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Abstract

Computational design of mechanical components is an iterative process that involves multiple

stress analysis runs; this can be time consuming and expensive. Significant improvements

in the efficiency of this process can be made by increasing the level of interactivity. One

approach is through real-time re-analysis of models with continuously updating geometry. In

this work the boundary element method is used to realise this vision. Three primary areas

need to be considered to accelerate the re-solution of boundary element problems. These are

re-meshing the model, updating the boundary element system of equations and re-solution of

the system.

Once the initial model has been constructed and solved, the user may apply geometric

perturbations to parts of the model. A new re-meshing algorithm accommodates these changes

in geometry whilst retaining as much of the existing mesh as possible. This allows the majority

of the previous boundary element system of equations to be re-used for the new analysis.

Efficiency is achieved during re-integration by applying a reusable intrinsic sample point

(RISP) integration scheme with a 64-bit single precision code. Parts of the boundary element

system that have not been updated are retained by the re-analysis and integrals that mul-

tiply zero boundary conditions are suppressed. For models with fewer than 10,000 degrees

of freedom, the re-integration algorithm performs up to five times faster than a standard

integration scheme with less than 0.15% reduction in the L2-norm accuracy of the solution

vector. The method parallelises easily and an additional six times speed-up can be achieved

on eight processors over the serial implementation.

The performance of a range of direct, iterative and reduction based linear solvers have

been compared for solving the boundary element system with the iterative generalised min-

imal residual (GMRES) solver providing the fastest convergence rate and the most accurate

result. Further time savings are made by preconditioning the updated system with the LU

decomposition of the original system. Using these techniques, near real-time analysis can be

achieved for three-dimensional simulations; for two-dimensional models such real-time perfor-

mance has already been demonstrated.
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KLD Karhunen-Loève decomposition

LU Lower-upper

LUT Look-up table

MINRES Minimal residual

MSRS Matrix system reduction solution

POD Proper orthogonal decomposition

PWH Plate with hole

QMR Quasi-minimal residual

ROM Reduced order modelling

RISP Reusable intrinsic sample point

SVD Singular value decomposition

SVD-POD Singular value decomposition

based proper orthogonal

decomposition

TFQMR Transpose free quasi-minimal

residual

TWC Thick walled cylinder

– xviii –



Nomenclature

For convenience the nomenclature has been split into sections. ‘The mesh and geometry’ lists symbols re-

lating to the model and mesh geometry along with variables used in the meshing and re-meshing schemes.

‘The boundary element method’ contains symbols used in the boundary element method and for integra-

tion of the problem. ‘Adaptive cross approximation’ contains variables used only in the construction of

an adaptive cross approximation of the system matrix. ‘System solution’ lists symbols used in linear and

reduction based solvers and symbols related to the output such as stresses and error measures.

The mesh and geometry

a, b, c Local coordinate axis system.

A Area inside an element.

C Centre of curvature.

Cmin Minimum number of elements around
any arc.

D A diameter.

d The distance through which updated
geometry has been moved.

Ei An element.

F A flag.

FEu Element update flag.

FLu Line update flag.

FNu Node update flag.

FPu Patch update flag.

h Normal distance from patch to a point.

K Location of the tip of a cone.

l Length of a line.

li A distance along a line.

L Length of an element.

Lmin Shortest dimension of a quadrilateral
element.

Lmax Longest dimension of a quadrilateral
element.

L̂max Nominal maximum element size.

Li A line.

M Point on an axis or rotation.

nE Number of elements in the model.

nEu Number of elements updated after a
geometric perturbation.

nN Number of nodes.

nR Number of rings of points around arcs
and return angles.

N Unit outward normal to a surface.

Ni A node.

O Origin of a local coordinate axis
system.

P Point on a surface.

Pi A patch.

Q Quality of an element.

QA Element quality according to the
aspect ratio.

QC Element quality according to the circle
ratio.

QL Element quality according to the
length ratio.

Qθ Element quality according to the angle
ratio.

Qmin Nominal minimum element quality.

Q̄ Mean element quality.

Q̄min Nominal minimum mean element
quality.

r A radius.

Rc Radius of a circumcircle.

Ri Radius of an incircle.
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[R] Rotation matrix.

s Semiperimeter of an element.

S̃ Standard deviation of element quality.

S̃max Nominal maximum standard deviation
of element quality.

tm Time to re-mesh a model.

T A translation vector.

TL Translation vector applied to a line.

TN Translation vector applied to a node.

TV Translation vector applied to a vertex.

u, v, w Parametric coordinates.

Vi A vertex.

x, y, z Cartesian coordinates.

α Half angle in the tip of a cone.

β The angle subtended by the material
at a point.

γ Mesh update propagation coefficient.

δ1, δ2 Start and end element lengths on a
line.

θ Angle about an axis of rotation.

θa, θb, θc Internal angles of a triangular element.

κ Mesh refinement factor.

λ Grading factor of elements along a
line.

λmin Minimum grading ratio along edges.

λmax Maximum adjacency ratio around
vertices.

φ Angle between the outward normal of
a patch and the z axis.

ϕ Parametric internal angle of a conical
surface.

The boundary element method

a1, a2 Tangential vectors.

b1, b2, b3 Local orthogonal unit axes.

[A] System matrix.

b Body force per unit volume.

{b} Right hand side vector.

[B] Right hand side matrix.

cij Smoothness coefficient.

Dkij Derivative of Uij .

e Prescribed integration tolerance.

ei A unit vector in the direction i.

E Young’s modulus.

[G] An influence matrix.

[H] An influence matrix.

J The Jacobian.

m The number of Gauss points along
each axis of a parametric element.

m̂ The total number of Gauss points on
an element.

n Outward normal of a surface.

Nk A shape function.

p A source point.

q A field point.

r A distance between two points.

R Distance between a point and an
element.

S Speed up factor.

Su Speed up of the update routine.

Skij Derivative of Tij .

t A traction.

{t} Traction vector.

t∗ A weighting function related to the
traction field generated from some
arbitrary loads.

t̃ A prescribed traction boundary
condition.

tui Time to re-integrate a model during
update step i.

Tij Traction kernel.

u A displacement.

{u} Displacement vector.

u∗ A weighting function related to the
displacement field generated from
some arbitrary loads.

Uij Displacement kernel.

w A weight.

{x} Solution vector.

{y} Boundary condition vector.

Γ A boundary.

δij Kronecker delta.

ε A strain.

ϑ Angle between ξ and η.

λ Order of a singularity.

µ Shear modulus.

ν Poisson’s ratio.

ξ, η Parametric coordinates.
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σ A stress.

ψ Scaling factor.

Ω A domain.

Adaptive cross approximation

[A′] An admissible block of matrix [A].

{b′} Part of vector {b} associated with
block [A′].

C A set of points.

dC Maximal distance between any two
points in C.

{ei} A unit vector in the direction i.

m′ Number of columns in an admissible
block.

n′ Number of rows in an admissible
block.

rC1C2
Minimum distance between groups of
points C1 and C2.

s Number of vectors used in a cross
approximation.

[Sk] A cross approximation of a block
reconstructed from k basis vectors.

{uk} Row vectors in a cross approximation.

[U ] Row vectors used in a cross
approximation.

{vk} Column vectors in a cross
approximation.

[V ] Column vectors used in a cross
approximation.

γ Scaling factor used to construct a
cross approximation.

εF An error calculated using the
Frobenius norm.

κ Block admissibility scaling factor.

ı,  Arrays of IDs for rows/columns
already used in a cross approximation.

System solution

[Ai] System matrix after update i.

{bi} Right hand side vector after update i.

Kt Stress concentration factor.

[L] A lower diagonal matrix.

[LU ] LU decomposition matrices stored in a
single matrix.

m Number of basis vectors.

[M ] A preconditioning matrix.

n Number of DOF/size of a system of
equations.

n̂ Maximum number of solver iterations.

nu Number of updated DOF.

nui Number of DOF changed during
update step i.

{r} Residual vector.

s A number of analysis runs.

Ss Speed up of the solver routine.

[S] Schur compliment.

t Total re-analysis time.

tB Time to construct a set of basis
vectors.

tsi Time to solve a linear system of
equations during update step i.

[U ] An upper diagonal matrix.

{x̂} Benchmark {x} vector.

{xi} Solution vector after update i.

α An eigenvalue.

εx The error in vector {x}.
εσ The error in vector {σ}.
{ζ} A vector of coefficients ζj .

κ The condition number of a matrix.

{σ} A stress vector.

{σ̂} Benchmark stress vector.

σt Tangential stress.

σVM von Mises stress.

{ϕi} A single basis vector.

[Φ] An orthonormal basis.

{ψi} A single basis vector.

[Ψ] An orthonormal basis.
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Chapter 1

Introduction

“The trouble with having an open mind, of course, is that people will insist on coming along

and trying to put things in it.”

Terry Pratchett

1.1 Thesis statement

The primary aim of this work is to build a new stress analysis computer aided design (CAD) software

package that is capable of accurately re-analysing three-dimensional computer models of simple mechan-

ical components in real-time as the geometry is updated by the user. This software has become known as

Concept Analyst 3D (CA3D) after Concept Analyst (CA) [1], a two-dimensional boundary element (BE)

CAD package which already features real-time functionality. It is intended that this software should

be used at the conceptual design stage to aid the engineer in optimising the design of components or

checking the tolerances. This would make it possible to design components more appropriately for their

expected loading from the earliest design stages and thereby remove the need to make costly adjustments

later in the design process if the geometry were found to be unsuitable. As the software is for conceptual

purposes it should be intuitive to use.

To realise these goals in three dimensions, new boundary element techniques which incorporate a new

re-meshing scheme and a modified re-integration algorithm, have been developed. These new algorithms

enable re-use of unchanged model geometry, after a geometric perturbation, to limit propagation of

changes through the mesh and thereby accelerate the reconstruction of the boundary element system of

equations. Research carried out as part of this work has established that the updated system is most

efficiently and accurately solved using a generalised minimal residual (GMRES) solver. The GMRES

algorithm has been optimised for the current work and incorporates an approximate complete lower-

upper (LU) preconditioner, generated during a full initial analysis.

In this work the term ‘re-analysis’ has been used to define the process of updating the BE system

of equations after a geometric perturbation, re-using unchanged parts of the mesh and hence unchanged

matrix coefficients where possible, and solving the modified system thereby created.

This work has produced software capable of re-meshing and re-analysing small models (in terms

of number of elements) up to ten times per second and has significantly accelerated the re-analysis of

larger problems. This software can be used to rapidly evaluate stress concentrations and interactions for

geometry which may be hard to find in handbooks such as Peterson’s Stress Concentration factors [2].
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Chapter 1: Introduction

1.2 Significance

Stress analysis of mechanical components has become an essential part of the validation of engineering

designs but it can be time consuming and expensive. It is desirable to shorten the design cycle, thus

reducing development costs and enabling new products to be brought to market in the shortest time

possible. It is of particular importance to obtain the most suitable design at the conceptual design stage

as the cost of any change at later stages grows rapidly. For many components this can be done only

through rapid computational analysis of a wide range of initial geometries. This work aims to create a

CAD software package capable of providing real-time feedback whereby the early design can be driven

by the stress distribution in the model rather than simply validated later in the process.

This work could also be applied to other applications. It could be used to provide accurate real-

time feedback to surgeons during training exercises or real operations. By coupling the analysis to an

optimisation algorithm, efficient structures could be rapidly created for any application ranging from

bridges to thermal conductors. The algorithms could also be used within graphics software to provide

deformable models which can be interacted with, such as structures in computer games.

1.3 Background

Writing in 1990, Kane et al. [3] found no published work on iterative re-analysis using the boundary

element method (BEM) and noted that many published finite element method (FEM) re-analysis tech-

niques were slower than an entirely new analysis. Real-time analysis of two-dimensional models is now a

reality [1]. However, real-time stress analysis of three-dimensional objects presents numerous additional

challenges. Over the last decade, various FEM based schemes that aim to provide interactivity have

been presented [4–7]. Meier et al. [8] review a range of deformable models that utilise both finite ele-

ment (FE) and BE techniques. The BEM is a natural method to use where re-meshing is involved as

changes need to be applied only to elements on the surface of the model. If the volume were meshed, as

in the case of the FEM, then changes would propagate further through the model and many more degrees

of freedom (DOF) would be affected. Mackie [4] presents a substructuring approach that attempts to

ameliorate these difficulties. Wang et al. [9, 10] explore the potential of the BEM to generate real-time

responses to forces applied to an elastic deformable object. They specifically review these techniques

for application in providing haptic feedback for neuro-surgical simulations but provide a comprehensive

review of techniques for deformable models using various methods, not just computational continuum

mechanics. However, most of these are concerned with FE implementations as very few BE based strate-

gies exist. Bro-Nielson and Cotin [11] were among the first to consider application of FE analysis to

real-time simulation of surgical procedures. However, they limited analysis to a standard set of models

for which the computationally expensive matrix inversions required to solve the problem have already

been computed.

Real-time updating is also of interest to computer game developers to provide realistic deformable

objects. For example, James and Pai [12] discuss the use of the BEM to provide physically accurate

simulation of three-dimensional objects. However, as the technique is used purely for visual approximation

of deformations, a much lower degree of accuracy is required than for stress analysis and a coarse mesh

can be used resulting in a very fast analysis. Pre-computed solutions are also utilised. Deformable models

for graphical display are extensively reviewed by Gibson and Mirtich [13] and Meier et al. [8], who are

especially concerned with techniques applicable in surgical simulation, covering both FE and BE methods.

Meier et al. classify methods based on the compromise between interactivity and motion realism, rating

the BEM as a particularly good method due to computational speed and the fact that it is more robust

than the other models.
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1.3: Background

CA [1], a two-dimensional BE stress analysis package that features real-time functionality, has already

been developed. The current work aims to extend this interactive, real-time stress analysis capability

into the three-dimensional domain. This involves the development of innovative techniques to generate,

update and analyse the mesh. A key part of achieving this goal is the creation of a re-meshing algorithm.

A high quality initial mesh must be created to produce an accurate initial analysis using the minimum

number of elements. The mesh should further be capable of absorbing some of the distortion introduced

as the user updates the model. A concise data structure is also required to aid rapid re-meshing.

Many authors have proposed algorithms for re-meshing FE and BE models, often in an adaptive

scheme. Adaptive refinement schemes, which are extensively reviewed for BEs by Kita and Kamiya [14],

inform re-meshing through the errors in an initial analysis. Depending on the scheme selected different

strategies may be employed: h-refinement requires subdivision of an existing mesh; p-refinement retains

the existing mesh but alters the order of the element; r-refinement maintains the same number of elements

but requires regeneration of the entire mesh. These schemes may be used in combination, but do not

usually allow for geometrical changes. If the geometry of a model is changing, it is possible to refresh only

affected areas of the mesh. This has previously been applied to fluid flow problems using the h-refinement

technique with the FEM [15]. However, some of the methods employed could easily be adapted for BE

analysis.

It is important to minimise the number of elements updated during re-meshing (Trevelyan et al. [16]

have shown this to be the major factor in reducing re-analysis response time, as illustrated in Figure

1.1). Reducing the number of updated elements gives rise to a reduction in both the time to re-integrate

and re-assemble the linear system of equations generated by the BEM and the time required to solve

these equations [17]. Michler [18] uses techniques based on radial basis functions to locally distort an

aircraft mesh based on geometric changes. This approach is designed for complex geometry undergoing

significant geometric perturbation. A simple, fast algorithm has been implemented for the geometries

found in the current work. However, Michler’s approach would be appropriate should more complex

models be considered.

An iterative linear solver, for example GMRES [19], can be employed to accelerate the re-analysis

beyond anything achievable with a direct solver. Such iterative methods have already been applied to the

BEM [20–22] and have been shown to be effective in accelerating the solution. However, these previous

works do not achieve the speed necessary for real-time re-analysis. As the majority of the mesh remains

unchanged when the model geometry is updated, the results of the initial solve can be used to provide

both a suitable initial estimate of the solution and an appropriate preconditioning matrix that can be

used to accelerate solution of the evolving system matrix.

Another approach is to use model order reduction to reduce the size of the problem by expressing

it in a compressed form. Linear solvers that utilise model order reduction have been developed by Leu

[23], Amsallem and Farhat [24], Ryckelynck et al. [25] and Kerfriden et al. [26]. A trivial solve time can

be achieved by applying these techniques. However, significant overheads are required to construct and

update the reduced system.

For large problems the solution of the BE system of equations dominates the solution time [27].

However, these large problems are not amenable to real-time analysis due to current hardware limitations.

This work will therefore concentrate on the solution of small problems. For small systems the solution

no longer dominates and methods to accelerate the construction of the system must be considered.
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Figure 1.1: Re-analysis performance for three-dimensional applications (Reproduced from [16]).

1.4 The boundary element method

The BEM is a standard method of analysis in the solution of partial differential equations, and is the

subject of numerous texts such as books by Becker [28], Kane [29] and Trevelyan [30].

Trevelyan [30] presents a good introduction to the BEM which establishes the basics of the method

and is easy for engineers who are new to the technique to follow. However, he does not explore the

process in great mathematical depth or give enough detail for comprehensive analysis. For more in depth

detail on the mathematics behind, and the implementation of, the BEM, the author recommends Kane

[29] and Becker [28]. A summary of the history of the BEM can be found in Section 2.1 and a derivation

of the method is given in Section 2.2 of this thesis.

As has already been stated, the BEM is a natural method to use where re-meshing is involved as

changes need to be applied only to elements on the boundary of the model, there are no internal elements.

However, there are also benefits in the construction of the BEM system of equations aside from the reduced

number of terms that must be updated by employing an intelligent re-meshing scheme. Since the BEM

requires far fewer nodes than the FEM there are far fewer DOF; this means that the system of equations

is much smaller and hence requires fewer operations to solve. However, it should be noted that the BEM

system matrix is more densely populated than a FEM matrix and some of the acceleration schemes that

can be applied to sparse matrices cannot, therefore, be used.

Several commercial packages that incorporate the BEM are available. These include CA [1] and

BEASY [31].

1.5 Definitions

1.5.1 Real-time

Joldes et al. [32] apply ‘real-time’ techniques to neurosurgical simulation. However, in this context they

define real-time to mean that the analysis should take under a minute, having established that this is

the maximum amount of time a surgeon would be prepared to wait for results during surgery. This is

clearly not the almost instantaneous feedback required for dynamic interaction with a model. For clarity

it is therefore necessary to precisely define the terms ‘real-time’ and ‘rapid’ analysis within the context

of this thesis.

The definitions of Margetts et al. [6] are used where ‘real-time’ refers to the analysis taking place

within the refresh rate of the media on which the model is viewed. This will typically be within 0.05
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seconds. The author has introduced the term ‘rapid’, which incorporates real-time but allows that the

analysis may be slightly slower, taking place in an acceptably short period of time that the user is prepared

to wait. This is of the order of seconds and is synonymous with the definition of ‘interactive’ given in [6].

1.5.2 Acceptable accuracy

Through discussion with industry partners it has been established that, for a final analysis, it is necessary

that the results are within 1% accuracy. However, during dynamic updating of stress contours on contin-

uously changing geometries, such as when a hole is dragged from one location to another, requirements

on the error associated with each individual simulation can be relaxed. It is, however, desirable that the

error should remain small and therefore a cap of 4% maximum error has been imposed. Once the current

interactive geometric operation has been completed, a more refined mesh can be used to generate a more

accurate estimation of the stress distribution.

1.5.3 Problem size

Large problems are not analysed in this work. These are considered as models with more than 10,000

DOF. The small models this research is primarily concerned with generally have fewer than 4,000 DOF.

Intermediate models (4,000-10,000 DOF) are analysed in this work but are not expected to be amenable

to real-time analysis at present. The maximum number of DOF required by a FE model to generate an

equivalent mesh to a BE model increases approximately linearly with the size of the model. Up to 12,000

DOF are required by a FE solver to analyse a model equivalent to a BE model with 4,000 DOF. Up to

45,000 DOF are required by a FE solver to analyse a model equivalent to a BE model with 10,000 DOF.

This makes the BEM a powerful technique for reducing the size of a problem.

1.5.4 General terms

Throughout this thesis, the term ‘re-mesh’ refers to updating part of a mesh due to some geometric

change whilst leaving the majority of the mesh unchanged. ‘Re-generation’ implies generation of an

entirely new mesh over the entire model or a specific area of the model, such as a single face. The terms

‘re-integration’ and ‘re-solution’ respectively refer to updating the BEM system of equations and solving

the resulting system. Combined, the re-integration and re-solution procedures form the ‘re-analysis’.

1.6 Thesis structure

1.6.1 Overview

In order to achieve the goals set out in Section 1.1, three areas of interest must be addressed:

1. Meshing and re-meshing.

2. BE integration and construction of the BE system of equations.

3. Solution of the BE system of equations.

Together these form the CA3D analysis package. The path a model follows through CA3D is shown in

Figure 1.2.

This thesis is structured such that it can be divided into two broad parts covering the theory behind

the techniques discussed and applied in this work, and how these techniques have been developed and

implemented by the author. This structure is summarised in Table 1.1.
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LU preconditioned GMRES solver

New model

Display stress contours

Apply modified integration scheme

Re-mesh using new schemeGenerate high quality initial mesh

Apply BE integration scheme

Solve using a direct LU solver

Model geometry updated
M
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Initial solution Re-solution

Figure 1.2: Structure of CA3D.

Table 1.1: Thesis structure.

Topic Theory New work

Meshing
Chapter 3 Chapter 6

Chapter 7

Integration
Chapter 2 Chapter 8
Chapter 4

Solution Chapter 5 Chapter 9

Software implementation Chapter 10

1.6.2 Chapter summary

This section gives a brief overview of the contents of each chapter.

Chapter 2: The boundary element method includes a history of the BEM and derives the BEM

for three-dimensional elasticity. A brief review of the literature surrounding parallelisation of the BEM

is also given.

Chapter 3: Mesh Generation introduces the properties of meshes and the element types typically

encountered in the BEM. A comprehensive literature review covering a wide range of mesh generation

techniques and data structures is given.

Chapter 4: Numerical integration covers the theory behind the numerical integration techniques

used in this work. Techniques to accelerate the integration schemes are also discussed, including methods

to reduce the time required to carry out a full integration, and to reduce the number of integrals required

such as through adaptive cross approximation (ACA).

Chapter 5: Linear equation solvers reviews the theory behind direct, iterative and reduction

based methods for solving dense linear systems. Flowcharts of the methods are also included along with

suggestions for parallelisation of the techniques.

Chapter 6: Initial meshing strategy gives a guide to the data structures and initial meshing

algorithms developed by the author for use in the CA3D package. Measures to determine the quality of
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elements within a mesh and of the global mesh are introduced and appraised.

Chapter 7: Re-meshing to accommodate a geometrical change introduces the re-meshing

algorithm developed as part of this work to limit the number of updated elements in the model and

presents a comprehensive validation of the scheme, giving details on the accuracy of the expected results.

Chapter 8: Acceleration of the integration phase investigates both algorithmic and computa-

tional techniques to accelerate the computation of the boundary integral equation (BIE) which populates

the BE linear system of equations. The benefits and drawbacks of applying ACA are also discussed.

Chapter 9: Acceleration of the solution phase gives details of the implementation of the direct,

iterative and reduction based solvers developed for CA3D, including pseudo-codes. These solvers are

compared to find the fastest and most accurate technique for solving small BE problems. Techniques to

parallelise the solvers are also implemented.

Chapter 10: Evaluation combines the algorithms which have been independently implemented

in the previous four chapters into a single software. This software is evaluated for real world models.

An overview of the CA3D graphical user interface (GUI), which concentrates on the simplicity of the

modelling environment, is also included.

Chapter 11: Conclusion summarises the work carried out for this thesis and provides detailed

suggestions for how this work should be further developed and alternative applications for which it could

be used.
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Chapter 2

The boundary element method

“He who loves practice without theory is like the sailor who boards ship without a rudder and

compass and never knows where he may cast.”

Leonardo da Vinci

2.1 History of the boundary element method

The roots of the boundary element method (BEM) can be traced back to the 19th century with the

foundations of the method found in the works of eminent mathematicians such as Laplace, Gauss, Fred-

holm, Betti, Muskhelishvili and Mikhlin. Early work concentrated on the development of the boundary

integral equations (BIEs) for analytical solution of boundary value problems. Eventually, with the advent

of increased computing power and availability, the method was identified as a suitable technique for com-

putational analysis. The BEM is now used as an alternative to the finite element method (FEM). This

review gives a brief history of the development of the BEM. If a complete, in depth history is required,

the reader is referred to [33].

The first researchers to discretise the integral equations associated with the two-dimensional BEM

were Jaswon [34] and Symm [35]. They used constant elements to solve potential problems. General

integration was carried out using Simpson’s rule whilst singular integrals were solved analytically.

There are two forms of the BEM, direct and indirect. When applying the indirect form, the solution

is given in terms of the density of a series of fictitious sources acting on the boundary. Once found these

sources can be used to find the actual physical parameters through a basic integration routine. The direct

method uses continuous parameters applied to the boundary and is more suited to stress analysis. This

thesis will therefore focus entirely on the direct method.

In 1967, Rizzo published a paper [36] that is regarded by many researchers as the beginning of a novel

direct boundary integral method for the numerical solution of elasticity problems. Rizzo was the first

to combine potential theory with classical elasticity theory, thereby creating a numerical approach to

solving boundary value problems by directly applying displacements and tractions in a boundary integral

equation. This work was continued by Cruse and Rizzo [37, 38] and extended into three dimensions by

Cruse [39, 40]. Cruse initially used much the same formulation as Rizzo [36] for the three-dimensional

problem and meshed the model using plane triangular elements with constant tractions and displacements.

However, he later allowed more sophisticated analysis by introducing linear elements [41]. These allow

tractions and displacements to vary linearly across the element.

During the early seventies, the BEM was developed to cover a wide range of applications including

elastoplasticity [42], anisotropic materials [43] and fracture [44]. However, it was not until 1977 that the

term BEM was coined by Brebbia and Dominguez [45]. Up until this point, most authors used the term
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Chapter 2: The boundary element method

boundary-integral method or technique. From hereon, the BEM has developed rapidly and is now one of

the major alternatives to the FEM for linear problems in all areas of engineering. Recent advances have

also led to applications in non-linear elasto-plastic problems [46].

The BEM is most often used for problems that lend themselves well to the method, such as infinite

domain problems and those involving discontinuities. This research aims to use the boundary only mesh-

ing to advantage in everyday mechanical elasticity calculations. The recent emergence of isogeometric

analysis as a tool for analysing models directly from computer aided design (CAD) geometry, for which

the BEM is also suited, is further propagating the BEM into the mechanical analysis of solids.

2.2 Derivation of the boundary integral equation

2.2.1 The problem domain

The general form of the BIE will be derived for the general two-dimensional elasticity case shown in

Figure 2.1 with problem domain, Ω and boundary Γ. The method will later be extended into three

dimensions. It is assumed that prescribed conditions are only applied to the boundary, although other

formulations exist which can deal with body forces.

Domain, Ω

Boundary,
Γ

F
(x

)
=
P
1

n

∂
F
(x
)

∂
n

=
P 2

Figure 2.1: A general boundary value problem.

Normally two different forms of boundary condition may be applied to the boundary, Dirichlet con-

ditions:

F (x) = P1 (2.1)

where P1 is a known quantity and F (x)is an unknown function, and Neumann conditions:

∂F (x)

∂n
= P2 (2.2)

where P2 is a known quantity and n is the unit outward normal to Γ. Further non-linear conditions exist,

such as contact problems, but these require special treatment as discussed by Aliabadi [47]

2.2.2 Green’s theorum

Integral functions that link the boundary functions, F (x) and ∂F (x)
∂n , can be constructed. Integral trans-

formations, such as Green’s Theorem, can be applied to convert the volume integral into a surface integral:∫
Ω

∇ ·GdΩ =

∫
Γ

G · ndΓ (2.3)
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2.2: Derivation of the boundary integral equation

where G is a arbitrary function with continuous derivatives with respect to the Cartesian coordinate axes.

Other forms of Green’s theorem exist. However, as equation (2.3) is the only form encountered in this

work it will be referred to as Green’s theorem.

2.2.3 The reciprocal theorem

Throughout this derivation, Einstein’s summation convention is used where subscripts are repeated.

The equations of equilibrium at a point in a domain Ω are given in tensor notation as:

σij,j + bi = 0 (2.4)

where σij is a stress component and bi represents the body forces per unit volume at this point. The i

and j subscripts define Cartesian directional components. The weighted residual form of the equilibrium

equation can be constructed:∫
Ω

(σij,j + bi)u
∗
i dΩ =

∫
Ω

(σij,ju
∗
i + biu

∗
i )dΩ = 0 (2.5)

where u∗i is a weighting function related to the displacement field generated from some arbitrary loads.

This weighted residual form of the equation of equilibrium must be expanded so that Green’s theorem

can be applied. Considering the product rule whereby:

(σiju
∗
i ),j = σij,ju

∗
i + σiu

∗
i,j (2.6)

and applying this to equation (2.5) produces:∫
Ω

[(σiju
∗
i ),j − σiju∗i + biu

∗
i ] dΩ = 0 (2.7)

It should be noted that (σiju
∗
i ),j is the divergence of σiju

∗
i and Green’s theorem (equation (2.3)) can

be used to transform this part of the formulation into a surface integral:∫
Γ

σiju
∗
injdΓ−

∫
Ω

σiju
∗
i,jdΩ +

∫
Ω

biu
∗
i dΩ = 0 (2.8)

If tractions, ti, are defined using the Cauchy stress transformation such that:

ti = σijnj (2.9)

the boundary integral can be simplified:∫
Γ

u∗i tidΓ−
∫

Ω

u∗i,jσijdΩ +

∫
Ω

u∗i bidΩ = 0 (2.10)

thereby producing the principle of virtual work.

A second virtual work expression can be conceived, whereby a fictitious load case (denoted by the

asterisk) does work on the real displacements, ui:∫
Γ

t∗i uidΓ−
∫

Ω

σ∗ijui,jdΩ +

∫
Ω

b∗i uidΩ = 0 (2.11)

where t∗i is a weighting function related to the traction field generated by the fictitious load case.

From Hooke’s law it can be shown that σiju
∗
i,j = σ∗ijui,j and hence we arrive at Betti’s reciprocal
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Chapter 2: The boundary element method

theorem: ∫
Γ

t∗i uidΓ +

∫
Ω

b∗i uidΩ =

∫
Γ

u∗i tidΓ +

∫
Ω

u∗i bidΩ (2.12)

which allows the two load cases to be related via their respective displacement fields.

2.2.4 The fundamental solutions

It is now necessary to define the fictitious load cases applied to the model so that the integration can be

expressed purely as a surface integral and the fundamental solutions established.

If it is assumed that the body forces, b, in the real problem do not exist, the volume integral on the

right hand side of equation (2.12) can be eliminated. If it is assumed that the second fictitious load case

takes the form of a Dirac delta function applied at source point, p ∈ Ω:

σij,j + ∆(q − p)ei(q) = 0 (2.13)

where q is an arbitrary field point and ei is a unit vector in the coordinate direction, i. The Dirac delta

function has discontinuous properties:

∆(q − p) =

{
∞ if p = q

0 if x 6= p
(2.14)

It should be noted that the zero to infinite discontinuity at p = q means that the load case indicated by

the asterisk cannot assume any physical meaning in continuum mechanics. Equation (2.12) can now be

re-written: ∫
Γ

t∗i uidΓ +

∫
Ω

∆(q − p)eiuidΩ =

∫
Γ

u∗i tidΓ (2.15)

and, as the integral of the Dirac delta function is unity, it can be stated that:∫
Ω

∆(q − p)eiuidΩ = eiui(p) (2.16)

thus:

ui(p)ei +

∫
Γ

t∗i uidΓ =

∫
Γ

u∗i tidΓ (2.17)

If the body force vector is assumed to be the Dirac delta function, Uij is given by the Kelvin solution

to equation (2.13). For the three-dimensional problem, the displacement fundamental solution, Uij , is

given as:

Uij =
1

16πµ(1− ν)r
[(3− 4ν)δij + r,ir,j ] (2.18)

where r = |q− p|, µ and ν are respectively the shear modulus and Poisson’s ratio of the material and δij

is the Kronecker delta:

δij =

{
1 if i = j

0 if i 6= j
(2.19)

The displacements Uij are called the fundamental solutions and represent the displacement, at field

point q and in the direction i, resulting from a Dirac delta function force at point p applied in direction

j. They are related to u∗i in (2.12) by:

u∗i = Uijej (2.20)

The three-dimensional traction fundamental solution, Tij , can be found by differentiating equation
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2.2: Derivation of the boundary integral equation

(2.18) and applying Hooke’s law:

Tij =
−1

8π(1− ν)r2
r,n [(1− 2ν)δij + 3r,ir,j ] +

1− 2ν

8π(1− ν)r2
(r,jni − r,j) (2.21)

The relationship between Tij and t∗i is similar to the corresponding displacement relationship (2.20):

t∗i = Tijej (2.22)

2.2.5 The boundary integral equation

Incorporating the fundamental solutions, equation (2.17) can now be written:

ui(p) +

∫
Γ

TijujdΓ =

∫
Γ

UijtjdΓ (2.23)

Equation (2.23) now only includes one term that is not dependent on the boundary, ui(p). As the

location of p is still arbitrary, this can be remedied simply by enforcing the condition, p ∈ Γ. However,

this introduces complications in the integration of equation (2.23) as the fundamental solutions Uij and Tij

are functions of 1/r and 1/r2, rendering them weakly and strongly singular respectively. As r = ‖p− q‖,
these functions will be singular when p = q.

The weakly singular Uij kernel does not generally present a problem. However, the Tij kernel must

be integrated in the Cauchy principal value sense. This defines the integral as the limiting value of the

integral over the entire boundary, except the point at which the singularity occurs where the integral is

considered over a definition of Γ that has been split into Γ− Γε and Γ+
ε , as shown in Figure 2.2.

Γ+
ε

Γ− Γε

rε
p

Γε
= rε/

2

Figure 2.2: Integration in the Cauchy principal value sense.

In two dimensions, Γ+
ε forms a semicircle surrounding p. In three dimensions, Γ+

ε represents a hemi-

sphere. The integral is now re-written in three parts considering the limit as rε → 0:∫
Γ

TijujdΓ = lim
rε→0

(∫
Γ−Γε

TijujdΓ

)
+ lim
rε→0

(∫
Γ+
ε

Tij(uj(q)− uj(p))dΓ(q)

)
+ uj(p) lim

rε→0

(∫
Γ+
ε

TijdΓ

)
(2.24)

where the first term on the right hand side is the Cauchy principal value integral. The second term will

vanish since as rε → 0, uj(q)→ uj(p). The final term can be simplified:

uj(p) lim
rε→0

(∫
Γ+
ε

TijdΓ

)
= αij(p)uj(p) (2.25)
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By substituting the now simplified version of equation (2.24) into equation (2.23), the BIE is formed:

cij(p)ui(p) +

∫
Γ

TijujdΓ =

∫
Γ

UijtjdΓ (2.26)

where, for a smooth boundary:

cij(p) = δij + αij(p) =
δij
2

(2.27)

and, for angular boundaries in the three-dimensional case:

cij(p) =
β

4π
(2.28)

where β is the angle subtended by the material within the boundary at p.

2.3 Discretisation of the boundary integral equation

To solve the system numerically, the boundary, Γ, must first be discretised into a series of elements, Γe

(e = 1, 2, 3, . . . , nE), which form a surface mesh. Methods to generate this mesh will be discussed in

Section 3. The discretised BIE can be re-written:

cij(p)ui(p) +

nE∑
e=0

∫
Γe

TijuidΓ =

nE∑
e=0

∫
Γe

UijtidΓ (2.29)

If the ui and ti terms are expressed in their interpolated forms, defined by shape functions, Nk, they

cease to be functions of position along the boundary and can therefore be removed from the integrals:

cij(p)ui(p) +

nE∑
e=0

∫
Γe

TijNkdΓ ukei =

nE∑
e=0

∫
Γe

UijNkdΓ tkei (2.30)

where tkei and ukei are the tractions and displacements acting in the i direction at node k of element e.

The shape function Nk is the value of the interpolation function for node k at the current integration

point. These shape functions are discussed further in Section 4.2.

In order to perform numerical integration, the elements, Γe, are transformed into the local parametric

coordinate system, (ξ, η):

cij(p)ui(p) +

nE∑
e=0

∫ 1

−1

∫ 1

−1

TijNkJdξdη u
ke
i =

nE∑
e=0

∫ 1

−1

∫ 1

−1

UijNkJdξdη t
ke
i (2.31)

where J is the Jacobian, which transforms the differential variables at the current point from the local

into the global coordinate systems, ie. dΓ = J(ξ, η)dξdη.

2.4 Boundary element method matrix equations

2.4.1 Matrix assembly

The integrals contained within equation (2.31) can be computed using a Gauss-Legendre quadrature

by placing p at each node in turn and q at integration points spread across each element. The precise

integration scheme will be discussed further in Section 4.2. The integrals are combined to form a system

of equations which is given in matrix form as:

[H]{u} = [G]{t} (2.32)
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2.4: Boundary element method matrix equations

where [H] and [G] contain the integrated traction and displacement kernels respectively. Matrix [H] is

square and [G] is rectangular to allow for discontinuous tractions.

It should be noted that the terms along the diagonal of [H] are more complex to compute than the

other terms in the matrix due to the strongly singular traction kernel, Tij . Whilst these terms could be

computed directly [48], this is not always necessary and simpler techniques can be applied to the majority

of problems. In this work they are constructed using the row-sum technique. In three dimensions these

terms form 3 × 3 blocks along the diagonal and can be calculated by carrying out a unit translation of

the entire model along each coordinate axis in turn. For the solution in the x direction, {t} = 0 for

all entries and {u} = {1, 0, 0, 1, 0, 0, . . .}. The first column of each block can now be computed as the

negative of the sum of every third term in the associated row of [H]. The same technique can be applied

in the y and z directions. However, care should be taken as the diagonal terms dominate the system and

will accumulate any errors in the off diagonal terms when the row-sum is applied. This computationally

inexpensive technique is called rigid body motion.

2.4.2 The linear system

For the two-dimensional case, the system contains n = 2nN equations, where nN is the number of nodes.

In three dimensions, n = 3nN . This matrix system given in equation (2.32) contains n equations but 2n

unknowns, n values must therefore be provided as boundary conditions to make solution possible. As

the majority of nodes, q, usually lie on a free surface, t(q) = 0. The rest of the boundary conditions are

obtained through tractions and displacements applied directly to q. Once an appropriate set of boundary

conditions have been defined, column swapping can be applied between [H] and [G] and equation (2.32)

rewritten in the form:

[A]{x} = [B]{y} (2.33)

where {x} now contains all the unknown tractions and displacements and {y} contains the prescribed

boundary conditions. Since both [B] and {y} are known these can be multiplied to yield:

[A]{x} = {b} (2.34)

This linear system can now be solved as a set of linear equations to find the unknown tractions and

displacements contained in {x}.

2.4.3 Scaling

As {u} and {t} often differ by several orders of magnitude, the solution is likely to suffer from poor

conditioning. This problem is commonly avoided by introducing a scaling factor, ψ, by re-writing equation

(2.32):

[H]{u} = ψ[G]{t̂} (2.35)

where:

{t̂} = ψ−1{t} (2.36)

Applying ψ ensures that {u} and {t̂} are of similar magnitude and leads to a more accurate solution.

The precise value of ψ is not important but an appropriate magnitude should be selected. This can be

determined from the maximum dimensions and the material factors of the model being analysed. The

scaling will need to be reversed during stress recovery.
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2.5 Stress recovery

Some work is needed to extract the boundary stresses from the solution vector, {x}, which now contains

the unknown values of {u} and {t̂}. In order to extract the stresses, the local orthogonal unit axis system,

(b1, b2, b3), which is tangential to Γ, must be defined as shown in Figure 2.3. Vectors a1 and a2, which

are tangential to ξ and η respectively and separated by angle ϑ, must also be defined.

ξ and a1
b1b2

η and a2

n

ϑ

b3

Figure 2.3: Local axes used in stress recovery.

The strains, ε in directions tangential to the three dimensional boundary, Γ, may be computed from

the following equations:

ε11 =
1

|a1|

[
∂u

∂ξ
· b1
]

(2.37)

ε22 =
− cosϑ

|a1| sinϑ

(
∂u

∂ξ
· b2
)

+
1

|a2| sinϑ

[
∂u

∂η
· b2
]

(2.38)

ε12 =
− cosϑ

|a1| sinϑ

(
∂u

∂ξ
· b1
)

+
1

|a2| sinϑ

[
∂u

∂η
· b1
]

+
1

|a1|
∂u

∂ξ
· b2 (2.39)

where

∂u

∂ξ
=


∂ux

∂ξ
∂uy

∂ξ
∂uz

∂ξ

 ∂u

∂η
=


∂ux

∂η
∂uy

∂η
∂uz

∂η

 (2.40)

|a1| and |a2| are the magnitudes of the tangential vectors to ξ and η, given by:

|a1| =

√(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

+

(
∂z

∂ξ

)2

(2.41)

|a2| =

√(
∂x

∂η

)2

+

(
∂y

∂η

)2

+

(
∂z

∂η

)2

(2.42)

The local tangential stresses can be found by substituting ε and the local orthogonal tractions, ti,

into Hooke’s law:

σ11 =
E

1− 2ν2
(ε11 + νε22) +

ν

1− ν
t3 (2.43)

σ22 =
E

1− 2ν2
(ε22 + νε11) +

ν

1− ν
t3 (2.44)

σ12 =
E

2(1 + ν)
ε12 (2.45)

(2.46)
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σ33 = t3 (2.47)

σ13 = t2 (2.48)

σ23 = t1 (2.49)

where ti is extracted from the scaled values contained in the solution vector, {x}:

t1 = ψ(t̂ · b1) (2.50)

t2 = ψ(t̂ · b2) (2.51)

t3 = ψ(t̂ · n) (2.52)

The global stresses may now be found by applying a transformation matrix:

σxx

σyy

σzz

σxy

σyz

σzx


=



b23x b21x b22x 2b3xb1x 2b1xb2x 2b3xb2x

b23y b21y b22y 2b3yb1y 2b1yb2y 2b3yb2y

b23z b21z b22z 2b3zb1z 2b1zb2z 2b3yb2z

b3xb3y b1xb1y b2xb2y b3xb1y + b3yb1x b1xb2y + b1yb2x b3xb2y + b3yb2x

b3yb3z b1yb1z b2yb2z b3yb1z + b3zb1y b1yb2z + b1zb2y b3yb2z + b3zb2y

b3zb3x b1zb1x b2zb2x b3zb1x + b3xb1z b1zb2x + b1xb2z b3zb2x + b3xb2z





σ11

σ22

σ33

σ12

σ23

σ13


(2.53)

2.6 Internal solution

It is often necessary to calculate the stress, σ, and displacement, u, across the interior of a domain. The

internal displacement, u can be found by placing source point p at the point of interest, substituting the

now fully defined values of displacement and traction on Γ into equation (2.31) and summing boundary

integrals to yield u(p).

The internal stress components may be derived from a derivative of the BIE:

σij(p) +

∫
Γ

SkijukdΓ =

∫
Γ

DkijtkdΓ (2.54)

where the kernels, Skij and Dkij can be found by differentiating Tij and Uij respectively. For the three-

dimensional case:

Skij =
µ

4π(1− ν)r3
ni [3νr,jr,k + (1− 2ν)δjk] (2.55)

+
µ

4π(1− ν)r3
nj [3νr,ir,k + (1− 2ν)δik]

+
µ

4π(1− ν)r3
nk [3(1− 2ν)r,ir,j − (1− 4ν)δij ]

+
3µ

4π(1− ν)r3
r,n [(1− 2ν)δijr,k + ν (δjkr,i + δikr,j)− 5r,ir,jr,k]

Dkij =
1

8π(1− ν)r2
[(1− 2ν) (δjkr,i + δikr,j + δijr,k) + 3r,ir,jr,k] (2.56)

It should be noted that, for the internal problem, p 6∈ Γ and there are therefore no singular integrals

in the system. However, care must be taken if p is close to Γ as Skij and Dkij exhibit a higher order of

singularity than Tij and Uij .
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2.7 Parallelisation of the boundary element method

The first algorithm for parallelisation of the BEM appeared in 1984 in a work by Symm [49]. Davies

[50] comprehensively reviews the early work on parallelising the method. Many authors, including Kane

[51] and Baltz and Ingber [52], use block partitioning to distribute different parts of the [A] matrix over

multiple processors. However the overlap between these blocks, where elements share a node, adds an

extra level of complexity. Erhart [53] and Kamiya et al. [54, 55] use domain decomposition to solve the

boundary element (BE) problem. This is easily parallelised as each domain can be allocated to a different

processor. However, additional overheads are incurred in assessing the performance of each processor for

optimal distribution of the computation.

Kreienmeyer and Stein [56] show very good speed-up and scalability when assembling the BEM system

of equations on multiple central processing units (CPUs), typically reporting 95% efficiency. They also

compare the speed-up achieved by parallelising several different solver routines.

Cunha et al. [57] accelerate the BEM by formulating it for clusters and supercomputers. They do

not intend this technique to provide interactivity, only to accelerate solution. Stock and Gharakhani

[58] apply the BEM to cortex particle methods to solve systems with up to 1.4 million unknowns using

hybrid CPU/graphics processing unit (GPU) parallelisation. A 20-fold speed-up is reported in generating

the solution. The majority of this speed gain is made during calculation of the discretised BIE given in

Section 2. This speed up is in line with that achieved for finite element (FE) analysis on the GPU by

Joldes et al. [32], enabling analysis of FE models with up to 50,000 degrees of freedom (DOF) in under

a minute.

More recent research has focussed on parallelising the BEM for GPUs. A good introduction to GPUs

can be found in [59].
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Chapter 3

Mesh generation

“Employ your time in improving yourself by other men’s writings so that you shall come easily

by what others have laboured hard for.”

Attributed to Socrates

3.1 Introduction

The various meshing schemes available to the engineer are compared in this chapter. These are used

to discretise the surface, or boundary, of a model so that the boundary element method (BEM) can

be implemented. In three-dimensional boundary element (BE) analysis, these elements usually take the

form of two-dimensional quadrilaterals or triangles as illustrated in Figure 3.1. These two-dimensional

elements may also be mapped onto a three-dimensional surface [60]. It is worth noting the similarity

between three-dimensional BEs and two-dimensional finite elements (FEs). Comparing a single face of a

three-dimensional BE model to a two-dimensional FE model, it can be seen that both methods require

that a series of similar elements be generated over the domain.

(a) Linear
triangle.

(b) Quadratic
triangle.

(c) Linear
quadrilateral.

(d) Quadratic
quadrilateral.

Figure 3.1: Element types.

This review encompasses two-dimensional FE meshing and its applicability as a method for three-

dimensional surface meshing as well as specialised boundary meshing schemes. Different element types

will be discussed and the drawbacks and benefits they can bring to the BEM will be evaluated. A variety

of FE mesh generation schemes will be compared and their effectiveness assessed. A brief history of the

development of automated meshing can be found in [61]. Topping et al. also discuss several of the primary

meshing procedures along with suggested further reading. Baker [62] provides a comprehensive summary

of the mesh generation techniques available, with particular reference to applications in aerospace, over

the past few decades.
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3.2 Properties of a good mesh

Many authors provide rules detailing good practice in mesh generation and what is required of an auto-

matic mesh generation algorithm. Canaan et al. [63] summarise these by outlining six key points to be

considered when designing an automatic mesh generator:

• Basic functionality

• Robustness/reliability/dependability

• Mesh quality

• Speed

• Minimal required user interaction (the automatic meshing algorithm must be ‘model aware’; recog-

nising and adapting the mesh to allow for any key geometry or loading conditions)

• Controllability (how easy it is to guide mesh refinement)

Other authors include memory requirements in this list. A compromise often has to be reached

between speed and storage. However, modern computing technology means an ever-increasing amount

of storage is becoming available and the current work can therefore concentrate primarily on speed.

3.3 Elements

The various linear and quadratic element types available to the engineer are illustrated by Trevelyan

[30]. There are two main families of elements, continuous and discontinuous. Continuous elements

share nodes, located around the boundary of the element, with neighbouring elements. The nodes on

discontinuous elements are located just inside the element as shown in Figure 3.2 and are not shared with

neighbouring elements. Discontinuous meshing allows elements to be generated in such a way that the

corners of the elements do not match up with neighbouring elements. The two mesh types are compared

in Figure 3.3. Discontinuous elements are not commonly used in the finite element method (FEM) as they

introduce awkward constraint equations that are required to tie the mesh together. This does not occur

in the BEM where discontinuous elements can enable more flexibility in the mesh generation scheme.

Trevelyan [30] outlines the advantages and disadvantages of using these types of elements and concludes

that discontinuous elements should primarily be used where there are stress discontinuities in the model.

They can also be used to remove the need for nodes to match between different zones in the model. It

can be argued that continuous elements share nodes and therefore have increased performance due to the

shorter run time required for the reduced number of nodes in the model; however, fewer discontinuous

elements are required to mesh the same region with the same numerical accuracy because of the greater

number of nodes. This suggests that both element types may perform with a similar efficiency. Most

authors favour continuous elements but see uses for discontinuity in some circumstances. When both

element types are used to model a structure, hybrid elements are required to make the transition. All

three element continuity types are illustrated in Figure 3.2.

The elements used in the three-dimensional BEM are either three or four-sided and have varying

order, dictated by the number of nodes located along each edge. For two-dimensional FE analysis, it is

suggested that quadratic quadrilateral elements provide the most efficient and accurate analysis when

compared with linear, quadratic and cubic triangular and quadrilateral elements [64]. This may not

necessarily be applicable to the BEM and merits further research. The reduced number of nodes required

by quadrilaterals over triangles to model the same area and the ease with which they may be interpolated

over some surfaces, such as four-sided faces, may make them more efficient in some circumstances.

Different node layouts can be used to define identically shaped elements. Serendipity elements feature

nodes only on the boundaries; Lagrange elements also contain internal nodes as shown in Figure 3.4(b).
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(a) Continuous
element.

(b) Discontinuous
element.

(c) Hybrid element.

Figure 3.2: Element continuity.

(a) Continuous mesh. (b) Discontinuous mesh.

Figure 3.3: Mesh continuity.

Each different element type is defined by a different set of shape functions that are used for interpolation

across the elements. Many publications list the functions used for their specific elements. Kane [29] details

how to derive these functions either by inspection or algebraically. Shape functions will be discussed

further in Chapter 4.

(a) Serendipity
element.

(b) Lagrange element.

Figure 3.4: Element types.

Element quality is briefly discussed by many authors [65–67]; the main strategies are summarised by

Topping et al. [61]. These authors introduce formulae to assess the quality of quadrilateral or triangular

elements based on the unit vectors of their edges. Other quality measures are also introduced for triangular

elements. These are discussed further in Section 6.5. For quadrilateral elements, the skew and the taper,

which respectively measure angular and geometric distortion from a rectangular element, can be tested

along with the sizes of the internal angles.

Regular, undistorted elements generally produce smaller errors in the analysis than more heavily

distorted elements [30]. Several factors that are affected by the geometry can be identified that affect the

accuracy of the results:

• Irregularly spaced integration points may not capture enough detail in certain areas.
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• The shape functions used to interpolate across the element may not capture the solution.

• Zero degree internal corners can create spurious peak stresses.

Poor quality elements in the correct orientation can provide accurate results. However, it is not always

possible to predict what this orientation should be. The initial elements also need to be of high enough

quality to accommodate a reasonable amount of distortion as the model geometry is modified before the

changes propagate into surrounding elements.

It should be noted that any element, no matter how high order, will introduce errors around curved

edges unless the edge is defined by a function of equal or lower order than the element. Trevelyan

demonstrates the inaccuracies of modelling an arc by using three two-dimensional quadratic BEs to

model a circle [30]. A sufficient number of elements must be used around any curved edge to provide a

reasonable approximation.

3.4 Meshing techniques

There are many different meshing techniques to be considered. These fall into two broad categories,

structured and unstructured. Structured meshes generally involve constructing a grid over the model

space and then refining the mesh over areas of complex geometry or where high stress gradients have

been found or are expected. Unstructured meshes use a more organic approach, gradually filling in the

model space with more and more elements until a required level of discretisation is reached.

Ho-Le [68] presents an early classification of the different meshing strategies which covers the majority

of techniques discussed in this section.

3.4.1 Structured mesh generators

Structured meshes can be formed using several different techniques. A basic mesh can be interpolated

across a surface by dividing its boundary into a series of segments and connecting them across the surface

to form a grid [61, 69]. These can be further split into triangular elements, if required, as shown in Figure

3.5. This meshing technique is trivial for simple three and four-sided surfaces.

(a) Quadrilateral structured mesh. (b) Triangular structured mesh.

Figure 3.5: Basic non-uniform structured meshes.

Surfaces that are more complex require a more advanced routine. Early algorithms required the

programmer to divide the surface manually into a series of four-sided patches before they could be

meshed [70], as shown on Figure 3.6(a); attempts were later made to automate this process. Tam and

Armstrong [71] developed a method based on medial axis subdivision. This used ‘the locus of the centre

of an inscribed disc of maximal diameter as it rolls around the region interior’ as a guide for creating

primitive sub-regions that could easily be divided into quadrilateral patches. Sub-mapping schemes can

be used to convert complex geometry into a simpler shape for meshing, as is shown in Figure 3.6(b). The
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mesh is then mapped back onto the original model. This simplifies the meshing procedure and ensures

continuity of elements across patch boundaries in multiply-connected surfaces [72, 73]. When using BEs

this is less crucial but will lead to speed benefits in the analysis.

(a) Sub-division. (b) Sub-mapping.

Figure 3.6: Sub-division and sub-mapping.

The vertices around the boundary of a model are often classified as corners, ends or sides to enable

appropriate sub-mapping. However, defining this classification is not always as straight forward as it might

appear. Ruiz-Gironés and Sarrate [72] introduced an advanced sub-mapping method that automates the

entire structured meshing process and has the ability to reclassify commonly misclassified vertices around

the model to enable mapping of more complex geometries. Subramanian et al. [73] manually divide a

surface into quadrilateral patches, for convenience, before demonstrating their sub-mapping routine. This

transforms the patches into a series of interconnected squares in the transformed plane where the user

must specify the number of elements required across each row and column depending on how fine a mesh

is required. The nodal coordinates are generated and serendipity shape functions used to transform back

onto the model plane. This method appears to require a large amount of user input. However, techniques

to divide the model automatically into suitable patches are already in existence such as the medial axis

sub-division method discussed above [70]. The geometric recognition code, required to automatically

specify the distribution of elements required, is also trivial to generate. Taniguchi [74] introduces a

similar blocking method designed for efficiency on a microcomputer that generates a regular grid over

manually specified patches. The grid is refined to match across patch boundaries.

The quadtree subdivision method lays a regular grid over the entire model space and successively

refines each square until sufficient refinement has been completed to accurately represent the model

[15, 75]. Figure 3.7 gives an example of this type of mesh. Rules are set which state that no element can

be more than twice the size of a neighbouring element, thus the refinement propagates over the entire

surface. The square elements are often divided further into triangular elements. Quadtree meshes are

stored in a tree structure [15, 75, 76]. This minimises the memory required to store the mesh and aids

efficiency when refining the mesh since all the data are stored in a hierarchical system. Many different

schemes have been proposed to aid efficient traversal of the tree structure [15, 76, 77]. The quadtree mesh

is highly adaptable and good for re-meshing; it is often used to model fluid flow where constant updating

of the mesh is required [15].
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Figure 3.7: Quadtree subdivision of a plate with a hole.

3.4.2 Unstructured mesh generators

In most engineering applications unstructured mesh generators have superseded structured mesh genera-

tors as they incorporate more flexibility for meshing irregular domains. Whilst some unstructured mesh

generation algorithms will produce quadrilateral elements, most produce a triangular mesh. There are

two widely used methods of producing a triangular unstructured mesh, the advancing front method and

Delaunay triangulation. A wide range of less common techniques have also been developed by authors

for their own research.

The advancing front method was first developed by Lo in 1985 [78] and has since been adopted by

many authors as one of the primary mesh generation schemes. The boundary around a surface is first

split into a series of segments that make up the initial front; each segment will form a side of an element.

Triangles are added to the front using segments as baselines. After each addition, the front is updated

to pass around the new element with the unpopulated area contained within it. The front advances until

the entire surface has been meshed. These steps are shown in Figure 3.8. For robustness, the algorithm

should start with the shortest segment. Lo later went on to write an algorithm to grade the mesh based

on the initial boundary segments that dispensed with the need to search for the shortest segment, thus

speeding up the process and generating a better mesh gradation [79]. Many authors have developed

and adapted the advancing front technique to improve its reliability, robustness and efficiency [80–82].

Topping et al. [61] give a good overview and history of the method.

(a) Initial front. (b) Advancing the front. (c) Final mesh.

Figure 3.8: Advancing front.

Writing in 2004, El-Hamalawi [83] describes Delaunay triangulation as ‘the most efficient [unstruc-

tured] meshing technique available today in terms of speed’. Delaunay triangulation is a highly robust
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and efficient method for creating a two-dimensional, triangular mesh. For a constrained triangulation,

nodes are first generated around the boundaries and interior of the domain. An algorithm finds the best

triangulation of the points and outputs the initial mesh. Successive stages smooth the mesh and adjust

any poor quality elements by subdivision, reshaping or removal of nodes. These steps are shown in Figure

3.9. To be classified as a Delaunay triangulation no nodes should appear within the circumcircle (a circle

that touches every corner of the element) of each element in the mesh, as illustrated in Figure 3.10. Much

research has been done into the Delaunay method and many authors have suggested their own versions

of the algorithm [61, 67, 84, 85]. The author recommends the algorithm developed by Secchi and Simoni

[86] as it is particularly fast and highly robust.

(a) Initial domain. (b) Initial triangulation. (c) Smoothed mesh.

Figure 3.9: Delaunay triangulation.

(a) Delaunay triangle. (b) Non-Delaunay
triangle.

Figure 3.10: Delaunay circumcircle.

Other methods have also been proposed to create a triangular mesh such as circle packing [87], shown

in Figure 3.11, and the three-dimensional surface equivalent, bubble meshing [88]. These use circles

and spheres to mimic the effect of Voronoi polygons, which were used as an intermediate step towards

generating a Delaunay mesh before more efficient methods were developed. These techniques have not

been as extensively researched as the advancing front and Delaunay methods. They do not exist in such

a highly refined state and could be viewed as less reliable. However, during this research only relatively

basic models will be considered and the authors have shown circle packing and bubble meshing to be

reliable for simple surfaces.

Many authors have proposed methods for generating unstructured quadrilateral meshes. These range

from combining and smoothing triangular meshes [86, 89] to direct generation of quadrilaterals [65, 90].

All of these authors propose that quadrilateral elements provide improved performance over triangular

elements and therefore the additional computational time required to combine triangular meshes into

quadrilaterals is justified. Lee and Lo [89] define a basic method that eliminates all triangular elements
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Figure 3.11: Circle packing.

from a mesh generated using the advancing front technique. This requires that an even number of initial

segments be used to generate the triangular mesh. Secchi and Simoni [86] use a Delaunay triangulation

to generate their initial mesh. Some triangular elements are retained within the mesh to simplify the

merging procedure and to provide a better mesh around detailed geometry. Detailed information about

the speed of the procedure is also provided.

Meshing techniques that can be used to generate quadrilateral elements directly include the paving

method. The paving method was first proposed by Blacker et al. in 1990 [90] and was patented by Blacker

in 1994 [91]. It is similar to the advancing front method but directly generates quadrilateral elements.

For a detailed explanation of how the method works, the author suggests [61]. The paving method will

not be discussed further here, as the patent would restrict its use within this work.

It has been suggested that several meshing techniques can be combined to create a hybrid mesh.

These hybrid meshes may be applied independently to different surfaces within a single model [92], or

on a single surface to accelerate mesh generation or to improve the mesh quality [83, 93]. These hybrid

meshes may combine both structured and unstructured techniques. This is attractive for BE analysis

since it may be more efficient if different shaped faces on the model are meshed in different ways. This

becomes even more powerful if it is realised that for BE analysis the nodes around the edges of these

faces do not necessarily need to coincide as the BEM will work equally well with discontinuous elements.

Lo and Lee [93] use a mixed meshing technique, which they call coring, to improve the speed of the

mesh generator. A regular grid of square elements is generated over the interior of a model, covering as

much area as possible without intersecting the boundary. The space around this core is then filled by

means of a Delaunay triangulation. El-Hamalawi [83] uses a combined advancing front-Delaunay mesh

generator to improve the speed of the process by removing the hazard of creating overlapping elements

during the final pass of the advancing front technique. Kallinderis and Shaw [92, 94] also use hybrid grids

to increase the efficiency of the mesh.

3.5 Mesh grading and refinement

To generate an optimal mesh, a sophisticated grading system is required to ensure the mesh is refined

appropriately around points of key interest. This requires a detailed mesh in areas of high stress gradient

and a coarser mesh elsewhere to minimise computational effort. There are several approaches to mesh

optimisation:

• A coarse mesh is generated over the entire model and then refined in regions of high stress gradient.
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• A fine mesh is generated over the entire model and then coarsened in unimportant areas.

• A background mesh or set of equations is used to define the element size over the model and the

mesh generated to satisfy these rules.

Error estimators are often used to inform refinement of a mesh. These require one, or multiple analysis

runs to be carried out before they can be applied. There are two main families of error estimators: A

priori methods [95] look at the convergence rate of the results as a model is successively analysed whilst

increasing the mesh density. These method provide a measure of the efficiency of a given method but

cannot be used to inform mesh refinement. A posteriori techniques, which are extensively reviewed by

Grätsch and Bathe [96], give a measure of the accuracy of analysis results and are therefore commonly

used to inform mesh refinement. These adaptive refinement techniques [97] require that an initial analysis

is run on a coarse mesh. The mesh is then refined in areas that feature a large stress gradient suggested

by an error indicator. The most commonly applied error indicators are superconvergent patch recovery

after Zienkiewicz and Zhu [98, 99] in the FEM and the energy norm [100] in the BEM. If the model

is successively analysed, the errors assessed and the mesh refined accordingly, the mesh will converge

towards an optimal form. For speed, it should be possible to generate a suitable mesh based on the initial

model geometry or loading conditions without the need for further refinement.

Shepherd et al. [101] coarsen a quadrilateral mesh by collapsing and removing surplus elements. The

nodes around the elements to be removed are moved towards each other along the element boundary

until they meet and are combined, thus collapsing the element. Topping et al. [61] suggest generating

a crude background mesh over the model. The background mesh is created by the analyst and is used

to define the density of the mesh over the entire model. A variable is defined by the background mesh

that specifies the distance between the nodes defining an element generated at that point. This variable

can be constant within the defined region or governed by an equation. For example, the variable may be

altered depending on the distance between a given element and a point in the background mesh.

Xu et al. [84] combine all three approaches to grade their mesh. An initial mesh is generated and a

background mesh is applied to inform the mesh generation algorithm where the mesh can be refined or

coarsened.

Lo [79] proposes a scheme which uses the segments initially generated around the model boundary to

define the element size across the interior. A simple algorithm is used to define the internal node spacing

based on the distance of each node from the boundary and the size of the segments on the boundary.

The elements around the boundary must be suitably refined first but this can be done simply through

geometric recognition and basic interpolation.

3.6 Storage schemes and data structures

Data defining the elements in the model can be stored in different ways. Element based and node based

data structures store and access data through a traversal of the elements or nodes.

Wang et al. [102] use a node based storage scheme for generation of quadrilateral meshes. This

scheme defines the model purely through the interconnectivity of nodes. If an element is required it is

constructed through a traversal of the nodes at its corners, starting with the root node, which lies at the

same corner of all the elements in the model. Each node stores pointers to its neighbours. This results

in a reduced memory requirement over the element based data structure.

Topping et al. [61] use an element based data structure for their Delaunay triangulation. Their

triangle matrix, which defines the elements and interconnectivity, incorporates the node numbers that

form the corners of the element, the numbers of the adjacent elements, which element shares each side

and a series of indicator flags. These parameters can be used to find the interconnectivity of the entire
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mesh with little time consuming searching of matrices.

A mesh can be fully defined using only the nodal coordinates and an array defining the nodal connec-

tivity. However, if memory is available, extra details may be stored allowing increased access speed to all

of the data. Node based data structures typically use less memory but require more central processing

unit (CPU) time for the additional traversals required.

When using the BEM it is important to define clearly where the object material is located. This

definition will make the difference between modelling a solid object, such as a cube, or modelling a cube

shaped hole in an infinite solid. When a surface is viewed from outside, the external boundaries must

be orientated in an anticlockwise manner so that the interior of the surface is always to the left of the

boundary. This means that any internal boundaries must be clockwise orientated. The cross product

of the surface outward normal and any vector pointing along the boundary always points towards the

interior of the surface. The same rule is used to define the orientation of the elements.

3.7 Meshing for re-analysis

A model may be re-analysed because the original results are not accurate, generally due to a insufficiently

refined mesh, or because the model geometry has changed.

Chellamuthu and Ida [76] describe a mesh refinement strategy based on an analysis of the initial mesh.

Areas that need to be refined, located by calculating errors in the result, are iteratively marked, re-meshed

and re-analysed until a predefined tolerance is satisfied. This is a commonly used procedure for adaptive

mesh refinement. Re-meshing conventionally refers to regeneration of the mesh over the entire domain as

part of an adaptive scheme to reduce errors in the analysis. This is a different procedure to that which

will be utilised in this thesis to update the mesh to account for changes in the model geometry.

For real-time updating of the model due to a change in geometry, it is possible to refresh parts of the

mesh only in the areas where alterations to the mesh are required. Previously this has primarily been

applied to flow problems and usually requires the entire mesh be checked systematically for changes. Yiu

et al. [15] demonstrate the adaptivity of the quadtree method when applied to moving fluid flow. Areas

of the mesh can easily be regenerated based on the surface motion of a wave or similar. This surface is

discretised to generate additional seeding points, used when adapting the mesh.

Shimada and Gossard [88] recommend the bubble packing method as a powerful system when con-

tinuous local re-meshing is required due to changing surface geometry. The initial configuration may

be used as a starting point and only a relatively small number of iterations are required to redefine the

mesh. Only bubbles within the area of updated geometry need to be reprocessed leaving the majority of

the mesh intact. This also reduces the time required to update the system matrix, as most of it remains

unchanged.

Aubry et al. [103] use an advancing front scheme, coupled to a background grid, to refine an existing

surface mesh to reduce errors in analysis or for graphical displays.

Zoning is a common technique in the BEM which is used to separate models into several regions or

zones as shown in Figure 3.12. This is required when parts of the model are made of different materials.

It can also be used to break models into appropriate regions where the global geometry is unsuited to the

BEM. Breaking the model into zones also enables them to be independently re-meshed. This removes

the need to update the entire mesh each time a change in model geometry affects just one region. For

example, in Figure 3.12(b), if the radius of the circular hole were to be changed, only the mesh within

the grey zone would need to be regenerated. The mesh over the white zone (and hence the integrals

associated with this region) would remain unchanged. However, a compromise would have to be reached

between the size of the zone and the size of perturbation that can be applied to the updated geometry as
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a large update could affect the geometry outside the zone. Geometric recognition algorithms would be

required to decide which areas of geometry are most likely to be updated and hence where to construct

separate zones.

Zoning can also break up the system matrix by introducing coarse banding. This saves disk space

and simplifies the process of updating this matrix, increasing the speed of the process. Trevelyan [30]

discusses zoning for efficiency where it is used to reduce the amount of processing time required to build

the system matrix. He also demonstrates how zoning should be used to produce a more accurate analysis.

(a) Single zone. (b) Two zones.

Figure 3.12: Zoning around features.

All the techniques so far discussed in this section are aimed primarily at improving the accuracy of an

analysis. In this thesis, re-meshing will be used to accelerate the re-analysis of the model whilst maintain-

ing an acceptable level of accuracy. Whilst Trevelyan [16] has extensively researched this approach in two

dimensions, very few authors have previously addressed three-dimensional problems. Rendall and Allen

[104] and Michler [18] use mesh deformation techniques to adapt an existing mesh around aircraft control

surfaces after they have been moved to carry out a manoeuvre. This is done to preserve mesh connectivity

and to reduce re-analysis times. Both authors use radial basis functions to accurately interpolate the new

nodal positions from the surrounding nodes over complex geometries.

Surgical simulation uses deformable models to visually simulate, or to supply haptic feedback for, the

manipulation and cutting of organs and tissue to aid in the training of surgeons. Wang et al. [9] use

constant triangular elements with a single node at the centroid to simulate tissues. This requires a fine

mesh for accurate analysis, however the number of degrees of freedom (DOF) are reduced by grading out

to a coarse mesh in areas that are not being operated on. During simulation fewer than 10 elements are

typically modified so that the majority of the mesh remains unchanged and feedback can be supplied in

real-time. Other techniques often require a very crude initial mesh to facilitate speed.

3.8 Three-dimensional surface modelling

The majority of the articles discussed so far demonstrate meshing algorithms over purely planar surfaces.

In reality surfaces are often curved. This requires that elements be generated over a more complex domain.

The most common technique to overcome this problem is to map a plane mesh onto the three-dimensional

surface [80, 105].

Lo [105] demonstrates a series of basic transformations which are used to triangulate meshes over

simple and multiply-connected three-dimensional surfaces, such as parts of a cylinder or sphere. He

proposes splitting the model so that each simple region can be meshed separately before being combined

into a global mesh. Lo later extends this method to quadrilateral elements [106]. Peiró [107] uses a set

of transformations to map a valid triangulation generated on a plane onto a surface in such a way that

the triangulation remains valid.
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Plane to surface mapping can lead to problems such as severe distortion of the elements. Hinton et al.

[80] overcome this problem by splitting the surface into Coons patches and generating stretching factors

to distort the two-dimensional mapping of these patches in such a way that the effects of distortion, when

mapping back into three dimensions, are minimised.

Lau and Lo [66] go one-step further and generate elements directly over the model surface using an

advancing front technique. The precise location of any analytical surface is dictated by a formula. Lau

and Lo use this knowledge to develop a scheme for applying the advancing front technique directly to a

surface. This has the benefit of being able to refine elements around the surface whilst maintaining their

quality, rather than relying on a mapping that may result in distorted elements. The only drawback of

the method is that the surface must be analytical. Lau et al. go on to extend this scheme to generate

quadrilateral meshes by merging the triangular mesh [108].

In cases of extreme curvature, a mapped mesh may become so distorted that elements overlap. This

causes serious problems with analysis. Wang and Tang [109] deal with this issue by adaptively defining

a system of control vectors associated with the boundary of the region over which the mapping is to be

carried out. This technique works for many surface types although it is computationally expensive and

not infallible; the authors themselves identify cases where the mesh remains self-overlapping regardless

of the optimisation carried out.

Three-dimensional surface representation can introduce inaccuracies over the entire surface in a similar

manner to around two-dimensional curves, as discussed in Section 3.3. Elements need to be very small and

of high order to model curved surfaces precisely, otherwise a potentially unacceptably large discretisation

error may be introduced. Lau and Lo [66] introduce a scheme to minimise this error through careful

control of the maximum angle between elements. Gelas et al. [110] compare several different surface

meshing algorithms with a view to finding the method with the smallest discretisation error.

Many surface meshing algorithms have been developed purely to represent the surface graphically

and often contain too much detail for efficient numerical analysis. Two of the primary applications for

these algorithms are in geographical mapping software, where a highly accurate surface representation is

required, and in computer games, where it does not matter if the object is accurately meshed so long as

it appears correct. These schemes would be impractical and inaccurate for BE analysis and will not be

discussed further here. If more information is required, the author recommends [110–112].

Re-meshing of three-dimensional surfaces is often used to improve the properties of the mesh and

hence the quality and level of detail in the graphical display of three-dimensional objects [113, 114].

A concise review and classification of re-meshing techniques for graphical applications can be found in

[115]. Alexa [116] presents a review of mesh morphing techniques to create a smooth transition between

different three-dimensional meshes in computer graphics.

3.9 Concluding comments

Thompson et al. [117] summarise the process of generating a mesh when they state that: ‘Grid generation

is still something of an art, as well as a science’. Many of the algorithms formulated for mesh generation

rely on the author’s opinion of what makes a good mesh. This is always based on previous research that

has explored many different systems and in most cases derived a satisfactory solution. Opinion is also

divided on how to measure the quality of a mesh. Different systems of error analysis promote different

meshing strategies and some mesh types are preferential to others when analysing particular problems.

When generating a mesh there is still a large element of personal opinion on which is the best method to

use. No scheme is perfect; however, the major mesh generation strategies are robust and reliable enough

to provide a practical solution to most problems.
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Chapter 4

Numerical integration

“Human beings, who are almost unique in having the ability to learn from the experience of

others, are also remarkable for their apparent disinclination to do so.”

Douglas Adams

4.1 Introduction

In this chapter the various Gaussian integration schemes available to integrate over a boundary element

mesh formed from triangular and quadrilateral continuous, quadratic serendipity elements are discussed.

These include both standard integration schemes and techniques for near-singular integrals.

The adaptive cross approximation (ACA) technique is a method for compressing the boundary element

(BE) system matrix [A] and is commonly used to accelerate the solution of a linear system of equations.

However, if a partial ACA scheme is employed it may be possible to also accelerate the integration and

re-integration phases. Section 4.3 discusses the benefits and drawbacks of the ACA scheme when applied

to the integration.

4.2 Integration

Numerical integration techniques are used to integrate the traction and displacement kernels over each

element that makes up a mesh. Several different techniques must be applied to enable the integration to

be computed. These are summarised in this section.

4.2.1 Interpolation

For isoparametric elements, a set of functions, Nk where k is the node number, are used to interpolate

both the geometry and the solution variables (displacement and traction) over the element. These are

known as interpolation or shape functions and are defined on the parametric form of each element shown

in Figure 4.1 which use the standard node numbering conventions. The local coordinate system, (ξ, η), is

used to construct the shape functions. For three-dimensional triangular BEs, 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1.

For three-dimensional quadrilateral BEs, −1 ≤ ξ ≤ 1 and −1 ≤ η ≤ 1.

The isoparametric shape functions, first proposed by Irons and Zienkiewicz [118], described in this

section are the standard quadratic shape functions for triangular and quadratic elements. As these

functions are used to interpolate displacements, the shape functions also become the set of basis functions

in which the solution is sought.
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Figure 4.1: Parametric elements.

For the isoparametric quadratic triangular element given in Figure 4.1(a) the shape functions used in

this work are:

N0 = (1− ξ − η)(1− 2ξ − 2η) (4.1)

N1 = ξ(2ξ − 1) (4.2)

N2 = η(2η − 1) (4.3)

N3 = 4ξ(1− ξ − η) (4.4)

N4 = 4ξη (4.5)

N5 = 4η(1− ξ − η) (4.6)

The surface created by N2 is shown in Figure 4.2(a) and the surface created by N4 in Figure 4.2(b).

The surfaces created by the shape functions for the other corner nodes, N0 and N1, and mid-side nodes,

N3 and N5, are similar to Figures 4.2(a) and 4.2(b) respectively but rotated so the peak value is at the

subscript node.
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Figure 4.2: Triangular quadratic shape functions.
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For the isoparametric quadratic quadrilateral element given in Figure 4.1(b) the shape functions used

in this work are:

N0 = −0.25(1− ξ)(1− η)(1 + ξ + η) (4.7)

N1 = −0.25(1 + ξ)(1− η)(1− ξ + η) (4.8)

N2 = −0.25(1 + ξ)(1 + η)(1− ξ − η) (4.9)

N3 = −0.25(1− ξ)(1 + η)(1 + ξ − η) (4.10)

N4 = 0.5(1− ξ2)(1− η) (4.11)

N5 = 0.5(1− η2)(1 + ξ) (4.12)

N6 = 0.5(1− ξ2)(1 + η) (4.13)

N7 = 0.5(1− η2)(1− ξ) (4.14)

The surface created by N1 is shown in Figure 4.3(a) and the surface created by N7 in Figure 4.3(b). The

shape functions for the other corner nodes, N0, N2 and N3, and mid-side nodes, N4, N5 and N7, produce

identical surfaces to Figures 4.3(a) and 4.3(b) respectively but rotated so that the peak value is at the

subscript node.
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Figure 4.3: Quadrilateral quadratic shape functions.

4.2.2 Gauss-Legendre quadrature

The Gauss-Legendre quadrature method of integration uses a set of non-uniform integration, or Gauss,

points spread across each element. The location of these points is designed for integration of polynomial

functions, though they can be used for integration of any smooth, bounded function. Gauss-Legendre

integration will produce an exact result for polynomials of order 2m− 1 where m is the number of Gauss

points along each axis of the parametric element.

A weight must also be applied at each point. In two dimensions the method can be summarised as:∫ 1

−1

∫ 1

−1

f(x, y)dxdy ≈
m1∑
i=1

m2∑
j=1

f(xi, yj)wij (4.15)

where wij is the weight associated with Gauss point ij. Suggested locations and weights for the Gauss

points across each element are given in Sections 4.2.4 and 4.2.5.
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4.2.3 The Jacobian

A transformation is needed to convert between the parametric elements and the Cartesian elements that

make up the model. In two dimensions, this is given as:

J(ξ, η) =
∂(x, y)

∂(ξ, η)
=

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
(4.16)

Using J to transform into the parametric domain the following relationship can be derived:∫ 1

−1

∫ 1

−1

f(x, y)dxdy =

∫ 1

−1

∫ 1

−1

f(ξ, η)J(ξ, η)dξdη ≈
m∑
i=1

f(ξi, ηi)|J |wi (4.17)

where |J | is the determinant of the Jacobian:

|J | = ∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
(4.18)

4.2.4 Standard integrals

Triangular elements

Five different integration schemes for triangular elements are presented here. These are summarised in

Figure 4.4 and Table 4.1. It should be noted that the weights given in Table 4.1 are half those quoted in

most literature; this is due to the fact that the sum of the weights should equal the area of the parametric

element. Normally they would be multiplied by a factor of 0.5 during computation of the integrals.
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Figure 4.4: Triangular element integration schemes.

More detailed integration schemes may be constructed by splitting the triangle into four equal sub-

elements as shown in Figure 4.5 and applying one of the schemes given in Figure 4.4 to each sub-element.
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Table 4.1: Triangular element integration schemes.

m̂ ξ η w

1 0.3333333333 0.3333333333 0.5000000000

3 0.5000000000 0.5000000000 0.1666666667
0.0000000000 0.5000000000 0.1666666667
0.5000000000 0.0000000000 0.1666666667

4 0.3333333333 0.3333333333 -0.2812500000
0.6000000000 0.2000000000 0.2604166667
0.2000000000 0.6000000000 0.2604166667
0.2000000000 0.2000000000 0.2604166667

7 0.1012865073 0.1012865073 0.0629695903
0.7974269854 0.1012865073 0.0629695903
0.1012865073 0.7974269854 0.0629695903
0.4701420641 0.0597158718 0.0661970764
0.4701420641 0.4701420641 0.0661970764
0.0597158718 0.4701420641 0.0661970764
0.3333333333 0.3333333333 0.1125000000

13 0.0651301029 0.0651301029 0.0266736178
0.8697397942 0.0651301029 0.0266736178
0.0651301029 0.8697397942 0.0266736178
0.3128654960 0.0486903154 0.0385568805
0.6384441886 0.3128654960 0.0385568805
0.0486903154 0.6384441886 0.0385568805
0.6384441886 0.0486903154 0.0385568805
0.3128654960 0.6384441886 0.0385568805
0.0486903154 0.3128654960 0.0385568805
0.2603459661 0.2603459661 0.0878076287
0.4793080678 0.2603459661 0.0878076287
0.2603459661 0.4793080678 0.0878076287
0.3333333333 0.3333333333 -0.0747850223

Figure 4.5: Triangular sub-elements.
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Quadrilateral elements

Four different integration schemes for quadrilateral elements are presented here. These are summarised in

Figure 4.6 and Table 4.2. More detailed integration schemes may be constructed by dividing the element

into four equal sub-elements and applying one of the schemes given in Figure 4.6 to each sub-element.
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Figure 4.6: Quadrilateral element integration schemes.

4.2.5 Singular integrals

Singular integrals occur in the boundary element method (BEM) when a field element is integrated

relative to a source node that lies on the same element. The displacement kernel, Uij , given in equation

(2.18), contains the factor 1/r, where r is the distance between the source and field nodes, and is therefore

weakly singular as r → 0. The traction kernel, Tij , given in equation (2.21), contains the factor 1/r2 and

is therefore strongly singular. When r = 0 these singular integrals cannot be computed directly. However,

the near-singular integrals, which occur when the source and field points lie on the same element but are

not the same point, can be calculated using a more detailed and appropriate integration scheme. The

singular terms are found later through rigid body motion (see Section 4.2.6).

The weights and Gauss point locations associated with the near-singular integration schemes described

in this section are constructed over the entire element rather than using sub-elements. Elements contain-

ing a singularity may therefore be integrated in exactly the same way as the non-singular elements. All

integrals are therefore compatible with a reusable intrinsic sample point (RISP) integration scheme [29].

Triangular elements

The near-singular integration schemes for triangular elements are constructed by splitting the element

into sub-elements about the singular node. Each sub-element is treated as a quadrilateral element with

two nodes lying at the singularity. This mapping removes the singularity. Figure 4.7 gives example
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Table 4.2: Quadrilateral element integration schemes.

m̂ ξ η w

1 0.0000000000 0.0000000000 4.0000000000

4 -0.5773502692 0.5773502692 1.0000000000
-0.5773502692 -0.5773502692 1.0000000000
0.5773502692 -0.5773502692 1.0000000000
0.5773502692 0.5773502692 1.0000000000

9 -0.7745966692 -0.7745966692 0.3086419754
-0.7745966692 0.0000000000 0.4938271605
-0.7745966692 0.7745966692 0.3086419754
0.0000000000 -0.7745966692 0.4938271605
0.0000000000 0.0000000000 0.7901234568
0.0000000000 0.7745966692 0.4938271605
0.7745966692 -0.7745966692 0.3086419754
0.7745966692 0.0000000000 0.4938271605
0.7745966692 0.7745966692 0.3086419754

16 -0.8611363116 -0.8611363116 0.1210029933
-0.8611363116 -0.3399810436 0.2268518518
-0.8611363116 0.3399810436 0.2268518518
-0.8611363116 0.8611363116 0.1210029933
-0.3399810436 -0.8611363116 0.2268518518
-0.3399810436 -0.3399810436 0.4252933031
-0.3399810436 0.3399810436 0.4252933031
-0.3399810436 0.8611363116 0.2268518518
0.3399810436 -0.8611363116 0.2268518518
0.3399810436 -0.3399810436 0.4252933031
0.3399810436 0.3399810436 0.4252933031
0.3399810436 0.8611363116 0.2268518518
0.8611363116 -0.8611363116 0.1210029933
0.8611363116 -0.3399810436 0.2268518518
0.8611363116 0.3399810436 0.2268518518
0.8611363116 0.8611363116 0.1210029933

sub-element and Gauss point locations. These use two sub-elements with 16 Gauss points each if the

singularity lies on a corner of the element and four sub-elements are used with 9 Gauss points each if the

singularity is located at a mid-side node.

Quadrilateral elements

The near-singular integration schemes for quadrilateral elements are constructed in the same way as those

for triangular elements, with four triangular sub-elements if the singularity is located at a corner node

and six sub-elements if the singularity is located at a mid-side node. Example sub-element and Gauss

point locations are shown in Figure 4.7. In this example, all the sub-elements contain 16 Gauss points.

4.2.6 Rigid body motion

All the non-singular and near-singular integrals are combined to form the linear system of equations:

[A]{x} = {b} (4.19)

where {x} is unknown and [A] is fully-populated apart from the singular terms that lie in 3 × 3 blocks

along the diagonal. If the model were to be moved in the x direction through a unit distance then {x}

– 37 –



Chapter 4: Numerical integration

0 1
0

1

ξ

η

(a) 32 Gauss points, singularity
at node 0.

0 1
0

1

ξ

η

(b) 32 Gauss points,
singularity at node 1.

0 1
0

1

ξ

η

(c) 32 Gauss points, singularity
at node 2.

0 1
0

1

ξ

η

(d) 36 Gauss points,
singularity at node 3.

0 1
0

1

ξ

η

(e) 36 Gauss points, singularity
at node 4.

0 1
0

1

ξ

η

(f) 36 Gauss points, singularity
at node 5.

Figure 4.7: Singular triangular element integration schemes.
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Figure 4.8: Singular quadrilateral element integration schemes.
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would become {xx} = {1 0 0 1 0 0 . . .}T . Every third singular value in [A] can now be found by solving:

{Adx} = {b} − [A]{xx} (4.20)

If the model were translated in the y or z directions through the same unit distance then {xy} =

{0 1 0 0 1 0 . . .}T and {xz} = {0 0 1 0 0 1 . . .}T can be used with the same method to compute {Ady}
and {Adz}. These terms can be used to fill in the rest of the terms in [A].

4.2.7 Integration schemes

To improve the efficiency of boundary element integration, the literature suggests customising the inte-

gration scheme across each element depending on the distance, r, between the field element, e, and the

current source node, p [119–121]. If r is large the variation in the stresses across e caused by a load at

p will be small and hence a low order integration scheme can be applied. As r decreases, higher order

schemes must be introduced, with specialist schemes used to deal with singular and near-singular inte-

grals. As the scheme is specific to the current element-node pairing, the geometric data associated with

the element - shape functions, Gauss point locations, weights and normals - are re-computed for every

node in the model. Integration can then be carried out and the [H] and [G] sub-matrices corresponding

to the current element-node pairing constructed. With the application of boundary conditions these are

assembled to form the [A] matrix and {b} vector given in (2.34). The strongly singular terms on the

diagonal of [A] taken from [H] are calculated by applying rigid body motion. The weakly singular terms

from [G] are already computed to sufficient accuracy using the near-singular integration scheme. The

complete system is then passed to the linear solver.

The number of Gauss points, m, required to integrate over each dimension of an element is a function

of the size, L, of the element and the minimum distance, R, between the element and the source node.

In three dimensions, L is the length of the curve through the centre of the element in the integration

direction as shown in Figure 4.9.

R

Lξ

Lη

Figure 4.9: Measurements required to find m along both axes of a three-dimensional BE.

Lachat and Watson [119] developed an algorithm for finding m for quadrilateral elements. This was

later generalised by Mustoe [120]. The original algorithm uses an iterative scheme to find the maximum

ratio R/L; Gao and Davies [121] propose the following approximation to improve efficiency:

m =
λ′ ln

(
e
2

)
2 ln

(
L

4R

) (4.21)

where e is the prescribed tolerance of the relative integration error and

λ′ =

√
2

3
λ+

2

5
(4.22)

where λ is the order of the singularity. It should be noted that this scheme assumes the integrand that
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causes the singularity to be polynomial. A different formulation would be needed for log singularities, for

example. The number of Gauss points suggested by the scheme is plotted in Figure 4.10. It should be

noted that if R/L < 0.25 the integration order grows to infinity. If this is the case the element must be

subdivided and the scheme applied to each sub-element.

An alternative scheme, based on numerical tests for surface integrals, is proposed by Bu and Davies

[122]. This is generalised by Gao and Davies [121] and can be summarised as:

m = −0.1λ′ ln
(e

2

)(( 8L

3R

) 3
4

+ 1

)
(4.23)
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Figure 4.10: Integration order.

The standard BE integration scheme is shown in Figure 4.11.

4.2.8 RISP algorithm

The RISP integration scheme is illustrated in Figure 4.12. It uses a discrete number of integration schemes

for each type of element. This means that the shape functions and derivatives for each integration scheme

need only be calculated once for each element type.

Using a discrete number of integration schemes leads to a reduction in memory requirements and,

as the models encountered in this work are assumed to contain relatively few elements, it is possible

to store all the geometric data associated with the integration in memory. The Gauss point locations

and associated normals and Jacobians for all integration schemes are therefore only computed once for

each element in the model. This is then stored for use in future operations. The singular and near-

singular integration schemes are formulated such that they can be applied using the same algorithm as

the standard integrals. Aside from this, the rest of the integration and construction of the linear system

is carried out in the same manner as the standard integration scheme.

4.2.9 Suppression of integrals

The majority of the traction or displacement boundary conditions applied to a model have zero magnitude.

These will appear as zeros in the corresponding cells in the {t} and {u} vectors found in equation (2.32).

During construction of equation (2.34), these zero values multiply some of the integral equations. It is

therefore not necessary to compute these integrals, thereby reducing the total integration time.
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Figure 4.11: Standard integration flowchart.

– 41 –



Chapter 4: Numerical integration

Start integration

Initialise [H] and [G] sub-matrices to 0

Find Tij and Uij

Plug [H] and [G] into [A] and {b}

Find diagonal terms

Output to solver

E
le
m
e
n
ts

N
o
d
e
s

G
a
u
ss

p
o
in
ts

o
n

e
le
m
e
n
t

S
o
u
rc

e
d
ir
e
c
ti
o
n

F
ie
ld

d
ir
e
c
ti
o
n

N
o
d
e
o
n

e
le
m
e
n
t

Compute shape functions and

derivatives for each element type

Find distance r from Gauss point to

Node and unit vector of r

Multiply Tij and Uij by shape

functions and add to [H] and

[G] sub-matrices

Calculate number of Gauss points to use

for the current element-node pairing

Find the all possible Gauss point locations

for the current element

and associated normals and Jacobians

Figure 4.12: RISP integration flowchart.
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4.2.10 Parallelisation

Due to the structure of the algorithm discussed in this work, as shown in 4.12, it can be easily parallelised

by sharing the outer loop around multiple processors. It should be noted that the outer loops over elements

and nodes are interchangeable.

4.3 Adaptive cross approximation

4.3.1 Introduction

In a system of linear equations:

[A]{x} = {b} (4.24)

generated using the BEM, the matrix, [A], is fully-populated and is therefore slow to assemble and

requires a large amount of memory to store. To reduce these requirements it is desirable to approximate

[A] by compressing it into a reduced form. This will reduce the number of matrix terms that need to be

computed and stored.

In the BEM, [A] is filled with an array of data computed using kernel functions. Techniques such as

the fast multipole method (FMM) [123], panel clustering [124] and H-matrix methods [125], attempt to

reduce the time to solve equation (4.24) by approximating the kernel functions. Although these methods

have been shown to be effective, they still have some drawbacks, primarily the need to restructure

completely the code used to construct equation (4.24).

Mosaic-skeleton methods generally use known values in [A] to approximate the rest of the matrix.

The algorithm can therefore be easily built on top of existing code. ACA [126] is one such approach.

ACA assumes that areas of [A] are analytically smooth, that is the change between consecutive values

in [A] is small. These areas are called admissible blocks. These can be represented as a series of vectors

that can be cross multiplied to reconstruct an approximation to a block of [A]. The larger the number

of vectors the more accurate the approximation.

An overview of the standard ACA techniques can be found in [127] along with algorithms for the

implementation of block partitioning schemes and low rank matrix algebra.

ACA is typically used to compress large BEM system matrices, thereby reducing the memory require-

ments, and to reduce the run time of iterative solvers for a single analysis where the number of degrees of

freedom (DOF), n, is large. This work is focussed on rapid re-analysis of small systems, n < 5, 000, with

continuously changing geometry. ACA has not yet been assessed for applicability to this kind of prob-

lem and could potentially be used to accelerate adaptive analysis, optimisation problems and updating

schemes.

The fully pivoted ACA is commonly used to speed up analysis and reduce memory requirements. The

partially pivoted ACA is rarely used although, if applied intelligently, it can be used to reduce the number

of system matrix entries that need to be calculated. For small systems calculating these terms has been

shown to be the major contributor to analysis and re-analysis time [128].

4.3.2 Literature review

ACA was initially proposed by Bebendorf [126], in the fully pivoted form (which requires calculation of

every term in the system), as a low-rank method of approximating asymptotically smooth blocks taken

from large dense unstructured matrices. In this paper, Bebendorf applies ACA to a range of large systems

(16, 000 < n < 202, 000) and shows good compression. In [129] Bebendorf and Rjasanow build on this

early work and introduce a new algorithm for partitioning the matrix into a larger number of blocks. A

later paper [130] parallelises the method.
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Kurz et al. [131] introduce the partially pivoted ACA, applying it to reduce the number of terms

that need to be calculated in the BEM system of equations for electromechanical analysis. Kurz achieves

additional speed-up in the use of the iterative generalised minimal residual (GMRES) solver as the vector

structure of the ACA approximation can be used to accelerate the matrix vector multiplication which is

a dominant part of the GMRES algorithm.

Weber et al. [132] apply ACA to crack propagation simulation. The model is divided into blocks

using a process similar to octree grid generation, whereby the entire model is encased in a cuboid that

is successively subdivided into eight until a desired admissibility criterion is reached. The fully pivoted

ACA is primarily used to compress the resulting system. Some reduction is observed in the analysis time

although this is effectively annulled due to the additional time required to construct the approximation.

Frederix and van Barel [133] apply ACA to two-dimensional wave scattering problems. A direct

method is employed to solve the approximated system, making use of a QR factorisation. Numerical

examples show good accuracy but no specific timings are included, although good efficiency is reported

due to a reduction in the number of integrals that need to be calculated.

Maerten [134] uses a parallelised ACA approach to model faults and fractures in structural geome-

chanics and shows good speed-up. However, to achieve a more accurate approximation, a non-negligible

increase in computational time is reported. Mallardo et al. [135] apply ACA with a GMRES solver

to reduce greatly the analysis time for for simulation of noise control in an aircraft cabin but do not

comment on the accuracy of their algorithm.

4.3.3 Theory

Definitions

For clarity the following definitions have been observed in this thesis:

• Partition: A group of associated nodes.

• Block: An area of the system matrix defined where two partitions containing source and field nodes

overlap.

Partitioning the matrix

The majority of authors use the same partitioning scheme as is applied to construct H-matrices [125] to

create a blocked matrix structure. This structures the matrix by looking at the location of the nodes in

the computer model. Given a group of field points, C1, and source points, C2, which form a symmetric

pair of blocks within the system matrix, [A], the admissibility of the blocks can be established. An

admissible block is likely to be analytically smooth due to the smoothness of the fundamental solution

and can therefore be approximated using ACA.

If the diameter of a set of points, C, dC , is defined as the maximal distance between any two points,

p and q, in C:

dC = max
p,q∈C

‖p− q‖ (4.25)

and the distance between two sets of points, C1 and C2, rC1C2
, is defined as the distance between the

nearest points in C1 and C2:

rC1C2
= min
p∈C1,q∈C2

‖p− q‖ (4.26)

then the admissible condition is defined as:

κmin(dC1
, dC2

) ≤ rC1C2
(4.27)
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where:

‖p− q‖ =
√

(px − qx)2 + (py − qy)2 + (pz − qz)2 (4.28)

and κ is a user-defined constant which is often set to 1. If the condition is failed then both blocks must

either be subdivided further or calculated in full. The constant, κ, may be increased to ensure greater

spacing between groups of nodes and hence a greater anticipated smoothness. However, increasing κ will

also result in a larger number of blocks. The basic partitioning process for a two-dimensional problem is

illustrated in Figure 4.13. Each time an admissibility check is failed the block is subdivided by splitting

the largest constituent partition into two parts along the centre of the largest (x, y) dimension. For a

three-dimensional problem the partition is subdivided by drawing a plane through the largest (x, y, z)

dimension. It should be noted that, whilst the example in Figure 4.13 is partitioned until there is only

one node remaining in each non-admissible block, this is not common and a stopping criterion is usually

set at a prescribed minimum partition size.
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Figure 4.13: Partitioning the model, κ = 1.

Normally H-matrix partitioning works by re-ordering the nodes in the model based on the location

of the partitions. This means that block data are continuous, as shown in Figure 4.14(a). To avoid

re-ordering [A], a matrix of indices could also be constructed. This would enable each block to be split

across several rows and columns of the matrix as shown in Figure 4.14(b).

Constructing the approximation

Two primary forms of the ACA algorithm exist. These are known as fully and partially pivoted ACA.

The fully pivoted ACA is primarily a compression technique. It requires that each block of the full matrix
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(b) Indexed matrix.

Figure 4.14: Block structures.

be computed in full. The partially pivoted ACA uses knowledge of some of the terms in each block to

approximate the rest of the block, thereby removing the need to compute every term.

Once the model has been partitioned, each admissible block, [A′], can be approximated using ACA.

The remaining non-admissible blocks must be computed in full. In Algorithm 4.1, indices i and j respec-

tively indicate rows and columns of [A′]. When applying the fully pivoted algorithm, the values of i and

j are determined by finding the term in the block of greatest magnitude. To construct a partially pivoted

ACA, i is initially set to 1 and j is unknown. The index k counts the number of vectors, {uk} and {vk}
(k = 1, 2, ..., s), used to construct the approximation, [S]. The vector {ei} is a vector containing entirely

zeros except for the ith entry, which contains 1. Arrays ı and k contain lists respectively of all the rows

and columns of [A′] that have been used in construction of the approximation.

Algorithm 4.1 Partially pivoted ACA

ı1 = i = k = 1
{v1} = [A′]T {e1}
1 = j = argmax|{v1}|
{u1} = [A′]{ej}
γ = 1/{v1}j
{v1} = γ{v1}
[S1] = {u1}{v1}T
while εF > tol do

k = k + 1
ık = i = argmaxi/∈ı|{uk−1}|
{vk} = [A′]T {ei} −

∑k−1
l=1 {ul}i{vl}

k = j = argmaxj /∈|{vk}|
{uk} = [A′]T {ej} −

∑k−1
l=1 {vl}j{ul}

γ = 1/{vk}j
{vk} = γ{vk}
[Sk] = [Sk] + {uk}{vk}T

end while

In the fully pivoted ACA algorithm, convergence is checked by comparing the Frobenius norm, ‖ · ‖F ,

of the current approximation, [Sk], to that of [A′]:

εF =
‖[Sk]− [A′]‖F
‖[A′]‖F

(4.29)

However, when applying the partially pivoted ACA not all the terms in [A′] are known and therefore

consecutive approximations are compared by replacing [A′] with [Sk−1] in equation (4.29).
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The Frobenius norm is given by:

‖S‖F =

√√√√ n′∑
i=1

m′∑
j=1

S2
ij (4.30)

where [S] is a matrix block of size m′ × n′. Calculating εF using this method requires 2n′m′ operations

and is the most computationally expensive part of the entire algorithm.

4.4 Look up tables

Trevelyan and Scales [136] use look-up tables (LUTs), to store pre-computed boundary integrals for a

number of two-dimensional orientations of source points and field elements. Interpolation is used to

estimate values that appear do not appear in the LUTs. Least squares fits may be applied to construct a

surface from the values given in each LUT. The formula for this surface may be used to calculate the value

of the integral, thereby reducing the memory requirements by avoiding storing all the data associated

the full LUTs. However, LUTs and surface fits would prove far more complex to apply to the three-

dimensional BEM as the extra dimension would result in significantly increased memory requirements

due to the additional possible combinations of element orientations and dimensions.

LUTs may also be used to store data on pre-solved models, such as those generated by Cotin et al.

[137] to store model deformations and supply haptic feedback for surgical simulation. These LUTs are

superimposed, via a modified superposition technique, to give a representation of the deformed geometry

and thereby enable the integration and solution of the stiffness matrix to be bypassed. No stress feedback

is computed and the goal of the research is not to compute an exact deformation, just to get the correct

feel of prodding the tissue for training purposes. To enable feedback to be received in real-time, only

elastic models are used, no re-meshing is carried out and deformations are considered to be small.

Wang et al. [10] maintain a constant number of elements as a model is deformed. This enables

LUTs of pre-calculated solutions to be generated prior to simulation. A hypothetical unit displacement is

applied, in turn, in the x, y and z directions at every node in the model and the resulting displacements

and tractions are stored. An additional result is included for self weight. When the model is deformed,

the required pre-calculated criteria are scaled accordingly and superimposed to find the actual solution.

The set up time for this method is large but real-time feedback can be achieved during simulation. As

the same model is often reused many times for different simulation routines, the LUTs only need to be

calculated once and can then be stored for future use. Wang et al. only test small systems of around 500-

800 DOF but infer from the small re-analysis time (less than 10−7 seconds) that much larger simulations

should be possible.
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Chapter 5

Linear equation solvers

“To know that we know what we know, and to know that we do not know what we do not

know, that is true knowledge.”

Confucius

5.1 Introduction

By re-writing equation (2.34) the system of n linear equations can be expressed as:

[Ai]{xi} = {bi} (5.1)

where i = 0, 1, 2, ... and refers to the number of times the system has been modified.

Every time the model is re-meshed the system is updated. As the majority of the changes are small

the majority of matrix [Ai−1] is preserved in [Ai], where [Ai] = [Ai−1] + [∆A]. The matrix [∆A] is sparse

with only a few rows and columns containing non-zero values. The vector {bi} is entirely changed from

{bi−1}. The updated system must be re-solved to find the new tractions and displacements, {xi}.
Kane et al. [3] develop two techniques for accelerating re-analysis of the boundary element method

(BEM) which provide almost identical results to a complete re-analysis. The simple iteration re-analysis

formulation will converge for small to moderate changes in the model and, if it converges, will be as

accurate as a complete new analysis. The scaled, two-step iterative re-analysis formulation builds on

the basic concept applied by Kirsch [138] to finite elements. The method features superior convergence

characteristics when compared to the simple iteration technique due to application of constant scaling,

whereby a scaling factor key to the convergence rate is calculated after the first iteration of the algorithm,

or evolving scaling, whereby the scaling factor is recalculated during each iteration of the algorithm. This

results in fewer iterations. However this does not necessarily make it faster as, due to the additional

calculations, each iteration requires more central processing unit (CPU) time. Constant scaling may not

converge for large changes and is generally slower than simple iteration techniques despite requiring fewer

iterations. However, evolving scaling consistently outperforms the other methods. If multiple re-analyses

are carried out, it is assumed that these are different perturbations of the initial model rather than an

iterative update of the last model solved. This causes increasing numbers of iterations to be required for

each subsequent re-analysis and ultimately to degradation of the results.

The simplest way to solve equation (5.1) is to employ a direct solver. In this work two direct solvers

are introduced:

1. Gauss elimination

2. Lower-upper (LU) decomposition
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Direct solvers are very robust but are computationally expensive. For rapid analysis, the model

must be efficiently re-analysed as the geometry is updated. Using a direct solver would be too slow and

alternative solvers must be considered. These techniques typically result in a reduction in the level of

accuracy but, if the method is appropriate, this will be small.

Two different approaches have been considered for rapidly re-solving the system; iterative solvers and

reduction techniques. Seven algorithms have been analytically compared for re-solving equation (5.1):

1. Generalised minimal residual (GMRES) [19]

2. Bi-conjugate gradient stabilised (BiCGSTAB) [139]

3. Transpose free quasi-minimal residual (TFQMR) [140]

4. Leu’s reduction method [23]

5. Eigenvector based proper orthogonal decomposition (E-POD) [25]

6. Singular value decomposition based proper orthogonal decomposition (SVD-POD) [26]

7. Static condensation

Algorithms 1-3 are iterative solvers whilst 4-7 utilise reduction techniques.

5.2 Literature review

Several authors introduce solvers designed specifically for dense matrix systems such as those found in the

BEM. Garcia et al. [141] introduce a new technique called matrix system reduction solution (MSRS).

MSRS is designed to accelerate real-time solution of dense finite element (FE) systems for graphical

display and as such is not concerned with the accuracy of the results so long as they provide a visually

plausible result. Garcia et al. conclude that the solution is sufficiently accelerated but that the main

constraint on the solution time is the time required to update the mesh. Kauers [142] introduces an

existing, homomorphic images algorithm for fast solution of large, dense, non-symmetric systems with no

special structure. They state that faster more recent specialist algorithms exist for structured matrices

and that the one proposed is not the fastest for solving dense systems. These techniques will therefore

not be considered further.

Barra et al. [143] present a study of the performance of the restarted GMRES algorithm when

applied to BEM problems. The solver is compared with both Gauss elimination and a bi-conjugate

gradient (BCG) solver, both with and without preconditioning. Barra et al. conclude that the precon-

ditioned GMRES algorithm is up to 10 times faster than Gauss elimination and 2.5 times faster than

the preconditioned BCG solver for small (n < 1000) two-dimensional boundary element (BE) problems.

Tests on larger and three-dimensional problems are listed as future work. Kong et al. [144] also address

the problem of finding a fast direct solver for the BEM. They break the system matrix into blocks and

compute compressed factorisations of the inverse of the matrix, utilising column skeletons. The algorithm

achieves good speed-up for models where n > 1100.

Trevelyan and Wang [145, 146] use an iterative GMRES solver based approach. The system matrix,

[A], is re-calculated with each re-analysis and a full matrix solution performed using the previous solution

vector, {xi−1}, as the starting point for the GMRES scheme. This requires similar numbers of iterations

for each re-analysis. Trevelyan et al. [16] later go on to compare the different re-analysis approaches

introduced by Kane [3] and Leu [23], Trevelyan and Wang [145, 146] and others. The number of floating

point operations required for each solver is estimated for different system sizes. Leu’s algorithm requires

the fewest operations. However, this number is comparable with both Kane and Trevelyan and Wang’s

methods. Trevelyan et al. use the knowledge gained through these comparisons to develop a new,

interactive tool for two-dimensional BE re-analysis. Trevelyan and Scales [147] go on to enhance this two-

dimensional scheme by employing a complete approximate LU preconditioner to improve convergence of
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the GMRES algorithm during re-analysis. The preconditioner used is the LU decomposition of a previous

system matrix, [Ai−j ], where j is the number of iterations carried out since the LU decomposition was

last updated. The benefits of applying a preconditioner are discussed in Section 5.4.1.

5.3 Direct solvers

5.3.1 Gauss elimination

Gauss elimination is a method by which a square matrix can be reduced to its upper triangular form.

If this is applied to [A] in equation (5.1), a simple back substitution can then be used to solve the

system. This makes Gauss elimination a powerful method for solving multiple problems where only {b}
has changed. This could be used to rapidly re-solve BE problems where the geometry is constant but the

boundary conditions are changing.

Applying partial or full pivoting, whereby rows are swapped so that the largest terms appear on the

diagonal of the matrix, improves the accuracy of the method by reducing the effects of numerical rounding

[148]. The algorithm for the fully pivoted Gauss elimination is given in lines 1-11 of Algorithm 5.1. This

replaces [A] with the upper triangular form of the matrix. The rest of the algorithm forms the back

substitution which solves the linear system, overwriting {b} with the solution {x}. The algorithm uses
2
3n

3 operations to carry out the Gauss elimination where n is the size of the system. An additional 1
2n

2

operations are required for the back substitution.

Algorithm 5.1 Fully pivoted Gauss elimination and back substitution

1: for i = 1, 2, 3, ..., n− 1 do
2: Find row ID, k, of maximum term in column i of A, k ≥ i
3: Swap rows i and k in A and b
4: for j = i+ 1, i+ 2, i+ 3, ..., n do
5: p = Aji/Aii
6: for k = i, i+ 1, i+ 2, ..., n do
7: Ajk = Ajk − pAik
8: end for
9: bj = bj − pbi

10: end for
11: end for
12: bn = bn/Ann
13: for i = neq − 1, neq − 2, neq − 3, ..., 1 do
14: for j = i+ 1, i+ 2, i+ 3, ..., n do
15: bi = bi −Aijbj
16: end for
17: bi = bi/Aii
18: end for

5.3.2 LU decomposition

LU decomposition is used to factorise a matrix as the product of a pair of matrices:

[A] = [L][U ] (5.2)
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where [L] and [U ] are of the form:

[L] =



1 0 0 · · · 0

l2,1 1 0 · · · 0

l3,1 l3,2 1 · · · 0
...

...
...

. . .
...

ln,1 ln,2 ln,3 · · · 1


[U ] =



u1,1 u1,2 u1,3 · · · u1,n

0 u2,2 u2,3 · · · u2,n

0 0 u3,3 · · · u3,n

...
...

...
. . .

...

0 0 0 · · · un,n


(5.3)

To save computer memory, the LU decomposition is commonly stored as a single matrix, overwriting

the diagonal terms for [L] with those from [U ]:

[LU ] =



u1,1 u1,2 u1,3 · · · u1,n

l2,1 u2,2 u2,3 · · · u2,n

l3,1 l3,2 u3,3 · · · u3,n

...
...

...
. . .

...

ln,1 ln,2 ln,3 · · · un,n


(5.4)

The lower triangular matrix, [L] can be constructed by placing the factor, p, into [Lji] each time it is

calculated in line 5 of Algorithm 5.1. The upper triangular matrix, [U ], is identical to the upper triangle

of the modified [A] matrix after Algorithm 5.1 has been run up to line 11.

Once the LU decomposition has been constructed, [L] and [U ] can be substituted for [A] in the linear

system and the system solved using a forward and backward substitution:

[A]{x} = [L][U ]{x} = {b} (5.5)

solve [L]{y} = {b} for {y} (5.6)

solve [U ]{x} = {y} for {x} (5.7)

requiring n2 operations. The process is summarised in Algorithm 5.2 which overwrites {b} with the

solution {x}.

Algorithm 5.2 Forward and backward substitution

1: for i = 2, 3, 4, ..., n do
2: for j = 1, 2, 3, ..., i− 1 do
3: bi = bi − LUijbj
4: end for
5: end for
6: bn = bn/LUnn
7: for i = n− 1, n− 2, n− 3, ..., 1 do
8: for j = i+ 1, 2, 3, ..., n do
9: bi = (bi − bjLUij)/LUii

10: end for
11: end for

5.4 Iterative solvers

Iterative solvers provide an efficient method of solving large linear systems. They are also a powerful

tool when the system matrix, [A], is changing between analysis runs. They generally work by iteratively
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updating an initial approximation, {x′}, of the solution until the L2-norm of residual:

{r} = {b} − [A]{x′} (5.8)

has been reduced to within a specified tolerance. The L2-norm of {r} is defined as:

‖{r}‖ =

√√√√ n∑
i=1

r2
i (5.9)

Many different iterative solvers have been developed, the most common of which are discussed in [149].

The GMRES, BiCGSTAB and TFQMR algorithms have been chosen for this research as they are stable

and applicable to non-symmetric systems. They are commonly applied to large sparse matrices typical of

the finite element method (FEM). Here they are applied to the smaller fully-populated matrices produced

by the BEM. The implementations are based on the templates given in [149] but have been modified to

re-use as many vectors as possible to reduce data storage and memory accesses. It can be shown that

if the data are spread over a larger area of memory the algorithms run more slowly. To reduce memory

requirements, the maximum number of iterations of each algorithm has been limited, enabling a suitable

block of memory to be allocated beforehand. If this number of iterations is reached an error message is

returned.

Nachtigal et al. [150] show that, for any class of problem, there is usually an iterative method

which outperforms the other approaches. All of the methods discussed in this section must therefore be

assessed with the types of problem encountered in this work to establish the most appropriate for the

current application.

5.4.1 Preconditioning

The condition number, κ, of a linear system determines how fast an iterative solver will converge when

applied to the linear system given in equation (5.1). The condition number is determined by comparing

the maximum and minimum eigenvalues, α, of the system:

κ =

∣∣∣∣αmax

αmin

∣∣∣∣ (5.10)

A well-conditioned system has a low condition number, the closer κ is to 1, the better the condition

of the system. An ill-conditioned system has a high condition number. If κ =∞, the system is singular.

Preconditioning may be applied to the linear system with the aim of improving the clustering of the

eigenvalues, thereby reducing κ and accelerating convergence of an iterative solver. The most common

form of preconditioning, used in the iterative solvers presented in this thesis, is left preconditioning. This

pre-multiplies both sides of the linear system by the preconditioner, [M ]:

[M ][A]{x} = [M ]{b} (5.11)

Left preconditioned iterative solvers aim to minimise the modified residual:

{r′} = [M ]({b} − [A]{x′}) (5.12)

Two forms of preconditioning have been applied to the GMRES, BiCGSTAB and TFQMR algorithms

presented in this work. These are Jacobi or diagonal preconditioning and complete approximate LU [17]

preconditioning. The applied LU preconditioner is the complete LU decomposition of [A0], generated
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during the initial analysis. When using a simple forward and backward substitution this is equivalent to

applying [M ] = [A0]−1 to the updated system:

[A0]{r′} = [L][U ]{r′} = {b} − [A]{x′}(= {r}) (5.13)

solve [L]{y} = {b} − [A]{x′} for {y} (5.14)

solve [U ]{r′} = {y} for {r′} (5.15)

For clarity the complete approximate LU preconditioning presented here will be referred to simply as LU

preconditioning throughout this work.

Diagonal preconditioning is efficient for diagonally dominant matrices, such as those produced by the

BEM. It uses the inverse of the diagonal matrix of [A] to construct [M ] as used in equation (5.12). This

preconditioner can be easily applied by dividing each term in {r} by the associated diagonal term in [A]:

{r′k} = {rk}/[Akk] (5.16)

The matrix, [Ai], and the diagonally and LU preconditioned matrices, [M ][Ai], i > 0, are shown in

Figure 5.1, where the colours indicate the value in each cell of the matrix. To minimise the solve time,

the preconditioned matrix should be close to the identity matrix and feature well clustered eigenvalues.

The BEM produces large terms along the diagonal relative to the rest of the matrix which results in a

weak conditioning as shown in Figure 5.1(a). However, this conditioning can be improved through the

application of an appropriate preconditioner. As shown in Figure 5.1(c), LU preconditioning produces

the best results. It is, however more computationally expensive to apply than diagonal preconditioning,

shown in Figure 5.1(b), and is therefore not always be the most suitable option, especially as the LU

decomposition of [A0] may not always be available. It should be noted that the multiplication [M ][Ai] is

never carried out as it is computationally expensive, it is only used here to show the effect of [M ] on [Ai]

were it to be applied directly.

A basic method to increase the efficiency of the program is to update the preconditioner in a separate

thread. This approach is used by both Gravvanis and Giannoutakis [151] and Courtecuisse et al. [152],

with the FEM, and Trevelyan and Scales [17], with the BEM. Courtecuisse et al. [152] also use a matrix

warping technique to modify the preconditioner to extend its usefulness.

If it is assumed that each geometric update is small, {xi−1} can be used to reduce the solution time

by providing a good first approximation of {xi} [17].

5.4.2 GMRES

The GMRES algorithm extends the minimal residual (MINRES) method to solve non-symmetric systems.

It is a Krylov subspace method. The basis of the Krylov subspace is that the inverse of a matrix can be

found in terms of a linear combination of its powers. In this case, GMRES uses the Arnoldi method to

generate a series of orthogonal vectors, {φj} (where j is the iteration number), in the Krylov subspace

that can be used as a basis in which to construct the solution vector. Together with factors ζj , these are

used to compute the solution:

{xi} = {xi−1}+ ζ1{φ1}+ ζ2{φ2}+ ...+ ζj{φj} (5.17)

or

{xi} = {xi−1}+ [Φ]{ζ} (5.18)
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(a) No preconditioning. (b) Diagonal preconditioning.

(c) LU preconditioning.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Figure 5.1: Effect of applying preconditioning to a matrix.

Factor ζj is chosen to minimise the residual, {rj}, where {rj} = {bi} − [Ai]{xij}. Convergence is

reached when ‖{rj}‖/‖{bi}‖ < tol where ‖ · ‖ denotes the L2-norm. The tolerance, tol, is defined by the

user and is commonly 10−6.

A new basis vector is generated with each iteration of the algorithm. Once the method has converged,

equation (5.18) is applied to update {xi}. The amount of memory required by the solver, in addition

to that required to store the system and preconditioner, and the time required to compute each new

Krylov vector increases with each iteration. To limit these requirements, restarted versions of the GMRES

method are often used, updating {xi} before each restart. In the worst case, GMRES will always converge

to the correct solution in n steps. However, to run the algorithm for this many iterations would be

significantly less efficient than applying a direct solver.

A flowchart of the non-restarted GMRES algorithm is given in Figure 5.2.

5.4.3 BiCGSTAB

The BiCGSTAB method was developed as an improvement on the conjugate gradient squared (CGS)

method that often exhibits irregular convergence patterns.

{rj} = Qj([Ai])Pj([Ai]){r0} (5.19)

– 55 –



Chapter 5: Linear equation solvers

Find first Krylov vector, φ0 = r/‖r‖

MW = Aφi for w

Apply preconditioner, M , by solving

algorithm

orthonormalisation of w using Arnoldi’s

Find next Krylov vector, φi+1, and construct

matrix H by performing a Gramm-Schmidt

Apply Givens rotations to matrix H to

upper triangular form

convert from upper Hessenberg to

side, g, of the orthonormalised system

Generate the new term in the right hand

Has the system

converged?

NO

YES

Apply preconditioner by solving M∆x = u

Update the solution, x = x0 + ∆x

Output solution

fo
r
i

=
0

:
n

and backward substitution, ΦHu = g,

Solve QR factorisation for u via a forward

Φ = [φ0, φ1, . . . , φi]

Find residual vector, r = b−Ax0

Start re-analysis

Previous

solution, x0

New A matrix

and b vector

Figure 5.2: GMRES flowchart.
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where j is the iteration number, Pj([Ai]) is a jth degree polynomial in [Ai] and Qj([Ai]) is a jth degree

polynomial describing a steepest descent update. The vector {xi} is updated and convergence checked,

using the same stopping criterion as the GMRES method, twice in each iteration. The BiCGSTAB

method requires about half as much memory as the GMRES method at 6n values.

A flowchart of the BiCGSTAB algorithm is given in Figure 5.3.
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s when updating x
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Ms = r for the search direction vector, s

Find factor, ω, that multiplies

s when updating x

Update solution, x = x+ ωs,

and residual, r

Has the system

converged?

Has the system

converged?

Figure 5.3: BiCGSTAB flowchart.

5.4.4 TFQMR

The quasi-minimal residual (QMR) method [153] aims to solve the system in a least squares sense, in

a similar manner to the GMRES approach. However, the basis generated in the Krylov subspace is

bi-orthogonal and the residual is therefore not a true minimisation, instead being referred to as quasi-

minimal. The TFQMR [140] algorithm achieves this without using [A]T which is slow to access due to

the way a matrix is stored in computer memory. The total additional memory required by the TFQMR

algorithm is similar to that of the BiCGSTAB algorithm at 7n values.

The basic TFQMR algorithm is shown in Figure 5.4. Each iteration adds a new vector to one of the two

bi-orthogonal systems. For implementation the algorithm has has been expanded to reduce computation.

This means that each loop around the algorithm is effectively two iterations of the flowchart in Figure 5.4.
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The vector {xi} is updated after each of these iterations, therefore only a single basis vector is required

at any one time, thus reducing the memory requirements. The stopping condition computes an upper

bound for the residual, {rj}, using data already stored by the algorithm. This is compared to tol.
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Previous

solution, x0

New A matrix

and b vector

Update the residual vector

Reapply the preconditioner, M , to

find the next Krylov vector

Find factor, η that multiplies

d when updating x

Find search direction vector, d

Update solution, x = x+ ηd

NOHas the system

converged?

YES

Output solution

Apply preconditioner, M , to find the first Krylov vector

Figure 5.4: TFQMR flowchart.

5.4.5 Acceleration of the iterative solvers using adaptive cross approximation

Any admissible block, [A′], can be approximated through a combination of s vectors:

[A′] ≈ [S] = [U ][V ]T (5.20)

where:

[U ] = [{u1}, {u2}, ..., {us}] (5.21)

[V ] = [{v1}, {v2}, ..., {vs}] (5.22)

These vectors can be constructed through adaptive cross approximation (ACA) as described in Section

4.3.

By using this approximation, the number of operations required during matrix-vector multiplication,

such as is commonly employed in iterative solvers, can be reduced. To compute the product, [A′]{b′}, n2

operations would normally be required, where an operation consists of a multiplication and an addition.
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If this were re-written:

[A′]{b′} ≈ [S]{b′} = [U ]
(
[V ]T {b′}

)
(5.23)

only 2ns operations would be required.

Using this approach, efficiency gains can be made in the theoretical solution of equation (5.1) if

s < n/2. For small systems it is expected that s → n as subdivision of the problem will result in the

majority of blocks being small. However, for much larger systems more large blocks will exist where

s� n, thus providing increased acceleration of the solution.

5.5 Reduction techniques

Reduction techniques reduce the size of the problem by approximating it with a smaller system. This

reduced system is very fast to solve but additional overheads are required to generate the system. If a set

of m basis vectors, [Φ], together with m coefficients, {ζ}, are defined, {xi} can be written in the form:

{xi} = [Φ]{ζ} (5.24)

By substituting (5.24) into (5.1) and pre-multiplying by [Φ]T the reduced system can be produced:

[Φ]T [Ai][Φ]{ζ} = [Φ]T {bi} (5.25)

The basis, [Φ], is derived from some representative solutions of the initial problem and is of size n×m,

so it remains only to solve a small m ×m system where m � n. Hence {ζ} can be found with a direct

solver.

5.5.1 Leu’s reduction method

Leu [23] presents a reduction method, formulated specifically for the BEM, to solve equation (5.1), which

extends Kirsch’s [154] reduction method to the BEM and applies it to re-analysis. Leu uses a Gram-

Schmidt orthonormalisation procedure to modify the basis vectors, ϕi, resulting in an uncoupling of

the reduced system. These basis vectors are created iteratively and a convergence criterion is used to

determine the number required for a specified level of accuracy. The solution, {xi}, is updated as the

basis is constructed.

The method requires the inverse of the initial system matrix, [A0]−1. This can be achieved by applying

the LU decomposition by means of a forward and backward substitution. Leu assumes that each re-

analysis is applied to a different perturbation of the initial model rather than an iterative update of the

last model solved. It can be shown that Leu’s algorithm requires fewer operations for the solution phase

of re-analysis than Kane [3].

To construct the basis, Leu first pre-multiplies (5.1) by [A0]−1:

([I] + [Â]){xi} = {b̂} (5.26)

where:

[Â] = [A0]−1([Ai]− [A0]) (5.27)

{b̂} = [A0]−1{bi} (5.28)

Equation (5.26) can be rearranged and expanded such that:

{x} = ([I] + [Â])−1{b̂} = ([I] + [Â] + [Â]2 − [Â]3 + . . .− [Â]n){b̂} (5.29)
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Figure 5.5: Leu flowchart.
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The first m terms in this sequence can be used to construct a basis, [Φ]:

[Φ] =
[
{ϕ0} {ϕ1} {ϕ2} · · · {ϕm}

]
=
[
{b̂} [Â]{b̂} [Â]2{b̂} · · · [Â]m−1{b̂}

]
(5.30)

The basis vectors can be iteratively calculated if it is realised that:

{ϕi} = [Â]{ϕi−1} (5.31)

hence:

[A0]{ϕi} = ([Ai]− [A0]){ϕi−1} (5.32)

To uncouple the reduced system a Gram-Schmidt orthonormalisation is applied to equation (5.25).

This produces a second set of basis vectors, [Ψ] =
[
{ψ0} {ψ1} {ψ2} · · · {ψm}

]
, such that:

[Ψ]T [Ai][Φ] = [I] (5.33)

The new basis can be used to generate the coefficients, ζ:

{ζ} = [Ψ]T {bi} (5.34)

which can also be used as an error measure to assess convergence:

tol >
ζi∑i
j=0 ζj

(5.35)

where i is a count of the number of iterations of the algorithm, which is the same as the current number

of basis vectors.

Leu’s algorithm is summarised in Figure 5.5.

5.5.2 Proper orthogonal decomposition

Proper orthogonal decomposition (POD) (also called Karhunen-Loève decomposition (KLD)) is a key part

of reduced order modelling (ROM). A good review of recent advances in ROM is given by Xiao et al.

[155]. Different approaches may be adopted for generating a suitable basis for POD; two are presented

here. Ryckelynck et al. [25] formulate a solution specifically for the BEM (a similar formulation for the

FEM can be found in [156]). The vectors {xi} from the first s analysis runs are used to construct matrix

[Q], which is used to produce matrix [K]:

[Q] =
[
{x0} {x1} · · · {xs}

]
(5.36)

[K] = [Q][Q]T (5.37)

from which m eigenvectors are selected to form the basis, [Φ], based on the related eigenvalues, αk, where

αk > 10−10αmax, (k = 1, 2, 3, ..., n) and αmax is the highest eigenvalue. In the current work, this method

has been denoted E-POD.

Kerfriden et al. [26] formulate their method for the FEM. They use a set of s vectors made up from

a representative family of solutions to the initial model under differing initial conditions. These vectors

are combined as in equation (5.36) to form [Q] and the singular value decomposition (SVD) is found:

[Q] = [U ][S][V ]T (5.38)
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The first m columns of [U ] are taken to form an orthonormal basis [Φ] where m < s. This method

has herein been denoted SVD-POD.

Once [Φ] has been constructed it can be used in conjunction with (5.25) to find {ζ} and hence {xi}
from (5.24), as shown in Figure 5.6.

Find solution: x = Ψζ

Start re-analysis
Basis, Ψ

New A matrix

and b vector

Construct and solve reduced system:

ΨTAΨζ = ΨT b

Output solution

Figure 5.6: POD flowchart.

5.5.3 Static condensation

An alternative approach is static condensation. This aims to reduce solve time by only re-solving the

parts of the linear system that have been updated. The new system is subdivided into blocks based on

the updated rows and columns: [
[A11] [A12]

[A21] [A22]

]{
{x1}
{x2}

}
=

{
{b1}
{b2}

}
(5.39)

where [A11] contains terms that have not been modified. By multiplying out the first line of equation

(5.39):

{x1} = [A11]−1 {{b1} − [A12]{x2}} (5.40)

and substituting into the second line, a reduced system can be constructed:

[S]{x2} =
{
{b2} − [A12][A11]−1{b1}

}
(5.41)

where [S] is the Schur complement:

[S] =
[
[A22]− [A21][A11]−1[A12]

]
(5.42)

The system can now be solved to find {x2}. The remainder of the solution vector, {x1}, can be found

by substituting {x2} into equation (5.40). This method could easily be applied where new rows and

columns are added to the system as they could simply be appended to [A12], [A21] and [A22].

If [A11]−1 is known a priori, the approximate number of operations (one multiplication and one
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addition) can be summarised as:

[
[A22]− [A21][A11]−1[A12]

]
⇒ n2nu − nn2

u (5.43){
{b2} − [A12][A11]−1{b1}

}
⇒ 2(n− nu)2 (5.44)

solve⇒ 2n3
u/3 (5.45)

[A11]−1 {{b1} − [A12]{x2}} ⇒ 2(n− nu)2 (5.46)

OSC = 2n3
u/3− n2

u(n+ 4) + nu(n2 − 8n) + 4n2 (5.47)

where n is the original size of the system and nu is the number of updated rows and columns.

If OSC is equated to the number of operations required by a Gauss elimination (OG = 2n3/3), the

following equation is produced:

2n3
u/3− n2

u(n+ 4) + nu(n2 − 8n)− 2n3/3 + 4n2 = 0 (5.48)

This can be solved for a range of values of n to show that static condensation will always solve the system

faster than a direct solver. However, care should be taken when interpreting this result as it assumes

that [A11]−1 is known a priori and is the maximum possible size for the modified problem; ie. all the

terms in [A11]−1 will never change and all the terms not in [A11]−1 will be updated. The saving in solve

time when using static condensation is shown in Figure 5.7.

If a similar comparison is carried out comparing the number of operations to a GMRES solver, the

formula for the size of system where static condensation should be used instead of GMRES can be

approximated as:

n < 3.8s(nu/n)−0.8 + 20(nu/n) (5.49)

where s is the number of iterations in the GMRES solver. Typically s < 20 and nu/n > 0.2 for the type

of problems encountered in this work. Under these conditions static condensation cannot improve on the

GMRES algorithm, as shown in Figure 5.7.

For maximum efficiency when applying static condensation, exactly which rows and columns will be

updated must be known a priori so that [A11]−1 can be constructed. As this is unknown, [A11] must

be smaller than the optimum size to avoid including any rows or columns that could change. Additional

efficiency losses will be incurred as a result.

5.5.4 Woodbury

The Woodbury formula [157] and Sherman-Morrison formula [158] (a special case of the Woodbury

formula) update the inverse of a matrix when nu rows and columns have been modified. Wang et al. [10]

use this method for real-time analysis to add rows and columns to an otherwise unchanged matrix.

As with static condensation, the matrix is subdivided into four parts:

[A] =

[
[A11] [A12]

[A21] [A22]

]
(5.50)

where [A11] is the unchanged part of the matrix. The inverse of the updated matrix is given as:

[A]−1 =

[
[Ã11] [Ã12]

[Ã21] [Ã22]

]
(5.51)
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and can be constructed using the following set of equations:

[Ã11] = [A11]−1 + [A11]−1[A12][S]−1[A21][A11]−1 (5.52)

[Ã12] = −[A11]−1[A12][S]−1 (5.53)

[Ã21] = −[S]−1[A21][A11]−1 (5.54)

[Ã22] = [S]−1 (5.55)

where [S] is the Schur complement as given in equation (5.42).

If it is assumed that [A11]−1 is known a priori, the approximate number of operations involved in

completing the linear solve can be summarised as:

[S]−1 ⇒ n2nu + n2
un+ n3

u (5.56)

[Ã11]⇒ n2nu + 2n2
un (5.57)

[Ã12]⇒ n2
un (5.58)

[Ã21]⇒ n2
un (5.59)

[Ã22]⇒ 0 (5.60)

[A]−1{b} ⇒ n2 (5.61)

OW = n3
u + 5n2

un+ 2nun
2 + n2 (5.62)

If nu � n then this can be approximated as 2n2nu. By equating the number of operations to those

in a direct solver (such as a Gauss elimination) the following formula is constructed:

n3
u + 5n2

un+ 2nun
2 − 2n3/3 + n2 = 0 (5.63)

For efficiency gains to be made for all values of n, n/nu < 0.215. Further analysis indicates that the

Woodbury formula can only outperform static condensation when nu/n < 0.003. This is clearly shown

in Figure 5.7.
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Figure 5.7: Theoretical speed-up over a direct solver.
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5.6 Frontal solvers

Frontal solvers were first proposed by Irons in 1970 [159]. These solve the linear system as it is being

constructed, using a similar technique to Gauss elimination. This is particularly useful for solving sparse

systems, typically found in the FEM, as the solver can avoid carrying out operations that multiply zero

terms. The full linear system is never created explicitly, thereby reducing the memory requirements of

the algorithm. Only the front, which contains the terms currently being assembled is stored at any one

time. The dense matrix operations involved in processing the front use the CPU efficiently. The method

can be parallelised by implementing a multi-frontal solver, whereby several independent fronts can be

assembled on different processors [160].

Frontal solvers are not as efficient for solving dense matrices and, as parts of the linear system of

equations are re-used to accelerate the re-analysis algorithms presented in this thesis, the system must

be created in full. This negates the major benefits of applying a frontal solver in this instance and they

will therefore not be considered further.

5.7 Parallelising the solvers

The solvers may be parallelised to make use of multiple computer processors and hence accelerate con-

vergence. This parallel code may be customised to run on multiple CPUs, which use a few powerful

processors, or graphics processing units (GPUs) which contain hundreds of small processors and are most

appropriate for massively parallel problems.

The direct solvers discussed in this work cannot be easily parallelised due to the full pivoting and the

substitution routines. The iterative solvers have similar problems in that each iteration must be completed

before the next can proceed. For these reasons it is only possible to parallelise operations carried out

within each loop of both the direct and iterative solvers discussed in this work. Kreienmeyer and Stein

[56] compare the Gauss elimination, GMRES and BiCGSTAB solvers when solving a BEM system on

multiple CPUs and concludes that the BiCGSTAB algorithm can be parallelised more efficiently but that

the GMRES algorithm outperforms it due to a faster convergence rate.

The forward and backward substitution used to apply the LU decomposition either as a preconditioner

or to solve the system cannot easily be parallelised as all the previous solutions are required to compute

the next. However, any operations within each iteration of the algorithms can be easily parallelised,

thereby reducing the time for the costly matrix-vector multiplications inherent in all of the solution

algorithms.

When parallelising the reduction algorithms, all of the operations used in POD may be parallelised

as they are simple matrix multiplications. However, Leu’s algorithm iteratively creates basis vectors and

requires the previous solution to create the next vector and can therefore only be parallelised within each

iteration.

More extensively parallel implementations of all these algorithms exist (an overview of packages that

implement parallel iterative solvers can be found in [161]) however these often incur large overheads in

dividing up the problem. On the GPU, libraries such as Nvidia’s CUDA basic linear algebra subprograms

(CUBLAS) [162] include functionality to carry out forward and backward multiplication in parallel as

well as more simple operations. Couturier and Domas [163] compare the speed of running a standard

GMRES solver on both CPUs and GPUs and show a speed-up ranging from eight to twenty-three times

for a variety of different FE problems. However, for all these problems n is greater than 147,000 and the

system cannot therefore be solved in real-time using current hardware. It is not clear whether the speed-

up will scale to small problems that are amenable to real-time analysis. Several strategies for applying

direct solvers to dense matrices on the GPU are discussed by Galoppo et al. [164]. Whilst these methods
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have been applied to fluid flow simulation, they are equally applicable to the BEM. All the strategies

show good speed-up over multiple CPUs.
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Initial meshing strategy

“Science never solves a problem without creating ten more.”

George Bernard Shaw

6.1 Introduction

A model built by the user must be discretised into a number of elements, forming a surface mesh, before

it can be numerically integrated using the boundary integral equation (BIE) discussed in Chapter 2. This

necessitates the development of an efficient mesh generating algorithm. The meshing strategy proposed

in this chapter produces a high quality mesh and takes into account the need for rapid initial mesh

generation. The initial mesh must be of sufficiently high quality so that the perturbations applied to

the mesh during the re-meshing procedure do not significantly affect it. A comprehensive data structure

will also aid rapid analysis and re-meshing of the model. The principal focus of the present work is the

analysis of small mechanical components. These models will best lend themselves to real-time analysis.

As these are simple models, only basic geometric features are encountered by the algorithm. Each of

these features can therefore be stored as a basic mathematical entity. This creates a highly efficient data

storage structure with details about each entity stored in a tree structure.

Existing meshing packages such as Gmsh [165] could be used to provide a suitable meshing algorithm

for any model. However, this would require in depth interaction with the source code of the packaged

mesh generator to extract the data required for re-meshing the model. Additional overheads and data,

unnecessary for this work, would also be incurred, thus slowing the algorithm. In order that absolute

control can be maintained over the mesh and data structure, the mesh generator used in this work has

been entirely written by the author.

For this work, the Open Cascade [166] modelling libraries have been utilised to create the modelling

environment in which the user can construct and analyse three-dimensional components. These libraries

produce some of the data required by the meshing algorithm. However, only enough data for visualisation

of the geometry is created. This must be parsed to ensure it is in the correct format and several additional

fields calculated.

6.2 The model data structure

6.2.1 Introduction

The algorithms developed for this thesis are coded in an object oriented fashion. A series of classes store

data defining various geometric entities. These classes will be filled automatically via the Open Cascade

modelling library, which is used to interpret the user input. There are three classes used to define the
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geometry of a three-dimensional model. These store vertices, lines and patches. A typical layout of these

features is shown in Figure 6.1.

Vertex

Line

Patch

Figure 6.1: Typical basic model.

A vertex is defined as a point in three-dimensional space; a line links two vertices and generally forms

an edge of the model. A patch is a surface enclosed by a set of lines, generally forming a face of the

model. Each continuous set of lines around a patch are grouped to form a wire, for example, in Figure

6.1 lines 0, 2 and 3 form a wire around patch 0. Note that a vertex must be defined at any point where

multiple lines meet, even if there is no change of angle between the lines. This data structure can be

summarised for a basic model in a tree, as shown in Figure 6.2. The tree can be easily traversed using

information stored within each entity to establish its relationship with any other entity.

Model

Vertex 3

Vertex 0

Vertex 1

Vertex 2

Line 2

Line 0

Line 1

Line 3

Line 4

Line 5

Patch 0

Patch 1

Patch 2

Patch 3

Figure 6.2: Model data structure.

6.2.2 Vertices

The fields in the vertex class, which define the location and connectivity, are shown in Table 6.1.

Table 6.1: Vertex class.

Field Description

float coords[3] (x, y, z) coordinates of vertex.
int numLines Number of lines around vertex.
int lineID[] IDs of lines around vertex.
int end[] ID of end of line at vertex.
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6.2.3 Lines

The fields stored in the line class are shown in Table 6.2. Straight lines are defined by the two vertices

at their ends. Curved lines (circular arcs) are defined by the two vertices at their ends, the radius and

centre point of the arc. The angle through which the arc turns and the axis of rotation are also included

for convenience. A flag defines the type of line. This informs the algorithm to ignore the extra values

used to define a curved line if it is dealing with a straight line. Both line types store a reference number

for the patches that meet at the line. Fields to store the number of elements along each line and the

grading factor between elements are initialised. Additional fields are required if the line is split to allow

the segments to grade in or out in the centre of the line. For clarity these are not included in Table 6.2.

Table 6.2: Line class.

Field Description

int lineType Flag defining line type (0: straight; 1: circular arc).
float length Length, l, of line.
float radius Radius, r, of arc.
double dtheta Subtended angle, θ.
float centreOfCurvature[3] (x, y, z) coordinates of centre of arc, C.
float axisOfRotation[3] Unit vector, axis of arc rotation.
int convex Flag line form (0: concave, 1: convex).
int vertexID[2] Start and end vertices of line, V1, V2.
float endElementLength[2] Start and end element lengths, δ1, δ2.
float gradingFactor Grading factor, λ.
int numElements Number of segments along line.

6.2.4 Patches

The data stored in the patch class are shown in Table 6.3. Lines are defined in an anticlockwise direction

around the patch boundary when viewed from the outside of the model, as shown in Figure 6.3. Each

continuous group of lines forms a wire of which there may be multiple associated with each patch.

Mathematically the orientation of the boundary is defined such that the cross product of the outward

normal to the patch and the boundary tangent vector (in the same direction as the boundary curve) is

always pointing towards the interior of the surface. Flags determine whether the line is traversed from

V1 to V2 or from V2 to V1 and whether the line is on the outer boundary or part of a hole in the patch.

The type and form of the patch are also flagged where appropriate.

Outer wire

Inner wire

Figure 6.3: Line orientation.
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Table 6.3: Patch class.

Field Description

int numLines Number of lines around patch.
int lineID[] IDs of lines surrounding patch.
int lineDirectionCorrect[] Flag defining line direction (0: start at V2; 1: start

at V1).
int numWires Number of complete loops of lines that form the

boundary of the patch.
int wire[] Flag line location (0: line is around outside of patch;

1+: line is on an internal feature).
int patchType Flag patch type (0: plane; 1: cylindrical; 2: conical;

3: spherical).
int convex Flag patch form (0: concave, 1: convex).
int normal Outward normal of plane patches, N .
int bcType[3] Type and (x, y, z) direction of boundary condition

applied to patch (0: traction; 1: displacement).
float bcValue[3] Value of boundary condition, (x, y, z) components.

A single line or patch may form a continuous loop, such as a circle or the surface of a cylinder, so long

as they are still fully defined. A vertex must be defined somewhere around a circular line and it should

appear twice in the vertexID field. The line direction must be defined to match the axis of rotation,

obeying the right hand rule. Similarly, a line must be defined to split a continuous patch. This will

appear twice in the lineID field as it is traversed in opposite directions.

6.2.5 Parsing the data structure

Open Cascade does not store the model data in the structure required for the meshing algorithms de-

veloped as part of this work. To overcome this interfacing problem, and to calculate the additional data

required, a model parsing algorithm has been developed.
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Model created Return error
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geometry permit

sensible meshing?

Is the

data complete and in

the correct format?

Figure 6.4: Flowchart showing initial checks on the model.
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The parsing algorithm can be broadly divided into three parts. The first part, shown in Figure 6.4,

checks that all the required data exists and that it is viable to create a mesh from this data. It then

generates any extra data that can be easily calculated, such as the line lengths. The second part, shown

in Figure 6.5, orders and orientates the direction flags of all the lines so that they are consistent around

all patches. The final part, shown in Figure 6.6, checks if these orientations are consistently right or

consistently wrong, in which case it inverts them.
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Figure 6.5: Flowchart showing order of the lines.
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6.3 The mesh data structure

6.3.1 Introduction

Figure 6.7 shows the data structure that is created by the algorithm to store the elements that make

up the model mesh. During mesh generation, each element is defined by mesh points that lie on the

surface of the model and are therefore entirely dependent on the geometry. These are similar to nodes in

that they are used to define elements but they always lie on the boundary of the element. Mesh points

are used purely for convenience during the meshing process in case discontinuous elements need to be

introduced. Once the mesh is finalised, nodes are generated from the mesh points forming an independent

data structure. In this work the entire mesh is continuous and the location of the nodes will always be

coincident with the mesh points. Therefore, for clarity, this thesis will refer only to nodes.

The information stored within each class is summarised in this section. All numbering systems start

with zero.

A mesh can be fully defined using only the nodal coordinates and an array defining the nodal con-

nectivity. However, if memory is available, extra details may be stored allowing increased access speed

to all the data. Node based data structures typically use less memory but require more central pro-

cessing unit (CPU) time for the additional traversals required. Modern computing technology means an

ever-increasing amount of storage is becoming available and the current work can therefore concentrate

primarily on speed; therefore a combination of node based and element based data structures can be used

to make data access as fast as possible. However, care must be taken to ensure that any duplicated data

sets are consistent.
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Element 0

Element 1

Element 2
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Node 2Mesh point 2
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Figure 6.7: Mesh data structure.

6.3.2 Elements

The mesh generator outputs a data set defining all the elements in the mesh shown in Table 6.4. This

includes a reference to the patch on which the element exists, a flag defining the type of element and the

ID numbers of the nodes around the element. The sides of each element are referred to as segments. The

element class supports linear and quadratic, triangular and quadrilateral elements. The type of element

is defined by the elemType field which stores the number of nodes on the element.

Table 6.4: Element class.

Field Description

int patchID ID for the patch on which the element lies.
int elemType Type of element (8: quadrilateral; 6: triangular).
int nodeID[8] ID numbers for the nodes around the element.
float quality Element quality, Q.
float size Nominal size of the element (average side length).
int bcType[3] Type and (x, y, z) direction of boundary condition

applied to element (0: traction; 1: displacement).
float bcValue[3] Value of boundary condition, (x, y, z) components.

The node numbering conventions for triangular and quadrilateral elements, when viewed from outside

the model, are shown in Figure 6.8. During mesh generation and smoothing only the corner nodes are

considered; mid-side nodes are added later.
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(b) Quadrilateral element.

Figure 6.8: Node numbering.
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Some triangular elements may be merged to form quadrilateral elements. This reduces the number of

nodes and elements in the mesh, thereby accelerating the analysis procedure. However, merging elements

may result in a reduction in mesh quality if not done carefully. Ideally, quadrilateral elements should be

generated instead of a pair of triangular elements. However, due to the additional complexity involved

in merging pairs of triangular elements into quadrilateral elements and the complications this will create

in the re-meshing algorithm, quadrilateral elements will only be used on patches with a structured mesh.

6.3.3 Nodes

The node class stores the coordinates of each node and the number of elements that share the node along

with their ID numbers, thus defining the element connectivity. This is summarised in Table 6.5. Nodes

along lines are duplicated for different patches; these are linked in the nodeID field of the line class, given

in Table 6.2, so that they can easily be merged during data output.

Table 6.5: Node class.

Field Description

float coords[3] (x, y, z) coordinates of node.
int numElements Number of elements that share the node.
int elementID[] ID numbers of the elements that share the node.
int bcType[3] Type and (x, y, z) direction of boundary condition

applied to node (0: traction; 1: displacement).

6.4 Global meshing factors

Several factors are defined globally for the mesh generation algorithm and are summarised in Table 6.6.

The maximum adjacency and minimum grading ratios limit the size difference between adjacent elements

around the corners or along lines respectively. These have been determined by numerical experimentation.

Trevelyan [30] suggests that, in two dimensions, an adjacent element should ideally never be more

than twice the size of its neighbour. Therefore, as a general guideline, the grading ratios, λmax and λmin,

have been set to 2 and 0.5 respectively.

A nominal maximum segment size, L̂max, is found from the size of the model bounding box and a

user-defined mesh refinement factor, κ:

L̂max =
κ

3
(max(x)−min(x)) + (max(y)−min(y)) + (max(z)−min(z)) (6.1)

A segment connects two nodes to form the side of a pair of elements. The refinement factor, κ, may be

set by the user to achieve an appropriate mesh density. The minimum number of elements around an

arc, Cmin, is also limited to ensure sufficient refinement of the mesh around these important features.

Table 6.6: Global meshing factors.

Field Symbol Description

float maxfactor λmax Maximum adjacency ratio around vertices.
float minfactor λmin Minimum grading ratio along lines.
float refine κ Refinement factor.

float maxelesize L̂max Nominal maximum element size.
int circseg Cmin Minimum number of elements around any arc.
int rings nR Number of rings of points around arcs and return angles.
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No user interaction should be required for meshing aside from defining the geometry, the boundary

conditions and the mesh quality. For simplicity the general mesh density shall be presented to the engineer

as options in a series of discrete steps ranging from coarse to fine. Table 6.7 shows the refinement used

for coarse, medium and fine meshes.

Table 6.7: Mesh refinement factors.

κ Cmin nR

Coarse 0.5 16 2
Medium 0.2 16 3
Fine 0.1 24 4

6.5 Mesh quality measures

6.5.1 Element quality

To minimise error during discretisation of the mesh it is important to produce high quality elements.

Many measures have been suggested for defining the quality, Q, of an element. The measures discussed

here generate a value in the range 0 ≤ Q ≤ 1 where Q = 1 indicates the highest quality element and

0 a fully collapsed element. The minimum element quality in the model can be regulated by setting a

minimum permissible value of the chosen measure, Q ≥ Qmin.

Due to the meshing schemes used, all the quadrilateral elements encountered in this work will be

rectangular. A simple quality measure can therefore be devised based on the aspect ratio of the element:

Q =

√
Lmin

Lmax
(6.2)

where Lmax is the longest dimension of the element and Lmin is the shortest dimension. The highest

quality element is a square.

Triangular elements can be distorted in any way, therefore a more complex measure of Q is required

for these elements. The properties used to construct the error measures are defined in Figure 6.9.
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Figure 6.9: Element measures.

The radius of the inscribed circle within the element (incircle) and the radius of the circumscribed

circle (circumcircle) are calculated using the following formulae where A is the area of the element.

Ri =
2A

La + Lb + Lc
(6.3)
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Rc =
LaLbLc

4A
(6.4)

The area of the element can be calculated using Heron’s area formula:

A =
√
s(s− La)(s− Lb)(s− Lc) (6.5)

where s is the semiperimeter of the element:

s =
La + Lb + Lc

2
(6.6)
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Figure 6.10: Quality measure testing scheme.

For comparison, each shape measure has been used to assess a systematically generated range of

elements designed to give a good representation of all the shapes that may be encountered. Two nodes

of each element were fixed at coordinates (−0.25, 0) and (0.25, 0) whilst the third node was successively

defined at each point shown on Figure 6.10. The contour plots produced, for example Figure 6.11, show

the element quality across this range and are symmetrical about both the x and y axes. For the highest

quality element, an equilateral triangle, the third node should be located at (0,
√

3/4).

Length Ratio

The length ratio is a measure of element quality, calculated from the ratio of the smallest side length of

an element to the average side length [61].

QL =
3 min(La, Lb, Lc)

La + Lb + Lc
(6.7)

The length ratio is an acceptable measure of element quality for elements so long as the y coordinate of

the third node exceeds 0.4 in the test case. This value can be scaled to fit any element. For elements that

are close to fully collapsed (where all the edges lie on the same line), QL does not provide an appropriate

quality measure. The accuracy is most misleading when the third node is positioned closest to (0,0),

where the measure tends to 0.75 instead of 0. This problem can clearly be seen on Figure 6.11, which

shows the range of shape ratios produced by analysing a set of elements produced using the grid shown

in Figure 6.10. The length ratio is best used in conjunction with another shape measure to produce a

– 76 –



6.5: Mesh quality measures

more suitable quality measure.
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Figure 6.11: Length ratio, QL, for a range of elements.

Angle ratio

The angle ratio, suggested by the author as an improvement on the length ratio, is the ratio of the

smallest angle in the element to the average angle (π/3 radians).

Qθ =
3 min(θa, θb, θc)

π
(6.8)

The angle ratio gives a more reliable estimate of the element quality than the length ratio. These

measures complement each other well and could be used together to more accurately assess element

quality. The angle ratio successfully identifies near fully collapsed elements as poor quality and provides

a tight, if slightly irregular, set of contours about the optimal element shape, as can be seen in Figure

6.12.
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Figure 6.12: Angle ratio, Qθ, for a range of elements.
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Normalised aspect ratio

The element aspect ratio is the ratio of the radius of the incircle to the length of the longest side [61].

This ratio has been multiplied by 6/
√

3 to scale it to a value between 0 and 1.

QA =
12A√

3(La + Lb + Lc) max(La, Lb, Lc)
(6.9)

The normalised aspect ratio produces circular contours about the optimum element shape, as shown

in Figure 6.13. It provides an appropriate measure of the element quality for any amount of distortion.
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Figure 6.13: Normalised aspect ratio, QA, for a range of elements.

Normalised circle ratio

The circle ratio is a two-dimensional adaptation of the radius ratio discussed by Topping et al. [61] for

assessing tetrahedral elements used in three-dimensional finite element (FE) analysis. It is the ratio of

the radius of the incircle to the radius of the circumcircle. This ratio has been multiplied by 2 to scale it

to a value between 0 and 1.

QC =
2Ri
Rc

=
16A2

LaLbLc(La + Lb + Lc)
(6.10)

The circle ratio generates a very similar contour plot to the aspect ratio. The aspect ratio gives a

marginally more useful measure for low quality elements but for an acceptable element quality they are

near identical. The circle ratio requires marginally less computation than the aspect ratio and therefore

is preferable where fast computation is required. To provide the same mesh quality, the minimum circle

ratio must be slightly higher than for the aspect ratio. However, testing will be required to establish

exactly how much the element quality affects the analysis results and the minimum quality measure will

need to be fine-tuned.

Summary

The normalised circle ratio, QC , has been selected as the most appropriate element quality measure for

this work. To simplify the notation, the element quality is often referred to as Q throughout this thesis.

However, wherever element quality is discussed, QC has been applied to work out any values.
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Figure 6.14: Normalised circle ratio, QC , for a range of elements.

6.5.2 Mesh quality

The mean, Q̄, and standard deviation, S̃, of the accumulated single element measures is highly represen-

tative of the global mesh quality:

Q̄ =
1

nE

nE∑
k=1

Qk (6.11)

S̃ =
1

nE

nE∑
k=1

(
Qk − Q̄

)2
(6.12)

where nE is the number of elements in the assessed area.
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Figure 6.15: Distribution of element quality.

Figure 6.15 shows four normal distributions of element quality for a simple mesh of 150 elements

assessed using QC . It should be noted that the distributions shown on Figure 6.15 are the true normal

distribution for the meshes, calculated from Q̄ and S̃. To preserve mesh quality we define measures Q̄min

and S̃max to be the minimum acceptable mean element quality and the maximum acceptable standard

deviation of element quality respectively. If the mesh quality falls outside of these criteria, further
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smoothing must be carried out.

6.6 Meshing strategy

6.6.1 Mesh refinement

The meshes produced by the algorithms presented in this thesis are refined according to the initial geom-

etry of the model. Geometric recognition is used with the aim of predicting where high stress gradients

are likely to occur so that the mesh can be refined in these areas. This contrasts with many schemes

which use an initial coarse analysis to inform refinement of the mesh. As the geometries encountered in

this work are generally simple and larger errors are permitted during re-analysis, this is not necessary

and time can be saved by moving immediately to a suitable mesh.

6.6.2 Initial segment sizes

The mesh generator initially defines the maximum segment size, δij , for each line, i, at each vertex, j, as

shown in Figure 6.16.

δ20

δ10
δ00

V0

L2

L1

L0

Figure 6.16: Mesh grading factors for lines around a vertex.

The factors δij are calculated by first finding the internal angle, β, between the two patches which

meet at line i. This is done by comparing the patch normals. A scaling factor, γ, is defined depending

on the value of β:

γ =


1.0 if(β < π/2)

0.5 if(π/2 ≤ β < π)

0.2 if(β ≥ π)

(6.13)

A nominal segment size, δ̂ij can be found for vertices j at each end of line i:

δ̂ij = γL̂max (6.14)

where L̂max is the nominal maximum element size calculated using equation (6.1).

The grading factors for the appropriate end of all the lines adjoining the current line are defined in

this operation. However, the values on the current line are not defined as they depend on the other lines

around the vertex. If a new grading factor is calculated where one has already been defined, only the

lowest value is stored. This satisfies the refinement criteria by generating suitably small elements in the

region.

To avoid rapid grading between elements of different sizes around a vertex, j, it is ensured that:

δij ≤ λmaxδmin,j (6.15)
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where δmin,j denotes the smallest segment around vertex j. If the values of δij at both ends of line

i are small in comparison to its length, the line is split in half during segment distribution so that they

can grade out in the centre. Additional grading factors are defined at the centre of the line.

6.6.3 Segment grading

Once the values of δij have been computed for every line in the model, the grading ratio, λ, between

adjacent segments along each line is calculated. A geometric progression is assumed for grading the

segments along line i where each term corresponds to the length of a segment. For clarity the i subscripts

have been omitted, δmax therefore refers to the largest of the two values of δ on line i and δmin the

smallest.

l = δmax(1 + λ+ λ2 + λ3 + ...+ λn−1) (6.16)

where l is the line length.

By multiplying both sides by (1− λi) equation 6.16 can be rearranged to give:

l = δmax

(
1− λn

1− λ

)
(6.17)

It should be noted that the nth term in the series is known:

δmin = δmaxλ
n−1 (6.18)

The grading factor, λ, can now be found by substituting equation (6.18) into equation (6.17) and

rearranging for λ:

λ =
l − δmax

l − δmin
(6.19)

If λ < λmin, then it is increased to equal λmin. The number of segments, n, along the line can be

calculated by rearranging equation (6.18). To force n to be an integer it is rounded up.

n = ceil

(
ln(δmin/δmax)

ln(λ)
+ 1

)
(6.20)

Under certain conditions n may need to be modified. If n < 2, n = 2 and if i is an arc and n/θ <

Cmin/(2π), n = ceil(θCmin/2π). Consistency is also checked across patches that are to use a structured

quadrilateral mesh.

The apparent length of i, l̂, can now be calculated by using equation (6.17). This is used in conjunction

with the actual length to scale δmax so that a whole number of segments fit along the line.

δ′max = δmaxl/l̂ (6.21)

If δmax has been updated then δmin must also be adjusted using equation (6.18). If the grading scheme

has generated an excessive number of elements along a line, the line is split in half so that the size of

element can grade out to δmax in the centre.

Whenever δij is updated, all the values of δij around vertex j must be rechecked against λmax. The

grading along associated lines must the be checked again. This process continues to iterate until no

changes occur.
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6.6.4 Transformation into two dimensions

To simplify the generation of an unstructured mesh across each patch, a bidirectional mapping is applied

to transform each patch from the Cartesian (x, y, z) coordinate system onto a planar parametric space

(u, v). These mappings have been adapted by the author from those suggested by Lo [105].

Plane surface

For a plane patch the transformation is trivial. The patch is simply rotated through the angle φ, so that

the outward normal aligns with the z-axis. This is shown in Figure 6.17.

φ
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y
x

a

N

(a) Cartesian surface.

v

u

(b) Parametric surface.

Figure 6.17: Transformation of a plane patch.

The rotation matrix is given as:

[R] =

a
2
x + (1− a2

x) cosφ axay(1− cosφ) ay sinφ

axay(1− cosφ) a2
y + (1− a2

y) cosφ −ax sinφ

−ay sinφ ax sinφ cosφ

 (6.22)

where φ is the angle between the outward normal of the patch, N , and the z axis and a is the unit axis

of rotation calculated from the cross product of the outward normal and the z axis. The patch may then

be transformed by pre-multiplying the location of any point on the patch with the rotation matrix:
u

v

w

 =

 R



x

y

z

 (6.23)

The w coordinate will be identical for all points that lie on the patch and is therefore only calculated

once. It is stored by the algorithm and used when mapping back into Cartesian coordinates:


x

y

z

 =

 R


−1

u

v

w

 (6.24)

Cylindrical surface

A cylindrical surface is transformed using a local axis system (a, b, c) where a, b and c are unit vectors in

the directions shown in Figure 6.18 centred on point O. P defines a point anywhere on the surface and

M defines the projection of point P on the axis of rotation of the surface, a.
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In parametric space u is the distance around the circumference of the cylinder and v is the distance

along the axis of rotation such that:

u = rθ (6.25)

v = OP · a (6.26)

where r is the radius of the cylinder and θ is given by:

θ = cos−1

(
MP · b
r2

)
(6.27)

MP = OP − (OP · a)a (6.28)

θ

P
a

M

c

b

O

yx

z

(a) Cartesian surface.

v

u

(b) Parametric surface.

Figure 6.18: Transformation of a cylindrical patch.

The inverse of the transform for a point on the (u, v) plane is given by:

P = O + av + b cos
(u
r

)
+ c sin

(u
r

)
(6.29)

Conical surface

A cone is transformed using a similar method to that for the cylinder. The variables for a cone are

assigned as shown in Figure 6.19. P denotes a point anywhere on the surface.

θ

M

a
P

α

c

z

K

x y

O

b

(a) Cartesian surface.

ϕ

P

u

v

(b) Parametric surface.

Figure 6.19: Transformation of a conical surface.
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θ = cos−1

(
MP · b
MP

)
(6.30)

MP = OP − (OP · a)a (6.31)

In parametric space, the angle ϕ is given by:

ϕ =
‖MP‖θ
‖KP‖

(6.32)

Hence, the parametric coordinates of point P are given by:

u = ‖KP‖ cosϕ (6.33)

v = ‖KP‖ sinϕ (6.34)

The inverse of the transform can be calculated using the following set of equations:

r =
√
u2 + v2 (6.35)

ϕ = a cos
(u
r

)
(6.36)

θ =
ϕ

sinα
(6.37)

P = O + ar cosα+ br sinα cos θ + cr sinα sin θ (6.38)

Data structure

The data structure for the transformed two-dimensional patches is the same as for their three-dimensional

equivalents with the addition of the variables used in the transformations shown in Table 6.8.

Table 6.8: Transformation data.

Field Symbol Description

Plane surface
float w w w coordinate of rotated patch
float R[3][3] [R] Rotation matrix
float Ri[3][3] [R]−1 Inverse of rotation matrix

Cylinder and Cone
float a[3] ax, ay, az Unit axis (axis of plane)
float b[3] bx, by, bz Unit axis (direction of start of surface)
float c[3] cx, cy, cz Unit axis (a× b)
float M[3] Ox, Oy, Oz Coordinates of origin of axis system
float K[3] Kx,Ky,Kz Coordinates of tip of cone
double alpha α Half angle in tip of cone

6.6.5 Mesh generation across plane surfaces

Node distribution

Nodes are generated along the lines around each transformed patch using the final values of δ1 and δ2

and the geometric progression defined in equation 6.16. If the line is subdivided to allow elements to

grade out in the centre, each half is treated separately.

Nodes are systematically generated across the interior of the patch. These are concentrated around
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key features to ensure sufficient refinement of the mesh. A double ring of nodes is generated around a

re-entry corner, as illustrated in Figure 6.20(a); the number of nodes in the ring is calculated from the

severity of the angle. A single node is placed so that it bisects any corners with an internal angle greater

than π/3 radians and less than π radians, as shown in Figure 6.20(b). The distance from the feature

to these nodes is determined from the average of the end segment lengths of the line that meet at the

feature. A ring of nodes is located around the inside of a concave arc, as illustrated in Figure 6.20(c).

The number of nodes placed around an arc is equal to the number of segments along the arc and the

distance is dictated by the size of the segments. A single, sparser line of nodes is also generated along

each straight line and convex arc. Additional nodes may be generated in random positions across the

interior of each patch if a large, node free area is detected. The number of randomly placed nodes is

based on the number of segments around the patch boundary and the number of internal nodes already

created.

(a)

(b)(b)

(c)

Figure 6.20: Distribution of nodes around geometrical features.

Initial triangulation

A constrained Delaunay triangulation is used to generate a mesh across the patch. This connects all the

nodes on a patch to form a triangular mesh. An initial unstructured mesh is of relatively low quality.

Further processing is required to remove distorted elements and improve the quality of the mesh. This is

called smoothing and is applied in several steps, as detailed in Section 6.6.6. Structured meshes initially

produce higher quality elements than unstructured meshes, due to this, and to preserve the structure, no

smoothing is carried out after the initial triangulation across structured meshes.

6.6.6 Mesh smoothing

Several algorithms are applied to improve the quality of a triangular mesh. The algorithms detailed later

in this section can be applied to the mesh in any order and may be repeated to further improve the mesh.

To minimise the amount of computation required in producing a high quality mesh for general problems,

the author recommends the following:

1. Laplacian smoothing (2 iterations).

2. Element collapse.

3. Triplet removal.

4. Further Laplacian smoothing (2 iterations).

5. Element sub-division.

Laplacian smoothing

The Laplacian smoothing algorithm iterates around all the nodes within the boundaries of each patch.

The u and v coordinates of the nodes connected via a single element to the current node are found and

averaged to give a new location for the current node. Several iterations of this process can be carried out
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to remove a significant amount of the element distortion from the initial mesh. The process is illustrated

in Figure 6.21.

(a) Original mesh. (b) Smoothed mesh.

Figure 6.21: Laplacian smoothing.

Element collapse

Poor quality elements are detected using the normalised circle ratio quality measure discussed in Section

6.5. These elements are then removed by collapsing their shortest side and merging the nodes at each

end to the centre of the removed segment. If either end of this segment lies on a line then the nodes are

merged at this end of the segment. If the shortest side of an element is on the patch boundary, it is not

removed, as this change would need to propagate onto the adjacent patch. This process also removes the

adjoining element and may result in the removal of some small elements that are not distorted; however,

this has very little impact on the overall mesh quality and reduces the number of elements, thus speeding

up analysis. The process of element removal is illustrated in Figure 6.22.

(a) Original mesh. (b) Smoothed mesh.

Figure 6.22: Element collapse.

Triplet Removal

An example of an element triplet is shown in Figure 6.23(a). Element triplets produce poor quality

elements and result in a high element density in very localised areas. The mesh density of the surrounding

elements is sufficient, hence the extra refinement created by the triplet is deemed unnecessary. Any node

surrounded by three elements is removed along with the surrounding elements, which are replaced by a

single large element.
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(a) Original mesh. (b) Smoothed mesh.

Figure 6.23: Element triplet removal.

Element splitting

Any elements that span across the entire patch are sub-divided. This reduces the risk of a large stress

gradient across a single element, such as when an element spans the height of the side of a cantilever.

Two iterations of this algorithm are required to ensure all spanning elements are caught, as shown in

Figure 6.24.

(a) Initial mesh.

(b) First iteration.

(c) Second iteration.

Figure 6.24: Element sub-division.

6.6.7 Mesh generation across conical and cylindrical surfaces

Conical and cylindrical surfaces generally have smooth stress contours aligned with the patch. A struc-

tured quadrilateral mesh therefore provides visually better contours across these surfaces. The structured

mesh is generated by constructing a grid across these patches which joining nodes on opposing sides of the

patch. The segment grading algorithms ensure that there are an equal number of appropriately spaced

nodes on opposing sides of the patch. This grid is used to form elements with nodes at the intersections

of the grid. The mid-side nodes are then generated.
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6.6.8 Transformation into three dimensions

Once the two-dimensional mesh has been finalised, nodes are generated at the centre of each segment.

If the segment lies on a curved line, the node is positioned on the line. The three-dimensional location

of each node is then calculated using a transformation from the parametric space (u, v) to the Cartesian

model space (x, y, z). The global data structure is updated to include the newly transformed nodes and

the elements that connect them. As each line appears on more than one patch, duplicate nodes exist

along them. The ID numbers of these nodes are stored in the nodeID field of the line class. This allows

the algorithm to quickly establish which nodes are on top of each other and on which line they lay. The ID

numbers of the elements connected to each node are also stored. These are required during re-meshing.

6.6.9 Data output

The nodes and element topology are output to the solver. During this process, duplicated nodes around

the boundaries of each patch are merged with those on adjacent patches.

6.6.10 Summary

A new mesh-generation algorithm has been developed for the current work. The algorithm ensures

that sufficient control can be maintained over the mesh and data structure during the meshing and re-

meshing procedures. The overheads are also reduced by generating only the data required for analysis and

subsequent re-analysis. All the elements generated during meshing are continuous quadratic serendipity

elements and may be either triangular or quadrilateral. Conical and cylindrical surfaces are meshed with

a structured mesh whilst a constrained Delaunay triangulation scheme [85] is used to generate triangular

meshes across plane surfaces. An example of a mesh generated is shown in Figure 6.26. Finer meshes

can be generated as required according to user preferences.

The shape of the elements used in the mesh directly affects the accuracy of an integration scheme of

prescribed order. The initial mesh is therefore generated from high quality quadratic boundary elements

(BEs) and refined in areas where high stress concentrations have been predicted. The predictions are

based on heuristics applied to the geometry of the initial model.

The normalised circle ratio QC , described in Section 6.5, has been adopted for determining the quality

of triangular elements. Quadrilateral elements are only generated on cylindrical or conical surfaces and,

using the procedures followed by the meshing and re-meshing algorithms, will always be of sufficient

quality. If a measure were to be required the element aspect ratio could be used, along with some

constraint on the internal angles.

The main steps involved in the initial unstructured mesh generation strategy over a single patch are

summarised below. A structured mesh would simply omit step 6.

1. Define segment sizes, δij , at both ends of every line and use to generate a geometric progression.

2. Convert each patch into the two-dimensional domain.

3. Distribute boundary nodes around each patch based on δ1, δ2, λ and n for each line, as shown in

Figure 6.25(a).

4. Distribute internal nodes based on geometric features as illustrated in Figure 6.25(b).

5. Carry out a constrained Delaunay triangulation of the nodes, as shown in Figure 6.25(c).

6. Smooth the mesh to obtain Figure 6.25(d).

7. Generate mid-side nodes.

8. Transform the mesh back into the three-dimensional domain.

The patches are then combined to form the three-dimensional mesh such as that shown in Figure 6.26.

– 88 –



6.6: Meshing strategy

Nodes are generated and the final model is sent to the solver for analysis. The entire process is covered

in more detail by the flowchart given in Figure 6.27.

If the user changes the model, re-meshing must be carried out before the model can be re-analysed.

The re-meshing procedure is detailed in Chapter 7.3.

(a) Boundary node distribution. (b) Initial node distribution.

(c) Initial triangulation. (d) Smoothed triangulation.

Figure 6.25: Meshing example.

Figure 6.26: Three-dimensional mesh example.
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Figure 6.27: Meshing flowchart part 1.
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Figure 6.28: Meshing flowchart part 2.

6.7 Parallelising the mesh generation

An early parallelisation algorithm for mesh generation is presented by Lohner et al. [167] who split the

domain into several sub-domains. Each sub-domain is then sent to a different processor to be meshed.

This technique could easily be applied to the algorithm proposed in this thesis by sending each patch to

a different CPU. However, load balancing techniques would need to be employed to intelligently spread

patches of variable size around the CPUs. The meshing of small models, such as those encountered in

this work, takes a trivial amount of time. The current meshing scheme has therefore not been parallelised

as the additional overheads would be detrimental to the run time.
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Chapter 7

Re-meshing to accommodate

geometrical changes

“To raise new questions, new possibilities, to regard old problems from a new angle, requires

creative imagination and marks real advance in science.”
Albert Einstein

7.1 Introduction

A re-meshing scheme is required to update the mesh as the user adjusts parts of the model. This scheme

should maintain an acceptable mesh quality whilst minimising the number of elements and nodes that

are changed with each update. This limits the number of values that need to be re-calculated in the

system matrix and hence accelerates re-analysis.

The updating scheme assumes all elements are continuous. It is also assumed that a series of small

changes are being carried out on the model by the user, for example, moving a hole in a plate. The

mesh will need to be updated successively after every small movement of the hole. If a larger change is

made to the model, the global mesh quality becomes too degraded and the entire mesh will need to be

regenerated.

7.2 Additions to the data structure

A geometric update may affect the geometry in a number of predefined ways which are interpreted

differently by the re-meshing algorithm. Four situations can be identified for updating each patch, as

shown in Figure 7.1:

(a) No change is made to the patch: No change is made to the mesh.

(b) The patch is translated: All the nodes and elements on the patch are translated through the same

vector. The integrals for the cases where point p and element e both lie on the patch therefore do

not need to be recalculated but other integrals will need to be updated.

(c) The patch is distorted out of plane: All elements on the patch are updated. The mesh is regenerated

across the patch and all integrals will need to be recalculated.

(d) The patch is distorted but remains in plane: Only some elements on the patch require updating,

the rest of the mesh remains unchanged.

As during initial mesh generation, each patch is treated individually during re-meshing.

A similar scheme is applied to updated elements. If a group of elements is translated through the same

vector, the integrals between this group of elements remain the same and do not need to be updated;
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translated

(b) Patch is

out of plane

distorted

(c) Patch

plane

but remains in

(d) Patch distorted

hidden patch

change to

(a) No

Figure 7.1: Geometric update of a block showing changed patches.

they must however be recalculated for the rest of the mesh. Elements distorted both in plane or out of

plane have moved independently and therefore require the associated integrals to be recalculated across

the entire mesh.

A line may be updated in any one of five ways depending on the type of geometric change, as shown

in Figure 7.2:

(a) No change is made to the line: No change is made to the node distribution.

(b) The line is translated: The nodal distribution is translated.

(c) The line is an arc and has changed length: The nodal distribution is fully recalculated.

(d) The length of the line has changed but is on the same axis: Only some of the distribution is updated.

(e) The axis of the line has changed: The original distribution is scaled.

If a rotational translation is applied to a line, the nodal distribution along it may be updated using (b).

However, rotational translation is not currently supported and the distribution is instead updated using

(c) or (e) for arcs and straight lines respectively.

modified

(c) Arc is

changed

of line has

(d) Length

unchanged

(a) Line is

translated

(b) Line is

modified

(e) Line is

Figure 7.2: Geometric update of a model showing changed lines.

Several entries need to be added to the data structure to accommodate the additional flags and data

required for re-meshing. These are summarised in Table 7.1.

The update flags FLu and FPu that define whether the geometric entity has been updated by the user

since the mesh was last regenerated are summarised in Table 7.2. Updates to the model are generated

in the modelling algorithm and inform the re-meshing algorithm. When the re-meshing algorithm is

called, the flags are checked to establish which areas of the mesh need updating. During re-meshing this

algorithm flags updated nodes FNu and elements FEu; these flags inform the re-analysis code.
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Table 7.1: Additional re-meshing data.

Feature Field Symbol Description

Vertex float translation[3] TV Vector through which vertex has been trans-
lated.

Line int isUpdated FLu Line update flag, see Table 7.2.
Line float translation[3] TL Vector through which centre of curvature has

been translated.
Patch int isUpdated FPu Patch update flag, see Table 7.2.
Element int isUpdated FEu Element update flag, see Table 7.2.
Node int isUpdated FNu Node update flag, see Table 7.2.
Node float translation[3] TN Vector through which node has been trans-

lated.

Table 7.2: Update flags.

Class No change Translated
Distorted

Notes
in plane out of plane

Vertex - - - - Store TV
Line (FLu) 0 1 2 3 Store TL
Patch (FPu) 0 1 2 3
Node (FNu) 0 1 - - Store TN
Element (FEu) 0 1 2 2

7.3 Re-meshing scheme

7.3.1 Introduction

When a geometric change is applied to a model, the mesh must be updated. This is provoked by some

dynamic cursor operation which is expected to be of pixel order. The mesh updating procedure is designed

to minimise the number of elements affected when the model geometry is updated. This minimises the

number of integrals, contained in the system matrix, that need to be recalculated before re-analysis and

improves the convergence rate of a preconditioned iterative solver [17]. If the same total number of

elements is maintained then the preconditioning matrix used by the solver can be re-used. If not then the

matrix will need to be expanded. This could be done through block partitioning such as that described

by Wang et al. [10]. For the purposes of this work it has been assumed that the number of elements is

constant. However the method could be expanded or improved by adding or removing elements.

A flowchart summarising the general meshing strategy used in this work is given in Figure 7.3. The

strategy is covered in more detail in the following sections. All updates are initially applied at the patch

level; lines and vertices are considered if the algorithm needs more detail.

7.3.2 Translation

A patch is translated if all the features on the patch are modified through pure translation through the

same vector. An example of this is the internal surface of a hole being moved within a plate of constant

thickness. If a patch is translated, all the nodes and elements on the patch are moved consistently with

the patch.

7.3.3 Distortion in plane

Distortion is caused by the differential movement of any two features included in a single patch such as

a hole being moved within a patch. Two forms of distortion exist and require different approaches to
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Figure 7.3: Flowchart showing a single re-meshing iteration.

update the mesh. The patch may distort out of plane, therefore requiring all the elements to be updated,

or remain in plane, leaving some elements unaffected. If the patch remains in plane, a minimal number

of elements should be updated without significantly reducing the mesh quality.

In-plane updating begins at the edges of the patch. Nodes on the lines around the patch are updated

first. These may be translated if the line is translated or completely recalculated if the line has changed

axis. However, if the axis of the line remains the same with either vertex at the same coordinates, the

changes are propagated from the end of the line that has moved. Spacing between nodes is decreased (or

increased) until the nominal minimum or maximum segment size is reached, starting from the end of the

line which has changed, as shown in Figure 7.4.
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Figure 7.4: Nodal redistribution as the length of a line is changed.

If the axis of the line has changed, the segments along the line are scaled to preserve the nodal

distribution. The scaling method for a straight line is described by:

N ′i = V ′1 + l′i = V ′1 + (V ′2 − V ′1)
‖Ni − V1‖
‖V2 − V1‖

(7.1)

where the variables are defined as shown on Figure 7.5. All the variables are coordinate vectors; li is

the vector along the line to the current node, Ni. During the geometric update of the problem the old

locations of V1 and V2 are overwritten with the new values. Equation (7.1) must therefore be re-written:

N ′i = V ′1 + (V ′2 − V ′1)
‖Ni − (V ′1 − T1)‖

‖(V ′2 − T2)− (V ′1 − T1)‖
(7.2)

li

l′i

N ′i

Ni

V2

V ′2

V1

V ′1

T1

T2

Figure 7.5: Scaling nodes on a straight line.

The variables for circular arcs, which are treated in a similar manner, are defined in Figure 7.6. The

transformation is given by:

N ′i = C ′ + r′i = C ′ +R((V ′1 − T1)− (C ′ − Tc))‖r′i‖ (7.3)

where ‖r′i‖ is the new radius, R is the rotation matrix about the axis of rotation, a, of the arc:

R =

 a2
x + (1− a2

x) cos θ′i axay(1− cos θ′i)− az sin θ′i axaz(1− cos θ′i) + ay sin θ′i
axay(1− cos θ′i) + az sin θ′i a2

y + (1− a2
y) cos θ′i ayaz(1− cos θ′i)− ax sin θ′i

axaz(1− cos θ′i)− ay sin θ′i ayaz(1− cos θ′i) + ax sin θ′i a2
z + cos θ′i

 (7.4)

and θ′i is given by:

θ′i = θi
θ′

θ
(7.5)
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where

θ = tan−1

(
a · ((V1 − C)× (V2 − C))

(V1 − C) · (V2 − C)

)
= tan−1

(
a · ((V ′1 − C ′ − T1 + Tc)× (V ′2 − C ′ − T2 + Tc))

(V ′1 − C ′ − T1 + Tc) · (V ′2 − C ′ − T2 + Tc)

)
(7.6)

θi = tan−1

(
a · ((V1 − C)× (Ni − C))

(V1 − C) · (Ni − C)

)
= tan−1

(
a · ((V ′1 − C ′ − T1 + Tc)× (Ni − C ′ + Tc))

(V ′1 − C ′ − T1 + Tc) · (Ni − C ′ + Tc)

)
(7.7)

and

θ′ = tan−1

(
a · ((V ′1 − C ′)× (V ′2 − C ′))

(V ′1 − C ′) · (V ′2 − C ′)

)
(7.8)

The tan−1 formulation is used to give an angle in the range 0 < θ ≤ 2π. A simpler formulation could

be implemented using sin−1, however this would only give the angle in the range 0 < θ ≤ π which is not

sufficient for this application.

θ
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V ′1
T1 N ′i

r′i

C′

C

Tc
θ′

θ′i

θi

V2

V ′2
T2

Figure 7.6: Scaling nodes on a circular arc.

Any patches that feature a structured mesh are reconstructed using the new nodal positions along the

bounding lines to interpolate elements across the patch. Triangular meshed patches are more complex.

In Figure 7.7, nodes N1 −N4 lie on the boundary of a circular hole that is moving across a patch. The

vector through which Ni has moved, Vi, is stored. Each element that includes Ni, Eei (e = 1, 2, 3, ..., nEi),

is assessed for quality using equation (6.10) which is reproduced here:

Q =
16A2

LaLbLc(La + Lb + Lc)
(7.9)

where A is the area of element Eei and La, Lb, Lc are the side lengths of element Eei.

The nominal minimum permitted element quality is designated Qmin. If Q > Qmin then no further

nodes are moved and only elements E1 −E5 are updated. However, if Q < Qmin, the un-updated corner

node(s) of Eei are moved through vector γVi, where γ ≥ 1. The coefficient γ is chosen such that the mesh

changes will not propagate beyond this node for several future updates. A node may be moved only once

each time the model is re-meshed. Once all elements return an acceptable Q, propagation of the mesh

updates ceases. All the updates act only on the corner nodes around each element; once all the required

updates have been carried out, the mid-side node positions for updated elements are recalculated.

Figure 7.8 shows that elements exist in a series of concentric bands around the hole. The same

banding can be observed in almost all automatically generated meshes (finite element (FE) or boundary

element (BE)) around any geometric feature. Small perturbations in the location of the feature will affect

only the neighbouring band. If the changes are larger, a cluster of elements of quality Qmin that move

with the updated geometric feature will be maintained. Qmin may be graded by band to maintain a

high element quality immediately around key geometry, leading to a more accurate approximation to the
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Figure 7.7: Element updating as a hole is moved.

stress in these areas. However, maintaining a high element quality results in changes propagating further

through the mesh and the usual compromise must be made between speed and accuracy. It should be

noted that, if the direction in which the feature is being moved reverses, the elements of Qmin quality

will be distorted in such a way that Q will initially increase across these elements.

Figure 7.8: Element banding around a hole.

The changes applied to the mesh generally result in increasing numbers of updated and distorted

elements and hence degradation of the mean element quality, Q̄, as demonstrated in Figure 7.9, which

illustrates how the updates propagate across a patch as a circular hole through it is iteratively moved

to the left. In this example, Qmin has been set to 0.5. A high quality initial mesh absorbs some of the

distortion but, to preserve accuracy, the mesh will periodically require more extensive modification over

distorted patches. For large distortions, the mesh must be regenerated across the entire patch (this rule

has not been applied in Figure 7.9 so that the effects of failing to apply this measure can be seen). Once

the updates have finished propagating, the mean and standard deviation of the element quality across

patch j, Q̄j and S̃j , are calculated. If Q̄j < Q̄min or S̃j > S̃max, the mesh across patch j is regenerated

when the re-meshing algorithm is next called, in place of the usual nodal updating procedure. This is

done by following the steps in Section 7.3.4. For smaller problems, elements may be removed from areas

where the mesh has become dense, such as in front of an advancing hole, and replaced in sparse areas,
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such as behind the hole as shown in Figure 7.10. This will result in modifications being made to a smaller

number of elements than re-generating the entire mesh, however Q̄j will not be as substantially improved.

Both techniques will result in an increase in run time for analyses where a part of the mesh has been

regenerated but effectively reduce it on the following runs.

The ratio of elements updated to total elements on the patch, nEu/nE , may also be used as a trigger

for re-meshing. If a large number of elements are being repeatedly updated in a series of iterations it may

prove faster to expend some additional time in a single iteration to re-mesh the patch. The subsequent

iterations will thereby affect a smaller number of elements and therefore be faster to execute.

(a) Initial mesh, Q̄ = 0.89, S = 0.09. (b) Q̄ = 0.86, S̃ = 0.12.

(c) Q̄ = 0.82, S̃ = 0.19. (d) Q̄ = 0.81, S̃ = 0.17.

Figure 7.9: Iterative updating of the mesh around a hole, showing updated elements. Qmin = 0.5.

The reader is reminded that, since the mesh is updated in real-time as the user drags features of the

object into new locations, the majority of the geometric changes will be of pixel order and will require

only minor modifications to the mesh. The larger mesh updates will be applied only in a very small

proportion of the calls to the algorithm.

7.3.4 Distortion out of plane

Patches distorted out of plane will require the entire mesh across the patch to be updated. First, the

stored transformation data for the new patch in the two-dimensional, (u, v) domain, is updated. The

location of the nodes along the lines are scaled using the method as described in Section 7.3.3 before

regenerating the mesh following the same procedure as was used to generate the initial mesh. The same

numbering system for the nodes around the patch boundary will be maintained but all internal nodes
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Figure 7.10: Exaggerated density distribution of updated mesh as a hole is moved to the left.

across the patch will be replaced.

The number of elements in the new mesh should match the number in the old mesh. This preserves

the properties of the analysis matrix. Rows and columns relating to the current patch remain in the same

place and do not affect the location of rows and columns relating to other patches. This is important

as it means the same preconditioning matrix can be applied to the updated model. This preconditioner

approximates the inverse of the system matrix and pre-multiplies both sides of the linear system of

equations produced by the boundary element method (BEM). This improves the structure of the system

matrix by moving it closer to the identity matrix, making it faster to solve. Once the new mesh has been

generated, an algorithm checks the number of internal nodes on the patch and adds or removes them

as necessary. The number of nodes is directly related to the number of elements. If a node is added or

removed a pair of elements will be added to or removed from the node.

To reduce the number of elements on a patch they are removed from an element quad (four elements

around a single node). Initially the central node and all the surrounding segments are removed. A

new segment is then created across the shortest distance between two opposite bounding nodes thus

defining the two updated elements. This process is illustrated in Figure 7.11. The remaining elements

are removed from the data structure. If there are no element quads available then the algorithm returns

an error message. Generally this is not a problem, however for robustness the algorithm needs to be

developed to remove elements when there are no quads available. It is possible to collapse any pair of

elements in the model so long as they share a common segment. It may be preferable to use an algorithm

similar to that used to collapse poor quality elements and remove the worst quality elements from the

patch. However, this is a more computationally expensive process.

(a) Original mesh. (b) After removal.

Figure 7.11: Removing a pair of elements.
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Elements can be added by creating a new node at the centre of the longest segment on the patch.

New segments are added by dividing the neighbouring elements into two, thus creating two new elements.

This process is illustrated in Figure 7.12. If elements have been added or removed whilst regenerating the

mesh across the entire patch a Laplacian smoothing routine is applied across the entire patch, otherwise

it is applied locally as shown in Figure 7.12(c).

(a) Original mesh. (b) After addition. (c) After smoothing.

Figure 7.12: Adding a pair of elements.

7.4 Validation

7.4.1 Test Model

Tests have been carried out to validate the accuracy of stress solutions calculated using BE models

perturbed by the re-meshing scheme. One example is discussed here, the case of moving a circular hole,

of diameter D, within a thick plate of dimensions 15D × 5D ×D. The stresses at the nodes around the

hole were computed using a BE mesh produced using the new algorithm and compared to benchmark

stresses produced using a converged FE model. The FE model was converged to a L2-norm tolerance of

less than 1% in the stresses at the nodes around the hole. A long plate with a hole has been chosen to

reduce the effects that the proximity of the ends of the plate have on the stresses around the hole. A

single benchmark can therefore be used to compare the stresses for all hole locations as it is moved along

the plate. The BE mesh on the surfaces y = 0 and z = D of the model is shown in Figure 7.13. The

following boundary conditions are applied:

ux = 0, x = 0

uy = 0, y = 0

uz = 0, z = 0

tx = t̃, x = 15D

(7.10)

where u and t refer to displacements and tractions applied in the subscripted Cartesian direction. We

take t̃ = 1000. To validate the mesh, 13 Gauss points are used to integrate all triangular elements and

16 to integrate quadrilateral elements.

An error measure, εσ, is calculated to compare the accuracy of the BE stresses to the benchmark:

εσ =
‖{σ} − {σ̂}‖
‖{σ̂}‖

(7.11)

where ‖ · ‖ denotes the L2-norm, {σ̂} the benchmark stress components and {σ} the matching stress

components generated by the BE code. For this study, the tangential stresses, {σt}, around the top of
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Figure 7.13: Test model.

the hole (z = D) will be used.

7.4.2 Test results

Figure 7.14 shows the normalised tangential stress, σt/t̃, after the hole has moved a distance, d = 0.5D

in the positive x direction. Angle θ is defined as the anticlockwise angle from the top of the hole, as

viewed in Figure 7.13. Note that, as this is a thick plate, the stress concentration factor, Kt, is smaller

on the free surface of the plate than at z = 0 where Kt ≈ 3.1 consistent with expectations for thin plate

theory [2].
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Figure 7.14: Normalised tangential stress, σt/t̃, around hole after it has moved through distance D/2.

The deviation in the BE results from the benchmark solution is most noticeable when dσt/dθ = 0.

Similar deviations also appear in a given FE model if a comparable number of elements is used around

the hole. All the elements around the hole were initially slightly distorted, having Q̄ = 0.77. However,

at around θ = 3π/2 radians; deformation of these elements as the mesh was updated resulted in a local

increase in Q̄ and hence produced a better approximation to σ̂t when compared to θ = π/2 where Q̄ has

degraded locally. A smoother and more accurate curve can be produced through appropriate application

of higher quality elements; however, the trade-off between accuracy and computational resources required

must be considered. The emphasis in the current work is to achieve very rapid solutions of acceptable

quality during interactive re-analysis; higher quality solutions can be obtained using a more refined mesh.

However, this will require a more computationally expensive analysis and should only be carried out to
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assess the final stress values.

A profile of how the model behaves as it is modified has been produced for the plate with a hole when

it is meshed with 700 elements. The hole was moved through distance D in the positive x direction in

100 steps to simulate pixel order updates. The results are shown in Figure 7.15 where d is the total

distance through which the hole has moved at any given point. It can clearly be seen in Figure 7.15(a)

that if the hole is continuously moved in the same direction the number of updated elements, nEu will

generally increase. To reduce this accumulation, local mesh regeneration must be carried out periodically.

Without these schemes, Q̄ will, on average, decrease as the hole is moved further, as shown in Figure

7.15(b), leading to an increase in εσ, as shown in Figure 7.15(c). To show the effects of periodically

regenerating the mesh, an arbitrary value of Q̄min = 0.84 is selected. The points at which the mesh

is regenerated are shown by the grey lines in Figure 7.15(d). It can be seen that some of the element

distortion is removed and Q̄ is effectively regulated. This in turn helps to regulate εσ. However, it is clear

from Figure 7.15(c), which shows εσ without any regeneration, that ∆εσ remains small during re-meshing

relative to εσ, accommodating some element distortion as evident in Figure 7.15(b). It should be noted

that εσ is the L2-norm error; the error in the peak stress is typically around εσ/2. Wall clock timings give

the times for re-meshing in the region of thousandths of a second, around six times faster than generating

the initial mesh.
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(a) Percentage of elements updated for a plate with a hole. (b) Mean element quality for a plate with a hole.

(c) Error, εσ, at nodes around hole. (d) Mean element quality with regeneration.

Figure 7.15: Re-meshing validation.

If applied intelligently a small but sufficient number of high quality elements can produce a more

accurate solution than many low quality elements. For the fastest analysis, it is therefore essential to find

and generate an optimal mesh. Generally stresses peak on the boundary of a model. If a high quality
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local mesh is maintained in these areas a greater accuracy can be achieved and maintained for these key

results. However, this causes a greater number of elements to be updated in each iteration as the model

is deformed and hence will increase the analysis time. A compromise must be reached to enable real-time

updating whilst maintaining an acceptable accuracy.

7.5 Selection of the nominal minimum element quality

A nominal value of Qmin = 0.6 was used to generate all of the results in Section 7.4. In this section,

different values of Qmin are assessed to find the best compromise between Q̄, nEu/nE and εσ. It should be

noted that Qmin is not the lowest element quality in the model, rather it is the threshold where elements

of Q < Qmin are updated by the re-meshing algorithm.

Figure 7.16 showsQ, determined using the circle ratio, for several isosceles triangular elements. Scalene

elements could take many more forms. A purely qualitative approach suggests thatQmin = 0.6 is a sensible

choice. However, full scientific rigour should be applied to establish if, in fact, this is the case. Therefore

a set of models was constructed using different values of Qmin to assess this measure. The results of these

tests are summarised in Figure 7.17. It should be noted that the mesh was not completely re-generated

at any point during the tests.

(a) Q = 0.1. (b) Q = 0.2. (c) Q = 0.3. (d) Q = 0.4. (e) Q = 0.5.

(f) Q = 0.6. (g) Q = 0.7. (h) Q = 0.8. (i) Q = 0.9. (j) Q = 1.0.

Figure 7.16: Distortion of isosceles elements.

Figure 7.17(a) shows that the mean element quality stays approximately constant whatever value of

Qmin is used. This is because, when Qmin is small, very few elements in the mesh are updated so that the

remainder of the mesh retains the high quality it exhibited after initial generation. When Qmin is large,

maintaining high quality updated elements means that the updates to the mesh propagate to the edges

of each patch. This leads to poor quality elements around the edges as the nodes on the edges cannot be

translated using the normal scheme without moving them outside the boundaries of the model.

The percentage of elements updated, nEu/nE , increases steadily withQmin, as shown in Figure 7.17(b).

This is to be expected as maintaining a higher element quality requires that the changes to the mesh

propagate further. The smaller Qmin, the faster the re-analysis. Therefore it is desirable to select the

smallest possible Qmin which gives results to an acceptable accuracy. Figure 7.17(d) suggests that this

occurs when Qmin = 0.3.

The accuracy of the solution can be improved by maintaining a high quality band of elements around

key geometric features such as a hole in a plate. This is shown by the solid line in Figure 7.18. If the Q
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Figure 7.17: Collated effect of changing Qmin for a range of models.

immediately adjacent to the hole is allowed to degrade, εσ increases until it reaches an equilibrium when

Q = Qmin and will therefore not degrade further. This is shown by the dashed line.
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Figure 7.18: Error when using a high quality band of elements around a hole.

Through analysis of the full range of results which were summarised in Figure 7.17, the author suggests

Qmin = 0.4 as a suitable compromise that maintains an acceptable error, εσ, whilst limiting the number

of updated elements and hence the re-analysis time.
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Chapter 8

Acceleration of the integration phase

“No idea is so outlandish that it should not be considered with a searching, but at the same

time, I hope, with a steady eye.”

Winston Churchill

8.1 Introduction

This chapter describes the algorithms and computational techniques used to accelerate the re-integration

of the boundary integral equation (BIE) and the re-construction of the boundary element (BE) system of

equations. A detailed analysis is carried out to establish which modifications to the standard algorithm

result in speed gain whilst maintaining an acceptable degree of accuracy.

8.2 Reconstruction of the system

8.2.1 Re-integration strategy

The re-meshing algorithm used in this work aims to limit propagation of geometric changes through the

mesh to those areas close to the updated geometry. This means that large parts of the mathematical sys-

tem are unchanged. Re-integration of the system can therefore be accelerated by re-using any unchanged

[H] and [G] sub-matrices. This is done by following the flowchart given in Figure 8.1.

Each updated element may be treated in one of two different ways: it may be translated or distorted.

Updates to nodes may be thought of in the same manner: Translated nodes are those that lie on translated

elements; distorted nodes lie on distorted elements. Where a node is shared by both translated and

distorted elements, it is classed as translated. Where a paired element and node have the same translation

applied, the associated [H] and [G] sub-matrices will not change. Any element or node classified as

distorted will require recalculation of all the associated geometric data and sub-matrices. At present

rotated elements are classed as distorted. However, if a group of elements are rotated together, the

associated [H] and [G] sub-matrices will not change, as with the translation case.

It should be noted that the outer pair of loops in Figure 8.1 are interchangeable. The integration may

be carried out by looping primarily over the field elements or the source nodes.

8.2.2 RISP integration scheme

In the current work a reusable intrinsic sample point (RISP) integration scheme is applied [29]. The RISP

algorithm uses a discrete number of integration schemes, therefore the shape functions and derivatives

for each integration scheme need only be calculated once for each element type.
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Figure 8.1: Flowchart of the re-integration algorithm.
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In the current work, R is taken to be the distance from the centroid of the field element to the source

node and L as the average side length of the element. Equations (4.21) and (4.23) can be rearranged to

find the maximum ratio R/L for a given number of Gauss points. From (4.21):

R

L
=

1

4

(e
2

)− p′
2m

(8.1)

From (4.23):

R

L
=

8

3

(
−10m

p′ − ln(e/2)
− 1

)− 4
3

(8.2)

This ratio can be used in conjunction with the RISP integration scheme to directly determine the

appropriate number of Gauss points to use across the entire element. If e is taken to be 10−5, Table 8.1

can be constructed, where m̂ is the total number of Gauss points on the element. This scheme can now

be applied to both quadrilateral and triangular elements. If the source node lies on the field element the

near-singular integration scheme suggested by Kane [29] is applied.

Table 8.1: Total number of Gauss points, m̂, for e = 0.001.

Condition m̂
Lachat and Watson Bu and Davies Tri Quad

Singularity at corner node 32 64
Singularity at mid-side node 36 96
R/L < 1.6 R/L < 1.9 13 16

1.6 ≤ R/L < 3.3 1.9 ≤ R/L < 3.7 7 9
3.3 ≤ R/L < 17.5 3.7 ≤ R/L < 13.9 4 4

17.5 ≤ R/L 13.9 ≤ R/L 1 1

Using a discrete number of integration schemes leads to a reduction in memory requirements and, as

the models encountered in this work generally contain fewer than 2000 elements, it is possible to store

all the geometric data associated with the integration in memory. The Gauss point locations, associated

normals and Jacobians for all integration schemes are therefore only computed once for each element

in the model. This data is stored so that, where possible, it can be re-used in the re-analysis. The

near-singular integration schemes are formulated such that they can be applied using the same algorithm

as the standard integrals.

8.2.3 Refining poor quality elements

An additional refinement of the integration scheme is introduced, whereby elements of poor quality would

be re-integrated using a higher order integration scheme to reduce the potential error associated with

the distortion. This scheme will be applied according to Table 8.2, where the divisions in Q have been

spaced evenly starting from Qmin + 0.1.

Table 8.2: Integration refinement scheme for poor quality elements.

Current m̂ (Triangular/Quadrilateral)
1/1 4/4 7/9 13/16

Q > 0.4 1/1 4/4 7/9 13/16
0.4 ≥ Q > 0.3 4/4 7/9 13/16 13/16
0.3 ≥ Q > 0.2 7/9 13/16 13/16 13/16
0.2 ≥ Q 13/16 13/16 13/16 13/16
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Integrals that multiply zero boundary conditions may be suppressed to remove the need to calculate

these values.

8.3 Computational strategy

This section covers areas of the implementation that are not affected by the algorithm structure but are

influenced by the computer architecture.

8.3.1 Precision

Double precision computing allows more precise storage and computation of data. However, it requires

twice as much memory and more processor time than single precision. It is generally accepted, and often

assumed, that double precision is needed for accurate BE computation. However, it has not been possible

to find research that validates this fact. For this reason both single and double precision implementations

of the algorithm will be assessed in this work.

8.3.2 Architecture

In this work we use the term system architecture to refer to the width of the data path to the processor

and hence the length of the word that can be used to address the computer memory. Longer words

allow more memory locations to be addressed. There are two primary processor architectures in use:

64- and 32-bit. The 32-bit architecture only allows access to 4GB of computer memory; by utilising a

64-bit architecture this can be extended to 16EB (an exabyte (EB) is 1018 bytes). However, with 64-bit

architecture the same data occupies more space in memory than with a 32-bit architecture due to the

longer pointers and additional alignment padding. This can also have implications for efficient utilisation

of the processor cache, which could require more memory read/writes. If more than 4GB of memory is

required a 64-bit system must be used.

In this work both 64- and 32-bit implementations will be compared for models that are small enough

to use a 32-bit architecture.

8.3.3 Parallelisation

The majority of the literature associated with parallelising the boundary element method (BEM) deals

with applying the method across multiple distributed memory devices. Here we parallelise the method

on a single shared memory machine. This is a simple process, aided by the way the integration algorithm

described in this work has been constructed.

If the outer loop of the integration scheme is over the elements, as described in Figure 8.1, and the

algorithm is parallelised by sending each element to a different processor, assembly of [A] and {b} must

be carried out after the integration has been completed. As the full [H] and [G] matrices are being stored

for re-use during each subsequent re-analysis this is a trivial matter. The assembly of [A] and {b} may

be independently parallelised by generating each row of the system on a different processor. If the outer

loop of the algorithm is over the nodes, the construction of [A] and {b} may be carried out inside the

main loop.

8.4 Test models

To assess the speed and accuracy of the re-integration, three test models have been considered to cover

a range of stress conditions:

1. Thick walled cylinder (TWC) with an internal pressure. The internal radius has been reduced as i

increases, where i is the number of updates applied to the model.

2. Cantilever (CTL) under bending. The length of the cantilever has been extended as i increases.

– 110 –



8.5: Results

3. Plate with hole (PWH) under uniaxial tension. This gives a more complex stress field than the

uniform field found in the thick walled cylinder. The hole has been moved along the plate as i

increases.

Each model has been analysed using several different meshes with varying degrees of refinement and

different step sizes of geometric perturbation. The results given in the current chapter summarise the

results of analysis carried out over all of these test cases.

The nomenclature used in the following sections will be as follows: the times, in seconds, to update

[Ai] is denoted tui. For the first iteration, i = 0, tu0 is always the time to fully populate the system.

When i > 0, tui is the time required to update the system using the current scheme. The total number

of degrees of freedom (DOF) is n and the number of updated DOF at the ith update is denoted nui. The

total number of Gauss points across each element is denoted m̂. The speed-up factor for each scheme, S,

is calculated from S = tu0/tui. An error measure, εx, is used to compare the accuracy of the scheme to

the benchmark:

εx =
‖{x} − {x̂}‖
‖{x̂}‖

(8.3)

where ‖ · ‖ denotes the L2-norm, {x̂} the benchmark solution vector and {x} the BEM approximation to

{x̂}.
With the exception of Section 8.5.1, the benchmark models to which each acceleration scheme has

been independently applied use the re-integration algorithm described in Figure 8.1. This is applied

with 13 Gauss points for all non-singular integrals across triangular elements and 16 Gauss points for all

non-singular integrals across quadrilateral elements. For singular and near-singular integrals the scheme

given in Section 4.2 is applied. The algorithm is implemented using double precision on a single processor

with a 32-bit architecture. This set of conditions has been chosen so that εx reflects the increase in error

of applying the chosen acceleration scheme.

In Section 8.5.1, the benchmark models use a refined version of each mesh where each element has

been divided into four parts. This is used with m̂ = 28 for standard integrals and the normal singular

integration scheme to ensure a high degree of accuracy in {x̂} so that the effect of reducing m̂ can be

accurately assessed.

8.5 Results

This section contains an overview of the tests carried out on the different analysis acceleration techniques.

Each technique is applied individually to the basic re-integration scheme so that the merits of applying

each scheme can be independently assessed. The most beneficial schemes are then combined for the final

set of tests.

8.5.1 Re-integration

Figure 8.2 summarises the error, εx, if the same number of Gauss points, m̂, is used to integrate over

each element to evaluate all regular boundary integrals. In Figure 8.2, m̂ refers to the number of Gauss

points used to integrate over each triangular element.

Figure 8.2 shows that the error increases rapidly if fewer than 5 Gauss points are used across each

element. Less than 0.3% reduction in the error can be achieved by using more than 7 Gauss points.

As the system construction time increases with the number of Gauss points this indicates that, for

maximum efficiency whilst retaining a suitable accuracy for a fixed integration scheme, the standard 7

Gauss point scheme should be applied to all triangular elements, this corresponds to a 9 point scheme

across quadrilateral elements. The similarity between the shape of the curves in Figures 8.2 and 4.10

should be noted.
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Figure 8.2: Accuracy using a fixed integration scheme across all elements.

If only the updated node-elements pairings are re-integrated during re-analysis the speed-up achieved

is shown in Figure 8.3. Due to the overheads involved the speed-up factor, S < 1 if almost all of the

elements in the model were updated. However, the re-meshing algorithm will not permit this many

elements to be updated in one iteration.
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Figure 8.3: Acceleration achieved using partial re-integration.

8.5.2 Integration scheme

Figure 8.4 compares the speed-up, S, achieved using the Bu and Davies [122] and Lachat and Watson

[119] integration schemes. The solid lines show the effect of updating the integration scheme, based on

R/L, across each element. The dashed lines show the effect of re-applying the scheme calculated during

the initial analysis. The dotted lines show the effect of refining the integration scheme based on both

R/L and the quality, Q, of the element.

The Bu and Davies [122] scheme typically runs around 3% faster than the Lachat and Watson [119]

scheme for problems where n > 1000 as it uses fewer Gauss points. This coarser scheme leads to a small

increase of 0.01% in the error, εx. For problems where n < 1000 the Lachat and Watson scheme performs

fastest. This is because R/L is generally small in small models and very few elements are integrated

using a single integration point. The main speed advantage in Bu and Davies’ scheme is gained when

R/L > 13.9 and this is normally lost when n < 1000.

If the same integration scheme is used for each element-node pairing as was applied the initial analysis,

an additional speed-up can be achieved. However, this is negligible and is at the expense of a much greater
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variability in the error, εx, especially as the change to the geometry becomes large. For this reason m̂

should be updated periodically, if not after every update iteration.

Using a higher order integration scheme over poor quality elements leads to a reduction in the error

of less than 0.01%. This is at the expense of a 4% decrease in S.

The Bu and Davies scheme has been adopted for use in the integration algorithm. This has been

implemented without adjustment for poor quality elements and m̂ is updated during each update iteration.

Using this scheme the accuracy remains comparable to using a 13 Gauss point scheme across every element

whilst the solve time is reduced to that of using 4 Gauss points.

NoYes
Bu and Davies [122]

Lachat and Watson [119]

Integration scheme updated:

0 500 1000 1500 2000 2500 3000

1.5

2.0

n

S

3500
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1.8

1.9

with Q

Figure 8.4: Speed up factor of variable integration schemes.

8.5.3 Suppression of integrals

The speed-up, S, achieved through suppressing calculation of integrals that are multiplied by zero traction

boundary conditions is summarised in Figure 8.5. It should be noted that the integrals that multiply

zero displacement boundary conditions are not suppressed, as these values are required in the rigid body

motion summation which is used to calculate the diagonals of [H]. Good speed-up is achieved, especially

where nui/n is small.
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Figure 8.5: Speed up through suppression of integrals.

In Figure 8.5 it appears that if nui/n > 70%, S < 1. Due to the algorithm’s implementation this can

never occur so S ≮ 1.
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8.5.4 Outer integration loop

For the majority of models, S ≈ 1.05 if the outer loop of the integration algorithm is taken over the nodes

instead of over the elements although, for small models (n < 500), S can be as much as 1.35. However, if

the Bu and Davies integration scheme is used with the outer integration loop over the nodes it actually

performs, on average, 20% faster than integrating primarily over the elements in conjunction with the

same scheme. Node order integration also parallelises more efficiently than element order integration. An

outer integration loop over the nodes has therefore been adopted for use in the accelerated algorithm.

8.5.5 Precision

Using single precision variables is on average 20% faster than using double precision variables. However,

the size of the L2-norm error in {x}, εx, associated with the reduction in precision increases exponentially

with the number of nodes in the model, as shown in Figure 8.6. For the sizes of model encountered in this

work single precision accuracy is sufficient. However, due to the exponential growth, double precision

should be applied to larger problems. It is not easy to define a specific size of problem when double

precision must be adopted as this is dependent on the desired accuracy, ε̄x. From Figure 8.6 the following

formula can be constructed:

n ≤ ln(ε̄x) + 11.33

0.0007
(8.4)

where ε̄x is the prescribed mean accuracy and n is the maximum number of nodes in the model. If this

relationship is satisfied then εx ≤ ε̄x.
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ε x

Figure 8.6: Increase in error using single precision.

It should be noted that using all single precision values in an iterative solver routine can reduce the

convergence rate, although the solution accuracy is maintained. If double precision variables are retained

when summing values during the matrix multiplication routine this reduction in speed can be overcome.

8.5.6 Architecture

Figure 8.7 shows the speed-up, S, achieved when using 64-bit processing instead of 32-bit processing. If

n > 900, S = 1.3. However, for problems where n < 450, 32-bit processing is faster. Using the algorithm

proposed in this work, models where n > 1800 must be computed using 64-bit processing as they require

more than the maximum amount of memory that can be addressed using 32-bit processing. As n > 450

in the majority of problems, a 64-bit system architecture should be used wherever possible although some

computer systems may only support 32-bits.
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Figure 8.7: Speed up using 64-bit computing.

8.5.7 Summary

Previously in this thesis the acceleration schemes have been independently applied to the re-integration

algorithm. This section combines them into a single algorithm.

Figures 8.8 and 8.9 summarise the results of applying each scheme independently. The vertical bars

show the range of the data, the boxes the upper and lower quartiles and the bars the mean value of

the speed-up, S, or the error, εx. The reader is reminded that εx is the increase in error resulting

from application of the acceleration schemes and not the absolute error. Figures 8.8 and 8.9 have been

constructed using data gathered from a range of different models with different numbers of DOF. It

should be noted that all significant relationships relating to changes in S and εx have already been

portrayed in this work, the remaining speed gains or changes in error related to the different acceleration

schemes are approximately constant across all models and are within the ranges shown in Figures 8.8

and 8.9. It should be noted that Figure 8.9 has been cropped at 0.14% to show the results clearly. The

peak values not shown in Figure 8.9 are between 3.0% and 4.5%.

In Figure 8.8 the field labelled ‘Re-integration’ shows S when applying the partial re-integration

scheme as opposed to carrying out a full re-integration over the entire model with m̂ fixed at 13 or 16

for triangular and quadrilateral elements respectively. The speed gain for the rest of the fields is the

additional acceleration that can be achieved in addition to using this scheme. The field labelled ‘All’

summarises S when applying all of the selected improvements (suppressed integrals; 64-bit architecture;

node order integration; single precision; Bu and Davies RISP integration scheme; updating m̂ with each

re-analysis).

Figure 8.10 shows tu for a range of geometries for the re-integration algorithm and acceleration tech-

niques proposed in this work and the scheme used by Foster et al. in [128] which uses the same number

of Gauss points for all integrations but does limit re-integration to updated elements only. The proposed

algorithm is significantly faster, providing a typical speed-up of S = 5.

The percentage of time saved in the re-integration, tui/tu0, is plotted in Figure 8.11 against the

percentage of updated nodes, nui/n. This shows that the proposed scheme improves on the speed-up

achieved by Foster et al. [128]. The effect of overheads that resulted in tui > tu0 when nui/n > 0.63 in

the Foster et al. [128] scheme has also been reduced. However the overheads still exist, which will result

in tui > tu0 as nui/n→ 1. This is in agreement with the findings of Trevelyan et al. [16], given in Figure

1.1 where the extra spread in re-analysis time is due to variability in the solve time, tsi.
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Figure 8.11: Normalised update time.

8.5.8 Parallelisation

The average speed-up, S, achieved by carrying out the integration on multiple Intel Xeon X5570 2.9GHz

processors on a single shared memory machine is shown in Figure 8.12. For the re-integration, S is

15% smaller than for the initial integration. This is due to the overheads associated with parallelisation

having a greater impact on the faster re-integration algorithm. Both schemes show good scalability which

is independent of the percentage of the system that is updated.

8.6 Adaptive cross approximation

8.6.1 Introduction

Adaptive cross approximation (ACA) was developed for application in compressing the matrix, [A], in

a linear system of equations. This also enables acceleration of iterative solvers used with the system,

as addressed in Section 5.4.5. ACA has traditionally only been applied to the [A] matrix, and this is

what is considered in this thesis. However, due to the mechanics behind the acceleration schemes already

addressed in this chapter, it may now be preferable to apply ACA to the [H] and [G] matrices. This would

have the effect of accelerating the integration and the assembly of [A] as only the integrals required to

construct the approximation would need to be calculated but could not be used to accelerate an iterative

solver. This approach is not considered in this work but should be considered for further research.
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Figure 8.12: Integration speed gain for multiple processors.

8.6.2 Initial partitioning

The partitioning scheme presented in 4.3.3 is universal; it could be applied to any model. For this work

we know more about the geometry of the model and are also able to predict which parts of the model

the user is most likely to update. The matrix, [A], can therefore be initially subdivided based on the

geometry. The first level, or rank, of partitioning divides the nodes based on the patches on which they

lie. Each patch may be subdivided further, this is done automatically, using geometric recognition to

identify areas that are likely to be updated by the user. The nodes are then placed into appropriate

partitions. An example of this approach is given in Figure 8.13 where it is predicted that the radius of

the fillet is likely to be changed. If the fillet radius is changed, areas in white are unlikely to be updated,

light grey will be partially updated and dark grey will be fully updated. Grouping these areas in this

way helps to reduce the number of blocks that require updating as the geometry is changed.

(a)

(b) (c)

(e)

(d)

(f)(g)

(a) (b) (c) (d) (e) (f) (g)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 8.13: Initial partitioning of the model.

Once the algorithm has completed initial sub-division of the matrix, each block is, where necessary,

subdivided further using the approach given in Section 4.3.3. The rank, R of a block is determined by the

number of times it has been subdivided. A maximum rank, Rmax, is set to prevent an excessive number of

small blocks being produced. The smallest blocks are always produced along the diagonal they will never

be admissible. A minimum block size, n′min, is also set as blocks of only a few rows and columns are not

worth approximating. To ensure that the change between consecutive integrals in the block is as smooth

as possible, the nodes within each partition are renumbered traversing along the longest dimension of the
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partition. The partitioning process adopted in this work is summarised in the flowchart given in Figure

8.14.

In addition to following the flowchart a few additional rules must be obeyed. Along lines, where nodes

are shared by two patches, the nodes are partitioned with those on the patch to the left of the line. Along

arcs, the nodes are always grouped with those on the curved patch, whichever side of the line the patch

is on. This is because it is expected that the smoothest stress distribution, when comparing the two

patches, will be around the curved surface. As the model partitioning will always produce a symmetric

matrix block structure, the admissibility checks only need to be carried out once for each pair of blocks.

Blocks located directly over the diagonal will never be admissible.
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Figure 8.14: Block partitioning flowchart.

8.6.3 Construction

For the models assessed in this section, the factors that limit the size and number of blocks are set

as follows: Rmax = 10; n′min = 50. Each block is approximated using Algorithm 4.1 with a tolerance,

tol = 0.001.

Both the full and partial forms of ACA have been assessed here. The full ACA assumes that the
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matrix, [A] is already known and uses this to compute the error, εF , used to assess convergence of the

approximation as described in equation (4.29) reproduced here:

εF =
‖[Sk]− [A′]‖F
‖[A′]‖F

(8.5)

where [A′] is an admissible block and [Sk] is the current approximation, computed from k rows and

columns of [A′]. The partial ACA assumes [A] is unknown and checks against the previous approximation

to establish if the approximation has converged:

εFp =
‖[Sk]− [Sk−1]‖F
‖[Sk]‖F

(8.6)

Two different schemes have been applied to construct the approximation. The first uses the standard

form of ACA which uses a single row, ui, or column, vi, at a time, finding the maximum value in vi

to select ui and the maximum value in ui to select vi+1. This is shown in Figure 8.15(a). The partial

ACA is initialised with vector v1. The maximum term in v1, shown in black, is then used to select u1.

The maximum term in u1 is then used to select v2 and the process continues. The second scheme has

been modified to benefit from the small amount of extra computation required to calculate the integrals

relating to all the DOF on each node which differ only in the shape function used in their computation.

This produces groups of three rows and columns where the maximum value out of all three vectors is used

to pick the next group of rows or columns. This is shown in Figure 8.15(b). The problem is initialised

with the three vectors v1 which are all associated with the same node. The maximum term from these

vectors, which is in v1z, is used to select the next set of vectors, u1, which correspond to the three DOF

associated with another node. These, in turn, are used to select v2 and the process continues until εF

converges.
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(a) Standard approximation.
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(b) Modified approximation.

Figure 8.15: ACA vector generation scheme.

8.6.4 Results

The block structure of two models, a TWC with nN = 820 nodes and a PWH with nN = 2256, is

shown in Figure 8.16. Both models are partitioned as described in Figure 8.14. The initial partitions,

defined by patch and areas of the mesh likely to be updated, are shown by the bold lines. The rank is
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Figure 8.16: Block structure and admissibility.
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limited to Rmax = 10. As can be seen in Figure 8.16, this does not affect smaller model as n′min is the

limiting factor. Smaller models also feature far fewer admissible blocks, as shown in Figure 8.17. All

non-admissible blocks must be calculated in full and therefore show zero error in Figure 8.16.
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Figure 8.17: Percentage of blocks which are admissible for a TWC.

A similar number of vectors are required to approximate admissible blocks of any size. This leads to

the potential for the approximation efficiency to improve with the model size, as shown in Figure 8.18,

as larger problems feature larger blocks. If less than 50% of [A] is generated, some acceleration can be

achieved in the iterative solver.
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Figure 8.18: Percentage of the terms in [A] required for ACA of a TWC.

The Frobenius error, εF , for each block is shown at the bottom of Figure 8.16 and for the entire

matrix in 8.19. The error associated with non-admissible blocks is zero as these blocks are generated in

full. Applying both forms of the full ACA produced almost identical errors. The partial ACA produces

a much larger εF which can be reduced by applying the modified construction scheme.

Under some conditions the standard ACA scheme fails to converge. These conditions occur when

a row or column of an admissible block contains values close to zero. The modified scheme does not

experience these problems because it uses groups of three rows or columns at once.

The error in the stress, εσ, for the TWC model is calculated relative to the analytical solution using

an L2-norm. Figure 8.20 shows the value of εσ for different model sizes when using the full [A] matrix

or constructing [A] from an ACA. The most accurate form of ACA is to use the full approximation

with the modified approximation scheme described in Section 8.6.3. However, this requires generation

of the full [A] matrix. To accelerate the integration by only generating the required parts of [A], the
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Figure 8.19: Frobenius error for ACA of a TWC.

modified ACA scheme must be applied. Using the full matrix always produces a smaller error than using

an approximation.

Larger systems are approximated from a smaller percentage of the system, hence the increase in error

with model size. The increase in εσ when n < 1200 is due to the mesh not being sufficiently refined to

accurately capture the stresses. However, once n > 1200, εσ increases with n when using the complete

[A] matrix. This is the effect of applying the acceleration schemes discussed in Section 8.2.
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Figure 8.20: L2-norm stress error due to ACA of a TWC.

The time required to construct the approximation is directly proportional to the number of admissible

blocks and is much the same for all the approximation schemes discussed here. For the problem sizes

assessed in this work it takes around 1.2 times longer to construct the approximation than it does to

integrate the entire system. This does not take into account the time required to integrate the terms

required for the approximation. ACA should therefore not be applied to models of the size encountered

in this work. However, due to the increased efficiency in approximating larger matrices, ACA becomes

more suitable as the problem size increases. However, further analysis of larger systems is required to

establish the cut off point.
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8.6.5 Adaptive cross approximation and re-integration

The most costly part of ACA is calculation of the error as this requires reconstruction of the current

admissible block and calculation of the Frobenius norm which together require 3n′m′s operations, where

n′ and m′ are the number of rows and columns in the block and s is the number of pairs of vectors used

to create the approximation. However, as the changes to the model will maintain the general geometric

form and the element connectivity, a scheme is proposed whereby the same rows and columns as were

generated during the initial analysis are re-used with the updated integration data to construct a new

approximation. This removes the requirement to determine which vectors to use and the need to compute

the error.

To assess this technique, a TWC meshed with 1426 nodes has been used as this is close to the optimum

value for minimising εσ, as given in Figure 8.20. The TWC has an outer radius of 0.5m and an inner

radius of 0.3m which is reduced to deform the model. An internal pressure of 1MPa is applied. The times

to construct a new ACA and to construct the ‘re-cycled’ ACA which uses the original rows and columns

which now contain the modified data are shown in Figure 8.21. The time required to calculate the ‘re-

cycled’ approximation (without the re-integration time) is, on average, 30% of that required to construct

an entirely new approximation. However, due to the time required to carry out the re-integration, the

‘re-cycled’ scheme is slower than carrying out a full re-integration if more than 70% of the system is used

in the approximation as is the case in Figure 8.21 which uses 72% of the system.
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Figure 8.21: Time to re-construct ACA during re-analysis of a TWC.

In Figure 8.21, tui for the full ACA is shown to decrease with the radius. This is because the node

groups defining the admissible blocks are moving further apart, thereby making the blocks smoother. If

the inner radius were increased, tui would increase slowly for the full ACA.

As shown in Figure 8.22, generating a new approximation consistently maintains small εσ comparable

in magnitude to a full re-integration. If n is increased, these will diverge as shown in Figure 8.20. The ‘re-

cycled’ approximation degrades as the model geometry increasingly moves away from the initial geometry.

Erratic spikes in the error, where the approximation breaks down, can also be observed. These result

in erroneous results at some nodes in the model, as shown in Figure 8.23 which shows the final update

where the inner radius is 0.2m, whilst the majority of the stresses are correct.

These erratic errors in the stress results produced by the author’s current implementation of the

technique mean that it is not robust. However, the potential for speed gain means that the technique
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Figure 8.22: L2-norm stress error during re-analysis of a TWC.
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Figure 8.23: Erroneous stress contours caused by a poor approximation.

merits further research. It is possible that if a new ACA is calculated every few iterations then some of

the increase in error could be overcome.
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Chapter 9

Acceleration of the solution phase

“Nothing has such power to broaden the mind as the ability to investigate systematically and

truly all that comes under thy observation in life.”

Marcus Aurelius

9.1 Introduction

Linear solvers aim to solve the linear equation:

[A]{x} = {b} (9.1)

There are several approaches to this, three of which are considered here. Direct solvers give an exact

solution for the system but take a long time to execute. Iterative solvers make an initial ‘guess’ at the

solution which they then iteratively improve upon. They are significantly faster than using a direct solver.

Reduction techniques aim to approximate the problem as a basis of vectors. This reduces the size of the

problem to one that can be solved in a fraction of the time although additional overheads are required

to generate the basis.

The iterative solvers discussed in this chapter are usually applied to the finite element method (FEM).

Here they have been applied to the boundary element method (BEM), which typically produces small,

dense, non-symmetric matrices in contrast to the large, sparse systems found in the FEM.

The initial system of equations, i = 0, generated from the initial geometry, must be solved before any

dynamic updating of geometry occurs. This is carried out using a full lower-upper (LU) decomposition.

The LU decomposition is stored so that it can be used as a preconditioner in the re-analysis schemes.

9.2 Implementation

All of the solvers discussed in Chapter 5 have been implemented to assess their performance against

each other. The pseudo-code for the author’s implementations of these algorithms is presented in the

appendix.

The iterative solver pseudo-code for the generalised minimal residual (GMRES), bi-conjugate gradi-

ent stabilised (BiCGSTAB) and transpose free quasi-minimal residual (TFQMR) schemes, presented in

Algorithms A.1, A.2 and A.3, is based on the templates given in [149] with some modifications made by

the author to improve efficiency. Leu’s reduction, given in Algorithm A.4, eigenvector based proper or-

thogonal decomposition (E-POD) given in Algorithm A.5 and singular value decomposition based proper

orthogonal decomposition (SVD-POD) given in Algorithm A.6, together with the proper orthogonal de-

composition (POD) solution scheme given in Algorithm A.7, are based on algorithms found in [23], [25]
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and [26] respectively. The nomenclature used in all the solvers is given in in Table A.1 and the solver

specific nomenclature in Table A.2. Note that this may differ from the standard notation as some vectors

have been reused to reduce the memory size and access requirements of the solvers.

For the type of systems encountered in this work it has been found that the GMRES method converges

within 20 iterations in the worst case. The majority of solutions take 5-10 iterations, therefore no

restarts are required. The amount of memory required by the solver, in addition to that required to

store the system and preconditioner, increases with each iteration. For a typical 10 iteration solution,

approximately an additional 12n double precision numbers need to be stored. This is small relative to

the amount of memory occupied by the system and, for the sizes of system considered in the thesis, is

far from prohibitive.

9.3 Test models

The test model considered to assess the linear solvers were the same as the models used to assess the

re-integration of the system, as described in Section 8.4.

In addition to these models, a more detailed plate with hole (PWH) model has been used to assess

how the linear solvers react as the model is deformed steadily further from the original geometry. This

model was introduced in Section 7.4.

An error measure, εx, is used to compare the accuracy of each linear solver to a benchmark solution,

x̂:

εx =
‖{x} − {x̂}‖
‖{x̂}‖

(9.2)

where ‖·‖ denotes the L2-norm and {x} the approximation to {x̂}. The benchmark solution is calculated

using a full Gauss elimination to solve the same set of equations.

The nomenclature used in the following sections will be as follows: the times, in seconds, to solve

[Ai] are denoted tsi. For the first iteration, i = 0, ts0 is the time to solve the system using a full LU

decomposition. When i > 0, tsi is the solve time of the appropriate solver. The number of updated

degrees of freedom (DOF) at the ith update is given by nui.

9.4 Comparison of the solvers

9.4.1 Overview

Two types of test were carried out on each model. The iterative algorithms were timed for a fixed

accuracy, εx < 0.005%, and εx was compared for a fixed solve time of 0.05 seconds. The timings do not

include the time required to evaluate the new integrals. The decomposition methods are not iterative,

therefore the accuracy cannot be prescribed in advance. These methods will also have a constant solve

time for any given n.

Leu [23] only calculates the theoretical speed-up of his algorithm relative to a direct method based on

the number of floating point operations. On implementation, the current author found that the greater

number of memory accesses required by the algorithm and the order in which the data must be retrieved

from memory had a detrimental effect on the speed of the algorithm. It could therefore not compete

with the other methods for the type of problem considered here. Due to these considerations the Leu

algorithm will not be discussed further in this work.

9.4.2 Fixed solver accuracy

The updated systems generated through geometric perturbation of a range of test models were solved

using the iterative solvers and timed for a fixed accuracy, εx < 0.005%. Figure 9.1 shows the relationship
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between tsi and n, for the diagonally and LU preconditioned iterative solvers after the first geometric

update has been applied to each test model (i = 1). This relationship is of the form:

tsi = cnitn
2 (9.3)

The constant c depends on the solver used. The value nit is dependent on the solver and the condition of

the preconditioned system and is the number of iterations carried out by the solver. It should be noted

that Figure 9.1 shows a typical fit to aid visualisation of the general trend. There is some variation in

the actual data. For the diagonally preconditioned systems nit is approximately constant for the test

problems in this study, as seen in Figure 9.2, which shows tsi for the plate with a hole model. For

the LU preconditioned systems, the conditioning will initially degrade as the size of the perturbation

from the original model geometry increases, causing nit to increase. However once the geometry has

changed significantly from the original, this degradation in the conditioning of the system will cease to

substantially affect the solve time. This occurs at d/D = 0.25 in the case illustrated in Figure 9.2.

However, the LU preconditioner continues to be a good preconditioner.
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LU GMRES

diag BiCGSTAB

LU BiCGSTAB

diag TFQMR

LU TFQMR
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Figure 9.1: Comparison of iterative solve times for a fixed accuracy.

Where the time is available after the initial model is finalised and before re-analysis runs, a full LU

decomposition should be computed since, when applied as a preconditioner, this can halve the re-analysis

time for small geometric changes, as shown in Figure 9.2. However, if the model has small n, tsi will be

more similar for the LU and diagonally preconditioned systems and, if a large modification is applied to

a model with small n, the resulting system can be solved more quickly using diagonal preconditioning.

This is due to the fact that in a small system a much higher percentage of the mesh will be regenerated

after a geometric perturbation. The matrix, [Ai], will therefore rapidly cease to bear much relation to

[A0] and the LU and diagonal preconditioning will produce systems of comparable condition. This effect

was only observed in the smallest (n = 726) of the 32 test cases assessed for this work and then only for

the largest deformation. As the effect was negligible and n > 726 for the majority of models it can be

safely assumed that LU preconditioning should be used to produce the smallest tsi.

If the total number of re-analysis updates, k, is known and the aim is to reduce the total run time:

t =

k∑
i=1

tui + tsi (9.4)

– 129 –



Chapter 9: Acceleration of the solution phase

then diagonal preconditioning should be used in preference to LU preconditioning if k < n/40, as this

will provide the same accuracy for a reduced t. During dynamic updating of the model k will not be

known and, as the aim is to minimise tui + tsi, LU preconditioning should be applied. However, the LU

preconditioner must be recomputed sparingly (if at all), as it is expensive to compute, and only after a

minimum of n/40 updates have been applied, to maintain the efficiency of the process. Alternatively a

new LU preconditioner can be generated by a separate process in a new thread [17], thereby not detracting

from the re-solution time.
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Figure 9.2: Resolve timings as a hole is moved along a thick plate (n ≈ 4300).

Re-solve times and accuracies are model specific and different solvers may perform better under specific

conditions but overall the GMRES approach most consistently provides most rapid convergence and has

proved to be the most stable algorithm. Using these methods it appears that currently models of size

n < 2000 are amenable for real-time update of results.

9.4.3 Fixed solve time

For rapid analysis, the solver will be required to re-solve the system to a sufficient accuracy within an

acceptable time limit. To simulate this the iterative solvers have been allowed to run as many iterations

as possible within 0.05 seconds. Reduction methods are not assessed here as the reduced problems always

require a specific amount of overhead and are small enough to solve with a direct solver.

Figure 9.3 shows a diagrammatic representation of the error, εx, for a range of system sizes, n, based

on numerical results. The contours depict the lower bound on εx for each solver. For LU preconditioned

GMRES and BiCGSTAB solvers εx is consistently less than 0.1% (except in the occasional case). The

error, εx, increases with n as larger systems require more time per iteration of the solver and therefore

execute fewer iterations.

9.4.4 Solution of the system using proper orthogonal decomposition

For the first set of tests, the basis, [Ψ], has been generated from the results of the first s analysis runs

using both the E-POD and SVD-POD schemes. The re-solve time, tsi, is independent of [Ψ] and i and

is of the form:

tsi = cmn2 (9.5)

where c is a constant. The variation in εx between the two schemes is typically of the order 10−6 when

using the same m.
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Figure 9.3: Comparison of iterative solve errors for a fixed solve time.

As shown in Figure 9.4, the time required to generate [Ψ], tB , is large when applying E-POD as the

eigenvalues of an n×n system must be computed. As tB increases cubically with n, this is prohibitive for

anything but the smallest models for this analysis application. When applying SVD-POD the singular

value decomposition (SVD) of an n × s system must be found; this leads to a considerably smaller tB

than E-POD. When computing the SVD-POD, tB appears to bear little relationship to n for systems of

the size encountered in this study (n < 5000) and is typically less than 0.1 seconds.
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Figure 9.4: Time to generate [Ψ] for different system sizes.

System size, n, has little effect on εx which is mainly influenced by the number of basis vectors, m, and

increases rapidly with i. The benefit of increasing m is limited, for example, in Figure 9.5, if m > 3 no

reduction in the error is observed once d/D = 0.08. Both Kerfriden et al. [26] and Ryckelynck et al. [25]

propose enrichment schemes to regulate εx by adding vectors to [Ψ] based on the latest analysis results.

However, these enrichment schemes have not been implemented in the current work as any increase in tsi

will render the method uncompetitive with the GMRES algorithm for the types of system encountered

in this study.

Figure 9.6 has been produced from the test model shown in Figure 7.13 by moving the hole in the

direction x = y. The error, εx, is compared for the SVD-POD with m = 3 to εx for the LU and diagonally

preconditioned GMRES algorithms. The same tsi has been applied to the GMRES algorithms as was

used to solve the reduced system. It can be seen that, for this model, once d/D = 0.08, the GMRES
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Figure 9.5: Change in solution error, εx, as a hole is moved diagonally across a thick plate.

methods provide a more accurate solution and εx does not degrade as rapidly. If a larger value of m were

used these effects become even more pronounced.
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Figure 9.6: Solution error for a fixed solve time (m = 3).

In Figure 9.6, PODa denotes a set of runs using the first four analysis results to generate the basis,

whereas PODb considers bases drawn from a set of representative solutions generated from the following

models:

1. The initial model.

2. The hole was moved in the x-direction through distance D/2.

3. The hole was moved in the y-direction through distance D/2.

4. The plate was stretched in the x-direction through distance D.

PODb does not provide any improvement in εx over PODa. A poorly selected basis can also lead to an

even greater εx.

9.4.5 Summary

Of the solvers assessed in this section, the LU preconditioned GMRES solver provides the fastest and

most accurate solution. It has therefore been adopted as the primary solver for re-analysis (i > 0). On

the initial analysis run (i = 0), a complete LU decomposition is used to solve the system. This generates
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an accurate starting point but also produces the LU preconditioner which has been applied to accelerate

the GMRES scheme.

If a one off analysis is required, without the need to later update the model geometry, a diagonally

preconditioned GMRES solver is applied as this can be used directly with the initial analysis and does

not require the costly generation of the LU preconditioner.

9.5 Parallelisation

9.5.1 Introduction

It has been shown that the GMRES algorithm is the most suited to the type of problems encountered in

this work. For this reason, only the acceleration that can be achieved by the GMRES algorithm and the

LU decomposition required to produce the LU preconditioner will be considered in parallel. It can be

shown that parallelising the other iterative methods would not result in a greater performance increase

than using the GMRES algorithm in parallel. If this were not the case using another method could lead

to a faster solve when applied in parallel.

9.5.2 On multiple CPUs

Only parts of the solvers can be parallelised for the central processing unit (CPU). The overheads

required to solve a parallel version of the forward and backward substitution routine, used to apply the

preconditioner in the iterative schemes and to solve the LU decomposition in the direct solver routine,

make it impractical to parallelise this part of the algorithm for the size of problem encountered in this

work. As this is the major contributor to the time required by the LU preconditioned GMRES algorithm,

any speed gain made by parallelising the algorithm will be small. The speed-up factor, S, achieved by

parallelising the algorithms on a single shared memory machine is shown in Figure 9.7

S

Number of processors
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6
LU GMRESLU decomposition diag GMRES

5

Figure 9.7: Speed up of LU decomposition and GMRES solvers on multiple CPUs.

Both the LU solver and the diagonally preconditioned GMRES algorithm achieve good speed-up and

show good scalability when parallelised. It is possible that additional efficiency gains could be made

through a more specialised implementation. However, this would require extra overheads which, when

dealing with the small problems encountered in this work, are likely to negate any additional speed gain

achieved.

The LU preconditioned GMRES algorithm parallelises far less efficiently due to the forward and

backward substitution routine. This means that, on eight processors, the diagonally preconditioned
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algorithm is competitive with the LU preconditioned algorithm. This is shown in Figure 9.8 which uses

the plate with a hole model described in Section 9.3, with a best fit line through the results. For machines

with fewer than eight processors, the LU preconditioned is always faster, as shown in Figure 9.1. For

machines with eight processors the less predictable convergence time and the additional memory required

by the diagonally preconditioned algorithm means that the LU preconditioned GMRES solver is still the

best option. However, if more than eight processors are available the diagonally preconditioned solver

will prove to be faster.
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Figure 9.8: Best fit comparison of solve times on one or eight CPUs.

9.5.3 On GPUs

The performance of some of the linear solvers has been tested with a graphics processing unit (GPU) im-

plementation. The full LU decomposition, used in the initial solve, and the LU preconditioned GMRES,

BiCGSTAB and TFQMR algorithms, used for the re-solve, have been coded for GPUs. This has been

achieved using Nvidia’s compute unified device architecture (CUDA) and the CUDA basic linear algebra

subprograms (CUBLAS) library [162]. Small calculations have been retained on the CPU along with the

Givens rotations used in the GMRES algorithm as these operations are not as suited to GPU paralleli-

sation.

On account of the small number of calculations involved in re-solving the system using POD it would

be counterproductive to run this solver on the GPU.

Figure 9.9 shows the speed-up, S = CPU time/GPU time, for the re-analysis solvers with a range of

system sizes, n. The CPU results have been generated using an Intel Xeon X5570 CPU with the author’s

solvers. The GPU results have been generated using an Nvidia Tesla C2070 GPU with the CUBLAS

library. The relationship between S and n is approximately linear for systems of this size and it is found

that it is only for systems of size n > 5000 that the GPU computation is beneficial. When generating

and solving the LU decomposition used in the initial analysis, many more operations are applied to the

same set of data and efficiency gains can be achieved for smaller systems of size n > 2500, as shown in

Figure 9.10. The speed can be further improved if a blocked LU decomposition is used, where the block

size, b, is chosen to fill the memory on the GPU. It is possible that using a similar blocking routine,

such as an element-by-element form [168], with the iterative solvers could lead to a similar acceleration

in these algorithms.

Some round off effects, as described by Smith and Margetts [169], were observed to affect the number
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of iterations in the BiCGSTAB solver only. In the worst case these had a negligible effect on the error,

εx, of the order 10−8. No variation in the solution accuracy was observed between the CPU and GPU

results for the GMRES and BiCGSTAB solvers.
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Figure 9.9: Comparison of CPU and GPU iterative solve times.
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Figure 9.10: Comparison of GPU and GPU LU decomposition and solve times.
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Chapter 10

Evaluation

“The study and knowledge of the universe would somehow be lame and defective were no

practical results to follow.”
Marcus Tullius Cicero

10.1 Introduction

So far in this thesis the re-meshing, re-integration and re-solution algorithms have been independently

assessed to find the most efficient algorithms. This chapter aims to draw all these areas together to

evaluate the software as a whole. Section 10.4 covers the integration of the algorithms developed in this

work into the Concept Analyst 3D (CA3D) software package.

Throughout the development of the algorithms contained in this work, regular meetings have been held

with industrial partners. These have been aimed at steering the development towards solving problems

applicable in industry, informing the design of the graphical user interface (GUI) and suggesting typical

model geometries that are likely to be encountered. Two case studies that have been developed as typical

problems that might be encountered during the design of an aircraft are introduced in this chapter. The

first is designed to show the benefits of the new re-meshing, re-integration and re-solution schemes whilst

the second focusses more on the benefit to the analyst of being able to rapidly re-analyse a model to find

an optimum solution to a problem.

10.2 Case study: Countersunk hole

10.2.1 The model

The countersunk hole model used in this case study is described in Figure 10.1. The angle of the

countersink is π/4 radians. Only a quarter of the model has been meshed and analysed to reduce the

complexity of the simulation. Roller boundary conditions are applied to the planes of symmetry which

bisect the hole and to the base of the model. A nominal load of 10MPa is applied as indicated. The

countersunk hole has been modelled using 540 elements with 3066 degrees of freedom (DOF).

For this model we consider the effect of changing the depth, d, of the countersink. Initially d = 3mm.

The depth is then incrementally increased to establish how this affects the stress distribution. Data have

been collected on all aspects of the algorithm; the results are summarised in this section.

10.2.2 Results

The principal stresses may be used to calculate the von Mises stress:

σVM =
√

1/2((σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2) (10.1)
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Figure 10.1: Case study: Countersunk hole. (Dimensions in mm)

across the surface of the countersunk hole model is shown in Figure 10.2. The stress concentration

factor, Kt, is defined as the maximum von Mises stress divided by the applied stress. The highest stress

concentration is apparent at the base of the countersink and increases almost linearly with d with the

exception of 6.5 < d < 7.5, as shown in Figure 10.3, and is typically within 5% of the value given in

Pilkey and Pilkey [170], where the data has been generated through a series of finite element simulations.

This suggests that, to minimise the stress, the countersink should be kept as shallow as possible, which is

the intuitive result. The remainder of the stresses in the model remain almost constant as d is updated.

(a) Initial model.
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(b) Final model.

Figure 10.2: von Mises stress concentration over a countersunk hole.

It should be noted that the contour plot has been created by interpolating the values of stress at the

nodes. The irregularities in these plots, especially apparent along the sides of the hole, are created by
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this interpolation scheme. It is therefore imperative that the contour results are treated with caution,

especially in areas of high stress gradient. The peak stress is within 5% of the value in Pilkey and Pilkey

[170]. A more accurate mesh could be applied to reduce this error; however, the reader is reminded that

a compromise has been made between the accuracy of the results during re-analysis and the speed of the

analysis. The mesh given in this example illustrates the amount of distortion that can be permitted whilst

maintaining 5% accuracy during real-time re-analysis. Once a satisfactory design has been established

by the analyst, a more detailed analysis with a finer mesh can be carried out to ensure that the proposed

model is viable.
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Figure 10.3: Stress concentration factor at the base of the countersink.

Figure 10.4 shows the distribution of element quality, Q, on the initial mesh (d = 3mm) and the final

mesh (d = 13mm). The initial mesh is of high quality. The quality of the elements immediately adjacent

to the countersink steadily degrades as the geometry is distorted but remains within acceptable limits.

This is captured in Figures 10.5(b) and 10.5(c). However, local re-meshing would be required if d was

increased much further.
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Figure 10.4: Element quality over a countersunk hole.
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The error in the solution vector, εx, calculated using equation (9.2), is shown in Figure 10.5(d). The

increase is caused by the increased element distortion which results in elements of quality Q < 0.25

around some of the key geometrical features. At this level of distortion, the shape functions, which are

equivalent to the basis vectors in which we are seeking a solution, cease to be rich enough to match the

solution as closely as for high quality elements.
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Figure 10.5: Mesh and re-meshing results for a countersunk hole.

10.2.3 Timings

The distribution of re-integration time, t, across re-meshing (tm), re-integration (tu) and re-solution (ts)

as the depth of the countersink is increased is shown in Figure 10.6. Figure 10.6(a) shows t using a full

re-integration with a direct solver. The total analysis time, t, is clearly dominated by ts. By applying

the lower-upper (LU) preconditioned generalised minimal residual (GMRES) solver described in Chapter

9 instead of a Gauss elimination, this can be reduced by a factor of 45 for this model. If the integration

acceleration schemes discussed in Chapter 8 are also applied, Figure 10.6(b) is produced. The timings

tu and ts are now similar. However, the re-integration parallelises far more efficiently that the GMRES

solver and in parallel the solution time once again begins to dominate as shown in Figure 10.6(c).

The time to re-mesh the model, tm is less than 0.001 seconds and is constant for all three figures. It

is included in Figure 10.6 but is too small to be apparent. The meshing and re-meshing schemes have

not been parallelised as there would be little benefit to accelerating this algorithm further.

The speed-up, S, achieved by the new re-integration and re-solution schemes over a complete tradi-
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Figure 10.6: Run time for a countersunk hole.

tional boundary element (BE) analysis, is shown in Figure 10.7. On average the re-integration speed-up,

Su = 6.2 when applying the acceleration schemes suggested in this work on a single processor. However,

as shown in Figure 10.7(a), Su is greatest for the initial model and decreases as d increases. This is be-

cause the geometric change causes elements around the updated geometry to be distorted such that they

are closer together. The influence of these elements on each other is thereby increased and a higher order

integration scheme must be applied to capture the stress variation. Note that the re-solution speed-up,

Ss, achieved by applying the GMRES scheme instead of a direct solver is not shown in Figure 10.7(a) as

Ss ≈ 45.

The algorithm is accelerated further through parallel processing, achieving an additional speed-up of

Su ≈ 3.7 on eight processors over the serial implementation, as shown in Figure 10.7(b). Combining this

with the results from Figure 10.7(a) gives a total average acceleration of Su ≈ 22.9 over a traditional

serial BE implementation and Ss ≈ 58.1 over a serial direct solver. The total speed-up of the combined

re-integration and re-analysis algorithms over a full analysis with a direct solver, S ≈ 42.6.

By utilising the techniques introduced in this work it becomes possible to re-analyse the countersunk

hole model twice every second. This is sufficient to provide the analyst with useful feedback during

dynamic updating of the model. However, a faster analysis is desirable to reduce flicker in the contour

plot as the model is updated. A further reduction in t could be achieved by using a coarser mesh.

However, this would result in a reduction in the quality of the stress results. Once the model has been

finalised, a more detailed mesh and analysis may be employed to validate the design and provide more

accurate results.
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Figure 10.7: Re-analysis speed-up for a countersunk hole.

10.3 Case study: Aircraft rib section

10.3.1 The model

The model used in this case study is described in Figure 10.8. This model has been developed, in

conjunction with industrial partners, to simulate a small section from an aircraft wing rib. The roller

boundary conditions applied to the model indicate lines of symmetry. A nominal load of 10MPa is applied

as indicated. The rib section has been modelled using 1290 elements with 7500 DOF.

To find the optimum radius, r, for the fillet indicated in Figure 10.8, r is initially set to 1.5mm which

is the thickness of the step. The radius is then incrementally increased to establish how this affects the

stress distribution. Data have been collected on all aspects of the algorithm; the results are summarised

in this section.

Final fillet

25

25

25

3

75

75

r = 25 25

1.5
1.5

(r = 16.5)

Initial fillet

(r = 1.5)

10MPa

Figure 10.8: Case study: Aircraft rib section. (Dimensions in mm)
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10.3.2 Results

The stress, σVM , across the surface of the rib section is shown in Figure 10.9. A stress concentration,

Kt = 1.67, is apparent in the fillet on the initial model (r = 1.5mm). This reduces as r is increased to

16.5mm as shown in Figure 10.10. The results across the rest of the model remain almost constant. The

stress concentration in this fillet should continue to reduce until Kt = 1.0. However, due to interactions

with the other fillet in the model, Kt reaches a minimum of Kt = 1.28 when r = 5.6mm before increasing

slightly. The aim of the analyst is to minimise Kt at the fillet, this would be apparent as the point at

which the contours ceased to show a significant reduction in the stress.

(a) Initial model.

(b) Final model.
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Figure 10.9: von Mises stress concentration over an aircraft rib section.

It should be noted that the contour plots in Figure 10.9 have been created by linear interpolation

between the values of stress at the nodes. It is therefore imperative that the contour results are treated

with caution. The values at the nodes, however, can be taken at face value within appropriate error

bounds.

Figure 10.11 shows the distribution of element quality, Q, on the initial mesh (r = 1.5mm) and the

final mesh (r = 16.5mm). The initial mesh is of high quality with the exception of a few elements along

the narrow sections of the geometry. This is caused by limitations placed on the meshing scheme so as

not to over refine the mesh. It should also be noted that, whilst some of the rectangular elements on the

fillet have a low Q, due to their orientation relative to that of the stress field, this does not affect the

accuracy of the results.
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Figure 10.11: Element quality over an aircraft rib section.
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As the geometry is updated, the majority of the mesh remains the same. However, a degradation

in the quality of elements around the updated geometry can clearly be seen. If r were to be increased

further, local re-generation of the mesh would be required to maintain a suitable element quality. The

mean element quality is given in Figure 10.12(b) and remains within acceptable limits. The increase

in error, εx, shown in Figure 10.12(d), caused by applying the acceleration schemes is approximately

constant for all values of r and remains small.
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Figure 10.12: Mesh and re-meshing results for an aircraft rib section.

10.3.3 Timings

The distribution of re-integration time, t, across re-meshing (tm), re-integration (tu) and re-solution (ts)

as r is increased is shown in Figure 10.13. Figure 10.13(a) shows t using a full re-integration with a direct

solver. An even higher proportion of t is dedicated to ts than for Case Study 1. This is due to the larger

number of DOF in Case Study 2. However, because of the larger problem size, iterative solvers prove

more effective. For this model, applying the LU preconditioned GMRES solver reduces ts by a factor of

250 over a Gauss elimination. If this reduced solve time is added to the accelerated re-integration, Figure

10.13(b) is produced. However, due to the problem size, ts still dominates. This dominance is increased

further when the algorithm is parallelised, as shown in Figure 10.13(c).

The time to re-mesh the model, tm is less than 0.001 seconds and is constant for all three figures. It

is included in Figure 10.13 but is too small to be apparent. The meshing and re-meshing schemes have

not been parallelised as there would be little benefit to accelerating this algorithm further.
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Figure 10.13: Run time for an aircraft rib section.

The speed-up, S, achieved by the new re-integration and re-solution schemes is shown in Figure

10.14. An average speed-up of Su = 7.8 over a traditional BE integration is achieved when applying the

acceleration schemes suggested in this work on a single processor. This is larger than for the countersunk

hole because the larger model (in terms of DOF) results in an increase in the number of far field elements

paired with each node in the model. These far field elements only require a coarse integration scheme and

ar therefore fast to integrate. As with Case Study 1, Su decreases as the element distortion increases due

to the closer proximity of distorted elements to each other. Note that the re-solution speed-up, Ss ≈ 250,

for the GMRES scheme over a direct solve is not shown in Figure 10.14(a).

When the algorithm is parallelised, an additional speed-up of Su ≈ 4.4 is achieved on eight processors,

as shown in Figure 10.14(b). This is greater than for the countersunk hole model as the larger number of

DOF results in a more efficient parallelisation. Combining these results with those from Figure 10.14(a)

gives a total average acceleration of Su ≈ 34.3 over a traditional serial BE implementation and Ss ≈ 73.8

over a serial direct solver. The total speed-up of the combined re-integration and re-analysis algorithms

over a full analysis with a direct solver, S ≈ 62.7.

The total analysis time, t, for the aircraft rib section has been significantly reduced by employing the

acceleration schemes developed in this work. However, for a model with 7500 DOF, this is not sufficient

for real-time analysis although rapid feedback is still provided with a typical total re-analysis time in the

region of 2.2 seconds per iteration.
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Figure 10.14: Re-analysis speed-up for an aircraft rib section.

10.4 Software implementation

10.4.1 The philosophy behind the software

This section describes the new computer aided design (CAD) software package CA3D, named after

Concept Analyst (CA) [1] (a two-dimensional package with the same design concept), which the algo-

rithms in this work have been designed for use with. The main consideration is the GUI which has been

primarily developed by a colleague of the author, M. Shadi Mohamed. To enable ease and speed of design,

the GUI has been kept to a minimalist form which requires as few user inputs as possible. A screenshot

of the programme is shown in Figure 10.15. All the geometry is constructed using the Open Cascade

[166] modelling libraries.

Figure 10.15: Concept Analyst 3D.
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10.4.2 The graphical user interface

The CA3D toolbar is shown in Figure 10.16. This contains the main commands which are used to

construct and analyse a model.

New/open/save

Local context

Draw: cuboid/cylinder/cone

Undo/redo

Boolean operations: add/subtract/intersect

Fillet

Boundary conditions

Display: Solid/wire frame/contours

Run analysis

Dynamic rotate

Rotate viewPan view

Zoom: to fit/draw box/drag

Figure 10.16: The toolbars.

The ‘draw’ dialogue boxes are shown in Figure 10.17. These incorporate the (x, y, z) coordinates of

the object, which define the minimum coordinate location of the corner of a cuboid or the axis of rotation

of a cylinder or cone. The dialogue allows the dimensions to be specified. For the cuboid, ‘DX’, ‘DY’ and

‘DZ’ refer to the (x, y, z) dimensions of the object; for the cylinder, ‘R’ and ‘H’ refer to the radius and

length respectively; for the cone, ‘R1’ and ‘R2’ refer to the radius of each end, with ‘R1’ at the insertion

point. The radius of a cone may be set to zero should a complete cone be required.

The cylinder and cone insertion is currently limited in that they can only be created parallel to the

z axis. This has been limited to reduce the possibility of creating illegal geometries through intersecting

cones and cylinders with axes of rotation at different angles.

(a) Cuboid. (b) Cylinder. (c) Cone.

Figure 10.17: ‘Draw’ dialogue boxes.

Three different Boolean operations may be applied to the geometry by the user. ‘Add’ will merge

two selected objects into a single object and ‘subtract’ will remove the the volume denoted by the second

object selected by a user from the first object selected. ‘Intersect’ will remove all material except for

where the two objects overlap. The ‘fillet’ dialogue allows the user to specify a radius for a fillet, as

shown in Figure 10.18. The fillet must be applied to an edge or a group of edges. If the radius is greater

than the size of a neighbouring face, a partial fillet will be applied.

The ‘boundary conditions’ dialogue, shown in Figure 10.19 allows the user to specify the pressure

applied to, or to fix the displacement of, a face. Additional functionality is available to load or restrain

surfaces in the normal direction or apply displacements. However, at the time of writing these have not
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been incorporated into the user GUI. The boundary conditions are displayed on the model as shown in

Figure 10.15. Pressures are shown as red arrows, restraints as green anchor points.

Figure 10.18: ‘Fillet’ dialogue box.

(a) Pressure. (b) Displacement.

Figure 10.19: ‘Boundary conditions’ dialogue box.

The ‘run’ command runs a full initial analysis on the model. This generates and stores all the data

associated with the integration of each element along with the [H] and [G] matrices which are referred to

in the re-analysis. A direct solver is used to form the LU preconditioner. An additional one-shot analysis

is available which directly constructs [A] and {b} without forming the complete [H] and [G] matrices.

The additional integration data is not stored and, as the preconditioner will not be required, a diagonally

preconditioned GMRES solver is applied. The one-shot analysis is therefore significantly faster than the

full initial analysis. However re-analysis cannot be carried out if this option is selected. When the model

is run, algorithms will be applied to automatically merge co-planar faces and remove any small faces.

Co-planar faces are merged to ensure invalid geometries are not meshed, such as the case of a zero angle,

illustrated in Figure 10.20. The ‘remove small faces’ algorithm attempts to remove tiny faces generated by

the Open Cascade fillet application process. These faces would otherwise cause massive over refinement

of the mesh, leading to an invalid mesh. Both algorithms may also be run independently, via the menu

system, without triggering an analysis.

Invalid small face

Invalid zero

(exaggerated)

degree angles

(a) Before clean up. (b) After clean up.

Figure 10.20: Removing invalid geometry.
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Contours may be displayed over the surface of the model. These are drawn by interpolating the

stresses across each element from the values at the nodes with bright red as the highest value and dark

blue the lowest value. An option is also available to display the deformed model. The ‘contour plot’

dialogue allows the user to specify the results they wish to plot:

• Principal stresses (σ1, σ2, σ3)

• Direct stresses (σxx, σyy, σzz)

• Shear stresses (σxy, σyz, σxz)

• von Mises stress (σVM )

• Displacements (δx, δy, δz)

Figure 10.21: ‘Contour plot’ dialogue box.

In addition to the buttons on the toolbar, several other options can be accessed via the menus. The

material properties and the mesh density may be changed via the ‘material properties’ dialogue shown

in Figure 10.22. For simplicity, three options are given for the mesh density: coarse, medium and fine.

Figure 10.22: ‘Material properties’ dialogue box.

The model geometry may be updated by selecting a face to update in the local context, then using

the ‘move faces’ command before clicking and dragging the selected face. During dynamic updating of

the geometry, movement of cylinders and cones is limited to motion perpendicular to the axis of rotation.

Plane faces may only be moved in a direction which is normal to the face. This helps to reduce the

propagation of changes through the mesh by limiting the area of the model which the updates affect.

Whilst the geometry is being updated, the stress contours that will continue to be displayed will be of

the same type as those last selected using the ‘contour plot’ dialogue.

If no Boolean operations have been carried out but more than one geometrical construct has been

formed then multiple objects will exist in the model. Selecting the ‘local context’ button allows the user

to select faces, edges and vertices within the currently selected object. In the local context, the default

selection mode is ‘faces’. This may be changed to ‘vertices’ or ‘edges’. Using ‘faces’, boundary conditions

can be applied to the model. Selecting ‘vertices’ will allow the user to read off the coordinates of the

selected vertex. Selecting ‘edges’ will allow the user to apply fillets.
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Conclusion

“I may not have gone where I intended to go, but I think I have ended up where I intended to

be.”

Douglas Adams

11.1 Conclusions

The algorithms developed in this thesis demonstrate that it is possible to conduct real-time re-analysis

of the stresses in three-dimensional linear elastic boundary element (BE) components as the geometry

of these components is dynamically updated by the user. This was achieved by applying an intelligent

re-meshing scheme capable of accommodating a geometric perturbation whilst preserving the majority

of the mesh and hence, limiting changes in the system of equations associated with the problem. This

in turn leads to a reduction in the time required to construct these equations. The re-meshing scheme is

highly efficient for small perturbations, typically taking a few thousandths of a second, around six times

faster than generating the initial mesh. Methods to improve the scheme for larger changes have also been

discussed.

The reconstruction of the system of equations has been accelerated through the use of adaptive

integration schemes (incorporating a reusable intrinsic sample point (RISP) algorithm) and computational

tactics such as reducing the precision of the calculations and using 64-bit architecture. Whilst parallelising

the process on central processing units (CPUs) showed good speed-up and scalability, the system is still too

small for graphics processing unit (GPU) based acceleration to be useful. Adaptive cross approximation

(ACA) was found to be inefficient for models with relatively few degrees of freedom (DOF), such as those

encountered in this work.

Several different linear solvers have been assessed to establish the most applicable to the small dense

matrices typical of the boundary element method (BEM). These tests established that a generalised

minimal residual (GMRES) solver used in conjunction with a complete approximate lower-upper (LU)

preconditioner, generated during the first analysis run before any geometric modifications had been

applied, provided the fastest and most accurate solution. Minimising the number of updated elements

in the system will also help to reduce the solve time as the preconditioner will be more similar to the

inverse of the new system and hence the iterative solver will show a faster convergence rate. A small

speed gain was made by parallelising the GMRES solver on CPUs. Whilst GPU parallelisation showed

good scalability, it was found not to be currently capable of accelerating the solution for models with

fewer than 5000 DOF.

The algorithms created through this work have been comprehensively tested using several different

example problems of particular interest in the aerospace industry. They have been shown to be fast,
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robust and accurate, paving the way for real-time re-analysis of BE problems. A new three-dimensional

BE analysis package, Concept Analyst 3D (CA3D), capable of real-time re-analysis of basic mechanical

components as the geometry of these components is dynamically updated by the user, has been developed

using the techniques demonstrated in this thesis.

The future of computational mechanics will involve the evolution of simulations alongside model

geometry. Engineers will be naturally and seamlessly presented with key durability information as they

construct a design and will therefore be able to adjust the design, based on these considerations, as it

evolves. The work presented in this thesis contributes towards this vision.

11.2 Recommendations for further work

Recommendations for further work have been divided up into four sections. Section 11.2.1 comments on

features that are available in the meshing and analysis algorithms but are not supported by the graphical

user interface (GUI) at the time of writing. Section 11.2.2 looks at ways to improve the current method

and algorithms. Section 11.2.3 discusses how the method could be adapted to address different types of

problem. Section 11.2.4 looks at the future evolution of the computer and how this could affect further

development of the ideas presented in this work.

11.2.1 Additions to the Concept Analyst 3D software package

At the time of writing, the GUI only permits cones and cylinders to be generated such that the axis

of rotation is parallel to the z axis. This constraint has been imposed to ensure that the geometry

does not intersect in ways that cannot currently be meshed. However, the meshing algorithm supports

geometry in any orientation as long as it conforms to the supported types given in Table 11.1. If the

additional geometries given in Section 11.1 were included it would become possible to mesh more complex

intersecting geometries. The analysis algorithms support any valid BE mesh constructed of trianglar and

quadrilateral elements.

An additional option has been included in the boundary conditions class that allows boundary condi-

tions to be declared in the normal direction to a surface. This is particularly important for application

across curved surfaces such as a thick walled cylinder under an internal pressure. This option is not cur-

rently available in the GUI as additional calculations would be required to orientate the arrows showing

the pressure on the model. The GUI also does not allow non-zero displacements to be applied to the

model.

During dynamic updating of the model geometry, the GUI limits translation of cylindrical and conical

surfaces to movement perpendicular to the axis of rotation. It is not possible to dynamically change the

depth or angle of a countersink or the radius of a hole or fillet. However, these operations are supported

by the re-meshing scheme and could be added to the GUI at a later date. It should be noted that the

case studies given in Chapter 10 bypass the movement constraints applied in the GUI.

Rotation of patches and elements without changing the local geometry is currently classed as a distor-

tion. Functionality could be added to the code so that this type of rotation could be treated in a similar

way to a translation.

11.2.2 Improving the current method

The majority of improvements to the current method can be made in the meshing algorithm. The current

algorithm is sufficient to demonstrate that real-time re-analysis can be achieved. However, it imposes

many constraints on the geometries that can be analysed. Additional geometries would be required to

make the software viable for general design work. The currently supported geometries and the proposed

initial extensions are shown in Table 11.1. The addition of elliptical arcs and parabolas would allow

– 152 –



11.2: Recommendations for further work

cylindrical and conical surfaces to be cut at an angle. Toroids would allow for toroidal fillets and spheres

would allow three or more fillets to meet at a vertex. If the method were to be extended to spline surfaces

a complete re-structuring of the re-meshing algorithm would be required as the geometric changes applied

to the model would not be so easy to isolate.

Table 11.1: Supported geometry.

Currently supported Proposed additions

2D
Straight line Elliptical arc
Circular arc Parabola

3D
Plane surface Sphere

Cylinder Torus
Cone

The mesh generation strategy does not take into account the boundary conditions. To generate an

even more efficient mesh these should be considered in the initial mesh generation and the re-meshing

procedure. A mesh refinement algorithm could be incorporated into the re-meshing procedure to refine

the mesh around high stress concentrations as the user updates the model. However, such an algorithm

should be employed sparingly as running constantly will have a direct impact on the speed of the re-

meshing algorithm and cause more elements to be updated, thereby slowing the re-analysis.

More advanced feature recognition could be employed to identify areas of geometry the user is likely

to update. Alternatively the user could be asked when they initially construct the model to define which

areas they are particularly interested in. This data could be used to inform the meshing and re-meshing

scheme so that the mesh can be appropriately refined. One technique that could be employed is zoning.

Zoning involves splitting the model into sub-regions for the purposes of meshing and analysis without

affecting the user’s perception of the model. Areas of the model around features that are likely to be

updated by the user, such as the radius of a hole, can be defined using a separate volume and set of

patches to the rest of the model as shown in Figure 11.1. If the feature is updated the mesh can simply

be regenerated over the appropriate zone, leaving the majority of the model unchanged and removing the

need to re-run analyses over large portions of the structure. However, zoning will introduce additional

nodes to the model across the interface patch, which will result in a longer initial run time, but it can

improve the quality of the system matrix, which will counteract this to some extent by helping to reduce

the analysis time. Zoning must be used if there are multiple materials present within the model.

(a) Single zone. (b) Two zones.

Figure 11.1: Zoning around features.
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11.2.3 Extensions to Concept Analyst 3D

This work has concentrated on simple, elastic stress problems. The algorithms could easily be modified

to cover potential problems and acoustics or waves. Additions could also be made to solve fracture

problems and, with the inclusion of real-time solution, it would be possible to produce instant feedback

on simulations of crack growth problems, thereby giving the analyst more detailed feedback on the path

and speed of growth of the crack.

It would also be useful to be able to simulate contact problems. The case of a countersunk hole has

regularly surfaced in this work. However, this has always assumed an empty hole. It would be useful to

be able to model the effect of putting a screw into the hole.

11.2.4 Future considerations

The size of problem that can be solved in real-time using the techniques discussed in this work has been

limited by the processing capability of current computers. This capability is constantly improving and

evolving. It will not be many years before it becomes possible to apply these techniques to solve much

larger BE problems in real-time. However, as the problem size increases other acceleration techniques

will become viable.

ACA has been shown to work well for larger matrix blocks which result from a larger system. Similarly,

proper orthogonal decomposition (POD) will provide more benefits as the problem size increases. There

are other techniques, not considered in this work, which will also become viable as the problem size

increases.

The parallel implementation of the integration scheme has shown good scalability. As the number

of CPUs in standard computers increases, the speed of the algorithm will also increase. However, more

efficient management load balancing of each CPU could lead to increased benefits, especially as the

number of CPUs increases.

So far it has only been possible to solve small problems in real-time and GPUs rely on massively parallel

systems. Current GPU capability has been shown to only accelerate the solution of linear problems of

size n > 5000. The main limiting factor is the memory transfer speed between the GPU and the CPU.

As GPUs evolve the memory speed will increase. Some early CPU designs where the GPU cores are built

directly onto the processor are already in development. However, increased speed will also lead to the

ability to solve larger problems which are more susceptible to GPU acceleration.

Isogeometric analysis [171] is currently emerging as a tool for analysing models directly from computer

aided design (CAD) geometry. The BEM is ideally suited to exploit this technique as CAD geometries are

generally constructed using a surface representation [172, 173]. Incorporating the techniques developed

in this thesis into an isogeometric analysis package would further facilitate the visualisation of stresses

over CAD geometry as a model is being constructed without the need for meshing and re-meshing. The

development of isogeometric analysis will pave the way for full integration of CAD and analysis packages

into a single modelling environment.

11.3 Applications

This work has been conceived to create an interactive tool to enable engineers to dynamically adjust the

design of mechanical components based on the stress results of an analysis. However, this work could be

applied in many other fields.

Shape and topology optimisation algorithms all rely on analysis of a sequence of models of evolving

geometry. These algorithms are ideally suited to take advantage of the techniques developed in this

thesis. It may eventually be possible to cut out the designer almost entirely, as the geometry of the
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model is automatically updated by the computer to find the best possible form for the component under

investigation. If an optimisation algorithm were coupled to real-time analysis it would become possible

to observe the geometry as it evolved and perhaps steer the results where necessary.

Real-time analysis in the context of haptic feedback for surgical simulation has already been extensively

discussed in this work. Haptic feedback requires a particularly high frequency response rate of around

1kHz and this work is not yet able to provide sufficient speed. However, the need for such accurate stress

solutions is not so pressing and a coarser model and integration scheme could provide suitably accurate

displacement results to ensure the simulation feels realistic. During surgery, if surgeons need to change

their procedure, real-time analysis could enable them to instantly see what will happen and aid their

decision making.

For pure visualisation of the displacements, the current algorithm is more than adequate. The tech-

niques employed here could therefore be incorporated into computer games to provide real-time visual

feedback as the player interacts with objects in the virtual environment.

If a structure were already undergoing some form of ongoing deformation or cracking, the real-time

techniques discussed in this work could be used to rapidly analyse the current situation and project what

would be expected to happen as it developed, before the structure actually reached this state. This could

provide a useful prediction tool for what to expect in damaged structures as time passes or the conditions

around them change.

11.4 Summary

A new set of algorithms for accelerating three-dimensional BE re-analysis of basic mechanical components

with continuously updating geometry has been introduced. This makes it possible to analyse small models

(in terms of DOF) in real-time and significantly accelerate analysis of larger models. Models with up to

4000 DOF can be consistently re-analysed in under half a second.

Whilst there are some drawbacks in the algorithms, such as the limited range of geometry that they

are able to analyse, these can easily be overcome through further development of the algorithms. This

work serves to prove that the methods employed to accelerate the analysis and re-analysis are robust and

efficient and enable small models to be accurately analysed in real-time. As computer hardware develops

it is expected that much larger time savings can be made for larger models that it is currently impossible

to analyse in real-time.

This work has paved the way for real-time three-dimensional BE analysis, demonstrating that it is a

viable approach and that it can be implemented in CAD software acceptable for use in industry.
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Glossary

Advancing front A meshing procedure whereby elements are generated starting from the bound-

ary and working inwards.

Circumcircle A circle that passes through all three vertices of a triangle. The centre of the

circumcircle is called the circumcentre.

Delaunay

triangulation

A meshing procedure whereby nodes spread across a surface are connected by

a series of triangles. To be classed as a Delaunay mesh, the circumcircle of each

triangle must not contain any corner nodes of other triangles.

Edge A line segment joining two vertices in a polygon.

Element A shape defining part of a discretised surface in two or three dimensions.

Element quad A group of four elements around a single node.

Element triplet A group of three elements around a single node.

Face A two- or three-dimensional polygon which makes up part of the surface of a

polyhedron. A face is always bounded by edges.

Field element The element which is paired with a source point to carry out integration.

Field point A point on a surface which is used to construct the integral over the surface.

Gauss point A point at a specific location on an element which is used in numerical inte-

gration.

Haptic feedback Real-time physical feedback, typically provided by means of hand held device,

that gives the feel of interaction with an object.

Incircle The largest circle that fits within a triangle. It touches and is tangent to the

three sides. The centre of the incircle is called the triangle’s incentre.

Interactive A process provides feedback within a few seconds.

Laplacian

smoothing

Moving a node to the average coordinates of all the nodes to which it is con-

nected in a mesh.

Line A geometric entity in three- (x, y, z) or two-dimensional (u, v) space. A line

defines part of or the entire boundary of a patch. It is defined by a vertex at

each end and additional data relating to its path.

Near-singular

integral

Occurs as r → 0 but r 6= 0 where r is the denominator of an equation.
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Glossary

Node A point at which stresses and displacements are calculated. Each element has

several nodes associated with it.

Octree A meshing technique whereby cubic elements are successively divided into eight

to refine the mesh.

Orthogonal The objects are perpendicular to each other.

Patch A two- or three-dimensional surface bounded by a set of lines. A patch will

always lie on a face but may not necessarily cover the entire area.

Quadtree A meshing technique whereby square elements are successively divided into

four to refine the mesh.

Rapid The process takes place in the time a user is prepared to wait (typically a few

seconds).

Real-time A process takes place with a higher frequency refresh rate than a human can

detect.

Re-analysis The process of re-integrating and re-solving an updated boundary element

mesh.

Re-entry corner An internal angle between two consecutive lines bounding a patch of greater

than π radians.

Re-generation Reconstructing a mesh over all or a specific area of a model.

Re-integration Updating an existing BE system of equations due to a geometric change.

Re-meshing Updating an existing mesh based on a geometric change.

Re-solve Finding the new solution to an updated linear system of equations.

Segment A line forming a single side of an element.

Shape function A mathematical formula used to interpolate across an element.

Singular integral Occurs when the denominator of an equation approaches zero. When r → 0,

1/r is weakly singular and 1/r2 is strongly singular.

Source point A point on a surface at which a fictitious load is applied so that integration

can be carried out over the field points or elements.

System

architecture

The bandwidth of the CPU in a computer. Typically 32- or 64-bits.

System matrix Matrix [A] in the linear equation [A]{x} = {b}. This matrix contains the

integrals of the traction and displacement kernels.

Vertex A point defining a ‘corner’ of a model or patch, or the end of a line in three-

(x, y, z) or two-dimensional (u, v) space.

Wall clock time The amount of time taken by a process measured by the CPU clock.

Wire A complete loop of lines which form the boundary of, or an internal feature

within, a patch.
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Appendix A

Solver pseudo-code

The iterative solver pseudo-code for the generalised minimal residual (GMRES), bi-conjugate gradient

stabilised (BiCGSTAB) and transpose free quasi-minimal residual (TFQMR) schemes, presented in Al-

gorithms A.1, A.2 and A.3, is based on the templates given in [149] with some modifications made by

the author to improve efficiency. Leu’s reduction, given in Algorithm A.4, eigenvector based proper or-

thogonal decomposition (E-POD) given in Algorithm A.5 and singular value decomposition based proper

orthogonal decomposition (SVD-POD) given in Algorithm A.6, together with the proper orthogonal de-

composition (POD) solution scheme given in Algorithm A.7 are based on algorithms found in [23], [25]

and [26] respectively. The nomenclature used in all the solvers is given in in Table A.1 and the solver

specific nomenclature in Table A.2. Note that this may differ from the standard notation as some vectors

have been reused to reduce the memory size and access requirements of the solvers.

Table A.1: General variables.

Symbol Description

A new system matrix
x0, x previous and current solution vectors
b new b vector

r0, r initial and current residual vectors
M preconditioning matrix
n̂ limit on number of solver iterations
tol solution tolerance
| · | L1-norm
‖ · ‖ L2-norm

Table A.2: Solver specific variables.

Algorithm Variables Vectors Matrices

GMRES1 α, θ, τ c, g, s, u, v, w, y H, V
BiCGSTAB α, β, ρ1, ρ2, τ, ω p, s, t, v
TFQMR α, β, γ, η, θ, ρ1, ρ2, τ d, g, h, u, v, w
Leu’s reduction α, β, ζ, ϕ, ψ ∆A
POD2 u, v, λ, ζ Φ,K,Q, V

1GMRES matrix V contains vectors v.
2POD matrix Q contains vectors x, matrix U contains vectors u and
matrix V contains vectors v
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Appendix A: Solver pseudo-code

Algorithm A.1 GMRES

1: r0 = b−Ax0

2: τ = 1/‖b‖
3: g0 = ‖r0‖
4: v0 = r0/g0

5: i = 0
6: while i < n̂ do
7: Solve: Mw = Avi
8: for j = 0, 1, 2, ..., i do
9: Hi,j = wT vj

10: w = w −Hi,jvj
11: end for
12: vi+1 = w/‖w‖
13: for j = 0, 1, 2, ..., i do
14: α = Hi,jcj −Hi,j+1sj
15: Hi,j+1 = Hi,jsj −Hi,j+1cj
16: Hi,j = α
17: end for
18: θ = − tan−1(‖w‖/Hi,i)
19: ci = cos θ
20: si = sin θ
21: Hi,i = Hi,ici − ‖w‖si
22: gi+1 = gisi
23: gi = gici
24: if abs(gi+1)τ < tol then
25: Converged: end while
26: end if
27: i = i+ 1
28: end while
29: Solve: HT y = g
30: u = V T y
31: Solve: Mw = u
32: x = x0 + w

Algorithm A.2 BiCGSTAB

1: r0 = b−Ax0

2: τ = 1/‖b‖
3: r = r0

4: x = x0

5: i = 0
6: while i < n̂ do
7: ρ1 = rT0 r
8: if i = 0 then
9: p = r

10: else
11: β = (ρ1/ρ2)(α/ω)
12: p = r + β(p− ωv)
13: end if
14: Solve: Ms = p
15: v = As
16: α = ρ1/r

T
0 v

17: x = x+ αs
18: r = r − αv
19: if ‖r‖τ < tol then
20: Converged: end while
21: end if
22: Solve: Ms = r
23: t = As
24: ω = tT r/tT t
25: x = x+ ωs
26: r = r − ωt
27: if ‖r‖τ < tol then
28: Converged: end while
29: end if
30: ρ2 = ρ1

31: i = i+ 1
32: end while
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Appendix A: Solver pseudo-code

Algorithm A.3 TFQMR

1: Solve: Mr = b−Ax0

2: Solve: Mv = Ar
3: g = v
4: w = u = r
5: ρ1 = rT r
6: τ =

√
ρ1

7: x = x0

8: i = 0
9: while i < n̂ do

10: α = ρ1/r
T v

11: if i = 0 then
12: d = u
13: else
14: β = θ2η/α
15: d = u+ βd
16: end if
17: w = w − αg
18: θ = ‖w‖/τ
19: γ = 1/(1 + θ2)
20: η = γα
21: τ = τθ

√
γ

22: x = x+ ηd
23: i = i+ 1
24: if τ

√
i < tol then

25: Converged: end while
26: end if
27: u = u− αv
28: Solve: Mh = Au
29: β = θ2γ
30: d = u+ βd
31: w = w − αh
32: θ = ‖w‖/τ
33: γ = 1/(1 + θ2)
34: η = γα
35: τ = τθ

√
γ

36: x = x+ ηd
37: i = i+ 1
38: if τ

√
i < tol then

39: Converged: end while
40: end if
41: ρ2 = rTw
42: α = ρ2/ρ1

43: u = w + αu
44: Solve: Mg = Au
45: v = g + α(h+ αv)
46: ρ1 = ρ2

47: end while

Algorithm A.4 Leu’s reduction

1: Solve: A0ϕ0 = b
2: ϕ0 = ϕ0/|ϕ0|
3: ψ0 = ϕ0/(ϕ

T
0 Aϕ0)

4: ζ0 = ψT0 b
5: x = ζ0ϕ0

6: ∆A = A−A0

7: i = 1
8: while i < n̂ do
9: Solve: A0ϕi = ∆Aϕi−1

10: ϕi = ϕi/|ϕi|
11: α = Aϕi
12: β = 0
13: for j = 0, 1, 2, ..., i− 1 do
14: β = β + ψTj αϕj
15: end for
16: ϕi = ϕi − β
17: ψi = ϕi = ϕi/|ϕi|
18: α = ψTi A
19: β = 0
20: for j = 0, 1, 2, ..., i− 1 do
21: β = β + αϕjψj
22: end for
23: ψi = ψi − β
24: ψi = ψi/(ψ

T
i Aϕi)

25: ζi = ψTi b
26: x = x+ ζiϕi
27: if abs(ζi/|ζ|) < tol then
28: Converged: end while
29: end if
30: i = i+ 1
31: end while
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Appendix A: Solver pseudo-code

Algorithm A.5 E-POD construction

1: Q =
[
x0 x1 . . . xs

]
2: K = QQT

3: Solve eigenproblem: V K = λK
4: Order m columns of V where λj > 10−10λmax

5: Ψ =
[
v0 v1 . . . vm

]

Algorithm A.6 SVD-POD construction

1: Q =
[
x0 x1 . . . xs

]
2: Find SVD: Q = USV T

3: if U =
[
u0 u1 . . . us

]
, Ψ =

[
u0 u1 ... um

]
, where m < s

Algorithm A.7 POD solution

1: Â = ΨTAiΨ
2: b̂ = ΨT bi
3: Solve: Âζ = b̂
4: xi = Ψζ
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