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Abstract.

This thesis deals with some general work on the
yp~t equationé and, more specifically, with two
calculations which make use of them.

Chapter 1 commences with a brief outline of the
subject, followed by a fairly detailed analysis of
numerical mgthods of solution of the equations, including
an analysis of cutoff and threshold problems. In
particular we demonstrate a particular form of numerical
solution which appears to be rather superior to any
previous ones,

Chapter 2 discusses the problems that arise when a
multi-channel calculation is approximated to be a single
channel one: we show that in general the results are
different, and discuss the conditions for them to agree.

Chapter 3 investigates what happens when N and D
have simultaneous zeroes: it is shown that a potential
that leads to this is necessarily singular and repulsive.

Chapter U opens with a general review of the successes
and failures of the quark model in scattering theory.

It is shown that the quark model is necessarily
inconsistent with what is commonly called bootstrap
philosophy, and we investigate whether a reasonably

convincing quark model may be constructed.



Chapter 5 outlines a calculation of the ;N Pll
phase shift. The previous work on this problem is
discussed, and the computational method is outlined

along with a discussion of what results can be expected

from the calculation.



Partial Wave Amplitudes and the Np~t Equations.

The study of partial wave amplitudes 1)

derives
from the solution of the radial Schrodinger equation in
terms of eigenfunctions of the free equation.

V2P(x) + Vy(x) = k2p(x) (1)
Making the substitution |

$(R) =18 (21 + 1) Y(0,4) ¢ (r)

and (2)

ul(r) = r¢l(r)

gives the radial equation for the individual partial

wave functions ul(r).

iizul +(52 , lii%;l - v<r)> U (e) = 0 (3)
dr r

The 'free! solution of this equation is ul(r) = jl(er,ﬂh
a spherical Bessel function, which may be split into.
two parts which behave asymptotically as an ingoing part
n" and an outgoing part h”.

jq(kp) = ;_K?l+<kr) - hl"(krﬂ (%)
2i

The solution of (3) can then be written asymptotically




as

uy (r) = l—z-i{flJ“(k)hl*(kr) - fl"(k)hl—(kr.)] (5)

+ . . . -
such that f 1is the total ingoing amplitude, f the
outgoing, and we can write the partial wave scattering
amplitude ay in the form

1 scattered wave _ 1 £ o g _ elasina - 1 - Sl(k)

2ik  ingoing wave ~ 2ik £ k = ap ) = k
(6)
The functions f= are known as the Jost functions, and
the study of their analytic properties and hence that
of the ay is of great importance. We describe them very
briefly without proof.
If the potential is a superposition of Yukawas

- @ -y
Vir) =/~ olm) e — an (7)

it can be shown that f+(k) has a cut from - im, to ~-i =
2

in the plane, and f (k) has one from im, to i ». The
2

only additional singularities in a, occur because of

1
zeroes of fl-(k)' These can be shown to lie in the lower
half plane (corresponding to virtual states and resonances)

and along the positive imaginary axis (corresponding to

bound states of the amplitude).



This structure is paralled by that found in the
relativistic case, which however requires more assumptions
summarised in the Mandelstom hypothesis. The most
important is that if crossing symmetry, which implies
that one amplitude A(s,t,u) describes all scatterings
which can be represented by diagram 1). Thus
a+b~»>c + dcould be considered
with s as the (energy) variable
and t = -(momentum transfer) . Then
a+d -+ b+ C is described by the

same amplitude with the meanings of

s and t interchanged. This allows
us to derive the forces from the exchange of particles
with the quantum numbers of the crossed channel; a bound
state in the t channel corresponds to a force term in
the s channel, Explicitly

A(s,t,u)

A(t,cos t) £(21+1)a ()P, (cosot) (8)

A(s,cos s) Z(21+l)al(s)Pl(coses) (9)
where in general the two expansions have different

regions of convergence.

A bound state in the t channel with
spin 1 and mass m (a,b,c and d are
presumed spinless and stable) allows

us to approximate




A(t,coset) = P, (cosot) (10)
t - m2

From (9) and (10) we derive

al,(s) - fl Pl,(coses) P,(cosbt) d cosbs
t - m2

From this we can derive the discontinuity of al(s) across
a cut which‘furns out to occur along the negative real

axis -we<k2?<-m? as in the potential case, where a
I b

Yukawa potential g:@r corresponds to the exchange of a
particle of mass QT- The discontinuity calculated in
this way is identical to that derived from the correspond-
ing Feynmann diagram.
Another cut is the so called unitarity cut, which
+

derives from conservation of probability : Sl S1 =1

which leads to Ima,(k?) = kla, (,k?)|? k2>0

This gives us a function with a known left hand cut (L.H.C)
discontinuity and a known right hand cut (R.H.C)
discontinuity. By Cauchys theorem, we can write a
dispersion relation

Re aj(v) _ J'Im a;(v) va laj (v [2av”
v - v

vi= v

(1)

However this form is non-linear and hence rather



intractable. It was suggested by Chew and Mandelstom 2)

that the amplitude could be split into two parts

N, (v)
(v) = L

a
1 Pl(v)

where N has only the L.H.C. and D the R.H.C.

1t

On the L.H.C. Im al(v) Im Nl(v) so Im Nl(v) = Im al(v) Dl(v)

Dl(v)

and on the R,H.C., Im 1 ImD = -p or Im D = -pN.
a N

This gives us the basic N/D equations

i1

Ny = B fIma ) D) av
m

L Ve - v (12)
D(v) = 1 - (v = v )2 p(V2IN(v ") dv*
°n (v? = v)(v? - v )
Y o) (13)

One subtraction can be made in D to normalise it
at an arbitrary point vi N and D can be multiplied by
Vo= v without changing the amplitude a. The discussion
of the purely mathematical features of the solution to
these equations forms a large body of literature 3). It
can be shown that the equations are ‘independent of the
subtraction point H) (though in general this is not

true of approximate solutions): and that so long as the

kernel of the equation obtained by substituting (13) in (12)
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N(v) = B(v) + P r (v’ - Qn) B(v?) = (v = v, )B(v) p(v*)IN(v*)dv~

TR (v? = v)(v”* = vo)
(14)

with B(y) = MM (V) dv

L v -
if;ﬁf, then the solution is unique under provisos to be
discussed later, and analytic in the cut plane. In
particular this is true for L.H.C. consisting solely of
§ functions

Im al(v) = gmia(v + vi)

which leads to the simple closed form

D(v) = 1 + Zm, D(—vi)F(v’, v, vi)
(15)

F(v’,vo,vi) = é ( p (v Z dv” ;
Vo= vo)(v - v)(v* + vi)

At any point v, such that D(vB) = 0, the amplitude A(¥)

B

will have a pole, which corresponds to a bound state
(or resonance).,

The uniqueness of the solution is very important.

4)

The so-called C.D.D. ambiguity concerns the addition

of an arbitrary pole to either N or D.
If we take D(v) - D(v) + o

v -V
0



then N(v) = N(v) + a\)B(\)) - voBv,)

V o=V
o]

and if o is small

N(v)

D(v) + a/v =~ v,

a(v) ~~

which will have a zero at v = v, and a nearby pole at
vp such that (vB - vo) D(vB) = o

This implies a new resonance or bound state which is
not produced by the forces of the problem, but is
introduced at will., To find the effect of C.D.D. poles

on the amplitude it is necessary to consider Levinsons

theorem 5): we outline a proof for elastic scattering.
ey = 218 -1 Nl(s)
1 2ik D, (s)

We define the Omnes - Mushkelishvilli function

»ébks) = exp —% f: %é%é%:"gj ds (16)

S0 thatjjrms the same phase as D and has no poles or
zeroes on the physical sheet, If two functions have
the same cuts and same phase they can differ at most
by a polynomial.

If we assume §8(s) » 8(») = const = m
S

where §(0) = 0 by definition
then aj(s) » const s ™,

Since D has no poles but only zeroes on the physical



sheet, and D(«) = 1
D(s) =:ﬁ (s - s8.)(s)
izl * ;5

must be the relation between D andjfgl)vdll have b
zeroes, which should imply n bound states in a. If

D has "¢ C.D.D. poles, it can be written
nb

n
D(s) ='1T~ (s - si)/gf—(s - sj) (17)
and Levinsons theorem takes the form

§(=) = (" = Te)n
This or its multichannel generalisations should in
principle enable one to decide whether a bound state

was a C,D.D, pole or not., The situation is unfortunate ly

complicated by the fact that a, and D, obey different

1 1

Levinson's theorems: this because it is possible that

a zero in Dl is exactly cancelled by a zero in Nl’ and

then Levinsons theorem for al becomes

n

§(0) < =("> = Te)w

n
- - +
(b -n, +ndn
where ng is the number of superimposed zeroes, ovr
extinct bound states (E.B.S). C.D.D., poles are discussed

more fully in Chapter 2, and E.B.S. in Chapter 3.
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1 method has been extended to multichannelA

calculation by Bjorkens): essentially all that is

The ND~

involved is writing (12) and (13) in matrix notation,
with

1
al(v) = Nl(v) Dl(v) (18)

pij(v) = Gijpj(v)

The al(v) is symmetric, as required by time-reversal

invariance. Levinson's theorem cannot be simply

derived, because there is no multichannel analogue of (16).
In general, the np~t equations that we have arrived

at are not analytically soluble. If the force function is

simple e.g. B(y) = v%, then they can be solved by various

7)

ingenious transformations: Halpern'’ has used these
to find solutions when a > 0, in which case (12) and
(13) are non-Fredholm equations.

These are an assortment of numerical methods for
the solution of the equations: we discuss them in
what appears to be an ascending order of merit. The

simplest is what is usually known as the K matrix

method: we take Re D = 1 in (12) and ignore (13), so
N(v)

a(v) =
1 - ip(vIN(v)

This is at least unitary, but naturally very inaccurate
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as it takes no account of rescattering corrections. An

increase in accuracy is gained by including (13), which

is the determinantal method 8)

D(v) =1 + (v - vo) S pv?) B(v7) dv*
R (v =~ v)(v? = v)
0

However this solution is not only subtraction point
dependent, but does not give a symmetric a. Its accuracy

9)

has been discussed by Luming ¢ it is particularly
poor, as might be expected, for a bound state.

Clearly this process can be continued: in fact the
two solutions above form the first and second terms in
the Neumann series for the equations. In many cases,
however, the Neumann series is divergent while the
correct solutién, derived by Fredholm methods, is not:
quite apart from this the work involved in a satisfactory
iterative solution is enormous. This lead Blankenbecler

and Roy 10)

to point out that the poorness of the
determinantal method lies in the approximation D(v) = 1
in a region near D(v) = 0: in other words near a bound
state. The suggested a parametric form

Do(v) - N = Vo

\)—\)b

should be used in 12) giving
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N(v) = (VB - VC) B(\)B) - (v - \)C) B(v)

\)B—\)

D(v) = 1 - % fb(v’) (vp = v,) Blvg) = (v7 = v B(v7) dv”

R (v = v) (\)B -v7)
S0
D(v) = 1 = (vc —vB) B(vB) vBF(vB) - vF(v)
vg = v
+ vBG(vB,vC) - vG(v,vC)
' vg =V
where F(a) = [ ev?) G(byv ) = f p (v ) (v =V IB(VT)
R vi(v’= a) c R v (v”°=b)

It is now possible to solve iteratively for vy and Vs

as D(vc) = 0 by hypothesis, and v, can be fitted by

B
requiring D(0) = DO(O) = v_ . This method is fairly

lo

<

B
accurate, provided that at least one bound state exists,
but it is clumsy, as all iterative methods are.

This solution turns out to be much superior in
practiee, but it is still unnecessarily complex. To

find more direct methods, we write the coupled equations
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in the single integral equation form

N(s) = B(s) + £ s’B(s’) - sB(s) o(s”) N(s”) ds”
™ R s“(s8” - s8)
(19)
D(s) = 1 + % Q-K(S',S) ImB(s”)D(s”) ds” (20)
where . _
. K(s”y8) = f o (s™") ds"
R (s” - s")(s" - 3)

Either of these can obviously be solved by Newmann

11)

series, A method due to Shaw puts N(s) = B(s) C(s)

in (19)
and then approximates C(s”) = C(s).
This curious procedure gives

B(s) [B(s) + L gS’B(S') - sB(s8) p(s”) ds'] -1

™ Jg (s” - s)s8”

C(s)

it

N(s)

]

B(s) {1 + 27 p(s?) ds” 1, B(s”) p(s”) d81
T s7(s*-s) T B(s) (s”-5)

and it is surprisingly satisfactory.

However all the preceding methods have one or more
striking disadvantages: they suffer from one or more
of the disadvantages of inaccuracy, dependence on the
subtraction point, lack of time reversal invariance

and require, in at least the last two cases, involved



- 13 -

numerical integrals. The most general numerical method
is that of matrix inversion. Starting from

f(x) = h(x) + SK(x,x*) f(x*)dx*
we replace the integral by a trapezoidal type sum

£(x) = h(x) * BK(xyx) £(x;) (xy,p = %5_)  (21)

1~-1

This can be solved by taking

(1 + K(xj,xi)dxi) f(xi) = h(Xj)

which is a set of simultaneous equations, which are
solved for the f(xi) and substituted in (21).
This is precisely equivalent to replacing ImB by

a series of § functions, mia(s‘ + Si)

)

m, = ImB(si)(si+l - 85 3

This method can be made arbitrarily accurate (by taking
a sufficient no. of mesh points), and is comparatively
simple to solve on a computer, and it has been widely
used as a result. Generally (17) is preferable to (18)
because for unequal mass scattering the L.H.C. is of
very complicated form, and (18) requires two integrations
to be made over it, which (17) requires none.

It is, however, complicated to solve by hand, and

2)

this led Pagels 1 to suggest the following trick.
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Equation (18) has the kernel

K(s,s) = &EG7) , sE(s) (22)
3%= 3 8 - 8”7
where F(s) = f —p(s)  ds” (23)

R s°2(s”- 3)
which is a monotonically increasing function on the left
hand cut. This suggests that it is a good approximation
to write

C

8 - a

F(s) ~ (2u)

on the left. Combining equations (24), (18) and (12)

allows us to derive

N(a) C a (25)

+
D(S)/_\_fl P—

Inserting this in (12) gives

ab(a) - sB(s) CaN(a)

N(s) = B(s) + e (26)

which in turn gives

N(s)

D(s) = 1 + s F(s) + N(a) - N(s) Ca (27)

a - 8

Obviously the accuracy of the method depends on the

goodness of fit (24), and this can be improved by

13)

taking more poles, Smith's claim that the method
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is not good is irrelevant; he considers a nonrelativistic

potential model which leads to

F(v) = —2

V=v
and this must be fitted by one pole in the range 0 to -,
This is clearly ridiculous: however, if more poles are
added, even in this case a satisfactory solution can
be found. Typically a five pole (ten parameter fit)
to F(v) =20<v<0 leads to an error of D(v) of less than
.001% for reasonable B(v).

However it 1is clear that the Pagels method is not,
as claimed, a method of solving the equation for D, as
the actual numerical work is involved 'in solving (26).
It is probable that it is equivalent to some Gaussian
method and it's success is due to its use of the
kinematic function as a weight Function lu). Rather
than resort to ad hoc fitting procedures to find C/s-a,
it is better to use this,

As an adaptation of this method will be used in
Chapter 5 we describe it in some detail. Writing 19)

more explicitly, and assuming equal mass elastic

scattering, we have
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N(s) = B(s) + s=y8i=t 87B(s?) - sB(s) N(s”) ds”
t s~ s“(s” - 8)

(28)

or I(s) = & sl =t F(&”, s) ds~ (29)
t s” "

where we have included an explicit cut-off at s” = a.

This is required in most practical solutions of the

equations because B(s) ~ .

S+

for the exchange of

a spin 1 particle, which renders (28) divergent. The
use of cut-off is justified by saying that since
(presumably) Nature is not divergent and the first Born
approximation is)a cancellation with the higher Born
terms must occur to produce a more or less well behaved
force term, Since this occurs a long way from the
physical region of intefest, any reasonable behaviour
will have negligible effect on the amplitude there.

7)

The methods used by Halpern would render this
unnecessary, but they would be very difficult to use

in practice. In the original form of the Pagels method,
the different asymptotic behaviour of the function F(s)

and its approximafion, (23) and (24), give an implicit

cut-off,
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Substituting s” = t in (29) gives
X
I =+ JI—= F(E»ZX) dx” (30)
t/a
n w,
= t(1 - 1)3/2 g - Flxg,x) (31)
a . x.2
i=1 1
where 18)
-t = -
W. = 2z.2%m,
i i 71
.th

where, in turn, 2 is the i zero of Pn(z), and

m, = /(L - zi)z(P‘n(zi))2 is the corresponding weight.

N(s) = B(s) + B SiB(Si) - sB(s)

C.s. N(s.)
i=1 Si - 3 1 *

(32)
which is similar to (26) with an arbitrary number of

poles, In turn

D(s) = 1 -

ER10]

; é’ : t N(s”)
t

s s’(s8” - 3g)

1.8 Z 7 =T (N(s?) - N(s)ydsTsN(s)y ,A7-%
T ” -~

S s*(s” -~ s) m S
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/8=t
=1l ~-ZI g C.s, N(s.) = N(s) N(s) 1 - S
R T ; - ) - = log (I—¢7§E£—)
i s S
(34)

This method of solution appears to be the best:
it gives reasonable results for a very few points in
the integration (even two is satisfactory), it is
fagt and allows the accuracy to be arbitrarily improved.
Finally we briefly discuss the problem of thresh-
hold conditions, Theory shows that partial waves

behave like k21+l

near threshold, which implies a
(21 + 1)th order zero in the amplitude ay (and hence
in Nl) at threshold. The method frequently adopted
is to write

a(s) = k2l+l

N/D

and write the dispersion relations for N and D, which
obviously forces the correct behaviour. This seems
unsatisfactory, not only because the basic failing

is in the approximation to the L.H.C. discontinuity,
but because this involves further trouble with
asymptotic behaviour.

Therefore we use the Frye-Warnock method of

enforcing threshold conditions: that is to multiply
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the Born terms by a threshold factor (W - WE)/(W - a)

(for a P wave), where a is arbitrary. This is

equivalent to adding an extra pole on the left hand

cut, as has been shown by Simmons 16).
C

W - a

We replace B(W) =5 B(W) = B(W) + (35)

and solve the integral equation

Newy = By ¢ WOBT) - W BN p(WONGWT) AW (36)
R We - W "

Enforcing the condition N(WE) = 0 leads to

Wp - a _Z_L_‘SB(W') o (W) N(W’) aW” (37)

2 - D(a) = RW - WE

Inserting (37) and (35) in (36), we find after some

algebra

L

1T

Wo= W
W-a

W(W-a)B(W))D(W’)N(W‘)

B(W”) =~
E W—WE W2 (W7 =-W)

N(W) = B(W) + (
which is the usual form.

Simmons demonstrates that there is some doubt
about the validity: in particular he shows that the

mass of the N¥ in the ¥ N P, partial wave depends

3
fairly strongly on a. We adopt this procedure, however,

as it appears to be the only reasonable choice. Our
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knowledge of the L.H.C. is limited to the first Born
term: it is known that if Sn.matrix theory is to
consistent, the many particle terms must be important,
and our cavalier disregard of them must be compensated
in some way. We do, however know the threshold
behaviour on very general grounds, so to replace the
former by a single pole to enforce the latter is

conceptually reasonable,



CHAPTER 2

Inconcistency of the one and many-channel ND-l calculations,

It was noticed by Squiresl7)

18)

and independently
by Bander, Coulter and Shaw that the one channel
calculation with inelasticity and the corresponding
multichannel calculatioh are not necessarily equivaient,
unless additional C.D.D. poles are inserted. This
chapter forms a discﬁssion of the two possible break-
downs, connected with the presence of zeroes in the one
channel calculation and poles in the many-channel.

In general, zeroes cannot occur in a coupled channel

problem because of the unitarity condition,

Im all = pllalllz + 92|a12|2 (1)

and it is coincidental for a;; and a;, to have simultan-

eous zeroes, However, the one-channel calculation

with inelasticity apparently permits a zero

Im a = Rplal? (2)
R =1 +8inel _ ., oy l@1a]2 (3)
cel 2
01|alll

~and hence the methods may be inconsistent. An explicit
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9)

numerical calculation was carriedl out, to see how
this occurs in a model,
The two channel amplitude with a two pole input

satifies the following equations

-1

a(s) = N(s) D ~(s)

N(s) = MIDC=m1) , *2D(-mp)

g + m s + mp

(%)

(1) (2)

D(s) = 1 = Fy77uyD(-my) = F ""uyD(-my)
S (s. +m )% + (s. - 8)°
F.. = 0ij i i
ey
s +m

and the corresponding one channel amplitude satifies

by = 1 - BleCeIRGNCs") as wes) =_u{pmy),uBBcomy)
B m s° - s s + m s + my
=1 - ug%)D(-ml)G(l)s - (Z)D(—mz)G(Q)(s) (5)

G(l) I pl(S’)R(S’)

(s™- s)(s+ m, )
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The method adopted was to calculate ¢,,(s),8];(s)

and R(s) from (4), where ¢,, and 6§;, are defined by

arl el(ix'|‘5‘11| (6)

aip ~ 7e2iﬁhl
2ik
and to use this R to calculate a(s) from (5) leading
to two other parameters ¢(s) and §(s), similarly defined.
The numerical values chosen were sy = 8, s, = 10,
my = 1, my, = 8 and
DM To9 001 W2 =12 0.
(7)
0.1 1.0 0,1 1.0
chosen so that the elastic single channel amﬁlitude has
a zero at s = 20 with decreasing phase shift (figs 1,4)
ii) the same magnitudes, but with reversed sign, so
that the phase shift is now increasing (fig 3,6).
The results of the calculations are shown in figs
4 and 6. As expected in case (1) the methods give
different answers: in particular ¢ passes through 0 while
¢y, basses through /2, and as can be seen from fig 5, the
calculated cross-sections are very different. Surprisingly,

however, the results in case (ii) are identical, and

this occurs because a zero forms in ReD which exactly
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cancels that in N when calculated from (5). This
phenomenon has curious consequences which we discuss in
Chapter 3.

This anomalous result can be discussed in two ways.

If we consider the function N(s) it is clear that
all(s)’

this has the same phase as D on the R.H.C, and has the
same asymptotic behaviour, It can only differ by having
poles (since D is analytic) on the right hand physical
sheet, which implies a zero in ajy since N is analytic:
thus this is a necessary and sufficient condition for
the failure of the method. From the following simple

argument, it can be seen that the sign of d§ is critical.
ds

Assuming that ao(so) = 0 where a, is the elastic
single channel amplitude, then weakly coupling a second
channel can serve only to move this zero slightly, so

Re all(s)-= 0 all(s ) = 0 (8)

where s is real, s” complex. Hence

a, (8) = (B - 57 dZn ta, (B%)
Sgtg” (9)
80
- - da -1
S* ~ 8 - a 11 (10)

s=8”



...2:5_.

Taking the imaginary part of this equation gives, using (8)

Im 5% = - Im a,,(8) Re 913 %11, ¢11)
1L | ds |

ds,s’

Now o, dall Re dal Redag ..+ d8of_
-, - dslis k ds S
ds ds Is

-

and so finally

- Im aj4(8) a ] a;;(s) ], den
M 5% & = === . = - -
d _ ds’Is da ds[s
311 '2;: —EI-
' ds s ds |s. |
Hence Im s- is positive if ST PR negative, and the

ds

zero lies on the physicél sheet, causing the one
channel method to fail (case(i)) and vice versa.
To derive a more specific condition, we consider

the Omnes - Mushkelishvilli function

P LI
35(8) = ")s-(s-=s)
As shown in Chapter 1, the relation between D and must
be D(s) = (real polynomial)ﬂa(s)

If the amplitude a » 0 as 8 » », then Im a » 0 and
Re a

D(s) » 1, then ¢(s) » -nm=w

Eﬁj(s) + const., s™

so the polynomial is of degree m>0, Since a has no

poles on the physical sheet away from the real axis, the

(12)
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zeroes of the polynomial must lie on the physical sheet,
and from (1), below the inelastic threshold. Hence
D(s) must have m zeroes in this region, and if né is
the number of bound states

ng < m
where the inequality occurs because of the possibility
of simultaneous zeroes of N and D. The multichannel
method will give a similar relation for 11

%11 7 -~ m .
e ML

Hence a sufficient condition for the failure of the

one channel method is that the Levinson theorem np < m

11
is not satisfied: e.g. case (i). That it is not a
necessary condition can be seen from fig 2, where the
one channel method will clearly break down, although
the inequality is satisfied. To see that the inequality
is vequired, it is only necessary to consider the
success of the method in case (2).

It is apparent that this trouble will not arise in

3)

the TFrye-Warnock™’ method, because the unitary condition

here is that Im a = pla|2 + (1 - z%)
n

and the simultaneous satisfaction of z = 1 and a = 0 is
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equivalent to ayp = aq, = 0.

' This problem can be fairly simply overcome by
adding a C.D.D. pole at or near the position of the
zero, so that the zero is shifted onto the unphysical
sheet., It is not obvious how the residue of this pole
can be found. A further difficulty, discussed in the

next chapter, is that in case (2), where N and D have a

simultaneous zero, the equations are very ill-conditioned,

and numerical solutions lead to spurious resonances, It
is probably safe to say, therefore, that the R method
is incorrect when the elastic amplitude has a zero.

The other problem is much more difficult to analyse,
although paradoxically much simpler to cure., This occurs
when a bound state occurs in a second channel when the
problem is treated elastically: when the channels are
coupled it may not occur in the first. An example of

this would be in the reaction ¥N- ¥N: there will be

%

1236 DPut
this can scarcely occur because of the forces in this

a resonance due to the photoproduction of the N

reaction, which are purely electromagnetic: it will in
fact occur because this reaction is coupled to aN » gN.

This can be seen slightly more qualitatively from
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2

&K(s’,s) Im B(s”) D(s*)ds”
L

K(s,8”) = g R(s7Jo () g
k(s”-s)(s'-—s)

Clearly is Im B is identically zero, then[)(s) = 1
independent of R, If a bound state occurs in another
channel, this will show up as a zero of det D in the
multichannel method, which cannot possibly be reflected
by a zero in the D derived from (14),

Atkinson, Dietz and MorganzO) have shown by a method
of considerable elegance that the conditions for the
breakdown of the one channelF"W method can be specified,
exactly in certain caseé. They show that the S matrix

can be diagonalised

1 1
S = 1 + 2ip2tp? = 1 + 2iT
(1)
T, = T = oro~1 (15)
T(Z)

where 0 =} o B
-B a

1
= 3(1 + (1+K2(s))) 72
a 2( ( (s K = 2/0102 't12 (16)

X
= 3(1 - (1+K2(g)))"Z
g 2 p1tyi=-patss

so that one can write T(l) = eld(l) sins(l), where G(l)
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is an "eigenphase-shift". The analytic structure of
these eigenamplitudes is complex, but one can derive a

Levinsons theorem for them.

(17)

(v

i

t

=

n

©

nj-=

o 43
K=l

=

so Det D =‘TI [I(ii]-l det N

It is plausible that all zeroes of get D correspond to
poles in particular T(i) and vice versa, and so by
arguments analogous to those usually used to prove

Levinson's theorem, one can write

6(1)(“) - _ﬂnB(l) (18)
From (15), we can derive
. .o (1) . (2)
5 e21611 - a2e216 + B28216 (19)
2is_ _ . 2is 1) o 215(?)
Z e 22 = B e + o a

which can be geometrically interpreted
as fig (6). Clearly if §,, is to pass

through /2 it is necessary

1) that 6(1) passes through n/2 and
0L2>62
2) that 6(2) passes through w/2 and
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in other words the vector ezj'(S must circle the origin.

This is the so-called crank-shaft theorem.
If, for example, a2 > 32 for s > 8, the (presumed
coincident) threshold and there is a bound state in

eigenchannel 2 only, then

(L

8 (©) = 0 8

—
8
~
1
I
=

(20)
=Ye) Sll(w) = 0 622(w) -

The phase shift calculated by the F.W. method will agree
with the multichannel one, so 6£‘w‘(w) =0
The Levinson theorem in this case is

§(2) « 8(0) = =m(n = n)
C

where n, is the number of C.D.D., poles, so obviously
one C,D.D, pole must be inserted, and the C.D.D. pole-
free calculation will not work. There result can be
extended under certain conditions to many-channel
distinct threshold problems,

This elegant result, however, is clearly of no use
in a practical calculation, since it requires a full
and accurate multichannel calculation to say whether the
one channel solution will be correct. The following
argument which presumably can be made rigorous for a

L.H.C. cut consisting only of poles, appears to give a
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more satisfactory criterion. Since any well behaved
L.H.C. can be approximated to arbitrary accuracy by a
sum of poles, the deduction is probably fairly valid,

A one channel D function, calculated without
inelasticity will have nyq zeroes which in the limit of
gy, = O+ (the relevant coupling constant) will lie on
the unphysical sheet close to the poles., However in the
same limit, the many channel det D may have zeroes away
from the cuts, corresponding either to bound states or
resonances, Any R function calculated from these must
be finite, and the inelastic D function will again
have zeroes near the poles, because the form of the
integral to be evaluated has not significantly altered.
When the coupling is increased, these zeroes may move
near. or onto the physical sheet, and these will coincide
with multichannel zeroes, However, the multichannel
zeroes that start on or near the physical sheet will
never have corresponding zeroes in the inelastic calcul-
ation, because this would mean discontinuity in dyo/dgll,

where v, is the position of the zero under consideration.

0

This argument must be slightly modified for the

F.W. method, because a bound state could be produced even
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in the limit of 811 ° 0, since a generalised Born term

B(s) = B(s) + g l-:—ﬂfiﬁil ds”
R

s’- 8

is used in the equation for N

2 N(s) = B(s) + & g s’B(s”) - sB(s) 2p(s”) N(s~)ds *
1+3(s) T Jg s°(s’~ s) l+zfs’)

and it is possible that this bound state is correct.

It is not obvious that any bound state produced by
inelasticity is necessarily correct. Any criterion
based on Levinson's theorem such as the crank-shaft
theorem, is only a sufficient condition for breakdown,
and so it is possible that a bound state calculated by
either method could still be in the wrong position, so
the amplitude would still require a C.D.D. pole.

A simple model which demonstrates these properties
can be easily found. The simplest two channel model is
considered: non-relativistic with coincident thresholds
and a one pole L,H,C,

If Im B ps(v + 1)

1
/=u+l

1

we find D(v) 1 - uD(~1)F(v) where F(v) =

(for convenience the subtraction point is taken at «)



- 33 -

-1

Hence D(-1) = (1 + g)

nl=

1

hoi

pu(l + u)';*; -+ 37 C

and g(v)
1 + v

w(l + u(d - F)YL/ (1 + W)

This gives an inelasticity function that can be directly

integrated:
R =1 + lalz | 2
ail
- y U122 1+ Y
= +
(2uyy*dety) v+ TuiiFdety
_ 1 + v
= 1 + a 5T b
Hence D (v) =1 - uyyD(=1) 1 + a
11 V/=v+1 /=v+b (25)

In the limit of wy; = 0+, R =2 5, so the effect of
the inelasticity is to produce a second sheet pole at
the position of the force pole, which gradually moves
away as uj; is increased. These two poles produce a
zero, which moves up the negative real axis on the
second sheet to threshold, where it passes through to
the physical sheet and becomes a bound state. In the
corresponding two channel det D, there are two zeroes,

one of which may start on the physical sheety, while the
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second corresponds exactly to that calculated by the
one-channel method with inelasticity.

A curious feature of this particular model is that
if the negative square root of b2 is taken in (25), the
calculations are identical: in other words this is
precisely the correct form for the C.D.D. pole. This
is presumably a coincidence due to the very simple form
of the model, and does not seem to carry through to
more complex cases,

In view of the forgoing it seems safe to make the
following statements:

1) The R method will always break down when a zero
occurs in the amplitude: in principle for case 1)
and in practice for case 2).

2) The R method will always break down when a bound
state occurs in the multichannel calculation with
811 ° 0, but will work when the bound state occurs
in the elastic calculation, It is difficult to
generalise about intermediate cases, when the bound
state is produced by the interchannel coupling.

3) The'q method will not work when the crank-shaft
theorem indicates it will not, which will usually be

when the bound occurs in a second channel,
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These observations are of little practical use,
because we must always solve the multichannel problem
to decide if the one-channel will work. We may
summarise this chapter by saying that if the single
channel ND"l method does not have the correct character-
istics, then it is unlikely that adding inelasticity

will make an essential difference.



CHAPTER 3.

Anomalous Sclutions of the ND-l equations,

In general, the ND_l equations have solutions which
have the following properties:
1) D(y) » 1 as v » =
2) The same Levinson's theorem is satisfied by the D
function and the amplitude, at least when C.D.D. poles
areaabsent,
3) The N and D functions are unique, and stable with
respect to small perturbations of the input.
However, it is possible to find force functions for which
none of these statements hold: in particular one can
find solutions which have a simultaneous zero in N and
D, which is the previously mentioned extinect bound
state (E.B.S.). This is of interest because of Chew's
suggestion that Regge trajectories may have vanishing
residues at what would otherwise be physically important
angular momentum values.

We consider, for simplicity, a two pole non-relativistic
model, with the solution (egn, 4 of chap. 2)

U, D(=v,) u,D(=-v, )
D) = 1 - 1 1 2 2

- D)
/-v+/v1 /-v+/v2

If solving this for D(-y;) and D(-vy), we find
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]JZD(‘\)z)
1+ D(-y;) + ———— =1 (2)
2/vy SRR
K 1Y)
I — D(-\)z) + 1+ D(—\Jz) =1
)/\)1+)/;2 2/;-2
with the solution
A+ u,/V|B A - ul/v;B
D, = D, = —————— (3)
C C
where Di z D(—vi)
A = ”/“1“2 (Vo + f32> (L)
B = 2(\)1 - \)2)
C o= Gy + 2N Gy 2R V) g, TS,
There is apparently no solution if C = 0O (5)

corresponding to the vanishing of the determinant for

eqn.(2) unless also

2/5; Sy + /5y )
M, = (6)
Q/Gi = Nl - ‘/\’)-.2

which implies the eqns. (2) are identical. Without

any significant loss of generality, and a great increase

in numerical convenience, we take v; = U4, v, = 9,
Then (5) gives ~-100(u, + 6)
Moo= (7)
M, + 150

f
i
=

Consider, for example, ¥, = 1= 10, If we take a small
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perturbation ¢ of the Hys We find that a; is well behaved
as € +» 0, although the individual N and D functions are

not. In fact

300(10 + ¢) 200 (20 - €)
D(v) = 1 + -
i € (e +250) (YV+2) e (e+250) (Vv +3)
‘ 300(10 + ¢) + 200(20 - ¢)
N(w) = -, ,
| e (e+250) (v+4) e (e+250) (1 4v+q)
V=2 (V=v+2)(V=v+3)(1=V-v)
while a(v) =
e~+C- v+l (v+4)(v+9)

i which is an apparently well behaved amplitude with the

expected force poles and a bound state at v = - 1.
However, asymptotically (--\))3/2 + 4y
ca(v)
v 2
1 1
so Im a(v)v — Re a(v)
v2 A"

and so §(») = w/2: in other words, the normal Levinson's
theorem does not hold.

If we now satisfy (6), (in this case H¥3=-20, H,=30)
which is, of course, a special case of (5), an E.B.S. is

produced. If we write Ji = uiDi, then we can choose

J1 and J» such that N(vg) D(vg) = O for Some Vvo. If
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we then calculate y; and p, from (1), and then feed
‘these back in through (2), we find that (5) is satisfied,
and the equations (2) are identical, and give
Dy, = (1 + 4D,)/6
Hence we find |
((=v)+20D,-4)

D(v) = (8)
(V=v*2) (V/=y+3)

5((=v)+20D,~4)

N(y) (9)

(v+t4) (v+9)
and D and N have a simultaneous zero at the totally
arbitrary point v =-U4420D;. Clearly D obeys a Levinson's

theorem

while a; obeys§(we) = -m = -(n, + ny )=

(10)
§(o) = 0 = -n. 7.

b

where n, is the number of extinct bound states

Auberson and Wanders show that the point in the
Miu, Plane given by (6)ris an instability point in the
following sense: small changes in u; and u, from these
critical values lead to seven different combinations of
bound states, virtual states and reéoﬁances. An amusing
(though useless) observation is that if only one of the
poles satisfies (6), the bound state is automatically

produced at the position of the other: the second pole

becomes irrelevant.
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Atkinson and Halpern find the general condition

that an E.B.S. is produced. If

£ ov)z(y)
3 . dy - (11)

Im B(v) = -« Im z(v) 1
T 9 ”

v =y
where z(v) is an arbitrary function analytic but for an

L.H.C, satisfying

;03 p(v)z(v)dv” = u (12)
m
and p(v”) may include an inelasticity factor, than aq
has a E.B.S. The proof is simple: writing
- V = Vyp
NG = 0 s
gives -
- l - \’,-\,o
D(\)) - l I S p(\))Z(\) ) d\)’ (13)
TH g vo=-v

-V -~ P
_ v=Yo & p(v?)z(v”) v *
mu

vy
0

so D(vg) = N(vy) = 0. Another way of stating the same

result is to say that the homogenous equations for N

and D are solved, which again gives a one parameter

arbitrariness in the solution. It is trivial to see

that the input u;8(v+vy)+uys8(v+v,) with (6) satifies (11).
Another curious but useless relation for extinct

bound states involves the Omnes~Muskhelishvilli function.
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If we write
D(v) = (y - vo)gjkv)
and require that N(y,) = O also, we find

Joo

S Im B(v’iﬁ(v’)dv’ = 0 or . % B(v) dy 0
L I dv (14)

The simultaneous zeroes found in the previous chapter

imply that R must satisfy a condition on a certain Fredholm
determinant. (11) leads to an integral equation for z

that is the homogeneous equation for N

S B(v)=B(v*)

z(v) = p (v I)R(y )z (v*)dy~ (15)

R v - v’

and this must have a non-trivial solution: in other
words A = O where (1l8)
n

(-1 \\
1 dvidvj a7n

g det[K(vi,vj)l
R i

e
"
(]
f

n

and K(v,v*) = B()=B(y7) p(vIRGy*). In fact the R(v)

v =V
found numerically satisfies a simpler condition, analagous
to (2), which can be derived from (11), to a high degree
of accuracy. However it is very hard to see how one can
show that any R, derived from a multichannel calculation

with the usual unitarity conditions and the condition on

the phase shift, will satisfy (16). R is not an analytic
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function, and this appears to make any statements of
this form impossible.
Gross and Kayser show that an E.B.S. cannot occur

for a 'normal' potential., If a potential satisfies

/ r|V(r)|dr < «» and ! e M V(r)| dr < = (18)
0
and we write

£(=k), N(k) = L0 = £C=k) (19)
2ik

D (k)

then f(ik) = u(ik,O) where u(ik,r) are the solutions
of the Schrodinger equation behaving asymptotically as

+
~ikr

Then the Wronskian W Ekk,r),U(—k,rfl can be formed
and shown to be independent of r and equal to 2ik at
r = w, However, if f(k) = f(-k) = 0, corresponding to
an E.B.S,, then the Wronskian for r = 0 is zero., Hence
conditions (18) cannot be satisfied.

They then proceed to show that the potential in fact
behaves like %? at the origin. The Gelfand-Levitan-
Marchenko (G-L-M) method is used, which enables one to
express the L.,H.C, discontinuity in terms of an equivalent

potential: the following is a summary of their method.

Marchenko showed that the potential may be written
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V(r) = %:_ Alr,r) (20)

where A(x,y) is given by
A(x,y) + F(xty) + émdt A(x,t)F(t+y) = 0
and F(r) is given by the Fourier transform of A,
Alx,t) = Sa(v,x)e't/:7 dv (21)

one may derive

f(\)) e"X(l/"\)-l'}/"\)‘) a( »

v’ x) —
a(v,X)-&dv’ — — = f(v)e-X/-“
L /=v +/ v~
' (22)
where f(v) = % Im al(v) on ‘the L,H.C.
When the L.H.C, is a sum of poles, (21) cannot be
solved directly. However (20) is equivalent to
» 2 . §
V(r’) - (A (I’)) A(P) A"(r‘) (23)
(a(r))

where A(R) is the Fredholm determinant of (21). We may
then solve explicitly for the potential: if the L.H.C.
consists of n poles, the first n terms in the Fredholm

series are non-zero, so corresponding to a two pole input

e-2x/—v
A (k) = - g f(v) =———————— dv
L 2V -v
~2%V/-v -2%V=-v
e . e
A, (x) = 1 gg £(v) £v?)
LT, 2V=v 2/=v”
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e-2x(/—v+/—v’)2

-f(v) £(v*) dv~” dv
V=v+/=y~
leading to
- - - +
uye 2p1% uye 2pox (Pl"Pz)Zuluze 2x(p1tp2)
A(x) = 1 + +
2p; 2py 4pypy (p1+p2)?
(writing p; = /vi)

Now if A(x) constant at x = 0, the resulting potential
will be well behaved. However, if wj; and u, are chosen
such that A(x) = x as x » 0, it is easy to see that

V(x) ~ 1/x . This corresponds to the dondition

2
uy ua (p1=p2)uiuy
1+ +

1
(&)

(26)
2p1 2py 4py;ps (p1+pg)?

tthich is identical to (5). If we further demand that
A”(x) ~ x as x » 0, then we find a further condition
(PI‘P2)2H1U2

2p1 Py (P *Py)

(note that 1/x2 behaviour of V(x) is retained, since

if aA2(x) ~ %, then A(x) ~ x2), These two conditions
turn out to be equivalent to (6). As the second order
vanishing of this quantity aA(x) has no particular
physical significance, an E.B.S. cannot be regarded as
having any significance in potential theory. A plot of

the potential satisfying (26) and (27) shows that it is
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purely repulsive,

It is a fact that is not generally realised that
although presumably any L.H.C. discontinuity corresponds
to a potential, the connection is not analytic. In the
u space there is a line (or in general a surface) given
by C = 0 in egn. (4), or its generalisations, which
behave likel/r2 at the origin. However artbitrarily small
perturbations lead to well behaved potentials. There is -
a one to one correspondence between the vanishing of the
Fredholm determinant for the D equation, the vanishing
of the Fredholm determinant for the Gelfand-Levitan
equation and the production of an E.B.S.

An interesting, speculation suggests itself at this
point. The multichannel N/D equations have a multichannel
Schrodinger analogue, and presumably their solutions
are identical: similarly the one channel N/D equations,
with inelasticity, have a corresponding Schrodinger
equation with an equivalent (presumably complex, energy
dependent) potential. It is plausible that the connect-
ion between E.B.S. and l/r'2 potentials carries through
to the inelastic case. We have seen in Chapter 2 how
an E.B.S. must be produced if the method with inelasticity

is to be correct when the amplitude has a zero: hence the
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equivalent potential should have a 1/r2 singularity.

Now it is known that in elastic potential scattering,
singular repulsive potentials lead to Regge trajectories
that are straight as s + » (because the behaviour of

the trajectory at infinite energy is linked to the
curvature of the potential at the origin.) Hence the
empirical straightness of the trajectories may be

simply explained by the fact that all physical calcul=-
ations should really be considered as coupled channel
problems.

It is apparently very difficult to proceed further,
because equivalent potentials for coupled channels are
energy-dependent (and hence non-local) and complex.

The method outlined above is unsuccesful, because an
implicit assumption in the derivation of the G-L-M
equations is that the v-plane may be 'unfolded' along
the unitarity cut: in other words there is no unitarity
cut in the k = Yv plane., It is probably impossible to
solve the resulting equations if the transformation

k = RYv is made, because R is not an analytic function.
The method of Bargmann cannot be used, because this

assumes that the S~ matrix may be written in the form

S(k) = =% (28)
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where f(k) is of the form f(k) = t k = on (29)
' k - Bn
n=1

Although one can consider non-unitary S-matrices (and
hence complex potentials) in this method, which is
equivalent to, but less convenient than, the G-L-=M
formalism with a pole input, it is not true that any
complex potential corresponds to a real multichannel
one, in the same way that R must satisfy a very subtle
condition if it is to represent a 'genuine' multichannel
effect., Tor a 'genuine' R, such as that calculated at
the end of the preceding chapter, it is impossible to

nake the decomposition in (28) and (29).
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CHAPTER 4,

A Dynamical Quark Model.

It is apparent from the discussion in Chapter 2
that, if the major forces in a second channel, then it
is in general improbable that a multichannel bound
state will be found in a one-channel calculation., In
this and the next chapter we consider two cases: one in
which the major forces must occur in a second channel
and one in which they may do so. The first deals with
the so-called 'naive' quark model, and the second with
a two channel calculation of the Pll wave in #N scattering.

The great success of SU(3) as a classification
scheme led to many attempts to obtain a less empirical
basis for it. The most successful of these is the

24,25)

quark model s, which assumes a triplet of basic

spin 3 particles with the following quantum numbers

I I, s ¥ B Q
p 1 3 0o -1 ) 3
n _;: _32_ 0 _& % _§ (1)
» 0o o 1 % } -}

Then the mesons may be constructed from quark-anti-

quark pairs
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¥ T - -
e.g. o= — (pta¥-pin4)
V2
+
p = p rp 2
+

and the baryons from symmetrised quark triplets

.8, 1
= — (B, - 2B
/18 P 124
where the Bijk are SU(6) invariant tensors which describe

the wave functions: e.g. B is the fully symmetrised

114
combination of p + p 4+ n ¥

It is fairly simple to show that if baryon number
and charge is conserved, then permutation symmetry on
the quarks is equivalent to SU(6) symmetryZS). However,
very much more can be deduced from the quark model than
from the symmetryj; for example, the quark model predicts
that mesons will occur in nonets (corresponding to the
9 possible qq combinations in the various possible states
of angular momentum), Plausible potentials lead to
reasonable intermultiplet splittings, and the following

27)

nonets have be tentatively identified (the notation

is the standard spectroscopic one).



State L S gF€  Particles
13, 0 0 0™"  mKnn®-

38, 0 1 17T oKE g we

3P, 1 1 2 A K, FE”
3P, 1 1 1" A, DE
3P, 1 1 O+_ 8460’"1003’K725’“v(1050)
1P, 1 0 1" $9602X1080
3D, 2 1 37" R, (1640)
3D, 2 1 27" R, (1650)
3D, 2 1 17" R (1700)
1D, 2 0 27"

3F, 3 1 TR

36, u 1 577 T

3H, 5 1 677 U

The assignments in the first three nonets are almost
certain, as is the existence of most of the other partic-
les: however it must be emphasised that the scheme is still
fairly speculative. For example, the spin of the R,S,T and
U mesons is a guess based on the assumption of a linear
Regge trajectory; and the existence of the whole scalar
nonet is in doubt. It appears that the observed resonances
may tend to split into two or three (this has already

happened for the R, and may well happen for the A, and

1
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A2) when better experimental resolution becomes available,
and there will, if anything, be a surfeit of particles.
The only particle at present that cannot be fitted into
a multiplet is the I=3/2 K§175, and the existence of
this is very much in doubt.

For baryons, the model is less successful, because
of the much greater complexity of 3 quark systems and
the requirement of parastatistics to give a symmetric
S-wave wave-function. The octet and decuplet are satis-
factorily described, and it has been shown by Dass and

2)

Ross™’ that a large number of members of higher SU(6)

multiplets will be coupled either very weakly or very
strongly to presently available particles, so that they
are unlikely to be experimentally observed for some time.

The quark model gives a satisfactory physical

25)

interpretation of the Gell~Mann-Okubo mass formula,

by assuming that m = mp, m, = mP + ¢ and an isospin

A
splitting «I(I+1); and the Coleman-Glashow formula, by

assuming that m., = mp + S and an electrostatic inter-

action « Qq. The famous SU(6) result un/pp = -2/3
follows, by assuming that the magnetic moments of the
quarks are equal to their charge, and sum to give that

of the nucleon. However there is some difficulty in



explaining the fact that mesons obey a (mass)2 formula,
while baryons do not: this can be explained by assuming
certain types of potentia127).

From other assumptions, further mass relations can
be derived: if the wave function is the same for all

members of a multiplet then the mass splitting depends

solely on the additional mass of the A quark

(,220:,214:,218)
4)

2 2 2
me - m- = miy - = mL -
K U Kior = ™o T ™Kiuos "A2

However, such rationalisation of SU(6) results is
a comparatively small success. The greatest success of
the quark model has been in predicting relations between
cross-sections. This was originally done by Lipkin29)
and collaborators and extended to a large number of
other interactionssO). The basic assumption is the
impulse approximation; the particles may be envisaged
as being bound by a comparatively long-range energy-
dependent force, and interacting via a short-range one.
(The model may be likened to hard balls attached by elastic
rods; it is amusing to note that a relativistic rotator

2 131)

giVes rise to an energy level formula M™ = k y which
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is apparently satisfied by the p—Az—R—S-T-U chain of
mesons). Hence in any given collision, the amplitude
is the sum of two-quark amplitudes while the other quarks
are regarded as spectators. Thus, ignoring spin, we

can write the n+p - n*p amplitude as
+ + - -
G p|Tin B> = pR) (ppn) |T| (pR) (ppnlY

= 2(fp|T|Apy + 2<pp|T|ppy +<{pn|T|pny +&n|T|An)  (5)

By summing the similar amplitudes, we can derive

wro

( + Guw. + O + 0. ) = O + 0 (6)
“pn T %8N T pp T TBp t+p  Cn-p

Here we have used only the optical theorem and isospin
invariance., The further assumption of the Pomeranchuk

theorem gives the well known

ag

3
PP - : (7)
o] 2

TP

Difficulty arises when (7) is compared with experiment
because it is not clear whether or not we should compare
the cross-sections at the same energy. The discrepancy
is about 20% if both are compared at 18 G.e.v. Van Hove
suggested they should be compared at the same C.o.m.

energy per quark;
i.e. Epp 3x3 3

Enp 7%3 2
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which gives the ratio in 7 as .6. HDD Watson and |

32)

P James have argued that the cross-sections should

be compared at an energy such that the relative velocity
of the quarks should be the same. Considering the proton
in each case as stationary, we find

m m

E_ = "2‘ E=——L2
Y1-v P V1-v
i p

and since the velocity of the quark is obviously equal

to that of the particle, Er = mr. The relation (7)
E
b P

°

now requires a plausible extrapolation, but the

agreement now seems excellent. More recently Van Hove

and Kokkedee have argued that, since the quark model |
gspecifically assumes conservation of quarks and anti-quarks
individually, we must exclude the annihilation cross=-

section from pp in equation 6), which brings it into
satisfactory agreement with experiment. In fact the

error in 6) is then less than the experimental error,

It is an interesting observation that no other model of

high energy scattering predicts even that

The basic idea has been extended to non-forward

and inelastic reactions, which require additional
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assumptions to replace the optical theorem, Kokkedee

and Van Hove consider

_ < A B e
Taplest) = yro £0(O1°(0) SIESD;

as an ansatz for the scattering amplitude: fiA and £.B are
the formfactors (corresponding to the Fourier transform
of the wave-function of quark i in particle A etc) and
<éj|T|ij> the matrix element for the quark scattering
reactions., These last are probably more or less equal

at high energy, so we can write

B

_ A
TAB(S,t) = A(t) Zifi (t) ij. (t) (9)

J

which illustrates a property similar to the Regge
property of factorisation.

For simple inelastic reactions which only involve
the change of spin, charge or strangeness of one pair
of quarks, the amplitude can be written as

<aB|T|CDy= {ij|T|k1) (10)

where quark i is in particle A and scatters off quark jJ
from particle B, Hence PP +_AjLis described by (ignoring

spin)
<3ppn)(§§ﬁ)|T](pnx)(ﬁﬁii?

= <P13|TQ|AX>

(11
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and the pn, pn pairs are assumed not to enter into the
reaction., To achieve any quantitative results one

must assume that t dependence is the same for any i,]j,k,
1 in (10). If the analysis is carried out with the
inclusion of spin these requirements can be relaxed but
the predictions are rather more complex.

The simplest predictions tend to be negative: for
example

*

Gl T=_~>=<P§|T|z'§'7 =<P13|T|N""N*-> = 0 (12)
because all require two colisions of the type pp 9 M
However <P§|T|Z+§+7 0 (13)
because this requires only nn -+ Ax: expefimentally the
cross-section from (13) is at least 30 times as large
as those in from (12). An additional encouraging result
is that one would expéct the angular distribution given
by (13) to be largely forward; this is in fact so, while
the distributions (such as they are) from the first
two reactions in (12) are isotropic.

Calculations have been done involving spin, and
these too have satisfactory consequences., For example,
n+p > 7 P with spin-flip and n+p + p+P are clearly
associated with the two amplitudes

<p+p+ITlp+p+>and<ﬁ+P‘“|Tlﬁ”’\+>



which might be expected to vanish at the same rate.
Experimentally p production decreases rapidly with
energy, while spin-flip remains fairly large even at
high energy. In fact it turns out that the amplitudes
have coefficients such that P production vanishes in the
Pomeranchak limit while spin flip does not.

Further relations can be derived between production
amplitudes for particles in different multiplets. In
this case, the wave function must be split into a spatial
part which will be the same for every particle in a
multiplet, and a part which depends solely on the quark

interaction., Thus

T R P10 2 <plTliny

(14)
Apepact BT F B0 it
1405
so that

K - - .
Aﬂ‘p+Ké91 5t - An‘D+K?320 - An‘p+K'Y1§85

A %

A - A _ - e N

m=p+p P n-p>A3 D AR £-N

Backward scattering can be qualitatively described
by the quark model. We must assume now that quarks have
a tendency to pair inside a baryon, in much the same way

as nucleons tend to form o particles inside a nucleus.,
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Then meson-baryon backward scattering will proceed by the

backward scattering of the meson antiquark from the

baryon guark pair (dence), while the remaining quarks

continue in their original direction. Thus n+p

backward scattering may be written
(p;n)+(p,pgn) #(py 53N+ (P Py 5,0)

with a matrix element 2<ﬁ (p n)|T|n (p n)>u This has

several very simple experimental consequences: for

example
dﬂﬂ—P+ﬂ—p = ch-p+w-Z+ (16)
dt - dt -
0= m O=m
dg - - - d_ .- -
Terp-Kort = ggKTpeKts (17)
6 = 1 =1

These results are independent of spin or energy consider-
ations: the first has L.H.S. and R.H.S. of 7.0ub and
lOiSub respectively at 3.5 G.e.v.

However, the most elegant results obtained to date
are the relations between density matrices for high
spin particles produced in collisionsBQ). Some density
matrices are given as simple numbers by the quark model,
without any assumptions about spin or energy consider-
ations, For example, the reaction

- ++ ++
PP * A A



leads to the values

Theor Expt. at 5.7 Gev/c
011 0.5 0.u1%,02
22
-1 +
P32 0 0.0-0,01
2
+
P3 4 0 ~0,0520,02
2 2

The results are clearly good, even though their energy
is not really sufficiently high. Similar results seem
to provide the cleanest possible test of the model.
There have been several objections to the quark
model, The most basic is simply that quarks have never
been observed: this could be due (g=S=m to their very
high mass: the pair production cross-section is estimated
to go down by a factor of lO5 for every increment of one
proton massss). An aesthetically more satisfactory
solution is Schiffs suggestion that free quarks cannot
exist because of some fundamental conservation law, of
electric of baryonic charge, which only allows physical

states such that Q = 0 modulo 3.
36)

Secondly there is the problem of parastatistics
The lowest state for baryons (the 56 of SU(6)) requires
a totally symmetric wave function., Since the unitary

spin part of the wave-function is symmetric, then if the
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spatial part is s-wave the quarks must obey parastatistics

«t

to avoid violating the Pauli principle. The alternative

is that the lowest energy state is P-wave37)

, which is
unexpected on simple potenfial arguments (unless the
dominant force between quarks is a three body one).
However neither solution is impossible,

Thirdly there is the objection that the relations
given by the quark model are simply wrong. In part-

icular Barger and Durand38)

have claimed that results
similar to (6), (7) and (1l3) are incorrect: notably
the Johnson-Trieman relations
© x-p T %*p = 2(0""13 - c“.,.P) (20)

However, this requires an additional assumption in
that full SU3 symmetry is required, e.g.

<jp|§p>‘= <ﬁ p|n €> (21)

However, this is not part of the quark model,

which assumes specifically that A amplitudes are in
general different from p and n: expirically there is a
20% difference, which carries through to backward scatt-

ering

B B
0K+p+K+p o .8 Gﬂ+p+ﬂ+p (22)
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whereas SU3 would predict them to be equal. Their
second serious objection is that the relation

do . 0 dg,~._ =0 do=_ =
Za%ﬂ prm n = E%K prKn = a%pp+NN (23)

is seriously inaccurate. The first relation does not
follow from the quark model, but, even using the Van-
Hove or James-Watson energy prescriptions, the second is
in poor experimental agreement. However, if the annihil-
ation contribution is subtracted from the §p+ﬁN amplitude,
the agreement becomes fairly good. This is also the type
of process which will be very sensitive to rescattering
cdrrections, which differ for BB and MB processes.

A third significant failure of the quark model is
in PP annihilation at resth). The original model of
Rubinstein and Stern which merely rearranges the quarks
and antiquarks into pairs to form mesons is hopelessly
wrong. About a dozen clear experimental comparisons can
be made, and only two are correct: the branching ratios
into "+“fﬂ and into ﬂ+“_ﬂo final states (and the second
for the wrong reasons, in that this in fact proceeds
mainly through prn). The average number of mesons produced
is 5 (not 3) and strange decays (forbidden on this model),

form 10% of the total.



An attempt has been made to allow for creation and
annihilation of qq pairs: the simplest assumption is
that the pairs are produced in a 'S, state, and PP, nn
and )} production are equally probable. This is equiv-
alent to producing an SU6 singlet. The rearrangement

model used here is hardly any more successful: it predicts

Appsam 9

4"

Appspr-

theoretically even before the unfavourable phase space
has been allowed for, whereas the experimental ratio is

1/10. Since the annihilation is at rest, the mesons
will be comparatively slowly moving and so will interact
fairly strongly: in other words the flaw is in the
assumption that there are no final state interactions.
Experimental comparison should only be made after all
strong decays have occurred, and even so this is
probably not a good test of the model.

These are empirical objections: a theoretical one
is that the model ought to be poor because it ignores
the kinetic energy of the quarks inside the hadrons, This
would be particularly bad for high spin particles: any
extension to (say) spin 5/2 particles would be suspect

on these grounds., Delofqu) has shown that in a reason-
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able model rescattering corrections will be of the

order of 10%. This is irrelevant for comparisons of

MB or BB amplitudes separately, but further confuses the
comparison'of the two together.

Finally there is the objection that the quark model
tells nothing that cannot be obtained from the peripheral
(or Regge pole) model plus some symmetry. For example
the predictions (12) are found by the peripheral model
because there is no doubly charged or double strange
meson that can be exchanged: at high energy they must
proceed by two particle or pole exchange, which makes no
predictions about angular distribution. However, it is
still difficult to obtain relations between MB and BB
amplitudes on any other model. This is not so much an
objection as a matter of taste.

It is apparent that to understand the quark model
more fundamentally we must know something about the
dynamics. An interesting suggestion is that quarks inter-
act by a vector particle coupled to the baryon currentul):
this immediately gives SU3 symmetry. When we investigate
the model more seriously, however, a paradox comes to

light. If, for example, the p is a qq bound state then
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it occurs only incidentally (i.e. as a C.D.D. pole) in
the g4 channel., This implies that any low energy dynam-
ical model, for example the p bootstrap, cannot hope

to work, as the bound state is in the wrong channel. 1In
other words the quark model, which assumes the p is
basically a qq bound state, and conventional bootstrap
theory, which makes it a pq bound state, are incompatible.
Incidentally it is impossible for it to be a bound state
in both channels simultaneously, because degenerate
perturbation theory tells one that the combined amplitude
will contain two poles. It is known that a believable

p can be produced by a bootstrap: therefore it is mean-
ingful to ask whether it can possibly be made of quarks.

A model calculationuZ)

was performed to investigate
this possibility. Because of our complete ignorance of
the qq force, it is probably not unreasonable to ignore
spin and isospin. We therefore consider two heavy

(~5 G.e.v) quarks scattering in an S-state producing a
deeply bound p: the force being provided by an X meson
(again scalar). If we then couple in a second channel,
corresponding to ww, and adjust the paraméters to produce

the correct p+27 width, the position of the p pole will

move. This displacement will give a rough idea of how
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good or bad the model can be.
The first proposals for a realistic quark modelus)
suggested that non-relativistic quantum mechanics could

be used despite the very deep binding. The range due

to the exchange of a meson of mass m, is

h
R % e
m_c
X
so from the uncertainty principal p ~ % Tom
m
so that the kinetic energy T ~ 2~ X
2n m
q
If m, “ 1 B.e.v. and mq ~ 5 B.e.v., then T ~ 200 M.e.v.

<< mg s and the non-relativistic approximation is
justified. TFrom arguments about 'reasonable' potentials,
one may show that the energy differences between states

of different orbital angular momentum are likely to be

of the order of the ground state energy, which is
physically reasonable and can be compared to the multiplet
structure described earlier., However, Greenberg has
indicated that the non-relativistic approximation may

be no good even for a superposition of Yukawas.

An alternative possibility is that the qq force is
by)

~

, corresponding to m,” om .

predominantly short range q

This would suggest very different predictions: the



kinetic energy of the quarks would now be mq, and
one would expect the energy difference between the s
and p states to be similar., Thus only the 1 = 0 states
in the conventional quark model would be genuine qq
resonances: the higher ones would be bound states of
pseudo=-scalar or vector mesons. This would no longer
require the baryon excited states to be C.,D.D, poles:
the N?éss would be a genuine 5 N bound statej this model
has the pleasing result that only the lowest lying
particles, the pseudo-scalar and vector meson nonets
and the baryon octet are fundamentally quark bound
states, but unfortunately it requires an extra singlet
spin 3/2 baryon, which has not yet been observed (in
other words, the baryons form a 20 representation of
SU(6)). An even more extreme model might assume that
quarks couple almost entirely by spin: this would give
only a pseudo-scalar nonet and a baryon octet as
fundamental, and has no C.D.D. problems as a result,
However, although these models are appealing for dynam-
ical reasons, they are far less rich in experimental
predictions,

To test both models, we carry out a dynamical

calculation with a variable mass for the exchanged meson.
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For a given value of m s we use the Feynmann diagram (i)
as an input to the Np~1

equations. The p appears

as a bound state in this

amplitude (ii), and we adjust

qua until mp‘is near the

physical value. We then

couple the ww channel by

(iii), introducing a second

P _ . .
//,, \\<E I parameter Gnqq which 1s

< Sye” adjusted until ™ has

p+21|'
o r the experimental value,
There is an additional

S~ T2 N T force due to (iv), but this

T > 7 \\
7’

. o turns out to be cbmparatively
() (W)

unimportant. Because most
of the dynamics of the calculation comes from the qq
channel, it should be possible to treat the nn channel
as a perturbing influence, and we now derive a formula

which describes perturbature influences on ND™%

equations, similar to that of Dashen and FrautschiqS).
Both unperturbed and perturbed amplitudes obey

unitarity on the right,



Imat = -p

Im (a + sa)™t = -P
-1 -1

S0 Im (a ga a ) =0 in the R.,H.C.
Writing a = o™t = Ty~ §T gives
Ty -
Im (D sa D™) = O (24)

while on the L.H.C.

T

Im (D 6a DY) = D Im sa D (25)

If we consider (24) and (25) specialised to the case

where initially a12 = a . =z 0 (so the channels are
2

decoupled), we obtain a dispersion relation for sa;,

1 ds“D11(s-)Im al2(s-)Daa(s”)

mD11(8)Dyy(s) s*~ 8

sa (=a;,) =

(26)
Now if we consider the one channel case, initially
Im a;; = pylay;}? (27)
and finally Im(a;; + saj;) = pylajy * dayy|2 * pylay,l?
If the first channel has a high threshold, we may (28)
ignore the first term so that
Im say; = pplayal? ty<s<t

or, since D;; is real in this region

Im (Dy38a11Dy) = palayy|?|Py1l? (29)
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Again dispersing this gives

laja|2 Dpy]2

8%~ 8

IQ

1 s~
sany = Ly \ 8270,

(30)

Although (24) suggests that D;;8a;; D;; has no R.H.C.
this is only in first order, (30) is clearly a second
order expression, which suggests that the approximation

should be good. Near the p pole we have

-3
ayy T

S=-3Sp

s0 2
i f1ésp . 2£,8%, (31)
11 (s-5p)2 (s-sp)
(30) and (31) give
1 ds” IDy112)a;,]? (32)
§sp = T T

However, we also have
-5,
12 *© S=-Sp

near the p pole, and this combined with (26) gives

. g & D11(s”)Im ay5(s”)Dy5(s") 4.
1t2 = =71
Dll(Sp)Dzz(Sp) R S’ - Sp (33)
- & I(sp)

— where g is some coupling
D11(Sp)D22(Sp)
constant.

From (33) and (26), g can be eliminated to give
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o . Dy1(sp)Dy,(5p) I(s) (34)
dyp\s8) = ~I:1T,
; Dy1(s)Dy, (8) I(sp)

so finally
2 g 2
. —f2 I(S') Dzz(sp) ds” (35)
680 = P S‘“Sp

T R 2 I(sp) Dyo(s”)
which i1s an expression for §sp in terms of‘fz, the
coupling of the bound state in the second channel. A
very simple form occurs if we take

Im aj, = g 8(s + ¢) (36)

when I(s) = P11(e)Dya(e)
g + ¢

and (35) becomes
2

2 2
*fz D22(Sp) S + ¢ ds
§sp = &92 o] (37)

LA Dyo(s ) s t+ ¢ s - sp

Sevéral points about (35) and (37) are worth noting.
If t,, the channel 2 threshold, is larger than sp, then
all the quantities in (35) are positive definite, and
so the mass-shift is negative definite. Even for
sp > t,s the mass shift turns out to be negative in the
example considered: however this is not true of (37).
Secondly if sp > t,, (35) gives an expression for the

imaginary part of the mass
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2 »
Im spsp = £, p(sp)
which is the usual coupling constant-width relation,

rd

so long as sp is taken to the perturbed mass (i.e.

85 = sp + 8sp). Otherwise the expression is clearly
wrong if the bound state moves below t,. Finally,
(37) is independent of D;;: the binding in channel 1
has no effect on the mass shift due to channel 2, We
would therefore expect this to be approximately true
of (35).

Computer programs were written to solve this
problem, both exactly, by calculating the full two
channel amplitude corresponding initially to a one
pole input and secondly to scalar particle exchange, as
well as by the perturbative expressions (37) and (35).
The Np~L equations were solved by matrix inversion of
the integral equation for D: this is simple because
the L.H.C. 1is straight, and the Born term for scalar
exchange has a simple imaginary part.

The one pole approximation, where the channel 1

input is taken to be Im B = €45x §(s + umé - mi ) (38)

shows a remarkable agreement between (37) and the

exact expression. The position of the pole (36) was



taken to be at the end of the cut due to quark exchange
2

(diagram (ifi): i.e. at ¢ = = (L&m1T - ). This weights

?J g
Ralal S

(37) towards the lower end of the integral, and gives

a positive shift., To make the approximation (38)
reasonable, m is taken to be large, so the force pole

is distant. This produces very linear D and N functions,
and in turn the mass shift as a function of fz is

highly linear. The agreement between (37)2and the

exact expression is excellentj from s, = mp = 1(Bev)?
right up to sp = Mm: = 100(Bev)2 (the channel 1 thresh-
0ld), the discrepancy between the perturbative and the
exact solution is about 1%.

However, for a rather more realistic input, the
shift turns out to be negative. Unfortunately ReD,,
has a cusp at s = t,, and this destroys the linearity.
A relation between s and g can be found, similar to
(35), and this remains linear: the residue

NyiDya = NypDyy

f, = ' (39)

fid _(det D(s))
ds

has a non-linear behaviour because of the cusp in det D.

For this reason the mass of the p is initially taken to



be rather higher than the physical value. The results
\
for two different values of m  are shown in figs (Ep%(}b
3,
and (wt).

A poor feature of this calculation is the very

large value we obtain for G2 - 100) while G2 -
& yrgmeCe ol 5-adms.

One would hope that they would be roughly similar, as
the only difference between the p and = in this
calculation is the mass. This is also the fault in

46)

another dynamical quark calculation s, wWhere an
attempt is made to bootstrap the p and n in qq scatter-
ing (the above calculation, with m, = m s could be
considered as a very crude bootstrap). The reason for
this is qualitatively clear. The equation for D may
be written

D(s) = 1 + §K(s,s‘) Im B(s”)D(s*)ds* (40)

For the exchange of a particle of mass Mx’ the

L.H.C., starts at s = RM: - Mi s and has a logarithmic
singularity at this point, whereas for the fest of the
cut it is fairly slowly varying. This rapid variation
will affect D in turn, and so D“(s) will be large only

near the end of the cut. (This argument is similar to

the Ball-Frazer mechanism for the production of resonances).
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Hence if MX = mp, or alternatively m, > 2mg, D~ will

2
be small at s = mp, and the coupling will be large.
Hence it appears that one must have

2 2 2

me leq - Mp
to produce a reasonable p. It is interesting to note
that the p now has the mass to bind the X: however it
is not obvious that this new form of reciprocal bootstrap
can work. Speculations as to the form of the X can be
made: in the short range quark model it could be the

genuine 1 = 1, J = 1 bound state of two quarks. The

bootstrap would probably require g = “ g - , S0

qqpe Qqx
g m2 1
XTI N D
2
gp’mT mX 100

so that the width of the X in the xx channel could be
fairly small. A second possibility is that the X
corresponds to the excitation of the principal quantum
number n, On the basis of potential models, one may
argue that the gap between (1 = 0, n = 0) and (1 = O,
n = 1) states will be very much greater than that
between (1 = 0, n = 0) and (1 = 1, n = 0) states.
The results of this calculation are reasonably

favourable to the quark model. Taking mp = 1 Bev,
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mq = 5 Bev and m_ = .139 Bev, we find that for the

physical values of gp"Tr

m,, -Am?

8 .11(Bev)2
2 20 ¢

) .20 M

so that the shift is reasonably small.

The second dynamical model investigated attempts
to estimate the effect of the strong interactions on
weaker ones. One of the most celebrated SU(6)
calculétions is that for the magnetic moments, which
assumes, among other things, that the electromagnetic
features of a bound state of quarks is independent of
the strong interaction effects. We therefore consider
a (rather unrealistic) calculation of the effects of
a low mass channel on a weak coupling.

We introduce a fictitious photon-like particle a.
For reasons of kinematic convenience it is much simpler
to assume that the particle is spinless and has mass m .
Then the a‘pchannel is coupled to the qq channel, but
has essentially no forces: the dominant ones come from

the other channels,
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In the pure quark model, the
qq » pa amplitude will have
forces given by (i), (ii) and
(iii). The coupling of the a
to the quark is assumed known,
and the additive quark model
would obviously suggest that
2G = G (140)

qqa ppd
whereas the effects of the

strong forces will be to ren-

ormalise this so

G = 2G A (ul)
ppa gqqa o
Since the pa channel is (by definition)
weakly coupled, we may again use perturbation

theory. From (24) and (25)

T

1 { D Imga p!
D” sa D = — _
m

ds- (42)
S*- 3
Now we assume that there is essentially no force
in pa » pa, so considering only the qq and pa channels,
we find that (26) becomes
1 D,,Im ga
11 12
§ay, = —— g —— (43)
11

aD S*= 3
L
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The force terms that give rise to Im a  are taken
from diagrams (i) and (ii). In principle (iii) should
be of much the same strength, though possibly further
from the physical region: it is rather complicated,
however, and as this is an order of magnitude calculation
we ignore it. Hence we find

- - 2 2
21 £q308qda _ g = g = f(s,mq,mp)

21 N qge—qqa
(s=4mg)z(s=-Ump) (44)

Im da;, =

Analagously. to (33), we find at the p pole

€50a * 2893a 1 gds Djl(s’) LY
2
Dy(sp) és‘—sp) (s'-umg)é<s'-ump>§
= quaaAo

Annumerical evaluation of the integral AO in (45)
shows that Ao = 1, which is very encouraging as it
indicates that the original additivity assumption is
sound. However, it is clear that the wn channel will
have an influence on 8 pa’ due to diagram (v). We
therefore repeaf the calculation, now including the

qd, nn and pa channels. (42) becomes

T -
- 1 poy | DD ImsaDodst il
(det D)2 s’= g

R
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sas 1 {-D,(s)D;,(s)
(detD)2 ™ |, . detD

1

. . Imga,, Dy, (s2)=D, (s*) D,,(s)-D, (s8) .
.. Imga,,| [D,y(s ) D,,(s+) J|E—|-D ,(s)D) (8) .
S+ =Sg
Imga,,; Imga, s . . L. . detD
which gives -
1
pdy, = == [D I, =Dy, T ) (47)
13 detD (22 1 2 42
where
1 D,,Impa + D, ,Impa
11 1 21
1, = - 2 23 gs+  (u8)
m S~ 3
L
1 D..Impa + D,,Impa
1 P
Iz - g 2 13 22 23 ds (43)
o L S’-‘ S
g - 1 | Dll(s')f(s',mz,mz)
ppa Zg da D22 9.0 ds- -
det~“D(sp) a4 s - 8
2 2
Dlz(s')f(s',mq;mn) gnng D
- D12 ds+ 2g _ 22
L s*- 8 T8 843, L

S*%= 8

2 2 2 2 '
Dzl(s')f(s',m y ) Dzz(s')f(s',m s )
L0 ds’- D, L ds
L S-= 8

(50)

= 2g 5 A+ 2 B (51)
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Note that in (50), all the guantities have been determined
in the first calculation. We find the following values

for Ao, A and B

m. = 8 Gev m._ = ,5 Gev
X X

A 0.91 1.33
o}

A 1.00 1.50

B 0.02 0.57

These results are interesting in that the short-
range quark model is very clearly less susceptible to
perturbing influences than the long-range. 8ince

presumably G1T = 2G » naive quark model would give a

na qgqa
result about 2/5 of the correct one. This probably
explains why the predictions of the quark model which
involve vector meson magnetic moments are not very good.

The quark model, then, has a large number of

attractive features, It seems to be empirically correct
for a very large number of strong, electromagnetic and
weak interactions and it has the overwhelming virtue of
simplicity. Against this must be set the objections
previously outlined., Obviously a satisfactory dynamical
theory must be found to explain the pecularities of

the model.

)



CHAPTER 5.

The Pll Partial Wave in wN Scattering.

A very large number of papers have been written

on wN scattering at low enerqu7)’50)’51)’52).

A

fairly large proportion of these deals partly or

entirely with the Pll partial wave: this chapter
describes a further attempt to understand the quantitative

features,

It is simple to consider the S,, and the P.., waves

48)

11 11
together because of the Macdowell symmetry principle

which states

A, (W) = A, (-W)

11 P11

S
The Pll amplitude contains the following phenomena:
the nucleon pole below threshold, a rapidly increasing
inelasticity at low energy (~1080 Mev) and a phase shift
which is initially negative, but rises through 0% at about
1100 Mev and increases to a resonant or near resonant
value at about 1400 Mev., The 'experimental'situation
is still slightly confused, but most phase shiftug)
analyses agree reasonably well. The Sll phase shift
starts positive and gradually climbs up to about 30°

at around 1380 Mev, where it appears to have a cusp:

inelasticity very suddenly increases and it resonates
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at 1570 Mev, This resonance almost overlaps with a
second at 1700 Mev, which is, however, fairly elastic.

So far N/D calculations have been rather

unsuccessfulso’Sl’SZ). Taking the Born terms from N,

N* and possibly p exchange, and adjusting any free par-
ameters (usually a cutoff) so that the position of

the nucleon pole is correct, one finds that the Pll

11 has

the incorrect sign, if elastic unitarity is used52).

phase shift decreases monotonically while the S

Considerably better results are obtained if the nucleon
is inserted as a C.D.D. pole (not surprisingly, as this
introduces three further parameters): clearly the position
and coupling constant of the nucleon can be fitted by
the pole and the cutoff can be used to fit the zero of
the Pll wave, for example. The inclusion of inelastic,
unitarity makes no significant change, although the
calculation with the C.D.D., pole included is margihally
improved.

Two channel calculations have been fairly primitive

so far; two have been performed53’54)

, both of which
use the o=-N channel as the second. These are both

successful, in the sense that when fitted to the nucleon
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pole the adjustable parameters can be adjusted to
produce a zero in the phase shift, but both are suspect
on numerical grounds: that by Coulter, Shaw and Wong
because the L.H.C., 1s reduced to two poles and that by
Bender ET AL because the one pole Pagels method
is used. A two channel calculation using the N¥* as
the second channel has been performedSS), but this
deals with the P33 wave, and again is of doubtful value
for numerical reasons. (They have also taken the curious
step of producing the N¥* independently in the N and
#N* channel, which naturally gives two resonances when
the channels are coupled).
We have attempted this calculation considering the

N* as the second channel., This has been done not so
much to produce a convincing fit to the phase shifts as
to provide a basis for a proposed calculation of the
proton-neutron mass difference. It seems fairly clear
from the preceding discussion that a C.D.D. pole is
required in the one channel calculation, which implies
that the nucleon is at least partly a bound state in

a second channelss). The natural candidate, from an
SU(6) point of view, is the sN¥ channel: a simple

calculation gives
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|B} = /2/5|PBy + /4/9|PDy + SMALL CONTRIBUTIONS FROM

VECTOR MESON STATES

in an obvious notation, We see, therefore, that the
nucleon is quite largely made up of decuplet states: this
leads to the natural conclusion that #N#* is the most imp=-
ortant second channel, This leads to a 'plausible!
explanation of why the celebrated Dashen-Frautschi
calculation leads to the wrong sign for the n-p mass
difference: the most important single state in the proton
wave function (in terms of (Lebsch-Gordan coefficients)
is the = N®**,

On the assumption that for some reason the dynamical
symmetry breaking accentuates the #N* contribution, it is
possible that the = N*** could outweigh the other contrib-
utions. As this state has the largest (negative) Coulomb
energy, it could lead to the proton being the lighter
particle, This calculation is beset by a number of tech-
nical difficulties: the infra-red divergence of the photon
exchange diagram (which gives rise to the mass-splitting)
and the complexity of the numerical work when the feedback
terms (due to the mass-splitting of the N* and n as well
as that of the N) are taken into account are only two.

The force input to this problem consists of N and

N* exchange in all channels 58).



p exchange has been ignored because it is generally

beleived to be less important than N and N*: it is
also harder to calculate.

The numerical method adopted to solve the ND'l
equation is the modified Pagels method, outlined in
Chapter 1). Additional complications are added by the
different masses of the particles, by the presence of
Macdowell symmetry, by the required P-wave threshold
conditions, and by the instability of the N*., Threshold

conditions are enforced in principle by adding a pole at

some point on the force cut and in fact by multiplying
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the Born terms by (W-t)/W. A point which we have so far
‘ignored is the presence of overlapping cuts. The Born
term from (v) (for example) has a cut which overlaps

the unitarity cut in gN*® scattering: this is because the

process

is a physically allowed one. This is probably not a
serious problem; for example the Frye-Warnock methods)
assumes the existence of overlapping cuts. However, if
the problem is treated 'realistically' by considering
the N* mass as Qomplex, the cuts will no longer be
superimposed. We therefore consider the force cuts as
being slightly displaced? whereupon the formalism
goes through exactly as before. Trouble may arise near
the end of the cuts, where the real part of the Born
term has a logarithmic singularity: however this is a
numerical rather than a physical difficultySg). We
note the problem would be virtually insoluble using the
integral equation for D, due to the peculiar contours of
integration requifed.

Thé calculation contains three free parameters: a

cutoff and two coupling constants B NHN%? the so called

'electric' and 'magnetic' couplings., These are in
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principle given by SU(6): we have preferred to treat
them as free parameters. These are adjusted by a
minimization routine in the program to fit the position
and residues of the nucleon pole, which are related to
B Ny 3nd 8 yyee

By following an analysis analagous to that on pages

16 and 17 we find the equation for N may be written

1 MY (We-t)BW) - (W=t ) BW)
NG = BOD + =+ g+ o (WAON(H-) dw-
£ -3 We (W =W) (3)
‘ by
where p.‘,§W’) = Gij ((W’Z—(Mi+u)2)(W’z—(Mi—u)z)> (%)
Ly~

H

M, nucleon massy M = N* massy p = 7 mass
t is the relevant threshold
b is the cutoff

Hence we find
n

| N (W =t)BCW, )= (W-1) BOW)
N(W) = B(W) + S Co W, N(W,)

i=1 (5)

t/(t/b L@ - /) - x:2))

where W.
i

—

2 3
' 2_+42
c; 2 wx;m, ot )3/2 ((wi+t)(wi t j

mt

Wl3

and similarly
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D(W) =

n
C. W, (N (W, )=N(W))
1 - Z =21 - N(W)

i=1 My =W

"ty = o (W) t aw-
+ dW” + p (W) + —_— (8)
£ -b Wo(W”=W) ¢ W)

With the advantages of hindsight, we will discuss

the flows in this calculation. It can, at best, only
give one resonance in the Sll wave because the lower
one is patently an 7N resonanceGO). It is possible
that the S11 scattering length will still have the
wrong sign because the 7N channel may have an influence
even below its threshold: however the fact that the
calculation with a C.D.D. pole included gives the

62)

correct sign is encouraging . Clearly it should give

the nucleon pole correctly, as well as the P scatter-~

11
ing length. It could give an increasing phase shift
around the wN® threshold, due to the Ball~Frazer
mechanism; but the phase shift zero and the Roper
resonance are probably due to the o -N channel: phenomen-
ological analyses of low energy pion production suggest

that this is the important channel up to at least 1350

Mev .
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The calculation is unsatisfactory in that at least
two more channels should be included: the oN and the N,
It is also unsatisfactory in that the cutoff is not a
very believable one. We should really exclude the
distant part of the force cut, which is what really
leads to the divergences rather than the unitarity cut
which we believe is well kﬁown. We should make some
allowance for the complex mass of the N¥* so as to avoid
an unphysical cusp as its threshold. A method of doing
this is as follows: in an experiment to observe an N¥,
the probability of a mass M being observed is

ch

(u--wg) )2
M

P(M”) =

in the narrow width approximation where C is normal-

isation constant so

P(M*) aM* = 1
m+2p

Hence the 'average' phase space factor should be

Wmax
pO(W) =& P(M*)p (M”,W) dM~

W"'U l/L
yw““ C,2 (W2-(M’—u)2)(w2-(M’+u)2)) aM-
= . 2, 2 Yy
Mgy (M7=M) +r%/u wu

11

O if W <M + y
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This has the correct behaviour in that it has a
double zero at W = M + u, so there is no cusp, and for
p small this reduces to the usual expression.

All these corrections are only attempts to patch
up what is clearly an unsatisfactory theory: quite
clearly the problem is a three-body one and should be
dealt with as such., It is to be hoped that no strange

particle channels are required.



The
standard
S =

t =

APPENDIX -~ Notation

notation which is generally regarded as
has been used throughout
W2 where W is the C.o.m. energy

-A2 A is the momentum transfer

so that in the equal mass case

S

t

4k2 - Y4m?

~2k2(1 - cos 68g)

We have also used v = k2 and z, = Cos 65t in the examples

of Chapters 1,2 and 3 we have used v and s interchangeably
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