W Durham
University

AR

Durham E-Theses

Some classical solutions of yang-mills equations

Yates, Russell G.

How to cite:

Yates, Russell G. (1978) Some classical solutions of yang-mills equations, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8414/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/8414/
 http://etheses.dur.ac.uk/8414/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

SOME CLASSICAL SOLUTIONS OF

YANG-MILLS EQUATIONS

by

RUSSELL G. YATES

A thesis presented for the degree

of Doctor of Phiiosophy at the

University of Durham

May 1978
Mathematics Department
University of Durham

The copyright of this thesis rests with the author.

No quotation from it should be published without PR N
{ = 5SEF .o -
: Gearen:
\\L-’ig_n‘_. i

his prior written consent and information derived

from it should be acknowledged.



CONTENTS

ABSTRACT .o - .o .o .o

PREFACE e 8 o o e e e & LN
CHAPTER ONE
Introduction . .. . . .
CHAPTER TWO

A,* As Defined by the Dynamics Equation .o

CHAPTER THREE

Self-Dual SU(3) Theories .o ..

CHAPTER FOUR

Some Properties of Self-Dual SU(n)

CHAPTER FIVE

Self-Dual SU(2) Theories . .o

CHAPTER SIX

Conclusion ,. .o .o .o .o

APPENDIX .. .. .. .. ..

REFERENCES .. .o .o .o .o

Theories.

17

27

48

70

73
75



ABSTRACT

In this thesis some solutions to classical
Euclidean Yang-Mills theory are considered and presented
with emphasis on self-dual SU(2) solutions. Chapter one
is a brief introduction to the subject. In chapter two
the possibility of solution via inversion of the dynamic
tc obtain Ax in terms of Fuv ana then lmposing
a self-consistency requirement is considered. Chapter
three deals with the extension of Witten's method of
solution through cylindrically symmetric ansitze to self-
dual SU(3) theories. In Chapter four the invariances and
BAcklund—typé transformations inherent in a self-dual
SU(n) theory are investigated and these methods are used
in Chapter five to present an analytic method for con-

structing all self-dual SU(2) solutions.
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CHAPTER ONE




INTRODUCTION

(1)

Since Yang and Mills and, independently,

Shaw(z)

discovered the basic equations and group in-
variance properties of the set of theories that bear

the names of the former it has been the hope of theorists
that they would shed some light at least on the problem
of giving a svuid theoretical model ror the strong and
weak interactions and more hopefully on the problem of
unifying the forces experimentally observed in nature and
give insight into the quantization of gravity.(3) with
the realization that mathematical physicists had, in con-
sidering "Yang-Mills' Theories", been studying objects al-
ready known to pure mathematicians under the name of

(4)

fibre bundles and that gravity and electromagnetism
were indeed both theories best described by fibre bundle
language, though coming from different Lagrangians, these
beliefs received both encouragement and assistance from

what had been discovered by pure mathematical methods.

Thus given a gauge potential A}* taking values

in some Lie algebra with its equivalent field tensor

Fav= 2 A A, —~ LA, A} (1.1)

-2
MV A 'y ?Nﬂ‘v

with its dual

—— ‘ []



satisfying the algebraic identity

D" Fav = 5 fv + LAT,FLL) = 0 (1.3)

it is hoped that
, .
2 F/AV = v

for some current j, describes the strong and weak inter-

. .
a2¢ctione in the eones

m
9]
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Lie algebra being u(l) describe electromagnetism.

The path integral method of quantization has
always relied on a Wick rotation of the time axis so
pointing out the possible importance of classical,
Euclidean solutions to any theory of physical interest.
In Euclidean.space-time the eigenvalues of the duality
operator are +1 so for a sourceless theory it makes sense
to consider the simpler equation of self-duality, namely
Fav (1.5)
as the algebraic identity (1.3) then guarantees the truth

F

My =

of (1.4) with j, = O.

Moreover such solutions are most probably the
most important in this sector as it is known that they
minimise the action integral thus being the dominant

contribution to the path integral.

Recently the works of Yang(S)

and Atiyah and
Ward(é) have shown that the self-duality equations in

the correct coordinate systems take on essentially simple



forms which can in principle be solved. This is due
to the fact that if we complexify the space-time mani-
fold coordinates can be defined such that the planes
defined by pairs of these new coordinates are antiself-
dual i.e. if y and z are two such coordimtes the two
form dyadz is antiself-dual. An example of such co-

ordinates is

(Y’_ - in) (YC -+ '.IY_'q)
y = —= = y = = (1.6)
(z {Z
- (xo - ixj) - (x5 + ixp)
2 2

Now if Fpv is self-dual it follows that its components

‘pojected down onto such planes are zero i.e.

Fyz = F§Z = 0 (1.7)

and hence in these planes one can integrate the potential
along paths in the plane to give a group element independ-
ant of the path chosen, or in other words the potentials

may be written as

Ay = D1 3p Az = D1 9D
¥y rY3

(1.8)
Ay = et 3g AZ = E"L 3E
oy 9z

for some D and E belonging to the (complexified) Lie
group and there only remains one equation to be solved

which is easily checked to be



Fyy + Fzz = 0 (1.9)

More generally Atiyah and Ward define a #
- plane to be a plane such that if Va and Wa are any
two displacements in that plane then the tensor
v,

IA
planes are antiself-dual it follows as before that the

W, - W is antiself-dual. As displacements in such

projection of a self-dual E“V onto all such planes must
be zero and hence that thepotentials in that plane must
be gauge transforms of the vacuum. Using the twistor

(6) then

transformation of Penrose(7) Atiyah and Ward
find a coordinate system for such f-planes and reduce

the remaining self-duality equation to the problem of
constructing an n-dimensional, analytic vectof bundle

over CP3, a problem whose solution has been discovered

by algebraic geometers for n = 2, enabling them in
principle to give all SU(2) self-dual solutions. We
return to their ideas in Chapter five providing an
analytic way of producing these solutions. Before
exhibiting these results we examine various other possible

ways of solving both the self-dual and full equations of

Yang-Mills' thedry in Euclidean space-time.
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A, AS DEFINED BY THE DYNAMICS EQUATION

Before turning specifically to the self-dual
problem we mention an approach to the solution of Yang-

(8)

Mills theories valid in other cases which despite its
complexity provides some insight into the problem of
non-uniqueness of the gauge potentials for certain field
strengths(9) and which moy lezd teo 2 gauge -iovariany
formulation of the theory for the path integral formal-

ism.(lo)

The method is at its most powerful for SU(2)
where it shows that almost all solutions depend only on

a symmetric, three by three matrix.

The three standard equations for a Yang-Mills

gauge theory are

“ .2 A 3 A, - [ pc 2.1
E”V ?aC’AP 5&pv ; F&aAv ( )
e abce AL FeM o ' (2.2)
2 v +4 ” v '
LR
B_FN:V 4 ‘FchAb/“ p;v =e) (2.3)
n,

> 2 Lg ¢ (2.4)



(The presence of a source term ji_on the left of 2.2
introduces non-essential complications to the following
so we ignore that possibility.) The usual approach to
the solution of these equations is to assume 2.1 whence
2.3 is a trivial algebraic identity and view 2.2 as the
non=trivial equation to he solved. We prefor to resverse
this, viewing 2.2 and 2.3 as equations to be solved for
Aﬁ.in terms of Eiv and then to impose 2.1 as the non-
trivial equation. Such an approach is, of course, only
possible in non-Abelian groups where the non49anishing
of the structure constants gives an explicit mention of

a .
Aﬂ_ln 2.2 and 2.3,

Noﬁ any rank two antisymmetric tensor may be
split up into a dual and antiself-dual part using the
fundamental dual and antiself-dual tensors 'f;v and '];v
of 't Hooft which are defined by their values in the

(xo, Xy X x3) coordinate system by

Y];v = E""‘/‘“’ * Sl“‘ S"O - S/\o Sc\c- (2.5)
v]’ﬂ.v = SOQ/A‘V - S,Aqgro + qup Sﬂd‘ (2-6)

and whose properties are listed in the appendix. Hence

we may write

F;\v =R>, rf;w + ST, r]';v (2.7a)



i
®

R, L X, /C
v Ry + 5 (2.7b)
where R and S are ('n2 - 1) x 3 matrices. Using these

decompositions 2.2 and 2.3 may be rewritten as

?‘Kq‘: n\'_. + fﬂbcnbﬂ ec'r\‘. - o (z.sa)
aw, Ty T TR Ty

X ._' """GL 5 - o I"“'
2°~"ﬂ,w + R7S N v =0 (2.8Db)
DR,

If either of these, 2.8a say, can be solved for Aﬁ.then
we need only to impose a self-consistency condition via

2.1, namely

2 -2 AL - 1A 2e9)
2N

rk™

-\ VAV
L\'K;:p:\,r\’k :{

which will then guarantee the validity of the other.

Now —’ﬂuv form a 4xl4 matrix representation
of the imaginary quaternionic units e; say, as may be
seen from their listed properties in the appendix, so

. aloc
we may view %

Rdﬂ;,.v as a purely imaginary quaternionic
matrix lying in the adjoint representation of the group
in question. Hence the problem lies in finding a right

inverse for this matrix.

Let this matrix be Fiei where the Fi are real,
adjoint representation matrices and let the inverse be
oL + 8,,'@.;,& ﬁ;real. Then the preblem is to find 2 and

B: satifying
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Eok + Z—_k E:jkpj B.= O (2.10a)
v,

|
‘M
n

[d
1]
-

(B = T (2.10Db)

T -~ _
First we note that K. = ~B! and «'=2w, for
letting F = Fie; and A = o+ B:e: we have that F is
hermitian as F. is antisymmetric. therefore A is also

hermitian which implies the stated result.

Second it is clear that scaling R by a con-
stant n will not affect A%.implicitly defined by 2.8
and hence will leave the right-hand side of 2.9 un-
affected but scale the left-hand side by n. Thus as
n—>0 we find that Eiv is self-dual, though whether
this procedure would produce all self-dual solutions

is not clear.

The solutions of 2.10 are not known for
general SU(n) but are known for SU(2) where R is a three
by three matrix. Then a solution exists and is unique
up to a gauge transformation if and only if det R #£ 0

when
a, b
Lol = R ‘R‘/aée.tR (2.11a)

. - eu RMRY
[ﬁt‘lgb - E\JKRJRK/z JQ\'K . (2ollb)

satisfy the given conditions. Hence if det R # O Ai;is

unique up to a gauge transformation and is given by
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AY = R 2Mimn,, + 2% aR R-‘MJ- (2.12)
mTmierR T T e

where M = R'R - &I trR'R. A gauge transformation is

now R=?0R where O is an S0(3) matrix, so M is a gauge
invariant object. As any GL(3) matrix may be written
as a product of an orthogonal matrix and a symmetric
matrix we may choose a gauge where R is symmetric if

we wish.

Given 2.12 we now impose 2.1 and find that

R M — 2 $R M
LS -Z-_MR?%" ‘m v 2 zwg?‘nw}

¢ea R R IR R 1
* g 2[%7«:‘ 21"" ..\em X—ht'" P M":’

. ¢
g P Rf RV, 3M . 2M,,

B T RE T AR P 23 )
- « M
Y\ t} [ R Ka,@\ con
Y daxR

- K R IM

q%ﬁm{ LT
- IR IM -+ PR M

q% [' AY A Km V‘MVA Y— ™ 9 V'
+$.“°°‘[ m R atz el k"R R (2.13)

¢ LI M PN W dpax

Obvious%y the solution of the remaining equation 2.9
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for a general symmetric R is not a simple problem,indeed

only one solution is known: suppose R is of the form

R=¢*T (2.14)

then it is easily seen that

C oo ot
A, = qzﬁégé (2.15)
m
ol 93¢ —n' ?E - L 26 S
Fro ™ M B TE e 15 50, " 5 B 3
+n. . SL N ~2 2¢ 2 (2.16)
q‘“%vf T ‘ﬁﬁé’*)} '
and 2.9 becomes
2¢" = =L ¢ (2.17)
& 2,09%,
which has a solution
# = 2a (2.18)

¢t 4+at

where a is an arbitrary constant and s2 = x2 + y2 + 22 & tz,

the instanton soluticn of Belavin et al.(ll)

Letting R i.e. ﬂz scale by n, a constant, and
taking the limit as n=%0 to get a self-dual solution we

find that 2.17 becomes

o =

CR | (2.19)

|
¢ 2x¥ N,



with the 't Hooft solutions(lz)
n
¢ = 2 X (2.20)
=) (x.xc)l

Even for what one would hope would be the next most
simple case, namely R diagonal, solutions are not known,
for then constraints arise from off-diagonal terms in
2.9. Letting
(V¢ o o
R=|° & o
© L) Jg

(2.21)

the equations to be solved are

LA LK A K L) -

l\a_ ?M‘a“l

V)Av 2 3 [é'ﬁ:l +2F 23 1"11"232_{; J—-hé]—ls =0

?'KA A ) ?“(V?MA 3 £ 7"'-\;?“) 9

v,;vig{- 2e [.L e“\ +E 29 [1.+1]+239g .L. e_‘“:o

11 ?Kv MM ?u ‘)L P Ny,

(2.22)

L2 € L2 (e~f- (f-e- - .
?-'Tx"‘gq;"?'a: f 5)75 ?erg_ f-e g) 2(q-e-~f) = $ie (2.23)

£q 2% %,

%-59'1’57"231““‘5)} -1 K (e~f- 9)1(9 e-f) = “"rf

2.54 (g-e-£)1 - L (e-f-9)2(f-e-q)=
A i;—z 249 24)3 83@%u’£$9)?xf e-9) q.sS‘

(2.2%0)

(2.2%)

a set of equations which apart from e = f = g have remained



;1L|_

unsolved.

Why the equations are so much easier for the
case when R is a multiple of the identity is linked up
with the fact that for R symmetric M may be rewritten
using the Cayley-Hamilton theorem which for a three by

three matrix may be stated as

-

€ -
f’LK"

I"3+&gi-i< R

A
L

73

7

P - A N LR U
A~ jA = &%
2

X
R

p]

and as R is symmetric the left-hand side is M. Thus
one would be tempted to try the two simplifications
R = tr R{I or tr R = 0. Unfortunately the latter is
not as powerful as the former leading to an expression

a
for AP of

L SL §%n3 4§98 —g*C, T (2.25)
A - r\/")* f‘ﬂ\m .A/“S J
which although simpler than the general expression does
not simplify 2.9 sufficiently for a solution to be

spotted.

For SU(n) the condition for an inverse to

the matrix F.lei to exist takes the form of the non-

vanishing of a trace of components of F2, but this in-

PAV
verse may no longer be unique. However as it is claimed,
by a counting of parameters arguement, that all self-
dual SU(n) fields arise from SU(2) imbeddings(lj) we

shall leave this problem.
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Perhaps the most promising use of the above
method is to be found following Halpern(lo) who attempts
to express all dynamic variables in the path integral
formalism in terms of such gauge invariant objects as

the matrix M mentioned earlier thus bypassing the usual

problems in definitier

3
[0}
H

L
[¥]

auge and the resuliing

&)
m

infinities which complicate other procedures in this

approach.
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SELF-DUAL SU(3) THEORIES

We now turn to the case of SU(3), adopting a

procedure due to Witten,(lu)

to simplify the self-duality
equations somewhat. We write an ansatz for QM having
what Witten calls cylindrical symmetry, that is any
rotation of the space coordinates can be compensated

Tor by a gauge lransformation. Alllhivugh Lhe resuliing
equations turn out to be in general intractable they can
be solved for a special case which at first sight would
seem to be an embedding of the SU(2) solution of (1h4)

into SU(3). However there is an extra degree of freedom

which results in an infinity of gauge inequivalent solu-

tions labelled by s 7 0 with s = 1 being the embedding
of SU(2) into SU(3).

To construct the ansatz we need to construct
skew-hermitian, traceless, three by three matrices thus

lying in su(3) out, of the rotational invariants xi/r,

Sij and Eijk' where rz = le + x22 + x23. These are (15)

T’J - L% S'-\) -.37‘.1:,‘.)‘2. T;J - i"' ,‘2
T~ it =
<y % k¢ < : .
T= & -« Toh = T X = €1, ot
r r

l.” ‘a ' ' , L
Ts.it L‘{S k}:’ +SJKL¢-2)C)8)‘\‘
~ ~ (-3
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g‘) . ¢ '
T S sgddl O
re r T
s not i - 1 (pik , pKJ ji
(Eijk is not included as Eijk = 5 (Tuj + Tui + Tuk) )
For instance putting l\7 =7, __/\_5_- Jz’ /\\2 - JB

-:x'g,'g_‘ -3'.;_ (3.2)

— v — ————
~

T,=073 Tao=ze, M3 T,

By multiplying these with functions depending only on

r and t = Xq We can write down our cylindrically symmetric

ansatz
Ag= =58 T - AT + Urh) Ty, - 4 T
. r r ~
e Toe — ¥ T (3:32)
r r
A, = __;_ 6, T -A,T, (3.3b)

where k = 1, 2, 3 and &, A,, ﬁfi, wi are real functions
of r and t. 8; = l#i = 0 gives Witten's su(2) ansatz(l“')

via 3.2.

This expression for Auleads to a reinterpre-

tation of the theory as a U(1l) x U(1l) gauge theory with
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a matrix of Higg's fields for if we define

V‘ "ﬂ (3.4)
® = v W

with a gauge action

s 0w o, u € so2)  (3.5)

s0 that

O; @ = % +[:c's:;'.3¢ + 4:‘-4‘:] (3-6)

C:oJ| 907 9. ©, 29 Ee‘z—a‘w:l‘
we find that

s
EFAEN =3 0-38,+387 + (38,3807 + 2w gt

+2Lof oY ] +L, (g’ (3.7

where Eivi\h: Fav and the Lagrangian is indeed invariant

under 3.5. Further with 'f-‘;“ = ltpv"TPrt we have
Fm B = £,§2(58,-3,6) der B +(3,4,-9,R, )1 ~t-8¥)

= Zay ECJ' [ CO‘-QS)TOJ' dla\a-g

L3 (%A, -3940 -3 (m g Lo o, 67,0} (3.8)
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The self-duality equations Faoi = %'iijk Fajk are found
to be

F2( 9.0 -3,0,) = 6dat

(3.92)
'ﬂl(;°a|-‘;|ﬂo) - ‘l"f‘f‘fi’rr';‘ {2.9%)
LD-'¢1C‘L - [ iu_"}' Oj.id]-&"«t, Z’b (3-90)

Corresponding to the U(1l) x U(1l) nature of the problem

we impose the gauge conditions

A =9:6: =0 (3.10)
That is
A, = —9.X Ao = 9, %X (3.11a)
B, = -%%w 6.= w (3.11b)
whence using the substitutions
G+ = & g-w =Wy, (3122
P -F = & gaw=-&YT0, (a2

BN =N, Ny = - 3, (3.13a)
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% hy =D WXy = "D, © (3.13b)

that is f = A +td, and g = A, +{Aq are arbitrary
analytic functions of z = r + it. 3.9a and 3.9b now

become

—rr (o) =3;_ez" g7 - e U))  (3e1ka)

— e (X +X) = 1= Lt (e g1y cMlg) (3.140)

7

If neither f nor g are zero these may be simplified by

making the transformations

X=% + ey +l’.-k3(ﬁ5\\ W '-"]“i"’b(l%ﬂ) (3.15)

when they become (ignoring for the time being any

singularities introduced by this substitution)
2 g .
v = 3e” akzy (3.16a)
2
Vzg = QE cosh 1n (3.16b)

Unfortunately these equations have proved to be in-

tractable except for the case ") = 0 when they reduce

to Liouville 's equation Vg - e?g with the solution
- - l— |— t L J z .
§=-a[£0 -] + Loy dh | (3.17)
n
where K= ][ %% Rela;) > o (3.18)
(21 Q. +2

[}
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given by Witten.(lu)

To avoid singularities from the
transformation 3.15 we require that ldh/dz\2 = |t} lg]
and that log lg/f\ be harmonic. We fulfil these require-

ments by choosing

.":,(o“\ ﬁ:

{ ol dh % constant (3.19)
da d2

ji
[
which is picked to make Diﬂ = 0 at the boundaries and
because the topological quantum number, as is shown

below, does not depend on &,

Returning to the general case we wish to find
an expression for the topological gquantum number
(‘ ~
f:—é‘ Fav F assuming D.f —2 0 at the boundaries, for

if this B so 3.8 tells us that

L O(d%FARR =L [drde (A, -3,4,) (3.20)
orL / o 1w ' 0

Now defining § = ﬂo - iﬁl = 2(fe" + ge™) and E’: b - i
= 4i(ge™™ - fe%) we see that the. covariant derivatives

may be written as

OJ-i = 3J-§ +JAJ'§-GJ-Q (3.21a)

DJQ 93@ +CAJQ +90-§ (3.21b)

which may be solved at the boundaries to give

‘ z [ '
A= L ley(F+87) =L 91y fyg (3-22)
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so that we have

L [arde (oA -3 ) < 48R = -, 45T ndy

LY

= Ji(N-F’) (3.23)

where N is the number of zeros and P the number of

poles of fg enclosed by the contour (the minus sign
cancels as in the r,t plane the contour is clockwise).
In general the form of fg is determined by the require-
ment that no singularities result from the log trans-
formations needed to deduce 3.16 and therefore depend

on their unknown solutions so we are not able to proceed
any further. However for the solution 3.19 we have fg =
(dh/dz)2 independant of & so the number is n-1, the

number of zeros of dh/dz in r>0.

The question now arises what effect does a
specific choice of & have? First we note that =1
is indeed Witten's SU(2) solution(lu) embedded via 3.2
for then ¥ = 0. Let o = se'ms,]SG“2 . If B changes
by €, € small, then 9§=2§‘ and 5Q="§ so the change

in %» is given by
A, = z(‘_‘%Tsk—Qf/r_T“_K-_ﬁ,Tgk + 4 T) (3.202)
r

$A, = 0 (3.24b)

and it is easily verified that this is a gauge trans-

formation generated by % & Tl' Therefore without loss

of generality we may assume &= s¢HR s>0. Let s—s +§.
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Then $&-= -i%@ s =“"§§§ i.e.

SA, = %‘,—(wu o = %o Taw + P Tew - 4 Tow) (3.252)
SA, =0 (3.25b)

Suppose this were a gauge transformation
generated by $%,B. First B £ 0 for if it were we

would require B, '1‘2—] = 0 which implies B = aT, + bT

1 2
but this will not work for 3.25a. Realising that B

does not depend on A,, /\S or A, as these just rotate

T2’T3k and Tl&k into one another we may write

Bz o' A, + P A+t Ay + o2 + o Ny (3.26)

Now 3.25b SA,= fzsi [8,Al +2,8% = 0 can be solved
giving «* in terms of cos IAodt, sin erdt. cosZ_ondt
and three arbitrary functions of Xy X, and x3. Putting

this soluticn into 3.25a produces contradictions,

showing that s —s +& is not a gauge transformation.

These facts are mirrored in the alternative
interpretation of the theory as a U(1l) x U(1l) gauge
theory with a matrix of Higg's fields ¢ acted on by
¢— ofu, 0 and U SO(2) matrices, so infinitesimal
changes are ¢ & +Ad + 48 » A and B so(2) matrices.

Now B->p@+¢ 1is generated by

A= [C;_‘ol R =0 (3.27)
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However s—-—9 s + & gives

v -4
59 = 5’5[-96, «A 02

which cannot be produced by any A and B in so(2). The
invariants of ® under 3.5 are tr ¢7¢ and det &
and s may be expressed in terms of these. Let %dh/dz

= P - iQ then withm=1/s + sand n = s -~ 1/s we find

M P
& = K ™ (3.20)

Pf\ Q"\

and putting 2w = tr ¢7d /det¢ it can be verified that
w= (1 +su)/(su - 1) independant of r and t.

Hence we have solutions for any topological
quantum number k labelled by 2(k + 1) real numbers
corresponding to the k + 1 complex numbers a; in 3.18
and s, a total of 2k + 3 parameters, in contrast to
the prediction of 12k - 8. Thus we expect that for
k = 1 it must be possible to gauge away one of the para-
meters and for higher k 10k - 11 parameters are missing.
More generally the alternative interpretation of these
results in terms of a U(l) x U(l) Higg's theory suggests
that invariants of the potential V(#) under the gauge

group may also be used to specify the theory.



CHAPTER FOUR
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SOME PROPERTIES OF SELF-DUAL SU(n) THEORIES

Turning now to an SU(n) self-dual theory,

(5)

we utilise the P-planes discovered by Yang to show
the symmetries implicit to such a situation.(lé) With
the definitions

ﬁ:j = g- U ky 2 = %, ~0%,

(4.1)

JLG = A+t %y 2% = %, +i%,
it is easily verified, using Eyﬁzi =1, gy§ = giy =
8,5 = 87, = 1 rest zero, that the self-duality equation

N

£ =5 "TTF (4.2)

reduces to the three matrix equations

C. =0 | (4.3a)

Mt
Fsi =0 : (LF.Bb)
F-vg.‘.Fi-% =0 (LI"BC)

4.3a and b may at once be integrated, enabling us to

write



A, = 0720 A= 0720 (4.ba)
N oY 2%

Ac = €7 2E Ay = €7 2€ (L.4b)
2§ 7%

As we have introduced complex coordinates the potentials
do not now take values in su(n) but in its complexific-
ation sl(n,C) hence D and E are SL(n,c) matrices not
SU(n) ones. However to ensure that on transforming

back to real coordinges they lie in the correct Lie

algebra the condition

. _
La] = - Ax (4.5)

must be imposed, providing a relation between the

derivatives of D and E.

It is easily seen that the relation

01'._. g | (4.6)

is sufficient for 4.5 to be true but it is not necessary

as having imposed it the transformations
D — AD

(4.7)
£ — BE '

where A and B are SL(n,C) matrices with A dependent on
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y and z alone and B dependent on y and z alone will

not change the potentials as defined by 4.4 so 4.5

will still be true. As such a mapping leaves the
potentials and therefore all quantities associated with
the theory invariant we ignore this possibility as
irrelevant to our purposes and impose 4.6 on the

generating matrices.

A gauge transformation now ecorresponds +ta

D— 0Ou
W € SU(n) (4.8)
E— EW

However we may extend this and allow U to be SL(n,C)
matrix at the risk of introducing singularities in
the field strengths and potentials but not in such
gauge invariant objects as the topological quantum

number or the action.

Using this extended form of the gauge free-
dom the remaining equation 4.3c may now be written in

a particularly concise form. Define

P= DE (1.9)

then from 4.6 P is hermitian and of determinant one.
Clearly from 4.8 P is gauge invariant. Conversely
given an hermitian P of determinant one which is
positive definite it can be expressed as DD where

det D =-1 uniquely up to an SU(n) matrix, for there
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exists a unitary matrix U diagonalising P

WPUT = diag(b,,..... ba) (k.20

n
where the b, are real and positive with TT b

Then 1let

d = diag g, ..... %) (4.11)

so det d = 1 and

~-L 0y
p= ufadtu = (™ utd)(dTu &%) (4.12)
where det U = o2, Clearly this gives D = ela/nU+d
which is unique up to post multiplication by a special

unitary matrix.

Now do the gauge transformation (a) U = p~t

or (b) U = E_l. The gauge potentials then reduce to

(2) Ay=Ry=0  Ag=Par' A= P‘.?;f;‘ (¥.13a)

79
(b) . _ e A (4.13b)
and 4.3c becomes
@) 2 ¢Peey PaP“ (4. 14a)
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(b) 2 {P-\Qf + 2 ir‘ﬂ F% =o (Ll-.ll&b)

By the hermiticity of P 4.14a can be deduced from
4.14b by taking the hermitian conjugate so we will

concentrate on the latter equation.

4,14 may be written in a relativistically
invariant form using the projection operator onto the
v )(17)

Jes

L%
v - z plane #( S, + in to write 4.13 as

2A, = P36 4 (nd VETP | (4.15)
2" ” Y

Then (with subscripts on P denoting differentiation)

Fow=Pul —F'E +in3d CF'e,)
wo T T T I

2 ™! - W3 - 3
S 13 W,,.:_'li,r%'oa‘ - PR
4
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3L A r =) N ~ 22~V 0 L) 3‘1:)—-"‘—
- 2 (P'F 2 (P i + p” FE
k3»-\} 2?1"}\ ,A)-“?'K'A A}& 'L‘\V iy\ TA
G
i , - AT 5=\
| - 22 (P 'PA)} t Loy P, P (4.16b)
! kil G
The three equations resulting from EMV - E;V =0
may now be obtained from the fact that Fav - f;v

is antiself-dual and hence all information about it is
contained in the equations deduced from contracting

it with WY a = 1, 2, 3, Performing this we see that
contracting with #'AY and 9 give zero and the

contraction with q%”" gives

2 (liq A ?:\"?3 (4.17)

which is the desired result. The invariant form of
L.14a can now be obtained by considering a real co-

ordinate frame where rfT) is real and taking hermitian

conjugates to deduce that

p 'a T 4 3“ paf | =o (4.18)
s S Leg ] 2>




_33_

As mentioned before although we are in a possibly
singular gauge the topological gquantum number being
gauge invariant will be non-singular and has a par-

ticularly simple expression in terms of P.

ke CEL, Frv

e LFyy P +F5a Fyx

]
£
-
)
—
e
(—\
-
L
'q)
-
S~
o
P
-
2
s
\/

- 2 (P12Py 3 (e“w)] (4.19)

Being able to express so much so elegantly in terms

of P it is disappointing that there does not appear

to exist a Lagrangian variation of which with respect

to the elements of P would give 4.14. To construct a
Lagrangian it is necessary to work in a different gauge,
discussion of which we leave to later; first we enumerate

the algebraic invariances implied by 4.14.

Let A and B be constant GL(n,C) matrices
then P —> APB is an invariance of 4.14. To preserve
the hermiticity of P and det P = 1 we require B = At
and \det Al = 1. Let det A = eia, then A = eia/“ﬁ'
where A = e—ia/nA is an SL(n,C) matrix. Clearly

apat - APAT so without loss of generality we have the

following invariance transformations of P



+
P— APR A € SL(n, C) (4.20)

The other obvious invariance of 4.14 is

6y (4.21)

For n = 2 this is included in 4.20 being generated by

o \
A = (v o (4.22)

However it was pointed out to the writer by Dr. D Olive
that for n>»2 the group automorphism 4.21 is necessarily
outer and hence cannot be contained in the inner auto-

morphism 4.20,

In fact 4.20 may be extended by letting A
be functionally dependant on y, 2 alone. For by the
uniqueness, up to a gauge dépendance, of the decomposi-

1

tion of P into D and E=~ = D' 4.20 is equivalent to

6— AD ET— ETA (4.23)

and as shown previously this does not alter the
potentials. in any way provided A is independant of

Yy and z.

By the same type of arguements 4.21 is

equivalent to

T

D—> 0 ™' — £ (4.2L)
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D — E* E " —s D* (4.25)
(* denotes complex conjugation). For SU{(2) this is
a gauge transformation as it is included in 4.23, but

for SU(n) n»2 this is not true as if it were there

would exist a matrix W(y,z) and U€sSU(n) such that

w(p )Ty = p (4.26)

but this is not possible as 4.26 implies

+ T+
E-l - D+ = UEW (4.27)

SO

vl
1]
5
I
i

wie~HIwt (4.28)

which is false.

All that can be said of 4.21 is that it
leaves invariant the topological quantum number and
action as can be seen from 4.19 using tr Q = tr QT.
That this is the most important transformation can
be guessed at from the fact that even for SU(2) where
it is essentially trivial it plays a crucial role in

the construction of solutions.

We now wish to discuss the Lagrangian and

B4cklund-type transformations associated with 4.14,



_36_

To do this we use the Iwasaro decomposition of SL(n,C)

to choose a particularly important gauge called by

[~
Yang(‘) the R gauge. The Iwasaro decomposition may

be stated for any SL{n,C) matrix D as

D = LFU (4.29)
where L is lower triangular matrix with cnes along the
diagonal, F is a real diagonal matrix with det F = 1
and U is a SU(n) matrix. From 4.6 we have

e= (o)1= a@hH el (%.30)
Hence we may choose a gauge where

D= LF gt = Lt (4.31)

In this gauge consider the expression

_ T
Lo A AT +AT) o+ (Aye AL A +AS) )

- L
='1kf[ I OF F "+ 2FIF F'lfl | UL Flgg.Lf FE
%y 93 22 71 7y o5
+FgﬁLﬂFV‘ (.32)

x 11

Using the properties of L and F it may be verified that
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variation of this Lagrangian with respect to L, F
and LV yield 4.1%4. It is now clear why no simple
expression for a Lagrangian with a variational prin-
ciple depending on P exists: if it did one would
expect it to be in the gauge used previously with

A; = A; = 0 and in that gauge 4.32 tends to zero.

To conistruct the Bicklund transformations

we define new coordinates by

Gp =Y + z $29 =y - z (4.33a)

Ap=y+12 {ig=5 -2 (4.33b)
Then

\ﬁ_Ap = As + A, S'z'_Aq = Ay, - 4 (4.34a)

\ﬁ:Ai') = Ay + A-Z- \G.Aa = AB-T - 'AZ (le.jllfb)

Hence in the R gauge a knowledge of Aﬁ and Ai allows

us to construct Ap and Aq since the diagonal entries

come only from terms like F'layF and are thus perfect
differentials enabling us to construct F. Then the

fact that terms such as F'lL'layLF are strictly lower

-lF-l

diagonal and terms such as FL+3y(L+) are strictly

upper diagonal enable us to extract them from Ai and

Aa for instance leading to complete expressions for

A d A_.
D and 4,



F - +F-=Fe -F (4.353)

Fap = Fog * Fog + Fyz + Fyy (&.35Db)

ZFiﬁ = —(Fy§ +F,z) +-F§Z + Fyz (4.35¢)
Hence .equations 4.3 are equivalent to

Fap = © (4.362)

Fap = © " (4.36D)

Fop * Fqg * © (%.36¢)

The idea behind the following construction is to
perform a gauge-type transformation of A5 and Aﬁ
alone and try to set this equal to an Aé and Aé
coming from different D and E matrices but being in

an R gaﬁge. Thus as noted before this implies that

we know what Aé and Aé are. We are thus left, after
separating out components of the matrices, differential
equations between the elements of D' and E' and D and

E. To check that they are integrable equations and

give a self-dual solution is equivalent to verifying

4.3 and thus also to the set 4.36. As the new diagonal
element of Aé and AX must again be perfect differentials

o
it is reasonable to 4t least at first work with elements
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of the permutation group to ensure this condition.

Before presenting our results we give some

notation. H is the nxn matrix with elements Hi’i +1=1,

u(r)

i#n, H , = 1, all other entries zero. is the
’

matrix diag(l,eeee9ly-1,eee,-1) with r ones and n - r

minus ones. S = M(n'l)H. H?S = J = diag(-1,1,.4..,1).

THEOREM: Let D and E be generating matrices in an R

gauge satisfying 4.3 then D' and E} also in an R gauge,

defined from F' = HFHT, A3 = HAI-SHT and AZ HAaHT also

satisfy 4.3

Proof: From 4.34 and the definition of H if A% and

Aé are to define D' and E' we must have

a T
A' = SA_S ''= SA_S L,
p AP Aq Aq (%.37)
This is easily seen as A'pij = Aéij’ i< j and Aﬁij’
=‘Aéij, i”j and similarly for Aé. Hence we need to

check 4.3 or equivalently 4.36 hold But

| = F 3 = (ll'. 8
Fé S 'LPS o) 38a)
F;‘\,? = HF‘WHT =0 (4.38Db)

as SS” = HH™ = I, so only F'!=- +

&

'« remains.
qq
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Now

NGR ' =2{27J -2 A4- - o :
LRy + 65 M ('5F AT 5}4"’ (58,3, 451+ 53_{3'%3

~ 3z - [TAR,7, A1)
0‘1‘

= (

"3,+3)T(4-A9)T —(%‘-%)(AS-AQ
- L3(R-A7)T, Ag-Ay ]+ (%5* 3) T(Ag+A)S

~ 55+ 2 Ay + Az)- [olag +a)T, 4, +4q]

= 2 T4, T-~2 A ~2 A JAz -
£, 7% %i 2 nﬂz "‘g% AT "'%?s-‘m:)j %%3
- %31‘\5 + %b:: AzT - [TRJ, Ag)+ [A,,TAgT)

- LTAT, A,] + [Ag,T4.3)+[3a,3- Ry TAT-R |

+ LAg-TA3T, As- JA;T \ (4.39)
where we have used 9, A, -D%A\) = [A%,A&,’z .and 9% AS
~%Ag = LAg, Ayl (e Ry, = Fgs =0,

As both JAyJ - Ay and JAZJ - Az are zero except for
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the i,1°P component (i # 1) they commute. Similarly

A§ - JA§J and AE - JAZJ are zero except for the l.ith

(i # 1) component so they commute.

We now use

Y_TA-.;T}CJ' = Y_A

[TAQT}” = -[Aﬂ‘j ;)

0
—
=
e
<.
#
[« 4
4
~.
N
Cr
1

[ TA%T] "j

EJAQT}“ = -[At-\;‘ l:*‘

together with (Az)ij =01i<j, (AZ)la =01i>j to
check that the remainder of 4.39 is zero by taking

the i.jth components.

a) i,j # 1t all differenthtions vanish and the com-

mutators become
( s=miale)jl €= max il )

s

1)
2 AU“‘A‘jkj + A As\j +k§=bAg"kA‘3K\‘) + ;L Av{k ASkJ"Ab;lAs'lJ'

:’tl

A s A S
B % AS‘:“A‘:)"\} B %AéCkA:i.kj +A~2£\Ailj +2 Az A § %ckA‘
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b) (=1 | #]|

- 23 Ai\‘, ZD A‘:J‘J A:’“ AB‘J + EA:’\kA:’k = A\JH 3“ + EAb\k jk\)

“Ag Az + ?Ai\\g Axiy ~ Ay Ai\j + $Ai\kA%kJ
9
=12}~ 28305 - A Ay + 3 g A anm Ay, Ag

J
+ 2 Agy Aka\} = 2{-3{\; -CA,, A7 -%,As

a'a

'LA‘J»AS“U = 2lFgrFPyglj=o
c) (#1 ;=)

As, using (A-Z-)+ = -A, and (A )t o= yr e have that
the lefthand side of 4.39 is skew-hermitian

*
[nT(r-'--rF’ )H3 ‘"["T‘F;;*%'a)“}um from b,

d) i=j=11: the derivative terms vanish and the

| commutators are

n n _
"A:,u ASH -2 ASlk Ag\“ +ﬂ§" Ayu"'ﬂau Agu + g'qS\kAgk\

2

"
= A5 Agi - Aqu Ay - %Ai\kﬂtk\ t Az, Ay +Ay, Ay,

n
+ - —y
% Az A ELY Aau Ay =



Hence Fﬁﬁ + Fda =0 Q.E.D.
There are two ways of interpreting the above trans-
formations. First one can ignore the fact that it is
possible to use them to define new generating matrices
and simply look on them as a way of renaming the func-
tions occuring in the original D and E. This is not
as simplistic an approach as it at first appears

as we shall see in the next chapter the 't Hooft
solutions for SU(2) are most succinctly written using

this way of changing variables.

If one wishes, however, to use them to
construct new D and E matrices and new potentials then
calling the transformation B it can be seen that Br
does not necessarily give an SU(n) solution. To show

this we first establish the following lemma.

Lemma: © £psa-1  then HP(ST)P = M“\-P)

Proof: It is clearly true for p = 1 as it then reduces
to HST = HHTM(n-l) = M(n-l). Assume it is true for

p < 3. Then HItL(sT)I*1 = wuI(sT)d)sT= min-3)sT -

HM(n_j)HTM(n—l). Now take the i,kth component .

a) (#Fn
Moo MO ™Y Dol ‘= k. Clearly we K
\'.,iﬂ C+\‘.'_+\ L+\’; \')K = uniess = . Raf 3 ave

' : 1+
(g LRG0

! y 1
R L HT(ST) ]«.‘,L = -\
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- -
]
o

b)
(n-)) tn-y) .

Ha o Mo My Mo =0 unless nisk when ok is =1,
M, Tt (tn-)=1)

Hence' HJ (S ) - M ! Q:E‘-De

We now prove our previous assertion. First let
0€r<€n-1. The condition that the potentials give

an SU(n-r,n) theory is (A,'..;)+ = -M(n_r)AﬁM(n'r).
Applying this to Aé and using (A5)+ = —Ap by hypothesis

we have

[} '\' [ o) T t TN
(Az) = (g o))" = v Az )" - W, 01"

\ ? -~ ). p { ‘r)
= - "P(ST} A SPLHT)p = - Mm i H,PM " '
: (4.40)

with a similar result for Aé. For r = n M(O)AéM(o) =

Ai so we return to SU(n). Hence we have proved that

Lemma: If we start with SU(n) potentials and apply
Pf to them then if r=pmod n, 0 $ p £ n-1, we
end up with self-dual potentials for an SU(n-p,p)

theory.

Although we have not been able to prove that
all BHcklund transformations are generated by H in this
manmner the result seems likely; for instance for n = 3

one might try to construct a transformation based on
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the transposition (1,2) but this turns out not to
be possible, with similar results in n=4 for (1,2)

(4,3).

The only relevance of the p,q,p,q coordinate
system seems to be that it is a different pair of PB-
planes. However the choice of yet another pair does
not give an essentially different BHcklund trasform-
ation but is equivalent to the one defined from

?,4,8,5 combincd with an algebroic tronsfermation of -

the type 4.23.

Now algebraic transformations of the type
4,20 or equivalently 4.23 are gauge transformations
in the R gauge formalism for starting with D in any
gauge there exists a Uy given by the Iwasaro decom-
position taking us to an R gauge and given AD there
exists a U2 taking us from the same potentials to an
R gauge. Hence starting in one R gauge Ul(Uz)—1 takes

us to the other.

For transformations of type 4.21 or 4.24
these are not gauge transformations between R gauges
except for SU(2). This is unfortunate as judging
from the case n = 2 it would seem that the most im-
portant transformation of the self-duality equations
is P composed with 4.21 and, except for n = 2, the
latter is not easily expressible in terms of the elements
of D and E in the necessary gauge and the former is

not simply written as equations between P and P'.
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In the next chapter we use this composition
for the case n = 2 to construct solutions of the
equation 4.3 from the 't Hooft solutions derived

in chapter two.



CHAPTER FIVE
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SELF-DUAL SU(2) THEORIES

We now apply the results of the previous
chapter to the case when the group is SU(2)(18).
This enables us to provide an induction theorem
which by virtue of the work of Atiyah and Ward(é)
in algebraic geometry constructs all self-dual SU(2)
solutions. There remains however the problem of where

. . . .
E v « - h ma nf S e lang o
such seclutiong are singular and what type of sigularit

exists. Work needs to be done on this problem.

First we present some notation. Matrices

D and E~% of equations 4.4 are

\ \ [ 3

L“ "3

= = (5.1)
D=gle 4 £ = : 5
so for SU(Z) solutions we requie f real and

- e = g* (5‘2)

-1y © -f3 o
A (R _ 14
F\3c ) . H%-
Sy
Fooa S &
s 35 e %
- 7 - = g T
Ag = | *f A * (5.3)
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(subscripts on e, f and g denote differentiation)

The self-duality equations 4.3 are now

-\ e P -l -2 ~Z

T (g rfag)-§ Fubg-d fufp-f eygg - ep35=0(5:4)
~=l -~ pmt . S (5.4b)
f 7 (eyg +eq3) — 24 e fs =2 etz =0 ‘5

- - ~2
'.F ‘(335'\'9. - Z‘G zﬂs‘cd -2f 33‘[‘%":0 (5.4c)

L-d
“Re/

For completeness we mention here the alternafive
ansftze for ﬁ” given by a Bicklund transformation
which gives SU(2) solutions with e,f and g still
satisfying 5.4 but with 5.2 replaced by

e = gt (5.5)
It is
526$ (o) ¥%&f ©
A, = R, =
J _a. - t g/, ’f;/
Syﬁ_ ¥Q€E £ 2
-fg, ea, - %G ~&
AS - ZF g. Ai =< zf 5.6)
o fage | o F%/T-F

For this ansatz 5.4 is not just a consequence of

FY? +F, - = 0 : 5.4a follows from this but 5.4b and
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r l't i i - == - i
C resu from imposing Fyz Fyz 0 respectively.
The important point is that if e and g satisfy either
5.2 or 5.5 we can still construct a real SU(2) solution
from them and the induction we use later alternates

these conjugation relations because it uses the

BiAcklund transformations.

The algebraic transformations 4.23, including

as mentioned previously P -ﬂ?(P-l)T, can be expressed

in terma of &, £ and g in the following form:

e £
S = .
¢ ) . (5.7)

be a solution matrix of 5.4, then so is S' where S'
= (aS + b) (cS + d)-l if a, b, ¢ and d are diagonal

matrices satisfying ad - bc = I,

Proof : Dy inspection.

In particular P -3 (e~HT corresponds to

2
ey-4 L e (5.8)

$ = & (5.9a)

. -2
e, = —4 35 g’b = £ 93 (5.9v)



=-f e, (5.9¢)

and we note that unlike 5.8, 5.9 does reverse any
conjugation relation between e and g so either taking
us from ansatz 5.3 to 5.6 (and remaining in SU(2)) or

staying in one ansatz and taking us from SU(2) to

Su(1,1).

The combination of 5.8 with 5.9 will be

erueial fto our main rasult so we give it in full

below

£z -leg-fY/ ¢ (5.10a)

3 (e =-12¢ 39e =L ?e (5.10Db)
o~ L‘§ ;‘- a% Q-iiea_gl ;/ —.

28 8- 1 = -1 2 2 - 7¢7 - (5.10¢)
7% ea__‘_-?-- frr ‘ag'g gbié?:ct‘% £t 3 -3-

We can now prove the following theorem :

Theorem Let A. be a set of 2m-1 fields Irl £ m-1

satisfying

We = = Wear Wez Wry, O real H=-&F  (5.11)
33 23 °3 33

so that BH. = 0. For m = 1 we impose QB8, = 0.
Then we have an infinite hierarchy of ansftze giving
self-dual solutions constructed out of O, by the

following method.
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A(l) is given by e = f = g = 1/Ae
For m22 let the mxm matrix D™ pe Dz(,m; =
. ]
Arig-n-1 and let §M) = p(M-2 4yon a(m) 54 given
by
é& < g\\ —F: S,M?- SM‘ q= SMM
Proof : By inspection A(l) does indeed provide a

solution to 5.4 (namely the known 't Hooft solutions'1?’
when put into ansatz 5.6). To give an inductive proof
we must also check the m = 2 ansatz.

This gives

e £
£ 9 & by (5.12)

but by invariance 5.8 it is sufficient to prove

e £ A., A
£ 9 - A, A, (5.13)
provides a solution. As A, real and 8, = 01 we

use ansatz 5.3 and from the differential relations

between O, we have

e%= ,F... e, = -{- (5.1’4'8.)

(5.14b)
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Putting these into 5.4 reduces them to
£ '0f=o0 (5.15)

i.e. the 't Hooft solutions.

Assume the result is true for m-l. Let

(e,f,g) be the functions associated with A(m'l) and
s(m)_

(s,t,u) be constructed out of We aim to show

that (s.t,u) =2re raleted to (o,f,z) by 5.10 and o

«-

also provide a solution. Now

~ (M) ~
su-t= LT, B =01 (M).S/Ud p™')*

11 M ™M tM

= doe B Y dee O (5.16)

~(m) (m)

where D , and we have

is the adjugate matrix to D
used a result of Jacobi which states that if ﬁ(r) is
an rxr submatrix of ﬁ: the adjugate of the nxn matrix

(n-r)

M, and M is the (n-r)x(n-r) submatrix of M obtained

by stricking out similarly placed rows and columns in

M to those oflﬁ(r) in M then det'ﬁ(r) = (det M)r'ldet
u(n-r),

@ aze 07 der O (5.17)
S0

m+ m-1)
(su-é(-;l)/t = &) A.QJ:D ‘L)/c\-ka)( \ :_-.F (5.18)
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We now use the result

~ (M) M) (mel) A (W) o tm)_ 1) ianl) et
n.m%_.. -0, %T,"“ =0, %‘2““" 0, mo\ 30” (5.19)

which to avoid interruptions in the arguement is

[P\MJ /F (:ﬂ‘) At M-\)/~(‘.::'l= tplm) ~ (M~ 0](5 20)
‘ ?

Y %
But
~ () )
s=B, /dtp" (5.21)
so

l'b\"l) "\"'( 1 {m=i)
‘ =€) 0 "' /F.

s/us~E) = Ty ldor0 D (5.22)

and

m+

e = (—)M.H ~(M-\)/ ﬂ[w\) ‘F - (_) ~(M~l) /~ (M) (5 23)

IM‘

so 5.19 implies

(5.24)
= ( s/Csu- E))
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Similarly a slight variation of 5.19 implies

-2 -
£77% = ~3 [ s/tsu-2)] (5.25)
72 29 -
and
~ () A (M=) ~x (M=) () m) a (el aer) i)
M == Mot el - 0"'\-”"\‘| %‘."M T Omm ?_Dnm-\ = 0, g.omm(5'26)
0% o ?1'5 . 7y

and a comparable equation give via

~ ~ 1)
u/isu-€) = T 1B (5.27)
and
Mt A (M"n A (M) - .28
3 = (-). -om-\m-\ DIM (5 )
2 [u/an-®)) =-f7% 39 (5.29a)
2 [Wiw-e)l = §72 (5.29)
Y %
Hence as (e,f,g) are a solution so are (s,t,u).
Q.E.D.

To complete the exposition we prove 5.19
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and 5.26.

As the proofs are similar we give a proof

of 5.26 and only indicate that for 5.19. Define the

mxm matrix c(™ by Cém; = A

r+s-m-2° Lhen
() W) i) (5.30)
€= dekC = Veadl me
(m) (W) m o mrl) o ) .31
AM:MD - € 0|M+| C|‘ (5.31)
— M= = (M) ~ (M) A=l ae L) (5.32)
Cﬂt)'z N0 C., =€ O mn 3
Then 5.26 is equivalent to proving
- - -
A(M)EE(M l)_ ™ \)?-é(m) - A(M )a_e(m)_ (w\)?‘d (5.33)
RS 2% 3:, 2y
Now
(m=1) ). tm) (M=) 2 astm) o )
?_C_CM)-\-C_‘M‘E _ 4 Z.rsg_c'_s
%y i ns 2y
WS ) (m)
+ C(M \ Z N':"\s 2-0;“5
~Ss gi
m L m)
“1) ~rim) ~1) A (M)
= 3% [dmeey L T
RS Y

(from 5.11)
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m (™M) ~ (M) (W) (M)~ (m
= Ziﬁrs[cu f-s"~ r)
< 35 MM s
g NW)i('c‘me ~¢m)~tm)) C w={m) ¥ w _ X(m) & ()
= A 5_\;‘5 "\ r.s - 1 1$ + Dr-m ms mmor.s )}
M=\ m=1
tm) ~ M= (M) (”\) r~ (m=1)
2 2 Crp g C'Mo - 2 3¢ Crs
s :\ ~s \_,
(by Jacobi)
M aet) o tme) (M) 27 (M) s (M)
C(M)Z Q.gf‘ﬁ of\s -+ 2 a..crs rs
rs 2y rs 9%
m=1) () -
- C‘M)QJ( + 4 ™ ) (5.34)
Py T

as claimed. To prove 5.19 we make similar manipulations

(m)

involving the matrix B defined by B(m) =0

r+s-m
so that 5.19 is equivalent to

(M=) YRR L )
a._,, ?\3 % 7%
where b(m) = det B(m) and proceed as above.

To interpret the solutions given by the
theorem we use the work of Atiyah and Ward(é) and its
analytic interpretation due to Goddard(ls), the latter

shows how to relate the claim of the former to the
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above ans8tze. According to Atiyah and Ward each
ansfitze starting from a given Ao preserves the
topological quantum number k say but increases the
parameters on which the solution depends until, for
a given m some (unknown) function of k, the maximum
number of parameters namely 8k-3 is reached(19).

Hence as solutions at the m = 1 level for all k are

known, the 't Hooft solutions

L3 L
AL
= 1+ 2 2
Ao =l (K-x‘.)"'

(5.36)

the above construction provides all self-dual SU(2)

solutions.

We recall the definition of a B-plane given
in chapter one, namely if Vaa and W, are any displace-
ments in that plane v,w, - Vy W is antiself-dual. To
see Atiyah and Ward's construction we must find a way
of labelling these planes which the authors of refer-
ence 6 do using the Penrose twistor notation(7). Let

X be the matrix given by

y -3 .
X =xeI-in.g=501 - (5.37)
t J

where ¢ are the Pauli spin matrices. Then for fixed

2-spinors w and T the equation

w= X% (5.38)
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determines a B-plane. Now let O stand for the

L-gpinor formed by

o= (7, (5.39)

Clearly ‘& and M@ define the same plane for A #£ 0,

so f-planes are labelled by peoints in C

J Y3
projective 3-space. If [8]=§{AB:A€C Ao T

complex

is such a point let the corresponding f-plane be ﬁwl.
As explained in chapter one Atiyah and Ward point

out that in such a plane the equation

Ay I = 3"'_3_3 dn* dXw =0 (5.40)
2 2%

may be integratgd between x,y € B[s‘] to give &re] (x,y)
€ 51(2,C), the complexification of SU(2), if Ay is
a self-dual potential. Hence over [8] we can construct
a two dimensienal fibre Vpgy given by 2-spiner fields
Pr(x) defined over [y and related at different
points of Prg by

(’UCB'S ) = 3[9‘3(7" PWHn ) %Y € By (5.41)

thus arriving at a two dimensional analytic vector

bundle over CP.,.

3

To define coordinates on this bundle it i'S

necessary to pick an Xpg) € Btsj for each L[&] and
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specify the value of U)Eo)(x te) ) so determining %93(;41)
everywhere given ey (x,y). However such a choice
of x(é) cannot be done smoothly; at least two such

choices are necessary, say

W, o
/"\ m,+0
, | = (5.h22)
%[93 w"/ﬂl o -
r o w\./n:“._ W
‘)c’Ee] = T, %0 (5.42b)
o We/r,

the two coordinate systems being related by the trans-

ition function g( W®) = Eeen (x%a‘l 'X%D'.\ ) by

WESJ ¢ xtts'l‘) = 3[3] C 7‘1‘:0‘] ’X.EO] ) L‘Vtﬂ ( 7‘-1:_9:)) (5.43)

g(w,® ) defining the isomorphism class of the bundle

and being homogenous: g(w, ® ) = g(dw,an),

Ward(20) points out that A. may be regained
from g(w, ) using the fact that

glw,x) = 3&,‘(7&'@ , %) 3530(1, x’éﬂ) (5.44)

for each x € Bte‘] . So writing n(x,%) = gtw(x%93 ) %)

g(xw, %) = h (%3 K (%,3) (5.45)
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n(x,%¥) being analytic away from 3 = 0 and k(x,3)
being analytic away from 3§ =90, for fixed §. With
these conditions Liouville's theorem implies that

5.45 uniquely determines h and k up to a gauge trans-

formation

From equation 5.40
()-SR Sl 2
(ORLCERN VO 33, §h03)  (5.472)

= k:%u;S)E.}_ -3

2
9wy ?

L2

'lg k(x,T) (5.47p)
Y

as (dx)W = 0 is satisfied if dx,, =‘§dxil where
Aijdxij = gﬁdx”. Hence the isomorphism class determines

the potential up to a gauge equivalence.

Conversely Ward(zo)

shows that any g(w,®)
homogenous in its variables with a suitable domain of
analyticity yields a self-dual potential provided g
may be split up as in 5.45, as then 5.47a and 5.470

follow from

Diq =0 0;= 2 -T2 (5.48)
9KC| 3‘*;'1.

the lefthand side of 5.47 coming from Liouville's
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theorem. In reference 6 it is argued that it is

sufficient to take

3T e(x,3)

5 = < m an integer (5.49)
o

with p depending on x and S through the variables

xll'S + Xyp0 le's + X,, and ¥ . Hence

In the same paper the authors argue that the hierarchy
of ansHtze arising from different choices of m preserve
the topological quantum number k but increase the number
of parameters in the solution till saturation is

reached for some m(k).

To tie in this result-with the construction
previously given we use the work of Goddard(ls)

presented below. Let

]_\ - ‘T S \.( - e d (5.51)

&S —}8?/ =ad - bc = 1, d,p,? and § regular as
functions of ¥ except at S = 0, a, b, ¢ and d regular
as functions of ¥ except at 9 = 0D. Then from 5.45

and 5.4 we have

c=73" d= §3I™ (5.52a)
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q"SM-\-Qr.:o( 53M+fd=ﬁ (5.52b)

From 5.52a we deduce that c¢c and d are polynomials

of at most degree m and write

e(x,8) = 3T UxT) = T AT (5.53)
)
Further as the coefficient of § vanishes in the
Laurent series of «-a3 and - b3 0<r<m 5.52b
implies

45 03 = EdS,dT 20 ocrcm  (5.54)
é;'s fC 4F.?5 ? o

the contours encircling the origin. Letting

A = L §o\_§. p(x,S) 3" (5.55)
S

2wl

these may be written as

m M .
? CS As—r = Eo AS AS—(‘ =0 or<m (5.56)

5.50 implies that pr satisfy

9_9!\ - = ?_Ap.fq QA\’ - (5.57)
22

‘33 73

Sl
I
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We may express a and b in terms of ¢ and d

alx, D) = "zm § A X g(x,‘k) c(u,R) (5.58a)
b(%,3) = -L & o> A-MQ(X,A)J(K, ) (5.580)
21 i:‘s

where the contours positively encircle the origin in
Ial 18l . Equations 5.56 leave four of the 2m+2 func-
tions ¢, and d. arbitrary and the constraint ad - bc
= -1 reduces this to three, mirroring the gauge freedom.

From a,b,c and 4 satisfying these constraints potentials

can be constructed from 5.47a.

d0ia=-b0cc 40:b-b0;d

R: 00 =S An) = | adic-clia ~d0ia+b0;e|(5.59)

Goddard shows that (18)

dDia~- b0c =4,9a, -b ¢ - T(dadds ~ B, O¢m X(S .60a)
3"%\ 9'&‘ gln. CE RN

alic-clia = oo %m = ¢ Wy = Ko Em-t +Cme, My — .y VS

?7‘.\‘ glu 974.‘1' 2“\1- ’ax‘:.‘-

+ Cmddey = S( oo 9m -cM’a.g,\ (5.60b)
T

29 My ?‘xn_ e




AD‘_‘b -BD"‘A= dog_ko -’boa_{e “‘Sgdo’ako 'be?_éo 'do.)_‘bl +b|2_d.°

CLEN Ch T My U LA N In(,
-d|2&9 + bq?é\ (5.60c)
R LN

where &, B¢, a_ and b, stand for the coefficent of

s
SS in the Laurent series of & , B , a and b respect-

ively and may be expressed in terms of As' Cgq and dS
using equations 5.52b. The constraint that ad - bec

= a$ -B¥ = 1 become
Rodm = BoCm = pdo=byco= |

To recover the previous results we need only to choose

the gauge

Cp = d0 =0 (5.61)_
and

2 _ .2 _

cg = d = f (5.62)

Then from 5.59 and 5.60 we recover 5.6 with

e = cydy g=rc ;4 (5.63)
5.61 reduces equations 5.56 to two sets of m-1 homo-
genous equations in m unknowns enabling us to verify

that e, f and g are indeed given by the formulae stated
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in the previous theorem providing the necessary link-
up enabling us to claim that the analytic method
provides all solutions from the 't Hooft solutions

at the m = 1 level.

The fact that the m = 2 gnsatz merely re-
produces these is an accident due to the use of 5.8 :
for m> 2 this invariance obviously cannot be used to
reduce the non-linear dependance of (e,f,g) on the

1>r tn a linegar onc.

We should mention here that the explicit
(2) '

form for A given in reference 6 is incorrect:

instead of using ansatz 5.3 those authors used 5.6 so
their form for A, gives SU(1,1) solutions. If we

think of A—l’ A, and 8, as being the components of

an antiself-dual Maxwell field f&w given by

o5 = 8- (5.64)

¢5‘J= ¢i-‘t= Bo

: _ 1:pd it
then QM = 21%” 6} can be written

) g MVER g (5.65)
A/“ ) KJ dﬁe ?x i ¢"g’g
¢Ae

where ¢z=éw ¢” or, after doing a gauge transformation
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to get to 5.13

AL =SB L o ¢4
" ’ '1329553? ?x"g I
where
pvep % A
R = gfn® xnf¥n ke
pvep '
R =9 nF - nE
MVRB M xB
RS =
and
MVEB v v, X
S' Lj» qloqs_ nzM qu
MVRE v K MV R
sl - q‘l. ng q‘ :

The reality conditions on ¢&§ are, from 5.64,

L6, = -des 4, cel

(5.66)

(5.67)

(5.68)

(5.69)

The first order partial differential equations

satisfied by O namely relations 5.11, imply

(5.70)
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In general this cannot be satisfied without either
Dp not tending to zero at infinity or a source on
the lefthand-side of 5.70 i.e. 8n and therefore D™
will have a set of singularity points. What this im-
plies about the singularity structure of Aﬂ‘ or Fuv
is not apparent and needs further investigation. For
m=1 Eﬂv ic non:gingular and hence alsc form = 2

as we have shown that this is a repitition of the
former. Reference 6 claim, from algebraic geometric
considerations, that the A/~ can always, by a suitable
choice of gauge, be written as ratiqnal functions with
poles lying on a hypersurface labelled by a polynomial
of degree equal to the instanton number in CP3. Un-
fortunately the only case they consider in detail is
the m = 2 ansatz for SU(1,1). Hence the exact nature
of the singularity structure for non-'t Hooft-like
solutions remains an open problem, and the above con-
struction while in principle giving all solutions in
practice is so tedious, involving the inversion of an
mxm matrix, as to be of little help in this problem.
Perhaps the alternative method of solution of the

theory(Zl) (22)

reducing it to a non-linear algebraic
problem as opposed to a non-linear differential one
will cast light on the structure of singularities,
though again the only solutions that have been found

so far are the 't Hooft ones.



CHAPTER SIX
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CONCLUSION

After their initial introduction‘)(?) gauge
theories suffered a long period of neglect by theoretical
physicists partly because of the difficulty of their non-
linearity and partly due to the fact that because of
this property it was difficult to conceive of a quant-
ization scheme. With the introduction of the path inter-
gral method the latter problem showed signs of eventually
being solved and the former was simplified by the new

emphasis on self-dual solutions in Euclidean space.

Gauge theories also recovered popularity with
the increasing belief in the dogma that quantum chromo-
dynamics would explain everything and it was fortunate
that this upsurge in interest among theoretical physicists
coincided with a burst of activity on the part of such
pure mathematicians as Atiyah, Ward, Drinfeld and Manin
which helped to solve, at least for some of the simpler
types of theories, the Yang-Mills equations. Using the
methods of algebraic geometry and vectof bundle theory a
difficult, second order, non-linear set of differential
equations were reduced to a solvable set of first order
equations for the case of SU(2) providing the set of

self-dual solutions presented in chapter five.

Whether, via the similarities between the
theories exhibited in chapter four, such techniques can
be applied to general SU(n) self-dual theories to produce

a complete solution to that problem is an open question :
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as explained in chapter four the difficulty seems to

lie in the fact that the most important algebraic in-
variance P — (P"1)T is not easily written in terms of
D and E matrices in an R gauge so being difficult to
combine with the Bicklund transformations to produce

an inductive type proof of an infinite sequence of
ansitze as given in chapier five for 3U(2). Perhaps a
more fruitful approach would be to use the SU(2) embedd-
(13)

ing theorems of Bernard et al. and then use the
various transformations presented in this thesis to
generate the required parameters; certainly more work
needs to be done both on this aspect of the theory and

on the singularity problem for the SU(2) solution.

(21)(22) have used similar

Later papers
algebraic geometric techniques to reduce the self-dual
problem from a differential one to a linear algebra
problem but with the matrices satisfying non-linear con-
straints. So far the imposition of these constraints
have proved intractable and only the 't Hooft type
solutions have been cast in this mould though using
this approach it has proved possible to construct a Green's

function for the theory.(zz)

Recent work by Witten(?¥)

suggests that geo-
metric language may be used to castithe complete Yang-
Mills theory, not just the self-dual problem, into a
question of the construction of fibre bundles over CP3 X

CP3 though the algebra now has to be extended to a super-

~ symmetric one. This raises such problems as what is



meant by a graded Lie group and the principal fibre
bundle constructed therefrom, not to mention the meaning
of a connection on such an object together with its
resulting curvature. While ad hoc local methods can

be used to point the way to a future rigorous theory(25)

it is not immediately clear, to the author at least, how

bundle theory to handle such graded Lie algebras.

T-n ranaliimy an wh i1 s manyy Jadnd mrdgmas ~ee A Sases anade
2l AU ALLOA UL VAL LT LAl LAl VA LR WAl caidw LlIpVIL W

ant questions remain to be answered the fruitful co-
operation of theoretical physics and pure mathematics
has so far cast new light on gauge theories enabling
their complete solution in admittedly restricted circum-
stances and providing hope that what was once thought to
be an intractable problem may in future be seen to be

one that, though hard, is capable of solution.
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APPENDIX

Euclidean, four dimensional space-time is
given by (xo,xl,xz,x3) with metric tensor gﬂv . The

coordinate system (y,¥,z,2) is also used with

iy

2y X + ix (A.1a)

J2z = X, = ixg 22

X, + ixl (A.1b)

when the metric tensor is

8yy = By T &3 = 87z = 1
all other components zero (A.2)

In all chapters except three the curvature tensor EMV

is defined from the potentials Am by

Fvo= 24 .~ 24, - LA, A (A.3)
T el s A

with gauge transformations

A~ ' A g+ a2 (A.4)
following Yang's conventions(S)'

(14)

In chapter three we follow Witten's convention

as the work is based on his.
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Fuv = %xﬁp-;_uﬁv + LA, A) (A.5)

with gauge transformations being

A/_‘ —_— 3A»3°'+ 3%?;; (A.6)

The antiself-dual tensors f];,— can be

defined in the (X, X;,X,,X,) reference frame by

r];f-. iO‘/Ar + S/*Q SU'O - S/gg Sgr (Al7)

(23)

and satisfy the relations

q:f q;K = S[AV 36‘!& - 3!*5' 3‘VR - Zyc‘/.\w. (A.8a)

q'\/‘\d‘ N/ = ZabeNeow ™ Sab Juor (A.8D)
b e
iaben/“'&r‘ 'lld'-' qq/r\l Skg' - ’IQ\/AO- 3“\/ + VIQKG'SIAV
(A.8c)

—quvﬁrr

A g ~npn a Q
V?,Asf VvRoe < qw‘ 3/,\r +qa‘v3}“\.‘*n Krsﬁv (A'Bd)
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