mê G;NOMe,AlMê . A sample of the adduct 

Me2C:N0Me,AlMe^ (1*6 g., 10 m.moles) when heated to 120° under vacuum 

formed methane (0»l4 g., 8.7 m.moles) i d e n t i f i e d by i t s infrared 

spectrum, and an i n v o l a t i l e brown-black glass. Heating the gla^s under 

vacuum to 2 ^ ° only resulted i n further decomposition of the glass. 



DISCUSSION 
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Discussion 

As indicated i n the introduction, few azoraethine derivatives of 

the main group elements have been prepared, and l i t t l e i s knovm of the i r 

properties. Previously, azomethine derivatives (ER'CiNMR^)^ of Group I I I 

elements M have been prepared by addition reactions of n i t r i l e s . For 

example the hydroboration of n i t r i l e s KCN by organoboron hydrides 

(EpH)^ leads to aldimine derivatives (ECHrNBE^)^.^^'^'' Both aldimine 

(ECHzNAlE^)^ and ketimine (ER"C:NA1E^)2 derivatives of aluminium can 

be prepared from the n i t r i l e ECN and an appropriate organoaluminium 

compound (E^'AIH or E^Al), ' while aldimine derivatives of gaillium are 
77 

accessible by such reactions as the following: 

2PhCN + 2GaEt^ > (PhCH:NGaEt2)2 + 2.C^\ 

However, the lower r e a c t i v i t y of organo-boron and -gallium compounds as 

opposed to organoaluminium compounds towards insertion of an imsaturated 

functional group l i k e a n i t r i l e causes ketimine derivatives (RR'C:NMÊ )2 

of boron and gallium to be inaccessible by th i s general route. Further­

more even i n the case of Al a di f f e r e n t type of reaction occurs i f the 

n i t r i l e has hydrogen atoms attached to the a carbon atom, ais i n 

a c e t o n i t r i l e CĤ CN. This acts as a weak protic acid and cleaves a l k y l 

groups from aluminium when adducts CĤ CN,A1Ê  are heated e.g. 

nCH^CN,AlMe^ > nCH^ + (CH^CNAlMe^)^^ 
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The object of t h i s investigation was to determine the most suitable methods 
of preparing ketimine derivatives of boron, zinc and,lithium. I n i t i a l l y 
the p o s s i b i l i t y of preparing ketimine derivatives of zinc by reaction of 
a ketimine with organozinc compounds was explored: 

E2C:NH + R^Zn ^ ^i2^C:NZnR')^ + R'H 

This reaction would be analogous to the well-established method of 
91 

attaching amino groups to zinc using secondary amines: 

R̂ NH + R^Zn ^ ^(R2NZnR')2 + R'H 

The ketimine chosen was diphenylketimine, which i s readily prepared from 

benzonitrile by the Grignard route, and i s r e l a t i v e l y resistant to 

hydrolysis and to polymerisation or rearrangement reactions. Dialkyl-

ketimines with small a l k y l groups appear to be highly susceptible to 

polymerisation or resirrangement reactions, so much so that the dimethyl 

compound Me2C:NH has apparently never been isolated during attempts at 
118 

i t s preparation using methyl cyanide and grignard or l i t h i u m resigents. 
119 

Unsuccessful attempts have been made i n these laboratories to prepare 

diethylketimine by methanolysis of the products of reactions between 

EtCN and E t L i ,arJ EtMgX,''''̂  and by acetylacetone cleavage at -78° of 

products of EtCN/Et^Al reactions.^-^'''^^ I t i s l i k e l y that the i n s t a b i l i t y 

of dialkylketimines i s i n part associated with the presence of hydrogen 

attached to the carbon a to the eizomethine group [as i n (^CH)2C=NH], 

a disadvantage avoided by the use of diphenylketimine. 
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Equimolar mixtures of diphenylketimine and dimethyl- or di e t h y l -

zinc react slowly at room temperature i n the absence of solvent and 

rapi d l y at about eliminating methane or ethane respectively:-

Ph2C:NH + E^Zn > ^(Ph2C:NZnE)2 + EH 

Diphenylketimine and diphenylzinc undergo a similar reaction i n 

toluene solution to form (Ph2C:NZnPh)2» The azomethine derivatives 

produced are a i r - and moisture-sensitive cr y s t a l l i n e solids, which 

dissolve i n benzene as dimeric species (Ph2C:NZnE)2, which are presumed 

to have a planar skeleton based on a (ZnN)2 four-raembered r i n g ( I ) such 

as has been shown by an X-ray crystallographic study to occur i n the 
121 

amino compound (MeZnNPh_), ^2'2 

E Ph B Ph 
I 

' C ,Zn C 
Ph fZn 

•C=N " ^ N = C ^ 

r { 
E / \ " Ph Ph 

I I I 

I n t h i s respect they resemble t h e i r Group I I I analogues (EE'C:NMÊ )2.̂ '̂̂ "̂ ''̂ '̂  

Although a triraeric structure I I ba^ed on a planar six-raembered (ZnN)^ 

r i n g would have allowed the zinc and nitrogen atoms to adopt a s t r a i n -

free configuration, i t i s l i k e l y that i n such a structure there v/ould be 

serious crowding of the substituent groups. Six-membered (ZnN)^ rings 
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are nevertheless believed to occur i n urea and carbamate derivatives 
(RZn.NPh.CO.NRp^ and (RZn.NPh.CO.OR)^ which are trimeric i n benzene, 
although the aminozinc alkyls (Ph^NZnMe)^ and (Ph2NZnEt)2 are dimeric, 
and four-raembered rings (often cross linked i n the form of cubes) are 

a common feature of compounds RZnX i n which zinc i s bound to a donor 
91 93 123 91 124 125 125 atom such as oxygen, ' ' sulphur ' chlorine or bromine. 

The azomethine derivatives (Ph2C:NZnR)2 decompose at or above 

80° . For example, a solution of the phenyl compound i n toluene at 

80° slowly deposited bis(diphenylketiraino)zinc, [(Ph2C:N)2Zn]^, an 

i n v o l a t i l e , insoluble and presumably polymeric s o l i d . Diphenylaminozinc 

alk y l s also decompose when heated, presumably with disproportionation 
91 

and tend also to disproportionate i n the presence of donor molecules. 

Dimethylaminozinc alkyls may well be even less thermally stable to 

disproportionation i n that an attempt to prepare Me2NZnMe from 

equimolar proportions of dimethylamine and dimethylzinc at about 70° 
91 

led to bisdimethylaminozinc and imchanged a l k y l . 

The zinc-nitrogen r i n g of our azomethine derivatives can be cleaved 

by donor molecules. For example, addition of an excess of pyridine to 

a benzene solution of the methyl compound (Ph2C:NZnMe)2 gave a yellow . 

solution from which the yellow cr y s t a l l i n e adduct Ph2C:NZnMe,2py was 

precipitated by hexane. The monomeric nature of t h i s adduct i n benzene 

i s consistent with a structure I I I , with four-co-ordinate zinc and a 

terminal diphenylketimine group. The same product was obtained even 
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py Me 
Ph_C=N py Zn 2 \ 

Zn' 

Me "py 

^\ / \ 
C=N N=C 

Zn 
/\ Me py 

I I I IV 

when the proportion of pyridine was l i m i t e d to 2 mol. per raol, of 

dimer (Ph2C:NZnMe)2, when an adduct IV wsis expected, smalogous to the 
91 

alkoxide adduct (MeZnOPh)2,2py.^ The compound (MeZnNPh2)2 i n 
contrast disproportionates i n the presence of a lim i t e d amount of 

91 
pyridine, giving py2Zn(NPh2)2' 

An azomethine derivative of zinc was obtained from only one of the 

reactions between n i t r i l e s and organozinc compounds that we studied. 

Equimolar quantities of phenyl cyanide and diphenylzinc gave an 

i n v o l a t i l e viscous l i q u i d adduct PhCN,ZnPh2readily i d e n t i f i e d as such 

by the n i t r i l e stretching frequency vC:N i n i t s infrared spectrum which 
-1 -1 

was located at 2259 cm. , some 30 cm. higher i n frequency than 

vG:N fo r phenyl cyanide i t s e l f . This adduct decomposed at 1CX)° to give 

a yellow mass from which s o l i d bisdiphenylketiminozinc (Ph2C:N)2Zn 

was obtained by washing with toluene. The product was id e n t i c a l to that 

obtained from the disproportionation of (Ph2C:NZnPh)2 at 80°, and indeed 

i t s formation i n the n i t r i l e reaction probably involved (Ph2C:NZnPh)2 
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as a n intermediate which disproportionated as i t was formed:-

PhCNjZnPh^ > [Ph2C:NZnPh] ^ > (Ph2C:N)2Zn + Ph^Zn 

Our study of the system PhCN/ZnEt2 gave no evidence of adduct 

formation, vC=N being the same as for phenyl cyanide i t s e l f , and con-
126 

firmed the observations of Frankland and Evans that at elevated 
temperatures diethylzinc catalyses the trimerisation of phenyl 

cyanide to 2 , 4 , 6-triphenyltriazine. Dimethylzinc has a similar effect 
93 

on phenyl cyanide. 
Ph N Ph 

3PhCN + 3Et_Zn ' > 3Et-Zn + | 
d N N 

I 
Ph 

Among other substances which catalyse the trimerisation of phenyl 
127 77 128 129 cyanide are trimethylaluminium, trimethylgallium," sodium, ' 

130 
organolithium and organomagnesium compounds^ concentrated sulphuric 

131 129 132 acid, chlorosulphuric acid and Raney nickel. Although a 

common mechanism appears un l i k e l y , the reactions involving organo-

metallic compounds may well occur by i n i t i a l insertion of one n i t r i l e 

u n i t i n t o a metal-alkyl bond, followed by successive insertions of 

further n i t r i l e s i n t o the resulting metal nitrogen bond:-

R-Zn Ŝ L̂  R-C(Ph):NZn > RC(Ph) :N.C(Ph) :NZn etc. 
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Cyclisation and elimination of the t r i a z i n e could occur after the 
uptake of further moles of n i t r i l e . Evidence for such a mechanism i n 
the reaction catalysed by sodium has been obtained by the i s o l a t i o n 
of sodium cyanide (thought to be formed i n an i n i t i a l reaction 
PhCN + 2Na ^ PhNa + NaCN) and the compound V.̂ "̂  

N CPh 
/ \ PhC N 
\ / 
gN—GPh2 

V 

This mechanism requires a metal-nitrogen l i n k to be more reactive 

to i n s e r t i o n of unsaturated substances than a metal-carbon l i n k , and 

Noltes has already shovm Zn-0 and Zn-N l i n k s to be more reactive than 
92 

Zn-C l i n k s to i n s e r t i o n of isocyanates and similar compounds. 

Alter n a t i v e l y but less l i k e l y , i f a trimeric derivative (PhC(E):NZnE)^ 

were formed i t might act as a template i n the manner suggested by 
122 

Noltes and Boersma to explain the trimerisation of isocyanates by 

tri m e r i c urea or carbamate derivatives (EZnNPhCOX)^ where X = NPh- or OE 
^ VVXXCX C A — I I J . 4̂ 2 

2 Studies of the systems Bu*CN/EpZn (E = Me, Et or Ph) surprisingly 

afforded neither adducts Bu*CN,ZnE2 nor azomethine derivatives 

(Bu*CE:NZnE)^. The n i t r i l e stretching frequency of t- b u t y l cyaiiide was 

unaffected by the presence of E2Zn, and the components were recovered 
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unchanged after mixtures 'Bu'C^i/He^n or Bu'CH/Fh^n had been heated to 
160°. t-Butyl cyanide was likewise unaffected by diethylzinc, even at 

temperatures at which the l a t t e r decomposed by loss of ethylene (contrast 
t 62 63 77 Bu CNjMEt^, where M = A l ' or Ga, which gave derivatives 

(Bu*CH:NMEt2)2 under similar conditions) or at lower temperatures i n 
133 

toluene or tetrahydrofuran. I t has been postulated that addition of 

organoaluminium compounds across n i t r i l e s involves the intermediate VI. 

X = N 

E' ^Alf 

Al---E 
E-/ 

E 

VI 

Three factors seem l i k e l y to operate against a reaction involving 

such an intermediate i n the present zinc systems, a l l of which stem 

from the greater electronegativity of zinc than of aluminium; the Allred-

Eochow values f o r the electronegativities of aluminium and zinc are 
1 ^ 

A l , 1«^7; Zn, 1*66. F i r s t l y with the exception of PhCN,ZnPh2 adducts 

of the type ECN,ZnE2 do not exist at 25° and are presumably less l i k e l y 

at about 150°, even under pressure i n a sealed tube. Secondly organo­

zinc compounds unlike organoaluminium compounds do not form strong 

a l k y l bridges. Thirdly, nucleophilic attack on the carbon of the 
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co-ordinated n i t r i l e w i l l presmnably occur less readily i f the migrating 
a l k y l group i s attached to a more electronegative metal and so carries 
a lower negative charge. 

N i t r i l e s ĈHCN with a hydrogen were avoided i n the present work 

as they afford poor routes to azomethine derivatives for reasons given 

above. 

Infr a r e d spectra. 

Frequencies of some characteristic bands i n the spectra of the 

diphenylketimino-zinc compounds aire l i s t e d i n Table 1. 

TABLE 1 

I n f r a r e d spectroscopic data f o r diphenylketimine derivatives of zinc 
—1 -1 

ock v(Zn-Me)cm 
538 

520 

Compound v(C=N)cm ^(Zn-Me)cm 

(Ph2C:N.ZnMe)2 1624 673 

(Ph2C:N»ZnEt)2 1611 622* 

(Ph2C:N.ZnPh)2 1607 -
[(Ph2C:N)2Zn]^ 1600 -
Ph2C:NZnMe,2py 1613 622 503 

A l l figures relate to Nujol mulls. 

The va r i a t i o n of vC:N with R i n compounds (Ph2C:NZnR)2 niay well r e f l e c t 

the changing mass and electronegativity of R, i n that vC:N decreases i n 

the sequence R = Me > Et Ph. This w i l l be discussed i n greater 



- 78 -

d e t a i l with the Group I I I derivatives. The low value of vC:N for 

bisdiphenylketiminozinc i s consistent vath i t s forttjation as a co­

ordination polymer V I I i n which a l l the 

N 

Zn Zn 
\ / % 

N \ 

N' N 

/ \ / \ Ph Ph Ph Ph 
n 

V I I 

azomethine groups are bridging groups. I n the monomeric adduct 

Ph2G:NZnMe,2py, however, the diphenylketimino group i s terminal, not 

bridging, and vC:N i s accordingly higher, although surprisingly not as 

high as vG:N f o r (Ph2C:NZnMe)2. On electronic grounds vC:N for co­

ordinated (bridging) azomethine groups would be expected to be 

appreciably lower than vC:N for terminal Ph2C:N-. 

Other figures i n Table 1 relate to vibrations of the zinc-attached 
91 

a l k y l groups. Coates and Eidley have shovm that v(Zn-Me) tends to f a l l 
-1 

as the co-ordination number of the zinc increases, from 615 cm. for 
-•'1 

Me2Zn to 506-51^ cm. when the metal i s k co-ordinate. The figures 
obtained f o r (Ph2C:NZnMe)2 and (Ph2C:NZnEt)2 with three co-ordinate z i zmc 
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and f o r Ph2C:NZnMe,2py, with four co-ordinate zinc, are consistent with 
t h i s generalization. 

Proton magnetic resonance (p.m.r.) spectra. Chemical s h i f t s and 

assignments of peaks i n the p.m.r. spectra of the soluble azoraethine 

derivatives, recorded i n hexadeuterobenzene solutions, are l i s t e d i n 

Table 2. The peak due to the protons of the diphenylketimine residue 

TABLE 2 

Proton magnetic resonance spectra 

r values of peaks (p.p.m.; Ĉ Dg solvent) 

Compound =CPh2 2inR 

(Ph2C:N«ZnMe)2 2«7yS 10.6^s 

(Ph2C:N.ZnEt)2 2'7^s 8.7^q, 3*3it 

(Ph2C:N.ZnPh)2 2.8^5 2.9^s 

Ph2C:N«ZnMe,2py 2.7br lO.O^s 

s = si n g l e t , t = t r i p l e t , q = quartet, br = broad. 

i n a l l cases appeared as a sharp singlet at r = 2«70 - 2«80 p.p.m. (as 

l i s t e d ) with a s l i g h t shoulder on the.downfield side possibly attributable 

to the ortho aind meta/para sets of protons which would be expected to 

be magnetically d i f f e r e n t i n these derivatives. I n the spectra of 

(Ph2C:NZnI4e)2 and Ph2C:NZnMe,2py the marked difference betv/een the T values 

f o r the methyl groups probably r e f l e c t s the difference between the 
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co-ordination numbers of zinc i n these compounds (3 and k respectively). 

S e n s i t i v i t y of r (Be-CH^) to the co-ordination number of beryllium has 
135 

been noticed recently f o r methylberyllium alkoxides (MeBeOE)2 i^t 

and a si m i l a r correlation i s seen i n the marked concentration dependence 

•;hicl 
136 

of Y (Zn-CH^ f o r solutions of, (MeZnOBu*)^, for v/hich n varies from 2 for 

d i l u t e solutions to k f o r concentrated solutions. 
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Azomethine derivatives of l i t h i u m . 

Only one azomethine derivative E2C:NM of the Group I elements has 

been prepeired. That i s diphenylketimino sodium, obtained from the 

reaction between sodium i n l i q u i d ammonia and diphenylketimine. I t was 

found to be impossible to separate the product from excess ammonia and 

sodium. A similar reaction using potassium (2 mol.) gave N,N'-dipotassium 

benzhydrylaraine Ph2C(NHK)2.''̂ '' 

Consequently methods involving strong donors are to be avoided i f 

pure azomethine derivatives of Group I elements are to be obtained. 

An equimolar mixture of diphenylketimine and methyl-lithium i n ether 

at ca, -50° eliminated methane' to give a deep red solution. 

Ph2C:NH + MeLi — > \ (Ph2C:NLi)^ + CĤ  

Removal of the solvent gave a yellow f r o t h demonstrating the 

tenacity with which ether i s held by the l i t h i u m derivative. After 

washing \d.th hot toluene a yellow powder was obtained, insoluble i n 

hexane, toluene and di e t h y l ether, and extremely a i r and moisture 

sensitive, so much so that a sample placed on a watch glass and exposed 

to a i r caused the glass to become extremely hot. 

A related compound (PhMeC:NLi)^ was prepared by the addition of 

methyl-lithium across benzonitrile below 0° 

MeLi + PhCN — > % (PhMeC:NLi) 
n 

i n d i e t h y l ether solution. Again a deep red solution formed and the 
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product, which frothed on removal of ether was p u r i f i e d by washing with 
hot toluene, 

Diphenylketiminolithium Ph2C:NIii and a-methylbenzylideneamino-

l i t h i u m PhMeC:NLi are both presumed to be polymeric, having a structure 

V I I I on the basis of t h e i r i n s o l u b i l i t y and s t a b i l i t y to heat, 

U 

N = C^ 
/ 

L i 
Ph / 

Ĉ=N 
Ph'' \ Lx 

\ ^Ph 
N=^C 

/ ^Ph 

V I I I 

This type of structure V I I I allows the l i t h i u m and nitrogen atoms 

to adopt a s t r a i n free configuration. Dimethylaminolithium i s also 

polymeric (insoluble i n ethers e t c ) and presumably has a similar 

stinicture. 

The l i t h i u m atoms being bivalent are co-ordinatively unsaturated 

and consequently react with donor molecules such as pyridine aind 

tetrahydrofuran. The 1:1 pyridine complex obtained from cooling an ether 

solution of the reactants was bright red i n colour whereas the t e t r a ­

hydrofuran complex was a bright orange. 
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I t i s thought that the colours of the complexes are due to the 
transfer of an electron from the donor molecule into the lowest un­
occupied n* o r b i t a l of the delocalised ketimine system or vice versa. 

The bright red pyridine adduct was found to dissolve i n benzene to 

give i n i t i a l l y a bright red solution. However, after a very short time 

a yellow s o l i d precipitated, which was i d e n t i f i e d as diphenylketimino-

lithium. Pyridine was isolated from the benzene solution by extraction 

into acid solution, separation of the acid solution from the benzene, 

neu t r a l i s a t i o n of the acid and f i n a l l y d i s t i l l a t i o n of the pyridine and 

i d e n t i f i c a t i o n by i t s u l t r a v i o l e t spectrum. 

I t i s thought that the pyridine adduct of diphenylketirainolithium 

i s a low molecular weight species possibly having a structixre IX similar 

to that of ( E t ^ L i E t ) ^ and which disproportionates i n benzene. 

L i 
Ph 

Ph 
C=N N=C 

Ph 

Ph 

L i 

I X 
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The-proton magnetic resonance spectrum of Ph^CiNLi as a dilute 

solution i n tetrahydrofuran was recorded, with tetramethylsilane 

(Y = 10»0Q) as internsil reference and found to consist of two multiplets 

at r = 2«5-. p.p.m. and T = 2»6^ p.p.m., attributable to the ortho 

and meta/para sets of protons respectively which would be expected to be 

magnetically different i n these derivatives. 

I n complete contrast was N-lithio-N',N',N",N"-tetrajnethyl-

guanidine [(Me2N)2C:NLi]2 prepared from tetramethyIguanidine and methyl-

lithium at ca. -50°« I t was soluble i n hot ether, benzene and toluene 

giving a colourless solution and c r y s t a l l i s e d readily from hot toluene as 

large pla t e s . 

I t i s dimeric i n benzene and thought to have a skeleton based on 

eith e r a (LiN)2 four merabered ring X such as i s presumed to exi s t i n the 

compound LiVle^^^) ^Id-l^ or an eight membered ring XI. 
e 

Me^N y'^^\ / ^ ® 2 M e p N ^ L i — 
C=N N=C Me_N-C^ C-NMe_ 

Me N Li'-'^ NMe, N — L i < — N 
2 ^ I Me 

Me 
X XI 

Structure X i s unlikely as the N-Li-^ angle would be 90° compared to a 

s t r a i n free 180° obtained i n structure XI. An attempted preparation of 

the analogous Me2NC(Me)=NLi from methyl-lithium and dimethyl cyanamide 
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Mê NCN resulted i n the evolution of almost 1 mol. methane and the 

p r e c i p i t a t i o n of a white s o l i d which exploded when oxygen was passed over 

i t . 

Mê NCN + Meld > CH^ + % (LiCH^NCH^CN)^ 

119 

Further l i g h t has been cast upon t h i s type of reaction recently 

from a study of the reactions between methyl and ethyl cyanide and 

methyl- and ethyl-lithium. I n a l l cases alkane was evolved (60?̂ ) and 

a white precipitate obtained which had a Li/lJ r a t i o of 1:1*2. This 

i s consistent with the following scheme: 

MeCN + MeLi > MeH + % (LiCH^CN) 
d n 

% (LiCH_CN) + MeCN — > % (Li-N=C(Me)-CH^CN) d. n 2 n 

I n contrast to diphenyiketiminolithium, N-lithio-N',N',N",N"-tetra-

methylguanidine did not react with pyridine, tetrahydrofuran or ethylene 

g l y c o l dimethyl ether, which would seem to indicate that the dimeric 

molecule i s i n the eight membered ring form as the formation of a 1:1 
complex with pyridine would require a N-Li-N angle of 120° and the 

s t r a i n involved would be greater for the eight membered ring than for 

the four membered one. 

Both Ph2C:NLi and (Me2N)2C:NLi react with 2,2'-bipyridyl to give a 

black t a r , possibly due to addition across the bond of the bipyridyl. 

The proton magnetic resonance spectiaun of N-lithio-N',N',N",N"-

tetramethylguanidine as a dilute solution i n benzene v/as recorded with 

tetramethyl silane as i n t e r n a l reference, and consisted of a sharp 
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s i n g l e t at 7*38 r originating from N-CH^ attached protons. The p.m.r. 

spectrum of {MQ^)^'.^H shows the N-CH^ attached protons at 7 » 3 6 r . 

I f the compound has structure XI then one would expect two N-CH^ resonances 

due to the different environments i n which they are to be found unless 

there i s rapid exchange between the dimeric molecules, A mass spectrum 

of the compound showed merely the bresikdown pattern of {.Vie^) 

The infrared azomethine stretching vibrations are given i n Table 3« 

I n general the r e s u l t s are s i m i l a r to those obtained for the zinc 

Table 5 

Infrared spectroscopic r e s u l t s for ketiminolithium compounds. 

-1 -1 
Compound v C ^ cm Compound vC=N cm 

Ph2C:NH 1603 Ph^NLi.T.H.F. I618 

Ph^CiNLi 1620 (Me2N)2C:NH I6OI 

PhMeC:NLi I629 (Me2N)2C:NLi I632 

Ph2C:NIa,py 1616 

A l l figures, except Ph^CtNH and (Me2N)2C:NH which were recorded as 

l i q u i d films, relate to Nujol mulls. 

derivatives i . e . the vC=N of the metal derivatives are higher than those 

of the free imines, and complexes of the metal derivatives show a 

vC=N between the two. The compounds Ph2C:NLi and PhMeC:NLi demonstrate 
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the e f f e c t of different electron withdrawing groups attached to the 

azoraethine carbon atom upon the stretching vibration. Two phenyl 

groups have a greater electron withdrawing power than a phenyl and a 
-1 

methyl group and consequently the vC=N i s lower by 9 cm. 
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Azomethine derivatives of Group I I I . 

Whereas reactions between ketimines and al k y l s of zinc and lithium 

eliminate ailkane at room temperature and below diphenylketimine forms 

adducts with the a l k y l s of the Group I I I elements R̂ M (M = B, Al and Ga). 

Trimethylborane formed an unstable s o l i d adduct Ph2C:NH,BMe^ over 

which the dissociation pressure of trimethylborane was 28 mm. at 23»5°» 

The change of dissociation pressure of t h i s adduct vath temperature over 

the range 0-¥i° corresponded to a heat of dissociation for the s o l i d 

adduct in t o l i q u i d diphenylketimine and gaseous trimethylborane of the 

order of k kcal.mol*. Vapour pressure measurements on diphenylketimine 

i t s e l f over the temperature range 110° to 185° corresponded to a heat 

of vaporisation of 16»6 kcal.mole . Accordingly an upper l i m i t of 

20*6 kcal.mole can be set on the value of the heat of dissociation of 

gaseous Ph2C:NH,BMe^ into gaseous Ph2C:NH and gaseous Me^B. The actual 

value w i l l d i f f e r from t h i s by an amount equal to the heat of 

sublimation of c r y s t a l l i n e Ph2C:NH,BMe^, which cannot be meaisured 

d i r e c t l y but i s l i k e l y to be ^bout I6 kcal.mole ^ by analogy with 
138 

s t r u c t u r a l l y similar organic compounds. 

The approximate value of k kcal.raole for the heat of dissociation 

of Ph2C:NH,BMe^ i n the gas phase msiy be compared with the gas phase 

heats of dissociation of the secondary amine adducts Me2NH,BMê  (19*3 

kcal.mole"''),''^^ Et2NH,BMej (16.3 kcal.mole"'')'"^ and (CH2)^H,BMe^ 
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(22»3 kcal.mole). No evidence has previously been found of adduct 
formation i n the systems RGN/BMe^ and thus towards trimethylborane as 
the reference acid, diphenyiketimine i s intermediate i n donor power 
between amines and n i t r i l e s . I n view of the weak donor power of 
diphenyike timine towards triraethylborane, i t was not surprising that 
no complex formation i n the systems of diphenyike timine with the weaker 
Leid-s acids E t ^ and P h ^ was detected. 

The infrared spectrum of a nujol mull of the adduct Ph2C:NH,BMe^ 

contained a band at l604 cm, attributable to vC:N. The frequency 

of t h i s band was essentiailly the same as that of the corresponding band 

i n the spectrum of the free ketimine, whether i n the l i q u i d phase or 

i n chloroform solution. The absence of any appreciable change i n vC:N 

on formation of the adduct i s consistent with the very weak co-ordinate 

l i n k i n t h i s compound. 

The proton magnetic resonance spectrum of Ph^CiNHjBMe^ was recorded 

using perdeutei^o-benzene as solvent with tetramethylsilane as intematl 

standard ( r = lO'OO p.p.m.). The spectrum consisted of a singlet of 

low i n t e n s i t y at r = 0*0 p.p.m. attributable to the nitrogen attached 

proton, a strong multiplet centred on r = 2*63 p.p.m., ari s i n g from the 

aromatic protons and a sin g l e t at r = 9*80 p.p.m. due to the methyl 

groups. The chemical s h i f t of the l a s t peak may be compared \idth the 

value ^ =9*2.3 p.p.m. for trimethylborane i t s e l f i n the same solvent. 

The change i n chemical s h i f t , AT , on co-ordination i s i n the direction 
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expected on electronic grounds, as the co-ordinate l i n k supplies 
electronic charge to the boron with consequent electron d r i f t to the 
boron-attached methyl groups. Moreover, the magnitude of £if i s 
s i g n i f i c a n t l y lower than Ar for the change Me^ — > Me^,BMe^ 
(1«08 p.p.m.) affording further evidence of the rel a t i v e donor 
properties of diphenylketimine and trimethylamine. 

Similar c r y s t a l l i n e s o l i d complexes Ph2C:NH,MR^ (R = Me, M = Al, Ga) 

and l i q u i d complexes (R = E t , Ph, M = Al, Ga) have been isolated. The 

methyl compounds Ph2C:NHAlMe^ and Ph^CiNHGaMe^ are c r y s t a l l i n e solids 

r e a d i l y obtained from equimolar mixtures of the components i n hexane, 

dissolving i n cold benzene without dissociation as shown by cryoscopic 

measurements. The t r i e t h y l and triphenyl adducts-Ph2C:NH/QEt^, 

Ph2C:NH^aEt^, 'Ph^CiUBpi'b.^ and Ph2C:N^aPh^ were obtained as viscous 

l i q u i d s a f t e r removal of solvent under vacuum from hexane or toluene 

solutions of equimolar mixtures of the components. Cryoscopic studies 

on these four adducts were not attempted because of the p o s s i b i l i t y 

that solvent remained trapped i n the samples, but the extent of 

intera c t i o n between the components was revealed by a study of their 

proton magnetic resonance (p.m.r.) spectra. Chemical s h i f t values and 

re l a t i v e i n t e n s i t i e s of peaks i n the i r p.ra.r. spectra i n hexadeutero-

benzene solutidns are l i s t e d i n table k. I n the spectrum of diphenyl­

ketimine i t s e l f i n C^D^ the broad absorption centred on t = 2»k p.p.m. 

(i n t e n s i t y k) probably arose from the ortho protons of the phenyl 
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Table 4 

Proton magnetic resonance spectroscopic r e s u l t s for adducts 

Compormdi values ( Me^Si = 10*00 p.p.m.) 
= N-H = CPh^ MÊ  

Ph„C:NH ̂  0*0, s ( l ) 2»4br(l,.), 2-7,ni(6) 

Ph2C:NH,GaMe^ ̂  0-8gs(l) 2-7Qm(z,), 3«02m(6) 10-1js(9) 

Mê Gav ̂  - - 9«8^s 

Ph2C:NH,&aEt^ ̂  0-9ys(l ) I'l^^{x), 2'^^{(^) 8-7^t(9), 

Et,Ga ^ - - 8-8gt(3), 
9-39q(2) 

Ph2C:KH,GaPh^^ 0 -5gs(l) 2*3hr, 2-7-3-1m(25) 

Pĥ Gffl, ̂  - - 2'2^br(2), 

2-72m(3) 

Ph2C:IlH,BMe^ ̂  0«0QS(1 ) 2-6^m(l0) 9*8QS(9) 
Ph2C:KH,AlMe^ ^ 1 ' 2QS ( I ) 2-8Qm(4), 3*0^m(6) 10-i^^s(9) 
(Me^l)^'' - - 10-3^5 
Ph2C:NH,Am^ ̂  0-2,QS(I) 2-7br(2,), 2-95111(6) 8 -8^t(9), 

10-l2q(6) 
( E t ^ ) ^ ° - - 8 -8^t(3), 

9-7oq(2) 
b 

( P h ^ l ) ^ ^ " - 2-721^(3), 
Ph2C:NH,AIPh^ ̂  Q'X^M 2*1br, 2*6-3:0m(25) 

2-8^br(2) 
a., CgDg solvent; b, CgD^CD^ solvent; c, C^Hg solvent. 

s = si n g l e t , m = multiplet, t = t r i p l e t , q = quartet, br = broad. 
Relative i n t e n s i t i e s i n parentheses, a l l concentrations ~ 30 wt. 
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groups, and the sharper multiplet centred on r = 2*73 p.p.m. (in t e n s i t y 6) 
could be attributed to the meta and para protons, which would d i f f e r from 

the ortho protons as a r e s u l t of the electron v/ithdrav/ing properties of 
1^2 

the azomethine group. 

The figures i n Table 4 show that a l l the peaks i n the spectrum of 

Ph2C:NH including, surprisingly the peaks due to the aromatic protons 

are s h i f t e d to higher f i e l d s on co-ordination. The s h i f t i s most marked 

i n the case of the N-H peak and i s moreover i n the direction opposite 

to that expected on electronic grounds, i n that co-ordination through 

nitrogen should reduce electron density i n the N-H bond. Likewise, 

electron-withdrawing substituents on benzene normally cause the aromatic 

protons to absorb at lower f i e l d s than i n benzene i t s e l f . Values of 

TN-H for adducts Ph2C:NH,MMe^ (M = B, Al, Ga) are consistent with 

decreasing Lewis a c i d i t y i n the sequence Me^Al > Me^Ga > Me^ a sequence 
19 

established by thermodynamic data and supported by infrared 

spectroscopic studies on n i t r i l e adducts. However by the same c r i t e r i o n 

Et^Ga i s a stronger Lewis acid than Et^Al and Ph^Ga i s a stronger Levri.s 

acid than Ph^Al conclusions inconsistent with those deduced from infrsired 

spectroscopic studies on n i t r i l e adducts. ' 

I t i s therefore concluded that the change i n T N-H on complexing by 

Ph2C:NH i s a poor c r i t e r i o n of adduct s t a b i l i t y . A similar poor 

correlation between changes i n T CH^ and -r CH2 values and adduct 
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s t a b i l i t i e s has been noted for gallium halide adducts of E t 0 and 

Changes i n that part of the p.m.r. spectrum a r i s i n g from the 

protons of R^Ga are also caused by interaction with Ph2C:NH. Thus, 

the peak a r i s i n g from the gallium-attached methyl groups of Ph2C:NH,GaMej 

i s located at higher f i e l d than the corresponding peak for Me^Ga i t s e l f 

i . e . the change on co-ordination i s i n the direction expected on electronic 

grounds. The magnitude of the change, 0»2k p.p.m. i s appreciably l e s s 
72 

than that resulting from co-ordination of Mey^ to Me^Ga (0«76 p.p.m.), 

and again r e f l e c t s the weak donor strength of Ph2C:NH compared with 

Me^N. Si m i l a r l y , the quartet a r i s i n g from the gallium-attached methylene 

groups of Ph2C:NH,GaEt^ i s located at higher f i e l d than the corresponding 

peak for Et^Ga i t s e l f , while the t r i p l e t a r i s i n g from the methyl section 

of the gallium-attached ethyls which would be l i t t l e affected by co­

ordination, i n fact moves to lower.field on addition of Ph2C:NH. 

Changes i n the spectrum of Ph^Ga brought about by co-ordination to 

Ph2C:NH cannot be interpreted i n any d e t a i l because of overlap of the 

signsils from the two types of phenyl group i n the adduct. Similar 

changes were observed for the aluminium complexes Ph2C:NHAlEt^ and 

Ph^CrNHAlPh^.''''^ 

The infrared spectra of the adducts Ph2C:NH,AlR̂ ''''̂  and Ph2C:NHGaR^ 

were recorded and the frequencies of the key bands are l i s t e d i n Tables 

5 and 6 respectively. 
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TABLE 5 

Infrared spectroscopic r e s u l t s for adducts Ph_C:NH,AlR^ 

Compound 

Ph2C:NH 

Ph2C:NH,AlMe^ 

Ph2C:NH,AlEt^ 

Ph2C:NH,AlPh^ 

Phase 

CHCl^ soln. 

Nujol mull 

l i q u i d 

l i q u i d 

N̂-Ĥ '" 
3256 

3290 

3268 

3257 

-1 
^C=N°"' 
1603 
1603 

1594 

1603 

-1 

Compound 

Ph2C:NH 

Ph2C:NH,GaMe^ 

Ph2C:NH,GaEt^ 

Ph2C:NH,GaPh^ 

TABLE 6 

Infrared spectroscopic r e s u l t s for adducts Ph2C:NH,GaR^ 

-1 Phase 

CHCl^ soln. 

nujol mull 

l i q u i d 

l i q u i d 

^N-H°'" 
3256m 

3279in 

3268m 

3268m 

Ĉ=N°'°"'' 
1603s 

l604s 

1603s 

1595VS 

-1 
sym 

V ^ 1 54lvB cm. sym GaMe^' 

cm."'': V ^ „ » 583VW cm. ' asym GaMe^' 
-1 

-1 
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There i s surprisingly l i t t l e change i n the frequencies of these 
bands from one system to another. However vN-H for the adducts i s 
s l i g h t l y higher than vN-H for diphenyiketimine i t s e l f while vC=N 
decreases perceptibly on co-ordination i n two cases, v i z : Ph2C:NHAUEtj 
and Ph2C:NHGaPh^, and increases i n two cases, v i z : Ph2C:NHAlMe^ and 
Ph2C:NHGaMe^. Among other c h a r a c t e r i s t i c bands readily identified i n 
the spectrum of Ph2C:NH,GaMe^, i t may be noted that there are two bands 
attributable to gallium-carbon stretching vibrations, as expected for 

rami 

the pyramidcQ. co-ordinated —»GaMe^ but not for planar unco-ordinated 

Me^Ga. 

The diphenylketiraine-trimethylborane adduct underwent the expected 

reaction with elimination of methane when heated i n a tube at l60-200° 

for 24 hours, but the azomethine derivative Ph2C:NBMe2 was isolated i n 

only very poor y i e l d 159») from the mixture, a high proportion of the 

reactants remaining xmchanged. Subsequent experiments, involving 

heating at l80° for two weeks gave yields i n excess of 50?̂ . Clearly, 

the elimination of methane occurs only slowly even xinder such forcing 

conditions and i n t h i s respect the system i s similar to the dimethyl-

amine-trimethylborane system, i n which the adduct Me2NH,BMê , i t s e l f 

r e a d i l y prepared below room temperature, but tending to dissociate at 

room temperature, eliminates methane to form Me2NBMe2 only when heated 

to 300°• The somewhat readier elimination of methane from the diphenyi­

ke timine adduct than from the dimethylamine adduct may well r e f l e c t the 
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greater acid character of the nitrogen-attached hydrogen of diphenyl­
ketimine. 

119 
The thermal decomposition of the related aluminium (Ph2C:NH,AlR^ 

127 
and gallium (Ph2C:NH,GaE^) adducts also led to the analogous azo­

methine derivatives Ph2C:NMR2 (M = Al, Ga, R = Me, E t and Ph) but i n 

high 0 90^) y i e l d . The products were a l l c r y s t a l l i n e solids and the 

r e a c t i v i t y with a i r decreased i n the order Ph2C:NAlMe2^ Ph2C:NGaMe2^ 

Ph2C:NBMe2. The l a s t was stable i n a i r for several days. The 

temperatures needed for decomposition of the organogallium adducts 

were higher than those needed for corresponding organoaluminium adducts 

of diphenylketimine, but lower than that at which Ph2C:NH,BMe^ loses 

methane. S i g n i f i c a n t l y , cleavage of alkane from Ph2C:NH,MR^ occurs l e s s 

r e a d i l y and dissociation of the adduct into i t s components more readily 

as M becomes l e s s electropositive (the Allred-Rochow electronegativities 

of B, A l and Ga are 2»01, 1«47 and 1»82 respectively) and so the group 

R becomes l e s s negative. Increasingly forcing conditions are also 

needed for the comparable thermal decomposition of the dimethylamine 

adducts Me2NH,MMê  (M = Al, Ga and B) . 

A further point of s i m i l a r i t y between Ph2C:NMR2 and Me2 NMR2 i s 

thei r states of association. The aminoborane i s monomeric i n the gas 
phsise at room temperature, although apparently associated i n the 

145 
l i q u i d phase. Molecular weight data on solutions of the azomethine 
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derivative Ph2C:NBMe2 i n benzene i n which i t s s o l u b i l i t y i s low proved 
to be unreliable but the mass spectrum of the compound was recorded. 
Mass and in t e n s i t y values for the main peaks are l i s t e d i n Table 7, 
together with suggested assignments. Sig n i f i c a n t l y there are no peaks at 

TABLE 7 

Mass spectroscopic r e s u l t s for Ph2C:N.BMe2 

/e Relative 
inte n s i t y 

Assignment 

221,220 17,4 Ph2CNBMe2 

206,205 100,25 Ph2CaTOMe 

191,190 2,0.5 Ph2CNB 

180 51 Ph2CN 

166 2 Ph2C 

165,164 7,2 Ph2B 

1H,143 5,1 PhCNBMe2 

103 97 PhCN,Ph''̂ BMe 

102 19 Ph''°BMe 

77 42 Ph 

41,^ 35,9 Me2B 

15 4 Me 
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higher ly^ values than 221, the molecular weight of monomeric Ph2C:NBMe2 

and no sets of peaks were observed with the ch a r a c t e r i s t i c r e l a t i v e 

i n t e n s i t i e s associated with the presence of two boron atoms i n a 

fragment. Peaks attributable to fragments containing boron occurred 

i n p a i r s , d i f f e r i n g by one mass unit and with the higher mass peak some 

four times as intense as the lower as expected from the natural 
11 10 

abundances of B (80^) and B (20^). The mass spectra of several 

knoitfn dimeric azomethine derivatives of boron have been shorn to contain 

several intense peaks corresponding to fragments with the (BN)2 ring 

i n t a c t . I t i s therefore concluded that the mass spectrum of Pli2C:NBMe2 

provides evidence either that t h i s compound e x i s t s i n the gas phase 

s o l e l y i n the form of monoraeric molecules or that, i f associated species 

are present, these dissociate unexpectedly readily. The remaining 

major peaks i n the mass spectrum, l i s t e d i n Table 7» show that the main 

features of the breakdown pattern involve the los s of the terminal 

methyl groups from boron or ( l e s s readily) phenyl groups from carbon 

or f i s s i o n of the molecular skeleton at the B-̂ J bond. F i s s i o n at the 

C=N bond i s of r e l a t i v e l y minor importance. A pa r t i c u l a r l y interesting 

feature of the spectrum of Ph2C:NBMe2 i s that one of the most intense 
11 + 

peaks can be assigned to the ion Ph BMe the presence of which must 

r e s u l t from the transfer of a phenyl group from carbon to boron. 

Similar reeirrangements or recombinations must also account for the 

presence of ,Ph2B'*̂ . These observations suggest that, although the 
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formula of the monomer Ph2C:N=^ BMe^ can be v r r i t t e n w i t h a m u l t i p l e 

N—B l i n k to give a molecule i s o e l e c t r o n i c vri.th an allene Pl^:C:CMe2 

the present evidence does not i n d i c a t e a high bond order f o r the B-N 

l i n k . The compound, even i f monoraeric i n the geis phase, i s probably 

dimeric i n the condensed phase as deduced by i t s non r e a c t i v i t y \-ixth. 

atmospheric moisture. 

The azomethine d e r i v a t i v e s of aluminium (Ph2C:NAlR2)2 gallium 

(Ph^GiHGaiR^ ^ have been found t o be dimeric i n benzene s o l u t i o n and i n 

the gas phase (mass spectroscopy B = Me, Ph). I n the mass spectrum peaks 

assignable t o the parent dimeric i o n have been found. However peaks 

corresponding t o monoraeric Ph2C:NMR2 have been found as intense as those 

assignable t o the dimeric i o n (Ph2C:NMR2)2« A t y p i c a l mass spectroscopic 

r e s u l t which reveals the presence of dimeric species i n the gas phase of 

(Ph2C:NGaMe2)2 i s given i n Table 8. As i n the spectrum of Ph2C:NBMe2 

t r a n s f e r of a phenyl group from carbon t o metal atom occurs and peaks 

assignable t o Pĥ ĜaMe"*̂ , Ph2Ga'*" and PhGa"̂  are observed. 

Despite the i n s e n s i t i v i t y of vC:N t o the s t a t e of co-ordination of 

Ph2C:NH noted above, vG:N i n the i n f r a r e d spectra of the d e r i v a t i v e s 

(Ph2C:NMR2)2 v a r i e s according t o E f o r a constant M i n the same manner 

&s was found f o r the corresponding zinc compounds as shown i n Table 9» 

Thus the more e l e c t r o n withdrawing the group R the lower the vC:N. 

This i s e s p e c i a l l y n oticeable w i t h lPh2C:NGaCl2j^where vC:N i s 1591 cm. 

I n most cases moreover, vC:N f o r the azomethine d e r i v a t i v e i s higher than 
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TABLE 8 

Mass spectroscopic r e s u l t s f o r i'Ph.^O'.'H'Gai'le^^ 

/e Relative i n t e n s i t y Assignment 

562, 560, 558 1, 2, 1 

5^7, 5^5, 543 25, 62, 37 

532, 530, 528 1, 2, 1 Fh^(W)^Ga^Vle^ 

382, 380, 378 8, 21, 13 Pĥ CĴ Gâ Mê  

367, 365, 363 8, 19, 11 Ph_CNGa-Me, 

352, 350, 3 ^ 1, 3, 2 Ph^WGa^e^ 

337, 335, 333 2, 5, 3 Vh^WGa^e 

281, 279 3, k Ph^CNGaMe^ 
266, 264 17, 25 Ph2CNGaMe 
225, 223 ^,5 Ph2Ga 
181 19 Ph2CWH 
180 37 Ph^CN 

17^, 172 5, 8 PhCNGa 

163, 161 67, 100 PhGaMe 
148, 146 ^, 5 PhGa 

103 8 PhCN 

101, 99 55, 52 GaMe^ 
86, 84 2, 3 GaMe 

78 11 PhH 

77 22 Ph 

71, 69 56, 84 Ga 
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TABLE 9 

I n f r a r e d spectroscopic r e s u l t s f o r azomethine d e r i v a t i v e s (Ph^CcN'ME^^r. 

-1 -1 

Compoxmd v ^ , j ^ cm. 

Ph^CtNBMe^ 1662 

(Ph^CcN.AIMe^)^ l 6 l 6 

(Ph2C:N.AUEt2)^ l609 

(PhgCiN.AlPh^)^ 1604 

(Ph2C=MlCl2)2 1593 

A l l f i g u r e s r e l a t e t o N u j o l mulls. 

Compound 

(Ph2C=NAlBr2)2 1587 

(Ph2C:N.GaMe2)2 1626 

(Ph2C:N.GaEt2)2 1613 

(Ph2C:N.GaPh2)2 1612 

(Ph2C»N.GaCl2)2 1591 

vC:N f o r diphenylketimine i t s e l f . Co-ordination through the azomethine 

group such as occxirs i n the a s s o c i a t i o n of the azomethine d e r i v a t i v e s 

would be expected t o reduce the e l e c t r o n desntiy i n the azoraethine l i n k , 

causing a corresponding r e d u c t i o n i n vC:N, but the mechanical c o n s t r a i n t 

imposed on the v i b r a t i o n of the azomethine group by i n c o r p o r a t i o n of the 

n i t r o g e n i n the (MN)2 r i n g i s l i k e l y t o be more than s u f f i c i e n t t o o f f s e t 

t h i s e l e c t r o n i c e f f e c t when comparison i s made between Ph2C:NH and 
146 

(Ph20:NME2)2» Furthermore i t has been shown t h a t methiodides of 

aromatic.imines i . e . CAr2G:NMeAr]''' I have a higher vC:N than the 

parent imine. I t was thought t h a t the presence of a p o s i t i v e charge on 
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the n i t r o g e n atom would counter the e l e c t r o n withdrawing e f f e c t s of 
groups attached t o the carbon and n i t r o g e n atoms, thus preventing a 
lower i n g of the vG:N. This e f f e c t could also operate i n the metal 
azomethine d e r i v a t i v e s above and consequently the vC:N would be 
expected t o r i s e . From ta b l e s 1 and 9 i t can be seen t h a t the vC:N i s 
dependent not only on R but also t o a greater extent on M, i . e . the 
more e l e c t r o n e g a t i v e the metal the higher the vC:N. 

The p.m.r. spectra of the azomethine d e r i v a t i v e s Ph2C:NMR2 recorded 

as d i l u t e s o l u t i o n s i n perdeuterobenzene, were found t o be very s i m i l a r . 

For example Ph2C:NBMe2 consisted of two m u l t i p l e t s i n the region 

r = 2*7 — 2*9 p.p.m. ( r Me^Si = 10 p.p.m.) c l e a r l y o r i g i n a t i n g from 

the aromatic protons, and a s i n g l e t a t T = 9*70 p.p.m. o r i g i n a t i n g 

from the methyl protons. The absorptions due t o aromatic protons, a 

m u l t i p l e t a t T' = 2»77 p.p.m. ( r e l a t i v e i n t e n s i t y 2) and a m u l t i p l e t a t 

r = 2*8^ p.p.m. ( r e l a t i v e i n t e n s i t y 3) probably arose from the ortho 

and meta-para protons r e s p e c t i v e l y , which would become d i f f e r e n t i a t e d 

on s u b s t i t u t i o n of an e l e c t r o n withdrawing group i n the benzene nucleus. 

Of the other organoboranes t r e a t e d w i t h diphenylketimine, 

triphenylborane d i d not r e a c t w i t h diphenylketimine a t temperatures 

up t o 200° over periods of up t o one week. I n a l l cases both reactants 

were recovered e s s e n t i a l l y unchanged, although traces of benzene were 

detected i n experiments c a r r i e d out under the more extreme c o n d i t i o n s . 
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TTviethylborane reacted w i t h diphenylketimine on heating t o l 6 0 ° 
f o r a week, but i n a manner d i f f e r e n t from trimethylborane. Ethylene, 
not ethane, was the v o l a t i l e r e a c t i o n product, being formed i n roughly 
twice the molar q u a n t i t i e s t h a t t r i e t h y I b o r a n e was consumed, as i f the 
consumption of t r i e t h y l b o r a n e i n v o l v e d e s s e n t i a l l y the r e a c t i o n 
E t ^ -» DEtBH2] + 2G2H^. The only i n v o l a t i l e r e a c t i o n product 
i d e n t i f i e d was the N-s u b s t i t u t e d ketimine Ph2C:NCHPh2 which was formed 
i n some 30?̂  y i e l d from the diphenylketimine taken. 

The i d e n t i f i c a t i o n of t h i s imexpected r e a c t i o n product was 

e f f e c t e d as f o l l o w s . F u l l elemental analysis revealed the appropriate 

p r o p o r t i o n s of carbon, hydrogen and n i t r o g e n , and the absence of boron. 

The proton magnetic resonance spectrum (CgDg s o l u t i o n ) contained 

absorptions which could be assigned t o aromatic protons ( r =2*66 p.p.m., 

i n t e n s i t y 20) and t o an a l i p h a t i c proton = k»J>9 p.p.m., i n t e n s i t y l ) , 

No absorptions were observed which could be assigned t o an e t h y l group, 

nor t o a nitrogen-attached proton. The i n f r a r e d spectrum contained no 

absorpti o n a t t r i b u t a b l e t o V j j _ j j , but a peak a t 1628 cm. could 

r e a d i l y be assigned t o v^^. A f u r t h e r i n f r a r e d spectrum recorded as 

a KBr disc contained three absorptions a t t r i b u t a b l e t o vG-H, two 

assignable t o aromatic protons a t 30^9 and 3012 cm. and a s i n g l e t 

assignable t o an a l i p h a t i c proton a t 2857 cm. 

The strongest peak i n the mass spectrum of the m a t e r i a l occurred 
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a t m^ = 347 mass u n i t s / u n i t charge, and the accurate mass of t h i s 

fragment was found t o be v d t h i n 1 p.p.m. of t h a t c a l c u l a t e d f o r ^2^2^^* 

Mass and i n t e n s i t y data f o r the main peaks i n the mass spectnM are 

l i s t e d i n Table 10, together w i t h suggested assignments. I t v / i l l be 

seen t h a t a l l the major peaks may be assigned t o fragments a r i s i n g from 

a molecule Ph2C:NCHPh2. The only peak a t a mass higher than 3^7 was 

a feeble peak ( r e l a t i v e i n t e n s i t y I ) a t m̂  = 375, which could be 

a t t r i b u t e d t o trace q u a n t i t i e s of a contaminant, probably Ph2C:NCEtPh2. 

The manner i n which Ph2C:NCHPh2 comes t o be formed i n t h i s 
118 

r e a c t i o n deserves comment. I t i s w e l l known t h a t amines R*NH2 

displace ammonia from imines R2C:NH to form N-substituted imines 

R2C:NR', and i t seems l i k e l y t h a t i n the present r e a c t i o n some 

diphenylketimine i s reduced t o the amine stage Ph2CHN by i n t e r a c t i o n 

w i t h Et-B groups, which i n the process lose ethylene. A subsequent 

condensation r e a c t i o n between the amine and an imreduced diphenylketimine 

molecule would a f f o r d Ph2C:NCHPh2, the n i t r o g e n eliminated probably 

ending up bound t o boron i n the f i n a l r e a c t i o n mixture i n oligomeric 

or polymeric m a t e r i a l s such as (EtBNH)^ which would have been undetected 

because of the method used t o work up the r e a c t i o n mixture. 

This formation of Ph2C:NCHPh2 from diphenylketimine and 

t r i e t h y I b o r a n e i s c l e a r l y analogous t o the formation of Bu*CH:NCH2Bu* 

( i n 30^ y i e l d ) from Bu*CN and Bu*MgCl a t 150°,''^'' and t o the formation 
o l48 

of PhCH:NCHpPh i n the r e d u c t i o n of PhCfJ by R2AIH a t 45 . Other 
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examples i n v o l v i n g boron-nitrogen systems are also known, e.g. the 

format i o n of Et2NB2H^ i n the r e a c t i o n between diborane and methyl 
127 cyanide, while the formation of a compound CgH^^ ( e i t h e r Me2GHGH:NBu''' 

n i 
k6 

or Me2C:GHNHBu^) i n the p y r o l y s i s of (Bu^H)2BPh may w e l l occur by a 

s i m i l a r mechanism. 

TABLE 10 

Mass spectroscopic r e s u l t s f o r Ph2G:NGHPh2 

Relative Assignment 
i n t e n s i t y 

5^7 100 Ph2CNGHPh2 
270 10 Ph2CNGHPh or PhGNGHPh2 

''93 2 Ph2^, O^CHPh^.l or 2 

192 2 193 minus H 
180 17 Ph2CN 
167 53 Ph2CH 
166 k3 Fh^C 

116 2 GNGHPh 
115 10 GNGPh 
103 6 PhGN 
89 7 PhG 
77 59 Ph 
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The r e a c t i o n s between diphenylketimine and BX^ (where X = H, NMe^, OMe, 

^ F or C I ) . ^ 

The purpose of a study of the systems PhgCiNH/BX^ (where X = H, 

NMe2, OMe, F or Cl) was t o i n v e s t i g a t e the p o s s i b i l i t y of i s o l a t i n g 

adducts Ph2C:NH,BX^ and t o determine whether the e l i m i n a t i o n of HX 

from such systems would allow the preparat i o n of d e r i v a t i v e s 

(Ph2C:N)^BX^_^, p a r t i c u l a r l y (Ph2C:N)^, trisdiphenylketiminoborane. 

Diborane and diphenylketimine were found t o i n t e r a c t i n hexane 

t o p r e c i p i t a t e an adduct Ph2C:NH,BH^ which even a t 20° eliminated 

hydrogen slowly. I t s i d e n t i t y was revealed both by a n a l y t i c a l data 

and also by i t s i n f r e i r e d spectnun, which s i g n i f i c a n t l y had a medium 

i n t e n s i t y band a t 3257 cm. ( a t t r i b u t a b l e t o vN-H), a set of medium 

i n t e n s i t y absorptions i n the B-H s t r e t c h i n g region ( a t 24l0, 2288 and 
—1 —1 

2252 cm. ) and a strong absorption a t l620 cm. (vC=^). Previous 

vC=N of complexes Ph2C:NH,MR^ have been i n the region of vC=N f o r 

Ph20=NH i t s e l f . Co-ordination t o boron t r i f l u o r i d e (see below) also 

r a i s e s vC=N of diphenylketimine (from 1603 t o 1628 cm. ) and 

diphenylketimine hydrochloride Ph2C:NH2Cl , which may be regarded as the 

adduct of diphenylketimine w i t h a proton has vC=N a t I653 cm. 

Goulden's argument t h a t vC=N should r i s e upon co-ordination i m p l i e s t h a t 

the stronger the acceptor the higher the vC:N. Thus from the change 

i n vC=N, the f o l l o w i n g order of acceptor s t r e n g t h i s obtained: 
H'̂  > BF^ > BH^ > BMe^ 
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However a l l the adducts Ph2G:NH,MR^ (M = A l , Ga, R = Me, Et, and Ph) 
have approximately the same vG=N and therefore change i n vC=N i s 
considered t o be a poor c r i t e r i o n of adduct s t a b i l i t y . 

The thermal decomposition o f diphenylketimine-borane a t 120° d i d 

not a f f o r d a diphenylketiminoborane. Although hydrogen was eliminated 

as expected, simultaneous m i g r a t i o n of a hydrogen atom from boron t o 

the azomethine carbon reduced the double bond t o a sin g l e bond 

and the product i s o l a t e d was the borazine (Ph2CNNBH)^. 

Ph G:NH,BH > ^ (Ph CHNBH) + H 

The i d e n t i t y of the product was established as f o l l o w s . Elemental 

analyses confirmed the e m p i r i c a l formula, and the i n f r a r e d spectrum 

which contained no absorptions i n the N-H or G=N s t r e t c h i n g regions 

had three bands i n the B-H s t r e t c h i n g r egion ( a t 2525m, Zk3Jxi and 
—1 ' —1 

ZhOhm cm. ) and a very strong absorption a t 1355 cm. i n the region 
149 

t y p i c a l of borazines. 

The proton magnetic resonance spectrum of the borazine as a d i l u t e 

s o l u t i o n i n hexadeuterobenzene wsis recorded w i t h cyclohexane as 

i n t e r n a l reference, and found t o consist of tv/o m u l t i p l e t s i n the region 

r = 2*8 - 3*0 p.p.m. (TMe^Si = 10*0^ p.p.m.) c l e a r l y o r i g i n a t i n g 

from the aromatic protons, and a s i n g l e t a t T = 3*96 o r i g i n a t i n g from 

the a l i p h a t i c proton. The absorptions due t o the aromatic protons, 

a m u l t i p l e t a t T' = 2*89 p.p.m. ( r e l a t i v e i n t e n s i t y 3)and a m u l t i p l e t 

a t = 3«0q p.p.m. ( r e l a t i v e i n t e n s i t y 2) are the reverse of what has 
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p r e v i o u s l y been obtained f o r the azomethine d e r i v a t i v e s Pĥ C:NMR 
2 n 

(M = B, A l , Ga, Zn, R = Me, Et and Ph) and also a t higher f i e l d than 

these d e r i v a t i v e s . However i f these absorptions arose from the meta-

para and ortho protons r e s p e c t i v e l y , d i f f e r e n t i a t e d by s u b s t i t u t i o n of 

an e l e c t r o n donating group i n the benzene nucleus, i t i s d i f f i c u l t t o 

e x p l a i n the low t value of the a l i p h a t i c proton. 
150 

As borazines (RNBX)^ are f r e q u e n t l y tetrameric i n cases where 

the s u b s t i t u e n t s R and X aire too bulky t o be accommodated about the 

planar six-membered r i n g of a t r i m e r i c borazine, the molecular 

complexity of the present compound was i n v e s t i g a t e d by raaiss spectroscopy. 
The mass spectrum of (Ph2CHNBH)^ confirmed i t s i d e n t i t y . Masses, 

r e l a t i v e i n t e n s i t i e s and assignments of the main peaks hiaving vy^ y 225 

are l i s t e d i n Table 11. Peaks gen e r a l l y occurred i n sets, the masses 
11 

quoted r e l a t e t o fragments i n which a l l the borons aire B, however 
10 

i n a l l cases attendant B s a t e l l i t e s were observed a t 1, 2 and 3 maiss 

u n i t s below these and fragments having 1 or 2 fewer hydrogen atoms 

than the fragments quoted caused the set of peaks t o extend i n most 

cases over 6 mass u n i t s . No peak corresponding t o a tetramer 

(Ph2CHNBH)^ v/as observed, and the measured mass of the parent molecular 

i o n , 579»3201 , was w i t h i n 2*3 p.p.m. of t h a t c a l c u l a t e d f o r 

(Ph2CHN''''BH)^. The only peaks a t higher mass than t h i s could be 

a t t r i b u t e d t o a trace of i m p u r i t y i n which one boron of the borazine 

had a Ph20N s u b s t i t u e n t . The main feature of the breakdown p a t t e r n , 
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TABLE 11 

Mass spectrum of (Ph2CHNBH)^ 

% Relative 
I n t e n s i t y 

Assignment 

758 0-2 (Ph2CH)^^yi2NCPh2 

579 50 (Ph2CH)^^^^ 

502 100 (Ph2CH)^^B^H^ minus Ph 

425 10 (Ph2CH)^^^^ minus 2Ph 

4l2 1 (Ph_CH) N B H_ 
^ 3 t> D 

3 ^ k (Ph2CH)y^^y^^ minus 3Ph 

335 3 (Ph CH) N B H, minus Ph 2 2 3 3 3 
258 2 (Ph2CH)2N^^H^ minus 2Ph 

a p a r t from l o s s of i n d i v i d u a l hydrogen atoms (probably from boron), 

i n v o l v e d the successive l o s s of phenyl or diphenylmethyl groups l e a v i n g 

the r i n g i n t a c t . The peaks a t tn/^ = I66, 167 and 168 corresponding t o 

Ph20''', Ph2CH''" and P1^2^^2 very intense (diphenyl methane was found 

t o be a major product o f the thermal decomposition o f (Ph2CHIffiH)^, and 

a fxxrther i n t e r e s t i n g f eature of the spectrum a t m̂  <. 255 was the 

appearance of sets of peaks a t h a l f i n t e g e r i n t e r v a l s rsmging from 

masses 251, 212*5 and 174 and of r e l a t i v e i n t e n s i t i e s 1, 8 and 2 

r e s p e c t i v e l y , which c l e a r l y corresponded t o the doubly charged ions 
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r e s u l t i n g from l o s s of 1,2 or 3 phenyl groups from the parent. N a t u r a l l y 

a peak a t nj^ = 180 corresponding t o Ph2C:N which was always a major 

fragment i n the mass spectra of azoraethine d e r i v a t i v e s (Ph_C:NMR_)^ 
d. 2 1 or 2 

was absent. 

Trisdiraethylaminoborane and diphenylketimine reacted a t 150° and 

1 atraos. n i t r o g e n pressure under a r e f l u x condenser w i t h e v o l u t i o n of 

dime thylamine: -

(Me^N)_B + nPh C:NH ^ (Ph^C:N) B(NMeJ, + nMe^NH 

d y d d n d 3-n d 

This r e a c t i o n i s analogous t o the transamination r e a c t i o n of 

aminoboranes i n which a r e l a t i v e l y i n v o l a t i l e secondary amine displaces 

a more v o l a t i l e amine (such as dimethylamine) from an aminoborane, e.g. 

(Me2N)^ + 3R2NH > i^^)^ + 3Me2NH 

Even when an excess of diphenylketimine was used however, the 

i n f r a r e d spectrum of the viscous l i q u i d produced contained bands a t 

2933 and 2865 cm. i n d i c a t i v e of a l i p h a t i c C-H, shovdng t h a t not a l l 

the dimethylamino groups had been replaced by diphenylketimino groups. 

This was confirmed by the d e t e c t i o n (by i n f r a r e d spectroscopy) of small 

q u c i ntitles of dimethylajnine i n the ammonia evolved when samples of the 

m a t e r i a l were heated w i t h concentrated aqueous sodium hydroxide. Moreover, 

the a n a l y t i c a l r e s u l t s were consistent w i t h contamination of the 

trisdiphenylketiminoborane (Ph2C:N)^ by some aminobisketiminoborane 

(Ph2C:N)2BNMe2. The p r o p o r t i o n of t h i s i m p u r i t y could not be determined 

p r e c i s e l y from the a n a l y t i c a l data (carbon analyses may give low 
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r e s u l t s on boron-containing samples), but the r e a c t i o n between t r i s -
dimethylaminoborane and an excess of diphenylketimine i s c l e a r l y a poor 
p r e p a r a t i v e r oute t o trisdiphenylketiminoborane. A f u r t h e r experimental 
d i f f i c u l t y was presented by the need t o remove unchanged diphenylketimine 
which was soluble i n the same solvents ois the boron d e r i v a t i v e . Vacuum 
d i s t i l l a t i o n was also complicated as the diphenylketimine could be 
d i s t i l l e d out of the mixture only slowly a t temperatures low enough t o 
prevent decomposition of the ketimino-borane. 

Trimethoxyborane and diphenylketimine were recovered e s s e n t i a l l y 

unchanged a f t e r being h e l d a t 70° and 1 atmos. dry n i t r o g e n pressure 

under a r e f l u x condenser f o r f o u r hours. The lack of r e a c t i o n i n t h i s 

system was not unexpected i n view of the tendency f o r boron-nitrogen 

l i n k s i n aminoboranes t o be cleaved by r e a c t i o n w i t h water or ailcohols. 

Boron t r i f l u o r i d e and diphenylketimine gave an adduct Ph2C:NH,BF^ 

i n which the co-ordinate l i n k was strong enough t o allow vacuum 

su b l i m a t i o n a t 100-120°. Although t h i s compound decomposed above about 

l 8 0 ° , no evidence was obtained t h a t the decomposition, by e l i m i n a t i o n 

of hydrogen f l u o r i d e , l e d t o diphenylketiminoboranes Ph2C:NBX2. The 

r e l a t e d amine adduct Me2NH,BF^ u n l i k e Me2NH,BCl^, does not thermally 
o 15*1 

decompose u n t i l 250 . 

2Me2NH,BF^ 2^-29^ ) ^(Me2NBF2)2 + Me2NH2BF^ 

Boron t r i c h l o r i d e and diphenylketimine however eliminated hydrogen 
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h a l i d e so r e a d i l y t h a t even a t -78° diphenylketimine hydrochloride v/as 

deposited from a hexane s o l u t i o n of the mixture and no adduct Ph2C:NH,BCl^ 

could be i s o l a t e d . Treatment of boron t r i c h l o r i d e ( I mol.) w i t h 

diphenylketimine (6 mol.) was therefore i n v e s t i g a t e d as a preparative 

route t o trisdiphenylketiminoborane although i t was borne i n mind t h a t 

excess diphenylamine reacted w i t h boron t r i c h l o r i d e t o give Ph2NBCl2 and 

even using f o r c i n g c o n d i t i o n s , i . e . t r i e t h y l a m i n e and higher temperatures 
152 

only one more h a l i d e group was exchanged i . e . 
E t J I 

Ph2NBCl2 + xs Ph2NH ^ ) (Ph2N)2BCl 

A f t e r the r e a c t i o n between 6 raol. of diphenylketimine and 1 mol. of 

boron t r i c h l o r i d e was completed, the diphenylketimine hydrochloride was 

separated by f i l t r a t i o n , and solvent was removed under vacuum leaving 

a r e s i d u a l syrup which had an i n f r a r e d spectrum s i m i l a r t o t h a t of the 

impiire trisdiphenylketiminoborane obtained from diphenylketimine and t r i s -

dimethylaminoborane, but having no bands c h a r a c t e r i s t i c of a l i p h a t i c C-H 

v i b r a t i o n s . The m a t e r i a l was contaminated by traces of c h l o r i d e , however, 

and some diphenylketimine d i s t i l l e d out of a sample which was held a t 

100° under vacuiun. I t appears t h a t , although an excess of diphenyl­

ketimine r e a c t s w i t h e i t h e r trisdimethylaminoborane or boron t r i c h l o r i d e 

t o give t r i s d i p h e n y l k e t i m i n o b o r a n e , the p h y s i c a l p r o p e r t i e s of the product 

(an i n v o l a t i l e viscous, apparently thermally unstable, l i q u i d ) are such ais 

t o cause p r a c t i c a l d i f f i c u l t i e s of separation from unchanged diphenyl­

ketimine and other r e a c t i o n products. 
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The r e a c t i o n s of d i p h e n y l k e t i m i n o l i t h i u m w i t h BX^ (where X = F, CI, Br, I ) 

compounds 

As described above, the attempted preparation of t r i s d i p h e n y l ­

ketiminoborane from diphenylketimine and BX^ (X = NMe2 and Gl) y i e l d e d 

impure trisdiphenylketiminoborane which was impossible t o p u r i f y . 

A much purer sample was obtained from the r e a c t i o n : 

3Ph2C:NLi + BBr^ ^ (Ph2C:N)^ + 3LiBr 

The r e a c t i o n was c a r r i e d out i n ether below 0° using a s l i g h t 

excess of d i p h e n y l k e t i m i n o l i t h i u m , i n order t h a t 

(a) the r e a c t i o n went t o completion. 

(b) no side r e a c t i o n s occurred. 

Consequently only three compounds (Ph2C:N)^B, Li B r and Ph2G:NLi 

remained i n the mixture and of these only trisdiphenylketiminoborane was 

sol u b l e i n toluene. Thus a f t e r the ether had been removed, the mixture 

heated w i t h toluene, f i l t e r e d and cooled the trisdiphenylketiminoborane 

c r y s t a l l i s e d out a t -78°. The product a t room temperature was a viscous 

l i q u i d from which i t was d i f f i c u l t t o remove the l a s t traces of toluene. 

The product was presumed t o be monomeric as molecular weight studies i n 

benzene were u n r e l i a b l e due t o unremoved toluene. An attempted mass 

spectroscopic study of the compoiind gave an intense peak a t 18O 

(Ph2C:N"*') and a breakdown p a t t e r n of t h i s u n i t . 

The i n f r a r e d of (Ph20:N)^ gave a c h a r a c t e r i s t i c absorption i n the 



- 1% -

C=N s t r e t c h i n g r e g i o n a t 1667 cm."^ This high frequency i s due t o the 
t e r m i n a l Ph2C:N u n i t although some d r i f t o f electrons i n t o the B-N 
bond would be expected and consequently the frequency i s lower than the 
t e r m i n a l C=N o f [(Ph2C:N)^Al]2 which shows two types o f C=N s t r e t c h i n g 
v i b r a t i o n s , one t e r m i n a l and one b r i d g i n g . 

The proton magnetic resonance spectrum o f the t r i s d i p h e n y l ­

ketiminoborane as a d i l u t e s o l u t i o n i n hexadeuterobenzene was recorded 

w i t h t e t r a m e t h y l s i l a n e ( r Me^Si = 10*0^ p.p.m.) as i n t e r n a l reference, 

and found t o consist o f two m u l t i p l e t s a t Y = Z'l^J p.p.m. ( r e l a t i v e 

i n t e n s i t y 2) and r = 2*83 p.p.m. ( r e l a t i v e i n t e n s i t y 3), a t t r i b u t a b l e 

t o the ortho and meta/para sets o f protons which would again be expected 

t o be magnetically d i f f e r e n t i n these d e r i v a t i v e s . 

The r e a c t i o n used t o prepare trisdiphenylketiminoborane was used 

t o prepare the monosubstituted d e r i v a t i v e s 

Ph2C:NBX2 (where X = F, C I , Br and I ) 

Ph^CiNLi + BX^ -4 Ph2C:KBX2 + LiX 

I n a l l cases the r e a c t i o n proceeded smoothly i n ether a t temperatures 

less, than 0°. When the r e a c t i o n had reached completion the s o l u t i o n 

was c o l o u r l e s s and a copious y e l l o w p r e c i p i t a t e o f Ph2C:NBX2 mixed w i t h 

l i t h i u m h a l i d e was obtained. A f t e r removal o f the ether solvent, 

toluene was added, r e f l u x e d , f i l t e r e d and allowed t o cool. The dibromo 

d e r i v a t i v e c r y s t a l l i s e d as p l a t e s , the d i c h l o r o as needles, the d i -
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iodo was too soluble to c r y s t a l l i s e from toluene and the difluoride was 
insoluble. Pure diphenylketiminoboron difluoride Ph2C:NBF2 proved to be 
inaccessible by t h i s method especially since the compound did not 
sublime at temperatures as high as 2 ^ ° . Consequently another route 
was t r i e d . The exchange reaction between boron t r i f l u o r i d e and t r i s -
diphenylketiminoborare proved successful: 

(Ph2C:N)^ + 2BF^ ) 2Ph.^G:mF^ 

The reaction proceeded i n ether at ca, 60° and the difluoride 

Vh2^'^^2 precipitated, A mechanism for t h i s type of reaction has 
155 

been proposed. I t i s suggested that i n i t i a l l y an addition product 

i s formed which then rearranges by an intermolecular process to give 

(Ph2C:N)2BX and Ph2C:NBX2. Then (Ph2C:N)2BX can s i m i l a r l y react with 

another molecule of BX^ to give two molecules of Ph^CiNBX^ 
Ph 
I 
C-Ph 

\ ^ 
(Ph^C:N),B + BX, > ^ B - N 

2 3 5 1 
\ 

X X 

^ B - X + Ph^CiNBX^ 

The molecular complexity of the derivatives Ph^CrNBX^ has been 

investigated by mass spectroscopic studies, Tables 12, 13 and 1^ and 

where possible cryoscopic molecular weights have been obtained i n benzene. 
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The dichloride, dibromide and di-iodide are apparently dimeric i n the 
gas phase or benzene solution. The mass spectra of the dichloride and 
the dibromide show peaks corresponding to fragments with the (BN)2 ring 
i n t a c t . Neither spectrum contained a peak corresponding to the parent 
ion, the highest being due to loss of halide ion or phenyl group. I n 
both cases the peak corresponding to the monomer was intense as were the 
peaks corresponding to monomer l e s s halide and phenyl group. Another 
in t e r e s t i n g feature of both spectra wais that intense peaks could be 
assigned to the ions PhBBr^, PhBCl'*' and Ph^B"*", which must resu l t from 
the transfer of a phenyl group from carbon to boron. The dibromide and 
di-iodide were dimeric i n benzene but the dichloride was too insoluble 
for r e l i a b l e measurements to be obtained. 

The mass spectrum of diphenylketiminoboron difluoride was quite 

different to those of the dichloride and dibromide. No peaks assignable 

to a dimeric molecule or dimer l e s s fluorine or phenyl groups were 

obtained. Peaks corresponding to the monomer and breakdown units there­

of were obtained as well as msisses containing the unit iFh^CzN) 

Since (Ph2C:N)BF2 i s i n v o l a t i l e i t i s unlikely to be raonomeric and i t s 

behaviour on heating i . e . shrinking over the temperature range 255-286° 

would appear to be consistent with a polymer breaking up into smaller 

u n i t s . 

Peaks resulting from a transfer of a phenyl group from carbon to 

boron were again obtained although of a greater varietj^'and intensity 
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Table 12 

Mass spectroscopic r e s u l t s for Ph2C:NBCl2 

/e Relative 
inten s i t y 

Assignment 

^ 7 42 (Ph2C:N)2B2Cl^ 

^52 6 (Ph2C:N)2B2Cl2 

^ 6 11 (Ph2C:N)2BCl 

371 8 (Ph2C:N)2B 

3^2 12 Ph2C:NB2Cl^ 

307 8 Ph2C:NB2Cl^ 

261 kz Ph2C:NBCl2 

226 Ph^CcNBCl 

184 ¥f PhCNBCl2 

180 100 Ph2C:N 

165 21 Ph2B 

123 51 PhBCl 

77 6k Ph 

A l l masses quoted rel a t e to fragments i n which a l l the borons are 

11 35 B and chlorines are CI, 
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Table 13 

Mass spectroscopic r e s u l t s for Ph^CzNBBr^ 

/e Relative 
intensity 

Assignment 

621 0.2 (Ph2C:N)2B2Br^ minus Ph 

6l9 0.1 

^50 5 (Ph20:N)2BBr 

371 32 (Ph2C:N)2B 

3^9 18 Ph^CiNBBr^ 

272 100 PhCNBBr2 

270 92 Ph C:NBBr 
2 

180 19 Ph2CN 

169 38 BBr2 

167 41 PhBBr 

1l4 16 PhCNB 

88 8 PhB 

77 43 Ph 

11 

A l l masses quoted relate to fragments i n which the borons are B and 

79 
the bromines are Br. 
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Table ^k 

Mass spectroscopic r e s u l t s for Ph2C:NBF2 

/e Relative 
inten s i t y 

Assignment 

551 18 (Ph2C : N ) ^ 

17 (Ph2C:N)2BPh 

390 21 (Ph2C:N)2BF 

371 100 (Ph2C:N)2B 

313 13 (Ph2C:N)2BF minus Ph 

287 5 PhB(F)NCPh2 

268 13 PhBNCPh2 

229 43 Ph2C:NBF2 

210 31 Ph2C:NBF 

180 80 Ph2C:N 

165 58 Ph^ 

152 65 PhCNBF2 

126 12 PhBF2 

107 31 PhBF 

77 50 Ph 

68 3 B F 5 

49 21 BFo 2 

11 
Masses quoted relate to fragments i n which a l l the borons are B , 
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than previously observed, of particular i n t e r e s t i s a peak assignable to 
(Ph20:N)^ which was not observed i n the mass spectrum of (Ph2C:N)^. 

The C:^ stretching vibrations are given i n Table I5 and i t can be 

seen that there i s a general trend i n that vC=N decreases i n the sequence 

Me ") F > CI ) Br. This type of trend has previously been discussed 

i n terms of changing mass and electronegativity of the group attached to 

the metal atom. 

Table 15 

Infrared spectroscopic data for diphenylketimino derivatives 
of boron. 

-1 -1 
Compound vC=N cm. Compound vC:N cm. 

Ph2C:NBMe2 I662 Ph2C:NBCl2 1590 

Ph2C:NBF2 l620 Ph2C:NBBr2 I586 

A l l figures relate to Nujol mulls. 
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Reactions between oximes and organo derivatives of Group I I I elements. 

Oximes RR'C:N0H have long been known to cleave a l k y l groups from 

reactive organometallic compounds H^X^^i presumably forming oxLmates 
154 

RR'C:N0MX^. For example, Grignard reagents generally give materials 

RR'C:NOMgX which may subsequently rearrange or undergo further reaction 

to give ultimately on hydrolysis such widely di f f e r i n g products as 
155 154 ethylene imines RCHCHR"NH or acid amides RCONHR. ̂  The oxyazomethine 

derivatives RE'C:NOMgX i n i t i a l l y formed i n these reactions have however 

received l i t t l e attention. More i s known about oxime derivatives of 

zi n c . Zinc d i a l k y l s with acetoxime i n ether give successively 
(Me-C:NOZnR) and [(Me^C:NO)^Zn] .^^'''^^ The derivative (Me^C:NOZnMe), 

d n d d m 2 4-
i s tetrameric i n benzene solution and i s thought to have a cage structure 

93 
composed of two • cross-linked (ZnON)2 six-membered rings. •'̂  

I n group I I I , boron halides l i k e many other Lewis acids catailyse the 
157 

Beckmann rearrangement of oximes to amides. Diborane reduces oximes 
to hydroxylamine derivatives i n a reaction which may well involve 

intermediates (ER'C:N0BH2)^ which however apparently undergo hydrc 
158 

too r e a d i l y to allow t h e i r i s o l a t i o n : -
CBH ] DBH ] 

RR'C:NOH ^ ^ [RR'CrNOBH ] ^ — ^ [ R R ' C H N O B H ] 

H"*" or OH" 

RR'CHNHOH 
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Compounds retaining an oxyazomethine grouping attached to boron 

have been isolated from reactions between amidoximes and boronic acids 
159 

or anhydrides, which afford 1,3,5,2-oxadiazaboroles:-

^NOH (PhBO) RC=Nv 
R-C^ ^ 0 

^NHR« OH" R ' N - B ^ 

Ph 

Recently acetoxime derivatives (Me2C:N0MMe2)^ of boron, aluminium, 

gallium and thallium and the related lithium derivative (Me2C:N0Li)^ 

have been prepared by the cleavage of methane from the methyl derivative 
127 

of the appropriate element using acetoxime:-

Me2C:N0H + Me^ ^ CH^ + % (Me2C:N0MMe2)^ 

The related siliconated ketoxime derivatives have been prepared 
l60 

by the following reactions:-

'3 
H NSiR" 

RR'C:NOH ^ — ^ RR«C:NOSiR!' + NH, 

ZnCl 
RR'C:NOH + HSiR^ ^ RR'C:NOSiR^ + 

The purpose of a study of the products of the reactions between 

pyridine-2-aldoxirae and Group I I I a l k y l s , was to examine the p o s s i b i l i t y 

of obtaining monomeric derivatives XEI rather than the previously 

obtained s i x membered MONMON ring X I I I , 
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-H 
R-

R R 
0 — M 
/ \ 

R 
C=N 

R 
N=C, 
/ R 

n i l 

Pyridine -2-aldoxime XIV i s obtainable only i n the syn form. 

XIV 

161 Since both isomers of pyridine-2-aldoxime methiode'°' are known and one 

form can be converted to the other upon warming under conditions s l i g h t l y 

l e s s vigorous than those required for a Beckmann rearrangement i , e , 

reaction with a weak acid, rearrangement of the syn to the anti form 

could e a s i l y occur and thence formation of X I I . 

Pyridine -2-aldoxirae reacted with Mê M CM = Al, Ga, In) at - 7 8 ° 

i n toluene giving a deep yellow solution possibly due to the formation 

of a complex C^2f^CH:N0H,MMe^ which on warming eliminated methane, V/ith 

trimethylthallium a white s o l i d precipitated which eliminated methane 
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at ca. 1 3 ° . By contrast trimethylborane showed no sign of reaction 

with p3rridine-2-aldoxime at room temperature and reaction occurred to 

give the desired product C^^NCHiNOBMe^ only a f t e r a toluene solution 

of pyridine -2-aldoxime with trimethylborane was heated to 95° i n a sealed 

tube. The conditions for t h i s reaction were rather inportant* as 

heating to temperatures greater than 95° produced a red viscous material 

from which i t was in^ossible to i s o l a t e C^I^NCH:N0BMe2« 

The G-roup I I I derivatives described above were a l l moisture 

sensitive c r y s t a l l i n e materials which afforded pyridine-2-aldoxime on 

mild hydrolysis. I t i s clear therefore that t h e i r preparation does not 

involve simultaneous Beckmann rearrangement of the oxime, and that they 

should be formulated (C^^CHcNOMR^)^ not [ H C ( ( M R 2 ) : N C ^ ^ N J ^ . 

The boron confound C^^KCH:N0EMe2 was found to be monomerio i n 

benzene solution. Derivatives having (M0N)2 six-membered rings are 

already well known i n the case of boron. F i r s t isolated from among the 
162 

products of reactions between n i t r i c oxide and trialkylboranesj they 
163 

are r e a d i l y prepared from hydroxylamines and borinic acids:-

RgNCH + R»BOH — ^ (R2N0BRp^ + 

I t i s i n t e r e s t i n g that these derivatives are normally dimeric 

(n = 2) unless the bulk of the groups R and R' prevents association. 

Cryoscopic studies on benzene solutions of (MegC:N0BMe2)^ indicated an 

average value of n = 1*3 — 1*1). for these solutions, although i t was 
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127 thought to be diraeric i n the s o l i d phase. Here i t was thought that 
the difference between alkylaminoxy and alkylideneaminoxy derivatives 
was related to the r e l a t i v e donor strengths of amines R^J and azomethines 
R2C:NR ( R ^ > R2C:NR). 

Since the shape of C^^NCH:N0BMe2 i s such that s t e r i c interference 

of the organic groups does not hinder association but nevertheless the 

molecule was found to be monomeric, the increaised s t a b i l i t y i n the 

monomeric nature of the pyridine-2-aldoxime derivative may be due to i t s 

existence i n the form:-

H 

Me^i I 
B N 

Me^ 

XV 

Cryoscopic studies on benzene solutions of the aluminium indium 

and thallium compounds confirmed the i r dimeric state of association i n 

solution. The gallium compound (C^2^NCH:NOGaMe2)jj however was found to 

have an average value of n = 1*5 and here i t i s thought that a monomer-

dimer equilibrium i s operating i n solution. 

Nuclear Magnetic Resonance Spectra.- I t has previously been reported 

that syn-anti isomers of aldoximes can be distinguished by the position 
164 

of the aldehydic hydrogen resonances. The syn isomer shows a C-H 
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resonance at T = 1*3 I . 9 p.p.m. and the anti isomer at r = 2*2 

2.8 p.p.m. r e l a t i v e to tetramethylsilane (T = 10*0^ p.p.m.). Pyridine-

2-aldoxime i t s e l f has One aldehydic proton resonance at Y = 1*69 p.p.m. 

which i s consistent with i t being solely the syn isomer. The res u l t s 

for the metal derivatives Ĉ Ĥ NCH:N0MR2 are l i s t e d i n Table I6 together 

with assignments for the peaks. 0\ri.ng to the low s o l u b i l i t y of the 

dimethyl metal derivatives of pyridine-2-aldoxime the position of the 

aldehydic proton resonance could not be determined with any certainty, 

except for gallium which showed th i s derivative to be i n the syn form. 

The diethylalTiminium derivative of pyridine-2-aldoxime C^^NCH:N0AlEt2 

prepared i n the same manner as the dimethyl compound, v/as much more 

soluble and a strong aldehydic proton resonance indicated the syn form. 

Furthermore syn benzaldoxime was found to react vdth trimethylaluminium 

to give methane and G-dimethylaluminium syn benzaldoxime and so i t would 

appear l i k e l y that the derivatives (C^2(.NCH:N0MMe2)2 (where M = Al, I n 

and Tl) are syn isomers. 

The absorption attributable to the metal-attached methyl groups 

appeared as the expected singlet i n a l l spectra except i n the case of the 

thallium compound i n carbon tetrachloride solution for which ^ ^ ^ T l -

spin-spin coupling gave r i s e to a c h a r a c t e r i s t i c a l l y widely spaced doublet. 

The magnitude of J ^ ^ ^ T l - ''H (392 c/sec.) for th i s compound i s of the 

order t y p i c a l of organo-thallium compounds. 
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Table l 6 

Proton magnetic resonance spectroscopic data. 

Compound 

CJ,NCH:NOH 
- 5 h 
C^^NGH:N0BMe2 
C^^NCH:N0AlMe2 
C^^NCH:N0AlEt2 
C^H^NCH:N0GaMe2 
C^^NCH:N0InMe2 
C^^NCH:N0TlMe2 
syn.CgH^CH:NOH 
syn,CgH^CH:N0AlMe2 
Me2C:N0BMe2 
Me2C:N0AlMe2 

Me2C:N0GaMe2 

Me2C:N0InMe2 

Me2C:N0TlMe2 

Solvent 

Acetone 
d.Benzene 
d.Benzene 
d.Benzene 
d.Benzene 
d.Benzene 
CCl^ 
d.Benzene 
d.Benzene 
d.Benzene 
d.Benzene 

d.Benzene 

d.Benzene 

d.Benzene 

C-H 

1»69 

1-51 

1.69 

1.^9 

M-R, 

9-39 

10-13 

9 - 0 5(t), 9-98(q) 
9.68 

9.87 

9'06(d) ( J = 592c.sec^ 

10.74 

9.64 
10.50 

10.10 

10.16 

9.00(d) ( J = 378c.sec"'') 

d, doublet, t, t r i p l e t , q, quartet - a l l other peaks singlets. 
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I t has previously been observed that an increase i n co-ordination 
number of a compound of the type (Ph2C:NZnMe)2 resulted i n a decrease 
i n the frequency of the Zn-CH^ attached proton resonances. Table l 6 
shows that the M-CĤ  attached protons of (C^^NCH:N0MMe2)^ are further 
downfield than would be expected when compared with related derivatives. 
This could be due to a change i n co-ordination number of the metal by 
int e r a c t i o n with the pyridine ring nitrogen. This evidence i s interpreted 
as indicating that the most probable structure of the derivatives 
iC^l^iCE'.mme^)^ (M = Al, Ga, I n and Tl) i s : -

:c=N 
M — 0 

Me Me 

XVI 

This structure (XVI) incorporates two types of heterocyclic ring 

as well as the pyridine rings. One i s the MONMON ring vMch i s thought 

to e x i s t i n a l l associated metail derivatives of oximes and the other i s 

a f i v e raembered rin g which i s thought to be very common among transition 
166 

metal derivatives of pyridine -2-aldoxime. For example, the stnicture 
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of the complex of pyridine-2-aldoxime with metal chloride i s given 
167 below. 

N 

H 

2 ^Co* 
^ N ^ ^ OH2 

H- N 

2+ 

2C1 

Thus the dimer structure XVI can be thought of as being formed, 

either by:-

a. elimination of alkane, formation of MONMON ring and finally-

co-ordination of pyridine ring nitrogen. 

b. formation of complex XVII,elimination of alkane and f i n a l l y 

formation of MONMON ring. 

N- / H 

Me-M ^ 
/ \ 

Me Me 

XVII 
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0-Dimethylaluminium pyridine-2-aldoxime v/as found not to react 
vri-th methyl iodide which suggests that the pyridine ring nitrogen i s co-
ordinatively saturated. Furthermore a scale model of t h i s compound having 
structure XVIhas v i r t u a l l y no s t r a i n and the pyridine ring nitrogen atoms 
are i n close proximity to the metal atoms. 

Infrared Spectra.- Several bands i n the spectrum of pyridine-2-aldoxime 
168 

have been assigned including the a c y c l i c C=N stretching vibration 
-1 

at 1520 cm. This low value i s thought to be the r e s u l t of ionisation 

of the pyridine-2-aldoxime (HPOX) . 

/ H 
W C 

N 
\. OH 

II 
N \ -

0 
H 

N 
H 

N 
V 

For confirmation the potassiiun s a l t of pyridine-2-aldoxime was 

found to have an a c y c l i c C=N stretching vibration at 1517 cm, ^ The 

inf r a r e d spectra of the pyridine-2-aldoxime derivatives contain a 

band i n the region 1554 - 1505 cm. which may be sissigned to the 

a c y c l i c C=N stretching vibration which decreases progressively as the 

atomic weight of the metal increases. The frequencies of these bands 

vC:N are l i s t e d i n Table 17 together with the pyridine ring vibrations 
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Table 1? 

Infrared spectroscopic data for compounds {C^^^CEimme^ 

Compoxmd vC:N(cm."^)acyclic Pyridine ring bands 

HPOX 1520 1597 1568 1̂ 72 iVlO 

Me2BP0X 155^ 1615 1583 1̂ 92 1HI 

Me^AlPOX 1552 1605 1582 1^3 1H9 

Me^GaPOX 

Me2lnP0X 

Me^TlPOX 

1545 1604 1579 1 ^ 1̂ 36 

1537 1600 1581 1̂ 76 1436 

1505 1590 1570 1472 1439 



- 132 -

i d e n t i f i e d by making use of the data that 2-substituted pyridine ring 

bands are expected at 1615-I585, 1576-1568, 1477-1^5 and 1^38-1428 cm."'' 

and 2-substituted pyridine N-oxide ring bands are expected at l 6 ^ - l 6 0 0 , 

1577-1557, 15^-1^0 and 1445-1^25 cm." The most intense peak 

i n pyridine-2-aldoxime and i t s derivatives can be assigned to the N-0 

stretching vibration and the frequencies of these bands are l i s t e d i n 

Table I8 together with bands a r i s i n g from vibrations of groups attached 

to the Group I I I elements. The bands attributable to the M-CĤ  symmetric 

Table I8 

Infrared spectroscopic data for compounds (C^^NCHcNOMMe^)^ 

Compound N-0 S t . M-CĤ  
(sym.) 

M-CH, 3 
rock stretch(asym.) 

M(CH^)2 
stretchCsym.) 

HPOX 982 

Me^BPOX 1099 I29OVS 939m 1163m 793m 

1093 1186m 72^h 6 9 % s 563VW 

Me2GaP0X 1085 1198m 731VB 589s 535m 

1089 1l60m 703s 516s 

Me2TlP0X 1055 II5IW 791m 543m 

stretching vibration are i n s i l l cases rather weak or non-existent and 

are therefore further indication of interaction betvreen the pyridine 
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r i n g nitrogen and metal atom. The broad band at 822 cm. i n the 
spectrum of pyridine-2-aldoxime which has been aissigned to an out of 
plane wag of 0-H i s naturally missing from the spectra of the metal 
derivatives. 

I t i s concluded that the aluminium, indium and thallium derivatives 

(C^2j.^CH:NOMMe2)2 e x i s t as dimeric species probably having structure 

XVI i n solution and c r y s t a l phases; that the boron compound 

C^2f^CH:NOBMe2 i s monomeric i n solution and possibly i n the c r y s t a l 

phase, having structure XV and that the gallium compound i s probably 

dimeric i n the c r y s t a l phase but partly dissociates i n solution. 



EEPEEENCES 



- 134 -

1. A.B. Burg and C.L. Randolph, J . Amer. Chem. Soc., 1949 > 71 > 32f.51« 

2. B.M. Mikhoulov and N.S. Fedotov, Zh. Obsch. Khim., 1962 , 32 , 93. 

3. K. Niedenzu and J.W. Dawson, J . Amer. Chem. Soc., 1959J 81 , 5553. 

2j.. C.E. Erickson and F.C. Gunderloy, J . Org. Chem., 1959* 2 .̂, 1 l6l . 

5» K. Niedenzu and J.W. Dawson, J . Amer. Chem. Soc., 1960, 82, ̂ 223. 

6. &.E. Coates and R.A. Whitcombe, J . Chem. Soc., 1956, 3351* 

7. A.J. Banister, N.N. Greenwood, B.P. Straughan and J . Walker, 

J . Chem. Soc., 1961̂ ., 995* 

8. H.J. Becher and J . Goubeau, Z. anorg. Chem., 1952, 268, 133. 

9» O.C. Musgrave, J . Chem. Soc., 1956, U05» 

10. R.J. G i l l e s p i e , J . Amer. Chem. Soc., 1960, 82, 5978. 

11. A.B. Burg and R.I. Wagner, J . Amer. Chem. Soc., 1953> 75» 3872. 

12. N. Davidson and H.C. Brown, J . Amer. Chem. Soc., ^%2, 6!̂ , 316. 

13. O.T. Beachley and G.E. Coates, J . Chem. Soc., 1965> 322̂ 1. 

14. E. Wiberg, A. Bolz, and K. Buchheit, Z. anorg. Chem., 1948, 256, 285. 

15. L.M. Trefonas and W.N. Lipscomb, J . Amer. Chem. Soc., 1959> 81, U.h35', 

A.B. Burg, i b i d . , 1957> 79» 2129. 

16. J.K. Ruff and M.F. Hawthorne, J . Amer. Chem. Soc., 196O, 82, 2^1^.^, 

17. N.N. Greenwood, A. Storr and M.G.H. Wallbridge, Inorg. Chem., 1963» 

2, 1036i 

18. N.N. Greenwood, E.J.F. Ross and A. Storr, J . Chem. Soc., ( A ) , 1966, 

707. 



- 135 -

19. P.G-.A. Stone, Chem. Rev., 1958, 58, 101. 

20. H.C. Brown and G-.K. Barbaras, J . Amer. Chem. Soc., 1947> 69, 1137. 

21. H.C. Brown and M. G-ernstein, J . Amer. Chem. S e e , 1950, 72, 2926. 

22. D.E. McLaughlin, T. Tamres, S. Searles, J r . and F. Block, 

J . Inorg. Nuc. Chem., 196I, 18, 118. 

23. T.D. Coyle and F.G-.A. Stone, J . Amer. Chem. S e e , 196I, 63, 2̂ 138. 

24. W.A.&. Craham and F.G-.A. Stone, J . Inorg. Nuc. Chem., 1956, 3» 

25. K.W. Bodder, S.G-. Shore and R.K. Bunting, J . Amer. Chem. Soc., 1966, 

88, 1^96. 

26. I . e . Bissot and R.W. Parry, J , Amer. Chem. Soc., 1955* 77» 3481. 

27» A.B. Burg and J.L. Boone, J . Amer. Chem. Soc., 1956, 78, 1521. 

28. E. Wiberg and K. Hertwig, Z. anorg. Chem., 1947, 255> 141* 

29. E. Wiberg and K. Buchheit, F.I.A.T. Review of German Science, 1948» 

Inorganic Chemistry, Vol. 1, p.218. 

30. D. Ulmschneider and J . Goubeau, Chem. Ber., 1957> 90, 17O. 

31. G-.E. Coates and J.G-. Livingstone, J . Chem. Soc., I 9 6 I , 1000. 

32. P.A. Ba r f i e l d , M.P. Lappert and J . Lee, Proc. Chem. Soc., 196I, 421* 

33. L . J . Bellamy, W. Gerrard, M.F. Lappert and R.L. Williams, J . Chem. 

Soc., 1958, 2412. 

31u. H.J. Becher and H. Diehl, Chem. Ber., 1965, 98, 527. 

35. R.E. Hester and C.W.J. Scaife, Spectre, chim. Acta., 1966, 22, 755. 

36. M.F. Hawthorne, Tetrahedron, 1962, 17, H?. 



- 136 -

57. J.E. Lloyd and K. Wade, J . Chem. Soc., 1964, 325, 162̂ 9. 

38. A.J. L e f f l e r , J . Inorg. Chem., 1964, 3j 145. 

39. J.C. Sheldon and B.C. Smith, Quart. Rev., 196O, I4 , 200. 

40. P.I. Paetjold and W.M. Simson, Ang. Chem., 1966, 5> 8^2. 

41. W. Gerrard, "The Organic Chemistry of Boron", Academic Press, 196I. 

42 . A. Kreutzberger and E.C. F e r r i s , J . Org. Chem., 1965» 30, 36O. 

43. J.K. Ruff, J . Org. Chem., 1962, 27, 1020. 

W.D. English, A.L. McClosky and H. Steinberg, J . Amer. Chem. Soc., 

1961, 83, 2122. 

45. J.E. Burch, W. Gerrard and E.F. Mooney, J . Chem. Soc., 1962, 2200. 

46. J.A. Semlyen and P.S. Flory, J . Chem. Soc., ( A ) , I966, 19I. 

47. H.J. Becher, Z. anorg. Chem., 1956, 287, 235 and 285. 

48 . E. Krause and P. Dittmar, Chem. Ber., 1930, 63, 2^0. 

49. A.W. Laubengayer, K. Wade and G. Lengnick, Inorg. Chem., 1962, 1, 632. 

50. W.P. Neuman, Annalen., 1963, 667, 1. 

51. T. Mole, Aust. J . Chem., 1963, I 6 , 801. 

52. R. E h r l i c h , A.R. Young I I , B.M. Lichstein and D.D. Perry, Inorg. 

Chem., 1963, 2, 65O. 

53. N.R. Fet t e r and D.W. Moore, Canad. J . Chem., 196^, 42, 885. 

54. A.R. Young I I and R. E h r l i c h , Inorg. Chem., 1965, 4 , 1358. 

55. G. Bahr, F.I.A.T. Review of German Science, 1948, Inorganic Chemistry, 

Vol. 1, p. 155. 



- 137 -

56. A.W. Laubengayer, J.D. Smith and G.G. E h r l i c h , J . Amer. Chem. Soc., 
1961, 83, 542. 

57. A. Cohen, J . Gilbert and D. Smith, J . Chem. Soc., 1965, 1093. 

58. J.K. Ruff, J . Amer. Chem. Soc., 1961, 83, 1798. 

59' E. Wiberg and A. May, Z. Naturforschg., 1955> 10b, 229. 

60. K. Dehnicke, J . Strahle, D. Seybold and J . Muller, J . Organometal. 

Chem., 1966, 6, 298. 

61. G.K.J. Gibson and D.W. Hughes, Chem. and Ind., 1964, 544. 

62. J.E. Lloyd and K. Wade, J . Chem. Soc., 1965, 2662. 

63. J.R. Jennings, J.E. Lloyd and K. Wade, J . Chem. Soc., 1965, 5083. 

64. O.T. Beachley, G.E. Coates and G. Kohnstam, J . Chem. Soc., 1965> 

3248. 

65. R. E h r l i c h , A.R. Young I I , B.M. Lich s t e i n and D.D. Perry, 

Inorg. Chem., 1964, 3» 628. 

66. J . I . Jones and W.S. McDonald, Proc. Chem. Soc., 1962, 366. 

67. T.R.R. McDonald and W.S. McDonald, Proc. Chem. Soc., 1963, ^82. 

68. E.&. Hoffman, Annalen., 196O, 629, IO4. 

69. T. Mole and R. Surtees, Austral. J . Chem., 1964, 17» 96l. 

70. F. Runge, W. Zimmermann, H. P f e i f f e r and I . P f e i f f e r , Z. anorg. 

• Chem., 1951» 267, 39. 

71. H. Oilman and R.G. Jones, J . Amer. Chem. Soc., 1946> 68, 517. 

72. A. Lieb, M.T. Emerson and J.P. Oliver, Inorg. Chem., 1965, 4J I825. 

73. ff.E. Coates, J . Chem. Soc., 1951, 2003. 



- 138 -

7k. G.E. Coates and R.A. Whitcombe, J . Chem. Soc., 1956, 3351. 

75. O.T. Beachley, G.E. Coates and G. Kohnstam, J . Chem. S o c , 1965, 3248. 

76. J . Muller and K. Dehnicke, J . Organometall, Chem., 1967, 7, 1. 

77. J.E. Jennings and K. Wade, J . Chem. Soc. (A), 1967, i n press. 

78. G.E. Goates and R.G. Hayter, J . Chem. S o c , 1953, 2519. 

79. E.G. Menzies and A.R.P. Walker, J . Chem. S o c , 1934, 1131. 

80. E.G. Menzies, J . Chem. S o c , 1928, 1288. 

81. B. Bogdanovic, Angew Chem., 1965, 4, 954. 

82. G.E. Coates and E.N. Mukherjee, J . Chem. Soc., 1964, 1295. 

83 . A. Duncanson, W. Gerrard, M.F. Lappert, H. PyszoTa and 

R. Shafferman, J . Chem. Soc., 1958, 3652. 

84. E. Frankland, Annalen, l859, 111, 62. 

85. K.H. Thiele, Z. anorg. Chem., 1962, 319, I83. 

86. Idem., I b i d . , 1963, 322, 71. 

87. N.I. Sheverdina, L.V. Abramova and K.A. Kocheskov, Doklady Akad. 

Nauk U.S.S.R., 1959, 128, 320. 

88. K.H. Thiele, Z. anorg. Chem., I963, 325, 156. 

89. J.G. Noltes and J.W.G. van den Hurk., J . Organometall. Chem., 

1965, 3 , 222. 

90. J.G. Noltes and J.W.G. van den Hurk., J . Organometall. Chem., 1964, 

1, 377. 
91. G.E. Coates and D. Ridley, J . Chem. S o c , 1965, 187O. 

92. J.G. Noltes, Rec. Trav. chim., I965, 84, 126. 



- 139 -

95. &.E. Coates and D. Ridley, J . Chem. Soc. (A), 1966, IO64. 

94. H. G-ilman and K.E. Marple, Rec. Trav. chim., 1936, 55, 133. 

95. E. Weiss and E.A.C. Lucken, J . Organometal. Chem., 1964, 2, 197. 

96. H. Dietrich, Acta. Cryst., 1963, I 6 , 68I . 

97. M. Weiner, G-. Vogel and R. West, Inorg. Chem., 1962, 1, 654. 

98. D. Margerison and J.P. Newport, Trans. Farad. Soc., 1963 , 59 , 2058. 

99. T.L. Brown, R.L. Gerteis, D.A. Bafus and J.A. Ladd, J . Amer. Chem. 

Soc., 1964, 86, 2135. 

100. M. Weiner, G-. Vogel and R. West, Inorg. Chem., 1962, 1, 654. 

101. G-. Hartwell and T.L. Brown, Inorg. Chem., I966, 5 , 1257* 

102. M.S. Bains, Canad. J . Chem., 1964, 42 , 945. 

103. P.J. Wheatley, J . Chem. Soc., I96O, 427O. 

104. H. Weingarte and W.A. White, J.. Amer. Chem. Soc., 1966, 88, 2885. 

105. Lithium Corporation of U.S.A., B u l l e t i n 207-563, May 1963. 

106. U. Wannagat and H. Niedergrum, Chem. Ber., I 9 6 I , 94» 1540. 

107. O.F. Beumel J r . , and R.F. Harr i s , J . Org. Chem., 1964> 29, 1872. 

108. H.D. Rausch, F.E. Tibbetts and H.B. Gordon, J . Organometal. Chem., 

1966, 5 , 493. 

109. J . Huet, B u l l . Soc. Chim. Prance, 1964? 952. 

110. R.T. Sanderson, "Vacuum Manipulation of V o l a t i l e Compounds", 

John Wiley and Sons Inc., N.Y., 1948. 

111. H. Gilman and M.M. Barnett, Rec. Trav. Chim., 1936, 55, 563. 



- i4o -

112. K.A. Kozeschkow, A.N. Nesmeyanov and W.I. Potrosov, Chem. Ber., 

1934, 67, 1138. 

113. T. Wartick and H.I. Schlesinger, J . Amer. Chem. Soc., 1952, 75, 835. 

114. T. Renner, Angew. Chem., 1957, 69, 478. 

115. P.L. Pickard and T.L. Tolbert, J . Org. Chem., 1961, 26, 4887. 

116. A.I. Vogel, W.T. Cresswell, G.H. Jeffrey and J . Leicester, 

J . Chem. S o c , 1952 , 5 l 4 . 

117. E. Wiberg and K. Schuster, Z. anorg. Chem., 1933, 77, 213. 

118. R.W. Layer, Chem. Eev., 1963, 63, 4^9. 

119. K. Wade and B.K. Wyatt, unpublished observations. 

120. B. Bogdanovic, Angew.Chem. Internat. Edn., 1965, 4, 954. 

121. H.M.M. Shearer and C.B. Spencer, personal communication. 

122. J.G. Noltes and J . Boersma, J . Organometal. Chem., 1967, 7, 6. 

123. F. Schindler, H. Schmidbaur and U. Kruger, Angew. Chem. Internat. 

Edn., 1965, 4, 876; H.M.M. Shearer and C.B. Spencer, 

Chem. Comm., 1966, 194. 

124. G.W. Adaunson and H.M.M. Shearer, personal communication. 

125. J . Boersma and J.G. Noltes, Tetrahedron Letters, 1966, l 4 , 1521. 

126. E. Frankland and J . Evans, J . Chem. S o c , I88O, 37 , 563. 

127. J.E. Jennings and K. Wade, unpublished observations. 

128. J . Hofmann, Chem. Ber., 1868, 1, 198. 

129. A.H. Cook and D.G. Jones, J . Chem. S o c , 1941, 278. 

130. R.M. Anker and A.H. Cook, J . Chem. S o c , I 9 4 l , 323. 



- 141 -

131. S. Pinner and F. Klein, Chera. Ber., 1878, 11, 764. 

132. W.Z. Heldt, J . Organoraetal. Chem., 1966, 6, 292. 

133. S. Pasynkiewicz and V/. Kuran, Roczniki Ghem., 1965, 39, 1199. 

134. A.L. Allr e d and E.G. Rochow, J . Inorg. Nucl. Chem., 1958, 5 , 264. 

135. G.E. Coates and A.H. Fishwick, personal communication. 

136. J.M. Bruce, B.C. Cutsforth, D.W. Farren, F.G. Hutchinson, 

F.M. Rabagliati and D.R. Reed, J . Chem. Soc. (B), 1966, 1020. 

137. G.E.P. Smith, J r . and F.W. Bergstrom, J . Amer. Chem. Soc., 1934, 

56, 2095. 

138. T.E. Jordanj "Vapour Pressure of Organic Compounds", Interscience, 

New York, 1954. 

139. H.C. Brown, H. Bartholemay and M.D. Taylor, J . Amer. Chem. S o c , 

1944, 66, 435. 

140. H.C. Brown and M.D. Taylor, J . Amer. Chem. S o c , 1947, 69, 1332. 

141. T.D. Coyle and F.G.A. Stone, J . Amer. Chem. S o c , I 9 6 I , 83, 4l38. 

142. P.L. Corio and B.P. Dailey, J . Amer. Chem. Soc., 1956, 78, 3034; 

H. Spiesecke and W.G. Schneider, J . Chem. Phys., 1 9 6 I , 35, 731. 

143. N.N. Greenwood and T.S. Srivastava, J . Chem. Soc. (A), 1966, 703. 

144. G.E. Coates and A.J. Downs, J . Chem. S o c , 1964, 3353; J.R. Hall, 

L.A. Woodward and E.A.V. Ebsworth, Spectrochim. Acta., 1964, 20, 

1249. 

145. E. Wiberg and K. Buchheit, unpublished work quoted by J . Goubean 

i n the F.I.A.T. Review of German Science, 1939-46, Inorg. Chem., 

1949, 1, 228. 



- 142 -

146. J.D.S. Goulden, J . Chem. Soc., 1953, 997. 

147. E . J . Blanz and H.S. Mosher, J . Org. Chem., 1958, 23, 492. 

146. A.E.G. Mil l e r , J.W. B i s s and L.H. Schwartzman, J . Org. Chem., 1959, 

24, 627. 

149. M.F. Lappert, Proc. Chem. S o c , 1959, 59. 

150. H.S. Turner and R.J. Wame, J . Chem. S o c , I965, 6421. 

151. J.F. Brown, J r . , J . Amer. Chem. Soc., 1952, 74, 1219. 

152. D.W. Aubrey, M.F. Lappert and M.K. Majumdar, J . Chem. S o c , 1962, 

4088. 

153. N.N. Greenwood, K.A. Hooton and J . Walker, J.C.S. (A), 1966 , 21. 

154. M.S. Kharasch and 0. Reinmuth, "Grignard Reactions of Nonmetallic 

Substances", Prentice-Hall Inc., New York, 1954. 

155. K.N. Campbell, B.K. Campbell, L.G. Hess and I . J . Schaffner, 

J . Org. Chem., 1944, 9, l84; D.R. Smith, M. Maienthal and 

J . Tipton, i b i d . , 1952, 17, 294. 

156. D.F. Menard and J.G. Aston, J . Amer. Chem. S o c , 1934 , 56, I6OI. 

157. C.R. Hauser and D.S. Hoffenberg, J . Org. Chem., 1955 , 20, l482, l496; 

W. Gerrard, M.F. Lappert and J.W. Wallis, J . Chem. Soc., 196O, 

2141, 2144. 

158. H. Fener, B.F. Vincent and R.S. B a r t l e t t , J . Org. Chem., I965, 30, 

2877. 
159. E . J . P r i b y l , H.L. Yale and J . Bernstein, U.S.P. 3,137,723, 

June 16, 1964. A. Dernow and K. Fischer, Chem. Ber., 1966, 99, 68. 



- 143 -

160. E. Frainnet and F. Duboudin, Compt. rend., I966, 262C, l693. 

161. S. Ginsberg and I.B. Wilson, J . Amer. Ghem. Soc., 1957, 79, 48l. 

162. M. Inatome and L.P. Kuhn, Boron-Nitrogen Chemistry, Advan. i n 

Chem. Series, 1964, 42, 183; S. Brois, Tetrahedron Letters, 1964, 

345, 

163. L.P. Kuhn and M. Inatome, J . Amer. Chem. Soc., 1963, 85, 1206; 

H.J. Roth and B. Miller, Archiv. der. Pharmzie, 1964, 297, 744. 

164. R.J. Crawford and C. Woo, Canad. J . Chem., 1965, 43, 3178. 

165. J.P. Maher and D.F. Evans, J . Chem. Soc., 1965, 637. 

166. R. Breslow and D. Chipraan, J . Amer. Chem. S o c , I965, 87, 4l95j 

S. Bolton and A. Beckett, J . Pharm. Sciences, 1964, 53, 55. 

167. M.W. Blackmore and R.J. Magee, Austral. J . Chem., I967, 20 , 427. 

168. R.A. Krause, N.B. Colthup and D.H. Busch, J . Phys. Chem., I 9 6 I , 65, 

2216. 

2.1 SEP 1967 , 


