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Abstract 

The histamine H3R is a classic G-protein coupled receptor and is a potential 

therapeutic target for a number of central nervous system pathologies. Major 

pharmacological heterogeneity between and within species has hindered the 

clinical development of H3R-targeted drugs. The pharmacological 

heterogeneity displayed by the H3R is thought in part to be a result of 

alternative splicing of the H3R which generates a number of possible splice 

variants, some of which have been shown to be functional and others which 

appear to be non-functional in terms of ligand binding and signal transduction. 

mRNA encoding the different isoforms has been shown to be distributed 

throughout the central nervous system in a region specific manner. For the 

first time we have shown three of the common H3R isoforms (hH3 329, hH3 365, 

hH3 445) to be expressed in the human brain using a novel panel of 

immunological isoform specific probes. We provide preliminary evidence for 

raised levels of H3 445 and H3 329 isoforms in Parkinson‟s disease and Lewy 

Body Dementia cases, respectively, compared to age-matched controls.  We 

have shown a variety of H3R ligands display differential pharmacological 

properties at the three hH3R isoforms expressed in HEK 293 cells. Most 

notably a 5- and 10- fold lower affinity for a highly selective clinical lead H3R 

inverse antagonist, GSK189254, at the H3R 329 and H3R 329 + 365 isoforms, 

respectively. The pharmacological differences observed indicate, together 

with the availability of the immunological probes, that it will be possible to 

dissect the physiological roles of human H3 receptor isoforms. 

The H3R is an attractive therapeutic target for age-related dementias. H3R 

antagonists have undergone a large number of pre-clinical assessments in 
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which they display pro-cognitive effects, particularly in drug-induced 

amnesias. It is important to establish whether there are any changes in H3R 

expression in normal physiological aging and in age-related human 

dementias. Based on quantitative [3H] GSK189254 autoradiography, we have 

shown that H3Rs are largely preserved in key cortical and striatal brain 

regions in aged CD-1 and TASPM mice, as well as in aged humans. 

Furthermore, H3 receptors were largely unchanged in Lewy Body Dementia 

and Alzheimer‟s disease cases, which provide further evidence validating the 

H3R as a promising target for age-related cognitive disorders. Psychotic 

symptoms are common features in both Lewy Body Dementia and 

Alzheimer‟s disease. Interestingly, higher levels of H3R in the globus pallidus 

correlated with the presence of both delusions (+ 40% and + 37%) and 

hallucination symptoms (+22% and +14%) within these human dementias, 

consistent with the recent positive clinical use of H3R antagonists in psychotic 

disorders.  In contrast, using a novel validated all-in-one behavioural elevated 

platform test in mice, evidence is provided for the lack of H3R involvement in 

anxiety behaviour, suggesting the lack of utility in human anxiety disorders.  
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CHAPTER 1 

Introduction  

 

1. Histamine and the histaminergic system 

Histamine is an endogenous, biogenic amine ubiquitously expressed in the 

body, present at high concentrations in the lungs, skin and gastrointestinal 

tract. Over 90% is stored in granules in basophils and mast cells, where it is 

associated with heparin, whilst non-mast cell histamine occurs in 

histaminocytes in the stomach and in varicosities of the histaminergic neurons 

in the brain. Histamine acts as a transmitter in the nervous system and as a 

signalling molecule in the gut, skin and immune system. Histamine brings 

about complex physiological changes including neurotransmission, 

inflammation, smooth muscle contraction, dilation of capillaries, chemotaxis, 

cytokine production and gastric acid secretion. These biological changes 

occur via four G protein coupled receptor (GPCR) subtypes: histamine H1, H2, 

H3 and H4 (Parsons and Ganellin, 2006).  

Histamine is a modified amino acid that is synthesized from the oxidative 

decarboxylation of the amino acid histidine, a reaction that is catalyzed by 

histidine decarboxylase (HDC) (Fig 1.1). HDC is highly conserved throughout 

the animal kingdom (Haas et al., 2008). Histamine synthesis is limited by its 

precursor histidine which is taken up by amino acid transporters into the 

cerebral spinal fluid and neurons. The formation of histamine from histidine 

can be blocked by α-fluoromethylhistidine (α-FMH), a highly selective HDC 

inhibitor. Once formed, histamine is either stored or rapidly metabolized by 

either methylation or oxidation (Fig 1.1). Methylation of histamine results in the 

http://en.wikipedia.org/wiki/L-histidine_decarboxylase
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formation of N-methylhistamine (NMHA) which is catalyzed by Histamine N-

methyltransferase (HNMT), while oxidation of histamine results in the 

formation of imidazole acetic acid by the enzyme diamine oxidase (DAO). 

CNS deactivation of histamine occurs mainly via HNMT while peripheral 

histamine is deactivated via DAO (Haas et al., 2008). 

 

Formation and metabolism of histamine: 

 

Figure 1.1 shows the formation of histamine from histidine and the metabolism of histamine 
to either imidazole acetic acid or N-methylhistamine.  

 

Histamine has long been known to be an important mediator in different 

(patho) physiological processes. It was first synthesised by the 

decarboxylation of histidine in 1907 (Windaus and Vogt, 1907). Subsequently, 

histamine in the periphery was shown to have a stimulant effect on smooth 

muscle from the gut and respiratory tract, depression of cardiac contractility, 

vasodilation and induced anaphylaxis when injected into animals (Dale & 

Laidlaw, 1910 & 1919). Histamine was also discovered to have a stimulant 

effect on acid secretion from the stomach of dogs, which was later shown to 

 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1760721#bib12#bib12
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1760721#bib12#bib12
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1760721#bib13#bib13
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be brought about by the activation of the H2 receptor (H2R) (Black et al., 

1972). In 1924, Lewis described the classic „triple response' to histamine 

consisting of a red spot due to vasodilatation, a wheal which was the 

consequence of increased permeability and flare due to an axon reflex (Lewis 

et al., 1924); this response was later shown to occur due to activation of the 

H1 receptor (H1R) (Ash et al., 1966). Histamine was found to be a natural 

constituent of the body in 1927, when it was first isolated from liver and lung 

samples (Best et al., (1927). The association between histamine and 

anaphylactic shock was soon demonstrated by showing the variation between 

histamine content of the lung before and after shock as well as the increase in 

histamine content of the blood after anaphylaxis. In 1937, Ungar et al., 

reported the first anti-histamine compound (H1R antagonist), adrenolytic 

benzodioxan, piperoxan (933F), which blocked the effects of histamine on the 

guinea-pig ileum. This was then followed by a series of structurally related aryl 

ethers, thymol ether 929F, which were shown to protect the guinea-pig from 

the lethal effects of histamine-induced anaphylaxis (Bouvet et al., 1937). 

Classical anti-histamines were soon developed as successful therapies and 

were widely used to treat allergic and inflammatory conditions, however, 

sedation and drowsiness was a major issue. This then lead to the idea that 

histamine was able to act upon the central nervous system (CNS). In 1943, 

Kwiatkowski identified histamine within mixed cortical nerves in the brain and 

he found that the histamine content of nerves varied. Later studies 

demonstrated the formation and catabolism of histamine in the brain. 

In the early 1970s, there emerged an understanding that histamine was a 

neurotransmitter and/or neuromodulator and it was then hypothesized that 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1760721#bib22#bib22
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1760721#bib22#bib22
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1760721#bib4#bib4
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blockade of brain histamine transmission could be the reason for the 

drowsiness associated with anti-histamines. Following this discovery, second 

generation anti-histamines that did not cross the blood brain barrier were 

designed to treat allergy and inflammation (Schwartz et al., 1970).   

Lesion studies carried out by Garbarg et al. (1974) identified the 

tuberomammillary nucleus (TMN) as the origin of brain histamine. In the early 

1980s two groups documented the histochemical localisation of the 

histaminergic neurons in the CNS (Watanabe et al., 1984 and Panula et al., 

1989). Brain histamine is classified as either neuronal or non-neuronal 

histamine. Neuronal histamine originates from histaminergic neurons while 

non-neuronal histamine originates from neuroepithelial and haematopoietic 

cells, mainly mast cells (Garbarg et al., 1976). Mast cells in the brain 

contribute a significant amount to the production of brain histamine. Mast cells 

are present in the circumventricular organs; the meninges, hypophysis, pineal 

gland, area postrema, the median eminence, thalamus, hypothalamus and 

along the blood vessels in the gray matter. In other brain regions, it is 

assumed that the action of histamine is mediated by release from neurons 

(Hough, 1988). Non-neuronal histamine displays a much slower turnover rate 

than neuronal histamine (Haas et al., 2008). Compound 48/80 is a basic 

polymer that causes exocytosis of the granular content within mast cells, 

however it does not cause histamine to be released from the varicosities in 

axons, allowing neuronal and non-neuronal histamine release to be 

differentiated.  Non-neuronal mast cells are involved in gastric acid secretion, 

immunomodulation, bronchial smooth muscle contraction, vascular 

vasodilatation and epi/endothelial barrier control (Haas et al., 2008).  

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib109#bib109
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib153#bib153
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The basic organization and functional disposition of the histaminergic system 

is highly conserved in the vertebrate brain (Fig 1.2).  

 

Histaminergic innervation in the human CNS: 

 

 

 

 

 

 

 

 

 

 
(Haas et al., 2003) 
Figure 1.2 shows histaminergic innervation in the human CNS. Arrows represent 
histaminergic innervation emanating from the TMN to a variety of brain regions including the 
cortex, striatum and cerebellum. 

 

In the mammalian brain, histamine is synthesized and stored in the cell 

somata and axon varicosities in restricted populations of neurons that 

originate from the TMN located in the posterior hypothalamus. Neuronal 

histamine is transported into vesicles by a vesicular monoamine transporter 

(VMAT-2) in exchange for 2 protons, and in the presence of an action 

potential is released from the vesicle (Ericson et al., 1991). The TMN is the 

only source of histamine, however other transmitters or their synthetic 

enzymes have been found within the TMN neurons; GAD 65/67, galanin, 
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enkephalins, thyrotrophin releasing hormone and substance P (Haas et al., 

2008). 

The TMN in the rat has been subdivided into five groups; a ventral group 

around the mammillary bodies, which is subdivided into a rostral and caudal 

part, a medial group around the mammillary recess, which is subdivided into a 

dorsal and ventral part, and a diffuse part (Wada et al., 1991). The five 

histaminergic cell groups are bridged by scattered neurons and are 

considered to be one functional group (Watanabe et al., 1984). Similarly, in 

human the TMN has been subdivided into four groups; a ventral group 

corresponding to the classical TMN, a medial group which includes the 

supramammillary nucleus, a caudal paramammillary section and a minor 

lateral area (Airaksinen et al., 1991). The TMN is innervated by two ascending 

pathways (ventral and dorsal) and one descending pathway (Panula et al., 

1989). Histaminergic neurons projecting from the ventral ascending pathway 

have strong innervation at the hypothalamus, diagonal band, septum and 

olfactory bulb whilst the dorsal pathway has lower density fibres which 

innervate the thalamus, hippocampus, amygdala and rostral forebrain 

structures. The descending pathway in rats is associated with the medial 

longitudinal fasciculus and provides input to the brain stem and spinal cord. 

The cerebral cortex has a moderate density of fibres in all areas and layers 

with a slightly increased density in the outer layers. Innervation of the 

thalamus is concentrated at the periventricular nuclei. The subiculum and 

dentate gyrus have the strongest innervation in the hippocampal formation, 

with lower innervation at the CA1 and CA3 of the hippocampus. Low to 

moderate innervation is also present at the striatum and nucleus accumbens. 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib299#bib299
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib299#bib299
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The descending pathway has lower innervation than the ascending pathways. 

The substantia nigra, ventral tegmental area, inferior and superior colliculi, 

pariaqueductal gray, trigeminal nerve and nucleus tractus solitarius receive 

prominent projections (Wada et al., 1991). Schwartz et al., (1991), showed 

using electrophysiological techniques that histamine still affected regions with 

low density histaminergic innervation indicating considerable mismatch 

between histaminergic fibre density and the density of histamine receptors in 

different brain regions. Areas with high density of fibres are likely to be 

affected tonically during waking, while areas with lower fibre densities may 

only be affected under particular behavioural situations when histamine 

neurons fire more rapidly (Schwartz et al, 1991). The lack of histamine in 

some brain areas where there is high histamine receptor expression may 

suggest that there are still unknown functional aspects within the system. 

Since histamine receptor expression is not limited to neurons but can also be 

found on endothelial cells, ependymal cells and astrocytes, this may indicate 

diurnal regulation of brain histamine is also important for several non-neuronal 

functions (Haas et al., 2003). 

 

Histamine forms part of the brain aminergic system in the CNS along with the 

serotonergic, dopaminergic and noradrenergic systems (Baudry et al., 1975). 

The histaminergic system consists of small bundles of neurons that have wide 

spread projection networks to most brain areas and the spinal cord. Histamine 

at the beginning of this project was believed to bind to three of the four known 

histamine receptors as well as to the polyamine site on N-methyl-D-aspartate 

(NMDA) receptors to control excitability and plasticity within the CNS. 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib409#bib409
http://molpharm.aspetjournals.org/cgi/content/full/55/6/1101#B7#B7
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Specificity of action is likely achieved through the organisation of the TMN 

histaminergic neurons into functionally distinct circuits projecting to different 

output regions, under presynaptic control (Giannoni et al., 2009). The major 

afferent inputs into the TMN are the infralimbic cortex, lateral septum and 

preoptic nucleus (Ericson et al., 1991). This helps to establish the broad 

modulatory effect that is tightly regulated by higher brain functions to maintain 

a constant homeostatic balance through its interaction with the aminergic and 

peptidergic systems. 

Brain histamine levels are lower than other biogenic amines, however its 

turnover is much quicker (Dismukes and Snyder, 1974). Histaminergic 

neurons are pacemakers that fire at a slow regular rate of less than 3Hz, 

depending on the behavioural state (Brown et al., 2001). Histamine release 

shows a clear circadian rhythm, which parallels the change in the firing rate of 

histamine neurons over the sleep-wake cycle (Mochizuki et al., 1992). 

Histamine release from the posterior hypothalamus has a faster rhythm which 

correlates with delta and theta bands in electroencephalographic recordings 

(Philippu et al., 1991). The synthesis and release of histamine is controlled by 

negative feedback through the H3R. 

 

Central histamine is an important neuromodulatory neurotransmitter that plays 

an important role in the regulation of several (patho)physiological processes 

such as arousal, activation of the sympathetic nervous system, stress related 

release of hormones from the pituitary and of central aminergic 

neurotransmitters, nociception, addiction, memory, anaesthesia, water 

retention and appetite suppression.  

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib263#bib263
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib306#bib306
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1.2  Histamine receptors 

Four  receptors  to  date  have  been  defined  H1R,  H2R,  H3R  and  H4R;  all  

have  been  defined  at  the pharmacological  and  molecular  levels  (Morse  

et  al.,  2001). Histamine receptors span the membrane seven times and are 

associated with a variety of different internal signalling G proteins. Histamine 

receptors belong to the class A family of rhodopsin-like G protein coupled 

receptors (GPCRs) Fig 1.3 and Fig 1.4. 

 

Schematic showing a typical G Protein Coupled Receptor (GPCR): 

 

Figure 1.3 shows the typical structure of a dimeric GPCR. 
 

 All amine receptors belong to this family of GPCR and share the same 

features: 

1) Conserved aspartate residues at position 80 in transmembrane region 1 

(TM1) and position 114 TM3  
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2) DRY (DRF for the H3R) or ERW motif at the interface of the TM3 and 

intercellular loop  

3) Disulphide bridge between the first and second cysteine residues (C107 

and C188 on extracellular loops 1 and 2, respectively) 

4) Conserved tryptophan residues at position 174 and 371 in TM4 and TM6, 

respectively 

5) Conserved proline residues at position 210, 373 and 409 in TM5, TM6 and 

TM7, respectively  

6) NPXXY motif in TM7, (NPVLY for the H3R) 

7) Potential palmitoylation site at C428 near the C-terminal tail  

8) Conserved asparagine residue at position 404 in TM7 

9) N-linked glycosylation (N11) 

10) Sites for putative phosphorylation by protein kinases in all three 

intracellular loop at positions:  1st intracellular loop – Serine 63 or serine 64, 

2nd intracellular loop – serine 141 and threonine 149, 3rd intracellular loop – 

Serines 310, 319, 341, 343 or threonines 314 and 345 (Leurs et al., 2000). 

This subset of GPCRs includes receptors that are activated by small ligands, 

such as biogenic amines; larger peptide ligands and glycoprotein hormones. 
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Crystal structure of a class A GPCR - human adenosine A2A receptor: 

 

 

 

 

 

 

 

 

(Michino et al., 2009 

 
Figure 1.4 Crystal structure of a class A GPCR - human adenosine A2A receptor. 
Superposition of all 206 submitted models to the crystal structure of the human adenosine A2A 
receptor (PDB ID: 3EML without the T4-lysozyme). Protein Cα atom superposition between 
model and crystal structure was performed using the align command in PyMOL. The receptor 
is shown as two orthogonal views of Cα traces (A, B) with tube thickness being proportional to 
the RMSD about each Cα position clearly showing how well the TM regions were modelled 
and how much uncertainty are in the loop regions. (C) A superposition of stick diagrams of the 
ligand (ZM241385) from 169 models, a CPK model is used to delineate the observed position 
in the crystal structure. The C-terminus (residue numbers >306) is removed from all models. 

 

1.2.1  Histamine H1R and H2R   

Central histamine H1R‟s are the main site responsible for the sedative effects 

of classical anti-histamines. The H1R was first cloned in 1991 by Yamishita et 

al., (1991). The human H1R has been mapped to chromosome 3p25 (Le 

 

 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib214#bib214
http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=An external file that holds a picture, illustration, etc.Object name is nihms129059f3.jpg [Object name is nihms129059f3.jpg]&p=PMC3&id=2728591_nihms129059f3.jpg
http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=An external file that holds a picture, illustration, etc.Object name is nihms129059f3.jpg [Object name is nihms129059f3.jpg]&p=PMC3&id=2728591_nihms129059f3.jpg
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Coniat et al., 1994) and it has shown to be expressed in the brain, on immune 

cells, endothelial cells, smooth muscle cells, endothelial cells, as well as in the 

gastrointestinal tract, genitourinary system, adrenal medulla and the heart (Hill 

et al., 1990). [3H] mepyramine, a H1R antagonist, was used in 

autoradiography studies to determine H1R expression in the human brain. 

High levels were shown to be present in the thalamus, cortex, mesopontine 

tegmentum, basal forebrain, locus coeruleus and raphe nuclei, primary areas 

involved in arousal. High H1R levels are also present in many nuclei of the 

hypothalamus, septal nuclei, medial amygdala and hippocampal subfields, all 

parts of the limbic region. High densities are also present in the nucleus 

accumbens, molecular layer of the cerebellum, nuclei of the cranial nerves, 

area postrema and nucleus tractus solitarius, while relatively low densities are 

present in the cerebellum and basal ganglia (Martinez-Mir et al., 1990, 

Villemange et al., 1991 and Yanai et al., 1992). H1Rs in the brain play an 

important role in eating, drinking, thermoregulation and memory (Brown et al., 

2001, Knoche et al., 2003 and Dia et al., 2007). Binding of histamine to the 

H1R results in modulation of the Gαq/11 family of GPCRs, resulting in  

activation of phospholipase C-β (PLC), phospholipase A2 (PLA2) and 

phospholipase D (PLD) (Leurs et al., 1994). Activation of PLC hydrolyses 

phosphatidylinositol-4, 5-bisphosphate (PIP2) into diacylglycerol (DAG) and 

inositol-1,4,5-trisphosphate (IP3). DAG activates protein kinase C (PKC), 

whilst IP3 binds to the IP3 receptor on the endoplasmic reticulum, resulting in 

the release of stored calcium into the cytoplasm. Activation of PLA2 elicits the 

formation of arachidonic acid (Leurs et al., 1994) and cyclic guanosine 3′, 5′ 

monophosphate (cGMP) (Richelson, 1978). cGMP formation is thought to be 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib217#bib217
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib328#bib328
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the result of increased intracellular calcium leading to the activation of nitric 

oxide and hence the stimulation of guanylate cyclase. Activation of H1Rs in 

the brain results in excitation of neurons or potentiation of excitatory inputs. 

Activation of the H1R in the periphery activates a series of biochemical 

pathways, bringing about physiological changes including smooth muscle 

contraction, stimulation of nitric oxide formation, endothelial cell contraction 

and an increase in vascular permeability. These physiological changes have a 

close relationship with allergic conditions, and therefore therapeutic agents 

have been developed to block the activation of peripheral H1Rs to reduce 

allergic reactions. The H1R also plays an important role in wakefulness as 

previously discussed (Hill et al., 1997). 

 

Histamine research focused solely on the role of histamine in allergic diseases 

up until the 1970‟s when potent anti-histamines which had been developed 

were useful in inhibiting certain symptoms of allergic conditions but did not 

antagonise all histamine induced effects particularly in the stomach, uterus 

and heart. This led to the hypothesis that there were two different types of 

histamine receptor subtypes (Ash et al., 1966). This hypothesis was accepted 

when Sir James Black succeeded in the synthesis of a series of new 

compounds (e.g. burimamide, cimetidine), which were capable of blocking the 

effects of histamine on the stomach and the heart. These H2R antagonists 

were fundamental in the development of the first therapy for gastric ulcers. 

The H2R was first cloned in 1991 and shares 28% homology with the H1R 

(Gantz et al., 1991). The human H2R has been mapped to chromosome 

5q35.2 and has been shown to be expressed in gastric cells, cardiac tissues 
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and smooth muscle cells (Black et al., 1972). H2Rs have also been identified 

on immune cells where it negatively controls histamine release, as well as on 

B cells where it affects antibody synthesis and on T cells where it is involved 

in T cell proliferation (Hill et al., 1990). [125I]- iodoaminopotentidine, a H2R 

antagonist, was used in autoradiography studies to determine H2R expression 

in the human brain. High levels were observed in the basal ganglia, 

hippocampal formation and amygdala, while low levels were present in septal 

areas, hypothalamic and thalamic nuclei. Layers I-III of the cerebral cortex 

displayed the densest H2R labelling, located on the dendrites of pyramidal 

cells. H2R expression has been shown to be present on the dendrites of 

principal cells in the hippocampal formation, including the dentate gyrus, as 

well as on purkinje and granule cells in the cerebellar cortex. H1 and H2 

receptors have also been shown to be co-localised in several areas of the 

brain including pyramidal and granule cells in the hippocampal formation and 

on other aminergic cell groups (locus coeruleus, raphe nuclei, substantia 

nigra, ventral tegmental area) where the receptors can act synergistically. 

 

 Activation of the H2R stimulates Gαs, resulting in the production of cyclic 

adenosine 3′, 5′ monophosphate (cAMP) through the activation of adenylyl 

cyclase (Baudry, 1975). cAMP targets protein kinase A (PKA), which then is 

capable of phosphorylating target proteins in the cytosol, cell membrane or 

translocate to the nucleus where it activates cAMP responsive element 

binding protein (CREB). Activation of H2Rs in the brain results in excitation of 

neurons or potentiation of excitatory inputs. Activation of H2Rs in the periphery 
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results in gastric acid secretion in the stomach (Hill et al., 1997 and Oda et al., 

2000). 

The development of highly specific antagonists which target the H1R and H2R 

has resulted in drugs which have attained „block-buster‟ status. 

 

1.2.2 Histamine H3R 

The histamine H3R was first described in 1983 as a novel auto-receptor 

regulating the synthesis and release of histamine (Arrang et al., 1983). It was 

not until 1999 that the receptor was cloned (Lovenberg et al., 1999), mainly 

because of its low overall homology with the H1R and the H2R. The H3R 

pharmacology is also distinct from either H1R or the H2R. The H3R is primarily 

expressed in the CNS were it acts as both an auto- and hetero-receptor 

controlling the release of histamine itself and other neurotransmitters, 

respectively. The H3R has led to vast interest from many pharmaceutical 

companies because of its capability to increase the level of neurotransmitters 

involved in learning and memory, in particular acetylcholine in the nucleus 

basilis magnocellularis (NBM) and pre-frontal cortex.  

 

1.2.2.1 Anatomical distribution  

The H3R has been detected in human, rat and non-primate brain as well as in 

the spinal cord of humans and on peripheral ganglia. Detection has been 

based upon ligand autoradiography, in situ hybridisation and immunological 

techniques with H3R specific antibodies.  

Specific [3H] RαMH autoradiography binding studies have shown the 

presence of the H3R in the rat brain (Pollard et al., 1993). A recent study using 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib12#bib12
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib235#bib235
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib310#bib310
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a novel highly specific H3R antagonist [3H] GSK189254 have also confirmed 

the presence and expression pattern of the H3R in the CNS (Medhurst et al., 

2007). H3R Binding sites were present in the nucleus accumbens, cerebral 

cortex, corpus striatum, Islands of Calleja, olfactory tubercle, hippocampus, 

hypothalamus, and substantia nigra, and layers IV – VI in the cerebral cortex. 

[3H] GSK189254 has also been used to map H3R binding sites at the level of 

the human spinal cord; intense binding was detected in the dorsal horn at 

both the cervical and lumbar levels as well as on dorsal root ganglia 

(Medhurst et al., 2007). 

Immunological identification of the H3R in the mouse brain was first achieved 

by our group in 2001, and on the whole is very similar to the ligand 

autoradiography data described above (Chazot et al., 2001). The distribution 

of H3R differs to both the H1R and H2R, however there are some areas where 

a combination of the receptors are co-expressed. Both H3R and H1R are 

expressed at high levels in the deep layers of the cortex (Pollard et al., 1992), 

unlike H2R which are highly expressed in the superficial layers (Martinez-Mir 

et al., 1990). In the basal ganglia H3R distribution parallels that of the H2R 

(Pollard et al., 1992), whereas H1R expression is low. H3R and H1R are both 

expressed in the nucleus accumbens where they have been shown to be 

involved in locomotor hyper- and hypoactivity, respectively in rats (Bristow et 

al., 1988).  

 

H3R mRNA and protein expression studies in rodents have shown that the 

H3R is not limited to the CNS; it is also found by our group in the skin, dorsal 

root ganglia, sensory neurons (Cannon et al., 2007), stomach, intestine 
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(Grandi et al., 2008) and others on brown adipose tissue (Karlstedt et al., 

2003). 

 

1.2.2.2 Auto- and hetero-receptors: matching anatomy and functional 

data 

Initially the synthesis and release of histamine was thought to be under tonic 

inhibitory control from the release of local histamine acting on H3 auto-

receptors located on the somata and axon terminals of histamine neurons 

(Arrang et al., 1983). It was subsequently discovered that the H3R also acted 

as a hetero-receptor by controlling the release of other neurotransmitters such 

as glutamate, GABA, noradrenalin, dopamine, acetylcholine, serotonin and 

neuropeptides (reviewed by Brown et al., 2001). The H3R controls the release 

of neurotransmitters by inhibiting the calcium current which reduces the size 

and frequency of the spontaneous calcium-dependent pre-potentials leading 

to the depression of the firing rate and hence neurotransmitter release 

(Takeshita et al., 1998). To help maintain specificity of action, histamine 

release in target regions is under the control of inhibitory M1 muscarinic, α2-

adrenoreceptors, 5-HT1A, opioid κ-receptors, galanin receptors as well as 

facilitatory μ-opioid receptors (reviewed by Brown et al., 2001 and Haas et al., 

2008). Histamine levels are very low in the brain (0.1-0.2 nmols/g) due to tight 

regulation via the histaminergic system working closely with other neuronal 

transmitter systems.   

 

The differential responses to GABAA or H3R antagonists, suggests the 

existence of distinct subpopulations among histaminergic neurons (Giannoni 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib12#bib12
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib377#bib377
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et al., 2009). By using a dual probe microdialysis, one electrode placed in the 

TMN and the other placed at varying histaminergic projections sites, the effect 

of either GABAAR or H3R antagonists could be analysed. Both GABA and 

histamine tonically modulates histaminergic neuronal activity. The differential 

histamine response generated from the distinct projections projecting from the 

TMN following administration of two different antagonists suggested the 

presence of functionally distinct histamine neuronal populations. The TMN in 

the rat has been shown to be heterogenous through the use of our antibodies 

reactive to either H3R or GABA, some are GABA positive (anti-GAD67 

antibody) neurons expressing the H3R, while others are H3R positive and 

GABA negative, or GABA positive and H3R negative. (Giannoni et al., 2007). 

Combinations of both physiological and pharmacological tools have also 

demonstrated heterogeneity among histaminergic neuron populations, 

showing distinct control of dopamine release in the substantia nigra and pre 

frontal cortex; both regions differ in their dopaminergic innervation (Garduno-

Torres et al., 2006). In superfused rat substantia nigra slices depolarisation-

evoked [3H]-dopamine release was diminished by a H3R agonist immepip. 

However, immepip was unable to affect [3H]-dopamine release in the pre-

frontal cortex synaptosomes. This same group showed the presence of H3R 

coupled to Gαi/o proteins on thalamic nerve terminals, activation of these H3Rs 

modulated glutamatergic, but not GABAergic transmission.  

 

1.2.2.3 H3R structure and signalling 

The histamine H3R was first described in 1983 (Arrang et al., 1983), however 

it was not until 1999 that the receptor was cloned (Lovenberg et al., 1999). 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib12#bib12
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib235#bib235
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The H3R was not cloned by similarity screening to either of the H1R and H2R 

due to its low overall homology with either of the other two receptors. 

Lovenberg and colleagues used a partial clone (GPCR97) derived from an 

EST database that had been shown to display significant homology to 

biogenic amine receptors and also shared homology with the α2 adrenergic 

receptors. The GPCR97 clone was used to probe a human thalamus cDNA 

library, which resulted in the isolation of a full-length clone encoding the H3R, 

with an open reading frame encoding 445 amino acids. The human H3R was 

subsequently mapped to chromosome 20q13.33 and shown to be highly 

expressed in the human CNS (Tardivel-Lacombe et al., 2001 and Cogé et al., 

2001).   

 

After the cloning of the human H3R, the H3R was cloned in the rat in 2000 

(Lovenberg et al., 2000) followed by guinea pig (Tardival-Lacombe et al., 

2000) and then monkey (Yoa et al., 2003). The H3R is approximately 92% 

conserved between the different species (Hancock et al., 2003).   

 

a) Splice variants generate receptor isoforms 

The H3R gene is rare among typical GPCR due to the fact that it has multiple 

introns. The H3R gene has been shown to consist of four exons and three 

introns (Fig 1.5) (Cogé et al., 2001).  
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Organisation of the human H3R gene and cDNA: 

Figure 1.5 Schematic organisation of the human H3R gene and cDNA. (A) Restriction map of 
the genomic DNA fragment from human chromosome 20 (accession number AL078633). B, 
BamHI ; P, Pst I ; S, Sa cI. (B) Schematic structure of the H3 gene with the location of exons 
(E1-4) shown by boxes and the location of introns (I1-3) shown by horizontal lines. The exons 
are numbered from the 5‟ end of the gene with exon E1 containing the first ATG codon. The 
initiation (ATG) and termination (TGA) codons are indicated. Exon E0 and intron i0 were 
deduced from the H3R cDNA described by Lovenberg et al, 1999, but are not confirmed. (C) 
Structure of the human H3R cDNA. The coding region is shown by boxes and the 5‟- and 3‟-
UTRs are shown by horizontal lines. The putative TMs (1-7) are mentioned in the coding 
region. The translation initiation site (ATG), the termination site (TGA) and the 
polyadenylation signal sequence (AATAAA) are indicated. The forward (F) and reverse (B) 
primers used for RT-PCR analysis are shown under the cDNA structure. 
 

The result of the diverse exon/intron junctions results in alternative splice sites 

with the potential to generate a large number of distinct receptor isoforms (Fig 

1.6).  
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Figure 1.6: Generation of the major histamine H3R splice isoforms: 

 

 
Figure1.6 Reported human histamine H3R isoforms. Isoforms 1 (H3R 445) is similar to that 
previously reported by Lovenberg et al., 1999, whereas isoform 2 (H3R 365) has an 80 amino 
acid deletion in the third intracellular loop. Isoform 4 (H3R 373) has the same deletion as 
isoform 2 combined with an 8 amino acid longer C terminal. Isoform 3 (H3R 301) contains a 
144 amino acid deletion, which includes the same deletion as isoform 2 but also eliminates 
transmembrane domain (TM) 6 and TM7. This deletion is also found in combination with the 
additional eight amino acids at the C terminus, producing isoform 6 (H3R 309). Isoform 5 (H3R 

200) is generated as a 409 nucleotide deletion and a frame shift, resulting in a protein with a 
deleted TM4 and TM5, and a new 30 amino acid C terminal.  
 

The existence of multiple human H3R isoform mRNAs has opened up 

possibilities to account for the pharmacological heterogeneity reported for 

many years for the H3R, within and across species. The reasons for this 

heterogeneity are complex and not fully understood. In all species tested so 

far, the full length H3R encodes a polypeptide of 445 amino acids. 

Approximately 20 shorter human isoforms have been identified to date with 

Reproduced with kind permission of Rob Leurs Vrije Universiteit, The Netherlands 
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deletions in the N terminus, second TM domain and first extracellular loop, 

intracellular loops or at the C terminus. The majority of isoform receptors are 

produced through deletions predominately in the third intracellular loop 

domain (usually beginning at amino acid residues 274 or 275) resulting in loss 

of TM 5/6 and/or 7. Isoforms that have deletions in their third intracellular loop 

have attracted a lot of interest because of the coupling of the third intracellular 

loop with different G proteins (Drutel et al., 2001). These isoforms show 

variation in their pharmacological profile (Hancock et al., 2003) such as 

agonist potencies (Wellendorf et al., 2002), signalling properties (Drutel et al., 

2001) and constitutive activity (Morisset et al., 2001 and Leurs et al., 2008).  

H3R isoforms have also been identified in the rat (Drutel et al., 2001 and 

Morisset et al., 2001), mouse (Rouleau et al., 2004) and guinea pig (Tardival-

Lacombe et al., 2000). The number of H3R isoforms possible is high due to 

simultaneous occurrence of multiple splicing events in the same H3R mRNA. 

The mechanisms regulating alternative splicing of the H3R gene remains to be 

investigated.  

Reverse Transcriptase-PCR was used to detect the presence of human H3R 

isoforms in the CNS (Cogé et al., 2001). The data generated highlighted 

regional variation in the distribution of the different isoform mRNAs, however 

expression patterns of the isoform proteins have not been investigated and 

will investigated in this project. The hH3R445, hH3R365 and hH3R329 isoforms will 

be the focus of the thesis, as their respective mRNAs have been shown to be 

highly expressed in regions involved in motor, anxiety behaviours and learning 

and memory. Moreover these isoforms have also been shown to display a 

high degree of overlap in these brain areas (Cogé et al., 2001) indicating the 
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possibility of H3R isoform hetero-oligomers. Regional variation has given rise 

to speculation that H3R heterogeneity could underlie different functions of the 

H3R in specific brain regions. Furthermore, there is growing evidence that 

homo- and hetero-oligomerisation of H3 isoforms may occur and yield a novel 

regulatory mechanism (Shenton et al., 2004 and Bakker et al., 2006). 

Oligomerisation occurs in most GPCRs however, it is not clear whether this 

occurs in vivo and what the functional significance of this might be.   

 

Not all of the isoforms are likely to be expressed at the cell surface; rat 

isoforms D, E and F have been shown to act as dominant negatives in vitro to 

either directly or indirectly control surface expression of the rat isoforms A, B 

and C (Bakker et al., 2006). Furthermore, receptors with deletions in regions 

thought to be important in ligand binding, and/ or signal transduction may not 

be functional. Previously, Cogé et al., (2001) has shown two of the H3R 

isoforms varied from the full length in terms of binding and signal transduction. 

The pharmacological properties of the hH3R431 and the hH3R365 were 

compared to the full length hH3R445. The hH3R431 was unable to bind [125I]-

iodoproxyfan, a H3R antagonist, due to the deletion in the second TM domain 

while the hH3R365 displayed the same pharmacological profile as the full 

length, however the hH3R365 was unable to transduce a signal in the 

recombinant cell lines. Recently Leurs et al., (2008) reported differential 

expression of the hH3R365 and the hH3R445, with the hH3R365 displaying higher 

expression levels than the hH3R445 in many brain structures. The hH3R365 also 

displayed higher affinity and potency for H3R agonists and conversely a lower 

potency and affinity for H3R inverse agonists. The hH3R365 also displayed 
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higher constitutive signalling compared to the hH3R445 in both [35S] GTPγS 

binding and cAMP assays. Lower expression patterns were observed for the 

hH3R415, hH3R413 and hH3R329 which were also capable of binding H3R ligands 

and exhibited subtle difference in coupling to signalling mechanisms. H3R 

isoforms activate different G proteins resulting in differential signalling, 

function and potency. Due to differential G protein coupling, H3R ligands may 

behave variably at the individual isoforms in vivo. These differences observed 

in the H3R pharmacology and signalling of the H3R isoforms are likely to be 

important for obtaining a detailed understanding of the physiological and 

potential therapeutic roles of the H3Rs. Part of this thesis will involve 

determining the pharmacological profile of an array of H3R ligands at three of 

the major human H3R isoforms.  

 

b) Genetic Polymorphism 

Genetic polymorphisms have also been identified within the human H3R gene 

which contributes to the wide diversity of the H3R pharmacology. Independent 

publications and GenBank submissions of the human H3R sequences have 

identified either a glutamic acid (Accession nos. XM009561, AB019000 and 

AB045369) or aspartic acid (AF363791) at position 19 (Hancock et al., 2003). 

A polymorphism was identified at position 280, an alanine to valine 

substitution. The polymorphism was discovered in a patient suffering with 

Shy-Drager syndrome which is also known as neurological orthostatic 

hypotension, a disease characterised by neuronal degeneration and 

autonomic failure. Abbott Laboratories confirmed this finding as well as a 

polymorphism at position 197, a tyrosine to a cysteine substitution (Hancock 
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et al., 2003). Several single amino acid polymorphisms have also been 

identified in the third intracellular loop in the rat H3R (Cogé et al., 2001).  

 

c) Signalling pathways 

Before the cloning of the H3R it was already shown to be coupled to the 

inhibitory class of GPCR‟s, Gαi/o. This discovery was shown by pertussis-toxin 

(PTX) sensitivity of the H3R agonist-dependant [35S]GTPγS binding in the rat 

brain (Clark et al., 1996). This was later confirmed once the H3R had been 

cloned, by the transfection of the H3R in various recombinant cell lines 

(Lovenberg et al., 1999). Our laboratory provided the first evidence for the 

interaction of native the H3R in rat striatum with the Gαi/3 protein (Victoria 

Hann PhD Thesis 2003). Activation of the H3R in recombinant cells results in 

the activation of the pertussis-toxin sensitive Gαi/  olf family of G proteins (Clark 

et al., 1996), resulting in the inhibition of adenylyl cyclase. Decreased adenylyl 

cyclase activation lowers the level of cAMP which in turn inhibits activation of 

downstream events such as the activation PKA and hence CREB dependant 

gene transcription. Activation of H3R also leads to activation of other effector 

molecules such as mitogen activated protein kinase (MAPK), phospholipase 

A2 (PLA2) and phosphatidylinositol-3-kinase (PI3K). Activation of PLA2 results 

in the release of arachidonic acid, inhibition of Na+/K+ anti-porter and K+ 

induced reduction of intracellular Ca2+ and hence reduced neurotransmitter 

release. Activation of MAPK and PI3K results in phosphorylation of 

extracellular signal-regulated kinases (ERKs) and protein kinase B (PKB). The 

MAPK pathway is thought to be important in memory consolidation and 

neuronal plasticity (reviewed by Leurs et al., 2005). The activation of 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib57#bib57
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib57#bib57
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PKB/GSK3β pathway is important in neuronal development and function, 

regulating synaptic strength and memory consolidation and retrieval. 

Furthermore, deregulation of GSK3β is linked to disease such as diabetes, 

insulin resistance and Alzhiemer‟s Disease. Activation of some of the rat 

isoforms that have deletions in the third intracellular loop vary in their 

effectiveness in activating cAMP responsive element independent 

transcription or MAPK activation (Drutel et al., 2001). 

 

d) Effector mechanisms 

The H3R has been shown to be coupled with voltage activated calcium Ca2+ 

channels. Activation of the H3R controls the release of neurotransmitters by 

inhibiting the calcium current crucial for neurotransmitter release. Reduction of 

the current reduces the size and frequency of the spontaneous calcium-

dependent pre-potentials to depress the firing rate and hence neurotransmitter 

release. H3R activation was shown to suppress N- and P- type calcium 

channels in a pertussis toxin-sensitive G protein-sensitive manner (Takeshita 

et al., 1998). H3R agonists have also been shown to reduce noradrenalin (Levi 

et al., 2000) during myocardial ischemia via reducing intracellular Ca2+ (Silver 

et al., 2001). 

 

e) Constitutive activity 

H3Rs can be activated in an agonist-independent manner as well as in the 

presence of an agonist, indicating the receptor has constitutive activity 

(Morisset et al., 2000). Typically GPCRs do not show constitutive activity 

because they lack the 8 amino acid sequence at the C terminal of the third 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib377#bib377
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib377#bib377
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intracellular loop that confers constitutive activity. A mutation in the β 

adrenergic receptor in the last 8 amino acids at the C terminal domain of the 

third intracellular loop conferred constitutive activity. The H3R also has the 

same sequence as the mutated the β adrenergic receptor resulting in the 

receptor having constitutive activity. The H3Rs has been shown both in vitro 

and in native tissue to have high constitutive activity (Morisset et al., 2000).  

This may have significant effects on how the receptor is regulated in vivo, 

although this still remains controversial. Antagonists that reduce the receptors 

tonic activity are known as inverse agonists, whilst a neutral antagonist will 

simply return the receptor activity back down to its normal tonic activity.  

   

1.2.2.4 Histamine H3R pharmacology 

a) Agonists 

All histamine agonists show a similar structure to the endogenous agonist 

histamine (Fig 1.7), which binds to the H3R with high affinity. 

H3R agonists: 

 

(Leurs et al, 2005) 
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Fig. 1.7 shows a variety of imidazole-containing histamine H3R agonists all displaying varying 
degrees of affinity and potency at the H3R. * Compound 7b is not an agonist but a neutral 
antagonist.  

 

H3R agonists contain a 4(5)-substituted imidazole moiety which is essential for 

H3R activity. Additional attachments to the 4(5)-substituted imidazole moiety 

eliminate H3R activity (Leurs et al., 2005). Potency and selectivity of H3R 

agonist can be increased by small structural modifications to the imidazole 

side chain. Compound 2 – N-α-methylhistamine is three times more potent 

than histamine and is formed from methylation of the basic amine group. 

Methylation of the imidazole side groups results in compound 3 – RαMHA. 

RαMHA is considered to be the standard H3R agonist and has been 

extensively used in pharmacological studies, however it is not used in vivo 

because it is hydrophilic, extensively metabolized and has low oral 

bioavailability (Leurs et al., 2005). These problems were overcome by the use 

of pharmacologically inactive pro-drug compounds that are converted to an 

active form of the drug by endogenous enzymes or metabolism. Pro-drugs 

overcome problems associated with stability, toxicity, lack of specificity or 

limited oral bioavailability. Novel azomethane pro-drugs of RαMHA include BP 

2-94, compound 4. Replacement of the amine group with an isothiourea 

moiety results in compound 5 – imetit (Lovenberg et al., 1999 and van der 

Goot et al., 2000). SCH50971, compound 6 and immepip, compound 7 are 

formed by incorporation of a flexible side chain of RαMHA into a pyrrolidine 

ring or piperidine ring, respectively. The reduced flexibility of the side chain 

increases the H3R affinity (Leurs et al., 2005).  

RαMH and imetit have limited use in vivo because of selectivity issues with 

the cardiovascular system, mediated through the α2 receptors or 5-HT3 
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receptors. Note, RαMH and immepip show limited selectivity for the H3R over 

the recently discovered H4R. Modification of immepip by reducing the basicity 

of the pyridine ring results in immethridine, a slightly less active compound, 

but with a 300-fold selectivity for the H3R versus the H4R (Kitbunnadaj et al., 

2004). N-methylation of the piperidine ring on immepip produces compound 9 

– methimepip. Methimepip shows high affinity for the H3R as well as 2000-fold 

selectivity for the H3R over the H4R and is capable of penetrating the blood 

brain barrier (Kitbunnadaj et al., 2004 and Leurs et al., 2005). Impentamine, 

compound 10 has antagonist properties in the guinea pig jejunum, whereas in 

recombinant human H3Rs it displays agonistic properties (reviewed Leurs et 

al., 2005).  

 

b) Antagonist 

There are two major classifications of H3R antagonists imidazole-containing or 

non-imidazole containing antagonists (Fig 1.8). 

H3R antagonists: 
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(Leurs et al, 2005) 
Fig. 1.8 shows a variety of imidazole-containing histamine H3R antagonists all displaying 
varying degrees of affinity and potency at the H3R. 
 

i) Imidazole-containing antagonists 

First generation imidazole-based H3R antagonists, such as thioperamide, 

clobenpropit, and ciproxifan, were discovered several years ago before the 

molecular characterization of the H3R. Thioperamide, compound 13 was the 

first H3R antagonist to be developed that lacked both H1R and H2R activity 

(Arrang et al., 1987). After the discovery of constitutive activity of the H3R all 

antagonists that reduced the tonic activity of the receptor were re- classified 

as inverse agonists. Thioperamide has been used as the gold standard for 

over two decades. However, it displays higher affinity for the rat H3R than the 

human H3R (Lovenberg et al., 2000), it also has high affinity for the H4R, rat 5-

HT3 receptor, α2A receptor and the human α2C receptor (Esbenshade et al., 

2003).  

Potent H3R antagonists can be produced by increasing the distance between 

the basic moieties of agonists and/or the attachment of larger lipophilic 

moieties in the side chain, such as clobenpropit an imetit analogue 

(compound 14), (van der Goot et al., 2000). Proxyfan, compound 15 

(Morrisset et al., 2000) is known as a protean agonist because it shows an 

array of pharmacological profiles dependant on the signalling assay used, 

however it is generally classed as a neutral antagonist at the H3R (Gbahou et 

al., 2006). Proxyfan is produced by removing the basic moieties in the 

imidazole side chain. Relatively small structural changes to proxyfan can 

change its mode of action e.g. ciproxifan, compound 16 is a potent inverse 

agonist (Hancock et al., 2003 & 2006). Ciproxifan has limited in vivo use 
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because of its moderate affinity to the human H3R, rat 5-HT3 receptor, α2A 

receptor and the human α2C receptor (Esbenshade et al., 2003).  

However, these compounds proved to be undevelopable as therapeutic 

agents for humans due to a number of liabilities, including cytochrome P450 

inhibition, low affinity for human compared with rat H3 R, lack of selectivity 

and/or suboptimal brain penetration (LaBella et al., 1992 and Yang et al., 

2002), leading to the development of non-imidazole containing compounds 

(reviewed by Leurs et al., 2005). 

 

ii) Non-imidazole containing antagonist 

Non-imidazole containing antagonists show the most promise as future drugs 

for the treatment of cognitive impairment, attention deficit hyperactivity 

disorder (ADHD), schizophrenia, narcolepsy, seizure and obesity. To date the 

following compounds are in clinical trials: BP2.649, GSK-189254, JNJ-

17216498 with others in line, GSK-239512, CEP-16095, CEP-26401 and 

SAR-110894. Further properties have been engineered into the compounds 

depending on their therapeutic potential use, acetylcholine esterase 

(Petrianou et al, 2006), serotonin re-uptake (Keith et al, 2007) or on their use 

as pharmacological tools (fluorescent, radioactivity), maintaining or increasing 

their H3R affinity.  

 

1.2.2.5 Pharmacological heterogeneity 

Pharmacological heterogeneity of H3Rs both within and between species has 

long been recognised and has in part resulted in the delay of H3R ligands 

entering the clinic. Cloning of the H3R has led to better understanding of the 
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structure of the H3R and the occurrence of alternative splicing. Receptor 

polymorphism, receptor isoforms and differential distribution profiles are likely 

to underlie some of this diversity (Coge et al., 2001, Drutel et al., 2001, 

Wellendorf et al., 2002, Hancock et al., 2003 and Rouleau et al., 2004).  

 

a) Inter-species and intra-species isoform heterogeneity 

Radioligand binding along with functional assays have shown the different 

pharmacological profiles of various H3R ligands across the species. 

Numerous H3R ligands display variable affinities across the species (Leurs et 

al., 2005 and Medhurst et al., 2007). Isoforms of the H3R have also been 

shown to vary in their affinities for different H3R ligands. The hH3R365 has been 

shown to display higher affinity and potency for H3R agonists and conversely 

a lower potency and affinity for H3R inverse agonists when compared with the 

hH3R445 isoform. The hH3R365 also displayed higher constitutive signalling 

compared to the hH3R445 in both [35S] GTPγS binding and cAMP assays 

(Leurs et al., 2008). 

 

b) Evidence for key amino acid residues being responsible for inter-

species difference 

Comparison of H3Rs between species; human, canine, rat and guinea pig 

identified key amino acids involved in the distinct inter-species heterogeneity. 

For example, A-304121 was shown to display varying affinities at rat 30-fold > 

guinea pig 300 fold > human (Hancock et al., 2003). Two key amino acids 

were found to explain the variation seen; mutation of the rat full length 

receptor at a single site V122A or at two sites V122A and A119T, resulted in 
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H3R ligands displaying a pharmacological profile which matched that of the 

human H3R. The single mutation resulted in ciproxifan, a H3R inverse agonist/ 

antagonist displaying a 5-fold lower affinity at the rat H3R whilst the double 

mutation resulted in an 18-fold lower affinity resulting in the rat H3R displaying 

an identical pharmacological profile to the human H3R (Ligneau et al., 2000). 

Amino acids at position 119 and 122 in TM3 have been shown to be critical for 

determining the affinity for a number of non-imidazole antagonists.         

 

c) Heterogeneity within species 

Pharmacological data since the 1990s has pointed to H3R heterogeneity and 

the possibility of receptor subtypes. To date there has been 20 different 

putative human H3R isoforms described, some of which have been shown to 

be pharmacologically functional whilst others are non-functional (Coge et al., 

2001 and Wellendorf et al., 2002). In rat cortical membranes it has been 

shown that there are different classes of H3R binding site, having either a slow 

or fast off rate in the presence of [3H]-RαMHA (West et al., 1990). 

Thioperamide and burimamide were then used to show that the rat H3R has 

two types of receptor a high affinity (H3RA) and a low affinity (H3RB).  

 

d) Evidence for different splice variants exhibiting distinct 

pharmacologies 

The existence of splice variants of the H3R opens up the possibility that the 

heterogeneity seen within species may be the result of H3R ligands displaying 

variable affinities at the splice isoforms. Thioperamide, a H3R antagonist has 

been shown by one group to display a higher affinity at the full length receptor 
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when compared with H3R365 isoform (Wellendorf et al., 2002). However, other 

studies failed to show any variation in affinity at the two isoforms with 

ciproxifan, thioperamide or clobenpropit (Coge et al., 2001 and Hancock et al., 

2003). On the other hand, thioperamide was shown to be more potent at 

shorter isoforms of the rat H3R (Morisset et al., 2001), also seen with 

clobenpropit and ciproxifan (Drutel et al., 2001). Part of this present project is 

designed to determine the pharmacological profile of a number of H3R ligands 

at three of the major human histamine H3R isoforms, H3R445, H3R365 and 

H3R329.   

 

Co-expression of isoforms may also account for some of the pharmacological 

heterogeneity seen with H3R ligands. Co-expression of the full length rat H3RA 

with the shorter rat H3RD isoform has been shown to reduce the expression of 

the full length receptor in a dominant negative manner. Part of this present 

project is designed to determine whether co-expression of three of the human 

isoforms has any effect the pharmacological profile of a number of H3R 

ligands.  

 

1.2.2.6 In vivo role of histamine H3R 

Histamine and the histaminergic system both play a vital role in nervous 

system regulation and behaviour. The role of histamine in arousal, attention 

and homeostatic mechanisms has been well documented (reviewed by Brown 

et al, 2001). Selective H3R antagonists have been shown to improve 

performance in a diverse range of rodent cognition paradigms, including 

object recognition, olfactory recognition, water maze, radial maze, and 



 

57 

 

passive avoidance, with most pronounced effects being observed in models 

where a cognitive deficit is present such as in aged animals or following a 

pharmacological challenge, eg. scopolamine (Hancock et al., 2004 and Witkin 

et al., 2004). H3R antagonists can also clearly increase wakefulness in 

preclinical and clinical models, consistent with the pivotal role of histamine in 

the sleep-wake cycle (Schwartz et al., 2010 & 2011). These studies have 

generated considerable interest in the development of H3R antagonists as 

novel treatments for cognitive deficits in conditions such as Alzheimer‟s 

disease, other dementias, mild cognitive impairment, and schizophrenia as 

well as for disorders of sleep and attention such as narcolepsy and ADHD 

(Medhurst et al., 2007 & 2009 and reviewed in Chazot, 2010). 

 

a) Arousal 

The first evidence that the histaminergic system is involved in arousal came 

from one of the side effects associated with 1st generation anti-histamines, 

namely sedation. This was later confirmed using several techniques. Lesion 

studies in the TMN and the posterior hypothalamus lead to hypersomnia (Lin 

et al., 2008). Electrophysiology studies have shown neuronal firing to vary 

across the sleep/wake cycle as well as the correlation between histamine 

release in the pre-frontal cortex and waking (Sakai et al., 1990). Histamine 

release follows a circadian rhythm, with mice that lack brain histamine unable 

to stay awake during high vigilance (Parmentier et al., 2002). The H3R 

antagonist, thioperamide, has been shown to increase brain histamine levels 

and wakefulness, while RαMHA, a H3R agonist, enhanced deep slow wave 

sleep. Also, H3R -/- mice have been shown to be insensitive to the wake 
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promoting effects of H3R antagonists (Toyota et al., 2002). GSK189254 and 

pitolisant, potent H3R antagonists are currently in phase II clinical trials for 

narcolepsy (reviewed in Chazot 2010, Lin et al., 2000).  

 

c) Homeostasis 

Histamine has been shown via pharmacological studies in intact animals to 

play a role in various homeostatic mechanisms involving the hypothalamus 

and including fluid balance, eating, thermoregulation and cardiovascular 

regulation (Hough et al., 1988 and Schwartz et al., 1991).  

 

i) Fluid balance 

Injecting histamine into the cerebral ventricles or into several hypothalamic 

sites elicits drinking, as well as an increase in the release of vasopressin 

which decreases urine output mediated by both H1 and H2 receptors (Brown 

et al., 2001). Dehydration has been shown to increase the synthesis and 

release of histamine in the hypothalamus. Blockade of histamine synthesis 

with α-FMH or activation of pre-synaptic H3Rs or antagonism of post- synaptic 

receptors reduces dehydration induced vasopressin release (Kjaer et al., 

1994).  

 

ii) Food intake 

Intracerebroventricular (ICV) injection of histidine or application of the H3R 

antagonist thioperamide suppresses food intake through the increase in 

histamine acting at the H1R, whereas application of α-FMH or an H1R 

antagonists increases food intake (Brown et al., 2001). H3R -/- mice tend to 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib153#bib153
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib350#bib350
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show a mild obese phenotype with increased body weight, food intake and 

adiposity and decreased energy expenditure (Takahashi et al., 2002). H3R 

antagonists, in obesity induced by a high fat diet in mice, have been shown to 

be effective in reducing food intake and weight in comparison to that of mice 

on a low fat diet (Hancock et al., 2006). However, H3R antagonists do not 

induce an anorexigenic effect in H3R -/- mice. In situ hybridisation studies 

have also revealed H3R mRNA expression in rat brown adipose tissue, 

indicating that H3R antagonists in the periphery may be able to regulate 

thermogenesis (Karistedt et al., 2003).  

 

iii) Cardiovascular control 

ICV injection of histamine increases blood pressure and decreases heart rate 

in conscious animals; similarly inhibiting histamine break down in the 

hypothalamus has similar effects (Brown et al., 2001). H3Rs have been 

identified as inhibitory hetero-receptors in cardiac adrenergic sympathetic 

nerve endings and H3R activation decreases carrier mediated noradrenergic 

release in guinea-pig and human heart. Transfection of H3R in SKNMC 

neuroblastoma cells inhibited the Na+/K+ exchanger which is important in the 

transport of noradrenalin across the cell membrane. H3R activation may have 

a cardioprotective effect by limiting the excessive release of noradrenalin 

during protracted myocardial ischemia (Silver et al., 2001). H3R -/- mice have 

increased noradrenalin release and reperfusion–induced arrhythmias induced 

by ischemia (Koyama et al., 2003). The role of the H3R on adrenergic neurons 

under normal physiological conditions was not explored.  
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d) Cognition, learning and memory 

Arousal and attention play an important part in the cognitive process. Central 

histamine plays a key part in cognition, learning and memory. The 

histaminergic system innervates several structures that are known to be 

involved in cognition such as the basal forebrain, cerebral cortex, anterior 

cingulate cortex, amygdala and thalamus. Histaminergic neurons have an 

excitatory action on cholinergic projections to the hippocampus (Medhurst et 

al., 2007a & 2009). Direct and indirect activation of brain histamine has been 

shown to have pro-cognitive effects. Increasing brain histamine has been 

shown to improve social memory in rats whilst histamine reduction have 

detrimental effects (Prast et al., 1996).  

Histamine interacts with the polyamine site on the NMDA NR2B receptor 

subtype (reviewed in Witkin et al., 2004 and Shenton & Chazot, 2007) as well 

as induced facilitation of long-term potentiation in rat hippocampal slices 

(Selbach et al., 1997), further supporting a role of histamine in cognition.   

 

In neuropsychiatric disorders such as AD, ADHD and schizophrenia, cognitive 

deficits play a major role in the disease (Leurs et al., 2005, Chazot, 2010). 

Decreased levels and/ or function of acetylcholine are thought to be a major 

contributor to age-related cognitive decline. Increased brain histamine is also 

positively correlated with age which may play a role in decreased 

acetylcholine uptake and function (Prell et al., 1991). Therefore, it is thought 

that H3R antagonists may be able to prevent the reduction in acetylcholine 

through its role as a hetero-receptor (Blandina et al., 1996, Orsette et al., 

2002 and Bacciottini et al., 2002).   
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Several H3R agonists and antagonists have been tested in different learning 

paradigms. Generally, H3R antagonists improve memory either by an increase 

in histamine (Miyazaki et al., 1995 and Miyazaki et al., 1997) or by an 

increased release of other neurotransmitters such as acetylcholine, 

noradrenaline and dopamine (Blandina et al., 1996). In contrast, H3R agonists 

were shown to reverse the effects of H3R antagonists. The H3R antagonist, 

thioperamide has been shown to increase acetylcholine in the rat 

hippocampus (Mochizuki et al., 1994), and enhances recall of a passive 

avoidance response in rats and senescence-accelerated rats. H3R 

antagonists also show promise in short term memory novel object recognition 

test (Giovannini et al., 1999) and social recognition tests (Prast et al., 1996), 

while immepip, a H3R agonist produces cognitive deficits in tests of olfactory 

and social memory (Prast et al., 1996). Abbott laboratories reported that A-

317920, a highly potent H3 antagonist, was as effective as methylphenidate 

(Ritalin) and ABT-418 (a nicotinic receptor ligand), both of which are clinically 

effective drugs in AD (Hancock et al., 2006). ABT-239, a H3R antagonist 

entered clinical development after displaying promising results in preclinical 

trials in models of ADHD and AD. ABT-239 also increased acetylcholine in the 

prefrontal cortex and hippocampus (Cowart et al., 2005), improved learning in 

a five trail inhibitory avoidance using rat pups, improved recall in a social 

memory test, and improved spatial working and reference memory in a water 

maze (Fox et al., 2005 and Esbenshade et al., 2005). An ABT-239 congener, 

A-304121, also shows promising pro-cognitive effects in rodent models (Fox 

et al., 2005, Esbenshade et al., 2005 and reviewed by Chazot 2010). 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib261#bib261
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib262#bib262
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib32#bib32
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GSK189254 is derived from a novel benzazepine series of H3R antagonists 

(Medhurst et al., 2007a) that are structurally distinct from other recently 

described non-imidazole H3R antagonists (Fig 1.9). 

 

Structure of GSK189254: 

 

Figure 1.9 Shows the structure of the H3R ligand GSK189254. 
 

GSK189254 shows sub-nanomolar affinity for the human H3R, and a 6-10 fold 

lower affinity for the rat H3R. These pharmacological differences have been 

attributed to two amino acid differences in the third transmembrane domain 

where threonine 119 and alanine 122 of the human H3R are replaced with 

alanine 119 and valine 122 in the rat (Ligneau et al., 2000). GSK189254 has 

been shown to significantly improve performance of rats in diverse cognition 

paradigms, including passive avoidance (1 and 3 mg/kg p.o.), water maze (1 

and 3 mg/kg p.o.), object recognition (0.3 and 1 mg/kg p.o.), and attentional 

set shift (1 mg/kg p.o.) (Medhurst et al., 2007a and reviewed by Chazot  

2010). 

The data so far for H3R antagonists points to a possible therapeutic potential 

for diseases where cognitive deficits occur such as AD, other dementias, and 

schizophrenia. 
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Part of this thesis will determine whether H3R expression is preserved in aging 

and dementia in both human (AD and dementia with Lewy bodies (DLB)) and 

rodent ageing and dementia models (CD-1 and TASTPM), refer to chapter 5 

for details on models. 

  

d) Pain and stress 

A number of studies have examined the role of the central histamine system 

in modulating nociception. Peripheral histamine plays a role in the stimulation 

of nociceptive fibres, while central histamine plays an important role in anti-

nociception (Chazot et al., 2004 and Hough et al., 2011). Administration of 

histamine into the cerebral ventricles or periaqueductal gray, has been shown 

to have an analgesic effect in several paradigms including the tail-flick and 

hot-plate tests (Thoburn et al., 1994). The anti-nociceptive effect of histamine 

varies depending on the site of administration. Increasing brain histamine by 

administration of histidine, as well as using a catabolism inhibitor metoprine or 

a H3R antagonists thioperamide have all displayed an anti-nociceptive action 

(Malmberg et al., 1997). On the hand a reduction in brain histamine by 

administration of either α-FMH or H3R agonists have a pro-nociceptive action 

(Malmberg et al., 1997). The anti-nociceptive effect seen with histamine is the 

result of blocking the enhanced firing of nociceptive neurons located in the 

nucleus lateralis and ventrobasalis of the thalamus following noxious test 

stimuli via a H1R mediated inhibition of afferent pathways (Brown et al., 2001). 

H1 and H2 receptor antagonists applied ICV or into the periaqueductal gray 

have been shown to block histamine-induced anti-nociception, confirming the 

role of the H1R and the H2R in pain perception. H1R -/- and H2R -/- mice show 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib385#bib385
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib237#bib237
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib237#bib237
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fewer nociceptive responses in a wide range of pain models (Brown et al., 

2001).  

The potential involvement of H3R in pain processing has been suggested by 

previous studies using H3R agonists and antagonists in preclinical pain 

models. H3R agonists have been shown to either cause allodynia, or 

attenuate hyperalgesia, depending on the model used (Cannon et al., 2005 

and Medhurst et al., 2007b). Secondly, the H3R antagonist thioperamide can 

produce anti-nociceptive effects in a number of acute pain models (Medhurst 

et al., 2007b), but can also block morphine-induced analgesia (Owen et al., 

1994). One study adopting a chronic constriction injury (CCI) model showed 

that the effects of acute thioperamide administration were opposing, 

depending on whether the compound was administered centrally or 

peripherally (Huang et al., 2007). The interpretation of thioperamide data is 

complicated by the recent discovery of its potent H4R activity (Gbahou et al., 

2006). H3R antagonists were shown to be effective in a capsaicin-induced 

secondary hyperalgesia model (Medhurst et al., 2007b) suggesting an 

involvement of H3R in pain processing, including central sensitisation. The 

chronic oral administration of the H3R antagonists GSK189254 and 

GSK334429 were shown to display anti-nociceptive effects in two models of 

chronic pain, CCI model, and the varicella-zoster virus (VZV)-induced 

allodynia model (Medhurst et al., 2007b) . Furthermore, the H3R has been 

shown to be expressed on the dorsal horn, suggesting a possible site of 

action for these analgesic effects. H3R are also expressed in brain areas 

associated with pain processing such as thalamus and periaqueductal gray 

(Pollard et al., 1993).  Our studies using H3 specific antibodies (validated 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#fig6#fig6
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#fig6#fig6
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using H3 (-/-) mice, have also demonstrated H3 expression not only in rat 

spinal cord, but in the skin (Cannon et al., 2007), on a subset of A-delta fibres. 

Furthermore, H3R antagonists such as GSK189254 and GSK334429 may be 

useful for the treatment of neuropathic pain (Medhurst et al., 2007b).  

 

1.2.2.7 Potential H3R targeted therapies 

Histamine acts as a powerful stimulant of gastric acid secretion, immune 

modulation, bronchoconstriction, vasodilation and neurotransmission. The 

hypothalamic histamine neurons are involved in the basic brain and body 

functions linking both behavioural state and biological rhythms with vegetative 

and endocrine control of body weight and temperature. Histamine maintains 

CNS readiness to react and keeps the organism alert.  

Among the many roles of histamine in homeostatic and higher integrative 

brain functions, novelty-induced attention and arousal are of major importance 

for adaptation to the changing environments by comparing news with the 

remembrance of things past. This is important for brain development, 

physiology and pathophysiology, danger recognition, and survival.  

Current areas of therapeutic interest lie in cognitive deficits (Leurs et al., 2005 

and Hancock et al., 2006), dementias (Medhurst et al., 2007a & 2009), 

psychoses (Akhtar et al., 2006), movement disorders (Gomez-Ramirez et al., 

2006), sleep disorders (Leurs et al., 2005), obesity (Hancock et al., 2006), 

migraine (Millan-Guerrero et al., 2003), cerebral ischemia (Lozada et al., 

2005), cardiac arrhythmias (Levi and Smith, 2000), epilepsy (Chazot and 

Hann, 2001) and neuropathic pain (Medhurst et al., 2007b).  
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Histamine acting on the hypothalamus modulates the release of many 

hormones from the pituitary gland. The hypothalamic-pituitary-adrenal axis 

constitutes a major part of the neuroendocrine system that controls reactions 

to stress and regulates various body processes. The hypothalamic-pituitary-

adrenal axis has similar features among different species. It is the mechanism 

for a set of interactions among glands, hormones and parts of the mid brain 

that mediate a general adaptation response. Histamine plays a key role in 

learning and memory as well as homeostasis during times of stress or threat, 

it seems that histamine and the histaminergic system have a physiological 

role to play in the danger response system. This thesis will address whether 

the H3R has a specific role in anxiety behaviour rather than fear-induced 

avoidance behaviour, using a novel validated all-in-one elevated platform 

behavioural test.   

 

1.3 Histamine H4 receptor 

The human histamine H4 receptor (H4R) was the latest histamine receptor to 

be identified (Oda et al., 2000, Nguyen et al., 2001 and Liu et al., 2001).  As 

with the other histamine receptors, the H4R belongs to the class A rhodopsin-

like GPCRs. The amino acid sequence of the novel hH4R protein was 

compared to known GPCRs, and was shown to have low homology with other 

histamine receptors. The closest resemblance is with the hH3R in which the 

hH4R shares 37.4% amino acid homology (Oda et al., 2000), and 58% 

homology in the transmembrane region (Hofstra et al., 2003). The H3R gene 

structure is similar to that of the H3R. The H4R also undergoes alternative 
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splicing to generate isoforms, to date there are two validated splice variants, 

namely H4R 302 and H4R 67 (Van Rijn et al., 2008).      

Similarly to the H3R, the H4R couples to the Gαi/ olf family of heterotrimeric 

GPCRs, resulting in pertussis toxin sensitive (PTX) decrease in the forskolin- 

induced production of cAMP, which modulates the activity of PKA resulting in 

the inhibition of downstream events such CREB dependant gene transcription 

(Oda et al., 2000, Hofstra et al., 2003 and Liu et al., 2001).    

The hH4R has a distinct tissue distribution and is predominantly expressed on 

haematopoietic cells, especially peripheral eosinophils, mast cells, dendritic 

cells with low levels in tissues such as the small intestine, colon and trachea. 

The receptor is predominately expressed on tissues and cells implicated in 

inflammatory response, suggesting a role for the receptor in chronic 

inflammation (de Esch et al., 2005).    

The H4R has also been shown to be transcribed and expressed in the CNS. 

The first indications of the presence of the H4R in the CNS were mRNA levels 

identified in the human cerebellum and hippocampus (Coge et al., 2001). 

Recently, H4R transcripts have also been shown to be present in the human 

CNS, including spinal cord, hippocampus, cortex, thalamus and amygdala, 

with the highest levels of H4 mRNA detected in the spinal cord. In rat, H4 

mRNA was detected in cortex, cerebellum, brainstem, amygdala, thalamus 

and striatum with low levels detected in the hypothalamus, and no signal 

obtained in the hippocampus. H4R mRNA was also detected in the rat dorsal 

root ganglia and spinal cord. The H4R for the first time was shown to not only 

be transcribed but also to be expressed on neurons in the rat lumbar DRG 

and in the lumbar spinal cord (Strakhova et al., 2009 and Connolly et al., 
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2010). The H4R has been shown in our own laboratory to be expressed in 

specific areas of the mouse brain; layer IV of the cerebral cortex, CA3 of the 

hippocampus and dense expression on the thalamus (Connolly et al., 2010). 

The expression of the H4R in the DRG and spinal cord may suggest the 

presence of the receptor on peripheral neurons and may provide a link to the 

anti-pruritic and anti-nociceptive properties of selective H4R antagonists 

(Strakhova et al., 2009). Our laboratory provided the first evidence for the 

functional expression if the H4R on central neurons (Connolly et al., 2010). 

The similarities between the H3R and H4R and the presence of both the 

receptors within the CNS has resulted in re-evaluations of compounds aimed 

at targeting either receptor due to their lack of selectivity and potential for 

cross reactivity. NMHA was shown to have modest affinity for the human H4R 

and low affinity for the rat and mouse H4Rs, whilst also displaying agonism at 

the human H2R. Burimamide and imetit have been shown to display affinity for 

the H4R, thioperamide, a H3R antagonist was shown to have equal affinity for 

all three H4R species orthologs. VUF8430 is a high affinity agonist for the 

human H4R but also displays agonist activity at the human H3R. RαMHA a 

known H3R agonist, used in many autoradiographical studies to study the 

anatomical expression of the H3R, has also been recently shown also to bind 

to the hH4R. Clobenpropit acts as an antagonist at the H3R whereas at the 

H4R it acts as a partial agonist (Oda et al., 2000). Drug development for 

targeting the human H4R is very complex not only because of the close 

homology the receptor shares with the human H3R, but also the 

pharmacological variation displayed between species (de Esch et al.,  2005).   
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1.4       Conclusions and Aims 

The biology of histamine and its receptors are complex. Histamine is present 

in many parts of the body and receptor distribution is wide spread. Histamine 

plays a crucial role in many homeostatic and higher integrative brain 

functions. This is important for brain development, physiology and 

pathophysiology, danger recognition, and survival. Histamine interacts both 

directly and indirectly with a variety of receptors and chemical messengers to 

allow the body to respond to different situations allowing an integrated 

response to multiple influences.  

The existence of multiple human H3R isoform mRNAs has opened up 

possibilities to account for the heterogeneity seen with the H3R. Regional 

variation in the distribution of the different isoform mRNAs could underlie the 

different activities and functions of the H3R in specific brain regions and it is 

therefore important to establish the protein expression profiles of these 

isoforms in the CNS. Furthermore, there is growing evidence that homo- and 

hetero-oligomerisation of H3R isoforms may occur and yield a novel regulatory 

mechanism (Shenton et al, 2005 and Bakker et al., 2006). Not all of the 

isoforms are likely to be expressed at the cell surface and may therefore 

modulate activity, expression and or function of other H3R isoforms. Isoforms 

with deletions in their third intracellular loop show variation in their 

pharmacological profile (Hancock et al., 2003). The third intracellular loop is 

important in agonist/inverse agonist ligand binding, and/ or signal transduction 

and deletions within this region may result in non-functional isoforms. Due to 

differential G protein coupling, H3R ligands may behave variably at the 

individual isoforms. It is therefore important to establish if expression of these 



 

70 

 

isoforms occur in vivo. The differences observed in the H3R pharmacology 

and signalling of the H3R isoforms are likely to be important for obtaining a 

complete understanding of the physiological and potential therapeutic roles of 

the H3Rs.  

 Hypotheses to address relating to rodent and human H3 receptors; 

1. H3R are preserved in murine and human aging and age-related 

dementias 

2. Human H3R homomeric isoforms and heteromeric subtypes display 

differential  pharmacological properties 

3. H3R are involved in anxiety and memory behaviours 

To test the hypotheses firstly, a panel of anti-human H3R isoform specific 

antibodies require development and validation to identify and map the 

expression topography of central H3R isoforms and to determine if there are 

any changes in isoform expression with aging and in age-related diseases. 

The next step is to determine whether there are any pharmacological 

differences between human H3R isoforms using a novel, highly potent 

selective H3R ligand GSK189254 to determine whether the human H3R is 

preserved in murine and human aging and dementia. The final step is to 

determine the role of the H3R in anxiety, motor and memory behaviours using 

a novel recently patented all-in-one open space behavioural test. 
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CHAPTER 2 

Materials and general methods 

 

2.1      Source  of  materials 

2.1.1 Amersham  International  (Aylesbury,  Bucks,  UK) 

Binding filters, Blotting paper, HRP linked secondary antibody – mouse, HRP 

linked secondary antibody – rabbit, HyperfilmTM, Nitrocellulose 

 

2.1.2 BDH  laboratory  supplies  (Leicestershire,  UK) 

Acetic acid, Ammonium persulphate, Chloroform, Citric acid, Diethylamine, 

Dimethyl sulphoxide (DMSO), DPX mountant, Ethanol, Glycerol, Hydrochloric 

acid, Isopropanol, Methanol, N,N,N‟,N‟-tetramethylethylenediamine (TEMED), 

Potassium chloride, Potassium phosphate, Sodium chloride, Sodium 

hydrogen carbonate. 

 

2.1.3 Calbiochem  (Nottingham,  UK) 

Protease inhibitor cocktail set III 

 

2.1.4 Cambrex  Bio  Science  (Verviers,  Belgium) 

Foetal calf serum 

 

2.1.5 Cambridge Research Biochemicals  (Billingham, UK) 

Peptides generated for anti-peptide antibody development 
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Name Peptide Sequence Position Site of action 

H3RPAN 
peptide  

RLSRDRKVAK- Cys 
 

349 – 358 
 

sequence common across 
species 

human H3(365) 
peptide 1 

EAMPLHRKVAKSLA-
Cys 

268 – 281 
 

Intracellular loop 3, before 
TM6 

human H3(365) 
peptide 2 

Cys-EAMPLHRKVAKS 
 

268 – 278 
 

Intracellular loop 3, before 
TM6 

human H3(329)   
 

Cys-YLNIQSFTQR 
 

222 – 231  
 

Intracellular loop 3 
 

human H3(200)  
 

Cys-RRPRPRWRSA 
 

190 – 200 
 

C-terminal 
 

Chazot 3 
human H4   

Cys-
IKKQPLPSQHSRSVSS 

374 – 390 
 

C-terminal 
 

Chazot 4 
human H4   

Cys-
ERRRRKSSLMFSSRTK 

251 – 266 
 

Intracellular loop 3 
 

Mouse H4      
                   

Cys-
VTKQPALSQNQSVSS 

376 – 391 
 

C-terminal   
 

 

2.1.6 Immune  systems  (Bristol,  UK) 

Rodent/human Histamine H3R peptide 

Name Peptide Sequence Position Site of action 

ratH3RAC & 
humanH3R453/445 
peptide  

EAMPLHRGSK-Cys.   
 
 

268 – 277 
 
 

Intracellular loop 3 
 
 

 

2.1.7 Pierce  (Rockford,  UK) 

Sulpho-NHS-SS-Biotin 

 

2.1.8 Promega  Ltd  (South Hampton,  UK) 

VECTASTAIN® ABC kit, XL-1 Blue Competent Escherichia coli cells 

 

2.1.9 Sigma-Aldridge  chemical  company  (Poole,  Dorset,  UK) 

3-maleimidobenzoic acid N-hydroxysuccinimide ester (MBS), Acrylamide/bis-

acrylamide 30%, Agar, Agarose, Albumin bovine fraction V powder, Ampicillin, 

Anti-Flag M2 monoclonal antibody (Product code F3165), Anti-β-actin, Bis 
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(sulfosuccinimidyl) suberate, Bromophenol blue, CH-sepharose beads, 

Dialysis tubing (visking size  11/4‟‟), Diaminobenzidine tablets, Dithiothreitol 

(DTT), Dulbecco‟s modified eagle medium/F12 (DMEM), Ethylene glycol 

tetraacetic acid (EGTA), Ethylenediaminetetraacetic acid (EDTA), Folin-

ciolcalteau phenol reagent, Freund‟s adjuvant complete, Freund‟s adjuvant 

incomplete, Glutaraldehyde, Hydrogen peroxide  (30% v/v), Kodak D- 19  

developer, Kodak fixer, Luminol, Metyrapone, N-2-Hydroxyethylpiperazine-N‟-

2-ethane sulphonic acid (HEPES), P-coumaric acid, Penicillin (500µg /ml)/ 

streptomycin (500µg/ml) solution, Poly(ethyleneimine) solution, Pre-stained 

molecular weight markers (molecular weight range 200-2.5kDa), Sodium 

azide, Sodium bicarbonate 7.5% (w/v), Sodium dodecyl sulphate  (SDS), 

Sodium Hydroxide, Sodium phosphate, Streptavidin beads., Terrific broth, 

Thyroglobulin, Tris (hydroxymethyl) methylamine, Triton X-100, Trypsin 0.5g, 

EDTA 0.2g per litre of Hanks, Tween-20, β-mercaptoethanol. 

 

2.1.10 Tocris  (Bristol,  UK) 

Immepip, Iodophenpropit, Proxyfan, R-α-Methylhistamine dihydrobromide, 

Thioperamide. 

      

2.1.11 QIAGEN  Ltd  (Dorking,  Surrey,  UK) 

QIAGEN plasmid maxi kit. 

 

2.1.12 Miscellaneous 

[3H]-GSK189254, 81Ci/mmol, 99% purity was a gift from Dr Andrew Medhurst, 

GlaxoSmithKline, Harlow. 
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GSK334429B, molecular weight 434.94, 90% purity was a gift from Dr Andrew 

Medhurst, GlaxoSmithKline, Harlow. 

H3R -/- mouse material a gift from Prof. Tim Lovenberg, Johnsons & Johnson, 

USA. 

Human putamen samples gift from Dr Margaret Piggott, Newcastle University. 

Human embryonic kidney (HEK) 293 cells from the European collection of cell 

cultures, Salisbury, Wilts. 

Human and mouse H4R cDNA a gift from Prof. Rob Leurs, Vrije Universiteit, 

The Netherlands 

Human H3R cDNA C-terminally labelled with FLAG a gift from Prof. Francis 

Cogé, Institut de Recherches Servier, France 

Vector Insert  N terminal Tag 

pc DNA  3.1  (-) Human hH3  445 Flagged tagged  

DYKDDDDK 

pc DNA  3.1  (-) Human hH3  365 Flagged tagged  

DYKDDDDK 

pc DNA  3.1  (-) D-V5-His-

TOPO 

Human hH3  329 Flagged tagged 

DYKDDDDK 

pCINEO Human hH3  453  

pc  DNA  PCR2.1 TOPO Human hH3  200  

  

2.2 Instruments and Equipment 

Spectrophotometry: Jenway Genova spectrophotometer 
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Centrifuges: A sorval RC5C centrifuge was used with a GS-3 fixed angle 

rotor (for large volumes > 400ml). A Biofuge fresco Heraeus (Kendro 

Laboratory Products) was used for all volumes less than 1.5ml. 

Incubators: shaking incubator, cell incubator Shel Lab (Sheldon 

Manufacturing Inc.). 

Orbital shaker: Stuart Scientific 505. 

Water bath: Nüve bath 

Heating block: QBT2 heating block (Grant) 

Hot plate: FALC 

Stirrer: Bibby Sterilin 

Rocker: Grant-Bio PMR-30 

Balances: Milligram amounts were weighed using a Mettler Toledo classic. 

All other amounts were weighed using a Scouts Pro balance  

Electrophoresis: Polyacrylamide gels were cast in a Hoefer SE 245 dual gel 

caster using gel plates of 10x8cm, electrophoresis was performed using a 

Hoefer mini-vertical gel electrophoresis unit SE260 and transferred using a 

Hoefer TE 22 tank transfer unit, electrical supply was from an Electrophoresis 

Power Supply EPS 301, all supplied by Amersham Biosciences. 

Radioligand binding equipment: Bound radioactivity was collected using a 

Brandel cell harvester. Radioactivity was counted using a TriCarb 1600TR 

Liquid Scintillation Analyser (Packard). 

Microscopes: Nikon Eclipse E400 used for Immunohistochemistry and cells 

Photography: Nikon digital camera Coolpix E950 used for 

Immunohistochemistry  



 

76 

 

Other equipment: Immunoblotting cassette, pH meter was a Mettler Toledo 

MP220, automatic pipetteman 

Glassware, plastics and disposables: Hamilton syringe. Dounce glass/ 

glass homogeniser. Cell scrapers, 250ml sterile cell culture flasks, petri dishes 

and sterile pipettes from Greiner. Sterile filters: 0.2µm Sartorius Sartolab. 

V150 filter unit, microtitre plates, cryogenic vials, sterile pipettes and 250ml 

sterile filter lid cell culture flasks from Bibby sterilin. Falcon tubes, columns, 

Whatman GF/B filters, radioligand binding tubes, eppendorf tubes, pipette 

tips, syringes from SLS, UK. 

 

2.3  Preparation of standard solutions 

2.3.1 Lowry reagent A: 

2% (w/v) sodium carbonate, 0.1M sodium hydroxide and 5% (w/v) SDS. 

2.3.2    Lowry reagent B: 

2% (w/v) sodium potassium tartrate. 

2.3.3    Lowry reagent C: 

1% (w/v) copper sulphate. 

2.3.4  Stacking gel buffer: 

0.5 M Tris-glycine, pH 6.8, containing 8 mM EDTA and 0.4% (w/v) SDS. 

2.3.5 Resolving gel buffer: 

50 mM Tris, 384 mM glycine, 1.8 mM EDTA and 0.1% (w/v) SDS pH 8.8. 

2.3.6  Stock acrylamide: 

30% (v/v) acrylamide and N,N‟-methylenebisacrylamide.  

2.3.7 Electrode buffer: 

50 mM Tris, 384 mM glycine, 1.8 mM EDTA and 0.1% (w/v) SDS pH 8.8. 
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2.3.8  Sample buffer: 

30 mM sodium hydrogen phosphate, pH 7.0, 30% (v/v) glycerol, 0.05% (v/v) 

bromophenol blue and 7.5% (w/v) SDS. 

2.3.9  Pre-stained molecular weight markers: 

Stored in sample buffer, section 2.3.8. 

2.3.10 Transfer buffer: 

25 mM Tris, pH 8.4, 192 mM glycine and 20% (v/v) methanol. 

2.3.11 TEE buffer: 

50 mM Tris-citrate pH 7.1, containing 5mM EDTA and 5mM EGTA. 

2.3.12 Phosphate buffered saline (PBS): 

0.01 M sodium hydrogen phosphate, 1.7 mM potassium hydrogen phosphate, 

pH 7.4, 137 mM sodium chloride, 107 mM potassium chloride. 

2.3.13 Tris buffered saline (TBS): 

50 mM Tris-HCl, pH 7.4. 

2.3.14 HEPES buffered saline (HBS): 

280 mM sodium chloride and 1 M sodium hydrogen phosphate pH 7.12. 

2.3.15 Tris/EDTA buffer (TE): 

10 mM Tris, 1 mM EDTA, pH 8.0. 

2.3.16 Homogenisation buffer: 

50 mM Tris-HCl pH 7.4, containing 5 mM EDTA and 5 mM EGTA 

 

2.4 General methods 

2.4.1 Membrane Preparation for Immunoblotting 

Adult male CD-1 or TASTPM mice were sacrificed by schedule 1 methods, 

either stunned or placed in a CO2 chamber and 100% CO2 was added at a 
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flow rate of 20% of the chamber volume per minute, the mice were then 

decapitated.  The brain tissue was dissected and kept cool on ice. The tissue 

was then homogenised in ice-cold homogenisation buffer (section 2.3.17) 

supplemented with 320mM sucrose using a dounce glass/ glass homogeniser. 

Membrane debris was pelleted by centrifugation of the homogenate at 1,200 x 

g, 4oC for 10 minutes. 

The supernatant was transferred to a clean JA20 centrifugation tube, the 

volume was made up to 10ml with homogenisation buffer + sucrose and was 

spun at 20,000 x g, 4oC for 30 minutes. The supernatant was discarded and 

the pellet was re-suspended in 5 ml of homogenisation buffer (without 

sucrose), for every gram of starting material. The homogenate was stored in 

100 µl aliquots at -20oC.  

 

2.4.2 Determination of Protein Concentration   

The protein concentration was determined using the method of Lowry et al., 

(1951), bovine serum albumin (BSA) was used as the standard protein. All 

samples were carried out in triplicate. A stock solution of 1mg/ml of BSA was 

serially diluted in distilled water to give a range of standard BSA 

concentrations from 0 to 100 µg/ml. Lowry reagent A (section 2.3.1), Lowry 

reagent B (section 2.3.2) and Lowry reagent C (section 2.3.3) were mixed in a 

volume ratio of A (50): B (1): C (1). To both the BSA standards and the 

unknown protein concentration samples 0.5 ml of the mixture of reagent A, B 

and C was added, each sample was vortex mixed and incubated at room 

temperature for 10 minutes. After the incubation 50 µl of a 1:1 ratio of Folin-

Ciocalteu phenol reagent and water was added to the samples, which were 
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then vortex mixed and incubated at room temperature for 30 minutes. The 

reaction was terminated by the addition of 500 µl of water. The O.D. at λ = 

750 nm was determined for each sample using a Jenway Genova 

spectrophotometer. 

A calibration curve was constructed of O.D. at λ = 750 nm for the BSA 

samples. This was then used to determine the unknown protein concentration. 

 

2.4.3 Chloroform/methanol method for protein precipitation and 

preparation of protein samples 

Protein samples for SDS-PAGE were precipitated using the chloroform/ 

methanol precipitation, detailed as follows. To the protein sample (25-50 µg), 

4 x volumes of ice-cold methanol was added and samples were vortex mixed 

and centrifuged at room temperature at 18,000 x g for 1 minute. 1 x volume of 

ice-cold chloroform was added to the samples, which were vortex mixed and 

centrifuged at room temperature at 18,000 x g for 1 minute. 3 x volumes of 

ice-cold water were added to the samples which were vortex mixed and 

centrifuged at room temperature at 18,000 x g for 1 minute. The upper layer 

was carefully discarded and 1x volume ice-cold methanol was added to the 

samples, which were vortex mixed and centrifuged at room temperature at 

18,000 x g for 4 minute. The supernatant was discarded and the pellet air 

dried. The dried protein pellet was re-suspended by vortex mixing in 5 µl of 

sample buffer (section 2.3.8), 2 µl of 200mM DTT and 8 µl of water to a final 

volume of 15 µl. The samples were boiled at 95oC in the heat block for 5 

minutes and then centrifuged at 18,000 x g for 30 seconds at room 

temperature before analysis by SDS-PAGE.  
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2.4.4   Preparation of competent Escherichia coli cells 

The standard CaCl2 method described by (Cohen et al., 1972) was used to 

prepare the Escherichia coli (E. coli) XL-1 Blue Competent (Stratagene) cells 

used in all plasmid transformations. 2ml of an overnight XL-1 Blue culture (5ml 

Terrific broth, 12.5µg/ml tetracycline and 0.8% glycerol) was used to inoculate 

200ml Terrific broth medium (47.7g Terrific broth and 0.8% glycerol in 1 litre 

ddH2O). Cells were grown at 37oC on an orbital shaker at 250xg to logarithmic 

(log) phase (OD550 = 0.5). The cells were collected by centrifugation at 7,000 x 

g for 5 minutes at 4oC. The pellet was then gently re-suspended in 100ml of 

freshly made ice-cold 50mM CaCl2, centrifuged at 7,000 x g for 5 minutes at 

4oC. The pellet was then gentle re-suspended in 10ml ice-cold 50mM CaCl2. 

The cells were kept on ice for 1h before sterile 15% (v/v) glycerol was added 

and the cells frozen away at -80oC. 

 

2.4.5  Transformation of competent cells 

Transformation of competent cells was performed as described by Dagert and 

Ehrlich (1979). 100µl aliquot of competent cells was thawed on ice for 5 

minutes before 20 ng/µl of the appropriate plasmid DNA was added and 

mixed gently. The cell mixture was allowed to absorb for 30 min on ice and 

then subjected to a 90 second heat shock at 42oC. The mixture was then left 

to cool on ice for 2 min. 900 µl Terrific broth medium was added, followed by 

an incubation period at 37oC on an orbital shaker at 250 x g. Aliquots of 100 µl 

were then plated out on Terrific broth agar plates (1.2% agar in Terrific broth 
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medium) containing 12.5 µg/ml tetracycline hydrochloride and 50 µg/ml 

ampicillin. Plates were inverted and then incubated overnight at 37oC. 

 

2.4.6  Amplification and preparation of plasmid DNA  

2.4.6.1  Preparation of small scale culture of plasmid DNA 

Selected colonies from the agar plates were inoculated into 10 ml of Terrific 

broth medium, (containing 12.5 µg/ml tetracycline hydrochloride and 50 µg/ml 

ampicillin), and grown for 16 h at 37oC on an orbital shaker at 250 x g.  

 

2.4.6.2  Preparation  of  large  scale  culture  of  plasmid  DNA 

500 ml Terrific broth medium containing appropriate antibiotics (as above), 

was inoculated with 3 ml of the small overnight culture, and grown for 16 h at 

37oC on an orbital shaker at 250 x g. 

 

2.4.6.3  Harvesting  the  large  scale  culture  and  purification  of  

plasmid  DNA  using  QIAGENTM  Plasmid  Maxi-Kit 

E. coli cells were harvested from the large overnight culture by centrifugation 

at 6,500 x g for 10 min at 4oC. The pellet was re-suspended in 10 ml ice-cold 

P1 Buffer. Bacteria cells were lysed by the addition of 10 ml ice-cold P2 

Buffer, mixed by gentle inversion and incubated at room temperature for 5 

min. The mixture was then neutralised by the addition of 10 ml ice-cold P3 

Buffer, mixed by gentle inversion and incubated on ice for 20 min. The 

solution was then centrifuged at 14,000 x g for 30 min at 4oC, and the clear 

lysate was removed into a fresh tube. A QIAGENTM 500 tip was equilibrated 

with 10 ml QBT buffer. The lysate was then added to the column and allowed 
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to pass through the column under gravity flow. The column was then washed 

twice with 30 ml QC Buffer and then the plasmid DNA eluted with 15 ml QF 

Buffer. 0.7% vol (10.5 ml) ice-cold isopropanol was added to the eluted 

plasmid DNA and the solution was centrifuged at 14,000 x g for 30 min at 4oC. 

The pellet was carefully washed with 1 ml ice-cold ethanol and allowed to air 

dry for 30 min. The purified DNA was then dissolved in 500 µl TE Buffer and 

stored at 4oC until the purity and yield of DNA was calculated. 

 

2.4.6.4  Quantification and  determination  of  purity  of  the  DNA  yield 

The purity of the plasmid DNA was determined by reading the OD at λ = 

260nm and λ = 280nm. For pure plasmid DNA the ratio of the optical densities 

(ODλ = 260nm / ODλ = 280nm) should be within the range 1.8 – 2.0. Plasmid 

DNA concentration was determined by measuring the OD at λ = 260nm (OD = 

1 corresponds to ~ 50µg/µl double stranded DNA (dsDNA)).  

The DNA was diluted to a final concentration of 1 µg/ml in TE buffer and 

stored in 100 µl aliquots at -20oC. Once thawed the cDNA was stored at 4oC.  
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CHAPTER  3   

Development and Characterisation of the first panel of Anti-Human 

Histamine H3 Receptor Isoform Specific Antibodies 

 

3.1 Objectives 

To develop and characterise a panel of novel anti-human H3R isoform specific 

antibodies and to determine whether expression of these isoforms are altered 

in aging and in CNS diseases in which dementia is a common feature.  

 

3.2 Introduction 

Alternative splicing is a common feature of the H3R gene that occurs not only 

in humans but also in mouse and rat, yielding potentially different protein 

sequences. In order to define the importance of H3R heterogeneity, specific 

immunological probes are required. Our laboratory has developed the first 

anti-hH3R antibodies (Chazot et al., 2001, Cannon et al., 2007, Victoria Hann 

PhD thesis 2004 and Fiona Shenton PhD thesis 2007). The first two 

antibodies were raised against H3R sequences common to most human and 

rodent isoforms: anti-H3R (346-358) and anti-H3R (175-187) sequence 

specific antibodies. Probing immunoblots with rodent brain samples, the 

antibodies detect two specific immunoreactive bands migrating at 

approximately Mr 68,000 and Mr- 93,000, which on incubation with the 

respective peptide antigen were greatly suppressed. These species are likely 

to be glycosylated dimeric forms of the rodent H3R receptor (Shenton et al., 

2006). In an attempt to generate an antibody specific to the rat H3R 397 isoform 

a sequence was chosen that flanked the splice site within the third intracellular 
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loop (Fig 3.1). In theory, the antibody would only pick up the 397 sequence as 

the peptide would hopefully be short enough to be specific for that local 

sequence, as the unspliced isoform and alternatively spliced forms would 

produce distinct epitopes. 

 

Schematic showing the rationale behind selecting the peptide sequence 

for immunisation: 

 

Figure 3.1 Schematic showing how peptide sequences were generated to produce isoform 
specific antibodies against the third intracellular loop of the human H3R. Amino acid 
sequences were chosen that spanned either side of the splicing event so once the sequence 
was removed and the sequence at either side joined, the antibody generated would hopefully 
detect the sequence. The sequence selected was long enough so that the antibody was 
specific but not too long that the antibody would detect other isoforms. 
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When the antibody was tested on HEK 293 cells transfected with the different 

isoforms (hH3R445, hH3R365, hH3R329, rH3RA/ 445 , rH3RB/ 413 and rH3RC/ 397), the 

antibody was found to detect both the full length rat rH3AR445 and full length 

human isoforms hH3 (445), as well as the expected rH3CR397. The antibody did 

not detect any of the other rat or human isoforms tested. The antibody also 

detected protein species in both human and rodent native tissue. Therefore, 

the antibody generated is useful for the detection of the full length rat and 

human H3R isoform as well as the shorter rat H3RC/ 397 isoform. 

 

Antibodies specific for three other highly expressed human isoforms (Coge et 

al., 2001) were developed using peptide sequences unique to each of the H3R 

isoforms: 445, 365, 329 and 200 (see Fig 3.2). Antibodies were generated to 

particular sequences within the third intracellular loop flanking the splicing site 

for the human H3R isoforms, 445, 365 and 329. The hH3R200 has a deletion at 

170-306 resulting in a frame shift and a novel stop codon, so that the last 10 

amino acids of the C-terminus is novel to this isoform; these last 10 amino 

acids were selected as immunogen to raise an anti-hH3R200 antibody. 

 

Herein, the methods for preparing peptides for immunisation, the 

immunisation procedure, antibody purification and the experiments performed 

to check the individual antibody specificity are described.  
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Peptide sequence chosen for each isoform: 

(A) Full length human H3R sequence. (Peptide sequence used to generate 

anti-pan H3R antibody, blue)  

1  merappdgpl nasgalagea aaaggargfs aawtavlaal mallivatvl gnalvmlafv 

61  adsslrtqnn ffllnlaisd flvgafcipl yvpyvltgrw tfgrglcklw lvvdyllcts    

121  safnivlisy drflsvtrav syraqqgdtr ravrkmllvw vlafllygpa ilsweylsgg   

181  ssipeghcya effynwyfli tastlefftp flsvtffnls iylniqrrtr lrldgareaa    

241   gpepppeaqp spppppgcwg cwqkghgeam plhrygvgea avgaeageat lgggggggsv   

301  asptsssgss srgterprsl krgskpsass aslekrmkmv sqsftqrfrl srdrkvaksl 

361  avivsifglc wapytllmii raachghcvp dywyetsfwl lwansavnpv lyplchhsfr 

421  raftkllcpq klkiqphssl ehcwk 

 

(B) Full length human H3R445 sequence. (Peptide sequence used to generate 

anti-rH3RA/C and hH3R453/445 antibody, blue) 

1  merappdgpl nasgalagea aaaggargfs aawtavlaal mallivatvl gnalvmlafv 

61  adsslrtqnn ffllnlaisd flvgafcipl yvpyvltgrw tfgrglcklw lvvdyllcts    

121  safnivlisy drflsvtrav syraqqgdtr ravrkmllvw vlafllygpa ilsweylsgg   

181  ssipeghcya effynwyfli tastlefftp flsvtffnls iylniqrrtr lrldgareaa    

241   gpepppeaqp spppppgcwg cwqkghgeam plhrygvgea avgaeageat lgggggggsv   

301  asptsssgss srgterprsl krgskpsass aslekrmkmv sqsftqrfrl srdrkvaksl 

361  avivsifglc wapytllmii raachghcvp dywyetsfwl lwansavnpv lyplchhsfr 

421  raftkllcpq klkiqphssl ehcwk 

 

(C) Human sequence showing the H3R453 isoform (Addition of 8 amino 

acids in green). (Peptide sequence used to generate: anti-human H3R445/453 

antibody, blue) 

1  merappdgpl nasgalagea aaaggargfs aawtavlaal mallivatvl gnalvmlafv 

61 adsslrtqnn ffllnlaisd flvgafcipl yvpyvltgrw tfgrglcklw lvvdyllcts    

121  safnivlisy drflsvtrav syraqqgdtr ravrkmllvw vlafllygpa ilsweylsgg   

181  ssipeghcya effynwyfli tastlefftp flsvtffnls iylniqrrtr lrldgareaa    

241    gpepppeaqp spppppgcwg cwqkghgeam plhrygvgea avgaeageat lgggggggsv   

301 asptsssgss srgterprsl krgskpsass aslekrmkmv sqsftqrfrl srdrkvaksl 
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361  avivsifglc wapytllmii raachghcvp dywyetsfwl lwansavnpv lyplchhsfr 

421  raftkllcpq klkiqphssl ehcwk rrprprwrsa 

 

(D) Human sequence showing the H3R365 deletion / isoform 2 (deletion in red 

and bold). (Peptide sequence used to generate: anti-human H3R365 peptide 1 

antibody, blue) 

1  merappdgpl nasgalagea aaaggargfs aawtavlaal mallivatvl gnalvmlafv 

61  adsslrtqnn ffllnlaisd flvgafcipl yvpyvltgrw tfgrglcklw lvvdyllcts   

121  safnivlisy drflsvtrav syraqqgdtr ravrkmllvw vlafllygpa ilsweylsgg   

181  ssipeghcya effynwyfli tastlefftp flsvtffnls iylniqrrtr lrldgareaa    

241  gpepppeaqp spppppgcwg cwqkghgeam plhrygvgea avgaeageat   

lgggggggsv   

301 asptsssgss srgterprsl krgskpsass aslekrmkmv sqsftqrfrl srdrkvaksl 

361  avivsifglc wapytllmii raachghcvp dywyetsfwl lwansavnpv lyplchhsfr 

421  raftkllcpq klkiqphssl ehcwk 

 

(E) Human sequence showing the H3R365 deletion / isoform 2 (deletion in red 

and bold). (Peptide sequence used generate: anti-human H3R365 peptide 2 

antibody, blue) 

1  merappdgpl nasgalagea aaaggargfs aawtavlaal mallivatvl gnalvmlafv 

61  adsslrtqnn ffllnlaisd flvgafcipl yvpyvltgrw tfgrglcklw lvvdyllcts   

121 safnivlisy drflsvtrav syraqqgdtr ravrkmllvw vlafllygpa ilsweylsgg   

181  ssipeghcya effynwyfli tastlefftp flsvtffnls iylniqrrtr lrldgareaa    

241  gpepppeaqp spppppgcwg cwqkghgeam plhrygvgea avgaeageat 

lgggggggsv   

301  asptsssgss srgterprsl krgskpsass aslekrmkmv sqsftqrfrl srdrkvaksl 

361  avivsifglc wapytllmii raachghcvp dywyetsfwl lwansavnpv lyplchhsfr 

421  raftkllcpq klkiqphssl ehcwk 

 

(F) Human sequence showing the H3R329 deletion / isoform 2 (deletion in red 

and bold). Peptide generated to the sequence at position 222-231 (anti-
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hH3R329 antibody). (Peptide sequence used to generate: anti-human H3R329 

antibody, blue 

1  merappdgpl nasgalagea aaaggargfs aawtavlaal mallivatvl gnalvmlafv 

61  adsslrtqnn ffllnlaisd flvgafcipl yvpyvltgrw tfgrglcklw lvvdyllcts    

121  safnivlisy drflsvtrav syraqqgdtr ravrkmllvw vlafllygpa ilsweylsgg   

181  ssipeghcya effynwyfli tastlefftp flsvtffnls iylniqrrtr lrldgareaa    

241    gpepppeaqp spppppgcwg cwqkghgeam plhrygvgea avgaeageat      

              lgggggggsv   

301  asptsssgss srgterprsl krgskpsass aslekrmkmv sqsftqrfrl srdrkvaksl 

361  avivsifglc wapytllmii raachghcvp dywyetsfwl lwansavnpv lyplchhsfr 

421  raftkllcpq klkiqphssl ehcwk 

 

(G) Human sequence showing the H3R200 deletion / isoform 5 (deletion in red 

and bold). (Peptide sequence used to generate: anti-human H3R200 antibody, 

blue 

1  merappdgpl nasgalagea aaaggargfs aawtavlaal mallivatvl gnalvmlafv 

61  adsslrtqnn ffllnlaisd flvgafcipl yvpyvltgrw tfgrglcklw lvvdyllcts    

121  safnivlisy drflsvtrav syraqqgdtr ravrkmllvw vlafllygpa ilsweylsgg   

181  ssipeghcya effynwyfli tastlefftp flsvtffnls iylniqrrtr lrldgareaa    

241    gpepppeaqp spppppgcwg cwqkghgeam plhrygvgea avgaeageat    

               lgggggggsv   

301  asptsssgss srgterprsl krgskpsass aslekrmkmv sqsftqrfrl srdrkvaksl 

361  avivsifglc wapytllmii raachghcvp dywyetsfwl lwansavnpv lyplchhsfr 

421  raftkllcpq klkiqphssl ehcwk paaprgalrg rahsrgapsr rrprprwrsa 

 
Figure 3.2 The amino acid sequences of the full length human H3R and its respective 
isoforms and the peptide sequences used to generate specific antibodies to those isoforms. 
(A) H3R amino acid coding sequence, (B) H3R445 amino acid sequence and selected 
immunogen sequence. (C) H3R365 amino acid sequence with the area spliced out highlighted 
in red and selected immunogen sequence in blue. (D) H3R365 amino acid sequence with the 
area spliced out highlighted in red and selected immunogen sequence in blue. H3R329 amino 
acid sequence with the area spliced out highlighted in red and selected immunogen sequence 
in blue. H3R200 amino acid sequence with the area spliced out highlighted in red and 
sequence highlighted to raise an antibody against selected immunogen sequence in blue. 
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3.3 Methods 

3.3.1 Choice  of  Peptide  Sequences      

Specific peptide sequences were chosen to immunize rabbits to produce anti-

peptide antibodies (Fig 3.2). The peptide was chosen based on the peptide 

specificity being unique to the particular isoform and its likely immunogenicity. 

A cysteine residue was added to one end of each sequence so that the 

peptide could be directionally coupled to a carrier protein keyhole limpet 

hemocyanin (KLH): 

 

Human/ rodent antibodies:  

 Rodent/ human histamine H3RAC/ 445/453  (268 - 277)   EAMPLHRGSK-C.   

 H3R PAN              (349 - 358)   RLSRDRKVAK-C  

 

Human specific antibodies: 

 Human H3R (365) peptide 1   (268 – 281)   EAMPLHRKVAKSLA-C 

 Human H3R (365) peptide 2    (268 – 278)  C-EAMPLHRKVAK 

 Human H3R (329)  ΔI3    (222 – 231)     C-YLNIQSFTQR 

 human H3R (200)     (191 – 200)  C-RRPRPRWRSA 

 

3.3.2 Antibody Production        

The peptide alone is too small to stimulate an immune response and is 

therefore conjugated to a large immunogenic carrier protein before being 

injected into the rabbit. The peptide was conjugated using Imject® Maleimide 

activated mcKLH kit to illicit a humoral immune response. The rabbit serum 

was collected and purified using peptide affinity chromatography.   
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3.3.3 The Imject Maleimide activated mcKLH method of coupling 

peptides to carrier proteins 

The method was used to conjugate the peptide to the carrier protein KLH 

through its carboxyl-terminal cysteine residue. One vial of maleimide-activated 

mcKLH was dissolved by adding 200 µl of distilled water, making a 10 mg/ml 

solution. 200 µl of conjugation buffer was added to 5 mg peptide. The peptide 

solution was then immediately added to the reconstituted mcKLH. The carrier 

protein and peptide mixture were incubated for a further 2 hours at room 

temperature with gentle agitation. The conjugated peptide was then separated 

from EDTA in the mixture by desalting. One bottle of purification buffer salts 

was dissolved in 60 ml of distilled water. The top and bottom caps were 

removed from a desalting column and washed 3 times with 15 ml of 

purification buffer salts. The hapten-carrier mixture was then added to the 

centre of the column disc. 10 lots of 0.5 ml aliquots were added to the column 

and each of the fractions collected. The absorbency of each fraction was read 

at 280 nm to detect the fractions containing the conjugate (Fig 3.3). The peak 

fractions were pooled, and the absorbency read. The peptide protein 

conjugate was diluted with PBS to a final concentration of 1 mg/ml and stored 

in 100 µl aliquots at -20oC. 
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Representative graph showing the OD values from a typical antibody 

elution: 

 

Figure 3.3:  A representative elution profile. Column fractions 2-4 were chosen on this 
occasion as these are the fractions with the peak absorbence values. The absorbence 
readings were zeroed accordingly and fraction 1 corresponds to the first elution containing 
antibody.  
 

3.3.4  Inoculation Procedure 

200 µl of sterile PBS was mixed with 100 µg of freshly thawed peptide-carrier 

protein conjugate, and emulsified with an equal volume of Freund‟s adjuvant. 

This preparation was then injected intramuscularly into both hind legs of a 

Dutch rabbit. The primary immunisation was performed using complete 

Freund‟s adjuvant, while subsequent immunisations (at 1 month intervals), 

used Freund‟s incomplete adjuvant. Rabbits were bled from the marginal ear 

vein 7 – 10 days following the booster injections, 10 – 15 ml of blood were 

collected. Blood was allowed to stand at room temperature for 2 hours, and 

then clot contraction was allowed to occur over 16 hours at 4oC. Cellular 

material was removed by centrifugation at 12000 x g for 10 minutes at 4oC, 

and the serum was stored in 1 ml aliquots at -20oC. All procedures were 
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performed in accordance with the Animals Scientific Procedures Act 1986, 

project license number (PPL602/657) 

 

3.3.5  Affinity Purification 

3.3.5.1  Coupling of Peptides to Sepharose Beads  

The method was carried out as described by (Duggan et al., 1991) and was 

used to couple the peptide to activated thiol-sepharose beads via its C-

terminal cysteine residue. 0.35g of activated thiol-sepharose were allowed to 

swell in 100 ml distilled water for 15 minutes at room temperature. The 

swollen sepharose beads were placed in a 25 ml column containing a filter 

and washed with 100 ml of 0.1 M Tris-HCL pH 8.0, containing 0.3 M NaCl and 

1mM EDTA. The column was then drained until 0.7 ml of buffer remained. 1 

ml of 5 mg/ml peptide dissolved in the same buffer was added to the 

sepharose beads and incubated for 2 hours at room temperature with gentle 

agitation. The reaction was terminated by draining the column and washing 

the sepharose beads with 25 ml of Tris pH 8.0 followed by 10 ml of 0.1 M citric 

acid pH 4.5. All remaining un-reacted thiol groups on the sepharose beads 

were blocked by incubation with 3 ml of 1 mM β-mercaptoethanol in 0.1 M 

citric acid pH 4.5 for 1 hour at room temperature with gentle agitation. The 

blocking reaction was terminated by washing the sepharose beads with 25 ml 

of 0.1 M citric acid pH 4.5. Finally the sepharose column was equilibrated with 

25 ml PBS and stored in 10 ml PBS containing 0.02% (w/v) sodium azide, at 

4oC until required.      
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3.3.5.2  Peptide Affinity Purification of Antibodies 

Purification of the anti-peptide polyclonal antibody requires the use of a 1 ml 

sepharose column linked to the appropriate peptide (5 mg). The column was 

equilibrated with 100 ml of TBS, and then 4 ml of the immune serum was 

applied to the column followed by either a 2 hour incubation period at room 

temperature or overnight at 4oC with gentle agitation. Unbound immune serum 

was drained from the column, and then the column washed with 100 ml of 

TBS. The bound antibody was eluted from the column with 8 ml of 50 mM 

glycine/HCL pH 2.3. The elute was collected in 8 X 1 ml fractions, containing 

15 µl of 1 M Tris to neutralise the contents to a final pH of 7.4. For each 

fraction the O.D. at λ = 280 nm was determined and the protein concentration 

calculated using the Beer Lambert law, 

C =  A / ЄL 

Where,   

C, is the protein concentration of the antibody 

A, is the absorbance at λ = 280 nm 

L, is the sample path length = 1 cm.  

Є, is the molar absorptivity or extinction coefficient of the chromophore at 

wavelength λ (the optical density of a 1 cm thick sample of a 1 M solution). Є 

is a property of the material and the solvent = 1.35 

The fractions containing the highest protein concentrations were pooled and 

dialysed against 500 ml TBS, overnight at 4oC. The affinity column was 

regenerated with 100 ml of TBS and stored in 10 mls TBS containing 0.02% 

(w/v) sodium azide at 4oC.  
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3.3.6 Cell culture and transfection of Human Embryonic Kidney (HEK) 

293 cells 

3.3.6.1 Preparation of DMEM/F12 media   

All procedures were performed under sterile conditions. Powdered Dulbecco‟s 

Modified Eagle Medium/F12 (DMEM/F12 1:1 ratio) (15g/L) and 15mM N-2-

hydroxyethylpoiperazine-N‟-2-ethane sulphonic acid (HEPES) were mixed 

with 800 ml of sterile water. The media was supplemented with 40 ml of 10% 

(v/v) foetal calf serum (FCS), 7.5 % (w/v) NaHCO3 giving a final concentration 

3.0g/L, and 20 ml of penicillin (500 µg/ml)/ streptomycin (500 µg/ml) solution. 

The pH of the media was adjusted to pH 7.6 using 10M NaOH and the final 

volume made up to 1 L using sterile ddH2O. The media was filter sterilised 

using a 0.2 µm Sartorius Satolab-V150 filter unit, and then stored at 4oC.   

 

3.3.6.2 Sub-culturing of HEK 293 Cells 

All procedures were performed under sterile conditions. HEK 293 cells were 

grown in 250 ml Greiner flasks containing DMEM/F12 (as described above). 

The flasks were incubated in a Sanyo incubator at 37oC humidified in 5% 

CO2. Every seven days the cells were sub-cultured. 30 minutes before sterile 

PBS, DMEM/F12 media and trypsin-EDTA were pre-warmed to 37oC. The old 

medium was removed from the cells and the cells were washed in 10 ml of 

pre-warmed PBS. The PBS was then removed and the cells were incubated 

for 2 min in 2ml of trypsin-EDTA, at 37oC. The cells were re-suspended in 10 

ml of fresh pre-warmed DMEM/F12 media by gentle pipetting up and down. 2 

ml of the cell suspension was added to a fresh sterile flask with a further 10 ml 

of fresh media and returned back to the incubator.   
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3.3.6.3 Preparation of new stocks of HEK 293 cells 

The old media was removed from a flask of HEK 293 cells and the cells were 

washed with 10 ml of PBS. The PBS was then removed and the cells were 

incubated for two minute in 4 ml of trypsin-EDTA, at 37oC. The cells were re-

suspended in 20 ml of fresh pre-warmed DMEM/F12 media. The cells were 

pelleted by centrifugation at 200 x g for 5 minutes at 4oC. The pellet was re-

suspended in 4.8 ml of fresh media supplemented with 0.6 ml of FCS and 0.6 

ml of dimethylsuphoxide (DMSO). The cell suspension was immediately 

divided into 3 cryogenic vials and stored at -80oC for 24 hours before being 

transferred to liquid nitrogen.  

Preparation of a new culture of HEK 293 cells, a single cryogenic vial was 

thawed at 37oC for 5 minutes. The cells were then added to 50ml of pre-

warmed DMEM/F12 media and pelleted by centrifugation at 200 x g for 5 

minutes at 4oC and then re-suspended in 15 ml of fresh media. The cells were 

then added to a tissue culture flask for culture at 37oC in 5% CO2. 

 

3.3.6.4 Polyethyleneimine (PEI) transfection method 

HEK 293 cells were transfected using polyethyleneimine (PEI) transfection 

method adapted from van Rijn R et al., 2008. Briefly, 1 µg DNA was diluted in 

100 µl 0.9% NaCl, then 2 µl of 1 mg/ml PEI (linear MW ~ 25,000) was added 

to the eppendorf. The DNA/PEI mixture was incubated for 10 minutes at room 

temperature. During the incubation period the old media was removed from 

the HEK 293 cells and 2 ml of fresh pre-warmed media added. Following the 

incubation period 1 ug of DNA/PEI mixture was added to the HEK 293 cells. 

The cells were incubated at 37oC and harvested 48 hours post-transfection.  
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3.3.6.5   Harvesting and membrane preparation of HEK 293 cells 

HEK 293 cells were harvested 48 hours post transfection. The culture media 

was removed and replaced with 1 ml of homogenisation buffer (section 

2.3.17). Cells were scraped from the bottom of the petri dish using Greiner cell 

scrapers. The re-suspended cells were homogenised using a douce glass/ 

glass homogeniser, kept ice cold. The homogenate was pelleted by 

centrifugation at 18000 x g at 4oC for 5 minutes. The supernatant was 

discarded and the pellet was re-suspended in 1 ml of ice cold homogenisation 

buffer. The cells were re-homogenised and separated in 100 µl aliquots and 

stored at -20oC.  

 

3.3.7 Immunoblots 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

was carried out using either 7.5 (v/v) or 10% (v/v) polyacrylamide slab gels 

under reducing conditions. Immunoblots were probed either with anti-FLAG 

antibody in the case of the FLAG tagged human H3R clones, or with the 

appropriate rabbit anti-H3R antibody.  

 

3.3.7.1  Preparation of resolving gel 

The resolving gel was prepared by mixing 6 ml of distilled water with 3 ml of 

resolving gel buffer (section 2.3.5), 6 µl of TEMED, 3 ml of stock acrylamide 

(section 2.3.6), and 60 µl 10% (w/v) ammonium persulphate (APS). The 

polyacrylamide solution was immediately poured into a Hoefer SE 245 dual 

gel caster, using two gel plates of 10 x 8cm and spacers of 1 mm width. 100 
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µl of saturated water/ butanol solution was added over the top of each gel. 

The gels were covered with parafilm and were allowed to polymerise for 40 - 

60 minutes at room temperature. The gels were individually wrapped in tissue 

paper and stored in electrode buffer (section 2.3.7) at 4oC until required.       

 

3.3.7.2  Preparation of protein samples for SDS-PAGE 

Protein samples for SDS-PAGE were precipitated using the chloroform/ 

methanol precipitation, detailed in chapter 2.  

 

3.3.7.3  SDS-PAGE 

The resolving mini-slab acrylamide gel was clamped into a Hoefer mini-

vertical gel electrophoresis unit SE260. The stacking gel was prepared by 

mixing 2.3 ml of water with 1 ml of stacking gel buffer (section 2.3.4), 650 μl of 

stock acrylamide (section 2.3.6), 5 μl of TEMED and 80 μl of 10% (w/v) 

ammonium persulphate. The stacking gel buffer was then immediately poured 

into the mini-slab gel on top of the resolving gel and a welled comb inserted 

into the stacking gel. After the stacking gel had polymerised, the comb was 

carefully removed and the wells washed with water. Approximately 300 ml of 

electrode buffer (section 2.3.7) was poured into and behind the wells and into 

the base of the electrophoresis unit. 15 μl of Protein samples and pre-stained 

standards (protein molecular weight range of 200 – 6.5 kDa) were loaded into 

the wells of the stacking gel using a Hamilton syringe. Electrophoresis was 

carried out at 180 V, 10 mA (per gel) which was increased by 5 mA (per gel) 

once the samples reached the resolving gel. The gel was run for 
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approximately 2 hours until the appropriate pre-stained molecular weight 

marker (25 kDa) were at the bottom of the gel.   

 

3.3.7.4  Immunoblotting 

After SDS-PAGE (section 2.4.3.3), the proteins from the gels were transferred 

to a nitrocellulose membrane. A transfer cassette was constructed in the 

following order of components each of which had been pre-equilibrated in 

transfer buffer (section 2.3.10) sponge, two sheets of blotting paper, 

nitrocellulose membrane, SDS-PAGE, two sheets of blotting paper and a 

piece of sponge. On the addition of each component to the transfer cassette 

air bubbles were carefully removed. Proteins were transferred at a constant 

voltage of 50 V for 2 hours using a Hoefer TE 22 tank transfer unit containing 

transfer buffer kept cool with ice and ice packs.  

Following the transfer of the proteins, the nitrocellulose membrane was briefly 

rinsed with TBS (section 2.3.13) and incubated with 15 ml of blocking buffer, 

which comprised of TBS, containing 5% (w/v) dried milk and 0.02% (v/v) 

Tween-20, for 1 hour at room temperature with gentle agitation. After blocking 

of the non-specific antibody sites the nitrocellulose membrane was washed 

with 10 ml of TBS. The appropriate affinity-purified primary antibodies was 

diluted in incubation buffer, which comprised of TBS, containing 2.5% (w/v) 

dried milk to working concentrations of (0.25 – 5 µg/ml). The nitrocellulose 

membranes were incubated with 10 ml of the diluted primary antibody solution 

for 1 hour at room temperature, or overnight at 4oC with gentle agitation. 

After incubation with the primary antibody the nitrocellulose membranes were 

washed four times in 10 ml of wash buffer, consisting of TBS, containing 2.5% 



 

99 

 

(w/v) dried milk and 0.2% (v/v) Tween-20, at 10 minute intervals with gentle 

agitation at room temperature. Nitrocellulose membranes were then incubated 

for 1 hour with gentle agitation with horseradish peroxidise (HRP) labelled 

secondary antibody, either anti rabbit or anti mouse depending on the what 

the primary antibody was raised in, at a dilution of 1/2000 in 10 ml of 

incubation buffer. The unbound secondary antibody was removed by washing 

the membrane as detailed above. The nitrocellulose was then drained and 

briefly rinsed with TBS.  

Immunoreactive bands on the nitrocellulose membrane were developed by 

processing in a solution containing, 100 μl of 68mM p-coumaric acid, 10 ml of 

1.25 mM luminal and 6 μl of 30% (v/v) H2O2, for 1 minute at room 

temperature. After incubation the immunoblot was wrapped in cling film, and 

placed in a film cassette. The immunoblots were exposed to HyperfilmTM for 

various times between 1-5 minutes. The film was then developed in Kodak D-

19 Developer until the immunoreactive bands were visible and fixed in Kodak 

Unifix for 5 minutes at room temperature.  

 

3.3.8 Immunohistochemical analysis 

Immunohistochemical analysis was carried out as described previously by 

Chazot et al., (2001). Adult mouse brains (perfusion-fixed with 4% (w/v) 

paraformaldehyde (0.05% (v/v) glutaraldehyde in 0.1M phosphate buffer, pH 

7.4). Brains were removed, post-fixed overnight and then cryoprotected by 

incubation in 30% (w/v) sucrose in 0.01 M phosphate buffer, pH 7.4 at 4oC for 

48 hours. The tissue was then frozen at -80oC in isopentane for 1.5 minutes, 

and horizontal sections (25 µm thick) were cut on a cryostat. Free floating 
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sections were initially treated with 10% (v/v) methanol and 3% (v/v) hydrogen 

peroxide in 50 mM TBS, pH7.4, for 10 minutes to quench endogenous 

peroxidise activity. Sections were incubated in TBS, 0.2% (w/v) glycine and 

0.2% (v/v) Tween-20, for 15 minutes to mop up residual un-reacted aldehyde 

groups from the fixative. Non-specific antibody binding sites on the tissue 

were blocked by incubating with 2% (v/v) foetal calf serum in TBS, 0.02% (v/v) 

Tween-20 for 1 hour. Sections where then incubated overnight at 4oC in the 

primary antibody at a range of concentrations (0 – 5 µg/ml) in 1% (v/v) foetal 

calf serum/ TBS. After washing the sections three times in TBS/ 0.1% (v/v) 

Triton X 100, antibody binding was detected using the Vectastain ABC Elite 

kit. The sections were incubated in a biotin linked, anti-rabbit secondary 

antibody for 2 hours followed by incubation for 1 hour with streptavidin-horse 

radish peroxidase (HRP) complex. The immune reaction visualised using 3,3‟-

diaminobenzidine tetrahydrochloride as the HRP substrate. Antibody 

specificity was confirmed by a peptide block test (section 3.3.8.1). In addition 

a control was carried out where the primary antibody and the secondary 

antibody were individually left out to rule out any non-specific binding.   

  

3.3.8.1  Peptide block to confirm antibody specificity 

In order to confirm that immunoreactivity detected either in the immunoblots or 

in immunohistochemical analysis was specific to the amino acid sequence of 

the immunizing peptide, a peptide block was carried out in which the antibody 

was pre-incubated overnight at 4oC with an equal volume of the relevant 

peptide. The peptide concentration during the incubation was 500 µg/ml, 

excess peptide was used to completely block the antibody and therefore 
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prevent it from binding to equivalent binding sites on the immunoblot or on 

slices in the IHC analysis. During incubation of the immunoblot with the 

peptide/antibody solution, the antibody dilution was adjusted to take into 

account the initial 1:2 dilution with the peptide. Any immunoreactive bands or 

staining which persisted after the antibody block were considered to be non-

specific antibody binding.     
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Results 

3.4.1 Final antibody concentrations for all bleeds purified 

The table below shows the final concentrations obtained for the different 

antibodies and different bleeds taken: 

Antibody Bleed 1 Bleed 2  Bleed 3 Bleed 4  Bleed 5 

rH3RA/C 

hH3R445/453 

137 µg/ml 151 µg/ml 150 µg/ml 148 µg/ml  

H3R pan 43 µg/ml 37 µg/ml 74 µg/ml 150 µg/ml 216 µg/ml 

hH3R365 P1 1629 µg/ml 1025 µg/ml 1629 µg/ml   

hH3R365 P2 419 µg/ml 154 µg/ml 359 µg/ml   

hH3R329 354 µg/ml 215 µg/ml 348 µg/ml 548 µg/ml  

hH3R200 341 µg/ml 345 µg/ml    

 
Table 3.1 shows the final concentrations of the pooled antibodies purified from different 
bleeds obtained from rabbits immunized with a particular peptide; 
hH3R (445/453) /  rH3AC (268-277) (Fiona Shenton PhD Thesis 2007) 
H3R pan (346-358) (Batch 2) (Chazot et al., 2001, Victoria Hann PhD Thesis 2004) 
hH3R (365) Peptide 1 (268-281) 

hH3R (365) Peptide 2 (268-278) 
hH3R (329) (222-231) 
hH3R (200) (191-200) 

 

Once the antibody concentration was determined, the antibodies were then 

validated against HEK 293 cells transfected with the respective H3R isoform 

cDNA. The next set of results looks at the validation of each of the antibodies 

generated. 

 

 

 

 



 

103 

 

3.4.2 Antibody validation of the anti-H3R antibodies generated 

 

3.4.2.1 Isoform specificity of the anti-rH3A/C/ hH3R445/453 (268-277) antibody 

The sequence chosen is specific to third intracellular loop region of the rat 

H3RC isoform. The antibody has previously been shown to be selective for the 

rat H3RA, rat H3RC and the human H3R 445 isoform (Fiona Shenton PhD Thesis 

2007 and Cannon et al., 2007). Herein, it was shown that the antibody also 

detects the human H3R453 isoform (Fig 3.4A and 3.B). The H3R453 isoform is 

the result of an additional exon utilised resulting in an additional 8 amino acids 

added at the C-terminus (Wellendorph et al., 2002). The significance of this 

very rare isoform is yet to be determined. 

 

Immunoblot showing labelling of the human H3R445/ 453 isoforms using 

the anti-rH3RAC / hH3R 445/453 antibody: 
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Figure 3.4 (A) Immunoblot of five different human H3R isoforms probed with anti-rH3AC/ 
hH3R445/453 specific antibody. 
Approximately 25 µg of protein/ well were loaded onto a 7.5% PAGE gel. Once transferred 
the membrane was probed with affinity purified anti-rH3AC/ hH3R445/453 antibody (1 µg/ml 
concentration). The antibody detects only the full length hH3R 445 and 453 isoforms with no 
cross reactivity with the shorter isoforms. The lower panel shows the corresponding β-actin, 
probed with monoclonal mouse anti β-actin antibody (1:5000). 
Lane 1, HEK 293 cells untransfected but still contain PEI; Lane 2, HEK 293 cells expressing 
hH3R200; Lane 3, HEK 293 cells expressing hH3R329; Lane 4, HEK 293 cells expressing 
hH3R365; Lane 5, HEK 293 cells expressing hH3R453; Lane 6, HEK 293 cells expressing 
hH3R445.  
 
Figure 3.4 (B) Immunoblot of three different FLAG tagged human H3R isoforms probed with 
anti-FLAG (lanes 1-3) and the anti-rH3AC/ hH3R445/453 specific antibody (lanes 4-7). 
Homogenates of HEK 293 cells transfected with three different human H3R isoforms (329, 
365 and 445), all epitope tagged with FLAG were prepared. Approximately 25 µg of protein/ 
well were loaded onto a 7.5% PAGE gel. Identical sample were run on both left and right 
hand sides of the gel. Once transferred onto a nitrocellulose membrane, the left side panel 
was probed with a monoclonal mouse anti-FLAG antibody (1:5000 dilution) while the right 
side panel probed with affinity purified anti-rH3AC/ hH3R445/453 antibody (1 µg/ml concentration). 
The FLAG antibody reacts with all three isoforms with monomeric species migrating at 
approximately Mr 33, 36, 44 kDa. The anti-rH3AC/ hH3R445/453 antibody detects only the full 
length 445 isoform with no cross reactivity with the two shorter isoforms. Lower panel shows 
corresponding β-actin signal, probed with monoclonal mouse anti β-actin antibody (1:5000). 
Lanes 1 and 5, HEK 293 cells expressing hH3R329; Lanes  2 and 6, HEK 293 cells expressing 
hH3R365; Lanes 3 and 7, HEK 293 cells expressing hH3R445; Lanes 4, HEK 293 cells 
untransfected but still contain PEI. All blots shown are representative blots from at least 8 
similar experiments.  

 

Once the reactivity of antibody against the human H3R isoform transfected 

cells was determined, the selectivity of the antibody was determined (Fig 

3.4C). 
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Selectivity of the anti-rH3AC/ hH3R445/453 antibody using the corresponding 

peptide sequence: 

 

Figure 3.4 (C) Immunoblot confirming the selectivity of the anti-rH3AC / hH3R445/453 antibody.   
Approximately 25 µg of protein/ well were loaded onto a 7.5% PAGE gel. Identical samples 
were run on both left and right hand sides of the gel. Once transferred onto a nitrocellulose 
membrane, the left side was probed with the affinity purified anti-rH3AC/ hH3R445/453 antibody 
(1µg/ml concentration) while the right side was probed with affinity purified anti-rH3AC/ 
hH3R445/453 antibody pre-incubated with the antigen peptide (1 µg/ml concentration). The major 
immunoreactive bands labelled in HEK 293 expressing the hH3R453 or hH3R 445 (lanes 1 and 
2, respectively) were greatly suppressed by pre-incubation with the antigen peptide (lanes 4 
and 5), demonstrating the sequence selectivity of the antibody. Lane 3, HEK 293 cells mock 
transfected. Lower panel shows corresponding β-actin, probed with monoclonal mouse anti β-
actin antibody (1:5000). 

 

The anti-rH3RAC/ hH3R445/453 antibody has been shown to detect the full length 

human and rat isoforms as well as a truncated rH3RC isoform. This antibody is 

useful for looking at the full length H3R in both rodent and human tissue.  

 

3.4.2.2 Isoform specificity of the anti-H3R Pan (349-358) antibody 

The sequence is common to both human and rodent H3R sequences as well 

as a number of isoforms. Previously the antibody has been shown to detect 
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major species in human putamen and rodent brain (Figure 3.5), (Victoria Hann 

PhD Thesis 2004 and Chazot et al., 2001). Immunohistochemical analysis on 

mouse brain using the affinity-purified anti-H3R (349-358) antibody yielded a 

high degree of coincidence with ligand-autoradiographical information, with 

high levels detected in the CA3 and dentate gyrus of the hippocampus, 

laminae V of the cerebral cortex, the olfactory tubercle, Purkinje cell layer of 

the cerebellum, substantia nigra, globus pallidus, thalamus and striatum 

(Martinez et al., 1990, Goodchild et al., 1999 and Drutel et al., 2001). 

 

Immunoblot showing labelling of the human, mouse and rat brain 

homogenates using the anti-H3R Pan antibody: 

 

Figure 3.5 Immunoblot showing H3R pan (346-358) antibody reactivity against native tissue, 
rat, mouse and human. 
Approximately 25 µg of protein/ well were loaded onto a 7.5% PAGE gel. Once transferred 
the membrane was probed with affinity purified anti-H3R pan antibody (1 µg/ml concentration). 
The anti-H3R pan antibody detects a variety of different molecular weight species in human, 
mouse and rat brain likely representing monomeric, dimeric, glycosylated isoforms. Panel 
below shows the corresponding β-actin, probed with monoclonal mouse anti β-actin antibody 
(1:5000). 
Lane 1, Human putamen; Lanes 2, Mouse forebrain; Lanes 3, Rat forebrain. 
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Previous data has shown that the anti-pan H3R antibody detects a variety of 

different molecular weight species in both human and rodent brain 

homogenates. The array of molecular weight species detected is likely to 

represent monomeric, dimeric, and glycosylated H3R isoforms since the 

sequence is common to a number of isoforms. 

 

3.4.2.3 Isoform specificity of the anti-hH3R365 peptide 1 (268-281) 

antibody 

The sequence chosen is specific to the third intracellular loop region in the 

human H3R365 isoform. This antibody was shown to be selective for the 

human H3R365 and H3R445 isoforms (Figure 3.6). 

 

Immunoblot showing labelling of the human H3R445/ 365 isoforms using 

the anti-hH3R365 peptide 1 antibody: 
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Figure 3.6 (A) Immunoblot of five different human H3R isoforms probed with anti-hH3R365 

peptide 1 specific antibody.  
Approximately 25 µg of protein/ well were loaded onto a 7.5% PAGE gel. Once transferred 
the membrane was probed with affinity purified anti-hH3R365 peptide 1 antibody (1 µg/ml 
concentration). The anti-hH3R 365 peptide 1 antibody detects the H3R 365 isoform, but also the 
full length H3R 445 isoform. There was no cross reactivity with the other shorter or longer 
isoforms. Lower panel shows the corresponding β-actin, probed with monoclonal mouse anti 
β-actin antibody (1:5000). 
Lane 1, HEK 293 cells mock transfected; Lane 2, HEK 293 cells expressing hH3R200; Lane 3, 
HEK 293 cells expressing hH3R329; Lane 4, HEK 293 cells expressing hH3R365; Lane 5, HEK 
293 cells expressing hH3R445; Lane 6, HEK 293 cells expressing hH3R453. 

 

Figure 3.6 (B) Immunoblot confirming the expression of FLAG tagged cDNA transfected into 
HEK 293 cells. Blot probed with anti-FLAG specific antibody (1:5000). 

 

The anti-hH3R365 peptide 1 antibody has been shown to detect the full length 

human H3R and the shorter H3R365 isoform. This antibody can be used to look 

at the expression of the human H3R445 and the H3R365 isoforms.  
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3.4.2.4 Isoform specificity of the anti-hH3R365 peptide 2 (268-278) 

antibody 

The sequence chosen is specific to the third intracellular region in the human 

H3R365 isoform. This antibody was shown to be selective for the human H3R445 

isoform only (Figure 3.7). 

   

Immunoblot showing labelling of the human H3R445 isoform using the 

anti-hH3R365 peptide 2 antibody: 
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Figure 3.7 (A) Immunoblot of five different human H3R isoforms probed with anti-hH3R365 

peptide 2 specific antibody. 
Approximately 25 µg of protein/ well were loaded onto a 7.5% PAGE gel. Once transferred 
the membrane was probed with affinity purified anti-hH3R365 peptide 2 antibody (1 µg/ml 
concentration). The anti-hH3R365 peptide 2 antibody detects only the full length H3R 445, but 
not the H3R 365 isoform. No cross reactivity with the other shorter or longer isoforms. Lower 
panel shows the corresponding β-actin, probed with monoclonal mouse anti β-actin antibody 
(1:5000). 
Lane 1, HEK 293 cells mock transfected; Lane 2, HEK 293 cells expressing hH3R200; Lane 3, 
HEK 293 cells expressing hH3R329; Lane 4, HEK 293 cells expressing hH3R365; Lane 5, HEK 
293 cells expressing hH3R445; Lane 6, HEK 293 cells expressing hH3R453. 

 
Figure 3.7 (B)  Immunoblot confirming the expression of FLAG tagged cDNA transfected into 
HEK 293 cells. Blot probed with anti-FLAG specific antibody (1:5000). 

 

The anti-hH3R365 peptide 2 antibody was shown to detect the full length 

human H3R445 isoform.  

 

3.4.2.5 Isoform specificity of the anti-hH3R329 (222-231) antibody 

The sequence selected is specific to the third intracellular loop region in the 

human H3R329 isoform. This antibody was shown to be selective for the human 

H3R329 isoform (Figure 3.8).   
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Immunoblot showing labelling of the human H3R329 isoform using the 

anti-hH3R329 antibody: 

 

 

Figure 3.8 (A) Immunoblot of five different human H3R isoforms probed with anti-hH3R329 

specific antibody. 
Approximately 25 µg of protein/ well were loaded onto a 7.5% PAGE gel. Once transferred 
the membrane was probed with affinity purified anti-hH3R329 antibody (3 µg/ml concentration). 
The anti-hH3R329 antibody detects only the H3R 329 isoform. No cross reactivity with the other 
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shorter or longer isoforms was detected. Lower panel shows the corresponding β-actin, 
probed with monoclonal mouse anti β-actin antibody (1:5000). 
Lane 1, HEK 293 cells mock transfected; Lane 2, HEK 293 cells expressing hH3R200; Lane 3, 
HEK 293 cells expressing hH3R329; Lane 4, HEK 293 cells expressing hH3R365; Lane 5, HEK 
293 cells expressing hH3R445; Lane 6,HEK 293 cells expressing hH3R453. 
 
Figure 3.8 (B) Immunoblot of three different FLAG tagged human H3R isoforms probed with 
anti-FLAG (lanes 1-3) and the anti-hH3R329 specific antibody (lanes 4-6). 
Homogenates of HEK 293 cells transfected with three different human H3R isoforms (329, 
365 alone OR 329 + 445), all epitope tagged with FLAG. Approximately 25 µg of protein/ well 
were loaded onto a 7.5% PAGE gel. Identical samples were run on both left and right hand 
sides of the gel. Once transferred onto a nitrocellulose membrane, the left side was probed 
with a monoclonal mouse anti-FLAG antibody (1:5000 dilution) while the right probed with 
affinity purified anti-hH3R329 antibody (3 µg/ml concentration). The anti-hH3R329 antibody 
detects only the 329 isoform with no cross reactivity with the other longer isoforms.  
Lanes 1 and 4, HEK 293 cells expressing hH3R329; Lanes  2 and 5, HEK 293 cells expressing 
hH3R365; Lanes 3 and 6, HEK 293 cells co-expressing hH3R445 and hH3R329. 

 

The anti-hH3R329 antibody was shown to be selective for the hH3R329 isoform.  

 

3.4.2.6 Isoform specificity of the H3R200/ isoform 5 (191-200) antibody 

The sequence was generated to the C terminus of the human H3R200 because 

of its unique C terminal sequence. The antibody was shown to detect 

immunoreactivity in both human putamen (not shown) and recombinant HEK 

293 cells expressing the H3R200 cDNA (Fig 3.9).   
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Immunoblot showing labelling of the human H3R200 isoform using the 

anti-hH3R200 antibody: 

 

 

Figure 3.9 Immunoblot of five different human H3R isoforms probed with anti-hH3R200 specific 
antibody. 
Approximately 25 µg of protein/ well were loaded onto a 10% PAGE gel. Once transferred the 
membrane was probed with affinity purified anti-hH3R200 antibody (3 µg/ml concentration). The 
anti-hH3R200 antibody detects only the 200 isoform. No cross reactivity with the longer 
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isoforms was detected. Lower panel shows the corresponding β-actin, probed with 
monoclonal mouse anti β-actin antibody (1:5000). 
Lane 1, HEK 293 cells mock transfected; Lane 2, HEK 293 cells expressing hH3R200; Lane 3, 
HEK 293 cells expressing hH3R329; Lane 4, HEK 293 cells expressing hH3R365; Lane 5, HEK 
293 cells expressing hH3R445; Lane 6, HEK 293 cells expressing hH3R453. 

 

Figure 3.9 (B) Immunoblot confirming the expression of FLAG tagged cDNA transfected into 
HEK 293 cells. Probed with anti-FLAG specific antibody (1:5000). 

 

The anti-hH3R200 antibody was shown to be selective for the hH3R200 isoform 

 

The antibodies generated have been validated against recombinantly 

expressed cDNA and specific immunoreactivity demonstrated by competition 

binding with the respective peptide. The antibodies was then used to look at 

the expression of the H3R in both rodent and human CNS.  Initially, the anti-

pan H3R antibody and the anti-rH3AC/ hH3R445/453 antibody that have been 

shown to detect rodent H3R isoforms were used to look at the expression 

profile of the H3R in two mouse strains (CD-1 and TASTPM). These 

antibodies were then used to determine whether the H3R is preserved with 

age and in age related dementias in two mouse strains, CD-1 mice, previously 

shown to have premature learning deficits, and TASTPM mice, a mouse 

model of AD. 

  

3.4.3 Immunoblotting and immunohistochemical analysis using two 

rodent specific antibodies to compare the immunoreactivity in 

TASTPM and CD-1 mice with age. 

The anti-H3R pan and anti-H3C/ hH3R445/453 antibodies were used to determine 

whether H3R expression was altered in two mouse models. CD-1 mice, known 

to have premature age-related learning deficits in first 12 months of age (in 

house published behavioural data), and TASTPM mice, a mouse model of AD 
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(age-dependent learning deficits within 7 months confirmed in house). These 

mice strains were selected to look at H3R expression because of their 

premature learning phenotype. Pre-clinical and clinical studies have 

elucidated the use of H3R antagonists in learning and memory. The rationale 

for looking at H3R expression is to determine whether expression is changed 

with aging or with disease. If expression is unaltered it would indicate that the 

H3R is a valid available therapeutic target for the treatment of cognitive deficits 

in dementia related diseases.  

 

Brain tissue samples from 18 mice: 9 CD-1 and 9 TASTPM were used; left 

hemisphere subjected to semi-quantitative immunohistochemistry and the 

right hemisphere to quantitative immunoblotting.  

 

Immunoblot showing CD-1 mouse timeline labelled using the anti-pan 

H3R antibody: 
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Figure 3.10 (A) Immunoblot of CD-1 mice at three age points 3, 10 and 12 months probed 
with anti-H3R PAN antibody. Immunoreactive bands detected with the anti-H3R antibodies 
were normalized to β-actin. 
Approximately 50 µg of protein/ well were loaded onto a 7.5% PAGE gel. Once transferred 
the membrane was probed with affinity purified anti-H3R PAN antibody (1 µg/ml 
concentration). The anti-H3R pan antibody detected a variety of different molecular weight 
species in mouse brain, five major bands (Mr 100,000, 90,000, 74,000 58,000 and 50,000) 
were detected. Lower panel shows the corresponding β-actin, probed with monoclonal mouse 
anti β-actin antibody (1:5000). 
Lane 1, 2, 3, CD-1 mouse forebrain from 3 separate mice at 3 months.  
Lane 4, 5, 6, CD-1 mouse forebrain from 3 separate mice at 10 months. 
Lane 7, 8, 9, CD-1 mouse forebrain from 3 separate mice at 12 months. 
All blots shown are representative blots from at least 5 similar experiments. 
 

The molecular weight species detected are likely to represent homo- and 

hetero-dimers, glycosylation, proteolytic fragments of the H3R and its 

respective isoforms. The bands at 50kDa and 90kDa represent the 

monomeric and dimeric versions of the full length rat H3R receptor.  

 

3.4.3.1 Mean immunoreactive intensity of each of the protein species 

detected using the anti-pan H3R antibody in CD-1 timeline 
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Figure 3.11 Comparing the immunoreactivity of CD-1 mice at three age points 3, 10 and 12 
months probed with anti-H3R PAN antibody. Immunoreactive bands detected with the anti-
H3R antibodies were normalized to β-actin. Data show the mean immunoreactive intensity + 
SEM for n = 3 determinations. Statistical significance was determined from the generated p 
value, where p<0.05 was considered to show significance. 
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Figure 3.11 shows there were significant decreases in the immunoreactive 

banding intensity with the anti-H3R PAN antibody at 12 months compared to 3 

months, for the molecular weight species migrating at 100kDa (p<0.01). The 

immunoreactivity for the 50kDa band was significantly lower in the 12 month 

CD-1 mice compared with both the 3 and 10 month time point (p<0.01). There 

appears to be a general trend for a decrease in immunoreactivity with 

increasing age between 10 and 12 month. A similar result was obtained for 

the corresponding immunohistochemistry (IHC), see below.  

 

Immunoblotting would suggest that there appears to be a general decrease in 

some of the immunoreactive species detected with anti-pan H3R antibody 

between the 10 - 12 month age points in CD-1 mouse forebrain.  

 

The anti-pan H3R antibody was then used to determine whether the H3R was 

preserved in the brain of CD-1 mice over 3, 10, 12 & 19 months, using IHC.  
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IHC showing H3R labelling in the cortex of CD-1 mice timeline at 3, 10, 12 

& 19 months: 

 

Figure 3.12 (A) Immunohistochemistry of CD-1 mice cortex at four age points 3, 10, 12 and 
19 months probed with anti-H3R PAN antibody. C represents control experiment incubated 
without either the primary antibody or secondary antibody. H3R immunoreactivity was 
detected in layers I-VI of the cortex, with intense labelling detected in layer V.  
Immunostaining of mouse 20µm sagittal brain slice (X20). Scale bar = 200 µm and represents 
all images shown. All immunohistochemistry data shown are representative images from at 
least 3 repeats for each time point. 
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IHC showing H3R labelling in the CA1 of CD-1 mice timeline at 3, 10, 12 & 

19 months: 

 

Figure 3.12 (B) Immunohistochemistry of CD-1 mice CA1 at four age points 3, 10, 12 and 19 
months probed with anti-H3R PAN antibody. C represents control experiment incubated 
without either the primary antibody or secondary antibody. H3R immunoreactivity was intense 
on the dendrites in the stratum radiatum (SR) and stratum oriens (SO). Immunostaining of 
mouse 20 µm sagittal brain slice (X20). Scale bar = 200 µm and represents all images shown. 
All immunohistochemistry data shown are representative images from at least 3 repeats for 
each time point. 
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IHC showing H3R labelling in the CA2/3 of CD-1 mice timeline at 3, 10, 12 

& 19 months: 

 

Figure 3.12 (C) Immunohistochemistry of CD-1 mice CA2/CA3 at four age points 3, 10, 12 
and 19 months probed with anti-H3R PAN antibody. C represents control experiment 
incubated without either the primary antibody or secondary antibody. H3R immunoreactivity 
was intense on the dendrites in the stratum lucidum (SL). Scale bar = 200 µm and represents 
all images shown. Immunostaining of mouse 20 µm sagittal brain slice (X20). All 
immunohistochemistry data shown are representative images from at least 3 repeats for each 
time point. 
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IHC showing H3R labelling in the dentate gyrus of CD-1 mice timeline at 

3, 10, 12 & 19 month: 

 

Figure 3.12 (D) Immunohistochemistry of CD-1 mice dentate gyrus at four age points 3, 10, 
12 and 19 months probed with anti-H3R PAN antibody. C represents control experiment 
incubated without either the primary antibody or secondary antibody. DG represents dentate 
gyrus. H3R immunoreactivity was intense in the hilus region (Hi) of the dentate gyrus.  
Immunostaining of mouse 20 µm sagittal brain slice (X20). Scale bar = 200 µm and 
represents all images shown. All immunohistochemistry data shown are representative 
images from at least 3 repeats for each time point. 
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IHC showing H3R labelling in the cerebellum of CD-1 mice timeline at 3, 

10, 12 & 19 months: 

 
 
Figure 3.12 (E) Immunohistochemistry of CD-1 mice cerebellum at four age points 3, 10, 12 
and 19 months probed with anti-H3R PAN antibody. C represents control experiment 
incubated without either the primary antibody or secondary antibody. H3R immunoreactivity 
was associated with the cerebellar granule cells (Gc) and basket cells (Bc) of the cerebellum.  
Immunostaining of mouse 20 µm sagittal brain slice (X20). Scale bar = 200 µm and 
represents all images shown. All immunohistochemistry data shown are representative 
images from at least 3 repeats for each time point. 
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IHC data would suggest that immunostaining detected using the anti-pan H3R 

antibody is preserved between 3-10 months in the cortex, CA1, 2 & 3, dentate 

gyrus and cerebellum of CD-1 brain. However, at 19 months a dramatic 

decrease in immunostaining was observed in all areas of the CD-1 brain.  

The anti-pan H3R antibody was then used to determine whether the H3R was 

preserved in dementia related diseases, in TASTPM mice, a model of AD. 

 

Immunoblot showing TASTPM mouse timeline labelled using the anti-

pan H3R antibody: 

 

 

Figure 3.13 (A) Immunoblot of TASTPM mice at three age points 3, 7 and 12 months probed 
with anti-H3R PAN antibody. Immunoreactive bands detected with the anti-H3R antibodies 
were normalized to β-actin. 
Approximately 50 µg of protein/ well were loaded onto a 7.5% PAGE gel. Once transferred 
the membrane was probed with affinity purified anti-H3R PAN antibody (1 µg/ml 
concentration). The anti-H3R pan antibody detects a variety of different molecular weight 
species in mouse brain, five major bands (Mr 100,000, 90,000, 74,000, 60,000 and 50,000) 
were detected. Lower panel shows the corresponding β-actin, probed with monoclonal mouse 
anti β-actin antibody (1:5000). 
Lane 1, 2, 3, TASTPM mouse forebrain from 3 separate mice at 3 months.  
Lane 4, 5, 6, TASTPM mouse forebrain from 3 separate mice at 7 months. 
Lane 7, 8, 9, TASTPM mouse forebrain from 3 separate mice at 12 months. 
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The molecular weight protein species detected are likely to represent homo- 

and hetero-dimers, glycosylation, proteolytic fragments of the H3R and its 

respective isoforms. The bands at 50kDa and 90kDa represent monomeric 

and dimeric versions of the full length receptor.  

 

3.4.3.2 Mean immunoreactive intensity of each of the molecular weight  

protein species detected using the anti-pan H3R antibody in TASTPM 
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Figure 3.14 Comparing the immunoreactivity of TASTPM mice at three age points 3, 7 and 
12 months probed with anti-H3R PAN antibody. Immunoreactive bands detected with the anti-
H3R antibodies were normalized to β-actin. Mean immunoreactive intensity + SEM for n = 3 
determinations. Statistical significance was determined from the generated p value, where 
p<0.05 was considered to show significance. 
 

Figure 3.14 shows there were significant differences in the immunoreactivity 

of the banding detected with the anti-H3R PAN antibody between the 3 age 

time points. Molecular weight species 100kDa and 74kDa had significantly 

higher immunoreactivity in the 7 month TASTPM mice compared with the 12 
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months (p<0.001 and p<0.05). Molecular weight species migrating at 74kDa 

had significantly higher immunoreactivity in the 7 month TASTPM mice 

compared with the 3 months (p<0.05). The band migrating at 100kDa had 

significantly higher immunoreactivity in the 3 month TASTPM mice compared 

with the 12 months (p<0.05). Generally more intense banding was detected at 

age 7 months in TASTPM mice brain compared with 3 and 12 months, a 

similar result was also obtained for the IHC, below and by autoradiography 

(chapter 5).  

 

Immunoblotting would suggest that there appears to be a general increase in 

H3R expression at 7 months in TASTPM mice, which decreases by 12 months 

back to similar levels detected in the 3 month old TATSPM mice.  

 

The anti-pan H3R antibody was then used to determine whether the H3R was 

preserved in the brain of TASTPM mice over 3, 7, & 12 months, using IHC.  
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IHC showing H3R labelling in the cortex of TASTPM mice timeline at 3, 7 

& 12 months: 

 

Figure 3.15 (A) Immunohistochemistry of TASTPM mice cortex at three age points 3, 7 and 
12 months probed with anti-H3R PAN antibody. C represents control experiment incubated 
without either the primary antibody or secondary antibody. H3R immunoreactivity was 
detected in layers I-VI of the cortex.  Scale bar = 200 µm and represents all images shown. 
Immunostaining of mouse 20 µm brain slice (X20). All immunohistochemistry data shown are 
representative images from at least 3 repeats for each time point. 
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IHC showing H3R labelling in the CA1 of TASTPM mice timeline at 3, 7 & 

12 months: 

 

Figure 3.15 (B) Immunohistochemistry of TASTPM mice CA1 at three age points 3, 7 and 12 
months probed with anti-H3R PAN antibody. C represents control experiment incubated 
without either the primary antibody or secondary antibody. H3R immunoreactivity was intense 
on the dendrites in the stratum radiatum (SR) and stratum oriens (SO). Scale bar = 200 µm 
and represents all images shown. Immunostaining of mouse 20 µm brain slice (X20). All 
immunohistochemistry data shown are representative images from at least 3 repeats for each 
time point. 
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IHC showing H3R labelling in the CA2/3 of TASTPM mice timeline at 3, 7 

& 12 months: 

 

Figure 3.15 (C) Immunohistochemistry of TASTPM mice CA2/ CA3 at three age points 3, 7 
and 12 months probed with anti-H3R PAN antibody. C represents control experiment 
incubated without either the primary antibody or secondary antibody. H3R immunoreactivity 
was intense on the dendrites in the stratum lucidum (SL). Scale bar = 200 µm and represents 
all images shown. Immunostaining of mouse 20 µm brain slice (X20). All 
immunohistochemistry data shown are representative images from at least 3 repeats for each 
time point. 
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IHC showing H3R labelling in the dentate gyrus of TASTPM mice timeline 

at 3, 7 & 12 months; 

 

Figure 3.15 (D) Immunohistochemistry of TASTPM mice dentate gyrus at three age points 3, 
7 and 12 months probed with anti-H3R PAN antibody. C represents control experiment 
incubated without either the primary antibody or secondary antibody. DG represents dentate 
gyrus. H3R immunoreactivity was intense in the hilus region (Hi) of the dentate gyrus.  Scale 
bar = 200 µm and represents all images shown. Immunostaining of mouse 20 µm brain slice 
(X20). All immunohistochemistry data shown are representative images from at least 3 
repeats for each time point. 
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IHC showing H3R labelling in the cerebellum of TASTPM mice timeline at 

3, 7 & 12 months; 

 

Figure 3.15 (E) Immunohistochemistry of TASTPM mice cerebellum at three age points 3, 7 
and 12 months probed with anti-H3R PAN antibody. C represents control experiment 
incubated without either the primary antibody or secondary antibody. H3R immunoreactivity 
was associated with the cerebellar granule cells (Gc) and basket cells (Bc) of the cerebellum. 
Scale bar = 200 µm and represents all images shown. Immunostaining of mouse 20µm 
sagittal brain slice (X20). All immunohistochemistry data shown are representative images 
from at least 3 repeats for each time point. 

 
 
IHC data would suggest that immunostaining detected using the anti-pan H3R 

antibody is preserved between 3-12 months in the cortex, CA1, 2 & 3, dentate 

gyrus and cerebellum of CD-1 brain. However, at 7 months there was an 

apparent increase in immunostaining in all areas of the TASTPM brain.  
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The anti-pan H3R antibody was used to confirm the preservation of the H3R as 

a general population in both CD-1 (up to 10 months) and TASTPM mice brain 

(up to 7 months). Now the anti-rH3AC/ hH3R445/453 antibody will be used to 

determine whether two of the mouse isoforms the H3RA/ 445 and H3RC/ 397 are 

preserved in aging and age-related dementias.   

 
Immunoblot showing CD-1 mouse timeline labelled using the anti-rH3AC/ 

hH3R445/453 antibody: 

 

 

Figure 3.16 (A) Immunoblot of CD-1 mice at three age points 3, 10 and 12 months probed 
with anti-rH3AC/ hH3R445/453 antibody. Immunoreactive bands detected with the anti-rH3AC/ 
hH3R445/453 antibody were normalized to β-actin. 
Approximately 50 µg of protein/ well were loaded onto a 7.5% PAGE gel. Once transferred 
the membrane was probed with affinity purified anti-rH3AC/ hH3R445/453 antibody (1 µg/ml 
concentration). The antibody detects a single band in mouse brain migrating at approximately 
Mr 45 kDa. Lower panel shows the corresponding β-actin, probed with monoclonal mouse anti 
β-actin antibody (1:5000). 
Lane 1, 2, 3, CD-1 mouse forebrain from 3 separate mice at 3 months.  
Lane 4, 5, 6, CD-1 mouse forebrain from 3 separate mice at 10 months. 
Lane 7, 8, 9, CD-1 mouse forebrain from 3 separate mice at 12 months. 
All blots shown are representative blots from at least 5 similar experiments. 

 

The single band detected represents the full length mouse H3RA monomer 

migrating at approximately 45kDa.  
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3.4.2.3 Mean immunoreactive intensity of the single band detected using 

the anti-rH3AC/ hH3R445/453 antibody in CD-1 timeline 
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Figure 3.17 Comparing the immunoreactivity of CD-1 mice at three age points 3, 10 and 12 
months probed with anti-rH3AC/ hH3R445/453 antibody. Immunoreactive bands detected with the 
anti-H3R antibodies were normalized to β-actin. Data show the mean immunoreactive 
intensity + SEM for n determinations. Statistical significance was determined from the 
generated p value, where p<0.05 was considered to show significance. 
 

Figure 3.17 shows there were no significant differences in the immunoreactive 

banding detected with the anti-rH3AC/ hH3R445/453 antibody over the 3 age time 

points, (3 - 12 months). A similar result was obtained with the IHC, shown 

below.  

The anti-rH3AC/ hH3R445/453 antibody was then used to determine whether the 

mouse H3R445 isoform was preserved in the brain of CD-1 mouse over 3, 10, 

12 & 19 months.  
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IHC showing H3R labelling in the cortex of CD-1 mice timeline at 3, 10, 12 

& 19 months: 

 

Figure 3.18 (A) Immunohistochemistry of CD-1 mice cortex at four age points 3, 10, 12 and 
19 months probed with anti-rH3AC/ hH3R445/453 antibody. C represents control experiment 
incubated without either the primary antibody or secondary antibody. H3R immunoreactivity 
was detected in layers I-VI of the cortex. Scale bar = 200 µm and represents all images 
shown. Immunostaining of mouse 20 µm brain slice (X20). All immunohistochemistry data 
shown are representative images from at least 3 repeats for each time point. 
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IHC showing H3R labelling in the CA1 of CD-1 mice timeline at 3, 10, 12 & 

19 months: 

 

Figure 3.18 (B) Immunohistochemistry of CD-1 mice CA1 at four age points 3, 10, 12 and 19 
months probed with anti-rH3AC/ hH3R445/453 antibody. C represents control experiment 
incubated without either the primary antibody or secondary antibody. H3R immunoreactivity 
was present in the cell somata of the stratum pyramidale (SP). H3R immunoreactivity was 
intense on the dendrites in the stratum radiatum (SR) and stratum oriens (SO). Scale bar = 
200 µm and represents all images shown. Immunostaining of mouse 20 µm brain slice (X20). 
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All immunohistochemistry data shown are representative images from at least 3 repeats for 
each time point. 

 

IHC showing H3R labelling in the CA2/3 of CD-1 mice timeline at 3, 10, 12 

& 19 months: 

 

Figure 3.18 (C) Immunohistochemistry of CD-1 mice CA2/ CA3 at four age points 3, 10, 12 
and 19 months probed with anti-rH3AC/ hH3R445/453 antibody. C represents control experiment 
incubated without either the primary antibody or secondary antibody. H3R immunoreactivity 
was intense on the dendrites in the stratum lucidum (SL). Immunostaining of mouse 20 µm 
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brain slice (X20). Scale bar = 200 µm and represents all images shown. All 
immunohistochemistry data shown are representative images from at least 3 repeats for each 
time point. 

 

IHC showing H3R labelling in the dentate gyrus of CD-1 mice timeline at 

3, 10, 12 & 19 months: 

 

Figure 3.18 (D) Immunohistochemistry of CD-1 mice dentate gyrus at four age points 3, 10, 
12 and 19 months probed with anti-rH3AC /hH3R445/453 antibody. C represents control 
experiment incubated without either the primary antibody or secondary antibody. DG 
represents dentate gyrus. H3R immunoreactivity was intense in the hilus region (Hi) of the 

DG 

Hi 
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dentate gyrus.  Immunostaining of mouse 20 µm sagittal brain slice (X20). Scale bar = 200 
µm and represents all images shown.  All immunohistochemistry data shown are 
representative images from at least 3 repeats for each time point. 
.  

 

IHC showing H3R labelling in the cerebellum of CD-1 mice timeline at 3, 

10, 12 & 19 months: 

 

Bc 

Gc 
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Figure 3.18 (E) Immunohistochemistry of CD-1 mice cerebellum at four age points 3, 10, 12 
and 19 months probed with anti-rH3AC/ hH3R445/453 antibody. C represents control experiment 
incubated without either the primary antibody or secondary antibody. H3R immunoreactivity 
was associated with the cerebellar granule cells (Gc) and basket cells (Bc) of the cerebellum.  
Immunostaining of mouse 20 µm brain slice (X20). Scale bar = 200 µm and represents all 
images shown. All immunohistochemistry data shown are representative images from at least 
3 repeats for each time point 

  

IHC data would suggest that immunostaining detected using the anti-rH3AC/ 

hH3R445/453 antibody is preserved between 3-19 months in the cortex, CA1, 2 

& 3, dentate gyrus and cerebellum of CD-1 brain.  

The anti-rH3AC/ hH3R445/453 antibody was then used to determine whether the 

H3R was preserved in dementia related diseases, in TASTPM mice, a model 

of AD. 

 

Immunoblot showing TASTPM mouse timeline labelled using the anti-

rH3AC/ hH3R445/453 antibody: 

 

Figure 3.19 (A) Immunoblot of TASTPM mice at three age points 3, 7 and 12 months probed 
with anti-rH3AC/ hH3R445/453 antibody. Immunoreactive bands detected with the anti-H3R 
antibodies were normalized to β-actin. 
Approximately 50µg of protein/ well were loaded onto a 7.5% separating gel. Once transferred 
the membrane was probed with affinity purified anti-rH3AC/ hH3R445/453 antibody (1 µg/ml 
concentration). The antibody detects three major species in mouse brain, Mr 38,000, 45,000, 
90,000 respectively. Lower panel shows the corresponding β-actin, probed with monoclonal 
mouse anti β-actin antibody (1:5000). 
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Lane 1, 2, 3, TASTPM mouse forebrain from 3 separate mice at 3 months.  
Lane 4, 5, 6, TASTPM mouse forebrain from 3 separate mice at 7 months. 
Lane 7, 8, 9, TASTPM mouse forebrain from 3 separate mice at 12 months. 

 

The three immunoreactive bands detected in TASTPM mouse brain using the 

anti-rH3AC/ hH3R445/453 antibody are likely to represents the full length H3R 

migrating at approximately 50kDa and a dimeric version of the full length 

migrating at 90kDa. The smallest fragment migrating at approximately at 

38kDa is likely to represent the mH3R 397 isoform.   

 

3.4.2.4 Mean immunoreactive intensity of each of the molecular weight  

species detected using the anti-rH3AC/ hH3R445/453 antibody in TASTPM 

timeline 
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Figure 3.20 Comparing the immunoreactivity of TASTPM mice at three age points 3, 7 and 
12 months probed with anti-H3C/ anti-hH3R445/453 antibody. Immunoreactive bands detected 
with the anti-H3R antibodies were normalized to β-actin. Data show the mean immunoreactive 
intensity + SEM for n = 3 determinations. Statistical significance was determined from the 
generated p value, where p<0.05 was considered to show significance. 
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Figure 3.20 shows there were significant differences in the immunoreactive 

banding detected with the anti-rH3AC/ hH3R445/453 antibody between the 3 age 

time points. Bands migrating at 90kDa and 45kDa had significantly lower 

immunoreactivity in the 12 month TASTPM mice compared with the 3 (p<0.05 

and p<0.05) and 7 months (p<0.001 and P<0.05), respectively, suggesting 

that at 12 months there is a decrease in the full length H3R expression in the 

CNS of TASTPM mice.  

 

The anti-rH3AC/ hH3R445/453 antibody was then used to determine whether the 

H3R 445 isoform was preserved in the brain of TASTPM mouse over 3, 7, & 12 

months.  
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IHC showing H3R labelling in the cortex of TASTPM mice timeline at 3, 7 

& 12 months: 

 

Figure 3.21 (A) Immunohistochemistry of TASTPM mice cortex at three age points 3, 7 and 
12 months probed with anti-rH3AC/ hH3R445/453 antibody. C represents control experiment 
incubated without either the primary antibody or secondary antibody. H3R immunoreactivity 
was detected in layers I-VI of the cortex. Scale bar = 200 µm and represents all images 
shown. Immunostaining of mouse 20 µm brain slice (X20). All immunohistochemistry data 
shown are representative images from at least 3 repeats for each time point. 
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IHC showing H3R labelling in the CA1 of TASTPM mice timeline at 3, 7 & 

12 months: 

 

Figure 3.21 (B) Immunohistochemistry of TASTPM mice CA1 at three age points 3, 7 and 12 
months probed with anti-rH3AC / hH3R 445/453 antibody. C represents control experiment 
incubated without either the primary antibody or secondary antibody. H3R immunoreactivity 
was present in the cell somata of the stratum pyramidale (SP). Immunostaining of mouse 20 
µm brain slice (X20). Scale bar = 200 µm and represents all images shown. All 
immunohistochemistry data shown are representative images from at least 3 repeats for each 
time point. 
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IHC showing H3R labelling in the CA2/3 of TASTPM mice timeline at 3, 7 

& 12 months: 

 

Figure 3.21 (C) Immunohistochemistry of TASTPM mice CA2/CA3 at three age points 3, 7 
and 12 months probed with anti-rH3AC / hH3R 445/453 antibody. C represents control experiment 
incubated without either the primary antibody or secondary antibody. H3R immunoreactivity 
was intense on the dendrites in the stratum lucidum (SL). Immunostaining of mouse 20 µm 
brain slice (X20). Scale bar = 200 µm and represents all images shown. All 
immunohistochemistry data shown are representative images from at least 3 repeats for each 
time point. 
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IHC showing H3R labelling in the dentate gyrus of TASTPM mice timeline 

at 3, 7 & 12 months: 

 

Figure 3.21 (D) Immunohistochemistry of TASTPM mice dentate gyrus at three age points 3, 
7 and 12 months probed with anti-rH3AC / hH3R 445/453 antibody. C represents control 
experiment incubated without either the primary antibody or secondary antibody. DG 
represents dentate gyrus. H3R immunoreactivity was intense in the hilus region (Hi) of the 
dentate gyrus. Immunostaining of mouse 20 µm brain slice (X20). Scale bar = 200 µm and 
represents all images shown. All immunohistochemistry data shown are representative 
images from at least 3 repeats for each n number. 
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IHC showing H3R labelling in the cerebellum of TASTPM mice timeline at 

3, 7 & 12 months: 

 

Figure 3.21 (E) Immunohistochemistry of TASTPM mice cerebellum at three age points 3, 7 
and 12 months probed with anti-rH3AC/ hH3R445/453 antibody. C represents control experiment 
incubated without either the primary antibody or secondary antibody. H3R immunoreactivity 
was associated with the cerebellar granule cells (Gc) and basket cells (Bc) of the cerebellum. 
Immunostaining of mouse 20 µm brain slice (X20). Scale bar = 200 µm and represents all 
images shown. All immunohistochemistry data shown are representative images from at least 
3 repeats for each time point. 

 

IHC data would suggest that the mouse H3RA/C isoforms detected using the 

anti-rH3AC/ hH3R445/453 antibody are preserved between 3 - 12 months in the 

cortex, CA1, 2 & 3, dentate gyrus and cerebellum of TASTPM brain.  
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Two rodent specific H3R antibodies have been used to determine H3R 

expression in the CNS and to show that H3R expression in largely preserved 

in cortical and striatal regions of the murine CNS. However, there was 

regional variation in the levels of some of the H3R isoform. 

 

To date only the rodent H3R protein expression has been demonstrated using 

immunological probes. This next section of data will use the human isoform 

specific immunological probes to show for the first time that human H3R 

isoforms are expressed at the protein level in the human CNS.   

 

3.4.3 Immunobiochemical analysis of the anti-hH3R antibodies in human 

central nervous disease cases. 

The anti-hH3R365/445 and the anti-hH3R329 antibodies were used to determine 

whether these H3R isoforms are expressed in the human CNS and whether 

expression is changed in two Lewy body disease states, Parkinson‟s Disease 

(PD) and Dementia with Lewy bodies (DLB) compared with age matched 

control (C) cases.  Brain tissue samples from 9 human brain case samples: 3 

x PD, 3 x C and 3 x DLB were used.  
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Immunoblot showing human putamen labelled using the anti-hH3R365/445 

antibody: 

 

Figure 3.22 (A) Immunoblot of homogenised human brain, comparing two Lewy body disease 
states Parkinson‟s Disease (PD) and Dementia with Lewy bodies (D) with control (C) human 
brain probed with anti-hH3R365/445 antibody. Immunoreactive bands detected with the anti-H3R 
antibodies were normalized to β-actin. Approximately 25 µg of protein/ well were loaded onto 
a 10% separating gel. Once transferred the membrane was probed with affinity purified anti-
hH3R365/445 antibody (1 µg/ml concentration). The antibody detects two bands in human brain, 
Mr 45 (top band) and 38 kDa (bottom band), respectively. Lower panel shows the 
corresponding β-actin, probed with monoclonal mouse anti β-actin antibody (1:5000). 
Lane 1, 2, 3, Human brain putamen, Parkinson‟s Disease, 3 individual cases 
Lane 4, 5, 6, Human brain putamen, control, 3 individual cases 
Lane 7, 8, 9, Human brain putamen, Dementia with Lewy bodies, 3 individual cases 

 

3.4.3.1 Mean immunoreactive intensity of each of the protein species 

detected using the anti-hH3R365/445 antibody in human putamen 
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Figure 3.23 Comparing the immunoreactivity of control human brain with two Lewy body 
disease states Parkinson‟s Disease (PD) and Dementia with Lewy bodies (D) probed with 
anti-hH3R365/445 antibody. Immunoreactive bands detected with the anti-H3R antibodies were 
normalized to β-actin. Data shows the mean immunoreactive intensity + SEM for n 
determinations. Statistical significance was determined from the generated p value, where 
p<0.05 was considered to show significance. 
 

Figure 3.23 shows there were two bands detected, one migrating at 45kDa, 

representing the putative full length human H3R445 and another at 38kDa, and 

representing the putative human H3R365 isoform. No significant difference in 

immunoreactivity was detected for the 38kDa band between the three groups 

however, the immunoreactivity detected for the 45kDa band was significantly 

stronger in DLB cases compared to PD and C cases (p<0.01 and p<0.01), 

respectively. These preliminary results suggest that full length human H3R 

expression maybe up-regulated in DLB.  

 

The next set of data will determine whether the human H3R329 isoform is 

expressed in the human brain and whether its expression is altered between 

the different disease states. 

 

Immunoblot showing human putamen labelled using the anti-hH3R329 

antibody: 
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Figure 3.24 (A) Immunoblot of homogenised human brain, comparing two Lewy body disease 
states Parkinson‟s Disease (PD) and Dementia with Lewy bodies (D) with control human 
brain probed with anti-hH3R329 antibody. Immunoreactive bands detected with the anti-H3R 
antibodies were normalized to β-actin. 
Approximately 25 µg of protein/ well were loaded onto a10% PAGE gel. Once transferred the 
membrane was probed with affinity purified anti-hH3R329 antibody (3 µg/ml concentration). The 
antibody detects a single band in human brain, migrating at approximately Mr 30 kDa. Panel 
below shows the corresponding β-actin, probed with monoclonal mouse anti β-actin antibody 
(1:5000). 
Lane 1, 2, 3, Human brain putamen, Parkinson‟s Disease, 3 individual cases 
Lane 4, 5, 6, Human brain putamen, control, 3 individual cases 
Lane 7, 8, 9, Human brain putamen, Dementia with Lewy bodies, 3 individual cases 

 

3.4.3.2 Mean immunoreactive intensity of the single band detected using 

the anti-hH3R 329 antibody in human putamen 
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Figure 3.25 Comparing the immunoreactivity of control human brain with two dementia 
associated disease states Parkinson‟s Disease (PD) and Dementia with Lewy bodies (D) 
probed with anti-hH3R329 antibody. Immunoreactive bands detected with the anti-H3R 
antibodies were normalized to β-actin. Data shows the mean immunoreactive intensity + SEM 
for n = 3 determinations. Statistical significance was determined from the generated p value, 
where p<0.05 was considered to show significance. 
 

Figure 3.25 shows there was no significant difference in immunoreactive 

intensity detected with the anti-hH3R329 antibody between the three disease 

states. However, there does appear to be a profound increase in 

immunoreactivity in the PD cases versus control and DLB cases. There 

appears to be little variation in the individual control samples unlike in both 

* 
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DLB and PD samples. The variation seen for the human H3R329 isoform 

expression in disease samples maybe down to variation in disease 

progression and general variation in symptoms experienced by each 

individual. These preliminary results suggest that the human H3R329 isoform 

expression maybe up-regulated in PD.  

 

For the first time, the human H3R 445, 365 and 329 isoforms have been 

shown to be expressed in the human brain at the protein level. The 

preliminary results would suggest that there are changes in isoforms 

expression in the different disease cases compared with age matched 

controls.  

 

The hH3R445/365 and hH3R329 antibodies were used by a group at Amsterdam 

Institute of Neuroscience, The Netherlands, to detect expression of the 

isoforms in human substantia nigra tissue. 

 

Immunohistochemistry showing cell cytoplasm labelling of human 

substantia nigra tissue labelled using the anti-hHR3R445/365 antibody: 

 

Shan et al., (2010) 

A B 
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Figure 3.26 Immunoreactive staining in human CNS (A) PD substantia nigra and (B) control 
substantia nigra, probed with anti-hH3R365/445 antibody (1µg/ml concentration). Scale bar = 25 
µm and represents all images shown. 

 

Figure 3.26 shows H3R immunoreactivity in the cell cytoplasm of human 

substantia nigra cells when probed with anti-hH3R 365/445 antibody. 

 

Immunohistochemistry showing cell cytoplasm labelling of human 

substantia nigra tissue labelled using the anti-hH3R329 antibody: 

 

Shan et al., (2010) 
 
Figure 3.27 Immunoreactive staining in human CNS (A) PD substantia nigra  and (B) control 
substantia nigra, probed with anti-hH3R329 antibody (1 µg/ml concentration). Scale bar = 25 
µm and represents all images shown. 

 

Figure 3.27 shows H3R immunoreactivity in the cell cytoplasm of human 

substantia nigra cells when probed with anti-hH3R329 antibody. 

 

A B 
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3.5 Discussion 

This chapter describes the development and characterization of a selection of 

novel H3R probes: anti-H3R PAN antibody, anti-rH3A/C/ anti-hH3R445/453 

antibody, anti-hH3R365/445 antibody peptide 1, anti-hH3R365 antibody peptide 2, 

anti-hH3R329 antibody and anti-hH3R200 antibody. These probes were used to 

investigate H3R expression in murine brain samples, and identify expression 

of three of the human H3R isoforms 445, 365 and 329 in native tissue, and 

determine whether there were any changes in H3R expression in aging and in 

CNS diseases using murine and human brain samples.  

For the anti-H3R PAN antibody a peptide sequence common to a variety of 

H3R isoforms and across the species was chosen, and for all other antibodies 

a peptide sequence unique to each isoform was chosen and used to 

immunise a rabbit for the generation of sequence specific antibodies.  

 

3.5.1 Rodent H3R characterization and expression in aging 

The anti-H3R PAN antibody was screened against human, mouse and rat 

brain samples and the antibody detected an array of bands with molecular 

weights ranging from 50 – 100 kDa, likely representing different isoforms/ 

dimers/ higher molecular weight species known to occur by homo/hetero-

oligomerisation for the human H3R and H4R (Chazot et al., 2005, van Rijn et 

al., 2006). The antibody has also been previously used to map the anatomical 

distribution of the H3R in mouse brain which displayed a high degree of 

coincidence with ligand-autoradiographical information (Martinez et al., 1990, 

Goodchild et al., 1999, Drutel et al., 2001 and Chazot et al., 2001). The 
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antibody has previously been validated against H3R -/- tissue (Fiona Shenton 

PhD Thesis 2007). 

In this chapter, the antibody has been used to determine whether H3R 

expression is altered in aging and age-dependent dementia in two mice 

models; CD-1 mice, known to have premature aging, and TASTPM mice, a 

mouse model of AD. Previously published data in TASTPM mice suggest that 

H3R expression is unaltered with age and in disease progression (Medhurst et 

al., 2009). In this thesis, immunoblotting would suggest that some of the H3R 

isoforms would appear to be altered with aging, generally showing a decrease 

with age in CD-1 mouse timeline, but after 10 months of age. However, the 

H3R445 isoform was preserved in CD-1 mouse timeline between 3-19 months. 

H3R ligands show high affinity for the full length receptor and lower affinity for 

shorter isoforms (Chapter 4). This may be why Medhurst et al., 2009 found no 

alterations in H3R expression in TASTPM mice due to lack of sensitivity of 

H3R ligands to detect the various H3R isoforms. Interestingly, both IB and IHC 

analysis of the H3R receptor, expression would appear to be largely unaltered 

in CD-1 timeline between the ages 3-10 months where cognitive deficits have 

been shown to occur (Chazot et al., unpublished).  

 

For the TASTPM mouse timeline, immunoblotting and IHC data showed 

generally more intense immunoreactivity at 7 months compared with 3 and 12 

months. H3R expression was increased at 7 months but by 12 months the 

level of expression is similar to that seen in 3 month old TASTPM mice. This 

increase may be the result of a compensatory mechanism occurring as a 

result of the changes occurring within the CNS due to disease progression/ 
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severity. IHC data confirmed the findings seen with immunoblotting. Labelling 

with the anti-H3R PAN antibody appears to increase at 7 months and 

decrease by 12 months to similar levels seen in 3 month TASTPM mice in the 

cortex and dentate gyrus however, in the CA1, 2, 3 and the cerebellum the 

immunoreactive staining at 12 months appears to be lower than that observed 

in the 3 and 7 month old TASTPM mice. This regional variation seen is likely 

down to the variation in isoform distribution and temporal regulation (Cogé et 

al., 2001).  Overall, again there appears to be no major reduction over the 

period where cognitive deficits occur (Chazot et al., unpublished). 

 

The anti-rH3AC/ hH3R445/453, antibody has previously been shown to be 

selective for the rodent H3RA/C and the human H3R445 isoform (Fiona Shenton 

PhD Thesis 2007 and Cannon et al., 2007). In this chapter, the antibody has 

been used to determine whether the H3A/H3C isoforms are altered in aging and 

dementia in the CNS of CD-1 mice and TASTPM mice. 

Labelling detected with the anti-rH3AC/ hH3R445/453, antibody in the CD-1 

timeline detected a single band migrating at 45kDa, likely to represent the full 

length rodent H3RA. Labelling detected with the anti-rH3AC/ hH3R445/453, 

antibody showed no significant differences in the immunoreactivity detected 

between the three time points (3- 2 months), suggesting that H3RA expression 

was unaltered with age. A similar result was obtained using 

immunohistochemical approaches.  These findings would indicate that both 

the full length rodent H3RA is unaltered with age in the CD-1 mouse CNS. 

The TASTPM mice timeline, probed with the anti-H3AC/ hH3R445/453 antibody, 

detected three bands at migrating at approximately 90, 45 and 38kDa. The 
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90kDa and 45kDa bands represent putative dimeric and monomeric versions 

of the full length rodent H3RA. The 38kDa band is likely to represent the 

H3R397 /H3Rc isoform (Rouleau et al., 2004), the anti-rH3AC/ H3R 445/453 antibody 

is known to detect the rodent H3R 397 (Cannon et al., 2007). Labelling detected 

with the anti-rH3AC/ H3R445/453, antibody showed a significant decrease in H3R 

immunoreactivity for all three bands detected at 12 months compared with 3 

and 7 months. The full length H3R and the shorter H3R397 isoform expression 

appear to decrease with age in the CNS of TASTPM mice. This decrease 

maybe a result of the disease phenotype associated with TASTPM mice. 

 

Overall the results for the mouse timelines would suggest that H3R as a 

general population appears to be preserved from 3 – 10 months in CD-1 mice 

and 3-7 mice in TASTPM mice, however after 10 months and 7 months there 

appears to be a decrease in H3R expression in CD-1 and TASTPM mice, 

respectively. In contrast, the full length receptor does not appear to be altered 

with age in CD-1 mice and may only modestly decrease from 12 months in 

TASTPM mice. The difference observed in the H3R expression between the 

CD-1 mice and TASTPM mice data sets are likely to reflect the difference in 

pathology of the dementias seen in these different mouse models. The 

apparent preservation of the H3 receptor over the period where learning 

deficits occur in the two mice models indicate that the deficits are independent 

of the H3 receptor. 
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3.5.2 Human H3R characterization and expression in two human Lewy 

body diseases 

PD is characterized by a strong degeneration of the neuromelanin containing 

dopaminergic neurons in the substantia nigra (SN) (Braak and Del Tredici, 

2009). The SN receives a strong histaminergic innervation from the TMN that 

contains the only histaminergic neurons in the brain (Watanabe et al., 1984, 

Panula et al., 1989 and Lee et al., 2008). It has been hypothesized that the 

histaminergic system is involved in the pathogenesis of PD, since animal 

studies showed that histamine may accelerate the degeneration of the 

dopaminergic neurons in the SN. Our recent collaborative study has reported 

a significant decrease of 40% in H3R gene and protein expression in human 

PD SN samples when compared with human control cases (Shan et al., 

2010).  

DLB is a primary, neurodegenerative dementia sharing clinical and 

pathological characteristics with both PD and AD (McKeith et al., 2003). The 

presenting feature of DLB patients is usually cognitive decline (Barber et al., 

2001), but there is often a relative preservation of short term memory 

(McKeith et al., 2002). One obvious clinical difference between individuals 

categorised as suffering from DLB, compared with “typical” AD cases, is the 

occurrence of fluctuations in their levels of awareness and attention (Ince 

1998). Furthermore, significant motor deficits are also a feature of DLB, but to 

a lesser extent than that seen in PD. Thus, the clinical symptoms of DLB 

could reflect greater deficits in systems, such as the histaminergic system, 

that controls cortical activation (Pollard et al., 1993). 
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In this thesis the anti-hH3R365/445 antibody was shown to be selective for the 

hH3R445 and hH3R365 isoforms, detecting a single band migrating at 38kDa in 

HEK 293 cells expressing the 365 isoform and a 45kDa species in HEK 293 

cells expressing the 445 isoform. The antibody was then used to confirm 

whether the isoforms were expressed at the protein level in human brain 

samples and determine whether their expression was altered in two human 

Lewy body diseases (PD and DLB) in putamen samples. For the first time, the 

hH3R445 and hH3R365 isoforms have been shown to be expressed in the 

human CNS. The hH3R365 isoform showed no significant difference in 

immunoreactivity between the three disease states. However, the full length 

receptor, hH3R445, migrating at approximately Mr 45kDa displayed significantly 

stronger immunoreactivity in DLB cases versus control cases. These results 

suggest that hH3R445 expression maybe up-regulated in DLB.  

The anti-hH3R 329 antibody was shown to be selective for the hH3R 329 

isoforms, detecting a single band migrating at 30kDa in HEK 293 cells 

expressing the 329 isoform. For the first time the hH3R329 isoform has been 

shown to be expressed in the human CNS. The isoform showed no significant 

difference in immunoreactivity between the three disease states, although 

there was an apparent increase in hH3R329 immunoreactivity in the PD cases 

compared with age matched control and DLB cases. The control group 

displayed little individual variation in hH3R 329 isoform expression unlike DLB 

and PD groups. The variation in H3R expression in the disease samples 

maybe a result of variation in disease progression and general variation in 

symptoms experienced by each individual.   
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In conclusion, a selection of novel anti-hH3R isoform specific probes were 

generated which were selective for particular human H3R isoform targets.  

 

Overall the data would indicate that the H3R is largely preserved with age and 

in disease in cortical and striatal regions in TASTPM and CD-1 mice. Human 

isoforms have been shown for the first time to be expressed at the protein 

level in the human CNS.  The data for the human disease cases would 

suggest that some of the isoforms appear to be altered in different disease 

states.  

 
  



 

159 

 

CHAPTER 4 

Pharmacological Characterisation of Three Human H3R isoforms: 329, 

365 and 445 using [3H] GSK189254 

 

4.1 Objectives 

To determine the pharmacological profile of a highly potent and selective H3R 

antagonist [3H] GSK189254 (see figure 1.9) in the presence of three of the 

major human H3R isoforms: 329, 365 and 445. The first aim of this chapter 

was to determine the affinity of the ligand for each of the respective isoforms 

expressed alone and when co-expressed in HEK 293 cells.  The next aim was 

to perform a series of competition binding assays using a variety of H3R 

ligands that cover the full array of pharmacological profiles for each of the 

isoforms and heteromeric subtypes. 

 

4.2  Introduction 

The majority of histamine H3R binding studies have relied on „selective‟ H3R 

agonists such as [3H] RαMHA and [3H] NMHA as radiolabels (van der Goot & 

Timmerman, 2000). The discovery of the H4R in the past ten years and the 

recent detection of the H4R in the CNS (Strakhova et al., 2009 and Connolly 

et al., 2009) has resulted in re-evaluation of the specificity of H3R ligands. 

Both RαMH and NMHA along with many other H3R ligands are known to 

display affinity at the H4R resulting in limitations to their use for the detection 

of the H3R. Also, agonist binding at the H3R has been shown to be sensitive to 

guanine nucleotides, meaning H3R agonists detect both high and low affinity 

receptor states (Arrang et al., 1990 and West et al., 1990). Witte et al. (2009) 
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showed the displacement of [3H] A-349821, a high affinity H3R antagonist/ 

inverse agonist, displayed a monophasic binding trace in the presence of H3R 

antagonists/inverse agonists suggesting recognition of a single binding site, 

while H3R agonists displayed a biphasic binding trace, suggesting recognition 

of both high- and low-affinity H3R site. Previously, published data describe the 

radiolabelled binding of H3R antagonists containing an imidazole moiety, 

thought to be responsible for off target binding (Esbenshade et al., 2005 and 

Kitbunnadaj et al., 2005).  

GSK189254, 6-[(3-Cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-

N-methyl-3-pyridinecarboxamide hydrochloride, is a novel highly potent and 

selective histamine H3R antagonist (structure shown in chapter 1, Fig 1.9). 

GSK189254 displays a 300-fold higher affinity for the human (pKi = 9.59–

9.90) than the rat (pKi = 8.51–9.17) H3R making it ideal for the detection and 

characterisation of the human H3R. GSK189254 has been shown to be 

approximately 10,000-fold selective for human H3R versus other targets 

tested, and exhibited potent functional antagonism (pA2 = 9.06 versus 

agonist-induced changes in cAMP) and inverse agonism [pIC50 = 8.20 versus 

basal guanosine 5-O-(3-[35S]thio)triphosphate binding] at the recombinant 

human H3R. In vitro autoradiography demonstrated specific [3H] GSK189254 

binding in rat and human brain areas, including the cortex and hippocampus. 

In addition, dense H3R binding was detected in medial temporal cortex 

samples from severe cases of AD, suggesting for the first time that H3Rs are 

preserved in late-stage disease. Oral administration of GSK189254 inhibited 

cortical ex vivo RαMHA binding (ED50 0.17 mg/kg) and increased c-fos 

immunoreactivity in prefrontal and somatosensory cortex. Microdialysis 
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studies demonstrated that GSK189254 increased the release of acetylcholine, 

noradrenalin, and dopamine in the anterior cingulate cortex and acetylcholine 

in the dorsal hippocampus. Functional antagonism of central H3R was 

demonstrated by blockade of RαMHA induced dispogenia in rats. GSK189254 

significantly improved performance of rats in diverse cognition paradigms, 

including passive avoidance, water maze, object recognition and attentional 

set shift. The data so far suggest that H3R antagonists may have a therapeutic 

potential for the symptomatic treatment of dementia in AD and other cognitive 

disorders (Medhurst et al., 2007 and Medhurst et al., 2009).  

 

H3R isoforms have been shown to display variation in their expression and 

pharmacological profile (Hancock et al., 2003) such as agonist potencies 

(Wellendorf et al., 2002), signalling properties (Drutel et al., 2001) and 

constitutive activity (Morisset et al., 2001). Not all isoforms are likely to be 

expressed at the surface as a receptor, rat isoforms D, E and F have been 

shown to act as dominant negatives in vitro to either directly or indirectly 

control surface expression of the rat isoforms A, B and C  (Bakker et al., 

2006). Furthermore, receptors with deletions in regions thought to be 

important in ligand binding, and/ or signal transduction may not be functional. 

Recently, Leurs and colleagues (2008) reported at the European Histamine 

Research Society, differential expression of the hH3R365 and the hH3R445, with 

the hH3R365 isoform displaying higher expression levels than the hH3R445 in 

many brain structures. The hH3R365 also displayed higher affinity and potency 

for H3R agonists and conversely a lower potency and affinity for H3R inverse 

agonists. The hH3R365 also displayed higher constitutive signalling compared 
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to the hH3R445 in both [35S] GTPγS binding and cAMP assays (Bongers et al., 

2007). Lower mRNA expression patterns were observed for the hH3R415, 

hH3R413 and hH3R329 which also bind H3R ligands and exhibit subtle difference 

in coupling to signalling mechanisms. Activation of the H3R isoforms results in 

the activation of different G proteins resulting in differential signalling, potency 

and function. These differences observed in H3R pharmacology and signalling 

are likely to be important for obtaining a detailed understanding of the 

physiological and potential therapeutic roles of the H3R and its respective 

isoforms.  

In this chapter, the pharmacological profile of the hH3R445, hH3R365 and 

hH3R329 isoforms were analysed. Previously, mRNA levels showed the 

hH3R445, hH3R365 and hH3R329 isoform expression to have a high degree of 

overlap in regions of the CNS known to be involved in the aetiology of AD and 

DLB, indicating the potential presence of hetero-oligomer subtypes (Coge et 

al., 2001).  

 

The aim of this chapter was to characterize the pharmacology of the highly 

potent and selective H3R antagonist [3H] GSK189254 at each of the following 

human isoforms, H3R 445, H3R 365 and the H3R 329. The secondary aim was to 

determine whether co-expression of these isoforms had any influence on the 

binding characteristics of [3H] GSK189254.  
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4.3  Methods 

 

4.3.1 Polyethyleneimine (PEI) transfection method (chapter 3) 

 

4.3.2 Harvesting and membrane preparation of HEK 293 cells 

HEK 293 cells were harvested 48 hours post-transfection. The culture media 

was removed and cells were washed with 10 ml PBS and the solution 

removed. 10 ml of 50mM Tris, 5 mM EDTA, pH7.7 buffer kept at 4oC was 

added to the cells and the cells scraped from the bottom of the flask using a 

Greiner cell scraper. The re-suspended cells were homogenised using a 

douce glass/ glass homogeniser, kept ice cold. The homogenate was pelleted 

by centrifugation at 18000 x g at 4oC for 5 minutes. The supernatant was 

discarded and the pellet re-suspended in 2ml of ice cold 50 mM Tris, 5 mM 

EDTA, pH7.7 buffer.  

 

4.3.3 Saturation binding of [3H]-GSK189254 at recombinant human H3R 

isoforms 

Saturation binding assays using [3H] GSK189254 were performed essentially 

as described previously by Medhurst et al. (2007). RαMHA is a specific H3R 

agonist which was used as the radioligand displacer to determine non-specific 

binding. To determine total binding 100 µg of human H3R transfected HEK 

293 cell homogenates were incubated, in triplicate for 1 hour at room 

temperature, 80 µl 50 mM Tris-HCl, pH 7.7 containing 5 mM EDTA and 20 µl 

of GSK189254, at a concentration range 0.01 – 8 nM, to a final volume of 200 

µl. Non-specific binding was determined by the addition of 20 µl of 100 µM 
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RαMHA to give a final concentration of 10 µM. The assay was terminated by 

rapid filtration through a Whatman GF/B filters pre-soaked in 10mM sodium 

phosphate dibasic pH 7.4, which were washed (3 X 3ml) using iced cold 

10mM sodium phosphate dibasic pH 7.4, using a Brandell cell harvester. 

Filters were transferred into scintillation vials and 1ml of optiphase safe liquid 

scintillation cocktail was added. After 3 hours, the bound radioactivity was 

determined by counting for 3 minutes. 

 

4.3.4 Competition binding of [3H]-GSK189254 at recombinant human 

H3R isoforms 

Competition binding assays using [3H] GSK189254 were performed 

essentially as described previously by Medhurst et al. (2007). To determine 

total binding 100 µg of human H3R transfected HEK 293 cell homogenates 

were incubated, in triplicate for 1 hour at room temperature, 60 µl of 50 mM 

Tris-HCl, pH 7.7 containing 5mM EDTA, 20 µl of [3H] GSK189254 

(concentration 4.5nM), and 20 µl of the competitor immepip, thioperamide, 

iodophenpropit, proxyfan and GSK334429B, at a concentration range of 10 

pM - 100µM, in a final volume of 200 µl. Non-specific binding was determined 

by the addition of 20 µl of 100 µM RαMHA to give a final concentration of 10 

µM. The assay was terminated by rapid filtration through a Whatman GF/B 

filters pre-soaked in 10 mM sodium phosphate dibasic pH 7.4, which were 

washed (3 X 3ml) using iced cold 10 mM sodium phosphate dibasic pH 7.4, 

using a Brandell cell harvester. Filters were transferred into scintillation vials 

and 1 ml of optiphase safe liquid scintillation cocktail was added. After 3 hours 

the bound radioactivity was determined by counting for 3 minutes. 
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4.3.5 Data Analysis for saturation studies 

Results from saturation studies were analysed by non-linear least square 

regression using GraphPad Prism. The saturation data were analysed by 

either the one-site or two-site binding hyperbola. The F-test was used to 

assess whether the one-site or the two-site model fit the data best (p<0.05 

was deemed significant). The KD values for saturation curves fitted a one-site 

hyperbola were calculated from the following equation, 

Y = Bmax X 

       KD + X  

Where:-  

Y = specific bound [3H] GSK189254 

X = concentration of [3H] GSK189254 

Bmax = maximum number of binding sites 

 

Saturation data was fit to the linear regression using GraphPad prism for the 

scatchard transformations, 

F(x) = ax = b 

Where:- 

F(x) = specific bound [3H] GSK189254/ [3H] GSK189254 free 

a = slope – (1/ KD) 

x = specific bound [3H] GSK189254 

b = X-axis intercept (Bmax/ KD) 

Specific binding was determined by subtracting the mean non-specific binding 

from the mean total binding for all concentration.   
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4.4 Results 

 

4.4.1 Determining the selectivity of [3H] GSK189254 for the human H3R 

over the human H4R expressed in a recombinant HEK 293 cells: 

The initial experiments investigated the selectivity of the radioligand for the 

human H3R in comparison to the closely related human H4R.  

 

Determining the selectivity of [3H] GSK189254: 

 

 

 

 

 

 

 

 

Figure 4.1: Showing the specific [
3
H] GSK189254 binding in HEK 293 cells mock-transfected 

(control), hH4R390 or hH3R445 at 5 nM [
3
H] GSK189254. Mean specific binding fmol/mg + SEM 

for n determinations. Statistical significance was determined from the generated p value, 
where p<0.05 was considered to show significance.  
 

Figure 4.1 shows that the GSK189354 is selective for the human H3R in 

comparison to the closely related human H4R with negligible binding detected 

in human H4R transfected cells or mock-transfected HEK 293 cells. All cDNA 

transfected into the HEK 293 cells were N-terminally FLAG tagged and 

expression of the receptors was confirmed by immunoblot analysis using anti-

FLAG antibody, below.  
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Immunoblot confirming the expression of the hH4R and the hH3R:  

 

Figure 4.2: Immunoblot of mock, hH3R445 and hH4R390 transfected HEK 293 cells, probed with 
the anti-FLAG antibody.  
Homogenates of HEK 293 cells transfected with either the full length human H3R445 or the 
H4R390 cDNA, all epitope tagged with FLAG were prepared. Approximately 25 µg of protein/ 
well were loaded onto a 7.5% PAGE gel. Once transferred the membrane was probed with 
affinity purified anti-FLAG antibody (1:5000). The FLAG antibody detects the two monomeric 
receptor species migrating at approximately Mr 37 and 45 kDa, respectively. The lower panel 
shows the corresponding β-actin, probed with monoclonal mouse anti β-actin antibody 
(1:5000). 
Lane 1,HEK 293 cells  mock transfected; Lane 2, HEK 293 cells expressing hH4R390; Lane 3, 
HEK 293 cells mock transfected; Lane 4, HEK 293 cells expressing hH3R445. All blots shown 
are representative blots from at least 4 separate transfection experiments.  

 

After determining the selectivity of the radioligand for the human H3R445 in 

comparison of the human H4R390, the next step was to determine the affinity of 

the ligand for each of the three human H3R isoforms: 445, 365 and 329.  

 

4.4.2 Saturation binding analysis of GSK189254 at the human H3R 

isoforms singularly expressed in HEK 293 cells  

A series of saturation binding assays were performed using [3H] GSK189254 

at each of the human H3R isoforms, 445, 365 and 329 expressed alone in 

HEK 293 cells to determine the affinity of the compound for each of the 

isoforms. [3H] GSK189254 was used at a concentration range of 0.01 – 8 nM, 

RαMHA was used to define non-specific binding at a final concentration of 

10µM. 
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Saturation binding analysis of GSK189254 at the human H3R445 

 

 

 

 

 

 

 

 

 

Figure 4.3: Saturation binding curve showing the specific [
3
H] GSK189254 binding in HEK 

293 cells transfected with hH3R445. Inset shows the saturation binding data transformed into a 
Rosenthal plot. 
 

Figure 4.3 shows [3H] GSK189254 displays high affinity for the hH3R 445 which 

reached saturation. Receptor expression was confirmed by western blot 

analysis shown below. 

 

Immunoblot confirming the hH3R 445 expression: 

 

Figure 4.4: Immunoblot showing the expression of the hH3R445 for 4 individual experiments 
probed with the anti-FLAG antibody.  
Homogenates of HEK 293 cells transfected with hH3R445 epitope tagged with FLAG were 
prepared. Approximately 25µg of protein/ well were loaded onto a 7.5% PAGE gel. Once 
transferred the membrane was probed with affinity purified anti-FLAG antibody (1:5000). The 
FLAG antibody detected a single band migrating at approximately Mr 44 kDa. Lower panel 
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shows the corresponding β-actin, probed with monoclonal mouse anti β-actin antibody 
(1:5000).  
Lane 1, HEK 293 cells mock transfected; Lane 2, 3, 4, 5 HEK 293 cells expressing hH3R445. 
All blots shown are representative blots from at least 4 separate transfection experiments.  

 

[3H] GSK189254 shows nanomolar affinity binding at the human H3R445  

isoform, 0.16 + 0.04 nM. 

The affinity of GSK189254 was then determined at the human H3R365 isoform. 

 

Saturation binding analysis of GSK189254 at the human H3R365 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Saturation binding curve showing the specific [
3
H] GSK189254 binding in HEK 

293 cells transfected with hH3R365. Inset shows the saturation binding data transformed into 
Rosenthal graph. 

 

Figure 4.5 shows GSK189254 displays high affinity binding for the hH3R365 

which reached saturation. Receptor expression was confirmed by western blot 

analysis shown below. 
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Immunoblot confirming the hH3R365 expression: 

 

Figure 4.6: Immunoblot showing the expression of the hH3R365 for 4 separate experiments 
probed with the anti-FLAG antibody.   
Homogenates of HEK 293 cells transfected with hH3R365, epitope tagged with FLAG were 
prepared. Approximately 25 µg of protein/ well were loaded onto a 7.5% PAGE gel. Once 
transferred the membrane was probed with affinity purified anti-FLAG antibody (1:5000). The 
FLAG antibody detected a single band migrating at approximately Mr 36 kDa. Lower panel 
shows the corresponding β-actin, probed with monoclonal mouse anti β-actin antibody 
(1:5000). 
Lane 1, HEK 293 cells mock transfected; Lane 2, 3, 4, 5 HEK 293 cells expressing hH3R365. 
All blots shown are representative blots from at least 4 separate transfection experiments. 

 

[3H] GSK189254 shows nanomolar affinity at the human H3R365 isoform, 0.24  

+ 0.07nM. 

The affinity of GSK189254 was then determined at the human H3R329 isoform. 

 

Saturation binding analysis of GSK189254 at the human H3R329 
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Figure 4.7: Saturation binding curve showing the specific [
3
H] GSK189254 binding in HEK 

293 cells transfected with hH3R329. Inset shows the saturation binding data transformed into 
Rosental graph. 

 

Figure 4.7 shows the ligand displays high affinity binding for the hH3R329 which 

reached saturation. Receptor expression was confirmed by western blot 

analysis shown below. 

 

Immunoblot confirming the hH3R329 expression: 

 

Figure 4.8: Immunoblot showing the expression of the hH3R329 for 4 separate experiments 
probed with the anti-FLAG antibody.   
Homogenates of HEK 293 cells transfected with hH3R329, epitope tagged with FLAG were 
prepared. Approximately 25 µg of protein/ well were loaded onto a 7.5% PAGE gel. Once 
transferred the membrane was probed with affinity purified anti-FLAG antibody (1:5000). The 
FLAG antibody detected a single band migrating at approximately Mr 33kDa. Lower panel 
shows the corresponding β-actin, probed with monoclonal mouse anti β-actin antibody 
(1:5000). 
Lane 1, HEK 293 cells mock transfected; Lane 2, 3, 4, 5 HEK 293 cells expressing hH3R329. 
All blots shown are representative blots from at least 4 separate transfection experiments. 

 

[3H] GSK189254 shows nanomolar affinity at the human H3R329 isoform, 0.98  

+ 0.4nM. 

The saturation binding curve data for each of the isoforms were collated and 

represented below in a bar chart displaying the variation in GSK189354 

affinity at each of the human H3R isoforms, 445, 365 and 329.  
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Mean binding affinity of [3H] GSK189254 at human H3R isoforms 445, 365 

and 329 expressed in HEK 293 cells: 
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Figure 4.9: Mean affinity of [
3
H] GSK189254 binding in HEK 293 cells expressing either 

hH3R445, hH3R365 or hH3R329 isoforms. Mean affinity nM + SEM for n determinations. Statistical 
significance was determined from the generated p value, where p<0.05 was considered to 
show significance.  
 

Figure 4.9 shows that [3H] GSK189254 displays a significantly lower affinity of 

approximately 5-fold at the hH3R329 isoform compared to the hH3R365 or the 

hH3R445, (p<0.01 and p<0.01, respectively). The radioligand displayed a 

similar binding affinity for the hH3R365 and the hH3R445 isoforms. The mean 

binding affinity of [3H] GSK189254 at each of the hH3R 445, hH3R 365 and hH3R 

329 were 0.16 + 0.04nM, 0.24 + 0.07nM and 0.98 + 0.4nM, respectively.  

 

The binding affinity of [3H] GSK189254 for each of the three isoforms 

expressed individually has been determined so the next aim is to look whether 

co-expressing the isoforms has any affect the binding affinity of the ligand.  
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4.4.3 Saturation binding analysis of GSK189254 at the human H3R 

isoforms co-expressed in HEK 293 cells  

A series of saturation binding assays were performed using [3H] GSK189254 

at each of the human H3R isoforms co-expressed in HEK 293 cells (445 + 

365, 445 + 329 and 365 + 329). [3H] GSK189254 was used at a concentration 

range of 0.01 – 8 nM. RαMHA was used to define non-specific binding at a 

final concentration of 10 µM.  

 

Saturation binding analysis of GSK189254 at the human H3R445 + 365 

heterodimer: 

 

 

 

 

 

 

 

 

 

Figure 4.10: Saturation binding curve showing the specific [
3
H] GSK189254 binding in HEK 

293 cells transfected with hH3R445 + hH3R365. Inset shows the saturation binding data 
transformed into a Rosenthal plot. 
 

Figure 4.10 shows GSK189254 displays high affinity binding for the hH3R445 + 

hH3R365 heterodimer, which reached saturation. Receptor expression was 

confirmed by western blot analysis shown below. 
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Immunoblot confirming the hH3R445 + 365 expression: 

 

Figure 4.11: Immunoblot showing the expression of the hH3R445 + hH3R365 for 4 separate 
experiments probed with the anti-FLAG antibody.   
Homogenates of HEK 293 cells transfected with a 1:1 ratio of the hH3R445 + hH3R365, epitope 
tagged with FLAG were prepared. Approximately 25 µg of protein/ well were loaded onto a 
7.5% PAGE gel. Once transferred the membrane was probed with affinity purified anti-FLAG 
antibody (1:5000). The FLAG antibody detects two separate bands migrating at approximately 
Mr 44 and 36 kDa representing the hH3R445 + hH3R365, respectively. Lower panel shows the 
corresponding β-actin, probed with monoclonal mouse anti β-actin antibody (1:5000). 
Lane 1, HEK 293 cells expressing hH3R329; Lane 2: HEK 293 cells expressing hH3R365; Lane 
3 HEK 293 cells expressing hH3R445; Lane 4, 5, 6, 7 HEK 293 cells expressing hH3R445 + 
hH3R365, All blots shown are representative blots from at least 4 separate transfection 
experiments. 

 

[3H] GSK189254 shows a nanomolar affinity at the human H3R445 + 365  

heterodimer, 0.18 + 0.07nM. 

 

The affinity of GSK189254 was then determined at the human H3R445 + 329  

heterodimeric combination. 
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Saturation binding analysis of GSK189254 at the human H3R445 + 329 

heterodimer: 

 

 

 

 

 

 

 

 

 

Figure 4.12: Saturation binding curve showing the specific [
3
H] GSK189254 binding in HEK 

293 cells transfected with hH3R445 + hH3R329. Inset shows the saturation binding data 
transformed into Rosenthal plot. 

 

Figure 4.12 shows the ligand displays high affinity binding for the hH3R445 + 

hH3R329 heterodimeric combination, which reached saturation. Receptor 

expression was confirmed by western blot analysis shown below. 
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Immunoblot confirming the hH3R445 + 329 expression: 

 

Figure 4.13: Immunoblot showing the expression of the hH3R445 + hH3R329 for 4 separate 
experiments probed with the anti-FLAG antibody.   
Homogenates of HEK 293 cells transfected with a 1:1 ratio of the hH3R445 + hH3R329, epitope 
tagged with FLAG were prepared. Approximately 25 µg of protein/ well were loaded onto a 
7.5% separating gel. Once transferred the membrane was probed with affinity purified anti-
FLAG antibody (1:5000). The FLAG antibody detected two single band migrating at 
approximately Mr 44 and 33 kDa representing the hH3R445 + hH3R329, respectively. Lower 
panel shows the corresponding β-actin, probed with monoclonal mouse anti β-actin antibody 
(1:5000). 
Lane 1, HEK 293 cells expressing hH3R329; Lane 2: HEK 293 cells expressing hH3R365; Lane 
3 HEK 293 cells expressing hH3R445; Lane 4, 5, 6, 7 HEK 293 cells expressing hH3R445 + 
hH3R329. All blots shown are representative blots from at least 4 separate transfection 
experiments. 

 

[3H] GSK189254 shows a nanomolar affinity at the human H3R445 + 365  

heterodimer, 0.27 + 0.07nM. 

 

The affinity of GSK189254 was then determined at the human H3R365 + 329  

heterodimeric combination. 

 

 

 

 

 



 

177 

 

Saturation binding analysis of GSK189254 at the human H3R365 + 329  

heterodimer: 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.14: Saturation binding curve showing the specific [

3
H] GSK189254 binding in HEK 

293 cells transfected with hH3R365 + hH3R329. Inset shows the saturation binding data 
transformed into Rosenthal graph. 

 

Figure 4.14 shows GSK189254 displayed high affinity binding at the hH3R365 + 

hH3R329 heterodimeric combination, which reached saturation. Receptor 

expression was confirmed by western blot analysis shown below. 

 

 

 

 

 

 

 

 

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35
     BMAX

     KD

41.93

2.026

[
3
H] GSK189254 nM

S
p

e
c
if

ic
 B

in
d

in
g

 f
m

o
l/

m
g

Scatchard

0 10 20 30 40 50
0

5

10

15

20

25

Bound

B
o

u
n

d
/ 

F
re

e



 

178 

 

Immunoblot confirming the hH3R365 + 329 expression: 

 

Figure 4.15: Immunoblot showing the expression of the hH3R365 + hH3R329 for 4 separate 
experiments probed with the anti-FLAG antibody.   
Homogenates of HEK 293 cells transfected with a 1:1 ratio of the hH3R 365 + hH3R 29, epitope 
tagged with FLAG were prepared. Approximately 25 µg of protein/ well were loaded onto a 
7.5% PAGE gel. Once transferred the membrane was probed with affinity purified anti-FLAG 
antibody (1:5000). The FLAG antibody detected two single bands migrating at approximately 
Mr 36 and 33 kDa representing the hH3R365 + hH3R329, respectively. Lower panel shows the 
corresponding β-actin, probed with monoclonal mouse anti β-actin antibody (1:5000). 
Lane 1, HEK 293 cells expressing hH3R329; Lane 2: HEK 293 cells expressing hH3R365; Lane 
3 HEK 293 cells expressing hH3R445; Lane 4, 5, 6, 7 HEK 293 cells expressing hH3R365 + 
hH3R329. All blots shown are representative blots from at least 4 separate transfection 
experiments. 

 

[3H] GSK189254 shows a nanomolar affinity at the human H3R445 + 365  

heterodimer, 2.00 + 1.1nM. 

 

The saturation binding curve data for the co-expression of the isoforms has 

been collated and is represented below in a bar chart displaying the variation 

in GSK189354 affinity at each of the heterodimeric combinations. 
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Mean binding affinity of [3H] GSK189254 at human H3R isoforms co-

expressed in HEK 293 cells: 
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Figure 4.16: Mean affinity of [

3
H] GSK189254 binding in HEK 293 cells co-expressing a 

combination of hH3R isoforms 445 + 365, 445 + 329 and 365 + 329. Mean affinity nM + SEM 
for n determinations. Statistical significance was determined from the generated p value, 
where p<0.05 was considered to show significance. 
 

Figure 4.16 shows that [3H] GSK189254 displays a significantly lower affinity 

of approximately 10-fold at the hH3R365 + hH3R329 heterodimeric combination 

compared to other heterodimeric combinations the hH3R445, + hH3R365 or the 

hH3R445 + hH3R329 (p<0.01 and p<0.01, respectively). The ligand displayed a 

similar binding affinity at the hH3R445, + hH3R365 and the hH3R445 + hH3R329 

heterodimeric combinations. The mean affinity of [3H] GSK189254 for each of 

the heterodimeric combinations hH3R445 + hH3R365, hH3R445 + hH3R329 and 

hH3R365 + hH3R329 were 0.18 + 0.07nM, 0.27 + 0.07nM and 2.00 + 1.1nM, 

respectively.  
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The affinity of the [3H] GSK189254 for the isoforms either expressed alone of 

co-expressed in HEK 293 cells has been determined. The next aim is to 

determine whether these isoforms display any binding differences in the 

presence of a variety of competing H3R ligands.  

 

4.4.4 Competition binding analysis for human H3R isoforms individually 

expressed in HEK 293 cells 

A series of competition binding assays were performed using [3H] GSK189254 

at each of the human H3R 445, 365 and 329 isoforms expressed alone in HEK 

293 cells. [3H] GSK189254 was used at a concentration of 4.5 nM, RαMHA 

was used to define non-specific binding at a final concentration of 10 µM. The 

competitor drugs competing with [3H] GSK189254 for the H3R binding site 

were: 

Immepip – A potent H3R agonist 

Thioperamide - A potent H3R inverse agonist/ antagonist 

Iodophenpropit - A H3R neutral antagonist 

Proxyfan - A high affinity H3R ligand that acts as a protean ligand 

GSK334429B - A novel, potent H3R inverse agonist/ antagonist 
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Figure 4.17: A series of competition binding curves showing specific [
3
H] GSK189254 binding 

in HEK 293 cells transfected with either hH3R445, hH3R365 or hH3R329 plotted against the log 
concentration of different competing ligands (A) Immepip, (B) Thioperamide, (C) 
Iodophenpropit, (D) Proxyfan and (E) GSK334429B.  
 

Figure 4.17 shows that each of the competing drugs displays differential 

pharmacological profiles at some of the human H3R isoforms when expressed 

in HEK 293 cells. 

 

Competition binding curve data for each of the isoforms has been collated and 

represented below in a bar chart displaying the differences in affinity.  
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Pharmacological profile for human H3R isoforms expressed individually 

in HEK 293 cells 
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Figure 4.18: Mean high affinity site for competing compounds: Immepip, Thioperamide, 
Iodophenpropit, Proxyfan and GSK334429B utilising [

3
H] GSK189254 with HEK 293 cells co-

expressing either hH3R445, hH3R365 or hH3R329. Mean affinity nM + SEM for n = 3 
determinations. Statistical significance was determined from the generated p value, where 
p<0.05 was considered to show significance. 
 

Figure 4.18 shows that each of the competing drugs displays differential 

pharmacological profiles at the human H3R isoforms when expressed in HEK 

293 cells. Iodophenpropit, thioperamide, proxyfan and GSK334429B 

displayed a significantly lower affinity at the hH3R329 isoform than at the 

hH3R365 and hH3R445, (p<0.001, p<0.01 and p<0.05, respectively). 

Iodophenpropit displays a significantly lower affinity than GSK334429B at the 

hH3R445, p<0.05.  Iodophenpropit displays a significantly higher affinity at the 

hH3R365 isoform than the hH3R329 and hH3R445, (p<0.01 and p<0.05, 

respectively). Generally the hH3R329 isoform displays a lower binding affinity 

for all the competing drugs tested except for proxyfan. The hH3R365 and 
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hH3R445 display similar affinities for all competing drugs tested, except 

iodophenpropit, where the hH3R365 displays a higher affinity than the hH3R445. 

 

The competition binding assay has shown that some of the H3R competing 

ligands are better at competing for the H3R binding than other ligands at 

particular isoforms, indicating that certain chemical properties of the 

compounds result in the compounds having higher affinity for different 

isoforms.  

The next part will determine whether co-expression of the H3R isoforms has 

any affect on the completion binding of different H3R ligands.   

 

4.4.5 Competition binding analysis for human H3R isoforms co-

expressed in HEK 293 cells 
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Figure 4.19: A series of competition binding curves showing specific [
3
H] GSK189254 binding 

in HEK 293 cells co-transfected with either hH3R445 + 365, hH3R365 + 329  or hH3R 445 + 329 plotted 
against the log concentration of different competing ligands (A) Immepip, (B) Thioperamide, 
(C) Iodophenpropit, (D) Proxyfan and (E) GSK334429B. Mean affinity nM + SEM for n = 3 
determinations. Statistical significance was determined from the generated p value, where 
p<0.05 was considered to show significance. 

 

Figure 4.19 shows that each of the competing drugs displays differential 

pharmacological profiles at the human H3R isoforms when co-expressed in 

HEK 293 cells. 

 

Competition binding data for the isoforms co-expressed in HEK 293 cells was 

collated and is represented below in a bar chart displaying the difference in 

affinity.  
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Pharmacological profile for human H3R isoforms co-expressed in HEK 

293 cells 
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Figure 4.20: : Mean high affinity site for  competing compounds: Immepip, Thioperamide, 
Iodophenpropit, Proxyfan and GSK334429B utilising [

3
H] GSK189254 with HEK 293 cells co-

expressing either hH3R445 + 365, hH3R365 + 329  or hH3R 445 + 329. Mean affinity nM + SEM for n 
determinations. Statistical significance was determined from the generated p value, where 
p<0.05 was considered to show significance. 
 

Figure 4.20 shows that each of the competing drugs displays differing 

pharmacological profiles at the human H3R isoforms when co-expressed in 

HEK 293 cells. Thioperamide and GSK334429B displays a significantly lower 

affinity at the hH3R329 + 365 heterodimer than either the hH3R329 + 445 or hH3R365 

+ 445  combinations, (p<0.05 and p<0.01, respectively). Proxyfan displays a 

significantly higher affinity at the hH3R329 + 365 heterodimer than thioperamide, 

p<0.01.  Generally the hH3R329 + 365 heterodimer displays a lower binding 

affinity for all the competing drugs tested except for proxyfan. The hH3R329 + 

445 and hH3R365 + 445 combinations display similar affinities for all competing 

drugs tested. 
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Receptor expression was confirmed by western blot analysis shown below. 

 

The competition binding assay has shown that some of the H3R competing 

ligands are better at competing for the H3R binding than other ligands at 

particular H3R heterodimers, indicating that certain chemical properties of the 

compounds result in the compounds having higher affinity.  

 

Immunoblot confirming the expression of all human H3R isoforms in 

competition binding experiments:   

 

Figure 4.21: Immunoblot showing the expression of the hH3R329, hH3R365, hH3R445 expressed 
alone and hH3R329 + hH3R365, hH3R329 + hH3R445 and hH3R365 + hH3R445 co-expressed in HEK 
293 cells and probed with the anti-FLAG antibody.   
Homogenates of HEK 293 cells transfected with 1 ug of various human cDNA, epitope tagged 
with FLAG were prepared. Approximately 25 µg of protein/ well were loaded onto a 7.5% 
separating gel. Once transferred the membrane was probed with affinity purified anti-FLAG 
antibody (1:5000). The FLAG antibody shows the detection of the hH3R329, hH3R365, hH3R445, 

hH3R329 + hH3R365, hH3R329 + hH3R445 and hH3R365 + hH3R445 isoforms (from left to right on the 
blot above). Lower panel shows the corresponding β-actin, probed with monoclonal mouse 
anti β-actin antibody (1:5000). 
Lane 1, HEK 293 cells mock transfected, Lane 2, HEK 293 cells expressing hH3R329; Lane 3: 
HEK 293 cells expressing hH3R365; Lane 4 HEK 293 cells expressing hH3R445; Lane 5, HEK 
293 cells expressing hH3R329 + hH3R365; Lane 6, HEK 293 cells expressing hH3R329 + hH3R445 
and Lane 7, HEK 293 cells expressing hH3R365 + hH3R445. All blots shown are representative 
blots from at least 15 separate transfection experiments. 
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4.5 Discussion 

A number of ligands that targeted the H3R have had their specificity re-

evaluated since the discovery of the H4R, where a selection of supposedly H3 

specific ligands have shown cross reactivity to this newly discovered target. 

This cross reactivity is thought to occur due to ligands containing an imidazole 

moiety which results in off target binding not only to the H4R but also other 

targets such as 5-HT3 receptors and cytochrome P450 isoenzymes (Labella et 

al.,1992, Leurs et al., 1995, Alves-Rodrigues et al., 1996, Yang et al., 2002, 

Esbenshade et al., 2005 and Kitbunnadaj et al., 2005). The selectivity of [3H] 

GSK189254, a H3R antagonist/ inverse agonist for the human H3R versus the 

human H4R was confirmed initially.  

The presence of numerous H3R isoforms brings about another level of 

complexity in terms of ligand binding. The human H3R has been shown to be 

widely distributed within the CNS with mRNA levels encoding the isoforms 

shown to be distributed in a region specific manner with some regions co-

expressing isoforms (Cogé et al., 2001). Some of the shorter truncated 

isoforms have been shown to be non-functional but are expressed to similar 

levels of the full length receptor. These non-functional isoforms have been 

shown to regulate the longer functional isoforms in a dominant negative 

manner (Drutel et al., 2001 and van Rijn, 2008). Adding further to the diverse 

heterogeneity, it has been shown that the histaminergic neurons are 

organized into functionally distinct circuits that influence different brain regions 

(Giannoni et al., 2009). Very few studies have looked at the pharmacological 

difference between the full lengthH3R 445 and its isoforms, and of those that 
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have the results are conflicting with some studies showing different 

pharmacological profiles (Hancock et al., 2003).  

 

The saturation binding data confirm previous findings that H3R isoforms 

display differences in pharmacological profile, with the hH3R329 isoform 

displaying approximately a 5-fold lower binding affinity than both hH3R365 and 

hH3R445.  Both the hH3R365 and hH3R445 isoforms display similar binding 

affinities. These data would suggest that the region spliced out to generate 

the hH3R329 isoform is involved in binding affinity to certain H3R compounds. 

Co-expression of the isoforms also resulted in a reduction in GSK189254 

binding affinity for the hH3R329 and hH3R365 heterodimeric combination. The 

hH3R329 and hH3R365 heterodimer displayed approximately a 10-fold lower 

binding affinity than other heterodimeric combinations tested. The reduced 

affinity observed at the hH3R329 and hH3R365 heterodimer is likely the result of 

dimerization of the isoforms resulting in alterations in the binding pocket 

where [3H] GSK189254 binds.  

The competition binding curves show a biphasic response which would 

suggest that the H3R has two binding states, a low and high affinity binding 

site. The high affinity site was analysed for simplicity. It would be interesting in 

future experiments to assess the effects of GppNHp or GTPγS (non-

hydrolysable forms of GTP) upon this bi-phasic competition binding profile. 

Generally the hH3R329 isoform displayed a lower binding affinity for all the H3R 

competing drugs tested except for proxyfan. The hH3R365 and hH3R445 

isoforms displayed similar affinities for all competing drugs tested, except 

iodophenpropit, where the hH3R365 displays a higher affinity than the hH3R445. 
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These data support the pharmacological data produced by Leurs et al., 2008, 

showing the hH3R365 isoform to have a higher affinity for agonists than the 

hH3R445, however the data do not support the finding that the hH3R365 isoform 

displays lower affinity than the hH3R445 for inverse agonists/antagonists.  

The competition binding assays indicate that some of the H3R ligands display 

marked differences in apparent affinity for particular isoforms. Notably, the 

hH3R329/365 heterodimers have markedly reduced affinity (2-orders of 

magnitude) for thioperamide and GSK334429B, but not the other ligands 

tested. 

 

In summary, the competition binding studies have shown significant 

differences exist in the binding pharmacology of human H3R homo-oligomeric 

and heter-oligomeric subtypes, providing new information about the 

fundamental pharmacological nature of the human H3R. 
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CHAPTER 5 

Ligand Autoradiographical Comparison of Normal Aging with 

Neurodegenerative Dementia Aging using [3H] GSK189254  

 

5.1 Objectives 

To determine whether the H3R is preserved in the rodent and human CNS in 

aging and neurodegenerative diseases using ligand autoradiography. One 

aim of this chapter was to determine whether there were any changes in H3R 

expression in two mice models; CD-1 mice, known to have premature learning 

deficits, and TASTPM mice, a transgenic mouse model of AD. Another aim 

was to establish whether there were any changes in human H3R expression in 

normal aging and in two major types of human dementia diseases, AD and 

DLB. To determine if there were any H3R changes, autoradiography was 

performed using a novel, high affinity, selective histamine H3R antagonist/ 

inverse agonist radioligand [3H] GSK189254.  

 

5.2      Introduction 

5.2.1 Human H3R anatomical distribution in the CNS 

The H3R is expressed predominantly in the CNS and has been detected in 

human, rodent and non-primate brain as well as in the spinal cord of humans 

and on peripheral ganglia. Detection has been possible through the use of 

either ligand autoradiography, in situ hybridisation using gene transcripts or 

immunobiochemical techniques with anti-H3R specific antibodies.  

Previous autoradiographical studies using the H3R agonist [3H] RαMHA or 

antagonist [3H] clobenpropit have mapped the H3R in the rodent brain (Arrang 
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et al., 1987 and Pollard et al., 1993) and human brain (Martinez-Mir et al., 

1990; Goodchild et al., 1999).  

As observed in rat brain, H3R sites in human brain were detected in the 

globus pallidus, medial and lateral segments, caudate, putamen, 

hippocampus, external layers of the cortex in particular the limbic and frontal 

cortex with lower levels in the temporal and insular cortex. Highest expression 

was detected in the cerebral cortex, hippocampal formation, basal ganglia and 

hypothalamus, areas associated with cognition, motor activity and emotional 

behaviours (Martinez-Mir et al., 1990 and Drutel et al., 2001). In these areas, 

the neurotransmitter histamine, in close association with the other biogenic 

amines controls numerous (patho)-physiological processes. The cortex and 

hippocampus are associated with cognition, the hypothalamus with sleep and 

homeostatic regulation and specific thalamic areas, dorsal root ganglia and 

spinal cord with nociception (Cannon et al., 2007).  

Previous autoradiographical studies looking at H3R expression have 

drawbacks due to the use of non-selective compounds such as [3H] RαMHA 

and [3H] clobenpropit. The problem associated with using radiolabelled 

agonists to measure receptor binding densities is G-protein coupling can 

cause the selective identification of only subsets of an entire receptor 

population since agonist binding shows increased affinity for receptors in their 

active state i.e. when they are bound to GTP over their inactive state. It is 

preferential to use radiolabelled antagonists, however first generation 

imidazole containing antagonists also have drawbacks such as [3H]-

thioperamide which displayed cross reactivity with cytochrome P450 

isoenzymes and showed variable affinities across the species. The discovery 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib310#bib310
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of the H4R in the past 10 years has also lead to the re-evaluation of H3R drug 

selectivity, since many older compounds such as RαMHA, clobenpropit, 

thioperamide and burimamide have also been shown to be selective for the 

H4R (Leurs, 2009a,b). Re-evaluation of H3R binding using highly selective 

compounds is needed to get a better understanding of H3R expression in the 

CNS. 

 

The histaminergic system plays an important role in the central nervous 

system regulation and behaviour through its role as an autoreceptor, 

regulating the synthesis and release of histamine and as a heteroreceptor, 

negatively regulating the release of a variety of other neurotransmitters 

including acetylcholine, dopamine, glutamate and gamma-aminobutyric acid 

(Esbenshade et al., 2006, Bonaventure et al., 2007, Esbenshade et al., 2008). 

Given its widespread distribution and its ability to affect multiple 

neurotransmitter systems, H3R antagonists are promising clinical candidates 

for the treatment of excessive day time sleepiness (narcolepsy), pain 

disorders, obesity and cognitive disorders and ADHD (Cannon et al., 2007, 

Medhurst et al., 2007, Medhurst et al., 2009 and Chazot, 2010). 

 

5.2.2   The histaminergic system in neurodegenerative dementias  

There are indications that histamine deficits are present in Alzheimer‟s AD, 

however it is unknown whether these are specific for certain brain regions, 

including changes in histamine receptor numbers, or are specific for AD 

amongst other neurodegenerative disorders. The importance of the 

histaminergic system in AD is difficult to assess due to a number of conflicting 
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reports. For example, histamine levels in AD brains have been reported to be 

increased in temporal and frontal cortex, basal ganglia and hippocampus 

(Cacabelos et al., 1989). However, other studies have shown decreases in 

histamine content in the hypothalamus, hippocampus and temporal cortex 

(Mazurkiewicz-Kwilecki and Nsonwah., 1989 and Panula et al., 1998). 

Histaminergic cell bodies are located in the TMN, where neurofibrillary tangles 

(NFTs) are found. NFTs are particularly concentrated in the region containing 

histaminergic perikarya compared with surrounding areas (Airaksinen et al., 

1991 and Nakamura et al., 1993) and together with cholinergic basal forebrain 

nuclei, the TMN has been described as an early affected subcortical nucleus 

for the presence of NFT (Braak et al., 1991). The number of histaminergic cell 

bodies in the TMN was shown to be similar to that of normal brains 

(Airaksinen et al., 1991). In contrast, another group showed a significant 

reduction in large-sized histamine containing neurons in the TMN where 

numerous NFTs were found, indicative of a central histaminergic dysfunction 

(Nakamura et al., 1993). HDC activity, also a marker of the histaminergic 

system, has been shown to be decreased in AD compared with elderly 

controls (Schneider et al., 1997). 

Whilst there are conflicting data about the histamine content in the brain of AD 

patients, one recent study using a highly selective H3R ligand had shown the 

level of H3R expression to be unaltered in the late stages of human AD 

compared to age matched controls, as well as in TASTPM mice (a mouse 

model of AD) compared with wild type mice (Medhurst et al., 2007 and 

Medhurst et al., 2009).  
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The H3R signalling cascade has also to been linked to the involvement in AD 

and DLB. Activation of the H3R results in the coupling to G-protein Gi/o (Clark 

and Hill 1996), which in turn leads to activation of effector molecules such as 

MAPK, PLA2 and PI3K (Drutel et al., 2001 and Giovanni et al., 2003). 

Activation of PLA2 results in the release of arachidonic acid, docosahexaenoic 

acid and lysophospholipids, which are substrates for the synthesis of potent 

lipid mediators, platelet activating factor, eicosanoids, and 4-hydroxynonenal. 

4-hydroxynonenal is the most cytotoxic metabolite, and is associated with the 

apoptotic type of neural cell death and is markedly increased in neurological 

diseases like ischemia, AD and PD (Farooqui et al., 2006), further supporting 

a role for H3R blockade with antagonist/ inverse agonist and hence a 

reduction in the cytotoxic 4-hydroxynonenal.  

Activation of MAPK and PI3K results in the phosphorylation of ERKs and 

PKB. Activation of PKB phosphorylates GSK3β, a major tau kinase in the 

brain (Sun et al., 2002). The MAPK pathway is thought to be important in 

memory consolidation and neuronal plasticity (Thiel et al., 2001 and Thomas 

et al., 2004), and the activation of PKB/GSK3β pathway is important in 

neuronal migration, protection against neuronal apoptosis (Brazil et al., 2004) 

and is believed to be altered in AD, neurological disorders (Rickel et al., 2004 

and Le et al., 2002) and schizophrenia (Emamian et al., 2004). Furthermore, 

loss of regulation of GSK3β is linked to disease such as diabetes, insulin 

resistance and AD (Jope et al., 2004).  

 

Many neurotransmitter systems, including acetylcholine, dopamine, serotonin 

and glutamate contribute to specific aspects of cognition. H3R antagonists 
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have been shown to increase the release of histamine, as well as 

noradrenalin, dopamine and acetylcholine, making H3R antagonists an 

attractive drug target for cognitive disorders. 

 

5.2.3   Therapeutic potential of H3R ligands 

A number of H3R antagonists have been discovered and one such compound 

(pitolisant) has now entered advanced clinical development focussing on 

narcolepsy and cognitive disorders (Schwartz et al., 2010 and Schwartz et al., 

2011). Understanding the molecular structure of the H3R has increased 

considerably, providing a new generation of non-imidazole containing H3R 

antagonists. Non-imidazole containing H3R antagonists are currently in clinical 

trials for AD, ADHD, narcolepsy, pain and obesity (Leurs et al., 2005 and 

Chazot, 2010). 

The histaminergic system has been long known to be involved in arousal 

since the development of 1st generation anti-histamines. H3R antagonists/ 

inverse agonists increase brain histamine, thence increasing wakefulness and 

reducing rapid eye movement (REM) and slow-wave sleep during the sleeping 

phase in normal animals. H3R
−/− mice are insensitive to the wake promoting 

effects of H3R antagonists (Li et al., 2008). H3R antagonist/ inverse agonist 

may be of use in diseases that display excessive daytime sleepiness (EDS) 

such as PD, DLB and AD. Recently Lin et al. (2008) published data on phase 

two clinical trials showing that the H3R inverse agonist, pitolisant significantly 

improved EDS parameters in comparison to placebo in a pilot phase II study, 

and is currently undergoing follow-up phase III clinical trials.   
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Arousal and attention also play an important part in the cognitive process 

which H3R antagonists have been shown to enhance. The histaminergic 

system innervates several structures that are known to be involved in 

cognition such as the basal forebrain, cerebral cortex, cingulate cortices, 

amygdala and thalamus (Brown et al., 2001). High levels of H3R have been 

shown to be expressed in the cerebral cortex (Pollard et al., 1993), which is 

densely innervated by cholinergic neurons. Histamine acting on the H3R has 

been shown to be involved in the inhibition of potassium evoked release of 

[3H]-acetylcholine from rat cortical slices (Clapham et al., 1992 and Arrang et 

al., 1995), as well as impairing object recognition and a passive avoidance 

response (Blandina et al., 1996).  H3R antagonists were able to reverse this 

inhibition (Blandina et al., 1996). This was the first indication that the H3R had 

a regulatory role in cortical acetylcholine in vivo, and suggested a role for 

histamine in learning and memory. This implied the potential of targeting the 

H3R for the treatment of dementia disorders associated with impaired 

cholinergic function. It is thought that histamine indirectly influences the 

decrease in acetylcholine release through increasing the release of GABA 

from interneurons in the cortex which in turn inhibits acetylcholine release 

(Giorgetti et al., 1997). The opposite can be seen with H3R blockade with 

antagonists, acetylcholine levels are enhanced in the prefrontal cortex and in 

the dorsal hippocampus accompanied with an improvement of cognitive 

functions in an array of animal cognitive function tests (Fox et al., 2005).  

Histamine has also been shown to interact with the polyamine site on the 

NMDA receptor helping facilitate long-term potentiation in rat hippocampal 

slices (Witkin and Nelson, 2004). 
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In neurophyschiatric disorders such as AD, ADHD and schizophrenia, 

cognitive deficits play a major role in the disease (Leurs et al., 2005). 

Decreased levels and/ or function of acetylcholine in the pre-frontal cortex and 

nucleus basalis magnocellularis are thought to be a major contributor to age 

related cognitive decline. Increased brain histamine is also positively 

correlated with age and may play a role in decreasing acetylcholine (Prell et 

al., 1991). It is thought that H3R antagonists may be able to prevent the 

reduction in acetylcholine through its heteroreceptor characteristic (Blandina 

et al., 1996, Orsette et al., 2002 and Bacciottini et al., 2002). For testing the 

potential of compounds in ameliorating cognitive dysfunction in the clinic, a 

variety of rodent behavioural tasks can be used to analyse different domains 

of cognition that may have some relevance to the human disease. 

Impairments in spatial orientation and memory (observed in patients with AD) 

can be assessed with different paradigms such as the water maze, radial arm 

maze or Barnes maze. Deficits in social memory (in AD) can be measured by 

a social recognition task in rodents. Impulsivity, on the contrary, which seems 

to be a particular problem in patients with ADHD, can be studied in the five-

trial inhibitory avoidance task in SHR pups, as well as in the five-choice 

stimulus reaction time test. Executive function is a cognitive domain impaired 

in schizophrenic patients and is assessed using attentional set shifting assays 

or models of cognitive flexibility (Gemkow et al., 2009). Generally, H3R 

antagonists improve memory either by the increase in histamine (Miyazaki et 

al., 1995 and Miyazaki et al., 1997) or through the release of other 

neurotransmitters such as acetylcholine, noradrenalin and dopamine 

(Blandina et al., 1996), while H3R agonists were shown to be inhibitory. 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib261#bib261
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib262#bib262
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6T0R-427JWBW-2&_user=121711&_coverDate=04%2F30%2F2001&_alid=775627897&_rdoc=3&_fmt=high&_orig=search&_cdi=4869&_sort=d&_docanchor=&view=c&_ct=9&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=2f9a2499281a91d5f171ade2128cd7e6#bib32#bib32
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Thioperamide has been shown to increase acetylcholine in the rat 

hippocampus (Mochizuki et al., 1994) and enhances recall of a passive 

avoidance response in rats (Giovannini et al., 1999) and senescence-

accelerated rats (Meguro et al., 1995). H3R antagonists also show promise in 

short term memory novel object recognition test (Giovannini et al., 1999) and 

social recognition tests (Prast et al., 1996). While immepip, a H3R agonist 

produced cognitive deficits in tests of olfactory and social memory (Prast et 

al., 1996). Abbott laboratories reported that A-317920, a highly potent H3R 

antagonist, was as effective as methylphenidate (Ritalin) and ABT-418 (a 

nicotinic receptor ligand), both of which are clinically effective drugs in AD 

(Hancock et al., 2003). ABT-239 entered clinical trials after displaying 

promising results in preclinical trials in models of ADHD and AD. ABT-239, a 

H3R antagonist increased acetylcholine in the prefrontal cortex and 

hippocampus (Cowart et al., 2004), improved learning in five trail inhibitory 

avoidance using rat pups, improved recall in a social memory test and 

improved spatial working and reference memory in a water maze (Fox et al., 

2004 and Esbenshade et al., 2004). A-304121, also shows promising 

procognitive effects in rodent models (Fox et al., 2004 and Esbenshade et al., 

2004). GSK189254 a H3R inverse agonist has been shown to significantly 

improve performance of rats in diverse cognition paradigms, including passive 

avoidance, water maze, object recognition and attentional set shift.  The data 

so far for H3R antagonists point to a possible therapeutic potential for 

diseases where cognitive deficits are already present such as AD and other 

dementias. 
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5.2.4 Animal models: CD-1-mice and TASTPM mice.  

S-1 rats tested on the radial maze behavioural test were capable of readily 

solving this behavioural paradigm, however CD-1 mice were not. This lead to 

the idea that mice generally may have limited learning capacity compared to 

rats, however the performance of other strains needed to be tested to 

distinguish if it was a result of strain difference rather than species variation 

(Mizumori et al., 1982).  Recent data have shown CD-1 mice develop early 

behavioural and learning deficits in middle-aged male and female CD-1 mice 

(12 months) compared with young 3 month CD-1 mice (Michalikova et al., 

2007 and Ennaceur et al., 2008). CD-1 mice have high mortality rates 

compared to other strains of mice due to their high susceptibility to immuno-

pathologies and increased levels of amyloidosis with age, which is thought to 

be the cause of premature death (Frith and Chandra, 1991, Engelhardt et al., 

1993 and Lavie and Weinreb 1996). Recent unpublished data from our 

laboratory has shown that CD-1 mice have sex-linked differential 

mitochondrial activities and deficits in heat shock protein and BDNF 

expression levels (Burroughs & Chazot, unpublished).  

AD is characterized by deficits in a number of neurotransmitter systems which 

are believed to result in cognitive dysfunction as well as neuropsychiatric 

behaviour. Loss of cholinergic neurons in the basal forebrain is one of the 

most prominent and consistent events occurring in AD (Whitehouse et al., 

1982). AD is characterized by the aggregation of amyloid-β (Aβ) protein 

accumulating into plaques (Hardy and Selkoe, 2002), as well as 

hyperphosphorylation of tau protein, which aggregates into NFTs (Delacourte 

et al., 1999). Individuals with AD show multifaceted cognitive impairments that 

http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6SYR-509W79P-1&_user=121711&_coverDate=06%2F15%2F2010&_alid=1408517114&_rdoc=2&_fmt=high&_orig=search&_cdi=4841&_docanchor=&view=c&_ct=187922&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=0cc2af8ae1f96c5ca8a37f0991c26083#bib14
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6SYR-509W79P-1&_user=121711&_coverDate=06%2F15%2F2010&_alid=1408517114&_rdoc=2&_fmt=high&_orig=search&_cdi=4841&_docanchor=&view=c&_ct=187922&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=0cc2af8ae1f96c5ca8a37f0991c26083#bib9
http://www.sciencedirect.com.ezphost.dur.ac.uk/science?_ob=ArticleURL&_udi=B6SYR-509W79P-1&_user=121711&_coverDate=06%2F15%2F2010&_alid=1408517114&_rdoc=2&_fmt=high&_orig=search&_cdi=4841&_docanchor=&view=c&_ct=187922&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=0cc2af8ae1f96c5ca8a37f0991c26083#bib9
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progressively interfere with their day-to-day functioning. Animal models of AD 

are a useful tool for exploring the pathological outcomes of the disease as well 

as preventative measures for disease acceleration, and therefore protection 

from irreversible neuronal loss, proposed to be caused by Aβ42 plaques and 

NFTs. The TASTPM mouse model is characterised by activated microglia, 

reactive astrocytes, and increased expression of cytokines and complement 

factors surrounding amyloid deposits that develop in the cortex and 

hippocampus (Figure. 5.1). The Aβ plaques develop from the age of 3 months 

(Burroughs & Chazot, unpublished), with evidence of NFTs or neuronal loss 

later in the time course (Howlett et al., 2004 & 2008). 

 

Immunohistochemistry showing labelling of Aβ plaques in TASTPM 

mice 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 shows immunohistochemical labelling of Aβ plaques in CA1, CA2 & 3, cortex (Ctx), 
dentate gyrus (DG), cerebellum (Cb) and caudate putamen (CPu) in TASTPM mice at three 
time points 3, 10 and 12 months 
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In chapter 4, the pharmacology of the highly potent and selective H3R 

antagonist [3H] GSK189254 was investigated for each of the following major 

human isoforms, H3R445, H3R365 and the H3R329. The aim of this chapter was to 

investigate the abundance and distribution of the human histamine H3R 

protein in DLB and AD cases and respective controls using [3H] GSK189254. 

The secondary aim was to probe any differences in the anatomical distribution 

patterns between control and diseased tissue, and also any age-related 

changes therein. The hypothesis was that the number of H3R is preserved in 

normal aging and in human dementias.  
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5.3       Methods 

5.3.1 CD-1 and TASTPM mice tissue preparation  

CD-1 or TASTPM mice were sacrificed by CO2 narcosis and brains were 

rapidly dissected and dehydrated using sucrose infiltration. Brains were 

initially placed in 10% sucrose, followed by 20% sucrose made up with 

phosphate buffered saline. Once the brains had been dehydrated, they were 

snap frozen in iso-pentane at -40ºC for 3 minutes and stored at -80ºC.  

Samples were sliced horizontally using a microtone into 20 μm thick sections 

at -25ºC.  Sections were collected on to poly-D-lysine coated glass slides and 

stored at -20ºC.  

 

5.3.2 In vitro Autoradiography of rodent brain tissue using [3H]-

GSK189254  

The autoradiography method used was that described by Medhurst et al., 

(2007). Brain sections were left to reach RT for 1 hour before the protocol 

commenced. The sections were incubated in (50 mM Tris, 5 mM EDTA pH 

7.7) containing 2 X KD (5 nM) [3H] GSK189254 (specific activity = 81 Ci/mmol, 

stored at -20oC from Dr Medhurst (GSK, Harlow, UK) for 1 hour at RT, until 

equilibrium is reached. Non-specific binding was defined using 10 µM 

unlabelled RαMHA. The reaction was terminated by five 3 minute washes in 

(50 mM Tris, 5 mM MgCl pH 7.7) at 4oC and a final wash in dH2O at 4oC. 

Sections were left to dry in a stream of cold air for 1 – 2 hours. The sections 

were then transferred to X-ray cassettes, each including tritium 

autoradiographical microscale as calibration standards, and exposed against 

tritium-sensitive hyperfilm for 6 weeks at 4oC.  The exposed films were then 
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developed in D-19 developer (Kodak) for 5 minutes at RT, fixed for 6 minutes 

in Unifix (Kodak), washed under running water for 20 minutes and air-dried.   

 

5.3.3   Determining the working concentration of [3H] GSK189254 

The radioligand concentrations used were greater than those stated by 

Medhurst el al. (2007). Preliminary saturation binding assays performed prior 

to the autoradiography showed the hH3R 445 isoform has a KD of 0.16+ 0.04 

nM (described previously in chapter 4). The concentration of radioligand used 

was selected as approximately 2 x KD (0.3 nM) to ensure that each 

autoradiography run detected an acceptable number of receptor binding sites. 

Before starting the experiment, the concentration of the radioligand was 

checked by taking 10 µl aliquots into a scintillation vial with 2 ml scintillation 

fluid (Packard Ultima Gold) and measuring the dpm (disintegrations per 

minute) value in a Packard tri-carb 1900CA scintillation counter. All rodent and 

human tissue were analysed using [3H] GSK189254 ligand.  

 

5.3.4 Image Analysis 

The resulting brain images on the film were captured using a Dage 72 MTI 

CCD72S video camera and were quantitatively analysed by computer-

assisted densitometry using Microcomputer Imaging Device (MCID Elite) 

version 7.0 software from imaging research Inc., Ontario, Canada. The 

radioactive Tritium standards were used to calculate a standard curve for 

each autoradiogram, which allowed the conversion from optical density values 

to units of concentrations (femtomoles per mg of tissue protein), for each brain 

region analysed. Non-specific binding was defined using 10 µM RαMHA, non-
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specific binding tissue sections were present on the same film as each of the 

corresponding total binding tissue sections for the same case. Specific binding 

was determined by subtracting mean non-specific binding from mean total 

binding. Brain structures were identified by reference to the atlas of the 

Human Brain (Mai et al., 1997) and the mean and standard deviations for 

each brain structure in each section were calculated. Inter-assay variability 

was reduced by using ligand concentrations that were at least twice the ligand 

affinity, using ligand from the same batch for each autoradiographical run, and 

by standardising each film using calibration microscales.  

All sections were then analysed by digital autoradiography using a Beta- 

Imager 2000 instrument (Biospace, Paris, France), radioactivity was 

measured by counting the number of β particles from delineated areas and 

the results expressed as mean specific binding counts per minute (cpm) per 

square millimetre (cpm/mm2; n = 12-16 cases per group). 

 

5.3.5 Statistical Analysis  

Statistical analysis performed involved correlation analysis and students 

unpaired t-test, indicated with the use of Microsoft Excel and GraphPad Prism 

to analyse individual regions of the brain. Statistical significance was set at the 

p<0.05 level for the correlation analysis, with a minimum n value of 3 or more, 

and at p<0.05 level for the students t-tests with a minimum n value of 3 or 

more for each data set. Graphs were constructed using GraphPad Prism 

version 4. One-way Anova tests were also performed using GraphPad Prism 

version 4 to analyse statistical differences across data sets. Statistical 

significance was set at the p<0.05.  
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5.3.6  Mice used 

Brains from nine CD-1 male mice and nine TASTPM male mice at three time 

points (3, 9 &12months and 3, 7 & 13 months, respectively, were subjected to 

ligand autoradiography. Figure 5.2 shows a nissl staining of a mouse brain to 

aid in the identification of key brain structures. 

 

 Nissl stain of mouse brain, (A) coronal view (B) sagittal view 
 
 

A               B 

Figure 5.2: (A) Coronal and (B) sagittal sections from a mouse brain map.  
Amyg = amygdala; Ant Nuc = anterior nucleus of thalamus; ant = anterior; Caud = caudate; O 
Tb = olfactory tubercle; Putm = putamen 

 

5.3.7 Human case details and diagnostic criteria 

All human brain tissue was obtained from Newcastle Brain Tissue Resource 

Bank LREC (Newcastle and Tyneside) with full ethical approval (2002/295). 

Frozen tissue was collected at autopsy and 1 cm coronal slices from the left 

hemisphere were snap frozen in liquid Arcton (ICI) and stored at -70oC. The 

sections were then stored at -80oC. Prior to sectioning, tissue slices were 

warmed to 15oC and blocks containing the striatum were sub-dissected and 
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mounted onto cryostat chucks with 8% carboxymethylcellulose. Coronal 

sections were cryostat sectioned at a thickness of 20 µm using a Brights OTF 

cryostat onto Vectabond-coated glass slides, air dried for 1-2 hours and 

stored at -80oC prior to receptor autoradiography.  The right hemisphere was 

used for histopathological examination, following formalin fixation and paraffin 

embedding. Cortical and hippocampal neurofibrillary tangles were 

demonstrated using a modification of Palmgren‟s silver technique (Cross 

1982) and the von Braunmühl silver impregnation technique (Bancroft et al., 

1990) was used to identify senile plaques in 25 µm thick frozen sections cut 

from tissue blocks adjacent to those taken for paraffin processing. Counts of 

NFTs and neuritic plaque number were made from fields across the entire 

cortical ribbon, as described in Perry et al., (1990). Lewy-bodies in the 

substantia nigra were visualised by the use of haematoxylin and eosin 

staining, cortical Lewy-bodies and dystrophic neuritis were detected using 

ubiquitin immunohistochemistry on 5 µm thick paraffin embedded sections. 

Neurones in the substantia nigra were quantified following cresyl fast violet 

staining of 20 µm thick paraffin sections. 

Control cases had no history of psychiatric or neurological disorder and had 

no neuropathological indications of AD, DLB or any other neurological 

disorder.   

AD cases used in this study fulfilled NINCDS-ADRDA criteria (McKhann et al., 

1984). Neuropathologically, there were NFTs and neurite plaques in the 

hippocampus and cortex to fulfil CERAD (Braak et al., 1991) and Reagan 

(The National Institute on Aging and Reagan Institute Working Group on 

diagnostic criteria for the neuropathological assessment of Alzheimer‟s 
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disease, 1997) criteria for pathological diagnosis of AD. DLB cases were 

clinically diagnosed by the presence of a progressive cognitive impairment 

seen in conjunction with at least two of the following symptoms: recurrent 

visual hallucinations; fluctuating cognition with pronounced variations in 

attention and alertness; spontaneous motor features of parkinsonism (McKeith 

et al., 1996). DLB and PD cases were distinguished from AD by the presence 

of brain stem and cortical Lewy-bodies, “Lewy neurites” in the CA2/3 and 

endplate segments of the hippocampus (McKeith et al., 1996), and by lower or 

moderate Alzheimer-type pathology with fewer NFT than found in AD.  

 

5.3.9 Human cases used 

The 43 cases chosen for these studies were at the level of the striatum 

(caudate nucleus and putamen) corresponding to coronal brain levels 9-15 

using the Coronal Map of Brodmann Areas in the human Brain (Perry 1993), 

(Figure 5.3). Of the 43 cases, 12 were control cases, 15 AD cases and 16 

DLB cases (table 5.1). For each case 5 replicates were used to measure 3 

total and 2 non-specific radioligand binding values.  

 

Summary of 43 human cases: 

 n = 

Total  Females  Males 

Age (years) 

Range    Mean    SD 

PM Delay (hours) 

Range   Mean   SD 

Control 

DLB 

AD 

  12           7              5 

  16           8              8 

  15           9              6 

70-91     80.92     6.97 

64-87     77.13     7.19 

74-91     83.27     4.53 

10-96    42         22.44 

 4-60    31.56    18.18 

 4-82    33.40    21.69 
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Table 5.1: Summary of the 43 cases chosen for the study. (SD = standard deviation of either 
age or PM delay values. PM delay = post mortem delay, that is, time between death and 
freezing of the tissue, to allow for post-mortem examination). 
 

 

Coronal Map of Brodmann Areas in the human Brain: 

 

 

Figure 5.3: Coronal levels of striatum, 0.5 cm apart. AC = anterior commissure; Amyg = 
amygdala; Ant Nuc = anterior nucleus of thalamus; ant = anterior; Caud = caudate; Cerb Ped 
= cerebral peduncle; Chi = optic chiasma; cl = coronal level; Fx = fornix; GPe = external 
globus pallidus; GPi = internal globus pallidus; Int Caps = internal capsule; Lat Vent Temp = 
temporal horn of lateral ventricle; MB = mammillary body; NA = nucleus accumbens; O Tb = 
olfactory tubercle; post =  posterior; Putm = putamen 

 

5.3.10 In vitro Autoradiography of human brain tissue using [3H] 

GSK189254  

Human autoradiography was performed as in section 5.3.2 except the human 

brain tissue were incubated in (50 mM Tris, 5 mM EDTA pH 7.7) containing 2 

X KD (0.3 nM) [3H] GSK189254 (specific activity = 81 Ci/mmol, stored at -20oC 

Reproduced with kind permission of IAH Newcastle-upon-Tyne 
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from Dr Medhurst (GSK, Harlow, UK) for 1 hour at RT, until equilibrium is 

reached. 

 

5.3.11 The Mini Mental State Examination (MMSE) 

The Mini Mental State Examination (MMSE), validated and widely used since 

its creation in 1975, is an effective tool for assessing cognitive mental status. 

The MMSE is used to detect cognitive impairment and monitor response to 

treatment. It is an eleven question test covering five areas of cognitive 

function: orientation, attention/ calculation, recall and language, and the ability 

to follow simple verbal and written commands. A score of 23 or below, from a 

possible 30 is indicative of cognitive impairment. The test is effective but does 

have limitations, for example, patients who are hearing and visually impaired 

or who have low English literacy, or with communication disorders may 

perform poorly even when cognitively intact (Folstein et al., 1975). The test 

provides a total score that places the individual on a scale of cognitive 

function.  

 

5.3.11 Unified Parkinson Disease Rating Scale (UPDRS)    

The UPDRS is a rating tool to follow the longitudinal course of PD. It is made 

up of the 1) Mentation, Behaviour and Mood, 2) Activities of Daily Living (ADL) 

and 3) Motor sections. These are evaluated by interview. Some sections 

require multiple grades assigned to each extremity. A total of 199 points are 

possible, where 199 represent the worst (total) disability, and 0 represents no 

disability.  
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5.4 Results 

 

5.4.1 Autoradiography results for CD-1 and TASTPM mice  

The first section of the results represents qualitative analysis of the binding 

data for CD-1 and TASTPM mice whilst the second section of data shows 

quantitative analysis of the binding levels in each tissue.  

Figures 5.4 and 5.5 show digital photographic examples of [3H] GSK189254 

binding in CD-1 and TASTPM mice brain at each time point. In each of the 

examples shown, ligand binding was detected in the striatum, cortex and 

cingulate cortex regions.  
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Autoradiography showing H3R labelling in CD-1 mice brain at 3, 9 & 12 

months: 

           Total Binding                Non-specific binding 

 

             

              

              

Figure 5.4: (A) Autoradiography of CD-1 mouse brain sections. Panels (A, C & E) represent 
total binding. Panels (B, D & F) represent non-specific binding defined by 10 µM R-α-
methylhistamine. Age timeline panels (A &B) represent 3 months, panels (C & D) represent 9 
months and panels (E & F) represents 12 months. C – Caudate, CC cingulate cortex and Str 
– Striatum. Scale bar = 250 µm and represents all images shown. 
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Autoradiography showing H3R labelling in TASTPM mice brain at 3, 7 & 

13 months: 

           Total Binding                Non-specific binding 

 

              

               

              

Figure 5.5: (A) Autoradiography of TASTPM mouse brain section. Panels (A, C & E) 
represent total binding. Panels (B, D & F) represent non-specific binding defined by 10 µM R-
α-methylhistamine. Age timeline panels (A &B) represent 3 months, panels (C & D) represent 
7 months  and panels (E & F) represents 13 months. C – Caudate and Str – Striatum. Scale 
bar = 250 µm and represents all images shown. 
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5.4.2. Quantitative analysis of CD-1 and TASTPM mice  

The data for each group were analysed to show the mean average specific 

binding cpm/mm2 + SD of [3H] GSK189254 with n=3 in specific brain regions 

defined. Statistical analysis was performed using a one-way ANOVA test, 

indicated with the use of GraphPad Prism (version 4) to analyse between age 

time points in individual regions of the brain. Statistical significance was set at 

p<0.05 level for the one-way ANOVA analysis.  

 

Statistical analysis of H3R binding in regions of the CD-1 mouse brain: 
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Figure 5.6: Graphs showing mean [
3
H] GSK189254 specific binding (cpm/mm

2
) densities 

(mean + SEM for n determinations) for CD-1 mice at three time points 3, 9 and 12 months in 
(A) Cortex, (B) Striatum right hemisphere, (C) Striatum left hemisphere, (D) Cingulate cortex.  
 

Figure 5.6 shows there were no significant differences in the mean binding 

densities of [3H] GSK189254 in all brain regions analysed when comparing 

between the three age time points; 3, 9 and 12 months. Binding of the 

A B 

C D 
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radioligand showed higher levels of H3R binding in the striatum and cingulate 

cortex with lower levels detected in the cortex. 

 

Statistical analysis of H3R binding in regions of the TASTPM mouse 

brain:  
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Figure 5.7: Graphs showing mean [
3
H] GSK189254 specific binding (cpm/mm

2
) densities 

(mean + SEM for n determinations) for TASTPM mice at three time points 3, 7 and 13 months 
in (A) Cortex, (B) Striatum. 
 

Figure 5.7 shows there were no significant differences in the binding densities 

of [3H] GSK189254 in the cortex when comparing between the three age time 

points; 3, 7 and 13 months. However in the striatum there were significantly 

lower binding in the striatum of 13 month old TASTPM mice compared with 3 

month (p<0.05) and 7 month old (p<0.001) TASTPM mice.  

 

H3R binding has been analysed in rodent brain and the next part will 

determine H3R binding in human brain in normal aging and in age related 

dementias. 
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5.4.3 Human autoradiography results  

The first section of the results shows typical human H3R labelling obtained 

using [3H] GSK189254. The second section of data shows quantitative 

analysis of the binding levels in each tissue. Figure 5.8 is an example showing 

the typical pattern of [3H] GSK189254 labelling seen in many of the brain 

sections analysed. The section is cut at coronal level 10 (see Figure 5.3) 

where the striatal caudate and putamen areas are beginning to separate and 

the nucleus accumbens is visible. The insular cortex is also well labelled. The 

anterior cingulate cortex shows strong labelling and is located on the same 

side of the striatum as the caudate.  

 

Autoradiography showing H3R labelling in human brain using [3H] GSK 

189254 

 

Figure 5.8: Representative image of a human brain section (80 years, female). Total H3R 
labelling detected using [

3
H] GSK189254.  
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Figures 5.9 below, shows digital photographic examples of [3H] GSK189254 

binding. Figure A represents total binding of the radioligand and figure B 

represents non-specific binding, defined by 10 µM RαMHA. As described in 

section 5.3.4., the specific binding was determined by subtracting the mean 

non-specific binding from the mean total binding. In each of the examples 

shown, ligand binding was detected in the caudate, putamen, nucleus 

accumbens, insular cortex, cingulate cortex regions and globus pallidus. 

 

Autoradiography showing total and non-specific H3R binding in human 

brain using [3H] GSK 189254 

A     Total binding   B         Non-specific binding 

      

Figure 5.9: Autoradiography of human brain slices 87 years, female. (A) Total binding [
3
H] 

GSK189254, (B) Non-specific binding [
3
H] GSK189254. Non-specific binding was defined 

using 10 µM R-α-methylhistamine. 
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5.4.4 Quantitative analysis of human data - Effect of aging on H3R 

binding in each group individually analysed 

Brain tissue samples from 43 cases: 12 controls, 16 DLB and 15 AD cases 

described in section 5.3.4 and summarised in table 5.1 were assayed for 

radiolabelled GSK189254 binding by autoradiography. The data were 

analysed to show specific binding levels of [3H] GSK189254 in various brain 

regions, correlating cpm/mm2 with age at death of subject (in years). 

Estimated lines of best fit were produced using GraphPad Prism and are 

represented on each graph, indicating any age-dependant changes in binding 

levels in each tissue. The significance of the regression was determined from 

the generated p value, where p<0.05 was considered to show a significant 

linear relationship between age and binding level. The generated correlation 

coefficient (r value) shows how well the data fits the regression line, where r = 

1 shows strong correlation and r = 0 shows little or no correlation. 
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Statistical analysis of H3R binding with age in regions of the human 

brain for control cases: 
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Figure 5.10 (A – F): Age-dependant absolute specific binding of [
3
H] GSK189254 in control 

cases (n=12) in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular cortex, (E) 
External globus pallidus, (F) Internal globus pallidus. Significance of regression was 
determined from the generated p value, where p<0.05 was considered to show a significant 
linear relationship between age and binding level.  
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Nucleus accumbens
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Figure 5.10 (G - H): Age-dependant absolute specific binding of [
3
H] GSK189254 in control 

cases (n=12) in (G) Nucleus accumbens and (H) Combined globus pallidus. Significance of 
regression was determined from the generated p value, where p<0.05 was considered to 
show a significant linear relationship between age and binding level.  

 

Figure 5.10 shows specific binding levels in control cases examined for [3H] 

GSK189254 in various brain regions against age. There were no significant 

age-dependant changes in all brain regions analysed (p>0.053 in all areas). 

The r values ranged from -0.511 (nucleus accumbens) to 0.359 (internal 

globus pallidus). There appears to be a general trend showing lower ligand 

binding with increasing age in all brain regions except the globus pallidus.  

H3R binding does not appear to be altered in normal aging supporting 

previously published data of H3R preservation. H3R binding will next be 

determined in aged related dementias to see if disease state alters 

GSK189254 binding. 
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Statistical analysis of H3R binding with age in regions of the human 

brain for DLB cases: 
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Figure 5.11 (A – F): Age-dependant absolute specific binding of [
3
H] GSK189254 in DLB 

cases (n=16) in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular cortex, (E) 
External globus pallidus, (F) Internal globus pallidus. Significance of regression was 
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determined from the generated p value, where p<0.05 was considered to show a significant 

linear relationship between age and binding level. . 
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Figure 5.11 (G - H): Age-dependant absolute specific binding of [
3
H] GSK189254 in DLB 

cases (n=16) in (G) Nucleus accumbens and (H) Combined globus pallidus. Significance of 
regression was determined from the generated p value, where p<0.05 was considered to 
show a significant linear relationship between age and binding level.  
 

Figure 5.11 shows specific binding levels in DLB cases examined for [3H] 

GSK189254 in various brain regions against age. There were no significant 

age-dependant changes in all brain regions analysed (p>0.179 in all areas). 

The r values ranged from -0.117 (nucleus accumbens) to -0.007 (external 

globus pallidus). There appears to be a general trend showing lower ligand 

binding with increasing age in all brain regions defined. 
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Statistical analysis of H3R binding with age in regions of the human 

brain for AD cases: 
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Figure 5.12 (A – F): Age-dependant absolute specific binding of [
3
H] GSK189254 in AD 

cases (n=15) in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular cortex, (E) 
External globus pallidus, (F) Internal globus pallidus. Significance of regression was 
determined from the generated p value, where p<0.05 was considered to show a significant 
linear relationship between age and binding level.  
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Figure 5.12 (G - H): Age-dependant absolute specific binding of [
3
H] GSK189254 in AD 

cases (n=15) in (G) Nucleus accumbens and (H) Combined globus pallidus. Significance of 
regression was determined from the generated p value, where p<0.05 was considered to 
show a significant linear relationship between age and binding level. 
 

Figure 5.12 shows specific binding levels in AD cases examined for [3H] 

GSK189254 in various brain regions against age. There were no significant 

age-dependant changes in all brain regions analysed (p>0.336 in all areas). 

The r values ranged from -0.014 (insular cortex) to 0.082 (cingulate cortex).  

 

H3R binding is not significantly altered in ageing in both normal aging and in 

two common age related dementias (DLB and AD). The next parameter is to 

compare whether there are any age related changes in H3R binding between 

control cases and disease state.  
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5.4.5 Quantitative analysis of human data – Comparison of H3R binding 

with age between control and disease group  

The same data as previously described and summarised in table 5.1 were 

further analysed to compare age-dependant specific binding of [3H] 

GSK189254 between control and disease state cases. The cases were 

analysed by correlating cpm/mm2 binding with age at death of the subject (in 

years), in each brain region defined. Estimated lines of best fit were produced 

using GraphPad Prism and are represented on each graph, indicating any 

age-dependant changes in binding levels in each tissue. The significance of 

the regression was determined from the generated p value, where p<0.05 was 

considered to show a significant linear relationship between age and binding 

level. The generated correlation coefficient (r value) shows how well the data 

fits the regression line, where r = 1 shows strong correlation and r = 0 shows 

little or no correlation.  
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Statistical analysis of H3R binding with age in various regions of the 

human brain comparing control with DLB cases:  
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Figure 5.13 (A – F): Age-dependant absolute specific binding of [
3
H] GSK189254 comparing 

control (n=12) with DLB cases (n=16) in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) 
Insular cortex, (E) External globus pallidus, (F) Internal globus pallidus. Significance of 
regression was determined from the generated p value, where p<0.05 was considered to 
show a significant linear relationship between age and binding level. 
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Figure 5.13 (G - H): Age-dependant absolute specific binding of [
3
H] GSK189254 comparing 

control (n=12) with DLB cases (n=16) in (G) Nucleus accumbens and (H) Combined globus 
pallidus. Significance of regression was determined from the generated p value, where 
p<0.05 was considered to show a significant linear relationship between age and binding 
level. 
 

Figure 5.13 compares specific binding levels in control (n=12) and DLB (n=16) 

cases for [3H] GSK189254 with age, ranging from 64 – 91 years in various 

brain regions. There were no significant difference age-dependant changes in 

all brain regions analysed in control and disease state cases (p> 0.053 in all 

cases). The combined globus pallidus control data showed borderline 

significance where p=0.053. The regression lines on each graph were very 

similar for both control and DLB data sets, showing a slight general decrease 

in binding levels in the caudate, putamen, anterior cingulate cortex, insular 

cortex and nucleus accumbens. In contrast the globus pallidus (graphs E, F 

and H), displayed increased binding with age in the control data set, whilst 

DLB cases showed decreased binding with age.  
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Statistical analysis of H3R binding with age in various regions of the 

human brain comparing control with AD cases: 
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Figure 5.14 (A – F): Age-dependant absolute specific binding of [
3
H] GSK189254 comparing 

control (n=12) with AD cases (n=15) in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) 
Insular cortex, (E) External globus pallidus, (F) Internal globus pallidus. Significance of 
regression was determined from the generated p value, where p<0.05 was considered to 
show a significant linear relationship between age and binding level. 
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Figure 5.14 (G - H): Age-dependant absolute specific binding of [
3
H] GSK189254 comparing 

control (n=12) with AD cases (n=15) in (G) Nucleus accumbens and (H) Combined globus 
pallidus. Significance of regression was determined from the generated p value, where 
p<0.05 was considered to show a significant linear relationship between age and binding 
level. 
 

Figure 5.14 compares specific binding levels in control (n=12) and AD (n=15) 

cases for [3H] GSK189254 with age, ranging from 70 – 91 years in various 

brain regions. There were no significant difference age-dependant changes in 

all brain regions analysed in control and disease state cases (p> 0.053 in all 

cases). The regression lines on each graph were very similar for both control 

and AD data sets, showing a slight general decrease in binding levels in the 

caudate, putamen, insular cortex and nucleus accumbens. In contrast the 

globus pallidus (graphs E, F and H), displayed increased binding with age in 

both control and AD cases. 

 

On comparison of H3R binding of control data with the binding in the two 

disease states, there are clear differences seen in the globus pallidus 

between the two disease states. These differences are likely to be a result of 

the difference in disease pathology.  

 

The next parameter is to compare whether there are any difference in H3R 

binding between the three groups.  

G H
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5.4.6 Quantitative analysis of human data – Comparison of mean H3R 

binding between control and disease groups  

The data for each group were further analysed to show the mean specific 

binding cpm/mm2 + SD of [3H] GSK189254 for all groups for n determinations 

in all brain regions defined. 

Statistical analysis was performed using a one-way ANOVA test, indicated 

with the use of Graph Pad Prism (version 4) to analyse between the groups in 

each of the brain regions defined. Statistical significance was set at p<0.05 

level for the one-way ANOVA analysis. 
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Statistical analysis of mean specific H3R binding between all groups in 

various regions of the human brain: 
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Figure 5.15 (A – F): Mean specific [
3
H] GSK189254 binding densities (cpm/mm

2
), (mean + 

SEM for n determinations) between control, DLB and AD cases in (A) Caudate, (B) Putamen, 
(C) Cingulate cortex, (D) Insular cortex, (E) External globus pallidus, (F) Internal globus 
pallidus. Statistical significance was set at p<0.05 level for the one-way ANOVA analysis. 
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Figure 5.15 (G – H): Mean specific [
3
H] GSK189254 binding densities (cpm/mm

2
), (mean + 

SEM for n determinations) between control, DLB and AD cases in G) Nucleus accumbens 
and (H) Combined globus pallidus. Statistical significance was set at p<0.05 level for the one-
way ANOVA analysis. 

 

Figure 5.15 shows no significant differences in the mean binding densities of 

[3H] GSK189254 in all brain regions analysed when comparing between 

control and disease states. On first glance there appears to be a trend for 

binding to be lower in the globus pallidus in AD cases, although this is not 

statistically significant. 

 

The data in Fig. 5.15 were further analysed for gender differences (data not 

shown), similar levels of binding was seen in both female and male cohorts in 

all brain regions defined indicating no evidence for gender bias.  
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5.4.7 Quantitative analysis of human data – Correlation between clinical 

symptoms and H3R binding densities 

The clinical data corresponding to DLB and AD cases summarised in tables 

5.1 showing the relevant scores for the MMSE (mini mental state examination, 

see section 5.3.10) and UPDRS scores (Unified Parkinson disease rating 

scale, see section 5.3.11). Data relating to depression, delusions, dementia 

and visual hallucinations experienced by each subject were also studied. The 

severity of the symptoms experienced were measured on the following scale, 

0 = none, 1 = mild, 2 = severe, and are indicative of the last assessment 

before death of the subject. In each case and in each tissue looked at, the 

specific binding levels of [3H] GSK189254 data were shown against the 

relevant clinical data score. In the case of MMSE and UPDRS data, the score 

could be any value in a given range; therefore each case is represented on 

the graph. The depression, delusion and visual hallucination data has been 

shown for each of the score 0 no symptoms and 1+ showing symptoms, 

giving the mean score + SD against binding levels in cpm/mm2. Although in 

the majority of cases studied clinical data was available, unfortunately not all 

cases had the relevant data, and therefore only those with the data present 

are shown.    

Estimated lines of best fit were produced using GraphPad Prism and are 

represented on each graph, indicating any changes in binding levels in each 

tissue with increasing clinical score. The significance of the regression was 

determined from the generated p value, where p<0.05 was considered to 

show a significant linear relationship between clinical score and binding level. 
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Statistical analysis of MMSE score versus H3R binding in DLB cases:   
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Figure 5.16 (A – F): Mini mental state examination score against specific binding cpm/mm
2
 of 

[
3
H] GSK189254 in DLB cases in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular 

cortex, (E) External globus pallidus, (F) Internal globus pallidus. Statistical significance was 
determined from the generated p value, where p<0.05 was considered to show a significant 
linear relationship between clinical score and binding level. 
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Figure 5.16 (G – H): Mini mental state examination score against specific binding cpm/mm
2
 

of [
3
H] GSK189254 in DLB cases in (G) Nucleus Accumbens, (H) combined Globus Pallidus. 

Statistical significance was determined from the generated p value, where p<0.05 was 
considered to show a significant linear relationship between clinical score and binding level. 

 

Figure 5.16 shows the specific binding levels in DLB cases (n=16) for [3H] 

GSK189254 against MMSE score in the brain regions defined. There were no 

significant differences in the binding densities of [3H] GSK189254 with 

increased MMSE score (p>0.502 in all areas). The general trend in all the 

graphs showed relatively little change in binding with increased MMSE score, 

except in the internal globus pallidus where there was a decrease in binding 

with increased MMSE score. The r values ranged from -0.118 (internal globus 

pallidus) to 0.212 (nucleus accumbens).  
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Statistical analysis of MMSE score versus H3R binding in AD cases: 
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Figure 5.17 (A – F): Mini mental state examination score against specific binding cpm/mm
2
 of 

[
3
H] GSK189254 in AD cases in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular 

cortex, (E) External globus pallidus, (F) Internal globus pallidus. Statistical significance was 
determined from the generated p value, where p<0.05 was considered to show a significant 
linear relationship between clinical score and binding level. 

 

A B

 

C D 

E F 



 

238 

 

Nucleus Accumbens

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

r=

p=
0.02046

0.7869

MMSE score

[3
H

] 
G

S
K

1
8
9
2
5
4
 S

p
e
c
if

ic
 b

in
d

in
g

c
p

m
/m

m
2

Globus pallidus

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
r=  -
p=

0.08569

0.3824

MMSE score

[3
H

] 
G

S
K

1
8
9
2
5
4
 S

p
e
c
if

ic
 b

in
d

in
g

c
p

m
/m

m
2

 

Figure 5.17 (G – H): Mini mental state examination score against specific binding cpm/mm
2
 

of [
3
H] GSK189254 in AD cases in (G) Nucleus Accumbens, (H) combined Globus Pallidus. 

Statistical significance was determined from the generated p value, where p<0.05 was 
considered to show a significant linear relationship between clinical score and binding level. 

 

Figure 5.17 shows the specific binding levels in AD cases (n=15) for [3H] 

GSK189254 against MMSE score in the brain regions defined. There were no 

significant differences in the binding densities of [3H] GSK189254 with 

increased MMSE score (p>0.207 in all areas). The general trend in all the 

graphs showed relatively little change in binding with increased MMSE score, 

except in the internal and external globus pallidus and the putamen where 

increased binding is associated with an increase in MMSE score. The r values 

ranged from -0.462 (internal globus pallidus) to 0.020 (nucleus accumbens).  
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Statistical analysis of UPDRS score versus H3R binding in DLB cases:   
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Figure 5.18 (A – F): Unified Parkinson Disease Rating Scale against specific binding 
cpm/mm

2
 of [

3
H] GSK189254 in DLB cases in (A) Caudate, (B) Putamen, (C) Cingulate 

cortex, (D) Insular cortex, (E) External globus pallidus, (F) Internal globus pallidus. Statistical 
significance was determined from the generated p value, where p<0.05 was considered to 
show a significant linear relationship between clinical score and binding level. 
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Figure 5.18 (G – H): Unified Parkinson Disease Rating Scale against specific binding 

cpm/mm
2
 of [

3
H] GSK189254 in DLB cases in (G) Nucleus Accumbens, (H) combined Globus 

Pallidus. Statistical significance was determined from the generated p value, where p<0.05 
was considered to show a significant linear relationship between clinical score and binding 
level. 

 

Figure 5.18 shows the specific binding levels in DLB cases (n=16) for [3H] 

GSK189254 against UPDRS score in the brain regions defined. There were 

no significant differences in the binding densities of [3H] GSK189254 with 

increased UPDRS score (p>0.078 in all areas). The general trend in all the 

graphs showed a slight increase in binding with increased UPDRS score. The 

r values ranged from 0.001 (caudate) to 0.850 (nucleus accumbens).  
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Statistical analysis of UPDRS score versus H3R binding in AD cases: 
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Figure 5.19 (A – F): Unified Parkinson Disease Rating Scale against specific binding 
cpm/mm

2
 of [

3
H] GSK189254 in AD cases in (A) Caudate, (B) Putamen, (C) Cingulate cortex, 

(D) Insular cortex, (E) External globus pallidus, (F) Internal globus pallidus. Statistical 
significance was determined from the generated p value, where p<0.05 was considered to 
show a significant linear relationship between clinical score and binding level. 
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Figure 5.19 (G – H): Unified Parkinson Disease Rating Scale against specific binding 

cpm/mm
2
 of [

3
H] GSK189254 in AD cases in (G) Nucleus Accumbens, (H) combined Globus 

Pallidus. Statistical significance was determined from the generated p value, where p<0.05 
was considered to show a significant linear relationship between clinical score and binding 
level. 

 

Figure 5.19 shows the specific binding levels in AD cases (n=15) for [3H] 

GSK189254 against UPDRS score in the brain regions defined. There were 

no significant differences in the binding densities of [3H] GSK189254 with 

increased UPDRS score (p>0.259 in all areas). The general trend in all the 

graphs showed a slight increase in binding with increased UPDRS score. The 

r values ranged from 0.000 (nucleus accumbens) to 0.680 (nucleus 

accumbens).  
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Statistical analysis of depression score and H3R binding density in DLB 

cases:   
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Figure 5.20 (A – F): Depression score against specific binding cpm/mm
2
 of [

3
H] GSK189254 

in DLB cases in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular cortex, (E) 
External globus pallidus, (F) Internal globus pallidus. Statistical significance was determined 
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from the generated p value, where p<0.05 was considered to show a significant linear 
relationship between clinical score and binding level. 
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Figure 5.20 (G – H): Depression score against specific binding cpm/mm
2
 of [

3
H] GSK189254 

in DLB cases in (G) Nucleus Accumbens, (H) combined Globus Pallidus. Statistical 

significance was determined from the generated p value, where p<0.05 was considered to 
show a significant linear relationship between clinical score and binding level. 

 

Figure 5.20 shows specific H3R binding levels + SD cpm/mm2 in DLB cases 

(n=16) against depression score. There were no significant differences 

between the H3R binding densities and severity of depression.  
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Statistical analysis of depression score and H3R binding density in AD 

cases: 
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Figure 5.21 (A – F): Depression score against specific binding cpm/mm
2
 of [

3
H] GSK189254 

in AD cases in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular cortex, (E) 
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External globus pallidus, (F) Internal globus pallidus. Statistical significance was determined 
from the generated p value, where p<0.05 was considered to show a significant linear 
relationship between clinical score and binding level. 
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Figure 5.21 (G – H): Depression score against specific binding cpm/mm
2
 of [

3
H] GSK189254 

in AD cases in (G) Nucleus Accumbens, (H) combined Globus Pallidus. Statistical 
significance was determined from the generated p value, where p<0.05 was considered to 
show a significant linear relationship between clinical score and binding level. 

 

Figure 5.21 shows specific H3R binding levels + SD cpm/mm2 in AD cases 

(n=15) against depression score. There were no significant differences 

between the H3R binding densities and severity of depression except in the 

combined globus pallidus where a decrease in H3R binding is correlated with 

increase severity of depression (p=0.035).  
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Statistical analysis of delusion score and H3R binding density in DLB 

cases: 
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Figure 5.22 (A – F): Delusion score against specific binding cpm/mm

2
 of [

3
H] GSK189254 in 

DLB cases in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular cortex, (E) External 
globus pallidus, (F) Internal globus pallidus. Statistical significance was determined from the 
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generated p value, where p<0.05 was considered to show a significant linear relationship 
between clinical score and binding level. 
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Figure 5.22 (G – H): Delusion score against specific binding cpm/mm
2
 of [

3
H] GSK189254 in 

DLB cases in (G) Nucleus Accumbens, (H) combined Globus Pallidus. Statistical significance 
was determined from the generated p value, where p<0.05 was considered to show a 
significant linear relationship between clinical score and binding level. 

 

Figure 5.22 shows specific H3R binding levels + SD cpm/mm2 in DLB cases 

(n=16) against delusion score. There were no significant differences between 

the H3R binding densities and severity of delusion except in the internal 

globus pallidus and combined globus pallidus where an increase in H3R 

binding is correlated with increase severity of delusion (p=0.048 and p=0.009).  
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Statistical analysis of delusion score and H3R binding density in AD 

cases: 
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Figure 5.23 (A – F): Delusion score against specific binding cpm/mm
2
 of [

3
H] GSK189254 in 

AD cases in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular cortex, (E) External 
globus pallidus, (F) Internal globus pallidus. Statistical significance was determined from the 
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generated p value, where p<0.05 was considered to show a significant linear relationship 
between clinical score and binding level. 
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Figure 5.23 (G – H): Delusion score against specific binding cpm/mm
2
 of [

3
H] GSK189254 in 

AD cases in (G) Nucleus Accumbens, (H) combined Globus Pallidus. Statistical significance 
was determined from the generated p value, where p<0.05 was considered to show a 
significant linear relationship between clinical score and binding level. 

 

Figure 5.23 shows specific H3R binding levels + SD cpm/mm2 in AD cases 

(n=15) against delusion score. There were no significant differences between 

the H3R binding densities and severity of delusion except in the internal 

combined globus pallidus where an increase in H3R binding is correlated with 

increase severity of delusion (p=0.035). 

 

 

 

 

 

 

 

 

 

G H 

* 



 

251 

 

 

Statistical analysis of visual hallucination score and H3R binding density 

in DLB cases: 
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Figure 5.24 (A – F): Visual hallucination score against specific binding cpm/mm
2
 of [

3
H] 

GSK189254 in DLB cases in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular 
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cortex, (E) External globus pallidus, (F) Internal globus pallidus. Statistical significance was 
determined from the generated p value, where p<0.05 was considered to show a significant 
linear relationship between clinical score and binding level. 
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Figure 5.24 (G – H): Visual hallucination score against specific binding cpm/mm
2
 of [

3
H] 

GSK189254 in DLB cases in (G) Nucleus Accumbens, (H) combined Globus Pallidus. 
Statistical significance was determined from the generated p value, where p<0.05 was 
considered to show a significant linear relationship between clinical score and binding level. 

 

Figure 5.24 shows specific H3R binding levels + SD cpm/mm2 in DLB cases 

(n=16) against visual hallucination score. There were no significant 

differences between the H3R binding densities and severity of visual 

hallucinations except in the combined globus pallidus where an increase in 

H3R binding is correlated with increase severity of delusion (p=0.040). 
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Statistical analysis of visual hallucination score and H3R binding density 

in AD cases: 
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Figure 5.25 (A – F): Visual hallucination score against specific binding cpm/mm
2
 of [

3
H] 

GSK189254 in AD cases in (A) Caudate, (B) Putamen, (C) Cingulate cortex, (D) Insular 
cortex, (E) External globus pallidus, (F) Internal globus pallidus. Statistical significance was 

A B
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determined from the generated p value, where p<0.05 was considered to show a significant 
linear relationship between clinical score and binding level. 
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Figure 5.25 (G – H): Visual hallucination score against specific binding cpm/mm
2
 of [

3
H] 

GSK189254 in AD cases in (G) Nucleus Accumbens, (H) combined Globus Pallidus. 

Statistical significance was determined from the generated p value, where p<0.05 was 
considered to show a significant linear relationship between clinical score and binding level. 

 

Figure 5.25 shows specific H3R binding levels + SD cpm/mm2 in AD cases 

(n=16) against visual hallucination score. There were no significant 

differences between the H3R binding densities and severity of visual 

hallucinations.  

 

Overall H3R binding in both AD and DLB cases does not show any correlation 

with MMSE, UPDRS, depression in cortical or striatal structures in the human 

CNS. In contrast, increased H3R binding positively correlated with increased 

severity of psychotic symptoms (delusion and visual hallucinations) in the 

globus pallidus in both AD and DLB patients.   
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5.5 Discussion 

The autoradiography assays performed in this chapter have employed a 

highly potent and selective H3R inverse agonist [3H] GSK189254, to visualise 

and allow quantification of the human H3R. A range of brain structures 

implicated in the characteristic symptoms of DLB and AD were investigated. 

For example the striatum which consists of the putamen and caudate nucleus, 

is known for its role in planning and modulation of movement pathways, but is 

also involved in a variety of other cognitive processes involving executive 

function. The cerebral cortex is involved in many complex brain functions 

including memory, attention, perceptual awareness, language and 

consciousness. More specifically, the anterior cingulate cortex is thought to be 

the neuroanatomical interface between emotion and cognition, and the insular 

cortex is believed to process convergent information to produce an 

emotionally relevant context from sensory experience. These are some of the 

brain regions whose functions are affected by dementia and chronic 

neurodegenerative diseases where cognition steadily declines. The main 

focus has been to determine whether there are any changes in the H3R in 

relation to age and gender in control, DLB and AD cases.      

Several lines of evidence suggest that manipulation of the histamine system 

may alleviate some of the clinical symptoms of AD and DLB. H3R blockade 

with antagonist/ inverse agonists results in the up-regulation of several 

neurotransmitters which have been shown to have positive affects upon 

cognitive deficits in several animal models of dementia (Tiligada
 
et al., 2009). 
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5.5.1 H3R binding in rodent CNS in relation to aging and dementia 

The first aim of this chapter was to determine the distribution pattern of the 

ligand binding in the brain of two strains of mouse and whether there were any 

differences in binding levels with increased age in each strain. H3R binding 

was detected in brain regions where binding has previously been reported, 

with high density in the striatum and the cortex but not in the cerebellum (Le et 

al., 2009 and Medhurst et al., 2009). In several other studies, binding was 

detected in the striatal, cortical, thalamic, hippocampal, hypothalamic areas 

and substantia nigra, with minimal binding in white matter areas, (Pollard et 

al., 1993, Barbier et al., 2004 and Medhurst et al., 2009).  

The next stage was to determine whether the levels of H3R binding were 

altered in cortical and striatal regions associated with dementia, the cortex, 

cingulate cortex and striatum. The mean H3R binding density in both cortical 

and striatal regions in CD-1 mice CNS show no significant difference in ligand 

binding over the age range of 3 - 12 months when learning deficits have been 

shown to occur (Michalikova et al., 2007 and Ennaceur et al., 2008). These 

data support the preservation of H3Rs previously seen in the cortex, 

hippocampus and hypothalamus of wild type and TASTPM mice (Medhurst et 

al., 2009 & Chapter 4). mRNA levels for the H3R in C57BL/6 mice at 4 time 

points 3, 12 ,18 and 24 months were also shown to be unchanged in all areas 

of the brain except the medulla, where there was a significant decrease from 

18 month onwards (Terao et al., 2004). 

In contrast, the mean H3R binding density in striatal regions in mice TASTPM 

CNS showed a significant decrease in binding at 13 month old TASTPM mice 

compared with 3 month (p<0.05) and 7 month (p<0.001). The significant 
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decrease in binding seen at 13 months is interesting since the published 

literature suggests that the H3R is preserved at 13 and 16 months in TASTPM 

mice, despite a significant amyloid load in the frontal cortex (Medhurst et al., 

2009). A decrease in H3R density in the striatum with increasing age may be 

important in behavioural changes seen in AD. A decrease in H3R expression 

would result in decreased H3R activation and increased neurotransmitter 

release, including acetylcholine and dopamine (Medhurst et al., 2009), 

therefore potentially acting as a compensatory mechanism for the loss of 

cortical-striatal innervation seen in AD that results in reduced acetylcholine in 

the pre-frontal cortex and hippocampus (Whitehouse et al., 1982). 

The age dependant H3R expression changes observed in this chapter in both 

CD-1 and TASTPM mice timeline were also confirmed using immune-specific 

probes (Chapter 3).  

 

H3R expression in cortical and striatal regions in rodent CNS appear to be 

largely preserved. H3R expression was then determined in various cortical 

and striatal regions of the human CNS 

 

5.5.2 H3R binding in the human CNS in relation to aging  

The next aim of the study was to determine the distribution pattern of the 

ligand in normal human brain and whether there were any age-dependant 

differences in H3R binding. H3R binding was detected in brain regions where 

binding has previously been reported, with high H3R densities in the internal 

and external segments of the globus pallidus, caudate, putamen and nucleus 
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accumbens with moderate levels in the anterior cingulate and insular cortices 

(Martinez-Mir et al., 1990 and Anichtchik et al., 2001).  

The next stage was to determine whether the levels of H3R binding were 

altered in cortical and striatal regions associated with dementia, the caudate, 

putamen, anterior cingulate cortex, insular cortex, nucleus accumbens and 

globus pallidus. In this study, H3R binding densities in both cortical and striatal 

regions in control human cases show no significant difference in ligand 

binding with age. Goodchild et al., (1999) also did not report any significant 

age-related changes in H3R expression in the basal ganglia in normal ageing, 

nor did receptor density differ between male and female cases. 

 

H3R binding does not appear to be altered in normal aging supporting 

previously published data of H3R preservation. H3R binding was then 

determined in aged related dementias to see if disease state altered H3R 

expression. 

 

5.5.3 H3R binding in the human CNS in relation to aging in two age 

related dementias  

The purpose of this part of the study was to investigate whether the H3R is 

preserved with age in human age related dementias. H3R binding densities in 

both cortical and striatal regions in both DLB and AD human cases showed no 

significant difference in ligand binding with age, indicating that the H3R is 

preserved in a range of cortical and striatal regions associated with AD and 

DLB. 
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Having looked at H3R binding in the disease states separately, the next stage 

was to determine whether there were any age related changes in H3R binding 

levels in DLB and AD cases compared to age matched controls. 

 

5.5.4 H3R binding in control human data compared with disease cases 

(DLB and AD) 

The purpose of this part of the study was to investigate whether there are age 

dependant changes in H3R levels in disease state compared to control cases. 

H3R binding densities in both cortical and striatal regions showed no 

significant difference in age related binding between control and DLB cases. 

H3R binding densities in the combined globus pallidus showed borderline 

significance with decreased binding with age in the DLB data set compared to 

aged matched controls. 

H3R binding densities in both cortical and striatal regions showed no 

significant difference in age related binding between control and AD cases. 

H3R binding densities in the combined globus pallidus showed borderline 

significance with increased binding with age in the AD data set compared to 

aged matched controls. 

 

H3R binding of both DLB and AD cases compared with age matched controls 

displays differential age related changes in the globus pallidus, with DLB 

cases showing a decrease in binding with age whilst an increase in binding is 

observed for AD cases. The differences observed are likely to be a result of 

the differential pathologies of the two diseases. The decrease in H3R binding 
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in the globus pallidus in DLB cases may be related to the mobility problems 

associated with the disease that is not seen in AD.  

 

Mean H3R binding densities for each brain region were compared between all 

three groups to determine whether there were any alterations in H3R densities 

between the two disease states compared with age matched controls. H3R 

binding densities in both cortical and striatal regions showed no significant 

difference between control and disease states.  

 

The data suggest that there is no significant change in H3R population overall 

between control and disease cases, providing further evidence for H3R 

preservation. Preclinical trials have already alluded to the prospect of H3R 

antagonists as a treatment for cognitive impairment. Medhurst et al., 2007, 

demonstrated H3R expression was preserved in late stages of AD in the pre- 

frontal cortex and hippocampus in human cases. We provide further evidence 

showing preservation of H3Rs in many cortical and striatal brain regions, 

supporting the H3R as a viable target in treating dementias.  

 

5.5.5 Disease state symptom correlation studies.  

In this section the H3R binding levels have been correlated with scores from 

various clinical tests. There was no correlation between H3R binding and 

MMSE or UPDRS scores in both DLB and AD cases, indicating that H3R does 

not alter with severity of cognitive and motor impairment. There was an overall 

increase in H3R binding with decrease in MMSE score indicative of a 

decrease in cognitive function. The increase in H3R binding maybe acting as a 
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compensatory mechanism to counteract changes seen elsewhere in the 

histaminergic system in severe AD and DLB, such as a decrease in frontal 

cortex H1R in AD (Higuchi et al., 2000), and reduced H2R expression in the 

hippocampus in both AD and DLB (Goodchild et al., 1999). The functional 

consequence of increased H3R density could be a further decrease in 

cognitive neurotransmitters and hence further exacerbation of cognitive 

deficits, and so would not be a positive compensatory effect.  Alternatively, the 

increase in H3R binding in brains of individuals with more severe dementia 

could simply be related to loss of cholinergic neurons. The data obtained 

support a previous report that higher frontal cortex H3R binding correlated with 

more severe dementia (MMSE) in AD (Medhurst et al., 2009).  

 

There was no correlation between H3R binding and severity of depression in 

DLB and AD cases, suggesting that the H3R does not play a role in 

depression associated with AD and DLB. In contrast, increased H3R binding in 

the globus pallidus positively correlated with increased severity of psychotic 

symptoms, delusion and visual hallucinations, in both DLB and AD cases. 

This rise in H3R binding was more profound in DLB cases than AD cases, 

which was to be expected since DLB cases have generally more pronounced 

psychosis than in AD. H3R expression has been shown to be altered in 

patients with Schizophrenia and bipolar disorders and is thought to be 

involved in disease neuropathology (Jin et al., 2009). Jin et al. (2009) showed 

significantly higher H3R radioligand binding in the prefrontal cortex of 

schizophrenic group and bipolar subjects with psychotic symptoms, and 

higher H3R binding correlated with increased severity of psychotic symptoms, 
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as seen in this present study. H3Rs in the human prefrontal cortex is thought 

to be involved in the modulation of cognition, and this is supported by findings 

in animals that H3R antagonists enhance prepulse inhibition and cognition 

(Fox et al., 2002 & 2005 and Browman et al., 2004). Patients with bipolar 

disorder have altered H3R binding in the hippocampus, a significant decrease 

in CA4, a non-significant trend towards decreased binding in CA1, a 

significant decrease in CA2 and significant increase in the dentate gyrus (Jin 

et al., 2009). Recently clinical trials with pitolisant, a H3R antagonist, 

decreased the psychotic symptoms in schizophrenic patients (Schwartz et al., 

2010 and Schwartz et al., 2011). 

 

Overall, the level of H3R expression in the globus pallidus displayed a range 

of changes in both AD and DLB cases in comparison to control cases. The 

psychotic symptoms assessed by delusions and visual hallucinations did not 

correlate for a range of cortical and basal ganglia structures, with the 

exception of the globus pallidus. DLB cases with moderate to high delusion 

and visual hallucination scores displayed approximately 40% and 22% higher 

H3R binding densities (n = 6-7 individual cases), in comparison to cases 

lacking such psychotic symptoms. A similar trend was present in AD cases 

with moderate to high delusion and visual hallucination scores displayed 

approximately 37% and 14% higher H3R binding densities, in comparison to 

cases lacking such psychotic symptoms. The volume of the human globus 

pallidus has been previously shown to be positively correlated with the 

severity of global psychotic symptoms, as measured by both the Scale for the 

Assessment of Negative Symptoms and Positive Symptoms (Spinks et al., 
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2005). An increase in the volume of the globus pallidus may account for this 

apparent increase in the H3R density.   

 

The main key findings of this chapter were the general preservation of the 

H3R in human and rodent cortical and striatal brain structures. Previous 

studies have shown the involvement of the H3R in learning and memory in 

array of animal behavioural paradigms (Blandina et al., 1996, Giovanni et al., 

1999, Fox et al., 2005, Medhurst et al., 2007, Ligneau et al., 2007 and 

Giannoni et al., 2009). The H3R has also been shown to be preserved in AD 

and TASTPM mice cortical and temporal brain structures (Medhurst et al., 

2007 & 2009). The therapeutic potential of the H3R and its preservation in 

normal aging and in diseases with severe cognitive impairment makes it a 

good candidate for improving learning and memory in cognitive impairment. 

Functional receptors are therefore available as therapeutic targets for H3R 

antagonist compounds, to help alleviate some of the symptoms of cognitive 

decline associated with AD and DLB.  

 

To what extent [3H] GSK189254 binds to the array of isoforms potentially 

expressed in the CNS still requires further work, as based on Chapter 4, this 

present study may underestimate the hH3R levels. Additional experiments are 

required to assess the expression of the H3R and its respective isoforms to 

determine to what extent the receptor and its isoforms are truly preserved in 

ageing and what part the isoforms play, if any in dementias. 
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CHAPTER 6: 

Effect of acute GSK334429B (In Vivo) Treatment on Behaviour: Novel 

Open Space Test with Object Recognition 

 

6.1 Objectives 

To assess the behavioural effect of the highly potent and selective H3R 

antagonist/ inverse agonist, GSK334429B in a novel open space test. 

GSK334429B is a congener of GSK189254 and displays high affinity and 

selectivity for the H3R. The behavioural paradigm is able to assess anxiety, 

mobility, learning and memory performance of an animal within the same 

experimental settings and testing conditions.   

 

6.2 Introduction 

The open space behavioural test with object recognition is a modification of 

the previously described open space behavioural test of anxiety, where an 

animal's response to the novelty of an open space environment are assessed 

in either a single session (emotional) or multiple sessions (learning, memory) 

(Ennaceur et al., 2006, 2010, 2010a-c).  It has been proposed that the first 

few exposures to the maze are likely to induce fear of novelty-induced anxiety, 

therefore these initial sessions were assessed for emotional responses as 

well as working memory, following which repeated exposures are thought to 

diminish anxiety as learning improves (Ennaceur et al., 2006, 2010a & 2010c).  

In the initial part of this study anxiety of the mice was assessed, mice were 

introduced to an elevated platform (Figure 6.1) with two identical objects 

without prior habituation, where a protected space is not available to avoid 

from or escape to. In these conditions, at any one time, an approach to one 
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place can be considered an escape to that place or avoidance of another 

place. The same response can be considered as an approach, an escape or 

an avoidance response at the same time. The drive to escape/ avoid is 

confounded with the drive to explore; i.e. both cannot be dissociated. It is this 

un-dissociable expression of approach and escape or avoidance responses 

that defines anxiety in both humans and animals. Balb/c mice were chosen for 

this study because of their high anxiety characteristic (Ennaceur et al., 

2010a).  

In the second part of the study, learning and memory of the mice were 

assessed, the mice were placed on to the elevated platform with two different 

objects, one of which the mouse will have seen before and the other will be a 

novel to the mouse. When exposed to a familiar object alongside a novel 

object, mice approach frequently and spend more time exploring the novel 

than the familiar object. This apparent „unconditioned preference‟ for a novel 

object is considered as an indication that a representation of the familiar 

object exists in memory; it forms the basis of the object recognition task in the 

study of memory function in rodents (Ennaceur et al., 2010 & 2010b). This 

behavioural paradigm is able to assess the motor activity, emotional 

responses, learning and memory performance of an animal within the same 

experimental settings and testing conditions (Ennaceur et al., 2006).  The 

mice are placed in the central platform and left to explore the open space 

behavioural paradigm. 

  

 

 



 

266 

 

Diagram showing the open space maze: 

 

 

 

Figure 6.1: Open space test highlighting a) central platform b) mesh arm and c) elevated 
platform.  

 

Previous behavioural studies have shown H3R antagonist/ inverse agonist to 

have a beneficial effect in learning and memory in several behavioural 

paradigms. Ciproxyfan has been shown to reverse scopolamine induced 

amnesia (Giovannini et al., 1999). GSK189254, when orally delivered 

significantly improved performance of rats in a diverse range of cognition 

paradigms; passive avoidance, water maze, object recognition and attentional 

set shift (over the dose range 0.3–3mg/kg p.o.) (Medhurst et al., 2007). In 

cats, pitolisant markedly enhanced wakefulness at the expense of sleep 

states and also enhanced fast cortical rhythms of the electroencephalogram, 

known to be associated with improved vigilance (Ligneau et al., 2007). GT-

2331 (cipralisant) and ciproxifan in a dose dependant manner significantly, 

enhanced cognitive performance of spontaneous hypertensive rat (SHR) pups 

in a repeated acquisition version of an inhibitory avoidance task, a measure of 

the cognitive and attention deficits often characteristic of ADHD. In contrast 

RαMHA, a H3R agonist, blocked the procognitive effects seen with ciproxifan, 

further supporting a H3R action (Fox et al., 2002).  

Many H3R antagonists have entered clinical trials and show promising efficacy 

for narcolepsy and ADHD, as well as cognitive impairment in schizophrenia 

and cognitive disorders. Histaminergic neurons have been shown to be largely 
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spared in neurodegenerative disease (Medhurst et al., 2007 & 2009 and this 

thesis), making H3R targeting very attractive since modulation of this receptor 

results in the modulation of other neurotransmitter systems. A phase II study 

showed that PF-03654746 is effective in the treatment of the psychotic 

symptoms of adult ADHD. Pitolisant has displayed considerable promise as a 

vigilance-enhancing agent in PD patients experiencing excessive daytime 

sleepiness in a phase III study (Arnulf et al., 2009 and Schwartz et al., 2010). 

The role of the H3R in anxiety remains controversial (Frisch et al., 1998, Rizk 

et al., 2004, Dere et al., 2004 and Acevedo et al., 2006), due to the poor 

validity of current behaviour tests. This study will address this issue with a 

new properly validated animal test of human anxiety (Ennaceur et al., 2010a, 

b and Michalikova et al., 2010). 

 

The aim of this chapter was to determine the behavioural effect of a highly 

potent and selective H3R antagonist/ inverse agonist, GSK334429B on 

mobility, anxiety, learning and memory.  
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6.3 Methods 

6.3.1. Animals 

32 male Balb/c AnNCrl mice obtained from Charles River (UK) were used in 

the experiments described in this study. Mice were 56-62 days old at the date 

of arrival and were left to acclimatize to local laboratory conditions for two 

weeks. Mice were housed in colony room that were held under a 12 h 

light/12 h dark cycle (light 0700-1900 h at 180 Lux) and at 23°C ±1°C. In order 

to avoid unequal light exposure, the upper shelf was occupied with plastic 

cages filled with clean sawdust. Mice were housed singularly and all mice had 

ad libitum access to food and water. During the period of acclimatization, mice 

were removed twice a week from their cages for cleaning and renewing of 

their food and water supply. Animal treatment and husbandry were in 

accordance with approved use of animals in scientific procedures regulated by 

the Animals (Scientific Procedures) Act 1986, UK. 

 

6.3.2 Drugs and treatments 

GSK334429B was provided by GSK (Harlow, UK). The drug was dissolved in 

physiological saline and prepared freshly on the days of the test and 

administered i.p. 1ml/kg body weight, 30 min before the start of a session. 

Animals were treated once a day in 5 successive days. The mice were divided 

into 4 groups; one group treated with saline (n=8) and separate groups 

treated with GSK334429B at 0.1 mg/kg (n=8), 0.3 mg/kg (n=8), 1 mg/kg (n=8). 
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6.3.3 Apparatus and testing procedures 

The behavioural paradigm consists of a platform 80 cm x 80 cm wide, 

elevated 75 cm from the ground. Steep upward inclined panels (width: 80 cm 

x 25 cm, slope angles 103°) made of rigid wire mesh that are attached on two 

opposite sides of the platform (see Figure 6.2). The slopes end on a step 

stand (80 cm x 25 cm) that mice need to climb onto. The rationale for these 

stands is that we expected that all mice would climb easily onto the slopes as 

they usually do when housed in mesh-wire cages. Therefore, it was necessary 

to add a stand at the end of a slope which enables us to discriminate between 

strains of mice which do cross and those who do not cross onto the stands. 

The platform was divided into a central area covered with a white tile (16 x 16 

cm wide and 0.4 cm thick), an inner area surrounding the central area (16 cm 

wide and 2048 cm2), and an outer area (16 cm wide and 4096 cm2). The outer 

area was further divided into areas adjacent to the slopes (2048 cm2) and 

areas adjacent to void space (2048 cm2). The surface of the platform was 

cleaned to minimize the effects of lingering olfactory cues. Any faeces and 

urine were removed with paper towels, then cleaned with antibacterial solution 

followed by 90% ethanol and left to dry before the introduction of the next 

mouse. The illumination on the surface of the elevated platform was 40 Lux. 

Mice were exposed to the test apparatus in 5 sessions, one session a day for 

9 min per session. In the first 3 sessions animals were released from the step 

stands, unfortunately only a few animals did cross onto the slopes and did not 

return back. In sessions 4 and 5, animals were released in the central area of 

the platform and the results from these two sessions are presented in this 
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report. The mice were weighed in a small bucket and poured gently onto the 

central platform at the start of a session and left to explore the apparatus. 

 

Open space test: 

 

Figure. 6.2: Open space test showing central platform, mesh arms and elevated platform (top 
and frontal views). The recorded behavioural data consist of measures of the number of 
entries and duration of entries into the central area, the inner area, the outer area, the slopes 
and step-stands in addition to latency of first entry into each of these areas. The record of 
outer area was further divided into measures related to areas adjacent to the slopes and 
areas adjacent to void space. Note, this test has been validated by our group (in parallel 
studies) in terms of strain-dependent anxiety differences and sensitivity to a benzodiazepine 
anxiolytic drug, diazepam (eg. Ennaceur et al., 2010, Ennaceur et al., unpublished). 

 

6.3.4 Measurement and statistical analysis 

The recording of the behaviour of mice was based on entries into defined 

areas of the apparatus. An entry was recorded whenever a mouse crossed 

with all its four paws into an area. In the case of step stand entries, it is 

possible for a mouse to cross onto a stand and remain there for the remaining 

duration of a test session. An animal that is unable to return to the slope after 

its first entry onto a stand should be considered as anxious as the one that did 
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not enter the stand. In this case, the first entry is recorded only when the 

mouse returns back to the slope. Any subsequent re-entry is normally 

recorded. All sessions were video recorded and the behaviour of mice was 

analyzed with an in-house computer program, EventLog. 

 

All data are expressed as mean ± s.e.m. Differences among group means 

values for each of the above measurements are tested for significance with 

one-way ANOVA repeated measures followed up with Newman–Keuls post-

hoc comparisons (Statistical for Windows, version 5.5). Results are 

considered significant when p≤0.05. When p≤0.10, p is rounded up to the 

nearest value and reported as non significant. 
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6.4 Results 

6.4.1. Total number of crossings on the surface of the platform:  

 

Figure 6.3: Total number of crossings on the surface of the platform. S – session number, C 
– control, D1 – Drug concentration 0.1 mg/ml, D2 – Drug concentration 0.3 mg/ml and D3 – 
Drug concentration 1.0 mg/ml. 
 

Figure 6.3 shows there was no significant differences between groups, 

between sessions, and no significant interactions between groups and 

sessions. In saline treated mice, the number of crossings was significantly 

increased in session 2 (S2) compared to session 1 (S1), (t7=2.07, p<0.04). 
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6.4.2. Latency of first entry onto the stands (Figure. A): 

6.4.3 Number of crossings onto the stands (Figure. B): 

6.4.4 Duration of entries onto the stands (Figure. C): 

 

 
 

 

   
 
Figure. 6.4: Latency of first entry, number of entries and duration of entries onto the stands. S 
– session number, STD – stands, C – control, D1 – Drug concentration 0.1 mg/ml, D2 – Drug 
concentration 0.3 mg/ml and D3 – Drug concentration 1.0 mg/ml. 
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Figure 6.4 shows there was no significant differences between groups, 

between sessions and no significant interactions between groups and 

sessions. 

 

6.4.5 Number of entries onto the slopes (Figure A): 

6.4.6 Latency of first entries onto the slopes (Figure B): 

 

 

 

Figure. 6.5: (A) Number of entries onto the slopes. (B) Latency of first entry onto the slopes. 
S – session number, SLP – slope, C – control, D1 – Drug concentration 0.1 mg/ml, D2 – Drug 
concentration 0.3 mg/ml and D3 – Drug concentration 1.0 mg/ml. 
 

Figure 6.5 (A) shows there were no significant differences in the number of 
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between sessions in the number of entries (p<0.007) and latency of first entry 

(p<0.0008). In mice treated with 0.3 mg/kg, the number of crossings was 

significantly increased (t7=1.79 and 1.95, p<0.05, respectively) and the 

latency of entry was significantly reduced (t7=2.12, p<0.04) in session 2 

compared to session 1. The latency of first entry was also significantly 

reduced in saline treated mice in the second session compared to the first 

(t7=3.06, p<0.01). 

 

6.4.7. Number of entries onto areas adjacent to the slopes:  

 

Figure. 6.6: Number of entries onto areas adjacent to the slopes. S – session number, AV – 
adjacent slope, C – control, D1 – Drug concentration 0.1 mg/ml, D2 – Drug concentration 0.3 
mg/ml and D3 – Drug concentration 1.0 mg/ml. 
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6.4.8 Latency of first entry, number of entries and duration of entries 

onto areas adjacent to the void space: There were no significant 

differences between groups, between sessions and no significant interactions 

between groups and sessions in all 3 measurements. 

 

6.4.9 Number of entries and duration of entries onto the inner area: 

There were no significant differences between groups, between sessions and 

no significant interactions between groups and sessions in both 

measurements. 

 

6.4.10 Number of entries and duration of entries onto the central area:  

 

Figure. 6.7: Number of entries and duration of entries onto the central area. S – session 
number, X – central, INN – inner area C – control, D1 – Drug concentration 0.1 mg/ml, D2 – 
Drug concentration 0.3 mg/ml and D3 – Drug concentration 1.0 mg/ml. 
 

There were no significant differences between groups, and no significant 
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duration of entries. Saline treated mice crossed more frequently into the 

central area in session 5 than in session 4 (p<0.04) 

 

6.4.11 Latency of first approach, number of approaches and duration of 

approaches of objects: There were no significant differences between 

groups, between sessions and no significant interactions between groups and 

sessions. 
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6.5 Discussion 

In the present study, 2 month old Balb/c mice were divided into four groups 

and received either saline or a H3R inverse agonist GSK334429B at 0.1 

mg/kg, 0.3 mg/kg or 1 mg/kg i.p. (recommended doses, Dr A Medhurst, GSK) 

and then exposed to an open space test (Figure 6.2). This behavioural 

paradigm examined emotional responses to novelty and open spaces, and 

motor activity in initial exposures to the test, in addition to learning and 

memory performance in the latter phase of the test.  

The emotional response or anxiety measures for an animal on the open space 

behavioural paradigm consisted of the number of crossings in the surface of 

the platform, the latency of the first entry, number of entries and duration of 

entries onto the stands. An increase in number of crossings onto the stands 

and slopes, and a reduction in the latency of first entry to the stand would 

suggest a decrease in anxiety and an increase in exploration, respectively.  

There were no significant differences in the total number of crossings onto the 

surface of the platform between saline and drug treated groups. There does 

however appear to be a trend for an increased number of crossings in session 

4 in the drug treated groups compared with the saline group reflecting an 

increase in motor activity. In the saline treated group, the number of crossings 

was significantly increased in session 2 compared to session 1 indicating that 

the mice were more active in session 2, reflecting a reduction in the level of 

anxiety. 

The majority of results were statistically insignificant between the 4 groups 

indicating that H3R antagonists, in particular GSK334429B at a concentration 

of 0.1-1mg/kg are not anxiolytic or anxiogenic. However, there was 
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significance between sessions but this was to be expected, as the more 

exposed the mice are to the test they would begin to overcome the anxiety of 

the novelty and open space environment and increase exploration would allow 

for learning to commence.  

Notably, the level of anxiety displayed by the mice in all groups was 

excessively high throughout the 5 sessions (very limited habituation), which 

greatly limited the learning performance of the mice (not shown). Therefore, 

the effects of the drug could not be assessed upon learning performance. To 

overcome this in future experiments mice would need to be exposed to the 

maze for a longer period of time or longer habituation period or alternatively a 

less anxious strain of mouse such as the C57 to suppress the influence of 

anxiety upon short-term memory performance. 

 

This study provides further evidence that the H3R may have a role to play in 

motor activity and strong evidence that the H3R, while it may be involved in 

fear-avoidance responses (Dere et al., 2010), it does not have a role to play in 

anxiety responses. This concurs with other unpublished studies from our 

laboratory using the 3D maze open space anxiety test, together with both 

selective H3R agonist and antagonist drugs (Ennaceur and Chazot, in 

preparation). 
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CHAPTER 7 

GENERAL DISCUSSION 

 

During the course of this PhD project, 3 new antibodies specific to isoforms of 

the human histamine H3R have been generated and validated (Chapter 3). 

These novel immunological tools (first of their kind) have been used alongside 

previously validated H3R antibodies to characterise the molecular 

pharmacology of the different human isoforms as well as looking at the 

expression of H3R in relation to ageing in normal and neurodegenerative 

rodent and human brain. The key hypotheses addressed were: 

 

7.1 H3R are preserved in murine and human aging and age related 

dementias 

Immunohistochemical analysis of the H3R in CD-1 and TASTPM mouse brain 

displayed a wide expression profile in the CNS: globus pallidus, medial and 

lateral segments, caudate, putamen, hippocampus, external layers of the 

cortex. Highest expression was detected in the cerebral cortex, hippocampal 

formation and basal ganglia, areas all associated with cognition and motor 

activities, as well as the hypothalamus. Immunohistochemical and 

immunoblotting data based on the mouse timeline experiments would suggest 

that H3R as a general population do not appear to alter between the ages or 

3-10 months or 3-7months in CD-1 and TASTPM mice, respectively, the time 

periods where learning deficits are clearly evident in these mice. In contrast, 

between the ages of 12-19 months the expression of the H3R dramatically 

decreases in the CD-1 mouse CNS in all areas examined. This is likely down 
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to increased CNS atrophy which is reflected behaviourally in the animal‟s 

general health. The H3RA/C isoforms also appears to be preserved with age in 

both CD-1 and TASTPM mice (Chapter 3). Autoradiography data (Chapter 5) 

also confirms the immunological findings in chapter 3, showing general 

preservation of H3R expression between 3-12 months in CD-1 and TASTPM 

mouse brain. However, autoradiography data along with immunological data 

displayed a trend for increased H3R binding in TASTPM mice at 7 months 

which returns back to basal levels by 12 months of age. This increase in H3R 

binding may reflect a compensatory mechanism occurring within the CNS as 

the disease progresses, between the ages of 3 - 7 months is when the 

profound learning deficits have been shown to develop as well as a significant 

increase in Aβ plaques in areas of the brain involved in cognition. The 

differences observed in H3R expression between the CD-1 and TASTPM 

mice data sets may reflect in the pathology of the two dementias seen in 

these different mouse models.   

Overall H3Rs would appear to be preserved in a range of striatal and cortical 

structures in rodent CNS when probed with rodent specific immunological 

probes.  

Autoradiographical analysis (Chapter 5) of the human H3R in the brain 

displayed specific binding in the globus pallidus, caudate, putamen, 

hippocampus, nucleus accumbens, anterior cingulate cortex and insular 

cortex, areas associated with cognition, motor and emotional behavious. 

Radiolabelling of H3R with a highly specific H3R inverse agonist [3H] 

GSK189254 demonstrated that H3R expression appears to be largely 

preserved in an array of key cortical and striatal structures in normal human 
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aging and in the neurodegenerative disease cases investigated, namely DLB  

and AD.  

Using immunological specific probes, for the first time human H3R isoforms 

have been shown to be expressed at the protein level in the human brain. 

Preliminary immunoblotting data obtained for human disease cases suggest 

for the first time that H3R isoform expression is altered in different disease 

states. The H3R365 isoform appears to be largely unaltered in PD and DLB 

unlike the H3R 445 and H3R 329 isoforms which appear to be increased in DLB 

and PD, respectively. To what extent [3H] GSK189254 binds to the array of 

isoforms potentially expressed in the CNS still requires further work. Based 

on the results obtained in Chapter 4, this study may underestimate H3R 

expression in the human CNS.                      

 

Overall, a selection of novel anti-hH3R isoform specific probes were 

generated which were selective for particular human H3R isoform targets.  

The development of H3R isoform specific ligands will allow for further analysis 

of the changes occurring in the expression of these receptor isoforms 

throughout disease progression. Future work is needed for the further 

development of isoform specific antibodies and detailed mapping of the 

isoforms in both rodent and human CNS. It would be interesting to see if 

expression and/or distribution pattern was influenced by environmental 

factors such as stress and disease.   
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7.2 Human H3R homomeric isoforms and heteromeric subtypes display 

differential pharmacological properties 

Saturation and competition binding assays using the highly specific H3R 

inverse agonist [3H] GSK189254 was used to determine the pharmacological 

properties of three of the major human H3R isoforms: H3R329, H3R365 and 

H3R445 either expressed alone or co-expressed in HEK 293 cells. Saturation 

binding assays showed the ligand to display a 5-fold lower affinity for the 

shorter of the three isoforms, hH3R329 and a 10-fold lower affinity for the 

heterodimeric combination: hH3R329 + hH3R365. In certain experimental 

techniques [3H] GSK189254 may underestimate the number of hH3Rs due to 

the differential pharmacological profile at the different isoforms. To what 

extent other H3R ligands may underestimate the numbers of H3Rs is 

unknown.  

Competition binding assays performed using an array of H3R ligands (agonist, 

antagonist, inverse agonist and protean ligand) displayed a biphasic 

competition curve suggesting that the compounds are recognising a high and 

low affinity H3R binding site. Competition binding assays showed significant 

differences in the high-affinity binding sites between ligands (thioperamide, 

GSK334429B, RαMHA, iodophenpropit and proxyfan) at the same isoform as 

well as across the isoforms, providing new information regarding the 

fundamental pharmacological nature of human H3R and its respective 

isoforms. This establishes the potential for developing H3R isoform specific 

ligands, which will allow for further detailed pharmacological analysis and give 

further insight into the heterogeneity of the H3R isoforms that will eventually 

lead to the development of highly specific therapeutic drugs.  
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7.3 H3R are involved in anxiety and memory behaviours 

GSK334429B, a congener of GSK189254, a highly potent and selective H3R 

antagonist/ inverse agonist was administered at a concentration of 0.1-1 

mg/kg i.p. to 2 month old Balb/C mice. The open space maze paradigm is a 

novel validated all-in-one behavioural elevated platform test that is able to 

look at a variety of behaviours such as emotion, mobility, learning and 

memory. The role of the H3R in anxiety remains controversial due to the poor 

validity of current behaviour tests. This newly validated behavioural paradigm 

showed that H3R antagonists are not anxiogenic or anxiolytic. The level of 

anxiety displayed by the mice in all groups was excessively high throughout 

the 5 sessions which greatly limited the learning performance of the mice and, 

therefore, learning performance could not be assessed. To overcome this in 

future experiments mice would need to be exposed to the maze for a longer 

period of time or a longer habituation period or alternatively use a less 

anxious strain of mice such as C57 to suppress the influence of anxiety upon 

short-term memory performance. Furthermore, exploratory behaviour will be 

increased on the apparatus with a food deprivation strategy in future 

experiments. 

This study provided new evidence that that the H3R, while it may be involved 

in fear-avoidance responses (Dere et al., 2010), it is not involved in anxiety 

responses. This concurs with other unpublished studies from our laboratory 

using the 3D maze open space anxiety test, together with both selective H3 

agonist and antagonists (Ennaceur and Chazot, in preparation). 
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Additional experiments are required to assess the expression of the H3R and 

its respective isoforms to determine to what extent the receptor and its 

isoforms are truly preserved in ageing and what role the isoforms play, if any, 

in dementias. 

Understanding the biology of histamine and respective receptors is crucial for 

the development of novel therapies. Receptor heterogeneity has been a 

crucial focus for this thesis as it forms a major part of understanding of the 

histamine H3R and its function. Drugs targeting the histamine H1R and 

histamine H2R have been available for many years for the treatment of 

allergies and gastric inflammation, respectively. Expectations for similar block 

buster drug status are expected for both the H3R and H4R. Drug development 

for both H1 and H2 receptors was not as complex as has been for the H3 and 

H4 receptors due to the lack of heterogeneity. The discovery of numerous 

receptor isoforms for both the H3 and H4 receptors and their implication have 

been a major obstacle in the development of drugs entering the clinical. We 

have developed the first panel of H3R isoform specific antibodies which will 

help with investigating the role of these isoforms in relation to the full length 

receptor, their anatomical topologies in normal versus diseased brain and aid 

the development of isoform selective compounds.   

The purpose of the different isoforms is a topic of great interest. Previous 

studies have shown pharmacological differences between the different 

isoforms. This thesis has shown that the human H3R329 isoform displays a 

different pharmacological profile to the H3R365 and H3R445. Similarly, co-

expression of the H3R329 with the H3R365 lowers the affinity of the H3R365 

isoforms. These studies were performed in a recombinant system with the 
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receptors being artificially expressed in HEK 293 cells. However, these 

isoforms are known to be co-expressed in the CNS and therefore one may 

hypothesize that such an interaction is possible. To what extent the isoform 

effects/ controls H3R pharmacology, expression and function is still unknown. 

In order to assess their functional significance, compounds capable of 

distinguishing between these isoforms are required. 

The histaminergic system, like the other aminergic systems plays a 

modulatory role. Histamine plays a major role in homeostasis and helping the 

animal to respond appropriately to its‟ environment. Complex information has 

to be continually processed and integrated, flexibility is crucial to its function. 

Heterogeneity may be the mechanism underlying this flexibility allowing for 

close, regulated control of receptor expression and function.  
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