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ABSTRACT.

Under larqge signal conditions, the inherent
nonlinearity of semiconductor devices is relatively strong,
and numerical methods for the solutions of the system
equations seem to be inevitable. In this work, numerical
algorithms for time-independent and time—~dependent
modelling of bipolar devices have been developed and used
to study both the internal and terminal characteristics of

some n*-p and n*-p-p*

diodes over a wide range

of operation. The effect of minority carrier lifetime on
the characteristics of the devices has been investigated,
considering the cases of diodes with the same widith, diodes
with the same recombination criterion, and diodes with the
same lifetime but different recombination criteria
respectively.

In the frequency domain, we studied the influence of
the lifetime in terms of harmonic analysis, by applying the
Fast Fourier Transform directly to the solutions., The
quasi-static spectra obtained from the exact, and

approximated diode characteristics, together with the

dynamic spectrum, are shown and considered.
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Chapter 1

Introduction

During the past few years, advances in digital
computers and digital computation techniques bhave 1led to
considerable development in the field of computer-aided
design. The computer is used extensively to develop and
design semicoﬁductor devices. The work 1is centered on
development of models which will predict device performance
over a wide range of operation. The models should also be
accurate, and qgive detailed and extensive information about
the internal behaviour of the device.

The inherent nature of nonlinearity and also the strong
coupling between the physical parameters of the device make
the modelling technique complicated, However, these
techniques have been remarkably developed in both the time
and frequency domains, and they can be classified into 2

types; the analytical approach, and the numerical approach.

1.1 The analytical approach

The analytical approach has been developed widely and
was used in the early analyses of semiconductor devices.
The methods are based on certain approximations and
assumptions which are used to simplify the mathematical
description of the physics of the device. The development
began with Schockly's <classical theory of depletion

approximation <1>» which assumes that there are no mobile

£ Uhivg
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carriers existing in the space-charge region, By using
Boltzmann statistics, the concept of quasi-cquilibrium, and
by neglecting the drift current components, the behaviour
of the devices can be predicted. The depletion model has
been used successfully and is widely accepted, particularly
with alloyed Jjunction devices wunder low-level injection
conditions. For diffusion devices under high-level
injection conditions however, departures from this model
were found and ascribed to the presence of mobile carriers

in the space-charge region, For

]

high-level injection
model, Cornu <2> proposed an assumption that the
space-charge densities on each side of the Jjunction
decrease exponentially, rather than being constant as in
the case of the depletion model. The Cornu model provides
very good agreement with the exact numerical solutions.
However, the model can be analyzed only in the limiting
case when the potential barrier becomes small compared to
the thermal voltage (kT/q).

A later model proposed by Choo <3> assumed that the
contribution of the ionized impurities to the space-charge
on the lightly doped side of the junction could be neglected
under high-level injection conditions, The use of this
model together with the quasi-equilibrium and
quasi-neutrality assumptions gives results closer to the
exact numerical solutions at any injected level, liowever ,
the solutions can only be obtained by solving the implicit
equations.

In general computer aided circuit analysis and design

requires that the solutions obtained from the above models



be formulated so that the device can be represented by
discrete circuit elements. A valid representation should
contain both static and dynamic descriptions of the device.
Linvill's classical multiple-lump model <4> represents the
recombination and charge storage terms in the continuity
equations by two new circuit elements called combinance and
storance respectively. The neutral regions are then
represented by a series of parallel pairs of combinance and
storance, while the space-charye regyion is represented by a
capacitor, This model can represent a p-n Jjunction diode
exactly 1if the number of sections approaches infinity. A
counterpart of the Linvill model is the Wang-Branin model
<6> where the wunfamiliar circuit elements used in the
Linvill model are replaced by conventional circuit
elements. A simpler model was proposed by Barna and
Horelick <5> which accounted for conductivity modulation.
The model is based on the study of bulk resistance during
transient behaviour as suggested by Ko <7><8>. It consists
of a finite number of conventional circuit elements. The
model was shown to give satisfactory results at any
injection level. Recently, Chua and Tseng<9> attempting to
achieve greater simplicity, have presented yet another
model called the memristive diode model. his model
contains only four conventional circuit elements, including
a nonlinear charge controlled resistor called a memristor.
The model proved <capable of predicting diode behaviour
under forward, reverse, and sinusoidal operation modes, and
at the same time allowiny for second order etfects due to

conductivity modulation.




The analytical approach has the advantage of providing
analytically tractable solutions supporting quantitative
explanation of the device behaviour. However, the
approximations and assumptions which are necessary to
achieve analytical solution inhibit the models ability to
provide complete and exact descriptions of the device
properties., In addition, the method is only valid for some
ideally-geometry devices, e.qg. those having abrupt step

impurity profile.

1.2 The numerical approach.

The numerical approach is essentially pbased on using
successive approximation techniques to solve the nonlinear
equations in the physics of the device. The results
obtained wusing this approach can therefore be highly
accurate in predictinyg the behaviour of the device at any
injection level. They are often referred to as the exact
solutions although they depend on the model |used, Many
algorithms which use numerical analysis have been proposed.
The main problem has been the development of computational
methods. which ensure convergence or stability of the
solutions.

In one-dimensional analysis, the development of
dc-steady state modelling began with the self-consistent
scheme of Gummel <19> applied to a junction transistor.
His iterative scheme starts with an estimate at the value
of the electrostatic potential, from which the qguasi-fermi
potentials, carrier densities and linearized Poisson

equation, are calculated. The algorithm is computationally

=N



simple, but convergence can only be obtained under low and
moderate injection lcvels.

De Mari <11> has extended the vasic Gummel algorithm,
and applied it to single-junction devices. By treating the
current density equations as two independent first order
linear differential equations, the analytical system
equaticns can be reformulated. When damping factors were
introduced in wvarious regions, the algorithm was shown to
glive higher accuracy than the Gummel method and apgplied to
a wider range of injection-level conditions. The algorithm
is however limited to cases involving slight or moderate
recombination. Arandjelovic <12> applied the De Mari
algorithm to a junction diode but included the
recombination processes and nonconstant mobilities. Later
work by Calzolari, et.al, <13> presented a more numerical
approach using the finite difference approximation to
transform the nonlinear differential equations into
nonlinear algebraic equations, The Picard and DNewton
iteration were subsequently employed for the solutions.
Seidmann and Choo <14> also derived an algorithm using the
same principle as Calzolari, however, in the literation
loop, instead of treating the generation recombination term
explicity in the continuity equations, the term was placed
implicitly in its partial linearization. Both the
Calzolari and Siedman and Choo methods were shown to give
solutions at any injection level as well as allowing for
strong recombination.

In the field of dynamic modelling, De Mari <15> began

by extending his static algorithm to 1include the partial



derivative terms, using the generalized implicit scheme in
the discretization procedure. The switching behaviour of a
dioce was studied intensively. Later Scharfetter and
Gummel <16> used De Mari's analytical procedure when
dealing with the current densities, and proposed a special
stable difference approximation scheme to overcome the
stability problem encountered at particularly high
injection levels. Caughey <17> developed a direct
numerical algorithm using the Newton method to linearized

the cgyuaticns in which the perturbation rerms are evaluated

"~
o]

simultanecusly in the iterative 1loop, Peterson <18>
modified the Scharfetter algorithm wusing the so-called
"guasi-linearization" techniqgues, (which are essentially
generalized R-dimensional Newton's methods), to study the
transient phenomena in a p-i-n diode. At the same time
Hachtel et al. <19> proposed a more general algorithm. By
reformulating the equations, his 1iteration scheme was
required only to calculate p and E, and the use of sparse
matrix computation made the algorithm more efficient in
terms of time and storage. Later work by Collin and
Churchill <20> dealt with MOS devices in which the
stability problem is less severe than in junction devices.
This allows the current density terms to be substituted
into the continuity eguations directly. However, an extra
check when solving for the ©potential was introduced to
prevent inconsistency. Recently, Fortino and Nadan <21>
applied shooting techniques used in the solution of initial
value problems to model MOS devices under small signal a.c.

excitation. The method however requires a reconditioning

6



procedure which makes it less attractive than other
methods.

For the general use of computer aided circuit analysis,
optimization techniques <22> can be applied to the
numerical results as obtained above to produce a
representation of the device in terms of conventional
circuit elements.

The numerical approach 1is generally superior to the
analytical approach if exact solutions are desired. It is
valid for most types of device at any injection level
whilst allowing for strong recombination. However, it
cannot express the closed form relationships between the

parameters which are apparent in the analytical approach.

1.3 E@rmonic ana11§i§:

The study of harmonic generation and distortion in the
frequency domain can be done in a similar manner to that
used in time domain analysis, 1i.e, either by analytical
methods or by numerical methods. The analytical methods
basically rely on fast convergence series representations,
Following the work by George <24> on higher dimension
transform theory, Narayanan <23> used a deneralization of
the power series called the Volterra series representation
to develop an a.c. model of a transistor from the
approximation solution. The method derives the closed form
relationships of the harmonic components in terms of the
device parameters. The method 1is however restricted to
small signal a.c. analysis. Kulesza and Katib <25> usecd

power series to study the harmonic generation in a Schottky



barrier diode where only resistive components were
considered in the models.

In comparison with the above methods, a numerical
approach provides more general solutions. Albrecht and
Jansen <26> used the Volterra series representation when
solving the system equations directly. The method requires
no approximation and lience provides nore accurate
solutions. The harmonic distortion and cross modulation in
p~i-n diode were obtained successfully, but the method 1is
again limited to small signal a.c conditions. Later work
by Doi <27> considered the large signal cases where
nonlinearities were strong. By using Newton's method to
obtain solutions, and by employing modified Bessel
functions together with nodal analysis to derive the
harmonic components, the complete behaviour of diodes and
transistors 1in the frequency domain can be obtained.
However the method is still dependent on the approximated
characteristics of the devices.

Another approach to the solution of these problems
involves the wuse of time domain steady-state analysis,
followed by Fourier Transformation, This direct
transformation is relatively simple due to the full
development of the Fast Fourier Transform. The accuracy of
the frequency domain solutions 1is determined by the
accuracy in the time domain, and hence exact fregquency

. , , . e
domain solutions may be obtained. n aﬂy



l.4 Motivation and aim of the study.

Investigation of semiconductor device performance 1is
one of the prime interests in the Department of Applied
Phy;ics and Electronics, Different materials have been
studied 1intensively for use in preparing semiconductor
devices, and many experimental techniques are employed to
evaluate Lhelr characteristics and physical parameters.
Recently this work has been extended into frequency domain
analysis <25>, but only simple analytical models have yet
been considg;ed.

The purpose of the work described in this thesis was

)

initially to develop a microprocessor based sysiem capable

-

of simulating both the time and frequency domain properties
of some simple semiconductor devices, However, 1t was
found that this system would be too expensive at present,
and hence only simulation on a main frame computer has been
used in the work. One-dimensional modelling of some p-n
junction diodes has been studied intensively for both
static and dynamic behaviours including harmonic analysis
in the frequency domain. Emphasis was placed on the
terminal current-voltage characteristics of the devices,

and their relation with the minority carrier lifetimes.

1.5 OQrganization of the thesis,

In this chapter, both analytical and numerical
modelling techniques for semiconductor devices have been
reviewed, including also a mention of some work in the
frequency domain.

Chapter 2 is devoted to one-dimensional mathematical



models of semiconductor devices. The problems involved in
the modelling are discussed, and some auxiliary eqguations
are given to denote the relation between the physical
parameters of the devices. The boundary conditions
necessary to obtain solution of the problems are also
provided.

In chapter 3, the generalized numerical procedure of
solving nonlinear boundary-value problems 1s discussed
leading to development of the algorithms for the solutions.
The use of the procedure is demonstrated by analysing
Schottky barrier diodes under reverse biased conditions.

In chapter 4, a numerical algorithm for d-c
steady-state modelling is developed and used to investigate
the static behaviour of some diodes. Both internal and
terminal characteristics are considered under forward and
reverse bias. The main emphasis is on the effect of the
minority carrier 1lifetimes on the device properties. Low
frequency responses to sinusoidal excitation are also
included 1in order to provide static harmonic analysis for
comparison with the corresponding dynamic case.

~In chapter 5, the dynamic behaviours of diodes is
considered. A fast algorithm for this purpose is developed
and wused to study the transients resulting from step
excitation at various injection levels. The effect on the
response to sinusoidal excitation of the minority carrier
lifetimes is comprehensively studied.

In chapter 4, harmonic generation within the frequency
domain is studied utilizing the Fast Fourier Transformation

applied to the steady-state solotion obtained previously in



chapters 4 and 5. These results will be referred to as the
static and dynamic spectra respectively. From these
spectra, the effects on the harmonic components caused by
the minority carrier 1lifetime of the device involved are
investigated.

Chapter 7 <concludes with a summary of the alyorithms
used and the results obtained in both the time and
frequency domains together with a consideration of possible
future work.

Appendix A gives a method for inversion of the
tridiagonal matrix system which is the basis of the
algorithms used throughout this work.

Appendix B is provided to 1introduce a <cubic spline
interpolation required in the determination of the
responses to sinusoidal excitation from the diode
characteristic curves.

Appendix C gives the computer subroutines used in both

static and dynamic analyses.
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Chapter 2

Mathematical Modelling of p-n Junction Devices

In this chapter some basic equations and important
parameters to be used in the analysis will be derived and
discussed to provide a mathematical model for the behaviour
of p-n junction devices.

The problem contains a set of simultaneous nonlinear

differential equations which will be referred to as the

system equations and some auxiliary equations. In order to
obtain an efficient computer solution; some boundary

conditions and normalized forms of the equations will be

prepared.

2.1 Basic equations for semiconductor devices

2.1.1 Current density eqguations,

In a junction device, the difference 1ir. the
concentrations of carriers of the same type in each region
causes the flow of charged particles in such a direction as
to even out the concentration gradients existence between
the two regions, If we define the number of carriers
passing through unit area in unit time as flux, ¢this |is
referred to as the Diffusion Flux. In addition, the
existing of electric field, either resulting from the
diffusion flow or from external excitation, results in
another flow of the charged particles in a direction
determined by the field. This flux is referred to as the
Drift Flux.

Therefore, the net flux densities of holes and

12
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electrons are given by

F, = -DpSP + p,.p.E
P Pagx P (2.1)
F, = -pp3" - u,.n.E

3x (2.2)

The current crossing a unit area (the current density)

is tnein the particle {iux density multipiied by the charge

of the carrier. i.e,

Jp = Fp 4 . and
Jn = Fp (-9) -
Thus, in terms of the current densities,

eguations 2.1 and 2.2 become

J, = gqu, P E-4ybD ap
P P P 3x (2.3)
J. = gqu, n E+ ¢ D, 9N
n n n o—
3% (2.4}

In equilibrium conditions, the diffusion and drift
currents of holes and electrons are equal but in opposite
directions, resulting in no net current flowing in the
device. 0On the other hand, in non-equilibrium conditions,
the current densities of holes and electrons are determined
by the difference of two current components, and the total
conduction current density is the sum of the contributions
due to holes and electrons.

Jeond = Jp + Jp



2.1.2 The Continuity equations.

Mo st semiconductor devices operate under
non-equilibrium conditions, in which the carrier
concentration product p.n differs from 1its equilibrium
value ni. Their performance can be determined by the
process of returning to equilibrium. In the case of
injection (“P>ni) and extraction (np<n§) of excess
carriers the return of equilibrium 1s through recombination
and generation of electron-hole pairs respectively. At a
particular time, the carrier distributions can be described

by the solutions of the transport equations.

8P = -y, - 9Fp

at 3X
and

on = -y, - 3Fn

at ax

or, in terms of the current densities, we obtain

8P = -y, - 1 3Jp
at q d8x
3n = —y, + 1 %n
at 4 dx

2.1.3 Maxwell's equations.

Maxwell's equations state that;

Vx H=J + 9D
3t (2.8)
Vx E = -dB
3t (2.9)

Ve D =p (2.10)



H is
J is
D is
E is
B is
o is
From

elec

wher

rela

or

the

of t

and

V. B =0 (2.11)
Where
the magnetic intensity (amps/m)

the current density (amps/mz)

the electric displacement (coulombs/m?)
the electric field (volts/m)

the magnetic induction (webers/m), and
the volume charge density (coulombs/m3)

Maxwell's equations the relation between the
trostatic potential, Vv, and the continuity equations
be determined, using auxiliary formulae, namely o
MH
Vvx A

e A 1s the wvector potential (weber/mz) and a

tion from the vector analysis that

UXx (VXZ) = V (V.2) - v2z
It can be readily shown that

E = -yv - 8A
3t

(v2- ne 3% jv =- 0
3t2 € (2.12)
But, after a time greater than the propagation time for
electric field to travel from the contact to one edge
he device, we can approximate
2. a2 => vl
(v ME S YWV => V4V
at?

then we obtain the well-known Poisson equation

15



E = -V2V = 0/€

In the one-dimentional casce, we obtain

E -0

ax € (2.13)
or

3%V —_ »

2 €

3x

For a p-n junction device, we can state that

© =9 (p-n+ N
where

N = Np - Np

= Net ionized densities of donors over acceptors, and
€ = dielectric constant of material
It should be noted here that during a very short time
interval, 1in the range of the dielectric relaxation times
of some semiconductor devices, the Poisson equation can not
be assumed.
In a p-n junction device, the space-charge region may
be treated as a parallel plate capacitor of area A. When a
current I flows into one of the plates, the charge 4 on
this plate must be accumulating at a rate (dg/dt) = I , and
equally, there must be a negative charge -q on the other
plate which 1is changing at the same rate. The current in
is equal to the current out. Gauss's theorem shows that

the electric field between the plates is

E = g/ (€A)

16
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Therefore Io=¢ A 3E
at
or Jo = ¢ ¢E (2.14)
dt

The time-varying field thus induces charygyes on the opposite
plate so as to keep the current flow continuous. This may

be treated as contributing a current called the

w)
o

isplacement Current J . Just as the movement of
charge creates a conduction current JC, the time
varying field creates a displacement current.

Therefore, the total current JT can be given as

\jd.
JT = JC + JD (2.15)
or € g% = Jp + Jp + Jp (2.16)

In the steady-state case where there is no dependence
of the field on time, the displacement current is obv.ously

Zzero.

Shockley Read Hall
2.1.4 Y(SRH) - recombination - generation model.

The recombination and generation of electrons and
holes in semiconductors may take place at some type of
recombination - generation centers or traps. Under steady
state conditions, a single energy level recombination
center 1is characterized by its capture cross section for
holes and electrons and the energy 1involved 1in these
transitions. The capture cross sections are inversely
proportional to the 1lifetimes of holes and electrons
respectively, and the transition energy may be measured
from the appropriate edge of the energy gap of the

semiconductor.



There are four basic processes involved in the carriers

generation and recombination through traps. These are

electron capture, electron emission, hole capture and
emission. Assuming that the semiconductotr
non-degenerate, the net capture rate for electrons by

traps under non-equilibrium condition is given by

Uon = (nefep = my£¢) /Tho

Similarly, for holes we can write
Ucp = (P-ft - P1-E¢p)/Tpo

where

£e = (1 + exp(Eg—Fy)/kT)" 1

ftp is the fraction of traps occupied by holes

ft is the fraction of traps occupied by electrons

=1 - ftp

T are the minority carrier lifetimes in

no r Tpo

highly extrinsic material

E. is the energy 1level of the recombination -

generation centers or traps.

hole

is

the

For non-equilibrium but steady-state conditions, the

rate of recombination can be obtained by requiring that the

net rate of capture of electrons be equal to that of holes.

This implies that

2
= (pn - ny)
(Tho (n+Ny) + T (P+Py))

(2.17)

Where

nl = niexp(Et-Ei)/kT

18



p] = nlexp(El-Et)/kT

n, 1is the density of electrons in the conduction
band when the Fermi level at E,.

Pl is the density of holes it the valence band when
the Fermi level falls at Ee.

For the most effective generation and recombination,

let us assume that the single level , unitormly distributed

traps are located at the intrinsic Fermi level. Thus

Py = n; = n; and equation 2,17 becomes
(pn - n2 - - _
us= __ E i) (2.18)

(Tpé(n+ni) + Tho(P+ni))

2.1.5 Mobility equations.

In a wvacuum, the cerrier motions are influenced only
by the electric field whereas in a solid, carriers interact
repeatedly with the surrounding lattice and hence their
motion will be dependent upon the impurity density.

Theoretically, the mobility is approximated by <16>

“]2= 1 + N + (E/A)2 + (E:/B)2
N/S + N E/A + F (2.19)

where the constants are given in table 2.1 for silicon

19
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TABLE 2.1 VALUES OF THE CONSTANTS IN EQUATION 2.19

Mo No S A F B

16 3 4
HOLE 480 4x10 81l 6.1x10 1.6 2.5x10
i6 3 3
ELECTRON 1400 3x10 350 3.5x10 8.8 7.4x10

For simplicity, due to small influence of the
field-dependent terms, we will neglect these terms in the
analysis. The mobility may therefore be approximated by
ul? 2
Yo =1 + N (2.20)

N/S + N,
and is shown in Fig. 2.1 , for silicon,
The relation between the carrier mobilities and the

carrier diffusion <constants can be obtained from the

Einstein relatiaons,

“p = (q/KT)Dp for holes, and

My = (9/KT)D, for electrons

(2.21)
The Einstein relations also show that the carrier
diffusion constant are nonlinear, monotonically increasing

functions of the carrier densities.

2.1.6 Diffusion lengths.

When a p-n junction device is connected to an external

source, injection of excess carriers takes place and as a



result the <carrier density in the device will become
greater than it was in thermal equilibrium. Therefore
recombination 1is necessary for a return to equilibrium .
The process has little effect in the region where the
injected excess carriers are minority. The decay of the
excess minority carrier density is shown to be governed by

the diffusion equation and the density falls off as

exp(-x/Lpn)

where L 1/2

1%

Ln

(Dp.Tp)
(D . Tp) 172 (2.22)

Lp and L, are the diffusion lengths of holes and

electrons respectively. By using the Einstein relations
and the mobility eqguations, the relations between the
diffusion length and lifetimes can be derived. An example
for the case of silicon is shown in Fig. 2.2

The relation between diffusion length and width of a
region 1is often used as a measure of the effectiveness of
the recombination process. If the width to diffusion
length ratio is very large compared to unity, then we have
strong recombination. But if it is comparable to unity or
less than unity, we have moderate recombination and slight

recombination respectively.

2.2 Boundary conditions.

In order to solve the system eqguations, which are
nonlinear differential equations, some boundary conditions
must be provided. They may be obtained through some

assumptions and from the physical properties of the
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devices.

2.2.1 Boundary conditions based on ohmic contacts

assumption.

For a device with the so-called ohmic contacts or
"perfectly absorbing” contacts, we mean that an infinite

recombination velocity Sp is assumed. Therefore finite

hole and electron current densities at the contacts require

(p—p)‘ = lim (Jy/Spp) = O
o : P/ PRp
ohmic contact Sp,_ o
(n-n)| = lim (J,/Sgp) = O
o] . n/ °Rn
ohmic contact Sp. .,
Thus give
P = P,
n = ng
or equivalently ﬂb = g, at both ohmic

contacts

Where subscript o means their values at the thermal

equilibrium and ﬂp #n, are hole and electron

quasi-fermi potentials respectively.

2.2.2 Boundary conditions based on the space-charge

neutrality assumption.

A semiconductor in which the impurities are completely
ionized and uniformly distributed will normally obey the
condition of space-charge neutrality at the ohmic contact.
Hence the net charge density o at the ohmic contacts of the

semiconductor will be zero . Thus gives

© =4q.(p-n+ Ny - Np) =0



and implies that E = O

2.2.3 Boundary conditions under current injection.

When a p-n junction device is connected to an external
source carriers are injected uniformly over the cross
section of the device. Using the fact that total current
density injected through the device, JT, is always
constant at a particular time, we have, for the device

shown in Fig. 2.3 ,

Jn(ort) = Jp(t)
Jp(L.t) = Jp(t)
Fre In| P P Ir
o) L
Figure 2.3

2.3 Normalization of the equations.

In order to reduce unnecessary computations of some
constant quantities, the equations should be normalized
into their dimensionless forms. For example, consider the
hole current density equation.

Tp 7 HpPE - ngI)UPEE (2.23)

Let starred variables represent the normalized values,

and define some normalizing factors such as <11>

up = g/ (Dg/ Vo)
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p- = p/n;
*
E = E/(VO/LD)
x* = x/Lp
where
Vo = kT/q , and the Debye length is given by
Lp = (€Vo/(anj)) */*
Equation 2.23 becomes
Jp = (4Dgnj/Lp) mp(p" E*- g_i‘)

L 4
Let Jp = Jp/(qDoni/LD)

we finally have

[o}]

J‘ = ui(anl_ _E.)
p p ax.

For convenience, we remove all the stars and wuse the
same symbols for the normalized variables, thus the

normal ized equation of the hole current density is

= . 9

Similarly, by wusing the normalizing factors shown in
table 2.2 , the normalized system equations including the

auxiliary equations can be written as following

o
1

= u,(n E + 80

n 3x
3p = —y_ - 3Jp
at P ax
dan = -U, + B_Jn

at 3X

24



.a__E. = JT - Jp - Jn
t
dE - p-n+ N
ax
QEY = -(p -~ n + N)
x2
u = pn-1 (2.18)
(Tpo(n + 1) + Tpa(p + 1))
TABLE 2.2 LIST OF THE NORMALIZING FACTORS.
VARIABLE NORMALIZED NORMALIZ ING UNIT
QUANTITY FACTOR
Position coordinate X LD=‘/€V6/(qni) m.
Time coordinate t LD/Do sec.
Voltage \' Vo= KT/q volt.
Electric field E Vo/Lp volt/m.
Charge density p,n,N nj ﬂ?
Current density Jr +Jp +1In +Jp qDoni/Lo amp/m%
. . 2 -3 -
Recombination - u Don;/Lp m.sec.
generation rate
2
Mobility coefficient Mp My Do/ Vg m./v.sec.
Diffusion coefficient D 1 m%/sec.
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Chapter 3

Numerical Solution of Nonlinear Boundary-value Problems.

Differential equations can normally be classified into
two types, depending on the prescribed conditions. If the
conditions are given at one point 1in the range of the
independent variable, the differential system is Kknown as
an initial-value problem. When the conditions are given at
two or more distinct points, the system 1is Kknown as a
boundary-value problem. For our nonlinear problems, the
system conditions are of the 1latter type, and we have

nonlinear boundary-value problems.

3.1 Existing algorithms for the solutions.

The common techniques for solving boundary - value
problems can be classified as

1) shooting technigue

2) Finite difference techniques.

The shooting method basically reduces the
boundary-value problem to an initial-value problem, where
estimations are made at one boundary to complete the
necessary initial values. An attempt 1is then made to
integrate the variables to the other boundary. If this can
be accomplished, corrections are made to the 1initial
estimation and then the process 1is repeated until
convergence is achieved. Thus the shooting method |is
obviously based on integration methods which have been well
developed and are easily accessible. There exist several

efficient schemes ranging from the relatively simple to the
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quite sophisticated, for example Runge - Kutta, Adams -
Moulton, Gear's methods etc., <29><38>, most of which have
automatic error controls with a variable step-size to
minimize truncati&n and round off errors.

Although the shooting method is simple to use, in many
practical problems the differential equations are so
unstable that they blow up before the integration can be
completed., This can occur even in the case of extremely
accurate initial estimate and therefore the shooting method
is unsuitable for certain problems.

In order to improve stability but at the same time
preserve the advantages of the shooting method, a "multiple
'shooting method" has been proposed by Morrison et al.
<32>. This replaces the original two - point
boundary-value problem with a k-point boundary-value
problem, which splits the integration interval into k-1
equal subintervals, for each of which the original shooting
method 1is applied. By using a reasonable number of k
boundary conditions, i.e shortening the subinterval, the
integration should end before any stability can occur. For
more difficult problems however, the multiple shooting
method has always proved inadequate.

For these more complicated cases, a finite difference
method <33><34> does offer a solution for it establishes
firm overall control on the entire solution. The stability
problem is less severe for this method than for the
shooting methods, and it is sometimes preferred for this
reason, especially for nonlinear problems,

Unlike the shooting methods, there is no standard form
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of the finite difference technique , so each problem must
be solved individually. The procedure begins with
replacing the original differential equations by a linear
algebraic system of equations (AX = b). This 1is done by
subdividing the interval into k-1 subintervals (not
necessarily equal) and by replacing the derivatives of the
original differential equations with approximate finite
difference equations. This is often referred to as the
discretization procedure. If the problem is nonlinear, the
nonlinear terms must be linearized in some fashion, and
initial estimate must be made for all variables at all
subintervals. Finally, the 1linear algebraic system of
equations is formed as a matrix and solved by any of the
methods of solving linear simultaneous equations, <29>
<39> For nonlinear cases, an 1initial estimate and a
successive approximation method must be used. The matrix A
must be formed during each iteration and the process is
continued until the solution converges to an acceptable
accuracy.

To summarise, the method for solving a nonlinear
boundary-value problem is as follows: <33>

1) Subdivide the interval into k-1 subintervals.

2) Discretize the differential equation into finite
difference equation.

3) L}nearize the equation.

4) Make the initial estimations,

5) Using the estimations, generate the elements of the
linearized algebraic equations

A X =D
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6) Solve the linear system of equations.

7) Modify the solution with the previous soluticn to
obtain better estimates.

8) Return to step 5) until convergence is achieved.

It can be seen from the above that the two main
problems met in the solution are discretization and
linearization, so some basic procedures 1involving these
will be set out in order to develop algorithms for our

problems.

3.2 Finite difference approximations for derivatives.

The purpose of discretization 1is to transform a
differential -equation into a difference equation which can
be arranged as a system of algebraic equations suitable for
digital computer solution. The basic approximation
involves the replacement of a continuous domain by a mesh
or grid of discrete points within the domain, and the
replacement of derivatives by finite difference
approximations,

In solving the two-dimensional boundary-value problem
<35>

L U= f(u ; u= u(x,y) (3.1)
in a domain D as shown in Fig. 3.1 subject to domain
boundary conditions.

Taylor's series for u(xtAx,y) about (x,y) gives

2
u(x+Ax,y) = u(x,y)tAxéﬂ(xoY)+(é5)zé_%(pr)
3x 2 43X

3
+(ax) 387u(x,y) + o[(ax)?]
6 ax3 (3.2)
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Figure 3.1

Let the points Piy form a discrete approximation

for D, and evaluate the derivative at point (x,y) where

Further Uiy = u (xi , yj ) will ultimately be
employed for the exact solution.
Equation 3.2 can be written, as

u(x+ax,y) - u(x,y) = ax 3u(X,¥) 4+ o[(ax?)]
38X

which,upon division by Ax, results in the relationship

2 .2
3u| = 1(uj,, s-ujq)-0 &Y| + o(h?)
axlij h Y1l RIS 332 i5 (3.3)
Similarly, for u(x-AXx,Y), equation 3.2 may be

expressed as

du| = 1¢

2
ul + o(h?)
axlij h X

h* 3
u.._u-_ .)+__
137743775 ax2 i (3.4)
If only first order approximation |is considered,
equation 3.3 results in the forward difference

approximation,



du | = 1(u; .—uj:) + 0(h) (3.5)

ax iy n *.3id

with equation 3.4 providing the backward difference
approximation

Ul = ](u;i-uj ) + 0(h) (3.6)
ax iy n 377D

For a second order approximation, adding equations 3.3

and 3.4 , results in the central difference

approximation,

Ui = 1(uj,y 4-uj_y. <)+ 0(h?)
ax lij zn *L 37711
Adding the two possible forms of the original expansion
equation 3.2 , we find
232 4
U(X+AX,Y) +U(X-AX,Y) = 2u(X,Y)+(AX) é_; + 0(h%)
ax

or

azU = 1(u; c=2Ug 24U . 0 h4)
—5 i-1,j-2Uij*ujs1,§)+ Of

3x2 |ij h? (3.7)

3.2.1 Higher - order approximation

In some problems, higher accuracy of the approximation
for the second derivative ma& be required. An alternative
approach 1is to wuse the fourth order Cowell's method <36>
suggested by Klopfenstein and Wu <37>. In the

approximation of

L2 u f(u

u u(x,y)

we obtain
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u, ,~2u, .+Uu, . B E. .+ B £, .+ B_£. .
1-1,) 2u13 i+1,3= o 1-1,] 1 1J+ 2 i+1,j

h2

i=l'2'l.l.....lll.N

When BO = 1/12, Bl = 10/12 and Bz = 1/12'

the equation then becomes

u, -2u, +u,_ .= (h2/12)f,

1
4= 1y

4LOE +E, .
3 ij "i+1.3

(3.8)

3.2.2 Variable mesh distribution

The discretization stepsize h is one of the important
parameters which control the stability and discretization
error of the system. In the region where abruptness of the
function occurs, a fine mesh distribution is necessary. It
seems to be redundant 1in the region where the function
changes slowly. Thus a variable mesh distribution is often
desirable.

Consider a variable mesh distribution of Fig. 3.2

with the mesh spacing at point i

hy = xj41 - %
5 (hl*hl—l)/z .
8Yi.1/2 8Yiusn
> >
Yia Yi Yit
o ’ T
< h|_l & hiy ——
Xi4 Xi Xin
Figure 3.2

By using the central difference approximation with the
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central difference operator, & defined as <35>
8Yn = Yn+1/2 - ¥n-1/2

a second derivative of a function y = f£(x) can be obtained.

At a mesh point i we have

dx? | x=x; (hj+ hj_1)/2
BYi+1/2 - 8Yi-1/2
= b hj_y
(hi+ hy_1)/2
or
a2
——g = 33Yi gt Byt G
ax X=Xy (hj+ hj_y)/2

where a; = 1/(hj_y)
Ci = l/hl
b, = -a; - cj

== (Bj+ hj_1)/(hihj_y)

3.3 Picard and Newton linearization.

When solving a system of nonlinear algebraic
equations, it 1is customary to linearize the equations and
then employ a successive approximation method for solving
simul taneous equations, As an example, consider a set of

nonlinear algebraic equations,



g(x) = 95(x)

= 9i(X3,X2,...,XR) =0
i = 1,2,...’N RéN (3'9)

A simple and straight forward method used to linearize
the equations is Picard's iteration which introduces a
sequence {g(k)} such that ﬂ(i(k)) satisfies the
same boundary conditions as £(x), and k is the iterative
index. We therefore obtain the 1linearized form of

equation 3.8 as
g (§(k+1)) - 9(§(k))= 0

When the sequence {x(k)} converges, the convergence is

linear i.e

5(k+l) - 5 = 0 (ﬁ(k) - 5)

as k—s o0

However if 9 (x) is differentiable, i.e, satisfies the
Lipschitz's condition, the R-dimensional Newton's method
can be used to linearize the equations. This replaces the
approximation 5(k) in the solution by the approximation

5(k+1) = E(k) + gk

(3.10)

By taking account of the first order terms in the

Taylor's series expansion of di(x) about x = E(k)’

the linearized system of equation 3.9 becomes <36>
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R
. (k) + agi (k)
gi(x ) . g;(k)sj
J=1 J

]
(@]

i=1,2,00.0. N
or in matrix form
g (x(K) + g(x(kl)g(kl= 0
- (3.11)
Where g(g(k)) is a diagonal Jacobian matrix, having an

element

a§'j" = 399 (3.12)

__%k)
axJ
which may be calculated by direct differentiation of the
expressions for g, . If these are very complicated, it

may however be easier to estimate the derivative by

calculating <39>

-1
h [gi(xl,. .,xj_l,xj+h,xj+l

P uXR)-gi(Xll . -lxR) ]
or

e e gX_)

-1
h Fi(xl,..,xj_l,xj+h,x. ]

+
2 o+l
gi(x1’ * . ,Xj_l ,xj-h’xj+1' e o ,XR) ]

If G is singular then g may be infinite, but if G is
non-singular a better approximation for equation 3.10 can
be obtained. This results in a sequence {g(k)} which

is usually quadratically convergent, i.e,

§(k+l) - l((k) = 0((5(")—5)2)

as k ————> oo (3.13)

This method sometimes fails to converge if g(k) is
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not a good approximation for the solution of the system and
therefore some modification may be required. A common
strategy is to introduce a damping or relaxation factor w,
and replace equation 3.10 by

5(k+1) = l‘(k) + W(k)g(k)

(3.14)
Where W is calculated to prevent the approximated
5(k+1) from being worse than the approximated z(k).

The choice between the Picard's and Newton's methods is
finally determined by whether one <chooses the 1linearly
convergent scheme or the quadratiéally convergent scheme
with extra computation in the evaluation of derivative
terms. This comparison has been discussed in references

<40> and <41>

3.4 Thermal equilibrium and reverse bias solution.

In order to illustrate the use of the finite
difference method for the solution of a nonlinear
boundary-value problem, a semiconductor device under

thermal equilibrium reverse bias conditions with negligible
current flow is investigated. From chapter 2, with these
conditions, the system equations reduce to only Poisson
equation
2

acv - n-p-N

dx? (3.15)

Boltzman relation then gives the normalized carriers

densities.
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]

exp (v)

exp (-v)

T
It

Therefore Poisson equation can also be written as

QEY = 2sinh Vv - N
dx2 (3.16)

Discretization.

Using the central difference finite approximation,

equation 3.16 becomes

Vi+l—2Vi+Vi_1 = C sinh Vi{+ D Nj

(3.17)
i. =l'2'--a.--N
Where
C =2 h?
D = - h2
or, in matrix form
AV =£(V) +b (3.18)

Where




Ul
<
1]

If Cowell's

equation 3.17

where

C sinh vy
C sinh vy,

C sinh Vv,_,

C sinh Vy

method

becomes

from

-2 1
1l -2
;b=

equation 3.8

DN, _,

DNy = Vnug

is employed,

(3.19)
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1o 1 C sinh v, + DN,

1 10 1 C sinh Vv, + DN,

1 10 1 C sinh v + DN
B =1/12 . . . ; £(v) = cevesrssasane
1 186 1 e

1 190 C sinh v, + DN,

(1/12) (C sinh V4 + DN, ) - V,
0]

0

o

(1/12) (C sinh Vv, 4+ DNy, ) = Vg,

Linearization.

Applying Newton's method to linearize equation 3.18

Let

(3.20)

Vo]
5
i
1 34
1<
]
tn
5
|
o

' (3.21)

Linearized equation 3.18 can be written in the form

of equation 3.11 as
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(a v =gy -p] + [a-p(y) 1800 = 0
or

(3.22)
Where F(v) is the Jacobian matrix of f(v)
When the modified Newton's method as in equation 3.14
is employed, equation 3.21 can be replaced by

(3.23)

and the linearized equation becomes

N P W LA AL (P -A]v
w

l

1 =2 T
(k)T (k)
w w

Similarly with equation 3.21 the linearized

equation 3.19 can be written as

1+ b

—~

(k))]Y(k+1) (k) (k))!(k)

[A-B.E(Y =B [£(V )-E(Y

-~

(3.25)
Finally, it is seen that equations 3.22,3.24 and 3.25
can be rearranged into the same form as
(k) (k+ll B(k) §k+l) (k) (k+1) (k)

Vs .V + V; = (3.26)
Ti 1-] 11 1 Ti 1+1 Ti

i= 1,2,......N

where A(K) ’ B(K) and c(K) are determined from
the associated matrix equations, and the tridiagonal

structure is preserved.
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3.4.1 Application to Schottky barriers diodes:

The model used in this example is the Schottky barrier
diode shown in Fig. 3.3 . The physical parameters of the

diode are as follows:

metal (GOLD) ohmic contact

.
__g St (n-type) /
/.

- M\
—/Vapp

Figure 3.3
Metal : Gold
Semiconductor : n-type silicon
vacuum work function of metal g, - 4,70 eV
Vacuum work function of semiconductor ﬂg = 5.15 eV
Semiconductor band-gap energy Eg = 1.11 eV
Intrinsic carrier density = 1910 cm-3
Device length = 1 micron
The boundary condition for equation 3.15 at the metal

contact is given by

Vo = (fu= fs) + 1Eq/21 + Vapp (3.27)

where V, is the surface potential at the metal
contact.

If ohmic conditions are assumed at the semiconductor
contact, the other boundary condition can be determined

from its thermal equilibrium potential. By using the

electrical neutrality condition, i.e,



we obtain

V(X) = + | In(N +(N2+4)1/2)

2 2 (3.28)

Where the plus minus sign refers to n-type and p-type
doping respectively, Equation 3.28 provides also an
initial approximation for beginning the iteration.

A computer subroutine "COWELL" was written to evaluate
equation 3.18 based on the Cowell's method of
equation 3.25, which uses the modified Newton's method of
equation 3.24 as the prelude for each solution,

The solution at thermal equilibrium and for various
values of the reverse bias were obtained successfully. For
high reverse bias, the minority carrier density term was
neglected to avoid underflow.

For example, consider a constant doping profile diode
with N = 1915 cm-3, Fig. 3.4 shows the
electrostatic potential from the thermal equilibrium
condition to -2.0 Volt. reverse bias. The majority
carrier distribution can be determined and is depicted in
Fig. 3.5. By assuming the wvalidity of the depletion
approximation, the barrier potential obtained from Fig. 3.4
is used to calculate the capacitance C. Fig. 3.6 shows a
plot of C and 1/C2 against bias. It can be seen that
the variation of 1/C2 is linear and the intercept gives

the barrier potential as predicted from simple theory.
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For an arbitrary doping profile diode, with the doping

density given by Wu <38>

N(x) = 1014+ Nmaxexp[-gz[a-_npm

R
AR,
where
Npax = 5.0x101% cm”3.
R, = 6.25x18~%  cm.
AR, = 9.06x10”% cm.

The resulting electrostatic potential and the majority
carrier distribution are shown in Figs. 3.7 and 3.8
respectively.

These examples show that the method does not only
provide information about the internal behaviour of the
diodes, but also allows any arbitrary profile diode to be
investigated where the classical analytical methods would

become impractical.
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Chapter 4

Time-Independent Modelling of Junction Devices.

In this chapter, an algorithm for dc-steady state
modelling is developed. This will be used to study the
static behaviour of p-n junction diodes under both forward
and reverse bias. A prime interest is to investigate the
effect of the minority carrier lifetime on the diode
characteristics. Finally, a method 1is developed for
analysing a simple circuit using the diode under
consideration.

The technique initially used was based on Calzolari's
algorithm <13>. The scheme employed the Picard iteration
with the continuity equations, and calculated the
pertubation of the electrostatic potential from the Poisson
equation. It was found that the solutions became
inconsistent wunder higher injection level conditions, and
therefore an extra test for consistency was required.

An alternative method to overcome this problem can be
developed by applying the R-dimentional Newton algorithm
( chapter 3) to the Poisson equation. The electrostatic
potential is calculated directly rather than its
pertubation. This method has advantages not only in terms
of stability, but also in terms of simplicity. It can be
extended to either a two-dimensional case or to transient

analysis, and is economical in the wuse of computational
time.
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4.1 Formulation of the system equations.

In dc-steady state analysis, the time dependent terms
in the system equations vanish. It 1is therefore more
convenient to rearrange the normalized system equations

developed in chapter 2 into the form:

J. = n P av 4 a_P] {(4.1)
P P L d8x 3x |
J. =a [ndV-3n (4.2)
n n L 3x 3x
2_Jp= Up (4.3)
X
:_Jn = -U, (4.4)
X

and
3%V - n - p - N (4.5)
ax2

where , in this case, the hormalizing factor for Jp and

J, becomes (-q Dgnj/Lp)
For ease of computation, let ﬂb and g, to be

the hole and electron guasi-Fermi potentials respectively.

We can therefore write
p=4g,e" (4.6)
= \
n=g e (4.7)
Equation 4.6 may be written as

ﬂp=pev

By differentiation



égb = ev 3P + P av ev
8x ax 3x
3Xx ax!
or
&V 3p - pav.ap
ax X ax
Therefore, cguation 4.1 <can be written as
Jp = upe_v é__P
3x (4.8)
Similarly,
Jn = —)Jnev a—ﬂn
ax (4.9)
By substituting equations 4.8 and 4.9 into
equations 4.3 and 4.4 respectively, and letting
Uy = Uy = U we finally obtain
3 |u e—v. a_ﬂp = U
ax| P ax (4.10)
8__ Mnev.a_ﬂn = U
ax 3Xx (4.11)

4.2 Discretization of the system equations.

a) The Poisson equation

Take the equation

2

X

(o %)
<

=n—p-N (4-5)

Q
N

By application of the finite difference approximation the

46



differential equation 1is discretized 1into a difference
equation., If the variable mesh scheme is chosen, we can

write at the mesh point x,,

a;Visp * PV Y CiVig -, - p. - N
1 1 1
(hy + hj_y)/2
or
aivi-l + bivi + civi+1 = ei(ni - pi - Ni) (4.12)
i = 1,2y000ee,N
Where
ay = 1/(hy_y)
€i = 1/hy
by = -ag=cy = —(hyrhy ))/(hihy )
0; =

(hj+hj_1)/2

b) The continuity equations.

From the equation 4.10

3 [upe'v §gb]= U

3x ax (4.10)

which 1is in the self-adjoint form, the same discretization

procedure can also be applied. For convenient, 1let us
write
-V
S =
p= Hp ¢
at the mesh point x;, the approximated equation is

obtained as
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becoming
S, . .
( 1-1/2”591_l - (sl+1/2h1-1+ Si—l/zhi)¢p=
h, . .
1-1”’1-1“‘1)/2 hihi-l(hi-l+hi)/2
(Si+1/2)ﬂ;i+l
hj (hj_y+hj) /2
or

a.fd + b, + c, = 4.
"Pia 1¢Pi 1ﬁlpi+1 1

where aj =(sj_1/2)/hj_)
€i =(8i41/2)/hj
bj = -a; - cj

= -(Si+1(;)hi-1+(si—l/2)hi
fihioy

dj = Uj(hj+hj_y)/2

Since

M = (M, + U 2
pi+1/2 ( Py pi+l)/

and
e~Vi+l/2= e~ (Vi+tVi4))/2

hence

+

(4.13)



(u = (Vi+viiq)/2

+U
Sig1/2= Pi "Pij;,) e
2

By using the relation in equation 4.6, equation 4.13 can

be written in terms of the vector p as

V. Vi Vs
i-1 i i+] _
a.e p + bie pi+ cie pi+l = di

or, in the form

A p. + 8B + C . =D 4,14
Pipl—l pipl pip1+1 Pi ( )

where, in this case

Vi
Api= aje’1-1
(vi_l—Vi) /2
=Ll (u, +up. ) e
2h . i i-1
1-1
V-
Cpi= cie 1+1
(Viy1-vi) /2
=Ll by 4np, ) e
2hi i i+l
B = h:aVi
pi bje
(Vi-vi-l)/z (Vi—Vi+l)/2
=__j____(up +up )e __;_(up +up e
Zhi 1 i i-1 2hj i i+l

Dpi= Uj(hj+hj_4)/2
Similarly, the discretized form of equation 4.10 can

be derived at the mesh point X; as
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A n. +B n+ C n, =D (4.15)
n; i-1 nj 1 nj i+l nj
where
(Vi-vj_y)/2
An."'—]-——-(“n.*"“n. ) e

(Vi-Vvis1) /2

Ch, =_1 (u 1 ) e
i 3h; L ¥S)
(Vi V)72 (Viy7Vy)/2
Bh.=-Ll (u, +u, e Ll (uw, +u e
1772h; 71 Ti-l ' 2hy i i+l
D“i= Uj (hj+hj_y)/2
4.3 VLinearization of the system equations.
a) The Poisson equation.
The nonlinear algebraic equation 4.12 can be

linearized by using the R-dimentional Newton's method,

i=ll2’..... N

where in this case, Sﬁk) is denoted by

k+1) - k k
viktl)= ylK) o glk)

and

9 Vio1VieVing i-1 - 9 (nym By Ny

) = a.V. + b,V.+ .V,
i i'i i i+1

Therefore, the linearized form of equation 4.3 can be
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written as

0 - [aSK)vg‘:;+ by (M, (R (R o (k) Ly ]

i i i i i+1” il i

+a; (Vi T-Viy+ j(nj "+Pg i i )

(k) (k1) (k) [bi(k)-e (k) “")}(v."‘*llvf"’

(k) ., (k+1) (k)

t ey (Vigy Vi)
or
k) (k k K K k k) (K
- oy ] gD
(k) (k) (k) (k) (k) . (k)
=0; (nj - Py - Ny )= (n; "+ pj )Vy

and finally in the form

OV o - 00 e
i i 1 !
where
alk¥lo Q{0
i
(k) (k)
Cy, = Cj
vy Ci
k k k k
Bé ) b§ )-ei(n§ 'y Pé ))

(k) (k) (k) (k) (k) (k) . (k)
Dy, = ei[(ni “Py -Ny )=(ny 4Ry )V ]
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b) The continuity equations.

For the continuity equations 4.9 and 4.16, the same
linearization procedure as in a) could be applied. However
this is not necessary. If the Picard-like iteration is
employed when dealing with the generation - recombination
term U(x), the equations become linear in the context of
the iteration loop <13>. The 1linearized form of

equations 4.15 and 4.16 can therefore be written directly

as

(k) (k+1) _ (k) _(k+1) (k) (k+1)_ (k)

P io1 P P; + P, iv) = Dpi (4.17)
and

(k) (k+l (k) (k+l (k) (k+l)_ (k)

ni l n l ni Niyp = Dni (4.18)

4.4 Computational algorithm.

4.4.1 Matrix formulation

The system equations are now in the form of sets of
linear algebraic equations as in equations 4.16 4.17
and 4.18 and any successive approximation method can be
applied to obtain the solutions. The presence of coupling
between the parameters requires that these equations must
be solved simultaneously at each mesh point. This results

in a block matrix of the form

(k+1) (k)

4B



H;4’ Ap 0
= 0 An

0 0

\

i+l

iu

However , for convenience, an approximation can be

made

to permit each set of equations to be solved separately.

This requires setting <18>
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k+ k k+ k k+

n( 1)= n( )and V( 1)= V( )in the calculation for p( 1)
k+1 k k+1 k k+

V( )= v( )and p( )= p( )in the calculation for n( 1)
k+ k k+ k <+

p( b p( )and n( b n( )in the calculation for v(‘ 1)
This method which involves solving the tridiagonal

matrix system does not impair the coupling property because

the
by way of the previous 1iteration
system is
C
P
SN
Ap, Bp, Cpy
AN
\-.
N
O N\ e
Apy Bp

and similar matrice for n and V.

cycle

N-1

N

k. For
Py Dy
Py
PN’]

Pn Dp

N

= CPNPN+

influence of each parameter on the others still exists

P, the

N-4

(oS

The tridiagonal matrix can be inverted by the algorithm

given in Appendix A, using

conditions discussed in chapter 2,

Po = Pgo = e~Veq(0)

~Veq(L)
Pyyy = Pro = e e

eVeq(0)

= eVeq(L)

the

following

boundary
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Vo = Veq(0) + Vapplied

N+l = Veq(L)

where subscript eq denotes the wvalues at thermal

equilibrium, and L is the length of device as shown in Fig. 2.3.

4.4.2 The iterative scheme

After the physical parameters of the device have been
specified, the iterative scheme for the solutions may begin
with the trial approximations for p,n, and v. These
quantities can be obtained from the solutions at Thermal
equilibrium described in chapter 3. Then the iteration may
stated and the cycle followed until the solutions converge
to the desired accuracy. The iteration scheme is given as
a flow diagram in Fig. 4.1

In order to stop the iteration, a test for convergence
must be performed. The solution is acceptable when the

condition
max | vi(k“l)— vi(k)l < €

is satisfied.



SPECIFY THE PARAMETERS
SOLVE THE THERMAL EQUILIBRIUM
SOLUTION TO OBTAIN THE
INITIAL ESTIMATION.

56

A

v
CALCULATE THE RECOMBINATION
RATE U(x)

SOLVE THE TRIDIAGONAL SYSTEM
OF EQUATION 4.17 FOR P

SOLVE THE TRIDIAGONAL SYSTEM
OF EQUATION 4.18 FOR N

Y

SOLVE THE TRIDIAGONAL SYSTEM
OF EQUATION 4.16 FOR V

TEST FOR NO

4

CONVERGENCE.

YES

FIGURE 4.1 THE COMPUTATIONAL ALGORITHM.




4.5 Calculation of the current densities

In the calculation of the current densities, a direct
method may be used to apply a standard difference
approximation to obtain the differentiated terms in the
equations 4.1 and 4,2 . The current densities can be
determined by using the v(x), p(x) and n(x) obtained from
the iteration. However, in our case, this method was not
successful because of truncation error in dealing with the
two nearly equal but opposite 1large quantities in the
transition region. These correspond to the drift and
diffusion current in the simple model of the p-n junction.
An alternative method is to employ the De Mari analytical
scheme <11>, by treating equations 4.1 and 4.2 as two
independent first order limear differential equations in
the unknowns p(x) and n(x) respectively.

Thus equation 4.1 may be written as

dp(x) 4+ 4V p(x) = Ip(¥)

dx dx up(x)

Multiplying both sides of the equation by an

integrating factor exp(f{dv/dx)dx) we obtain

dv. dx dv.dx
dx dx
e . | dp(x)+ 4V p(x)|= Jp(X) e
dx dx up(x)
i\!.dx Cl\_/'dx
dx dx
g_[e . P(H]= Jplx), e
dx up(x)

Integrating the equation between X and L, we finally

have
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X p(x)
-V(x)- o VI(X), ., V(L.)1
p(x) = e -/‘lp(_")e dx + p(L)e
Mo (X) (4.19)
Similarly, from equation 4.2 we derive
agx) - e l_/ 208 e Vb eV (D)
B (%) (4.20)

The current densities can now be calculated from the

continuity equations 4.3 and 4.4 , i.e,

X

Jp(x) = /U(x') dx + Kp (4.21)
o X

Jn(x) = -‘/L(xﬁ ax + K, (4 22)
g

where the constants Kp and K, can be obtained by

substituting equations 4.21 and 4.22 into equations 4.19

and 4.28 respectively, and evaluating at X = 0. We then

obtain
L _ x -
P(O)=e_v(0) -/l J/L(x&d£+xp ev(x)dx+p(L)ev(L)
up(x)
o Lo -
L X
r 1
n(0)=ev(0) /1 -/J(x').dx'ﬂ(n e v(x)dx+n(L)e viL
“n(x)
0 L o a
Therefore
L X

p(L)eV(L)-p(O)eV(O)-/ 1 ev(x)[/U(x')dx'de
Kp = ° “p(x) 5
L
1 ev(x)d
“p(x)

o}




L X

n(O)e_V(L)-n(L)e-V(O)+/ 1 Ev(x)[ﬁ(x') dx']dx
“n = T v(xf =2 2 J
l e dx
J/;n(x)

o

4.6 Numerical results.

We can now able to study the internal and the terminal
characteristics of some p-n Jjunction devices, using the
current algorithm described 1in the preceding section,
together with the relevant expressions stated in chapter 2.
Because we are interested in large signal modeling, we
shall carry out investigations in both forward and reverse
bias regions, under 1low-level and high-level injection
conditions, and with moderate to strong recombination.
sucessful solutions have been obtained for a variety of
different profiles. However, in this section we shall
present only a complementary error function profile diode
with the nt-p-p* structure. Emphasis is placed on
a case of moderate recombination which most power devices

satisfy.

A complementary-error function profile diode.

+ Jdiffusion diode under

The silicon nt-p-p
investigation has the impurity profile shown in Fig. 4.2
and the following physical parameters

Temperature 300 K
Dimensions Total length = 13.5 um

-+

nT (erfc diffusion) region = 3 um




p(ab
Area

Lifetimes T

rupt)

region = 7.43 um.

= 3.48 x 1074 cm?2

po'Tho =

1.0 x108~7 sec.

Mobilities see Fig. 2.1 and equation 2.19
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4,6 .1 1Internal characteristics.

4.6.1.1 Forward bias conditions.

The solutions which describe the complete internal
characteristics of the diode wunder various forward bias
conditions are shown in Fig. 4.3 to Fig. 4.9 . The
space-charge density plotted in Fig. 4.4 shows the failure
of the depletion approximation even at moderate injection
levels, which supports the Cornu approximation. However,
the condition of quasi-equilibrium is seen to be valid for
any level, i.e, the electron and hole gquasi-Fermi
potentials are constant throughout the device except at the
ohmic contacts where an infinite recombinationvelxity is
assumed. Under high-level injection <conditions Fig. 4.6
shows the existence of a quasi neutrality region where the
electron and hole densities are equal and constant. _ These
two conditions are the key on which the analytical model is
based to establish the closed form formulae,

The absolute value of recombination rate U(x) is
depicted in Fig. 4.7 . Under low-level injection
conditions the recombination rate inside the space charge
region is relatively higher than outside. This is due to
the small amount of excess carriers,

At any bias, the recombination rate reaches its maximum
value at the location in the space charge region where the
electron density 1is equal to the hole density. This
condition can be verified from the recombination generation

model .

61



62

We take

Equation 2.18 then becomes

U= P.n -1
T(n + p + 2)

Under the condition of constant quasi-Fermi potentials, we
have

pn = k = constant
Thus the recombination rate is

k -1
» T(l’l+p+ 2)

c
]

For a given forward bias V, maximum U is obtained when
(n+p) is a minimum, i.e,

0

d(p+n)

or

Since
pn = constant

by differentiating with respect to p, we have

-pdn ndp
-dn = n dp
P

The minimum condition is therefore satisfied, if

dp = -dn = n dp
P
or




At higher injection levels, injected minority carriers
diffuse into the neutral region and are recombined .
Therefore the recombination rate outside the space charge
region becomes significant,

Under very high injection conditions, where the
quasi-neutrality region exists, the recombination rate has
a consﬁant max imum value throughout the region. If we take

p=n=n ,1.,e,

Pn=k=ng > 1

we obtain,

max

Fig. 4.8 1illustrates the ratio of electron and hole
currents to the - total current,. At very low injection
levels, the current in the space charge region 1is mainly
due to recombination. The currents outside the region are
obviously due to majority carriers flowing from the
contacts to replenish the 1lost charges, Under higher
injection conditions, minority carriers diffuse away from
edge of the space charge region and are recombined in the
neutral regions. This 1is responsible for the minority
carrier currents in both sides of the device. These
minority currents are significantly increased as the
injection level becomes very high,

Finally, the forward current can be summarized as shown

in Fig. 4.9 . Under 1low 1level injection, the injected

63



minority carrier in both regions 1is still very low,
therefore the space charge recombination current dominates,
The gradient plotted on a 1oge scale 1is seen to Dbe
approximatly P.6(g/kT) . For medium and high level
injection, the injected minority carrier density become
comparable with, and then greater than, the doping density
respectively. The recombination currents outside the space
charge region therefore become dominant and the
recombination current inside the space charge region may be
neglected. The resulting gradient in this range is
approximately 9.9(q/kT). At still higher injection levels,
the effect of voltage drop in the bulk regions caused by
the current flow becomes important and the current
increases more slowly with increasing bias. It is seen
that the solution shows agreement with the idealized
analytical approximation for an abrupt junction diode when
the recombination current in the space charge region |is

included. (see for example, A.T.Sah, et, al <42> )
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4.6,1.2 Reverse bias conditions.

Contrary to the result obtained for the forward bias

condition, Fig. 4.12 showsthat the gquasi Fermi potentials

are no longer constant throughout the device, Instead,
they follow the electrostatic potential as
equations 4.6, 4.7 implies. Under reverse bias, the

electrostatic potential increases with the applied voltage
and supbresses the diffusion currents, but the existence of
the electric field in the space charge region enables the
drift currents to flow. Just as the forward current can be
described by the recombination process throughout the
device, the reverse current can be accounted for by the
generation process. The minority carriers generated near
either side of the space charge layer diffuse to the edge
of the region where they are swept to the other side of the
junction by the strong field. Also carrier generation can
take place within the space charge region itself, mainly
through the emission process from the traps, and the
carriers are swept out of the region before recombination
can occur. The first of these processes results 1in the
current flows as depicted in Fig. 4.15 . The effect of the
generation current in the space charge region is shown in
Fig. 4.16 where the reverse current increases
continuously, rather than remaining constant as is the case
when the generation current is omitted.

It should also be noted from Fig. 4.13 that the

Boltzmann relation is not valid, even for low reverse bias.
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4.6.2 Terminal characteristics.

The diode profile in Fkig. 4.17 1is used to investigate
the terminal characteristics so that the results can be
compared with the dynamic behaviours obtained 1later in

chapter 5.

4.6.2.1 Effect of carrier lifetime on forward

characteristics.

The carrier lifetime has a direct influence on the
generation recombination rate U(x) and hence on the current
flowing through the device, and the voltage drop in the
bulk regions. It 1is therefore a valuable parameter to
investigate. 1In this section we shall consider its effect

on the forward current in different diodes.

a) Diodes with the same width.

Fig. 4.18 shows the effect of carriers lifetimes
having values from 10 microseconds to 18 nanoseconds on the
forward currents of diodes whose widths are fixed at 19
microns. A decrease of carrier lifetime corresponds to an
increase in the recombination rate U(x) which results in
increasing current. Under low level injection conditions,
the currents are small and produce little voltage drop in
the bulk regions. At moderate and high injection 1levels,
the voltage drop in the bulk region becomes significant and
hence the effective voltage across the space charge region
is less than the applied voltage. The current saturates at

high bias.
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It shéuld be noted that as the lifetime is increasing,
there exists an optimum value beyond which there 1is no
further increase in current. This occurs in our case when
the lifetime is about @#.1 microsecond. This effect has
been described as the existence of a minimum in the voltage
drop across the bulk region <44>, but the results obtain in
the next section b and ¢ do not support this view.

The result shown 1in Fig. 4.18 can be useful when
designing a high power device where high forward current is
required. Rather than attempt to achieve a very long
carrier 1lifetime in a device, there is an optimum value,

beyond which any increase is unnecessary.
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b) Diodes with the same ratio of wp/Ln

The preceeding section dealt with the overall effect
of the carrier lifetime on diodes of equal length, in which
account is taken of differing values of voltage drop in the
bulk regions. It is however also worthwhile investigating
the cases where all the diodes now have the same
recombination criteria i.e, the same normalized width. In
this way the effect of voltage drop in the bulk regions of
the diodes are neglected, and allows the direct effect of
differing lifetimes to be observed. Figs. 4.19 _and 4.20
illustrate the solutions for diodes with the ratio of width
to diffusion 1length equal to 1 and 2 respectively. Under
moderate and high level injection conditions, the current
increases linearly as the lifetime decreases. The increase
is relatively higher at low injection level.

The result obtained here however show no saturation
effect like that obtained in the previous section.

This may be compared with the analytical solution for
the forward current derived from an idealized abrupt p-n
junction diode and neglecting the bulk resistance. <46>

qV/(kT) qv/(2kT)
n, - 1]— n . .We

1 .
N 2T

D

J = —n-— + =
T

(o]

where T, = an effective lifetime

For medium injection levels where diffusion currents

prevail, assuming that ND>>NA' we obtain
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2 V/ (kT
3= ,_Dn..L g.njie VKTL 4,
Tn Na

The ratio of the currents for a decade decrease of the

lifetime can thus be written as

22 = 1ﬂTh =-\/lﬂ
Jl J Th

Figs. 4.21 and 4.22 show this current ratio on a 1log
scale for the cases of wp/Ln equal to 1 and 2
respectively. The results give good agreement with that

predicted by the analytical formula described above.
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c) Different sized diodes with a fixed lifetime.

An indirect way to observe the effect of carrier
lifetime is to change the width while keep the 1lifetime
constant. Instead of varying only the width of the lightly
doped region, which 1is equivalent to the situation in
section a) if the recombination criterion in the heavily
doped region is neglected, we shall now vary the overall
size of diodes keeping the same proportions of the n and p
regions. In order to classify the diodes, the widths are
determined by the recombination criterion, i.e, in our case
the ratio of p-region width to the electron diffusion
length, wp/Ln

Figs. 4.23 and 4.24 show the forward characteristics
of diodes of different sizes with wp/Ln ranging
from 9.1 to 1.0 and 6.5 to 5.0 respectively, for a
carrier lifetime of 1 microsecond. 1In contrast to the case
in a) , where both nt and p regions are changed, the
results in the 1lower range show no saturation in the
current. This effect may also be seen from the simple

relation

Vapp = Vj + ./Q—E)dx
bulk region

By using the result of an idealized diode
I = Is(exl)(qvapp/kT) - 1)
we can write

Vapp = (kT/9) In(1+1/Ig) + IRy (4.23)
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where

Vapp = applied voltage

—
n

4]

saturated current

bulk resistance

o
it

As the diode becomes smaller, voltage drop in the bulk
region decreases, thus the first term of the right nhand
side of equation 4.28 prevails,

on the other hand, in the higher range, Fig. 4.24 show
that the bulk resistance become significant, and therefore
the situation tend to be the same as in the case a).

Also Figs. 4.25 and 4.26 where the normalized current
voltage relations are shown, indicate the nonlinearity of
the bulk resistances. The <currents are normalized by
dividing the currents by the value for wp/Ln equal

to 1.
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4.7 Computational methods for resistor diode circuits.

After having dealt with the physical aspects of p-n
junction diodes, we shall complete the modelling by the
génalysis of a circuit containing the device represented by
its static characteristics. This could be done <either by
employing the optimization technique <22> to fit the
results to tne circuit model selected and ther emploving
standard circuit analysis, or by solving the eyuation
directly with information obtained from the physical model.
Since the latter case requires less extra effort, we will
follow this line in the analysis.

Consider the simple diode circuit of Fig. 4.27
operating under large signal condition, where the nonlinear

Ccharacteristics of the diode may be represented by

1y = f(vg) (4.24)

and the diode eguation is found as

i3 - (vg-vg)/R =0 {4.25)

Figure 4.27 A R-D circuit,

Equation 4.25 is a transcendental eqguation which can
only be solved by a successive approximation method. The
most widely wused method 1is the Newton Raphson iterative

scheme. The nonlinearity can be linearized by expanding

|
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i3 in a truncated Taylor's series about iéo),
viz

. (vg- Véo))

v§o (4 26)

v
d

Q

. (o)
1q = 19 +

Q)

where the subscript o refers to the initial value of

current and voltaye,.

Let, the correction term, after the first iteration
1) = o)
avd vg - v ,

and

véo)

Equation 4,25 becomes

vé0)+ ssavél)— (vs-(véo)+ Avél)))/n =0
Avél) = —(iéq)R + véo)- vs)/(l+Rs)

or, in the general form

k+1) (k) (k)
av g = —(1d . R + Vg - vs)/(l+Rs) (4.27)
Since, the <current voltage characteristics obtained
from the physical model are in discrete form, which may not
coincide with the wvalues required 1in the iteration, an
interpolation scheme is inevitable in evaluating

equation 4.27. The first derivative of id at each




interpolated points 1is also required, hence the cubic
Spiine interpolation seems to ke an optimum scheme in our
case. The details of the cubic spline interpolation wused
here are given in Appendix B,
The iterative algorithm can be summarized as follows :

1l Estimate an initial value of vg‘
2 Use the cubic spline interpolation to find id and S
3 Calculate avy from equation 4.27, and obtain the

better approximation

4 Repeat from step 2 until the absolute value of

AV4 has converged to Lhe accepted accuracy.

The low frequency sinusoidal responses of the circuit
of Fig. 4.27 are illustrated in Figs. 4.28 to 4.29 . The
forward and reverse 1i-v characteristics provided for the
iteration procedure are obtained from modelling a diode
having the profile of Fig. 4.17 . The result show the

half-wave rectifying effect which would be expected.
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The accuracy of the solution may be improved by
employing a property of the cubic spline interpolation
which also provides the second derivative of a function at
each interpolating point. This allows the second order
term of the Taylor's series to be included in
equation 4.26 , and the algorithm can then proceed in the

same manner as above.
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Chapter 5.

Time-Dependent Modelling of Junction Devices.

The study of the time-dependent or dynamic behaviour of
p-n jghction diodes has been the subject of intensive
intetesf due to their widespread applicaton in switching,
processing of a-c signals, harmonic analysis, etc. 1It is
well known that the behaviour of a practical diode differs
from that predicted from its static characteristic. The
only distinction between the static and dynamic operating
conditions {s the treatment of the time partial derivatives
in ﬁhe system equations, (see chapter 3), which implies the
following.

a) The existence of displacement current in the space
charge region due to the Qariation of the field with time,

b) The current densities are not just associated with
the recombination or generation of the carriers but also
depend on changes in the carrier densities.

The development of an analytical model to represent the
dynamic behaviour is somewhat analogous to that of the
static case except that some further assumptions and
approximations must be made. The devices which can be
" modelled are then limited to some special ideal cases. On
the other hand, a numerical model can be developed by using
the algorithm discussed in chapter 3 and developed in
chapter 4. However, some modification of the algorithm may

be required to ensure convergence and stability.
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5.1 Formulation of the system equations.

Since the problem involves time derivatives, the
relevant system equations can be <chosen from the
mathematical model given 1in chapter 2 as a set of
Simul taneous nonlinear partial differential equations.

These can be rewritten in their normalized forms as

follows.
Q?(XJt) = -Up(x,t) - a-_Jp(x’t)
at ax (5.1)
dn(x,t) = —up(x,t) + 8Jn(x,t)
3t ax (5.2)
BE(X,t) = Jo(t) - Jp(x,t) - Jn(x,t)
at T P f (5.3)
Where
Jplx,t) = up(x.t)[mx.t)fz(x,t) - 8p(x,t)
ax ] (5.4)
Jn(x,t) = up(x,t) [n(x.t)E(x,t) + 8n(x,t)
ax X (5.5)

The main task here is to solve these eyuations for the
dependent variables. The algorithm discussed in chapter 3
suggests that the equations must be transformed into a set
of linear algebraic equations, so that any sucessive
approximation method can be applied to obtain the
solutions. The transformation can be done by
discretization and linearization of the equations

respectively.
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5.2 Discretization

a) Spatial discretization.

A direct method of discretizing the system equations
spatially is to apply the standard differencé
approximations for the derivative terms 1in the current
density equations 5.4 and 5.5, and substitute these
results in equations 5.1 and 5.2 respectively. A
nunerical instability problem exists as encountered in the
dc-steady state case, and so the analytical modification of
De Mari's scheme is required. It has been suggested <16>
that two set of mesh points should be employed which may
ease the stability problem. A set (l,ecee,i-1,1i,
i+l,44..N) is used to represent meshpoints for p, n, N and
V. The other set (l1,...,1-1,1,04+1,...N), located midway
between the mesh points of the first set, is used to define
Ev Jps Jn, Jr and Jp. The discrete domain
is depicted in Fig. 5.1 . (Together with the time grid).

Using the same procedure as in chapter 4, but with an
integrating factor exp(-_/h(x)dx), we can readily write

equation 5.4 for a small interval between a and b as

Jp(xlt)'-"'“p(xrt)g(xrt) p(a,t) + p{b,t)
eV(b,t)-V(a,t)_l e-V(b,t)-V(a,t)_l

At time j(tj) if a and b correspond to the mesh
points 1 and i+l respectively and L is located in between,

we have

Epj= - vitl,j = Vij
hj
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Fig. 5.1 Discrete domain to approximate the system

equations,

And the discretized form of equation 5.7 becomes

J =-u_. E . Pij Pi+1,5
Py 5 Py - '] + L4
1j 1 *J “E3hi_ | _EisPi_

e 1 (5.8)

Similarly, solving 5.5 with an integrating factor

exp(fb(x)dx) we obtain

Nij . Nis+1,
Egshiy -E1shj
e 1) 1_1 e 1j 1_1

M, E
My gy L3
(5.9)

We can then apply the difference approximation to the
spatial derivative of the current densities in
equations 5.1 and 5.2, with the values from
equations 5.8 and 5.9 respectively. At time j(tj) and

mesh points i and 1, we finally obtain
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api.-_ N
_—1]= -U ..-_1_ -u_c.b . P:. P. -
at Pij hi{ P1y 13 1j + i+l,)

-E, .h. E,.h.
L
j 1_1 1j 1_l
+u . E . - . -
Py-1,5 L-1.] Pi-1,4 + Py
“Eio1,3Ms F1o1,5
e bd 1 e vJ
Similarly we can write
an;.:
—1])= -U -1 J-u_ . E . n,. n, .
) Nij h npy L3 ij + i+l,]
at i 3Dy -E 3By
e Y3101 S|
Yooy sf1-1,3] i 1] + i3
bt B L “Ey_1,5M
e ST-1 e ' -
and
3Ej
n- = . . . . . .
—J JTj “Plj Elj p11 + p1+1,J
e *J 1 J 1
+“n[j'Enj nij + ni+l,j
-El' hi El' hi
e J -1 e -1

or in the form of functional equations <43>

'api'=
3t fp[Pij'Pi—l,j'Pi+1,j'“ij'Exj'En—l.j]

(5.12)

(5.13)
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anjs_ . 1
Pyt fanij'nij'ni—l,j'ni+l.j'Elj'El'ler

(5.14)
=—ij= fE Elj""'Elj""'ENj'pij'pi+1,j'nij'ni+1;j
(5.15)

b) Time discretization.

Consider a first order differential equation in time
of the form
_a__f=F(f,---co-------'t)
at
By using the general implicit scheme of
finite-difference approximation, the equation can be
discretized as

f341-fy = or |+ (1-0)F |
&3 | 8541 | €5 (5.16)

where, in practice, 0 < & < 1, and

© = 0 gives the explicit scheme,
© = 1/2 gives the Crank-Nicholson scheme,
© =1 gives a fully implicit backward scheme.

Thus, the completed discretized forms of the system

equations can be expressed as

Pi,j+1- Pij of  + (l-@)f
t5 Pj+1 Py (5.17)

Ni,j+1- Nij of + (1-9)f
t nj+l n

i J (5.18)




and

Ep,j+41- E1j _ of .+ (1-0)f
= . E .
€ j+1 j (5.19)

5.3 Linearization

Since a fast convergence scheme is required for this
problem, Newton's method will be employed to linearize the
nonlinear algebraic equations. The general form of the

R-dimensional Newton's method is given as, (see chapter 3)

R
e (K Y+ a9 (k) = o
9i(x" ) Z axl(:k)sr
sy

i=1'2'|--o. N

and

k = k k
xg +1) = xg ) 4 Sg )

At time (j+1l)t, the linearized form of equation 5.17

can therefore be expressed as
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(k)

Pi,ir1 = Pij -ee ) —(1-0) (")
(k) (k) (k+1) (k)
+ (k) Pi,j+1 pij - efpj+1 }'(pi,j+1_ i,j+l)
»J+1 5
(k) ] (k+1) (k)

+{—§TET——- [ O p il (Pic1,3417 Pic1,541)

apl l,jJ.l_. i

(k) ] (k+1) (k)

*‘a—m—‘ -ej01 ](p“l'j”' Piel,541)

= 0

or

(k) ' k eLs k k
Pi 5+1 - Pij -efé‘) -(1- e)fé ) _g__Pj+1 (ef p! ;ii p! %+1)

I j+1 j (k) ' '

i,j3+1
£ (k) (k+1) (k)
-0 ﬂ_ ( Pi-1,j-1— Pi-1,j+1
K

ap{-i.j+l

af (k) (k+1) (k)
-6 _ Pj+l ( Pi+l,j-1— Pi+l,j+1

ap1+i j+1

=0

which can be rearranged into the form of a tridiagonal

matrix



(k)
Py

Similarly,

written as

(k+1)
Pi-1,j+1

(k) + oK)

(k+1)
P; Pi,j+1" “p;

+ B Pi+1,3+17

(k) (k+1) g(K) (k1) (k) (k+1)
n. Mi-1,j+1 n, Mi,j+1 n, Mi+l,j+1°
1 1 1
and
(k) (k+1) (k) (k+1) (k) _(k+1)
AEl Bi-1,j41* Pg, Ep ,5+1% Csl Ey+1,5+17
where
(k)
alk) = —g 3fpoy,
Pi (k)
3Pi_1,5+1
gk
B(k): 1-9 a Psyy
Pi 1 (k)
3 3P} ,j+1
£ (K)
c(k= -g 3 Piv
1 (k)

k
APi41, j+1

equations 5.18 and 5.19 can

Dp_ (5 21)
"1

be readily

D, (5 22)
i

D (5 23)
Eq
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(k

k k af k
D Py ¢ efg:) +(1-0)f, - 8 " Piy) .pﬁ,%+1
p; = 2ij Piy P, -
t.
J P, +1
(k)
3f .. (k) af,. (k)
3Pi-1,3-1 3Pi+1, j+1
3£tk
A(k)= -8 n.+l
1 k)
ang-l,j+1
k)
af !
B(:)= 1 -9 ?a+1
t] ani,)j+l
k)
at !
C(k)= -0 n.+l
1 k)
an{+1.j+1
(k) (k) af(k) (k)
Dni =iy * anj+l+(1-9)fn'- © " Mj+1 <Ll
t. (k)
J anirj"‘l
3f (k) af(k) (K)
-0 i+l . ny 1,j_1"9 Pirl - Bisl, 541

anj_j, j-1 aNj+1,3+1




k)
af
Aé:)= -e i+1
~(k
abé-%,j+1
5 (K) aflk)

K
clk) = _g atfk)
Eq J+1
aefk) .
+1, j+1

(k)

(k) (k) _ _ afg. (k)
i J+1 J
t; ék)
aE yJ+1
af (k) af(k) k
-0 ZEiv1 L Ef7y yp-e0 __Eind CECY 541
N ’) T
dEf_1,3-1 3Eg41, 9+1

5.4 Computational algorithm.

The linearized algebraic system equations 5.21 to

5.23 with the coefficients in 5.24 are entirely in the
same form as equations 4.16, 4.17 and 4.18. The
algorithm depicted in Fig.4.1 can therefore be utilized to
obtain the solutions. However, some modification involving
the time increment must be added. During the computation
of the transient behaviour, a test for the steady state
condition must be provided to stop computation, but when

investigating the sinusoidal response, a time limit can be




set

Fig.

max

up. The modified computational algorithm is shown in

5.2

The criterion for convergence is obtained from

k k+1 K k
(pf ¥+ nflk ))-(pg '+ nf )) < € (5 25)

1
p{k) + n{k)

where ¢ is the acceptable accuracy.
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5.5 Numerical results.

Following the same 1line of investigation as in the
static cases, we shall here consider two problems of diode
dynamics which are controlled by the time dependent
quantities, The first of these is the 1internal behaviour
involving the response of the diode to large excursions of
voltage and current, as in many switching applications.
The second 1is the terminal characteristics which describe
the response of the diode to large step and sinusoidal
excitations.

A simple resistor diode circuit as in Fig. 5.3 1is used
to study this behaviour. The diode current in this circuit

is given by
VR

R
50 oums

Vapp <> Vo

Figure 5.3 A R-D circuit.

Jo(t) = (vapplt) - vp(t))/AR
where
Vp(t) = vp(O,t) - vp(L,t)

L

and °©

vapp.(t) = applied voltage
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Vp(t) = voltage across diode
Vgifg =diffusion voltage

L = device length
equation 5.26 can be expressed as (in normalized form)
L

v, (E) = [vapp(t) —/E(x,t)dx + vdiff] V_L_/(AR4D n.)
0 (5.27)

The diode under consideration has the same physical
parameters as in section(4.6) so that a comparison between

the static and dynamic behaviours is possible.

5.5.1 1Internal characteristics

Investigation of the dynamic internal behaviour is
necessary to provide understanding of the detailed
mechanism of the device. We will, in this section, study
only the turn-on transient. The turn-off phenomenon can be
investigated and explained in a similar fashion when we
study the sinusoidal response.

There are two basic phenomena responsible for the
behaviour of the device under transient condition.
Firstly, there 1is the relaxation effect involved within a
period of the dielectric relaxation time constant , given

by

T = €
r
Q(Upp + upn)
Secondly, minority carriers take a nonzero time to pass
through the base region of the lightly doped region. For

narrow base diodes, the transit time T., is given by{45




T, = wg/(2Dg)

t

for low level injection, and
2

for high level injection.
Where
Wg is the base width, and
Dg is the minority carrier diffusion constant in
the base region,
The recombination effects which occurs within the

effective lifetime T ¢¢ given by <42>

T = T = T
eff po no for low level injection, and

T =T + T
eff PO no for high level injection

may be of interest and can be included as part of the
transit effect.
We shall consider a diode having the doping profile

shown in Fig. 5.4 . The transient drive applied to the

circuit of Fig. 5.3 is a step excitation.
@ t<0
v (t) =
app -3.8 Volt £>0

in the forward direction. The times of interest are then

as follows:

T, = 1@'14 second, in highly doped p region
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4.16x10~% second, for low level injection

T, =
t 2.08x16~/ second, for high level injection

Figs 5.5 to 5.9 show the electric field,
electrostatic potential, carrier density distribution:s and
the curreﬁt density distribution respectively at various
instants of time. For times less than the dielectric
relaxation time constant, the electric field changes
drastically without variation of the carrier densities.
The displacement current is the dominant component in the
total «current throughout the interior of the device,
whereas the particle currents J. and Jp remain
unchanged from their thermal equilibrium values. The
electrostatic potential across the junction also remains
unchanged because there 1is no carrier flow. In other
words, this phase of the response is responsible for the
build-up of the ohmic voltage drop in the quasi-neutral
region.

At later times, within the range of transit time, most
of the carriers 1injected are stored in the transition
region charging the transition region capacitance, which
results in a reduction of the electric field. The
displacement current in the transition region begins to
decrease, and hole current flows with the absence of
electron current in this region. As time proceeds, the
junction voltage build-up and the barrier height falls.
The displacement current in the transition region begins to
disappear and the <carrier currents now become dominent.

Diffusion of electrons into the base region reduces the
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hole current and any electrons left after crossing the
transition region are eventually recombined with holes in
the p pt region.

An analogous situation for holes also occurs 1in the
nt region, but it is a small effect due to the heavy
doping.

The displacement currents 1in the base region as
depicted in Figqg. 5.9 show an inversion of sign 1in both
interface regions n* p and p p*, The sign inversion
at the nt junction occurs at the initial part of the
transient (t = 2.0x10-19) . This effect has been
described by De Mari <15> and Petersen <18> 1in their
analyses, and they suggested that the displacement current
is initially positive corresponding to the build-up of the
ohmic potential drop in the base reqion, and decreases as
the carrier currents flow into the region., The flow of the
carrier currents modulate the conductivity 1in the base
region which results in a decrease of the voltage drop.
This effect changes the electric field and consequently
reverses the displacement current. A similar explanation
applies also for the sign inversion of the displacement
current at the p p* junction, except that this happens

when high level injection conditions occur at later times.
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5.5.2. Terminal characteristics.

Just as for the static case in chapter 4, the terminal
characteristics of the devices will be investigated both
under step and sinusoidal excitation, concentrating on a
study of conductivity modulation effects and the influence

of minority carrier lifetime on the behaviour.

Step response.,

Under the same conditions as in the investigation of
the internal behaviour, the step response of the diode
under different iﬁjection level conditions are shown in
Figs. 5.10 to 5.12 . The currents vary from low level to
high 1level depending on the value the step voltage applied
to the circuit. The terminal voltage of the diode depicted
in Fig. 5.11 shows negative overshoot for large currents,
but it decreases monotonically for small currents.

This behaviour can be described by the relation derived
by Ko <7>, for a step profile n* p diode,

v_(t) = KT lnl-1+I erfft/T |+ I_R {1-L ln(l+K erf ft/T )
bl - n -n n

D fo
q Ig wp
where
R, = the intrinsic bulk resistance with no excess
carriers
K = a physical constant for the diode material,

doping, and geometry, and

I¢, 1Ig are obtained from the static diode

equation
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If = Ig(exp(qV/kT) -1)

the terminal voltage, Vp(t), is a combination of
the junction voltage and the ohmic voltage drop in the bulk
region. After the dielectric relaxation time, the injected
carrier densities rise from the equilibrium towards their
steady-state values, and accordingly there is an increase
of the junction voltage. At the same time, the
conductivity of the material is increased by the increase
of carrier densities. The bulk resistance 1is therefore
reduced, and so the ohmic voltage drops. The junction
voltage increases with time, while the ohmic voltage drop
decreases with time. Under low level injection conditions,
the ohmic voltage drop is small compared with the junction
voltage, and so the observed terminal voltage increases
with time. At high injection levels, the junction voltage
has reached 1its saturation value, and the ohmic voltage
drop is the dominant . 1In this case, the observed terminal
voltage decreases with time.

Figs. 5.13 and 5.15 replot the terminal voltages and
currents of the diode on a normalized time scale, t/T.

Under low level injection condition, = -@.15 volt,

Vapp
the result shows that the diode behaves capacitively. 1If
the diode~resistor circuit is modelled as a simple R-C
series combination, the response can be approximated with
values of 50 ohms and 5 nF. At high-level injection,
vapp = -15.0 volt, it 1is seen that the diode behaves

somewhat inductively. The circuit may be modelled as a R-L

series combination. The response can be approximated with

values of 50 ohms and 50 nH. More accurate modelling will
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require

here.

a

nonlinear

resistance and will not be attempted
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+ Sinusoidal response.

The study of the sinusoidal response of a diode
provides an insight into 1its rectifying effect and the
generation of harmonics. For the 1latter purpose, the
steady-state solutions are required, thus the transient
effects in the early cycles must be disregarded. This
involves more time steps and consequently more computing
time. The simpler structure of nt-p diodes with the
doping profile depicted in Fig. 4.17 gives the solutions
in about half the time required for n*-p-p* diodes
with the doping profile shown in Fig. 5.4 .

For this reason,nt-p diode with the physical
parameters given in section(4.6) will be computed rather
than nt-p-p* diodes for the following analyses.

The external excitation is given by

1 MHz.

where f

97



5.5.3 Effect of the minority carrier lifetimes on the

terminal characteristics.

a) Diodes with the same ratio of wp/Ln

The results of chapter 4 suggested that 1in order to
study the influence of the 1lifetimes, the diodes to be
compared should have the same recombination <criterion,
namely the normalized width wp/Ln_ Figs. 5.16 to
5.18 shown the response of diodes having moderate
recombination, for which wp/Ln =1, but different
minority carrier lifetimes varying from 1 microsecond to 10
nanosecond.

During the forward half cycle, the shorter 1lifetimes
gives higher recombination rates, and hence the currents
across the junction are larger. This agrees with the
results obtained in the static cases.

During the reverse half cycle, the current consists of
the generation current and the current due to the stored
minority carriers being removed from the transition region.
The stored charge results from injection during the forward
cycle. 1Initially the presence of the stored charée causes
a large reverse current to flow, and makes the junction
voltage change slowly. The junction remains in forward
bias, and the diode still conducts. After the so-called
storage delay time, the junction becoﬁes reverse biased,
and the reverse current starts to decay toward its
steady-state value,

Fig. 5.16 confirms that the low récombination rate in

the large lifetime diode leads to a large amount of stored

28



charge and consequently to a considerable overshoot effect

and a large storage delay time. On the other hand, a short

lifetime diode has little storage charge and makes a good

rectifier.
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b) Different sized diodes with a fixed lifetime.

Figs. 5.19 to 5.21 show the responses of diodes of

different sizes with normal ized width,wp/Ln'
ranging from 0.1 to 1.9, for a carrier lifetime of 1

microsecond

During the forward half cycle, the current continues to
increase as the diode is made smaller, or as the bulk
resistance becomes lower. This supports the result
obtained in chapter 4, and shows that there is no optimum
value of the size of the diode.

During the reverse half cycle, the longer diodes have
relatively higher storage delay times and larger overshoot
effects 1in comparison with the shorter diodes. This
results from the infinite surface recombination velocity
assumption at the ohmic contacts. For the shorter diodes,
the minority carriers recombine relatively faster than
those of the longer diodes. The storage delay time and

overshoot effect are therefore much reduced.
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c¢) Diodes with the same width.

Figs. 5.22 to 5.24 show the effect of minority
carrier 1lifetimes having values from g.1 millisecond to
P.1 nanosecond on the response of the diodes whose widths
are fixed at 10 micréns.

Under this condition, there are two effects involved:

the direct effect of varying the lifetime; and the indirect
effect of changing the normalized width, wp/Ln-
The results in section a) and b) reveal that these effects
act in opposite directions. For instance, the increase of
the lifetime produces more stored charge, but it
subsequently decreases the normalized width which results
in the reduction of the stored charge. 1In this section,
the results can therefore be described by the combination
of the two effects.

During the reverse half cycle, Fig.(5.22) shows that
the storage delay time and overshoot effect are small and
nearly constant for the long 1lifetime diodes. They are
relatively smaller and eventually vanish for the shorter
lifetime diodes.

During the forward half cycle, the results show that
for tﬁe long lifetime diodes there exists a maximum current
which agree with the results observed in chapter 4. For
the shorter lifetime diodes, the current 1is significantly
decreased due to the increase of the bulk resistance.

The responses obtained from the preceeding sinuscidal
excitations show good agreement with the results predicted
by analytical methods <7><8>, and confirm the intuitive
p—~achieve a good high speed

e Unjyo >
Q\,e\‘“m "o

results that in order
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switching action, it is necessary to
a) decrease the minority carrier lifetime or

b) reduce the size of the diode.
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Chapter 6.

Harmonic Analysis of p-n Junction Diode.

In principle, the duality between the time and
frequency domains makes it possible to study the behaviour
of a semiconductor device from either viewpoint. However,
some phenomena may be difficult to detect in one domain,
but they could be prominent in the other. Also specific
information in the frequency domain 1is required in some
applications, for instance, in harmonic generation,
distortion measurement, modulation, oscillation, etc.. It
is therefore worthwhile investigating the device
characteristic in this domain.

Most previous analysis in the frequency domain has
relied on certain series representations to denote
nonlinearity in the transfer function of the device, and
together with the Fourier Transform, the device performance
can then be predicted. This approach 1is 1limited to
slightly nonlinear, i.e., small signal cases <23> , or it
depends on an approximation to the characteristic of the
devices <27>. However, if an exact response 1is already
availablé, then the Fourier Transformation can be directly
applied to provide a solution 1in the frequency domain.
This approach can preserve the exactness of a solution and
is relatively simple to use.

In this chapter, we shall first introduce the Discrete
Fourier Transformation and 1its application in harmonic
analysis. This will be applied to the steady-state

responses from sinusoidal excitation obtained from chapter
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4 and 5 . Finally, the effect of minority carrier lifetime

on harmonic generation is considered.

6.1 Application of the Discrete Fourier Transform in'

Harmonic Analysis,

To determine the Fourier Transform of a function g(t)
by mean of numerical techniques, it is necessary that the
function to be transformed be represented by discrete
samples usually at equ;lly spaced time intervals T
corresponding to the sampling frequency fs-' The effect
of sampling may add severe distortion to the original
function if the sampling frequency is too low, i.e, less
that twice the highest frequency component of g(t). This
is the so-called aliasing effect iﬁ which high frequency
components of g(t) can impersonate low frequencies.

The duality property of the Fourier Transform implies
that sampling in the time domain results in a function
periodic in frequency and sampling in the frequency domain
results in a function periodic in time. Therefore, the
Discrete Fourier Transform requires that both the original
time and frequency functions be modified such that they
become periodic functions in which N time samples and N
frequency values correspond to a period of time and
frequency domain waveform respectively.

For transformation from the time to frequency domain,
this can be done by truncating the sampled function to a
finite interval, and considering the function within this
interval as one period of the periodic function in the time

domain. Therefore, Fourier Transformation is required for
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only one period of the function.

The truncation is however equivalent to multiplying the

signal by a rectangqular window function. ~ If the time

period under consideration is equal to T, seconds, the

rectangular window function is defined by

w(kT) = (6.1)

1 @ < KT < To
7] otherwise

the relation between the arguments in the time and
frequency_domain is given in Fig. 6.1 and the discrete

Fourier Transform pair is defined by

N-1
g(kT) = 1 Z G(nf). eJj2Tnk/N
N N0

(6.2)
d N-i
G(nf) =Zg(k'l‘).e'jz’”“"/N
koo (6.3)
where
k=g'1'2,-o-¢-.-o¢--'N-l
n=ﬂ,l,2,.--....-...,N-l
g(kT)|__
T
T
To=NT
T, 1 £
. Q —_ =
k=0 1 2 3 ‘=~ - N-I T "®
lG(nf)ll\
? fo =nf
' T e -
Rh= 0 I 2 3 N-| £

Figure 6,1 Relation between the arguments in the

time and frequency domains.
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By applying the Discrete Fourier Transform to w(kT) in

equation 6.1, we can write

N-1

W(nf) = z: e-J2%nk/N
k=0

- 1 e—jZ‘Kn fTN

1 - o= J27nfT

= e-anfT(N-1[ sin(XnfT )
sin(xnfT) (6.4)

Equation 6.4 indicates that truncation in time domain
can introduce a ripple in the frequency domain. This is
analogous to the Gibb's phenomenon in the continuous system
where truncation introduces a singularlity. This effect
can be minimized by employing a non-rectangular window
function in order to reduce the singularlity.

However, if the sampled and truncated function 1is an
integral multiple of the period of the function g(t),
equation 6.4 shows that the ripple vanishes.

In harmonic analysis, the time domain steady-state
solution is normally periodic. 1If N sample values of this
solution represent exactly one complete period, the
resulting discrete transform is then ripple-free.

Computation of the transform defined in equations 6.1
and 6.2 requires N2 mathematical operations on complex
quantities which uses considerable computational time and
introduce round off error. The use of a Fast Fourier
Transform algorithm in which only 2Nlog2N operation are

required leads to a substantial reduction of the time and
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error. The FFT algorithm can be interpreted in terms of
combining the DFTs of the individual data samples in such a
way that éhe occurence times of the samples are taken into
account sequentially. These can then applied to the DFTs
of progressively larger mutually exclusive subgroups of
data samples, which are combined to produce the DFT of the
complete set samples., The derivation and computer
programming of the FFT algorithm has been widely discussed
in the 1literature and it is available on most main frame
computers; for example the NAGC package on the NUMAC
computer systemn. Therefore, detailed discussion of this

algorithm will be omitted here,.

6.2 Harmonic generation in p-n junction diodes.

In chapters 4 and 5, the influences of minority carrier

lifetime on the terminal characteristics and responses of.

p-n junction diode have been studied intensively. We shall
in this chapter consider this effect on harmonic generation
in the frequency domain.

For convenience throughout this chapter a response to
sinusoidal excitation which is obtained from- solving the
simple R-D circuit in chapter 4 will be referred to as a
"static" response, and a static spectrum denotes its
transform pair in the frequency domain, Similarly, the
term "dynamic" will be used when dealing with a
steady-state response to the sinusoidal excitation as
described in chapter 5.

It has been seen that the static response provides

nearly ideal half-wave rectification, because of the very
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small reverse current in comparison with the forward
current. On the other hand, the dynamic response depends
not only on the forward characteristic but also on the
important effect of stored charge seen in the reverse
direction.

Firstly, we shall investigate the dynamic spectrum
considering harmonic generation in both forward and reverse
directions. Later harmonic generation 1in each direction
will be considered separately. The nonlinear effect in the
forward direction can be obtained by subtracting the
dynamic response from the associated half-~sinusoidal
response. On the other hand, the effect in the reverse
direction may be obtained by subtracting the static
characteristic from the associated dynamic characteristic.
This however requires 1identical environment for each
corresponding pair. That is to say the frequency, accuracy
etc., must be the same in each case.

In practice, this can not be easily done, because the
static response 1is valid only at very low frequency. The
corresponding computer time for a dynamic response at the
same frequency is large. However, an alternative method is
simply to suppress the forward half cycle of the dynamic
response. The remainder 1is a close approximation to the
required effect in the reverse direction, and the
suppressed part will be referred to as a quasi-static

characteristic.
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6.3 Effect of minority carrier lifetimes on harmonic

generation.

a) Diodeswith the same size.

Fig. 6.2 is reproduced from chapter 5 showing the
dynamic response in the time domain of diodes having the
same size (10 microns), but with lifetime varying from 0.1
nanosecond to 100 microseconds. Each response was
calculated at 256 points, so that the Fast Fouriler
Transform can be directly applied, this results in the
spectra depicted 1in Fig. 6.3. To aid interpretation, the
odd and even harmonics are separately identified. These
results confirm the existence of an optimum wvalue of
lifetime as described in chapter 4 and 5. No variation of
the spectra can be seen at longer lifetimes. The harmonic
level becomes relatively smooth for higher orders. When
the 1lifetime 1is wvery short, 6.1 nanosecond, the higher
harmonics become substantially reduced, and ripples in the
odd and even séectra appear.

Fig. 6.4 shows the associated quasi-static spectra,
the results indicate that the magnitude of the odd
harmonics follow a sinc-like function where a different
sinc-like function holds for the even harmonics. For long
lifetime diodes, the spectrum 1is 1less sensitive to the
varﬁation of the lifetime. However, when the lifetime is
very short, the period of the ripples becomes longer.

For comparison with the results that would have been

obtained if the diode characteristic were linear, Figs. 6.5
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and 6.6 show the ideal half-sinusoidal responses and
their spectra. These hal f-sinuscoidal responses are
simulated with the same amplitude as the quasi-static
responses shown in Fig., 6.2. The spectrum reveals the
monotonic decrease of both odd and even harmonics, which
are evaluated from

F(nf) = _l_ejT(fT-n/N)(N/z =1) sin(T(£T_-n)/2)
23 " sin(X(fT-n/N))

+1 e~ JX(ET+N/N) (N/2 -1) sin(W(fTo+n)/2)

2j sin(T(£T+n/N))

The results of Figs. 5.4 and 6.6 indicate that the
distorted half-sinusoidal waveform due to the nonlinear
property of the device is responsible for the ripples seen
in the quasi-static spectrum. This nonlinearity is clear
from the exponential nature of the current-voltage
characteristics. The exact static characteristic obtained
in chapter 4 shows multi-exponential behaviour, but in
practice, is normally approximated to only single
exponential. A dquestion arises then, whether this
approximation affects the ripples and the spectrum. Using
the algorithm developed in section (4.7), Fig. 6.7 shows
the quasi-static spectra obtained from the responses to the
sinusoidal excitations applied to the diodes having the
exact static characteristic and the approximated single
exponential characteristic respectively. For an output
current of 11.50 amp/cm~2 or 2.44 in the natural log
scale, the results reveal that there is a slight variation
only in <certain harmonic components. The approximation

appears to have little influence on the ripple and the
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spectrum at low frequency, and this influence may be

neglected.

By subtracting the quasi-static responses from the
ideal half-sinusoidal responses, the nonlinear effect in
the forward direction is shown 1in Fig. 6.8 for wvarious
values of the lifetimes. The influence of the lifetime is
obscure in these time domain responses, but it is prominent
in the frequency domain spectra given in Fig. 6.9. These
spectra also reveal that there is no variation of the
spectrum for lifetime values between 1 microsecond and 10
microseconds., As the lifetime decreases further, the even
harmonics change relatively faster than the odd harmonics,
and eventually become dominant., The higher harmonics of
both odd and even components gradually decrease.

To observe the influence of the lifetime in the reverse
direcﬁion, the quasi-static spectrum is subtracted from its
corresponding dynamic spectrum, We then obtain the
overshoot effect and its transform pair shown in Figs. 6.10
and 6.11 respectively. For the diodes under
consideration, the overshoot is very small, and it begins
to disappear as the 1lifetime 1is shorten. The spectrum
shown in Fig. 6.11 has nearly constant magnitude for most
harmonics in each case. When the lifetime 1is wvaried the
results also show that there is no variation in the spectra
for the longer lifetime diodes. However, for a very short
lifetime diode, the higher harmonic content becomes very
small.

A pseudo 3-dimensional plot of the dynamic spectrum at

various values of lifetime from 0.1 nanosecond to 0.1
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millisecond is given in Fig. 6.12 in which the variation

of each harmonic component can be observed.
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b) Diodes with the same ratio of wp/Ln-

Figs. 6.13 and 6.14 show the dynamic responses and

their transform pairs of diodes of the same recombination
criteria, 1i.e, the same normalized width, wp/Ln=1-
The lifetime varies from 1 microsecond to 10 nanoseconds.
The 1long 1lifetime diodes with large overshoot give nearly
smooth spectra. As the lifetime decreases, the even
harmonics are seen to decrease relatively faster than the
odd harmonics. Ripples become apparent in the lower
harmonics at first, and 1later are seen in higher order
harmonics as well.

The quasi-static spectra given in Fig. 6.5 show the
direct effect of lifetime on the distorted half-sinusoidal
responses. The shortening of the lifetime seems to reduce
the minimum values of the ripples, while the peaks of the

ripples remain unchanged.

Figs. 6.16 and §.17 show the direct influence of the’

lifetime on the time domain response in the forward
direction and its corresponding spectrum respectively. For
the long lifetime diodes the decrease of the current in the
time domain resulting from the increase of the 1lifetime,
has 1little effect on the spectrum. However, as the
lifetime decreases further, at the value of 0.1 and 0.01
microsecond, the influence of the 1lifetime becomes
prominent. The odd harmonics decrease in magnitude and the
even harmonics become dominant.

The direct effect of the 1lifetime 1in the reverse
direction 1is shown in Figs. 6.18 and 5§.19. The large

overshoot of the long lifetime diode produces a spectrum
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which 1is similar to that of an impulse response. The
shortening of the lifetime decreases both magnitude and
width of the overshoot, which results in a reduction in
magnitude of the harmonics and an increase in the period of
the ripples.

The results obtained suggest that the direct effect of
increasing the 1lifetime in both forward and reverse
directions is to promote the smoothness and relatively
stability of the dynamic spectrum. In addition, Fig. 6.20
also provides a pseudo 3-dimensional plot of the dynamic
spectrum of the diodes at various lifetimes, from g.1

nanosecond to 1 microsecond.
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c) Different sized diodes with a fixed lifetime.

Figs. 6.21 and 6.22 show the dynamic responses and
their spectra of diodes of different sizes with
Wp/Ln ranging from .1 to 1.0 respectively, for a
lifetime of 1 microsecond. The results reveal that a long
diode with relatively large overshoot gives a nearly smooth
spectrum and a large magnitude of the higher order
harmonics.l As the size of the diode decreases, the higher
order harmonics become smaller, and the ripple effect
appears.

Figs., 5.23 to 6.27 show the quasi-static spectrum,
and the effect of the length of the diode on the spectrum
for the forward and reverse directions respectively. It is
seen that the influence of varying the size is equivalent
to the direct influence of the lifetime, as considered 1in
section b). Shortening of the diode gyives the same effect
as reducing the lifetime in both the time and frequency
domains, which introduces ripples into the spectrum.

A specific implication of these results suggests that,
for some devices such as switching diodes , power diodes,
etc., an attempt to control the lifetime may be replaced

or assisted by varying the width of the device,
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Chapter 7.

Conclusions.

Large signal modelling and analysis of p-n Jjunction
diodes have been developed and studied intensively. The
behaviour of the devices 1is described by a system of
nonlinear differential equations namely ; the continuity
equations,. . the current density equations and Maxwell's
equations. The algorithm for the solutions developed in
this study were based on the finite difference technique.
The nonlinear system equations can be transformed into a
set of linear algebraic equations with the wuse of the
finite difference approximation together with either
Newton's method or Picard-like iteration. Thérefore, any
sucessive approximation method can then be applied for the
solutions.

The simulation began with the problem at thermal
equilibrium and then under reverse bias conditions in which
the current flow was heglected. With these conditions, the
system equations reduced to only Poisson equation. This
allows a general algorithm to be introduced. 1In addition,
. the solution at thermal equilibrium was used as a initial
trial solution in the 1iteration scheme of the later
problems.

When current flow was included, the whole set of system
equations must be taken 1into account. Firstly, we
considered the time-indépendent modelling, 1in which the
problem becomes solving a set of nonlinear ordinary

differential equations. An algorithm was developed and
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used to study the internal and terminal characteristics of
some diodes. The algorithm was a modification of the
Calzolari's algorithm,. It employed the R-dimensional
Newton's method in dealing with the Poisson equation,
rather than working on the corrected term in
one-dimensional Newton method. The calculation of the
current densities were based on the De Mari's analytical
formulations in order to avoid instability problem. The
algorithm was shown to be faster than the original and was
also valid over a wide range of operation.

The use of the diodes in a simple R-D <circuit under
large-signal sinusoidal excitation was investigated. The
method employed a cubic spline interpolation and the
Newton-Raphson iteration to solve the circuit equation.

Secondly, we studied the time-dependent modelling of
the diodes. In this case, the system equations became a
set of noniinear partial differential equations.- An
algorithm was developed wusing the R-dimensional Newton
method to 1linearize the -equations, and employing the
general implicit scheme of finite-difference approximation
.in the time discretization. Scharfetter's spatial mesh
distributions were included to ensure stability. The
. algorithm was used to investigate the internal and terminal
transient characteristics of a diode under turn-on step
excitations. The steady-state responses of large-signal
sinusoidal excitation were also obtained and studied.

In both <cases, the influence of minority carrier
lifetime on the terminal characteristics was

comprehensively studied. However, the wvariation of the
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lifetime also affects the ratio wp/Ln° The
lifetime and the ratio are inversely related. Therefore,
the influence of the 1lifetime has been considered
separately for diodes with the same length, diodes with the
same ratios W_/L,, and finally diodes with
different ratio but the same lifetime,

In the forward directioﬁ, the results showed that a
decrease of the lifetime resulted in an increase of the
current ( for the diodes with the same ratio ). But an
increase of the ratio causes the current to decrease, So
the effect of the 1lifetime on the fixed length diode
current was therefore a combination of these two
variations. In the reverse direction, the overshoot effect
due to stored charge was shown to become larger as the
lifetime 1increases (for the diodes with the same ratio ).
But decreasing of the ratio was shown to minimize the
overshoot effect.

In ;ddition, frequency domain analysis of these diodes
has been included, by applying the Fast Fourier Transform
directly to the solutions obtained. Following the same
line of investigation as 1in the time domain, we also
studied the influence of the 1lifetime on the harmonic
generation of the diodes. For the diodes with the same
ratio , an increase of the lifetime tended to smooth the
spectrum and raise the higher order harmonics 1in the
forward direction. However, in the reverse direction it
introduced ripples 1in the spectrum and raised the lower
order harmonics. Similarly, this effect showed 1in the

diodes when the ratio became higher, i.e, longer diodes.
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For the diodes with the same length, the spectrum confirmed
that there exists an optimum value of the lifetime at which
a saturated current occurs.

To some extent, the results obtained were intuitively
obvious and showed good agreement with those described by
the classical analytical theory. This confirmed the
validity and reliability of the algorithms used. However,
for more complicated cases, e.g. arbitrary doping profile
diodes, large signal operations, etc. the analytical
metaods -become impractical and only approximated solutions
are available. On the other hand, our numerical algorithms
provide ﬁot only the exact and complete solutions, but also
the practical methods to observe certain phenomena such as
the harmonic spectrum generated. This work may therefore
be usefui in a detailed study of semiconductor devices
where the influence of physical parameters on the
characteristics is of interest. The devices may then be
designed to meet exact requirements. The use of the
finite-difference technique provides flexibility in that
the algorithms can be extended 1into two~-dimensional
problems.

It 1is seen that the basis of the algorithms used in
this wofk is repeated inversion of a tridiagonal matrix
until the solution is found. The use of a single processor
requires a sequential algorithm for this matrix inversion.
This needs a large amount of processing time, particularly
when an accurate solution is desired. For two-dimensional
cases, this problem becomes critical and uneconomical in

practice. However, recent work on parallel numerical
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algorithms provides an alternative method to solve this
problem. The matrix can be sliced into N sections, and
then N-processors may be used in parallel. The processing
time is ideally N-time less than a seguential algorithm.
For future work, this parallel algorithm may be considered
for both one and two dimensional cases, and a hardware

simulator could also be developed.
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Appendix A.

Tridiagonal system.

The general form of a tridiagonal system is :

b1Xl+ch2 = dl (A.1)
+ =d .
a2x1+b2x2 c2x3 2 (A.2)
a3x2+b3x3+c3x4 = d3 (A.3)
+b =- «N-
2n-1%n-2"Puo 1 Xnm1 o1 XN T IN-l (A.N-1)
ay Xyt by Xy =4 (A.N)

The equations can be solved by Gaussian elimination,
and taking into account the tridiagonal nature of the
system.

Mul tiplying equation A.l by a,/by ~and
subtracting from equation A.2 we obtain new equation A.2

as

[bz-(az/bl)cllx2 + c2x3 dz“az/bl)dl

or

*

dj

L
by Xy + c3X3 (A.2)

Similarly, equation A.3 can be eliminated as

L ]
[b3-(a3/b2)c2]x3 + c_X

» ]
3%y = 937 (8y/b)) 4,

or

»
b3 X3 + c3Xy4

il
Q,
W

(A.3)




Thus, in general, by using the recurrence relations

b) = b,

=®

a] = 4,

¥ ¥

bj = bj-(aj/bj_3) ci

Q.
]

* *
i = dj-(aj/bj_3) dij

i=2'3'4,-.--oo.c-,N

we can write

* L
b. X: 4+ C:X; - d
i i iti+ i .
' 1 (A.1)
and the last eyuation becomes
b X = db
NN N (A.N)

By back substitution, the solutions can be determined

from

L ®
= dn/by

z
I

and

X
|

& *
(dij-ciXj41)/bj

i = (N=1),(N=2),c0cncacae,l
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Appendix B.

Cubic spline interpolation.

A cubic spline S(x) interpolating f(x) at the points
Xg €X] <X9 €evesesonnees<Xp
has the following properties
1) S(x) is a cubic polynomial in [xkka+1]
K=0,1,2,cccceeces,n-1
2) s(x) = f(xy)
K = 0;1,2)0c0200c:c4N

3) S'(x) and S"(x) are continuous in (X4 ,%p)

For x € [Xp,xk41], S(x) can be written as

= - 3 - 2 -
S(x) ak(x xk) + bk(x xk) + ck(x xk) + dk

(B.1)
By differentiating,
' = _ 2 -
S'(x) 3ak(x xk) + 2bk(x xk) + ck
(B.2)
and
" (x) = 653, (x-xk) + 2byg
(B'3)
For simplicity, let
S"(x ) = M
k k (B.4)
Using the second property, for x € ka'xk+1|'
equation B.l gives
f = S(xk) = d
K K (B.5)
fk+1 S(xk+1) akhk + bkhk + ckhk + dk
(B.6)
where



hy = (Xke1- %k)

Similarly, equation B.3 gives

and

Mcy1 = 6aghy + 2by

Thus, we can write

bk = Mg/2
(B.7)
8 = (Mgyy- M) /6M
k = (Mky k) /6Mg
1 (B.8)
Substituting a, by and ck into
equation B.6, we get
° = feaam Bk - R Y DMLY
h 6
k (B.9)
From equation B.2, with x = X, we have
Sl(x ) = C
k k (B.10)
Similarly, in the previous interval
x € [x,_y,xy], equation B.2 1is in the form
' = - 2; 2b - +
S'(x) 3ak_l(x xk-l) 2 k_l(x xk-l) ck_1
with x = XK, we have
' - 2
ST = 33 1My 2P TSk
(B.11)
where
h

k=1 = (Xg— Xg_1)
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Using the third property, equation B.18 and B.1ll can
be equated, and together with the values of a,b,c and d

derived above, we finally obtain a tridiagonal system

= f -f f -f
+ (2hk + 2hk)Mk+ hkM 6

k+1 k+l k_ _k k-1
ny -1

h M
k=1 k-1 -1

(B.12)
k=l’2'nao.o-.--'n-l

This gives (n-2) equations relating the n values of

M., therefore two additional equations are required.

To some extent these end conditions are arbitrary,
However, for some specific splines, the following end
conditions are given.

1) Natural cubic spline,

0

St (xo) S"(Xn)
or

Mo=@=M

2) Complete cubic spline.

S'(Xo) = £'(Xg)
and
S'(xn) = £'(xp)
or
My My =5 [B1m fo - £
hO hO
and

2Mn+ My_y =8 TE,-fn-fn-)
hp-1
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Appendix C.

Computer Subroutines.
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