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Abstract

Chapter 1 serves as a brief introduction to the
ideas which form the subject of this thesis, internal
symmetry, bootstraps, duality and the guark model.

In Chapters 2 and 3 we survey predictions for
internal symmetries made from N/D bootstraps and the
duality hypothesis respectively. Both approaches
predict‘a Lie group structure énd predict the meson
representations. In addition‘the duality equations
imply that the berybﬁs transform asbtwo-quark composites.
A phenomenological choice of a subset of the duality
constraints can be made whigh’has a physical three-
guark solution. Symmetry breaking is discussed in
both casese. '

In Chapter'h we contrast the.predicpions surveyed
.in the previous two chapters. Duslity requires
exchange degeneracies among trajectories of differént
 multiplets but these do not result from N/D models.

In the dual case the even-signatufe, isosinglet

trajectories are identified with mixed f,.f' states,
degenerate with the w, ® respectively, whereas bootstrap'

| models always'produce a high-lyihg singlet trajectory

- which is most.naturally‘identified with the Pomeron. |
It is argued that these differences make it unlikely

that dugl models can be deduced in ény simple'way from

the bootstrap hypothesis.



an N/ guark model with meson exchanges is
examined in Chapter 5. With the assumption that the
quark mass is much larger than the meson mass, a
singlet meson trajectory is obtained which lies an
order of magnitude above the octet trajectories.
This result. is unaltered if symmetry breaking of any
order is allowed. These difficulties are not removed
by treating the particle éxchahge forces as perturbations
to a background term. It is concluded that these
results together with ﬁhe'knbwn difficulties of
obtaining phyéiéai slopeé and intercepts imply that
this tYpe’ofrquark;model shoﬁld probably bediscarded.
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CHAPTER 1

" Introduction.

Since the advent of high energy accelerators
physicists have been faced with a great proliferation
of elementary particles., It is widely thought that
at the present time the(best way to describe this
teeming population and their strong interactions lies
within the framework of the S - matrix, with no reference
to any underlying Lagrangisn formslism. (see eg. Chew(l)).
' This viewpoint will be adopted here. The S - matrix
is taken to satisfy the following, generally accepted,
principles: (a) Lorentz covériance, (b) connectedness
decomposition, (c) unitarity, (d) crossing symmetry.
Phenomenologically the aﬁtempt.to underétand the
particle spectrum began with the search for conserved
guantum numbers, such as strangeness, whiqh, together
with the already known properties such as charge and
parity, label the particles. The idea that strong

interaction forces are invariant under neutron - proton

- exchange led to symmetry under the SU(2) group of

- transformationsﬂand the classifying of particles into

representations of' this Lie group. To incorporate

" the strangeness or hyperchange quantum number into an

2 chose

extended symmetry scheme, Gell-Msnn and Ne'emen
3 SU(3) from amongst the second rank Lie groups and

3 conjectﬁred that the lowest mass mesons and baryons

s




_ SU(3), ideas were proposed, notably by Chew and Frautschi

w8

correspond to octet representationsof this group.

This scheme has met ﬁith great success in that the
particle spectruﬁ clearly reflects a multiplet structure
corresponding to representations of SU(3) despite the

fact that the symmetry is badly broken. However allowing

the broken symmetry part of the mass matrix to transform

in a certain way under SU(3) led to the Gell-Mann -~

(3 ~ |
. Okuvo sum rule for particle masses within a multiplet.

The most dramatic success of this rule was the prediction
of the mass of a strangeness - 3 particle, the Qo

to complete the spin 3/2 baryon decuplet. . This particle

 was subsequently found and with the predicted mass.

At about the same time as the introduction of

to give a theoretical understanding of the dynamical basis

of the particle spectrum. The crux of these ideas,

| alternatively called "nuclear democracy" or'"the bootstrap"

is that all the strongly interacting particleé are
composite or bound states of each other, owing their
existence entirely to forces of the Yukawa type, i.e.
forces expressible in terms of particle exchange. The
particles are democratic in that none has a more elementary
status than any other. To implement these ideas two ,

further S- matrix principles are hypothesized. (a) The

.principle of maximal analyticity of the first kind: the

connected parts of the 5 - matrix are analytic functions
of the momenta on which they depend apart from poles

correspbnding toiparticles and the consequent Singularities.

(4,5)



implied by unitarity. This prainciple establishes

that the S - matrix'singularities are determined once

the poles have been specified. However with no
“additional principles these poles may be’arbitrary.

(b) Maximal analyticity of the second kind: there

‘are only isolated singulafities in the continued angular
momentum plane. This implies that 2ll the poles of

the S - matrix are Regge poles(6’7) and, loosely speaking,
that a knowledge of the cut discontinuities of the S -
matrix determines these poles. These two principles
give alset of non-linear self-consistency constraints
from which 1t 1s hoped that the physical particle masses
and coupling constants will emerge uniquely. It is
conjectured that the only ffee parameter will be a
diménsional parameter needed to set the scéle'of the
masses and there will be no dimensionless free parameters.
In particular the particie symmetries; together with the
pattern of répresentations and of symmetrylbreaking,
should not be arbitrérily imposed but should emerge

as the unique solution to the bootstrap.

However, the idea of nuclear democracy suffers

from severe practical limitations, when one tries to

test ite Since a self-consistent closed subworld

" should not be a solution, the whole strong interaction

problem must be considered simultaneously. To complete
a practical calculation it is usually assumed, without
much justification,'that low mass states are most

'important snd the higher mass particles are omitted.
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Secondly one has to make mathematical approximations
and these will almost certsinly introduce extra free
parameters into the calculation, against the spirit

(8)

of bootstrapism. Of course 1t must be said that
the possibility that the bootstrap equations will turn
out to be identities cannot be ruled out.

Histbrically the first bootstrap cslculation was
that of Zachariasen(9) who treated the p - meson as a

T composite, using the determinantal approximation

to the N/D equations of Chew and Mandelstam.(IO) (A brief

. review of' these equations 1s given in Appendix C.) In

this calculation the T - meson has an elementary status.
All the early bootstrap calculstions weré based on
multichannel coupled integral equations which attempt
at some incorporation of unitaritye The results have
tﬁe general feature in common that the coupling constants
come out too 1érge. | |

More recently consistency equations for each two
particle process have been written down using the rather
vague principle of duality. This principle may be stated
as the equivalenge, in some average sense, of the
resonance and Regge descriptions of an amplitude for

some region of the dynamical variables s and t..(see‘e}g.f
(11) |

“ref. )¢ These equations are much simpler than the

partiel’ wave, coupled N/D equations but since they are

linear do not give a complete bootstrap. In particular

- the absolute values of the coupling constants are not

determined.,



)

An al ternative understanding of the particle

(12)

spectrum is the so-called quark model of Gell-Mann
. and Zweig(lB). | In this model the known particles
are thought to be composites of elementary spin 1/2
objects, "quarks" and their antiparticles, which
transform as the fundamental triplet representation

of SU(3). The correct SU(3) spectrum is obtained if

the mesons areAquark- antiquark composites and the baryons
are three quark states. This identification gives in
addition the cofrect parity and charge conjugation
properties of the mesons, but diffidulty is found for
the baryon states if the usual Fermi statistics are
assumed for the quarks. (See eg. refs.(lh’lS). | '
One might also ask why three quark states should be
more strongly bound than for instance two or four quark
states. The quarks would be ﬁractionally charged
'particles,‘ahd if they‘exist they have so far‘evéded
- detection. One possible explanatioﬁ for this is that

the quarks have an unusually large masse

In the following chapters we survey and investigate

aspects of these alternative approaches to an understanding
of the particle spectrum and in pafticular to, the
prediction of particle symmétries. ~ We make a careful

comparison of predictions based on N/D bootstrap models,

dual modelé and . the quark‘model.
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CHAPTER 2

Bootstrap predictions for Symmetries

In this chapter we survey the various arguments

' leading to the predictioh of Lie group symmetry based

on bootstrap models.  These arguments originatéd with

(16)

CGulkosky's . work based on the Bethe - Salpeter

equation. However identical relations are obtained

- in an N/D calculation and we adopt this latter approach,

tollowing essentially the arguments ot Chan,de Celles

(17) (18) (19)

and Paton and Hwa and Patil . (See .also Capps Jo

2.1 Mesons

One considers the elastic scattering of a set of
pseudoscalar”mesons (P), P, + Pp — P, + Pd.in the s -

channel, where the labels denote internal quantum numbers.

?

R R |
.1 s-chammel a +b—yc +d
ii t-chanmnel a + c-—b +d
- 5= ' - -
iii u-chennel a+d-—sc+ b
. Fig.2.1
R B g2el

The N/D equations can be written (see sppendix U)
o oo |

L,2
a:b,ef( 5) )

4m*

e (NG o ()
(2.1

it

) |



. columns are the eigenvectors ot V
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o

Dt - 5. -(5-%) ds p.(S)Ng cq ()
Gb,cd - ab cd T (S’_S)(S' %)

where Pe (s) = 2C|52u1/ JS , m is the pseudoscalar
meson mass and Sg the subtraction point. B:tfcd

1s the 'potential' term specifying the left hand cut
discontinuity, and calculated in this model from the
exchange of a set of M degenerate vector mesons (V)
in phe t and u channels. L1t fab" denotes the PPV

coupling constant, which with Bose statistics must be

antisymmetric under the interchange ot a and b, then

L€

Bioba = Fo® Ilfafh * (-1 fioafhe)

Qe(z) R(z)
32 g2 (see equation 10
Appendix U).

i

where F, (s) |

t

PuttingV:b,cd(s) ; (f;cf;d + (- 1)f dfhc )

this 1s a real symmetric matrix which may be diagonalized

by the energy independent, orthogonal matrix U, whose |

U|j = (bi‘j - where ' V‘Dij

4
>
on

-1
U Vu=V? where V4,

it (2.2)

Ny, (2.4)

(2.5)



" b) ‘Assdme that de(s) = N,,,d(mf)n(s)

~Lhym

1t can easily be shown frowm equatvions (1) and (&)
that this transformation simultancously diagonalizes

N and D and hence the partial wave amplitude B.

U'NU = N (s)
! _ 4. S- ds'p ($IN4(S)
4m*
=1 - ag_(S)

UBU = BA(s) = NAS)(1 -0, (s))"

~The following bootstrap conditions are imposed

- d - ,
a) Require that By (s) has M degenerate poles at’

S = (vector meson mass)2~ =m . This will be so if

Q,

!

Cmd) =1 for 1<iISM

.

1< i< M This is the assumption that the M
eigenfunctions corresponding to the vector meson poles
have the same s dependenée, and includes the results

of certain special approximations, ege the determinantal
or linear D approximations. The‘residues of the vector

meson poles are:

(2.6)

©2.7)

!

(2.8)
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Ilm(m —s)B ds) = Ny; ¢ (M, ?)
S-m,? [Q£££| S))Jrn 2

1
@
—
o
=)
v
<

The assumption (b) ensures that 7y is independent of j

This implies
1 :
(2.10) fan = Y72 Gy or that

(211) Vubcd fcd'" = ‘)\1,- fan . The PPV coupling

coefficients form the first M eigenvectors of Vl.

' This result follows, provided analagous assumptions 0

(b) are made, for the coupling coeffiments 92, b of
zeroes | >4
any pgetes of D . One obtains

L r o r r
Vabed Jtcd = Mg Gr'ab

By orthogonality of the eigenvectors of a real symmetric ’

matrix, we obtain with suitable normalization.

gé, gie,ub gha = ‘6lj -

[

»

(2.9)

(2.12) |

(213)
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To be consistent the other poles of D, must occur at

higher mass “values than the vector mesons.

Ne, £ ()< N, @ (8), 1< 1< M

c) The above conditionsconstitute the weak bootstrap

conditions. If we add the condition N17i ¥ (s) =0
for {>M we obtain a stronger form of the bootstrap
condition@o). This implies
M
1 1 ryr ¢
Vab,cd - "V‘E.I fao A f

M | ‘
(ot = faa foc ) - (214)

We see by the antisymmetry of the f's that ?\r=_ Y with

the result that

r r r
f ap £ ca = f

e Tpa -t ad fpe  (215)
The strong bootstrap condition ensures that the

vector mesons (and théir Regge recurrences) are the

only poles which occur in the odd—f partial waves.,

In addition there is the possibility of extra poles in '

" the even — £ partial waves. Cutkosky(l6) in a VVV

model was able to show (by assuming a gauge invariance

for the couplings e.gs charge conservation) that the weak

bootstrap conditions imply the strong ones. In the VVYV
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model the kinematics are much more complicated and
- additional assﬁmptions (the neglect of certain couplings)
have to be made. The advantage gained iﬁ a model with
only one type of particle is that if we assume that the
fabr are totally antisymmetric in sll three indices,
then equation (15) becomes the Jacobi relaﬁion, satisfied
by the structure constants of a Lie group. - With this
assumption of antisymmetry, the metric fab° fed? must
- be non-positive and negative definite if indices corres-
ponding to particles with zero f - interactions are
igﬂored. The Lie group must therefore be semi- simple
and compact and its structure constants are proportional
to the V'VV coupling coefficients. Since semi -~ simple
~groups can be expressed as the direct product of simple
“groups we can restrict our attention to‘simple groups
:iwithout loss of generality. The vector mesons must
form a basis for the adjoint representation space of
"~ this group. The model as it stands dannot distinguish
between various simple Lie groups or their dimensions.
For illustration we solve our original PPV model '
"assuming that the symmetry is SU(B)Aand that the f's
 become the structure constants of this group. The
eigenvalue of \/D" for £ odd is' just one and the
.éssociated eigenvectors form the adjoint, in this case
the octet, repfesentation. For the even partial waves,\/z
" has the eigenvalues, 2 for the‘singlet'representation, |
1 for the octet and - 2/3 for the 27 representations
-~ The model thds predicts‘that:there will be singlet and
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octet poles occuring in the even psrtial waves. The
‘.singlet, with eigenvalue 2, is predicted to lie above
- the octet trajectory, which in this simple model turns
out to be exchange degenerate., It can be shown (see
Cutkosky(zl)) that tHe eigenvalues of the singlet and
- adjoint representations, obtained from adjoint - adjoint
scattering, sre independent of the particular simple
Lie group chosen. The above feature with a singlet
lying above the adjoint trajectory is therefore general.
These bootstrap predictions for the trajectories will
be contrasted with those obtained from duality in chapter
b The second general feature shown by this model is
the existence of additional pafticles in other partiél
waves. To be consistent these particles'should be
included both as exchange forces and as external
scattering channels. The problem rapidly becomes more
difficult.

As a first generalization, one can attempt to

" include even parity meson exchanges in our simple PP
~model with odd perity adjoint exchange. (See eg. Chan et
al,(17). Capps(?o) )+ The potentials in the'éntisymmetric :

and symmetric states are

' VT‘ ,: 2( %l Uooc;r'~gr'2 + %.’er Crs‘ 95-2 ) : (216)

Vy = 20 ZUp0Cor G+ 5 Upg Crn Gr? ) (217)
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~where r ; S label antisymmetric and symmetric states

'y

respectively. Cij denotes the (sy t) crossing matrix

. and gi2 the coupling coefficients. The assumption

+ state arising from odd parity exchange, etc. Capps

has been made that states of a given parity are degenerate -

and Ueo denotes the potential in the even parity

(20)

" shows that all the U are attractive potentials and

- assumes that Uge= Ko Uoo : and Uee = Ke Ueo

- where Kg Ke are positive constants. He argues

~that in the low energy ‘région the shape of the potential

is not expected to be important. The strong bootstrap

. conditions for the odd and even parity states and the

determinantal approximation (see appendix C) give‘

_ , | I -
; 6rr' gr' "" ?\o( g' Crr'gr?"' Ko% Cs*sfgs'2 ) ,
2 -
Es:, 6ss' gs° = 7\e( ; Csr-' gr2 * Ke é Css'gs'2 )
| 'where Ao ,>\e o are positive constants, Following Hwa

and Patil (22) the c':’rossifng motrix can be written as

(218)

(219)
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st o
Cat = S S M
r g A

~ Since the square of the crossing matrix is 1, it

" follows that

2620) §+ = 1, §£\'/I+ M A = 0,
2 ,
A"+ MN =1, - AN 4+ NS = 0,
5 )
5. M = s, AL NM = A

 These relations show thet the matrix f‘has\eigenvalues -1,
- l/z.and ‘§ has eigenvalues 1, - 1/2;,, Our equations

. (1.16) and (1.17) are now writtenft;

-AA)a=MNs =0 (221
(1-28)s - AMa =0 (221
where a = gra ‘and l; ‘aré positive
: S , 952 " constants

Using relations (1.20) above we obtain

1 o MA BN, .+' ‘(>‘3">‘1+ M)A a=0 : (2.22¢
- | 4 2 N |



o2le

B L Y g
2 | 2 7

1

(2.22b

Hence a, s must be eigenvectors of A, S respectively

with eigenvalues differing in sign. The eigenvalues

of A are -1 or 1/2 and so we require

1 - MAF AN,

2 : e 1 : ,
N A N, TB (223)

. This has solutions B | | |
Ay = 1 for eigenvalue = =1 : (2. 24c
or | | |
3, )\4' =(2+ A, X2 +A3 ) for ei{:.en;fa.lue 1/2 (2.24|

The total crossing matrix has eigenvalues £ L.

Let -K- be an eigenvector with eigenvalue + 1
g_. . A
and try to solve K— S| M2 . In the two cases
L va

(2.24) above we can find - W,V which satisfy



-

C8n = B S5, = &

contains the representation L,D,M, Py, Pp, P

P 4
+
<
—
+
>

= RAEEA ‘ .. ’ . :
o m Ao o (2.25a)
| 43_ = 2t |
3N\ A (2.25b)
“Since A; > O in either case we must have E%J§>()

- 5o we have proved that equations (2.18) and (2.19)

have solutions which correspond to eigenvectors of

the crossing matrix with eigenvalue one. Since

2 2
and BVQ > 0 the

S

eigenvectors must have components with one sign. This

(23)

eigenvector condition was first found by Chew in a

static VD meson - baryon model with a linear D approx-

imation. The same conditioh will be found in the

exchange degenerate dual hodels surveyed in the next

h chapter,

Specializing the above model to the case of SU(n),

. the reduction of the product of adjoints representations

A s ApS
A" s
(The notation is that of Neville'?%)), PAA occurs only

S

A - .
~forn > 3, and Py PS D occur only for n > 2 .

For n > 2 the eigenvector solutions contain at least

- three multiplets. Retaining only solutions 1nvolving‘

' the adjoint, M, representatioh, the three multiplet

solutions are

I,DM with & g2 %020 g2
= 2(n- 1) (re-4) (2.26a
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I,M,af‘ with B g?:g,2: g2

= 2(ne 1 ALY

The second solution exists only for n>> 3 and involves
A

(2.26b

many more states than the first, eg. for SU(6), P, has

dimension 189. The simpler solution (a) seems to
represent the physical situation. tor n = 2 there

are solutions involving only two multiplets

IM wit.h W g.2= % 2

We have talked about PPV and VVV models and we

.now try to generslize these to include all external

P and V channels. The first attempt along these lines
(18

). . .
- was made by Hwg and Patil but they got the wrong

answer because they tried to oversimplify the treatment
ot the particle spins. we tollow essentially the |
arguments ot Leung(ZA) but dispense with one ot his
assumptlons. There are three types of coupling

allowed by angular momentum and parity conservation,

~ and we consider only those par%}al waves in which the

v, P particles can resonate, the 1= and 0~ statess

(2.26¢

The following assumptions are made: i) All interactions

 proceed via the p - wave. In the 1~ state the VB PP

channels must have orbital angulsr momentum & = 1

but the VV channel can also have L = 3. In the 0”
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state the V P, VV channels must have L =1 , while
the PP channel dosen'ﬁ have such a state. The L=3 s
VV channel will be neglecteds This coupling is expected
to be suppressed relative to the L=1 partial wave
at resonance energies anywayQ

In addition we make the following rather less
plausible assumptions.
ii)  Complete P V mass degeneracy. This is obviously
a rather bad assumption.
iii) The internal V - mesons couple to the p - wave
orbital angular momentum as a spin O object. This
assumption was first discussed in the context of the
static model for baryons by Capps(25) and Belinfante
et al.(?0),  Thus in this model there will be no VVP
coupling with a V meson internal state. .
iv)  Proportionality of all Born potential terts.
Leung(zh) has demonstrated that this is valid in the
non-relativistic limit. The extent to which this
assumption and assumption (i) are broken gives a
measure of the iﬁcreasing symmetry breaking that we
can expect for higher energies.

With theée assumptions the vertices can be

- written ( 6ij is the Knonecker delta énd EaB.v ~ the

completely antisymmetric SU(2) tensor).

\

A




Vi,a
(b) VVV y
v fj " Cup
Vi,8
Via
(c) VPP s
e Ioq “ap
4
(d)PPV .
Ipd

Figures 2.2(a) to (d).

(i j k) label the internal quantum numbers of the

V - mesons and (p q ) those of the P - mes ons

The Greek indices are spin labels and fbllowing
assumption (iii) above, internal P - mesons have spin .
labels whereas internal V - mesons do note

We now write down strong bootstrap conditions for all

channels. . | oV Vv
Vag Vey o ,
(a) or\F/,l;O . Vor P
Vg Vb y

S-channel  t or u-channel
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- 2+27 ° (The summation convention for repeated indices

is used)
fuo Tea Ogp Ons + da;"' deg” (Gey Bps - Oas Bpv )

) M fac” fod' Bey 6% | * e’ Goa” (BeoByg = Bgs Bpv)
= fad” foc” Bas Bev = dac” Aoc” (B¢ By - By Bpo A)}‘ |

A(b) " o i‘ VP

> < R
s channel db

V vV |
t or u channel

(2‘28). dob gr‘c apb - )“[ gc‘rg dbdr"' dudrl gr'c'b} , Ecp‘Y

| : Vi :
\Y

bB Ry
s-channhel

> 1 or u-channel
- (2.29) fab" g o Ogp = 7\{ gc’r grd gar® grcq} s

S channd % | ::I:: ::I::
» vV P

tchannel u-channel



\'(e)

o

gq'r’,b;.g r'c'd 5P6 = 7\{ gd’c?,fbdr"-; ga’rﬁ gr'cp} apb‘ <23C
| N-T
s-channel = ///

t or u-channel

Figures 2.3(a)to(e)

¢ r N ,f‘ - -
Aat" Gea” = M Gucf Gya” = Gud Iew | (2.31)
" We solve equations (2.27) to (2.31). Bose statistics -
implies that f|j k, g pqi © ‘are antisymmetric
is their lower indices and d ,jp symmetric in
- : ' K
its lower indices. We assume that f ij is

totally antisymmetric in its indices, as above. Then

putting o = B =z Y = 6 ~in (2.27) the antisymmetry

~ of the f's implies A = 1  and we recover the

Jacobi relstion (2.15).

r r r r r. T
f‘ab fea = foe fpg = fad I

‘The f’s are thus the structure constants of. a

semi - simple Lie group. Putting Q= B#% y=0
we ohtain |

’ r r r’ r' r’ r’
2,32 oo foqt = Gac’ dpg” - Gyg" Gy -



" The d's must trensform as the adjoint or identity

- groups SU(n) for n> 2
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This equation fixes the normalization of the d's

relative to the f's. (This fact was not realized

° by Leung). - Equations (2.29)and (2.30) are identical

and can be written in matrix form
a b7 . r.r
[9°97]= fw' O

(Square brackets denote the commutator).

This equation was first obtained by Polkinghorne(27)
in the context of Regge poles‘generated by iterations
of ladder - like Feynmann diagrams, and applied to
the couplings.of particles with spin 1 to the V -
mesonse. Here it shows that the PPV couplings form

a representation of the grbup; Equation (2.31)

is the same as (2.15) which was first written doWn -
by Chan et}>al.(17) If we assume that the P and V
mesons both transform as the same representation Qf _

the group then (Z2.31) becomes the Jacobi relation;

Cand f = ge This will be aséumed,hereafter.

It remains only to solve (2.28)and (2.32).
Assuming dijk | is‘completely,symmetric in its
indices (2.28) can be written
a (b -
[d ‘,f]; fap" d"

1

- representations of the group. By equation (2.32)

the d's cannot all vanish. ‘lhe d's transforming as

the adjoint representation exist only for the unitary

(28). Assuming SU(n)

symmebry, equation (2+32) has aIUhique'solution with
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the d couplings corresponding to adjoint plus
singlet representations. The singlet and adjoint
symmetric couplings can be included in a single
notation if the indices are extended to include a
singlet index, denoted by zero. The d's remain
completely symmetric in all their indices and equation
(2.32) gives their normalization relative to the
structure constants f . With the normalizatipn
for the f's given by Appendix A dUo f/%g-ﬁﬁ
whenever one or three of its indices are zero.

When two of its indices are zero ;oo = O

The other equations remain unaltered by this inclusion

of a singlet particle since the singlet cannot have

antisymmetric couplings. Our equations can now be

written as a single equation - the Jacobi relation

for the structure constants of SU(2n)
‘ ad ~b,p - cv. 4 _ v‘.;“ : _
[E ’ E ' ] - E ' Eobc,mpy. . (2-33‘)4

ad . .
where the E " can be written in their

SU@@SU(Q) decomposition as

Eubc apy = dobc Egpy * fubc ga,pb

where ddop‘{ ~is defined to be totally symmetric
in its indices with Lapy = O | when either
none or two of its indices are zero, and Empo:: amp
otherwise. The P sand V mesons now span the adjoint
representation space of 3U(2n).

In this model there is some smbiguity concerhing

the internal spin Coupiings and assumption (iii)‘
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appeefs to be rather arbitrary. (This ambiguity

is discussed in the context of meson baryon couplings

(29)

by Belinfante and Renninger Invariance of

the vertices under W - spin gives the most successful
predictions., (For definition and discussion of W -

(30,

spin see ref. In this prescription the singlet
and triplet W spin states are identified as follows

Wp= Vi, W o= By W= - Vg, o= Vg

~where the V mesons are labelled by their spin component

in the interaction direction. Specializing to the case

of SU(6)y, the adjoint representation contains P and V

- octets, the P singlet and two components of the V 81nglet.

Since the W - spin singlet, the third component of

the V singlet,. is not bootstrapped in the above model

- the V singlet is not required to be degenerete with

the other P,V states. (See Capps 31) In generals;;"'

a W - spin state w is a superp051tlon oi physical
" spin states W - 1, w, w + 1 and so the physical
~ states will actualiy correspond to representations

o SU) ® 0(3).

We see that trying to extend the original PPV model

by including external particleslwith spin is simple
Jf:fwhen the symmetry gnoup is  SU(n), which extends
W-7{>naturally to 8U(2n). It seems‘probable that a consistent |
 'f,extension for the other classes of simple Lie groups is .

vf~not possible.

'If\We assume that the spin components'behave as

" internal symmetry quantum numbers under crossing, which
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will be true in the forward and backward directions,
(32) may be used to
obtain the permutation sympetries of the meson vertices,
These have beeﬁ.éséumed above. Let £ijk  denote a
general three meson vertex k— i + jy where the meson
labels include both spin and internal symmetfy quantum
numbers and the mesons may be of either parity.
Reversing the directions of the emitted particles\givés
Quk = Uk Sjik | (2.34)
where 1) ik is the orbitsl psrity of the vertex
and is the product.of the iﬁtrinsic parities of the
mesons. The g's are defined to have the following
crossing property: - . ,
Oy = Fry | (2.35)

where 1 denotes the conjugate i meson state.

- If all the meson states'are taken to be sélf - conjugate

then these two properties ensure that the g are
completely symmetric and real or antisymmetric and
imaginary asccording as 7 Wk is positive or negative.

Again it is possible to include the effect of

 even parity meson exchanges in the SU(2n), model as we‘:fl

did above in tﬁe PPV model and obtain the results

given by (2.26). The modelrcan now claim some :
completeness in that it includes all thellow'- lying

mesons both as external states and as exchanged states.

The even parity mesons‘form the (35 @ 1, 3) represent-
ations of SU(6) ® 0(3) which gives octetslof J°4= O+,l+;2+,l‘
(33) '

and singlets of J¢ = 05,2%,17. These states differ

;g from'thosef6btainedIby’the quafk‘model bnly in:the absence

 '1bf:én even parity 1t singlet.
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We should now go on to include the even parity

_mesons as external states as well as exchanged states

but the kinemabical difficulties involved become much

) ]

greater. -

2.2 Baryons

So far no account has been taken of baryons with

the assumption that they will not effect the meson

- bootétrap. However a model of mesons as BéBg bound

states has been,consideredvby.Hara(Bh)o (Bg will
henceforth denote the 1/2* varyon octet and D the 32+
decuplet). We assumé that the meson results above stand
and attempt to'bqotstrap the baryonse. The baryons

differ from mesons in that they carry a unit of conserved

. 'quantum number.

Models of this sort originate with the static

~ model of Chew?3) in which the A particle is treated

primarily as a P - wave meson - nucleon résonance-
In the static approximation in which the nucleon recoil;
is neglected, the orbital angular momentum can be .
treated as forming an A - spih state with the P ;

meson. This early model lead to the reciprocal

~bootstrap model in which a u - channel nucleon is the

primary force for producing an s - channel A resonance‘
and vice'vefsa. The SU(3) generalization was given

by Capps(35),and Gerstein &4Mehanthappa(36). Now

the By octet and D decuplet reciprocally bootstrap
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E each other. The P B8E8 1‘/D ratio in this approach

~can take a range of values depending on which exchange

2 _
forces are included(37). Capps( 5) and Belinfante

& Cutkosky(26) generalized again to SU(6) by including

the V - mesons, coupling to the orbital angular momentum

;‘as we assumed above. The resulting simplicity is

that the bearyons can be included'in one SU(6) multiplet,
the 56, with the mesons M ih the 35. The P Bgﬁg F/D
ratio is now fixed by SU(6) to be 2/3. By including
the exchange of t - channél mesons Capps(zo) ohtained

the;équation

. ‘ ‘Gab'G bcj = A2 (Gangc! + KGOCK ka ) (236)

where G denotes the MBB coupling and f the MMM cduplings, |

. which are the structure constants obtained above.

Symbolically (figure 2.4)

B

.‘s-ghannefJ_j:'Ni M

t-channel  u-channel
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~If one makes the effective range approximation as
~well as the static approximation A =1 and

~ the equation (2.34) becomes the same as that first

derived by Polkinghorne(27).

It implies that the
baryons correspond to a’representétion of the groupe.
In the static approximation even - parity baryon
exchanges in the u ; channel effect only even parity
s - channel states, and similarly for odd parity exohanges.' .ﬁ

So the even and odd parity baryons separately satisfy

an equation like (2.34)s Only the value of K may be

different in the two cases. l’PUtting; N ,=1 (1.34)

may be written in terms of irreducible representations

i, and the crossing'matficestau For even parity baryons

B,

Bip Ge? = Cia G +KevenCly Gof  (237)

'ﬂ[Forjodd pafity baryons, R

dir G = C¥ Gp?+Kowa CiY Gof  (2.38)

(26)

Using general formulae of Belinfante and Cubkosky,

“for M belonging to the adjoint representationA

Ci :LQ(XM*.XB = X) /XB

Ci = 5;5 "1/2 (X “XB. “Xu )/ Xg
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.- where Xi is the quadratic Casimir operator for

representation i. With these substitutions it
cédn be seen that (2.35) will be satisfied for any
choice of baryon representation B provided Kgyen =

Gg/pe  Similarly (2.36) will be satisfied for any

" choice of the R representation provided the B and

(38)

R columns of 1'= C5% are proportional, Capps

tf_ has proved this will always be so when the MBB

'VCOupling is unique. The number of possible solutions
for the B and R representations is thus very large.

We take the physically relevant case to be the 56

. and 70 representations of SU(6)W for B and R respectlvely.

. As above the physical states correspond actually to

representations of SU(6)® 0(3‘) B will correspond -
to (56, 1) and R to (70, 3) representatlons. |

. . 243 Broken Symmetry

S

Cutkosky(Zl) has pointed out that the bobtstrap
equationsibr:N mutually iﬁteracting_v - mesons have
O(N) symmetry. The derived particle_symmetfy is- SU(n)
where N = n2 - 1 and so the problem is really not one‘
of obtaining symmetry but of bfeaking it Here we
shall study the breaking of SU(n) symmetry and in
particular SU(3). | ”
| In the simple PPV model we éan include some
symmetry bresking by allowing the P meson masses to

vary by 2 small amount from degeneracy. If the effects
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_of the mass changes of the exchanged mesons and

- changes in the coupling coefficients are heglected

- one obtains(ng’l’O) to first order in }t;h:e jfper‘bur'batilén
oy, =By Tr(fom”sy (239)

‘  for the V - mesons, and

o'y = %K—T»Tr (d' Grpplg’) - (2.40)-

for the even - parity octet, spin 2, 1 mesons.

Here at, f denote the symmetr'lc and antlsymmetr'lc

ad301nt representatlon matrices of SU(3). - For

. 31mp11c1ty the mass perturbations 5m etc-. are

‘written as matrlces

Ky . ) -4 dds C(1(mv)
a1 (mv

KT = -'4" d/dS az(mTz )
| : a2(mT2)

where a!,( s) is the trajectory function. Since

2

d/dS az(mz) and QL (m2 ) érevbdth ‘positive
K, Ky <0, s
 Putting 6m’?" = AAdBU‘ - gives »:(see ‘;Appevn'di.x» A)
s _A 8. o .
omYy = -GS dy Ky | (2.41)
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)y = -3A df KT * (2.42)
- 10 - ~.

i

{ff These relations'imply that, if the P mesons satisfy
‘the Gell-Mann - Okubo mass formuls then so will the

V and T mesons. "Since K< 0 we héverThfinﬁ =

m,<mK.etc. V Alternatively one might put Gn'\ AD27’
(the matrix transformlng as the T = O,

Y = O member of the 27 representation) which gives

"'.6mu %LD?Z |  '. R R )
Smr . }_(_T_ 27’ | . | |
my =g Dy (2.44)

For this dissymmetry mode we have m,"< m=>m >n'1K

etc. In this simple model, 1n which the P - meson

dissymmetry 1§ put in by hand; there is no bootstrap
argument to distinguish between the two dissymmetry
modes. The model however illustrated the general
feature that theldissymmetry modes do not mix.in a
linear theory. This feature is unaltered if 'account

is taken of the chanpes in mass of the exchanged

. particles and changes in the coupling constants.

" Physically the symmetry breaking is not small and

although the P mesonsvsatisfy'the GellaMann ~ Okubo
formula, the V, T mesons do not due to mixing between
Singléts and octets. The singlet‘V - meson is however

not coupled in this model. - A similar first order
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czlculation can be performed for the baryon mass
differences with similar results.

Toachieve 8 self - consistent dissymmetry,
not one put in by hand, the abdve model has to be
extended, for instance by bootstrapping the P meson
as a PV bound state, and making the above argument

(39)

circular. Capps found by extending his equations
to non-linear ones that the octet type of symmetry
breaking was favoured. The model now has a so called
"spontaneously broken" symmetry. The ides that
asymmetric states in field theory could arise from

(41)

a symmetric Hamiltonien was originated by Goldstone
and first applied to the SU(3) case by Baker and GlashowshszB)
It requirés the existence of massless bosons. However

in a purely S - matrix theory they db not seem to be

necessarye It,is shown by Cutkosky and Tar janne

that retaining mass perturbstions up to secoﬁd order

one obtains equations of the form

obmy = K Bmy s X Ly Smidme (2.45)

, Where i labeis the dissymmetry and is 8 or 27 in the
, iSU(B) case. For a solution ir} W.hlch 6”? 5m27
one derives ' |

dmy, _ 1-Kg o Lores

bmg - Ky Lass

~ (2.46)
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Provided L, = L4  then this is consistent if
T-Ke1-K,, (2.47)
L5

Dashen'and Frautschi generalised (l.41) by adding

a driving force dj

6m, = K, dm, + d, (2.48)

where di might include higher order terms or maybe

a small external perturbation (eg. Ne! eman' 46 fifth

interaction or possibly the wesk or electromagnetic

interactions). Here octet enhancement is obtained if
1 - K 1 - K S
1 - Ko 1 - Ko (2.49)
dg - dy, |

The sbove authors calculate K8 and Ké7 in certain

models and conclude that (1l.43) is not unreasonable.

‘They also find that an SU(2) subgroup remsins unbroken,

but the direction of this sub group, in one of three
directions in weight space at 120°,to each other is
undetermined.

(b7,48) that

It is coﬁjectured by sbme authors
although the eléctromagnetic and weak interactions
are a much smaller effect than the medium strong -
SU(3) breaklng, they may provide sufficient dr1V1ng

forces - Their functlon being.possibly to point a

. broken symmetry solution in a certain direction.
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(h9)

Of interest here are two results by Brout
(a) A rank two Lie group is much more unstable to
sponténeous breakdown than one of rank one.
(b) A driving force of octet type may lead to breakdown
at 120° to itself in weight space. A force along the
Q - axis (eg. electromsgnetism) might lead ﬂo broken
symmetry in the Y - direction.

All these considerations of broken symmetry have
two fundamental fasilings. In all practical cases

where a broken symmetry solution is looked for a

“symmebry solution is also possible. How do we

distinguish between the two solutions 7  Simplicity
would favour the symmetry solution. Some rather
unconvincing ideas have beeﬁ.put forward about stability
of solutions. (See ég. Tarjanne(so).)"Secondly from

practical necessity we have to assume the symmetry

‘breaking is small. This is experimentally untrue and

‘as we have seen the discussion of spontaneous breakdown

goes ‘beyond the con31deration of first order terms,,_;

- as we would eXpect of any bootstrap argument.



';r;of Capps

o amplitude A(V,t), say for PP.scattéring, where V is

hle
CHAPTER 3

" Duality Predictions for Symmetries

This chapter like the preceding one will be a

* _survey of predictions for internal symmetry, but now

arising from the duality hypothesis. We give a brief

- introduction to FESR and duality and outline a2 model

(32,51) which embodies a complete set of

duality constraints for all meson and baryon two -

~ particle reactions. This model uniquely predicts

the symmetry and representations to which all particles

“belong.. However the predicted baryon spectfum is not

the physical spectrum, and the second part of this

chapter will be devoted to a phenomenological discussion

of how the physical spéctrum sétisfiesva subset df the
. constraints. Broken symmetry within this scheme will

~ also be discussed.

3.1 FBSR and Duality.

The idea of duality/developed from‘FESR(Sz).

- These equations can be derived merely from the assumptions . =

of analyticity and Regge behsviour. One considers the

t

the antis mmetric variable V = 8 - Y [ (The derivation
sy , ar? | Ty e
for amplitudes of processes with spin is essentially

‘the same)... A( V, t) is assumed to have the Rhegge
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‘ésymptotic férﬁ
| ATy (1) |
A o Do) RS T yalt)  (39)
Vs oo - 2sinmay(t) S

where the sum extends over Regge poles with signature

"1 Sy The FESR is obtained by writing down the Cauchy

vtheorem for the contour C in ‘the complex \/ plane,r

. »(shown 1n flg. (3.1) ).

Fig. 3.1 The contour C consists of the circle ¢

U at vl = N together with'pérts along the right

and left real axis enclosing the branch cuts.

fV'" A(V',t ) dv' = O giv.es
" C N PAL)

[\/’"Ds (vt)dvs+ f’"D (Vit)dv'= —-fv‘"A (V§t)dV’
Vo C

N is chosen so that A( V, t) attains its Regre form (3.1)

(3.2)

- on the circle at,lvl =N « Dg ,Du stand for the right
and left hand diSCOntinuities of the amplitude across

the'feal axise 'Making the replaéement V—3 =V
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' in the second integral‘onyL.H.S. andtperforming
the_integration round the circle by ‘putting‘v ::Ne“p

'k:‘(B.é) becomes
, N :

fvln (Ds (V,t) + (_1)I’H1 Du (-V:t) ) dvl

h Y

. N(l,+n +1 he 1 ‘ ' .
= 0 B TgaheT (1+\(~1) s ) (33) -

This relation is called the n'th moment sum rule.

- The assumption has been made inderiving (3.3) that

f"both‘dq('t ) and BI( t ) are real, for real t. It
can be shown that if two trajectories do not cross dq(t)

and B‘ (%20. must be real ‘for; t below the t =

= channel threshhold. (See ege ref.(7)). The presence’

of the factor ( 1 + (-1) n+1

S;) ensures that only
poles with signature S5 = (-1) ntl contribute to

T N
the R.H.S+ Defining the signatured amplitudes A=(V,t)

by

AT(vt) = 1 f BRIV e
, 2 V-V | '
“o '
'The'even and odd moment FESR can then be written
, , o a+2n+1 . .
| jv'?" 1mﬁA‘ (v,’t)_: )‘: B N (1 -S ) (3.5a)

Yo

2(a+2n+1)
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N

: Qi+ 2n+ 2 :
f v'204 |m At (v, t) - Z B' Givent 1+ Sl) (3.5b;
g o 2(a+2n+2) |

The idea of average duslity is that L.H.S. of
-the FESR can be written entirely as a §um of s and u
cHannel narrow resonance terms, so the Regge poles
~are 'dual' to the resonances.,

There is a difficulty for elastic processes like
nfnt— n* 1t whose high energy beﬁaviour'is dominated
near the forward direction by a ¢t - channel Pomeranchon
‘trajectory, but which have no direct s - channel resonances.

:Thé'additional hypothesis is made that the FESR breasks
flfdbﬁn.into two parts.(53’5h).
S f IM (s and u chennel resonances) dv

'L (t channel trajectories without the. Pomeron)

f (background) dv ;. Pomeron

,Subtractihg two such FESR'sA(B.b) for different

‘end points Ny, N» one obtains for the zeroth and first

~ moment sum rules
N2

: ' N - a'+] "+ 1 |

res a- + 1
N1 o

B(N‘“2~N§”2)

fv ImA,.es dv B
5, ats 2 | - (3.7D)



- where only»the leading_stitive and negative signature
5{ :Regge traaectorles have been retained on R.H.S. ' It |
‘is ‘assumed that for some Nl, N, and t Lhe qecond  ."

 “fequat1on can be approx1mated by
N .
2

lm)A Cavz B Na”)
res o T -

3.8

Ny v

" This is the wrong signaﬁure zeroth momént sum rule
wf ;in-which pQSSible‘nonsense fixéd poles contributing
m5; to the R.H.S. have béen ignOred; TheA};ading such
'f;?pole at L= -lvw0u1dicancel“anyway. Adding (3.72)

and . ’§ o . . | :

B*(Ng” of +1) ~B(Na+1~Na +1)

lrﬁ'A‘l"eSd + ‘ o
W Em o E gy

 i>”Equation (3.9)gexpressesfhe_idea of lécal duality:

‘the idea that thé s - éhannel'resonance énd t'-vchannel_
" ,Regge trajectory descrlptlons for the 1mag1nary part |
'fy,of the amplltude are equlvalent in some average sense

‘and for some range of s and t.'i

It is evident from.(3.9) that there must be :
i‘exchahge degeneracy of dpposite signatured trajectbries'
if the quéntum numbers'are such that no resonances can

be formod in'the‘s‘— Channél; In this case tho L. H.u- 
- of (3.9) is zero, . and to satlofy Lhe equatlon for a

.range of t thls requlreS‘



" Rosner

. quark states.

/M/\M - B

- Fige 3.2 Allowed‘duality diagrams (a) meson-meson.

.

o (t')
B (1)

@ (t)
LRG

123

‘"5If non-leading trajectories are retained in (3.9)

~ such o motching is also required for them.

Alternatively the exchange degeneracy relations

i (3. 10, 3 11) may be derived without the approx1m9t10n
. of (3.8) if resonance saturation is assumed for all
s and not Just’for low and intermediste energles as

" above. With this assumption A* ( V,t) = =A™ V, t)

i

' when no resonances can be formed in the s - channel
- and (3.9) now follows from 73)[

The duallty equatlons can be expressed graphlcally'

| by the quark scatterlng diagrams of Harar1(55) and

(56)

"EXOth" resonances are d efined to be

~those not predicted in the quark model and it is
. assumed there are no exotic resonances ie. all mesons

'*,;are quark - antiquark states; snd all baryons are three

scattering (b) meson-bsryon scatterings. -

@. 10)
(3 11)



Fige3+¢3 Illegal duality diagrams (a) meson-baryon

non-planar diagram (b) baryon-antibaryon diagram

with exotic QQQ intermediate states.

Allowed diagrams fig (3+2) are planar with no exotic
intermediate ststes. Processes for which no sllowed

diagrams can be drawn are predicted to have vénishing

~imaginary parts at high energy. However this scheme

meets difficulties for baryon antibaryon scattering as
can be seen in fig (3.3b). No diagram can be drawn

for this process which does not involve exotic inter-

- mediaste states and yet these processes do not have

vanishing ‘imaginary parts ab:high energy - -

3,2 - Meson Processes -

R R
‘ i 'sA- channel ab+ b—sc + d
ii t - channel é;+ c—» b +d .’
' iii u - channel a + d-—» c‘+'B
R R tochemned A |

Fig. 3.4 PP SOattering.

' We write consistency conditions corresponding to

(349) tor the pla§ «
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‘;,P mesons (see figs.3+L4) with the exchange of V and T

" meson tfajectories, tollowing Scmid and.Yellin(57),

~ and Capps (32,51),  In accordsnce with (3.10) and

(3.11) the V and T trajectories must be exchange
‘5'degenerate. As sbove we denote the PPV and PPT coupling
: constants by fapy and dgpp respectively. Following

the arguments of Chapter'Z, equations (234 235) and

the assumptions made there about spin, fabr is iﬁaginary
and completely_antisymmetfic and d,p, real and completely
- symmetric.

The Breit'- Wigner form for the s -~ channel

resonances R of spin J is

res(Vt)" Yaor ear (Z s (2J+1) - A(3.12)
| (V- Vv -ilR)
where &by stépds for eit‘,her“f‘ébr or'dabr. The

~ hnarrow width,approximatioh for the imaginary part

giVes | ,
IM Ares(Vit) =gqbrg‘cAd.~Tt5,(V~vR>Ff (zgdae’ (2J+1)  (343)

where : :
o Zngz 1+2t

’ - m., = resonance mass
(m?f-4m?) g T TEROIE

n

3,
i

. P meson mass.s B

s 2 , , : ,
| 2 , o

g, = - 4m?

R 4
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The t - channel Regge pole contmbutlon is glven

by (3.1).  Near the t - channel resonance mass

sz it has the form y

2
A (vt) = =Sy BGde(mJ )V (mJ)

Regge = na(t m)
t"'sz : !

where Q' is the trajectory slope, assumed constant.

(3.14)

This is complared with the Breit - Wigner form for

- a t - channel resonance as |V| — oo

lim Gacr 9 bar F?. (Zt)qtzJ(2J+ 1)
lVl——+oo (mg2-t)

gucr g bar V7 of (2J+1)
29 (mz2- t)

(3.15)

since Py (z,) —s C‘J "zv;:‘tJi,v

V= e

lComparing (3.14) and (3.15) gives

Bacbd (sz) = _SJ Jacr g‘{bdr n C‘J(ZJ,+1) (3.16)

2



. .-gives

N Bob’cd(m‘-’z)""
3‘-‘ ;‘j.gdbl"..g*(ﬁdl‘ = g; )\)' gacr; g*bdr

-50

" Bubstituting (3.13) and (3.16) into either side of

Ufflx3.9), taken at t = o say, and assuming that

= Bab,cd(O)

;’is!independént'of (éb;.cd),u

o Whel"e

S QO)+1_ ﬁx«>>+1 S
N s N oM f)'rca‘CJ(2J4-1)f'
O (@(0)s) 2% R

and , -

f, T ag? (2J+ 1)

A
i

f; is. @ positive fraction depending on Nj and Nz.v

The sign Of'%-J depends on the sign onJ and that
2J

of g J on the sign of g~ e It will be assﬁmed

- - that the sign of B (t) doesn't change between t = o

and t = mJ2 and that all the resonance poles occur
above threshhold. With these assumptions E‘J ond -

A.J are all positive. Writing out (3.17) in terms

of the coupling coefficienﬁs 8ijk = fijk when J is

pdd and gijk ’idijk when J is gven where fijk’ dijk
sre imaginary and real respectively, gives

C, fabrfear = Cp dabr ear = At facr foar = AoGacr doar

(3.17)

(3.18)
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‘ﬁ;:Renormalizing‘the d's relative to the f's this can
‘”“be written | |

fabr‘ fcdr‘ = »dabr dédr‘ = K1 facrfabt - Kz docr dbdr

where K1 =

Ke

T

, %ﬁ/ are positive
Gy Co ‘

constantse.

Summing over permutations of (abcd) one obtains

A(dobr‘dcdr + dacr dbdr * dadr dbcr )1- Ka) 7 O

So K, = 1 if the d's are not all zero. Putting

b = c¢ in (3.18) yields Ky = 1. Finmslly the consistency

equation may be written in terms of the commutators

vdf'matrics (fi)jk’ _ (di)jk

[fe, fa] = [de,da]

Since PP scattering is the same in all channels
identical equations are obtained for the (s,u) and
(uyt) pairs of channels. Equation (3.20) states
that the coupling constants form an eigenvector of
the (s,£)~cfossing matrix with eigenvalue one.
Ihais condition was also fouﬁd in Chapter 2. The
‘duality equations, however, always appear linear in
the coupiing constants unlike‘the‘bootstrap equations.
(see eg. equation (2;12) ) The duality equations
thus do not detérmine the overall magnitude of the
'coupling constants. | |

The advantage of the duslity formulation is that

it allowé particles_of both parities.bo be included

(3.‘19:'

(3‘.'.2(:



becomes generalized (see Capps

- Mabr is odd and ggyy = dgpyp when n

-525

on the same footing. Taking external mesons of

- both parltles, and treating their spins as 1nternal‘

quantum numbers under crossing, equation (3.17)"

*®
rJ) g gabrg cdr ~ qbcd r‘%') ?\J’gacrg bdr

~where T spcq is the product of the intrinsic parities

of the mesons a,b,c,d.  Putbing gaby = fpp when

gbp 1S even,

~yields (3.20) when M jpeq is even, When" gped is

odd one obtains

I:gc: IO] - [_fc, gc]

Whereas equation (3.20) cén be derived from those

of Chapter 2, equation (3.21) is completely new,
-since bootstrsp equations for the case when the parity

factor M is odd were not wrltten downe

.The following results can be obtained from

these two equations:

~a) There are trivial single statesolutions with

only one d non-zero and these are the only solutions

1nvolv1ng ZEero f's.

| b) Summing (3.20) over permutations of - (abecd); and

including the minus sign for odd permutations, the

Jacobi condition (2.15)'can,be'derived for the f'se.

~The f's are thus the structure constants of a compact

semi-simple Lie groups

(3.21)



‘of (3;26)

<) Summing (3.21) over permutations of (sbc) one

. obtains

l:gq,]fd:l = “fadr gr
This implies that (q transforms as the adjoint

representation when faogr # 0 for SOmé r,d , and as

- the singlet if f 4. = O for all r,d.

. d)  Putting p; = f; +d; and m;= T, . d, , and
applying'permutetion operators to the sum and difference
and (3.21);one obtains .

W TPCrPﬂ ::2fmrawi
;' 12 1{Pc7'Pa}': /ZCQCKPr : ""

acr rnl"

-~

mc;:"ﬁq] : 2 f

-2d

acr mr

2
1=
B 2
23
Q
S—
1

Equations (3.22) and (3.23) shoW that all products

of the Pi are linear combinations of themselves,

" the combination matrices transforming like adjoint

and singlet representations. This is sufficient

to fix the symmetry group uniquely to be 3U(n) and

- the p; to transform as the fundamental 'quark'

" representation. (For proof see Capps€58)) '

Similary the m; transform as the fundemental anti-

- quark representétion. (The @i'transform As the

(3.22)

(3.22)

(3.23)
(3. 24)

(3.25)
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conjugate representation to that of the(j, because

i"°f the relative minus sign occurring between (3.23)

 and (3.25)). . For n> 2, the unique solution,
?ignoring the trivisl one state solutions, has exchange

;bydegeneracy between trajectories of opposite parity,

‘the mesons on both trajectories transforming as quark-

antiquark comhinations ie. adjoint & singlet.

‘For n = 2 a solution without parity doubling is

possible in which an isosinglet trajectory is exchange
degenerate with an isotriplet trajectory of opposite

parity. Choosing the physical symmetry‘to be SU(6)

: uthe unique solution has mesons of either parity

belonglng to the 35® 1 representations, and lying

on a 51ngle exchange degenerate traJectory.-

3.3 Meson Baryon Processes.

By Ba

Fige3.5 MB scattéring. The channels are defined
as in fig. (3:4).

We write down conditions analgous to (3.17) for

‘ meson-baryon‘scattering as in fig.(3'5) "Lét G-jk

o denote a general meson-baryon-bdryon coupllng constant. -

Then the (s,u) condition becomes



=55

; G*cdr Gqﬁf‘ = Nabed f: Gu&’r.vG*c_br (3. 26

-~ The (s,t) and (u,t) conditions involve &t - channel

meson couplings 85 i

f.v— Gapr G'*cdr' = KMabed ;gacr Grbd } ‘(3'27).

 7\ The couplings of odd parity mesons to baryons of

the same and opposite pzrity are written as the

matrices F, , D, where the index & always refers

to a meson. Then assuming that the even parity

meson couplings to baryons are the same as the odd

2 . .
. parity meson couplings, (Capps(3 ) shows that this

" follows from the consideration of constrsints from

"~ B B scattering) (3.26) and (3.27) become

[Da, D] = [Fa,R]  (3.28)
DeDa +FeFo = Klfarf + daerDr ) (3.29)
DeFo +FeDg = Klfaer Dr + does ) (3.30)

The (s,t) condition is (3429) or (3.30) according as
the external baryons have the same.orrépposite ﬁarity.
Writing Py =F; + Dy, My =F - D, é‘s_ above,

one obtains | | o

2KferR (33D

t
aU
B
a0
| S
o

1
a0
g
[ S
It



MM s c2Kfe M (B
{Nkﬂ%d'ﬁ 2Kdeﬂ?T '  o (3.34
[R,Mg =0 | (3.3¢

Equations (3.31) to (3.34) imply that both Piy Mj

transform as fundsamental quark representations.

- Note that now M;j doesn't transform as the antiquark

‘representation since (3.33) and (3.34) have the same.,

sign on the right hand side, while (3.24), (3.25)

have opposite signs. Thus in the simplest solution

. the baryons correspond to quark-quark composites and

not the expected three quark combinations. If

baryons of opposite parity correspond to-states of

opposite ‘symmetry under the exchange of the two

quarks, the need for parity'doubling in the solution

. is avoided.

The above solution can be generalized by asllowing
the baryons to have a set of "passive" quantum numbers.

A beryon state is then lsbelled |ABY > where a,B.

‘are the two quark indices and Y is a third index

corresponding to some representation (s). Then

'the P,y M, matrices become

11

}"<q'g'y'_| R 'aBy>"_ Kx"aa;am by

i1

5 ,
YY"

-

‘ ",‘ 4 | a 7



© The extra factors fov' juét cancel on either side of

equations (3.31 - 3.35). Choosing thé extra quantum

‘*,_number to be a third quark gives the usual quark model,
and if the symmetry is assumed to be SU(6) one obtains,,

'{1~with the parity rule above, baryon states 56 ® 70 of

one parity and 70 @ 20 of opposite parity, in agreement

-»  with observation. However if equations for baryon -

antibaryon scattering are written down the extra GWWV'

factors do not cancel and only the unphysical two

:7'quark solution is allowed. This situation can
"readily be seen in duality diagrams. In'meson‘;
“‘Lbaryon scattering, fig. (3.2a) ayspectatof quark for
p‘the baryons can be'added at Will,'butzin the baryon <
antibaryon case, fig (3.3b), only the two quark baryon
ff:is‘allowed. | ‘

A‘i3.h‘ Phenomenological Duality

In the light of the above solution for baryons

it is difficult to treat the duality hypothesis as a

fundamental principle. Rosner(sg) suggested that the

existence of high mass exotic mesons which do not
couple to low mass mesons, and are not ruled out by

experiment could save the situation in baryon - anti-

© ‘baryon scattering. However we would certainly not

wish to admit the non-zero triality baryons which
follow from the complete equations above.

- Altermatively as suggested by Mandula, Weyers a2nd
(60)

dweig

, duslity may be regarded as giving only an
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*ﬁj-:approximate set 6f constrainté, whose VHiidity decreases
F:}; thé higher the thréshhold of the channel considered.
;In'particular the constréihts coming, from.decuplet -
f,antidecuplet scattefing should not be expected to be
“valid at alls  Their explénation for this breakdown
" of duality is that the Quality hypothesis (3.9) is

‘satisfied in proportinn to the size ot the overlap

region in whidh the two approximations - resonance
saturation and Regge behaviour - are valid. Thus
suppose that resonance saturation is a good approxim-

ation for s < sp,x, and Regge behaviour for s> s min?

Provided spgx - spip is sufficiently positive the

"'; duslity hypothesis is well satisfieds  If sy <l s/,

duality 1s not expected to hold at all. Sp. . 1s

expected to be independent of the particular channel

* _involved, and to depend merely on the particular

resonances which can be formed, whereas spyip is

strongly dependent on the threshhold of channel

“considered. Thus if we compared the equations for

meson poles in MM and BB-scattering, would be

Smax

thevsame for both channels but s would be much

min .
larger in BB scattering. The constraints coming from

MM scattering are therefore ekpected to be better

- satisfied.

In this'sectioh we look at the phehbmenological

question of the pattern'Of trajectories predicted by

‘vafious?sdbsets'of the duality equations. »The'symmetry



- fairly complete discussion see Rimpault and Salin

N

is assumed to be SU(3) with mesons belonging to
representations contained in 393 = 18 and
-"baryons in3 33 = 168 8 @ 10, One looks
', for 50 called minimal .solutions, ie..those involVing
. the smallest number of trajectories. | This question
:has been investigated by a number of authors,(61“65)

.~ and their conclusions differ depending on how complete

is the set of constraints they have taken. For a

(66)
(67)

and also Mandula, Weyers and Zweig. - A common
relaxation of the constraints is to employ (3.9)

:/only when one of the channels is exotic, ie. when both
sides of the equation must be zero.

(a) Mesons

For meson ~ meson scattering the above relaxed
constraints are equivalent to the complete set.
Requiring no exotic contributions ensureé that the -
- amplitude must be an eigenvector of the crossing

matrixe The following‘exchénge degeneracies are

(67) 2

‘ 2
predicted, with the coupling pattern gi gy ¢

gAZ = 16:5:9 as given by equation (2.26) (gs2 stands .

for the coupling of the symmetric octet etc.)

Process~considered. ""Trajectories(JPC) related

PP— PP Be1(2") e 8(1M)
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o [Be11T) e B2
PV—PV 4B e1(1") e 8(07)
o - |Be1 (@) «e=80"")

 \/'\/,,—‘—»,,\/\/ - 8e1(07) < 801" o)

'8 @1‘(1"*) = 8(2)

Following bhe"arguments above these degeneracies
are expected to be less well satisfied the further

down the list they appear. For instance the 0~% and

fljl++'singlets first appearing at the bottom of the list

are not expected to be even nearly degenerate with
their respective octets.

Chui and Finkelstein(68)

showed that the no
" exotic condition can be maintained even when the octet
masses are allowed to depart from SU(3) degeneracy.buﬁ
keeping exact symmetry f'or the couplings, provided
‘there is singlet - octet mixing. A precise battern
for the symmetry breaking emerges in which there are
" three separate trajectories. One’trajectory(pu)Ag:ﬂ
has exchangé‘degenerate I =0 snd I =1 states, thé \
sécond'(K' K** ) has only strange I = 1/2 states and
- the ﬁhird vacuum trajéctory ( ®.f' ) couples only to

. A definite‘mixing angle tan @ = }Zithe
'ideal.quark“miking,ﬁié predicted for;bbth'the V and



;61;?‘:

T nonets. This pattern fits the experimental picture

© - impressively well (see fig. 3.6)s The same pattern

. of symmetry breaking with strong mixing is predicted

for the other nonets 9(1**) &=9(2-~) and 9(0~*) &

9(1*-). However the 1**, 0™% octets satisfy the

. Gell-Mann - Okubo relation with little mixing. As

we remarked above the predictions for the l++, o-*

~nonets come from the highest threshhold channel VW—

'VV and are not expected to be well satisfied. The

pattern of mixing which one might‘thus expect is the

177, 2** nonets to show strong mixing, the 1*-, 2"'

nonets to show moderate mixing and the O-%, 1t

nonets to show little mixing. =~

(b) Baryon Traijectories

One looks for minimal sets of baryon multiplets .-

which satisfy the following conditions:

i)  No exotics in any channel of the resction PB —> - -

-PB where B denotes either the baryon l/é+roctet or

the 3/2+ decuplet.

ii)  Positivity of residues.

“iii) Factorization of residues..

(66)

With this set of constraints Kempault and Salin® E
obtained the following results:
i) . There are, no two multiplet solutionss

1i)  There are three linearly independent threc

‘multiplet solutions wher only octet B constraints are

considered, -



S are

o   fo11ows

i) When’decuplét chonnels are added, only two

/°7‘of these_éolutions can be extended. T7These Sblutions

S, © 8°(1) + 10" o 87(1) + 17,

with the 10" not coupling to PBy, and

S, B () e llg) v 107

- The superscrlpt denotes the slgnature, and the figure
. in brackets the /D value for the octets coupling to

~ PBge  -The ratios of the'cpﬁplings‘to PB, for these

8

f.solutions are:

S 0 Qs gs_?,: 64 :15 .5

1

‘ng g¢é 94 A:_gsé 32 :.15 ' 5
2

- where By * denotes the symmetric  coupling of the N
" octet to PBg etc. The solutions can be identified:

'~?with baryon trajectories of opposite normality as "

)Ny (578) « A7 (E)

F,8)+ 853700

Y'except that a 3/2+ octet approximately degenerate with

~ the 3/2+ decuplet is not known. It is argued that

since the predicted coupling ratio of this octet to

- theJdéCUplet‘is smallfthis discrepancy is not 00 -



. be degenerate see Auvil et al.

- noting that Ademollo et 2al.

.  _63_ ..‘.

. serious. A1l the other multiplets can be identified .
with known partiéles and the predicted F/D ratios are

" found to be not unreasonable.

One may further require the amplitude to be an eigen-

~:vector of the (s,u) crossing matrix. An unique

- combination of Sl and 82 corresponds to such an eigen=-

vector with eigenvalue one, and one obtains essentialfy
an unique solution for the A and B amplitudes in PBg

PB8; Such amplitudes have been explicitly constructed

by White‘ég),‘uéiﬁg the Veneziano model. hen crossed

into the t - channel both the A and B solutions predict .
F/p - 1/3 for the V and T couplings to By Eg. However -

the two trajectories 3y, Sp of opposite normality, aré"

© " now required to be completely degenefate. For an

’"‘  alternative in which the 37, S are not required to

(70)
(71)

find from current

It is worth

algebra considerations that thé trajectories should

be split by Ad = 0.5,

The S, and S, degeneracies are quite badly
broken although some particles show very accurate

degeneracies (see fig. 3.7, 3.8). Bérger and

, Michael,(62) and Capps(72) have tried, (as Chui and -

Finkelstein did for mesons) to satisfy the MB cbnstraints

" when the B masses are allowed to depart from SU(3)

degeneracy, keeping exact symmetry for the couplings

but including possible mixing. Trajectories of

differenﬁ*strangeness are not required to be degenerate
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©and so immediately one can incorporate splitting
according to the stfangeness quantum number. Barger
o .  and Michael also show that for the 3 solution Na,Ny
“ o and T, EY are required to be degenerate only
through exact SU(3), and if this constraint is relaxed
" the exchange degeneracy is no longer necessary. This
. - is rather attractive ssv these degeneracies are very .
'r‘i“:badly satisfied (fig. 3.7a,c)s  There remains the
l""“question of the degeneracies of the st‘rangeness minus
one trajectories. Capps shows that for the S1 solution,vr
L by considering only (s,u) gonstraint,s,' it is possible
| to incorporate 2 = A splitting providing also that
mixing between the 3/2° isosinglets is included.
,_95_3; _Z'v‘-There are then two strangeness =-,'-l exchéinge'degener"-
, :ac ies: . | |
C ) A(I116) — A(1520) — A(1815)
-~ 1) T(1189) — 1 (1670),A(1690)— £ (1910)
. The first of thgse is extremely well satisfied and
' the second less well satisfied (figs 3.7b). However

 the branching ratios KN/TEZ for the mixed singlets

A (1520), A (1690) seem to contradict experiment.

Similar considerations have not been applied to the

R .S solution. It seems completely arbitrary to introduce

mixing with an unknown multiplet.  The strangeness zero

degeneracy (f‘ig.3.8a) of A (1236) — N.(1670)

. M1950) 'se‘ems'«wellfsatisvfied but there is again the
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';5 'prob1em of 2— N mixing for the S = -1 case.

Logan and Roy(73) have shown by considering the

processes ' p—Ttp, n p— K IYKT I KT

for which only A's can be exchanged in the s - channel,

" ‘that the t - channel meson nonet trajectories are

v7i[‘required to be completely degenerate, This argument

is symptomatic of the problems treated in this section.

If 811 the constraints, including those from high mass

. channels are considered an over restricted, non physical

- solution emerges. It seems that the constraints coming

'” 5 from BB — BE, and probably also MM — BB, should be

”5»]discardeda . When this is done the physical spectrum

satisfles the ‘relaxed constreints fairly well. _”’

°However many other solutlons are now pOSslble._
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CHAPTEL

Comparison of Bootstrap nnd Dunlity Predictions

We summarise and compare the symmetry predictions
of the bootstrap and duality equations surveyed in the
previous two chapters., In particular we contrast the
predicted relationships between multiplets and the
consequent identification of the even signature singlet
trajectories, following Collins & Huttf7h) We
examine whether the exchange degeneracies essential
to the duality scheme Can‘arise in a boocstrap

calculation.

Lel Meson Trajectories.

‘With similar assumptioﬁs about symmetry of the
couplings the duality and bootsﬁrap equations both
lead to the Jaccbi relation (2;15) for the antisymmetric
trilinear couplings of three odd parity mesons. Hence

8 compact, seml simple Lie group structure is predlcted

vﬂ_ with the odd parity mesons belonglng to the adj01nt_f

- representation. The even periﬁy mesons are also
yV“required to transform as some representation of.the f
group. In the duality approach a complete set of
 ”'equat1ons correSpondlng to all p0351ble odd and eveﬁ

parity external mesons can be written down. Apart~from ‘

fff'trivial one meson solutions, the equations have a

‘wunique solution with SU(n) symmebry, with the mesons
of either parity trnnsforminy as qunrk - antiquark

V?:_ComeSiteSq _ Hence the mesons belong to ad301nt‘




w7l

'"VQesinglet representations. Tﬁe greater kinematical
“f“‘difficulties of the pertial”wave N/D‘equations allow
- only a subset of the complete set of boetstrap
. equations to be written down with any certainty.

However SU(n) seems to give a tavoured solution and

probasbly the only solution, with the simplest pattern

'w‘:.for the mesons being that of adjoint  singlet represent-
- ations as above. Neither approach gives any constraint
- on the dimension n of the algebra, but as.we have

e‘suggested this may be part of the pfoblem of broken

" symmetry.

I'he predicted relationships between the multiplets

Q‘are however quite different. Both sets of equaﬁions
*f‘ require the couplings, with suitable renormalization

; E;”‘of the symmetric to the antisymmetric couplings,'to

‘73i'be an eigenvector of the crossing matrix with eigenvalue
‘ee. one. The prescriptions for the rehormalizationeafe"
fj;ftotelly different in the twe-deses. The SU(n) ]e'
1e'eigenvectors are given by (2.26); The physical -

. eigenvector is taken to be

I: M D = 2(n -1): n2; (n2‘~h)“

ii: In the duality solution the singlet and adjoint mesons
'i~veare degenerate and lie on an exchange degenerate
:trajectory. We have seen in the case of SU(3) how

- symmetry bresking for the masses may be incorporated,

in good agreement with the physical spectrum (fige3.6).
There are now three separate exchange degeneraten
trajectories and the even signatured isosinglet traject=

ories are identified with the [ r’ ‘pafticlee. - For



 §: ;with the Pomefon.(75)

explained aboves

;72;‘

°€‘fithe bootstrap equations with the determinantal approx-
x};; imation the predicted multiplet masses are‘prOportional
7ff;to the inverse elements of the eigenvector. Thus

" " the predicted pattern of trajectories has the even

‘::L sighatured singlet lying highest ébove the odd
VT 7signature ad joint representation, which in turn lies
i;f above the even signature adjoint repreéentation.v As
'if%i we remarked in Chapter 1 this pattern.of a‘high - lying
*'ngsinglet is likely to persist even‘when the Lie group

" is not SU(n). The singlet is naturally identified

.

We investigate whetherAtrajectory degeneracy as

" obtained from duality can be obtained in an N/D
\’calculation, without making the strong assumption of
'7”'proportionality of Born terms made in Chapter.Z. We

'"_rspeCialize hereafter to the case of SU(3) symmetry.

  ‘rTwo types of exchange degenéracies are involved. .

ﬁ3{:a) Degeneracy betWeen particles of the_samé SU(3)
:_quantum‘numbers ege P, A2. (b) Degeneracy between S

‘particles of the same signature but different SU(3)

guantum numbers. Type (a)vdegeneracy requires no

- u - channel force which is suggestive of high mass
 f;'thresholdé controlling the.dynamics.x76) Type (b)
' seems incompatible with theiinternal symmetry crossing

matrices, which give the eigenvalgesvof the potentiéli

matrix and the correSponding‘multiplep masses as

K
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1 8, B, 8, 8, 10 10 27
1l 1 0 o0 1 :3:2g
| 3 0 o0 'Ll &
8|0 O & L 0 /g _/215—_ 5
Bas | O O -12— fjg— 0O ;/g j‘@[ 0
8u |5 T3 O 0 F 0 0 g
10 'g 15 £ i o 1ole
© 5B E g 0 kb
27 |§ & O 0 EE L SR &

Table:SU(B)‘ 8® 8§ —> 8 ® 8 crossing matrix from
ref. (77)  The upper .and lowér signs refer ﬁo‘the (s,t) '»
and (s,u) crossing matrices, respedtivély. We have
changed the‘signs of the sa and aslelements in thev\
-(s,ﬁ) crossing matrix to'confofm to the usual conventionf ”
for the F - type cdupling to bérypn‘-‘antibaryon*(see |

(78))

‘We consider PP scattering with the exchange of
T,V (octets) and S(singlet) mesons. We do not give
s specific form to the potential Born term due to Regge
E ;pole'exéhange, but makevuse of the*argumeﬁt‘of Chew(79)”

- _that it is » faifly gobd'épproximatioﬁ tp;rebreSent the



Thm

”Iexchange of a ﬁrejectory‘by the exchange of the lowest
7:  mass particles on it. Thus for the V meson trajectory
“Jthe Born term fesulting from the exchange of a spin

one particle will probably be sétisfactory, and we
F'(s) where gvz

”igsldenote it by gv2 is the coupling of

'}{i;the V - mesons. The S and T exchanges are probably
,";more compliceted due to the presence of both an S -

" wave part (which may be PepUISive(76)) and a D - wave
(76) e

. attractive part. From the arguments of ref.

::: can expect the resultant to be a weak_attraction.and
~ we denote the 31nglet force by gsz FQ (s) and the octet
 ,force by gT FQ(s) assumlng the 81nglet and octet tensor -

:ff;imesons are degenerate. ~ From ther(s,t) crossing matrix

" of the table the potentials in the various s - channel

"fﬂkfmulpipleﬁs are:

1 J8‘ 2Fls) + ng?(s) r geF'(s)
 ?% FH(s) - 1OgT Y(s >+-%95Fven E
} %gs Fi(s) + ;gT Fi(s ) 2 o F =) (41
;_\/10(51) -“;  \/1'6(5)1‘%952[":2(5) '-[%gs’-"F‘(s):- |
‘“%#Q:1 (s)+5gT @Qe3gw:65-/
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. _.Note that Vss is_the force in the tensor channel and

»%°;that V,, is that in the vector channel, because of

| the symmetry of thé couplings.

For no attraction in the 10, 10, 27 representations

:We need | |
9:2 > 292 , g2F'(s)=(Lg2+LgAFYs) (4.2)

Note that in the strong bootstrap conditions used in -

Uff'Chapter 2 we required the potentials in exotic states

“ﬂi to be zero. Here we take the wegker form of the

- conditions that they be non-positive. It is immediately

§ , . 2 ,
.~ apparent that Vy > Vg, unless gT2 =g, = O, when the
‘ 2

- above inequalities will be violated unless also gs = 0.

. . Lo . 2 .
- Also V_, = Vg With equality only if g, = 0, ie.
" the tensor octet decouples, which is inconsistent since

V.. > 0. Hence we are forced to have the S trajectory

- Vssg

lying highest above the V trajectory, with the T

' trajectory lowest. These conclusions are unaltered

if we allow breaking of the input degeneracy ie. FS £ FT. ’
The high lying S trajectory is identified with the Pomeron ,f; 
. and it is interesting tolnote that thé singlet tréjectory

qunction will have a similar ,2# dependence and hence
slope as the octet trajectories. |

It coﬁld be that the degeneracies'érisé from a

'multichannel calculétion. " The channel with the next
lowésﬁ’threshhold which we might<introduceAi$ the PV

channel. ‘Invﬁhisfchaﬁnel the‘rples of‘Vécpbr-and
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' tensor mesons are reversed from the PP case in that

"‘they couple with opposite symmetry. The addition

" of this channel might therefore help to produce the

“exchange degeneracies. However the SU(6) model of

- Chapter 2 which includes all P, V external states

,:”‘produces the same pattern of trajectories as the simple

" PP model. For completeness one should attempt to

E ~investigate this multichannel problem without the gross

' assumptions of SU(6) symmetry. An attempt along

these lines has been attempted by Chan & Wilkin(So)

" but these suthors introduce the equally drastic

“assumption of parity doubling for the mesons. They
‘do find however a meson spectrum with essentially the
‘same psattern as that in the PP model. In summary we
| conclude.that‘a multichannel N/D calculation will not
- produce the exchange degeneracies of duslity.
Alternatively it has sometimes:been argued
" that the BgBg channel could be more important in

producing meson bound states. In this channel exchange

o degeneracy of opposite sighatured trajectories with the

same 9 (3) quantum numbers is gusranteed by the sbsence
of an exchéngé force coming from the ekotic BB channel.
“ HThe situation is complicated by the fact that V and T
*‘mesons now have béth symmetric and antisymmetric
.COuplings'to BB, We denote‘the couplings by‘Gi2 where
1. (i, 835,'853’ 8,99 8450 10, 10, 27)¢ Inthe duality

\~,Solution\for~thi370ése,'whichlwe have previously eschewed,



%) = V(8 = Gy Gy FX(s)
o ."A"~Vuu(5y)‘:_‘: X 612 F1 (s) +

Vi) \40<s> 1@ Fts) - 262, FAS)
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©  the pattern of exchange degeneracies is the same as
-‘f for the PP case.. The couplings Giz must form an
- eigenvector of the (s,t) crossing matrix with no 10,
;f,ﬁ'Ib or 27 states. The two such eigenvectors are (16,

- 5,0,0,9,0,0,0) and (0,0,1,1,0,0,0,0,)s ° Factorization

requires Gp, Ggg = Gas2 ‘and so the unique solution s
5 . Nl

i,Gi = (16,5,3/5, 3/5, 9,0,0,0). This gives ¥/D -
L /3/3 Goa jos = 1 for both V , T couplings to BgBg.

The left hand cut potentlals for the N/D cnlculatlon

}{of the B8B8 channel are from the table:

G} F(S) P (G + BIF%s) )

“15 G12F1‘(,S) v (=55 CH ]2— Gz_“: }FB(S)

o<

L I
n
~
i

Gaa , Ghs
2 2

Vals) =5GEF'e) « (LGl - T6EF%s) )



from duality above. - Substituting this value in (4.3)

provided Ggg

C78e

Txt where the V's are identical for both signatures and
i .F8(S) = F'(3) + FQ(S). Diagonalizing the octet
‘uigff(potential matrix, we find an attraction in one diagonal
. element and repulsibn in théyother.- Identifying the
attractive element with the input pole gives /D = 1
"W :f0r consistency of input and output oouplings, for both

"i; the V and.T octets, in agreement with what was found

T we again find repulsion in exotic states 10, 10, 27,l

2 ws) > 5/166°2 F (), and we

- find that V; > V.. Identifying the singlet with

8

the Pomeron, the exchange ‘degeneracy of the forces
’means that there has to be aftrajectory of odd signature
degenerate with the P. - The absenCe of such afchannely‘
‘_presumably means that the Bﬁwchaﬁnél~céhhot'in fap£~.

" be dominant.

" 42 - Baryon Trajectories.

- For barydns the duality~principle leads to a

"57c0mpletely wrong spectrum, with baryons being two
1‘(quark composites.  Ignoring the cbnstraints coming

" from the high threshhold BB —BB channel allows a

three Quéfk solution but now there are many possible

solutions.Specializing to the case of SU(3) there éfe
_two minimal solutions with the three multipletzdegeneracy‘QQHj
‘patterns | |

3,
2‘

Sa 83 - B3N 06
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*Q,iwhich are identified with baryon trajectories of

A‘f;f opposite nomallty, except for the 556(:3 ) which is

i3:ﬁnot observed. Broken symmetry can be incorporated

. into the«Sl'solution with some success except for the

”“-astrangeness -1l trajectories (figs. 3.7, 3.8

The N/D bootstrap equations merely predict that

1f’vthe baryons belong to some representation of the group,

.~ not necessarily irreducible and we have seen that many

‘representations will satisfy the equations. In the
static limit the even and odd parity baryon equations

" become independent and there is no requirement for

: "exchange degeneracy between them. - A detailed analysis

" of the meson and baryon exchange forces was given by

3e;‘Golow1ch(8l) who found there are strong attractlve

vv'for'ces in Aﬁ , N(1 4 /\Y' - but very much weaker forces
‘ gﬂln' NB NY and »va .

hef~¢h.3 Conclusions.

The main conclusion we wish to draw in this

&1:vchapter is that al though both the bootstrap and duality

. hypotheses may be used to derive the fact that the

x:strongly 1nterect1ng particles will occur in multiplets -

rlﬁ which form a representation of a. Lie group, their

. predictions are by no means identical as regards the

" relstionships between different multiplets.  In general

~ the N/p method does not result.in degenerate trajectoriess
nelther exchange degeneracy (unless channels with exotic
u - channel quantum numbers are- chosen) nor degeneracy

 between different multiplets of theksame signaturerls B
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predicteds  On the other hand, degeneracies are

ks essential to.the duality scheme. Of course the N/D
1;:TScheme which we have used is only an exceedingly crude
h:fifirst approximatign to the dynamics and it might bé‘
ii.argued that a more exact bootstrap treatment could
‘5 'réstorevagreement with the duality predictions.

Vi Against this it should be noted that in both schemes

the arguments for the occurence of an internal symmetry

" rely on the poles dominating the amplitudes. If the
bootstrap equations are such that poles &re not a good fi.”‘“3“

first approximetion to the dynamics'then the fact that

these couplings appear to obey SU(3) symmetry would be

% just a dynamical accident.

For baryons there are so many multiplets involved

dt?that neither model gives predictions which comparel
i;’%critically with experiment, but for'meéons the Situation o
1”*is much more transparent. The observed exchange |
1i}fdegenerady between»the vector andutensor mesons is
*j:not found in'N/D models unless we regard the mésons
" 38 bound states of a high-mass channel with exotic
.4 - channels such as BB.  Even theh the SU(3) crossing
5f3'matrix does not permit the tensor singlet to be degenerate
! with the octet. The singlet always lies higher and so'
"sould seem to be identifiable as the.Pomeron.réther than

Tifthekf , £’ mixed state.

- Essentiaslly the same problem has been noted in

viJ_ﬁhe'muitipefiphefal bpopétrépr(which is essehtiallyl



Tifﬁ'snd no cut-off) by Chew & Snider
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the same as the N/D method with an iterated potential

(82). The input

‘Pomeron is given the special status suggested by

' “:'duality, and it is then found that the output may tske

‘the form of asplit P, P’ doublet (the 'schizophrenic
Pomeron'). The authors admit that this seems hard

to reconcile with the duality reduirement that the P’

. occur as a normal trajectory degenerate with the p etc.

These results taken together w1th the difficulties

" of generatlng straight trajectories must cast con51derable

© doubt on the possibility of deducing duality from any

H'f simple bootstrap theory. It has been noted(83) that

‘fiffstraight trajectories suggest a dynamics controlled by

afrr}very high mass channels rather than\thefdecay channels,

" and the argument of thls chapter is that the observed

“:1nternal symmetries are unllkely to be obtained from"

' /}”;coupllng to low mass hadrons elther.




- mesons. (See eg. ref.

, ‘ L ,
“and ocbets with perity (-1)  and charge - parity (-1)

-82-

CHAPTER 5

~ Quark Model Calculstions

In accordance with the conclusions to Chapter AL

'7 wae investigate thé consistency of regarding the vector
- mesons as bound states of quarks énd antiquarks, using

'7]  the determinéntal approximation to the N/D équations.

lﬁi‘fSince it is generally supposéd'that the quarks have a

- large mass, M_ =2 5 GeV, the quark model is a expression 

g

- of the opposite point of view from the bootstrap

f hypothesis, in which t he lowest threshhold channels

are sssumed to dominate. Duality has its simplest

e expression in terms of quark scattering diagrams and
C o we hope to shed light on the differences between duslity
“fénd'bootstrap predictions found above, and invparbicular

‘57?:on the appearance of the Pomeranchuk trajectory.

5,1 Introduction to the Quark Model.

The immediate attractiveness of the quark model is

’;'~"that it'predicts the correct Quantum numbers for the

(1&,15))’ It a 'dyngmi(‘f' quar‘k

model is considered, that is one with orbital excitations,

i»i one obtains meson bound states which are SU(3) singlets

L+S

- For the ground state L = O, one gets pseudoscalar and
. vector mesonss The‘higher mass mesons can be accommodated

in excited}‘L  0; StatesQij}There are>four'types.of
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© stotes J = L1, L, L+ 1 with 5 =1 and J = 1 with

“‘f:iS = O, It 1s congectured that there is a Regge‘

" trajectory corresponding to each type. The trajectory
=L+ 1can have noJ = 0 stéte and so its intercept

must be positive while the other three intercepts must

"3 ‘be‘negetiVe.

The baryons are supposed to be three quark composites,

:’which correctly give SU(3) singlets, octets and decuplets.
The lowest mass baryons cen be 1ncorporated into a single
‘representatlon of 3U(6), the 56,  This representation, |
.Le as-well as bthe spin 2/2 sU(3) decuplet,vis eompletely |

- symmetric in its spih end unitéry spin quark indices.
'?_.If these stéﬁes are ground states'with L = 0, theh the

ﬁ"~'usual‘FerMi‘staﬁistics demands that the space part of
“the greund state Wave function be“antisymmetric under s
'-interchange of the querks. Thisris peculiar’butinet ’
fevfimposSible; ~ The second difficulty withlbaryon states

”»;Lis the question of why a2 3q state is more strongly

.~ bound than a L4q state, for instance.

(86)

It has been shown that in certain circumstances
- the internal dynamics of quark - antiquark meson bpund'

e  states can be treated non-relativistically, eveﬁ

though the quark mass might be very much larger'than_ [

_ the meson mase. Inesuch a non—relativistic model it

is easy to account for the spllttlng of the four meson

tragectorles by having a 31mple spin orbit term in the

. potent131, ‘ If we also suppose'that the strange quark



it implies M

‘has a mass A greater,thah the non-strange quarks the

.“;v mass splitting amongst the meson nonets can be accounted -

for.: Writing the meson mass My =<<A| L Mqi —Ua A>
- | where Lki is an SU(3) invariant potential,
E'gives for example rrnp z nwe;,rnK.: Mgt A
. mws = Mg + % A and Mg =mg+ %—A
'-'_FOr the vector mesons if we put 018 = rno - and we
'€@ j‘have the canonical mixing, then M = M + 2 A
e nﬁq) = Mp = M . These predictions which

'*“lare reasonably well satisfied agree with the qualitative

‘“’  battern of trajectories obtained from duality. The
Tﬁf va1ue of A obtained from the Vector'meson masses is
‘:~'only consistent, with that obtained from the pseudoscalar‘\

: masses if squared masses are used in the relations.

The same considerations for the decuplet baryons gives

 the equal spacing rule and a fairly consistent value

of A y but breaks down for the octet baryons where

5 = nwA . To account for this difference]

nﬁz m symmetry breaking, effeéts must be .

" included in the potential.

5,2 N/D Model for Meson Exchanges.

We consider an N/D model for quark - antiquark

scattering amplitudes, with the exchange of vector meson
2

| m ,
~ poles, and make the assumption that ‘//ﬁzg < 1,

where m is the vector meson mass. It has been shown(BB) "’

. that in such a model it is easy to obtain an approximately

. 2
straight meson trajectory for ,S"<3i élhAZV_

f-However,'the observed:slopes énd‘intefcepts cannot be

’
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ﬁﬁffobtained without imposing curious constraints on the

(8h,85)

We will ignore spin in our

5?_1¢91§ulation5'for the sske of simplicity, expecting
x7i;this to make no qualitative difference ﬁo our results.

‘ *” %We could attempt to incdrporate_spin‘into the calculation
f; ;by’assuming SU(6) symmetry and at the same time include
'? fthe pseudOSCalér mesons. |
‘;f a) We assume exact SU(3) symmetry for masses and

J?‘Couplingé. We‘considér the guark-antiquark $cattering
 amplitude for qg + Gy — G + Gg |

/. as shown in fig. 5.1, with‘éxchange of vector mesons.

’ qu qc

S Fig. 5.1
o L <qq 'scattering.
-7 ' ' o
_s | 7 The channels dre deflned :’;,“
B : ‘ as in flg.2 1. 3:§, ]-, L
R , .qb , S o
i Let Mg = octet meson mass
',nqo = singlet meson mass .

"?f The h4c1q coupllng coefflclents are;fJ:‘

o : bi P
<4, [me > wlg
e 5
<, G, [Mo > = g& =

- where- )'ub' are the fundamental mntrix, representations -

of SU(3)s (See Appendix A for commutation relatlons)

5a1 The factofs 'j_-,.[§ - are 1nc1uded tor normallzatlon.

Using,the determinantal approx1mat10n to‘the‘N/D.

- .equaﬁiOnS’(See Appéndix C)ﬁwiih éinglét”gnd octet
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"1 "t = chamnel vector meson exchanges, one obtains for the

}.'.: 8 = wave N ‘ﬁm‘d_D émplitudes

Napeq (5) = 6°§6bdf OF Aac;bd fs)

o

2 .; Dab,cd (S) - -Gabécd ‘ = So/ Na:b’Cd(S) =ds ds. o
R /s (s-s)(g-g)

- am2

Cowhere i (s) - g Qulad B¢

2

2rrn 25

.
— : -""‘.

SO Ty (5) = 29'2&*1 ‘4M S - m;

m?.

oo .

PR R (s) L_S_[  (s) 2q¢ds

B0 so)
ane

S

1 R I -
fjﬂv s - 4M2 Y " me- 4M?_

(5.1)

- (52).
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" So is the subbtraction point which is not strictly -
" "necessary. \

'?fReplacing the variables by non-dimensional ones

: : 2
5 — /MQ m"’-——a mZMQ 'gee—-:» %MQ

L 2g2 (1 -s-m?) m?)
= s -1

—h

—~
n

S~
1]

'11 ‘
n
~

I

- .‘ng(if-_t_sp_) Jlnﬂ s-mf) m?)ds

/ -N(s-9(s- s)l"‘

We quote the'results of Appendix B that for small s
' ﬂf,:and m2 these two functions may be eXpanded in powers
5&1 of s, nF.' A |

T E

! (s)_j‘f,:fjflog mi? (g + s+ )by bys ¢ L.+ 0(m?2)

5.3)

Fils) = log mi (A(s) +Agss..)s Bls) + Bs + O(mP)
F (5.4)

“The coefflclents ajs b ;0 A B are glven in Appendlx B.

: Below we w111 take our equatlons always to loWest order"

in s and my e
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) t

Ne can now dlagonallze N?b,cd by the unltary

’ matrlx formed - from its normallzed elgenvectors\rA
L

cd o cd ; The result is (see Appenle;A)

5flf;zﬁf’f j?? )
Ng(s)

No(s) = fo (S>/:3 *'B'fe‘('S)/B o (~5;6) -

[These results demonstrate that the 3 ® 3 — 3 '® 3

'ffv((s,t) cr0531ng matrlx is’

1. 8

- The same energy independent transformation;will4ff“

"/'diggonaIize,Dab’od and Bab,éd-

" Dels) = 1 - (LE(s)-LR ) RN CING
Do(s) = 1- (LR (s) +%—F3(3))‘.‘ . B8

We see that provided the Fi are attractive forces,
l?;‘the forée in/the singlet channel'is slways greater'
" than that in the octet channel, and only when Fg =
'~w1ll they be . the sames Requlrlngvbg = 0 at the octet

. mesonJmass Co=omg and D0 = 0 at s = m02, gives



W=
o
3
o

n
E
W
éﬂ
-3
(o]
°
e
—_

(5.10)
s fTheféoupiing ¢bnstant‘equations

e = Na(me?)

> d L
[ ds DB(S)]m82 o

- No (m02)

Eaeln:

e g - o\ 8 ‘ 8 8 S

Cfm2) ¢ BR(m?) .
T ORMm?) + BR(mS) (5 1?,.)-

o

14

S 9

- Using the results (5.3).and'(5§h), taken toblOWesﬁ':;"
. ) | ‘ ' SN ,

~ order in s,m;  we obtain from (5.9, 5.10) @
- F-;\,“go (,Am’f B, log mo) = 3



“valid., However log mo

~90-

 f Fé ¥1g§(Ai+ BIK@ W@2) :vO,

1

ogme’® =g (5.14)

"'~ and in principle (5.11) and (5.12) "are now solvable
:?;,for gozi 8820 |

We get the rather absurd result that for consistency

© we require to octet exchange force to be zero. This
:tlrwill be so if log m82 5 - Al/Bl. From the table of
?:prpendix B this ratio ranges from about'l.h'to 12 88

:'”,varies along the L.H. cut, 'and does not give a suff101ent1y f‘

P ‘ 2 '
©. small value of mg to make the approx1mat10n "18§MV12<< 1

2 3 2
= /go - A does give 3

By

“ﬁ; small value for m02 if g02~‘_l.; We see that consistencyl‘*iﬁ!
:f»;requires not merely that the singlet trajectory lies

B ’j_,"above the octet trajectory as do bootstrap models, but

. that.the octet mass is an order of m /uM? greater than ﬁ 

,7 :the singlet mass.

b) We now look for a broken symmetry solutlon in s

" the hope that by introducing 31nglet octet m1x1ng the.

above results mlght be modified and in particular

" eliminate the need to have Fg = O. We keep the
{f assumption m?/hM2<3§ 1 but allow symmetry breaking
7 of the masses and couplings to all orders of AIE%};

2 : A : &
AE;1§2 . We assume exact SU() and‘equality'of the

" quark masses is préServed. Let mi = mass of the vector

e sons iv = 0’...8 where ml = M7 = m3 81’1(1 mh_ 5“-_- m6 = m7 .
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Vl;;to satlsfy the requlrements of 1sosp1n and charge

o congugatlon 1nvar19nce. " The coupllng coefflclents

S are how ertten

{1
(o]
B{l
{
~J

‘ Wher‘e gl = g2 = g3 " and gl.p '= gs = 86 =g7 .

L ‘conjugation invariance, and to keep the md, m

® is the singlet - octet mixing angle and the
i15;couplings are written'td preserve SU(2) and charge

| o states
*fﬁ orthogonal. Put t = ten © and replace ~,.“u»_ﬂi
| Js = Us /-(1»‘+t2 ) go"—’._.gov/(—1 * tz )

' and the mg, m

o couplings then become

o <gg | mes g (Mg Bwy

(tAe, OB
90 j— j__

Ff]?USlng bhe determlnantal approx1mat10n as. above, the N

';;   <g, Cﬂ,‘

77¢fand D funotlons may now be wrltten 1§'."'




U VISV U

NOb,cd (S) =2

§ <~‘D0bv;cd <S ) = Gdb GCd -.‘

" where as before

R
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N—-

N f (ORE jét??\?,;f°(s) e

e

) - PO b BeB)

(e A (515)

o 5"‘50 Ny S) ds'

./sis is s)(s ‘s) -
- 6. 16) |

In((1- 5 - me),/mg)

fl(s) = 2g?
: s-1

“QvieWe make the same unitqry transformations to the N and
‘j]J’D functions as we did in the symmetry case above,
;f;fMtut\now the N and D matrices are not dlagonallzed; and

v‘fiﬁﬁwe are left W1th off-dlagonal terms N8 , N08 terms, s'l -

.3“?Urtetc3, due- to singlet - octet mixing.- Wsﬁpbtaln,(see»;n

’3x73AppendiktA)

|

441 2 -
+1 )15,
fé‘ )) 3.
ot

B o
e 2t>+fo<g-f~2t>>14,
>

;Jl'

4t
{<3f1+f3<1-/_ +2t)+f(2+

RN IR R AER e SIRAEE s )

617):



NS

o Nés (S) : . Bo(

__M‘ ;93~>

for'i j =1, o0 8, where‘In'is’the.n — dimensional

unit matrix.

ix

- :: DU (5) "’: "12' Aab Nob,cd (5) 7\J cd

.;{ if  ’  “&1_1 { 1ﬁ%+2t 2%0+ﬁ&+€»13

5 +t+ . —1—2.‘
(RS 2R (- - )T,

V)

(3F ar-;+ ]-—+2€ |
B2 ‘j4=+3t))11}. (5.18)

1

60b Ncub,éd 6

IL

LW Wi

(31, + 4fy+ (']+t)f5+(’|+ t)f ) :(5.'19)‘

g
N”
It

3 §ub _Dab,cd Ocq

- L3R vag - 0D)R (1) (5.20)
N )-/6—3 ab Ndocd 6cd '

=2 (3120, - T f—-f)—tf) (.21
et f : |

D) =0 = 3 - 2 - *7% B

. (5.22)



*Qg'problem see éacharlasen & Zemach

, NBSDOO | __NBBDBO + DBS NBO
A A

__Noo DBo.+ Doo‘:Nécz . Noo DBS

where A = D®DT - (0® )

~ We see that 83 is not symmetric, in violation of
time reversal invariance. This is the usual trouble |
"encounter'ed in the deter‘minantal approximation to the
i1‘;1.N/D equations, and we will symmet‘rise by hand, and

A"thereafter ignore the problem. ~ (For discussion vof‘ ‘this

(7))_1 K

-Under the same transformatlon the output resuiue

- .ma trlx .bec omes -

=
(

Js %4 t290 7( go .g82) t
(62 )t git? fgg
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"ﬁ‘;ThlS matrix can be dlagonalized by the iurther
‘f.btrnnsformatlon u- -1 BRES U where} ;. |

l4; .
"cose,sine

BN |\ -sine,cose

/%i'f I 2
RS o
g8(1 + ’(.2)
2
0201+ )
5.23)
' _ , _ a -
(If goZ = g82 this further transformation is
' unecessary as Bpgg is already disgonal) . ‘Hence .
“this furthef trensformation must also diagonalize :
~ the amplltude B at the resonance position, which |
i;leth our approx1mat10n 1s taken 1o be s g O ;;It“
ﬂiiwill not. in general dlagon311Ze both N and. D. vahis,

Hrequires

oy Moo NdDuo B By (5,20
ST NooDea NeeDeo | Gt 5= =0 4



L ggar

f?Afand,B then becomes

N/DI

| 2 2
= NggDoo €COS8 + Ny Dggsin's

=1
1

+ (- Dog (Noo* Ne) + Nog( Deg + D)) SiN® COS o

BTN 2 2 .
: ,_~V~No = NBBDoo,st+ NeoDag COS ©

- (- DoB(N;,o%NaB) + Nyg(Dgg* Qo)) sine cos e

‘As in‘'the symmetry case we take our pole and residue
2. equations to lowest order in s. anowever, for A‘td be -

CA ' 2. ' 2
7. zero at both s = mgy and s = My we need it to be Zero

 to order 82. - To avoid double poles 1n the amplltue

 we need Ng = 0(8), N6f=QQ(S){ - The pole and r951due ;

conditions become

i

D=0 . (523

. :,'.D4

3!

o) (B2
 DegDio-Ded= O(H (5.25)

B IA\J"QV_-“- 0 (S) L . o : B (5.26)



NgaDoo ¢ NogDss

8B oo_

L '-"*n:‘l Noe(Dsa* Doo): -

.,«EQuétions (5.26) (5.27) imply

ot

DoB( Nqo+ NBB) =

= Of(s) " )

O'(s)

(5.27)

(5.28)

o (5.29)
(5.30)

B3

. (5.32)
Ca

(5.33)
ca
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"*Ei The simplest solution to these equatlons and (5 25) is

Dy = O(S) o ®. 32)
D = O(s) (533
Dos = O (s) (5.34)2 :

’ziiymhese equations obviously have the correct limit as
??tt —>» 0, and we williignore alternastive solutions
fﬁjinvolving complicated products of the N and D functions,
'f;:In the'exceptionalcase’go2 = 882 we also arrive at
5'f;f(5.32) to (5 34). The pole equations (5. 23, 5¢2Ly 5.32 =

'3{25.3h) can be. ‘written in matrix form

-3 0 1-2fats2tt 2 2[2t+#* -8\ /K
0 0 -2+j'£ ot ._;f2-[2‘t~2t~ 5 o
3 -8 3+ 2[5t 2t C2-on3f -6 | R
6 8 2.2  2.28 -gfl &
3 2 -0+ 2t)  o@t-f of \1

;E‘These,equetions only heve.a solution when the detefminent
ﬂfi‘of the matrix vanishes. Unfortunately this happens for
{§3real t only when t = o. Lt can then be shown that the o
- equations above have only the symmetry solution by = Fh =
”;f Fg = 0 and Fy, = 3. So we have proved that:the only'_;
ﬂf?;solution‘to our equations is the symmetry one. |
,fﬂ:c) , Alternativeiy we could give the strange qﬁerk a pe
‘f‘dlfferent mass from the non-strenge quarks. and look
”\prfor E driven type of broken symmetry.: However it is

';l~difficult to treet thls problem generally except as a



'~ perturbation series in ,/// 2 . With the assumption

':ffLm /M2<3< 1 maintaeined as above, this perturbatlon

L AM?Z
“ - cannot effect the results above unless ///ﬁh2:3> ///Kh

With canonical quark mixing the(p,u) vector mesons
f? couple only to the non-strange quarks p.’ and ¢
ﬂ€2[00uples only to the strange quarks A - The oroblem

;};’then decouples into three parts.,

BT —

Y A

B 'f‘l(ii) g *

-
AN

V:U:\/

i)

N

L fifAllow1ng the strange gquark to have a dlfferent mass ,

" to any order in . //$h allows different masses for
‘ f%vhhe three types of partlcle (p,u)),k* and ¢ , but

!

;;ivdoesn't’affect the problem‘of obtaining singlets whose

' mess is an order Lower than the other particles.  This

'fofeature is now seen in (i) which 1nvolves SU(2) symmetry,

’f;;only. : The SU(2) cross1ng matrto for thls process is

Y2 2

Xk
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‘5§~:d)~ An alternstive solution to m02'<31 n@z of
" equations (5.13, 5.14) above is g02:2>‘ géz.
v',However this is not a consistent solution of the residuee
Eequatlons (5.11) and (5.12), but it does suggest the

" existence of a background singlet force, denoted P,

not corresponding to a particle pole and an order of

*5~‘mngnitude greater than the particle exchange forces.
;;?wWe modify our equations to include such a term. The
Viig;partlcle forces will now appesr as small perturbatlons
" to P and we hope in this way to produce singlets and

*i:ootets with masses of the same order.A

With exact SU(3 ) symmetry the modlfled pole and

eqliresidue equations are i

P (m 2) -F°—3 ot -8—5 :'| "_»c ‘.(5'36)[ g

3) * 33 (537)

o ,
1"

- (5.38)

Sget e (5.39)



. - J—

P a1

BEEC ":fE’(Q/)m: '

?i  We assume P(s) = P(o) +4P3(b)s" veve for s <K 1,

" and then the zeroth order solutions tQk(5€36; 5.37) is

'

4*1;The'firstjorder solution is

e ‘f%ﬂ; Fy(C))erf " fgéfﬁ.f.+.%§_F: (0) = CD ‘i‘ }

o) .-
373

F o= g2(A; + Bylog mf)we derive =

(A-logh = A + Bylog mg)
‘ =Y o

'ffi,vThe L.H.S. of this equétion«is never negative and

o ” A : .
Cif log mg ;3.- l/Bl. We see that slthough now we

“ﬁ‘: can have mo® = m82 with GQUQlitY,When A =1, and

2

’ By~ = gg?, both masses are now not smallvre;étive to

' f the quark mass.

(5.40)

- (5.41)

 (5.42)

- Putbing A = ;lﬁ; 2 and again using the forms

(5.43)

" equals zero for A\ = Ll . The R.H.S. is 2 O only

~ We next relax the condition of exact SU(3) symmetry

“:~‘but.re£ain SU(2). ‘The masses and couplings are given

| d&:;‘%ii%

as in section (5;2b)ov The modified equations (5.35) are



S -3P(0)m{

o -3Fo)m? = - Bt »

o a102-

it

B0+ et > 3H+%%y%ﬁff>

: (5.44)
efyi o (5.45)

LL

(E-R)-

L

T a5 +F(3‘ f‘wf)
(5. 46)

A\

o ] s 3‘F.>'(O)‘m")2 = R ('] . t2) +'3F{— *  4|: + Ry (1+ £) (5‘ 47).

= @2t - )+3F oF - F(2j§t+1)_ |
| S Gy

" The residue equations become

L 9%eg2Eglet) = gl ®)

.. These equations are invariant under the transformations
- under t —» -l/t y Fo «—3 Fg as they should ‘be. |
; Putting Fi = gi? (A, + Bo log mi2), substituting 5;[;8)
©into (5.44 - 5.47) and then leldlng (5.4 = 5047)
- by (5.45), prov1ded F, = Fg, 1 - %) ¥ O ’
: i 't ‘ /? or _/é we obtaln

e ‘:':\"im =  3log w(1+2)0+ 2f—t +log ug(t*- 4/2- 4f—t 1)

1+t)(t+tj— ~1)(logue 3109u1> |
e SR : _(5.50)
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3logu11+t)(f_t 1)2+Ioguet 2]‘1; P 7ft 0}

1 (1) E t@'%)( Iogua 3109 u1)

B .
e 0O = |Og uo gj—t t)+3(1 t)log Ly - 2[‘ St+ 1)log e

 eemie . 4
Ogm4 o(f-2/3t) { ollog “E’t 3';9:“))

~—3(f*’t--logu1 t 4[7;1Nogu8

v"f??\Nhere ua :£Q-
. o nq

Opi~

S Equations (5.50, 5.51) can be solved by direct
elimination and then [  and mhz can be found by
’".E{-j"f_'-:_‘substitution into (5.52, 5.53). It might be hoped:
.""{:{lfi’;nthat (5 53) would give a reasonably small value for
- -“‘>m1+2- . In principle substltutlon of the SOlUtlon 1nto
(5e44) would then determine t in terms of P'

A computer search was made f‘or' solutlons in the

| "ﬁ;‘f; range J_<t < 4_ (which is sufflclent because | -
~ the equations are invnrlant under t—->~ t and Foe— Fg)
and 1n the r-ange - 10 log p < + lO.‘ ‘ Solutlons were B
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kfound (see the table) for <7— :> t :> (3 3

© but not for

-0.-32 1t > 1

o bwo solutlons.

For some t there are

The solutions fluctuate wildly

p = t%? log ™ ? \19§ mg2 log EQEL log mhz + Al/Bl
mh,. " m m1+2 |

063 | 21 | 00 | .63 | 0.0

049 | L3 |0 | ekl 0.0

‘0.35.‘ 2003 | o | 2.1 2,0
0.35 12 | oz “lyoly 0.1
0.21 | -0.4 0.4, 3l 7.8
0,09 | -0.6 0.4 11.5 1000

0.9 1.0 0.4 -16.3 2.1

~0.21 -1.9 0.7 - 9.6 1.6

'féff\but have in common that log mh + Al/Bl s always EE

non-negatlve, and hence the correspondlng value of

mh is not sufficiently small.
1 o ,
The case t = 2 (or equivalently t = - 2)
o for el /2
which is the canonical mixing angle, is investigated
sepafately as this corresponds'to a singular case of
" The R.H. S,

U our equatlons.‘ ;bf (5.45) is now zero

 -_and so we requlre P‘(O) = O., 'The'remgining,eQQQtiohs

”f;rare then



PRV

o
i
~
-
*o
t

. O,r 53,F1/2s};"

+

+

0= P/ Ry w3 F 44 E 3 Fy

0 = 3/2 F, +3 Fyo= 2 Fu - 3 Fy

" These equations haVe only the nonet degeneracy solution
. F =F =F =TFg=0 which we rejected above, and

3)} for which the mixing angle is meaningless.

!;3[5.37 Conclusions.

We conclude from the results of this chapter that

‘5lsit seems impossible to obtain the physical meson spectrum.
" as a self-consistent set of quark - antiquark bound states
fﬁf with the forces responsible for blndlng the quarks belng
'fiff?the mesons themselves, and with the assumptlon that -
B 2/ <K 1, This assumptlon seems tomake our equatlons
S over - determlned., The conclusion remains unaltered -
;{i;if7we try to‘add some indeterminacy‘by introdUCihg éF'
'background singlet term with the partlcle forces now

as perturbatlons.

There seem to be two alternative courses either

o discard'the assumption m2/M2<§:,l or reject such

. a model of the quark - antiquark binding forces. The

former rsises the question of why such low mass quarks

7'1 'héve'not beeﬁ seen and tﬁe lstter,.tgkenlwith the difficulty
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- of generating trajectories with the right slopes
- and intercepts seems to be the more appropriate

~ conclusion.

Summing up the conclusions of Chaptérs L4 and

| 5 we see that both the bootstrap and the quark models
"'considered.do not reproduce the physical particle
4;, : spectrum. Thus both models support the idea that

~high energy scattering is not dominated simply by the

exchange of a Regge pole and account must be taken

°V‘?g‘of productlon processes. However too little is
lﬁf known about. these processes to include them in a

' 5f;7dynamical calculatlon at present.fff‘;




*”il(See egs Tqrjanne)
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APPENDIK A

1;;Ebommutat10n Relatlons and lraces for SU(B) matrices o
(88)" '

;;;f;The following formulae havélbéénfﬁsédﬁéxtenSiVely. .
"“V‘[xhxi]= Qifukde (A

: {

5 i1quuare brackets stand for the commutator and curly

§ >

h

4 R
,}"?%f2¢m3k, - (A2

D

| ;i ‘brackets ‘the antlcommutator ‘f q;@ff ‘*

Q= 25, .f“j A*g¥m(A$f'
AN F 20dg +if ) (A4

3: Jm:_ML-3%&k+pJ{%.\"(Am ;

we

7 where

m 5Jf{ff,{”}°b:= b1y + Gjaﬁﬂ; if:ff::iﬁﬁ;féf ff:f:;£E? i5'3 |
 ffvmm- 5 - An
”"“w@Qh§U f f ?, ~,  *¢Am 



—— PN

e e e

'v;.y;_,—<——6.16cb+(d.,k *ifa ) N ) £ (s)(35 5,

S wdgd) 1 d S (as
g0 = - 34, i . w0

e ‘Dm{" '53"*_*_7 S

tr‘(Ii .D27‘,fk) = Dzm‘ | o | . . o ‘(A{IZ:

where p°7 1s the matrix transfor‘mlng as the 51nglet

"»“:fo':;'?.member of the R7 representatlon L e

.'V‘B.I '4, | R :
, 9;[: }"~  o

S

7 /In Chapter 5 we calculate g ab Nab,cd gch. where

—

z 3
?\ia; ,Xac fn(s)x"bd )\jcd

)N")

"'(d;lm + J

3 a‘,f (s) 2.(dilkf.f‘<s'>d,~.;a+.f‘,k () ) - - (A13)



S S — [

wfs"""j,.31m11'arly we may show

S i >\ob>\ac)\ tﬁ>\Cd - 46@ 6j8 ;/’—daj

6 Xoac *Bbdljcd = 2d8885j8 :

-109-.

' )\cbﬁacﬁbdx cd = 25

. . SR
7\°b()‘sﬂc§bq+§0cfbd)xcd = 4d8jj Lo

Oab 7\Lq§ f n(S)?\ubc|5cc| = 2{:#(5) |
. '  . 60b }\eqc)\&‘bdGCd = 2 ;
Bl WPacboat BocX pa)ia=O
60b6qc deﬁcd = 3

'  : 6<1b>\Q ucfQ(S) 7\ubd )\j cd :2618 \dsu_ fL(S)

. C'b()‘ acO bd"' 6ac AB;d ) 7\jcd ‘-' 4618 L

 Bab Bac 5bd>\ e}

‘Wlth these results equatlons 2 l to 2.6 oi Lhapter 5

' can be wrltten down after some 31mp11flcat10n :

(A1)
(A15
(A 16
“(A17)

(A.18)
(A19)

(A.20)

(A.21)

(A22)
. (A23)

" (A.24
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© APPENDIX B

B. In Chapter 5 we calculate the following integrals:

F(s) = 292(5 S.) In((1-5 - -m; )/ m:)ds’
VS(s-I)s- 9)(s- )

2g°(L(s) —J}(s°
T

it

where
I (s) (An(1-s-m) - nm?) ds’

; V(S - 1)(s-s)

i

Make the following substitution,

:iifThe integral becomes

SRR 1.(5)— 5 (2n(1-m?- 1/(1- t))-zn_mﬂdt '-’,f?‘;"*»*»

3 (1-5(1- 1))

EC I IR
where "~‘ 1 ‘ ,_‘\‘ o e

e ot
d (5) _‘-.4 | = 20 _(—S?F" S)

,-,--2tan1 (s/1- 5)4

:'n:.

2(1#25+1% S+ ..... ) forv S<<']

(B.1)

(B2



8! "‘S’ Fhca=

Jn( ) -
* ~f{ifDifferentiating with respect to mj

S 9 m2

E

o =2R [ lgt-Bhdt o s<ct
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Qn(1 £)dt

:_ o
' 1

:jj—‘sg_;s" 1n(1~t)(1‘~,tz)‘dt Cos<<1

o

S T -

' These 1ntegrals may be computed by integration

‘ﬂﬁi%by parts o

Qn(t(1 i )+m.)
(st+1 S)

2

Ay _.fm t)dt

£0-m) « mA) (st 9) (B.3)

1

[ ‘ (1-s-mXErDemf) ” (-s-mPXsit-s) | ©

1
(1—sem,2)

b o

i/s(1 _S)tan

s &

1-s

1 - 14m52

% tan
| m2(1"ml?) ,mf

s o We expand this 1n powers of m ; Wthh is supposed

L small and we can then 1ntegrate W1th respect to f%ﬁﬂ; S

term by term.'n”‘/

lg&ﬂn We obtain

[J]m@ o omd o (Ba)

where [ log 2 dt R
mi2 (st%1-s)

1

0 -



- — S —

e e e - 2

e e A B e <o i ke
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“;f These 1ntegrals may dgain be computed by parts.

Pg' the results, we flnally obtaln for ml‘, S<§<: 1

Adding

s - -log m2(2+4-s) - 2‘784 3.185 +0(m, %)

(B.5
“ff The4integrals.Ii(S0) where Sy is not small cannot be
‘7 i,computed as a series in powers of So; but the expansionv
' for small my is still valid.
. ‘
 2;w; The coefficients Cl(So), 02(80) were e#aluated
- numerically for a range of values of So. As
ffi?ﬂsoy —_— - '(@orrespondingitb nb'subtragtion),
~f} \We write the original integral }' o : :
SR , 9 2 (B.6).
: Fi(s) = A‘ + B log m, +° O(sy my )
‘ ;;bfwhere the coefflclents A, B are functlons of the
' 1gfﬂhsubtract1on point S5 and tend to ‘the values given by
'7.?ﬁfigequatipn (8) as So —_ oo
B ""i‘abl'e: 5 1.  50/4r4 2 oo | “2,U| =1.5|-1.0(-0.5{40.5 | +0.9 |
; Ag 1,391 .90 2.0] 21| 2.2 2.7 3.5
e+ A/B 14.00 607 70[4. e 2 9.0 ll;,.9 3301

the ratio A/g alone appears in our calculations.

CIf S

is placed on the‘left hand cut, that is S < <1, we

BT it is placed near the right hand cut at + 1o

 ',usual;arguments place it onlthe left hend,cut.

‘ff have A/B< 21 ’ and it will only decrease 31gn1flcantly

 The




S -

P S SIS -

. ,f}Now Dl (s) can be normslized to oue At 5o« §

”figfrelations con be written for N and BN
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APPENDIX C

Brief summary of the N/D equations and the
determinantal approximation (Sec eg.refl. 7,8,10 )
The s ~ channel reduced poartinl wave amplitude By ()

is normalized so thaot the elastic unitarity equation

mB, (s). = B,(s)p, (s)B, () (C)
.;;’Wh??ev,c  pls) = fzgf'

. This partisl wave is written in the form

"lc-g p\S) e ‘;11 o |
Bz<5) - D,(s) I A '(C‘Z‘)“
o ) | ‘where the N ( ) functIOI‘l

*f;has only left hﬂnd cut 51ngularlt1es (orlglnatlng from

'n“,Yukawa type forces in the crossed channels) and D s)

%Aﬁ7;5has only the rlght hand elastlc unltarlty cut;jff'J{  '

‘vf?(Inelastic uniterity is 1gn0red)°‘”'

IMDyS) =-puSINYS) om the Rty cut  (C.3)
‘"T‘NZ(S)‘? TE%(S)'”“E3£<5>2 on the Luif cus (G

wio‘ﬁi(usually taken 2s. some point on the L. }.~cut), o

‘ g (s) *Lab ;,s &= so, when once subtracted“dlsper31on
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oo

D, (s) = 1 (5 Soyp,L(s)N ($)ds'
’ " (8- So)(S'~5) ~ (C'5;

RH.cut

¢

N(s) = - (850 >/ B.(<) Dy (<)l
(s™-50)(s"- 5) (C.6

L.H cut

Now define

: I | LfH.cut - |
L Bi(s) = fB__,_.___..ls(f)st,

: .Then by writing 8 dispersion relatiohgfor the function

 CUDEN(S) - BL(S)Dy(s),

"'f “one obtains

B,;<.=s)‘ > S°B (5) | < B (GN(s) ds
" RHcut . Lo |

- Ny (s) '=_" B't",(v_s)éfl /

€7
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°“~ EquatiOnS.5) and 7) generally provide a more convenient

basis for calculatlons Lhan 5) and 6). ' Equation 7)

yls a 1ntegral equation of the Predholm type generally
j:iiisolved by interation. The determinantal approx1mat10n
.v ;;.consists in putting Ng(s) = BQL(S)3

"ﬁff calculated from thevloweSt order Born approximation,
;;gﬁtand using'this to calculate Dg,‘JS) ffom equation (5).
'25,;It ¢an be seen tHat this apprbximation is equivalent‘;
to putting Dy (S) to be unity on the L.H. cut in.
f;f;equation (6). o | R  7

 1;:The Born approximatlon for the exehange of a spln Q

'“fpartlcle in the t - channel.

g 2(20+ 1) R '('zt')'_ili_ maly
\/(st) e S (C.8.)

“*f has at - dlscontlnulty 1n the narrow. w1dth apprOX1matlon '

g1Ven by

D) = st <Zt>q <2“*“)

(C 9)



‘which gives .

(=

o Bies L [GEnete

. - The generalization of these equations to include

"f{ucoupled two body channels was first written down

! by Bjorken. = The above equations now become matrix

u':equations.- The only difficulty encountered is that

'“*§{'the determinantal approximation violates time reverssl

'i ‘in that the appfoximate'matrix'amplitude calculatéd in
 :this‘way is not symmetric. The attempts to remedy

" this fault suffers from other(ugly features &nd We have»

"used throughout £he simple unsymmetrized forﬁ; The

" departure from symmetry found will measure the gbodness
of the appfoximation{<'r(Fof diSCussidﬁ SeeFZachariasen

(87)

and,Zemaéh).
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