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SUMMARY 

Reac t i o n s have been c a r r i e d out between a v a r i e t y of f l u o r i n a t e d 

o l e f i n s and the strong a c i d systems antimony p e n t a f l u o r i d e i n sulphur 

d i o x i d e and antimony p e n t a f l u o r i d e / f l u o r o s u l p h o n i c a c i d , with the i n t e n t i o n 

of generating some h i g h l y f l u o r i n a t e d a l l y l c a t i o n s . The c a t i o n s were 

analysed by means of t h e i r N.M.R. s p e c t r a and by the products obtained on 

quenching the i o n i c s o l u t i o n s . 

I n i t i a l experiments were c a r r i e d out w i t h h i g h l y f l u o r i n a t e d propenes, 

s u b s t i t u t e d a t the 1- or 2- p o s i t i o n s by e l e c t r o n donating groups. Reaction 

o f 1-p-anisylpentafluoropropene w i t h antimony p e n t a f l u o r i d e i n sulphur 

d i o x i d e a t -30° r e s u l t e d i n removal o f f l u o r i d e ion from the -CP^ group 

and generation of the 1 , l , 2 , 3 - t e t r a f l u o r o - 3 - p - a n i s y l a l l y l c a t i o n . A 

d e t a i l e d study o f the N.M.R. spectrum of t h i s c a t i o n has y i e l d e d a great 

d e a l o f information about the s t r u c t u r e of the a l l y l c a t i o n i t s e l f and the 

manner i n which the charge i s s t a b i l i z e d by the f l u o r i n e atoms. 

R e a c t i o n a l s o occurred between 1-methoxypentafluoropropene and 

antimony p e n t a f l u o r i d e i n sulphur dioxide, apparently w i t h removal of 

f l u o r i d e ion, but a simple a l l y l c a t i o n was not formed. S i m i l a r l y 1-phenyl-

and l~methyl-pentafluoropropene d i d not y i e l d simple a l l y l c a t i o n s . 

R e a c t i o n s of 2-phenyl- and 2-p~anisyl-pentafluoropropene w i t h 

antimony p e n t a f l u o r i d e i n sulphur dioxide a l s o did not produce the expected 

a l l y l c a t i o n s , and 2-p-anisylpentafluoropropene reacted with antimony 

p e n t a f l u o r i d e / f l u o r o s u l p h o n i c a c i d to form an add i t i o n product. 

Hexafluoropropene i t s e l f r e a c t e d with antimony p e n t a f l u o r i d e a t room 

temperature to produce the hydrogen f l u o r i d e a d d i t i o n product and a dimer 

which could p o s s i b l y have been formed from an intermediate a l l y l c a t i o n . 



The work was extended i n t o the f i e l d o f cyclobutenes, and a l l y l c a t i o n s 

were produced on r e a c t i o n of 1,2-dimethyl- and 1,2-dimethoxy-tetrafluoro-

cyclobutenes w i t h antimony p e n t a f l u o r i d e i n sulphur dioxide. Conclusive 

evidence could not be found f o r the presence of a l l y l c a t i o n s i n the 

r e a c t i o n s o f 1-methoxypentafluorocyclobutene and l,3,3-trimethoxy-2,4,4-

t r i f l u o r o c y c l o b u t e n e w i t h t h i s a c i d system. 

Further extension of the work i n t o the f i e l d of h i g h l y f l u o r i n a t e d 

c y c l opentenyl and cyclohexenyl c a t i o n s was attempted, but i t was found 

th a t n e i t h e r 1,2-dimethylhexafluorocyclopentene nor 1,2-dimethyloctafluoro-

cyclohexene y i e l d e d simple a l l y l c a t i o n s with the strong a c i d systems used. 
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Notes on Ion Numbering System 

A l a r g e number of d i f f e r e n t ions a r e discussed i n Chapters 1 and 2 

of t h i s t h e s i s , and i n an attempt to s i m p l i f y the numbering system, these 

have been d i v i d e d i n t o c l a s s e s . 

F o r example, a l l ethylene halonium ions c a r r y the c l a s s number 19, 

and i n d i v i d u a l i o ns i n t h i s s e r i e s are c h a r a c t e r i s e d by the small l e t t e r s 

a, b, c e t c . The type of halogen atom i s represented by small Roman 

numerals; ( i ) = F, ( i i ) = C I , ( i i i ) = Br e t c . 

Thus the tetramethyl-ethylene chloronium and tetramethyl-ethylene 

iodonium ions a r e represented by numbers 1 9 e ( i i ) and l 9 e ( i v ) r e s p e c t i v e l y : 

CH CH / ^ 3 \ 
c—c 
CI < CH CH 

CH 
\ / 3 
c—c 

/ \ + / \ 
3 3 

CH 

1 9 e ( i i ) 1 9 e ( i v ) 



CHAPTER 1 

The A l l y l C a t i o n 

The e x i s t e n c e of the a l l y l c a t i o n as an intermediate i n organic r e a c t i o n s 

has been the s u b j e c t of ex t e n s i v e d i s c u s s i o n . 

R C=CH-CR0 5» R0C-CH=CR [R C=CH-CR ] + 

1 2 

I t s e x i s t e n c e as a d e l o c a l i z e d c a t i o n 2 was g e n e r a l l y accepted as 

g i v i n g an explanation f o r a l l y l i c rearrangements long before sp e c t r o s c o p i c 

evidence was a v a i l a b l e to confirm t h i s s t r u c t u r e . ^ 

1.1. Methods of I d e n t i f i c a t i o n . 

A. U l t r a v i o l e t Data. 

A great d e a l of information has been obtained from the U.V. s p e c t r a of 
2-5 

these i o n s . As might be expected, e x t i n c t i o n c o e f f i c i e n t s are high 
4 

( o f the order of 10 ) and the s o l u t i o n s often h i g h l y coloured as a r e s u l t 

of charge d e r e a l i z a t i o n . V alues of X have been i n t e r p r e t e d i n terms 
max 

of the e l e c t r o n i c s t r u c t u r e s of the ions.^ However, these r e s u l t s can often 

be misleading, as the presence of very small q u a n t i t i e s of i m p u r i t i e s can 

l e a d to h i g h l y coloured s o l u t i o n s , even when no i o n i z a t i o n has occurred. 

B. Infra-Red Data. 

I n f r a - r e d measurements have a l s o been of great value, e s p e c i a l l y i n 
2 

d i f f e r e n t i a t i n g between s t r u c t u r e s 1_ and 2_. For example, i n the ion 8a, 

only one band was observed between 2,850 cm. and 1,450 cm. 1 

CH CH 
H H 

H H 

CH CH 
H 

8a 



- 2 -

and t h i s occurred at 1533 cm. , i . e . intermediate i n frequency between 

ordi n a r y carbon-carbon s i n g l e and double bond absorptions. I t s e x t i n c t i o n , 

however, was ten-times as great as the average e x t i n c t i o n of two carbon-carbon 

double bond s t r e t c h i n g absorptions i n the I.R. spectrum of the diene. 

S i g n a l s of s i m i l a r f r e q u e n c i e s and e x t i n c t i o n s have a l s o been observed i n 

s e v e r a l other r e l a t e d systems."' 

C. Nuclear Magnetic Resonance Data. 

N.M.R. spectroscopy has proved a p a r t i c u l a r l y u s e f u l t o o l i n the 

i n v e s t i g a t i o n of these i o n s . Chemical s h i f t s give e x c e l l e n t information 

about the extent and the nature of the i o n i z a t i o n , and coupling constants 

r e v e a l a great d e a l about the s t a t e of h y b r i d i z a t i o n . T h i s i s one of the 

major means of a n a l y s i n g these organic c a t i o n s and the extent of i t s 

u s e f u l n e s s w i l l be r e v e a l e d i n subsequent d i s c u s s i o n s . 

D. F r e e z i n g Point Depression Measurements. 

Des p i t e the wealth of s p e c t r o s c o p i c evidence now a v a i l a b l e about a l l y l 

c a t i o n s , the most important p i e c e of evidence to support t h e i r e x i s t e n c e 

as d i s c r e e t s p e c i e s i s t h a t of f r e e z i n g point depression. T h i s was f i r s t 

demonstrated i n the protonation of 1,3,5,5-tetramethylcyclohexadiene using 
2 

s u l p h u r i c a c i d , when a two-fold depression was observed. The establishment 

CH CH CH CH 
3s H H 

H H H H H + HSO + H.SO 

CH CH CH CH 
H H 

8a 

of the a l k e n y l c a t i o n i n t h i s way, coupled with the observation that d i f f e r e n t 

a c i d systems could be used to produce the same ions has been instrumental 

i n the i d e n t i f i c a t i o n of many new a l k e n y l systems. 



3 -

1.2. Types of M l y l i c Cations. 

A. Propenyl Cations. 

The concept of propenyl cations existing as intermediates i n a number 
7 

of chemical reactions (e.g. solvolysis of a l l y l halides ) i s not a new one. 
They have now been generated by a variety of routes, and have been studied 

8 

extensively, especially by means of their N.M.R. spectra. 

1. General Methods of Preparation. 

(a) Dehydration of Protonated Ketones. 
9-11 

This provides a useful synthesis of several different a l l y l cations: + 
T T"3 r T T"3^ i "2 

e. g. H-C-C-C-CH3 jzps^ > H-C-C—C-CH3 

H CH_ OH H CH (*0H„ 

I | X 3 further - I/+ | 
H CH protonation H CH 

3 ; 

CH 

i i 
H C H 3 

2h 
A similar type of reaction has been observed i n the dehydration of a 

12 
diprotonated al i p h a t i c g l y c o l : 

H H H H 
CH3-C-CH2^-CH3 S j f e CH3-C-C-C-CH3 

OH. OH 2 OH H H 

I I + + 
^ CH -C-C=CH-CH — > CH -C-C=CHCH <r> CH CH=C-CHCH 

3 | 3 3 | | 5 3 | 3 
OH H H H + 2 
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H I 
CH ,C CH 

I I 

H H 

2c 

(b) Protonation of Olefins. 
13a 

Such reactions have included protonation of allenes 
H 
I 

PSOH/SbF/SO C H 3 \ // C H3 
e.g. (CH3)2C=C=C(CH3)2 / *> V ^ 

CH3 CH3 

14 and dienes 

H H H i | cone. i 
C \ C\ CH H SO CH OT„ 

e.g. H X CT ^ C > ^ C ̂  + C X 

I I I I CH CH CH„ CH 3 3 3 3 

(c) Halogen Abstraction. 

1. Prom A l l y l Fluorides. 

A useful synthesis of the simple a l l y l cation 2a and 2-methyl a l l y l 

cation 2b was provided by the reaction of the corresponding a l l y l fluorides 

with antimony pentafluoride i n sulphur dioxide."^ 

S b V S ° 2 . 

H 

CH =CH-CH0F ^ X ' T s> C 2 2 i A 
2a 
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CH2=C(CH3)-CH2F 
SbFy'SO, 

-60° 
c ' c 
I I 
H H 

2b 

2. Cleavage Reactions of Halogenated Cyclopropanes. 

A l l y l cations have been reported i n a number of solvolytic reactions 
lo^lS 

of cyclopropyl compounds. A series of ions has now been produced 
by the action of the strong acid system antimony pentafluoride/fluorosulphonic 

13 
acid/sulphur dioxide on cyclopropyl halides. Reaction products were found 

to be dependant on the temperature and solvent system used, but i n general 

breakdown eventually occurred to produce propenyl cations. The authors 

favour a mechanism involving protonation, forming an intermediate chloronium 

ion, followed by loss of HC1, 

CI FS03H/SbP5 

;H3 S0 2, -78° 

CH 
-HC1 C ' 

I 
CH„ 

I 3 
,CH„ 

CH, 

2m 

This series of reactions was lat e r extended to also include a number 

of halogenated systems^ and activation parameters have been calculated for 

these ions f o r rotation about the double bond. The results w i l l be reported 

i n a l a t e r section. 
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B. Cyclobutenyl Cations. 

1. Monocations» 

(a) General Methods of Preparation. 

1. Reactions of Substituted Acetylenes with Acids. 

The formation of substituted cyclobutenyl ions by t h i s method was 
20 

noticed by Viehe i n a series of reactions of alkynylamines. 
< C H 3 ) 3 C -

HBF. 
2(CH3)3C-CEC-N(CH3)2 ^ 

-5 
2 2 o (CH 3) 2N 

N(CH 3) 2 

C(CH 3) 3 

This was l a t e r extended to the f i e l d of a r y l substituted cyclobutenes. 21,22 

R 

R-CEC-R* H 
(e.g. FSO H 
- -60° R 

R = ary l or other isomers, depending on the 
substituents present. 

2. From Substituted Cyclobutenes. 

A number of a l l y l cations have now been generated from substituted 

cyclobutenes using strong Lewis acids. The majority of t h i s work has been 
5 6 23 

:ied out i n recent years by Katz and Gold ' ' who have succeeded i n carm 
producing a series of cyclobutenyl ions which have been investigated by 

means of N.M.R., U.V. and I.R. 
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3a-h 

3a Y 

b Y = CH. 

c Y = H, X = CI 

CH3, X = C 1 e Y = H, X = H 

3, X = Br f Y = CH3, X = CH, 

d Y = CI, X = CI 

And i n later work: 

£ Y = Br, X = Br 

h Y = X = I 

C H 3 

4a-e 

4a Y = CI 

b Y = CH, 

c Y = H 

d Y 

e Y 

CH, 

Br 
,6 

These ions were prepared using s i l v e r hexafluoroantimonate i n sulphur 

dioxide at -60°, and aluminium t r i c h l o r i d e i n methylene chloride at room 

temperature. 

2. Dications. 

Cyclobutenyl cations were i n i t i a l l y generated i n experiments which 

were designed to produce the aromatic cyclobutadiene dication 6_ - a 2rf 

electron system. 

This according to HUckel theory, should be a stable system, obeying the 

(4n + 2)tr-electron r u l e . However, i n the case of the methyl-substituted 

cyclobutenes only the monocations have been observed. 
23 

Katz et a l . have attributed the s t a b i l i t y of the monocations to the 

favourable interaction of non-adjacent carbon 2p orbitals i n the cyclobutenyl 

system. 
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(a) General Methods of Preparation. 

The presence of phenyl groups seems to be essential for the formation 

of the cyclobutadiene dication. This observation i s in. sharp contrast 

to the case of the cyclopropyl cation, where alkyl groups have a greater 

s t a b i l i z i n g effect than phenyl groups.^ ^ This is perhaps an indication 

that the rr-system of the cyclobutadiene dication i s more capable of receiving 

electronic charge than that of the cyclopropyl cation. 

1. From Dihalogenated Aryl Cyclobutenes. 

Although the formation of a dication was claimed i n the reaction of 

3,4-dibromo~l,2,3,4-tetraphenylcyclobutene with silver perchlorate, 
27 

-hexafluoroantimonate and -tetrafluoroborate, the evidence for this was 
mainly chemical ( p r e c i p i t a t i o n of two moles of silver bromide). In 

28 
subsequent crystallographic investigations i t was found that, certainly 

i n the solid state, only the monocation was formed. 
Ph 

\ 
AgSbF, 

Ph 

Ph 

etc. 

3i 5a 

In l a t e r work, the same authors presented evidence, again chemical, 

of the generation of the dication from the dibromo-olefin by the use of 
29 

sil v e r tetrafluoroborate. However, again the presence of a monocation 
30 

could not be completely eliminated, and i t was not u n t i l 1970 that Olah 

and co-workers succeeded i n obtaining di r e c t N.M.R. evidence of the dication 

from the dibromocyclobutene 3i^ by the use of antimony pentafluoride/ 

fluorosulphonic acid. 
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Ph. 

Ph 

Ph 
Br 

Br 
Ph 

Ph Ph 
SbF5/FS03H 

-6C> 
Ph' Ph 

3 i 6a 

2. From g-Bromoketones. 

The stable l,3-dihydroxy-2,4-diphenylcyclobutadiene dication has recently 
31 

been formed by ionization of an a-bromoketone. 
Ph OH 

96% Ĥ SO,, 
2 4 

Ph 

6b 

I t s structure was proven by N.M.R. observations, and precipitation of 

an a-hydroxyketone on d i l u t i o n by ice-water. No evidence was found i n the 

N.M.R. spectrum for the presence of protonated ions. I t was notable i n t h i s 

investigation that a dication could not be generated from 2-bromo-3~hydroxy~ 

2,4-dimethylcyclobutenone, which was i n fact completely resistant to 

solvolysis. 

C. Cyclopentenyl and Cyclohexenyl Cations. 

These are probably the best documented a l l y l systems. Investigations 

have been carried out into their s t a b i l i t y and susceptibility to hydrogen-
32 

deuterium exchange. 

1. General Methods of Preparation. 

(a) Dehydration of Protonated Alcohols. 

An example of t h i s i s seen i n the case of 1,2,5-trimethylcyclopentan-

2-ol. 



H 
H > 
H 
CH. 

H 

- 10 

H 
H 
H 
CH, 

SbF5/S02ClF 

-78° H 
CH 

H 
<H 

CH3 OH 
or FSO H/SO ClF 

3 — +<*3 
CH3 0H2 

-H 

Zi 

(b) Protonation Reactions. 

The majority of the cyclopentenyl and -hexenyl ions which have been 

studied have been prepared by protonation of cyclopentadienes and 
, . 2,4,14,32 cyclohexadienes. ' ' 

e.g. 

CH0 CH0 3 X / 3 

CH 3
y VH 

CH„ CH0 2 3 CH0 3 

H2 S°4 
cone. 

CH0 CH0 3 
X ^ 3 

CH3- VH 

CH CH 3 3 CH0 3 

CH CH CH CH CH CH 
H H H H H H H H H.SO H H H 

s cone. CH CH CH CH CH H 
H H H 

8a 
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Protonation of cyclic diketones i n low acid concentrations has been 
34 

found to result i n hydroxy a l l y l i e ketones. 
H H 

H H FSO H/SbF 

0 X 
H CH 

so„ 

7k 

H H 
H 
H 

is 
H H 

FSO H/SbFr 

3 5-SO, 

H H 

-H 

HO OH 
H 

(c) Cyclization Reactions. 

Cyclopentenyl ions have been produced i n a number of cyclization reactions 
35-37 

of pentadienyl and heptatrienyl cations. 

e.g. CH 
C X 

H 

CH 

+ C 
I CH 3 ""3 

(not observed) 

CH„ CH, 
H„SO 

CH3 2 4 CH 
cone. ^ 

X C H 3 - 3°° < 
H 

7d 

H 

CH, 

35 

1.3. Structure of A l l y l Cations. 

A. Bond Angles. 

Generally, bond angles around the trigonal carbons i n the a l l y l cation 

are presumed to be 120°, although there i s no direct experimental evidence 

to v e r i f y t h i s . ^ However, i n the case of cyclobutenyl cations, the ring 

size makes i t unlikely that such bond angles could be observed, and i n fact 

crystallographic measurements on the 4-chloro-l,2,3,4-tetraphenylcyclobutenyl 

cation 2** show external bond angles of 134° — 7°. 
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Ph , 1 34° Ph 

B. Electronic Charge D i s t r i b u t i o n . 

1. Charge Calculations. 

The question of charge d i s t r i b u t i o n i n the a l l y l cation i s one which 
38 

has aroused extensive discussion. Molecular o r b i t a l calculations reveal 

a structure i n which the charge i s located on the terminal carbons, and 

bond overlap between these centres i s negligible ( i . e . 2x). ( I f anything 

th i s bond order i s s l i g h t l y antibonding.) A structure such as 2y_ i s 

completely ruled out. 
or c i 

- c ^ ^ V c 3 - - c 1 ^ ^ c 3-
i ' I I 

2x 2y_ 
39 

However valence bond calculations, allowing for a certain amount of 

1,3-interaction, have produced results which are i n good agreement with 

experimental observations. 
2. Spectroscopic Evidence. 

(a) U l t r a v i o l e t Data. 

The normal X , characteristic of cyclohexenyl and linear alkenyl nicix 
cations, occurs at 300-320 mu,.1'̂  AS ring size decreases, a s h i f t of X 

' max 
to lower wavelengths i s observed, the l i m i t i n g size being of course the cyclo-

propyl cation, f o r which X i s below 185 

The size of X has thus been attributed to the amount of homo-max 
cyclopropenyl character the ion possesses. Low values have been noticed 
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4 21 22 

pa r t i c u l a r l y f o r cyclobutenyl ions, ' ' where stereochemical factors 

would also favour 1,3-interaction. 

However, U.V. measurements are not always completely r e l i a b l e , as 

impurities present even i n very low concentrations can lead to erroneous 

results, and therefore these observations are not conclusive. 

(b) Nuclear Magnetic Resonance Data. 

A very large amount of information about charge d i s t r i b u t i o n has been 

acquired from N.M.R. studies. The relationship between chemical s h i f t s and 
40 

Tc electron densities i s now f a i r l y well established. Although discrepancies 
have been observed, reasonable linear relationships have been reported 

13 41-46 between proton and C magnetic resonance s h i f t s with electronic charge. 
13 

Thus i f a graph i s plotted of C s h i f t against the theoretically calculated 
13 

electron density i n one system, i t i s possible, from a knowledge of C 

s h i f t i n a second system, to obtain, from the graph, the electron density 

i n the second system. 

However, while i t i s possible to draw good correlations between 

molecules of the same type, comparisons between molecules of di f f e r e n t 

types have frequently proved misleading. For example, the relative downfield 
45,46 

s h i f t for a carbon atom per unit electronic charge m an aromatic .system 
42 43 

i s completely d i f f e r e n t from that observed for a simple a l k y l cation. ' 
This i s hardly surprising, as other factors than TT-electron d i s t r i b u t i o n 

47 13 

affect the chemical s h i f t . Thus while C measurements can be used quite 

adequately to calculate electron d i s t r i b u t i o n i n similar systems, great care 

must be taken i n drawing comparisons between unrelated systems. 

13 
1. C N.M.R. Measurements. 13 33 Recently C work has been carried out on some simple a l l y l cations. 
The results are presented below i n Table 1. 
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TABLE 1 

C 1 3 Chemical Shifts of A l l y l Cations and Reference Olefins i n S02C1F at -70° 

Cation 13, Ion 
No. 

C1 C3 
Reference Olefin 613C_ A6C„ 

1 2 3 + 
(CH3)2C=C=C(CH3)2 2m -31-3 +41*3 (CH0)„C=C(CH„)CH(CH0) 

CH„ 

1 2 3 
3'2 3— l C C H3'2 +5404 -13oi 

(CH3)2C=C=C(CH3)2 2j_ -41-0 +51«6 (CH3)2C=CHCH(CH3)2 

H 
+61*4 - 9*8 

CH0CH=C--CHCH0 2 f , g . i -36°0 +33«2 CH0CH=C(CHjCH0CH 6 1 6 o 6 4 6 
CH„ 

+56*8 -23"6 

CH3CH=C=CHCH3 

H 
2c-e -46°6 +41*9 CH3CH=CHCH2CH3 +59°5 -17*6 

CH CH=C=CHCH„ 3 1 6 
C6 H5 

CH„ 

CH, 

2n -42"7 +31»8 CH CH=C(C H )CH CH — 5 o J Z o 
2 3 

4a - 1°6 +16*9 

+48*5 -16°7 

+51*1 -34«2 

H H 
H* H Tj_ -54°3 +37M 

C H 3 S ^ ' ^ a 
C H 3 

+53°0 -15"6 

In p.p.m. from CS2» 
b 13 

6 C i s chemical s h i f t of C i n reference o l e f i n i n p.p.m. from CS . 
R Ct CM c 13 A6 i s difference i n chemical s h i f t of C in the a l l y l cations and 6 C . 
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I t was found that f o r open a l l y l cations ( i . e . propenyl cations) and a 

cyclopentenyl cation, was shifted downfield by between 9 and 24 p.p.m. 

However C0 f o r a cyclobutenyl cation was shifted downfield by 34 p.p.m. The 

authors interpret t h i s as indicating that 1,3-interaction i s possible i n the 

cyclobutene r i n g , where steric factors encourage i t , but i s not l i k e l y i n 

the open a l l y l system. 
13 
C N.M.R. measurements have also been carried out on a number of 

22 

tetra-p-anisyl cyclobutenyl cations, generated from acetylenes, 

(Section 1.2.Bl(a)l). 
CH OPh PhOCH 
3 \ y 3 + 

CH 0~Ph~C=C- PhOCH > 
.PhOCH 

CH OPti" 6 

40 
rr-electron densities were calculated from the chemical s h i f t s and 

compared with those calculated by S.C.F. methods. The best agreement between 

experimental and theoretical calculations was obtained when some allowance 

was made for 1,3-interaction i n the S.C.T?. treatment. 

2. "4i N.M.R. Measurements. 

Proton magnetic resonance spectra have provided a very useful means 

of examining a l l y l cations, 

( i ) Propenyl Cations. 

Table 2 presents the information obtained for a series of propenyl 

cations. The chemical s h i f t of the hydrogen or methyl group at the 2-position 

should give some indication of the amount of charge localized on t h i s 

position ( i . e . the extent of 1,3-interaction taking place). For ions 

2c-m variations i n the chemical s h i f t s of the 2-substituents are small. 
15 15 However f o r simple a l l y l cation 2a and the 2-methyl a l l y l cation 2b, 
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TABLE 2 

N.M.R. Data on Propenyl Cations. 

Cation Ion. No. C^CHjfHl 0 C 2CH 3[H] C 3CH 3[H] Ref. No. 

H 

H H 
2a j 8-97] (9-64] [8-97] 15 

H II 
2b [8-95] 3-85 [8-951 15 

H 
C H 3 ^ r * Y C H 3 

H H 
2£ 3-38 [9-88] [8-24] 3-38 [9-88] 19 

H 

CT3 C H 3 

2d 3-58 [10-00] [8-30] 3-58 [10-00] 19 

H 

CH3 H 
2e 3-46 [9-97] f8'3ll 3-46 [10-61] 19 

^3^44^*3 

H H 
2f 3-26 [9-73] 2-49 3-26 [9-731 19 

m3 C H 3 
& 3*37 |9-73] 2-69 3»37 [9>?3] 19 -

C H j ^ ^ y » 
CH3 H 

2h 3-54, 3'41 2-38 [8-271 f 7 " 7 2 ] 19 

C H 3 

H CH 3 

21 3-26 (9-73] 2-59 3-26 [10-461 19 

H 

C H 3 C H 3 
S i 2-91 (7-83] 2-91 13 

CH^ H 
2k 3-31, 3'22 2-37 2-97 19 

CH " 

J C H j . CH, , 
21 3-15, W 2 [8-101 3-15 13 

C H . K ^ ^ C H J 

en, a t j 

2m 3-10, 2-94 2-30 3-10, 2-94 19 

9 Chemical s h i f t s in p.p.m. downfield from T.N.S. 
b Cj substituent on carbon atom at position 1; as Indicated in the a l l y l i c cation. 
C Figures in brackets are for hydrogen at this position. 
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the 2-substituents appear substantially further downfield than those i n the 

rest of the series. 

In f a c t the hydrogen at the 2-position i n the a l l y l cation 2a has been 
24,26 

compared to the single hydrogen m the cyclopropenium ion 9a ' 

3°15 p.p.m. 
C H 2 - C V C H 3 

1*01 p.p.m 
CH -CH -CH 
3 , 2 2 

-1°88 p.p.m. 

-10*3 p.p.m. 

9a 

which also appears at very low f i e l d . This would seem to indicate that 

ion 2a possesses cyclopropenium character, 

( i i ) Cyclobutenyl Cations. 

The a l k y l substituted cyclobutenyl cations which have been prepared 

are shown below. In the cases of ions 4a, d and £, the authors have not 

distinguished between the methyl groups at the 2 and 4-positions. 

CH 31 4° H3 -1 ' 6 T 
-2°64T 

CH, 

1 4 C H 3 -1»39T 

-2 • 63T H -4°5T 

V CH, 

3 
-2°37T 

C H 3 
-2»64T 

-2°37T 

4b 4c 

2«91T 

CH_ 2 

CI 

CH0 

>3 NJ___4 
-2-96T 2«84T 

^ C H 3 

4a 4d 

(Chemical s h i f t s i n p.p.m. downfield from T.M.S.). 

4e 
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The positions of these signals are i n the same regions as those 

observed f o r the open propenyl cations, although i n the cyclobutenes the 

methyl groups at the 1 and 3 positions appear s l i g h t l y further upfield. 

( i i i ) Cyclopentenyl and Hexenyl Cations. 

The N.M.R. data available on cyclopentenyl and hexenyl cations i s 

presented i n Table 3. Again i t can be seen that absorptions occur i n the' 

regions observed f o r other a l l y l cations. However, i n particular two 

interesting points do arise: 

1. The substituents at the 2-position show l i t t l e s e n s i t i v i t y to 

alk y l substitution or to the type of cation ( i . e . cyclopentenyl 

or cyclohexenyl). The position of the 2-hydrogen varies only 

from -7*5 to -7*7 p.p.m. and the 2-methyl from -2°12 p.p.m. to 

~2°15 p.p.m. 

2. The positions of the hydrogen atoms a to the a l l y l i c system also 

vary only s l i g h t l y from cyclopentenyl to cyclohexenyl ions, 

occurring i n the range -2°7 to -3 #6T. 

These observations imply that the hydrogen atoms i n these positions 

contribute l i t t l e t o the charge d e r e a l i z a t i o n . 

Thus while the large amount of p.m.r. data now available on a l l y l 

cations i s extremely useful i n identifying new a l l y l i c systems and, to 

a certain extent, i n distinguishing between them, i t cannot re a l l y be used 

to draw d e f i n i t e conclusions about the electronic structure of these species. 

3. Chemical Evidence. 

Kinetic results have also been used as evidence f o r and against 

1,3-interaction i n t r a n s i t i o n states. Secondary deuterium isotope 

effects have been investigated i n solvolysis reactions of some a l l y l and 
48 

p-aryl a l l y l tosylates, and the results have shown that i n the 
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TABLE 3 

N.M.R. Spectra of Cvclopentcnvl and Cyclohexenyl 
Cations. l^ 

(Chemical S h i f t s in p.p.m. downfield from T.M.S.) 

Cation Ion H on C 
No. 2 

H on C, CD , on C, Cll, on Cll, of cil on 4 3 3 . 3 3 3 
(and C when ''j ethyl or c a n r i c 

isopropyl $ 
and C c 

present) group 

C H 3 ^ T 2 R 

H 

£H. R = methyl a 7a 
ethyl b b 
isopropyl c c 

7-64 3-55 2-9H 
7-65 3-5K3-4) 3-0O 
7-68 3-54(3'4) 2'9<1 

1 '42 

CH 3 CH 3 

H 

CH, 

*CH, 

CH 3 CH 3 

7f 

CH, 

CH, 

1 -34 
1 -38 
1 -J8 

H H 

CH 3 ^ ^ C H 

CH 3 CH 3 

CH, 

OH 

1 -32 
1 -25 

CH CH 3 

H 4_J^L 6 H R = methyl a 8a. 7-62 
H T TH ethyl b b 7-63 

isopropyl c c_ 7°61 
phenyl d d 7-59 -

8>38 

5S. 6-78 

CH. CH 

CH. CH 

8f 6«20 

H on C 
and C, 

o 
3-06 
3-09 
3'09 
3-42 2-93 

2-84 
2>84 
2-84 
2-76 

2>83 2-71 2-45 

1-36 
1-35 

gem dimethyl 
on C 5 

I'lO 
1-10 
1 -10 
1Mb 
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intermediate a l l y l cation negligible positive charge i s centred on the 

2-position. 

However rate enhancement i n the solvolysis of 1-methyl cyclobutenyl 
49 

bromide has been interpreted as evidence for 1,3-interaction i n the 

delocalized t r a n s i t i o n state. 

Clearly, A great deal more information i s required from a l l areas 

before investigations can be closed. 
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CHAPTER 2 

Halogenated Carbocations 

This chapter i s concerned i n general with the chemistry and 

formation of halogenated carbocations. However special attention w i l l 

be drawn to fluorinated species, which have provided pa r t i c u l a r l y 

interesting information and are especially relevant to the origi n a l work 

presented i n t h i s thesis. 

2,1. Introduction. 

The effect of a substituent on the electron density of a molecule 

i s generally described^ i n terms of 

(a) i t s inductive effect 

X ->- C ̂ - C >- C +1 X-<-C«C-4-C - I 

i.e . i t s tendency to a t t r a c t or repel electrons according to i t s 

electronegativity, without changing the arrangement of the electron pairs 

i n the molecule, and 

(b) i t s mesomeric effect 

X — C = C C — C +M X — C — C C~C -M 

i.e. i t s tendency to extend the conjugation path by rearrangement of the 

electron pairs i n an unsaturated molecule. 

A consideration of the physical and chemical properties of the ground 

states of halogenated molecules shows the halogens to have a - I effect 

and a +M eff e c t , and the magnitudes of these effects are i n the order 

F y CI Br I - I and probably F ) CI ) Br ) I +M 

Thus a halogen atom d i r e c t l y attached to a positively charged 

centre might be expected to sta b i l i z e that centre by back donation of i t s 

lone pair electrons ( i . e . +M effect) 

\ + ̂  \ + 
C—X ^C—X ( i ) 
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while one which i s adjacent to a positively charged centre w i l l have a 

destabilizing - I effect, i .e. 

N +
 1 

( i i ) 

I f the orders of magnitudes quoted above are correct i t can be 

seen that both of these effects should be greatest for f l u o r i n e . Indeed, 

examples of the a b i l i t y of the fl u o r i n e atom to exert a s t a b i l i z i n g 

effect i n situations represented by ( i ) and a destabilizing effect i n 

situations represented by ( i i ) are numerous. 
51 

Protonation of fluorobenzenes occurs preferentially ortho 

or para to the fluorine atom, e.g. H H H H H H 

SbF5/FS03H 
i . e . 

F+ 

H H 

SbF /FSO H 

F F 

and the presence of a meta fluorine can prevent the protonation occurring 

F SbFVFSO„H H F SbFyPSOgH^ H. 

Another example of the destabilizing effect of a fluor i n e atom 

adjacent to a positively charged centre can be found i n the series of 
52 

protonated ketones lOa-c i n which i t was found that only ketones with 
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C-CF 
OH 

CF3CF2-C-CH2CH3 

OH 

+ 
CF -C-CH 3 | 3 

OH 

+ 

10a 10b 10c 

up to three cc-fluorine atoms could be protonated by SbF̂ /FSÔ H. 

1,1,3,3-Tetrafluoroacetone and hexafluoroacetone with four and six 

cc-fluorines respectively could not be protonated under the same conditions. 

In the remainder of t h i s chapter, an attempt w i l l be made to draw 

attention to more examples of the effects of the fluorine atom i n similar 

situations. 

A. Experimental Evidence f o r the Electronic Effects of Halogen Atoms. 

1. Electrophilic Aromatic Substitution. 

Whilst the halogens generally deactivate the aromatic ring towards 

elect r o p h i l i c aromatic substitution, they do direct substitution i n t o the 
53 

ortho- and para-positions. Such an orientating effect cannot be 

explained i n terms of the - I e f f e c t , but i t i s accounted for by 

conjugative interaction of the type: 

X + 

where E = electrophile, X = halogen. 

I t can be seen from Table 4 that the magnitude of this effect i s 

H. E H E 
\ 1 /3 /3 

Y 

i n the order F ) CI ) Br. The preference of fluorobenzene for para 
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TABLE 4 

Ni t r a t i o n of the Halobenzenes 53 

Substituent Relative 
Reaction Rate 

% Orientation 
ortho meta , para 

F 

CI 

Br 

0°15 

0-033 

0»030 

12°4 

29 °6 

36 °5 

0°9 

1°2 

87 «6 

69°5 

62 »4 

Relative to benzene. 

rather than ortho substitution indicates that the inductive effect of 
53 54 

the f l u o r i n e i s f e l t most strongly at the ortho-position. ' 
In f a c t i n chlorination reactions i t has been found that fluorine 

53 
actually activates the ring towards electrophilic attack. This 

activating effect was also observed when Brown calculated cr + values f o r 

substituent effects i n the reaction*'*' i n which the transition state 
+ CMe, 

CMe2Cl 

H2° 

CMe„ 

CMe OH 

closely resembles the tr a n s i t i o n state i n electrophilic aromatic 

s u b s t i t u t i o n 0 
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I t was found that a para for fluorine had a negative ( i . e . activating) 

value, i n sharp contrast to the positive value f o r the other halogens. 

This i s a clear indication that i t s +M effect out-weighs i t s - I effect 

i n these circumstances. 

The s t a b i l i z i n g influence of a para-fluorine has also been observed 

i n calculations of the basicity of the triphenyl carbo-cation.*^ I t was 

found that the electron supplying a b i l i t y of the aromatic rin g i n such 

species decreased i n the order 4-fluorophenyl ^ phenyl ^ 3-fluorophenyl. 

2. Solvolysis Reactions. 

While the solvolysis of the c i s - and trans-olefins 11a and l i b 
57 

yielded 11c and l i d respectively, t h e i r isomer RCHFCF=CH l i e 
R < > 
W 

H 
C F 

11a 

HCOOH 
-F etc. 

R CF„H 
\ / 2 

/ \ 
H H 

l i e 

R C*F 
\ / H 
/ \ / 

H C-:C 

l i b 

HCOOH 
-F etc. / c = c \ 

jjH 
0 

l i d 

(where R = CF CH CHFCH -) 
f 

was completely unreactive. This low re a c t i v i t y was attributed to the high 

energy requirements f o r an ion of the type 
+ + 

H C=CF-CHR <r-5> H C-CF=CHR i.e. H C.. ^ .'CHR 

I 
F 

12a 13a 
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i n which the fluorine atom i s i n a destabilizing position |3 to the 

positive charge, as opposed to ions 
+ + + 

FHC=C-CHR <H> FHC-CH=CHR O F=C-CH=CHR or FHC^ +
 yCHR 

H 

12b 13b 

i n which the positive charge i s a to the fluorine atom. 

3. Physical Measurements. 

(a) Molecular Orbital Calculations. 

M.O. calculations by Baird and Datta have shown that the s t a b i l i t y 

of fluoromethyl cations i s increased with increasing f l u o r i n e 
58 

substitution. This i s i n opposition to the results previously 
59 

obtained by Martin and Taft from Appearance Potential measurements. 

However i t seems l i k e l y that the l a t t e r results i l l u s t r a t e d the increased 

s t a b i l i t y of the neutral molecules to hydride abstraction rather than the 

decreasing s t a b i l i t y of the cations. 
CH, F ^ (CH F ) + + H" 
4-n n 3-n n 

The calculations also indicated a short carbon-fluorine bond length 

i n the ions, suggesting resonance structures of the type 
H H 

C—F C—F 
„ / H 

60 

Other M.O. calculations have indicated that the 1-fluoroethyl 

cation 14d(i) i s more stable than the ethyl cation i t s e l f and than the 

2-fluoroethyl cation 14e(i). 
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H H 
+ / + / CH3-CX CH2F-C^ 

F _ H 

14d(i) 14e(i) 

This has been attributed to £luorinees +M effect. I t was also 

shown*'1 that 14e(i) could be converted t o 14d(i) without an activation 

barrier via a bridged protonated fluoroethylene which was calculated to 

be 12°10 Kcal/mole more stable than 14e(i). 

i . e . C~C—H > C-C > H_C-C + -39°36 Kcal/mole C-C-H - » « - > „ C - C < 

H H H H H H H 

19 
(b) F N.M.R. Measurements. 

The deshielding of the proton N.M.R. signal by a positive charge was 
19 

described i n Chapter 1. The F N.M.R. resonance i s affected i n a 
similar way by a cationic centre. However the range over which the 

flu o r i n e nucleus resonates i s much greater than that for the proton, and 
19 

hence F N.M.R. measurements provide a more sensitive means of measuring 

the extent of charge d e r e a l i z a t i o n onto the fluorine atom. 

This i s i l l u s t r a t e d i n the series of ions 16b(i), 15a(i) and 14b(i) 

CH3-C-CH3 

F 

16b(i) 15a(i) I 4 b ( i ) 

Chemical s h i f t 
of fl u o r i n e -11°26 p.p.m. -51°48 p.p.m. ->181°91 p.p.m 
(from CFC13) 

Deshielding -100»87 p.p.m. ~140»17 p.p.m. -266°84 p.p.m from precursor 



- 28 -

i n which the f l u o r i n e resonance moves further downfield as the delocalizing 

a b i l i t y of the other substituents decreases and the contributions of 

resonance structures such as 
+ 

R—C—R* > R—C—R' 
+ 

( i . e . via +M ef f e c t ) increases. 

The major part of t h i s chapter deals with the N.M.R. spectra of 

fluorinated cations, and from these spectra can be seen quite clearly 

the manner i n which the charged species are affected by substituent 

flu o r i n e atoms. 

2.2. The Strong Acid Systems Antimony Pentafluoride i n Sulphur Dioxide 
and Fluorosulphonic Acid/Antimony Pentafluoride. 

In recent years antimony pentafluoride has been used to an increasing 

extent as a Lewis Acid. A f u l l survey of the reactions i n which i t has 

been involved i s beyond the scope of t h i s t e x t , although numerous examples 

w i l l be quoted i n t h i s chapter alone.^ The use of SO enables 

temperatures of -60° to be reached, and the systems can be cooled even 

further by using the solvent S02FC1 (m.pt. ~124«7°). 

The acid strength of SbF5/FSC>3H i s second only to HF/SbF,_. 
67 68 

Hammett ac i d i t y functions ' have not yet been calculated accurately 
but are estimated at ~ -17 ( c f . H for HoS0„ = -11. and for HSO„F i t s e l f 

o 2 4 3 
= -12*8). 

The simplest representation of the reaction between antimony 

pentafluoride and a neutral halide i s abstraction of the halide ion to 

form the SbF5X anion. 
RX + SbF5 R+ + SbF5X*" 
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However, the situation i s by no means as straightforward as t h i s , 

as i s evident from the fact that excess antimony pentafluoride i s required 

to s t a b i l i z e the systems. In f a c t , i n the solvent systems used, polyanions 

Sb Pr ,, (where n \\4) can e x i s t ^ ' ^ and have been studied by their n 5n+l \\ ' 
N.M.R. spectra. These ions appear to have cis fluorine bridged polymeric 

structures, e.g. the Sb_F.. . anion. ' 3 16 

Sb /F 
F F 

Sb 

Sb 

In some cases also i t has proved extremely d i f f i c u l t to distinguish 

between donor-acceptor complexes and discreet ions. 

-C—X SbF,. -Cj- + HSbF„X~" 

For example, i n the reaction between al k y l fluorides and SbF,., 

species were formed i n which the protons were not as deshielded as expected 

for a l k y l cation formation, but i n which proton-fluorine couplings had 
71 72 19 disappeared. ' However a detailed study of the "F N.M.R. spectra of 

the polyanions showed that rapidly exchanging donor-acceptor complexes 
73 

existed even at very low temperatures. 

2,3. Halogenated Carbocations with Alkyl and Aryl Substituents. 

The a b i l i t y of a flu o r i n e atom to stabilize an adjacent positive 

charge i s i l l u s t r a t e d p a r t i c u l a r l y well in th i s series of cations. The 

extent to which the f l u o r i n e atoms are deshielded i s related d i r e c t l y to 

the amount of charge delocalized on them. In addition, the increased 
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coupling constants on ionization are strong evidence for a change i n 
3 2 

hybridization of sp to sp . 

e.g. GH3~C-CH3 ' > 
F " 7 0 

14b(i) 
JCH -F = 1 7 ° 6 H Z JCH -F = 2 5 0 4 H Z 

A. Halo-Alkyi Cations. 

In general these systems are produced by either ionization of the 

appropriate haloalkane,^ 2' 7 4 7 7 

SbF /SO C1F C H 3 v + / F 

e.g. CH.-CF J ^ C / 

J 13 -80 I 
F 

I 4 b ( i ) 
76 

or protonation of the appropriate o l e f i n 

FSO H/SbF_/SO + / C H 3 
e.g. CH CF=CH f- 2 ±^ W 

J ^ -60° I 
F 

I4 b ( i ) 

The 2-fluoro and 2-chloro-s-butyl cations were obtained i n reactions 
78 

intended to generate bridged halonium ions (Section 2.4.). 

C—CH 

CH -C-CH CI SbF5/S02 

CH vr'.Cl CH- CH CH 
X C — C H ^SSL^ 
/ -78° 1 

CH/ 7 8 C I 3 
14c ( i i ) 
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I t has not proved possible to observe d i r e c t l y any less substituted 

halo-alkyl cations. Attempts to observe the 1-fluoroethyl cation were 
75 

unsuccessful. Ionization of 1,1-difluoroethane with SbF /SO C1F at 

-80° 7^ gave a species i n which the p.m.r. showed a doublet at -4°32T 

and a quartet at -10*47T . Both of these signals are too shielded to 

belong to ion 14d(i) and from the absence of a fluorine signal (other than 

the solvent) and fluorine-proton coupling, i t was concluded that exchange 

was occurring. 
+ 

CKC CH_ H T T „ OH 
S b F 5 . 3 \ + / H

2 ° I 2 _ Hp CH -CHF0 = = t C CH -C-F CH CH 
3 2 SbF I J I ill 6 F H +0H 

14d(i) 

In the presence of water, protonated acetaldehyde was the sole 

product observed. 

The N.M.R. data which i s available on halo-alkyl cations i s presented 

i n Table 5. A comparison of the chemical s h i f t s of the fluorine atoms 
TABLE 5 

N.M.R. Data3, of Halo-Alky! Carbo-Cations 

Ion Ion No. Saturated Precursor 
19 

X CH3
 VF C H 3 

Ion 
C H 2 

1 9F 
Ref. 
No. 

X 
/ 

14a(i) F -2 "0 62-0b -4»50 -96 "4° 74 
CH -C + 

3 \ I 4 a ( i i ) CI -3*10 -4«60 74 

y 

I 4 b ( i ) 

1 4 b ( i i ) 

P 

CI 

-1*30 

-1«89 

84<>93 -3«83 

-4-06 

-181-916 62,75 

62 

1 4 b ( i i i ) Br -2»38 -3*82 62 

/ 3 

CH3-CH2-CV 

X 

14c(i) F -3 "88 4049 78 / 3 

CH3-CH2-CV 

X 
14c ( i i ) CI -4°38 6°26 78 

a b Chemical s h i f t s quoted from references T.M.S. or CFC10; J„ „ = 14 Hz; , H-r 
° J

H-F = 1 7 H z ' JH-F = 1 7 ° 6 H Z ' 6 JH-F = 2 5 0 4 H z * 
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i n ions 14a(i) and 14b(i) shows the importance of fluorine i n s t a b i l i z i n g 

these systems. Replacement of a fluor i n e i n 14a(i) by a methyl group 

results i n an ion I 4 b ( i ) i n which the chemical s h i f t of the remaining 

fl u o r i n e i s 85 °5 p.p.m. more deshielded than that of the 1,1-difluoroethyl 

cation 14a(i). This gives a good indication of the extent to which the 

single fl u o r i n e i s s t a b i l i z i n g the cation by back donation of i t s lone pair 

electrons. 

B. Halo-Alkyl/Aryl and -Aryl Cations. 

These ions are generally prepared by the action of a Lewis Acid on 
62 79 52 the saturated parent halide ' or alcohol; 

F F 

16a 

However one unusual method reported involves transfer of C l + from 
„. 80 

antimony pentachloride to an o l e f i n . 

SbFVSO 
H,F,Cl,Br e.g 

30 Y CF 

58,78 

CH_0 CH 

\ \ 
SbCl — > C=CH 0 / \ 

CH O CH_0 

C—CH^Cl + SbCl.' ' 2 4 

15c(ii) NH quench 

CH 

/ \ 

CH .0 

+ I=CHC1 + NH 



- 33 -

3 

8 
•H 
+> 
Rj O 

+> 

S 

a 
JS I 

o 
K 
o 

a 

s 
55 

• 03 CNI CO 
o vO vO ••o z 

O 
00 
1* 
0 ft H 
LO 

03 03 
CO tS 00 

0 o • 0 CO 
1 

CO 
1 

CO 
1 

oo I S Tt-
lO IT) 

a a a • oo 
i 

00 
1 

oo 
i 

O I S CO 
e oo 00 

• 0 0 r -
i 

I S 
1 

C-
1 

1S o O 
ON oo 

«• • « o 
O 00 

1 
op oo 

1 

CO H o 
oo OO oo O • • 0 
oo 

i 
oo 
I 

00 
1 

• 
oo 
oo + 

co 

u o w 
u 
3 
( J 
<D 
u 

8 

o. 

o z 
s o 

03 O H 
CO IS 

• • • H 
1 

03 
1 

03 
1 

O cc 
H H O o * • i s 
1 

00 
1 

I S 
I 

Q\ 03 
H H o 
0 0 • I S 
1 

oo 
1 

I S 
1 

O o IN 
H in 
0 • • I S 
1 

oo 
i 

IN 
1 

iH t-l 
U 

•H 
•rt •H 

•H •H •rl 
eS ai 

in in in 
H i - i H 

CM 
lO 

CO 

in 
+ 

O 
co 
CO 
I 

O 
CO o 
00 

00 
+ 

CO o 
H 
I 

03 
H 
I S 
I 

CO 
PL, 

in 



34 -

OJ O 
Pi Z 

XI 
CM i 1 

c o 

c o i — ft ft 
U 1— 1 

n o to 

CD 
u 

O 

C 
O 

c o 

ON 
IS 

CM oa Oj CO 
NO NO NO NO 

<u 
ON i s H oo 
ON i s NO 
0 o • 0 

H NO oo oo 
1 

H 
1 1 

oo 
1 

MH 
H 

00 • 
0 o oo <*• 
1 + 

CO 
o ON O Oj 
• • o o 
oo 

i 
oo 

i 
do 
I 

00 
1 

(U oo Q O 00 O 00 NQ 
o o o o 
oo 
I 

ON 
1 

oo 
1 

00 
1 

•a 
u 

CO OJ ON 
ND o o 0 • o 
en CM CO CO 
NO ND vD 
+ + + + 

05 
H U") 
o o 
IS 00 
1 O 

H + 
CJ 

•O tS H 
rH 00 H CO o • • 0 i s 
1 

•o 
1 

tS 
1 1 

H NO CO 
CO CO OJ CM 
o • O 0 
IS 
1 1 

Is 
1 

IS 
1 

« H M « ft O CQ 

/-> •rl 
/~\ •H •rl 
•H •rl •rl 

oil nj ta ci 
NO NO NO vO 
H H H H 

ON 
ts 
03 
NO 

NO 
O] 

CO 

oo 

00 
ts 
I 

H 

00 
I 

ON 
00 

03 
NO 

IS 
OJ 
oo 

oo 
IN 
ts 

i 

oo 
I 

H 
ft 

•H 
•rl •rl 

XI 
NO ND 
H H 

7 \ N 

+ O—XI 

O J 

NO 
NO 
+ 

oo 
I 

IS 
+ 

s 
o 
IS 
I 

NO 

OJ 
in 

• rv 
a o •rl •rl 

CO +> 
0 •rl 
ON 10 a NO 0 + ft > •rl 

to 
•rl 
Xi g 
+» 5 
+> +> 
CS e <L) rl 
a O 

•rl MH 
H 

X! 0 •rl 
3 00 rH O 

0 N*H 

1 CD 
rH bjj 
W) a •rl • •V 
10 N 

W 
+> 
c oo 
a; • w ON 
<u H 
r l 
ft II 
<u • u ft 

1 00 
ft 
1 

tQ C 
+ +> ft <u O 

M 
o cS 
H MH 
X J 

c 
•rl N 

EC 
CO 
CD H 

X! U 0 
00 3 rH 
H 
0 •rl II C-- ft 

CM 

X 
I 
O 
I 
CM 

ft 
H W r , " 

K 
r l 
O 

CO 
s 

a 
oo 

ft. »H 
u 1 
MH CO 

ft • O T ) 
s *-> <U 

« +» 
ft O 
• 3 ft cr 
a • *> w 

•rl N H 
K CS 

CO 
K 

C 
+» <o Eb <+H 0 •rl 
"rl o to 
xi 
» 11 VH 

o 
H X (« 1 <u u o bo 
•H 1 ai 
B CO U 
<U ft ft > o < 



- 35 -

The i o n 1 5 c ( i i ) was analysed by means of i t s U.V. and N.M.R. spectra, 

and by the product formed on quenching w i t h ammonia. 

The N.M.R. data f o r a series of these ions i s presented i n Tables 6 and 7. 

Increased s u b s t i t u t i o n by groups which can delocalize the charge r e s u l t s i n 

more st a b l e i o n s . This i s p a r t i c u l a r l y evident i n the ions 1 5 b ( i ) , 16c and 
52 

16d which were generated from t h e i r parent alcohols by SbF /FSO H i n SO , 
J O di 

despite the presence of d e s t a b i l i z i n g t r i f l u o r o m e t h y l groups. However, the 

presence o f a second t r i f l u o r o m e t h y l group, or absence of conjugative 

s t a b i l i z a t i o n r e s u l t e d i n the formation of the protonated alcohols, 17a-c. 

H H H H 
V/ V/ 

CF 3-i-CH 3 CH 3-i-CF 3 

H CF 3 

17a 17b 17c 

C. Perfluorophenyl Cations. 

The r e a c t i o n of SbF,. and SbT5/PS03H w i t h a series of phenyl halides 

and c a r b i n o l s has r e s u l t e d i n the preparation of an extremely i n t e r e s t i n g 

series o f p e r f l u o r i n a t e d a r y l c a t i o n s , ' the N.M.R. data of which i s 

presented i n Table 8. 

The large deshielding e f f e c t s of the ortho- and p a r a - f l u o r i n e s show the 

high degree o f charge d e r e a l i z a t i o n a t these p o s i t i o n s and thus present 

strong evidence f o r the presence of resonance str u c t u r e s of the type: 
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I t i s also noticeable t h a t the deshielding of the ortho- and para-

f l u o r i n e s increases s u b s t a n t i a l l y as the number of pentafluorophenyl 

groups i s reduced, i n the series 18a-c. Only i n the less s u b s t i t u t e d 

ions does the deshi e l d i n g of the o r t h o - and par a - f l u o r i n e s approach t h a t 

observed i n benzenium ions (Section 2.5.B.). 

2.4. Bridged Halonium Ions. 

The e l e c t r o p h i l i c a t t a c k o f bromine on o l e f i n s i s generally considered 

t o proceed by a bromonium i o n intermediate. Such a mechanism has been • 

used t o explain the s t e r e o s p e c i f i c i t y of the a d d i t i o n . 

Halonium ions were also postulated i n s o l v o l y s i s reactions t o account 
84—88 

f o r the halogen s h i f t s observed. However i n none of these reactions 

were the intermediate ions i s o l a t e d or observed d i r e c t l y . Thus the recent 

i d e n t i f i c a t i o n o f a series of such ions has been greeted w i t h a great 

deal o f enthusiasm and has stimulated extensive i n v e s t i g a t i o n i n t o t h e i r 

s t r u c t u r e and r e a c t i v i t y . 

The ions have been analysed by N.M.R. spectroscopy which has proved 

extremely successful i n d i f f e r e n t i a t i n g between the bridged ions and 
r a p i d l y e q u i l i b r a t i n g open chain s t r u c t u r e s by examination of the couplings 

78 
involved. I n open chain ions, 

CH„ X CH | 3 I I 3 
e.g. XCH -C-CH and CH -CH-C-CH 

2 + 3 3 + 3 

X = CI, Br, I 
2 

long range methyl coupling through the sp hybridized c a t i o n i c carbon atoms 
77 

should be observed, as i n the t-amyl cation whereas bridged ions, such 

as 19c and 19d should show no ( o r a very small) methyl coupling as i n 

cyclopropyl compounds.^ a 
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CH 
C CH, 

CH. / V 
and 

19c 

CH 
C—-CCHCH 

c „ 3 / V 3 

19d 

X = Br, I 

A, Types o f Ion. 

Ring size i s an important f a c t o r i n the s t a b i l i t y of bridged 
u 1 • a • £ u.u 78,89,90 . 91,92 . J . halonium i o n s . A series o f three and f i v e ' membered r i n g 

ions have been prepared and studied. 

R 
N \ : c 
/ 

where a R„ = R 2 " R 3 " R 4 = H 

b R x = CH3, R 2 = R 3 = * 4 

19 

R, X R„ 
W 3 

c R = 

d R. 

e R = 

where a R„ 

b R, 

R2 = <*V R 3 = R 4 = H 

X = ( i i i ) Br 

HH> ( i v ) I 

R 2 = R 4 = C H 3 ' R 3 
R 2 = R 3 = R 4 = C H 3 

R 2 = R3 " R 4 * H 

C H 3 ' R 2 = R 3 = R 4 

= H 

H 2 C " -CH, c R x = R3 = CH3, R 2 = R 4 

20 d R l = R 2 CH3, R 3 - R 4 

X = ( i i ) CI 

( i i i ) Br 

( i v ) I 

X = ( i i ) CI 

( i i i ) Br 

( i v ) I 

For the ethylene halonium ions 19a~e the )CH 2 groups experience 

downfield s h i f t s i n the region of two p.p.m., while the methyl substituents 

are deshielded by about one p.p.m. Similar r e s u l t s are obtained f o r the 

tetramethylene halonium i o n s . 

Attempts t o prepare four membered r i n g halonium ions have been 
93 

unsuccessful, r e s u l t i n g i n three or f i v e membered r i n g species. 
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B. Bridging A b i l i t y o f the Halogen Atoms. 

The a b i l i t y o f the halogen atoms t o bridge f o l l o w s the trend 

expected from t h e i r r e l a t i v e sizes and p o l a r i z a b i l i t y e t c . , i . e . 

I ^ Br y CI y F. In f a c t i t has proved impossible t o prepare stable 

three membered r i n g chloronium ions w i t h less than three methyl 

s u b s t i t u e n t s (as can be seen i n the series o f ions presented i n Section 

2.4.A.).. 

There i s no d i r e c t experimental evidence a v a i l a b l e f o r the 

existence of f l u o r i n e bridged species, although a fluoronium ion 

intermediate has been postulated t o explain the 1,4-fluorine s h i f t i n the 
85 

r e a c t i o n of 5-fluoro-l-pentyne w i t h t r i f l u o r o a c e t i c a c i d : 

4 
vv/v-Q 

J COCF 

postulated 
V 2 0 e ( i ) OCOCF 

F 
•-wOCOCF 3 

In f a c t the saturated product was obtained. However t h i s was not 

considered s u r p r i s i n g as a separate experiment showed t h a t 2 - f l u o r o -

propene i s 200 times more r e a c t i v e t o t r i f l u o r o a c e t i c acid than 2-

chloropropene. 

However a l a t e r attempt by Olah and co-workers t o generate t h i s 
92 

i o n by the r e a c t i o n o f 5-f luoro-l-pentyne w i t h SM? /JPSO H was 

unsuccessful, producing, even under the most c o n t r o l l e d r e a c t i o n 

c o n d i t i o n s , u n i n t e r p r e t a b l e N.M.H. spectra. 
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However the corresponding iodo alkyne d i d produce the expected 
92 

iodonium i o n , although s t a r t i n g m a t e r i a l was obtained on quenching w i t h 

methanol. 

SbF /FSC- H/SC- / \ CH OH 
Bscwyji - J l — J ^ - ^ k ^ ) j-§-» H ( SC(CH 2) 3I 

-78 T 2 3 

2 0 f ( i v ) 

S i m i l a r l y w h i l s t a series o f tetramethyl-ethylene chloronium, 
90 

bromonium and iodonium ions have been prepared the corresponding 
CH_ CH_ „̂  CH_ CH„ | 3 | 3 StiF /SO a / 3 

CH-C—C-CH„ %» C C 
3 I I 3 .78° / V / \ X Y CH V CH 3 3 

1 9 e ( i i ) - ( i v ) 

X = CI, Br, I 

Y = F, CI, Br 

2,3-difluoro-2,3-dimethylbutane i s reported t o give e q u i l i b r a t i n g open 

chain ions, even at -90°: 

CH CH 0 ^ CH CH CH CH | 3 ( 3 SbFVSO | 3 | 3 | 3 | 3 
CH-C — C-CH - CH-C C-m — CH-C — C-CH 

3 I F
 3 -90° 3 I + 3 * ^ 3 + j , 3 

This analysis i s based on two major observations: 

(a) The downfield s h i f t s of the methyl groups (-1*76 p.p.m.) 

i s almost twice that observed f o r the chloronium i o n (0<>95 p.p.m 

and much greater than t h a t expected on the basis of e l e c t r o ­

n e g a t i v i t y . I t i s i n f a c t more comparable t o the deshielding 

observed i n open chain r a p i d l y e q u i l i b r a t i n g a l k y l cations. 

(b) A downfield s h i f t of only 31 p.p.m. i s observed f o r the si n g l e 

f l u o r i n e . This i s more consistent w i t h a p-fluorocarbo-
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c a t i o n than a bridged species i n which a s u b s t a n t i a l amount of 

charge would be located on the b r i d g i n g f l u o r i n e . 

However, although there i s no d i r e c t experimental evidence f o r 
94 

fluoronium i o n intermediates, M.O. c a l c u l a t i o n s p r e d i c t t h a t the 

bridged ethylene fluoronium i o n should be more stable than the 2 - f l u o r o -

e t h y l c a t i o n . 

F H H y F . H 
\ / \ / + \ / -3°65 Kcal/mole 

H ~ / C C ^ ' / ° C \ ( a t l e a s t ) 
H H H H 

19 a ( i ) 

I t i s hoped t h a t measurements o f molecular core binding energies 

might help t o d i s t i n g u i s h between the two p o s s i b i l i t i e s . 

C. Synthesis and Uses. 

In general these ions have been generated by i o n i z a t i o n o f halo-
92 

alfcanes, -alfcenes, or -alkynes, although protonation of alkenes and 
13 93 

cyclopropyl halides ' also has generated bridged halonium ions. 
Some examples of these i o n i z a t i o n s have already been mentioned. They can 

89 
be s t e r e o s p e c i f i c , as i n the case o f 2-iodo-3-fluorobutane: 

1 V ,-CH3 SO \ A / C H 3 I i " 3 

^ -60° / \ W ^ 
F SbF 5

 C H 3 _ -78° CV OCH 
+ SbF^ 5 6 

6 
e r y t h r o d l t r a n s erythro d l 

89 
or non-stereospecific as i n the case of 2-bromo-3-fluorobutane. 
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H H 
C C 

/ \ + / \ 
C H 3 B r C H 3 

H CH0 

I I 3 

CH -C-C-H 
3 I I Br F 

er y t h r o 
or threo 
d l 

SbF_/SOo 

-60° t o 
-80° 

CH_ yH 
c—c 

/ W \ 
H Br CH, 

warming t o -40 f o r 
5 min. 

CH0 H 
c—-c 

/ w \ 
CH3 Br H 

1 9 c ( i i i ) 

I n both cases, the loss o f f l u o r i n e r ather than bromine or iodine 

i s p a r t i c u l a r l y i n t e r e s t i n g , as the ease o f i o n i z a t i o n of a l k y l halides 

u s u a l l y occurs i n the order I ̂  Br ̂  CI ̂  F. Clearly t h i s i s an 

i n d i c a t i o n of the r e l a t i v e i n s t a b i l i t y of a bridged fluoronium i o n . 

Tetramethylene halonium ions have been studied w i t h respect t o 
95 

t h e i r u t i l i t y as a l k y l a t i n g agents, e.g. 

CI- -CI 
2SbF_/S0 

-

CH OH 
CH. o - T ~ L ci 

i \ H_0 0 H CH CN + 1 2 
. — > CH3C=N-J l--Cl CH C-N 

0 H . r 

II I 
C-N—1 L-C 

fi 
-3CS CH„CCH„ +J ^ 

CH3OH 

II CH CCH 3 3 

1 Na 2C0 3 HO J 1 _ CI 

This i s an area i n which f u r t h e r development seems l i k e l y i n the 

f u t u r e . 
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2.5. Halo-Arenium Ions. 

A. Cyclopropenium Ions. 

The f o r m u l a t i o n by HUckel o f the (4n + 2) TT-electron r u l e f o r 

a r o m a t i c i t y sparked o f f numerous i n v e s t i g a t i o n s i n t o previously 
96 

unprepared systems which t h e o r e t i c a l l y obeyed t h i s r u l e . The f i r s t 

member (n = 0) o f t h i s series i s the cyclopropenium i o n . Predictions 

regarding the s t a b i l i t y of t h i s system were confirmed i n i t i a l l y by the 
97 24-26 synthesis o f cyclopropenium s a l t s and l a t e r by N.M.R. i n v e s t i g a t i o n s . 

Recently the f i e l d has been extended i n t o the halogenated cation s . 

1. The Trifluorocyclopropenium Cation. 

This c a t i o n was generated by the r e a c t i o n of perfluorocyclopropene 
98 

w i t h antimony p e n t a f l u o r i d e : 
F F 

+ SbF 

21a(i) 
19 

The ion was i s o l a t e d as a white c r y s t a l l i n e s a l t and i t s F N.M.R. 

spectrum showed a sin g l e peak a t +63°1 p.p.m. from CFCl^, s u b s t a n t i a l l y 

deshielded from the signals of the s t a r t i n g o l e f i n at +96°7 p.p.m. (CF^-) 

and +145 p.p.m. ( v i n y l f l u o r i n e s ) . 
2. The trichlorocyclopropenium Cation. 

This was the f i r s t o f t h i s series o f ions to be i s o l a t e d as a 
99 

c r y s t a l l i n e s a l t , i n the r e a c t i o n between a Lewis Acid and t e t r a c h l o r o -
100-102 

cyclopropene. 
c i 2 CI 

CI / ~ \ " C 1 or SbCl 5
 > C l / ^ N c i M C l 4 

2 1 a ( i i ) 
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I t s p h y s i c a l 1 ^ 3 and chemical" 1"^ properties have been f u l l y 

i n v e s t i g a t e d . H ydrolysis w i t h water occurs v i a attack on the A l C l ^ 

io n (See Section 2.6.A.l.(b).2.) and y i e l d s the dangerously unstable 
105 

0:A1C1 
dichlorocyclopropenone. 

A 1 C 1 ~ slow h y d r o l y s i s ^ 
ci 4 CI 

complex 

An extremely u s e f u l r e a c t i o n o f the trichlorocyclopropenium ion 

i s i t s F r i e d e l Crafts-type condensation w i t h aromatic compounds'1"^ leading 

t o mono-, d i - or t r i - a r y l cyclopropenium ions, the f i n a l s u b s t i t u t i o n 

only occurring w i t h an a c t i v a t e d aromatic compound. 

RQ 
R* 

r M 
OR 

+ C 3C1 3A1C1 4 

d R = H, R* = i-Pr 

e TL = H, R« = t-Bu 

a R = Me, R* = H 

b R = H, R* = H 

c H = H, Tl* = Me 

X = CI, Br or C10„ ' 4 
3. The Tribromocyclopropenium Ion. 

The trichlorocyclopropenium i o n reacts vigorously w i t h BBr 3 t o 
99 102 

produce tetrabromocycloprdpene q u a n t i t a t i v e l y . ' The r e a c t i o n i s 

presumed t o go v i a the tribromocyclopropenium i o n 2 1 a ( i j i ) , although no 
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s a l t p r e c i p i t a t e s out. 

CI 

A 5> + 4BBr 

CI Br 

3 CI 
BBr CI 

CI Br Br 
CI CI 

2 1 a ( i i i ) 

Br 
3 

Br 

A Br 
+ 4BC1 

Treatment o f tetrabromocyclopropene w i t h aluminium tribromide gives 

s a l t s o f the C B r * i o n , whose chemistry has not yet been i n v e s t i g a t e d . 

B. Benzenium Ions. 

From a consideration of the d e a c t i v a t i n g e f f e c t s of halogen atoms 

on e l e c t r o p h i l i c s u b s t i t u t i o n i n aromatic r i n g s , one would a n t i c i p a t e 

d i f f i c u l t y i n generating stable benzenium ions. However p a r t i a l l y and 

t o t a l l y halogenated ions have now been observed by N.M.R. spectroscopy. 

1. Protonated Halo- and Halo-methyl Benzenes. 

The p r o t o n a t i o n o f halobenzenes can be c a r r i e d out i n the strong 
107 108 

a c i d systems antimony pentafluoride/hydrogen f l u o r i d e ' and 

antimony p e n t a f l u o r i d e / f l u o r o s u l p h o n i c a c i d ^ ' a t temperatures ranging 

from -60° t o -10°C. In general the p o s i t i o n of protonation i s governed 

by the halogen atom which d i r e c t s e l e c t r o p h i l i c attack t o p o s i t i o n s ortho 

and para t o i t s e l f . The presence o f a para-substituent (halogen or methyl) 

has an e s p e c i a l l y s t a b i l i z i n g e f f e c t on the protonated species. 

Protonation i s not usually observed at r i n g p o s i t i o n s which are 

already s u b s t i t u t e d . (The one exception to t h i s r u l e w i l l be discussed 

i n c o n t e x t ) . Protonatibn at a r i n g s i t e already s u b s t i t u t e d by a halogen 
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TABLE o 

F'° H.M.E.* Data on Fluorobenzentun and Httbrlflworobgngfnim Ion* 

Ion So, Btnzenim Ion Cbenical Shift 
of Parent 
Fluorobeiueae 
p.p.n. 

Chmlcal Shift of Fluoro-
Benxcniun Ion. p.p.n. 

o-F n-F p-F 

Rrf. No. 

6 
H H 

•ill*-l-fluoro-

•10o-3 + 11'* 51 

•Mil 01. 
JH*-l,J-dlfluoro-

• IOI*H •K*3 • 3-7 31 

J M I I ) 

3H -1 ,4-<1ifluoro-

+113-2 •]*7 b +100 51 

J.'c(l) 

F 

P * ^ ^ * p 

• H H 

4H -1,3,5-trifluoro-

+101-0 +21*2 - 5-4 51 

+ F 
3H -1,2,4-Uifluoro-

•108*8 
+123-2 
+133-8 

+17*7 +118*2 - 0-o7 31 

,;.'c(Q 

+ H 11 
411 -1,2,3,3-tetrafluoro-

+107-0 
+124*J 
+156-3 

+50 +143*0 +14*2 51 

5H -l-methyl-2-fluoro-

+110*0 + 15-7 109 

•McM) 

C H 3 

6H -1-mcthyl-3-fluoro-

+107*8 + 19'3 109 

A! 
J-le(l) 

+ F 
3H+-l-methyl-4-fluoro-

+111*7 + 14-2 104 

'•'ft') 

C H 3 

+ P 
JH4-I-methy1-2,4-difluoro-

+107*0 
+107 v) . 

+12*2 • 2*87 100 

• ' m i l # 
4H*-l-ne*,hyl-2,5-difluoro-

+117*0 
+113*3 + 15-1 +103-8 104 

,Mh(l) 

CH3 

H H 

-lH*-l-m*thyl-2,3,5,t!-tetrafluoro-

•130*1 
+140-0 • 5-1*6 +122-2 109 

H H 
4H*-l,j,3-trincthyl->fluoro-

•119-5 •111-2 109 

•VMI) 
CH, >C CH 

H H J 

Ĥ*-l,3,?-tri»ietbif l-2,t.-dlfluo ro­

•115*0 •103-7 109 

il p 
•114-3 •JS-8 • 1*8 109 

F 
3H*-U3,5-triPfthyl-2,4,o-trlflBOro« 

* Chmical shifts in p.p.n. fron CPCl^. 
b Misquoted as p-fluorine. 
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atom would lead t o loss o f conjugative i n t e r a c t i o n between the halogen 

Where a choice o f s i t e s i s a v a i l a b l e f o r protonation, a mixture o f 

isomeric ions i s o f t e n formed. These can generally be separately i d e n t i f i e d 

by means o f N.M.R., as the chemical s h i f t s of the r i n g , methylene and 

methyl protons are u s u a l l y s u f f i c i e n t l y d i f f e r e n t t o give w e l l separated 

resonance s i g n a l s . 

The proton magnetic resonance data i s presented i n Tables 10, 11 and 

12. Deshielding e f f e c t s on the r i n g and methyl protons f o l l o w the 
19 

expected p a t t e r n . These e f f e c t s are emphasised i n the F N.M.R. spectra 

o f the f l u o r i n a t e d benzenes (Table 9) i n which i t can be seen t h a t a 

f l u o r i n e atom i n a p o s i t i o n meta t o the p o s i t i v e charge i s deshielded 

by only up t o about 20 p.p.m., while the deshielding e f f e c t on f l u o r i n e s 

i n the o r t h o - and para-positions i s i n the order of 100 p.p.m., being 

s l i g h t l y greater f o r the p a r a - f l u o r i n e . 

This i s a c l e a r example o f the amount of back donation of charge which 

occurs when f l u o r i n e i s d i r e c t l y attached t o a p o s i t i v e centre, as 

mentioned i n Section 2.1.A.3.(b). 

(a) Mesitylenes. 

The p.m.r. spectra o f the halomesitylenium ions i s presented i n 

Table 10. Despite the d e a c t i v a t i n g e f f e c t o f the meta-halogens, 

pro t o n a t i o n u s u a l l y occurs at an unsubstituted r i n g s i t e . The one 

exception t o t h i s i s t r i f l u o r o m e s i t y l e n e , i n which the i o n 2 2 c ( i ) i s 

formed: 

atom and the aromatic rr - e l e c t r o n s , 107 and i n no case i s t h i s observed. 

CH CH 

SbFVFSCH / 
H 

40 CH CH CH H 
F 

2 2 c ( i ) 
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TABLE 10 

P.H.R. Sprclri of H»lo-M»«ltvl«nlip ind Xvlonli» I a n 

Ion So. Benienlw Ion Chwlctl Shift in p.P.n. fro. I.M.S. «tf. 

o-H »-H CH, or H p-CH, o-CH m-CH} 

H H 
4H*-2-fluoro-l,3,3-
trlnethyl 

(3) -2-69 . 
-7-71 -4-78 -2'M> 107 

(J) -2-81 

CI " (3) -2-83 

H H 

4H+-2-chloro-l,3,5-
trinethyl 

(3) -2*81 

CH, 

C H J ^ X ^ C H J 
H H 

AH -2-brOBO-l,3,5-
trinethyl 

Br (3) -2*86 
-3'06 

(5) -2*78 

r5»38 -3'33 

CH 3 X CH 
H H 

4H+-2,6-difluoro-l,3,5-
trimethyl 

_ 2 M i l |( + I H 2-70 109 
H = -4*88 

3H -2,4,6-trifluoro-
1,3,3-trimethyl 

X" 
23«(i) e. 

H H 
4H+-3-fluoro-l,3-
dinethyl 

(2) -7-67 

(6) -7-34 
-4-59 -3'01 -2*78 107 

23b(l) If + 1 -7'44 -4'69 

2H+-5-fluoro-l,3-
dinethyl 

• J! 3 

231(111 
(2) -7'73 

-4 '73 -2-96 -2*80 107 
Cl ' > C S C H 3 

(6) -7'77 
H H 

4H*-5-chloro-l,3-
diraethyl 

ci a 
-7*80 -4'62 

2H -5-chloto-l,3-
dlwethyl 

23c(ll) I + J] -8-63 -8'03 -4*95 

6H -4-chloro-l,3-
d l f t h y l 

23<l(ll) " I * J | -8-67 -S'CO -4-78 .). 87 -2-37 107 

JH -2-chloro-l,4-
dtmethyl 

(A (2) -7-73 
23.(11) l | « I I -4-68 

(6) -8-02 Be 
H H 

4H*-3-bco«o-l, 3-diwthyl 

23b(Ul) 

211 -3-broao-l,3-<llatthrl 
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(b) Xylenes. 

The p.m.r. spectra of the halo-xylenium ions are also presented i n 

Table 10. Protonation o f xylenes occurs generally t o produce ions i n 

which the halogen i s o r t h o - or para- t o the p o s i t i o n of s u b s t i t u t i o n , 

except i n the case o f 4-chloro-l,3-dimethylbenzene when the p o s i t i o n of 

prot o n a t i o n i s governed by the methyl groups: 

i . e . 

SbF / 

2 3 c ( i i ) 

( c ) Toluenes. 

The p.m.r. spectra o f the halo-toluenium ions are presented i n 

Table 11. I n the case o f the 3-halo-toluenes, three isomeric ions are 

formed. However the major components i n t h i s i o n i c mixture are those 

ions i n which e i t h e r a halogen or methyl group i« para t o the p o s i t i o n 

of p r o t o n a t i o n , e.g. 

CH, 

HF/SbF 4> 
'Br -35 

H H 

2 4 b ( i i i ) 
56% 

2 4 c ( i i i ) 
3% 

2 4 d ( i i i ) 
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TABLE 11 

P.H.R. Spectr* of Htlo-Tolmnlu. Ion. 

Ion No. Benzeniia Ion C h e a i u l S h i f t I n P.P.N, f r o . T.K.8. 
o-H «-H p-H CHj o-CH3 «-CH 3 p-CHj 

Ref. 
No. 

24«(1) -9.76 -8-46 

3H -2-fluoro-l-mothyl 

24b(l) (2) " 
(6) -7-87 

H H 
4H*-3-fluoro-l-»ethyl 

-3-13 108 
109 

24c(i> -9-06 <2) -7-60 
p ( 4 ) -7>70 

6H*-3-fluoro-l-nethyl 

-4-87 -3-00 

A -8>96 -8-24 9.94 -5.4O -2-84 109 

f H 

3H -4-fluoro-l-nethyl 

24t>Cli) -8-72 C2) -8-07 
CI ( 6 ) -7-95 

H 
4H -3-chloto-l-gethyl 

-3-08 108 

2 4 c ( l l ) "XJ1 
CI 

6H*-3-chloto-l-»ethyl 

-8-78 (2) -8-07 
(4) -7-95 

-4-80 -2-94 

CH-

2<dUl) 
C l 

2H -3-chloro-l-roethyl 
CH, 

-8-85 (2 ) -8-23 
(6) -7-94 

H H 
4H -3-broao-1-methyl 

-2 -99 108 

240(111) 

l3 

6H -3-bromo-l-«tthyl 

-8-63 (2) -8>23 
( 4 ) -8-16 

-4-41 -2-83 

2 4 d ( l U ) a : . 
2H -3-broao-l-aetliyl 

-9'03 -7*97 

3H -2,4-<Hfluoro-l-««thyl 

2 4 a ( l ) -8-3 -8-3 

4H -2, 3 - d l f l u o r o - l - a e t h y l 

-3-J3 109 

-3'50 109 

4H - 2 , 3 , 3 , 6 - t e t r t f l u o r o - l -
• e t n y l 

* Cannot be I d e n t i f i e d with c e r t l i n t y . 
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I n the other ions i n t h i s s e r i e s , the d i r e c t i n g e f f e c t of the 

halogen i s ge n e r a l l y dominant. 

(d) Benzenes. 

The p.m.r. spectra of the halobenzenium ions are presented i n 

Table 12. E s p e c i a l l y noticeable i n the fluorobenzenes (and toluenes) 

i s the p r e f e r e n t i a l formation of ions containing a p a r a - f l u o r i n e , e.g. 

F 

SbFV 

XT FSO H 

25b(i) 

H 
H 

The d e a c t i v a t i n g e f f e c t o f a halogen meta t o a p o s i t i v e centre i s 

also p a r t i c u l a r l y obvious i n the benzenes, i n which other s t a b i l i z i n g 

groups are absent. This i s i l l u s t r a t e d by the lack o f success i n 

proto n a t i n g the benzenes 2 6 a ( i ) - e ( i ) . 

2 6 a ( i ) 2 6 b ( i ) 2 6 c ( i ) 26d(i) 2 6 e ( i ) 
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2. Polyfluoroaromatic Cation Radicals. 

The u n r e a c t i v i t y o f some fluorobenzenes towards protonation described 

i n the previous s e c t i o n has also been observed by Russian workers, who 

found t h a t r a d i c a l cations were produced on r e a c t i o n of these fluorobenzenes 

w i t h very strong a c i d systems. Reaction of antimony p e n t a f l u o r i d e / f l u o r o -

sulphonic acid w i t h hexafluorobenzene, pentafluorobenzene and 1,2,4,6-

tetrafluorobenzene produced the r a d i c a l cations 27a.-c,^~^ and w i t h 

decafluorobiphenyl, 4,4*-dihydro-octafluorobiphenyl and 4,4*-dimethyl-

octaf l u o r o b i p h e n y l produced r a d i c a l cations, 28a-c.^"^ Pentafluoro 

toluene was reacted w i t h antimony pe n t a f l u o r i d e i n sulphur dioxide t o 

produce 27d(i). 

2 7 a ( i ) 2 7 b ( i ) 

2 8 a ( i ) 

2 7 c ( i ) 2 7 d ( i ) 

28b(i) 

F F F F 

2 8 c ( i ) 
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The ions were analysed by E.S.R. 

Simi l a r c a t i o n r a d i c a l s were also observed i n the r e a c t i o n between 

octafluoronaphthalene and sulphur t r i o x i d e , antimony p e n t a f l u o r i d e 1 1 1 

112 
and antimony pentachloride/sulphur dioxide. An e q u i l i b r i u m between 

111 
r a d i c a l c a t i o n and a a-complex was postulated. 

+ X* 

X = S0 3 or SbF5 

2 9 a ( i ) 
S i m i l a r r e s u l t s f o r a series o f f l u o r i n a t e d naphthalenes were obtained 

by other workers i n t h i s f i e l d . ' 113,114 

3. Polyfluoroaromatic Cations. 

These have been reported i n reactions of perhalodienes w i t h antimony 

p e n t a f l u o r i d e i n sulphur dioxide.1'1"5'''""'"^ 

F F 

SbF 5^ 
'SbF, 

F F 

31 

where a R
x
 = R

2
 = R

3 = R
4
 = F 

b R l = R 2 = R 3 = R 4 = C l 

c R l 9 R 2 = 

R 3 = R 4 = F 

The deshi e l d i n g o f the f l u o r i n e s i n these systems i s consistent w i t h 

those observed f o r the protonated benzenes, 5 1' 1 0^ and quenching i n water 

y i e l d e d mixtures o f halogenated cyclohexadienones and'quinones. 
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e.g. 
H 2 ° 

O F 

3 1 a ( i ) 

Heating the perfluorobenzenium and naphthalenium ions up t o 100° 

produced the r a d i c a l cations 2 7 a ( i ) and 29a(i) r e s p e c t i v e l y , i d e n t i f i e d 

by t h e i r intense green colours and E.S.R. spectra. On quenching these 

s o l u t i o n s w i t h water, a mixture o f s t a r t i n g m a t e r i a l and quinone was 

recovered. This supports the concept o f an e q u i l i b r i u m between the 

r a d i c a l c a t i o n and a a-complex. 

3 1 c ( i ) 

100 

F F 

29a(i) 

HO quench 

F F 

/ 

VA 
F F 

F 

F 

C. Tropylium Ions. 
+ 

The t r o p y l i u m i o n , C y H
7 > i s a w e l l known 6n e l e c t r o n aromatic 

117 

system. The heptachlorotropylium i o n has been isolated, as a s a l t 

i n the r e a c t i o n between a Lewis Acid and octachlorocycloheptatriene 

118 
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CI CI CI 
CI CI CI 

A1C1 
\ ^ CI CI CI CI 

CI 
CI CI 

c i V 
CI 

CI 
CI 

CI 

I t s geometry i s unknown, but i t s s t a b i l i t y and i t s chemistry resemble 

those o f the trichlorocyclopropenium c a t i o n , e.g. a r y l a t i o n takes place 

w i t h aromatic hydrocarbons, and w i t h phenols i s accompanied by loss o f a 
104 

proton t o give *quintropones*. Halogen exchange between octachlorocyclo-
h e p t a t r i e n e and BBr 3 also takes place (presumably v i a 3 2 a ( i i ) ) w i t h 

104 
replacement of seven o f the e i g h t halogens. 

Br CI CI CI 
Br CI 

\ BBr \ Br Br CI CI 

Br Br CI CI 

2.6. Reactions I n v o l v i n g H a l o - A l l y ! Cations. 

Whilst the chemistry o f the hydrocarbon a l l y l c a t i o n has been 

exten s i v e l y studied, t h a t of the halogenated ions has not been developed 

i n much d e t a i l . The o r i g i n a l work t o be presented i n the next chapters 

o f t h i s t h e s i s i s concerned w i t h the chemistry o f f l u o r i n a t e d a l l y l cations, 

about which l i t t l e i n f o r m a t i o n i s presently a v a i l a b l e i n the l i t e r a t u r e . 
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A. Generation. 

1. Reactions o f Lewis Acids w i t h H a l o - o l e f i n s . 

The e l e c t r o n e g a t i v i t y o f halogen atoms renders the o l e f i n i c double 

bond p a r t i c u l a r l y susceptible t o a t t a c k by nucleophiles. E l e c t r o p h i l i c 
119 l ; 

a t t a c k i s less common, but has been observed i n a number of systems. ' 

In the presence of strong Lewis acids however, h a l o - o l e f i n s have been 
74 

reported t o react v i a e l e c t r o p h i l i c a t t a c k t o form a d d i t i o n compounds 

and a l s o , i n the case o f the propenes, v i a loss o f halide i o n from the 

-CXg group t o form h a l o - a l l y l c a t i o n s . 

(a) E l e c t r o p h i l i c A d d i t i o n t o F l u o r o - o l e f i n s by Strong Lewis Acids. 

A series o f f l u o r o - o l e f i n s were studied i n the super acid systems 

SbF5-HF-S02ClF, SbF5-HSC>3F-S02ClF and HSO^ at low temperatures. 7 4 While 

the intermediate fluorocarbenium ions were not observed, the covalent 

f l u o r i d e s and fl u o r o s u l p h a t e s produced i n d i c a t e d t h a t e l e c t r o p h i l i c 

a t t a c k had occurred. 
O 

H H 
\ 

HSO p-SO / \ H 

CHXHF 

e.g. 

CH -CHFSO„F 

CF_CH.F 
H 

N ./ 

/so 
CF„OSO„F-CH V 
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However the o l e f i n s t e t r a f l u o r o e t h y l e n e and hexafluoropropene d i d 

not react at t h i s temperature, 

(b) Formation of A l l y ! Cations. 

1. Reactions o f Fluoropropenes w i t h Lewis Acids. 

The intermediate existence of the 1 , 1 - d i f l u o r o a l l y l c a t i o n 3 3 a ( i ) 

has been pos t u l a t e d i n the r e a c t i o n between 3,3,3-trifluoropropene and the 
101 10? 

strong acid systems FSC^H, CISCyi, HC1-A1C13 and HBr-AlBr^. ' I t 

was discovered i n i t i a l l y t h a t t h i s o l e f i n underwent d i m e r i z a t i o n i n 

reactions w i t h f l u o r o s u l p h o n i c a c i d instead o f the expected e l e c t r o p h i l i c 

a d d i t i o n of the a c i d . The d i m e r i z a t i o n rates showed marked a c i d c a t a l y s i s , 

but no t r a n s f e r of solvent protons t o the o l e f i n i c carbons o f the reactant 

was observed. 

H H CF + CH H CH-CH 

C F 3 
postulated 
intermediate 

34a 3 3 a ( i ) 34b 

The authors suggested a r e a c t i o n scheme i n v o l v i n g i n i t i a l formation 

of the ion 3 3 a ( i ) which then p a r t i c i p a t e d i n e l e c t r o p h i l i c attack on the 

o l e f i n . Hecapture o f a f l u o r i d e i o n from the solvent molecule on quenching 

w i t h methanol would generate the dimer, 34b. 

In the cases of CISCyi, HC1/A1C13 and HBr/AlBr^ di m e r i z a t i o n was not 

observed, but the products were consistent w i t h the formation o f an a l l y l 

c a t i o n which then reacted w i t h the bulk solvent anion instead o f the 

s t a r t i n g alkene. While N.M.R. data on the intermediate i o n was not 

reported, i n the case o f CISO^H, the re a c t i o n was followed by N.M.R. and 
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C=C + 2HS0 CI 
/ \ 3 

H H 
C1CH CH CP OSO CI + HSO F 

dj CJ Ci CJ J 

34a 

absorption bands f o r the product could be seen t o appear as those f o r 34a 

disappeared. With HBr/AlBr 3 however only CF3CH2CH2Br was observed, w i t h 

no t r a c e of CF BrCH CH Br. 
Cl di til 

The authors have formulated a general r e a c t i o n scheme, shown below, 

f o r the r e a c t i o n s i n v e s t i g a t e d : 

CF„CH=CH„ 

F 2 C ^ " \ H 2 

:N 
CF2ACH2CH2N 

/ \ „ / C H 3 
- C F 3 \ / H 

3 2 , .»•*, F - H \ 0 X=C 
J
 { ^ ^ a l k y l d i f l u o r o a l l y l i c ion —"• > 

H A 
H CP 

c 

F C=CHCH -N 
H-F 

CF3CH2CH2N 

Where nucleophile :N may or may not correspond t o the bulk solvent anion 

A". 

2. Reactions o f Chloropropenes w i t h Lewis Acids. 

Hexachloropropene has been observed t o form 1:1 complexes w i t h the 
123 

Lewis Acids A1C1 3, GaCl 3 and SbCl 5. These complexes have been i d e n t i f i e d 

by t h e i r I.R. and e l e c t r o n i c spectra as s a l t s o f the p e n t a c h l o r o a l l y l c a t i o n , 

3 3 b ( i i ) . 
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CI 
I 

°K y C\ / C 1 Y~ where Y = A1C1 
C C 
I I GaCl " 
CI CI 4 

or SbCl 6~ 
3 3 b ( i i ) 

Hydrolysis of the tetrachloroaluminate s a l t y i e l d s the s t a r t i n g o l e f i n 

( c f . h y d r o l y s i s of the tetrachloroaluminate s a l t o f the t r i c h l o r o c y c l o -

propenium i o n , Section 2.5.A.2.). 

C X I +A1C1 " + H O ^ 0,C1„ + [AlClOH] 
3 5 4 2 J o 2 J 

Thus c h l o r i d e ion a t t a c k from the A l C l ^ anion competes e f f e c t i v e l y 

w i t h a t t a c k by water on the a l l y l c a t i o n . 
+ - + -However hydr o l y s i s of the s a l t s C CI G&C1 and C CI SbCl occurs 

v i a water a t t a c k on the p e n t a c h l o r o a l l y l cation t o produce t r i c h l o r o -

a c r y l i c a c i d . 

[ c i c — CCr— C C l J + + H„0 — C C 1 =CC1-C00H + 3HC1 
L 2 2 J 2 2 

Reaction of the c a t i o n w i t h other chlorocarbons in d i c a t e s t h a t i t i s 

less s t a b l e than the aromatic trichlorocyclopropenium i o n but more stable 
+ 

than the anti-aromatic C.C1_ i o n . 
5 5 

Other p a r t i a l l y c h l o r i n a t e d a l l y l cations have been generated by 

att a c k of l a b e l l e d A l C l ^ on chloropropenes and i d e n t i f i e d by the l a b e l l e d 

products. 
A1C1 * 

e.g. CHC1=CC1-CHC1 [CHCl'^CCl— CHCl] + A1C1 
4 

V 
-A1C1 * 

CH0-CHC1-CH0 —CHC1=CC1-CHC1 CHC1=CC1-CHF 



- 61 -

2. Reactions o f Lewis Acids w i t h Dihalocyclopropanes. 

A series o f 2 - h a l o a l l y l cations has been produced by i o n i z a t i o n of 
19 

gem-dihalocyclopropanes. 

CH 
x SbF 5/SO^ 

-60° CH, 

where X = CI or Br 

R l = *2 = " 

\ = H ' R 2 = ^ 3 
R l = *2 = C H 3 

33c 

33d 

33e 

The i o n i z a t i o n of gem-difluoro-1,1-dimethylpropane was also i n v e s t i g a t e d , 

and although a complete analysis was not possible the r e s u l t i n g i o n appeared 

t o be the 2 - f l u o r o - l , 1 - d i m e t h y l a l l y l c ation. 

The ions were i d e n t i f i e d by t h e i r N.M.R. spectra, and i n some cases 

f r e e energies o f a c t i v a t i o n and r o t a t i o n were cal c u l a t e d . For example, 

the 2-chloro-l,1-dimethyl a l l y l c a t i o n 3 3 c ( i i ) was found t o e x i s t as a 

n e a r l y planar species, showing non-equivalent methyl groups separated by 

CI 
c V /x /H 

Y i 
CH3 H 

3 3 c ( i i ) 

about 49 Hz at -70°. At around -39° these signals coalesced t o a s i n g l e 

broad l i n e and at -7° r o t a t i o n was r a p i d , the methyl resonances appearing as 

a t r i p l e t due t o coupling w i t h the v i n y l i c protons. 
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CHAPTER 3 

Highly F l u o r i n a t e d Propenyl Cations 

3.1. Reactions o f S u b s t i t u t e d Fluoropropenes w i t h Lewis Acids. 

Some examples o f halogenated a l l y l cations which have been generated 

were given i n Chapter 2 (Section 2.6.). However no stable h i g h l y f l u o r i n a t e d 

a l l y l cations have been observed i n the l i t e r a t u r e t o date. 

I n the o r i g i n a l work presented i n t h i s t h e s i s , a number of attempts 

have been made t o prepare such cations by re a c t i o n of s u b s t i t u t e d f l u o r o ­

propenes w i t h antimony p e n t a f l u o r i d e , i n which removal o f f l u o r i d e i o n from 

the saturated CF^- group would be expected to y i e l d an a l l y l c a t i o n : 

c = c N • **, /<vA 
X Z F C Z 

I 
X 

where e i t h e r X = su b s t i t u e n t group, Y = Z = F 

Y = " " , X = Z = F 

or Z = " " , X = Y = F 

The s u b s t i t u e n t s used were those w i t h e l e c t r o n donating a b i l i t y 

(e.g. CH30-; Ph-, CH 3OC 6H 4-) which would be capable of s t a b i l i z i n g 

a p o s i t i v e l y charged intermediate. Whenever possible, s t a r t i n g m aterials 

were prepared by l i t e r a t u r e methods. 
19 

Analysis was e f f e c t e d i n p a r t i c u l a r by use o f F N.M.R. data. 

As explained i n Chapter 2, from a consideration of deshielding e f f e c t s and 

changes i n coupling constants, i t i s possible t o detect the presence of 

dis c r e e t i o n i c intermediates. 
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A. Preparation of S t a r t i n g M a t e r i a l s . 

1. l - S u b s t i t u t e d Pluoropropenes. 

In general, these were synthesised by l i t e r a t u r e methods, by reaction 
125 

of the appropriate organo-lithium reagent 9 

CF„CF=CF„ + RLi ! f t h e r 

3 2 low 

CP F 
czrc 

temperature F R 

where i n t h i s case R = Ph- or CH^-. 

However t h i s was not found t o be a s u i t a b l e method f o r the preparation 

of 1-p-anisylpentafluoropropene. When a mixture of p-bromoanisole and n-butyl-

l i t h i u m were s t i r r e d at -10° f o r two hours and subsequently cooled t o -78° 

and reacted w i t h o l e f i n , recovery o f s t a r t i n g materials i n d i c a t e d t h a t 

p-methoxyphenyl-lithium had not been formed. As the Grignard reagent o f 

p-bromoanisole could be prepared q u i t e e a s i l y , i t was decided t o use t h i s 

reagent i n the preparation of 1-p-anisylpentafluoropropene. The r e a c t i o n 

was c a r r i e d out under atmospheric pressure conditions. 

Br 

+ Mg 

^ * * 3 

ether 
r e f l 

MgBr 

OCH, 

c~ c 

C F 3 C P = C P 2 CF^ F 
> C=C 

ether, p ' 
4 h r s . 

OCH, 
OCH, 
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1-Methoxypentafluoropropene was prepared by r e a c t i o n of hexafluoro-
126 

propene w i t h sodium methoxide i n dry t o l u e n e : 

CF„ F CF„ OCH 
luene ^ 
n 

. 75 

r v^r \ 
^ „ / ^ „ _ / 3 

CF 0CF=CF 0 + MeO" l u e n e > ^ C = C + \ C ~ C 
' * F OCH, F F 5 h r s . 3 

2. 2 - S u b s t i t u t e d -Fluoropropenes. 

S y n t h e s i s of 2 - s u b s t i t u t e d fluoropropenes i s g e n e r a l l y more d i f f i c u l t . 

However r e c e n t experiments by Burton i n v o l v i n g Y l i d reagents have f a c i l i t a t e d 

these r e a c t i o n s . Thus the f o l l o w i n g route was used f o r the preparation o f 

2-phenyl- and 2-p-anisylpentafluoropropene : 

X. 127 3ArMgBr + CF COOH > X C = 0 + Ar COH°CF 
Ar 

60% 6% 

Ph 3P Ar Ar 

- > CF 2=PPh 3 + \ = 0 > / C = C P 2 + 

C F 3 CF 3 NaCOCClF-J 

where Ar = C^H - or CH o0»C,H -. 
6 5 3 6 4 

60-70% 

B. R e a c t i o n s of 1-Substituted F l u o r o - o l e f i n s w i t h Antimony P e n t a f l u o r i d e 
i n Sulphur Dioxide. 

1. R e a c t i o n of 1-p-Anisylpentafluoropropene (Trans) with Antimony P e n t a f l u o r i d e 

i n Sulphur Dioxide. 

On a d d i t i o n of 1-p-anisylpentafluoropropene ( t r a n s ) I to a s o l u t i o n 

o f S b F 5 i n S 0 2 , the N.M.R. spectrum of the o l e f i n was d r a m a t i c a l l y a l t e r e d . 

The N.M.R. data f o r the o l e f i n and i t s s o l u t i o n i n S b F 5 / S 0 2 are presented i n 
19 T a b l e s 13A and 13B, and the F spectrum of the s o l u t i o n i n SO i s shown i n 

CJ 
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Figs. 1, 2 and 3. 

(a) Analysis o f N.M.R. Data. 
19 

The F spectrum of t h i s s o l u t i o n consists of three signals i n t e g r a t i n g 

i n the r a t i o 1:2:1. 

Fig. 1 shows the complex set o f signals which i n t e g r a t e d f o r two 

f l u o r i n e s . On in s p e c t i o n i t was possible t o analyse the two separate 

signals. The s i g n a l at +64°88 p.p.m. showed doublet s p l i t t i n g s of 105°5 Hz, 

97*5 Hz, and 59 Hz, and t h a t at 68°64 p.p.m. showed doublet s p l i t t i n g s o f 

105°5 Hz, 7 0 5 Hz and 3 Hz. C l e a r l y these signals belong t o a CF group 

i n which the F-F geminal coupling i s 105"5 Hz. 

To low f i e l d o f these signals could be seen a sin g l e f l u o r i n e peak at 

+53°14 p.p.m., which showed doublet s p l i t t i n g s o f 59 Hz, 22 Hz and 3 Hz 

(F i g . 3 ) . At very high f i e l d was another single f l u o r i n e resonance, at 

+180»6 p.p.m., showing doublet s p l i t t i n g s of 97°5 Hz, 70»5 Hz and 22 Hz 

(F i g . 2 ) . 

The presence of a CF^ group i n t h i s spectrum i n d i c a t e s t h a t the expected 

i o n i z a t i o n has occurred. 

F 
+ S b F 5 — ^ ^ V / F

C
C 6 H

4
O O C H 3 

F . C a* 
F b 

Of the remaining two s i g n a l s , the peak at +53*14 Hz i s p a r t i c u l a r l y 

n o t iceable i n e x h i b i t i n g a very small coupling constant of 3 Hz. This can 

only be due t o long range coupling between F and e i t h e r F or F 4 . Thus 

t h i s s i g n a l at +53*14 Hz can be assigned as F and t h a t at +180°6 p.p.m. as 

V 
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The couplings o f 97°5 Hz and 7 0 5 Hz ex h i b i t e d by are also seen 

i n the sig n a l s at 64*88 p.p.m. and 68°64 p.p.m. I f an analogy i s drawn 

between the system I I I and the c i s and trans o l e f i n i c systems IV and V 

f a 

c 
I 
F. 

R F 
C~C sc—c 

V 

I I I IV 

J
F _ F = 0 - 5 8 H z J f _ F = 105-148 Hz 

where J_ „ trans i s always greater than J n „ c i s , the coupling constants r — r r - r 
may be assigned i n the f o l l o w i n g way: 

/105»5Hz| 

V 

\ 
\ 

i j F , C 97«5 Hz 
A? , . 
\ 7 0 5 H z F J 
\ ^ b 

[ i t must be noted here t h a t the c i s and trans o l e f i n i c systems are 

by no means a p e r f e c t model f o r the a l l y l c a t i o n , but comparison o f 

r e l a t i v e sizes o f coupling constants i s quite reasonable]. 

Thus the s i g n a l at 64»88 p.p.m. can be a t t r i b u t e d t o F and t h a t at 
cl 

68°64 p.p.m. t o F^. 

The couplings of 59 Hz and 3 Hz e x h i b i t e d by F and F and F e 
C cl 3. 

r e s p e c t i v e l y suggest a s t r u c t u r e of the type V I , 
59 Hz 

3 Hz 

2 Hz 
0CH„ 

VI 
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i n which J„ „ would be expected t o be reasonably large and J„ „ 
a c a* c 

f a i r l y small, r a t h e r than V I I i n which n e i t h e r J_, „ or J_ „ would be ' ' P -F F ,-F a c a* c 
OCH 

expected t o be as large as 59 Hz. Confirmation o f s t r u c t u r e VI w i l l be 

presented i n a l a t e r s ection (Section 3.l. B . 1 . ( d ) ) . 

The large coupling between IF and F i s also reminiscent of p e r i 
a c 

f l u o r i n e - f l u o r i n e coupling constants i n f luoronaphthalenes 129 

i . e . 

where J V -F, a d 60-70 Hz 
and J F -F , c d 

The remaining coupling o f 22 Hz between F^ and seems small f o r 

a trans F-F coupling. However some d i s t o r t i o n o f the system by the 

p - a n i s y l group might be expected. 

(b) Chemical S h i f t Data. 

Cation formation i s generally accompanied by deshielding of the atoms 

in v o l v e d . Examples o f such e f f e c t s reported i n the l i t e r a t u r e are shown 

i n Tables 14 and 15. This d e s h i e l d i n g can be extremely great as i n the 

case o f c a t i o n 14b(i) (Table 15) i n which a large p r o p o r t i o n o f the p o s i t i v e 
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TABLE 14 

19 a F N.M.R. Data f o r a Series of Aromatic Carbocations 

Ion Chemical S h i f t Chemical S h i f t Chemical S h i f t 
p-F O-F m-F 

H H 

R > ^ \ R 

R F 

-5 t o +20 

[ - - l o o ] 

+8 t o + 55 +100 t o +140 

[-70 t o -100] [~ -10] 

+112»1 

[-40] 

+126-3 

[-14] 

+154"3 

[-7] 

Chemical s h i f t s i n p.p.m. from CFC13; R = H or CH^ (or F); 

Figures i n brackets represent approximate downfield s h i f t s . 
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TABLE 15 
19 a F N.M.R. Data on a Series of Carbocations 

Ion Ion No. 19 
F Chemical 
S h i f t 

Deshielding from.Co-
valent Precursor 

P'P-M« 
CH F 

f 
^ 3 

14b(i) -181°9 -266-8 

C H 3 / 
c r 

15a(i) -51«48 -1402 

16b(i) -11°26 -100«9 

F F 

16a -11*99 -75°6 

21a ( i ) +63«1 ~57°8 

a b 
Chemical s h i f t s i n p.p.m. from CFC1„; Downfield s h i f t from average 

o f s i g n a l s o f perfluorocyclopropene. 
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charge i s d e l o c a l i z e d onto the f l u o r i n e atom. The presence o f substituent 

groups which are capable of charge d e r e a l i z a t i o n reduces the amount of 

charge which i s located on the f l u o r i n e atoms, thus reducing the deshielding 

experienced by these atoms. 

S i m i l a r l y when the charge i s deloc a l i z e d , as i n the case o f the 

tr i f l u o r o c y c l o p r o p e n i u m i on 2 1 a ( i ) , the i n d i v i d u a l f l u o r i n e atoms experience 

smaller s h i f t s . 

I n the a l l y l c a t i o n the charge i s delocalized but i s considered t o 

be located i n p a r t i c u l a r on the t e r m i n a l carbon atoms (Chapter 1, Section 

I.3.B.). I n i o n VI one o f the t e r m i n a l carbons i s s u b s t i t u t e d by a 

p- a n i s y l group, and the d e r e a l i z a t i o n of charge on t h i s group i s evident 

from the downfield s h i f t which i t experiences (Table 13A). Thus one might 

expect t o observe deshielding of the f l u o r i n e atoms F . F . and F somewhere 
a' a* c 

i n the range between 60 p.p.m. and 140 p.p.m. 

In f a c t i t can be seen from Table 13A t h a t F^ experiences a downfield 

s h i f t o f -95 p.p.m. ( I n order t o compare stereochemically s i m i l a r 

systems, downfield s h i f t s were measured from the trans o l e f i n ) . 

However comparison of the chemical s h i f t s o f F and F « w i t h t h a t o f 
a a* 

the o r i g i n a l -CP group leads t o some confusion. The p o s i t i o n of P i s •5 a 

only 3 p.p.m. downfield and tha t of F , a c t u a l l y 0«42 p.p.m. u p f i e l d from 

the CFg- group i n the trans o l e f i n I . 

In f a c t i t i s dubious whether a comparison may be made between a CF^ 
3 

group, i n which the carbon i s sp hybr i d i z e d , and the CP,, group of ion VI 
2 

i n which the carbon i s sp hy b r i d i z e d . (Further discussion o f r e -

h y b r i d i z a t i o n i n t h i s system w i l l f o l l o w i n Section 3 . l . B . 1 . ( c ) ) . A more 

v a l i d comparison may be made between a v i n y l =CF group from which i t i s 
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deshielded by about -40 p.p.m. This i s s t i l l not as large as might be 

expected f o r i o n i z a t i o n , but as the p o s i t i v e charge 4-s delocalized over 

the system, i t would seem more l i k e l y t o expect the t e r m i n a l f l u o r i n e s to 

appear i n the same region than t o be s h i f t e d downfield by the same 

amounts ( c f . the t r i f l u o r o c y c l o p r o p e n i u m i o n ) . 

However a comparison o f the chemical s h i f t o f Ffe i n ion VI w i t h t h a t 

of F^ i n the o l e f i n I (a v a l i d comparison as the atoms are i n stereo-

chemically s i m i l a r s i t u a t i o n s ) shows t h a t ¥^ has a c t u a l l y been s h i f t e d u p f i e l d 

by 6°3 p.p.m. 

Whi l s t the charge on the a l l y l c a t i o n i s generally considered t o be 

located at the t e r m i n a l carbons, experimental evidence has been presented 

to suggest t h a t some charge i s d e l o c a l i z e d onto the c e n t r a l carbon 

(Chapter 1, Section I.3.B.). I f , i n the case o f ion VI some p o s i t i v e 

charge i s located on the c e n t r a l carbon atom, one might expect t o see 

deshielding o f F^. The observation t h a t F^ i s a c t u a l l y shielded excludes 

t h i s p o s s i b i l i t y and i s i n f a c t an i n d i c a t i o n t h a t the f l u o r i n e atom i n 

t h i s p o s i t i o n a c t u a l l y has an i n d u c t i v e d e s t a b i l i z i n g e f f e c t on the ion 

as a whole (Chapter 2, Section 2.1.). 

( c ) Rehybr i d i z at i on. 

There i s a considerable amount o f experimental evidence t h a t on 

c a t i o n formation coupling constants are increased as a r e s u l t of r e -

h y b r i d i z a t i o n (Chapter 2, Section 2.3.). Evidence of r e h y b r i d i z a t i o n i n 

t h i s system has already been presented i n the previous section (Section 

3 . l . B . 1 . ( b ) ) . More evidence i s obtained from the coupling constants 

e x h i b i t e d by ion VI (Table 13B). I n comparison t o o l e f i n I large increases 

are observed. The one exception t o t h i s i s J„ „ , which as mentioned i n 
F -F ' b c 

Section 3.l.B.1.(a) i s smaller than expected. 
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(d) Quenching w i t h Dry Methanol. 

On quenching the i o n i c s o l u t i o n w i t h dry methanol a white c r y s t a l l i n e 

s o l i d was i s o l a t e d , which was analysed as l-p-anisyl-l,2-difluoro-3-methoxy-

propene-l-one ( t r a n s ) V I I I : 

CP 
czzc SbFV 

30 
OCH OCH 

VI 

MeOH 
78 

V 
CH_0—C 

OCH 
62% 

V I I I 

The trans f l u o r i n e system can be seen q u i t e c l e a r l y i n the N.M.R. 

spectrum of t h i s o l e f i n (Table 16). The carbonyl group was v i s i b l e i n 

the i n f r a - r e d spectrum, and analysis and mass s p e c t r a l data gave an 

e m p i r i c a l formula o f ̂ io H10 F2°3' c o r r e s P o n < i l i - n g t o o l e f i n V I I I . 

The i s o l a t i o n o f t h i s compound may be taken as p o s i t i v e proof of the 

s t r u c t u r e of ion V I . I t s formation i s analogous t o the formation o f 

t r i c h l o r o a c r y l i c acid i n the h y d r o l y s i s of the s a l t s o f the pentachloro-

a l l y l c a t i o n (Chapter 2, Section 2.6.A. 1.(b).2.). 
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TABLE 16 
a N.M.R. Data o f l-p~Anisyl-l,2-difluoro-3-methoxypropene-l-one 

O l e f i n Proton S h i f t s Fluorine S h i f t s J n „ 
r—r 

CH 0- Benzene F F Hz 3 „. b c Ring groups 

-3°830 -7-33 +164«2 +135«»4 130 

-3°833 

cl 
Chemical s h i f t s i n p.p.m. from T.M.S. or CFCl^. 

Cl Cl 

CC1 =CC1-C00H + 3HC1 X + H 2 ° — > C C 1 2 = 

Cl 
I 
Cl 

(e) Reaction o f 1-p-Anisylpentafluoropropene (Cis) w i t h Antimony 
Pe n t a f l u o r i d e i n Sulphur Dioxide. 

The a d d i t i o n o f the c i s o l e f i n I I t o SbF5 i n S0 2 at -30° produced a 

s o l u t i o n the N.M.R. o f which was i d e n t i c a l w i t h t h a t produced by 

d i s s o l u t i o n of the trans o l e f i n i n t h i s acid. Quenching of t h i s s o l u t i o n 

r e s u l t e d i n the formation of V I I I , the trans o l e f i n . 

Thus the c i s o l e f i n I I i s producing a * trans* i on V I , which i s 

perhaps an i n d i c a t i o n o f the greater s t a b i l i t y o f a trans f l u o r i n e system 

over a c i s system such as I I (or V I I ) . 

This i n i t s e l f suggests t h a t some s t a b i l i z i n g i n t e r a c t i o n i s occurring 

between the non-bonding electrons on the f l u o r i n e atoms F and F . (Such 
cl C 

i 
i 
! 
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OCH 
CF 

a SbF/ SO \ 

tX 30 
a X 

OCH 
VI 

MeOH 
78 

OCH 
V X o V I 

CH 0 
3 X tx c 

I X 
OCH 

V I I V I I I 

concepts have been used t o explain the large p e r i F-F coupling constants 
, v 129,130 i n various c y c l i c compounds). ' 

(£) Conclusions. 

This i s the f i r s t s t a b le h i g h l y f l u o r i n a t e d a l l y l c a t i o n t o be observed 

t o date. The production o f such a w e l l defined a l l y l system has made 

possible the d e t a i l e d analysis which has been presented here. I t has shed 

some l i g h t on the question (mentioned p r e v i o u s l y ) of the charge s t r u c t u r e 

of the a l l y l c a t i o n (Chapter 1, Section I.3.B.). P.M.R. data has already 

been used t o estimate the charge d i s t r i b u t i o n . However proton chemical 

s h i f t s are small and thus present the p o s s i b i l i t y of even smaJLl e r r o r s 

leading t o an erroneous impression. 
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The sizes o f chemical s h i f t s experienced by f l u o r i n e atoms are much 

lar g e r than those experienced by protons i n s i m i l a r s i t u a t i o n s (Chapter 2, 

Section 2.1.A.3.(b)),^ 2 thus p r o v i d i n g a more s e n s i t i v e measure o f the 

charge d i s t r i b u t i o n (Chapter 1, Section I.3.B.2.(b)). I n t h i s respect 

F ^ N.M.R. measurements resemble C"̂  N.M.R. measurements. 

Thus the large deshieldings experienced by F , F , and F i n ion V I , 
cl 3, C 

VI 

are c l e a r i n d i c a t i o n t h a t the carbons t o which they are attached possess 

a s u b s t a n t i a l amount of p o s i t i v e charge. 

However the u p f i e l d s h i f t o f F^ i n t h i s i o n i s unique, as atoms not 

d i r e c t l y attached t o a p o s i t i v e centre are s t i l l deshielded by i n d u c t i v e 

e f f e c t s , and i t does appear t o c o n t r a d i c t any arguments t h a t charge might 

be located at t h i s p o s i t i o n . 

This analysis has also f a c i l i t a t e d f u t u r e i n t e r p r e t a t i o n o f f l u o r i n a t e d 

propenyl c a t i o n s . I n any unsymmetrical propenyl c a t i o n containing a CP 

group, a large geminal coupling constant ( i n the region of 100 Hz) should 

be seen, unless the system i s i n some way d i s t o r t e d . Thus i t has been 

possible t o say t h a t i n the reactions i n v e s t i g a t e d between other f l u o r o -

propenes and antimony p e n t a f l u o r i d e , which w i l l be presented i n the f o l l o w i n g 

s e c t i o n , formation o f stable a l l y l cations has not occurred. 

2. Reaction o f l-»Methoxypentafluoropropene (Cis and Trans) w i t h Antimony 
Penta f l u o r i d e i n Sulphur Dioxide. 

Since the p - a n i s y l group was s u f f i c i e n t l y e l e c t r o n donating t o produce 
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a st a b l e h i g h l y f l u o r i n a t e d a l l y l c a t i o n , i t was a n t i c i p a t e d t h a t r e a c t i o n 

o f 1-methoxypentafluoropropene w i t h SbFVSO would produce the ca t i o n X. 

With a large excess of antimony p e n t a f l u o r i d e (greater than 5:1 molar 

r a t i o ) , both c i s and t r a n s 1-methoxypentafluoropropene gave N.M.R. spectra 

as shown i n Fig. 4 and Table 17. 

The large downfield s h i f t o f the methoxy group suggests t h a t i o n i z a t i o n 

has occurred, and the f l u o r i n e i n t e g r a t i o n corresponds t o loss of one 
19 

f l u o r i n e atom. However, there i s no evidence i n the F N.M.R. spectrum 
19 

o f an a l l y l c a t i o n such as X, and the complex nature o f the F N.M.R. 

spectrum makes analysis impossible. 

The large deshielding observed f o r the methoxy group suggests t h a t a 

s u b s t a n t i a l amount o f charge i s located on the oxygen atom. This f a c t , 

coupled,with the apparent loss o f one f l u o r i n e , suggests t h a t i o n i z a t i o n i s 

occ u r r i n g w i t h involvement of the oxygen atom, perhaps o f the type: 

Such a system would also account f o r the large deshielding observed 

f o r F (-121 p.p.m. or -118 p.p.m.), and would be expected t o e x h i b i t a 

CF 

C 
i 

OCH OCH 

IX X 

CF. 
CH 
0 ;0CH 30 > F C C=CFOCH + SbF CF 2 \ 5 SO 

C~CF 

Xa 



CO 

n 
to 

l_L o 
Z> 
h-U Ld CL­IO 
a: 
2 

to z < 
a: 
LU 
z 
LU 
a. 
O 
Q: a. 
O oc 
O 
D 
_l 
LL 
< 

6 
L±J 
a. 
>-
X o i 
(-
LU 
2 
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TABLE 17 
cl 

N.M.R. Data o f 1-Methoxypentafluoropropene (Tr ans) ( i ) i n SO^ and ( i i ) i n 
SbFy'SO at -30°. 

CF F 

/ \ 

Chemical S h i f t 
of CH30-

- C F3 

Fluorine S h i f t s 
F b F 

c 

( i ) i n S0 2 -3°84 +66°6 +194°3 +110°3 

( i i ) i n SbF 5/S0 2 -5°93 +74"2(2) b +73»7(l)b +76»4(l) b 

[-2-09] C [+7»6]C -1206 c -117°9 c [-2-09] C 

or 
-36°6_ 

or 
-33°9 

Chemical s h i f t s i n p.p.m. from e x t e r n a l CFC13 or T.M.S.; 

I n t e g r a l r a t i o ; 
C, S h i f t from o r i g i n a l s ignals (assignments based on i n t e g r a l r a t i o s ) . 
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complex spectrum. Unfortunately very poor y i e l d s of mixtures of products 

were obtained on quenching t h i s s o l u t i o n with dry methanol and t h i s f a c t , 

coupled w i t h the incomplete N.M.R. analysis, prevents any d e f i n i t e 

conclusions being drawn. 

3. Reactions of Other 1-Substituted Fluoropropenes w i t h Antimony 
P e n t a f l u o r i d e i n Sulphur Dioxide and i n Pluorosulphonic Acid. 

Attempts were made t o generate other stable a l l y l cations using 

1-methyl- and 1-phenyl-pentafluoropropenes. 1-Methylpentafluoropropene 

was found t o be unreactive towards SbF i n SO at temperatures up t o -20°. 

In SbF^/FSO^H at higher temperatures, extremely complex N.M.R. spectra were 

obtained, i n which there was no evidence f o r an a l l y l c a t i o n . 

I n the case of 1-phenylpentafluoropropene ( t r a n s ) i o n i z a t i o n d i d 

occur w i t h SbF i n SO , but the mechanism o f t h i s was obscure. The phenyl 

s i g n a l experienced a large downfield s h i f t and separate signals could be 

seen f o r ortho-, meta- and para-hydrogens (deshielded by ~0°99 p.p.m., 

-0°39 p.p.m. and -2°43 p.p.m. r e s p e c t i v e l y ) . However no reasonable 

analysis could be made of the f l u o r i n e spectrum and i t was concluded t h a t 

whatever r e a c t i o n was occ u r r i n g , i t was not simply producing an a l l y l 

c a t i o n . 

C. Reactions o f 2-Substituted Fluoropropenes w i t h Antimony Pen t a f l u o r i d e . 

The charge s t r u c t u r e of the a l l y l cation has been mentioned and 

evidence has been presented of the d e s t a b i l i z i n g i n d u c t i v e e f f e c t o f a 

f l u o r i n e on the c e n t r a l carbon. This suggested t h a t more stable ions might 

be formed by reactions o f fluoropropenes s u b s t i t u t e d at the 2-position 

by e l e c t r o n donating groups (e.g. Ph~, CHgO-Ĉ H - ) . However as mentioned 

i n Section 3.1.A.2. the synthesis of such o l e f i n s i s more d i f f i c u l t , thus 

l i m i t i n g the range of su b s t i t u e n t s which could be used. 
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The ions produced from such o l e f i n s would be symmetrical i f the a l l y l 

c a t i o n i s planar. Unfortunately the reactions attempted were unsuccessful. 

1. Reaction o f 2-Phenylpentafluoropropene w i t h Antimony. Pentafluoride i n 

Sulphur Dioxide. 

I t was hoped th a t r e a c t i o n o f t h i s o l e f i n w i t h SbF^SC^ would generate 

the symmetrical c a t i o n X I I . 
F F 

CF 3 \ 

XI X I I 

I f t h i s c a t i o n were planar only one f l u o r i n e resonance should be 
19 

observed i n the N.M.R. spectrum. However the F N.M.R. spectrum was 

somewhat more complex as can be seen from Table 18. Each of the three 

si g n a l s e x h i b i t e d complex s p l i t t i n g patterns, and, although the deshielding 

o f the phenyl group suggested t h a t i o n i z a t i o n had occurred and the f l u o r i n e 

i n t e g r a t i o n corresponded t o loss o f one f l u o r i n e atom, there was no evidence 

o f the a l l y l c a t i o n X I I . 

2. Reaction o f 2-p-Anisylpentafluoropropene w i t h Antimony P e n t a f l u o r i d e . 

(a) I n Sulphur Dioxide. 

The p - a n i s y l group has been found t o be s u f f i c i e n t l y s t a b i l i z i n g t o 

produce the a l l y l c a t i o n V I , and thus i t was hoped t h a t i n the 2-position 

i t would produce a sta b l e c a t i o n such as XIV. 

The s o l u t i o n o f o l e f i n X I I I i n SbF 5/S0 2 at low temperatures e x h i b i t e d 

an extremely complicated P.M.R. spectrum, which suggested t h a t i o n i z a t i o n 
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TABLE 18 

N.M.R. Data o f 2-Phenylpentafluoropropene (a) i n SO and 

(b) i n Sbl' 5/S0 2 

3 a \ / c 

Chemical S h i f t 
of Phenyl Group 

C F 3 

Fluorine S h i f t s 
F F. c d 

(a) i n S0 2 ~7°0 + 58°7 +75°5 +80°4 

Peak 1 Peak 2 Peak 3 

(b) i n SbTl
5/S02 -7o97 +54*5(1) +56«5(1) +58*4(2) 

a Chemical s h i f t s i n p.p.m. from CFCl-j o r T.M.S.; 

Figures i n brackets r e f e r t o i n t e g r a l r a t i o s of peaks. 



- 88 -

CF 3v/ 
\ / 

CH-0 

F 

F 
F C F 

F F 

r 
OCH 

X I I I XIV 

19 had occurred t o produce a number of i o n i c species. The F spectrum was 

also very complicated, and no evidence was found f o r the existence of 

ion XIV although the presence of some s t a r t i n g m a t e r i a l was i n d i c a t e d . 

Repeating the experiment using a tw e l v e - f o l d excess o f antimony penta-

f l u o r i d e produced a s i m i l a r spectrum o f weakened i n t e n s i t y . 

(b) I n Fluorosulphonic Acid. 

The P.M.R. spectrum of the s o l u t i o n of t h i s o l e f i n i n SbF^/FSO^H at 

+10° showed the p - a n i s y l group not s u b s t a n t i a l l y s h i f t e d from i t s o r i g i n a l 
19 

p o s i t i o n . I n the F spectrum two major peaks were v i s i b l e , both s i n g l e t s 

at +66*35 p.p.m. and +66*5 p.p.m., i n t e g r a t i n g i n the approximate r a t i o o f 

3 s2. Other minor signals due t o i m p u r i t i e s were v i s i b l e i n both proton 

and f l u o r i n e spectra. The spectrum remained the same on warming t o +30°. 

As i t i s conceivable t h a t the i n t e g r a t i o n might be aff e c t e d by these 

i m p u r i t i e s , the f l u o r i n e spectrum might be consistent w i t h the ion XIV, CF 
3 \ 
C—CF 0 a 

\ / 
F 

CH O 

OCH. 3 
XIV 



- 89 -

i f the two sets o f f l u o r i n e atoms were i n some way non-equivalent and d i d 

not couple together. 

This o f course seems very u n l i k e l y , and i n f a c t on quenching the 

s o l u t i o n w i t h dry methanol, the recovery of a product w i t h an almost 

i d e n t i c a l N.M.R. t o t h a t described above makes i t clear t h a t an i o n i z a t i o n 

o f t h i s type has not occurred. 

A viscous l i q u i d was obtained from t h i s quenching r e a c t i o n . From i t s 

P.M.R. spectrum i t could be seen t h a t only one methoxy group, from the 

p - a n i s y l group, was present at - 4 ° 0 p.p.m. The phenyl r i n g could also be 

seen at ~7°46T, and t o low f i e l d o f t h i s , at -7«93T was another s i g n a l 

i n t e g r a t i n g f o r one proton. 

I n the f l u o r i n e spectrum the two signals could again be seen at 

+66029 p.p.m. and +66*43 p.p.m. (the d i f f e r e n c e i n chemical s h i f t s being due 

t o solvent e f f e c t s ) . However t o very low f i e l d was a s i n g l e f l u o r i n e 

s i g n a l at - 59 °0 p.p.m. (downfield from CFCl^). This would appear t o be due 

t o an -SO^F group and i n the previous spectrum was probably masked by the 

strong solvent s i g n a l i n HSOgF. 

Thus i t would appear from the N.M.R. spectrum that a d d i t i o n of 

f l u o r o s u l p h o n i c acid t o the o l e f i n has occurred, an observation which i s 
74 

not unusual i n the chemistry o f f l u o r i n a t e d o l e f i n s . Two possible 

products XV or XVI may be formed from such an a d d i t i o n . 

U n fortunately, as the f l u o r i n e signals showed broadening and thus 

couplings could not be measured, i t was not possible t o d i s t i n g u i s h 

c o n c l u s i v e l y between these p o s s i b i l i t i e s . However ne i t h e r of the signals 

at +66°4 p.p.m. or +66°3 p.p.m. would appear t o correspond to a -CF2H 

group (such groups appearing i n the region 110 - 130 p.p.m.) and no large 

geminal -CF ~H coupling was observed. The p o s i t i o n of e i t h e r o f the peaks 
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CF CF CF 
C-CF.H C—CF C-CF.H \ FSO.H O-SO.F 

\ / \ / \ / 
CH O CH.O CH.O 

XV 

CF CF CF.-0-SO.F CF CF \ / 2 3 \ / 2 

C_CF 
\ \ 0 FSO_H H H 

\ / / 
CH 0 CH CH-0 

XVI 

would be more consistent w i t h a CF group attached t o an electronegative 

group (such as -SO^F). 
19 

Thus from the F chemical s h i f t s i t would appear that the adduct XVI 

has been formed. 

Analysis f i g u r e s agree w i t h the formation o f an adduct such as XVI, 

but mass s p e c t r a l analysis gives a parent peak two mass u n i t s above t h a t 

expected f o r XVI. The only l i k e l y explanation f o r t h i s observation i s that 

i n the mass spectrometer, the molecule picks up two atoms o f hydrogen, 

p o s s i b l y by pro t o n a t i o n of the -SOoF group. + 
CF CF 0 H I \ 2H C-CF -O-S-F C-CF -O-S-F 

y H H OH 

CH.O 
C H 3 ° 
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Such behaviour, although u n l i k e l y , i s not inconceivable. 

D. Conclusions. 

Both the successful and unsuccessful reactions which have been 

described i n t h i s Chapter have given r i s e to a number o f i n t e r e s t i n g p o i n t s . 

I t i s noticeable t h a t there was no evidence f o r r a d i c a l cations (which have 
110-113 

been mentioned i n the l i t e r a t u r e ) i n these reactions. Although some 

intense colours were observed, e s p e c i a l l y f o r those fluoropropenes 

containing aromatic s u b s t i t u e n t s , and signals were o f t e n weak and almost 

masked by background noise, i t was possible i n a l l cases t o obtain reasonable 

spectra. 

The 1, l , 2 , 3 - t e t r a f l u o r o - 3 - p - a n i s y l a l l y l c a t i o n has been discussed i n 

d e t a i l , but as yet no attempt has been made t o account f o r the s u r p r i s i n g 

l a c k o f success i n generating a l l y l cations from the other systems 

attempted. 

The f a i l u r e t o prepare the 1,l,2,3~tetrafluoro-3~methyl a l l y l c a t i o n , 

w h i l s t s u r p r i s i n g i n comparison w i t h the cyclobutene work which i s 

described i n Chapter 4, could be a t t r i b u t e d t o the necessity f o r a 

su b s t i t u e n t which can s t a b i l i z e the ion v i a pn i n t e r a c t i o n . However t h i s 

does not explain the amazing a b i l i t y of the p - a n i s y l group to s t a b i l i z e 

the a l l y l system when, taken s i n g l y , the phenyl and methoxy groups are not 

capable o f so doing. 

S i m i l a r l y the lack o f success i n generating a 2-substituted t e t r a -

f l u o r o a l l y l c a t i o n i s extremely i n t e r e s t i n g . As a f l u o r i n e atom at the 

2~p o s i t i o n i s expected (and has been shown i n Section 3.1.B.l.(b)) t o 

exert a d e s t a b i l i z i n g e f f e c t on the a l l y l c a t i o n , i t was a n t i c i p a t e d t h a t 

replacement o f a f l u o r i n e i n t h i s p o s i t i o n by an el e c t r o n donating group 
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would encourage i o n i z a t i o n and produce a more stable c a t i o n . 

However t h i s was not observed and, i n the 2-position, even the p - a n i s y l 

group was not capable of s t a b i l i z i n g the formation of a 2-substituted 

t e t r a f l u o r o a l l y l c a t i o n . 

The e f f e c t o f a su b s t i t u e n t group on the generation o f an a l l y l cation 

can probably be s p l i t i n t o two major f a c t o r s : 

1. I t s a b i l i t y t o encourage the removal o f a f l u o r i d e i on from the 

CF^- group o f the fluoropropene, 
SbF 

-CF„ _CF 
6 -F" z 

2. I t s s t a b i l i z i n g e f f e c t on the r e s u l t i n g c a t i o n , 

S CF 2 

I f the most important f a c t o r i n the generation of an a l l y l c a t i o n was 

the second o f these, i . e . the s t a b i l i z a t i o n o f the product i o n , one would 

expect a 2-substituent t o favour the o v e r a l l i o n i z a t i o n , f o r the reasons 

p r e v i o u s l y discussed. However a 2-substituent might not be expected t o have 

a great e f f e c t on the f i r s t step, i . e . the i n i t i a l loss of f l u o r i d e i o n . 

Thus the lack o f success i n generating a l l y l cations w i t h t o t a l l y 

f l u o r i n a t e d t e r m i n a l carbons might be due to the f a c t t h a t the most important 

f a c t o r i n t h e i r formation i s the i n i t i a l i o n i z a t i o n , which i t s e l f requires 

the a id o f a s u b s t i t u e n t group. 

Such an explanation might also account f o r the complete u n r e a c t i v i t y 

of 1-methylpentafluoropropene i n comparison w i t h 1-methoxypentafluoro-

propene which, although i t d i d not generate a simple a l l y l c a t i o n , d i d 

undergo r e a c t i o n w i t h SbF^SC^ at -30°. This could perhaps be a r e f l e c t i o n 

of the i n a b i l i t y of the methyl group t o assist i n the i n i t i a l i o n i z a t i o n , 

u n l i k e the methoxy group which can encourage the i o n i z a t i o n by conjugative 

j 
I 
i 
! 
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i n t e r a c t i o n . 

Indeed, perhaps the outstanding a b i l i t y of the p - a n i s y l group t o 

s t a b i l i z e the system i s due t o i t s p a r t i c u l a r a b i l i t y t o a i d the i n i t i a l 

i o n i z a t i o n step by d e l o c a l i z i n g charge over a greater number of s i t e s . 

3.2. Reaction o f Hexafluoropropene w i t h Antimony P e n t a f l u o r i d e . 

As a r e s u l t o f the i n t e r e s t i n g observations described i n the f i r s t p art 

of t h i s chapter, i t was decided t o i n v e s t i g a t e the r e a c t i o n between 

hexafluoropropene i t s e l f w i t h antimony p e n t a f l u o r i d e , i n the hopes' of 

I n i t i a l l y N.M.R. studies were attempted to f o l l o w the r e a c t i o n . I t was 

found t h a t at low temperatures (below -20°) i n sulphur d i o x i d e , no re a c t i o n 

occurred between hexafluoropropene and antimony p e n t a f l u o r i d e (as l a t e r 
74 

reported i n the l i t e r a t u r e ) ; 

However when hexafluoropropene was sealed i n an N.M.R. tube w i t h an 

excess o f antimony p e n t a f l u o r i d e and the N.M.R. run from +30° to +90°, i t 

was q u i t e apparent t h a t a change was occurring, although the presence of 

broad SbF,. sig n a l s prevented an ana l y s i s . I t was also noticed t h a t formation 

of a white s o l i d occurred on r a i s i n g the temperature. 

A s e r i e s o f experiments was then c a r r i e d out between hexafluoropropene 

and SbF,. i n sealed Carius tubes, at temperatures between 30° and 100°, and 

fo r a v a r i e t y o f r e a c t i o n times. The v o l a t i l e products were c o l l e c t e d and 

were found t o consist o f q u a n t i t i e s o f hexafluoropropene w i t h two other 

major components present. 

At lower temperatures ( i . e . around 30°), almost q u a n t i t a t i v e recovery of 

v o l a t i l e s was achieved, but conversion o f hexafluoropropene was low, while 

observing the t o t a l l y f l u o r i n a t e d a l l y l cation X V I I . 
F 

SbF 
> CF CF_CF=CF CF 2 + SbF 

XVII 
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at higher temperatures conversion of hexafluoropropene increased but t o t a l 

recovery o f v o l a t i l e s decreased. 

The two major products of t h i s reaction were i d e n t i f i e d from t h e i r 

N.M.R. and mass spectra as the HP a d d i t i o n product 2-hydroheptafluoropropane 

X V I I I and a dimer of hexafluoropropene XIX. 

SbF < C F 3 > 2 < \ / 
C F 3 C F = C F 2 (H?T> <CF 3 ) 2 C!H +• C=C 

F CF 3 

X V I I I XIX 

Their N.M.R. spectra are presented i n Tables 18A and 18B. 

The dimer XIX was i d e n t i f i e d by comparison o f i t s spectrum w i t h t h a t 

o f the k i n e t i c a l l y favoured dimer obtained v i a f l u o r i d e i o n attack on 

hexaf luoropropene :^^ a' -̂ Qb 

v * c\- / C F < C F 3 ) 2 

CF3CF=CF2 + F~ ;Z± (CF 3) 2CF" > C—C-F 

F 

-F 

CF 3 F 

XIX 

Thus i t i s possible t h a t i n the reac t i o n between hexafluoropropene 

and SbF,., the dimer XIX i s formed by i n i t i a l attack of f l u o r i d e i o n . However, 

such a r e a c t i o n would be expected t o produce t r i m e r i c products, and also 

small q u a n t i t i e s o f the thermodynamically preferred dimer x x . 1 3 C ) a ' 1 3 0 b 

F C B ( C F 3 ) 2 F X _ / < C F 3 > 2 

CF 3 ¥ CF 3 F 

CF„CF 
3 -\ / " 3 

C=C / \ F CF 3 

XX 
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TABLE 18A 

N.M.R. Spectrum o f (CF^CFH 

Group Chemical S h i f t a Coupling Constants 
Hz 

(CF 3) 2-C J(CF 3) 2-C-F = 1 2 

J(CF 3) 2-C-H = 5 

Isopropyl F +215 JF-C-(CF 3) 2 = 1 2 

JF-C-H = 4 4 

H -4 "57 JH-F = 4 4 

JH-C-(CF 3) 2 = 5 

Chemical s h i f t s i n p.p.m. from T.M.S. or 

TABLE 18B 

CFC13. 

(CF 3) 
N.M.R. Spectrum of 

~CF 
2 N 

C=C 
/ 
F 

F 
/ 
\ 

C F 3 

Group I n t e g r a t i o n Chemical S h i f t 
p.p.m. from CFC13 

CF3-C= 3 +. 72»4 

<CF 3) 2C- 6 +• 77»1 

V i n y l f l u o r i n e s 1 
1 

+175°8 
+176"3 

Isopropyl f l u o r i n e 1 + 190 
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Thus w h i l s t the dimer may be a simple product of n u c l e o p h i l i c attack 

on the o l e f i n , the r e s u l t s described i n the f i r s t p art of t h i s chapter, and 

the absence o f other oligomers does allow the p o s s i b i l i t y t h a t the dimer 

might be formed from an intermediate a l l y l c a t i o n , perhaps by a r e a c t i o n 

mechanism o f the type suggested by Mhyre and Andrews f o r the di m e r i z a t i o n 

of 3,3,3-trifluoropropene. 121,122 £ > e > 

CF F CF CF_CF=CF 
> CF =CF CF CF + SbF CF 

F 

CF 
CF 

F UF3 

CF 

F CF<CF,) 3'2 SbF 
CF, 

F 
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CHAPTER 4 

Fluorinated C y c l i c A l l y l Cations 

An extension of the i n v e s t i g a t i o n of some h i g h l y f l u o r i n a t e d a l l y l 

c ations was a study o f the r e a c t i o n of some c y c l i c o l e f i n i c systems w i t h 

antimony p e n t a f l u o r i d e . I t was hoped i n these cases t h a t removal of a 

f l u o r i n e from a ^CF^ group would occur t o form an a l l y l c a t i o n v i a 

conjugation w i t h the double bond: 

^ C F 
i . e . (CF n) 

• 2 \ SbF/SO 
^ C-X - 4> (CF ) 

2 n 2 n-

CF 
C-X 

•C 
I 
Y 

C' 
I 
Y 

where X, Y 
are a l k y l or 
alk o x y l 
substituents or 
f l u o r i n e . 

The preparation o f a carbocation from the f i r s t member of t h i s series 
98 

(n = 0) was described i n Chapter 2 (Section 2.5.A.I.). 

4.1. Cyclobutenyl Cations. 

Perfluorocyclobutene i t s e l f was found t o be unreactive towards 

antimony p e n t a f l u o r i d e , both at low ( i . e . -30°) and high (up t o 60°) 

temperatures. However some i n t e r e s t i n g r e s u l t s were obtained on 

i n v e s t i g a t i o n of the re a c t i o n of a ser i e s of s u b s t i t u t e d cyclobutenes 

w i t h t h i s acid system. 

A. Preparation of S t a r t i n g M a t e r i a l s . 

The cyclobutenes used were prepared by l i t e r a t u r e methods. Mono-

and di-methoxycyclobutenes were prepared by the action of methoxide ion on 

perfluorocyclobutene 

MeOH 
KOH 

0CH„ 
MeOj 
KOH 

0CH„ 

0CH„ 



- 98 -

w h i l s t 1,2-dimethyltetrafluorocyclobutene was prepared by re a c t i o n of methyl 
125 

l i t h i u m w i t h perfluorocyclobutene : 

MeLi 
-78 p 

This was also reported as a method of/ preparing 1-methylpentafluoro­

cyclobutene, but the reasonable y i e l d s reported i n the l i t e r a t u r e could 

not be reproduced. 

I n the f i r s t p a r t o f t h i s chapter an analysis w i l l be presented o f 

the N.M.K.. spectra of s o l u t i o n s o f these cyclobutenes i n SbF /SO and, 

i n some cases, i n SbF^/FSO^H. C o l l e c t i v e discussion of the ions produced, 

and comparison w i t h the r e s u l t s obtained i n Chapter 3 w i l l be presented 

i n a l a t e r s e c t i o n (Section 4 . I . F . ) . 

B. Reaction Between 1,2-Dimethyltetrafluorocyclobutene and Antimony 

Pentafluor ide 

1. I n Sulphur Dioxide. 

The chemical s h i f t data o f 1,2-dimethyltetrafluorocyclobutene and i t s 

s o l u t i o n i n SbF 5/S0 2 are presented i n Table 19 and Figs. 5 and 6. 

Evidence f o r i o n i z a t i o n i s immediately apparent from the proton 

spectrum. This o r i g i n a l l y consisted o f one methyl s i g n a l , coupled by 

1*25 Hz t o the equivalent CF^ groups. This s i g n a l i s now s p l i t i n t o a 

doublet and t r i p l e t which are deshielded by -1*50 p.p.m. and -0°50 p.p.m. 

r e s p e c t i v e l y , and which i n t e g r a t e i n the r a t i o 1:1. No quartet s p l i t t i n g 

between the methyl groups i s observed. 

Two signals are also v i s i b l e i n the f l u o r i n e spectrum. At very low 

f i e l d (-18 02 p.p.m.) i s a s i g n a l which i n t e g r a t e s f o r one f l u o r i n e , and 
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FIG. 5. RM.R. SPECTRUM OF 
FWWCH3 

I 
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TABLE 19 

Chemical S h i f t s 3 - f o r XX I and the Ion X X I I at -30° 

Cyclobutene 
( i n S0 2) 

CH„ CP 

CH, 

.CH 
-1°17 +115 0 6 

Ion 
( i n S0 2) 

CH, 
'(1) 

CH, 
\ 2 ) 

-CP CF„ 

-2°67 -1-67 -18*2 +98*0 

[-1«50]D [-C50] [-133*8] [-17*6] 

p.p.m. from e x t e r n a l TMS or CFCl^. 

f i g u r e s i n brackets represent downfield s h i f t o f s i g n a l . 

TABLE 20 

Coupling Constants f o r X X I and Ion X X I I (Hz) 

Cyclobutene J. H-F Ion J13 J24 JF-T 

1*25 4°5 3°9 10 
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which consists o f a t r i p l e t o f q u a r t e t s . From i t s p o s i t i o n (deshielded by 

-134 p.p.m. from the o r i g i n a l s i g n a l ) i t i s clear t h a t i t i s caused by a 
+ 

f l u o r i n e atom d i r e c t l y attached t o a p o s i t i v e centre, i . e . by a -C-F group. 

The other f l u o r i n e resonance, which integrates f o r two f l u o r i n e s , 

occurs at +98°0 p.p.m. and consists o f a doublet of qu a r t e t s . 

This chemical s h i f t data i s consistent w i t h the i o n i z a t i o n of the 

cyclobutene t o the l , 2 - d i m e t h y l - 3 , 4 , 4 - t r i f l u o r o c y c l o b u t e n y l c a t i o n X X I I . 
CH 

6 SbFc/SC> 

-30 L 

+ SbF, 

•CH. 
XXI XXII 

Such an i o n i z a t i o n i s also i n d i c a t e d by the coupling constant data, 

presented i n Table 20. 

Each type of methyl group couples w i t h only one f l u o r i n e group, and as 

cross r i n g couplings i n cyclobutenes are generally l a r g e r than couplings 
132 

between adjacent s i t e s , the assignments were made as shown i n the Table. 

The observation t h a t c a t i o n formation brings about r e h y b r i d i z a t i o n , 

which i s accompanied by an increase i n coupling constants has been mentioned 

i n Chapter 3. This e f f e c t i s also seen i n the spectrum of ion XXII 

i n which q u i t e s u b s t a n t i a l increases i n p r o t o n - f l u o r i n e couplings are 

observed. Comparison w i t h other systems w i l l be made i n a l a t e r s ection 

of t h i s chapter (Section 4.1.F.4.). 

(a) Quenching of the Ion w i t h Dry Methanol. 

Quenching the i o n w i t h dry methanol yielded two major products, 

l,2-dimethyl-4-methoxytrifluorocyclobutene XXm and l,2-dimethyl-3,3-

difluorocyclobutenone XXIV. 
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OCH 

MeOH 
-78^ 

CH. 

XXII 
(major product) 

X X I I I 

(traces) 

XXIV 

The s t r u c t u r e s o f these cyclobutenes were deduced from t h e i r N.M.R. 

spectra, shown below i n Table 21. 

TABLE 21 

N.M.R. Data a f o r XXHI and XXIV 

Cyclobutene Proton S h i f t s F l uorine S h i f t s Coupling Constants (Hz) 
CH3- -0CH3 CF CF 2 J R _ F J p _ p J H _ R 

OCH, 
^ 3 -1-56 

-3°26 +111»26 +115»3 v.small v.small 
-1*71 

NCH 

•1°99 

-2*30 
+ 110«>8 

3°7 

1°1 

Chemical s h i f t s i n p.p.m. from external T.M.S. or CFCl^ 

The cyclobutene XXIII showed two f l u o r i n e signals i n t e g r a t i n g i n 

the r a t i o 1:2. Neither o f these signals was i n the v i n y l - f l u o r i n e region 

and thus i t was deduced t h a t both were due t o f l u o r i n e s attached t o 

saturated carbons. This i n f o r m a t i o n , coupled w i t h the observation o f two 

methyl signals and one methoxy-signal i n the proton spectrum suggested a 
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st r u c t u r e such as X X I I I . 

The cyclobutenone XXIVshowed one f l u o r i n e signal which e x h i b i t e d 

couplings w i t h two methyl groups. The larg e r coupling was a t t r i b u t e d t o 
132 

cross-ring coupling. The observation of a carbonyl group i n the i n f r a ­

red spectrum suggested the s t r u c t u r e XXIV which was confirmed by i t s mass 

spectrum. 

The formation o f these cyclobutenes, coupled w i t h the N.M.R. evidence, 

i s proof of the intermediate existence of ion X X I I . 
C. Reaction Between 1,2-Dimethoxytetrafluorocyclobutene and Antimony 

P e n t a f l u o r i d e . 

I t has been found t h a t halogenated cyclobutene ethers are p a r t i c u l a r l y 
133 

susceptible t o h y d r o l y s i s v i a loss o f ha l i d e i o n . This i n d i c a t e d t h a t 

such compounds should be es p e c i a l l y capable of forming a l l y l cations w i t h 

Lewis acids. 

1. I n Sulphur Dioxide. 

An unusual e f f e c t was observed i n the N.M.R. spectrum o f 1,2-dimethoxy-

t e t r a f l u o r o c y c l o b u t e n e i n SbF,-/S02 s o l u t i o n . Two separate sets o f signals, 

set A and set B, were seen. 

The F 1^ spectrum o f set A consisted o f a t r i p l e t ( i n t e g r a t i n g f o r one 

f l u o r i n e ) at +41°11 p.p.m. and a doublet ( i n t e g r a t i n g f o r two f l u o r i n e s ) 

at +102°3 p.p.m. That of set B also consisted of a t r i p l e t ( i n t e g r a t i n g 

t o one f l u o r i n e ) at +31°63 p.p.m. and a doublet ( i n t e g r a t i n g f o r two 

f l u o r i n e s ) at +86°54 p.p.m. Set B was of approximately h a l f the i n t e n s i t y 

of set A. 

The P.M.R. spectrum of the s o l u t i o n consisted o f three s i n g l e t s 

at -4°86T, -4°64T and -4°06T, the l a t t e r s i g n a l consisting of two 
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overlapping proton resonances. 

The N.M.R. data f o r t h i s i o n are presented below i n Table 22 and i n 

Pig. 7. 

Cl e a r l y both sets of signals are consistent w i t h i o n XXVI. 

,OCH, OCH, 

SbFy'SO, 

-30° 
•OCH, •OCH, 

XXV XXVI 
(a) Quenching o f the Ion w i t h Dry Methanol. 

Quenching o f the i o n i c s o l u t i o n y i e l d e d a two component mixture. 

Any attempts t o separate t h i s mixture resulted i n i t s vigorous h y d r o l y s i s , 

the product o f which was a white s o l i d which appears t o be squaric acid, 
133 

the end product o f a number o f hydrolyses of cyclobutene ethers. 
The N.M.R. spectrum o f the mixture showed only one f l u o r i n e s i n g l e t 

at 110°2 p.p.m. and three proton signals at -3"95T, -3°79T and -3°35T. 
19 

The F spectrum suggested the presence of a saturated -CF^ group. The 

appearance o f a carbonyl group i n the i n f r a - r e d spectrum o f the mixture, 

coupled w i t h the mass s p e c t r a l data which showed a parent peak at 164, 

in d i c a t e d the presence of the ketone XXVII. OCH, 

CH3OH > 
\)CH, \OCH, 

XXVI XXVII 

E l i m i n a t i o n o f the signals due to t h i s ketone from the N.M.R. spectrum 

of the mixture showed t h a t the other component d i d not contain f l u o r i n e , 

suggesting t h a t i t might be an intermediate product i n the ketones h y d r o l y s i s . 



- 108 -

2. I n Fluorosulphonic Acid. 

Comparison o f the spectrum o f 1,2-dimethyltetrafluorocyclobutene i n 

SbF^/SO^ w i t h t h a t of 1,2-dimethoxytetraf luorocyclobutene i n the same 

medium i n d i c a t e s t h a t the unusual e f f e c t observed i n the l a t t e r case i s 

i n some way connected w i t h the oxygen atoms. Three possible causes f o r 

t h i s e f f e c t are immediately apparent. 

(a) SO,, solvent molecules may be co-ordinated i n some way w i t h the i o n . 

However on running the spectrum i n SbF^FSO^H at -30°, an i d e n t i c a l 

spectrum was obtained, thus e l i m i n a t i n g t h i s p o s s i b i l i t y . 

[Use o f FSÔ H brought about the expected uniform solvent 

s h i f t s . For ease o f comparison, the s h i f t s i n t h i s section have 

been quoted i n terms o f the solvent system SO ] . 

(b) I d e n t i c a l ions may be formed w i t h stereochemical d i f f e r e n c e s , based 

on the lone p a i r of the oxygen atom, i . e . 
8 
V CH, 
CH„ V 

or 

XXVIIIa XXVIIlb 

However i t i s d i f f i c u l t to envisage how s t r u c t u r e s such as XXVIIIa 

and XXVIIIb could have such a profound e f f e c t on the chemical 

s h i f t s of the f l u o r i n e atoms. Differences of 10 and 15 p.p.m. 

are observed between the f l u o r i n e atoms i n sets A and B. 

(c ) The i o n may e x i s t i n varying states o f co-ordination w i t h the acid 

system v i a i n t e r a c t i o n w i t h the methoxide groups. 
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A v a r i a b l e temperature study i n fluorosulphonic acid helped t o explain 

t h i s phenomenon. As pr e v i o u s l y mentioned, the spectrum at -30° i n t h i s 

medium was i d e n t i c a l t o t h a t i n SbF,_ i n SÔ  at t h i s temperature, but on 

r a i s i n g the temperature, charges were observed. 

I n the i n i t i a l proton spectrum, a signal was observed at -4°06T, which 

apparently consisted o f two overlapping proton peaks, one from set A and 

one from set B. At -7° t h i s s i g n a l appeared t o s p l i t . 

A new s i g n a l was observed at -4°32T, and as the temperature was raised, 

t h i s s i g n a l increased i n i n t e n s i t y while those at -4°64T and -4°06T decreased 

i n i n t e n s i t y and the s i g n a l at -4»84T broadened. 

Eventually, at +90°, the peaks at -4°32T a n ( j -4°84T were the only 

s i g n i f i c a n t signals i n the proton spectrum. 

Although i t i s not possible t o draw any d e f i n i t e conclusions from 

t h i s experiment, the e f f e c t can reasonably be explained i n terms o f oxygen 

c o - o r d i n a t i o n . (Set B sig n a l s belonging to an i o n i n which oxygen co­

o r d i n a t i o n i s q u i t e s t r o n g ) . W h i l s t the charge on the oxygen atoms would 

be expected t o be used t o s t a b i l i z e the ion, i t i s possible t h a t the 

methoxy group i n p o s i t i o n (2) i s not s i g n i f i c a n t l y involved i n charge 

F x 3 y < * * 3 

F 2 ^0CH3 

XXVI 

s t a b i l i z a t i o n and thus possesses charge which i s f r e e to co-ordinate w i t h 

the Lewis acid. 

I t must also be noted t h a t i n set B, the CF 2 group experiences an 

unusually large deshielding, i n d i c a t i n g that i t also i s involved i n the 

co-o r d i n a t i o n i n some way. 

i 
i 
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D. Reaction Between 1-Methoxypentafluorocyclobutene and Antimony 
P e n t a f l u o r i d e . 

1. I n Sulphur Dioxide. 

I o n i z a t i o n o f t h i s o l e f i n could f o l l o w two conceivable routes: 

'OCH 

F 
XXIX 

SbF/ SO 
78 

OCH 
\ 

OCH 

+ \ 
y 

\ F / F 
XXX XXXI 

and i t was hoped t h a t the N.M.R. spectrum o f the i o n i c s o l u t i o n would help 

t o determine which i o n was formed. Unfortunately t h i s spectrum was 

completely u n i n t e r p r e t a b l e . 

(a) Quenching o f the S o l u t i o n w i t h Dry Methanol. 

The two major products obtained from t h i s quench were i d e n t i f i e d as 

1,3,3-trimethoxytrifluorocyclobutene X X X I I and l-methoxy-2,4,4-trifluoro-

cyclobutenone X X X I I I . 

The cyclobutenes were i d e n t i f i e d from t h e i r N.M.R. spectra, the data 

o f which i s presented i n Table 23. The structures were assigned w i t h the 

help o f Table 24. 

The cyclobutene XXXII showed two f l u o r i n e s h i f t s at +117°0 p.p.m. 

and +135°2 p.p.m., i n t e g r a t i n g i n the r a t i o 2:1. The sig n a l at +135*2 p.p.m. 

was i n the region f o r v i n y l f l u o r i n e s i n such systems and the size of the 
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TABLE 23 

N.M.R. Data on X X X I I and XXXIII 

Cyclobutene Proton S h i f t s 
-OCH (-OCH )„ 

3 3 2 

Fluorine S h i f t s J 
CP 

v i n y l 

F-F 
CF^ Coupling 

Constants 
(Hz) 

CH30-
OCH, 

-3-42 -2»86 +135*2 +117-0 23°5 

-4° 24 + 141°7 +118«»2 22 

Chemical s h i f t s i n p.p.m. from CFC1 or T.M.S. 
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TABLE 24 

Ty p i c a l Coupling Constants i n Substituted Cyclobutenes (Hz) 

4 
4' 

/ 

3* \ 2 
3 

J4-4» J l - 2 J l - 3 J l - 4 J3-4 J3«-4 

J„ c +180 — +200 -8 +16 — +19 +4 — +8 -12 17 +24 — +30 
F—r 

f l u o r i n e - f l u o r i n e coupling constant suggested cross r i n g coupling. ( I t can 

be seen from Table 24 t h a t such couplings are generally l a r g e r than 

couplings between f l u o r i n e s on adjacent r i n g s i t e s ) . 

The proton spectrum showed the presence of three methoxy groups, and 

mass s p e c t r a l data confirmed the presence of the cyclobutene XXXII. 
19 

The F spectrum of the cyclobutenone XXXIII showed the presence of a 

v i n y l i c f l u o r i n e at +141°7 p.p.m. ( i n t e g r a t i n g f o r one f l u o r i n e ) and a 

saturated CF group at 118°2 p.p.m. ( i n t e g r a t i n g f o r two f l u o r i n e s ) . Again 
the value of J_ _ suggested cross r i n g coupling. The P.M.R. spectrum 

r— r 
showed the presence o f only one methoxy group, and the i n f r a - r e d spectrum 

showed the presence o f a carbonyl group. Mass sp e c t r a l analysis confirmed 

the presence o f the cyclobutenone X X X I I I . 

Both of these products could have been formed from ion XXXI. 
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CH3OH 

CH30_ 

OCH, 

XXXI 

OCH3 P 

XXXII 

major product 

XXXIII 

small q u a n t i t i e s 

However they could also have been formed by acid catalysed n u c l e o p h i l i c 

a t t a c k on the o r i g i n a l o l e f i n . This seems less l i k e l y as i n general 

h y d r o l y s i s o f cyclobutene ethers requires high temperatures and long 
132 

r e a c t i o n times. However i n the absence o f N.M.R. data t h i s p o s s i b i l i t y 

cannot be eliminated and thus the existence of i o n XXXI cannot be proven. 

2. I n Fluorosulphonic Acid. 

I t was hoped t h a t r e a c t i o n i n t h i s solvent might c l a r i f y the s i t u a t i o n , 

but u n f o r t u n a t e l y t h i s was not the case. An almost i d e n t i c a l spectrum t o 

t h a t i n SO was observed, and the spectrum remained u n i n t e r p r e t a b l e at 

higher temperatures. 
E. Reaction Between 1,3,3-trimethoxytrifluorocyclobutene and Antimony 

Pentafluoride. 

1. I n Sulphur Dioxide. 

From a consideration o f previous r e s u l t s , i t seemed l i k e l y t h a t t h i s 

cyclobutene might react w i t h SbF,_ t o form ion XXXIV. 

CH.O 

OCH, 

SbF5/S02 

-78° 

XXXIV 
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The N.M.R. data f o r the product obtained on rea c t i o n o f XXX I I 

w i t h SbF 5 i s presented i n Table 25. As can be seen, l i t t l e i n formation 

was acquired from the f l u o r i n e spectrum, the signals being broad and 

confused w i t h the SbF,. resonances. C e r t a i n l y there i s no evidence of the 

presence of a -£-F group. 

TABLE 25 

N.M.R. Spectrum a o f XXXII (a) i n SC>2, and (b) i n SbF^SC^ 

Sol u t i o n Proton S h i f t Fluorine S h i f t 
V i n y l i c 
CH30-

(CH 30) 2 V i n y l i c CF 
C-F * 

(a) i n S0 2 -3-41 -2-87 +135-2 +113-6 

(b) i n SbF 5/S0 2 -3-85 
[ - 0 4 4 ] b 

-4*58 
[-1-71] 

Broad, weak signals 
i n region 105-120 p.p.m. 

a b 
Chemical s h i f t s i n p.p.m. from external T.M.S. or CFCl^; Figures i n 

brackets represent downfield s h i f t s from o r i g i n a l s ignals. 

More i n f o r m a t i o n i s av a i l a b l e from the proton spectrum. I n an ion 

such asXXXWthe dimethoxy-group would not be expected t o c o n t r i b u t e 

s i g n i f i c a n t l y t o the i o n i z a t i o n o f the i o n . However t h i s group experiences 

a large deshielding e f f e c t o f -1-71 p.p.m. i n comparison t o the small 

deshielding o f -0-44 p.p.m. experienced by the v i n y l i c methoxide group. 

Inductive e f f e c t s alone would not be expected t o cause such a large 

downfield s h i f t . 

The r e s u l t s are more consistent w i t h the formation o f a donor-

acceptor complex, o f the type 
F„ 

SbF 

/OCH, 

;^.OCH3 
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The v i n y l i c methoxy group and f l u o r i n e s would experience only a small 

i n d u c t i v e deshielding i n such a case. 

Comparison of the large downfield s h i f t of the dimethoxy group i n t h i s 

case w i t h the s h i f t s of the methoxy groups i n the case o f 1,2-dimethoxy-

t e t r a f l u o r o c y c l o b u t e n e (Sec. 4.I.C.) ind i c a t e s t h a t oxygen co-ordination i s 

much stronger i n t h i s case. This also gives some support t o the p o s s i b i l i t y 

o f c o - o r d i n a t i o n by the CF group i n 1,2-dimethoxy-tetrafluorocyclobutene. 

(a) Quenching o f the S o l u t i o n w i t h Dry Methanol. 

Recovery o f only s t a r t i n g m a t e r i a l on quenching the s o l u t i o n w i t h 

dry methanol also i n d i c a t e d t h a t a donor acceptor complex was formed, rather 

than i o n i z a t i o n . 

2. I n Fluorosulphonic Acid. 

I t was hoped t h a t on heating the s o l u t i o n i n magic acid, break­

down o f the donor acceptor might occur (as observed f o r 1,2-dimethoxy-

t e t r a f l u o r o c y c l o b u t e n e ) . However t h i s was not the case, and an i d e n t i c a l 

spectrum t o t h a t observed i n SCt, was obtained. The s o l u t i o n was heated 

to 60° w i t h no noticeable changes. 

F. Discussion. 

1. Chemical S h i f t Data. 

The amount o f deshielding experienced by a f l u o r i n e atom i n varying 

charge s i t u a t i o n s has already been discussed (Chapter 3, Sec. 3. l . B . 1 . ( b ) ) , 

and some l i t e r a t u r e examples have been given i n Tables 14 and 15. 

Some i n t e r e s t i n g i n f o r m a t i o n has also been obtained by comparison 

o f the downfield s h i f t s experienced by the f l u o r i n e atoms i n ions XXII 

and XXVI. 
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CH-0 
CH 

H CH 

XXVI 

In considering the downfield s h i f t s of su b s t i t u e n t s , i t has been 

shown (Chapter 3, Section 3 . l . B . 1 . ( b ) ) t h a t care must be taken t o compare 

stereochemically equivalent s i t u a t i o n s . In the formation o f the ions shown 
3 

above, r e h y b r i d i z a t i o n o f the carbon at p o s i t i o n 3 has occurred, from sp 
2 + 

t o sp . Thus measurement o f the f l u o r i n e deshielding o f the -CP group 

from the o r i g i n a l CP group might again not necessarily be a true r e f l e c t i o n 

o f the charge s i t u a t i o n . 

However a comparison between the ions X X I I and XXVI themselves of 

the deshieldings of the si n g l e f l u o r i n e s i s v a l i d , and gives a good 

i n d i c a t i o n of the extent t o which the f l u o r i n e s are responsible f o r 

s t a b i l i z i n g the charge centre. 

I n f a c t the s i n g l e f l u o r i n e i n ion X X I I i s deshielded by 134 p.p.m. 

from the o r i g i n a l s i g n a l , and t h a t i n ion XXVI by 70 p.p.m. This i s of 

course the expected tren d , as one might a n t i c i p a t e the methoxy group t o 

be more capable of charge d e r e a l i z a t i o n than the methyl group. 

I t i s d i f f i c u l t t o e s t a b l i s h from the proton data the extent t o which 

the hydrocarbon groups are involved i n charge s t a b i l i z a t i o n . The methyl 

group at p o s i t i o n 1 i n the ion X X I I experiences q u i t e a large downfield 

s h i f t o f -1">5C> p.p.m. I t s chemical s h i f t i s comparable t o those quoted 

i n the l i t e r a t u r e f o r methyl-cyclobutenyl cations (Chapter 1, Section 

1 . 3 . B . 2 . ( b ) . 2 . ( i i ) ) . 

The methoxy group at p o s i t i o n 1 i n ion XXVI experiences a smaller 

s h i f t o f -1°0 p.p.m., but i t must be remembered t h a t i n t h i s case the protons 
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are yet another atom removed from the c a t i o n i c centre, and thus t h i s s h i f t 

i s q u i t e large. 

I t i s noticeable t h a t i n these cyclobutenyl cations sharp signals 

were observed f o r the f l u o r i n e atoms, and there was no evidence f o r 

f l u o r i n e 1 , 2 - s h i f t s , which would have l e d t o e q u i l i b r a t i o n o f the signals, 

even i n the v a r i a b l e temperature work, i . e . 

R /R 

R 

d i d not occur. This contrasts w i t h hydrocarbon cations i n which 1,2-hydride 

s h i f t s are q u i t e common. 

2. Comparison w i t h 1 , 1 , 2 , 3 - T e t r a f l u o r o - 3 - p - a n i s y l a l l y l Cation ( V I ) . 

The N.M.R. spectrum o f t h i s c a t i o n was discussed i n d e t a i l i n 

Chapter 3, and i t s chemical s h i f t data are shown i n b r i e f below. 

* 64°88 p.p.m.— P 
S a I [ -40 p.p.m.]* 

+ 68°64 p.p.m. F C 

P +53»14 p.p.m. 
I [-95 p.p.m.1 
C, ^ 

OCH, 

Figures i n brackets 
represent deshielding 
as explained i n 
Chapter 3. 

F +-180°6 p.p.m. ° 
[+6 p.p.m.] 

VI 

Comparison w i t h the spectra obtained f o r the cyclobutenes shows the 

expected r e s u l t s . I n ion VI the charge can be delocalized over a greater 

number o f atoms than i s possible i n ions X X I I and XXVI. Thus i n d i v i d u a l 

deshieldings are generally less than those observed f o r the cyclobutenyl 

cations, and the f l u o r i n e s ignals occur to s l i g h t l y higher f i e l d . 
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3. Charge D i s t r i b u t i o n . 

Evidence has been reported i n the l i t e r a t u r e f o r 1, 3 - i n t e r a c t i o n i n 

cyclobutenyl cations (Chapter 1, Section 1.3.B.2.(b).1.). 

\ / 

i V 1 
M 

XXXV 

I t has been postulated t h a t charge structures such as XXXV might 

e x i s t i n s i t u a t i o n s i n which they are encouraged by s t e r i c f a c t o r s . 

The evidence put forward t o support t h i s theory has been i n the 

chemical s h i f t s o f su b s t i t u e n t s at the 2-positions. ^ I n 
13 

p a r t i c u l a r C N.M.R. measurements showed a l a r g e downfield s h i f t f o r 

j the carbon atom a t p o s i t i o n 2 i n the,i.on 4a. .The magnitude o f - t h i s s h i f t .» 

could not be accounted f o r by i n d u c t i v e e f f e c t s from ithe 1 ̂ ''2 p o s i t i o n s . 

.CH„ 

N C H 3 

4a 

However i n the ions i n v e s t i g a t e d here there i s no s u b s t a n t i a l evidence 

f o r p o s i t i v e charge being located at the 2-position. The downfield s h i f t s 

o f -0«5 p.p.m. f o r the methyl group and -0°22 p.p.m. f o r the methoxy group 

could be explained q u i t e s a t i s f a c t o r i l y by ind u c t i v e e f f e c t s , from the 1 and 

3 p o s i t i o n s . 

4. Rehybridizat i o n . 

I n the cyclobutenes, as i n the propenyl systems, c a t i o n formation does 

involve a change i n h y b r i d i z a t i o n , as was mentioned i n previous sections. 
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In general bond angles i n a l l y l cations are considered t o be 120 , but 

i n the case of cyclobutenes, some d i s t o r t i o n i s t o be expected, and i n f a c t 

the e x t e r n a l angles o f 5a have been measured by crystallography and have 

Ph<-134° ,Ph 

5a 

been found t o be 134° (Chapter 1, Section 1.3.A.). 

As a n t i c i p a t e d t h i s r e h y b r i d i z a t i o n brings w i t h i t an increase i n 

coupling constants, and the increase i n p observed i n the dimethyl 

system o f 1*25 Hz t o 3°9 Hz and 4°5 Hz has already been mentioned 

(Section 4 . I . B . I . ) . This increase i s not qu i t e as dramatic as those 

observed i n the 1 , 1 , 2 , 3 - t e t r a f l u o r o - 3 - p - a n i s y l - a l l y l c a t i o n (VI) i n Chapter 3, 

but i s s t i l l a s u b s t a n t i a l increase f o r a m e t h y l - f l u o r i n e coupling. 

I n discussing the f l u o r i n e - f l u o r i n e coupling constants, i t i s d i f f i c u l t 

t o make comparisons, as both systems were i n i t i a l l y symmetrical and thus 

increased couplings were unavoidable. However i t i s noticeable t h a t i n 

both cases couplings o f about 10 Hz were observed. 

4.2. Cyclopentenyl and -hexenyl Cations. 

I t was hoped t o extend the i n v e s t i g a t i o n o f f l u o r i n a t e d c y c l i c a l l y l 

c a t ions i n t o pentenyl and hexenyl cations, by re a c t i o n o f 1,2-dimethyl-

hexafluorocyclopentene XXXVI and 1,2-dimethyloctafluorocyclohexene XXXVII 

w i t h antimony p e n t a f l u o r i d e . 
CH„ 

XXXVI XXXVIII 
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XXXVII 

I n each case the N.M.R. spectra of ions XXXVIII and XXXIX should show 

two d i s t i n c t methyl signals and one low f i e l d f l u o r i n e s i g n a l (as i n the 

case of 1,2-dimethyltetrafluorocyclobutene). 

A. Preparation o f S t a r t i n g M a t e r i a l s . 

The d i m e t h y l - o l e f i n s were both prepared by the reac t i o n of p e r f l u o r o -

cyclopentene and perfluorocyclohexene w i t h methyl l i t h i u m . A d d i t i o n of the 

o l e f i n t o the methyl l i t h i u m at -50° produced s o l e l y d i - s u b s t i t u t e d product. 

„ r i _ . ether + CH L i — > 3 o •50 

+ CH L i 
3 -50° 

B. Reaction o f 1,2~Dimethylhexafluorocyclopentene w i t h Antimony Pentafluoride. 

No r e a c t i o n occurred between XXXVI and SbF,. when sulphur dioxide was 

used as the solvent. However the a d d i t i o n of XXXVI t o S b F ^ F S O ^ ^ at 

-78° d i d produce a change i n the N.M.R. spectrum as can be seen from 

Table 26 which presents the N.M.R. data of the o l e f i n (a) neat and (b) i n 

SbF5/FS03H/S02 at -30°. 
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From the shapes o f the s i g n a l s , i t would appear t h a t peaks 1, 3 and 5 

i n the neat l i q u i d (a) correspond t o peaks 1, 3 and 5 i n the a c i d i c s o l u t i o n ( b ) , 

TABLE 26 

N.M.R. Data a o f XXXVI (a) Neat and (b) i n SbFy'FSC^H/SC^ at -30° 

S o l u t i o n Proton 
Peak 1 

S h i f t s 
Peak 2 Peak 3 

Fluorine S h i f t s 
Peak 4 Peak 5 

Neat -1°57 116«4 133 = 6 
SbF5/FS03H/S02 -1°98 -4»49 109° 2 116»5 131«6 

Chemical s h i f t s i n p.p.m. from T.M.S. or CFCly 

and the s h i f t s observed are merely due t o s o l v a t i o n e f f e c t s . Thus i n 

case (b) two new signals appear, at -4°49T i n the proton region and +116°5 

p.p.m. i n the f l u o r i n e region. 

These r e s u l t s are not consistent w i t h those expected f o r formation of 

the i o n XXXVIII. Variable temperature i n v e s t i g a t i o n using neat SbF^FSO^H 

showed the same proton spectrum but an even more complex f l u o r i n e spectrum, 

and an analysis was not p o s s i b l e . 

Quenching the s o l u t i o n w i t h dry methanol gave very poor y i e l d s of a 

mixture o f products. 

C. Reaction Between 1,2-Dimethyloctafluorocyclohexene and Antimony 

P e n t a f l u o r i d e . 

The cyclohexene XXXVII d i d not react with SbFy'SC^ or SbF^FSC^H/SC^ 

at low temperatures. The o l e f i n was then mixed w i t h the neat acid at 0°, but 

the r e s u l t i n g s o l u t i o n showed only broad solvent peaks i n i t s N.M.R. spectrum, 

despite homogeneous mixing. This r e s u l t suggested f r e e r a d i c a l formation 
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which was confirmed by p r e l i m i n a r y E.S.R.-studies i n which an extremely 

strong s i g n a l was observed. However i t was not possible from t h i s s i g n a l to 

determine the number or type o f species present, and a more d e t a i l e d 

i n v e s t i g a t i o n o f the E.S.R. spectrum was not possible. 

D. Conclusions. 

From a consideration o f the success obtained w i t h 1,2-dimethyl-

t e t r a f l u o r o c y c l o b u t e n e , i t seemed reasonable t o expect s i m i l a r r e s u l t s from 

the systems XXXVI and XXXVIII. However t h i s was not the case, and these 

i n i t i a l attempts t o expand the series o f c y c l i c f l u o r i n a t e d a l l y l cations 

were unsuccessful. 

I n the case of 1,2-dimethyloctafluorocyclohexene, the formation of fr e e 

r a d i c a l s i s analogous t o the formation of r a d i c a l cations i n the r e a c t i o n 

o f some h i g h l y f l u o r i n a t e d benzenes (and naphthalenes) w i t h Lewis A c i d s , 1 1 0 -

e.g. 

SbFV FSQ H 

+ 
O 

H H SbF/ FSO_H 

H 
F-

F + 

CH CH 
-F SbFV FSO_H 
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Unfortunately lack of experimental evidence prevents a more d e t a i l e d 

comparison. 

These experiments do not o f course preclude the p o s s i b i l i t y o f producing 

f l u o r i n a t e d a l l y l cations from f i v e or s i x membered r i n g s , but the r e s u l t s 

do suggest t h a t i t may not be possible t o produce ions w i t h a high degree 

o f f l u o r i n a t i o n . 
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CHAPTER 5 

Experimental 

5.1. Reagentso 

Hexafluoropropene and perfluorocyclobutene were purchased from Peninsular 

Chem. Research Inc. Methyl l i t h i u m was obtained from R.N. Emanuel and 

antimony p e n t a f l u o r i d e from Columbia Chemicals. 

5.2. Instrumentation. 

I n f r a - r e d spectra were recorded on a Grubb-Parsons 'Spectromaster*. 

V o l a t i l e l i q u i d or gaseous samples were vaporized i n t o an evacuated 

c y l i n d r i c a l c e l l w i t h potassium bromide end windows. L i q u i d samples were 

recorded i n the form o f a t h i n contact f i l m between potassium bromide p l a t e s , 

and s o l i d samples pressed i n t o homogeneous t h i n discs w i t h potassium bromide. 

recorded on a Varian A56/60D, operating at 60 and 56*4 Mc/s r e s p e c t i v e l y ; 

the normal running temperature being 40°. 

Mass spectra were recorded on an A.E.I. M.S.9 spectrometer, and a l l 

molecular weights were determined by t h i s means. 

Carbon and hydrogen analyses were obtained using a Perkin-Elmer 240 

Elemental Analyser. Analysis f o r halogens was c a r r i e d out as described i n 

the l i t e r a t u r e . 

A n a l y t i c a l g a s / l i q u i d chromatography was c a r r i e d out using Column A 

(di - n - d e c y l phthalate on c e l i t e ) i n a Perkin-Elmer 452 and Column 0 

( s i l i c o n e elastomer on c e l i t e ) i n a Pye 104„ Preparative scale separations 

were c a r r i e d out using e i t h e r columns 0 or A i n a Perkin-Elmer F21 or Varian 

*Aerograph* instrument. 

B o i l i n g p o i n t s were determined by Siwoloboff*s method and are not 

corrected f o r changes i n atmospheric pressure. 

Proton and f l u o r i n e ( V) nuclear magnetic resonance spectra were 
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5.3. Preparation of S t a r t i n g M a t e r i a l s . 

S t a r t i n g m a t e r i a l s were prepared i n general by l i t e r a t u r e methods, 

although i n some cases adaptations o f these methods were used f o r ease of 

p r e p a r a t i o n . The syntheses of 1-p-anisylpentafluoropropene and l , 2 ~ d i ~ 

methylhexaf luorocyclopentene, both new compounds, are described below. The 

adapted method f o r the synthesis o f the methoxycyclobutenes i s also 

described. 

5.3. A. Preparation o f l»»p~anisylpentafluoropropene. 

Using ethylene dibromide as an i n i t i a t o r , para-bromoanisole (20°5 gm., 

110 mm.) was added dropwise t o magnesium turnings (3»0 gm., 115 mm.) i n 

80 ml. dry ether, i n a three-necked f l a s k equipped w i t h a water condenser, 

under a n i t r o g e n atmosphere. A f t e r the ad d i t i o n was completed the mixture 

was r e f l u x e d f o r 30 minutes. 

The dropping funnel was removed from the f l a s k and replaced by a 

stopper. The f l a s k was cooled i n l i q u i d a i r , under a n i t r o g e n atmosphere. 

The i n l e t and o u t l e t taps were closed and the f l a s k disconnected from 

the n i t r o g e n l i n e . A rubber bladder was attached t o the o u t l e t tap. The 

i n l e t tap was connected t o a vacuum l i n e and the f l a s k evacuated. The 

o u t l e t tap was opened to evacuate the bladder. 

Hexafluoropropene (15 gm., 100 mm.) was condensed i n t o the f l a s k , the 

tap closed, and the apparatus allowed t o warm-up to room temperature. 

A f t e r a few hours of s t i r r i n g the r e a c t i o n mixture the bladder appeared t o 

be completely d e f l a t e d , but i t was l e f t overnight t o ensure t h a t r e a c t i o n 

was complete. 

Hydrolysis was c a r r i e d out using d i l u t e HC1 (0°). The r e s u l t i n g 

s o l u t i o n was ether extracted, washed w i t h aqueous bicarbonate and d r i e d over 

MgSO . The ether layer was removed leaving a dark brown l i q u i d which was 
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p a r t i a l l y p u r i f i e d by vacuum t r a n s f e r ( y i e l d 12*5 gm., 52%). 

P u r i f i c a t i o n of t h i s l i q u i d was achieved using preparative scale gas/ 

l i q u i d chromatography, Column 0, 160°. The f i r s t product t o be eluted was 

cis-l-p-anisylpentafluoropropene, b.pt. >200°, y i e l d a f t e r p u r i f i c a t i o n 

1 gm., 5%. (Found: C, 50°54; H, 2*67; F, 39°86; M, 238. y F O 

requires C, 50»42; H, 2»94; F, 39°92; M, 238) I.R. No. 2. The second 

product t o be elute d was trans-l-p-anisylpentafluoropropene, b.pt. >200°, 

y i e l d a f t e r p u r i f i c a t i o n 8 gm., 42%. (Found: C, 50°47; H, 2°61; F, 39°49; 

M, 238. C 1 0H 7F 50 requires C, 50°42; H, 2«94; F, 39°92; M, 238) I.R. No. 1. 

B. Preparation o f 1,2-Dimethylhexafluorocyclopentene. 

Methyl l i t h i u m (65 mm.) i n 130 ml. ether was cooled t o -50° i n a 

three necked f l a s k f i t t e d w i t h vacuum-jacket condenser and dropping funnel, 

under an atmosphere o f dry n i t r o g e n . [At t h i s temperature a s l i g h t amount 

o f c r y s t a l l i z a t i o n occurred so lower temperatures were not used], 

Perfluorocyclopentene (6°0 gm., 29 mm.) was added dropwise and 

immediate r e a c t i o n was observed by the d i s s o l u t i o n of the suspended 

methyl l i t h i u m , and d i s c o l o u r a t i o n o f the s o l u t i o n . 

The s o l u t i o n was allowed t o warm up t o room temperature, hydrolysed 

w i t h ice cold d i l u t e HC1, ether extracted and the ethereal layer d r i e d 

over magnesium sulphate. 

A f t e r removal o f the ether l a y e r , the r e s u l t i n g coloured l i q u i d was 

vacuum t r a n s f e r r e d t o give a colourless l i q u i d (2°3 gm.) which consisted of 

one major component (~90%). On p u r i f i c a t i o n by preparative-scale g a s - l i q u i d 

chromatography (Column A) t h i s l i q u i d was found to be 1,2-dimethyl-

hexafluorocyclopentene, b.pt. 140°, 40% y i e l d . (Found: C, 40*89; 

F, 55*88; M, 204. C
7

H
6 * 6 requires C, 41°18; F, 55»88; M, 204) I.H. No. 4. 
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The low y i e l d o f product was a t t r i b u t e d t o the temperature used, which 

was higher than usual f o r organo-lithium reactions, which are u s u a l l y c a r r i e d 

out at -78°. However s o l u b i l i t y problems prevented a temperature of lower 

than -50° being used. 

C. Preparation o f 1-Methoxypentafluorocyclobutene and 1,2-Dimethoxy-
tet r a f l u o r o c y c l o b u t e n e . 

The l i t e r a t u r e preparation o f these cyclobutenes involves bubbling 

perfluorocyclobutene through a 10% s o l u t i o n of potassium hydroxide i n 
131 

methanol. This method was adapted t o an atmospheric pressure r e a c t i o n 

which produced good y i e l d s and was a more convenient preparation. 

1. 1-Methoxypentafluorocyclobutene. 

Potassium hydroxide (3*2 gm., 57 mm.) was dissolved i n methanol 

(32 gm., 100 mm.) i n a f l a s k , two-necked, f i t t e d w i t h a bladder and condenser. 

The f l a s k was frozen i n l i q u i d a i r and evacuated. Perfluorocyclobutene 

(10 gm., 62 mm.) was condensed i n t o the f l a s k and the apparatus closed and 

allowed t o warm up t o room temperature. 

The o l e f i n reacted immediately w i t h the methanolic KOH, and i n f a c t 

expansion o f the bladder was not observed. As soon as a l l the contents o f 

the f l a s k had melted, the apparatus was opened t o the atmosphere and the 

s o l u t i o n poured i n t o c o l d water. The lower layer was separated and d r i e d 

over magnesium sulphate. Analysis showed i t t o consist only o f the mono-

s u b s t i t u t e d product 1-methoxypentafluorocyclobutene, obtained i n 76% y i e l d 

(8*2 gm.). 
2. 1,2-Dimethoxytetrafluorocyclobutene. 

1-Methoxypentafluorocyclobutene (10 gm., 57 mm.) was r e f l u x e d f o r about 

30 minutes w i t h a 10% s o l u t i o n o f potassium hydroxide (3°2 gm., 57 mm.) i n 

methanol (32 gm., 100 mm.). The s o l u t i o n was then poured i n t o water and the 
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lower l a y e r separated and d r i e d over magnesium sulphate. 

This layer was found t o consist of the d i s u b s t i t u t e d cyclobutene; 

1,2-dimethyltetrafluorocyclobutene, obtained i n 60% y i e l d (6°4 gm.). 

5.4. Preparation of the Ions. 

The general procedures o u t l i n e d below Were followed f o r the preparation 

of the i o n i c s o l u t i o n s . 

A. In Antimony Pentafluoride/Sulphur Dioxide. 

An N.M.R. tube was cooled i n an acetone/CO^ bath (-78°) and i n t o t h i s 

was condensed sulphur dioxide t o the depth of 1-1*5 inches. Small amounts 

o f antimony p e n t a f l u o r i d e were s t o r r e d i n a Teflon b o t t l e , and p o r t i o n s o f 

t h i s were added t o the tube by means o f a teat dropper, i n q u a n t i t i e s i n the 

region o f 0°3 t o 0°4 gm. The q u a n t i t i e s were measured by d i f f e r e n t i a l 

weighing o f the Tef l o n b o t t l e . Care was taken t o ensure t h a t the in s i d e 

of the t e a t dropper was thoroughly wetted w i t h antimony p e n t a f l u o r i d e before 

weighings commenced. A f t e r a d d i t i o n the tube was c a r e f u l l y shaken t o e f f e c t 

d i s s o l u t i o n . 

To t h i s s o l u t i o n was added dropwise the o l e f i n under i n v e s t i g a t i o n , i n 

a q u a n t i t y so t h a t the r a t i o o f SbF,. : o l e f i n was 5 : 1 m . (unless otherwise 

s t a t e d i n the d i s c u s s i o n ) . The tube was shaken c a r e f u l l y t o produce a 

homogeneous s o l u t i o n . I f necessary, t o avoid overheating o f the s o l u t i o n , 

thorough mixing was brought about by a g i t a t i n g the s o l u t i o n w i t h a long length 

o f c a p i l l a r y t u b i n g . 

B. In Antimony Pentafluoride/Fluorosulphonic Acid. 

I n t h i s case, the N.M.K. tube was cooled i n an ice bath and approximately 

1 gm. o f SbF,_/FS03H was introduced i n t o the tube. The o l e f i n was then added 

dropwise t o t h i s s o l u t i o n , again so t h a t the r a t i o o f SbF 5 : o l e f i n was 5 s 1 m. 

Homogeneity was achieved by gentle a g i t a t i o n w i t h a long length of c a p i l l a r y 

t u b i n g . Care was taken t o ensure t h a t overheating d i d not occur. 
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5.5. Quenching Reactions. 

A. General Procedure. 

The general procedure f o r quenching the i o n i c s o l u t i o n s w i l l f i r s t be 

o u t l i n e d , and s p e c i f i c examples given l a t e r . 

1. I n Antimony Pentafluoride/Sulphur Dioxide. 

Sulphur dioxide was condensed i n t o a two-necked f l a s k which had been 

cooled t o -78° under a n i t r o g e n atmosphere. Antimony p e n t a f l u o r i d e was 

then introduced i n t o t h i s f l a s k , and t h i s time d i s s o l u t i o n was achieved by 

a g i t a t i o n w i t h a magnetic s t i r r e r . The o l e f i n was slowly added dropwise w i t h 

s t i r r i n g t o t h i s s o l u t i o n (again keeping the molar r a t i o o f SbF,_ : o l e f i n 

5 : 1 ) . 

A f t e r a d d i t i o n was completed, the f l a s k was warmed i n another bath at 

-30° (or at the temperature a t which the corresponding N.M.R. of the i o n i c 

s o l u t i o n had been run) t o ensure t h a t complete i o n i z a t i o n had occurred. 

(This procedure was found t o be p a r t i c u l a r l y important i n the case of 

1-p-anisylpentafluoropropene, when quenching reactions c a r r i e d out at lower 

temperatures r e s u l t e d i n recovery of a c e r t a i n p r o p o r t i o n of s t a r t i n g 

m a t e r i a l ) . 

I n some cases at t h i s stage a small p o r t i o n of the i o n i c s o l u t i o n was 

t r a n s f e r r e d t o an N.M.R. tube and the spectrum run t o check the i d e n t i t y of 

the intermediate. This t r a n s f e r was performed w i t h the a i d of a co l d box. 

This apparatus consisted of a large polystyrene box containing an asbestos 

t r a y supported about three inches above the f l o o r o f the box. L i q u i d n i t r o g e n 

was poured i n t o the box t o a depth of about 1 cm. This l e v e l was maintained 

throughout the experiment. A f t e r a few minutes an e q u i l i b r i u m was reached 

and the temperature on the surface of the asbestos t r a y was about -60°. The 

r a p i d evaporation of the l i q u i d n i t r o g e n ensured t h a t a dry atmosphere was 

maintained. 
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The f l a s k was then placed on t h i s t r a y , and l i q u i d t r a n s f e r r e d from i t 

t o an N.M.R. tube ( i n an acetone/CO bath) by means o f a glass dropper which 

had also been cooled on the asbestos t r a y . 

The f l a s k was then re-cooled t o -78°. Dry methanol (pre-cooled t o -78°) 

was then added dropwise and w i t h caution to the s o l u t i o n . Reaction usually 

was immediate and q u i t e vigorous. A f t e r excess methanol had been added, 

s o l u t i o n s which had e x h i b i t e d intense colourations became colour l e s s . 

The s o l u t i o n was then allowed t o warm up t o room temperature and poured 

i n t o dry ether t o help prevent any hy d r o l y s i s which might occur. This 

s o l u t i o n was then poured i n t o water, and ether e x t r a c t i o n c a r r i e d out i n the 

usual way. However t h i s e t h e r e a l s o l u t i o n contained large q u a n t i t i e s of 

dissolved sulphur d i o x i d e , and thus care was necessary i n the ether e x t r a c t i o n . 

This SO2 was removed by cautious n e u t r a l i z a t i o n w i t h sodium bicarbonate, 

vigorous effervescence i n v a r i a b l y occurring. 

The ether layer was then d r i e d over magnesium sulphate and removed 

by f r a c t i o n a t i o n , i f the product was suspected t o be v o l a t i l e , or by means 

of the r o t a r y evaporator. 

2. I n A\ntimony Pentafluoride/Pluorosulphonic Acid. 

The general procedure i n t h i s case was the same, but the i o n i c s o l u t i o n 

was cooled to 0°. The methanol was again cooled t o -78° t o prevent too 

vigorous a r e a c t i o n from o c c u r r i n g . 

B. Quenching Reactions of KLuoropropenes. 

1. Quenching o f S o l u t i o n o f Trans-l-p-anisylpentafluoropropene i n 
Antimony Pentafluoride/Sulphur Dioxide. 

Quenching o f a s o l u t i o n containing 5 gm. (20 mm.) of t r a n s - l - p - a n i s y l -

pentafluoropropene produced trans-l-p-anisyl~l,2-difluoro-3-methoxypropene-l~ 

one (3°0 gm., 62% y i e l d ) m.pt. 72-72°5° on r e c r y s t a l l i z a t i o n from hexane. 
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(Pound: C, 57-61; H, 4°45; P, 16°43; M, 228. C
1 1

E
1 0

P
2 ° 3 r e < l u i r e s 

C, 57°9; H, 4«38; V, 16«67; M, 228) I.R. No. 3. 

An i d e n t i c a l procedure was c a r r i e d out i n the quenching o f a s o l u t i o n 

of cis-l-p-anisylpentafluoropropene i n antimony pentafluoride/sulphur 

dioxide w i t h dry methanol, but very small q u a n t i t i e s of s t a r t i n g materials 

were used and i t thus proved impossible t o estimate the y i e l d o f t r a n s - 1 -

p-anisyl-l,2-difluoro-3-methoxypropene-l-one produced from t h i s r e a c t i o n . 

2. Quenching o f S o l u t i o n o f 2-p-anisylpentafluoropropene i n 
Antimony Pentafluoride/Fluorosulphonic Acid. 

Quenching o f a s o l u t i o n containing 2 gm. (8 mm.) of t h i s o l e f i n produced 

an extremely i n v o l a t i l e l i q u i d which was analysed from i t s N.M.R. spectrum 

as an a d d i t i o n product 2-hydro-2-p-anisylpentafluoro-l-propane sulphonic acid, 

b.pt. >200°. The m a t e r i a l was p u r i f i e d by preparative scale g a s / l i q u i d 

chromatography, using Column 0 at 200°. Unfortunately the l i q u i d was so 

viscous t h a t handling losses were great and i t was not possible t o c a l c u l a t e 

the y i e l d o f product. (Found: C, 35°23; H, 2°57; F, 34-06; M, 340. 

C10 H8 P6°4 S r e q u i r e s C J 3 5 ° 5 ; H 5 2°37; P, 33»7; M, 338. Anomalous 

mass spectrum discussed i n Section 3.1.C.2.(b)). I.R. No. 7. 

C. Quenching Reactions o f Fluorocyclobutenes. 

1. Quenching of S o l u t i o n o f 1,2-Dimethyltetrafluorocyclobutene 
i n Antimony Pentafluoride/Sulphur Dioxide. 

Quenching o f a s o l u t i o n containing 2°5 gm. of t h i s o l e f i n produced 

1*5 gm. o f a mixture containing two major components. Separation was 

achieved by preparative scale g a s - l i q u i d chromatography using Column A at 

150°. The minor component was found t o be l,2-dim e t h y l - 4 , 4 - d i f l u o r o -

cyclobutene-3-one (0°3 gm.) analysed by i t s N.M.R. spectrum, mass spectrum 

(M, 132. C 6H 6P 20 requires M, 132) and I.R. (No. 5 ) . 
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The major product was found to be 1,2-dimethyl-3-methoxy-3,4,4-

trifluorocyclobutene (1°05 gm.) analysed by i t s N.M.R. spectrum and I.R. 

(No. 6). Mass spectral analysis did not show a parent peak (C H P 0 

requires M, 166) but showed immediate loss of CĤ F to give M, 132 

corresponding to the cyclobutenone above. 

2. Quenching of a Solution of 1-Methoxypentafluorocyclobutene i n 
Antimony Pentafluoride/Sulphur Dioxide. 

Quenching of a solution containing 5°0 gm. of the o l e f i n produced 

3°7 gm. of product which consisted of two major components. These products 

were separated using preparative scale gas-liquid chromatography, Column A 

at 120°. The minor component was analysed as l-methoxy-2,4,4-trifluoro-

cyclobutene-3-one (0°3 gm., 7% yield) (Pound: C, 39°2; H, 2°31; F, 36°8; 

M, 152. C^ 3F 0 2 requires C, 39°5; H, 1°97; P, 37»5; M, 152) I.R. No. 8. 

The major component (2°7 gm., 63%) was analysed as 1,3,3-trimethoxy-

2,4,4-trifluorocyclobutene, b.pt. 169°. (Found: C, 42«8; P, 28°4; M, 198. 

C?H ' F ^ requires C, 42°4; F, 28°78; M, 198) I.R. No. 9. 

5.6. Reaction of Hexafluoropropene with Antimony Pentafluoride. 

A variety of d i f f e r e n t conditions were investigated for the reaction 

between hexafluoropropene and antimony pentafluoride i n sealed tubes. As 

mentioned i n Section 3.2., lower temperatures and short reaction times 

resulted i n good recovery of v o l a t i l e s , but lower conversion of hexafluoro­

propene, whilst higher temperatures and longer reaction times resulted i n 

higher conversion of hexafluoropropene, but lower t o t a l recovery of v o l a t i l e s . 

Eventually conditions of 70° and ~20 minutes reaction time were adapted as 

giving the optimum conversion of hexafluoropropene and t o t a l recovery of 

v o l a t i l e products. 
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An example of one of these reactions i s given below: 

Antimony pentafluoride (18 gm., 85 mm.) was introduced into a Carius 

tube of 50 ml. capacity, which had previously been f i l l e d with a nitrogen 

atmosphere. The tube was then cooled i n l i q u i d a i r , evacuated, and 

hexafluoropropene (2°5 gm., 17 mm.) was added under vacuum. The tube was 

sealed and agitated f o r 20 mins. at 70°. I t was then cooled i n l i q u i d a i r 

and the v o l a t i l e products removed under vacuum (2°2 gm. recovered). 

G.l.c. analysis on a low temperature analytical column at 0° showed the 

presence of unreacted hexafluoropropene and two other products. 

The hexafluoropropene was removed by shaking the vola t i l e s i n a sealed 

tube with excess bromine at room temperature. Under these conditions 

hexafluoropropene i s brominated almost instantaneously, with production of 

heat, and no other brominated products were recovered. 

The excess bromine was removed by reaction with powdered copper at 0°. 

1,2-Dibromohexafluoropropane was then removed from the other v o l a t i l e 

components by preparative scale gas-liquid chromatography, using Column 0 

at 40°. The two v o l a t i l e products were further separated by preparative 

scale g.l.c. using Column A at 25°, with a very low gas flow rate. They 

were i d e n t i f i e d from t h e i r N.M.R. and mass spectra as 2-hydroheptafluoro-

propane (Found: M, 169. ^HP^ requires M> 169) and a dimer of hexa­

fluoropropene (Found: M, 300. C P requires M, 300). 
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Mass Spectral Data of Polyfluoro-propene, -cyclobutene and -cyclopentene 
Derivatives 

r m/e values; r e l a t i v e abundance (% of base peak i n parentheses)] 

A l l peaks >5% of base peak ( a r b i t r a r i l y 100%) are recorded; * indicates 

parent peak. 

1-p-anisylpentafluoropropene (trans) ( I ) . 

239(12), 238*(100), 223(8), 219(10), 195(10), 175(7), 145(29), 125(6), 

119(6). 

1-p-anisylpentafluoropropene ( c i s ) ( I I ) . 

239(13), 238*(100), 223(11), 219(18), 195(18), 175(13), 158(6), 145(53), 

138(7), 126(8), 125(14), 119(10), 107(7), 99(9), 81(7), 75(7), 69(8), 50(7). 

1- p-anisyl-l,2-difluoro-3~methoxypropene-l~one (trans) ( V I I I ) . 

229(13), 228*(100), 198(5), 197(38), 170(25), 169(8), 155(5), 154(12), 

126(8), 125(6). 

2- Hydro-2-p-anisylpentafluoro~l~propane Sulphonic Acid (XVI). 

342(7), 341(12), 340*(82), 321(17), 273(6), 272(11), 271(100), 

255(9), 221(9), 173(14), 158(6), 145(13), 123(7), 84(16), 81(8), 73(10), 

69(7), 59(22), 56(6), 46(6), 45(17), 44(26), 43(33), 42(9), 41(20), 40(18), 

39(8), 31(16). 

1,2-Dimethyl-4-methoxytrifluorocyclobutene (XXIII). 

133(8), 132(100), 104(28), 103(27), 89(27), 85(13), 84(8), 83(9), 

77(20), 76(9), 75(6), 65(11), 64(16),57(7), 56(19), 55(42), 51(13), 50(10), 

40(36), 39(40). 

l,2-Dimethyl-3,3~difluorocyclobutenone (XXIV). 

133(16), 132*(100), 104(26), 103(23), 89(23), 85(13), 84(15), 83(16), 

79(19), 77(18), 76(16), 65(20), 64(16), 57(11), 54(17), 53(30), 51(13), 

50(17), 40(35), 39(37), 38(12). 
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1,3,3~Trimethoxytrifluorocyclobutene (XXXII), 

198*(34), 183(47), 168(11), 167(100), 153(11), 152(11), 149(6), 147(7), 

139(6), 133(8), 124(8), 123(8), 121(40), 119(13), 109(29), 105(13), 101(6), 

94(16), 93(20), 87(26), 81(11), 75(6), 59(16), 58(9), 51(5), 50(13), 45(9), 

44(32), 43(23), 32(7), 31(13). 

l-Methoxy-2,4,4-trifluorocyclobutenone (XXXIII) 

153(8), 152*(100), 124(7), 109(77), 105(9), 94(53), 93(15), 87(19), 

81(29), 75(15), 74(7), 59(11), 50(6), 43(6). 

1,2-Dimethylhexafluorocyclopentene (XXXVI). 

205(9), 204*(100), 189(21), 185(24), 169(6), 154(26), 153(16), 140(6), 

139(8), 135(59), 133(10), 115(23), 104(9), 103(10), 101(7), 95(10), 89(10), 

88(5), 85(12), 83(5), 77(13), 76(5), 75(9), 69(8), 65(10), 57(9), 53(5), 

51(11), 50(5), 39(12), 32(26). 
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Corrections 

p.25. 2. Solvolysis Reactions - should read:-

While the solvolysis of the c i s - and trans-olefins 11a and l i b 

yielded a mixture of 11c and l i d , 

RCHFCH=CHF » RCH=CHCF H + RCH=CHCHO 

th e i r isomer RCHFCF=CH l i e was completely unreactive. 


