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Abstract 

Volume rendering is becoming increasingly popular as applications require realistic solid shape 

representations with seamless texture mapping and accurate filtering. However rendering 

sparse volumetric data is difficult because of the limited memory and processing capabilities of 

current hardware. To address these limitations, the volumetric information can be stored at 

progressive resolutions in the hierarchical branches of a tree structure, and sampled according 

to the region of interest. This means that only a partial region of the full dataset is processed, 

and therefore massive volumetric scenes can be rendered efficiently.  

 

The problem with this approach is that it currently only supports static scenes. This is because 

it is difficult to accurately deform massive amounts of volume elements and reconstruct the 

scene hierarchy in real-time. Another problem is that deformation operations distort the shape 

where more than one volume element tries to occupy the same location, and similarly gaps 

occur where deformation stretches the elements further than one discrete location. It is also 

challenging to efficiently support sophisticated deformations at hierarchical resolutions, such 

as character skinning or physically based animation. These types of deformation are expensive 

and require a control structure (for example a cage or skeleton) that maps to a set of features 

to accelerate the deformation process. The problems with this technique are that the varying 

volume hierarchy reflects different feature sizes, and manipulating the features at the original 

resolution is too expensive; therefore the control structure must also hierarchically capture 

features according to the varying volumetric resolution. 

 

This thesis investigates the area of deforming and rendering massive amounts of dynamic 

volumetric content. The proposed approach efficiently deforms hierarchical volume elements 

without introducing artifacts and supports both ray casting and rasterization renderers. This 

enables light transport to be modeled both accurately and efficiently with applications in the 

fields of real-time rendering and computer animation. Sophisticated volumetric deformation, 

including character animation, is also supported in real-time. This is achieved by automatically 

generating a control skeleton which is mapped to the varying feature resolution of the volume 

hierarchy. The output deformations are demonstrated in massive dynamic volumetric scenes. 
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Chapter 1 

Introduction 

1.1 Background 

The Importance of Volume Rendering 

Real-time rendering has recently enjoyed a rapid increase in geometric detail from the latest 

developments in graphics hardware including general-purpose GPU computing (Gaster, Kaeli, 

Howes, Mistry, & Schaa, 2011; Owens et al., 2007; Sanders & Kandrot, 2010) and hardware 

tessellation (Szirmay-Kalos & Umenhoffer, 2008). Conventional polygon rasterization and point 

splatting pipelines (Akenine-Möller, Haines, & Hoffman, 2008) are popular in industry for 

processing dynamic scenes; however they are inefficient for representing and filtering complex 

geometry with features smaller than the size of an individual pixel (Heitz & Neyret, 2012). This 

is because the hardware rasterizers are optimized for large polygons that cover tens of pixels 

(Fatahalian et al., 2009) and because many primitives are required to describe complex shapes.  

 

In contrast, direct volume rendering techniques sample shape information of a continuous  D 

scalar field typically given on a discretized grid (Engel, 2006). Volume elements in this grid can 

represent complex feature-rich geometry, and they can be efficiently tested for intersection, 

enabling applications in real-time ray tracing on current graphics hardware (S. Laine & Karras, 

2011). Furthermore, each volume element can easily store descriptors of the shape attributes, 

enabling accurate filtering without aliasing (Heitz & Neyret, 2012) without requiring expensive 

oversampling or inaccurate screen-space blurring. However, the volume images consume large 

amounts of memory, making them incapable of natively representing large sparse scenes. 

Out-of-core Hierarchical Volumes 

To address this problem, recent work efficiently pages volumetric content into main memory 

at different geometric resolutions in the hierarchical branches of a tree structure, which can be 

stored out-of-core and compressed. Branches of this tree can therefore be sampled according 

to the region of interest, and any underrepresented regions can be fetched from secondary 

storage (Crassin, 2011). The sparse voxel octree (SVO) is a data structure that stores potentially 

sparse volumetric shapes, as volume elements (voxels), inside the hierarchical branches or leaf 

nodes of an octree. This partitions the volume such that each branch stores a maximum of 

eight volume elements, which can be rendered by sampling along propagating rays or cones to 

calculate the lighting information. By storing the main part of the octree out-of-core, and only 

fetching and rendering branches according to the region of interest, the memory requirements 

and GPU bandwidth can be kept low even for massive, complex and sparse geometric scenes. 
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Problems with Hierarchical Rendering 

The problem of storing volumetric content in a hierarchical tree structure is that currently only 

static scenes are supported. This is because the hierarchy implicitly determines the geometric 

location of the volume elements within the scene, which therefore must be resampled with 

reconstructed hierarchy for any dynamic changes. Resampling and reconstructing hierarchy is 

an expensive process which is difficult to achieve in real-time for massive amounts of 

volumetric data; however with the recent advances of parallel construction of tree structures 

on graphics hardware (Karras, 2012), the approach is worth investigating.  

Thesis Organization 

The objective of this thesis is to support deformation in hierarchical volumes, which are stored 

out-of-core and retrieved according to the region of interest for real-time rendering of massive 

scenes. This is challenging because, even with an efficient approach for reconstructing volume 

hierarchy (Karras, 2012), the resampling and deformation operations are costly to compute for 

each volume element. Therefore an efficient content selection algorithm is introduced, which 

simulates deformation hierarchically. Approximations are given for the resampling process in 

Chapter 3, which is achieved without introducing gaps or distortion artifacts in the deformed 

shape. Chapter 4 then explores a parallel strategy to construct hierarchy only for the important 

selected volume elements, which enables many real-time applications. This is followed by the 

demonstration of scalable rasterization and ray casting pipelines. While the proposed pipeline 

supports animation in massive scenes, more complex deformations are still too expensive to 

calculate uniquely for the selected high-resolution content. Following a similar approach to 

polygon techniques, Chapter 5 proposes generating and using a control skeleton to manipulate 

the volume elements at a feature level. This means that expensive deformation constraints can 

be broadly applied to groups of elements (bones in the skeleton) instead of being applied to 

each individual element. However existing skeletonization methods do not capture features at 

varying geometric resolutions, or for complex shapes. Therefore an automatic feature-varying 

skeletonization algorithm is presented (Willcocks & Li, 2012), which captures the target feature 

size, and is directly mapped to the hierarchical volume elements for efficient deformation.  

 

To summarize, this thesis enables real-time support for complex deformations in massive 

sparse volumetric scenes (Figure 1). This is achieved by approximating the sampling at the new 

volume element locations after selected elements have been simulated (Chapter 3). Where 

applicable, hierarchy is reconstructed for the selected visible or influential volume elements 

before rendering (Chapter 4). Expensive deformations are supported by manipulating a control 

skeleton instead of the individual volume elements. This structure is automatically generated 

and mapped at a feature level to groups of hierarchical volume elements (Chapter 5). 
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Figure 1: The proposed methods in this thesis uniquely deform and animate massive amounts 
of sparse volumetric data. This image shows the results rendered in real-time. 

1.2 Real-time Animation 

The purpose of this section is to introduce the fundamental concepts that enable large-scale 

and appealing computer animations to be calculated in real-time. This generally involves 

selecting important shapes from the scene, transforming shapes, and also deforming shapes to 

create new shapes. In particular, the terms scene transformation and object deformation are 

used to describe the two main classes of content manipulation. Scene transformation is where 

entire shapes are transformed in world-space, for example by translation, rotation and scaling. 

Object deformation describes where features of a shape are locally deformed in object-space 

to produce a unique effect, such as twist, bend, or shear. 

Modern Processes 

In practice, a large animated scene consists of multiple combinations of transformation and 

deformation operations. In order to manage these operations, modern workflows (Akenine-

Möller et al., 2008; Parent, 2012) apply top-down hierarchical matrix multiplications to shapes 

and shape regions, which are called compound or concatenated transformations. This strategy 

means that operations can be prioritized efficiently according to the region of interest, for 

example by transforming each shapes bounding box, and then selecting important shapes by 

frustum culling the transformed bounding boxes. Finally, for any remaining shapes inside the 

viewing area, more expensive deformations such as character skinning can be applied. 
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Modern Abstractions 

In addition to the top-down hierarchical matrix multiplications, modern workflows introduce 

further abstractions to accelerate real-time animation and provide more intuitive manipulators 

for the underlying shape information. This section discusses three of the most fundamental 

modern abstractions: (1) hierarchical organization, (2) instancing and (3) control structures. 

 

 

 

Figure 2 is a high-level diagram that shows the progression of the underlying shape data (left), 

as it undergoes the fundamental processes (middle) organized by modern abstractions (right) 

to achieve real-time animation and rendering or large and interesting scenes. This involves the 

progressive refinement of scene content to extract important regions for further processing. 

Hierarchical organization involves either storing or referencing shapes in a hierarchical 

structure, which allows for the selection process to efficiently query important information by 

traversing the hierarchy according to the region of interest. This means that target information 

can be fetched without expensively processing all the data. 

 

Another important abstraction is instancing, which is where the shared attributes, such as 

geometry or textures, are stored only once, but are referenced and further processed with 

instanced attributes. In the real-world many shapes are similar and only differ in a few 

attributes, such as their location, scale, rotation, material, or deformation. Instances only store 

the varying attributes, which means that processing, memory consumption and bandwidth can 

be greatly reduced. However, even with instancing and hierarchical organization, complex and 

realistic deformations are still too expensive to calculate in real-time. To address this problem, 

modern workflows introduce a simplified geometric abstraction, such as a cage or skeleton. 

This structure acts on behalf of the shape features and can be manipulated more efficiently 

Figure 2: Fundamental concepts, processes, and abstractions of modern workflows. 

Shapes 
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Transformation 

Deformation 

Pixels 
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Rendering 
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and intuitively. In particular, more expensive constraints, such as kinematic linkages or physical 

rules, can be applied directly to the simplified structure, and the shape regions can be updated 

efficiently by a mapping to the structure geometry. Therefore deformation can be modeled as 

an efficient interpolation process, which is more suitable for real-time animation. 

Proposed Workflow 

The proposed workflow in Chapter 3 and Chapter 4 utilizes both instancing and hierarchical 

abstractions in a fully parallel selection, deformation and rendering pipeline. This operates on 

high-resolution volumetric shapes by carefully exploiting properties of volumetric content in 

unity with recent advances in parallelism, discussed more extensively in the literature review. 

Chapter 5 then introduces an automatic skeletonization algorithm, which generates a mapped 

control structure for intuitive and efficient manipulation of the volumetric shape features. 

1.3 Volumetric Deformation in Trees 

It is important that hierarchy is constructed efficiently for rendering large amounts of dynamic 

volumetric content. Recently (Karras, 2012) proposes to construct a binary radix tree on data 

sorted along a space-filling curve to maximize parallelism in the construction of bounding 

volume hierarchies (BVHs), octrees and  -d trees. This approach scales linearly to the number 

of parallel cores and exploits data-locality, meaning that nearby primitives in  -dimensional 

space are close together in  D memory; therefore the cache is well-prepared for fast retrieval. 

 

BVHs construct hierarchy on a set of bounding volumes, such as axis-aligned bounding boxes 

(AABBs), which contain irregular geometric objects. This requires additional memory to store 

the extents of the bounding volumes. Similarly  -d trees are appropriate for storing point 

primitives, as they partition irregular content by generating hyperplanes that split the space 

into two parts. The focus of this thesis is on deforming volumes in a continuous  D scalar field; 

however in practice, a volumetric field is given on a discretized grid because it is the result of 

simulation or a measurement (Engel, 2006). The grid itself may be regularly distributed or 

irregular, although regular distributions lead to more compact representations in memory and 

fast access to regions, which are extremely important properties for real-time massive scenes. 

The input is therefore well-suited for a regular tree structure, which organizes the embedding 

space from which data is drawn into    regions in  -dimensions (Crassin, Neyret, Lefebvre, & 

Eisemann, 2009; Lefebvre, Hornus, & Neyret, 2005). Low values for   consume less memory, 

but are deeper, where the lowest     is a special case, in  D called an octree and in  D a 

quadtree. Choosing a large value of   is problematic for volumetric deformation, as it means 

that non-contributing volume elements inside the grid region may get undesirably processed. 

Therefore the   -tree is a natural choice, as it captures volume regularity with low-memory 
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consumption. This thesis illustrates concepts in  -dimensions, therefore an octree with      

regions per branch is chosen. A sparse voxel octree (SVO) is the name given to an octree which 

stores volumetric shapes, as volume elements (voxels), inside the    regions at the branches 

or leaf nodes of a regular octree organized on the embedding space from which data is drawn. 

Input Sparse Voxel Octrees 

Although it is possible to select voxels and maintain scene data within a single input SVO, using 

multiple input SVOs (aggregated into regions) gives better modeling flexibility. The reasoning is 

similar to why models are usually stored and paged separately, instead of in a single large 

scene file: (1) multiple instances of repetitive geometry need not be copied in different regions 

of a single SVO, (2) multiple SVOs are easier to transform and deform separately, and (3) it’s 

more productive for artists to manage and maintain separate assets for each model. 

Efficiently Updating Hierarchy 

With massive amounts of volumetric content stored in separate input SVOs, it is challenging to 

efficiently deform the voxels in real-time, because any dynamic changes must be resampled 

with reconstructed hierarchy for the accelerated shape queries required by rendering. The 

hierarchy of each voxel implicitly determines its location within the scene (Figure 3). This 

suggests a performance problem with hierarchical deformation, for example transforming the 

voxel at   to location   in Figure 3 (lower-right) traditionally requires climbing up the SVO 

hierarchy to the level   containing  , and then climbing back down   while allocating any new 

required branches for the new deformed position. This sequential process requires many more 

operations when compared with the simple per-vertex transformation operations in animated 

polygon rasterization pipelines. 

 

 

Figure 3: Example of SVO hierarchy. 
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A more scalable strategy constructs hierarchy in parallel on the GPU (Karras, 2012). This is 

achieved by calculating the position of each deformed voxel along the  -order curve (which 

means calculating a 63-bit aligned to   -bit Morton-code for each voxel by simply interleaving 

the bits of its   -bit     components). The locations of the voxels along the curve are then 

sorted, and any identical adjacent voxels are compacted giving a dense  D array of the 

deformed voxels, which are nearby in  D space. A binary radix tree is constructed on this 

array, and a parallel prefix sum algorithm is used to identify voxel parents. This in-place 

hierarchical construction approach is suitable for dynamic volume elements, as it efficiently 

operates in parallel on the set of deformed voxels, therefore decoupling the selection and 

deformation process from updating the output SVO allowing data independence. 

Efficiently Resampling Voxels 

To enable volume deformation, the new locations of the dynamic voxels must be resampled to 

the output SVO for rendering. Therefore there are two problems which need to be addressed: 

(1) deciding how to efficiently transform and deform the input voxels, and (2) deciding how to 

resample the updated voxel in the output SVO to produce an accurate and efficient rendered 

image in real-time. 

 

The straightforward approach for these two problems is to transform the voxel bounding-box, 

and then resample the center of the new box, setting the corresponding voxel in the output 

SVO. However the rendered result for this approach results in two commonly occurring types 

of artifact: (1) gaps, and (2) distortion. These are illustrated in Figure 4. 

 

  

Figure 4: Artifacts from resampling the voxel center. From left to right: 1. Original shape, 2. 
Gaps after rotation, 3. Gaps after scale (enlarge), 4. Distortion artifacts after scale (shrink). 

 

The  D illustration in Figure 4 shows a slice of an input SVO (left). Each voxel is transformed 

and the center is sampled at the same level of hierarchy to produce the output. After a simple 

rotation transformation, misalignment occurs in the structural regularity (Figure 4 middle-left) 

creating undesired gaps in the discrete surface. This problem also occurs with scaling (Figure 4 

middle-right). 

Original Rotated 45° Scaled (Enlarged) Shrunk 
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One solution to reduce gaps involves randomly inserting samples inside the transformed voxel. 

However this is extremely inefficient and does not guarantee that the gaps disappear. Another 

problem occurs where the transformed voxels are scaled to be smaller than the cell size and 

multiple voxels occupy the same cell. This causes distortion of the input shape (Figure 4 right). 

To solve this problem, the size of the output voxels must be changed to shrink the voxels, or in 

terms of SVO structures, the hierarchical resolution of the output voxels display depth must be 

increased. Similarly, reducing the resolution of the output voxels implicitly enlarges them, 

which may therefore be used to close the gap artifacts. The effect of adjusting the rendered 

level of voxel hierarchy is shown in Figure 5. The left image shows the voxels at the original 

resolution, then the middle and right images show progressively lower resolutions (higher up 

the octree hierarchy) which are implicitly larger. 

 

 

Figure 5: Different depths: hierarchical levels of detail in “Atomontage” (Síleš, 2012) 

 

Using this approach to prevent gaps and holes is worth investigating; however a disadvantage 

is that it causes aliasing as shown on the right image in Figure 5. To reduce the aliasing, the 

dynamic voxels can be simulated at higher resolution, with improved filtering, however this is 

more expensive. 

 

The problem of efficiently transforming the input voxels by their mapped data and resampling 

the output is addressed in detail in Chapter 3. The solution for adjusting the level of hierarchy 

is determined, as is an approach for more accurately increasing the sample count. These 

approaches are compared extensively against the unaligned version, which is a rendered result 

that is not sampled to an SVO (this is achievable by directly rasterizing the dynamic voxels). 

Efficiently Rendering Voxels 

Chapter 4 explores scalable rasterization and ray casting rendering strategies, and addresses 

the problem of efficiently reconstructing hierarchy for resamplings of varying display depth. 

These renderers are both achieved in real-time by the advances in general-purpose computing 

on graphics hardware. The choice and flexibility of the renderers is important, as it allows 

more applications: rasterization captures the exact appearance of the deformed shapes, as the 

updated voxels can be drawn without SVO resampling, whereas the output SVO hierarchy, 

demonstrated with ray casting, allows for more accurate modeling of light transport. 
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Output Sparse Voxel Octree 

In the literature, SVOs are intended to accelerate shape queries of volumetric data (S. Laine & 

Karras, 2011). In order to render an accurate  D image without aliasing artifacts, geometric 

information can be sampled from voxels in SVOs according to the Nyquist rate (Crassin, 2011), 

which is twice the highest frequency of the continuous source signal or  D data in the scene 

(Theorem    in (Shannon, 1948)). Recently, this has been shown in the GigaVoxels pipeline 

(Crassin et al., 2009) by sampling a pre-integrated representation of the scene geometry 

stored in voxels at different hierarchical resolutions. This means that the continuous signal of 

the  D scene can be accurately reconstructed for each rendered pixel, without necessarily 

traversing the volume hierarchy to its full data resolution (this is shown in Figure 6 by three 

real-time massive detailed scenes that would otherwise be unable to fit into memory). Their 

approach has been extended further by (Heitz & Neyret, 2012) who additionally account for 

subpixel occlusion while providing seamless transitions and correct filtering of color, 

antialiasing, and depth-of-field without requiring expensive oversampling. Therefore, the SVO 

can be efficiently and accurately used to reconstruct the continuous  D source signal of shapes 

for different geometric resolutions, which can be efficiently retrieved from secondary storage 

according to the region of interest. Furthermore the voxels themselves can store material and 

color information, which implicitly provides a natural and seamless solution to the texture 

mapping problem (Benson & Davis, 2002; Watt & Watt, 1992).  

 

 

Figure 6: Detailed SVO rendering in the GigaVoxels pipeline.(Crassin et al., 2009). 

 

As the trend for increased detail fidelity continues, so does the strain on application bandwidth 

and the desire for accurate resolution-independent filtered geometry. The SVO is becoming an 

increasingly attractive structure for the graphics industry; however without sparse volumetric 

deformation, volume rendering techniques are severely limited to static or small animated 

environments. The alternative is to use traditional animated polygon meshes in conjunction 

with static volume rendering, which can be achieved by either voxelizing a polygon mesh each 

frame, or by adding a separate polygon layer on top of a static volume renderers. However 

these inefficient and inconvenient hybrids loose the advantages of volume rendering methods 

in dynamic content. Furthermore, the real universe is fully volumetric, sparse and dynamic, 

motivating the graphics industry to use a more realistic and dynamic volumetric data model. 
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1.4 Supporting Advanced Deformations 

Modern real-time animation workflows use simplified geometric abstractions to control and 

manipulate the rendering primitives with respect to features in the input shapes (at Figure 2: 

Skeletons3 or Cages). This allows for more advanced and expensive deformation operations to 

be calculated using the simplified structure, such as in character animation, and the respective 

deformations can be updated efficiently from the structure geometry. There are many types of 

control structures, but they generally fall into two categories: (1) skeletons, and (2) cages, 

which try to optimize performance, usability, and accuracy. Examples of control structures 

include green coordinates (Lipman, Levin, & Cohen-Or, 2008) (cage-based), and eigen-

skeletons (Dey, Ranjan, & Wang, 2012) (skeleton-based). Manipulating the respective control 

structures is much easier, and can be done manually or automatically using techniques such as 

motion capture, inverse kinematics, key-frame animation, physical simulation, or procedural 

modeling (Watt & Watt, 1992). 

 

Cage techniques encase the shape with a low resolution mesh or a local coordinate system (for 

example free-form deformation). The idea is that the cage is simple to manipulate with more 

expensive deformation (which can be nonlinear), and the internal shape is efficiently updated 

by interpolating between the mapped cage vertices. However cages struggle to capture high-

frequency features, such as small details or high genus parts, making them unsuitable for the 

feature-rich shapes seen in volume rendering. Such high-frequency features can be captured 

using a hierarchical skeleton, which is a thin treelike structure that is located at the shape 

centerline. Skeletons enforce relative location constraints between the mapped shape features 

and therefore naturally support hierarchical modeling (such as character animation). While 

skeletons are smaller and easier to manipulate than cages, they are difficult to generate as the 

shape centerline is highly sensitive to boundary noise. Also, the resolution of the skeleton 

needs to reflect the desired size of target features, which may vary in different geometric 

resolutions, for example with hierarchical volume rendering. 

 

The work in Chapter 5 presents an automatic feature-varying skeletonization algorithm which 

generates a robust skeleton that is mapped to the input model for damaged and noisy inputs. 

This skeleton can be used directly in the workflow in Figure 2 by using efficient linear blend 

skinning. With the work by (Kavan, Collins, & O'Sullivan, 2009), high-quality results can be 

obtained with increased performance compared to the nonlinear alternatives (such as dual 

quaternion iterative blending) by generating simple virtual blend bones. Manipulating the 

skeleton therefore allows expensive deformations without greatly impacting the performance. 
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1.5 Chapter Summary 

Motivation 

In computer graphics, there is a great motivation to accurately and efficiently model the 

universe, which is volumetric, sparse, massive, and dynamic. The recent advances in volume 

rendering take a large step towards this objective, as they are able to render correctly filtered 

massive scenes consisting of complex and feature-rich shapes in real-time. This is achieved by 

organizing volumetric content in a tree structure, which is retrieved from secondary storage at 

varying resolution according to the region of interest. This approach is currently limited to 

static environments, as it is challenging to make dynamic changes to the volumetric content at 

interactive frame rates. Existing literature currently addresses this problem by splicing a 

polygon surface representation with the volumetric content; however this deviates from the 

realism and accuracy which is to be expected from a purely volumetric model. 

Challenges 

Enabling support for dynamic manipulation of the actual volumetric content is challenging to 

achieve in real-time. This is because of the massive amount of volume elements that need 

updating each frame, and because of the limitations of current hardware. Furthermore, a 

successful framework will require careful balance between several topics of computer science, 

including: (1) computer animation, (2) real-time rendering, (3) hierarchical structures, (4) 

parallelism, and (5) geometric modeling. 

Objective 

The objective of this thesis is to enable real-time support for directly manipulating, deforming, 

and rendering massive amounts of volumetric content in sparse scenes. This includes designing 

a simple method for manipulating volumetric content with support for advanced deformations 

and constraints, for example in character animation. 

Problems  

The problem of efficiency lies at the source of hierarchical volumetric deformation. Because 

the positions of the deformed volume elements are implicitly determined by their location 

within the rendering tree structure, the tree hierarchy needs to be reconstructed each frame 

and any dynamic changes need to be resampled accordingly. These operations are expensive 

and very challenging to achieve in real-time for such huge quantities of data. Furthermore, 

advanced deformations that apply relative constraints to other parts of the shape are 

computationally expensive, which is especially problematic considering the extreme density of 

volume elements and the amount of them required to represent a large scene. 
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The problem of accuracy is inevitably encountered when approximations are made to increase 

performance. This is especially relevant where the volume elements are resampled to the 

output rendering tree structure. Increasing the number of samples of the deformed content 

prevents gaps from occurring in large deformations, but greatly decreases the performance. 

Alternatively, it was discussed to investigate a strategy that changes the hierarchy of the 

rendered voxels in order to close gaps and prevent shape distortion. This introduces aliasing, 

which creates an efficiency problem as it can only be accurately reduced with oversampling. 

 

There is also a problem of accuracy and usability when manipulating volume elements using a 

control acceleration structure, such as a skeleton or a cage. Hierarchical volume elements 

capture complex feature-rich shapes at varying feature resolutions, which must be captured 

correctly by their associated structure. Manually creating these structures and individually 

mapping them to each hierarchical resolution would be an extremely labor-intensive task, 

worsened by the topological complexity found in volumetric shapes. Automatically generating 

and mapping these structures is also problematic: cages are simple to generate, but fail to 

capture high-frequency features, whereas accurate skeletons are difficult to define as the 

shape centerline is highly sensitive to noise found on the shape boundary. 

Thesis Contributions 

This thesis contributes to several areas of computer graphics united under the common theme 

of enabling support for real-time sparse volumetric deformation in massive scenes. These 

contributions are discussed in accordance with the thesis structure: 

 

Chapter 3: In the field of real-time animation, efficient and high-quality solutions are found for 

the problem of selecting, deforming, and resampling important volumetric content encoded 

hierarchically. The selection process operates in a parallel hierarchical algorithm that finds the 

important shape regions for further simulation. The output can therefore be resampled by 

determining the correct depth for which to display the output voxels in order to close gaps and 

prevent shape distortion. This approach means that a fixed number of samples are inserted 

regardless of the amount of deformation, and is therefore highly efficient and suitable for real-

time rendering. Inserting a fixed number of samples of varying rendering resolution inevitably 

causes aliasing in extreme deformations. In such cases, a secondary method is provided which 

inserts new samples at the exact locations where gaps in the shape would otherwise occur.  

 

Chapter 4: In the field of volume rendering, a parallel framework is presented which addresses 

the problem of efficiently constructing hierarchy for volumetric elements of varying hierarchy. 

This means that hierarchy can be constructed for massive sparse scenes at high-resolution, 
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such as from the deformed and resampled selection in Chapter 3. Additionally, parallelized ray 

casting and rasterization rendering approaches are implemented, which are scalable and 

demonstrated in massive animated scenes. These renderers are flexible and share the parallel 

selection and deformation components. This enables many applications, such hybrid renderers 

for the real-time modeling of more advanced light transport. 

 

Chapter 5: In the field of geometric modeling, the problem of supporting efficient deformation 

in complex shapes at varying geometric resolution is addressed. A robust and automatic 

feature-varying skeletonization algorithm is presented, which can operate on complex, noisy, 

and even damaged inputs. This is particularly useful for non-manifold shapes where traditional 

homotopic skeletonization methods fail. The algorithm outputs a mapped skeleton structure, 

and it may process both irregular polygon meshes and regular volumetric content accordingly. 

To address the efficiency problem of sparse volumetric deformation, the generated skeleton is 

able to accurately manipulate volumetric content at a feature level instead of per-voxel, and 

therefore it can efficiently apply expensive constraints, for example in character animation. 

 

In conclusion, manipulating the generated feature-varying skeletons for the model instances 

(Figure 2) produces appealing animations efficiently. The output can be displayed smoothly in 

real-time using the proposed resampling and rendering strategies (Figure 7). 

 

 

Figure 7: Frame in the accompanying video showing sparse volumetric deformation at 30fps.  
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Chapter 2 

Literature Review 

2.1 Overview 

This chapter discusses a broad range of literature categorized into the four relevant areas for 

achieving efficient sparse volumetric deformation. These areas are: (1) Geometric Modeling, 

(2) Modeling Deformation, (3) Spatial Partitioning, and (4) Real-time Rendering. Covering these 

topics allows for both a wide and thorough analysis of related techniques and data structures 

that generate efficient renderings, measured by the rate of which images are produced, and 

accurate shape representations, measured by the properties of the supported geometry, and 

the appearance of the deformed resamplings when compared to the unaligned signals. After 

this discussion, more literature is presented in the specific areas of the later chapters. 

 

The field of Geometric Modeling explores the definition and properties of shape, including 

both surface and solid modeling techniques, and the method to manipulate and combine 

operations to express more interesting results. Understanding the properties of shape is 

therefore important for comparing and analyzing the limitations of different volumetric 

representations, in particular when targeted at complex models. With an understanding of 

shape representations, the field of Modeling Deformation expands to address how shape is 

manipulated and deformed in order to create dynamic scenes with appealing animation. This 

therefore covers both large-scale modeling, such as planetary systems and procedural scenes, 

alongside small-scale modeling, such as character animation and shape distortion. Managing 

these deformations in massive scenes is challenging, and requires careful Spatial Partitioning 

such that only relevant or influential information is processed according to the region of 

interest. The correct choice and usage of a spatial data structure is very important, as can be 

well-tuned to exploit regularity in volumetric content, and will require efficient construction or 

update properties in order to be compatible with dynamic scenes. The structure also has a 

strong relationship with the techniques used to achieve efficient Real-time Rendering, which is 

concerned with producing attractive images that react with little delay from user interaction, 

allowing for immersion within the dynamic scene. 

 

The method of this thesis is developed in three chapters. Chapter 3 presents the volumetric 

deformation framework, which details how modeled volumetric shapes can be efficiently and 

accurately deformed. This therefore relates to literature in the fields of Geometric Modeling 

and Modeling Deformation. Chapter 4 extends the method to support efficient rendering of 

massive scenes by using techniques in the field of Real-time Rendering, and through careful 



25 
 
 

Spatial Partitioning. Chapter 5 controls the deformation through an automatically generated 

control skeleton. This structure is able to efficiently deform volume elements or other shape 

representations, and relates to fields of Geometric Modeling and Modeling Deformation. 

2.2 Geometric Modeling 

The word shape is used to describe the form or the appearance of an object with respect to its 

features; therefore shape does not describe the location, scale, or rotation of an object. For 

example, a square is a rectangular  D shape with right angle features, whereas a durian fruit 

has an overall round  D shape with sharp thorn-like features. In practice, few shapes can be 

defined with an explicit definition (such as a height field) therefore geometric modeling, which 

is concerned with representing shapes (Mortenson, 2006), tends to concentrate on implicit or 

parametric definitions. Parametric methods represent the shape surface using a set of 

piecewise surface patches also called mappings (Ünsalan & Er   l, 2001). This is in contrast to 

the implicit form, which uses a volumetric definition that naturally captures the interior of an 

object (Sigg, 2006). Both definitions therefore have different advantages and disadvantages in 

relation to the primary areas of this thesis, which cover modeling, deformation, and rendering. 

Parametric Surfaces 

Representing shape at arbitrary precision is an important goal for computer graphics. The 

shape surface can be defined by the function:           which maps parametric space 

  into  D space (Sigg, 2006). This means that points in a subset of the  D space       are 

mapped to  D space:        (                    ) creating a surface patch like a single 

sheet of fabric. Therefore a discrete number of these parametric patches are required in order 

to cover the entire surface of more complex shapes. The advantages of this mapping are that 

only a small number of points need to be defined in the parametric domain, which can then be 

interpolated to form a continuous surface. Popular examples include Bézier surfaces (Farin, 

2002) and non-uniform rational B-splines (NURBS) (Piegl & Tiller, 1997), which are compact, 

easy to construct, and easy to control. 

 

In the past, the graphics pipeline was optimized for rendering a discrete number of triangles 

(Lindholm, Kligard, & Moreton, 2001) which meant that parametric surfaces had to be 

converted into a polygon model at discrete levels of detail (F. W. B. Li, 2008). With limited 

transfer bandwidth, the parametric techniques that dynamically generated geometry on the 

CPU were generally outperformed by simple methods that swapped pre-computed level of 

detail meshes (Luebke, 2001). However the latter caused undesirable popping artifacts at the 

transitions between the different resolutions, and consumed valuable video memory for 

storing the additional levels of detail. 
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Recently, the graphics pipeline has added support for dynamically emitting more geometry 

after the input vertices have been processed (Blythe, 2006). This change has enabled new 

techniques to adaptively tessellate the original geometry, which now implicitly acts as a 

discrete control mesh, in order to generate smooth surfaces (Loop & Schaefer, 2008). The 

approach has been enhanced to displace the adaptive surface according to a height field 

stored on a parameterized texture for reproducing fine details without popping artifacts 

(Szirmay-Kalos & Umenhoffer, 2008). However all of these approaches have shared limitations: 

(1) the displaced geometry does not support overhanging ledges, (2) only features on the 

shape surface are captured, and (3) self-intersections are possible as the surface is not 

guaranteed to be manifold (Sigg, 2006). Advanced deformations may require topology to be 

split or merged, and therefore a more robust closed-manifold surface definition is required 

without self-intersections, and with support for solid complex shapes of adaptive geometric 

resolution. These properties can be achieved with a volumetric definition. 

Implicit Surfaces 

Shapes can be defined implicitly with a volumetric definition        that associates a scalar 

value to points in  D space. This means that a surface can be described in the implicit form 

           such that points inside the volume are easy to define     as are points outside 

the volume     accordingly. Representing shape using this definition means that complex 

topological operations, such as merging and splitting, can be achieved by simple operations 

such as addition and subtraction respectively. Furthermore, complex shapes can be modeled 

easily by carefully organizing the geometric operations on the volumetric content. Popular 

examples of these approaches include constructive solid geometry (CSG) (Voelcker & 

Requicha, 1977), virtual sculpting (Galyean & Hughes, 1991), and procedural generation (Ebert, 

2003), all of which can create accurate solid shapes. 

 

Deformation of implicit surfaces can be achieved with two strategies: (1) Proxy Deformation, 

and (2) Implicit Deformation. Proxy Deformation divides the implicit shape into smaller 

volumes whose geometric deformation can be described by simple transformation. However 

the deformed outputs are nonplanar which makes efficient intersection tests challenging. 

Implicit Deformation creates a newly sampled scalar field at the deformed location. By 

discretizing the implicit field as a  D texture, the approach can be thought of as a texture space 

deformation that distorts the texture mapping implicitly changing the appearance (Engel, 

2006). Both proxy and implicit deformation result in a valid visually deformed shape, showing 

great potential (Esturo, Rössl, & Theisel, 2010), however scalable support for massive scenes 

has not yet been achieved. 
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Implicitly defined shapes can be rendered in three ways: (1) Ray tracing, (2) Volume rendering, 

and (3) Polygonization. Ray tracing involves casting rays from the camera and retrieving the 

closest point of intersection where the isosurface    , and then generating secondary rays 

which recursively acquire more lighting information from the scene. Volume rendering also 

casts rays, however samples are accumulated across all isosurfaces to produce a smooth 

visualization (Engel, 2006). While accurate, these approaches are expensive and therefore the 

implicit surface is often discretized, whereby the ray traversal process can be accelerated 

through Spatial Partitioning. Polygonization, also known as triangulation, extracts a triangle 

mesh from the shape surface, where the isosurface    . This approach was popularized by 

the marching cubes algorithm (Lorensen & Cline, 1987), followed by improvements to capture 

sharp features (Ju, Losasso, Schaefer, & Warren, 2002; Schaefer & Warren, 2004), support 

multiple resolutions (Lengyel, 2010), and even guarantee a manifold shape (Manson & 

Schaefer, 2010). However accurate isosurface polygonization is too expensive to compute each 

frame for massive dynamic scenes, and while the polygonized output could be deformed and 

rasterized easily, it still suffers the limitations of self-intersections, texture parameterization, 

inaccurate filtering, and aliasing. 

 

In conclusion, implicit surfaces are a more complete representation of shape than popular 

polygon or parametric approaches; they are rapidly gaining interest in the field of computer 

graphics. Real-time deformation and ray tracing can be achieved using discretization, but 

requires careful sampling with spatial partitioning to achieve an accurate result. 

2.3 Modeling Deformation 

Dynamic scenes consist of multiple shapes that transform in location, scale, and rotation. 

Furthermore, the shapes may change into new shapes in a process called deformation. The 

field of Modeling Deformation is concerned with intuitively controlling these dynamic changes 

to produce appealing new shapes or animations. Computer Animation is a large research field 

which is discussed extensively in the book by (Parent, 2012). It can be generally categorized 

into two areas: (1) Offline Animation, and (2) Real-time Animation. Offline Animation allows 

artists to manually setup constraints in order to accurately simulate specific visual effects or 

interactions; this approach is popular in movies (such as Star Wars and Avatar), computer-

generated imagery (CGI such as Toy Story, WALL·E), cartoons (such as Mickey Mouse and The 

Lion King), advertisements, and virtual simulation (such as hydrological, environmental, flight, 

medical and military simulations). Real-time Animation has crossover with offline animation, in 

that a pre-prepared database of constraints and animations may be used; however it is more 

concerned with the cycle of feedback and user interaction with the dynamic images in order to 

create a sense of immersion within the environment (Akenine-Möller et al., 2008). This will be 

discussed in more detail later in the section on Real-time Rendering; this section is concerned 
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with Modeling Deformation, and therefore the focus is on preparing and manipulating the 

constraints both intuitively and efficiently to achieve accurate animation. 

Interpolation Modeling 

The first animations were achieved by modeling different shapes for each frame and rapidly 

switching between them. Reconstructing the shape each frame was laborious and unintuitive; 

therefore the next logical progression was to transform some of the shape attributes, such as 

its geometry, color, or transparency, across multiple frames to create a smooth transition. 

However the in-between attributes are unknown, therefore an interpolation process is used to 

estimate new values within the range of the discrete set of known data, by curve-fitting or 

regression analysis (Monahan, 2011). A popular example of interpolation modeling is Key-

frame Animation (Burtnyk & Wein, 1971) whereby the animator manually specifies parameters 

(such as a coordinate of the shape location, the angle of a feature, or a color) at specific 

animation frames called keyframes or extremes (Burtnyk & Wein, 1976; Gómez, 1985). The 

keyframes are then arranged in sequence and the parameters are smoothly interpolated to 

generate intermediate frames in a process called in-betweening or tweening. Setting the 

parameters each keyframe is a laborious task, and may be assisted by offline modeling 

methods such as by picking and pulling groups of vertices within some distance of a source 

vertex (Parent, 2012). However this is impractical and inefficient for modeling feature-rich 

shapes, and therefore a more a simplified control structure is needed to accelerate the 

modeling process. 

 

Free-form deformation (FFD) (Sederberg & Parry, 1986) was the first of a large number of 

techniques that encase the shape with a simplified grid or a cage. Deformation is modeled by 

distorting the local coordinate system, whose vertices are used to map the internal shape. The 

internal shape is therefore updated by interpolating the location of the mapped vertices, 

which is easier and more efficient than directly manipulating the high-resolution geometry. 

However this approach is limited by the topology of the control structure; shapes with nearby 

features or complex topologies (dense, high-genus) require a high-resolution control structure, 

which introduces a circular problem as the high-resolution control structure itself is difficult 

and less efficient to manipulate. 

 

Shape interpolation is another large research area which looks at merging two parent shapes 

to create an appealing child with the blended parameters of both parents. This is particularly 

challenging because it is difficult to find a meaningful mapping which accounts for the varying 

parameter distributions (such as topology and geometric distribution). This approach is also 

popular as a two-dimensional postprocessing technique, known as morphing for general 

parameters or warping when applied specially to shape location (Alexa, Cohen-Or, & Levin, 
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2000). While shape interpolation produces limited animation effects, the idea has led to 

interesting exploratory modeling tools that allow users to navigate a virtual design space 

consisting of all possible shapes within a certain range of parameters (Talton, Gibson, Yang, 

Hanrahan, & Koltun, 2009). Furthermore, shape interpolation continues to be widely used for 

specific deformations in real-time animation, for example in facial animation and lip-syncing: 

the exact shape parameters of the jaw, tongue, and surrounding muscle groups are captured 

according to different facial expressions and may be interpolated to produce the intermediate 

results (Parke & Waters, 2008). The disadvantage of this approach is that only a limited range 

of animations are supported between the parameters of the parent shapes. 

Hierarchical Modeling 

Hierarchical modeling is a general term which describes how rules and representation change 

by relative ranks. In the field of simulation, this is associated with progressively changing 

efficiency and accuracy of a system in order to target a new class of applications (Berendsen, 

2007). However in computer animation, the term is more specifically used to describe the 

enforcing of relative constraints for content organized in a treelike structure (Parent, 2012). 

The root of the tree generally describes the most important or the largest part of the system; 

whereas the smallest branches generally represent small objects or fine shape features. This 

means that deformation can be acquired according to the region of interest (ROI), by 

traversing the tree and enforcing relative constraints until the desired level of deformation 

accuracy at each branch has been reached.  

 

Hierarchical models are observed in large-scale examples, such as where a satellite orbits the 

Earth, which orbits the Sun, which itself orbits the Milky Way, and also in small-scale examples 

such as the location of a human hand, which is constrained by the joints of the wrist, elbow, 

and shoulder accordingly. In computer animation, a hierarchical model therefore: (1) assists 

the manipulation of parameters for groups of objects, (2) means that accuracy can be achieved 

according to the region of interest, (3) provides an intuitive abstraction for controlling shape 

features undergoing multiple deformations, and (4) increases efficiency where transformations 

can be concatenated to reduce operations (Lengyel, 2011). 

 

Kinematic Linkages describe motion with respect to other objects, with applications also in the 

field of Robotics (Craig, 2008). Manipulating linkage chains in a hierarchical model can be 

achieved with two approaches: (1) Forward Kinematics, and (2) Inverse Kinematics. Forward 

Kinematics is the top-down manipulation of the linkage chain, starting at the root, giving the 

animator complete control over the direction of motion of each joint (known as a degree of 

freedom). Accurately positioning links at the end of the hierarchical chain is inconvenient (Paul, 

1981), for example in human character animation, the animator must first manipulate the 
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torso, then the shoulder, elbow, wrist and finally the fingers in order to reach a goal location. 

Inverse Kinematics addresses this problem: the animator specifies the target parameters at the 

end of the chain (such as the location of the fingers) and a linear system is solved to compute 

the rotations of all intermediate joints, but this may give undesirable joint configurations. 

 

Control Skeletons, also known as rigged skeletons, are a hierarchical linkage chain whose joints 

are sampled on the smooth central curve of the shape (called the centerline or curve skeleton) 

(Cornea, Silver, & Min, 2007) which itself is located near the medial axis (Biasotti, Marini, 

Mortara, & Patan, 2003). Segments in the chain are known as bones and are mapped to shape 

features in a process called skinning or rigging, such that the shape geometry can be efficiently 

updated by interpolating the weighted influence of its corresponding bone matrices. This 

means that deformation can be modeled by rotating or scaling the bones, using either forward 

or inverse kinematics. Because control skeletons map to the shape features, they are much 

more intuitive, compact, and efficient in comparison to free-form deformation techniques; 

however they are difficult to generate for arbitrary input shapes as the shape centerline is 

highly sensitive to noise at the shape boundary. Furthermore, the density for which joints are 

sampled (the skeleton resolution) depends on the application quality requirements, which 

varies for multi-resolution volumetric content, and therefore a feature-varying skeletonization 

method is needed (Willcocks & Li, 2012). 

Physically Based Modeling 

Physically-based modeling is where the animator specifies a physical system with rules 

influencing the scene geometry, whose motion is simulated across multiple frames. The output 

animation is therefore constrained by the level of physical accuracy of the simulation, which 

can be loosely defined as a hierarchical model (simulation) with progressive ranks of physical 

approximation at increased efficiency but with decreased accuracy. Increasing the level of 

physical accuracy, such as simulating physical interaction between individual human hairs, 

widens the range of unique motion behaviors, but is more expensive, whereas increasing the 

level of approximation produces an efficient but more predictable and generic animation. This 

means that physically based modeling methods support both offline and real-time rendering 

by adjusting the physical realism to reach the desired class of target applications (Berendsen, 

2007; Parent, 2012). 

 

Physically based modeling literature is heavily application specific; a unique effect is observed 

in the real world, and then the level of accuracy of a system and its rules are approximated to 

demonstrate the effect at an acceptable degree of realism. The majority of real-time computer 

graphics literature focuses on a macroscopic level, whereby visual effects are represented by 

coarse approximations, such as the Navier-Stokes Equations (or simplifications) for modeling 
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fluid motion. Popular examples include simulating and rendering effects such as fire (Nguyen, 

Fedkiw, & Jensen, 2002), smoke (Fedkiw, Stam, & Jensen, 2001), clouds (Dobashi, Kaneda, 

Yamashita, Okita, & Nishita, 2000), water (Enright, Marschner, & Fedkiw, 2002), wrinkles 

(Hadap, Bangerter, Volino, & Magnenat-Thalmann, 1999), elasticity (Terzopoulos, Platt, Barr, & 

Fleischer, 1987), sand (Sumner, O'Brien, & Hodgins, 1999), rain (Garg & Nayar, 2006), and cloth 

(Choi & Ko, 2002; Vassilev, Spanlang, & Chrysanthou, 2001) at varying degrees of realism. 

Many of these effects are modeled by applying Newton’s laws of motion, including spring 

systems (Georgii & Westermann, 2005; Provot, 1996) and rigid-body simulation (Baraff, 1992) 

to a system of particles (Reeves & Blau, 1985; Sims, 1990) or volumetric elements (Y. Chen, 

Qing-Hong, Kaufman, & Muraki, 1998). The purpose of this thesis is to enable support for 

hierarchical, sparse, volumetric deformation; therefore a hierarchical physically based model 

can be natively supported (Berendsen, 2007) whose simulation accuracy can be automatically 

adjusted according to the region of interest. 

Advanced Modeling 

Interpolation, hierarchical, and physically based modeling strategies have significant crossover 

with each other. For example, in real-time or network simulations, a physical system can be 

updated at discrete time steps, whereby the intermediate results are interpolated for 

efficiency. Another example is where the bones of a control skeleton are assigned physical 

cylinder primitives, of which rigid-body simulation is applied to produce unique animations 

that interact or collide with other physical rigid-body primitives in the environment (Zordan, 

Majkowska, Chiu, & Fast, 2005). More advanced animation behaviors may also be learned 

from training datasets, such as fitted motion capture data (C. K. Liu, Hertzmann, & Popovid, 

2005) in order to produce unique motion styles that would otherwise be laborious to generate. 

Furthermore, knowledge from other academic disciplines can be combined with the modeling 

techniques to more accurately describe sophisticated and abstract types of deformation or 

motion behavior; popular examples include the growth of plants in the field of botany (Reffye, 

Edelin, Françon, Jaeger, & Puech, 1988), the interaction of large crowds or object swarms in 

the field of artificial intelligence (Kennedy, 2006; Sung, Gleicher, & Chenney, 2004), and the 

movement of characters in the art of choreography and the science of kinesiology (Y. Li, Wang, 

& Shum, 2002). 

 

In conclusion, there are many different approaches for manipulating content, organizing 

constraints, and simulating animation. These are generally measured in terms of human 

intervention, computational efficiency, and simulation accuracy. The range of applications can 

be greatly extended using hierarchical models: (1) hierarchical content can be simulated at the 

target level of physical realism according to the region of interest, and (2) shape features can 

be intuitively manipulated with relative constraints using a control skeleton. 
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2.4 Spatial Partitioning 

Spatial partitioning (or space partitioning) means dividing space in order to efficiently query 

geometric information. This is therefore important for supporting massive scenes by retrieving 

influential data from secondary storage which contributes to the output simulation, and it also 

accelerates content intersection tests for culling algorithms, real-time rendering and collision 

detection (Akenine-Möller et al., 2008; Ericson, 2005). An effective spatial partitioning 

algorithm will map contiguous regions of one-dimensional memory to the important regions of 

 -dimensional space, and can be measured by the: (1) mapping performance, (2) memory 

usage, (3) construction cost, (4) update costs, and (5) parallelism. These attributes are central 

to enabling support for sparse volumetric deformation, given the massive amounts of dynamic 

volumetric content which need to be selected, processed, and finally displayed each frame.  

 

The field of spatial partitioning can be categorized by the type of spatial data structure used to 

organize geometric information in  -dimensional space (Samet, 1995). Spatial data structures 

arrange content in: (1) grid structures, or (2) tree structures; however it is also worth 

discussing (3) spatial hashing, which is a mechanism that increases the functionality of spatial 

grid and tree based methods, supporting much larger virtual resolutions than by natively 

storing the structures in memory, and can also be used to improve parallelism and cache 

coherency. In the literature, the numerous  -dimensional data structures (Samet, 2006) are 

often well-tuned for specific applications, which include: database management systems (e.g. 

spatial databases, multimedia databases), computer vision, pattern recognition, geographic 

information systems (GIS), and finite-element analysis. The application of sparse volumetric 

deformation requires the spatial data structure to update in real-time according to dynamic 

changes in the scene, therefore the structure must excel in its speed of updating, mapping 

performance, and level of parallelism. To achieve this efficiency, the spatial data structure can 

benefit from the regularity of the volumetric content. 

Grid Structures 

The most common type of grid is the regular grid, which is a special case of structured grid 

where all the spatial regions (called cells or bricks) are congruent (of equal size and shape). The 

tessellation of the regular grid is at a fixed resolution, which allows for geometric content to be 

accessed efficiently by the overlapping regions; however this introduces the balancing problem 

of deciding the grid density, which is the ratio of objects to regions. Choosing a low-resolution 

grid with densely distributed objects will impact performance, as each object needs to be 

searched for within each region, whereas choosing a high-resolution grid will consume too 

much memory (Cohen, Lin, Manocha, & Ponamgi, 1995). The real world contains varying 
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object distributions as it is has sparse regions of empty-space, as well as regions of densely 

packed objects, which means that the regular grid is often both too coarse and too fine. 

 

Supporting varying object distributions can be achieved with adaptive grids (Klimaszewski & 

Sederberg, 1997), hierarchical clustering (Cazals, Drettakis, & Puech, 1995), or by recursive 

spatial subdivision until some density criteria for each grid region is satisfied (Jevans & Wyvill, 

1988). These approaches use multiple grids stored hierarchically at different resolutions 

according to content overlapping criteria, which means that sparse regions can be captured 

without consuming too much memory. However the added complexity of managing multiple 

grid overlapping criteria is difficult to parallelize, especially when considering dynamic 

volumetric content. More simple overlaying criteria (such as hierarchical grids in (Ericson, 

2005)) result in deep hierarchical levels consuming lots of memory, which is unsuitable for 

representing massive sparse scenes. While a spatial hashing mechanism can be used to limit 

this memory consumption, the sparse grid regions cause cache misses impacting performance; 

therefore it is better to use a more consistent tree structure to divide the empty-space in order 

to focus on a tighter spatial region for more coherent hashing. 

Tree Structures 

Tree data structures are widely used in real-time rendering and collision to hierarchically 

organize content. This organization is generally achieved by partitioning data according to: (1) 

its value (labeled tree-based), or (2) the embedding space from which the data is drawn 

(labeled trie-based). While both approaches decompose the space into groups, the key 

difference is that tree-based methods are generally more concise but less regular, which is 

therefore suited for irregular geometry such as polygon meshes, whereas trie-based methods 

are generally suited for regular content, such as voxels (which represent the value of a regular 

grid). This generalization is shown more clearly in Samet’s taxonomy (Figure 8), which shows 

the interrelationship among the different types of multidimensional data structures (Samet, 

2006) using an example set of  D points. The root of Samet’s taxonomy represents no 

identifiable organization of the content, whereas deeper branches represent the progression 

from being based on a fixed grid (arrays) to being based on an adaptive grid, whose regions are 

more flexible in terms of size and shape. The grid density for elements in the deep regions is 

low, but the partitioning procedure is more complex, which is generally more difficult to 

parallelize. Under this observation, the shallowest structures that retain low grid density are 

quadtrees (i.e. octrees in  D) that are organized on the embedding space. 
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It is challenging to construct a suitable structure for storing and organizing massive amounts of 

dynamic volumetric content. Ideally, to utilize the hardware cache, trees should be ordered in 

memory such that nodes occur linearly in memory during traversal (Ericson, 2005). However 

this can present challenging design issues, in particular when considering how hierarchical links 

between nodes are managed. In practice, trees can link data by using either: (1) pointers, or (2) 

hashed access. The remainder of this section examines recent literature which constructs trees 

on volumetric data using pointers, whereas the next section focuses on data orderings and 

spatial hashing methods. 

 

Generating a tree using pointers is perhaps the simplest method to understand, as pointers 

provide a natural metaphor describing the links between hierarchical nodes. For example, a 

tree may be encoded in a top-down breadth-first search (BFS) order where each node can 

store a pointer and a integer value representing the number of its  -children, which are 

contiguous in memory. These pointers (links) are represented by arrows in Figure 9, where the 

left image shows the natural representation of the tree structure, and the right image shows 

how the nodes are allocated and referenced for top-down traversal in memory. An alternative 

depth-first search (DFS) memory order, as shown in Figure 9 (lower-right), can be implemented 

to improve cache utilization as the traversed nodes are slightly closer in memory, however this 

requires, for example, additional   -bit pointers and   -bit positional data per node making 

the approach often impractical.  

 

Sequential 
list 

Inverted 
list 

Fixed-grid 
method 

Grid file Point 
quadtree 

k-d tree Adaptive  
k-d tree 

EXCELL 

PR quadtree PR k-d tree 

MX quadtree 

Organized by value 

Organized by embedding space 

Organized by neither of the above 

Organized by at least two of the above 

Figure 8: Samet’s taxonomy: The interrelationship among different data structures, where 
deeper levels of the tree are more adaptive with flexibility over the region size and shape.  
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In the case of quadtrees and octrees, the BFS memory layout allows the positional data to be 

reconstructed during traversal by keeping child voxels in a fixed order and using an 8-bit flag 

per branch to determine which of the eight children are present (Benson & Davis, 2002). This 

popular approach has been efficiently ported to the GPU by representing the contiguous 

memory as a  D texture in row-major or column-major order (Lacoste, Boubekeur, Jobard, & 

Schlick, 2007), where only relevant parts of the hierarchy are transmitted (Lacoste, Perin, & 

Jobard, 2008). There are many variations on the above layouts, for example one strategy 

involves preserving all eight children per branch, which increases memory, but simplifies ray 

traversal without requiring the  -bit flag per voxel. (S. Laine & Karras, 2011) proposes to use 

reduced   -bit pointers, but if the range is exceeded they use an additional far-bit that 

indirectly references another   -bit pointer. It has also been proposed to use entropy 

encoding by compressing both the child data bits and colors for further memory reduction 

(Olick, 2008). To summarize, while pointer-based approaches are simple to understand and 

easy to implement, the pointers themselves usually consume   -bits or more, and may lead to 

poor cache utilization. This has motivated the search for improved data locality and use 

pointerless methods. 

Spatial Hashing 

A hash function is used to map a large dataset to a smaller data set, for example a spatial hash 

function maps points in  -dimensional space to a single  D value, such as an integer. This is 

generally a very efficient function, for example it can be achieved in  D by simply interleaving 

the     bits using a few bitwise operations. The main idea behind spatial hashing is to 

organize the data in a process known as one-dimensional ordering, such that nearby data in  -

dimensional space is nearby in  D memory. Therefore the hardware cache is localized allowing 

for efficient content retrieval according to the region of interest (this is discussed in more 

detail in the later section on Program Optimization).  

 

Tree (top-down) 

a 

DFS Memory Layout 

BFS Memory Layout 

b c d 

e f g h i j 

k l m 

a b c d e f g h i j k l m 

a b e f c d g k l h i m j 

Figure 9: Example tree layouts in BFS and DFS memory orderings. 
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Cache friendly spatial partitioning can be achieved by storing quadtrees and octrees without 

pointers (Gargantini, 1982); by hashing the index data for direct access to any node (Figure 10). 

Notable works include (Lefebvre & Hoppe, 2006) who pack sparse data into a dense  D texture 

using a small  D offset table to jitter each hash function into a minimal perfect hash function. 

This results in exactly two memory accesses per query which is ideal for parallel evaluation on 

GPU hardware. Another recent advance in the field of pointerless octrees exploits the dual of 

the structure for even faster performance with less memory consumption (Lewiner et al., 

2010). Of particular relevance is (Lauterbach, Garland, Sengupta, Luebke, & Manocha, 2009) 

improved by (Karras, 2012), who assign, sort and compact Morton codes (a type of  D hash) to 

make them unique. This step efficiently reorders the voxels such that they are sorted along the 

z-order curve, preserving data locality as multi-dimensional voxel indices are mapped to one-

dimensional contiguous memory. This means that a binary radix-tree can be constructed using 

the unique keys to generate the octree hierarchy, and that the whole process can run in 

parallel on the GPU with excellent scalable performance and low memory consumption. 

 

 

 

In addition to low memory consumption and cache coherency, spatial hashing can offer other 

benefits in the traversal process. While traversal is typically top-down or bottom-up according 

to the memory encoding, hashed (or pointerless) octrees allow for direct access the octree 

data simply from a target position and depth value, which is shown in the example for the  D 

quadtree case in Figure 10. Hashed octrees have therefore led to the development of more 

optimized statistical octree searches with far less search time and a low memory footprint 

(Castro, Lewiner, Lopes, Tavares, & Bordignon, 2008). Another notable advancement was the 

development of the kd-restart and kd-backtrack algorithms, which run without a stack (Foley & 

Sugerman, 2005). This has led to several fixed-size buffer variants, also known as stackless or 

short stack algorithms, which have been generalized to arbitrary bounding volume hierarchies 

(BVH) (Samuli Laine, 2010). Also, fixed-buffer techniques have been efficiently implemented 

with octree ray traversal on the GPU, restarting from the correct level of hierarchy to avoid 

requiring additional traversal from the root node each time the ray progresses through the 

scene (S. Laine & Karras, 2011).  

Morton key Quadtree Hash Table (3-last bits of key:      ̅   ) 
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Figure 10: Pointerless quadtree example (Lewiner, Mello, Peixoto, Pesco, & Lopes, 2010). 
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In conclusion, advances in parallelization with spatial hashing have demonstrated extremely 

efficient construction for regular quadtrees and octrees on today’s GPUs, which can organize 

potentially dynamic data in a cache-friendly hierarchical ordering without requiring pointers. 

This enables fast traversal with applications in collision detection and real-time rendering. 

2.5 Real-time Rendering 

Real-time rendering involves the rapid creation of images such that users can dynamically 

interact with the virtual environment. The rate of which images are produced is measured in 

frames per second (FPS) or by the time between frames in milliseconds (ms): humans cannot 

detect individual frames at rates above   FPS, whereas under  FPS the immersion within the 

environment deteriorates (Akenine-Möller et al., 2008). Generally, an application is considered 

real-time if it can produce images above   FPS (less than   ms between frames) however 

more visually appealing or smooth animation occurs above   FPS (less than   ms). Rendering, 

on the other hand, is concerned with creating an image from a model (Geometric Modeling) 

and can be measured by the attractiveness, realism, or visual appeal of the generated output. 

Therefore the relationship between real-time and rendering implies a balance between the 

efficiency and quality of the generated images in order to create an immersive and captivating 

dynamic virtual environment for the user. The field of rendering can be split into two branches: 

(1) photorealistic rendering, and (2) non-photorealistic rendering (NPR). Photorealistic 

rendering accurately models shapes and light as they appear in the real world, then simulates 

the physics of light (optics) as it interacts with a scene before sampling the light which reaches 

the camera. Whereas NPR is more concerned with producing stylized artistic images, for 

example to convey an emotion, illustrate an idea, or sell a product. This thesis concentrates on 

representing massive, detailed and dynamic volumetric scenes as they occur in the real world, 

and it is therefore more related (but not limited) to photorealistic rendering. 

 

The real-time rendering literature is organized by the two primary techniques used for 

modeling and simulating light within dynamic scenes: (1) rasterization, and (2) ray tracing. 

However the section is not restricted to discussing light; it also concerned with how shape and 

deformation can be modeled within these techniques. The later parts of this section expand to 

more specific literature about: (3) out-of-core rendering, (4) optimization, and (5) parallelism. 

These topics are important for enabling support for massive dynamic scenes, given the 

efficiency expected of a real-time application, and the constraints of current hardware. 

Rasterization 

Graphics hardware has become extremely efficient at rasterizing large numbers of polygons, 

which may have deformations, tessellation, and parameterized materials. The graphics 

rendering pipeline is commonly associated with the state of the art rasterization real-time 
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rendering method, which operates on a set of rendering primitives (Akenine-Möller et al., 

2008). The vertices of these primitives are then transformed, and projected to the screen by 

the camera matrix, according to structures in memory such as vectors, matrices, textures, or 

arrays of data (such as control skeletons). More primitives may be emitted (Blythe, 2006) and 

displaced to produce surface variety, which is then followed by a rasterizer stage that converts 

the visible (non-clipped) primitives into a raster image while interpolating per-vertex attributes 

for any intermediate pixels. The final stage enables lighting information to be calculated for 

each pixel in the output image, by accessing structures in memory (such as textures, the 

camera location, and light positions) according to the interpolated per-vertex attributes. 

 

While the rasterization approach is optimized for processing large numbers of polygons, it is 

not designed for modeling the physics of light as observed in the real world. However more 

recently, real-time rendering research has gained interest in modeling light, where new 

interactive global illumination techniques have been proposed to transport light in scenes, 

giving an improved approximation of the rendering equation (Kajiya, 1986). It is therefore not 

surprising that many of these techniques use rasterization (Ritschel, Dachsbacher, Grosch, & 

Kautz, 2012), in particular by storing advanced lighting information in additional frame buffers 

and combining the results to compute the output image (based on deferred shading (Saito & 

Takahashi, 1990)). 

 

An alternative real-time rendering approach, using rasterization, involves storing advanced 

lighting information inside large numbers of  D point primitives: these are discussed in the 

book by (Gross & Pfister, 2007) and the survey (Kobbelt & Botsch, 2004) with topics such as 

point acquisition, reconstruction, splatting, sample spacing, and hardware acceleration. A 

recent example of acquiring lighting information with  D points uses a bounding sphere 

hierarchy (BSH), which enables parallel cuts to be made for calculating indirect light from many 

different views in the scene (Hollander, Ritschel, Eisemann, & Boubekeur, 2011). Point-based 

techniques can also be optimized using visibility culling (Koo & Shin, 2005), LOD selection 

(Pajarola, 2003), screen-space decimation (Rusinkiewicz & Levoy, 2000), and temporal 

coherency (Guennebaud, Barthe, & Paulin, 2004), whereby expensive rendering and 

deformation operations only influence the set of influential points. The primary limitation of 

these strategies is that they are not suitable for deformation, as gaps occur between the 

regularly sampled points. This problem has been addressed for free-form modeling of point 

sampled geometry by using a hybrid of unstructured point clouds with an implicit moving least 

squares approximation (Pauly, Keiser, Kobbelt, & Gross, 2003). While suffering a performance 

penalty making it unsuitable in rendering large scenes, their work is able to dynamically insert 

or delete samples according to the local sample density in order to preserve topology. A more 

efficient strategy is given by (Marroquim, Kraus, & Cavalcanti, 2007) who propose an image-
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space reconstruction filter. This achieves excellent performance but suffers from aliasing 

artifacts. In contrast, recent work by (Bautembach, 2011) demonstrated deformation of 

rasterized point objects simply by stretching the point size based on the number of bone 

weights > 0. This is much more efficient than (Pauly et al., 2003), yet it still produces undesired 

sampling error from excessive point overlapping and, in extreme cases of deformation, 

undesired holes appear. However the idea of inserting samples and enlarging samples to 

address such problems is worth investigating. 

Ray Tracing 

This section discusses real-time rendering techniques related to ray tracing, or techniques that 

more accurately model the transport of light. Ray tracing based methods have long been the 

primary rendering strategy for offline animation (see Modeling Deformation) however, with 

the advances of graphics hardware and spatial data structures (see Spatial Partitioning), they 

are now finally possible in real-time (Wald et al., 2009). In the real world, photons from lights 

bounce amongst objects and at each point of intersection they are absorbed, reflected, and 

refracted in numerous ways. Eventually some of these photons reach the lens of the eye, 

which are then focused onto photoreceptive cells in the retina (likewise cameras focus them 

onto photographic film or an image sensor). The rendering equation (Kajiya, 1986) describes all 

possible paths of light in this process (but it does not capture all physical effects of light, such 

as fluorescence) and therefore can be used to generate near photorealistic images. However it 

is difficult to compute, as light bounces extremely quickly in a recursive process that requires 

some approximation. The basic idea of ray tracing (in optics) is to cast a large number of rays 

into the scene to simulate the transport and interaction of light. This can generally be achieved 

by: (1) casting rays from the light sources, as in the real world (this is very expensive), (2) 

casting rays from the camera (this is fast, but does not describe all the physical effects of light), 

(3) casting (or connecting) rays from samples (i) in the scene or (ii) on the shape surface, or (4) 

some combination of these approaches. Instead of randomly shooting rays, importance 

sampling can be used, where important illumination can be found using either bi-directional 

path tracing (BDPT) (Lafortune & Willems, 1993) or Metropolis Light Transport (MLT) (Veach, 

1998). 

 

The most significant advances in light transport and Global Illumination (GI) are categorized 

into the seven strategies proposed by the excellent state of the art (Ritschel et al., 2012). 

These strategies are briefly discussed and numbered in square brackets [1-4] according to the 

general light direction given in the previous paragraph. They are: (1) finite surface element 

based, which discretize the shape surfaces into patches and transport light between patches 

[1, 3ii, and 4] (Goral, Torrance, Greenberg, & Battaile, 1984; Meyer, Eisenacher, Stamminger, & 

Dachsbacher, 2009; Soler, Hoel, & Rochet, 2010), (2) Monte Carlo ray tracing, which casts rays 
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in random directions (accelerated with BDPT or MLT) from samples in the scene before 

connecting them to the lights [3i] (Kajiya, 1986), (3) photon mapping, which emits photons 

from light sources and then either gathers them or estimates their density [1] (Hachisuka & 

Jensen, 2010; Jensen, 1996), (4) instant radiosity, which emits photons from light sources that 

become virtual point lights (VPLs) that can use shadow mapping [1] (Keller, 1997; Ritschel, 

Eisemann, Ha, Kim, & Seidel, 2011), (5) many-light-based GI, which gathers lighting into surface 

samples from many lights stored in a spatial data structure [3ii] (Walter et al., 2005), point-

based GI, which gathers lighting and occlusion information into surface samples from both 

lights and shapes stored in a spatial data structure [3ii] (Maletz & Wang, 2011; Ritschel et al., 

2009), (6) discrete ordinate methods, which discretize the scene spatially and directionally for 

transferring light energy between grid regions [3i] (Chandrasekhar, 1960; Kaplanyan & 

Dachsbacher, 2010), and finally (7) pre-computed radiance transfer, which assumes static 

geometry and pre-computes lighting effects stored on the shape surface for real-time 

rendering [3ii] (Sloan, Kautz, & Snyder, 2002). The comparison between global illumination 

methods by (Ritschel et al., 2012) shows that no single rendering strategy outperforms in the 

measurement criteria that are important for this thesis, for example: (1) performance, (2) 

quality, (3) dynamic scenes, (4) scalability of geometric complexity, and (5) parallelism. The 

focus of this thesis is on enabling support for sparse volumetric deformation in massive scenes; 

the primary goal is not to implement an accurate model of light transport. However it should 

be observed that many of the interactive global illumination strategies in the literature greatly 

benefit from hierarchical spatial data structures, such as octrees. 

 

In practice, ray tracing not only consists of a spatial data structure (see Spatial Partitioning), 

but also a ray traversal process. The purpose of the traversal process is to accelerate ray-shape 

intersection tests, which are used to find where light collides with scene objects. This is usually 

achieved in a dividing process that searches the scene objects in a treelike data structure. The 

reader is referred to the large body of literature that focuses on ray traversal in BVH’s, grids, 

octrees, and  -d trees; in particular an excellent state of the art is given on the topic of ray 

tracing animated scenes by (Wald et al., 2009), a doctoral thesis by (Havran, 2000), and an 

overview on GPU assisted ray traversal by (Thrane, Simonsen, & Ørbæk, 2005). For rendering 

volumetric content, methods often rely on a simple ray-box intersection check, which became 

popular following the developments of (Kay & Kajiya, 1986). This was shortly followed by a 

modification of the traditional digital differential analyzer (DDA or a generalized Bresenham), 

which allows for quick ray casting in uniform grids by only two comparisons and one addition 

operation per voxel (Amanatides & Woo, 1987). These two simple intersection approaches 

formed the foundation for volumetric rendering in hundreds of papers, and are still popular in 

today’s literature (Aila & Laine, 2009). 
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Out-of-Core Algorithm 

An out-of-core (or external memory) algorithm is able to process data that is otherwise too 

large to fit into memory at one time. The main idea is to retrieve data from secondary storage 

only when it is needed, or in anticipation that it will be needed in the near future, while freeing 

redundant data accordingly. In rendering, this means that only influential regions near the 

camera are stored in memory; however there is still a performance problem of retrieving the 

data from secondary storage without generating excessive page faults. With spatial tree data 

structures, the number of page faults can be reduced by aggregating sections of the tree into 

pages, such that groups of branches can be retrieved instead of fetching each branch from 

storage with an independent operation. Similarly, data structures such as the multiway tree or 

B-tree reproduce this effect, where branches are permitted to have multiple values (Bayer & 

McCreight, 2002; Samet, 2006). 

 

Rendering massive scenes with an out-of-core algorithm requires a careful choice of selection 

criteria or error metrics, which are used to decide the important scene content (Carmona & 

Froehlich, 2011). A common trend in the out-of-core selection criteria is to use screen-space 

metrics based on the pixel size (Dick, Schneider, & Westermann, 2009) reducing the sampling 

frequency further away from the camera while requesting only visible data (Crassin, 2011). 

However there are other selection criteria based on spectral analysis (Suwelack, Heitz, 

Unterhinninghofen, & Dillmann, 2010), adaptive cost prediction (Aronov, Herv, Bronnimann, 

Chang, & Chiang, 2003; Frank & Kaufman, 2009), light gathering area (Christensen, 2008; 

Kontkanen, Tabellion, & Overbeck, 2011), projected silhouette overlapping (Z. Chen & Chou, 

2006), and agglomerative clustering criteria (Walter, Bala, Kulkarni, & Pingali, 2008). In general, 

these criteria depend on how shapes in the scene are modeled, and also on the type of spatial 

data structure used. However, hierarchical volumetric content has the advantage of being able 

to dynamically change its geometric resolution, which is well-suited for screen-space visibility 

criteria. These approaches can also be constructed across multiple frames (Lei & Xu, 2009) by 

exploiting temporal coherence (Coorg & Teller, 1996; Crassin et al., 2009), which results in a 

small amount of visual error that is considered acceptable in order to prevent the transfer 

delay from interrupting the sense of immersion within the real-time environment. 

Program Optimization 

Program optimization is the process of modifying a piece of software in order to improve its 

performance, accuracy, or reduce its resource consumption. In real-time rendering, the focus 

is on improving the rendering efficiency to produce smoother frame rates, and improving the 

rendering accuracy to increase the sense of immersion. The methods include: (1) algorithm 

modification, (2) architecture tuning, and (3) parallelism. In order to apply these techniques, it 
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is important to identify where the bottlenecks are located in the graphics pipeline, by either 

constructing progressive performance tests or by using tools that analyze or profile software to 

display meaningful information at each stage of the application. These tools are in a 

continually evolving list, where current examples include: CPU architectures (Intel VTune, AMD 

CodeAnalyst), APIs (OpenGL gDEBugger, Windows Performance Toolkit), specific programming 

languages (C++ PVS Studio, Java VisualVM), GPU programming (NVIDIA NSight, NVIDIA PerfKit, 

AMD GPU PerfStudio), and GPGPU computing (NVIDIA Visual Profiler, AMD APP Profiler, AMD 

APP Kernel Analyzer). Further discussion on locating bottlenecks within the graphics pipeline is 

given in the book by (Akenine-Möller et al., 2008). 

 

In real-time rendering, there are many high-level algorithms to optimize a program. Popular 

examples include: (1) culling techniques, (2) level of detail, (3) texture mipmaps, (4) imposters, 

(5) instancing, (6) indexing, (7) space leaping, and (8) simulation layers. Culling is the selective 

removal of geometry that does not contribute to the output image, where: (i) view frustum 

culling removes geometry that is outside the camera region, (ii) backface culling removes 

geometry that faces away from the camera, (iii) portal culling removes geometry that is 

outside interior regions clipped by portal doorways, (iv) contribution or detail culling removes 

geometry that is too small, distanced, or otherwise insignificant, and (v) occlusion culling 

removes geometry that is hidden behind other objects (Zhang, Manocha, Hudson, & Kenneth 

E. Hoff, 1997). Level of detail (LOD) systems hierarchically model progressive resolutions of 

shape or deformation, which enables high-contributing objects to be simulated at greater 

precision than insignificant objects. These different resolutions can either be switched, 

interpolated, or faded (Giegl & Wimmer, 2007) however methods can also completely change 

representation. For example a polygon LOD system can be used for objects near the camera, 

which can then transition into a point-based continuous LOD system for distanced objects 

(Rusinkiewicz & Levoy, 2000). Texture mipmaps extend this concept for texture filtering by pre-

calculating different hierarchical image resolutions, which may also be compressed (Williams, 

1983). An imposter replaces scene geometry with a  D image or animation; this is popularly 

incorporated into an LOD system as a replacement for distant objects (Decoret, Sillion, 

Schaufler, & Dorsey, 2001). Geometry instancing involves the batching of similar scene objects 

to avoid duplicate processing of shared attributes (Ashraf & Zhou, 2006). This is alike indexing, 

which uses an index buffer (or an element buffer object) to reuse identical attributes 

repeatedly (Blythe, 2006). Space leaping (or empty space leaping) accelerates ray casting by 

skipping empty regions of space, for example: (i) with a spatial data structure, (ii) by rasterizing 

simplified bounding primitives to find the ray start location, or (iii) by exploiting temporal 

coherence (Yagel & Shi, 1993). Lastly, simulation layers group objects such that expensive 

operations, such as lighting or collision, need not be computed between all objects in the 

scene (Cordier & Magnenat-Thalmann, 2002). 
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The foundation of all these algorithmic techniques is efficient organization of the underlying 

data, which itself depends on the target machine architecture. In the section on spatial 

hashing, it was discussed that data could be organized in memory for cache utilization, with 

the example of ensuring nearby regions of  -dimensional space are also nearby in  D memory. 

The idea of cache utilization is to use data in a way which benefits the memory hierarchy of the 

target architecture (Drepper, 2007). Modern computers have many computational cores with 

cache components organized in hierarchy at different levels (L1, L2, L3), as exemplified in 

Figure 11. The memory that is close to the cores operates with near zero latency, at about the 

speed of the core, however this memory is very challenging (expensive) to manufacture in 

large quantities. If the core needs to fetch the next instruction, or data required for the current 

instruction, it looks in the progressive cache levels and directly retrieves the data accordingly. 

However if the data is not found, a cache miss occurs meaning that the data has to be 

retrieved from memory, which can be on the order of    to     times slower (Ericson, 2005). 

In contrast to the CPU, the GPU contains multiple streaming multiprocessors (SM) which each 

contain a large number of cores that enjoy much higher memory bandwidth (Nickolls & Dally, 

2010). However data must be transferred by the expansion bus, which is limited to the bus 

bandwidth or lower memory bandwidth causing a potential bottleneck. This is especially 

problematic for real-time rendering large quantities of volumetric content, making it necessary 

to use techniques such as asynchronous transfers and exploit temporal coherency such that 

data in the cache levels remain, as it does in the scene, over multiple frames (Cozzi & Riccio, 

2012; Crassin, 2011). 

 

 

 

 

 

Figure 11: Abstraction of the basic memory hierarchy for a modern CPU and GPU. 
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The advances in compiler technology only double in program performance about once every 

   years, and cannot currently be relied on for critical optimizations (Scott, 2001). To use the 

data blocks (cache lines) effectively, intricate and profiled techniques are required to (i) 

localize and (ii) reduce the size of the stored data according to the target architecture (Jia, 

Shaw, & Martonosi, 2012), for example by checking: (1) whether smaller data types can be 

used, (2) if the fields within a structure can be reordered for better cache alignment, (3) if 

structures can be split by the data access patterns, (4) if data can be packed into smaller data, 

(5) if data can be determined more efficiently at runtime (Mikkelsen, 2010), (6) if pointers can 

be replaced with smaller data, or (7) whether some alternate form of compression is possible, 

such as reusing parent data in tree structures. For extended and practical examples on these 

techniques, the reader is referred to the books (Akenine-Möller et al., 2008; Chilimbi, 1999; 

Drepper, 2007; Engel, 2006; Ericson, 2005). 

Parallelism 

Parallel computing involves performing simultaneous calculations to process large problems or 

multiple separate problems more efficiently. Flynn's taxonomy groups parallel and sequential 

programs according to whether they have single or multiple instruction streams that operate 

on single or multiple data streams (Flynn, 1972). This creates four categories: (1) single 

instruction single data (SISD), which is an entirely sequential program, (2) single instruction 

multiple data (SIMD), which describes where multiple processors perform the same instruction 

on multiple data points, for example streaming SIMD extensions (SSE) on modern CPUs, (3) 

multiple instructions single data (MISD), which has limited applications such as detecting 

problems in data, and (4) multiple instructions multiple data (MIMD), for example 

multithreading. Flynn’s taxonomy is simple to understand, however in practice there is much 

crossover between the categories. This subsection will look in more detail at the architecture 

of the GPU, and then discuss how parallelism can be well-implemented using modern 

computer architectures (see Figure 11) for the application of volumetric deformation. 

 

The SIMD idea that a single instruction operates on multiple data does not extend in practice 

for many cases, especially where one data element influences another. This is addressed by 

constraining operations to lists of data (vector processing), for example a single instruction is 

performed on two input lists, giving a new output list containing the componentwise result 

(Nuzman, Rosen, & Zaks, 2006). This is in contrast to MIMD, where it is commonplace for 

instructions to share and influence resources (Hatcher & Quinn, 1991). The heart of the GPU is 

an SIMD model whose instructions are organized around the graphics pipeline (Harris, 2005), 

however the SIMD units are partitioned into a very small set of MIMD modules, which are 

sometimes called MSMID (multiple SIMD) or SIMT (single instruction multiple threads). This 

abstraction means that, while some basic forms of GPU and GPGPU programming can support 
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more general MIMD (Dietz & Young, 2010), the majority of performance gains are from single 

instruction streams operating on vector lists. There are many problems that cannot be 

efficiently ported to vector lists (vectorization) which implies that parallel programming is 

fundamentally different from writing sequential algorithms. Modern compilers are still at the 

first stages of vectorization (Yang, Xiang, Kong, & Zhou, 2010), where algorithmic problems 

such as sparse volumetric deformation must be explicitly designed from the beginning to 

target parallelism, in contrast to most optimization techniques that can be applied later. 

 

Designing algorithms for good SIMD ultimately requires an additional focus on eliminating the 

dependencies between data, which has never been a problem for sequential algorithms. This 

presents a challenge for shape deformation as surfaces are modeled by multiple adjacent 

regions, whose deformation typically requires neighbor access to reconnect or resample the 

primitives (in rasterization filling is performed by the hardware rasterizer, where vertices are 

naturally indexed in triangle connectivity vector lists). Ray tracing cannot efficiently utilize the 

hardware rasterizer to resample deformed volumetric content, as secondary lighting (bounced 

rays) require a new rasterized view at each bounce, which is too expensive to compute naively. 

Therefore some alternative properties of the neighboring data need to be assumed in order to 

maintain surface adjacency, where the method presented in this thesis exploits the regularity 

property between voxels for a wide SIMD implementation. By assuming voxels are distributed 

regularly, it is possible to determine their extents independently under the new deformation, 

preserving adjacency with neighbors without accessing their updated data. 

 

Data dependency is also an issue for the dynamic hierarchical spatial data structures required 

by sparse volumetric deformation (see Tree Structures) as tree nodes depend on their parent 

nodes. To support dynamic updates, the existing tree can be reused with partial updates each 

frame, however this can deteriorate over time creating fragmentation and poor traversal 

performance (Wald, Ize, & Parker, 2008). The other approach avoids degradation by 

completely reconstructing the tree each frame, which is more suited for GPU architectures 

(Lauterbach et al., 2009; Pantaleoni & Luebke, 2010). In real-time rendering, performance is 

critical, however the majority of parallel methods generate hierarchy sequentially, which limits 

the parallelism and scalability by the location in the tree (Garanzha, Pantaleoni, & McAllister, 

2011; Zhou, Gong, Huang, & Guo, 2011). In contrast, recent work by (Karras, 2012) is the first 

to present a fully parallel hierarchy generation scheme. This breaks the dependency between 

nodes by assuming some properties about the node orderings: that they are ordered along the 

z-order space-filling curve, for example with a parallel radix sort on the Morton codes. This has 

the advantage of improving cache coherency (see Spatial Hashing and Program Optimization), 

and also fits the SIMD architecture of modern GPUs, scaling linearly with the number of cores. 
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In conclusion, this section has united several topics in the previous sections under the theme 

of real-time rendering, with a strong emphasis on techniques and data structures that are well-

suited for the target machine architecture. To fully utilize SIMD parallelism, a pattern has been 

observed to eliminate data dependencies by assuming some other properties of the underlying 

data. In the case of deformation the data regularity can be exploited, whereas in the case of 

spatial data structures the data ordering can be exploited. These properties compliment the 

goal of regular, cache-friendly, sparse, hierarchical volumetric deformation. 

2.6 Chapter Summary 

This chapter has presented state of the art literature from four large research areas, which are 

important to enable real-time rendering in massive dynamic volumetric scenes. 

Conclusion 

The section on Geometric Modeling examined different shape representations, and concluded 

that a volumetric definition is more flexible and realistic than popular polygon or parametric 

approaches. This was followed by a section on Modeling Deformation, which looked at the 

many different techniques used to manipulating content, organize constraints, and simulate 

animation. It was observed that general hierarchical models extend the range of applications 

as they enable objects to be simulated at different levels of physical realism according to the 

region of interest, and because they enable shape features to be intuitively manipulated with 

relative progressive constraints, for example with a control skeleton. The section on Spatial 

Partitioning examined different categories of spatial data structure in order to accelerate real-

time rendering, or other applications such as collision detection. In particular spatial hashed 

data orderings enabled efficient construction of cache-friendly octree structures on the GPU.  

 

The last section examined literature about Real-time Rendering, and united several topics in 

the previous sections with emphasis on the efficiency and accuracy of the output images. The 

section discussed how light transport is modeled in both rasterization and ray tracing based 

methods, and it also looked at how to render scenes that are too large to fit into memory 

(using an out-of-core algorithm). The final topics explored modern computer architectures, 

emphasizing the importance of utilizing memory hierarchy and designing algorithms to be 

parallel from the beginning. This concluded with the idea that the dependency between data 

needs to be eliminated, for example by assuming specific data orderings and regularity for 

dynamic hierarchical volumetric content. 
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Strategy 

Efficiently deforming and rendering massive amounts of volumetric content is a large problem: 

(1) large numbers of calculations are required each frame, and (2) there are many parts to the 

problem. These parts are: (i) content selection, (ii) content deformation, (iii) ensuring voxel 

adjacency after deformation, (iv) hierarchy construction, (v) rendering content, and (vi) 

algorithmic optimizations, for example: (a) level of detail, (b) frustum culling, (c) occlusion 

culling, (d) temporal coherency, (e) instancing, and (f) empty-space leaping.  

 

Modern graphics hardware contains thousands of small efficient cores which are designed for 

parallel performance. The strategy for this thesis is to break the large problem into lots of 

independent smaller problems that can be solved simultaneously. The smallest element in a 

volumetric image is a single voxel, where the challenge of this work is to eliminate the 

dependencies between the voxels, such that they can be processed in wide SIMD hardware. 

This follows the approach by (Karras, 2012) who demonstrate hierarchy construction in parallel 

by eliminating the dependencies between the data. In particular, their method assumes and 

exploits some other data properties, which are inexpensive to enforce using the GPU. In 

Chapter 1, and in the literature section on Parallelism, a strategy was discussed to exploit the 

property of regularity between voxels such that voxels can independently calculate their own 

deformed region to preserve adjacency with their assumed neighbors. Each voxel can 

therefore independently fill this region by either emitting new voxels, or by changing its own 

hierarchy (which implicitly resizes the voxel). In the next chapter both of these approaches are 

considered, and the results are examined to find the best usage scenario for each solution. 

Another problem is the selection of volumetric content. Even with SIMD, processing every 

voxel in a massive scene is too expensive. In the literature, the out-of-core strategy by (Crassin, 

2011) effectively exploits the property of temporal coherence, by having the GPU request data 

from the CPU only as it is needed. This approach is much more difficult to extend to dynamic 

scenes; however the property of temporal coherence can be combined with the idea of 

aggregating sections of multiple octrees (see Out-of-Core Algorithm) in preparation for an 

efficient content selection algorithm. 

 

In conclusion, there are many properties in volumetric data that can be used or enforced to 

enable parallelism in real-time sparse volumetric deformation and rendering. 

Further Reading 

Further reading about the research areas in this chapter are in the books (Akenine-Möller et 

al., 2008; Engel, 2006; Samet, 2006; Wald et al., 2009). The reader is also referred to (Ericson, 

2005) for extensive practical examples of optimized cache-friendly data structures. 
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Chapter 3 

Deformation 

3.1 Abstract 

This chapter addresses the problem of deforming massive amounts of volumetric content in 

real-time on current hardware. The problem is challenging as large numbers of calculations are 

inevitable, especially in scenes with thousands of dynamic objects, and therefore important 

calculations need to be prioritized according to the target hardware. In the literature review, 

many prioritization approaches were discussed, and a strategy was presented to eliminate the 

dependencies between data for efficient parallel processing. This can be achieved by enforcing 

a localized cache-friendly data ordering and designing an independent algorithm that utilizes 

the properties of regularity and temporal coherence, in combination with modern abstractions 

such as sparse voxel octree hierarchy and shape instancing. 

3.2 Methodology 

Chapter 1 highlighted the problems when resampling and constructing hierarchy for deformed 

volumetric content. In the literature, (Crassin, Neyret, Sainz, Green, & Eisemann, 2011) present 

a real-time voxelization and pre-filtering scheme of animated triangle meshes, however this is 

not scalable and always requires a high-resolution voxelization process each frame (Crassin, 

2011). Instead, this section investigates directly deforming the hierarchical volumetric shape 

regions as part of a top-down parallel selection process. This only processes the contributing 

shape regions, instead of the entire shapes, at the resolution actually required for rendering. 

Therefore the resampling and hierarchy construction processes can be applied more efficiently 

later, to the selected and deformed regions, instead of the entire high-resolution shapes. This 

approach also maps well to the hierarchy of hardware, as illustrated in Figure 12: 
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Figure 12: The hierarchy of hardware maps to the hierarchy of content selection. 
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The idea is to prioritize the deformation calculations by only processing important content, and 

also to parallelize deformation such that many elements can be processed each frame. Priority 

is assigned implicitly with a parallel hierarchical selection process (Figure 12 right) that utilizes 

the architecture of current hardware (Figure 12 left). The selection process requires the shapes 

to be represented at multiple geometric resolutions, such as with input SVOs: if a branch voxel 

is unimportant, then its child voxels are also unimportant as the branch spatially contains all of 

its children. Therefore large shape regions can be inexpensively selected and discarded (Figure 

12 level 1, level 2) with progressive refinement (Figure 12 level 3 onwards) until only the 

important data remains (Figure 2) for resampling and hierarchical construction processes. In 

order to maximize parallelism, all of the paged shapes can be processed simultaneously, using 

instancing to avoid heavy data transfers on repeated attributes. In contrast, the dynamic 

attributes can be organized with other abstractions, such as control structures (Figure 2), giving 

support for more efficient and intuitive shape manipulation. 

 

Parallelizing volumetric deformation is challenging, as dependencies between shape regions 

need to be eliminated in order to avoid otherwise expensive synchronization. Deformation can 

cause regions of the shape to stretch, creating gaps that need to be filled with new samples. 

This is usually addressed by accessing the neighboring shape regions and using a filling 

algorithm, such as rasterization, however this approach limits the rendering as discussed in the 

next chapter. Instead, each voxel can independently assume that it shares geometric data with 

its neighbors, and use this information to ensure visual continuity without accessing their data. 

In particular, the voxels can either resize themselves by changing their display depth, or emit 

new voxel samples. This will be discussed in more detail in the later section on Resampling. 

 

After selecting important voxels and independently deforming them, the spatial partitioning 

hierarchy needs to be constructed to enable efficient traversal for applications such as collision 

and real-time rendering. This is also achieved in parallel, with an approach similar to (Karras, 

2012). The voxels are efficiently sorted along the z-order space-filling curve, using a parallel 

radix sort on the interleaved values of their deformed centers. This improves cache coherence 

and enables SVO hierarchy to be quickly calculated from a parallel binary radix tree on the 

sorted data. The output is therefore a single SVO for accelerated real-time rendering, which 

captures all of the important shape regions from the input shapes that contribute to the scene. 

 

In conclusion, the proposed deformation pipeline introduces a parallel selection process which 

prioritizes calculations according to the hierarchical volumetric resolution. The voxel data is 

also independently deformed in parallel, utilizing the wide vector width SIMD architecture of 

the GPU, without being interrupted by large data transfers. This is shown in the abstraction in 

Figure 13, which is discussed in more detail in the following sections. 
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Figure 13: Abstraction of the proposed pipeline stages. 
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The abstract diagram in Figure 13 shows the complete pipeline of the proposed deformation 

method. This is organized into seven stages, of which 1 and 3 are asynchronous and occur 

across multiple frames, and the remaining operates in high-performance wide SIMD. This 

means that the majority of tasks efficiently utilize parallel hardware (Figure 12). These tasks 

are: paging scene data from secondary storage (stage 1), content selection and transfer (stage 

2-5), deformation (combined with selection in stage 4), resampling (stage 6), and finally the 

task of reconstructing hierarchy for accelerated shape queries for the application of rendering 

(stage 7, which is discussed in the next chapter). The following sections in this chapter discuss 

the proposed method in more detail according to these tasks. 

Paging 

Paging involves the retrieval of information from secondary storage for use in main memory. 

The input for the pipeline is a scene format, shown in stage 1, consisting of large aggregated 

regions of object instances, which are small structures that reference a SVO and also store any 

unshared attribute data, such as unique transformations. This format means that repetitive 

content, such as blades of grass or piano keys, can be modeled easily and efficiently; the scene 

can be constructed by the artist placing and transforming object instances (modifying their 

transformation matrices) and also specifying other attribute data that may be updated in real-

time, for example shading parameters. Each instance references a SVO, whose hierarchical 

voxel data stores shared attributes such as colors, material properties, or a mapping between 

features in a control skeleton (whose geometry can be stored per-instance). The instances are 

aggregated into groups called pages, which are retrieved in an asynchronous Out-of-Core 

Algorithm according to the ROI. The amount of aggregation depends on the distribution of 

data stored in the scene, and therefore requires profiling to find suitable page or region sizes. 

For example, a large space simulation will benefit from sparser page groupings than an indoor 

scene. The proposed paging approach retrieves any data which is referenced by these grouped 

instances (which are discussed in more detail in the later sections) which means that assets are 

stored separately on disk, and can therefore be maintained easily by artists. 

Modeling 

With the instancing abstraction discussed in the previous paragraph and also in Figure 2, the 

scene can be modeled by either creating new instances, or by updating the unshared instance 

attribute data (D1, D2, D3, ...) each frame. The input shapes are stored on disk as separate SVO 

files, which represent geometry as volume elements (voxels) in the hierarchical branches and 

leaf nodes of an octree structure. High-resolution shapes can be created by artists either 

voxelizing surfaces (see Chapter 5 Applications), or by setting voxels through CSG operations 

(Voelcker & Requicha, 1977), virtual sculpting (Galyean & Hughes, 1991), or by procedural 

generation (Ebert, 2003). The voxels contain material attributes and they also store a mapping 
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to deformation abstractions, such as the index of matrices in a control structure. This mapping 

is discussed in more detail in the later sections (Figure 14 and Figure 16) where the main idea 

is that each voxel only needs to be updated by two matrices, one for each of its extreme 

points, instead of for all eight of its corner vertices. Deformation is therefore modeled by 

updating the mapped matrices, which are organized with a control structure. The control 

structure can either be stored as a shared attribute, requiring fewer updates but giving shared 

animation across instances, or it can be stored as an unshared attribute for each instance, 

giving unique animations. This instanced modeling approach reduces the amount of transfers, 

which is important for large amounts of similar animations, such as for grass waving in a field. 

Selection 

The selection process is essential for supporting efficient deformation. The purpose is to select 

volumetric content such that deformation calculations are only applied to contributing regions. 

Therefore the proposed method deforms shape regions inside the selection method (stage 4) 

instead of popular parallel approaches that first deform the entire shape and then later discard 

unimportant regions by clipping. This means that less data is processed, which is important for 

scalability in massive scenes. The selection process spans three levels (i to iii) that map to the 

hierarchy observed in modern hardware (Figure 12). These levels are: (i) the out-of-core 

algorithm (stage 1) which retrieves pages from secondary storage (previous section), (ii) the 

instance root cull and GPU transfer (stages 2-3), which sends data to high-performance 

memory and quickly discards instances if their root voxels, containing all other voxels, are 

unimportant, and (iii) parallel selection and deformation (stage 4-5) which efficiently traverses 

the mapped SVOs and selects the important volumetric content before resampling in stages 6-

7. The three selection levels work in unity to achieve two goals: (1) to reduce the amount of 

voxels for processing, and (2) to reduce the data transfer between memory hierarchies. The 

method of these levels is discussed in more detail in the following paragraphs. 

 

In stage 2-3, the root voxel for each instance is frustum culled, and any out-of-date SVO or 

instance attribute data is transferred to high-performance memory. Stages 4-5 then proceed in 

a top-down hierarchical selection process, which retrieves the important volumetric data from 

each of the instances in parallel. This is achieved iteratively in two wide SIMD processes: stage 

4 traverses to the next level of hierarchy in parallel (by expanding the input vector by   and 

processing the children), and stage 5 then compacts the memory such that only the important 

voxels are processed in future iterations. In order to prioritize the volumetric content, stage 4 

labels the children: (a) to be removed, if the child does not exist in the SVO or if it does not 

contribute to the output simulation, (b) to be skipped for processing in further iterations, if its 

projected size is too small, or otherwise (c) for further traversal in the following iterations. 

These predicates are summarized in Table 1, and are referenced in the following paragraphs. 
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Stage 5 then performs parallel stream compaction (Billeter, Olsson, & Assarsson, 2009) which 

removes unwanted elements from the vector by the predicate (a). This is important as the 

expanded memory would otherwise rapidly become unmanageable by the Stage 4 expansion. 

 

Label Voxels Predicates 

(a) for removal (compaction) 
if the child voxel does not exist in the SVO 

or if it does not contribute to the simulation 

(b) to be ignored in the future if its projected size is too small (insignificant) 

(c) for continued traversal otherwise 

Table 1: Selection criteria during top-down hierarchical traversal. 

 

The conditions for predicates (a) and (b) are calculated by deforming the input voxels with two 

matrices mapped to their extreme points (this is more efficient than deforming their   corner 

vertices, discussed in detail later at Figure 16), and projecting the new      AABB corners to 

screen-space. The  D bounding-rectangle is then calculated for the projected voxel, which is 

used to determine the projected size of the voxel. If the size is smaller than a single pixel, it is 

classified as too small (predicate b). Also, the corners of the  D bounding rectangle are used to 

sample a mipmapped hierarchical depth map, retrieved from a rendering (discussed in the 

next chapter on Rendering). If the voxel is not visible (obscured or not in the frustum), it is 

labeled for removal (predicate a) and eliminated during stream compaction in Stage 5. The 

details for these calculations are described more formally in the following paragraphs. 

 

In order to project the input deformed voxel AABB (see Figure 16) with      corner points 

     where        to screen-space, its corners            are first transformed by the 

    camera matrix   (the view-projection matrix) in Equation (3.2.1). These   transformed 

corner points            are then mapped back to the real plane with a perspective divide, 

making them relative to the camera in homogeneous space, where they are transformed from 

the frustum cube [    ] to the screen region [   ] by Equation (3.2.2): 
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The  D bounding rectangle and the voxels minimum depth value can then be calculated from 

the minimum and maximum extreme points for the 8 corresponding corners  ’ projected to 

the screen by Equation (3.2.2). The projected size of the voxel (in pixels      ) is calculated from 

the maximum side of the rectangle, and also the minimum depth        can be computed from 

the minimum projected corner, as in the following two equations: 

 

          (
                                     

                   (                 )
) (3.2.3) 

 

                 (3.2.4) 

 

         (3.2.5) 

 

Therefore the predicate (b), for ignoring future traversal, is given where       is less than a 

single pixel (3.2.5) (as its future child voxels will be too small to contribute). 

 

The predicate (a) for removing occluded voxels from the deformation pipeline follows the 

popular hierarchical  -buffer visibility approach. This involves sampling the depth buffer (see 

Chapter 4) according to the projected  D bounding rectangle, and rejecting a deformed voxel 

if it is behind all the samples. The hierarchical  -buffer greatly reduces the number of samples 

required, as large  D regions can be quickly tested by sampling less pixels at a lower image 

resolution, which contain the depth information stored in the higher-resolutions. This process 

is described more formally. Given an     depth image as input, a hierarchical mipmap is 

generated on the GPU in a bottom-up SIMD process. This results in ⌊            ⌋    

images of decreasing resolution    
 

 
    

 

 
 until the last     image is generated.  

 

Each new image is half the resolution of the previous, and therefore each pixel overlaps a 

region of     pixels from the previous iteration. The intensity for each pixel is calculated by 

the maximum value of this     neighborhood, which means that the low-resolution pixels of 

the hierarchical mipmap contain the largest depths of all their overlapping regions. Therefore, 

the large projected voxels with a high       can sample fewer pixels at a lower resolution, 

which is very efficient. By this observation, the predicate (a) for removing occluded voxels can 

be determined efficiently by sampling from the mipmap level   which encloses (ceil)      . 

However it is not possible to simply sample one pixel at the projected  D rectangle center 

                    , as the rectangle may overlap the boundary of the     partitions. 

Therefore the depth samples   are retrieved at the four corners of the  D rectangle (whose 

extreme points are           and          ) using the next (       ) mipmap level  , where: 
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   ⌈    (
     

 
)⌉ (3.2.6) 

 

In order to use the depth buffer from the previous frame, the spatial-temporal incoherency 

needs to be considered. This is achieved by adding the deformed voxel size to the difference 

between the matrix of the previous frame    and the current frame   (or simply the  D 

Euclidean distance between  ̂   and  ̂  where  ̂           ). This means that the 

predicate (a) for removing occluded voxels is where the minimum depth of the projected voxel 

      , in Equation (3.2.4), is behind all the depths   (             ) offset as shown: 

 

                  (
                 
                 

)        ̂    ̂   (3.2.7) 

 

In conclusion, the hierarchical selection process (Figure 13 stages 1-5) operates efficiently in 

parallel for all important voxels in the scene. The input is set of aggregated instances, which 

are mapped to SVOs and various attribute data, and the output is the visible set of instance-

mapped voxels whose hierarchical resolution is determined by the projected voxel size. It was 

briefly discussed that deformation occurs inside the selection process (Figure 13 stage 4) by 

transforming the input voxels AABBs according to their mapped matrix data (see Modeling). 

This means that deformation is only applied to contributing volume elements at the resolution 

of which the data is actually displayed (Table 1) which is scalable. 

Deformation 

Volumetric deformation involves changing a volumetric shape into a new volumetric shape. To 

efficiently parallelize volumetric deformation, the most primitive volumetric elements (voxels) 

are processed independently through wide SIMD hardware (Figure 13 stage 4-5). During the 

selection process (previous section) voxels are deformed by arbitrarily transforming the two 

extreme corners of their AABBs with pre-mapped  D matrices such as in a control skeleton 

(Kavan et al., 2009) (this is more efficient than transforming their   corners, and is discussed in 

detail later at Figure 16). The control matrices are concatenated in a hierarchical model (see 

Hierarchical Modeling) with the instance matrix (the model matrix) (Lengyel, 2011). This 

approach reduces the amount of matrix transformations per voxel, and means that animation 

can be efficiently modeled by updating the instance and feature-mapped matrices each frame, 

by changing the high-level attribute data in Figure 13 stage 3 (right) instead of by expensively 

manipulating each individual voxel (discussed in the previous section on Modeling). 

 

In order to efficiently query content, for example in real-time rendering or collision detection 

applications, a single hierarchical acceleration structure is needed for all of the shapes in the 

scene, otherwise the shapes need to be iterated for each query, which is not scalable with 



56 
 
 

large numbers of queries for massive amounts of objects, such as in ray casting. Previously, the 

advantages were discussed for representing input shapes with multiple separate SVO files (see 

Chapter 1 and Modeling). Applying deformation to the input shapes voxels will quickly cause 

their quadrangular faces to become nonplanar, which is extremely difficult and expensive to 

test for intersection, and results in curved line segments instead of proper edges (Engel, 2006). 

Therefore, to address this problem, the updated AABB is recalculated for the deformed voxel, 

which is then resampled to the structure of a single output SVO that encloses the region of the 

entire scene. Although it is possible to consider resampling the deformed OBB of each voxel, 

and generating hierarchy for other types of hierarchical structure, the proposed AABB and SVO 

combination has three main advantages: (1) the axis-aligned test for intersection is much more 

efficient than the test for oriented boxes, (2) OBBs need an extra matrix multiplication for 

combining the OBB rotation matrix with the transformation matrix, and (3) OBBs also require 

extra memory for storing the orientation matrix (Ericson, 2005). Also, the octree structure of 

the target SVO is well-suited for parallel construction (Karras, 2012) on the resampled points, 

which is discussed in the next chapter. In summary, the shape queries can be made efficiently 

with a single SVO traversal, instead of through expensive iteration of the selected shapes. 

 

In order to calculate the deformed AABB for each selected input voxel, the architecture of the 

selection and deformation processes needs to be considered according to the instancing and 

control structure abstractions (see Figure 2). This architecture is presented in Figure 14, which 

shows these stages of the pipeline (Figure 13 stages 4-6): 

 

 
Figure 14: Architecture of the parallel selection, deformation, and resampling processes. 
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Figure 14 shows how volumetric information is organized by the instancing abstraction (top-

middle), which references hierarchical SVO input shapes (SVO  , SVO  , SVO  , etc., where the 

example references SVO  ), and retrieves the voxels and their matrices mapped by skeleton 

control structures, stored as instance attributes. The architecture only requires a small amount 

of data for each SIMD input element (top-left), and applies the abstractions discussed in Figure 

2 for fully parallelized selection and deformation processes. Therefore the deformed AABB can 

be efficiently recalculated without expensively storing multiple copies of any shared attributes 

(this process is discussed in more detail in the next section). The selection process (previous 

section) also occurs in Figure 13 stage 4, immediately after the deformed AABBs have been 

calculated: the SIMD input elements are labeled according to Table 1, which are compacted in 

Figure 13 stage 5, such that future traversal iterations   only process the contributing shape 

regions until the target resolution is reached. Therefore only the important volume elements 

are deformed, as the entire algorithm operates iteratively in parallel for each hierarchical level 

on progressively refined shape regions (as outlined in Figure 2). 

 

In Chapter 1, it was briefly discussed that deformed voxels (the output after stage 5) can be 

displayed directly using a rasterized rendering approach. This is both accurate and efficient, as 

no resampling or hierarchical construction process is required; the selected and deformed 

voxel primitives can be rasterized using graphics hardware to set their corresponding pixels in 

the output image accordingly. However this approach is limited as shapes cannot be queried 

efficiently without some organization of the selected volumetric data, and therefore many 

applications (such as modeling light transport or detecting collisions) cannot be implemented 

for large scenes in real-time. To address this problem, resampling and hierarchy construction 

stages are introduced (Figure 13 stages 6-7). These allow applications to query shapes in an 

efficient and scalable real-time traversal process, operating on the structure of a single output 

SVO as discussed in the previous paragraphs. However, while this has extended applications, it 

requires more operations and the resampling process impacts quality, when compared to the 

unaligned direct rasterization (Figure 14 Direct). Therefore, both approaches are considered 

(Figure 14: ‘if rasterization’ and ‘if resampling’) and developed in the later parts of this thesis. 

This means that more flexible applications can be created, maximizing the requirements and 

rendering quality, for example by combining high-resolution rasterized direct illumination with 

lower-resolution SVO hierarchy for accurate output images and efficient and shape queries. 

 

The resampling process aligns the voxels to the structure of an output SVO; otherwise artifacts 

occur (see Figure 4). In Chapter 1, two resampling solutions were discussed: (1) by resizing the 

aligned voxels (Figure 14 Resize), and (2) by emitting multiple samples (Figure 14 Emit). These 

approaches are developed in the upcoming section on Resampling, which is followed by a 

Measurement section that compares the two outputs with the unaligned direct rasterization, 
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and empirically determines the best usage of each scenario. The results of this section are then 

developed into a practical Decision Tree based on the application usage requirements. 

3.3 Resampling 

The resampling approach addresses the problems of: (1) efficiently updating the AABB of each 

voxel with the mapped deformation data, (2) determining the correct display depth to resize 

voxels, and (3) determining the location for where gaps in the shape occur. The parts relate to 

the outputs in Figure 14, which are accordingly named: (1) direct, (2) resize, and (3) emit. 

Direct 

In the previous section (Figure 14 ‘Deform AABB’) it was discussed that the hierarchical voxel 

data can be retrieved from the input SVOs and deformed using matrix data that is mapped to a 

control skeleton. This section is concerned with the process of efficiently deforming each input 

voxel AABB by its mapped matrix data, in order to create an updated AABB that can either be 

directly rasterized, or serve as input for the Resize and Emit (Figure 14) resampling processes. 

This is therefore applied in parallel to individual voxels that are currently selected and labeled 

as important (Figure 13 stage 4-5), such that the output after the hierarchical selection process 

(after Figure 13 stage 5) contains all of the contributing deformed voxels in the scene. 

 

The input (Figure 14 ‘Deform AABB’) is a voxel and some matrices mapped to its corners (this 

mapping is discussed at the end of this section). The voxel is defined by an    -dimensional 

point (its center)   and a SVO depth value  , which is the current iteration   in the hierarchical 

selection process     (Figure 14 stage 4-5). The input SVO shapes regularly divide space into 

a maximum of    partitions at each LOD depth  . This means that each voxel can be 

represented by an AABB whose side   at depth   is definable as 1/maximum partitions or: 

 

       (3.3.1) 

 

Where   is the voxel AABB with center   and extents   (Equation (3.3.3)). This may 

alternatively be represented as shown in Equation (3.3.2), or more simply Equation (3.3.4): 
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Transforming an AABB   by some input matrix   is traditionally achieved by transforming each 

of the      AABB corner vertices in  D, and recalculating the extreme points [         ] as 

shown for  -dimensions: (min and max do not consider the     component in this case) 
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 (3.3.5) 

 

However to deform the AABB, a unique matrix would need to be constructed and applied for 

each of the corners, giving    expensive construction and transformation operations. This also 

means that a mapping would need to be stored to the matrix data (Figure 13 stage 3 right) for 

the eight vertices of each AABB, which would consume lots of memory. In the literature, (Arvo, 

1990) observe that many of these operations are wasteful because they ignore information 

embodied in the box symmetry, and propose to utilize this symmetry (Figure 15). 
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TransformAABB(AABB in, Matrix4x4 A, AABB &out) { 
   for (int i = 0; i < 3; i++) { 
      out.min[i] = A[3][i]; 
      out.max[i] = A[3][i]; 
      for (int j = 0; j < 3; j++) { 
         float a = A[i][j] * in.min[j]; 
         float b = A[i][j] * in.max[j]; 
         out.min[i] += Min(a,b); 
         out.max[i] += Max(a,b); 
      } 
   } 
} 
 

Efficiently transform AABB in by matrix   giving a new AABB out. 

Figure 15: Transforming Axis-Aligned Bounding Boxes (Arvo, 1990) 

 

Their method is based on the observation that the components of the transformed box need 

only consider which of the eight vertices produce the minimum or maximum product with the 

 th row of the matrix. The products can therefore be formed for each component and the sum 

of the largest or smallest terms results in the maximum or minimum values accordingly. 

Translation does not influence these choices and is added (lines 3-4). 

 

AABB transformation (Figure 15) applies one matrix to each voxel. Therefore it is limited to 

simple transformations that are applied uniformly to all voxels in the shape, such as 

translation, rotation, and scale operations. Deformation changes the shape irregularly and 
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therefore requires different transformations for the independent voxels. Extending the 

observation of (Arvo, 1990) it is possible to formulate deformation as two transformations for 

the two AABB extreme points, which share components with neighboring voxels, and expand 

the transformed extremes to ensure full enclosure. This approach means that just two matrix 

mappings, constructions, and transformations are required for each voxel; instead of the 

original      mappings (comparable to triangles, which typically require three mappings for 

each of their vertices). The direct deformation method is shown in Figure 16: 
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DeformAABB(AABB in, Matrix4x4 *A, AABB &out) { 
   AABB cur = in; 
   for (int k = 0; k < 2; k++) 
   for (int i = 0; i < 3; i++) { 
      cur.min[i] = A[k][3][i]; 
      cur.max[i] = A[k][3][i]; 
      for (int j = 0; j < 3; j++) { 
         float a = A[k][i][j] * in.min[j]; 
         float b = A[k][i][j] * in.max[j]; 
         cur.min[i] += Min(a,b); 
         cur.max[i] += Max(a,b); 
      } 
      out.min[i] = Min(out.min[i], cur.min[i]); 
      out.max[i] = Max(out.max[i], cur.max[i]); 
   } 
} 
 

Efficiently deform AABB in by matrices  [ ] and  [ ] mapped to in.min and in.max 

Figure 16: Deforming an AABB with just two mapped matrices for each extreme. 

 

The proposed method branches for each of the two extremes (line 3) and then expands the 

output AABB to enclose the respective transformed extremes (lines 13-14). The output AABB 

&out must be initialized to [         ] = [    ] for correct bounds in lines 13-14. This 

therefore ensures that the full extents of the deformed AABB are enclosed and axis-aligned, 

which means that adjacent voxels, sharing extreme components and undergoing the same 

algorithm, will also have overlapping axis-aligned enclosure and therefore retained adjacency. 

The updated output AABB &out can be directly rasterized (Figure 14) or aligned to the output 

SVO for ray casting with either the Resize or Emit strategies in the following sections. 

 

Mapping the voxel AABB extremes [         ] to the two matrices (Figure 14 and Figure 13 

stage 3) is similar to mapping two vertices with matrices in traditional polygon rasterization, 

where each vertex (voxel AABB extreme) stores (in the SVO) the index of its associated matrix. 

The only difference is that the locations of the vertices are not stored as explicit  D points, 

instead they [         ] are constructed (Figure 14: ‘AABB (center & depth)’) from the voxel 

center and its depth value   as in Equation (3.3.2). 
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Resize 

Applications, such as modeling light transport or collision detection, require huge amounts of 

shape queries to be made each frame. However currently the selected and deformed output 

voxels (calculated in Figure 16) are unorganized, and therefore require expensive iteration 

which limits their applications. To address this problem, it was previously discussed that an 

output SVO could be efficiently constructed (Chapter 4) on the deformed AABBs (Figure 16), 

meaning that shape queries can be made with efficient SVO traversal and AABB intersection 

tests. However without resampling, artifacts in the hierarchical structure occur (see Figure 4).  

 

The key idea of the resize strategy, discussed in Chapter 1, is to sample the deformed AABBs 

and set new voxels at the sample locations with different display depths. This implicitly resizes 

them, preventing gap artifacts and shape distortion, while only inserting a fixed number of 

samples to approximate the new shape. This approach is therefore extremely efficient, as it 

does not require expensive memory management; the amount of memory required for the 

output samples is allocated beforehand (in Figure 13 stage 6). The disadvantage is that the 

fixed number of samples only gives a cube-shaped approximation of the deformed voxel AABB. 

However the efficiency means that further oversampling can be considered by selecting higher 

resolution shape data (predicate b in Table 1) to achieve better shape approximation, which is 

discussed in the next section. The resize strategy is shown in the    D example in Figure 17: 

 

 

Figure 17: The resize method changes the display depth of voxels, which implicitly resizes 
them. Each voxel has exactly    samples, giving a fast shape approximation. 

 

Initially (Figure 17 left) the voxel AABBs are deformed (by Figure 16) according to the matrix 

data (Figure 13 stage 3 right) mapped to each of their two extreme points. The second step 

(Figure 17 middle) then measures the maximum side of the deformed AABB, and computes the 

next largest hierarchical level   which fits this side length. This approach addresses the two 

sampling problems highlighted in Figure 4: large AABBs are enlarged to close gaps, or the cell 

size is reduced for tiny AABBs preventing distortion. The new hierarchical level   is calculated: 

 

  

Voxels   and   are 
deformed giving new 

AABBs    and    

   and   are resized 
by rounding up to 

their next grid size. 
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    ⌈             
      

   ⌉ (3.3.6) 

 

The maximum side         
      

   of the deformed AABB is used to find the tightest cube-

shaped region which encloses the cuboid-shaped AABB (Figure 17 middle). Recall that the side 

length   of a voxel is calculated by its hierarchical depth:       (Equation (3.3.1)). This is 

rearranged to give           , therefore the next largest hierarchical level   whose region 

size contains the AABB be computed by  ⌈             
      

   ⌉ (3.3.6). 

 

It is not possible to set a single voxel at hierarchical level  , which encloses the overlapping 

SVO regions, because a voxel at level   may overlap boundaries in the hierarchical structure 

(Figure 17 middle). This problem can be solved by adding another level of partitioning    , 

splitting each voxel into    subvoxels, such that, in cases of overlap, subvoxels fall either side 

of the structural boundary (Figure 17 right). Therefore the  D SIMD memory can be enlarged 

beforehand to     for   voxels (Figure 13 stage 6) and the    new sample data is expanded 

giving contiguous blocks of      indexed elements. The center locations of the new samples 

  at depth     are aligned to the SVO structure, as shown in the following equations: 
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The locations of the center of the subvoxel samples   (Figure 17 right) are calculated from the 

center of the transformed bounding box   in Equation (3.3.7). These sample centers are offset 

from   by a quarter of the region size     at hierarchical level  , which is         or more 

simply      . The voxel samples are then aligned to the center of the nearest subregion of   

(Figure 17 right) which is at level    . Their components   are aligned by:     ⌊  ⌋, which 

scales them to the appropriate region  , then aligns (floor), and scales back to the nearest 

center by     (Equation (3.3.9)). This entire process therefore creates    aligned samples with 

centers   at depth     (Equation (3.3.8)) for the deformed AABB    (Figure 16 &out). 

Sample Location Alignment 
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Emit 

The previous resize strategy is based on the principle that a cube-shaped region can enclose 

the cuboid-shaped region of the deformed voxel ABBB, which means that only a small fixed 

number of samples are used. The alternative strategy, discussed in Chapter 1, is to emit 

multiple aligned voxels that reflect the cuboid shape of the deformed AABB. This therefore 

requires more passes of memory expansion, which is less efficient; however it is expected to 

achieve better shape approximation. The methods are compared in the next section. 

 

The approach is similar to the resize strategy, apart from three changes which increase the 

quality of the shape approximation: (1) instead of setting samples from the deformed AABB 

center, samples are set between the deformed AABB extreme points, which better reflects the 

cuboid shape, (2) voxels are set at higher resolution from the minimum side of the deformed 

AABB (not the maximum side), and (3) there is no need to set subvoxels (at level    ) as the 

new voxels are set at the same level of the SVO structural boundaries (without overlap). The 

complete alignment and resampling process is illustrated in the    D example in Figure 18: 

 

 

Figure 18: The emit method ‘emits’ multiple samples in a cuboid shape, giving a good 
approximation of the deformed AABB, at the expense of memory. 

 

Initially (Figure 18 left) the voxel AABBs are deformed (by Figure 16) according to the matrix 

data (Figure 13 stage 3 right) mapped to each of their two extreme points. The second step 

(Figure 18 middle) then measures the minimum side of the deformed AABB, and computes the 

next largest hierarchical level   which fits this side length. The two extreme points of each 

AABB are then aligned to the corresponding SVO region at level  , and the intermediate voxels 

are set. As with the resize strategy, the approach addresses the sampling problems highlighted 

in Figure 4: gaps are closed where the intermediate voxels are set, and the individual cell size is 

reduced for tiny AABBs preventing shape distortion. 
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In (Figure 18 middle) the minimum side         
      

   of the deformed AABB determines 

the hierarchical level   of which to set the output voxels (Figure 18 right). The voxels are set 

between the aligned extreme points, which are calculated as in the following equations: 
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 (3.3.12) 

 

 

 

Equation (3.3.10) calculates the hierarchical level of which to set voxels, with similar reasoning 

to Equation (3.3.6) however it is based on the minimum side of the deformed AABB instead of 

the maximum, and therefore new samples can overlap with a cuboid shape instead of with a 

cube shape. Equations (3.3.11) and (3.3.12) align the components of the two AABB extremes 

    
  and     

 , where all intermediate voxels are set between the two extremes in steps of 

    (or    ) for each axis. This therefore emits multiple voxels in a solid cuboid block between 

the two aligned extremes. In wide SIMD, it is difficult to determine the amount of memory 

required beforehand for the multiple emitted samples, and therefore further passes are 

required to expand and compact the memory for the new samples. Therefore, it is expected 

that the resize strategy is preferable where memory is limited, as it reliably sets exactly    

samples per voxel. It is also worth mentioning that the resampled point locations can easily be 

converted to integer system units, by simply not multiplying the output vectors by     in 

Equation (3.3.9) and Equation (3.3.12) accordingly, which is useful for accessing the memory. 

 

In conclusion, the direct method efficiently deforms the AABB of each input voxel, whose two 

extremes are mapped to two matrices (Figure 14). The output of this method can be directly 

rasterized. For efficient hierarchical shape queries, the resize and emit approaches align and 

resample the deformed AABB to the structure of a SVO. The methods operate independently 

using a few operations, and therefore can be computed extremely efficiently with wide SIMD 

hardware; however they introduce several challenging design decisions which balance memory 

consumption with the quality of shape approximation. In the next section, the approaches are 

measured and compared to empirically develop a practical Decision Tree for such cases. 

Extreme Min Extreme Max 

Aligned 
Extremes 
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3.4 Measurement 

This section measures the accuracy and efficiency of the resampled outputs, discussed in the 

previous section (Figure 14). The purpose of this is to compare and empirically determine the 

best usage of each scenario, which is developed into a practical Decision Tree. This empirical 

approach is needed as it is difficult to develop a single resampling strategy that balances 

simulation accuracy with simulation efficiency, as increasing the samples (the emit strategy) 

gives more accurate but less efficient shape approximation in comparison to the fixed sample 

approach (the resize strategy). These methods are also compared with the directly deformed 

output, which can be considered the optimal alignment approach as it is unaligned to the SVO 

structure and avoids the resampling process; however it does not hierarchically organize the 

selected voxels, and therefore has limited applications without accelerated shape queries. 

Accuracy 

The accuracy of the resampling reflects the accuracy of the deformed shape, and is therefore 

an important factor to the level of realism achievable in the virtual environment. In the resize 

and emit strategies, the directly deformed voxel AABBs are aligned to the SVO structure by 

resizing and emitting samples accordingly. The accuracy of these samples can therefore be 

compared to the original signal, which is the directly deformed shape. The sampling accuracy is 

a metric between this original deformed shape and the new sampling, which is usually taken 

over the entire population of samples, such as in the application of watermarking where the 

entire shape is processed. However, in rendering, only a small region of the shape is displayed 

and also parts of the shape can be considered more influential, as human visual perception is 

highly sensitive to inconsistencies in the shape silhouette. This is shown by the renderings of 

both resampling strategies in Figure 19, where the aliasing (sampling error) at the shape 

silhouette is easy to perceive in the four scenarios. In this section, all images are generated 

using extremely low-resolution shapes, with the aim to identify sampling error more clearly. 

 

    

Twist: 0.4 (Resize) Twist: 0.4 (Emit) Twist: 3.2 (Resize) Twist: 3.2 (Emit) 

Figure 19: Human visual perception of error is highly sensitive to the shape silhouette. 
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From this observation, an image-space metric is chosen to better reflect visual perception, 

instead of using the mean accuracy over the entire sample population. The samples generated 

from the resize and emit strategies completely enclose the deformed AABB; therefore the 

visual error can be measured by rendering the outputs (Figure 14) and comparing the pixel 

coverage sums between the different methods in a wide variety of different deformation 

scenarios. The sampling error of the resize and emit method can then be measured by 

subtracting their pixel coverage sums from the direct rasterization, giving insight into the 

strategy that best reduces error on the shape silhouette according to the type and amount of 

deformation. Although the images in this section show a single human model for familiarity, 

the measurements generalize to all shapes and scenes (shown later in Chapter 4) as the AABB 

deformation locally ensures retained adjacency for arbitrary inputs (see Figure 16). 

 

In Figure 20, the pixel coverage is shown for the resize and emit resampling strategies, as well 

as for the correct direct input shape (blue line). An example shear deformation is applied by 

varying the shear amount from     to     in the  -axis (later other axes are also measured), 

where the low-resolution renderings are shown in Table 2. The resampling error is therefore 

visible as divergence from the blue line (Figure 20) or as visible aliasing behind the input shape 

(Table 2). It is observed that the resampling error is greater in the resize strategy for large 

deformations, which is expected as the resize resampling has a cube-shaped approximation for 

the deformed AABB (with large shears, the cube-approximation poorly fits the cuboid-shaped 

AABB creating causing aliasing). However, it is also observed that the emit strategy has error, 

shown by divergence between the green and blue lines (Figure 20) and by aliasing (Table 2). 

This error appears to remain regular regardless of the amount of deformation, and is therefore 

examined more closely by subtracting the resampled results from the direct result. 
 

 

Figure 20: Pixel coverage for  -axis shear deformation.  
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Table 2: Varying shear in the  -axis
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This table shows results from the proposed voxel deformation and resampling strategies with extreme amounts of shear in the  -axis. 



In Figure 21, the pixel coverage for the emit and resize resampling strategies is subtracted from 

the direct input, showing the visual sampling error (therefore the height of the red and blue 

lines represents the amount of aliasing). Interestingly, the resize method is slightly higher 

quality than the emit method in small deformations (where the blue line is lower than the red), 

even though it is expected to be less accurate as has a cube-shaped approximation instead of a 

cuboid-shaped approximation. This improvement occurs as voxels are split into    subvoxels 

(Equation (3.3.9)) at 1 higher resolution level     in Equation (3.3.8) giving better alignment 

at the SVO structural boundaries. However the resampling error for the emit strategy still stays 

relatively low, even for very large shears such as amount     or greater (a shear of      is too 

large for the fixed rendering area). For further understanding of these amounts, another type 

of deformation (twist in the  -axis) is measured (Figure 22 and Table 3) and discussed. 

 

 

Figure 21: The resize and emit resamplings compared to the unaligned direct rasterization. 

 

 

Figure 22: Pixel coverage for  -axis twist deformation.
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Table 3: Varying twist in the  -axis
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This table shows results from the proposed voxel deformation and resampling strategies with extreme amounts of twist in the  -axis. 



Figure 22 and Table 3 show extremes of twist applied in the  -axis from     to     , where the 

resampling error can be seen as divergence from the direct rasterization (the blue line in Figure 

22) and similarly by aliasing behind the input deformed shape in Table 3. Unlike the shear 

example, the pixel coverage does not consistently increase with the amount of deformation. 

This is mainly because the  -axis twist deformation causes large parts of the model to become 

occluded. By itself, pixel coverage is therefore not very meaningful however there is still a 

trend where resize strategy deviates in quality from the emit strategy, which follows more 

closely to the direct. To see this more clearly, the pixel coverage for resize and emit resampling 

strategies are subtracted from the correct direct rasterization, as shown in Figure 23: 

 

 

Figure 23: Error in the resize and emit resamplings, compared to the direct rasterization. 

 

In Figure 23, the silhouette error in the emit resampling (red line) stays low with all extremes 

of twist. However the resize method degrades in quality earlier than with shear (the quality 

degraded in the shear at about 1.0 while the twist degrades at about 0.8). The error becomes 

increasingly severe for large twists, meaning that the resize method is unsuitable for large 

deformations. However, for real-time applications where stable performance is required, the 

resize strategy can still be used exclusively with oversampling. This is achieved by selecting 

voxels smaller than the pixel size: choosing a small value (such as    ) in the traversal condition 

(Equation (3.2.5)). This implicitly reduces the cube-shaped sample size and respective error at 

the shape boundary. Finally, it is also worth measuring the resampling accuracy for scale 

transformation. Scale in all axes is an interesting transformation as visually nothing changes for 

the rendered output, except the projected size of the model (Figure 24 shows this increase in 

pixel coverage, where the model is enlarged by the scale amount). This is replicated in the 

results, and therefore no comparison table is shown as all of the images appear visually similar. 
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Figure 24: Pixel coverage for scale transformation in all axes. 

 

As with the previous measurements, the error for the resize and emit resamplings is compared 

with the direct rasterization by subtracting their pixel coverage accordingly (Figure 25). The 

resize resampling (blue line at value 0) has the same silhouette as the unaligned rasterization, 

as the projected subvoxel size at hierarchical level     (Equation (3.3.8)), is smaller than the 

size of an individual pixel. The emit resampling has a very small amount of error caused by 

misalignment of the voxels at the current SVO hierarchical level  . This suggests that a single 

level of further oversampling can remove the error, choosing level     (Equation (3.3.11)) or 

by adjusting the traversal condition (Equation (3.2.5)) to half the pixel size:          . 

 

 

Figure 25: Resize and emit methods have none/negligible error in transformation. 
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Efficiency 

The efficiency of the resampling strategies (Figure 14) is primarily sensitive to the number of 

elements in the SIMD input vector. This depends on the hierarchical selection and deformation 

process (Figure 13 stage 4-5) which itself depends on the rendering resolution (Equations 

(3.2.5) and (3.2.7)). Therefore, to understand which resampling method is suitable for different 

circumstances, the relationship between components in the entire pipeline is considered: 

 

 

 

 

Figure 26 gives an overview of the recursion in the proposed method (Figure 12 and Figure 13). 

While the resampling process itself consists of only a few operations, it can impact other parts 

of the pipeline, such as the hierarchy construction and rendering. The input vector for the 

resampling consists of approximately one voxel for each pixel in the screen (Equation (3.2.5)) 

where the hierarchical selection and deformation process (Figure 13 stages 4-5) utilize 

occlusion culling in Equation (3.2.7). However hierarchical depth buffer occlusion culling (see 

section 3.2 titled Selection) cannot be used accurately by transparent objects. This means that, 

in such worst-case scenarios, all voxels from the entire object need to be resampled. 

 

To understand the extent of this worst-case scenario, the total number of samples emitted for 

each method is counted without hierarchical occlusion culling in the selection stage. This is 

measured for different types and amounts of deformation, as in the previous section. The test 

model is the same as in Table 2 and Table 3, which has been voxelized at a low resolution in 

order to see error in individual voxels, which means that the measurement stays consistent as 

all voxels are larger than a single pixel (instead of some voxels being discarded where they’re 

too small by Equation (3.2.5)). The total number of output samples | | is counted for each 

input voxel in the SIMD vector after Figure 13 stage 6. This is shown in Figure 27 by applying a 

shear deformation of amount     up to      in the  -axis. The direct rasterization is not adding 

any samples; therefore the number        is equivalent to the total number of voxels at the 

highest resolution in the model voxelization. This remains consistent across all deformations, 

as no voxels are discarded during the hierarchical traversal (explained previously). Similarly, 

the resize method emits exactly      times as many samples (Equation (3.3.9)) regardless of 

the amount or shape of the deformation; a cube-shaped approximation is used in all scenarios 

where the display depth is changed to prevent distortion and gap artifacts. 

Transfer Selection Deformation Resampling Build Hierarchy Rendering 

Figure 26: Recursion in the proposed pipeline. 
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Figure 27: Number of samples emitted for applying shear to a transparent object. 

 

Figure 27 shows the emit method (green line) generates a number of samples approximately 

proportional to the amount of shear deformation. This is expected as the cuboid shape of the 

deformed voxel AABBs stretch with larger shears, and therefore more samples need to be set 

to fill the cuboid-shaped region (Equation (3.3.12)). However, this appears to be less sensitive 

to the type of deformation, as shown by the similar results with twist in the  -axis in Figure 28. 

In contrast, the resize method (red line) always efficiently has      samples per input. 

 

 

Figure 28: Number of samples emitted for applying twist to a transparent object. 
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3.5 Conclusion 

In the previous section, the accuracy and efficiency of the resampling methods were compared 

for different types and amounts of deformation for a low-resolution input shape (the human 

shape was chosen for its familiarity, where the appearance of sampling error can be seen more 

clearly). However the results apply for all other shapes and scenes as shown in Chapter 4. This 

section formulates the main observations from the experiments into a practical decision tree.  

 

The first observation was that the human visual system is particularly sensitive to the shape 

silhouette (Figure 19) and that increased sample density is required for large deformations, for 

example with the emit strategy or by oversampling in the resize strategy. However, while the 

emit strategy produces good accuracy, the dynamic sample increase is sensitive to the amount 

of deformation, which can impact other parts of the pipeline (Figure 26, Figure 27, and Figure 

28). Fortunately, it was observed that the resize strategy gives a fixed sample count for all 

types and amounts of deformation (Figure 27 and Figure 28) and that it can be oversampled 

easily according to a size criteria in Equation (3.2.5) giving a robust increase in accuracy. This 

can act as a resolution parameter for dynamically adjusting the balance of simulation accuracy 

and efficiency according to the target frame budget, for real-time rendering. This approach can 

therefore be used in high-performance applications instead of the emit strategy, which would 

otherwise require additional memory expansion and compaction iterations to allocate space 

for the dynamic sample increase (Equation (3.3.12)). In special cases where performance and 

memory are not heavily restricted, such as in offline rendering, the emit strategy can be used 

to guarantee a uniform level of accuracy (Figure 21 and Figure 23). 

Direct 

 

Lighting Model 

Resampled SVO 

 

Real-time 

Rasterization 

 

Offline 

More 
Efficiency 

More 
Accuracy 

More 
Accuracy 

More 
Efficiency 

Resize 

 

Resize & Oversample 

 

Emit 

 

 

Fewer Samples 
More Efficient 

More Samples 
Less Efficient 

Figure 29: Decision tree for the proposed resampling strategies.  
 

Decision Tree 
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Figure 29 summarizes the observations from the previous experiments in a practical decision 

tree, which presents the relationship between simulation accuracy and efficiency in terms of 

the target sample density. The most important decision is whether or not resampling in a SVO 

structure is needed. For rasterization-based lighting models, the direct output of the selection 

and deformation process (the unaligned deformed AABBs at the output of stage 4 in Figure 13 

and Figure 14 calculated in Figure 16) can be immediately transformed by the camera matrix 

and rasterized. This is therefore more efficient and accurate than resampling; however the 

there is no hierarchical structure, which means that the accurate modeling of light transport is 

more expensive, such as secondary light bounces in global illumination (Ritschel et al., 2012). 

The resampled SVO accelerates shape queries within the massive scene, with applications in 

both real-time and offline rendering. Real-time applications favor efficiency, where a smooth 

frame rate is required to create a sense of immersion within the virtual environment. This can 

be controlled by varying the selected voxel size in Equation (3.2.5) which acts as a resolution 

parameter in combination with the resize strategy, giving consistent efficiency regardless of 

the type or amount of deformation. In contrast, the emit strategy is preferable in offline 

applications, where a consistent level of accuracy is favored above the rendering performance. 

 

In conclusion, the decision tree provides an intuitive approach for varying the accuracy and 

efficiency in order to favor either real-time or offline rendering applications. Furthermore, the 

approaches are able to fine-tune the resolution parameter, which maximizes the benefit in 

either circumstance, regardless of the capabilities of the target machine. 

3.6 Chapter Summary 

This chapter has presented a pipeline for efficiently selecting, deforming, and resampling large 

amounts of volumetric content (Figure 13). The pipeline is constructed to map to the parallel 

processing capabilities of current hardware (Figure 12) and supports optimization techniques 

such as geometry instancing and occlusion culling to reduce memory with repetitive content 

and increase performance accordingly. The resampling approach is flexible, with support for 

rasterization-based or ray casting based renderers that may target both offline and real-time 

applications. This is controlled by the sample density, which is determined by the resampling 

method and the resolution parameter (Equation (3.2.5)) meaning that processing can be 

allocated to stabilize efficiency while giving the maximum accuracy (real-time), or to stabilize 

accuracy with the maximum efficiency (offline). These decisions were developed empirically 

and presented in a practical decision tree. 

Contributions 

This chapter has presented a fully parallelized hierarchical content selection method, which 

prioritizes voxels according to their projected size, and discards occluded voxels. The unity of 
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these two criteria means that approximately one voxel is retrieved for each pixel, with the 

exception of transparent objects, which is insensitive to the shape complexity. The primary 

contribution of this approach is that parallel deformation is supported inside the selection 

process (Figure 13 stage 4) and therefore massive animated scenes can be displayed without 

wasting deformation calculations on unimportant regions of the scene. This is in contrast to 

traditional parallel approaches, which expensively animate entire objects at a high geometric 

resolution, and then later apply less effective culling techniques. These traditional parallel 

approaches also suffer from popping artifacts, when switching between the different levels of 

detail, whereas the proposed parallel approach smoothly transitions between geometric 

resolutions as the shape is partitioned and simulated hierarchically according to its projection 

and occlusion criteria. Also, in contrast to GPU parametric tessellation, the proposed pipeline 

supports overhanging ledges. 

 

The later parts of this chapter have focused on efficient resampling strategies which contribute 

to the problem of gaps and shape distortion when realigning the deformed shapes to a SVO. 

Two strategies were proposed which resize or emit samples in order to maximize efficiency or 

accuracy accordingly. These two strategies were compared to the unaligned direct deformed 

output (which is not resampled) and their properties observed for different types and amounts 

of deformation. This was concluded with a practical decision tree that presents how to utilize 

the available processing, regardless of the restrictions imposed by the target machine, in order 

to benefit the target application in both real-time or offline rendering. 

Limitations 

The focus of this work is on efficiently modeling deformation, and has focused on sampling the 

localized axis-aligned output of the deformed selected voxels. An improvement would be to 

consider sampling the oriented output of the deformed voxels; however this would require 

expensive matrix storage and transformation operations (Ericson, 2005). It would also be 

worth considering the importance of sample distribution according to other heuristics: in the 

Measurement section, it was observed that human visual perception is particularly sensitive to 

the shape silhouette. Therefore it would be worth investigating storing an importance metric 

in a  D buffer, which highlights such areas with post-processing of the previous frame, in order 

to influence Equation (3.2.5) to allow for further oversampling in temporal coherent regions. 

 

The current occlusion culling approach uses the popular hierarchical depth buffer strategy, 

which does not correctly handle transparent or translucent objects. In such cases, many voxels 

per-pixel are processed, which is not scalable in massive transparent scenes with high depth-

complexity. It would be worthwhile investigating an occlusion culling strategy that supports 

transparent objects, considering other visibility feedback information from the renderer. 



Chapter 4 

Rendering 

4.1 Abstract 

This chapter investigates the problem of rendering massive dynamic volumetric scenes. This is 

challenging because huge amounts of shape queries are required to model light transport each 

frame. However, in the previous chapter, a hierarchical selection and deformation pipeline was 

presented (Figure 13), which retrieves, deforms, and resamples (where relevant) the important 

shape regions. This therefore reduces the scene content to a smaller set of contributing shape 

regions (Figure 2), which are more manageable and can be hierarchically organized in real-

time. In this chapter, a method is presented to organize the selected, deformed and resampled 

volumetric elements (Figure 13 stage 7) such that huge numbers of shape queries can now be 

made each frame for massive dynamic volumetric scenes. The later parts of this chapter then 

demonstrate the sparse volumetric deformation pipeline with efficient rasterization and ray 

casting based renderers, which greatly extends the range of applications. 

4.2 Methodology 

Photorealistic rendering seeks to accurately model shapes and light as they occur in the real 

world, and to accurately simulate the physics of light (optics) as it interacts with a scene before 

sampling light which reaches the camera. In the real world, photons bounce amongst objects 

and at each point of intersection they are absorbed, reflected, and refracted in numerous 

ways. In massive dynamic scenes, modeling such paths of light transport inevitably requires a 

lot of queries and therefore, for real-time rendering applications, the shape information needs 

to be organized to prevent iterating unimportant regions (see Spatial Partitioning). However, it 

is also possible to consider non-photorealistic rendering (NPR) for example by only considering 

direct light from light sources and approximating other effects of light, such as screen space 

ambient occlusion (SSAO) and environment (reflection) mapping. While not as accurate, these 

approaches can be rasterized directly without resampling or organizing the selected content, 

and are therefore expected to be more efficient with applications in stylized rendering and 

performance-critical simulation. 

 

In this chapter, an efficient method is developed for hierarchically organizing the resampled 

output, by generating hierarchy on the GPU, such that shape queries can be accelerated with 

an efficient real-time traversal process. This is demonstrated in a modern real-time ray casting 

implementation. The second part of this chapter explores an efficient rasterization-based 

renderer, which is able to efficiently display direct illumination without requiring a hierarchical 
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structure. The unity of these two approaches means that a wide range of applications are 

available in both photorealistic and non-photorealistic rendering. This therefore demonstrates 

the flexibility and applications of the sparse volumetric deformation pipeline. 

Hierarchy Construction 

This section addresses the problem of efficiently constructing hierarchy for the resampled 

output after deformation. In the literature review, it was discussed that reusing the existing 

tree hierarchy causes expensive deterioration and fragmentation in dynamic scenes. It was 

suggested that such degradation is avoidable by reconstructing the tree each frame, which is 

more suitable for GPU architectures. The majority of parallel methods generate hierarchy 

sequentially; however this limits parallelism and scalability according to the location in the 

tree. In contrast, the recent work by (Karras, 2012) presents a method that is able to maximize 

the amount of parallelism and achieve a consistent acceleration. Their approach first chooses 

the order for which nodes appear in the tree, and then they generate the internal branches 

with respect to this order. Nodes are therefore sorted along the  -order space-filling curve, 

which ensures data localization, and then the internal branches are ordered in a specific way 

which enables their children to be calculated without depending on earlier results. This means 

that all of the work can be done completely in parallel, which can give a large performance 

improvement over traditional top-down approaches.  

 

The challenge with parallelized hierarchical construction is that it operates on a uniform leaf 

level of hierarchy. However in the parallelized selection and deformation pipeline (Figure 13) 

the new samples are of varying hierarchy levels, for example in Equations (3.3.6) and (3.3.10). 

In order to retain their level information, the nodes are adjusted to a uniform depth and their 

hierarchical level   is preserved throughout the hierarchical construction process. Internal 

branches whose depth is greater than this level can then be flagged to be ignored in traversal.  

 

Figure 30 shows this approach, which retains the hierarchical level of the samples throughout 

the parallel hierarchical construction algorithm. The main idea is to adjust the grid indices of 

the resampled voxel data in order to simulate them being at the same (leaf) level of hierarchy 

(Figure 30 stage 1-2). Therefore a fully parallelized hierarchical construction approach can be 

used (Figure 30 stages 3-5) (Karras, 2012) with some modifications (Figure 30 stage 4) in order 

to preserve the sample level stored in the value of the branches. This guarantees stable worst-

case construction performance and maximizes the parallelism, which is suitable for the sparse 

volumetric deformation pipeline. The upcoming sections discuss the details of this approach 

for each component in Figure 30. 
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Adjusted Indices 

The hierarchical SVO structure regularly partitions space, where each hierarchical level may be 

considered a sparse  D regular grid. The corresponding cells for each sample location, at level 

 , may therefore be calculated according to the location within the SVO. Therefore, the scene 

geometry needs to be transformed to be located within the SVO bounds; within the unit cube 

[   ]. According to this assumption, the leaf cell location   is calculated by multiplying each 

sample position   by the total number of regions      in each axis at the desired level  , as 

in the following equation: 

 

   [

⌊   ⌋

⌊   ⌋

⌊   ⌋

] (4.2.1) 

 

This can be can also be achieved by not multiplying the samples by     in Equation (3.3.9) and 

Equation (3.3.12) accordingly, however, in both cases the samples outside the unit cube must 

be constrained to be within the SVO bounds, therefore each component of   is clamped to 

the range [     ]. 

 

In order to set all samples at a uniform level,   can be set where      and where   is the 

target SVO hierarchical level (discussed in the next section); however the original sample level 

is stored as a temporary value for each sample. This hierarchical level value is later preserved 

throughout the entire parallelized hierarchical construction process (Figure 30) and then used 

to determine the minimum traversal depth (an early-termination condition) for the generated 

internal branches. 

Adjust Indices 

Sort Morton Codes 

Compact and Preserve Level 

 
Build Hierarchy in Parallel 

 

(1) 

Compute Morton Codes (2) 

(3) 

(4) 

(5) 

Set Early Termination (6) 

The nodes (voxels) are sorted 
along the space-filling curve. The 
minimum node level is preserved. 

All voxels are set at a uniform 
depth; however their sample 
display level is preserved. 

Branches are flagged for early 
termination if their depth is 
greater than the node level. 

Figure 30: Preserved node hierarchy in parallel hierarchy construction. 
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Morton Codes 

Morton codes are a  D value which describes the location along an  -dimensional space-filling 

curve. Therefore sorting the  D sample locations according to their Morton codes ensures that 

the  D data becomes localized in  D memory. Morton codes in  D can be efficiently calculated 

for the integer indices   by interleaving the three components          to produce a 

single unsigned integer Morton code  . This is shown in Figure 31: 

 

 
1 
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9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

 
// Dilate bits along the 64-bit unsigned integer 
ulong Dilate(ulong x) { 
    x = (x | (x << 32)) & 0x7fff00000000ffff; 
    x = (x | (x << 16)) & 0x00ff0000ff0000ff; 
    x = (x | (x << 8) ) & 0x700f00f00f00f00f; 
    x = (x | (x << 4) ) & 0x30c30c30c30c30c3; 
    x = (x | (x << 2) ) & 0x1249249249249249; 
    return x; 
} 
 
// Contract bits along the 64-bit unsigned integer 
ulong Contract(ulong x) { 
    x = (x            ) & 0x1249249249249249; 
    x = (x | (x >> 2) ) & 0x30c30c30c30c30c3; 
    x = (x | (x >> 4) ) & 0x700f00f00f00f00f; 
    x = (x | (x >> 8) ) & 0x00ff0000ff0000ff; 
    x = (x | (x >> 16)) & 0x7fff00000000ffff; 
    x = (x | (x >> 32)) & 0x00000000ffffffff; 
    return x; 
} 
 
// Encode a 21-bit xyz to its 64-bit morton code 
ulong Encode(ulong x, ulong y, ulong z) { 
    return Dilate(x) | (Dilate(y) << 1) | (Dilate(z) << 2); 
} 
 
// Decode a 64-bit code to its 21-bit index xyz 
void Decode(ulong code, ulong &x, ulong &y, ulong &z) { 
    x = Contract(code     ); 
    y = Contract(code >> 1); 
    z = Contract(code >> 2); 
} 
 

Encode and decode a  D location to a   -bit  D morton code along the space-filling curve. 

Figure 31: Pseudocode for   -bit Morton Codes. 

 

In Figure 31, the function Encode (line   ) interleaves the three components of a grid location 

into the  D location along the  -order curve, and similarly Decode (line 28) de-interleaves the 

 D value to generate the respective three components accordingly. For example, a   -bit  D 

Morton code can be calculated by interleaving three   -bit integers, which therefore supports 

a maximum  D resolution of              . In practice, this resolution is too small for many 
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applications; however a much larger resolution can be supported with a   -bit Morton code, 

with the interleaved value of three   -bit numbers giving a maximum resolution     , 

resulting in                  . This is calculated in Figure 31 by the shift-based algorithm 

shown for   -bit integers in (Raman & Wise, 2008; Stocco & Schrack, 1995) but dilated along 

the   -bit word size (lines  - ), and similarly they are compacted for the Decode operation 

along the   -bit word size (lines   -  ). 

 

The samples can therefore be efficiently sorted along the  -order space-filling  curve (Figure 30 

stage 3) using a parallel radix sort (Merrill & Grimshaw, 2010; Satish, Harris, & Garland, 2009) 

on the Morton code key values   (calculated by Encode in line 23 of Figure 31 for each sample 

of its uniform adjusted index  ). The original display level   for each sample (Equation (3.3.6) 

   for resize and Equation (3.3.10) for emit) is stored in the value for each sample, and 

preserved throughout this sorting process and the following components in the hierarchical 

construction pipeline. 

Sample Level Preservation 

In the previous sections, the samples were localized at a uniform hierarchical level by sorting 

them along the  -order space-filling curve (Figure 30 stages 1-3). This means that identical 

samples, sharing the same Morton code (within the same  D cell) can be efficiently removed 

using parallel stream compaction to ensure that every leaf node is unique (Figure 30 stage 4). 

Therefore, a binary radix tree can be efficiently constructed on the leaf nodes in parallel with 

the approach by (Karras, 2012) (Figure 30 stage 5). Finally, the newly generated branches are 

updated with the preserved values  , retaining the varying hierarchy of the input samples 

(Figure 30 stage 6). This section discusses the method of stages 4-6 in more detail. 

 

Parallel stream compaction is an important parallel primitive used to remove undesired 

elements in sparse data (Billeter et al., 2009; Merrill & Grimshaw, 2010). Samples within the 

same leaf region are flagged for removal by comparing each pair of adjacent (sorted) Morton 

codes (Karras, 2012). However it is additionally required to preserve the varying levels of the 

input samples  . This is achieved by a parallel compaction by key, with a minimum binary 

operator on the   value (Figure 30 stage 4). 

 

With unique Morton codes at uniform level  , and the minimum preserved   values, an octree 

can be built efficiently (Figure 30 stage 5). Initially, a parallel binary radix tree is constructed 

and the octree nodes are allocated with a parallel prefix sum. The parents of the octree nodes 

are then found by looking at the immediate ancestors of each radix tree node, as described in 

(Karras, 2012). The correct   value is set for the internal branches by the minimum   value of 

the nodes children, as in Equation (4.2.2): 
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                  (4.2.2) 

 

Therefore each internal branch of depth   can be flagged for early termination where it is 

undesired (Figure 30 stage 6). This is where it is too deep to represent the minimum sample 

level of its containing leaves, or more formally by Equation (4.2.3) where: 

 

     (4.2.3) 

 

In conclusion, the pipeline in Figure 30 constructs a SVO with varying sample hierarchy by 

preserving the sample levels   through a uniform parallelized octree construction process on 

the resampled volume elements. The internal branches are then flagged for early termination, 

where their undesired children are ignored for continued traversal, allowing for efficient shape 

queries or ray casting applications. 

4.3 Ray Casting 

Ray casting based rendering simulates light transport by firing many rays within the scene, and 

testing for intersection with the shapes. With massive scenes, this is expensive; therefore a 

hierarchical structure is used to accelerate the shape queries. The previous section discussed 

how a SVO structure was efficiently constructed for important shape samples, and therefore 

rays can be cast into this structure in parallel by traversing the SVO hierarchy. The purpose of 

this section is to demonstrate efficient real-time ray casting with parallel ray traversal of the 

SVO structure, showing the applications of the sparse volumetric deformation pipeline. 

Ray Traversal 

Ray traversal involves finding the point of intersection between the shapes in the scene and 

the input rays. A ray   contains a starting position   and a normalized direction vector  . The 

common notation defines a point      along the ray by an interval  , where     and: 

 

           (4.3.1) 

 

Calculating the intersection with the voxels in the SVO (constructed in the previous section) is 

equivalent to testing for intersection with their AABBs [          ]. This process is optimized in 

(Kay & Kajiya, 1986) to give the start and end intervals of intersection        and     : 
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 (4.3.2) 
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Where       represents where the ray enters the AABB and likewise      represents where the 

ray exits the AABB. To traverse the SVO, the rays (for example located at each pixel) are 

initially tested for intersection with the root voxel at the unit cube. If intersection occurs 

(          ) the ray is updated to the front of the SVO, as in the following equation: 

 

            (4.3.3) 

 

The traditional method then steps along the ray using a digital differential analyzer (DDA) line 

generating algorithm (Chang, 2001; Fujimoto, Tanaka, & Iwata, 1988) however this requires 

the SVO leaf size to be known in advance. Furthermore, assuming the SVO is stored in the GPU 

texture memory, a huge number of texture fetch operations are required with this approach as 

the SVO hierarchy must be traversed from the root at each small step along the line. 

Space Leaping 

A more efficient strategy exploits the sparse properties of the encoded SVO by skipping over 

empty space (Crassin et al., 2009; S. Laine & Karras, 2011) which outperforms the DDA method 

and does not require the leaf size to be known in advance. The hierarchy is initially traversed 

from the root; however, when an empty node is found, the ray position is updated to a new 

point just after the current     , to exit the current AABB. This means that the empty space is 

leaped according to the size of the current AABB, which is large in the sparse regions. In 

practice, this approach greatly accelerates the traversal process.  

 

To find     , it is already known that the ray position is inside the current voxel AABB (the root 

node in the first iteration), therefore      is updated according to the extremes of the current 

child (Equation (4.3.2)). After finding     , the ray is pushed into the next cell by moving it a tiny 

amount   in the axis-aligned direction of the ray direction (the sign of  ), shown as follows: 

 

                     (4.3.4) 

 

The process is then repeated recursively, starting from the root again, while the ray is inside 

the SVO (the unit cube) or until a sample is found according to the internal branch level (where 

Equation (4.2.3) is true). This process can be further optimized by the exploiting of integer 

coordinates, and by climbing back up the hierarchy instead of starting each time from the root. 

However the texture cache is well prepared in both cases with small performance gain to be 

found. More details on integer coordinate optimizations are given by (S. Laine & Karras, 2011). 
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Ray tracing continues this process by generating and traversing secondary rays at the point of 

intersection in accordance with the shape information to capture more advanced lighting. 

Global illumination can be captured by simulating light transport according to the properties of 

the rendering equation (Kajiya, 1986; Ritschel et al., 2012). However in practice, the main 

contribution of light which reaches the retina or camera is from direct illumination, which can 

be displayed without resampling by using a rasterization pipeline (Figure 14). Rasterization can 

also be combined with a low-resolution generated SVO to capture the main effects of indirect 

lighting with the high-resolution rasterized direct lighting (Crassin et al., 2011). 

4.4 Rasterization 

This section extends the selection and deformation pipeline (Figure 13 stages 4-5) with an 

efficient rasterization approach that does not require resampling or a hierarchical construction 

procedure (Figure 13 stages 6-7). The straightforward strategy for rasterization is to gather the 

selected voxels and emit and rasterize a set of box primitives. However most of these boxes 

are approximately the size of a pixel (see Equation (3.2.5)) which gives very poor rasterization 

performance and requires expensive accumulation. 

Mipmap Strategy 

Instead, the proposed approach extends the hierarchical occlusion culling strategy (Equation 

(3.2.7)) but only after the target voxels are selected (after Figure 13 stage 5) with the goal of 

setting a hierarchical framebuffer instead of sampling from it. Therefore leaf voxels, which are 

close to the camera occupying more than one pixel, are set at a lower resolution mipmap, 

whose overlapping region covers their high-resolution pixels. These mipmaps are efficiently 

merged to produce the final image. This strategy is outlined in the diagram in Figure 32: 
 

 
 

In the selection and deformation pipeline (Figure 13 stages 4-5) the  D rectangle of the 

projected deformed voxels was calculated and used to sample four pixels   in the hierarchical 

 -buffer at level   (Equation (3.2.6)). These four pixels cover the overlapping region of the 

deformed voxels in the final output image, and therefore they can be used for rendering. In 

order to achieve this in parallel, the four pixel indices   calculated in (Equation (3.2.6)) are 

used as a map (Figure 32 stage 1) for a scattering operation (Figure 32 stage 2) that writes the 

Mipmap the final Image 

 

(1) 

(2) 

(3) 

Scatter (write) the Pixels 

Calculate 4 Pixel Addresses 

Figure 32: Parallel rasterization pipeline. 
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output pixels if they are the minimum (nearest) value in the depth-buffer. The final image is 

then calculated in a top-down parallel mipmap operation, which sets the high-resolution     

pixel regions, by the value (if it exists) of their parent pixel. Therefore the highest resolution 

mipmap captures all of the information, and can be displayed as the rendered output image. It 

is worth mentioning, for optimization, that the scattering (Figure 32 stages 1 and 2) can occur 

inside Figure 13 stage  , instead of as a postprocess, which means that a temporary buffer is 

not required to store the currently selected shape information. 

Voxel Appearance 

The disadvantage of this approach is that the projected  D rectangle may poorly approximate 

the shape of the deformed AABB after projection (Equation (3.2.2)) and therefore, in such 

cases where the projected size         (Equation (3.2.3)), the voxel primitives can be 

accumulated and emitted traditionally. However, in practice, this is not necessary if the input 

models are voxelized at sufficient resolution. This is because their equivalent lower-resolution 

mipmap provides an acceptable representation of the shape; the equivalent unfiltered 

rasterized AABB also has an undesirable appearance (S. Laine & Karras, 2011). Instead, post-

processing effects, such as blurring and fading, can be applied to any low-resolution 

mipmapped voxels to hide their coarse shape, giving an attractive depth-of-field effect. Ideally, 

more accurate dynamic filtering is needed; however this remains an area for future work. 

4.5 Results 

This section discusses both the efficiency and accuracy of the sparse volumetric deformation 

pipeline and the rendering approaches. The quality and performance are examined for the 

generated images, and the work is compared with related previous approaches. 

Accuracy 

The accuracy of the generated images is mainly sensitive to the resolution of which voxels are 

selected for deformation and rendering (Equation (3.2.5)). This depends on the resolution of 

the input models and the screen resolution. Therefore, it is important to voxelize the input 

models at high-resolution to ensure that their selected regions are represented at sufficient 

detail. By selecting and simulating deformation for approximately one voxel for each pixel 

(Equation (3.2.5)), the generated deformations and rendered images are aesthetically valid 

and attractive. This is demonstrated in Figure 33, which shows four frames from a sequence of 

extreme twist deformations for a complex motorcycle model, rendered in real-time at   ms 

per frame in the accompanying video. In particular, the artifacts highlighted in Chapter 1 have 

been addressed, where gaps or shape distortion occur (Figure 4), which can be seen by the 

smoothness of the deformed tires and twisted bike spokes in the lower image of Figure 33. 
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Figure 33: The deformations are smooth without gaps or shape distortion. 

 

In the implementation, FXAA (Lottes, 2009) and a naïve SSAO post-process have been added to 

reduce aliasing on the shape silhouette and highlight the high-frequency details accordingly. 

However, without more accurate filtering such as in (Heitz & Neyret, 2012; S. Laine & Karras, 

2011), the shape regions appear undesirably thick and have banding artifacts (top image of the 

motorcycle in Figure 33). In order to see the thick regions more clearly, another extreme twist 

deformation is also applied to the original highly detailed polygon mesh, consisting of         

triangles, which has been ray traced offline to generate the lower image in Figure 34. The same 

deformation is also applied to the motorcycle using the proposed pipeline (top image in Figure 

34) for visual comparrison. It is observed that the deformed polygon mesh has intersections 

and undesirable tearing artifacts according to the irregular distribution of the mesh geometry. 

In contrast, the regular distribution of the volumetric deformation gives smoother and more 

accurate deformation, as seen by the spokes in the lower right of both images. Therefore, both 

strategies have advantages and limitations, however better filtering is an area for future work. 
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Figure 34: Comparison between sparse volumetric deformation (upper) and offline high-
resolution ray-traced polygon deformation (lower) for the motorcycle in Figure 33. 

 

Comparing the rasterization and ray casting renderers is equivalent to comparing the results 

between the direct, resize, and emit resampling strategies. These are discussed extensively in 

the previous chapter on Measurement. In practice, it is observed that the image quality of the 

two rendering approaches remains consistent with the amount of sampling (Figure 29), as the 

accuracy can be increased proportionally in all cases by altering Equation (3.2.5) to select 

higher resolution shape information for simulation. The effect of selecting different resolutions 

is presented more clearly in Figure 35, which shows the ray casting of the Thai Statue rendered 

at the equivalent selected depths of  ,  , and    (with resolutions of    ,     , and       

accordingly). The generated images highlight the importance of ensuring that the input shapes 

are voxelized at sufficient resolution, as just two depths can capture much smoother and finer 

details, as shown by the right image. Therefore oversampling, by tuning Equation (3.2.5), can 

be used to simulate deformation at finer resolution to give more accurate results, however it 

processes more data through the pipeline (Figure 13), which is less efficient. This means that 

Equation (3.2.5) can be tuned according to the capabilities of the target machine. 

 

In conclusion, the generated images are smooth and attractive as approximately one voxel has 

been selected for each pixel for simulation and rendering. In all cases, the deformations do not 

have undesired gap or distortion artifacts, and can be calculated efficiently, however more 

accurate filtering is needed to preserve the appearance of fine features or thin shape regions. 



   

 

   

Figure 35: Close-up images showing output ray casting of depths 6, 8, and 10 respectively. Just two depths results in much smoother details, seen in the right image.



Efficiency 

The selection and deformation pipeline (Figure 13), resampling strategies (Figure 14), hierarchy 

construction method (Figure 30), and rasterization approach (Figure 32) are all designed for 

wide SIMD parallelism. This has been programmed for a GTX 260 with 111.9 GB/s memory 

bandwidth using CUDA C and OpenGL. This section discusses the memory usage and the rate 

of which images are generated using the sparse volumetric deformation pipeline. 

 

The performance of the deformation and rendering pipeline is measured for the massive scene 

shown in Figure 36 (also Figure 1), which consists of one million uniquely animated instances 

of six high-resolution models rendered in real-time.  The models are complex with overhanging 

ledges and internal volumetric features and they natively require  .4GB of memory, which is 

consumed by their high-resolution SVOs. The expansion iterations (Figure 13 stages 4-5) can 

therefore exceed the target GPU memory, however if the GPU limit is reached the future 

expansions are prematurely terminated for that frame such that the currently selected 

information can be displayed. This also highlights the importance of instancing with volumetric 

modeling, as representing all of these models at their original resolution within a single SVO 

would exceed even secondary storage. 

 

 

 

Figure 36: Real-time frame from scene in accompanying video, consisting of massive numbers 
of objects, each with unique twist, shear, scale, translation, or skinning deformations. 
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In order to understand the performance of the proposed pipeline, the timing measurements 

are separated according to the components in Figure 13: in particular the timing is measured 

for gathering, deformation and labeling (stage 4), expansion (also in stage 4), parallel stream 

compaction (stage 5), and rendering. These measurements use a GPU timer (cudaEventRecord) 

which allows asynchronous parts of the pipeline to continue uninterrupted. In collecting the 

results, it was found that the timings are sensitive to the camera location within the scene; and 

therefore the scene is simulated in different camera scenarios for static and animated objects 

accordingly: (1) with static objects and a fixed camera location, (2) with static objects and a 

moving camera, and (3) by animated objects with a moving camera. 

 

Figure 37 shows       frames of the scene in Figure 36 using static objects and a fixed camera 

location similar to that in the image, which is useful because it shows a clear and consistent 

separation of the timings for each of the main parts of the method. The most expensive part 

appears to be stage 4 (Figure 13), which is represented by blue and red colors (Figure 37) that 

consume on average     (blue) and     (red) of the total frame time. This bottleneck is 

caused by the large amount of gathering operations required to retrieve the volumetric 

information as there are no deformation calculations. Although there is no advanced caching 

system which reuses information from the previous frame (other than the depth buffer) such 

as by (Crassin, 2011) and therefore further optimizations may be possible in future work. The 

stream compaction algorithm (green     of the total frame) implements the approach by 

(Billeter et al., 2009), which is a GPU memory bandwidth-bound operation on the 64-bit keys 

that contain the instance reference and the voxel index (see the SIMD input of Figure 14).  

 

 

Figure 37: Timing for       frames with a massive static scene and a fixed camera. 
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The rendering (purple) in Figure 37 takes approximately    of the frame time to generate the 

mipmaps and map the CUDA device memory to OpenGL to display the output image. However 

it is worth mentioning that parts of the renderer scattering operation have been implemented 

as an optimization inside the gathering and deformation stage (Figure 13 stage 4 and Figure 37 

blue) discussed in the Mipmap Strategy section. In summary, the Figure 37 data shows that the 

method averages a memory gathering-bound      ms per frame (approximately   FPS) giving 

real-time performance for a massive static scene with a fixed camera. 

 

Figure 38 shows the timing for       frames as a human navigates the scene in Figure 36 with 

static objects using a first-person camera controller. In the first     frames, the camera is 

facing a single shape that is isolated from the majority of the scene content. This is reflected by 

the high-performance (small millisecond values) in the graph where the shape is rendered at 

approximately    ms per frame. In Figure 13 stages 4-5, the first iteration just contains the 

transformed shape SVO root voxels, where the majority of the           shape instances are 

labeled for removal (Table 1) as they are not within the viewing frustum. With the root voxels 

removed from the pipeline by stream compaction (Figure 13 stage 5) their children are no 

longer processed in the following iterations giving very fast frame rates. After the first     

frames, the camera turns towards the scene content until about frame    , where between 

      and        objects are visible on the camera path from frames     to      , shown in 

the image in Figure 36. However, only a relatively small portion of the scene content is 

processed as the projection criteria (Table 1) prevents high-frequency distant shape geometry 

from being processed if their projected size is too small.  

 

 

Figure 38: Timing for       frames with a massive static scene and a moving camera. 
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In the remaining frames     to       (Figure 38) the camera moves between and above the 

objects, where the compaction by the occlusion, frustum culling, and projection criteria (Table 

1) remove noncontributing voxels and their associated children from the pipeline accordingly. 

This is shown by the fluctuation in the results with a worst-case of   ms per frame (  FPS). 

 

Figure 39 shows the animated scene in Figure 36 where the objects are assigned unique twist, 

shear, scale, translation, and walking deformations with a moving camera on a similar path of 

the measurements in Figure 38. The static scene and dynamic scene share similar performance 

(Figure 38 compared to Figure 39) however there is more fluctuation where fast-moving parts 

of the animated shapes suffer incoherency with the previous frames depth-buffer. This means 

that more shape information needs to be processed as the occlusion criteria fails to capture 

the incoherent regions (discussed later in the section on Limitations). However the longest 

frame is     ms (    FPS) which is adequate considering the scene and animation complexity. 

 

 

Figure 39: Timing for       frames with a massive animated scene and a moving camera. 

 

In summary, the main observation is the harmony between the selection criteria in Equations 

(3.2.5) and (3.2.7). These criteria work together to efficiently reduce the amount of voxels for 

simulation, as the depth complexity is high where objects are densely packed (Figure 36) giving 

ideal conditions for the hierarchical occlusion culling (Equation (3.2.7)). On the other hand, if 

large numbers of objects are visible with low depth-complexity, the camera is generally further 

away from the objects, which gives ideal conditions for the projection criteria (Equation 

(3.2.5)). In the real world, scenes with high depth-complexity and massive numbers of visible 
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objects are rare. This means that the rate of which images are generated is mainly sensitive to 

the resolution of the selected information. The resolution (Equation (3.2.5)) can be desirably 

tuned         to reach the target frame rate or rendering accuracy. Lowering     traverses 

the shape hierarchy to capture features smaller than a single pixel, whereas increasing     

terminates the traversal earlier and therefore less information is processed in the pipeline. 

This also means that fewer depth samples are required for the hierarchical occlusion culling. 

 

The hierarchical construction (Figure 13 stages 6-7) and ray casting renderer is more expensive 

than rasterization, as it requires more computation (Figure 30) and processes more samples 

(Figure 29). It was observed that the same quality for the scene in Figure 36 can be achieved at 

  ms; however in practice such a high-quality SVO is unnecessary for indirect illumination 

(Crassin et al., 2011). Investigating hybrid ray-traced and rasterized rendering remains an 

interesting area for future work. For example it may be possible to branch the pipeline at 

Figure 13 stage 5 after less iterations, in order to generate a lower resolution SVO efficiently, 

yet still use rasterization for direct illumination. In such an approach it may even be beneficial 

to remove the occlusion culling criteria from the first selection iterations of SVO construction. 

This would enable indirect light effects to be accurately modeled from hidden shape regions. 

  

This thesis is accompanied by a set of videos that demonstrate the real-time results in Figure 1, 

Figure 7, Figure 33, Figure 36, and Figure 40. The video for Figure 7 and Figure 40 shows a 

typical scene consisting of several different models with unique deformations. The video for 

Figure 1 and Figure 36  shows an extreme example of a massive scene, which makes heavy use 

of instancing to process huge numbers of high-resolution objects. The remaining videos show 

extreme deformations on complex models such as in Figure 33. In summary, these videos 

demonstrate the robustness and scalability of the sparse volumetric deformation pipeline and 

its ability to render attractive and immersive images in real-time. 

 

In conclusion, the efficiency of the rendered images mainly depends on the resolution in which 

shape information is selected for further processing (Equation (3.2.5)), and the pipeline itself is 

mainly sensitive to the memory bandwidth-bound gathering operations (discussed in Figure 37 

and Figure 38) instead of the deformation calculations. However it is important to profile and 

optimize the entire workflow, as just a few hierarchical levels can have a large impact on the 

appearance of the generated images (Figure 35). Adjusting the resolution   gives users control 

over the amount of information selected and processed in the pipeline. This is highly desirable 

as it means that smooth frame rates can be guaranteed according to the capabilities of the 

target machine, allowing for immersion within the virtual environment. 
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Discussion 

This section compares the proposed sparse volumetric deformation and rendering approaches 

with state of the art methods from the main categories of shape representation. These are 

discussed in the paragraphs below: (1) polygon meshes with hardware tessellation, (2) out-of-

core sparse voxel octrees, (3) large-scale point clouds, and (4) hybrid shape representation. 

 

The graphics rendering pipeline is tuned for rasterizing polygon meshes (Lindholm et al., 2001). 

The addition of the tessellation stage enables surface representations to be sampled efficiently 

to produce more detailed meshes; therefore smooth surfaces can be represented more 

accurately near the viewing area, and similarly high-frequency details can be displaced with a 

heightmap texture. The limitations of this approach are that the rasterization and shading 

processes are optimized for large triangles causing redundant shading of micropolygons 

(Fatahalian et al., 2010). Furthermore, the underlying parametric surfaces do not support 

overhanging ledges, and may cause undesirable non-manifold self-intersections (Sigg, 2006), 

limiting the modeling of advanced deformations where topology may split or merge. Meshes 

with complex topology and internal features are challenging to accurately simplify in parallel 

for massive scenes; artists currently assist the generation of billboards for medium view 

ranges, and imposters for distant objects (Décoret, Durand, Sillion, & Dorsey, 2003), which is 

laborious, hinders animation, and causes undesirable popping artifacts between the detail 

transitions. In contrast, the proposed approach seamlessly selects and simulates deformation 

for important volumetric shape regions prior to rendering. This enables smooth transitions 

between the geometric resolutions, which are automatically created in the SVO hierarchy. The 

input shapes are not limited to surface representations, and easily support complex topology 

such as the tree model in Figure 1. 

 

Sparse voxel octrees are rapidly gaining interest with advances in compact representations (S. 

Laine & Karras, 2011) and filtering (Heitz & Neyret, 2012). In particular, the work by (Crassin et 

al., 2009) build a GPU caching and on-demand loading mechanism that requires only a small 

subset of the total SVO to be kept in GPU memory, minimizing the amount of data streaming. 

The advantage of this technique is that massive scenes of highly complex shapes can be 

efficiently rendered with alias-free pre-integrated voxel cone tracing. The main disadvantages 

are that the on-demand loading scheme does not support deformation, and that to support 

animation the pre-filtering needs to be computed in a bottom-up process. Therefore a high-

resolution voxelization is always needed, regardless of resolution actually required for 

rendering (Crassin et al., 2011), which is not scalable for large numbers of animated objects. In 

comparison, the proposed approach operates in a parallel top-down process on instanced SVO 

shapes, which simulates deformation only for the important volumetric content. This has two 

main advantages: (1) massive scenes need not be modeled with the constraints of a single SVO 
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structure, which means instancing can be used to efficiently reduce memory consumption in 

repetitive content. (2) Deformation is scalable, as it is only simulated for important shape 

regions at the resolution of which data is displayed. However, unlike (Crassin et al., 2009), 

transparent objects are inefficient with the current selection criteria, and therefore remain an 

area for future work, perhaps by considering other visibility feedback data from the renderer. 

 

Point clouds are a flexible representation that can represent the surfaces of detailed shapes. 

Their main advantages are that they can be organized for efficient shape queries (Rusinkiewicz 

& Levoy, 2000) for example with bounding sphere hierarchy (BSH), and they can also be 

rasterized efficiently with the graphics pipeline. However efficiently modeling accurate 

deformation with point clouds is more challenging, as their irregular local sample spacing 

needs to be considered otherwise artifacts occur. In the literature (Pauly et al., 2003) address 

this problem for free-form deformation with moving least-squares projection, however this is 

not currently scalable for massive scenes of animated objects in real-time. In contrast 

(Marroquim et al., 2007) investigate an image space reconstruction technique, which is more 

efficient, but is unanimated and suffers from aliasing. Recently (Bautembach, 2011) propose 

using a regular sample spacing organized in an octree structure, and stretching the size of the 

primitives to account for deformation; however their approach suffers from gaps and 

distortion artifacts in extreme deformations, and the output is unaligned meaning that 

hierarchy cannot be easily reconstructed for more advanced rendering. In comparison, the 

proposed approach supports efficient and scable deformation for important volumetric shape 

regions. These are aligned to a SVO structure for efficient hierarchical construction, without 

suffering from gap or distortion artifacts. 

 

It is also worth considering hybrid shape representations. Recently, there have been several 

efficient real-time global illumination strategies that combine a high-resolution rendering for 

direct illumination, with automatically generated low-resolution hierarchical structures, such 

as BSHs or SVOs, for modeling indirect light transport (Crassin et al., 2011; Hollander et al., 

2011). The disadvantage of these approaches is that the tree updates are performed in a 

parallel bottom-up order, to calculate the internal branches after animation, which means that 

a high-resolution shape is always needed. This greatly limits the scalability in massive scenes, 

for example when considering the visibility of distant objects. Furthermore, the limitations of 

the previously discussed shape representations still apply for the high-resolution rendering. In 

comparison, the proposed approach operates with a purely volumetric representation and 

simulates deformation in a top-down hierarchical selection algorithm. Therefore the hierarchy 

can be constructed in parallel only for the important content, when the desired selection 

iteration is reached. This strategy is more scalable, and yet it still allows for flexibility with the 

rendering approach. 
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4.6 Chapter Summary 

This chapter has presented a method for constructing SVO hierarchy in parallel (Figure 30) for 

the important deformed volumetric content (Figure 13). This means that shape queries can be 

made efficiently for massive amounts of animated objects, enabling real-time applications that 

would otherwise be restricted to small scenes. Furthermore, an efficient parallel rasterization 

approach has been presented (Figure 32). This is able to quickly display high-resolution content 

without requiring resampling or high-resolution hierarchy. The proposed rasterization and ray 

casting renderers share the same selection and deformation components, and therefore more 

sophisticated and flexible rendering strategies can be implemented efficiently. 

Contributions 

This chapter has concentrated on efficiently rendering massive scenes of animated volumetric 

content. The first contribution addresses the problem of efficiently constructing hierarchy for 

large amounts of voxels, resampled at varying hierarchical levels. This enables support for the 

hierarchical construction of sparse scenes, for example where important content has smaller 

and denser sample distributions than distant shape regions. This is achieved by extending a 

fully parallel hierarchical construction pipeline, whereby leaf nodes are initially set at a uniform 

sample level. The sample spacing is retained throughout the parallel construction process, and 

the newly generated internal branches are flagged for termination where they are undesired. 

This approach maximizes the parallelism and preserves the varying sample hierarchy, which 

means that efficient ray casting with space leaping can be supported. The second contribution 

addresses the problem of efficiently rasterizing volumetric shapes at high-resolution, without 

requiring resampling or hierarchical construction. This gives flexibility in real-time rendering 

applications, for example where rasterization can be combined with a SVO generated more 

efficiently at lower resolutions for modeling light transport. The straightforward rasterization 

approach expensively accumulates and emits large numbers of primitives, whereas the 

proposed method utilizes a hierarchical mipmap strategy that enjoys the benefit of wide 

parallelism. This is therefore more scalable and compatible with SVO ray casting. 

Limitations 

In the selection and deformation pipeline (Figure 13), occlusion culling is currently performed 

by sampling a hierarchical depth buffer of the previous frame (Equation (3.2.7)). The problem 

with this approach is that a small amount of error occurs, where no voxels are rendered at the 

incoherent region between frames, shown by the black region behind the shape in Figure 40. 

However it may be possible to mask this error with a motion blur effect, using (McGuire, 

Hennessy, Bukowski, & Osman, 2012). Investigating this effect is left for future work. 
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Figure 40: A small region of error occurs behind fast-moving objects (black pixels). 

 

Existing out-of-core static SVO approaches (Crassin et al., 2009) are able to accurately page 

sections of a single master input SVO according to visibility information from the renderer. In 

contrast, the proposed approach selects information from multiple SVO instances, which gives 

greater modeling flexibility and does not consume additional memory for repetitive content. 

This also allows for more parallelism in the selection pipeline (Figure 13) especially in the initial 

iterations of the selection process. Unfortunately this approach is sensitive to the aggregation 

of the paged instance data, in comparison to streaming regions of a single SVO. In practice, the 

advantages outweigh the restrictions imposed by modeling within the constraints of the SVO 

structure; however enabling more parallelism for a gigantic unique single input SVO requires 

splitting the input into smaller SVOs. Ideally an automatic algorithm is needed to split and 

aggregate sections of large or small models, although investigating such advanced paging 

requires careful profiling of the target hardware, which remains an area for future work. 

 

Furthermore, the current implementation does not consider filtering, and therefore the output 

images suffer from aliasing and an overall thick appearance. Future work needs to consider 

more accurate voxel representations, compression, and filtering; in the literature, work by (S. 

Laine & Karras, 2011) achieve approximately  -bytes per voxel (  byte for color,   bytes for the 

normal, and the remainder for geometry), whereas a much higher quality representation is 

achieved at about   -   bytes per voxel, featuring multi-scale geometry and view-dependent 

filtered RGB colors (Heitz & Neyret, 2012). Ideally, such methods need to be compared with 

more efficient  D post-process filters, such as applying depth-of-field or blurring to reduce the 

aliasing of nearby voxels (S. Laine & Karras, 2011; Síleš, 2012)). It would be worthwhile looking 

at these screen-space techniques in more detail, in combination with more recent antialiasing 

(Jimenez, Echevarria, Sousa, & Gutierrez, 2012; Jimenez et al., 2011) comparing accurate 

filtering representations with highly-compressed approximations and post-processes. 
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Chapter 5 

Skeletonization 

5.1 Abstract 

In the previous chapters, volumetric deformation and rendering strategies were proposed. This 

chapter looks at automatically acquiring hierarchical control skeletons for use in the sparse 

volumetric deformation pipeline, or for use in traditional polygon renderers. The chapter is 

based on the recently published work ‘Feature-Varying Skeletonization’ (Willcocks & Li, 2012). 

Hierarchical deformation plays an important role in computer animation for achieving accurate 

simulation in both organic and mechanical objects (Parent, 2012). In order to achieve efficient 

hierarchical deformation in complex or detailed models, a simplified control structure is used 

such as a cage or a skeleton. This work focuses on automatically generating skeletons that are 

mapped to the original model, which naturally captures hierarchy similar to the skeletons in 

nature. However, existing skeletonization algorithms strive to produce a single centered result, 

which is homotopic and insensitive to surface noise; this traditional approach may not well-

capture the main parts of complex models, and may even produce poor results for animation. 

Instead, the proposed approach approximates the topology through a target feature size  , 

where undesired features smaller than   are smoothed, and features larger than ω are 

retained into bones, as demonstrated in Figure 41. This relaxed feature-varying strategy gives 

robust and meaningful results without requiring additional parameter tuning, even for noisy, 

damaged, complex, or high genus models. 

 

 

 

Figure 41: Two feature approximations for a complex model. 

Skeleton 

End Feature 

Branch Feature 

(a) Feature Size         

(b) Feature Size         
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5.2 Background 

Skeleton generation is a large research field (Biasotti, Attali, et al., 2008; Cornea et al., 2007) 

with multiple applications in animation, modeling, shape retrieval and segmentation. Many of 

these applications require a skeleton to describe only the main shape features, for example 

Figure 41b is more suitable for simple deformation than the homotopic and centered skeleton 

in Figure 41a. It can be more meaningful for a skeleton to describe features by a target size  , 

especially with complex models, such as vegetation or high genus parts. 

 

Skeleton detail can be controlled by pulling nearby features of size   together; however doing 

this introduces topological error where nearby model regions are undesirably joined. Instead, 

the proposed strategy contracts the model into a skeleton, which causes the nearby model 

regions to naturally separate. Therefore features of size   can be merged during contraction 

itself, without close regions being undesirably joined. This new approach also means that the 

output skeleton can better describe complex models with multiple parts and non-manifold 

connectivity, as the topology is combined from relevant features of size   instead of from the 

potentially damaged input connectivity. 

 

The existing skeleton generation methods are often unintuitive, with multiple parameters to 

address issues such as: ‘how are features pruned?’, ‘how to connect topological parts?’, and 

‘how smooth is the skeleton?’ Instead the feature-varying method unites all these questions 

under a single target parameter    feature abstraction size, which allows users to control a 

contraction process that separates vertices directly into bones during the contraction process 

itself. This is an improvement over previous methods, as topological and spacing errors are 

avoided where the output skeleton is traditionally decimated into bones. The elegant handling 

of these challenging issues by   ultimately results in a more robust and simple algorithm, with 

less failure cases, as shown by the skeletons generated for different shapes in Figure 42. In 

summary, the main contributions of the proposed approach are listed as follows: 

 

(1) Unique topological abstraction (Figure 41). 

(2) Intuitive control over target feature size  . 

(3) Only two input parameters (  and a constant  ). 

(4) Direct contraction into a thin zero-volume skeleton. 

(5) Robust on extremely damaged inputs (Figure 42). 

(6) Precision over the removal of surface noise with  . 

(7) Efficient generation, where the main model features can be captured nearly instantly. 
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Figure 42: ‘Feature-Varying Skeletonization’ operates on a wide variety of input cases. 

 

Chapter Structure 

The upcoming sections in this chapter follow with a discussion about Related Work in order to 

examine the problems and strategies encountered with existing methods. This leads into the 

development of a new strategy. The Methodology section breaks down the strategy outlined in 

the literature review, by providing a more detailed discussion on the core components of the 

skeletonization algorithm. This is followed by several Applications to demonstrate the 

flexibility and novelty in the proposed approach. The approach is then evaluated by measuring 

the performance and quality of the generated output, and by comparing it with existing state 

of the art methods. Finally, a conclusion is given which discusses the limitations of the 

algorithm, and highlights areas for future work. 

 

(a) High-Quality Skeleton 
Feature Size                

(b) Damaged 

 

(c) Genus 3 
        

        
(d) Noise       

 
        

(e) Original Model 

 
        

(f) New Pose 
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5.3 Related Work 

This section splits the literature according to the two general directions in which skeletons can 

be generated. They can either be: (1) grown by propagating through the input and connecting 

shape samples, or they can be (2) produced by contracting or thinning the entire input directly 

into a  D curve. In both cases, the input can be either a surface (e.g. a polygon mesh) or a 

volume (e.g. a voxel image or a SVO), where this classification helps highlight related issues in 

topology, noise sensitivity, input requirements and parameter tuning. 

Propagation 

Skeletons can be generated using a propagation strategy which reconstructs or grows 

connectivity from sets of surface features, or from critical points located inside the model. 

Approaches include searching for and connecting cutting-planes (Tagliasacchi, Zhang, & Cohen-

Or, 2009), critical-features (Cornea, Silver, Yuan, & Balasubramanian, 2005; Ning et al., 2010), 

reeb-graphs (critical points on level sets) (Aujay, Hetroy, Lazarus, & Depraz, 2007), geodesic 

features (Oda et al., 2006), and internal vector-field features (Hassouna & Farag, 2009; 

Pantuwong & Sugimoto, 2010). From this selection, the methods which connect critical points 

inside the model (Cornea et al., 2005; Hassouna & Farag, 2009; Pantuwong & Sugimoto, 2010) 

require solid voxelization, which merges small details and changes the output topology 

according to the input resolution. Such an approximation can be useful as it may simplify 

undesired topology in complex models, which can be controlled by adjusting the voxel 

resolution, however this is often considered a limitation (Brunner & Brunnett, 2005) because 

nearby mesh parts are undesirably joined introducing topological error. On the other hand, the 

propagation methods which connect features on the surface  (Aujay et al., 2007; Ning et al., 

2010; Oda et al., 2006; Tagliasacchi et al., 2009) do not require voxelization, but such a surface 

selection offers little control over the spacing or size of the output bones.  

 

An exception is the discrete scale axis (Miklos, Giesen, & Pauly, 2010), although only a medial 

representation, it gives meaningful control over feature abstraction by growing a spherical 

approximation of the shape boundary, which uses sampling (Boissonnat & Oudot, 2005) to 

process voxel images, polygonal meshes, and level sets. Additional methods which allow 

control over the shape approximation include adaptive feature preserving surface extraction 

(Ho, Wu, Chen, Chuang, & Ouhyoung, 2005) and multi-resolution structure preserving 

representations (Marinov & Kobbelt, 2005), however, neither these nor the discrete scale axis 

approximation can be used as a preprocess to improve the feature selection of propagation 

methods, because the search functions (cutting-planes, critical-points, reeb-graphs, etc) are 

designed to be insensitive to the shape boundary. 
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Contraction 

Skeletons can also be produced by reducing the entire input surface or volume into a thin 

curve. Methods are therefore often homotopic to the input geometry (Au et al., 2008; Y.-S. 

Wang & Lee, 2008), but sensitive to the original connectivity. This can be addressed by 

applying remeshing as a preprocess (Cao et al., 2010), but as with previous propagation 

methods, topological error occurs where there are nearby separate features (Arcelli, di Baja, & 

Serino, 2011; Brunner & Brunnett, 2005; L. Liu et al., 2010), and it introduces further 

parameter tuning to choose the sample or voxel resolution. Thinning methods are often simple 

(L. Liu et al., 2010) allowing for parallel implementation, however they produce pixilation 

artifacts and are sensitive to the object rotation (Brunner & Brunnett, 2005; L. Liu et al., 2010). 

Recently (Arcelli et al., 2011) use a weighted distance metric which is less sensitive to rotation, 

however these methods require a properly connected watertight surface for solid voxelization. 

 

The contraction method by (Dey & Sun, 2006) defines a skeleton as a subset of the medial axis, 

which is similar to (L. Liu et al., 2010) who use a medial quality criteria, and guarantees 

centeredness. Both use a form of erosion to remove undesired features from surface noise, yet 

(Dey & Sun, 2006) relies on a geodesic metric which limits it to a connected boundary, and (L. 

Liu et al., 2010) requires voxelization. Geometric contraction (Au et al., 2008; Cao et al., 2010) 

does not require solid voxelization, and operates by smoothing (Desbrun, Meyer, Schroder, & 

Barr, 1999) applied with different weights over multiple contraction iterations. This approach 

is both homotopic and insensitive to surface noise, however the smoothing process requires 

users to manually set the contraction weights, which produces non-thin skeletons that require 

further decimation and postprocessing, and the method offers little control over the size of the 

output features or skeleton topology. While the proposed feature-varying skeletonization 

method is a contraction strategy, it is able to bypass many of the limitations in the existing 

literature by selecting nearby features during contraction itself. This is discussed in more detail 

in the later sections. 

Other Approaches 

Instead of contraction or propagation, skeletons can be embedded from training data (Baran & 

Popovic, 2007), modified manually, sketched, or generated from training poses (Hasler, 

Thormählen, Rosenhahn, & Seidel, 2010; He, Xiao, & Seah, 2009) to give improved results. For 

example reeb-graphs (Biasotti, Giorgi, Spagnuolo, & Falcidieno, 2008) can be constructed on a 

harmonic function of poses to provide pose-invariance (He et al., 2009). However these 

methods are too expensive in terms of computation and data collection as they require 

additional poses, user-intervention, or a training database, to generate outputs. 
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Proposed Strategy 

In the literature, there is a circular problem where using nearby feature approximation, for 

example a form of remeshing, is required to control the output topology, noise insensitivity, 

and feature size. But nearby feature approximation itself introduces topological error by 

joining nearby separate features, and it requires additional parameters to control the voxel 

resolution or sample spacing. This work looks at a window of opportunity to perform the 

feature approximation inside a contraction method, instead of as a remeshing preprocess. 

More specifically, nearby features may be pulled apart first through smoothing (Desbrun et al., 

1999), before being merged into the corresponding skeleton bone. This strategy avoids 

topological error, while still providing noise insensitive results without requiring additional 

parameters or a fully connected boundary. 

5.4 Methodology 

Given an input triangle mesh or voxelized model, this section introduces a novel algorithm that 

updates the triangle vertices (or voxel centers) in an iterative contraction process. This moves 

the vertices towards the shape centerline, and separates them into groups called bones. The 

input mesh connectivity (or adjacent voxel neighbors) is maintained through the contraction 

process (Figure 43 middle); therefore the output bones are already connected as a skeleton 

(Figure 43 right). This combined approach means that, unlike previous methods, additional 

parameters are not required to control the skeleton smoothness or connectivity, resulting in a 

more robust and simple algorithm.  

 

Figure 43 shows the iterative contraction process on a model of the human hand. The first five 

images show frames where the input shape (left) is contracted (middle) towards the shape 

centerline (middle-right). The image on the far right highlights topological branches and end 

features in the generated output. 

 

 

 Figure 43: The proposed contraction process operating on a model of the human hand. 
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The previous literature section concluded with a contraction strategy that initially pulls nearby 

features apart by smoothing them, and then merges them together into bones. The merge 

operation is based on Euclidean distance, which allows for accurate topological control as with 

other surface feature approximation methods (Boissonnat & Oudot, 2005; Miklos et al., 2010). 

But because merging is performed inside the contraction process, it only influences features 

which are already pulled apart from smoothing. This means that topological error can be 

avoided where nearby features are undesirably joined, while retaining the advantages of 

having accurate control over feature size, noise insensitivity, and low parameter requirements. 

 

It is not possible to smooth the entire mesh for several iterations, and then later switch to a 

Euclidean merge operation, because some parts of the mesh may contract before others. 

Therefore the smoothing and merging processes are interpolated based on a metric which 

determines how much the local mesh region has contracted. To clarify between smoothing 

and merging the terms local and nearby are used, where ‘locally adjacent’ vertices are those 

that share an edge in the original connectivity (also called one-ring neighbors, or adjacent 

voxels) and ‘nearby vertices’ are those close in Euclidean distance. 

 

Assumption: For simplicity of explanation, it is assumed that the input is a uniformly sampled 

mesh such that the length of any edge is   , for example by recursively subdividing any 

triangles whose edges are greater than  , replacing them with the medial triangle and three 

respective corner triangles. However in the preprocessing section, more inputs are discussed.  

Smoothing 

The umbrella operator is the simplest form of smoothing. It operates by updating each vertex 

  to the average of its locally adjacent one-ring neighbors   {  } 

 

   
 

| |
∑  

   

 (5.4.1) 

 

This operator requires uniform sampling; otherwise it produces sliding and distortion artifacts. 

These can be removed by introducing cotangent weights as with the discrete Laplace operator 

(Desbrun et al., 1999). However both of these approaches only operate locally, which makes 

them unsuitable to pull nearby parts of the mesh together into a skeleton, such as at 

topological branches. Therefore a different domain is needed. 

Merging 

To create a tight one-dimensional skeleton, nearby parts of the mesh can be pulled together 

into the same position by using the fixed-radius nearest neighbors of the contracting shape 
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regions. The merged positions   share a similar definition to smoothed positions  , but using 

a different domain: Let   {  } be the set of any nearby neighbors from the input mesh 

within Euclidean distance   of  . Therefore each vertex   is updated by averaging, where: 

 

   
 

| |
∑  

   

 (5.4.2) 

 

Advantage 1: Merging causes vertices to pull together tightly into groups (these become bone 

groups) because it is influenced by any nearby part of the mesh. This is in contrast to the 

discrete Laplace operator which undesirably pulls branches apart as a side effect of smoothing. 

 

Advantage 2: Additionally, merging stops contracting when groups are formed, because the 

spacing between vertices outside the group becomes greater than  . This prevents the 

oversimplification of end features in the output skeleton, which is commonly seen in 

traditional smoothing operations. Also the averaging does not have smooth weights, which 

means that it stops contracting immediately when groups are spaced   .  

 

Advantage 3: The parameter   determines the distance in which features are pulled together, 

which implicitly reflects the size of the output features. 

 

Disadvantage: Merging pulls vertices together too quickly, causing groups to form on the 

surface of the mesh instead of only on the skeleton. This means that contraction may 

terminate before thick regions of the model are able to form a skeleton, because the groups 

on the surface may have spacing greater than  . In order to eliminate this disadvantage, the 

antagonistic relationship between the smooth and merge operations is exploited in regard for 

the skeletonization problem. These properties are outlined in Table 4: 

 

Smoothing Merging 

Pulls branches apart Pulls branches together 

Smoothens features Retains end features 

Separates vertex groups Creates vertex groups 

Table 4: Antagonistic properties between smoothing and merging. 

 

It is observed that smoothing can be used to separate vertex groups that have prematurely 

formed on the surface of the mesh. This means that it can be used in combination with the 

merge operation in order to ensure the continued contraction of the mesh. However this also 
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introduces the new problem of deciding how to balance the combination of the two 

operations to give continuous contraction into a tight skeleton. 

Interpolation 

The influence of the merge operation must dominate the smooth operation at locally thin 

regions of the contracting mesh, otherwise the smooth operation will pull apart topological 

branches giving a non-thin skeleton. In harmony to this, the smooth operation can dominate 

the merge operation at thick regions of the contracting mesh in order to eliminate surface 

noise and continue the contraction process. Therefore the contraction proportion needs to be 

determined in order to distinguish between the thick regions of the contracting mesh that 

require smoothing, and the thin regions of the contracting mesh that require merging. The 

output skeleton must be zero-volume with a corresponding total surface area    , whereas 

the contracting mesh will have a total surface area    , where: 

 

   ∑  

   

                                        (5.4.3) 

 

Respectively, on examining the one-ring-area of each contracting vertex   with its original one-

ring-area  , it is observed that        where the vertex   is locally thin and therefore part of 

the skeleton. Similarly, it is observed that         for all parts of the mesh which have 

not yet formed a skeleton, e.g. the thick parts of the mesh. Therefore     can be used to 

decide how to interpolate between the smooth and merge operations. 

 

For each contraction iteration, let   and   be the new vertex positions for the smooth and 

merge operations respectively. The following are the four required prerequisites defined for 

the target interpolation between the two operations: 

 

1.         where        

2.                for       where       

 

This means that: (1) the merge operation must dominate contraction where the vertices have 

formed a skeleton, and (2) there must be some influence of the smooth operation where the 

vertices have not yet formed a skeleton. In its most simple form, a linear interpolation can be 

used to satisfy these conditions and perform skeletonization: 

 

     
 

 
      (5.4.4) 
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The linear interpolation in Equation (5.4.4) means that ‘smoothing’ dominates ‘merging’ more 

strongly in the initial contraction iterations, which results in the algorithm being highly 

insensitive to noise. More formally, it satisfies: 

 

3.                where   is large where noisy. 

4.                where   is small where there are features. 

 

That is  , or the thickness of the contracted region, is large where there is noise, and   is small 

where there are features: (3) high frequency surface features are smoothed whereas (4) the 

low frequency shape features are captured and separated into bone groups by the merge 

operation. It is possible to use more sophisticated forms of interpolation between   and   

which satisfy the four interpolation prerequisites, but these only influence the convergence 

properties of the contraction process. The other forms of interpolation would be unable to 

control the size of features or noise selection, which is instead controlled by varying   to 

influence the groups formed by the merge operation. 

5.5 Pipeline 

Skeletonization 

Skeletonization proceeds as an iterative contraction process which repeatedly applies Equation 

(5.4.4) to all vertices in the mesh. An automatic termination condition is required to stop 

contraction, which is challenging because the one-ring areas of vertices are sensitive to small 

fluctuations during smoothing, and the topology of the input mesh. These small fluctuations 

are caused by tension in the non-thin topological branches, where the smooth operation tries 

to pull branches apart just before they are tightened into a group by the merge operation. 

Therefore contraction cannot be terminated simply when the total surface area (Equation 

(5.4.4)) of the contracted mesh is equal to  . 

Termination 

To address this problem an elegant property of merging is exploited. Vertices stop moving 

when they converge on their respective bone groups, as the spacing between the groups 

becomes greater than  . Let   and   be the position of each vertex before and after applying 

Equation (5.4.4) at each iteration. The contraction process can be therefore terminated when 

the Euclidean distance           becomes insignificant for all the vertices: 

 

 ∑    (     )

   

   (5.5.1) 
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This condition is based on changes in the vertex positions directly. Also   is not sensitive to the 

topology or surface area of the input mesh, as with an area-based termination condition, 

because the merge operation eventually dominates the contraction process. However   is 

sensitive to the size of the input model, and therefore the mesh needs to be transformed to fit 

within the unit cube [   ]. This also allows   to capture similar-sized features for different 

model proportions, making the range of target feature sizes:       

Preprocessing 

The input mesh vertices are transformed such that the maximum side of the model’s bounding 

box is  . This means that a constant value for   can be used to support all sizes of model. In 

the implementation, it was found that        stops extremely intuitively, and that the 

contraction process stops without delay after the skeleton is visually zero-volume. Initially it 

was assumed that the input mesh is uniformly sampled. However applying uniform sampling to 

a polygon mesh can cause simplification of features or other topological information. However 

it is observed that the merge operation requires nearby neighbors within distance   and that 

it does not require regularity between the vertices or edge lengths. In the sparse volumetric 

deformation pipeline, the input SVOs are already uniformly sampled. Recall that   is specified 

to reflect the target feature size, therefore the smallest value for   can be automatically 

determined based on the resolution of the volume image. More specifically, for an input SVO 

of depth  , it is suggested to choose       to capture features equivalent to the size of 

each grid region. However the automatic selection of   is not mandatory as the user or 

application may manually vary   in order to control the output level of feature abstraction, as 

demonstrated in Figure 41.  

 

Unfortunately, adjacent voxels (belonging to any of the    possible neighbors in  D) include 

shape regions for nearby topological parts. In the literature, this was investigated by (Brunner 

& Brunnett, 2005) who examine the input primitives surface normal to disconnect topology in 

separate regions. This extends well for assuming uniform sampling in voxelized polygon 

meshes in order to calculate the one-ring-neighbors (Equation (5.4.1)), however in practice 

most SVOs are of sufficiently high resolution where this is not required (for example the 

shapes in Figure 1). The method operates only on nearby or locally adjacent data, which means 

there is no need for a fully-connected input. For example, multiple separate models can be 

placed in the same scene and the algorithm can simultaneously generate the corresponding 

skeletons in a single contraction process. This is one of the main advantages of contraction 

strategies. 
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Postprocessing 

The output of the contraction process is visually a thin skeleton, as all parts of the mesh have 

been merged into groups with zero area, and have kept their original edge connectivity. 

Therefore a connectivity-surgery procedure is not required to convert the mesh into a skeleton 

(Au et al., 2008). Instead, given that the spacing between each of the output vertex groups is 

less than  , a simple weld operation can be performed for any vertices within distance  , 

which collapses and removes duplicate edges from the mesh connectivity. This operation 

causes nothing to change visually: it simply removes duplicate merged vertices and edges in 

the output skeleton. It is important to keep track of any weld operations to create a skeleton-

mesh mapping between the new bones and the original vertices, for extended applications. 

Parameters 

The method only has two parameters:   is a value between   and   which corresponds to the 

size of features to be merged, generating unique and meaningful topology (Figure 41 and 

Figure 42). And  , which is a constant, determines when to automatically terminate 

contraction. In the implementation, it was observed that setting        is effective. That is, 

the value      is sufficiently small for the postprocessing weld operation to remove duplicate 

vertices and corresponding connectivity from the output skeleton. 

Summary 

The complete pipeline can be summarized in the following high-level pseudocode (Figure 44). 

This shows the simplicity of the method, with preprocessing (lines 2-3), iterative contraction 

(lines 5-10), termination (line 4) and postprocessing stages (line 11) discussed previously. 

 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

 
Skeletonize (Mesh mesh, float omega = 0.01f, Skeleton &out) { 
   mesh.FitToBox(1); 
   mesh.Tessellate(omega); 
   while (mesh.NotMovedBy(0.05)) { 
      foreach (Vertex v in mesh) { 
         Vertex s = Smooth(v); 
         Vertex m = Merge(v, mesh, omega); 
         v = m + (v.GetArea() / v.OriginalArea) * (s - m); 
      } 
   } 
   out = mesh.Weld(omega); 
} 
 

Generate a skeleton &out given an input mesh and target feature size parameter omega. 

 

Figure 44: High-level pseudocode for the complete pipeline. 
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5.6 Applications 

There are many applications given the simplicity of the proposed method, and its high output 

yield. This section describes a small selection of them, including: (1) refinement, (2) automatic 

segmentation, (3) automatic skinning, (4) solid voxelization, and (5) reconstruction. 

 

 

Figure 45: Applications: (a) shows the robust handling of a complex model in two different 
poses. (b) to (e) demonstrate other applications. 

Refinement 

The low parameter requirements enable a unique and interactive refinement application that 

reprocesses specified skeleton segments with new feature sizes, and automatically combines 

the output with the original skeleton. This is shown in Figure 46. Such an application is useful 

in modeling or animation, where an artist can have precise control over the detail at different 

parts of the skeleton, and make fast incremental changes without re-skeletonizing the entire 

model. The procedure is: 

 

1. Select bones in the skeleton to refine. 

2. For each selected bone, mark its vertices on the input mesh from the skeleton-mesh 

mapping. 

(i) Reprocess the full algorithm at a different resolution    using only marked 

vertices as input. 

(d) Skeletal Deformation 
from Skinning Application 

(b) Segmentation Application (c) Skinning Application Weights 

(a) Complex Model 
Poses with Mean- 
ingful Feature  
Abstraction 

(e) Reconstruction 
Application 
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(ii) Merge the old skeleton with the new output. 

 

Implementation is mostly straightforward, with the exception of merging the two output 

skeletons. This is challenging because a cut was made in the original mesh which contains 

undesirable sharp features which are retained during contraction (Figure 46a). To address this 

problem, vertices which are locally adjacent to the initial selection in Step 2 are highlighted. 

These highlighted vertices get reprocessed as with Step 2i, which means there is a shared 

highlighted region for both skeleton outputs. The new highlighted skeleton bones can be 

discarded, and the connectivity of any bones which are adjacent to the highlighted regions 

(from both skeletons) is joined to produce the final output (Figure 46b). 

 

Refinement can therefore be used as a means to fine-tune and make small incremental 

changes to the output skeleton. It is also possible to use an automatic selection criteria in Step 

1 to generate different results, such as selection based on: (a) end-bones (with only 1 adjacent 

edge), (b) the angle between bone edges, or (c) where bones leave the exterior of the input 

mesh surface; however a detailed evaluation of the performance and quality of such results is 

beyond the scope of this work. 

 

Figure 46: Application showing automatic refinement of multiple end features. 

Segmentation 

An automatic segmentation application can be created by setting the skeleton bones with 

colors, which are mapped onto the input mesh (Figure 45b). The bones directly correspond to 

the target feature size   and therefore produce unique and meaningful segmentations in 

complex models (see coloring in Figure 41b & Figure 45a). The output skeleton is an undirected 

graph of vertices and edges: label vertices with   adjacent edge as end features. Also identify 

branches as any vertices with   or more adjacent edges (Figure 41). These two sets can be 

colored to produce a feature extraction algorithm. If every end and branch feature is colored 

randomly, segmentation is a simple recursive function that colors vertices which are not yet 

Cut Region 
New Features 

(a) Before 
Refinement 

(b) After 
Multiple 

Refinements 
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visited by their adjacent (parent) color. Similarly hierarchy can be extracted for the skeleton by 

using Dijkstra's algorithm, where end features are used as seeds (source vertices) for the input.  

Skinning 

Skinned skeletons are the industry standard for efficient hierarchical animation, and are easily 

extendable to the GPU for real-time deformation  (Lindholm et al., 2001; R. Y. Wang, Pulli, & 

Popovic, 2007). The accompanying video shows smooth animations produced by automatic 

skinning: the skeleton-mesh mapping is used to transfer the segmentation assignments as hard 

skinning weights, which are later smoothed using their locally adjacent neighbors to produce 

softer weights. The output deformation from the soft weights is suitable for organic animation 

(Figure 45b d). 

Solid Voxelization 

The proposed method does not require a fully-connected boundary, and operates on damaged 

meshes (Figure 41 & Figure 42b) with control over the feature size through  . This makes it 

suitable for an intuitive solid voxelization application. At each contraction iteration, the input 

triangles   are voxelized with the updated vertex positions     (after Equation (5.4.4)) to 

produce a solid voxelization of the input mesh (Figure 45e). Initially a  D grid is allocated with 

voxels of size  . The rasterization process sets the corresponding corner voxels of  , and it 

sets the midpoint voxels from the medial triangle of  . Rasterization is then recursively called 

on the medial triangle and three corner triangles, while the distance between any of the 

corner voxels is greater than √ , that is the direct neighbors in all directions in  D voxel space. 

The output solid voxelization has applications in parameterization, visualization, and skinning. 

It is also used as input for the thinning method shown in Figure 47e. 

Reconstruction 

Solid voxelization (previous) can be produced from meshes with large holes even missing 

entire sides, which is appropriate for a reconstruction application. To reconstruct a damaged 

mesh, the boundary voxels are first labeled from the solid voxelization. Then, the voxelization 

process is repeated for the input surface, which is used to unlabel boundary voxels, leaving a 

new set of unlabeled boundary voxels at the positions of missing data in the original model. 

Surface meshing is applied to the union of both boundary sets giving new connectivity without 

holes. The input, voxelization, and output are shown in Figure 45e. 
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5.7 Evaluation 

In this section, the performance and quality are evaluated for the feature-varying method. This 

is followed with a visual comparison and discussion with other approaches from state of the 

art skeletonization literature. 

Performance 

The merge operation requires computation of nearest neighbors within a fixed radius ω. These 

are expensive to compute, requiring an acceleration structure such as a tree or a grid, to 

produce acceptable performance for inputs over a few thousand triangles. Results in this paper 

are based on an optimized implementation of the C++ ANN library (Mount & Arya, 2010) which 

uses a combination of kd-trees and box-decomposition trees to perform the fixed-radius 

search procedure. The simplicity of this method allows for the computation of the updated 

vertex positions to be done in parallel, as only nearby vertex information is required from the 

fixed-radius acceleration structure. 

 

Model # triangles                

  volume time volume time 

Alien 2,618 871 0.7s 15,662 4.6s 

Armadillo 69k 4,988 3.3s 52,839 22.5s 

Dragon 3.6mil 5,535 6.1s 58,565 24.0s 

Horse 10k 3,224 2.0s 43,860 10.2s 

Raptor 16k 367 0.5s 4,586 1.5s 

Sabretooth 1,156 1,286 0.9s 17,437 3.9s 

Table 5: This table shows performance and mesh volume in relation to the feature-size  . 

 

Table 5 shows the performance of the proposed method (preprocessing, iterative contraction, 

and postprocessing) using a 2.66 GHz processor with 8 processing cores and  GB RAM. 

 

The proposed method generates high-quality skeletons of feature size        within a few 

seconds, and it can nearly instantly produce simple skeletons of feature size          which 

only capture the primary model topology. Comparatively, the dragon takes greater than    

minutes to process with previous geometric contraction (Au et al., 2008), whereas the current 

implementation uses only    mb memory to store the dragon's vertices and acceleration 

structure, which is less than an unoptimized       voxelization containing undesired aliasing. 

It is observed that larger values of   result in faster contraction convergence; however the 

method is reasonably insensitive to the number of triangles as the merge operation pulls larger 
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features together in fewer iterations. Performance has a strong correlation to the volume of 

the mesh and a weak correlation to the number of triangles. This is seen in Table 5 where the 

volume columns  show the number of voxels of size   that are used to construct the solid 

representation of the model (this is calculated as discussed in the applications section: Solid 

Voxelization). The raptor model has a small volume but a large triangle count, and is shown to 

contract much faster than the sabretooth, which has a large volume but a small triangle count. 

Quality 

The output skeleton is discussed according to the generally-accepted properties (Cornea et al., 

2007) that an ideal skeleton should have. 

 

Thinness: Skeletons are zero volume with an area sum of  , therefore the thinness error is 

measured according to the amount in which the area has reduced from its original value. The 

error should always be zero, where: 

 

            ∑  

   

 ∑  

   

 (5.7.1) 

 

More specifically, the sum of one-ring neighborhood areas, after applying Equation (5.4.4), is 

divided by the sum of the original areas. The method continuously contracts while the area 

is   , and terminates when all contraction movement stops (Equation (5.5.1)). Therefore it 

always produces    error in Equation (5.7.1), and a completely thin  D skeleton. 

 

Topology: Contraction interpolates between the merge and smooth operations. The merge 

operation pulls together nearby features of size  , which does not guarantee there being the 

same number of connected components, or at least one loop for every tunnel or cavity in the 

input mesh, therefore it is not homotopic. Instead the generated topology relates more 

meaningfully to the target feature size. This can be seen in Figure 41b & Figure 45a, where the 

skeletons better represent the general shape of the input model. This is more useful for 

animation applications, and in creating different levels of skeleton detail for efficient real-time 

rendering (Lindholm et al., 2001) or on-demand download (F. W. B. Li, Lau, Kilis, & Li, 2011) as 

required by online gaming systems. In contrast, homotopic skeletonization may cause 

disconnection artifacts where the mesh is not watertight (Figure 47b middle), however the 

merge operation better approximates the shape according to nearby features (Figure 47a 

middle), and can even preserve internal loops (Figure 47a top) according to the desired target 

feature abstraction. This gives unique topology which is highly suitable for applications 

including deformation and shape comparison. 
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Centeredness: Changing the feature abstraction and topology through   creates skeletons of 

varying centeredness within the model. This is clearly shown in Figure 41b and Figure 45a, 

where the skeletons leave the mesh boundary in order to better capture the specified feature 

size. However an attractive property of the method is observed where both the homotopy and 

centeredness consistently improve with smaller values of  , as the merge operation can only 

bridge topology in features which are smaller than   (e.g. surface noise). 

 

Noise Invariance: The smoothing operation leads the initial contraction iterations (Equation 

(5.4.4)) which removes small features or surface noise, before the merge operation is able to 

capture them. This process is controlled by a target feature size   where features of size    

are removed and features of size    are retained. This is demonstrated in Figure 42d and e, 

where noise was introduced by randomly displacing vertices by      , and using a value of 

        for the algorithm. 

 

Isometric, Rotational and Pose Invariance: The output skeleton is invariant under isometric 

transformation, as it is not dependent on the object orientation, a user-specified root point, or 

a height function. Contraction conforms to nearby features through the merge operation 

without requiring user interaction. The contraction process in Equation (5.4.4) is also invariant 

under global rotations (rotational invariance), and locally invariant under local rotations, and 

therefore pose-invariant, as shown by the identical topology of the two skeleton poses in 

Figure 42e and Figure 42f. 

 

Mesh Prerequisites: Skeletonization methods can introduce input restrictions such as requiring 

genus zero topology, or a properly connected, manifold closed mesh. The proposed method 

introduces no such restrictions beyond a simple preprocess to satisfy the domain of the merge 

operation. The contraction process uses nearby vertex positions and one-ring areas, making it 

extremely robust and capable of handling severely damaged models (Figure 42b), with holes 

(Figure 42b & d), high genus (Figure 42c & Figure 47a Bike), nearby parallel regions (Figure 

47a Bike), surface noise (Figure 42d), and even consisting of multiple separate disconnected 

parts (Figure 41 & Figure 47a Mech). 

 

Resolution Invariance and Parallelization: The proposed method operates at varying resolution 

according to the target feature size  . It is not limited to voxelized inputs, with low-resolution 

artifacts as seen in thinning algorithms (Figure 47e). Also the method is suitable for parallelism, 

given the small dependencies of the domains in Equations (5.4.1) and (5.4.2). 



Figure 47:  Comparing methods for common failure cases 

The models in this figure have been carefully selected to be difficult to skeletonize. The bike has a low triangle count with nearby parallel regions (the wheels). The mech is 

also difficult to skeletonize as it consists of multiple disconnected components. Similarly, the horse contains disconnected and self-intersecting components.

(a) Feature-Varying Skeletonization 

Feature Size         

(The Proposed Method) 

(b) Geometric Contraction 

(Au, Tai, Chu, Cohen-Or, & Lee, 

2008) 

(c) Sampled Geometric Contraction 

(Cao, Tagliasacchi, Olson, Zhang, & Su, 

2010) 

(d) Propagation from Critical Points 

(Ning, Li, Zhang, & Wang, 2010) 

(e) Thinning from Voxelization 

(L. Liu, Chambers, Letscher, & 

Ju, 2010) 



Comparison 

The focus of this comparison is with unassisted methods, which excludes height functions: 

harmonic and reeb-graphs, database-training, pose-learning, and root specification; however 

contraction and propagation strategies are discussed. In Figure 47 the method is compared 

using mechanical and organic models of a Bike, Mech, and Horse. These three models cover a 

large range of shape properties including: poor connectivity, depth-variation, topological 

loops, non-manifold parts, nearby disconnected vertices, sharp angular features, flat regions, 

sparseness, and dense geometric detail. 

 

Contraction: Figure 47b shows a popular contraction method (Au et al., 2008) which produces 

homotopic skeletons. Their method is highly sensitive to the connectivity (Figure 47b middle), 

and vertex distribution (Figure 47b top), resulting in poor abstractions for many models (Figure 

47b bottom). The work by (Cao et al., 2010) improves the result by introducing remeshing as a 

preprocess (Figure 47c), however this introduces error with unpredictable feature abstraction 

(Figure 47c middle). Figure 47e shows a thinning method (L. Liu et al., 2010) using the Solid 

Voxelization application as input. Thinning can be performed in parallel and produces good 

curve-skeletons on the Bike (Figure 47e), but requires post-processing to segment the output 

into bones (Brunner & Brunnett, 2005) and the output from voxelization is often sensitive to 

the surface boundary (Figure 47e middle & bottom). 

 

Propagation: A state of the art propagation method based on critical points was implemented 

(Ning et al., 2010) but, their result was improved (Figure 47d) by ensuring proper connectivity 

with uniform sampling, which is similarly achieved by (Hassouna & Farag, 2009) requiring solid-

voxelization as input. The methods require manually setting multiple parameters to control the 

surface or volume samples, and to control the conditions for connecting the propagating fronts 

in topological loops. Also (Ning et al., 2010) is limited in high genus inputs (Figure 47d top).  

 

In summary, the proposed method is classified as a contraction method, however in contrast 

to previous contraction and propagation methods, it has a simple implementation which only 

requires two parameters:   and a constant  , to produce efficient thin skeletons with 

meaningful topology. Skeletons can be produced for high genus models without requiring 

proper connectivity or a manifold closed mesh. Furthermore, the results predictably retain 

features of size  , to produce useful variation in topology, centeredness and control over the 

level of feature abstraction. 
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5.8 Chapter Summary 

This chapter has presented a unique skeletonization method that creates meaningful topology 

and feature abstraction according to a target feature size  . Not only does   control the 

efficiency of the algorithm, where large values allow for interactive skeletonization on huge 

inputs, but also it gives control over the degree of homotopy and centeredness of the output. 

Contributions 

Feature-varying skeletonization addresses the problem of controlling the target feature size in 

automatically generated skeletons. This is important for real-time animation, which only needs 

to simulate deformation for the main model features, whose size is greater than  . In the case 

of volume images, sparse voxel octrees, or uniformly sampled models, the value for   can be 

suggested automatically by the sample spacing. Therefore, in such cases, the method can run 

without requiring any input parameters. In the case of polygon-meshes, the algorithm can 

operate on severely damaged, disconnected models, which sets it apart from the majority of 

the existing literature. The algorithm is also highly insensitive to noise, as features smaller than 

  are smoothed, whereas features larger than   are retained by a novel merge operation. The 

contraction process is controlled by simple and efficient interpolation which guarantees the 

resulting skeleton to be zero-volume, where vertices are automatically separated into groups 

that represent the output bones. These maintain correspondence with original model for many 

applications, including skinning and segmentation. 

Limitations 

The merge operation ensures that vertex groups are spaced   , but in rare cases the vertices 

may progressively merge with denser regions, resulting in sparser bone positioning where fine 

features join with larger features. Ideally every bone should be spaced with a distance of   for 

robustness and regularity, which could be achieved by introducing a length constraint into the 

iterative contraction process. Also, the termination condition can be improved by being local, 

instead of global (for all vertices). This would prevent processing vertices that have already 

formed parts of the skeleton, and require no further contraction or processing. Furthermore, 

the method is neither homotopic nor centered (Figure 41b & Figure 45a) because the skeleton 

features are specified according to the target size  . Future approaches could analyze the 

input in order to determine different values of   for each input vertex. The aim would be to 

generate a single centered, unique, and homotopic result. However such analysis is challenging 

because of surface noise, which may require at least one parameter. Also this strategy will not 

always generate useful results in cases such as Figure 41a. 
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Chapter 6 

Conclusion 

6.1 Summary 

This thesis has conducted research in the area of deforming volumetric shapes in real-time. 

Efficient and high-quality solutions have been found for the problems of selecting, deforming, 

resampling, reconstructing hierarchy, and rendering dynamic volumetric content. In addition, 

an automatic skeletonization algorithm has been presented, which generates feature-varying 

and mapped control skeletons for intuitively and efficiently manipulating the underlying shape 

regions. This thesis therefore takes a step forward to the goal of interactively modeling shapes 

as observed in the real world, which are volumetric, sparse, and dynamic. This enables new 

applications in real-time computer animation and in realistic large-scale simulations. 

 

In the existing literature, massive real-time animated scenes are often modeled with multiple 

polygon meshes, of which different geometric detail representations are switched in memory 

for each shape, which are further tessellated and displaced on graphics hardware according to 

the region of interest. In order to apply deformation efficiently in parallel, the nearby meshes 

are selected, and then their vertices are transformed using the vertex shading capabilities of 

graphics hardware. This is then followed by discarding unimportant shape regions by clipping 

them according to the viewing frustum: this approach therefore processes many undesirable 

regions of the input shapes, such as those occluded by other parts of the model. Furthermore, 

the tessellated surface details do not support overhanging ledges and the irregular distribution 

of the mesh geometry often leads to intersections and undesirable tearing, as seen in Figure 

34 (lower). In contrast, the proposed pipeline only applies deformation to contributing shape 

regions within a parallelized selection process (Figure 13) that operates on purely volumetric 

shapes. This means that calculations are only applied to the important shape regions, which 

are partitioned and simulated hierarchically, giving smooth transitions between geometric 

resolutions according to the projection and occlusion criteria (Table 1). By tuning these criteria 

according to the capabilities of the target machine, the resolution of the displayed shape 

regions can be controlled, which fulfills the objective of balancing the simulation accuracy and 

efficiency, highlighted in Chapter 1. Furthermore the input volumetric shapes support complex 

internal features and overhanging ledges, such as the tree in Figure 1, without the limitations 

and intricacies encountered when modeling with parametric surfaces. 
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The volumetric shapes are automatically mapped to a generated skeleton structure that allows 

for easy and intuitive manipulation of the underlying shape regions, and allows for expensive 

constraints to be enforced in real-time on the simplified structure geometry. In the literature, 

skeletonization methods strive to be centered and homotopic; however it is observed that the 

generated skeletons may not capture a meaningful approximation of the shape features for 

complex topologies or damaged inputs. Also, unintuitive parameters are often introduced to 

address issues such as surface noise or how topological parts are connected, which hinders the 

modeling process. In contrast, a feature-varying strategy is introduced that unites these issues 

under a single parameter, which gives control over the output topology and the target size of 

the captured features. This means that skeletons can be generated robustly and efficiently 

according to the feature size parameter, allowing for usable skeletons to be generated for 

complex, damaged, or noisy models. Therefore the objective of usability has been addressed, 

as the labor-intensive workflow of creating and mapping control skeleton structures has been 

streamlined. Furthermore, the volumetric shape regions can be updated efficiently by their 

mapped skeleton geometry, which helps enable real-time animation in massive scenes. 

6.2 Limitations 

This research has not investigated filtering the deformed volumetric shapes, and therefore the 

generated images appear undesirably thick, soft and dull in comparison to other approaches 

(Figure 34). It is challenging to efficiently calculate pre-filtering in dynamic pipelines, as this is 

typically calculated in a bottom-up process, regardless of the resolution accurately required for 

rendering (Crassin, 2011). Also, it requires more memory consumption to store accurate pre-

filtering subpixel information (Heitz & Neyret, 2012; S. Laine & Karras, 2011) and therefore it 

may be worth investigating other techniques to improve the appearance of the voxels, such as 

depth-of-field and postprocessing effects (S. Laine & Karras, 2011; Síleš, 2012). 

 

In order to determine which voxels are visible during the selection process, a hierarchical  -

buffer approach is used; however the limitations of this approach are that it does not consider 

visibility data from transparent objects, and that the visible regions are out-of-date by a single 

frame (Figure 40). The advantage of the hierarchical  -buffer is that the visibility information is 

already organized, and can therefore be sampled efficiently during the selection algorithm 

with a small number of cache-coherent texture fetch operations. Therefore, to support more 

sophisticated visibility feedback, more memory is needed to store the visibility of transparent 

objects, and also additional organization of the feedback data may be required to ensure that 

the information can be efficiently retrieved during the selection process. Novel visibility criteria 

are also particularly challenging to design, as they need to consider the temporality of dynamic 

shapes, which may be occluded by different parts of the model according to its animation. 
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6.3 Contributions 

This thesis contributes to the field of real-time computer animation by providing efficient and 

high-quality solutions to the problems of selecting, deforming, resampling, and manipulating 

massive amounts of volumetric shapes in sparse scenes. These problems are important as the 

shapes observed in the real-world are volumetric, and many modern applications require more 

accurate simulation with a robust closed-manifold surface definition without self-intersections, 

and with support for complex solid shapes. The selection and deformation problems are two 

fundamental challenges faced with animated volumetric shapes. This is because the volumetric 

shapes store huge amounts of geometric information, which requires careful organization to 

accelerate shape queries for real-time applications; however animation may destroy the pre-

calculated data organization. Instead, the proposed pipeline (Figure 13) makes use of hierarchy 

applied to instanced input shapes, and then simulates deformation inside a parallel selection 

process without wasting deformation calculations on unimportant parts of the scene. In any 

applications where further content organization is needed, hierarchy is efficiently constructed 

in parallel for the much smaller set of contributing regions at the required resolution. 

 

Deforming the volume elements of input shapes causes their quadrangular faces to become 

nonplanar, which is extremely difficult and expensive to test for intersection. This problem is 

addressed with efficient resampling strategies that generate samples for the deformed voxels 

at the grid locations in a sparse voxel octree structure. The corresponding voxels can therefore 

be set at the new sample locations when the SVO hierarchy is constructed, which is designed 

to prevent any gap or distortion artifacts from occurring (Figure 4). It is observed that adding 

more samples is more accurate, but less efficient, and therefore two solutions are presented 

to target different applications: (1) by generating a fixed number of samples for consistent 

efficiency, and (2) by generating a varying number of samples for consistent accuracy. These 

solutions are measured by comparing them with the unaligned input, which is then developed 

into a practical Decision Tree. After this resampling process, the SVO hierarchy is constructed 

in parallel for the contributing regions, as discussed in the previous paragraph, which means 

that the deformed shapes can be efficiently tested for intersection in real-time applications. 

 

It is challenging to create appealing animation for massive scenes with lots of detailed shapes, 

as complex and realistic deformations can require constraints that are otherwise too expensive 

to calculate for all the selected shape regions in real-time. In the literature, this problem is 

addressed by using a control structure abstraction, which acts on behalf of the shape features, 

and can be manipulated more efficiently and intuitively. Therefore, expensive constraints, such 

as kinematic linkages or physical rules, can be applied directly to the simplified structure, and 

the shape regions can be updated efficiently by a mapping to the structure geometry. This 
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means that deformation can be modeled with an efficient interpolation process, which is more 

suitable for real-time animation. However, creating and mapping these structures to the input 

shapes is a problematic and laborious task: cage-based structures are simple to generate, but 

they fail to capture high-frequency features unless the cage resolution is increased, which 

impacts the efficiency. In contrast, accurate skeleton structures are good at capturing shape 

features, but they are difficult to define as the shape centerline is highly sensitive to the shape 

topology, and also to noise found on the shape boundary. This problem is addressed with an 

automatic feature-varying skeletonization algorithm (Willcocks & Li, 2012) that contributes to 

the field of geometric modeling by generating meaningful skeleton abstractions for complex, 

damaged, or noisy inputs. This is achieved by using a single tunable parameter, which controls 

the output topology and the target size of the captured features, allowing users to rapidly set 

the desired approximation of the shape features in order to generate efficient animations. 

6.4 Applications 

This research has focused on the real-time animation of large amounts of volumetric shapes, 

which is an important step towards the goal of simulating shapes as they occur in nature. The 

results demonstrate the potential of volumetric shapes in the real-time graphics industry: in 

particular in large-scale virtual simulation, such as environmental, flight, medical, military, or 

crowd simulations. In such cases, simulating accurate animation for large amounts of objects is 

important; however, achieving this efficiently in parallel often requires artist-specified levels of 

simulation, such as manually refined level of detail meshes or imposter geometry. In contrast, 

the proposed method partitions and simulates shape regions hierarchically, giving smooth 

transitions between the simulation levels according to the projection and occlusion criteria. 

This approach is less noticeable allowing for more immersion within the virtual environment.  

 

Volumetric shapes are also an interesting proposal for the computer games industry. However 

the popular development workflows focus on polygon-based production pipelines and tool 

chains. Recently, volumetric shapes are being used in parts of these pipelines, such as in 

volumetric sculpting and terrain modeling, whereby volumetric shape information can either 

be baked to displacement textures and tessellated using graphics hardware, or converted to 

polygons. While this work proposes a purely volumetric workflow, there still needs to be a 

large amount of effort to address issues such as filtering and designing production tools from 

the ground up to use volumetric primitives in physical effects encountered during video 

games, which includes simulating collisions, fluids, cloth, and various natural phenomena. 

 

In addition to virtual simulations and video games, this research has applications in geometric 

modeling. The proposed feature-varying skeletonization algorithm addresses the challenge of 

generating meaningful control skeleton structures, which describe important features of the 
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underlying shape. This therefore enables artists to rapidly generate a skeleton structure for 

their input shapes, by simply tuning a single parameter to capture the desired size of feature 

abstraction, which improves productivity in comparison to the manual process of specifying 

and mapping bones to the input shape. The generated feature-varying skeletons can either be 

used directly in real-time animation, or they can act as a descriptor for features and properties 

of the input shape. Additionally, the skeletons can be further fine-tuned, either manually or as 

an assisted process (Figure 46), according to the specific requirements of the artist. This would 

therefore be a useful addition to increase usability in existing modeling tools. 

6.5 Future Work 

The objective of this thesis is to enable real-time support for directly manipulating, deforming, 

and rendering massive amounts of volumetric content in sparse scenes. In the future, it would 

be worth comparing different types of volumetric storage formats, filtering representations, 

and postprocessing effects that improve the appearance of volumetric shapes. In particular, it 

would be beneficial to understand how volumetric shapes can be encoded with small memory 

consumption while achieving realistic shape representation, and also to understand which 

types of filtering approach can be supported with dynamic pipelines such as in this thesis. This 

would allow volumetric shapes to be used more widely in industries that require more realistic 

real-time shape representations and will lead to more modeling and rendering applications. 

 

It would also be worth extending the sparse volumetric deformation approach to handle more 

sophisticated visibility feedback information from the renderer, including transparent objects 

and lighting information from different views in the scene. This would allow for more accurate 

images to be generated with indirect lighting, and for more efficient images to be generated 

with transparent shapes; currently all of the transparent shape regions need to be simulated, 

which is not scalable in massive scenes. 

 

Finally, in the future, it would be exciting to develop volumetric production pipelines and tool 

chains which are designed from the beginning to target large-scale volumetric animation and 

rendering. The current real-time  D graphics industry is heavily influenced by polygon-specific 

workflows that only use volumetric shapes in a small part of the modeling process. These 

shapes are often converted back into polygon meshes for rendering, which greatly hinders 

productivity and adds undesirable complexity for developers and artists. It would therefore be 

beneficial to develop and compare new volumetric tool chains that consider using volumetric 

shapes as the basic primitive for simulating collisions, fluids, cloth, wrinkles, fire, clouds, rain, 

and various other effects and natural phenomena observed in the real-world. 
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