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ABSTRACT 
For some time past t h e r e has been a need f o r a more 
p o s i t i v e i d e n t i f i c a t i o n of the nature of the defect centres 
which give r i s e t o energy l e v e l s i n the f o r b i d d e n gap i n 
cadmium su l p h i d e . E l e c t r o n s p i n resonance ( e . s . r . ) tech­
niques have proved very u s e f u l i n t h i s type of i n v e s t i g a t i o n 
i n o t h e r m a t e r i a l s .Since ja© s i m i l a r work on CdS has prev­
i o u s l y been r e p o r t e d , the purpose of the research described 
i n t h i s thesis,has been t o examine the usefulness of the 
technique i n s t u d y i n g C d S . I n i t i a l l y i t was necesary t o 
c o n s t r u c t a s e n s i t i v e x-band microwave spectrometer, which 
operates at temperatures down t o 1.5°K and has p r o v i s i o n 
f o r c o n t i n u a i - ' . i l l u i n i n a t i o h of the samples.Electron spin 
resonance absorption s i g n a l s have been detected i n undoped 
s i n g l e c r y s t a l s of CdS which can be a t t r i b u t e d t o f o u r 
d i f f e r s n t defect centres.The occurrence of the resonance 
s i g n a l s can be c o r r e l a t e d w i t h the r e s i s t i v i t i e s and edge 
luminescence spectra of the samples.This i n d i c a t e s t h a t the 
centres responsible f o r the resonance absorption are import­
ant i n determining the e l e c t r i c a l and o p t i c a l p r o p e r t i e s 
of CdS and are those which t h i s work was i n i t i a t e d t o study. 
Teatgitive models f o r the various defects have been proposed. 
The most important f e a t u r e of the work r e p o r t e d i n t h i s t h e s i s 
i s the i s o l a t i o n of an e.s.r. s i g n a l which i s thought t o be 
a s s o c i a t e d w i t h the class 2 centres which provide the photo-
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conductive s e n s i t i s a t i o n and p o s s i b l y act as I.R. emission 
centres i n CdS.The model proposed f o r such centres i s 
of compensated acceptor complexes w i t h l e v e l s approx­
i m a t e l y 0.7eV above the valence band.A centre c o n s i s t s of 
f o u r cadmium vacancies i n nearest neighbour a s s o c i a t i o n . 
The models f o r the other t h r e e centres have not been 
discussed as f u l l y as t h a t mentioned above because of the 
l a c k of experimental data.However i t i s evident t h a t 
e.s.r. techniques are a very valuable t o o l f o r i n v e s t i g ­
a t i n g the nature of defect centres i n GdS and t h a t 
c o n t i n u a t i o n of the work should prove invaluable i n 
p r o v i d i n g an uiiabiguous i d e n t i f i c a t i o n of the atomic 
s t r u c t u r e o f the defect complexes. 
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INTRODUCTION 

1) O u t l i n e of the problem 
The c h i e f problem i n the development o f the technology 
of cadmium sulphide l i e s i n the l a c k of r e p r o d u c i b i l i t y 
of sample p r o p e r t i e s . T h i s i s a t t r i b u t e d t o the wide 
v a r i a t i o n i n the d e n s i t y o f l a t t i c e defects from sample 
t o sample.However at the present time the atomic natures 
of the defect centres i s not known and u n t i l they are 
known c o n t r o l of sample p r o p e r t i e s w i l l be very d i f f i c u l t 
t o achieve.The measurements t h a t have been c a r r i e d out 
on CdS e.g. o f t h e r m a l l y s t i m u l a t e d c u r r e n t s , photo­
c o n d u c t i v i t y , H a l l e f f e c t , luminescence etc. have been 
able t o monitor the e f f e c t s of the defects on the e l e c t ­
r i c a l and o p t i c a l p r o p e r t i e s but have not provided an 
unambiguous determination of the nature of the defect 
centres. 
2) E l e c t r o n s p i n resonance as an- experimental t o o l 
The presence of defects produces an i r r e g u l a r i t y i n the 
surroundings of the defect which may a l t e r the p a i r i n g 
of the spins o f the bonding el e c t r o n s and thus introduce 
a paramagnetic .character t o the environment.Consequently 
e l e c t r o n s p i n resonance can be very u s e f u l i n the study 
of defect centres.Resonance measurements are p a r t i c u l a r l y 
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s u i t a b l e i n studying the environment of a defect i n a 
s o l i d and o f t e n i n e s t a b l i s h i n g , on an a t o m i s t i c basis 
the r o l e o f the defect i n the solid.The p a r t i c u l a r 
advantage of e l e c t r o n s p i n resonance i s i t s a b i l i t y t o 
provide i n f o r m a t i o n concerning the nature of the defects, 
t h e i r symmetry and the nature of the surroundings.Moreover 
e l e c t r o n s p i n resonance measurements can be made on a 
s i n g l e d e f e c t complexo, even when many other types of 
defect centres are also present. 
3) Aims of. .this vjork-

Since t h e r e v/as no p r e v i o u s l y r e p o r t e d work of t h i s type 
i n CdS- the f i r s t aim of t h i s work was t o e s t a b l i s h the 
usefulness of the e l e c t r o n spin resonance technique as 
a t o o l f o r the study of CdS.Then i f t h i s proved successful 
t o begin a programme t o i n v e s t i g a t e the nature of the defect 
centres i n CdS. 
As can be seen from the work reported i n t h i s t h e s i s , 
these aims have been s u c c e s s f u l l y f u l f i l l e d . 
4-) Layout of t h i s t h e s i s 
As f a r as p o s s i b l e t h i s t h e s i s has been v / r i t t e n i n such 
a way as t o be s e l f contained and t o provide a reference 
f o r f u t u r e studies,since no r e p o r t of comparable work 
i s a v a i l a b l e at the present time.The f i r s t two chapters 



give a b r i e f review of the expected p r o p e r t i e s of i d e a l 
p e r f e c t CdS and then the experi m e n t a l l y observed p r o p e r t i e s 
w i t h some i n d i c a t i o n of the r o l e of defects and impur­
i t i e s i n determining these p r o p e r t i e s , t o provide an 
i n t r o d u c t i o n t o the nature of the defects i n CdS.A chapter 
i s i n c l u d e d on the th e o r y of e l e c t r o n spin resonance and :.• 
one on the design and c o n s t r u c t i o n of the microwave 
spectrometer used i n the w o r k . F i n a l l y the e l e c t r o n spin 
resonance r e s u l t s are in c l u d e d w i t h some conclusions 
concerning the nature of the defect centres tesponsible f o r 
some o f t h e resonance l i n e s observed.The r e s t of the 
resonance l i n e s are a t t r i b u t e d t o i s o l a t e d paramagnetic 
i m p u r i t y ions and the r e s u l t s obtained on these ions 
are i n c l u d e d separately.Many recommendations f o r f u t u r e 
work are suggested. 
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CHAPTER 1 

BAND STRUCTURE OF CADMIUM SULPHIDE 

1-1 Band theory of semiconductors 

I - l . l I n t r o d u c t i o n 

A knowledge of the e l e c t r o n energy band theory i n s o l i d s 

i s n e c e s s a r y f o r an understanding of t h e i r e l e c t r i c a l 

and o p t i c a l p r o p e r t i e s . A p p l i c a t i o n of quantum mechanics 

to the motion of the e l e c t r o n s i n the r e g u l a r a r r a y of 

the charged ions i n the s o l i d shows that the d i s c r e t e 

energy l e v e l s of the f r e e i o n become bands of c l o s e l y 

spaced energy l e v e l s i n the s o l i d . A s i m p l i f i e d treatment 

has been presented by s e v e r a l authors (see f o r example 

Ziman^-'-^ Smith^^^ and Cusack^^^) and w i l l be ou t l i n e d here. 

1-1.2 T r a n s l a t i o n a l symmetry 

We s h a l l c o n s i d e r a c r y s t a l l i n e - s o l i d w i t h i t s atoms 

arranged i n a l a t t i c e which i s repeated r e g u l a r l y i n a l l 

d i r e c t i o n s . C l e a r l y t h i s i s an i d e a l s i t u a t i o n . A r e a l 

s o l i d i s bo\mded and contai n s imperfections which d i s t u r b 

the r e g u l a r i t y of the i d e a l l a t t i c e . I n a d d i t i o n we s h a l l 

n e g l e c t the thermal v i b r a t i o n s of the atoms about t h e i r 

mean p o s i t i o n s i n the l a t t i c e . However the s o l u t i o n s 

obtained f o r the i d e a l l a t t i c e are fundamental to the 

problems of a r e a l s o l i d . 

The e x i s t e n c e of a r e g u l a r c r y s t a l l a t t i c e i s expressed 

JLIBRAR^ 



i n the p r i n c i p l e of t r a n s l a t i o n a l symmetry, and leads to 

a s i m p l i f i c a t i o n i n the theory of the p h y s i c a l p r o p e r t i e s 

of a s o l i d . The p r i n c i p l e can be expressed by d e f i n i n g 

t h r e e v e c t o r s â ^ 8 2 and a^ such t h a t the atomic s t r u c t u r e 

of our i d e a l c r y s t a l remains i n v a r i a n t under t r a n s l a t i o n 

by any v e c t o r (1) which i s the sum of i n t e g r a l m u l t i p l e s 

of the v e c t o r s aj^ ag and a^. 

1 = l^^a^ + l2a2 + l3a3 

where 1^ I2 and 1^ a r e i n t e g e r s . 

The group of p o i n t s generated by repeated a p p l i c a t i o n of 

the t r a n s l a t i o n a l symmetry alee r e f e r r e d tq as the space 

l a t t i c e . The p o i n t s a r e the l a t t i c e s i t e s and are defined 

by equation (1-1). 
The t r a n s l a t i o n a l i n v a r i a n c e means t h a t there must be an 

e x a c t l y s i m i l a r arrangement of atoms about each l a t t i c e 

s i t e . The s i m p l e s t arrangement i s when there i s one atom 

s i t u a t e d a t each s i t e . 

1-1.3 P e r i o d i c F u n c t i o n s 

Any f u n c t i o n f ( r ) of a s o l i d which i s determined by the 

symmetry of the l a t t i c e , f o r example, the wave f u n c t i o n of 



an e l e c t r o n (yCr)), must obey an equation of the form:-

f ( r ) = f ( r + 1) (1-2) 

where 1 i s a l a t t i c e t r a n s l a t i o n as defined i n equation 

( 1 - 1 ) . T h i s . p e r i o d i c b e h a v i o i r f o l l o w s d i r e c t l y from the 

p r i n c i p l e of t r a n s l a t i o n a l symmetry. 

The p r o p e r t i e s of p e r i o d i c f u n c t i o n s are e a s i l y described 

i n one dimension. Equation 1-2 can be r e w r i t t e n : -

f ( x ) = f ( x + m) (1-3) 

where m = m-ĵ a and a i s the period of the f u n c t i o n and m̂  

i s an i n t e g e r . F u n c t i o n s of t h i s type can be expressed 

as F o u r i e r s e r i e s : -

f ( x ) = yA„e?cp.2TTinx 

where n i s an i n t e g e r . 

A more convenient form f o r our purposes i s : -

f ( x ) = y_A_e^«^ (1-4) 

where g = 2Txn and i s a r e a l d i s c r e t e f u n c t i o n , 
a 
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u n i t c e l l 

and i s a p e r i o d i c f u n c t i o n . 

Elementary manipulation shows t h a t equation (1-4) i s the 

saune i d e n t i t y as equation (1-3) i f : 

e i s m ^ 1 

f o r a l l t r a n s l a t i o n s m. 

1-1.4 B l e c h ' s Theorem 

Bloch was able to show t h a t the type of s o l u t i o n obtained 

above i n equation (1-4) could be g e n e r a l i s e d to the three 

dimensional c a s e . There i s no simple proof of the theorem 

and the r e s u l t s w i l l merely be quoted. S i m p l i f i e d proofs 

are a v a i l a b l e i n r e f e r e n c e s (1) and ( 2 ) . 

Bloch's theorem provides the s t a r t i n g point f o r the d i s ­

c u s s i o n of the motion of e l e c t r o n s i n the three dimensional 

p e r i o d i c p o t e n t i a l of the ions at the l a t t i c e s i t e s . I f 

the i o n s a r e t r e a t e d as point charges then the p o t e n t i a l 

V ( r ) i n which an e l e c t r o n moves i n the l a t t i c e w i l l be 

a p e r i o d i c f i i n c t i o n w i t h the p e r i o d i c i t y of the l a t t i c e . 

F o r an i n f i n i t e l a t t i c e as defined by equation (1-1) 



V ( r ) = V ( r + l-^&i + 12^2 + -̂̂ -̂̂ ^ (1-6) 

The wave f u n c t i o n s yj (r) of the e l e c t r o n s i n the s o l i d 

a r e g i v e n by s o l u t i o n s of Schrodinger's equation, which 

u s i n g the p o t e n t i a l f u n c t i o n defined i n equation (1-6) i s : 

(-fc.'̂ '̂ M̂ yM =o 
B l o c h showed t h a t the s o l u t i o n s f o r y ( r ) were of the 

form: 

i U Y 
yj^ (r) z=. e U, (Y) (1.7) 

where U^,(r) i s a p e r i o d i c f u n c t i o n of the form: 

U ^ ( r ) = Uj^(r + l ^ a ^ + l2a2 + l-^Si-^) 

E q u a t i o n (1-7) i s c l e a r l y the g e n e r a l i s a t i o n to three 

dimensions of the one dimensional s o l u t i o n ( 1 - 4 ) . These 

s o l u t i o n s are d e s c r i b e d as Bloch Waves arid are i n the 

form of .plane t r a v e l l i n g waves, modulated by the f u n c t i o n 

U ^ ( r ) . S i n g l e waves of the form of equation (1-7) are 

a p p r o p r i a t e to i n f i n i t e c r y s t a l s , but l i n e a r combinations 



must be used to provide s o l u t i o n s f o r r e a l c r y s t a l s . 

1-1.3 B r i l l o u i n Zones 

The v e c t o r K i s r e f e r r e d to as the wave v e c t o r of the 

Bloch wave. I t i s a v e c t o r defined i n r e c i p r o c a l l a t t i c e 

space. For s i m p l i c i t y l e t us consider the Bloch Wave 

i n our one dimensional l a t t i c e , which has l a t t i c e 

s p a c i n g a. Then any Bloch wave which i s defined by the 

wave v e c t o r g can be w r i t t e n : 

"yg(x + m) = e^^yix) = Y ( x ) u s i n g equation (1-5) 

where g = 2TTn< and i s the l a t t i c e spacing i n r e c i p r o c a l 
a 

l a t t i c e space. 

L e t the wave • y ^ ( r ) have the wave v e c t o r K such that 

K = g + K' 

K* i s another r e c i p r o c a l l a t t i c e v e c t o r . 

Then ^^.(x + m) = e ^ ^ . y , ( x ) = e^"'" * y ^ 

i . e . The s t a t e i s not uniquely defined by K, but can be 
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d e f i n e d by any wave number i n the s e t 

K = 2TTn + K' (1-8) 
a 

I t i s o f t e n convenient to choose ( I K l ) as small as 

p o s s i b l e and so we choose i t to be i n the range 

— IT (1-9) 

The r e g i o n of K- space defined by equation (1-9) i s 

r e f e r r e d to as the f i r s t B r i l l o u i n Zone and K = + ̂  as 

the Zone boundaries. 

The same procedure i s adopted i n three dimensions and 

the wave v e c t o r f o r a Bloch s t a t e i s often chosen to l i e 

i n the f i r s t B r i l l o u i n Zone. T h i s i s commonly r e f e r r e d 

to as the reduced B r i l l o u i n Zone scheme. When the wave 

v e c t o r i s allowed to take a l l the v a l u e s a v a i l a b l e , as 

defined by equation ( 1 - 8 ) , t h i s i s c a l l e d the extended 

B r i l l o u i n Zone scheme. The f i r s t B r i l l o u i n Zone i s defined 

by the Wigner-Seitz c e l l of the r e c i p r o c a l l a t t i c e . 

F i g . 1-1 shows the f i r s t B r i l l o u i n Zone f o r a r e c t a n g u l a r 

two dimensional l a t t i c e and i l l u s t r a t e s how any point i n 

r e c i p r o c a l space can be reduced to a point i n the Zone. 
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FIG.1-1. REDUCED BRILLOUIN SBHEME 
The wave ve c t o r s k^ can a l l be reduced t o k which 
l i e s i n the f i r s t B r i l l o u i n Zone. 
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1-1,6 E l e c t r o n a t a t 6 3 i n c r y s t a l s 
The problem of determining the motion of a l l the 
e l e c t r o n s i s f a r too complex t o be solved by the methods 
a v a i l a b l e a t present. The problem i s s i m p l i f i e d by adopt­
i n g the one e l e c t r o n model, where the motion of a s i n g l e 
e l e c t r o n only i s considered i n the f i e l d of a l l the atomic 
n u c l e i and of a l l the other e l e c t r o n s , averaged i n some 
s u i t a b l e way. The c a l c u l a t i o n now involves an es t i m a t i o n 
of the p o t e n t i a l i n which the e l e c t r o n moves and the 
s o l u t i o n of Schrodinger's equation f o r t h i s p o t e n t i a l 
f u n c t i o n . More exact s o l u t i o n s are obtained by the use of 
a s e l f c o n s i s t e n t f i e l d method. With t h i s method s o l u t i o n s 
are obtained f o r the i n i t i a l approximation of the potent­
i a l f u n c t i o n . These s o l u t i o n s are fed back t o c a l c u l a t e 
a c o r r e c t i o n t o the o r i g i n a l p o t e n t i a l f u n c t i o n . This 
process i s repeated u n t i l s e l f consistent s o l u t i o n s are 
obtained. This method of s o l u t i o n i s s i m i l a r t o t h a t of 
Hartree and Poch f o r determining the wave f u n c t i o n of 
the e l e c t r o n s i n an atom. 

The p o t e n t i a l i n which the e l e c t r o n moves w i l l have the 
same p e r i o d i c i t y as the space l a t t i c e . However the potent­
i a l w i l l , i n general, be a complicated f u n c t i o n . For 
i l l u s t r a t i v e purposes, t h e r e f o r e , a simple f u n c t i o n i s 



V(.x) 
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considered f i r s t . The simplest p e r i o d i c p o t e n t i a l t h a t 
can be envisaged i s a one dimensional a r r a y of p o t e n t i a l 
w e l l s , as shown i n P i g . 1-2. 
The allowed energies (E ) f o r e l e c t r o n s i n an i s o l a t e d 
w e l l of the form shown i n P i g . 1-2 are: 

Where Eare the allowed K i n e t i c energies f o r the e l e c t r o n , 
P o r 6 < w i . e . an e l e c t r o n trapped i n the p o t e n t i a l w e l l 

E„ = /̂ ' 
^ ?ma^ ^ % -W 

where N = 0 , + 1 , + 2 , 
(A) 

K r o n i g and Penney , by s o l v i n g Schrodinger*s equation 
f o r an a r r a y of such one dimensional w e l l s , showed t h a t 
each d i s c r e t e l e v e l of the i s o l a t e d w e l l i s broadened i n t o 
a band of c l o s e l y spaced l e v e l s , the number of l e v e l s 
per band being equal t o the niamber of p o t e n t i a l w e l l s i n 
the a r r a y . Por an i n f i n i t e a r r a y of w e l l s the bands are 
a continuum of allowed energies f o r e l e c t r o n s , separated 
from each other by a band of energies which the e l e c t r o n s 
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are not allowed t o occupy. I n a d d i t i o n Kronig and Penney 
demonstrated t h a t the wave f u n c t i o n of the electrons i n 
an allowed band was of the form r e q u i r e d by iBloch's 
theorem and t h a t e l e c t r o n waves could be propagated 
through an arr a y of w e l l s . Thus an i n d i v i d u a l e l e c t r o n 
can not be regarded as belonging t o any s i n g l e w e l l . The 
w i d t h of the allowed band depends oia the separation (d) 
of the w e l l s i f the other parameters are constant. For a 
l a r g e s e p a r a t i o n the bands become narrow approaching 
the l i m i t i n g case of an i s o l a t e d w e l l . This i s analogous 
t o the behavior o f the deep l y i n g l e v e l s i n atoms. The 
deep l y i n g e l e c t r o n s are shielded from the surrounding 
n u c l e i by the outer e l e c t r o n s so t h a t t h e i r energy l e v e l s 
are not ap p r e c i a b l y broadened by i n t e r a c t i o n . Thus t o a 
good approximation we may regard the deep l y i n g e l e c t r o n s 
as having the same energies and wave f i i n c t i o n s as i n an 
i s o l a t e d atom. This provides some j u s t i f i c a t i o n f o r the 
use of the one e l e c t r o n approach, where the motion of 
outer e l e c t r o n s only of the atom i s considered and the 
i n n e r ( c o r e ) e l e c t r o n s are t r e a t e d as being i n the same 
c o n f i g u r a t i o n as i n an i s o l a t e d atom and are taken i n t o 
account i n the p o t e n t i a l i n which the outer electrons 

move. 
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I n the Kronig-Benney model the treatment f o r small 
s e p a r a t i o n of the p o t e n t i a l w e l l s leads t o the bands 
becoming very broad, so t h a t the e l e c t r o n s can propagate 
v e r y f r e e l y between the w e l l s along a constant energy 
l e v e l i n an allowed band. This i s the analogue t o the 
behavior of the outermost e l e c t r o n s i n a c r y s t a l . 
C l e a r l y t h i s a r r a y of p o t e n t i a l w e l l s i s a poor approx­
i m a t i o n t o the p o t e n t i a l which e x i s t s i n a three dimen­
s i o n a l c r y s t a l l a t t i c e . However i t i s a u s e f u l s t a r t i n g 
p o i n t i n the c a l c u l a t i o n of the band s t r u c t u r e of a 
s o l i d . The model can be extended t o compounds by con­
s i d e r i n g d i f f e r e n t types of p o t e n t i a l w e l l f o r the 
d i f f e r e n t components. This has been attempted f o r the 
5-5 c l a s s o f semiconductors . However the s o l u t i o n s 
must be t r e a t e d w i t h some ca u t i o n i n view of the poor 
approximation t o the a c t u a l p o t e n t i a l t h a t e x i s t s . 
S o l u t i o n s of Schrodinger•s equation w i t h a p e r i o d i c 
p o t e n t i a l which more c l o s e l y resembles t h a t which e x i s t s 
i n a s o l i d have been obtained by numerical methods. These 
le a d t o no new basic conclusions but c l e a r l y a b e t t e r 
d e s c r i p t i o n of the motion of the e l e c t r o n i s obtained. 



FIG.1-3. ENERGY BANDS FOR A SMALL PERIODIC POTENTIAL 

The dotted curve represents the energy of free elec-
-trons. 



The form o f the energy bands i n an i d e a l three dimensional 
s o l i d i s shown i n P i g . 1-3. The p o t e n t i a l i s given by: 

V ( r ) = Vo + v ( r ) (1-10) 

Where Vo represents a constant term and v ( r ) i s a small 
p e r i o d i c term, which i s symmetrical about K = 0 and gives 
r i s e t o i s o t r o p i c bands. 
The f r e e e l e c t r o n case, i n d i c a t e d i n P i g . 1-5, i s obtained 
simply by p u t t i n g v ( r ) = 0 i n equation 1-10. The s o l u t i o n 
f o r the wave f u n c t i o n i s : 

where A i s a constant. 
These s o l u t i o n s are commonly r e f e r r e d t o as Sommerfeld 
Waves. The s o l u t i o n s f o r the eigen s t a t e s are given by: 

. = - * V 

The treatment o u t l i n e d above shows t h a t the existence of 
f o r b i d d e n and allowed e l e c t r o n i c energy bands i s a con­
sequence of the l a t t i c e p e r i o d i c i t y and the p r i n c i p l e of 
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t r a n s l a t i o n a l symmetry of the l a t t i c e . More d e t a i l e d 
c a l c u l a t i o n s of the band s t r u c t u r e can be obtained by 
u s i n g a b e t t e r value of V ( r ) i n equation 1-10 and t a k i n g 
i n t o account the e f f e c t s of e l e c t r o n - e l e c t r o n i n t e r a c t i o n s . 
However exact s o l u t i o n s w i l l only be obtained by the 
exten s i o n of the attempt already made t o solve the many 
body problem. By making use of the symmetry of the space 
l a t t i c e , t he c a l c u l a t i o n s can be s i m p l i f i e d by a p p l i c a t i o n 
of the methods of group the o r y , 

1-1,7 C r y s t a l Symmetry and S p i n - o r b i t i n t e r a c t i o n s 
A knowledge of the symmetry of the c r y s t a l l a t t i c e of a 
p a r t i c u l a r s o l i d enables s i m p l i f i c a t i o n s t o be made i n the 
c a l c u l a t i o n of the e l e c t r o n band s t r u c t u r e . These s i m p l i ­
f i c a t i o n s are brought about because i t can be shown t h a t 
the energy f u n c t i o n of the e l e c t r o n i n the B r i l l o u i n Zone 
has the f u l l p o i n t group symmetry of the c r y s t a l , i . e . any 
symmetry o p e r a t i o n which the c r y s t a l possesses i s also 
possessed by the energy f u n c t i o n (E(K)) of the band. The 
a p p l i c a t i o n of group theory allows one t o make p r e d i c t i o n s 
concerning the nature of the wavefunction of the electrons 
and the shape of the energy bands, from the symmetry 
ope r a t i o n s t h a t the bands may or may not undergo. 
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FIG.1-4. (a) . (b) (c) 
EFFECT OP SPIN-ORBIT INTERACTION ON A P-TYPE BAND 

NiaCR THE CENTRE OF THE ZONE. 

(a) 6 levels degenerate at centre of zone, 
(b) Removal of some of the degeneracy at k=0 by spin 
o r b i t i n t e r a c t i o n , i n a l a t t i c e w i t h inversion symmetry. 
The states are s t i l l doubly degenerate. 
(c) I n the absence of inversion symmetry the tv/ofold 
degeneracy i s completely removed. 
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This knowledge i s of g r e ^ t value i n c a l c u l a t i n g the nature 
of the band s t r u c t \ i r e , e s p e c i a l l y a t p o i n t s i n the B r i l l o u i n 
Zone which have h i g h symmetry. 

The i n t e r p r e t a t i o n of s p i n - o r b i t i n t e r a c t i o n s i s also 
s i m p l i f i e d by a knowledge of the symmetry of the energy 
f u n c t i o n . I n f r e e atoms the spin-orbi>t i n t e r a c t i o n has the 
e f f e c t o f removing the degeneracy between states w i t h the 
same s p a t i a l wavefunction, but opposite e l e c t r o n s p i n . I n 
the same way the s p i n - o r b i t i n t e r a c t i o n may remove some 
of the degeneracy between bands. At a general p o i n t i n 
the B r i l l o u i n Zone, where the wavefunctions may not be 
degenerate, the s p i n - o r b i t i n t e r a c t i o n does not separate 
the s t a t e s of opposite s p i n i f the l a t t i c e has a centre of 
i n v e r s i o n . But w i t h a l a t t i c e w i t h o u t a centre of i n v e r s i o n 
these s t a t e s w i l l be separated, (see P i g . 1-4). At points 
of h i g h symmetry i n the B r i l l o u i n Zone, the most i n t e r e s t i n g 
of which i s u s u a l l y the centre of the zone (K = 0 ) , the 
wave f u n c t i o n s may be degenerate and the s p i n - o r b i t i n t e r ­
a c t i o n may produce s p l i t t i n g s . 

Thus we can see how a knowledge of the symmetry of the 
l a t t i c e enables s i m p l i f i c a t i o n s t o be made i n the c a l c u l ­
a t i o n s of band s t r u c t u r e . 

1-1.8 D i r e c t gap and I n d i r e c t gap Semiconductors 
Only the highest band c o n t a i n i n g e l e c t r o n s a t 0°K and the 
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lowest empty ones are important i n the d e s c r i p t i o n of 

t r a n s p o r t p r o p e r t i e s i n a s o l i d . A semiconducting s o l i d 

has the hi g h e s t band c o n t a i n i n g e l e c t r o n s completely f i l l e d 

a t 0°k and t h i s i s r e f e r r e d t o as the valence band. The 

lowest empty band i s r e f e r r e d t o as the conduction band. 

The magnitude of the f o r b i d d e n gap (E ) separating these 

two bands determines the nature of the m a t e r i a l . A 

m a t e r i a l w i t h E ^ < a e V . i s u s u a l l y c a l l e d a semiconductor 

and one withE6.>'3LeV. an i n s u l a t o r . Cadmium Sulphide has 

a f o r b i d d e n gap Ê .'-•a.-StV a t room temperature and i s u s u a l l y 

described as dn i n s u l a t o r . 

I f the m a t e r i a l absorbs a photon of l i g h t of energy greater 

than the f o r b i d d e n gap then an e l e c t r o n can make a t r a n s ­

i t i o n from the valence band t o the conduction band. Thus 

accurate measurements of the a b s o r p t i o n edge enable one 

t o determine the p o s i t i o n of the extrema of the band edges. 

When the m a t e r i a l has an E-K r e l a t i o n s h i p of the form of 

P i g . l - 5 ( a ) , then the e l e c t r o n can make the t r a n s i t i o n 

w i t h o u t co-operation of a phonon. The conservation of 

momentum f o r such a t r a n s i t i o n gives: 

^ i n i t i a l = ̂  f i n a l ^ 



Eg 

(a) 

FIG.1-5. 

(a) Direct gap se 
indicated. 

(b) --Indirect gap semic 
— i t i o n indicated 

miconductor;direct t r a n s i t i o n 

onductor;indirect trans-
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Where Kj^ i s the wave v e c t o r of the e x c i t i n g photon. 
The magnitude of Kj^ i s so small t h a t t o a good approximation: 

K i n i t i a l = K f i n a l 

and the t r a n s i t i o n i s v e r t i c a l i n K-space. This type of 
semiconductor or i n s u l a t o r i s sai d t o have a ' d i r e c t ' gap. 
When the E-K r e l a t i o n s h i p i s of the form l - 5 ( b ) , then the 
smal l e s t v e r t i c a l s e p a r a t i o n of the bands i s l a r g e r than 
the minimum energy gap. I t i s then possible t o observe 
o p t i c a l t r a n s i t i o n s from the top of the valence band at 
K = 0 t o the lowest v a l l e y of the conduction band at K = K^. 
For c o n s e r v a t i o n of momentum the co-operation of phonons 
i s necessary. This i s described as an ' i n d i r e c t ' gap semi­
conductor or i n s x i l a t o r . The a c t u a l path of the t r a n s i t i o n 
may be v i a v i r t u a l i n t e r m e d i a t e s t a t e s but energy con­
s e r v a t i o n i s Tinimportant f o r the v i r t u a l t r a n s i t i o n s . I t 
i s the o v e r a l l energy conservation t h a t i s important. The 
p r o b a b i l i t y of i n d i r e c t t r a n s i t i o n s i s much smaller than 
t h a t f o r d i r e c t ones so t h a t the i n d i r e c t t r a n s i t i o n i s i n 
many cases detected only as a t a i l i n the weak o p t i c a l 
a b s o r p t i o n on the lower energy side of the absorption edge 
due t o the vert i c a 3 i t r a n s i t i o n s . Dutton^^^ and H o p f i e l d , 
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Thomas and Power^ ' performed o p t i c a l a bsorption 
measurements on Cadmium Sulphide and could not detect 
the presence of i n d i r e c t t r a n s i t i o n s . They concluded 
t h a t Cadmium Sulphide had a conduction band minimum at 
K = 0, i n agreement w i t h the t h e o r e t i c a l models proposed 
by other workers (see l a t e r ) , and t h a t Cadmium Sulphide 
was a d i r e c t gap i n s u l a t o r . 
1-1,9 E f f e c t i v e Mass 
The Sommerfeld model of a f r e e e l e c t r o n i n a uniform 
p o t e n t i a l (see s e c t i o n 1-1,6) gives the energy of an 
e l e c t r o n (E) as: 

E = "ĥ K̂  - W (1-11) 
21 

where W i s the constant p o t e n t i a l i n which the electrons 
are supposed t o move. 
Prom equation (1-11) expressions can be obtained f o r the 
v e l o c i t y (V) and mass (M) of the e l e c t r o n : 
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] (1-12) 

By analogy the e f f e c t i v e mass (M*) of an e l e c t r o n i n the 
conduction bsind of a semiconductor can be defined: 

M » = ^'(g) (1-1,) 

I n general i s not constant and the value depends on 

the e n e r g e t i c p o s i t i o n of the c a r r i e r i n the band. The 
e f f e c t i v e mass of a charge c a r r i e r i s a flection of band 
shape and i n general i s d i f f e r e n t i n d i f f e r e n t regions 
of t he band. Thus a det e r m i n a t i o n of the value of 
e f f e c t i v e mass o f the charge c a r r i e r s provides i n f o r m a t i o n 
about the shape of the bands. As we s h a l l see l a t e r t h i s 
approach has been ve r y successful i n the case of Cadmium 
Sulphide (see s e c t i o n 1-2). Cyclotron resonance a t 
microwave frequencies provides the most d i r e c t and 
d e t a i l e d measurement o f the e f f e c t i v e mass of charge 
c a r r i e r s . 
This technique has obvious a p p l i c a t i o n s t o the treatment 
of e l e c t r o n s i n the conduction band. However i n f o r m a t i o n 



can be obtained about the shape of the valence bands. 
Prom F i g . 1-3 i t can be seen t h a t near the top of the 
band j and so M i s negative. The valence band of 
a semiconductor i s f i l l e d a t 0°k w i t h e l e c t r o n s , and 
so near the top of the band there i s an assembly of 
p a r t i c l e s of negative mass and negative charge. Removal 
of one o f these p a r t i c l e s , leaves what i s r e f e r r e d t o 
as a 'hole', which behaves as a p a r t i c l e of p o s i t i v e 
mass and p o s i t i v e charge. Thus a 'hole' i s capable of 
c a r r y i n g e l e c t r i c c u r r e n t when an e l e c t r i c f i e l d i s 
a p p l i e d t o the s o l i d . The e f f e c t i v e mass of the 'hole' 
w i l l depend on i t s e n e r g e t i c p o s i t i o n i n the band and so 
measurement of I t s e f f e c t i v e mass w i l l provide inform­
a t i o n about the shape of the valence band. 



1-2 Band structiu'e of Cadmium Sulphide 
The conduction band of Cadmium Sulphide o r i g i n a t e s from 
the 5s atomic l e v e l s of the cadmium ions and the valence 
band from the 3patomic l e v e l s of the sulphur ions. A 
t h e o r e t i c a l treatment of the nature of the bands began 
as an extension of the treatment by which imowledge of 
the band s t r u c t u r e of zinc blende type m a t e r i a l s was 

(8) 
b u i l t up. For the zi n c blende m a t e r i a l s , Herman ^ ' 
developed a semi-empirical method t o deduce t h e i r band 
s t r u c t u r e from t h a t of the diamond type m a t e r i a l s 
Germanium and S i l i c o n . A close correspondence between 
the band s t r u c t u r e of the two types of m a t e r i a l i s t o 
be expected since they have the same c r y s t a l l o g r a p h i c 
l a t t i c e and i n many eases are i s o - e l e c t r o n i c . This 
approach proved very u s e f u l since the band s t r u c t u r e 
of Germanium and S i l i c o n was w e l l understood. Since the 
l a t t i c e s of the 2-6 W u r t z i t e and the Zinc blende 
m a t e r i a l are c l o s e l y r e l a t e d Birman^^' discussed the 
r e l a t i o n s h i p of the band s t r u c t \ i r e i n the two classes 
of m a t e r i a l . He concluded t h a t p a r a l l e l t o the c-axis 
the e l e c t r o n s t a t e s o f the W u r t z i t e form may be regarded 
as p e r t u r b a t i o n s of the Zinc blende s t a t e s i n the (111) 
d i r e c t i o n i f a small hexagonal c r y s t a l f i e l d p e r t u r b a t i o n 
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EIG.1-7. Band s t r u c t u r e and s e l e c t i o n r u l e s f o r the Zinc 
blende and W u r t z i t e s t r u c t u r e s at k:=0,0,0. The c r y s t a l 
f i e l d and s p i n o r b i t s p l i t t i n g s are i n d i c a t e d schematic­
a l l y . T r a n s i t ions v;hich are allowed f o r the photon e l e c t r ­
i c v e c t o r p a r a l l e l and per p e n d i c u l a r t o the c-axis are 

( - 1 5 ) 
indicated.The s e l e c t i o n r u l e s are due t o Dresselhaus. 
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was added t o the symmetry of the Zinc blende l a t t i c e . 
Subsequent work '̂ ^̂  has shown t h a t t h i s approach i s 
both v a l i d and very u s e f u l i n o b t a i n i n g a d e t a i l e d 
p i c t u r e o f the band s t r u c t u r e of W u r t z i t e 2-6 compounds. 
However the e a r l i e r experimental work was d i r e c t e d 
towards a d e t e r m i n a t i o n .of the p o s i t i o n s of the minimum 
of the conduction band and of the maxima of the valence 
band, since f o r most experimental c o n d i t i o n s the c a r r i e r s 

(12) 

occupy these s t a t e s . Birman^ ' f o l l o w i n g the ideas of 
h i s e a r l i e r paper^^', gave a p i c t u r e of the p o s i t i o n s of 
the extrema of the valence and conduction bands at 
K = (0,0,0) which i s i l l u s t r a t e d i n P i g . 1-7. Thomas 

(14) 
and H o p f i e l d ^ provided experimental evidence f o r the 
v a l i d i t y of t h i s model i n t h e i r measuoaiients of the r e ­
f l e c t a n c e and luminescence spectra of hexagonal Cadmium 
Sulphide. They r e p o r t e d f i n e s t r u c t u r e away from the 
f\mdamental edge which they assigned t o e x c i t o n t r a n s ­
i t i o n s . They i d e n t i f i e d three e x c i t o n s e r i e s , which 
could be understood as a r i s i n g from holes i n the three 
valence bands at K = 0 as derived by Birman ( F i g . 1-7). 
They determined the energy s p l i t t i n g s of the valence bands 
(see P i g . 1-8) ( t h e values are i n agreement w i t h l a t e r 
measurements). Also they were able t o v e r i f y the symmetry 
assignments of Birman by measurements w i t h p o l a r i s e d l i g h t . 
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FIG.1-8. Energy bands•for CdS at k=0,0,0, at 
\.2'K as determined'by Thomas and H o p i i e l a , 
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FIG.1-9. (a) (b) ( c ) 

POSSIBLE BAMD STRUCTURE IN VTORTZITE TYPE CRYSTALS. 
(a) S i n g l e e l l i p s o i d , ( b) To r o i d . ( c ) Simple many 
v a l l e y . 

The upper f i g u r e s shov; the r e l a t i o n s h i p between 
energy and wave number.The middle and lower ones 
shov/ cross sections of constant energy. 



However there was some disagreement over the shape of 
the energy bands away from K = 0. The possible shape 
of the constant energy surfaces i n the conduction band 
of Vlhirtzite type c r y s t a l s had been discussed, using the 
p r i n c i p l e s of group th e o r y , by several authors i n c l u d i n g 
Casella^-'-^' Balkanski and Des Cloiseaux^-'-'^^ 
Hopfield^-'-®^ and Birman^^' -^^K They a l l showed t h a t 
i n the absence of s p i n - o r b i t coupling the conduction 
band should have a minimum at K = 0, ( P i g . l - 9 ( a ) ) . 
But the i n c l u s i o n of s p i n - o r b i t coupling may lead t o 
thre e cases: 

(1) T o r o i d a l energy s u r f aces ̂"'"̂^ Pig. 3)-9(b) 
(17) 

(2) Many v a l l e y type of band s t r u c t u r e 
P i g . l - 9 ( c ) 

(3) E l l i p s o i d a l energy sizrfaces P i g . l - 9 ( a ) 
P i g . 1-9 i n d i c a t e s three d i s t i n c t p o s s i b i l i t i e s , but 
i t i s po s s i b l e i n p r i n c i p l e t o have a l l three and/or 
i n t e r m e d i a t e cases i n the same c r y s t a l , a t d i f f e r e n t 
ranges o f temperature. Consequently a great deal of 
experimental work was c a r r i e d out t o determine the 
s i t u a t i o n i n Cadmium Sulphide. 
The p o s i t i o n concerning the valence band was somewhat 
s i m p l e r . I t was g e n e r a l l y agreed t h a t because of the 
l a c k o f an i n v e r s i o n centre i n the W u r t z i t e l a t t i c e , the 
valence band would show a s i n g l e maximum at or near t o 
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K = 0. Balkanski and Des Cloiseaux^ " showed from 
group t h e o r y t h a t the maximum of the upper valence band 
should be a t K = 0, but the two lower ones should have 
s i x maxima close t o K = 0. The symmetry of the bands 
a t K = 0 they showed t o be the same as t h a t c a l c i i l a t e d 

(1?) 

by Birman^ ' and i l l u s t r a t e d i n F i g . 1-7. I n a l l the 
experimental work mentioned below the workers assume 
the valence bands t o have a maximum at K = 0, because 
t h i s i s the simplest case t o consider and i t d i d not 
i n v a l i d a t e t h e i r r e s u l t s . The problem then becatafitf one 
of e s t a b l i s h i n g the shape of the conduction band extrema. 
Most of the experimental data favours the simple s i n g l e 
e l l i p s o i d model of F i g . l - 9 ( a ) . Dutton^^^ and Thomas, 

(7) 
H o p f i e l d and Power^'' c a r r i e d out a b s o r p t i o n measurements 
on s i n g l e c r y s t a l s of Cadmium Sulphide. They found no 
evidence of i n d i r e c t absorption processes. The data 
could be explained i n terms of d i r e c t e x c i t o n plus phonon 
processes. I n a f u r t h e r paper on the magneto-optical 
e f f e c t s of the e x c i t o n spectriam, H o p f i e l d and Thomas^^^^ 
provided a d d i t i o n a l data i n support of the simple s i n g l e 
e l l i p s o i d model. However they d i d not r u l e out the 
p o s s i b i l i t y of two equ i v a l e n t " d i r e c t band gaps" along 
a l i n e from K = 0 t o the centre o f the hexagonal face of 

(21) 
the B r i l l o u i n Zone. Balkanski and Des Cloiseaux^ 
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claimed t h e existence of i n d i r e c t t r a n s i t i o n s i n the 
a b s o r p t i o n spectra i n support o f t h e i r many v a l l e y band 
model^-'-'^^ but H o p f i e l d and Thomas^^^^ showed t h a t t h i s 
i n t e r p r e t a t i o n of the r e s u l t s of Balkanski and Des 
Cloiseaux was i n c o r r e c t . At t h i s stage only the r e s u l t s 

(19) 
of Matsumi^ ^' suggested the existence of the many v a l l e y 
model. He observed l o n g i t u d i n a l magnetoresistance para­
l l e l t o the c-axis, a r e s u l t which could not be explained 
by the s i n g l e v a l l e y model. 

(22) 

I n an attempt t o c l a r i f y the p o s i t i o n Zook and Dexter^ 
undertook the measurement of a l l the independent components 
of the r e s i s t i v i t y , H a l l and magnetoresistance tensors 
i n s i n g l e c r y s t a l s of n-type Cadmium Sulphide. The 
magnetoresistance i n the three band models of Pig.1-9 
should be q u i t e d i f f e r e n t . I n the s i n g l e v a l l e y model 
( P i g . l - 9 ( a ) ) the magnetoresistance a r i s e s only from the 
spread i n m o b i l i t i e s due t o the dependence of the s c a t t e r ­
i n g of the e l e c t r o n s on t h e i r energy. The other two types 
of band models ( P i g . l - 9 ( b ) ( c ) ) give r i s e t o transverse 
c u r r e n t s a t zero magnetic f i e l d and i n the presence of 
the magnetic f i e l d a much l a r g e r transverse e f f e c t coupled 
w i t h a l o n g i t u d i n a l e f f e c t not found i n the s i n g l e v a l l e y 
model. Above 77°K t h e i r data w^s consistent w i t h the 
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s i n g l e v a l l e y band model, but below 77 K they could not 
exclude the p o s s i b i l i t y of ToraLdal energy surfaces, w i t h 
v a l l e y s close t o the K = 0 p o s i t i o n . They were able t o 

(IQ) 

e x p l a i n the r e s u l t s of Matsumi^ as e f f e c t s associated 
w i t h t h e i j r inhomogenous c r y s t a l s and contact e f f e c t s 
which Zook and Dexter observed themselves i n some samples. 
Measurements of the e f f e c t i v e mass of the electrons i n 
Cadmium Sulphide provide s t r o n g evidence i n support of 
the s i n g l e v a l l e y model f o r the conduction band w i t h the 

f 2^) 
minimum a t K = 0. Piper and Halstead'' -̂^ obtained a value 
f o r t he e f f e c t i v e e l e c t r o n mass from measurements of the 
temperature dependence of .Hall constant and H a l l m o b i l i t y . 
Thejr used n-type m a t e r i a l and i n t e r p r e t e d t h e i r r e s u l t s 
i n terms of a simple hydrogen-like model f o r the donor 
l e v e l , and obtained an e f f e c t i v e mass of an e l e c t r o n i n 
the donor l e v e l as 0.19 Me, where Me i s the f r e e e l e c t r o n 
mass. H o p f i e l d and T h o m a s ^ f r o m t h e i r measurements 
of the magneto-optical s p l i t t i n g s of the e x c i t o n l i n e s 
i n the luminescence of Cadmivim Sulphide, were able t o 
o b t a i n values f o r the e f f e c t i v e mass of elec t r o n s i n the 
conduction band (Me*) and holes i n the valence band ( M j ^ ) . 
Me* = (0.204 + O.ODMe and i s i s o t r o p i c t o w i t h i n 5% 
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^h*//c-axis = 5 ± 0.5Me 

h c-axis = ± O.lMe 

Piper and Marple ^^^^ measured the f r e e e l e c t r o n con­
t r i b u t i o n t o the i n f r a - r e d a bsorption spectrum of n-type 
Cadmium Sulphide t o o b t a i n a value f o r Me*" of: 

Me* ^„^^^„^ = (0.22 + O.ODMe average — 

They measured the a n i s o t r o p y i n the value p a r a l l e l and 
perpendicular t o the c-axis, i n one sample a t room 
temperature and found: 

f i - = (1.08 i 0.04) 

i n agreement w i t h t h a t detected by H o p f i e l d and Thomas. 
The values from the three measiirements are a l l i n good 
agreement. 
C y c l o t r o n resonance provides the most d i r e c t and d e t a i l e d 
measurement of e f f e c t i v e mass of charge c a r r i e r s i n a 
s o l i d . C y c l o t r o n resonance a t microwave frequencies has 

(2^) 
been observed i n Cadmium Sulphide by Baer and Dexter^ 



(26) and Sawamotto^ Baer and Dexter observed only one 
resonance a b s o r p t i o n a t each o r i e n t a t i o n , which they 
a t t r i b u t e d t o e l e c t r o n s , and which i s consistent w i t h the 
s i n g l e e l l i p s o i d conduction band model. The ( c y c l o t r o n ) 
e f f e c t i v e masses measured a t 4.2°K w i t h the c r y s t a l c-axis 
p a r a l l e l (Me^ ,) and perpendicular (Me^ ) t o the magnetic 
f i e l d are: 

Me*// = (0.171 + 0.003)Me 

Me"̂  = (0.162 + 0.005) Me 

As before t h e r e i s some an i s o t r o p y , ̂ ^5%* i n d i c a t i n g t h a t 
the energy surfaces are not s p h e r i c a l but s l i g h t l y oblate. 
T h e / c y c l o t r o n masses are some 13% lower than those 
measured by the th r e e methods mentioned above. This 
discrepancy can be accounted f o r i n terms of an e l e c t r o n 
s e l f energy c o r r e c t i o n r e s u l t i n g from the p i e z o e l e c t r i c -

(27) 

phonon i n t e r a c t i o n found i n Cadmium Sulphide . 
Sawamotto measured the c y c l o t r o n mass a t 1.7°K i n 
s i n g l e c r y s t a l s , but made no attempt t o measure any 
angular dependence. His value of 0.17 Me f o r the elec­
t r o n c y c l o t r o n mass i s i n agreement w i t h t h a t of Baer 
and Dexter and serves t o accentuate the 15f> d i f f e r e n c e 
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between the c y c l o t r o n mass and the e f f e c t i v e mass as 
determined by other measurements. Sawamotto also observed 
another resonance a b s o r p t i o n corresponding t o a c a r r i e r 
w i t h heavier e f f e c t i v e mass which he a t t r i b u t e d t o holes. 
The value he obtained was: 

= 0.81Me 

This value i s i n agreement w i t h value of determined 
by H o p f i e l d and Thomas^^^^* 
Thus a l l the e x p e r i m e n t a l l y measured values of e f f e c t i v e 
mass are i n good agreement and they i n d i c a t e a simple 
s i n g l e v a l l e y model f o r the conduction band of Cadmium 
Sulphide. A l l the experimental data i s i n favour of t h i s 
model. The accepted model f o r the band s t r u c t u r e of 
Cadmium Sulphide i s shown i n P i g . 1-10, close t o K=0. 
As o u t l i n e d a t the beginning of t h i s s e c t i o n the nat\ire 
of the band s t r u c t u r e away from K=0 and of the bands 
higher and lower than those shown i n P i g . 1-10 i s ob-
-tained by comparison of the r e f l e c t i v i t y data of w u r t z i t e 
m a t e r i a l s w i t h t h a t of the zi n c blende type m a t e r i a l s , 
where the band s t r u c t u r e i s w e l l e s t a b l i s h e d . Measurements 
of t h i s type have been performed by Cardona and Harbeke^"''-^^ 
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FIG.1-10. 
Band s t r u c t u r e of Cadmium Sulphide f o r the 

lov/est conduction band and highest valence bands 
close t o k=0,0,0,The s p l i t t i n g s of the valence bands 
and the symmetry at k=:0,0,0, are .shov-;n. (Not t o scale) 

I n, valence bands only a c t i v e f o r photon e l e c t r i c 
v e c t o r x t o c - a x i s . 
Vy bands a c t i v e f o r a l l p o l a r i s a t i o n s . 



I n i t i a l l y they compared the r e f l e c t i v i t y spectra of cubic 
Zinc Sulphide ( j i i n c blende t y p e ) and hexagonal Zinc 
Sulphide ( w u r t z i t e type) f a r i n t o the u l t r a - v i o l e t . I n 
t h i s way the d i f f e r e n c e s i n the spectra and hence the 
band s t r u c t u r e i n passing from the ziinc blende t o the 
w u r t z i t e m o d i f i c a t i o n were e s t a b l i s h e d . They then obtained 
the r e f l e c t i v i t y s p e ctra of hexagonal Cadmium Sulphide 
and Cadmium Selenide. On the basis of the e x i s t i n g 
knowledge of the band s t r u c t u r e of diamond and i i n c blende 
m a t e r i a l s they were able t o p r e d i c t the p o s i t i o n s of the 
r e f l e c t i v i t y peaks f o r the h y p o t h e t i c a l z i n c blende modif­
i c a t i o n s o f the hexagonal Cadmium Sulphide and Cadmium 
Selenide c r y s t a l s . This was achieved using the p e r t u r b a t i o n 

(Q) 

method o u t l i n e d by Birman^^"^. The c a l c u l a t e d peaks were 
i d e n t i f i e d w i t h those found i n the cubic Zinc Sulphide 
spectrum. Then the d i f f e r e n c e s between the ca l c u l a t e d 
peaks and those found i n the w u r t z i t e m a t e r i a l s were analysed 
i n terms of changes i n band s t r u c t u r e from the idinc blende 
t o the w u r t z i t e m o d i f i c a t i o n . I n t h i s way they obtained 
the band p i c t u r e of Cadmium Sulphide along the c-axis as 
shown i n F i g . 1-11. I n p r i n c i p l e the band p i c t u r e along 
axLj d i r e c t i o n can be obtained but t h i s has not yet been 
accomplished. 



I? 
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FIG. 1-11. Band st^ruccure of cadmium sulphide along 
. -(11" 

the hexagonal axis.Due t o Gardona and ilarbeice. 
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.(11) there has been Since t h e work of Cardona and Harbeke 
l i t t l e p ublished work concerning the band s t r u c t u r e of 

(28) 
CadmiTim Sulphide. B a l k a n s k i , Amzallog and Langer'' 
performed i n t e r b a n d Paraday r o t a t i o n measiirements i n a 
s e r i e s of w u r t z i t e 2-6 compounds. Their data was 
adequately described i n terms of d i r e c t allowed t r a n s i t i o n s 
i n t he simple band s t r u c t u r e scheme i n P i g . 1-10. They 
obtained values f o r the e f f e c t i v e mass of holes and 
e l e c t r o n s and t h e i r r e s p e c t i v e g-values i n Cadmium Sulphide 

M * e «e «h 

CdS 0.2M^^^^ e 0.7Mg^°^ 1.78^^) 1.00 

(a) See also ^ ^ 9 ) ^ g^j^ig i n agreement w i t h a l l 

t h e o t h e r meas\irements (20,23,24,25,26) 
.(2D) (b) I n agreement w i t h H o p f i e l d and Thomas 

(c) I n agreement w i t h H o p f i e l d and Thomas 
(26) and Sawamotto^ 

(20) 

(2S) 
Recently Slagsvold and Schwerdfeger"" ' measured the g-
tensor f o r shallow donor l e v e l s i n Iodine doped Cadmium 
Sulphide by means of e l e c t r o n s p i n resonance techniques. 
Roth^^^^ has shown t h a t the g-value of an e l e c t r o n i n 
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i n a s h a l l o w t r a p i n a semiconducting m a t e r i a l can be 

c a l c u l a t e d from a knowledge of the band s t r u c t \ i r e (See 

a l s o s e c t i o n 5-4.2 l a t e r ) . S l a g s v o l d and Schwerdfeger 

c a l c u l a t e d the g-value of donor e l e c t r o n s i n Cadmium 

Sulphide u s i n g Roth's theory and assuming a band s t r u c t u r e 

w i t h extrema c l o s e to K = 0 and with the conduction band 

formed completely from atomic s - s t a t e s and the valence 

band from p - s t a t e s . The g-value they c a l c u l a t e d showed a 

l a r g e d i s c r e p a n c y from t h a t determined experimentally. 

They showed t h a t i n order to obtain good agreement between 

the two v a l u e s i t was n e c e s s a r y to p o s t u l a t e a small 

admixture of s-type s t a t e s i n t o the highest valence band. 

The c a l c u l a t e d g-value was v e r y s e n s i t i v e to the amount of 

admixture and they concluded t h a t t h e i r method of deter­

mining the amount of mixing was r a t h e r a r b i t r a r y . A 

p r e c i s e knowledge of the band s t a t e s was necessary, and 

was not y e t a v a i l a b l e to determine a c c u r a t e l y the g-value 

of the donor e l e c t r o n s . 

1-5 C o n c l u s i o n s 

The band s t r u c t u r e of Cadmium Sulphide has been w e l l 

e s t a b l i s h e d from experimental measurements. The shape 

of the lowest conduction band and highest valence bands 

c l o s e to K = 0 i s shown i n some d e t a i l i n F.1-10. The 

s t r u c t u r e of many of the bands i s shown i n P i g . 1-11 f o r 

the f i r s t B r i l l o u i n Zone i n the d i r e c t i o n of the 



c r y s t a l l o g r a p h i e c - a x i s . Recent advances i n math­

e m a t i c a l techniques have improved the t h e o r e t i c a l c a l c u l ­

a t i o n s of band s t r u c t u r e of w u r t z i t e type m a t e r i a l s ^ ^ ^ ^ 

However t h e r e a r e s t i l l l a r g e d i s c r e p a n c i e s with the 

e x p e r i m e n t a l l y determined model. Also the work of 
(2Q) 

S l a g s y o l d and Schwerdfeger^ has underlined the need 

f o r a more p r e c i s e Imowledge of the nature of the band 

s t a t e s . However f o r most experimental work our present 

knowledge of the band s t r u c t u r e i s adequate. 
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CHAPTER 2 

THE EFFECT OF IMPERFECTIONS ON THE PROPERTIES OF CADMIUM 

SULPHIDE 

2-1 I n t r o d u c t i o n 

I n Chapter 1 the nature of the energy l e v e l s a v a i l a b l e to 

e l e c t r o n s i n an i d e a l , p e r f e c t c r y s t a l was d i s c u s s e d . A 

d e t a i l e d p i c t u r e of the band s t r u c t u r e of Cadmium Sulphide 

and an o u t l i n e of some of the e l e c t r i c a l and o p t i c a l 

p r o p e r t i e s determined by the band s t r u c t u r e was given. 

We now co n s i d e r the e f f e c t on these p r o p e r t i e s r e s u l t i n g 

from the i n t r o d u c t i o n of imper f e c t i o n s i n t o the c r y s t a l 

l a t t i c e . 

T h i s d i s c u s s i o n of i m p e r f e c t i o n s w i l l be mainly concerned 

w i t h p o l a r semiconducting m a t e r i a l s s i n c e Cadmium Sulphide 

i s i n t h i s c l a s s of compounds. ( C u r i e ^ has dis c u s s e d 

the a v a i l a b l e experimental evidence f o r determining, the 

degree of i o n i c i t y i n the bonding of Zinc Sulphide and 

Cadmium Sulphide and concludes that 73% i o n i c bonding 

c o n t r i b u t i o n i s the most probable v a l u e ) . Much of the 

treatment f o r the p o l a r semiconducting m a t e r i a l s i s a l s o 

a p p l i c a b l e to metals and p u r e l y i o n i c s o l i d s . Only point 

d e f e c t s w i l l be d i s c u s s e d , s i n c e , as we s h a l l see, these 

produce the dominant e f f e c t on the e l e c t r i c a l and 
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o p t i c a l p r o p e r t i e s of p o l a r semiconducting m a t e r i a l s and 

i t i s these p r o p e r t i e s w i t h which we s h a l l be most concerned. 

There w i l l toe no d i s c u s s i o n of the e f f e c t s of d i s l o c a t i o n s 

s i n c e t h e s e are s m a l l compared with those a s s o c i a t e d with 

point d e f e c t s . F o r a more complete d i s c u s s i o n of the 

i m p e r f e c t i o n s i n c r y s t a l s the reader should consult r e f ­

erences 2, 5, 4 and 5. 

2-2 P o i n t D e f e c t s i n P o l a r C r y s t a l s 

2-2.1 Types of point d e f e c t 

The most common point d e f e c t i s the vacancy, which occurs 

when an atom or i o n i s m i s s i n g from a l a t t i c e s i t e . 

Charge n e u t r a l i t y must be s t r i c t l y f u l f i l l e d i n the c r y s t a l . 

S i n c e a vacancy i n a p o l a r c r y s t a l has an e f f e c t i v e charge 

equal and opposite to t h a t of the i o n which should occupy 

the s i t e , some charge compensation process i s e s s e n t i a l . 

I n p u r e l y i o n i c c r y s t a l s charge n e u t r a l i t y can be maintained 

by the production of equal numbers of p o s i t i v e and negative 

i o n v a c a n c i e s (Schottky d e f e c t s ) , by the i n t r o d u c t i o n of 

f o r e i g n atoms w i t h a v a l e n c y d i f f e r i n g from that of the 

ions of the c r y s t a l , or by a combination of the two pro­

c e s s e s . I n semiconductor type m a t e r i a l s a f i i r t h e r process i s 

a v a i l a b l e where charge n e u t r a l i t y i s achieved by the i n t r o ­

d u c t i o n ( o r removal) of f r e e charge c a r r i e r s . 

The other simple point d e f e c t i s the i n t e r s t i t i a l and t h i s 
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i s formed when an i o n or atom i s present i n a c r y s t a l a t a 

s i t e which i s not a l a t t i c e s i t e . I f the i n t e r s t i t i a l i s 

a charged i o n then charge compensation i s again e s s e n t i a l 

and can be achieved i n a number of ways. The most common 

methods a r e the simultaneous production of v a c a n c i e s at 

l a t t i c e s i t e s where the i o n has the same charge as the 

i n t e r s t i t i a l ( F r e n k e l d e f e c t s ) , or by the i n t r o d u c t i o n of 

f o r e i g n atoms of s u i t a b l e v a l e n c y . Once again f r e e charge 

c a r r i e r compensation i s p o s s i b l e i n semiconductor type 

m a t e r i a l s . The formation of i n t e r s t i t i a l s i s a l s o governed 

by c o n s i d e r a t i o n s of s i z e . There must be s u f f i c i e n t volume 

at the i n t e r s t i t i a l s i t e to accommodate the atom or i o n . 

Thus i n c l o s e packed metal s t r u c t u r e s i n t e r s t i t i a l s are a 

r a r e occurrence, whereas i n the more open non-metallic 

s t r u c t u r e i n t e r s t i t i a l s can occur more r e a d i l y . 

These two simple point d e f e c t s f r e q u e n t l y a s s o c i a t e i n t o 

p a i r s or l a r g e r c l u s t e r s . T h i s a s s o c i a t i o n may come about 

because of the e f f e c t i v e charge of the d e f e c t s or because 

the r e l a x a t i o n of the l a t t i c e aroxind such a c l u s t e r favours 

the a s s o c i a t i o n . 

I n a p o l a r semiconductor the point d e f e c t s possess an 

e f f e c t i v e charge. Thus a f r e e e l e c t r o n or hole i s capable 

of being 'trapped' i n t o a l o c a l i s e d o r b i t i n the v i c i n i t y 

of the d e f e c t , depending on the s i g n of the e f f e c t i v e 
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charge of d e f e c t . I n terms of the band s t r u c t u r e p i c t u r e 

of Chapter 1, t h i s means t h a t the d e f e c t s produce trapping 

l e v e l s i n the forbidden gap. Defects can i n c e r t a i n cases 

t r a p both a hole and f r e e e l e c t r o n and so a c t as recombin­

a t i o n c e n t r e s a t which f r e e h o l e s and e l e c t r o n s can recom-

bine. C l e a r l y a wide v a r i e t y of t r a p s and recombination 

c e n t r e s a r e p o s s i b l e depending on the d e f e c t s and c l u s t e r s 

present i n the l a t t i c e and these can give r i s e to s t r u c t u r e 

s e n s i t i v e p r o p e r t i e s which are dependent on the h i s t o r y of 

the sample. 

T h i s s i t u a t i o n occurs i n Cadmium Sulphide and accounts f o r 

much of the d i f f i c u l t y i n i n t e r p r e t a t i o n of the experimentally 

observed c h a r a c t e r i s t i c s of Cadmium Sulphide. A b r i e f 

o u t l i n e of the main p r o p e r t i e s of Cadmium Sulphide asso­

c i a t e d w i t h the presence of the imperfections w i l l be 

presented i n s e c t i o n 2-3. 

2-2.2 E q u i l i b r i u m c o n c e n t r a t i o n s of d e f e c t s 

The presence of l a t t i c e d e f e c t s might be expected to 

i n c r e a s e the energy of a c r y s t a l s i n c e they destroy the 

p e r i o d i c i t y of the l a t t i c e and r e q u i r e energy f o r t h e i r 

formation. However, once the energy has been supplied to 

form a d e f e c t , u s u a l l y of the order of a few eV, the 

l a t t i c e w i l l r e l a x around the defect and i n doing so 
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compensate f o r most of the energy of formation. 

C a l c u l a t i o n s have been performed to estimate the energy 

changes during the formation of a point defect i n polar 

and m e t a l l i c m a t e r i a l s . These c a l c u l a t i o n s are somewhat 

u n r e l i a b l e , but they do i n d i c a t e that from energy con­

s i d e r a t i o n s alone, a c e r t a i n c o n c e n t r a t i o n of d e f e c t s i s 

to be expected i n a s o l i d . 

The e x i s t e n c e of d e f e c t s can a l s o be j u s t i f i e d from 

thermo-dynamic p r i n c i p l e s . By i n t r o d u c i n g a vacancy or 

i n t e r s t i t i a l i n t o a p e r f e c t l a t t i c e the p o s s i b l e number 

of d i s t i n g u i s h a b l e arrangments of atoms i n c r e a s e s from 

u n i t y to a v e r y l a r g e number of the order of 10^^ / cm^. 

i . e . the i n t r o d u c t i o n of point d e f e c t s i n c r e a s e s the 

c o n f i d u r a t i o n a l entropy of the l a t t i c e and, at s u f f i c i e n t l y 

high temperatures, t h i s compensates f o r the energy of 

f ormation of the d e f e c t . T h i s point can be emphasised 

by d e f i n i n g the Helmholtz f r e e energy ( F ) of a s o l i d ^ ^ \ 

i n thermodynsimic e q u i l i b r i u m , a s : 

F = U - T.S. (2-1) 

where U i s the t o t a l i n t e r n a l energy of the s o l i d , T i s 

a b s o l u t e temperature and S i s entropy of the s o l i d . 
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The i n t r o d u c t i o n of n point d e f e c t s i n t o the l a t t i c e , 

i n c r e a s e s the i n t e r n a l energy by an amount nW, where W 

i s the energy of formation. The i n c r e a s e (^S) i n entropy 

due to these d e f e c t s i s given by the Boltzmann expression 

f o r c o n f i g u r a t i o n a l entropy: 

AS = K l o g ^ P 

where K i s Boltzmann's constant and P i s the number of 

ways i n which the d e f e c t s can be arranged. 

Thus the change i n f r e e energy (AP) due to the d e f e c t s i s : 

AP = nW - Klog^ P (2-2) 

Then by minimising AP w i t h r e s p e c t to n, the thermal 

e q u i l i b r i u m c o n c e n t r a t i o n of d e f e c t s (n) r e q u i r e d to 

minimise the f r e e energy of the s o l i d can be c a l c u l a t e d . 

Note - s t r i c t l y one should minimise the Gibb's f r e e energy 

but use of the Helmholtz energy i s an adequate approximation. 

T h i s c a l c u l a t i o n can be improved by t a k i n g account of the 

f a c t t h a t near a point d e f e c t the v i b r a t i o n a l frequencies 

of the neighbo\iring ions i s modified and a l s o that the 



i n t e r n a l energy of the l a t t i c e and the energy of formation 

of the d e f e c t s a r e temperature dependent f u n c t i o n s . 

Thus we see th a t f a r from being non-equilibrium s t a t e s 

i n the l a t t i c e , the point d e f e c t s must be present i n order 

to reduce the f r e e energy of the s o l i d . 

2-2.3 Non-equilibrium concentrations of de f e c t s 

The thermal e q u i l i b r i u m concentrations of point d e f e c t s 

u s u a l l y only reach v a l u e s s u f f i c i e n t to produce n o t i c e a b l e 

e f f e c t s on the p r o p e r t i e s of m a t e r i a l s a t temperatures 

approaching the me l t i n g p o i n t . I n p r a c t i c e , however, at 

temperatures much below the melting point concentrations 

a r e f r e q u e n t l y encounte<ft(i^which are many orders of magnitude 

l a r g e r than the corresponding e q u i l i b r i u m v a l u e s . These 

l a r g e c o n c e n t r a t i o n s have a major e f f e c t on the p r o p e r t i e s 

of the m a t e r i a l . T h i s i s the case i n Cadmium Sizlphide. 

Such s i t u a t i o n s can a r i s e i n a v a r i e t y of ways: f o r 

example, 

(1 ) by r a p i d quenching of the m a t e r i a l from a temperat\ire 

c l o s e to i t s melting p o i n t . C l e a r l y t h i s i s a non-

e q u i l i b r i u m process and the de f e c t concentration c o r r e s ­

ponding to the high temperature i s ' f r o z e n - i n ' i n t o the 

l a t t i c e a t the low temperature where the r a t e of the 

d i f f u s i o n of the d e f e c t s i s low. I n p r a c t i c e i t i s 
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u s u a l l y d i f f i c u l t to cool a m a t e r i a l s u f f i c i e n t l y slowly 

to m a i n t a i n e q u i l i b r i u m c o n d i t i o n s over the range from 

near the m e l t i n g point to room temperature. This i s the 

case w i t h Cadmium Sulphide, which i s grown by vapour phase 

techniques a t temperatures of the order of 1000*^C. 

( 2 ) V i a l a r g e c o n c e n t r a t i o n s of d i s l o c a t i o n s and hence 

point d e f e c t s . S i n c e i n t e r s e c t i n g and climbing d i s l o c a t i o n s 

are sources of point d e f e c t s , the l a t t e r can be introduced 

i n t o a s o l i d by s t r a i n . T h i s s t r a i n can be produced 

duri n g c o o l i n g from a high temperature e.g. during growth. 

(3 ) The c o n c e n t r a t i o n s of d e f e c t s can be c o n t r o l l e d by the 

presence of charged i m p u r i t i e s . The d e f e c t s provide the 

charge compensation mechanism f o r the i m p u r i t i e s . Since 

the d e f e c t s and i m p u r i t y must be of opposite charge p o l a r i t y 

f o r charge n e u t r a l i t y they f r e q u e n t l y occur as a s s o c i a t e d 
( 8 ) 

p a i r s e.g. the Z i n c Sulphide A centre^ which i s composed 

of a halogen i m p i i r i t y s u b s t i t u t i n g f o r Sulphur a s s o c i a t e d 

w i t h a Z i n c i o n vacancy. C l e a r l y a s i m i l a r type of defect 

i m p u r i t y p a i r might occur i n Cadmium Sulphide, but no 

d i r e c t evidence f o r i t s e x i s t e n c e has yet been obtained. 

(4) Non-stoichiometry can develop during the growth of 

compounds and o b v i o u s l y l e a d to l a r g e non-equilibrium 

c o n c e n t r a t i o n s of d e f e c t s . T h i s i s thought to be the pro­

c e s s c h i e f l y r e s p o n s i b l e f o r the production of d e f e c t s i n 
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Cadmium Sulphide, e s p e c i a l l y as the c r y s t a l s are grown 

from the vapour phase where c o n t r o l of the c o r r e c t vapour 

p r e s s u r e s f o r s t o i c h i o m e t r i c growth i s v e r y d i f f i c u l t . 

C l e a r l y i t i s p o s s i b l e f o r non-equilibrium concentrations 

of d e f e c t s to be present i n s o l i d s . The processes described 

above are f r e q u e n t l y d i f f i c u l t to c o n t r o l during the growth 

and subsequent hand l i n g of the samples so that f o r 

m a t e r i a l s whose p r o p e r t i e s are very dependent on the con­

c e n t r a t i o n s of point d e f e c t s , e.g. Cadmium Sulphide, the 

c o n t r o l and r e p r o d u c i b i l i t y of p r o p e r t i e s from sample to 

sample i s i m p o s s i b l e u n l e s s the atomic composition of the 

d e f e c t s can be i d e n t i f i e d . 

2-2.4 P o i n t d e f e c t s i n p o l a r semiconductors i n e q u i l i b r i u m 

w i t h t h e i r surroimdin gs 

We have d i s c u s s e d i n s e c t i o n 2-2.2 the e q u i l i b r i u m con­

c e n t r a t i o n of d e f e c t s i n a s o l i d , without reference to 

the i n t e r a c t i o n s w i t h t h e i r surroundings. Kr'dger and 

Vink^^^ have d e s c r i b e d the formation and equilibri\im con­

d i t i o n s f o r point d e f e c t s i n d i v a l e n t , diatomic compounds. 

The b a s i s of t h e i r method i s to d e s c r i b e the formation of 

d e f e c t s i n terms of quasi-chemical equations. As an 

example l e t us c o n s i d e r the formation of <f i s o l a t e d F r e n k e l 

d e f e c t s i n the diatomic compound MX. T h i s process can b« 
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r e p r e s e n t e d by the r e a c t i o n equation: 

Where Vm r e p r e s e n t s a metal i o n vacancy and Mi a metal 

io n a t an i n t e r s t i t i a l s i t e . S i n c e t h i s i s a thermo-

dy n a m i c a l l y r e v e r s i b l e process then the p r i n c i p l e of 

chemical e q u i l i b r i u m , often r e f e r r e d to as the law of mass 

a c t i o n ^ ^ ' , can be a p p l i e d . According to t h i s p r i n c i p l e 

the products of the c o n c e n t r a t i o n s of r e a c t i o n components 

are r e l a t e d through a r e a c t i o n constant. Por the r e a c t i o n 

(5) the c o n c e n t r a t i o n s of the components can be expressed 

by the r e l a t i o n : 

CVm} . CMi) = Kj, (2-4) 

where i s the r e a c t i o n constant. Here we s h a l l assume 

<$<:<: I so t h a t the c o n c e n t r a t i o n of the atoms occupying 

proper l a t t i c e s i t e s does not change a p p r e c i a b l y . This i s 

v a l i d f o r the c o n c e n t r a t i o n s of d e f e c t s u s u a l l y found i n 

p r a c t i c e , so t h a t the law of mass a c t i o n d e a l s only with 

the c o n c e n t r a t i o n s of the d e f e c t s . R e l a t i o n s h i p s of the 

form of equation (2-4) can be obtained f o r a l l the processes 

which l e a d to departures from the p e r f e c t c r y s t a l by the 

formation of d e f e c t s . The e f f e c t of the e x t e r n a l atmos-
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FIG.24-1. Possible energy l e v e l scheme f o r the s o l i d 
MX w i t h F r e n k e l . d i s o r d e r . 
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phere can be t r e a t e d i n a s i m i l a r manner. The method 

becomes extremely powerful when ap p l i e d to a compound i n 

e q u i l i b r i u m w i t h i t s vapour. F o r i l l u s t r a t i v e purposes 

l e t us t r e a t a s p e c i f i c example. Consider departures 

from s t o i e h i o m e t r y . i n the compound MX due to formation 

of metal i o n i n t e r s t i t i a l s (M^) by d i f f u s i o n of metal 

ions (M ) from the vapour i n t o the s o l i d and that the 

d e v i a t i o n s from s t o i c h i o m e t r y are accommodated by the 

formation of F r e n k e l d e f e c t s . A p o s s i b l e band scheme f o r 

the system, c o n t a i n i n g metal i o n i n t e r s t i t i a l s and 

v a c a n c i e s , i s shown i n P i g . 2-1. 

The production of the metal i o n i n t e r s t i t i a l s can be 

expressed by the pseudo-chemical equation: 

MX + M„ = MX + M. (2-5) 

The r a t e of r e a c t i o n f o r t h i s process i s governed by the 

law of mass a c t i o n i n the normal way, l e a d i n g to the 

r e l a t i o n : 

i ^ = (2-6) 
Pm 

Where Pm i s the p a r t i a l p r e s s u r e of the metal vapour. 

T h i s a u t o m a t i c a l l y d e f i n e s the p a r t i a l pressure of the 
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of the component X, i n the vapour. i s the appropriate 

r e a c t i o n constant. 

From equation (2-4) the co n c e n t r a t i o n s of the components 

of the F r e n k e l d e f e c t s a r e r e l a t e d by: 

tVm} CM̂ } = Kj, (2-7) 

Another p a i r of equations are obtained by co n s i d e r i n g 

the e l e c t r o n t r a n s i t i o n s from the metal i n t e r s t i t i a l donor 

l e v e l s to the conduction band aoid hole t r a n s i t i o n s from 

the vacancy l e v e l s to the valence band: 

+ Ê ' —p- M/ + (D (2-8) 

where M/ i s an i o n i s e d donor and © i s a f r e e e l e c t r o n i n 

the conduction band. 

Vm + E2 — ^ Vm-"- + © (2-9) 

where Vm̂ ^ i s a vacancy minus a hole and 0 i s a f r e e hole 

i n the v a l e n c e band. 

Applying the law of mass a c t i o n i n the normal way the 

f o l l o w i n g r e l a t i o n s h i p s are obtained: 
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Prom ( 2 - 8 ) N [ M p = ^2 ( 2 - 1 0 ) 

Prom ( 2 - 9 ) P [Vm-*-} = ( 2 - 1 1 ) 

where n and p are the f r e e e l e c t r o n and f r e e hole con­

c e n t r a t i o n s r e s p e c t i v e l y . 

Por any semiconductor the product of the f r e e e l e c t r o n 

c o n c e n t r a t i o n and f r e e hole c o n c e n t r a t i o n i s a constant. 

i . e . n.p. = ( 2 - 1 2 ) 

Inolruding The c o n d i t i o n of charge n e u t r a l i t y provides 

one f u r t h e r r e l a t i o n : 

n + CVm̂ 3 = P -t- imr^ ( 2 - 1 3 ) 

C l e a r l y there a r e now s u f f i c i e n t equations to obtain 

r e l a t i o n s h i p s f o r the concentrations of the def e c t s and 

the f r e e c a r r i e r s i n terms of the r e a c t i o n constants, the 

e x t e r n a l vapour p r e s s u r e and the temperature. 

An approximate method of s o l u t i o n has been devised by 

Brouwer^'^^^ which c o n s i s t s of t a k i n g logarithms of both 

s i d e s of the equations ( 2 - 6 ) , ( 2 - 7 ) , ( 2 - 1 0 ) , ( 2 - 1 1 ) , ( 2 - 1 2 ) 
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and (2-15) to provide a s e t of simultaneous equations. 

The form of equation (2-15) i s not s u i t a b l e f o r t h i s method 

and so i t s form i s s i m p l i f i e d by c o n s i d e r i n g d i f f e r e n t 

regimes of the p a r t i a l p r e s s u r e (Pm) of the metal vapour. 

For example, a t extremely high v a l u e s of Pm the form­

a t i o n of metal i n t e r s t i t i a l s i s favoured r e l a t i v e to the 

formation of v a c a n c i e s and so CM^ ^ CVm]. 

C l e a r l y i n t h i s case equation (2-15) can be r e w r i t t e n : 

n Cup (2-14) 

and s o l u t i o n s f o r CMĵ 3 , [Mp MjLVm"'"), n and p can be 
e a s i l y obtained u s i n g the method of Brouwer^"^^^ * 
form of equation (2-15) i s then considered i n d i f f e r e n t 

regimes of the p a r t i a l p r e s s u r e Pm and s o l u t i o n s f o r the 

d e f e c t and f r e e c a r r i e r c o n c e n t r a t i o n s obtained i n each 

regime. These s e p a r a t e s o l u t i o n s can then be f i t t e d 

together to provide a s o l u t i o n over the complete range 
of vapour p r e s s u r e . 

The e x t e n s i o n of t h i s method to other types of defect 

d i s o r d e r s i t u a t i o n s can be obtained i n an obvious manner 

from the above example. The more complicated s i t u a t i o n 

which a r i s e s when f o r e i g n atoms are incorporated i n t o 

the s o l i d can a l s o be t r e a t e d by an extension of t h i s 



method. A f u r t h e r s e t of r e l a t i o n s h i p s which i n c l u d e s 

the e f f e c t s of the im p u r i t y atoms can be obtained. A 

s u f f i c i e n t s e t of equations can always be obtained so 

th a t Brouwer's method can be a p p l i e d . Por a thorough 

review of the method o u t l i n e d above the reader should 

c o n s u l t r e f e r e n c e s (4) and ( 5 ) . 

Thus i n p r i n c i p l e the c o n c e n t r a t i o n of d e f e c t s which w i l l 

be produced by h e a t i n g a compound MX i n the vapour of 

one or both of i t s c o n s t i t u e n t s can be evaluated. I f 

the e f f e c t on the p r o p e r t i e s by the heat treatment can 

be measured and r e l a t e d to the changes i n the defect 

c o n c e n t r a t i o n s p r e d i c t e d by the techniques described 

above one can determine the d e f e c t s which dominate the 

p r o p e r t i e s of the compound. T h i s technique has been 

a p p l i e d w i t h a l i m i t e d degree of suc c e s s to Lead Sulphide, 

Cadmium T e l l u r i d e and Cadmium Stilphide. However many 

i n c o n s i s t e n c i e s remain to be explained, e s p e c i a l l y i n 

the case of Cadmiiun Sulphide. 

2-3 P o i n t Defects i n Cadmium Sulphide 

Many of the p o t e n t i a l l y commercially important e l e c t r i c a l 

and o p t i c a l p r o p e r t i e s of semiconductors and i n s u l a t o r s 

l i k e Cadmium Sulphide, such as t h e i r photoconductivity 

and luminescence, are a s s o c i a t e d with the presence of 

i m p u r i t i e s and i m p e r f e c t i o n s i n the l a t t i c e . The 

expected i n f l u e n c e of such i m p e r f e c t i o n s on the photo-



e l e c t r o n i c p r o p e r t i e s i s known, and so i t i s p o s s i b l e to 

use the measurement of these p r o p e r t i e s to i n v e s t i g a t e 

the nature of the i m p e r f e c t i o n s . An acco\mt of the more 

important techniques t h a t have been a p p l i e d to study the 

p h o t o e l e c t r o n i c processes i n Cadmium Sulphide i s given 

below: 

2-3.1 E f f e c t s due to im p e r f e c t i o n s 

The i n t r o d u c t i o n of im p e r f e c t i o n s may have one or more 

of the f o l l o w i n g e f f e c t s on the p r o p e r t i e s of Cadmium 

Sulp h i d e : 

(1) Change the dark c o n d u c t i v i t y . Donor imperfections 

i n c r e a s e the c o n d u c t i v i t y and acceptors decrease i t 

s i n c e Cadmium Sulphide of present impurity i s always 

n-type ( s e e below). 

(2) A l t e r the p h o t o s e n s i t i v i t y . Imperfections which a c t 

as recombination c e n t r e s decrease the s e n s i t i v i t y . On 

the other hand, i m p e r f e c t i o n s which have a lar g e cross 

s e c t i o n f o r c a p t u r i n g photoexcited h o l e s , but a small 

one f o r c a p t u r i n g photoexcited e l e c t r o n s a f t e r capturing 

h o l e s may i n c r e a s e the s e n s i t i v i t y by i n c r e a s i n g the f r e e 

e l e c t r o n l i f e t i m e when the e l e c t r o n s are the majority 

c a r r i e r s ( s e e a l s o s e c t i o n 2-5.4-). 

(3) The i m p e r f e c t i o n s can i n f l u e n c e the speed of response 

of the pho t o c o n d u c t i v i t y . The speed of response decreases 

when i m p e r f e c t i o n s t r a p the f r e e c a r r i e r s , \xntil they are 
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t h e r m a l l y f r e e d i . e . they e f f e c t i v e l y reduce the c a r r i e r 

m o b i l i t y . However t h i s may i n c r e a s e the c a r r i e r l i f e t i m e 

before recombination and so may i n c r e a s e the . s e n s i t i v i t y . 

T h i s may l e a d to c o n f l i c t i n g requirements. 

( 4 ) They w i l l extend the spectral response of the photo­

c o n d u c t i v i t y to the long wavelength s i d e of the absorption 

edge, s i n c e d i r e c t e x c i t a t i o n from an imperfect centre 

w i t h i t s l e v e l l y i n g i n the forbidden gap r e q u i r e s l e s s 

energy than e x c i t a t i o n a c r o s s the band gap. 

( 5 ) They may provide r a d i a t i v e recombination paths. 

E m i s s i o n of photons w i t h energy l e s s than the band gap 

becomes p o s s i b l e v i a recombination centres i n the f o r b i d ­

den gap. 

2-3.2 I m p e r f e c t i o n l e v e l s i n Cadmium Sulphide 

The g e n e r a l p a t t e r n f o r i m p e r f e c t i o n behavic^ i n Cadmium 

Sulphide (and a l l 2-6 compounds) i s that group 3 and group 

7 i m p u r i t i e s and anion v a c a n c i e s a c t as donors. While 

group 1 and group 5 i m p u r i t i e s and c a t i o n v a c a n c i e s a c t 

as a c c e p t o r s . The energy l e v e l s of these imperfections 

ar e l a r g e l y determined by the host l a t t i c e ^ "'"'̂ .̂ The 

i o n i s a t i o n energies of a l l the donors i s of the order of 

0.03eV and of a l l the a c c e p t o r s i n the range 0.8-l.OeV. 

The presence of the deep l y i n g acceptors i s r e s p o n s i b l e 

f o r the f a c t t h a t Godmium Sulphide can only be made n-type 

and not p-type. Also the c o n c e n t r a t i o n of donors always 
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a p p a r e n t l y exceeds t h a t of the acceptors i n m a t e r i a l of 

present p u r i t y so t h a t the acceptors are always completely 
(12) 

compensated. Woodbury^ has measured the s e l f d i f f u s i o n 

of Cadmium i n Cadmium Sulphide and concluded that the main 

d e v i a t i o n s from s t o i c h i o m e t r y are accommodated i n the 

l a t t i c e by Schottj^ d e f e c t s . He a l s o concluded t h a t under 

a l l c o n d i t i o n s the c o n c e n t r a t i o n of Sulphur va c a n c i e s (Vs) 

exceeded t h a t of the Cadmium v a c a n c i e s (Vcd). I f donor 

i m p u r i t i e s a r e present the formation of Cadmium vacancies 

w i l l be favoured by compensation. I n m a t e r i a l of present 

p u r i t y Woodbury concludes t h a t the concentration of Cadmium 

v a c a n c i e s i s always determined by the donor impurity con­

c e n t r a t i o n , but t h a t CVs}>(ycdl s t i l l and the Cadmium 

v a c a n c i e s a r e compensated by the donors. 

2-5*5 I n v e s t i g a t i o n of the t r a p p i n g spectrum 

The m a j o r i t y of t h i s work has been centred on e l e c t r o n 

r a t h e r than hole t r a p s , s i n c e the nature of the tra p s 

has u s u a l l y been i n f e r r e d from t h e i r observed e f f e c t s on 

the t r a n s p o r t p r o p e r t i e s , which are dominated by the ma j o r i t y 

c a r r i e r s , the e l e c t r o n s . 

Woods and Ni c h o l a s "̂ ^̂  used the technique of thermally 

s t i m u l a t e d c u r r e n t s to i n v e s t i g a t e the trappi n g spectrum of 

l e v e l s i n the upper h a l f of the forbidden gap. They found 
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l e v e l s a t depths of 0.05eV, 0.15eV, 0.25eV, 0.41eV, 0.63eV 

and 0.83eV below the conduction band. 

They proposed the f o l l o w i n g t e n t a t i v e assignment of the 

l e v e l s : 

0.05eV) 
I a s s o c i a t e d w i t h i s o l a t e d Sulphur v a c a n c i e s 

0.15eV)) 

0.25eV - A complex of a s s o c i a t e d Sulphur v a c a n c i e s . 

0.41eV - A complex of a s s o c i a t e d Cadmium and Sulphur 

v a c a n c i e s i n n e a r e s t neighbour s i t e s . 

0.63eV - A complex of a s s o c i a t e d Cadmium v a c a n c i e s . . 

0.83eV - A complex of a s s o c i a t e d Cadmium and Sulphur 

v a c a n c i e s i n n e a r e s t neighbour s i t e s . 

No one c r y s t a l contained a l l s i x l e v e l s and they found 

t h a t the 0.d5eV, 0.41eV, 0.63eV and 0.83eV t r a p s showed 

photochemical e f f e c t s during c o o l i n g to 77°K while under 

i l l u m i n a t i o n . R e c e n t l y Woods and Cowell ( t o be published) 

u s i n g the same technique have observed a tr a p a t 0.33eV 

below the conduction band. A t r a p a t t h i s depth has been 

observed by s e v e r a l workers, but was not observed by Woods 

and Nicholas^"^'^* By u s i n g a slower h e a t i n g r a t e Woods 

and Cowell have shown t h a t the thermally stimulated current 

peak corresponding to t h i s t r a p i s a super p o s i t i o n of two 

c l o s e l y spaced peaks corresponding to t r a p depth of 0.38eV 

and 0.42eV. 



5S. 

N i c h o l a s and Woods^^^^ compared t h e i r r e s u l t s w ith s e v e r a l 

other authors, who between them have used a wide v a r i e t y 

of methods. The t a b l e i s reproduced i n t a b l e 1. C l e a r l y 

t h e r e i s a l a r g e measure of agreement, concerning the t r a p 

depths and t h e i r capture c r o s s s e c t i o n s . 

One cannot r u l e out the p o s s i b i l i t y that some, or a l l , of 

these t r a p s may be due to s u r f a c e s t a t e s . Sawamotto and 
(15) 

Toyoda^ ' s t u d i e d the s u r f a c e s t a t e s of Cadmium Sulphide 

u s i n g a t r a n s v e r s e D.C. f i e l d e f f e c t technique^"^^^ with 

the samples i n vacuo. They observed the presence of s i x 

t r a p p i n g l e v e l s a t 0.045eV, 0.08eV, 0.15eV, 0.45SV, 0.6eV 

and G.82eV below the conduction band. The correspondence 

between these v a l u e s and those obtained by Woods and 

N i c h o l a s ^ ^ ^ ^ i n d i c a t e s t h a t the two experiments are 
p o s s i b l y l o o k i n g at the same tr a p p i n g c e n t r e s . Also I t a k u r a 

(17) 
and Toyoda^ have shown t h a t the s u r f a c e s t a t e s on Cad­

mium Sulphide are a f f e c t e d by the degree of c r y s t a l p e r f e c t ­

i o n , the ambient itmosphere and the s u r f a c e treatment i n a 

s i m i l a r manner to the photochemical e f f e c t s observed by 
(18) 

Woods and N i c h o l a s . Also Mark^ ' has observed s u b s t a n t i a l 

r e v e r s i b l e changes i n the photoconductive gain and response 

i n i n s u l a t i n g Cadmium Sulphide as a r e s \ i l t of v a r y i n g the 

p a r t i a l p r e s s u r e of an e l e c t r o n e g a t i v e ambient (Og or I 2 

vapour) above the Cadmium Sulphide. He e x p l a i n s the 
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e f f e c t s i n terms of a p h o t o a s s i s t e d chemisorption process 

f o r the a d s o r p t i o n of gas ions on the s u r f a c e . 
(19) 

The r e c e n t work of Boer er a l ^ ^ has somewhat c l a r i f i e d 

the p o s i t i o n . They c a r r i e d out measurements of photo­

c o n d u c t i v i t y and t h e r m a l l y s t i m u l a t e d c u r r e n t s on undoped 

s i n g l e c r y s t a l s of Cadmium Sulphide a f t e r heat treatment 

between 570°K and 620°E i n u l t r a - h i g h vacuum ( l O ' i l T o r r ) . 

The v e r y l a r g e changes u s u a l l y a s s o c i a t e d with heat t r e a t ­

ment i n high vacuum (10"^ T o r r ) were not abserved and so 

they concluded t h a t these must be due to changes i n a 

s u r f a c e l a y e r and p o s s i b l e i n t e r a c t i o n with the gas ambient. 

However they did f i n d r e p r o d u c i b l e changes of s m a l l e r 

magnitude than those u s u a l l y observed a f t e r vacuum heat 

treatment, which they i n t e r p r e t e d i n terms of a d i s s o c i a t i o n 

of a l a r g e bulk d e f e c t a s s o c i a t e d complex containing Cadmium 

v a c a n c i e s to produce s i n g l e Cadmium va c a n c i e s and Cadmium 

vacancy p a i r s . Thus they concluded that both s u r f a c e and 

bulk e f f e c t s were important i n determining the mechanism of 

the p h o t o e l e c t r o n i c processes i n Cadmium Sulphide. 

C l e a r l y the p i c t u r e of the trapping spectrum i s confused 

and more experimental work i s r e q u i r e d . Furthermore there 

i s l i t t l e reported work on the t r a p p i n g spectrvm a s s o c i a t e d 

w i t h the bottom h a l f of the forbidden gap. T h i s information 

i s r e q u i r e d before a complete \inderstanding of the p r o p e r t i e s 

of Cadmium Sulphide can be obtained. 
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2-^.4 I n v e s t i g a t i o n of the recombination c e n t r e s 

I n f o r m a t i o n concerning the behavio^ of the recombination 

c e n t r e s has been obtained i n s e v e r a l ways. 

P h o t o c o n d u c t i v i t y 

P h o t o c o n d u c t i v i t y i s of great i n t e r e s t i n Cadmium Sulphide 

s i n c e Cadmiwa Sulphide can show l a r g e photoconductive gains 

i n the v i s i b l e r e g i o n . The photoconductivity (G) of a 

m a t e r i a l i s defined as the number of excess charge c a r r i e r s 

p a s s i n g between e l e c t r o d e s a t each end of the sample per 

second per photon absorbed. Thus i f A l l s the photocurrent 

and P i s the n\imber of e l e c t r o n - h o l e p a i r s created per 

second, then: 

G- = (2-15) eF 

where e i s the e l e c t r o n i c charge. 

S i n c e i n Cadmium Sulphide the current i s c a r r i e d almost 

s o l e l y by the e l e c t r o n s then equation (2-15) can be r e w r i t t e n : 

- (2-16) 

where T ^ i s the e l e c t r o n l i f e t i m e and tn the e l e c t r o n t r a n s i t 

time. I n p r a c t i c e the va l u e o f t ^ i s governed by the recom­

b i n a t i o n c e n t r e s present i n the forbidden gap. Rose ^^^^ has 

produced the f o l l o w i n g nomenclature, which i s i n common usage 
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uoQ^e f o r the d i f f e r e n t types of recombination centre: 

C l a s s 1 ^ Sp 

C l a s s 2 S^ « Sp 

C l a s s 5 Sj^ » Sp 

where S^ and Sp a r e the capture c r o s s s e c t i o n s of the 

c e n t r e s f o r e l e c t r o n s and h o l e s r e s p e c t i v e l y . I n Cadmium 

Sulphide c l a s s 1 c e n t r e s provide a f a s t recombination path 

f o r the e l e c t r o n s , l e a d i n g to a low e l e c t r o n l i f e t i m e , and 

tbese always seem to be p r e s e n t . The i n t r o d u c t i o n of c l a s s 

2 c e n t r e s can i n c r e a s e the e l e c t r o n l i f e t i m e by trapping 

the h o l e s l i b e r a t e d by the e x c i t a t i o n . Now s i n c e there 

are v e r y few i r e e h o l e s the c l a s s 1 centres that have 

trapped e l e c t r o n s w i l l remain f i l l e d and thus not permit 

the conduction e l e c t r o n s to recombine. The holes w i l l 

tend to accumulate i n the c l a s s 2 c e n t r e s . I n t h i s way 

the c l a s s 2 c e n t r e s i n c r e a s e the e l e c t r o n l i f e t i m e and con­

s e q u e n t l y the photo-conductive gain. 

Sample c o n t a i n i n g c l a s s 2 c e n t r e s show a v a r i a t i o n of 

photocurrent w i t h a power of l i g h t i n t e n s i t y greater than 

u n i t y over a l i m i t e d range of l i g h t i n t e n s i t i e s . T h i s i s 

r e f e r r e d to as s u p e r l i n e a r i t y and occurs when the c l a s s 2 

c e n t r e s a r e beginning to provide t h e i r s e n s i t i s i n g e f f e c t 
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w i t h s h i f t i n g steady s t a t e Fermi l e v e l . 

Quenching of the photoconductivity can be achieved by 

simultaneous i r r a d i a t i o n with i n f r a - r e d and the pumping 

e x c i t a t i o n . Under these c o n d i t i o n s the i n f r a - r e d r a d i a t i o n 

r a i s e s e l e c t r o n s from the val e n c e band to the c l a s s 2 

c e n t r e s thereby r e l e a s i n g f r e e holes i n the valence band. 

The f r e e h o l e s can then recombine with the conduction band 

e l e c t r o n s v i a the c l a s s 1 c e n t r e s , so that the photocurrent 

i s reduced. I n Cadmium Sulphide a t RiT-. the i n f r a - r e d 

quenching can be produced by l i g h t i n two s p e c t r a l bands 

w i t h maximum at wavelength 0.92 microns and 1.45 microns. 

The 1.45 micron band i s not present at 77°K, implying 

t h a t t h e r e i s a thermal s t e p i n t h i s process. The proposed 

energy l e v e l s c h e m e ^ f o r the i n f r a - r e d quenching i s shown 

i n F i g . 2-2. 

The s p e c t r a l response of the photoconductivity of a t y p i c a l 

undoped s i n g l e c r y s t a l of Cadmium Sulphide i s shown i n 

F i g . 2-5. 

Edge emission 

The green edge emission of Cadmium Sulphide appears when 

i t i s i r r a d i a t e d at temperatures below about 100°K with 

l i g h t of photon energy g r e a t e r than the band gap. The 

emis s i o n c o n s i s t s of a s e r i e s of overlapping bands, the 

maxima of which are e q u a l l y spaced 3D0 cm""*" (0.035eV) 
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a p a r t . The f i r s t of these bands corresponds t o an energy-
close t o , but le s s than, t h a t of the fundamental absorption 
edge. The s e r i e s has been est a b l i s h e d as being due t o 
emission v i a some recombination centres w i t h the co­
o p e r a t i o n of n l o n g i t u d i n a l o p t i c a l phonons (where n = 0, 

1,2,3, ) . Various models have been proposed t o e x p l a i n 
the emission, but the problems are complex and have not 
yet been res o l v e d . The d i f f i c u l t i e s are increased because 
of the existence of two s e r i e s of emission peaks, a high 
energy s e r i e s dominant at l i q u i d Nitrogen temperatures 
w i t h the zero phonon peak corresponding t o 2.415eV and a 
low energy s e r i e s dominant a t l i q u i d Helium temperatures 

w i t h the zero phonon peak a t 2.595eV, 
(21") 

H o p f i e l d ^ ' has shown t h e o r e t i c a l l y t h a t the shape of 
the phonon peaks can only be understood i f the mechanism 

f 22) 
of recombination i n v o l v e s trapped c a r r i e r s . Lambe at al^ ^ 
have proposed the model t h a t e l e c t r o n s trapped at l e v e l s 
close t o the conduction band recombine w i t h f r e e holes. 
Whereas C o l l i n s ^ '̂'̂  has proposed a f r e e e l e c t r o n t o bound 
hole recombination process, where the holes are trapped 
at l e v e l s close t o the valence band. But n e i t h e r of these 
models have been completely consistent w i t h experimentally 
observed data. 



Recently Thomas et a l ( 2 6 ) , from t h e i r measurements of the 
s p e c t r a l change of the emission dur i n g i t s decay, have 
i n d i c a t e d t h a t the edge emission serie s dominant at 4°K 
i s a bound e l e c t r o n t o hound hole process. A bound t o bound 
recombination mechanism has been est a b l i s h e d i n GaP by 

(27) 

Thomas et a l ^ I n a d d i t i o n t o the broad spectrum, which 
i s s i m i l a r t o the edge emission i n CdS, t h i s m a t e r i a l shows 
a number of narrow emission l i n e s which d e f i n i t e l y i d e n t i f y 
the spectrum as recombination between two trapped c a r r i e r s 
at a donor-acceptor p a i r . The series of narrow l i n e s 
a r i s e s because the d i f f e r e n t separation of p a i r s leads t o 
d i f f e r e n t recombination energies. The broad spectrum occurs 
when th e r e are a l a r g e number of overlapping narrow l i n e s 
due t o a s t a t i s t i c a l l y l a r g e number of p a i r s of almost 
equal s e p a r a t i o n . Such a f i n e s t r u c t u r e has not yet been 

(OR) 

observed i n CdS, but the recent work of Maeda^ , Colbow 
Yee and Condas^'^^ and Goede and Gutsche^^""-^ i n d i c a t e 

t h a t the bound t o bo\and model f o r the recombination r a d i a t i o n 
i n CdS may be the c o r r e c t one. 
The edge emission of an undoped s i n g l e c r y s t a l of CdS i s 
shown i n F i g . 2-4. 
At l i q u i d Helium temperatures, a series of sharp l i n e s 
appears a t high^ energy than the edge emission. These are 
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the so c a l l e d e x c i t o n l i n e s . The o r i g i n of most of these 
l i n e s , many of which are due t o excitons bound t o imper­
f e c t i o n s , has been e s t a b l i s h e d . The reader i s r e f e r r e d t o 
the comprehensive review a r t i c l e of Reynolds et a l . 
I n f r a - r e d Emission 

The nature of the recombination centres can also be studied 
v i a the i n f r a - r e d emission. The edge emission i s concerned 
w i t h l e v e l s close t o the band edges. However luminescent 
processes i n v o l v i n g l e v e l s i n the middle of the forbidden 
gap can occur and give r i s e t o i n f r a - r e d emission. 
Bryant and Cox^^^^ observed banded emission i n the range 
1.5;microns t o 2.3 microns, w i t h three bands centred on 
1.6, 1.8 and 2.05 microns. They were able t o e x p l a i n t h e i r 
r e s u l t s and most of the other published work i n terms of an 
unoccupied centre w i t h an energy l e v e l 0.83eV above the 
highest valence band. The banded emission occurs when an 
e l e c t r o n e x c i t e d t o t h i s l e v e l r e t u r n s t o the p-state 
valence band, which i s s p l i t i n t o three components (see 
F i g . 1-8), where the occupied centre l i e s 0.7eV above the 
highe s t valence band. Bryant and Cox^-^^^ have also observed 
two f u r t h e r emission bands centred on QS5 and 1.05 microns. 
These two bands r e q u i r e band gap i r r a d i a t i o n t o e x c i t e them, 
whereas the t h r e e former bands could not be exc i t e d by band 
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gap l i g h t but by l i g h t i n range 0.6 - 1.05 microns or 
1.3 - 1.65 microns. Thus Bryant and Cox concluded t h a t 
the emission at 0.75 microns occurs when an e l e c t r o n moves 
from the conduction band ( o r a s t a t e near t o i t ) t o the 
unoccupied centre and t h a t the 1.05 micron emission occurs 
when an e l e c t r o n moves t o the unoccupied centre from some 
l e v e l which must l i e 0.49eV below the conduction band. 
From t h e i r observations of the changes i n the emission when 
the samples were heated i n the range 300°K t o 550°K i n 
broad band i l l u m i n a t i o n they concluded t h a t the centre 
contains a ground s t a t e which i s common t o the 0.75 and 
1.05 micron emission and which i s the e x c i t e d s t a t e of the 
bands i n the range 1.5 - 2.2 microns. The centre was 
thought t o be a complex a s s o c i a t i o n of d e f e c t s . These con­
c l u s i o n s are i n general agreement w i t h those obtained by 
Cowell and Woods . However these authors observed t h a t 
the 1.05 micron emission was not present i n some samples 
and so concluded t h a t the centres responsible f o r t h i s 
emission and t h a t i n the range 1.5 - 2.2 microns t o be sep­
a r a t e e n t i t i e s , but c l o s e l y associated w i t h one another i n 
space. 

2-3.5 Paramagnetic resonance 
C l e a r l y an e x p l a n a t i o n of many of the e f f e c t s o u t l i n e d 
above would be s i m p l i f i e d i f the atomic nature of defects 
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present were known. The more d i r e c t measurements of 
the paramagnetic resonance of c a r r i e r s trapped at the 
def e c t s i t e s may provide t h i s i n f o r m a t i o n . This tech­
nique has been a p p l i e d s u c c e s s f u l l y t o other types of 
m a t e r i a l s e.g. a l k a l i h a l i d e s . 
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CHAPTER 3 
PRINCIPLES OF THE THEORY OF ELECTRON SPIN RESONANCE 
3-1 I n t r o d u c t i o n 
Paramagnetism i n a s o l i d can a r i s e because some or a l l of 
the atoms or def e c t s i n the s o l i d possess unpaired electrons. 
T y p i c a l examples are, the t r a n s i t i o n elements, f r e e r a d i c a l s 
possessing unpaired e l e c t r o n s and defect s i t e s i n the 
l a t t i c e which have trapped holes or e l e c t r o n s . I n semi­
conductors the conduction e l e c t r o n s and holes can make 
a c o n t r i b u t i o n t o the paramagnetic s u s c e p t i b i l i t y . I n 
a l l these cases, t r a n s i t i o n s between Zeeman l e v e l s produced 
by an e x t e r n a l magnetic f i e l d can be observed, under the 
c o r r e c t experimental c o n d i t i o n s . The usual t h e o r i e s of 
paramagnetism i n s o l i d s t r e a t the magnetic p r o p e r t i e s i n 
terms of the permanent magnetic di p o l e s associated w i t h 
the unpaired e l e c t r o n s and are, t h e r e f o r e , concerned w i t h 
the c a l c u l a t i o n of the d i p o l e moments. 

The most commonly s t u d i e d paramagnetic systems are those 
of the 3d t r a n s i t i o n and r a r e e a r t h group ions. The 
the o r y of e l e c t r o n s p i n resonance ( e . s . r . ) of these ions 
i s concerned w i t h the m o d i f i c a t i o n s of the energy l e v e l s 
of the f r e e i o n , which r e s x i l t from the i n t e r a c t i o n of the 
i f i n w i t h the c r y s t a l l a t t i c e . With defect centres t h i s 
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approach must be modified since there i s no ' f r e e - i o n ' 
analogue, as i s shown i n s e c t i o n 3-4.3. 
3-2 The resonance c o n d i t i o n 

Consider a f r e e i o n , w i t h a r e s u l t a n t t o t a l e l e c t r o n i c 
angular momentuin J, placed i n a magnetic f i e l d H. The 
Zeeman energy l e v e l s are given by: 

W = giiH.m 

where g i s the Lande" g - f a c t o r = 1 + J ( J + 1) + S(S + 1) - L(L->-l) 
2J(J + 1) 

p i s the Bohr magneton. 
L and S are the o r b i t a l and sp i n angular momentum vectors 
r e s p e c t i v e l y , and m i s the component of J i n the d i r e c t i o n 
of t h e magnetic f i e l d and can take the values J, J-1, 
-J + 1, - J . 
I f an a l t e r n a t i n g magnetic f i e l d of frequency i s applied 
perpendicular t o H, then magnetic d i p o l e t r a n s i t i o n s are 
induced according t o the s e l e c t i o n rulte A m = + 1 
The magnetic f i e l d Hj^ r e q u i r e d f o r a given frequency w i t h 
a quantum energy (h-^) i s given by: 

h-i) = 

where h i s Planck's constant. 
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The simplest case t h a t can be envisaged i s t h a t of a 
s i n g l e unpaired e l e c t r o n w i t h zero o r b i t a l angular 
momentum, L ? 0. The Lande*" g - f a c t o r i s then 2 ( s t r i c t l y 
2.0023). I n a system i n thermal e q u i l i b r i u i n , the lower 
e l e c t r o n i c energy s t a t e s have a higher p r o b a b i l i t y of 
occupation so t h a t power i s absorbed from the a l t e r n ­
a t i n g magnetic f i e l d . Some mechanism must be present 
whereby the absorbed energy can be d i s s i p a t e d from the 
s p i n system t o ma i n t a i n the Boltzmann population' d i s t r i b ­
u t i o n and a l l o w the e.s.r. t o be observed. The most 
important of these mechanisms i s t r a n s f e r of spin energy 
t o the l a t t i c e v i a the s p i n - o r b i t i n t e r a c t i o n . This i s 
the well-known s p i n - l a t t i c e r e l a x a t i o n process. The 
r e l a x a t i o n processes w i l l not be discussed f u r t h e r , but 
i t should be remembered t h a t they must be present t o allow 
observations of the e.s.r. a b s o r p t i o n . The value of the 
s p i n - l a t t i c e r e l a x a t i o n time i n f l u e n c e s the choice of the 
experimental c o n d i t i o n s f o r observation of an e.s.r. t r a n ­
s i t i o n . For a t r a n s i t i o n where the s p i n - l a t t i c e r e l a x ­
a t i o n i s < 1 0 ~ ^ seconds the absorption i s very broad and 
i s u s u a l l y unobservable. The s p i n - l a t t i c e r e l a x a t i o n 
time increases w i t h decreasing temperature and so low 
temperatures are f r e q u e n t l y necessary f o r the observation 



of e.s.r. s i g n a l s e.g. the e.s.r. due t o the 8r^"*" ions 
i n Cadmi-um Sulphide can only be observed at temperatures 
below about 10°K. For t r a n s i t i o n s where the r e l a x a t i o n 
time i s >10 seconds the absorption becomes 'saturated' 
at i n c i d e n t power l e v e l s greater than about a few m. 
w a t t s . I n these c o n d i t i o n s the absorbed energy i s not 
d i s s i p a t e d s u f f i c i e n t l y r a p i d l y from the spim system and 
the Boltzman p o p u l a t i o n d i s t r i b u t i o n i s d i s t u r b e d . The 
p o p u l a t i o n of the higher l y i n g s t a t e begins t o approach 
t h a t of the lower s t a t e and so the i n t e n s i t y of the e.s.r. 
a b s o r p t i o n l i n e i s reduced and i n the l i m i t of" very high 
power disappears a l t o g e t h e r . Under these conditions 
broadening of the e.s.r, l i n e i s f r e q u e n t l y observed. 
Consequently the experimental operating conditions must 
be chosen t a k i n g these considerations i n t o account. 
Considerations of s e n s i t i v i t y , as we s h a l l see i n chapter 
4 show t h a t i t i s p r e f e r a b l e t o employ an a.c. magnetic 
f i e l d of the highest possible frequency. I n p r a c t i c e r . f . 
microwave power i n the frequency range 1,000 - 30,000 
Mc/s. i s used, which, since h-^ = g^H^, necessitates d.c. 
ma,gnetic f i e l d s (Hj^) between 1 and 25 Kgauss. 
3-2 Paramagnetic Ions i n s o l i d s 

The i n t e r a c t i o n s between a paramagnetic i o n and the 
surroxinding ions i n a s o l i d are of two types :-
(a) I n t e r a c t i o n s between the paramagnetic i o n and the 
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neighbouring diamagnetic ions i n the l a t t i c e , 
(b) I n t e r a c t i o n s between the magnetic di p o l e s of the 

paramagnetic ions i n the s o l i d . 
I n t h i s d i s c u s s i o n we w i l l assume t h a t the paramagnetic 
ions are present as i m p u r i t y atoms i n a diamagnetic s o l i d . 
F u r t h e r we w i l l assume t h a t the concentration of the 
paramagnetic i m p u r i t y i s low ( < 0.1^) and so i n t e r a c t i o n s 
of the type (b) w i l l be neglected. The vast m a j o r i t y of 
experimental work has been performed on such magnetically 
d i l u t e systems. 

The i n t e r a c t i o n s of the paramagnetic centres w i t h the 
surrounding diamagnetic ions can be t r e a t e d using the 
simple concept of the c r y s t a l e l e c t r i c f i e l d o r i g i n a t e d 
by Van Vl.eck^"'"^. The paramagnetic i o n i s t r e a t e d as a f r e e 
i o n which i s s i t u a t e d i n an e x t e r n a l s t a t i c e l e c t r i c f i e l d 
of the surrounding diamagnetic ions. The symmetry of the 
c r y s t a l f i e l d i s determined by the a r r a n ^ e n t of the 
diamagnetic ions around the paramagnetic s i t e . This 
method i s capable of e x p l a i n i n g , i n a q u a l i t a t i v e way, the 
s t r u c t u r e of the lowest energy l e v e l s of a paramagnetic 
i o n . 

The Hamiltonian of a paramagnetic i o n i n a s o l i d can be 
expressed i n the f o l l o w i n g form:-

H. = M„ + + X L .S -̂ l 3 (L+iS).H (3-0 
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where W i s "the Hamiltonian of the f r e e i o n . This 
f o r m u l a t i o n ignores s p i n - o r b i t i n t e r a c t i o n of the f r e e 
i o n . represents the i n t e r a c t i o n w i t h the c r y s t a l 
e l e c t r i c f i e l d , which can be w r i t t e n : -

Ĥ = ^eVc ( x . , y., z.) 
i 

The summation i s c a r r i e d out over a l l the surrounding 
i o n s . V i s the c r y s t a l e l e c t r i c f i e l d p o t e n t i a l . 
XL.S i s the s p i n - o r b i t i n t e r a c t i o n . WhereX i s a constant 

p (L + 2S).H i s the i n t e r a c t i o n w i t h the a p p l i e d magnetic 
f i e l d . L, S r e f e r t o the operators of t o t a l o r b i t a l and 
s p i n angular momentum as us u a l . 

D i p o l a r and exchange i n t e r a c t i o n s between the para­
magnetic ions are neglected since the system i s magnet­
i c a l l y d i l u t e . 
The Hamiltonians of most f r e e ions VKQ) have been c a l c u l ­
ated f o r use i n the f i e l d of atomic o p t i c a l spectroscopy. 
For a f u l l d i s c u s s i o n the reader i s r e f e r r e d t o the t e x t 

(2) 

by Condon and Shortley^ . With f r e e ions the most 
important i n t e r a c t i o n i s due t o coulomb f o r c e s . The s e l f 
c o n s i s t e n t f i e l d ( s . c . f . ) method considers a s i m p l i f i e d 
coulomb i n t e r a c t i o n where the el e c t r o n s move independently 
of each other w i t h i n the r e s t r i c t i o n s of the exclusion 
p r i n c i p l e . The r e s i i l t a n t eigenstates are r e f e r r e d t o as 
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' c o n f i g u r a t i o n s ' i n which the i n d i v i d u a l e l e c t r o n o r b i t s 

a r e s p e c i f i e d , e.g. 3d^, 3i^^Aa^ e t c . Account i s next 

taken of the c o r r e l a t i o n between the e l e c t r o n s , which 

the s . c . f . method does not deal with f u l l y , and at the 

same time terms are included to represent s p i n - s p i n and 

o r b i t - o r b i t i n t e r a c t i o n s . The r e s u l t i s that the con­

f i g u r a t i o n s are s p l i t i n t o 'Terms', i . e . i n t o l e v e l s 

which a r e s p e c i f i e d by t o t a l o r b i t a l and s p i n moments, 

e.g. ^ F . T h i s r e p r e s e n t s the case of R u s s e l l - Saunders 

c o u p l i n g which i s a p p l i c a b l e to the l i g h t e r atoms on 

which most of the e . s . r . work to date has been performed. 

F i n a l l y , i n the case of a f r e e ion, the s p i n o r b i t 

i n t e r a c t i o n i s i n c l u d e d . T h i s removes some of the Term 

degeneracy and couples the o r b i t a l ( L ) and s p i n (S) 

moments to give s t a t e s of w e l l defined ( J ) , where 

J = L + S. 

A p o s s i b l e energy l e v e l scheme f o r a f r e e ion i s shown i n 

P i g . 3-1, where the Term s p l i t t i n g s and the E f f e c t of the 

s p i n - o r b i t i n t e r a c t i o n s are i n d i c a t e d . 

I t f o l l o w s from t h i s d i s c u s s i o n that the term "Hoin the 

Hamiltonian (5-1) r e p r e s e n t s the Hamiltonian f o r the Term 

s t a t e s of the f r e e i o n . The other i n t e r a c t i o n s i n equation 

(3-1) can now be considered as p e r t u r b a t i o n s on . We 

w i l l c o n s i d e r two common c a s e s : -
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FIG. 5-1 Energy leve-1 scheme f o r a f r e e i o n . 
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(a)'Medium' c r y s t a l f i e l d s . Where the magnitudes of 

the i n t e r a c t i o n s a r e : -

W. > H, > M s p i n - o r b i t 

t h i s a p p l i e s f o r most of the i r o n group (3d) i o n s , 

(b) 'Weak' c r y s t a l f i e l d . Where:-

s p i n - o r b i t 

t h i s a p p l i e s f o r the r a r e e a r t h ( 4 f ) group i o n s . 

3-3.1 I r o n group 

By f a r the l a r g e s t term i n the p e r t u r b a t i o n i s the c r y s t a l 

f i e l d i n t e r a c t i o n . The 'magnetic' e l e c t r o n s of an atom of 

the i r o n group, which belongs to the 5d atomic o r b i t a l 

s h e l l , a r e s t r o n g l y exposed to t h i s f i e l d . We only con­

s i d e r the e f f e c t of the c r y s t a l f i e l d on the ground s t a t e 

Term s i n c e t h i s i s the only s t a t e populated at room temp-

e r a t i i r e . The Term s p l i t t i n g s are u s u a l l y s u f f i c i e n t l y 

l a r g e f o r i n t e r a c t i o n s between the e x c i t e d and ground 

Terms to be ignored and the p e r t u r b a t i o n i s only taken to 

f i r s t order. The c r y s t a l f i e l d p o t e n t i a l (Vc) i s assumed 

to s a t i s f y L a p l a c e ' s equation so that i t can be expressed 

as a sum of s p h e r i c a l harmonics:-
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\ = 1 * ^ ^ " ^ («• (5-2) 

I g n o r i n g any e f f e c t s of covalent bonding. 

The symmetry of the n e a r e s t neighbour ions w i l l determine 

the exact form of the expansion ( 3 - 2 ) . A c r y s t a l f i e l d 

p o t e n t i a l with o c t a h e d r a l cubic symmetry has the form: 

(3-3) 

along the 4 - f o l d r o t a t i o n axes. 

T h i s can be expressed i n terms of the c a r t e s i a n co-ordinates 

of the e l e c t r o n s of the paramagnetic ions as: 

^ c = ^4 ^""^ + y"̂  X z"̂  - I r"^) + ( x^ + y^ + z^) (3-4) 

Cubic symmetry i s u s u a l l y found i n i r o n group s a l t s . Other 

important c r y s t a l f i e l d p o t e n t i a l f u n c t i o n s f o r various 

c r y s t a l l i n e l a t t i c e symmetries are given i n the review 

a r t i c l e of Low^^\ 

The procedure i s to s e t up the s e c u l a r determinant by 

e v a l u a t i n g the matrix elements of Vc between the eigen-

f u n c t i o n s of the ground s t a t e Terms. S o l u t i o n of the 

s e c u l a r determinant giv e s the req u i r e d e i g e n s t a t e s i . e . 

the s p l i t t i n g s of the ground s t a t e Term due to the c r y s t a l 
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f i e l d i n t e r a c t i o n . The e f f e c t of the c r y s t a l f i e l d i s 

to remove some or a l l of the o r b i t a l degeneracy (no f o r c e s 

to couple s p i n and o r b i t a l moments have been included 

y e t ) . For the i r o n group ions the c r y s t a l f i e l d p e r t ­

u r b a t i o n i s f r e q u e n t l y s u f f i c i e n t to remove the o r b i t a l 

degeneracy and l e a v e the lowest s t a t e as an o r b i t a l s i n g l e t . 

T h i s ground s t a t e then has s p i n degeneracy (2S + 1) only. 

The o r b i t a l magnetic moment i s s a i d to have been 'quenched' 

and to f i r s t order approximations the magnetic p r o p e r t i e s 

of t ^ e i o n are determined by the e l e c t r o n s p i n s alone. 

S p i n Hamiltonian 

The e f f e c t of the r e s t of the terms i n the Hamiltonian 

(3-1) on the l e v e l s produced by the c r y s t a l f i e l d i n t e r ­

a c t i o n s must be considered next. A u s e f u l method f o r 

c a r r y i n g out the p e r t u r b a t i o n c a l c u l a t i o n s has been given 

by Pryce^^^ and presented i n d e t a i l i n the review a r t i c l e s 

of Bleaney and S t e v e n s ^ a n d Bowers and Owen^^\ T h i s 

method i s only a p p l i c a b l e when the lowest s t a t e i s an 

o r b i t a l s i n g l e t , which as we have seen i s common f o r the 

i r o n group i o n s . The method c o n s i s t s of c a r r y i n g out a 

non-degenerate p e r t u r b a t i o n treatment where the operators 

r e f e r r i n g to s p i n v a r i a b l e s are t r e a t e d as non-commuting 

algebmic q u a n t i t i e s . Consequently an expression i s 

obtained which c o n t a i n s components of S. T h i s i s the 
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s o - c a l l e d spin-Hamiltonian i n which the change i n energy 

of the o r b i t a l ground s t a t e due to the e x c i t e d o r b i t a l 

s t a t e s has been taken i n t o account. The spin-Hamiltonian 

i s then made to operate on the s p i n degenerated ground 

o r b i t a l s t a t e and the eigenvalues obtained are the energy 

l e v e l s of the s p i n s t a t e s between which the e . s . r . i s 

observed, i . e . the spin-Hamiltonian (X„) i s defined a s : -
s 

K3lm> = E^lm> 

where | m^ r e p r e s e n t s the e i g e n f u n c t i o n of the m*̂  s p i n 

s t a t e ( u s i n g the D i r a c noti^ition). 

The f i r s t order c o r r e c t i o n to the energy of the ground 

st£(.te o r b i t a l s i n g l e t i s given by:-

<ol p(L+XS).H + \ L . S 1 0 > (3-5) 

where \o)> and | r\)> r e p r e s e n t the o r b i t a l wavefunction of 

the ground and n*^ e x c i t e d o r b i t a l s t a t e r e s p e c t i v e l y . 

The c o r r e c t i o n terms (3-5) reduced t o : -

^^h-k (3-6) 

u s i n g a g e n e r a l theorem of quantum mechanics, the expec­

t a t i o n v a l u e of I i.e.<olulo>in an o r b i t a l s i n g l e t i s zero, 



The second order c o r r e c t i o n i s : -

2. 

(3 -7 ) 

Terms not i n v o l v i n g o r b i t a l operators v a n i s h , by ortho­

g o n a l i t y . 

i . e . <^o when Y\o 

The non-vanishing elements such as ^ ' l ^ x . l ,<(o| Ly( 

e t c . must be evalu a t e d i n each case, but here i t i s 

s u f f i c i e n t to n o t i c e t h a t the f i n a l r e s u l t w i l l be quadratic 

i n components of H and S, and thus w i l l take the form:-

^ - ^"^-TV,^ H,H, -13f ,^Hc5: - .d , . S: i . ( 3 .8 ) 

i 

where i,o r e f e r to c a r t e s i a n co-ordinates x, y or z and 

f . . and d.. are ma t r i x elements. 

Pryce^^^ has shown t h a t ^^'^^ can be r e w r i t t e n : 

^ _ y V . , j [ [ 3 ^ K H j -2 -pXH,5,->e 5 ,S ] ( 5 . 9 ) 

where 

• < o l U n X n | L j o > ^̂ ^̂ ^̂  
Z_ E n ~ t o 

I t i s u s u a l l y unnecessary to i n c l u d e any higher p e r t u r b a t i o n 
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theory. So that the f i r s t and second order terms (3-6) 

and (3-9) a r e summed together to give the spin-Hamiltonian: 

I n t h i s e x p r e s s i o n the term H^ H^ has been ignored s i n c e 

i t i s s p i n independent and i s only an a d d i t i v e constant. 

I t corresponds to a temperature independent paramagnetic 

s u s c e p t i b i l i t y term. The spin-Hamiltonian can be w r i t t e n 

i n a more convenient form:-

H, = + S (3-12) 

where g and D are t e n s o r s . 

The t e n s o r D d e s c r i b e s the s p l i t t i n g of.the s p i n l e v e l s i n 

zero magnetic f i e l d . The s p e c t r o s c o p i c s p l i t t i n g f a c t o r 

g g i v e s the s p l i t t i n g . u n d e r the i n f l u e n c e of an applied 

magnetic f i e l d : -

3 =: a ( l - X ^ c j ) (3-13) 

T h i s form emphasises the c o n t r i b u t i o n of the higher o r b i t a l 

s t a t e s v i a the s p i n - o r b i t coupling. For high l y i n g e x c i t e d 

o r b i t a l 3 t a t e s , A - i j i s s m a l l and the g-value approaches the 

f r e e s p i n value of 2. 
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The u s e f u l n e s s of the spin-Hamiltonian l i e s i n the f a c t 

t h a t i t provides a 'short hand' d e s c r i p t i o n of the 

e x p e r i m e n t a l l y observed e . s . r . spectrum i n terms of a few 

parameters such as g and D. 

I n p r i n c i p l e , i t i s a simple matter to obtain the s p i n 

energy l e v e l s . A convenient form i s taken f o r the s p i n -

Hamiltonian and the s e c u l a r determinant i s s e t up by 

e v a l u a t i n g matrix elements of the spin-Hamiltonian .between 

the s p i n s t a t e s . The s o l u t i o n of the s e c u l a r determinant 

determines the s p i n energy l e v e l s . I n general g and T) 

are a n i s o t r o p i c and the e . s . r . spectrum depends on the 

o r i e n t a t i o n of the magnetic f i e l d i n r e l a t i o n to the axes , 

of c r y s t a l symmetry. 

I f the c r y s t a l f i e l d p e r t u r b a t i o n i s such that o r b i t a l , 

degeneracy remains i n the groiind s t a t e , the d e r i v a t i o n 

of the spin-Hamiltonian d e s c r i b e d above i s i n v a l i d . 

Degenerate p e r t u r b a t i o n methods must be used, i n which 

s m a l l d i s t o r t i o n s of the b a s i c c r y s t a l symmetry are con­

s i d e r e d . Such d i s t o r t i o n s w i l l a u t o m a t i c a l l y occur v i a 

the J a h n - T e l l e r e f f e c t . I f an ion has a degenerate ground 

s t a t e , paramagnetic and surrounding ions w i l l d i s t o r t t h e i r 

symmetry i n such a way t h a t as much'of the degeneracy of 

the paramagnetic i o n as p o s s i b l e i s removed. J a h n - T e l l e r 

d i s t o r t i o n s along w i t h the s p i n - o r b i t i n t e r a c t i o n , can i n 
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p r i n c i p l e remove a l l the degeneracy ( o r b i t a l and s p i n ) 

when the number of e l e c t r o n s i s even. Then s i n g l e t s t a t e s 

r e s u l t , which are w e l l separated from each other ( u n l i k e 

the s m a l l zero f i e l d s p l i t t i n g s encountered when the o r b i t a l 

moment i s quenched) and no e . s . r . t r a n s i t i o n s are to be 

expected u n l e s s the r a d i o frequency i s high. Kramer's 

theorem s t a t e s when the number of e l e c t r o n s i s odd each 

e l e c t r o n i c s t a t e must be a t l e a s t doubly degenerate. A 

s i n g l e e . s . r . t r a n s i t i o n w i l l be observed f o r the lowest 

doublet, which may be de s c r i b e d by a spin-Hamiltonian as 

before, i n which a f i c t i t i o u s s p i n s' = i i s used. 

F i g . 3y2 shows the s p l i t t i n g s due to the v a r i o u s perturbations 

o u t l i n e d above f o r the Cr^"*" i o n . 

3-3.2 Rare e a r t h s 

The 'magnetic' e l e c t r o n s f o r t h i s group belong to 4f atomic 

s h e l l and consequently l i e w e l l w i t h i n the core of the atom 

and do not i n t e r a c t very s t r o n g l y with the c r y s t a l e l e c t r i c 

f i e l d . As a r e s u l t the s p i n - o r b i t i n t e r a c t i o n i s the major 

p e r t u r b a t i o n . As i s w e l l known i n atomic theory the s p i n -

o r b i t c o u p l i n g s p l i t s the Terms of the atomic c o n f i g u r a t i o n 

i n t o s t a t e s c h a r a c t e r i s e d by the t o t a l angular momentum 

( J ) . Each s t a t e then has degeneracy ( 2 J + 1 ) . 
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The e f f e c t of the c r y s t a l f i e l d i s considered l a s t . Unlike 

the i r o n group, the r a r e e a r t h s a l t s have c r y s t a l f i e l d s 

of low symmetry. The e t h y l sulphates f o r example have a 

c r y s t a l f i e l d p o t e n t i a l of the form ^ 5 , 6 ) . _ 

^ A° (3z^-r2) ^ ̂ 0 (55z4_3Q^2^2 ^ ^^4) ^ ̂ o (21326 

-315r2zt + 105r'^z2 - 5r^) + A^ (x^-15xV + 15x2y^-y^) 

(3-14) 

By e v a l u a t i n g the matrix elements of t h i s p e r t u r b a t i o n 

the s e c u l a r determinant can be s e t up as before and the 

eig e n v a l u e s of the new s t a t e s c a l c u l a t e d . The symmetry 

of the f i e l d i s so low t h a t s i n g l e t e l e c t r o n i c s t a t e s 

r e s u l t i f the number of e l e c t r o n s i s even and doublets 

when the niimber i s odd (Kramer's d o u b l e t s ) . 

3-3 .3 Hyperfine i n t e r a c t i o n s 

When the nucleus of the paramagnetic ion possesses a 

r e s u l t a n t n u c l e a r magnetic moment a s o - c a l l e d hyperfine 

i n t e r a c t i o n occurs between the e l e c t r o n s and the nucleus. 

I f the n u c l e a r s p i n i s I , then i n an app l i e d magnetic 

f i e l d each e l e c t r o n s p i n l e v e l i s s p l i t i n t o 2 1 + 1 

e q u a l l y spaced ones, due to the q u a n t i s a t i o n of the 
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n u c l e a r magnetic moment i n the applied magnetic f i e l d . 

To account f o r t h i s , a term A.S.I i s added to the t o t a l 

Hamiltonian ( 3 - 1 ) . I t i s of s m a l l e r magnitude than the 

other terms and t h e r e f o r e i s included i n the s p i n -

Hamiltonian. The e f f e c t of the i n t e r a c t i o n i s to s p l i t 

each e . s . r . t r a n s i t i o n i n t o 2 1 + 1 l i n e s of equal i n t e n s i t y . 

Often th e s e h y p e r f i n e components are not re s o l v e d , being 

enclosed i n the envelope of the inherent e . s . r . l i n e 

width. Howevervshen they can be r e s o l v e d they provide a 

ver y u s e f u l check on the o r i g i n of the e . s . r . spectrum, 

s i n c e the v a l u e s of the n u c l e a r s p i n s of the paramagnetic 

ions a r e u s u a l l y known. 

3-4 E l e c t r o n Spin Resonance i n Semiconductors 

The e l e c t r i c a l and o p t i c a l p r o p e r t i e s of semiconductors 

are s e n s i t i v e to s m a l l concentrations of i m p u r i t i e s 

and d e f e c t s i n the l a t t i c e (see chapter 2 ) . E l e c t r o n 

s p i n resonance i s one of the most s e n s i t i v e and powerful 

t o o l s f o r i n v e s t i g a t i n g the d e t a i l e d nature of imper­

f e c t i o n s i t e s . Moreover i t i s often p o s s i b l e to study one 

i m p e r f e c t i o n i n the presence of a much l a r g e r concentration 

of other i m p e r f e c t i o n s . T h i s i s r a r e l y p o s s i b l e with the 

techniques o u t l i n e d i n s e c t i o n 2-3 and e x p l a i n s , i n pa r t , 

the tremendous i n t e r e s t i n the e . s . r . of semiconductors 

a t the present time. The u s e f u l n e s s of the e . s . r . technique 
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can be g r e a t l y enhanced by the simultaneous use of o p t i c a l 

e x c i t a t i o n . Many of the d e f e c t s contain e l e c t r o n s which 

remain p a i r e d because of compensation e f f e c t s , e s p e c i a l l y 

i n the 2-6 compounds, and no paramagnetism r e s u l t s . 

S i m i l a r l y an impurity centre may be i n a charge s t a t e 

which renders i t diamagnetic. I n such cases o p t i c a l 

e x c i t a t i o n to remove or add an e l e c t r o n to the defect or 

im p u r i t y s i t e can be very u s e f u l . L i g h t with photon 

energy g r e a t e r than the band gap c r e a t e s e l e c t r o n hole 

p a i r s and e i t h e r of these charge c a r r i e r s may be trapped 

at the i m p e r f e c t i o n . L i g h t with photon energy l e s s than 

the band gap may a l s o be e f f e c t i v e i n adding or removing 

an e l e c t r o n from an i m p e r f e c t i o n s i t e . T h i s technique was 

used d u r i n g the course of the work reported i n t h i s t h e s i s . 

So f a r the theory of e . s . r . of paramagnetic ions i n i o n i c 

s o l i d s only has been considered. C l e a r l y , i n d i s c u s s i n g 

the e . s . r . i n semiconductors, i t w i l l be necessary to 

take i n t o account the p a r t i a l l y covalent nature of the 

bonding t h a t e x i s t s between the ion s . The d i s c u s s i o n w i l l 

be mainly l i m i t e d to the 2-6 compounds. 

3-4.1 Paramagnetic ions i n 2-6 compounds 

Many of the 3d i r o n group and 4f r a r e e a r t h group ions have 

been s t u d i e d i n 2-6 compounds. For a review of the work 

performed up to 1965 see Ref. ( 7 ) . The form of the e . s . r . 
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s p e c t r a t h a t have been obtained can be adequately 

e x p l a i n e d u s i n g the same treatment as f o r i o n i c s o l i d s , 

and i g n o r i n g any e f f e c t s of covalency. T h i s i s a 

f u r t h e r i n d i c a t i o n t h a t the bonding i n 2-6 compounds 

i s mainly i o n i c and i s i n agreement w i t h the f i g u r e of 

75% quoted i n s e c t i o n ( 2 - 1 ) , as the i o n i c c o n t r i b u t i o n to 

the bonding i n Cds. 

However when t h i s treatment i s used to estimate the value 

of the c o e f f i c i e n t s o c c u r r i n g i n the spin-Hamiltonians 

d e r i v e d f o r the i/bn group i o n s , e.g. the g - f a c t o r s , some 

d i s c r e p a n c i e s are r e v e a l e d . I n p a r t i c u l a r i t i s found 

t h a t the s p i n - o r b i t coupling and hyperfine i n t e r a c t i o n 

c o n s t a n t s are d i f f e r e n t from those c a l c u l a t e d u s i n g the 

p u r e l y i o n i c model. As a r e s u l t the b a s i c assumptions of 

the theory of the s t a t i c c r y s t a l f i e l d p o t e n t i a l must be 

r e c o n s i d e r e d . The c e n t r a l assumption i s t h a t the charged 

ions surrounding the paramagnetic s i t e can be regarded as 

point charges. Obviously t h i s i s not true i n p a r t l y 

c o v a l e n t s o l i d s , s i n c e the wave f u n c t i o n s of the 3d-

e l e c t r o n s of the paramagnetic i r o n group ions must overlap 

the wavef u n c t i o n s of the surrounding ions to some extent. 

Therefore one cannot speak of the pure d - o r b i t a l s of the 

f r e e paramagnetic i o n , but must take i n t o account the 

wavefunction of the whole complex, e.g. XY^for a t e t r a h e d r a l 
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system where X r e p r e s e n t s the paramagnetic ion. One 

p o s s i b l e scheme i s to form molecular o r b i t a l s from the 

atomic o r b i t a l s of the complex, which correspond to the 

scheine of symmetry approlfiate to the c r y s t a l , and to 

t r e a t the c r y s t a l f i e l d p o t e n t i a l as a p e r t u r b a t i o n of 

these new s t a t e s . 

I t i s however convenient at t h i s stage to consider the 

s p l i t t i n g s of the 3d s t a t e s i n an i o n i c cubic c r y s t a l . 

A s i n g l e 3d e l e c t r o n has two u n i t s of angular momentum 

and t h e r e f o r e f i v e o r b i t a l s t a t e s are a v a i l a b l e to i t i n 

the f r e e i o n . I n a c r y s t a l f i e l d of t e t r a h e d r a l cubic 

symmetry the f i v e s t a t e s are s p l i t i n t o a t r i p l e t 

( d e s c r i b e d as ( t 2 ) i n the conventional group t h e o r e t i c a l 

nomenclature) and a doublet ( e ) , where the doublet has 

the lower energy. ( I n the octahedral c r y s t a l f i e l d 

u s u a l l y found i n i r o n group s a l t s the t r i p l e t i s l o w e r ) . 

The s p a t i a l p a r t s of the d-wavefunctions vary with d i r ­

e c t i o n i n the f o l l o w i n g way:-

( ) or e - s t a t e s (x-y;^:), (3z^ - r ^ ) 

( <i£ ) or tr,-states xy, yz, zx 
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The s p l i t t i n g s between the doublet and t r i p l e t are 

s u f f i c i e n t l y small f o r Hund's r u l e t o be obeyed, then f o r 

a c o n f i g u r a t i o n d^, the n e l e c t r o n spins arrange them­

selves among the l e v e l s t o give maximum s p i n consistent 

w i t h the e x c l u s i o n p r i n c i p l e . Thus the c o n f i g u r a t i o n s 
2 5 7 5d , 3d and 3d' are e f f e c t i v e o r b i t a l s i n g l e t s . The 

2 5 
c o n f i g u r a t i o n 5d and 3d are shown schematically i n 
f i g . 3-3. The 43 e l e c t r o n s are not r e q u i r e d f o r bonding 
to the nearest neighbours and are t r a n s f e r r e d t o the 3d 
s h e l l . 
The covaleht bonding (molecular) o r b i t a l s between the 
ions can be d i v i d e d i n t o two kinds a--and T T - o r b i t a l s . 
The o r b i t a l s possess zero angular momentum about the 
bond a x i s and are formed when the a t o m i c . o r b i t a l s which 
overlap are both d i r e c t e d along the bond a x i s . The r r -
o r b i t a l s have u n i t angular momentum about the bond axis 
and are formed when the overlapping atomic o r b i t a l s are 
d i r e c t e d p e r p e n d i c u l a r l y t o the bond a x i s . 
The consequence of the f o r m a t i o n of these molecular 
o r b i t a l s i s t h a t the (dy) s t a t e s of the f r e e i o n must 
now be expressed as a l i n e a r combination of the ii}s ) 
o r b i t a l s of the c e n t r a l i o n plus TT-ando--orbitals of the 
surrounding i o n s . S i m i l a r l y f o r the (dS) states of the 
f r e e i o n . The a p p r o p r i a t e combination must have the 
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t r a n s f o r m a t i o n p r o p e r t i e s under r o t a t i o n s and r e f l e c t i o n s 
of the symmetry group of the c r y s t a l . The greater the 
degree of covalent bonding i n the s o l i d the l a r g e r i s the 
c o n t r i b u t i o n of the«r-and - r r - o r b i t a l s t o the molecular 
o r b i t a l s . 

Owen^®^ and Tinkham^^^ have discussed the appropiate 
l i n e a r combination f o r the s i x - f o l d co-ordinated i r o n 
group s a l t s . I n t h i s case the ions surrounding the para­
magnetic s i t e are along the x, y and z axes used t o define 
the s p a t i a l v a r i a t i o n s of the d-states of the f r e e i o n , 
which leads t o a s i m p l i f i c a t i o n i n the l i n e a r combinations 
r e q u i r e d . The mo d i f i e d (d£) s t a t e s are composed of the 
(d£) s t a t e s of the .free i o n plus T T - o r b i t a l s from the 
surrounding ions and the modified id)s) s t a t e s from (d^f) 
s t a t e s of the f r e e i o n p l u s t r - o r b i t a l s from the surrounding 
i o n s . Using the mo d i f i e d o r b i t a l f u n c t i o n s a modified 
spin-Hamiltonian i s derived and i n t h i s way the change i n 
the s p i n - o r b i t c o u p l i n g and h y p e r f i n e i n t e r a c t i o n constants 
due t o the covalent c o n t r i b u t i o n can be c a l c u l a t e d . This 
method of a n a l y s i s leads t o the f o l l o w i n g changes i n the 
magnetic p r o p e r t i e s of the i r o n group ions i n p a r t i a l l y 
covalent s o l i d s : -

( a ) The covalent bond reduces the o r b i t a l c o n t r i b u t i o n t o 
the g - f a c t o r . 

(b) There i s a r e d u c t i o n i n the second order c o n t r i b u t i o n 
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of the s p i n - o r b i t c o u p l i n g t o the g - f a c t o r . 

( c ) The h y p e r f i n e s t r u c t u r e constant i s reduced. 
(d) ThelTe may be an a d d i t i o n a l h y p e r f i n e i n t e r a c t i o n 

between the magnetic e l e c t r o n s and the surrounding 
n u c l e i . This can a r i s e because the e l e c t r o n wave-
f u n c t i o n s of the paramagnetic i o n now approach the 
surrounding n u c l e i more c l o s e l y than i n the i o n i c 
s o l i d s . This i s r e f e r r e d t o as super hyperfine 
s t r u c t u r e i n an e.s.r. spectrum. 

These conclusions have been shown to apply i n the case of 
the 3d group ions i n 2-6 compounds. 
There i s l i t t l e r e p o r t e d work on the e.s.r. of rare earth 
ions i n 2-6 compo\inds. No f i r m conclusions concerning the 
environment of the r a r e e a r t h i m p i i r i t y can as yet be drawn 
from the l i m i t e d number of r e s u l t s a v a i l a b l e . However the 
r e s u l t s so f a r obtained have been adequately described i n 
terms of the r a r e e a r t h i o n s u b s t i t u t i n g f o r the group 2 
i o n and u s i n g the theory of s e c t i o n (3-3.2). The e f f e c t s 
of covalehcy w i l l ,be l e s s marked f o r the r a r e earth ions 
than f o r the i r o n group since the 'magnetic' electrons are 
i n the core of the i o n . 
I n the, data so f a r r e p o r t e d on 2-6 compounds, the spectra 
of the 3d and 4f ions d i s p l a y the f u l l symmetry of the 
s u b s t i t u t i o n a l s i t e i n d i c a t i n g t h a t there i s no association) 
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of the i m p u r i t y ions w i t h d e f e c t s . 
3-4.2 Shallow donor i m p u r i t i e s 

As we saw i n chapter 2, s u b s t i t u t i o n a l elements of group 
3 of the p e r i o d i c t a b l e which occupy the group 2 i o n s i t e 
or elements of group 7 s u b s t i t u t e d f o r group 6 i o n s i t e 
a c t as shallow donors. There are no shallow acceptor 
i m p u r i t y centres i n CdS and there i s l i t t l e evidence f o r 
i n t e r s t i t i a l donor s i t e s and so we s h a l l not discuss these 
cases. There are f e a t u r e s which are common to a l l the 
resonances observed f o r these shallow donor i m p u r i t i e s i n 
the 2-6 compounds. The e.s.r. i n each case consists of a 
s i n g l e a b s o r p t i o n l i n e w i t h a g-value less than the f r e e 
e l e c t r o n value of 2 and does not show hype r f i n e s t r u c t u r e 
even when the donor nucleus has a non-zero angular momentum. 
Since no h y p e r f i n e s t r u c t u r e i s observed, i d e n t i f i c a t i o n 
of the centre responsible f o r the e.s.r. l i n e has u s u a l l y 
been made from knowledge of the i m p u r i t i e s added during 
sample p r e p a r a t i o n . 

Lambe and Kikuchi^"*"^^ noted t h a t a s i m i l a r i t y e x i s t e d 
between the donors i n 2-6 compounds and the P-centres i n 
a l k a l i h a l i d e s . By use of an P-centre type wavefunction 
f o r the donor, they could accoxmt q u a l i t a t i v e l y f o r the 
departure of the g-value from 2, However t h i s model could 
not e x p l a i n the absence of any hyperfine s t r u c t u r e i n the 



resonance. The model suggested by M i i l l e r and Schneider^'^"''^ 
seems t o be more adequate. They noted t h a t i n CdS the 
g-values of the donor e l e c t r o n at a Chlorine and a Gallui'm 
s u b s t i t u t i o n a l s i t e are almost i d e n t i c a l and are i n agree­
ment w i t h the g-value f o r conduction e l e c t r o n s obtained 

(12) 
from the a n a l y s i s of H o p f i e l d and Thomas of the bound 
and f r e e e x c i t o n o p t i c a l emission spectra i n CdS. (The 
r e s u l t s of t h i s paper were discussed i n s e c t i o n (1-2) when 
d e a l i n g w i t h the nature of the band s t r u c t u r e i n CdS). 
H o p f i e l d and Thomas p o i n t out the g-values of the conduction 
e l e c t r o n s are e s s e n t i a l l y determined by the i n t r i n s i c band 
p r o p e r t i e s of CdS. This suggested t o Muller and Schneider 
t h a t an appropiate wavefunction f o r the donor e l e c t r o n 
could be constructed i n a manner s i m i l a r t o t h a t f o r donor 
e l e c t r o n s i n germamiwlm and s i l i c o n suggested by Kohn and 
L u t t i n g e r (13,14). Kohn and L u t t i n g e r used a Hydrogenic 
model f o r the donor e l e c t r o n , which i s shown to move i n an 

o 
o r b i t of l a r g e r a d i u s ( t y p i c a l l y 30 A). Since the e l e c t r o n 
i s weakly boiind t o the donor i m p u r i t y i t s p r o p e r t i e s are 
determined mainly by the band s t r u c t u r e and d i e l e c t r i c 
constant of the host l a t t i c e . Using t h i s model Kohn and 
L u t t i n g e r o b t a i n s o l u t i o n s f o r the wavefunction of the 
donor e l e c t r o n of the form:-
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where oCĵ  are c o e f f i c i e n t s , Y^(K, r ) are Bloch f u n c t i o n s of 
e l e c t r o n s a t the i ^ ^ minimum of the conduction band and 
F ^ ( r ) are hydrogen-like modulating f t i n c t i o n s . 
F o l l o w i n g t h i s treatment, Roth^'''^^ showed t h a t when the 
band s t r u c t u r e i s known the s h i f t of the g-value of the 
donor e l e c t r o n s from the f r e e e l e c t r o n value because of 
s p i n - o r b i t c o u p l i n g can be c a l c u l a t e d . Ludwig and 

(7) 
Woodbury^ gave the f o l l o w i n g expressions f o r the s h i f t s , 
which are more r e a d i l y a p p l i c a b l e than those found i n Roth's 
o r i g i n a l paper:-

(3-16) + <((-) n).<;^n I 1 C+)> 
J 



f o r the d i r e c t i o n s // and_Lto the z-axis of e l l i p s i o d of 
the constant energy surface of the conduction band i n 
K-space. Where ] - ( + ) ^ and .|(-))> are the two spin states of 
the band considered and j.n^ i s the e x c i t e d s t a t e which i s 
coupled t o the ground s t a t e by the s p i n - o r b i t i n t e r a c t i o n 
and i s a t energy En-Eo above the ground s t a t e . 
This model can e x p l a i n the l a c k of hy p e r f i n e s t r u c t u r e i n 
the resonance so f a r observed. I f the concentration of 
donors (N-jj) i s such t h a t the average donor separation i s 
equal t o the diameter of the donor e l e c t r o n o r b i t , then the 
e l e c t r o n can move from o r b i t t o o r b i t since they overlap. 
The e l e c t r o n s are then no longer l o c a l i s e d at s i n g l e donor 
s i t e s , but become mobile. Resonances of electrons l o c a l ­
i s e d a t donor s i t e s have been observed i n germanium and 
s i l i c o n ( f o r a review of the work, see the review a r t i c l e 

C 7) 
of Ludwig and Woodbiiry ), and i n these cases hyperfine 
s t r u c t u r e due t o the donor n u c l e i was observed! However 
as the c o n c e n t r a t i o n of donors was increased and the 
e l e c t r o n s became n o n - l o c a l i s e d , the resonance no longer 
showed h y p e r f i n e s t r u c t u r e and a s i n g l e l i n e appeared at 
a g-value almost i d e n t i c a l t o t h a t i n the l o c a l i s e d case. 
M u l l e r and Schneider^''"''"^ have c a l c u l a t e d the concentration 



of donors i n 2-6 compounds at which d e l o c a l i s a t i o n of the 
17 3 

donor e l e c t r o n s occurs t o be of the order of 10 ' per cm 
They concluded t h a t i f i a l l the donor e l e c t r o n resonances 
30 f a r observed i n 2-6 compounds have been f o r donor 
concentrations equal t o or exceeding t h i s value and t h a t 
l o c a l i s e d donor e l e c t r o n resonances w i l l not be observed 
u n t i l b e t t e r m a t e r i a l i s a v a i l a b l e . I n many cases, i n c l u ­
d i n g CdS, account must be taken of the super hyperfine 
i n t e r a c t i o n s w i t h the host l a t t i c e which may cause l i n e 
broadening or i n c e r t a i n cases even s p l i t the l i n e s . 
3-4.3 e.s.r.. of defect centres i n 2-6 compounds 
There i s l i t t l e r e p o r t e d data on the d.s.r. of defect 
centres i n 2-6 compounds. Anion (group 6) vacancies w i l l 
a c t as shallow donor centres arid Morigaki^''"^^ has r e p r t e d 
the e.s.r. of i s o l a t e d sulphur vacancies i n CdS and Kasai 
and Otomo^ of Sulphur vacancies i n ZnS. These are the 
only r e p o r t e d resonances of i s o l a t e d defect centres. 
However Dielman et al^"''^^ have observed the e.s.r. of what 
i s b e l i e v e d t o be a complex donor centre i n ZnS. This 
centre c o n s i s t s of a Sulphur vacancy i n nearest neighbour 
a s s o c i a t i o n w i t h a group 1 i m p u r i t y (Cu., Ag. or Au.) 
s u b s t i t u t i o n a l at a Zinc s i t e . There have also been 
r e p o r t s of the e.s.r. of a complementary complex acceptor 
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centre ( t h e so c a l l e d 'A* centre) i n ZnŜ "̂ "̂ ^ and ZnTê "*"̂ .̂TWe 
A centre c o n s i s t s of a Zinc vacancy i n a s s o c i a t i o n w i t h a 
donor i m p u r i t y from e i t h e r group 3 (Ga., A l . , I n . ) or 
group 7 ( C I . , I . ) of the p e r i o d i c t a b l e . I t i s not 
p o s s i b l e t o o u t l i n e a general treatment which describes 
the e.s.r. of defect centres, as was done f o r the 3d and 
4f group ions, since there i s no ' f r e e - i o n ' analogue f o r 
a d e f e c t centre. The approach u s u a l l y adopted i s t o 
assume t h a t the defect possesses one unpaired e l e c t r o n 
which has zero angular momentum i . e . assume t h a t the ground 
s t a t e e l e c t r o n i c s t a t e has S = i , L * 0. This i s done 
because the e x p e r i m e n t a l l y observed g-values are only 
s l i g h t l y s h i f t e d ( 1 7 , 1 8 , 1 9 ) from the 'spin-only' value of 2. 
The value of the g - s h i f t i s c a l c u l a t e d from the assumed 
model of the centre, by t a k i n g account of the s p i n - o r b i t 
c o u p l i n g between the ground s t a t e and f i r s t e x c i t e d s t a t e . 
This r e q u i r e s knowledge of the wavefunction of the e l e c t r o n 
i n the two s t a t e s anology w i t h the d e r i v a t i o n of the 
spin-Hamiltonian f o r ground s t a t e o r b i t a l s i n g l e t s i n 
s e c t i o n 3-3.1. C l e a r l y these must be evaluated f o r each 
i n d i v i d u a l model so t h a t a general treatment of the problem 
would be inappropHate. 

The c a l c u l a t i o n s can only provide order of magnitude 
estimates of the g - s h i f t and so the e.s.r, r e s u l t s can 
only give an i n d i c a t i o n of the correctness or otherwise of 
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the proposed model. S i m i l a r l y other methods f o r i n v e s t ­
i g a t i n g the centre e.g. luminescence, iphotoconductivity, 
e t c . cannot provide d e f i n i t e proof t h a t the atomic nature 
of the defect centre which has been assumed i s c o r r e c t . 
Thus the c r i t e r i o n f o r adopting a p a r t i c u l a r model f o r 
a defect centre i s i t s a b i l i t y t o e x p l a i n a l l the e x p e r i ­
m e n t a l l y observed data more adequately than any other 
model. 
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CHAPTER 4 

3 cm. MICROWAVE SPECTROMETER 

4-1 I n t r o d u c t i o n 
For economic reasons i t was necessary t o construct the 
microwave spectrometer. The obje c t was t o design an 
arrangement w i t h h i g h s e n s i t i v i t y because of the unknown 
na t u r e o f the expected s i g n a l s . The spectrometer was b u i l t 
around a Newport Instruments magnet of pole face diameter 
4 inches, which gave a maximum magnetic f i e l d of 6 Kgauss 
at a pole gap of 2 inches, w i t h a f i e l d s t a b i l i t y of 1 pa r t 
i n 10^ over a volume of about 1 cm.-̂ . 
4-2 S e n s i t i v i t y Considerations 
The t h e o r e t i c a l s e n s i t i v i t y o f an e l e c t r o n s p i n resonance 
( e . s . r . ) spectrometer has been discussed e x t e n s i v e l y by 
va r i o u s authors, i n c l u d i n g Ingram^"'"^ Feher^^\ Misra^^^, 
Goldsborough and Mandel^^\ Teaney, K l e i n and P o r t i s ^ ^ ^ 
and Lbw^^^. 

A d e t e r m i n a t i o n o f the s e n s i t i v i t y can be d i v i d e d i n t o two 

main s e c t i o n s : -

(1) The c a l c u l a t i o n of the maximum possible s i g n a l o b t a i n ­
able f o r a given c o n c e n t r a t i o n of paramagnetic centres. 

(2) The c a l c u l a t i o n of the minimum detectable s i g n a l i n a 
spectrometer, i n c l u d i n g a discussion of p r a c t i c a l 
d e t e c t i o n systems. 



4-2.1 Power absorbed i n the sample 
The s u s c e p t i b i l i t y of a paramagnetic m a t e r i a l (X) i s a 
complex q u a n t i t y and can be w r i t t e n : -

X = X' - iX" 

where X' i a the 'in-phase' s u s c e p t i b i l i t y and X" the 'out-

of-phase' s u s c e p t i b i l i t y . 

The magnetisation (M) produced when the m a t e r i a l i s placed 

i n an r . f . f i e l d of amplitude H^, and angular frequency to 

i s : -

= H^ s i n o t . 5C' - H-ĵ  c o s w t . X" (4-1) 

The power absorbed i n the sample i s Ĥ .̂dM, so t h a t the 
average power (P^) absorbed per u n i t volume of sample i s : -

P^ = i H^ X" (4-2) 

i . e . the power absorbed i s p r o p o r t i o n a l t o the imaginary 
p a r t of the s u s c e p t i b i l i t y (X"). The power r e f l e c t e d or 
t r a n s m i t t e d a f t e r being i n c i d e n t on the sample also 
experiences a phase s h i f t which i s associated w i t h the r e a l 
p a r t of the s u s c e p t i b i l i t y (X'). - ..-<,5.^ 
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4-2.2 Q-changes associated w i t h the absorption 
F?rD*^equation (4-2) i t i s evident t h a t a l a r g e r . f . magnetic 
f i e l d i s r e q u i r e d t o o b t a i n a l a r g e power absorption ( w i t h 
the power l e v e l s used i n p r a c t i c e X" i s only s l i g h t l y 
dependent on H^). Consequently a resonant c a v i t y i s used 
i n n e a r l y a l l experimental arrangements and was used i n our 
system. The c a v i t y should have a high Q-value and a res ­
onant frequency very close t o the operating frequency, 
( t h e c a v i t y used i n our system had a Q o f about 5,000). 
The Q-value of the c a v i t y changes when power i s absorbed 
i n the sample and i t i s t h i s change i n Q which i s detected 
by the spectrometer. The Q of a c a v i t y c o n t a i n i n g a para-
magnetic sample at resonance i s given by:-

Q = ©X energy s t o r e d = to "e'n" j^^ • 
average power d i s s i p a t e d j . V ^" iw 

(4-3) 

where P^ i s the power d i s s i p a t e d i n the c a v i t y w a l l s , 
i s the c a v i t y volume and the sample volume. 

For the case where the a b s o r p t i o n due t o the sample re s ­
onance i s s m a l l , equation (4-3) can be expressed t o give: 

Q = Q o f l - ^ ^ i y . H^X•'.aV> Ql=Qr,-4TTX"T,0»l 
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where i s the c a v i t y Q i n the absence of c a v i t y l o s s e s 

and^i^is a f i l l i n g f a c t o r which depends oh the f i e l d d i s ­

t r i b u t i o n i n the c a v i t y and sample. 

I f A Q i s the change i n c a v i t y Q due to sample absorption 

then:^ 

A Q = 4-71 Q^. (4-4) 

A simple spectrometer arrangement employing a r e f l e c t i o n 

c a v i t y i s shown i n P i g . 4-1. Throughout t h i s chapter a 

r e f l e c t i o n c a v i t y w i l l be considered s i n c e t h i s was the 

type used i n our system. The treatment f o r a t r a n s m i s s i o n 

c a v i t y i s u s u a l l y v e r y s i m i l a r to that f o r the r e f l e c t i o n 

one. The c o n c l u s i o n s are i d e n t i c a l so t h a t i t i s only 

n e c e s s a r y to consider one type of c a v i t y . 

I t i s now n e c e s s a r y to d i s c u s s the coupling between the 

c a v i t y and waveguide to give maximum s e n s i t i v i t y . 

4-2.3 C a v i t y Coupling 

The c a l c u l a t i o n of optimum coupling i s most conveniently 

d e a l t w i t h u s i n g an e q u i v a l e n t c i r c u i t , i n which a r e f l e c ­

t i o n c a v i t y a t the end of the waveguide i s represented as 

a lumped, high Q, L.R.G. network, transformer coupled to 

the end of a simple t r a n s m i s s i o n l i n e . The c i r c u i t i s 

shown i n F i g . 4-2. 
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NOTE. The v a r i a b l e coupling between the c a v i t y and the 

waveguide shown by the v a r i a b l e turns r a t i o transformer 

i s a chieved i n p r a c t i c e by providing a screw, at l e s s than 

h a l f a guide wavelength from the c a v i t y i r i s , which can be 

moved a c r o s s the i r i s . 

Feher^"''^ d i s t i n g u i s h e s between two cases f o r optimum 

co u p l i n g depending on whether a power (square law)detector 

or a v o l t a g e ( l i n e a r ) d e t e c t o r i s used. Both c a l c u l a t i o n s 

are s i m p l i f i e d by assuming a s i g n a l frequency equal to the 

c a v i t y resonant frequency. 

L i n e a r Detector 

With a l i n e a r d e t e c t o r the change i n voltage r e f l e c t e d from 

the c a v i t y a t resonance, when the c a v i t y Q changes by an 

amount AQ, must be optimised. 

L e t R be the v o l t a g e r e f l e c t i o n c o e f f i c i e n t at the c a v i t y . 

Then the voltage r e f l e c t e d from the c a v i t y (V^g-f]^ ) i s : -

(7) 

By t r a n s m i s s i o n l i n e theory^' , f o r a l i n e of character­

i s t i c impedance terminated i n an impedance 
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w i t h a s i g n a l frequency equal to the c a v i t y resonant 

frequency, 

Zg, = r and i s r e a l ( s e e f i g . 4-2) 

.*. VRl. = r - Z^r? 

r + Z n^ 
0 

2 
where the c o n d i t i o n r = Z^n corresponds to the condition 
of the p e r f e c t match R = 0. 

2 
Z^n < r corresponds to the case of undercoupling and 

2 

Z^n > r corresponds to overcoupling. 

As the c o u p l i n g changes from undercoupling to overcoupling 

the s i g n of R changes. 

We are i n t e r e s t e d i n the change of r e f l e c t e d voltage f o r 

a change i n Q of the c a v i t y . 
W T\ti nc 3̂ 

B r 

Then 

AY.,ci = ± V„ A t Z„n- (4-6) 
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The p o s i t i v e s i g n r e f e r s to undercoupling and the negative 

to overcoupling. 

Optimum coupling i s obtained when 

2 

T h i s c o n d i t i o n corresponds to Z^n - r = 0, i . e . to the 

s i t u a t i o n of p e r f e c t match. 

For t h i s s i t u a t i o n equation (4-6) i s : -

U s i n g (4-4) the change i n r e f l e c t e d voltage i s : -

and equation (4-6) can be r e w r i t t e n 

A p l o t of a g a i n s t R i s shown i n P i g . 4-3. This diagram 

shows t h a t maximum s e n s i t i v i t y i s obtained f o r operating 

c o n d i t i o n s as c l o s e to a p e r f e c t match as p o s s i b l e , and t h i s 

can be demonstrated to be t r u e experimentally. This treatment 

p r e d i c t s a d i s c o n t i n u i t y i n the r e f l e c t e d power at the con­

d i t i o n of p e r f e c t match. I t i s r e a d i l y confirmed by e x p e r i ­

ment t h a t no such d i s c o n t i n u i t y e x i s t s and the -plot i s con-



PIG iv-y.A p l o t ^ " ^ r e f l . versus r e f l e c t i o n c o e i i i c i e n t 
' v . 

(R). 
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(8) t i n u o u s . Faulkner^ ' has shown that the i n c o n s i s t e n c y i s 
due to an o v e r s i m p l i f i e d approach (see below). 
Square law d e t e c t o r 

With the square law d e t e c t o r Feher considers optimising the 

power r e f l e c t e d from the c a v i t y , u s i n g the assumption that 

the change i n power r e f l e c t e d from the c a v i t y equals the 

change i n power i n the c a v i t y at a constant i n c i d e n t power. 

T h i s l e a d s to an optimum coupling condition corresponding 

to R = 0.58. However i t can be shown experimentally that 

the optimum coupling i s again v e r y c l o s e to the p e r f e c t 

match. Consequently t h i s approach must be i n c o r r e c t . 
(8) 

The method used by Faulkner^ i s to define a complex 

r e f l e c t i o n c o e f f i c i e n t (R) where 

R = R' - jR" 

Using the same e q u i v a l e n t c i r c u i t as that shown i n F i g . 4-2 

v a l u e s f o r R' and R" are obtained i n terms of Q„ and a t 
0 Jj 

a frequency CO, , very c l o s e to the resonant frequency CJ^. 

Where = qL i s the unloaded c a v i t y Q, Q-ĵ  = Co i s the 
r ~ r+z7 

0 
loaded c a v i t y Q, t a k i n g i n t o account l o s s e s through the 

2 
cou p l i n g hole i n t o the waveguide, and Z^' = Z^n , 
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T-hen^^^ 

a I 

where co^ =• LTC. 

and A CO « I. 
1 ^ CO 

I g n o r i n g q u a n t i t i e s of the order of -q and ~zr r e l a t i v e 
to u n i t y . 

and • K ^ C ? o T T - U ~ ^ / (4-8) 

a l s o -55' =^ ^ a i T T ) O o f l - R ' ^ l 

and 
3 X ' ^ X " 

(4-9) 

C l e a r l y the q u a n t i t y to be maximised . Th i s i s a 

maximum when R' = 0, i . e . the g r e a t e s t s e n s i t i v i t y i s 

obtained f o r the c o n d i t i o n of p e r f e c t match. 

The magnitude of the inform a t i o n c a r r y i n g s i g n a l (V ) 
s 

r e f l e c t e d from the c a v i t y i s shown to bei 

V, = -rr^Oo(»- ^ • (4-10) 



Where B.^ i s the amplitude of the modulation of an e x t e r n a l 

magnetic f i e l d . 

T h i s equation i s of the same form as that obtained by 

Feher^^~'^\ except t h a t equation does not p r e d i c t a d i s ­

c o n t i n u i t y a t the c o n d i t i o n R' = 0. 

Goldsborough and Mandel^^\ who employed a s i m i l a r method 

of c a l c u l a t i o n to t h a t of Faulkner, a l s o showed that the 

optimum co u p l i n g c o n d i t i o n i s obtained f o r the condition 

of p e r f e c t match, when the o s c i l l a t o r frequency i s equal to 

the c a v i t y resonance frequency. Consequently, according 

to the theory o u t l i n e d above the coupling between c a v i t y 

and waveguide should be s e t as c l o s e as p o s s i b l e to a p e r f e c t 

match f o r maxijaum s e n s i t i v i t y . With our spectrometer i t was 

r e a d i l y v e r i f i e d t h a t t h i s was the most s e n s i t i v e mode of 

o p e r a t i o n , 

4-2.4 Frequency choice 

I t i s ijonvenient a t t h i s stage to e x p l a i n more f u l l y the 

choice of 9.3 Kmc/s as the operating frequency. ( T h i s i s 

e q u i v a l e n t to a wavelength of 3 cm). 

The minimum d e t e c t a b l e number of s p i n s (N -min) i n a para-

magnetic sample i s p r o p o r t i o n a l to "X 4 ^ where i s 

the l i n e width of the resonance l i n e i n the sample and 

i s the o p e r a t i n g frequency. Thus the value of N min i s 

p r o p o r t i o n a l t o : -
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VoJ ^ 
where V i s c a v i t y vol\ime. 

Assuming t h a t as the frequency i s i n c r e a s e d the c a v i t y i s 

s e a l e d down to give the same R.F. f i e l d c o n f i g u r a t i o n , then: 

and s i n c e 

Thus to d e t e c t the minimum number of s p i n s , the highest 

p o s s i b l e o p e r a t i n g frequency i s r e q u i r e d . The upper l i m i t 

i s s e t by:-

(1) The d i f f i c u l t y of o b t a i n i n g and handling components 

i n the m i l l i m e t r i c range of wavelengths. 

(2) The l i m i t e d power obtained from the a v a i l a b l e sources 

a t such wavelengths. 

53cm. equipment provides a s u i t a b l e compromise between 

s e n s i t i v i t y and experimental requirements as w e l l as being 

r e a d i l y a v a i l a b l e commercially. I t i s i n common use f o r 

e . s . r . work. I n c e r t a i n s p e c i a l cases, e.g. the study of 

s p i n energy l e v e l systems w i t h l a r g e energy s p l i t t i n g s , i t 

i s n e c e s s a r y to use higher f r e q u e n c i e s . 

4-2.5 Minimum d e t e c t a b l e s i g n a l i n p r a c t i c a l systems. 

The minimum d e t e c t a b l e resonant absorption s i g n a l can be 

c a l c u l a t e d i f the v a r i o u s n o i s e sources i n the system are 
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taken i n t o account. Before d i s c u s s i n g n o i s e i n the d e t e c t i o n 

system, the other sources of n o i s e i n a spectrometer w i l l be 

c o n s i d e r e d . 

4-2.5(1) Source n o i s e 

The microwave power i s u s u a l l y derived from a r e f l e x 

K l y s t r o n . A V a r i a n 2K25 k l y s t r o n was employed i n ovoc system. 

A k l y s t r o n e x h i b i t s random v a r i a t i o n s i n the amplitude and 

frequency of i t s output power. There i s l i t t l e a v a i l a b l e 

data on these v a r i a t i o n s and none f o r the 2K25. 

A.M. n o i s e i n the k l y s t r o n output w i l l have an adverse e f f e c t 

on the s i g n a l / n o i s e r a t i o of d e t e c t o r . But i n our spectro­

meter, n o i s e from t h i s o r i g i n was l e s s than that of the 

d e t e c t o r and can t h e r e f o r e be ignored. 

However, w i t h the k l y s t r o n a t maximum power output, the F.M. 

n o i s e from the k l y s t r o n provides the dominant c o n t r i b u t i o n 

to the n o i s e at the d e t e c t o r output. Thus some form of 

automatic frequency c o n t r o l of high gain was r e q u i r e d , to 

reduce t h i s n o i s e component. 

The change i n r e f l e c t e d v o l t a g e (AV) during a resonant 

a b s o r p t i o n i s very s m a l l , t y p i c a l l y ^ ^ \o~^ and i t i s 

not f e a s i b l e to maintain the microwave power l e v e l constant 

to t h i s a c c u r a c y . Thus a system commonly encountered, which 

i s used i n our spectrometer, i s to apply a small e x t e r n a l 

magnetic f i e l d modulation of angular frequency (̂ ,̂«) super­

imposed on the D.C. magnetic f i e l d . I n the absence of 
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resonance the output i s zero. I f the amplitude of the 

f i e l d modulation (AH„) i s sma l l i n comparison with the 

width of the resonance s i g n a l , a t resonance^, the d e r i v ­

a t i v e of the l i n e shape i s swept out a6 the D.C. sweep 

moves a c r o s s the resonance l i n e . The advantages of t h i s 

technique a r e : -

(1) That the requirement of the constancy of the microwave 

l e v e l becomes l e s s s t r i n g e n t . 

(2) A m p l i f i e r s tuned to f r e q u e n c y ^ a r e r e q u i r e d , and 

consequently the band width of the d e t e c t i o n system 

i s reduced. However any A.C. components i n the F.M. 

n o i s e of the k l y s t r o n w i t h f r e q u e n c i e s c l o s e to that 

of the modulation frequency (t^m) w i l l r epresent noise 

terms which w i l l pass through the d e t e c t i o n system. 

Thus i t i s important t h a t the band width of the A.F.C. 

system i s s u f f i c i e n t to cover the modulation frequency 

range, to remove F.M. n o i s e components a t t h i s f r e ­

quency a t the k l y s t r o n output. 

A common f e a t u r e of the A.F.C. systems i s the use of the 

sample c a v i t y as the s t a b i l i s i n g element. Such a system i s 

i d e a l f o r the ob s e r v a t i o n of the power absorbed i n the 

sample. T h i s system i s c o n v e n t i o n a l l y r e f e r r e d to as the 

ab s o r p t i o n mode. I n t h i s mode the change i n amplitude of 

the r e f l e c t e d v o l t a g e i s detected and the phase change 
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a s s o c i a t e d w i t h the d i s p e r s i v e component (X' ) of sample 

s u s c e p t i b i l i t y must be r e j e c t e d . Locking the k l y s t r o n 

frequency to that of the c a v i t y resonant frequency auto­

m a t i c a l l y r e j e c t s the d i s p e r s i v e part (X') s i n c e t h i s gives 

r i s e e s s e n t i a l l y to a frequency s h i f t which i s compensated 

by the A.F.C. system. To observe the d i s p e r s i o n mode a 

form of the Pound s t a b i l i s a t i o n system^"^^^ must be employed, 

where the k l y s t r o n frequency i s locked to t h a t of an e x t e r n a l 

c a v i t y tuned to sample c a v i t y . 

Both types of A.F.C. systems were a v a i l a b l e i n our s p e c t r o ­

meter. 

4-2.3(2) C i r c u i t n o i s e 

For optimum s i g n a l / n o i s e i t i s n e c e s s a r y to e l i m i n a t e noise 

due to microphony and microwave power leakage. Microphonic 

n o i s e i s e s p e c i a l l y s e r i o u s i n systems employing modulation 

f r e q u e n c i e s l e s s than about 500 c / s . These e f f e c t s can be 

minimised by c a r e f u l c o n s t r u c t i o n of the spectrometer. 

4-2.5(3) Noise due to c a v i t y v i b r a t i o n s 

The magnetic f i e l d modulation induces eddy c u r r e n t s i n the 

c a v i t y w a l l s . These c u r r e n t s i n t e r a c t w ith the D.C. magnetic 

f i e l d to produce mechanical v i b r a t i o n s of the c a v i t y w a l l s , 

thereby producing n o i s e s i g n a l s a t the d e t e c t i o n frequency. 

There i s l i t t l e t h a t can be done to overcome t h i s problem. 

The s i m p l e s t s o l u t i o n i s to use a low modulation frequency 



< 100 c / s . T h i s however makes the system s u s c e p t i b l e to 

the problems of microphony as o u t l i n e d i n the previous 

s e c t i o n . I n p r a c t i c e , t h e r e f o r e , a compromise has to be 

e f f e c t e d . I n some systems g l a s s c a v i t i e s with a t h i n 

evaporated l a y e r of s i l v e r have been s u c c e s s f u l l y employed 

to decrease the eddy c u r r e n t s without g r e a t l y reducing 

the mechanical s t r e n g t h . However due to the obvious 

p r a c t i c a l d i f f i c u l t i e s of h a n d l i n g and operating such an 

expedient was not used i n the present spectrometer. Instead 

b r a s s c a v i t i e s w ith a t h i n p l a t i n g of gold were used. A 

modulation frequency of about 70 c/s was chosen so that 

the problems of modulation p i c k up could be ignored. 

4-2.3(4) Noise i n p r a c t i c a l d e t e c t i o n systems 

The d e t e c t i o n system c o n s i s t s of a microwave detector 

f e e d i n g i n t o s u i t a b l e a m p l i c a t i o n s t a g e s . The expression 

f o r the n o i s e power (Pjj) a t the output can be written("^^^ 

^N = * ^amp. ^ - 1) KTASI (4-11) 

where G- i s the conversion gain of the microwave detector. 

Nj^ i s the microwave noi s e at the d e t e c t o r . 

t i s the n o i s e f i g u r e of the microwave d e t e c t o r . 

F i s the n o i s e f i g u r e of the a m p l i f i e r , amp. • 
/ 2 i ^ i s the band width of the d e t e c t i o n system. 

T i s the temperature of the d e t e c t o r . 
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(NOTE, t i s defined as the r a t i o of the a v a i l a b l e noise 

power a t output of the c r y s t a l to that of a r e s i s t o r a t 

room temperature). 

A comparison of the n o i s e power with the optimum s i g n a l 

v o l t a g e from the c a v i t y , equation 4-7f de f i n e s the minimum 

d e t e c t a b l e a b s o r p t i o n s i g n a l i n the spectrometer. .Let 

Pjj be the power generated i n the de t e c t o r due to the i n c i d ­

ence of the s i g n a l v o l t a g e AV . Then:^ 

•a. 
o 

where Z i s the e q u i v a l e n t impedance of the det e c t o r . For a 

matched d e t e c t o r Z i s equal to Zo the c h a r a c t e r i s t i c imped­

ance of the guide:-

Then 

Comparing the s i g n a l power w i t h the nois e power of the 

d e t e c t i o n system, the minimum de t e c t a b l e value of 7C" (X" n^i^) 

i s : -

_ L r (GT Nv< + f'amf.. + IT -1) KT. (4-a) 
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The l i m i t of s e n s i t i v i t y of a spectrometer i s determined by 

the dominating n o i s e f a c t o r i n equation 4-12. Buckmaster 
(12) 

and Dering^ have c a r r i e d out an experimental i n v e s t i ­

g a t i o n of t h i s e x p r e s s i o n . They were able to show that a 

spectrometer can achieve near t h e o r e t i c a l s e n s i t i v i t y as 

p r e d i c t e d by equation (4-12) i f the operating conditions 

are c o r r e c t l y chosen. 

The q u a n t i t i e s G, , F^^^ and t i n equation (4-12) are 

dependent on the R.P. power and the modulation frequency. 

The v a l u e s of G and t f o r a microwave detector can vary 

from u n i t to u n i t of the same type. Consequently a 

complete d i s c u s s i o n of the q u a n t i t i e s i n equation (4-12) 

i s long and complicated and i s i n a p p r o p r i a t e i n t h i s survey. 

I n s t e a d the c o n c l u s i o n s of such a d i s c u s s i o n w i l l be pre­

sented w i t h emphasis on t h e i r importance i n spectrometer 

d e s i g n . 

4-2.5(3) Microwave, d e t e c t o r s 

There a r e two main types of d e t e c t o r i n common use:-

(1) The c r y s t a l diode 

(2) The bolometer 

C r y s t a l diode d e t e c t i o n 

A c r y s t a l diode behaves as a microwave r e c t i f i e r producing 

a D.C. c u r r e n t output from the i n c i d e n t microwave power. 
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I t s c h a r a c t e r i s t i c s can be d i v i d e d i n t o two r e g i o n s : -

1) A 5(^uare law region, v^fhere the r e c t i f i e d c u rrent ( I j ^ ) 

i s p r o p o r t i o n a l to the i n c i d e n t power (P^j^^) .(holds f o r 

PjjjQ^10~5watts) . 

2) A l i n e a r r e g i o n where I j ^ i s p r o p o r t i o n a l to (PJJVJQ)^ 

(Holds f o r P j j ^ ^ ^ O ~ \ a t t s ) . 

The n o i s e output (P^) f o r a c r y s t a l diode when the 

i n c i d e n t microwave power i s modulated at a frequency f 

is ^''0'^'') 

where i s a constant. 
For the square law r e g i o n t h i s becomes 

and f o r the l i n e a r r e g i o n : -
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(4-14) 

j3 and"* are constants determined experimentally f o r each 

diode. 

With a microwave d e t e c t o r the other important f a c t o r i s 

the conversion gain G . I t can be shown both experimentally 

and t h e o r e t i c a l l y t h a t :-

I n the square law region G oi PJJ^Q 

and i n the l i n e a r region G '~' constant 

i . e . the c o n v e r s i o n gain i s poor at low powers. 

I t i s convenient to define the f u n c t i o n "X min-obs. 
"X" min-th. 

which i s the r a t i o of the minimum d e t e c t a b l e value of 

X min w i t h a p r a c t i c a l d e t e c t i o n system to that of an 

i d e a l system where one i s l i m i t e d only by the thermal 

n o i s e of the d e t e c t o r . 

I n t h i s i d e a l i s e d case equation (4-11) can be r e w r i t t e n : -

X ^In- tVi. 

Then from equations (4-11) and ( 4 - 1 ? ) . 

X" tn'in- tV\. 



^ wir\-oki. 
v " 

so 

„ /, A T 4- - Xmin.-obs. versus P̂ ^̂  f o r a EIG.4-4. A p l o t o i 
simple c r y s t a l diode d e t e c t i o n scheme. 



Buckmaster and Bering^ ^ have shown t h a t i n a w e l l de­

signed spectrometer, u s i n g good k l y s t r o n s and a m p l i f i e r s 

t h a t are commercially a v a i l a b l e , the microwave noise 

f i g u r e (Nj^) i s n e g l i g a b l e and the. noise f i g u r e 

of the a m p l i f i e r i s very c l o s e to u n i t y . 

With these assumptions and u s i n g equations (4-13) jC^-'l^a) 

and (4-14) equation (4-16) can be r e w r i t t e n as :-

f o r the square law region and as V> (4-19) 

^ win - ok<. f \ +• ^^v»c. 
y-i. 

f o r the l i n e a r region, 
A p l o t of the f u n c t i o n s i n equation (4-19) against 

i n c i d e n t power i s shov/n i n E i g . 4-̂ b, u s i n g values obtained 

w i t h a t y p i c a l c r y s t a l 

At low powers the c r y s t a l diode has poor conversion gain, 

while at h i g h powers t h e r e i s excess c r y s t a l n o i s e . 

With the simple r e f l e c t i o n c a v i t y system shown i n Fig.4-1 

i t i s c l e a r l y d i f f i c u l t to obtain the optimum power l e v e l 

at the detector.L i n a l l c a s e s , s i n c e t h i s depends on the 

power i n c i d e n t on the c a v i t y and the degree of balance 
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obtained by arm 2.The s i t u a t i o n can be improved by the 

technique of microwave 'bucking',i.e. some power i s 

taken from arm 1 using a d i r e c t i o n a l coupler and i s added 

to t h a t f a l l i n g j:onn the d e t e c t o r i n arm 5.The amount of 

'bucking' can be v a r i e d to ensure t h a t the detector i s 

working i n i t s optimum range f o r any l e v e l of power 

i n c i d e n t on the c a v i t y . T h i s g r e a t l y enhances the u s e f u l n e s s 

of the spectrometer. 

S i n c e our o b j e c t was to c o n s t r u c t a spectrometer of very 

high s e n s i t i v i t y the homodyne scheme was r e j e c t e d i n favour 

of the more complex super heterodyne one.A superhetrodyne 

system g i v e s a s i g n i f i c a n t i n c r e a s e ('-'10 times) i n s e n s i t ­

i v i t y over t h a t of a homodyne arrangement. 

I t i s evident from equations(4-15) and (4-15a) t h a t c r y s t a l 

d e t e c t i o n n o i s e f a l l s o f f w i t h i n c r e a s i n g modulation 

frequency.However p r a c t i c a l c o n s i d e r a t i o n s , s u c h as power 

requirements f o r o b t a i n i n g a given modulation depth and the 

e f f e c t of the high frequency modulation on the l i n e width 

of the resonance l i n e , s e t an upper l i m i t onto the frequency 

of modulation at about lOOKc/s.However c r y s t a l j l o u t p u t (P^) 

only becomes n e g l i g i b l e a t f r e q u e n c i e s of the order of tens 

of megacycles.The conventional method of obtaining such 

high modulation f r e q u e n c i e s a t the c r y s t a l i s to beat the 

r e f l e c t e d s i g n a l from the c a v i t y with a s i g n a l from a l o c a l 



o s c i l l a t o r k l y s t r o n which i s d i s p l a c e d i n frequency from the 

s i g n a l k l y s t r o n by a few t e n s of megacycles.The I . F . beat 

frequency i s detected by the c r y s t a l and i s a m p l i f i e d by a 

standard I . F . a m p l i f i e r . T h e pov\rer l e v e l at the d e t e c t o r i s 

made s u f f i c i e n t l y high to maintain a high conversion gain by 

the l o c a l o s c i l l a t o r power.The noise f i g u r e ( t ) of the detector 

i s then v e r y low and the n o i s e f i g u r e of the I . F . a m p l i f i e r 

( F ) becomes important.In order to e l i m i n a t e the noise from \ 

the l o c a l o s c i l l a t o r s i g n a l a balanced mixer i s employed.The 

l i m i t of s e n s i t i v i t y of such a system has been found by 
(12") (5") Buckmaster and Bering^ ''and Teaney,Klein and P o r t i s ^ ^ ^ to be 

s e t by the n o i s e f i g u r e of the I . F . a m p l i f i e r and the b a l ­

anced mixer.When the good mixers and a m p l i f i e r s which are 

commercially a v a i l a b l e are employed the value of equation 

(4-18) becomes:-

"X n»ift-ok>s. ^ b 5 

T h i s i s a s i g n i f i c a n t i n c r e a s e i n s e n s i t i v i t y compared with 

t h a t o b t a i n a b l e with a homodyne system and j u s t i f i e s our 

d e c i s i o n to b u i l d a superheterodyne spectrometer, u s i n g 

c r y s t a l diode microwave detection.(NOTE-In our spectrometer 

the value of equation (4-20) w i l l be h i g h e r s i n c e k l y s t r o n 

F.M. n o i s e becomes a dominating f a c t o r a t - h i g h k l y s t r o n powers, 



•5 
Bolometer d e t e c t i o n 

A bolometer comprises a s m a l l r e s i s t i v e element which i s 

capable of d i s s i p a t i n g microwave power, and u t i l i s i n g 

the heat developed to e f f e c t a change i n i t s r e s i s t a n c e . 

There a r e two common t y p e s . One has an a p p r o p r i a t e l y 

mounted s h o r t l e n g t h of wire u s u a l l y platinum and the 

other a s m a l l bead of semiconducting m a t e r i a l . T h e o r e t i c ­

a l l y t h e i r n o i s e temperature should be c l o s e to un i t y , but 

i n p r a c t i c e i t i s v e r y much h i g h e r . They can be made in t o 

s e n s i t i v e microwave d e t e c t o r s but i n p r a c t i c e they have 

many, disadvantages. The more important of these are t h e i r 

low response times and poor conversion a t low powers. Thus 

they must be used a t high powers where microwave n o i s e (NT^) 

becomes the l i m i t i n g f a c t o r . The s i t u a t i o n can be improved 

by u s i n g a balanced mixer but i t i s d i f f i c u l t to obtain 

matched bolometers. Consequently i t i s d i f f i c u l t to b u i l d 

a spectrometer employing bolometer d e t e c t i o n with as high 

a s e n s i t i v i t y as a c r y s t a l superheterodyne system. As a 

r e s u l t a bolometer d e t e c t i o n scheme was r e j e c t e d i n favour 

of the c r y s t a l diode d e t e c t i o n scheme o u t l i n e d above. 

4-^ C o n c l u s i o n s 

The s e n s i t i v i t y c o n d i t i o n s of s e c t i o n (4-2) l e d to a 

d e c i s i o n to b u i l d a 3cm superheterodyne spectrometer em­

p l o y i n g balanced mixer c r y s t a l diode d e t e c t i o n . The I.P. 
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frequency was chosen to be 30 mc/s because of the a v a i l ­

a b i l i t y of a m p l i f i e r s tuned to t h i s frequency. A r e f l e c ­

t i o n c a v i t y was used as t h i s was s i m p l e r to design and 

operate. The magnetic f i e l d modulation frequency was 

chosen to be 70 c / s . An A.F.C. f o r the s i g n a l k l y s t r o n 

u s i n g the sample c a v i t y as the s t a b i l i s i n g element was 

b u i l t and had s u f f i c i e n t band width to cover the f i e l d 

modulation frequency. The p r a c t i c a l d e t a i l s of the spectro­

meter a r e given i n the next s e c t i o n . 

4-4 P r a c t i c a l d e t a i l s 

A'block diagram of the spectrometer i s shown i n P i g . ( 4 - 5 ) . 

The s i g n a l and l o c a l o s c i l l a t o r k l y s t r o n s , the 30 mc/s 

I.P. a m p l i f i e r s and t h e i r r e s p e c t i v e power s u p p l i e s were 

obtained from an ex-U.S.A.P. radar s e t . The microwave 

c i r c u i t r y was obtained commercially. The spectrometer vjas 

a l s o designed to measure s p i n - l a t t i c e r e l a x a t i o n times by 

the p u l s e s a t u r a t i o n technique. The l a r g e pulse of micro­

wave power r e q u i r e d to produce the resonance t r a n s i t i o n 

s a t u r a t i o n was provided by a t r a v e l l i n g wave tube type rwx-e 

which could be i n s e r t e d i n t o the microwave c i r c u i t between 

the s i g n a l k l y s t r o n and the microwave bridge. A diode 

s w i t c h was p l a c e d i n f r o n t of the microwave detector to 

p r o t e c t i t during the l a r g e power pulse. T h i s f a c i l i t y 

was not used during the course of the work reported here. 
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FIG.4-5. Block diagram of the 3cm. microwave 

spectrometer. 



C i r c u i t diagrams of the low frequency ( 7 0 c / s ) pov;er 

o s c i l l a t o r , low frequency ( 7 0 c / s ) tuned a m p l i f i e r and 

phase s e n s i t i v e d e t e c t o r are giVen i n F i g s . (4-6) and 

( 4 - 7 ) . 

A double c o n c e n t r i c g l a s s dewer c r y o s t a t enabled measure­

ments to be made i n the temperature ranges 1.5 - 4.2°K 

and 55 - 77°K v;ith the use of pumped l i q u i d Helium and 

pumped l i q u i d Nitrogen r e s p e c t i v e l y . 

The microwave c a v i t y wasvgold p l a t e d b r a s s w a l l r e c t ­

angular type, op e r a t i n g i n the ^^.02 •^'^ ^ ^~ 

f a c t o r of a few thousand a t room temperature. The c a v i t y 

could be s p l i t to f a c i l i t a t e sample mounting. The samples 

were u s u a l l y mounted .on the narrow face of the c a v i t y where 

the R.F. magnetic f i e l d i s g r e a t e s t and v e r t i c a l so t h a t 

the D.C. magnetic f i e l d , which r o t a t e d i n the h o r i z o n t a l 

plane, i s always p e r p e n d i c u l a r to the R.P. f i e l d . A brass 

s e a l i n g can, which surroiinded the c a v i t y and screwed i n t o 

the waveguide was to prevent l i q u i d Helium or Nitrogen 

from l e a k i n g i n t o the c a v i t y . The presence of l i q u i d 

c oolant i n the c a v i t y causes n o i s e on the microvjave power 

r e f l e c t e d from the c a v i t y because of bubbling and so t h i s 

s t e p was taken to prevent i t e n t e r i n g the c a v i t y . For 

o p t i c a l i l l u m i n a t i o n of the sample while immersed i n the 

coolant a second c a v i t y was constructed with a s l i t cut 

a c r o s s the narrow f a c e as i n d i c a t e d i n F i g . ( 4 - 8 ) . A 
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composite g l a s s and metal s e a l i n g can was employed (see 

P i g . 4 - 8 ) . The g l a s s bottom s e c t i o n of the can was s i l v e r 

p l a t e d except f o r a s l i t corresponding to the one i n the 

c a v i t y . T h i s step was found n e c e s s a r y because microwave 

power which l e a k s from the j o i n t and the s l i t i n the c a v i t y 

i s r e f l e c t e d back i n t o the c a v i t y from the s i l v e r i n g . 

Before the can was s i l v e r e d t h i s power was r e f l e c t e d from 

the" g l a s s de.var w a l l s and because i t had to pass through 

the bubbling coolant/was*^ a source of noi s e on the s i g n a l 

microwave power. S i l v e r i n g of the s e a l i n g can g r e a t l y 

reduced the noi s e due to t h i s cause. 

A second method of o p t i c a l i l l u m i n a t i o n was t r i e d . A 

f l e x i b l e f i b r e o p t i c l i g h t guide was passed down the si d e 

of the waveguide f e e d i n g the c a v i t y and" d i r e c t l y i n t o the 

c a v i t y . However any s l i g h t movement of t h i s l i g h t guide 

caused a change i n the power l e v e l r e f l e c t e d from the 

c a v i t y and so was a source of spurious s i g n a l s and noi s e 

a t the d e t e c t o r and no r e l i a b l e r e s u l t s were obtained with 

t h i s system. A f u t u r e m o d i f i c a t i o n of t h i s scheme v;ould be 

to use a r i g i d l i g h t pipe. A system employing a l i g h t pipe 

i s p r e f e r a b l e , s i n c e the sample can be kept iirn^^comJpre'te 

darkness i f r e q u i r e d . A s i t u a t i o n which i s d i f f i c u l t to 

ach i e v e w i t h the system employing a s l i t i n the c a v i t y w a l l . 
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CHAPTER 3 
SAIVIPLE PREPARATION 

5-1 ORIGIN OP THE SAMPLES 
Most of the samples investigated i n t h i s work were grown 
i n our own laboratories and were very kindly made available 
by Dr. L. Clark and Mr. D, S. Orr, The samples were taken 
from large undoped single c r y s t a l boules of CdS, unless 
otherwise stated. Clark and Orr have used two d i s t i n c t 
methods of growing the single c r y s t a l buules:-
(1) Sublimation of a CdS charge i n an argon atmosphere and 
(2) Sublimation i n vacuo. 
A number of samples prepared at other laboratories were 
also investigated during the course of the e.s.r. work. 
3-1.1 Growth of Single Crystal Boules by Sublimation i n 
argon. 
This method was a modification of that of Piper and Polich^-^^ 

(2) 
and i s described f u l l y i n the paper by Clark and Woods^ 
Two cry s t a l s grown by t h i s technique were used i n the e.s.r. 
work and w i l l be designated LR25 and LR26. Both samples 
were of an i r r e g u l a r shape w i t h approximate dimensions of 
0.5 cm X 0.5 cm x 0.2 cm. The crystals were transparent 
w i t h a brownish yellow coloration. They both had a high 
r e s i s t i v i t y at room temperature (>10^ ohm-cm). Chromi\im 
impurity ions were detected i n LR26 by the e.s.r. technique. 



TABLE 1 

Sample Growth, temp. Sulphur vap. 
p r e s s . 

C o o l i n g time from 
growth temp. 

R9 1125°C 20 mra.hg. approx.4hrs. 

R11 1100°C - 1 
2.10 " " 

" 4 " 

R12 1100°C 10 " " 4 " 

R-15 
-4 

10 " " 
4 " 

R14 1100°C 2.10"'^ " " 6 " . 

R23 1050^0 
-4 

10 " " 
.. ^0 " 

R27 
—4 

10 " " 
" 12 " 

R29 1075°C -4 
10 " " 

.. 30 " 

R55 . 1075''G 10"^ .. .. . .. 24 " 

R59 
-4 

10 ^ " " 
.. 50 " 



3-1.2 Growth by Vacuum Sublimation 
As indicated by Clark and Woods non-stoichiometry i n 
the s t a r t i n g charge dominates the growth mechanism of CdS 
i n sealed evacuated tubes, making control of the growth 
d i f f i c u l t . To overcome t h i s problem a vacuum growth tech­
nique has been evolved i n t h i s laboratory where the vapour 
pressure of one of the components (usually sulphur) can be 
contr o l l e d independently of the growth temperature. The 
growth tube i s pulled v e r t i c a l l y through the furnace to 
minimise r a d i a l temperature gradients. At the present time 
the vapour pressure of the sulphur over CdS has been con­
t r o l l e d over the range 10~^ mm to 100 mm and the effect on 
the growth and the properties (including e.s.r.) studied. 
Many of the resul t s of t h i s programme w i l l be discussed i n 
chapter 7. 
Table 1 gives a l i s t of the vacuum sublimed samples used 
during the course of the e.s.r. work together with some 
of the growth d e t a i l s . The samples were a l l of an i r r e g u l a r 
shq.pe w i t h a volume of about' 0.1 cm^ and were a l l trans­
parent with a bright yellow or yellowish brown coloration. 
Back r e f l e c t i o n x-ray studies demonstrate that many of the 
samples were good single c r y s t a l s . However a few were c l e a r l y 
p o l y c r y s t a l l i n e and using o p t i c a l microscopy cracks and 



voids could be observed i n the bulk of the material. X-ray 
studies showed that even i n these samples the d i f f e r e n t 
grains were aligned i n approximately the same d i r e c t i o n 
and as f a r as the e.s.r. spectra were concerned i t was 
sensible to r e f e r to directions p a r a l l e l and perpendicular 
to the crystallographic c-axis. No impurities were detected 
i n these samples by the e.s.r. technique except i n sample 
R12 i n which an e.s.r. spectrum due to cobalt was found 
(see section 6-1.5). 
5-1.3 Other samples 

A number of undoped single crystals of CdS were obtained 
from the G.P.O. research laboratories, D o l l i s H i l l , London. 
These samples were grown from an u l t r a high p u r i t y grade 
powder and thought to be purer than oxir own samples. How­
ever the e.s.r. technique showed that one sample contained 
cobalt as an imp\irity and another manganese. No analysis 
of the impurity content was available nor were de t a i l s of 
the growth technique and the subsequent handling. The two 
samples investigated, - G.P.O. 17 A 35 and G.P.O. x93 -
were transparent with a brownish-yellow coloration. An 
Eagle-Picher u l t r a high p u r i t y grade single c r y s t a l (EPx96) 
was also available. 
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5-2 Heat treatment a f t e r growth 
A number of samples were subjected to heat treatment a f t e r 
growth to ascertain the e f f e c t on the e.s.r. spectra. The 
samples treated i n t h i s way were f i r e d i n an atmosphere of 
eit h e r cadmium or sulphur vapour^ the vapour pressure of 
which was greater than the equilibrium vapour pressure of 
that component over GdS at the f i r i n g temperature. 
3-2.1 Sulphur treatment 
The specimen was placed i n a quartz tube of wall thickness 
not less than 2 mm w i t h s u f f i c i e n t 6N pure sulphur to main­
t a i n the saturated vapour pressure at the required treatment 
temperature. The tube was evacuated and sealed o f f at a 

-5 
pressure of about 10 Torr. I n every case the treatment 
temperature was maintained at 700°C f o r 20 hours. At 700°C 
the vapour pressure of sulphur i s approximately 50-40 
atmospheres. The tube was placed i n a stainless steel 
'bomb' inside the furnace, i n case the tube fractured. The 
samples were cooled from 700°C by quenching the treatment 
tube i n water. The surface layer of each sample was removed 
by a 50 sec etch i n cold concentrated hydrochloric acid. 
5-2.2 Cadmium treatment 
Here the procedure was simil a r to the above, except that 
6N cadmium metal was placed i n the evacuated tube. The 
sample at one end of the tube was heated to 600°C while the 



FIG . 5 - ' 1 Back r e f l e c t i o n x -ray photograph of a s i n g l e 

c r y s t a l of GdS v;ith the i n c i d e n t x-ray beam p a r a l l e l 

to the c - a x i s . 



other end of the tube was maintained at 200°C. In t h i s 
way the CdS was heated at 600°C i n a cadmium vapour 
pressure of approximately 10 Torr. f o r approximately 
twelve hours. The tube was quenched from 600°C in t o 
water. The surface layer of the sample was again etched 
away using concentrated hydrochloric acid. 
5-3 X-ray Analysis 
Sample o r i e n t a t i o n was carried out by the back r e f l e c t i o n 
Laue X-ray technique. This method was also useful i n 
assessing the degree of p o l y c r y s t a l l i n i t y of the samples. 
On each sample the dire c t i o n s of the crystallographic 
c-axis and one of the a-axes were i d e n t i f i e d . Many crys­
t a l s could be cleaved along the basal (0001) plane and the 
(1120) plane. When t h i s did not occur a face which was 
aligned p a r a l l e l to the (0001) plane to better than 1° 
was ground on the sample using carborundum grinding paste 
and the d i r e c t i o n of an a-axis i d e n t i f i e d , using the back 
r e f l e c t i o n technique. Fig. (5-1) shows the back r e f l e c t i o n 
photograph of a CdS c r y s t a l w i t h the incident X-ray beam 
p a r a l l e l to the c-axis. The i r r e g u l a r shape of the crystals 
prevented rectangular or cubic shaped samples being pre­
pared. 
The method of analysis of the X-ray photographs i s 
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i l l u s t r a t e d i n Pigs. (5-2) and (5-3). Pig. (5-2) shows 
the standard (0001) pro j e c t i o n of a number of the high 
order planes of CdS. (Por CdS the r a t i o of the length 
of the u n i t c e l l i n the c-direction to that i n the a-
d i r e c t i o n (c/a) i s 1.62). The directions of the a-axes 
are indicated i n Pig. (5-2). Pig. (5-3) shows the stereo-
graphic pr o j e c t i o n of the poles of the planes responsible 
f o r the spots on the back r e f l e c t i o n photograph i n Pig. 
(5-1). Comparison of Pigs. (5-2) and (5-3) shows that the 
X-ray photograph of Pig. (5-1) i s for the (0001) d i r e c t i o n 
and demonstrates c l e a r l y how the directions of the a-axes 
i n a c r y s t a l can be obtained from the X-ray photograph. 
Pig. (5-2) and Pig. (5-3) were drawn with the aid of a 
Wulf net and a Greninger chart. 
5-4 Etch p i t studies 
An estimate of the d i s l o c a t i o n density has been made on 
some of the samples by etch p i t studies. The samples were 
oriented by X-ray analysis as outlined above and a surface 
which was p a r a l l e l to the c-plane to w i t h i n 1°, was groTxnd 
on each sample using carborundum grinding paste of g r i t 
size 400. This surface was then polished using two micron 
alumina powder u n t i l i t showed no i r r e g u l a r i t i e s under x300 
magnification, except f o r scratch marks due to foreign 
p a r t i c l e s i n the polishing powder which could not be 
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FIG. 5 - 5 . Stereographic p r o j e c t i o n of the poles of the 

planes r e s p o n s i b l e f o r the spots on the x-ray 

photograph shovm i n f i g . 5 - ^ . 
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removed. I t i s w e l l known that mechanical polishing of 
t h i s type damages the periodic structure at the surface 
so that a chemical p o l i s h i s essential before etch p i t s 
can be successfully produced. A wide v a r i e t y of polishing 
solutions were t r i e d , the most successful of which were:-
(a) 39% orthophosphoric acid heated at 220°C and used 

f o r one minute. The samples were washed i n isopropyl 
alcohol to remove the products of the polishing 
s o l u t i o n . 

(b) A 1:1 s o l u t i o n of oxalic acid and potassium iodide 
c r y s t a l s i n d i s t i l l e d water heated at 100°C and used 
f o r one minute. Samples were washed i n water a f t e r 
p o l i s h i n g . / 

However neither of these solutions was completely success­
f u l and f o r c e r t a i n crystals no polishing action at a l l 
was obtained. This behavior i s not understood at the 
present time and a more thorough study of the polishing 
process i s required. 
A range of etching solutions was investigated to determine 
the most suitable. The solutions t r i e d included:- hydro­
c h l o r i c , sulphuric, acetic, chromic and phosphoric acids 
of varying concentrations and at d i f f e r e n t temperatures; 
mixtures of hydrochloric and n i t r i c acids and a solution 
of potassium bichromate i n n i t r i c acid. 
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The most successful solutions which produced well defined 
etch p i t s , a f t e r polishing, were:-
(a) Chromic acid at 80°C f o r about f i v e minutes. The 

samples had to be thoroughly washed i n water to remove 
the acid, before exposing to the a i r or a f i l m of 
cadmium chromate formed over the surface of the sample 
and destroyed the p i t s . 

(b) 89% orthophosphoric acid at 280°C f o r approximately 
one minute followed by washing i n iso-propyl alcohol. 

The performance of these solutions was c r i t i c a l l y dependent 
on the success of the polishing technique outlined above. 
Distinguishable etch p i t s were obtained on approximately 
50% of the samples investigated. Both etching solutions 
gave reproducible etch p i t s densities on each sample. The 

4 5 - 2 
densities were of the order of 10 - 10 cm on a l l samples. 
Pig. (5-4) shows photographs of the etch p i t s obtained on 
two t y p i c a l samples on the c-plane (0001). I t was found 
that conical etch p i t s only could be produced whereas the 
hexagonal p i t s which are normally found on the (OOOl) basal 
plane of the crystals ^^'^^ could not be obtained. This 
was thought to be a function of the polishing procedure. 
I t was noted by Woods^^^ that d i s s o l u t i o n proceeds much 
more quickly on the basal plane on which hexagonal p i t s 
are formed than the other faces so that the chemical polish 



? I G . 5-4-Conical et c h p i t s on the c-plane (0001) of 
undoped CdS c r y s t a l s . I l a g n i f i c a t i o n ( a) x200 (b) x300, 



may proceed too quickly on t h i s surface and not produce 
a p o l i s h i n g e f f e c t . However a f u r t h e r investigation of 
t h i s point i s required. 
The high density of etch p i t s observed indicates a high 
density of dislocations i n the samples. This suggests 
that they are quite highly strained during growth. This 
proposition i s supported by the f a c t that many of the 
c r y s t a l s cracked on being removed from the growth tube, 
and i s also supported by the e.s.r. measurements reported 
i n chapter 7. Clearly a wide v a r i e t y of undoped CdS 
samples were available f o r the e.s.r. work. The majority 
of these were single c r y s t a l material as determined from 
the X-ray studies which also served to orientate the samples. 
Some estimate of the d i s l o c a t i o n density i s available which 
suggests that the samples are somewhat strained during 
growth. 
5-5 Doped samples 
A number of small single crystals of CdS doped with the 
group 3 metal ions B; A l ; Ga; I n ; and T l ; and the group 
7 ion CI. were available. A l l of these samples were 
grown by sublimation of CdS powder i n a stream of argon 
gas and are r e f e r r e d to as 'flow' c r y s t a l s . The required 
dopant was introduced by placing i t i n metallic form i n a 
s i l i c a boat i n the furnace i n f r o n t of the CdS powder charge, 



except f o r the chlorine doping where the argon gas was 
bubbled through d i l u t e hydrochloric acid before entering 
the growth tube. The samples used i n t h i s work were 
approximately c y l i n d r i c a l i n shape, about 1 cm. long and 
1 mm diameter. Some of the rods had a hexagonal cross 
section. These samples are rather small f o r the e.s.r. 
work and work has begun to grow large doped single crystals 
of CdS using the vacuum sublimation growth technique d i s ­
cussed i n section 5-1.2. The dopant i s included i n the 
powder charge. I t i s hoped that these crystals w i l l be 
available f o r the e.s.r. work i n the near future. 
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CHAPTER 6 
DISDUSSION OF THE E.S.R. OF IMPURITY IONS DETECTED IN 

THE CdS SAMPLES. 
Although the purpose of t h i s work was t o e s t a b l i s h the 
atomic s t r u c t u r e of n a t i v e l a t t i c e defects i n CdS, a 
c e r t a i n amount of experimental work was c a r r i e d out on 
the e.s.r. of i m p u r i t y ions. I n some cases the samples 
were i n t e n t i o n a l l y doped t o a s c e r t a i n the e f f e c t s -on the 
e.s.r. l i n e s t e n t a t i v e l y assigned t o d e f e c t s . Samples 
doped w i t h group 3 metal ions (B. A l , Ga. I n . and T l . ) 
and group 7 (C I . ) ions were a v a i l a b l e f o r t h i s purpose. 
I n the undoped samples resonance l i n e s due t o i m p u r i t y 
ions could not be detected i n the m a j o r i t y of samples. 
However i n a number of samples resonance l i n e s a t t r i b u t e d 
t o chromium, manganese or co b a l t were observed at 4.2°K. 
Only one i m p u r i t y was detected i n any one sample. An 
a n a l y s i s of the i m p i i r i t y content of the undoped samples 
by mass spectrometry showed t h a t i n general the 5d t r a n s ­
i t i o n metal ions were present i n concentrations of a few 
p.p.m. by weight. Thus the e.s.r. s i g n a l s due t o these 
were below the l e v e l of d e t e c t i o n i n the m a j o r i t y of 
samples, as was observed. Why some of the samples should 
o c c a s i o n a l l y have a l a r g e r c o n c e n t r a t i o n of the above-
mentioned i m p u r i t i e s i s not understood at present. The 



a n a l y s i s of the i m p u r i t y content showed t h a t the concen­
t r a t i o n s of other paramagnetic groups, e.g. 4d, 4f et c . 
were f a r too small t o be detected w i t h our equipment. 
The d i s c u s s i o n of the e.s.r. of the 3d t r a n s i t i o n metal 
ions observed w i l l be presented i n s e c t i o n (6-1) and t h a t 
f o r the group 5 and 7 ions i n s e c t i o n ( 6 - 2 ) . 
6-1.3d t r a n s i t i o n metal ions 
6-1.1 Chromium 
Resonance due t o chromium was observed at 4.2°K i n sample 
LE26. The e.s.r. of chromium i s i n t e r p r e t e d i n terms of 

2+ 2+ chromium ions s u b s t i t u t i n g a t Cd s i t e s i n Or charge 

s t a t e s . The spectrum consisted of s i x narrow l i n e s w i t h 
a n i s o t r o p i c g-Values. When the magnetic f i e l d was r o t a t e d 
i n the (0001), the (1120) and the (1010) planes the 
p o s i t i o n s of the e.s.r. l i n e s changed w i t h the f i e l d 
o r i e n t a t i o n as shown i n Fi g s . ( 6 - 1 ) , (6-2) and (6-3) 
r e s p e c t i v e l y . 
P i g . (6-1) shows t h a t the spectrum repeats w i t h a 60° 
p e r i o d when the magnetic f i e l d i s i n the basal plane. Three 
l i n e s should have appeared, A, B and C on-Pig. ( 6 - 1 ) , each 
being a s u p e r p o s i t i o n of two components. However the l i n e 
B was not observed because the sample was u n f o r t u n a t e l y 
aligned 
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FIG.6-1, P o s i t i o n s of resonance l i n e s f o r the magnetic 
f i e l d i n the (0001) plane at 4.2"K and 9630 Mc/s. The-
angle i s measured from the [1120] d i r e c t i o n . The s o l i d 
l i n e s represent the t h e o r e t i c a l resonance f i e l d s . 
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FIG.6-2. P o s i t i o n s of resonance l i n e s f o r the magnetic 
f i e l d i n the (1120) plane at A-.2°K and 9̂ -82 Mc/s.The' 
s o l i d l i n e s , represent the t h e o r e t i c a l resonance f i e l d s 
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FIG.6-3. P o s i t i o n s of resonance l i n e s f o r the 

magnetic f i e l d , i n the (1010) plane at M-.2'K and 

9480 Mc/s. The s o l i d l i n e s represent the t h e o r e t i c a l 

resonance f i e l d s . 
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i n the c a v i t y i n such a way t h a t the R.P. magnetic f i e l d 
was perpendicular t o the z-axis of the centre responsible 
f o r t h i s l i n e , and i n t h i s o r i e n t a t i o n the t r a n s i t i o n 
p r o b a b i l i t y f o r t h e e.s.r. t r a n s i t i o n i s zero. At some 
o r i e n t a t i o n s of the magnetic f i e l d the l i n e s A and C were 
resolved i n t o c l o s e l y spaced doublets. This e f f e c t was 
due t o s l i g h t mis-alignment of the sample. 
With the magnetic f i e l d i n the (1120) plane f o u r l i n e s 
were observed, A, B, C and D. (see P i g . ( 6 - 2 ) ) . C and D 
were a s u p e r p o s i t i o n of two l i n e s which became c l o s e l y 
spaced doublets at some f i e l d o r i e n t a t i o n s . I n the (lOlO) 
plane t h r e e l i n e s were observed, each being a superpo s i t i o n 
of two components. 

The s o l i d l i n e s r e p r e s e n t i n g the t h e o r e t i c a l resonance 
f i e l d s were c a l c u l a t e d u s i n g the values f o r the spin 
H a m i l t o n i a n parameters given by Morigaki^"^^ and E s t l e et 
a l ^ ^ ^ who have p r e v i o u s l y r e p o r t e d the e.s.r. of Cr̂ "*" 
i n CdS. The agreement between the t h e o r e t i c a l and 
observed resonance f i e l d s i s very close and c l e a r l y i d e n t ­
i f i e s the spectrum as due t o Cr̂ "*". The superhyperfine 
s t r u c t u r e associated w i t h the i n t e r a c t i o n w i t h s u r r -
oiinding cadmium n u c l e i r e p o r t e d by the above authors could 
not be observed because the spectrometer s e n s i t i v i t y was 
i n s u f f i c i e n t . 
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6-1.2 Manganese 
Manganese i s expected t o s u b s t i t u t e f o r a Cd̂ "*" i o n and t o 

2+ 
be i n the Mn c o n f i g u r a t i o n . The ground s t a t e of the f r e e 
i o n i s an o r b i t a l s i n g l e t w i t h f i v e f o l d s p i n degeneracy. 
When the i o n i s placed i n a c r y s t a l f i e l d small zero f i e l d 
s p l i t t i n g of f i v e s p i n s t a t e s occurs so t h a t an e.s.r. 
spectrum i s ob.tained which co n s i s t s of f i v e c l o s e l y spaced 
resonance l i n e s . Each of these l i n e s i s s p l i t i n t o s i x 
h y p e r f i n e components by i n t e r a c t i o n w i t h the Mn-"̂"̂  nucleus 

5 / 2+ which has a nuclear s p i n of /g. Consequently Mn i s 
recognised by a c h a r a c t e r i s t i c spectrum of t h i r t y c l o s e l y 
spaced e.s.r. l i n e s . Since the ground s t a t e i s an o r b i t a l 
s i n g l e t , there i s o n l y a small i n t e r a c t i o n between the s p i n 
s t a t e s and the l a t t i c e and the s p i n - l a t t i c e r e l a x a t i o n time 
i s s u f f i c i e n t l y l o n g t o a l low the spectrum t o be observed 
at room temperature. The spectrum shown i n F i g . ( 6 - 4 ( a ) ) 
was obtained from a sample of CdS d e l i b e r a t e l y doped w i t h 
manganese. The assignment of the t r a n s i t i o n s was based on 
the i n t e n s i t y r a t i o s . Back r e f l e c t i o n X-ray studies of the 
sample showed t h a t i t was p o l y c r y s t a l l i n e which probably 
e x p l a i n s why the M̂ _,/̂  , M^^i^ , ^-y^--'/x ' ^ - ^ - - ^ a "transitions 
of the m = % and %. h y p e r f i n e components were not resolved. 
P i g . ( 6 - 4 ( b ) ) shows the spectrum t h a t was obtained f o r the 
same sample at the same o r i e n t a t i o n a t 4.2°K. I t can be 
seen t h a t the l i n e s are sharper and more c l e a r l y resolved 
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2+ FIG.6-4.e.s.r. spectrum of Mn" . i n CdS at x-band 
frequencies at (a) 500*K and (b) 4.2°K. 



at t h i s temperature. The e.s.r. of Mn̂"*" i n s i n g l e c r y s t a l s 
o f CdS has been r e p o r t e d by D o r a i n ^ ^ \ Lambe and K i k u c h i ^ ^ ^ 
and Deigen et al.^^\ A l l these workers described the 
c h a r a c t e r i s t i c Mn̂ "̂  spectrum i l l u s t r a t e d i n P i g . ( 6 - 4 ) . 
The measurements a t 4.2°K demonstrated t h a t the Mn̂"*" 
spectrum began t o show s a t u r a t i o n e f f e c t s at i n c i d e n t r . f . 
power l e v e l s of a few m i l l i w a t t s . This i s t o be expected 
since the s p i n - l a t t i c e r e l a x a t i o n time i s known t o be long 
at 4.2°K and i s i n agreement w i t h the observations of 
Deigen et a l . ^ ^ ^ The i n t e n s i t y of the Mn̂ "*" spectrum 
increased l i n e a r l y w i t h power i n c i d e n t on the c a v i t y up t o 
a power l e v e l of about 1 mwatt. Above t h i s power l e v e l 
up t o the maximum output o f the k l y s t r o n , 25 mwatts, the 
i n t e n s i t y remained constant. At the maximum power l e v e l 
the l i n e s i n the spectrum d i d not appear t o be broadened. 
These remarks w i l l be important when we come to discuss 
the resonance of the defect centres i n chapter 7. 
6-1.3 Cobalt 
A resonance a t t r i b u t e d t o c o b a l t was detected at 4.'̂ K i n 
samples G.P.O.x93 and R12. Cobalt i s expected t o s u b s t i t u t e 
at the cadmium s i t e and t o be i n a Cô "*" charge s t a t e . One 
l i n e due t o Cô "*" i m p u r i t y was observed. The p o s i t i o n of 
the l i n e as a f u n c t i o n of the magnetic f i e l d o r i e n t a t i o n 
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FIG.6-5. P o s i t i o n s of the resonance l i n e of Co""*" f o r 
the magnetic, f i e l d i n .Lthe (1010) plane at 4-.2'K at 
x-band frequencies.The s o l i d l i n e r e p r e s e n t s the 
t h e o r e t i c a l resonance f i e l d s u s i n g the parameters 

;• -given by Hoff-igaki^^^, • ! ' ' • ; : 



i n the (1010) plane i s shown i n F i g . ( 6 - 5 ) . The s o l i d 
l i n e r e p r e s e n t i n g the t h e o r e t i c a l resonance f i e l d s was 
c a l c u l a t e d u s i n g the s p i n Hamiltonian quoted by Morigaki^^^ 
w i t h the values of the parameter measured by him, namely 

ĝ ^ = g^ = 2.275 ± 0.001 

where g^ r e f e r s t o the g-tensor p a r a l l e l t o the c-axis. 
There i s some disagreement between the c a l c u l a t e d f i e l d s 
and those observed. This was l a t e r found t o be due t o 
sample misalignment. The measured g-value was:-

S// = Sj_ = 2.38 + 0.02 

This corresponds t o a m i s o r i e n t a t i o n of the sample away 
from the c-axis of approximately 3°. Re-examination of 
the sample alignment by back r e f l e c t i o n X-ray studies 
confirmed t h i s r e s u l t . 
The h y p e r f i n e s t r u c t u r e which might be expected t o r e s u l t 
from the i n t e r a c t i o n w i t h the Co nucleus which has 
nuclear s p i n ^ was not observed, because the i n t e n s i t y of 
the observed l i n e was too s m a l l . However the l i n e shape 
c l o s e l y resembles t h a t obtained by Morigaki^^^ as can be 
seen from F i g . (6-6(a) and ( b ) ) . 
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FIG.6-6. Line shape f o r the Co l i n e p a r a l l e l t o the 
. c-axis at x-band frequencies. 

(a) observed i n t h i s work. 
(b) observed by Morigaki*^^\ 
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C l e a r l y the e.s.r. data i s i n agreement w i t h assignment 
of the centre as Cô "*". 
6-2 Group 3 and Group 7 i m p u r i t i e s 
Group 3 and group 7 i m p u r i t i e s introduce donor l e v e l s 
i n t o CdS. The e.s.r. of C l . ^ ' ^ \ B r . , I ^ ^ ^ and Ga.^^^ 
have p r e v i o u s l y been r e p o r t e d . During the course of the 
work t o be described here the e.s.r. due t o 01., Ga., I n . , T l . , 
A l . and B. has been observed. I d e n t i f i c a t i o n of the centre 
r e s p o n s i b l e f o r the e.s.r. s i g n a l was made from knowledge 
of the donor i m p u r i t y added d u r i n g growth. 
6-2.1 CdS;CI 

Chlorine w i l l s u b s t i t u t e f o r a sulphur i o n and i t i s w e l l 
known t h a t i t provided a shallow donor l e v e l approximately 
0.03eV below the conduction band. The e.s.r. was only 
observable at 4.2°K. At room temperature and down t o 
77°K the samples were very l o s s y as the la r g e degradation 
of the resonance c a v i t y Q i n d i c a t e d . As the samples were 
cooled from 77°K t o 4.2°K the c a v i t y Q suddenly sharpened 
up a t some int e r m e d i a t e temperature, i n d i c a t i n g an increase 
i n sample r e s i s t i v i t y as the f r e e e l e c t r o n s froze out i n t o 
the donor l e v e l s . 
At 4.2°K a s i n g l e e.s.r. l i n e of h a l f w i d t h 15 gauss was 
observed w i t h an almost i s o t r o p i c g-value. No hypepfine 
s t r u c t u r e was observed. 



The measured g-values were:-

g = 1.80 + 0.02 
= 1.79 1 0.02 

These values are i n close agreement w i t h those found by 
(7) 

Lambe and K i k u c h i ^ 

ĝ ^ = 1.792 + 0.002 

gj_ = 1.785 + 0.002 

As i n d i c a t e d i n s e c t i o n (3-4.2) the e.s.r. of shallow 
donors i m p u r i t i e s i n CdS can be understood using the 
model of M i i l l e r and Schneider^"'"^^ I n t h i s model the 
trapped e l e c t r o n moves i n a d i f f u s e o r b i t of la r g e radius 
and i t s p r o p e r t i e s are e s s e n t i a l l y determined by the 
i n t r i n s i c band p r o p e r t i e s of CdS. Slagsvold and 
S c h w e r d t f e g e r ^ ^ have used equations (3-15) and (3-16) 
of s e c t i o n (3-4.2) t o c a l c u l a t e the g - s h i f t f o r the e.s.r, 
of i o d i n e i n CdS assuming the band p i c t u r e of chapter 1. 
The p r e d i c t e d s i g n of the s h i f t was not observed i n 
p r a c t i c e . They concluded t h a t more i n f o r m a t i o n concern­
i n g the d e t a i l e d nature of the states forming the valence 
and conduction bands was r e q u i r e d (see s e c t i o n 1-2) but 
t h a t the model f o r the donor centre was c o r r e c t . Con-
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sequently at t h i s stage i t i s i n a p p r o p r i a t e t o attempt 
t o c a l c u l a t e the g - s h i f t f o r the e.s.r. f o r any of the 
shallow donor centres. 
6-2.2 CdS;Ga 
The g a l l i i i m i o n s u b s t i t u t e s at a cadmium s i t e and also 
behaves as a shallow donor c e n t r e . As w i t h the CdS:01 
the samples were l o s s y from 300°K down t o 77°K and t r a p ­
p i n g of the donor e l e c t r o n s was observed as the samples 
were cooled from 77°K t o 4.2°K. The e.s.r. s i g n a l s were 
observed at 4.2°K. 
No e.s.r. a b s o r p t i o n due t o Ga. could be detected i n 
samples 'as grown', but a b s o r p t i o n was detected a f t e r the 
samples had been heated a t 700°C f o r twenty hours i n 30. 
atmospheres of sulphur vapour. This treatment was expected 
t o create a l a r g e c o n c e n t r a t i o n of cadmium vacancies and 
cause d i f f u s i o n of Ga. i n t o these s i t e s . 
A s i n g l e e.s.r. l i n e was observed w i t h a h a l f w i d t h of 10 
gauss w i t h an almost i s o t r o p i c g-value p r a c t i c a l l y equal 
t o t h a t of the CdS:CI. Again no hy p e r f i n e s t r u c t u r e could 
be detected. 
The measured g-values were:-

g/y = 1.80 + 0.02 
g, = 1'79 + 0.02 



1 4 7 . 

The values are i n close agreement w i t h those given by 

DieDetnan^^ . 

^„ = l-V^e + 0.002 
g^ = 1.782 + 0.002 

These r e s u l t s support the model of M i i l l e r and Schneider^'''^^ 

which p r e d i c t s a d e l o c a l i s e d e l e c t r o n o r b i t a l which does 

not depend on the donor s i t e , since the Ga. i o n i s at a 

d i f f e r e n t s i t e from t h a t of the CI. i o n but s t i l l gives 

e s s e n t i a l l y the same g-value. 

6-2.3 CdS:In 
Indidm i s the element d i r e c t l y below g a l l i u m i n group 3b 

2+ 
of the p e r i o d i c t a b l e and also s u b s t i t u t e s at the Cdf: 
s i t e . I t i s expected t o be a shallow donor centre but 
th e r e i s no repo r t e d value f o r the donor depth. The 
r e s i s t i v i t y changes on c o o l i n g t o 4.2°K were s i m i l a r t o 
those f o r CdSrCl and CdS:Ga. and i n d i c a t e t h a t I n . be­
haves as a shallow donor c e n t r e , as also do the g-values 
of the observed e.s.r. s i g n a l s . 
As w i t h the CdS:Ga e.s.r. a b s o r p t i o n was only observed i n 
samples which had been heat t r e a t e d i n sulphur vapour. 
However i t was observed t h a t the signal s could be seen 
only immediately a f t e r heat treatment. They q u i c k l y 
decayed i f the sample was l e f t at room temperature f o r a 
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few days and could not be made to re-appear even i f the 

sample was heated a g a i n i n sulphur vapour. T h i s behaviour 

was not understood. The e . s . r . c o n s i s t e d of a narrowly-

spaced doublet which c o a l e s c e d i n t o a s i n g l e l i n e when the 

magnetic f i e l d was p e r p e n d i c u l a r to the c - a x i s . Unfort­

u n a t e l y the g-values were not measured a c c u r a t e l y the f i r s t 

time the sample was i n v e s t i g a t e d and as i n d i c a t e d above the 

e . s . r . CQuld not be reproduced. However the g-values were 

approximately i d e n t i c a l to those of CdS:Ga. and CdS:Cl. 

T h i s supports the model, t h a t the I n . forms a shallow donor 

c e n t r e i n CdS. The doubling of the l i n e can be explained 

i f one p o s t u l a t e s t h a t the centre forms a deeper l e v e l 

below the conduction band than CdS:Ga. and CdS:CI. so that 

the bound e l e c t r o n i s more l o c a l i s e d a t the donor s i t e . 

Then the I n . may be s u b s t i t u t e d at two i n e q u i v a l e n t s i t e s 

which a r e e q u i v a l e n t i n the c-plane. T h i s may be due to 

the two i n e q u i v a l e n t Cd̂ "*" s i t e s i n the w u r t z i t e CdS l a t t i c e . 

However the donor depth f o r I n . i s s t i l l of the same order 

as f o r Ga. and C I . and so the boiind e l e c t r o n i s s t i l l 

probably s u f f i c i e n t l y d e l o c a l i s e d f o r the two i n e q u i v a l e n t 

s i t e s not to a f f e c t the wavefunction of the bound e l e c t r o n . 

There i s i n s u f f i c i e n t information at the present time to 

confirm t h i s proposed e x p l a n a t i o n . I t w i l l be necessary to 

i n v e s t i g a t e the angular v a r i a t i o n of the spectrum i n 

d i f f e r e n t c r y s t a l l o g r a p h i c planes to determine the nature 



of the indium s i t e . T h i s was not c a r r i e d out because the 

samples were too s m a l l to allow a c c u r a t e o r i e n t a t i o n 

s t u d i e s to be made. There i s no p r e v i o u s l y reported data 

on the resonance spectrum of I n . i n CdS. 

6-2.4 CdS;Tl 

Thalliidm i s the f i n a l element i n the group 3b s e r i e s . 

There i s no reported data on the nature of t h i s s u b s t i t ­

u t i o n a l impurity i n CdS, but from the above information 

on CdSiGa. and CdS:In. i t i s expected to be a donor. 

The change i n r e s i s t i v i t y on c o o l i n g to 4.2°K agrees with 

t h i s assignment. The change from low to high r e s i s t i v i t y 

o ccurred j u s t above 77°K which suggests t h a t t h a l l i u m 

p rovides a deeper l e v e l than the donor i m p u r i t i e s des­

c r i b e d above. 

The e . s . r . was detected ^ t 77°K and 4.2*̂ K i n the samples 

as ..grown, and was enhanced by heat treatment i n sulphur 

vapour. However as w i t h the CdS:In. f o l l o w i n g heat t r e a t ­

ment the l i n e s q u i c k l y decayed and could not be reproduced 

by subsequent heat treatment. As with the CdS:In. the 

e . s . r . spectrum c o n s i s t e d of a doublet which coalesced 

i n t o a s i n g l e t f o r the magnetic f i e l d i n the c-plane. The 

s p l i t t i n g of the doublet was much g r e a t e r than f o r CdS:In. 

and the g-values were s i g n i f i c a n t l y s h i f t e d towards the 

s p i n only v a l u e of 2. 

The measured g-values were:-
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g_̂  = 1.96 + 0.02 

f= 1.89 + 0.02 

\= 1.88 + 0.02 

The spectrum was h i g h l y s a t u r a t e d at 4.2°K and was only 

observable with povjer l e v e l s of approximately. a few micro 

w a t t s i n c i d e n t on the c a v i t y . I t was e a s i l y d e tectable 

at 77°K a t maximum i n c i d e n t power (25 m i l l i w a t t s ) . No 

h y p e r f i n e s t r u c t u r e was observed. 

I f the s p l i t t i n g of the l i n e i s considered to be due to 

the e x i s t e n c e of two i n e q u i v a l e n t s i t e s because of the 

r e d u c t i o n of the r a d i u s of the e l e c t r o n o r b i t a l then 

the s p l i t t i n g could be g r e a t e r with T l than with I n . 

because T l . i s the deeper donor. T h i s view i s a l s o supp­

orted by the tendency of ( a ) the g-value to s h i f t towards 

the f r e e e l e c t r o n v a l u e and (b) the s p i n - l a t t i c e r e l a x ­

a t i o n time to i n c r e a s e . These f e a t u r e s a r e i n d i c a t i v e of 

the bound e l e c t r o n being i n a s t a t e which i s tending to 

an s - s t a t e , which would be expected s i n c e the outermost 

unoccupied atomic o r b i t a l of the impurity i s i n each case 

an ns o r b i t a l , where n = 3, 4 and 5 f o r Ga. I n . and T l . 

r e s p e c t i v e l y . 

6-2,5 C.dS:Al and CdS:B 

These two ions belong to group 3a of the p e r i o d i c t a b l e . 

C r y s t a l s doped w i t h e i t h e r A l . or B. were too small f o r 



e . s . r . s i g n a l s to be observed i n i n d i v i d u a l rods. To 

i n c r e a s e the s i g n a l l e v e l f i v e or s i x rods were a l i g n e d 

i n the same d i r e c t i o n i n s i d e a g l a s s tube, which was 

p l a c e d i n the microwave c a v i t y . C l e a r l y the observations 

obtained must be t r e a t e d with some caution, but they 

support the c o n c l u s i o n s of the previous s e c t i o n . 

The i n c r e a s e of r e s i s t i v i t y on c o o l i n g i n d i c a t e s that A l . 

and B. both a c t as donor c e n t r e s i n CdS with l e v e l s below 

the conduction band at approximately the same depth as 

those of t h a l l i u m . 

The e . s . r . s i g n a l s were observed i n samples as grown and 

were enhanced a f t e r heat treatment i n sulphur vapour. 

A f t e r the sulphur treatment the e . s . r . spectrum decayed 

w i t h time and could not be reproduced. The s i g n a l s were 

h i g h l y s a t u r a t e d a t 4.2°K and were detected without s a t ­

u r a t i o n a t 77°K. The s p e c t r a c o n s i s t e d of two l i n e s with 

a s p l i t t i n g comparable to t h a t of GdS:Tl with a g-value 

between t h a t of shallow donor s i g n a l s (g = 1.8) and the 

f r e e e l e c t r o n v a l u e (g = 2.0). The l i n e s were r a t h e r 

broader than CdS:Tl but t h i s was probably due to s l i g h t 

m i s o r i e n t a t i o n between the rods composing the sample. 

C l e a r l y these observations a r e v e r y s i m i l a r to those f o r 

CdS:Tl and lend support to the model o u t l i n e d e a r l i e r . 
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6-2.6 Conclusions 

Before any d e f i n i t e c o n c l u s i o n s can be drawn from the above 

o b s e r v a t i o n s many more measurements are r e q u i r e d on l a r g e r 

s i n g l e c r y s t a l s . I n p a r t i c u l a r the angular v a r i a t i o n s of 

the s p e c t r a i n d i f f e r e n t c r y s t a l l o g r a p h i c planes must be 

i n v e s t i g a t e d . I n a d d i t i o n measurements of the donor depths 

of the impurity c e n t r e s would be u s e f u l . However some use­

f u l c o n c l u s i o n s can be drawn from the present data. Prom 

the r e s i s t i v i t y o b servations i t appears that a l l the s i x 

i m p u r i t i e s a c t as shallow donor c e n t r e s . There seems to be 

an i n c r e a s e i n the depth of the donor l e v e l below the con­

d u c t i o n band f o l l o w i n g the sequence:-

C I . — Ga. < I n . < T l . A l . ^ B. 

The C I . and Ga. i m p u r i t i e s are Icnown to give r i s e to donor 

l e v e l s 0.03eV below the conduction band. The deeper l e v e l s 

of T l . , A l . and B. are estimated to be'-'O.leV below the 

conduction band, s i n c e w i t h these donors the f r e e e l e c t r o n s 

f r e e z e out at temperatures'-'2 or 3 times higher than f o r 

CdS:CI. and CdS:Ga. The r a d i u s of the trapped e l e c t r o n 

o r b i t w i l l be correspondingly reduced and the e l e c t r o n i s 

more l o c a l i s e d a t the impurity s i t e . The r a d i u s of the 
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e l e c t r o n trapped at C I . s i t e i n CdS i s ~^50 S. t h e r e f o r e the 

r a d i u s f o r these deeper donors i s expected to be '-'10 2 

i . e . approximately four l a t t i c e spacings. The e . s . r . data 

suggests t h a t the impurity occupies two i n e q u i v a l e n t sub­

s t i t u t i o n a l s i t e s because of the s p l i t t i n g of the e . s . r . 

l i n e i n t o a doublet f o r the deeper donor c e n t r e s . I t i s 

i m p o s s i b l e a t t h i s stage to i n d i c a t e the nature of these 

s i t e s and t h i s must await f u r t h e r measurements. 

The outermost unoccupied atomic o r b i t a l of the impurity ion 

i s i n each case an s o r b i t a l . Thus the more l o c a l i s e d 

e l e c t r o n o r b i t a l of the deeper donors w i l l tend to have an 

s - c h a r a c t e r . As pointed out above, t h i s assumption i s 

supported by the f a c t t h a t the s p i n - l a t t i c e r e l a x a t i o n time 

i s much longer f o r the deeper donors and the g-value i s 

s h i f t e d towards the f r e e e l e c t r o n value of 2. Recently 

T i t l e ^ '̂  has reported a s i m i l a r e f f e c t f o r S. Se. and Te. 

donor i m p u r i t i e s i n GaP. The donor i o n i s a t i o n energies f o r 

t h e s e i m p u r i t i e s i n GaP. are-'O.leV, whereas the hydrogenic 

model f o r shallow donors ( a s used by Miiller and Schneider^"''^^ 

f o r CdS.) p r e d i c t s a v a l u e of 0.046eV. T h i s i s a s i m i l a r 

s i t u a t i o n to that f o r CdS, d i s c u s s e d above. Kohn and 

Luttinger^"*"^^ have o u t l i n e d a treatment f o r c o r r e c t i n g the 

c a l c u l a t i o n of the g - s h i f t f o r deep donor s t a t e s . Formally, 
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t h i s i s done by d i v i d i n g the wavefunction of the trapped 

e l e c t r o n i n t o two p a r t s , an outer region where the e f f e c t i v e 

mass formalism used f o r the shallow s t a t e s i s s t i l l v a l i d 

and an i n n e r r e g i o n where, s i n c e the d i e l e c t r i c constant 

i s no longer a good concept, a new wavefunction i s r e q u i r e d . 

A r e c a l c u l a t i o n of the g-tensor with the c o r r e c t e d wave-
(12) 

f u n c t i o n s has not been c a r r i e d out. However T i t l e 

i n d i c a t e d t h a t s i n c e the e l e c t r o n s of a deep donor impurity 

are i n a s m a l l e r o r b i t they are l e s s i n f l u e n c e d by the 

l a t t i c e , a g-value between t h a t c a l c u l a t e d from the uncorr­

ected e f f e c t i v e mass theory and the 2.0023 expected f o r a 

t i g h t l y bound s - l i k e s t a t e would be p r e d i c t e d . T h i s i s 

observed i n CdS f o r the deep donor s t a t e s a s s o c i a t e d with 

A l . , B. and T l . However t h i s does not e x p l a i n the doubling 

of the e . s . r . l i n e s f o r CdS:Tl, CdS:Al and CdS:B which r e ­

mains unexplained a t p r e s e n t . 
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CHAPTER 7 

MEASUREMENTS AKD DISCUSSION OF E.S.R. LINES OBSERVED 

WHICH ARE NOT ATTRIBUTED TO ISOLATED IMPURITY IONS 

The e . s . r . r e s u l t s obtained during the course of t h i s work 

which were a t t r i b u t e d to i s o l a t e d impurity ions have been 

d i s c u s s e d i n chapter 6. I n a d d i t i o n to these s p e c t r a , 

f u r t h e r e . s . r . l i n e s of unknown o r i g i n were observed at 

4.2°K. The work t h a t has been c a r r i e d out suggests that 

some of these l i n e s are due to defect centres i n the 

l a t t i c e but t h e i r o r i g i n i s s t i l l \mcertain. The r e s u l t s 

d i s c u s s e d i n t h i s chapter were obtained from the la r g e 

undoped s i n g l e c r y s t a l s of CdS t h a t were a v a i l a b l e (see 

chapter 5 ) , u n l e s s otherwise s t a t e d . The l i n e s which occurred 

i n the e . s . r . s p e c t r a of these samples and which were iden­

t i f i e d as due to impurity ions have already been di s c u s s e d 

i n chapter 6 w i l l not be in c l u d e d . 

7-1 Form of the s p e c t r a 

As can be seen from chapter 5 a wide v a r i e t y of samples of 

Tindoped CdS were a v a i l a b l e . However the e . s . r . s p e c t r a 

obtained from these samples can be c l a s s i f i e d i n t o four 

t y p e s . The general shape of these s p e c t r a i s shown i n 

P i g s . (7-1) to ( 7 - 4 ) . ( I n these f i g u r e s the derivsative of 

the imaginary part of the s u s c e p t i b i l i t y a g a i n s t f i e l d 
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2.5 K̂ . 
1 I 

FIG.7-1. e . s . r . spectrum 1 obtained i n undoped CdS at 

4.2*K at x-band f r e q u e n c i e s . Magnetic" f i e l d 

along the c - a x i s . . 



3.0 Ka. 2.& k 

'FIG.7-2. e . s . r . spectrum 2 obtained i n undoped CdS at 

^.a'K a t x-band f r e q u e n c i e s . Magnetic f i e l d 

along the c - a x i s . 
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a.s kg. 
4.0 Ka. 

PIG.7-3. e . s . r . spectrum 3 obtained i n undoped CdS at 

4.2°K a t x-band f r e q u e n c i e s . Magnetic f i e l d 

along the c - a x i s . 



5.5 W 

FIGi7-4. e . s . r . spectrum ^ obtained i n undoped CdS at 

4*2''K at x-band f r e q u e n c i e s . Magnetic f i e l d 

• . along the c - a x i s . ' 
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3^ H i s shown). The r e l a t i v e i n t e n s i t i e s and d e t a i l e d 

s t r u c t u r e of the s p e c t r a v a r i e d from sample to sample, but 

t h i s w i l l be d i s c u s s e d l a t e r . I t can be seen that a l t o g e t h e r 

four a b s o r p t i o n l i n e s , l e t t e r e d A, B, C and D f o r i d e n t i ­

f i c a t i o n , have been observed. Of these l i n e s , only l i n e D 

can be r e l a t e d to reported data, the other l i n e s have not 

p r e v i o u s l y been repo r t e d . 

The l i n e A has been observed i n a l l the samples i n v e s t i g a t e d . 

I t i s c h a r a c t e r i s e d by an extremely l a r g e l i n e width. The 

l i n e width (which f o r t h i s work i s defined as the width 

between the peaks of the d e r i v a t i v e curve, i . e . the width a t 

maximum s l o p e ) was t y p i c a l l y 130 gauss. I t was d i f f i c u l t to 

measure g-values a c c u r a t e l y because of the width and the 

asymmetry. Als o i t appears to have s l i g h t l y d i f f e r e n t g-

v a l u e s i n d i f f e r e n t samples. The va l u e s obtained f o r R14 

and G.P.O. x 93 emphasise t h i s p o int. 

g = 2.12 + 0.02 
R14 < 

g = 2.10 + 0.02 

f g, = 2.08 + 0.02 
G.P.O. X 93 { '' 

= 2.07 + 0.02 

g^ i s the g-value//to c - a x i s . g ^ ^ i s x t o c - a x i s . 
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The l i n e appears to be a x i a l l y symmetric about the c - a x i s . 

The d i f f e r e n c e i n g-values w i l l be explained l a t e r , when 

a model f o r the cent r e r e s p o n s i b l e f o r the l i n e i s presented 

The l i n e D was observed i n most samples and has an almost 

i s o t r o p i c g-value which i s v e r y c l o s e to t h a t obtained f o r 

the s h a l l o w donor c e n t r e s d i s c u s s e d i n chapter 6. 

g = 1.80 + 0.02 

g_L = l - ^ g ± 0.02 

The l i n e B was always observed as a small shoulder on the 

broad l i n e A and was seen i n about h a l f of the samples 

i n v e s t i g a t e d . I t ' s i n t e n s i t y was dependent on whether the 

sample was cooled i n the dark or \mder i l l i i m i n a t i o n . I t 

has an almost i s o t r o p i c g-value:-

g = 2.00 + 0.02 

g = 1.98 + 0.02 

The l i n e C was a v e r y broad and asymmetric absorption peak. 

Because of the asymmetry i t was not p o s s i b l e to measure a 

g-value, but the l i n e always appeared at the same v a l u e s of 

magnetic f i e l d and was i s o t r o p i c w i t h f i e l d o r i e n t a t i o n . 

I t was observed only i n a few of the samples. 



7-2 C o r r e l a t i o n of the s p e c t r a w i t h other p r o p e r t i e s 

Having d i s c u s s e d the general nature of the e . s . r . s p e c t r a 

i t i s u s e f u l to compare the occurrence of the s p e c t r a with 

other p r o p e r t i e s of samples. 

There was no c o r r e l a t i o n between the growth conditions and 

the e . s . r . s p e c t r a . T h i s was not unexpected s i n c e none of 

the other p r o p e r t i e s e.g. r e s i s t i v i t y , luminescence, could 

be c o n s i s t e n t l y r e l a t e d to the growth c o n d i t i o n s , 

( a ) R e s i s t i v i t y 

A . b e t t e r c o r r e l a t i o n was obtained with the sample r e s i s ­

t i v i t y . The r e s i s t i v i t i e s were not measured a c c u r a t e l y , but 

were estimated from the damping caused by the sample of the 

c a v i t y Q. Therefore the v a l u e s quoted a r e only c o r r e c t to 

w i t h i n an order of magnitude. Table 1 gives the comparison 

between the r e s i s t i v i t i e s and the type of spectrum observed. 

C l e a r l y t h e r e i s a good deal of c o r r e l a t i o n , e s p e c i a l l y 

between the r e s i s t i v i t y and occurrence of l i n e D. 

The r e s i s t i v i t y w i l l be c l o s e l y r e l a t e d to the d e n s i t y of 

the s h a l l o w donor l e v e l s . The e . s . r . l i n e D, which from i t s 

g-value, has been i n t e r p r e t e d above as due to shallow donor 

c e n t r e s . Thus, i f t h i s i n t e r p r e t a t i o n i s c o r r e c t , there 

should be a c o r r e l a t i o n between the i n t e n s i t y of l i n e D and 

the r e s i s t i v i t y . 



TABLE 1 

Sample R e s i s t i v i t y e . s . r . spectrum 

at 300°K at ^.2°K under band u n i l l u m -at 300°K 
gap i l i u m . \nated. 

• LR26 6 
>10n.cm. >10^.cm. 2 

R13 ^ 

R1^ - '1 1 

R27 2 \ Line. D 

G.P.O.X93 2 2 1 not Jetecteci 

LR25 ~10^ix.cm. 2 

. R11 .^lO^.cra. -^10 ja-cffi. 5 . 5 

R9 L' 3 3 

R29' ~.10iT..CIIl. ^10 -a.cm. • 4-

G.P.0.17A55 4 • 

R12 ^10n..cm. 2 2 

R23 . . 2 
1 

R^5 - 2 2 L i n t . D 
not JefcecteA 

R39 2 
' I ' V 

E a g l e Piclaer 1 
2 

/ 
2 

U.H.P. S^^ade •-: . • 
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In the group of samples LR26, R13 and R14 i n table 1 which 
have a high r e s i s t i v i t y at 300°K and 4.2°K, the e.s.r. l i n e 
D i s eith e r not observed or i s of low i n t e n s i t y . The other 
two samples i n t h i s group, R27 and G.P.O. x 95, do not show 
the l i n e D with the sample i n the dark, but under band gap 
i l l u m i n a t i o n a large l i n e i s observed. These observations 
indications indicate that a large concentration of ionised 
shallow donor centres are present at 4.2°K i n these two 
samples and that the high r e s i s t i v i t y i s caused by compen­
sation of the donors by acceptors. The group of samples 
R12, R35 and R59 have a very low r e s i s t i v i t y at 300°K 
which becomes high at 4.2°K. I t i s observed that the re s i s ­
t i v i t y changes sharply at a temperature below 77°K, as the 
samples are cooled to 4.2°K. This suggests that there i s 
a high density of donor levels which are ionised at 300°K 
but which are f i l l e d at 4.2°K. (The same behavioior was 
observed i n the samples doped w i t h impurities CI. and Ga. 
which produce shallow donors. See section 6-2). I n the 
undoped samples R12, R35 and R39 the l i n e D i s of large 
i n t e n s i t y . The other two samples i n ^ t h i s group, R27 and 
the Eagle-Picher U.H.P: grade c r y s t a l , show the l i n e D 
under band gap i l l u m i n a t i o n only. Thisj^indicates the 
presence of another set of shallow donors with levels 
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which are at a s l i g h t l y greater energy separation from 
the conduction band. These donors are not paramagnetic. 
I n support of t h i s model i t was found that the change 
from low to high r e s i s t i v i t y on cooling occurred at a 
temperatiire above 77°K, whereas i n the other samples t h i s 
occurred below 77°K. 
Clearly the e.s.r. l i n e D i s associated w i t h shallow donor 
centres. The observations from the e.s.r. measurements 
c l a r i f y the conclusions that can be drawn from the r e s i s ­
t i v i t y data and should prove very useful i n i n t e r p r e t i n g 
H a l l e f f e c t measurements to be made at 4.2°K. 
The other groups of samples i n table 1 cannot be dealt with 
as ea s i l y as those above, and i t i s apparent that recom­
binat i o n centres and other defects are important i n deter­
mining the electron population i n the conduction band. 
Por the same reason i t i s not possible to obtain any 
c o r r e l a t i o n between the occurrence of the other three 
e.s.r. l i n e s and the r e s i s t i v i t y measurements. 
(b) Edge emission 
The edge luminescence spectra of the samples used i n the 
e.s.r. work (and others) have been measured at 4.2°K i n 
t h i s department. I am very g r a t e f u l to Dr. L. Clark f o r 
allowing me to discuss his resul t s before publication. 
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\6X-

The luminescence was excited by a 500 watt high pressure 
mercury lamp and recorded using an 'optica' CF4NI grating 

e 

spectrophotometer. An outline of the nature of the edge 
emission has been discussed i n section (2-3.4). I t con­
s i s t s of 2 series X and Y of , phorton assisted bands. The 
series X i s thought to be due to the recombination of an 
electron bound at a shallow donor and a hole bound to an 
acceptor which i s about 0.17eV above the valfince band. 
The y series is^ due to recombination of a conduction 
electron and a hole bound at the same acceptor levels. 
Often at 4.2°K there are a number of emission lines s i t ­
uated at higher energies which are a t t r i b u t e d to exciton 
recombination. Pig. (7-5) shows the position of the 
emission peaks at 4.2°K f o r a t y p i c a l sample R12. I n a l l 
the samples the dominant exciton lines were those denoted 
as I-j^f I2 or '̂ ^̂  free exciton. 
Small peaks corresponding to other bound excitons were 
observed i n some samples but these did not occur i n a con­
si s t e n t way and therefore w i l l be ignored. I t i s generally 
agreed that the l i n e I-^^ i s associated with recombination of 
an exciton bound to a neutral acceptor and that I2, which 
may be a superposition of several components, i s due to 
excitons bound to neutral donors. ̂•'"̂  
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f o l l o w i n g from t h i s i d e n t i f i c a t i o n of the exciton l i n e s , 
the i n t e n s i t y and occurrence of I2 can be correlated with 
the i n t e n s i t y of l i n e D i n the e.s.r. spectra. This pro­
vides f u r t h e r evidence that l i n e D i s due to shallow 
donor centres. I t i s not possible however to correlate 
the e.s.r. l i n e s A and B with any features of the lumin­
escence. I t i s concluded therefore that the centres 
responsible f o r these resonance li n e s are not involved i n 
the luminescent t r a n s i t i o n s . This view i s supported by 
the r e s u l t s obtained from the G.P.O. x 93 sample and the 
Eagle-Picher U.H.P. c r y s t a l , which did not show the normal 
green edge emission at 4»2°K. Instead a broad structure-

0 

less emission band centred at about 7000 A was obtained. 
I n both these.samples, however, the e.s.r. lines A and B 
were observed and were of comparable i n t e n s i t y with those 
observed i n samples with good green emission. Also, i n 
samples which emitted strongly i n the green, the lines A 
and B were unaffected by the U.V. i r r a d i a t i o n necessary 
to excite the edge emission. 
The c r y s t a l s i n which the resonance l i n e C was found 
(R9, R l l , R29 and G.P.O. 17A35) showed unusual r e s i s t i v i t y 
and luminescence features. They a l l had a low r e s i s t i v i t y 
~10^ ohm.cm., at 4.2°K which i s not yet understood. The 
luminescence spectra of these crystals showed only one 



1 6 ^ . 

dominant exciton, which was at the position of I2, and 
the i n t e n s i t y of the edge emission was much lower than 
that f o r R12. R12 was chosen as t y p i c a l of 'normal' 
c r y s t a l s and spectral emission d i s t r i b u t i o n i s shown i n 
Fig. (7-5). 
The i n t e n s i t y of the other excitons was very low. I n 
samples R9 and R l l the edge emission consisted of a 
single series which was s i g n i f i c a n t l y s h i f t e d from the 
po s i t i o n of the X and I series of Fig. (7-5). I n these 
two samples the l i n e D was not observed i n the e.s.r. 
spectrum despite the f a c t that there was an exciton at 

(2) 
the p o s i t i o n of I g . However recently Clark and Woods 
have discussed the p o s s i b i l i t y that t h i s exciton i s I ^ 
which l i e s very close to I 2 . I ^ i s an exciton bound to 
an acceptor. This might explain the non-appearance of 
l i n e D and why a d i f f e r e n t edge emission series i s 
observed. These rather unusual features of t^e e.s.r. 
luminescence and r e s i s t i v i t y are not understood at the 
present time and w i l l be discussed again i n section 
(7-6) when the nature of the centre responsible f o r the 
resonance l i n e G i s discussed. I t can be seen that a com­
parison of the e.s.r. data with the r e s i s t i v i t y and edge 
luminescence of a c r y s t a l enables some conclusions to be 
drawn concerning the nature of the centres responsible 
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f o r the levels i n the forbidden gap of CdS. At the out­
set of the work reported i n t h i s thesis i t was hoped that 
the e.s.r. technique would provide information which 
would allow the nature of these centres to be determined 
unambiguously. I t has become apparent during the course 
of t h i s i n v e s t i g a t i o n that t h i s i s not possible from the 
e.s.r, measurements alone and that these measurements are 
most useful when considered i n r e l a t i o n to the other data 
obtained on the same samples. Consequently i t i s planned 
to measure the I.R. luminescence and thermally stimulated 
current spectra of the samples used i n t h i s work which i t 
i s hoped w i l l complement the e.s.r. data. 
Having discussed the general form of the e.s.r. spectra 
and r e l a t e d c e r t a i n features to some of the other prop­
e r t i e s of the samples we are now i n a posit i o n to discuss 
the i n d i v i d u a l l i n e s , and t r y to determine the nature of 
the centres responsible f o r them. 
7-3 Resonance l i n e D 
The r e s u l t s discussed above demonstrate that the resonance 
l i n e D i s due to electrons trapped at shallow donor centres. 
The e.s.r. of t h i s type of centre has been treated i n some 
d e t a i l i n section (6-2) i n the discussion of the resonance 
of group 3 and group 7 donor impurities i n CdS. The 
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nature of the centre responsible f o r the resonance l i n e 
cannot p o s i t i v e l y be i d e n t i f i e d from the pos i t i o n of the 
l i n e since, as shown i n section (6-2), a l l donor centres 
w i t h levels less than about 0.05eV below the conduction 
band lead to a l i n e w i t h the same g-value. Consequently 
to see i f the same centre i s responsible f o r the resonance 
or whether there are d i f f e r e n t ones i n d i f f e r e n t samples, 
i t would be necessary to compare the e.s.r. spectrum with 
estimates of the trap depth of the shallowest trap, 
obtained, f o r example, from thermally stimulated current 
measurements. 
The shape of the resonance l i n e varied i n d i f f e r e n t samples. 
This might indicate that d i f f e r e n t centres were present i n 
d i f f e r e n t samples. However no d e f i n i t e conclusions can be 
drawn since the influence on the l i n e shape of such factors 
as neighbouring donor and acceptor s i t e s , l a t t i c e defects, 
d i s l o c a t i o n s , grain boundaries and e l a s t i c s t r a i n i s not 
known. I t i s u n l i k e l y that the donor centres are due to 
impurity ions because d i f f e r e n t samples, grown from the same 
s t a r t i n g material showed varia t i o n s i n the i n t e n s i t y of the 
donor resonance. However the growth technique may have 
introduced d i f f e r e n t degress of donor-acceptor compensation 
i n the various samples thus causing a v a r i a t i o n i n the 



16 7. 

' e f f e c t i v e ' concentration of donor impurities. This 
seems u n l i k e l y because i n most of the high r e s i s t i v i t y 
samples there was no evidence of acceptor compensation 
of the donor l e v e l s . Consequently the shallow donor 
levels are probably due to i n t r i n s i c l a t t i c e defects. 
The simplest defect that can be considered i s the Sulphur 
vacancy. (Recently Woodbury et a l ^ ^ ^ have indicated that 
i n t e r s t i t i a l cadmium and sulphur atoms are probably 
n e u t r a l and do not form trapping levels i n the forbidden 
gap of CdS.) The io n i c c o n t r i b u t i o n to the bonding i n 
CdS was quoted i n section (2-1) as 75%. This value i s 
consistent with an e f f e c t i v e charge of +e on the cadmium 
ion and -e on the sulphur ion. Consequently a sulphur 
vacancy would be expected t o have an e f f e c t i v e charge of 
+e and i t can be treated i n the same way as a group 7 
s u b s t i t u t i o n a l ion, at a sulphur s i t e . Thus the theory 
of Muller and S c h n e i d e r ^ f o r an electron trapped at such 
a s i t e i s appropriate as was discussed i n sections (3-4.2) 
and (6-2). I n t h i s model the trapped electron i s assumed 
to move i n a delocalised o r b i t a l of large radius. The 
theory predicts that an i s o t r o p i c e.s.r. l i n e g=«cl.80 
w i l l r e s u l t . This i s consistent with the observed data. 
Morigaki^^^ has reported the observation i n CdS at 1.5°K 
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of a resonance l i n e w i t h ĝ ^ = 1.783 + 0.003 and gj_ = 
1.764 ± 0.003 which he a t t r i b u t e d to sulphur vacancies. 
However he discussed a model where the trapped electron 
was l o c a l i s e d at the vacancy s i t e . He used t h i s model 
to estimate the value of the g - s h i f t f o r the centre 
using the method presented by Kasai and Otomo^^^, which 
i s outlined below. 
The sulphur vacancy i s surrounded by four cadmium ions, 
Cd^, Cdg, G&Q and Cd^. I f Sp^ hybridisation of the 
valj^ence electron o r b i t a l s of the cadmium ions i s assumed 
then l e t 0^ (Cd^) represent the o r b i t a l of Cd^ directed 
towards the vacancy and (Cd^), 0^ ^^^a^ ^3 ̂ *̂*̂Â  
the three o r b i t a l s directed away from the vacancy. The 
ground state wavefunction of a single localised electron 
at the vacancy can be approximated t o : -

(7-1) 

Equation (3-13) shows that the deviation of the g-tensor 
from the free electron value, caused by spin-orbit coupling 
of the formXL.S i s to a f i r s t approximation given by:-

= - ^ > ^ y '̂ °̂ ^̂ ^̂ ><'̂ '̂ '̂'̂ > (7-2) 
L— n 
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I n t h i s approximate molecular o r b i t a l model, the most 
s i g n i f i c a n t excited states are those i n which the electron 
i s t ransferred i n t o one of the twelve o r b i t a l s of the 
surrounding cadmium ions not directed towards the vacancy. 
The sp^ hybridised o r b i t a l s can be w r i t t e n i n the form^*^^ 

(p^[^^.) = >x Hs (̂'̂«) h (̂ M (7-3) 

Where and are the 5s and 5p atomic o r b i t a l s of the 
cadmium ion. 
Clearly from the symmetry of the vacancy centre the g-
tensor i s i s o t r o p i c and the g - s h i f t i s given by . 
Combining equations (7-1), (7-2) and (7-3) the s h i f t of 
the g-tensor i s given by:-

^ 9 = - (7-4) 

Where A t i s the energy separation of the ground state 
and the excited states. 
The small anisotropy of the observed g-stensor i s assumed 
to be due to small d i s t o r t i o n along the c-axis of the 
wurtate l a t t i c e . The value of X i s estimated to be 0.067eV 
from the atomic levels of the free cadmium ion^ . The 
experimental value of can be explained by assuming A £ 
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i s Oi29eV, This should be of the order of the ioni s a t i o n 
energy of the donor l e v e l s . However t h i s i s hardly a 
shallow l e v e l and so t h i s model f o r the sulphur vacancy 
i s inconsistent with the experimental evidence f o r the 
centre responsible f o r l i n e D. Thus i f the l i n e D i s 
associated with sulphur vacancies, the trapped electron 
i s expected to be i n a delocalised o r b i t a l of large radius 
and not loc a l i s e d at the vacancy s i t e . 
Clearly at the present time the centre responsible f o r 
the l i n e D cannot be established from the e.s.r. data. 
As shown i n section (3-4.2) i f the density of shallow 
donors i s greater than about 10 /cm the electron o r b i t a l s 
overlap and the electrons are not localised at one donor 
s i t e and so no hyperfine structure due to interactions with 
the donor nucleus can be observed. Thus i f the e.s.r. of 
donors of lower concentration than t h i s can be observed 
and hyperfine structure can be observed, t h i s would suggest 
that the donors are impurity atoms. I t may also be possible 
to observe superhyperfine structure due to the in t e r a c t i o n 
between the trapped electron'and the surrounding cadmium 
ions t o establish the form of the electron o r b i t . This may 
enable one to determine unambiguously the nat\ire of the 
donor s i t e . 
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The experimentally observed effe c t s of the heat treatment 
on the magnitude of resonance signal favoxir the s\4'phur 
vacancy model since the i n t e n s i t y of l i n e D decreases 
when the sample i s heated at 700°C i n 30-40 atmospheres 
pressure of sulphur vapour and increases when heated at 
600°C i n 10"^ Torr pressure of cadmium vapour. This i s to 
be compared wi t h the r e s u l t s of section (6-2), where i t 
was noted that heat treatment i n a sulphur atmosphere 
increased the i n t e n s i t y of the e.s.r, l i n e s due to group 
3 imp u r i t i e s and did not a f f e c t those due to group 7 imp­
u r i t i e s . 
I n conclusion, i t can be seen that measurements of the 
occurrence and i n t e n s i t y of the e.s.r. l i n e D provides 
information about the concentration of shallow donor 
centres i n a sample and can determine whether there i s 
appreciable compensation by acceptors or not. This data 
may prove useful i n the i n t e r p r e t a t i o n of r e s i s t i v i t y and 
H a l l e f f e c t measurements. However at the present time no 
unambiguous i d e n t i f i c a t i o n of the centre can be presented. 
7-4.1 Resonance l i n e A 
This l i n e , which has been observed i n every sample inves­
t i g a t e d , has not previously been reported i n the l i t e r a t u r e . 
I n every specimen i t was observed as a broad asymmetric 
l i n e as can be seen from Pigs. (7-1) to (7-4). 
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F I G . 7-&. e.s.r. spectrum obtai n e d i n GdS sample c o n t a i n i n g 

a ;signi|Cicant concentraticDn of- Mn̂ "̂  i m p u r i t y at 4.2'K and 

9.35 Kmfc/SiThe magnetic'field-was o r i e n t e d along the c-axis 
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The i n t e n s i t y did not vary greatly from sample to sample. 
The maximum v a r i a t i o n was about an order of magnitude 
except f o r a sample which was heavily doped with s i l i c o n , 
where the i n t e n s i t y was an order of magnitude greater than 
the largest i n t e n s i t y observed i n the undoped samples. 
The v a r i a t i o n of the i n t e n s i t y does not seem to be related 
to any of the other properties of the samples which have 
been studied i n t h i s laboratory nor to the expected t o t a l 
impurity content. For example i n the Eagle-Picher U.H..P. 
grade c r y s t a l the i n t e n s i t y of the l i n e was of the same 
order as f o r many of the samples grown i n our own lab­
o r a t o r i e s , the impurity content of which i s expected to 
be about 10-100 times greater. 
I n most samples the l i n e showed no structure, however 
some was observed i n a few samples. This was rather vague 
and did not occior i n any consistent manner. A further 
d i f f i c u l t y i n i n t e r p r e t i n g the structure arises because 

2+ 
the l i n e A overlaps the region i n which the Mn spectrum 
occurs (see section 6-1.2). I n a sample grown at the 
A.E.I. Ltd. central research laboratories, Rugby (kindly 
supplied by Dr. P. D. Fochs), the spectrum shown i n Fig. 
(7-6) was obtained. The sample contained a s u f f i c i e n t 
concentration of manganese impurity f o r the characteristic 



1.5K 

( b ) 

FIG. 7^7. e.s.r. spectrunr"for L.R.26 at ̂ .2*K. Magnetic 

f i e l d along the c - a x i s . 
(a) Using the--'Varian' spectrometer. 
(,b) Using our ovrn spectrometer. 
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spectrum of the Mn̂"*" i o n to be r e s o l v e d above the back­

ground of the broad l i n e A. 

C l e a r l y the s t r u c t u r e t h a t was observed i n some of the 

undoped samples may have been a s s o c i a t e d with Mn̂"*" 

imp u r i t y . 

An attempt to c l a r i f y t h i s point was made by c a r r y i n g 

out e . s . r . measurements on samples LR25 and LR26 us i n g a 

'Varian' x-band spectrometer belonging to A.E. I . L t d . , 

C e n t r a l Research L a b o r a t o r i e s , Rugby, and which was f a r 

more s e n s i t i v e than our own spectrometer. Using operating 

c o n d i t i o n s comparable with those employed i n o\ir own 

spectrometer to observe the l i n e A the spectrum.shown i n 

P i g . ( 7 - 7 ( a ) ) was obtained from the V a r i a n spectrometer 

w i t h sample LJ^26 a t 4.2°K. The spectriom obtained from 

t h i s sample u s i n g our own equipment i s shovm i n P i g . ( 7 - 7 ( b ) ) 

C l e a r l y the two s p e c t r a a r e e s s e n t i a l l y the same. When the 

same f i e l d range was i n v e s t i g a t e d u s i n g the V a r i a n spectro-. 

meter, but wit h a g r e a t l y reduced microwave power and f i e l d 

modulation,and u t i l i s i n g of the maximum s e n s i t i v i t y of the 

instrument, the c h a r a c t e r i s t i c Mn.̂ "'' spectrum was c l e a r l y 

i d e n t i f i e d . The measurements reported i n s e c t i o n (6-2.1) 

showed t h a t the Mn.̂ "*" spectrum could s t i l l be re s o l v e d 

u s i n g the operating c o n d i t i o n s employed to obtain the 
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s p e c t r a shown i n F i g . (7-7) i f there was s u f f i c i e n t con­

c e n t r a t i o n of manganese i m p u r i t y . Thus the measurements 

made w i t h the V a r i a n spectrometer demonstrate c l e a r l y 

t h a t i n the magnetic f i e l d r e g i o n 2,5 to 3.5 Kgauss there 

i s a broad e . s . r . l i n e whose o r i g i n i s not obvious and i n 

a d d i t i o n t h e r e i s the c h a r a c t e r i s t i c s t r u c t u r e d spectrum 

due to Mn.̂ "*". For a s u f f i c i e n t c o n c e n t r a t i o n of manganese 

imp u r i t y the Mn.̂ "*" spectrum can be r e s o l v e d above the 

background of l i n e A. We are now i n a p o s i t i o n to d i s c u s s 

some of the e x p e r i m e n t a l l y observed f e a t u r e s of the broad 

l i n e A, and w i l l ignore the e f f e c t s of the Mn.̂ "*" spectrum 

s i n c e t h i s was not observed i n the undoped samples employed 

i n t h i s work. 

Because the i n t e n s i t y of l i n e A cannot be r e l a t e d to the 

expected t o t a l impurity content i n the undoped samples, 

i t i s reasonable to assume t h a t the centre r e s p o n s i b l e 

f o r t h i s l i n e i s composed p a r t l y or wholly of i n t r i n s i c 

d e f e c t s . The work t h a t has been c a r r i e d out on samples 

s u b j e c t e d to heat treatment i n cadmium or sulphur vapours 

support t h i s model. (For experimental d e t a i l s of the 

heat treatment procedure see chapter 5 ) . The e f f e c t of 

the heat treatment i n sulphur vapour was to i n c r e a s e the 

i n t e n s i t y of l i n e A. No q u a n t i t a t i v e measurements have 

been c a r r i e d out at t h i s s t age. 
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I n a d d i t i o n , a d i s t i n c t narrowing of the l i n e was observed. 

I n c e r t a i n cases a narrow l i n e , which we s h a l l designate 

A' was observed on top of the broad l i n e A and t h i s 

suggests t h a t the narrowing of l i n e A i s due to the appear­

ance of t h i s new component A*. P i g . ( 7 - 8 ( a ) and ( b ) ) shows 

the spectrum of l i n e A f o r R39 before and a f t e r the heat 

treatment. The new component A' can e a s i l y be r e s o l v e d . 

The c e n t r e r e s p o n s i b l e f o r t h i s l i n e i s apparently unstable 

s i n c e the i n t e n s i t y was n o t i c e a b l y reduced a f t e r the sample 

had been l e f t at room temperature i n the dark f o r s e v e r a l 

days. The cadmium vapour treatment was complementary to 

t h a t of the sulphur and produced a r e d u c t i o n i n the i n t e n ­

s i t y of l i n e A. No new e . s . r . components were observed. 

Once agai n no q u a n t i t a t i v e measurements have been made. 

These o b s e r v a t i o n s suggest t h a t the centre ( s ) r e s p o n s i b l e 

f o r l i n e A are a s s o c i a t e d w i t h cadmium v a c a n c i e s . As 

i n d i c a t e d i n s e c t i o n (2-5.1) cadmium va c a n c i e s are expected 

to bahave as hole t r a p s . The f a c t that the g - s h i f t f o r the 

l i n e i s p o s i t i v e suggests t h a t trapped holes are involved, 

s i n c e the s p i n - o r b i t coupling constant ( X ) i s negative 

f o r h o l e s . I t a l s o appears t h a t what has been described 

as l i n e A i s i n f a c t composed of at l e a s t two components 

A and A'. More c a r e f u l measurements a f t e r heat treatment 

i n v a r y i n g sulphur vapour p r e s s u r e s may r e v e a l more 



=.1.0* 

FIG. 7-8. e.s.r. spectrum f o r sample R39 at ̂ .2*'K. 

/Magnetic f i e l d along the c-axis.' 

(a) Sample' as grown. . - • 
( b ) " Immediately, a f t e r heat treatment at 700'C i n 30 

atmos-pheres of sulphur vapour. 
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components. However the presence of at l e a s t two com­

ponents would e x p l a i n the v a r i a t i o n i n l i n e shape and width 

i n d i f f e r e n t samples and a l s o the v a r i a t i o n of the apparent 

g-value of the l i n e noted i n s e c t i o n ( 7 - 1 ) . 

The e f f e c t of i l l u m i n a t i n g the samples with v i s i b l e I.R. 

and U.V. i r r a d i a t i o n was s t u d i e d . I r r a d i a t i o n w ith l i g h t 

of energy g r e a t e r than the band gap did not n o t i c e a b l y 

a f f e c t the l i n e , even when the sample was emitting green 

edge emission. Obviously the c e n t r e s r e s p o n s i b l e f o r l i n e 

A are not a s s o c i a t e d with those r e s p o n s i b l e f o r the edge 

emission as was a l s o noted i n s e c t i o n ( 7 - 2 ) . However 

i r r a d i a t i o n w i t h l i g h t i n the wavelength range 0.6 - 0,9 

microns brought about a r e d u c t i o n i n the i n t e n s i t y of l i n e 

A, The I.R, luminescence work reported i n s e c t i o n (2-3.4) 

i n d i c a t e d that there i s a l e v e l about 0.7eV above the 

v a l e n c e band which i s composed i n part of cadmium v a c a j i c i e s . 
(q) 

R e c e n t l y Cowell and Woods^^ have suggested that the I.R, 

luminescence c e n t r e s are i d e n t i c a l with photoconductivity 

s e n s i t i s i n g c e n t r e s . I f the e . s . r . l i n e A i s assumed to be 

due to these same c e n t r e s then the e f f e c t s of i r r a d i a t i o n 

on l i n e A can be understood. I f these c e n t r e s are acceptor­

l i k e , which i s to be expected from t h e i r p o s i t i o n i n the 

forbidden gap, then they w i l l be f i l l e d with e l e c t r o n s i n 

the dark because they w i l l a c t as compensating centres f o r 
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the donor l e v e l s . Consequently the band gap l i g h t which 

produces f r e e h o l e - e l e c t r o n p a i r s would be expected to 

change the population of the c e n t r e s r e s p o n s i b l e f o r l i n e 

A, s i n c e they would t r a p the f r e e h o l e s . The f a c t that 

i n t e n s i t y of l i n e A does not change suggests that the 

band gap l i g h t i s absorbed c l o s e to the s u r f a c e and t h e r e ­

f o r e so few of the c e n t r e s are a f f e c t e d t h a t t h e i r e f f e c t 

cannot be observed. However the i r r a d i a t i o n with red 

l i g h t w i l l change the population of the c e n t r e s , s i n c e i t 

i s not absorbed at the s u r f a c e , by e x c i t i n g e l e c t r o n s i n t o 

the conduction band. I f these e l e c t r o n s are not retrapped 

at the c e n t r e s but are trapped elsewhere.then the i n t e n s i t y 

of l i n e A w i l l be reduced, as was observed i n a number of 

samples. 

The most d i r e c t evidence to support t h i s compensated 

ac c e p t o r model f o r the c e n t r e ( s ) r e s p o n s i b l e f o r l i n e A 

was obtained from samples R23 and G.P.O. x 93. As d i s c u s s e d 

i n s e c t i o n (7-2) these c r y s t a l s have a high r e s i s t i v i t y due 

to compensation s i n c e the donor l i n e D i s only observed 

when the sample i s i l l u m i n a t e d . V/hen these samples were 

i l l u m i n a t e d w i t h red l i g h t i n the range 0.6 to 0.9 microns, 

the donor l i n e D appeared and the i n t e n s i t y of l i n e A was 

reduced. There was a l i n e a r r e l a t i o n s h i p between the 
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i n c r e a s e i n the a r e a under l i n e D and the decrease f o r 

l i n e A f o r v a r y i n g i n t e n s i t i e s of i l l u m i n a t i o n . The 

i l l u m i n a t i o n was provided by a tungsten lamp with an 

i n t e n s i t y of 1000 foot candles at the sample which was 

passed through chance g l a s s f i l t e r s 0R2 and ONI and a 

copper su l p h a t e c e l l to separate the r e q u i r e d band of. 

i l l u m i n a t i o n . The p o s i t i o n of the acceptor centre was 

estimated to be about l,7eV below the conduction band, 

i n agreement w i t h I,R, luminescence data. T h i s estimate 

was obtained u s i n g a narrow pass band i n t e r f e r e n c e f i l t e r 
0 

c e n t r e d a t 7700 A i n c o n j u n c t i o n with the same tungsten 

lamp. T h i s i l l u m i n a t i o n produced almost the same change 

i n the i n t e n s i t y of l i n e A as the broad band i l l u m i n a t i o n . 

Consequently t h i s wavelength must be c l o s e to the peak 

a b s o r p t i o n wavelength f o r the e l e c t r o n t r a n s f e r process. 

Once the donor l i n e D had been produced i t decayed very 

s l o w l y , t a k i n g s e v e r a l hours to decay to h a l f i n t e n s i t y , 

w h i l e the sample was maintained at 4.2°K i n the dark. 

T h i s decay probably r e p r e s e n t s slow thermal r e l e a s e of 

e l e c t r o n s to the conduction band. However i r r a d i a t i o n 

w i th I.R, i l l u m i n a t i o n of g r e a t e r than 1 micron q u i c k l y 

reduced the i n t e n s i t y of l i n e D and r e s t o r e d t h a t . o f l i n e 

A to i t s o r i g i n a l v a l u e . T h i s process can be compared with 



the I.R. quenching of photocurrent i n CdS. The e f f e c t of 

I.R. i l l u m i n a t i o n i s to c r e a t e f r e e holes i n the valence 

band by t r a n s f e r r i n g e l e c t r o n s to the paramagnetic centres 

which are~'0.7eV above the va l e n c e band. The f r e e holes 

recombine w i t h the donor e l e c t r o n s very r a p i d l y . Thus 

the i n t e n s i t y of the resonance l i n e A i s r e s t o r e d to i t s 

o r i g i n a l v a l u e and there i s a r a p i d decay i n the i n t e n s i t y 

of the donor resonance. These observations of changes i n 

the e . s . r . spectrum when the samples are i r r a d i a t e d w ith 

red and then I.R. i l l u m i n a t i o n suggest that i n these two 

samples R23 and G.P.O. x93 th e r e are two dominant c e n t r e s , 

which give r i s e to a s e t of deep acceptor l e v e l s t h a t com­

pensate a s e t of shallow donor l e v e l s . 

There i s c l e a r evidence of e l e c t r o n t r a n s f e r between these 

two s e t s of l e v e l s . The p o s i t i o n and behaviour of the 

accep t o r l e v e l s suggests t h a t they are i d e n t i c a l with the 

I.R. luminescence and photoconductivity s e n s i t i s i n g centres 

i n CdS, but no measurements have been c a r r i e d out on the 

I.R. luminescence and photoconductivity of these samples. 

NOTE - I n specimens R9, R l l , R29 and G.P.O. 17A35 which 

show the resonance l i n e C, the i l l u m i n a t i o n with red l i g h t 

l e d to changes i n the i n t e n s i t y of l i n e A which corresponded 

to changes i n l i n e C. T h i s i s b e l i e v e d to be a d i f f e r e n t 

process from t h a t d i s c u s s e d above and w i l l be t r e a t e d 
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i n s e c t i o n (7-6) with the model f o r l i n e C. 

We are now i n a p o s i t i o n to d i s c u s s i n a more q u a n t i t a t i v e 

manner the nature of the centre r e s p o n s i b l e f o r the e . s . r . 

l i n e A, t a k i n g i n t o account t h a t i t probably contains 

s e v e r a l components which give r i s e to compensated acceptor 

l e v e l s i n the forbidden gap. The observations on heat 

t r e a t e d samples suggerSt t h a t the centres are composed 

p a r t l y or wholly of cadmium v a c a n c i e s . Two models w i l l 

be d i s c u s s e d : -

( a ) An a s s o c i a t i o n of a cadmium vacancy and a donor 

imp u r i t y and higher a s s o c i a t i o n s of t h i s type. 

(b) A system of i s o l a t e d , p a i r s , t r i a d s and higher 

c l u s t e r s of cadmium v a c a n c i e s , with the p o s s i b i l i t y 

of the i n c l u s i o n of sulphur v a c a n c i e s , i . e . a model 

c o n s i s t i n g of i n t r i n s i c l a t t i c e d e f e c t s . 

The measurements made so f a r on GdS i n t h i s l a b o r a t o r y 

favour the second model, but the measurements are i n s u f f ­

i c i e n t to a l l o w a d e f i n i t e d e c i s i o n to be made. Fu r t h e r 

measurements are planned to t r y to provide information 

which w i l l allow the model f o r the centre to be determined 

unambiguously. T h i s may show that i n f a c t the centre i s 

a complex w i t h a composition somewhere between the two 

extreme models (a) and (b) given above. 
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(a) Cadmium vacancy - donor impurity a s s o c i a t e model 

The reasons f o r c o n s i d e r i n g t h i s model are based on the 

f a c t t h a t a s s o c i a t i o n s of o p p o s i t e l y charged centres are 

expected. Since no d e f i n i t e evidence has been found to 

suggest t h a t c e n t r e s c o n t a i n i n g equal numbers of sulphur 

and cadmium v a c a n c i e s are important i n CdS, i t i s reason­

able to consi d e r an a s s o c i a t i o n between cadmium vac a n c i e s 

and p o s i t i v e l y charged donor i m p u r i t i e s . T h i s view i s 

supported to some extent by the work of Woodbury^"''^^ on 

the d i f f u s i o n of Cd i n CdS where he concluded that the 

c o n c e n t r a t i o n of cadmiiim v a c a n c i e s i n CdS was determined 

by the donor impurity c o n c e n t r a t i o n . Also an e . s . r . 

spectrum of t h i s type of vacancy - donor centre has been 

observed i n ZnS^^\ ZnSê -'-''-̂  and ZnTe^-'-^^. I n each case 

the g-value was g r e a t e r than the f r e e e l e c t r o n value, i n 

agreement w i t h the observations of l i n e A, and v a r i e d 

s l i g h t l y w i t h d i f f e r e n t dopings. The f a c t that the g-

s h i f t i s p o s i t i v e suggests t h a t a trapped hole i s involved, 

and i s trapped a t the cadmium vacancy. The symmetry of 

the s i t e as i n d i c a t e d by the e . s . r . measurements "̂ ^̂  

i s i n agreement with t h a t expected. The model f o r the 

complex, which i s d e s c r i b e d as the A-centre, i n cubic 

ZnS i s shown i n P i g . ( 7 - 9 ( a ) and ( b ) ) f o r group 3 and group 



FIG.7-9^ Model of the A-centre i n ZnS. The two types of 
centre are indicated,v;here the .zinc i o n vacancy i s i n 
a s s o c i a t i o n w i t h (a) a group 7 i m p u r i t y and (b) a group 
3 donor. The orthorhombic axes g^ and are shown. g2 
i s along t h e [ o i l ] d i r e c t i o n . . . 
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7 donor i m p u r i t i e s r e s p e c t i v e l y . 

Consider f i r s t the A-centre of P i g . ( 7 - 9 ( a ) ) . Because 

of the e f f e c t i v e p o s i t i v e charge of the donor centre there 

i s an e l e c t r o s t a t i c r e p u l s i o n of a trapped hole away from 

i t . At 4.2°K the hole can be p i c t u r e d as being l o c a l i s e d 

i n one of the three sulphur bonds d i r e c t e d towards the 

vacancy and the r e s u l t i n g symmetry w i l l be orthorhombic 

as i s observed i n ZnS^^^. At higher temperatures (77°K) 

the h o l e i s able to 'hop' among the three equivalent 

siilphur bonds and the symmetry w i l l become a x i a l about the 

[ i l l ] a x i s . T h i s i s observed to occur^^^. I n the hexa­

gonal w u r t z i t e l a t t i c e two types of A-centre are p o s s i b l e 

depending on the o r i e n t a t i o n of the z i n c i on vacancy and 

the i m p u r i t y r e l a t i v e to the c r y s t a l l o g r a p h i c c - a x i s . 

The e . s . r . l i n e s due to the two types of A-centre i n 

hexagonal ZnS have been observed at 77°K^^\ The g^ a x i s 

of the g-tensor i s r o t a t e d away from the [ i l l ] a x i s by a 

s m a l l amount because of the e l e c t r o s t a t i c r e p u l s i o n of 

the i o n i s e d donor impurity. 

The model of the A-centre i n the cubic l a t t i c e i n which 

a group 3 impurity i s i n v o l v e d i s shown i n P i g . ( 7 - 9 ( b ) ) . 

A hole trapped at t h i s c e n t r e w i l l be r e p e l l e d to the 

sulphur i o n most d i s t a n t from the impurity because of 

the e f f e c t i v e charge of the i o n i s e d group 3 impurity. 
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No 'hopping' between sulphur bonds i s expected and the 

symmetry of the resonance l i n e w i l l then be orthorhombic. 

For the hexagonal m o d i f i c a t i o n there are three types of 

c e n t r e , w i t h a corresponding i n c r e a s e i n the complexity 

of the spectrum. However t h i s spectrum has not yet been 

reported i n a hexagonal 2-6 m a t e r i a l . 

With t h i s knowledge of the p o s i t i o n of the trapped hole 

l e t us consid e r a wavefunction f o r the hole from which the 

g-tensor can be c a l c u l a t e d . K a s a i and Otomo^^^ have d i s ­

cussed the g - s h i f t f o r the centre shown i n F i g . (7-'9(a)) 

i n terms of a l i n e a r combination of atomic o r b i t a l s of 

the heighbouring sulphur i o n s . They included the e f f e c t 

of hole 'hopping' between the sulphur o r b i t a l s . This 

c a l c u l a t i o n i s very s i m i l a r to the one di s c u s s e d i n the 

treatment of the g - s h i f t . f o r the sulphur vacancy i n 

s e c t i o n (7-3) and many of the expressions can be taken 

over d i r e c t l y . S i n c e the hole i s r e p e l l e d from the donor 

im p u r i t y , the groiind s t a t e wavefunction ( ^ j , ) f o r the hole 

can be approximated t o : -

where once again we assume t h a t (^^^etc. r e p r e s e n t s the 
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o r b i t a l of sulphur i o n e t c . d i r e c t e d towards the 

vacancy and i s an sp^ h y b r i d i s e d o r b i t a l of the form:-

We note t h a t t h i s c e n t r e i n cubic ZnS has a x i a l symmetry 

at 77°K. The symmetry a x i s i s the p a r a l l e l to the l i n e 

j o i n i n g the group 7 impurity and the vacancy and i s 

denoted as the Z-axis i n F i g . ( 7 - 9 ( a ) ) , Following the 

treatment of s e c t i o n (7-3), the g - s h i f t can.be c a l c u l a t e d 

from equation (7-3), u s i n g the wavefunctions defined by 

equation (7-5) and equation (7-6), g i v i n g : -

, ^ > (7-7) 

L e t us now consider whether t h i s type of centre can be 

r e s p o n s i b l e f o r the e x p e r i m e n t a l l y observed e , s . r , data 

f o r l i n e A. I t seems impossible to e x p l a i n the broad 

component of l i n e A by t h i s model s i n c e i n ZnS the A 

c e n t r e l i n e s were a l l narrow (-^10 gauss h a l f width) 

and w i t h the v a r i e t y of i m p u r i t i e s studied, i . e . C I ; Ga; 

Br; I and A l ; the peaks of the l i n e s l a y w i t h i n a magnetic 

f i e l d range^30 gauss at x-band f r e q u e n c i e s . There i s no 

obvious reason why t h i s s i t u a t i o n should be r a d i c a l l y 
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d i f f e r e n t i n CdS. I f one co n s i d e r s an a s s o c i a t i o n of 

s e v e r a l v a c a n c i e s and impurity c e n t r e s then i t may be 

p o s s i b l e to e x p l a i n " t h e broad l i n e . However the f a c t that 

the i n t e n s i t y of the l i n e i s not r e l a t e d to the impiirity 

content of the samples does not support t h i s model. How­

ever a proper a n a l y s i s of the i n d i v i d u a l impurity content 

of the samples i s n e c e s s a r y before any d e f i n i t e conclusions 

can be reached. The observations made on s i n g l e c r y s t a l s 

of CdS doped with A l . , B., Ga., I n . and T l . do not support 

the model cadmium vacancy - impixrity donor complex. (The 

e . s . r . of the i s o l a t e d donor i m p u r i t i e s has already been 

d i s c u s s e d i n s e c t i o n ( 6 - 2 ) ) . Unfortunately these samples 

were too sma l l to make any q u a n t i t i v e observations and so 

no d e f i n i t e c o n c l u s i o n s were reached. However i t was 

observed t h a t i n these samples the shape of l i n e A was 

not a p p r e c i a b l y d i f f e r e n t from that of the l a r g e undoped 

s i n g l e c r y s t a l s and t h a t the i n t e n s i t y , t a k i n g i n t o 

account the r e l a t i v e volume of the doped and undoped 

samples, was not s i g n i f i c a n t l y l a r g e r . I n a d d i t i o n , the 

f a c t t h a t the centre r e s p o n s i b l e f o r l i n e A i s a compen­

sated a c c e p t o r l e v e l cannot be understood. The maximum 

e f f e c t i v e charge of the cadmium vacancy^-2e i f a complete 

i o n i c model f o r CdS i s assumed. Thus the e f f e c t i v e charge 
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of the associated complex cannot be greater/-e and so- i t 
can only t r a p one hole from the valence band. The n e u t r a l 
centre t h e r e f o r e i s paramagnetic and e l e c t r o n compensation 
by donor l e v e l s renders i t diamagnetic. I n ZnS the e.s.r. 
associated w i t h the A-centre was only observed a f t e r 
i l l u m i n a t i o n w i t h l i g h t of photon energy greater than the 
band gap^^\ This i s c o n t r a r y t o the observations f o r 
l i n e A. 

I t i s worth c o n s i d e r i n g whether the narrow component of 
l i n e A, A', which was observed i n samples which had 
r e c e i v e d heat treatment i n a sulphur atmosphere, may be 
due t o t h i s type c e n t r e . As i n d i c a t e d i n F i g . (7-8(b)) the 
l i n e A' has a g-value of 2.04 + 0.02 w i t h the magnetic 
f i e l d along the c - a x i s . I t was found impossible t o f o l l o w 
the angular v a r i a t i o n of t h i s l i n e round t o the perpend­
i c u l a r p o s i t i o n because of the complication presented by 
the broad component A. However t o w i t h i n an accuracy of 
about 3% the l i n e A' appears t o be i s o t r o p i c . The c a l c u l ­
ated g - s h i f t s from equation (7-7) are = 0.05, Ag^= 0.03. 
The value of X evaluated from the atomic energy l e v e l s f o r 
f r e e sulphur was 0.025eV^ . ( X has a negative sign because 
t h i s i s a trapped hole c e n t r e ) . The value o f A E was 
estimated from the h e i g h t of the acceptor l e v e l above the 
valence band, which has been shown to be approximately 
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0.7eV. The c o n c e n t r a t i o n of the i n d i v i d u a l donor i m p u r i t i e s 
w i l l presumably be comparable w i t h the d e n s i t y of the 
associated p a i r s . Hence an e.s.r. l i n e would be expected 
which comprises a s u p e r - p o s i t i o n of the l i n e s due t o a l l 
the d i f f e r e n t complexes, wnich contain the group 5 and 
group 7 donor i m p u r i t i e s which are present i n the samples, 
and which i s i s o t r o p i c w i t h a g-value of about 2.04. How­
ever t h e r e was no c o r r e l a t i o n between the i n t e n s i t y of the 
resonance w i t h the expected i m p u r i t y content of the samples, 
moreover i n the doped samples there was no no t i c e a b l e 
increase i n the i n t e n s i t y of t h i s l i n e even though many 
of the samples were heated i n sulphur vapour t o make the 
e.s.r. spectrum of the i s o l a t e d i m p u r i t y observable, (see 
s e c t i o n 6-2). Once again, t h e r e f o r e , i t i s u n l i k e l y t h a t 
the e.s.r. l i n e A' i s due t o a centre which contains donor 
i m p i i r i t y i o n s , but more q u a n t i t i a t i v e measurements on large 
doped s i n g l e c r y s t a l s are necessary before any d e f i n i t e 
conclusions can be drawn. 

The present evidence suggests t h a t the ce n t r e ( s ) respon­
s i b l e f o r the e.s.r. l i n e A and the components i n t h i s 
r e g i o n do not c o n t a i n donor i m p u r i t y ions, or i f they do 
the i m p u r i t y ions do not make a s i g n i f i c a n t c o n t r i b u t i o n 
t o e.s.r p r o p e r t i e s of the centre. 
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(b) C l u s t e r s of Cadmium Yacancies 
Since the p o s s i b i l i t y t h a t i m p u r i t i e s are important 
components of the centres responsible f o r l i n e A has 
been e l i m i n a t e d and i t i s known t h a t cadmi\im vacancies 
are i m p o r t a n t , i t remains to consider the e.s.r. s i g n a l s 
expected from a c l u s t e r of an a s s o c i a t i o n of cadmium 
vacancies. There i s a c e r t a i n amount of experimental 
evidence t o suggest t h a t cadmium vacancy c l u s t e r s e x i s t 
i n CdS. For example, Boer and Kennedŷ ''"•̂ ^ i n t e r p r e t e d 
t h e i r work on t h e r m a l l y s t i m u l a t e d currents and photo­
c o n d u c t i v i t y i n samples of CdS heat t r e a t e d i n u l t r a high 
vacuum i n terms of d i s s o c i a t i o n of defect associates 
c o n t a i n i n g cadmium vacancies w i t h the consequent pro­
d u c t i o n of p a i r e d and s i n g l e cadmium vacancies. S i m i l a r l y 
Cowell and Woods^^' i n t e r p r e t e d t h e i r r e s u l t s on t h e r m a l l y 
s t i m u l a t e d c u r r e n t s and I.R. luminescence i n terms of 
complex centres which were composed p a r t l y or wholly of 
cadmium vacancies. 

Complex a s s o c i a t i o n s of l a t t i c e defects are known t o 
e x i s t i n the a l k a l i h a l i d e group of m a t e r i a l s and a great 
deal of experimental and t h e o r e t i c a l work has been c a r r i e d 
out on these m a t e r i a l s . For a comprehensive review of 
t h i s t o p i c see the review a r t i c l e of Compton and Rabin^'''^^ 
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I n K f i l . , e.s.r. spectra have been reported which have 
been a t t r i b u t e d t o the a s s o c i a t i o n of two P-centres^"'"^^ 
and t h r e e P-centres^"^^^ at nearest neighbour s i t e s . Thus 
i t i s not unreasonable t o expect to observe the e.s.r. 
spectrum of an a s s o c i a t i o n of cadmium vacancies. A 
r i g o r o u s treatment of the s p i n Hamiltonian of such a 
defect c o n t a i n i n g more than one 'force centre' i s beyond 
the scope of t h i s t h e s i s . Some attempts have been made t o 
p r e d i c t the values of the parameters which occur i n the 
s p i n Hamiltonian of associated defect centres i n a l k a l i 

(17) 
h a l i d e m a t e r i a l s but there have been no attempts at 
such c a l c u l a t i o n s f o r other m a t e r i a l s . Consequently 
an approximate treatment w i l l be presented where i t w i l l 
be assumed t h a t each cadmium vacancy contains one trapped 
h o l e , which i s l o c a l i s e d at t h a t vacancy (some support 
f o r t h i s assumption v / i l l be given l a t e r ) , and the e f f e c t s 
of exchange i n t e r a c t i o n s between neighbo\zring vacancies 
i n a c l u s t e r w i l l be taken i n t o account. 
7-4.2 Exchange i n t e r a c t i o n s 
The close p r o x i m i t y of two paramagnetic ions allows a so 
c a l l e d exchange i n t e r a c t i o n t o take place between the 
e l e c t r o n s i n the i o n s . This i n t e r a c t i o n a r i s e s because 
e l e c t r o n s are i n d i s t i n g u i s h a b l e from one another and as 
a r e s u l t two e l e c t r o n s may change places without any 
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change i n the apparent c o n f i g u r a t i o n . The e f f e c t s of 
exchange i n t e r a c t i o n are demonstrated when proper a l l o w ­
ance f o r the p o s s i b i l i t y of quantum jumps of t h i s nature 
i s made. A l l of the experimental and t h e o r e t i c a l work 
so f a r r e p o r t e d has been concerned w i t h systems of p a i r s 
and t r i a d s of paramagnetic t r a n s i t i o n and rare e a r t h metal 
i o n s . 

The usual treatment of exchange f o l l o w s t h a t o r i g i n a t e d 
(18) 

by Dirac . He showed t h a t f o r a system of electrons 
where the e l e c t r o n s are confined t o d i f f e r e n t s p e c i f i e d 
orthogonal o r b i t a l s of which a t y p i c a l p a i r have wave-
f u n c t i o n s y- ( r ) a n d y . ( r ) , the exchange i n t e r a c t i o n 
c o u p l i n g the spins can be w r i t t e n : -

(7-8) 
'J - J 

whe re J. . i s the 'exchange i n t e g r a l * and depends on the -'• J 
overlap of the o r b i t a l wavefunctions and S. and S. r e f e r 

•'• J 
t o e l e c t r o n spins i n the o r b i t a l s . 
This form i s c o r r e c t when s p i n - o r b i t coupling i n t e r a c t i o n s 
are neglected and can be used unchanged i n considering the 
exchange i n t e r a c t i o n between paramagnetic ions i n a c r y s t a l 
i n t h i s approximation. Although i n many aspects of 



paramagnetism i t i s not permissible t o neglect s p i n -
o r b i t i n t e r a c t i o n s , no d e t a i l e d treatment of the e f f e c t s 
on the exchange of i t s i n c l u s i o n seems t o be a v a i l a b l e . 
The custom, therefore,wto use an eqiiation of the form of 
(7-8) i n d e a l i n g w i t h exchange between paramagnetic ions. 
This i n t e r a c t i o n i s then s a i d t o be an ' i s o t r o p i c exchange 
i n t e r a c t i o n ' , because i t depends only on the r e l a t i v e 
o r i e n t a t i o n s of the spins. However the value of J w i l l 
probably depend not only on the separation but also on 
the p o s i t i o n s of the ions, because i n a c r y s t a l f i e l d 
p o t e n t i a l the charge d e n s i t i e s are g e n e r a l l y not spher­
i c a l l y symmetrical. This leads t o the so-called 'aniso­
t r o p i c exchange' and t h i s term i s used t o account f o r 
those p a r t s of the exchange i n t e r a c t i o n which have a 
form d i f f e r e n t from equation ( 7 - 8 ) . I f the l i n e j o i n i n g 
the two ions i s an a x i s of symmetry of the two ions and 
t h e i r surroundings, the a n i s o t r o p i c exchange can be 

w r i t t e n i n a form s i m i l a r t o t h a t of the d i p o l e - d i p o l e 
(19) 

i n t e r a c t i o n between the ions :-

4 



7-4.3 P o s i t i o n of e.s.r. l i n e s due t o exchange coupling 
The s p i n Hamiltonian f o r p a i r s and t r i a d s of exchange 
coupled paramagnetic ions w i l l be discussed next. The 
form of the sp i n energy l e v e l s and expected e.s.r. spectra 
w i l l be i n d i c a t e d . I t i s u s u a l l y found t h a t exchange i s 
only important between nearest neighbour ions.' 
P a i r spectra 

The s p i n Hamiltonian f o r a p a i r of exchange coupled para­
magnetic ions of s p i n and S2 r e s p e c t i v e l y has been 

discussed by several authors, i n c l u d i n g 0wen^^^\ Bleaney 
(21) (23) and Bowers^ and S l i c h t e r ^ . With no exchange l e t 

the H amiltonian f o r the i s o l a t e d i o n of sp i n S^^ be of a 
t y p i c a l form:-

There i s a s i m i l a r Hamiltonian )-(;^_for the i o n w i t h spin 
Sg. The f i r s t term represents the Zeeman energy, the term 
i n A i s the h y p e r f i n e s t r u c t u r e i n t e r a c t i o n and those i n 

and the usual second order c r y s t a l f i e l d terms w i t h 
a x i a l and rhombic symmetry r e s p e c t i v e l y . 
An exchange i n t e r a c t i o n i s now introduced so t h a t the 
Hamiltonian f o r the p a i r system i s : -
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X - )-(, + )-<^ V T S,.5t. -hDe. f^'^'T. • ̂ xx -

-\-ê  [ 5 , ^ . 5 ^ ^ ^ 5,^.5..J (7-10) 

The term i n J represents the i s o t r o p i c p a r t of the exchange. 
2 

Higher order terms, e.g. J2^-i'—2^ have been assumed t o 
be n e g l i g i b l e . S i m i l a r l y i t i s assumed t h a t the aniso­
t r o p i c p a r t of the i n t e r a c t i o n i s of low order and i s des­
c r i b e d by the terms i n D and E , which have a x i a l and 
rhombic symmetry r e s p e c t i v e l y . I t has also been assumed 
t h a t the axes of the i n t e r a c t i o n x, y and z are the same 
as those of the c r y s t a l f i e l d . 
Equation (7-10) can be r e w r i t t e n : -

M = 9 P t i i + i [ l ( ^ ^ - 0 - ^(5.-^0-i:i(ia-^')] + | 5(I.-KI,) 

+ 3i'<^l>,^^.^.)\s2 lU-̂ .)] ̂ - S ^e -̂ 13̂  Hc)[5x"-S^ (7-11) 

Where S = S-ĵ  + S2» and i t i s assumed from now on t h a t 
- 1 " -2 Villi be the case f o r l i k e i ons. S i s r e f e r r e d 
t o as the t o t a l s p i n and can have values: 

S = + S2, S^ + Sg - 1, 0 

o*:̂  and are constants which Judd^^*^^ has c a l c i i l a t e d 



5(&+i) - 4 5, ($.••-!) 

-I V 
(7-12) 

3 5(s+i) -3-J-S^(5rH) 

I n the approximation t h a t gpH>s>J»A, S-ĵ  = S2 = i (whiah 
w i l l be the approximation used i n the d e s c r i p t i o n of the 
cadmi\im vacancy centres) and i g n o r i n g the a n i s o t r o p i c 
terms, the term i n J gives s t a t e s w i t h w e l l defined t o t a l 
s p i n values 3 = 0 and 1. The lowest s t a t e i f J i s pos­
i t i v e ( a n t i f e r r o m a g n e t i c exchange) i s S = 0 w i t h an 
energy -3J below the s p i n s t a t e of the i s o l a t e d i o n . 

4 
The S = 1 s t a t e l i e s at an energy J above t h a t of the 

4 
i s o l a t e d i o n . I n t h i s case, which i s the one most com­
monly observed, the system i s diamagnetic at temperature 
T where KT<!cJ. The t r i p l e t e.s.r. spectrum w i l l be 
observed a t higher temperatures KT^^J. I f S-ĵ  = ^ 
then the lowest s t a t e i s s t i l l S = 0, the next i s S = 1 
which i s J higher i n energy, then S = 2, which i s 33" 
h i g h e r e t c . The order of the l e v e l s i s reversed i f J 
i s negative (ferromagnetic exchange). 
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FIG.7-10. Energy l e v e l scheme .for exchange coupled 

paramagnetic i o n s . 
( a ) Single ions (S=-J). 

( b ) P a i r s w i t h i s o t r o p i c exchange. 
( c ) ' ^"'airs w i t h a n i s o t r o p i c . exchange. 
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The e f f e c t of the small a n i s o t r o p i c terms i n equation 
(7-11) i s t o give small zQ^o f i e l d s p l i t t i n g s of the 
(2S + 1) substates belonging t o each t o t a l spin s t a t e . 
These s p l i t t i n g s are c a l c u l a t e d by considering each s t a t e 
of t o t a l s p i n s e p a r a t e l y . A t y p i c a l energy l e v e l scheme 
f o r p a i r s of paramagnetic ions assuming i s o t r o p i c and 
a n i s o t r o p i c exchange co u p l i n g i s shown i n P i g . (7-10) 
f o r S-ĵ  = §2 = i . The e.s.r, l i n e s of a p a i r system w i t h 
i s o t r o p i c exchange w i l l f a l l e x a c t l y on top of those due 
t o the i s o l a t e d i o n s . The e f f e c t of the a n i s o t r o p i c 
c o n t r i b u t i o n i s t o a l l o w the p a i r l i n e s t o be observed 
i f the zero f i e l d s p l i t t i n g s are greater than the l i n e 
w i d t h of the i s o l a t e d i o n l i n e s . I n t h e i r work on three 
exchange coupled ( t r i a d s ) i r r i d i u m ions dr"^"-) i n (101^)2 

(22) 
I r , PtClg mixed c r y s t a l s . H a r r i s and Owen^ ' concluded 
t h a t i t was necessary t o i n c l u d e exchange between next 
neighbouring Ir^"*" ions as w e l l as between nearest neigh­
bours. This i n t e r a c t i o n was found t o be an order of 
magnitude smaller than t h a t between nearest neighbours. 
They found no evidence f o r exchange between more d i s t a n t 
neighbours. 
I n the approximation t h a t J^j^A the h y p e r f i n e s t r u c t u r e 
term i s of the form A 3.(1-, + l o ) . Thus 2(21) + I h y p e r f i n e 

2 1 ^ 
l i n e s at h a l f the normal spacing are expected. I f they 



.FIG.7-11. F.C.C. l a t t i c e . i n d i c a t i n g the d i f f e r e n t types 

of t r i a d of I r ' i o n s . 
4+ 

© = I r xon.' 



can be resolved the h y p e r f i n e l i n e s serve t o i d e n t i f y the 
spectrum from an exchange coupled p a i r of ions unambig­
uously. 
T r i a d spectra 

There i s l i t t l e r e p o r t e d work on the magnetic p r o p e r t i e s 
of t h r e e exchange coupled ions. The most thorough r e p o r t 
has been by H a r r i s and Owen^^^^ on Ir^"*" i o n s . Their 
treatment w i l l be o u t l i n e d since i t w i l l be u s e f u l i n 
d i s c u s s i n g the e.s.r. spectrum observed i n CdS and 
r e p o r t e d i n t h i s t h e s i s . 

The I r ^ " ^ i ons, i n the mixed c r y s t a l s of (NH^)2lr,PtClg 
which were used by H a r r i s and Owen, form a face centred 
cubic s t r u c t u r e w h i l e the other ions comprising the s a l t 

4+ 
are arranged i n the space between the I r ions. The 
s t r u c t u r e i s i n d i c a t e d i n F i g . (7-11). The work of H a r r i s 

(22) 4+ and Owen on the p a i r spectra of I r i n t h i s s a l t had 
e s t a b l i s h e d t h a t t h e r e i s a l a r g e exchange i n t e r a c t i o n 
between nearest neighbours (nan.) Ir^"*" ions characterised 
by an i s o t r o p i c term w i t h J-^5 cm""*" and a n i s o t r o p i c terms 
which a l l o w the n.n. p a i r spectra t o be observed. There 
i s also an exchange between next nearest neighbour (n.n.n.) 

ions c h a r a c t e r i s e d by an i s o t r o p i c term w i t h J2'^'^l ^° 
a n i s o t r o p i c terms. 
To describe the s p i n Hamiltonian f o r the t r i a d s , l e t H^^ 



TABLE 2 Types of t r i a d and t h e i r Hamiltonians, 

Name S t r u c t u r e Hamiltonian' 

l i n e t r i a d A B D 

r i g h t angle 
t r i a d 

A B C . 

skev/ t r i a d . A B G 

n.n.pair C135" 
p l u s n.n.n.\_qo° 

A B F 
E A 0 

e q u i l a t e r a l _ 
t r i a d 

. 1 , 

A B E 

J-



be the exchange i n t e r a c t i o n between the n.n. p a i r s i n the 
t r i a d and J2^i§.2 ^® "̂ ^̂  i n t e r a c t i o n between n.n.n, p a i r s . 
The only t r i a d s of importance are those i n which the spins 
are coupled by n.n. and f o r n.n.n. i n t e r a c t i o n s . For the 
f . c . c . arrang.ament shown i n F i g . (7-11) there are s i x 
types of t r i a d , which are i n d i c a t e d i n t a b l e 2. For the 
f i r s t f o u r t r i a d s i n t a b l e 2, the i s o t r o p i c terms i n the 
H a m i l t o n i a n can be w r i t t e n : -

H = J . (1.5, ^S^k,) + J ' S3.S, 

The terms i n J-ĵ  correspond t o the two n.n. p a i r s and the 
term i n J"'" t o the t h i r d p a i r i n the t r i a d . From i n s p e c t i o n 
of F i g . (7-11) J"*" = f o r the e q u i l a t e r a l t r i a d , J""" = J2 
f o r the r i g h t angle t r i a d and J"'' = 0 f o r the l i n e and skew 
t r i a d s . I f the energies and the s t a t e f u n c t i o n s f o r the 

(22) 
t r i a d c o n t a i n i n g two n.n. p a i r s are c a l c u l a t e d then 
a quadruplet and two doublet s t a t e s are obtained where 
S = 3, ^ and ^ r e s p e c t i v e l y (S = Ŝ  + Sg + S^). An energy 
l e v e l scheme f o r several of the types of t r i a d described 
above i s shown i n F i g . (7-12), t a k i n g i n t o account i s o t r o p i c 
and'.anisotropic exchange. The e f f e c t of the a n i s o t r o p i c 
terms i n the Hamiltonian i s t o produce zero f i e l d s p l i t t i n g s 
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FIG. 7-12->. Energy l e v e l schemes are shovm f o r the various 
t r i a d s of Ir^"*" encountered here, (a) n.n. p a i r (b) l i n e , 
r i g h t angle and skew t r i a d ( c ) e q u i l a t e r a l t r i a d , v/here the 
two doublets c o i n c i d e t o form the ground state, (d) t r i a d s 
c o n t a i n i n g one n.n. p a i r and one n.n.n. pair.Some possible 
. t r a n s i t i o n s are shown.The only ones which villi be observable 
are those not o c c u r r i n g at or close t o the s t r o n g l i n e from 
the i s o l e i t e d ions,which i s at the p o s i t i o n i n d i c a t e d by the 
d o t t e d l i n e . 



of the 3 = 3 s t a t e s as can be seen i n F i g . (7-12). The 
s t a t e s w i t h S = ^ are not s p l i t and the spectra from 
these f a l l under the main l i n e of the i s o l a t e d ions and 
are not observed. C l e a r l y the t r i a d spectra i s very 
complex, because of the d i f f e r e n t types of t r i a d and the 
d i f f e r e n t zero f i e l d s p l i t t i n g s f o r the d i f f e r e n t types. 

(22) 

H a r r i s and Owen^ ^ were able t o i d e n t i f y the l i n e s i n 
t h e i r spectra as due t o the d i f f e r e n t t r i a d s and showed 
t h a t t h e i r a n a l y s i s of the Hamiltonian f o r the t r i a d s was 
c o r r e c t . I t i s i n t e r e s t i n g t o note t h a t they concluded 
t h a t the i n t e r a c t i o n between n.n. p a i r s i s the same 
( w i t h i n experimental e r r o r ) when the p a i r s form part of 
a t r i a d as when they are i s o l a t e d and they p r e d i c t e d 
t h i s would be t r u e f o r the i n t e r a c t i o n between p a i r s i n 
higher order associates. 
Higher Order Associates 
As i n d i c a t e d above the same approach can be applied t o 
a treatment of f o u r or more exchange coupled ions. 
However the Hamiltonian f o r such a system w i l l be more 
complicated than f o r the t r i a d system. The s i t u a t i o n i s 
f u r t h e r complicated by the l a r g e number of combinations 
i n v o l v e d i n the system of f o u r , f i v e e t c . coupled ions. 
I n p r i n c i p l e the treatment should be no more d i f f i c u l t 
than t h a t f o r t r i a d s but the computation w i l l be f a r more 



t e d i o u s . The r e s u l t s obtained on CdS, reported i n t h i s , 
t h e s i s , do not warrant the development of such a treatment 
i n d e t a i l at present. However i t can be stat e d t h a t a 
l a r g e number of e.s.r. l i n e s due t o the quadruples e t c . 
should be observable. I t w i l l probably not be possible 
t o r e s o l v e a l l these l i n e s i n d i v i d u a l l y because of i n t e r ­
ference from the l i n e s due t o the t r i a d s and p a i r s . I n 
the case o f i m p u r i t y paramagnetic ions i n a s o l i d the 
number of quadruplets and higher associates w i l l be much 
smaller than the number of t r i a d s and so the i n t e n s i t i e s 
of these l i n e s w i l l be r e l a t i v e l y unimportant compared 
t o the p a i r and t r i a d s pectra. However as i n d i c a t e d a t 
the beginning of t h i s s e c t i o n the fo r m a t i o n of the c l u s t e r s 
of cadmium vacancies i s favoured i n CdS f o r reasons not 
yet understood and so the i n t e n s i t y of the e.s.r. l i n e s 
due t o c l u s t e r s may be l a r g e r than those due t o paired 
and i s o l a t e d cadmium vacancies. 

7-4.4 A p p l i c a t i o n of exchange coupling t o cadmium vacancy 

c l u s t e r s i n CdS 
The p o s s i b l e d e s c r i p t i o n of the e.s.r. l i n e A i n CdS i n 
terms of a model of exchange coupled associations of 
cadmium vacancies w i l l now be considered. However, before 
d i s c u s s i n g the e f f e c t s of exchange coupling, i t i s necessary 
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s t a t e s of the cadmium vacancy s i t e i n GdS.A schematic 
r e p r e s e n t a t i o n of the c h a r g e , d i s t r i b u t i o n i n each charge 
s t a t e i s also d e p i c t e d . " ! 



f i r s t of a l l t o consider the model f o r the i s o l a t e d 
cadmium vacancy. Kroger et a l ^ ^ ^ ^ t r e a t e d the vacancy 
s i t e as being d e f i c i e n t of two electrons so t h a t i t acts 
as an acceptor c e n t r e . I t i s assumed t h a t the d e f i c i e n c y 
i s shared between the f o u r sp^ h y b r i d i s e d o r b i t a l s of 
the surrounding sulphur ions which are d i r e c t e d i n t o the 
vacancy. As s t a t e d i n chapter 2, the concentration of 
donors always exceeds t h a t of acceptors i n CdS w i t h the 
r e s u l t t h a t the s i t e w i l l be compensated by electrons 
from the donor l e v e l s . At f i r s t s i g h t i t might be 
expected t h a t the vacancy w i l l accept two e l e c t r o n s . 
However, Kroger et a l ^ ^ ^ ^ have concluded t h a t the second 
energy l e v e l l i e s i n the conduction band. The second 
e l e c t r o n t h e r e f o r e i s always i o n i s e d and can be ignored. 
The vacancy, having been compensated by one .electron, 
i . e . c o n t a i n i n g one trapped h o l e , can be thought of as 
having an energy l e v e l which l i e s close t o t h a t f o r the 
s i t e which i s d e f i c i e n t of two e l e c t r o n s . The s i t u a t i o n 
can be represented on an energy band diagram as shown i n 
F i g . ( 7 - 13). Consequently the Vcd"*" c o n f i g u r a t i o n describes 
the s t a t e of the vacancy at 4.2°K, i . e . i t i s a compensated 
acceptor s i t e as r e q u i r e d by the observations on e.s.r. 
l i n e A. Prom the evidence of the red ( s e l f a c t i v a t e d ) 
emission from undoped CdS which has been heat t r e a t e d i n ' 



a sulphur atmosphere Kroger et a l ^ ^ ^ ^ conclude t h a t the 
Vcd"*" l e v e l s l i e about 0.7eV - leV above the valence band. 
I f a hydrogenic model f o r the trapped hole at the cadmium 
vacancy s i t e i s assumed then the hole i o n i s a t i o n energy 
should be about 0.15eV, assuming the value of e f f e c t i v e 
mass t o be O.SlMe from the c y c l o t r o n resonance data of 

(25) 
Sawamotto^ . The r a d i u s of the o r b i t of the hole i s 

0 

then approximately 6A. However the height of the l e v e l 
above the valence band has been estimated t o be at l e a s t 
O.TeV. I n t h i s s i t u a t i o n the trapped hole i s more l o c a l -

0 

i s e d a t the vacancy than the p r e d i c t e d 6A. C l e a r l y i t i s 
reasonable t o assume t h a t the hole i s completely l o c a l i s e d 
at the vacancy s i t e and t h a t the hydrogen model does not 
apply. The l o c a l i s a t i o n of the hole i s one of the c e n t r a l 
assumptions of the proposed method of t r e a t i n g the e.s.r. 
spectrum of a cadmium vacancy p a i r as a p a i r of exchange 
coupled paramagnetic vacancy s i t e s . I f the hole i s l o c a l i s e d 
the value of the g-tensor f o r the i s o l a t e d vacancy can be 
c a l c u l a t e d i n e x a c t l y the same way as the g-tensor was 
evaluated i n s e c t i o n (7-2) f o r an e l e c t r o n l o c a l i s e d at a 
sulphur vacancy. The g - s h i f t i s then given by equation 
(7-4) as :-

J A E 
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The trapped hole problem r e q u i r e s the sign o f X t o be 
n e g a t i v e . The magnitude of X i s estimated t o be 0.025eV 
from the atomic energy l e v e l s of the f r e e sulphur ion^ . 
The value of/^E i s approximated t o the i o n i s a t i o n energy 
of the c e n t r e , i . e . 0.7eV. 

Thus A g = i 0.03 

and an i s o t r o p i c e.s.r. l i n e w i t h a g-value of approximately 
2.03 (S = i) i s p r e d i c t e d f o r the i s o l a t e d cadmium vacancy. 
P a i r s of cadmium vacancies 
Prom the d i s c u s s i o n of exchange i n t e r a c t i o n s o u t l i n e d 
e a r l i e r , the paired system of cadmium vacancies i s expected 
t o lead t o a spin system c o n s i s t i n g of two states of t o t a l 
s p i n 0 and 1. The o r d e r i n g and separation of these l e v e l s 
depends on the s i g n and magnitude of J, the i s o t r o p i c p art 
of the exchange i n t e r a c t i o n . No data i s a v a i l a b l e t o 
estimate the value of J. The s i g n w i l l be assumed to be 
p o s i t i v e since t h i s was the case f o r the defect p a i r centre 
i n Kfil^'''^^ and the r e s u l t s obtained f o r CdS could be under­
stood u s i n g t h i s assumption. However the i n t e r p r e t a t i o n of 
the r e s u l t s i s not s e r i o u s l y a f f e c t e d i f J i s assiimed t o be 
n e g a t i v e , Some degree of a n i s o t r o p y i n the exchange might be 
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(26) expected, but t h i s i s l i k e l y t o be small because Ishikawa^ 
i s of the o p i n i o n t h a t exchange coupled p a i r s of Mn̂"*" ions 
i n CdS are w e l l described by a completely i s o t r o p i c exchange 
i n t e r a c t i o n . However the presence of a p a i r of cadmium 
vacancies must intr o d u c e l o c a l s t r a i n and d i s t u r b the l o c a l 
symmetry at the s i t e . This would be expected t o introduce 
an a n i s o t r o p i c exchange term, but i t i s d i f f i c u l t t o give 
any q u a n t i t i a t i v e estimate of the magnitude of t h i s term. 
F u r t h e r s t r a i n s set up i n the sample d u r i n g c o o l i n g f o l l o w i n g 
growth, e s p e c i a l l y a f t e r quenching, would prdduce s i m i l a r 
e f f e c t s . Many of our samples are known to be h i g h l y s t r a i n e d 
since they f r e q u e n t l y crack or s h a t t e r d u r i n g removal from 
the growth tube and the d i s l o c a t i o n d e n s i t y i s very high - see 
s e c t i o n ( 5 - 4 ) . The e f f e c t of a l l these a n i s o t r o p i c terms 
i s t o produce two p a i r l i n e s due t o zero f i e l d | o n the t r i p ­
l e t s t a t e away from the i s o l a t e d vacancy l i n e . I f the sample 
has a v a r i a b l e s t r e s s throughout i t s volume, then the s t r a i n 
w i l l be d i f f e r e n t at d i f f e r e n t vacancy p a i r s . As a r e s u l t 
the zero f i e l d s p l i t t i n g could be continuously v a r i a b l e 
throughout the vacancy p a i r s i n the sample. This would pro­
duce an e.s.r. l i n e centred a t the p o s i t i o n of the i s o l a t e d 
vacancy l i n e but somewhat broader. The l i n e may also he 
broadened because there are two possible types of vacancy 



p a i r i n hexagonal CdS. I n a d d i t i o n the next nearest neigh­
bour i n t e r a c t i o n s may be important since the r a t i o of the 
nearest neighbour p a i r s e p a r a t i o n t o the next nearest neigh­
bour p a i r s e p a r a t i o n i s approximately ,5:4. Thus f u r t h e r 
p a i r l i n e s may r e s u l t , w i t h a corresponding increase i n 
the complexity of the e.s.r. spectra. 
The proposed mechanism f o r the e f f e c t of random s t r a i n 

v a r i a t i o n s broadening the p a i r l i n e s i s supported i n d i r e c t l y 
(21) 

by the work of Bleaney and Bowers^ on the e.s.r. of 
exchange coupled p a i r s of copper ions i n copper acetate. 
The authors p o s t u l a t e d t h a t the main c o n t r i b u t i o n t o the 
resonance l i n e w i d t h was thermal modulation of the exchange 
i n t e g r a l J. The l a t t i c e v i b r a t i o n s cause a small f l u c t u a t i o n 
i n the s e p a r a t i o n of the i n t e r a c t i n g ions. Since the ex­
change i n t e g r a l i s a measure of the overlap of the wave 
f u n c t i o n s , i t i s very s e n s i t i v e t o such f l u c t u a t i o n s . A 
modulation of the a n i s o t r o p i c exchange terms w i l l c o n t r i b u t e 
t o the l i n e w i d t h of the p a i r l i n e s . • C l e a r l y s t r a i n modul­
a t i o n of the vacancy p a i r s e p a r a t i o n would produce a s i m i l a r 
e f f e c t . 
Triads of cadmium vacancies 
A system of t h r e e nearest neighbour cadmium vacancies i s 
ob v i o u s l y complex and should lead t o a complex e.s.r. 
spectrum. There are t h r e e d i s t i n c t types of t r i a d i n the 
cubic z i n c blende l a t t i c e , each of which can be s u b d i v i d i e d 
i n the hexagonal m o d i f i c a t i o n . R e f e r r i n g t o P i g . (7-14) 
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FIG.7-1^. W u r t z i t e CdS l a t t i c e i l l u s t r a t i n g the d i f f e r ­
ent types of'cadmium vacancy t r i a d s . 



the basic types of t r i a d have s t r u c t u r e s ABC, ABE and CAE 
r e s p e c t i v e l y . The f i r s t two are t e t r a h e d r a l w h i l e the 
t h i r d i s a skew chain system. I n the hexagonal m o d i f i c ­
a t i o n t h e r e are two kinds of the t r i a d s ABC and ABE. There 
are seven types of chain t r i a d . When next nearest neighbour 
i n t e r a c t i o n i s included three of these types must be sub­
d i v i d e d t w i c e . Consequently there are 14 d i f f e r e n t arrange­
ments of cadmium vacancy t r i a d s . I n l i n e w i t h the treatment 

4+ 
of s e c t i o n 7-4.2 f o r the t r i a d s of I r ions, the spin 
Hamiltonians•can i n p r i n c i p l e be w r i t t e n down f o r the 14 
types of t r i a d , and s o l u t i o n s f o r the energies and eigen-
s t a t e s of the d i f f e r e n t t r i a d s obtained. However t h i s i s 
not p o s s i b l e since no e s t i m a t i o n of the magnitude of the 
exchange i n t e g r a l s can be made and the importance of the 
a n i s o t r o p i c terms r e l a t i v e t o the i s o t r o p i c ones i s not 
known. However by comparison w i t h the discussion of the 
Ir^"*" i o n s , i t i s f a i r l y obvious t h a t an extremely complicated 
t r i a d spectrum w i l l r e s u l t . The modulation of the exchange 
i n t e g r a l n e c e s s i t a t e d by the randon s t r a i n s i n the c r y s t a l s 
would be expected t o broaden each of the t r i a d e.s.r. l i n e s 
by v a r y i n g the zero f i e l d s p l i t t i n g s of the 3 = 3 spi n 
s t a t e , producing one broad s t r u c t u r e l e s s l i n e s i m i l a r t o 
t h a t p o s t u l a t e d f o r vacancy p a i r s . However the t r i a d l i n e 
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should be broader than t h a t associated w i t h p a i r s because 
the t r i a d of vacancies, w i l l produce a greater l a t t i c e 
d i s t o r t i o n at the s i t e and hence a l a r g e r a n i s o t r o p i c i n t e r ­
a c t i o n . 
Higher order c l u s t e r s 
C l e a r l y the arguments discussed i n the previous s e c t i o n 
can be a p p l i e d to a quadruplet, q u i n t e t , e t c . of vacancies, 
but correspondingly computations w i l l be more tedious and 
complex, A complicated set of s p i n energy l e v e l s w i l l be 
formed f o r each permutation and once again a broad s t r u c t u r e ­
l e s s e.s.r. l i n e may be expected. The l i n e w i d t h should be 
g r e a t e r than f o r the t r i a d s because of the greater l a t t i c e 
d i s t o r t i o n a t the more complex vacancy c l u s t e r s i t e . 
I t has been suggested t h a t sulphur vacancies might 

be present at the cadmium vacancy c l u s t e r s i t e s . These w i l l 
not g r e a t l y a f f e c t the shape or nature of the expected broad 
l i n e , since t h i s i s e s s e n t i a l l y due to holes l o c a l i s e d at 
cadmium vacancies. The s i t u a t i o n where the missing sulphur 
i o n i s one l i n k i n g a cadmium vacancy p a i r i s an exception. 
I n t h i s instance a d e l o c a l i s a t i o n of the holes at the p a r t ­
i c u l a r cadmium vacancy p a i r w i l l r e s u l t but the e f f e c t of 
t h i s cannot be p r e d i c t e d u n t i l the wavefunctions of the 
holes can be estimated. The presence of a sulphur vacancy 



FIG.7-15. Possible energy l e v e l scheme f o r a vacancy 
• -. t r i a d w i t h some of the p o s s i b l e t r a n s i t i o n s 

i n d i c a t e d . 
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close t o a cadmium vacancy c l u s t e r should broaden the e.s.r. 
l i n e due t o the c l u s t e r alone by i n c r e a s i n g the l o c a l s t r a i n . 
7-4.5 Discussion of the e.s.r. r e s u l t s using t h i s model 
As i n d i c a t e d i n the previous three sections the e.s.r. l i n e 
A can be explained i n terms of the resonance of c l u s t e r s of 
exchange coupled cadmium vacancies, each of which has trapped 
one h o l e . I t has been suggested i n s e c t i o n (7-4.1) t h a t the 
l i n e A i s composed of several components and t h i s can be 
explained i n terms of d i f f e r e n t order c l u s t e r s c o n t r i b u t i n g 
t o the l i n e . 
The general shape of the l i n e A can be understood i n terms 
of the t r i a d of vacancies. By comparison w i t h F i g . (7-12) 
a p o s s i b l e energy l e v e l scheme f o r a vacancy t r i a d i s shown 
i n F i g . (7-15)» assuming J i s p o s i t i v e . 
There w i l l be 14 energy l e v e l schemes of t h i s form f o r the 
14 d i f f e r e n t t r i a d s . Since the broadness has been ascribed 
t o s t r a i n modulation of the zero f i e l d s p l i t t i n g of the l e v e l s , 
then since the only one w i t h such a s p l i t t i n g i s the 3 = _5 

0 2 l e v e l , t h i s l e v e l must be populated at 4.2 K. Therefore the 

magnitude of the i s o t r o p i c p a r t of the exchange d must be less 
than 2cm~'^. To a f i r s t approximation t h e r e f o r e l e t us assume 
J = Icm'"''. The t r a n s i t i o n s i n the 3 = ^ t o t a l spin s t a t e , 

2 
i t has been p o s t u l a t e d , w i l l give a broad e.s.r. l i n e centred 



on the p o s i t i o n of i s o l a t e d vacancy l i n e . The lower l y i n g 
doublets w i l l give a sharp l i n e centred at t h i s p o s i t i o n . 
Por a system i n which the exchange i s i s o t r o p i c the 2S + 1 
substates of each t o t a l s p i n s t a t e are w e l l defined by the 
S component of S so t h a t there are no m a t r i x elements 
c o u p l i n g s t a t e s i n d i f f e r e n t t o t a l s p i n s tates and no t r a n s ­
i t i o n s of t h i s type can be observed. However i n t h i s t r i a d 
vacancy system i t has been p o s t u l a t e d t h a t a n i s o t r o p i c 
exchange i n t e r a c t i o n s are present. The e f f e c t of these i s 
t o produce mixing of the other s t a t e s i n t o any t o t a l spin 
s t a t e . Thus the s p i n s t a t e s designated |n>^_^and 1 n;>^ are 
i n f a c t l i n e a r combinations of a l l the spin s t a t e s . Con­
sequently the m a t r i x elements between states w i t h d i f f e r e n t 

t o t a l s p i n V i ^ i l l not be zero. Thus since J i s of the same 
2 

order os3.K.vat x-band frequencies then t r a n s i t i o n s between the 
S = 3 and S = -5- t o t a l s p i n s t a t e s w i l l be allowed as i n d i c a t e d 
i n P i g . ( 7 - 1 5 ) . The i n t e n s i t i e s of these t r a n s i t i o n s w i l l be 
smaller than those between l e v e l s i n the states i n which 
t o t a l s p i n i s constant, because t o a f i r s t order approximation 
they are f o r b i d d e n . 
P i g . (7-16) shows the possible s u p e r p o s i t i o n of these d i f f e r e n t 
t r a n s i t i o n s at x-band frequencies, assuming the l i n e broadening 
i s due t o s t r a i n modulation of the zero f i e l d s p l i t t i n g f o r 
J-vlcm'"^ and assuming t h a t the zero f i e l d s p l i t t i n g v a r i e s 
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g=a.o/̂  
P o s i t i o n o[ iscslated 

Vatai>c^ line. 

FIG.7-16. Supe r p o s i t i o n of the e.s.r. l i n e s f o r the 
t r i a d system_of• Fig.7-15• at x-band f r e q -

- • c' 3 
uencies. 



c o n t i n u o u s l y between 0 and 0.03cm 
The sharp component «*<, corresponds t o the t r a n s i t i o n s 2 
and 3 between the l e v e l s of the two lower l y i n g doublets 
of F i g . (7-15). The component |3 i s associated w i t h the 
t r a n s i t i o n s between the l e v e l s of the t r i p l e t (1 and 6) 
which are broadened i n t o one l i n e by the v a r i a t i o n of zero 
f i e l d s p l i t t i n g of 3 = 3 l e v e l ( d ) . The component » 

2 
corresponds t o the t r a n s i t i o n s of the type 4 and 5 between 
l e v e l s i n the t o t a l s p i n s t a t e s i and 3, broadmed by the 

2 
v a r i a t i o n of d. C l e a r l y the envelope of these components 
resembles the shape of the observed l i n e A, c . f . Figs. (7-1) 
to ( 7 - 4 ) . However i t i s too sharply peaked near the p o s i t i o n 
of the i s o l a t e d vacancy l i n e , because of the magnitude of 
the component e< . The c o n t r i b u t i o n s too*, are from the two 
lower l y i n g doublets the lower of which w i l l be more important 
from p o p u l a t i o n c o n s i d e r a t i o n s . I f the centre contained an 
even number of vacancies, the ground s t a t e would be a s i n g l e t . 
At t h i s stage i t i s not p o s s i b l e t o prediitct the t o t a l spin 
s t a t e s of such a c e n t r e . The simplest centre w i l l be a 
quadruplet of vacancies, which should have t o t a l spin states 
of 0, 1 and 2, of which the s i n g l e t w i l l be lowest. Thus 
because of zero f i e l d s p l i t t i n g s of the 3 = 1 and 2 s t a t e s , 
t r a n s i t i o n s f a l l i n g on top of the i s o l a t e d vacancy are not 



2.10. 

expected. Thus the component o c f o r a quadruplet w i l l be 
reduced or even absent. Because of the large increase 
i n the number of levels and the number of ways of arranging 
the four vacancies the components 3 andy should increase by 
approximately equal amounts. Thus the l i n e shape asso­
ciated w i t h a quadruplet f o r J~-lcm~''" and d varying contin­
uously from 0 to O.OJcm""̂  w i l l closely resemble that observed 
as the e.s.r. l i n e A. The f i n a l conclusion, therefore, i s 
that the ^hape of the l i n e A can be adequately explained 
i n terms of a quadruplet of cadmium vacancies at nearest 
neighbour s i t e s . However, there may also be contributions 
from t r i a d s , quintets and higher order clusters. 
The model of vacancy clusters can also explain the behaviour 
of the samples heat treated i n atmospheres of cadmium and 
sulphur vapour0s. Heating i n a sulphur atmosphere w i l l 
increase the concentration of cadmivun vacancies and hence 
the i n t e n s i t y of the e.s.r. l i n e . The sharpening of the 
l i n e at the pos i t i o n of the isolated vacancy l i n e which i s 
observed a f t e r the sulphur treatment can be understood i n 
terms of a r e l a t i v e increase i n the concentration of t r i a d s 
and p a i r s , both of which are expected to produce a sharp 
l i n e i n t h i s positbn. With the present data i t i s impos­
s i b l e to d i s t i n g u i s h which type of centre i s produced. 



The i s o l a t e d vacancy i s ruled out because t h i s would not 
be observable at 4.2°K where i t i s expected to be highly-
saturated. This i s deduced from the conclusions reached 

(27) 
by Harris and Yngvesson from t h e i r measurements of 
spin l a t t i c e r e l a x a t i o n time on Ir^"*" at concentrations 
where t r i a d s and pairs of Ir'''"''" ions were important. They 
found the rel a x a t i o n time f o r the t r i a d s to be shorter 
than f o r the pairs and that f o r the pairs to be shorter 
than f o r the isolated ion. I t was noted that the l i n e A 
began to approach saturation at the maximum output of 
the signal k l y s t r o n (25mW). Since i t i s believed that 
l i n e A i s associated with a quadruplet of cadmium vacancies 
and apparently has quite a long relaxation time, then the 
s p i n - l a t t i c e r e l a x a t i o n time of the isolated vacancy 
should be extremely long possibly of the order of 100's 
of m.secs at 4.2°K and not be observable. This i s not 
unreasonable f o r a point defect centre. I t i s in t e r e s t i n g 
to note that i n CdS:Al and CdS:B specimens, an isot r o p i c 
l i n e gc::2.06 + 0.02 was observed at 77°K. At t h i s temp­
erature t h i s line' was saturated at power levels few m. 
watts and was not observed at 4.2°K presumably because of 
saturation. 
The o r i g i n of t h i s l i n e i s unknown and i t i s tempting to 
ascribe i t to the isolated vacancy. However more inform-



a t i o n i s required before any i d e n t i f i c a t i o n can be made. 
The simplest system that can cause the narrow l i n e which 
appears a f t e r heat treatment i n a sulphur atmosjihere i s 
the pa i r of cadmium vacancies. Whatever the centre i s , 
i t must be unstable as i t was noticed that the sharp 
l i n e decayed i n i n t e n s i t y a f t e r the sample was l e f t at 
300°K f o r a few days. The p o s s i b i l i t i e s are that the pair 
dissociate i n t o isolated vacancies which cannot be observed, 
or that they associate to form higher clusters and add to 
the broad l i n e A.A s i m i l a r s i t u a t i o n occurs i n s i l v e r 
bromide where the 'sub image', which consists of two Ag"*" 
ions at nearby kinfe s i t e s , i s unstable. The pair of Ag"*" 
ions migrate to form an Ag"̂ ^ complex which i s the stable 
'latent image' i n the photographic process which occurs 
i n s i l v e r bromide. 

Following heat treatment i n a cadmium atmosphere the 
i n t e n s i t y of l i n e A i s reduced and no new components can 
be detected. The heating i s expected to reduce the con­
centration of cadmium vacancies. Since cadmium pairs are 
thought to be unstable the treatment would not be expected 
to increase t h e i r concentration at the expense of the 
higher clusters. Thus the decrease i n the i n t e n s i t y of 
l i n e A i s expected on the vacancy cluster model and the 
non-appearance of the sharp l i n e i s not surprising. 
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An experiment was performed to attempt to determine 
whether the width of the l i n e A was stress dependent as 
suggested i n the discussion of the proposed model. An 
^ undoped sample was given an un i a x i a l stress of approx-
imately 200 Kgm/cm while the e.s.r. was investigated at 
4.2°K. The l i n e width between the maximum slope positions 
was found to have increased by approximately 15%. This 
suggests that the random i n t e r n a l strains can undoubtedly 
contribute to the l i n e broadening and that the applied 
stress i s considera>Afyless than the i n t e r n a l ones and so 
adds to these and increases the l i n e width. 
Our samples appear to be highly stressed. I t has been 
reported that CdS single crystals fracture at stresses 
of approximately lOOOKgm/cm \ whereas our samples 
were found to fractu r e at about 300-500Kgm/cm . This 
lends f u r t h e r support to the postulate of l i n e broadening 
by s t r a i n modulation of the zero f i e l d s p l i t t i n g s of the 
spin states. Obviously, however, more quantitative., 
measurements of t h i s type on a va r i e t y of samples are 
required. 
The conclusions derived here concerning the nature of the 
centres responsible f o r l i n e A are i n q u a l i t a t i v e agreement 
wi t h those obtained by Cowell and Woodŝ '̂̂  from t h e i r work 



on thermally stimulated currents and I.R. emission i n 
CdS. They concluded that the centres responsible f o r 
the 1.6/1.85 micron I.R. emission band (see section 2-3.4) 
l i e about 0.7eV above the valence band and are i d e n t i c a l 
w i t h the photoconductivity s e n s i t i s i n g centres. Various 
arguments were used to deduce that the centres were wholly 
or p a r t l y composed of a number of cadmium vacancies. They 
showed that electron trapping centres 0.63eV and 0.85eV 
below the conduction band were most prominent i n samples 
heated i n 15-30 atmospheres of sulphur vapour and probably 
consist of various forms of cadmium vacancy. Further i t 
was demonstrated that two 0.85eV traps disappear under 
i l l u m i n a t i o n at temperatures i n excess of 350°K to form 
one 0.63eV trap . Heat treatment at 380°K i n the dark con­
verts a l l the 0.63eV traps i n sulphur r i c h crystals to 
0.65eV traps. Thus they concluded that the 0.63eV trap 
consists of at least two cadmium vacancies and can be 
converted i n some crystals to the s e n s i t i s i n g centres by 
a photochemical process. I t follows, therefore, that these 
l a t t e r centres are a more complex association of cadmium 
vacancies. I n addition the 0.63eV traps can be created 
from the 0.85eV traps which are either single cadmium 
vacancies or pairs of cadmium and sulphur vacancies. 



Clearly the s e n s i t i s i n g centres can be i d e n t i f i e d with 
the centres responsible f o r the broad l i n e A, which has 
been ascribed here to quadruplets of cadmium vacancies. 
The narrow e.s.r. l i n e observed i n sulphur r i c h crystals 
can be i d e n t i f i e d w i t h the 0.63eV trap which has been 
ascribed to pairs of cadmium vacancies from the two 
independent measurements. The gradual decay of t h i s 
l i n e at 300°K can be ascribed to the dissociation of 
0.63eV traps i n t o those at 0.85eV which Cowell and Woods 
observed as a rapid process when the sample was heated 
to 380°K i n the dark. Clearly a series of experiments 
should be carried out to measure the thermally stimulated 
current, I.R. luminescence and e.s.r. spectra of the same 
samples to determine whether the centres observed i n the 
three measurements are i n f a c t i d e n t i c a l as the present 
evidence suggests. 
7-4.6 Conclusions 
The e.s.r. measurements f o r the l i n e A have been discussed 
i n terms of two models, one an association of cadmium 
vacancies and donor impurity and the other an association 
of cadmium vacancies only. The e.s.r. data i s best des­
cribed by the l a t t e r model, which i s also supported by 
independent measurements of thermally stimulated current 
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and I.R. luminescence spectra. However a good deal more 
experimental evidence i s required before the explanation 
offered can be regarded as conclusive. 
7-5 Resonance l i n e B 
The nature of the centre responsible f o r t h i s resonance 
l i n e i s l i t t l e understood at the present time. As we 
saw i n section (7-2) there i s no cor r e l a t i o n between i t s 
occurrence i n the e.s.r. spectra and the other properties 
of the samples measured i n t h i s laboratory. I t i s u n l i k e l y 
that the l i n e i s due to. an impurity ion since there i s 
no agreement with the published work on the e.s.r. of 
commonly occurring impurity ions i n CdS. 
The resonance l i n e B i s observed as a shoulder on the 
broad l i n e A with ĝ ^ = 2.00 + 0.^01 and = 1.99 + 0.01. 
I t always seems to appear when l i n e D i s observed, but 
i t s i n t e n s i t y i s not related to that of l i n e D. The 
samples R9 and R l l grown i n a high sulphur vapour pressure 
('--20m.m.) did not show the l i n e B but on the other hand 
i t s i n t e n s i t y was not reduced by heating samples i n which 
i t occurred at 700°C i n 30-40 atmospheres pressure of 
sulphur vapour. This seems to suggest that the centre i s 
a complex consisting of both sulphur and cadmium vacancies, 
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The g-value i s i n d i c a t i v e of an electron t r a p . Conse­
quently the centre might be associated with one of the 
deep electron traps, with levels between 0.2eV and l.OeV 
below the conduction band, observed by thermally stim­
ulated current measurements. See, f o r example, references 
(29) and (30) and section 2-3.3. The l i n e B was completely 
unaffected by i r r a d i a t i o n w i th l i g h t of any wavelength 
while the sample was maintained at 4.2°K. 
The e.s.r. data at present i s i n s u f f i c i e n t to allow any 
d e f i n i t e conclusions concerning the nature of the centre 
responsible f o r the l i n e to be reached. I t i s hoped that 
the thermally stimulated current measurements, which i t 
i s planned to make on these samples, w i l l confirm whether 
the centre i s an electron trap or not. 
When the samples which show:i l i n e B were cooled from 300°K 
to 4.2°K imder continuous i l l u m i n a t i o n with l i g h t of photon 
energy greater than the band gap, a new resonance l i n e , 
which we s h a l l designate B', was observed. (The normal 
procedxire was to cool the samples i n the dark). This l i n e 
B' was very close to B and was approximately the same 
i n t e n s i t y so that i t also appeared as a shoulder on the 
broad l i n e A. The value of ĝ ^ f o r B' was exactly the same 
as f o r B and the two could not be resolved with tfe«-
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the magnetic f i e l d orientated along the crystallograph\c 
c-axis. As the magnetic f i e l d was moved o f f the c-axis 
the two li n e s could be resolved and with the magnetic 
f i e l d perpendicular to the c-axis the new l i n e B' was 
approximately 2 gauss higher i n f i e l d than B. The new 
l i n e could only be produced when the specimens were 
illuminated continuously from 300°K to 77°K. I f the 
i l l u m i n a t i o n was not carried out u n t i l the samples had 
cooled to 77°K, the l i n e was not produced. I f the 
specimens i n which the l i n e B' v/as observed v/ere warmed 
from 4.2°K to 300°K and receded to 4.2°K i n the dark, 
the l i n e disappeared. 
A s i m i l a r behaviour has been observed by several workers, 
f o r example, references (29) and (30), i n carrying out 
thermally stimulated current measurements. I t i s found 
that c e r t a i n traps can be produced photochemically at 
the expense of others by i r r a d i a t i o n of the sample with 
v/hite l i g h t at or above room temperature. Also certain 
traps have a repulsive b a r r i e r around them and can only 
be f i l l e d by i r r a d i a t i o n above a certain temperature, 
which l i e s somewhere between 77°K and 3.00°K. . Thus l i n e 
B' may be associated with such a trapping centre and i t 
i s hoped that the thermally stimulated current measure­
ments planned v / i l l confirm t h i s i d e n t i f i c a t i o n . 



7-6 Resonance l i n e C 
The l i n e G was observed i n samples R9, R11,^R29 and 
G.P.O. 17A35. The nature of the centre responsible f o r 
t h i s l i n e i s not known. A l l the samples which showed 

-4 -1 
t h i s l i n e had a high n-type conductivity'-'lO mho.cm 
Conductivity of samples R9 and R l l did not change on 
cooling from 300°K to 4.2°K, which suggests that con­
duction proceeds v i a a band of overlapping donor levels. 
I n R29 and G.P.O. 17A35 there was an order of magnitude 
decrease i n the conductivity on cooling to 4.2°K. But 
i n these specimens the donor resonance l i n e D was detected 
and t h i s decrease i s probably due to trapping of donor 
electrons, so that at 4.2°K the donor band conductivity 
dominates. However i t i s not understood why these samples 
should have a large concentration of donor centres, 
especially since R9 and R l l were grown i n high sulphur 
vapour pressure (-̂  20Torr) which i s expected to suppress 
the concentrations of those l a t t i c e defects which behave 
as donors. There i s no evidence to suggest the incor­
poration of large concentration of donors impurity ions 
i n these samples. 
The four samples also exh i b i t rather d i f f e r e n t edge 
luminescence spectra from the t y p i c a l spectrum shown i n 
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Fig. (7-5). R9 and R l l show only one exciton, which 
(2) 

i s believed to be I ^ , an exciton bound to a neutral 
acceptor, and edge emission i s of low i n t e n s i t y and shifted 
from the p o s i t i o n of the X and Y series i n Fig. (7-5). 
Consequently, i t i s thought that i n these samples the 
acceptor l e v e l normally responsible f o r the edge emission 
i s not present and a new acceptor centre has been formed. 
This would explain the non-appearance of the exciton I ^ , 
the appearance of exciton I ^ and the s h i f t i n the edge 
emission peaks. The resonance l i n e C might be due to the 
new acceptor centre. Samples R29 and G.P.O. 17A35 exhibit 
a s l i g h t l y d i f f e r e n t luminescence spectrum. I n both cases 
I ^ and a large exciton which i s thought to be a super­
p o s i t i o n of I2 and I ^ was observed. (The resolution of 
the o p t i c a l spectrometer i s i n s u f f i c i e n t to resolve the 
two l i n e s separately). I-j^ was of much lower i n t e n s i t y 
compared wi t h the spectrum shown i n Fig. (7-5). The edge 
emission displayed the series X. These features can be 
understood i f there are comparable concentrations of 
the usual acceptor and the new one but that the edge 
emission proceeds dominantly v i a the usual acceptor 
l e v e l s . I n t h i s case the edge luminescence series X i s 
to be expected since there i s a large concentration of 



shallow donor levels as indicated by the observation of 
the resonance l i n e D and the exciton I 2 . Unfortunately 
these observations give no i n d i c a t i o n of the nature of 
the new acceptor centre which appears i n these four samples 
As indicated above, the resonance l i n e C might be asso­
ciated w i t h the new acceptor which gives r i s e to the 
exciton I ^ i n the luminescence spectra. Since i t occurs 
i n samples R9 and R l l which were grown i n a high sulphur 
vapour pressure, the centre responsible may be associated 
with i n t e r s t i t i a l sulphur atoms or with cadmium vacancies. 
But no model can be envisaged at the present time which 
explains the extremely asjsmmetric shape of the l i n e , 
see Pig. (7-3). 
I n samples R29 and G.P.O. 17A35 there i s evidence from 
the e.s.r. measurements of charge transfer between the 
centres responsible f o r l i n e A and those associated with 
l i n e C ( c . f . the change transfer between the centres 
responsible f o r l i n e A and the shallow donor levels 
responsible f o r l i n e D discussed i n section (7-4.1)). 
The r e l a t i v e i n t e n s i t i e s of the two l i n e s was i n i t i a l l y 
unaffected by i r r a d i a t i o n w i th l i g h t of photon energy 
greater than the band gap and with l i g h t of wavelength 
0.6 micron to 0.9 micron. ( I t was found impossible to 
measure the absolute i n t e n s i t i e s of the l i n e s a f t e r each 
i r r a d i a t i o n , because the change i n sample r e s i s t i v i t y 



caused by the i r r a d i a t i o n was s u f f i c i e n t to require 
r e - s t a b i l i s a t i o n of the spectrometer and i t was not 
possible to ensure that the o v e r a l l spectrometer 
s e n s i t i v i t y was i d e n t i c a l each time). However, 
i r r a d i a t i o n with I.R. i l l u m i n a t i o n of wavelength 
greater than one micron reduced the i n t e n s i t y of l i n e 
A r e l a t i v e to l i n e C. Subsequent i r r a d i a t i o n with l i g h t 
of photon energy greater than the band gap or with red 
l i g h t of wavelength 0.6 to 0.9 microns approximately re­
e s t a b l i s h the i n i t i a l i n t e n s i t y r a t i o of the two l i n e s . 
So f a r only q u a n t i t a t i v e observations have been made 
but they indicate a d i r e c t charge transfer between the 
two centres. More detailed measurements may reveal a 
more complex transfer mechanism involving other centres, 
since at the present time the d i r e c t charge transfer 
cannot be understood i n terms of a simple band picture 
i n v o l v i n g only two acceptor levels and a set of shallow 
donor l e v e l s . There i s no evidence to suggest that there 
are any other levels in.the forbidden gap. 
I n view of t h i s uncertainty the p o s s i b i l i t y that the 
broad l i n e C i s associated with donor centres responsible 
f o r the proposed donor band conductivity mechanism cannot 
be ruled out. The electrons i n t h i s band w i l l be very 
delocalised and i t would be inappropriate to consider 



the resonance absorption of an electron localised 
at one donor s i t e . Instead a c o l l e c t i v e absorption 
process with the electrons considered as one u n i t forming 
a plasma would be more relevant. Absorptions of t h i s 
type are referred to as magneto-plasma resonances. 
Cyclotron resonance of the c a r r i e r s i s u n l i k e l y since 
the r e s i s t i v i t y of the samples indicates t h a t the density 
of c a r r i e r s i s too high to observe the cyclotron resonance 
but i s possibly s u f f i c i e n t l y high to observe the magneto-
plasma resonance (see below). 
Calculations predicting the characteristics of magneto-
plasma resonances are complex and depend c r i t i c a l l y on 
the shape of the specimen considered. Consequently they 
have only been attempted f o r specimens with p a r t i c u l a r 
geometries and containing c a r r i e r s which have a single 
i s o t r o p i c mass. The reader i s referred to the review 
a r t i c l e of Lax and Mavroides^^"^^ However the predicted 
plasma resonance frequencies are often i n error by as 
much as an order of magnitude. The plasma frequently 
(^p) i n a semiconductor which i s disc shaped and of a 
thickness which i s less than the r . f . skin depth i s 

(32) 
given by ': -

= L-Me^ (7-13) 



where N i s the c a r r i e r density, L i s a geometric 
depolarisation f a c t o r (analogous to demagnetisation 
f a c t o r i n ferromagnetism) and >: i s the d i e l e c t r i c sus­
c e p t i b i l i t y . Thus we see that the plasma frequency i s 
dependent on c a r r i e r density and sample geometry. I n 
CdS the plasma frequency becomes comparable to x-band 
frequencies at c a r r i e r densities of the order of 10 cm ^. 
Despite the fac t the samples e x h i b i t i n g the resonance l i n e 
C are of i r r e g u l a r shape and the ef f e c t i v e mass of the 
ca r r i e r s i s unknown, since they are contained i n a band 
composed of overlapping donor lev e l s , a measurement of the 
c a r r i e r density at 4.2°K would be a useful guide to the 
v a l i d i t y or otherwise of t h i s i n t e r p r e t a t i o n of the 
resonance absorption l i n e C. 

(•2,2) 

The magneto-plasma resonances observed i n Ge and Si^"^ ^ 
and InSb^^^^ are broad,typically of the order of 1 to 2 
kgauss h a l f width and are asymmetric peaks. Clearly then 
t h i s type of magneto-plasma resonance might be expected 
to give a broad asymmetric absorption peak of the form 
exhibited by the resonance l i n e . There are, however, 
several objections to t h i s i n t e r p r e t a t i o n . The four 
samples showing the l i n e C. R9, R l l , R29 and G.P.O.17A35 
are of d i f f e r e n t shapes and i t i s u n l i k e l y that they have 



i d e n t i c a l values of c a r r i e r density and yet the resonance 
l i n e C i s of the same shape and occurs at the same value 
of magnetic f i e l d i n each sample. The apparent charge 
tr a n s f e r between the centres responsible f o r l i n e A and 
the proposed band of donor levels giving r i s e to the 
absorption peak C i s d i f f i c u l t to understand since t h i s 
would be expected to change the shape and position of 
l i n e C, unless the charge transferred i s negl i g i b l e to 
c a r r i e r density i n the donor band. Clearly more quan­
t i t a t i v e measurements concerning the exact shape and 
po s i t i o n and the changes i n the spectrum on i r r a d i a t i o n 
with l i g h t are required before any d e f i n i t e conclusions 
can be reached. 
Thus i t can be seen that from the presently available 
e.s.r. data no d e f i n i t e model f o r the nature of the 
absorption process responsible f o r the resonance l i n e 
C can be given. However i t i s hoped that the tentative 
suggestions given above w i l l provide the basis f o r future 
i n v e s t i g a t i o n s . 
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CHAPTER 8 

CONCLUSIONS 

B - l Summary 

I t has been c l e a r l y demonstrated t h a t e l e c t r o n s p i n 

resonance techniques provide a u s e f u l t o o l f o r studying 

the d e f e c t centres i n cadmium sulphide.At the present 

time the technique has not provided evidence to enable 

d e f i n i t e models f o r the' defect 'complexes to be d e t e r ­

mined unambiguously but s e v e r a l working models f o r f u r t h e r 

i n v e s t i g a t i o n have been proposed.lt i s suggested that 

the c r i t e r i o n f o r adopting a p a r t i c u l a r model f o r a 

d e f e c t c e n t r e i s . i t ' s a b i l i t y to d e s c r i b e a l l the exper­

i m e n t a l l y observed data e.g. e l e c t r o n s p i n resonance 

s p e c t r a , t h e r m a l l y s t i m u l a t e d c u r r e n t s , luminescence 

s p e c t r a e t c . more adequately than.any other. Consequently 

attempts have been made to c o r r e l a t e the e l e c t r o n spin 

resonance r e s u l t s as f a r as p o s s i b l e with other prop­

e r t i e s of the samples measured i n t h i s laboratory.The 

work re p o r t e d i n t h i s t h e s i s hass been concentrated on 

undoped s i n g l e c r y s t a l boules of cadmium sulphide grown 

h e r e . E l e c t r o n s p i n resonance s p e c t r a have been obtained 

which cannot be e x p l a i n e d i n terms of i s o l a t e d impurity 

ions i n the l a t t i c e . T h e f a c t t h a t the s p e c t r a cannot be 

r e l a t e d to the i m p u r i t y content and are u n a f f e c t e d by 

doping w i t h v a r i o u s donor ions suggests t h a t the resonance 



l i n e s are a s s o c i a t e d with i n t r i n s i c l a t t i c e defects.The 

c e n t r e s r e s p o n s i b l e f o r the resonance l i n e s have been 

shown to be r e s p o n s i b l e f o r many of the e l e c t r i c a l and opti­

c a l p r o p e r t i e s of the samples s i n c e the occurrence of 

the resonance l i n e s can be r e l a t e d to the r e s i s t i v i t y 

and luminescence spectra.The e l e c t r o n s p i n resonance 

s p e c t r a suggest t h a t there are four paramagnetic de f e c t 

c e n t r e s present i n the CdS samples investigated.Only one 

of these c e n t r e s occurs i n every sample.It i s proposed that 

t h i s i s a c l a s s 2 acceptor c e n t r e which i s r e s p o n s i b l e 

f o r the photoconductive s e n s i t i s a t i o n . a n d i s a l s o an 

I.R. recombination centre i n GdS.The shape and g-value 

of the resonance l i n e a s s o c i a t e d with t h i s centre have 

been adequately d e s c r i b e d i n terms of a centre c o n s i s t i n g 

of a quadruplet of exchange coupled cadmium v a c a n c i e s . 

I t i s suggested t h a t heat treatment i n sulphur vapour 

f a v o u r s the formation of p a i r s of a s s o c i a t e d cadmium 

v a c a n c i e s but thes e r a p i d l y e i t h e r d i s s o c i a t e i n t o cad­

mium v a c a n c i e s or a s s o c i a t e to form more c l a s s 2 c e n t r e s . 

One of the paramagnetic c e n t r e s has been shown to be a 

shallow donor c e n t r e g i v i n g r i s e to a l e v e l ̂ —̂ 0.05eV 
beiow the conduction band.The nature of the donor s i t e 



cannot be determined from the resonance spectrum.However 

i t i s probably a sulphur vacancy.The nature of the c e n t r e s 

r e s p o n s i b l e f o r the other resonance l i n e s observed i s 

not understood.lt i s proposed t h a t one of the l i n e s be 

a s c r i b e d to a deep l y i n g t r a p w i t h an energy l e v e l some­

where between 0.1eV and 1.0eV below the conduction band. 

Two resonance p r o c e s s e s have been t e n t a t i v e l y proposed 

to e x p l a i n the f i n a l resonance l i n e . I t i s suggested t h a t 

e i t h e r ( a ) the e l e c t r o n s p i n resonance of an acceptor 

c e n t r e which i s only found"in CdS grown i n a high sulphur 

vapour pressure or (b) the magneto-plasma resonance 

a t t r i b u t e d to e l e c t r o n s f r e e to move. i n a band of over­

l a p p i n g donor l e v e l s i s r e s p o n s i b l e f o r the line.Work 

has been reported on the e l e c t r o n spin resonance of the 

group 3 ions B.,A1.,Ga.,In. and T l . i n . C d S . I t i s con­

cluded t h a t a l l the ions behave as donor c e n t r e s g i v i n g 

r i s e t o l e v e l s below the conduction band the depth of 

which follov/s the s e r i e s Ga. < I n . < T l . A l . B.Where 

Ga g i v e s a l e v e l O.OJeV below the conduction band and B. 

one approximately 0.1eV below the conduction band.As the 

donor depth i n c r e a s e s the bound e l e c t r o n i s i n a l e s s 

d e - l o c a l i s e d o r b i t from t h a t f o r the Ga. i o n . T h i s i s 

e v i d e n t i n the s h i f t of g-values from 1.8 f o r the Ga. ion 



towards 2.002 f o r the other ions.Also the s p i n - l a t t i c e 

r e l a x a t i o n time i n c r e a s e s as the donor depth i n c r e a s e s . 

Both these observations i n d i c a t e that the trapped e l e c t r o n 

a c q u i r e s more s - c h a r a c t e r as the depth of the dehor 

l e v e l i n c r e a s e s . l t i s suggested that a c o n t i n u a t i o n of the 

work on l a r g e r s i n g l e c r y s t a l s w i l l e v e n t u a l l y lead to a 

complete understanding of the method of i n c o r p o r a t i o n 

of the group 5 donor impurity ions i n CdS. 

8-2 Suggestions f o r future work 

C l e a r l y a good d e a l of information v ; i l l be obtained by 

r e p e a t i n g many of the measurements de s c r i b e d i n t h i s 

t h e s i s i n a more q u a l i t a t i v e and d e t a i l e d manner i n the 

l i g h t of the proposed models f o r the d e f e c t centres.These 

measurements should a l s o be extended to a l a r g e r range 

of samples as they are grovm i n t h i s l a b o r a t o r y . I n a d d i t i o n 

s e v e r a l experiments can be c a r r i e d out to t ^ s t the prop­

osed models :-

1) Measurements of the H a l l e f f e c t , t h e r m a l l y stimulated 

c u r r e n t s p e c t r a and the I.R. luminescence s p e c t r a of the 

samples i n v e s t i g a t e d i n the work described i n t h i s t h e s i s . 

T h i s should provide information to a s c e r t a i n v/hether 

the i d e n t i f i c a t i o n of the c e n t r e s r e s p o n s i b l e f o r l i n e A 

as c l a s s 2 acceptor c e n t r e s i s c o r r e c t and whether i t i s 



c o r r e c t to a t t r i b u t e the l i n e B to deep e l e c t r o n t r a p s . I t 

may a l s o provide information about the c e n t r e s r e s p o n s i b l e 

f o r l i n e s C and D. 

2) A more c a r e f u l study of the e f f e c t s of heat treatment 

on the e . s . r . s p e c t r a and on the measurements o u t l i n e d i n 

1) above should .lead.to a b e t t e r understanding of the 

atomic composition of the defect c e n t r e s . 

3) A complete i n v e s t i g a t i o n of doped s i n g l e c r y s t a l s of 

CdS should enable one to determine v/hether i m p u r i t i e s are 

important i n the composition of the defect c e n t r e s and i f 

the c o n c e n t r a t i o n of the d e f e c t s i s c o n t r o l l e d by the 

impurity content. 

4) An i n c r e a s e i n s e n s i t i v i t y of the microwave spectrometer 

would enable the measurements o u t l i n e d above to be made 

more acc u r a t e l y . T h e s i m p l e s t way of i n c r e a s i n g the s e n s i t ­

i v i t y would be to use b e t t e r q u a l i t y microwave k l y s t r o n s 

and both I.P . and A.P. a m p l i f i e r s .The p o s s i b i l i t y of using 

phase s e n s i t i v e d e t e c t i o n at the I . F . frequency i n s t e a d of 

simple diode d e t e c t i o n could a l s o be i n v e s t i g a t e d . 

5) A study of the changes i n the e . s . r . spectrum using 

monochromatic l i g h t would probably l e a d to a determination 

of the p o s i t i o n of the energy l e v e l s of the paramagnetic 

c e n t r e s i n the forbidden gap. 
6) The l a r g e width of l i n e A has been a t t r i b u t e d to 



c o n t i n u o u s l y v a r i a b l e s t r e s s e s a c r o s s the samples.A d e t a i l e d 

study of the width and shape of l i n e A under a p p l i e d 

s t r e s s may v e r i f y t h i s s u g g e s t i o n . A s ' i n d i c a t e d i n 

chapter p r e l i m i n a r y experiments suggest that t h i s i s 

the case. 

C l e a r l y the r e s u l t s of r e s e a r c h on these l i n e s w i l l 

suggest f u r t h e r experiments, and i t i s hoped that even­

t u a l l y an unambiguous determination of the nature of the 

d e f e c t c e n t r e s r e s p o n s i b l e f o r determining the p r o p e r t i e s 

of CdS w i l l emerge.If t h i s i s achieved the e l e c t r o n s p i n 

resonance technique can be used to monitor the concent­

r a t i o n s and types of d e f e c t c e n t r e s present i n CdS samples. 

T h i s approach should prove very u s e f u l i n e v a l u a t i n g 

d i f f e r e n t growth methods and i n i n t e r p r e t i n g other prop­

e r t i e s of the m a t e r i a l . 


