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ABSTRACT

We propose (a) "the vector coupling hypothesis" (VCH) that the
leading normal parity regge trajectories (P, £, w, p, A2) couple to
quarks like vector particles, and (b) the "gamma analogy hypothesis"
(GAH) that the couplings of P, f and w to any quark are proportional

to the isoscalar photon coupling while the p and A_ couple like the

2
isovector photon. These hypotheses are motivated by duality and vector
dominance. Within the context of a naive ideally-mixed quark model

we specify the spin-dependent nature of our coupling relations using the

technique of covariant xeggeization.

As a major test of our hypotheses we use the formalism to
elucidate the nature of the elastic scattering amplitudes and hence
describe all the data on elastic scattering. We also make success-
ful predictions for vector meson-proton cross-sections. Using these
elastic scattering amplitudes we extend the formalism to predict (up
to one free parameter) diffractive boson and baryon differential cross-
sections. We find that our hypotheses successfully describe both the
enerxgy and t—-dependence of all these cross-sections despite the fact
that the helicity structure is much richer than, and the t-dependence
quite different from, elastic scattering. We also use the meson
couplings determined in our fits to predict the mesonic decay widths
of resonances lying on the exchanged trajectories. Good agreement

with experiment is found.
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INTRODUCTION

The proposal that the pomeron and photon couplings to particles
should be proportional is long-standing. For example, Chou and Yang (1)
parametrized elastic scattering in terms of the electromagnetic form
factors. Ravandel (1) has suggested that diffractive processes might be
controlled by a conserved vector-current pomeron coupling. However, it
has been discovered that diffractive differential cross-sections do not
vanish in the forward direction (t = 0) as predicted by a conserved vector
current coupling. Furthermore, the helicity structure of the pomeron
coupling is complicated by s~channel helicity conservation in some pro-
cesses but nﬁt others (2). These features appear to argue against such
a simple pomeron—-photon coupling analogy.

On the other hand, duality (5) predicts that the pomeron coupling
will be related to that of the f, which is in turn exchange degenerate
with the w(6). According to the vector dominance model (4) the isoscalar
part of the photon couples to hadrons mainly through the w pole, and
likewise for the isovector photon and the p pole. This suggests that

there should be some relation between the P, £, w, p and A_ couplings,

2
and the photon couplings at different vertices. Further, the success of
the additive quark model indicates that perhaps this analogy should be
between.reggeon and photon couplings to individual quarks. The main
purpose of this thesis is to suggest a detailled form of this relation,
and compare it with what is known about diffractive processes and other
natural parity regge exchange reactions.

In Chapter 1 we review the-:various theoretical arguments favouring
such a reégeqn-photon coupling hypothesis. Then, within the context of

a naive, ideally-mixed quark model we clarify the spin-dependent nature

of our hypothesis using the technique of covariant reggeization.




In Chapter 2, as a primary major test of our ideas, we apply our
model in detail to the large amount of data on elastic scattering. 1In
principle, we could determine the few free parameters at our disposal by
fitting just one process (pp * pp for example) and then predicting other
elastic cross-sections. In practice, in order to arrive at the bhest
compromise for our free parameters, we fit all the data on pp, 7mp and Kp
elastic and total cross-sections. This enables us to predict § , the
ratio Re A(s,t = 0)/Im A(s,t = 0), elastic polarization data and mN charge
exchange cross-sections as a good consistency check. Then, in Chapter 3
we make predictions for other processes, 7% and Ap total cross-sections
for example. We also predict cross-sections for vector meson-proton
differential and total cross-sections and finally the cross-section

OtOt(s), which has recently been measured at high values of s (=180 Gevz).

Yp

In Chapter 4 we extend our model to predict (up to one normalization
parametergl1theorbitalangular momentum coupling constant)) diffractive boson
and baryon differential cross-sections using the elastic scattering ampli-
tudes formulated in Chapter 2. Using our "vector coupling hypothesis"
we also make predictions for the t-channel production density matrices.
In the particular case of diffractive K* production our model allows us
to make an absolute prediction for g%-(xp + K*p). Then, in Chapter 5 we
use the meson- coupling parameters determined in our fits to estimate the
decays of resonances lying on the exchanged trajectories into pseudo

scalars. Using a similar technique we can also estimate the values of

the normalization parameters gi from resonance decay widths. We £ind that

the rit and decay values of g: agree to within a factor of 2 . Finally

we present some conclusions.



CHAPTER 1

THE REGGEON-PHOTON COUPLING ANALOGY

1.1 Introduction

As we have mentioned in the introduction, the original motivation
for the proposal that the diffractive (P) and the electromagnetic (Y)
couplings might be related was the argument of Chou and Yang (1) that the
matter distribution in a hadron to which the pomeron couples is given by
the electromagnetic form factor. Abarbanel et al, (2) later extended the
idea to large angle scattering. However, in order to account for the
observed rise of the proton-proton total cross-section at I.S.R. energies
the intercept of the pomeron must be above 1 (3). Furthermore, the model
does not describe the shape of the differential cross-section, nor is its
extension to diffractive processes obvious.

Because of these difficulties, we prefer to motivate the analogy
via a combination of the vector dominance model (4), the f-dominated
pomeron model (5) and exchange degeneracy (6). In the next section we
describe briefly these three models and show how they lead us to a re-

lationship between reggeon and photon couplings.

1.2 Motivation

(a) Vector Dominance

The photon couples to hadrons via the vector mesons; or phrased
more appropriately for our purposes, the isoscalar part of the photon,
gYs, couples to quarks mainly via the w pole (we ignore for the time
being the error involved in omitting the other I = O vector mesons) and
similarly the isovector part of the photon ng via the p pole, as shown

in Figure 1.2.1.




LAY

Figure 1.2.1: The Vector Dominance model for

the process Y2 =+ 34.

The VDM hypothesis for the amplitude of Figure 1.2.1 is

= £

A, (Y2+34) = 57 = A (V2 34) (1.2.1)
\' v

where fv is the coupling between the photon and the vector meson V.

Approximating the isoscalar part of the photon by the lightest I =0

vector meson, the w, then

Ys
%
[$1]

9

e
o (1.2.2)
(/1]

1 = u, 4 quarks

This VDM hypothesis has been extensively tested and seems to
be in accord with the photoproduction data (7). The corresponding hypo-
thesis for that of the isovector part of the photon and the p meson is
also quite successful (8). However, equation (1.2.2).18 based on the
assumption that the coupling does not vary much during the continuation

2

from t = O to t = M,- To extend this hypothesis to vector exchanges (see

Figure 1.2.2) we have to assume further that the coupling variation will

stil]l be small when we continmue back to t < O down the , trajectory, where



Figure 1.2.2: w® exchange in pp scattering

aw(t) £ 0.5. This assumption is supported by the observed "Universality"
of the w trajectory couplings (9).

Of course for real photons where MY = 0, the coupling is a con-
served current coupling, and the photon couples only to those verticeﬁ
which have AA =% 1 in any channel, while the w particle has couplings
with AA= 0, ¥1. In photoproduction experiments, it is found that
equation (l.2.1l) works for helicity amplitudes in which the vector mesons
are transversely polarized in the s-channel (7). On the other hand the
w trajectory (as opposed to the elementary w meson) can couple to any
amount of helicity flip, although when aw(t) = integer <.AAt, nonsense
decoupling must occur. But except at these isolated points, there is no
restriction to the number of couplings available to a trajectory in the
S-channel scattering region, t £ 0 and a(t) < 1.

However, there appear to be some simple empirical rules for reggeon
couplings, such as dominantly s—channel helicity non-flip for the w (and
P + £) coupling to NN and S=channel helicity flip for the p (and Az) coupling
to Nﬁ, which suggests that the effective number of couplings is often less
than the maximum available. Although there is little information con-
cerning trajectory couplings to high-spin vertices, the little we do know

suggests that, at least to a first approximation, trajectories couple like
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the lowest spin particles lying on them. This, together with the exchange
degeneracy of the dominant vector and tensor trajectories implies that all
trajectories couple like vector particles.

Thus we are led to the "vector coupling hypothesis" (VCH) - that
the only important couplings for the w trajectory (and all other leading
natural parity trajectories) are those corresponding to AAt = 0, 1, as

for the exchange of a J = 1 particle .

(b) Exchange Degeneracy

The £ is exchange degenerate with the w in both trajectory and
residue.

This arises from duality as follows. All resonances so far well estab-
lished can be considered to be composed of qq for mesons and qqq for
baryons. This results in the SU(4) multiplets 1 and 15 of mesons and
4, 20 and 20 of baryons. All other sets of quantum numbers are called
"exotic". (For a more recent and topical treatment of exotics see, for
example, reference (10)). Two-particle scattering with a non-exotic s-
channel, like x_p »> K_p for example, can be represented by a duality
diagram (see Figure 1.2.3(A)) obeying Zweigs rule (ll). Zweigs rule says
that the only permitted diagrams are those which are planar with no qpark
beginning and ending on the same particle. According to the two-component
duality hypothesis (12), in the above example the imaginary part of the
non-diffractive amplitude is given by the dominant t-channel exchanges
£ + w, which are dual to the s-channel resonances.

However, for exotic K+pu+ K+p (Figure 1.2.3(B)) we cannot draw a
planar diagram , s-channel resonances are not allowed, and so the dominant
non-diffractive regge exchanges f£f - w must cancel. Hence the contributions
of £ and w must be exchange degenerate. (Note that the w is odd under

change conjugation).
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> N om——— a >
—— 0 —— u
¢ VS u

() (8) (c)

Figure 1.2.3: (A) Zweig allowed diagram for K—p > K-p
scattering with £, w exchange.
(B) Diagram for K+p + Ktp scattering. Here
cnly exotic qqggqg resonances can be formed in
the s-channel and hence the regge exchanges
£, w must be exchange degenerate.

(C) Zweig violating diagram for K+p - K+p

This exchange degeneracy-hypothesis (6) 1is supported by the flat-
ness of the K+p and pp total cross-sections when compared with K-p and
Ep . However, the degeneracy cannot be exact since, for instance,
o;;t(s) falls with s at low energies indicating that the f - w cancellation
is not perfect. Allowing for the exchange degeneracy breaking in the most

simple way leads us to the following hypothesis:

£ w
= t 1
gpp(t) gpp( ) (1 + eB)
(1.2.3)
£ _ w
gxx(t) = gxx(t) (1 + eB)

where eB is assumed to be independent of t, and the subscript B = | Baryon
number | of the external particles.

We shall £ind in chapter two that the value of eB is zero at a
meson vertex, B = 0, giving exact exchange degeneracy, and small (= 0.1l)

at a baryon vertex, B = 1, implying approximate exchange degeneracy.
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(c) Duality and the f-Dominated Pomeron

Since the pomeron carries the quantum numbers of the vacuum, we
can always extend the duality diagrams in Figure 1.2.3 to include the

diagrams l.2.4 shown below.

\ 4
4

A Y

A
h

4
[

L 4

() (8) (c)

Figure 1.2.4: Pomeron exchange according to the dual

unitarization scheme.

The diagram 1.2.4(C) has been distorted to produce a dual cylinder term
(13) which corresponds to the pomeron. However, the coupling to external
particles is always via the f-meson for particles with zero strangeness
(that is, u, d quarks only). ‘For particles containing strange quarks,

the £' meson can also be exchanged, and likewise the fc' fb .... fOr
"charmed" or "beautiful"” (!) particles, if we assume ideal mixing (see
Chapter 2, Section 2). Hence the quark content of the external particles
will dictate the allowed £,£°', fc, fb'. ... meson exchanges and hence the strength
of the pomeron coupling. For example, in T7p scattering we have only u
and d quarks and so only the f meson can couple, whereas for Kp scattering,
we have 8 quarks at the KK vertex, and hence the pomeron can couple via
the f' meson, although an f' meson cannot be exchanged across the diagram.
Similar arguments should apply if the target particles contain charmed or
even top and bottom quarks. Thus we employ the f-dominated pomeron hypo-

thesis (FDP) of Carlitz, Green and Zee (5) that the pomeron couples to a

given vertex via the £, f'... mesons depending upon the quark content of
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the target. That is:

gp ag Ef'
- + - + ... (1.2.4)
up(t) “f(t) aP(t) af,(t)
or, in a more convenient form
gy (8
—?r—' = pF(t) (1.2.5)
gi(t)

where 1 runs over u and 4 quarks, and OF(t) is given by

pF(t) po(t) (1 + rF(t)) (1.2.6)

po(t) is a "universal" function of t, independent of the nature of the

vertex, and rF(t) (F = flavour) 1s a function of the f,f',fc,f

b
trajectory parameters, to be discussed more fully in the next chapter.
This FDP hypothesis has been extensively tested in both elastic scattering
and inclusive processes (14) and given the inevitable uncertainties involved
in separating the P and f contributions (assumptions of ideal mixing etc.)
(15) appears to work well.

By combining equations (1.2.2), (1.2.3) and (1.2.5), we obtain

the relation:

gp(t) =p_(t) gf(t)= p.(t) (L+e ) gl (t)= £ (t)(L+e ) p_(t) gvs(t)
1 F i F MR Tw B 'F 1

e
(1.2.7)

which gives us a relation not only between the pomeron and photon couplings
but also for the f and w. We expect a similar relation to hold for the

isovector p and A, exchanges and the isovector photon Yy* viz:-

2
A Y

2., _ o "o L
9, °(8) = gy (t) (L + ) = £ (B)(L +e)) g (t) (1.2.8)
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Thus we have the "gamma analogy hypothesis"™ (GAH) that the couplings
of the dominant I = O regge exchanges, the P, £ and w, to quarks are
proportional to the isoscalar photon coupling, while the I = 1 p and AZ

exchanges couple like the isovector photon. We summarize the continua-

tions in the J - t plane involved in applying the GAH in Figure 1.2.5.

My ME &

Figure 1.2.5: VDM takes us from y-+w at fixed J = 1. Then the
GAH allows us to continue down the w trajectory,
which is approximately exchange degenerate with the
f. Finally the FDP hypothesis allows us to jump
from the £ to the P trajectory and hence back to
J=1 for t = 0.

Although we have not been able to maintain our assumption of

exact £ - w exchange degeneracy, the breaking is only =10%, and once we

have fixed the ratios of P:f :w : p : A, couplings in one process, the

2
ratio should be fixed for all vertices.

And so we can see from equation (1.2.7) that the pomeron coupling
to any vertex should be related to the photon coupling at that vertex by
a universal t-dependent function. This t-dependence makes our hypothesis

quite different from that of Chou and Yang (1) since the matter and charge

distributions need no longer be identical.
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However, before we can confront equations (1.2.7) and (1.2.8) with
experimental data, we need to clarify their spin-dependence. In order to
maintain crossing symmetry, it is most simple to assume that they are
relations for covariant couplings (that is, the couplings appropriate
for invariant amplitudes), and thus it will be desirable to invoke the
technique of covariant reggeization in order to specify this spin-dependence.

In the remaining sections of this chapter, we develop the formalism

necessary to dlarify the spin-dependent nature of our hypothesis 1.2.7.

1.3 The Quark Coupling

In order to describe external particle wave-functions we choose to
use a naive additive quark model, rather than the morxre usual Rarita-
Schwinger formalism. This choice is motivated by the fact that the quark
model successfully predicts particle spectroscopy, radiative decay widths
etc., and thus we expect will give a more direct physical interpretation
of the necessarily rather involved calculations on which we are to embark.
The "end product” will automatically give us, for example, the result that
the isoscalar flip couplings of the P, £ and w exchanges at the NN vertex
are zero.

In this model, quark spins are arranged to give j= O or 1 for
bosons and j = % or % for fermions, any additional angular momentum being
accounted for by orbital excitation of the qq or qqg system. We assume

that both the mass M and the four-momentum P of the particle are shared

by the constituent quarks. Thus, for a boson containing u and d quarks

only, then mu = m.d = M/2, ku = kd = P/y. From the above we can see that
k k
u _ 4 P (1.3.1)
m m M
u d

In a similar fashion, we assume that for particles containing strange,

charmed, top ... etc. quarks, similar relations will hold, that is
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ks k

== = u (1.3.2)

m m
s u

or, generally

k
i - P

- = = (1.3.3)
i

where mi = mass of quark, flavour i, and ki four-momentum of quark i. How-
ever, the strange and other quarks need not have the same mass as the u,
d quarks, although their combined mass must be equal to that of the par-
ticle they constitute.

We further assume that in a particle scattering process each
quark is scattered individually through reggeon exchange,and invoke con-
finement to constrain the spectator quark (or quarks) to move off with the
struck'quark, as shown in Figure 1.3.1. 1In so doing they must share the
transferfed momentum. This is of course a very neive picture since the
quarks inside a hadron have a mcmentum distribution which depends upon the
binding energy. But as only the particle momenta appear finally in our cal-'
culation of helicity amplitudes (which are, of course, related to experimen-
tal observables) we need not concern ourselves with this momentum distri-

bution in the weak binding limit.

N

|2 3 k 5

Figure 1.3.1: Exclusive meson-baryon scattering. Quark 1 is struck by
quark 5 via reggeon exchange. Confinement then constrains

the quarks not directly taking part in the interaction
(2, 3 and 4) to move off with the struck quark.




- 17 ~

This cavalier dismissal of the problems of quark momentum distri-
bution, quark binding energy etc., also circumvents the problems of
Lorentz invariance of the f-excitation quark model (see, for example
reference (16), Cl5 p.362, £f£. ). We argue that thé\precise form of any
input quark model should not seriously affect our conclusions provided
the input is capable of giving a reasonable description of physical par-

- ticles in the weak binding limit.

Having thus very briefly outlined the manner in which we describe
particles, we construct the particle wave-functions in the following way:-
In Figure 1.3.2 we shown the reggeon exchange diagram for the s-channel

process 1 + 2 + 3 + 4, vhich serves to introduce our notation.

M. .S, My, G,

bs i

g,
M‘hslb

11 0"
M., S,

Figure 1.3.2: The reggeon exchange diagram for the
s-channel process 1 + 2 + 3 + 4, showing the

notation used.

Particle 1, the initial state particle has mass M,, spin §

1 1’

4-momentum pa and wave—functionlabelsu1 cee ux + and similarly for the
1l

other particles as in Figure 1.3.2. The coupling labels for the exchanged
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particle 5, spin = J and mass M5 are denoted by o and B at the upper and

lower vertices respectively. The momenta Py p& are related by:-

1 ] - l‘ ’
Pm—E(p+p)m.QB—2(<1+<'-1)’3
2 2
s = (p, +ag = P, +0Qp)
(1.3.4)
A = (p!' -p) = (g -q) t=(p'-.p)2=A2
o a o o o ! a V]
- P.q
VoF R a9 T - 4 . T AL
2 |gl
Using the results (1.3.1) to (1.3.4) inclusively, then
kia _ Py kiB _ % (1.3.5)
= - -_— r —— - —— - .
mi M mi M
where kiu' kiB are the quark i 4-momenta and thus relations (1.3.4) hold

equally for quark momenta, viz

' = 3 ' < 1 '
K:La = > (ki + ki)a ' QiB = 3 (k1 + ki)B (1.3.6)
etc.
We represent each u quark by a Dirac spinor (17)
8 Yg- 2k
W) = 2= x +m)? a1 4O (1.3.7)
u N ou u k°u+m
a
where 0(= i%) is the z-component of the spin, with
y o 1) -4 (0
¢ = (0 ’ ¢ = (1) (1.3.8)
and

1 ©
+o r=((-) —l.) ! Y =(-(C_?_ ?—)) ! iY5 =(§ é

The 0's are the usual Pauli matrices, defined in Appendix 1, and 1 is the
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2 X 2 unit matrix. Corresponding expressions for dé(kd), sa(ks)... the
down, strange ... quark spinors follow in a similar way. These spinors

satisfy the Dirac equation

{y .k - mu) u(k) = 0 (1.3.10)
where, with our normalization,
u(k) u(k) = 1 (1.3.11)

However, for vertices involving unequal mass particles the normalization

condition (1.3.7) would yleld

2m
u(k') u(k) + i, m, = ﬁ——:ﬂ— (1.3.12)
n/2ml /2m3

where we have anticipated the results of equation (1.5.10). In order to
maintain unit normalization for unequal masses we will substitute /Zi:
for /EE: in (1.3.7) for all our vertex calculations. With this repre-
sentation we tabulate in Appendix 2, following reference (18), fermion
and boson SU(6) wave-functions.

In order to construct high-spin particle wave-functions we describe
the orbital angular momentum £ by covariant spin = 1 polarization vectors

e:(p), A= 1,0, u=0,1, 2, 3 where (19) X is the helicity,

ul cve uz are the spin polarization labels and
b —
el = X 0, 71, -1, 0
s V2
(1.3.13)
(<] 1
e, = g (,/0,0,p)

which satisfy the subsidiary condition

p, - €@ = o (1.3.14)
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where the arguments of the e's are the particle masses and momenta as
defined in Figure 1.3.2.

A spin = S particle is then represented by

A . . 1
V@ = <Ay s dml s imee Tip) o€ (P)
1Y 19 j,m ] 1 )

(1.3.15)

where |j,ny> represents a general quark wave-function, as tabulated in

Appendix 2, with j = total quark spin of the state (that is,

1

0 15, 1, 1%) and m its helicity.

S)> are the usual Clebsch-Gordan coefficients

<Al...A£_j; Jjm
with S = total spin of the particle and ¢ = the orbital angular momentum.
For simplicity we shall denote the spin labels in 1.3.14, 1.3.15

collectively by U, so

A A
v, (@ & Y (p) (1.3.16)
U. ..U u
1 L
*,3" 1
As an example, the N (5 . 1520) X = 3 wave-function (where the
N* %- isanft =1, § = % r 3 = % state) is given by
1
Ty < Lo o /E "
'Jlu(p) =/3 P4 (p) su(p) + /3 P+ (p) eu {p) ... (1.3.17)

where P+ (p), P¥(p) is a shorthand notation for the proton wave-function

given by (see Appendix 2).

_ - +iy - 1 + - + + + -
P#(p) = P “(p) = [Zu (ku)d (kd)u (ku) + 2u (k)u (ku)d (kd)
- + + + - + + + -
+ 24 (kd)u (ku)u (ku) - u (ku)u (ku)d (kd) -u (ku)d (kd)u (ku)
- + + + - + + + -
- u (ku)d (kd)u (ku) - d (kd)u (ku)u (ku) - d (kd)u (ku)u (ku)

- + +
- u (ku)u (ku)d (kd)] (1.3.18)
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Hence, with the above notation we can describe particle wave-
function for particles with arbitrarily high spin.

Next, we consider the covariant particle coupling, built by com-
bining the coupling to the quarks, and to the orhital angular momentum.

The photon coupling to a free quark with no anomalous magnetic
moment may be written in the form

i i GaB AB
1 =0 (2.1 ob B lu.
u 2 e, Y U Ve ZMO kiq + 2eq ZMO (1.3.19)

where eq is the gquark charge, Ya the gamma matrices, defined in (1.3.9)

kia is the momentum of quark i, and mi the quark mass. oaB is the anti-

symmetric tensor matrix (see reference (17), page 70 ££f. ) and Au =
(k’-—k& , defined above. Since we have chosen to normalize our spinors

to unity (see equation (1.3.11l)) rather than to 2mi, as 1s more usual
(see, for example, reference (17)), and measure our momenta in units of
m
Mor we have multiplied (1.3.19) by Zﬁi in order to retain the usual
(o}

definition of the electromagnetic current, that is

m m (p* +p) (p' +p)
i i o _ a
2 %Y T %M Sq ", A ™
[e] [o] A o]

S +®
The factor Mo is a scale factor, and sets the scale in which we wish to

measure the kia.s' and is introduced to render the momenta factors dimen-

sionless (sde Section 4). To check that equation (1.3.19) holds for free
particles, the reader is referred to reference (17), page 248 ff.

For a spin = % particle of mass M, the particle coupling is given

by (see reference (17), page 253)

P o A
2M o _aB B
Mo [GE m + GM M ] (1.3.20)
G

where GE and Es-are the fermion electric and magnetic couplings respectively.
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Hence from (1.3.18),

c4
d = g9 = —m
GE GM eq, the quark charge, where G% and >m are the quark

electric and magnetic couplings. However, for a quark confined in a par-

ticle of mass M, the effective coupling must éake the more general form

k K. o A
l o ’ _ M la GB B
M [gl m Tt 9 Yc] M [(gl *9,) m, 92 Tom ] (1.3.21)
(o} i o i i
q = =
where now 2GE 9, + 9, 2 eq (1.3.22)
d = =
and 2Gm = 92 2 eq (1 + Kq) (1.3.23)

where Kq is the gquark's effective anomalous magnetic moment.
We assume that the static properties of a particle (20), that is
the charge and the magnetic moment, are the sum of those of the quarks.

Thus, for the charge,

G, = e = > ¢ = Z o (1.3.24)

9y q 1
The particle magnetic moment is
G
M o_ 2
M - 2 Lt e (1.3.25)

where k 1s the particle anomalous magnetic moment. In terms of the quark

magnetic moments, this is given by

M E 1
—_ = <e . 8§, 5> — (1.3.26)
Sz
2M T qi mi
i
where S, is the spin of quark i. Using sz = i% , the effective magnetic
moment of a quark confined in a particle is
a . = .M
2(;M = g, Zmi eq (1.3.27)
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Combining (1.3.23) with (1.3.27), we deduce that
k = A (1.3.28)
Py

That is, the quarks'effective anomalous magnetic moment depends upon the

mass of the particle in which it is confined. From(l1.3.22) and (1.3.27)

M
9, = 2 eq (L - mi) (1.3.29)

while (1.3.27) and (1.3.29) inserted into (1.3.21) gives

KigM k o

M M M ic M M %8B M
2e (1 --) +2e . —mY, — = 2@ — —+ 2 e — —
q m miM° q mi i Mg q mi Mo q mi 2m1 Mo

for the confined quark coupling.
With our assumption that for a meson, M = 2mi, and for a baryon
M= 3mi; (and thus M, = 2m+, M, = 3m+ respectively) and using equation

(1.3.5) , then (1.3.30) becomes

M
am + 4eq ya Mo (mesons) (1.3.31)

_and

M
qm + 6eq Ya Mo {baryons) (1.3.32)

Ingserting in equations (1.3.31) and (1.3.32) the appropriate quark charges,

2 1l 1
eu =3 ed ==3 es =T e etc. and constructing the combinations
u+d a-4d
— and 3 allows us to write down the photon isoscalar and isovector

couplings to u and d quarks in mesons and baryons as:- (s,¢,t ... quarks

have zero isovector photon couplings)



and

P
IM 3
o
Pu
z (-—e o t 2e Y
o
P
2e
- —-— %
3 M ey
o
(2
Tl- 22— + 3ey
Mo
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M

a M I
o]
M

a E—'> I
(o]
M

a M I
o]
M

o M I
(o}

mesons

[ad

baryons

(1.3.33)

(1.3.34)

Using these results, and equation (1.3.30) we can identify the

values of gi 2 the isoscalar, 1sovector, strange, charm ... etc. photon
[4

couplings to quarks of any flavour (i) in mesons and baryons, and are

given in Table 1.3.1 below.

BOSONS FERMIONS
. i i i i
quark Fiaveat j 9 9, 9 9,
isoscalar _1 2 __3 1
fu+d)/2 (S) 3 3 3
Isovector - _
(u-4)/2 (v) 1 2 2 3
2 4 4
8 3 "3 3 -2
4 8 8
¢ K] 3 3 4
4 8 8
t 3 3 "3 4
2 4 4
P EN 3 2

Table 1.3.1: The photon coupling to quark i, where
the superfix i refers to isoscalar,
isovector, strange, charmed, top or

beautiful quarks.
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Having thus defined our particle wave-functions and the quark
coupling, the coupling appropriate for a particle of any spin may be

written as follows:-

P 'A Pa Pa
- i« i M+ ) 3 2 J
- .o = —— + — — e e g T
3 :g: o o} o o
L P P
. P\)1 Pv£3 . i 3 a2 N PaJ Pvz v23
MM Z 999 9o ™ MMM
[e] o 1 11 o [o} [o} (o]
(1.3.35)

.Since we will only consider incoming (beam) particles with 11==o
we have suppressed the spin label pu on the coupling Cyoq + The first
term in brackets ( ) appearing in (1.3.355 is the photon-quark coupling
of (1.3.30). However, since the coupling is now referring to particles
at a vertex rather than a single particle as in the discussion above (see
equations (1.3.11), (1.3.12)), we have introduced M,, where M, = (M1-+M3)/2.
(Furthermore, with the reggeon-photon coupling analogy (see equation

; <
(1.2.7)) , the photon-quark coupling 9y 2" gi 2 £ (the regqgeon
-7 ’

w,p

coupling). Thys, unless specified, the constants gi 2 will henceforth
14

refer to the reggeon coupling to quark i). This term is multiplied by

L, Po a, PV v L
g 3 -—2-.. g _L . —23 + where g 3 is a covariant orbital angular
1l M M M M 1 ‘
o o o [¢)
momentum (&) coupling constant. The Pa's, Pv's are the particle momenta,

as defined in (1.3.4) and g“u is the metric tensor. The combination of
these two pleces has the effect of leaving the orbital angular momentum

in the t-channel unchanged, but allowing the quark spin to be flipped.

The second term in (1.3.35) is made up of a quark non-flip piece multiplied
by an orbital angular momentum flip term, where g:3 is a second covariant
orbital angqular momentum coupling constant. Thus in the t-channel, the

coupling (1.3.35) can flip the quark spin (j) but not & , £lip & but
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leave j unchanged, or change neither % or j.
The form of this coupling is a direct consequence of the VCH which
limits J (the spin of the exchange) to 1. Thus we can immediately re-write

(1.3.35) to read.

P, P %
L v P P
a 3 1 Vi3 3 Vo \2.]
C  (S.4S.,4d) =C . g~ —= «o +¢c g g | —%.. —3
v,a01""3 aNF 71 M M N 72 Syoa M M_
(1.3.36)

..00_ to v,a and defined

where we have shortened Vl"vl R al -

3
o i Pa i M+
i
C = gi
qN :E: 1
i
If we consider %,% scattering (that is with & = 0), then
_ 1 1 .

In general, for integral J > S1 + S3, the number of couplings of a spin=J

exchange to spins S1 and S3 would be (ZSl + 1)(253-+1) (see reference (21)).

However, for integral J<S1 + 53, the number of couplings is reduced by

glg + 1), where g = Sl + S3 -J M&th the VCH we never have to consider

J > 1 so there are only two couplings . In a regge amplitude, this reduc-
tion is achieved by nonsense decoupling. Our prescription for this will
be (see reference (22)) that those couplings which involve more projection
operator labels than are available at a given nonsense point vanish there.
Thus, in the above example J = O corresponds to a nonsense point at the

%;.% vertex and so, using the above rule, there will be only a single

coupling allowed, without a label. 1In order for us to use equation (1.3.38)

we must, therefore, "continue" to J = 1 and then remove the unwanted factor
P
o

of m .
o

In the next two sections, we demonstrate how the couplings and

C
wave-function introduced above are incorporated into a covariant reggeization
A
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procedure, enabling to write down leading order regge pole contributions

to s-channel helicity amplitudes.

1.4 Covariant Reggeization

The technique of covariant reggeization was originally developed
in references (21-26) and subsequently used by the authors of references
(27-33). Since we will need to make use of the detailed properties of
covariant couplings, we give here a brief description of the formalism,
drawing appropriate results from references (21-33) where necessary.

We consider the s-~channel process 1 + 2 + 3 + 4, as shown in
Figure 1.3.2. Followirg reference (33), we introduce m functions for the

process in terms of helicity amplitudes by

A A A A

-3 W — 4, 1 2
A abgr> = % T e v @) m @y e v C@ (4.

where E'is the adjoint wave-function to ¢, and these m functions for any

spin combination can be expressed in the form

_ j j
m oo (B = Z alls,t) ko (R,Q) (1.4.2)
j

)

where the A- (s,t) are invariant amplitudes, free of kinematical singularities,_

and the K; are the dimensionless kinematical covariants, constructed from
the momenta and y matrices. But unlike reference (21), we require these
covariants to be of a dimensionless nature iIn order that the various
covariant coupling constants appearing finally in our results for helicity
vertex functions (see Table 1.5.1) will also be dimensionless. The m
functions defined in (1.4.2) above are, in fact, channel independent, but
we have expressed them in terms of t-channel covariants for future use.

The covariant three-particle coupling is given by (see equation

(1.3.35))
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L Pv Puz Pv Pvg Pu Pug 13 Pvl Pvg
C (s.,s J)=Ca g3 L. r_1. 3+c g —?---——lg 1,3
uvae 173 gNF “1 Mo Mo Mo qN ulal Mo M° 2 Mo Mo
(1.4.3)

where we have included the spin label u for completeness although in
practice L = O for the beam particles (7's, K's or p's) and hence u = O.
This is, of course, not the most general three particle coupling (see
references (21), (33)), but is the most general coupling we allow given
our assumptions, that is the VCH, which restricts helicity change in the
t-channel to be § 1 unit and hence suppresses all propagator labels a, 8

greater than a, or Bl. We define the scale factor Mo = /Ez', where S is

1

the regge scale factor and is discussed in reference (34), equation (6.2.9) ff.
In Table 1.4.1 (given at the end of this chapter), we give expressions for

C (S, ,S,,J) for the vertices we will consider in this thesis.
H,v,a 13

Next, we introduce the propagator function for a particle of
-J
spin = J denoted by P o ;B 8
) I AR R |
of reference (21). Following reference (21) equation (8), we may write the

(P,~ Q; &) and tabulated in equation (7)

propagator function in terms of solid Legendre functions in the form )

P“l Tuy g "8 %8
e Pa;B(P,—Q;A)M——~-—M— = CJBJ P .QqQ) {1.4.4)
[+ [o] [o] o

where the sum over the B and o labels is implicit, and

3 (1.4.5)

The Solid Legendre polynomial EJ (P .Q) is defined by

pJ /9 P.Q
Pe.Q) = |=—| |zl e 2y, z = —=— (1.4.6)
’ oo e T E g

However, with the VCH, J £ 1 and hence the propagator function carries at
most 18 or 1a label. This has the effect of "contracting” the propagator

(see reference (33)),
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since all other propagator labels have been suppressed. Thus P ,B(P =Q;4)
1s notationally similar to equation (22) of reference (21). However, the
appearance of the factors Mo in (1.4.4) ensures that our propagators are
dimensionless.

In terms of these propagators and couplings, the t-channel partial-

wave series for the m function (see (l.4.l1l)) may be written as

otB 2 4
{1.4.7)

— -J - -
mWOT(P.Q) = ;(2J+l) AJCu\)a (sl,s3,J) PG;B(P, Q;4) C (Ss_,S, ,J)

This expression (1.4.7) gives the m function in a dimensionless form since

the propagators and couplings have been arranged to be dimensionless and A_,

2q 189 (s) ’
the partial-wave amplitude is just 7:—-sin ﬁz(s) e
S

, where 62(5) is
the phase shift (see, for example, reference (34), p.5l1) and hence dimen-
sionless. Thus the contribution of a resonance pole of spin = J and mass

M5 exchanged in the t-channel (see Figure 1.3.2) is

__21;"_]._ (S 1S, ¢J) P

at(e-uz) WL 8

ot8 2

where we have assumed a linear trajectory a(t) = uo + o't and a pole at

. - 2 J-.ao
Ms = o
In order to reggeize (1.4.8), one must first decompose it into

j(s,t) of

partial-wave amplituides for the various invariant amplitudes A
(1.4.2) (see, for example, reference 34)). The partial-wave series which
result contain just Legendre polynomials and their derivations, and hence
each series may be inverted to yield the Froissart-GriboJ'projections for
the partial-wave amplitudes (34). Re-writing each partial-wave series as

a Sommerfeld-Watson contour integral in J and deforming the contour to

expose the leading J-plane regge poles at J = a(t) leads to
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'muvoT(P,Q) 2(a(t)+)S Cuva(sl's3'a(t»1’a;s (P,-Q;d) COTB(Sz,S4,G(t))
(1.4.9)
for the regge pole contribution to the m function (22), where
+ + o-imal(t)
- L2 e (1.4.10)

S s 2sinma(t)

the usual signature factor and Cuva(s (a(t)) etc. is obtained by sub-

153

stituting regge residues gi(t) for the orbital angular momentum coupling
L

constants gi(i = 1,2) in the expressions for the covariant couplings in

Table l.4.1. To obtain ng;)

(P,-Q:;A) we simply replace J by a(t) in
(1.4.5) and (1.4.6}.

The appearance of the momentum factors in (1.4.6) ensures that the
regge residues have the correct threshold behaviour. However, the appro-
priate nonsense factors must be inserted by hand. Since it will be suf-
ficient for our purposes to work to leading order in s/’so we need not
concern ourselves with the fact that for unequal masses 5:;B(P,-Q;A) will
contain terms in 1/t etc. which would produce singularities in the Aj(s,t)
were they not cancelled by daughter trajectories or some other similar
mechanism (22,23).

In working to leading order in s/so it was shown in references

(24,26) that one can replace Pa(t)

2B (P,-Q:;A) in (1.4.9) by derivatives of

the solid Legendre polynomial, viz.

a

.0 B ..B8
1°°J 1 g ] ) ( 3 . )
Mo Mo (31‘-‘ Y ) ) 30 0 ) g_u(t) (Pg) (1.4.11)
ul aJ 8]_ BJ

(where, for the sake of generality, we have summed from Pa up to Pa v
1 J
although setting J = 1 in no way affects the argument). This is so

because, for example, from (1.4.4)
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d =J -2J +1

(P ...P )P . (P,-Q;:d) Q Q, M

apul % @y @05 iByeeB; By-- By ©
=3P, ... P 132 o tp... s b o M;2J+l

J 17" °1°° g 1°°%g
(since BPa /8Pa = g, a. (the metric tensor))
i 1 171
-J
= JP (P,-Q;4) (1.4.12)
%1

If we then replace Py (P.@) in (1.4.11) by its assymptotic form

a(t)
(%2)

all the necessary nonsense factors o(t) into gi(t))

(t)
, we finallv get for (1.4.9) (see reference (28)) (absorbing

R t
muvor(P'Q) S Cuva(sl's

L JMBI.-BJ( ) 3 )( 9_....8 )(P.Q)
o o aPu *t AP BQB BQB s,
1 %y 1 J

(1.4.13)

ra(t))Co (Sz,Sqr“(t))

3 T8

o(t)

Thus, with this dimensionless form of m function we may read off
the leading order regge pole contributions to the invariant amplitudes,
after insertion of the Cuva's"' etc. appropriate for the process (see,

for example, reference (22)).

1.5 Helicity Vertices

Since invariant amplitudes have a rather complicated relation to
experimental observables such as cross—sections and density matrices, it
is obviously desirable to be able to relate the Aj(s,t) to helicity ampli-
tudes. As equation (1.4.13) has been obtained in a factorized form it is
possible to work, at least to leading order in s/sgy, with s-channel

helicity vertices instead (28).
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To calculate an s~channel helicity amplitude one sandwiches the
m functions between particle wave-functions of the appropriate helicity

and obtains (28)
A\ a(t)

M e °
AJBR[A N> = " s ,s)) ”'B *(s 2154) 5 (ap )(BQB)(P ) Yo

(1.5.1)

where the product over che a and B labels is understood, and n = number of
a(t)
differentiations of (_;2, . Since each differentiation of

\a(t) o e(t)
(&'.2)“ [E (—y S ] lowers the power of
ﬁ; so

ALA
of the helicity coupling cuL 3(Sl,S3) and ¢

|c

by one, only those parts

o
2

o > 0

(82,54) which are effec-

P 's Q,'s

tively proportional to the required number of ; and m respectively
o o

Py's

M
o

give leading order contributions. This is so because the and

Q.'s a(t)-n

M
o

in the ¢'s can then restore (ﬁ}-) , obtained after differen-
o

(t)
tiation of the leading power, which is always (;—-5 . Therefore it
o

is useful to introduce (28) helicity vertices VA A (S,S3) and VA A

Ay oo ) 4(52154)

defined in terms of helicity couplings, and having these momenta, as well

as the kinematical t-dependence extracted. That is, we put

l
a M° A1A3 13
(1.5.2)
A 2“ Ay 0
c82 4 = (-— ) M—B- v)‘ A' (s2 s4)
o 274 !

To obtain these V's, which are given in Table 1.5.1 (at the end of

this chapter) we need to find the expectation values of the momenta and
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vy-matrices between helicity wave-functions. In order to perform the
calculation, we require the following results:-
The matrix elements of the unit operator between two Dirac spinors

(see equation (1.3.7)) are given by

t ,
A l ' A i Y g-k
\-1A3(k')}u1(ku) = — (k +m)5¢3(1——~5—-—£)l

u v2m ou u (k' + m )

+ ou u

iy_ 9 .k

x —— (k_+ (1+ —5———"—) (1.5.3)
Vom, u o tm)

A

L 0.k (o.k) (x -m)l!(k 'm)il‘t’
=" == ou u ou u

Pk' +m )l’ (k +m) 1
L og u ou u

(1.5.4)

where mu, kou etc. refer to the quark mass and momenta and are defined in

equations (1.3.1) to (1.3.6) inclusively and

ml + m3 mu + mu

+ - 2 - Tz N

i
|
B

(1.5.5)

as defined in Section 3 above. In equation (1.5.4) we have used the

result that k 2 = k2 + m2 etc., and k = k « and u is the adjoint spinor
o = = Tkl
and not the anti-quark.
Then we write
>‘3 L] m
¢ (@ = Y 0 (8 ¢"0) (1.5.6)

m 3

(m is the z-component of the angular momentum = helicity) where 6 is the
s-channel c.m.s8. scattering angle (that is, the angle between the direction
of motion of quark 3(say) and quark 1, which is the z-axis) and the rota-

tion matrix (34) is
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N g

Dmm (6) = /fcos 0/2 -sin 6/2

(1.5.7)
sin 0/2 cos 6/2

(since we have set ¢, the azimuthal angle about the z-axis equal to
zero) .

ﬁence, for A, = A_ = ¢ %

1 3 =% , we have

A A
o 2t ¢ o

cos 6/2 » 1 (1.5.8)

while for Al # A3

A A
o 2T ¢ Lo

+ sin g + % / i}

(1.5.9)

So expanding the square bracket in (1.5.4) for large energies, we find

for the diagonal elements

1 5 k' b m + mu
= —— |m C-:?-‘-‘-)+ m —°“) oo | A2 1 (1.5.10)
2m u 2m
+ ou ou +
while the off-diagonal elements (using (1.5.9)

8
So the result is
A A /—t
1
u (ku) lu (ku)-' 1 >m
(1.5.11)
-/-tu
§ -+ o o 1

valid for s > t, m2
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Similarly, by using the algebra of the Dirac matrices (17), it

is possible to show that

A A
u 3(k') Y u l(k ) -~ k
u a u uo
—_— (o]
m,
(1.5.12)
0 ua
n,
With our assumptions in Section 3, then
w Yo S /=
- & a ’ > R (1.5.13)
+ 1 + +

For vertices inveolving higher spin particles, that is particles with
2 # 0, we also need matrix elements involving the polarization vectors.
A
Because of the subsidiary condition Pu su(p) = O for the incoming particle
1 (referring to Figure 1.3.2) we have
Py o1 1 £1 1 +1

-U x
—— € (p) = (p+p') € (p) =
Mo u 2Mo p o 5

1 /1 lE'l 1/1 /-t
+ = = + +=/= —
3 > M sin 6 3/ 3 Mo (1.5.14)

(o]

P
u 0 1
o W® T Ww MM a®
o lo
(1.5.15)
P
+1 + a =1
e €y (p) = eaJ(p) ' Mo g (@ * o
o Pa
-+ —_—
gva u (p) M
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where M)

e
m
N
=
+

Similarly, for the outgoing particle 3:-

) —_—
e B 1 TR
e, Py T3/3 W

o [s)

£1* _ =3
€, (r") 9o - € (p')
P
o* ‘e
e\) (P ) gvu > M3

o* | Pv
—_—
e, (") g

(1.5.16)

1

1
—— (M;ﬂ_ + Zt)

3Mo

(1.5.17)

with the obvious substitutions for éL s B, 0, T, M, and M, at the

lower vertex in Figure 1.3.2.

The above results ensure that the appropriate momentum and

2 4

/=t

M
o]

factors always appear in the couplings in the assymptotic limit, as in

equation (1.5.2) and, with the aid of a specific example given below,

should enable Table 1.5.1 to be checked.!

We consider in detail the mA_ vertex.

The allowed natural parity

regge exchanges are the I = O P and £ (isoscalar photon) and the I = 1p

(isovector photon).

by

and since the A, is a spin = 2 + ve parity state, then % = 1.

2
itisinan 8 =s=1,Jd3=2, A=

a particle n(=*1) is defined to be

n = p-177"Y

where V = 0 for bosons

= % for fermions

-(-1)2

1,0 state.

In the quark model, parity P of a qa state is given

(L.5.18)

That 1is,

The normality of

(1.5.19)
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Likewise the normality of a vertex (5 -+ 1 + 3) in the language
of Figure 1.3.2) is

n, = mn,.n = +1 for normal/abnormal vertices (1.5.20)

As we will always be considering natural parity regge exchanges, the
normality of each wvertex will be defined accordingly. Thus, in the above

example, the mA_f and TmA_p are abnormal, and denoted by V; A (wAz) in

2 2 113
Table 1.5.1.
The ﬂ+ wave-function (see Appendix (2)) is given by
_+ - - -

O o= @tk uTk) -a k) k) (1.5.21)
o) /3 d u d u

while for the Az in a A = 2 state
72 (00 e 3t * e H* o, g
wv(p ) da (kd) u (k') e (p ) (1.5.22)

(The Clebsch-Gordan coefficient = 1 and henceforth we delete the arguments

k kd k! ké
of the spinors 2 (= ——) and — (= o ) ).
m m m m, .
u d u d

Referring to Table 1.4.1, we see that for this vertex, the coupling

cuva(sl's3a) is given by

P
_.a 1Y e 1
‘ - e de
Cvu nAz) chF 9 W + CqN 95 9, o (1.5.23)
o 171
= D (-2 1YM—+)121-+ o (1.5.24)
I m * 9 Y%n )9 E Zglgz Iy o 22
i o o T 11
P, (p+p')
where ﬁ_l = L (-—-————- ) and g is the metric tensor.
o Mo 2 vlal
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Thus

— - x - — -
caoz(TrA ) at 't e: (B')C, _(TA) L G u -3 uh (1.5.25)

1 1 1% /2

Considering firstly isoscalar exchange and specifically + ve c parity

(but remembering that the A, has § = 1), then

2
PV Pa l-——Pa
- +1* - -4 = - - -
caoz(mz) = i.evl (p') gi f—gi[d* + h—l-d‘“u + +u+i—l-d u
1 2 1 ° o °
p(l p(!.
-+ + 1 == + =+ 4+ 1 =- +
-d u " d u - u TE d u ]
o (o]
P, u
41 1 "1 s| =+ + -+ - - - +
+ievl (p')gli—l-gz[d Wyg, du -ty @ u]Ei
/5 T [o} 1 1 o
4+1% - -+ = = -+ - =% F_ ==
+-:-L-e_1(p')g;gv a gf[d+u+} atu +d+u+1.d u -~-duldu
/2 V1 171
~dtut L ] (1.5.26)

where for the second term in square brackets in (1.5.26) above we have used

- -
(1.5.12) to set the off-diagonal elements to zero, that is u Ya‘ u = 0.
1
Inspecting the first and third terms we see that the terms inside the

square brackets cancel for either c-parity, leaving

=

P
V) —
-02 _ +1* | 1.1 '+ S[-+ + st - =t + -— 4+

Ca ("AZ) - €y, P H— 9 3 9L d uwYg, du-du Yo 9@
1 1 o o 1l 1l

S

(1.5.27)
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Using equations (1.5.11), (1.5.12) and (1.5.13)

P P
\V) o M
-02 1 +1* 1 1 /=t "+ 1 s
e, (MaA)) = --—=— ¢~ (p') 2 =g, g (1.5.28)
al 2 vz vl M° M+ 2M+ Mo 1 72
Using equation (1.5.15)
P, = —
-02 1 1 ~t S l1/1 v-t
e (fa,)) = - ——- — g. g [—-é/—‘ -——J (1.5.29)
ﬂl 2 f2—Mo M+ 1 "2 2 Mo
Comparing (l1.5.29) with equation (1.5.2), that is
AAy e 512, =2 P,
ﬂ = —— —
o (s ) " VA A (81,83) (1.5.30)
o [} 13
and remembering that %'Al - A3| = 1 gives
S
- g2 gi Mo
V02 (ﬂAz) = -—Mt— (1.5.31)

the isoscalar coupling to the mA_ vertex. Similarly for the isovector

2
coupling, it is easy to show that
v
- g2 gi Mo
VOZ (1TA2) = —4?:—— (1.5.32)

where the values of gi 2 are given in Table 1.3.1.
’ .

The NN vertex

+
We consider here the vertex 035'5(pp). Referring to Appendix 2
we write to proton wave-function in the shorthand notation P+(ku)
(referring to the lower vertex in Fiqure 1.3.2). The coupling appropriate

for % % scattering is, from Table 1.4.1 ,
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s/v 0 s/v M
o _ i xB i _+
Cqr " Z(gl w2 i “o) (1.5.33)
i
+l§'lﬂ _ oy ' a
Thus, 08 (pp) = Pt(q") chF P+(q) (1.5.34)

Sparing the reader the tedious details the result is (for isoscalar
exchange)
Q
S S
3(9l + 92) £ (1.5.35)

M
(o]

Comparing (1.5.35) with (1.5.2) ,

+ _ s s
V,,,,, {pp) = 3(<;a1 .+ 92) (1.5.36)

Inserting the values of gi R gg from Table 1.3.1, then
Vi (pp) = 1(f) (1.5.37)
H'H pp w L] L]

That is, the isoscalar photon coupling to NN at t = O is given just by
the charge, e, as expected.
Following the two examples given above should enable all other
results in Table 1.5.1 to be deduced. Although we include all factors
of Mo (= /;; ) to clarify the dimensionless nature of our helicity vertex
functions, in practice we make the usual assumption that so =1 Gevz.
Having thus established our covariant formalism, we are in a position
to test relation (1.2.7) and (1.2.8) since we may now write down specific
relations between each coupling. It is the purpose of the following
chapters to explore the combined consequences of the vector coupling

hypothesis and the gamma analogy hypothesis within the framework outlined

above.
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TABLE 1.4.1

From equation (1.3.37) we have defined the quark non-flip and flip

a
coupling CqNF by
a i’a i M+
Car = Z;'(glm_o * gz*mio')

and the quark non-flip coupling
_ i
CqN B %; g1

For the lower vertex in Figure l1.3.2, make the substitution
Pa % 11
rem——_ — -+ 1 i -

+ ’ Yq YB in the above guv is the metric tensor and g1 ’ g2 y

M M
o (o]

gi v gg .+.. €tc. are the covariant dimensionless orbital angular momentum
coupling constants. In order to implement our formalism without the con-
straint of the VCH (which is, of course, built in to our couplings given
below) we refer the reader to Tablel(b) of reference (33) where he will
find the 'reduced' couplings appropriate for an exchange of arbitrarily
high spin.

+ S

To specify the spins S (or s

Cn

1’ S5 5 S4) of the external particles

we will use the usual JP notation where J = L + 3§ and, for q& states,

P = (_1)2+1 , cn - (_1)£+j



Cv o (O_+, l++)
1’1

-t -

Cy @ © 1)
171

c, o © 2™
1’1

cv v a(o-+' 2 +)
12'1

_+ -

(o] (o ,2 )
vlvz,al

-+ -

C o ,3 )
\)1\)2,01

cv V.V a(°-+' 3+-)
172°3'71

Canr

42 -

Py
L+ c gy
¥ aN "2 v, e,
P
Vv
M \V
o N "2 Tv,a,
Py
1 1
—_— cC .99
Mo gN "2 vlul
P
Mo aN "2 vlal
P P
Y2, 2
MM an 92 9
o o
Mo Mo gN "2
P P
Vi V2 o o2
M M gN 9 9
o o
P P P
Vi Y2 V5
M M M
(o] (o] (o]
P Py
g 2 3
v
1“1 Mo Mo



1 1
Cu.(i '3 )
. (l+ §+)
a'2 ' 2
+ -
1 3
C (— r 5 )
le°12 2
&5,
=, 2
\)11012 2
+ _+

CqNF
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0! 2
CC_{NF

Canr

P
v
v
Mo gN "2 lal
Pv
1 1
— + C.g.g
Mo gN "2 vlal
P P
v v
1 1 c g2 g
M
Mo 5 gN "2 vla
P P
v v
1 2 c g2 g
Mo Mo gN “2 vlu
P P P
1 V2 V3
M M M
o o o
P P
Y2 Y3
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Fermion Helicity Vertices

3 (-Jf + 92)

S [
(391 + 292) M

2M
+
- +
V_ 1 (pA') = O
2732
v . Aty = o
373
1 S .S
JZ2 1 [38 1y - 3¢S 4 o8 2] 8529
3 M 9, 9 Mo g1 9, M, 2M
3 +
ol
s
-3 + o) =
2/2
1 (3g7 +2 3
Ssgl g1‘322 19192
3(91+92) -
2/€
S S 1
-(3g1 + 292) g1 Mo
2M+ 2/5
s s 2 2 2 2 s
3(gl+92) glt 2T g:l 2Tg2 3g1
2 Y 73] - 2
Y1o aM MM M Y10
o 3 3
s s P s 2
(3gl+292) ¢ Tgl ) 391 92t
M, YioMm. M2 2, 2/10 M
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2 s 2 s s 2
T
3065 4 o5 —L 39 M, Boy+29) gt
172 Bum 255 u 2M, 8/5 M
3 o 3 o)
gz
s S, °1
3(91 + gz) 3
s 2 S s 2 S s 2 2 2
39, g, M_ +3(91+92)Tgl _(3gl+292) 1 [E,Lz'r gl:\
2/To M /oM. M MM, ol 4 M2
3 3 [o] 3
s 2
3gl ngMo
M, /Tom';’
2 s s 2 s 2.2
s s 9 (39,+29)) Tg; 3q, g, M
3g; v 9 ))—=+ —55 "M
8v/5 - + /§M3 + 2/§M3
s s 2
) (391 + 292) 9 M
2, 8
3 s 3
S S t 3ng 3glt 92
3(g) +9,) T - ——
2/70M, M 2/70 M o
3 o) 3
3 3
T g
s s 4 1 s 2 3 4
3{g9, +9,) + 3g. T g —m————
1°72° fiom? w3 1 2 /7o M2 2
3 3 o 3 o

S_ S 3 2_ 3 s 3

1 (3gl+292) [391 t . kL tgl] . 3gl 2g2 Tt
Y70 M, 16 M m2y3 2
o 3 o 3

2M /70 M M
+ [e]



+ ® .
vl g(mzlgo)
2’2

+ *

V1 52190’
2'2

+ *

vy 7PN5100)
2'2

+ . .

V1 1P2190
272

< 'Y )
V1 3(N3190]
2" 2

+ * .
vl K (PN, 90’
272

+ * .
v 7(Ny90)
272

-4

6 -

s s 3 3 2. s 3
_3(g»l+g2)[ 3glt . 391'1‘ ]+ 3gl 2g2T
Va2 M2 M2m2 4 /3 M
[o} 3 o 3
s s 3 S 3
(3gl + 292) 3g1 tT 3gl . t g2
M, 4/37 M. u2 M, WAz w
3 o 3
S s 3 s S 3 s 3
i (39, +29,) tg) ) 3(g, +9,) 39, T 39, M g,
S T v S T ¥ v S Y B v N
g3
- 3(g§ + gg) 1
16V2
s S 3 32 S 3.2
: : M
3(g:L +g2) |- 3gl t . 3gl T ] _ 3gl 2g2 5
vom? L 16 2 o.M
(o) 3 . 3
s _s 3 3 3 s L3 3 2
(3g:L + 292) 1 [3glt T . Zgl T ]- ) 391 [gzt »..492 T
2M Joo 2 2 172 2
+ 70 M, r42° My - 2m /70 M M3
o
3 ] ‘3
s s 1 39, T 3g, M, 9,
-3lg; +g,) U ry
Yaz M, M Yaz m
30 3
(395 + 298) 3g3 t Elg3 2 3gs M .
179 [ 15, 9 ] Pt o 23 T
M, Vazm - 16 M2 Mo vz 2
o 3 -3
s s 3. s S, 3
3(g, +g9y) 9 . (3g, +29,) 39, T
16 /14 ™M, 4/14 u,
S 3 2
39, 9, M,
2M+ 4»’]7!43
s .S 3
) (3gl + 2_92) gl Mo
2M, 16v2
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Table 1.5.1(a)

. S 122
Here * T = 2 (M3 Ml + t)
* M
Parity:- V_A o - t (-1) VJ\ A
1’ 73 1’73
I = 1 exhcange:~ make the following substitutions
S S v \'£
3(91 + 92) + (91 + 92) (non-£1ip)
s S v v
2 ( 7 - 5)  (fup)
and
S \'
39, T 9
except at the following vertices:-
g g"
- o 1ol 22y M. /2
vy 3R = 2 3 ) M, /3
2'2
v
- + 9 92 /3 M,
Vi 38 = -\ - 3 2
E,-E 25 M



V+ (nw)

8

<+
voo(pp)
+
V01(op)
Voo(ﬂp)
V01(1rp)
+ .
Voo(ms)
+
Vol("B)
+
Voo(m\l)
+
Vo1 (™)
Vbz(ﬂAz)
Vbl(nAz)

Vbo(naz)
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Boson Helicity Vertices

I = O exchange

S S
2(9l + 92)
S )
2(5; + 63

S S
+
4g1 292




+
Vb2(1A3)

+
vbl("A3)

-+
Voo(ﬂA3)

Vo3 (™)

ng (mg)
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2 2
2065 + o) Tg; 9 9M,
179 M m 2H,
2 2 2 s
s s [*9% 2 T 9 49, Tg,
2(g) + g} | ——5 + 7 2 2
oM V6 < M 6 M
4 o 4
s 2
9 9 M
vz M
s 2
9 9T
273 MMy
s 2 2
t
9_2[ ., 4 2% ]
M LiAom /30 MM -
o 4 o

s s S s
(g, + 9,) + g, +49,)

M
__po [és + gs']
2/§M+ 2 2
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Table 1l.5.1(b)

1 2

Here, T £ 2 (Mi - M2 + t). For isovector exchange make the substi-

tutions gi -+ gY ' gg > gg using the values of gi 2 given in
14

Table 1.3.1 appropriate fox the flavour of the particles at that

vertex.

The helicity phase conventions used here are those of Jacob
and Wlck :35) except that we take ¢ = O and do not include a factor

(-)5"*2 for "particle 2".

We have included the factor M ( 2 /E;, the regge scale
factor) in order to demonstrate explicitly the dimensionless nature

of our covariant couplings gi (i £ 2), although in practice we set

go =1 GeV%
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CHAPTER 2

ELASTIC SCATTERING

2.1 Introduction

In Chapter 1, we introduced the reggeon-photon coupling analogy
(RPCA) and proceeded to describe a detailed formalism with which the
hypothesis could be tested. 1In this chapter, as a primary test of our
ideas, we apply the model in detail to elastic scattering processes in-
cluding pp, Eb. Kip, demonstrating that the RPCA can account in a simple

and natural way for all the elastic and total cross-section data.

2.2 Parametrization of elastic scattering amplitudes

The reggeon exchanges occurring in elastic scattering are shown
in Table 2.2.1, in which the signs displayed are those of the imaginary
part of the amplitude at small t required by duality; the relative signs
from one charge state to another being fixed by the isospin and charge-

conjugation properties of.the trajectories.

PROCESS EXCHANGE

pp + pp P+f-owt+ A2 -p
PP + DD P+f+w+A, +p
pn.+ pn P+f-uw- A2 + p
En - En P+f+uw- A2 - p
Kfpe-xfp P+ f-w+ A, - p
K—p+l(-p P+f+m+A2+p
Kfne-K+n P+ £f-w- A2 + 0
Kn+Kn P+,f+m—A2-p
1|'+p+1l+p P+f-p
1r_p+1r-p P+f +p

Table 2.2.1: The regge exchanges occurring in elastic

scattering.
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From equations (1.5.1) and (1.5.2) in Chapter 1, the contribution
of a reggeon R to the s-channel amplitude for 1 + 2 + 3 + 4 may be written

in the form

1l
R _ 2217241 4| )‘2"‘4' + +
Ay L (s.t) = -(— ) vV, () VI (8) Ris,a(t))  (2.2.1)
127374 173 24
where
~ina(t)
al(t + S t

R(s,a(t)) u?t;! [eZSin To(t) :] () (2.2.2)

S is the . signature . and the Ai (L =1,4) are the helicities.

We assume, unless otherwise stated, nonsense decoupling at a(t) = O.

In order to write down the contribution of any specific regge pole to the

N (t). Th
. e

A1}‘3

reggeon photon coupling analogy allows us to make specific statements

s-~channel Scattering amplitude, we need to know the form of V

about the regge coupling at any vertex - in terms of the photon coupling to
that vertex in the following way:- .
The photon couplings to meson-meson and baryon-baryon vertices
\

may be written as follows:

For mesons,
Y =
gi(t) = eF(t) (2.2.3)

where the form factor F(t)-tio 1 by definition., At the NN vertex, following

reference (33), we may write the nucleon electromagnetic current as
¥y p, + gy uie) = 2007 (6) + gl(t)) (2.2.4)
or, in the notation of reference (17), page 251

_ GT(t)PB
u(p'; [(Gv(t) + GT(t)) YB - Tw ]u(p) (2.2.5)

where p,p' are the nucleon momenta, defined in Figure 1.4.1, and Gv(t),

Gp(t) are the vector and tensor couplings.
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Evidently,

Y =
" o 9y(e) = Gv(t) * G, (t) (2.2.6)

and are related to the nucleon electric and magnetic form factors

GE(t)} GM(t), by (see reference (17)

eGE(t)

[(Mg{(t) +gre)) - fﬁg‘{(t)] (2.2.7)

Y .
eGM(t) gz(t) (2.2.8)

which obey the threshold constraint GE(4M2) = GM(4M2). For the isoscalar

coupling at t 0, we know that

S 1 S 1 1
= = ==+ = + = . .2.
GE(O) 5 GM(O) 3 3 (Kp Kn) 0.44 (2.2.9)
while for the isovector coupling,
A 1 \ 1 1
GE(O) =35 GM(O) =3 + 5 (Kp - Kn) = 2.35 (2.2.10)

where Kp'and Kn are the proton and neutron anomalous magnetic moments.
Thus from equations (2.2.4), (2.2.7) and (2.2.8) we can see that the iso-
scalar and 1sovector photon non-flip couplings to NN at t = O are given
just by the charge (e) and, away from t = O, by rearranging (2.2.7) and

(2.2.8) by,

t
, e [GE(t) - =5 GM(t>]
Myl (t) + g;(t) = (2.2.11)

2
The apparent singularity at t = 4M is removed by the threshold constraint
GE(4M2) = GM(4M2). Similarly, for the isoscalar and isovector flip

couplings, using the result



-t 4
0T (R") (gPg +g,¥,) u (p) = gI(t) (2.2.12)

it is easy to show that

e[G (t) - G (t)_]
MgY(t) = E M (2.2.13)
1 Lt
4M2

Referring to Table 1.5.1, the helicity vertex functions at the NN vertex

are:-—

+ S S
= +
v},}(O) 3(91 9 ) Helicity non-flip isoscalar
22 (2.2.14)
and isovector couplings
= (gV + gV)
1 -2
+
v (0) = 0O Helicity flip isoscalar and
1 1
51-5 v v (2.2-15)
(3gl + 292) isovector couplings
2M
P
while at the spinless meson vertex
+ S S
Voo @ = 209y + ) Isoscalar and isovector -
(2.2.16)

v v couplings
2(gl + g2)

where the gf'v (1 =1,2) are the photon isoscalar and isovector quark
couplings at t = O from Table 1.3.1. Inserting these gi's into (2.2.14) =~

(2.2.16) above gives, at the meson vertex

+ - 28 (e -
Voo(o) = 3 (3 ) mnm (KK) I =0
(2.2.17)
2e (e) mm (KK) I =1

and at the baryon vertex
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+ +
Vl l(0) = e (I=0) = Vl }(0) (I =1)
22 2'2
(2.2.18)
+ - - o) = + - 1) = 2
v}__lfo) = (r=0) =0, V}_io) (I—l)—M
2' 2 2 2 P
Thus we may write the photon coupling generally as
Vi (0) FB(t) (2.2.19)
13
A2A4
(with our hypothz3is (the GAl) that the couplings corresponding to
AX, = %1 (the maximum allowed by the VCH) are related to the electromag-

t

netic form factors, that is to say, the dominant I = O natural parity
regge trajectories (the P,f and w ) couple like the isoscalar part of the
photon, while the I = 1 natural parity regge trajectories (the P and A2)
couple like the isovector photon, then using (2.2.18) and (2.2.19), we
see lmmediately that the I = O flip: non-flip ratio = 0, and the I =1
flip: non flip ratio = 2/MP . Hence the P,f and w have only non-flip

couplings to Nﬁ, while the p and A, have predominantly flip couplings to

2
NN ) where the factor FB(t) (B = lbaryon numberl) is given by the t-
dependence of the electromagnetic form factor (since we assume the same

form for GE(t) and GM(t)):

t 1 = .
FB(t) = (1 - —2——3 FB(t) (2.2.20)

M
p

where the form of (2.2.20) above is demanded by our p,w-photon coupling
analogy, that is we require the reggeized p pole to be incorporated into
our regge pole exchanges.

Empirically, the factor E'B(t) = 1 for B = 0. That is, the pion

and kaon form factors are given reasonably well by the rho pole alone (36).
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For B = 1, in order to describe GE(t) and GM(t) for nucleons fthe P and
n electromagnetic form factors) we require
-1
Fo(t) = (1 - —‘-—) (2.2.21)
1l 0.9
Shown in PFigure 2.2.1 is a fit to the proton magnetic (= electric in our
model) form factor using this parametrization, where we note, that the

above description is at least as good as the more usual dipole fit, even

out to quite large |t|.

1o

[}

e F,(t) z (|.. %;)-l (‘ ;95|

b

G
7]

°_°\ A —_— i
0.5 1.0 1-8

[l (GeV?)

Figure 2.2.1: The proton magnetic form factor data (37)
compared with Fl(t) given in equation (2.2.20)

Using equations (1.2.7) and (1.2.8), we can relate the photon-
+ -
particle coupling, written generally in (2.2.19) as v; AJO) FB(t), which
14
we have determined in terms of the gi's, the photon-quark couplings, and

§B(t) from (2.2.20), to the leading natural parity regge exchanges in the

following way:-
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Equations (1.2.7) and (1.2.8) are

p ¢ © £ (t) Yg
g, (t) = DF(t) gi(t) = DF(t) (l+€B) gi(t) = (1+_€B) oF(t) 9, (t)
(2.2.22)
and
A £ (v) Y
2 _ ' P _ p 1 \
9 (t) = 1+ EB) qi(t) = 1+ eB) 9, (t) (2.2.23)

The constants fw and fp are thew- yandp - Yy coupling constants

respectively. fw is defined by

M
_  4rmo w
rm > ate” = 3 2 (2.2.24)
f
w
fw
and from the ideally mixed quark model (20), fp =3 {(which in fact
i r : = i
gives the ratio prete Pw*e+e_ 9, c.f. the experimental result

(38) of 8.42 = .7). 1In order for us to maintain the above definition of
fw and fp, when inserted in the regge residues, we must multiply by

o
//———%JE- (see, for example, Collins and Squires (39), page 62 ff.)

Thus, from equations (2.2.22) and (2.2.20), the w coupling at the

NN vertex is given by

f o'
+ w w + =
v} l(ppm) = p 5 Vl }(O) Fl(t) (2.2.25)
2'2 2’2
£ ro!
= U w F
= 3 e Fl(t) (2.2.26)

from (2.2.18), while for the f coupling,

f Ta'
+ . W/ " &
Vl 1 (ppf) = Py 5 (L + el) e Fl(t) (2.2.27)
2’2

The pomeron (P) coupling to any allowed vertex is
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F_(t) o0_(t) (2.2.28)
13 B F

>
e}

A=A
(where 1 3)

while the isovector non-flip couplings to NN are given by

£ '
+ W me o -
V} l(PPD) = 3/ 3 e Fl(t) '
r
272 (2.2.29)
N A )= fm T F.(t) (1 + €
Vp 1 PRR))= 30/ e Rle (L vE))
22
The iscvector fl1i> couplings to NN are ’
t £ /"“'9 2e -
vy _l(ppp) = 32 5§ Fp )
5' 2 p
(2.2.30)
vI (ppA )= [y 2e F, () (1L +¢€))
1-1PPR)) 3/ 2w By 1
2’2 p
At the spinless meson vertex, the relations are very similar, viz:
+ + kK Ze £, [fraty,
Voo(““f) = voo( £) = 3 (L + eo) Y > Fo (t)
(2.2.31)
£ na’
+ + w w =
Voo(ﬂﬂo) = VOO(KK.O) = 2e (1 + Eo) Je > F_(t)

From inspection of the above coupling formulae it is clear that the
difference in t-dependence of the reggeon couplings at meson-meson (MM)
and baryon-baryon (BB) vertices is given just by §1 (t) (since
F (t)

by (% (1L + gl) §1(t) )2 . In Figure 2.2.2 we display our prediction against

1 ). Thus we predict that the ratio -g—:(pp) : g%(np) will be given

the ratio -g—:(pp/np) , using g, - the exchange degeneracy breaking factor

1
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(to be discussed shortly) = 0.14. We note that for ltl 20.6, the data

falls beneath the predicted curve. This might have been anticipated from

the fact that P@P cuts are known (40) to be present in pp, but not mnp,
scattering in order to account for the diffractive minimum at |t| = 1.4 GeV2.

However, at small |t|, wheré any cut contribution should be small, our

prediction describes the data quite well.

3.0 \ T T T T
d_o; (.E-E— ) at 50.0 Ge.\//c
t \«
12.0¢p 4
.o
l =
3.0 . ) L 1 JL
do (_Et) ot 200 GeVjc
it P
2.0 ¢t n
m\‘\r\?\
“or 3 -1
L 1 [ 1
o2 0.4 0.b 0.8
lel  (GeV?)

Figure 2.2.2: The ratio of g%(pp) : g%(ﬁb) compared with

(1.7 l?‘l(t))2 which should at high energies,
where the pomeron dominates, given the cross-

section ratio. Data from reference (41).

The factor €g appearing in equation (2.2.22) ff. is the exchange

degeneracy breaking factor and is set equal to zero for isovector exchanges

at any vertex, that is eé 1 = 0. EB is also found to be zexro for isoscalar
[4
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exchanges at meson vertices, leaving the value of CB # O only at baryon
vertices. In a recent analysis by Roberts et al. (42) it has been sug-
gested that the Ktp and nip data are compatible with exact f - w exchange
degeneracy provided that the pomeron contribution is non-monotonic. After

a similar analysis we have found the mp and Kp total cross-section data to
be compatible with approximate exchange degeneracy, that is the degeneracy
1s broken in trajectory but not in residue, in which case a simple monotonic
pomeron with qP(O) > 1 describes the data very well. We also note that the

same condition applies to the p and A

2t where ap(o) = 0.51 in order to des-

cribe the ©N charge exchange data.
However, if we now demand factorization, we insist on the same

approximate exchange degeneracy in pp scattering, which is incompatible

with the oggt(s) data, which falls sharply at low s. Hence we conclude that

meson vertices have exchange degenerate £ - w and p - A,_ couplings, but at

2
baryon vertices, the exchange degeneracy is broken for isoscalar exchange.
This result is, however, not completely surprising, since duality {12)

requires exotic resonances in BB scattering, an example of which is shown

in Figure 2.2.3.

“ P LY 5 S,
. > >
4 > a > >
\f 7
\A - u < P
a > 4 4 +
w > u

[,
A

(R) (B)

Figure 2.2.3: (A) pp scattering with exotic s-channel and
(B) Ep scattering, where s-channel resonances

may be formed.
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Thus, in the case of pp scattering, as in Figure 2,2.3A, the duality
requirement of exotic resonances implies that the t-channel non-diffractive
regge exchanges must vanish, giving a completely flat pp total cross-section
(rising slowly if up(o) > 1). The fact that U;;t(s) is not flat implies

f # w and hence our value of €, = 0.14 reflects the failure of simple

1
duality (Figure 2.2.3A) for processes involving baryons.

Although we might hope that the coupling relations (2.2.25) - (2.2.31)
will hold without further modification there is, of course, the well-known
complication of rather strong absorption in the p and w non-flip amplitudes,
producing a cross-over zero in the imaginary part of these amplitudes at
|t| ~ 0.1 Gev2 10,13 GeV2 at 6.0 GeV/C (43) for the p ) and not at
a(t) = O as it would be in a nonsense decoupling regge pole model. In order

to take account of this rather strong absorption we make the following

replacements in equation (2.2.2).

In ImA a (t) > o (0) (L + t/t )
ool , 44k4 w w o
22
0 c.t '
in  ImA" a (£) > a (0) x (L+t/t)) e™P (2.2.32)
0=05 ){‘1‘_'3.‘{ P
22
By
in ImA ap. () = x a  (t)
0305 k1% 2 B2

where we have anticipated absorption in the A, non-flip amplitude. 1In

2
(2.2.32),t° is the observed position of the cross—-over zero which for

simplicit& we take to be equal in both the p and the w , and set equal to
0.19, while x represents the effective change in magnitude of the p and A2
couplings produced by the absorptive cut correction. The factor cp gives
the t-dependence induced in the p pole coupling, and is required to reduce
the otherwise large negative magnitude of the P non-flip amplitude at

0.25 < |t| < 0.6 Gev? which would £i11 in the dip at |t| ~ 0.6 Gev? in the
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mN charge exchange differential cross-section. In Figure 2.2.4 we show a
plot of ImA++(p\ taken from Barger and Halzen (44) against our p pole as
prescribed by (2.2. 2) and the P pole with absorptive corrections. While
our amplitude is not a perfect description of the data, the representation
is quite good bearing in mind the over-simplified form of our absorptive
corrections. However, the other P amplitudes are in reasonable agreement

with the data from reference (44).

Lot \r
w | '[
o
|>° )
¢ 1
A
€
~20 }
-40}

A
ok |t (GeV?) °.8

Figure 2.2.4: The imaginary part of the s-channel p non-flip
helicity amplitude from reference (44). Curve (1)
is our unabsorbed p pole. Curve (2) is our p pole

absorbed as in equation (2.2.32).
This,along with the large Itl pp differential cross-section data

(see, for example, reference (40)) is the only feature in all of the

elastic scattering data which requires us to take explicit account of the
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exchange of regge cuts. In the latter case, however, we will include

the cut explicitly, as will be demonstrated in the next section. For all
the other amplitudes, we may rely on the fact that there is little dif-
ference between a nonsense zero and an absorptive correction, and that

most amplitudes appear to have regge-pole energy dependences, even out to

large |t| (46).

Finally, the pomeron : f ratio is written in the form

oL(t) = p(o) & (1 - %)'1 r (€ (2.2.33)

The parameters p(0), a and t are arbitrary constants to be deter-
mined by fits to the data, but their arrangement in (2.2.33) above
motivated by the overall shape of the elastic MB and BB cross-sections
at small ]tl . The factor rF(t) depends upon the flavour, F, of the
quarks at a vertex, and through the FDP model is given by the trajectory

function of the £,f',f mesons as follows.

Assuming ideal mixing (see, for example, Kokkadee, reference

(20)), we have

f = L f8 + 2 fl
/3 /3
(2.2.34)
£ 2 £, - L £,
/3 3

where f1 and f8 are the SU(3) singlet and octet isosinglets respectively.
Referring to Figure 2.2.5, which is presented in a way analogous to

that of Carlitz, Green and Zee (S5), (see also Chapter 1, Figure 1.2.4),
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¥

\ >
> 4 y- !
“u > — U >

(R) (8)

Figure 2.2.5: The f-dominated pomeron coupling for
(p) mp and (B) KXp elastic scattering,
with ideal mixing so the f' decouples
from any vertex containing only non-strange

quarks. and B represent the central

Bes ££°
loop and its couplings to £ and f£'.

We see that the f' is decoupled from the mr vertex, and so that P:f

coupling ratio is

Y
21;2 e (0) (2.2.35)
= = p (O . 2.
g ™™ %(o) - uf(o)

where p(0) is the P : f ratio at t = O for non-strange vertices, and

Bff represents the £ couplings to the pomeron loop, while at the KK

vertex (Figure 2.2.5(B))

] Y
PKK B £'KK B
£f ££!
= = + g—ﬁ- — (2.2.36)
9 a, (0) @ (0) gf o (0) LP (0)

In the limit of exact SU(3) (n) symmetry, the pomeron would couple

through degenerate £ and f' (and fc' £ ... ) trajectories. Wwhen

b

SuU(3) (n) is broken, the f',fc... masses become greater than the f mass,
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and hence the trajectories lie lower than the f£f. It is traditional to

assume that this is the only manifestation of the broken symmetry, that is

the masses shift, but the couplings remain SU(3) (n} symmetric.

.remain singlets (that is, B

BegtBego--- ££

Thus,

... etc. contain an equal

mixture of u,d,s,c,t... quarks), coupling with relative strengths 1 and

1/2 to the £ and f'(fc,f «..) trajectories. Thus,

b

£'PP -1 fpp
g = — g
/2

and for the symmetric (D-type) coupling,

£'EK £KK
g = -~v¥2 g
-t
Hence at t = 0, (2.2.36) becomes
S t ¥
g X Bee 3 (_ _l_) Bee
ngK aP(o) - af(O) /7 aP(O) - ufl(O)

1
Bee
a (0) - a_{(0) '
P £

"and remembering that p{0) =

gPKK -
T = p (0) [1 + rs(o)]
g
where a_'0) - a_(0)
r_(0) F £

a,(0) - a_,(0)

(2.2.37)

(2.2.38)

(2.2.39)

(2.2.40)

(2.2.41)

with obvious extensions to vertices containing charmed, top, bottom etc.

quarks. Hence for t ¥ O , we may write our "universal”™ P:f ratio

pp(t) as in equation (2.2.33), where pF(t) represents Bgg Begr ... and

the factors rF(t) are given in Table 2.2.2.
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quark u d s c b

0 (t) —a (6) o () —a (t)  a(t) -a(E)

aP(t)- (t) aP(t)-—af (t) aP.t)-—afb(t)
(o]

r_ (t) 1 1
F afl

Table 2.2.2: The f-dominated pomeron coupling coefficients as

used in equation (2.2.33).

Having thus described the terms appearing in equations (2.2.23)
to (2.2.31) inclusively we have, in principle, determined our scattering
amplitudes. However, a roll-call of free parameters tells us that we
have in all 22 arbitrary parameters which the data should determine.
In fact, we are in a position to determine 14 of the 22 parameters by
constraining all our regge trajectories to be linear and pass through
{or lie within 50 MeV of) the particles lying on them. The results of
this cénstraint are given in Table 2.2.3. In order to determine the T
trajectory, we first fitted the I = O trajectories (the w, ¢ and ¢ )

with a function quadratic in M, that is we set

AM2 + BM 4+ C = ao {2.2.42)

inserting the values of ao and M for the w, ¢ and §y respectively from
Table 2.2.3 and then solving the simultaneous equations. We have found

that A = -0.166, B = ~0.156 and C = 0.667 and, using M, = 9.4 GeV, gave

T

the T trajectory parameters as shown below.

In the next section we determine the 8 residual free parameters and

describe our fit to the data.
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Trajectory a(t) Theory | Experiment| Theory | Experiment
(MeV) (MeV) (MeV) (MeV)
F 1.068* 0.1t
f 0.49 + 0.95t] £(1260) 127y £ 5 h(1992) 2040 * 20
£' 0.27 + 0.72t| $(1007) 1020 £ 3 | £Y(1550) 1516 £ 10
fc -2.10 + 0.33 t| $(3065) 3097 + 2 | Xx(3524) 3554 = 5
£ |-15.45 + 0.19t| T(9400) | [9400]
w 0.40 + 0.96 t| w(790) 783 * 3 | w*1645) 1668 t 10
P 0.51 + 0.85t{ p(759) 776 * 3 11711) 1688 * 20
A, 0.42 + 0.85¢t A2(1363) 1312 £ 5 A;(ZOSZ) »1900%
Table 2.2.3: Trajectory functions used in all our fits to the

data. All data from reference (38) except T (ref-
erence (45)). The[ ]denotes input (see text),

and the P parameters are fitted.

2.3 Fit to the Data

(a) Total cross-—-sections
As a preliminary exercise we isolate, using Table 2.2.1, the w,p and
A2 trajectory contributions to the total cross-sections by forming cross-

section differences as follows:

opp(w) = %(O(P-P) + o(pn) = o(pp) - ol(pn))
I = %«:(K'p) + oKn) - o'p - oK'ny
o o) = 70(pp) - o(pn) + o(pp) - olpn)
OKP(AZ) = ;]i O(KPp) - oKn + o (K+p) - o (K+n))
op® = 36(pp) - o(pn) o(pp) alpn))
p® = FOKP) - om o (k' p) o' n)
o1TP ) = —; G p) - o (ﬂ+p))

where o(pp) etc.=0
PP PP

tot

(s)



- 68 -

The fits shown in Figure 2.3.1 (at the end of this chapter) determine
the trajectory intercepts ao which, of course, serve as a consistency check

of Table 2.2.3, and also the effective couplings in equations (2.2.25) -
(2.2.31), that is fm and xfp (= xé? ), where fm is found to be 17.1, in
accord with the value of 15.1 * 2 deduced from the decay w > e+e_ (see
equation (2.2.24). The value of % is found to be equal to 0.435, which
implies strong absorption of the p and A2 at t = 0. Of course such
absorption is to be anticipated given our discussion of the mN charge ex-
change data at 6.0 GeV/C (43) in the preceding section. However, the fact
that no such reduction is required for the w at t = O is surprising in
view of the similar amount by which the p and w zeroes in the non-flip
imaginary part of the amplitude have been moved towards t = O.

Inspection of Figure 2.3.1 shows that the combination of the total
cross-section data giving opp(Az) (from 2.3.1) is negative at low and
medium values of s. Gilven the difficulty of extracting accurate data from
neutron targets, we conclude that the errors have been under-estimated, and
therefore attach less significance to these particular points.

Having determined the p, w and A, regge pole contributions we proceed

2
to fit the total cross-section data (47) on pp, 5p, pn, En, K+p, K-p, K-n,
n+p and n-p from a P aB of 4.0 GeV/C up to the highest available energy
(I.S.R. energies in the case of pp, = 280 GeV/C for the other processes).
A fit to high energy ozgt(s) alone determines the pomeron intercept to be
1.0688, while a fit to the whole data set determines el, the isoscalar
exchange degeneracy breaking factor at baryon vertices, to be 0.14 and
p(0), the P:f ratio at t = O, equal to 0.47. The resulting economical fit
is presented in Figure 2.3.2. (We give a complete list of all coupling
parameters in Table 2.3.1).

It is perhaps worth noting that with our value of up(O) > 1, the

actual value of the P:f ratio at t = O isg rather different from earlier
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fits (14) using aP(O) € 1. However, we find that our parametrization
strongly supports the f-dominated pomeron hypothesis. In fact, allowing
a different P:f ratio for BB and MB processes made no significant change
to the overall xz/pt, while the global value of p(0) = 0.47268 moved to
0.46921 for baryon-baryon processes and remained the same for meson-
baryon scattering.

The only minor difficulty encountered with the above description of
total cross-sections was one of slightly ( = 5%) under-fitting o;;tfs)
and oggt(s) at low s. As we have confidence in the magnitude of the

p, w and A, contributions (see Figure 2.3.1), we conclude that this extra

2
contribution must come from another exchange lower lying in tﬁe J plane,
that is a daughtex to the f or to the £'. The f£' exchange was ruled out
on the grounds that (a) if present, it must couple strongly to Kﬁ, and
inclusion thereof significantly worsened the fit to o;;t(s), despite
dramatic alteration to the other coupling parameters; and (b) the f'
exchange when included in o;:t(s) interfered with the other amplitudes in
such a way as to destroy the previously reasonable description of § , the
ratio ReA :ImA at t = O.

On the other hand, recent analysis (48) of low energy ( 11,8 Gev/C)
pp elastic polarization data has concluded that the I = O amplitude at these
energies is best described by a pole of intercept = -0.5. Guided by this
information, we have included in our fit to pp and §p a daughter to the
. £, the §*, with intercept as*(O) = uf(O) - 1 and parametrized in an other-
wise identical way to the £ (apart from an arbitrary coupling magnitude)
We refer the reader to Figure 2.3.2 where we display our fit to o;ngB(s).
In Figure 2.3.3 we show our successful prediction of §&(§ = ReA/ImA at t = Q)
for 7p, pp and Kp scattering (49).

At high energies, where the pomeron dominates, the ratios of the

total cross-sections are given by




op (s) : o“p (s) = 3 (1 + el) = 1.71 {(2.3.2)
1+ r (0)

tot tot _ s _

oKp (s) : Onp (s) = 2 = 0.87 (2.3.3)

So the quark model ratio (20) for pp:np is modified by the fact that
f - w exchange degeneracy is broken at the pp vertex but not at the un
vertex. The Kp: mp ratio is the standard result of the FDP hypothesis
but with uP(O) > 1, our value is slightly different from some previous
estimates (14).

Before continuing our parametrization away from t = O we mention, by
way of a brief aside, the cosmic ray pp total cross-section data (50), dis-
played in Figure 2.3.2. Using this data, we attempted to distinguish
between a power, logs or logzs behaviour of the total cross-section. 1In
a recent paper Lipkin(51) has fitted the d;;t(s) with a combination of regge
pole terms at low 6, and two power terms 56 + SE, where 6 = 0.185 and
€ = 0.13, at higher energies. However, after a similar analysis of the
data, we conclude that it is not possible to make a clear distinction
between a simple power of S, that is Sao, o > 1, and more comglicated
log s/so, 1092 s/so, (log S/SO)Y.... etc. terms since, although the data
reported by Yodh (50) matches on to the I.S.R. data quite well, the errors

involved are rather large.

(b) Charge exchange differential cross-sections

Since the regge trajectory slopes are determined by the particle
£
masses (see Table 2.2.3), and the value of fp ( Ej%') and x have been deter-

mined by the total cross-section fits, the A, amplitudes in ﬂ—p - Nnn

2
and the p amplitudes in ﬂ—p > won are completely determined, except for the
single free parameter cp in the imaginary part of the p non-flip amplitude

(see equation (2.2.32). We present in Figure 2.3.4 our prediction of the
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ﬂ—p -+ nn differential cross-section, against the data from reference (52)
and our prediction/fit of the ﬂ—p > non cross-section, with data from
reference (53). We can also predict the KN charge exchange reactions with
these exchanges, but it is well known (54) that they obey the SU(3) sum
rule very well, so nothing new is learned. As we have mentioned pre-
viously, our TN amplitudes are in good agreement with those determined by
Halzen and Michael (43) at 6.0 GeV/C although, as displayed in Figure 2.2.4,
our simple exponential é:ptin equation (2.2.26) is a barely adequate
parametrization of the absorption, and for more accurate work a more

sophisticated parametrization would be required.

c. Elastic Scattering

Having determined our few t = O free parameters and the t-dependent

naturxe of the p and A, amplitudes, we next examine elastic scattering

2
differential cross—-sections. The only new arbitrary parameters at our

disposal are a' , the slope of the pomeron trajectory, and a and t from

]
P

equation (2.2.33). The value of o'

b has previously been well determined

by Collins and Gault (55) in fits to pp a~-effective, and is found to be
= 0.1.

Since %%(pp) exhibits a minimum at Itl = 1.4 GeV2 we have included
in our amplitudes for pp scattering a PP cut taken directly from reference
(40) . The motivation for its inclusion is twofold: (1) we can economically
describe the pp large |t| data that has recently become available and
(2) more importantly, by including such a cut, we are freeing the pomeron
pole to give a simultaneous description of the np and Kp g% 's out to
|t| % 2.0 GeV2 (there appear to be no cuts present in elastic meson-baryon
scattering) and pp %% at small |t| (<0.8 GeV2) where the effect of the

cut should be small. (In fact, referring te Figure 2.2.2 we can see the

PO®P cut contribution making a small effect even at |t| = 0.6 Gevz) .
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Obviously it is possible within our model to fit the small |t| data
without such a cut (56) but we feel that in doing so, we are not arriving
at the best description of the pomeron pole alone.

Given our complete set of amplitudes, and remembering that the only
difference between ggipp) and g%(np) at high energies and small |t| stems
from the factor §1(t) (see Figure 2.2.2), we fit the data (57) as shown
in Figure 2.3.5, and in doing so determine a and t. The only modification
to the pomeron ® pomeron cut required by our parametrization is.the
addition of an extra A'edt term in the small |t| texrm in equation (8) of
reference (40). This modification is required presumably because the
authors of reference (40) use a two exponential pomeron pole, which curves

in |t| more sharply than the one used by ourselves. In Table 2.3.1 we

present all our coupling parameters.

\_-- AI
£ p (o) X € GfD Cp a t 4

17.10| 0.47 | 0.435{ 0.14| -8.10| 1.20{0.60 | 0.74 | -0.50 | 0.88

Table 2.3.1: The coupling paiameters used in all our fits. All cut
parameters are as in reference (40), except A' and
a(=a' edt inserted into the small |t| term of

equation (8), reference (40)). The parameter GfD is

the £ daughter coupling over and above fw' the
coupling of the £.

In Figure 2.3.6 we show our prediction of the polarization in
elastic scattering, which arises from the interference of our p and A2
flip amplitudes with the P, £ and w non-flip amplitudes. Evidently we
have a good description of the main features of the data (58), although
in order to give a complete description of the.complicated dip and dQouble
zero structure of the pp polariz;tion data, a more careful and prolonged

analysis would be required. For further discussion of the topic, see,

for example, reference (59).
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So, our strong assumptions of

{1) Universality for the p and w couplings

(2) o - A2 exchange degenerate couplings

(3) A small breaking of exchange degeneracy in the f - w couplings at
NN vertices, but none at MM vertices

(4) A universal function p(t) (see equation 2.2.33) for the P: £

coupling ratio

all seem to have worked amazingly well, given the wide range of elastic
and total cross-section data we have attempted to describe. The para-
metrization cf Section 2.2 and the values of the parameters given in
Table 2.3.1 provide a universal prescription for all the natural parity
regge exchanges, and should, if the hypothesis is correct, be applicable in
any reaction.

In the next chapter, we use this parametrization to predict total
tOt(s) for example, and also cross-sections for the

Ap

process Yp *+ Vp, V = any vector meson.

cross-sections ©
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Figure 2.3.4:(a) Our prediction of g% (ﬂ_p =+ nn) against the data
of reference (52), and ]
(b) our fit of g% (W—p > non) adainst the data of
reference (53).
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Figure 2.3.5(a) Fit of g% (m"p > 17p) using the data of

reference (57).
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Figure 2.3.5(b): Fit of %% (K"p + K'p) using the data of

reference (57).
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do
- dt

data of reference (57).

Fit of low and medium energy $mat| lt‘

. do - - .
(pp * pp) and e (pp + pp) using the
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%E {pp * pp) using the data of reference (57).
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CHAPTER 3

SOME CROSS—-SECTION PREDICTIONS

3.1 Introduction

In the previous chapter, we have given in detail the form of our
parametrization of elastic scattering, which results from our reggeon-
photon coupling analogy. As the primary test, we have fitted the data
on elastlic scattering and total cross-sections, and in so doing determined
the few free parameters available to us.

In this chapter, we use the parametrization so determined to give

t
predictions of other total cross-sections, viz. oxgt(s), 0"2;_ (s},
O:S"_(s), the vector meson-proton total cross-sections such as
gtot tot

Dp (s), °¢P (s) ... etc. and also 0 (s), data on which at high energy

has recently become available (60).

3.2 Total Cross-Sections

In our model, ox;t(s) and ¢ : (s) are given by
g (8 = 0ofls) (2¥1) (3.2.1)
0:2:'_(5) = g(l—}?-l- )[o::+p + ofr'*p] + § o:’r*'p (3.2.2)
O:S:_(S) = :-23(;—1']-'-5—1) [011:'*9 + of+P] - % o::+p (3.2.3)

where rs(o) can be deduced from Tables 2.2.2 and 2.2.3 and is equal to
0.72, and ¢ +;’pdenotes the pomeron/f/p contribution to the total cross-
section in ﬂ P scattering. Hence, in Figure 3.2.1, we show our predictions

for these total cross-sections. In the case of 0 o (s), the data (61) is
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+

obtained by extrapolation to the pion exchange pole in inclusive T n-xp,

so there will necessarily be some theoretical uncertainties in addition to

the large experimental errors. However, our predictions, particularly

of the rising exotic m ® cross-section dominated by pomeron exchange

seem quite satisfactory.

I8
(a) r )
=
"
¥
L . 3
o' Spor (BeV') 1ot 10
a8} (0
5 t
¢ F{bE %
Y
8
$
1 1 3
1o Swerc (GeV?d) o™ lo
60—
©)
T
:.\_ H | /
<
e I I 13
&y
l. - N 4 3
10 P“' (Cevje) pr 1o

Figure 3.2.1: (a) Prediction of Oﬁg%_(s) with data from reference (61);

t
(b) Prediction of 0“8;+(s) with data from reference (61);

(c) Prediction of cigt(s) with data from reference (62).
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3.3 Vector meson-proton cross-sections

According to the vector dominance model, the total cross-sections
for Vp scattering (V = any vector meson) may be obtained from the cor-
responding vector meson photoproduction differential cross-section at

.t = 0, since

o;;t(s) = 23893 [, (yp + Vp) (3.3.1)
and
dog e2 dg
3t (yp >~ ¥p) = = at (yp = Vp) (3.3.2)
Pv 1
but
%cq (ve > vp)f __ = 11%9 [(ImA e + Yp)) 2 (1 + 52)] (3.3.3)
- 167s

where § is the ratio ReA/ImA at t = 0.}

(_33:5-")
Therefore, after a little algebra,A(3.3.2) and (3.3.3) lead to
y ki
lén a .0 .3893 .
af,gtm = . — 2 (e -+ vp) (3.3.4)
Mypete~ (1 + 87 t=0
Since 2
471 o Mv
rv+e+e_ = ?—' (3.3.5)
\'
and e2
¢ = o= (3.3.6)
In our model, these cross—~sections are predicted to be
tot _ _tot _ }[ tot tot :I .
°pp (s) = cmp (s) 3 o“+p(5) + oﬂ_p(s) PI(S) aﬂp(s)
s > ® )
tot _ P
p (s) = rs(oh) a"p(S) Ps(s)
(3.3.7)
tot _ P
°|pp (s) rc(o) o“p(s) Pc(s)
tot _ P
an (s) = rb(o) cnp(s) Pb(s)
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where the superscript P denotes pomeron exchange only, as defined in the
previous section, rs(o), rc(o), eees (= rF(o)) are defined in equation
(2.2.33) and given in Table 2.2.2, and the factor PF(s) represents the

opening of the given flavour (F) channels. We have rather arbitrarily

used
0, S<SF
s - sp )
PF(S) = sin ((-; — )r . Sp < g < 2sF -2 (3.3.8)
1, S’ZSF—2

2
where sF = (Mv + Mp) . In fact, a little substitution will demonstrate

that for the p,w PI(s) =1 for s > 3.86 Gevz, for the ¢, Ps(s) =1
for s 2 5.67 Gevz, for the ¢, Pc(s) =1 for s 2> 30.5 Gev2 and for the

T, Pb(s) =1 for s > 211.8 Gevz. Thus, for our purposes, the effect of

PF(s) is only seen for atOt(s). Shown in Figure 3.3.1 is our prediction

vp

tot tot tot
of ¢ s), © (s) and ©
PP (s}, op ) Vp

seen. The data (63) has been plotted using relation (3.3.4) and where

(s), where the effect of Pc(s) is clearly

possible, we have included information (63) on 4§, although setting

62 = 0 has a negligible effect on osgt(s).

In Figure 3.3.2 we give predictions for g% (pp *> 0P), %% (¢p + ¢p),

g% (yp + yp) and %% (Tp +Tp) at 9.3 GeV/c. Evidently the model has given

a rather good description of the data (64)
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Figure 3.3.1: Our prediction of o:;p {s) against the data of

reference (63).
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Figure 3.3.2: Our prediction of.the vector meson differential

éross-section against the data of reference (64).
The change in shape is given solely by the variation
in ¥ of rs(t), re (t) and r,(t) from Table 2.2.2




- 96 -

3.4 The photon-proton total cross-section

Using generalized vector dominance (4) we can predict c:;t(s) '

that is we put

3r + -
tot V> e'e tot
[0} = ————————————— . .
Yp (s) E qu ovp (s) (3.4.1)

v
(using equations (3.3.1) to (3.3.6) inclusively)

However, it is well known that it is necessary to include not just the
leading vector mesons V = p,w,9,¥,T ... but also their daughters (radial
excitations) the p',p" ..., w',w'" ... etc. So we require to know how

05?;(5) and Fv,_’ ete- vary along a given equally spaced daughter sequence.

Silverman (65) has reported that %‘% (Yp > p" p) =15 % 5 pb.
t=0

This result implies, from equation (3.3.4), that %:?Fp(s) =21 % 12 mb,

compared with atOt(s) = 26 mb. Hence for simplicity, we assume

pp
tot tot
ov,p(s) = on (s) (3.4.2)

{The above relation is not in complete accord with the data (66) on

do 4o . tot s ot
at {(yp = ¢p) and 3t {(yp = y’'p) since in this case °¢P (s) ow,p(s).

However, as pointed out by the authors of reference (67), in order to

extract the total cross-section from the data, one has to make assumptions

which may not be valid at such high wvalues of q2).

For .the leptonic decays of the vector mesons we used for the parents,

the relation

+ - _ 4ma
I‘v+ ee = T3~ =5 Cv (3.4.3)
fu
where Cv =9ZLe 2 . 9,1,2,8,2 for V=p,uw,¢,¥%,T (see Gournaris (68)

for a similar approach based on the "New Duality" of Sakurai (69)). Equation

(3.4.3) 1s the so-called Yennies formula (70,71) and despite its simplicity
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appears to describe the decay widths adequately for our purposes.

For
the daughter sequence we use
2 M
_ 4mna W 1
I‘V' + ete™ 3 F 2 Cv (L+1.4(M . -M ))2 (3.4.4)
w A
(We have tried other (68) more complicated expressions for T but

v' >ete”
within the spirit of our approach, we have found the empirical relation

(3.4.4) to be the most satisfactory). In Table 3.4.1 (at the end of this

chapter) we give our predictions of I‘v +e +e- using (3.4.3), and also the

integrally spaced daughter leptonic decay widths, I‘V, + ete- from equation

(3.4.4).

Combining equations (3.4.1) to (3.4.4) inclusively we find

2
02 = 25 Y % 2 ,  (3.4.5)
P £° vv VP (L+1.4 (M, - M)

W

which gives the prediction of otgt(s) shown in Figure 3.4.1 below.

(5
7\
::LVI.OP XP I -
% ] 1 1
: 11 I |
+ 1 1H
S T et N
o A

'Y -
50  E (@eV) foo ree
Figure 3.4.1: Our prediction of Otgt(s) agalnst the data of reference (60).
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Shown in Table 3.4.2 is o$°t(yp), where the suffix V refers to the con-

tribution of the vector meson V to the photon-proton total cross-section.

to
YP
while with our assumptions, the T makes a negligible contribution, cer-

As can be seen, the Y makes a significant contribution to o t(s),
tainly much smaller than estimates by other authors (72).

So, as we have demonstrated, the parametrization detailed in the
previous chapter has enabled us to make accurate predictions of total
cross-sections and vector meson differential cross-sections. In the
following chapter, we extend the range of applicability of our modellby
attempting to describe the diffractive production of high spin meson

and baryon resonances.
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Vector (MeV) Experimental Width (KeV) | Predicted Width (KeV)
p (759) 6.4 * .8 5.43
Pt (1323) 2 1.7
p*  (1711) 1.8 = .4 l.0
"' (2026) 1.7 0.7
w (790) 0.76 £ 0.17 0.6
w' (1250) - 0.22
w'  (1645) 0.18 0.12
W' (1935) 0.19 0.09
¢ (1006) 1.31 ¢+ .1 1.21
¢' (1550) - 0.39
¢ (1947) - 0.22
¢ (2276) - 0.16
v (3064) 4.8 £ .6 4.8
¥'  (3525) 2.1 ¥ .3 1.78
g (3931 - 0.98
V" (4399) 0.44 * 0.14 0.58
T  (9455) - 1152 1.2
Tt (9760) - 0.59
™ (30050) - 0.36

Table 3.4.1: Leptonic decay widths predicted from

equations (3.4.3) amd (3.4.4). The particle
masses are determined from the trajectory
parameters of Table 2.2.2. All data from

reference (73).
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CHAPTER 4

DIFFRACTIVE RESONANCE PRODUCTION

4.1 Introduction

In this chapter, we apply the reggeon-photon coupling analogy to
diffractive meson and baryon production. Since the RPCA gives a relation
between covariant couplings, once the reggeon couplings atone selected
vertex have been determined, as in Chapter 2, the form of the couplings in
all the amplitudes in all other processes can be predicted (up to the unknown
orbital angular momentum coupling constants gl, 9, if one or both of the
particles at that vertex has £ > 0).

In the following sections, we apply this hypothesis to the data on

A2' K*, K*¥* and N* production.

4.2 Diffractive Boson Production

S b 4
We apply our model to the reactions = p + A2

* +
p, K p+K¥p and
* *
K p +X#**"p, These processes are particularly interesting because (a) the

data are adequate for a guantitative test (in contrast to mp + A_p,

1
Kp + Qp for example), (b) the meson vertices have unnatural parity and so
there is only a single covariant coupling gi if the vector coupling hypothesis

18 correct and (c) at the meson vertex in each of these processes
PP, % (-1) (4.2.1)

where Pi refers to the parity and Si the spin of particle i, and so according
to the Gribov-Morrison rule (74) pomeron exchange is not allowed, whereas

our model demands that P exchange should occur (although it will be sup-
pressed at the KK* vertex due to R-parity - see later). Hence this set

of processes should provide a stringent test for our hypothesis.

7 T ON

(\ © ROV 199
GEATiDN
LIBRARY
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(Kisslinger (75) has proposed a scmewhat related model which has been

applied to non-diffractive processes in reference (76)).

+ x
4.2(a) m™p - A2 P

At the T - A2 vertex, G-parity allows only the following regge
pole exchanges: I =0, P, £, n, D; I =1, p, B. The n and D exchanges are
very low lying trajectories, and the smallness of the charge exchange
ﬂ-p -+ AZ:\ process relative to elastic scattering indicates that the p and
B exchanges will be fairly small, although the unnatural parity B exchange
does make a significant contribution at low energies. However, we will
find when discussing the data that it is possible to make simple corrections
for the unnatural parity exchange in both this process and in K* productionm.
Thus we are left with just the P, £ and p exchanges as in elastic 7©p
scattering.

Since we have helicity conservation at the NN vertex (the P and
f exchanges have no flip couplings) we can write for mp -+ Azp (that is,

1+2-+3 4+ 4, see Figure 4.2.1)

(p, (pLw)

(q-o (q,e

Figure 4.2.1: Reggeon exchange in 7p -+ Azp. A is the A2

helicity and the notation is as in Figure 1.3.2.
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2
£ - =B 5 jas) (4.2.2)
léns A
where the s-channel helicity amplitudes are
A =a | .2,

A being the helicity in the s-channel of the A, produced () = 2,1,0,-1,-2).

2
From equations (1.5.1) and (1.5.2) the contribution of a reggeon to these

amplitudes may be written in the form

1 1
R e 2147 _ FLLPEA _ +
A (s,t) = -() —_— v (vA_) V (pp) x
A 5, 8 A1A3 2" AN,

R(s,a(t)) {4.2.4)
= -(-‘—“—) V. (mA)) V. | (pp) R (s,a(t)) (4.2.5)

l s or 72" 11 ’ e

© 2'2

where t' = t - tmin and R(s, o (t)) is defined in equation (2.2.2).

The hellcity vertex functions at the NN vertex are as in Chapter 2 (see

Table 1.5.1). At the w-A_ vertex we find from Table 1.5.1 that at t = O

2
S 1
- - g2 g1 Mo
Vo'z(néz) = -VO'_2(nA2) = -_Zﬁ:——— (I = 0) (4.2.6)
vV 1
g, g, M
= 21 o (I = 1) (4.2.7)
4aM
+
S 1
- - 92 T 91
Vo'l(‘ll’Az) = Vo'_l('"l\z) = M N (I = 0) (4.2.8)
B, +
\'4 1l
9, T 9
= 21 (I = 1) (4.2.9)
2M. M
A, "+
and
V.(A) = o, I=0,1 (4.2.10)
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where (M + M)
1,2 2 A, T
T £ = (M - M +t) and M =
4 A m + 2
2
. Syv .
Substituting for g2 from Table 1.3.1 in the above gives
1
M
V. (M) = =-V_ (1rA)=—2¢gl° I=0
0,2 2 0,-2 2 3 4M
(4.2.11)
o u_
= 2 ym I=1
+
- - 2 Tgi
n = = - =
Vo,1( A2) Vo'_l(whz) 3 M M I (o]
A2 +
(4.2.12)
T gl
= 1 =
= ZmM I=1
By
while at the elastic 7T vertex, the coupling is
S/V S/v 2
2(91 + 9, ) = 3¢ 2 for I = 0,1 exchange respectively.

Thus equations (4.2.11) and (4.2.12) are just the coupling at the wn vertex
t = 0 times the kinematical factors for V;tl brAz) and V--':,__2 GTAZ).

Hence the scattering amplitudes are built just from the elastic non-flip
scattering amplitudes explained in Chapter 2, but multiplied by the
kinematical factors we call FA(t) and our one free parameter gi (the
orbital angular momentum coupling constant) which will serve only to

adjust the overall normalization - the shape of the differential cross-

section will be absolutely predicted. Thus
R 1 R
A)‘ (Mp> AZP) = g, FA (t) A (tp*>7p) for P,f and p exchange (4.2.13)

From (4.2.11), (4.2.12) and (4.2.4), then
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Moo= - o= 2t
Fpl8) = LN = W
+ o
o= - - Ir-t’
Fileh) = F () = oy (4.2.14)
A, + o
2
F(t') = o
o]

(remembering that A is the helicity of the A_ in the s-channel) where

2
we have set Mo = 1 GeV.

Shown in Figure 4.2.2 is our fit to the data (77) on

do

+ +
at (rp + A2‘p), where we find that the best fit value is gi = 1.10 (all

other parameters are as in Table 2.3.1). In Figure 4.2.3 we show our
prediction of the integrated cross-section, and evidently we have obtained
a good description of both the B and t-dependence of the data, despite the
fact that only the overall normalization is free. The difference between
the two charge states is given by the p contribution only éin our model), and
we predict a cross-over zero at lt] = 0.16 GeV2, compared with = 0.19 in
elastic scattering. (See equation (2.2.32) and Figure 2.2.4). However,
the error bars on the data are generally larger than the difference between
the two charge states, indicating that the p contribution is rather small.

At low energies, we have corrected for unnatural parity exchange,
as shown in Figure 4.2.3. 1In order to make this correction, we have used
the data gilven in Figure 13 of reference (78) to multiply our prediction
at each energy by the ratio (natural + unnatural)/natural. However, above
a pLAB of 10 GeV/C, this correction is almost irrelevant.

In a recent paper, Irving (79) has found that the P:f ratio
required by this data is smaller ( =% ) than that of the ratio in elastic
scattering. Of course, such a result would be rather unfortunate for our

model, of which the f-dominated pomeron is an important ingredient.
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However, the conclusion of a suppressed P:f ratio is at least partially
based on the assumption that the £ contribution is determined by the decay
coupling, and hence Irving's model has a much larger £ contribution,
leading naturally to a reduced pomeron coupling. Nevertheless, some

new high statistics data (80) on ﬂ—p-+ AZ;) at 10.0 GeV/C suggest that

the f contribution should indeed be larger than that predicted by our
model. On the other hand, data at 22.4 GeV/C and 23.9 GeV/C (8l) indicates
that a sizeable P contribution is required in order to account for the
integrated cross-section of = 60 ub at these energies. Furthermore, data
(82) and preliminary data (83) at 50.0 GeV/C suggests that the integrated
cross-section has only fallen by = 8 ub in the range 25 < pLAB < 50 GevV/C,
implying that the P:f ratio must be of the order of, if not the same as,
that required by elastic scattering.

Complicating the issue still further is the fact that in addition -
to the large statistical errors on the differential cross-section data,
there is also a normalization error, sometimes as large as 30%, to be
taken into account. Given all the ambiguities outlined in the foregoing
discussion, we feel that the RPCA has given a satisfactory account of the
data, while realizing that the fit is not unique. Certainly the Gribov-
Morrison prediction of no pomeron coupling is in direct contradiction
with the data, which shows a marked flattening at large e.

The density matrices for A, production are also predicted by

2
the model. Since the reggeon contributions to each amplitude differ just
by the kinematical factoxaFA(t) of (4.2.14), the s-channel helicity

frame density matrices are given by

H
mm *

F (t') F,(t")
m m

p " {(4.2.15)
ZA:FA(t ) FX(t")

that is, they are independent of both gi and the regge pole parameters.
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So we find
H _ H _ H _ H _ H _
oo ¥ P10 T Por T P T Po2 T O (4.2.16)
(since Fo(t) = Q)
and
H _ H _ H 2
P11 P1-1 7 Pamy 2
t' M
2 Ry
(4.2.17)
(-t") M
H _ H _ H _ A2
Paz = P22 % Pop o
)
(-£1) ? My T
H = H = 2
P21 P2-1 2
t'M
Ay
a|r?-
a

As the bulk of the data (77) is presented in the t~channel (Gottfried-
Jackson) frame, it is more convenient for us to consider our predictions

in this frame. Since the VCH forbids Alt » 2, we predict that in the G.J.

frame
t t t _ ot _ t _ t _ t _
P22 T Po2 T P2 T P21 T Py TPy o2 °© 4.2.18
while the assumed dominance of natural parity exchange demands
t t t
Poo = Pg T Py T o] (4.2.19)

(that is, the parity constraint of a natural parity exchange at an
abnormal parity vertex - see Table 1.5.1).

and t

P11

t t
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“

From the trace condition p = 1 we deduce that
%r mm
t t
p1l + pl—l = 1 (4.2.21)

A comparison of these predictions with the data (77) at various
energies is given in Figure 4.2.4 where we see that all density matrices
pAz are negligibly small,vindicating the VCH., At low energies there is a
significant fraction of unnatural parity exchange (see reference (78)),
which is probably due to B exchange, so poo does not vanish as we expect.
However, at higher energies, all the relations are satisfied.

Of course, we may deduce the results (4.2.17) directly from (4.2.21)
and the crossing relations for helicity states (84) in the limit s =+ « .

Because of (4.2.18), the crossing relation

H J t  J _
Ao = uZu:' a8 Py du,m, (-8) (4.2.22)

(where m,U etc. are helicity labels, diu(B) are the rotation matrices (see

reference (85)) and B is the crossing angle given by (84)

sin B

"
I
u
5
<
+

(4.2.23)

6 being the centre-of-mass scattering angle, qs the three-momentum and

[+]
N
1]

2 2 2
3 [t - (M_" - MAz):] [t - (MTr + MAZ) ]/ 4MA2 {(4.2.24)

reduces to the following
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H H 2 t t _ . 2
P2 = Ppp= sin Bl * o ,) = sinB
H H _ 2 t t _ 2
p11 + pl_l- cos B (p11 + pl_l) = cos B {(4.2.25)
H H . t t ;
+ = - = -
L Por SlnBCOSB(Dll + pl—l) sin B cosB

Substitution of (4.2.23) into (4.2.25) leads, after a little algebra,
to the results {(4.2.17) for the helicity frame density matrices. 1In

Appendix 3 we give an example of the calculation of the relations (4.2,25).

4.2(b) KiE K*p

For this process the allowed exchanges are the I = 0, P, £, w,

n, Hand Dand the I = 1p, A_, BT and A,. The n, H and D are low-lying
Fs

2
trajectories and thus will be ignored, leaving us with just the natural

+
parity P, £, w, p and A_ as in elastic K p scattering. The major error

2
is the neglect of 7 exchange which we expect to be important near the
forward direction. We expect the p and A2 contributions to be small since
the natural parity contribution to Kip + K*°n is small {87) compared to
Kip - K*ip.

Referring to Table 1.5.1 we find that the helicity vertex functions

at the KK* vertex are

- * - * (gg + gz)Mo
V01(KK ) = Vo_l(KK ) = - ——— (I = 0)
2/§?h

(4.2.26)
v
-q, M
2 JZNh

v_.(KK")

m
o]
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For elastic scattering, the KK vertex functions are, from Table 1.5.1

s s [ S 1
(g, + 9, + g, * 92) = -3 (I =0
(4.2.27)
= -1 (I=1) (§8->V)
i
(using Table 1.3.1 for 9y 5 etc.) and
- 7
s S 1, .
(g2 + 92) = = 3(-1) for I =0 (1) (8 +V) (4.2.28)
Thus, from (4.2.26), the functions Fx(t) are given by
F () = F_ (1) = = IZE (4.2.29)
/2 +
MK* + M
where A is the helicity of the K* (in the s-channel) and Moo= =
')

We can see from (4.2.28) that we are in a position to make an
absolute prediction for the process Ktp -+ K*ip since the exchanges are as
in elastic Kip scattering and the vertex functions do not contain factors
of gi ’ sinee the K* is a j=1, # =0, S = 1 state. Thus, our model

for the process predicts
R * R
AA (Kp + K p) = FA(t) A" (Kp = Kp) (4.2.30)

However, for the pomeron coupling, we must take into account the effect
of R parity (that is, G-parity generalized to SU(3) multiplets, see for
example, page 282 of reference (86)) which changes the P:f ratio at the
KK* vertex with respect to the KK vertex.
As we have demonstrated in Chapter 2, under the assumption of ideal

mixing (20) the P coupling at the KK vertex is (see Figure 2.2.5)

gPKK(t) B!, £YKK BI’ , ,
fXK = ( (t)ff— a_(t)) + gf.KK ( (f_f _ © (4.2.31)
g (t) % £ g op o,
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which reduces to

PKK(t)
g - ) 1+ oro(v) (4.2.32)
ngK(t) 5

where B__, B

£f represent the pomeron and its couplings to £ and f',

f££!

p(t) is the P:f ratio for non-strange vertices (see Table 2.3.1l) and

up(t) - af(t)

) = .
r_(€) e, (4.2.33)

and is given in Table 2.2.2. At the Kk* vertex, there is no coupling of

the singlet (fl) part of the £ and £' due to R-parity.

£
(where £ = 8 + 2 £
/3 31

(4.2.34)

because an antisymmetric (F-type) coupling is necessary, and this is only

available for £ . Hence we find

8
] * sree R
gf Kk - /E gtKK
(4.2.35)
c.f, gt'n == \/ingK)
and so
PKK* £XK* .
g (t)= g p(t) {1l ~ rs(t)) (4.2.36)
giving
PKK* PKK* FKK* f
g () = g () x
KK £fKK PKK
g7 (1) g g g ()
1 - rs(t)
= i—:—;;TET = 0.163 (at t = 0) (4.2.37)

where we_have deduced the value 0.163 from Table 2.2.3.
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+ *+
So the pomeron coupling in the process K'p + K "p is suppressed

relative to the £ and w couplings, and thus equation (4.2.30) becomes

v Y1 -1 (1) . A
“p+ K p) = F_(t) (—-———?—— A" (Kp) + A (Kp) +A 2(I<p)
A\ (K'p A T+ x_(6)

7 a%kp) 7 AP (Kp)J (4.2.38)

where the right hand side contains the elastic scattering amplitudes.
From the above we see that the pomeron contribution is suppressed quite
substantially, and thus the process comes much closer to fulfilling the
Gribov-Morrison requirement of no pomeron exchange.

The resulting predictions of the differential and integrated cross-
section data (87) are shown in Figures 4.2.5 and 4.2.6, where we see that
despite the fact that we have no free parameters, the overall normalization
and shape of the data is predicted with remarkable accuracy. The difference
between the two charge states is given by the p and w contributions (which
are, of course, odd under charge conjugation) and we predict a cross=-over
at ltl =z 0.15 GeV2 which appears to be vinidcated by the data (88),
although new data (8%9) at 13.0 GeV/C suggest that the cross-over is further
out in |t|, possibly as far as |t| = 0.4 Gevz. However, all the data
possess overall normalization errors rendering discussion of such fine
details somewhat academic. Nevertheless, the difference between the data
for the two charge states is rather larger than anticipated.

The kinematical factors (4.2.29) substituted into (4.2.15) give

the density matrix predictions

= p = p = 0 (4.2.39)

(since we only allow natural parity exchange).
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and 1
o = 0 = 3 (4.2.40)

where it can be shown (see Appendix (3)) that for spin = 1 particles,
(4.2.40) holds in either the helicity or the G.J. frame. A comparison
with the data (90) is given in Figure 4.2.7, which confirm the dominance

of natural parity exchange except near t = O.

]
ant

t
4.2(c) Kp *K p

Here the same exchanges as for K* production are allowed in
principle, and again we restrict ourselves to the I = 0, P, f and w and

the I =1 p, and A, exchanges in practice. Since there is no suppression

2
of the pomeron at the KK** vertex due to R-parity, we may write, foliowing

the example of A_ production given above,

2

Al;(l(p > K**p) = gi F, (£") aR(xp + Kp) (4.2.41)

with A = %2, *1, O. From Table 1.5.1 the helicity vertex functions

at the KK** vertex are

- ey T *xy 1 s sy 1
Yo ) = o T = gy (o g2)>g1 Yo
1
T
V. (KK*™) = v _(Kk**y - 1 l’(gs v g )
ol o-1 M, Meaw \°2 0 72 (4.2.82)
v;o(xx**) = o0

for I = O exchange, with q;, gg > g; for I = 1 exchange. The vertex

functions for the KK vertex are as in equations (4.2.27) and (4.2.28), and

thus, making the usual substitutions for gi 2 from Table 1.3.1, the kine-
’

matical factors Fx(t) are given by
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[ - - 1 = -t

Fz(t ) - F-Z(t ) 4M+ M
o}
(4.2.43)
F (£ =  F_ () = 2QT'_; -
&> K** o
where
- 1 2 2 \
T B 2 (MK** - MK + t')

The resulting fits to the differential and integrated cross-
section data (91) are shown in Figures 4.2.8 and 4.2.9 where in Figure
4.2,9 we have used the data (92) on the ratio (unnatural + natural)/
natural to make the correction for unnatural parity exchange to our
prediction of the integrated cross-section. We find the best fit value
of gi to be 1.16, and evidently a satisfactory account of the data is
obtained.

The density matrices should obey the relations (4.2.18) -

(4.2.21), viz.

e _ ot _ ot _ ot ot _ ot ot
P22 = P2-2 P22 Pa1 T Paa1 Pro = Pop = O (4.2.44)
t t t
= = = .2.4
Poo Pol1 Plo o (4.2.45)
and
t -
Py;  * Py =1

where the above obviously obey the transformation relations (4.2.25). 1In
Figure 4.2.10 we display our prediction of the data (93) where we see that
the agreement is fairly satisfactory. However, even at the higher s and |t|
values, (p:l + pi_l) 1s still less than one. This is due partly to the

non-vanishing of p_ _, indicating the occurrence of unnatural parity exchange

00
event at high (=16 GeV/C) pLAB and |t|, and partly due to the inequality
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of o and p

11 1-1° However, as the data are obtained simply by making a

mass cut in the K** mass region (see, for example, reference (94)), there
may well be a significant unnatural parity exchange contribution to the

background underlying the resonance.

From the foregoing analysis of the diffractive production of Az,
K* and K**, we see that the reggeorn—photon coupling analogy has given a
satisfactory account of the available data, especially the data on density
matrices, which give a remarkable vindication of the vector coupling hypo-
thesis, which forbids AAt » 2 and hence requires that the t-channel pro-
duction density matrices D’ with |m| or |m'| = 2 should be negligible.
However, as we have mentioned in 4.2(a), there is some debate on the value
of the P:f ratio for these processes (see reference (79)). Very high
statistics data (80) on K+p > K**+p at 10.0 GeV/C gives a value of

131 + 23 ub GeV-'2 for %% (MAX) Lo be compared with our value of = 86 |ﬂ>Ge62.
Thus our cross-section would appear to be a little too small at this energy.
Furthermore, as shown in Figure 4.2.9, our account of the energy dependence
of the integrated cross-section for this process is only moderate. Never-
theless, at higher energies ouf fit is in good agreement with the data,
_indi;ating that the pomeron contribution is approximately correct, and thus
giving us some confidence in the FDP hypothesis (which says that the P:f
ratio in Kip -+ K**ip should be the same as in Kip elastic scattering).

In the case of K* production, R-parity strongly suppresses the
pomeron coupling, and thus the energy dependence is predicted to be quite
steep (see Figure 4.2.6). For A2 production, the data appear to be incon-
sistent, even when the normalization errors are taken into account.

Irving has argued that in fact one should reduce the P:f ratio

in all three processes to =:l

3 its value in elastic scattering. In the case
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of K* production, we disagree with this hypothesis, but in K** and A2
production, it is arguable that our P:f ratio is too big. However, given
the large statistical errors, the inconsistencies which are manifest when
going to an adjacent energy and the rather large normalization errors,

we suggest that it is dangerous to drawn a hard and fast conclusion con-

cerning the ratio of the P and f contributions. The present data are not
adequate for such tests. What is required are more high statistics data,
as in reference (80), at various energies, including some in the region

50 -+ 100 GeV/C, which would allow one to make decisive tests between the

various models.

4.3 Diffractive Baryon Production

In this section we apply the RPCA to the diffractive production

of baryons, in particular to the processes pp =+ pN* (% , 1520),

PP * pN*(g , 1688) and pp -+ pN*(%_, 2190). Since the results we will
obtain have been reported in detail by Collins and Gault (95) we will only
briefly outline the procedure. (In fact, the work of reference (95) was
the first major test of the RPCA hypothesis). Furtherxmore, we will restrict
our analysis of the data to small Itl (<1 GeV2) in order to circumvent
the need to insert the P®P cut in our amplitudes. However, Collins and
Gault (95) have demonstrated that with the inclusion of the P@P cut, the
model is capable of giving an extremely good fit to all the data on the
above processes. In fact, the RPCA takes the shape of the pp differential
cross-section, multiplies the elastic amplitudes by the factors Fk(t) and
predicts, up ;o a normalization parameter (the covariant orbital angular
momentum coupling constant gi) the pN* differential cross-section. To
extend the fit to large |t| one merely includes the P®P cut as determined

from elastic scattering (40) and allows oneself one further normalization

parameter which determines the pole:cut strength in N* production.
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3
4.3(a) pp + pN* (5 + 1520)

We assume for simplicity that the dominant exchanges occurring

in both this process and in the other two N* processes we are considering

+ '7"'
(that is, N* (g ;, 1688) and N+ (5 , 2190)) are the I = 0, P £ and @ and the

I =1p and A2. However, in our model the 0 - A2 degeneracy is broken only

in trajectory (see equation (2.2.29) with Ei % 0) and thus we expect that

to a very good approximation the neglect of the P and A_ exchanges will have

2

a negligible effect. Nevertheless, we have checked that their inclusion makes
no significant difference. Thus we are left just with the dominant I = 0O

P, £ and w exchanges. Referring toTable 1.5.1(a) we see that the helicity vertex

functions for isoscalar exchange at the pN* vertex are

> g
+ . _ /22 s 1. ... 8 .5
Vi 1PN s =/ 3 M 39) 9, M, -39 v 9)) Ty
E'E - (o]
s s, 1
i (3g, + 29,) 9, t
2M+ 2/6 M
o}
1 s s 1
Vit ) = 30+ o) L, Bay * 29)) 19 / 2
1 1P 1520 179 U= 2M, M /3
2”2
365 oL
2 1 h% M’ (4.3.1)
3 MN* 2M+ ()
1
v+ (N* = - 3 ] + S) gl
1 3'Ps2 7% Tk
2'2
s
+ (3g Zgg) g1 M
v (PN, .. ) = 1 L o
1_3Ps520 oM, 273
2 2
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while at the pp vertex

+ _ S S

vl 1 pp) = 3(91 + 92)

2'2

(4.3.2)
3gS + 2gS

v\ pp) = — "2 y

1_1'PP M, o

2' 2 )

(as in elastic scattering).

Substituting the values of gi 2 from Table 1.3.1 we see that the
r
isoscalar P, £ and w non-flip exchanges (the flip coupling is predicted

to vanish) in the process pp > are as in pp * pp scattering except

*
PN} 520
for the kinetmatical factors FA(t), with A = N* helicity in the s~channel,

where the factors Fk(t) are deduced from (4.3.1), viz:

1
M T g
- -f% _o 1 1

Fl(t) = //; MN* [?gz + M2 }

2 1526 0

ot a;

P = =2 4 f2 Ryl (4.3.3)

-3 2v6 + MN*

o

P B = - —'1,-:

3 2/3
Fam = o

2

where we have as usual set Mo = 1 GeV.

Using the observed smallness of the A = % radiative decay amplitude for

N* + Ny, we deduce (see Appendix 4)
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« - MN)2 (M, + M)

N N
1 1520 1520 1
g, * - — — g (4.3.4)
2 2MN* 4M2 1
1520 o
Substituting (4.3.4) into (4.3.3) we may write
> * - 1 .
AA(PP leszo) 9, F,(t) A (pp *> pp) (4.3.5)

where in the right hand side of equation (4.3.5) we are using only the

isoscalar exchanges as derived in Chapter 2. Thus the differential cross-

*

= £ -+
section for the process pp leSZO

is predicted to be just the pp differ-
ential cross-section times the factors FA(t) which are regge parameter
independent, as in the case of diffractive boson production, and the
1
coupling constant gl, which is the coupling to the orbital angular momentum
* 3"
of the £ = 1 N 3 state.
In Figure 4.3.1 we display our fit to the data (96) for |t| <1.0 Gev?,
with a best fit value of gi = 0.86. As can be seen we appear to account

for both the s and t-dependence of the data extremely well, despite the

fact that the t-dependences of the pp and pNISZO %%’s are very different.
Furthermore we obtain the correct energy dependence, vindicating the FDP
hypothesis, which implies that the P:f coupling ratio is the same in both

processes.

*
4.3(b) pp ~* pN1688

Following the example of Section 4.3(a), from the helicity vertex
function of Table 1.5.1(a), the kinematical factors Fx(t) are given by:-
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1 glt 2T 9 4Tg2 t92
F_(t) = — + + +
1 Vio L am? 2 m° 2 M
2 o MN* o MN* N*M
. 2 2
-1 [ T9) 2Tg, M,
F o0 = M M Y T
- /B M *L (o] +MN*
2 N
Tgqg.
Ryt = — [ia"i ”093]
3 /5 Mox o
{(4.3.6)
2 2 2
g g, M
F 3(t) - 1 + 2 o
-3 a/5 2/5 Moa M,
g2
1
F§(t) = )
2
F _(t) = o]
From Appendix (4) we use the relation
™ )2 M)
* - *
Niggg N Niggg N 2
g - - g (4-3 .7)
2 21&, 4 M 2 1
le88 [o)
obtained from the radiative decay (c.f. 4.3.4) NEGBB + Ny = O for the

A= % decay amplitude.

Inserting (4.3.7) into (4.3.6) we may write

' * _ 2
Aylpp * PN, cgg) = 9] F,(t) A (pp > pp) (4.3.8)
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where the right hand side again refers only to the P, £ and w exchanges

in elastic scattering and A is the helicity of the NIGBB in the s-channel.

With this parametrization we fit the data (96) on diffractive N;688

production as shown in Figure 4.3.2, with a best fit value of gi = 3.97.
Again we obtain a good description of both the s and t-dependence of the

data, all the more remarkable bearing in mind that our only free parameter

gi serves merely to adjust the cverall normalization. Thus the difference

do

at ) ("’est) for 0.2 <|tl<l GeV2

(pp) (™ ellt) and do (

*
in shape of at pN1688

is giver. solely by the factors Fk(t). Furthermore, referring to Collins
and Gault (95), we see that at large |t|, we predict no diffractive minimum
(which appears in elastic pp scattering at |t| = 1.4 GeV2 due to destructive
pole-cut interference) because of the more complicated helicity structure

of the processes pp *+ pN*.

*
4.3(c) pp -+ pN2190
Following the two previous example we see; from Table 1.5.1(a),
that the functions FA(t) for I = 0 exchange (the I = O flip coupling = 0O)

are given by (where ) = s-channel N* helicity).

2190
3
3g3 T 4g. T
t 1 3 2
e = = 2 YT MM,
E 2/70 MN*MO MO + N
3 3 2 3
) a [T " . 2T 2]
2 3 2
/170 M MM M
. .3 3
F_(t) = —= i S _ﬂg_]
- ) /10 16 M° 2M, M
2 o
3
- 4g3 M 3Tg, 49;
+ —_, + 3 + 5— TM
/70 M2~ Mo M M, Ml
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3 3 2
1 3gl t 3g. T 4, T
Fy(t) = — - — - 2l — - 22
3 /a2 16 M M Mea .
3
1 t9
4v/32 +MN*
3 3
1 M092 391.T 292 T Mo
S R = 2t w1 T =2
-'2' 42 MN* (o] 42 M+ MN*
(4.3.9)
Fs(t) = - __]_'_ [Zigi Ml- + 292 Mo:l
3 4/14 M+ o
3 3.2
g g, M
F S(t) = /1_ + '——2/_‘_—9——'
-3 l6v14 4v14 M+-MN*
3
9
F7(t) = - ——7;: F 7(t) = 0
3 l6v?2 -3
Assuming that the A = % radiative decay amplitude for the decay
* - .
N2190 + Ny =0, we may write (from Appendix 4)
i
- * - * + M )
3 (M“219o N) Wyoo N 3
92 = 3 9 (4.3.10)
ZMN* 4Mo
2190
Substituting for gg in equations (4.3.9) allows us to write
3
A . - .3.
(PP * PN, o0) g; Fy(t) A (pp + pp) (4.3.11)

in direct analogy with the previous examples. With this parametrization

*

2190

Figure 4.3.3 and again we arrive at a good description of the data. Our

we fit the limited quantity of data (96) on pp -+ pN as shown in
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best fit value of gi is found to be 2.19.

4.4 Discussion of Results

In the two previous sections we have demonstrated how the RPCA
has given a remarkably simple and accurate account of the data on
diffractive boson and baryon resonance production. The only free

parameters we have had at our disposal have been the dimensionless orbital

1,2,3

angular momentum coupling constants gi

{i = 1,2). With our assumptions

about the smallness of the A = % radiative decays of the N*'s, we have be

been able to constrain all our fits to the data discussed above to just
one-parameter fits, the one parameter serving only to adjust the overall
normalization. Thus the shape of the differential cross-sections for

the processes under consideration has been absolutely predicted. However

1,2,3

i that we now turn our attention.
]

it is to these parameters g

In Table 4.4.1 we give a list of our best fit values of gi, g:, gi

for the boson and baryon processes considered in the last two sections.
According to our model, these gi's are orbital angular momentum coupling

constants and thus one might expect that gi {say)’ should be equal for

nAz, KK** and pN*(% ¢ 1520) production since all three resonances have

£ =1. As we can see from Table 4.4.1, this condition is approximately

*

. * %
fulfilled for mA, and KK but for leSZO

2 the coupling is somewhat lower.

There are of course significant normalization errors to be taken into
account, (see Section 4.2 above) sometimes as much as 30%.

Moreover, one might expect some rationalization of the gi's when
going from £ = 1 to £ = 2, then to & = 3. Instead the value of gi jumps
from 0.86 to 3.97 in going fromlz = 1 to £ = 2 and then falls to 2.19
for £ = 3. Furthermore, gi does not compare favourably between mA_ and

2
. 2
PN (% ) as one might expect given that meson and baryon regge trajectories
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Process L j Gf
np + Aip 1 1 1.10
ktp » k**¥p 1 1 1.16

pp - pN* %_ 1 % 0.86
pp + pN* g+ 2 % 3.97
pp + pN* %— 3 % ' 2.19

Table 4.4.1: The best fit values for gf, the orbital

angular momentum coupling constants.

share approximately the same slope. Nevertheless, the agreement
between ﬂAz and KK** is encouraging, certainly well within the
inaccufacies of the data.

The results of Table 4.4.1lare perhaps a little disappointing.
However, bearing in mind the simplicity of the guark model we have used
as input, it is not too surprising that the agreement is not exact. Of
course the RPCA itself does not require us to attach any particular sig-
nificance to the g:'s. In the more usual formulation (21) of covariant
reggeization the gz

i
value, to be determined by the data (see references (95), (97)), so the

's are just covariant coupling constants of an arbitrary

fact that they are all of the same order of magnitude is not without

significance.
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Figure 4.2.2(a) Fit to the differential cross-section w p »mAzp

with data from reference (77).
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Itl (Gev?

Figure 4.2.2(b) Fit to the differential cross-section TT_p -+ Az_p

with data from reference (77).
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Figure 4.2.2(¢): Fit to the differential cross-section np > A2p

with data from reference (77).
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Figure 4.2.5(a): Our prediction of the differential cross-

+ *y
section K p + K p with data from reference (87).
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Figure 4.2.5(b): Our prediction of the differential cross-
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section K p - K p with data from

reference (87).
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~ Figure 4.2.8(a): Fit to the differential cross-section

+ **+ .
Kp=+K P with data from reference (91).
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Figure 4.2.8(b): Fit to the differential cross—-section
- ko
Kp=+K pwith data from reference (91).
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Figure 4.3.1: oOur fit to the differential cross-section PP * pNE520

at small |t| with data from reference (96).
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CHAPTER 5

COUPLINGS AND DECAY WIDTHS

5.1 Introduction

In this final chapter we attempt to estimate the decay widths of
the resonances 0, A2, f, w etc. (which lie on the exchanged trajectories)
by using the meson couplings appearing in our fits. We also estimate
the values of gi (the orbital angular momentum coupling constants) from
resonance decay data by using exchange degeneracy and vector dominance

relations. There is however a rather long extrapolation from t < O (the

resonance) where the decay coupling is

regge coupling) to t = M; (R
measured. Thus we do not expect a high degree of accuracy from our

estimates.

5.2 Resonance Decays into Pseudoscalars

Consider the decay p -+ 7nm as shown in Figure 5.2.1.

\ ¢

A\
A

Figure 5.2.1: The decay of the p meson into two pions.

Using the VDM hypothesis we can calculate the decay of the p into two pions
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from Figure 5.2.2.

Figure 5.2.2: The decay p + mnr using VDM

From Table 1.5.1, we know the isovector photon coupling to two

pions, viz,

Y
v v v
g = 2(gl + gz)e = 2e

and hence, using VDM, the p coupling is just

£
2.2 = 2f
e p

The decay amplitude Ti

T = 7T = <A ...A
o 1 2-j

for the decay p + n7 is

_jr M S, A> gD(Flg')

(5.2.1)

(5.2.2)

(5.2.3)

where S=1, A=0 are the spin and helicity of the decaying resonance, 95

is the decay coupling and q the three momentum.

The Clebsch~Gordan
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coefficient <Al"'A2-j' jm |S,A> is the one appropriate for combining
L polarization vectors with the quark wave-function 1|j M >) to produce
the resonance wave- functlon. 1In this case (the p meson) 2 =0, j = 1,

m=0, A= 0 and thus

'r(l) = 2, % (5.2.4)
with
q = ?%1'; ( [M§ - (2m) 2] [Ms]) B (5.2.5)

One can of course arrive at the result (5.2.4) by explicit calcu-
lation, that is sandwiching the appropriate coupling coou(o,o,l) between
the initial state (p) wave-function and the final state (7)) wave-functions

and performing the calculation, viz:-

From Appendix 2, the wave~functions are

1, 4+ _— - =+ +, == - =+
PUr= S (uTlq) u(q) *+u(qu(q) +da(q)d (@) - 4 (g)d (qy)

i %(‘a"'(kd)u_(ku) - & (ku' k) (5.2.6)
2

=~ __1_ ty o ! ATt ot

= (@it u” (k) d (! )u’ (k)

with the momenta defined in Figure 5.2.3 below.
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N

\ ff* ( Plr)

1P ¢

v

< (p)v)

Figure 5.2.3: The decay p » 7m in the rest frame of the p-meson.
The spin indices are o, 4, Vv and the momenta q, p, p°'
i = ' + = + = -
with g =p + p', qu qd qd, ku kd p etc. The

decay products travel along the t z axes.

From Table 1.4.1 the coupling ca(o,o,l) is given by

z:( i’ + gt % (5.2.7)
1'% n_ 92 Yiam ! -2.

and hence the decay amplitude Té is

o + -
T = P (q) Ca(o'o'l) T (p) ™ (p") (5.2.8)
Since the two pions travel in opposite directions we must choose
a particular direction (the + ve z-axis say) and arrange the helicity
labels on the pion spinors accordingly. Thus we take the n+ wave-function

to be as given in Appendix 2, and for the w-,

—L(d"'\-z+ - d’ﬁ+), + L (d-ﬁ+ - d+5-); Hence w+n- is (deleting spinor
/2 V2
arguments)
-t = = -+ = +== ==} =t == 4 _4==
L@ waut - dvdtn - dutaet o+ dutadte (5.2.9)

2
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In the decay p »+ nmn (as shown in Figure 5.2.1) a qa pair is created
in order to form the final state. With our definition of the n+ and
wave-functions, we may remove qa pairs with opposite spin z-components, that
is, terms like G+u— . a_d+ . Thus the combinations of quarks available

o
to the p can be contracted to give

l =+ - -— + -+ +==
3 (dd + uu + da4a + uu ) {5.2.10)

(The two middle terms of eguation (5.2.9) do not contribute since they
, , -+ + -— -
contain terms like d d , uu ).
Referring to equation (5.2.6) we see that the po wave~function
o
correctly describes the p quantum numbers, but clearly does not give the

correct Lorentz structure gince the p is a vector particle and hence

. o .
requires a Lorentz label. Thus we write the p wave-function as

!2-'(u+1-1- + ua - aa - aah eZ(q) (5.2.11)
where o
€2(@) = (0,0,0,1) (5.2.12)

1
We then write the decay amplitude To as

=

P
1 1 +=- ———+ == -t o* i a i +
= -— - — — —
To 3 (uu +uu dad dd) €y (a) Z:(gl Mo 9, ¥u:m° ) x
1

- - -— == 4 B S—
% (@dd +uu +dd + uu ) (5.2.13)
_ A3 Al
In the rest frame, u (0) 1 u (p) = 6 for non-interacting
3 -1 A3A1
_A3 Al El + ml
quarks, while for interacting quarks ug (o) 1 ul (p) = ~m
1

shown schematically in Figure 5.2.4 below
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Figure 5.2.4:

Using these results

1 _ v o*
To = 29, €, (@
In the

Ve s =
p's rest frame P,
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3 (B) L

(A) p exchange in 1n scattering, where

A A
-4 1
u, lu" =6 and
4 1 A4A1
A A E. +m
(B) the decay p - nm where u 2 1u 1 =/ 1
1
P M
a V + =-——+ o* -t -
M_ + 292 Mo uu Y € {(q) uu (5.2.14)

(0,0,0,4), where g is given by equation (5.2.5).

Hence.
1 2 vV q \ M+ - o¥ - -
To = 293 5t 29,5 uu Yy € (@D uu (5.2.15)
o] o)
Further
o¥ + q
a, Y. € .(q) u = (5.2.16)
1 o @ 2 2m E_+m
V’ 2 V/ 2 2
while E_ +m
+ + 2 2
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and
M_" + M'IT
M, = —— = M (5.2.18)
Thus, 1 q q
T, = —2fp—-‘1-Mo + 4t v " 2f " (5.2.19)

(using Table 1.3.1) which agrees with the result (5.2.4)

With our normalization the decay width is given by

2
qub 1

r = 25 + 1 A'T

8n'M;

S| 2
Al (5.2.20)

Inserting (5.2.4) and (5.2.5) into (5.2,20) and taking into account the charge states

available in the decay g + wT (see Table 5.2.1), then

Fp > - 264 MeV (5.2.21)
i
I
Final State
(0] 1
™ 3 2
KK 4 4

Table 5.2.1: Charge multiplicity in the mesonic decays of

resonances of different isospin.

If we now assume f - p exchange degeneracy (that is, the £ and p
couplings to mn are equal) then the decay f + n1 is as given in

Figure 5.2.2. The decay amplitude is, from (5.2.3)

- 2
2 _ /2 58
T / & 2fp(M°) (5.2.22)

with 4 given by equation (5.2.5) but Mp > M. Inserting (5.2.22) into
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(5.2.20) and allowing for the charge multiplicity given in Table 5.2.1,

we find

rf-rﬂn = 117 Mev (5.2.23)
As a further example, we consider the decay g > nm . Since the
gmeson (j =1, £ =2, S =3) lies on the p trajectory, the decay is
again given by Figure 5.2.2., The decay amplitude Tz is:-

£ 3
3 /8 L (L
T =/ % 22 () (5.2.24)

[o]

(Note that the Clebsch-Gordan coefficient is the one appropriate for
helicity (A) O = 0 + O + O where the zeroes on the right hand side are the
helicities of the two polarization vectors and the quark wave-function

10> . The subsidiary condigion Pv .eil(p) = Q0 for a particle in the
rest frame with decay products moving along the 2z axes (see next section)
ensures that terms such as +1, -1, O appearing in the decay amplitude vanish,

leaving only the 0,0,0 temm ).

Thus,
7 l1 6 2
r = —7— 7 15 4, (5.2.25)
g 8mM M
g o
where
2 (e and od) (5.2.26)
4 2M g T g it
g
Thus, using Table 5.2.1
= 56 MeV (5.2.27)

g »> 7w

Shown in Table 5.2.2 are our predictions of the decay widths of the
P, W, Az, £, w*, g and h mesons into pseudoscalars against the data

taken from the Particle Data Group's (1978) data compilation (38). As
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can be seen from the table, we have given a very reasonable account of the
resonance decay widths ( p -+ 7m excepted) despite the fact that we have
assumed no extra variation in t of the coupling as we travel from

t <0 tot-= Mi over and above that of the nonsense factors and gamma
functions appearing in the exchange amplitudes (see Chapter 2). 1In fact,
we have attempted to estimate the likely variation of the couplings with

t using the Veneziano model (see reference (56)) toc calculate the change
in coupling as we continue from t € O (where the trajectory coupling is
measured) to t = Mi. However, this form of continuation does not give

the required variation with t, as can be seen in Table 5.2.2.

Predicted width Experimental
Decay Predicted width using Veneziano width
{MeV) extrapolation (MeV) {MeV)

P -+ TN 264 264 155+ 3

f -» 7n 117 234 144+ 17
g + %m 56 lle 44+ 16
h » =n 103 138 ~n 80
£+ KK 4.4 8.8 5.6+ 1.4
A, * KK 5.9 11.9 4.8+ 0.7
* 7 -

1(91675+ KK 6.6 13

g + KK 7.4 15 <<180
h + KK 11.3 15 n 10

Table 5.2.2: Meson decay widths. Experimental values are
taken from reference (3B) except for the h decays

which are from reference (98).
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5.3 Radiative Decays of vector mesons

In this section we estimate the radiative decay widths of the vector

mesons p, w and K*.

Since these mesons have £ = O their decay amplitudes

do not involve the unknown orbital angular momentum coupling constants

gl' gz

and hence we can make absolute predictions for their decay widths.

We consider first the decay p+ g n+y as shown in Figure 5.3.1.

Figure 5.3.1:

If we take the photon to be in a helicity =

((\A)

¢ o5 (b))

\V TCT (P) P’>

+ +
The radiative decay p -+ m vy in the p's rest frame.
The p momentum is p; = (Mp, 0, O, 0) and the photon's

momentum is q, = (p' - p)u. The decay products

travel along the * z axes.

+ +
= +1 state, the p and 7

wave-functions are (from Appendix 2)

+ T
G u (ku)d (kd )

Y - €

+ 1l =+ - - +
T - (d (kd)u (ku) -d (kd)u (ku))

(5.3.1)

(Q)
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and similarly for the photon with A

k , k' are defined by
u u

t + k' -
k u d
with similar relations for ku’ kd
given by
o — , i
Cy(L0 ) = Cop = Zi_,(gl

Thus the amplitude for the helicity

spinor arguments)

P

+—+ — 1
ud (2491
i

Because the decay products travel along the

vectors satisfy the condition

P

|a

M

o i
__.+
M g2 Yia
(o}

+
~1, with p+ > pt . The momenta
p' (5.3.2)

(see Chapter 1l). The coupling is

0

M
=

ia M
o

o i r
" + 9, Y ) (5.3.3)

o

+
+ 1 decay p > n+ Y is (deleting

=

) ezl @ = @ -dauh)  (5.3.9)

_.f.
Yo V2

+

2z axes, the polarization

(5.3.5)

(See equation (A4.5)) and thus the gi term in (5.3.4) above vanishes,

leaving
1 T+ i ", oa 1 =+ - ==+
T, = u 4 Z: 95 ®Yia o (q)-;: (du - du ) (5.3.6)
i [} 2

(where we have inserted e since we are

concerned with the photon coupling).

Similarly for the helicity =-1 decay amplitude,

M
-1 —= i +
T,= ud ‘/i:gZeYia M_

€
a

lao L G -3 uh
Y2

(5.3.7)
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A A
-3 1
Remembering that u (k') 1 u (k) = § (see Section 5.2), (5.3.6)
T u Ah
gives
1 -1 1 M+ +—+ +1 -+ =
T, (= T_l) = 9, — o 2ud Y, * €q (@) d u (5.3.8)
2 To
while
—+ +1 —+ - M V2
ud YG Eu (gq) d u "—(; = E (Mp - M") (5.3.9)

using equations (1.3.7), (1.3.8), (1.3.9) and (1.3.13)

Thus
o2 Cem -m) (5.3.10)
1 2 p
Mo
q (= p' ~p) is given by
- L<[MZ-(M +M)2.][M2—(M-M)25 (5.3.11)
d 2Mj p Y L p Y n ] s
i
M +M)M - M)
= mn_p
2M
p
Thus
M
1 - _p ] _ -1 :
'I‘l = % 249, = T_l (5.3.12)
Using equation (5.2.20)
3 2 2
q 2 _/”p 2( s
r = 2 3 \m e \9, (5.3.13)
p+my 8t M M,
p
e2 1 S 2
and with an = 137 and g2 = 3 (from Table 1.3.1)
Ly smy =  0.27 MeV .
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Following a similar procedure for the decay w »> my we f£ind

lw_Hry = 2.5 Mev, while FK*-+KY =  0.066 MeV.

In Table 5.3.1 we compare our predictions of these radiative decays against
the available data (38). As can be seen, the agreement is rather poor,

especially for the p and w .

Experimental Predicted Predicted
Decay width width width with
(MeV) (MeV) static Q.M.
p > my 0.037 * 0.012 0.27 0.094
w -+ ny 0.88 * 0.09 2.5 0.87
K*¥ -+ gy 0.074 * 0.043 0.066 0.040

Table 5.3.1: Our predictions of the radiative decay width of
the p, w and K* vector mesons against the data

of reference (38).

The naive static quark model (see, for example, Kokk&dee (20)) obtains

M + M
the result (5.3.13) but with M+ (= -B—E——ﬁ) »> Mp . which would of course

be true in the SU(6) limit. If one makes this replacement the predictions
for p and w are somewhat improved. Nevertheless, the K* width becomes
smaller, in disagreement with the data, implying that the SU(6) correction

employed is only appropriate for the p and w .

5.4 Estimates of g: based on resonance decays

As we have mentioned in Chapter 4, Section 3, the factors g: are
free parameters representing orbital angular momentum coupling constants.
However, they also represent the couplings appearing in the expressions for

the resonance decay widths and hence we may estimate the value of g: directly.
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For example, we may calculate the value of gi from the A_ decay as

2

follows:-

Consider the decay A, -+ pw . Using vector dominance we can deduce

2

the decay A2 -+ pnm  from A2 »+ my as shown in Figure 5.4.1.

T

Y

N

@isD

Figufe 5.4.1: The decay A, -+ my wusing the VDM hypothesis.

2

In our formalism the decay amplitude for A, -+ wy will be,

2
following the previous section
r° = 12 = A () c_ (2,0,1) T(p) Y (Q) (5.4.1)
A_ 1 2p 'va (A P Yq *Re

with the labelling defined in Figure 5.4.2.
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K ‘ﬁ)“)

o, ¢

£

7T Cpapd

Figure 5.4.2: The decay A2 -+ Ty

and p; =

As before, the decay products travel along the

+ Z axes.

From Appendix 2 the wave-functions are

- 1 + ~-— - -+
: — {d (kd)u (ku) - d (kd)u (ku))

V2
- l + [ ] Py L = 1 =+ ] +l [ ]
B,:- 3 (da (k d)u (k u) + d (x d)u (k u))ev (p")
=) 3k
/5 u &
t1 .
Y - €y ()
respectively.

in the rest frame of the

decaying particle showning the spin indices

(¢, ¥, v) and momenta (g, p, p') with qu==(p-p')
(MAz,o,o,o)) of the particles involved

[+]

(5.4.2)

The helicity = + 1 decay amplitude is (deleting, as usual, the

spinor arguments)

P
. ) 1 Y 1 +1
— 4
CﬁN g2 e gva] Ea (@

(5.4.3)
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where the term in square brackets is the coupling C\m(Z,O,l) from

Table 1.4.1. Similarly, for A =-1 the amplitude is

P
2 1 — - o* a 1 v -
1 = s 0 fy ) [CqNFqleM +CqN92egva]Ea (@)
+-= -—+
L @'a - aoh (5.4.4)
V2 .
Thus
2 - L stat so*( ' Z( ip_a+ i M_.h) 1_P1+ it g—l\( )
1 m v P © L9y g 9y Vg w1y 29 gzgw] a q
2 i o o] o 1
L @'v - aoh (5.4.5)
2
5.3.5) i Por. t1 q o* | +l
From (5.3.5) , a9, Mo S (q) = 0, an €, (p') R (q) =0
. - *1 1 - , 2
(since € (@) = —- (0, +1, -i, O)). Therefore T reduces to
o /2 1
2 1l -+ + o* — i +1 M+ 11 +-= -—+ P
Tl = — ud €y (P')engYia°€a (q)—M—gl—(du -du)lr
V2 i o] V2 Mo
(5.4.6)
Using equations (5.3.9) (from A4.13) and (A4.12)
2Ma, q
2 _ e v 1 g /2 “'A
Ty T2 99 M W om (5-4.7)
o o +
where MA2 * M1r
M+ = —2-——- and
q = __1_[(M2 N R -M)2)-l’ (5.4.8)
ZMA2 A2 Y m A2 Y n

It is easy to show that

2
T, = -T (5.4.9)
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According to the vector dominance hypothesis, the rho coupling to nA2 is

just fp times the photon coupling (see (1.2.2)). Thus the decay amplitude
2 - - 0
> i
T1 for A2 TP is

£ My 2

- '

™ (a. + o1 ) 2e p G __2 (4 (5.4.10)
1 2 e 1 2M M
2 + o

where 9; = Ze (from Table 1.4.1) and q' is given by (5.4.8) above with

M (=0) - M
Y( ) Y

Using gquation (5.2.20) ,

2
q'S M2 /3 £ gl
Tam 5 % = B > (2:+1) : 2l (5.4.11)
2 P \ZM M
o
fw
Since fp = 3 = 5.7 (see Chapter 2) and
1l
I o- = 3 PA - = 0.036 + 0.003 GeV from reference (38) we
Az +p 1 2

2
1 . . 1
find g, = 2.36 * 0.12, to be compared with our best-fit value of gl = 1.1
from Table 4.4.1.
Using precisely the same arguments we can estimate gi at the KK**

vertex since, by exchange degeneracy ,

FRKK** _ pKK**
IR = IR (5.4.12)
The helicity = *1 decay amplitudes for K**~ - K_po are
1
12
R . 2 5) o M (5.4.13)
1 -1 2M M4 CEe
+ 0
with
Mees *+ M
M =
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and 4 .
q' = 2,{** (L"i** - (Mp + MK>2J [Mi** - (Mp - r&)z]) (5.4.14)
Thus /5 f ) 2
Tewwe 5 xpo = qé: 2sz+1 < 2M+p:—i> (5.4.15)

Using the Particle Data Group's (1978) value of

rK** -»> Kp

0.0066 + 0.0022 G2V (so T, = 0.003 £0.001 GeV)

we find gi 1.95 £ 0.35 compared with our value of 1.16 from the

*-, K7p©

exchange coupling.

And so we can see that o;r estimated values of gi based on the
decay widths are comparable to owr F.bted vyslues withia a ?oc.\-;r of Ywo.
Estimates of gi based on extrapolation of the coupling from t < O to
t = Mi using the Veneziano model give values of gi which are even further
from our fitted values than the ones calculated above (see reference (97}).
Of course, given that we have found a discrepancy of approximately a
factor of 2 between the regge and decay values of gi indicates that some

t-dependence is required. Since the ‘'decay' products of p + mA_ (say)

2

have 2 > O (to be compared with p, £ etc... + 71 where the final state
value of £ = O and the decay widths are predicted quite accurately without
extra t-dependence) it would appear that such t-dependence should in turn

depend on the value of £ for the final state.
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CONCLUSIONS

In this thesis we have explored the consequences of the vector
coupling hypothesis and the gamma analogy hypothesis. The former states
that all leading normal parity trajectory exchanges (P, £, w, p and A2)
couple to high-spin vertices like vector particles., Thus only helicity
changes Alt = 0, 1 are allowed in the t-channel. This means that at
least for small |t| the s-channel helicity changes are also restricted
approximately to Aks = 0, 1. The latter hypothesis states that the tra-
jectory couplings to quarks are proportional, up to universal t-dependent
functions, to the corresponding photon-quark couplings. That is, the
P, £ and w couplings are proportional to the isoscalar photon coupling

and the p and A_ to the isovector photon coupling.

2

The principal motivations for these hypothesis are duality, which
suggests that the pomeron coupling is proportional to that of the f, which
in turn is exchange degenerate with the w (and the p and A2 are likewise
degenerate), and the vector dominance model wh%ch relates the couplings
of the photon to tﬁose of the w and p . Within the context of a naive
ideal quark model we have added to these ideas a concrete formalism using
the technique of covariant reggeization enabling us to relate form factors
and decay couplings to regge exchanges - a covariant formalism being almost
essential if we are to relate exchange and decay couplings in a simple
manner.

Within this framework our hypotheses have given, for example,
s-channel helicity conservation for the P, £ and w trajectories coupling

to NN while the isovector p and A, exchanges enjoy predominantly helicity

2
flip couplings to NN. However, as a major test of our ideas we have used
the reggeon-photon coupling analogy (RPCA) to elucidate the nature of the

elastic scattering amplitudes and hence describe all the elastic scattering
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data. With our p , w-photon coupling hypothesis the p, w electronic decay
width coupling constantsfp and fw set the scale of all our regge couplings.
Then, assuming the equality of the nucleon electromagnetic form factors,

the t-dependence of the £, w, p and A_ regge exchanges coupling to NN is

2
given just by the nucleon form factor. Since all our couplings factorize
the parametrization correctly predicts the difference between %%(BB) and
ggiMB) at small |t| (where B = baryon and M = meson). We have assumed
that the pomeron coupling is prescribed by the f-dominated pomeron hypo-
thesis of Carlitz, Green and Zee and thus we have arrived at a 'universal'
t-dependent P:f coupling ratio. Then, with only the extra assumption of
a small breaking of exchange degeneracy for isoscalar exchange (f,w) at
NN vertices, we have fitted the large amount of elastic and total cross-
section data as illlustrated in Chapter 2.

In Chapter 3 we have shown that our model can make accurate pre-

to

dictions of other cross-sections, o"“ to

Ap
encouraging has been our model's ability to predict vector meson-proton

t(s),o t(s) for example. Especially
differential and total cross-sections and, with the aid of VDM, the photon-
proton total cross-section which has recently been measured at high energies.
Having established a reliable set of elastic scattering amplitudes
we have applied the model to diffractive boson and baryon production. With
our hypothesis we are able to predict, up to one free parameter which serves
only to adjust the overall normalization, the differential cross-section for
the processes pp - pN*, mp > Azp and Kp -» K**p. Because of our quark
model input we have been able to give an absolute prediction for the process
Kp -+ K*p, a prediction which is in good agreement with the data. For the
other processes we note that the VCH forbids AAt 2> 2 and hence predicts
that the t-channel production density matrices Pom® with |m| or |m'| = 2

should be negligible - a prediction completely vindicated by the data . Further,
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the GAH is quite consistent with the other non-zero production density
matrices within the not inconsiderable errors, as we have illustrated in
Chapter 4. Moreover, the RPCA has successfully predicted both the enexgy
and t-dependence of all these cross-sections despite the fact that the
helicity structure is much richer than, and the t-dependence quite dif-
ferent from, elastic scattering. However, we are aware, as we pointed
out in Chapter 4, of the ambiguous and controversial nature of the energy

dependence of the A_ and K** integrated cross-sections.

2

In the final chapter, we have used the meson couplings determined
in our fits to predict mesonic decay widths of resonances lying on the
exchanged trajectories, As we demonstrated in Table 5.2.2 our predictions
have proved to be in accord with the data. We have also estimated the
values of gi (the orbital angular momentum coupling constant) from meson
decays and found agreement with our fitted values to within a factor of 2.
Given the rather long extrapolations involved we regard this as satis-
factory agreement. |

And so with remarkably few free parameters (8 in all) we have been
able to account for all the data on elastic scattering. We have successfully
gxtended the ideas to diffractive processes involving high-spin bosons and
baryons. A further extension to quantum-numnber exchange processes involv-
ing other trajectories in the same multiplets as f or w multiplets requires
nothing more than the incorporation of the appropriate Clebsch-Gordan
coefficients, and at least up to the level of SU(3) appears to work very
well (see, for example, reference (99)).

A similar method of relating unnatural parity exchanges to the weak
axial current has been developed independently by Irving (100) and Kane (101).
Thus it would appear that the reggeon-weakon coupling analogy RWCA (Weakon =
Y, w or z) permits one to predict essentially all those features of hadronic

scattering which depend just on regge pole (not cut) exchanges.
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APPENDIX 1

BASIC CONVENTIONS

(a) Units
Natural units are employed throughout, in which i = ¢ = 1 Energies,

momenta and masses are expressed in MeV (= 106 eV) or GevV (= 109 eV),

4o
1GeV

-1
1.973 x 10 6 m. A convenient alternative unit of length is the fermi

GeV being the natural unit. Hence 1 natural unit of length =

100" ¢ 5 gevt (A1.1)

1 £

Cross-sections are usually measured in millibarns whichmay be converted

to GeV units using

Gev'2 = 0.3893 mb (A1.2)

(b) Cross~-sections

We use the expressions

tot _ 0.3893

o 9% (s) —=>> InA (s,t = 0) (A.1.3)
dg 0.3893 2
o - 0383 A, (s,t)] (A1.4)
l6m &8 A

(A = helicity)

and thus our scattering amplitudes are dimensionless.

(c) Dirac matrices and Pauli spinors

The Dirac equation is

(y-p-mu{(p) = O (al.5)
where
iy _ o .P
§, . _ 1 3 g-2 s
u(p) = —;;- (po + m)" (1 + (po T ) Y ¢ (Al.6)
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where m = mass and p the four momentum (po, P,

1 1l
1 3 3
) = 5 and ¢ = 1l r ¢ = (o]
(0] 1l
YO = l O ’ Y = o] 2 ’ iys = 0 l’
o -1 -9 (o} 1 0]

where 1 is the 2 x 2 unit matrix, and 0, the Pauli matrices are defined

by
o& = /£ 0 1 ' 02 = [0 -i Ly, 03 = 1 0

1 (o) i 0 o -1
(4) 4-vectors

Covariant 4-vector Au = (Ao, Al, A2, A ) = (A + A), metric
guv = (1, -1, -1, -1) with AV = gu AU where repeated indices are summed.
4-position xu" = (xo, X), where xo is the time and x the spatial position.
4-momentum operator P = {13 = ii = (i-—l-,-i _V_)

u u ox 9
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APPENDIX 2

MESON AND BARYON SU(6) WAVE-FUNCTIONS

The superscript refers to the particle's charge, while the

subscript represents the z-component of its spin, m ( £ helicity)

{a) Mesons
o mesons
Particle |j, m>
1r+ L (a+u_ - a_u+)
© V2
- +—- —-——
T L (d u - du)
° Y2
n° i (G+u_ - \-J_u+ - c-1+d_ + c-l—d+)
o 2
K: L (;+u_ - ;—u+)
V2
K; L e - sah
2
x° L &'a - ah
° V2
5 Lo - st
/2
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1 mesons
Particle j.m >
o +—+
+1 88
4o s's
¢g '%i (s+§- + 8 s )
V2
o 1 -+ =+
Wy — (uu + ad4)
Y2
w® L wu o+ aa)
-1 /2
o - —_ —
w° T ow'n o+ Www o+ dT o+ qdh
(o] 2
+ =t
Pyl ud
Dtl u-a_
o % w'a + udh
2
4~ -
p:l L {u u+ - d+d+)
/E R
p‘_)l L uu - dd)
V2
- - - -
0° oW o+ uwt - gta - qadh
2
o
- +=4
p+1 du
p_l du
- -—+
o- 1 (@v o+ aoh
o —
/
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1l meson

Particle j,m >
* -
K+I s u+
*4 —
K;l s u
* = o
Ko+ L (su + su)
V2
LS o
K+1 S u+
- [y
K_l s u
[ 1. - -—
K 1 js+ﬁ + s u+)
°© V2
* -
K+‘l’ sta’
*o -
K-l s d
-.+ - -—
K*2 L E'a o+ 5ahH
V2
- *0 &t
K+1 s d+
l_<1eo _a_
_1 s
- % - -
x° L (s'a + s3h
° V2

To construct other high-spin meson wave functions we use spin = 1

polarization vectors as described in Chapter 1.
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BARYON WAVE-FUNCTIONS

l+
2
Particle j,m>
- + -+ + + - -
pt ety 2 2taut ¢ 2ntutaT ¢ 287wt
' 18 + -+ + + - -+ +
-uud - udu - udu
+ - + - -
~-duu - d+u+'u - u u+d+)
-1 - - - - - -
Pt('—"-P"’) — (2u a'u” + 2uuwat + 2atuu
18
- u_u+d— - '.:l'-d-u+ - u+d—u-
- 4 - - - - -
-duu - duu+- u+ud)
nj (Znt) L dtud" + 2atdtu + 2uTatet
vY18
_ u+ &g - atata - autat
_dat - Wwlata - adtuh
- 4 = - - -
n° (=n+) L 2a7u'd + 287a%t + 2'aa
Y18
—udda - awa - atva
- + - [ — - -
~ddu - waat- dau)
+ - - - - - -
A: L {ud s+ - watst- afust+ a uts stuta™ - stu7a’
12
- s+d+u— + -] d_u+ + d_s+u+ - d+s+u u_s+d + u+s+'d—)
2 L (wd*s - wtasT - dutsT+ a'uTs sud - su'd
V12
- s-d-u+ + s—d+u_ + d+s_u- - dsu u+s_d- + u_s_d+)
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§+
2
Particle j,m?>
A; L whatat + ufatut o+ atutuh

- 3

2
A+ - (u+u+d- + u+d_u+ + d-u+u+

1 3

2

+u+u—d+ + u—u+d+ + u+d+u_
+u—d+u+ + d+u-u+ + d+u+u_)

+ 1 - - - - - -
A3 - — (uud 4+ udd + duu)
=2 Y3 _

+ 1 S -t - + - -
a -— (uud 4+ udu + duu
|1 3

2

+ u_u+dr + u+u_d— + u_d—u+
+ u+d_u_ + d—u+u_“+ d—u_u+)

All other particle wave-functions used in this thesis may
be derived using the ground state wave-functions tabulated

above, in the manner outlined in C.l.
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| APPENDIX 3

ROTATION OF DENSITY MATRICES

The crossing relation for helicity states{B84) is defined by )

_ J t J _
oo, = E Ay B P &L (-8 (A3.1)

where m, U etc. are helicity labels, 8 is the crossing angle defined

, by (A3.2) below and ‘H and t denote helicity and G.J. frame respectively.

' q ——
: sing = -2 ging » L=t . (A3.2)
! ag S g 5w 23
where 0 is the c.m.8. scattering angle, q the three-~momentum and
2 ] 2 2 2
a, = l.(t - (Ml—M3) ) (t - (M1+M3) {I/m3 (A3.3)

-

The dim(B) are the rotation matrices defined in Brink and Satchter (85)

page 22, equation (2.18), and tabulated for J = % '

Niw

» 1l and 2 in

Table 1, page 24 of the same reference.

Using the symmetry properties of the dJ's, that is

(B) = 4 By = 4a., (-B) (A3.4)

J - -
d_,(8) = (-1) d ' —m

Then from (A3.1), for J = 2
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p?,l = diz ®) 03, diz (-6) + diz ®) P3) dil -8y + dizi(s) F;-20 dio -B)
rag, ® 05 G B+ &l B e), al B
+al @ el &l -8 + al @ el ) m + & @ el d B
+a2 @ el & -8y + & @ of & -8
v oal B pg, a2 -+ @ @) el a, B o+ Al (®) of a (-B)
val, @ ol & e v @ el & e
sl B et al B+ al_ @ of Al B + a2 8 0" &l (-8
ral oS a8 + & @ 0" a8
voa ey, al, e ¢ a6t @k B+l of al (-
va: 105, & -8 + & w05, a8
(A3.5)

with a similar expression for p? _ .

Then, using relation (A3.4), rearranging terms and forming the

H H J
combination p + p (and dropping the argument of the d 's, B , and

11 1-1

the spin label J) we find
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H H t t ) : -
= +
e+ p (° Py den d_, +a d.  + dl_ldl_lJ

G2 T8t 939, dl-—ld-l—ZJ

. )
+ - +
(Poy = Py LdlZ dj, *9;.,4 ,t24,, d-l2]

Py Py [dlz 41 T 9%t 4t T d1—2d-1-1J

(A3.6)
Then, referring to Table I, page 24, of reference (85)
H H _ 2 t t 2 t t
Pir * Py T osinB Py, mey ) cos B ey, eyy)
t t t t ;
+ sin B cos B(p21 + p2—l + p12 - P, )
(A3.7)
With the vector coupling hypothesis, only p1l and pl—l survive, hence
H 11 _ 2 t t
pll + pl-l = cos B (p11 + pl—l) (n3.8)

The other relations given in (4.2.27) may be deduced similarly.
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APPENDIX 4

THE RADIATIVE DECAY N* + NY

In order to calculate the decay amplitude for the decay N* NY,
it is necessary to sandwich the covariant coupling cuvu(sl's3'J) between
wave-functions appropriate for the helicity of the decaving N* and the
decay products N and Y . For simplicity, we consider first the decay of
as-= % particle (the N*(%—, 1520) , use helicity wave-functions to project
out the helicity amplitudes for the decay, and then make use of the
relations between wave-functions of different spins to write down the decay
amplitudes for an N* of any spin.

We work in the N* rest frame, as illustrated in Figure A4.l and to
simplify the notation we fix the photon's helicity at + 1 and label the
amplitudes by just the N*'s spin projection on the z-axis, the direction

of motion of the decay products. Thus the helicity decay amplitude is

denoted by Ti , where S is the spin and A the helicity of the decaying N*,

Y
Ka.

v

v b
N

Figure A4.l: The decay N* + NY in the N*'s rest frame. The N* momen-

tum is p; = (MN*' 0, 0, O) and the photon's momentum is

ku = (p' -p)y - The photon has helicity AY = +1, so the
N* helicity states %, % produce nucleons with helicities

1+ - respectively.

NI
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Referring to Table 1.4.1, the reduced coupling cva(% . % ¢ 1) is

given by
13 a 1 Py 1
C\)a(i :5 . 1) = CqNF ql Fﬂ: + CqN 92 QVu (nd4.1)
where a i % i u, 1
Cap F Z(gl'm— Y9 Y M_)' Can = Z 9
1 (o] (o] 1
(prd.2)
The J = % N* wave-functions are
3
-5 - *
v (p'Y = P+(p') €, (p')
(A4.3)
! .
—2 1 — l 5 1 +]'* 1] 2 5 ] -o* L]
v e =/ 3 Py e ) +/ 5 Pt e (")

+
while that of the photon is eal(k), and that of the nucleon P4(p). (Where
we have used the shorthand notation P + (p') (see Appendix 2) for the quark

part of the N* wave-function,the notation implying that with our model, the

3 .
N*(E » 1520) is a proton with one unit of orbital angular momentum, denoted
3

+1* 2
by evl (p') ). Thus, the decay amplitude T;1 is given by
2
3
= P M P
2 - +1* ia i + v 1
= ' | — _— ——
T3 PHEY e, (p)[z.:(glm * 9 Y)W 90
2 i o o o
(Ad4.4)
i 1 +1
+ Zi:gl 9, qw] PH(p) e (K)
Because of the subsidiary condition 1.3.14, then
P +1* *
Vv € W = 1L by (T o 15 -
M_ v (p") 2M0(5>+1))\.,e\, (p*) —2M°pv-ev (') = 0

(p4.5)




- 177 -

because pv is along the z-axis, so only the gt term of A4.4 will contribute

to the decay. In the rest frame, the matrix elements of le(p') lu

A
3 (p)

(where 1 is the unit matrix) are just GA'A , and hence it is easy to show

that
Prp") Y ot Py = 3] (A4.6)
=~ "1 1 :
while
+1* . +1 \ _ _
€, (p') Ia Ea (k) = 1 (A4.7)
Hence, 3
2
T = s 1
= -3g
2
3 1T =, ., H* 1P Moy Bv 1 +1
T =/ B ) ) Lot 95 Vg m) B 91 PHE) € ()
% i o o o
1 =, . +1* i 1
v /1 Been ey 29 9y Gy BHR) £ (0
- P M P
2 = o ia i +\ v 1 +1
+/§ PH(p") Ev (") Z(glr+g; Yim Fd-_)_M-_gl P+ (p) ea (k)
i o o O
2 5 ' © '
+ /2 Bripn 2 pn) 2 9) 9y 9y, P £ 00 (34.9)

From equation (A4.5), we see that the first term in (A4.9) above is zero,

while the second term (from (A4.6)}) is just

3

3

s 1
9; 9,

(A4.10)

Using P+(p') 1 P+(p) = O,the third term equals

2 = . S +1
[iEen o e

o*
(k) . Yy PY (p) €, (p")

o

(a4.11)

SI =
+

v gl
M 91
[o} [o]
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*
while the 4th temm gives zero since 83 (p') Yy szl(k) =

[remember, +1 1 _ '
€ (p) = — (O, +l, -i, 0)
e V2
o 1
eu(p) = & (pz, 0o, O, po)]

From equations (1.5.14), with t = (p' - p) =%k =0

o

v o* 1 o* 1l 2
—¢€ (P') = >— P .e_ (p') = - (Mo -
MV 2m v v aM M, N "

(where MN-= mass of nucleon)

while

M
N, +1 s -k + V2
(') v,- £, (k) g, u “(p) —_Mo —2M°

- S
Y My = M) 9,
using equations (1.3.7), (1.3.8), (1.3.9) and (1.3.13).

easy to show that

- +1 [ M+ 2
] — = -
P4(p*) Yo' €4 (k) 9, P¥(p) m ;;; (MN* MN) g
o o
Inserting (A4.12) and (A4.14) in (A4.ll) yields
1 ¥y 1 S 1 1 2 2
- V2 /2 =/— M, - M) g g7 —=——— (M, - M)
= I L 29 mw M T M
Combining (A4.15) with (A4.10) gives
/_3 s 1 MM s 2 2
3T = - 3g + ( - )
N 1 9 2 % am, M TN 9
? o

From Table 1.3.1, -Jgi = 292, so

o.

S
2

1
1

(R4.12)

(A4.13)

Thus, it is

(h4.14)

(A4.15)

(R4.16)
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3
: s |, 1 2 M 1
Ao - - ,
3 Tl 9, 292 + (MN* MN) Eﬁ;:ﬁg 9, (Ad4.17)
21

Using the properties of Clebsch-Gordan coefficients (see reference (33))

we can show that

2
M (M, - M)
S . 1.% s 1 1 '+ ' N* N
T, = -FBMS -3 g, [292 9 2 M2 ]
5 o]
° = =F(S)(s + 2)5 3gS gl (pr4.18)
3 2 2 72 :
2
where 3
2 2 \o72 1 3 e
MN*—MN (S+§)!(s—5):
F(s) = (24.19)
2/2 M M (25) !
N™ ©

Empirically it is found that the TE decay is much suppressed
2

+
relative to T? . This is certainly true for N*(g , 1688) and seems also
7

to be the case for N*(% , 1520). Setting T 0, we find from (A4.17)

S
1

2
. (M - M) ( + M) .
1 N* N Mg N1
290 + g ] = 0 (a4.20)
‘. 2 Mo, M 1.
and thus
1 2
9, (Mo, + MM, - M)
X = - (p4.21)
2

This is the result used in our fits to pp -+ pN* in Chapter 4, setting

M2 =1 GeVz.
o
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