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Abstract

Higher order corrections to QCD scattering processes are crucial for phenomenolog-

ical analyses in hadronic collider environments such as the LHC. In this thesis we

consider the infrared divergent structures emerging from Next-to-Next-to-Leading

Order (NNLO) perturbative QCD predictions within the antenna subtraction frame-

work. In doing so we elucidate the highly predictive nature of such a construction,

driven by the underlying infrared behaviour. The antenna subtraction formalism has

previously been applied successfully to the pure-gluon channel in dijet production at

NNLO; we present the extension to processes involving two and four quarks at lead-

ing order in colour. We derive explicit expressions for subtracting single and double

unresolved contributions to various channels required for dijet production in hadronic

collisions. Numerical results are presented to illustrate the validity of the subtraction

terms in mimicking the physical cross section in the various unresolved limits.
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Preface

The Large Hadron Collider (LHC) is a masterpiece of engineering and scientific en-

deavour. With the proliferation of data at unprecedentedly high energies collected

since its first successful run in 2010, it has ushered in an exciting new era of physics.

Now hitting centre-of-mass energies of 8 TeV, the LHC has successfully rediscov-

ered [1] the Standard Model of particle physics, already establishing challenging re-

sults such as diboson and single top production. The crowning success thus far has

been the discovery of the scalar particle consistent with the Standard Model Higgs

boson, an excitation of the field giving mass to the fundamental matter constituents.

Such an event was not confined to the realms of particle physicists; it captured the

public interest with only minimal recourse to sensationalist journalism. Yet there

still exists a plethora of outstanding and intriguing problems upon which the LHC

may begin to shed light: the nature of dark matter, the existence of supersymmetric

particles, possible sources of the fermion mass hierarchy to name but a few.

To capture signals of potentially new physics, they must be separated from the

huge background present in a collider environment, which requires intimate knowledge

of Standard Model phenomenology. In hadron colliders such as the LHC the strong

interaction dominates. In order to describe the rich hadronic spectrum, Gell-Mann

proposed the quark model, whereby hadrons were constructed in terms of elementary

building blocks called quarks. To account for baryonic states existing with quarks

of identical spin, the quantum number of colour was introduced. [2]. Colour proved

more than merely a workaround for experimental nuances; the exact local symmetry

that emerges laid the foundations for Quantum Chromodynamics (QCD), the

field theoretic framework for the strong interaction.

The work in this thesis focusses on perturbative studies of QCD predictions, pri-



marily the associated infrared behaviour at Next-to-Next-to-Leading Order (NNLO).

Infrared divergences plague perturbative calculations at higher orders; antenna sub-

traction offers a general framework by which such divergences can be regulated, and

can be applied to processes relevant in hadron colliders. We constrain the infrared

structure present within such a formulation, and apply the subtraction method to

quark- and gluon- initiated channels required for NNLO dijet production.

This thesis proceeds in the following manner. Chapter 1 reviews a number of basic

concepts of QCD that will play an important role in this work, followed by a focussed

discussion in Chapter 2 on the infrared divergences present in QCD calculations and

the factorisation properties of physical matrix elements in singular limits. Chapter 3

reviews dijet production in hadron colliders, to which later results will apply. Antenna

subtraction at NNLO is discussed in Chapter 4, detailing the infrared structures

within this framework. With the formalism in place, we construct in Chapters 5 and

6 the subtraction terms for quark-gluon scattering processes relevant for an NNLO

treatment of dijet production in hadronic collisions, and test our implementation.

Our findings are summarised in Chapter 7.



Chapter 1

Basics in Perturbative QCD

The research presented in this thesis concentrates upon the study of higher order

corrections in QCD. To proceed, we lay the foundations of the subject at hand, and

introduce the tools required to perform such calculations. This is by no means an

in-depth exploration; for comprehensive reviews of QCD and Quantum Field Theory,

excellent examples include [3–6].

We first present QCD from a field theory perspective, and then motivate pertur-

bation theory for high energy collider theory. Crucial ideas for field theoretic and

perturbative calculations, that of the running of the strong coupling, renormalisation

and factorisation, are presented. In Section 1.3 we also introduce colour space as a

vital tool for our later analysis of the singular structure of cross section dynamics.

Armed with these concepts, and the study of the divergent behaviour of scatter-

ing amplitudes that follow in Chapter 2, we are in a favourable position to begin

calculations in QCD at higher orders.

1.1 The QCD Lagrangian

The Lagrangian density of QCD can be arranged in terms of four constituent parts;

LQCD = Lquark + Lgluon + Lg.f + Lghost. (1.1.1)



1.1. The QCD Lagrangian 4

The first two terms Lquark and Lgluon make up what is known as the classical QCD

Lagrangian, Lclassical, and describes the dynamical properties of the quarks and glu-

ons,

Lclassical =
∑

q

ψ̄iq(i /D −mq)ijψ
j
q −

1

4
Ga
µνG

µν
a , (1.1.2)

where the summation is over the q flavours of quarks in the matter sector, the quark

fields being represented by ψjq .
1

The quarks also carry a colour charge i = 1, 2, 3 and thus exist in a triplet rep-

resentation of the group SU(3). The covariant derivative and gluon field strength

tensor are given respectively by

/D = γµ(∂µ + igsA
a
µt
a
ij), (1.1.3)

Ga
µν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν , (1.1.4)

where gs is the QCD strong coupling and Aaµ denotes the vector gluon gauge fields.

The group elements taij are the fundamental generators of the Lie Algebra of SU(3);

there are eight generators, labelled by a = 1, . . . 8. They are used to define the

structure constant fabc via the commutation relation

[ta, tb] = ifabctc. (1.1.5)

The QCD Lagrangian is invariant under local gauge transformations. That is, it is

possible to redefine the quark fields in (1.1.2) independently at any point in spacetime

and still keep the physical state of the theory intact. For a rotation of SU(3) by Ω(x),

the quark fields and covariant derivative transform as

ψiq → Ω(x) ψiq, (1.1.6)

ψ̄iq → ψ̄iq Ω−1(x), (1.1.7)

/Dψiq → Ω(x) /D ψiq. (1.1.8)

1The work carried out in this thesis takes massless quark fields for all active flavours.
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In order to ascertain the transformation property of the field strength tensor we first

use (1.1.8) to derive the transformation of the gluon field Aaµ as

t · Aµ → Ω(x)
(
t · Aµ +

i

gs
Ω−1(x)(∂µΩ(x))

)
Ω−1(x), (1.1.9)

and since the covariant derivative also satisfies the commutation relation

[Dµ, Dν ] = −igsGa
µνt

a, (1.1.10)

the tranformation of the field strength tensor is found to be

t ·Gµν → Ω(x) t ·GµνΩ
−1(x). (1.1.11)

At this juncture we make note of the form of the field strength tensor, where the

third term in (1.1.4) describes the gluonic self-interaction and at present prevents

gauge invariance. This is unlike the Abelian theory of QED, where the third term is

not present. Instead we reconstruct the Lgluon as a trace over the colour indices,

−1

4
Ga
µνG

µν
a = −1

2
Tr[t ·Gµν ]

2, (1.1.12)

which is invariant under its transformation in (1.1.11). The combination of these

transformations allow the local gauge invariance of Lclassical to be transparent. In-

cidentally, the gluon fields have no associated mass term as the quarks do, since we

have no mechanism by which a gluon mass term m2
gA

µAµ can be inserted into the

Lagrangian in a gauge-invariant manner.

This is by no means the end of the story. In quantising the (thus far) classical

theory, we find a vanishing conjugate gluon momentum which spoils the canonical

commutation relations stemming from the gauge freedom enjoyed by the gauge field.

Indeed, we have constructed a spin one object with two polarisation states from a

four dimensional Lorentz vector. It is thus necessary to impose a constraint on the

gluon field such that it is forced to pick a gauge. To accomplish this, a gauge fixing
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term is added to the Lagrangian, Lg.f , for example

Lg.f = − 1

2η
(∂µA

µ
a)2, (1.1.13)

which in this case encapsulates the imposition of the Lorentz condition ∂µA
µ
a =

0. The gauge parameter η is arbitrary and parameterises the choice of gauge, for

example η = 0 (Landau gauge), η = 1 (Feynman gauge) and η =∞ (Unitary gauge).

Unfortunately, including this term results in the Lagrangian no longer being invariant.

Nevertheless, the physical prediction still should be not only gauge invariant, but

independent of the choice of gauge.

In the covariant gauges introduced above, the gauge fixing term still leaves the

gluon with an unphysical longitudinal degree of freedom that the gauge field’s self-

interactions require to be eliminated. To proceed, an unphysical complex scalar field

ξa is introduced, living in the adjoint of SU(3). This ghost field satisfies anticom-

mutation properties and thus behaves fermionically. It appears in the Lagrangian

as

Lghost = ∂µξ
a,†∂µξa + gsf

abc(∂µξa,†)Abµξ
c, (1.1.14)

and the Feynman rules that direct it must be included in any diagrammatic calcu-

lations. This inclusion is a result of the non-Abelian nature of QCD; for Abelian

theories such as QED, the structure constant fabc vanishes, no interaction terms then

exist between it and the physical fields and it can be safely integrated out during the

path integral quantisation procedure. It is feasible to avoid the ghost fields entirely

by instead working in an axial gauge. However, this often leads to more compli-

cated gluon propagators that may complicate calculations to a greater extent than

the additional Feynman diagrams arising from ghost interactions. In either case, the

Lagrangian density is established, and the full complement of QCD processes can be

accessed via the ensuing Feynman rules.
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1.2 Renormalisation of QCD and the running of

αs

The bare parameters and fields, from which the QCD Lagrangian is constructed, are

not the fixed quantities we would expect to encounter in an experimental measure-

ment. Rather, they merely parameterise the theory and do not correspond directly

to physical observables. Indeed, calculations at higher orders in perturbation theory

illustrate the dynamical nature of these parameters, since the quantum corrections

are manifest as loops in Feynman diagrams which require integration over internal

momenta. For example, a general one-loop tensor integral

Iµ1,···µn
n ({pi}) =

∫
dd`

(2π)d
`µ1 · · · `µn∏n

i=1[(`2 − q2
i )−m2

i ]
, qi =

i∑

j=0

pj, (1.2.15)

where d is the spacetime dimensionality and ` denotes the momenta running in the

loops, is divergent in four dimensions when the `→∞ limit is taken. Such ultraviolet

(UV) singularities are removed by the redefinition of the bare parameters in terms of

renormalised quantities, rescaling the fields and couplings in the Lagrangian by an

overall factor:

Aa0,µ = Z
1/2
G Aaren,µ ψ0,q = Z1/2

q ψren,q (1.2.16)

m0 = Zmmren g2
s,0 = Zg2

s
g2
s,ren (1.2.17)

where Zi = 1 + δZi, δZi = O(αs). The terms on the left of the equalities are the

parameters found in the bare Lagrangian, whilst the right hand side hold the renor-

malised quantities. Equation (1.2.16) describes the wave function renormalisations

of the gluon and quark fields, whereas (1.2.17) has the mass and coupling constant

renormalisation respectively. By absorbing the divergent behaviour into the Zi pa-

rameters, the Green’s functions of the renormalised parameters become finite to all

orders in perturbation theory [7–9]. In making such a shift, the original Lagrangian is

split into two contributions, that of the renormalised Lagrangian (the original written
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in terms of renormalised quantities) and a counter term:

L0,QCD = Lren + Lc.t., (1.2.18)

where Lc.t. holds the multiplicative factors δZi.

Whilst the singular terms are fixed in order to cancel the divergences, finite terms

can be shifted between the counter term and the renormalised Lagrangian without

affecting the full functional integral. Whilst this is safe for an all-orders calculation, in

a truncated perturbative expansion, a calculation of an observable may pick up some

dependency on the choice of finite terms in the counter term. A renormalisation

scheme must be chosen, where the structure of the finite terms is made explicit. In

the minimal subtraction (MS) scheme, the finite contribution to the counter term is

set to zero, whereas in the modified minimal subtraction (MS) scheme we utilise the

fact that, given space-time dimensionality d = 4 − 2ε, the finite contribution from

the poles are always of the form

Γ(1 + ε)

ε
(4π)ε =

1

ε
+ ln(4π)− γ +O(ε) (1.2.19)

and thus remove the UV pole

1

ε̄
= (4π)εe−εγ

1

ε
= C̄(ε)

1

ε
, (1.2.20)

which, order by order, moves the finite contribution of the pole into the counter term,

out of the renormalised quantities.

The renormalisation of the parameters is defined at an arbitrary scale µ, intro-

duced to maintain a dimensionless action and defining the cutoff for renormalisation

conditions. Despite having complete freedom in the choice of µ, it is clear that any

physical observable must be invariant under such a choice. The freedom inherited by

the addition of µ appears in the renormalised strong coupling as

αs,0 = Z2
α(µ2)αs,ren. (1.2.21)
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For the theory to remain consistent, stringent constraints are imposed upon the

renormalised quantities as they undergo a shift in the renormalisation scale. We

consider a dimensionless observable R where we are interested in a single scale
√
s

that is larger than all others, m2/s � 1. For such an observable, the independence

from the renormalisation scale is given by

µ2 d

dµ2
R(s/µ2, αs(µ

2)) = 0, (1.2.22)

which, in the strictly massless limit, is expanded via the substitution t = log(s/µ2)

to

[
− ∂

∂t
+ β(αs(µ

2))
∂

∂αs

]
R(et, αs(µ

2)) = 0, (1.2.23)

where β(αs(µ
2)) is the QCD beta-function, defining the running of the coupling with

scale, and is given by

β(αs(µ
2)) = µ2∂αs(µ

2)

∂µ2
. (1.2.24)

We thus see in (1.2.23) that a change in the renormalisation scale can be com-

pensated for by a corresponding change in the coupling. The solution describes the

evolution of the coupling as the energy scale shifts from s to µ2. Given a small

coupling, the β-function can be expanded perturbatively in αs,

1

2π
β(αs(µ

2)) = −β0

(
αs(µ

2)

2π

)2

− β1

(
αs(µ

2)

2π

)3

−O(αs(µ
2)4), (1.2.25)

where the coefficients βi are extracted by the evaluation of loop corrections to the bare

vertices in the theory. Explicitly the coefficients β0 and β1 for a theory containing

NF flavours of massless active quarks are given by

β0 =
11CA − 4TRNF

6
, β1 =

17C2
A − 10CATRNF − 6CFTRNF

6
(1.2.26)
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where we introduce the casimirs

CF =
N2 − 1

2N
, CA = N, TR =

1

2
(1.2.27)

for an SU(N) gauge theory with N being the number of colours. Solving an approx-

imate form of (1.2.24) by retaining only the first term in the β-function expansion

gives the 1-loop form of the running coupling:

αs(s) =
αs(µ

2)

1 + αs(µ2)(β0/2π)log(s/µ2)
. (1.2.28)

This provides a link between the couplings at different scales, provided both are

small enough to lie in the perturbative regime. The non-Abelian interactions of QCD

become immediately apparent, since they produce a positive value for β0, resulting

in the decrease in the coupling strength as the energy scale becomes large2. This

describes the idea of asymptotic freedom in QCD, and is in stark contrast with QED,

in which the coupling is observed to become progressively stronger as the energy is

increased.

Returning to the µ-dependence of our observable R in (1.2.23), it is straightfor-

ward to show that R(1, αs(s)) is a solution. Indeed, any function f(αs(s = µ2)) will

satisfy the Renormalisation Group Equation, such that the scale dependence of the

observable is encapsulated entirely in the scale dependence of the running coupling.

Since the analysis of the β-function showed that for large energy scales the coupling

αs will become small, it is feasible to carry out a perturbative expansion of R in

terms of αs(s),

R(1, αs(s)) = r1αs(s) + r2αs(s)
2 +O(αs(s)

3). (1.2.29)

1.2.1 Scale dependence

The small coupling constant at high energies allows calculations in QCD to be carried

out via a perturbative expansion in the coupling. Whilst the observable written as

2This is provided that NF 6 16, which is happily upheld by the Standard Model.



1.3. Colour space and matrix elements 11

a full sum over all terms is still independent of renormalisation scale, any practical

calculation involves a truncation of the series. Unfortunately this means that the

observable, now only in terms of a subset of the expanded terms, no longer enjoys a full

cancellation of µ-dependent terms, and is a function of our choice of renormalisation

scale. This is clearly of great importance if we wish to compare the theoretical

predictions with experiment, which will take no heed of the artificial choice of scale.

It is thus necessary to have a firm understanding of the effect on the observable

by the renormalisation scale dependence upon truncation of the peturbative series.

Expanding our observable in the coupling constant, with the coefficients being a

variable in the ratio s/µ2, reads

R(1, αs(s)) =
∞∑

n=0

rn

(
s

µ2

)
αs(µ

2)n. (1.2.30)

Taking the first N terms and using (1.2.22) to enforce µ-independence of the full

expansion, we arrive at

d

d logµ2

N∑

n=0

rn

(
s

µ2

)
αs(µ

2)n = − d

d logµ2

∞∑

n=N+1

rn

(
s

µ2

)
αs(µ

2)n = O(αN+1
s ).

(1.2.31)

The truncated series picks up renormalisation scale dependence as expected, which

would otherwise vanish with the inclusion of all higher order terms. However, the

remainder of the truncated terms go like αN+1
s , indicating that, vitally, the scale

dependence decreases as the number of higher order terms is increased - a strong

motivation for extending peturbative calculations to higher orders.

1.3 Colour space and matrix elements

The brute-force attack upon scattering problems with the Feynman rules provides

an intuitive understanding of the underlying physical calculation. Nevertheless, it

becomes rapidly inefficient due to the factorial growth in complexity with increasing

multiplicity. A Feynman diagram is in general not gauge invariant, whilst combina-
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tions of non-gauge invariant diagrams are often seen to cancel at intermediate levels

in the calculation. To overcome the growth of diagrams, a potential step is to separate

the gauge and kinematical structures from the outset, thereby avoiding an organisa-

tion of factors at odds with the underlying gauge symmetry. We therefore discuss

colour decomposition as a process by which scattering amplitudes can be written

as kinematical objects existing in the space of the different colour structures [10].

A physical matrix element in QCD with n external legs, Mn can be written as

a function of the external momenta pi, having colour ci and helicity λi. The matrix

element is thus realised as a vector projected onto helicity and colour space,

Mn =Mc1,c2,...cn;λ1,λ2,...λn
n (p1, p2, . . . pn) = 〈c, λ|M〉, (1.3.32)

where the basis of the helicity and colour space is

|c, λ〉 = |c1, c2 . . . cn〉 ⊗ |λ1, λ2 . . . λn〉. (1.3.33)

The possible colour and spin values are naturally defined by the partonic nature of

the external states. If parton i is a quark (gluon) it can take a colour value from

ci = 1, . . . N (ci = 1, . . . N2−1) and helicity λi = 1, 2 (λi = 1, . . . D−2). The squared

matrix element can thus be defined, summed over helicity and colour, as

|Mn|2 =
∑

ci,λi

〈M|c, λ〉〈c, λ|M〉

= 〈M|M〉. (1.3.34)

A judicious course of action is to decompose the matrix element according to its colour

structures. As aforementioned, the result of such a decomposition is the factorisa-

tion of the matrix element into a partial amplitude [11] containing only kinematic

behaviour, and a function holding all colour information for a given colour structure.

For a general scattering process, the decomposition of the matrix element factorises
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BRIEF ARTICLE

THE AUTHOR

3 4

4 3

3 4

1

(a) A1

BRIEF ARTICLE

THE AUTHOR

3 4

4 3

3 4

1

(b) A2

BRIEF ARTICLE

THE AUTHOR

3 4

4 3

3 4

1

(c) A3

Figure 1.1: Tree-level Feynman diagrams contributing towards two-quark, two-gluon
scattering.

as

Mc1,c2,...cn;λ1,λ2,...λn
n (p1, p2, . . . pn; ) =

∑

a

∆c1,c2,...cn
a Mλ1,λ2,...λn;a

n (p1, p2, . . . pn).

(1.3.35)

All colour dependence is held within the function ∆a and Mn is the partial amplitude

associated with said colour structure. The partonic nature of the matrix element,

including the external states and the loop order, determines fully the subtleties of

the decomposition.

The form of the amplitude can then be squared and summed over colours and

helicities, resulting in

|Mn|2 =
∑

a,b

∑

colours

∆†,c1,c2,...cna ∆c1,c2,...cn
b

×
∑

hel

Mλ1,λ2,...λn;a
n (p1, p2, . . . pn)Mλ1,λ2,...λn;b

n (p1, p2, . . . pn), (1.3.36)

where we can now carry out independently the squaring of the colour structure ∆

and that of the kinematic colour-stripped subamplitude.

At the level of the individual diagram, we see that a Feynman graph consists of

a combination of the Feynman propagators and vertices [4]; the colour factor can be

stripped outside, and we have just such a factorisation of the colour and kinematic

terms. As an example, we consider the tree level contribution to two-quark, two-gluon

scattering. This will be required in the dijet production calculations in Chapter 5.

There are only three Feynman diagrams that contribute, given in Figure 1.1, where

i, j are reserved for quark labels, and an denote external gluon indices in the adjoint.
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The colour structures associated with each amplitude are

A1 = (T a1T a2)ijA1, (1.3.37)

A2 = (T a2T a1)ijA2, (1.3.38)

A3 = Tr(T a1T a2)δijA3, (1.3.39)

where the colour is stripped away, leaving the purely kinematic amplitude Ai. The

Fierz identity can be used in conjunction with the structure constant algebra to sum

over the internal colour degrees of freedom in (1.3.39), thereby reformulating it in

terms of the other two where only external colour degrees of freedom are present:

A3 = Tr(T a1T a2)δijA3 = iT a3
ij f

a3a1a2δijA

= 2T cij[Tr(T a3T a1T a2)− Tr(T a3T a2T a1)]A3

= [(δimδkj−
1

N
δijδop)T

a1
mnT

a2
nk + (δipδjo−

1

N
δijδop)T

a2
pq T

a1
qo ]A3

= [(T a1T a2)ij − (T a2T a1)ij]A3 (1.3.40)

Since the full amplitude is simply the sum of all the diagrams, it can be written in

terms of the factorised colour structures,

Afull = A1 +A2 +A3

= (T a1T a2)ij[A1 +A3] + (T a2T a1)ij[A2 −A3] (1.3.41)

where we have constructed new, colour ordered partial amplitudes that are a linear

combination of individual colour-stripped Feynman diagrams with a particular order-

ing of the gluons. Importantly, the partial amplitudes are gauge invariant, allowing

astute gauge choices to be made independently for each amplitude to simplify calcu-

lations. It is these objects that will prove highly useful for later calculations since

the Feynman diagrams, now individually hidden inside the partial amplitudes, are
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grouped by their colour connectivity into a far smaller set of amplitudes;

A(q, 3g, 4g, q̄) = A1 +A3,

A(q, 4g, 3g, q̄) = A2 −A3. (1.3.42)

The full squared amplitude, summed over colours, is

|Afull|2 = N(N2 − 1)


 ∑

{i,j}∈{3,4}
A0

4(q, ig, jg, q̄)−
1

N2
Ã0

4(q, 3g, 4g, q̄)


 , (1.3.43)

where the square of the colour factors can be carried out utilising the Fierz Identity.

In our example here, the leading term is calculated thus

[
(T a1T a2)ij

][
(T a1T a2)ij

]†
= Tr(T a1T a2T a2T a1)

= N(N2 − 1)(1− 1

N2
). (1.3.44)

The colour calculations can also be carried out in a graphical manner [12], where we

can make the replacements in the colour structure of

δji :

BRIEF ARTICLE

THE AUTHOR

1

, δab :

BRIEF ARTICLE

THE AUTHOR

1

, (T a)ij :

BRIEF ARTICLE

THE AUTHOR

1

. (1.3.45)

In this representation, contracted indices are simply connected by quark or gluon

lines, the Fierz identity becomes

BRIEF ARTICLE

THE AUTHOR

1

=
1

2




BRIEF ARTICLE

THE AUTHOR

1

− 1

N

BRIEF ARTICLE

THE AUTHOR

1


 (1.3.46)
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and the properties of the generators can be expressed as

Tr(1) =

BRIEF ARTICLE

THE AUTHOR

1

= N ; Tr(T a) =

BRIEF ARTICLE

THE AUTHOR

1

= 0; (1.3.47)

Tr(T aT b) =

BRIEF ARTICLE

THE AUTHOR

1

=
1

2

BRIEF ARTICLE

THE AUTHOR

1

. (1.3.48)

It is now a simple exercise to apply these rules to decompose the squared colour

structures, the final result being some function of N . Our above calculation now

looks like:

[
(T a1T a2)ij

][
(T a1T a2)ij

]†
=

BRIEF ARTICLE

THE AUTHOR

i

j

i

j

1

=

BRIEF ARTICLE

THE AUTHOR

i

j

i

j

1

=

BRIEF ARTICLE

THE AUTHOR

1

×

BRIEF ARTICLE

THE AUTHOR

i

j

i

j

1

− 1

N

BRIEF ARTICLE

THE AUTHOR

i

j

i

j

1

=

(
N − 1

N

)
×




BRIEF ARTICLE

THE AUTHOR

1

×

BRIEF ARTICLE

THE AUTHOR

1

− 1

N

BRIEF ARTICLE

THE AUTHOR

1




= N(N2 − 1)(1− 1

N2
). (1.3.49)

It is apparent from (1.3.49) that in squaring the amplitude, the partial amplitude

associated with the colour structure (T a1T a2)ij is going to contribute to both colour-

leading and colour-subleading terms. In fact, the subleading contributions in (1.3.43)

contain a sum of the partial amplitudes;

Ã0
4(q, 3g, 4g, q̄) = |A(q, 3g, 4g, q̄) +A(q, 4g, 3g, q̄)|2 = |A1 +A2|2 (1.3.50)

where we see that the contribution from the three gluon vertex A3 has dropped out.

Since there are no longer any self-gluon interactions present, it is akin to the gluons

in this subamplitude acting under U(1) instead of SU(3) - they are aptly named

Abelian gluons. As will be discussed later, this makes significant simplifications to

the parton colour-connectivity.
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1.4 Factorisation

The cross section for two initial state hadrons with momenta P1 and P2 is given

by [13]

σ(P1, P2) =
∑

a,b

∫
dz1 dz2 fa(z1, µ

2
F )fb(z2, µ

2
F ) σ̂ab(p1, p2, αs(µ

2
F )), (1.4.51)

where the partons carry a momentum fraction zi of the hadrons, which then par-

ticipate in the partonic cross section σ̂ab with momenta p1 and p2. The details of

the initial state hadrons and relative partonic momentum distributions are contained

within the parton distribution functions (PDFs) for parton a as fa(za, µ
2
F ). The

PDFs can be computed independently from the partonic cross section, and are non-

perturbative in nature. The factorisation formula of (1.4.51) shows clearly that the

total cross section can be constructed via a summation over all possible partonic

subprocesses, weighted by the PDF determining the probability of the occurrence of

each initial partonic state. For high energies the coupling is small and the partonic

cross section can be calculated perturbatively. High momentum transfer is vital; soft

effects, characterised by the ΛQCD scale where hadronic effects become dominant,

can spoil the factorisation since we can pick up contributions from interactions be-

tween long- and short-distance effects. However, for a high centre-of-mass energy

the soft effects are subleading, only becoming dominant at lower scales where colour-

neutralisation and confinement hadronisation effects begin to occur. It must be noted

that the factorisation theorem has only been proven for Deep Inelastic Scattering and

Drell-Yan processes [13], and caution must be taken in its direct application to more

exclusive processes.

For leading order calculations, the cross section at high energies is simply the

product of the partonic cross section with the parton distribution function, as in

(1.4.51). However, as we move to higher orders and include radiative corrections to

the leading order process, we create an ambiguity in the distinction between what

constitutes the hard partonic cross section and the hadronic properties that are dealt

with non-perturbatively. Including such corrections in the hard scattering alters the

initial state momentum distribution and thus can be at odds with the PDF descrip-
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tion. In order to separate which emissions are considered long- and short- distance

physics, a factorisation scale µF is introduced. Radiated partons with transverse

momentum greater than µF are considered part of the hard scattering, whilst par-

tons with momentum smaller than µF are incorporated into the parton distributions.

We have factorised the physics into long and short distance effects, but at the cost

of introducing the arbitrary scale µF upon which the hard scattering cross section

and PDFs are separately dependent upon, although the total hadronic cross section

should be independent of µF . A greater number of terms included in the pertur-

bative expansion will reduce the µF dependence, as with the renormalisation scale

dependence discussed in Section 1.2. With this in mind, the calculational path upon

which to proceed becomes clear. In a similar fashion to the renormalisation proce-

dure of redefining the bare parameters of the Lagrangian, the parton distributions

that enter (1.4.51) are labelled the ‘bare’ PDFs f̃a(z) and are related to the physical

PDFs fa(z, µ
2
F ). In the renormalisation procedure, the bare parameters are merely

multiplied by the Zi factor to produce the renormalised Lagrangian and counter term

to deal with the UV divergences, whereas the bare and physical PDFs are related via

a convolution,

fa(z, µ
2
F ) =

∫
dx dyf̃b(x)Γba(y, µ

2
F )δ(z − xy) = [f̃b ⊗ Γba](z, µ

2
F ), (1.4.52)

where µ2
F is the scale at which the factorisation is defined. The factorisation kernel

Γba can be perturbatively expanded in the strong coupling as

Γba(y, µ
2
F ) = δbaδ(1− y) +

(αs
2π

)
Γ1
ba(y, µ

2
F ) +

(αs
2π

)2

Γ2
ba(y, µ

2
F ) +O(α3

s), (1.4.53)

given a suitably high µ2
F . In a practical perturbative calculation, the series is trun-

cated at some order in αs, and then we acquire dependence on the factorisation

scale [14].

By taking the inverse of (1.4.52) we can uncover the bare PDF in terms of the

physical one:

f̃a(z) =

∫
dx dy fb(x, µ

2
F ) Γ−1

ba (y, µ2
F ) δ(z − xy) = [fb ⊗ Γ−1

ba ](z, µ2
F ), (1.4.54)
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where

Γ−1
ba (y, µ2

F ) = δbaδ(1− y)−
(
αs(µ

2
F )

2π

)
Γ1
ba(y)

−
(
αs(µ

2
F )

2π

)2
[

Γ2
ba(y)−

∑

c

[Γ1
bc ⊗ Γ1

ca](y)

]
+O(α3

s).

(1.4.55)

In doing so we have a new expression for the hadronic cross section in terms of the

physical PDFs, which now hold dependence on µ2
F . The partonic cross section, now

infrared finite, reads

dσ̂ij(z1H1, z2H2) =

∫
dx1

x1

dx2

x2

Γ−1
ki (x1µ

2
F )Γ−1

lj (x2µ
2
F )dσ̃kl(x1z1H1, x2z2H2).(1.4.56)

The effect of this factorisation procedure can be seen by pertubatively expanding

the partonic cross section - the factorisation kernel according to (1.4.55) and dσ̂ by

(1.4.51) - and equating powers of the coupling. We follow the argument in [15] as it

is useful to see this form for later computations. At leading order, only the first term

of (1.4.55) will contribute, and immediately produces the expected result

dσ̂ij,LO(z1H1, z2H2) = dσ̃ij,LO(z1H1, z2H2). (1.4.57)

For higher orders in αs the cross section now picks up terms incorporating the fac-

torisation kernels;

dσ̂ij,NLO(z1H1, z2H2) = dσ̃ij,NLO(z1H1, z2H2)

−
∫

dx1

x1

Γ1
ki(x1)dσ̂kj,LO(x1z1H1, x2z2H2)

−
∫

dx2

x2

Γ1
lj(x2)dσ̂il,LO(x1z1H1, x2z2H2)

= dσ̃ij,NNLO(z1H1, z2H2) + dσ̂MF
ij,NNLO(z1H1, z2H2),

(1.4.58)
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dσ̂ij,NNLO(z1H1, z2H2) = dσ̃ij,NNLO(z1H1, z2H2)

−
∫

dx1

x1

Γ2
ki(x1)dσ̂kj,LO(x1z1H1, z2H2)

−
∫

dx1

x1

Γ1
ki(x1)dσ̂kj,NLO(x1z1H1, z2H2)

−
∫

dx2

x2

Γ2
lj(x2)dσ̂il,LO(z1H1, x2z2H2)

−
∫

dx2

x2

Γ1
lj(x2)dσ̂il,NLO(z1H1, x2z2H2)

+

∫
dx1

x1

∫
dx2

x2

Γ1
ki(x1)Γ1

lj(x2)dσ̂kl,LO(x1z1H1, x2z2H2)

= dσ̃ij,NNLO(z1H1, z2H2) + dσ̂MF
ij,NNLO(z1H1, z2H2),

(1.4.59)

where we see a further similarity with renormalisation, in that the full cross section

at a particular order is given by the cross section containing the physical PDF, plus

a mass factorisation counter term, built from lower order partonic cross sections.

We are now in a favourable condition. The low energy effects - the physics occur-

ring below the factorisation scale µF - is contained within dσ̂MF
ij , and the combination

of this and the hard scattering process gives a finite partonic cross section. The re-

defined parton distribution function fa(x, µ
2
F ) containing the long distance physics

of the strong interaction can be determined independently from the experimental

data at a preferred scale. Given a computation of the PDF at a particular scale, it

can be evolved to a new scale by appealing to its all-order independence of the fac-

torisation scale, in a similar vein to renormalisation. The resulting Renormalisation

Group Equations are the DGLAP equations [16–18], which can be used to run the

parton distributions across resolution scales. The evolution can be written in terms

of splitting functions and expanded perturbatively in the strong coupling.



Chapter 2

Infrared Behaviour of QCD

Amplitudes

Perturbation theory allows concrete and systematically improvable predictions to be

made of scattering processes. By expanding to higher and higher orders we can

aim to reduce the large errors introduced by renormalisation scale dependence and

gain greater precision in theoretical predictions required for comparison with LHC

measurements.

However, in extending to higher orders we immediately encounter singularities

that haunt vital aspects of our calculations, those of ultraviolet (UV) and infrared

(IR) divergences, in both the virtual and real radiative corrections to the leading order

process. In this chapter we discuss the origin of these singularities, and methods by

which they can be brought under control.

2.1 Divergent behaviour

Consider the one loop integral associated with the process in Figure 2.1 such that

p2
1 = p2

2 = 0 (i.e. massless on-shell fermions), namely

I ∼
∫

dd`

iπd/2
ū(p1)[γµ(/̀+ /p2

)γν(/̀+ /p1
)γρ]u(p2)

[`2 + iε][(`− p1)2 + iε][(`+ p2)2 + iε]
, (2.1.1)
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Figure 2.1: NLO virtual correction to γ∗ → qq̄.

where d is the dimensionality of spacetime. The iε prescription prevents the enclosure

off poles within the contour integral over `. Since we integrate over all possible mo-

menta of the virtual gluon, ultraviolet divergences occur in the high energy massless

limit, |`| → ∞. In this limit, ` > p1, p2 so that

I ∼
∫

dd`

iπd/2
ū(p1)[γµ/̀γν /̀γρ]u(p2)

`6 + (iε)3
, (2.1.2)

and we observe a logarithmic UV divergence as d→ 4. It is removed during the renor-

malisation procedure detailed in Section 1.2. In a calculation utilising the Feynman

diagrammatic approach, the amplitudes are inherently unrenormalised. By consider-

ing a perturbative expansion

|M〉 =
(αs

2π

)n [
|M(0),un〉+

αs
2π
|M(1),un〉+

(αs
2π

)2

|M(2),un〉+O(α3
s)
]
, (2.1.3)

and replacing the bare couplings with the renormalised ones, we can determine the

renormalised amplitudes as functions of the unrenormalised ones order by order in

αs:

|M(0)〉 = |M(0),un〉,

|M(1)〉 =
1

C̄(ε)
|M(1),un〉 − nβ0

ε
|M(0),un〉, (2.1.4)

|M(2)〉 =
1

C̄(ε)2
|M(2),un〉 − (1 + n)β0

ε

1

C̄(ε)
|M(1),un〉 − n

2

(
β1

ε
− β2

0(1 + n)

ε2

)
|M(0),un〉.

When considering a theory with massless particles, or in our case the high energy

limit at the LHC, we encounter further divergences that arise when particle momenta

become negligible with respect to the hard scale involved. In our loop integral above,
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this can be seen when one of the propagators vanishes, |`| → 0,−p1,−p2
1. Phys-

ically we see this as particles going soft, where the energy becoming too small to

identify, and collinear, where two particles are travelling in the same direction. We

now consider these configurations in terms of the real and virtual corrections to a

scattering process.

2.1.1 Virtual IR divergences

The infrared singularities stemming from the virtual corrections can be understood by

employing the formalism of Catani [19, 20], which provides an algorithmic approach

to the formulation of the pole structure of both one and two-loop renormalised am-

plitudes.

Singular behaviour of one-loop amplitudes

Following on from Section 1.3, we consider the QCD amplitude |M〉 in colour space

with n external partons. The amplitudes are renormalised in the MS scheme and we

work in conventional dimensional regularisation (CDR), where all states are treated

in d dimensions. The perturbative expansion of the amplitude is

|M〉 =
(αs

2π

)m [
|M0〉+

αs
2π
|M1〉+

(αs
2π

)2

|M2〉+O(α3
s)
]
, (2.1.5)

with m being process dependent. The singular behaviour of the one-loop amplitude

|M1〉, as described in [19], can be separated from the finite part in colour space

through the singularity operator I(1)(µ2, ε),

|M1(µ2, ε)〉 = I(1)(µ2, ε)|M0(µ2)〉+ |M1,fin(µ2)〉, (2.1.6)

where we make explicit the fact that the amplitudes are dependent on the renormalisa-

tion scale µ. |M1,fin(µ2)〉 is an IR finite function in the limit ε→ 0. All divergences

associated with |M1(µ2, ε)〉 are factorised with respect to the tree level amplitude

1In a massive theory the mass term in the propagator would act as a regulator. Even so, in QCD
we have massless gluons so such a divergence is still present.
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|M0(µ2)〉, encapsulated inside the IR singularity operator I(1)(µ2, ε) defined as

I(1)(µ2, ε) =
eγε

2Γ(1− ε)
n∑

i=1

1

T2
i

Vsingi (ε)
∑

j 6=i
Ti ·Tj

(
e−iλijπµ2

sij

)ε
, (2.1.7)

where the summations run over all external legs, and sij is the usual Mandelstam

invariant sij = 2pi ·pj for massless partons i and j. Also, there is an additional factor

λij =





1 if both particles are incoming or outgoing.

0 otherwise.
(2.1.8)

With this construction, it is natural to view the real and virtual emissions as insertions

of colour interactions between all the partons in a certain colour state amplitude. To

obtain the singular behaviour of the amplitude we use colour charges Ti. The

matrices T acb are defined as: [21]

T acb = tacb final state quark or initial antiquark emitter,

T acb = −tacb final state antiquark or initial quark emitter,

T acb = ifcab gluon emitter.

The colour charge algebra is

(Ti)
a(Tj)

a ≡ Ti ·Tj =





Tj ·Ti if i 6= j.

T2
i = Ci otherwise.

(2.1.9)

The Casimir operator Ci will be Ci = CF (Ci = CA) for the ith parton being a quark

(gluon). Since in this notation the vectors |Mm(p1, p2, . . . , pn)〉 are colour singlets,

colour conservation allows us to enjoy the property

n∑

i=1

Ti|Mn〉 = 0, (2.1.10)

providing a stringent self-consistency check on the operators defined in the following

section.

The singular contributions are buried in the Vsingi (ε) function as poles in the
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parameter ε,

Vsingi (ε) =
1

ε2
+ γi

1

ε
(2.1.11)

where γi depends on the type of parton involved:

γq = γq̄ =
3

2
, γg =

β0

CA
. (2.1.12)

Here, β0 is the first term in the perturbative expansion of the beta function, given in

(1.2.26). Note that the singularity operator is regularisation scale (RS) independent:

the RS dependence is encoded within the tree and one-loop finite pieces.

Example: one loop singularities in γ∗ → qq̄

As an example we consider again the virtual correction to the quark vertex at NLO,

given in Figure 2.1. The colour charge operators are simply Tq and Tq̄, and from

(2.1.10),

Tq + Tq̄ = 0 : T2
q̄ = T2

q = Tq ·Tq̄ = −CF I. (2.1.13)

We thus construct the singularity operator using (2.1.7), which takes the form

I(1)(µ2, ε) = −CF
eγε

2Γ(1− ε)

[
1

ε2
+

3

2ε

](−µ2

s12

)ε
I, (2.1.14)

where I is the identity matrix. The poles of the full squared matrix element can be

thus obtained by using (2.1.6),

Poles
[
|M1

2(p1, p2)|2
]

= −CF
eγε

2Γ(1− ε)

[
1

ε2
+

3

2ε

](−µ2

s12

)ε
|M0

2(p1, p2)|2. (2.1.15)

However, by decomposing the amplitude into its colour structures as in the previous

section, we can obtain the pole structure for colour ordered squared matrix elements,

in which the squared subamplitudes will be multiplied by a scalar function holding

the ε dependence, its explicit form being the inner product of (2.1.6) with the tree

level amplitudes. The processes required in this thesis are calculated explicitly in

Appendix A using this formalism. In doing so, we can write the poles of the squared
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matrix elements as a sum of colour-ordered, two particle IR singularity operators

that run over the colour connected pairs that exist in the colour-ordered squared

amplitudes:

Poles
[
M1

n(1, · · · , n)
]

= 2
∑

i,j

I
(1)
ij (ε, sij)M

0
n(1, · · · , n)

≡ 2 I(1)
n (ε, 1, · · · , n)M0

n(1, · · · , n), (2.1.16)

where M0
n(1, · · · , n) is a squared colour-ordered partial amplitude. The two particle

singularity operators [22] can be constructed in a similar fashion to the example

above, changing the partonic content for each of the possible colour structures and

parton combinations;

I
(1)
qq̄ (ε, sqq̄) = − eεγ

2Γ(1− ε)

[
1

ε2
+

3

2ε

]
<(−sqq̄)−ε ,

I(1)
qg (ε, sqg) = − eεγ

2Γ(1− ε)

[
1

ε2
+

5

3ε

]
<(−sqg)−ε ,

I(1)
gg (ε, sgg) = − eεγ

2Γ(1− ε)

[
1

ε2
+

11

6ε

]
<(−sgg)−ε ,

I
(1)
qq̄,F (ε, sqq̄) = 0 ,

I
(1)
qg,F (ε, sqg) =

eεγ

2Γ(1− ε)
1

6ε
<(−sqg)−ε ,

I
(1)
gg,F (ε, sgg) =

eεγ

2Γ(1− ε)
1

3ε
<(−sgg)−ε . (2.1.17)

Using this notation the pole structure for our example reads

Poles
[
M1

m(1, · · · ,m)
]

= 2I
(1)
qq̄ (ε, s12)M0

2 (p1, p2). (2.1.18)

Singular Behaviour of two-loop amplitudes

The double virtual contribution to the pp → n-jet cross section involves the two-

loop (n + 2)-parton matrix elements which have no implicit IR divergence in any

regions of the appropriate n-parton phase space. The two loop contribution does

contain explicit poles, displaying an inevitable increase in complexity of the singular

structure. However, as with the one-loop case, a similar factorisation formula is
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observed. Introducing a new insertion operator I(2)(ε), the pole structure of the two

loop amplitude can be expressed as

|M2(µ2, ε)〉 = I(1)(µ2, ε)|M1(µ2)〉+ I(2)(µ2, ε)|M0(µ2)〉+ |M2,fin(µ2)〉, (2.1.19)

where again we have a term |M2,fin(µ2)〉 that is finite in the limit ε → 0. How-

ever, unlike the one-loop case, there are now two terms that contain the singularity

structure, and they both must take account of the deeper poles found in two-loop

amplitudes, now up to 1/ε4.

In a similar fashion to the one loop case, we construct the squared matrix element

by taking the interference of the two-loop amplitude with the tree level counterpart,

and also the self interference of the one-loop amplitude:

M2
n = 〈M0

n|M2
n〉+ 〈M2

n|M0
n〉+ 〈M1

n|M1
n〉. (2.1.20)

The application of (2.1.19) thus provides the IR pole structure of the squared, colour-

ordered matrix element. This construction reflects the dipole-like singularity struc-

ture for two-loop amplitudes made apparent in Catani’s two-loop factorisation for-

mula [20],

Poles
(
M2

n(1, · · · , n)
)

= 2I(1)
n (ε; 1, · · · , n)

(
M1

n(1, · · · , n)− β0

ε
M0

n(1 · · · , n)

)

− 2I(1)
n (ε; 1, · · · , n)2M0

n(1, · · · , n)

+ 2e−εγ
Γ(1− 2ε)

Γ(1− ε)

(
β0

ε
+K

)
I(1)
n (2ε; 1 · · · , n)M0

n(1 · · · , n)

+ 2H(2)(ε)M0
n(1, · · · , n), (2.1.21)

with I(1)
n (ε) given by Eq. (2.1.7), and

K = N

(
67

18
− π2

6

)
−NF

10

9
. (2.1.22)

The insertion operators also involve the hard radiation functions H(2)(ε), containing

poles of up to O(ε−1), and are not universal; they are both process- and regularisation

scheme-dependent. Nevertheless, the poles of the two-loop squared matrix element
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are correctly isolated, whilst the finite contributions must be obtained via explicit

calculations of the amplitude.

2.1.2 Real IR divergences

The IR divergences stemming from real radiation occur in a different manner to

the virtual corrections. The latter, upon integration over the virtual momenta, can

be expressed as a Laurent expansion in ε via dimensional regularisation (see for

example [5]). Real radiative divergences are manifest only after integration over the

final state phase space, which will include regions where the invariants, out of which

the squared matrix elements are contracted, vanish. This is seen clearly by examining

the real radiative correction to our favourite quark vertex diagram:

|M0
3|2 =

∣∣∣∣∣∣
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γ∗

p1

p2

p3

1

∣∣∣∣∣∣

2

∼
(

2s12s123

s13s23

+
s13

s23

+
s23

s13

)
, (2.1.23)

which diverges for

sij = 2EiEj(1− cosθij) =





Eg → 0 soft

θij → 0 collinear
(2.1.24)

Since in such limits the final state is indistinguishable from the process with no radi-

ation from the detector viewpoint, we must include this contribution. To gain control

of these divergences, we again appeal to the colour-ordering of the matrix elements.

These colour subamplitudes will only contain inverse powers of invariants pertaining

to colour connected partons, such as that given in Appendix A. In controlling the

colour connectivity of the amplitudes, we can also ascertain the divergent limits that

exist. The sum of all the colour-ordered amplitudes will thus contain the full extent

of divergent behaviour present in the complete process.

Single unresolved limits at tree level

Colour-ordered matrix elements in the single unresolved limit involve a parton be-

coming either soft or collinear with another parton that is colour-connected to it. In
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the unresolved limit, the squared matrix element factorises into a product of a uni-

versal function holding the singular behaviour, and a reduced finite squared matrix

element,

M0
n({p}) singular limit−−−−−−−−−−→ U(sij, z)M

0
n−1({p}/{pi, pj}). (2.1.25)

The explicit form of the universal function U(sij, z), the momenta present and the

structure of the reduced multiplicity squared matrix element are dependent on the

singular configuration at hand. Mappings between the sets of momenta must be

constructed, and are addressed in Section 4.2.

The singular configurations are built from two possible scenarios:

1. Soft partons: p→ ξq, ξ ∈ R→ 0,

2. Collinear partons: p→ λq, λ ∈ R.

In this thesis we treat all partons as massless, but the quark still cannot become

soft since this would break current conservation. In this particular limit the matrix

element vanishes; the integration over phase space is unaffected by such a limit.

When a gluon goes soft however, the colour-ordered matrix element is non-vanishing

since there is no longer protection from current conservation. Instead we see that the

n-parton matrix element factors onto a universal soft eikonal term, multiplied by a

reduced (n − 1)-parton matrix element with the offending gluon removed. For the

tree-level squared matrix element we observe explicitly [23],

M0
n(· · · i, j, k · · · ) jg→0−−−→ SijkM

0
n−1(· · · , i, k, · · · ). (2.1.26)

Importantly, the eikonal factor Sijk is independent of the partonic nature of its neigh-

bours: partons i and j in (2.1.26) can be either gluons or quarks and the soft function

is unchanged. It is a function only of the momenta,

Sijk =
2sik
sijsjk

, (2.1.27)

and holds fully the momenta of the soft gluon; none remains in the reduced matrix
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element.

The collinear limit can be treated in a similar fashion, if we consider the limit

in which two partons i and j are described by a single parton A, an amalgamation

of the two collinear partons. Here the factorisation of the squared matrix element

behaves as [16]

M0
n(· · · i, j · · · ) i||j−→ 1

sij
Pij→A(z)M0

n−1(· · · , A, · · · ), (2.1.28)

where z is the fraction of the momentum of A contributed by i, that is

pi = zpA pj = (1− z)pA (2.1.29)

and Pij→A is a spin-averaged splitting function which, in contrast to the universal soft

factor, has a dependency on the species of parton involved in the limit. Considering

the allowed vertices in QCD, we have:

Pqq→G(z) =
z2 + (1− z)2 − ε

1− ε ; (2.1.30)

Pqg→Q(z) =
1 + (1− z)2 − εz2

z
, (2.1.31)

Pgg→G(z) = 2
( z

1− z +
1− z
z

+ z(1− z)
)
. (2.1.32)

C-parity provides the other splitting functions: Pq̄g→Q̄ = Pqg→q.

We extend this formalism to take account for partons crossing into the initial state.

For soft partons colour-connected to initial states it is sufficient to modify the Lorentz

invariants in the soft eikonal factor: with a final state parton j and an initial state

parton î we construct the invariant sîj = (pî− pj)2 = −2pî · pj. The hatted momenta

in this thesis will always denote initial states. For the collinear case the modification

is slightly more involved, since the momentum fraction z associated with the split

partons is altered: for the case of two final-state partons we invoke (2.1.29), whereas

for a final state j and initial state î becoming collinear the momentum fractioning

behaves as

pj = zpî, pj = (1− z)pî. (2.1.33)
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This in turn affects the splitting functions, which will pick up extra factors of (1− ε)
in CDR when there is an alteration in the number of polarizations of the partons as

they change type during the hard scattering. The initial-final splitting functions are

related to the final-final splitting functions of (2.1.30), (2.1.31) and (2.1.32) by [24]:

Pqq←G(z) =
z2 + (1− z)2 − ε

1− z =
1− ε
1− zPqq→G(z); (2.1.34)

Pqg←Q(z) =
1 + (1− z)2 − εz2

z(1− z)
=

1

1− zPqg→Q(z), (2.1.35)

Pgg←G(z) =
2(1− z + z2)2

z(1− z)2
=

1

1− zPgg→G(z). (2.1.36)

As with the case for the final-final splitting functions, in the singular limit the matrix

element factorises into the splitting function multiplied by a reduced matrix element

with one fewer parton.

Single unresolved limits at one loop level

The factorisation of one-loop squared matrix elements in single unresolved limits

follows a similar pattern to the tree level case [25], except that we must now take into

account that the contribution from the loop may sit in either the splitting function

or the reduced matrix element. New universal singular functions must be introduced;

the single soft limit factorises as

M1
n(· · ·, i, j, k, · · · ) jg→0−−−→ SijkM

1
n−1(· · · , i, k, · · · ) + S1

ijkM
1
n−1(· · · , i, k, · · · ),

(2.1.37)

where S1
ijk is the one loop soft function given in [26] and includes singular terms up

to 1/ε2. In a similar fashion, the factorisation of the one loop squared matrix element

in the collinear limit is given by

M1
n(· · ·, i, j, · · · ) i||j−→ 1

sij
Pij→A(z)M1

n−1(· · ·, A, · · · )+
1

sij
P 1
ij→A(z)M0

n−1(· · ·, A, · · · ),

(2.1.38)
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and is given in full at the helicity level in [27]. Implicit singular behaviour of one loop

squared matrix elements will naturally appear at NNLO, and thus any subtraction

term constructed at this order must contain one loop structures to accommodate the

new one-loop splitting functions.

Angular terms

In addition to the momentum fraction z, full splitting functions are dependent on the

spin index carried by the parent parton. However, the splitting functions encoding

the singular information of the colour ordered matrix elements are spin averaged

objects.

For a quark splitting to a quark-gluon pair, there is a trivial helicity dependence

and thus the factorisation is simply

M0
n+1(· · · , i, j, · · · ) i||j−→ 1

sij
Pij→Aq(z)M0

n(· · · , Aq, · · · ). (2.1.39)

However, when we consider a gluon splitting into either a quark-antiquark pair or

two gluons, we must now take into account that the parent gluon is a vector particle,

and carries a Lorentz spin index µ. Taking the full splitting function [28] rather than

the spin-averaged case we see

P µν
qq̄→G(z, k⊥) = −gµν + 4z(1− z)

kµ⊥k
ν
⊥

k2
⊥
.

P µν
gg→G(z, k⊥) = −2

[
gµν
(

1

1− z +
1− z
z

)
+ 2(1− ε)z(1− z)

kµ⊥k
ν
⊥

k2
⊥

]
.

(2.1.40)

The full splitting functions have dependency on the component transverse to the

collinear splitting axis, k⊥, and the helicity of the parent parton. A parameterisation

of the collinear daughter parton momenta in terms of k⊥ is thus introduced in [21]; in

order to do so it is also necessary to define an auxiliary light-like vector n, whereby

k⊥ · n = k⊥ · pA = 0. Enforcing the daughter and parent momenta to be on-shell, the
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collinear partons can be defined as

pi = zpA + k⊥ −
k2
⊥n

2pA · n
1

z
,

pj = (1− z)pA − k⊥ −
k2
⊥n

2pA · n
1

1− z . (2.1.41)

Incorporating all spin-dependencies, the factorisation of the matrix element in the

collinear limit of two daughter partons from a parent gluon can be expressed as

M0
n+1(· · · , i, j, · · · ) i||j−→ 1

sij
P µν
ij→Ag(z, k⊥)M0

n,µν(· · · , Ag, · · · )

=
1

sij
Pij→Ag(z)M0

n(· · · , Ag, · · · ) + ang. (2.1.42)

Since the subtraction method introduced in Chapter 4 utilises spin-averaged func-

tions, the extra angular terms are missed. However, these contributions from the

spin correlations will vanish after integration over the azimuthal angle φ. A possible

approach to account for these correlations is to pair up phase space points that are

related by a rotation of the collinear partons by ∆φ = π/2 about the collinear direc-

tion. With such a pairing, the correlations from the matrix element in the rotated

and unrotated points cancel. The effect of this correction will be considered later in

this thesis through analysis of explicit results.

Double unresolved limits at tree level

Calculations at NNLO allow for real radiative corrections to the Born process through

the addition of two real unresolved partons. Whilst the unresolved partons can still

be either soft or collinear as in the single unresolved case, there are now naturally

a wider range of configurations stemming from two partons going simultaneously

unresolved [29]. In the limit we observe a similar factorisation into a reduced matrix

element multiplied by a singular factor, where the structure of the factorised object

is determined by the unresolved behaviour and the colour-connectivity of the partons

involved. With double unresolved limits we can identify three configurations of colour

connections between partons:

1. Colour connected double unresolved: A common pair of hard radiators
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separate two partons going unresolved - the unresolved partons are colour ad-

jacent, as in Figure 2.2a.

2. Almost colour-connected double unresolved: The two unresolved partons

are colour-adjacent to hard radiators, one of which is shared between them,

given in Figure 2.2b.

3. Colour-unconnected double unresolved: Each unresolved parton is sand-

wiched between two hard radiators, but separated by at least one other hard

radiator (Figure 2.2c).
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Figure 2.2: Colour connectivity configurations for doubly unresolved partons (dashed
vertical lines) between hard radiators (solid vertical lines). The unresolved partons
can be (a) colour connected, (b) almost colour connected or (c) colour unconnected.

Since there is an additional parton becoming unresolved it is possible to have

additional classes of singular limits to those at NLO:

1. Double soft unresolved partons

The double soft configurations consist of both partons going soft simultaneously

between a single pair of hard radiators, and will fall into one of the three colour

configurations detailed above. When the two partons are colour connected, the

factorisation is simple [30]:

M0
n(· · · , a, i, j, b, · · · ) i,j→0−−−→ SaijbM

0
n−2(· · · , a, b, · · · ), (2.1.43)

where we reserve labels a, . . . , d for hard radiators. When the two soft partons

are gluons, the form of the double soft gluon function Saijb is universal as for the

single unresolved case. However, it is now possible for a quark-antiquark pair

to go soft simultaneously, the source being a soft gluon splitting to such a pair.

In this case the soft function must be differentiated from the pure gluon case
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as it takes a different form [22], but is universal for this scenario nonetheless.

For the almost-colour connected and colour unconnected configurations, we find

again straightforward factorisation behaviour, since the limit can be taken by

considering an iteration of the single unresolved procedure. The factorisation

for colour-unconnected unresolved partons reads

M0
n(· · · , a, i, b · · · , c, j, d, · · · ) i,j→0−−−→ Saib ScjdM

0
n−2(· · · a, b, · · · , c, d, · · · ).

(2.1.44)

and is simply extended to allow for the almost colour-connected configuration

by letting b = c.

2. Collinear unresolved partons

For limits involving partons going collinear only, we encounter two setups.

Firstly that of a pair of NLO-type collinear limits in which pairs of partons

separately go collinear, the double collinear limit, which will occur in the al-

most colour-connected and colour-unconnected configurations. However, it is

now possible for three partons to become simultaneously collinear with each

other, called the triple collinear limit.

In the colour connected configuration where three partons merge to form a single

parent parton, the triple collinear limit factorises the squared subamplitude as

M0
n(· · · , i, j, k, · · · ) i||j||k−−−→ Pijk→A(z1, z2, z3)M0

n−2(· · · , A, · · · ), (2.1.45)

where again A is the composite parton. The form of the splitting functions are,

similarly to the single splittings, dependent on the nature of the unresolved

partons and are collected in [22], the momentum fractions of each parton here

given by z1, z2 and z3. The triple collinear limit when two of the three partons

are colour connected also produces a singular outcome,

M0
n(· · · , i, · · · , j, k, · · · ) i||j||k−−−→ 1

sjk
. (2.1.46)
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However, the integration of phase space in the region of this limit also contains

the same invariants, which vanish more rapidly than the divergent squared

matrix element such that no IR singularity is formed. Furthermore, when all

three partons are colour-unconnected, the matrix element is finite in the triple

collinear regions.

When there are two colour connected pairs of collinear partons, we again observe

an iterated NLO-type factorisation:

M0
n(· · · , i, j, · · · , k, l, · · · ) i||j,k||l−−−−→ 1

sij
Pij→A(z1)

1

skl
Pkl→B(z2)M0

n−2(· · · , A, · · ·B, · · · ).

(2.1.47)

As before, if the collinear limit stems from a gluon pair or quark-antiquark pair

collapsing onto a parent gluon, then azimuthal corrections described previously

must be taken into account.

In a similar vein to the colour-unconnected triple collinear limit, if all four

partons are separated in the colour string, then the matrix element provides

no contribution of the order 1/sijskl; in the integration over this phase space

region we receive a negligible contribution.

3. Soft- collinear unresolved partons

A combination of both soft and collinear unresolved limits is possible at NNLO,

where a single pair of partons goes collinear, and another goes soft, simultane-

ously. For colour-connected scenarios in the limit, the squared matrix element

factorises into a product of a soft factor and a splitting function:

M0
n(· · · , i, j, k, b · · · ) i||j,k→0−−−−→ 1

sij
Pij→A(z1)Sb,kjiM

0
n−2(· · · , A, b, · · · ).

(2.1.48)

where b is a hard radiator [31]. For the case where j is the soft parton and i and

k go collinear, the matrix element factorises into a less singular object, resulting

in a vanishing contribution. For the case where the soft and collinear pair are

colour unconnected, we see once more an iteration of the single unresolved
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limits, namely

M0
n(· · · , a, i, b, · · · , j, k, · · · ) j||k,i→0−−−−→ 1

sjk
Pjk→A(z1)SaibM

0
n−2(· · · , a, b, · · · , A, · · · ).

(2.1.49)

2.1.3 Singularity cancellation

As we have already seen, the explicit pole structure of one-loop amplitudes, and thus

the squared matrix elements, can be written as a Laurent expansion in the dimension

parameter ε via dimensional regularisation. Analysis by Bloch and Nordseick [32],

and Kinoshita [33], Lee and Nauenberg [34] (KLN) proved that all IR singularities

present in the virtual corrections combined with the real emission will cancel when

summed over all degenerate states, leaving a finite cross section.

The inclusion of the real emission makes heuristic sense; their divergences occur

in the limits where additional radiated parton would be unobserved by a physical

detector. Thus, the process would be indistinguishable from the one with lower

multiplicity, and should therefore be considered as a contribution to the underlying

process’ final state.

To observe explicitly such a cancellation in perturbative calculations, we are re-

quired to perform the phase space integration analytically over the unresolved regions,

such that the real and virtual phase spaces are of the same size. Thus at NLO we

sum over all the real emission diagrams which contain singly unresolved limits. These

are at the same order in αs as the virtual corrections. The full cross section for n

partons in the final state is then

dσ̂NLOij =

∫

dΦn+1

dσ̂Rij +

∫

dΦn

dσ̂Vij , (2.1.50)

where we must integrate over the unresolved phase space. The extension to NNLO

of course increases the complexity, since now double unresolved emission can occur

at tree level, and single emission from the one loop corrections;

dσ̂NNLOij =

∫

dΦn+2

dσ̂RRij +

∫

dΦn+1

dσ̂RVij +

∫

dΦn

dσ̂V Vij . (2.1.51)
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2.2 Colour ordered strings

Before introducing in the following chapters the mechanism by which the singularities

are cancelled, we review the possible structures available for colour ordered matrix

elements, with reference to the colour decomposition reviewed in Section 1.3. There

are two basic objects from which all colour structures can be assembled: gluon strings

and quark strings. A gluon string is characterised by a trace over SU(N) generators,

where ak denotes the generator associated with external gluon k, e.g., an n-gluon

colour ordered matrix element is associated with the colour structure,

Tr(T a1T a2 · · ·T an−1T an) ≡ (a1a2 · · · an−1an). (2.2.52)

The colour ordered partial amplitude associated with this colour structure contains

IR divergences between colour connected partons, i.e., those external legs whose

associated generators are adjacent in the colour structure. Due to the trace nature

of the colour factors, the partial amplitudes display cyclic symmetry, which means

that the colour connection not only exists between adjacent partons in the notation

defined above, but also between the endpoints a1 and an.

The quark string is given by a string of gluon generators sandwiched between

fundamental quark indices, e.g., a quark string containing a quark-antiquark pair

and n gluons has the colour structure,

(T a1T a2 · · ·T an−1T an)ij ≡ (a1a2 · · · an−1an)ij, (2.2.53)

where i, j denote the fundamental (antifundamental) colour indices carried by the

quark (antiquark). The IR divergences of the partial amplitude associated with this

colour structure also exist for unresolved configurations involving colour connected

partons. The gluons at each end of the quark string are not colour connected to each

other but are colour connected to the quark endpoints instead. What happens when

partons become collinear across colour structures?

If the quark-antiquark pair become collinear to form a composite gluon, the colour

structure pinches down to a trace structure and the surviving reduced matrix element
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(multiplied by the universal splitting function) tends to a gluonic partial amplitude,

(a1a2 · · · an−1an)ij
qi||q̄j−→ (a1a2 · · · an−1ana(ij)). (2.2.54)

Sub-leading colour structures also arise at the amplitude level according to the dis-

tribution of fundamental indices among the endpoints. For example, the four-quark

two-gluon partial amplitudes have twelve colour structures. Six of the structures are

given according to the permutations of gluons within the structures,

(a1a2)il(�)kj (a1)il(a2)kj (�)il(a1a2)kj, (2.2.55)

where i, k and j, l denote the fundamental and anti-fundamental indices of the quarks

and antiquarks respectively and (�)il = δil is an empty quark string whose colour

factor is simply a Kronecker delta in fundamental indices. The six sub-leading colour

structures are obtained by the substitution j ↔ l.

As discussed above, in the case of a quark string, a q||q̄ limit causes the quark

string to collapse onto a gluon string. With multiple quark strings, a quark-antiquark

collinear limit can cause quark strings to merge, with the composite gluon contribut-

ing to the gluon string by connecting the fundamental indices of the quark endpoints,

e.g.,

(ai1 · · · ain)ij(aj1 · · · ajm)kl
qk||q̄j−→ (ai1 · · · aina(kj)aj1 · · · ajm)il. (2.2.56)

The same behaviour is exhibited in the reduced partial amplitude in the limits. When

multiple strings are present in a single colour ordered partial amplitude, the partons

involved in each quark string are separated from those involved in other strings by a

semi-colon, e.g.,

M0
n(· · · ; q1, g1, g2, q̄1; q3, g1, q̄2; · · · ). (2.2.57)
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Sub-leading colour

The sub-leading colour contribution cannot, in general, be written in the form of an

incoherent sum of squared partial amplitudes. However for low multiplicity final-

states the sub-leading colour contribution can often be rewritten as the square of

a coherent sum of QCD partial amplitudes where one or more gluons behave in an

Abelian fashion.

Matrix elements containing “Abelian gluons” obey the usual QCD factorisation

formulae in all the unresolved limits of the non-Abelian gluons. The Abelian glu-

ons do not couple to the non-Abelian gluons and only couple to quarks; therefore

they can only be considered colour-connected to the quarks. A sub-leading colour

matrix element can thus be considered to contain two colour structures: a pure

QCD colour structure formed from all quarks and non-Abelian gluons, the factori-

sation properties of which are identical to those of leading colour squared matrix

element, and a QED-like colour structure containing quark pairs and colour dis-

connected Abelian gluons [35]. As an example, consider a squared partial ampli-

tude with two quarks, n non-Abelian gluons and one Abelian gluon, ĩ, is denoted

M0
n+3(q, g1, · · · , g̃i, · · · , gn, q̄). The colour structure is of the form

(q, 1, · · · , ĩ, · · · , n, q̄)ij ∼ (q, 1, · · · , n, q̄)ij ⊗ (q, ĩ, q̄)ij. (2.2.58)

The Abelian gluon can have collinear limits with the quarks and also become soft,

M0
n+3(q, g1, · · · , g̃i, · · · , gn, q̄)

i||q−→ 1

sqi
Pqg→Q(z) M0

n+2(Q, g1, · · · , gn, q̄), (2.2.59)

M0
n+3(q, g1, · · · , g̃i, · · · , gn, q̄) i→0−→ Sqiq̄ M

0
n+2(q, g1, · · · , gn, q̄), (2.2.60)

where Pqg→Q(z) and Sqiq̄ are the time-like quark-gluon splitting function and soft

function respectively. The collinear limit with the antiquark is given by exchanging

q ↔ q̄. When the sub-leading colour matrix elements can be re-written in terms of

squared matrix elements involving Abelian gluons then the IR divergent limits can

be subtracted using antenna functions just as at leading colour. For six or more

coloured particles, the sub-leading colour contribution cannot be written purely in
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terms of squared matrix elements with Abelian gluons. Nevertheless, the sub-leading

colour contributions will in general contain fewer and less intricate divergent limits

than their leading colour counterparts. Any finite contribution to the cross section

can be immediately integrated numerically.

*

The discussion of this chapter has illustrated the universal behaviour of the real

emission in the single and double unresolved limit. What will follow for the remainder

of this thesis is the application of these properties in creating counter terms that

can be constructed in such a way that can render the real emission finite, whilst

simultaneously employing the KLN theorem to deal with the explicit poles from the

virtual contributions. We will focus on the leading colour contribution for clarity

but it is clear that a similar treatment can be reproduced for sub-leading colour

contributions in future studies.



Chapter 3

Dijet Production at the LHC

By far the most dominant hard process in collider experiments is the QCD production

of jets, which provide an excellent testing ground for probing the Standard Model and

possibly detecting hints of new physics. In this chapter we discuss jet cross sections

in collider experiments, and examine leading order dijet production and motivations

for extending our calculations to higher orders. Dijet production will be our primary

calculational focus in subsequent chapters.

3.1 Jet cross sections

The final state quarks and gluons emitted in a hard scattering process are not the

particles we observe in the detector. Indeed, since the first experiments at SLAC to

probe the proton substructure, bare quarks have yet to be detected. Quark confine-

ment is a solution to this potential discrepancy with theory, whereby the net colour

of the partons are always confined inside hadrons, with only colour singlets being ob-

servable. We see in the discussion of the running coupling that at large separations,

the coupling becomes large also. At distances on the scale of the hadron diameter, the

strong interaction is sufficiently strong such that pair production can occur. Succes-

sively stronger gluons can be radiated also, often close to being collinear to the parent

parton, and join non-perturbatively to form colour-neutral mesons and baryons. The

result is a collimated jet of hadrons, which are the objects measured in the detector.

The energy and mass of the jet is somewhat indicative of that of the parton in the
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hard scattering. Figure 3.1 shows a dijet event taken at the ATLAS detector with

the LHC running at a centre of mass energy of 2.8 TeV. Two back to back collimated

clusters of energy deposits are clear, each with a high transverse momentum. The

event was collected on 8th August 2010.

Creating qualitative analyses of jet structure is vital, and a crucial postulate to

link theory and experimental data is local parton hadron duality (LPHD) [36]. Most

of the energy and momentum is found to be contained within a single hadron on the

jet; LPHD asserts that in addition, the momentum flow and quantum numbers of the

hadrons are mimicked at the parton level by those partons initiating the jets. With

hadronisation effects taken to be minimal, the association of the fixed state partons

at the hard scattering with a jet should be a reasonable assertion. In extending the

hard scattering computations to higher orders in αs we allow for a richer partonic final

state to potentially cluster to form jets. Nevertheless, completely reproducing the full

final state emissions within the matrix element calculation is highly impractical, and

matching to a parton shower, which simulates the soft and collinear radiation from

the hard scattering scale to hadronisation, is required.

Figure 3.1: Dijet event recorded at ATLAS with jets from pp collision of invariant
mass 2.8 TeV. A track pT cut of 2.5 GeV is applied.

The incoming hadrons contain a spectrum of longitudinal momenta, modelled by

PDFs. With respect to these hadrons, the centre-of-mass of the partonic interaction

is often boosted since the partons hold only a fraction of the hadronic momenta. It

is judicious therefore to define variables that transform as simply as possible under
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such a longitudinal boost. We define the hyperbolic angle rapidity, y, as

y =
1

2
ln

(
E + pz
E − pz

)
, (3.1.1)

where the difference in rapidity between particles ∆yij is boost invariant. For the

massless of high energy regime suitable at the LHC, pseudo rapidity is preferred,

defined as

η = −ln

(
tan

(
θ

2

))
, (3.1.2)

which is experimentally favourable since θ, the angle from the beam direction, is

measured directly in a detector. Hadron calorimeters also measure the transverse

energy ET , rather than the transverse momenta:

ET = E sin(θ). (3.1.3)

It is now possible to rewrite the four-momentum of a particle as

p = (mT coshy, pT siny, pT cosy, pT sinhy), (3.1.4)

where the transverse mass mT =
√
p2
T +m2 is also boost invariant. Given suitable

kinematic variables for describing jets, the jet itself must be defined. Rather than

studiously (and unrealistically) examining by eye each individual event collected on

tape, it is prudent to define a set of rules, a jet definition, that will control the way

in which a list of jets will be returned, when provided with a set of particle momenta

in a given event. In the construction of jet algorithms it is imperative that they are

not affected to their detriment by IR contributions: explicitly, the jet distributions

produced by the jet algorithm must be insensitive to soft and collinear radiation.

That is, they display infrared safety. For example, a quark-antiquark pair accom-

panied by any number of soft and collinear gluons and quark-antiquark pairs should

all contribute to the same observable. In the context of a theoretical calculation,

we encounter cross sections given in terms of functions describing kinematics and
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dynamics of the physical process, accompanied by a jet function,

dσ̂

dX
∼
∫

dΦn

∑
|Mn{pi}|2J (m)

n ({pi}) (3.1.5)

where we sum over all n-parton final state contributions and define the measurement

by the jet function J
(m)
n ({pi}). For IR safety, we require that

J
(m)
n+1(p1, · · · , ξpn, (1− ξ)pn)

J
(m)
n+1(p1, · · · , ξpn, 0)



 = J (m)

n (p1, · · · , pn), (3.1.6)

that is, the jet function for n and n + 1 partons must become equal in the the one-

parton unresolved limit. As discussed previously, in a fully inclusive cross section

calculation the soft and collinear singularities should cancel between real and virtual

corrections. A singularity-free transition rate in the massless limit is guaranteed

if all degenerate states are incorporated; we sum over all radiative corrections in

the soft/collinear limits that contribute to the same final state. However, if the jet

function is sensitive to the IR radiation, cancellation can no longer occur since the

real and virtual configurations contribute to different jet multiplicities - the KLN

theorem will no longer hold.

Two major classes of jet algorithm present themselves for hadron colliders, that of

sequential recombination and cone algorithms. They are briefly discussed here,

although extensive reviews can be found in [37,38].

3.1.1 Sequential recombination algorithms

Sequential recombination algorithms take a bottom up approach, in that they behave

in a manner akin to inverting the sequence of splitting in a parton shower. Starting

with the set of final states, the jets are defined by repeatedly combining particles into

composite objects that fall within some distance measure xij. Once all the particles

have passed the selection criteria for recombination, the remaining composite particles

can be identified as jets. These algorithms are therefore infrared and collinear safe,

since soft or collinear particles are immediately recombined in the initial clustering.

The algorithm for hadronic colliders proceeds as follows:
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i - For every pair of partons in the final state, calculate a distance measure xij, and

xiB, the distance between the parton i and the beam axis.

ii - Extract the minimum distance measure xminij .

iii - If the minimum xminij is below some jet resolution threshold xcut, recombine the

particles i and j into a single composite particle and return to (i).

iv - If the minimum is instead one of the xiB, allow i to be a jet and remove from

the list of particles.

v - All remaining particles can be assigned as jets, and iteration is terminated.

In such an algorithm, the number of jets is controlled exclusively by the jet resolution

threshold xcut. The two extrema set the precedent: as xcut → 0, the jet width is

becoming extremely narrow and eventually all final state hadrons become individual

jets, whereas xcut becoming large broadens the jets and encapsulates far more final

state hadrons, resulting in far fewer occurrences of multi-jet events.

Various sequential jet algorithms exist, notably the kt [39], anti-kt [40] and Cam-

bridge/Aachen [41]. They are differentiated through the definition of the distance

measure for recombination. Most generally, it is given as

xij = min(k2p
ti , k

2p
tj )

∆R2
ij

R2
,

di,B = p2p
ti , (3.1.7)

where R defines the radial extent of the jet in the y − φ plane when pictured as a

cone, and

∆R2 = (∆yij)
2 + (∆φij)

2, (3.1.8)

where yi and φi are the rapidity and azimuth of particle i respectively. Here, R is

taking on the role of xcut. The minimum function returns the smaller of the two

arguments. Choosing the value for p ∈ {−1, 0, 1} determines the specific algorithm:

kt, anti-kt and Cambridge/Aachen use p = 1,−1 and 0 respectively.
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The kt algorithm was used extensively at LEP, and since it is closely related to the

divergences that appear in QCD emissions, can represent an approximate inversion

of the branching process. The kt algorithm clusters the softest particles first and can

often lead to experimentally unaesthetic jets with jagged edges [37]. This is remedied

by the anti-kt algorithm, such that now it is the hardest particles that cluster first.

In doing so, the jets emanate from the hardest particle and produce cone-shaped

jets. The Cambridge/Aachen algorithm has the distance measure based only on a

geometric scale, that is the particles are clustered by their spatial separation. It

privileges the collinear divergences of QCD, favouring them over the soft divergences,

and is useful for jet substructure analysis.

In addition to the choice of algorithm, defining the radial extent of the jet has

a marked effect; large jet radii will capture most of the radiative emissions of a

particle in a single jet, whereas for small jet radii one can see a splitting of the

particle producing two separate jets. The details of the collider processes can give an

indication of a preferred choice. For example, high transverse momenta events can

produce a large amount of QCD radiation, and thus a large jet radius is desirable if

we wish to minimise loss of radiation from a jet. Conversely, a large radius includes

more particles from the underlying event.

Typically at ATLAS at the LHC, an anti-kt algorithm is used with R = 0.6. To in-

terface jet algorithms with Monte Carlo simulations, FastJet [42] is used. As its name

suggests, FastJet can implement sequential recombination algorithms over a time of

O(N lnN), significantly faster than up to O(N3) seen in original implementations of

the kt algorithm in hadron-hadron collisions [43].

3.1.2 Cone algorithms

Cone algorithms were chronologically the first used and follow an approach whereby

some initial direction is specified by a seed particle, around which a cone of radius

R, azimuth φ and rapidity y are constructed. Particles falling within the cone are

summed. The direction of the resultant momenta defines the new seed direction, and

the process is iterated until the cone direction is stable. To construct the algorithm,

a seed must first be chosen, the cone identified and a split merging procedure carried
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out to convert the cones into jets. Initiating the seeds with jets however, can result

in IR unsafety. For example, picking the highest transverse momenta as the seed can

result in different numbers of final states if it splits into a collinear pair, altering the

order of hardness of the final state partons. This problem is remedied in the SISCone

algorithm [44]. Rather than picking a seed, from all subsets of particles within the

cone a momentum is calculated: if it lies within the cone it is stable. A split merging

can then be used to remove overlap of stable cones. For some threshold fraction f

of the softer of a pair of cones being shared with its harder partner, the cones are

either merged if f is exceeded (typically f = 0.5 or 0.75), otherwise the overlapping

particles are assigned to whichever cone is closer in angle. Since there is no hard

seed, and requiring the definition of the cones to have no effect on the split merging,

SIScone provides an example of an IR safe cone algorithm. Cone algorithms are now

less favoured than sequential recombination algorithms.

3.2 Dijet production

3.2.1 Leading order cross section

Inclusive dijet production at the LHC,

p+ p→ j + j +X, (3.2.9)

consists of the scattering of partonic elements off hadrons, namely quarks and gluons,

at large angles relative to the beam direction, following a proton-proton collision.

Here j is a jet defined with a suitable algorithm and X represents the other particles

in the final state, including the proton debris.

The study of dijet production is a prime candidate for both the construction of

high precision tests of QCD, as well as providing a possible window into new physics.

The use of jet algorithms to determine single inclusive and dijet observables allows

for fundamental QCD processes to be measured in hadronic collider environments,

including the determination of the parton distributions inside protons [46,47], and as

a direct probe of a measurement of αs [48,49]. The angular distribution of dijets can
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also be an indication of new physics; large modifications in the LHC dijet angular

distribution from the Standard Model prediction can be a hint at quark contact

interactions [45].

Following from (1.4.51), we can consider the leading order partonic cross section

dσ̂LOab = dΦ2(pi, pj; pa, pb)
1

S2

∑
|Mab→ij|2J (2)

2 (pi, pj), (3.2.10)

where S2 is a symmetry factor associated with identical final states. The graphs

contributing to the leading order matrix element |Mab→ij|2 are given in Figure 3.2,

and all processes (including crossings thereof)

q +Q→ q +Q q + q → q + q

q + q̄ → g + g g + g → g + g (3.2.11)

must be considered. The squared matrix elements for 2→ 2 scattering are well known

up to two-loop level [50] which we require for NNLO calculations. The squared matrix
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Figure 3.2: Diagrams for dijet production: (a) quark scattering, (b) quark-gluon
scattering and (c) gluon scattering.

elements are summed and averaged over the appropriate spins and colours for the

particular incoming and outgoing particles. Initial quarks obtain a colour average

of 1/N , whilst initial gluons gain a factor of 1/(N2 − 1). Unpolarised particles will
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also pick up an additional spin average factor of 1/2. The n- parton final state phase

space is given by

dΦn(p1, . . . , pn; pa, pb) =
n∏

i=1

dd−1pi
2Ei(2π)d−1

(2π)dδd(pa + pb −
n∑

i=1

pi), (3.2.12)

whilst the jet function J
(m)
n (p1, . . . , pm) defines an n-jet final state via cuts on an

m-parton final state.

3.2.2 Motivation for higher order calculations

Truncating the pertubative series at leading order, whilst a fine starting point, is

plagued with limitations. As previously discussed in the context of LPHD, we only

have a single parton to identify with the jet, and no further emission to provide any

richness of jet shape: the cross section is independent of our jet radius R, contrary

to detector measurements. The results are also strongly scale dependent thanks to

the running of the coupling. A lack of initial state radiation provides no opportunity

to theoretically model a non-trivial initial state transverse momentum distribution.

We therefore appeal to higher order corrections for a solution.

As discussed in the general case, incorporating higher order corrections increases

the accuracy of the prediction, where already excellent agreement between data and

NLO QCD is observed over several orders of magnitude. So why go beyond NLO,

when even a preliminary study presented thus far indicates excessive calculational

complexity?

A major motivation, mentioned in Section 1.2, is that the scale dependence of

an observable decreases as more orders in perturbation theory are included. Leading

order results can see a 30% change, whereas in some regions a NNLO calculation

can decrease the sensitivity of µR to less than 1%. This is clear both in Figure 3.3

and Figure 3.4, where in the latter we see a significant range over which µR can be

varies with minimal change in the value of the cross section. The improvement in

scheme independence shown here in Figure 3.4 for 100 GeV at CDF, is given for LO,

NLO and NNLO predictions over the often used range of varying µR by a factor of

two around the hard scale. A parallel can also be drawn with the factorisation scale



3.2. Dijet production 51

dependence that is introduced for hadronic initial states.

Figure 3.3: Differential cross section
for inclusive Z0 production from pp
collisions [51], across a rapidity gap
−4 < Y < 2 . The centre-of-mass
energy is

√
s = 14 TeV.

2

liders to NNLO accuracy. The program consists of three
integration channels:

dσ̂gg,NNLO =

∫

dΦ4

[
dσ̂RR

gg,NNLO − dσ̂S
gg,NNLO

]

+

∫

dΦ3

[
dσ̂RV

gg,NNLO − dσ̂T
gg,NNLO

]

+

∫

dΦ2

[
dσ̂V V

gg,NNLO − dσ̂U
gg,NNLO

]
, (1)

where each of the square brackets is finite and well be-
haved in the infrared singular regions. For the all-gluons
channel, the construction of the three subtraction terms
dσ̂S,T,U

ij,NNLO was described in Refs. [39–41].
In the three-parton and four-parton channel, the phase

space has been decomposed into multiple wedges (6
three-parton wedges and 30 four-parton wedges), each
containing only a subset of possible infrared singular con-
tributions. Inside each wedge, the generation of multiple
phase space configurations related by angular rotation of
unresolved pairs of particles around their common mo-
mentum axis ensures a local convergence of the antenna
subtraction term to the relevant matrix element. Owing
to the symmetry properties of the all-gluon final state,
many wedges yield identical contributions, thereby al-
lowing a substantial speed-up of their evaluation.

Jets in hadronic collisions can be produced through
a variety of different partonic subprocesses, and the all-
gluon process is only one of them. Our results on this
process can therefore not be directly compared with ex-
perimental data. The all-gluon process does however al-
low to establish the calculational method, and to qualify
the potential impact of NNLO corrections on jet observ-
ables. It should be noted that the NLO corrections to
hadronic two- and three-jet production were also first
derived in the all-gluon channel [42–44], well before full
results could be completed [6, 7, 45]. In both cases, the
all-gluon results were extremely vital both for establish-
ing the methodology and for assessing the infrared sensi-
tivity of different jet algorithms [44].

Our numerical studies for proton-proton collisions at
centre-of-mass energy

√
s = 8 TeV concern the single

jet inclusive cross section (where every identified jet in
an event that passes the selection cuts contributes, such
that a single event potentially enters the distributions
multiple times) and the two-jet exclusive cross section
(where events with exactly two identified jets contribute).

Jets are identified using the anti-kT algorithm with res-
olution parameter R = 0.7. Jets are accepted at central
rapidity |y| < 4.4, and ordered in transverse momentum.
An event is retained if the leading jet has pT1 > 80 GeV.
For the dijet invariant mass distribution, a second jet
must be observed with pT2 > 60 GeV.

All calculations are carried out with the
MSTW08NNLO gluon distribution function [46],
including the evaluation of the LO and NLO contri-
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FIG. 1: Inclusive jet transverse energy distribution, dσ/dpT ,
for jets constructed with the anti-kT algorithm with R = 0.7
and with pT > 80 GeV, |y| < 4.4 and

√
s = 8 TeV at NNLO

(blue), NLO (red) and LO (dark-green). The lower panel
shows the ratios of NNLO, NLO and LO cross sections.

butions [47]. This choice of parameters allows us to
quantify the size of the genuine NNLO contributions
to the parton-level subprocess. Factorization and
renormalization scales (µF and µR) are chosen dynami-
cally on an event-by-event basis. As default value, we
set µF = µR ≡ µ and set µ equal to the transverse
momentum of the leading jet so that µ = pT1.
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FIG. 2: Scale dependence of the inclusive jet cross section for
pp collisions at

√
s = 8 TeV for the anti-kT algorithm with

R = 0.7 and with |y| < 4.4 and 80 GeV < pT < 97 GeV at
NNLO (blue), NLO (red) and LO (green).

In Fig. 1 we present the inclusive jet cross section for
the anti-kT algorithm with R = 0.7 and with pT >
80 GeV, |y| < 4.4 as a function of the jet pT at LO,
NLO and NNLO, for the central scale choice µ = pT1.
The NNLO/NLO k-factor shows the size of the higher
order NNLO effect to the cross section in each bin with

Figure 3.4: Renormalisation scale de-
pendence for single jet production in
pp collision at

√
s = 8 TeV, for var-

ious orders in the perturbative series.
The jet has 80 < pT < 97 GeV [52].

From Section 1.4, the NNLO hard scattering must be convolved with the PDFs

accurate to the same order. For parton distributions at NNLO it is necessary to

acquire a global fit to the data on various observables computed at this order, in

addition to the PDF running obtained through the evaluation of three-loop splitting

functions [46]. The LHC is an excellent laboratory for probing the gluon distributions,

since the initial state hadrons have a large gluon momentum fraction. Previously,

quark distributions have been probed by DIS data [53], whilst inclusive jet data from

the Tevatron [102] attacked the gluon distribution at NLO.

Higher order corrections are not only changing the global normalisation of the

leading order prediction; the opening of phase space allows for more complex final

states and thus an alteration of the distribution shape itself [52]. Furthermore, the

addition of virtual corrections add new kinematical contributions, manifest in higher

weight polylogarithms of scale ratios. As is evident in Figure 3.3, a mere scaling of

the leading order calculation is often not a good model of higher order effects.

As aforementioned, the jet algorithms take inputs from final state momenta of a

hard process to generate a number of jets constructed via a series of criteria required

via the chosen jet definition. The description of the jet can be improved by considering

higher order corrections at the level of the hard scattering. Opening up the final state

phase space for additional partonic structure immediately implies an improvement on
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Figure 3.5: Jets modelled by extra final state partons at NNLO.

the matching between theoretical and experimental jet reconstruction. Considering

a generic final state pair production in Figure 3.5 we see that at LO the single hard

final state parton will directly correspond to the jet. However, once we extend this

to NNLO there is now room for up to three final state partons contributing to the

jet, offering a richer momentum and parton distribution from which to construct the

jet shape. The additional final states in the perturbative calculation can be thought

of as the initial emission of radiation otherwise carried out by the parton shower. We

can consider similar improvements to the initial state. At leading order the incoming

partons have no transverse momentum relative to the beam direction. By allowing for

radiation from the initial state partons, there is a non-trivial transverse component,

resulting in a more complex momentum distribution in the final state.



Chapter 4

Antenna Subtraction

The primary goal of this thesis is to gain control of the infra-red structures present in a

NNLO QCD calculation. This chapter begins by examining the procedures by which

such singularities can first be isolated and extracted, focussing on the particular

method of antenna subtraction. We discuss this formalism at both NLO and

NNLO, elucidating the link between the various structures present in the calculation,

via their infrared structure. This will stand us in good stead for the application of

antenna subtraction to hadro-produced dijet production at NNLO in the chapters

that follow.

4.1 Singularity isolation

Let us first consider the structure of an m-jet cross section up to NNLO. The partonic

cross sections for a 2→ m process, with m partons in the final state have the form

dσ̂LO =

∫

dΦm

dσ̂B, (4.1.1)

dσ̂NLO =

∫

dΦm+1

dσ̂R +

∫

dΦm

[dσ̂V + dσ̂MF ], (4.1.2)

dσ̂NNLO =

∫

dΦm+2

dσ̂RR +

∫

dΦm+1

[dσ̂RV + dσ̂MF,RV ] +

∫

dΦm

[dσ̂V V + dσ̂MF,V V ].

(4.1.3)
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The leading order cross section is straightforward, including only the Born level cross

section constructed from the tree level m-parton matrix element and integrated over

phase space:

dσ̂B ∼ dΦm({pi})〈M0
m+2|M0

m+2〉. (4.1.4)

At NLO the additional power of αs means that we are not only opening up the phase

space for a further final state parton, but also incorporating virtual corrections to the

Born process. We now encounter an (m + 3)-parton real radiation correction dσ̂R,

the (m + 2)-parton virtual correction dσ̂V that holds loop corrections to the Born

term, and the mass factorisation term dσ̂MF to account for the initial state collinear

radiation in the parton densities. The real and virtual corrections at NLO are of the

form

dσ̂R ∼ dΦm+1({pi})〈M0
m+3|M0

m+3〉,

dσ̂V ∼ dΦm({pi})[〈M1
m+2|M0

m+2〉+ 〈M0
m+2|M1

m+2〉]. (4.1.5)

Finally, at NNLO we are again opening up the phase space for an additional parton,

such that double real radiation from the Born process is now possible. There is now a

double real radiation contribution (RR) over the (m+ 4)-parton phase space dσ̂RR, a

real virtual (RV) correction dσ̂RV over (m+3)-parton phase space which incorporates

a one loop matrix element, and a double virtual (VV) contribution dσ̂V V that holds

two loop matrix elements, proportional to (m+ 2)-parton phase space:

dσ̂RR ∼ dΦm+2({pi})〈M0
m+4|M0

m+4〉.

dσ̂RV ∼ dΦm+1({pi})[〈M1
m+3|M0

m+3〉+ 〈M0
m+3|M1

m+3〉].

dσ̂V V ∼ dΦm({pi})[〈M1
m+2|M1

m+2〉+ 〈M0
m+2|M2

m+2〉+ 〈M2
m+2|M0

m+2〉].

(4.1.6)

Taking first the NLO cross section we find that each term on the right hand side

of (4.1.2) is independently divergent, containing both UV and IR (soft and collinear)

singularities. After removal of the UV divergences via renormalisation, the sum of
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the terms renders the full cross section finite.

As discussed in Chapter 2, whilst the IR singularities from dσ̂V are immediately

obtained after the loop integration, the soft and collinear divergences in the real

radiation contribution are only made explicit after the integration over phase space,

a calculation that is often not analytically feasible. In order to construct a Monte

Carlo program that can be be adapted to incorporate various jet observables, the IR

singularities of the real radiative corrections must first be isolated such that they can

be cancelled, thus leaving a finite remainder that can be safely integrated numerically.

Such a bottleneck has opened up broad research into the isolation of singularities.

Phase space slicing [55] has been utilised successfully in NLO calculations of electron-

positron collisions [56]. It has allowed for a high degree of automation through colour

decomposition of the amplitude and factorisation of the phase space in the unresolved

region. It does however introduce a theoretical parameter into the calculation, defin-

ing the resolution around the singular limit which, although in principle allowed to

be arbitrarily close to the limit, must be chosen carefully to avoid large numerical

errors. Sector decomposition [57] involves the iterated splitting of the matrix element

and final state phase space into sectors, with numerical integration of the ensuing

integrals. It has been carried out for specific observables [58–60], notably vector bo-

son [61] and Higgs [62] production at NNLO. However, sector decomposition must

be carried out explicitly for each individual process, and with increasing complexity

of said process comes an inevitable proliferation of integrals to compute.

The preferred method at NLO is subtraction [63,64]. Unlike procedures such as

phase space slicing, subtraction introduces counterterms dσ̂S into the cross section,

which are not only exact, but also analytic, allowing for a transparent cancellation

of singularities. The counterterms mimic the real radiation cross section dσ̂R in all

singular limits such that the difference between dσ̂R and dσ̂S in a particular limit

is finite. They must also be simple enough to be integrated analytically over the

unresolved region of the particle phase space in d dimensions, such that the explicit

poles can be cancelled against those emanating from the virtual corrections. This

thesis focusses on the extension to NNLO predictions, where a similar procedure

can be followed. The subtraction method can in principle be extended to higher
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orders in perturbation theory, where the goal then becomes constructing counterterms

with increasing multiplicity that maintain the both the analytic integrability and the

correct mimicry of the singular regions of the physical cross sections.

A number of schemes exist utilising the subtraction method, since the construction

of the counter terms is by no means unique.

At NLO, the FKS [63] subtraction by Frixione, Kunszt and Signer and the Catani-

Syemour dipole formalism [64] have been implemented in an automated fashion [65,

66]. At NNLO, the qT subtraction [67] utilises the fact that real emissions have

universal IR structure; such emissions can be obtained via transverse-momentum

resummation techniques. However, it only deals with colourless final states; as such

it has been applied at NNLO to processes such as Higgs [68] and photon pair [69]

production. Sector-improved residue subtraction [70] employs a novel isolation of

phase space in the singular regions whilst utilising FKS subtraction methods, and

has been applied to top quark pair production [71, 72] and Higgs plus single jet

production [73]. This thesis focusses on a particular subtraction scheme, that of

antenna subtraction [22]. It has been successfully applied to the structure of

three-jet events in electron-positron annihilation at NNLO [35,74,75], and subsequent

numerical calculation of the NNLO corrections to event shapes, jet rates and event-

shape moments [76–78]. For hadron colliders, the antenna method has been applied at

NNLO to the all gluon contribution to dijet production [15,79,80] and the production

of heavy particles [81,82].

This chapter will proceed as follows. First, the building blocks and tools required

for antenna subtraction will be explored, along with a description of the functional

form of the subtraction terms at both NLO and NNLO. We will then investigate in

detail the infrared structures that present themselves during the calculation and how

obtaining a stranglehold on the singularity structure provides a vital insight into the

cancellations that must occur at each level of the subtraction calculation.

Before the subtraction term can be constructed, the ingredients vital to the success

of the antenna formalism must be introduced, that of the factorisation of phase

space, and the antenna functions and their integrated form. We describe each in

turn.
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4.2 Phase space factorisation

A vital component in the construction of the subtraction terms, along with the fac-

torisation of the squared matrix element in unresolved limits, is the mapping of phase

space. These involve sending original momenta involved in the limit - the hard ra-

diators and the unresolved particles - into a redefined set of on-shell momenta. The

new set will be a linear combination of the original momenta, but by construction

free from dynamical poles involving those original momenta. With such a mapping

we see factorisation for a single unresolved particle of the form

dΦm+1(p1, · · · , pi, pj, pk, · · · , pm+1)

= dΦm(p1, · · · , pI , pK , · · · , pm+1)dΦXijk(pi, pj, pk),

(4.2.7)

where the reduced multiplicity phase space is independent of the momenta pi, pj and

pk, but instead depends on the composite momenta pI , pK ; all dependence on pi, pj, pk

is contained within the antenna phase space dΦXijk .

For double unresolved configurations we require a mapping to allow for a similar

factorisation of the phase space as

dΦm+2(p1, · · · , pi, pj, pk, pl, · · · , pm+2)

= dΦm(p1, · · · , pI , pL, · · · , pm+1)dΦXijkl(pi, pj, pk, pl).

(4.2.8)

In doing so we allow the subtraction term to be completely factorised. The mappings

required at NNLO are that of a four-to-two momenta mapping,

F(4→ 2) : {pi, pj, pk, pl} → {p(̃ijk)
, p

(̃jkl)
}, (4.2.9)

where we make explicit in the mapped momenta labels which original momenta are

involved, as well as NLO-type three-to-two mappings, which can be iteratively re-
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peated, of the form

F(3→ 2) : {pi, pj, pk} → {p(̃ij)
, p

(̃jk)
}. (4.2.10)

The mappings must conserve momenta between mapped and unmapped sets, with

the former remaining on-shell, and be able to collapse onto a subset of the unmapped

momenta in a particular implicit divergent limit. We must also recognise different

mappings according to the presence of initial states in the unresolved limits; final-

final, initial-final and initial-initial exist for the hard radiators. They are derived

in [24,83], and we discuss each in turn here.

Final-final mapping

For a single parton j becoming unresolved between hard radiators i and k where, keep-

ing only the momentum indices for notational ease, we see the mapping {i, j, k} →
{(̃ij), (̃jk)} [84],

p
(̃ij)

= z1pi + z2pj + z3pk

p
(̃jk)

= (1− z1)pi + (1− z2)pj + (1− z3)pk (4.2.11)

where

z1 =
1

2(sij + sik)

[
(1 + ρ) sijk − 2 z2 sjk

]
,

z2 =
sjk

(sij + sjk)
,

z3 =
1

2(sjk + sik)

[
(1− ρ) sijk − 2 z2 sij

]
,

ρ2 = 1 +
4 z2(1− z2) sijsjk

sijksik
. (4.2.12)

The mappings display momentum conservation and satisfy the following properties:

p2

(̃ij)
= 0, p2

(̃jk)
= 0,

p
(̃ij)
→ pi, p

(̃jk)
→ pk for j → 0 (soft),
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p
(̃ij)
→ pi + pj, p

(̃jk)
→ pk for i||j (collinear),

p
(̃ij)
→ pi, p

(̃jk)
→ pj + pk for j||k .

For the double unresolved limits two, partons become unresolved and as such we

require a single map to reduce four partons to two. Using the notation {i, j, k, l} →
{(̃ijk), (̃jkl)} the maps are constructed as

p
(̃ijk)

= z1pi + z2pj + z3pk + z4pl

p
(̃jkl)

= (1− z1)pi + (1− z2)pj + (1− z3)pk + (1− z4)pl, (4.2.13)

with the parameterisation variables defined as [83]

z1 =
1

2(sij + sik + sil)

[
(1 + ρ) sijkl

−z2 (sjk + 2 sjl)− z3 (sjk + 2 skl)

+(z2 − z3)
sijskl − siksjl

sil

]

z2 =
sjk + sjl

sij + sjk + sjl

z3 =
skl

sik + sjk + skl

z4 =
1

2(sil + sjl + skl)

[
(1− ρ) sijkl

−z2 (sjk + 2 sij)− z3 (sjk + 2 sik)

−(z2 − z3)
sijskl − siksjl

sil

]

ρ =
[
1 +

(z2 − z3)2

s2
il s

2
ijkl

λ(sij skl, sil sjk, sik sjl)

+
1

sil sijkl

{
2
(
z2 (1− z3) + z3(1− z2)

)(
sijskl + siksjl − sjksil

)

+ 4 z2 (1− z2) sijsjl + 4 z3 (1− z3) silskl

}] 1
2
,

λ(u, v, w) = u2 + v2 + w2 − 2(uv + uw + vw) . (4.2.14)

Again, in the various unresolved singular limits, the behaviour of the mapped mo-

menta can be seen to obey correctly the necessary requirements. We also note that in

single unresolved limits, the map F(4 → 2) reproduces the same mapped momenta
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as for the map F(3 → 2). As an example we take the soft j limit, pj → 0, which

results in negligible contributions from the pj-dependent pieces in (4.2.13), whilst the

behaviour of the z1,2,3,4 and ρ becomes

z1 →
1

2(sik + sil)

[
(1 + ρ) sikl − 2 z3 skl

]
,

z2 →
skl

(sik + skl)
,

z3 →
1

2(sil + skl)

[
(1− ρ) sikl − 2 z3 sik

]
,

ρ →
[

1 +
4 z3(1− z3) silskl

siklsil

] 1
2

. (4.2.15)

Relabelling the momenta as {i, k, l} → {i, j, k} reproduces the parameters in (4.2.12),

thus leaving us with the F(3→ 2) map.

Initial-final mapping

For the case where one of the hard radiators is in the initial state, we require a

new mapping. Rather than a full remapping, the initial momentum is rescaled such

that it remains on beamline. The final state particles remaining are mapped into a

single composite momentum [24]. Using the notation {1̂, i, j} → {ˆ̄1, (̃ij)} the maps

F(3→ 2) are constructed as

p̄1 = xp1

p̄
(̃ij)

= pi + pj − (1− x)p1, (4.2.16)

where

x =
s1i + s1j + sij
s1i + s1j

(4.2.17)

for massless composite momenta. Again, momentum conservation and on-shellness

is maintained. In doing so, we can write the phase space in terms of a two parton
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phase space and the standard reduced particle multiplicity phase space:

dΦm+1(p1, p2; · · · , pi, pj, · · · )

= dΦm(p̄1, p2; · · · , p
(̃ij)
, · · · )dΦ2(p1, q; pi, pj)

Q2

2π

dx

x
δ(x− x̂). (4.2.18)

The scale is Q2 = −q2 = −(pi + pj − p1)2, and x̂ is given in (4.2.17). For the case

of double unresolved configurations we can employ a similar rescaling, {1̂, i, j, k} →
{ˆ̄1, (̃ijk)} [24], with the mapping parameters given by

p̄1 = xp1

p̄
(̃ij)

= pi + pj + pk − (1− x)p1, (4.2.19)

with

x =
s1i + s1j + s1k + sij + sjk + sik

s1i + s1j + s1k

. (4.2.20)

The factorisation of the phase space behaves as

dΦm+2(p1, p2; · · · , pi, pj, pk, · · · )

= dΦm(p̄1, p2; · · · , p
(̃ijk)

, · · · )dΦ3(p1, q; pi, pj, pk)
Q2

2π

dx

x
δ(x− x̂). (4.2.21)

Initial-initial mapping

In the case where the antenna function contains two initial state partons, a phase

space map is required that will rescale the two initial states. In any antennae, these

will always be acting as hard radiators. However, unlike the initial-final case, there

is no final state parton in the mapped set of momenta to hold the overall momen-

tum rescaling, and we näıvely observe failure of momentum conservation between

mapped and unmapped momenta. To remedy this, all final state mapped momenta

are remapped [64], even if they are not explicitly involved in the unresolved limit.

We rescale the initial particles by

p̄1 = z1p1
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p̄2 = z2p2 (4.2.22)

However, the final state momenta q = p1 + p2− pi with pi being involved in the limit,

does not in general lie along the beam axis and thus a transformation of the final

state must take place. The rescaling of the initial states is determined by performing

a (Lorentz-invariant) boost of q onto the beam axis, fixing the rescaling parameters

as

z1 =

√
(s12 − s2i)(s12 − s1i − s2i)

s12(s12 − s1i)
,

z1 =

√
(s12 − s1i)(s12 − s1i − s2i)

s12(s12 − s2i)
. (4.2.23)

To subsequently maintain momentum conservation, all the final state momenta -

including those not involved in the unresolved limit - must be boosted as

pi → p̃i = pi −
2pi · (q + q̃)

(q + q̃)2
(q + q̃) +

2pi · q
q2

q̃, (4.2.24)

where q̃ = p̄1 + p̄2 is the combination of the rescaled initial state momenta, lying on

beam axis. This allows the phase space to be factorised as

dΦm+1(p1, p2; p3, · · · , pi, · · · , pm+1)

= dΦm(p̄1, p̄2; p̃3, · · · , p̃m+1)ddpi
δ+(p2

i )

(2π)d−1

dx1

x1

dx2

x2

δ(x1 − x̂1)δ(x2 − x̂2)x1x2.

(4.2.25)

Although this mapping is not unique, it is highly constrained; to treat the initial state

rescaling parameters symmetrically, a rotation (rather than a boost) is forbidden since

a rotation towards the beam axis would have to be chosen, thus favouring x1 or x2.

We can play a similar game for the double unresolved mapping. The mapping

goes as {1̂, i, j, 2̂} → {ˆ̄1, ˆ̄2}, with q = p1 + p2 − pi − pj and

z1 =

√
(s12 − s2i − s2j)(s12 − s1i − s1j − s2i − s2j + sij)

s12(s12 − s1i − s1j)
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z2 =

√
(s12 − s1i − s2j)(s12 − s1i − s1j − s2i − s2j + sij)

s12(s12 − s2i − s2j)
(4.2.26)

which results in a double convolution in the factorised phase space

dΦm+2(p1, p2; p3, · · · , pi, pj, · · · , pm+1) = dΦm(p̄1, p̄2; p̃3, · · · , p̃m+1)

×ddpi
δ+(p2

i )

(2π)d−1
ddpj

δ+(p2
j)

(2π)d−1

dx1

x1

dx2

x2

δ(x1 − x̂1)δ(x2 − x̂2)x1x2. (4.2.27)

4.3 Antenna functions

Antenna functions are the building blocks of the antenna subtraction terms. They are

constructed from colour-ordered physical matrix elements and can contain multiple

singular limits, which will be utilised in matching with the QCD matrix element under

consideration. For NNLO calculations, we require antenna functions consisting of

three and four partons, where the underlying structure holds a pair of hard radiators,

and up to two partons that can go unresolved. We will also require antenna functions

at both tree and one-loop level. Since they are built from colour-ordered matrix

elements, the antenna functions will follow the same factorisation properties laid out

in Chapter 2.

We can categorise the antenna functions depending on the hard radiator partons

onto which the full antenna collapses in the unresolved limits. In general, we have

three possibilities: quark-antiquark, quark-gluon and gluon-gluon radiators. From

these two-parton processes, gluons and quark-antiquark pairs can be radiated to con-

struct the antenna functions. The quark-antiquark antennae are derived from virtual

photon decay γ∗ → qq̄ + partons [85], the quark-gluon antennae form neutralino de-

cay into gluinos, χ̃ → g̃ + partons [86], and the gluon-gluon antennae from Higgs

decay [87], H → gg + partons. As a teaser to the later results, note that the quark-

gluon antenna are constructed from processes involving supersymmetric particles.

Whilst QCD is supersymmetric at tree level, at one loop the additional colour flows

from the gluino (acting as a quark) require care to be taken in constructing the sub-

traction term involving such antennae. The explicit three- and four-parton antennae

required for each colour ordered strings will be given in Section 4.4.



4.3. Antenna functions 64

The tree-level antennae are constructed from colour-ordered, three and four parton

squared tree level matrix elements, normalised to the underlying two parton process

of the hard radiators:

X0
3 (i, j, k) = Sijk:IK

M0
3 (i, j, k)

M0
2 (I,K)

, (4.3.28)

X0
4 (i, j, k, l) = Sijkl:IL

M0
4 (i, j, k, l)

M0
2 (I, L)

. (4.3.29)

The symmetry factor S accounts for the degenerate antenna setup in the two par-

ton process, and also for identical final state symmetry. The three parton, one-loop

antenna functions are constructed similarly, and have factorisation behaviour of the

form (tree × loop) + (loop × tree), following that of Section 2.1.2. They are con-

structed from colour-ordered, three parton matrix elements at one-loop level [22]:

X1
3 (i, j, k) = Sijk:IK

M1
3 (i, j, k)

M0
2 (I,K)

−X0
3 (i, j, k)

M1
2 (I,K)

M0
2 (I,K)

. (4.3.30)

These completely define all the antenna functions required for the subtraction term

at NNLO; all one and two parton unresolved limits of the physical matrix element

can be recreated using the antennae given here. Not only that, but all antenna

functions have been analytically integrated [88–91] over the unresolved phase space.

Provided this can be carried out with higher multiplicity and loops, the extension of

the antenna formalism to higher order calculations is feasible.

We can also categorise the antenna functions by whether any of the partons in-

volved are in the initial state, since their behaviour in the singular limits changes

in such configurations, such as in the form of the collinear splitting functions. In

the analytic form of the unintegrated antenna functions, this is achieved simply via

crossing. Allowing for initial states can alter the number of limits that the antenna

deals with: initial partons cannot go soft, and if there are two initial states there will

be no collinear limit between them.

Although we wish to encapsulate as many limits as possible within a single antenna

function, oversubtraction of divergences must be prevented, that is the antenna should

ideally not contain singular limits not present in the matrix element it is trying
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to mimic. Quark-gluon and gluon-gluon antenna functions have ambiguity in what

constitutes the hard radiator due to the cyclic nature of the colour flow. An example is

that of the D0
3(q, ig, jg), where there are more than one antenna configuration present.

It is thus judicious to split the antenna function into sub antennae that share the

full set of limits between them (symmetrically if possible). This can be achieved via

partial fractioning of the terms in the antenna to isolate particular divergences. The

full tree-level D0
3(q, ig, jg) is of the form [22]

D0
3(q, ig, jg) =

1

s2
134

(
2s2

134s14

s13s34

+
2s2

134s13

s14s34

+
s14s34 + s2

34

s13

+
s13s34 + s2

34

s14

+
2s13s14

s34

+ 5s134 + s34

)
+O(ε). (4.3.31)

In matching with a physical matrix element, the q||jg is often unwanted, since in a

colour string of the physical matrix element they are colour unconnected; here the

antenna cyclic colour-connection betrays us. The antenna is thus split into two,

D0
3(q, ig, jg) = d0

3(q, ig, jg) + d0
3(q, jg, ig), (4.3.32)

such that

d0
3(q, ig, jg) =

1

s2
134

(
2s2

134s14

s13s34

+
s14s34 + s2

34

s13

+
s13s14

s34

+
5

2
s134 +

1

2
s34

)
+O(ε).

(4.3.33)

Now the sub antenna only contains collinear limits q||ig and ig||jg, and only gluon

ig goes soft: gluon jg and the quark are unambiguously the hard radiators. This

game can also be played with the F 0
3 (ig, jg, kg) antenna where it is split into three

symmetric sub antennae f 0
3 (ig, jg, kg) [22], containing the full soft jg limit and partial

limits for the ig||jg and jg||kg collinear limits. In a single sub antenna of this type,

there is no ig||kg collinear limit. Again, the hard radiators are no longer ambiguous.

In order to utilise this at NNLO, the partial fractioning must also be implemented

at the one-loop level. In general, the one-loop antenna function can be written as a
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sum of the poles contribution and a finite remainder,

X1
3 (i, j, k) = Poles(X1

3 (i, j, k)) + Finite(X1
3 (i, j, k)) (4.3.34)

where, following the formalism of Chapter 2, the pole contribution is of the form

Poles(X1
3 (i, j, k)) = I(1)

n (i, j, k)X0
3 (i, j, k). (4.3.35)

Immediately, we see that the pole contribution to the one loop antenna can be easily

split, since it is just the tree-level antenna multiplied by a singular factor depen-

dent only on the momenta involved (which are unchanged). The finite contributions

are equally malleable and can be partial fractioned separately. We examine the

D1
3(q, ig, jg):

D1
3(q, ig, jg) = I(1)

n (i, j, k)D0
3(q, ig, jg) + F(sij, sqi, sqj)D

0
3(q, ig, jg) +

1

3sij
(4.3.36)

where F is a finite function involving logarithms of ratios of invariants. The pole

contributions and F term are both proportional to D0
3(q, ig, jg), which is partial frac-

tioned as above. The final term can be simply separated symmetrically, so that

d1
3(q, ig, jg) = I(1)

n (i, j, k)d0
3(q, ig, jg) + F(sij, sqi, sqj)d

0
3(q, ig, jg) +

1

6sij
(4.3.37)

and we find the correct behaviour and limit that are required. Note that for all

partons in the final state (and indeed, crossing the quark to the initial state), the

splitting of the D0
3(q, ig, jg) is symmetric amongst the subantennae. As we see in

the following chapters, gluon initiated processes can result in flavour changing initial

states and a symmetric splitting is undesirable.

Defining the hard radiators without ambiguity in four-parton antennae is also

problematic, with the initial state gluon again being a primary source of distress.

The final-final D0
4 and F 0

4 are discussed in [35]. For initial states in F 0
4 we can

consult [79], but the full role of the D0
4 with initial gluons is still under development.
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4.3.1 Integrated antenna functions

The antenna functions will contain all the required implicit singular divergences in

the matrix element and, with the factorisation of phase space, allow all divergent

structures to be factorised into their own separate region of phase space. What

remains to be done is to integrate analytically the antenna functions over this region

of phase space.

We split the notation and definitions of the integrated antenna into three regimes

according to the number of hard radiators in the initial state. When all three partons

are in the final state, called the final-final configuration, the integration over the

antenna phase space dΦXijk takes the form

X `
3 (sijk) =

1

C(ε)

∫
dΦXijkX

`
3(i, j, k), (4.3.38)

where the factor C(ε) = C̄(ε)/(8π2) emanates from the coupling constant renor-

malisation, and ` = 0, 1 is the number of loops. The integration is performed in

d dimensions to make the IR singularities explicit. For the four-parton final-final

antenna we have a similar expression [22]:

X 0
4 (sijkl) =

1

|C(ε)|2
∫

dΦXijklX
0
4 (i, j, k, l). (4.3.39)

For the initial-final case where one of the two hard radiators is in the initial state,

the phase space is slightly modified, since we are incorporating the rescaling of the

initial parton xipi. The integrated three-parton antenna has the form [24]

X `
3 (s1ij;x1) =

1

C(ε)

∫
dΦ2X

`
3,a(1̂, j, k)

Q2

2π
δ(x1 − x̂1), (4.3.40)

whereas the four parton antenna [88] is defined

X 0
4 (s1ijk;x1) =

1

|C(ε)|2
∫

dΦ2X
0
4,a(1̂, i, j, k)

Q2

2π
δ(x1 − x̂1). (4.3.41)

The last configuration sees both the hard radiators in the initial state. The initial-

initial phase space is somewhat simpler due to the double delta function [24], and
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integrating over the factorised phase space from Section 4.2 gives

X `
3 (s1i2;x1, x2) =

1

C(ε)

∫
ddk

δ+(k2)

(2π)d−1
X`

3,ab(1̂, i, 2̂)x1x2δ(x1 − x̂1)δ(x2 − x̂2)

(4.3.42)

for the three parton antennae, and [90]

X 0
4 (s1ij2;x1, x2) =

1

|C(ε)|2
∫

ddki
δ+(k2

i )

(2π)d−1
ddkj

δ+(k2
j )

(2π)d−1

× X0
4,ab(1̂, i, j, 2̂)x1x2 δ(x1 − x̂1)δ(x2 − x̂2) (4.3.43)

for the four parton antennae, where the initial state partons are explicitly labelled

in the integrated antenna by the subscripts a and b. This will prove vital later when

identifying integrated forms of flavour changing antenna. The integrals are carried out

using a variety of multi-loop techniques, including Integration-By-Parts (IBP) [92,93]

to reduce tensor integrals to a set of master integrals,1 and mutiparticle phase space

integration [94].

4.3.2 Singular structure

As we shall see, the antenna approach successfully isolates the infrared singulari-

ties, which themselves have a very particular structure. Therefore, one can ask the

questions:

1. How does the infrared structure guide the construction of the real radiation

subtraction terms?

2. How do the integrated subtraction terms relate to the known infrared structure

of the loop amplitudes?

The main aim of this section is to develop the systematics of the antenna sub-

traction scheme at NLO and particularly at NNLO by focussing on the structure of

the subtraction terms for the double real, real-virtual and double virtual channels.

1One loop tensor graphs can always be reduced down to a set of scalar integrals [95], but this
this not necessarily the case for higher loop graphs.
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It is well known that the explicit poles of the virtual contributions are described

by Catani’s one- and two-loop factorisation formulae [19, 20]. It is well established

(and in fact the keystone of all subtraction methods) that real radiation amplitudes

factorise in IR divergent limits following an antenna factorisation pattern whereby a

pair of hard partons radiate unresolved partons. The unintegrated antenna functions

are used to mimic the implicit divergence of the real contributions while the poles

associated with the integrated antenna functions directly cancel the explicit poles of

the virtual contributions.

From the predictive structure apparent in the subtraction terms due to the colour

ordering of the matrix elements, a number of structures, which we call integrated

dipoles, emerge after integration and combination with the relevant mass factorisa-

tion contributions. At one-loop, J
(1)
2 is related to an integrated three-particle tree-

level antenna and describes the unresolved radiation between two colour connected

particles. Similarly, at two-loops, J
(2)
2 fulfills the same role for double unresolved radi-

ation and involves integrated four-particle tree-level antennae, three-particle one-loop

antennae and products of three-parton tree-level antennae.

The IR structure of any two-loop contribution is given by one- and two-loop

integrated antenna strings [97] which are simply formed from J
(1)
2 and J

(2)
2 . For

a given colour ordering of a particular n-particle process, J (1)
n and J (2)

n can be written

down as a sum over integrated dipoles that involve colour connected particles,

J (`)
n (1, · · · , n) =

∑

(i,j)

J
(`)
2 (i, j), (4.3.44)

where ` = 1, 2 denotes the single and double unresolved integrated antenna strings

respectively and the sum is over colour connected pairs of partons. Equivalently, the

pole structure is identified as a sum of dipole-like terms proportional to (|sij|)−`ε that

link the colour connected particles i and j.

Of course, the form of J (1)
n and J (2)

n in terms of integrated antennae imposes a

particular structure on the unintegrated antennae that make up the real radiation

subtraction terms. Understanding the explicit pole structure of virtual amplitudes

in terms of integrated antenna strings gives a direct connection between the block
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structure of the unintegrated subtraction terms and the explicit pole structure of

virtual contributions, thereby simplifying the construction of the double real, real-

virtual and double virtual subtraction terms.

4.4 Antenna subtraction at NLO

We first concentrate on the structure of NLO calculations within the antenna sub-

traction formalism. Whilst relatively simple, it elucidates notable features relevant

to NNLO calculations which are fully explained in this section.

We are interested in the higher-order corrections to the underlying leading-order

(LO) cross section. The hadro-production of n jets is given by

dσ̂ij,LO(ξ1H1, ξ2H2) =

∫

n

dσ̂Bij,LO(ξ1H1, ξ2H2), (4.4.45)

where the Born-level cross section is obtained by evaluating the tree-level contri-

butions for (n + 2)-parton scattering with partons i, j in the initial-state carrying

a fraction ξ1,2 of the parent hadron’s momentum H1,2. We then integrate over the

final-state phase space, where to keep track of the number n of final state particles

we use the shorthand notation,

∫

n

. (4.4.46)

Explicitly, the Born-level cross section is given by,

dσ̂Bij,LO = NLO
∑

σ

dΦn(p3, · · · , pn+2; p1, p2)
1

Sn

×
[
M0

n+2(σ(1, · · · , n+ 2)) J (n)
n ({p}n) +O

(
1

N2

)]
, (4.4.47)

where Sn is a final-state symmetry factor, and {p}n denotes the set of n final-state

momenta. M0
n+2 is an (n + 2)-parton squared partial amplitude with a given colour

ordering denoted by σ and i labels the parton with momentum pi. The factor NLO
contains all non-QCD factors and some overall QCD factors such as the overall power
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of the coupling. As in Section 3.2, we define the 2→ n particle phase space as

dΦn(p3, · · · , pn+2; p1, p2) =

dd−1p3

2E3(2π)d−1
· · · dd−1pn+2

2En+2(2π)d−1
(2π)dδd(p1 + p2 − p3 − · · · − pn+2). (4.4.48)

where the jet algorithm J
(m)
n constructs n jets from m final-state partons with mo-

menta labelled by the set {p}m. For the leading-order cross section in Eq. (4.4.47)

m = n and there is an exact parton-jet correspondence.

The NLO correction to the n-jet cross section contains three contributions and is

given by,

dσ̂ij,NLO =

∫

n+1

dσ̂Rij,NLO +

∫

n

(
dσ̂Vij,NLO + dσ̂MF

ij,NLO

)
, (4.4.49)

where dσ̂Rij and dσ̂Vij,NLO are the real and virtual NLO corrections and dσ̂MF
ij,NLO is the

NLO mass factorisation contribution,

dσ̂MF
ij,NLO(ξ1H1, ξ2H2) = −

∫
dz1

z1

dz2

z2

(
αsN

2π

)
C̄(ε) Γ

(1)
ij;kl(z1, z2)

×dσ̂kl,LO(z1ξ1H1, z2ξ2H2),

(4.4.50)

where C̄(ε) = (4π)εe−εγ. The mass factorisation contribution serves to remove all

initial-state collinear singularities from the cross section by absorbing them into the

redefined physical PDF and can be written in terms of the one-loop Altarelli-Parisi

kernels as discussed in Section 1.4;

Γ
(1)
ij;kl(z1, z2) = δ(1− z2)δljΓ

(1)
ki (z1) + δ(1− z1)δkiΓ

(1)
lj (z2). (4.4.51)

The real cross section contains soft and collinear IR divergences and so we must

construct a subtraction term, dσ̂Sij,NLO, from antenna functions and reduced multiplic-

ity matrix elements. It must remove all implicit singularities from the real emission

cross section without introducing further spurious singularities of its own and be lo-

cal in the sense that the subtraction is successful point-by-point in phase space. As
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aforementioned, the subtraction term must be analytically integrable in order to con-

vert the implicit divergence of the subtraction term into the explicit singularities of

the integrated subtraction term.2 When combined with the mass factorisation con-

tribution, these terms combine to cancel the explicit poles of the virtual contribution

and produce a finite NLO cross section. Since all three- and four-parton antenna

functions have been successfully integrated for FF, IF and II configurations [88–91],

analytic integrability is a solved issue.

Subsequently, the NLO cross section can be reorganised in such a way that each

square bracket is free from both implicit divergence and explicit poles,

dσ̂ij,NLO =

∫

n+1

[
dσ̂Rij,NLO − dσ̂Sij,NLO

]
+

∫

n

[
dσ̂Vij,NLO − dσ̂Tij,NLO

]
, (4.4.52)

where the virtual subtraction term is given by the real subtraction term integrated

over the single unresolved phase space and the NLO mass factorisation contribution,

dσ̂Tij,NLO = −
∫

1

dσ̂Sij,NLO − dσ̂MF
ij,NLO. (4.4.53)

4.4.1 NLO real emission subtraction term

The single real emission cross section takes the form,

dσ̂Rij,NLO = NR
NLO

∑

σ

dΦn+1(p3, · · · , pn+3; p1, p2)
1

Sn+1

×
[
M0

n+3(σ(1, · · · , n+ 3)) J (n+1)
n ({p}n+1) +O

(
1

N2

)]
, (4.4.54)

where, as in Eq. (4.4.47), Sn+1 is a final-state symmetry factor, {p}n+1 denotes the

set of (n + 1) final-state momenta, M0
n+3 denotes an (n + 3)-parton squared partial

amplitude for a given colour ordering denoted by σ and i labels the parton with

momentum pi. The overall coupling is given by

NR
NLO = NLO

(
αsN

2π

)
C̄(ε)

C(ε)
(4.4.55)

2One could equally well numerically integrate the subtraction term as in Ref. [70] or [98,99].
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where again C(ε) = C̄(ε)/8π2.

Subtraction terms

At NLO we must take account of the single unresolved limits in the matrix element

at hand. The full subtraction term is a sum of contributions of the type,

dσ̂SNLO = NR
NLO

∑

perms

∑

j

dΦn+1(p3, · · · , pn+3; p1, p2)
1

Sn+1

× X0
3 (·, j, ·) M0

n+2(· · · , j, · · · ) J (n)
n ({p}n). (4.4.56)

where X0
3 is the NLO antenna function, M0

n+2 the reduced matrix element with a

particular colour ordering and the sum runs over all the possible unresolved particles

j. As previously intimated, there are three separate cases that correspond to the

hard radiators being in the final state (FF), both in the initial state (II) or one in the

initial-state and one in the final-state (IF). For DIS processes dσ̂S,IINLO = 0 while for

e+e− annihilation dσ̂S,IFNLO = dσ̂S,IINLO = 0. At NLO it is possible to write the subtraction

terms explicitly for all configurations at leading colour and for an arbitrary number

of partons.

When the unresolved parton j is colour connected to the final-state hard radiators

i and k, the subtraction term for the partial amplitude M0
n+3(· · · , i, j, k, · · · ) takes

the form,

M0
n+3(· · · , i, j, k, · · · ) −→ X0

3 (i, j, k) M0
n+2(· · · , I,K, · · · ). (4.4.57)

The identity of colour ordered partons in the limit fix the species of the antenna

function, shown in Table 4.1. There are five possibilities reflecting the different par-

ticle assignments and possible colour structures. The sum over j takes into account

all the possible unresolved partons in the colour-ordered matrix element fitting the

final-final configuration. The final-final phase space map [84], (i, j, k)→ ((̃ij), (̃jk)),

ensures that the momenta involved in the antenna function are mapped onto two hard

composite momenta. The IR divergence associated with the configuration where j

becomes unresolved is described by the appropriate antenna function and, in the
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singular limit, the subtraction term tends to the value of the real emission cross sec-

tion. The various antennae and reduced matrix elements appropriate for a particular

colour ordered matrix element in the real emission are listed in Table. 4.1.

Final-Final Unintegrated Antennae

Matrix element, M0
n+3 Antenna, X0

3

Reduced matrix
element, M0

n+2

(· · · ; iq, jg, kq̄; · · · ) A0
3(i, j, k) (· · · ; Iq, Kq̄; · · · )

(· · · ; iq, jg, kg, · · · ) d0
3(i, j, k) (· · · ; Iq, Kg, · · · )

(· · · ; iq′ , jq̄; kq, · · · ) E0
3(i, j, k) (· · · ; Iq′ , Kg, · · · )

(· · · , ig, jg, kg, · · · ) f 0
3 (i, j, k) (· · · , Ig, Kg, · · · )

(· · · , ig, jq̄; kq, · · · ) G0
3(i, j, k) (· · · , Ig, Kg, · · · )

Table 4.1: The NLO antennae, X0
3 , and reduced matrix elements, M0

n+2, appropriate
for the various particle assignments and colour structures in the real radiation partial
amplitudes, M0

n+3 for the final-final configuration.

In configurations with initial-state partons, an initial-final antenna is necessary

and the initial-final phase space map [24] (1̂, i, j)→ (ˆ̄1, (̃ij)) is employed to generate

the composite momenta for the reduced matrix element so that

M0
n+3(· · · , 1̂a, i, j, · · · ) −→ X0

3,a→b(1̂, i, j) M
0
n+2(· · · , ˆ̄1b, (̃ij), · · · ) (4.4.58)

where the initial-state parton labelled 1̂a where a is the species of the initial-state

parton, either q or g for a quark or gluon respectively. The various antennae and

reduced matrix elements for a particular colour ordered matrix element in the real

emission are listed in Table. 4.2. In hadron-hadron collisions, an analogous subtrac-

tion term exists for the second initial-state parton, i.e., 1̂a → 2̂b where b is the species

of the second initial-state parton. For processes where a = b, we drop the subscript

a→ b for simplicity and only retain the label in the species changing cases.

Finally we must consider the initial-initial configuration where an unresolved par-

ton is emitted between two initial-state partons of species a and b. The subtraction

term uses an initial-initial antenna function and the appropriate initial-initial phase

space map [24] (1̂, i, 2̂)→ (ˆ̄1, ˆ̄2),

M0
n+3(· · · , 1̂a, i, 2̂b, · · · ) −→ X0

3,a→c,b→d(1̂, i, 2̂) M0
n+2(· · · , ˆ̄1c, ˆ̄2d, · · · ). (4.4.59)
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Initial-Final Unintegrated Antennae

Matrix element, M0
n+3 Antenna, X0

3

Reduced matrix
element, M0

n+2

(· · · ; 1̂q, ig, jq̄; · · · ) A0
3(1̂, i, j) (· · · ; ˆ̄1q, Jq̄; · · · )

(· · · ; 1̂q, ig, jg, · · · ) d0
3(1̂, i, j) (· · · ; ˆ̄1q, Jg, · · · )

(· · · ; iq, jg, 1̂g, · · · ) d0
3(i, j, 1̂) (· · · ; Jq, ˆ̄1g, · · · )

(· · · ; 1̂q′ , iq̄; jq, · · · ) E0
3(1̂, i, j) (· · · ; ˆ̄1q′ , Jg, · · · )

(· · · , 1̂g, ig, jg, · · · ) f 0
3 (1̂, i, j) (· · · , ˆ̄1g, Jg, · · · )

(· · · , 1̂g, iq̄; jq, · · · ) G0
3(1̂, i, j) (· · · , ˆ̄1g, Jg, · · · )

(· · · ; iq, 1̂g, jq̄, · · · ) −a0
3,g→q(i, 1̂; j) (· · · ; ˆ̄1q, Jg, · · · )

(· · · ; iq, 1̂g, jg, · · · ) −d0
3,g→q(i, 1̂; j) (· · · ; ˆ̄1q, Jg, · · · )

(· · · ; iq′ , 1̂q; jq, · · · ) −E0
3,q→g(i, 1̂, j) (· · · ; Jq′ , ˆ̄1g, · · · )

(· · · , ig, 1̂q; jq, · · · ) −G0
3,q→g(i, 1̂, j) (· · · , Jg, ˆ̄1g, · · · )

Table 4.2: The NLO antennae, X0
3 , and reduced matrix elements, M0

n+2, appropriate
for the various particle assignments and colour structures in the real radiation partial
amplitudes, M0

n+3 for the initial-final configuration. The identity changing antennae
are collected at the bottom of this table.

The various antennae and reduced matrix elements appropriate for a particular colour

ordered matrix element in the real emission are listed in Table 4.3. As in the initial-

final case, the subscripts are only retained in the species changing cases, a 6= c or

b 6= d.

Initial-Initial Unintegrated Antennae

Matrix element, M0
n+3 Antenna, X0

3

Reduced matrix
element, M0

n+2

(· · · ; 1̂q, ig, 2̂q̄, · · · ) A0
3(1̂, i, 2̂) (· · · ; ˆ̄1q, ˆ̄2q̄; · · · )

(· · · ; 1̂q, ig, 2̂g, · · · ) D0
3(1̂, i, 2̂) (· · · ; ˆ̄1q, ˆ̄2g, · · · )

(· · · , 1̂g, ig, 2̂g, · · · ) F 0
3 (1̂, i, 2̂) (· · · , ˆ̄1g, ˆ̄2g, · · · )

(· · · ; 1̂q, 2̂g, iq̄; · · · ) −A0
3,g→q(1̂, 2̂, i) (· · · ; ˆ̄1q, ˆ̄2q̄; · · · )

(· · · ; iq, 1̂g, 2̂g, · · · ) −d0
3,g→q(i, 1̂; 2̂) (· · · ; ˆ̄1q, ˆ̄2g, · · · )

(· · · ; 1̂q′ , 2̂q̄; iq, · · · ) −E0
3,q→g(1̂, 2̂, i) (· · · ; ˆ̄1q′ , ˆ̄2g, · · · )

(· · · , 1̂g, 2̂q̄; iq, · · · ) −G0
3,q→g(1̂, 2̂, i) (· · · , ˆ̄1g, ˆ̄2g, · · · )

Table 4.3: The NLO antennae, X0
3 , and reduced matrix elements, M0

n+2, appropriate
for the various particle assignments and colour structures in the real radiation partial
amplitudes, M0

n+3 for the initial-initial configuration.
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4.4.2 NLO mass factorisation term

The notation for the NLO mass factorisation contribution was presented at the be-

ginning of this section in Eq. (4.4.50) and in Section 1.4. Writing the Born cross

section out in terms of the matrix elements being integrated over the final-state phase

space, the mass factorisation contribution at NLO is given by

dσ̂MF
ij,NLO = −N V

NLO

∑

perms

dΦn(p3, · · · , pn+1;x1p1, x2p2)

∫
dz1

z1

dz2

z2

1

Sn

× Γ
(1)
ij;kl(z1, z2) M0

n(· · · , k̂, · · · , l̂, · · · ) J (n)
n (p3, · · · , pn+1). (4.4.60)

In this formula there is an implicit sum over k and l, denoting the particle types of

the initial-state partons. The explicit forms for the various mass factorisation kernels

and their associated colour decompositions are given in [97]. The overall factor is

given by

N V
NLO = NLO

(
αsN

2π

)
C̄(ε) = NR

NLO C(ε). (4.4.61)

4.4.3 NLO virtual subtraction term

The virtual subtraction term is constructed from the integrated real subtraction term

and the mass factorisation contribution. For a single colour connected pair in the

colour ordering of the virtual matrix element, a virtual subtraction term will have

the form

dσ̂TNLO = −N V
NLO

∫
dx1

x1

dx2

x2

1

Sn

∑

perms

dΦn(p3, · · · , pn;x1p1, x2p2)

×
∑

I,K

J
(1)
2 (I,K) M0

n+2(· · · , I,K, · · · ) J (n)
n ({p}n). (4.4.62)

where in Figure 4.1, the singular integrated dipole factor, J
(1)
2 is directly related to

the integration of the X0
3 antenna function over the single unresolved phase space,

and is defined to all orders in ε. The precise form of J
(1)
2 depends on the species of the

resolved hard radiator partons in the real radiation matrix elements that produced

this integrated dipole contribution and the kinematic configuration. Connecting to-
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Figure 6: NLO virtual structure

Figure 7: NNLO double virtual structure

of integrated antennae occur in the double unresolved integrated antenna string generated

in the qq̄ → gg calculation. For future research it would be interesting to calculate the

analogue of this process for hadronic initial states, the leading colour contribution to qq̄ →
V +g and compare the double unresolved integrated antenna string for that calculation. In

particular it remains an open question whether the double unresolved integrated antenna

strings obey the same combination rules that the single unresolved integrated antenna

strings obey, i.e. establishing whether or not the following equality holds,

J
(2)
4 (ˆ̄1q, ig, jg,

ˆ̄2q̄) = J
(2)
2 (ˆ̄1q, ig) + J

(2)
2 (ig, jg) + J

(2)
2 (jg,

ˆ̄2q̄). (5.19)

In this equation the J
(2)
2 (ˆ̄1q, ig) contains a suitable partition of the spurious initial-initial

antennae in (5.18) and J
(2)
2 (ig, jg) can be calculated from the NNLO leading colour cor-

rection to the process H → gg.

6. Conclusions and discussion

The structure of the subtraction term involves a sum over colour connected dipoles at

the two-loop level, where each dipole contributes a predictable combination of antenna

functions to the cross section. By defining a double unresolved integrated antenna string,

J (2), the double virtual subtraction term reflects the pole structure of Catani’s two-loop

factorisation formula, highlighting the fact that antenna functions display an underlying

dipole-like structure.

�

1
(6.1)

– 68 –

J
(1)
2 (I,K)

i

j

k

I

K

Figure 4.1: NLO virtual structure. Integration of the tree-level real emission over the
single unresolved phase space for particle j generates an integrated dipole J

(1)
2 (I,K)

for each dipole pair I,K, containing the explicit IR poles of the virtual contribution.

gether the various integrated dipoles to form a single integrated antenna string for

each reduced matrix element forms the full virtual subtraction term.

In the final-final configuration, the generic virtual subtraction term for a pair of

colour connected partons I,K is produced by integrating the subtraction term asso-

ciated with the real radiation matrix element M0
n+3(· · · , i, j, k, · · · ) with the mapping

(i, j, k)→ (I,K) and has the form,

M0
n+3(· · · , i, j, k, · · · ) −→ J

(1)
2 ((̃ij), (̃jk)) M0

n+2(· · · , (̃ij), (̃jk), · · · ). (4.4.63)

This equation is the analogue of Eq. (4.4.57). The details of the integrated dipoles

depends on the species of parton under consideration and all possibilities are listed

in Table 4.4.

Final-Final Integrated Antennae

Matrix element, M0
n+3 Integrated dipole, J

(1)
2

Reduced matrix
element, M0

n+2

(· · · ; iq, jg, kq̄; · · · ) J
(1)
2 (Iq, Kq̄) = A0

3(sIK) (· · · ; Iq, Kq̄; · · · )
(· · · ; iq, jg, kg, · · · ) J

(1)
2 (Iq, Kg) = 1

2
D0

3(sIK) (· · · ; Iq, Kg, · · · )
(· · · ; iq′ , jq̄; kq, · · · ) J

(1)
2,NF

(Iq, Kg) = 1
2
E0

3 (sIK) (· · · ; Iq, Kg, · · · )
(· · · , ig, jg, kg, · · · ) J

(1)
2 (Ig, Kg) = 1

3
F0

3 (sIK) (· · · , Ig, Kg, · · · )
(· · · , ig, jq̄; kq, · · · ) J

(1)
2,NF

(Ig, Kg) = G0
3(sIK) (· · · , Ig, Kg, · · · )

Table 4.4: The correspondence between the real radiation matrix elements, M0
n+3

and the integrated NLO dipoles J
(1)
2 and reduced matrix elements, M0

n+2 for various
particle assignments and colour structures for the final-final configuration.

When one of the partons making up the hard dipole is in the initial-state then the

analogous formula to Eq. (4.4.63) now contains the appropriate mass factorisation
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kernels from Eq. (4.4.60),

M0
n+3(· · · , 1̂, i, j, · · · ) −→ J

(1)
2 (ˆ̄1, (̃ij)) M0

n+2(· · · , ˆ̄1, (̃ij), · · · ), (4.4.64)

where the only modification is the form of the integrated dipoles, listed in Table 4.5.

The substitution 1̂ → 2̂ allows the subtraction term including initial parton 2̂ to be

constructed.

Initial-Final Integrated Antennae

Matrix element, M0
n+3 Integrated dipole, J

(1)
2

Reduced matrix
element, M0

n+2

(· · · ; 1̂q, ig, jq̄; · · · ) J
(1)
2 (ˆ̄1q, Jq̄) = A0

3,q(s1̄J)− Γ
(1)
qq (x1)δ2 (· · · ; ˆ̄1q, Jq̄; · · · )

(· · · ; 1̂q, ig, jg, · · · ) J
(1)
2 (ˆ̄1q, Jg) = 1

2
D0

3,q(s1̄J)− Γ
(1)
qq (x1)δ2 (· · · ; ˆ̄1q, Jg, · · · )

(· · · ; iq, jg, 1̂g, · · · ) J
(1)
2 (Jq, ˆ̄1g) = D0

3,g,gq(s1̄J)− 1
2
Γ

(1)
gg (x1)δ2 (· · · ; Jq, ˆ̄1g, · · · )

(· · · ; 1̂q′ , iq̄; jq, · · · ) J
(1)
2,NF

(ˆ̄1q, Jg) = 1
2
E0

3,q′,qq̄(s1̄J) (· · · ; ˆ̄1q, Jg, · · · )
(· · · , 1̂g, ig, jg, · · · ) J

(1)
2 (ˆ̄1g, Jg) = 1

2
F0

3,g(s1̄J)− 1
2
Γ

(1)
gg (x1)δ2 (· · · , ˆ̄1g, Jg, · · · )

(· · · , 1̂g, iq̄; jq, · · · ) J
(1)
2,NF

(ˆ̄1g, Jg) = G0
3,g(s1̄J) (· · · , ˆ̄1g, Jg, · · · )

(· · · ; iq, 1̂g, jq̄; · · · ) J
(1)
2,g→q(

ˆ̄1q, Jq̄) = −1
2
A0

3,g,qq̄(s1̄J)− Γ
(1)
qg (x1)δ2 (· · · ; ˆ̄1q, Jq̄; · · · )

(· · · ; iq, 1̂g, jg, · · · ) J
(1)
2,g→q(

ˆ̄1q, Jg) = −D0
3,g,qg(s1̄J)− Γ

(1)
qg (x1)δ2 (· · · ; ˆ̄1q, Jg, · · · )

(· · · ; iq′ , 1̂q; jq, · · · ) J
(1)
2,q→g(Jq,

ˆ̄1g) = −E0
3,q,qq′(s1̄J)− Γ

(1)
gq (x1)δ2 (· · · ; Jq, ˆ̄1g, · · · )

(· · · , ig; 1̂q, jq, · · · ) J
(1)
2,q→g(Jg,

ˆ̄1g) = −G0
3,q(s1̄J)− Γ

(1)
gq (x1)δ2 (· · · , Jg, ˆ̄1g, · · · )

Table 4.5: The correspondence between the real radiation matrix elements, M0
n+3

and the integrated NLO dipoles J
(1)
2 and reduced matrix elements, M0

n+2 for various
particle assignments and colour structures for the initial-final configuration. For
brevity δ(1− xi) = δi for i = 1, 2.

The final kinematic configuration is when both hard radiators in the dipole are

in the initial-state. In this case, the relevant subtraction term is

M0
n+3(· · · , 1̂, i, 2̂, · · · ) −→ J

(1)
2 (ˆ̄1, ˆ̄2) M0

n+2(· · · , ˆ̄1, ˆ̄2, · · · ), (4.4.65)

where once again, only the form of the integrated dipole is different from Eqs. (4.4.63)

and (4.4.64) and the initial-initial integrated dipoles are listed in Table 4.6.

The relationship between the real radiation subtraction term dσ̂S and the virtual

subtraction term dσ̂T is shown in Figure 4.2. The full virtual subtraction term is

generated by summing over the colour connected pairs in the virtual matrix element’s

colour ordering. For example, consider an (n+ 3)-parton squared partial amplitude,
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Initial-Initial Integrated Antennae
Matrix element,

Integrated dipole, J
(1)
2

Reduced matrix
M0

n+3 element, M0
n+2

(· · · ; 1̂q, ig, 2̂q̄, · · · ) J
(1)
2 (ˆ̄1q, ˆ̄2q̄) = A0

3,qq̄(s1̄2̄)− Γ
(1)
qq (x1)δ2 − Γ

(1)
qq (x2)δ1 (· · · ; ˆ̄1q, ˆ̄2q̄; · · · )

(· · · ; 1̂q, ig, 2̂g, · · · ) J
(1)
2 (ˆ̄1q, ˆ̄2g) = D0

3,qg(s1̄2̄)− Γ
(1)
qq (x1)δ2 − 1

2
Γ

(1)
gg (x2)δ1 (· · · ; ˆ̄1q, ˆ̄2g, · · · )

(· · · , 1̂g, ig, 2̂g, · · · ) J
(1)
2 (ˆ̄1g, ˆ̄2g) = F0

3,gg(s1̄2̄)− 1
2
Γ

(1)
gg (x1)δ2 − 1

2
Γ

(1)
gg (x2)δ1 (· · · , ˆ̄1g, ˆ̄2g, · · · )

(· · · ; 1̂q, 2̂g, iq̄; · · · ) J
(1)
2,g→q(

ˆ̄1q, ˆ̄2q̄) = −A0
3,qg(s1̄2̄)− Γ

(1)
qg (x2)δ1 (· · · ; ˆ̄1q, ˆ̄2q̄; · · · )

(· · · ; iq, 1̂g, 2̂g, · · · ) J
(1)
2,g→q(

ˆ̄1q, ˆ̄2g) = −D0
3,gg(s1̄2̄)− Γ

(1)
qg (x1)δ2 (· · · ; ˆ̄1q, ˆ̄2g, · · · )

(· · · ; 1̂q′ , 2̂q̄; iq, · · · ) J
(1)
2,q→g(

ˆ̄1q, ˆ̄2g) = −E0
3,q′q,q(s1̄2̄)− Γ

(1)
gq (x2)δ1 (· · · ; ˆ̄1q′ , ˆ̄2g, · · · )

(· · · , 1̂g, 2̂q̄; iq, · · · ) J
(1)
2,q→g(

ˆ̄1g, ˆ̄2g) = −G0
3,gq(s1̄2̄)− Γ

(1)
gq (x2)δ1 (· · · , ˆ̄1g, ˆ̄2g, · · · )

Table 4.6: The correspondence between the real radiation matrix elements, M0
n+3

and the integrated NLO dipoles J
(1)
2 and reduced matrix elements, M0

n+2 for various
particle assignments and colour structures for the initial-initial configuration. For
brevity δ(1− x1) = δ1, δ(1− x2) = δ2.

containing a quark-antiquark pair and (n + 1) gluons, that maps onto the (n + 2)-

parton squared partial amplitude M0
n+2(ˆ̄1q, ig, · · · , jg, ˆ̄2q̄). Once the leading colour

single unresolved subtraction term for this matrix element has been integrated and

combined with the mass factorisation terms, the resulting virtual subtraction term is

simply given by,

dσ̂TNLO = −N V
NLO

∫
dx1

x1

dx2

x2

1

Sn

∑

perms

dΦn(p3, · · · , pn;x1p1, x2p2)

× J
(1)
n+2(ˆ̄1q, ig, · · · , jg, ˆ̄2q̄) M0

n+2(ˆ̄1q, ig, · · · , jg, ˆ̄2q̄) J (n)
n (p3, · · · , pn),(4.4.66)

where the full integrated antenna string is formed from the sum of integrated dipoles,

J
(1)
n+2(ˆ̄1q, ig, jg, · · · , kg, lg, ˆ̄2q̄) = J

(1)
2 (ˆ̄1q, ig) + J

(1)
2 (ig, jg) + · · ·

+ J
(1)
2 (kg, lg) + J

(1)
2 (ˆ̄2q, lg). (4.4.67)

Each term in J
(1)
n+2 is proportional to a particular kinematic factor, (|sij|)−ε. We

therefore see that the singularities present in each term correspond to a particular

singular contribution I
(1)
ij . The full singularity structure is simply obtained by sum-

ming the integrated dipoles to form J
(1)
n+2, or equivalently by summing I

(1)
ij . Using

Catani’s one-loop factorisation formula, discussed in Chapter 2 and [20],

Poles
(
M1

n+2(1, · · · , n+ 2)
)

= 2I
(1)
n+2(ε; 1, · · · , n+ 2)M0

n+2(1, · · · , n+ 2),
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dσ̂T ∼ J
(1)
n M0

n

dσ̂S ∼ X0
3M0

n

dσ̂T :

dσ̂S :

1

Figure 4.2: The NLO correction to n-parton scattering requires the construction of
the subtraction term dσ̂SNLO to remove all IR divergent behaviour of the (n + 1)-
parton real emission. Integrating this subtraction term and combining with the NLO
mass factorisation terms generates the virtual subtraction term, dσ̂TNLO. Antenna
subtraction allows dσ̂TNLO to be generated by first constructing dσ̂SNLO or vice versa.

(4.4.68)

where I
(1)
n+2(ε; 1, · · · , n + 2) is the n-parton IR singularity operator, which can be

written as a sum of dipole contributions,

I
(1)
n+2(ε; 1, · · · , n) =

∑

(i,j)

I
(1)
ij (ε; sij), (4.4.69)

and the sum runs over colour connected pairs of partons.

The integrated antenna strings that form the virtual subtraction term exactly

mimic the virtual cross section poles, such that the NLO calculation is now infrared

finite.

The correspondence between the poles of J
(1)
n+2 and the one-loop matrix elements

removes the need for the I
(1)
n+2. This correspondence is particularly clear because

of the way the integrated antenna string has been constructed as a sum of dipole-

like antenna contributions. Recognising that the mass factorisation contributions

fit naturally into the structure of the integrated antenna strings, means that only

the genuine final-state IR poles remain in the virtual subtraction term. This puts

the virtual subtraction term in a particularly convenient form for carrying out the

explicit pole cancellation against the virtual contribution.We now extend the antenna

subtraction formalism to NNLO calculations.
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4.5 Antenna subtraction at NNLO

At NNLO we must now consider cross sections involving two additional particles

in the scattering process, appearing as either real or virtual particles. These addi-

tional particles lead to three distinct contributions: double real dσ̂RRij,NNLO, real-virtual

dσ̂RVij,NNLO or double virtual dσ̂V Vij,NNLO, containing (n+ 4)-, (n+ 3)-, (n+ 2)-partons

and zero-, one-, two-loops respectively, where n is the number of jets in the final-state,

dσ̂ij,NNLO =

∫

n+2

dσ̂RRij,NNLO +

∫

n+1

(
dσ̂RVij,NNLO + dσ̂MF,1

ij,NNLO

)

+

∫

n

(
dσ̂V Vij,NNLO + dσ̂MF,2

ij,NNLO

)
. (4.5.70)

The integration measure
∫

dΦn
is defined in (4.4.46). Following the discussion in

Chapter 1.4, the NNLO mass factorisation terms are naturally partitioned into terms

containing (n+ 1)- or n-parton final-states, which are given by,

dσ̂MF,1
ij,NNLO(ξ1H1, ξ2H2) = −

∫
dz1

z1

dz2

z2

×
(
αsN

2π

)
C̄(ε) Γ

(1)
ij;kl(z1, z2)

(
dσ̂Rkl,NLO − dσ̂Skl,NLO

)
(z1ξ1H1, z2ξ2H2),

(4.5.71)

dσ̂MF,2
ij,NNLO(ξ1H1, ξ2H2) = −

∫
dz1

z1

dz2

z2

{

(
αsN

2π

)2

C̄(ε)2 Γ
(2)
ij;kl(z1, z2)dσ̂kl,LO(z1ξ1H1, z2ξ2H2)

+

(
αsN

2π

)
C̄(ε) Γ

(1)
ij;kl(z1, z2)

(
dσ̂Vkl,NLO − dσ̂Tkl,NLO

)
(z1ξ1H1, z2ξ2H2)

}
,

(4.5.72)

where the new ingredient at NNLO, Γ
(2)
ij;kl, can be written in terms of one- and two-

loop Altarelli-Parisi kernels,

Γ
(2)
ij;kl(z1, z2) = δ(1− z2)δljΓ

(2)
ki (z1) + δ(1− z1)δkiΓ

(2)
lj (z2) + Γ

(1)
ki (z1)Γ

(1)
lj (z2).

(4.5.73)
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At NNLO, the subtraction terms are now constructed from both three and four parton

antennae to account for the double unresolved radiation. The one-loop three parton

antennae now also appear to mimic the single unresolved limits of the one-loop phys-

ical matrix element. They will remove all implicit divergence of the double real and

real-virtual contributions. Introducing a double real subtraction term dσ̂Sij,NNLO, a

real-virtual subtraction term dσ̂V Sij,NNLO, their corresponding integrated forms and the

NNLO mass factorisation contributions, the NNLO cross section can be reorganised

such that each term in square brackets is rendered free from implicit divergence and

explicit poles and thus suitable for a numerical implementation;

dσ̂ij,NNLO =

∫

n+2

[
dσ̂RRij,NNLO − dσ̂Sij,NNLO

]

+

∫

n+1

[
dσ̂RVij,NNLO − dσ̂Tij,NNLO

]

+

∫

n

[
dσ̂V Vij,NNLO − dσ̂Uij,NNLO

]
, (4.5.74)

where the real-virtual and double virtual subtraction terms are given by,

dσ̂Tij,NNLO = dσ̂V Sij,NNLO −
∫

1

dσ̂S,1ij,NNLO − dσ̂MF,1
ij,NNLO, (4.5.75)

dσ̂Uij,NNLO = −
∫

1

dσ̂V Sij,NNLO −
∫

2

dσ̂S,2ij,NNLO − dσ̂MF,2
ij,NNLO. (4.5.76)

The integrated double real subtraction terms are decomposed explicitly into a piece

that is integrated over the single unresolved particle phase space and a piece that is

integrated over the phase space of two unresolved particles, since integration of the

subtraction term dσ̂SNNLO gives contributions to both the (n+ 1)- and n-parton final

states ∫

n+2

dσ̂Sij,NNLO =

∫

n+1

∫

1

dσ̂S,1ij,NNLO +

∫

n

∫

2

dσ̂S,2ij,NNLO. (4.5.77)

The construction of subtraction terms at the double real, real-virtual and double

virtual levels requires an intimate understanding of the explicit IR singularity struc-

ture and implicit IR divergent behaviour of both the physical matrix elements and the

subtraction terms for different final-state multiplicities. The colour connectivity com-

pletely informs the construction of the double real subtraction term as there are no
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explicit IR poles to consider. The double virtual subtraction term, which is free from

implicit IR divergences, deals solely with explicit IR cancellation. The real-virtual

subtraction term contains both explicit poles and implicit divergent behaviour and

so its structure must take into account both parton colour connection and explicit

pole cancellation.

In the proceeding sections below, we will see how the dσ̂SNNLO, dσ̂TNNLO and

dσ̂UNNLO subtraction terms each contain components, fulfilling a particular rôle in the

construction of the correct infrared structure. It is the nature of any subtraction

scheme, that whatever is subtracted from a final state with a particular multiplicity,

must be added back in either integrated or unintegrated form to a final state with a

different multiplicity. The “roadmap” in Figure 4.3 illustrates how the subtraction

terms dσ̂SNNLO, dσ̂TNNLO and dσ̂UNNLO are related.

The five terms introduced in the double real subtraction term are directly linked

with specific terms in the real-virtual and double virtual subtraction terms. Similarly,

terms in the real-virtual subtraction term are composed partly of integrated terms

from the double real subtraction term
∫

1
dσ̂Sij,NNLO and new virtual subtraction terms,

dσ̂V Sij,NNLO. The remaining terms,
∫

2
dσ̂Sij,NNLO and

∫
1

dσ̂V Sij,NNLO, combine to produce

the structures present in dσ̂Uij,NNLO. As the discussion unfolds, we anticipate that it

will help to refer back to Figure 4.3.

4.5.1 Construction of the double real subtraction term

At NNLO the double real radiative (n + 4)-parton correction to the pp → n jets

process, must be included integrated over the full (n + 2)-parton phase space, given

the constraint that n jets are observed. In order for this to be achieved, the IR

divergent behaviour of the partonic cross section must be isolated. By construction,

the double real subtraction term mimics the IR divergence and factorisation of the real

radiation matrix elements in all relevant single and double unresolved limits, referring

back to the limits in Chapter 2. At NNLO there are four colour configurations to

consider when constructing the subtraction term for n-jet production [22,35,75,79]:

1. dσ̂S,a

A single unresolved final-state parton but the remaining (n + 1) final-state
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partons will still form n jets.

2. dσ̂S,b

Two colour-connected unresolved partons, i.e., two unresolved partons radiated

between a single pair of hard radiators.

3. dσ̂S,c

Two almost colour-connected unresolved partons, i.e., two colour disconnected

unresolved partons sharing a common radiator, and including large angle soft

radiation.

4. dσ̂S,d

Two colour disconnected unresolved partons, i.e., two colour disconnected un-

resolved partons with no radiators in common.

The four possible colour configurations for the single and double unresolved limits of

the (n + 4)-parton matrix elements provide a natural way to divide the subtraction

term into pieces, as has been emphasised in previous works [22,35]. It should be noted

that although the factorisation of the matrix elements is strictly classified according

to the colour connection of unresolved partons, the associated subtraction terms

readily communicate with one another in most unresolved limits due to the existence

and cross cancellation of spurious singularities. These systematic cross cancellations

suggest that structures exist in the subtraction term other than those dictated by the

colour connection of unresolved partons.

In the following sections we make a further reorganisation of the double real

subtraction term into five contributions,

dσ̂SNNLO = dσ̂S,aNNLO + dσ̂S,b1NNLO + dσ̂S,b2NNLO + dσ̂S,cNNLO + dσ̂S,dNNLO. (4.5.78)

Such an organisation of the double real subtraction term allows a transparent under-

standing of how various terms from the double real level cascade down the calculation

upon integration. Understanding this structure also permits a systematic construc-

tion of the double real subtraction term built from predictable blocks of terms.
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Single unresolved subtraction term, dσ̂S,a
NNLO

The removal of single unresolved limits from the (n + 4)-parton contribution to the

n-jet cross section at NNLO is not dissimilar from the subtraction term constructed

to isolate single unresolved limits from the (n+4)-parton contribution to the (n+1)-

jet cross section at NLO. The two subtraction terms differ only in the number of jets

allowed by the jet function,

dσ̂S,aNNLO({p}n+4) = dσ̂SNLO({p}n+4)

∣∣∣∣
J

(n+1)
n+1 →J

(n+1)
n

. (4.5.79)

The discussion about constructing the NLO subtraction terms given in Section 4.4 is

then sufficient to construct the single unresolved NNLO subtraction term dσ̂S,aNNLO.

Although this part of the subtraction term removes single unresolved divergences of

the physical matrix elements for n-jet selecting observables, it also generates addi-

tional spurious singularities in the almost colour connected and colour disconnected

limits, over-subtracting the divergence in each case. This is because the (n+3)-parton

reduced matrix elements allow an additional parton to become unresolved and yet

still form n-jets. This contribution is reintroduced at the real-virtual level and cancel

the explicit poles in the real-virtual contribution upon analytic integration.

Four-parton antenna subtraction term, dσ̂S,b1
NNLO

At NNLO there are essential new ingredients in the form of four-parton tree level an-

tenna functions that are required to faithfully reproduce the colour connected double

unresolved divergences of the physical matrix elements. The momentum map associ-

ated with a four-parton antenna function is the (n+ 4)→ (n+ 2) map that maps the

four antenna momenta i, j, k, l down to two composite momenta (̃ijk), (̃jkl), which is

different for the final-final [84], initial-final and initial-initial [24] configurations. This

group of terms has the form,

dσ̂S,b1NNLO = NRR
NNLO

∑

n+2

dΦn+2(p3, . . . , pn+4; p1, p2)
1

Sn+2

×
∑

j,k

X0
4 (i, j, k, l) M0

n+2(· · · , (̃ijk), (̃jkl), · · · ) J (n)
n ({p}n),(4.5.80)
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where NRR
NNLO contains the overall QCD coupling, colour and non-QCD factors ap-

propriate for the double real radiation contribution,

NRR
NNLO = NLO

(
αsN

2π

)2
C̄(ε)2

C(ε)2
. (4.5.81)

This term is generic to all three kinematic configurations, (FF, IF and II), with the

specific antenna functions and momentum maps depending on which configuration

the term belongs to. The four-parton antenna functions displays further divergent

behaviour including single unresolved and almost colour connected singularities that

may not match up with the physical matrix element, all of which must be properly

removed elsewhere in the subtraction term. The analytic integration of the four-

parton antenna functions is carried out over the double unresolved antenna phase

space and so the terms in dσ̂S,b1NNLO are reintroduced as part of the double virtual

subtraction term.

Four-parton single unresolved subtraction term, dσ̂S,b2
NNLO

As mentioned in the previous section, four-parton antenna functions contain single

unresolved spurious singularities which must be removed to ensure a proper sub-

traction of the IR divergence in the physical matrix elements. For each four-parton

antenna, the single unresolved limits are removed by constructing a subtraction term

along the lines of dσ̂S,aNNLO but now applying this method to the four-parton antenna

function rather than the physical matrix elements. This highlights one of the beau-

ties of antenna subtraction; since the subtraction terms are constructed from physical

processes themselves, any spurious singularities can be treated identically to the phys-

ical matrix element. As such, the terms are built from three-parton antennae (used

to remove the single unresolved limits) multiplied by another three-parton antenna

(the remnant of the four-parton antenna after the single unresolved limit is taken)

and a reduced matrix element which in the single unresolved limit maps on to the

matrix element associated with the four-parton antenna. For a four-parton antenna
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Configuration X0
4 X̃0

4

Final-final A0
4, B

0
4 , C

0
4 , D

0
4,a, E

0
4,a, Ẽ

0
4 , F

0
4,a, G

0
4, G̃

0
4, H

0
4 Ã0

4, D
0
4,c, E

0
4,b, F

0
4,b,

Initial-final A0
4, B

0
4 , C

0
4 , G

0
4, G̃

0
4, H

0
4 Ã0

4, D
0
4, E

0
4 , F

0
4

Initial-initial A0
4, B

0
4 , C

0
4 , D

0
4,adjF

0
4,adj, G

0
4, G̃

0
4, H

0
4 Ã0

4, D
0
4,n.adj, E

0
4 , F

0
4,n.adj

Table 4.7: The classification of the four-parton antenna functions based upon whether
they contain almost colour-connected limits. The final state D0

4, E0
4 and F 0

4 antennae
are decomposed into sub-antennae [35,79] for numerical implementation.

function, this block has the generic form

dσ̂S,b2NNLO = −NRR
NNLO

∑

n+2

dΦn+2(p3, . . . , pn+4; p1, p2)
1

Sn+2

×
∑

j

X0
3 (i, j, k) X0

3 (I,K, l) M0
n+2(· · · , I ′, L, · · · ) J (n)

n ({p}n),

(4.5.82)

where the sum is over all partons in the four-parton antenna which allow a single

unresolved singularity. This block may also contain spurious almost colour connected

singularities of its own, which can arise when the secondary antenna in (4.5.82) also

contains single unresolved limits. The block of terms associated with each four-

parton antenna encapsulates all of the single unresolved singularities of the four-

parton antenna. As discussed in Section 4.5.2, a collection of terms which correctly

mimic the single unresolved limits of the four-parton antenna functions performs a

specific role when reintroduced as part of the real-virtual subtraction term.

Almost colour connected subtraction term, dσ̂S,c
NNLO

This scenario occurs only when there are at least five partons in the scattering process.

It is intimately linked to the four-parton antenna functions that contain almost colour

connected unresolved partons, denoted by X̃0
4 ; X0

4 antennae do not give a contribution

to dσ̂S,cNNLO. The classification of the four-parton antenna functions into X0
4 and X̃0

4

types is displayed in Table 4.7.

In almost colour connected limits, the terms in dσ̂S,b2NNLO can over-subtract the

divergences of the associated X̃0
4 . In the same limits dσ̂S,aNNLO contributes twice the

subtraction required by the matrix elements. Both of these over-subtractions have
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to be accounted for by dσ̂S,cNNLO, which also includes the wide angle soft subtraction

term [35,108].

As a general algorithm for the construction of dσ̂S,cNNLO, consider the four parton

antenna X̃0
4 (j, i, k, l). Partons j and l are hard radiators, bookending unresolved

partons i and k. It is a final-final double unresolved configuration for clarity but

the strategy also applies to initial-final and initial-initial configurations. Each X̃0
4 , in

dσ̂S,b1NNLO generates a block of terms in dσ̂S,cNNLO, in addition to that in dσ̂S,b1NNLO which

is of the form

X̃0
4 (j, i, k, l)M0

n+2(· · · , a, (̃jik), (̃lki), b, · · · ), (4.5.83)

where a and b are further hard partons in the colour ordering, as in Figure 4.4. The

underlying colour ordering without the unresolved partons is thus (· · · a, j, l, b · · · ).
The construction follows as

1. Radiate i from region I in Figure 4.4, then radiate k from region I of the

remapped colour ordering, given that i is unresolved:

X0
3 (j, i, l) X0

3 ((̃ji), k, (̃il)) M0
n(. . . , a, (̃(ji)k), (̃k(il)), b, . . .). (4.5.84)

The reduced matrix element has a multiplicity of two fewer since two single

unresolved mappings have taken place. This is the first term of the block.

2. Two further terms are produced by radiating i from region II or III first, followed

by the radiation of k from region I of the remapped colour ordering. These terms

come with a relative minus sign.

3. Repeat for the reverse ordering of the unresolved partons by making the sub-

stitution i↔ k.

Written in terms of antennae, this contribution thus has the form,

+
1

2
X0

3 (j, i, l) X0
3 ((̃ji), k, (̃il)) M0

n(. . . , a, (̃(ji)k), (̃k(il)), b, . . .)

− 1

2
X0

3 (a, i, j) X0
3 ((̃ji), k, l) M0

n(. . . , (̃ai), (̃(ji)k), (̃kl), b, . . .)
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a b

j l
I

II III

Figure 4.4: The three regions associated with the radiation of the primary unresolved
parton. Region I: between the hard radiators of the four-parton antenna, j, l. Region
II: one place to the left in the colour ordering between partons a, j. Region III: one
place to the right in the colour ordering between partons l, b.

− 1

2
X0

3 (l, i, b) X0
3 (j, k, (̃li)) M0

n(. . . , a, (̃jk), (̃k(li)), (̃ib), . . .) + (i↔ k).

(4.5.85)

The large angle soft terms can also be included in this structure. Two almost

colour-connected unresolved partons are removed from the underlying colour order-

ing and we impose the same radiation pattern of these partons from the underlying

colour ordering as in (4.5.85). The mapping applied to the primary antenna does not

matter because this term only contributes in the soft limit where all mappings become

identical. For six or more parton processes, the large angle soft terms can be gener-

ated by allowing the first radiation to be between a pair of final-state partons [15]. In

the special case of hadron-hadron initiated six parton scattering there will only ever

be two hard final-state partons so the choice of final-state partons, between which

the first unresolved parton is radiated, is unambiguous. However for five-parton pro-

cesses there simply are not enough final-state partons and the first mapping should be

of initial-final type. Four parton processes would require an initial-initial mapping,

however in such a simple case there is no almost colour connected contribution. With

the first mapping fixed to be of a particular type, the secondary antenna (which de-

scribes the radiation of the second unresolved parton) has common arguments across

all terms, unlike in (4.5.85) where the arguments depend on the specific mapping in-

herited from the primary antenna. As a consequence, the secondary antenna can be

factored out with the reduced matrix element so that, for example, in the final-final
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mapping case, the large angle soft can have the form,

Y ·X0
3 ((̃ij), k, (̃il)) M0

n(. . . , a, (̃(ij)k), (̃k(il)), b, . . .), (4.5.86)

where Y is a sum of large angle soft antennae. A similar structure emerges in the

initial-final mapping case. The structure of this term can be understood with refer-

ence to Figure 4.4. For each region into which an unresolved parton can be radiated

there is a term in Y given by,

−1

2

[
Sαiβ − SAIB

]
, (4.5.87)

where I denotes the momentum of the unresolved parton i after the first mapping

and for the example configuration considered in (4.5.85),

(α, β) =
{(
a, (̃ij)

)
,
(
(̃ij), (̃il)

)
,
(
(̃il), b

)}
,

(A,B) =
{(
a, (̃(ij)k)

)
,
(
(̃(ij)k), (̃k(il))

)
,
(
(̃k(il)), b

)}
, (4.5.88)

The pair of soft functions for each region comes with an overall sign depending on

which region the primary antenna belongs to, i.e., a relative minus sign for the regions

II and III. Collecting the terms in (4.5.85) and the large angle soft terms produces a

block of terms for a given X̃0
4 ; the sum of such blocks constitutes dσ̂S,cNNLO,

dσ̂S,cNNLO = NRR
NNLO

∑

n+2

dΦn+2(p3, . . . , pn+4; p1, p2)
1

Sn+2

∑

i,k

{

+
1

2
X0

3 (j, i, l) X0
3 ((̃ji), k, (̃il)) M0

n(. . . , a, (̃(ji)k), (̃k(il)), b, . . .)

− 1

2
X0

3 (a, i, j) X0
3 ((̃ji), k, l) M0

n(. . . , (̃ai), (̃(ji)k), (̃kl), b, . . .)

− 1

2
X0

3 (l, i, b) X0
3 (j, k, (̃li)) M0

n(. . . , a, (̃jk), (̃k(li)), (̃ib), . . .)

− 1

2

[(
S

(̃ij),i,(̃il)
− S ˜((ij)k)i(̃k(il))

)

−
(
S
ai(̃ij)
− S

ai ˜((ij)k)

)
−
(
S
bi(̃il)
− S

bi(̃(il)k)

)]

X0
3 ((̃ij), k, (̃il)) M0

n(. . . , a, (̃(ij)k), (̃k(il)), b, . . .)

}
J (n)
n ({p}n),
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(4.5.89)

where the sum over i, k denotes the set of almost colour-connected pairs contained

within the X̃0
4 antennae in dσ̂S,b1NNLO. The blocks in dσ̂S,cNNLO have a common secondary

antenna and so when integrated over the single unresolved phase space of the primary

antenna, will stay together as a group of integrated antenna functions factoring onto

a common unintegrated antenna.

Colour disconnected subtraction term, dσ̂S,d
NNLO

It is feasible for unresolved partons to be separated by greater than one hard radiator

in a colour ordering when there are at least six coloured particles present. The

subtraction terms in dσ̂S,aNNLO take into account all possible single unresolved partons

and so for each colour disconnected pair of unresolved partons, j and m, where

parton j lies in the antenna function and m in the reduced matrix element, there is

the corresponding subtraction term where m lies in the antenna and j in the reduced

matrix element. In this double unresolved limit both of these subtraction terms tend

to the same value and dσ̂S,aNNLO exactly double-counts the divergence of the matrix

elements.

To correct for this over-subtraction, a block of terms is introduced with the form,

dσ̂S,dNNLO = −NRR
NNLO

∑

n+2

dΦn+2(p3, . . . , pn+4; p1, p2)
1

Sn+2

×
∑

j,m

X0
3 (i, j, k) X0

3 (l,m, n) M0
n+2(· · · , I,K, · · · , L,N, · · · ) J (n)

n ({p}n).

(4.5.90)

where the sum runs over pairs of partons separated by more than one hard parton in

the ordering.

Both the unresolved partons can be integrated out immediately, since the regions

of phase space over which they contribute are disconnected. With this in mind, we

will add the integrated form of dσ̂S,dNNLO back into the double virtual subtraction term.
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4.5.2 Construction of the real-virtual subtraction term

The one-loop (n+ 3)-parton matrix elements contain both explicit poles and implicit

IR divergences, both of which must be dealt with by the real-virtual subtraction

term. In addition to imitating the physical one-loop matrix elements, the real-virtual

subtraction term inherits terms from the double real subtraction term after analytic

integration over a single unresolved parton. We see dσ̂TNNLO containing three types

of contribution:

1. dσ̂T,a

Terms of the type X 0
3 that cancel the explicit poles in the virtual one-loop

(m+ 3)-parton matrix elements.

2. dσ̂T,b

Terms that describe the single unresolved limits of the virtual one-loop (m+3)-

parton matrix elements.

3. dσ̂T,c

Almost colour-connected contributions of the type X 0
3 X

0
3 .

The subtraction term for the real-virtual contribution can be further sub-divided into

five contributions,

dσ̂TNNLO = dσ̂T,aNNLO + dσ̂T,b1NNLO + dσ̂T,b2NNLO + dσ̂T,b3NNLO + dσ̂T,cNNLO. (4.5.91)

We proceed by describing each in turn, including whether the terms originate and ter-

minate in the double real, real-virtual and double virtual contribution. First however

we introduce the mass factorisation term at real-virtual level.

Real-virtual mass factorisation term, dσ̂MF,1
ij,NNLO

The NNLO real-virtual mass factorisation contribution of Eq. (4.5.71) can be further

divided,

dσ̂MF,1
ij,NNLO = dσ̂MF,1,a

ij,NNLO + dσ̂MF,1,b
ij,NNLO, (4.5.92)
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such that dσ̂MF,1,a
ij,NNLO is proportional to the (n+ 3)-parton matrix elements,

dσ̂MF,1,a
ij,NNLO(ξ1H1, ξ2H2) = −

∫
dx1

x1

dx2

x2

×
(
αsN

2π

)
C̄(ε) Γ

(1)
ij;kl(x1, x2) dσ̂Rkl,NLO(x1ξ1H1, x2ξ2H2),

(4.5.93)

which will contribute to dσ̂T,aNNLO and dσ̂MF,1,b
ij,NNLO, which contributes to dσ̂T,bNNLO.

dσ̂MF,1,b
ij,NNLO = dσ̂MF,1,b2

ij,NNLO, (4.5.94)

where,

dσ̂MF,1,b2
ij,NNLO(ξ1H1, ξ2H2) =

∫
dx1

x1

dx2

x2

×
(
αsN

2π

)
C̄(ε) Γ

(1)
ij;kl(x1, x2) dσ̂Skl,NLO(x1ξ1H1, x2ξ2H2).

(4.5.95)

However, to simplify the book-keeping in the construction of the real-virtual subtrac-

tion terms it proves useful to trivially rewrite dσ̂MF,1,b
ij,NNLO in the following way,

dσ̂MF,1,b
ij,NNLO = dσ̂MF,1,b1

ij,NNLO + dσ̂MF,1,b2
ij,NNLO + dσ̂MF,1,b3

ij,NNLO, (4.5.96)

where we have added and subtracted,

dσ̂MF,1,b1
ij,NNLO(ξ1H1, ξ2H2) =

∫
dx1

x1

dx2

x2

×
(
αsN

2π

)
C̄(ε) Γ

(1)
ab;ab(x1, x2) dσ̂Sij,NLO(x1ξ1H1, x2ξ2H2),

(4.5.97)

dσ̂MF,1,b3
ij,NNLO(ξ1H1, ξ2H2) = −dσ̂MF,1,b1

ij,NNLO(ξ1H1, ξ2H2). (4.5.98)

The parton distributions that multiply these contributions to the partonic cross sec-

tion are always fixed by the identity of partons i and j, which, in the initial-final (and

initial-initial) configurations, are always of the same type as one (or both) partons



4.5. Antenna subtraction at NNLO 95

involved in the antenna. However, in certain collinear limits, the type of parton can

change, e.g. a gluon may transform into a quark or vice versa. Eqs. (4.5.97) and

(4.5.98) describe these situations. In such a situation, there is a change in the parton

flavour in the reduced matrix element, even though the antenna correctly describes

the singularity of the physical matrix element. In Eq. (4.5.97) a and b represent the

species of the initial-state partons in the reduced matrix element in dσ̂Sij,NLO rather

than the initial-state partons i and j that are involved in the antenna. Thus for

unresolved limits that do not change the identities of initial-state partons then a = i

and b = j. However, in an identity changing initial-state collinear limit there will

be a discrepancy between the parton species in the antenna, i, j and those in the re-

duced matrix element, a, b. For example, consider a subtraction term dσ̂Sqg,NLO that

contains a term,

dσ̂Sqg,NLO ∼ · · ·+ A0
3(1̂q, 2̂g, 3q̄) M

0
n(· · · ; ˆ̄1q, ˆ̄2q̄; · · · ) J (n)

n ({p}n), (4.5.99)

where in the 2̂g||3q̄ limit, the initial state gluon transforms into an antiquark. In this

case the initial-state partons involved in the antenna A0
3(1̂q, 2̂g, 3q̄) are (i, j) ≡ (q, g)

while the initial-state parton species in the reduced matrix elementM0
n(· · · ; ˆ̄1q, ˆ̄2q̄; · · · )

are (a, b) ≡ (q, q̄). In other words, i = a = q, while the labels associated with parton

2̂ differ, j = g and b = q̄. In this example the mass factorisation kernel used in

Eq. (4.5.97) is given by Γ
(1)
qq̄;qq̄(x1, x2).

One-loop explicit pole subtraction term, dσ̂T,a
NNLO

It was emphasised in Section 4.5.1 that the construction of dσ̂S,aNNLO follows the same

lines as constructing dσ̂SNLO with a modified jet function and an additional parton.

This matches the interpretation of the mass factorisation contribution dσ̂MF,1,a
NNLO and

so integrating the antennae in dσ̂S,aNNLO and combining with the mass factorisation

kernels in dσ̂MF,1,a
NNLO will generate precisely the same type of integrated antenna strings

seen at NLO but with one additional parton,

dσ̂T,aNNLO = −
∫

1

dσ̂S,aNNLO − dσ̂MF,1,a
NNLO
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= −NRV
NNLO

∑

n+1

∫
dx1

x1

dx2

x2

dΦn+1(p3, . . . , pn+3;x1p1, x2p2)
1

Sn+1

× J
(1)
n+3(1, . . . , n+ 3) M0

n+3(1, . . . , n+ 3) J (n+1)
n ({p}n+1), (4.5.100)

where NRV
NNLO = C(ε)NRR

NNLO. We showed in Section 4.4 that the poles of J
(1)
n+2 are

simply related to the poles of the (n + 2)-parton one-loop matrix elements. Using

this fact, it is clear that the term dσ̂T,aNNLO correctly subtracts the explicit poles of the

real-virtual matrix elements. This holds for all points in phase space; we must now

address the dynamic poles of the one-loop matrix element arising in single unresolved

scenarios.

Tree × loop subtraction term, dσ̂T,b1
NNLO

One-loop matrix elements factorise in implicit IR singular limits into two terms [27]

which can be schematically understood as,

1-loop −→ (tree× loop) + (loop× tree).

The first term is the product of a tree-level singular function factoring onto a one-loop

reduced matrix element and is subtracted using a tree level antenna function and a

one-loop reduced matrix element. This term by itself removes part of the implicit IR

divergence of the one-loop matrix elements but introduces explicit poles associated

with the one-loop (n + 2)-parton reduced matrix element. The explicit poles of this

matrix element can be removed by introducing the appropriate integrated antenna

string so that, after including the mass factorisation contribution dσ̂MF,1,b1
NNLO , defined

in Eq. (4.5.97),

dσ̂T,b1NNLO = NRV
NNLO

∑

n+1

∫
dx1

x1

dx2

x2

dΦn+1(p3, . . . , pn+3;x1p1, x2p2)
1

Sn+1

×
∑

j

X0
3 (i, j, k)

{
δ(1− x1)δ(1− x2) M1

n+2(1, . . . , n+ 2)

+ cJJ
(1)
n+2(1, . . . , n+ 2) M0

n+2(1, . . . , n+ 2)

}
J (n)
n ({p}n),

(4.5.101)
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is free from explicit IR poles and where the sum is over the final-state unresolved

partons. cJ is a constant equal to unity unless n = 0 and all particles are gluons in

which case cJ = 2 to account for both colour orderings of the gluons. This formula

can be applied to final-final, initial-final and initial-initial configurations.

Loop × tree subtraction term, dσ̂T,b2
NNLO

To account for the contribution from the one-loop singular function factoring onto

the tree-level matrix element, a subtraction term is constructed from a one-loop

antenna function and a tree-level reduced matrix element. The one-loop antenna

function contains explicit IR poles which must be removed to ensure a finite total

contribution. This goal is achieved by a difference of integrated antenna strings which

contains the IR explicit poles of the one-loop antenna, and reflects the construction

of X1
3 in (4.3.30).The mass factorisation terms dσ̂MF,1,b2

NNLO and dσ̂MF,1,b3
NNLO , defined in

Eqs. (4.5.95) and (4.5.98) respectively, are combined with the integrated antennae to

cancel fully the explicit IR poles of the one-loop antenna functions:

dσ̂T,b2NNLO = NRV
NNLO

∑

n+1

∫
dx1

x1

dx2

x2

dΦn+1(p3, . . . , pn+3;x1p1, x2p2)
1

Sn+1

×
∑

j

[
X1

3 (i, j, k)δ(1− x1)δ(1− x2) + J
(1)
X (i, j, k)X0

3 (i, j, k)

− MXX
0
3 (i, j, k)J

(1)
2 (I,K)

]
M0

n+2(· · · , I,K, · · · ) J (n)
n ({p}n),

(4.5.102)

where MX is a constant which depends on the species of one-loop antenna, X1
3 . The

string J
(1)
X is constructed as a sum of NX two-particle integrated antenna strings,

J
(1)
X =

NX∑

(i,j)=1

J
(1)
2 (i, j), (4.5.103)

where NX counts the number of colour-connected pairs of partons in the one-loop

antenna. The values of MX and NX are displayed in Table 4.8. This subtraction

term applies to all kinematic configurations and particle combinations. The mass
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X1
3 A1

3 Ã1
3 Â1

3 D1
3 D̂1

3 E1
3 Ẽ1

3 Ê1
3 F 1

3 F̂ 1
3 G1

3 G̃1
3 Ĝ1

3

NX 2 1 2 3 3 2 1 0 3 3 2 1 0
MX 1 1 0 2 2 2 0 2 2 2 2 0 2

Table 4.8: Number of colour-connected pairs NX for the one-loop antenna X1
3 , and

the associated constant MX .

factorisation kernels used to form the J
(1)
X come from dσ̂MF,1,b2

NNLO and those used to

generate J
(1)
2 come from dσ̂MF,1,b3

NNLO . The term proportional to J
(1)
X is derived from the

integral of the double real subtraction term. Following the discussion in Section 4.4,

the poles of a four-parton matrix element integrated over the single unresolved phase

space may be encapsulated by an integrated antenna string. Schematically,

Poles
[ ∫

1

M0
4

]
= Poles

[
J

(1)
3 M0

3

]
= −Poles

[
M1

3

]
, (4.5.104)

and therefore the single unresolved poles of a four-parton antenna are also described

by,

Poles
[ ∫

1

X0
4

]
= Poles

[
J

(1)
X X0

3

]
= −Poles

[
X1

3

]
. (4.5.105)

In Section 4.5.1, dσ̂S,bNNLO was constructed to have no single unresolved limits such

that,

Poles
[ ∫

1

dσ̂S,bNNLO

]
= 0. (4.5.106)

Equivalently,

Poles
[ ∫

1

dσ̂S,b1NNLO

]
= −Poles

[ ∫

1

dσ̂S,b2NNLO

]
. (4.5.107)

For each X0
4 or X̃0

4 contributing to dσ̂S,b1NNLO, the associated block of iterated antennae

in dσ̂S,b2NNLO integrated over the single unresolved phase space therefore systematically

generates a singular contribution of the form, J
(1)
X (i, j, k)X0

3 (i, j, k), as required by

Eq. (4.5.102).

The one-loop antenna term, X1
3 , and the two-parton integrated antenna string,
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J
(1)
2 , in Eq. (4.5.102) do not come from the double real subtraction term and so must

be compensated for in the double virtual subtraction term.

One-loop renormalisation subtraction term, dσ̂T,b3
NNLO

In the real-virtual subtraction term, two one-loop quantities are introduced: the

one-loop reduced matrix elements in (4.5.101) and the one-loop antenna functions

in (4.5.102). The one-loop matrix elements are renormalised at the renormalisation

scale µ2 whereas the one-loop antenna is renormalised at the mass scale of the antenna

sijk. To ensure both quantities are renormalised at the same scale, the replacement

is made,

X1
3 (i, j, k) → X1

3 (i, j, k) +
β0

ε
X0

3 (i, j, k)

(( |sijk|
µ2

)−ε
− 1

)
. (4.5.108)

In doing so, we pick up a further term proportional to β0, via an expansion in the

ratio of scales;

dσ̂T,b3NNLO = NRV
NNLO

∑

n+1

∫
dx1

x1

dx2

x2

dΦn+1(p3, . . . , pn+3;x1p1, x2p2)
1

Sn+1

×
∑

j

β0 log

(
µ2

|sijk|

)
X0

3 (i, j, k)δ(1− x1)δ(1− x2)

× M0
n+2(· · · , I,K, · · · ) J (n)

n ({p}n), (4.5.109)

where the sum is the same as in (4.5.102). There is also a colour decomposition of

β0 into terms proportional to N and NF ,

β0 = b0N + b0,FNF , (4.5.110)

where b0 = 11/6 and b0,F = −1/3. The terms in dσ̂T,b3NNLO originate in the real-virtual

subtraction term and so, by integrating the three-parton antenna over the single-

unresolved phase space, are reintroduced as part of the double virtual subtraction

term.
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Integrated almost colour connected subtraction term, dσ̂T,c
NNLO

To complete the real-virtual subtraction term, we must include the analytic inte-

gration of dσ̂S,cNNLO over the single unresolved antenna phase space with additional

predictable terms to ensure an IR finite contribution. Integrating Eq. (4.5.89) over

the single unresolved phase space and introducing three additional terms to ensure

all explicit IR poles are cancelled yields,

dσ̂T,cNNLO = −NRV
NNLO

∑

n+1

∫
dx1

x1

dx2

x2

dΦn+1(p3, . . . , pn+3;x1p1, x2p2)
1

Sn+1

{

1

2

∑

j

[ ( (
X 0

3 (sik)−X 0
3 (s(ij)(jk))

)

−
(
X 0

3 (sai)−X 0
3 (sa(ij))

)
−
(
X 0

3 (skb)−X 0
3 (s(kj)b)

))

−
((
S(sik, sik, 1)− S(s(ij)(jk), sik, x(ij)(jk),ik)

)

−
(
S(sai, sik, xai,ik)− S(sa(ij), sik, xa(ij),ik)

)

−
(
S(skb, sik, xkb,ik)− S(s(jk)b, sik, x(jk)b,ik)

))
δ(1− x1)δ(1− x2)

]}

× X0
3 (i, j, k) M0

n+2(· · · , I,K, · · · ) J (n)
n ({p}n). (4.5.111)

In this equation, the terms introduced to ensure IR finiteness are those involving the

integrated antennae with mapped momenta, X 0
3 (s(ij)(jk)), X 0

3 (sa(ij)) and X 0
3 (s(kj)b).

These terms must therefore appear in the double virtual subtraction term. For future

reference we label these as,

dσ̂T,c1NNLO = −NRV
NNLO

∑

n+1

∫
dx1

x1

dx2

x2

dΦn+1(p3, . . . , pn+3;x1p1, x2p2)
1

Sn+1

× 1

2

∑

j

[
X 0

3 (s(ij)(jk)) + X 0
3 (sa(ij)) + X 0

3 (s(kj)b)
]

× X0
3 (i, j, k) M0

n+2(· · · , I,K, · · · ) J (n)
n ({p}n), (4.5.112)

dσ̂T,c2NNLO = +NRV
NNLO

∑

n+1

∫
dx1

x1

dx2

x2

dΦn+1(p3, . . . , pn+3;x1p1, x2p2)
1

Sn+1

×
∑

j

X 0
3 (s(ij)(jk)) X

0
3 (i, j, k) M0

n+2(· · · , I,K, · · · ) J (n)
n ({p}n).

(4.5.113)



4.5. Antenna subtraction at NNLO 101

The integrated soft function for the final-final mapping is denoted by S(sac, sik, xac,ik).

An explicit expression can be found in Ref. [15]. As discussed in Section 4.5.1, for

five-parton processes it is necessary to use a soft function with an initial-final map.

In this case one finds an analogous equation to Eq. (4.5.111) involving the integrated

initial-final soft function, SIF (sac, sIK , yac,iK), which is given explicitly in [97].

4.5.3 Double virtual subtraction term structure

The double virtual contribution to the pp → n-jet cross section involves the two-

loop (n + 2)-parton matrix elements, which have no implicit IR divergence in any

regions of the appropriate n-parton phase space. The explicit IR poles of the two-

loop contribution are cancelled by the remaining integrated form of the subtraction

terms, combined with the double-virtual mass factorisation terms. The main result

here is that the double virtual subtraction term is constructed from three terms,

dσ̂Uij,NNLO = dσ̂U,Aij,NNLO + dσ̂U,Bij,NNLO + dσ̂U,Cij,NNLO. (4.5.114)

We shall now demonstrate the origin of each of these terms. This construction re-

flects the dipole-like singularity structure for two-loop amplitudes made apparent in

Catani’s two-loop factorisation formula introduced in (2.1.19) and [20].

Poles
(
M2

n(1, · · · , n)
)

= 2I(1)
n (ε; 1, · · · , n)

(
M1

n(1, · · · , n)− β0

ε
M0

n(1 · · · , n)

)

− 2I(1)
n (ε; 1, · · · , n)2M0

n(1, · · · , n)

+ 2e−εγ
Γ(1− 2ε)

Γ(1− ε)

(
β0

ε
+K

)
I(1)
n (2ε; 1 · · · , n)M0

n(1 · · · , n)

+ 2H(2)(ε)M0
n(1, · · · , n), (4.5.115)

with I(1)
n (ε) given by Eq. (4.4.69) and where the form of the hard function,H(2)(ε) and

the constant K depends on the particle content and order in N under consideration.
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Double virtual mass factorisation terms, dσ̂MF,2
NNLO

The general form of the double virtual mass factorisation contribution was given in

Eq. (4.5.72). To elucidate the construction of the double virtual subtraction term,

Γ
(2)
ij;kl(z1, z2) may be decomposed in the following way,

Γ
(2)
ij;kl(z1, z2) = Γ

(2)

ij;kl(z1, z2)− β0

ε
Γ

(1)
ij;kl(z1, z2) +

1

2

[
Γ

(1)
ij;ab ⊗ Γ

(1)
ab;kl

]
(z1, z2),

(4.5.116)

such that,

Γ
(2)

ij;kl(z1, z2) = Γ
(2)

ik (z1)δjlδ(1− z2) + Γ
(2)

jl (z2)δikδ(1− z1),

Γ
(2)

ij (z) = − 1

2ε

(
p1
ij(z) +

β0

ε
p0
ij(z)

)
. (4.5.117)

The double virtual mass factorisation contribution can be recast into three terms,

dσ̂MF,2
ij,NNLO = dσ̂MF,2,A

ij,NNLO + dσ̂MF,2,B
ij,NNLO + dσ̂MF,C

ij,NNLO, (4.5.118)

where the individual contributions are given by:

dσ̂MF,2,A
ij,NNLO = −

∫
dz1

z1

dz2

z2

(
αsN

2π

)
C̄(ε) Γ

(1)
ij;kl

(
dσ̂Vkl,NLO −

β0

ε
dσ̂kl,LO

)
,

(4.5.119)

dσ̂MF,2,B
ij,NNLO = +

∫
dz1

z1

dz2

z2

(
αsN

2π

)
C̄(ε) Γ

(1)
ij;kldσ̂

T
kl,NLO

−
∫

dz1

z1

dz2

z2

(
αsN

2π

)2

C̄(ε)2 1

2

[
Γ

(1)
ij;ab ⊗ Γ

(1)
ab;kl

]
dσ̂kl,LO, (4.5.120)

dσ̂MF,2,C
ij,NNLO = −

∫
dz1

z1

dz2

z2

(
αsN

2π

)2

C̄(ε)2 Γ
(2)

ij;kl dσ̂kl,LO. (4.5.121)

The convolution of two functions f(x1, x2) and g(y1, y2) is defined as

[
f ⊗ g

]
(z1, z2) ≡

∫
dx1dx2dy1dy2f(x1, x2)g(y1, y2)δ(z1 − x1y1)δ(z2 − x2y2).

(4.5.122)
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Each of these terms naturally fits into the corresponding piece of the double virtual

subtraction term dσ̂U,Aij,NNLO, dσ̂U,Bij,NNLO, and dσ̂U,Cij,NNLO, to render each contribution

free from initial-state collinear poles.

dσ̂U,A
NNLO subtraction term

The first double virtual subtraction term is constructed from the integrated real-

virtual subtraction terms, and the appropriate mass factorisation contributions. This

includes the integrated dσ̂T,b1NNLO given in Eq. (4.5.101), the tree level antennae mul-

tiplying the one loop matrix element. The second term comes from the integrated

form of dσ̂T,b3NNLO,

∫

1

dσ̂T,b3ij,NNLO = −N V V
NNLO

∑

n

∫
dz1

z1

dz2

z2

dΦn(p3, . . . , pn+2; z1p1, z2p2)
1

Sn

×
∑

{i,j}

β0

ε

(( |sij|
µ2

)−ε
− 1

)
X 0

3 (sij)M
0
n+2(1, · · · , n+ 2)J (n)

n ({p}n),

(4.5.123)

where N V V
NNLO = C(ε)NRV

NNLO = C(ε)2NRR
NNLO. We extract two separate terms from

(4.5.123), sending the first term (proportional to (|sij|−ε)) into dσ̂U,CNNLO, whilst the

second, proportional to −1, is combined with the one-loop matrix element term from

the integral of dσ̂T,b1NNLO and the mass factorisation term dσ̂MF,2,A
NNLO . The result is the

first double virtual subtraction term,

dσ̂U,Aij,NNLO = −N V V
NNLO

∑

n

∫
dz1

z1

dz2

z2

dΦn(p3, . . . , pn+2; z1p1, z2p2)
1

Sn

× J
(1)
n+2(1, · · · , n+ 2)

(
M1

n+2(1, · · · , n+ 2)− β0

ε
M0

n+2(1, · · · , n+ 2)

)
J (n)
n ({p}n).

(4.5.124)

The poles of the integrated antenna string are directly related to the poles of

Catani’s one-loop insertion operator; this contribution to the double virtual cross

section contains the 1/ε4 and 1/ε3 singular contributions given in the first line of

Eq. (4.5.115).

Crucially, dσ̂U,ANNLO does not contain precisely the same singularities at 1/ε2 and
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above as the first line of Eq. (4.5.115) because the finite difference between J (1)
n and

I(1)
n is formally of order ε0. These differences ultimately cancel against similar terms

in dσ̂U,BNNLO and dσ̂U,CNNLO.

dσ̂U,B
NNLO subtraction term

The second double virtual subtraction term is formed from the integral of the re-

maining term from dσ̂T,b1ij,NNLO (4.5.101) proportional to M0
n, the integral of dσ̂T,c1NNLO

(4.5.113) and dσ̂S,dNNLO (4.5.90), and the mass factorisation contribution dσ̂MF,2,B
NNLO .

The resultant subtraction term is given by,

dσ̂U,Bij,NNLO = −N V V
NNLO

∑

n

∫
dz1

z1

dz2

z2

dΦn(p3, . . . , pn+2; z1p1, z2p2)
1

Sn

× 1

2

[
J

(1)
n+2(1, · · · , n+ 2)⊗ J (1)

n+2(1, · · · , n+ 2)
]
(z1, z2)

× M0
n+2(1, · · · , n+ 2) J (n)

n ({p}n). (4.5.125)

It can be seen that this expression matches up with the pole structure of the second

line of Eq. (4.5.115) with additional singular contributions arising from the finite

differences between J (1)
n and I(1)

n at O(ε0) and higher orders.

Note that the combination of Eqs. (4.5.124) and (4.5.125) reproduce the pole

structure of the first two lines of Eq. (4.5.115) up to O(1/ε).

dσ̂U,C
NNLO subtraction term

The last term is constructed by integrating appropriate terms in the remaining double

real and real-virtual subtraction terms, dσ̂S,b1NNLO (4.5.80), dσ̂T,b2NNLO (4.5.102), dσ̂T,c2NNLO

(4.5.113), the term proportional to |sij|−ε generated by expanding the bracket in

Section 4.5.3 and the mass factorisation contribution dσ̂MF,2,C
NNLO (4.5.121). We write

this term as

dσ̂U,CNNLO = −N V V
NNLO

∑

n

∫
dz1

z1

dz2

z2

dΦn(p3, . . . , pn+2; z1p1, z2p2)
1

Sn

J
(2)
n+2(1, · · · , n+ 2) M0

n+2(1, · · · , n+ 2) J (n)
n ({p}n), (4.5.126)



4.5. Antenna subtraction at NNLO 105

where we have introduced the double unresolved integrated antenna string, J
(2)
n+2 as

a sum over double unresolved integrated dipoles, J
(2)
2 ,

J
(2)
n+2(1, · · · , n+ 2) =

∑

(i,j)

J
(2)
2 (i, j), (4.5.127)

and the sum runs over colour connected pairs of partons in the (n+2)-parton ordering.

The matrix element is at tree level. This new set of integrated dipoles depend on

the type of particle in the scattering process, the order in the colour decomposition

under consideration and the kinematic configuration (FF, IF or II) of the dipole.

Schematically, we construct the double virtual dipole from the integrated three- and

four-parton tree level and one loop antennae. The final-final case takes the form

J
(2)
2 (I, J) = cFF1 X 0

4 (sIJ) + cFF2 X̃ 0
4 (sIJ) + cFF3 X 1

3 (sIJ)

+ cFF4

β0

ε

( |sIJ |
µ2

)−ε
X 0

3 (sIJ) + cFF5 X 0
3 (sIJ)⊗X 0

3 (sIJ), (4.5.128)

where cFFn , are constants associated with each integrated dipole. For an initial-

final integrated dipole, the form of the integrated dipole is modified by the use of

initial-final integrated antennae and the inclusion of the necessary mass factorisation

contribution to remove all initial-state collinear poles,

J
(2)
2 (ˆ̄1, I) = cIF1 X 0

4 (s1̄I) + cIF2 X̃ 0
4 (s1̄I) + cIF3 X 1

3 (s1̄I) + cIF4
β0

ε

( |s1̄I |
µ2

)−ε
X 0

3 (s1̄I)

+ cIF5 X 0
3 (s1̄I)⊗X 0

3 (s1̄I)− Γ
(2)

ik (z1)δ(1− z2), (4.5.129)

where i labels the species of parton in the initial-state and k is the parton involved

in the matrix element in Eq. (4.5.126). The initial-initial integrated dipole is formed

from initial-initial antennae and includes a mass factorisation contribution with non-

trivial z1 and z2 dependence,

J
(2)
2 (ˆ̄1, ˆ̄2) = cII1 X 0

4 (s1̄2̄) + cII2 X̃ 0
4 (s1̄2̄) + cII3 X 1

3 (s1̄2̄) +
β0

ε

( |s1̄2̄|
µ2

)−ε
cII4 X 0

3 (s1̄2̄)

+ cII5 X 0
3 (s1̄2̄)⊗X 0

3 (s1̄2̄)− Γ
(2)

ij;kl(z1)δ(1− z2), (4.5.130)



4.5. Antenna subtraction at NNLO 106

where the i, j labels carried by Γ
(2)

ij;kl are the species of initial-state parton carried by

the cross section and k, l denote those carried by the matrix element in Eq. (4.5.126).

The full double virtual subtraction term, dσ̂U
NNLO

The full double virtual subtraction term is given by the sum of dσ̂U,ANNLO (4.5.124),

dσ̂U,BNNLO (4.5.125) and dσ̂U,CNNLO (4.5.126) so that,

dσ̂UNNLO = −N V V
NNLO

∑

n

∫
dz1

z1

dz2

z2

dΦn(p3, . . . , pn+2; z1p1, z2p2)
1

Sn

{

J
(1)
n+2(1, · · · , n+ 2)

(
M1

n+2(1, · · · , n+ 2)− β0

ε
M0

n+2(1, · · · , n+ 2)

)

+
1

2

[
J

(1)
n+2(1, · · · , n+ 2)⊗ J (1)

n+2(1, · · · , n+ 2)
]
(z1, z2) M0

n+2(1, · · · , n+ 2)

+J
(2)
n+2(1, · · · , n+ 2) M0

n+2(1, · · · , n+ 2)

}
J (n)
n ({p}n). (4.5.131)

This master equation encapsulates the IR poles generated by the integration of the

tree-level double real emission over the double unresolved phase space, plus the in-

tegration of the one-loop real-virtual contribution over the single unresolved phase

space.

As previously discussed, the first term in Eq. (4.5.131) reflects the pole structure

of the first line in Eq. (4.5.115). The second term similarly reflects the structure of

the second line in Eq. (4.5.115). The third term introduces the double unresolved

integrated antenna string, J
(2)
n+2, which is summed over colour-connected dipoles.

This term corresponds to the terms proportional to I
(1)
n+2(2ε) and H(2)(ε) in the last

two lines of Eq. (4.5.115). When adding together all contributions in the double-

virtual channel, we observe that contributions of order ε or higher to the one-loop

amplitude cancel, even though they are multiplied with divergent factors in individ-

ual terms (one-loop self-interference and integrated real-virtual subtraction terms).

This cancellation can be understood in detail from the NNLO infrared singularity

structure [20,100].



Chapter 5

Dijet Production from Two-Quark

Processes

The treatment of Chapter 4 provides the tools necessary to calculate jet produc-

tion cross sections for massless jets at NNLO, using antenna subtraction to control

the infra-red behaviour. The first step towards a complete treatment of pp → jj

was completed earlier this year [101] with the construction of the full leading colour

subtraction term for the pure gluon contribution. Figure 5.1 displays the doubly dif-

ferential jet cross sections, presented for pp collisions at
√
s = 8 TeV over a range of

rapidities for the anti-kt algorithm with R = 0.7. The calculation was carried out us-

ing the MSTW08NNLO gluon distribution function [102]. The renormalisation scale

was set at µF = µR ≡ µ with µ being the transverse momenta of the leading jet.

This can be compared indicatively with experimental results taken from CMS

with data from LHC proton-proton collisions at
√
s = 8 TeV, corresponding to an

integrated luminosity of 10.71fb−1, given here in Figure 5.2. The theoretical k-factors

for the cross section are also determined in [101] and given here in Figure 5.3, where

the corrections consistently increase the cross section for high pT with respect to

the NLO results, a tantalising indication of the necessity for extending calculations

to higher orders in perturbation theory. This is only for the gluon-only channel

however. We must also consider jet production from different partonic processes,

namely those involving quarks. Quarks can appear in both the initial and final state

for a full prediction of dijet production in perturbation theory.
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Figure 5.1: All-gluon contribution to the double-differential inclusive jet transverse
energy distribution at

√
s = 8 TeV for anti-kt algorithm with R = 0.7 and ET > 80

GeV, taken at various rapidity slices [101].

This chapter focusses on dijet production at NNLO involving one quark pair,

extending the antenna subtraction formalism for the pure gluonic channel both at

double real and real-virtual level. As in the gluon-only channel, the calculation of

NNLO dijet production requires the following ingredients:

• tree level, six parton matrix elements for the double real radiation, where two

partons can go unresolved.

• interference of tree and one-loop, five parton amplitudes (real-virtual) where a

single parton can go unresolved.

• interference of tree and two-loop amplitudes, and self-interference of one-loop

amplitudes, both involving four partons.There are no implicit poles at the dou-

ble virtual level.
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Figure 5.2: A measurement of the inclusive jet cross section, double-differential in
jet transverse momentum pT and absolute jet rapidity. The data is from the LHC
proton-proton collisions at

√
s = 8 TeV collected with the CMS detector. Jets are

reconstructed with the anti-kt algorithm for R=0.7 in a phase space region ranging
up to jet transverse momenta of pT = 2.5TeV and an absolute rapidity of |y| = 3.0.
The measured jet cross section is corrected for detector effects and compared to
predictions of perturbative QCD at next-to-leading order using various sets of parton
distribution functions [103]. 3

respect to the NLO calculation. For this scale choice we
see that the NNLO/NLO k-factor is approximately flat
across the pT range corresponding to a 15-25% increase
compared to the NLO cross section.

One of the main motivations for computing the NNLO
QCD corrections is to reduce the scale uncertainty in the
theoretical prediction. This is illustrated in Fig. 2 for the
single jet inclusive cross section for jets with |y| < 4.4 and
80 GeV < pT < 97 GeV. We see that the scale depen-
dence of the cross section at NNLO is vastly reduced.
The scale dependence of other pT and y slices is also
reduced.

To illustrate the range of observables that can be stud-
ied with our computation we show in Fig. 3 the inclusive
jet cross section in double-differential form in jet pT and
rapidity bins at NNLO. The pT range is divided into 16
jet-pT bins and seven rapidity intervals over the range
0.0-4.4 covering central and forward jets.
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FIG. 3: The doubly differential inclusive jet transverse energy
distribution, d2σ/dpT d|y|, at

√
s = 8 TeV for the anti-kT

algorithm with R = 0.7 and for ET > 80 GeV and various |y|
slices.

Fig. 4 shows the double-differential k-factors for the
distribution in Fig. 3 for three rapidity slices: |y| < 0.3,
0.3 < |y| < 0.8 and 0.8 < |y| < 1.2. We observe that
the NNLO correction increases the cross section between
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25% at low pT to 12% at high pT with respect to the
NLO calculation and this behaviour is similar for all three
rapidity slices.
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FIG. 5: Exclusive dijet invariant mass distribution,
dσ/dmjjdy∗, at

√
s = 8 TeV for y∗ < 0.5 with pT1 > 80 GeV,

pT2 > 60 GeV and |y1|, |y2| < 4.4 at NNLO (blue), NLO
(red) and LO (dark-green). The lower panel shows the ratios
of NNLO, NLO and LO cross sections.

As a final observable, we computed the dijet cross
section as a function of the dijet mass at NNLO. This
is shown in Fig. 5 for the scale choice µ = 2pT1 to-
gether with the LO and NLO results. The dijet mass
is computed from the two jets with the highest pT and
|y1|, |y2| < 4.4 with y∗, defined as half the rapidity dif-
ference of the two leading jets y∗ = |y1 −y2|/2 < 0.5. We
see that the NNLO/NLO k-factor is approximately flat
across the mjj range corresponding to a 15-20% increase
compared to the NLO cross section.

In conclusion, we have described the first calculation of
the fully differential inclusive jet and dijet cross sections

Figure 5.3: Double differential k-factors for rapidity slices of |y| < 0.3, 0.3 < |y| <
0.8, 0.8 < |y| < 1.2, with pT > 80 GeV [101].

The pole structure of the matrix elements involving loop corrections will be con-

structed using the formalism in Section 2.1.1, and recast in terms of the integrated

antenna strings. Before launching into the leading colour NNLO qq̄ → gg channel, it
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is judicious to consider first the NLO correction to the same channel, in which only

the tree-level five parton matrix elements and one-loop four parton matrix elements

are required. This will be carried out to all orders in colour, whilst setting NF = 0,

using antenna subtraction. This chapter will proceed as follows. We first introduce

the notation for both squared and unsquared amplitudes, and then construct the

partonic matrix elements required for NLO and NNLO quark-antiquark scattering

at leading colour. The real and virtual quark initiated subtraction terms are then

discussed at NLO, where the cancellation of poles is transparent. The NNLO double

real (RR), real-virtual (RV) and double virtual (VV) subtraction terms are given,

along with numerical checks on the implicit pole cancellation. The quark-gluon and

gluon-gluon initiated processes are then addressed, and expressions for the leading

colour NNLO real-virtual and double virtual subtraction terms constructed.

5.1 Notation and amplitudes

Here we first review our notation for amplitudes involving quarks. In previous chap-

ters the symbol M l
n was used to denote a generic l-loop, n-parton, squared partial

amplitude. In previous works [15,80] the symbol Aln was used to denote the l-loop, n-

parton all-gluon squared partial amplitudes. Following this example, squared partial

amplitudes involving one quark-antiquark pair and (n−2) gluons will be represented

by the symbolBl
n and we will reserve C l

n (Dl
n) for processes involving two non-identical

(identical) quark-antiquark pairs and (n− 4) gluons respectively.

In our notation, the leading colour l-loop amplitude for (m+ 2)-parton scattering

with one quark-antiquark pair in the initial-state is given by,

Blm+2({pi, λi, ai, i, j}) = 2m/2gm
(
g2NC(ε)

2

)l ∑

σ∈Sm

×
(
T aσ(1) · · ·T aσ(m)

)
ij
Blm+2(1̂q, σ(3)g, · · · , σ(m+ 2)g, 2̂q̄), (5.1.1)

where the permutation sum Sm is the group of permutations of m symbols. The

SU(N) algebra is normalised according to the convention, Tr(T aT b) = δab/2. For

notational consistency we take the quarks to be in the initial state, although this
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extends naturally to gluonic initial states via crossing. It will be made explicit if the

initial states change functional form of the analytic expressions given. The initial

states are labelled 1̂ and 2̂.

Squaring and summing over helicities and colours gives the leading colour l-loop

qq̄ → m gluon contribution to the n-jet cross section,

dσ̂ij = N l
ij,m+2dΦm(p3, . . . , pm+2; p1, p2)

1

m!

×
∑

σ∈Sm
Bl
m+2(1̂q, σ(3)g, . . . , σ(m+ 2)g, 2̂q̄)J

(m)
n ({p}m), (5.1.2)

where Bl
m+2 denotes the l-loop, (m + 2)-parton, colour-ordered helicity summed,

squared partial amplitude. The tree-level, one-loop and two-loop squared partial

amplitudes are defined according to:

B0
m+2(σ) = |B0

m+2(σ)|2,

B1
m+2(σ) = 2Re

[
B0,†
m+2(σ)B1

m+2(σ)
]
,

B2
m+2(σ) = 2Re

[
B0,†
m+2(σ)B2

m+2(σ)
]

+ |B1
m+2(σ)|2, (5.1.3)

where σ denotes a given colour ordering. The normalisation factor N l
ij,m+2 includes

the average over initial spins and colours and is given by

N l
ij,m+2 = Nij,LO ×

(
αsN

2π

)m+l−2
C̄(ε)m+l−2

C(ε)m−2
. (5.1.4)

The i, j subscripts indicate the initial state partons; we thus have

Nqq̄,LO =
1

2s
× 1

4N2
×
(
g2N

)2 (N2 − 1)

N
, (5.1.5)

Nqg,LO =
1

2s
× 1

4N(N2 − 1)
×
(
g2N

)2 (N2 − 1)

N
, (5.1.6)

Ngg,LO =
1

2s
× 1

4(N2 − 1)2
×
(
g2N

)2 (N2 − 1)

N
. (5.1.7)

The coupling g2 has been converted into αs using the factors C(ε) and C̄(ε),

g2NC(ε) =

(
αsN

2π

)
C̄(ε). (5.1.8)
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For low multiplicity matrix elements (m 6 3), the sub-leading colour contributions

can be written as an incoherent sum of squared partial amplitudes.The treatment of

the NLO qq̄ → gg process will elucidate this idea.

5.2 Matrix elements for up to six partons

5.2.1 Four-parton matrix elements

The four parton contribution contains a quark-antiquark pair and two gluons, and

consists of a tree level Born cross section, along with its one-loop real-virtual and

two-loop double virtual corrections. The tree level, Born cross section can be colour

decomposed as following:

dσ̂qq̄,LO = Nqq̄,LO
∫

dΦ2(p3, p4; p1, p2)
1

2!

∑

P (i,j)

{

(
B0

4(1̂q, ig, jg, 2̂q̄)−
1

2N2
B̃0

4(1̂q, ig, jg, 2̂q̄)

)
J

(2)
2 (p3, p4)

}
, (5.2.9)

where P (i, j) denotes the two permutations of the gluons 3 and 4 in the colour

ordering. The sub-leading colour contribution is formed from the square of a coherent

sum of colour-ordered matrix elements,

B̃0
4(1̂q, ig, jg, 2̂q̄) = |B0

4(1̂q, ig, jg, 2̂q̄) + B0
4(1̂q, jg, ig, 2̂q̄)|2. (5.2.10)

In such a structure subleading in colour, there are no three-gluon couplings between

i and j, and this contribution is sometimes referred to as QED-like, or as involving

Abelian gluons. This altered colour connectivity must be taken into account when

constructing the subtraction terms.

The full colour decomposition of the one-loop cross section can be similarly con-

structed, but now including subleading terms deeper in powers of N and additional

terms emanating from quark loops resulting in matrix elements accompanied by fac-
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tors of NF . The decomposition reads

dσ̂Vqq̄,NLO = N 1
qq̄,4

∫
dΦ2(p3, p4; p1, p2)

dx1

x1

dx2

x2

δ(1− x1)δ(1− x2)
1

2

∑

P (i,j)

{

B1
4(ˆ̄1q, ig, jg, ˆ̄2q̄)−

1

N2

[
B̃1

4,a(
ˆ̄1q, ig, jg, ˆ̄2q̄) +

1

2
B̃1

4,b(
ˆ̄1q, ig, jg, ˆ̄2q̄)

]

+
1

2N4

˜̃
B1

4(ˆ̄1q, ig, jg, ˆ̄2q̄) +NNF B̂1
4(ˆ̄1q, ig, jg, ˆ̄2q̄) +

NF

N

̂̃
B1

4(ˆ̄1q, ig, jg, ˆ̄2q̄)

}

×J (2)
2 (pi, pj) (5.2.11)

where the overall factor is,

N 1
qq̄,4 = Nqq̄,LO

(
αsN

2π

)
C̄(ε). (5.2.12)

The various contributions are formed from the projection of one-loop partial ampli-

tudes onto tree-level amplitudes. The first sub-leading colour contribution is split

into two terms, B̃1
4,a and B̃1

4,b to reflect the fact that the explicit poles of these con-

tributions factor onto different tree-level matrix elements.

The pole structure, which is derived in Appendix A, can be written as sums

of the singularity operators multiplied by squared tree-level, colour ordered matrix

elements and, using the formalism in Chapter 4, expressed in terms of integrated

antenna strings,

Poles
[
B1

4(ˆ̄1q, ig, jg, ˆ̄2q̄)

]
= −J (1)

4 (ˆ̄1q, ig, jg, ˆ̄2q̄) B
0
4(ˆ̄1q, ig, jg, ˆ̄2q̄),

Poles
[
B̃1

4,a(
ˆ̄1q, ig, jg, ˆ̄2q̄)

]
= −J (1)

2 (ˆ̄1q, ˆ̄2q̄) B
0
4(ˆ̄1q, ig, jg, ˆ̄2q̄),

Poles
[
B̃1

4,b(
ˆ̄1q, ig, jg, ˆ̄2q̄)

]
= −

(
J

(1)
3 (ˆ̄1q, ig, ˆ̄2q̄) + J

(1)
3 (ˆ̄1q, jg, ˆ̄2q̄)

)
B̃0

4(ˆ̄1q, ig, jg, ˆ̄2q̄)

+J
(1)
2 (ˆ̄1q, ˆ̄2q̄) B̃

0
4(ˆ̄1q, ig, jg, ˆ̄2q̄),

Poles
[˜̃
B1

4(ˆ̄1q, ig, jg, ˆ̄2q̄)

]
= −J (1)

2 (ˆ̄1q, ˆ̄2q̄) B̃
0
4(ˆ̄1q, ig, jg, ˆ̄2q̄). (5.2.13)

Following the discussion of Sec. 4.4, the integrated antenna strings are formed from
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sums of integrated dipoles,

J
(1)
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) = J

(1)
2 (ˆ̄1q, ig) + J

(1)
2 (ig, jg) + J

(1)
2 (jg, ˆ̄2q̄),

J
(1)
3 (ˆ̄1q, ig, ˆ̄2q̄) = J

(1)
2 (ˆ̄1q, ig) + J

(1)
2 (jg, ˆ̄2q̄),

J
(1)
2 (jg, ˆ̄2q̄) = J

(1)
2 (ˆ̄2q, jg), (5.2.14)

where the relevant integrated dipoles are given in Tabs. 4.4 and 4.5.

Using these relations, the poles of the NF independent virtual cross section from

the channel qq̄ → gg can be rewritten in the form,

Poles
(
dσ̂Vqq̄,NLO

)
= −N 1

qq̄,4

∫
dΦ2(p3, p4; p1, p2)

dx1

x1

dx2

x2

1

2

∑

P (i,j)

{

[
J

(1)
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) B

0
4(ˆ̄1q, ig, jg, ˆ̄2q̄)

]

− 1

N2

[
J

(1)
2 (ˆ̄1q, ˆ̄2q̄) B

0
4(ˆ̄1q, ig, jg, ˆ̄2q̄) + J

(1)
3 (ˆ̄1q, ig, ˆ̄2q̄) B̃

0
4(ˆ̄1q, ig, jg, ˆ̄2q̄)

]

+

(
N2 + 1

2N4

) [
J

(1)
2 (ˆ̄1q, ˆ̄2q̄) B̃

0
4(ˆ̄1q, 3g, 4g, ˆ̄2q̄)

]}
J

(2)
2 (pi, pj). (5.2.15)

The leading colour contribution to the two-loop qq̄ → gg cross section is given by,

dσ̂V Vqq̄,NNLO = N 2
qq̄,4

∫
dΦ2(p3, p4; p1, p2)

1

2!

dz1

z1

dz2

z2

∑

P (i,j)

× B2
4(ˆ̄1q, ig, jg, ˆ̄2q̄)δ(1− x1)δ(1− x2) J

(2)
2 (pi, pj), (5.2.16)

where the overall factor is,

N 2
qq̄,4 = Nqq̄,LO

(
αsN

2π

)2

C̄(ε)2. (5.2.17)

As in [15,80] and Eq. (5.1.3), the two-loop matrix element contains the projection of

the two-loop amplitude onto the tree-level amplitude and the self-interference of the

one-loop amplitude.
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5.2.2 Five-parton matrix elements

The five parton contribution includes an additional gluon in the process compared

to that of the four-parton case. For the purpose of dijet production, the five parton

contributions will be required for a) the tree level single real emission contribution

for the NLO cross section, and b) the one-loop real-virtual contribution to the NNLO

cross section.

At tree level, the real emission contribution to the NF independent qq̄ → gg NLO

cross section is

dσ̂Rqq̄,NLO = N 0
qq̄,5 dΦ3(p3, p4, p5; p1, p2)

1

3!

∑

P (i,j,k)

{ [
B0

5(1̂q, ig, jg, kg, 2̂q̄)

− 1

N2
B̃0

5(1̂q, ig, jg, kg, 2̂q̄) +
1

3!

(
N2 + 1

N4

) ˜̃
B0

5(1̂q, ig, jg, kg, 2̂q̄)

]

×J (3)
2 (pi, pj, pk)

}
, (5.2.18)

where P (i, j, k) is the set of six permutations of the gluons in the colour ordering and

the overall factor is given by,

N 0
qq̄,5 = Nqq̄,LO

(
αsN

2π

)
C̄(ε)

C(ε)
. (5.2.19)

The subleading colour matrix element B̃0
5(1̂q, ig, jg, kg, 2̂q̄) is given by,

B̃0
5(1̂q, ig, jg, kg, 2̂q̄) =

|B0
5(1̂q, ig, jg, kg, 2̂q̄) + B0

5(1̂q, jg, ig, kg, 2̂q̄) + B0
5(1̂q, jg, kg, ig, 2̂q̄)|2, (5.2.20)

such that gluon i behaves in an Abelian fashion. The most subleading contribution

is given by the QED-like matrix element, formed by averaging over all colour-ordered

matrix elements,

˜̃
B0

5(1̂q, ig, jg, kg, 2̂q̄) =

∣∣∣∣
∑

P (i,j,k)

B0
5(1̂q, ig, jg, kg, 2̂q̄)

∣∣∣∣
2

. (5.2.21)

All gluons in this contribution are Abelian in nature.
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The one-loop contribution has a more complex structure than the four-parton

case, since the additional gluon allows for new emergent colour structures. Following

the notation in Sec 5.1, the one loop amplitude is

B1
5({pi, λi, ai, i, j}) = 23/2g3

(
g2NC(ε)

2

)
×
{

Nc

∑

P (i,j,k)

(T aiT ajT ak)qq̄B1,l
5 (1q, i, j, k, 2q̄)

+ NF

∑

P (i,j,k)

(T aiT ajT ak)qq̄B1,f
5 (1q, i, j, k, 2q̄)

+
1

Nc

∑

P (i,j,k)

(T aiT ajT ak)qq̄B1,s
5 (1q, i, j, k, 2q̄)

+
∑

(i,j,k)

(T ai)qq̄Tr(T ajT ak)B1,d
5 (1q, i, 2q̄; j, k)

+ Tr(T a3T a4T a5)δqq̄B1,q
5 (1q, 2q̄; 3, 4, 5)

+ Tr(T a5T a4T a3)δqq̄B1,q
5 (1q, 2q̄; 3, 4, 5)

+
NF

Nc

(Tr(T a3T a4T a5) + Tr(T a5T a4T a3))δqq̄B1,q,f
5 (1q, 2q̄; 3, 4, 5)

}
.

(5.2.22)

In addition to the tree-type colour structures, one now encounters loop-type struc-

tures coming from quark colour loops with two and three gluonic legs. Taking the

interference of (5.2.22) with its tree-level counterpart can be simplified by observing a

number of properties of the amplitude itself. Whereas the leading tree-type subampli-

tude B1,l
5 has associated subleading and flavour contributions, it should be noted that

there is no NF -dependent term for the amplitude B1,d
5 proportional to T aiqq̄ Tr(T ajT ak).

Although there are diagrams that contribute towards this subamplitude, they contain

fermion loops, and cancel by Furry’s theorem.

The loop-type colour structures indicate symmetries present in the subamplitudes,

as with the tree-type structures. The trace over the gluons imposes a cyclic symmetry

in the gluon permutations within the amplitude; indeed, the partial amplitude B1,q,f
5

is accompanied by two traces of opposite cyclicity, resulting in it being maximally

symmetric under gluon exchange. In principle, it is possible to rewrite the sublead-

ing contributions in terms of the leading colour subamplitudes [104]. However, this

has the effect of contorting the colour connectivity of the amplitudes which, for the
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purposes of utilising antenna subtraction, one wishes to avoid. The squared matrix

element, summed over colours and helicities, is given by

dσ̂RVqq̄,NNLO = N 1
qq̄,5dΦ3(p3, p4, p5; p1, p2)

dx1

x1

dx2

x2
δ(1− x1)δ(1− x2)

1

3!
×
{

∑

P (i,j,k)

(
B1,l

5 (1̂q, ig, jg, kg, 2̂q̄) +
1

N2
B1,s

5 (1̂q, ig, jg, kg, 2̂q̄)
)

− 1

N2

∑

P (i,j,k)

B̃1,l
5 (1̂q, ĩ, j, k, 2̂q̄)−

1

N4

∑

P (i,j,k)

B̃1,s
5 (1̂q, ĩ, j, k, 2̂q̄)

+

(
N2 + 1

N4

)[
B̃1,l

5 (1̂q, 3̃g, 4̃g, 5̃g, 2̂q̄) +
1

N2
B̃1,s

5 (1̂q, 3̃g, 4̃g, 5̃g, 2̂q̄)
]

+

(
1

2N2

)[∑

i

B1,d
5 (1̂q, i, 2̂q̄; j̃g, k̃g)−

1

N2
B̃1,d

5 (1̂q, 3̃g, 2̂q̄; 4̃g, 5̃g)
]

+
1

N2

[ ∑

P (i,j,k)

B1,q
5 (1̂q, 2̂q̄; ig, jg, kg)−

2

3N2
B̃1,q

5 (1̂q, 2̂q̄; 3̃g, 4̃g, 5̃g)
]}
,

(5.2.23)

where again the sum is over the leading colour gluon permuations and the flavour-

dependent terms are omitted. The overall factor can be derived from (5.1.4),

N 1
qq̄,5 = Nqq̄,LO

(
αsN

2π

)2
C̄(ε)2

C(ε)
, (5.2.24)

and

NRV
NNLO = Nqq̄,LO

(
αsN

2π

)2
C̄(ε)2

C(ε)
= NRV

NNLOC(ε). (5.2.25)

The Abelian structures also behave in a similar fashion as their tree level counter-

parts. However, we now encounter new objects Bd
5 and Bq

5 due to the loop-level colour

structures that do not have analogues at tree level. The squared matrix element Bd
5

originates from amplitudes in which there is a colour string between the quarks and a

single gluon, whilst the remaining external gluons make up a second colour structure

involving a fermion loop, and thus are colour disconnected from the quarks. This is

indicated by the Bd
5 arguments: the sum being over each gluon, with the last two

arguments being the remaining gluons. Similarly for Bq
5, where now there is direct

colour connection between the quarks, and all three gluons forming a separate colour
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structure. This can be seen at the amplitude level by noting the form of the SU(3)

generators multiplying each amplitude in (5.2.22).

The pole structure for the full squared matrix element is derived in Appendix

A. For the purposes of this thesis we are only considering the leading colour matrix

elements: the pole structure in terms of integrated antenna strings reads

Poles
(
dσ̂RVNNLO

)
= −N 1

qq̄,4

∫
dΦ3(p3, p4, p5; p1, p2)

dx1

x1

dx2

x2

1

2

∑

P (i,j,k)

{

J
(1)
5 (ˆ̄1q, ig, jg, kg, ˆ̄2q̄) B

0
5(ˆ̄1q, ig, jg, kg, ˆ̄2q̄)

}
. (5.2.26)

Numerical Checks

The calculations of both the four and five parton one-loop matrix elements were

performed contemporaneously by Badger et al. in Njet [105]. The matrix elements

constructed by this author are derived from the amplitudes given in [106] and [107],

rewritten in the form given in (5.2.23) and (5.2.15) respectively, and implemented in

the Fortran code NNLOJET. The Njet code evaluates the full squared matrix element,

including all subleading effects, whereas the colour decomposition employed here

ideally requires checks on the individual colour-ordered squared subamplitudes, in

addition to the full squared matrix element. Nevertheless, both methods allow for a

manual variation of the renormalisation scale, number of colours and quark flavours

so particular orders in colour can be isolated. Both approaches can be evaluated

in conventional dimensional regularisation, and also shifted to the ’t Hooft-Veltman

scheme, allowing for further corroboration of the finite terms.

The results used here (averaged over initial spins and colours) can be directly

compared with the Njet result for the total squared matrix element at specific points

in phase space. We calculate the ratio

1

g2

|M1
5 ({pi})|2

|M0
5 ({pi})|2

, (5.2.27)

for two four-parton phase space points and two five-parton phase space points. The

channel given is that of gluon production from quark-antiquark collision, and the

results between NNLOJET and Njet are given in Tables 5.1 and 5.2 respectively.
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q̄q → gg
1/ε2 1/ε 1/ε0

PS #1
NNLOJET -16.6666666666 13.3561829169717 21.9879375396124
Njet -1.66666666666722 13.3561820813345 21.9879372288741

PS #2
NNLOJET -16.666666666666 8.79545993894548 -78.4933926511771
Njet -16.6666666666722 8.79546007470786 -78.4933892819566

Table 5.1: Comparison of NNLOJET and Njet [105] for value of R in (5.2.27), for
q̄q → gg at leading colour.

q̄q → ggg
1/ε2 1/ε 1/ε0

PS #1
NNLOJET -23.333333333 -11.3640062833269 -91.3387887430282
Njet -23.333333333 -11.3640059348231 -9.13387867405098

PS #2
NNLOJET -23.333333333 6.56701820268222 -1.49785922157793
Njet -23.333333333 6.567017843280173 -1.49785955162316

Table 5.2: Comparison of NNLOJET and Njet [105] for value of R in (5.2.27), for
q̄q → ggg.

We see good agreement for both multiplicity channels. For the leading colour

comparisons in Table 5.1, a small discrepancy is expected, since in order to compare

the single colour-ordered amplitudes constructed here with the full matrix element

in Njet, the large N limit (N = 3000) is taken so as to isolate the colour-leading

contribution. Naturally in this region the subleading effects are small but still con-

tributing.

5.2.3 Six-parton matrix elements

Only at NNLO do we require a six-parton matrix element for dijet production, namely

for the tree level contribution which allows for double real radiation. The process

again adds a further gluon, and at leading colour is given by

dσ̂RRqq̄,NNLO = N 0
qq̄,6 dΦ4(p3, . . . , p6; p1, p2)

1

4!

∑

P (i,j,k,l)

× B0
6(1̂q, ig, jg, kg, lg, 2̂q̄) J

(4)
2 (pi, pj, pk, pl), (5.2.28)
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where P (i, j, k, l) denotes the 24 possible permutations of gluons in the colour ordering

and the overall factor is given by,

N 0
qq̄,6 = Nqq̄,LO

(
αsN

2π

)2
C̄(ε)2

C(ε)2
. (5.2.29)

It is convenient to rearrange the 24 squared amplitudes present in Eq. (5.2.28) into

three terms,

∑

P (i,j,k,l)

M0
6 (1̂q, ig, jg, kg, lg, 2̂q̄) = X0

6 (1̂q, 3g, 4g, 5g, 6g, 2̂q̄)

+ X0
6 (1̂q, 3g, 5g, 4g, 6g, 2̂q̄)

+ X0
6 (1̂q, 3g, 4g, 6g, 5g, 2̂q̄), (5.2.30)

where each X0
6 contains eight colour ordered squared amplitudes obtained by the four

cyclic permutations of the final state gluons and their line reversals:

X0
6 (1̂q, 3g, 4g, 5g, 6g, 2̂q̄) = B0

6(1̂q, 3g, 4g, 5g, 6g, 2̂q̄) +B0
6(1̂q, 6g, 5g, 4g, 3g, 2̂q̄)

+ B0
6(1̂q, 4g, 5g, 6g, 3g, 2̂q̄) +B0

6(1̂q, 3g, 6g, 5g, 4g, 2̂q̄)

+ B0
6(1̂q, 5g, 6g, 3g, 4g, 2̂q̄) +B0

6(1̂q, 4g, 3g, 6g, 5g, 2̂q̄)

+ B0
6(1̂q, 6g, 3g, 4g, 5g, 2̂q̄) +B0

6(1̂q, 5g, 4g, 3g, 6g, 2̂q̄).

(5.2.31)

As will be seen, it is sufficient to apply the subtraction technique to one block of

orderings, since the other two are related by symmetry and contribute numerically

the same result after integration over the phase space.
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5.3 Quark-antiquark initiated dijet production at

NLO

5.3.1 Real radiation subtraction term, dσ̂SNLO

The subtraction term for the real cross section presented in Eq. (5.2.18) is given by,

dσ̂Sqq̄,NLO = N 0
qq̄,5 dΦ3(p3, p4, p5; p1, p2)

1

3!

∑

P (i,j,k)

{

[
d0

3(1̂, i, j) B0
4(ˆ̄1q, (̃ij)g, kg, 2̂q̄) J

(2)
2 (p(ij), pk)

+ f 0
3 (i, j, k) B0

4(1̂q, (̃ij)g, (̃jk)g, 2̂q̄) J
(2)
2 (p(ij), p(jk))

+ d0
3(2̂, k, j) B0

4(1̂q, ig, (̃jk)g,
ˆ̄2q̄) J

(2)
2 (pi, p(jk))

]

− 1

N2

[
A0

3(1̂, i, 2̂) B0
4(ˆ̄1q, j̃g, k̃g, ˆ̄2q̄) J

(2)
2 (pj, pk)

+ d0
3(1̂, j, k) B̃0

4(ˆ̄1q, ig, (̃jk)g, 2̂q̄) J
(2)
2 (pi, p(jk))

+ d0
3(2̂, k, j) B̃0

4(1̂q, ig, (̃jk)g,
ˆ̄2q̄) J

(2)
2 (pi, p(jk))

]

+
1

3!

(
N2 + 1

N4

) [
A0

3(1̂, i, 2̂) B̃0
4(ˆ̄1q, j̃g, k̃g, ˆ̄2q̄) J

(2)
2 (pj, pk)

+ A0
3(1̂, j, 2̂) B̃0

4(ˆ̄1q, ĩg, k̃g, ˆ̄2q̄) J
(2)
2 (pi, pk)

+ A0
3(1̂, k, 2̂) B̃0

4(ˆ̄1q, ĩg, j̃g, ˆ̄2q̄) J
(2)
2 (pi, pj)

]}
. (5.3.32)

5.3.2 Virtual subtraction term, dσ̂TNLO

Integrating the real subtraction term over the single unresolved phase space and

combining with the appropriate NLO mass factorisation kernels allows the virtual

subtraction term to be constructed from integrated antenna strings,

dσ̂Tqq̄,NLO = −N 1
qq̄,4 dΦ2(p3, p4; p1, p2)

1

2

∑

P (i,j)

∫
dx1

x1

dx2

x2

{

J
(1)
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) B

0
4(ˆ̄1q, ig, jg, ˆ̄2q̄)

− 1

N2

[
J

(1)
2 (ˆ̄1q, ˆ̄2q̄) B

0
4(ˆ̄1q, ig, jg, ˆ̄2q̄) + J

(1)
3 (ˆ̄1q, ig, ˆ̄2q̄) B̃

0
4(ˆ̄1q, ig, jg, ˆ̄2q̄)

]

+

(
N2 + 1

2N4

) [
J

(1)
2 (ˆ̄1q, ˆ̄2q̄) B̃

0
4(ˆ̄1q, ig, jg, ˆ̄2q̄)

]}
J

(2)
2 (pi, pj). (5.3.33)
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From the definition of these strings, the connection to the unintegrated subtraction

term in Eq. (5.3.32) is clear. This expression exactly matches that of Eq. (5.2.15),

i.e.,

Poles
(
dσ̂Vqq̄,NLO

)
− Poles

(
dσ̂Tqq̄,NLO

)
= 0. (5.3.34)

5.4 Quark-antiquark initiated dijet production at

NNLO

As aforementioned, the leading colour NNLO contribution to dijet production has

previously been studied using the antenna subtraction formalism for purely gluonic

channels at the double real [108], real-virtual [15] and double virtual [80] levels.

This section will focus on the leading colour NNLO corrections to dijet production

from quark-antiquark scattering. These corrections include the double real tree-level

contribution qq̄ → gggg, the real-virtual one-loop contribution qq̄ → ggg and the

double virtual two-loop contribution qq̄ → gg, all of which were examined using the

methods of Section 4.5.

5.4.1 Double real subtraction term, dσ̂SNNLO

The leading colour contribution to the squared matrix element is an incoherent sum

of squared colour-ordered partial amplitudes. The sum over colour orderings can

be partitioned into three blocks of orderings as described in Sec. 5.2.3, such that a

subtraction term may be constructed for a block of orderings, rather than the entire

squared matrix element. Following the general discussion of Sec. 4.5, the NNLO

subtraction term for the block of orderings in Eq. (5.2.31) is given by,

dσ̂S,X6

qq̄,NNLO = N 0
qq̄,6 dΦ4(p3, . . . , p6; p1, p2)

1

4!

∑

PC(ijkl)

{

+f 0
3 (i, j, k)B0

5(1̂q, (̃i, j)g, (̃jk)g, lg, 2̂q̄) J
(3)
2 (p(ij), p(jk), pl)

+f 0
3 (j, k, l)B0

5(1̂q, ig, (̃jk)g, (̃kl)g, 2̂q̄) J
(3)
2 (p(i), p(jk), p(kl))

+d0
3(1̂, i, j)B0

5(ˆ̄1q, (̃ij)g, kg, lg, 2̂q̄) J
(3)
2 (p(ij), pk, pl)



5.4. Quark-antiquark initiated dijet production at NNLO 123

+d0
3(2̂, l, k)B0

5(1̂q, ig, jg, (̃kl)g,
ˆ̄2q̄) J

(3)
2 (pi, pj, p(kl))

+f 0
3 (l, k, j)B0

5(1̂q, (̃lk)g, (̃kj)g, ig, 2̂q̄) J
(3)
2 (p(lk), p(kj), pi)

+f 0
3 (k, j, i)B0

5(1̂q, lg, (̃kj)g, (̃ji)g, 2̂q̄) J
(3)
2 (pl, p(kj), p(ji))

+d0
3(1̂, l, k)B0

5(ˆ̄1q, (̃lk)g, jg, ig, 2̂q̄) J
(3)
2 (p(lk), pj, pi)

+d0
3(2̂, i, j)B0

5(1̂q, lg, kg, (̃ji)g,
ˆ̄2q̄) J

(3)
2 (pl, pk, p(ji))

+F 0
4,a(i, j, k, l)B

0
4(1̂q, (̃ijk)g, (̃jkl)g, 2̂q̄) J

(2)
2 (p(ijk), p(jkl))

+F 0
4,b(i, j, l, k)B0

4(1̂q, (̃ijl)g, (̃jlk)g, 2̂q̄) J
(2)
2 (p(ijk), p(jlk))

+F 0
4,a(l, k, j, i)B

0
4(1̂q, (̃lkj)g, (̃kji)g, 2̂q̄) J

(2)
2 (p(lkj), p(kji))

+F 0
4,b(l, k, i, j)B

0
4(1̂q, (̃lki)g, (̃kij)g, 2̂q̄) J

(2)
2 (p(lki), p(kij))

+D0
4(1̂, i, j, k)B0

4(ˆ̄1q, (̃ijk)g, lg, 2̂q̄) J
(2)
2 (p(ijk), pl)

+D0
4(2̂, l, k, j)B0

4(1̂q, ig, (̃lkj)g,
ˆ̄2q̄) J

(2)
2 (pi, p(lkj))

−Ã0
4(1̂, i, k, 2̂)B0

4(ˆ̄1q, j̃g, l̃g, ˆ̄2q̄) J
(2)
2 (pj̃, pl̃)

−f 0
3 (i, j, k) f 0

3 ((̃ij), (̃jk), l)B0
4(1̂q, ˜((ij)(jk))g, (̃(jk)l)g, 2̂q̄) J

(2)
2 (p((ij)(jk)), p((jk)l))

−f 0
3 (j, k, l) f 0

3 (i, (̃jk), (̃kl))B0
4(1̂q, (̃i(jk))g,

˜((jk)(kl))g, 2̂q̄) J
(2)
2 (p((ij)(jk)), p((jk)l))

− f 0
3 (i, j, k) f 0

3 ((̃ij), l, (̃jk))B0
4(1̂q, (̃(ij)l)g, (̃(jk)l)g, 2̂q̄) J

(2)
2 (p((ij)l), p((jk)l))

−f 0
3 (l, k, j) f 0

3 ((̃lk), (̃kj), i)B0
4(1̂q, ˜((lk)(kj))g, (̃(kj)i)g, 2̂q̄) J

(2)
2 (p((lk)(kj)), p((kj)i))

−f 0
3 (k, j, i) f 0

3 (l, (̃kj), (̃ji))B0
4(1̂q, (̃l(kj))g,

˜((kj)(ji))g, 2̂q̄) J
(2)
2 (p(kj), p((kj)(ji)))

− f 0
3 (l, k, j) f 0

3 ((̃lk), i, (̃kj))B0
4(1̂q, (̃(lk)i)g, (̃(kj)i)g, 2̂q̄) J

(2)
2 (p((lk)i), p((kj)i))

−d0
3(1̂, i, j)D0

3(ˆ̄1, (̃ij), k)B0
4(ˆ̄̄1q, (̃(ij)k)g, lg, 2̂q̄) J

(2)
2 (p((ij),k), pl)

−f 0
3 (i, j, k)D0

3(1̂, (̃i, j), (̃jk))B0
4(ˆ̄1q, ˜((ij)(jk))g, lg, 2̂q̄) J

(2)
2 (p((ij)(jk)), pl)

−d0
3(1̂, k, j)D0

3(ˆ̄1, (̃kj), i)B0
4(ˆ̄̄1q, (̃(kj)i)g, lg, 2̂q̄) J

(2)
2 (p((kj)i), pl)
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−d0
3(2̂, l, k)D0

3(ˆ̄2, (̃lk), j)B0
4(1̂q, ig, (̃(lk)j)g,

ˆ̄̄2q̄) J
(2)
2 (p((lk)j), pi)

−f 0
3 (l, k, j)D0

3(2̂, (̃lk), (̃kj))B0
4(1̂q, ig, ˜((lk)(kj))g,

ˆ̄2q̄) J
(2)
2 (pi, p((lk)(kj)))

−d0
3(2̂, j, k)D0

3(ˆ̄2, (̃jk), l)B0
4(1̂q, ig, (̃(jk)l)g,

ˆ̄̄2q̄) J
(2)
2 (pi, p((jk)l))

+A0
3(1̂, i, 2̂)A0

3(ˆ̄1, k̃, ˆ̄2)B0
4(ˆ̄̄1q,

˜̃jg,
˜̃lg,

ˆ̄̄2q̄) J
(2)
2 (pj̃, pl̃)

+A0
3(1̂, k, 2̂)A0

3(ˆ̄1, ĩ, ˆ̄2)B0
4(ˆ̄̄1q,

˜̃jg,
˜̃lg,

ˆ̄̄2q̄) J
(2)
2 (p˜̃j

, p˜̃
l
)

+
1

2
f 0

3 (i, l, k) f 0
3 ((̃il), j, (̃lk))B0

4(1̂q, (̃(il)j)g, (̃(lk)j)g, 2̂q̄) J
(2)
2 (p((il)j), p((lk)j))

−1

2
d0

3(1̂, l, i) f 0
3 ((̃li), j, k)B0

4(ˆ̄1q, (̃(il)j)g, (̃jk)g, 2̂q̄) J
(2)
2 (p((il)j), p(jk))

−1

2
d0

3(2̂, l, k) f 0
3 (i, j, (̃kl))B0

4(1̂q, (̃ij)g, (̃j(kl))g,
ˆ̄2q̄) J

(2)
2 (p(ij), p(j(kl)))

−1

2

[ (
S(il)l(lk) − S((il)j)l(j(lk))

)
−
(
S1l(il) − S1l((il)j)

)
−
(
S2l(lk) − S2l(j(lk))

) ]

×f 0
3 ((̃il), j, (̃lk)) B0

4(1̂q, (̃(il)j)g, (̃j(lk))g, 2̂q̄) J
(2)
2 (p((il)j), p(j(lk)))

+
1

2
f 0

3 (l, i, j) f 0
3 ((̃li), k, (̃ij))B0

4(1̂q, (̃(li)k)g, (̃(ij)k)g, 2̂q̄) J
(2)
2 (p((li)k), p((ij)k))

−1

2
d0

3(1̂, i, l) f 0
3 ((̃il), k, j)B0

4(ˆ̄1q, (̃(il)k)g, (̃kj)g, 2̂q̄) J
(2)
2 (p((il)k), p(kj))

−1

2
d0

3(2̂, i, j) f 0
3 (l, k, (̃ij))B0

4(1̂q, (̃lk)g, (̃k(ij))g,
ˆ̄2q̄) J

(2)
2 (p(lk), p(k(ij)))

−1

2

[ (
S(li)i(ij) − S((li)k)i(k(ij))

)
−
(
S1i(li) − S1i((li)k)

)
−
(
S2i(ij) − S2i(k(ij))

) ]

×f 0
3 ((̃li), k, (̃ij)) B0

4(1̂q, (̃(li)k)g, (̃k(ij))g, 2̂q̄) J
(2)
2 (p((li)k), p(k(ij)))

+
1

2
d0

3(1̂, k, j) d0
3(ˆ̄1, i, (̃kj))B0

4(ˆ̄̄1q, (̃(kj)i)g, lg, 2̂q̄) J
(2)
2 (p((kj)i), pl)

−1

2
f 0

3 (j, k, l) d0
3(1̂, i, (̃jk))B0

4(ˆ̄1q, (̃i(jk))g, (̃kl)g, 2̂q̄) J
(2)
2 (p(i(jk)), p(kl))

−1

2
A0

3(1̂, k, 2̂) d0
3(ˆ̄1, ĩ, j̃)B0

4(ˆ̄̄1q, (̃ij)g, l̃g,
ˆ̄2q̄) J

(2)
2 (p(i,j), pl̃)

−1

2

[ (
S1k(jk) − S1̄k(i(jk))

)
−
(
S(jk)k(kl) − S(i(jk))k(kl)

)
−
(
S1k2 − S1̄k2

)
︸ ︷︷ ︸

0

]

×d0
3(1̂, i, (̃jk)) B0

4(ˆ̄1q, (̃i(jk))g, (̃kl)g, 2̂q̄) J
(2)
2 (p(i(jk)), p(kl))
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+
1

2
d0

3(1̂, i, j) d0
3(ˆ̄1, k, (̃ij))B0

4(ˆ̄̄1q, (̃(ij)k)g, lg, 2̂q̄) J
(2)
2 (p((ij)k), pl)

−1

2
f 0

3 (j, i, l) d0
3(1̂, k, (̃ji))B0

4(ˆ̄1q, (̃k(ji))g, (̃il)g, 2̂q̄) J
(2)
2 (p(k,(j,i)), p(i,l))

−1

2
A0

3(1̂, i, 2̂) d0
3(ˆ̄1, k̃, j̃)B0

4(ˆ̄̄1q, (̃kj)g, l̃g,
ˆ̄2q̄) J

(2)
2 (p(kj), pl̃)

−1

2

[ (
S1i(ji) − S1̄i(k(ji))

)
−
(
S(k(ji))i(il) − S(ji)i(il)

)
−
(
S1i2 − S1̄i2

)
︸ ︷︷ ︸

0

]

×d0
3(1̂, k, (̃ji)) B0

4(ˆ̄1q, (̃k(ji))g, (̃il)g, 2̂q̄) J
(2)
2 (p(k(ji)), p(il))

+
1

2
d0

3(2̂, j, k) d0
3(ˆ̄2, l, (̃jk))B0

4(1̂q, ig, (̃(jk)l)g,
ˆ̄̄2q̄) J

(2)
2 (pi, p((jk)l))

−1

2
f 0

3 (i, j, k) d0
3(2̂, l, (̃jk))B0

4(1̂q, (̃ij)g, (̃l(jk))g,
ˆ̄2q̄) J

(2)
2 (p(i,j), p(l,(j,k)))

−1

2
A0

3(1̂, j, 2̂) d0
3(ˆ̄2, l̃, k̃)B0

4(ˆ̄1q, ĩg, (̃lk)g,
ˆ̄̄2q̄) J

(2)
2 (pĩ, p(lk))

−1

2

[ (
S2j(jk) − S2̄j(l(jk))

)
−
(
S(ij)j(jk) − S(ij)j((jk)l)

)
−
(
S1j2 − S1j2̄

)
︸ ︷︷ ︸

0

]

×d0
3(2̂, l, (̃jk)) B0

4(1̂q, (̃ij)g, (̃(jk)l)g,
ˆ̄2q̄) J

(2)
2 (p(ij), p((jk)l))

+
1

2
d0

3(2̂, l, k) d0
3(ˆ̄2, j, (̃lk))B0

4(1̂q, ig, (̃(lk)j)g,
ˆ̄̄2q̄) J

(2)
2 (p((lk)j), pi)

−1

2
f 0

3 (i, l, k) d0
3(2̂, j, (̃lk))B0

4(1̂q, (̃il)g, (̃j(lk))g,
ˆ̄2q̄) J

(2)
2 (p(il), p(j(lk)))

−1

2
A0

3(1̂, l, 2̂) d0
3(ˆ̄2, j̃, k̃)B0

4(ˆ̄1q, ĩg, (̃jk)g,
ˆ̄̄2q̄) J

(2)
2 (pĩ, p(jk))

−1

2

[ (
S2l(lk) − S2̄l(j(lk))

)
−
(
S(il)l((lk)j) − S(il)l(lk)

)
−
(
S1l2 − S1l2̄

)
︸ ︷︷ ︸

0

]

×d0
3(2̂, j, (̃lk)) B0

4(1̂q, (̃il)g, (̃(lk)j)g,
ˆ̄2q̄) J

(2)
2 (p(il), p((lk)j))

−1

2
A0

3(1̂, i, 2̂)A0
3(ˆ̄1, k̃, ˆ̄2)B0

4(ˆ̄̄1q,
˜̃jg,

˜̃lg,
ˆ̄̄2q̄) J

(2)
2 (p˜̃j

, p˜̃
l
)

+
1

2
d0

3(1̂, i, j)A0
3(ˆ̄1, k, 2̂)B0

4(ˆ̄̄1q, (̃ij)g, l̃g,
ˆ̄2q̄) J

(2)
2 (p(ĩj), pl̃)

+
1

2
d0

3(2̂, i, l)A0
3(1̂, k, ˆ̄2)B0

4(ˆ̄1q, j̃g, (̃il)g,
ˆ̄̄2q̄) J

(2)
2 (pj̃, p(ĩl))

+
1

2

[ (
S1i2 − S1̄̃i2̄

)
−
(
S1i(ji) − S1̄̃i(j̃i)

)
−
(
S2i(il) − S2̄̃i(ĩl)

) ]

×A0
3(1̂, k, 2̂) B0

4(ˆ̄1q, (̃ji)g, (̃il)g,
ˆ̄2q̄) J

(2)
2 (p(j̃i), p(ĩl))
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−1

2
A0

3(1̂, k, 2̂)A0
3(ˆ̄1, ĩ, ˆ̄2)B0

4(ˆ̄̄1q,
˜̃jg,

˜̃lg,
ˆ̄̄2q̄) J

(2)
2 (pj̃, pl̃)

+
1

2
d0

3(1̂, k, j)A0
3(ˆ̄1, i, 2̂)B0

4(ˆ̄̄1q, (̃kj)g, l̃g,
ˆ̄2q̄) J

(2)
2 (p(k̃j), pl̃)

+
1

2
d0

3(2̂, k, l)A0
3(1̂, i, ˆ̄2)B0

4(ˆ̄1q, j̃g, (̃kl)g,
ˆ̄̄2q̄) J

(2)
2 (pj̃, p(k̃l))

+
1

2

[ (
S1k2 − S1̄k̃2̄

)
−
(
S1k(jk) − S1̄k̃(j̃k)

)
−
(
S2k(kl) − S2̄k̃(k̃l)

) ]

×A0
3(1̂, i, 2̂) B0

4(ˆ̄1q, (̃jk)g, (̃kl)g,
ˆ̄2q̄) J

(2)
2 (p(j̃k), p(k̃l))

−d0
3(1̂, i, j) d0

3(2̂, l, k)B0
4(ˆ̄1q, (̃ij)g, (̃kl)g,

ˆ̄2q̄) J
(2)
2 (p(ij), p(kl))

−d0
3(1̂, l, k) d0

3(2̂, i, j)B0
4(ˆ̄1q, (̃lk)g, (̃ij)g,

ˆ̄2q̄) J
(2)
2 (p(lk), p(ij))

}
, (5.4.35)

where PC(i, j, k, l) denotes the set of cyclic permutations of the gluons.

It is interesting to note the appearance of the sub-leading colour quark-antiquark

antenna Ã0
4 and the accompanying A0

3 antennae. The Ã0
4 antenna is introduced

to remove spurious divergent behaviour of the D0
4 antenna in the triple collinear

limit. Specifically, the D0
4 antenna contains the IR divergent limit involving colour-

disconnected gluons,

D0
4(i, j, k, l)

j||i||l−→ P̃ijl→Q(x, y, z), (5.4.36)

where the antenna tends to the QED-like triple collinear splitting function. This

divergent limit has no analogue in the leading colour physical matrix elements and

must be removed. In QCD, the quark resides in the fundamental representation and

so always terminates a string of gluons which lie to the right (left) of the quark

(antiquark) in the colour ordering, e.g.,

M0
n(· · · ; 1̂q, ig, jg, kg, · · · , lg,mg, ng, 2̂q̄; · · · ). (5.4.37)

The D0
4 antenna is derived from the decay of a neutralino to a gluino and gluons,

χ̃ → g̃ggg, where the gluino plays the role of the quark. In contrast to the quarks,

the gluino resides in the adjoint representation and so can sit anywhere in the colour

ordering, including configurations with gluons either side of the gluino. For example,
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the D0
4 is derived from the squared partial amplitude M0

4 (ig̃, jg, kg, lg) which is sym-

metric under cyclic permutations of its partons. The cyclic symmetry of this matrix

element gives rise to the spurious divergent limit described in Eq. (5.4.36).

In any QCD calculation involving a quark-antiquark pair, the subtraction term

will contain two D0
4 antennae, one for the quark and the other for the antiquark, each

containing a spurious limit of the kind in Eq. (5.4.36). For example, for the matrix

element in Eq. (5.4.37), the subtraction term contains the antennae1, D0
4(1̂, i, j, k)

and D0
4(2̂, n,m, l). The subtraction term is constructed for a block of colour orderings

related by cyclic permutations of gluons. Using this fact, the subtraction term will

always contain the antennae D0
4(1̂, i, j, k) and D0

4(2̂, k, j, i), where the arguments of

the second antenna are obtained by cyclically permuting the gluons in Eq. (5.4.37).

Both of these antennae contain spurious limits of the kind in Eq. (5.4.36), involving

gluons i and k and the antenna’s fermion. The spurious limits of both D0
4 antennae

can therefore be removed using an Ã0
4(1̂, i, k, 2̂) antenna, as is done in Eq. (5.4.35).

Using D0
4 antennae to isolate divergences associated with the quark and antiquark

endpoints of a quark string, forces us to construct the subtraction term for a block

of colour orderings related by cyclic permutations of gluons. Exploiting the cyclic

permutations, the spurious limits of the D0
4 antennae can be systematically removed

using an Ã0
4 antenna. It is noted that this argument holds no matter how many

gluons are present in the quark string2 and the technique is not a special case of the

six parton scattering process considered here.

With the modifications due to the spurious limits of the quark-gluon antennae,

the double real subtraction term fits the general structure derived in Section 4.5.

Due to the non-trivial factorisation of the four-parton final-final antennae and the

large sum of permutations, it is not straightforward to show analytically that this

subtraction term correctly mimics the IR divergent behaviour of the physical cross

section. However, to demonstrate its validity, the subtraction term has been tested

numerically.

1Here the quark-antiquark pair is in the initial state (IF D0
4 antennae) for consistency with the

process considered in this section but the argument is generic to FF, IF and II antennae.
2The number of gluons should be more than two. In the case of two gluons an A0

4 antenna is
used instead of the D0

4 and the issue does not arise.
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Figure 5.4: Plots displaying the convergence of the double real subtraction term to
the physical matrix element in various unresolved limits. The green data is furthest
from the singular configuration with the blue data closer to the singular region and
the red data the closest. (a) Final-state triple collinear limit between partons i, j, k
such that x = sijk/s12. (b) Triple collinear limit between final-state partons i, j and
initial-state parton 1, such that x = s1ij/s12. (c) Double collinear limit between final-
state partons i, j and the initial-final pair 1, k such that x = sij/s12, y = s1k/s12. (d)
Double soft limit for soft partons i, j such that x = (s12 − sij)/s12.

For each IR divergent configuration, a set of momenta were generated using

RAMBO [109] such that the momenta fulfil a set of constraints defining the unresolved

configuration. In this configuration, we compute the ratio of the physical matrix

element to the subtraction term:

R =
dσ̂RRNNLO
dσ̂SNNLO

. (5.4.38)

This procedure is then repeated for 10,000 different phase space points in the unre-

solved configuration defined by the constraints. The constraints are then tightened

to force the phase space points closer to the unresolved singular point and the ratio

calculated for another 10,000 points. The procedure is repeated once more for a set

of points even closer to the singular point and the histogram of ratios for the three

sets of constraints plotted.
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Figure 5.5: Distributions of R without azimuthal angular rotations for single collinear
limits: final-final collinear limit for (a) gg → gggg and (b) qq̄ → gggg and initial-final
gluon-gluon collinear limit for (c) gg → gggg and (d) qq̄ → gggg. The parameter x
controls how closely the singular limit is approached, close (dark green), closer (blue)
and closest (red).

A selection of plots from four different unresolved configurations is shown in Figure

5.4. In each plot we see that the distribution of R becomes more sharply peaked

around one as the unresolved singular limit is approached, i.e., as the parameter x

gets smaller. This provides statistical evidence for the convergence of the subtraction

term to the physical cross section in the IR divergent limits.

Testing the subtraction term in this way also gives a clear demonstration of the

presence of azimuthal correlations in the single collinear limits. The origin and so-

lution to this problem have been discussed in [22, 35, 108]. It was shown that the

azimuthal correlations, which spoil the subtraction in the single collinear limit, arise

from splitting functions where a parent gluon splits into two daughter gluons or

a quark-antiquark pair (and the various crossings of this configuration to include

initial-state partons). The qq̄ → gggg process contains the same final state as the

gg → gggg process, studied in [79]. Therefore, by turning off the angular rotations

when computing the ratio R, both subtraction terms should display similar behaviour

when testing the single collinear limit between two final-state partons. This is seen
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in Figure 5.5(a) and (b), where the subtraction terms for both processes display a

broad peak, characteristic of the presence of uncompensated angular terms. An in-

teresting comparison between the two processes is seen in the initial-final collinear

limit. The collinear limit between an initial-state gluon and a final-state gluon does

display azimuthal correlations while the collinear limit between an initial-state quark

and a final-state gluon does not. We see that the limit involving the initial-state

quark shown in Figure 5.5(d) is sharply peaked while the corresponding limit in the

purely gluonic process seen in Figure 5.5(c) displays a broad peak because of the

uncompensated azimuthal correlations.

5.4.2 Real-virtual subtraction term, dσ̂TNNLO

Following the discussion in Sec. 4.5, the real-virtual subtraction term is given by,

dσ̂Tqq̄,NNLO = N 1
qq̄,5

∫
dΦ3(p3, . . . , p5;x1p1, x2p2)

1

3!

dx1

x1

dx2

x2

∑

P (i,j,k)

{

− J
(1)
5 (ˆ̄1q, ig, jg, kg, ˆ̄2q̄) B

0
5(ˆ̄1q, ig, jg, kg, ˆ̄2q̄) J

(3)
2 (pi, pj, pk)

+ d0
3(ˆ̄1, i, j)

[
B1

4(ˆ̄̄1q, (̃ij)g, kg,
ˆ̄2q̄)δ(1− x1)δ(1− x2)

+ J
(1)
4 (ˆ̄̄1q, (̃ij)g, kg,

ˆ̄2q̄) B
0
4(ˆ̄̄1q, (̃ij)g, kg,

ˆ̄2q̄)

]
J

(2)
2 (pĩj, pk)

+ f 0
3 (i, j, k)

[
B1

4(ˆ̄1q, (̃ij)g, (̃jk)g,
ˆ̄2q̄)δ(1− x1)δ(1− x2)

+ J
(1)
4 (ˆ̄1q, (̃ij)g, (̃jk)g,

ˆ̄2q̄) B
0
4(ˆ̄1q, (̃ij)g, (̃jk)g,

ˆ̄2q̄)

]
J

(2)
2 (pĩj, pj̃k)

+ d0
3(ˆ̄2, k, j)

[
B1

4(ˆ̄1q, ig, (̃kj)g,
ˆ̄̄2q̄)δ(1− x1)δ(1− x2)

+ J
(1)
4 (ˆ̄1q, ig, (̃kj)g,

ˆ̄̄2q̄) B
0
4(ˆ̄1q, ig, (̃kj)g,

ˆ̄̄2q̄)

]
J

(2)
2 (pi, pj̃k)

+

[
d1

3(ˆ̄1, i, j)δ(1− x1)δ(1− x2) + J
(1)
D (ˆ̄1g, ig, jg) d

0
3(ˆ̄1, i, j)

−2 d0
3(ˆ̄1, i, j) J

(1)
2 (ˆ̄̄1q, (̃ij))

]
B0

4(ˆ̄̄1q, (̃ij)g, kg,
ˆ̄2q̄) J

(2)
2 (pĩj, pk)

+

[
f 1

3 (i, j, k)δ(1− x1)δ(1− x2) + J
(1)
F (ig, jg, kg) f

0
3 (i, j, k)

−2 f 0
3 (i, j, k) J

(1)
2 ((̃ij)g, (̃jk)g)

]
B0

4(ˆ̄1q, (̃ij)g, (̃jk)g,
ˆ̄2q̄) J

(2)
2 (pĩj, pj̃k)
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+

[
d1

3(ˆ̄2, k, j)δ(1− x1)δ(1− x2) + J
(1)
D (ˆ̄2q, kg, jg) d

0
3(ˆ̄2, k, j)

−2 d0
3(ˆ̄2, k, j) J

(1)
2 (ˆ̄̄2q, (̃kj)g)

]
B0

4(ˆ̄1q, ig, (̃kj)g,
ˆ̄̄2q̄) J

(2)
2 (pi, pj̃k)

−
[
Ã1

3(ˆ̄1, i, ˆ̄2)δ(1− x1)δ(1− x2) + J
(1)

Ã
(ˆ̄1q, ig, ˆ̄2q̄) A

0
3(ˆ̄1, i, ˆ̄2)

−A0
3(ˆ̄1, i, ˆ̄2) J

(1)
2 (ˆ̄̄1q,

ˆ̄̄2q̄)

]
B0

4(ˆ̄̄1q, j̃g, k̃g,
ˆ̄̄2q̄) J

(2)
2 (pj̃, pk̃)

+ b0 log

(
µ2

|s1ij|

)
d0

3(ˆ̄1, i, j)δ(1− x1)δ(1− x2) B0
4(ˆ̄̄1q, (̃ij)g, kg,

ˆ̄2q̄)J
(2)
2 (pĩj, pk)

+ b0 log

(
µ2

sijk

)
f 0

3 (i, j, k)δ(1− x1)δ(1− x2) B0
4(ˆ̄1q, (̃ij)g, (̃jk)g,

ˆ̄2q̄)J
(2)
2 (pĩj, pj̃k)

+ b0 log

(
µ2

|s2kj|

)
d0

3(ˆ̄2, k, j)δ(1− x1)δ(1− x2) B0
4(ˆ̄1q, ig, (̃jk)g,

ˆ̄̄2q̄)J
(2)
2 (pi, pj̃k)

+
1

2

[
1

2
D0

3,q(s¯̄1(̃ij)
)− 1

2
D0

3,q(s1̄j)−
1

3
F0

3 (s
(̃ij)k

) +
1

3
F0

3 (sjk) +A0
3,qq̄(s1̄2̄)−A0

3,qq̄(s¯̄12̄)

+δ(1− x1)δ(1− x2)
(
S(s

(̃ij)k
, sjk, x(̃ij)k,jk

)− S(sjk, sjk, 1)− S(s¯̄1(̃ij)
, sjk, x¯̄1(̃ij),jk

)

+S(s1̄j, sjk, x1̄j,jk)
)]

d0
3(ˆ̄1, i, j) B0

4(ˆ̄̄1q, (̃ij)g, kg,
ˆ̄2q̄) J

(2)
2 (pĩj, pk)

+
1

2

[
− 1

2
D0

3,q(s1̄(̃ij)
) +

1

2
D0

3,q(s1̄i)−
1

2
D0

3,q(s2̄(̃jk)
) +

1

2
D0

3,q(s2̄k) +
1

3
F0

3 (s
(̃ij)(̃jk)

)

−1

3
F0

3 (sik) + δ(1− x1)δ(1− x2)
(
− S(s

(̃ij)(̃jk)
, sik, x(̃ij)(̃jk),ik

) + S(sik, sik, 1)

+S(s
1̄(̃ij)

, sik, x1̄(̃ij),ik
)− S(s1̄i, sik, x1̄i,ik) + S(s

2̄(̃jk)
, sik, x2̄(̃jk),ik

)

−S(s2̄k, sik, x2̄k,ik)
)]

f 0
3 (i, j, k) B0

4(ˆ̄1q, (̃ij)g, (̃jk)g,
ˆ̄2q̄) J

(2)
2 (pĩj, pj̃k)

+
1

2

[
1

2
D0

3,q(s¯̄2(̃jk)
)− 1

2
D0

3,q(s2̄j)−
1

3
F0

3 (s
i(̃jk)

) +
1

3
F0

3 (sij) +A0
3,qq̄(s1̄2̄)−A0

3,qq̄(s1̄¯̄2)

+δ(1− x1)δ(1− x2)
(
S(s

i(̃jk)
, sij, xi(̃jk),ij

)− S(sij, sij, 1)

−S(s¯̄2(̃kj)
, sij, x¯̄2(̃kj),ij

) + S(s2̄j, sij, x2̄j,ij)
)]

× d0
3(ˆ̄2, k, j) B0

4(ˆ̄1q, ig, (̃kj)g,
ˆ̄̄2q̄) J

(2)
2 (pi, pj̃k)

+
1

2

[
−A0

3,qq̄(s¯̄1¯̄2) +A0
3,qq̄(s1̄2̄) +

1

2
D0

3,q(s¯̄1j̃)−
1

2
D0

3,q(s1̄j) +
1

2
D0

3,q(s¯̄2k̃)

−1

2
D0

3,q(s2̄k) + δ(1− x1)δ(1− x2)
(
S(s¯̄1¯̄2, sj̃k̃, x¯̄1¯̄2,j̃k̃)− S(s1̄2̄, sjk, x1̄2̄,jk)

−S(s¯̄1j̃, sj̃k̃, x¯̄1j̃,j̃k̃) + S(s1̄j̃, sjk, x1̄j̃,jk)− S(s¯̄2k̃, sj̃k̃, x¯̄2k̃,j̃k̃)

+S(s2̄k, sjk, x2̄k,jk)
)]

A0
3(ˆ̄1, i, ˆ̄2) B0

4(ˆ̄̄1q, j̃g, k̃g,
ˆ̄̄2q̄) J

(2)
2 (pj̃, pk̃)

}
. (5.4.39)
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The integrated antenna strings used in this subtraction term are given by,

J
(1)
5 (ˆ̄1q, ig, jg, kg, ˆ̄2q̄) = J

(1)
2 (ˆ̄1q, ig) + J

(1)
2 (ig, jg) + J

(1)
2 (jg, kg) + J

(1)
2 (ˆ̄2q̄, kg),

J1
D(ˆ̄1q, ig, jg) = J

(1)
2 (ˆ̄1q, ig) + J

(1)
2 (ig, jg) + J

(1)
2 (ˆ̄2q, jg),

J1
F (ig, jg, kg) = J

(1)
2 (ig, jg) + J

(1)
2 (jg, kg) + J

(1)
2 (ig, kg),

J1
D(ˆ̄2q, ig, jg) = J1

D(ˆ̄1q, ig, jg), (ˆ̄1↔ ˆ̄2, z1 ↔ z2),

J1
Ã

(ˆ̄1q, ig, ˆ̄2q̄) = J
(1)
2 (ˆ̄1q, ˆ̄2q̄). (5.4.40)

After integration only those terms introduced at the real-virtual level are passed down

to the double virtual subtraction term.

The d1
3 antenna is derived from the decay of a neutralino to a gluino and gluons,

the gluino playing the role of the quark. As with the D0
4, we encounter a spurious

divergent limit, which is removed via the Ã1
3. Whilst this is not immediately an

obvious requirement, we see that the A0
4 introduced to the double real subtraction

term has three parton antenna corrections that, when integrated, must appear in the

real-virtual subtraction term.

In a similar manner to the double real subtraction term, a set of momenta were

generated using RAMBO [109] for each divergent limit. In this configuration, the ratio

of the physical matrix element to the subtraction term we compute is

R =
dσ̂RVNNLO
dσ̂TNNLO

. (5.4.41)

This procedure is repeated for 1000 different phase space points in each unresolved

configuration, again with repeated tightening of the constraints such that the points

are taken closer to the singular limit. Since the physical matrix element contains the

one-loop virtual correction, we must now check limits for the pole contributions which

should cancel analytically against the real-virtual subtraction term. The right hand

plot in each row in Figure 5.6 illustrates the finite contribution of the single unresolved

limits. The left and centre plots are the 1/ε2 and 1/ε contributions respectively.

Again we observe that the distribution of R peaks around unity as the limit is

approached. We see from the sharp peaks at unity that there is an exact analytic
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(c)

Figure 5.6: Plots displaying the convergence of the subtraction term to the real-virtual
physical matrix element in various unresolved limits. The green data is furthest from
the singular configuration with the blue data closer to the singular region and the
red data the closest. The left plot of each row is the 1/ε2 contribution, the centre
plot the 1/ε contribution and the right hand plot the finite contribution. (a) Final-
state single soft limit for parton i such that x = (s12 − sjk)/s12. (b) Collinear limit
between final-state gluons i and j, such that x = sij/s12. (c) Collinear limit between
final-state parton i and the initial quark 1 such that x = s1i/s12.

cancellation of the pole contributions. The azimuthal corrections must also be taken

into account at the real-virtual level , since we again encounter the splitting of a

parent gluon into gluons or a quark-antiquark pair. The effect of including azimuthal

averaging is shown in Figure 5.7 for the final-final gluon collinear limit.

The symmetry of the colour ordering is also observed in the plots, since we see

similar behaviour between the quark-gluon and antiquark-gluon endpoints of the

colour string in their respective collinear limits. As expected, the R distribution

behaves similarly for the three gluon-gluon collinear limits, and as each gluon goes

soft. The full set of finite contribution limits are contained in Appendix C.
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Figure 5.7: Distributions of the finite contributions to R for the final-final collinear
limit for qq̄ → ggg (a) without and (b) with azimuthal averaging.

5.4.3 Double virtual subtraction term, dσ̂UNNLO

Following the discussion in Sec. 4.5.3, the double virtual subtraction term is con-

structed from the remaining terms inherited from the double real and the real-virtual

subtraction terms, in addition to the double virtual mass factorisation contribution.

The resulting double virtual subtraction term can be written in terms of single and

double unresolved integrated antenna strings,

dσ̂Uqq̄,NNLO = −N 2
qq̄,4 dΦ2(p3, p4; p1, p2)

∫
dz1

z1

dz2

z2

1

2!

∑

P (i,j){
J

(1)
4 (ˆ̄1q, ig, jg, ˆ̄2q̄)

(
B1

4(ˆ̄1q, ig, jg, ˆ̄2q̄)−
b0

ε
B0

4(ˆ̄1q, ig, jg, ˆ̄2q̄)

)

+
1

2
J

(1)
4 (ˆ̄1q, ig, jg, ˆ̄2q̄)⊗ J (1)

4 (ˆ̄1q, ig, jg, ˆ̄2q̄) B
0
4(ˆ̄1q, ig, jg, ˆ̄2q̄)

+ J
(2)
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) B

0
4(ˆ̄1q, ig, jg, ˆ̄2q̄)

}
J

(2)
2 (pi, pj). (5.4.42)

The single unresolved integrated antenna string is defined in Eq. (5.2.14). The new

ingredient at the double virtual level is the double unresolved integrated antenna

string, J
(2)
4 , which displays the structure discussed in Sec. 4.5.3. In Eq. (5.2.14)

the single unresolved integrated antenna string was written as a sum over integrated

dipoles. The analogous dipole-like formula for J
(2)
4 is given by,

J
(2)
4 (ˆ̄1q, ig, jg, ˆ̄2q̄) = J

(2)
2 (ˆ̄1q, ig) + J

(2)
2 (ig, jg) + J

(2)
2 (jg, ˆ̄2q)− J (2)

2 (ˆ̄1q, ˆ̄2q̄),
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(5.4.43)

where the two-parton double unresolved integrated antenna strings are given by:

J
(2)
2 (ˆ̄1q, ig) =

1

2
D0

4,q(s1̄i) +
1

2
D1

3,q(s1̄i) +
b0

2ε

( |s1̄i|
µ2

)−ε
D0

3,q(s1̄i)

− 1

4

[
D0

3,q(s1̄i)⊗D0
3,q(s1̄i)

]
(z1)− Γ

(2)

qq (z1)δ(1− z2), (5.4.44)

J
(2)
2 (ig, jg) =

1

4
F0

4 (sij) +
1

3
F1

3 (sij) +
b0

3ε

(
sij
µ2

)−ε
F0

3 (sij)

− 1

9

[
F0

3 (sij)⊗F0
3 (sij)

]
, (5.4.45)

J
(2)
2 (ig, ˆ̄2q̄) = J

(2)
2 (ˆ̄2q, ig). (5.4.46)

An integrated dipole, J
(`)
2 (i, j) is associated with a power of (|sij|)−`ε, thereby

matching specific terms in the Catani representation of the one- and two-loop matrix

elements. However, for the leading colour contribution to qq̄ → gg jets, we do not

expect a singular contribution that depends on s1̄2̄.

However, the D0
4 antenna contain infrared singular limits that are not present in

the matrix elements. These singularities are compensated by the Ã0
4,qq̄ contribution

in dσ̂SNNLO and by the Ã1
3,qq̄ and and A0

3,qq̄×A0
3 terms in dσ̂TNNLO. Terms of the form

(D0
3,q × A0

3) and (A0
3,qq̄ × d0

3) which were introduced at the real-virtual level, cancel

after integration. The integrated forms of these spurious contributions reappear in

dσ̂UNNLO and are collected in J
(2)

2 ,

J
(2)

2 (ˆ̄1q, ˆ̄2q̄) =
1

2
Ã0

4,qq̄(s1̄2̄) + Ã1
3,qq̄(s1̄2̄)− 1

2

[
A0

3,qq̄(s1̄2̄)⊗A0
3,qq̄(s1̄2̄)

]
(z1, z2),

(5.4.47)

which is proportional to (|s1̄2̄|)−2ε. At first sight, the presence of J
(2)

2 (ˆ̄1q, ˆ̄2q̄) ap-

pears to be in conflict with our earlier statement about the absence of singularities

proportional to s1̄2̄. However, the leading singularity in J
(2)

2 is O(1/ε),

Poles
(
εJ

(2)

2 (1q, 2q̄)
)

= 0, (5.4.48)

so that, after expansion of the (|s1̄2̄|)−2ε factor, the singularity does not depend on
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s1̄2̄ while the remaining finite terms can and do depend on ln(s1̄2̄).

5.5 Gluon initiated dijet production at NNLO

The current construction of the double-real subtraction term encounters difficulties

when matrix elements with both quarks and gluons have gluons in the initial state.

For a matrix element of the form

B0
n(mq, 1̂g, ig, jg, · · · q̄m) (5.5.49)

looks to the D0
4(mq, 1̂g, ig, jg) to account for the various single and double unresolved

limits present at the end of the quark-gluon chain. However, the presence of the gluon

in the initial state result in different mappings in the reduced-parton phase space, in

the various limits. The solution to this is still under contention. This thesis turns

instead to the real-virtual matrix-element, where we will see that a solution exists for

a similar scenario in the three-parton D3 antenna. Furthermore, we will see emergent

structures that can be used to predict the form of the double real subtraction terms.

In this section we describe the calculation of the real-virtual subtraction term

for quark-gluon scattering with two initial state gluons. For dijet production at

NNLO, this involves the one-loop QCD matrix element for gg → gqq̄, where there

are both explicit IR singularities from the one loop corrections, and also implicit single

unresolved limits over the phase space integration. In Section 5.5.1 we examine the

five parton real-virtual contribution to the NNLO cross section, and split it into two

topologies determined by the relative position of the initial state gluons with the

colour-ordered matrix element. For each of the topologies a subtraction term will be

constructed.

5.5.1 Real-virtual subtraction term, dσ̂TNNLO

We consider the process gg → gqq̄. The contribution to the cross section is given by

dσ̂RVgg,NNLO = N 1
gg,5

∫
dΦ3(p3, p4, p5; p1, p2)

1

3!

dx1

x1

dx2

x2

∑

P (ˆ̄1,ˆ̄2,i)
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×B1
5(jq, ˆ̄1g, ˆ̄2g, ig, kq̄)δ(1− x1)δ(1− x2)J

(3)
2 (pi, pj, pk) +O(

1

N2
) (5.5.50)

where the sum is over the set of six permutations of the gluons, including the initial

states, and we just consider the leading colour contribution. We identify two topolo-

gies, defined by the relative position of the initial state gluons. Since the quarks

are fixed at the end of the gluon string, the two initial gluons can either be colour

connected (i.e. adjacent), or separated by the remaining final state gluon, which we

label as topology X and Y respectively. In this way, (5.5.50) can be split up into

dσ̂RV,Xgg,NNLO = N 1
gg,5

∫
dΦ3(p3, p4, p5; p1, p2)

dx1

x1

dx2

x2

δ(1− x1)δ(1− x2)J
(3)
2 (pi, pj, pk)

× 1

3!

∑

P (ˆ̄1,ˆ̄2)

[
B1

5(jq, ˆ̄1g, ˆ̄2g, ig, kq̄) +B1
5(jq, ig, ˆ̄1g, ˆ̄2g, kq̄)

]
(5.5.51)

dσ̂RV,Ygg,NNLO = N 1
gg,5

∫
dΦ3(p3, p4, p5; p1, p2)

dx1

x1

dx2

x2

δ(1− x1)δ(1− x2)J
(3)
2 (pi, pj, pk)

× 1

3!

∑

P (ˆ̄1,ˆ̄2)

B1
5(jq, ˆ̄1g, ig, ˆ̄2g, kq̄) (5.5.52)

such that

dσ̂RV,fullgg,NNLO = dσ̂RV,Xgg,NNLO + dσ̂RV,Ygg,NNLO. (5.5.53)

The full summation over the gluons is split into a block of four colour ordered matrix

elements corresponding to colour-connected initial states, and two colour ordered

matrix elements for those with non-adjacent initial states. Notably, the Y topology

has a clear symmetry in the gluon ordering, which will be used to our advantage in

the construction of the subtraction term. The X topology has a similar, although

more subtle, symmetry, which can be mimicked in the subtraction term but in a less

transparent fashion. Nevertheless, the aim of the next section is to construct the

counter terms individually for each topology.
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Subtraction term with colour connected initial states: X topology

The real-virtual contribution for the X topology is given by

dσ̂RV,Xgg,NNLO = N 1
gg,5

∫
dΦ3(p3, p4, p5; p1, p2)

dx1

x1

dx2

x2

δ(1− x1)δ(1− x2)J
(3)
2 (pi, pj, pk)

× 1

3!

∑

P (ˆ̄1,ˆ̄2)

[
B1

5(jq, ˆ̄1g, ˆ̄2g, ig, kq̄) +B1
5(jq, ig, ˆ̄1g, ˆ̄2g, kq̄)

]
. (5.5.54)

Whilst there are four colour orderings to consider, a unique subtraction term is re-

quired only for one, since all the orderings can be constructed via label exchange in

the subtraction term.

Following this symmetry, we can write the subtraction term for the matrix element

B1
5(jq, ˆ̄1g, ˆ̄2g, ig, kq̄) as

dσT,XNNLO = N 1
gg,5

∫
dΦ3(p3, p4, p5;x1p1, x2p2)

dx1

x1

dx2

x2

×
{

−
(
D0

3,g;gq(sj1̄) + F0
3,gg(s1̄2̄) +

1

2
F0

3,g(si2̄) +
1

2
D0

3(sik)− Γ1
gg(x1)δ(1− x2)

−Γ1
gg(x2)δ(1− x1)

)
B0

5(jq, 1̂g, 2̂g, ig, kq̄)J
(3)
2 (pj, pi, pk)

+G0
3(ˆ̄2g, kq̄, jq)

[
δ(1− x1)δ(1− x2)A1

4(ˆ̄̄2g, ˆ̄1g, ig, (̃kj)g)

+
(
F0

3,gg(s¯̄12̄) +
1

2
F0

3,g(s1̄i) +
1

3
F0

3 (s
i(̃kj)

) +
1

2
F0

3,g(s(̃kj)¯̄2
)

−Γ1
gg(x1)δ(1− x2)− Γ1

gg(x2)δ(1− x1)
)
A0

4(ˆ̄̄2g, ˆ̄1g, ig, (̃kj)g)

]
J

(2)
2 (pi, p(̃jk)

)

+d0
g;gq(kq̄, ig,

ˆ̄2g)

[
δ(1− x1)δ(1− x2)B1

4(jq, ˆ̄1g,
ˆ̄̄2g, (̃ik)q̄)

+
(
D0

3,g;gq(sj1̄) + F0
3,gg(s1̄¯̄2) +D0

3,g;gq(s¯̄2(̃ik)
)

−Γ1
gg(x1)δ(1− x2)− Γ1

gg(x2)δ(1− x1)
)
B0

4(jq, ˆ̄1g,
ˆ̄̄2g, (̃ik)q̄)

]
J

(2)
2 (pj, p(̃ik)

)

+d0
3(jq, ˆ̄1g, ˆ̄2g)

[
δ(1− x1)δ(1− x2)B1

4(ˆ̄̄1g,
ˆ̄̄2g, ĩg, k̃q̄) +

(
D0

3,qg(s¯̄1¯̄2) +
1

2
F0

3,g(s¯̄2̃i)

+
1

2
D0

3(s̃ik̃)− Γ1
gg(x1)δ(1− x2)− Γ1

gg(x2)δ(1− x1)
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+Γ1
qq(x1)δ(1− x2) + Γ1

qq(x2)δ(1− x1)
)
B1

4(ˆ̄̄1g,
ˆ̄̄2g, ĩg, k̃q̄)

]
J

(2)
2 (p̃i, pk̃)

+

[
G1

3(ˆ̄2g, kq̄, jq)δ(1− x1)δ(1− x2) +
(
D0

3,g;gq(s2̄j) +D0
3,g;gq(s2̄k)−F0

3,g(s¯̄2(̃jk)
)
)

×G0
3(ˆ̄2g, kq̄, jq)

]
A0

4(ˆ̄̄2g, ˆ̄1g, ig, (̃kj)g)J
(2)
2 (pi, p(̃jk)

)

+

[
d1
g,gq(kq̄, ig,

ˆ̄2g)δ(1− x1)δ(1− x2) +
(1

2
D0

3(ski) +
1

2
F0

3,g(si2̄)

+D0
3,g;gq(sk2̄)− 2D0

3,g;gq(s(̃ik)¯̄2
)
)
d0
g,gq(kq̄, ig,

ˆ̄2g)

]
B0

4(jq, ˆ̄1g,
ˆ̄̄2g, (̃ik)q̄)J

(2)
2 (pj, p(̃ik)

)

−1

2

[
Ã1

3(jq, ig, kq̄)δ(1− x1)δ(1− x2) +
(
A0

3(sjk)−A0
3(s

(̃ij)(̃ik)
)
)

×A0
3(jq, ig, kq̄)

]
B0

4((̃ij)q,
ˆ̄1g, ˆ̄2g, (̃ik)q̄)J

(2)
2 (p

(̃ij)
, p

(̃ik)
)

+

[
d1

3(jq, ˆ̄1g, ˆ̄2g)δ(1− x1)δ(1− x2) +
(
D0

3,g;gq(sj1̄) + F0
3,gg(s1̄2̄)

+D0
3,g;gq(sj2̄)− 2D0

3,qg(s¯̄1¯̄2)
)
d0

3(jq, ˆ̄1g, ˆ̄2g)

]
B0

4(ˆ̄̄1g,
ˆ̄̄2g, ĩg, k̃q̄)J

(2)
2 (p̃i, pk̃)

−
[
Ã1

3(jq, ˆ̄1g, ˆ̄2)δ(1− x1)δ(1− x2) +
(
A0

3,q(sj2̄)−A0
3,qq(s¯̄1¯̄2)

+Γ1
qq(x1)δ(1− x2) + Γ1

qq(x2)δ(1− x1)
)

×A0
3(jq, ˆ̄1g, ˆ̄2)

]
B0

4(ˆ̄̄1q,
ˆ̄̄2g, ĩg, k̃q̄)J

(2)
2 (p̃i, pk̃)

+b0 log

(
µ2

|s2jk|

)
G0

3(ˆ̄2g, kq̄, jq)δ(1− x1)δ(1− x2)A0
4(ˆ̄̄2g, ˆ̄1g, ig, (̃kj)g)J

(2)
2 (p

(̃jk)
, pi)

+b0 log

(
µ2

|ski2|

)
d0
g,gq(kq̄, ig,

ˆ̄2g)δ(1− x1)δ(1− x2)B0
4(jq, ˆ̄1g,

ˆ̄̄2g, (̃ik)q̄)J
(2)
2 (pj, p(̃ik)

)

+b0 log

(
µ2

|sj12|

)
d0

3(jq, ˆ̄1g, ˆ̄2g)δ(1− x1)δ(1− x2)B0
4(ˆ̄̄1g,

ˆ̄̄2g, ĩg, k̃q̄)J
(2)
2 (p̃i, pk̃)

+
1

2

[
D0

3,g;gq(s(̃ik)¯̄2
)−D0

3,g;gq(sk2̄)−F0
3,gg(s¯̄21̄) + F0

3,gg(s2̄1̄)−A0
3(s

(̃ik)j
)

+A0
3(skj) + δ(1− x1)δ(1− x2)

(
− S(s

(̃ik)¯̄2
, skj, x(̃ik)¯̄2,kj

) + S(sk2̄, skj, xk2̄,kj)
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+S(s
(̃ik)j

, skj, x(̃ik)j,kj
)− S(skj, skj, 1)

)]

×d0
g,gq(kq̄, ig,

ˆ̄2g)B
0
4(jq, ˆ̄1g,

ˆ̄̄2g, (̃ik)q̄)J
(2)
2 (pj, p(̃ik)

)

−1

4

[
A0

3(s
(̃ik)(̃ij)

)−A0
3(sjk)−D0

3,g;gq(s2̄(̃ik)
) +D0

3,g;gq(s2̄k)−D0
3,g;gq(s(̃ij)1̄

)

+D0
3,g;gq(s1̄j) + δ(1− x1)δ(1− x2)

(
− S(s

(̃ik)(̃ij)
, sjk, x(̃ik)(̃ij),jk

) + S(sjk, sjk, 1)

+S(s
2̄(̃ik)

, sjk, x2̄(̃ik),jk
)− S(s2̄k, sjk, x2̄k,jk) + S(s

(̃ij)1̄
, sjk, x(̃ij)1̄,jk

)

−S(s1̄j, sjk, x1̄j,jk)
)]
A0

3(jq, ig, kq̄)B
0
4((̃ij)q,

ˆ̄1g, ˆ̄2g, (̃ik)q̄)J
(2)
2 (p

(̃ij)
, p

(̃ik)
)

+

[
D0

3,qg(s¯̄1¯̄2)−D0
3,g;gq(sj2̄)− 1

2
F0

3,g(s¯̄2̃i) +
1

2
F0

3,g(s2̄i)−A0
3,q(s¯̄1j̃) +A0

3(skj)

+δ(1− x1)δ(1− x2)
(
− S(s¯̄1¯̄2, s̃ik̃, x¯̄1¯̄2,̃ik̃) + S(sj2̄, sik, xj2̄,ik) + S(s̃i¯̄2, s̃ik̃, xĩ¯̄2,̃ik̃)

−S(s1̄i, sik, x1̄i,ik) + S(s¯̄1j̃, s̃ik̃, x¯̄1j̃ ,̃ik̃)− S(sjk, sik, xjk,ik)
)]

×d0
3(jq, ˆ̄1g, ˆ̄2g)B

0
4(ˆ̄̄1g,

ˆ̄̄2g, ĩg, k̃q̄)J
(2)
2 (p̃i, pk̃)

−
[
A0

3,qq(s¯̄1¯̄2)−A0
3,q(s2̄j)−A0

3,q(s¯̄1k̃) +A0
3(sjk)−D0

3,g;gq(s̃i¯̄2) +D0
3,g;gq(s2̄i)

+δ(1− x1)δ(1− x2)
(
− S(s¯̄1¯̄2, s̃ik̃, x¯̄1¯̄2,̃ik̃) + S(s2̄j, sik, x2̄j,ik) + S(s¯̄1k̃, s̃ik̃, x¯̄1k̃,̃ik̃)

−S(sjk, sik, xjk,ik) + S(s̃i¯̄2, s̃ik̃, xĩ¯̄2,̃ik̃)− S(s2̄i, sik, x2̄i,ik)
)]

×A0
3(jq, ˆ̄1g, ˆ̄2)B0

4(ˆ̄̄1q,
ˆ̄̄2g, ĩg, k̃q̄)J

(2)
2 (p̃i, pk̃)

−1

2

[
F0

3,g(s¯̄1¯̄2)−F0
3,g(s1̄2̄)−D0

3,g;gq(s¯̄1j̃) +D0
3,g;gq(s1̄j)−D0

3,g;gq(s¯̄2k̃) +D0
3,g;gq(s2̄k)

+δ(1− x1)δ(1− x2)
(
S(s1̄2̄, sjk, x1̄2̄,jk)− S(s¯̄1¯̄2, sj̃k̃, x¯̄1¯̄2,̃jk̃) + S(s¯̄1j̃, sjk, x¯̄1j̃,jk)

−S(s1̄j, sjk, x1̄j,jk) + S(s¯̄2k̃, sj̃k̃, x¯̄2k̃,̃jk̃)− S(s2̄k, sjk, x2̄k,jk)
)]

×F 0
3 (ˆ̄1g, ig, ˆ̄2)B0

4(j̃q,
ˆ̄̄1g,

ˆ̄̄2g, k̃q̄)J
(2)
2 (pj̃, pk̃)

}
. (5.5.55)

A point of interest lies in the cancellation of the initial state collinear poles

amongst the blocks of one loop matrix elements and the associated integrated an-
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tennae. In a non-flavour-changing antenna such as the d0
g;gq, the combination of

integrated antennae and the mass factorisation terms form a finite block, as indi-

cated by the square brackets. Since the flavour of the initial state remains gluonic,

the initial state poles from the integrated antenna cancel against the gluonic mass

factorisation terms Γ1
gg.

However, this is not the case for the flavour changing antennae, which in the

above subtraction terms includes the d1
3(j, 1̂g, 2̂g). In this instance, after remapping,

the gluon 1̂g becomes a quark in the reduced matrix element, since the d0
3 is a quark-

gluon antenna. The jq is effective acting as the unresolved parton in this initial-initial

antenna. In order to make the block of integrated antenna and mass factorisation

terms finite, we must include an extra Γqq(x1) into the block, to account for the fact

that the mapped initial state has now become a quark. The physical matrix element is

still a gluon-initiated process, and thus the Γqq(x1) appears to be a spurious addition.

However, this situation is remedied when incorporating the Ã1
3(j, 1̂g, 2̂g) antennae,

introduced initially to deal with the unwanted colour connectivity of the d1
3 as de-

scribed in Section 5.4. The Ã1
3 is also an initial-initial antenna and is flavour-changing

in this case, since it incorporates a ’false’ initial quark, such that only the j||1̂ limit

is present. Thus, the subsequent integrated antenna to cancel the poles of Ã1
3 are

A0
3,q(sj2̄)−A0

3,qq(s¯̄1¯̄2) + Γ1
qq(x1)δ(1− x2) (5.5.56)

where there is an over subtracted Γ1
qq introduced to maintain the finiteness of the

block. Since this block is coming with an opposite sign to the d1
3(j, 1̂g, 2̂g), and by

construction is multiplied by a reduced matrix element that behaves identically in the

relevant limit, then the ‘spurious’ Γ1
qq are cancelled. In the language of the J (1)

n strings,

this is exactly what is taking place. The J (1)
n always cancel the poles of the one loop

reduced matrix elements; the mass factorisation kernels are in the definition of the

J (1)
n so it contains no initial-state collinear poles and matches the genuine poles of the

reduced matrix element. J̄
(1)
n does not contain any initial-state collinear poles either

and it does not have any mass factorisation kernels in its definition. It contains the

genuine poles of the one loop unintegrated antenna. The mass factorisation kernels
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cancel the initial-state collinear poles of the integrated antennae in J (1)
n . In the case of

identity changing configurations nothing changes: the J (1)
n cancels the genuine poles

of the one loop reduced matrix element and the J̄
(1)
n cancels the genuine poles of

the X1
3 . There are also the formation of identity changing J (1)

n s which are built from

identity changing integrated antennae (like G0
3 and E0

3 ) inherited from the double real.

The initial-state collinear poles of these are cancelled against the identity changing

mass factorisation kernels to form the pole-free identity changing J̄
(1)
n s. Nevertheless,

it is clear in the form of the results here exactly how the ‘spurious’ mass factorisation

terms are cancelling. It also gives a strong indication that it is the combination of

the D3 and Ã3 antennae that are the correct objects to use in the subtraction terms,

since the former can never complete its job single-handedly, both in the subtraction

of implicit divergences, and subsequent pole cancellation.

Subtraction term with colour connected initial states: Y topology

The one loop single unresolved subtraction term for the Y topology of Eq. (5.5.52)

takes the form

dσT,YNNLO = N 1
gg,5

∫
dΦ3(p3, p4, p5;x1p1, x2p2)

dx1

x1

dx2

x2

×
{

−
(
D0

3,g;gq(sj1̄) +
1

2
F0

3,g(s1̄i) +
1

2
F0

3,g(si2̄) +D0
3,g;gq(s2̄k)− Γ1

gg(x1)δ(1− x2)

−Γ1
gg(x2)δ(1− x1)

)
B0

5(jq, ˆ̄1g, ig, ˆ̄2g, kq̄)J
(3)
2 (pj, pi, pk)

+F 0
3 (ˆ̄1g, ig, ˆ̄2g)

[
δ(1− x1)δ(1− x2)B1

4(j̃q,
ˆ̄̄1g,

ˆ̄̄2g, k̃q̄) +
(
D0

3,g;gq(sj̃¯̄1) + F0
3,gg(s¯̄1¯̄2)

+D0
3,g;gq(s¯̄2k̃)− Γ1

gg(x1)δ(1− x2)− Γ1
gg(x2)δ(1− x1)

)
B0

4(j̃q,
ˆ̄̄1g,

ˆ̄̄2g, k̃q̄)

]
J

(2)
2 (pj̃, pk̃)

+A0
3(jq, ˆ̄1g, ˆ̄2)

[
δ(1− x1)δ(1− x2)B1

4(ˆ̄̄1q, ĩg,
ˆ̄̄2g, k̃q̄) +

(1

2
D0

3,q(s¯̄1̃i) +
1

2
F0

3,g(s¯̄2̃i)

+D0
3,g;gq(s¯̄2k̃)− Γ1

gg(x1)δ(1− x2)− Γ1
gg(x2)δ(1− x1)

)
B0

4(ˆ̄̄1q, ĩg,
ˆ̄̄2g, k̃q̄)

]
J

(2)
2 (pk̃, p̃i)

+A0
3(kq̄, ˆ̄2g, ˆ̄1)

[
δ(1− x1)δ(1− x2)B1

4(j̃q,
ˆ̄̄1g, ĩg,

ˆ̄̄2q̄) +
(
D0

3,g;gq(sj̃¯̄1) +
1

2
F0

3,g(s¯̄1̃i)
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+
1

2
D0

3,q(s̃i¯̄2)− Γ1
gg(x1)δ(1− x2)− Γ1

gg(x2)δ(1− x1)
)
B0

4(j̃q,
ˆ̄̄1g, ĩg,

ˆ̄̄2q̄)

]
J

(2)
2 (pj̃, p̃i)

+G0
3(ˆ̄1g, jq, kq̄)

[
δ(1− x1)δ(1− x2)A1

4((̃kj)g,
ˆ̄̄1g, ig, ˆ̄2g)

+
(1

2
F0

3,g(s(̃kj)¯̄1
) +

1

2
F0

3,g(s¯̄1i) +
1

2
F0

3,g(si2̄) +
1

2
F0

3,g(s2̄(̃kj)
)

−Γ1
gg(x1)δ(1− x2)− Γ1

gg(x2)δ(1− x1)
)
A0

4((̃kj)g,
ˆ̄̄1g, ig, ˆ̄2g)

]
J

(2)
2 (p

(̃kj)
, pi)

+

[
F 1

3 (ˆ̄1g, ig, ˆ̄2g)δ(1− x1)δ(1− x2) +
(1

2
F0

3,g(s1̄i) + F0
3,gg(s1̄2̄) +

1

2
F0

3,g(s2̄i)

−2F0
3,gg(s¯̄1¯̄2)

)
F 0

3 (ˆ̄1g, ig, ˆ̄2)

]
B0

4(j̃q,
ˆ̄̄1g,

ˆ̄̄2g, k̃q̄)J
(2)
2 (pj̃, pk̃)

+

[
A1

3(jq, ˆ̄1g, ˆ̄2)δ(1− x1)δ(1− x2) +
(
D0

3,g;gq(sj1̄) +D0
3,qg(s1̄2̄)−A0

3,qq(s¯̄2¯̄1)
)

×A0
3(jq, ˆ̄1g, ˆ̄2)

]
B0

4(ˆ̄̄1q, ĩg,
ˆ̄̄2g, k̃q̄)J

(2)
2 (pk̃, p̃i)

+

[
A1

3(kq̄, ˆ̄2g, ˆ̄1)δ(1− x1)δ(1− x2) +
(
D0

3,g;gq(s2̄k) +D0
3,qg(s1̄2̄)−A0

3,qq(s¯̄1¯̄2)
)

×A0
3(kq̄, ˆ̄2g, ˆ̄1)

]
B0

4(j̃q,
ˆ̄̄1g, ĩg,

ˆ̄̄2q̄)J
(2)
2 (pj̃, p̃i)

+

[
G1

3(ˆ̄1g, jq, kq̄)δ(1− x1)δ(1− x2) +
(
D0

3,g,gq(s1̄j) +D0
3,g,gq(s1̄k)−

1

2
F0

3,g(s¯̄1(̃jk)
)
)

×A0
4((̃kj)g,

ˆ̄̄1g, ig, ˆ̄2g)

]
J

(2)
2 (p

(̃kj)
, pi)

+b0 log

(
µ2

|s1i2|

)
F 0

3 (ˆ̄1g, ig, ˆ̄2g)δ(1− x1)δ(1− x2)B0
4(j̃q,

ˆ̄̄1g,
ˆ̄̄2g, k̃q̄)J

(2)
2 (pj̃, pk̃)

+b0 log

(
µ2

|s12j|

)
A0

3(jq, ˆ̄1g, ˆ̄2)δ(1− x1)δ(1− x2)B0
4(ˆ̄̄1q, ĩg,

ˆ̄̄2g, k̃q̄)J
(2)
2 (pk̃, p̃i)

+b0 log

(
µ2

|sk12|

)
A0

3(kq̄, ˆ̄2g, ˆ̄1)δ(1− x1)δ(1− x2)B0
4(j̃q,

ˆ̄̄1g, ĩg,
ˆ̄̄2q̄)J

(2)
2 (pj̃, p̃i)

+b0 log

(
µ2

|s1jk|

)
G0

3(ˆ̄1g, jq, kq̄)δ(1− x1)δ(1− x2)A0
4((̃kj)g,

ˆ̄̄1g, ig, ˆ̄2g)J
(2)
2 (p

(̃kj)
, pi)

+

[
F0

3,g(s¯̄1¯̄2)−F0
3,g(s1̄2̄)−D0

3,g;gq(s¯̄1j̃) +D0
3,g;gq(s1̄j)−D0

3,g;gq(s¯̄2k̃) +D0
3,g;gq(s2̄k)
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+δ(1− x1)δ(1− x2)
(
S(s1̄2̄, sjk, x1̄2̄,jk)− S(s¯̄1¯̄2, sj̃k̃, x¯̄1¯̄2,̃jk̃) + S(s¯̄1j̃, sj̃k̃, x¯̄1j̃ ,̃jk̃)

−S(s1̄j, sjk, x1̄j,jk) + S(s¯̄2k̃, sj̃k̃, x¯̄2k̃,̃jk̃)− S(s2̄k, sjk, x2̄k,jk)
)]

×F 0
3 (ˆ̄1g, ig, ˆ̄2)B0

4(j̃q,
ˆ̄̄1g,

ˆ̄̄2g, k̃q̄)J
(2)
2 (pj̃, pk̃)

+

[
A0

3,qq(s¯̄2¯̄1)−D0
3,qg(s2̄1̄)− 1

2
D0

3,q(s̃i¯̄1) +
1

2
F0

3,g(si1̄)−A0
3,q(s¯̄2k̃) +A0

3,q(s2̄k)

+δ(1− x1)δ(1− x2)
(
S(s1̄2̄, sik, x1̄2̄,ik)− S(s¯̄1¯̄2, s̃ik̃, x¯̄1¯̄2,̃ik̃) + S(s¯̄1̃i, s̃ik̃, x¯̄1̃i,̃ik̃)

−S(s1̄i, sik, x1̄i,ik) + S(s¯̄2k̃, s̃ik̃, x¯̄2k̃,̃ik̃)− S(s2̄k, sik, x2̄k,ik)
)]

×A0
3(jq, ˆ̄1g, ˆ̄2)B0

4(ˆ̄̄1q, ĩg,
ˆ̄̄2g, kq̄)J

(2)
2 (pk, pi)

+

[
A0

3,qq(s¯̄2¯̄1)−D0
3,qg(s2̄1̄)− 1

2
D0

3,q(s̃i¯̄2) +
1

2
F0

3,g(si2̄)−A0
3,q(s¯̄1j̃) +A0

3,q(s1̄j)

+δ(1− x1)δ(1− x2)
(
S(s1̄2̄, sij, x1̄2̄,ij)− S(s¯̄1¯̄2, s̃ij̃, x¯̄1¯̄2,̃ij̃) + S(s¯̄2̃i, s̃ij̃, x¯̄2̃i,̃ij̃)

−S(s2̄i, sij, x2̄i,ij) + S(s¯̄1j̃, s̃ij̃, x¯̄1j̃ ,̃ij̃)− S(s1̄j, sij, x1̄j,ij)
)]

×A0
3(kq̄, ˆ̄2g, ˆ̄1)B0

4(j̃q,
ˆ̄̄1g, ĩg,

ˆ̄̄2q̄)J
(2)
2 (pj̃, p̃i)

+{1̂g ↔ 2̂g}
}
, (5.5.57)

with the construction of the other topologies obtained via Table 5.3.

Ordering Subtraction term

X(jq, ˆ̄1g, ˆ̄2g, ig, kq̄) dσT,Xgg,NNLO

X(jq, ˆ̄2g, ˆ̄1g, ig, kq̄) dσT,Xgg,NNLO(ˆ̄1↔ ˆ̄2)

X(jq, ig, ˆ̄1g, ˆ̄2g, kq̄) dσT,Xgg,NNLO(ˆ̄1↔ ˆ̄2, j ↔ k)

X(jq, ig, ˆ̄2g, ˆ̄1g, kq̄) dσT,Xgg,NNLO(j ↔ k)

Y(jq, ˆ̄1g, ig, ˆ̄2g, kq̄) dσT,Ygg,NNLO

Y(jq, ˆ̄2g, ig, ˆ̄1g, kq̄) dσT,Ygg,NNLO(ˆ̄1↔ ˆ̄2)

Table 5.3: Only one unique subtraction term is required for all the X topology matrix
elements. All others can be obtained via label exchange of either the initial state
gluons or the final state quarks. The Y topologies behave likewise.

The subtraction term of the adjacent gluon-initiated real-virtual contribution is

rendered finite in the sum of the four X -type topologies. The A3 antennae over-
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subtract a limit in one of the terms, but this singular configuration is present in the

other term. Hence, the combination of the two produces a full subtraction of the

divergences. Line reversal symmetry results in identical remapped reduced matrix

elements from the two configurations.

A number of interesting points arise that were not visible in the quark-initiated

case. We encounter for the first time the G3 antenna as a counterterm for the single

collinear limit between the final state quark and antiquark. Constructing a subtrac-

tion term for the single quark-antiquark collinear limit for either the gluon-gluon- or

quark-gluon-initiated process demands the use of the G0
3 antenna. This contains only

the limit

G0
3(g, q, q̄)

q||q̄−−→ 1

sqq̄
Pqq̄←G(z) (5.5.58)

with the exact form of the splitting function determined by the partonic nature of

the initial state. The gluon is effectively behaving as a a spectator parton. Since

the quarks appear at the end of the colour lines in the matrix elements, there is an

apparent choice of gluon adjacent to the quark, to act as spectator in the antenna.

The choice exits in processes where at least one of the quarks is in the final state,

and without loss of generality we consider the gluon-gluon initiated process. The tree

level matrix element for the Y-type gluon colour ordering reads as

B0
5(jq, ˆ̄1g, ig, ˆ̄2g, kq̄) (5.5.59)

and to capture the jq||kq̄ either

G0
3(ˆ̄1g, jq, kq̄)A

1
4((̃jk)g,

ˆ̄̄1g, ig, ˆ̄2g) or

G0
3(ˆ̄2g, kq̄, jq)A

1
4((̃jk)g,

ˆ̄̄2g, ig, ˆ̄1g) (5.5.60)

will capture the limit. Note that the G3 antenna is a flavour changing antenna;

the collinear quarks collapse onto a parent gluon, and the reduced matrix element is

purely gluonic. The cyclic and reversal symmetry of the A0
4 pure gluon matrix element

means that the two reduced matrix elements above are identical, and will always be
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for either choice of G3 antenna. At NLO, where both the reduced matrix element

and the antenna are tree level objects, two options are open for the construction of

the subtraction term:

1. Pick one of the G0
3 antennae to hold the full limit.

2. Include a sum of the two G antennae to maintain symmetry, that is

B0
5(jq, ˆ̄1g, ig, ˆ̄2g, kq̄)

jq ||kq̄−−−→ 1

2
G0

3(ˆ̄2g, kq̄, jq)A
1
4((̃jk)g,

ˆ̄̄2g, ig, ˆ̄1g)

+
1

2
G0

3(ˆ̄1g, kq̄, jq)A
1
4((̃jk)g,

ˆ̄2g, ig,
ˆ̄̄1g)

(5.5.61)

which, in the limit, have identical reduced matrix elements.

The two choices of subtraction term are identical at NLO, and can be applied to

all colour orderings individually. Näıvely, one would pick that which required the

fewest antenna. The game becomes more interesting at NNLO, where we must now

consider the one-loop pole cancellations of both the antennae and reduced matrix

elements. For a single colour ordering at RV, the implicit pole cancellation is again

independent of the choice of G`
3. However, with the inclusion of the pole corrections

(from both the RR dropping down and the new terms at RV), we find cancellation

of integrated antennae in the q||q̄ limit holds only in the sum of pairs of colour-

ordered configurations of matrix elements, due to the flavour-changing property of

the G`
3. For example, the full subtraction term for the q||q̄ limit in B1

5(jq, ˆ̄1g, ig, ˆ̄2g, kq̄)

only behaves correctly if summed with the subtraction term for B1
5(jq, ˆ̄2g, ig, ˆ̄1g, kq̄).

Explicitly we see that, for the first ordering in the q||q̄ limit, the block of integrated

antennae

−D0
3,g;gq(s2̄k) +D0

3,g;gq(s1̄k)−
1

2
F0

3,g(s1̄j̃k) +
1

2
F0

3,g(s2̄j̃k) (5.5.62)

remain; the flavour change of the initial state results in different antenna and so no

cancellation occurs. However, the same set of terms save for an opposite sign appear

in the paired ordered matrix element such that a full cancellation occurs. Therefore
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we see that, following choice (2) above, full cancellation naturally occurs since we

include all possible pairs of colour orderings. However, it is possible to follow (1), if

one is careful with the choice of gluon spectator. In doing so, we are able to reduce

the number of antennae in the full summation of colour orderings by utilising the

symmetry under the exchange of initial state gluon.

We also note the presence of the dg;gq antenna, where the gluon is now in the

initial state. The full gluon-initiated D0
3(jq, 2̂g, ig) antenna contains a soft i gluon

limit, j||2̂ and j||i quark-gluon collinear limits and a 2̂||i gluon collinear limits. The

initial final quark gluon limit is an anomaly, since it changes the initial state from a

gluon to a quark, whilst the other limits maintain a gluon initial state. As discussed

in [24] it is possible to partition the limits into two subantennae,

D0
3(jq, 2̂2, ig) = d0

g;gq(jq, 2̂g; ig) + d0
g;qg(jq, 2̂g, ig), (5.5.63)

where now the offending limit is contained within the first term, and all others are

in the second subantenna. Unlike the final-final case discussed in Chapter 4, this

partial fractioning is not symmetrical. For our results we also require the one-loop

extension to this partitioning. Fortunately, we can follow a similar line of argument

to the symmetric partial fractioning for the one loop antenna in section 4.3, the one

loop terms proportional to the tree antenna can be attacked by replacing the full

antenna with the subantennae. The finite contribution not proportional to the tree

antenna is rewritten in such a way that the invariants respect the limits required.

For the case of the D1
3, the only term is 1/(s2i), which can be assigned to the second

term of (5.5.63).

Again, to demonstrate its validity, the subtraction term has been tested numer-

ically. The procedure is then repeated for 1000 different phase space points in the

unresolved configuration defined by the constraints. The constraints are then tight-

ened to force the phase space points closer to the unresolved singular point and the

ratio calculated for another 1000 points. The procedure is repeated once more for

a set of points even closer to the singular point and the histogram of ratios for the

three sets of constraints plotted.
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(c)

Figure 5.8: Plots displaying the convergence of the subtraction term to the real-virtual
physical matrix element in various unresolved limits, for gg → qq̄g. The green data
is furthest from the singular configuration with the blue data closer to the singular
region and the red data the closest. The left plot of each row is the 1/ε2 contribution,
the centre plot the 1/ε contribution and the right hand plot the finite contribution.
(a) Final-state single soft limit for parton i such that x = (s12−sjk)/s12. (b) Collinear
limit between final-state gluons i and j, such that x = sij/s12. (c) Collinear limit for
final state gluon i and initial state antiquark 2 such that x = s2i/s12.

A selection of plots from three different unresolved configurations is shown in Fig-

ure 5.8. Again, the right hand plot in each row in illustrates the finite contribution

of the single unresolved limits. The left and centre plots are the 1/ε2 and 1/ε con-

tributions respectively. In each plot we see that the distribution of R for the finite

contribution becomes more sharply peaked around one as the unresolved singular

limit is approached, i.e., as the parameter x gets smaller. This provides statistical

evidence for the convergence of the subtraction term to the physical cross section in

the IR divergent limits. The pole contributions are again cancelling analytically, as

seen by the sharp peaks in the left and centre plots.
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5.5.2 Double virtual subtraction term, dσ̂UNNLO

Following the discussion of Section 4.5.3, the double virtual subtraction term is con-

structed from the remaining terms dropping down from the double real and real

virtual subtraction terms, as well as the double virtual mass factorisation contribu-

tion. However, since the pole structure of the two loop amplitudes is predictable

via the formalism described in Chapter 2, we are able to write the subtraction term

in terms of the single and double unresolved integrated antenna strings without the

prerequisite of the double real and real-virtual subtraction terms. Since we are in

possession of the real-virtual subtraction term however, the combination of RV and

VV terms should give an indication to the structures required at the double real

contribution. In terms of integrated antenna strings, the subtraction term can be

written in the form of Eq. (4.5.131),

dσ̂Ugg,NNLO = −N 2
gg,4 dΦ2(p3, p4; p1, p2)

∫
dz1

z1

dz2

z2

1

2!

∑

P (1̂2̂)

{

J
(1)
4 (jq, ˆ̄1g, ˆ̄2g, kq̄)

(
B1

4(jq, ˆ̄1g, ˆ̄2g, kq̄)−
b0

ε
B0

4(jq, ˆ̄1g, ˆ̄2g, kq̄)

)

+
1

2
J

(1)
4 (jq, ˆ̄1g, ˆ̄2g, kq̄)⊗ J (1)

4 (jq, ˆ̄1g, ˆ̄2g, kq̄) B
0
4(jq, ˆ̄1g, ˆ̄2g, kq̄)

+ J
(2)
4 (jq, ˆ̄1g, ˆ̄2g, kq̄) B

0
4(jq, ˆ̄1g, ˆ̄2g, kq̄)

}
J

(2)
2 (pj, pk), (5.5.64)

which reproduces the form of the Catani pole structure in Eq. (4.5.115). The single

unresolved integrated antenna string is defined in Eq. (5.2.14), where it was written

as a sum over integrated dipoles. The analogous dipole-like formula for J
(2)
4 is given

by,

J
(2)
4 (jq, ˆ̄1g, ˆ̄2g, kq̄) = J

(2)
2 (jq, ˆ̄1g) + J

(2)
2 (ˆ̄1g, ˆ̄2g) + J

(2)
2 (ˆ̄2g, kq)− J (2)

2 (ˆ̄1q, ˆ̄2q̄),

(5.5.65)

where the two-parton double unresolved integrated antenna strings are given by:

J
(2)
2 (jq, ˆ̄1g) = D0

4,g(sj1̄) +D1
3,q(sj1̄) +

b0

ε

( |sj1̄|
µ2

)−ε
D0

3,g(sj1̄)
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−
[
D0

3,g(sj1̄)⊗D0
3,g(sj1̄)

]
(z1)− Γ

(2)

gg (z1)δ(1− z2), (5.5.66)

J
(2)
2 (ˆ̄1g, ˆ̄2g) = 2F0,adj

4,gg (s1̄2̄) + 2F0,n.adj
4,gg (s1̄2̄) + F1,n.adj

3,gg (s1̄2̄) +
b0

ε
F0

3 (s1̄2̄)

(
s1̄2̄

µ2

)−ε

− Γ(2)
gg (z1)δ(1− z2)− Γ(2)

gg (z2)δ(1− z1)− 2
[
F0

3 (s1̄2̄)⊗F0
3 (s1̄2̄)

]
,

+
[
Γ1
gg ⊗ Γ1

gg

]
(z1)δ(1− z2) +

[
Γ1
gg ⊗ Γ1

gg

]
(z2)δ(1− z1) (5.5.67)

J
(2)
2 (ˆ̄2g, kq̄) = J

(2)
2 (kq̄, ˆ̄2g). (5.5.68)

5.6 Quark-gluon initiated dijet production at NNLO

5.6.1 Real-virtual subtraction term, dσ̂TNNLO

We consider the process qg → qgg. At leading order in colour we will have the cross

section

dσ̂RVgg,NNLO = N 1
qg,5

∫
dΦ3(p3, p4, p5; p1, p2)

1

3!

dx1

x1

dx2

x2

∑

P (ˆ̄2,i,j)

× B1
5(ˆ̄1q, ˆ̄2g, ig, jg, kq̄)δ(1− x1)δ(1− x2)J

(3)
2 (pi, pj, pk) +O(

1

N2
)

(5.6.69)

where the sum is over the set of six permutations of the gluons, including the initial

states. In a similar vein to the gluon-initiated process, we identify three topologies,

defined by the relative position of the initial state gluon. Since the quarks are fixed

at the end of the gluon string, the initial gluon can with either be colour connected

(i.e. adjacent) to the quark, sandwiched by the final state gluon or colour-connected

the antiquark, which we label as X, Y and Z respectively. In this way, the full leading

colour squared matrix element can be arranged as

dσ̂RV,Xqg,NNLO = N 1
qg,5

∫
dΦ3(p3, p4, p5; p1, p2)

dx1

x1

dx2

x2

δ(1− x1)δ(1− x2)J
(3)
2 (pi, pj, pk)

× 1

3!

∑

P (ˆ̄1,ˆ̄2)

B1
5(jq, ˆ̄1g, ˆ̄2g, ig, kq̄) (5.6.70)

dσ̂RV,Yqg,NNLO = N 1
qg,5

∫
dΦ3(p3, p4, p5; p1, p2)

dx1

x1

dx2

x2

δ(1− x1)δ(1− x2)J
(3)
2 (pi, pj, pk)
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× 1

3!

∑

P (ˆ̄1,ˆ̄2)

B1
5(ˆ̄1q, ig, ˆ̄2g, jg, kq̄) (5.6.71)

dσ̂RV,Zqg,NNLO = N 1
qg,5

∫
dΦ3(p3, p4, p5; p1, p2)

dx1

x1

dx2

x2

δ(1− x1)δ(1− x2)J
(3)
2 (pi, pj, pk)

× 1

3!

∑

P (ˆ̄1,ˆ̄2)

B1
5(ˆ̄1q, ig, jg, ˆ̄2g, kq̄) (5.6.72)

such that

dσ̂RV,fullqg,NNLO = dσ̂RV,Xqg,NNLO + dσ̂RV,Yqg,NNLO + dσ̂RV,Zqg,NNLO. (5.6.73)

Subtraction term with colour connected initial states: X topology

The real-virtual contribution for the X topology is given by

dσ̂RV,Xqg,NNLO = N 1
qg,5

∫
dΦ3(p3, p4, p5; p1, p2)

dx1

x1

dx2

x2

δ(1− x1)δ(1− x2)J
(3)
2 (pi, pj, pk)

× 1

3!

∑

P (ˆ̄1,ˆ̄2)

B1
5(jq, ˆ̄1g, ˆ̄2g, ig, kq̄) (5.6.74)

The sum over the initial states can be achieved by a simple label exchange, such that

we only need to the subtraction term for the single ordering: it has the form

dσ̂T,XNNLO = N 1
qg,5

∑

P (i,j)

∫
dΦ3(p3, p4, p5;x1p1, x2p2)

1

2!

dx1

x1

dx2

x2

×
{

−
(1

2
F0

3,g(s2̄i) +
1

3
F0

3 (sij) +
1

2
D0

3(sjk) +D0
3,qg(s1̄2̄)

−Γ1
qq(x1)δ(1− x2)− Γ1

gg(x2)δ(1− x1)
)
B0

5(ˆ̄1q, ˆ̄2g, ig, jg, kq̄)J
(3)
2 (pi, pj, pk)

+f 0
3 (ˆ̄2g, ig, jg)

[
δ(1− x1)δ(1− x2)B1

4(ˆ̄1q,
ˆ̄̄2g, (̃ij)g, kq̄)

+
(
D0

3,qg(s1̄¯̄2) +
1

2
F0

3,g(s¯̄2(̃ij)
) +

1

2
D0

3(s
(̃ij)k

)− Γ1
qq(x1)δ(1− x2)

−Γ1
gg(x2)δ(1− x1)

)
B0

4(ˆ̄1q,
ˆ̄̄2g, (̃ij)g, kq̄)

]
J

(2)
2 (p

(̃ij)
, pk)

+d0
3(kq̄, jg, ig)

[
δ(1− x1)δ(1− x2)B1

4(ˆ̄1q, ˆ̄2g, (̃ij)g, (̃jk)q̄) +
(
D0

3,qg(s1̄2̄)
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+
1

2
F0

3,g(s2̄(̃ij)
) +

1

2
D0

3(s
(̃ij)(̃jk)

)− Γ1
qq(x1)δ(1− x2)

−Γ1
gg(x2)δ(1− x1)

)
B0

4(ˆ̄1q, ˆ̄2g, (̃ij)g, (̃jk)q̄)

]
J

(2)
2 (p

(̃ij)
, p

(̃jk)
)

+G0
3(ˆ̄2g, ˆ̄1q, kq̄)

[
δ(1− x1)δ(1− x2)A1

4(ˆ̄̄2g, ĩg, j̃g,
ˆ̄̄1g) +

(1

2
F0

3,g(s¯̄2̃i) +
1

3
F0

3 (s̃ij̃)

+
1

2
F0

3,g(sj̃¯̄1) + F0
3,gg(s¯̄1¯̄2)− Γ1

qq(x1)δ(1− x2)− Γ1
gg(x2)δ(1− x1)

)

×A0
4(ˆ̄̄2g, ĩg, j̃g,

ˆ̄̄1g)

]
J

(2)
2 (p̃i, pj̃)

+

[
f 1

3 (ˆ̄2g, ig, jg)δ(1− x1)δ(1− x2) +
(1

2
F0

3,g(s2̄j) +
1

3
F0

3 (sji) +
1

2
F0

3,g(s2̄i)

−F0
3,g(s¯̄2(̃ji)

)
)
f 0

3 (ˆ̄2g, ig, jg)

]
B0

4(ˆ̄1q,
ˆ̄̄2g, (̃ij)g, kq̄)J

(2)
2 (p

(̃ij)
, pk)

+

[
d1

3(kq̄, jg, ig)δ(1− x1)δ(1− x2) +
(1

2
D0

3(ski) +
1

3
F0

3 (sij) +
1

2
D0

3(skj)

−D0
3(s

(̃ki)(̃ij)
)
)
d0

3(kq̄, jg, ig)

]
B0

4(ˆ̄1q, ˆ̄2g, (̃ij)g, (̃jk)q̄)J
(2)
2 (p

(̃ij)
, p

(̃jk)
)

+

[
G1

3(ˆ̄2g, ˆ̄1q, kq̄)δ(1− x1)δ(1− x2) +
(
D0

3,qg(s2̄1̄) +D0
3,g;gq(s2̄k)− 2F0

3,gg(s¯̄1¯̄2)
)

×G0
3(ˆ̄2g, ˆ̄1q, kq̄)

]
A1

4(ˆ̄̄2g, ĩg, j̃g,
ˆ̄̄1g)J

(2)
2 (pi, pj̃k)

−
[
Ã1

3(ˆ̄1q, jg, kq̄)δ(1− x1)δ(1− x2) +
(
A0

3,q(s1̄k)−A0
3,q(s¯̄1(̃jk)

)
)

×A0
3(ˆ̄1q, jg, kq̄)

]
B0

4(ˆ̄̄1q, ˆ̄2g, ig, (̃jk)q̄)J
(2)
2 (p

(̃jk)
, pi)

+b0 log

(
µ2

|s2ij|

)
f 0

3 (ˆ̄2g, ig, jg)δ(1− x1)δ(1− x2)B0
4(ˆ̄1q, ,

ˆ̄̄2g, (̃ij)g, kq̄)J
(2)
2 (pĩj, pk)

+b0 log

(
µ2

|skji|

)
d0

3(kq̄, jg, ig)δ(1− x1)δ(1− x2)B0
4(ˆ̄1q, ˆ̄2g, (̃ij)g, (̃jk)q̄)J

(2)
2 (pĩj, pj̃k)

+b0 log

(
µ2

|s12k|

)
G0

3(ˆ̄2g, ˆ̄1q, kq̄)δ(1− x1)δ(1− x2)A0
4(ˆ̄̄2g, ĩg, j̃g,

ˆ̄̄1g)J
(2)
2 (pi, pj̃k)

+
1

2

[
1

2
F0

3,g(s¯̄2(̃ij)
)− 1

2
F0

3,g(s2̄j)−D0
3,qg(s1̄¯̄2) +D0

3,qg(s1̄2̄)− 1

2
D0

3(s
k(̃ij)

)

+
1

2
D0

3(skj) + δ(1− x1)δ(1− x2)
(
S(s2̄j, sjk, x2̄j,jk)− S(s¯̄2(̃ij)

, sjk, x¯̄2(̃ij),jk
)
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+S(s
k(̃ij)

, sjk, xk(̃ij),jk
)− S(sjk, sjk, 1)

)]

×f 0
3 (ˆ̄2g, ig, jg)B

0
4(ˆ̄1q, ,

ˆ̄̄2g, (̃ij)g, kq̄)J
(2)
2 (p

(̃ij)
, pk)

+
1

2

[
1

2
D0

3(s
(̃ij)(̃jk)

)− 1

2
D0

3(sik)−
1

2
F0

3,g(s2̄(̃ij)
) +

1

2
F0

3,g(s2̄i)

−A0
3,q(s1̄(̃jk)

) +A0
3,q(s1̄k) + δ(1− x1)δ(1− x2)

(
S(sik, sik, 1)

−S(s
(̃ij)(̃jk)

, sik, x(̃ij)(̃jk),ik
) + S(s

2̄(̃ij)
, sik, x2̄(̃ij),ik

)− S(s2̄i, sik, x2̄i,ik)
)]

×d0
3(kq̄, jg, ig)B

0
4(ˆ̄1q, ˆ̄2g, (̃ij)g, (̃jk)q̄)J

(2)
2 (p

(̃ij)
, p

(̃jk)
)

−1

2

[
A0

3,q(s1̄k)−A0
3,q(s¯̄1(̃jk)

)− 1

2
D0

3(sik) +
1

2
D0

3(s
i(̃jk)

)−D0
3,qg(s1̄2̄)

+D0
3,qg(s¯̄12̄) + δ(1− x1)δ(1− x2)

(
S(sik, sik, 1)− S(s

i(̃jk)
, sik, xi(̃jk),ik

)

+S(s¯̄1(̃jk)
, sik, x¯̄1(̃jk),ik

)− S(s1̄k, sik, x1̄k,ik)
)]

×A0
3(ˆ̄1q, jg, kq̄)B

0
4(ˆ̄̄1q, ˆ̄2g, ig, (̃jk)q̄)J

(2)
2 (p

(̃jk)
, pi)

}
. (5.6.75)

Subtraction term with colour connected initial states: Y topology

The real-virtual contribution for the Y topology is given by

dσ̂RV,Yqg,NNLO = N 1
qg,5

∫
dΦ3(p3, p4, p5; p1, p2)

dx1

x1

dx2

x2

δ(1− x1)δ(1− x2)J
(3)
2 (pi, pj, pk)

× 1

3!

∑

P (ˆ̄1,ˆ̄2)

B1
5(ˆ̄1q, jg, ˆ̄2g, ig, kq̄). (5.6.76)

The sum over the initial states can be achieved by a simple label exchange, such that

we only need the subtraction term for a single ordering: it has the form

dσ̂T,Yqg,NNLO = N 1
qg,5

∑

P (i,j)

∫
dΦ3(p3, p4, p5;x1p1, x2p2)

1

2!

dx1

x1

dx2

x2

×
{

−
(1

2
D0

3,q(s1̄i) +
1

2
F0

3,g(si2̄) +
1

2
F0

3,g(s2̄j) +
1

2
D0

3(sjk)− Γ1
qq(x1)δ(1− x2)

−Γ1
gg(x2)δ(1− x1)

)
B0

5(1̂q, ig, 2̂g, jg, kq̄)J
(3)
2 (pi, pj, pk)
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+D0
3(ˆ̄1q, ig, ˆ̄2g)

[
δ(1− x1)δ(1− x2)B1

4(ˆ̄̄1q,
ˆ̄̄2g, j̃g, k̃q̄) +

(
D0

3,qg(s¯̄1¯̄2) +
1

2
F0

3,g(s¯̄2j̃)

+
1

2
D0

3(sk̃j̃)− Γ1
qq(x1)δ(1− x2)− Γ1

gg(x2)δ(1− x1)
)
B0

4(ˆ̄̄1q,
ˆ̄̄2g, j̃g, k̃q̄)

]
J

(2)
2 (pj̃, pk̃)

+d0
g;gq(kq̄, jg,

ˆ̄2g)

[
δ(1− x1)δ(1− x2)B1

4(ˆ̄1q, ig,
ˆ̄̄2g, (̃jk)q̄)

+
(1

2
D0

3,q(s1̄i) +
1

2
F0

3,g(s¯̄2i) +D0
3,g;gq(s¯̄2(̃jk)

)− Γ1
qq(x1)δ(1− x2)

−Γ1
gg(x2)δ(1− x1)

)
B0

4(ˆ̄1q, ig,
ˆ̄̄2g, (̃jk)q̄)

]
J

(2)
2 (pi, p(̃jk)

)

+G0
3(jg, ˆ̄1q, kq̄)

[
δ(1− x1)δ(1− x2)A1

4(ˆ̄̄1g, ig, ˆ̄2g, (̃jk)g)

+
(1

2
F0

3,g(s¯̄1i) +
1

2
F0

3,g(s2̄i) +
1

2
F0

3,g(s2̄(̃jk)
) +

1

2
F0

3,g(s¯̄1(̃jk)
)

−Γ1
qq(x1)δ(1− x2)− Γ1

gg(x2)δ(1− x1)
)
A0

4(ˆ̄̄1g, ig, ˆ̄2g, (̃jk)g)

]
J

(2)
2 (pi, p(̃jk)

)

+

[
D1

3(ˆ̄1q, ig, ˆ̄2g)δ(1− x1)δ(1− x2) +
(1

2
D0

3,q(s1̄i) +
1

2
F0

3,g(si2̄) +D0
3,qg(s1̄2̄)

−2D0
3,qg(s¯̄1¯̄2)

)
D0

3(ˆ̄1q, ig, ˆ̄2g)

]
B0

4(ˆ̄̄1q,
ˆ̄̄2g, j̃g, k̃q̄)J

(2)
2 (pj̃, pk̃)

+

[
d1
g;gq(kq̄, jg,

ˆ̄2g)δ(1− x1)δ(1− x2) +
(1

2
D0

3(skj) +
1

2
F0

3,g(sj2̄) +D0
3,g;gq(sk2̄)

−2D0
3,g;gq(s(̃kj)¯̄2

)
)
d0
g;gq(kq̄, jg,

ˆ̄2g)

]
B0

4(ˆ̄1q, ig,
ˆ̄̄2g, (̃jk)q̄)J

(2)
2 (pi, p(̃jk)

)

+

[
G1

3(jg, ˆ̄1q, kq̄)δ(1− x1)δ(1− x2) +
(1

2
D0

3(sjk) +
1

2
D0

3,q(sj1̄)−F0
3,g(s(̃jk)¯̄1

)
)

×G0
3(jg, ˆ̄1q, kq̄)

]
A0

4(ˆ̄̄1g, ig, ˆ̄2g, (̃jk)g)J
(2)
2 (pi, p(̃jk)

)

+b0 log

(
µ2

|s1i2|

)
D0

3(ˆ̄1q, ig, ˆ̄2g)δ(1− x1)δ(1− x2)B0
4(ˆ̄̄1q,

ˆ̄̄2g, j̃g, k̃q̄)J
(2)
2 (pj̃, pk̃)

+b0 log

(
µ2

|skj2|

)
d0
g;gq(kq̄, jg,

ˆ̄2g)δ(1− x1)δ(1− x2)B0
4(ˆ̄1q, ig,

ˆ̄̄2g, (̃jk)q̄)J
(2)
2 (pi, p(̃jk)

)

+b0 log

(
µ2

|sjk1|

)
G0

3(jg, ˆ̄1q, kq̄)δ(1− x1)δ(1− x2)A0
4(ˆ̄̄1g, ig, ˆ̄2g, (̃jk)g)J

(2)
2 (pi, p(̃jk)

)
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+
1

2

[
D0

3,qg(s¯̄1¯̄2)−D0
3,qg(s1̄2̄)− 1

2
F0

3,g(s¯̄2j̃) +
1

2
F0

3,g(s2̄j)−A0
3,q(s¯̄1k̃) +A0

3,q(s1̄k)

+δ(1− x1)δ(1− x2)
(
S(s1̄2̄, sjk, x1̄2̄,jk)− S(s¯̄1¯̄2, sj̃k̃, x¯̄1¯̄2,̃jk̃)− S(s2̄j, sjk, x2̄j,jk)

+S(s¯̄2j̃, sj̃k̃, x¯̄2j̃ ,̃jk̃)− S(s1̄k, sjk, x1̄k,jk) + S(s¯̄1k̃, sj̃k̃, x¯̄1k̃,̃jk̃)
)]

×D0
3(ˆ̄1q, ig, ˆ̄2g)B

0
4(ˆ̄̄1q,

ˆ̄̄2g, j̃g, k̃q̄)J
(2)
2 (pj̃, pk̃)

+
1

2

[
D0

3,g;gq(s¯̄2(̃jk)
)−D0

3,g;gq(s2̄k)−
1

2
F0

3,g(s¯̄2i) +
1

2
F0

3,g(s2̄i)

−A0
3,q(s(̃jk)1̄

) +A0
3,q(sk1̄) + δ(1− x1)δ(1− x2)

(
S(s2̄k, sik, x2̄k,ik)

−S(s¯̄2(̃jk)
, sik, x¯̄2(̃jk),ik

) + S(s
(̃jk)1̄

, sik, x(̃jk)1̄,ik
)− S(sk1̄, sik, xk1̄,ik)

)]

×d0
q;gq(kq̄, jg,

ˆ̄2g)B
0
4(ˆ̄1q, ig,

ˆ̄̄2g, (̃jk)q̄)J
(2)
2 (pi, p(̃jk)

)

}
. (5.6.77)

Subtraction term with colour connected initial states: Z topology

The real-virtual contribution for the Z topology is given by

dσ̂RV,Zqg,NNLO = N 1
qg,5

∫
dΦ3(p3, p4, p5; p1, p2)

dx1

x1

dx2

x2

δ(1− x1)δ(1− x2)J
(3)
2 (pi, pj, pk)

× 1

3!

∑

P (ˆ̄1,ˆ̄2)

B1
5(ˆ̄1q, ig, jg, ˆ̄2g, kq̄). (5.6.78)

The sum over the initial states can be achieved by a simple label exchange, such that

we only need to the subtraction term for the single ordering: it has the form

dσ̂T,Zqg,NNLO = N 1
qg,5

∑

P (i,j)

∫
dΦ3(p3, p4, p5;x1p1, x2p2)

1

2!

dx1

x1

dx2

x2

×
{

−
(1

2
D0

3,q(s1̄i) +
1

3
F0

3 (sij) +
1

2
F0

3,g(sj2̄) +D0
3,g;gq(s2̄k)

−Γ1
qq(x1)δ(1− x2)− Γ1

gg(x2)δ(1− x1)
)
B0

5(1̂q, ig, jg, 2̂g, kq̄)J
(3)
2 (pi, pj, pk)

d0
3(ˆ̄1q, ig, jg)

[
δ(1− x1)δ(1− x2)B1

4(ˆ̄̄1q, (̃ij)g,
ˆ̄2g, kq̄) +

(1

2
D0

3,q(s¯̄1(̃ij)
)

+
1

2
F0

3,g(s(̃ij)2̄
) +D0

3,g;gq(s2̄k)− Γ1
qq(x1)δ(1− x2)− Γ1

gg(x2)δ(1− x1)
)
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×B0
4(ˆ̄̄1q, (̃ij)g,

ˆ̄2g, kq̄)

]
J

(2)
2 (p

(̃ij)
, pk)

+f 0
3 (ˆ̄2g, jg, ig)

[
δ(1− x1)δ(1− x2)B1

4(ˆ̄1q, (̃ij)g,
ˆ̄̄2g, kq̄) +

(1

2
D0

3,q(s1̄(̃ij)
)

+
1

2
F0

3,g(s(̃ij)¯̄2
) +D0

3,g;gq(s¯̄2k)− Γ1
qq(x1)δ(1− x2)− Γ1

gg(x2)δ(1− x1)
)

×B0
4(ˆ̄1q, (̃ij)g,

ˆ̄̄2g, kq̄)

]
J

(2)
2 (p

(̃ij)
, pk)

+A0
3(ˆ̄1q, ˆ̄2g, kq̄)

[
δ(1− x1)δ(1− x2)B1

4(ˆ̄̄1q, ĩg, j̃g,
ˆ̄̄2q̄) +

(1

2
D0

3,q(s¯̄1̃i)

+
1

3
F0

3 (s̃ij̃) +
1

2
D0

3,q(sj̃¯̄2)− Γ1
qq(x1)δ(1− x2)− Γ1

qq(x2)δ(1− x1)
)

×B0
4(ˆ̄̄1q, ĩg, j̃g,

ˆ̄̄2q̄)

]
J

(2)
2 (p̃i, pj̃)

+G0
3(ig, ˆ̄1q, kq̄)

[
δ(1− x1)δ(1− x2)A1

4(ˆ̄̄1g, (̃ik)g, jg,
ˆ̄2g) +

(1

2
F0

3,g(s¯̄1(̃ik)
)

+
1

3
F0

3 (s
(̃ik)j

) +
1

2
F0

3,g(sj2̄) + F0
3,gg(s¯̄12̄)− Γ1

qq(x1)δ(1− x2)− Γ1
gg(x2)δ(1− x1)

)

×A0
4(ˆ̄̄1g, (̃ik)g, jg,

ˆ̄2g)

]
J

(2)
2 (p

(̃ik)
, pj)

+

[
d1

3(ˆ̄1q, ig, jg)δ(1− x1)δ(1− x2) +
(1

2
D0

3,q(s1̄i) +
1

3
F0

3 (sij) +
1

2
D0

3,q(s1̄j)

−D0
3,q(s¯̄1(̃ij)

)
)
d0

3(ˆ̄1q, ig, jg)

]
B0

4(ˆ̄̄1q, (̃ij)g,
ˆ̄2g, kq̄)J

(2)
2 (p

(̃ij)
, pk)

−
[
Ã1

3(ˆ̄1q, ig, kq̄)δ(1− x1)δ(1− x2) +
(
A0

3,q(sˆ̄1k
)−A0

3,q(sˆ̄̄1(̃ik)
)
)

×A0
3(ˆ̄1q, ig, kq̄)

]
B0

4(ˆ̄̄1q, jg, ˆ̄2g, (̃ik)q̄)J
(2)
2 (p

(̃ik)
, pj)

+

[
f 1

3 (ˆ̄2g, jg, ig)δ(1− x1)δ(1− x2) +
(1

2
F0

3,g(s2̄j) +
1

3
F0

3 (sji) +
1

2
F0

3,g(s2̄i)

−F0
3,g(s¯̄2(̃ji)

)
)
f 0

3 (ˆ̄2g, jg, ig)

]
B0

4(ˆ̄1q, (̃ij)g,
ˆ̄̄2g, kq̄)J

(2)
2 (pĩj, pk)

+

[
A1

3(ˆ̄1q, ˆ̄2g, kq̄)δ(1− x1)δ(1− x2) +
(
D0

3,qg(s1̄2̄) +D0
3,g;gq(s2̄k)−A0

3,qq(s¯̄1¯̄2)
)
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×A0
3(ˆ̄1q, ˆ̄2g, kq̄)

]
B0

4(ˆ̄̄1q, ĩg, j̃g,
ˆ̄̄2q̄)J

(2)
2 (p̃i, pj̃)

+

[
G1

3(ig, ˆ̄1q, kq̄)δ(1− x1)δ(1− x2) +
(1

2
D0

3,q(s1̄i) +
1

2
D0

3(ski)−F0
3,g(s(̃ik)¯̄1

)
)

×G0
3(ig, ˆ̄1q, kq̄)

]
A0

4(ˆ̄̄1g, (̃ik)g, jg,
ˆ̄2g)

]
J

(2)
2 (p

(̃ik)
, pj)

+b0 log

(
µ2

|s1ij|

)
d0

3(ˆ̄1q, ig, jg)δ(1− x1)δ(1− x2)B0
4(ˆ̄̄1q, (̃ij)g,

ˆ̄2g, kq̄)J
(2)
2 (p

(̃ij)
, pk)

+b0 log

(
µ2

|s2ji|

)
f 0

3 (ˆ̄2g, jg, ig)δ(1− x1)δ(1− x2)B0
4(ˆ̄1q, (̃ij)g,

ˆ̄̄2g, kq̄)J
(2)
2 (p

(̃ij)
, pk)

+b0 log

(
µ2

|s12k|

)
A0

3(ˆ̄1q, ˆ̄2g, kq̄)δ(1− x1)δ(1− x2)B0
4(ˆ̄̄1q, ĩg, j̃g,

ˆ̄̄2q̄)J
(2)
2 (p̃i, pj̃)

+b0 log

(
µ2

|s1ik|

)
G0

3(ig, ˆ̄1q, kq̄)δ(1− x1)δ(1− x2)A0
4(ˆ̄̄1g, (̃ik)g, jg,

ˆ̄2g)J
(2)
2 (p

(̃ik)
, pj)

+
1

2

[
1

2
D0

3,q(s¯̄1(̃ij)
)− 1

2
D0

3,q(s1̄j)−
1

2
F0

3,g(s(̃ij)2̄
) +

1

2
F0

3,g(s2̄j)

+A0
3,q(s1̄k)−A0

3,q(s¯̄1k)δ(1− x1)δ(1− x2)
(
S(s1̄j, sjk, x1̄j,jk)

−S(s¯̄1(̃ij)
, sjk, x¯̄1(̃ij),jk

)− S(s2̄j, sjk, x2̄j,jk) + S(s
2̄(̃ij)

, sjk, x2̄(̃ij),jk
)
)]

×d0
3(ˆ̄1q, ig, jg)B

0
4(ˆ̄̄1q, (̃ij)g,

ˆ̄2g, kq̄)J
(2)
2 (p

(̃ij)
, pk)

+
1

2

[
1

2
F0

3,g(s¯̄2(̃ij)
)− 1

2
F0

3,g(s2̄i)−
1

2
D0

3,q(s1̄(̃ij)
) +

1

2
D0

3,q(s1̄i)

−1

2
D0

3,g;gq(s¯̄2k) +
1

2
D0

3,g;gq(s2̄k) + δ(1− x1)δ(1− x2)
(
S(s2̄i, sik, x2̄i,ik)

−S(s¯̄2(̃ij)
, sik, x¯̄2(̃ij),ik

) + S(s
1̄(̃ij)

, sik, x1̄(̃ij),ik
)− S(s1̄i, sik, x1̄i,ik)

)]

×f 0
3 (ˆ̄2g, jg, ig)B

0
4(ˆ̄1q, (̃ij)g,

ˆ̄̄2g, kq̄)J
(2)
2 (p

(̃ij)
, pk)

+

[
A0

3,qq(s¯̄1¯̄2)−D0
3,qg(s1̄2̄)− 1

2
D0

3,q(s¯̄1̃i) +
1

2
D0

3,q(s1̄i)−
1

2
D0

3,q(s¯̄2j̃) +
1

2
F0

3,g(s2̄j)

+δ(1− x1)δ(1− x2)
(
S(s1̄2̄, sij, x1̄2̄,ij)− S(s¯̄1¯̄2, s̃ij̃, x¯̄1¯̄2,̃ij̃)− S(s1̄i, sij, x1̄i,ij)

+S(s¯̄1̃i, s̃ij̃, x¯̄1̃i,̃ij̃)− S(s2̄j, sij, x2̄j,ij) + S(s¯̄2j̃, s̃ij̃, x¯̄2j̃ ,̃ij̃)
)]

×A0
3(ˆ̄1q, ˆ̄2g, kq̄)B

0
4(ˆ̄̄1q, ĩg, j̃g,

ˆ̄̄2q̄)J
(2)
2 (p̃i, pj̃)
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−1

2

[
A0

3,q(s1̄k)−A0
3,q(s¯̄1(̃ik)

)−D0
3,q(s¯̄1j) +D0

3,q(s1̄j)−D0
3,g;gq(s(̃ik)2̄

)

+D0
3,g;gq(s2̄k) + δ(1− x1)δ(1− x2)

(
− S(s

(̃ik)(̃ij)
, sjk, x(̃ik)(̃ij),jk

) + S(sjk, sjk, 1)

+S(s
2̄(̃ik)

, sjk, x2̄(̃ik),jk
)− S(s2̄k, sjk, x2̄k,jk) + S(s

(̃ij)1̄
, sjk, x(̃ij)1̄,jk

)

−S(s1̄j, sjk, x1̄j,jk)
)]
A0

3(ˆ̄1q, ig, kq̄)B
0
4(ˆ̄̄1q, jg, ˆ̄2g, (̃ik)q̄)J

(2)
2 (p

(̃ik)
, pj)

}
. (5.6.79)

In a similar scenario to the gluon-gluon initiated process, it is only in the summa-

tion of the topologies that we see a full cancellation of singularities. Whilst the

antenna functions introduced to compensate for the unresolved limits are not shared

amongst topologies, the finite contributions of integrated antennae from
∫

dσ̂S,a and

the corrections to the one loop structures do not cancel until the sum is performed.

Once more, the subtraction term has been tested numerically. The procedure is

then repeated for 1000 different phase space points in the unresolved configuration

defined by the constraints. The constraints are then tightened to force the phase space

points closer to the unresolved singular point and the ratio calculated for another 1000

points. The procedure is repeated once more for a set of points even closer to the

singular point and the histogram of ratios for the three sets of constraints plotted.

A selection of plots from three different unresolved configurations is shown in

Figure 5.9, for both pole and finite contributions. Again, we see that the distribution

of R becomes more sharply peaked around one as the unresolved singular limit is

approached, i.e., as the parameter x gets smaller. This provides statistical evidence

for the convergence of the subtraction term to the physical cross section in the IR

divergent limits.

An important feature of these subtraction terms is the highly predictive nature

of the real-virtual subtraction term, which in the case of the quark-gluon and gluon-

gluon initiated process, has been constructed without explicit knowledge of the terms

dropping down from the double real subtraction term. Given the pole structure of

dσ̂RVNNLO which has universal structure via the Catani formalism, the integrated block
∫

dσ̂s,a can be constructed to cancel the explicit pole structure. The colour ordering of

the reduced matrix elements and antennae illuminates the single unresolved limits,and

thus indicates the new three parton antennae required. These in turn have their own
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(c)

Figure 5.9: Plots displaying the convergence of the subtraction term to the real-virtual
physical matrix element in various unresolved limits, for qg → qgg. The green data
is furthest from the singular configuration with the blue data closer to the singular
region and the red data the closest. The left plot of each row is the 1/ε2 contribution,
the centre plot the 1/ε contribution and the right hand plot the finite contribution.
(a) Final-state single soft limit for parton i such that x = (s12−sjk)/s12. (b) Collinear
limit between final-state gluons i and j, such that x = sij/s12. (c) Collinear limit
between final-state parton i and the initial quark 1 such that x = s1i/s12.

colour structure that is well understood, and the integrated antenna corrections are

established. The infrared structure discussed in this thesis give a clear indication of

which antenna are new at real-virtual, and which have dropped down from the double

real subtraction term.

Crucially, analytic checks of the real-virtual subtraction term in the various limits

can also predict the presence of the integrated terms
∫

dσ̂b,c, again without prior

knowledge of their existence at the double real level. A failure to cancel the finite

contributions of the integrated antenna in the single unresolved limits put stringent

requirements on the presence of additional integrated antennae to cancel those correc-
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tions to the reduced matrix elements. The inclusion of these X 0
3 antennae, appearing

as blocks of the form given in (5.5.62), necessitates a block of integrated large angle

soft terms in order to complete the 1/ε pole cancellation. The presence of the large

angle soft terms can be inferred heuristically by considering the X̃0
4 present at the

double real level, appealing to Table 4.7. However, this algorithm not only requires no

input knowledge from the double real and real-virtual contributions, but also gives a

strong indication of what terms should be expected at these levels of the calculations.

5.6.2 Double virtual subtraction term, dσ̂UNNLO

The double virtual subtraction term is constructed from the remaining terms dropping

down from the double real and real virtual subtraction terms, as well as the double

virtual mass factorisation contribution. Since the pole structure of the two loop

amplitudes is predictable via the formalism described in Chapter 2, we write the

subtraction term in terms of the single and double unresolved integrated antenna

strings without the prerequisite of the double real and real-virtual subtraction terms.

Since there is a sum over the permuations of gluons, there are two distinct topolo-

gies, where the initial gluon is either adjacent (X topology) or non-adjacent (Y topol-

ogy) to the initial state quark, in a similar vein to the RV terms. Unique integrated

antennae string are present in each, so both topologies are presented. The VV pole

structure for the X topology reads,

dσ̂U,Xqg,NNLO = −N 2
qg,4 dΦ2(p3, p4; p1, p2)

∫
dz1

z1

dz2

z2

×
{

J
(1)
4 (ˆ̄1q, ˆ̄2g, ig, jq̄)

(
B1

4(ˆ̄1q, ˆ̄2g, ig, jq̄)−
b0

ε
B0

4(ˆ̄1q, ˆ̄2g, ig, jq̄)

)

+
1

2
J

(1)
4 (ˆ̄1q, ˆ̄2g, ig, jq̄)⊗ J (1)

4 (ˆ̄1q, ˆ̄2g, ig, jq̄) B
0
4(ˆ̄1q, ˆ̄2g, ig, jq̄)

+ J
(2)
4 (ˆ̄1q, ˆ̄2g, ig, jq̄) B

0
4(ˆ̄1q, ˆ̄2g, ig, jq̄)

}
J

(2)
2 (pi, pj). (5.6.80)

The single unresolved integrated antenna string is defined in Eq. (5.2.14). In Eq. (5.2.14)

the single unresolved integrated antenna string was written as a sum over integrated



5.6. Quark-gluon initiated dijet production at NNLO 161

dipoles. The analogous dipole-like formula for J
(2)
4 is given by,

J
(2)
4 (ˆ̄1q, ˆ̄2g, ig, jq̄) = J

(2)
2 (ˆ̄1q, ˆ̄2g) + J

(2)
2 (ˆ̄2g, ig) + J

(2)
2 (ig, jq)− J (2)

2 (ˆ̄1q, jq̄), (5.6.81)

where the two-parton double unresolved integrated antenna strings are given by:

J
(2)
2 (ˆ̄1q, ˆ̄2g) = 2D0,adj

4,qg (s1̄2̄) + 2D0,n.adj
4,qg (s1̄2̄) +D1

3,qg(s1̄2̄) +
b0

ε

( |s1̄2̄|
µ2

)−ε
D0

3,qg(s1̄2̄)

− Γ(2)
qq (z1)δ(1− z2)− Γ(2)

gg (z2)δ(1− z1)−
[
D0

3,qg(s1̄2̄)⊗D0
3,qg(s1̄2̄)

]

+
[
Γ1
qq ⊗ Γ1

qq

]
(z1)δ(1− z2) +

[
Γ1
gg ⊗ Γ1

gg

]
(z2)δ(1− z1), (5.6.82)

J
(2)
2 (ˆ̄2g, ig) = F0,adj

4,g (s2̄i) + F0,n.adj
4,g (s2̄i) +

1

2
F1,n.adj

3,g (s2̄i) +
b0

2ε
F0

3 (s2̄i)

( |s2̄i|
µ2

)−ε

− 1

4

[
F0

3,g(s2̄i)⊗F0
3,g(s2̄i)

]
(z2)− Γ

(2)

gg (z2)δ(1− z1), (5.6.83)

J
(2)
2 (ig, jq̄) = D0

4,a(sij) +D0
4,c(sij) +

1

2
D1

3(sij) +
b0

2ε
D0

3(sij)

( |sij|
µ2

)−ε

− 1

4

[
D0

3(sij)⊗D0
3(sij)

]
(5.6.84)

The double virtual contribution for the Y topology can be written in the form of

Eq. (4.5.131),

dσ̂U,Yqg,NNLO = −N 2
qg,4 dΦ2(p3, p4; p1, p2)

∫
dz1

z1

dz2

z2

×
{

J
(1)
4 (ˆ̄1q, ig, ˆ̄2g, jq̄)

(
B1

4(ˆ̄1q, ig, ˆ̄2g, jq̄)−
b0

ε
B0

4(ˆ̄1q, ig, ˆ̄2g, jq̄)

+
1

2
J

(1)
4 (ˆ̄1q, ig, ˆ̄2g, jq̄)⊗ J (1)

4 (ˆ̄1q, ig, ˆ̄2g, jq̄) B
0
4(ˆ̄1q, ig, ˆ̄2g, jq̄)

+ J
(2)
4 (ˆ̄1q, ig, ˆ̄2g, jq̄) B

0
4(ˆ̄1q, ig, ˆ̄2g, jq̄)

}
J

(2)
2 (pi, pj), (5.6.85)

which reproduces the form of the Catani pole structure in Eq. (4.5.115). The single

unresolved integrated antenna string is defined in Eq. (5.2.14). In Eq. (5.2.14) the

single unresolved integrated antenna string was written as a sum over integrated

dipoles. The analogous dipole-like formula for J
(2)
4 is given by,

J
(2)
4 (ˆ̄1q, ig, ˆ̄2g, jq̄) = J

(2)
2 (ˆ̄1q, ig) + J

(2)
2 (ig, ˆ̄2g) + J

(2)
2 (ˆ̄2g, jq)− J (2)

2 (ˆ̄1q, jq̄).

(5.6.86)
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The expressions for J
(2)
2 (ˆ̄1q, ig),J

(2)
2 (ig, ˆ̄2g) and J

(2)
2 (ˆ̄2g, jq) can be obtained from

(5.4.44), (5.6.83) and (5.5.67) respectively.

*

In this chapter we have constructed the full subtraction term for quark-initiated

contribution to dijet production, and shown that they correctly mimic the physical

matrix elements in all divergent limits.

The real-virtual and double virtual subtraction terms have also been completed,

the former again successfully tested in all single unresolved limits. Chapter 6 will

illustrate the application of the antenna subtraction formalism to the real-vitual con-

tributions involving two pairs of non-identical quarks.



Chapter 6

Dijet Production from Four-Quark

Processes

The previous chapter saw the real-virtual subtraction terms constructed for all re-

quired crossings for quark-gluon scattering contributing to dijet production at the

LHC. We now extend the analysis to the processes involving two quark pairs. This

can include scenarios in which the quark pairs are identical, although here we only

consider the non-identical quark case. These are the leading colour contributions

since the identical quark terms are suppressed by a factor of 1/N relative to the

non-identical quark pairs.

In this chapter we again focus on the real-virtual subtraction term, which in-

volves two quark pairs and a single gluon. Importantly, we see that the real-virtual

subtraction terms are constructed without prior knowledge of the double real sub-

traction terms. Due to the higher complexity of the latter, having the real-virtual

term in place, and of course with the pole structure at double virtual known for some

time [110], we have a powerful tool for asserting the terms expected for the double

real subtraction term. The purpose of this chapter is to not only establish the ma-

trix elements and antennae that will be required for the subtraction terms dealing

with processes with multiple quark pairs, but show that the antenna formalism is

successful in dealing with all the associated limits.

In order to construct a subtraction term for hadronic interactions, we must send

two partons into the initial state. For four-quark, single gluon scattering, we must
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consider all available processes, given that each interacting hadron can contain any

one of the five partons. For non-identical quark pairs we find that there are twenty

processes possible, remembering that the initial state labels are important: q(x1)Q(x2)

6= q(x2)Q(x1). However, we can use charge conjugation operations and the exchang-

ing of initial state labels to reduce this number down to six independent processes.

We have

q̄(p1)Q(p2) → q̄(p3)Q(p4)g(p5), (6.0.1)

q(p1)q̄(p2) → Q(p3)Q̄(p4)g(p5), (6.0.2)

q(p1)g(p2) → Q(p3)Q̄(p4)g(p5), (6.0.3)

q(p1)Q(p2) → q(p3)Q(p4)g(p5), (6.0.4)

Q(p1)g(p2) → Q(p3)q(p4)q̄(p5), (6.0.5)

Q(p1)Q̄(p2) → q(p3)q̄(p4)g(p5). (6.0.6)

For this thesis we shall construct the subtraction term for the case where a quark

and antiquark are in the initial state as in (6.0.1).

6.1 Notation and amplitudes

The four parton amplitude with two non-identical quark pairs at tree level reads

C0
4 = 2g2

(
δqQ̄δQq̄ −

1

N
δqq̄δQQ̄

)
C0

4(q,Q, q̄, Q̄), (6.1.7)

where the only colour structures are naturally the quark colour lines. The one loop

amplitude has a similar colour structure, however the introduction of loop diagrams

result in richer colour connectivity; the subamplitudes with colour connectivity be-

tween like and different quark-antiquark pairs are no longer identical and thus the

amplitude cannot be factorised as at tree level. We have

C0
4 = 2g2

(
g2NC(ε)

2

)
×
{
δqQ̄δQq̄ C1,l

4 (q,Q, q̄, Q̄)− 1

N
δqq̄δQQ̄ C1,s

4 (q,Q, q̄, Q̄)

}
.(6.1.8)
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In increasing the multiplicity for the real-virtual contribution to dijet production

at NNLO we allow for an additional external gluon. The tree level and one loop

amplitude with two quark-antiquark pairs of different flavour and one gluon has the

form

C`5({pi, λi, ai}) = 23/2g3

(
g2NC(ε)

2

)`
×
{

∑

(q1 6=q2)∈{q,Q}
(T g)q1q̄2δq2q̄1C`5(q1, g, q̄2; q2, q̄1)

−
∑

(q1 6=q2)∈{q,Q}

1

N
(T g)q1q̄1δq2q̄2C`5(q1, g, q̄1, q2, q̄2)

}
(6.1.9)

for ` = 0, 1. The one loop amplitude must be treated with care before it is squared.

The functions C1
5 present in the one-loop decomposition are not independent of the

number of colours or flavours. Whilst the structure in (6.1.9) elucidates the explicit

pole structure, for a full expansion in N we must further decompose these partial

amplitudes into more primitive ones. We thus redefine the partial amplitudes as

linear combinations of structures proportional to N and NF :

C1
5({qi}) = NC1,l

5 ({qi}) +
1

N
C1,s

5 ({qi}) +NFC1,F
5 ({qi}). (6.1.10)

It is then possible to write the amplitude in terms of these primitive amplitudes which

are completely independent of colour or flavour factors. The amplitude, excluding

NF terms, thus becomes

C1
5(q̄, Q̄, Q, q, g) = 23/2g3

(
g2NC(ε)

2

)`
×
{

N
(

(T g)qQ̄δQq̄Cl5(q, g, Q̄;Q, q̄) + (T g)Qq̄δqQ̄Cl5(Q, g, q̄; q, Q̄)
)

+
1

N

(
(T g)qQ̄δQq̄Cs5(q, g, Q̄;Q, q̄) + (T g)Qq̄δqQ̄Cs5(Q, g, q̄; q, Q̄)

)

−
(

(T g)qq̄δQQ̄Cl5(q, g, q̄;Q, Q̄) + (T g)QQ̄δqq̄Cl5(Q, g, Q̄; q, q̄)
)

− 1

N2

(
(T g)qq̄δQQ̄Cs5(q, g, q̄;Q, Q̄) + (T g)QQ̄δqq̄Cs5(Q, g, Q̄; q, q̄)

)}

(6.1.11)
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The full amplitude can be found in [111], from which we construct the colour decom-

position numerically to be incorporated in the NNLOJET program.

6.2 Matrix elements for four and five partons

6.2.1 Four-parton matrix elements

The tree level, Born cross section can be colour-decomposed as follows:

dσ̂LO = NqQ,LO
∫

dΦ2(p3, p4; p1, p2)C0
4(q, Q̄;Q, q̄) J

(2)
2 ({p}2) (6.2.12)

where for four quark scattering,

NqQ,LO =
1

2s

1

4N2
(g2)2(N2 − 1). (6.2.13)

We note that the squared tree level matrix element is the only structure present due

to the symmetry of the quarks in the colour structure.

The full colour decomposition of the one loop squared matrix element can also be

constructed. Omitting flavour contributions, it takes the form

dσ̂VNLO = N 1
4

∫
dΦ3(p3, p4, p5; p1, p2)

dx1

x1

dx2

x2

δ(1− x1)δ(1− x2)

×
{
C1,l

4 (q, Q̄;Q, q̄)− 1

N2
C1,s

4 (q, q̄;Q, Q̄)

}
J

(2)
2 ({p}2), (6.2.14)

where

N 1
4 = NqQ,LO

(
αsN

2π

)
C̄(ε). (6.2.15)

The pole structure is derived in Appendix B; expressed in terms of singularity oper-

ators,

Poles
[
C1,l

4 (q, Q̄;Q, q̄)
]

= −2(I
(1)
qq̄ (ε, sqQ̄) + I

(1)
qq̄ (ε, sQq̄))C

0
4(q, Q̄;Q, q̄), (6.2.16)

Poles
[
C1,s

4 (q, q̄;Q, Q̄)
]

= −2(I
(1)
qq̄ (ε, sqq̄) + I

(1)
qq̄ (ε, sQQ̄))C0

4(q, q̄;Q, Q̄). (6.2.17)
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6.2.2 Five-parton matrix elements

The five-parton one-loop cross section contains the colour-ordered matrix elements

that we must construct the real-virtual subtraction term for at NNLO in our dijet

calculations. At tree level, the real emission to the NF independent NLO cross section

is

dσ̂RNLO = N 0
qQ,5

∫
dΦ3(p3, p4, p5; p1, p2)×

{
C0

5(Q, g, q̄; q, Q̄) + C0
5(q, g, Q̄;Q, q̄)

+
1

N2
(C0

5(Q, g, Q̄; q, q̄) + C0
5(q, g, q̄;Q, Q̄))− 2 C̃0

5(Q, Q̄, q, q̄, g))
}
J

(3)
2 ({p}2),

(6.2.18)

where

C̃0
5(Q, Q̄, q, q̄, g) = (C0

5(Q, g, q̄; q, Q̄) + C0
5(q, g, Q̄;Q, q̄))†

× (C0
5(Q, g, q̄; q, Q̄) + C0

5(q, g, Q̄;Q, q̄))

= (C0(Q, g, Q̄; q, q̄) + C0(q, g, q̄;Q, Q̄))†

× (C0(Q, g, Q̄; q, q̄) + C0(q, g, q̄;Q, Q̄)). (6.2.19)

Here we have used the fact that

C0
5(Q, g, q̄; q, Q̄) + C0

5(q, g, Q̄;Q, q̄) = C0
5(Q, g, Q̄; q, q̄) + C0

5(q, g, q̄;Q, Q̄) (6.2.20)

to write the squared matrix element as a sum of complete squares. The ordering

of the quarks is important. At leading colour, the colour flow has the gluon sand-

wiched between quarks of differing flavour, whereas the first two terms in (6.2.18)

proportional to 1/N2 have the gluon between the same flavour quark and antiquark.

The real-virtual contribution is given by

dσ̂RVNNLO = N 1
qQ,5

∫
dΦ3(p3, p4, p5; p1, p2)

dx1

x1

dx2

x2

δ(1− x1)δ(1− x2)×
{

(
C1,l

5 (Q, g, q̄; q, Q̄) + C1,l
5 (q, g, Q̄;Q, q̄)

)
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+
1

N2

(
C1,s

5 (Q, g, q̄; q, Q̄) + C1,s
5 (q, g, Q̄;Q, q̄) + C1,l

5 (q, g, q̄;Q, Q̄)

+ C1,l
5 (Q, g, Q̄; q, q̄)− 1

2
C̃1,l

5 (Q, Q̄, q, q̄, g)
)

+
1

N4

(
C1,s

5 (q, g, q̄;Q, Q̄) + C1,s
5 (Q, g, Q̄; q, q̄)− 1

2
C̃1,s

5 (Q, Q̄, q, q̄, g)
)}

,

(6.2.21)

where

C̃1,x(Q, Q̄, q, q̄, g) = C1,x(Q, g, q̄;Q, q̄) + C1,x(q, g, Q̄; q, Q̄)

+ C1,x(Q, g, Q̄; q, q̄) + C1,x(q, g, q̄;Q, Q̄). (6.2.22)

and

N 1
qQ,5 = NqQ,LO

(
αsN

2π

)2
C̄(ε)

C(ε)
. (6.2.23)

The pole structure of the squared matrix element is derived in Appendix B. For the

purposes of this thesis we are considering the leading colour squared matrix element:

the pole structure reads

Poles
[
C1,l

5 (q, g, Q̄;Q, q̄)
]

= −2(I(1)
qg (ε, sqg) + I(1)

qg (ε, sQ̄g) + I
(1)
qq̄ (ε, sQq̄))

× C0
5(q, g, Q̄;Q, q̄), (6.2.24)

with a similar expression for the pole structure of C1,l
5 (q, g, Q̄;Q, q̄) obtained by q ↔

Q, q̄ ↔ Q̄. As with the quark-gluon scattering, we test the colour decomposition of

the matrix elements against Njet [105]. The calculations are carried out in CDR,

µ =
√
s = 1000 GeV, and we compute the ratio given in (5.2.27). The results for

four and five parton matrix elements are given in Tables 6.1 and 6.2 respectively.

Note that we naturally expect a small numerical discrepancy in the leading colour

cases. The leading colour matrix elements that we have constructed are colour-

decomposed explicitly, whereas the leading colour values for Njet are obtained by

sending N large. The subleading contributions are small but nevertheless still con-

tributing.
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q̄Q→ q̄Q
1/ε2 1/ε 1/ε0

PS #1
NNLOJET -12.0000000000 28357.1792325814 -102347.563633429
Njet -11.99999866666 28357.1759731143 -102347.563345437

PS #2
NNLOJET -12.0000000000 31247.6971786493 -112788.616101719
Njet -11.99999866666 31247.6927521201 -112788.611484261

Table 6.1: Comparison of NNLOJET and Njet [105] matrix element values for q̄Q→ q̄Q
at leading colour.

q̄Q→ q̄Qg
1/ε2 1/ε 1/ε0

PS #1
NNLOJET -16.66666666666 8.49560865414164 -82.1207823942190
Njet -16.66666666666 8.49560856413850 -82.1207815386345

PS #2
NNLOJET -16.66666666666 -1.30752347948607 -16.2855124538146
Njet -16.66666666666 -1.30752399291760 -16.2855128287786

Table 6.2: Comparison of NNLOJET and Njet [105] matrix element values for q̄Q →
q̄Qg to all orders in colour.

6.3 q̄Q initiated dijet production at NNLO

6.3.1 Real-virtual subtraction term, dσ̂TNNLO

This section will focus on the leading colour NNLO subtraction term for the process

in which a quark and antiquark of different flavour are in the initial state. There

are two colour orderings at leading colour, corresponding to the quark-antiquark pair

that is colour connected to the gluon.

We consider the case of non-identical quarks where q̄ and Q are in the initial state,

that is

dσ̂RVNNLO = N 1
qQ,5

∫
dΦ3(p3, p4, p5;x1p1, x2p2)

1

S3

dx1

x1

dx2

x2

×
{

C1
5(3Q, 5g, 4q̄; 1̂q, 2̂Q̄) + C1

5(1̂q, 5g, 2̂Q̄; 3q̄, 4Q)
}
J

(3)
2 (p3, p4, p5),

(6.3.25)

where the initial states partons are labelled 1̂ and 2̂. A subtraction term is required

for each of the two squared matrix elements, and will be written out separately for

transparency.



6.3. q̄Q initiated dijet production at NNLO 170

The first term in (6.3.25) requires the subtraction term dσ̂T1
NNLO,

dσ̂T1
NNLO = N 1

qQ,5

∫
dΦ3(p3, p4, p5;x1p1, x2p2)

1

S3

dx1

x1

dx2

x2

×
{

−
(1

2
D0

3(s35) +
1

2
D0

3(s45) +A0
3,qq(s1̄2̄)

−Γ1
qq(x1)δ(1− x2)− Γ1

qq(x2)δ(1− x1)
)
C0

5(3Q, 5g, 4q̄; 1̂q, 2̂Q̄)J
(3)
2 (p3, p4, p5)

+A0
3(3Q, 5g, 4q̄)

[
δ(1− x1)δ(1− x2)C1

4((̃35)Q, (̃45)q̄;
ˆ̄1q, ˆ̄2Q̄) +

(
A0

3(s
(̃35)(̃45)

)

+A0
3,qq(s1̄2̄)− Γ1

qq(x1)δ(1− x2)− Γ1
qq(x2)δ(1− x1)

)

×C0
4((̃35)Q, (̃45)q̄;

ˆ̄1q, ˆ̄2Q̄)

]
J

(2)
2 (p

(̃45)
, p

(̃35)
)

+E0
3(1̂q, 2̂Q̄, 3Q)

[
δ(1− x1)δ(1− x2)B1

4(ˆ̄̄1q,
ˆ̄̄2g, 5̃g, 4̃q̄) +

(
D0

3,qg(s¯̄1¯̄2) +
1

2
F0

3,g(s¯̄25̃)

+
1

2
D0

3(s4̃5̃)− Γ1
qq(x1)δ(1− x2)− Γ1

qq(x2)δ(1− x1)

)
B0

4(ˆ̄̄1q,
ˆ̄̄2g, 5̃g, 4̃q̄)

]
J

(2)
2 (p4̃, p5̃)

+E0
3(2̂Q̄, 1̂q, 4q̄)

[
δ(1− x1)δ(1− x2)B1

4(3̃Q, 5̃g,
ˆ̄̄1g,

ˆ̄̄2Q̄) +

(
1

2
D0

3(s3̃5̃) +
1

2
F0

3,g(s5̃¯̄1)

+D0
3,qg(s¯̄2¯̄1)− Γ1

qq(x1)δ(1− x2)− Γ1
qq(x2)δ(1− x1)

)
B0

4(3̃Q, 5̃g,
ˆ̄̄1g,

ˆ̄̄2Q̄)

]
J

(2)
2 (p3̃, p5̃)

+

[
A1

3(3Q, 5g, 4q̄)δ(1− x1)δ(1− x2) +
(1

2
D0

3(s35) +
1

2
D0

3(s45)−A0
3(s

(̃35)(̃45)
)
)

×A0
3(3Q, 5g, 4q̄)

]
C0

4((̃35)Q, (̃45)q̄;
ˆ̄1q, ˆ̄2Q̄)J

(2)
2 (p

(̃45)
, p

(̃35)
)

+

[
E1

3(1̂q, 2̂Q̄, 3Q)δ(1− x1)δ(1− x2) +
(
A0

3,qq(s1̄2̄) +A0
3,q(s1̄3)− 2D0

3,q(s¯̄1¯̄2)
)

×E0
3(1̂q, 2̂Q̄, 3Q)

]
B0

4(ˆ̄̄1q,
ˆ̄̄2g, 5̃g, 4̃q̄)J

(2)
2 (p4̃, p5̃)

+

[
E1

3(2̂Q̄, 1̂q, 4q̄)δ(1− x1)δ(1− x2) +
(
A0

3,qq(s2̄1̄) +A0
3,q(s2̄4)− 2D0

3,gq(s¯̄1¯̄2)
)
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×E0
3(2̂Q̄, 1̂q, 4q̄)

]
B0

4(3̃Q, 5̃g,
ˆ̄̄1g,

ˆ̄̄2Q̄)J
(2)
2 (p3̃, p5̃)

+b0 log

(
µ2

|s354|

)
A0

3(3Q, 5g, 4q̄)δ(1− x1)δ(1− x2)C0
4((̃35)Q, (̃45)q̄;

ˆ̄1q, ˆ̄2Q̄)J
(2)
2 (p

(̃45)
, p

(̃35)
)

+b0 log

(
µ2

|s123|

)
E0

3(1̂q, 2̂Q̄, 3Q)δ(1− x1)δ(1− x2)B0
4(ˆ̄̄1q,

ˆ̄̄2g, 5̃g, 4̃q̄)J
(2)
2 (p4̃, p5̃)

+b0 log

(
µ2

|s543|

)
E0

3(2̂Q̄, 1̂q, 4q̄)δ(1− x1)δ(1− x2)B0
4(3̃Q, 5̃g,

ˆ̄̄1g,
ˆ̄̄2Q̄)

]
J

(2)
2 (p3̃, p5̃)

+
1

2

[
D0

3,qg(s¯̄1¯̄2)−A0
3,q(s31̄) +

1

2
D0

3(s53)− 1

2
F0

3,g(s5̃¯̄2) +A0
3,q(s1̄4)−A0

3,q(s4̃¯̄1)

+δ(1− x1)δ(1− x2)
(
S(s31̄, s45, x31̄,45)− S(s¯̄1¯̄2, s4̃5̃, x¯̄1¯̄2,4̃5̃) + S(s5̃¯̄2, s4̃5̃, x5̃¯̄2,4̃5̃)

−S(s53, s45, x53,45) + S(s4̃¯̄1, s4̃5̃, x4̃¯̄1,4̃5̃)− S(s41̄, s45, x41̄,45)
)]

×E0
3(1̂q, 2̂Q̄, 3Q)B0

4(ˆ̄̄1q,
ˆ̄̄2g, 5̃g, 4̃q̄)J

(2)
2 (p4̃, p5̃)

+
1

2

[
D0

3,qg(s¯̄1¯̄2)−A0
3,q(s42̄) +

1

2
D0

3(s54)− 1

2
F0

3,g(s5̃¯̄1) +A0
3,q(s2̄3)−A0

3,q(s4̃¯̄2)

+δ(1− x1)δ(1− x2)
(
S(s42̄, s45, x42̄,45)− S(s¯̄1¯̄2, s4̃5̃, x¯̄1¯̄2,4̃5̃) + S(s5̃¯̄1, s4̃5̃, x5̃¯̄1,4̃5̃)

−S(s54, s45, x54,45) + S(s4̃¯̄2, s4̃5̃, x4̃¯̄2,4̃5̃)− S(s22̄, s45, x22̄,45)
)]

×E0
3(2̂Q̄, 1̂q, 4q̄)B

0
4(3̃Q, 5̃g,

ˆ̄̄1g,
ˆ̄̄2Q̄)

]
J

(2)
2 (p3̃, p5̃)

}
, (6.3.26)

whilst the second term in (6.3.25) requires a subtraction term dσ̂T2
NNLO of the form

dσ̂T2
NNLO = N 1

qQ,5

∫
dΦ3(p3, p4, p5;x1p1, x2p2)

1

S3

dx1

x1

dx2

x2

×
{

−
(1

2
D0

3,q(s1̄5) +
1

2
D0

3,q(s2̄5) +A0
3(s34)

−Γ1
qq(x1)δ(1− x2)− Γ1

qq(x2)δ(1− x1)
)
C0

5(1̂q, 5g, 2̂Q̄; 3Q, 4q̄)J
(3)
2 (p3, p4, p5)

+A0
3(1̂q, 5g, 2̂Q̄)

[
δ(1− x1)δ(1− x2)C1

4(3̃Q, 4̃q̄;
ˆ̄̄1q,

ˆ̄̄2Q̄) +

(
A0

3(s3̃4̃) +A0
3,qq(s¯̄1¯̄2)
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−Γ1
qq(x1)δ(1− x2)− Γ1

qq(x2)δ(1− x1)

)
C0

4(3̃Q, 4̃q̄;
ˆ̄̄1q,

ˆ̄̄2Q̄)

]
J

(2)
2 (p3̃, p4̃)

+E0
3(4q̄, 3Q, 2̂Q̄)

[
δ(1− x1)δ(1− x2)B1

4(ˆ̄1q, 5g,
ˆ̄̄2g, (̃34)q̄) +

(
1

2
D0

3,q(s1̄5)

+
1

2
F0

3,g(s¯̄25) +D0
3,g(s¯̄2(̃34)

)− Γ1
qq(x1)δ(1− x2)− Γ1

qq(x2)δ(1− x1)

)

×B0
4(ˆ̄1q, 5g,

ˆ̄̄2g, (̃34)q̄)

]
J

(2)
2 (p

(̃34)
, p5)

+E0
3(3Q, 4q̄, 1̂q)

[
δ(1− x1)δ(1− x2)B1

4((̃34)Q,
ˆ̄̄1g, 5g, ˆ̄2Q̄) +

(
D0

3,g(s(̃34)¯̄1
)

+
1

2
F0

3,g(s5¯̄1) +
1

2
D0

3,q(s52̄)− Γ1
qq(x1)δ(1− x2)− Γ1

qq(x2)δ(1− x1)

)

×B0
4((̃34)Q,

ˆ̄̄1g, 5g, ˆ̄2Q̄)

]
J

(2)
2 (p

(̃34)
, p5)

+

[
A1

3(1̂q, 5g, 2̂Q̄)δ(1− x1)δ(1− x2) +
(1

2
D0

3,q(s1̄5) +
1

2
D0

3,q(s2̄5)−A0
3,qq(s¯̄1¯̄2)

)

×A0
3(1̂q, 5g, 2̂Q̄)

]
C0

4(3̃Q, 4̃q̄;
ˆ̄̄1q,

ˆ̄̄2Q̄)J
(2)
2 (p3̃, p4̃)

+

[
E1

3(4q̄, 3Q, 2̂Q̄)δ(1− x1)δ(1− x2) +
(
A0

3(s34) +A0
3,q(s2̄4)− 2D0

3,g;gq(s(̃34)¯̄2
)
)

×E0
3(4q̄, 3Q, 2̂Q̄)

]
B0

4(ˆ̄1q, 5g,
ˆ̄̄2g, (̃34)q̄)J

(2)
2 (p

(̃34)
, p5)

+

[
E0

3(3Q, 4q̄, 1̂q)δ(1− x1)δ(1− x2) +
(
A0

3(s34) +A0
3,q(s1̄3)− 2D0

3,g;gq(s(̃34)¯̄1
)
)

×E0
3(3Q, 4q̄, 1̂q)

]
B0

4((̃34)Q,
ˆ̄̄1g, 5g, ˆ̄2Q̄)J

(2)
2 (p

(̃34)
, p5)

+b0 log

(
µ2

|s152|

)
A0

3(1̂q, 5g, 2̂Q̄)δ(1− x1)δ(1− x2)C0
4(3̃Q, 4̃q̄;

ˆ̄̄1q,
ˆ̄̄2Q̄)J

(2)
2 (p3̃, p4̃)

+b0 log

(
µ2

|s234|

)
E0

3(4q̄, 3Q, 2̂Q̄)δ(1− x1)δ(1− x2)B0
4(ˆ̄1q, 5g,

ˆ̄̄2g, (̃34)q̄)J
(2)
2 (p

(̃34)
, p5)

+b0 log

(
µ2

|s143|

)
E0

3(3Q, 4q̄, 1̂q)δ(1− x1)δ(1− x2)B0
4((̃34)Q,

ˆ̄̄1g, 5g, ˆ̄2Q̄)J
(2)
2 (p

(̃34)
, p5)
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+
1

2

[
D0

3,g(s¯̄2(̃34)
)−A0

3,q(s42̄) +
1

2
D0

3,q(s2̄5)− 1

2
F0

3,g(s5¯̄2) +A0
3,q(s1̄4)−A0

3,q(s(̃34)1̄
)

+δ(1− x1)δ(1− x2)
(
S(s41̄, s45, x41̄,45)− S(s¯̄2(̃34)

, s45, x¯̄2(̃34),45
)

+S(s5¯̄2, s45, x5¯̄2,45)− S(s2̄5, s45, x2̄5,45) + S(s
(̃34)1̄

, s45, x(̃34)1̄,45
)

−S(s1̄4, s45, x1̄4,45)
)]
E0

3(4q̄, 3Q, 2̂Q̄)B0
4(ˆ̄1q, 5g,

ˆ̄̄2g, (̃34)q̄)J
(2)
2 (p

(̃34)
, p5)

+
1

2

[
D0

3,g(s¯̄1(̃34)
)−A0

3,q(s31̄) +
1

2
D0

3,q(s51̄)− 1

2
F0

3,g(s5¯̄1) +A0
3,q(s2̄3)−A0

3,q(s(̃34)2̄
)

+δ(1− x1)δ(1− x2)
(
S(s31̄, s35, x31̄,35)− S(s¯̄1(̃34)

, s35, x¯̄1(̃34),35
)

+S(s5¯̄1, s35, x5¯̄1,35)− S(s51̄, s35, x51̄,35) + S(s
(̃34)2̄

, s35, x(̃34)2̄,35
)

−S(s2̄3, s35, x2̄3,35)
)]
E0

3(3Q, 4q̄, 1̂q)B
0
4((̃34)Q,

ˆ̄̄1g, 5g, ˆ̄2Q̄)J
(2)
2 (p

(̃34)
, p5)

}
. (6.3.27)

Only the sum of the two terms will produce a full cancellation in all the limits.

We see that there are large angle soft terms proportional to the two E0
3 antennae

but not for A0
3. This can be justified given the arguments in Chapter 4. The channel

presented here contains the maximal number of terms required for a single channel

at leading colour. All other channels either have a structure akin to the subtraction

terms in (6.3.26) and (6.3.27), or will have fewer E`
3 antennae if a quark-antiquark

pair of the same flavour are in the initial state; for the squared matrix element

C1
5(ˆ̄1q, 5g, 3Q̄; 4Q, ˆ̄2q̄) (6.3.28)

we observe no q||q̄ collinear limit. If the gluon appears in the initial state, the matrix

element will contain no soft limits.

The q||q̄ and Q||Q̄ collinear limits that exist across colour structures have been

constructed in the real-virtual subtraction term through the use of E3(Q, q, q̄), where

the Q acts as a spectator parton. It is possible therefore, to use the G3(g, q, q̄) to

cancel this limit, as again the gluon is not involved in the limit.
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(b)

Figure 6.1: Plots displaying the convergence of the subtraction term to the real-virtual
physical matrix element in various unresolved limits for q̄Q→ q̄Qg. The green data
is furthest from the singular configuration with the blue data closer to the singular
region and the red data the closest. The left plot of each row is the 1/ε2 contribution,
the centre plot the 1/ε contribution and the right hand plot the finite contribution.
(a) Final-state single soft limit for the gluon 5g such that x = (s12 − s34)/s12. (b)
Collinear limit between initial state quark 1q and final state gluon 5g, such that
x = s15/s12. (c) Collinear limit for final state quark 3Q and initial state antiquark 2Q̄
such that x = s23/s12.
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Figure 6.2: Distributions of R displaying the effect of azimuthal angular rotations for
single collinear limits: final-final collinear limit for q̄Q→ q̄Qg (a) without corrections
and (b) with corrections turned on. Note the enlarged scale in (a) to make the data
visible.

However, we find that, if the subtraction term is to be self-contained as above, the

E3 is enforced at the stage of cancelling the integrated antenna dropping down from

the double real subtraction term and those dealing with the explicit poles in the

one-loop reduced matrix element and antennae. The integrated antennae required to

cancel the G1
3 pole structure do not cancel against the remaining X 0

3 not involved in

the limit. It is not yet clear whether this is an artefact of just considering a single

channel independently. Since the singularity operators used to describe G1
3 are of

the flavour type, I
(1)
qq̄,F (ε, s), it may be necessary to employ these over the E1

3 for the

subtraction term contributing to the flavour dependent squared matrix element.

For each IR divergent limit, we again generate momenta with RAMBO to enforce the

unresolved configuration, and compute the ratio given in (5.2.27). As in the previous

chapter, three constraints are chosen, forcing the phase space points closer to the

limits. This provides statistical evidence for the convergence of the subtraction term

to the physical cross section in the various IR limits. A selection of plots are given

in Figure 6.1.

Again we see the R distribution become more sharply peaked as we approach the

limit. There are no divergent limits for the soft quarks, nor any collinear divergences

between different flavour quarks, as expected. The R ratio for all the finite contribu-

tions to the singular limits is collected in Appendix C. We also test the azimuthal
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corrections for the cases where a gluon in the Born process can split into a quark an-

tiquark pair. The scenario is different from the colour-connected gluon terms in the

previous chapter, since here we have collinear limits between quark pairs spanning

two colour structures. It is more akin to the q||q̄ collinear limit in the quark-gluon

scattering, although subtly different since there the quarks were still in the same

colour string. Nevertheless, Figure 6.2 shows that the rotation of phase space is func-

tioning well in accounting for the azimuthal corrections. Indeed, in its absence we

see no matching of the matrix element and subtraction term in the single unresolved

limits.

6.3.2 Double virtual subtraction term, dσ̂UNNLO

The double virtual subtraction term is constructed from the remaining terms dropping

down from the double real and real virtual subtraction terms, as well as the double

virtual mass factorisation contribution. However, since the pole structure of the

two loop amplitudes is predictable via the formalism described in Chapter 2, we

are able to write the subtraction term in terms of the single and double unresolved

integrated antenna strings without the prerequisite of the double real and real-virtual

subtraction terms. Since we are in possession of the real virtual subtraction term

however, the combination of RV and VV terms should give an indication to the

structures required at the double real contribution. In terms of integrated antenna

strings, the subtraction term can be written in the form of Eq. (4.5.131),

dσ̂UqQ̄,NNLO = −N 2
qQ,4 dΦ2(p3, p4; p1, p2)

∫
dz1

z1

dz2

z2

×
{

J
(1)
4 (ˆ̄1q, ˆ̄2Q̄; 3Q, 4q̄)

(
C1

4(ˆ̄1q, ˆ̄2Q̄; 3Q, 4q̄)−
b0

ε
C0

4(ˆ̄1q, ˆ̄2Q̄; 3Q, 4q̄)

)

+
1

2
J

(1)
4 (ˆ̄1q, ˆ̄2Q̄; 3Q, 4q̄)⊗ J (1)

4 (ˆ̄1q, ˆ̄2Q̄; 3Q, 4q̄) C
0
4(ˆ̄1q, ˆ̄2Q̄; 3Q, 4q̄)

+ J
(2)
4 (ˆ̄1q, ˆ̄2Q̄; 3Q, 4q̄) C

0
4(ˆ̄1q, ˆ̄2Q̄; 3Q, 4q̄)

}
J

(2)
2 (p3, p4), (6.3.29)

which reproduces the form of the Catani pole structure in Eq. (4.5.115). The single

unresolved integrated antenna string is defined in Eq. (5.2.14). In Eq. (5.2.14) the

single unresolved integrated antenna string was written as a sum over integrated



6.3. q̄Q initiated dijet production at NNLO 177

dipoles. The analogous dipole-like formula for J
(2)
4 is given by,

J
(2)
4 (ˆ̄1q, ˆ̄2Q̄; 3Q, 4q̄) = J

(2)
2 (ˆ̄1q, ˆ̄2Q̄) + J

(2)
2 (3Q, 4q̄) (6.3.30)

where the two-parton double unresolved integrated antenna strings are given by:

J
(2)
2 (ˆ̄1q, ˆ̄2Q̄) = A0

4,qq̄(s1̄2̄) +A1
3,qq̄(s1̄2̄) +

b0

ε
A0
qq̄,3(s1̄2̄)

( |s1̄2̄|
µ2

)−ε

− Γ(2)
qq (z1)δ(1− z2)− Γ(2)

qq (z2)δ(1− z1)− 1

2

[
A0

3,qq̄(s1̄2̄)⊗A0
3,qq̄(s1̄2̄)

]

+
1

2

[
Γ1
qq ⊗ Γ1

qq

]
(z1)δ(1− z2) +

1

2

[
Γ1
qq ⊗ Γ1

qq

]
(z2)δ(1− z1) (6.3.31)

J
(2)
2 (3Q, 4q̄) = A0

4(s34) +A1
3(s34)

+
b0

ε
A0

3(s34)

( |s34|
µ2

)−ε
− 2
[
A0

3(s34)⊗A0
3(s34)

]
. (6.3.32)

*

In this chapter we have constructed the leading colour real-virtual and double virtual

subtraction terms for the dijet subprocess involving two unlike-quark pairs, for the

Born channel q̄Q→ q̄Q. It is the channel requiring the maximal number of antenna,

and we have shown numerically that the subtraction term and the physical cross

section converge successfully in the various unresolved limits.



Chapter 7

Conclusions

The research discussed in this thesis was twofold. Firstly, to explore the underlying

structure of NNLO calculations that are manifest in the antenna subtraction scheme,

and secondly to apply the antenna subtraction formalism directly to processes involv-

ing hadronic initial states relevant for dijet production at the Large Hadron Collider.

Such are the spectacular levels of precision in data collected from the LHC since

its first successful run in 2010, that the experimental measurements are sensitive to

NNLO effects. Theoretical perturbative calculations must now incorporate two loop

corrections to the Born process, as well as up to two real unresolved emissions of on-

shell particles. The matrix elements relevant for dijet production at NNLO are well

known; the bottleneck for systematic predictions is defining a procedure to cancel the

infrared divergences emanating from the explicit pole structure of the loop amplitude

along with the soft and collinear dynamic poles manifest during the integration over

phase space.

Ideally, this occurs in a numerically robust fashion, applicable to arbitrary pro-

duction channels. The antenna subtraction formalism provides a general method by

which the rich divergent behaviour of physical matrix elements can be extracted and

cancelled by utilising the universal infrared behaviour of colour-ordered matrix ele-

ments. At NLO, the antenna subtraction method is straightforward and well under-

stood. There is a simple, direct link between the real and virtual singular structures,

reflected concisely in the subtraction terms. In this thesis we made the same connec-

tions - albeit now more complex - between the various structures present at NNLO,
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and begin to implement them in a physical setting.

The first goal of this research was to gain control of the infrared structure ex-

isting in double-virtual, real virtual and double-real subtraction terms constructed

with the antenna formalism. Whilst the general formalism is in place for construct-

ing individual subtraction terms, we discussed the implementation of the integrated

antenna strings as a bridge between the well-known Catani factorisation formula for

loop amplitudes and the integrated antennae. The integrated antenna strings com-

bine the mass factorisation terms and integrated antennae into blocks of terms free

of explicit poles that not only match up with the Catani singularity operators but

form structured-blocks in correspondence with the underlying colour ordering.

The divergent behaviour is far richer at NNLO than NLO; we now encounter

doubly unresolved configurations associated with two additional final state partons

contributing to the same underlying Born process. Different subtraction terms will be

required for the variety of limits that exist, dictated by the colour-connectivity of the

matrix elements. Real-virtual corrections contain both singly unresolved limits and

explicit poles from one-loop effects. The double virtual contribution, although con-

taining no dynamic divergences, involves the interference of two-loop amplitudes with

the tree level Born process and one-loop self-interferences, which hold explicit poles

up to O(ε−4). We present in this thesis a ‘roadmap’ tracking the various structures

between the double-real, real-virtual and double-virtual subtraction terms. It is now

feasible to follow explicitly the role of each block of subtraction terms - introduced at

the double-real and real-virtual level to mimic implicit divergences of unresolved par-

tons - as they are returned after integration over the unresolved phase space. Having

such an understanding over the flow of terms introduces a level of predictive power

that can greatly simplify calculations. The double-real subtraction term is the most

complex to construct due to the multitude of unresolved configurations. Yet we have

a link, through the J (l)
n operators, between the blocks of unintegrated antennae and

the pole structure of the real-virtual and double-real matrix elements, the latter being

already well understood. With the divergent structure under control, it is possible

to attack physical processes in a systematic fashion.

The second goal of this thesis was to apply the antenna formalism to processes rel-
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evant to LHC analysis, namely dijet production from hadronic initial states. Chapters

5 and 6 discussed the construction of the double-real, real-virtual and double-virtual

subtraction terms for the necessary partonic channels. Chapter 5 focussed primarily

on gluon production with a quark-antiquark pair initial state, constructing all three

subtraction terms at leading colour and introducing the integrated antenna strings.

For the double real emission of two unresolved gluons at NNLO, we required final-

final, initial-final and initial-initial antennae functions. The real-virtual subtraction

term incorporated one-loop antenna, again for all three combinations of initial states

within the antennae. We found it possible - and greatly advantageous - to deconstruct

the one-loop three parton antennae into sub antennae via partial fractioning as with

the tree-level case. In doing so, the D1
3 was still seen to require an Ã1

3 to cancel the

over subtracted poles present due to the supersymmetric construction of the d1
3. The

integrated antennae required to cancel the explicit poles of Ã1
3 are traced back to the

terms in the double real subtraction term, a further predictive link between the terms

despite these antenna existing to perform unphysical cancellations.

From Catani’s factorisation formula, the double-virtual subtraction term was re-

cast in terms of integrated antenna strings. The double real and real-virtual have

now been subject to numerical checks in all single and double unresolved limits, and

tested for complete pole cancellation such that the combination of subtraction term

and physical matrix element is rendered finite over all phase space. We found that in

all singular limits, the real-virtual and double-real subtraction terms correctly mim-

icked the matrix partonic matrix elements. With the subtraction terms successfully

tested here, a similar treatment to [101] can be carried out and preliminary predic-

tions for observables made to accompany the pure gluon analysis.

The natural progression was to construct subtraction terms for the remaining

channels, namely where gluons can appear in the initial state of quark-gluon scatter-

ing processes. Here the double-real terms are not known, due to the as yet unresolved

subtlety with the four-parton flavour-changing antenna. Nevertheless, the strong pre-

dictive structure allows the real-virtual and double-virtual terms to be constructed

without knowledge from the double-real terms. Crucially, we propose that in addi-

tion to the one-loop matrix element and antenna corrections built from integrated
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antenna strings, the integrated terms returned at real-virtual that dealt with the

large-angle soft corrections at double-real are also entirely predictive, even without

prior knowledge of the presence of X̃0
4 . The combination of a) requiring the finite

contributions from the integrated antennae cancel in the various unresolved limits,

and b) the well-defined block structure of the subtraction terms, can be used to pre-

dict the integrated antennae that dropped down from the double-real terms. We are

in a powerful position: the double-virtual and real-virtual subtraction terms can be

used to reconstruct the more complex double-real subtraction terms from the inte-

grated antenna strings. Numerical checks illustrated the success of the real-virtual

subtraction term in mimicking all single unresolved limits of the physical matrix

element whilst removing all explicit poles. The subtraction terms with gluonic ini-

tial states utilised the initial-initial three parton antenna with false partonic entries.

For the parton string (· · · , jq, 1̂g, ig, · · · 2̂g, · · · ) the A(jq, 1̂g, 2̂g) is preferred over the

D(jq, 1̂g, ig) since the ambiguity over the remapped initial states is avoided, and the

single jq||1̂g limit is isolated.

In a similar way, we have applied the antenna formalism to construct the real-

virtual and double virtual subtraction terms for processes involving two pairs of

non-identical quarks at leading colour, where again numerical tests illustrated the

successful cancellation of both explicit and implicit divergences of the matrix ele-

ments. The channels for the real-virtual four quark, one gluon scattering process

have not dissimilar subtraction terms. This channel contains the maximum number

of antenna that would be required for any of the leading colour contributions, since

the choice of initial states does not nullify any of the quark-antiquark collinear limits.

Born Process dσ̂SNNLO dσ̂TNNLO dσ̂UNNLO
gg → gg 4 [79] 4 [15] 4 [80]
qq̄ → gg 4 (5.2.31) 4 (5.4.39) 4(5.4.42)
gg → qq̄ 8 4 (5.5.55),(5.5.57) 4 (5.5.64)
qg → qg 8 4 (5.6.75),(5.6.77),(5.6.79) 4 (5.6.80), (5.6.85)
q̄Q→ q̄Q 8 4 (6.3.26),(6.3.27) 4 (6.3.29)

Table 7.1: Checklist for leading colour subtraction terms relevant for quark-gluon
scattering at NNLO.
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Table 7.1 indicates the current level of completion of leading colour subtraction

terms.

The progression from the work in this thesis is clear. The remaining dijet pro-

duction channels must be addressed, both at leading and subleading colour. Work

has begun also on the V+jet and H+jet computations. With a firm grasp of the un-

derlying infrared structure of NNLO calculations within the antenna framework, and

clear evidence of the robustness and generality of the antenna subtraction method,

we are in a commanding position to produce concrete predictions for LHC processes

at NNLO accuracy.
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Appendix A

QCD Matrix Elements for

Quark-Gluon Scattering

A.1 Tree level qq̄gg → 0

The squared matrix element for the leading order contribution to the process

q(p1) + q̄(p2) + g(p3) + g(p4)→ 0 (A.1.1)

can be constructed in a highly compact form using the helicity formalism [112–115]

and utilising rules for MHV [116] amplitudes. For two quark, two gluon scattering,

there are two colour orderings and four non-vanishing helicity amplitudes, due to

analysis in [117], and conservation of helicity along quark lines constraining the quark

and antiquark always to have opposite helicities. The helicity amplitudes are given

by

B0
4(q, g3, g4, q̄) = i

〈qi〉3〈q̄i〉
〈q3〉〈34〉〈4q̄〉〈qq̄〉 (A.1.2)

where q has negative helicity and i is the negative helicity gluon. The amplitudes

with positive helicity q are obtained by charge conjugation. Summing over helicities,
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the leading colour squared matrix element is given by

|B0
4|2 = g4NV

(∑

i

sqis
3
q̄i + s3

qisq̄i

)
×
∑

{3,4}

1

sq3s34s4q̄sqq̄
+O(N−2). (A.1.3)

These are the colour ordered matrix elements used in the subtraction terms in Chap-

ters 5 and 6.

A.2 One loop qq̄gg → 0 pole structure

The squared matrix element taking into account the higher order loop corrections to

the process

q(p1) + q̄(p2) + g(p3) + g(p4)→ 0 (A.2.4)

is constructed by the interference of the loop amplitude with its tree level counterpart,

|B1
4|2 = 〈B0

4|B1,†
4 〉+ 〈B1

4|B0,†
4 〉. (A.2.5)

The full expressions for the squared matrix element are well-known, and can be found

in [107,118].

The pole structure of the various matrix elements can be constructed by utilising

the formalism of Chapter 2, and requires no knowledge of the explicit form of the

amplitudes. Decomposing the tree amplitude |B(0)
4 〉 and unrenormalised one-loop

amplitude |B(1,un)
4 〉 in terms of the SU(N) generators T a results in

|B(0)
4 〉 =

∑

P (i,j)

(T aiT aj)ijB0
4(1q, ig, jg, 2q̄) (A.2.6)

for the tree level contribution, and

|B(1,un)
4 〉 = N

∑

P (i,j)

(T aiT aj)ijB1
4,a(1q, ig, jg, 2q̄)

+ NF

[ ∑

P (i,j)

(T aiT aj)ij −
2

N
Tr(T a3T a4)δij

]
B1

4,f (1q, ig, jg, 2q̄)
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+ Tr(T a3T a4)δijB1
4,b(1q, 3g, 4g, 2q̄) (A.2.7)

for the one loop amplitude. The sum is over the two permutations of the gluons,

whereas those amplitudes without a summation are invariant under an exchange of

the gluon. The tree level amplitudes enjoy reflection symmetry. To proceed, by

setting NF = 0, the amplitudes are expressed as vectors in colour space,

|B(0)
4 〉 = (T1, T2, 0)T , (A.2.8)

|B(1,un)
4 〉 = (L1,L2,L3)T . (A.2.9)

with the projection of |B(0)
4 〉 and|B(1,un)

4 〉 in each direction of colour space given by

Ti and Li respectively. They are obtained from the colour subamplitudes B0
4 and B1

4,

although for the extraction of the pole structure, only the squared tree level matrix

elements are necessary. The colour space is spanned by the basis constructed from

the colour structures present in the full loop amplitude, namely

K1 = (T a3T a4)ij,

K2 = (T a4T a3)ij,

K3 = Tr(T a3T a4)δij. (A.2.10)

In this colour basis, it is possible to construct the infra-red singularity operator I(1)(ε),

having the form

I(1)(ε) =
eεγ

Γ(1− ε) ×




X(s, t, u, ε) 0 Y(u, t, s, ε)

0 X(s, u, t, ε) Y(t, u, s, ε)

Y(s, t, u, ε) Y(s, u, t, ε) Z(s, ε)


 , (A.2.11)

where the elements are defined by

X(s, t, u, ε) = −1

2

(
1

ε2
+

3

2ε

)[
N(2U + S)− 1

N
S
]
, (A.2.12)

Y(s, t, u, ε) =

(
1

ε2
+

3

4ε
+

β0

2Nε

)
[T + S] , (A.2.13)
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Z(s, ε) = −1

2

[(
2

ε2
+

3

2ε
+
β0

Nε

)
NS −

(
1

ε2
+

3

2ε

)
1

N
S
]
, (A.2.14)

and

S =

(
−µ

2

s

)ε
, T =

(
−µ

2

t

)ε
, U =

(
−µ

2

u

)ε
, (A.2.15)

with s, t and u being the standard Mandelstaam variables. Acting with the matrix

I(1)(ε) upon the state vector |B(0)
4 〉 produces a new vector |M〉 that contains the pole

structure of |B(1,un)
4 〉. Since we are after the interference of the tree and the loop

amplitudes, all that remains is the contraction of |M〉 with the tree level amplitude

in colour space, which can be expressed by summing over spins and colours as

〈B(0)
4 |M〉 =

∑

spins

∑

colours

3∑

i,j=1

T ∗i MjK∗iKj. (A.2.16)

The factors for the sum over colours are obtained via the elements of the matrix KM,

where (KM)ij = K∗iKj, which is given by

KM =
V

4N




V −1 N

−1 V N

N N N2


 , (A.2.17)

and the interference of the tree level amplitudes TM, with (TM)ij = T ∗i Mj, is ex-

pressed in matrix form as

TM =
8(1− ε)(u2 + t2 − εs2)

s2tu




t2 ut 0

ut u2 0

0 0 0


 . (A.2.18)

The evaluation of the interference term, and subsequent decomposition according to

powers of N , result in the isolation of the pole structures of the one-loop matrix

elements.
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A.3 One loop qq̄ggg → 0 pole structure

We now consider the squared matrix element with three gluons and a single quark

pair,

q(p1) + q̄(p2) + g(p3) + g(p4) + g(p5)→ 0. (A.3.19)

Examining the form of the amplitude in (5.2.22), we can set up the basis spanning

the colour space to be

K1 = (T a3T a4T a5)ij

K2 = (T a3T a5T a4)ij

K3 = (T a4T a5T a3)ij

K4 = (T a4T a3T a5)ij

K5 = (T a5T a3T a4)ij

K6 = (T a5T a4T a3)ij

K7 = (T a3)ijTr(T
a4T a5)

K8 = (T a4)ijTr(T
a5T a3)

K9 = (T a5)ijTr(T
a3T a4)

K10 = δijTr(T
a3T a4T a5)

K11 = δijTr(T
a3T a5T a4)

such that the tree level one-loop amplitudes can be written as an eleven dimensional

vector in colour space:

|M(0)〉 = (T1, . . . , T6, 0 . . . 0)T , (A.3.20)

|M(1,un)〉 = (L1,L2, . . .L11)T , (A.3.21)
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Using this basis and applying Catani’s formula we find that

I(1)(ε) =
1

2

eεγ

Γ(1− ε) ×




A1 0 0 0 0 0 B1 0 C1 D1 0

0 A2 0 0 0 0 B2 C2 0 0 D2

0 0 A3 0 0 0 0 B3 C3 0 D3

0 0 0 A4 0 0 C4 B4 0 D4 0

0 0 0 0 A5 0 0 C5 B5 D5 0

0 0 0 0 0 A6 C6 0 B6 0 D6

B1 B2 0 C4 0 C6 E1 0 0 0 0

0 C2 B3 B4 C5 0 0 E4 0 0 0

C1 0 C3 0 B5 B6 0 0 E6 0 0

D1 0 0 D4 D5 0 0 0 0 F1 0

0 D2 D3 0 0 D6 0 0 0 0 F1




where the elements are given as

An = −N
[

1

ε2
+
β0

Nε

]
(
S1i

2
+
S2k

2
+ Sij + Sjk) +N

[
1

ε2
+

3

2ε

]
(
S12

N2
− S1i

2
− S2k

2
)

Bn =

[
1

ε2
+
β0

Nε

]
(Sik − S2i − Sjk + S2j) +

[
β0

2Nε
− 3

4ε

]
(S2i − S2j)

Cn =

[
1

ε2
+
β0

Nε

]
(S1j − S1k − Sij + Sik) +

[
β0

2Nε
− 3

4ε

]
(S1k − S1j)

Dn =

[
1

ε2
+
β0

Nε

]
(
S1k

2
+
S2i

2
− Sik) +

[
1

ε2
+

3

2ε

]
(
S1k

2
+
S2i

2
− S12)

En = N

[
1

ε2
+
β0

Nε

]
(−S1i

2
− S2i

2
− 2Sjk) +N

[
1

ε2
+

3

2ε

]
(
S12

N2
− S1i

2
− S2i

2
)

Fn =

[
− 1

ε2
− β0

ε

]
(Sij + Sik + Sjk)−

[
1

ε2
+

3

2ε

]
(2CFS12)

and

Sij =

( −µ2

2pi · pj

)ε
. (A.3.22)

The functions Bn and Cn are related under quark exchange but are kept as separate

functions to maintain quark ordering. The subscripts of these function relate to the
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colour ordering of the gluons as defined by the colour basis in (A.3.20). Thus for Mn,

where M ∈ {A · · ·F}, the arguments i, j, k are given by the nth triplet in the ordered

set {i, j, k} ∈ {{2, 3, 4}, {2, 4, 3}, {3, 2, 4}, {3, 4, 2}, {4, 2, 3}, {4, 3, 2}}.
Note that the elements E, and F are not required for the one loop pole construc-

tion, since they will always be hitting onto a colour basis direction that vanishes at

the tree level case.

Acting with the matrix I(1)(ε) upon the state vector |B(0)
5 〉 produces a new vector

|M〉 that contains the pole structure of |B(1,un)
5 〉. Since we are after the interference

of the tree and the loop amplitudes, all that remains is the contraction of |M〉 with

the tree level amplitude in colour space, which can be expressed by summing over

spins and colours as

〈B(0)
5 |M〉 =

∑

spins

∑

colours

3∑

i,j=1

T ∗i MjK∗iKj. (A.3.23)

The factors for the sum over colours are obtained via the elements of the matrix KM,

where (KM)ij = K∗iKj, and is given by (A.3.24).

The Ai immediately can be used to construct the pole structure of the leading

colour squared matrix element due to the diagonal 6×6 block of (A.3.22). These cor-

respond to the tree-type colour structures. Converted into integrated antenna strings

multiplying tree level squared matrix elements they take the form given in (5.2.26).

Again, the pole structure could be ascertained without knowledge of the explicit form

of the one-loop amplitudes. Nevertheless, the finite contributions are of course nec-

essary for a full calculation, which were obtained from [106]. The amplitudes were

colour decomposed according to (5.2.22).
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Appendix B

QCD Matrix Elements for

Scattering of Two Non-Identical

Quark Pairs

B.1 Tree level q̄Q̄Qq → 0

The squared matrix element for the leading order contribution to the process

q̄(p1) + Q̄(p2) +Q(p3) + q(p4)→ 0, (B.1.1)

can again be constructed in a highly compact form using the helicity formalism.

Summing over helicities, the squared matrix element is given by

|C0
4|2 = g4(N2 − 1)

(
s2 + u2

t2
− ε
)

(B.1.2)

These are the colour ordered matrix elements used in the subtraction terms in Chapter

6.
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B.2 One loop q̄Q̄Qq → 0 pole structure

The squared matrix element taking into account the higher order loop corrections to

the process

q̄(p1) + Q̄(p2) +Q(p3) + q(p4)→ 0 (B.2.3)

are well-known, and can be found in [107,118].

The pole structure of the various matrix elements can be constructed by utilising

the formalism of Chapter 2, and requires no knowledge of the explicit form of the

amplitudes. Decomposing the tree amplitude |C(0)
4 〉 and unrenormalised one-loop

amplitude |C(1,un)
4 〉 in terms of the SU(N) generators T a for the tree level and one

loop contribution, and results in (6.1.11). We express |C(1)
4 〉 as a four dimensional

vector in colour space:

|C(1)
4 〉 = (L1,L2)T , (B.2.4)

where the colour space is spanned by the basis

K1 = δQq̄δqQ̄

K2 = δqq̄δQQ̄

We find Catani’s formula given by

I(1)(ε) =
1

2

eεγ

Γ(1− ε) ×


 A B

B′ A′




where

A =
1

N

[
1

ε2
+

3

2ε

]
((N2 − 1)SqQ̄ + SqQ − Sqq̄) (B.2.5)

B = N

[
1

ε2
+

3

2ε

]
(SqQ̄ − SqQ) (B.2.6)

whereby A′ and B′ are obtained from A and B respectively via exchange of antiquark
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labels, that is

A′ = A(q̄ ↔ Q̄). (B.2.7)

Acting the matrix I(1)(ε) upon the state vector |C(0)
4 〉 produces a new vector |M〉

equivalent to the pole structure of |C(1,un)
4 〉. Since we are after the interference of the

tree and the loop amplitudes, all that remains is the contraction of |M〉 with the tree

level amplitude in colour space, which can be expressed by summing over spins and

colours as

〈C(0)
4 |M〉 =

∑

spins

∑

colours

3∑

i,j=1

T ∗i MjK∗iKj (B.2.8)

The factors for the sum over colours are obtained via the elements of the matrix KM,

where again (KM)ij = K∗iKj:

KM =


 N2 N

N N2


 , (B.2.9)

and the interference of the tree level amplitudes TM, with (TM)ij = T ∗i Mj, is

TM = 2

(
t2 + u2

s2
− e
)
 1 −1/N

−1/N 1/N2


 . (B.2.10)

The evaluation of the interference term, and subsequent decomposition according to

powers of N , result in the isolation of the pole structures of the one-loop matrix

elements.

B.3 One loop q̄Q̄Qqg → 0 pole structure

The squared matrix element taking into account the higher order loop corrections to

the process

q̄(p1) + Q̄(p2) + q(p3) + q(p4) + g(p5)→ 0 (B.3.11)
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are well-known, and can be found in [111,119].

The pole structure of the various matrix elements can be constructed by utilising

the formalism of Chapter 2, and requires no knowledge of the explicit form of the

amplitudes. Decomposing the tree amplitude |C(0)
5 〉 and unrenormalised one-loop

amplitude |C(1,un)
5 〉 in terms of the SU(N) generators T a for the tree level and one

loop contribution, and results in (6.1.11). We express |C(1)
5 〉 as a four dimensional

vector in colour space:

|M(1)
4 〉 = (L1,L2,L3,L4)T , (B.3.12)

where the colour space is spanned by the basis

K1 = (T a)Qq̄δQq̄

K2 = (T a)qQ̄δqQ̄

K3 = (T a)qq̄δQQ̄

K4 = (T a)QQ̄δqq̄

We find Catani’s formula given by

I(1)(ε) =
1

2

eεγ

Γ(1− ε) ×




A 0 B C

0 D E F

F′ E′ D′ 0

C′ B′ 0 A′




where

A =

[
1

ε2
+

β0

2Nε
+

3

4ε

](
− 2CFS13 +

1

N
(S14 − S12 + S23 + S24 − S34)

−N(S25 + S45)
)

+
1

N

[
β0

2Nε
− 3

4ε

]
(S23 + S24 − S34),

B =

[
1

ε2
+

β0

2Nε
+

3

4ε

]
(S12 − S15 − S23 + S35) +

[
β0

2Nε
− 3

4ε

]
(S15 − S23),

C =

[
1

ε2
+

β0

2Nε
+

3

4ε

]
(S15 − S35 − S14 + S34) +

[
β0

2Nε
− 3

4ε

]
(S34 − S15),

D =

[
1

ε2
+

β0

2Nε
+

3

4ε

](
− 2CFS24 −N(S15 + S35) +

1

N
(S13 − S12 + S14
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+S23 − S34)
)

+

[
β0

2Nε
− 3

4ε

]
(NS15 +

1

N
(S23 − S34))

E =

[
1

ε2
+

β0

2Nε

]
(S25 − S23 + S34 − S45) +

[
3

4ε
− β0

2Nε

]
(S25 − S45)

F =

[
1

ε2
+

β0

2Nε
+

3

4ε

]
(S12 − S14 − S25 + S45)

(B.3.13)

The primed functions are related via (3↔ 4) exchange, i.e.,

X′(q̄, Q̄, Q, q, g) = X(q̄, Q̄, q, Q, g). (B.3.14)

Acting the matrix I(1)(ε) upon the state vector |C(0)
5 〉 produces a new vector |M〉

equivalent to the pole structure of |C(1,un)
5 〉. Since we are after the interference of the

tree and the loop amplitudes, all that remains is the contraction of |M〉 with the tree

level amplitude in colour space, which can be expressed by summing over spins and

colours as

〈C(0)
5 |M〉 =

∑

spins

∑

colours

3∑

i,j=1

T ∗i MjK∗iKj. (B.3.15)

The factors for the sum over colours are obtained via the elements of the matrix KM,

KM =
V

2




N 0 1 1

0 N 1 1

1 1 N 0

1 1 0 N



. (B.3.16)

The Ai can be used to construct the pole structure of the leading colour squared

matrix element, given in (6.2.24) Again, the pole structure could be ascertained

without knowledge of the explicit form of the one-loop amplitudes. Nevertheless, the

finite contributions are of course necessary for a full calculation, which were obtained

from [106]. The amplitudes were colour decomposed according to (6.1.11).



Appendix C

Full Numerical Results

In this appendix we collate the full set of plots illustrating the success of the real-

virtual subtraction terms in the matching of the finite contribution of full matrix

elements to the subtraction term in all single unresolved limits. The poles are repro-

duced exactly: all plots for 1/ε and 1/ε2 contributions are identical to those given

in Figures 5.6, 5.8, 5.9 and 6.1, and are not repeated here. We includes all real-

virtual contributions to the real-virtual five parton quark gluon scattering and the

non-identical quark-antiquark initiated contribution to the five parton process with

two non-identical quark pairs. The plots follow an identical form to those presented

in previous sections, namely they represent the ratio

R =
dσ̂RVNNLO
dσ̂TNNLO

∣∣∣∣
finite

.

For each divergent configuration, a set of phase space points are generated with

RAMBO [109], and the ratio calculated within the singular region defined by constraints

that are tightened to force the phase space points closer to the singular point. The

green data is furthest from the singular point, the blue closer and the red closest.

C.1 Finite real-virtual subtraction for qq̄ → ggg

Here we consider the case of the real-virtual contribution to the two quark, two gluon

Born process, that of the leading colour five parton one loop squared matrix element,
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which allows for a single unresolved parton. Both quarks are in the initial state. The

cross section reads

dσ̂RVNNLO = N 1
qq̄,5

∫
dΦ3

1

3!

dx1

x1

dx2

x2

∑

P (i,j,k)

B0
5(1̂q, ig, jg, kg, 2̂q̄)J

(3)
2 (p3, p4, p5), (C.1.1)

where the sum runs over the permutations of the gluons. The subtraction term for

this contribution is given in (5.4.39). In the sum over the six gluon permutations

we will encounter soft limits of each gluon. There are collinear limits between all

possible pairing of gluons, and also between each gluon and each of the quark and

antiquark. Since both quarks are in the initial state, there is no q||q̄ collinear limit.
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Figure C.1: Final soft limits for ig(left), jg (centre) and kg(right).
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Figure C.2: Final-final collinear limits for ig||jg(left), ig||kg (centre) and jg||kg(right).
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Figure C.3: Initial-final collinear limits for 1̂q||ig(left), 1̂q||jg (centre) and 1̂q||kg(right).
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Figure C.4: Initial-final collinear limits for 2̂q||ig(left), 2̂q||jg (centre) and 2̂q||kg(right).

C.2 Finite real-virtual subtraction for gg → qq̄g

Here we consider the case of the real-virtual contribution to the two quark, two gluon

Born process, that of the leading colour five parton one loop squared matrix element,

which allows for a single unresolved parton. Two gluons are in the initial state. The

cross section reads

dσ̂RVNNLO = N 1
gg,5

∫
dΦ3

1

3!

dx1

x1

dx2

x2

∑

P (1̂,2̂,i)

B0
5(jq, 1̂g, 2̂g, ig, kq̄)J

(3)
2 (p3, p4, p5), (C.2.2)

where the sum runs over the permutations of the gluons. The independent subtraction

terms for this contribution are given in (5.5.55) and (5.5.57), with the terms for the

remaining four permutations obtained via Table 5.3. In the sum over the six gluon

permutations only the single final state gluon can go soft. We therefore observe no

spike in Figure C.5 (right and centre), since these correspond to the final state quarks

which cannot by current conservation go singly unresolved. There are collinear limits

between all possible pairing of gluons, and also between each gluon and each of the

quark and antiquark. We observe similar behaviour in the R ratio for the pairs of

collinear limits where (1̂ ↔ 2̂) occurs. This is to be expected näıvely due to the

symmetry of the physical matrix element.
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Figure C.5: Final soft limits for ig(left), jq (centre) and kq̄(right).
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Figure C.6: Final-final collinear limits for ig||jq(left), ig||kq̄ (centre) and jq||kq̄(right).
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Figure C.7: Initial-final collinear limits for 1̂g||ig(left), 1̂g||jq (centre) and 1̂g||kq̄(right).
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Figure C.8: Initial-final collinear limits for 2̂g||ig(left), 2̂g||jq (centre) and 2̂g||kq̄(right).
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C.3 Finite real-virtual subtraction for qg → qgg

For the last case of the real-virtual contribution to the two quark, two gluon Born

process, we consider a quark and a gluon in the initial state. The cross section reads

dσ̂RVNNLO = N 1
qg,5

∫
dΦ3

1

3!

dx1

x1

dx2

x2

∑

P (1̂,i,j)

B0
5(1̂q, 2̂g, ig, jg, kq̄)J

(3)
2 (p3, p4, p5), (C.3.3)

where the sum runs over the permutations of the gluons. The subtraction terms

of this contribution are given in (5.6.75), (5.6.77) and (5.6.79). There is no soft kq̄

limit due to current conservation. All other limits between partons are present in

the summation. Recall that the subtraction terms only hold in the sum over all

orderings. Unlike the gluon-gluon initiated process, we no longer have symmetry in

plots for quark-gluon collieanr limits, since one of them is now in the initial state.

The right hand plot in Figure C.9 is empty since this corresponds to the soft limit of

the final state quark, which does not exist.

 0

 200

 400

 600

 800

 1000

 0.999  0.9995  1  1.0005  1.001

# 
ev

en
ts

R

Single soft - 3

    0 outside the plot
    0 outside the plot
    0 outside the plot

#phase space points =  1000 x=10-6
x=10-7
x=10-8

 0

 200

 400

 600

 800

 1000

 0.999  0.9995  1  1.0005  1.001

# 
ev

en
ts

R

Single soft - 4

    0 outside the plot
    0 outside the plot
    0 outside the plot

#phase space points =  1000 x=10-6
x=10-7
x=10-8

 0

 200

 400

 600

 800

 1000

 0.999  0.9995  1  1.0005  1.001

# 
ev

en
ts

R

Single soft - 5

  996 outside the plot
  997 outside the plot
  996 outside the plot

#phase space points =  1000 x=10-6
x=10-7
x=10-8

Figure C.9: Final soft limits for ig(left), jg (centre) and kq̄(right).
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Figure C.10: Final-final collinear limits for ig||jg(left), ig||kq̄ (centre) and jg||kq̄(right).
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Figure C.11: Initial-final collinear limits for 1̂q||ig(left), 1̂q||jg (centre) and
1̂q||kq̄(right).

 0

 200

 400

 600

 800

 1000

 0.999  0.9995  1  1.0005  1.001

# 
ev

en
ts

R

Single collinear - 2/3

   23 outside the plot
    1 outside the plot
    0 outside the plot

#phase space points =  1000 x=10-8
x=10-9

x=10-10

 0

 200

 400

 600

 800

 1000

 0.999  0.9995  1  1.0005  1.001

# 
ev

en
ts

R

Single collinear - 2/4

   12 outside the plot
    0 outside the plot
    1 outside the plot

#phase space points =  1000 x=10-8
x=10-9

x=10-10

 0

 200

 400

 600

 800

 1000

 0.999  0.9995  1  1.0005  1.001

# 
ev

en
ts

R

Single collinear - 2/5

    3 outside the plot
    0 outside the plot
    0 outside the plot

#phase space points =  1000 x=10-8
x=10-9

x=10-10

Figure C.12: Initial-final collinear limits for 2̂g||ig(left), 2̂g||jg (centre) and
2̂g||kq̄(right).

C.4 Finite real-virtual subtraction for q̄Q→ q̄Qg

Finally, we present the case of the real-virtual five parton process with two different

quark pairs and a single gluon. A quark and antiquark of different flavour are in the

initial state. The cross section reads

dσRV = N 1
qQ,5

∫
dΦ3(p3, p4, p5;x1p1, x2p2)

1

S3

dx1

x1

dx2

x2

×
[

C1
5(3Q, 5g, 4q̄; 1̂q, 2̂Q̄) + C1

5(1̂q, 5g, 2̂Q̄; 3Q, 4q̄)
]
J

(3)
2 (p3, p4, p5) (C.4.4)

The subtraction terms for this contribution are given in (6.3.26) and (6.3.26). There

are no soft quark limits limit due to current conservation, and now we observe from

Figures C.14, C.15 (left) and C.16 (centre) that no collinear limits exist between

quark/antiquarks of different flavour, as expected. Note the symmetry of like-quark

collinear limits q||q̄ and Q||Q̄, which is again expected due to invariance of the matrix

element under exchange of quark pairs.
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Figure C.13: Final soft limits for 3Q(left), 4q̄ (centre) and 5g(right).
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Figure C.14: Final-final collinear limits for 3Q||4q̄(left), 3Q||5g (centre) and
4q̄||5g(right).
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Figure C.15: Initial-final collinear limits for 1̂q||3Q(left), 1̂q||4q̄ (centre) and
1̂q||5g(right).
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Figure C.16: Initial-final collinear limits for 2̂Q̄||3Q(left), 2̂Q̄||4q̄ (centre) and

2̂Q̄||5g(right).




