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The excitabtion of atomic hydropen by electron and probon hipact is
examined. Som2 of the avallable theoretical wethods are discussed, in
particular the methods of the Liet and scecond Born approximaiion, the close
coupling approximztion and the Glauber wpproximation sre outlined. The
close coupling approzimablon is presenbed in both the wave arnd impact
parameter formulations. The neglect of the continuum states in the eipen-
function expansion of the close OPupllﬂp method is shiown £o be unsatis-
factory and the nethods of including the cffects of these sizfes described.
The relationship between the two forms of close coupling approximation is
explored via the eilonal approximation, and the SGlauber approximction is
showi To De a solubion of a set of close coupled cguaticons where ail states
are approvimately included. A close coupling approxwimation that includes
some eipenstates explicitly and the rest)including the contiruum stetes,

eproximately is presented. The method is applied in the impact parameter
approximation to electron and proton collisions with hydrogzen. Results are
presanted for the ls-Zs and the 1s-2p excitation cross secticns and are com
pared with the availsble experimentel cross sections. This comparison 1s
inconclusive and suggestions are made Tor further work. Conparison with
other theoretical predictions sugpest that the effects of charge transfer
on the direct excitation process are not allowed for despite the inclusion

of the continuuna states
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Preiuee

In this work we investippto electron and proton souttering

Py

by atomic hydrogen using a socond order close coupling approxims
ion. The melthod ds mplied to the interuwsdiate enccgy range whore
the second order Lzrms are thoupht to be important. Part 1
provides o hrdel description of the elemonts of scattering theory
ssential to this worlt, Part TT describes some of the previous
relevant worlk, and in part ITT we report our own work, the results

obtained and their iuplications. 'The results obtained in part IIT

are or will bz nubliched, Bransden et al. (1972), Sullivan et al.
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PART T

1. Time Dependent Scattering Theory

Quantum mechanics is thought to provide an adequate description of the
interaction of charged particles with atoms. In a realistic treatment of
the problem the incident particle should be represented by a wave packet,
constructed from a superposition of eigenstates, to give the necessary
Jocalisations in time and space. The interaction of the particle with the
atoms is then described by the time independent solutions of the Schrédinger
equation. An equivalent approach, in that the same final results are
obtained, is available. The incident particle is assumed to be in an eigen-
state of particular energy and momentum both before and after the collision.
Since this last approach is more straight forward than that utilising wave
packets it is the one presented here.

Let le,to> be the state vector of the system at time € = to in the

Schr¥idinger picture. Then the Schrédinger equation of motion is

ﬁg 1vS, 6> = H|YS,t> (1.1)

The Hamiltonian, H, may be decomposed into an unperturbed part Ho, whose
eigenfunctions and eigenvalues are in principle known, and a perturbation
V. A state vector in the interaction picture may now be defined

iH t

o

¥ 6> = e Nk (1.2)

Substituting equation (1.2) into the Schr8dinger equation we obtain the

equation of motion in the interaction picture

C lw t> = V(t) lw t> (1.3)
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vhere

iH t -iH t
0]

Vit) =e ©° Ve (1.1)

A time development operator, u(t,to) may be defined in the interaction

picture such that

i . i
¥, 6> = u(e,t) |v b2 (1.5)

then using equation (1.2) and

-1 H(t—to)

[¥°,t> = e ¥, > (1.6)

we obtain

it -1 H(e-t) -iHt_ _
u(t,to) = e e e 1.7)

The coerator u(t,to) has the following properties:

) -iH t

u(o,t) = et ¢ O (1.8)
. 'iHOto iH(t-t ) -iHt

w(t,t ) =e e e = u(t ,t) (1.9)

u(t,t") u(t',to) = u(t,to) (1.10)

To investigate a collision problem, a description of the system evolving
from an initial state at t = -= to a final state at t = +o, is required.

The scattering operator is defined as

S = limit u(t,to) (1.11)
t -

tr4o0

such that



i

(¥, 400> = slwi,—m> (1.12)

If there is no interaction at time to then
¢i> (1.13)

where Holwi> = Ei[wi> and [wi> 1s some 1nitial state.
Since

iHOtO S
lb;> = e |¥7,¢ > (1.14)

then comparing this with equation (1.2) we can suppose that
i
IlP »T%> = hbl>

The f:i:al state in the interaction picture will be a superposition of eigen-

states of HO. Tﬁus

i
[¥7 4> = 3 a |y >

n
and
Slwi> =2 Sinlwn>
. n
hence the transition amplitude Sif is given by
S;p = <Up|Sly;> (1.15)
= limit <pp|u(t,0) u(0,t )|v;> (1.16)
t e
ol
ttoo

To evaluate the limits implied by equation (1.16) we adopt a procedure due
to Gell-Marn and Goldberger (1953). The limit of f(t) as t + #» is defined

as



€t' -

limit £(t) = lmit e /O e* © r(t') ag’ (1.17)
b= 0"
and
o - t
limit £(t) = limit ¢ /" e ¢ ¥ £(t') at (1.18)
t>too + 0
e+0
If the Mdller operator is defined as
Q" = 1imit u(0,t) (1.19)
tr—co
then
v sy —iE !
9+|wa> = limit e /° e° bl Gttt o e lp. > at?
o0 a
E»O+
_oas., 1e
= 1]_mit, —————Ea_H+i€ N)a> (1..20)
>0
then
@ lu,> = 19, = Limit g (1 4E-H )|y >
a a N E -H+ie
e+0 a
+_ 1 )
o> =y >+ (E_-ihie) vip > (1.21)

From equation (1.20) it is apparent that (Ea-H)Iw > = 0, thus Iy > is an

eigenstate of H with eigen energy E .

Similarly if @ is defined as the limit u(0,t) and Q Iw Iwa-> then
oo
lw, > = =y >+ g —H—le V|1p (1.22)
a

]
'

and equation (1.16) becomes
Sin = W |, > (1.23)
if £ 'n

It will be seen later that |wf"> and !wi+> satisfy different boundary con-

. : . . ..
ditions. In equations (1.21) and (1.22) the limit e + O is implied.



The scattering matrix element may be written as

= - il ~F 1
Sif Gif oni 6(Ef Ei) Tif (1.2h)

where

. _ N
Lip = <VplV]y; > (1.25)
Tif is a matrix element of the operator T defined such that

Tly> = Vg (1.26)

The transition probability per unit time, denoted by wif, at time t is

. .. 9 . '
W, = limit =& |<¢f]p(b,t0)]wi>|2 (1.27)

t 9~

fl

2ImT,, §..+ 20 G(Ei—Ef)ITi (1.28)

l 2
ii Tif £

The singularity dif in equation (1.28) is removed by considering a transit-
ion to a group of states about E = Ef instead of to a specified final state.
A particular state is characterised by energy E, and momentum vector k. Let
the nunber of states with momentum vectors within d and energies in the

range E to E + dE be p(E) dE dn.

1f Iwi> does not belong to this final set of states W, . becomes

by
Ef+ E
Yie = Je - B Yir p(E) dE 4
- o 2 S
= 2n p(Ef) ]Tifl where E; = E; (1.29)

Box normalisation gives the density of states to be

p(E) = ﬁ;% (1.20)



where E = K2/2u, and y is the reduced mass.

WK,
. - 2 .
. Wep =z ITifI dn (1.31)

wif is the transition probability per unit time for an incident flux of

Ki/u> hence the differential cross section is given by

- u? Kf 2
Q) = 07 Rg ,Tif| (1.32)
and the total cross section Q,
u? Kp 2 2
Q= j—r X, ST pl? AR (a*) (1.33)

The above analysis expresses the total and differential cross sections in
terms of the transition matrix which in turn may be written in terms of the
total wave function. All these quantities however remain undeteruined
except formally;

An iterative expression for the transition matrix can be chtained

allowing an approximate solution to the scattering problem

=
n

+
i = <VelVIv; >

<¢f[V(1+G+V)|¢i> (1.34)

R
T E-H+ie °

Now consider the following identities

where G+

P"l

Q7! + PTI(Q-P) Q™ (1.35)

Q™' + Q7 (Q-P) P! (1.36)

‘ with P

E-H+ie, Q = E - HO + ie. Then




G' =G +G VG (1.37)
A S
where GO = E—HO+ie .
If G on the right hand side of (1.37) is successively replaced by o

given by (1.37), we obtain the series

G = GO+ + GO+ v Go+ + GO+ ' GO+ Vi GO+ ¥ (1.38)
then
Ty @ <wf|V(l_+Go+ V+GO+ ve 't v v
= <Pl V[Y> + <y |V Go+ V> + .. (1.32)

The series obtainedfor the transition matrix element is known as the Born
series. The nth Born approximatic: is obtained by retaining the first n
terms of the series. For example in the first Born approximation Tif

becomes

= l
T]iSf <y V] > (1.10)

More directly T§f can be obtained from Tif by replacing |¢i+> by Iwi>. This
corresponds to the physical situation where the incident particle velocity
is large compared with the velocities of the target particles, then the dis-
tortion of the system due to the interaction may be disregarded in calculat-
ing the scattering amplitudes. Thus the Born amplitude is expected to be
the high energy limit of the Born series. This would be satisfied if the
Born series were a convergent or asymptotic series. There have been no con-
clusive investigations of the convergence properties of the Born series.

If the series is convergent then for lower energies one would expect a

systematic improvement of results as more terms are included in the series.
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Such an approach is impractical since only the first Born term can be

evaluated exactly.

2. The Coordinate Representation

Consider a particle charge z colliding with a hydrogen atom. In
figure (1) the positions of the particles are shown relative to an arbitrary
origin 0. Particles 1,2,3 are the incoming particle, hydrogen nucleus and
the orbital electron respectively. The masses of the particles are denoted
by my, m; and ms, where ms << mj.

The Schr8dinger equation for the collision is

oL g2 _ 1 g2 _ 1 g b, = !
[ om "1 T 2m, 2 T Emy Vet V(fo>131’52):]"fr T By D

The form of equation (2.1) is much simplified when the centre of mass motion
is separated out.

Transform to coordinates given by

(inp+13) Ry! = my Ry + my r,



and

then

L2 1 2 1 2 (my +m; )
Va© 2ms Vs© = 2(my+ms3) Ry * 2Malng r

~

2my
where Rz' is the position vector of the centre of mass of the target atom.
Now transform to the overall centre of mass, R

~C.M.

(m1+m2+m3) R =m R + (mp+m3) Rp'

~C.M.

~

and R' = Ry - Ry’

thus the Schrddinger equation beccmes

_1 o 0 (metmy) o 2 M 2 ' _ -
I: oM VC.M. T T 2mmy e Pm(mprmy) VRt T VRS ‘”-T]"’T =0
(2.2)

where M = my + m, + ms3.

The translational motion of the centre of mass may now be separated out

to give
]V2—1V2+V(R')—E R'.r) = O (2.3)
Tt 2u 'R’ ~ oL v (Rr) = '3
y - _Ipmg _ my (mp+m3)
where w' = o my) @4 W T O g 4mg )

Since for all collisions considered in this work m, >> ms then

u' ~my, R' ~ Rand y = msz hence equation (2.3) becomes
~ m
_k ve2. Ll g2 iymre) -E |y (Ryr) =0 (2.1)
2u R sm; r > ~2

This equation holds for both proton and electron impact though the reduced

mass p will be different.
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The unperturbed Hamiltonian of section I now beccomes

- 2____1__ 2 1
Ho T 2u R M, vr +~T§T

and the interaction potential

V=2 CH—
TRE - TR

The eigenfunction of the unperturbed Hamiltonian is

i K.R .
w.(R,f) =e 7 ¢.(r) (2.5)

The scattering amplitudes may be found by considering the asymptotic

form of the scattering solution given by equations (1.21) and (1.22)

% = > 4 ____._J'_._ > D
N’a > = N’a' + (Ea-Hiie) v I\Pa' 2.6)

and using the identities (1.36) and (1.37)

1 1 1 1
E -Htie ~ E -H *ie * L ~H +ig v E -H+ie 2.7)
a a o a

Ilpai> = Iq)a> + m vV llpa"'> (2.8)

In the co-ordinate representation this becomes

by (Ror) = ¥y (Ror) + S G, (Ryrs B,') VAR',r') vy (Rr') OR' dr'

(2.9)

where

*
G, (R,r; R',r') = <R,r

~ o~
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Inserting a complete set of basis states defined by equation (2.5)
1 K.(B-R')
¢ *(R,r; R',r') = v 5 ¢ (1) ¢ *@') [ K S ggee (2.10)
0 ‘%% L (2n) A (RS T - an—KzilE )

where an = 2u(Ea—En) and the summation over the target states Zn includes
an integration over the continuum target states.

Performing the K integration of equation (2.10) Goi becomes
+i K |R-R'|
n ~ o~

ISR 4@ 6a) (2.11)

O Boms BLr') = -4y 2

e

thus the integral equation becomes

+i K_ |R-R'|
) E(Ryr) = 9 (Ryr) - 22 ¢ (1) f aR' dp? S
Vo (B = 9 (R Ly n L ~ o~ |§—R']
x ¢ *(r') W(R',2') ¥ SR, (2.12)

where u(R,r) = 2u V(R,r).

Now consider the limit of ¢Oi(§,f) as R+ .
If ¢n*(r') is a bound state, then [ dr' ¢n*(§') u(g',f') woi(R',r') is a
rapidly decreasing function of R' for large R'. Thus there is an effective
upper bound on R' outside which there is a negligible contribution to the
integral with respect to 5'. If R gets larger than the upper bound on 5'

we may expand |R-R'| as follows

t A A
|R-R' | =RP—%—(RRW+..J for R >> R!

hence

. 1 St K, R i KR! .

- - - = S, "dp! « T4 7 ! ! ! YT (R !
¥y (R,r) = v (Ryr) - 4= 2 ¢n(f) T J dR'ar' e ¢n(§ Ju(R',r )vo(§ ,r')

R n
+i X|R-R'|

(2.13)
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The third term of this expression arises from the continuum target states
included by equation (2.12) and corresponds to an ionization process where
the bound electron is excited to a continuum state of the tarpget. The first
two terms of equation (2.13) may be written

. #1 K R

1 50.5 n ~

e ¢ () + fig_h—— £ (KK ¢ () (2.14)

this corresponds to a plane wave incident on a target described by ¢ (r)
i K R

being scattered into radial waves-g——ﬁ———— . The positive exponent in

equation (2.14) corresponds to an outgoing radial wave and the negative

exponent to an incoming radial wave. The latter situation is a time revers-

al of the first as would be expected from the initial derivation of lw >.

The scattering amplitude fon(%o’gn) corresponds to initial and final

momenta, 50 and gn respectively and excitation of the target from states O

to n. ‘

oo 1 + gn‘B' , +
TonBoskty) = = T S AR ar' e 60! W2 ¥R x)

(2.15)

The scattering amplitude could be obtained more directly from the transition

matrix element of equation (1.25).
T, = < |V, >
f f 1

In the co-ordinate representation this beccmes

A A

- * 1 1 ! t T 1 1
Ton(go’gn) =7 dB' df' lPn (B >T ) V(E 4 ) Yo (5 39 )
_ -2_11_ A ”~ ~
== £ KK )
Kn
_ ; . ¢ 2
so that Q) = 7 |fon| (2.16)



3. Partial Wave Analysis

Partial wave analysis provides a methcd by which the scattering ampli-
tudes can be calculated. The objective of this method is to convert the
time-independent Schrddinger equation from a partial differential equation
into a set of ordinary differential equations, for which the techniques of
solution are better known.

The asymptotic form of the total wavefunctions is

i K R
+ 1 Ko B
Y (R,r) =+ e ¢,(r) + 1 ———R——— fon(Ko Kn) ¢, (r) (3.1)
R0
The incident plane wave may be expanded as
i K R
e = Z 1 J (KR) Z y* (K) Y (R) (3.2)

Here Jx(KR) is the spherical Bessel function and has the following behavicur

for large arguments

sin(x-4n/2) (3.3)

JR(X) ~ X

X0

The scattering amplitudes may also be expanded in terms of the complete sets

(K ) and Y 1(}:\n) as

2 oM ~©
2m _20—2+1
(15O Kn) =y T(n, %, moan,m)
(KO Kn) oo
2m
x Yy mo(go) Y (En) (3-4)

Since Kn is defined by R in the asymptotic region, the total wavefunctions

may be written as



14,

2 +1 ¢_(r)

+ .0 . n-x
v (R,r) > 2n £ i (K )Y (K )
Roos n zopb 2 m ~0 im'n R(K )?

m

—i(KnR—Qn/E)

% [:6n £ m ,nlm €
ooo

(K R-Y38m)
- s(n_t m [nem) e 1 (3.5)

where T = 6 - §.

This form of the wavefunction shows the incoming radial waves and out-
going scattered radial waves, the amplitudes of the latter being given by
the appropriate S-matrix element. The conservation of the flux of particles
requires that the S-matrix is unitary.

L |stn g m [nim)|? =1 (3.6)
nfm

The wavefunction may also be expanded in a complete set of target states
+
VR = 2 E (R) 6 (1) (3.7)
n ~ ~
substituting in the Schr8dinger equation of the previous section we get
2 2 -~
EVR + Ky ] Fn(lj) - IZT"IFm(B) Vnm(}j) (3.8)

- *
where V. (R) = J ¢ _*(r) V(R,r) ¢ _(r) dr.
Now expanding
2 +1

Fa)

F (R) = 27 z (R) Y o (K ) Y, ( ) (3.9)
n -~ (K K )52 PF ~

lm
where T' = nim,

with the asymptotic conditions



[i —i(KnR—lw/2)
. .(R) - § e - 8 e
FOF Raco FOT FOF

1(KnR—£n/2)

and fFOF(O) =0

and substituting equation (3.9) in (3.8) we would obtain a set of second

order ordinary differential equations for the radial functions T, .(R). If

TT
O .
the summation on the right hand side of equation (3.8) is truncated at m = N
then a set of N differential equations will result. The asymptotic forms
of f}, I,(R) can then be calculated to yield the T-matrix elements.

o

From equation (2.16) the total cross-section is given by

A K ~ A A
_._n 2 2
QK = k% £ (K sK ) (3.10)
using equation (3.9)
Q (ﬁ ) = Bﬂ;- b T(n £ m |nfm) T*(n & 'm '|nfm)
on ‘' ~o K*omg 'm' oo o oo o '
o 000 o
m
*
8 Yz m (Eo) YZ 'm '(go)
oo o o
and averaging over all directions of incidence
- m 2 -
Q, = —(R—OT; zgmo IT(nOzomolnzm)l (3.11)

m
This type of formulation can only be applied to electron collisions since
for proton collisions the partial wave expansion is only slowly convergent
and a large number of cases would have to be considered.
The above analysis has been done in a completely uncoupled represent-
ation of atomic and incident particle states as the basis set. There is
considerable advantage in considering a coupled representation, this is done

in a later section.
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i, Rearrangement Collisions

Our interest in rearrangement collisions here is restricted to their
effects on elastic and excitation cross-sections. Rearrangement includes
the exchange of one electron for the other in the case of the electron
collision, and in the case of a proton collision the capture of the corbital
electron by the incoming proton. This latter process is known as charge
transfer and its effects are dealt with in some detail later.

The exact wavefunction ¢+(§,§) may be expanded in a complete set of
basis states

V' (R,r) = EF () 0,(x) + S aK dy(x) He(®) (4.1)

the integral term is a continuous summation over the continuum states. For
energetically accessible channels the expansion coefficients musgt have che
asymptotic form
i K R

n

e
+ fon(e) —F— (4.2)

iX.R
F(R) » e "9~
n ~

R0 on

To allow for the possibility of electron exchange the wavefunction ¢+(R,r)

must have an additional boundary condition.
iK r
+ e N
v (R,r) > Tg  (8) =—5— ¢ (R) (4.3)
e n ~

It is not obvious how expansion (4.1) can satisfy the boundary conditions

of (U4.3) since from equation (4.1)

VIR > S dK 9 (r) F(R) (4.1)
oo

In general ¢K(r) will be oscillating functions so that

1im ¢ (R,r) = O

Yoo
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However Castillejo et al. (1960) have shouwn, in the special case of elastic
scattering, that FK(B) contain singularities. Integrating around these
singularities yields the correct asymptotic form of w+(R,r) for exchange.
This implies that it is necessary to include the continuum states in expans-
ions such as (4.1) in order to describe the exchange collision process
adequately. The expansion (4.1) with boundary conditions (4.2) and (4.3)

is unique. The exchange boundary condition (4.3) removes the arbitraryness
introduced by the singularities of' FK(B). The singularities may be avoided
by considering an overcomplete expansion

V' (R,r) =29 (1) F_(R) +2 ¢ (R) G (r) (4.5)
n m

and choosing Fn(B) and Gm(g) to be non-singular. The expansion (4.5) then
has the correct boundary conditions Tur large 5 or r since for large R only
the first term will contribute and for large r only the second.

The Pauli exclusion principle requires that the overall wave«function
be antisymmetric with respect to the interchange of the space and spin co-
ordinates of the two electrons. Such a wavefunction can be constructed

since the Hamiltconian is symmetric in R and r. " Thus

v (r,R) (4.6)

+

X (R,r) = v*(R,T)

The function x+ is associated with the singlet spin function, and x with

+
the triplet spin function. X has the following asymptotic form
1K R

+ i Kn'R e D
R > 1 [ e s, v ) Sp g | @

The combination of spin states of the two electrons to give spin wave-
functions of definite symmetry shows that the scattering is divided three
to one between triplet and singlet modes so that for random spin orientat-

ions the differential cross section becomes
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K
- 3 2
Ton(® = x_ C% lt-el? + U |e4gl?]] (4.8)
. +
From equation (4.6) X~ may be expanded as

fmm)=i%q>%@)ti%@)%Q) (4.9)

+
then x~ has the appropriate symmetry properties and F and G may be chosen

to be continuous giving the correct boundary conditions in the limit of

large R or r.
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PART IT

In the first part we reviewed the necessary elements of scattefing
theory. In this part the theory is applied and some existing calculations
described. Since any calculations performed can only be done in a manner
such that they only approximate the exact theory then we seek to isolate the
components of the exact theory that are necessary for a satisfactory approx-
imate theory. There have been a great many different attempts to describe
electron and proton collisions with hydrogen. Here we only describe a few

of these, selected because of their relevance to our own work.

5. The First Born Approximation

The importance of this approximation is in the belief that it is the
high ecergy 1imit of the exact gquantal solution to the scattering problem.
Its other advantage is that it is relatively simple to evaluate compared
with other approximations.

The transition matrix element for the first Born approximation is given

by equation (1.40)

B
Tif = <lj)f|V|¢li>
i(K,-K).R ... . K
= fardre T V@RE) 04 450 51
now consider the momentum transfer p = Ki - Kf, then since by Bethes integral
we have
1p-R . i é.f

e g
=

then the matrix element becomes, for i # f

ip.r
1R e T ) 0 () ar (5.2)
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v represents the charpe of the incoming particle and is +1.
The total cross section may be written in terms of momentum transfer

50 that

B_ 1 Pmax Bia 2
T I 75 pl* P op (na,?) (5.3)

“The major contribution to the integral of (5.3) comes from the region

P~ hernice we mazy approximate % ~ @,

P .
min?

Conservation of energy gives

2 g2 -
Ki Kf = 2u AE

where AE is the change in energy of the target. Thus

P?2 =K.2+K2-2K. XK
1 I 1

Fhadst

f

1
2 _ - 2_ ; /2
2 K;* - 2u AE - 2 K, (K, >~2u AE)

-2
# fofs)

thus P . > %E .
mn ., gt

Pmax and Pmin are thus independent of particle mass. Hence the Born
approximation suggests that in the high velocity limit the cross sections
for electron and proton excitation of hydrogen are the same. This result

is not confined to the case of hydrogen atoms but holds for any atomic
target. Measurements of excitation cross sections for helium using protons
and electrons appear to support this conclusion, though we have to rely on
the velocity dependence of the cross sections instead of absolute magnitudes,
Thomas and Bent (1967). It would be more satisfactory if agreement between

the two cross sections could be observed above some velocity thereby indic~

ating the renge of validity of the first Born approximation.
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Born approximation calculations for electron collisions are reviewed
by Petertop and Veldre (1966). In general it can be said that the total
Born cross sections agree with experimental cross-sections above ten times
the threshold energy of a particular transition. Bates and Griffing (1953)
first applied the Born approximation to the excitation of the 2s and 2p
levels of hydrogen by proton impact. Results for this process are included

in figures (4) and (6).

6. The Second Born Approximation

A simplified second Born approximation has been.evaluated for electron
and proton scattering by Holt and Moiseiwitsch (1968). Their method is a
combination of methods used by other workers Massey aind Mohr (1934) and
Kingston et al. (1860 a,b).

The transition matrix element corresponding to the second Born approx-

imatinn may be written using equation (1.39) as

Bz _ 7.1 4+ 1,2 (6.1)

Tif T Tif if

where
. i(Ki—K ).R
Tjp=/e Ve (R) dR
and
o _ +
T = <|pflv G, v|¢i> ' '
. i , i K |R-R!
1 1(§i.§ gf.g ) R

:mifd}jdlj'e ——I_ﬁ—'—]——

x Vo (R)) V. (R) (6.2)
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- 1. 1 :
Vo = 2 1 4@ [ § - gy ] o) ar

But
i X |R-R'| i q.(R-R")
e - . 1 e T~
= 1lim J : dg
1! 3 AT
Iy |5 R [ 00 (o) g°-K°-ie =
and
i K.R! .
& G =T g (Bethes integral)
[‘i“TT“ n' =gz e hes integra
then if
2 _ 2
Tif =7 Tn (6.3)
n
we have
I(f,n,q-K.) Tin,i,K.-q) dg
T, = lim% I = ;-Ez) (g-K );1(;1"K )2 (6.4)
0 n < ~f a1
where

i s.r

1
In,mys) = J ¢ *(r) ¢ (r) [e - 1] dr

The summation of equation (6.3) may be performed by utilising an approximat-
ion due to Massey and Mohr (1934) i.e. set Kn = Ki for all n and use the
closure relation to remove the infinite sum. Holt and Moiseiwitsch retain
the first N terms of (6.3) exactly and then for n > N+1 Kn is replaced by
K and the summation from N+1 extending over the continuum states is done

N+1
by closure. Thus

T.2 = TZN = TZN + X T2N+1’n

ri=N+1.

(6.5)

The total cross section for the i + f transition is given by
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W

f |T.

o
u
:1'.\:

|2 d
il if

___]._l__ Kf +]_ lT

o d(cos0)
i

el

, K
w —i 1 |T L+,

~ 5r d(cos8)

iel”
Retaining only the terms that include up to third order terms in the
potential v we have

K T.2

2
U f .+l m 1|2
I 1 |T ir | (1+2 Re 7

Qi ~ o o ] d(cos8) (6.6)
1if 27 Ki if

The integrals arising from equation (6.4) are in general extremely
complicated. However considerable simplification is possible if the real
part of the forward scattering amplitude is evaluated. Then it is possible
to compare the effects of including and omitting the continuum stal:es for
N up to N = 100. Table T shows the results of Holt and Moiseiwitsch for

Ki = 2 a.u. and for 6 = 0.

Table I
N Re T,N | Re T,V
850 | 1.791
1.053 | 1.796
10 1.085 | 1.797
100 1.096 | 1.798

The convergence of TzN for increasing N is quite good, N = 5 being
satisfactory, however the convergence is much improved by including all

states even if most are only included by the closure approximation. The
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discrepancy between the limits of Re TZN and Re TZN for large N shows the
importance of including the contribution from the continuum.

The approximation (6.5) has been applied to electron collisions for the
1s-1s, 1s-2s and ls-2p processes. In the case of the elastic collision the
second Born approximations gives cross sections higher than those of the
first Born approximations, reasonable agreement between the two being
attained for v ~ 5 a.u.. For the excitation cross sections agreement bex
tween first and second Born approximations is achieved for v > 3 a.u. For
proton collisions the first Born approximation seriously underestimates the
2s excitation cross section in comparison with the second Born approximat-
ion. The discrepancy is such that agreement is not reached until the proton
energy exceeds 300 KEV. The reason for the difference is the strong long
range 2s-2p coupling that is included by the second Born approvimation. The
1s-2p transition cross sections are in quite good agreement for ec-~rgies
above 200 KEV. The comparison of the first and second Born approximations
in this manner affords no definite indication as to the reliability of the

first Born approximation.

7. The Close Coupling Approximation

In this approach to the scattering problem the techniques of partial
wave analysis are applied using a coupled representation. This leads to a
set of second order ordinary integro-differential equations that may be
solved in a truncated eigenfunction expansion approximation. Such a proced-
ure is only applicable to the electron scattering problem. The electron
co-ordinates are defined as ry and ra relative to the centre of mass, in
this case the hydrogen atom nucleus.

The quantum nunbers identifying the collision channel are specified by

H,X,U,E,msL,M



where niy ~ identify the target atomic state

2in ~ the orbital angular momentum and its z-component of the
scattered electron

and L,M - the total angular momentum and its z-component

L must obey the triangular relation

[2 - 2] sLg o+

The possibility of exchange scattering is included by explicitly symmetris-
ing the approximate wave-function used.

Eigenfunctions of total angular momentum may be constructed

Yr(?1>§2) ='—jF;"f" Z t(X,2,L; u,m,M) qu(?z) Yﬂ,m(?l) (7.1)
m, J
. ]Jnx (rZ )
where the target eigenfunction ¢n(r2) == qu(?Z) and

T(A,2,L; u,m,M) are Clebsh-Gordan coefficients defined in Rose (1957). The
symbol T' represents the quantum numbers nALlM, and PO represents the incid-
ent channel quantum nunbers, Po = nOAOQOLM. The total wave-function for a

given incident charmel T' is

o}
EI'I'O(rl ) FFPO(I‘z)
Yo (r1,r2) = I —— v, (P1,r2) = I Yy (f2,r1)
To>7~ n,4,A 3 I= ntAn 2 I="%
(7.2)
The asymptotic form of the radial functions may be assumed to be
1 —i (K r~-m/ )
Fop () » )72 e e 02
o 1> o
i(K r-2n/,)
s, e T 27 (7.3)

rr
o

We require to find the scattering amplitudes in terms of the scattering
matrix element S The total wavefunction wK has the asymptotic form

rre
o ¢



iK .m o Ky
U, (m,r2) =+ e 777 ¢ (r)) 4 T S—m—mfF ¢ () (7.14)
KO ~UURT e o'~ n r on 'n~
iK.r
But e may be expanded as
i Ko.l"1 . R'O
~ ~ - . . % b
e =Yg L 17, (K, r1) X Yk n (EO) Y n (B1) (7.5)
Q,O—O o] m "o

and from equation (7.1) using the orthogonality properties of Clebsch-

Gordan coefficients

Y (®) ¢ (r2) = 2 (A & Lyu m M)y, (f1,r2) (7.6)
zomo.. o'~? LM o "o o o o'~ >~

Using results (7.6) and (7.5) the incident wave in (7.4) becomes

iKo.l"l .Q,
e "7 ¢ (ro) = Un I i © (K ry) Y * (K)T()\SZ,LumM)( \u,rz)
0. 2 m <o I‘
LM oo
R,OmO
Q,O-l A
+ 2r & 1 Y. * (K)-(A_ & Loy m M) vy, (£,r2)
Py LM £0m0~o 0 © 0O © Po” ~
2 m
00
i(K I"]"'Q, 'ﬂ'/) "i(K ri-% 'ﬂ'/)
X 7= 1le ° 0 2 _e 00O 02]<77)
o 11

The total wavefunction may be expanded as

IPK ({’1,52) = X B(Q, ]n P ) YQ, m (}50) wr (El ,E’Z)
o) LM o]

£ m
00

Using equation (7.2) and the asymptotic form of FI‘ I tpK becomes
o o

(K) b YI.(I‘l,l"z)

Y, (r1,r2) > I B(IL m F)Y
Ko~’" ry;oe L M 2o ~0" nga
£ m
oo
--1(K r-4 7w/ ) i(Kn r -4 n/e)
X K /’z [ or 1 e VS ]

(7.8)
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Comparing the incident waves of (7.7) and (7.8) i.e. compare the coeffic-

~ —i(Ko rl-zo w/.)
jents of Yo*o (Eo) Yr (fr,ra) e , we get
oo o
- . 2 ' '
B(!LO m FO) = 21 i (KO) T(Ao % L,uo m M) (7.9)
thus
( ) , 2.1 A Yp (1,r2)
], > 21 I i ™A _ 2 L m M) Y* (K I
uJKO 12 - LM ( o “o Mo Mo ) lomb(~o) i~ T
Zc;n
~i(K r-2 n/.) i(K -2 /)
X ————;L——r— § e I 2" . S..e I 2
2 rr Irr
(Ko Kn) o)

(7.10)

The total wavefunction wK may be decomposed into two parts, the incident
o

Jav scab 1w - is giver quation (7.7).

wave wINC and the scabtered wave wSCAT Yoo 18 glven by equation (7.7

Hence combining equations (7.7) and (7.10) we get

ik r
20~z L
Ysoar = 7T L):M ! T 2o Lovig My M) nix vpBire) =
L m
(o] o]
*
. Ylomo(go)
X . A E‘Sr r 5p p] (7.11)
(I\O Kn) o

Comparing this with the asymptotic form of the scattered wave, equation

(7.4), the scattering amplitude becomes

£ -2
fon =2mi I -——i—g——pr (A 20 L,uo m_ M) (A 2 L,umM)
LM (K K)? °© °©
£ m
00
£,m

*
X Yprn (K)) Yo (KD Tp ¢
O 0 O

(7.12)

where T = § - S.

When this expression is compared with scattering amplitude defined in the

uncoupled representation, equation (3.4), the relation between the two
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representations is such that
T(n, &, m[n £ m) = ﬁM Ay £ Loug mg M) t(A & Lyp m M)

X Tpp (7.13)
(o]

where the quantum nunbers n, and n in the expression T(nO RO mo[n 2 m)
implicitly contain Ao My and Au respectively.

The expression for the total cross section is then given by equation
(3.11). Using the orthogonality conditions of the Clebsch-Gordan coeffic-
ients and averaging over the Ho states we have

Tr .
SRR S (2L+1) |T, .]? (7.14)
Qnoko+nk (2AO+1) ho L,Q,KO r l

Here we have assumed that TF T is independent of M, the z~component of total

angular momentum. This must be so since the physics of the collision is
independent of the axes used to describe it.

The equations satisfied by the radial function F are derivec by

rr
o
substituting the expansion (7.2) into the Schrédinger equation. This yields

@ 8(k+1) 2
dn? Tz Ky Fror (r1)

= 2u f dPy dre Yr*(91,rz) V(ri,r2) L F, 11,(1'1) YP,(f'l,I‘z)
I“l

t2ur S dr1 dry Yp* (fl,Pz) Z [:H (Pz) + V(Pz,P1) -E-EB '
I"

F ]n(I’z)

X -—J%F;——*— YF,(?Z,Ex) (7.15)

Equation (7.15) has the more compact form, Burke (1969)

g(g+1) g e —
-2 ¥ nz_J Fpplm) =2 LV 2 Wpp ] Fp pe(m)

“dll ry?



where VPF' and wrr, are defired bhelow, wrr, being an intepral operator.

- ' - -l- Y ) .
Vrre ® 2“[ mr S S S T B VGt e fa(”“’“”’L)]:

(7.17)

and

_ AL @ f v, LT - ;
wfr' = 2u (-1) aEO fa(kﬁ >ATAL) [:[:En F Env EZ] 6ao A(unx’FPOP')

T prle) | ) (7.18)

where y (A,B|r1) = JO dr, A(rz) B(rz) q (ri,rp)

o, atl
M /rs ™M €T

qa(I‘l »T2)

o, o+l
v, /1) rs £

Ul i
£, OLA25L) = (Tal[l')" 5 t(A L LoumM) T(A' &' Lyu' m' M)
1]

mu!
B X f dgl YQJ’T](?]' ) Y2|m| (?1 ) YG.B(?I )

and A(A,B) is the overlap integral

f: dr A(r) B(r)

Equations (7.16) are solved numerically the number of states included in the
initial expansion being truncated for some n = N. This yields S-matrix
elements that are variationally of 'second-corder accuracy'.

The close coupling equations have been solved by several workers.
Burke, Shey and Smith (1963) calculated cross sections in the energy range
11 » 54.4 eV, including only the 1s, 2s and 2p states in the expansion (7.2).

The agreement of these results with the experimental results of Hils et al.
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(1966), Stebbings et al. (1960) and Lichten and Shulty (1959) is poor in
this overall energy range. 'This is possibly due to the limited number of
states included in the approximate wavefunction. Burke et al. (1967) nave
solved the close coupling equations retaining only the 1s,2s,2p,3d and 3p
states in the energy range 10-12.5 eV. The results of these calculations
show the effects of resonances associated with the n = 2 and n = 3 threshold
energies on the total cross sections. The fact that the 1ls, 2s and 2p cal-
culation does not give the resonance for the n = 3 threshold indicates the
importance of including at least all the open channels fér a particular
energy in the approximate wavefunction.

The problem of convergence of close coupled calculations has been
investigated by Burke and Shey (1962). They calculated the s-wave phase
shift for 1,2,3,5 and © state wavefunctions. Their results are displzyed

in table (2).

Table (2)
INCLUDED STATES K? = 0.55 K? = 0.60
1s .700 .670
1s-2s 7135 L7121
1s-2s-2p .785 71
1s-2s-2p~3s .789 7T
1s-2s-2p-3s-3p .798 781

The convergence of the phase shifts is obviously poor particularly
since the obvious region of application of close coupling calculations is
in the range considered in table (2). A reason for this slow convergence

is not hard to find. Castilejo et al. (1960) show that for electron
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hydrogen collisions the 2p state contributes only 66% of the ground state
polarisation while all bound states contribute 81.4% and the continuum
states contribute the remainder. This means that the long range polarisat-
ion potential is poorly represented in a close coupled approximation that
only includes a small riumber of target states. Hence such a method must be
inaccurate when the polarisation potential is important. Polarisation
effects may be included in the close coupling approximation by including
extra terms in the initial expansion that account for part of the optical
potential. The optical potential may be defined in the following way,
initially due to Feshbach (1962).

Consider the projection operators P and Q, such that P + Q = I and

PQ = QP = 0. The Schr8dinger equation may be written as

P(H-E) (P+Q)p = 0 (7.19a)

and Q(H-E) (P+Q)y

"
O

(7.19b)
from equation (7.19b) we have
W = -Q mrers QHPY
- Q(H-E)Q
and hence (7.19a) becomes
P(H—PHQ'QTH%ETQ QHP—EJ Py = O
The close coupling equation may be written as

P(H-E) Pp = O

Hence the terms omitted by the close coupling approximation are

= - S
Vept = = PH grimyg OF (7.20)
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Vopt thus represents the effects of the terms omitted from the close coupled
expansion. Part of the optical potential can be included by writing the
wavefunction, neglecting symnetry properties, as

Y(ri,r2) = 51 Fn(l:l) ¢n(£'1) + E oy x(r1,r2) (7.21)

the first summation corresponds to Py and the second to Q. A variational
principle applied to a trial function of this type gives the usual set of
close caupled equations coupled to a set of linear equations arising from
the variation of the a; coefficients. This procedure has been applied by
Taylor and Burke (1967) who include the 1ls, 2s and ép states exactly and
twenty extra terms. The calculations were done in the energy range
10-11.5 eV. Good agreement is reached between this calculation and the
previous 1s-2s-2p and 1ls-2s-2p-3s-3p close coupling calculations. This
implies that the close coupling approximation is reliable beneath the thres-
hold of the first omitted channel.

A comparison of these three calculations and the experimental results
of Litchen and Shulty (1959) is made by Burke, Taylor and Ormonde (1967).
The 2p cross sections in the energy range 10-11.8 eV agree well with the
experimental cross sections for the 1s-2p transition, the normalisation
being consistent with the Born approximation results at high energies. The
2s cross sections, however, are almost a factor of 2 higher than the experi-
mental cross sections norma}ised to the first Born results at 300 eV. Re-
normalisation of the 2s experimental results produces good agreement with
all three calculations. This conflict of high and low energy data for the
2s cross sections remains unresclved. However Damburg and Propin (1972)
have solved the close coupling approximation for a model interaction; re-~
taining only the 1s-2p and 2s-2p coupling. The resulting equations are

solved exactly and compared with the Born approximation; cbtained by neglect-
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ing the 2s-2p coupling in the same model. Their results for the 2p excitat-
ion total cross section show that the coupling between channels of -fixed
total angular momentum increases with an increase in the incident electron
energy and that consequently the close coupling result tends to the Born
result more slowly than expected. Such an effect on the 2s transition cross
section is likely to be relatively larger since the 1s-2s transition is not
optically allowed. The discrepancy between the two results lends support
to the conjectures of Burke et al. (1967) and Geltman and Burke (1970) that
the normalization of 2s and 2p experimental. data to the Born approximation
at 300 eV is unsatisfactory.

When the incident energy is above the threshold energy of the first
omitted state the effects of the omitted states can be included
by expanding the total wavefunction in a Jdiscrete set of ctates that are not
target eigenfunctions. This so called Sturmian expansion was first suggest-
ed by Rotenberg (1962). The Sturmian functions Tnku may be written

.1 ,
N COREEINCORANCS (7.22)

where the radial part satisfies

o A
[ S+ - 20D T s ) = e 5,0 (7.23)

-4 i . . .o . . ]
€ = )2 and oo 18 the required eigenvalue. With this choice of € the

'lowest' eigenfunction for S _, coincides with the lowest radial hydrogenic

ni
eigenfunction Moy - By making the transformation x = o, T it can be seen
that each higher Sturmian function is related to a corresponding hydrogenic

function by

(o, 1) (7.24)
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vhere a , = n/(+1).

Since n 2 X + 1, a > 1 the higher Sturmian functions are more com-
pact than the corresponding hydrogenic functions. The Sturmian eigen-
functions are all denumerable, there is no continuum. Thus a finite number
of Sturmian functions may partly represent the continuum states of the
hydrogen atom.

The possible improvement afforded by the use of Sturmian functions is
achieved at the expense of the simplicity of the asymptotic boundary con-
ditions.

Burke and Shey (1962) suggested an expansion in functions similar to
the Sturmian functions. Neglecting symmetry the total wavefunction may be

written

1—. (1"1) 1-1 I"(ll)
1,;‘ \I‘],T")) = I __.O.r__ Yr(rlsrz) + 2
T r

T Ry, (B1,12) (7.25)

where T'' represents the quantum nuiners n'$'A'LM and
an}\r(r'z)
R[,,(f‘l,l"z) = ““'—r—‘“——' z T()\',Q,'L, m'u'M)
~oo 2 M'U'

zvvp(f'l) Y |(?2) (7.26)

The functions th(r) are constructed to be normalised to unity and orthogon-
al to each other and to the hydrogen radial functions “nl(r) for the same
angular momentum guantum numbers. Apart from this the functions th(r) are

arbitrary but have the following boundary conditions.

V. (r) » M for small r
ni
+ 0 for large r
" The coefficients FF r and GF I satisly a set of coupled integro-different-
0 ]

ial equations whose form is similar to equation (7.16) when exchange is
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allowed for. If only one I and one G function is retained in the initial

expansion the equation satisfied by F S has the asymptotic form

1

[ a2 2 a
[;a;r + K¢ + ;12} Fls(r) =0 (7.27)

where a is a function that depends on th(r) and o /r* represents the polar-
ization potential. Damburg and Karule (1967) show that the correct polar-

izability can be achieved if V is chosen to be

Vo = (2r2+r3) e © (7.28)

12

8l

Burke et al. (1969) utilise this pseudo state in a 1s-2s-2p calculation.
The 2p state being the péeudo state given in equation (7.28). The addition
of a 2s hydrogenic state will not affect the long range behaviour in the 1s
channel since the 1ls-2s coupling is short range only. Hence the nclarizat-
ion potential is correctly described in this calculation. The results
obtained show considerable improvement over those of previous close coupled
calculations when compared to the variational calculation of Swartz (1961).
The method of pseudo state expansions has been applied to electron
scattering in the energy range 16-54 eV, Burke and Webb (1970). The expans-
ion includes the 1s, 2s and 2p hydrogenic states exactly and two pseudo
states,_ig andliﬁ. The pseudo states are chosen so as to have approximately
the same range as the 2s and 2p atomic eigenstates, and also so that their
threshold energies coincide with each other and with the ionisation thres-
hold. The 2s and 2p cross sections calculated show surprisingly good agree-
ment with experiment, see figures (9,11). The normalisation of the experi-
ments are however still in doubt so that this agreement may be fortuitous.
The convergence of this method at these energies has still to be investigat-

ed but 1s expected to be good.
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In sunmary the close coupling method appears to be adequate where the
incident energy is below the threshold energy of the [irst omitted state.
Above these energies it is important to include the effects of omitted

bound and continuum states.

8. The Impact Parameter Approximation

The impact parameter method assumes a rectilinear trajectory for the
incident particle. The interaction of the incident particle with the
target may then be treated as a time dependent perturbation and the result-
ing ordinary differential equations solved accordingly. The assumption of
a rectilinear trajectory implies that the incoming particle is distinguish-
able from the target particles so that the effects of electron exchange for
electron collisions and of nuclear identity for proton collisions are
neglected.

The Schrddinger equation may te written
Ll g2 2 _ _
[ 51 VRS e V2 VR E:l ¥(R,r) = O (8.1)

u is the reduced mass of the incident particle and the co-ordinates are

defined in figure (2).

Lv - e
B i~
> La Figure (2)
A

Equation (8.1) is readily deduced from equation (2.3) on the interchange of
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particles 1 and 3 and relabelling of the co-ordinates. Following a proced-

ure due to Wilets and Wallace (1968) we can write

y = IHVZ v (8.2)

and assuming E ~ ¥, uV2, equation (8.1) becomes
-t v 2-ivd 4 HE,R) | W(r,R) =0 (8.3)
20 R a7 e ~7~ ‘

where H(r,R) = ~-Y% VI,2 + V(R,rb).

2
R

associated with the motion of the particle perpendicular to the projectile

Equation (8.3) may be solved by neglecting the components of V

velocity. This is equivalent to assuming R = p + Z, vwhere p is a vector in

the X-Y plane perpendicular to the Z direction. Then ve have
1 32 v 2
[- L 2, - avd v uE, r):l b(r,R) = (6.4)

The standard impact parameter equation of motion is obtained by considering
the 1limit as p + «» while the projectile velocity remains finite. Then

equation (8.4) becomes

[ V— + H(R r)] ¥(r,R) = (8.5)

writing Z = Vt where V is the velocity of the incident particle we have

~ ~ ~

£ W(R,r) = H(r,R) Y(R,r) (8.6)

where R = p + Vt.

~ ~

The electron Hamiltonian H(r,R) may be written as

H(r,R) = H) o+ V(R,r, )

~ o~



where

1

- 1 2
Ho—- /2Vl" +-[?-T

~ ~

and V(R r ) = 1——1- ]Tﬂ’ m 1s the charge of the incoming particle, *1. HO

describes the unperturbed target electron and the target eigenfunctions are

solutions of

Ho ¢, (1" ,0) =1 & ¢n(fat) (8.7)

—iant
where ¢n(§a,t) = ¢n(fa) e ,

and. o is the eigenenergy of the nth target state. The total wavefunction
may be expanded in a complete set of target states

-io t
v, Ror) =2 a (t) ¢ (r)e ° (8.8)
S

here the summation includes an integration over the continuum target states.
The probability that the target will be in the meh state after a collision

is then given by lanm(+°°)|2 and the total cross section for excitation from

the nth to mth state is given by

Q= 2 f: la ()% pdp (ma_?) (8.9)

McCarrol and Salin (1966) have shown that this result is equivalent to the

exact quantum theory result under the following conditions:

K. >> 1
i

1
K, ~ Ko >> (2u AE) o (8.10)

f
cos™! (gi.gf) << 1

where hl and K, are the relative momenta of the scattered particle and

~f

target nuclei when the target atom is in its initial and final states
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respectively. AE is the inelasticity of the collision. The conditions of
(8.10) are well satisfied {or proton impact for encrgies above 1 KEV. Tor
electron impact above 20 eV the conditions are at best only marginally
satisfied. The usefulness of the impact parameter approximation for treat-
ing electron collisions is discussed in section (9).

Substituting the expansion (8.8) in the equation of motion (8.6) we

obtain an infinite set of coupled differential equations

3 i(OLm--Ots)t
i 5% anm(t) = I ans(t) Vms(t) e (8.11)
S
where
Von(®) = 1 47 VD) b,(r,) ar

A solution may be attempted by retsining only a few of the terms of the
summation. The impact parameter Born approximation, or I.P.B., is obtained

by retaining the elastic amplitude only. 1i.e.

ans(t) " O
then
. il -o )t
1 anm(t) = Vﬁn(t) e
and
i(o_~a )t!
ey . s L ' m n '
a (t) = -1/ V. _(t')e at' + 8 (8.12)

The equivalence of (8.12) and the wave treatment Born approximation has been
shown by Moiseiwitsch (1966). This author also shows the equivalence of
successive terms of the Born series in the two approaches.

The distortion approximation of Bates (1959) allows explicitly for the

final state. Equation (8.11) is approximated to



i anrn(t) - aﬂl’l(t) an(t) ¢ "o * arun(t) Vl’llIl(t)

ifa ~a )t

1

4o,

(8.13)

In the weak perturbation approximation we have ahs(t) =0 for n # s, thus

hence

. 2 Y X .t . m n
ia (t)= Vo (6) exp[_- 17 2 V(1) at' ] e

an(®) = eo[-i /5 v (&) as]

i(o_~o )t

- ahm(t) Vﬁm(t)

now transforming am to Com such that

we have

i
thus

c
where

en®) = 2 () exp[[3 S5 v (67) ap']]

. i(am—an)t t
e (£) =V_(t)e exp[ -1 /2, (V_(t")

t i(am'—an')t'
- - 1 - 1 1
(8 =8 -~ 1S, Vot e dt

LI t ' 1
o =oa S Vnn(t ) dt

-V
mm

(8.14)

(8.15)

(£')) at' ]

(8.16)

Equation (8.16) has the same form as the I.P.B. approximation, but the

energy levels of the target have been perturbed by the incoming particle.

More complex approximatioris to the initial set of equations (8.11) have to

be solved numerically, but since they include more coupling terms than the

I.P.B. or distortion approximations, they are thought to describe the

collision p

rocess more exactly.

One such approximation is due to Flannery
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(1969). In this work equations (8.11) were truncated so that only the
1s,23,2po,2pil states were retained. The four resulting coupled different-
ial equations were then solved numerically. The results of this work are
discussed at the end of this section.

For a proton hydrogen collision there is always the possibility of a
rearrangement collision, where the electron forms a bound state with the
incoming proton; particle B in figure (2). In principle this type of
process is included by the eigenfunction expansion (8.8) in particular by
the contiruum states of this expansion. Castilejo et al. (1960) have shown
that the coefficients of the states above the ionization threshold contain
singularities. However it is these continuum states that are reguired to
describe the rearrangement channels. No procedures have been developed to
deal with these singularities. The problems associated with the singular-
ities are avoided if a truncated eigenfunction expansion is considered.
This leaves us with a new problem in how to describe rearrangement collis-
ions. One obvious way is to project out from the approximate wavefunction
the final rearranged state. We shall see that this is unsatisfactory since
it allows ambiguities in the final expression for the rearrangement ampli-
tudes.

The rearranged eigenfunction is given by ¢n(§b,t) such that

: -iB t
¢ (r,t) =6 (r)e (8.17)
where Bn are the rearranged eigenenergles.

The Schr8dinger equation is, in the impact parameter approximation for

proton collisions

-y g2 i 1 1 -1 8 .
[: 72 Vr ¥ r, ¥ Ty R:] w(5>2) =13t W(ﬁsi) (8.18)
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The total wavefunction may be expanded in a complete set of rearranged
states.
-ig t
b Br) =2b ¢ (r)e 1 (8.19)

n ~
q q 'q

then substituting in the Schr8dinger equation we obtain

, i(g ~B )t
ip (t) = é b (E) V) e T (8.20)
where in this case qu(t) =Jar ¢m*(1:b) V(;:b,lj) ¢q(£°b)’ but
i, (6) =/ dr ¢ *(x) V(r,,R) v (R,r)
= Za (6) far g *(m) Vin,R) ¢ (r) (8.21)

q

Since ¢n(§b) and ¢m(§a) arc not orthogonal then bgm(t) is dependent upon the
internuclear potential. This is contradictory to the initial assumptions
of rectilinear trajectories for the incoming particle, since within this
assunption no choice of internuclear potential can affect the cross section.
This difficulty is overcome by considering a two centred expansion, first
suggested by Bates (1958).

v(R,r) = i ah(t) ¢n(fa,t) + i bm(t) ¢m(§b,t) (8.22)

where the initial channel index has now been dropped. This expansion is
overcomplete, but has the advantage of producing rearrangement amplitudes
that are independent of the internuclear potential, to within a phase factor.
This property is retained when the n and m summations are truncated, provided
all coupling terms implied by (8.22) are retained.

The expansion (8.22) takes no explicit account of the relative collid-
ing velocities of the incident particle with the target particles. In order

that capture may take place the electron must acquire the same linear
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velocity as the incoming proton. The larger this velocity is,the greater
its affect will be on the capture cross sections. This velocity dependence
may be included by considering a two centred expansion in travelling orbit-
als i.e. bound state wavefunctions with an overall translational movement
included. Such wavefunctions were first introduced by Bates and McCarroi

(1958) and have the form

6n(fa’t) = ¢n(fa,t) exp[_- ipvz - Y% i p*vit_] (8.23)
and
o (Eb,t) = ¢n(§b,t) exp[igvz + % i @®v¥t_]

where the target nucleus has the velocity -pv relative to the origin and
the incident proton has velocity qv relative to the origin. The uantities

p and q are defined by figure (3). The origin O divides the internuclear

<=
e

'g?

o Figure (3)

line R in the ratio p:q such that p + g = 1. Using the following results

o
¢
o

and



Ly,

zZ-vt=zz ~2z-pvt =z

a -z +qut =0

b

then it can be shown that én(ra t) satisfies

,b’
[HO -1 -g-t-:l 3 (r,t) = V(r,R) §_(r,t) (8.24)

so that $n(r,t) are eigenfunctions of the unperturbed Hamiltonian and can

be used as a basis for an eigenfunction expansion. Bates and McCarrol (1958)
have shown this result to be indepdendent of the origin O so if we assume

O to coincide with the centre of gravity then p = q = % and

¥(r,R) = ;zl a (t) ¢ (r,,t) + z b (t) ¢ (r, ,t) (8.25)

Substituting (8.25) into the Schrddinger equation and utilising the result

(8.24) it may be seen that

- . ~1(B_-a )t
i L_an(t) + b (8) s (t)e
m
-i(B -0 )t -i{a -0, )t
=xb ()R _(8)e ™ 7 4 ;:l a (£) P _(t)e ™ h
" (8.25)
and
. . ~1(a -8 )t_
i [b (8) +2a (t) s (t)e
n
-i(o -8B )& -i(B_-B_)t
- n m n m
= ﬁ an(t) an(t) e + ﬁ bn(t) Tmn(t) e
where
ivz

Snm(t)=f ¢n*(1:a) ¢m(rb) e dr

~

s (6) = £ ¢ *(r) ¢ () &% ar

~



Ran(8) = /0" (2) VO, 0(x) €Y% ar
an(t) = J ¢n*(§a) V(E’a,~R) d’rn(f'a) dr
() = 7 47 (x) VB 0, () &1V ar
T (©) = S 0" (1) V(5,10 0, (zy) ar

If in equation (8.26) charge exchange is neglected by considering bn(t) and
5n(t) = O the equations reduce to those obtained in the single centred ex=
pansion case and also contain no reference to the relative velocity of the
incident particle and target. The effects of including the velocity factors
can be seen in the matrix elements of (8.26). When the velocity is large
the exp(zivz) factors produce rapid oscillations in the integrands giving
cancelabion that reduces the size of the various couplings. 'This effect
has:.been explored quantitatively by McDowell and Coleman (1970), they con-
sider a two state approximation i.c¢. retaining only the ground state of the
target and of the rearranged atom, and evaluate the charge transfer ampli-

tudes in the high velocity limit for the process

P + H(ls) >~ H(1s) + P

The work was further simplified by assuming a weak perturbation approximat-
ion. In the case where the velocity factors were included the charge trans-

fer probability ng was found to be

3 -
Pio(o) - S PV (8.27)

Voo v

whereas in the case where the velocity factors were omitted

0 2 pd -2p o
P.olp) - —F&e (8.28)

V-0
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Equations (8.27) and (8.28) give the following behaviour for the total cross

sections
ij >3 V-.l2 (8.29)
and Qg = v (8.0)

The high velocity behaviours of these charge transfer cross sections are
significantly different. Comparison with experiment, in the energy range
up to 250 KeV shows that (8.29) is close to the experimental behaviour but
that (8.30) is in error, Witthower et al. (1966).

Calculations of direct and charge transfer excitation cross sections
for proton hydrogen collisions using the two centre expansion (8.25) have
been carried out by Wilets and Gallaher (1966). They retained the 1s, 2s,
2po and 2pil states of both target and rearranged atom. The results cbtain-
ed are shown to be in error, particularly at low energies, by Cheshire et
al. (1970) who repeated the calculation. A comparison of direct excitation
cross sections calculated using a two centre expansion with those calculated
using a single centred expansion, Flannery (1969) shows the important effect
the rearrangement channels have on direct excitation cross sections. The
results of our own four state single centre calculations and the results of
the two centre calculations of Cheshire are shown in table (3). The two
sets of results are in reasonable agreement for energies above 100 KEV,
showing that the effects of charge exchange on direct excitation can only

be neglected above this energy.
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ENERGY 1s - 2s is - 2p
(KEV) a b a b
10 3.58(-1)| 1.15(-1)| 2.96(-1)| 1.78(-1)
15 5.98(-1)| 1.51(-1)| 5.91(-1)| 1.28(-1)
20 6.59(-1)| 1.21(-1){ 8.36(-1){. 2.04(-1)
25 6.29(-1)| 1.27(-1)] 1.01 3.86(-1)
30 5.89(-1)] 1.40(-1)| 1.11 5.32(-1)
4o 4.84(-1){ 1.79(-1)| 1.22 7.76(-1)
60 3.28(-1)] 1.95(-1)| 1.22 9.32(-1)
100 1.85(-1)] 1.54(-1)] 1.04 9.68(-1)
300 4.89(-2)| 4.83(-1)| 5.53(-1)| 5.61(-1)

Table 3. Excitation cross sections in units of (vaoz)
(a) Single centred U-state expansion.
(b) Wilets and Gal‘uner (1966) corrected by
Cheshire et al. (1970).

In their original calculations Wilets and Gallaher (1966) attempted to
check the convergence of the eight state calculation by comaring a few
results with those obtained using a sixteen state calculation. 1In this
calculation all states up to the 3pil level were retained for both centres.
This difference between the two calculations is small. This is interpreted
as evidence that the convergence of the initial comparison is slow and that
the continuum states must also be taken into account. This is particularly
evident if we require that the united atom limit, corresponding to R=0
and ry = Ty is well represented by the approximate wavefunction. In the
work of Wilets and Gallaher (1966) the ground state wavefunctions of the He'
atom were expanded in a complete set of hydrogen wavefunctions. The over-
lap probability with the ground state was found to be 0.70, and with all the

bound states 0.76. This leaves 0.24 for the continuum states, and indicates
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the relative importance of including the effects of continuum states in an
eigenfunction expansion.

In an attempt to represent the continuum states Gallaher and Wilets
(1967) expanded the total wavefunction in a Sturmian basis set. Further
work, Gallaher and Wilets (1968) showed that this basis also had poor con-
vergence properties. Cheshire et al. (1970) attempt to account for the
effects of the continuum states by considering a pseudo state expansion.
The 1s, 2s and 2p hydrogenic states were retained exactly and pseudo s,
S21 states were also added. The pseudo states were chosen so that the He+
1s, 2s and 2p states were well represented by the approximate wavefunctions.
In fact the over%@p probabilities of the approximate wavefunction with the
He+ states were 0.997, 0.996 and 0.966 respectively.

A comparision of the gbove calculations with available experimental
data ror both direct and charge exchange excitation cross sections shows the
pseudo state method of Cheshire et al. to have the closest agreement.
However this agreement is not conclusive since there is still discrepancies
between experiment and thecry. As yet no work has been reported that in-
vestigates the convergence of the pseudo state method.

The implications of the above is clear. In order to calculate satis-
Tactory direct excitation cross sections it is necessary to allow for the
charge exchange process and in the case of eigenfunction expansions to allow
for the effects of the omitted continuum states. At best the inclusion of
the continuum states of the target should implicitly allow for the charge

exchange process.

9. The Eikonal Approximation and Glauber Theory

Direct excitation collision can be treated approximately by assuming
a semi-classical formulation of the operator equation (2.6). This is the

Eikonal approximation, Byron (1971) has shown how this can lead to a semi-
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classical close coupling approximation, equivalent to an impact paraneter
treatment yet comparable the close coupling approximation of Burke et al.
(1963). 1If a complete set of target eigenstates is included in the close
coupling approximation the expression obtained for the scattering ampli-
tudes is identical to that dérived.by Franco (1966) in the the Glauber
approximation. The significance of this work is that the Glauber approxi-
mation can then be placed in context with the work of previous sections.

The conditions for the validity of the Glauber approximation are

K. a > 1
i 0
and E, > v (9.1)
a /_\E/vi << 1 (9.2)

where AE is a typical energy difference between eigenstates of the target.
The conditions expressed in equation (9.1) are those usually demanded by the
Eikonal approximation and that of equation (9.2) is required to derive the
usual form of the Glauber scattering amplitudes from the semi-classical close
coupling approximation. In particular Ki a > 1 implies that the incident
particle wavelength is much smaller than the typical potential width ays 2
is the first Bohr radius and is equal to one in atomic units, and E >> v
implies that the incident particle energy is much greater than an average
interaction potential. Under these conditions scattering will be mainly in
the forward direction and the momentum transfer correspondingly small when
compared with the incident particle momentum. These conditions are well
satisfied for proton impact of energy where 1 KEV. For electron impact the
conditions are at best only marginally satisfied. The validity of the
eikonal approximation for electron scattering is examined heuristically

later.



The total wavefunction for the collision satisfies the integral

equation
i Ki.R +
Y (Ryr) =e ™ "¢ (r) + S G [RrRr") V(R',r') ¢ (R',r') dR' dr!
n'->~ n'- n ‘=~ s’ - 2% n'~ . ~ =
(9.3)
where
. -i K.(R'-R)
+ 2u e ~ T 7
G (R r,R'r') = v=5 % ¢ *(r') ¢ (r) J dK
n '~ s (2n) m = m'~ ~ 2 o
m 21 (en—em) +Ki2 i +1€:]
- x 1 2t
= rfn O (r') ¢,,(r) gn(lj R',m) (9.4)
and
-i K.{R'-R)

gn(g R',m) = —(g?—;)-; J X (9.5)

[:2u(€n—cm)+Ki2—K2+iE:]

U is the reduced mass for the collision. The exact wavefunction may be

expanded as

U (Rr) = £ B_(R) ¢ (r) (9.6)

n-<'-~
m

and using equation (9.3) we have

iK,.R
- ~1 ~ ’ 1 1
an(ﬁ) = e Snm + i‘ S gn(§ B',m) Vﬁm.(ﬁ ) an'(ﬁ') dR
(9.7)
where Vnm(B) =/ ¢n*(§) V(§,f) ¢m(§) dr
Following Glauber (1959) we can write
i 1K, .R
| Fom(B) = e X (B (9.8)

| thus from equation (9.7) we have




' : ] ~-i Ki.(lj—lj') ]
nm(R) O ri' / E‘n(]jr‘ ) me'(B ) Xnm'(B') ¢ dR!
(9.9)
ir Qnm = 2u(en—em)
then
-i K.(R'-R)
g (R R',m) = Tg‘—‘)-; / I (9.10)
~ E%+Ki2-—K2+ie:]

making the change of variable K = Ki + n, n is the momentum transfer and is

~

such that n << Ki undey the conditions of (9.1) thus

K? . K.?2 + 2n.K.
1 ~ ~1

and
-i K. (R'—-R)
~ = 2l
g, 13£ ,in) '(—Zn—)‘g' S & (9.11)

” Lan+2n K. —15:_—_|

The integral of (9.11) may be calcilated by the method of appendix I to give

i (z-z')/2K; -1 K..(R'-R)
g,(RR",m) = Sﬁl 6%(b-b') 6(z-2') e " e ~t o~

(9.12)

where b is a vector in the X-Y plane perpendicular to the Z direction.

Equation (9.9) now becomes

—Lz sz —qm“(ZZ)

X (B) = 8 Vi (G121 X0 (X,Y,21) a2
Ks
(9.13)
where U = Qnm/ 2Ki " o -
Ir xnm(R) is written as e mn(R) then equation (9.13) reduces to
iy % -1 qm‘mz' ' '
nm(g) S R—l— )Z| e Vo (b 2') e S (?,z ) dz
(9.14)

and thus



(R)-—l“rv H

az nm 1mﬂ(b Z) e
1 m'

o1 (b,2) (9.15)

If we identify z with vt where v is the incident particle velocity and t is
time, then equation (9.15) reduces to equation (8.11) which was 'derived'
directly in the impact parameter approximation.

The scattering amplitude from equation (1.25) is

Mmoo | +
{1 <¢f,V|q)i >

i Kf R
where L bp=e ¢ ()
K R -1 qmnz .
+ ~
and v (R,r) = e z rm# ) o (r)
thus
j(Ki—K )R -1 Q. Z i
Tif =Je " n m(i) 0Lxm(.l?) dR (5.16)

m
This expression for the scattering amplitude can be considerably simplified
by making kinematic approximations

l(gi"§ )'5 ;1 qn'nz -

Z
_ ' \
Tip =/ @ z Vo (R) o (R) dk  (9.17)
but KR G = (K5ra, )
K 2 K 2-
1 1 _l_ - _f_ 1
conservation of energy gives o + € = N + €, thus

Y
— 2
Kf = Ki(1+qnn,/2Ki)

- Ki T Ay

= K.!

i

_ - 1 .
then Ei'B tAnt® T gi -R
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where Ki' is a vector in the z direction with magnitude Kf thus
i(K.'-K,).R iqg , 2z
. ~1 AP n'm
Tip = f e ﬁ e Vh,m(ﬁ) a (5) dR (9.18)

since Ki' ~ Kf, then for small scattering angles

| - t
(K; "-Kp) R~ (K;'-Ko).b

i(K,'-K.).b i Q12
_ ~l o~ ~ 00 m
and T.p=/e LJ_ e

m Vﬁ'm(?’z) anm(P’Z) dz d?

using equation (9.14) we have

. _—
1K, i(K'-K).b

Tip =5 /e Lo () =8 ] db (9.19)

The total cross section for the n + n' transition is then

T,

NIER o | R
1

and using equation (9.19) this becomes

K.
i ..
°m' T K./ lann'(?’w) - 6nn'|2 db (9.20)

5

The validity of the approximation made for electron scattering has been
examined by Byron (1971). The derivation of the scattering amplitude (9.19)
involved two distinct stages of approximation; firstly the eikonal approxi-
mation of equation (9.11) and secondly the kinematic approximation of equat-
ion (9.19). If equation (9.15) is solved in the first Born approximation
and the eikonal-Born amplitude calculated, using equation (9.19), and com-
pared with the exact first Born approximation then the difference between
the two results is due to the kinematic approximation only. Calculations
show that the kinematic approximation can have effects of up to 20% on the

total cross section results. In order to test the eikonal approximation



alone it is essential to use the scattering amplitudes given directly by
equation (9.16). Byron solved equations (9.15) by retaining only the 1s,
2s, 2po and Zpil states in the summation and produced transition amplitudes
that were directly comparable to the results of the close coupling approxi-
mation of Burke et al. (1963). The results show agreement to within about
10%.Burke et al. (1963) allow for electron exchange but at the energy con-
sidered, 54.4 eV, this is assumed to be negligible. Since equations (9.15)
and (9.19) are precisely those that appear in the iwpact parameter.approxi-
mation it would appear that one can expect to obtain qualitative results
only froﬁ an impact parameter treatment of electron collisions with hydrogen.
However much results could well be an improvement over other approximations.

The familiar Glauber approximation as utilised by Tai et al. (1970) for
electron hydrogen scattering and by Franco and Thomas (1971) for proton
hydrogen scattering is obtained by including a complete set of states in the
solution of equation (9.15).

Assuming that the important values of z in equation (9.15) are of order

a then 92 is small since then
(o) ¢\

g %~ a_ AE/_ <<
mn o v,

i
hence e'l “m” “ 1
thus equation (9.15) becomes
5 om® T Vo (008 1 (,2) (9.21)

using closure equation (9.21) may be solved exactly

= _iw 2 1o 1
() = 710 4,00) 4, @) exm| - U7 Voot ' | (9.22)
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and the scattering amplitude becomss

K. i(K.-K
i

. :i_lfe ~
H

AL e |
if N ¢n'(f) ¢n(f) [:exp(~ R% S V(?’Z"f) dzl]

1

- 1] db dr (9.23)

This expression for the scattering amplitudes has two undesirable features.
Franco (1968) shows that in the case of elastic scattering the transition
amplitude Tnn(g), where q is the momentum transfer, contains a logarithmic
singularity. Tai et al. (1970) show from their explicit calculations for
electron collisions that the transition from an s state to a Py state is
strictly forbidden. Both of these features result from the kinematic
approximations made to the momentum transfer factor. Tne effects of these
on the total cross sections for excitation are small. Byron (1971) has
evaluated an expression for the scattering amplitudes that does not include
the kinematic approximation.

Again assuming Q2% << 1 equation (9.16) becomes

i(KJ.—Kf).R
Tif = J‘e ;'Vn,m(g) anm(ﬁ) d§ (9.24)

using the Glauber expression for L. and also closure we obtain

Tip =7/ e * S ek (r) e () V(R,r)
X exp[:- %% Ifm V{b,z',r) dz':] dr 4R (9.25)
i ~ ~ ~ o~

A comparison of the results for excitation cross sections to the 2s and 2p
states for electron hydrogen collisions evaluated using equation (9.25) with

the Glauber approximation results of Tai et al. (1970) shows the two sets



55.

of cross sections to be in good agreement. The two methods diverge however
on the question of polarization of reemitted radiation and excitation to the
2p state, the nore exact treatment of Byron being closer to the experimental
results. Thus under the Glauber approximation the approximation of the
momentum transfer is acceptable if cross sections only are required. Since
the eikonal approximation gave quite good results for electron collisions

in the close coupling approximation it appears satisfactory to evaluate
transition cross sections for electron collisions using the Glauber approxi-
mation. Proton collision should of course also be well described by the
Glauber approximation.

The 2s and 2p excitation cross sections calculated in the Glauber
approximation, Tai et al. (1970), for electron hydrogen collisions are in
good accord with experiment for energies greater than %0 eV. It is thought
that U= discrepancy below 30 eV may be due to the rieglect of electron ex-
change and also to the failure of the eikonal approyimation. No such direct
comparison with experiment can be made for proton hydrogen collisions since
very little experimental data is available. However where data are avail-~
able the calculations of Franco and Thomas (1971) agree quite well. Perhaps
of more significance though is the comparison of the Glauber results with
the pseudo state results of Cheshire et al. (1970). The total cross sections
for 2s and 2p transitions as functions of the incident proton energy are
very much alike above 10 KEV, in both shape and magnitude. This is not
surprising since the Glauber approximation implicitly includes the contin-
uum states of the target so that the rearrangement charnels, shown to have
important effects on the direct excitation processes, are represented.

The failure of the Glauber approximation below 10 KEV can be attributed teo
the fact that the target electron velocity is very similar to the incident
proton velocity contrary to the condition of equation (9.2). The success

of Glauber thecry in describing electron and proton collisions shows that



it is unnecessary to include strongly coupled states exactly provided that
transitions between such states are implicitly allowed. It is however,

difficult to see a way of systematically improving the Glauber approximation.



PART TITX

10.1 Present Work

The previous sections have shown how the close coupling approximation
can be applied to atomic collision processes, both in the wave formulation
and in the impact parameter approximation. In general the description
afforded by the close coupling approximation in the intermediate energy
range has not been good. This is due to the neglect of all but the first
few states in the eigenfunction expansion. Where attempts have been made
to represent the negleéted states considerable imprqvement of the results
has been seen. In this work an_alternative method is presented to include
the effects of all states not explicitly included in a close coupling
approximation. 'The method is due to Bransden and Coleman (1672). The in-
clusion of the neglected states is done by means of a closure ap.roximation.
This leaves a free parameter that is chosen so that the correct polarizat-
ion potential is obtained in the ground state channel.. The method is
applied to direct collisicns of electrons and protons with a hydrogen atom.

The Schrfdinger equation, from equation (2.4), is
1 g2 - -
[: o VR + HO + V(ﬁ,f) E:] wn(g,f) =0 (10.1)
where Hb is the target Hamiltonian. Expanding the exact wavefunction into

a complete set of target states gives

b (R,r) = X an(}j) ¢,(r) (10.2)

cambining this with the Schriidinger equation (10.1) we get

2 2 5
(v + K 1 F (R) =2z

m'

Vi (B F (R) (10.3)

where th(R) has been defined previously and



N
co

2 . Py
Km = 2u(E Cm)

The total wavefunction satisfies the integral equation

iK..R
v (Rye) =e "1~ ¢ (r) + G F@R,r;R, ') V(R',r') ¥ (R',r') dR' dr'
n'v~ n -~ 141 ~ N e ~ ~ ~ n - .~ ~ ~
(10.4)
where
-1 K. (R'—R)
G(RrR,r)-(—ZnL’—)—g-Z(b*(r’)q)(r)de -
[k 2-K2-icT]
defining the function g, as
-i K (R'-R)
(R,R',m) = 72her / i (10.5)
gn ~ 7 () ~ [_K 2-K2-ig_|
and substituting the expansion (10.2) in (10.4) we obtain
iKi.R :
- ~ ~ t 1 1 t
Fo() = e T 6 e B L g (R ) Vo (R B () o
(10.6)

If in expansion (10.2) only the first N states are retained then for n > N
N
- ' ' " 1 1
an(R) m'§0 i) gn(R R ,m) me,(ﬁ ) an.(§ ) dR (10.7)
Then in equation (10.3) the first N states are treated exactly and the

others approximated using (10.7) we obtain

N
[vg® + K21 F (R) =2 Z Vi (R) F__(R)
m'=0
N
+ 2 m'>=:o J dr' Kmm, (5,5') an, (5 ) (10.8)

m = O,N

where
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1y = Y :
&wn'(ﬁ’ﬁ ) = 'EN+1 "U(q) vs (B ) gn(B’B"J) (19'9)

\

the sunmmation in this latter expression includes the continuum states also.
The summation is now removed by closure. For n > N the eigenenergies €, are

replaced by an average energy € which corresponds to K? where

K2 = 2u(E-g)
then
K _(R,R'") = g(R,R") _ Z vV .(R) V. ,(R") (10.10)
mm' "0, ~~ T SoNe mj " T jm'e
where
-i K.(R'-R)

The closure relation is

By 657(x) = 8

using this in equation (10.10) K ¢ becomes

N
Ko (RR') = g(R,R") |:umm| @R = 2 Vg B Vi (§'>:] (10.11)
where
Hn(BR') = 7 6 *(@) V(R,r) V(R',r) ¢ (r) dr (10.12)

The equations (10.8) can then be reduced to a form suitable for numerical

solution by expanding the coefficients F into partial waves.
Alternatively we can apply the same approximate procedures directly to

the impact parameter approximation previously derived in section (8) and

also in section (9). Considering transitions from the incident channel
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ground state only, we have

. 9 ® ] -
ispa(t)= mEO a (t) v (t) exp[ i(e - )t ] (10.13)

Again only retaining the first N states we have for n > N
N

ia(t) = mEO am(t) v () exp[Tie e )t (10.14)

then if the first N states of equation (10.13) are included explicitly and

the states for n > N are included using equation (10.14) we get

N
ia(t) = mEO a (£) V_(t) exp[ i(e € )t_]
N, o
- i ' T .(6) T, (¢ i(e -,
i mEO I . am(t ) j§N+1 nJ(L) ij(t ) exp[:l(en sJ)t
+ i(sj—em)t':]
n = O,N . 10.15)
where

S ey - (Y L
th(t) =far ¢n*(§) nggr ¢j(§)

The 'internuclear' potential term has been omitted from the definition of

th since th only occurs wvhen n # j. The infinite summation of (10.15) is

removed by closure; Ej is replaced by € for all j > N. This gives

N

i én(t) = I [:am(t) V(6 exp[:i(en-em)t:]
m=0

- i exp[lile ~e)t] f'fm a (£') K (t,t") dt'] (10.16)
n = O,N
where
- N — —
K (6:67) = exp[i(ee, )t ] [“nm(t’t"'jfo 7,56 Ty 60)]

(10.17a)
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and

1y = * (1) ek 1
unm(t’t )= J % () IEQET ]B'—E[ ¢m(r) dr

~

with

R=p + vt and R' = p + vt!'

~ ~ ~ ~ ~

Same of the energies Ej within the sum of equation (10.15) could be included

! for j > M > N+1 and the exact energies

exactly. Then e is replaced by e
used for values of j between M and N. The kernal of equation (10.16) is
then replaced by
M . - -
Knm(t,t') + j§N+1 th(t) ij(t') [:exp[:i(e'—ej)t + i(ej—em)t':]

- exp[:i(E'—em)t':] J (10.17b)

The effective energies € or €! are chosen so that the correct polariz-
ation potential is obtained in the incident chammel; where the polarization

potential is such that

ia(6) - yFoL

£t~

ao(t)

For the ground state of the hydrogen atom, Castillejo et al. (1960) have

shown that

v -~ - %x where a = 2.25 (10.18)

The N coupled integro-differential equation (10.16) can now be solved with
the kernal Knm given either by (10.17a) or by (10.17b). To calculate trans-
ition amplitudes for excitation from the 1ls state of hydrogen the houndary

conditions are
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ath)zﬁml

The amplitudes for excitation to a state n for n > N can be calculated using
equation (10.14), or allowing for distortion in the final state from
. N

i an(t) = mEO am(t) Vnm(t) exp[:i(en—em)t:] + ah(t) th(t) (10.19)

The approximatioq has been applied to both proton and electron
scattering in the impact parameter formulation, the 1ls, the 1ls and 2s, and
the 1s, 2s and 2p states being retained explicitly. These three forms of
the approximation are known as the one, two and four channel approximations
respectively.

The excitation cross-sections are given by

=2 s 2 3 2 (10.20)
Q, =27/ p la(p)]? dp (ma_?) (10.20)

The c¢ifferential cross sections can be deduced from the transition ampli-
tudes in the impact parameter approximation using an e¥pression derived by

McCarrol and Salin (1968)

- 2 o 1 w) - 2
Ion(e) = 2y |fo 0 Jm(2uvo 51ne/2) [:@n( ) Son:] dp|

(10.21)

where m is the magnetic quantum number of the nth state.

The impact parameter formulation is a good approximatioﬁ for proton
scattering above 1 KeV. The range of application to electron scattering is
not so clear, however it may be adequate above 50 eV. Below 50 eV not only
is the impact parameter method suspect but also exchange scattering becomes
important. Our approximation neglects exchange scattering so that the comr-
parison of our electron scattering results with other work particularly with

experimental results must be made with caution.



10.2 'The One Charmel Approximation

In the one chamnel approximation equation (10.16) is solved retaining
only the 1ls hydrogen eigenstate. The excitation amplitudes are obtained by

applying equation (10.19) with N = 0. Equation (10.16) becomes

i éo(t) =a () V  (t) - i exp[Ti(e€)t]] f‘_’m a (t") K (6,t') at’

(10.22)

where in the first instance
- s 1 1\ i 1
K (tt") = egp[l(e e )t ] (u  (6,81)-V (£) V_(£"))

In order to choose € to give the correct polarization potential consider
equation (10.22) in the 1limit t + -«. Since Vbo(t) decreases exponentially

we have
ia(6) ~ -1 exp[Cile a0t 15, a (6') K _(£,t7) at' (10.23)

In general an(t) > 60n + o/RY for X > O and c is a constant. So that to

tr—
first order
Lo . . - t
ia(t) ~-i exp[:1(eo-e)t:] ao(t) /o K (bst") at? (10.24)

but

Ko (t:t") = exp[i(e-e )] j§1 \"roj(t) Vjo(t')

, . -K
Castillejo et al. (1960) have shown that Vnm(R) + R " where n # mand K > 2.

R

So that integration by parts in equation (10.24) yields an asymptotic series

in inverse powers of R the leading term being

- a(t) ¥
O (emey)

VOJ. (t) VJ.O(t)
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thus

. a_(t) _
ia (k) ~ - -2 Cho (6s8) = [T ()]2] (10.25)

(s-eo

The two centred matrix elements uoo(t,t') may be expanded to yield an
asymptotic series, in the case t = t', as ¢ + 2o by the method showni in
Appendix IT. Combining the two asymptotic forms of y__ and |Voo|2 then

ao(t)

i éo(t) .- (10.26)

- [
(e eo) R
Comparing this with equation (10.18) then

1

(E—so)

and g = -1/18 a.u.

o =

With this choice of effective energy equation {(10.22) Qas solved numerically
for both electron and proton impact. The transition amplitude for 2s, 2po
and 2pil excitation were evaluated using (10.19). 'The azimuthal depend-
ence of the 2pil states is removed by making the transformation

a(®) oo M

= c e

n n
where m is the magnetic guantum number of the nth state.
Then from the explicit forms of the single matrix elements Vhs(t), evaluated

in Appendix IV, it can be seen that the product

is independent of ¢. Thus the ¢ dependence of Vhs(t) may be omitted, then
Vﬁs(t) = Vén(t).
Using the notation that 1s -+ 1, 2s =+ 2, 2P, * 35 2P,y > 4 and 2p_1*5

then



\71.. = —V,s and \71.1; = \755

Then
ieu(t)+es(t)) = Vau(t) (cu(t)+es(t))
since
cy(-2) + c5(-») =0 then c4(t) + cs5(t) =0
and

cy(t) = —cs(t)

Thus the equations for ¢, and cs may be replaced by a single eguation for

‘/% (cy(t)-cs(t)). The one chamnel case then reduces to the solu-izin of Lhe
2

following set of partially coupled equations

ia3(t) = a;(t) Vy;(8) - 1 exp[ i(e1-€)t ] f‘fm a;(t') Kya(t,t') at!

i as(t) = ay(t) Var(t) exp[[iler-e1)t ] + an(t) Vaa(t)

ias(t) = ar1(t) Var(t) exp[ iles-e1)t ] + as(t) Vis(t)

1ay(t) = v2 ay(b) V(b)) exp[ iles-e1)tT] + ay(t) Viu(t)  (10.27)
with € = -1/18 a.u. The probability of a transition to the 2p state is then
given by

|a3(m)|2 + lau(”)lz

The single channel case was also solved using the modified kernel given in

equation (10.17b). Using the same procedure as above the effective energy

is found to be €' - 0.078 a.u., »,Waﬁu & M wxuédéa 2s 2P 1, Az
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10.3 The Two Channel Approximation

Retaining the is and 2s target states explicitly we solved the two

coupled equations

ia1(t) = ar(t) Vii(t) + ax(t) Vio(t) exp[ ile1-e2)t ]

- i eXp[:i(cl—E)tj wa (a1 (t') Kia(t,6")+ax(t") Kia(t,t')) at’

1 a;(t) = a1 (t) Vai(t) exp[ iles-€1)t ] + aa(t) Vaa(t)

-1 epr:i(ea—E)t:] ono (8.1 ('C') Kzl(t,t') + az(t') Kzz(t,t')) at'’

(10.28)

where Knm is defined by (10.17a).

Since it is unrealistic to include the 2s state but not the 2p states
explicitly, we did not evaluate the excitaticn amplitudes to the 2p states.
Such a procedure would have omitted the important long range 2s-2p coupling
from the initial calculation of the 2s amélitude. The effective energy €
is unaltered from the one channel approkximation since the 1s-2s coupling is
of short range only. The two chamnel approximation was also evaluated, at
a few selected energies, with the effective energy altered to € = O. This
was done to check the sensitivity of the approximation to the choice of the

effective energy.

10.4 The Four Channel Approximation

When the 1ls, 2s, 2pO and 2p+1 states are retained we obtain five
coupled equations. Again from the explicit forms of both the th and Mo
matrix elements it is clear that the products

i(m ~m )¢ i(m -m )¢
n s n s et
e V (t) and e pnm(L,L )
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are independent of ¢ the orientation of the scattering plane (p,v). Hence
using the transformation

i mn¢
cn(t) = e an(t)

the ¢ dependence of the scattering amplitudes is removed. Noting that

Viw = -Vis, Vou = Vo5, Vay = -V3s, Vyy = Vss and Vys = Vsy

and similarly for the corresponding u matrix elements the equation for the
2P,q amplitudes may be combined. Summing the equations for ¢, (t) and cs(t)
we get
1 A(t) = (Vuu (8)4V,5(t)) alt)
- i exp[_i(es-€)t_] fEm a’4.) expl_i(e-ey)t' ]

X [ina(t,6") + uys(t,t') = (Vau (8)+Vus(6)) (Vui (81 )4Vy s (1)) "] at’

where d(t) = ey (£) + cs5(t)
but d(-=) = 0, then d(t) = O
hence c,(t) = -cs(t) and the two equations for c, and cs can now be replaced

by one i.e. ¢y > )% (cy-cs). 'The differential equations for the 1s, 2s and
2
2po anplitudes are similar, the equation for the 1ls amplitude has the form

ialzt

.. 1a;5t 5 1ot
1a1(t)=a1 Vi + as Vo € + aj Vlse 13 + /2 ay que 14

c-lap t b ia ¢ I N T A

—ie Myl ay e U Cwin - ViV = VipVy, = VgV - 2 Vi, Vi ] at!
sl t ot io,t T N S ost

-ie ™t [, a2 € 2 [:U12 = ViiVia = VioVhp = Vy3V3, = 2 VluVuz_J ac’
=iyt b io;t! U A A

-ie ™ J_,as e 3 [:Ula = ViaVis = ViV, = Vy3V33 - 2 Vjuvﬁa:] dat!

-0

R id T et B
-iv2 e M1V gt o, et O [:Ulu = ViV = VioVoy = VigVay = Vi (Vyy-Vys) | dt!

(10.29a)
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where anm = En - em, an =g - en
Vi :— Ya! :- 1
and m = th(t), th = th(t )

The equation for the 2pil amplitude has the form
i ay(t) = V2 a; Vi, eiO“’lt + /3 as Vo em“t + V2 a; Vi3 eia“3t + ay (Vyy—Vys)
-1 eia“t [:/5 wa a Eialt' [:U41‘vu1vi1"vu2vél-v43vg1—(vhu‘vus)v:1i] at'
+ V2 f:, as éi&zfl' EMZ'VMV;2‘{/»2{7;2'\7»3{7;2-(\71‘!4-\74s)v:;z] dt'

- t ~1a.t! - ' .t _1 - -t
+vV2 S as elaat EUua"VnVl3“lk2V23‘Vu3V33'(Vuu"Vu5)Vu3] dat'’

t —iout" -t R | -
+J_ _aye ot Cusu—uys=2 Vu1V14-2 V4, Vo -2 ¥y 5V3,

{>2]

“(vuu-\-’hs)(vl:u'v;s)] dt':l (10.29b)

and the 2p transition probability is given by

|a3(+°°)|2 + lau(‘r‘”)lz

In the four channel ease the choice of effective energy is complicated
by contributions from both the strongly coupled states and the non-local
integral terms. The behaviour of

% i(E—Sm)t' 4 -
1 - 4-1 - 1
Soa (k) e [:u]m(t,t ) jEI vlJ. (t) ij(t )]
in the limit of t + -~ may be seen from the single channel case, to first
order to be
a (t)

l‘ — -
-1 —
—— Dy (6,87 = 2 Tp406) Ty (6)7]
i(e-g ) j=1
m
Since in general ahgt) t+~ 6 ¥ c/RK, where K > O and ¢ is a constant, and
—-
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the asymptotic form of the equation for the elastic scattering amplitude is

ia(t) > as(t) Vis(t) exp[iler-es)t ] + v2 au(t) Viu(t) exp[ i(er-e4)t ]

tr—o
- ale) Cuna(e,6) - [T ()2 - [T 6)]? - 2|Vau(8)]2]

(6—81)
(10.30)

where only terms of order R™* have been retained.
To order R~ the amplitudes a; and a, satisfy the following equations

for t » -

ias(t) ~ ar(t) Var(t) exp[iles—e1)t]

and i ay(t) ~ V2 a,(t) Vi (t) exp[ iles—€1)t ] (10.31)

Integrating by parts, we have to order R™2

as(t) -~ —‘(f (—)-5 ar(t) exp[_i(es-€1)t_]
and ay(t) ~ - /2 %:?tfte—z)— a;(t) exp[:i(eq-—el)t:] (10.32)

Substituting the results of (10.32) into (10.30) and using the asymptotic

forms of the p and v matrix elements we get

ia() ~- a‘ (t) [(62_31) E’Kz)] (10.33)

(8‘61

where K = 8 x 0.093117.

Comparing this result with equation (10.18) we obtain

= el 4 1-K?
€= 81 Y X%/ (ea-€1)

so that € = 0.0778 a.u.



70.

The four coupled equations are then solved with this value of effective

energy.

11. Numerical Methods

The couﬁled differential equations were solved using a difference
scheme due to Hamming (1962). This method has the advantage that the error
at each step can be estimated so that the step length can be adjusted
accqrding to some predetermined error bound. The non-local integrals appear-
ing'in the expression for the derivatives were calculated using the Simpson
guadrature rule. Since ﬁhe amplitudes appearing in these integrals were
only known at finite intervals, the step length of the quadrature rule was
determined by the step length for the solution of the differential equat-
ions. Because of this it was found nacessary to place an upper limit, hu,
on the solution step length. The effect of altering the mesh size of the
integration routine for the non-local terms on the overall solution could
then be determined by successively reducing ! and comparing the results.

To reduce the time of execution of the program the bound was set as large

as possible within the overall error constraint, a typical value of o was
M = 1.0, The single centred potential matrix elements V that appear in the
kernal are elementary, the expressions used for these elements are shown in
Appendix IV. The two centred matrix elements have not so far been evaluated
in closed form and have to be evaluated numerically. They fall into two
distinct classes, those that are spherically symmetric and those which are

not. The spherically symmetric type are of the form

NS ]B—SIT}E"‘E] d.:t: (11.1)

where N is a normalisation factor. This Cype occur between s-states and can

be reduced to a form suitable for numerical computation by a method due to
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Coleman (1970).

pof@) g AORR/)
[Rr[ TR™-r] "~ ~ 1 "o

T (11.2)
(1-2 xy? cosf+x2y") 72

A

where A(a,B) = fg f(r) rdr, x = R1/R, and-cos8 = Bl.gz.

R; is the smaller and R, the larger of ]5} and |§']. For the second class
of matrix elements, notably those containing at least one p-state wave-
function, the situation is more complex though.the same final form of result
as the symmetric case can be obtained. The details of the method applied
to the ls—2po 2s-2p

, and 2p matrix elements, due to

12 0,*1 0£17Por1

Coleman (1972) are given in Appendix III. The one dimensional integrals in
the interval [0,1 ] are evaluated in both cases by Gaussian quadrature.
A total of 32 points were required to give the matrix elements to six sign-
ificant figures. The range of integraticn was divided into four unequal
parts: [ 0,0.1], [0.1,0.2_], [[0.2,0.6_], and [ 0.6,1.0_], since in
general the integrands varied more sharpl& at the lower end of tre intervai.
The accuracy was determined by comparing with the results obtained using a
total of 64 Gaussian points.

To calculate transition cross sections witﬁ an error of less than 2%,
the absolute error in the calculated amplitudes must be of order 107%. The

solution to the equations is calculated in the range ti to t_ where t.1 is

f

large and negative and t, large and positive. The smallest values of 2 and

f
‘cf compatible with the overall error requirement on the solutions may be
found by considering the asymptotic forms of the equations and their
solutions as t + #w». As an example we will consider the four channel cal-
culations only. The methods required for the one and two channel calculat-
ions are contained therein.

Assuming that ah(t) t:—w 6y ¥ O(R—K) where K > O the four channel

equations may be uncoupled in the limit of t + —» to the order of R™*.

Using the asymptotic forms of the matrix elements v and neglecting terms of



order R * we have

ia(t)~0
i a,(t) ~ 0
ias(t) ~ a(t) Vi (t) exp[i(es-e1)t]

iay(t) ~ V2 a1 (t) Vi (t) exp[_1(es-€1)t_] (11.3)

e

integrating bj parts, for t + -» we have to order R™

ai(t) ~ 1.0

a(t) ~ O

-, S S

SRR EXB'E(i::T)tj (11.4)

where K = 8 x 0.093117, and the precise sign of these asymptotic amplitudes

will depend on whether electron: or proton scattering is being considered.
In starting the solution at a value t = ti the contribution between the

limits [Ew,ti:] to the non-local integral terms is neglected. This would

result in an error of the order R{Z, where

2= 52 4 oy2 g2
Rl p v tl

However an asymptotic series can be found so that this error may be corrected

for. Consider

t,
[ a(t) exp[li(e-e )t'T] j°§N+1 vm. (t) \'rjm(t') at'  (11.5)

where t may have any value in the interval [:ti,tf:].

Expression (11.5) may be written
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t.
. 53 . 1, ' C T ] J 1 341 &
3: Vg () F g 3 (eh) exp[_i(e-g )t ] ij(t ) dt (11.6)
Since th(t) -> R_K, K > 2, Castillejo et al. (1960), integration by parts
Gt
gives
_ exp[_i(e-€ )t. ] _
by vn‘(t)(— ~— a (t,) V. (t.) +O(R£3):| (11.7)
j=n+1 O Lo (e-e) Lo

thus the integration over the interval [:—«*,ti] of the non-local terms may

be approximated by

=

exp[_i(e-€ )t.

m 1 O 7
2 (t.) ~ Eum(t,ti) - j§1 an.(t) vjm(ti)] (11.8)

(e-em)

Thus the most restrictive error in starting the solution at t = ti’ after

implementing the results (11.4) and (11.8) is of order R:?L‘3. Thus
R. ~ V¢, ~- (lO"")l/3 a.u
i i ) o
~ -21.5 a.u.

ti ~ - 21.5/V a.u.

As t » += the asymptotic forms are more complex, the non-local times con-

tribute terms of order Rf‘.2 to the derivatives. Consider .

t
1=s0a ) ewliG-e )t ] § T

f) ij(t‘) ac'  (11.9)
J=N+1

where t £ is large and positive, thus t' takes on a wide range of values, at

worst t' = O, making I largest. But



T4,

£
¥ vV £ -1 s 0T e O oy .
jil\H-l Vg (Bp) 7 ap(e") exp[li(e—e )t ] [ARCHET

an]
H

o ¥, - « 1 s 0T _t | 17 1 1
jiN+1 th(tf) [:f_m a (t") exp[_i(e e )b ] ij(t ) dt

- f:f a (t") exp[Ji(e-e )t'_] Vin(t" dt"]

-

(11.10)

From previous discussion it is apparent that

g Vg B ftf a (t') exp[Ti(e~e )t' ] Vip(t') at’

behaves as R:* for large t

£ SO tbat

f

~ ¢ ¥ ® ' s 1 7 1 1 —l
I j§N+1 Vs (tp) J_, a (t') exp[i(e-e )t' ] ij(t ) at' + O(RGH)

~ F T .(t.) K. + O(RY 11.11
o g (o) K+ 0 (11.11)

where Kj is a constant, independent of t From the asymptotic behaviour

f.
of \7nj(t), n#j, it is clear that

I - O(R}z) (11.12)

tow

Since the expression for I zppears in the amplitude derivatives in the form
of elatI, for a real, then the error resulting in the amplitudes in stopping

the solution at tf is of order REZ. Now consider the strong coupling terms

in the limit as t » +w



L B coso EiEt K, sing K éiet ] -
1 ral ] 0 0 - R2 1 R% ral
a2 0 0 cosh K _. _ sine K, a2
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3 _ cose K, elEt cose K, (-3 cos26)Ks sind cose K, .
2 RZ R2 R3 R3 ) 2 ]
sing® Ky elelC _ 5ind K, sind cos® Ky,  (3cos?6-1)K3-sin?0Ke
R RZ RZ R3 RY’ _

(11.13)

assuming that ap(t) - an(w) + c/RK, where K > O and ¢ is a constant w.r.t.
1 t—)-oo

t, the equations of (11.13) may be uncoupled. Neglecting terms of order R-3

we have
i 4,(6) ~ 9B 4 ()
s st sy o~ €086 Ko
an? i as(t) —gr = ap(t) (11.14)
thus
iay(=) ~ as(«) Ky /7 S8 at + i ay (t,)
£
. K .
o i 2 -2
1 ap(=) ™ asz(ty) 5 R, +1 az(tf) + O(Rf )
. K . ;
o ~ - ~2 ‘
and i az(=) az(tf) v—ﬁ- + 1 a3(Lf) + O(Rf ) (11.15)

f

where K, = #3.0. Thus provided the asymptotic corrections of equation (11.15)
are made the error incurred by stopping the solution at t = tf is of order

REZ. Thus te is chosen such that

R}z ~ 2 x 107k

i.e. Rf ~ 65 thus tf ~ 65/v

The validity of the above procedures for approximating the infinite

limits of the overall integration were checked empirically by comparing
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solutions obtained with vt, = -100,-30 and -21; and vt = 40,65 and 120 a.u.

f
In all cases the differences obtained were within the theoretical error
bounds for these particular values.

A constraint on the solution due to unitarity provided a valuable check
on the numerical procedures. Since.

Pola (-=)|2 =1
n=0 n

then unitarity is preserved throughout the solution if

@ 9
: o la ()2 =0
n=0 ot .'™n

for our particular approximation. Consider

= la ©)]2 = a (6) 4 *(t) + a *(t) & (6) (11.16)
- N .
for n>N al(t)=-i mio 2, (t) V. (t) exp[Cile - )t ]

Thus (11.16) becomes

N : _
= la ()2 = -1 a (v x a *(t) V *(t) exp[_-i(e -e,)t]]
N
+1a *(t) mEO a (t) V. (t) exp[:i(an—sm)t:]

But

n%:“ml a (t) V. (t) exp[Ti(e ~e )t_]
. N
=1a(t) - SEO a (t) V_(t) exp[i(e -e )t ]

thus
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n?N+l.%€ lan(t)lz = i ngo [:i a;(t)ém(t)—a;(t) Sgo a (£)V (¢) exp[:i(em—as)t:]:]
N i N _ -
+ 1 mEO [:—i a (t)ax(t)-a (t) sEO ag(t)Vﬁ;(t)exp[_—i(em—es)t_JMJ
N . . —
= - mEO [:am(t) a *(t) +a (t) a *(t)]
- ¥ oa -y |2
= - nEO.SE la (6)]

thus % -%E Ian(t)[2 = 0 and unitarity is preserved in our approximation.

n=0
Since in our calculations we only consider amplitudes up to n = M we expect
M
the condition © |a (t)]2 ¢ 1 to hold for all t. Because for the states
n=0

M > n > M we also allowed for back coupling the unitarity condition becomes
N

z la ®)|?2¢1 (11.17)
n
n=0

The calculated amplitudes obeyed the condition, for all values of t, to
within the errors of the amplitudes.
The total cross sections were evaluated using equation (10.20). The

infinite 1imit of the integral was replaced by the value of the impact

Ny . . 2 —4 T agnn 1 Tyc
parameter Prnax for which Pmax ldn(pmax)l < 107, The integration was done
by Simpsons rule. The long range interaction associated with the p-states
of hydrogen required Ponax to be Prax = 25 a.u. Differential cross sections
were evaluated for electron impact only using equation (10.21). Again the
range of integration was [:O,pmax:], the results remaining unaltered when
Prax Was extended to greater values.

The results of the calculations carried out in the mamner described

above are given in Section 12.
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12.1 Excitation by Proton Impact

The methods of section 10 have been used to evaluate total cross
sections for the 1ls-2s, and 1ls-2p transitions in atomic hydrogen in the
energy range 15 to 200 KeV. The second order potential terms were con-
structed using the kernel given by equation (10.17a) and the equation
(10.16) solved in the one, two and four channel approximations by the
methods of section 11. The one channel case was also solved using the
kernel given by equation (10.17b). The results for the 2s transition are
given in table 4 and are also displayed in figure 4 where they are compared
with the results of the Born approximation and the four state approximation.

The one channel results evaluated using kernel (10.17b), method b, are not

E(KEV) ONE CHANNEL | TWO CHANNEL "E | FOUR CHANNEL

15 5.50(-2) 7.12(-2)

20 7.40(-2) 9.00(-2)

30 9.20(-2) 1.01(-1) 25 h.25(-1)
40 9.57(-2) 1.01(-1) 35 4.11(-1)
50 - 9.58(-2) 50 3.40(-1)
70 8.47(-2) 8.52(-2) 70 2.50(-1)
100 7.16(-2) 7.05(-2) 100 1.67(-1)
200 4.38(-2) b.738(-2) 200 7.48(-2)

Table § - 1s-2s total cross sections in units of (va ?).

shown since they are almost identical to the tabulated one chamnel results
evaluated using kernal (10.17a), method a. In figure 4 the one, two and
four chamnel results show no obvious trend towards convergence, though the

cne and two channel calculations are in reasonable agreement. The four
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channel approximation appears to be dominated by the 2s-2p strong coupling
terms; the second order terms provide little correction to the established
four state calculation of Flamnery (1969). The two chammel results and the
two state results are related in a similar way. The choice of effective
energy and its effect on the total cross sections has been investigated by
calculating one channel results by methods a and b and comparing, and also
by repeating the two channel calculations with an effective energy coincid-
ent with the ionization threshold i.e. € = O (a.u.). The results of this
calculation vie also shown in figure 4, and it can be seen that the new
choice of effective energy makes little difference to the calculated cross
sections. Thus the total cross sections appear to be insensitive to value
of the effective energy and to how it is included in the approximation.

The 2s excitation cross sections are compared with the results of the
Glauber approximation, Franco and Thomas (1970) and the pseudo state calcul-
ation of Cheshire et al. (1970) in figure 5. The one charnel and Glauber
results are in close agreement over the whole energy range considered.
Below 40 KeV the pseudo state calculation gives results close to the
Glauber approximation, while the peak of the pseudo state cross section, at
about 60 KeV, passes through the curve through the four channel results.
The maximum of the four chamnel results occurs almost at the same energy as
the minimum of the pseudo state results, which in turn coincides with the
maximum of the resonant charge transfer cross section as measured by
Bayfield (1969). Since the pseudo state calculations take explicit account
of the rearrangement channels thereby removing flux from the direct
channels, it could be implied that the four channel wavefunction does not
represent the rearrangement channels very well. The one channel approxi-
mation does not allow adequately for the 2s-2p strong coupling and hence gives

rather low results for the 2s transition. The close agreement between the



0.

one channel and the Glauber results is probably due to the similar structure
of the approximations, only the elastic chaznnel being properly represented.
In view of tnis similarity, in particular as to how the continuum states arc
included it seems that it is unlikely that allowance is made for rearrange-
ment collisicns in the Glauber approximation.

The results for the 2p transition are given in table 5 and are also
displayed in figure 6 where the one and four chammel approximations are

compared with the Born and four state approximations. The one channel

E(KeV) | ONE CHANNEL E | FOUR CHANNEL

15 6.69(~1)
t 20 9.35(-1)

30 1.17 25 8.93(-1)

40 1.25 35 8.13(-1)

50 1.2% 50 8.53(-1)

70 1.17 70 8.81(-1)

100 1.03 100 8.71(~1)

200 7.24 200 6.73(~1)

Table 5 - 1s-2p total cross sections in units
2
of (nao ).

results and the four state results are very similar in direct contrast with
the same comparison for the 2s transiticn. The four channel results lie
beneath the one channel results but the difference between the two is much
less than in the 2s case, reflecting that the 2p transition is optically
allowed and is thus less sensitive than the 2s transition to the type of
approximate wavefunctions employed. The 2p results are coupared with the

results of the pseudo state and Glauber approximations in figure 7. The
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four channel results and the Glauber results are in reasonable agreement,
and the one chammel results pass through the maximum of the pseudo state
results. The experimental results for the 2p transition of Stebbing et al.
(1965), not shown in figure 7, overlap our results in the range 20 to 30 KeV
only. In this range they agree closely with the Glauber approximation.
Gaily (1968) has cast some doubt on the reliability of the normalisation of
the experimental results, combining this with their limited range they are
of 1little value in determining the relative merits of the various approxi-

mations.

12.2 Excitation by Flectron Impact

(a) Total Cross Sections

Tine methods of sections 10 and 11 have also been applied to electron
impact with hydrogen to evaluate the 1s-2s, 1s-2p and is—}p total cross
" sections. The 2s excitation results are shown in table 6. Both versions
of the one channel approximation were used. It can be seen that, as in the

case of proton impact, they yield almost identical results.

ONE CHANNEL TWO FOUR

E(eV) | METHOD a METHOD b | CHANNEL CHANNEL

20 2.00(-1) | 2.06(-1) | 1.32(-1)
30 1.50(-1) | 1.52(-1) | 1.06(-1) | 25 | 3.47(-2)
4o 1.20(-1) | 1.21(-1) | 8.8u(-2) | 35 | 4.25(-2)
54 9.40(-1) | 9.42(-1) | 7.19(-2) 54 | 4.88(-2)
70 7.50(-1) | 7.53(-2) | 5.93(-2) 70 | 4.79(-2)
100 5.46(-1) - 4.52(-2) | 100 | 4.22(-2)
200 2.87(-2) - 2.54(-2) | 200 | 2.67(-2)

Table 6 - 1s-2s total cross secticns in units of (naoz).



The one, two and four channel approximations are compared with the Born
approximation and the close coupling calculations of Burke et al. (1963) in
figure 8. The latter two calculations are almost identical over the energy
range 25-54 eV. The one charmel calculation also lies close to the Born
approximation, but as more states are explicitly included the total cross
section .decreases at any one energy. Again the one, two and four channel
results show no sign of convergence, but the effects of adding in explicitly
higher states must be small if only because of the greater energy difference
between the higher and the initial ground state. 'The close coupling
results and the four channel results differ widely in direct contrast with
the 2s excitation by protons.

The results for the 2p transition are given in table 7 and are also

displayed in figure 10. The one and four channel results are both very

E(eV) ONE CHANNEL E FOUR
METHOD a  METHOD b CHANNEL
20 1.45 1.46
%0 1.28 1.30 251 1.26
40 1.14 1.15 35| 1.23
54 9.92(-1) | 9.94(-1)| 54| 1.06
70 8.76(-1) | 8.78(-1) 701 9.53(-1)
100 7.21(-1) - 100 | 7.75(-1)
200 4.63(-1) - 200 | 4.88(-1)

Table 7 - 1s-2p total cross sections in units of

(1T8.02 ).

similar to the Born approximation results except that the maximum in the
Born cross sections does not occur until lower energies. The close coupling

approximation also gives values that are not far {rom the Born results. As
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in the case of proton impact the 2p excitation process appears insensitive
to the approximate wave function employed.

The 25 and 2p excitation cross sections in the one and four channel
approximations are compared with the results of the Glauber approximation
of Tai et al. (1970) and the pseudo state calculation of Burke and Webb
(1971) in figures 10 and 11. Experimental results are available in the
energy range considered for both the 2s and 2p cross sections. The 2s
results of Kaﬁpilla (1970) include the cascade contribution from the 3p
state. This has been estimated to be 0.23 of the total 3p cross section,
Hummer and Seaton (1961). The results of Tai et al. and Burke and Webb have
been corrected accordingly and are displayed in figure 12 along with our
own results and the experimental results of Kaupilla. In our work the 3p
excitation cross sections were calculated only in the one channel case, see
table ¢. It is thought that the one channel approximation.provides an

adequate estimate for the cascade contribution. The %p cross sections at

E(eV) ONE CHANNEL
20 3.23(-1)
30 2.62(-1)
40 2.24(-1)
54 1.88(-1)
70 1.59(-1)

100 1.26(-1)
200 7.86(-2)

Table 8 - 1s-3p total cross sections in units of
2
(1Tao ).
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25 and 35 eV were obtained by graphical interpolation. As diszcussed
previously the Glauber results and the pseudo state results are in good
agreement with the experimental points. Our four channel results are also
in excellent agreement with the experiment down to about 25 eV where ex-
change should be a significant factor. This agreement should be treated
with caution for two reasons; firstly the one channel approximation may not
provide a satisfactory estimate of the 7p cross sections and secondly the
value of the cascade factor is open to some discussions, see Tai et al.
(1970). This latter point also applies to the other theoretical predictions
considered.

The 2p excitation cross sections have been deducéd from measurements
of Long et al. (1968) and Ott et al. (1970). The data points agree well in
both shape and magnitude with those of McGowan et al. (1969) when normalised
to each other and to the Born approximation at 200 eV. The predictions of
the Glaubzr approximation and of the pseudo state calculations agree well
with these results. The one and four channel approximations give results
that are too large. Even ahbove 50 eV where exchange scattering is small the
one and four channel results are still poor. If the 2p experimental results
are normalised correctly, Damburg and Propin (1972) suggest they are not,
then it would appear that our results are unsatisfactory for the 2p transit-
ion. This may well be due to the failure of the impact parameter method for
electron scattering, as discussed in section 9, rather than a serious
deficiency in our model.

In their experiment OuviL et al. (1970) measured the polarization fraction
of the Lyman-a radiation emitted in the decay of the 2p excited state. Since
the magnetic sublevels of the 2p state are not equally populated the radiat-
ion emitted from the target will be polarized. The polarization fraction

is defined as
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I, 1o

Lyt

P = (12.1)

where I, and I, are the intensities, observed at 90° to the electron beam
axis, of the respective Lyman-o components having electric vectors parallel
and perpendicular to the beam axis. Percival and Seaton (1958) find that

the polarization fraction may be expressed as

_ 3(Qp-2y)
P —,—Y—Q{:’;—#(—QT (12.2)

where Qm, m = 0 or 1 are the total cross sections for excitation to the 2pm
level. The application of equation (12.2) to the experimental situation is
discussed by Gerjouy et al. (1972).

The experimental results are compared with our prediction for the
polarization fraction in the four channel model and also with the predict-
ions of Byron (1971) and of Gerjouy et al. (1972) in figure 15. It can be
seen that our results are in poor agreemenf in comparison with the other
two predictions. The discrepancy between the results of Byron and Cerjouy
et al. is not understood since in both applications of Glauber theory the
longitudinal momentum transfer is treated exactly, and all the other
approximations made are the same. Our polarization results may be improved
if we adopt the methods of Gerjouy et al. i.e. evaluate the scattering
amplitudes with the_é axis defined perpendicular to the momentum transfer,
thereby removing the implicit approximation of neglecting the longitudinal
momentum transfer, and then rotating to a system with é parallel to Ei to

evaluate the usual polarization fraction.
(b) Differential Cross Sections

At higher energies where the total cross sections are similar for all
considered approximations the relative merits of each may be distinguished

by considering the differential cross sections. These were evalualed, for
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electron scattering, using equation (10.21) in the cne and four channel
approximations for elastic and excitation to the n = 2 level scattering.
Experimental data is available for both these processes. The elastic
scattering results at 54, 100 and 200 eV are'shown in figures 132a,b,c
respectively, together with the experimental results of Teubner, Williams
and Carver (unpublished, but see Tai et al. (1969)). Also shown is the
first Born approximation. The data points are normalised to the one
channel resulté at 60°. The one and four channel approximation yield almost
identical results which are in good agreement with experimental points.
This indicates that the elastic channel dominates the elastic scattering
process. This is also demonstrated very clearly by the results of the -
second Born approximation, shown in table 1, where the addition of explicit
states fails to alter the real part of the forward elastic seattering
amplitude to any great extent.

The differential cross sections for e#citation of the n = 2 level are
compared with the experimental points of Williams (1969) in figures 14 a,b,c
again for energies 54, 100 and 200 eV. The experimental points are normal-
ised to our one charmel results at 20°. TFor the.smaller angles considered
the shape of the data points and our one channel results agree quite well,
this is probably the result of normalisation at small angles, but agreement
at larger angles is poor. The addition of the 2s and 2p states in the four
channel calculation has not improved the agreement. The Glauber approximat-
ion of Tai et al. (1970) appears to suffer from the same déficiencies. The
requirement of comparatively large differential cross sections for wide
angles appears to be somewhat inconsistent with the requirement for smaller
total cross sections, though we have considered only part of the possible

angular range.
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13. Conclusion

A comparison of our results and experimental_. results has only been
possible in the case of electron scattering. The uncertainty of the impact
parameter approximation for electron collisions makes it difficult to draw
definitive conclusions as to the utility of our approximation. However the
results are sufficiently encouraging to suggest calculating our approximat-
ion using the wave formulation and possibly allowing for electron exchange.
PFor proton impact it would appear that the charge transfer process is not
allowed for and a great improvement may be made by including it explicitly.
This would have the added benefit of allowing a compérison with experimental
results for the charge transfer process. The problems associated with in-
cluding charge exchange explicitly appear to be formidable from both a
theoretical and computational point of view. In particular for a- re-
arrangement collision the problem of 'double counting' must be resolved.
The choice of effective energy, shown to be relatively uninportant in our
present work may play a crucial part in determining the rearrangement

boundary conditions.
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Appendix C, and
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where are the Wigner-7-j symbols with the properties that if
My Mo Mj

Mg = =(M;+Mp), and when M; = M, = M3 = O then L + Ly + L3 = 2p where p is
integer, they.are non-zero otherwise they are zero. Thus the allowed values

of % in equation (A3.6) are

|T_11"'Lzl, IL]_"Lz} + 2, - Ll + .|_12

and also m = - (M;+M,).

Then equation (A3.5) becomes


http://A3.il

95) .

- _ Mo 2Ly 11 (Plo+1)
F(Ly,Myshp,My) = (<1)7° (el lﬂi‘!’ . J

e

1 { i - 3
X 5 (2041)72 []"1 Lz “H Ly Lo 2 T8, My=Hy)  (A%.7)
2 0O 0 0O v 1 MZ M 1 =] ‘12 ’

where

(r) Yng(w)
|R-r| |R"-r]

(L) = f dr (A%.8)

We require values of u(t,t') for all coambinations of states up to the
2pi1’O level, so that L; & 1 and Ly & 1 with the corresponding values of Mj
and My. Hence the values of & in (A3.7) ave restricted to & = O and & = 0,1 and 2.

Since, irom equation (A3.8)

. I _
(M = (0" T, 1) (h3.9)

then we need only evaluvate I(1,0), I(1,1), I(2,0), T(2,1) and I{2,2). I1(0,0)
-1s evaluted by the method of Coleman (1970).
The co-ordinate system used in the evaluation of equaticn (A3.8) is

shown in figure (A%.2),

i

Mjzure (A3.2)

where R' > R.
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If 0 is the angle between R and RY then |Tt-1|~Y and |#'-v]~) woy be

expanded in termz of spherical hamonics.

! %
[Rep|-l = ¥ 9—"] Sy, (R Y L (87,47)
o o~ =0 | 2atl N A,0
and
1 b +R Uy ]
RY'=1+|~% = X b) =1 v (r,R' * (6,0) Y 1t !
l,, il 020 mm=—g [BE-I-J.J ’R(]'“P ) Yﬁm( :0) ﬁm(e 24")
where
2
- - — __r. g
- R
L
= H r >R

AL
17

and (0',¢') are the polar angles of r in the [ O X‘Y'Z'j s .

Then the integral in eguation (A3.8) becomes

.{.2’
_ [ w 1 . »)
(LM = hn ¥ ¥ ¥ 7= Y* (e,0) &. (R,R") E{131,20, &m)
020 120 mM=—2 (28+1) “m PR
(A%.10)
with
7l' - bt 2 7= e T . Jl' -
5M(R,1 ) = 10 r2 £(r) v, (r,R) v, (0,RY) ar
and

—~ Y
2
E(L,M;A0,%,m) = [2221] U ACEN Y,00'se") Y, (8',¢") du

1 . -
= [(2041)(2141) ] 2 [é g ?J {6 ! iJ (A3.11)

m

The properties of the Wigner 3-j symbels imply that the right hand side of
equation (A%.11) vanishes unless i = ~M, ¢ + A + L is even, and &, 2 and L

satinfy the triangle inequalities. Thus, for given values of L and 8, the



possible values of A ave

[e-T.], |e-L] + 2, ... 2 + L

also since

vE (0,00 qyn 3
A ’] = (]) [.Ef:,lm% s] P ' (Z) (A—j. ]_?)
(2e41) ? g e AT m

with 2z = cos @,

Fquation (A%.10) becomes

—- -] o . :
I(L,M) = [Chs(2141)7) h % Pm(z) z §] o (LR 9 (8,%,L,M)

£=mn A
(A3.13)
where
3 (n—r"‘-'_’%— (" & Li[xn & L
4 Vi - AN TS * ~ N ” !
d (£,2,L,M) (;1+M):_‘ lO 0 0 [O - M}

It is evident lrom eguation (43.13) that I(L,M) is real, then the relation

(A3%.9) becomes

I(L,-M) = (-1)™ T(L,M) (A%.14)

Tne radial functions Cj)\ I,(R,R') may be sinplified. In the case
i P > 1 o
R' > R, GM(H’R ) becomes

A

s - 1 R _A+e42 R R' _f-a+4l
(RRR') = ——————= [ T f(r) dr + — [, T f(r) dr
Y R R 5+l 7o (R R
+ B @O s o7 ) ar (A%.15)

Let A (a,8) = /2 277 £(r) dr.
n [+

Since in this case £(r) will be a product o bound state orbitals the

integral l-\n(a ,0) exists for o » 0 and also An((),ﬁ) exists for all g 3 O if
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N < y+2 wheis

f(r) » o)
=0

Intepration by parts gives

R+l 00 0 R _2ym1d - -
Sy 1 f(r) dr = fo 1 an L_A}\__Z(O,P)_J dr

21

=R A (0,R) - (1) R 2
g ALl

A).—-;L(O’P) dr

similarly

w  —=h-f (2541)

s - =2(84],
gt T f(r) dr = - (R") 2 (84)

A, (O,R') + (22+1) I;, 1

d AL

A, (O,1) ar

then cquation (A3%.15) becomes

. )L £ o "’d(ﬂll)
1 - o \ ] 1 N r » - ,
Cs A,Q(R-"R ) (ci‘,rl, R (R ) fﬁ' Y A _z(O,L) dr

(2A+1) R _2x ;
- — S A (0,r) dr (A3.106)
L gyt o A=2

Making the transformations r = R'/y and r = Ry in the Ist and second
integral respectively (A3.16) becomss

A

- 1 29 39 4" ! IR =T
o7 L) 1A ORYy) ¥ dy - (2a1) S A (ORY)

2)\

R

gkﬁﬁﬁv)z—

R'

(A3.17)

Evaluation of I(1,M)

When L = 4, the possible values of X are £-1 and £+1. Evaluation of the

Wigner 3j symbols gives

~

J,

!

.,#1
L
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Y BRI
§(e,e-1,1,m) :-«———————v~——-£—i)--iimbﬁé—v~«-~-——~3—— (A5.18)
(Pe+1)(20-1) (2-1)0 [ (lamd! (1)1 7] 72
ang
241! , }
J e e,y = (241) T (h3%.19)
(28+2) (2041 ) (gim)! L_(lw ny! (l-'m)f:J ‘2

w

and the required radial integral

v 8 - 1 X .
. X . R') 20 . 1 : 28-2 . |
1 T ———— - —_— Ay - D0 - m .
%fa—l,ﬁb(ﬂ’n ) B L(Z?Al) '[o él [(), Y } ¥y ody - (28-1) fo !*\_1 (O,Ry) y d),.rmL
where X = R/RY, and
€ @y = XM Loy o oafo, B v gy - 2eem) £ a(0,5y) v2HR ay |
¢ at1,00 S o Ty Y T el g B Y
Thus in the case M = C we have
1(L,0) = (var)V?- P P (z) & (R,R") TEERTETE Y
L - gy b de~1,0"" 25+1)(20~1)
. i yZ ® - 7~ 2 YN L M;'j rz
s (121?) yio PE(:.’J) ;_J £'+l’v'(]‘{.,t-\ J (di-}-:ﬁi‘(’g?!l) (H).EO)

Since the integrals in (j -1.1(R,R") are finite then the &
. M

O term in the

first sumnation is zero and the sumation may be extendsd to include £ = O

term. Thus

(en’?

1(1,0) = 20

2=0

where

B P (2) X [V + v, R2(V5HY,) ]

(A3.21)



-
Vg = (%537 r; Aﬂ[o, ij‘lJ vor ay
and v, = - 2 f(l) A, (0.Ry) y***2 gy

The expression for Vy may be written

, 1 R') 2% .
V=% oA [0, ;“J ydy + %
' 1 1 R! 28
where Hy = _(3—53:1_) fo Ay {O> S,‘"J vy dy
_ 1 1 29-1 g
= 5y fo ¥ & a; (y) &y
here 941 R
where dy =Y ,[3_1[0, y ]
. da R! d R!?
_yza&-sr?i\]{o,?}—yz yzgj/\,l[o:yJ
13 1
:1 -—-7?A_ {O '——]+l sz‘*fﬁ']l
/zl:o MR A 29y [Y -
d R! R?
gy [l ) - o ]

thus a possible choice of q;(y) is

R 2 R')
1) = g v hafon ) - % o, 3 |

(y)

. . . a . P
but since we will require —*JS;Y—— to remain finite as y - O then a better

choice of q, is

- R — Rt -
Q1(.V) = 1/2‘. yz A-l [Og S;-] + ]‘{'2 A+1{‘§r—" ’w]—:l
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Then integrating by paris Hzy bocome:s
& 5 by ] 3
11 1 202
Hy =52y ~ /o Y a1 (y) dy

Similarly for V, we have

1
V2 - - ]1{) fo A ](O’pl) 3121\' ~ ri—y 4 ;/2 H/_.
’ ! 282
e B = Gy Jo A OR) ¥7F gy
b oop41 @

L
{(28+1) Io ¥ dy q, (y) Ay
with

da-(y) _ .. s . a =~ .7 . +2 -
“‘E_-f?)“ =y=? A, (Oky) = - ) & = Aa (O,Ry) - R I—\+1(O,Ry)__]

. ~ +2 N
and Q) = - %y 2 AL (0,Ry) - B 4, (0,5y)]
S0 b o2e
then H, = (2e+1) 'ro vy aa(y) dy

and for Vg,

T R'] 2% .
Vs =72/, A-I-]_(O-’ 5'] y©" dy - ¥ Hy
where
1 29 R' 1 1 2043 d qq(y)
Jq = e — = . RS
B3 = o3y o ¥ A+1[O’ v ] W= oY dy
with

thus

, , R - [ R')7
o D EASNN ty—-2 0. —
as) = Yo - v w0 ) v 072 nafo, |

T
.

19 0cTi977

. M v
N7 e
s -{ PR TEV IS



also ga(y) = (R')™% q,(0) - 4 /\..'_1(0,“'),

o Hy = _((1_23}(:})7)_ -5 VP2 ) dy
and lastly
Vi == Y 1A, {O,Ry) v ay - b, n,

where
where

d—?;;,‘ RS y A(0RY) = ¥ Sy [y? A1(O0y) - R
with

a(y) =+ %[ y* A,,(ORy) - R2 A (0,Ry)]] = y?
thus

Combining V, and V, we get

where

Q) = = % [y A1(0,Ry) + (1-y?) ao(y) + B y2 A, (O,Ry) ]

== ¥ () [y2 A,(0,Ry) + 2 A (0,Ry)]]

Similarly

R™2 ay (y)

107,

A_1(0,Ry) 7]
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2 1 oy

B! % Loos
Vit RS Vs = Y aa(1) [(2@—1) TG |ty O Ay

with

+ ¥, R2(1+y?) A,1(0,e)

thus equation (43.21) becomes

(3u) ° ¢ (1 x”
T RN AMREA -
I(1,0) CE:D) ap (1) 02:*0 Pg(ﬂ X (281 ~ 2243
1/
(Low)?2 Q E Gy p () a 13,20
+ o 1, Tow) + @ )] Lo YRy (as.22)
But
T (xy2)t P (z) = (1-2xzy2+x? “)'2
£=0 ‘

50 that the secordd term of (A2.22) may be summed. 'The first sumatior may

be done as ollows.

A 2 N
zio Fyl2) x ((22-2) (2z+3)]
(z)-P__ (z))
. @ m—l n+lo i
- nil 211+l J % L+ x Py(z)

But
! - P! = (2n+] 2,
Pl (2) Pl _1(2) = (2n+1) P ()

(z)- P _1(2)
(211'1.1_

r1+J

1
= - D - .
=z fZ Ln(t) dt n

W
—

thus the sum becones
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§ 1
Txaz=x 5 x 1 P (£)at
n=1 4 n
]
= -1+ x~ 3 ./ at. 7
2 (1-2txix2) 7
I, |R-R!
= w(1=Dvedv2) 2 - L _m e~
(] enatx ) R
and therefore
(3m)’2 R-T 1 T, (y) dy
I(1,0) = SR AT ._* 2q1 (1) "L_R,“J" jO RSRR

with

(1-2xzy2+x2y't) 2

T'A‘ (F‘B'Ej)

s

+ (1vy2) [R? R,y (Ry,e) = y™ 2,00 Py ) ]

_—

Now consider the M = +1 case.

i

g (R R‘) &
w o 7 ¢
11,0 = @0 r e [ GERE L
%=1 T

“
(- : X B
= L}gﬂ}){' Ex P, (2) [- Hy + Hy + RZ(=Hy+H;) )

o (R,R')-
(50 D
X (A3.2H)

Using the forms of Hj, Hp, Hy and Hy, derived previously we get

. 1
Hy - K2 M, = J_ yo¥ (y2-1) a,(y) dy
2 1 2 x2 1
and . R Hy - H; = (RY) Qg(l) —2 3 Se]. +

. 1
+ (R1)2 /1 yor (1-x2y?) q3(y) dy

The Legendre series of equation (A3.20) is summed using the relation

m/2 m
) —rr 2 -] ! -
2 hp () = (1~z2) (Pm-1)1 1

L1 n (1-2tzat2 )™ 2

(A3.25)



In particular

oy 17 2515 T 25-1
@ g 1 n 2042 2]
= 3 P.ﬂ(_.é) X7 (x2 y y ) dy
L=1 ’
1 (1...>._21‘| )

- X sin 0 S 7 dy

(L-2xzy”+x2y%) 2

and
¢ o (2 o NP o e
Lll,,l(é = S v L) ap (@) + (R? (1-x%3) qa(y) ] ay
=1 - )
. ] T (y)
=xsine [ : 57 dy
(1-2xzy?+x2yt) 2
where

T (y) = 1/2(]_—5,72) EA"I (O,Ry) - R? yz 1\+1(C),J_{,‘j)]

+ ¥ (1-x%y2) fyz A {O, ?—'} - (R AH[O’ ;Lj]

J
Thus combiring these results we get

1
. (6m) > sin © fl Ty (y) dy

1(1,1) = ; (17.26)
(G ) 5 (RI)Q o (1—2};zy2-|-);2y”)",2 >

where

To(y) = (1-y?) [[A_,(O,Ry) - R2 y2 A1 (0,R)]

\

+ (l_.XZy?_) —yZ A 0 31 - (R")?%2 A 0 Rl
_ -] ) v +1 s v

= -x%") [[A5(0,R") - (R)Z A (O,RDT]  (83.27)
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Fvaluation of T{2,M)

Tn this case equation (A%.13) becomes

] .
s - - f?," UI\ =4 ) ( Y Y
I(2,M) = (20m) _9%ﬂ P, (%) § g;kﬁ(h,ﬂ') J(5,n,2,1)

o NI . -, . ) ] .
and the form of ¢ (2,X,2,M) restricts A to be &-2,% or &+2. [livaluatine

z : 5
5202-1) &) (R,RY)
(28-3)(28=1)(28+1)

1 o
1(2,0) = (5")/2 r P(2) {—
220 -

20.(841) quo(R,R') 3(04+1)(842) (7

3 ap, s oRD-
(28-1) (20+1) (20+3) ~ (2841)(22473) (2845) _J

(A3.28)
Using the explicit forms of ¢

]
(RH)/?-

1e,0) e g?o P, (z) x* [R2(Vy#Vy) + V3 + Vi + RE(V5+Ve) ]
(A%.29)
where
V. = %9,(8-1) J-l A lo B.” 2% av
V7 o(2e~3)(26~1) "0 "2 T2 y J Y 3
_ =32(2-1) ! ) ol
V2 * )Ty fo PO v dy
L 2a(e41) ! R} 2%
Vs = Ty anrsy fo P00y VT W
.- 294(94+1) 1 r2-{l' 3
Vs ® D) gy To Mo O:) v ay
204+ ) (g+2) 1 R'] 25
_ I\ LN .
Vs =y aas) o MOy Y W

The & facto:

3(541) (842)

7. = - . <
v (28+1)(2843)

foa]

~s preceding these terms may

fractions so that

1 20+l
! A+2(O,Ry) y dy

be simplified by use of partial



- *_ I .l i T
v, = ¥ { Jg + 3T, + 2 iy A, [Qh i’—}fl 5’29' dy Jl

- ] g

Vo= % 37y 4 05 - 2 1 A (0Ry) v )
] : ! )

V3 = Y | 3Tq = &gy + 4 s Ao(oﬁ vy dy ]

- ) .1 . oy .
Vy = =Yg [L373 - 33y + 4 7 Ag(O,Ry) v ay]

(8]

O P

1 ™ -
Ve = —3}’8 [J“ + 4Ty = 2 f A+’)[O’ -J—‘-J y29’ dy }
. - i 1 . +L! o

Ve = =% [[Js5 + 30 + 2 S Ao (OsRy) v dy_]

Using the procedures utilized in evaluating H y e have

1+

] i 2u-4
Jy = —(-Ef,xlw)- IO /\—.9\ R v v

(1) b
- _(;J?_ml)' "Iy ) gy

ri(y) = Yy [CR* A, (0,R0) - ¥ A5 (0,Ry)]]

1
2 = iy fo 2O 5
_pr(L) b 2e-2
D Tl T a

p1(¥) = ¥ [[B? no(0,Ry) - y~2 A_,(O,Ry) ]

-l -' 3
I3 = 3Ty f Ag(0,Ry) ¥ dy
0, (1 1 1 g
- TR R T mw) &
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1 ]
T = Gy Lo MolOs) ¥ ay
_paf1) 1 2w "
S Gasy T Y pay) dy

psly) = b [ 12 +2(05R3) - ¥ Ap(0,Ry)”)

= -171(1\ f; yg'““ p3(y) dy
Jg = (2§+J) s, B, 5(0,Ry) y?*H ay
= (2§}{§)nh B %ﬂ f; v e ) ay
I the remaining integrals it is necessary to allow Ior the pous’~ility #.at

= 0 or 1 in the definitions of the r{y) and p(y) functions. We consider

N

£ » ¢ initially and indicate the differences for £ -1 and £ 2 2 later.

, . R R'
Ty = ok f Ao, B 42 4
°8 T sy - v y y
1) 1 2g-2
= ?5,& e ¥ ey oy

py(y) = % Lyz A-.Z{O g—} + (R*)2 Ay I JW
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- | 1 NI T T

] g = —(EL-‘J- )— H o ,"-,0 ((1 . ‘_:; -J Y o dy
_ o () 3 e, 3
- o ne) o

l‘ ( A1) . N -
~ ) . | ]'\' . o } t
ps(y) = 4 I-—y?- Mg !\o, il B CAD LN {__}: ,J ]

v 2
S | Voo R 29 .
T = Ty Lo Pol0s ) YT O
06.(1) 1 2042 .
= %ﬁ?v}}? Iy g (y) dy
ey R' ” k')
pely) = % l (R')™2 A [o, ——J -y A [O —] ’
G . s )7 y 0 s 3’ J—
] 1 1 R') 21
N =y o MOy Y %
_po{1) 2042
P sy T oY e ) &
- Rt) R!
( A 21\ =2 e e EA
p7(y) = X L(‘x‘ Anfo, y | " ¥” ‘+2[”, 7 U
— R') 2%
T2 * 558 o A+2[O’ T] yo
ra (1 L] BX

If 9 » 1 Jg and J9 may be replaced by

2 ARY)2 pe(1) 2 b2
Jg = =i = (RD2 137" pely) dy

. _ (R")? p,(1) 1 22
and Jg = -——l—(-éz_—_‘i%—* = (B2 7y py(y) dy

and if 2 » 2 J; becomes
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. R T 1. . -y
J/ ( (22’ k ) /I\l)ll Jo y 1"}(.}7) dy

Combining these results, we have

1
R2V, +V, + R? Vg = fo y2£ Qy) dy (A%.740)
with
L (et -~ 3 Ry A (0,Ry) ]
Q) = - 5 [3 Ao (0,Ry) + 2 R2y? Ag(O,Ry) + 3 K'y" A, (0,Ry) ]
and

-2 X 2 _91r(2) }
R Vl + V + R Vr = 8 R2 22'_ Qy-{f‘ B

2 1 9
" [w " Py(1) + ps (L) ‘J[ (/} 1) 5%?3:] + fo y2 Q'(y) dy

(A3.31)
with
1 2 “; =z
Q' (y) = 55 R [:) RY (%e2y247y") A+2(0,M)
(7402202 7o) g R 112 =2 . |87 by 5 (R
F(BH2x2y 2430y ) {3 A0, | - 2(R")2 372 Ayl ,ef - R4 y* 4 | |}
¥ v o7 2y’
+ 2R (Zy2+2+3x%y?) Ao(o,w)"
The series
® L {1 Xt
r P (z) x f*-w—-"- J
=0 £ 28=3 ?£+5
may be written as
(z)- P, (z)
© A2 A2 A+2 > 1 .
152[ o) AR T= 5 Uy (2) X (A3.32)



hut for A = 2

P, ()P 2(r/.)

)\+f.".__ A~ R ! e i1 5] s
2xr]l - f'/.'. E‘[ ';\+ZL\1’) * ])\--1(1’):1 dat
] 1
+ 2 f,, at s P‘.(u) du
1 1 _ 1 _
and fode r, Bo(yp) dp o= 5 () Po(t) dt
A T A i A

thus for » 2 2

P, (2)-P, (z) 1

a2 BT e ey
Gy F Sy L) BE) = B

(t) - Py, (&)_] at

i, . m, ] . ‘ . .
With the convention Pn (z) = 0 n < mthe sumnation of (A3.32) may be

extended to include x = 0,1.

Therelore
P (z)-P, _(z) - 1 ' -
. 8L z+2(99+1% SRR s, [Caten) P (6) = P (6) = P L (6)]] &b
1=0 2hd) 10 ° ' -

+ x/3 + 2z -1

111,

The summation is done by using the generating functicn for the Legendre

polynomials, and doing the integration with respect to t we get

. PPy 5(2) Y 15‘5'13 ) 215(?'?'1
220 (22+1) - 73TR'T R
1+hxz+x2 ) ,
= "i"*gﬁr“ﬁ~l |R-R"| (A3.33)

- b =
. @ 9 2 .
The second series : x P _(z) [-;—7~ —'“_—S_J has been done previously and

is equal to

kg
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The finul expression for I(2,0) is
¥ o

1s
- £ - . k (f-': “2 - N "I 23
I(2,0) = - 57%){?3‘ IR-R'] [Cpu (1) + 12 ps(1) + 15 (1) (Lebxuin?)_]
1z
(5%) 72 1 Qly)+Q1 (v 3,7
P g____ fo _.(_:_\.b—-.’r L (\—)-}-]/—- dy (A%.34)
n ( '2)'7‘3"4'{‘}:2\’“) 2

For M = 1, eguation (A3.17%) becones

I (2-1) é_:_}’E 5 5 (RE")
: 1) = ) 2 y P ” - T NTE s —
H@,1) = (om) gil 121(4) [: (25~3)(2¢-1) (2241)
G ( 1y . = 2 R )-
_ Ja Bt . (142) fpyp (TR 0%.35)
(2z~1)(22+1) (25+3) (26+1)(22+3) (2345 ) _} (A5.35
(30 )1"/"Z Lo~
= “*ﬁ%“‘“ I Poo(z) x| _R2(V)#Vp) 4 Vg o+ Wyt R% (Vg+Ve) ]

=1

with

V] = - 1/’)+ (J7+J8)

!

V, = ¥, (331-75)
Vs = %y (J10-09)
vy, = Y, (J3-Jy)

Vs = Y (9114912)

(J5-3T¢)

<<
o

1
x

using the results obtained in the I(2,0) caze. Then
' 1
R™? V2 -+ VL} + RZ V5 = 'rO y22 Q(Y) d,y

where
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N ] - ‘) - P ) P ‘) -
Qy) =37 (1-y”) R~ L,H R4 y™=(1=y*) Ay(O,Ry)

+ (3+%y2) {y™% A, (O,Ry) - 1Y A+?(O,Ry)}:]

and
R2 V) v Vg 4+ K2V, = Eﬁé%* (— 5%:3 +-§%%§]
+ (— 2%~l 2§+,} {pg (1) + R? p, (1)} + f; Q' (y) y2, dy
with
Q' (y) = S%i?%%?il [:(x2y2+3) Aaﬂ[o, g?} + (L3x%y?) (R')4 y ! A+2[§L ’m}
- 2(R")2 y=2 (1-x2y?) AO(O: 5;]:1
- (2-3x2y%4x2y6) é%é%i £,5(0,%)

The series

w £ | x? 1
o Py () x [2z+3 22—1]

has been evaluated previously and is equal to

1 (1_X2yh)
© (1-~2xzyz-l~>:2y'-‘)v/2

- xs5in 0 J dy

Th

]

techniques used to evaluate this result cannot be used for the series

® o x4 1
¥ P, (z T
1 g1(7) X {az+5 22—3]

But



x ¥ F,(z) x”

£=0
£ i 1=
D [~ , 1'-’ - 42
1E(t) x7di o~ 1 X"'I.-_
. Roein’e (1-luzix2)
T IR—R'I
When these results are combined we get
Voain o Mt 1= Mo 2 1 VRECD -
12,0) = (on” BT QU Gbend) | 1) T )
K in I}\_—H | o) (1"'2>12"V2"'X2Y“) |

whcre
Ty (y) = x y2(Q(y)+Q' (y)) - ),_ (1-x2y" ) (pg (1) +R2 po (1))

Since |R-R'|"! is singuler when R = R', as is the integrand of equation

~ -~

(A3.36), the two terms are conbined to remove any singularities. Since

) TRJ_T = 1+ fl ?}'V('f._xyz) = Ay
I-EVR T O (1-2xy? rx2yt) 72
Equation (A%.%6) becomes
1 g] 1 M (< o (1 q ) ".-!—‘:2 -
I(2,1) = (s0m)72 8300 [f 1 (y) 7 o + 220 otoxa?)
‘ © (1-2nzy?an2y4) "2 -
(A3.77)
where 'l‘q(y) = Ty, (y) + ?}’_gf_.__q_)_ r, (1)

For M = 2, equation (A3.13) becomes



] e 2 i)
1 e ey [ e D
270 L GRe=s)(2e=-0) (P241)

2 &, (R 2
) éiiﬁ(}’ ) “

7 g4 , (R
il el ; e N LIS T,
(2e-1)(2er1)(2843) ~ (Cr+l)(22+43)(2545)

(h3.358)

- zf)

(A3.39)

where

Vy = ¥ (3-Tg) v, = Y (J-d,)
V3 = Y% (J10-J9) Vi, = Y (J3=dy)
Vs = Y, (Ji1-J12) Vg = %2 (J5-J¢)

iy

Ji-12 are as defined vrevicusly allowing for the fact that 2 3 2. Then
1 22
- 2 . - 5 -
R2V, +V, + R Vg = [,y Qly) gy
where

Qy)

- Yo (-y?)2 [R? A ,(0,Ry) - 2y™28y(0,Ry) + R2 y™* A_,(0,Ry) ]

and
R2 V) + Vy + B2 Vg = B2 ra() 1 x!
! 30T 2x7 20-3 2445
. 1 x2 o . 1 29
- Y, (R")2 [55:1 —'§EI?J (R=2 pg (1)+p, (1)) + 1oy Q(y) ay
with

avo | . R’ - R!
Q' (y) = ¥ x2(1-x%y?)2 l (R')2 y=2 A+2[O,'§—J - 2yT? Ao[0>'§—) + R'2 A_Z[O,

5

The series of equation (A3.72) can now be summed using the generating

Tunction for P . (z). Thus

22

s}

—

a
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o 0 ) 2 .~ 1 \,: Ve gl

v D ..(z) ?{L ('"'];":* - ""}'—'r:') = Sy? ain?0 g v (dox Y ) 17
LR o1 Peqnl ToT w0 SR
9.2 ’ ) (1=-2xzy4exdyt) 2

and

. ’ W 1 Tl @

(293 . J. _y. = . ~ =2

X Pyo(Z) X' [3%:5 - 224F] = 5y sirfe f U=xly ) -7 dy

e O <o y - 2l .

f=2 - ’ (1-2smy?+32y") 2

v, .
';‘.'] 2 % 3in?g ,.1 _ Ty (y)

R 57 (AB-L‘O)

1<
"o . z 3y
(1-2xzy2ex2yh) 2

with
Ts(y) = X2y (Q(y)+Q' (v)) + ¥ ()2 (1-x"y8) rsy(1)
- Yy y2(1-%2y4) (pg (1)+R2Z po (1))

The above analysis gives a method o1 :educing the motrix elements to sing
dimension integrals on the interval [ 0,1 ], which are calculated numerice:
“ally.

The matrix elements F(L; My,L, M;) evaluated with respect to the axes

~

in the R divection Tor R < R' can now be obtained. Using equation (A3.7)

we have

7(0,031,0)

1(1,0)

#(0,0;31) = I(3,1)

i

(i)™ 72 1(0,0) + (51) % 1(2,0)

3\

(Uﬂ)—yé 1(0,0) - (20n)1/2 1(2,0)

F(1,0;1,1)

P(1,1;1,1)

5 ) %
P(1,13171) = - {ié?} 1(2,2)




1iT.
The remaining expressions for (LM 50, 0% )5 Ly, < 1 and My M, < 1, are
obtained using the symmehry relations
{5,830 ,M0) = P(Lp My Ly M)

= (1) (g by Ly by )

To evaluate the two centred matrix clamonts in thoe chosen direction of

quantisation we use equation (4%.4)

. L l S (O N 1.
with R o, h = (1) e . )
: . 2 \ I , . .
where (0,¢) are the polar angles of R ard r 7 (8) ave the robtation matrix

- m'm

elements defined in Messiah Vol.TT, then

1{0,0;1,0) = coss F(0,0:1,0) - v2 sing F(0,0;1,1)

- et L—l- gsing F(0,0;1,0) + cose F(0,0;],].)J

1(0,0;1,1)
V2

1

I(1,0;1,0) = cos?e F(1,0;1,0) + sin%e F(1,1;1,1)

- sin%e F(1,1;1,-1) - 2V2 sins cose F(1,0;1,1)

T(1,031,1)

1

oLt (;_l siné cosk F(1,0;1,0)
-2

-1 sing cos® F(1,1;1,1) + sind cose F(1,1:1,-1)

V2 ;

NV |

+ (cos?a-sine) F(l,O;l,l)W
I(1,1;1,1) = ¥, sin?e 7(1,0;1,0) + ¥ (l+cos2e) F(1,1;1,1)

+ Y (1-cos?e) P(1,131,-1) + Y2 sine cose F(1,0;1,1)

and
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7 - - c -‘LJ - »” s i s
I(1,1;1,-1) = ga v ]_— %2 sin‘e 1'(l,051,0

+ Y (1-cos?e) ¥(1,131,1) + Y (J+cos20) 1(1,1;1,-1)

~,
)

™

sin0 couh F(l,O;],l):]

The ramining expressions for T(Ly,My 3L ,M,)5 Ly,ls & 1 are cbtained using

the relation
- MM, .
],(I_nl ,Ml ',L'/_ _,M?. ) = (".L) 1 < L* (}_.-] 5"]\"'11 ;LZ. 3 "'Mz )

= I¥ (LZ,MZ 5Ll _.,MI )

In the nctation of section (10) the non-spherical malrix elements arc

3,
1 e e ey r ~%r
wy3(t,8') = 7(0,031,0) / with r(r) = ¢ 2
[ V6
LW

ppy (6,81) = 1(0,031,1)

ups(t,tt) = (-1) I*(0,0;1,1) )

1
873

uon (£,£1) = 1(0,051,1) (2-r)r e "

uy3(t,t") = 1(0,0;1,0) ‘ Z
( with [(v) =
J

1.!25(13,’0‘) = ("J) I"(0,0;l,l)

35 (t,E1) = (=1) T*#(1,031,1)

pl}l(.(tyt| ) = -[(151_;],1)

r2 ~p

us(t,t') = T(1,1;1,-1) 5

with £() :

il
o)

1133(13,1.7') = I(J,O,I,O)
sy (6,6) = I(1,031,1) with £(r) “'%i e ¥

wer(t,t') = T*%(1,1;1,1)



The ¢ derendence

now apparent .

Throughoul this derivation we ha

results oblained

case the initial

interchange of R

ion to the quant:

128010 uxXes

the v mitrix clements roguired in section

ol

assund that RY > B, However the

E > R'. In this latter

eazily convorted to the case

is made to the R' axis, then with the

rotation of axes
and R' all the following analysis holds. The final rotat-

is now defined by the polar angles of R'.

~
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Ly, 101» v

The cypressions obbzined {for the simgle centred malydy elowsits,
- (t) are given explicitly for a combination of (u,e,m) and (n, £, ry)
1 ) %2 n2

up to the 2n-level.

Vo) e s ) | & - el | e e ar
ning n; 'L LR WR:;]“J "y Ll

where n is the charge of the incoming particle, and

Vn]ﬂz(t) = i - 111]!0( )
where . Vh]nﬁ(t) = f ¢ *{]) Tb ( (r) dr

We use the rnotation alrcady established in Rection (10), and sin

)
]

r ) =V E L (E)
\]’111’12 (t vl’lg]’l-l(' /

not all possible combinations are given. Iet

cp =1- e (Re1)

-1.5R (

c, = e 3R+2)

cs = 8 - e "R((aR)34U(aR)?480R48)) , o = 1

e
U1

cy = 8 - e—R (R2+2R2+6R48)

cg = 28 - & R (RY+UR3+12R2+24R+21)
- n -R 3 2

cg = 2 -e (R +6RZ2+18R+24)

and cy = 144 - e ! (RO+6R*+2UR3+72R2+ 1 4HR+IAL)

then



v’?_lg (t)
Vo5 (t)

Va5(t)

Vi (t) -

V3s5(t)

vl;l;. (t)

Vys(t) =

= F-'Nl Cy

L

272

L (%4)5 conl

. ThET €3
/3 i

] 2, 25 $ing 1d
SRROALE LR RS

R Cu
Qgse
T BRZT 5
_L_ osing dé
gz N ;

_ 3 sing cose _i¢ c
< 7
242 R
- Vi, ()
L, (3 cosfe-1)
2IR %6 BRI 7

PRENAT L T
vialR Ly .,’u; ~
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i 49 o
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