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ABSTRACT

Generally this thesis deals with application of thermodynamical
model to high energy interactions.

The first chapter is an introduction. We give the important
definitions and also results needed in subsequent work. In chapter 2
a model incorporating various thermal components is proposed to discuss
the production of secondaries having large transverse momentum component
(i.e. PLzz 0). The model is compared to the ISR data of large PT pions.

Chapter 3 gives a brief description of experimental situation
about the azimuthal, rapidity and transverse momentum correlations.
The general treatment of multi-temperature model (MTM) is expressed.
Momentum recoil effect is included to fit the same/opposite side momen-
tum correlations data. Some other relevant models are explained in
this part for comparison. Finally calculations of average charged
particles multiplicity accompanying the trigger particle is shown in
this chapter.

Chapter 4 considers the transverse mass (mT) universality and
its agreement with MTM. Production of high mass particles and their
correlation are investigated iﬁ the framework of MTM. Again some
possible models of different authors are presented and referenced in

here.
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CHAPTER 1

STATISTICAL THERMODYNAMICAL MODEL

1.1 Introduction

It is well known tﬁat at high energies, most collisions between
elementary particles result in a large number of final state particles
and that the simple two particle reaction is rare. This fact was being
investigated in the domain of cosmic ray physics for a long time and has
recently come to the forefront in accelerator experiments. There are
many models used to explain these processes. Most of these, e.g. multi-
peripheral and quark models are in some sense perturbative in that they
involve a minimum number of specific couplings. This thesis deals with
a model which begins from the opposite point of view, namely a thermo-
dynamical model in which it is assumed that a very large number of basic
interactions take place. So that thermodynamic equilibrium is reached.
We shall see that some features of the data can be explained in a rather
natural way usinglthis model, although of course taken literally it pre-
dicts some things which are badly wrong. The correct features could be
relevant to providing an understanding of and complement to the more
detailed models. The plan of this chapter is as follows. We begin in
Section 1 by giving an introduction to the thermodynamical model. 1In
Section 2 the formation of therxmodynamical systems is discussed. Finally

in Section 3 we consider some defects and successes of the model.

1.2 Introduction to the thermodynamical model

The first suggestion that a collision of strongly interacting high

energy particles could give rise to a system with many degrees of freedom
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that reaches thermodynamical equilibrium is to be found in Heisenberg's
paper (1) on collision of high energy weakly interacting particles. Later
on statistical theory of multiple production was proposed by different
authors (2-4). 1In 1953 Landu (5) completed the main hypothesis of the
theory, namely the formation of the common system. This view was con-
tinued and completed by Hégdorn and other collaborators (6-7) with a
series of papers.

From the thermodynamical point of view a high energy collision can
be explainéd as follows. When two high energy particles collide, the
energy available in their centre of mass system is realised in a small
volume Vo of order of nucleon volume. A thermodynamic equilibrium is
established which is described by statistical thermodynamics of unlimited
and undetermined number of more or less excited hadrons which then leave
the region of interaction and decay strongly through a number of steps
into stable forms.

The reason for formation of statistical systems can be explained
by using the Mandalstman variables as follows. In a hadronic collision
for a fixed collision energy when the multiplicity is low the incoming
energy is shared among only a small number of Sij's, all of which will
then have a good chance simultaneously to obtain large values. The par-
ticles are at high energy with respect to one another. We expect then
the multiperipheral model to prevail. As the multiplicity is increased
the same initial energy has to be shared between more and more Sij's,
some of which are forced to be small. In the same way when the multi-
plicity is so high, none of the Sij's would have a chance to be large,
all the final particles form a single fireball (statistical equilibrium)
which is the characteristic process in high energy hadronic collisions.

In the sense of this statement, one would expect a large number of possible



particle states and also continuous mass spectrum of hadrons. There
would be no reason to distinquish between a resonance, fireball and the
thermodynamical system, except that they differ in the degree of excita-
tion. This would simply imply the self-consistency condition quoted by
Hagdorn which requires p(x) and o(x) to approach asymptotically to each
other as x +» *®,

Here we have p (m)dm denoting the mass spectrum of hadrons (i.e. the
number of excited hadrons with mass between m and m + dm) and o (E)dE
denotes the number of states between E and E + dE of the thermodynamical
system where E is the total energy including the rest masses of the par-
ticles. For any given energy the system is described by a temperature
T(E), but certainly there is a highest temperature To which governs all
high energy phenomenon in which hadrpns take part. This temperature is
reached in all high energy events with sufficient total energy and momen-

tum transfer. Bere the reaction would be explained by the thermodynamics

and conservation laws. Neither the details of interaction, nor the structure

of the interacting hadrons will manifest themselves. Approach to the
highest temperature To can be explained as follows. We shall see that the
density of states, i.e. 0(E), grows already very fast if only one kind of
particle is available. By increasing the kinetic energy we shall have
increased energy levels inside the box or increased temperature. If there
is the possibility of creating new kinds of particles, then the increase
of energy shall be balanced by increasing both the kinetic energy (i.e.
temperature) and the number of kinds of particles. The exponential growth
of p (m) (i.e. equation (11)) is consistent with this fact that the system
uses up the energy to increase the temperature and the number of kinds
of.particles only gntil a certain temperature =To. When To is approached

creation of a new kind of particle would be easier than the increase of



the temperature so the process of creation of particles would continue
with the constant temperature To. This situation is comparable with the
situation of a liquid at the boiling point in which the particles are
emitted from the liquid into the vapour and thereby must overcome a large
potential barrier which is to be replaced with potential wall of height
m between non-existence and existence of a particle of mass m.

Accepting the existence of the highest temperature one would expect
that this temperature must govern the transverse momentum distribution of
outgoing particles. This distribution is not affected by any kinematical
effect and from collision to collision enormously varying relative motions
of different parts of the heated volume and any Lorantz transformation
in the direction of the collision will leave P and its distribution
invariant. Because cof this invariance one can calculate the transverse
momentum distribution for T = To.

The average number of particles in a quantum state E within the

volume V is proportional ( - for bosons, + for fernions)

1

—_— (1)
eEVkT‘ t 1

Our units are: h = c = k (Boltzman's constant) = 1. For collisions at
high energies we shall make the usual assumption that all produced par-
ticles are relativistic. 1In such cases, the energy of the particle E

in equation (1) can be approximated to the momentum

2 2 2 2 2 2
E = (P + P + = + P

(P + P1) +m” = P+ P (2)
where PL and PT stand for particles longitudinal and transverse part of
momentum. So the number of particles having momentum with magnitude

between p and p + dp is proportional to



Using this, the single particle's momentum distribution would be

d3 —P/T —P/T
o
Ea§§-= constant (e * 1)= constante - (4)

In the next section we would see that at the instant of decay of
thermodynamical system the decay products no longer interact and their
transverse momentum distribution is isotropic and determined by the

Boltzman's type.

—Pp /T
gT(PT) = C e (5)

To get this we have ignored the longitudinal part of the momentum in
equation (4). C is a normalization constant. It contains the volume

element V and possible dynamical factors.

1.3 Formation of the thermodynamical system

As we said, the characteristic process in hadronic collision is the
formation of statistical systems usually made from the primary particles
by losing their energy. It is widely admitted th;t the mechanism respon-
sible for this are manifold. Many experimental data demonstrate the super-
position of distribution of different types corresponding to collisions
with different inelasticity coefficients.

According to definition the statistical system is that the particles
contained in it exchange large 4-momentum. More accurately for the par-
ticles i and j, the Mandalistman’variaples Sij - tij are of the same order.
Here the collision is called central where the system is at rest in common
c.m.s. On the average the secondary particles have the same amount of

kinetic energies. 1In central collision the multiplicity is larger. The



impact parameter is smaller and accordingly the angular momentum £ is
smaller, i.e. the expansion is isotropic. The energy transferred to neﬁ
particles ﬁay be conveniently characterized by the inelastic coefficient
K which is defined as the ratio of total energy of all newly produced
particles to that of colliding particles. It is obvious that by this
definition the inelasticity coefficient cannot be larger than unity. Of
course the defined value corresponds to the annihilation of colliding
particles and we do not have the particles of initial kind in the final
state. As far as the energy transferred to the newly produced particles
turn out to be somewhat different for each event of inelastic interaction,

then it is convenient to itroduce the mean inelasticity coefficient as

f: KN(K) dK

<k> (6)

) 'f:N(K) 3dK

where N(K) is the number of inelastic interactions with definite value of
inelasticity coefficient.. In reference (8) it is explained that the
average inelasticity coefficient <K> is somewhat greater than .3 .

It is also discussed that the value of <K> determined in equation (6)
can be approximately replaced by the product of the average number of

produced particles and their average energy, i.e.
<K> = <n> <E>

Experiments show thét the average kinetic energy of secondary par-
ticles and also average multiplicity increases with energy. So one should
expect the value of <K> to increase versus the energy of initial state.

The described central collision is not the only case, there is
always an admixture of particles in the final state which are generated

in the decay of primary particles which is excited during the collision



process and moves on ahead. This is the reason for unequality of kinetic
energies of produced particles. As an example the kinetic energy of the
secondary protons in N-N collision is noticeably higher than that of the
pions. On the contrary, the average kinetic energy of pions produced in
T-N collision essentially exceed that in N-N collision. At low multi-
plicities this leading effect would predominate. It should be borne in
mind that even the central distribution can be broken into three parts,
(a) isotropic part which can be ascribed to the decay of the statistical
system at rest in the c.m.s., (b) a forward peak which can be ascribed
to excitation and decay of incoming particle, (c) a backward peak which
is similarly ascribed to the decay of target excited by collision. There
are suggestions that if the excitation energy of.the particles reaches
several GeV, then their decay can alsc be considered statistically.
Peripheral or generally multiperipheral model is another mechanism
responsible for inelastic collision processes, to which a lot of aﬁtention
has been given to its development. Here one pion exchange connects the
irreducible parts or if one speaks in the language of multiperipheral regge
model, regions arxe the exchanged particles. Again the average multiplicity
is growing with energy (i.e. the irreducible parts). In facé one can
introduce clusters instead of the irroducible part, i.e. fireball-type
accumulation of generated pions which cannot be reduced to a system of
particles that exchange individual poles peripherally. The major dif-
ficulty of this scheme is that the final particles are collimated instead of
being isotropic. The inelasticity coefficient for such processes is con-
siderable. So if one wishes to describe the'details, one is forced to
introduce the effect of more fireballs and also leading effect. We
referred to Hagdorn's work previously. Hagdorn (9) in his thermodynémical

approach takes non-central and peripheral collisions into account



phenomenologically. 1In this theory particle generation is calculated
statistically by means of statistical formulae for each given element of
overlapping volumes of the colliding hadrons. The centre of mass system
velocity of the entire system is described by a velocity distribution
function chosen to agree with the experiment. The temperature of each
element does not exceed a certain value To and that the generated par-
ticles move apart without interacting.

In the following we shall discuss some aspects and relative con-
sequences of statistical thermodynamical model (STM) of Hagdorn's to show
that in spite of same defects to explain the entire phenomenon the S.T.M.
turns out to be correct and fruitful.

Using quantum mechanics the probability of a collision process
between two particles of four momentum p1 and 92 leading to a final state
containing n particles with four momentum Py (i=1,2--,n) would be a
function of matrix element and phase space volume, i.e. the density of
available states in a normalization box. So

1 n
P(n) = const.'/o‘ Mi §(E - iz=:1 E) 6§ (Z;si)r-li=1 d391 (7
Here we do not have an explicit form to the matrix element and the

only way to describe the interaction between the particles might be the
phase space explanation which one can evaluﬁte. This shall be discussed

in terms of statistical mechanics because of some relevant difficulties.

In fact when one is talking akbout S.T.M. must remember two entirely dif-
ferent parts contained in it, namely kinematics and thermodynamiés, where
kinetmatics is related to the fireball model discussed before. However,

a complete job would be done if all different sorts of fireballs be included,

i.e. central, multiperipheral and even fireballs produced by excitation



of initial particles to take into account the through going particles.

The thermodynamical part of S.T.M. is in fact the statistical model itself,
but certainly there is inclusion of dynamics. The matrix element in
equation (7) is the responsible element for dynamic or generally if one
looks at equation (7) very carefully, one can realize the fact that the
probability P(n) is just the mixture of dynamics and phase space. Again
what is the dynamic, and how to evaluate it. One really does not know.

As Hagdorn realized, there is one clear way to get rid of dynamic. That
is eliminating the dynamic by shifting the position of it as far as possible
in favour of phase space. This would provide the chance of taking matrix
element in equation (7) as a constaﬁt and so every thing shall be under-
stood from phase space. Now let us concentrate on dynamic and try to
eliminate it. This is well explained by Kagdorn (9). Hagdorn says
dynamic has two certain aspects which eventually have to be connected.
First of all it generates the resonance states, second it allows for
carrying over much of the primary longitudinal momentum into the final
particles. The author believes that if one can really include all resonance
states the first part of dynamic could be shifted into the dynamics. For
this one must pay attention to the fact that because of interaction the
wave functions suffer a phase shift and the density of states inside the
phase space volume is changed and so it must be readjusted to match the
boundary condition. To produce a theoretical approach the integration in
equation (7) is replaced by an integration over the total momentum and the
relative momentum of particles 1 and 2 and also weighted by (22 + 1) times

of a form like

dn do
1 - R 1% .
a)-: dp = (_" + 5 ' ) dp (8)

dn

where 357 is the available momentum states between the internal momentum
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p' and p' + dp'. 6£ is the phase shift and R is the radius of normalization
volume. Here the first term is what would remain without interaction and
the second is due to the two particle interaction of pair 1-2 in the £th
partial wave. By this means, if one takes a certain resonance one. can
reduce the matrix element in equation (7) in order not to take accoﬁnt
twice for the same interaction. Including all the resonances due to the
interaction of three-, four-, and also resonances produced by interaction
of the last resonances with remaining particles possible cut on matrix
element will have taken place which would leave it more and more constant.
The second effect of dynamic responsible for longitudinal momentum of

final particles is answered in terms of collective motion, which is in
fact the explanation for the kinematic part of S.T.M. To be able to
include all various fireballs, a continum of fireballs is introduced.

At a certain time Hagdorn describes a pp collision as illustrated in

Figure (1). At the central part of the collision particles are at rest,
but in the forward-backward direction there would be a collective motion.
Going far from the centre the velocity of this collective motion would
increase.to almost the initial proton's velocity at the end. One knowS that
the local energy density is a function of local collective velocity.

During the collision the incoming particle is decelerated. The lost of

the kinetic energy is transformed into the heat and local excitation.

When the process of deceleration and excitation terminated the particles
start to emerge from the system. The particle production will be a function
of local energy density, i.e. local collective velocity and it will be
isotropic in the local rest frame. Then by Lorantz transformation of any
local distribution one can get the required c.m.s. spectrum. The parameter
used to describe the collective motion is a velocity factor A, i.e. the ratio

of actual local kinetic energy density to incoming energy density. To be



- 11 -

able to pick up all contribution to a given A during the whole interaction
over the whole interaction volume and for all impact parameters, a weight
function F(A) is introduced which is a function of initial energy and
normalized to 1 over half of the interval. This velocity weight function
puts more weight for newly produced particles on low velocities (i.e.
'central paft) and more weights for through going particles on high vel-
ocities (i.e. peripheral). As an example, if we take fﬁ(p,E) d3p to be
the differential production spectrum of particles of mass m, then we have
to Lorantz transform this isotropic spectrum from rest frame to the c.m.
using the local weighted collective velocity F(A) and summing over all
possible particular velocity toget thec.m. differential spectrum of par-
ticles of mass m. The author believes that by having F(}) the second
feature of dynamic is understood by the same manner as the first aspect in
the rest frame of the particles. To understand the discussion in detail
the reader is requested to refer to Hagdor's published papers. So ulti-
mately by accepting what we said, in fact we can ignore the dynamic and
forget its morxe complications and take the matrix element constant and study
the probability P(n) just with phase space. As an example one particle

momentum spectrum shall be

n
£ (p/E) ; £ (BsE)

(n) 2
= dr
Z an d—pf (E,p, masses)

all resonances

(9)

3™

const Zf—g% (E, p, masses)
n

Here we have to know not just all resonances, but also must manage to
compute a large number of phase integrals, which seems to be very difficult,

especially for higher energies. This is the reason that why one must take



help from statistical mechanics which gives the same form as equation (7),
provided that the energy and momentum conservation is ignored. Of course
here in our statistical thermodynamic language there is a fixed temperature
T for each energy E such that the expectation value of the energy is equal
to the given enexgy E.

So from here a thermodynamical description for fm(p,E) would be as
follows: it is one particle momentum spectra of a given sort (m) of par-
ticle participating in the equilibrium of a system comprising an indefinite
number of all kinds of particles and resonances embodied in a heat bath of
temperature T(E), chosen such that E = <E(T)>. This is the definition coming
from Hagdorn and gives the Boltzman distribution of form (5) for the single
particle spectra.

To introduce the whole rescnance in equation (38) and all other
similar equations, a function p(m)dm is introduced which counts the number
of the particles in the interval {m,m+dm} . So one can integrate over
p(m) instead of summing all resonances. Within.the frame-work of strong
interactions there is no obvious limit to a fireball mass so the mass
spectrum p im) must be defined for all masses 0 & m < & using the self-

consistency condition defined before, i.e.
log p{m) + log g(E=m) if m -+ o (10)

It has been shown that (9)
p(m) - cm® exp (m/To) (1)
where ¢ is a constant and (9,12)

a = —5/2 for weak bootstrap solution 1
(11
a = -3 for strong bootstrap solution



- 13 -

The significant conseguence of this exponential growth of mass spectrum

is that To is a universal highest temperature and

To = 160 MeV = 1.86 x 1012°K (12)

This result is calculated by Hagdorn (9) by using the data for mass
spectrum.
Using the transverse distribution, equation (5, it is also found

that (9)

I (13)
So far we have understood what is the thermodynamical model and how the
fireballs are made. In the following section we shall see some consequences

of STM and also the possible defects of it at the end to complete this

chapter.

1.4 Defects and successes of STM

According to what we said in previous sections, when a fireball is
made it gives off its excitation energy in a sequence of particle emissions
of the asymptotically bounded average energy which is equivalent to the
existence of a highest temperature To' As quoted in spite of having a
single central decay of Figure(2a) allowing the unrestricted decay of the
fireball into any number of fireballs and/or pions, the full bootstrap
decay can be displayed as Figure (2b). The cascade decay of Figure(2c)
is also the solution of bootstrap condition and we can show that the
partition function coming both from bootstrap equation and from the cascade
decay are the same. The linear decay is the dominant decay form in the
full bootstrap decay. The average decay produces <N> = 2.4 particles,

one of them is heavy (ml, m, - mi) except that the end of the chain, while

2
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the other 1.4 particles with average mass <m> = some m_ are light, most of
them are pions, sometimes resonances or kaons, rarely bharyons (10-12).
The multiplicity distribution of w(n) of fireballs in a biroball is a

poisson distribut, i.e.

w(n,E) = <n:' e (14)
where < n(E)> = a £n E + constant (15)

Here o is a constant, reference (9).
3

Hagdorn has calculated the invariant éross—section, EEE% and the.reason
for logarithmic growth of average multiplicity, i.e. equation (15; turned
out to be the central plateau which had energy independent light and
elongated logarithmically. The fragmentation region appeared to have con-
stant multiplicity. The calculated (Feynman variable) distribution agreed
well with the data (9,13). Hatun Thun and Ranft (14) modified Hagdorn's work to

describe the energy dependence of inclusive pion spectra in pion induced

reactions. They showed strong deviation for

d’ N
3 2
wix) = Z —— a, - (16)
/s  dxdp
) T
from scaling in the central region where it grows with primary energy,
Figure (3). Except the region around the elastic peak at x = 1, good

agreement of the model with experimental data has been reported. Inclusive

° spectrum has been compared with experimental data for reaction (15)
p+p —— Yy + anything (17)

At small transverse momentum and outside the central region, the thermo-

dynamic Y spectra scale in the range 6.3 <_'G;< 52.7. But at large PT

the thermodynamic y spectra deviated from scaling behaviour, Figure (4).
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In the central region (i.e..x = 0), there is good agreement between
inclusive spectra of the model and ekxperimental results with respect to
x in the region 0 £ x £ .15 .

Thermodynamical model was used to study the many particle distri-
bution and correlations by Ranft and Ranft (16). They had two different

X (the maximum kinematically

choices for fireball mass MF smaller than MFma
allowed mass of fireball in the case of having a production of one fireball).
- The parameter w was used to show the energy and rapidity dependence of
fireball mass. At w = 0. and w = 1 the model leads to the limiting case

of multiperipheral and diffractive excitation model. By decreasing w from
one the average number <nk> of produced fireballs are to be increased.

The rapidity correlation function

(2) _ 2 2. . 2
iy ey, = .lﬂdprl a°rp," 07 (py4py)
(18)
_ & .
W%, [ an v

dy; dy,

was compared with experimental data at 12 GeV/C. The positive correlation
was confirmed for all three charge states of pion at the point

y1 = y2 = 0. At this point also

cutny > oty > ¢ ey (19)

has resulted. Of course at rather low energies not much more than one
fireball can be produced and so the contribution where both particles came
from two different fireballs was ignored, and one fireball term was taken

as the dominant one.
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The function C2(yl,y2) has been studied for reaction

pp —*num + anything (21)

at 1500 GeV/C (16). The values of the function at large values of |Ay|
were reported to be mainly determined from two fireball terms and negative
correlation has been shown.

Fireball model can also be used to discuss e+e_ annihilation where it is
assumed that an e+ and e annihilate into a virtual photon which sub-
sequently emits hadrons thermodynamically. 1In reference (17) the adthérs
have used Hagdorn's multiperipheral fireball model in which fireballs are
produced peripherally and uncorrelated. If the energy is increased more
fireballs are produced as usual. The model fits the inclusive momentum
distribution and the average charged multiplicity and also predicts the
lecgarithmic rise of

+
_ e e =+ hadrons
R = o g (22)
e e g Hu

With respect to energy, Figures -(5a, 5b and 5¢). The longitudinal distri-
bution is obtained from equation (4) by introducing the transverse compo-
nent (PT)andazimuthal angle ¢ and then integrating with respect to PT
and ¢ . The distribution of negative particles (v ) with respect to P

at c.m.s. in ﬂ_p collisions of EL = 25 GeV/y, is displayed in Figure 6.

It seems that particles from statistical system predominate for very small
values of PL and the exponential picture resulted from Maxwell Boltzman

distribution will not fit data except for a few MeV of PL. So as we said
in Section 1.2, a statistical thermodynamic picture fails to explain the
longitudinal momentum distribution of secondaries "in overall c.m.s. For
this reason we shall take the zero longitudinal momentum and ignore the
collective longitudinal motion of particles.

As a final remark we can stress that (SBM) is considered as one of

the most consistent explanations of transverse motion of secondaries. As
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mentioned before, the transverse motion has purely thermodynamical picture
while the fireball system temperature does not exceed the ultimate value
of T°=:m“, and we could get a good agreement with data until PT < 1.4 GeV/c
(Figure 7).

However the explanation of large PT distribution encounters in
this approach serious troubles and the known fact is not sufficient to
explain it. The differences between large and small PT interactions can
be summarized as Table 1.

To incorporate the large PT distribution we might assume that the
fireball temperature at initial states of motion considerably exceed the
ultimate temperature To. It is just the presence of large initial tem-
peratures that we relate to a possibiiity of large PT secondaries.

It must be admitted that in any case, the character of transverse
motion in large and small PT process turns out to be similar and there must
be a smooth joining between two parts. To describe the data we consider
multi-temperature distribution which will be seen in the next chapter

of this thesis.
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CHAPTER 11

DEFINITION OF MULTI TEMPERATURE MODEL

As we have seen in the previous chapter, the small PT inclusive
data around y = 0 is well explained by a thermodynamical model with
T= nﬂTMeV. This temperature is independent of initial energy and of the
process considered. However at PT larger than about 1.4 GeV/¢ the pre-
diction is badly wrong. For example in Figure 7 we show that at
PT = 5 GeV/c the data exceeds the thermodynamical model by a factor of
about 104! Various attitudes can be adopted at this point.
(1) The model is wrong

(ii) At large FP_ a new phenomenon is occurring which dominates the

T
extrapeclated small PT curve.

(iii) The model requires some correction which is only significant for

P .
the large T

It is of course conceivable that (i) is correct, but it is unwise to
abandon too quickly such a very simple idea, especially when it appears
to exhibit at least some approximation to the truth at low PT. The
second attitude is common and indeed an obvious candidate for the high
PT events are "hard" collision between postulated constituents of the
nucleons. Whether the low PT data are caused by a 'thermodynamical’
process or also by direct constituent collision is still an open question
hers. However the smoothness of the curve between small and large PT
(and further evidence below) suggests that a common description of small
and large PT is likely. 1In this thesis we adopt the attitude in (iii)
and try to see whether a reasonable modification of thermodynamic model

can be made and whether it then gives prediction in accordance with



experiment. The simplest modification is to assume that we have thermo-
dynamic equilibrium before particles emitted, but that for some reason
the temperature of the emitted 'fireball' is not always the same, i.e.
that there are distribution of temperatures. We refer to this model as

the 'Multi-temperature' model (M.T.M.)

2.1 Single particle momentum distribution according to the M.T.M.

To answer some of the possible questions, we start with a single

pion inclusive spectra which is generally defined as

3 3
_ d o - do
F(Ppiyrs) = E 353 B, dp_dyas
(23)
1 dzo'

27 PT c'iPT dy

Where ¢ and y are azimuthal and rapidity variables respectively, and s
defines the square of the centre of mass energy. Many theoretical ﬁodels
assume a factorized prcperty for function F(PT,y,s) of equation (23)

and they (18) write the invariant x-section as a product of two independent

functions of PT and yLab as:

F (PT'yLab' s) = f (PT) G (yLab) (24)

We shall be concerned with function f(PT). In fact since we compare
with data at Yiab = 0 the validity of equation (24) would not really
concern us. So equation (23) could be transformed to
d’o
do Je ap3 Y d¢

£(P ) = ————— = (25)
T PpdPn fdyd'¢ '
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We assume the inelastic cross-section (oinel) to be made up of

(19) contributions from various temperature T, i.e.
o
%inel - -L. c(x) ax (26)

Here A is the inverse temperature and o(A) is the cross-section for

producing a temperature T = A 1. For each A we expect a thermodynamical

distribution of equation (5) i.e.

-APT
gA(PT) = a(A) e (27)

Using equation (27), the mean multiplicity per unit of azimuthal angle
¢ per unit of rapidity at fixed A is given by

2

fw ar,, J“” -Ap,,
g, (B) = = a(}) oe P dP, (28)

o

a(f}//;

which gives the total mean multiplicity

n{\)

[+ o —APT
j PTdPT f dXxe a(d) o))
(o] [o]

fdA a(d) a(d)
o A2
fd X, 0(A) n(}) (29)

(o]

o<n>

If we wish to have a finite multiplicity even as T > «, then we require
2 .
a(l) = 0(A ). An interesting possibility would be to have a(AL/<;==constant,

i.e. a multiplicity independent of temperature. Finally we can make use



- 21 -

of our main assumption which requires the inclusive distribution f(PT)

to be a sum of fixed temperature distributions and write it to be

0

f(PT) = J; dx o(A) g9, (PT) (30)

Inserting (27) in equation (30) gives

-APT
f(PT) = f dx a(d) a(Ad) e (31)
(o]

This equation shows that f(PT) is the Laplace transform of the unknown
function o(A)a(l). It is clear therefore that any reasonable data can
be fitted by the model. Conversely a successful fit does not in any
sense justify the model. For that we must consider other predictions
{(Correlations, see Chapter 3).

We have also to note that the data on f(PT) only determines the
product ag{A)a(}A), not both of these quantities.

There are now several possible procedures. We can invert
equation (31) to obtain o(A)a(l) as the inverse Laplace transform of
the data. However this can only be evaluated if we have an explicit
form for the data and even then it will not in general be simple to
evaluate. In Chapter 3 (Section 4) we shall see that we can make use
of the inverse Laplace transform for some purposes without actually
evaluating it.

For our future calculations we shall consider a simple and use-

ful fit to f(PT) which is given by Vanryckeghem (20), i.e.

1/
£(e,) = A exp (—k(PTz PN 4’) (32)

This form produces s_% dependence for A (s) and slow decrease of k(s)

with energy according to
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Al
Vs

A(s)

k(s)

ko -k, (s)€n /s (33)

Here the parameters A', ko' v and kl(s) have different values for various
types of particles and they are displayed in Table 2. The corresponding
multi-temperature single particle distribution is compared with 8§ = 90o
data of B.S. collaboration (40) at two different I.S.R. energies /s = 23,
GeV and Vs = 45. GeV. It is shown in Figure 8. The plot shows a good
agreement of the model and data.

To discuss the energy and temperature relation and also the sig-
nificance of the function o(A)a{A) in explaining the termal condition of

the so-called fireballs, we shall evaluate it by using a simple approach.

This is to be seen below in the next section.

2.2 Variation with Energy of Temperature Distribution

As we saw in the previous section, there is a strong energy
dependence of single particle spectra increasing with PT, Figure 8.
According to the multitemperature model, this fact must be explained by
the function o(\)a()) which is the inverse Laplace transform(aff(PT),i.e.

, fm AP,
g(dya(r) = . f(PT) e dPT (34)
=lo
Ignoring the parameter v in equation (32), one can do this integration

exactly. The result of that turns out to be

2
K/ 45
AKe

e (35)
21{;5

g{r)a(A) =

which is a function of energy. To see the energy dependence of this

form, the ratio
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R = SMa@) at Vs = 53 GeVv (36)

o(\a(r) at Vs = 23 Gev

is plotted in Figure 9 versus temperature. But in fact we are interested
in v to be able to fit the low PT data by the form (32). Certainly
having kept it the integration in Equation (34) would be difficult and
one might try a numerical approach to evaluate the inverse Laplace trans-
form of f(Rr%Our attempt to find an exact form for o (A)a()l) is described
as follows.

Let us approximate the exact form of equation (32) as

-k/v
= - - 7
AR (1-e ) uey (37)
where fo(PT) is the deduced form from £ (PT) of equation (32) by taking
the parameter v = 0. Here we have represented a function H of PT such

that we can calculate its inverse Laplace transform and it confirms the

constraints

1 for PT = 0

B{(P ) = (38)

for P_ >>
0 r T v

Calculating the values of H(PT) in equation (37) one would
expect a useful analytic form for it. Having this form there must be
a good fit of the right hand side in equation (37) to the data, especially
at lower PT values. We have chosen this form to be
-avPp

H(PT) = e (39)
where a is a free parameter and a function of energy. Of course this
form agrees with the requirements mentioned above. This form has been

fitted to the corresponding values of H(PT) which gives
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a = 13.3 for Vs = 23 Gev
(40)
a = 12.5 for /s = 53 GeV
Inserting equation (39) into equation (37) our exact form for the
single particle spectra would be
~k/P,, -k/v -a/pT
£(P)) = Ae - A (1 - e ) e (41)

This form has been compared with the data at /s = 23 GeV. The result
is plotted in Figure 10. It is obvious that this form can fit data very
well indeed.

Inserting equation (41) into eguation (34), one can get an

exact form for the function o(X)a(A), i.e.

/43 -a2/4x
g(A)a(r) = - A(l - e_k v ) 'EE%;:;E——
2Vn)

(42)

Taking a from eguation (40) we have presented the comparison of equations (42)

and (35) in Figure 11 for two ISR energies, Vs = 23 Gev, Vs = 53 GevV.

It is obvious that o0(A)a()) is increased versus the energy at high tem-

peratures. At higher temperatures the curves go very rapidly towards

the zero which is equivalent to the larger values of PT in equation (32).

So generally one would expect a high PT particle at higher temperatures.
Finally we have compared the ratio R of equation (36) for the two

cases using equations (35) and (41) which are displayed in Figure 8.

The curves have generally the same shape and they indicate the discussed

final result.
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CHAPTER III

STUDY OF TWO PARTICLES CORRELATIONS AT LARGE P

We saw in Chapter II that the MTM can predict a fit to the data.
However as we have noticed already the model has the freedom to fit any
data, so in order to test it, we must see whether it gives any other
predictions which are correct. Once the temperature distribution is
given the model gives a definite prediction for any poséible process,
so in principle many tests are available. In this thesis we look at
two particles correlations where one pafticle has a large transverse

momentum. First we discuss the experiments.

3.1 Experimental Evidences

Generally the two particle correlation function depends on
4-momentum vectors P1 and P2 of two detected particles, namely (Pl' 61,¢1)
and (P2,82,¢2) as well as s the centre of mass energy square. In this
subsectioﬂ we would describe the observation of hadron-hadron collisions
in which.the charged secondary hadrons are produced together with a

large P_ (neutral or charged) hadron. An example -of such a process

T

could be the following double inclusive scheme.

+
+ h™ + anything (43)

g

+

g o)

=g
o

A diagramatic representation of this process is illustrated in Fiqure 12.
Practically the large PT particle is triggered (P{ > 2 GeV/c in most of
the experiments) in a fixed direction (y°,¢o) over a limited solid angle
(Ayo, A¢o) and the other products with transverse momentum ?Ti are

correlated to the large PT particle. Depending on the sign of the scalar
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> 1 -
products (PT1 . ?&) they could be divided into two groups of "towards

. > i
movers", i.e. when PT . P

" > o, Figure 12b, and "away movers", i.e.

<+ i >, +
PTl . P < 0, Figure 12c. Mostly the emission of charged hadrons h™
in large PT events is described by the double inclusive cross-section
which is generally integrated over the acceptance { of the large PT

i
trigger h"©® and normalized to the integrated single inclusive cross-

section. Hence we define (29)

. 6
FEIS _ adp-  EE dog (44}
2 . E- 3 .3 .
dy ap," d¢ o apd’p S o
; Q E dp“3

This formula is always compared with the equivalent one obtained for

normal events, Figure 12a, j.e.

3 PE
d fN> _ 1 g
2 inel =~ dp3 . (45)
dydP_"~ 4 ¢ o}
4
Here Ginel is the hadron-hadron inelastic cross-section and represents

the number of charged particles per GeV/c and per unit of rapidity and
per radian of azimuthal produced in any elastic collision.

The ratio of the distributions (44) and (45) measure the strength
of the correlation between hi and h‘g.

The apparent difference between normal and large PT events could
be realized from Figure 13 which displays the plots of the azimuthal
angle "¢" against the rapidity "y" for all positive and negative tracks

according to the integrated form of equations (44) and (45) over a

possible range of PT as,

P
3 T (max) 3
< <
d <N> _ 4 P 2 d <N>

e =N (46)
dy d¢ T dydPT2 a4

T (min)
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In Figures 13b and 13c the trigger particle is taken with y = -2
and ¢ = 20° and the accumulation in that region is due to it, and the
density of the particles shows a maximum at ¢ = 200o (which is 180o from
the trigger) in a broad rapidity region of about four units and also a
small second maximum is seen at the same y and ¢ as the trigger for
negative particles. In Figure 14 the azimuthal distribution of reference
(21) are shown for different charges in different rapidity intervals.

It can be realized that for both negative-and positive éecondaries there
is a strong correlation peaking at ¢ = 200° (1800 from the trigger) over

a rapidity region - 4< y < + 2. The lines shown for comparison are
smoothed distributions obtained for normal events. Of course one can see
that the peaks observed near ¢ = 200o are stronger near the rapidity of
the trigger and the strength of this correlation decreases as the distance
in rapidity from the trigger increases. Figure 15 shows the azimuthal
distributions of secondary charged particles for these different PT
intervals. It is clear that as the PT of charged particles increases the
structure in azimuthal distribution becomes narrower and more pronounced.
Again the ¢ dependence of the particle density integrated over y from -2
to +2 for the no, 90°'data is shown in Figure 16. It 1s seen that the
increase with PT’ of the trigger particle is compatible with a linear
increase up to the largest PT‘ of 5 GeV/c. This is displayed in Figure
17 also. These observations would be confirmed if one discusses them in
the sense of rapidity and momentum distributions. As an example, for

the 53° and‘90o triggers (22), the rapidity distribution, formula (44)

of the charged particles produced in both same/away side have been com-
pared to the normal ones. For the same side movers an access of particles
density over a short range in rapidity (abcut Ay = 1 units) is seen

centred at the same rapidity as the trigger, Figures 18 amd 19, which
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is supported by the measurements of M. Della Nega (23) done for 90o “o

and 200, 45o charged triggers. Of course the later data show slightly
stronger correlations for 45° than 20° trigger.

For the away side movers we have presented the results coming
from ACHM (22) data for the two triggers 53° and 90° 7° and ccEk (23)
data for four triggers (4501, 20°t) with a covered rapidity range
|y|< 4 in Figures 18, 19 and 20. The respective normal distributions
are displayed just for comparison. All of the distributions agree with
a broad-excess of particles above the normal distributions in the rapidity
range about -3 <y <3 which are centred at y = 0 as quoted before. This
symmetry about y = 0 does not depend on the rapidity of the trigger.
There is an asymmetry about zero in the rapidity distributions of secon-
daries for both charges shifted towards the rapidity of the trigger
indicated for the lower PT of trigger and higher multiplicities, Figures

2ie, 21g. But this asymmetry hasdisappeared at higher P_ of the trigger.

T
The effect of the asymmetry is reported to be more pronounced for negative
particles than positive particles. In all other cases the distributions
of different charges are the same for different triggers and resulting

in a charge ratio depending on rapidity more positive than negative
particles are produced in away side and the ratio of the positive to
negative density rises with respect their transverse momentum and
rapidities, Figure 22. We have already realised that there is a positive
momentum correlation between the large PT particle and charged secon- .
daries. To show it explicitly the momentum correlations in both same

side and opposite side is explained in terms of equation (44) integrated

over rapidity and azimuthal variables, i.e.
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1 a0
1 a aps dy d ¢ d -
Ayho fdy ¢ T dy d ¢de' dy”d¢” ap_ dy dé
| PS=h
F(h,PT) = p- 3
P - d g
ay * a¢ f @y
. T
P’=h
T

(47)

Which is the number of charged particles per GeV/c, per unit of the
rapidity and per radiation of azimuthal observed together with a high

PT particle. For the same side movers the comparison of this equation
with h = 3. GeV/c with equation (45) of normal events is done by some
experimentalists (23-25) which are shown in Figures 23, 24 and 25. These
results show the function F of (47) as a function of associated charged
particle momentum at three different /s values. For all cases the distri-
butions are above the normal ones and they indicate a positive momentum
correlation. It is also clear that this correlation is independent of
charge combination in pion pair, Figure 26.

The distribution for the same side movers increases slowly with
energy and more the large P;, Figures 27 and 28. For the away side again
data show a positive correlation in the central region and this correla-
tion is even stronger than alongside correlation, Figures 23, 24 and 25.
In contrast the alongside case the value of F of equation (47) at fixed
value of PT of associated particles appears to be independent of energy
with some errors, Figures 29, 30 and 31. As the same side, the correlation
in the opposite side is again independent of charge cambination. Studying
all these observations one could summarise the following features of the
data:

(1) At each certain energy all PT distributions are well above the
normal distributions, i.e. there is a positive correlation between

the two large PT particles. This means triggering on a large PT



(1i)

(iii)

(iv)
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particle enhances the probability of finding another large PT
charged hadron.

Azimuthal effect producing a peak at ¢ = 1800 from the trigger
particle, i.e. the observation of a trigger calls for large PT
particles in the opposite hemisphere to balance its large value

£P_.
ot Frp

Charged particle multiplicity accompanying the trigger depends on
PT‘ of the trigger. A linear PT‘ dependence seems to be unavoidable.

The increase with Pé is strongest in the neighbourhood of ¢ = 1800.

Towards the trigger there is an enhancement of rapidity distribution

of charged secondaries near the rapidity of trigger. The-position
of the distribution above the normal distribution grows with PT
of charged particles and the peak shrinks with them. But the

away rapidity distribution is peaked at y = O being independent

of the rapidity of trigger.

To describe all these features there are several types of models
proposed. Unfortunately none of these models so far could explain all
the data. In fact the observed positive correlation, i.e. feature (i) is
well explained by MTM. This will be discussed in the next section.
Using the energy and momentum conservation we have so far managed to fit
the ‘enhancement of positive correlation in away direction in comparison
with the same direction, i.e. feature (ii). This will be seen in the
5th section of this chapter.

In the last section we shall try to explain the feature (iii) by
using MIM. According to this model the charged particle multiplicity is
increased with PT of the trigger provided that the secondary particles
have PT > .5 GeV/c. The overall prediction of the model is not so bad,

but in fact it is not a linear and good fit to the data also.
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The case (iv) is not discussed by MTM. In fact we are dealing
with y = 0 and ignoring any sort of rapidity correlations.

Other interesting models to discuss these features are the con-
stituents interacting models. This is illustrated in Figure 33. Three
kinds of processes occur here as follows:

(a) The incident hadrons break up and each emits some constituénts.
(b) A constituent a of one incoming hadron undergoes a large angle
scattering with a constituent b of another initial hadron and

become as new particles ¢ and d.

(c) Now particles ¢ and d each reforms into a jet (i.e. collection of
particles in a certain phase space where the sum of their trans-
verse momentum is large).Secondary charged particles and also the

trigger particles are the fragments of these jets.

There are some reasons for validity of such models:

(1) The single particle spectra at large P (PT 2> 1.5 GeV/¢) turn out

T
to fit the scaling form:

3

d g 1
E —dp3 = o 28 F(XT' ec.m.) (48)
T
2P
where xT - T (49)
/s

The parameter n represented in equation (48) is

n = N-2 (50)

where N is calculated by using the usual dimentional counting rule which

is equal to the sum of elementary fields taken part in subprocesses.

a + b—ec + 4d (51)
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(2) The shrinking of rapidity distributions peak with respect to the
PT of charged particles in towards side and resulting from it their
transverse momentum with respect to the jet axis being limited is

expected in a coplanar two jet structure also.

(3) Kinematic aspects of this coplanar two jet picture have been
investigated by Ellis, Jacon, Lanshoff (26) which results in a good fit

to the correlation data both in the same side and opposite side.

There are several types of hard scattering models being used to calculate the
inclusive cross-section as an integral of the product of probabilities
for three processes mentioned in a, b and ¢. These models differ one

from another in the choice of the basic interaction (51) and correspond-

~

do ~ » " A
ing to that in the form given tc the —x (s,t), where s and t are the

dt

s and t invariants for the hard scattering process. These models are

as follows:

(i) da+qg+49+ q: quark-quark elastic scattering Model (27) (Q).
(ii) g+g>m+ m: quark fusion model (28) (QF)

(ii1) g+ m*m+ g

_ _ % constituent interchange model (29) (CIM)
g+m>Tm+ gq

(52)
(iv) q+q->m+qq
diquark model (30) (DQ) .

g+q*m+qq.

(v) Hard scattering types considering quantum chromodynamical

processes (QCD)

In this part we shall give a brief critical discussion of these
models. Features (i) and (v) involve four elementary fields, i.e. N = 4
which results in PT—4 dependence of inclusive spectra. This is not a
good fit to the data because experimentally the behaviour of the spectra

is closer to PT_8 which involves 6 elementary fields, i.e.
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Features (ii, iii, iv). Obviously these three models give at least one
meson jet. There are evidences that the away side produced jet in large
PT events is similar to those in Lepton-Nucleon interactions. This means
the jets in large PT events must be quark jets. The important way to
test this is to look at the.croés-sections for different interactions
and compare them. G. Donaldson, et al (32) have measured the cross-
section for the processes:
(1) p+p> 1%
(2) 5 + p nox
(53)

T+ p > ﬂox

k+p-~> ﬂox
The result of measurements is equal for all these reactions. But cer-
tainly if one expects the process gq + &—a-M + M to take place, then there
should be a difference of at least 40 times between the two processes
(1) and (2). So one automatically would conclude that the feature (i)
is the only correct process to be considered. At this stage one has two
choices to discuss. Either the scattering probability for qq elastic
scattering must be modified to produce R{B dependence for inclusive
spectra, or the scattering is assumed to be between two objects rather
than single quarks, such as hadron-hadron scattering.

An example of such modification is the work done by Field and
Feynman (27). The authors disregard the theoretical argument that
the differential elastic cross-section of featuré (i) must vary as

s 2 f(t/g ) and try to fit a form:

L k6 = 2 (54)
dt (~-st)
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. -8
to the data. This form produces PT and good angular dependence of
inclusive cross-section untilPT = 5 GeV/c. The normalisation parameter

is given:

A = 2.3 x 103 mb GeV6 (55)

It is well known that all partons are not quarks, that half of the momen-
tum of nucleon is carried by another constituent, i.e. Qluons. It is
possible that some of the high PT particles could result from gluon inter-
actions, so to get a reasonable fit to the data one must include all con-
tributions coming fram gluon interactions. To the lowest order in per-
turbation theory, Culter and Sivers (31) have calculated the cross-section

for all fundamental QCD processes (i.e. feature V) as

Qq —s 99; Q9 = G9s qq—-dd, QqV—=Qqv, qv — qV,

aq—-» vV, VV g qa and vy —vv (where v stands for a
vector gluon). These processes contribute an approximately PT-4 dependence
to the invariant cross-section. Here the quark distributions are what
Field and Fynman used in their calculations. 1Instead of parameter A

they have introduced a form:

a (@2 = =3 (56)

(1 + .36 4n (92/4))

for the quark-gluon coupling constant. Here Q2 is the exchange momentum
transfer. The célculated inclusive spectra of F.F. and C.S. models are
exactly the same for PT-S 5. GeV/c, but C.S. curves stand above F.F.
curves for higher values of PT. Both models work very well until

PT X 5. GeV/C but still there are some doubts for their correctness.

Because A of equation (54) is too large and there is no theoretical

argument to produce neither A nor aS(Qz) of equation (56). Both of
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these models fail to fit very large PT data. There is a recent data

by Clerk et al (33) which show PT

dependence for inclusive PT spectra
for PT » 5. GeV/C. These facts indicate that all these models have their
own theoretical defects and none of them has the ability to explain the
entire data. They might be absolutely wrong or they still need very
large corrections. So it is not just absurd, but also it is conceivable
that one should assume a hadron-hadron scattering instead of constituent
interacting models. We saw that the MTM could fit data very well and it
would be unlikely to ignore it at this starting stage. It is worth
pursuing it in the hope of obtaining the features which could be incor-

porated in a more elaborated theory to be able to answer all arising

questions. In this thesis we will compare the predictions of MTM for

different aspects tc see whether some qualitative agreements are possible

or not.

3.2 The Theoretical Approach

It was shown (Chapter 2) that the multi-temperature mode of par-
ticle production could fit the large PT pion data and its energy depen-
dence exactly. Our aim in this section is to compare the model with data
in some aspects, e.g. correlations among the large PT secondaries.

According to equation (43), the inclusive cross-section of two

oppositely charged outgoing particles could be defined as:

’

6

’ do
f(P ,P ) = N > ” » ”
)
T’ (PTdPTd¢ dy )(PTd a d ¢dy)

(57)

Here we must remember the main assumption of the model, requiring the
sum of different components for the observed particle spectra, which A was

the parameter characterizing each component and also the essential content



of the thermodynamical distribution (27) which implies the production of
uncorrelated particles within each value of temperature (see Chapter I).

So the overall inclusive spectrum (57) for the two particles is obtained:

E(P.PL) = I G £, (B7) £, (P) A (58)
o]

Inserting equation (27) would give

e 2y = M2 o T Fp® Pp) a (59
(P Pl = J'a G(A) e )
e}

It is obvious that this equation has no dependence on azimuthal
direction of the two particles and in fact ignores the momentum conser-
vation. We have derived the consequence of this effect by introducing

momentum recoil which shall be seen in the fifth part of this chapter.

It is seen that f(P “) is a function of (P~ + PT). This could be

P
T T T
checked by using an appropriate experimental measurement, but suitable
data is not yet available.

In order to exhihit the presented correlations we consider the

normalized correlation function as

£(p_,P") o,
- _ T T inel
Z(BgePp) = £(p,) £ (P) (60)

which in our model is given by

o AP’ +P)
. j' o) ac(A) e T T f G(A) dA
» - [o] [o]
Z(PT'PT) - -AP P ‘)\P (61)

[ avom)am e T
(o]

T aom am) e
o
To get this equation we have used equations (26), (27) and (59).
Deviation of Z(P;,PT) from unit would show that the correlation

is attractive or repulsive. These correlations would be due to the fact
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that more than one value of A is contributing, which is the basic
assumption of (M.T.M.). On the contrary if we choose a single value Ao
for A and replace o (A) by % nel G(A—Ao), we would obtain

-A (P; + PT)
a(dA)e
o)
-\ P° -AP

all) e °Tap e
(o} (o]

]
1t
-

Z(P,P) (62)

which indicates absence of correlation.

However since we know that o0(A) is a positive definite number, we
can show that Z(P;,PT) is greater than or equal to unity for Pé = PT.
To see that we can deal as follows:

Any integral of equation (61) can be written as scalar product of two

ket or bra vectors, i.e.
J'om ar £(\) gA) = <f|g> (63)

In Chapter 2 the functions in the left side are described. If we
. ~APp - ,
represent the function e a{(A) as a vector IPT> then equation (61)

would be

<PT|P;> < 1f|1>

2(p_,P>) = (64)
T T -
>
<PT|1> < tlp;
=P‘
If we take PT T then
<PT|PT> <1|1>
Z(PT;,P,I,) = 5 (65)
< 1>
REATY
According to inequality
2
< > < < P > < > 6
| <p [1>]" < <p [P > <1]1 (66)
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Thus we have Z(P;,PT) > 1 for (P; = PT) and we expect a positive correla-

tion at least over some range in the neighbourhood of P = P One can

T ';‘
understand the reason for the generally positive correlation in the
following way. Obserxvation of a high PT particle is more likely if the
event is highly temperature event, this then increases the probability of
a second high PT particle.

It will be noticed that the general form (61) is not the same as
the measured quantity for correlations because all of the experiments are
done with a trigger of momentum (P; > h) and there is usually no fixed
momentum selected for the trigger.

To get the desired expressionand comparable with experimental data
we should integrate both the denominator and numerator of equation (60) our
acceptance of the triggering particle and redefine the correlation

function as ©
ldP‘ “- rd PA P
__"P‘=h P- AP dy"d ¢ £(P P ) O,

T inel
_ T
Zh(PT) = = (67)
J" PTc.PTdy dé f(PT)f(PT)
PT= h

This quantity is the same-as function F(h) of equation (47) divided by the
normal single inclusive cross-section of equation (45).

So we wpuld end with the relation

F(h) of equation (47)
Zh(PT) = (68)
F (normal) of equation (45)

In cénclusion we can quote it again that the observed positive correla-
tion is predicted by equation (67).

As we said, the single particle data uniquely gives o(A) a(A) . To
test our picture against the plots displayed for the content of section one

and also justify the predictions, we require o(A) and a(l) to be known.



So we have to choose a model for one of them. However we could in
principle determine this form Z(P;,PT) for any P;, then Z(P;,PT) could

be predicted for any other P;. But unfortunately there is no such data

to follow the procedure. There is a certain model introduced by Frdyland
which is to be seen in the next secticn. Then our continuation to calcu-
late 0(A) a(A) directly from equation (31), at least for this aspect shall

be seen in section four of this chapter.

3.3 Frdyland's Model

It is possible to transform the usual amplitude for high energy
proton-proton scattering to a form as a function of impact parameter (34).
This procedure would provide one with the necessary information about the
inelastic overlap function, G(b,S); which gives the probability of an
inelastic interaction at a given impact parameter.

0inel

5 = G(b,S) (69)
db

By using this fact and also assuming the incoherent production of par-

ticles, Froyland (35) presented the inclusive spectra as

d3o d40
E - = 21 { bG (b,S) E =5 db (70)
dp d"pdb
d4o
Here 3 is the inclusive distribution for fixed impact parameter b.
d' pdb

Fitting the data gives the expression for the G(b , s) of the form (27)

G(b,s) = P exp (—?i/ZB) + Plb2 exp (—33/281) (71)

Where P, B, P,, B, are parameters independent of b, but they might depend

1 1

on energy (36). The useful fit of these parameters with respect to energy

is shown in figure (34).
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Froyland has ignored the collective motion of particles and has assumed

the Maxwell-Boltzman distribution

4 -E/
- -1V N (72)

d3p<ib

Here K is the Boltzman constant (K = 1 in the unit h =G = 1),

E = PT2 + m2 is the transverse energy and T(b,s) is b and s dependent

temperature.

The normalization function N(b,s) has been described by two dif-

ferent models

A

[(kT)2 + m(kT)]

2 .2

Ve© b

I - N(b,s) (73)

II - N(b,s)

We have used the second model to fit the data in this section which leads
to the following linear form of inverse temperature with respect to
impact parameter

1 1/

A(b,s) = T8 cb + ds 4 (74)
’

So the transverse momentum distribution equivalent to equation (30)could be

written as

_1/
27 4
£ = 2bab s, () = G fang, (pT)(x —as %)
o [o]
* _1/ -EX
= 2 P eowm (- as Ve a
C
om
-1 3 _
= IV s (b - as a) & g
C o]
= o) a() e Pray (75)

(o]
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This gives
Yoo3
o(A) a(h) = 2—72' V G(\) (A - ds 4 ) (76)
Cc
and
-1/, 2 -EA
fA (PT) = V{A - ds ) G(A) e (77)

Then the average multiplicity for a fixed value of impact parameter

would be

21Tf f)\ (P,‘r) PT dPT
o

_1/ > _ )
= 2mG(A) V(A— ds 4)] PT dPT e AE
o

ol 2 2
( ~1/4 5 2 -A (PT +m)
= 7wVG(A)\d -ds ) d(PT" +m) e
2

o(A) <n(A)>

1/2

-1/ -
- wla-as 74) G(A)f cdt e Mt

m
- -mA
- 2nv(x-dsl/4) G(\) (-% [ekm ])
., /4 1 m -Am
= nv(A—ds )G(A) L_f + T] e (78)
A

To find the expression corresponding to o(A) and a(A) of multi-temperature
model, we need to integrate equation (69) over impact parameter. This procedure

would give the form comparable to equation (26).

> ~1/4
- = 2 -
Ciner = 21rfG(b,s)bdb = fcm(x -ds ) ax
= ag(A) ax
SO
21 ~1/4
o)y = Z (x-as *)em (79)

o
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Inserting into equation (76) would give

1, )2

a(}) v(x- as

(80)
Taking the inelastic overlap function as its scaled form with radius
R(s), (35), equation (75) for single particle inclusive spectra would be

i 2,2 2,2

written as . : -, 3 —RIB//, -R%: B

£(p ) = 2RV ¢ - 8s -ERt B 5 r2,2 1
T 2 -14 R ¢ €

c ds

o

R (81)

Here the variable A is changed to T =

o>

Using equations (79) and (80), the two particle spectra of equation (59)

could be expressed as
-1 S
2_6 4 .
£@’,p ) = 2R £-95__ | REE" +E) oineyat (82)
T T ~1/4 R
ds

2
c

R
Then the momentum correlation function corresponding to equation (47)

could be described as

5
21 .2 6 a 4 RtE
—;v R f at |t - SR G(Rt) e x
c ds-L@
F(P,A) = R
o —1/4 3
3-2’-' vr? f dt t_g_sR___ G (Rt) x
¢ c:ls_l'é X
R
Rt(P‘2 + 2)1/2
- » - m
ar; P T
PZ=h
0 2 1/2
dP; Pé e—Rt(PT +m)
P“=h
_1/4 5
- vr® at ¢ - 98 cre) e NF (o 4 h+m) e~ (MHh) (RE)
4 R 222 Rt
ds /4
_ R
) a Ya 1 h {m+h) Rt
atle -2 G(Rt) ( + -ﬂ) e
1 R 2.2 Re
as -/ 4
R

(83)
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Division of this equation to f(PT) of equation (81) represents the usual

correlation function Zh(PT) of equation (67).

The parameter C in the previous equations appears to be as a function of
(b/;), but it has been chosen as a constant of order One as Froyland (35).

Using the result of reference (36), the parameters were calculated as

Rz(s) = 1, + 0.05 &n s
\' = .56
(84)
C = 1.
_1/2
d = 10.1 GeV

Putting these values into equations (81) and (83), we have evaluated
Zh(PT) at Vs = 52.7 GeV and h = 3. GeV/c. It is plotted as a dashed cruve
in figure 35 and we see that the correlation effect is too small or there
is no correlation at all to explain the observations. So the linear form
of inverse temperature as a function of impact parameter is inconsistent

with experimental results.

3.4 General Treatment

As we predicted the (M.T.M.) can fit the two particle inclusive
data. Our aim in this section is to evaluate Zh(PT) of equation (67).
Here we will present a particular parametrized for a(i) which is quite
satisfactory to show the plausible correlations. The momentum conserva-
tion will be excluded until the next section and so we shall " average"
the same/opposite correlations. To start with, we can calculate
o(A) al{A) from equation (31), which is the inverse laplace transform of

f(PT).
C+ i

a(d) a(d) (85)

I
2}
o

’av
)
&

- joo
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Our prediction and its consequence is consistent with o(A) a(}l) tends
to zero as A + » . Considering this fact the contour in equation (85)
has been chosen to go along the imaginary axis. So the two particle
momentum spectra of equation (59) could be expressed

o “A{P° +P ) joo

T T dg AQ .

f(PT,PT) = jd)\ a(d) e j 571 f(q) e (86)
(o] -1

For PT and P,; positive we could reverse the orders of integration to

obtain

i -

_ -A(P. + P_ - q)

4y = e T T

f(PT,PT) = I o £(q) I dl a(d) e (87)
(o]

_im

Here we would parametrize a(A) as a polynomial of degree n > 1 with

a =20
(o]
n
ad) = Zan A" (88)
1
Then
jo
n o “A(P. +P_-q)
- - d n T T
£(P,/Pr) j- —‘1-2"1 £ (q) Z fdk a e
_iw 1 (o)
jo .
a n an n.
- 2ri qu’,+P _ )n+,1
TS 1 Pp* Pp-d
joo
_ _.n n! £(q)
i:‘ Y2y ong G@-r2-2P*t % 89
1 Liw \1 7 Pp = Pg

_Using Caushy's integral formula we can get a simple relation between
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f(Pé,PT) and nth order derivatives f(n) of the two particle inclusive

cross—-section as
- n (n) .
£(P/B) = 213(-1) a f (Pr+ P) (90)

To evaluate Zh (PT) of equation (62) we need also

P » » - - -1} (n-l) _ (n"2)
f PrdP; £(P7,P) = Zan( 1§ [h £ (h+ P) - £ (h+ PT)]
h

' (91)
and_ © 00
- » , _ » (_1) _ (-1) » » =
‘[PTdPT f(PT) = PT £ (h) f f (PT) dPT
h .
=tV m - P (92)

Here we have used the relation

(_l) _ - - ~
f h) = f d PT f(PT) (93)
h

Inserting equations (91) and (92) into equation (62) we can get

oinel zan(_l)n E‘f(n-l) (h+PT) _ f(n-2) (h+PT)J
n

z (P) = ; -
htT £, [h £y - 2 (h)]

(94)
k(2 +v))
We shall take use of Vanryckeghem (20) fit,i.e.f(%‘,‘ﬁl\e , to

the single particle spectra as before. Then some simple approximation

would give

n

£ (n) =[T—i=] £ (h) (95)
27vh2 4+ y2
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To evaluate Zh(PT) ; Wwe insert equation (95) into equation (94), then

2 /4

inel (h+ P )
g

a
a Z n 4’(h+P )2 >\ \)2

Zh (PT)

L

exp 31( L4v4|2 TN 4»4,1;2 F Ve - 4/(h +PT)2 + v2]$ (96)

This form can be simplified still further if we try a fit involving only
‘one non-zero value an. Then the cross-section constraint can easily be

incorporated. First we use'equations (31) and (32) to write

-x* bTZ NG =P,
Ae = 1 o(A) a{}) e <)
o
(97)
> AP
= j.a(l)a e T dax
n
o
The assumption a A" = a()) is used to derive this form. We multiply
both sides by PTn- and integrate from zero to infinity, thereby
obtaining
« - -K4}PT2+\)2 o o —APT -
- _ n -
A fPT e dPT : anf Aa(A)ydx [e PT dPT
o Q (o]
= a_ f(n—l): oax = a_ (n-1)! o et (98)
or
. olnel L o - —K4 PT2 + \)2
A 1) f PT e dPT (99)
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Inserting into equation (96) would give our final expression for correla-

tion function Z (P_) as
h T

Y
2 2
1 X > <(h+PT) + v
(n-1)! 2 2
4/(h+PT)2+v2 h + v

KL4/(h2+v2) + 4¢PT2 + v2 - 4/(h +PT)2 + vz—]
e

Zh(PT)

x -
) n-1 _K4 PT2 M v2

X f PT e dPT (100)
o

This form has one free parameter, n. It can be an integer or ncn-integex.
We expect no difference for both cases. For even values of n the integral
can be evaluated easily. As an example if we consider the case when n
equal 2., we would get a constant average multiplicity (e.g. see equation
(28)). The procedure for this would be
a oinel Jr _K4/P 2 + v2 o \

o

n
A

Here we have introduced Yy according to

2 2 4
PT + v = 4
So we can obtain
¥-
2 2
o2 A\ 3 3/ 3y v
a{d) =a, A =——= | =5 + + +
-2 O:Lnel K4 K3 2K2 2K

2

A A G (K,A)
inel
o

(101)
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Inserting into equation (28) would give

a(A) AG (kr\’)

n(A) = 5> = inel = constant (102)
X a
Then
3. ]
2
Z (P) = _3_+_3/\_)+3_\i+kv 1 (103)
h T K2 K 2 2 4 5 ) > 3
\[(h +v) ((h+PT) + V)

eK 4/h2+\)2+4|/PT2+ vz-‘-;/(h+PT)2+v2-4/v_2

This is plotted in figqure 35 and also to see the difference made by
changing the form of a(A), we have also calculated equation (100) with other
values of n. The plot with n = 2.5 seems to give a reasonable fit to the

data. Of course we have not taken into accout the momentum conservation effect
in this calculation yet. 1In the following section we will show the most

detailed fits, using the recoil effect in our calculation.

3.5 Momentum Conservation Effect

In the previous sections we discussed the observed azimuthal
distributions indicating a strong peak at ¢ = 180o from the trigger and
also presented some data, supporting a strong momentum correlation for
the away side movers than the same side movers as triggering particle.
These features are mostly due to momentum recoil effect which has not
been included in the M.T.M's. calculations yet. our final attempt
to complete the model and obtain a good comparison of equation (100)

with the data is proceeded as follows.
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L 3

According to the definition of the thermodynamical model (see
Chapter 1) and also improvements done to it (M.T.M.), when two protons
collide they liberate all their energy in a volume V and form a compound
system of mass m in their own centre of mass sytem. The system endure
certain dynamic and subsequent expansions. The production of particles
takes place at various temperatures. At an explicit and probably higher
temperature we expect at least a pion with negligible longitudinal motion
to trigger the apparatus. The rest of the system will be a cluster of
mass Mc. The transverse motion of this cluster must balance the large P
of emitted trigger. In the rest frame of the system the momentum four

vectors could be defined as

= 2 _2 1/2
Pr; = l_(m + PT ) , 0, O, P% {104)
P = [(m + 9‘2 )l/2 o, 0, - P'] (105)
C C T ’ ’ ’ T

To explain the double inclusive form (43) we would also have the second

pion to emerge with momentum four factor

P = [(2+1>2)lé-001=] (106)
= m T ’ r 'T .

Now consider a Lorantz transformation of the c.m.s. and the laboratory
system. So the last two momentum four vectors could be expressed in the

lab system as

2 2 ¥ j
Em +P_ “y° ,0,0,pP 2_| (108)
T

L)
n

According to the definition, the scalar product of momentum four vectors

is invariant under the transformation, so we can stress
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P = MC (m:; + P ) (109)

We can ignore the pions mass to rewrite it

1
2 L2.72
+ - =
PT [ﬁMC + PT ) + PT ] MC PT2
or
p = ‘1 [(Mz + p-? )1/2 + p* ] (110)
T2 MC C T ) T

Experiments always take Pé h = 3. Gev/C. If we expect M

- >> h, which we do,

the expansion of the content of the bracket in equation (110) would result
[’_’ P, = h']
= P r =
PT2 - 1 m (11L)

The t signs are respectively for the same and away side movers.
h , : .
Putting (h + P_ )=<h + P [; t — instead of (h + P_) in equation
T2 T MC T
(l00) we can get our final expression for the same side and away side

correlation functions Zh(PT) as:

2 \1/4

2
1 K (h-fPTz) + v

T(n) 4 - 2 2
2 /(h+P. )2 + v2 h + v
T

K[‘l»’hz + v2 + 4/PT2 + v2 - 4\/(h+PT22 + vz)]
e

Zh(PT) =

n-1 T .
X f PT e dPT (112)

Here as we said, the parameter n can be an integer or non-integer number
and T'(n) is the usual gamma function for the case n being a real number.

We have taken the maximum value of Vs to MC and calculated equation
(112) for three values of n = 2, 2.5, 3. These plots are displayed in
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figures 36, 37 and 38. It seems that the case n = 2.5 is much more
plausible and the recoil effect is much more acceptable. Of course the
whole ceﬁtre of mass energy cannot be taken away by the recoil system.
To check this fact we have used Mc = (.2~ .4- .6 - .8)/5. The result
with Mc = .8/s gives the best fit which is seen in figure 36. So as a
general summary of the results we ca.a confirm the fact that the M.T.M.

does give a reasonably good description of the correlations and the

variations between the towards side and away side.

3.6 Charged particles multiplicity associated with the large PT

particle

There is evidence shown in figure :16 that the peak centred at
¢ = 180o of azimuthal dependence of the mean charged multiplic¢ity <n>
becomes much more pronounced at large PT values of trigger particle.
To clarify this fact we have represented the PT variation of <n > in three
different azimuthal regions for three different triggers (n+,k_,P) in
figure 40. There is also the s dependence of <n > displayed in figure 41
at PT = 1. GeV/C and PT = 2.5 GeV/C for triggers (n,P,§). As the result
of this picture (37) an approximate linear PT and n(s) parametrization

has been suggested to fit the data.

= +
<n(s,PT)> A+ B PT C 2n(s)
= A' 4B (P_ -1 +¢Cn (°/s) (113)
T [o}
with /i = 44.7 GeV

The measured average multiplicity seems to depend on the quantum numbers
of the triggers, i.e. the parameters A',B,C have the following

relations:
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A' is ¢ dependent and A'(P) > A'(P) =A'(K ) > A' (k) = A'(1)
B is ¢ (very small) dependent and B(ﬁ.) > B(P) = B(k) > B(k+) = B(ni)

As ¢ increases, there is a tendency for C(ﬁ-) to increase, for C(P) to
remain constant and for C(T) and C(K) to decrease.
To explain some features of tihis data we can define the average

multiplicity of pion type PT accompanied by the trigger pion of type P;

by -
Jl; f(PT,PT) PTdPT d¢dy
<n(R)>,. = — ) (114)
PT f\PT)

where R represents a region of PT, Y, ¢ which in practice shall be the

acceptance region of the apparatus.

Using eguation (S0) we can write this as

n (n) -
;(-1) a_ fRf (P, + P7) P, dP_dyds
<n(R)>_., = = (115)
P, £(5)

Suppose the apparatus measures all particles with a certain region of

¢, y with PT > P then equation (115) becomes

n-1 {n-1) - _ e(n=2) .
§ (-1) a [PT (pT +pT) £ (pT +pT):l

>
<n{ PT) >

P, £(p))
n Ly 4 2 2 4 L2 2
+

_ zr; 7 2 (PT PT) + v 2 (PT'..'PT) +y
= T n

k) +p7)2 + 2 /4 - _ @22 + v3Ya

o T T T

(116)

This is a complicated expression and comparison with experiment requires
care. Especially the range for P is a very fundamental important neces-
sity. For example i1f we take the case with PT = 0, we cannot include the

effect of momentum conservation and again we must accept the average of
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the same/opposite distributions; so equation (116) would be:

-2
K
n
T 24/PT, + v2

<n(>Q)_>P, = a (117)
If we take the case with n = 2, then
/o ¥4 .
T inel K K 2K
which is just energy dependent and cannot fit the data. Here we have
used equation (l0l).
For the case n = 2.5 which produces the best fit for the cor-
relation function
© /.2 2
4/P° + Vv 1.5
A 1.5 KT X
<n(>0)>P, = 3 PT" dPT e x| ——— (119)
T inel “o 24¢ -2 2
PT + Vv

which might increase with respect to energy but unfortunately it decreases
with P; of the trigger and cannot agree with the data.
As a general comment if P is such that

PTK

- >> 1 {120)
((pT+ 1>,£‘)2 AL

Then for two different triggers P; value, we can have (for n = 2.5)

. 1V v
- 3/ » 2 ” 2
. 4 -

<n(>PT)>P‘ p + PT K[_(PT+PT ) PT ]

Ty - ‘.2 e 2 1/2 (121)

P + P ) - . /2 -
<n(> > ..+ -
n( PT) ) Tl T o K E?T PTl) PTl ]
T2

Ty 1

PT ({<.5 GeV/C) and increases with P; for large PT (P
1

For P fixed, this expression decreases with P; for small

p > 5
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CHAPTER IV

PRODUCTION OF MASSIVE PARTICLES AND PHENOMENOLOGY OF mT UNIVERSALITY

4.1 The Universality of m,

Following the observation of production of § and other massive par-
ticles there has been a great deal of interest in the mechanism for pro-
duction., Many models use a single, "hard", collision between constituents
to produce the V's, in which case the rate depends upon a coupling con-
stant. However it is of interest to see whether the multi-temperature
thermodynamical model can be applied to these processes. A crucial feature
of all such models is that particle production rates are determined by the
particle energy, or, since we work at y *0O, by the transverse mass
m, = (m2 + PT?)!’. As we shall see this feature is well supported by the
data, in particular it explains the observed suppression of production of
heavy particles. A theoretical reason for my dependence of productioﬁ
rate would be as follows.

The inclusive production cross-section of a hadronic system C in

reaction a + b —+ ¢ '+ anything is a function of three invariants named

s, t and u, and can be described by a covariant amplitude as

d3 o c

c ab
F {(s,t,u) = E —/——— (122)

ab c d3 ﬁz

where s = (Pa. P), t=(P .P), u= (P .PC )i Pa, P

P are the
b a c b c

bl

four momentum of a, b and ¢ and Ec =P .

These invariants could be replaced by a set of defined variables:

%2 2%

mT = (PcT + mc )

xT = mT/ . (123)
/s

X - Pey
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If we consider only frames which differ from ab centre of mass system by

a boost along the transverse (T) direction to the beam. As we said in

the previous chapter, the majority of experiments are done in the central
rapidity region, i.e. xL = 0, which dominates the production multiplicities
at higher energies. This fact is true not just for light particles, but
also is true for massive particles productions. So if one accepts the
dominant central region of whole particle production and takes the quoted

3 invariants large enough, then we could find the relation:
— = n (124)

This give§ the universality hypothesis, i.e. the inclusive cross-section
of equation (122) depends on My, rather than m and PT of produced particles
separately. Accepting the naive thermodynamical model (see Chapter 1).
This statement would be supported by Plank's formula of equation (5), i.e.

a e_mT/T
¢

E ~

3 1 // 2 2
d “p m +P
g ge? T (125)

u
‘73

For a single production of massive particle m with ordinary spin JM and

Isospin IM the factor g is given by

g = (2, + 1) (23, + 1) (126)

If we generalize equation (125) to the multi-temperature model then the
corresponding assumption would be that a universal function of m,, should
fit the PT, m and s dependence of production of all particles. A possible
form for this is that given by vanryckeghem(20) which is designed to fit

the data for light particles and which we have used earlier, namely:
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3 -1<4v/m2 + P 2 + v2 —K4/mT2 + v2
o] A e T
dp3 = Ae = f(mr) (127)

o]
Ina
n

Note that we ignore the small variation of k and v with the type of

produced particle which is a "non-thermodynamical" effect. If full
thermodynamical equilibrium were not attained in high energy collisions
another reason for smallness of production rates for high mass particles
could be 2weig rule. This nonachievement of thermal equilibrium might

be from the collision time which is expected to be very short. If we express
allthesedynaqical factors together with factor g of equation (126) within

a factor XA the exact inclusive production cross-section should be

E——r = A £ (mT) (128)

We would discuss the validity of the factor (A) later in this section,
but it has turned out to be equal to 1 (38,39). This indicates that such
dynamical factors are either absent or surprisingly close to unity. So
at this stage we would take A = 1 to continue our discussion.

Taking the PT dependence of =, p, ¢ and y from references 40, 41
and 42; and using equation (123) Michael (38) has demonstrated the mT
dependence of inclusive cross-section which is displayed in figure 42.
Here the curves for p, ¢ and y are normalized to %3-2 2 mb, 0.1 mb
and 0.1 pub respectively.

wé have compared equation (128) with this data for p and y particles
at PLab = 200 Gev/c (corresponding to v¥s = 20 GeV) in figures 43, 44
éualitative agreement of data and multi-temperature prediction is obvious.
By this consideration it is clear that taking A equal to unity is the

best feature. It suggests the approach to the thermodynamical equilibrium

before the observed hadrons are emitted. This confirms the fact that the
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small production rat2 of massive particles is mainly due to the large
value of my, and reiated to the rapid exponential Qecrease of f(mT) versus
m,- One_can realize that even if we include the factor g of equation
(126) fhe production will not be large enough to describe the possible
dynamical factors as Zweiq's suppression factor. However the parameter

A of equation (127) se=ms to be taken too large. If we expect the thermo-
dynamical model to explain directly emitted particles and ignore the
contribution of resonance decay outside the interaction region, A might
be smaller. This woul.d provide the inclusion of some factors as g into
equation (iZB). Having accepted mT universality one can predict the

increase of 0 with energy for a fixed (large mass) from the consequence

of corfesponding behaviour of m-meson cross-section at fixed (large PT).

This caﬁ be calculated as
/s/ /s/
2 2
3 3%
p ap g 42 . p ap g &9 (129)
T T ¢ a 3 T T g 3
o] p o} pc

SO0 we can guess the same energy dependence for pions and massive par-
ticles. This is well supported by experimental measurements. For com-
parison see figure (44). Comparison of data with equation (129) is
displayed in figure 45 for various particles.

Integrating the MTM expression (i.e. equation (127)) over PT one
can also show the ere:gy dependence of prodauction cross-section. For

particlz of mass m an it ver unit of rapidity the result would be :43)

& - ITACG.a _ (130)
whare
. Ve 6ve 6 -
Gk,a, = . . - ey \'-:— + =t "—i— T =) {131)
’ K L& e G
N F S N
anc

& = (m2 -r\)2)‘ : (132)
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Reasonable approximation would give

3.
do . 4mAm "~ A o
a;' = —-———K exp (k/l-n) (133)

y=0

We have displayed the comparison of this formula with data in figure
46 for Y (3.1). Except the low energy region the formula can fit the

data very well. Doing the same calculation for %~ (3.7) would give

[]
Ag¥
gy > 0.027 ub (= .0036 b exp) at Vs = 19 GeV
y=0
~ 0.05 pb (= .03 b exp) at Vs = 30 GeV (134)
= 0.218 pb at Vs = 63 Gev .

which are slightly higher than observed values. But the difference is
decreasing by increasing of energy. We do not have data for con-
siderably higher ISR energies and those who are measured indicates
large errors. Roughly saying we hope the model to fit any accurate

data.

4.2 Michael's Model

In this section we want to consider an altexnative approach due to
Michael to the apparent mT universality discussed in the previous section,
This begins by postulating that the rise of large PT-pion.data with
enexgy is due to the necessity of having to satisfy momentum conserva-
tion. Thus when one large PT particle is observed the other particles
must have, on average, a higher PT than in a usual event. Due to the
suppression of high PT this then further reduces the large PT cross-
section. The reduction factor increases to unity as the energy increases,

because then the recoil momentum can be shared among a large number of
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particles. Hence the rise of large PT pion data with energy is
explained.

Note that if this picture is valid, then there should not be a
corresponding effect for large m, small PT, particles, so observed
universality would be an accident. Indeed the large m cross-section
should be independent of energy and should be compared to the large
PT cross-section at infinite energy. For fixed mT this would then
require a significant (Zweig-rule) suppression for ¢ , etc. (i.e. the
factor A would be <<1). It is possible to argue with the above picture
on the grounds that 'thermodynamics' should apply in the centre-of-mass
system of the decaying 'fireball' rather than in the centre-of-mass of
the original collision. In this case the above recoil suppression
effect should not. occur. As we shall see below the data suggests that
the large M processes have the same energy dependence as large PT (at
fixed mT), so they confiyxm that Michael's model is incorrect.

An independent emission type of model is a possible mechanism to
explain the idea. Here each cluster decays isotropically into pions

having the Gaussian distribution for the transverse momentum. The

general case of Gaussian class of models define (46)

1 n [
= exp| -B(q,., ..... . )] 8L . (135)
o qu ....... qun qu an qu

Expanding this in a Taylor series about U, = 0, keeping only the

i
lowest order term and insisting on rotational and parity.invariance
would give the ansatz

1 don

n
= C exp| -~ M, _ s(Z )
T E T 2am o a | ea

1 n i,j=1

(136)
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where M is a real symmetr.c matrix and c is a normalization constant.
It is a simple consequence of equation (136) that the transverse

momentum distribution of any one of n particles has a Gaussian form (45)

U

f(qT) exp (-BqTZ) (137)

Here we have

8 = <P_"> (138)

- In large PT events if we consider the PT of the trigger to be shared
equally among the other particles, the transverse momentum of the

balancing particles shall be changed from qT to
i

P
Q@ - s (139)
Inserting this into equation (137) we would have the expression
Pp 2 P
-8B L (q, - */ 8L, q, -BL T/
e i q%. <n> = e i qu <n> (140)
2
BIq
instead e i in matrix element of equation (136)

To get the form (140) the momentum constraintzi Iy - 0 has been
i

used. So having a large PT particle would require a momentum supressioon

2
-B P/
MS = e T ~<n> (141)

It is obvious that the large PT particle with energy E would reduce the

energy available for other particles to
9 - (/s-m? - qf (142)

Using this the full sﬁppression factor coming from energy and momentum
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consexrvation (46) would bu

2

2 2
-1 P
2 N 9”\? £ns T -
D ,qy) = ( ) ) in Q2 exp l:_ /<n><PT2>:l (143)

Taking an asymptotic PT distribution of single particle spectra,
Michael has included this suppression factor which gives reasonable
fit to the large PT pion data. For production of a particle of momentum

qu this spectra is

Qjr
o}
[o])
s
il

g £1q) D @%,q) (144)

Q
te]
w

As we said asymptotically the factor Din equation (144) tends to I, (Figure 4)
and the single particle spectra is given by f(qT) with a rapidity density

2
of g . The parameter g2 is related to the average multiplicity as
2
<p> = g“ &n <n> (146)

Because of substantial rise of inclusive spectra from ISR to asymptotic
energies a flatter PT dependence for f(qT) is chosen (46), i.e.
2\-2

f(qT) = > 1+ (146)

Ta \ a2

Inserting this into equation (144) and taking

<n> = -3.8+1.88 &n s + 1//5

—13 - 13 Gev’

a (147)
92 = 2.3
O op = 40mb

We have repeated Michael's (46) calculation of pion spectra and compared
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it with MTM fit to the data. There is a very good agreement of two
distributions both for small and large PT region. The result of
suppression factor D(Qz,qT) calculated from equation (143) is displayed
in figure 47, The curves are the distributions of D(Qz,qT) with
respect to energy for different fixed qT's. The agreement with data
is quite satisfactory.

To explain the My, universality and production of massive particles
a dependence on the type of the produced particle is suggested. The

author expects the form

do

3 AV | 2 (cp) f(mT) (148)
dy d P

TOT
T y=0
for inclusive spectra of pp scattering at asymptotic energies. Here
UTOT (cp) gives an asymptotic reduction in production cross-section of
particles at different quark content.

Inserting mTz = m2 + qq? instead of«$5 in equation (144) we have
repeated the calculation for Yy as pion. The factor GTcnf(cp) turns
out to be épproximately 65 in order to produce equal cross-section for
pion and § at fixed m, = 3.1 GeV. OUnfortunately this model does not
show the rise of cross-section for massive particles, e.g. § , at
existing energies. The inclusive |y production cross-section is illu-
strated in figure 48 for two ISR energies, /s = 23. GeV, /s = 63 Gev.

There is no increase of the spectra at small qT's at all, which is the

reason why the model is not adequate.

4.3 Effect of correlation on production of heavy particles

In Chapter 3 we saw how the multi-temperature description of large

PT pion production automatically gave positive correlation for production
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of two large PT particles and that the predicted correlation agreed well
with the data. If our explanation of this correlation and of mT univer-
sality have any claim to reality then the same type of correlation should
be observed among production of two large mass particles. Here we calculate
the effect of this correlation on production of two heavy particles by

using MIM. A crucial result of this procedure is that the correlations

are calculable versus the particles mass. For production of two heavy par-
ticles one might suggest that the probability of obtaining particles 1 and
2 together can be explained by the product of the probabilities of obtaihing

them separately, i.e.

£ .
l e & ——————d6° = A - Ty £ )
oinel 1 2 d3P1 d3P 12 Glnel Glnel

(149)

This equation ignores any sort of correlation among the products. It has been
used by Fratschi (39) to describe the two heavy particles production by
applying the pure thermodynamical model. To explain the small production
rates of massive particles the Zweig's suppression factor and some other
dynamical factors have been taken into account. To get this equation,
equations (128) and (123) have been used. As we know this equation is
not true for production of large PT pions, where there are substantial
momentum correlations. Our aim in this section is to show the strength
of this correlation. Again here we have difficulty with factor A of
equation (128), which must be obtained from data as explained before. It
would be cancelled in the correlation effect otherwise we shall take it
equal to 1. Using the definitions of chapter 3, the cross-section for

producing particles 1 and 2 is
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d20(1,2)

2
— = 2m°| P a_ p. & f(m ,m ) 150)
dy, 9y, ./ﬂ Ty T1 Tz Ty Ty" Ty (

here £ (mT ¢ M ) is the inclusive cross-section for producing a particle
1

2
of momentum PT and mass my together with a particle of momentum PT and
. 1 2
mass m2. It is given by
f(m_ Y€(m_)
= T T2
f(mT m, ) = Tnel (151)
1 2 g

when correlations are ignored as in the work of Fratschi, Hammer (39) and

MTM predicts instead.

(n) AG (k,v)

£ m_ ) = a £ (m_ ,m_ ) = fm  +m_ ) (152)
mTl T2 n Ty T inel T,
To get this relation we have used equations (90) and (29), where
n
(n) a"£ (z) -k
£ {2) = 0 = —_— £(z) (153)
z=m_ +m
dz 24 22 + \)2 T]_ T2

Using equations (150) and (151) the uncorrelated two particles cross-section

1d be:
wou e2 (1'2)
d o\;ncorr (2'n)2 A2 -
= . G (kmy) G(km,)
dy1 dy2 c1nel 2
1 d ! d 2
= - d“ d° (154)
inel Yy Yy
where o
G(km,) = P dap fim_ ) = J. m dm f(m_)
i f Ty Ty T4 b mg T i Ty
= o T my - 7P @)
2/™
= m, f(m,) (155)
i k i
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For the case n = 2, inserting equations (162) and (153) into equation (150)

the correlated two particle cross-section is:

d20(1'2) ) © o 5
3 Cgrr - f2m _ag Jf'("’) P, 9P, P, 4P d—f—z(—zl (156)
y, 9, olne 1 1 2 2 4z
o o]
2 2
(2m) ~ A G (k,V) k
= - mm, exp |-k (m, +m_)
_inel 12 1 2
(&)
Comparison of equations (154) and (156) gives:
(1,2)
d20c0rr . ( ,2 sy N
—_corr = = kv — ) exp [;K (mi, + m_)
dyl dy2 2 mlm2 L ( 1 2
(1,2)
do
! 3
- m‘f_m‘i,,\,‘) __uncorr (157)
1 2 dy, dv,

Equations (154) and (157) lead to the cross—-section for
Yy, VP, ¥'y', DD and yDD given in table 3. There is large cor-
relation effect increasing by the mass of doubly produced particles which
is not obtained on the pure thermodynamical model. As we said, we predict
the thermodynamic ecquilibrium to reach i.e. A = 1. Of course this is not
a very encouraging prediction since it limits the amount of measured
dynamical information. However the accurate measurement of § cross-section

might produce a value for A in favour of these dynamical effects.
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Figure 1

Figure 2a
2b

2c

Figure 3

Figure 4

Figure 5a

5b

Sc

Figure 6

FIGURE CAPTIONS

Proton-proton collision at a certain time according to
Hagdorn's interpretation. X is a velocity factor (see the

text).

Statistical decay
Full bootstrap decay

Linear cascade decay

Comparison of the inclusive pion spectra, (a) n+P > n+ + X

and (b) W+P + T 4+ X at 8 and 16 GeV according to the thermo-
dynamical model with the experimental data. Thermodynamical

mode]:——-1§ GevV/C, ———--= 8 GevV/C, Beaupre et al: 0 16 GeV/C,

. 8 GeV/C.

Comparison of the inclusive spectra pp > Y + anything at
ISR energies with the data, according to the thermodynamical

model. The spectra are plotted in the c.m.s. in the form

3
EdTN = F(X, pT2
a’p

of pTz for Vs = 44.7 GeV: @&Y/s

s S) for O

/A

X £.15 and different values

30.20 Gev, @vVs = 47.7 GevV,

a4 vYs = 52.7 Gev.

~

Invariant cross-section for inclusive charged particle pro-
duction. The solid lines present the fits of the model.

See text.

Charged multiplicity as a function of /s. The solid line
represents the fits of the model. See text.

EIL- as a function of Vs, The solid line represents the

ag
()
fits of the model., See text.

R

Centre of mass longitudinal momentum distribution for all
negative particles and all multiplicities in 25 Gev/C T P

collisions.
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Figure 9

Figure 10

Figure 11

Figure 12a

12b
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Figure 13
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Pion transverse momentum distribution. Dashed line denotes

the thermodynamical result.

+
Plot of single particle inclusive spectra for ™ at two dif-
o
ferent ISR energies and & = 90 . The curves are the fits using
the parametrization of reference (20) to the multitemperature

model.

The ratio R of equation (36) versus temperature. The solid
and dashed curves are corresponding curves belonging to

equations (3%)and (42) respectively.

The inclusive single particle spectra with respect to PT.
The solid curve represents the data of reference {40) and

the circules correspond to equation (41) of MTM,

o(A) a()) versus the temperature at two ISR energies
/s = 23 GeV (i.e. Solide Curves), Vs = 53 GeV (i.e. dashed

curves).

The inclusive emission of charged hadron h in a minimum bias
o4
event pp * h'© h™ x

+
The inclusive emission of a charged hadron h™ in a large PT

+
event, triggered on a charged or neutral large P& hadron ho

at fixed c.m. angle 6, in the ¢ hemisphere towards the
Tt 4
trigger, pp~+h“® h™ x

In the ¢ hemisphere away from the trigger

Plots of azimuthal angle ¢ versus rapidity y for (a) all
charged particles observed in normal inelastic pp collisions,

(b} all positive particles with PT > .5 GeV/C observed in

large PT events. The triggering particles can be seen clustered

around y =-2, ¢ =20°, (c) all negative particles with PT> 0.5

GeV/C observed in large P, events.

T
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Figure 14 Azimuthal distributions of positive and negative particles
with PT > 0.5 GeV/C in large PT events. The lines indicate
the azimuthal distributions observed in normal events. The

trigger is centred at ¢ = 20o and y = -2,

Figure 15 Azimuthal distribution of charged particles in the répidity
interval -3 <y < 2 for different PT intervals of secondaries.

The trigger is centred at ¢ = 200.

Figure 16 Azimuthal distribution of charged particle densities integrated
over Iyl < 2 as a function of Pr of the 1 for the 90" data.The lines
are hand-drawn curves through the data. The data are symmetrized
around ¢ = 186>to reduce the statistical errors (22). A

typical error bar is shown for the PT = 5 GeV/C data.

Figure 17 Charged particle densities integrated over llBOo - ¢| <30°,
[yl <1 as a function of Pé (right hand scale). For a comparison
with the data of reference (12) of reference (22), the ratio
to the normal events also have been given (left-hand scale).
In the CCR experiment the charged particle ratios are given
for the interval [130 - ¢ |< 230, Iyl <0.8. The definition
of minimum bias triggers is not exactly the same in the two

experiments.

Figure 18 Charged particle densities for the 53o data. The solid lines

give charged particle densities in normal events.

Figure 19 Charged particles densities for the 90o data, averaged over
events with PT of the 1°>2 GeV/C. The solid lines give

charged particle densities in normal events.
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Rapidity distributions of charged particles produced away from

the 20°% and 45°* large P_ triggers for three P, intervals.

T
The verticle scale i1s the charged multiplicity, times 100, per
interval of A¢ and Ay (in radian-I). Normal distributions are

shown as solid lines.

Rapidity distributions of positive and negative particles wiéh
PT > 0.25 GeV/C in away region. Two samples of -large PT

events are distinguished: Lower PT events 1,5 < Pé < 1.7 Gev/C,
Higher PT events Pé > 2.5 GeV/C. 1Inside each sample a cut

is made on the observed charged multiplicity: Low multiplicity

N < 7. High multiplicity N 2 7. The trigger is at y = -2,

Charged ratios. The ratio of positive to negative particles
in the ¢ region opposite to the trigger is plotted as a function
of their transverse momentum for different y intervals. Lines

are drawn to guide the eye.

Function F of equation (47) versus associated charged particles
momentum (PT ) at /s = 44.8 GeV. The open squares show the
. T2 .

normal distribution of equation (45) at the same energy.
As picture 23, but this one is displayed at Vs = 52.7 GeV.
As plot (23), but this is displayed at /s = 62.4 GeV.

Plot of F of equation (47) versus PT of various opposite side

associated charged particles,

Plot of equation (47) versus PT of associated charged particles

at different ISR energies for the 7° trigger.

Plot of F of equation (47) with respect to energy at different

associated charged particles momentum region shown above.



Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Figure 35
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\
Away side distribution of F of equation (47) versus PT of

associated charged particles at different ISR energies.

The same as Figure 29, but this is displayed by “o triggering

particle.

Enexrgy dependence of F of eqﬁation (47) for different momentum

region of associated charged particles.

Rapidity distributions of charged particles emitted towards the

o}
90o large PT 7 trigger for four PT intervals of associated

particles.
(a) .4 < PT < .6 Gev/C (b) .6 < PT < .B Gev/C
(c) .8 < PT <1.1Gev/C (dy 1.1« PT <1.7Gev/C

The hard scattering model for the large transverse momentuin

process A+ B> C + X

Results of fits to data: (a), (b), (c) and (d) represent the

parameters, P, Pl' B and B, respectively. Solid and dashed

1
lines are visual fits linear and quadratic in £n PL respectively.
Shpwinq Zh(PT) the ratio between the conditional inclusive cross-
section and the inclusive cross-section. A value of unity means
there is no correlation effect. The dotted line represents the
experimental value of the same side and the upper limit is the
experimental value on the opposite side. The dashed curve is

the prediction of the Froyland model and the curves called by

values of n are the predictions of MTM.



Figure 36

Figure 37

Figure 386

Figure 39

Figure 40

Figure 41

Plot of Zh(PT) versus PT of the charged particle accompanying the
trigger at Vs = 52.7 Gev . The upper and lower dotted curves
are the experimental values on the opposite and same side
respectively. The solid curves are the calculated value using
MTM and also including the recoild effect with n = 2 and

M = /s = 52.7 GeV.

Plot of zh(PT) versus PT of the charged particle accompanying
the trigger at Vs = 52.7 GeV. The upper and lower dashed curves
are the experimental values on the opposite side and same side
respectively. The solid curves belong to MTM after including
the momentum recoild effect for the case with n = 2.5 and

M =+Vs = 52.7 GeV.

Plot of Zh(PT) versus PT of the charged particle accompanying the
trigger at /s = 52.7 GeV. The upper and lower dashed curves
are the experimental values on the opposite side and same side

respectively. The solid curves belong to MTM after including

the momentum recoil effect for the case n = 3 and Mc = /§==52.7 Gev.

‘'Plot of Zh(PT) of equation (112) versus PT with n = 2.5 and
Mc = .8 V/s. The dashed limits show the opposite/same side

correlations at Vs = 52.7 GeV.
The PT dependence of average charged multiplicity of

+ - . » 1]
m , k , P in three ¢ regions. Linear curves are superimposed

curves resulting from a fit to equation (113) of the text.

The £nS dependence of average charged particles multiplicity

+ -
(integrated over ¢ ) for w , P and P triggers at PT = 1.0 and
2.0 GeV/C. The curves result from a fit to equation (113) of

the text.
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Figure 42 Experimental invariant single particle production cross-section
as a function of the transverse mass for different types of
particles. See the text for references.

Figure 43 Invariant single particle spectra (for p particles) versus the
transverse momentum. Triangles are the data taken from reference
(38) for Vs = 20, GeV and the curve belongs to MTM at the same
energy.

Figure 44 The y production cross-section predicted from equation (127}
for Vs = 20 GeV (lower curve) and Vs = 52.7 GeV (upper curve).
The data points are from reference (38).

Fiqure 45 Data on total inclusive cross-sections in pp interactions for
different part:.icle types are shown as a function of particle
mass at energies around /s = 24 GeV along with the prediction
of mT universality, calculated from the 7 transverse momentum
spectra at the different energies labelled on the graph.

Figure 46 Plot of clo/dy y=0 for J/, production as a function of Vs

v
coming from equation (.33). The data points are from
reference (44).

Figure 47 The suppression fact, D, defined in equation (143) as a
function of energy at fixed qT values. The curves are just
eye line to make the picturé clear.

Figure 48 The inclusive ¥ production cross-section by using equation (148):

AVS = 63 GeV , oVs = 23 GeV.
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At large collision encrgies
the cross section is just a1
function ot P and scaling

behavior is cbvious :

Scaling is not '
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produced particles
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and take part
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distribution on
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No dzpendence is clear
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is shown
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{pp ——N+x}
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Table 1:

The difference between large PT

and small P, events
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TYPE PARAMETERS
FAR(?I'TC LE A:f.ti)".;‘;.!g\ﬁ_,l %G eV )-1’2 v GaV 1?E(ﬁs}((i-:‘/-i%i XEIND_
" |12 263 [16:50 2 150,25 £.041137 2 .04] 1.3
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K* 114 £13014.95 .27, 28 20.2[1.292008] 5.0
K™ |22 2 13[16.89232142 £ 151154 £ 0] 5.4
D |372125216.820.450.73 *.08M 012 048] 2. 56
B [1252712(18.42.75}85 * .0411.38% .08l 6.20

Table 2: Best values from a fit to the y = 0 data

of reference (40) taken from reference (20).



V5 (GeV) UNCORRELATED CORRELATED RATIO
P [ oY [ $Y oD [ Gob | PP | ¢o | Gp | 0D [ LD [ Gy | G | ¢ | 0O D
238 {18017 {60162 |2 200 5 0712 8010 R 4x i 6510 im0 oo 10 | 220 | 430 | 22 | 206
8 (00107 200 B a0 8910 N ex 16 2500 i fraag rsmo et 10 | w0 | 260 | 17 | e
.2
Table 3: d ¢ _ in pb.
dyldy2




Figure 1



Figure 2b.

Figure 2c



Figure 3




, v
.34
10°
-
>
I~
= 5] =001 (Gavkey!
=
v
N =004
0 =009
f 016
# } =036
10?l— f {

0.08

~ Figure 4




Figure Sa



15y
&
&
of
107k
) 70 30
iy,
s.
'y 3
ah
v (Gev) T (Gev)
T T

Figure 5c¢ . Figure 5b




ub_
(O-Ub GeV/c)

P, (GeV/c)

Figure 6



]0 1 1 T T T T
— 10 _|
3
O
o L i
L0
€ \
N A
-2 _
m‘o MQ.]O B \\ a A
o| © \ %
(78] 4 \\ oo
10~ \ -
\
\\
-6
10 I \ o -
(e
| { 1\ 10 1 i
1 2 3 5 6 7 8

PT (GC V/C)



| l l I T

. PF:—-_'H?-O X
10 |- E"I‘slo B'S DATA
| -~ MTM

e I

10
103
“o
= 0k
O
~
L
E i
b o
w|© g
‘ 107+

| | | ] |

1.0 20 30 40 50
P; GeV/c

Figure 8




T T | | ] T I T ] T
20— -
1.5— -
{
1.0~ _
05— —
] | | 1 | ] i L | |

20 60 100 140 180 220 260 300 240 260

T=MeV

Figure 9



24 28 3.2

20

P; GeV/c

10'}-

o
-—

29, A20 qu = (d)} =

|
109~

Figure 10




6 (T) a(T)

400

200

40 80 120 160 200 240 280

(T} MeV

Figure 11

320



(a)

(b)

()

Figure 12



RPIMUTIEL WwGLF. P

o uf o tung:
§8° 5 508 o
K. DT PETILES @)

3

AZIMUTHAL RANGLF. ¢
-4
’

RPIDITY, Y
B it AT PP = w* onE L IRYINING)
TISIeS2,S ¢ o™ S KL PT» (.5 CEv/L SORTIS!IS2,S CEY " 1S GEV/C  PTa0.5 (Ev/C
AL PISITIVE PRRTICES () AL NEATIVE PARMCLES ©)
o o - ) ke ' '
i
1
i
0 b 0 b
-
|
10 4 L & 1m0+ -
!
i
5
L L 904 o
| |
H ! !
S PRI S04 ) ! L
e — ..~-.-T-‘-l.-'- 1—*-'.-1 . .
e Y A R s v
AN Y RPIDITYLY

Figure 13



PP — HY ¢« HE (ANYTHING]
SCRT(S1s52,5 CEV  PT>0.5 GEV/C PT* > 1,5 GEV/C

PGSITIVE NEGRTIVE
+059 T —

025 : +— 3cY<y )
f. ..’ -

Py
- '
- Tiy +7 o7

[ ” ]
ol i v - ]
S 1 - .

o i - 10cY<c? '_--” 1'
- = - P

; SO . . -] PL J
~ ! v v \
A ? ". M v—o-" .:
2 ! - -2<Y< 0 - i
v - - b =
o zel . { 3
ol d ~-r j r r -~ !

: . D -3e¥<-2 l 1
e e T ] } —. :

- -t e ™ —— e R

Mew o [s e J—

wd = . S

: ! !

' R -4e¥e-3

H o.’ *Te - - i

s.ool =" - MR g S

0 S0 :8C 213 30 4 ¢’ 180 270 360

RZiMITHAL ANGLE. ¢

Figure 14




PP ~ 1o HE +IANYTHING]

SQRT(S)252,S GEV PT* > 1.5 CEV/C -3<Y<-2
POSITIVE NEGAT]VE
02 o <
+H e € PT€2,5
W+ +,
0.00 ‘-§’.’ '+.‘ g T :’ "_‘00
05 r 1 3
t
+ﬂﬂ 0.5<PT < | +
©- w K ’ whty
© +te + '.*0.0 Yo ted
» 0,00
° —— v v P——
~ t
L5 } ++ 1 3
A #+ ++ . '+
> HTT L + .1 T
= + + t | p.25etco.s] ST +
~v et +f
h -}
0.00 - ,
5 ‘ } | 'u 1
R H O He
+++ + T ++ 0 < PTe0.25 ++ +T
c.m
0 % 1180 °20 36 0 % &0 20

AZIMUTHAL ANGLE. ¢_

Figure 15



PARTICLES/EVENT /A9 o60®Infy |<2

P 5 GaVic
® p s 38 Gevic
ops 30 Gevie
ape 21 Gevie
ops 08 Gevie
+ p, » 030 Gevic

Figure 16

[ § 3
$ ¢ ¥ S
L 1 1 L 1 1 1 1l 1 1 1 1
X 60 9 W ®B 20 U0 20 W0 0 3%
AZiMuth e



3 -, 0~ -
k| I I 1
| -
)
-
°
[ 4
Eg o
e 0 o *
®
-
®
&
[
-
L1 L 1
w9 ™M N e

ontu amod pebmn

6 G

Figure 17




PARTICLES/ EVENT 7 05 UNITS OF RAPIDITY/ A¢ =60°

- 6o - 60l ¢ ke80°
00 -
LA Y
¢ o |
t W U U O O
0 0
120°¢| ¢ 1<1509 30°<}  |«609)
Owr-
LX)
¢ ¢
- 0} ‘
)
/————\ 1—\
oL 1 L8 1 e
so°<ly |00 Quo - | 1<30°
o1
020 b X}
/——\ rﬂuo
| | | | { I | |
32«1 01 2 3
‘“
Figure 18



CHARGED PARTICLES /EVENT /0S5 UNITS OF n/ap = 60°

aso

Q20

Q40

Q40

Q20

Figure 19

- B0<l ¢ <80°| (g0 |- 60°<ly [«90°
thes
~ ¢ Q40 -
¢ ¢
$000,0
7——\ Q20 ¢
| ¢ ¢ | >
0 ] )
120°<] ¢ [<150° 30P<| ¢ [<60°
TAITR
* ¢ .00.
}./"—\'\ wﬁ\
0 0 e
L 80°<| @ [«120°| 40 j@ j0
' ¢é
‘000. 4
A ) ¢ ¢
n® ®
1 l L1 L1 1 Lt
-3 2 01 2 3 -3 -2 0 1V 2 3
R Y e




RAPIDITY DISTRIBUTIONS AwAaY THE TRIGGER

NEGATIVE TRIGGER POSITIVE TRIGGER
Positive secondaries Negotive secondaries
8:;‘- 20' 9'" - 45 6::: L) 20 9'::: - 45'
T famo Gch] v i O oowc] LI

¥ L
P‘i
i
-
.
A A4
N.
Zg
TEED U0 U U
[- T
T T T rTYTY
R
H 5
s)
[ W |
[ I
L4 T T
S
_3-‘.
R S S W\

LA 1 1
-]
LB
Y U 1

[

LA
[ \G.
A d L 3 2
.
—r
v

v rr

b

2 2 o ' . 2 -2
RAPIDITY . y RAPIDITY |y
Negative secondaries Positive secondaries
em . cm . cm cm .
e"iq - 20 e"ic =43 enq - 20° : ~emg =453
S T g ose] T MR I PYYTY T I
) - -4 I~ ~
4 e ; e 4} \’ ‘r y 4
| § L n .4}
i ] 2 ly "‘" 1 ?r u.. m'\ 12t "
e P}l ‘\\Lq =1 [

A i 1 1 4

5 ¥ ¥ ¥ 1T 1
&
y N U N . 3
[ ]
T ¥
s
}
A1 1 4 4
-
T T T
‘Ec
)_. s
J?*
i e
] a
o
[*
4.3 X 4

2 -2 2 -2
RAPIDITY |y RAMDITY

Figure 20



62<N>/dydg

PP e w¥e uE LANYTHING
SQRT15]:52.5 GEv P7>» 0,25 GEv/C AWRY

PASITIVE NEGRTIVE
1s5¢PT°c 147 PT'» 2.5 145¢PT°¢ 1.7 PT*> 2.5
3 yYyYyvyry r'r—v—ﬁ-rv—r'ﬁ'! Y Y
[ {a) ] r (c):f N (:1)1
f 1 1t TIH, .
AU A ] 1
ol " o ” ] f.ﬂ’ﬁ' ] ** + ]
+ B * R ] + + q
IR SR I
000, .. J0 Lot il }
.10 T T r mirrr LA § ]'Y' T ] FT Yy I Y17
[ te) : (@ 11 - (h) ]
> ST I
9 * 3 “ 4 N <l 3 1t H} H *
05 ’ - - ~— - - - -
L *N 'q*h | H ﬂ *H ] .ﬂ’f N 1t d * J
: ¢ ‘ﬁ <4 b + H p F " "9' 3 + * -‘1
o.00 ) o ] DTS | AT
-5 0 55 0 5 -5 0 55 0 5
RRPIDITY, ¥ .

Figure 21






‘°'E I T T | T T i

VS =448 GeV 3
L e >33 GeVic AQ = 180° -
L A 1% 3 GeVic 40=180° ~
A
o . a To> 3 GeVic A®=(Q°

o Fully inclusive

T T 1 IITIII
&£
D
»

Lot reuad

T TTTY Ill
&
/—

s :

F -

‘ & }

i 4 i
;-

107 |~ o -

- ¢¢ ]

i ?, )

T llin|

¥
—0—
1

10+ L 1 1 1 I | |

0 05 1.0 15 2.0 25 30 35 40
Py, GeVk
Figure 23



10°

10!

10

10-¢

3 T | x 1 | L 3
o VS =2 52.7 GeV .
+ e W>33 GeVic Ad=180° . -
- A 1> 3 GeVic A®= 180° ~
4 a %> 3 GeVic 4= Q°
o K‘ o Fully inclusive B
L TRy, ¢ R :
u cb\ -
[~ o] \ ‘ n
q '
- \ -
E o} 3, f# J
N Chb \4 + ++ + i
-3 n . . oy
o
3 E
. @ .
- 5
_ + -
3 + + E
[~ -
- .
B f n
| 1 | | i i |
0 05 1.0 15 2.0 25 3.0 3.5 40
pnGeVIc
/



10 | p— T T T

- VS =62.4 GeV :
- -
i | o n'>33GeV/c A®=180° |
A A n’>3 GeV/c Ad = 180°
10° R A an’>3Gevic A =0°

T T TTT
Ll

q%\;\é, 6 D Fully inclusive

1

'94>

£
5

—oP

o'E ‘%\+ ﬂl 3
. 5 - # -

!
-0
—

T TTTTg
—0—

10-3

13 11413

1

10°¢ | | l | | l |
0 G5 10 158 20 25 30 35 40

P, Gch

Figure 25



10

L TTYVT]

L

LS '7"17]

10°2

v B4 ll‘l'll

1673

L "Y"'l

1074

A®=180°

n

(r*)>3.3 GeVic
i

n

} p, (r")>3.3 GeVk
n .

Fully inclusive distribution

" Py GeVic

Figure 26



"SAME SIDE" CHARGED PARTICLES

T T]

o ‘ o . ’ o Vs= 306 GeV
M. r ° 468 (n°)> 3 GeVic
- 0 | o 527 P
L L

@ Fully inclusive spectrum at Vs = 44.8 GeV

T 1]
So—

1
Fo— o2

LRS!

t
| 9 .
oo . /H.c J _ . e

0.001

SR
-

1 ] l 1
1 2 3 4

P, om,.\\n

(3, )

Figure 27



01

0.01

0.001

IR

L LEBLILE ] 1 LI |

LER I

*

. 0

"OPPQSITE SIDE" CHARGED PARTICLES

o 04< n_.m 0.8 GeVic
o 08<p <12 GeVc { P, (n%)> 3 GeVic

o 12s% Py <28 GeVic

20

30

40 50
VS GeVY

Figure 28

60




-

10’ 3 A0 = 180°
- o VE=44.8 GeV
i o 527 . p,(n)>3.3 Gevic
-100 - P é x . 624
= . 4 o Fully inclusive distribution at V§=527 GeV
s 'o.. g é .
- 3
- ... %
1071 Soe é k
- . %o % *
b [ B
: . .o % * f +
: . it
L4 .
30-2:- ¢ ) # i
= ¢ .
- é
[ ¢4
- ¢
103k - ¢
"
F |
‘O-‘  \ 2 1 A J 'y . I AL l 1 A I N IS l J & e 1 L
o 1 . 2 3
Pya GeVic

Figure 29

o

|

i



T

0l

0.01

=

Lo

“OPPOSITE SIDE" CHARGED PARTICLES

?
?

e V5= 306 GeV
o 468
o 52.7
x 62.4
¢ Fully inclusive spectrum at Vs =44.8 GeV

P, (n%)> 3 GeVic

by

L ® o

3 4 5
Py, GeVic

Figure 30



0.1

0.01

0.001

LB

“"SAME SIDE" CHARGED PARTICLES

* 04<p <08 Gevic
o 08<p <12 Gevic ¢ P;(T°)>3 Gevic

0 12<p 2.8 GeVic

20

30

. 40 50 @ - - 60
VS GeY .

Figure 31




y

e mm—m———a-

‘¢

¢

¢

]

3

e

| N BT |
-1

e

S

4

-4-----

o

-

e

1

c

L

-

¢

+*- 3

oo

-

A

I

1

e

1
-1

1T T
. I

re

¢
-5
i P |

SR Y

¢

0081

0.()"--+

-2

006

002[*"

-2

004

002

UdA] Jad A WUN idd SANINI0d APINP

-2

002

001 -

-2

Figure 32



Figure 33



{a99) 4 ...?So& '®
§ & & =3 % 2 1

~~ T v v T T T
T AR
! —— — .8
[ @ @ “
- | —— ...m
4 r——t E
o —o— . m
| @
ﬁ. e m
ﬁ r—————y

(me0)

Figure 34



1000

100

10

/ | L | |
5 1.0 1.5 2.0 2.5 3.0
PT GeV/c

Figure 35

3.5

40



1000

100

z,(P)

i 1 | 1

0.5 1.0 1.5

2.0 2.5 3.0
P, GeV

Figure 36

3.5 40



Zy (Pq)

1000

100

10

1 1

1

1.5 2.0
PT GeV/i

Figure 37

25

30

3.5



100

100

10 [~

§ | i l 1 I

| 1 ] l 1 i

05 1.0 15 2.0 25 35
P. (GeV/c)

Figure 38

35



1000

100|-

z, (P )

10—

0.5 1.0 1.5 2.0
R, GeV/c

-

Figure 39

2.5

3.0

3.5



Multiplicity/36° Azimuth interval

22.22 GeVic
4-0F PAPAMETRISATION M-A.B.P,
a
s K-
e p
él; o<lpl < 36°
d. 72<ld! < 1pg°
3ol % 72<0l< e
¢S sl < 100
2.0?-
é
¢
’.
1-0f
0 +0 20
P (Gev/C)

Figure 40




MULTIPLICITY

12}

11t

(i)

(ii)

65 0 75
Lns(Gev)?

Figure 41




Pp plab~200 GeV/c

n~ (Vs —00)

3
N
i

doldyde2 mb/GeV?

3
|
/

10—

m; = p} em?)2GeV

Figure 42



10

10

1 4

A
|

1.5 2.0
PT GeV/c

Figure 43

3.0




104

107

0-5

1 1 F:
1.5 2.5 35 45 55

P; GeV/c

Figure 44



m (GeV )

Figure 45




1073

Y 10 +—
£
o
1]
>
>
bl > "
T| O _O |
10°

] ] 1 1 1 1

30 40 50 60 70 . 80
Vs (GeV)

Figure 46




2
D (G%q,!

q, =1
_ar4}____45—4>—4?'
/“"y«qT =2
p
07—
q]'=3
[+)
1074 ! .
03 0.2

Yin 1z (GeV™')

Figure 47




[ i i
-
o
a 8 4
& é A
o™ lf" ) é
o |a
wie 3 A
o 2
Q
10'3 | 1 |

Pr GeV/c

Figure 48

PRI

J;h’u.r S
K SEP ;.
Yeoripy
Liggsey -




