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ABSTRACT

For smooth actions of compact Lie groups on differentiable manifolds,
the existence of a smooth slice transversal to each orbit gives a clear
description of the local structure. 1In 1973, D. Luna proved the existence
of a slice-in the &tale topology at a closed orbit, for reductive
algebraic groups acting on an affine variety, over an algebraically closed
field of characteristic zero. This thesis explores the extent to wﬁich
Luna's methods work over an arbitrav& field..- Conditions for the quotient
of a morphism to be étale are given, necessary and sufficient conditions are
given for the existence of a slice on a smooth affine schemé, and a new
proof is given of the isomorphism of the unipotent variety of a split
connected, simple, semisimple algebraic group with the nilpoteny variety of

its Lie algebra.




INTRODUCTION:
CHAPTER 1:
CHAPTER 2:
CHAPTER 3:
CHAPTER U4:
CHAPTER 5:
CHAPTER 6:

TABLE OF CONTENTS

1.1 Serre varieties ce  ee e

1.2 Schemes

1.3 Jacobson schemes “e

1.4 Base change ce e e

1.5 Functorial points

1.6 Algebraic schemes .. .. ..

1.7 A simple example e e s

2.1 Group varieties e ee e

2.2 Group schemes .. .. ..

2.3 Left translation ..

2.4 Invariants .. .. .. ..

2.5 Reductive groups e e e

2.6 Some examples .. .. .. ..

3.1 Images and fibers of G morphisms
.2 Quotients and orbits .

3.3 Equivariant etale morphisms

4,1 Etale morphisms and quotients
.2 Some CONsSequences .. .. ..

5.1 Grothendieck topologies

5.2 Fiber bundles .., .. .. ..

5.3 Associated bundles .. .. ..

5.4 Induced bundles o s

5.5 Flat and étale torseurs ‘e

6.1 Stabilisers and orbits .. ..

6.2 Tangent schemes er e

6.3 Transversality .. .. .. ..

6.4 Etale slices e s e s

6.5 An example .. .. .. <o o

6.6 Some corollaries .. .. ;.

[8]

O 9 0 o0 o

11
15

17
17
i8
22
24
27
28

30
30
35
43

u6
46
57

62
62
63
65
66
71

76
76
78
80
81
86
87



CHAPTER 7:

APPEMDIX 1.:
APPENDIX 2:
REFERENCES: -

7.1 Semisimple group schemes

7.2 The unipotent and nilpotent varieties

Al.l

Al.2 Tormal properties of faithfully flat base change

A2.1
A2.2
A2.3
A2.u4
A2.5

Representing schemes by function

Dimension .. .. .. ..

Flatness and generic flatness ..

Ascent and descent -
Smooth and étale morphisms

Zariski's main theorem

90
90
92

96
96
99

101
101
101
102
lou
105

107



Lemma

Lemma

Lemma

Lemma

Lemma

Lemma
Proposition
Proposition
Lemma

Lemma

Lemma
Proposition
Coreollary
Proposition
Proposition
Proposition
Proposition
Propositioﬁ
Proposition
Proposition
Proposition
Proposition
Lemma

Proposition

1.6.1

3.1.1

- 3.1.1

3.2.1
3.1.3

3.1.2

3.2.5

h 1.1

4.1.1

1y

30

30

31

32

33

33

33

34

34

35

38

39

41

41

g

L6

L7

LIST OF RESULTS

Lemma
Corollary
Lemma
Propésition
Lemma
Corollary.
Proposition
Proposition
Lemma . .
Lemma

Lemma
Proposition
Proposition
Corollary
Corollary
Corollary
Lemma

Lémma
Proposition
Proposition
Proposition
Lemma
Corollary
éorollary

Lemma

4.1.2

b,1.2

. 5.5.1

6.1.1
6.3.1

6.4.1

AL.1.1
Al.1.2
AL.2.1
Al.2.1
Al.2.2

A2.4.1

51

51

57

59

6L

6L

66

71

.12

76

81

82

-8y

87

87

89
92
93
94
97
98

99

99

105



INTRODUCTION

If G 1is a compact Lie group, H a closed subgroﬁp, and V- a
differentiable manifold on which H acts smoothly on.the right, leé
Vo, G =(VxG)H , where H acts on V x d by (v, g)*h = (v°h, h_lg] .
Then V *y G 1is a differentiable manifold with a smooth right G action,

which in the theory of group actions on manifolds plays the role of a non-

linear analogue of induced representations. The geometric structure of

H

V %, G is fairly simple. It'is a. H bunmdle over the base. H\G with fiber R

V , and is associated to the principal bundle G -+ H\G .
Now if G acts smoothly on a differentiable manifold X and T is an

orbit in X , then T is a smooth closed submanifold isomorphic to G/Gx

where Gx is the stabiliser of a point x € T . It is well known [Palais
1960] +that there is an invariant open neighbourhood U of T in X

which is G-isomorphic to Sx *a G , where Sx is a G& stable smooth
x

submanifold of X which cuts T transversally at & . Such a transversal

Sx is called a slice at x . This effectively solves the local structure.

problem for smooth G actions on manifolds.

If now G 1is a reductive algebraic group over an algebraically closed
field k acting on an affine variety X , or more generally if G is a
reductive group scheme arid X an affine algebraic group scheme over an
arbi+rapry field k , then the question arises vhether a similar theorem
holds. The orbits on X are no longer necessarily closed, but the question
arises only for closed orbits, and for technical reasons a slice cannot

exist unless the orbit is separable. Results of Serre [Serre 58] show that

slices may not exist in the Qpology (by.which I mean there may be

)
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no Zariski open neighbourhood of T of the form Sx *G G ], because
x

Zariski topology is too coarse, but suggest that slices may exist in the
etale topology. In [Luna 73, Luna al, D. Luna showed that a slice always
exists in the &tale topology if the base field is algebraically closed and
of characteristic zero. The main result of this thesis is a necessary and
sufficient condition for the existence of an étale slice over an arbitrary
field (Proposition 6.4.1).

The proof basically follows the method of [Luna 73] and uses ideas from
both papers, but allowing k to be an arbitrary field introduces a number
of technical_complicgtions. One of thesg is thaf_in prime chapactgristiq
-reduétivé grédps need no longer be lineéfly'réduétive;ﬁ-That is,-ﬁof all"
linear representations are semisimple. Another is that over an arbitrary
field the geometry is no longer adequately treated by the method of Serre
.varieties and it is necessary to work yith'schemgs._ iny,algebraic ;chemes
over.a field are used, and these are quite well behaved. Chapter. 1 confains
a summary of the scheme theoretic framework I will need. An alternative
would have seen to use the rationality methods of [Borell], but this would
have been awkward in places. |

In Chapter 2, invariants are defined and are used in Chapter 3 to
construct quotients for group actions on affine schemes. The correct
definition of invariants for actions of group schemes over an arbitrary
field (following [Seshadril) is complicated and not immediately obvious.
Chapter 3 also collects together definitions and simple properties of
orbits, quasi orbits, and equivariant morphisms. Some of the results in
§3.1 can.be found scattered in various forms in [G.-D.], though with
different proofs. Chapter 4 containé the heart of the proof, a criterion
which may be used to show that the quotieﬁt of a morphism is étale
(Proposition 4.1.1). Chapter 5 contains material on Grothendieck

topologies, fiber bundles, and torseurs, which are principal fiber bundles

L
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carrying a group action. Chapter 6 gives fhe construction of the etale
slice, and Chapter 7 contains an application of these methods to give a new
proof of the isomorphism of the unipotent and nilpotent varieties of a
connected,simplyconnectedsemisimplealgebraicgroup.Thémaaretwoappendices.
The first contains a proof of the representation theorem mentioned in Chapter 1
(which is implicit in [G.-D.] but not written down an&wheve), and some
formal properties of faithfully flat descent. The second contains a summary
of some of the more important definitions and theorems about schemes which
are used throughout the thesis.

One technical matter is worth further comment. 1In characteristic zero
'the.dﬁerétibn of téking é'qﬁofient commutes with products, in the sense.that

(X Xy Z)/G = (X/G) Xy Z , provided that Y and Z have a trivial G

action. This is proved easily using a "Reynolds operator' [Mumford]. But
in érime characteristic G may not be linearly reductive and a Reynolds
oéerétor is ﬁot available. Special abgﬁﬁents are needed each time it is
necessary to commute quotients and products (Proposition 3.2.1, Corollary
5.2.1).

The following conventions are in force throughout. All rings and
.algebras are commutative with 1 and.all homomorphisms preserve 1 . All
schemes are separated and are over a fixed base ring k , which is almost
always a field. If k is a field, k is an algebraic closure and
p : Spec(k) » Spec(k) is_the canonical projection. The definition of a
reductive group scheme is slightly wider than that of [SGA3, Demazure]: I
allow a reductive group n;t to be connected. Standard properties of
algebraic groups and Serre varieties [Borel, Humpbfeys, Dieudonné 74] are
assumed without comment, whereas resﬁlts peculiar to schemes are spelled out
more explicitly. Cartesian squares or '"pull-backs" are as defined in EGAO,
§1.2.4. The dual concept is a co-cartesian square 6r "push-out", I will

sometimes use the category theorist's convention of writing X for the




b

identity morphism of the object X when the context is clear. Propositién
a.b.c means Proposition ¢ in Chapter a, Section b; in Chapter a it is
referred to as Proposition b.c, and in Section c¢c as Proposition c.

References to the bibliography will be made by quofing the author, and
if necessary the year of‘publication, thus [Luna 1973]. Unpublished
articles will be identified by a letter, thus [Luna [a]]l. Commonly used
references wili be abbreviated as follows (for details, see the
bibliography).

[E.G.A.] Dieudonné and Grothendieck, Eléments de Géométrie Algebrique.

[S.G.A.] Grothendieck et al, Séminaire de Géométrie Algebrique.

[G.-D.] Gabriel. and- Demazure, ‘Croupes -Algebriques.




CHAPTER 1

1. Serre varieties

Serre varieties are as defined in [Dieudonné 7u4]. That is, an affine
Serre variety over an algebraically closed field k is an algebraic set

n , for some =n , together with the coordinate ring k[X] of

Xck
polynomial functions on X , or equivalently it is a reduéed k-algebra of
finite type A together with its maximal ideal space Max(4) . A variety
is a neotherian ringed space which can be covered by open subsets which are
" affiné varieties. All varieties are assumed séparated, that is the diaéonél
morphism X -+ X x X is a closed embedding. The category of affine
varigties is contravariantly isomorphic to the category of reduced

k-algebras of finite type. I will assume without comment properties of

varieties in [Dieudonné 74, Humphreys 75, Chapter 1].

2. Schemeé

Schemes are as defined in [EGA, Hartshorne]. All schemes are taken
over a fixed base field k , and are assumed noetherian and separated. If
X = Spec(A4) 1is an affine scﬁeme over k I will write A = k[X] and call
A the coordinate ring of X , just as for varieties. An affine scheme is
algebraic if the coordinate ring is finitely generated as a k-algebra, and
a scheme is algebraic if }t has a finite covering by algebraic affine open
subschemes. Most but not all schemes considered henceforth will be
algebraic. For example, if Xk is the algebraic closure of k then
Spec(k) may not be algebraic over k . The category of affine schemes over
k is-contravariantly isomorphic to the category of k-algebras.

If X 1is a scheme and x € X then the local ring Ox at x£ has a

unique maximal ideal m and k(x) = ox/mx is called the residue field at




x . There is an evaluation map ev : Ox > k(x) : f— f(x) . If X is
affine then - mx is the localisation of px , the prime at « , and there is

an evaluation map k[X] - k(x) .
k(x) is an extension field of k . If k(x) =k then x is a
rational point and if k(x) is a finite separable extension of k then &

is a separable point. The set of rational points is written Xfat » the set

of separable points Xsep ,» and the set of closed points X, - If X is

affine then XO is just the set of maximal ideals in k[X] . Separable and

rational points are closed so Xr cX <X .

at sep 0 and X

rat’ Xsep 0
carry topologies induced from X .
If the base field k is algebraically closed and X is a reduced

algebraic scheme, then Xo is dense in X and every open set in Xb is the

restriction of a unique open set in X (see below). So there is a structure

sheaf 0
Xy

induped on Xb' from the structure sheaf OX on X , and XO
with this structure sheaf is a Serre variety. Conversely every Serre
variety over k can be embedded as the set of closed points in a unique
reduced algebraic scheme. If X is an affine Serre variety then the
scheme is Spec(k[X]) . Accordingly I will call reduced algebraic schemes
over an algebraicélly closed field "Serre schemes;. The category of "Serre
schemes" is clearly isomorphic to the category of Serre varieties.

If X is a scheme then |X] will be the underlying set (or sometimes

the underlying topological space).

3. Jacobson schemes

These are a class of schemes with properties intermediate between those

of "Serre" schemes and the most general schemes.




If X is a topological spaée then a subset P C X is locally closed
if it is an interéection of an apen énd a cloéed set in X , or equivalently
if P is open in P . P is constructible if it is a finite‘union of
locally closed sets. Constructible sets are so called Secause constructible
subsets of an algebraic set are those which are described by a finite number
of polynomial equalities and inequalities. The collection of constructible
subsets of X is written Const(X) . A subset PC X is "very dense" if
every locally closed set in X contains a point of P . X is a Jacobson
space if the closed points of X are very dense.

A Jacobson scheme is a noetherian scheme X such that XO is very

dense in X . That is, X as a topological space is a Jacobson space. If
X is affine then X is a Jacobson scheme iff k[X] is a Jacobson ring,
that is if every prime ideal is an intersection of maximal ideals. Since'
finitely generated algebras over a field are Jacobson rings [Bourbaki,
Comm. Alg.], all algebraic schemes are Jacobson schemes.

If X 1is a Jacobson scheme then one can restrict attention to the set
of closed points XO cX. If X, Y are Jacobson schemes and ¢ : X + Y

is a morphism then ¢ maps X

0 into YO (this is not true for more general

schemes) and gives by restriction a map ¢g ¢ X0 -+ YO . LEvery subscheme of

a Jacobson scheme is a Jacobson scheme. The map

Const(X) - Const(Xo) tUr—Un XO is a bijection if X is a Jacobson
scheme, and U is open or closed in X iff U n XO is open or closed in
XO . Thus constructible subsets of X are completely described by giving

the closed points they contain. In particular if - p € X is-a non-closed
point, then the set {p} is an irreducible closed set in X , and this is

given-in turn by {p} n X which is an irreducible closed set in XO . p

0 k]

can be recovered from {p} as its generic point, the unique point which is




dense in {E} . This geometric interpretation of the non closed points of
X 1is similar to the way prime ideals are interpreted on an affine Serre

variety. If OX is the structure sheaf on X then OX is a function

defined on the open sets of X . Since the set of open sets of X is

isomorphic to the set of open sets in Xo » in a sense the sheaf OX is

"isomorphic" to the sheaf OX on X0 . Again,no information is lost by
0

restricting to Xo .

Thus in the study of Jacobson schemes one can almost always restrict
atteﬁtion to the behaviour of closed points.- In this.respect.- Jacobson
schemes are similar to Serre varieties. They differ in that the local field
k(xz) varies from point to point, and that the local rings may contain
nilpotents. The schemes that will be uéed below will all be Jacobson

schemes and it will rarely be necessary to consider non-closed points.

4, Base change

Let k be a ring and K be a k-algebra (coﬁmutative as always: in
our case k and X will usually be fields). If X is a scheme over K
then X 1is covered by affine open schemes of the form Spec(4) , where 4
is a K algebra. But every K- algebra is a k-algebra via the homomorphism
k> K , so X can be regarded as a scheme over. k . When so regarded. X

will be written (k)X and called the scheme obtained from X by restriction

of scalars.
If Y is a scheme over Xk then there is a natural morphism
Y » Spec(k) (if Y is affine then the comorphism is just the inclusion
k - k[X] defining the k-algebra structure on k[X] ). The scheme
Y( =Y

0 xSpec(k) Spec(K) 1is a scheme over K and is called the scheme




obtained from Y by extension of scalars. If Y 1is affine then

Yy = Spec (k[ Y] &, K) , so by abuse of notation Ygy 1s often written
Y @k K . By a similar convention (k)X is often written as just X with

an informal note that the base ring has been restricted from X to k .

The functors X - (k)X and Y - Y(K) are a paif of adjoint functors.
There is a natgral isomorphism of sets Mork((k)X, Y] ezMorK(X, Y(K)]

These functors are called the base changé functors associated with the
homomorphism k + K . They are also called the functors of ascent

. (Y > Y(K)) and descent (X * (k)X) . For further details see Appendices 1

and 2.

5. Functorial points

If X is a scheme or a Serre variety let |X| -be the underlying set”
.of X . Consider for a moment Serre varieties over an algebraically closed
field k . The affine variety (Max(k), k) consists of a single point,
with the base field k attached as its local ring. If X is a Serre
variety over k and x € X , then there is é unique morphism

0, * Max(k) > X with image x . If X is affine then the comorphism of
P is evaluation at x . Conversely, any morphism Max(k) - X has as its

image a point in X . Thus, writing X(k) = Mor Max(k),'X) there is an

2
isomorphism of sets |X| = X(k) .

In the case of schemes over n.base ring k (in our case a field), this
is generalised as follows. Let Sch/k be the category of separated
schemes over k , Alg/k the category of commutative k-algebras, S the
categéry of sets, and [Alg/k, S] the category whose elements are functors

Alg/k - S and whose morphisms are natural transformations of functors. In
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order that this makes sense I will assume that we are working in the set
theoretic framework of [SGA ; see also G.-D.]. If X 1is a scheme over k
define a functor X € [Alg/k, S] as follows. If R € Alg/k then Spec(R)

is a scheme over k , so define X(R) = Mork(Spec(R), X] . The set X(R)

is called the set of points of X with coordinates in R .- To distinguish
such points from elements of |Xl , elements of X(R) will be called
functorial points while elements of |X| will be called set theoretic
points, If ¢ : R » S 1is an algebra homomorphism then- X(p) : X(R) -+ X(S5)

is defined by X(¢)(a) = o o Spec(y)

Spec(R) Specle) Spec(S)

A)(a)

where Spec(¢) is the morphism whose comorphism is ® . X(o) ﬂié called
the spec1allsatlon map assoc1ated with the homomorphlsm w ;

Each scheme X 1is now associated with a functor X € [Alg/k, S].
This can be used to define a functor E : Sch/k + [Alg/k, S] as follows.
If X is a scheme E(X) =X . If ¢ : X > Y is a morphism of schemes
E(p) = ¢ : X > Y is the natural transformation defined by

L Qp ¢ X(R) ~¥(R) : ar> g oa ..

E is important because it is a product preserving fully faithful
émbedding. For a proof see Appeﬁdix 1. That Z 1is a fully faithful
embedding means that the category of schemes can be identified with its
image in the functor category. Functors in the image of this embedding are
called representable functors. In fact some authors define a scheme as a
functor on k-algebras satisfying ceftain axioms [G.-D.]. Given two schemes
X, Y , every natural transformation X =+ Y comes from a unique morphism of

the underlying schemes. So to define a morphism X =+ Y it is enough to
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give for each R ¢ Aﬂg/k a map of sets Pp : X(R) = Y(R) such that the
maps @p are compatible with the specialisation maps of X and Y . That

E preserves products means that for any schemes X, Y over a scheme Z ,

(x x, Y)(R) = x(®) %

7 YR .

In future the notation X(R) will be abbreviated to X(R) . It is
essential to distinguish between the functorial points X(R) and the set
theoretic points of |X| . For example X x Y(R) = X(R) x Y(R) but it is
not true in general that ‘X x y| = x| x |¥] . For example if X is an
extension field of k¥ and X = Sbec(K) then |X| consists of a single

point so |X| x |X| has just one point. But X X X = Spec(K'@% K] and
K @% K is not in general a field. This is one reason why functorial points

behave better than set theoretic points.
"" There is one case where the set:theoretic and functorial points-are
related. If the base ring k is a field then there is a natural

" isomorphism X(k) = Xra sending ¢ : Spec(k) > X to its image in X .

t
This isomorphism will frequently be used to identify these two sets and to-
transfer a topology and a structure sheaf to X(k) . In particular if X
is a "Serre" scheme over én algebraically closed field then

X(k) = X .t = X, has a natural Serre variety structure.

6. Algebraic schemes

In this section let k be a field and k ‘an algebraic closure of k .
Let X be an algebraic scheme over 'k . Thus X is a Jacobson scheme and
the closed points are very dense in X ;

A point x € X is closed iff k(x) is a finite extension of k . To

see this it can be assumed that X 1is affine and Py is prime in k[X] .
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If k(x) 1is a finite extension of k , then every ring between k and

k(x) 1is a field, so k[X]/px is a field, so P is a maximal ideal. Thus

x is closed. The converse is just the weak nullstellensatz [Atiyah-

Macdonald].

Let p : X'@k k > X be the canonical projection. X'G% k is algebraic

over k but not necessarily over k so p 1is not a morphism of algebraic
schemes. p is faithfully flat, since it comes by a base change from the
faithfully flat morphism Spec(k) + Spec(k) . Thus p 1is a surjective open

map and the topology on X is the quotient of the topology on X’@% k by

the equivalence relation defined by p [Dieudonné 1964]. p is also a
closed map. As I have not been able to find a proof of this fact written
down I include one here.

LEMMA 1. The projection p : X e, k >~ X is a closed map.
Proof. Let V be a closed set in X'@% k. V is the underlying set

of a reduced closed subscheme of X’@% % which I will also call V
[E.G.A.I, §u.6].
A field L between k and k 1is called a field of definition for V

if there is a closed subscheme V' C X'G% L such that V = V' Gk k . By

[E.G.A.IV, §4.9] V has a field of definition L which is a k algebra of
finite type. By the nullstellensatz or directly L -is a finite algebraic

extension of " k . Now factorise p :
X® K—>X® L —> X .
R R
Then p,(V) = V' which is closed in X @® L .. But P, = X ® ¢ where

¢ : Spec(L) -+ Spec(k) is the natural map. Since I is a finite extension

of kK, ¢ is a finite map. Finiteness is stable under base change, so p,

is a finite map. Hence p, is a closed map and p(V) = p2(pl(V)) is
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closed. #

Thus p maps closed points of X @% k to closed points of X . The

induced map Py ! (X G% ﬁ]o > XO is surjective, for if x € X0 is a closed

point the fiber p_l(x) is a non-empty closed set, and it contains a closed

point because X'@% k is a Jacobson scheme. Since
(x @k 75]0 ~ (X @k K)(k) =~ X(k) it can be seen that if x € X is a closed

point, the number of closed points in the fiber p—l(x) is the number of
ways of embedding k(z) in Xk over k , which is the separable degree of
k(x)/k , and this is always finite.

Let - X be a geometrically reduced algebraic scheme. Thi; means that

X G% %k is reduced, or equivalently that X is reduced, and for all the
generic points z; of X , k(xi)' is a separable extension of k .

Schemes of this tyﬁe-are used in [Borel], where they are called varieties

defined over the subfield k% of k . X @k k is algebraic and reduced
(over k ) so it is a "Serre" scheme and (X @k E)O =~ (x @{ k) (k) =~ x(k)

has a natural Serre variety structure. If ¢ : X > Y is a morphism of
geometrically reduced algebraic schemes then ¢(k) : X(kK) » ¥(k) is a
morphism of Serre varieties., The functor

geometrically reduced , JSerre varieties
algebraic schemes over k over k

} : X+ X(k)

is an embedding which 1is "faithful" but not "full". This means that not
every morphism of Serre varieties ¢ : X(K) + Y(k) ‘is of the form (%)
For some morphism ¢ of the underlying schemes (such morphisms are called
in the language of Borel "defined over Kk "), but that if Y is defined
over k , then it comes from a unique morphism of the underlying schemes.

Since not all the automorphisms of the variety X(k) need be defined over

k , it is possible that two non isomorphic geometrically reduced algebraic
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schemes are associated with the same Serre variety. Isomérphisms defined
over k partition the set of isomorphic Serre varieties into "k
str.uct;.lres", which may be specified for example by giving the underlying
scheme. There seems to be no simple geometric description of .which morphisms
are defined over k . For example it is possible that a morphism

¢ : X(k) » Y(k) carries X(l) into Y(l) for every field I between k
and %k without ¢ being defined over k .

LEMMA 2. If X 1is geometrically reduced and algebraic then Xsep 18

dense in X .

Proof. Let k_ be the separable closure of k in k and let

pg : X ®, ks + X be the projection. Clearly X___  is the image of

p

(X@k ks]rat under p_ . By [Borel, AG §131, X(ks) is dense in

3

CX(E) x@kf('xa

rat

(x ®k 75)0 , so (X ®k ks] " is dense in | (x ®k.'k.s)0 R

so X is dense in X, . #
sep 0

The following simple lemma will be used repeatedly.

LEMMA 3. Let ¢ : X+ Y be a morphism of algebraic schemes. Then
e(k) : X(k) » Y(k) 1is
(1) surjective iff ¢ 1is surjective,
(i1) 1injective iff ¢ 18 a radical morphism.

Proof. (<) If (k) is surjective then the image of ¢ ®k k is a
constructible set containing .all the closed points of Y@k k . Since
Y @k k is a Jacobson scheme, ¢ @k k is surjective. But the projection
Py : _Y®k kX + Y is surjective, and Pyo (p@k k=9¢o0 Py » S0 ¢ is

surjective. Conversely if ¢ 1is surjective then surjectivity is stable

under ascent [EGAI, §3.5], so ¢ k is surjective. If x € Y®, %k is a
k

closed point then the fiber (cp ®k E]—l(ac) is a non-empty closed set, so it
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contains a closed point. Thus ¢(k) is surjective.
(i2) By [EGAI, §3.7] ¢ is radical iff the diagonal morphism

XX Xy X is surjective. The result then follows from part (7). #

7. A simple example

To fix ideas, consider the following simple example. Let the base
field be R and let X = Spec(R[T]) be the real affine line.
The prime ideals of R[T] are all maximal except for (0) , so

X = XO v {(0)} where XO is the set of closed points and (0) is the

generic point of X . Since R has characteristic zero every closed point

is separable, and Xsep = XO . The maximal ideals of R[T] fall into two

classes. There are those of the form ma = (T-a) , o € R , and those of

the form M, z = (T-2)(T-3) , 2 €T , 2z not real. Let the point of X

corresponding to the ideal m, be written z, > that corresponding to

m be written &

2.2 2,3 °

The local field at the point T is R and the

point xz,E' it is € , so Xfat = {ma : 0 €R} . Thus X is parametrised

by the upper half plane plus a point:

-loca{ fie{d ()

.Jocal field R

~ ]

Al Xr'at

%o

X = {generic point} u

Now consider p : X @h C-X. X @h C is the affine line Spec(C[T])

over € ., All the closed points are rational and are of the form Y, »

2 € €., which corresponds to the ideal (T-2) . The generic point (6) is

the only non-closed point. The projection p sends y, to x, if =z is
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real, and to x, -~ if 2 1is not real. The fibers of p over a rational

9
point of X contains just one point, and the fiber over a non-rational
point contains two points, parametrised by conjugate complex numbers.
Gal(C/R) , which is c¢yclic of order 2 generated by complex

conjugation, acts naturally on X'@k C and X is thé quotient of this

action.

If S is an R algebra then X(S) = HoqR(P[T], S)=S . In

particular X(R) = R 1is in one-to-one correspondence with Xrat and

X(€) = € corresponds with (X R m]rat .




17‘
CHAPTER 2

1. Group varieties

A group variety over an algebraically closed field k is a Serre
variety G which is also a group and which is such-tﬁat the multiplication,
inversion and identity maps are variety morphisms. That is it is a variety
G together with ﬁorphisms m:GxG+G, T :6G+G, e : Max(k) » G

such that the following diagrams commute. (A is the diagonal map.)

mxG A Gxi

GXGXG —— GXG G — GXG —— GxG
Gxm m m
GXG-—77—+ G Max(k) — G
(l) (2)
Max(I)xG —22Cs gxg «ZX GxMax(k)
.\ m - .
pr032 \\\\\“ prOJl
G
(3)

If G 1is a group variety and X is a variety an action of ¢ on X
is a morphism a : G X X + X which is an action of the group |G| on the

set |X| . That is it is a morphism such that the following diagrams

commute.
GxGxX.—m§£+ GxX Max(k)xX _exX, GxX
Gxa ) a Pr'oj 2 a
Y
GxX = X ‘ X —5 X

(4) (5)
If G and X are affine then by the duality between affine varieties

and reduced k-algebras of finite type a group structure on the variety G
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is the same thing as a co-group structure, or Hopf algebra with identity
and inversion structure on the coordinate ring k[G] . That is it is the

same as giving algebra homomorphisms m* : k[G] - k[G] 6% kiG] ,

i* : k[G) > k[G] , e* : k[G] » k , called respectively the comultiplication,
co-inversion and co-identity, such that the duals of the diagrams (1) to (3)
commute. Similarly an action a of G on X is the same thing as a

homomorphism a?* : k[X] » k[G] @% k[X] called the co-action such that the

duals of the diagrams (4) and (5) commute. This is also called a k[G]
co-module structure on k[X] .

If a group variety (G acts on an affine variety X on the left then
there is a right action of the group G(k) = |G| on the algebra k[X]

called the action by left translation and written
kK[x1 = |6 » k(X1 : (F, g0 + 59 .

It is defined by fg(x) = f(gex) for all x € X . This equation is an

adequate definition of the action because k[X] is a ring of functions on
X . An element f € k[X] is invariant if f = 7 for all g € |¢] . The

invariants form a subalgebra k[X]G c k[X] .

2. Group schemes

A group scheme over a field k is a scheme G together with morphisms
m:GXG+G, ©:6G>G, e : Spec(k) * G such that the scheme
theoretic versions of thé diagrams (1) to (3) commute. By this I mean that
in the diagrams the varieties Max(k) are replaced by the schemes Spec(k) .
An action of a group scheme G on a scheme X is defined analogously. If
G and X are affine, then by the duality between affine schemes and

k-algebras this is the same as a co-group structure on k[G] and a co-action

of kI[G]l on k[Xx] .
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Since for a scheme G it may not be true that |G x ¢| ~ |¢| x |G| , A
group scheme structure does not generally define a group structure on the
underlying set |G| . For this reason the functor G representing G is
often more useful than the underlying set le| |

If G 1is a group scheme then for each R € Alg/k , G(R) is a group
whose multiplication, inversion and identity maps are m(R), Z(R) and
e(R) . If ¢ : R+ S 1is an algebra homomorphism then the specialisation
map G(¢) : G(E) + G(S) 1is a group homomorphism. ConQersely, by the fully
faithful embedding E , to give a group structure on a scheme G. it is
sufficient to give a group structure on G(R) for each R € Alg/k , such.
that the specialisation maps become group homomorphisms. Similarly, an
action of G on X is the same thing as an action of G(R) on X(R) for
each R , provided that the actions are consistent witﬁ the specialisation
maps. |

If G 1is a geometrically reduced algebraic group scheme, then G(k) ,
with the usual variety structure, is a group.variety with a k structure
such that the morphisms m, ¢, e are defined over k . This is the point
of view of [Borell.

If - ¢ 1is a group scheme, then the functor G is a functor from
k-algebras to groups. Such a functor is called a group functor. Clearly a
group scheme is the same thing as a representable group functor.

As an example let U be the affine scheme whose coordinate ring is
k[T, T-lJ . This carries a group scheme structure whose comorphisms are
m* : T >T7x7T, 2% : T > T . e*: T »1. If R € Alg/k then

X
y(R) = R , the group of units in R'. u with this structure is a smooth
one dimensional group scheme called the one-dimensional torus.
Other algebraic structures on schemes and functors, such as ring

schemes and ring functors, or module schemes over a given ring scheme, can
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be defined analogously. For example if R 1is a k-algébra, there is a ring-

functor R defined by R(S) = R ®, S for each S € Alg/k . In particular

k is a ring functor with k(S) =S for each S € Alg/k . If R 'is a
k-algebra then for each § € Afg/k , R(S) is a k(S) algebra, so R is a
K-algebra functor. If M is a k module, then there is a k-module functor

M defined by M(S) = M ®k S . It is clear that the functor

{k-modules} + {k-modules} : ¥ -+ M
is a faithful embedding since M ca;n be recovered from M as its module of
"rational points": M = M(k) .

These functors are not in general representable. However if M is a
finite dimensional vector space over k then M is representable. Let M*
be the dual vector space and let S(M*) be the symmetric algebra on M*

over k . Then if R € Alg/k ,

WR) = M@ R
o~ Homk_mod(M*, R)

= Hom, _._(S(#*), R)

alg

= Mory (spec(R), spec (s(a)))

= Sgec!Ss M*)I(R)

so M is represented by the affine scheme Spec (S(M*)) . A functor
formed like this from a finite dimensional vector space will be called a
linear functor and the underlying scheme a linear scheme. In particular the

functor k is representable, the underlying scheme being called the affine

Spec(k[?) . If T T is a basis for M* then

1
i na 11_ RN
lina 1°? r

S(M*) = k[Tl, cees Tr] = k[Tl] ®k ces ®k k[Tr] so

Spec(S(M;*)) f—‘;’AZ = A X X Ak .

If X is a linear scheme then the isomorphism of k[X] with a
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polynomiél ring gives a natural grading on k[X] . For each R € Alg/k ,
X(R) 1is a free R_' module, A morphism ¢ : X > Y of linear schémes is .
linear if ¢(F) 1is R-linear for each R € Alg/k .

LEMMA 1. Let ¢ : X > Y be a morphism of linear schemes. Then o
t8 linear iff the comorphism ¢* : k[Y] + k[X] is homogeneous of degree
zero.

Proof. The linear structure on X is given by morphisms of addition
and scalar multiplication, g : X X X+ X and m : p X X+ X , where yu is

the one dimensional torus group. The comorphisms a* : k[X] -~ k[X] @\k k(Xx]
and m* : k[X] -~ k[T, T_lJ ®k k[X] are related to the grading on k[X] as

follows.  Let the grading be written k[X] = @k[X]n . Then

n
fEk[X]l‘=’a*(f)=f@l+l®f
=nm(f) =TOFf .

Since a* and m* are algebra homomorphisms and k[X] is the symmetric

algebra on k[X]l these equations. are sufficient to define m* and a* .
Now let ¢* : k[Y] + k[X] be the comorphism of ¢ . If f € k[)!:ll s

then ¢*(a*(f)) = o*(FO1L+18F) =0*(fHH Q1 + 1@ so

a*(e*(f)) = cp*(q*(f)] iff @*(f) € k[X], . Thus ¢ commutes with a iff

¢* is homogeneous of degree zero. Scalar multiplication is treated
similarly. #

A left action of G_ on a linear scheme X is a linear representation
if G(R) acts linearly on X(R) for each R . By an argument like that in
the lemma above, if ¢ 1is affine, then a : G X X » X is a linear

representation iff the comorphism a* : k[X] -+ k[G] ®k k[X] 1is homogeneous
of degree zero, when k[G] ®k k[X] 1is graded by giving Kk[G] ® 1 degree

zero. .If V = X(k) is the vector space on which the linear scheme X is
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modelled, then the homogeneous comorphism a* restricts to give a k[G]

comodule structure on k[X]l = V*, V* > k[G] x V* , and conversely a* ‘is

determined by this comodule structure on V* . A left comodule structure on
V* corresponds to a right comodule structure on V . To summarise, there
is a one-to-one correspondence between left linear representations of G on

the linear scheme X , and right X[G] co-module structures on V = X(k) .

3. Left transiation

If X is an affine scheme over k , then k[X] is a Kk-algebra. The

k-algebra functor k[X] defined as in §2 by k[XI(S) = k[X] ® S will be

abbreviated to k[X] and will be called the coordinate ring functor of X .

k[X1(8) = k[X] @k S will be abbreviated to S[X] . It is the coordinate
- ring of XQkS-'
If a group scheme G acts on X on the left then left translation is-:
a right action of G on the coordinate ring functor k[X] . To define this
action it is necessary to give for each R € Alg/k a right action of the

group G(R) on the R-algebra R[X] . Since R[X] is the coordinate ring

of X ®k R it will be enough to give a left action of G(R) on X ® R

(as. a scheme over R ). There is a natural such action defined as follows.

For 5 ¢ Mlg/R , X @ R(S) = X(5) , and G(R) acts on X(5) via the
specialisation map G(R) > G(S). and the action of G6(S) on X(S) . This
action of G(R) on X Q{ R can also be described directly as follows. If
a: GxX~+X is the action of G on X then G®kR acts on X@kR by
a®R': (GOR) x, X@R) =G x XOR+>X®R . If g € G(R) then ¢

acts on X ® R by the automorphism Tg =(a®R) o (g Xp (X® R)_]

2

g* o ¥&R) @R
Tg : X ® R = Spec(R) Xp (X®R) ———— (GO R) xp X@®R) ——> XQR .

EIIiiEiI====Il===-=====-===-=;* -
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It is easily checked that this action of G(R) on R[X] for each R
- is consistent with the specialisation ﬁaps, so this does describe a right
action of G on the functor L[X] » and that G acts by k-algebra
automorphisms.

Calling this action left translation is justified by the following
alternative description.  First, for each S € ALg/R I will define a
pairing R[X] x X(S) + S which will be written (f, x) > f(x) . There is

.an isomorphism R[X] = HomR_alg(R[T], R[X]) == MorR[X @k R, A;) where
A; = Ai 8% R = Spec(R[T]) . Let f € R[X] correspond to the morphism

} 1 X @% R - A; under this isomorphism. There is an isomorphism
X(S) =X @k R(S) . Let x € X(S) correspond to % € X @k R(S) under this
isomorphism. Then the pairing is given by
fy @) > flz) =Fo & €A(S) =5 .
Then it is clear that for all x € X(S) , f € R[X] and g € G(R) ,

Ax) = flgez) .
Spec(S)

*///f///////’ \\\\\\\Sg;fi‘

X’@% R T ¢>X'G% R
\ g
(fg] \\\\\\\* k//////;:////
At

- R
This equation is enough to define the action of G(R) on R[X] . Given a
morphism ¢ : X + Y of affine schemes, let k(¢) : k[¥] + k[X] be the
obvious natural transformation. If G acts on X, ¥ on the left, and acts

by left translation on k[X], k[¥] , then ¢ is equivariant iff klo] is

equivariant.
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LEMMA 1. If G and X are affine and adebr'aié then the action of

¢ on k[X] ts rational. That is, k[X] as a G - functor is the sum

k(X) = ) Y. of finite dimensional linear functors on which G acts
1

Y.

RN

linearly. (This means, that for each R € Alg/k , k[XI(R) = Z_X,,;(R) -)
‘ A

Proof. It is well known that the co-action of k[G] on k[X] is

rational [Mumford]. So k(X1 =) Vi where the Vi are finite dimensional
7

k[G] stable subspaces. Let LL be the linear functor defined by

Ll:(R) = Vi ®k R and let | Y, be the linear scheme represented by LL .

Then as pointed out, §2, the left k[G] comodule structure on v, gives a .
right linear action of G on the scheme "Yi . It is easy to check that the

morphism ji : Yi ER Tl k[G] is equivariant. Since K[G] = z Vi s
i
k[GX(R) = RIX] = k[X] ® R = § V.® R = %;i(m.

#

&<

4. Invariants

Recall that if a group G acts on a ring R then the invariants form

a subring RG = {f €R: Vg €6, fg =fl . Ifa group scheme G acts on an
affine scheme X , then -G acts by left translation on k[X] . Define

x0x1% = {5 € k(61 : VR € Atg/k, £@® 1 ¢ rrx1%H))

If f e k[X] 1et f:Xx~ Ai be the morphism whose comorphism is

k{T) » k[X] : Tv— f . Let G act trivially on Ai . Then } is

- .
equivariant iff k(f) : L[{lﬂ + k[X] 1is equivariant. But for R € Alg/k ,
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K(F)R) : RITI>RIX] : T ~f®1 ,so F is equivariant iff f € k(x1° .
LEMMA 1 [Seshadril. Let G and X be affine, let

a* : k[X) + k[G] ®, k[X] be the co-action. Then there is an exact sequence

of vector spaces
a*-inj

0 > k[x1% > k[X) ——2 k(6D @ kIX] .

Proof. If f € k[X] then f € x(x1® iff f:x~ Ai is equivariant.

But ? is equivariant iff the following diagram commutes:

inj

k[T] ——2 k(6] @ k[T]

(Fr* k61 ® (P
k[x1 —22 o k[ @ k[X1 3
that is, iff a*(f) =1Q® f . #

This exact sequence could of course be used to define k[X]G , but it

would not then be clear that k[X]G is a subring of k[X] .
PROPOSITION 1. Let G be an algebraic affine group scheme over k

acting on the left on an affine algebraic scheme X .
. . i ORR G
(1) If R is a flat k-algebra, then kX ® R) >~ k[X] ® R .

(i2) If k 1is algebraically closed and G 1is reduced, then

k[X]G - k[-X]G(k) .

(ii1) If G is geometrically reduced and if k 1is an algebraic
' G(%)

elosure of k , then k[X]G = k[X] n k[x] , where G(k) aets on k[X]

by left translation.
Proof. - In this and a following proposition I will use the facts that
the image of, or fiber over, a stable subscheme, by an equivariant morphism

is a stable subscheme, and that the intersection of stable subschemes is a
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stable subscheme. These are proved in Chapter 3.

(1) Since R is flat, Seshadri's exact sequence stays exact when

tensored with R :
0 » krx1¢ ®, R > k(X1 @, R = RIX] > k(6] ®, K[X]® R = RG] @ R[X] .

(i1) Clearly k[X]G c k[X]G(k) . Let f € k[X]G(k) . By Lemma 3.1

the action of G on _L[X] is rational so there are linear schemes Yi .on

which G acts linearly such that k[G]

LY, . kX1 = k[X)(k) = ¥ ¥.(k)
1 1

so f = E:f% with f, € Y.(k) and f; = 0 except for a finite number of
terms. By choosing a different decomposition, the Yi such that fé #£ 0
may be combined, so it can be assumed that f € li(k> for some % . Then
there is a rational G(k) stable point =z € Yi whiéh is mapped onto f by
“the inclusion ji : Yi > k[X] . It will be enough to show that =z is a G
stable point of Y. . Let ¢, : Spec(k) - Y. be the unigue morphism with

image x , and let O be the orbit map

¢, %G
6:G§Spec(k)XG————>YixG->Yi .

The image of 6 1is a G-stable reduced subscheme of Yi containing &

[(EcAI, §6.10]. But the only rational point in this image is x , since «
is G(k) fixed. k 1is algebraically closed, so a reduced subscheme is
determined completely by its set of rational points. Thus the image of ©
is {x} and x is G stable.

(i27) Consider the following square

n® s wx

| l

krx1® ——s x[x1 .
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_ — 2 — L
kX1 = k(X1 ® K = k(X1 ® o [k[X]G & K| =kX1® kX ® %7K
KX Ae

=k1® ' ®* |
: xK[X]

so this square is cartesian. All the maps are injective so it is also
co-cartesian (see Appendix 1, §2). Thus k[X]G = k[X] n k[X] X . Since

E[X]ag%-= EIX]G(i) , the result is proved. #

5. Reductive groups

ALl group schemes will be assumed to be algebraic affine schemes over

Let G be a group scheme. G is a constant scheme if for every

R € Alg/k the specialisation map G(k) > G(R) is an isomorphism. A zero
dimensional constant group scheme is the same thing as a finite group. @
is smooth if it is smooth as a scheme over Kk , and étale (= émoqth and

zero dimensional) if it is étale as a scheme over k . In characteristic
zero every algebraic group is smooth. G is étale iff |¢| is a finite set
of closed points'and the local rings at these points are finite separable
fields over k . A zero dimensional coﬁstant'group is étale. If (¢ is a

zero dimensional group then (G is étale iff G @% ks is constant (where
ks is the separable closure of %k in E-], and G 1is constant iff every

point is rational. [G.-D.I, §u4.6, II, §4.2.]
G is geometrically connected iff it is connected (since it is

algebraic and contains a rational point [G.-D.I, §4.6]), and this happens

iff G @% k is connected. Let GO be the connected component of the

identity in G . Then c° is a connected open and closed algebraic normal

subgroup scheme in ¢ and dim G = dim G0 . If H 1is another group scheme
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¢ xm° =~¢® x #° , and (c® K)° =¢ ® K [6.-0.1I, §5.1].

If G is smooth, then there exists an étale group scheme HO(G) and a

surjective w : G > NO(G) such that the sequence
0
1»>G >G> HO(G) -1

is exact, in the sense that GO + G 1is a closed embedding, and NO(G) is

the quotient of G by Go in the category of group schemes: if ¢ : G+ H

is a group scheme morphism such that w(GO) is trivial then ¢ factorises

uniquely through wm . The fibers of 7 are the connected components of -

G . ‘ﬂ'o(G x H) = nO(G) x no(H) and WO(G®’E) o ﬂo(G) ®k . G is

connected iff G = GO iff nO(G) = Spec(k) [G.-D.I, §u.6, II, §5.2, III,

§3.71].

I wish to use.a slightly wider definition of reductive group than

usual. I will define a reductive group scheme to be a smooth affine group

scheme G such that Go(ﬁ) is a reductive group in the sense of [Borel,

Humphreys]. The usual definition requires that G also be connected

[SGAIII, Demazure]. (G is reductive iff G @% k is reductive.

6. Some examples [G.-D.II, 5.2, SGAIII, Demazure]
(i) If G 1is an étale group scheme, then the identity is a rational

0

point, so £ = Spec(k) , so G is reductive by wmy definition:

(ii) The one dimensional torus:- p defined in §2 is reductive.
(iii) Let n ¢ N' and let My be the subgroup scheme of y defined

by ud(R) = {x € R : xd =1} for R € Alg/k . My is an affine group
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scheme with coordinate ring k[T]/(Td—l) . If k has characteristic zero,

then Mg is étale, while if k has characteristic p ; Hyg is étale iff

pld .

(iv) Let K be a finite extension field of k . Let X be the ring

scheme defined by X(R) = X R . TForgetting the ring structure,
y g

X = Az where 7n = [K : k] . Define a group functor G, by

G(R) = AutR_alg(K®k R) . Then g,

' is representable by a zero dimensional

affine group scheme GK which acts by ring automorphisms on X . GK is

étale iff K is separable over k . GK is not constant if [X : K] > 2 .

(v) The general linear group GL, defined by GLn(R) = GL(n, R) is

reductive.
(vi) For each type of Dynkin diagram there exist connected reductive

groups of this type. These are constructed in [SGAII, Demazure].
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CHAPTER 3

1. Images and fibers of G-morphisms

In this section let 'G be an affine algebraic group scheme acting on
algebraic schemes X, Y. Let ¢ : X+ Y be an equi&ariant morphisms. Y
but not X will be assumed to be affine.

Recall tﬁat the closed set @(X) € Y carries a unique closed subscheme
of Y , which will also be written ¢(X) , called the scheme theoretic
closure of the image of ¢ , characterised by the fact that if f : X+ Y
is any morphism such that the set f(X) lies in the set ¢(X) , then f

factorises uniquely via the inclusion morphism ¢(X) - Y . If both X and

Y are affine, then ¢(X) is the subscheme defined by the ideal
ker(p*) < k[Y] , where ¢* is the comorphism [EGAI, §6.10]. If the set
¢(X) is locally closed, then ¢(X) is an open subset of ¢(X) , so it
carries a unique open subscheme of o(X) . If ¢ has a locally closed
image then ¢(X) will always be taken with this.subscheme structure. If ¢
has a locally closed image then ¢ factorises via the inclusion morphism
o(X) > Y. If X is reduced so is ¢(X) and, if defined, so is @(X)
PROPOSITION 1. Let G be an affine algebraic group scheme acting on
algebraic schemes X, Y , let ¢ : X + Y be equivariant, and assume Y

affine. Then

(i) ¢(X) is a G-stable closed subscheme of Y , and
(t2) 1f ¢ has a Tocally closed image then ¢(X) is a G-stable
subscheme of Y .
Proof. First two lemmas.

LEMMA 1. Let G, ¢ : X > Y be as above. - Let X gg = Spec r(x, OX)

£

be the Yaffinisation" of - X . There is a canonical morphism p : X -+ Xaff

and every morphism f from X to an affine scheme Y factorises uniquely
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via p .

Xaff

X —P
\
T i
\y

Then X ¢f i8¢ a G scheme, p 1is equivariant, if f s equivariant so is
Py

f' 3 and fxx) = fltngf] *

Proof. This follows easily from the universal characterisation of

X . Firstly X+ X __ 1is clearly a functor from schemes to affine
aff aff

schemes. (¢ 1is affine so (G x X)aff 2ex (X ). If a:GxX~>X is

aff
the action of G on X then aaff : G % Xaff - Xaff is the action of G
on X (that it is an action comes from the fact that X+ X is a
aff . aff )
functor). The rest of the proof is similar. #

LEMMA 2. Let Y be an affine G scheme, V a cZoséd subscheme
defined by the ideal a < k[Y]l . Then V <8 G stable iff a is stable
under the co-action of k[G] on k[X] .

Proof. By the duality between affine schemes and .k—algebras V is

G stable iff there is a co-action a, : kvl » k(6] @% k[V] compatible

with the co-action of k[G] on k[Y] . Since the tensoring is over a field

both lines in the following diagram are exact

’ i
oy o .aV
¥ ¥

0> k[Gl®a ~k[G] ® k[Y] ~ k[G] ® k[V] ~ 0

0 +? - k[Y] ——— k[|V] — 0
l
|

so such a co-action @, exists iff a is k[G] stable. (The maps a

4 a

and dv are automatically co-actions if they exist because they are sub or

quotient objects of the co-action o .] #
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Proof of (7). By Lemma 1, X can be assumed affine. Since @(X) is
the closed subscheme defined by the ideal ker(p*) < k[Y¥] , by Lemma 2 it is
enough to show that ker(ep*) is k[G] stable. From the exactness of the

following diagram

*
0 ——ker(p*) —— > k[Y] @ — > k[X]
|
| %y %x
¥

0 + K[G] ® ker(o*) + k[G] ® k[y] —<LEIO*, 1161 @ kX3

it follows that ay(ker(q)*)) < k[G] ® ker(¢*) so ker ¢o* is k[G]

stable. #

. Proof of (Z7). Let U = ¢(X) . By (Z) it can be assumed that U is a

dense open subscheme of Y . It is to be shown that for all R € Alg/k ,

U(R) is a G(R) stable subset of -Y(R) . ¢ factorises X —2»U B, Y,
where 0 is surjective and B 1is an open embedding.

G(R) actson X®R, U®R, Y®R in the usual way: if
S € ALg/R then G(R) acts on X ® R(S) = X(S) via the spécialisation map
G(R) » G(S) and the action of G(S) on X(S) , and similarly for U Q@R
and Y ®R . By the properties of ascent (see Appendix 2), a ® R is
surjective and B ® R is an open embedding, so U ® R is an open subscheme
of Y®R and is the image of ¢ ® R . ¢ ® R is G(R) equivariant so the
set underlying U® R 'is G(R) stable. There is a unique open subscheme .
carried by each open set in Y ® R so the subscheme U® R is G(R)
stable. In particular U @ R(R) = U(R) is G(R) stable, as was to be

shown. This concludes the proof of Proposition 1. i

LEMMA 3. Let G be an affine algebraic group scheme, acting on an

algebraic scheme X . If G 1is smooth then X e is a closed G stable

d
subscheme of X .

Proof. Since G is smooth and Xr-e is reduced, G X (X ) is

d red
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reduced [G.-D.I, §4.6] so (G x X) =G xX The proof is then
red re

q-
similar to the proof of Lemma 1. #
PROPOSITION 2. Let G be an affine algebraic group scheme acting on

algebraic schemes X, Y , and let ¢ : X > Y be equivariant. Let Z be a

stable subscheme of Y and let u : Z > Y be the embedding. Then u Xy X

is an embedding, and X Z Xy X 1is a G-stable subscheme of X .

Z =
Proof. It is enough to show that for each R € Alg/k , X,(R) is a

y(ry XB)

G(R) stable subset of X(R) . Since XZ(R) = (X XY Z)(R) = X(R) x
this is clear. #

COROLLARY. If "Zl, 22 are stable subschemes of X then so is

P .
Zl n 22 » for by definition Z:L n 22 18 the product Zl Xy 22 . #

PROPOSITION 3. Let G be an affine algebraic group scheme acting on
an affine algebraic scheme X over k . Let k be an algebraic closure of

k, and let py,: X®k > X be the projection. G and G®Kk act

compatibly on X and XQ® k . Then

(t) if V is a G stable subscheme of X , then the scheme
theoretic fiber p;(l( V) 28 G®k stable;

(i1) if V isa G®k stable subscheme of X® k and the set

py(¥) i8 locally closed, then the scheme theoretic image
Py(?) i8 G stable.
Proof. (‘li) Let g -: V + X be the embedding. Then
p;(l(V) =V %, (X®k) =@ V®k and the embedding p;(l(V) +X®k is j®K

so (1) is immediate.
(i1) G acts naturally on X ® kK as a scheme over k . For this

action Py is G equivariant and G @ kK stable subschemes are G stable,
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so lthe result follows by Proposition 1. #

" PROPOSITION 4. Let G, X be as in Proposition 3, and assume that G
18 smooth. Let V be a reduced cZos‘ed subscheme of X . Then V is G
stable iff V(k) is a G(k) stable subset of X(k) .

Proof. 1If V is G stable then V(k) is G(K) stable by definition. So
assume that W(k) is G(k) stable. Let ¢ : GX V> G x X > X be the
natural morphism, and let Z be the closed scheme theoretic image of ¢ .
-Since V is reduced and G is smooth, G X V is reduced [G.-D.I, §4.6.3]
and consequently Z 1is reduced. V is a closed subscheme of 2 . Since
both V and Z are reduced, and there is a unique reduced subscheme
supported by each locally closed set in X , it is enough to s_:how that the
underlying sets of Z and V are the same.

Let ¥ : G X V> Z be the factorisation of ¢ : G X V> X through
Z . Y is dominant, so P ® k is dominant, soﬂ G(K)V(k) is dense in
Z(k) . By assumption G(R)V(k) = W(k) , so V(k) is dense in 2(k) , which
is dense in Z® %k , so the embedding V®%k > Z® k is dominant. By
faithfully flat descent V > Z is dominant. V is closed in Z so both V
and 2 have the same underlying set. #

If V is a subscheme of X then the set theoretic boundary of V is
a closed set which carries a unique closed reduced subscheme. This scheme
theoretic boundary will be written oV . By definition, it is reduced.

PROPOSITION 5. Let G, X be as in Proposition 3, and assume that N
ig smooth. Let V be a G stable subscheme of X . Then EBV is G

stable.

Proof. Let p : X® k + X be the projection and let W = p—l(V) be

the fiber over V . By Proposition 3, W is a G@® k stable subscheme of

X®k . Now |pf1(7)| = Ip'l(V)l , because p is flat [Dieudonné 1964, IIT,

Proposition 8], and |3V| = |V|\|V| because V 1is locally closed, so
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|p(3W)|-= |ap(W)| = [3V] . 9V and p(aW) are both reduced so
oV = p(3W) . Then by Proposition 3 it is sufficient to show that 3W is
G®k stable.

Thus in proving Proposition 5 it may be assumed that k is
algebraically closed. V 1is stable so by Proposition 1, V , which is the
scheme theoretic closed image of the embedding V - X., is stable. Thus
IN(K) = (V\V) n X(k) = W(K)\V(XK) is G(k) stable. By Proposition 4, 8V

is stable. o

2. Quotients and orbits

In this section let ( be a reductive group scheme acting on an affine

algebraic scheme X . Define X/G = Spec(k[X]G] and let w, : X + X/G be

. X

the ﬁorphism whose co-morphism is the inclusion k[X]G + k[x] .
| PROPOSITION 1. Let G be a reductive group scheme acting on an
affine algebraic scheme X . Then
(1) X/G 1is an algebraic scheme,
(iZ) X/G 1is a categorical quotient of X by G in the category
of schemes over k ,

(1i1) Ty 18 surjective,

(tv) if V <is a stable closed subscheme in X then 'er(V) ig

elosed,

(v) <if V), V, are disjoint stable closed subschemes of X ,

then there exists an invariant F such that F =1 on Vi

and F =0 on V, . Hence nX[Vl]' nm (V) =4 .

Proof. This has been proved in [Mumford] over a field k of

characteristic zero. For algebraically closed fields of prime characteristic,

a similar proof works for reductive algebraic groups acting on affine Serre
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varieties. This uses Haboush's theorem [Haboush], that reductive groups are
semi-reductive, and Nagata's proof of (Z) for semi-reductive grodps
[Nagatal. The proposition has been proved by Seshadri [Seshadri], for
connected reductive group schemes over an arbitrary fieid, and in fact'over
a very general class of base rings.

To obtain the result for not necessarily connected reductive group
schemes over an arbitrary field it is enough to make.only small changes in
one of these proofs. The method I have chosen is to assume the result, for
reductive groups acting on Serre varieties over an algebraically closed

field, and to show that it then follows for schemes over an arbitrary field.
(i) X/G 1is algebraic. By Proposition 2.u4.l1, k[X@k F] & =k[.X]G®k k

so by faithfully flat descent it can be assumed that k is algebraically

closed., By the same proposition, if k is algebraically closed,

k[X ® f]@? = E[X]G(_k_) , which is a k algebra of .finite type by
assumption.

(ii1) Ty is surjective. By Proposition 2.4.1, ﬂj@i = "X®7€ ‘so
TIX(E) = 1rX® k(k) = ﬁ)@,;&-(F) . By assumption this is -surjgctive so by Lemma

6.3, Ty is surjective.
(iv) If V 1is closed and stable then TTX(V) is closed.  Consider the

following square:

p —
X - X I®%
iy 1|X®7<—'—_-VHX®7.
¥ _ __4 o
X/G « XQKk/IGRk=X/GR Kk .
Px/c

If V<o X is closed and (G stable, then p;(l(V) is closed and G ® k




stable (Proposition 1.3). By assumption, ﬂx&—[p;(l( V)] is closed, and

Py, s a closed map (Lemma 1.6.1) so 1TX(V) is closed.

(v) 'n(Vl] n TI(VZ) =@ . First note that if a, b are ideals in a

noetherian ring A , then a +b =1 iff r(a) + r'(b) = 1 , vhere iﬂ(a) is
the radical of a. If a +b =1 then the conclusion is clear. To show

,_ . N n
the converse note that for some integer n , r(a) ca and r(b) <b .

Then r(a) + »(b) = 1=>r(@) +r()* =1=a +b =1 .

Now let V, and V, be defined by ideals a and b in k[X] . a

and b are k[G] stable (Lemma 1.2) and a +b =1 . Thus a ® kK = ak[X]

H

and b ®%k = bk[X] are G(K) stable, and a®% +b®%k = 1 . By the

comment above the same applies to r(a ® k) and r(b ® k)

By assumption, r(a @75)6(?) + r(b ® E)G(K) = 1 in

G(k) agk . 7 G 7 G
k[x] = k[x] . But (r,-(a®%) = ((a ® )™ , so

kLX) kL%
r((a@0%) +r(b@DO®) =1 in TN . s
_ _ _

@O+ beD® 1. st @ -a%g%, so
G G

Now let {yl, cans yk} be a basis for aG , and let {yk+l’ ces yr}

be a basis for bG as ideals in k[X]G , and identify k[X]G with a

subring of k[X]G ® k . Then the equation Zyi:z:i = 1 has a solution with

7 . . G .
x; € k[X]G ® k¥ . This ring is faithfully flat over Kk[X]  so by [Bourbaki,
Comutative Algebra] the equation has a solution with x, € k[X]G .

That is, aG + bG =1 . Thus TTX(Vl) n 1TX(V2) =@ . The existence of F

follows from the Chinese remainder theorem.

(i2) X/G 1is a categorical quotient. By construction it is clear that
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X/G 1is a quotient in the category of affine schemes. To show that it is a
quotient in the bigger category, it is sufficnet, by [Mumford 0, §2.6], to

show that if {Wi : 1 €Il is a set of stable closed subschemes of X ,
then Iﬂx(ﬂ Ni)l = |n "X(Wi)l . © is clear. To show the converse, assume

that Iﬂx(ﬂ Wi)l ? In “X(Wi)l . Then there exists a closed point t € X/G -

such that the fiber Xt = ﬂ}l(t) , which is a closed stable subscheme,

meets each Wi but does not meet N W. . Let Jc I be a maximal set
1€l

such that Xt n ( n Wi) #@% . J is a nonempty proper subset of I , so
1€J :

there exists < € I\J . Then W, n X, and ( n W.) nXx
0 g t i€d

; are disjoint

closed stable subschemes, so they are separéted by an invariant. But this

is impossiblé as they lie in the same fiber Xt of Ty - This concludes

the proof of the proposition. #
PROPOSITION 2. Let G be a reductive group scheme acting on an

affine algebraic scheme X .

(i) XQk/CO®k=X/G®Kk and

IR

X@-(— TTX@k.
(i1) Let Y, Z be affine algebraic schemes with a trivial G action

and let there be given morphisms X +~ 72 , Y+ Z . Assume that X + Z <is

equivariant and Y > Z 1is flat. Then G acts naturally on X X, ¥ and

(x x, ¥)/G = x/Gx, Y.

Z Z

(iii) Let G act on the left of X , and define a left action of G

on 7% X by thz getion of G(RY on G(R) x X(R) given by

v

g*(h, z) = (hg_l, gex) . Then (G X X)/G=X.
(iv) Let ¢ : X > Y be an equivariant morphism and let 7 ~ Y be
faithfully flat, where X, Y, Z are affine algebraic schemes and G acts

trivially on Y, Z . Then ¢ 1is a quotient map iff @ @% k[Z] is a

[r]




quotient map.

Proof. Parts (Z) and (1) are just restatements of Proposition 2.4.1l.
To prove (i) replace the schemes by the corresponding functors in
[Alg/k, S1 . It is clear that X is the categorical quotient in this
larger category, so it must be the quotient in the smaller category of
representable functors. The result follows by the uniqueness of categorical

quotients.
(iv) It is to be shown that ¢* : k[Y] ~» k[X]G is an isomorphism iff
Y}
¥ : k[Z] = kLY] @%[Y] k[2] » (k[X] @%[Y] k[Z])GSK[Z] is an isomorphism. By

Proposition 2.4.1 (in which the base ring Xk need not be a field),

)GSREZ]

(KLx] @,y KL2] = KIXT @y K121 5 s0 ¥ = o* ®ryy K[2] » and the

result follows by faithful flatness. #
Let G, X be as in the propositions above, and let x € X be a
rational point. Let Spec(k) » X be the unique morphism whose image is

x , and let O, * G » X be the morphism which is the composition
G-"> G x Spec(k) » G x X+ X, 0, is called the orbit map at zx .

PROPOSITION 3. Let G be a reductive group scheme, acting on an
affine algebraic scheme X . Let x € X be a rational point. Then the

orbit map o, has a locally closed image so the scheme theoretic image 0,
exists. 0. is a G-stable smooth subscheme of X called the orbit of G

through the rational point x .

Proof. Let Ox for the moment be just the set theoretic image of

Ox . It is to be shown that Ox is locally closed. Assume first that k

is algebraically closed. Let 0 (k) =0, 0 X(k) . Then Ox(k) = ox(k)G(k) ,

since the inclusion < is clear and the fiber of o, over points of Ox(k)

must contain a rational point. Thus G(k) acts transitively on Ox(k)
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Ox is the image of a morphism so it is a constructible set. Thus it contains
a non-empty set U which is open in 5;_ . U must contain a rational point
so G(k)U is a G(k) stable subset of 0, which contains all the closed
points of 0 and which is open in 5; . G(k)U is constructible so

G(A)U = Ox - Thus O, is locally closed.

If k is not algebraically closed, let x be the unique rational point

of X®k over x and consider the diagram

— o, ®k _ _
G® k + X ® k x
1 -
Pg Py
4 i 4
G > X x
o
x
It is easy to see that o, ®k = o - Thus O:x: = pX(OE) and
= = -l
0-=0{6®K) = (0,8 k) (GRK) = p, (0] .

is flat so p;l(a ) = p}l(ox] = [(Dieudonné 1964, III, B.8J. Then

w,
w

&7l

Py

pxl% is faithfully flat hence open, so pX(OE) = O:r: i; open in Ox

Thus 0:1: is locally closed, so the scheme theoretic image of o

exists. It will be written O:x: and is G-stable by Proposition 2.1.1. Let

z, x be as in the paragraph above. By generic flatness oz ¢ Gk » OE

i2 Flat on 2 non empty open subset U of QK Since G(E) actn

{

transitively on G(k) in G®k , o7 ¢ C® k- o is faithfully flat. By
faithfully flat descent o, ¢ G~ 0.'1: is faithfully flat. But faithfully
flat morphisms preserve smoothness so 0:1: is smooth. #

Introduce a partial order among the stable subschemes of X , by U=V
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if U is a subscheme of V . By Lemma 3.1.3 and Corollary 3.1.2 the
minimal elements of this partial order are closed reduced stable subschemes
of X . By analogy with the algebraically closed case I will call these

minimal elements closed pseudo-orbits. By Proposition 3.2.1 if x € X/G is

a closed point, then the fiber Xx = ﬂ}l(x) " contains-a unique closed pseudo-

orbit, and conversely every pseudo-orbit lies in suéh a fiber. Thus the
closed pseudo-orbits of G on X are parametrised by the closed points of
X/G .-

PROPOSITION 4. Closed orbits are pseudo-orbits. A closed pseudo-
orbit is an orbit iff it contains a rational point.

Proof. If T is a closed orbit then T is ¢losed and reduced. Let
S be a non empty stable subscheme of T . S may be assumed closed and
reduced. By Lemma 1.5.3, since the orbit map G > T 1is surjective (%)
acts transitively on T(k) . Thus S(k) = T(k) . By the same lemma
S =T . Thus T is minimal in the partial order.

Every orbit contains a rational poinf (for example the image of the
identity in G wunder the orbit map); Conversely if T is a closed pseudo-

orbit containing a rational point x , then the orbit Ox is a stable
subscheme of X , and Ox Nn T 1is a stable subscheme of T . By miniﬁality,

Tc Ox so T = Ox . #

NOTE. If T 1is a closed orbit in X then T 1is parametrised by a
rational point of X/G . I do not know if the converse is true. (If the
field k is finite, then the convefse is true [Borel V, 16.5].

PROPOSITION 5. Let G be a reductive group scheme acting on an
affine algebraic scheme X . Let B be a closed reduced subscheme of X .
The following are equivalent:

(Z) V 1is a closed pseudo-orbit;
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(ii) there exists a closed G® k orbit in X ® k which maps

onto V under Py 3

(iid) if py (V) is the reduced fiber over V , then Py (V)
15 a finite union of closed G @ k orbits, each of which
maps onto V ;

(iv) V(%) 1is a finite union of closed G(k) orbits, each of

which maps onto Yy (the set of closed points in V ).

Proof. (1) = (iii). p;{l(V)r is a closed reduced G ® k stable

subscheme of X ® Xk , hence it contains a closed G® kK orbit T s and

py(T) © V. Since V is minimal, pu(T) =7V .

By dimension theory (regarding both X and X ® X as schemes over k
for the moment), dim T = dim V . But T is a closed subscheme of

-1
Py ( V)r s0

: =1
dim 7 = dim p~ (V) ,

din p (V) = dim(V @ B)
= dim V + trans deg(k/k) = dim V .

Thus dim T = dim V

. -1
dim p, (V)r' .
There are plenty of rational points so G(k) permutes the components

of T , which must thus be equidimensional: Thus T is a union of

componants of p;{l(V)r . If € is a component of p;(l(V)r such that

C¢ T but CnT#@ , then there exists a rational point of T which lies

-1,

. - T Do ~T N R T
L disilico components of  py(F) o Bel G(R) acls lrensitlvely on

T(k) so this is absurd, for then evéry rational point would have this

property. Thus either CC T or C is disjoint from T . Then p;{l(V)r\T

is closed, raduced and G-stable and the result follows by an obvious

induction.
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(1i1) = (i1) is trivial,
(¢2) = (). If V = pX(T) where T is a closed G ® X orbit then by
Proposition 3.1.1, V is closed, reduced and G stable. It must be shown

that V 1is minimal among G-stable subschemes. If V properly contains a

stable subscheme ¥ then F may be assumed closed and reduced, and the set
¥ must be a proper subset of V . Then p}l(W)r isa G®%k stable

proper subscheme of X ® X which meets T in a proper subscheme of T
contradicting the minimality of T .

(1i1) <> (iv). Reduced closed subschemes of X ® K are in one-to-one
correspondence with closed subsets of X(kK) because X ® X is a Jacobson
scheme. By Proposition 3.1.4 reduced closed G ® kX stable subschemes of
X®k correspond to G(X) stable closed subsets of X(k) . By a standard
result on algebraic groups, minimal stable subsets of X(k) are the closed
G(k) orbits. Finally pX(T) =V iff pX(T(zj] = Vo because Vo' is

7]

dense in V¥ , -and Py is a closed map. i

3. Equivariant étale morphisms

LEMMA 1. Let G be a reductive group scheme acting on an affine

algebraic scheme X . Let F € k[X]G be an invariant, let

Xp = {zex | Ft px} be the principal open subscheme defined by F , and

let j : Xp > X be the embedding.A Then G acts naturally on X J is

FJ
equivariant, and /G 1is an open embedding of (XF]/G onto (X/G), in

X/G .

Proof. Since X, = X

P *(X/6) (x/6)

Fo there is a natural action of @

on X and T

P XEJ = (X/G)F which is an open subscheme of X/G . J/G

x!

maps (XEJ/G onto nX[XFJ =(XYG)F so to show that j/G is an embedding it
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is enough to show that (XF)/Giz (X/G)F . This follows from Proposition

3.2.2 since (X/G)m > X/G is flat.

PROPOSITION 1. ILet G be a reductive group scheme acting on affine
algebraic schemes X, Y , and let ¢ : X » Y be an equivariant morphism.
Let T be a cZosed.pseudo—orbit in X and let x € T . The following are
equivalent:

(Z) ¢ 1is étale at x ;

(i7)

A3}

is étale at every point of T ;
(iii) there is a G stable open affine neighbourhood U of T
such that ¢ <s étale at every point of U .

In case (111}, U may be chosen so that HX(U) = /G and ﬂu'= “XIU )

Proof. Recall first that if Py : X ® k > X is the usual projection,

¢ is étale at x iff o ® k is étale at one point of the fiber p}l(x)

iff ¢ ® k is étale at every point of the fiber p;l(x) [Appendix 2].

(1) = (i) . First consider the algebraically closed case. If ¢ is
étale at x then o is étale on a non-empty open set U wﬁich contains
. UnT is nén-empty and constructible, so it contains a rational point.
Thus & may be assumed rational. G(k) acts transitively on T(k) , so ¢
is étale at every rational point of T . The set of points at which ¢ is
€tale is open and contains T(k) , so it contains- T .

Mow if % is not algebraically closed, let X be an algebraic

closure. If ¢ is étale at x then ¢ ® X is étale at each point of the

-1, . . -1, . > TT
Tiwr Py Cor o Lt FX {(T) coniutioa GG

orbit € wihicgh raps

. . T, -1, . . . .
surjectively onto 7 . O meets the fiber (£) , so it contains a point
J Y PX p )

at wvhich © @ k is étale. Thus ¢ ® k is étale at every point of 0 , and

¢ is étale a2t every point of py(0) = T .

(Z2) = (i27). Let Z be the set of points at which ¢ 1is not étale.
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Z 1is closed and can be assumed non-empty. Let Z,, be the reduced closed

subscheme carried by Z . I claim that Zr' is G stable. By Proposition

3.1.4% it is sufficient to show that ZP(7<_) is G(k) stable. Now

z,(k) = 2, @ k(k) = p;,l(Z) n X(k) . But x € p;l(Z) iff ¢ is not é&tale

at p;{(m) , iff @ ® k is not étale at x . So ZP(F) is the set of

rational points in X ® k at which ¢ @_E is not étale, and this is

clearly G(k) stable.

T and Zr' are disjoint closed G-stable subschemes so they are
separated by an invariant F . Let 'F vanish on Zr but not on T and
let U = XF . Then U is an affine open neighbourhood of T on which ¢

is étale. U satisfies the conditions of the proposition by Lemma 1.

(i21) = (1), This is trivial. #
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CHAPTER 4

1. Etale morphisms and quotients

LEMMA 1 [Luna 1973]. Let X be a normal algebraic affine scheme and
let G be a finite group of automorphisms of X. Let H<G bea

subgroup. Consider

X -~ X/H

X/G

where ™, W, are the quotient morphisms and o 1is the factorisation of

, through =, . Let x € X be a rational point, y = m (x) and

z = ﬂé(x) ,» and let G_ be the stabiliser of x . Then o 1is étale at y
iff Gx CH.

Proof. First note that X/H and X/G are normal, and

* . . ' . » - .
or oX/G,z > OX/H,y is injective.

If G, CH then by [Bourbaki, Commutative Algebra, V, §2.2.u4]

0 is unramified at y . Then by E.G.A.0, 23.2.1 and E.G.A.IV, 18.10.1, o©

is étale at y .

If o is étale at y then it is unramified at y . Both y and =z
are rational so k(y) = k(z) . So by [Bourbaki, Vv, §2.2.4],

. G
k[X]H c k[x1% . Thus k(X/H) k(X/Gx) c k(X) , where by k(X) is meant
the field of rational functions of X , and similarly for X/H, X/Gr . But

k(x/G) = R(X)G [Bourbaki, V, §1.9, Proposition 23] and likewise for H and

G, - Thus k(X) 1is a Galois extension of k(X/G) with group G .
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The=2"ore Gx < H . #

PROPOSITION 1. Let G be a reductive group scheme acting on
geormetrically normal algebraic affine schemes X and Y . Let ¢ : X > Y
be an equivariant morphism. Let T be a closed pseudo-orbit in X and let

t = ﬁy(T) be the point of X/G parametrising T .- Assume

(i) ¢ 18 étale at a point =z € T ,
(17) o(T) s closed,
(iii) o maps T <isomorphically onto its scheme theoretic image
o(T) .
Then /G 1s étale at ¢t .
If T <s an orbit then (iii) may be weakened to
(1i1)! ¢ 1is ingective on T .
Proof. This proposition is a generalisation of the "Lemme fondamental"
of [Luna 19731].
To abbreviate, write S for ¢(T) , the scheme theoretic image of. T .
S 1is a closed reduced subscheme of Y . Let ¥ : T > S be defined byl

r ¥ s

n n

x 2y,
The oroof proceeds by a series of reductions. In the first place, by

Prozosition 3.3.1, ¢ may be assumed everywhere &tale.

T

I will now show that if T 1is an orbit then

(2i2) ' = (212). Let ¢—l(S) be the scheme theoretic fiber of ¢ over
1

nd let X : @ (5) > 8 be the induced worphism:

S

[

2 .,

l(S) .

I~
e

3,
>

)
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Since X comes from ¢ by a base chénge X is étale. By EGAI, §4.3.6, T

-1
is a closed subscheme of ¢ ~(S5) .
S is an orbit so it is normal, and ¥ -is étale so it has normal

fibers (in fact they are geometrically regular). So by EGAIV, 6.5.4,

¢ (S) 1is normal. In particular w_l(S) is reduced ‘and the connected

components are the same as the irreducible components.

dim T = dim S = dim w—l(S) , so T 1is a reduced closed subscheme of ¢-l(S)

of maximal dimension, and clearly the components of T are equidimensional.
Thus 7T 1is a union of irreducible components of w—l(S) . Thus T 1is an
~ "l ~ » -
open subscheme of ¢ "(5) and ¢ = x|T is etale.
For y € S', let n(y) be the number of geometric points in the fiber

Y "(y) over y (considered as a scheme over k(y) ). From EGAI, §6.5,

2y = #lyT
n(y) = #|1v ~(y) ®K(y) K]
= Y [k(z) : k(y)]
-1 8
x€y “(y)
where K is an algsbraic closure of k(y) and [ : ]s is the separable

degree of the field extension. Since Y is &tale all the field extensions

are separable so
n(y) = Y [k(z) : k(y)]1 .
zeyt(y)
I claim that n(y) =1 for all y €5 .
Consider first the closed points of S . Let y € S bhe a closed point,

and let y’' be a closed point of S ®k over y . Let n{y') be the

number of geometric points in the fiber of Y ®k over y' . Then
n(y) = n(y') . To see this, regard the closed point y as a closed
subscheme with local ping k(y) (and treat other closed points similarly)

and compute the number N = #(T ®k * = Y ®%k)] in two different ways.
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First of all y ®k is the union of [k(y) : k], closed points, and

8

T®k xS@?y ®‘7—<- is the union of the ® k fibers over these points.

Since G(k) permutes the points of y ®k , these fibers all have the same

nunber of points, so ¥ = [k(y) : kln(y') . On the other hand

~

P

T®

(5

- - - — " -1
xsg?l@kt-_‘-:(T Xsy) ®k=\bl(y)®k . Each point =z € ¢ “(y)

splits into [k(x) : kl; points in tp_l(y) ®k . So

n= Y [k(x) : k]
zey H(y)
= [ ) [k(x) : k(y)]s)[k(y) : k]s = n(y)Lk(y) : k]s .
xél,'fl(y)
Thus #n(y) = n(y’) .
Now let =z, € T be a rational point and let Yo = tb(xo) - Then y,
is rational and n(yo) = [k(xo] k(yo)]s =[k’: k], = 1. Since G(k)

acts transitively on the closed poinfs of $®%k , n(y) 1is constant on the
closed points of S . Thus n(y) =1 for all closed points‘ y €5 .

n(y) is lower semicontinuous (EGAIV, 18.2.8) so {y € X : n(y) = 1}
is a closed set containing all the closed points of § . S 1is a Jacobson
space so n(y) <1 for all y € S. But Y is surjective by definition,
so n(y) =1 forall y €5 .

In particular, evaluating n(y) at the generic points of the connected
components of S (which are irreducible) shows that ¥ 1is birational.
Thus ¢ 1is a bijective birational morphism between normal schemes so ¥ is
an isomorphism by Z.M.T. [EGAIV, 8.12.11]. This completes the proof that
(ii8)t ~ (iid). |

- I will now show that it is sufficient to prove the proposition under

the assumption that Kk is algebraically closed. To do so, assume that the
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proposition is proved when k s algebraically closed and let k be

arbitrary.

Let k be an algebraic closure of k and consider

rek —Y8K.  ,sek

®

3

@k — Y
¢ Q k

X

Then ¢ ® kX is étale, P @ Xk is an isomorphism, T@® X and S® k are
smooth closed subschemes and all the maps are G ® X equivariant, as these
prop.er'ties are preserved under base change. T ® Xk contains a closed @ ®k

orbit T' such that Py : X®k>X maps T' onto T (see Proposition

3.2.5). Let t' € X® k/G® k be the closed point parametrising the Gk

— — _ P
orbit T' . Then under the projection XQ® kK/GQ® k — X/G® k X/G, X/G
the point t' 1is sent to t . The morphism ¢ @ Xk satisfies the conditions

of the propositicn at 2 point in the orbit 7' , éo by assumption
9 ®k/G® %k 20/G®k is étale at the point £’ . Then by faithfully flat
descent @/G is étale at t . Thus in proving the proposition k. may be
assumed algebraically closed.

I now show that ¢ can be assumed to be a finite .morphism, though one

which is not necessarily everywhere étale. As the field k is now assumed

. algebraically closed the action of the group scheme G is adequately
described by the action of the group G(k) and G invariants, and so on,

are the same as G(k) invariants.

-1
For x € X/G let X = L% () be the fiber over & and, for =x

~

closed, let Ta' be the unique closed orbit in X.'x: . Let X be the

normalisation of Y in the field k(X) . By Z.M.T. [Dieudonné 1964,

p. 136, Coroilary 1] there is a factorisation of ¢ :
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where % is a dominant open embedding, and ¢ is a finite morphism.
Clearly G(k) acts rationally on k[X) , so G acts on X , and % and

¢ are equivariant.

LEMMA 2. For x € X/G a closed point, let T be the closed orbit

parametrised by x and let 5& ©(T) . The following are equivalent:

(i) T_ is closed in X
s

(i1) w(Tx] is closed in Y ;

(iid) i/6(z) § m(Ni(0) .
Proof; (i) = (i7) because ¢ is finite.
(i2) = (Z). Regarding X(k) as a Serre variety, $—l¢(1;) n X(k) is a

union of G(k) orbits, which are finite in number ‘and all of the same

dimension since ¢ is finite. One of these is I&(k) . Since orbits of

.. . . : e . . ~=1 P .
minimal dimension are closed Tx(k) is closed in ¢ w(!&](k) so ?x 1is

closed in } .

(i) = (2i1). There is only one closed orbit in I& because if there

were more than one they could not be separated by invariants. Let S be

~

the closed orbit in Tx . Then TT is closed iff S =-T; iff

o

Sci(X) iff § and X\i(X) are disjoint G(k) stable closed

subsets of iff§ and X\Z(X) are separated by an invariant iff

m3(S) ¢ w}(i\i(X)] . But mHS) = i/Gx) . #

COROLLARY. Let V< X/G be the constructible set defined by
V(k) = {z € x/G(k) : w(l&) i8 cZosed} . Then V is open and i/GIV i8 an

open embedding.

Proof. That V is open follows from part (ZZZ) of the lemma and from




part (Z) it follows that </G 1is injective on rational points of V . By
Lemma 1.6.3 or directly </G is injective on V . It will be sufficient to
show that /G 1is a local isomorphism [EGAI, §u.2.21.

Since this is a local property it can be assumed that V is affine,

and in fact by replacing X by Ty

(V) it can be assumed that V = X/G .

Let x € X/G be a closed point and let F ¢ k[}]G be an invariant which

separates %x and ‘}\i(X) . Since k[}] c k[X] , F will be considered an
element of k[¥] . Then <] : X, > X, is an isomorphism so
XF F ).

i/Gl(XfJ/G : (uEJ/G > (}EJ/G is an iéomorphism. But by Lemma 3.3.1,

(XEJ/G and (}F]/G are open neighbourhoods of x and </G(x) , so /G

is a local isomorphism at x . #

4

Now returning to the factorisation of ¢ ,

X

/6, %6 /G, yc

X ¢ ~> &

<

X/G

by if necessary replacing X by n}l(U) where U is an affine open

neighbourhood-of t in V it can be assumed that /G is an open
embedding. Then ¢ = ¢ o 7 1is étale at T iff ¢ is étale at <Z(T) and
¢/G = §/G o ©/G 1is étale at t iff /G is étale at </G(t) . The pair
(5, (1) = fﬂ satiéfy the hypotheses of the proposition but.in addition ¢
is finite.

So now assume in addition to the hypotheses of the proposition that k
is algebraically closed and that ¢ is finite. TFrom this point the proof
follows that of Luna fairly closely. All points mentioned below will be

assumed rational.

Go(k) is a normal subgroup of G(k) and by looking at rings of
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invariants it is easy to see that X/G = (X/GO)/(G/GO) . So it is sufficient
to consider separately the cases (G connected and G finite.

First assume that ( is connected and hence G(k)‘ is connected as a
Serre variety. The orbits T and S are then connected and lie completely
inside a single connected component of X And Y . Thus it may be assumed
that both X and Y are connected and hence irreducible.

@ : X > Y is étale on a dense open set, so k(X) is a finite
separable extension of k(Y) , so k(X) 1lies in a finite Galois extension
F . Let Z be the normalisation of Y in F . Clearly F = k(Z) . Let
G be the Galois group of k(Z) over k(Y) and let H be the subgroup

which fixes the elements of k(X) . Then
k(Y1 = k(2] n k(Y) = k(2] n &(2)° = k[27°

(using the normality of 7 ) and similarly k[X] = k[Z]H . So X =12/ and

Y=2/6
 ———— Z/H = X
¢
2/G = Y
Let € Tc X and let 3 € Z lie over x . Then by Lemma 1, ¢ is etale

at x iff Gz <o,

Now let Z' be the normalisation of Y/G in k(Z) . G acts on k(2)
leaving fixed the elements of k(Y/G) so G acts on k[2'] by algebra
automorphisms. Thus G acts on 2' . I claim Z'/G = Y/G , that is

k[z']G = k[Y]G . D is clear, so let f € k[Z']G . Then f 1is integral

over k[Y]G and f € k(Z)G = k(Y) . But k[Y]G is inteérally closed in

k(Y) for if f € k(Y) is integral over k[Y]G the action of G(k)
preserves the integral equation of f (the coefficients are invariants) and

permutes the roots of this equation. Since G(k) is connected and the set
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of conjugates of f is finite, G(k) fixes f . That is, f € k(Y)G .
Since Y 4is normal and f is integral over k[Y]G cklyl , fFfeklyl.

Thus f ¢ k[Y]G .

Similarly k[X]G = k[Z’]H so Z'/H=Xx/G . If z' € Z' lies qver

t € X/G , then by Lemma 1, ¢/G is étale at t 1iff G,, cH .

L -~ X CA > Y 2 L — Y
q Tx Ty
UM o/G
Z' — X/G — Y/G ' —— t —— @/G(L)
T .
G
Let 2 € Z lie over x € X and let 2' = g(2) . Then it is sufficient to

show that Gz CH implies Gz' CH.

w(Gz,-(z)) c nil(t) n ¢-l(y) c n}l(t) n o NS .

But ¢_l(S) is a finite union of orbits all of the same dimension so

. . - . -1 . .
¢ (S) 1is a union of closed orbits. However = (%) contains just one

X
closed orbit, namely T , so w(Gz,'(Z)) c T . But ¢|T 'is injective so
w(Gz,'(Z)) =x . H acts transitively on the fiber of § over & so
Gz,-(z)c:H-z . Thus HGz,cz Gz and _Gz,c: HGz . But by assumption
H< Gz . This completes the proof when ( is connected.

Now assume that G is finite. Clearly it may be assumed that X/G

’

and ¥/G are connected but not necessarily tihat A and Y are connected.

Let X e s Xr and Yl, cees Y

s be the connected components of X and

l,
]

Y and assume that x € Xl and y = ¢(x) € Yl . G permutes the Xi

otherwise X could be partitioned into disjoint closed G-stable subsets

and there would be an invariant which disconnects X/G . If g € G then
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for each %, j either gXi = Xj or gXi n Xj =@ . Let Gl be the sub-
group which preserves the component. Xl (that is g-Xl = Xl ]. Then each

G orbit 0 on- X intersects Xl in a unique Gl orbit. 0 n Xl

contains at least one G, orbit because (G permutes the Xi , and it

1
contains at most one because if 0 n Xl contains two points p, g then
there exists g € G such that g*p = q . But g°Xl n Xl # @ so g°Xl = Xl

and g¢ E-Gl . Thus each -Gl invariant on Xl extends uniquely to a. G

G
invariant on X . k[Xl] Yo xx1% ana X, /G, = X/G .
Similarly if G(Yl) is the subgroup which preserves the component Yl

of Y then Yl/G(Yl] > ¥/G . Then ¢/G can be factorised

vin~ v o O , B ~

X/G =X /6 — ¥ /6 — ¥,/6(Y)) = ¥/C
where ¢ = (p’/Gl s ' Xl > Yl being the restriction of ¢ to Xl , and
B : Yl/Gl > Yl/G[Yl) is the natural map. By Lemma 1, B is étale at a(t)
iff- Gy c Gl . But if g fixes y then g fixes x because ¢ is

injective on the orbit through x so g € Gl . Thus B is @tale at a(t)

Thus it can be assumed that X and Y are connected, and hence
irredicuble. k(Y) is a Galois extension of k(Y/G) [Bourbaki, Commutative
Algebrg] and by assumption k(X) is a finite separable extension of k(Y)
so k(X) 1lies in a Galois extension F of k(Y/G) . Let 2 be the

normalisation of Y/G in F . As in the connected case F = k(2)
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Let z € Z be é point bying over x . Let G’ = Gal(k(Z) : k(Y/G)) .
6 = Gal{k(z) : k(¥)) , H' = Gal(k(2) : k(x/G)) , H = cal(k(2) : k(X))
Note that Hc H’ € G’ and Hc Gc H' ., Since k(Y) is a Galois

extension of k(Y¥/G) , G is a normal subgroup of G' and

Gal(k(y) : k(2/@)) =G'/G . Similarly H is normal in H' and

Gal(k(X) : k(x/6))

H'/H . By [Bourbaki, Commtative Algebral,

fal
(%2

k(Y/G) = k(¥)” so the action of G on k(Y) gives a surjection
o : ¢+ Gal(k(¥) : k(¥/6)) = G'/G . There is a similar surjectiom

B :G6~»H'/H .

G'/G H'/H

As in the connected case it is enough to show that Gz cH= Gé c H!

Define a relation ~ between G’ and H' as follows. If g, h are in
G', H' , and [gl], [h] are their cosets in G'/G and H'/H respectively,
then g~ h if there exists 0 € G such that a(o) = [g] and

B(o) = [R] . If g & Gé then there exists #h € Hé such that g~ h , for

let 0 € G be such that a(o) = [gl . Then 0 and g both give the same
automorphism of Y so O fixes y . ¢ 1is injective on the orbit T

through x so o fixes x , and any element h of the coset B(g) will

do.
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So assume Gz cH, let g € Gé and let h € Hé be such that g~h .

h stabilises the fiber w—l(x) , but H acts transitively on this fiber so

h ¢ HGz . g~h so hg_l acts trivially on Y . Thus

hg—l C HGé G = HGz CcHcH'" . Thus g € H' . This completes the proof

for G finite, and so completes the proof of the proposition. #

2. Some consequences

LEMMA 1. Let G be a reductive group scheme acting on geometrically
reduced affine algebraic schemes X, Y . Let ¢ : X > Y be an equivariant
morphism. Assume that ¢ and ¢/G are étale, that ¢ maps closed
pseudo-orbits in X onto closed pseudo-orbits in Y , and that ¢ 1is
itnjective on at least one closed orbit lying over each connected component of .
X/G . |

Then X == X/G X Y.

(¥/6)

Proof. I can assume X/G 1is connected. Let Z = Y x c Y/G¢ and let

X/

X : X > Z Dbe the natural map.

. - &\ Z w TT
X Y

X/G- o/C > Y/G

it is vo be shown that x 1s an isomorphism. Both ¢ and y are étale so
X is étale [SGAIV, 3.3]. I will show that Y preserves closed pseudo-

orbits.

Let Tc X be a closed pseudo-orbit, S = ¢(T) and let ¢ = HX(T) .

s = WY(T) be the points in X/G, Y/G parametrising T, S . Consider the
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fibers X,, Z, and Ys over t and 8§ . By definition

t’ "t

Z, = 2%y k() = (¥ x, - X/G) x, . k(E)

t X/G

IR

Y xy o k(t) = (v Xy 16 k(s)) ®(s) k(t) =Y, ® (g K(E) -

Py .
TCX >7IE o5

t
1"1& b,

Zt - Ys ®k(s) k(t)

Since k(t) 1is a finite algebraic extension of k(s) the morphism v, is

finite and the fiber of wt over 5 1is the union of a finite number of

closed pseudo-orbits. (They are closed in w;l(s) , and hence in Zt s

because they all have the same dimension.) Xt(T) is one of these pseudo-

orbits so xt(T) is closed in Zt and hence in Z because Zt is closed

in 2 . Thus x(T) 1is closed in Z .

¢/G is flat so by Proposition 3.2.2,

2/¢ = (¥ %, ¥/G) /G = Y/G %, . X/G=X/G ,

/ Y/G
so X/G 1is an isomorphism. Thus the pair (x, x/G) satisfies the
conditioné of Lemma 1 and to show that X is an isomorphism it will be enough
to prove the lemma under the assumption that ¢/G is an isomorphism.
Thus it is necessary to show that if ¢/G is an isomorphism so . is ¢ .
_As in the proof of Proposition H.i the hypotheses are stable under the base
change k » k and ¢ is an isomorphism iff ¢ ® kX is an isomorphism
bacausz the bzse change is failthfully flat [A-pendiz 11, Thus it can be

assumed that k 1s algebraically closed.
Now let X —%» X 25 ¥ be the Z.M.T. factorisation of ¢ , which

exists because ¢ 1is quasi-finite (it is étale). 7 1is a dominant open

embedding, ¢ is finite, X is algebraic and G acts, and ©¢ and ¢ are
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equivariant. By the argument of Lemma 1.2, % preserves closed orbits and
¢ preserves closed orbits because it is finite. Furthermore, %/G and

¢/G are isomorphisms. To see this, consider first %/G . The comorphism

(£/G)* k[}]G > k[X]G is the restriction to k[}]a of the comorphism
i* , and this is injective because % is dominant. Thus (Z/G)* is
injective. But  (Z/G)* o (¢/G)* = (¢/G)* which is by assumption an
isomorphism so (£/G)* 1is surjective. Thus %/G is an isomorphism. /G
is an isomorphism because ¢/G o /G = ¢/G and ¢/G is an isomorphism.
Thus in proving Lemma 1 it can be further assumed tﬁat ¢ 1is either an open
embedding or a finite morphism.

If ¢ 1is an open embedding then ¢(X) is a stable open subscheme of
Y and Y\¢(X) a stable closed subscheme. If Y\¢(X) is non empty then
it contains a closed orbit. But ¢/G : X/G ~ Y/G 1is an isomorphism so
every closed orbit in Y lies in @(X) . Thus ¢ is an isomorphism.

If ¢ is finite and étale, then it is an &étale covering, and n(y) ,

the number of geometric points in the fiber w—l(y) is constant on
connected components of Y . X/G 1is connected so G(k) permutes the
components of X and hence also the components of Y , so n(y) is
constant on Y . Let T be the orbit in X on which ¢ 1is injective,

and let S = o(T) . w—l(S) is a union of closed orbits, but w_l(S) lies

in X, = ﬂ}l(t) , where ¢ = T (1) , because ¢/CG is an isomorphism. Since

X, contains a unique closed orbit, w_l(S) = I . Then evaluating n(y) at
a rational point y € S shows that n(y) =1 . Thus ¢ is a 1l-sheeted
étale covering, which is an isomorphism. #

PROPOSITION 1. Let G be a reductive group shceme acting on

geomeirically normal affine algebraic schemes X and Y . Let ¢ : X > Y

be equivariant. Then
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(1) if ¢ 1is an open embedding which preserves closed pseudo-
orbits then ¢/G is an open embedding;

(it) assumz that there is a closed orbit in X '[l,ying over every
connected component of X/G . If ¢ 1is an étale covering
which is an isomorphism on ciosed pseudo-orbits then ¢/G <s
an étale covering.

Proof. (Z) ¢ 1is an open embedding iff it is &tale and radical
[EGAIV, 17.9]. If ¢ 1is an open embedding which preserves closed pseudo-
orbits then.by Prbposition 1.1, ¢/G is étale. It remains only to show
that ¢/G is radical. By Lemma 1.6.3, ¢/G is radical iff ¢/G(k) is
injective, and this is so iff ¢ ® kX sends closed G® %k orbits to closed

orbits. If S is a closed G®k orbit in X ® k then pX(S) =T is a
closed pseudo-orbit in X and S 1is a closed subscheme of p);l(T) =Tk .
By assumption T -+ X T Y is a closed embedding so by ascent

T®k »X®Kk —— Y®k is a closed embedding. Thus ¢ ® k(S) is
&k

closed in Y ®%k . So ¢/G(k) is injective and ¢/G is an open embedding.
(i1) By Proposition 1.1, ¢/G is étale and by Lemma 1,

XY Xy 16 X/G . For y €Y/G & closed point, let n(y) be the number of

geometric points in the fiber cp/G_l(y) » regarded as a scheme over k(y)
By EGAIV, 18.2.9, ¢/G is an &tale covering iff n(y) is constant on
connected components of Y/G . Let y' €Y be a closed point lying over

y € Y/G , and let n(y) -be the number of geometric points in the fiber

'p_].( .)

O T ) T e 1. L
51, regaclod as a scheme over X(y) . Then

-1 ' _ ' ~ '
(@/6) () Gy K = (K16 %y ) kW) § () KxX/G =, o K,
and

-1 _ , —
P (y')Q((y') k = (X X_Y k(y )) Q((yl) k

=X x, k= (x/6 16 ¥) %y k2 x/6 %o K
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so n(y) =n(y') . Since ¢ is an étale covering n(y) is constant on the
closed points of components of Y/G . By semicontinuity n(y) 1is constant

on components of Y/G . Thus ¢/G is an étale covering. #
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CHAPTER 5

1. Grothendieck topologies

A Grothendieck topology on the category of schemes over k , which I
will only define informally, is a collection T of morphisms, called the
open neighbourhosds of the topology, satisfying certain axioms modelled on
those of ordinary topology [SGA3]. If T is a Grothendieck topology, and
¢ : U>X, ¥ : V>X are "open neighbourhoods on X in the topology

T ", then the fiber product U *y V> X plays the role of intersection in

ordinary topology, and base change by ¢ corresponds to restricting
.attention to the local behaviour on the "neighbourhood" U . The most
important topologies are the following (I only mention some of these because
I wish to quote theorems framed in this language.)

1. The Zariski Topology. T 1is the set of open embeddings. If X is
a scheme the T-neighbourhoods on X may be identified with the Zariski
open subsets of X , giving the ordinary Zariski topology on X .

2. The Etale Topology. T 1is the set of &tale morphisms.

3. The Etale (f) Topology. T is the set of étale coverings, that
is the finite &tale morphisms.

4. The f.p.q.c. Topology; T is the set of morphisms which are flatl
and quasi-compact.

5. The f.p.p.f. Topology. T is the set of morphisms which are flat
and of finite presentation.

6. The Flat Topologv. T is tha set of flat morphisms.

The most important of these are.l and 2. 4 and 5 will be mentioned
only in passing. On the category of noetherian séhemes %, 5 and 6 coincide.

ff k = € then nice schemes (say nonsingular Serre varieties) over C

carry a tocology induced from the ordinary topology on € . Since &tale
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maps over C are locally analytic isomorphisms, properties of the complex
topology are closely related to properties of the étale topology (rather
than the Zariski topology, whose open sets are too large to describe some
local behaviour). In general, the étale topology can be regarded as a
substitute for the complex topology, which is not available over an

arbitrary field.

2. Fiber bundles

All schemes are assumed affine and algebraic. Let T be one of the
above Grothendieck topologies.
A trivial fiber bundle with fiber F and base B 1s a morphism

m: X >B and a morphism X * F such that the square

X~ F
¥ ¥
B + Spec(k)
is cartesian. That is, X = B X F . A fiber bundle in the topology T ,

with base B and fiber F , is a morphism 7 : X » B which is locally
trivial in T . That is, for every closed point x € B , there is a

morphism o : ¢ * 3 in T , such that x € o(C) , and XC =X XB C~+C is

a trivial bundle with fiber F . 0 1is called a T-trivialisation of X
around x .

If w: X~> B is a bundle, it is easy to see that for any B' + B ,

m_, : X,, * B' 1is a bundle with the same fiber. If 7 : X - B 1is a bundle,

B' ° "B

then since B is neotherian, it is covered by a finite collection of

irivialisation. O, -——r 3 . That 1o, the unico of the o |0, COT LS
o ( > 2 ‘L( 7«]

1 O,
7

B .) By taking the disjoint union of the Ci , there is a trivialisation

c=1] C. » B which is flat and surjective (though it may not be in T ).
i

Clearly C may be constructed Lo be affine. Thus every bhundle has an affine
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faithfully flat trivialisation.

Let G Dbe a reductive group scheme and let 7 : X > B be a bundle
with fiber F . X 1is an equivariant bundle if G acts on X and F ,
and acts trivially on B , T is equivariant, and the trivialisations of X
can be chosen to be equivariant. An equivariant bundle has, by the
construction above, an equivariant faithfully flat trivialisatioh. A
torseur [SGA3, G.-D.III, §u4] is an equivariant bundle whose fiber F is
isomorphic to G acting on itself by translation. If 7 : X + B is a
terseur and C + B is any morphism, then it is easy to see that

“C : XC = X XB C +»C is also-a torseur,

LEMMA 1. Let G be a reductive group scheme, and let w : X » B be
an equivariant affine algebraic fiber bundle, with fiber F . If
F/G = Spec(k) , then B = X/G , and m 1is a quotient map. In particular, a
torseur is a.quotient map.

Proof. Llet o : ¢ B be an equivariant, faithfully flat, affine
trivialisation of ® . Since being a quotient map is stable under |

faithfully flat descent (by Proposition 3.2.2), if 7, is a quotient then

c
so is T . So 7 can-be assumed trivial. Then

X/G = (B xF)/G=Bx(F/G) =B x Spec(k) = 8,
by the same proposition, since B 1is flat over Spec(k) . #

Thus if 7 : X » B is a torseur, then 7 is a quotient map. It can
be shown that is an orbit map in the following generalised sense: for
any R ¢ Alg/k , the fibers of w(R) : X(R) » B(R) are the orbits of G(R)
on X(R) . m(R) need not however be surjective, so T may not be a
quotient in the category [Afg/k, S] .

COROLLARY. et X, Y, Z be affine algebraic G spaces, where G <is
a rediuctive group scheme. Let X + 2 , Y = Z be equivariant, and assume

that G acts trivially on Z and Y . If Ty : X > X/G 1is a torseur,
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then (X x, Y)/G = (X/G) %, ¥ .

Proof. X » Z factorises via 7, : X > X/C .

\} ¥
7 —— Y

Since Ty is a torseur and ¢ comes from Ty by a base change, ¢ 1is a

torseur., By the lemma ¢ is a quotient map. it
This corollary will be useful in cases where Proposition 3.2.2 does

not apply.

3. Associated bundles

From now on I will be dealing with both left and right actions so I
will begin writing X/G for the quotient of a right action and G\X for
the quotient of a left action.

Let X * B be a torseur (with G acting on the right), and let F be
an affine algebraic scheme with G acting on the left. Let G act on
X x F as follows: if R € Alg/k , G(R) acts on (X x F){R) = X(R) x P(R)
by g-(z, f) = (x-g—l, g*f) . The quotient of this action is written
X *a F ., The map X x F 723914 X + B is equivariant, so there is an
induced map w : X *, F > B . 7 is a fiber bundle with fiber F . To see
this, let x € B be a closed point and let U + B be an affine
trivialisation of X around z . Thus Xu = X X5 U=~Ux G . Then

(x =, F), = (X x F)/G xp U (X x Fxg U)/G = (X, x F)/G

2(GxUxF)/G=UXF
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is a trivialisation of

Thus U

by Proposition 3.2.2 (ZZ) and (1it).
X *G F around x € B .
X * F> B is called the bundle associated to the torseur X + B and

the fiber F . It can be thought of intuitively as the bundle constructed

from X by replacing the fiber G by F , while retaining the global
X over B .

structure of the bundle

Induced bundles
Let G be a reductive group scheme, and H a reductive subgroup
isa H

4,
scheme. Assume that the topology T is such that G » G/H
torseur. If V 1is an affine algebraic scheme, on which H# acts on the
G acts on the left of @ *n V by acting by left translation on
y V > G/H is equivariant. I
V . The

left, then

the left hand factor, and the bundle map G *

will call € *y V the ¢ bundle induced from the H scheme
ng it this is in the following proposition.

-1

G be a reductive group scheme, and H a
Let T be a Grothendieck topology from among

o+

124

justification for calli

PROPOSITION 1. Ze
: G *H V » G/H

reductive subgroup scheme
those mentioned in 31, such that G~ G/H is a H torseur. Let V be an

algebraie affine scheme, with a left H action, and let
with the left action of G by left translation be the induced G-bundle.
: V> g *H V.

H > G be the inclusion and let J = H\(Z x V)

Let 1 :
x2S ey
V——— G *_ V
J H

Then
(1) J has the following universal characterisation. j : V> G x V 1is
V> X is any H equivariant morphism to an

H-equivaricii, and if ¢
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affine algebraic G scheme X , then ¢ factorises uniquely through J .

(2) ¢ * v - G/H 1is& a bundle with fiber V .

(3) § <s a closed embedding, which maps V <isomorphically onto the fiber

of ©C * V over the distinguished point of G/H .

(4) Lei x, be a rational H-fized point on V , which will be identified

with its image in G *y V. Let T be the G orbit through % in

G, V. Then T 18 a closed orbit which maps isomorphically onto G/H

under n . If

-t

/ 18 smooth, then so is G *y V, and T 18 transversal

to V at xo .

(5) c\[e», V) =aw.
(6) Let U~ H\V the embedding of an affine subscheme. Then
(¢ *y V)u =G (Vﬁ) , and G *y (Vﬁ] G,V 18 an embedding.

Proof. (1) follcows immediately from the definitions.
(2) This follows from the properties of associated bundles.

(3) First consider the case V = H . Then G *y H=G and J : H-> G

is just the inclusion map. All algebraic subgroups are closed [G.-D.II,
§5.5.1] so J is a closed embedding. It must be shown that the following

square is Cartesian.

H=+ G
Lol
e > G/H

where € 1is the distinguished point of G/H (e is rational). By
assumption, G = G/H 1is a torseur, so there is a faithfully flat affine

trivialisation B - G/H . By faithful flatness, it is enough to check that

the following square, obtained by base change, is Cartesian [see Appendix 1,

§21.
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X H=B x H=B xH ,since k(e) = k , and

But B x,,  H = (BXG/He) . . %, .

B, * H =B, %, (B x H) , so the second square is Cartesian.

Now return to the general case. Consider the following diagram

HxV—— > gxy —P21_, ¢
I II
Jp Y
V. ——— G %, V— G/H
IIT
! .
e ——— 80— G/H

I will show that all sguares are cartesian, First consider square II.

Since both G ~ G/H and G V > G/H are fiber bundles, -they have a

*H
common.faithfully flat trivialisation B » G/H . By faithful flatness, it

will be enough to show that the base-changed square is cartesian:

(BxH)*xV ——BxH

i

B xV —— B
which is clear. So square II is cartesian. A consequence of this which

will be needed below is that G x V + G *H V is a H-torseur.

Now consider the square made by combining I and III.

e (_GXV)=(3X X V=HxV,

e/ /i &

by tne special case treated first. Now consider square III.

e G*,V) = ex (G x V)/H = (e x

“orm 10 %y G/H p GV

G/

by the corollary of Lemma 2.1, since G x V -+ G *y V is a torseur, and

[e Xg/H G x V)/H = (H x V)/H =2V by Proposition 3.2.2. Thus square III is
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cartesian, and J is an isomorphism onto the fiber of G *n V over e .

Since e is closed J is a closed embedding.

(4) Consider H XV ~>GxV +T—* G , where G x V> G is the projection

and % is the embedding of G onto the slice through x Let H act,

0"
"in the centre" of H x V and & x V , and by right translation on G .

Then the diagram is H-equivariant % is an H map, because z, is a

fixed point of V , and passing to the quotient gives

Clearly </H 1is an isomorphism of G/H onto the orbit T through <«

0
1/H is a closed embedding, as may be seen by going to the dual category of
rings, where (7/H)* is surjective. Thus T 1is a closed orbit.

If V 1is smooth, then G *y V is smooth, by local triviality
‘(smoothness is preserved by faithfully flat descent). Since x, is a
rational point, the tangent space as defined in EGAIV is the same as the
usual definition fer 3zrre varieties. Itlis the dual vector space to m/m2

where M 1is the maximzal ideal of the local ring at Ty s and it is a vector

4

space over k(mo) = K . So the diagram above gives the following commuting
sequence of tangent-spaces

0T (V) gy Tp (G*y V) > T, (G/H) 0 .
0 z, 0 0

I claim that this sequence is exact. Exactness at ?x (G/H) 1is clear. J
0

is a closed embedding so Z& (§j) 1is injective. Exactness in the middle
0

follows from the fact that dim(G * V) = dim V + dim G/H .

The latter fact follows from local triviality as follows. Let

y = ﬂ@ro] . These are both rational points. Let o : B > G/H be a
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faithfully flat trivialisation, and let T be its pull back.

y (6=, V) +; 6=, VNg=8Bx7V
[ |
Zo G/H = B

Since ¢ and T are flat,
=1
dim B = dim G/# + dim 0™ (x,)
and

= dim B + dim V = din(G *, V) + dim T (z,)

H

But

T_l(xo) = (6 *, x. = B

Vg x(G*HV) 0 g To =B

X
G/H y b4
since both z, and y are rational. Thus the sequence is exact.

Clearly T (/) : T (G/H) » T_ (G *
X Z

V) is an isomorphism onto
z, 0 H

T, (T . Thus T (G, V) =7 (NS, (I . Thatis, P and V are

0 0 0 0

transversal at

(5) Let H acton G XV "in the middle", and let G  act by left
translation on the left. Since these actions commute, the quotients may be
calculated in any order., Thus

G\(a x, V) = a6 x /H) = (G\(G x M) /8 = B\V ,

using Proposition 3.2.2.

(6) Since (G * V)u + G %, V is an embedding, it will be sufficient

H
to show that (G * V)u ~G *u (VU) . But-
(G *, W)y = (G x V/H xg,, U = (6 x v %o u)/8 = (6 x Vy)/H = G %, v, ,

because G x ¥V is an H torseur. This completes the proof of the
propositiorn. #

From (1) it can be seen that the induced bundle construction may be.
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regarded as a non-linear analogue of induced representations. For example
there is a "Frobenius Reciprocity": for any H scheme V and G scheme
X,

Hom (G * V,ﬂﬁémm#V,D

ol *y

5. Flat and étale torseurs

Let G be an affine algebraic group scheme, and let H be an
algebraic subgroup scheme. H‘ is automatically closed and affine. Then a
categorical quotient G/H exists in the category of schemes over- k , even
if H 1is not reductive [SGA3, G.-D.III, §3.5]. G/H may not be affine, if
H 1is not reductive. If H 1is reductive, then G/H may of qoﬁrse be
constructed as usual by ths mefhod of invariants.

The purpose of this section is to prove the following proposition.

PROPOSITION 1. Lzt G be an affine algebraic group scheme, H an
algebraic subgfoup scheme, and T : G > G/H the quotient map. Assume that
G/H 1is affine. Let T be a Grothendieck topology. Then

(i) if T <is the flat topology, then w 18 an H torseur in

T;
(it) <f T 1is the étale (f) topology, and H is reductive,

then m is an H torseur in T .

Proof. Before beginning the proof, I will summarise for the
convenience of the reader some results which I will wdnt to quote, and the
terminology in which they are written.

In [D.-C.], a torscur means u iurseur f[or the I.p.p.f.':zgology, afnd a
torseur dur means a torseur for the f.p.q.c. topology. In [SGA3 and
Demazupe 1964], all schemes are taken over a given base scheme S , and a
bundle means a bundle for the f.p.q.c. topology with base S . Statements

about bundles over a fixed base S translate immediately into statements
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about bundles over an arbitrary base as follows. If X - B is a G bundle,
say over a base field k , then by the isomorphism (G x B)-XB X=GxB,
X isa GxB bupdle over B , where (G X B is a group scheme over B .
I collect together the following facts:
FACT 1. If G, H are as in the proposition; then G > G/H 1is a
torseur for the f.p.p.f. topology [G.-D.III, §u.1.8].
FACT 2., If G 1is a connected reductive group scheme, if 7 : X + B
is a G-torseur for the f.p.q.c. topology, and if B 1is normal, then
is a G-torseur for the étale (f) topology [Demazure 1964, SGA3].
J FACT 3. If G is a finite gréup, acting without fixed points on an

affine scheme X , then X + X/G is a G-torseur for the étale (f)

topology [SGAI, §v, 2.56].

Since all our schemes are noetherian, tﬂe f.p.p.f. f.p.q.c. and flat
topologies coincide. Part (i) of Proposition 1 follows immediately from
these facts, as does part (Z%1) if H is either connected or finite.

Before nroceading, consider the following lemma.

-LEMMA 1. Let H be a reductive group scheme, acting on the right on

. . 0 . .
an affine algedbrcic scheme X . Assume that X -~ X/H 1is a torseur in the

flat topology. Then there is an action of the group scheme H/HO on x/u° s
0 7170
and (X/H) = (x/8°)/(d/7°)
Proof. The action of H/H® on J{/H0 is a little difficult to

describe because H(R) ~» H/HO(R) is not necessarily surjective for all

R € Alg/k . Tirst note that (X x H)/(HO X HO) o= x/H° X/HO , because

" . o, A B o . .n L 0 _ . _
A X o= Kfd X dfH is a H =H = (d X H) torscur ror ihe flat

topology. Using the fact that HO is normal in H , the map
XX H>X- X/HO is HO X HO equivariant, when HO % H0 acts on

X x H by ths product of the Ho actions on X and H , and HO X Ho acts
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0 . .
trivially on X/H . So this map factors through the quotient

x x my/° x #°

X xH _— X

| l

(X x H)/(H0 X Ho) —— X/H

=

x/8° x m/H

0

8 is the required action. B is easier to describe using the SAG3 type
construction of quotients. 1In that picture it is obvious that it is in fact

an action.

Now let & be an algebraic closure of k and consider the sequence of

groups
0,+ 0,
L>H (k) > HE) ~H/H (k) > 1.
0 :

I claim that this is exact. First of all, H =+ H is an open embedding, so
. L. 0,4 TN e e . 0 .
it is a monomorphism so H (k) - H(k) 1is injective. Furthermore, H  is
the scheme theoretic fiber of H over the identity in H/H0 by Proposition
5.4.1. Thus HO(E) is the kernel of H(k) » H/HO(F) , and the sequence is
exact in the middle. Finally, H - H/HO is surjective, so by Lemma 1.6.3,

H(k) - H/HO(F) is surjective.

Now

H(X)

0 0 0 0
x[x17 = k[x] n EOX] - k[X] n (HX]H (7<_)]H/H (k) _ (k[X]H )H/H ' 4

Now returning to the proof of the proposition, assume that H/H0 is a
constant finite group (we know it is étale). Let
0 20 0
I' = H/H (k) = H/H (k) = H(K)/H (k)

be the associated finite group. Consider the following diagram (squares I,

II and IV ars cartesian):
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3 G 3

Gp » G G

I “S I1 m
{ o Y
T 5 — S x H/H > G/H

I11 IV .
L 4 N # O
! _ m > -
S§' = 7T BTE7T S = G/H = (G/H) /T

where § 1is a finite, etale, affine trivialisation of the [I'-torseur

G/H0 + G/H , and T 1is a finite, étale, affine trivialisation of the Ho—

torseur T, . I will show that for an appropriate choice of T, S' = 7/T

is a finite, etale trivialisation of G -+ G/H . Let S0 be the open

subscheme of S X H/H0 which projects to the identity in H/Ho i S x H/H0

consists of the disjoint union of |F| copies of S0 , and ' acts by

permuting these. Let (GS]O be the sub-bundle lying over S0 . Itisa

0 ) . . . eps . eas .
H -torseur, so let T0 be a finite, etale, affine trivialisation of

[G )0 . Let T = TO % H/HO , and let T act on T by permuting copies of

T . Then B : T+ S x H/Ho is the required trivialisation. Clearly,

T/T = To and R' = B/T 1is isomorphic to B restricted to T0 . Thus B/T

is an étale covering, and square III is cartesian.

So S' 1is an etale covering of G/H , and

0 0 0 . J ¢ 0
Ggr = Gp =T xH = |S' %, (SxH/H)| xH =8"x (A/H xH) .

. . 0 0
; 1s a trivial bundle, with fiber H#A/H x H . But G,, 1is the

Thus @ S

S

pullback of (G -+ G/H , which is an H-torseur in the flat topology, so

. . -0 . s :
Gor > S' is an H torseur. Thus the fiber H/H x #° is isomorphic to

to H , as an H space.
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Now consider the general case. By [EGATV, §4.5.11], there is a finite

separable extension K of Kk such that the connected components of

H/Ho @% K are geometrically connected. Since H/H0 is étale over k ,

H/HO @% K 1is étale over K so is a constant scheme. Thus

(He K)/(He 0° = (e, K)/[HO ® K} = H/H’ @, K is a finite constant

group. Thus by what is shown above, (G Gb Xl - (G’G% K]/(H @% K) is a

H @k X torseur in the étale (f) topology. Let £ be a finite é&tale

trivialisation:
§x, H® K) =5 x H

G+ C?@% K «
J l

l

G/H «—— G/H®, K = (6 ®, K)/(H & K] — 2 5

Since G/H 8% ¥ » G/E is an étale covering, S 1is a finite étale

#

.trivialisation of G =+ G/ , and the proposition is proved.
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CHAPTER 6

1. Stabilisers and orbits

Let G be an affine algebraic group scheme, acting on an affine
algebraic scheme X , and let x € X(k) be a rational point. Let
8 : G~ X be the orbit map through x . 0 is the composition
G > G xSpec(k) G xX+>X, and is given in the functorial picture by:

if R € Alg/k , Sx(R) : G(R) > X(R) : gr— gy , where x, is the image
of x under X(k) -+ X(R) .. By Proposition 3.2.3 the image is locally

closed, and carries a natural subscheme structure called the orbit through
x .

The stabiliser of & 1s the fiber of Bx over & :

G, = G g k(z) = G X ¥ , as x is rational. G, is an algebraic closed
subgroup scheme ¢f ( . TFibers may be computed by passing to the functor

category. In this picture, if R € Afg/k , then

Gx(R) ={g €eqR) : gz, = xR} = G(R)x . This definition agrees with that
: - R

of [D.-G.III, §3.5, II, 8§1.3]. If T is the orbit through x , then the

natural map G/G, ~ T is an isomorphism [G.-D.II1I, §3.5].

LEMMA 1. Let G, X, x5, 0, T be as above, with G reductive.
(1) The following are equivalent:

() G, i8 geometrically reduced;
(i1) G, 18 smooth;

(ii2) © <8 separable at .x ;
(tv) © <s smooth at =z« ;
(v) 8 <s separable;
{(vi) 0 s smooth.

If any of these equivalent conditions holds I will say that T is a
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separable orbit.

(2) If T is a closed separable orbit, then G, is reductive.

Proof. First a note on definitions. An algebraic scheme X is

geometrically reduced iff X @k k is reduced, iff it is reduced and the

local fields at the generic points of X are separable extensions of the
base field. X is smooth if it is geometrically regular, that is, if
X@k k is regular. A morphism f : X > Y is separable (respectively

z

smooth) at y € Y if it is flat at y , and the fiber over y is
geometrically reduced (respectively smooth) [EGAIV, §6.8.1].

() = (iZ). (ii) = (i) by definition (regular = reduced). For
algebraic group schemes, geometrically reduced implies smooth, by [G.-D.II,
§5.2.1].

(2) = (i) and (ii) = (iv). Since © is flat, these are true by
definition.

(iv) <= (vi) = is trivial, So assume 8 is smooth at x . Then
8 ® %k is,smoo‘ch at the rational point of T ® k lying over x . G(k) |
acts trénsitively on T(k) , so 6 1is smooth over every closed point of
T . The set where 6 is smooth is open [EGAIV, §6.8.7] so- 8 is smooth.

(1i1) = (v) = is trivial. But (Z2%) <= (Zv) = (vi) = (v).

Proof of 2. This is well known if %k is algebraicaily closed
[Richardson 1977]. Let x € T be rational, and let x' be the rational
point of X ® k 1lying over x , and let T' be the orbit in X® k lying
over T . Clearly T is closed and separable iff T' is, so

(6., =06_®Kk) . Thus G. ® k is reduced iff (GQ® k) _, -iS reduced.
Now (Gx ® 75](72) = Gx(f) = G(E)a-:, , by definition, and
G(E)x, = (G® E)x'(i) . Thus G.'z: ®k and (GQ E)x' have the same rational

points. 1If 7 is separable then Gx ®k = (6® 7<_)x,
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If T is closed then T' isclosedso (G® F):r:' = G:x:® k is reductive.

. Thus Gx is reductive. #

2. Tangent schemes

If R is a ring, let R[e] be the R algebra generated by an element

€ such that 52 = 0 . There are natural R-algebra homomorphisms
p:Rlel]>R :e+—0,and o : R~> Rle]l] . Multiplication by € is an
endomorphism of the R -module R[el , mapping R + Ot isomorphically onto
Re .

If X is a scheme, define a functor LX by LX(R) = X(R[e]) , and, if

¢ : R+ S 1is a homomorphism, LX(¢) = X(¢') , where ¢' : R[e] » S[e] is

the unique extension of ¢ sending €+ € . Then the functor LX is

reprnsentab 2, and defines a scheme LX , called the scheme theoretic
tangent bundls of ¥ [G.-D.II, §u.u].

g
s —> . . - .
The homomorphisms R +5—-R[€] define morphisms, which I will also call

p-0 : LX :gz-f , 2 prciection p = X(p) : LX(R) = X(R[e]) > X{(R) onto X ,

and o = x(o) : X(R) » x(&[el]) = LX(R) , which is a section of p .

If x € X is a point, then the fiber of p over x is written LxX

and called the tangent scheme at x . If =x 1is a rational point, then

there is a morphism q, : LX > Spec(k) - X (where LX » Spec(k) is the

canonical map), and L_X 1is the kernel of the pair (p, qr]

o
T

~—————— Spec(k)

%*
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If x € X is rational, and we assume as usual that X is affine, then
if m is the maximal ideal of k[X] at x , m/m2 is a vector space over
k(x) = k , and its dual (m/m2)* is called the tangent’ space TxX at x .
?xX is a vector space over K , and must not be confused with me . which
is a scheme. Now LxX(R)‘ is the kernel of the pair
p(R), qx(R) . X(R[e]) - X(R) . That is, it is the set of k algebra
homomorphisms o : k[X] »~ R[e]l such that the following diagram commutes:

k[x] —— Rl[e]
-
k — R

Writing ¢ = a + Be , with a, B : k[X¥] - R , this just says that a is
evaluation at x and 8 is a derivation of k[X] at a . Thus there is
an isomorphism

L X(R) = Der_ (k[X], R)
x x

I

Homk(m/m2, fﬂ

o~ 2 % -
> (m/m°)*® R=TX® R .
Thus LxX is the linear scheme associated with the vector space TxX , and
X = LxX(k)
If X 1is itself a linear scheme, say X(R) = V'@% R , where V is a

finite dimensional vector space over k , then for each R , X(R) 1is an

R module, and LX(R) = X(R[e]) is an R module via R = Rle]l . p(R)

and O(R) are then R module homomorphisms, and multiplication by € gives
an R module endomorphism of LX(R) . Then o0 : X + LX embeds -X

linearly as z closed subscheme in LX ; if € is the endomorphism of LX
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given by "multiplication by € ", then € o 0 maps X isomorphiéally onto

LOX , the fiber of p over 0 . If x € X is a rational point, then there
is a scheme automorphism T of X , "translation by x ", given by

T,(R) X(R) > X(R) i yr—> y +x

R > where <«

R is the image of x wunder the
specialisation map X(k) ~ X(R) . X also acts by translation on LX :

first 1lift & to LX by the section o , then translate. Tx then gives

an isomorphism LOX o L:cX .

If a group scheme (G acts on X then G acts on LX as follows.
For each R , G(R[e]l) acts on X(R[e]) = LX(R) , so G(R) acts, via the
specialisation map G(R) » G(RLel) . The morphisms p, 0 are then
equivariant. If x € X 1is a rational fixed point (that is, the reduced
subscheme supported by x is (G stable), then 9, is equivariant, so T
acts on L X .

If T is 2 G orbiton X , and x € T is a rational point then G&
fixes £ so G_ actson L (T) and L (X) . Clearly L (T) is a G

x @ x , x x

stable subscheme of Lx(X) . Looking at rational points, Tx(T) is a
Gx(k) stable subspace of Tx(X) .

If X 1is linear, and & acts linearly, then the endomorphism € and
translation by & (x a rational fixed point) are G morphisms, so the

isomorphism X LxX is a G isomorphism when G fixes x .

3. Transversality

If X is an algebraic scheme and z € X is a regﬁlar rational point,

andl Z, W are closed subschemes of X passing through x , such that

dim_ X = diz=_Z + dimx W , then Z and ¥ are said to be transversal at =«

! o
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if 2 and ¥ are regular at 2z and Tx(X) = Zk(Z) C)T&(W) [EGAIV,

17.13.8].

LEMMA 1. Let ¢ : X > Y be a morphism of algebraic schemes. Let
x € X be a rationcl point, and assume that X and Y are regular at =
and "y = ¢(x) respectively. Let Z, F be subschemes of X such that

dimx X = dimx Z + dim:’c W , which meet transversally at =x . Let

2" = ¢(2) , W' = ¢(¥) be the images of W and Z , assumed to be closed
subschemes of Y , and assume that dimy Y = dimy Z' + dimy W' and 2' and
W' meet transversally at y . Let ¢y Z~> 17" and ¢yt W W' be the
restrictions of ¢ . If o, and ¢, are étale at x then ¢ 1is étale at
xz .

Proof. Let 0 be the local ring at a2 with the mx—adic

filtration. Let bX . be the completion, and let Gr(OX ) = C)m;/m:+1 be
o ? r

the associatad graded ring. Since & 1s a regular point, Gr(OX m) is the

k]
polynomial ring on the tangent space Tx(X) . Because x 1is rational, ¢
is 8tale at x iff @_ : 0 -0 is an isomorphism [EGAIV, 17.6.3].

x Y,y X,x

By [Atiyah-Macdonald, p. 122] this is so iff Gr : Gr(OY y] + 6r(0
3

Px ,:z:) X ,:xr)

is an isomorphism.

Since T(X) = T(2) @ T (W) , Gr(_OX,x) = Gr(oz,x] ®, Gv(OW’x) and

similarly for Gr(OY u] , SO Gr(wX x) = Gr(wz x] @% Gr(ww x] . But it
k2, ) 3 ]

follows from the assumptions that Gr(@7 T] and Gr(ww T] are

il

isomorphisms. #

4. "Etale slices

Let G be a reductive group, acting on the right on an affine
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algebraic scheme X , let T Dbe a closed orbit in X , and let 2 € T be

a rational point. Let Sx be a Gx stable subscheme of X passing
through &« such that dimw(X) = dimm(Sx) + dimx(T) .  The embedding Sx > X

induces a G -equivariant morphism o : Sx *o G X . Sx is said to be a

slice at « if ¢ and ¢/G are étale and the square

S, % © —_ X
'G =
(s, *G:r: 6)/G =5,/6G, —~7e X6

is cartesian. If a slice Sw exists, then in a neighbourhood (in the etale

sense) of T , X looks like the induced bundle 5. *q G .
x

PROPOSITION 1. Let G be a reductive group scheme acting on a smooth
affine scheme X . Let T be a closed separable orbit, x € T a rational

point, and let V_ be « G. stable smooth subscheme of X passing through

s

x such that dim (X) = dimx(T) + dimx(V&) . Then V. contains an open
subscheme Sx which i8 a slice at x 1iff v, i8 transversal to T at z .

Proof. Let Vé be the copy of V& in Vé *, G , let x' be the

G
x

point in V; corresponding to x € Vx , and let T' be the closed orbit

through ' in Vx *o G . Let V¢ : Vi *n G > X be the induced map. By
« x

definition ¢ maps Vé isomorphically onto Vi ,and ¥ maps T'

iscmorphically onto T because x' and x have the same stabiliser.

If Vi contains a slice Sx , then without loss of generality

S =V . Since ¢ = ¢ is étale at ' , T&,(w) : Tx'(Vx *Gx G) > ZQ(X)'

is an isomorzhism. But Vm' and T' are transversal at «' by Propositions




83

5.4.1 and 5.5.1, so Vé and T are transversal. Conversely, if V& and

’

T are transversal, then by Lemma 3.1, ¢ is étale at By Lemma 1.1,

Gr’ = Gx is reductive, because T is closed and separable, so Proposition

4.1.% applies. Thus Y/G is étale at the point ¢ € (Vx * G]/G = Vé/Gx

G
x

pararetrising T' . Let U be an affine open subscheme of Vé/qx

containing ¢ , such that /G is étale on U , and Y is étale on

-1, : e e R
m(U) . (Such a U exists by Proposition 3.3.1.) Let Sx = Vé xy /G u.,
x' "x
which is a G, stable open subscheme of V& . Then by Propositions 5.4.1
and 5.5.1,
-1 . .
oy = (v, %, 6) x u= (v x Uy =, 6=5_=*, G.
x Gx VYGx x Vx/Gx Qx_ x Gx

Then Sx *, G is a (G stable open sub-bundle of Vé *G G and
x x

¢ = ¥l is 2tale, as is @/G . Then by Lemma 4.2.1 the square

is cartesian. Thus Sx is a slice at x . #

If an affine algebraic group scheme (G acts linearly oh a linear scheme
V , Zhen a linear subscheme [ (which corresponds to a linear subspace
L(k) of the vector space- W(k) ) is G stable iff L(k) is G(k) stable.
V .is simple if it has no non-trivial stable linear subspaces and it is
semisimple if. it is a direct sum of simple subspaces. G 1is a linearly

reductive group scheme if every linear representation is semisimple. If

1t
o

char(k) , then G 1is linearly reductive iff G 1is reductive, while if

s iee A0
char(k) = p» then (G is linearly reductive iff G is a torus and
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[6®) - G°(7<')] is prime to p [Nagata, G.-D.Iv, §3.3.2, §3.3.6].
PROPOSITION 2. Let G be a reductive group scheme acting on an
affine algebraic scheme X , let T be a closed separable orbit, and let
x € T be a rational point.
(i) 'If X 1is linear and G acts linearly, then there is a slice at

x 1ff the tangent scheme Lx(X) is the direct sum of -Lx(T) and a G,
stable complementary linecr subscheme. This happens iff
. my Q& ¥ kA m
0T (T) & k> T (X)Q k>T (D/T(T)Q k>0
has a G;(E) equivariant splitting defined over k .

(i2) - If X can be equivariantly embedded in an affine algebraic G
scheme Y which has o slice at =z , thenm X has a slice at x .

(i11) If G 1is linearly reductive then X has a slice at =x .

Proof. (¢} Since X is smooth, there is a slice at x Aiff there is

a transversal at x . If there is a smooth transversal Sx then

- m L (. ] . s
Lx(X) Lx(‘) @ x(sx) . Conversely if Lx(X) splits, let W be a Gx

stable complement of L () . It was shown in §2 that there is a G

"o

equivariant isomorphism Lx(X) -+ X sending C+> x . The image of W

under this isomorghism is a transversal at «x .
(i2) Let o : Sx *n G+Y be aslicein Y at x , and let
x

Sé =S XY X , which is a Gx stable subscheme of X , and consider the




¢ N
Sx *G G > Y
x
]
' o ? -

S:C *G > 4 l X

) |
G o/C P

S’ >
ux/Gx > X/G

e'/G

I claim that 5!

! is a slice in X . I must show that ¢' and ¢'/G are
étale, and that the front face of the cube is cartesian.
First of all

S:;*G G:(Sxyx) *5 G:(S*
x x x

by Proposition 5.4.1, so the top square is cartesian and hence ¢' is

étale. Thus

! g = X > = =
s! *Gx X%y (sx *Gx G) = X Xy (v %916 Sx/Gx) X %416 5,06, -
So
1 - r -
she_ = (s] *Gx 6) /¢ = x/6 %, /6 52/

(because ¢/G 1is flat), and the bottom square is cartesian, making ¢'/G
étale.
Finally

(x/6 = s'/G_ ,

! - % =
Sx *g (=4 Sx/Gx X xX/G x T

G Y/G

5/G) =X
r X
X

X
X/G Y/G

so the front square is cartesian.
{111, Sinze k[G] acts rationally on k[X] , there is awo equivariant
embedding of X in a linear G scheme Y . (The proof is the same as in

[Borel].) By (Z%Z) it is sufficient to assume X linear. Then the result

follows from (1). #
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'5. An example

This is an example of an action where a slice fails to exist. Let Kk
be a field of characteristic 2 which may be taken to be algebraically
closed, and I will use the language of varieties rather than schemes. Let

P2 be the vector space of polynomials of degree two in two variables X, Y .

P2 is a vector space of dimension three. As a basis, take the polynomials

X2, XY, Y2 . Let SL(2, k) act on P, in the usual way, that is by the

second symmetric power of the canonical representation on the two
dimensional space spanned by X, Y . If [i g} € SL(2, k) then the action

on P, is given by the matrix

2

2 2
a C ac
b2 d° bd
o 1|

. . 2 2., .
The two dimensionzl subspace spanned by X7, Y is stable but it has no

stable complement, for it is easy to see that the only line stable under the

subgroup {[g t} HE A k} is the line spanned by X2 » and this is not

S

I

stable under the whole of SL(2, k) .

Let V be the dual space to P2 , with a basis a, B, Y dual to

X°, ¥°, XY . Then 3L(2, k) acts on V , leaving stable the line through
Y but stabilising no complementary hyperplane. By Haboush's theorem there
is a homogeneous invariant ¢ which does not vanish on this line. In fact,

2 2 . ’ . . .
it is easy to see that ¢ = X *Y - (XY)+(XY¥) will do, identifying P2

with V* . ¢ cuts out an SL(2, k) stable cone in V .

Let X = V& = {x € V : ¢(x) # 0} be the affine open subvariety defined
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by ¢ . Let Tl be the one dimensional torus and let G = SL(2, k) x Tl .
SL(2, k) acts on X by the restriction of the action on V , and Tl acts
by scalar multiplication. Together these give an action of G on X . Let

L be the line through Yy . Then L is a closed G orbit in X . The
orbit map is [[g g], t]'—+ t*y , which is separable, so L is a separable
N I J

orbit. -The stabiliser of Yy 1is SL(2, k) and the tangent space at Yy is
isomorphic to V with the same SL(2, k) action that we started with.
Since there exists no infinitesiﬁal transversal at Yy there exists no
transQersal, and hence there is no slice at vy .

If we take the same space X and the group G = GL(2, k) with the

obvious action then, the pidture is similar except that the closed orbit [

is not separable. [The orbit map is [2 ZIE_* (ad—bc)Q-Y'.)

6. Some corollaries

CORQOLLARY 1. Let G be a reductive group, acting on an affine
algebraic scheme X . Assume that X(k) s dense in X . Then

T : X+ X/G is an étale torseur iff G, i8 trivial for all x € X(k) .~

Proof. If S is a slice at x € X(k) then Sx *e G+ X is an
Y

étale trivialisation of m at x .  #

COROLLARY 2. Let G be a reductive group acting on an affine
algebraic scheme X . Assume that X contains a single closed pseudo-orbit
T , and that T is a closed separable orbit. Let o2 € T be rational.

Assume that G, i8 linearly reductive. Then

(1) X 1s isomorphic to an induced bundle V *. G for some G,
x

acheme V ;
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(it} <if X <is smooth then V may be assumed linear;
(iit) i1f X 1is smooth, and T consists of a single point then
X is linear and G acts linearly.

Proof. (Z) Let 5, be a slice at « , and consider

Sp*¢ O X

T
Sx/G.'L' WX/G.

X/G contains just one closed point, which is Pational_because it lies under

x . Since X/G 1is a Jacobson scheme X/G = Spec(k) . Since Sx/Gx is
étale over the base field k ,' Sx/Gx is a union of closed, separable
points. Clearly Sx/qx can be assumed connected and it contains a rational
point so Sx/Gm = Spec(k) .  Thus ¢/G is an isomorphism. Since the square
is cartesiaﬂ, ¢ 1is an isomorphism and (%) is proved with V = Sx .

(i) Let V ©be as in (7). It can be assumed that V is a smooth -Gx

stable subscheme a2mbedded in a linear scheme Y and that the only closed

G, pseudo-orbit in ¥ is the rational fixed point x . It is enough to

show that some opsn neighbourhood U < V containing « is isomorphic to a

linear scheme, for such a neighbourhood will also be a slice.

Identify Y and the tangent scheme Lx(Y) . Then Lx(V) is identified
with a Gx stable linear subscheme Z of Y . Since Gx is linearly
reductive, there is a Gx' equivariant projection Y+ Z . Let ¢ : V -+ Z

pe tne restriction of this projeciion. ¢ is Gm equivariant, and maps

Lx(V) isomorphically onto LO(Z) . Since V and Z are smooth, Y is

étale at x [EGAIV, §17.11]. By Proposition 4.1.1 and Proposition 4.2.1

there is &  stable affine open subscheme U C V containing x such that
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U/G, is an affine open subscheme of V/G , wlu is etale, w/GxIU/Gx is
étale, and Z = U UG Z/Gx . Then by the same argument as in (%),
lexlu/Gx is ar isomorphism so wlu is an isomorphism. Then U< V is

the required subscheme.

(i22) Thiz follows from (Z) and (i), since Gx = ¢ and

v *G G=V.

Stz

COROLLARY 3. Assume that the base field k 1is algebraically closed.
Let G be a reductive group acting on an affine algebraic scheme X-. Let
T bea chsed separable orbit and let x € T be rational. If there is a
slice at x , then for all rational points y <in a neighbourhood of x ,

Gy 18 conjugate under G(k) to a subgroup of G .

Proof. Let
S *a ¢ 42— x
x
J’ . Y
5p/Cp  —o7m X/G
be a slice at x . Let U = im ¢ , which is an open subscheme of X , and
let y be a rational point in U . Let y' be a closed point of Sx *o G
x

lying over y . Let V be the G fiber of X containing y , and let V

lie over v € X/G , and let V' be the Gr fiber of Sx *n G containing
’ x

' '3 e ' . !~ . ;
y' and let V' 1lie over v' €S /G, Then V V'@%(y) k(y") | But
§j is rational and k is algebraically closad so x(y) = &kly') = k . Thus
V'=>2V , and Gy, = Gy , and Gy' is conjugate to a subgroup of Qx

because (S:r‘ * G] /G.'z: o G/G:L_ > T which is an orbit. #

G
z
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CHAPTER 7

1. Semisimple group schemes

An affine algebraic group scheme G 1is said to be semisimple if G @® kK
is reduced, and the underlying Serre variety is a semisimple algebraic group
in the sense of [Borel]. Equivalently, G is semisimple if it is
geomatrically reduced, and @(k) is a semisimple algebraic group. A torus
T in G 1is a connected abelian subgroup scheme such that T @® k is
diagonalisable over k . The torus T is split if it is diagonalisable
over k , and the semisimple group G is split if it contains a maximal
torus which splits. If G is semisimple, then there is a finite, separable

extension fisld X of k such that G @% X is split, so over an

algebraically closed field every semisimple group splits.

If G is an affine, algebraic group scheme, let g = Le(G) be the
tangent scheme at e , and let g = ZE(G) = g(k) be the tangent space at

e . g 1is a Lie algebra over k , and ¢ is a "Lie algebra scheme" [G.-D.II,
§u.u4]1. If G is semisimple, let A(G) be the Dynkin diagram of the semi-
simple Lie algebra g(%X) . Let p be the characteristic of the field k .

If A(G) 1is connected, then the characteristic p 1is "good" for G

provided that:

Type of A(G) Good p
An p arbitrary
Bn p £ 2
c p+2

n

Dn p#2

02 p#2,3
F, p#2,3

E'6 p#2,3
E7 p# 2,3
E8 p#2,3,5
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If A(G) is not connected, p is good fof G if p 1is good for each
component of A(G) [Steinberg 1970].

If ¢ is a split semisimple group scheme, let C(G) be the center of
G(k) (I will call C(G) the geometric center of G ],'and let 7(G) be
the fundamental group of ¢ . TW(G) is the quotient of the character group
of a maximal split torus T by the root subgroup. ﬂ(G) and C(G) are
finite abelian groups. G 1is simply connected if w(G) =1 , and G 1is of
adjoint type if C(G) = 1 .

Split semisimple groups are classified by their Dynkin diagrams and
fundamental groups. For each Dynkin diagram A , there is a finite number
of split groups G over X _with A(G) = A . Of these, one is simply

connected (call it Gl ], and one is of adjoint type (call it Go ].
N(Gl) = C(GO) =1, and H(GO) EEC(Gl) . The other possible fundamental
groups for this Jynkin diagram are the subgroups of n(GO] . If k is

algebraically closed, then all the groups with Dynkin diagram A may be

realised as quotients of N by finite central subgroups, but this is not

true over an arbitrary field, If G is simply connected, then it is a
direct product of simple group schemes (that is, of semisimple group schemes

with connected Dvnkin diagrams). If (G is simple and of type A4 m(G)

Z L]

can be any subgroup of :Zl+l » while if G 1is simple of other types, w(G)

t . e of Z y/4 e i
must be one of L‘l’ 4_2,213, ZL} , or 22 XZQ . See [Tits] for the

0

lassification of semisimple group schemes over k , and see [Steinberg 1967]
for the existence cof split groups.

If G 1is split semisimple, and . Gl, G, are the simply connected and

0
adjoint group schemes of the same type, then there exist unique central
isogenies (that is, surjective equivariant morphisms 7 , such that

ker w(k) is finite and central)




92

. 0
l> G ——2+ G

0 °

G
1
These isogenies are separable (that is, étale) iff char(k) is relatively

prime to |w(G)| and |C(G)| . If A(G) has no component of type A and

char(k) 1is good for G , then m and ™, are separable [Tits].

2. The unipotent and nilpotent varieties

Let G be a connactad semisimple group scheme over k , let g be the
Lie algebra scheme of (G , and let (G act on itself by conjugation, and on
g by the adjoint representation [G.-D.II, $4.4.17. I will write the

quotient of these actions LI G- G/G and ﬂg : g+9g/G . Let

V(G) = n&l([e]) and ¥(g) = ﬂal([OJ) , where [e] = nG(e) and [0] = Hg(O)

.V(G) and V(g) are called respectively the unipotent variety of G , and
the nilpotent variet: of g . If G 1is simply connected, then G/G is an

(!
v
-l
it}
|_

affine space 4 nberg 1970], and in good characteristic ¢/G is an

affine space [Demazure 1973]. So in good characteristic, if G is simply

connected, then V(G) zand V(g) are complete intersectioné, and are hence
geometrically normal. It is known [Springer] that in good characteristic,

if G 1is simply connected and coﬁnected then V(G) 1is isomorphic to V(g)
as G spaces. I will give a proof of this fact for split groups.

LEMMA 1. Let G., G, be connected semisimple group schemes and let

1’ 72

¢ : GL > G, be a separable isogeny. Gl acts on V(Gl) by conjugation and

4 - - « e . . - . - ; .
ol /[gl] vy tne adjoini action, and Gl a~ts on V(UQ), V(gQ) via

o . As Gl spaces, V(Gl] = V(GQ) and V(gl) = V(gz] .

Proof. For the given actions, ¢ 1is an equivariant etale morphism

which satis7iss the conditions of Proposition h.l.1 at e ¢ Gl . So ¢/G

is étale at ﬁl(e) and the following square is, after restricting to a
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neighbourhood of ﬂl(e) , cartesian.

Gl —_ 62
™ s
Gl/Gl _(p7-é_]:+ G2/Gl .

Thus the fiber V(Gl) = n;l([e]) is isomorphic, as G space, to the

fiber ﬂ;l([e]) . But o surjective, so GQ/GlGE 62/6‘2 , and ™, is the

quotient map for the action of 02 on itself by conjugation. Thus

)

-1 ~
m, (Fe]) = v(6,

T

The proof that -(g ) o V[gQ) is similar. #

-

LEMMA 2. Let A bz a simple Dynkin diagram, not of type A , and

Q

assumne that <char(k) is good for A . There exists a split group G , of
type A, over k , and a faithful representation p : G > GL(V) of G,
such that Q@ has ¢ linecr, G stable complement m in gl(V) . For such
a group G there exisis a morphism ¢ : G > q , which is équivariant, which
gsends e to 0 , and which is étale at e .

Proof. The following proof from [Richardson 1967] works over an
arbitrary field.

First consider the groups of type BZ . Let G be the subgroup scheme

of 3L(27+1) cut out by the polynomial equations det(X) = 1 and

tXSX = S , wnere S 1is the matrix
1 0 0
0o O IZ
0 I 0

By [%.-D.II, 5.2,7] G is smooth, so G @® k is reduced, and G® k is

cut out by thz same equations over X . Thus G ®k = S0(2L+1, k) , and G
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is a "k-form" of SO(2lL+1, k) . It is easily seen that G is split
[Humphreys 1970, 3u4.6].

By the usual calculation.with the defining polynomials, the Lie algebra

g = 9(k) 1is defined by the equations SX + ®%5 = 0 in gl(2Zl+1, k) . Let

m be the linear subscheme of ¢1(2l+1) whose rational points are defined

by X em(k) iff SX - XS =0 . Clearly m is a complementary linear

subscheme to ¢ in g1(27+1) . It must be shown that m is ¢ stable.

But m(k) = {x € g1(2l+1, k) : sx-Yxs = 0} , and clearly this is

G(R) = so(21+1, k) stable.

| Since gl(2i+l) = g@®m , there is a G-equivariant projectioﬁ

¥ : gl(2l+1) + g with kernel m . Let ¢ : G > g be the restriction of
to G (which is embeddsd as a closed subscheme of g1(2l+1) ). Clearly

Lo(w) maps LO(G) = g isomorphically onto Lo(g) =g . Since e and O

are both smooth raticmnal poiﬁts, ¢ is étale at e [EGAIV, 17.11.2].

The proof Zor th= other classical groups (types C, D ) is similar.

For the excapiional types, let G be a split group of adjoint type.
By conétruction, G is a smooth closed subscheme of .GL(g) [Steinberg 1967,
Chapter-5]. The inclusion map p is the adjoint representation of G .
The trace form (X, ¥) = tr(XY) on End(g) is nondegenerate and restricts
to give the Killing form en g . Since the characteristic is good, the
discriminant of the Killing form is nonzero and the form is nondegenerate on

. 1
g - Thus g@l(g) = End(g) = g@g . Let m be the linear subscheme such

1 .
that m(k) = g . The rest of the proof is as for the classical case. #
PROPOSITION 1. Let G be a comnected semisimple group scheme over
k , with Dynkin diagram A . Assume that char(k) s good for G , and

that either L has no components of type A , or that G <is simply

connacted. Then V(G) tis equivariantly isomorphic to V(g) .
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Proof. If A has no component of type A , then there is a separable

isogony ¢ : Gl + G , where G1 is the simply connected group of type A .

By Lemma 1, it can be assumed that G is simply connected. Thus G 1is the

direct product of simple groups Gi ,and V(G) = T | V(Gi) ,
7
v(g) = 1] V(gi] . Thus it can be assumed that G is simple. Now consider
1 : _

separately the two following cases.

CASE 1. A 1is of type AZ . Then G 1is the subscheme of GL(Z+l)

cut out by the equation det(X) =1 . V(G) is the reduced subscheme
corresponding to the subvariety of unipotent matrices in SL(Z+l, k) , and
V(g) 1is the reduced subscheme corresponding to the nilpofent matfices in
s1(Z+1, k) . The required isomorphism V(g) -~ V(G) is given by the
morphism V(g)(k) + V(G)(k) : X+ X + 1 , which is defined over k .

CASE 2. A is not o

type A . Then Lemma 2 applies, and there is .an
equivariant morphism ¢ : G > § which is étale at e . Then ¢/G is étale

at ﬂG(e) , and, after restricting to a neighbourhood of ﬂG(e) in G/G ,

(¢l

the follewing square is cartesian.

TTGl l'ﬂ'g
6/6 -7 9/C .

Thus V(G) , the fiber of m, over wG(e) , is isomorphic to V(g) , the

fiber of ﬂg over T _(0) . #

g
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APPENDIX 1

1. Representing schemes by functors

Let k be é fixed base ring, which in our case is a field, though this
is not essentizl, and let all schemes be over k . All schémes are assumed
separated. Let Sch be the category of (separated) schemes over k , A§{
the categorv of affine schemes over k , Afg the category of commutative

k-algebras with 1 , S the category of sets. If C, D are categories

A0 ;
then C° is the opposite category to C (all arrows are reversed), and

[C, D] is the category whose objects are (covariant) functors C -+ D , and
L] S y .3

whose morphisms are natural transformations of these functors. [Co, UU _can
then be regarded as the category of contravariant functors from C to D .-
In order that this makss sense I will assume the set theoretic framewopk of
“[SGAI]. I will follow *he category theorists' convention of

writing X for ths igentity morphism of the object X when the context is

clear. Note that Agd§~ 1is isomorphic to ALg . I will regard these two

categories as identiczl.
0 .
egovy, let Y = Y, : C - [C”, S] be the embedding

_ functor definad by Y(P) = P , where P : C > S is the contravariant

functor P(Q) = HomC(Q, P) , and for u a morphismof C , Y(u) = u is
the natural transformation u(f) = w o f . Recall from [Maclane] the

YONEDA LEMMA. Y : C » [Co, S) <is a fully faithful embedding.
Proof. ‘o say that Y is a fully faithful embedding means that for
each pair P, Q@ € C ,

Y : HomC(P, @) - Hom (P, Q)

[®,s] 7~

is an isomerchism of sets., So let o : P -  be a natural transformation,




‘ 97

and let ¢ = aP(P) € Q(P) = HomC(P, Q) . If ReC and f € P(R) then

f=Pof=PEP . So
a () = ag (PP = AN (0p(P)) = AN() = £ oo = 0(f) = YIS

f_ P
— l(p
o(f) 0

s

-
=
[

]

Thus 6 is the e of a unique element o € HomC(P, ])

Now let » : ESchO, S] > [}650, S] be the restriction functor, and let

E=2pro YSch . If X € Sch I will write X for E(X)

Y
Sch [s ch” » S]

Sch

A

E . r

Alf m" [AMO, S] = [ALg, S]

PROPOSITION 1. = <s a fully faithful embedding.

Proof. I will write Y for Yoo, - If X € Sch , then it is easy to

see that Y(X) = X is & sheaf for the Zariski topology on Sch . That is,

P.
if 7 8Sch and T = {T. —*, T} is a family of open embeddings which cover

T , then the saguare

‘is cartesian, where a, B, Y, § are the obvious restriction maps. TFor

example « = T_T'K(@i) o A, where A : X(T) - TTx(r) is the diagonal map.
7 i

If X, Y € Sch , and a : X > Y is a natural transformation, then
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there is a unique natural transformation o' : X > Y . It is defined as

q) .
follows. For T € Sch let T = {22 —= T} be a Zariski covering by
affine open subsets. Since T is separated, Tij = Ti n Tj are also

affine [EGAI, §5.3.6]. Then in the diagram below, the vertical lines are

exact, and tne lower square commutes because of the naturality of a , so

[ —- ',"_. ' .
there exists a unique QT,F extending aT.’ aT..
7 1J
al
P 0y S LN S > Y(T)

(7, - 1T x(T..)
' T,J "id

If A= {Si > 7} 1is another affine Zariski covering then by comparing these

coverings with the covering {Si n Tj + T} , it can be assumed that A is a

refinement of T . Then by the uniqueness of the extension
a! = o = ! , is independent of the covering used. The néturality of
T T,T Ty A

aé follows by a similar uniqueness argument.

But Y is.fully faithful, so there exists a unique morphism ¢ ; X-»>Y
such that Y(¢) = o’ and hence a unique ¢ such that E(o) = a . #

PROPOSITION 2. E preserves products. More precisely, if S 1is a
cartesian square in Sch- then S = Y(S) <s a cartesian square in [Alg, S]

and for any -R € Alg , S(R) 1is a cartesian square of sets.

Proof. Simple diagram chasing.. #
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2. Formal properties of faithfully flat base change

Let A Dbe an abelian category, or what is the same thing by the
embedding theorem, a category of modules over a ring k .

LEMMA 1. Consider the following diagram in A :

Then this is a commuting, co-cartesian square, iff the following sequence is
exact:

R——P — N >0
e ® 9 m

where ¢(r) = (B(r), -a(»)) and V(p, q) = &(p) + Y(q) .

Proof.- Im ¢ Cker ¢ iff for all » € R,

Woglr) =8o0pBR(r)-yoalr) =0 .

That is, iff the sgquare commutes. Y 1is surjective and im ¢ = ker Y 1iff
is the co-kernsl of ¢ . That is, if the following condition holds: if
0 : P®Q+X is a morphism such that 6 o ¢ = 0 , then 6 Ifaétors
uniquely through ¥ ., 3But this is precisely the condition that the square
is co-cartesian. F

COROLLARY 1. In the category Alg , co-cartesian squares are
pfeserved under faithfully flat ascent and descent. In the dual category of
affine schemes cartesian squares are preserved under faithfully flat ascent
and 5escent.

COROLLARY 2. Consider the commuting square of affine schemes:

x By
Z—>W
8

If this sgizre 18 cartesian, and either s or q 1is scheme theoretically
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dominant, then the square is also co-cartesian.

Proof. Passing to the dual category, assume that the square in Lemma 1
is the square of comorphisms. Then either o or 8 ;s injective so ¢ is
injective. Thus ¢ is the kernel of ¢ and by the dual of Lemma 1 the

square of comorphisms is cartesian. it
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" APPENDIX 2

All schemes in this appendix are assumed affine and algebraic over a
field k . General references for this material are [EGA], [Dieudonné

196u], [G.-D.], [Hartshornel.

1. Dimension

If X 1is a scheme, then dim(X) is the maximum length of ascending
chains of irreducible closed subsets in the underlying topological space
|x] . If x € X, then dimx(X) is the minimal dimension of an open
neighbourhood of « .

If A is a ring, let X.Dim(4) be the Krull dimension of A , and if
K 1is an extension field of Xk , let Trans.Deg.(X) be the transcendence
degree of X over Xk . If X 1is a scheme, then dim(X) = K.Dim(k[X]) ,
and if & € X and X. &are the irreducible components of X passing
through X , then

dimx(X)_= S:p dim(Xi) = K.Dim(Ox) + Trans.Deg. {k(x)) .

If K is an extension field of k , then dim(X) = dim(X'@% K) . If
x € X ,and y € X @k K is a point lying over ax , then
dimx(X) = dimu(X @k K) . If f: X->Y is a morphism, 2 € X and

y = f(z) , then

dlmx(X) < dlmy(Y) + dlmx(Xy]

Equality holds if f is flat at «x .

2. Flatness and generic flatness

Let 7 : ¥ > Y be a morphis flat if for every x € X ,

) U |Ve,.:‘l.

XN (4
Q\)‘ sc‘ENcE g
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y = flx) , 0 is a flat 0 module. f is faithfully flat if f is
x’X y’-Y

flat and surjective. f is (faithfully) flat iff k{Y¥] is a (faithfully)

flat k[X] module.

If f is flat, and Z 1is a constructible subset of Y , then

f’l(é) = frl(Z) . If f 1is flat, then f is an opeg map. If f is
faithfully flat, then the topology on Y is the quotient of the topology
on X by the egquivalence relation defined on X by f .

If f:X+Y is a dominant morphism and Y is reduced, then there
exists a dense opeﬁ set US Y such that f 1is flat over U , and the set

of points of X where f 1is flat is open.

3. Ascent and descent

-+ Consider the cartesian square

Then fZ is obtained from f by ascent by the morphism g , and f is

obtained by descent by g . The process of ascent and descent is also
called base change. Let P be a property of morphisms. P 1is said to be

stable under ascent if P(f) = P(fz) , and P is stable under descent if
P[fé) = P(f) . If these implications hold only if g is flat, faithfully

flat, atec, then 72 is stable under flat ascent, faithfully flat ascent, etc.

A similar language is used for properties of the schemes X and XZ .

The following properties of morphisms are stable under ascent:

1. Surjective,
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2. (Open, closed) embedding,

3. Finite,

4. Algebraic,

5. Affine,

6. Flat,

7. Smooth,

8. Etale.

The following property is preserved under flat ascent. (This only
works for noetherian schemes.)

9. Dominant.

All the above properties are stable under faithfully flat descent, as
are the following:

10. Radiczi,

11, Open,

12, Closed.

If a property P 1is not stable under ascent, then a scheme X or
morphism f has the stronger property "universally P " if, under all base

changes g : Z2>Y , XZ or fé has property P . Examples are universally

open, universzlly closed, and universally injective (which is the same
thing as radical).
If X is a scheme over k , and f a morphism of schemes over k ,

then X (or f ), has the property 'geometrically P " if X 8% K (or

f @% K ), has the property P for all extension fields K of k .

Tuams1-3 are goamnirically veduced, geomeirically novrnzl, gecmairinally

connected, and geometrically regular. To establish these propérties, it is
sufficient to check property P for K an algebraic closure of k . X is

geometrically reduced iff it is reduced and the local fields at the generic

points of X are separable,
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If X is a scheme and K is a field, then elements of X(X) may be
called "geometric points" of X (with coordinates in K ). If f : X > Y
is a morphism, and y : Spec(X) > Y 1is a geometric point of Y , then the

scheme Xy =X Xy Spec(K) is called the geometric fiber over y . It is a
scheme over X . There is a natural morphism Xy > X-, but this will not in

general be an embedding. To say that the geometric fibers of f have
property P means the same as to say that the ordinary fibers of f are

geometrically P .

4, Smooth and é€tale morphisms

A scheme X 1is regular if the local rings at all points are regular.
Since algebraic schemes zare "excellent” [EGAIV], X is regular if the local
rings at closed points ars regular.

A morphism f : X - Y is smooth at x € X if f is flat at x , and

the geometric fiber X @% k(y) , (y = f(m)) , is regular. f is étale at

x if it is smooth and the fiber dimension is zero at x* . If f is étale
at a point x € X , then it is étale in a neighbourhood of x . Basic
examples of étale mcrphisms are open embeddings aqd finite separable field
extensions. |

A scheme X is étale if the canonical morphism X - Spec(k) is
étale. k is étale iff X is the disjoint.union of a finite numbér of
schemes of the type Spec(K) , where K 1is a finite separable field
extenzion of k .

If f:X->Y is a morphism, x € X and f(x) ~y , and x is a

A

rational point, then f is é?ale at x 1iff ?é : oy,Y > ox,X is an

isomorphism, where the completion is by the my—adic and mx-adic

filtrations.




LEMMA. Let f : X~ Y be a morphism. The following are equivalent:
(i) f is étale;
(i2) f <s flat and unramified;
(111) | f is flat, the fiber dimension is zero, the fibers of f
over the closed points of Y are reduced, and for all
closed points x € X , k(x) <is separablé over k(y)
(v = f=) . |
If Y 4is normal, these are equivalent to
(tv) f 1is flat, and for all x € X the comorphism

ok . R » . . . =
f3 Oy’y > Om,X is injective (y = flzx)) .

Here [ <is unramified at x € X means that k(x) is a finite

separable extension of k(y) (y = flx)) , and my()x’x =m, .

Proof. The equivalence of (%) and (7Z) 1is standard, and of (%) and
(iv) is in [EGAIV, §18.10.11. (%) = (iii) is clear.’
To show the converse, it is enough to show that f 1is &étale at the

?

closed points of X . Let y € Y Dbe a closed point. It must be shown that

Xy is geometrically regular of dimension zero, that is, that X is étale
over k(y) . Xy is algebraic and zero dimensional, so it is artinian.

That is, it is a disjoint union of local artinian schemes. But a reduced

local artinian ring is a field, so the points of Xy are all closed. By
assumption the local fields of Xy are separable over k(y) , and they are

clearly finite extensions of k(y) , so Xy is etale over k(y) . #

5. Zariski's main theorem

Let f : X > Y be a morphism of affine algebraic schemes, and assume

that f has finite discrete fibers. For simplicity, assume that X and Y
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are normal. Then exists a unique factorisation of f ,
7~

~

where Y is a normal affine algebraic scheme, % is a dominant open
embedding, and } is finite. The uniqueness of such a factorisation is
clear, for . k[¥] must be the integral closure of k[Y] in k[X] . For
existence, see the proof of Remark 18.12.14 in [EGAIV]. This factorisation
will be called the Zariski factorisation of f .

Assume thet a smooth affine group scheme & acts oﬁ X, Y , and that
f is equivariant. Then there is an action of G on Y for which T, ?
are equivariant.

C X X _E§€+ G x Y _£§E+ G x Y

l I

X — Y

?\
gl o

To see this, pass to the dual category.
k[G] ® k[X] > k[6] ® K[¥] + K[G] ® K[Y]
N A
k(X1 o SK[¥]  «  K[Y]
It will be enough to show that there exists a homomorphism o completing
the diagram. By base change, G X ¢ 1is a dominant open embedding, and
G % ? is finite., & X } is normal because G 1is smooth [EGAIV, §6.5.4]..

Let g € k[Y1 . Clearly 8(g) is integral over k[G] ® k[Y] , so

B(g) € k[G]1® k[Y] , so B factorises uniquely through k[G] ® k[¥] . This

factorisation defines « .
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