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ABSTRACT

We study the implication of the algebra of currents and
the concepts of unitarity, analyticity and high energy behaviour
of scattering amplitudes to investigate sum rules for ééme
seattering processes.

In Chapter I we introduce the concept of current algebras
and show how to derive sum rules starting from equal time commutators.
In Chepter II we apply the formulation developed in Chapter I, to
the equal time commutator of axial vector charge and the isovectér
electromagnetic current, and obtain a relation between the mlT*N¥
p~wave coupling constant to s-wave NN coupling constant.

In Chapter III we show how to derive sum rule for strongly
interacting particles starting from commutator of week currents.
This leads us to examine whether we could derive the same sum rules
without the help of current commutator , and using only the
concepts of pure strong interaction, namely unitarity, analyticity,
high energy behaviour. We find that this can be done. We then
apply the formalism to derive sum rules for =D (N¥1525) scattering,
obtaining a value for the 7DD coupling constant.

In Chapter IV, we develop and apply the helicity formalism
to obtein superconvergence: relation for nlN — nlN* and nli¥— zlN¥*,
We obtain a relation between NN coupling constant g, and m*N*

p-wave coupling constant 8 We also find the value of 8q in terms

of g,, the =NN* coupling constent.



CHAPTER I

General Consideretions and Basic Concepts in,Current'Aigebra

1. One of the most powerful tools to investigate Elementary
Particle Physics is Group Theory. The success with the
classification of Elementary Particles based on SU(B)(l) and SU(6)(2)
and other outstanding results obtained in this approach are well
known. However we run into some difficulties when comparing the
Group theoretical results with reality. The reason is that in
nature all the proposed symmetries are more or less badly broken so

that an estimate of the corrections due to symmetry breaking

dnteractions is necessary. This is especially true in the case of

groups like SU(3) x SU(3) where the symmetry limit is far from
reality. Thus to achieve a complete understanding of the role of
group theory we need a scheme where, on one hand the group
theoreﬁical results are reproduced, but on the other hand, a control
on the "corrections" is maintained. To deal with these problems

we will profit of the methods of quantum field theory and dispersion

theory through the "current algebra approach”.

An important feature which has come out of the study of weak
interactions is the concept of current-current interaction. The
week currents have a vector and an axial character and show remark-

able similarities to the electromagnetic currents.
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2.

For the weak currents involving leptons this similarity is
easily seen by writing the well known* explicit forms of those
currents in terms of lepton fields. For the hadron currents
however the situation is not so simple. There are many possible
ways of writing those currents, éccording to which object one
regards as elementary, moreover since one cannot use the pertur-
bation theory, it is extremely hard to distinguish betﬁeen the

various models of field theory.

In the case of hadrons currents the analogy between electro-
magnetic and weak currents has been extremely fruitful in suggesting
the idea that all weak currents exhibit some _kind of partial
conservation, the amount of breaking depending on the type of
currents. So, for a set of currents J:(x) which can be considered

divergenceless 1n a suitable symmetry limit

we can define a set of charges

Q) = [atet)a? (1.2)

*the weak current involving leptons is written as
J (tepton) = o  y (1 +75)e+ B, 741+ 75n

where ne; uu represent neutrino fields associated with electron and

muon and e, p represent the electron and muon field.



3.

which are approximate constants of motion.

Thus the physical assumption of partially conserved currents
provides us with new approximate constants of the motion represented
by the generalized "charges", given by the space integrals of the

time components of those currents.

In order to use those new constants of motion to deduce
approximate symmetry properties of elementary particles one has to
know the commutation relation between them. And this leads us to

the fundamental idea of current algebra.

Many important properties of wesk interactions do not depend

on the specific form of the currents in terms of the fields but

only on the commutation relations between the currents themselves.

The bridge between physical hadronic current* end symmetry
operators of the theory is based on the fundamental suggestion by
Gell—Mann(5) of identifying the physical charges with the
generators ( aside from a coupling constant) of a symmetry group,
which is explicitly proposed to be SU(B) for vector currents and
SU(3) x SU(3) for axial vector and vector currents teken together.
In so doing the equal time commutation relation between charges and

currents are taken to generate the algebra of the corresponding

* Here we treat the strong interactions without approximation but
consider the electromagnetic and weak and gravitational interaction

only in first order.



group. For SU(3) x SU(3) following equal time commutation

relations were proposed

v \'j \J
[Qu(6), Qg(t) 1 = if o Q (%)
\4 A A
[Qy(t), Qg(t) 1 = 1f, Q (t) (1.3)

A A \J
[Q(t)s Qglt) 1 = 1f,, Q (%)

where faBy are the structure constants of SU(3). These relations

follow from the simple quark model in which the axial and vector

currents are given by

(1.4)

where la are the SU(3) unitary spin matrices and V's are

elementary spin 1/2 quark fields.

Equation (1.3) can be generalized to charge densities in the

gimplest ways by writing:

Vv,

[3%@8), %°P(0)] = 18%(x) £, 577 (0)

oBy

[30%@,8), 37P(0)] = 18%(x) £, 3077 (0) p (1.5)

A&, 2P0 - 18%x) £

V,7
aB’)‘ JO (0)



One could try to go on and to postulate simple commutation
relations for the space components of the currents and also for

different operators (e.g. the divergence of the current

oJ ,
Da = —b ). However one runs into two difficulties. Pirst of all
ox
u

it was shown by Schwinger(h) that in such cases simple forms like
(1.4) and (1.5) as suggested by simple field theory as for example
quark model 1lead in general to inconsistencies so that extra terms
involving higher derivatives of delta functions become necessary.
This has been further supported by a recent study of Johnson and
Low(s), who obtain such extra terms in a simple quark model.
Further sum rules obtained on the basis of these generalized

commutators are very frequently divergent.

Going back to (1.4) and (1.5) and mixed commutator 1like

@Y%), 30 ®1)] = 1f,, 37 ,0) (1.6)

we can look at the group as underlying the structure of baryons
and mesons, e.g. in the unitary symmetry scheme. Anyway the
existence of algebra and the hypothesis that the related group is
a symmetry group are two independent things. We can stilykxploit
the group through its algebra without assuming invariance under it.
In other words the commutation relations reflect the existence of

the symmetry groups for the hadrons but they are supposed to be



exact and not to be affected by the presence in the total
Hamiltonian of a symmetry breaking part. Thus commutation

relations can be the tool we are looking for.

Going back to equations (1.4) and (1.5) we wish to emphasise
that commutator of the charges are taken at equal times, which is
necessary because of the non-conservation of charges. This point
is important because, this form, in the absence of some extra

conditions, is not relativistically invariant.

The relativistic invariance of equations (1.4t) and (1.5)
stems from micro-causality which implies the vanishing of the
commutator of two operators for space-like distances. This means

that equations (1.5) are true in any frame of reference.

However the difficulty remains that when we sandwich
equation (1L.4) or (1.5) between particle states and use completeness,

(6)

the procedure is not explicitly covariant since each intermediate
state contribution does not satisfy the causality requirement

which is only satisfied by the sum as a whble. This means,
although the final result is indeed invariant the separation between

different intermediate state contributions depends on the choice of

the frame of reference.

One can overcome the difficulty in two different ways:
First of all one can exploit the implicit invariance of the

whole scheme in order to choose a special frame of reference; the



(5)

infinite momentum frame when things becomes particularly simple

and useful. We discuss one example of this method in the coming
pages.

The second way is to make explicit use of micro-causality and
give a general expression to the matrix elements of the commutator
(1.5) by means of dispersion theory(7). We will be concerned
mainly with this method, and will use the method to'investigate

the equal time commutator of axial charge with the isovector

electromagnetic current.

2. The infinite momentum frame of reference

Since we just went to illustrate the technique of using the
infinite momentum frame of reference, we will give a particularly

(8)

simple example of that of the commutator of two charges

Q (1.7)

[Qa: QB] - ifaBy y

-5
and sandwich it between states of momenta pl and 3;. Introducing

completeness we get

-5
(en)*) {< 313,4n > < a3 43 > 8%, - p) + c.t.}

n -

. 2 -
= i fam < p'Joylp > (1.8)

. . > > 3
overall three-momentum conservation gives p, =p, =D .



Another useful form, equivalent to equation (1.8) can be

obtained by making use of the identity

[Q, H] = i fnu a% (1.9)
J
where D (x) = —& (1.10)
o
Bxu ,

which, 'taken between states of different energies, gives

1
<playln> = ——— <p[D,|n> 82 (T - 3n) (1.11)
E -E

-

P n

If one uses equation (l.11) for the intermediate state n, belonging

to a different multiplet then p equation (1.7) becomes
- =
<Bp |n' > < n’ |Dﬁ'p >

(&, - B,)

53(3" 3nl )

<BIT4[B > <BlagglB > + me{
, n
+ crossed terms }

- i1, <Bl3, [B> (1.12)

We can characterize the summation in equation (1.8) or (1.12) by

introducing the momentum transfer four-vector



where E = 'Jmi+32

n
Ep = m- + 32

then K = Wm° +p2 - Jm2 - B2
[o] n

The unpleasant non~vanishing time component of K, follows from the

fact that we have only three-~dimensional momentum conservation,

and not the four-dimensional conservation of the energy-momentum.
The value of this zeroeth component depends essentially on the
frame we are using. We teke advantage of the freedom in this

choice by taking the limit in which also Ko -» 0.

Indeed for large p we can write

REE -

in the limit 3 - o

1
K ~ —
° Bl

and we obtain the four-conservation of the momentum. The important

2

advantage of this choice is that K® is always zero and so we

obtain a sum rule at constant momentum transfer.

We note that we have in gneral an infinite set of sum rules;
taking 3 -» o we choose a particular one. The other choices

however for example 3 = 0 are not convenient because we obtain
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time~1like values of K® in a region where poles in that variable can

arise, meking & simple eveluation of the sum rules quite hard.

Let us go back to equation (1.12) and introduce the notations:
1 ,

—_ - 3 3(p -
- waB(n,p) (2n) Z< P [Dyln > <n|Dglp > 8% - p)

n

X B(EP -E + k) (1.13)

So that equation (1.12) becomes
. 1 & .
< p|Joa|3 > < 7l J03|fa’> + — f — {waa(xo D) - WBa(KO ) }
2 X3

= 1f, < —p'lJoy I > (1.14)

The auxiliary function W&ﬁ defined in (1.13) is an invariant

function of the four-vector Ku and pu and therefore depends only

on the invarlents

K = p

(1.15)
Kop =

However such a function is treated in equation (1.,1%) in a non-

covariant manner and each choice of the frame of reference
corresponds to a different path of integration in the v, p plane.

This can be seen by writing explicitly the four vectors



B K
== (J)r o= ()
3 N3
So that
©
KO.:E— (1.16)

P

and the equation for the line of integration is the parabola

(1.17)

o
| %o

As pointed out before in the infinite momentum frame EP - o 8O0
that equation (1.17) reduces simply to u = O, so that the integral

appearing in the L.H.S. of equation (1.1}) becomes

x
N dv )
5 — [ W -W
af S [ Wg(o) - Wg,(v) ]
o P
o}
Let us now take a specific case by explicitly putting the SU(B)
dependence of the amplitudes. Consider for example [ QZ, Q; ]

commutator sandwiched between proton states. Equation (1.1k)

then reads:

1 dvo
r2 + §-f — [W() -W ()] = 1 (1.18)

T 2

v
a

where r = — is the renormalization ratio appearing in the
gv
matrix

physical/element < P|Q;|N > and W" and W™ are the direct and
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crossed amplitudes corresponding to the scattering of positive and
negative "spurions" from the target. If we are using commtator
of axial charges equation (1.18) reduces to the famous Adler-

(9)

Weisberger sum rule for pion-nucleon scattering. As we can

+
relete the functions W (v); by virtue of the Partial Conservation

of Axial Vector Current hypothesis(lo); to the pion~nucleon cross-

section.

3. Dispersion theory of Current Algebra

In this section we describe the dispersion theory of current
algebra. Consider an equal time commutator between two currents

Jg(x) and Jg(x)
L%, BO)] = 16 7(0) &) (1.19)

where «, B, y are indices laebelling the internal symmetry trans-
formation properties of the current end u, v, are Lorentz indices.

Caﬁ7 are the structure constants of the group.

The starting point for the dispersion theoretic technique of

deriving current algebraic sum rules from (1.1) is to consider the

quantities(ll)

ap . ig?.x « B
1 = 1 [ at M o) <9 | B(), 30)1fp > (1.20)

1
and tzs = %f d4x eiq_ *o<p| [Jz(x), Jﬁ(O)]Ip > (1.21)
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We then introduce the kinematic wvariables

p + p q+q’
P = —- Q =
. 2 2
q = p'+q' -p, v = P.Q (1.22)

The quantities Tﬁu and tﬁn are in & way related to the scattering

process shown in the Figure below

Now for simplicity let us take p', p to be scalar partical states.

Then we can decompose Tﬁu and tﬁu on inveriance grounds in the

same set of elementary invariants, namely

' P+ P+ P+ ... .
Tm) = A Pu P,O A, Qu PD A, Au PU (1 23)

' P+ P+ P+ ... .2l
tw = a Pu Pt Q,u P aSVAu P, (1.24)



1k,

the invarient functions A, a, ... depends on v, t, qi, qz . The
A functions are then Hilbert transform, with respect to the

varisble v, of the corresponding a:
2 2 1 dv' 2 2
A, (v,t,q ,07) = He, = ;tf —— &, (v',,4,0)
o -v ..
(1.25)

or in general

I (1.26)
o o

Now let us consider the quantity q; Tﬁu . On partial integration

we obtain

1 0B L [ qeg o10eX a B
Qp Tub /wd X e - G(XO) < pf'[au J“<x), JU(O)]IP >

- [ a(xo) eiq"-x < p! ’ [Jg(x), JE(O)]IP >

- ﬁﬁ-iwm<pW%MHp> (1.27)

where
p® = - [ atx &M E p(x ) < p'|B %), 320)1p >
' o _Hll,'o iy

v
(1.28)

and we have used e.t. commutator (1.19). We can now summerize

the result of this operation as
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U Tw ~ 34q; by = (4 # - ¥¥q;)tuu

ni&m<ﬁHU®b> (1.29)

i.e. the following relation holds, even when the currents are

not conserved,

(@) 3 -$q)t, = 1 ¢ <pfal©)p> . (1.30)
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CHAPTER II

Dispersion Sum Rules for vy + N —» ¢ + N¥ —

In this chapter we will use the dispersion theory of current
algebra we developed in the previous chapter to investigate
fully the equal time commutator between the isovector axial
charge and the isovector electromagnetic current. This
commutator has been used successfully by Fubini, Furlan and
Rossetti(7’l2) to derive sum rules for the anomalous magnetic

moment of nucleon. We shall(la) consider the commutator
{226, 3P0 1 (2.2)

(where we have adopted the SU(3) x SU(3) notation to label the
isovector axial current CAi), the isovector Jg part of the
electromagnetic current) sandwiched between N¥123%6) and N states
(we assﬁme N* to be.a stable particle). Following our general

consideration in the previous chapter we define

To= deg f< N*(p.')'[A:(x), Jg(o)]lp > gldeX o(x ) a*x

(2.2)

t = —;—eu f< N*(p’)[[AS(x), Jg(O)]lp >,é/iq‘x d*x (2.3)
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where e is an arbitrary (for the moment) four vector introduced

for convenience. As wili be seen we wiil relate T#, t# with the
photo pion production of N¥* on nucleon. So we shall decompose Tu
in the same set of invariaﬁts as we shall for the above mentioned

process, i.e.
y+ N - g+ N¥

We define our set of kinematic variables for the above process

as

k+p = g+

where k, g are the four momenta of the photon and the pion; p and

p' are the four momenta of nucleon and the isobar N83(1256).

s = (p'+q)® = (p+k)?
t = (p -p)F = (k-q)?; Pap;p~'
u = (p+a)® = (k+p')?

2

and w = s+M = u+n® = 2'.q = 2p.q = P.q

where M, m sre the Naa and N masses respectively. We further

restrict ourselves to the simple kinematic configuration
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and taking advantage of the freedom in our choice of € we fix
kee = O

i.e. ¢ is assﬁmed to be the photon polarization vector. Taking
into account the gauge invarience and the relativistic inveriance
we can decompose the T-matrix element for the process umder
considerstion as

‘ 11

VeI RE) = e ) w Glue) (@)
i=1

Here mi’s are the kinematic factors and Oi's are the invariant
amplitudes, functions of w, t, qi, qz . in the appendix we give
a full investigation of the decomposition of the amplitude T, but
for the moment it suffices to know that in the limit of vanishing

q, only following ©'s survive

44 =
N 1P 78 7y Fap

(2.5)

a .
z2 = 8% Fob

where Fo = k ¢ -¢ k (2.6)

Thus we can decompose T# and t# of our equations (2.2) and (2.3)

a8
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Tu - Pu(al A+ oa Bl) + Qu(al A+ a2132) + oeee (2.7)

and t = P (a a
TR

. * o, bl) + Qu(al a, * aby) + ... (2.8)

i}

Now we use the formulation we developed in the previous chapter

which gives
X - t 3 8
(‘luéﬂ - qu)tu . < Pi I[AO(E,O): Ju(o)]lp >E. (2-9)

in our cases. Now in quark model of Gell-Mann(la) where
equatiors (1.4) of the previous chapter hold it can be shown
(Appendix) that the equal time commutator on the R.H.S. of (2.9)

vanishes so we have
- t 0 2,10
(a, # $q)t = ( )
Using (2.7) and (2.8), equation (2.10) reduces to
/q do’(a1 a t+a a,) = 0 (2.11)
Since o , % O we are led to the sum rules
3

fd'o al(w) = 0 - (2.12)

fd\) ag(a)) = 0 (2.13)
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The quantities al and a2 can be determined from the general
quentities by selecting the coefficients of @, and @, terms

respectively.

A = %(en)'*{ Z 8‘(pf *q-p)< 13_'|3u ASIPn >
n

x < pnlJ(B)-elp > - ZB‘(p - a4 -7D,) <p'IJ(3)oelpn. >

n!t

. .
X < pn,lbu Aulp > }- (2.14)

Now from the partial conservation of axial vector current

hypothesis

3 . .
au A C oo (2.15)

So (2.14) modifies to

[¢}
A =3 (2n)‘{ Z 54(3' +q - pn) < P'I"’nolpn >
n

X< Pn|J(5)-€|P > - Z 3*(p - a -p) <p |J(3)°€|Pnt >

n!

x <p,]e olp >} (2.16)

We saturate our sum rules (2.12) and (2.13) with low lying

baryon states, i.e. the N and N¥, The first contribution will come
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from the nucleon pole, and to deal with the trouble of polar term
degenerate in mass with either of the external states we make use
of the Fubini Furlan suggestion of keeping & fictitious mass
difference between the initial and the final states in the

following matrix elements

< w0 o[W(p) >

and <N (pn)|¢n0|N'(p) >

Putting this mass difference to zero at the end of the
calculation leads to unambiguous results. 1In order to calculate

the various pole terms we define our Lagrangian for the various

vertices |

Ly = eV¥rg¥
Lo = &V, ¥ (2.17)

* ¥ L gtHR Y
L e = g*r L 7s Yy g Y 75 7y Yy
with this Tagraengian we define the following metrix elements

<m*(p")|e_(A)[N(p) > = ig* -\iu(p') ql; u(p) (2.18)

and the electromagnetic vertex following Bjorken and Walecka(ls)



22,
< N*(p*)|J.¢|N(p) > = '\ng(p')[ qi;(e-pp~q - e.p9®) g (d®)

t2ie 0 Py g 8 8,(a%) *Ma y.S" 75(8,(a9)* g,(a®))]
x 7 ulp) (2.19)

where euulc is a completely antisymmetric metric tensor and the

pseudovector Sp is defined by

i .20
Su = J'euoko pD ql €o (2.2 )

and q = p'-p

with a 1little algebra we can put the above matrix element in a

form more useful for our purpose
< N*(pf)lJoe-lN(p) > = Tlru(p.‘)[ q,(a-€ p.q - e.pa*) g (a°)
- 2{[ (p-0)® - P°¢®le, + (P"a.€ - peq Dec)q
+ (¢® pee - eq a.e)p, } g, (¢®) + M, {p.qdee

- pee Quy + imqyyee - ing } (g, * g5)] 75 u(p)

(2.19')

In addition to the above we also define the following matrix

element
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. T 2
<NE')[J-elnlp) > = ieulp') [ yee B (®) - oy qy €,

F_(q%)
X 2,q ]u(p) (2.21a)
210
and < N(p')lcbnlN(p) > = igu(p') Ve u(p) (2.21b)

With these definitions the nucleon pole contribution to the g, a,

in the limit q -» O is obtained to be

M(M + m)
lim al(Nucleon) - -e

+ 2,22
i e gle, * g,) (2.22)

M + n) (M - n?)
1im a_(Nucleon) = - e gg (2.23)
g0 2 8n® e

where 8, and gy are evaluated at q2 = 0 and are found to be

0.74 0.0086 1
g (0) = -{ - } P

M - m) m_ mn( - m®)

(2.24)
0.7h 0.74 0.0258 1

g (0) = { + - }

M M-m m mn (M - n?)

T T

We are thus led to the following sum rules from &, and &,



ok,

M(M + m)

1
[ + - = - .
s gleg, +g)) -~ f a. (w)aw 0 (2.252)
' continuum
(M + m)2 (M - m) 1
e s ge, - ;t[ a2(w)dw = 0 (2.25b)
continaum

In the spirit of decouplet dominance hypothesis we will spproximate
the integral by the N*(1236) pole. To calculate its contribution

to the sum rule we need to define the following matrix elements
<W(p')[o o|M¥(p) > = 1ig%F (0') 75 ¥, () (2.26)

g¥*% is the nN*N¥ coupling constant

P.e 1

t = A ] —_ 210
< N*(p_ )|d.e|n*(p) > eqrp(p. ) { R n{(ﬁzo(q )8
g aq i 1
+ Ga(qa) S + — (ye€ goy 7P = y.P y.q ye€)
2M2 8&2 1+ 1
| q
{Gl(qz)s’“’ + @,(d®) —’;—Mg-" }]wb(p) (2.27)

(16)

This matrix element has been given by Gourdin and Michilie with

P = p'+p
n = q2/lM®

qQ = p' -p
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G‘O(O) = z, in units of e

G (0) = w, » magnetic dipole moment of N* in units of

e/2M
G (0) = Q-2%
G,(0) = N6y, - u,,
Q = electric quadrupole moment of N* in units of ¢/M®
Hg = magnetic quadrupole moment of N¥ in units of ¢/M®

We get after considerable menipulation in g -» O limit

)

e (m + 5M)
1 w = — M + m)g¥* - T————-—
“/;I* a (w)d »” [ (M + m)g**(g, + gg) e g*u, J
(2.272)
e(M - m) M -m)
%: a_(w)dw = “or [ (M + 111)2g"‘*g2 - gty ]

2
¥ 5mnM

(2.27p)

Combining equations (2.25) and (2.27) we get the following relation

from the sum rule for al

m(m + 5M)

——— gt (2.28)

( )( c --—g**)< )
MM+ nm — - g + g -
me M 2 8 2 M
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from the sum rule for 8‘2
m-m)

(M+m)2 ‘—+——-—> g*p
m2

e (2.29)

In the above expressions only g** and u, are unknown so we put in
the numerical values for all the known factors in (2.28) and (2.29)

M= 1.236 GeV (units of energy being 1 Gev)

m = 0,938 GeV
The- coupling constants ame relative to the vertex p noN";s are
g = 181
g = 13.5
and from equation (2.24) at q% = 0
g,(0) = - 27.63 (Gev)™*
go(0) = 59 (Gev)™

Substitution of these values in (2.28) and (2.29) and their
subsequent solution yields the following values for the coupling
congtant g** for the vertex TON®N**  and By the N¥ magnetic

dipole moment
g¥% = 22,77 = 1,69 g

My = - 5)4-.8
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The value of fy is in total disagreement with those obtained from

quark model(l7), Su(6) <l8) ete.

But our value for g** compares favourably with the one
obtained from other methods. From U(6,6) (19), with mass splitting
one obtains g¥¥ = 2,21 g, superconvergence relations for

o)
AN - ¥ (20) give
¥
g¥t = 1.8 g

and g% = 1.94 g

while pure dynamical N/D calculation(2l) seem to give

g ~x 2.3 g

11
while satic SU(6) (22) gives g¥* ~ g .

Our value for g** should also be compared with the one
obtained by D.G.Sutherland(22) using Adler-Weisberger type
calculation for ¥ elastic scattering. As well as with the one
obtained by C. Michae1(23) doing phenomenological multichannel

scattering calculation .

In the following we give a table putting all the determination

of g¥* up to date using various technlques for ewemy comparison.
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2
g A g
Table 1 Comparison of various determinations of ———
by
No. Method Value Reference
1 | Current algebra calculation for the
process ¥y + N —» ¢ + N* 186.58 13
2 | Current algebra calculetion for Adler-
Weisberger type for the process 136t§é 22
nt+ N* o g+ N¥ .
3 | Multichannel scattering in propagator
formalism 170 23
I | Superconvergent relation for the 211.39
process w+ N —» ¢ + N¥ and
226,187 20
5 | U(6,6) 257.9 19
6 | Multichannel X/D 81 21
7 | Static SU(6) 1k.5 ok
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CHAPTER III

Strong Interaction Sum Rules

1. Consider the equal time commutator
o B v -
[5, (=), J~o<°)]x0=0 = ify, Ju(o) 5(%) (3.1)
and defiine the quantities
. iql.x o 8
T, [a x e o(x,) < v,| 14(x), 38(0)1[s, >
(3.2)
iq. .x
4 1 < « B
by = % [ate » |19%(), 3801, > (5.3)

which are in a way related to the scattering amplitude for the
process shown in the figure below

¢
J

¥
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(for simplicity P and p, are taken to be spinless particle
states). Then if we follow the procedure given in the first

chapter we can obtain a sum rule of the form:

7 (t) (3.4)

e : OB, 2 2 .
oy /\db‘ a (n.,t,ql,qz) - J‘faﬁy 4

where we have decomposed T#D and tﬁu in the same set of

invariants, i.e.

 m +A P Q@ + ’ e .
Tm) Al Pu Pu Aa 1=pl QD Ag Au PO (3.5)
' P+ Q.+ + ovee .
tm) = a ‘Pu P ta, P“ Q * 2y Au P (3.6)

p, +p q +
where P = S , Q@ = _;___EE 3 p,.tq =p, +tq
1 1 2 o)
2 2
v = P.Q , A = P, -D
t m AP
(3.7)

and the relation between Tbband tuo is expressed as

T o= $lt (3.8)

n B

where & means the "Hilbert transform" with respect to the

variable v.
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In addition to all this we have expressed < pllJZ)(O)[p2 > as

<p,|97(0)|p, > = 2 FI(t) + & F,)J () (3.9)
(Féy(t) = 0 if‘Jz is conserved)

Now let us go back to the sum rule (3.4) and keeping t fixed,
discuss its dependence on qi, qi . It is important to note that
the right hand side is independent of qﬁ and q: « This leads us
to assume that strong cancellations occur in the left hand side
integral. To fully exploit this fact we multiply (3.4) by (qi - m)

14

(q: - m;); m

o’ mB being the masses of the particles coupled to

the currents Jg and Jﬁ respectively. On extrapolation to
2 2 2 2
q, - m, and q, - mB the r.he.s. becomes zero while the l.h.s.

involves the expression

2

- 2 2 2
 Lim (@, - ml) (@ -m3) & (v, 43, 45, t) = const. In A, (05t)
9,07y, ‘

(3.10)

where A is defined in (3.5), according to the decomposition of
B(qz) + P, - a(ql) + P, scattering smplitude. Since the r.h.s.

of (3.5) is not singular in qi and qg . The sum rule (3.5) reduces

to
fdu Im Al(b,t) = 0 (3.11)
in the limit of qi 5 mi 8 which involves only the scattering
) b

amplitude of strongly interacting particles.
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We want to stress the fact that equation (3.11) is actually
independent of any detailed assumption on the current-current
commutator. Indeed it can be obtained from the commutation
relation between any couple of "vector currents", provided their
commutator involves (because of locality) the presence of a
g-function or its finite order derivatives. Thus we are in
pure-strong interaction regions, where there is no trace of wesk
currents, we started with. It is therefore natural to look for
the possibility of deriving the eguation (3.11) directly from the
general properties of strong interactions nemely Analyticity,
Unitarity and High Energy behaviour of scattering amplitudes.

V. De Alfaro et alsz) showed that it is indeed possible to derive
a general family of strong interaction sum rules from purely

strong interaction quantities; analyticity, unitary and high energy
behaviour of scattering amplitudes. The equation (3.11) being just

one special case among this family.

In the following we discuss such a family of strong interaction
sum rules or superconvergence relations as they have come £o be

called.

Superconvergence

2, Consider an analytic function F(v) satisfying unsubtracted

dispersion relation in the variable v
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momentum transfer they obtained two sum rules for pn elastic
scattering. They saturated the two "basic" sum rules with

n, wy, ¢ intermediate states and obtained the relations

2 2
glzl)p‘ni = hgpﬂm/m

and (3.16)

= 0
&oom

which agree with the relativistic SU(6) prediction(lg)’(26), since
then a large number of sum rules have been obtained for various

(7).

scattering processes

We discuss in the following in detail the superconvergence
relation(28) for qD (D is the isospin doublet of spin 3/2,

mass 1525).

D Scattering

P Consider nD scattering with momenta as shown in the figure

we define a set of kinematical wvariables
Jo

‘/

LN
?
D

Y
P = 3(p + p') ,
Q=3(e+q') \\
A PN D
A=p' -

where p, p' are the four-moménts of the incoming and outgoing D

and q, q' are the four-momenta of the incoming and outgoing pion.
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The usual Mandelstem variables are given as

s = (p+aq)® = (p*+q')
t = (p* -p)2 = (q' -q)?

u = (p-q*) = (p'-q)?

v» = P.Q = £(s - u)
and t = A2 the momentum transfer.
We write the a.mplitude for tlis process as
T o= (pf)‘MpU ¥, () (3.17)

where qrp;(p') and \yn(p) are the Rarita-Schwinger spin 3/2 wave

functions.

The covarianZt M function can be developed as (9)

L (APp + Bppml’u P ¥ (AQQ + BQQsé) + (Ag + BBQ)gW
(3.18)

where we have used time reversal to eliminate terms in (Pu Q‘b - Q,# Pb)

1
X { } and further because of the equivalence theorem, we have
Q

A 7 1
chosen to eliminate the "kinematical covariant” (PuQ'D + Qupu) {Q }» ,
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in favour of the above six: because of the equivalence theorems

we have

M(Pu QY+ Q Pu) = 2P P, d + g“u<MP.Q ~ P2¢)
t(p ‘ - 2 _ op. v A2 o
W, Q,+Q P = 2P P (MQT - 2P0 f) + M Q Q

+ gw[M[(P-Q)a -% 0FQ7] - P.q(P® -%,-AE)%]

(3.19)
where M is the mass of D. These equalities are of course to be
understood as holding only when sandwiched between appropriate
spin 3/2 spinors,; we give a detailed treatment of these equivalence
theorems in the appendix. The form of equation (3.19) shows that

: < 1
(PL QD + Qu'?u) {j¢ }- can indeed be eliminated without introducing

kinematic singularities into the scattering amplitudes.

High energy behaviour of the amplitudes

Assuming that for large s and fixed momentum transfer t the
s—chaﬁnel helicity amplitudes T(lf’l) behave like sa(t) for all
A% Here \*, ) are the final and initial helicities of D and
a(t) is the poéition of the leading Regge trajectory in the
t-channel. We can deduce the asymptotic behaviour of the invariant

amplitudes from the following observaetions. Writing (3.17) as
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M[..;'O = Z Ai Ki;;;n (3020)
i
we have
TQ"A) - ZAi Ki(x",x) o g%(®) (3.21)
where
Kj(-l",}n) - E‘E)\")(p',) KL;‘\) wl());)(P) (3.22)

Regarding equation (3.21) a set of constraints conditions on the

high energy behavioﬁr of the invariant amplitudes Ai’ we see that this
is suppressed_byAsn where s is the highest behaviour of Kils’k)

for various (A',A). This is easily obtained by expanding the

spin 3/2 spinors as

Wﬁl)(P) = }: ¢(1/2 1 3/2; r 1) u(r)(p)eékrr)(p) (3.23)

where € is a vector and u(r) is a Dirac spinor.

We note that all of the scalar products in (3.22) behave like
0
©) 4

1 R
So excep't for ¢ ~ 8, and -ﬁuvv so where as ﬁ(§)¢u(2) ~ Se

Hence the asymptotic behaviour of an invariant amplitude is
improved by one power of s for every factor of Q or Q which appears
in its accompanying kinematicel covariant. Thus we can immedistely
read off the high energy behaviour of the invarient smplitudes in

equation (3.17), viz.
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A ] A ~ Sa
b’ g
B _,B ~ %
rp° g
(3,2k)
=2
AQQ s
3
d ~
an BQQ s

Now we specialize in the case of zero momentum transfer t = O, and
dispersing in v, rather than in s for convenience in crossing, we

find three superconvergent sum rules of the form

o0

[Im A(v, t=0)dv = O (3.25)
0
where
O o

where the (0), (1) tell the isospin of the Regge trajectory

exchanged in t-channel.

Now we have from experimental informetion about high energy

scattering that

a(o)(t =0) = 1

(3.27)
ot =0) & 0.5
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Saturation

Now we try to saturate the sum rules (J-25) with the N,
N*(l236) and D intermediate states. We use the effective

Lagrangians

g
DN7t
:fQDNn = -——m \'fu s bu ¢7t u (3.28)
T
‘f'DN*n = Epyxy wp. vp. ¢1t (3.29)

We neglect the derivative couplings
and
ﬁfDD';t ™ Eppy ‘yp. 7s "Vp ¢)1r (IB’BO)

We further use the relation

2
&y, PE* Tyx)

Ppy ™ >— [V + bmy, B+ 10n7,]  (3.31)
b 9wy, N
which gives
2
i i PSP
g

We get the sum rules for Aél) ’ DB(%) and B(gg‘) after saturating

them with N, N*(1236) and D as

1 b 2
2 2 2
2 on T2 Sowen * > Coon ~ 0 (3.32)
m'rc ml\T* ) :
for B(I'O)

QQ
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8o T g = 0 (3.33)
2 DN« 2 DN*n DD
m’lt 3ml\l* 5
(I=1)
for AQ,Q,
(I=)
and finally for v BQQ
2 2 2 2 2 2 2
mD+m_n-mN2 +2(mD+mﬂ-mN*)2 +Eli"1'2 0
2 €DN o €p*n " 2 Sppn
n Ty
(3.34)

Let us now put in the experimental velues of the known quantities

and see what results we get. We put

938 Mev

=

m_N* = 1236 Mev

1525 Mev

m = 138 Mev
s

2

for gny . We note that the width of D (N*(1525)) is given by

2
24 3 -
Tye(ses) = ™ = o Pl -y (3-35)

b Iy

where the Lagrangian is that given by (3.28).
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Then the phenomenological velue of the elastic width(Bo) is

N7
n

T3 Mev, giving = 0,70, The same phase shift analysis

gives the inelastic width as 29 Mev and there is good evidence

to support the belief that the entire inelastic mode is nlN¥ (3 l).

Putting these parameter we find that relations (3,32) and
(3-34) give %Dn < 0. So without giving any plausible
argument we neglect them. Equation (3.33) however gives

&

=% . 8 (5.36)
by

However the error in N¥(1525) width are quite large, actually about

20 Mev, so that we can reasonably put

Gy

~ 48+ 13 (.37)
by

The faith one has in this value, depends of course on how strong
one's belief is that the‘AG%"l) sum rule is in some sense a good
sum\ rule. All we can say is that it is the same sum rule in
¥ scattering( 29) , which when saturated with N and N¥ inter-
mediate steates gives>11r111\I = My limit results which are consistent
with U(6,6) theory results, thereby earning some degree of

distinction as g sum rule of good repute.

It is now interesting to compare this result with the one

derived by another, perhaps less dubious, method. Gatto et al.(32)
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have examined the consequences of saturating the algebra of chiral
SU(3) x SU(3) with baryon resonances of positive and negative
parity. The positive parity states are assumed all to belong to
the usual 56~fold of SU(6) while the (20 L = 1) multiplet is

supposed to incorporate in it % » 5 g resonances. These
authors thus obtain values for the various possible axial vector
coupling constants at zero momentum transfer in terms of one real

parameter a where 0 <a < 1.

We now proceed to relate these weak coupling constants to
the strong interection one by using the hypothesis of pole
dominance of the divergence of axial current (PDDAC). We assume
a = % (which implies GA/GV = 1 amd g = 13.5). We then

obtain et zero plon momentum

mﬂ 5 EM/- a 167 ( 8
- — = 1. 3.3
Somwt O F Emg m V2 14k
corresponding to N*(12%6) width of 118 Mev.
Furthermore one gets
Sty
+ = —— = 9.6 (3.39)
W i o (14 ha)

which compares favourably with the value 10.2 from U(6,6) (19) .

We are thus tempted to apply this procedure to D and thereby obtain
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S

——D . o3
mN(l + ha) =

gDDTC = g1\11\I1t

or oo = Lk ( 3.49
by

to be compared with the velue we obtain (3.36). This _needs
some comments. We note that the possible SU(6) assignment for
the negative parity baryon resonances has been a method of
speculation for sometime,  The T0-fold was originelly suggested

-— -

to accommodate the and 2 baryons. However, under the

2 2 2

larger symmetry of U(6,6), definite parity predictions could _be
made concerning SU(6) multiplets(BB). Delbourgo and Rashid(Bu)
pointed out that one SU(6) TO-fold belonged to the 572 of U(6,6)
with positive parity and although it was possible to incorporate

a 70 in U(6,6) 5720 fold, the resulting widths were too small.

One of thé most attractive schemes was that of Gatto et al.(35),
who introduced the ides of kinetic supermultiplets which have
proved remarkably successful in classifying the higher boson
resonances. It turns out that the most economical classification
places the %: g: g— baryons states in the 220 of U(6,6),

which corresponds to the 20 of SU(6) with orbital angular momentum
L = 1. As the resulting mass formulee are not testable there is

no direct evidence in favour of the(20 L = 1) assignment, but we
like to like to feel that the striking similarity of equations (.36 )

and (3.40) is at least a point in favour of this kinetic super-

multiplet schemes.
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CHAPTER IV

The Use of Helicity Amplitudes in Superconvergent Sum Rules

1.

In the previous chapter we demonstrated the existence of
8 wide class of strong interaction sum rules. If A(s,t) is some

scattering amplitude and if it fulfils the two requirements:

1

8) A(s,t)~—5 as s = o withb>1
S

and

b) A(s,t) has no kinematical singularity in s at fixed t,

then the imaginary part of A(s,t) obeys the sum rule:

[ds Im A(s,t) = O (4.1)

‘where the integral is taken over the left and right hand cuts of

A(s,t).

In order to get amplitudes satisfying the requirement (b) 7
one may decompose the complete scattering amplitude in covariants,
following the prescription of Hall-Wightmen theorem<58). However
this procedure is somewhat involved. On the other hand we can
decompose the whole scattering amplitude in the covariants, which

come out from its perturbative expansion(39). This was the method
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we employed in finding out the superconvergent sum rules for
N*(1525) scattering. This is also the method employed by
almost all the authors given in ref. (27). But this method,
besides being on a not very firm foundation, i.e. the perturbation
theory, is affected by ambiguities in its application even for low

spin particle (ho).

Fortunately there exists another method proposed by Trueman(ho)
(k1)

and also by Odorico using helicity emplitudes, through which we

can find very easily superconvergent relations for arbitrary spin
particle scattering. In the following we describe this method

in deteail.

II. Kinematic Singularities in the Cross-Channel Energy Variable

The partial wave expansion of a general helicity amplitude
for a reectiona +b —» ¢ + d, with t being the energy squared and
8 being the square of the energy in the direct channel (E+b - CtR)

ig¥

Our normalization of the scattering amplitude differs from that of

Jacob and Wick(he). The two are releted by

1
sP 5
ab J.W
£ asap(it) = 2 IEANERS
Pea

fcd;ab(s’t) is related to the S-matrix by

1
_ 45 84(n 4n o - 0.0 _0_0y=5
8oa;ap(57%) = Boguap = (Bm*E8%(p teymp,p) (PP P Rg) Loy gy

(S:t)



)‘"6.

Bt = ) @D 6 d (6)  (.2)

A = a-b>b; = c -4

Gt is the scattering angle in the t-~channel, which is taken to
be the angle between a and ¢; and di“ is the d~function of the

rotation matrix element. In the t-channel centre of mass system

cos 6, = [Est + £2 - tzm + (m mb)(m - 2)j|/ Tab Tea

i
(+.3)
where
- 17 -
2 2
Ty = t—(m mb) t—(ma-'-mb)_'htpab‘
(4 .4)
r ar 7
Tg = |- (mc - md)2 t - (mc + md)2 - htPcd

where Pab and Pc a are the initial and the final momentes in the

t-channel c.m. system. We see that cos et is an analytic function

while fc a; ab(s t) has a simpler relation to the differential cross-

section, i.e.

B P

Also we set equal to zero the azimuthal angle, which is independent
of the invarient quentities s and t. We also use &, b, ¢ and d as

notetions for particles as well as the helicity states of the
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of 8. 1In general, the d-function is related to the Jacobi

polynomial by (+3)

(7 + M)(T - M) % 1 - 1
Z ) =Y |- agtonl o g e

(7 + M) - N)t

( - )
X P(,_"I_M")" 'M'll') (Zt) | (h.5)

vhere M = maximm of (|a],|u])

N = minimum of (|a],]u]) R E

so that equation (4.2) becomes
£5 (s,6) = (-3 HESY (1+ 2z )%h*“' (27 + 1)
edsab*’ t t
J

J

X ch;ab

(t) PE}E;?')IK*ul)(Zt) (h.6)

where we have put the other constant factors in ¥ We

cd;ab(t)'

now see that the presence of spins has introduced into the helicity

amplitudes e definite set of s zeros and singularities through the
oo [l

factors (1 + Zt)2 and (1 ~ Zt)2 . It has been shown by

many authors(uh) that these s-zeros and singularities are the only

kinematic ones. The remaining s-singularities are associated

corresponding particles. Which meaning they take can be easily

understood from the context. We use A, B, C, D for the corresponding

antiparticles and their helicity states.
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with the failure of the Jacobi expansion to converge, a dynamical
effect unrelated to particle spins. And it can be shown thet
the kinematic s—-singularities of fggzab are all on the boundary
of the physical region.

Thus the new amplitudes, defined by

=(¢) b k2] 4| x+u]
fodsap = Toazap [~ %l [1+2]

Z(&T + 1) F'zd;ab(t) X Pg:;‘)‘"')‘m'(zt)
.

(%.7)

contain only dynamical s-singularities. And by assumption of

maximel anelyticity in s-matrix theory,-?ég?ab satisfies a
>

fixed-t dispersion relation in s.

Let us now concentrate on the factor X, p(s,'b) defined as
>
1 1
-3 xtul 3] 2]
= + - k.,
and let us study the asymptotic behaviour of X1 " for very large s.
2
From equation (4.3) for fixed t and large s we bhave

= 2st/{[t - (w tm )210t = (n,-m)%] [t ~ (m -my)*]
t fixed

x [t - (mm )21}° (4.9)

so that we have
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(Al ul)

X, (s,t) > (4.10)
M S~ 00 c(t)
t fixed

where n(a,u) is the maximum of |a| or |ul,
where c(t) can be determined from (4.9) and (&.3).

Thus, from each f(t) which describes a process involving helidity
flip, an amplitude §(t) can be constructed which is more
convergent a8 s = o, the higher the helicity fiip the better the

convergence, as seen in (4.11)

_(t) 1 (t)

fca;ab(s,t) i ;r-—?;:;S fcd;ab(S;t) = c(t) s [u])
p V1)
X fizzab(s,t) B8 5 - (4.11)

t
The next problem is to determine the bounds on fid?ab(s’t)‘
3

For this we appeal to the Regge theory which gives the behaviour

(t)
of f (t,s) for large s to be
cdjab
(t)
£ (t,8) ~ s*(t) (4.12)
cdsab

where a(t) is the position of the Regge trajectory exchanged in

the t-channel. So we can write the overall asymptotic behaviour
—(t
of f( )

(t,s) for large s as
cdsab



50.

§£zzab(t,s) ~ Sa(t)-n(lxl,lul) (4.13)

S=~» 00

: =(t)
So the amplitude f

(t,s) will satisfy the sum rule:
cdsab

+ 0

[ as Im (P2 E‘gzzab(t,s) ) = 0 (4.14)
where
B = a(t) - n(|a],|u]) < O (4.15)

Our next problem is to convert the integral in equation (4.14%) into
one extended only over the region with Z, = 0. This problem we

tackle in the next section.

3. Crossing s ¢ 1

by
We start/changing the variable in (4.14) from s to z,> i.e

+ o +oo

}P ds Im (ss—l Eizzab(t,s) = jr dz, In (sfa-l ?égzab(t,zt)) = 0

-0 -

(4.16)
(t)

cdsab

changes if instead of considering & and b as the first and second

We have simply to observe that in sy (t,s) essentially nothing

initial perticles, we reverse their order. Limiting, for

simplicity, to the cases where a,b are both bosons or both fermions,
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we have that the inversion of the order of two particles introduces
a negative sign in the second case and leaves it unaffected in the
first case. Therefore we may write

=(t) J
Fodsab (t,s) = <M cd|T"(t)]oM ab >

2
= <JM chTJ(’c)(-l) Pgp, |9M o >

(4.17)

where Pob is the operator which changes the order of a and b.

On the other side:

(--1)Esb b, |0M &b > = (-1)7 MM ba > (4.18)
with A = a ~b
One also has: (43)
Bo(s) = (DB () (4.19)

Then: -
(-1)2Sb 0,1, M &b > Pi}\(zt) w (-1)X|M ba > Pi’_l(—zt)
(+.20)
and therefore we may conclude
Tcd;ab(t"'lztl) = (‘1)”u gcd;ba(t"zt') (4.21)

where *cd;ba(t’zt) is defined like ?cd;ab(t’zt)’ So for instance
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z, in Egcd;ba(t’zt) is the cosine of the angle between the momenta

of b and ¢, whereas in Tcd;ab(t’zt)’ z, is the cosine of the

angle between the momenta of a and c. Consequently the sum rule
in equation (k.14) can be written as

o]

[ as m( R E, ) - (M F (6] = 0
o

(b.22)

The above suﬁ rule is further modified if we consider the isospin
of the particles teking part in the reaction. Suppose for

instance that a and b have got the same isospin TO and let

us consider the amplitude §£§?ab(t,s) corresponding to their
3
coupling to some isospin Te Then for this amplitude the

equation (4.22) has to be modified to

[as (PG 6r0) - (MWD (6,01) = 0
0

(4.23)

4, TIdentical Particles

Next we look at the restriction imposed by the statistics
obeyed by the particles concerned in the reaction. If the
particles a and b (or c and d), are identical, the sum‘rule
(h.22) may become triviael. Suppose for instance that a and b are

identical. If one also has a = b and u is even the sum rule is
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trivial. In general triviality may occur when the helicities of
the two identical particles (both ingoing or outgoing) are equal;
the cases in which it really occurs mey be read directly from

equation (4.22) or (4.23) if the particles carry isospin.

5 Regge Pole Contribution

The knowledge of what Regge Poles contribute to a given

superconvergent sum rule is a useful indication about the convergence
of the sum rule itself. In the following we restrict ourselves to
Meson-~Baryon scattering so that the baryon number exchanged in

t~channel is zero.
Let us denote by [ (t,s)]  the contribution of a given
cdsab a

Regge trajectory «(t) to _the amplitude §cd'ab(t’s)° One has:
2
(6)[L + (<1)° e-i1ta(t)] La(t)-n([r, [u])

% o a50m (5% Jo = Keazan
(L.2k)

where ¢ is the signature (even or odd) and ch'ab(t) is a real
3

function of t,

One has thent
*

[ Ecd;ab(t"lsl)]a - ch;ab(t)[ 1+ (_1)c e‘iﬁ“(t)]eiﬂ(a(t)—n)'S'a(t)_n
= (-l)c’(-l)n_ch;ab(t)[1'+‘(.1)0 ein«(t)],slaft)—n
' (4.25)

* ywe have dropped (||, [|n|) from n(]A|,|u|) to keep the motation

simple.
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and consequently:
F g (brm1sD Ty = ()% () F g (605D, (+.26)

The contribution of the given Regge trajectory to the (possible)

sum rule which §cd'ab(t’s) satisfies, contains a factor
2

[1 - (-1)® (1)1 . 8o for instance sum rules corresponding to

even n never have any contribution from the Pomeranchuk trajectory.

In the following we specialize to the special case of

pseudoscalar meson-baryon (octet and decouplet only) scattering.

6. Meson (Pion) - Baryon (Nucleon, N*¥(12%6) Scattering

We define our channels to be

a+b - c+d (t-channel)
a+c¢c —-» b+d (s~channel)
b+T = g+d (u-channel)

where particles a and b represent pions and ¢ and d baryon (N or %),

Now the most general sum rule we could write fora +b - ¢ +d
scattering in t~channel is as given in equation

/' as (P ED) (6,0 - (MW £ (5,6)1) = 0
! |
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where T, is the isospin carried by either a or b, T is the

isospin exchanged in t-channel. Now in our specisalized case

a = b = 0 = ) = a->)

so that the above equation reduces to

00

f as m(sP - (1)) 20 (4,5)) = o (4.27)
5 ,
where now B = a(T)(t) - |u] <0 ' (4+.28)

Now in the t-channel the isospin exchanged cen be T = 0,1,2, and
if we restrict ourselves to forward direction only, i.ec t = O

we know that

a?'o(tso) = 1) (corresponding to Pomeranchuk trajectory)
T=l ~ .

o (t=0) = 0.5 (corresponding to p~trajectory)

dT-e(t-O) < 0 Since no I = 2 particles have been discovered

it is reasonable to assume that this is so.
However this neglects the presence of a cut which can be there
because‘of the exchange of two p's as pointed out by Philips and
(k5)

Muzinich In which case a?’g(t-o) can be positive. Anyway

without giving any argument we neglect this possibility, and as
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pointed out in Section 5, sum rules corresponding to even u have
no contribution from the T = 0, i.e. Pomeranchuk trajectory. In

the following we will consider the sum rule for two processes

a) m+N — g+ N¥* (s-channel)
and
b) §+ N¥ o g+ N¥ (s~channel)

Te m+ N - ¢+ N*¥ Scettering Sum Rules:

We define the various reaction channels as follows

g+ N> 5+ N (s-channel)
w+ 7 N+ N* (t~channel)
T+N-o T+ N¥ (u~channel)

We label 7 and T as pions and N and N* as ¢ and d respectively.
a, b, ¢, d also denote the helicities of corresponding particles as

pointed out in section 6.
a = b = 0 m A

and our sum rules are of the form

(t;s) - 0

f»ds Im(sB"l[l - (-1)*T ?cd;oo

6 = ft) - |u] < 0
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We further fix t = 0
for T = 0 and 2 the non-trivial sum rules are for odd u , i.e.
g =1 corresponding to ¢ =1/2 ; d = 3/2

cm=-l/2; a4=1/2

but B = ocT.O(O) -1 <|I 0 8o no superconvergent sum rule corresgponding

toT =0 for T = 2; aT"2(o) <0 8o that B> -1 and we have

the superconvergent sum rules

_(1=2)
fds Im fl/2 3/2;00(t'0’s) = 0 (+.29)
and
—(T=2)
f ds Im f_l/2 1/2 (t=0,s) = O (4. 30)
5 .

for T = 1 only non-trivial sum rules correspond to even u, i.e.

p = 0,2 corresponding to c = 1/2; a=1/2

c=~1/2 3 d=3/2
but for T =1, u=0
B 1: 0] 80 no superconvergent sum rule.

Onthe other hand for T =1, p = 2

B = ~1.5
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so we have got a superconvergent sum rule:

00

fds Im ?ﬁ% 5/o(t=0,8) = O (4.31)

So, for the process under study we have three non-trivial super-

convergent sum rules (4.29 - 4.31),

8, n+ N* - g+ N* Scattering Sum Rule

As in section 7 we define our direct and crossed channels

as
wt+ N¥ > g+ N¥ (s~channel)
n+w - N¥+§* (t~channel)
T NE o T RN (u~chennel)

We label mand ® as a and b and denote by c and d N* and N*
respectively. a, b, c, &4 also denote the helicities of the

particles a, b, ¢ and d respectively.

Now a = b = 0 = )\ = a-b

So for fixed t = 0 our sum rules are of the type

/\ds Im(sB-l[i - (—l)“+T] I (t=0,5) ) = O

cd;oo0

B o= o (0)~|ul <o
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for T = 0, 2 the non-trivial sum rules correspond to odd value

Ofp,,ioeo
cm~3/2; dm=3/2 wo=3

cm+L/2 3 d=3/2
po=l
c=-1/2; d=1/2
Since fory =1, T =0 B { 0 there is no superconvergent sum
rule corresponding to T = O. While for T = 2 B > -1 we have

two superconvergent relations:

[ds Im '5372)3/2;00&-0,@ = 0 (k.32)
S (re2)
fds Im f_l/2 1/2;oo(t'°’s) = 0 (+.33)

but for p=3 and T=0 B & -2
which gives us a moment superconvergent relation

[s.2]

(T=0)

[ds Im (s ?_3/2 3/2;oo(t'0’s)) =0 (k. 3k)
and an ordinary sum rule
3 _(1=0)
fds Im( f-3/2 3/2;oo(t'o’s)) = 0 (4+.35)

0
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and for T = 2 uy=3 we have B > ~3
which gives us three sum rules

0

f as m (FPETR) 0 o (60,8) ) = 0 (4. 56)
[ds Tm sE_‘SZQ%/E;OO(t-o,s) = 0 (4.37)
0

and jpds Im TE§72)5/2;00(t-0,s) = 0 (4. 38)

For T = 1 the only non-trivial sum rule can be obtained for even

values of u , i.e.

w o= 0 corresponding to ¢ = 3/2 ;4 = 3/2

c = 1/2;4d = 1/2
and p = 2 corresponding to c =-1/2 ;4 = 3/2

But for T =1l and un=0 B 1: 0 so0 no superconvergent sum rule
can be obtained. On the other hand for p =2 and T =1
B« »1,5 and we have a superconvergent relation

00

[as m( 295 (0,00 ) = 0 {5.3)
! |
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Thus we find eight superconvergent sum rules for the process

w+ N¥ 5 o+ N¥,

Our next problem is to extract any useful information from
these sum rules (4.32 - 4,39). This we can do by saturating the
sum rules with low lying baryon states in the s-channel. Before
we do that we require the necessary framework to enable us to do

just that. We develop this formalism in the next section.

9. Direct Channel Pole Contribution to "t" channel amplitude

Suppose that a particle X of mass m, spin s and parity
n = (-l)annb 1s an intermediate state in the s-channel
a+b - ¢+ d where My M, are the intrinsic parities of particles
a and b respectively. We wish to calculate the pole term it
induces into the modified t-~channel helicity amplitudes Tn(t,s)*,

which are free from kinematic s-—singularities.

The partial wave expension of the s-channel helicity amplitude

o (s,%) = Z(gy +1) ai(s) a‘;u‘(es) (1.10)
J

ai = < chTJlab >

* n denotes all the helicity indices
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From helicity representation we go to the JM representation of

(k2)

Jacob and Wick

oL + 1

2
< IM, LS|IM; 0, > = [ } G(LSJ;O,)\l -xa) C(s;858352,=2)

27+ 1
(b 1)
C's being the Clebsch-Gordon coefficients.

Equation (4.40) modifies to

J .
Gn(s,t) - 2 (23 + 1) am(es) <JM;cd[JM,Lf,Sf >
J

J
< JM,Lf,SflT |JM;Li 8, ><JM, L, SilJM,a.b > (k.h2)

J J T
= ) e 4 (e) &, ) (.43
Iyl
where J
C., = < JM;chJM,Lf 8p > <ML, 8, |oM,ab > (b lile)
J J
a, = <ML S,|T »|J’M,Li B, > (u.us)

This expansion is useful since particle X can be an intermediate
state only in those amplitudes for which J = § and |Lf - Lil is

limited by parity. Let Zt designate the sum over such amplitudes.
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We make the following pole approximation for the amplitudes
assuming all poles to correspond to stable particles, even if

they are not (i.e. N¥).

26) = ) m T, 8(s - o) (t.46)
. ,
where Pl is related to the couplings at the two vertices. In
this way we isolate the contribution of particle X from the
remainder. Now we are interested in the contribution of the
exchange of the particle X to the t~channel helicity amplitudes.
This leads us to analytically continue equation (4.46) into the

physical domain of t-channel and relate it to fn(s t) by means

of crossing-relations:

- ~ s - S o
+ -
L (ts) = Z Bn(t 8) (25 + 1) (6) ¢ mr, os -nf)
n,t
(4. u7)
where g;,n(t s) is the crossimg matrix between s-kinematiec
singularities free t-channel helicity amplitudes and t-kinematic

singularities free s~-channel helicity amplitudes .

Having developed this formalism we apply it to saturste sum
rules for nN — mi¥ and ¥ guN* ,

Let us first consider 7N — w{¥*.



We define
n' = (cd;ab)
1ﬂ = (1/2 1/2;00)
2 = (-1/2 1/2;00)
3 = (1/2 3/2;00)
b = (-1/2 3/2;00)
while
n = (bd;at)
1 = (01/2;0 1/2)
2 = (01/2;0 -1/2)
5 = (03/2; 01/2)

L = (0 3/2; 0 -1/2)

6k,

a,b,c,d being t-channel helicity
labelsa = b = O always

for the cases under consideration.

again a = b = 0

c represent nucleon as well as
its helicity label, 4 represent N¥

and also its helicity label

at t = O the three superconvergent sum rule (¥.29-4.31) reduce to

0
=2
~ 2 J 2
[ [Z Bg, (t=0,s=mr) (23 + 1) Ciym, T, 5(s - mr)]r ds = O
0

1,7

1,5

(%.29')

~ ~ o J ) T32
[ [Z BZl(t=O,s=mr) (23 + 1) Cipm. T, 8(s - mr)] ds = 0
0

(4.30')
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and

by ~ ' 2 J o T=l
f I:ZB‘l(t=0,8=mr) (25 + 1) €, m. T, B(S - mr)] ds = O
0 I,J '
(k.311)
We truncate the sum with J = 1/2 (Nucleon) and J = 3/2 (N¥(1236))
only. We further allow p-wave and f-wave couplings at mV¥N*

vertex. The sum rules thus reduce to

~

Bs:.(t"o’S’Ma) T M
- = LR e k29"
g, T (-5 f5 )%, - 8)( ) (k.29")
ﬁ (tnO,szMg) N
- 2% _4 /2 _ M I, 30"
g, 5. (500, 9m07) (-5 J5)0e, - g)(}) (k.30")
and .
Bl (t=0, s=M?) o I3 M
= -2 /= - = L, 31"
g, 5, (om0 ) (-5 /5 (%, -e)() (4.31")

with the following definitions:

g = qullN coupling constant
g = qnNN¥ coupling constant

g_ = p-wave ni{¥N* coupling constant

0
>
L]

f-wave nli*N* coupling constant
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for nucleon pole we have put
r, = g8

and for N* pole we have put

2
}:PZ = -+ —5-g2(~3g‘+ ga)
!

For non-degenerate N, N¥ masses it is difficult to make any
reasonable prediction, because of the ambiguities in the determination
of the crossing matrix elements B's, which are complex below
threshold. For degenerate mass éase however the situvation is

much sinmpler, The first two sum rules reduce in the limit of

very weak f-wave coupling (g4 < gs) to the result
g, = -L.976 g (4.19)

and the last gives in the same limit

g, = 3:952 g,

3

Next te consider the superconvergent relation for =¥ — ali¥,
We saturate the sum rules (%.32 ~ 4.39) with N and N* pole in the
same way as we did for mlN — sV* case. These sum rules after
some simplification reduce to except for (4+,32) which is

trivially satisfied:
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338, + 8.2 + (g, - 38402 = R D) (1.50)
(3g, + 8,)% - 3(g, - 38,)° = 22202( ﬁ )g: (k.51)
(g, + 8,)% - 3(a, - 38,)° = 22(})% (4.52)
~(385 + 8,)% * 3(gg - 36,7 = 22 3% (+.53)
(e, + 8% + 3(g, - 3,07 = 2B ) (5)
~(3g, + 84)% + 5(gg - 3 )2 = 22 B)e (b.55)

and

(3, + 8,0 - (g, - 38,7 = 2 B)& (1.56)

at zero momentum transfer.

Let us discuss these sum rules in detail., Sum rules 50, 53,
5L, 55 @1l correspond to exchange of I = 2 trajectory in the t-channel,
and all give f-wave coupling to be much stronger than the p-wave
couplings. This is unacceptable on already known facts in
verious scattering processes. We therefore nelgect these sum
rules. If we accept the suggestion of Muzinich and Philips(hS),

these sum rules may not exist at all. Because the above suthors
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prove that in the I = 2 state Regge cuts corresponding to double
p-exchange may occur for which aInz(t-O) > 0 and hence no
superconvergent relations. Our results sbout I = 2 sum rule seem

to uphold the view of Philips and Muzinich.

Tl .
The sum rule (4.56) which corresponds to f—l/2 3/ together

T
with (4.52) which corresponds to sf are consistent
(-52) ? ( -3/2 3/2

with the following results
g, = 1.197 g,
(L.57)
g, = 0.009 &

which give for the f-wave to p-wave coupling ratio and xli*N*

vertex

— & 133

a result which seems quite reasonable. Thus sum rules
corresponding to p- and Pomeranchuk exchange seem 1o be the only

good ones. The other sum rule for Pomeranchuk exchange, i.e.
T=0
/hIm f 3/2 3/g(tno,s)ds = O 1s not compatible with the result of

(h.57). This tempts us to assume that the only sum rules for
7N¥* scattering which are saturated with N and N* are the ones which

correspond to the exchange of p-trajectory in the t-channel.

(29)

This is & conclusion Jones and Scadron reached in their study
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of superconvergent relations for =lN¥* scattering inveriant

amplitudes,

Thus (4.57) gives under the assumption of g, << g  the

result

g, = L.194 g (+.58)
In the equal mass case, i.ec. m = M, we get from (4.57)

g, = 1.315 g, (+.59)

In equal mass case however sum rules (4.50 - 4.,55) are not

saturated with N and N*.

In conclusion we may say that although the superconvergent
sum rules written in terms of t-channel helicity amplitudes are
true; the question of saturation of these sum rules is still open.
We still have no general criteria to determine which sum rule is

sgturated with low lying states and which is not.

It is however obviocus how simple it is to write superconvergent
relation for any scattering process in terms of t-channel helicity

amplitudes compsred to those in terms of invariant amplitudes.
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APPENDIX

a) Notations:- we use the metric such that

vu = (V, 1vo), a“b“ = a.b - a.b
our gy-metrices are Hermitian and satisfy the relations

{7u’70} - asub

s VsVt s 0, 7575 = 1,

s = 71727374 ™ 1T uore "u Yo 72 7 (a.1)
We use the Dirac equation
(yoP - im)u(P) = © (a.2)

and the normalization

i(p,2*) ulp,)) = B4+  Where 2,A'  are the helicities

of the Dirac particle. (A.3)
The propagator for spin 1/2 particles is

yep + im

Zu@,m Wp,)) = ——— (A1)
- 2im
spins

For spin 3/2 particles we use the Rarita-Schwinger formalism.

The wave function wb(p) satisfying the following three conditions
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i)  (y.p - im)ﬁru(p) = 0
ii) p#-vu(p) = 0 (a.5)
111) 7u""u(P) = 0

the projection operator being

i

| _ _ L i - _
Zvu(p,x)\vu(p,x) : { Nl R - (Pu 7o = Py 7u)
)

+——1p D (8.6);

2 7ep + im
302 (] 13}

2im

b) Decomposition of total amplitude for ¥y + N — g + N¥ in

Lorentz and Gauge inveriant amplitudes:

We define

k+P.q_+p' (Ao7)

p, p' being the four-momenta for proton and N* respectively, g and

k being those of pion and photon respectively. We expand the
T(q) as
11
Ta) = T,60 ) o e, u) (8.8)
iml

the various ai's are
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F F 5 F

P 7 e Tt WP Py P Fao
' F ' F 5 F
' F Yy P 5 F

P, 97

F F
T e SR TR WA

where F m k e -k ¢

and we have used the subsidiary conditions (i) - (iii) to reduce

the choice of kinematic factor ai's to the'above eleven.

In the limit of zero momentum pion, i.e. g -» O only two
ats

y P end B P survive because of the
Pu 27020 ux 7p “2p

identities
"y t Y Y [5 (M
\vu(p' M oyeay, 7o Fao! u(p) ‘yu(P_ ) (1 (Mm) ¥, 7o Fro

- bp, 7o Fap! u(p) (4.9)

and

" - 1 4
ﬂfu(P")[%q B 7o F)\p] u(p) \lfu(P‘ )[pLl 270 Fap

4+ «10
182 75 ka] u(p) (a.10)
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Thus in the limit of g — O the amplitude Tq__’ O(q) reduces to

T ¥ (p* +18
qo(@) = *u(p, Mo, 7, 7, Fyey ¥ 18, 7 Fy 8,1 u(p)
(A.11)

describing the process y + N -» ¢ + N¥

c) Quark Model

In terms of quark fields we construct the vector and axial

vector currents of wesk interactions by

J: (x) = q(x) 7y 2 q(x)
(A.12)

Jﬁu(x) = g(x) Ty s 2" q(x)

where }\a are the Gell Mann matrices obeying the SU(3) algebra

¢ . B V4
[25,\] = ifasy A
and (a.13)

« . B 4
{250 ) = daey}‘

where a, B , run from one to eight. Using the basic commutation

properties of Dirac fields, i.e.

(o) (), ay) hoay, ™ Bab 8o 5 )

(A.1k)

(& &), B o = (4 J0))=o
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(a,b being particle label and q*, q denoting the creation and
annihilation operators) together with the relation (A.13). We

find with the help of the identity

[A®B, A®B'] = 3{[A,A']® {B,3*} + {A,A'}® [B,B']}

(a.15)

that following commutation relation hold
5(x, = ¥,) 595001 = 12, 37 (x) 8*(x-y) (4.16)
8(x, = TIT0),T0, (] = 124, T (x) 84(xy) (A.17)
8(x, - ¥, Too(x),05 (x)1= 12, 37(x) 8*(x-y) (4.18)

we further define the vector and axial changes in the following

way
") = [ a% i) (a.29)
xont
Qe(t) = f a3 J;‘O(x) (A.20)
xolt

With these definitions the following commutation relations are

derived

[ Q%(+), Jﬁ(X) Lowg ™ 1 f4p, J";(x) (a.21)
o _
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o B 7
[ e (t), N ]xo't = 1f, I (%) (A.22)
along with a few more. We will explicitly evaluate the last
commutator with a = 3, B = 3,

We start with

3 3 3, = <) 3
SHOREMOIRINEE [ a%a 1, 7,2% 7,21

X =t
o

f a%x %— {[ 7o 75,7!1] {)\8’)\3}

x =t
O LN

g 7g, 1 [1%2°] } q

3, & 4
-f dxa{OXdSSB)\ 270757ux0}q

x =t
o)

= 0 (A.23)
We have used (A.15)

(A.23) is the result we used in deriving equation (2.10)

d) t e 5 crossing matrix for mi* — V¥

In the following we calculate the crossing matrix between

t-channel and s-channel helicity amplitudes for miN¥ — %,

Following Wang(lilt) the crossing metrix elements for two body
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AT

elastic scattering is given by

cd;ab e e
M -[l-z]2| I[1+z]| |
C’A';D'b' 't t

R WIS <xb>d°()a )

SApaa

J
+nda() b (x)a °_c(c>a, 0

i APt 1 }\""l-;'
x [1 ~ zs]e' o | 1+ ZS]2I L | (A.24)

Zys Zg being the c.m. scattering angle in t and s-channels

respectively, where

A = a-b; A' = D -t

w o= ¢ ~-4a; ut* = cf - At

(a.25)

T]A'qc( Jd +_~J -J At —p?

_)c ) db(_‘)~
T

and g

where Mo Ner Mps T, are the intrinsic parities of particles

&, b, c and d. Now for mlN¥ elastic scattering we have to identify

e, d with N* and N* respectlively and b, a with the pions. For

this case we have

Jd = J = 0 and A = O

Xt - Dl, ul = C'
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Further if we specialize to forward scattering, i.e. t = O and
z, = 1 then the non-zero crossing matrix elements are for
At o= u-' i.e. ¢* = D' ,

Thus the érossing matrix element for nii* — ¥ at t = 0
are

Mcd; 00

~Je-
Sin ¢
e?t0;D'0 ( ’t)

/2, . 32, . 32 3/2
{0 @)+ " () 2 ) |
Cos X, = ~t(s + p® - M) / {t(t -~ W®) [s - (M + pn)?]
[s - (M - u)?] }5

= 0 at t=0

Similarly we find

Cost = O

So SinX = Sin¥X, = 1
8, d

Now the only permitted configuration for c¢' = D' in zlN¥ — ¥
scattering is for c' = D* = 3/2 and 1/2,
Let us determine the crossing matrix element for particle helicities

we are interested in

~3/2 3/2;00 - [ 3/ 3/2
M5/2 0;3/2 0 (st = 0) = (sin ) {ds/z -3/2(X°) 013/2 5/2(Xd)

43/2 3/2
3/2 3/2("0) d3/2 -3/2 () }
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_% (Sin e’c)-a{ (L - cos Xc)3/2(l - cos Xd)B/z

+ (1 ~ cos )((3)3/2 (1 - cos Xd)B/Q}

-% (Sin et)‘s

-3/2 3/2;00
1/2 0;1/2 0

(stmO)

= [ 3/ 3/2
(stn 6,) .{ L sp%e) AR

)

. P ) d3/2’

TR }

'Xc X Xd Xd
= g (8in et)"3 { 8in® -2 Cos - Cos® -2 8in —
2 2 2 2

X % X X
+ Cos® £ Sin L Sin® et Cos _@}
2 2 2 2

i
2

2 ~8 | g - -
3 (Sin et) Sin X, Sin Xa(l Cos Xc)
3 3
(1 + cos Xa) + 8in X, Sin Xa(l + Cos xb)

(1 - Cos xd)%}

- E (sin 6,)7°
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-1/2 3/2;00
3/2 033/2 0

3/2
(st=0) = (Sin @ )’2 { 5/ -1/2(Xc) d5/2 3/2(xd)

.\ 3/2 3/2
d3/2 1/2( c d3/2 -%/2 (X }

- {82 (8in e_,:')"ia {Sin Xc(l ~ Cos Xc)l/2

2 1/2
(1 + Cos xd)B/ + 8in Xc(l + Cos xc)

(L - Cos xd)B/e }

- “[E (8in e,c)"2
-1/2 3/2;00 3/2 3/2
% /e 051/2 o(s8=0) = (Sin 0,)™ { 1/2 -1/2(Xc) 1/2 32 & a)

+ 3/ (%) d5/2 )}

1/2 1/2 c 1/2 -3/2 a

i
2

= (8in et)"z“[g { ~(3Cos X, 1)(1 - Cos xc)

1
Sin Xd(l + Cos xd)2 + (3 Cos X, -1)

1 1
2 a3 - 2
(1 + Cos Xc) 8in X4 (1 - Cos Xd) }



M
1/2 0;1/2 0

A.ll

(sin e,c)‘*2 “% {-1 -1}

N ' -2
- —f (sin 6,)

Mﬁ Z;ZOO(S’G-O) = (sin 6,)™" { dZZ L /z(xc) aZ 2 3/2(,((1)
Za /%) 5/2 5o (%) }
- %3 (om0 { - st 1,0+ oom 2
(1 + Cos xd)3/2 - $in X (1 - Cos xc)1/2
(1 - Cos xd)5/2 }
e
1/2 32500 3/2 5/2

(stm0) = (Sin 9,0)‘l { dl/2 1/2(Xc) al/2 3/E(Xd)

3/2 3/2
+ 4 (x) a /2( )}

1/2 ~1/27 ¢ 1/2 -

N

1
= —85 (sin e,c)‘JL { (3 Cos X, - 1)(1 + Cos xc)2

1 .
2 hd
Sin Xd(l + Cos Xd) (3 Cos X, + 1)

1 1
- z - 5
(1 - Cos xc) 8in X d(1 Cos xd)
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- -\gé (Sin et)‘l

~1/2 1/2;00 i 3/ 3/
M3/2 0;3/2 O(S t=0) = (8tn o ) /2 -1/2(xb) 3/2 1/2

3/ 3/2
" l/2(x° %52 1/2(xd)}

(%)

2 -1 | - %
- 3 (gin et) 8in X, Sin Xa(l Cos Xc)

1 1
v )2 . z
(1 + COS.xa) 31§ X, Sin Xa(l + Cos Xc)
%
(1 ~ Cos Xd) }
-2 -1
- -3 (Sin et)

v = o [ 00 22

- ~1/2 1/2;00
M
1/2 -1/2" ¢

1/2 0;1/2 0

(%y)

I
1/ 1/2( e 1/2 -1/2 d):}

1
= - (Sin Gt)"l :;'-3 { (3 Cos X, 1)( 1 - Cos Xc)2

: 1
(3 Cos Xy = 1)(1 + Cos x,d)2 + (3 Cos X, -1)

L e L
(1L + Cos Xc)2 (3 Cos Xy * 1)2(1 - Cos Xd)2



3/2 3/2;00
1/2 0;1/2 0

3/2 3/2;00

3/2 0;3/2 0

(st=0

(s

)

t=0)

.{ 3/ 3/2 3/

A.13

1 -1
. (sin et)

(x,) d

1/2 3/2° ¢ (%) +

(x,)

1/2 3/2 1/2 -3/2

3/2
d'1/2 -3/2 (%) }

3 3 3
1 8in X  8in X, (1 + Cos xb) (1 + Cos xa)

Y ’y
- 2 - 2
+ 8in X, Sin Xa(l Cos xb) (1 ~ Cos Xa) j}

3

L
3/ 3/2 3/2
5/2 3/2(xb) d3/2 3/2(Xd) d3/2 3/2(X )
3/2

d3/2 —3/2(xd)

%-{ (1 + Cos xb)5/2(1 + Cos x.d)5/2

+ (1 - Cos Xd)5/2(1 - Cos Xc)3/2 }

e



A1k

1/2 1/2;00 3/2 3/2 3/2

1/2 0;1/2 0 st=0) = d1/2 1/2(X°) d1/2 1/2(Xd) ¥ 1/2 -1/2(Xc)
3/2
éL1/2 -1/2(Xd)

i i
= %{ (3 Cos X, - 1)(1 + Cos xc)2(1 + Cos xd)’=‘
1

(3 Cos % - 1) + (3 Cos X, * 1)(1 - Cos Xc)2

1
(1 - Cos Xd)2(3 Cos X + 1) }

!
L
1/2 1/2;00 3/2 3/2 L 432
5/2 033/2 o) = Ay g 0R) Ay g (X0) F Oy p (%)
3/2
“5/2 —1/2(Xd)

2 3 3
= £4 Sin X, Sin Xd(l + Cos xc) (1 + Cos xd)

1 1
- 201 - 2L
+ 8in X, Sin Xd(l Cos xc) (L - Cos xd) }
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Because of time reversal we have to taeke

-1/2 3/2  -3/2 1/2 -1/2 3/2
e Ry Ay
ct0;D*0 ct0;D*0 ctO;D*0
and
M:L/2 3/2 3/2 1/2 . M1/2 3/2
c®0;D*0 c?0;Dt0 o c?0;Df0

So that the t ¢» s crossing matrix for ¥ scattering is given by

1 1 ]
= 0 =
. 0 o0 . 0
0 0 0 o 0 0
N3 o1 V3 1
1 1 3 1
M = =, = 0 0 . =
Ll' YS O h. YS O
2 O 0 0 L 0
by L
231 1 1
2.3 0 0 0 e 0

where we have put 8in et m Y

e) t ¢ s crossing matrix element of <N _— siV*

As before the crossing matrix element for pion-~baryon scattering

is given by at t =0
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ed ;00
et0;D0

(st-O)-(Sinet) '{ c(X)d (X)+nd (x)
J
a
dD'-d(Xd) }
with c* = DY always '

For the special case of 7N — =N* we have to identify ¢ with N and
d with N¥*, So that
J.~J
aYe 3/2 -1/2
ng = (=) = (-) = -l

so that

e (st=0) = (Sin et)"|c~dl {di{i(xc) di{i(xd) - dl/2 (x.)

c*0;D*0 ct—c
Dt ~d. d) }

at t'= 0 the only non-zero crossing matrix elements are the

‘following
1/2 1/2;00 1/2 3/p 1/2 .
" /2 051/2 o(s=0) = “ /e 1/2(Xc) % /e 1/2(Xd) " Y -1/2(Xc)
3/2
dl/2 -1/2(Xd)

X X ')(.c
= Cos — Z(3 Cos Xy = 1) Cos — = 8in —
2 2 2

1 Xd
5 (3 Cos xd) + 1) 8in Y



AT

1 3 3
-3 (1 + Cos xc) (3 Cos Xy 1)(1 + Cos xa)

1 : }
- (1L - Cos xz) (3 Cos %y 1)(1 - Cos xa)

1l

-1/2 1/2;00
1/2 0;1/2 0

(Sin et)-:l.{ d1/2 x) a 3/2

1/2 -1/2" ¢ 1/2 1/2

(st=0)

(%)

172
1/2 1/2( %) @ 1/2 1/2(Xd)}

X,
(sin e,c)"l { - Sin —2— L(3 Cos X; - 1)

xd xc
Cos -é- + Cos —

1 Xd
Cos X, + 1) Sin —
> 5(3 Lt 1) .

(s8in e,c)‘l 1
——{(1-cosx)2(3Cosx - 1)
)_'_ C d

1 1
(1 + Cos xd)2 - (1 + Cos xc)2(3 Cos X, * 1)

(1 ~ Cos xd)'é'}

21
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1/2 3/23;00 3/2
1/2 0;1/2 0 (x,) a ( d)

1/2
(s1m0) = (s1n 6, { @ ) 4/ 52

1/2 1/2

1/2 3/2 ,
"% -1/2(Xc) %2 ~3/2(Xd) }

X X X
= (8in GJG)"l {«/_5 Cos —29- Sin —ég Cos® -—251

Xc Xd Xd
+ '3 8in =% Sin? Cos —= }
2 2 2

V3

21

1
-1 T as
(Sin et) { (1 + Cos xc) Sin X,

1 1 1
z - z _ z
(1 + Cos xd) + (1 ~ Cos xc) Sin Xd(l Cos xd) }

31

M;ZQOZZOZ(Stzo) = (Sin o )-l{ 52 1/2( %) ze 3/2( %)
B ii 1/20(0) 1/2 -3/2 (%) }
= “—ff (8in 9;0)_1 {-—(1 - Cos xc)% Sin X,
(1 + cos xd)% - (1 + Cos xc)% Sin X,
(1 - Cos xd)% }
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- -2 (otn 0™ {1 - 0o %21 + cos 1P

1 1
Sin X, + (1 + Cos xb)ﬁ(l - Cos xa)i Sin.Xd:}

4).

For equal mass case: m = M

Cos X = Cos X, = O
[¢] a
SBin X = Sin X, = 1
c d

and we can show that

11

21

31

NS 1
By ™ "5 ¥

So that a t = 0 and M = m the Crdssing matrix t e» s channels

for o — mN* is given as:

{ -% o o o] :
1 1
+ =, = 0 0O O
3(45) (54m0) j Y ; Y= Sin g
nn _z 1
. o O
+ 5 I 0 0
J3 o1
2 od
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