W Durham
University

AR

Durham E-Theses

Vibration of shells with application to hollow blading

Ucmaklioglu, Mehmet

How to cite:

Ucmaklioglu, Mehmet (1978) Vibration of shells with application to hollow blading, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8400/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/8400/
 http://etheses.dur.ac.uk/8400/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

VIBRATION OF SHELLS
WITH APPLICATION TO

HOLLOW BLADING

by

MEHMET UGMAKLIOGLU, B,Sc.

A thesis submitted for the degree of
Doctor of Philosophy to the
Department of Engineering Science,

University of Durhanm.

September 1978

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

-

. sl
apnt AR L
“\J an [;[ rE ._.\

13 DEC1H73

dc.TIoN
LigZARY




SEVGILI ANNEME VE BABAMA

(Dedicated to my Parents)



ACKNOWLEDGEMENTS

I am extremely grateful to my supervisor, Dr. P.A.T.Gill

for his guidance and assistance throughout the work.

I would like to thank too Dr. J.M. Wilson, and
Dr. D.L. Collins for their help and suggestions about the

numerical analysis.

Thanks are also due to the Technicians in the Department
of Engineering Sclence, to the member of staff of the

Computer Unit and to the staff of the Science Site Library.

Finally, I wish to express my thanks to the Union Carbide

for supplying the financial support for this work.



ABSTRACT

The finite element method was applied to the natural
frequency analysis of arbitrary shell structures. A computer
program based on the isoparametric thick-shell element was

developed.

The program was tested against several plate and shell
problems. The results were compared with the experimental
and numerical results reported by other researchers with

excellent agreement in most cases and fair agreement in others.

An oval cross-~section hollow blade was analysed in
detail both numerically and experimentally. The experimental
model could not match the design geometry due to manufacturing
difficulties. The numerical analysis was first performed on
the nominal geometry which lead to a regular set of modes.
Later, the numerical model was corrected to match the experi-
mental model, and satisfactory agreement was obtained between

the results for the lower modes of vibration.

Other topics which could be studied as an extension of
this work were pointed out, and some excercises were performed
on them without given any experimental verification. Finally
a hollow turbine blade was analysed and very good results were

obtained.
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CHAPTER 1
1. LNTRODUCTION

As a result of the technological developments in civil,
mechanical and aeromautical engineering, shell structureas
gained a popularity in the 20th century. Since many of such
structures are subject to dynamic loading, it is important to

have some indication of their vibrational characteristics.

The number of exact solutions which satisfy the governing
equations and the boundary conditiomns of shell structures are
very limited. Hence, engineers are forced to use some approxi-
mate numerical methods for their analysis. Fortunately, the
present state of high speed, large storage computers provide
the necessary facilities for the development of efficient

numerical methods.

In the literature, different methods have been employed for
the analysis of shell structures. Warburton outlines Rayleigh-
Ritz, finite element, finite difference and numerical integration
methods in his review of "Dynamics of Shells" (55). Petyt (48)
analysed a singly curved rectangular plate using Rayleigh-Ritz,
extended Rayleigh «Ritz, finite element, and Kantorovich methods.
Amongst the others, finite element method occupies an outstanding
position. The superiority of the method comes from its applicabi-
lity to arbitrary shapes, different loading and support conditions

and many other aspects of practical design.

In general, considerable work has been done on the vibrational
analysis of axisymmetric shells (37), and some on the circular
cylindrical shell segments. The number of publications available
for more complicated shapes are very few. Kurt and Boyd (38) for

instance, studied a non-circular cylindrical shell segment by
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using power series method. Applicability of the method is
restricted by the curvature being expressed as a power series,
and with the boundary conditions being simply supported at two
opposite edges. McDaniel and Logan (41) studied the panels with
exponential curvature using transfer matrix method. Srinivasan
and Bobby(52) used a matrix method to analyse the vibrations of
clamped non-circular cylindrical shell segments. Cheung and
Cheung (14) applied the finite strip method to the analysis of
non=-circular cylindrical panels, In all these methods either
the geometry or the boundary conditions impose some restrictions

on their range of application.

Early application of the finite element method to the
shell structures was limited to the axisymmetric shells. Finite
element analysis of non-axisymmetric shells can be reviewed
under three groups. Namely, flat plate elements, curved elements,

and three dimensional elements.

Flat plate elements (15,21,58) have the common disadvantage
of uncoupled representation of membrane and bending behaviours.
Also, the representation of curved geometry using flat elements
requires a fine mesh in order to achieve a reasonable degree of

accuracy.

Curved shell elements, based on the assumptions of different
thin-ghell theories, were developed as an attempt to overcome the
disadvantages of flat plate elements. Generally, it is possible
to divide them into two sub-groups as cylindrical shell elements
(12,43), and doubly curved shallow shells (17,39,53). Many of
these elements, together with some flat ones are reviewed and com-

pared in references (16,18,25,26).



Three dimensional brick elements were first modified and
used for the analyslis of thick-shell structures by Ahmad and
others (1,3,4,58). The formulation of thick shell element
was more attractive than the conventional shell theories
because of its conceptual simplicity. Also, it was capable
of reproducing shear deformations in the element, and repre-
senting any arbitrary geometry. Further modifications on the
element (61,47) made it applicable to thin shell structures
as well as thick shells. After these modificatioms it became
one of the moast accurate and popular element for the analyais

of shells.

Most of the shell elements were initially developed for
static problems. Dynamic applications of these elements are
not as common as the static applications in literature.
Specifically for the vibrational analysis of non-axisymmetric

shells, there is very little published literature.

A valuable experimental and numerical contribution to
the vibrational analysis of shells was done by Olson and
Lindberg. They used a cylindrical shell element (43,44) to
analyse a curved fan blade. Later, Lindberg et al. (39,45)
solved the same problem using a doubly curved triangular
element. Their fan blade became a popular test example for

many others (2,9,11,30,40,42).

Neale developed a hybrid cylindrical shell element (42)
and tested it against several problems available in the
literature. His element was non-conforming. He reported that

for coarse meshes it 1s superior to many others.



Martins and Oven (40) used the semiloof element for the
analysis of thin arbitrary shells. The element gave very good
results for several problems they studied. Unfortumnately, the
element can not accommodate lateral shear, and is applicable

only to thin shell situations.

Ahmad's shell element hus been applied to thick shell
vibration problems by its original developers (2). The element
gave good results in application to thick shell vibration
problems, but they pointed out that it was overstiff for the

representation of thin shells.

Hofmeister and Evensen (30) have used both the modified
and unmodified elements, and the twelve~-node cubic element to
solve several plate and shell vibration problems. They too,
reported that unmodified eight-node element was too stiff,
except for simple vibration modes, or large meshes. Both
modified eight-node element and the twelve-node element performed

very well in most of the cases.

Bossak and Zienkiewicz (9) applied the modified version.
of the element to thin shell and pretwisted beam problems. They
made a comparison between the results of the original and the
modified elements indicating the improvement achieved by reducing

the order of integration.

In the present study, a complete computer program using
eight-node quadratic and ten-node cubic-quadratic elements has
been dev;loped. The program was checked against several plate
and shell problems. The results were compared with the other

numerical and experimental results with excellent agreement.



The study continued with the analysis of an oval croass-section
shell, representing a hollow blading. Although the comparison
of the experimental and numerical results were very difficult
for some complicated modes which were hightly effected by the
imperfect geometry of the experimental model, very good
agreement was observed for simpler mode shapes. Later the
program was used on pretwisted oval and aerofoil cross-section
bladings and a hollow turbine blade. In general the results
indicate that the method used is very efficient for the

vibrational analyeis of arbitrary shell structures.



CHAPTER 2

2. THEORY AND NUMERICAL FORMULATION

In this chapter the theoretical basis to the computer
program which has been written for the numerical analysis
in this thesis is reviewed. In addition to the general
theory some points to increase the accuracy of the element,
or to reduce the computational cost of the program are also

mentioned.

Explanations on the program are given in Appendix 1.
Appendix 2 contains a detailed explanation for the
preparation of input data. A complete listing of the

program is included in Appendix 5.



2.1 Iheory
2.1.1. 1 uct

The solution of any structural problem by finite element

displacement method follows more or less the same procedure
(58,19,10). First the continuum-is divided into a number of
Nfinite elements'', and these elements are considered to be
interconnected at a discrete number of nodes. Displacements
of these nodal points are the basic unknowns of the problem.
Then, the element characteristics such as the stiffness and
mass matrices are svaluated. Their assembly into the system

nmatrices is followed by a solution procedure.

2.7.2. Formulation
The displacement at any point within a {ypical element

"g" can be defined as:

[{1=[N] {s]e (2.1.1)

Where [N] contains the shape functions which will be discussed
in section 2.3 and {6]3 is the veotor containing the
dieplacements of the nodes of element '"e'".

Strains within the element are defined as:

(€} =[8] {8}, (2.1.2)
Where [B] can be obtained from (2.1.1) using strain-displacement
relationship.
Stresses, in the elastic range, are related to the strains:
{¢}=[D]{€} (2.1.3)
In which [D]  is the elasticity matrix which contains the

material properties.

if {.F]c is the vector of nodal forces equivalent

to the boundary stresses and the distributed loads on the



element, and {p} is the vector of distributed loads and forces
acting on a unit volume of material within the element; principle
of virtual work can be applied to equate the external and internal
work done due to a virtual nodal displacement ti{s}e. The work

done by the nodal forces is:
(d{s}e)r {F}e (2.1.4)

The internal work per unit volume done by the stresses and the

distributed forces is:

d{ey{e} - d{s} {p} (2.1.5)
or by substituting (2.1.1) and (2.1.2)
) (18] fe}- [N {5}) (2.1.6)

Now, the external and total internal work done can be egquated:

T T T
(d{83e) {F), = (@{8)) ([[B] o} IV - [N] {p} dV) 217
Substitution of equation (2.1.3), followed by the substitution

of (2.1.2) gives:

(A ([ [0) [B]4v) {8} [N [} oV caono®

In which the first term contains the element stiffness matrix:

[k] = j[ts]T (o] [B] dVv (2.1.9)

and the second term is the nodal forces

[F]: == J[N]T{f} dVv (2.1.10)

For dynamic problems {p} includes inertia and damping forces

in it

{P},—.{p]—p %{]{}_ 3 33;{1(} (2.1.11)
where {F} represents the distributed loads, ’P—aa% {f}

represents the inertia force with ( ©being the mass per unit

volume, and _.}4 _%%_{f} represents a linear viscous damping



effect, where R is a constant which characterizes the

damping mechanism.

Substituting (2.1.11) into (2.1.10) and replacing {f} with

its equivalent in (2.1. 1) gives

{r}f:(ﬁ}f+ [[N]p[N] {s}. J\/+j[N] ,‘[N] {86}.dV

(2. 1 12)
which contains the element mass matrix as:
)= IN]p [N] dV o @aa
and element damping matrix as:
[c]. =j[N]Tﬁ [N] dv (2.1.14)

Substituting (2.1.12) into (2.1.8) and assembling the element
matrices into the system matrices, the general equation for

discrete structures is obtained.

Sz

[K1{8} +[c] 2-{6} +[M] L {8} +[F]=0  (2.1.2)
Where {6} lists the nodal displacements (degrees of freedoms),
[F] contains the external forces, specified loads and initial
stresses, [K], [C], and [M] are the system stiffness, damping

and mass matrices respectively.

For the natural frequency analyses equation (2.1.15)

reduces to:

[K]

Solution to this equation may be expressed as:

(2.1.16)

1wt
{5} ={5°} e (2.1.17)
which, when substituted into (2.1.16) leads to the eigenvalue

problem

([x] -] (6.} = 0 (2.1.18)

In solution,w's will be the natural angular frequencies, and
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{5.] will contain the eigenvectors describing the mode

shapeas of vibration.

2.2, Izoparametric Shell Element
2.2.1. Introduction

As it was stated in Chapter 1, Ahmad'e isoparametric shell
element was chosen for the numerical analysis of this work.
This element differs from a three dimensional brick element
with the assumption that the normals to the midsurface remain
straight after deformation and that the strains normal to the
midsurface are negligible. It glao differs from the elements
of thin shell theory with the assumption that the normals to
the midsurface are allowed to become inclined after deformation.
This assumption permits the element to experience shear

deformations.

The two typical elements used in this analysis are shown
in figure 2.1. The element in figure 2.1 (a) is known as
8-node isoparametric shell element which assumes a parabolic
variation along the edges. The element in figure 2.1(b) is
derived by combining a parabolic and a cubic element, for a
better representation of sharp changes of curvature along one

edge.

2.2.2. Element Formulation

The formulation of the isoparametric shell element (1,3,4,
58) follows the phases given in section 2.1.2.

The geometry of each element is prescribed by top and
bottom pairs of coordinates of the nodes, and the shape

functions used. §, q, 5 are the curvilinear coordinates of the
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Figure 2.1 (a) : Isoparametric Shell Element with

Quadratic Variation

Figure 2.1 (b) : Quadratic - Cubic Shell Element
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shell element, and each varies between-1 and 1 on the respective

faces of the element. (See figure 2.1 (a)). Global cartesian
coordinates of any point of the element are related to the

curvilinear coordinates as:

4 X;
yt= ZN.‘ Yi + 2 Ni 52_ \_(3'1 (2.2.1)
z Z mid.

where N;is the shape function corresponding to node i and !ﬁi

is the thickness vector at node i.

Dimsplacements through the element is defined in terms of
the midsurface node dieplacements Uge Tiy Wi and two

rotations of the

normal to it.

vectors

i

Vii

vector about orthogonal directions

Two such directions are given by orthonormal

and

Yai

with the corresponding rotations

and o .

pi
Displacements within the element is related to the nodal

displacements as:

W

Vi +ZN|' ;.%L [!1&:‘.‘.’.1i] °<‘:

Wi Pi

[ FN; (2.2.2)

£ <&

L/si .

where ti is the magnitude of the thickness vector

The components of strains and stresses are defined in the
local cartesian coordinates x',y',z' with z' being normal to
;': constant surface. Three dimensioral strain relationship

is given as:
’ r ' 1

FE,(' .a_:%
: 2V’
.| 5
{€}= ( ¥y} = 3"’5‘_,‘ + 20 (2.2.3)
¥z %’.‘.;T. + %&‘.7
SO RE R
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The local derivatives of the local displacements

are given by

[ a2V dwt ] [3u v 2w |
ax  ax' ax d€ 2f 23§
ou' v W - 91-3'-1 du  dv  dw
33’ 33' ay aq 31 3q £}(2.2.4)
242V dw! du ¥ dw
| 977 2z’ a7 | 2 93¢ °f ]

where, 22 is the orthogonal transformation matrix between
the local and global system of coordinates, and J is the

Jacobian matrix.

Since matrix [B] can be obtained from equation (2.2.4)
and matrix‘[N] is given by the equation (2.2.2), the stiffness
and mass matrices of equation (2.1.9) and (2.1.13) can now be

evaluated.

2eDe ) tio

2.3.1. lIntroduction

As was mentiohed previously, displacements throughout the
element are defined as a function of the nodal displacements.
In the isoparametric formulatiom the same functions, namely
the shape functions, are used to describe both the geometry
and the displacements (58). Conveniently, these functions can

be chosen as polynomiails.

For the convergence of finite element analysis, there are
two criteria to be satisfied (58,19,60):
a) Continuity of the displacements between the elements
should exist.
b) Elements should be able to reproduce any required state

of constant strain. This ‘eriteria includes the rigid body



- 14 -

displacements as a special case.

In selecting the polynomials for the shape functions,
these two criteria must be taken into account. An additional
desirable property of the shape functions is the geometric

invariance (22,23,19).

To satisfy the first condition the displacement function
along the boundary of the two adjacent elements must only be
influenced by the nodes on this boundary, and the order of the
polynomial must be uniquely determined by the number of these
nodes (60,24). Second criteria is automatically satisfied for
the isoparametric shape functions (24). To achieve the
geometric invariance it is necessary to choose symmetric

polynomials as the shape functions (19).

By definition, shape functions take a unit value at a
praeferred node and zero at all other nodes. Suitable shape
functions, satisfying all the conditions meantioned above are
available in the literature (58,59,60,24). Following the
tradition, and the recommendations of references (59,54),
the Serendipity family of shape functions were used in this
work. In the following section, the derivation of shape
functions of this family, for a rectangular element with
different number of nodes along the parallel sides is

demonstrated.

2.3.2. ShapeFungtions for Cubic-Quadratic Element

For some practical purposes, it is desirable to have
elements with varying number of nodes along different sides.

The shape functions for such an element, which is shown in
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figure 2.2 and will be used in chapters 3 and 5, derived

following the procedure given in (59,54).

Shape functions for the midside nodes of this element
are the same as a cubic element in & and as a quadratic

element in q_ directions.

To derive the shape functions for the corner nodes, one
can start from the linear function shown in figure 2.3(a).
To obtain the cubic variation of figure 2.3(e), first the
variation in figure 2.3(b) is to be subtracted from figure
2.3(a) to give figure 2.3(c), then figure 2.3(d) is to be
subtracted from figure 2.3 (c) to give the final form in

figure 2.3(e).

A similar process, of course, will be applied for the

quadratic wmriation in '1 direction.

The curves of figures 2,3 (b) and 2.3(d) are the cubic

shape functions for the midside nodes, multiplied by a constant.

The shape function for node 1 of figure 2.2 for instance
will be

2 1
NSN-EN- N6-2N

1
5 3 10 (2.3.1)
where NL is the linear shape function for node 1. Substitution
of the corresponding functions of N1 gives the shape functions

as:

N, = L a-nu-p[-3-9G4-¢)] @2

or the general form for all the corner nodes:

Ni=-3‘—5_ (1+§°)(1+q.)[81]°—9(1-€)] (2.3.3)

with §° - g gi and rl,:. 1111‘
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’1
10

Figure 2.2 : Node numbering system for 10-node element.

(b)
_ == (c)
N~ -
N —~—
N =~ o
\\ -~ -
~ ===
>~ ___—.//, ” :\\ (d)
v
(e)

Figure 2.3 : Derivation of Shape Functions for corner nodes.
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For the midside nodes the shape functions are:

N;:.‘I(1+§,)(1-v]z) for gi=%1, n=0 (2.3.4)

N.‘=3§i(1+v],)(1-§2)(1+3§,) for §-1=i%,rl-l=t1 (2.3.5)

2.4, Reduced Intezration

In its original form, the thick shell element was too
stiff in representing bending deformations in thin shell and
plate applications. Zienkiewicz et al. (61), and Pawsey and
Clough (47) had noticed that the overstiffness of the element
was due to the displacement function imposing unrealistic
restrictions upon the modes of deformation of the element.
Following a procedure similar to the one that Doherty et al
(20) employed, that is, by reducing the order of integrationm,
is was possible to relax the overstiffness of the element.
Accuracy of the reduced numerical integration in finite elements
is discussed by Irons (33,34,35,36). The point he emphasises is
that the convergence is guaranteed, provided that the determinant
of Jacobian does not change sign in the domain, and that the

volume of the element is calculated accurately.

To modify the element, Zienkiewicz et al. proposed a
uniform low order integration on all stress components, whereas
Pawsey and Clough used a selective integration order for
different stress components. Pawsey, in a later publication (46)
agrees that the eight node quadratic element can be integrated
using uniformly reduced integration'pointa. The advantage of

the uniform reduction over the selective reduction lies in the
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fact that it does not require any additional effort in
programming, and reduces the computational time due to the lesser

number of integration points.

In both of the references (61,47), the improvement achieved
by reducing the order of integration is demonstrated by several
examples. Vibrational application of the modified element
(using uniform reduction) is reported in (30,9). In all examples
but one, the element performed very well. Only in the case of
a turbine blade, was it found to be overflexible (30). The
reason was the high curvature across the width of the blade.
Since only one element was used across the width, it was not

able to represent rapid local change of curvature.

In the present study , the uniform reduction of integra-
tion points is used to modify the element. In general 2 X2 X 2
integration points are used for the stiffness matrix, and
3 X 3X 2 for the mass matrix. The effect of using different
integration points has been observed on the results of some of
the test exapplea of chapter 3. A survey was carried out to
decide the best choice of order of integration for the elements

having a high curvature. For these elements it is found out

that unless a refined mesh is used, 3 integration points are
needed along the curved edge. The compariscn of results using

different integration orders is given in the next chapter.

2.5. Repetitive use of Element Matrices

Using a regular mesh, makes it easy to produce the input
data, and also helps to reduce the computational time. Element

matrices, if they were o¢alculated in a local coordinate system
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having the same orientation with respect to the element
geometry, would be the same for similar elements. Once the
matrices for one element are evaluated, the same matrices
can be used for similar elements, provided that the necessary
coordinate transformation is performed. I1If the similar
elements have the same orientation with respect to the
global system element matrices need not be transformed but
could be used repetitively. If the orientation of similar
elements is different with respect to the global coordinate
system transformation is only required for the entries of
the matrices corresponding to u, v, w degrees of freedoms,
since & and P are the rotations of the thickness vector,
and by definition, they are independent of the global

coordinate system.

2.6. Eigenvalue Economization

The time required to solve the eigenvalue problems
increases rapidly with the size of the matrices involved.
Frequently, finite element idealization of a structure yields
a represeptation with several hundreds of degrees of freedoms.
The eigenvalue solution of a matrix of this size would require
a great deal of computer time and storage which may be
impossible to supply. Fortunately, these requirements may be
reduced by a careful selection of a reduced number of degrees
of freedoms which is sufficient to give acceptable results in
the solution of the dynamic problems. This can be explained by
Rayleigh's principle that a first order error in modal shape

causes only a second order error in frequency.
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Elimination of unwanted variables have been astudied by
several researchers (31,32,28,5,50,6,29), The method due
to Irons (32,5) has been used in this study, because of
its advantage of performing the elimination process during

assembly.

The unwanted variables which are called slaves are
chosen amongst the degrees of freedoms which have the least
contribution to the strain energy. When sth degree of
freedom is eliminated from the stiffness matrix [K] . the
new entries of the reduced stiffness matrix[K ]* are given
by the formula

x-ij = Kij - K. (Kje/l(as) (2.6.1)

with row and column s being deleted. The corresponding

operation on the mass matrix is:
M.id = Mij - Mg (st/xss) - Mje (Ko Kpg) * Mas(xis/xssxxjs/xss)
(2.6.2)

The advantage of the method lies in the fact that the

operations (2,6.1) and (2.6.2) can be applied to the M, . and

1]
K11 that are incompletely summed, as long as all of the Mg
and Kig are completely summed, and as long as all

contributions from later elements will eventually be added

in.
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CHAPTER 3.
3, TEST EXAMPLES

In order to see the performance of the computer program,
it was tested against several plate and shell vibration
problems. Either eight-node or ten-~node elements were employed
for the mathematical modelling of the structures. The effect
of the number of Gauss points used in the numerical integration

was investigated.

The results are given either in Hertz, or in dimensionless

frequency parameter ¢ s which is defined as:

3
¢= ’Lu where D-_—__L (3.1.)
(D/pt*)" 12 (1-v1)
in which w is the natural angular frequency, o, e and V

are the density, modulus of elasticity and the Poisson's ratio
respectively. t and 1l stand for the thickness and the

length of the shell.
3.1 Unif Cantilever Plates

The first example was a square cantilever plate. The
natural frequencies of this plate were determined by using both
modified and unmodified elements. The problem was solved for
different length/thickness (l1/t ) ratios. The increase in
the stiffness of the unmodified element with the increasing 1/t
ratio was observed. The dimensionless frequency parameter ( gb ),
obtained by using 1 x 1 and 2 x 2A;g£::L are listed on table

together with 1he resolls reported in references (5) and (§).
3.11 The results of the unmodified element shows a rapid



convergence with the increasing number of elements. The
modified element gives acceptable results even with one
element for the first two frequencies. In addition to the
modes shown on table 3.1., some in-plane modes were also
observed. The frequencles correasponding to these modes

were independent of the order of integration used.

A similar analysis was performed on a rectangular plate
having a length/width ratio of 2. Since the results obtained
were very similar to the square plate case, only the results

um'farM

of modified elements with 2 x 2/mesh for three different l/t

ratios are given on table 3.2, 'l'ojg“ner with the reults of refercmes (5) anndd (49).

Because of the coarse mesh used, the frequencies corres-

ponding to high mode shapes were overestimated on both tables.
3.2. Tapered Re Plate

In this example, a varying thickness cantilever plate
was analysed. The plate had a rectangular plan form with
dimensions 127 x 63.5mm (5 x 2.5 inches). The cross section
of it was an isosceles triangle with an apex angle of 2.4°,
The frequencies were calculated for different 1/w ratios.
The width of the plate was varied by succesively shaving it
down on the thin side. This plate was first studied experimen-
tally by Plunkett (49). He also calculated the fundamental

frequencies using the beam theory.

In the present study, four eight-node modified elements
were used to represent the structure. Dimensionless frequency

parameters reported in reference (49), and the results of the
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Order of Inte-g

:? 1/t tion f R e 3
IR I 3l ]
z* Matrix .

Ref. 8 Ritz Meth. 3.49 8.55 | 21.44 27.46 | 31.17
Ref. 5 Finite Element 3.47 8.54 | 21.45 27.06 -

b | 100/2 | 2x2x2 3.48 8.56 | 22.40 28.79 | 32.88
b | 100/5 | 2x2x2 3.47 8.45 | 22.06 28.02 | 32.10
4 | 100/10] 2x2x2 3.45 8.17 | 21.10 26.70 | 30.06
L | 100/2 | 3x3x2 3.68 9.25 [(34.20) |(41.24)| 48.00
4 | 100/5 | 3x3x2 3.63 9.03 [(29.51) | (35.77)| &2.90
4 | 100/10| 3x3x2 3.55 8.56 [(25.30) | 30.17 | 35.00
1 | 100/2 | 2x2x2 3.58 | 9.04 -

1 | 100/3 | 2xex2 3.58 | 9.02 3 (1]

1 | 100/5 | 2x2x2 3.57 | 8.97 WS B & il

1 | 100/7 | 2x2x2 3.57 8.89

1 | 100/10] 2x2x2 3.55 8.72

1 | 100/2 | 3x3x2 b,45 [11.43

1 100/3 | 3x3x2 L.42 11.35

1 | 100/5 | 3x3x2 4,35 |11.12

1 | 100/7 | 3x3x2 L,29 [10.83

1 | 100/10| 3x3x2 4,18 |10.30

Table 3.1. Dimensionless frequency parameters of a square

cantilever plate determined by using one and four

8-node elements.

(The mode shapes corresponding to the frequencies in paranthesis

are shown at the bottom of the column).
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Measured | Calculated| 4 Elements |4 Elements |4 Elements
Mode Shape Ref .49 Ref.5 1/t = 100/2|1/t = 100/5]1/t=100/10
i 3.50 3. bk 3.47 3.46 3.45
_______ - 14,50 14,77 14,83 14,72 14,38
3 : 21.70 21.50 22.74 22.66 22.38
1 T
> I | 48.10 48.19 50.91 50.45 k9,00
E b 60.50 60.54 75.93 75.08 72.36
A i i
| i
1___J-o4 | 92.30 91.76 111.41 108,87 102.23
P
2""' o 92.80 92.78 99.16 98.12 95.04
-
T There are not enough nodes
1 {1
i Ei 118.70 119.57 to identify this mode
§__-—-—_‘l— 125.1 124.23 137.11 133.12 126.06

Table 3.2 Dimensionless frequency parameter for a. rectangular plate

of

v/l

= 1/2
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finite element analysis are given on table 3.,3. Very good
agreement was obtained for the simple mode shapes like 0/ 0
1/ 0, 0/ 1 (m/n, where m indicates the number of nodal
lines perpendicular to the support, and n is the number
parallel to it). Accurate determination of higher modes

would require a finer mesh.

In general, the frequencies were underestimated for small
1/w ratios, and overestimated for large ones, This is
probably because of the changing element aspect ratio due to

the decreasing width.
3,3, Pretwisted Cantilever Bladin

The next example was a rectangular cross section pretwisted
blading. The experimental values of the frequencies for this
blading have been reported by Carnegie (13). He also gave
the theoretical values for the fundamental frequencies, and for
all torsional frequencies. The blade was 152.4 mm (6 inches)

long, 25.4mm (1 inch) wide and 1.6129mm (0,0635 inches) thick.

The calculationa in this study were performed for 0°. 30°,
60° and 90° of pretwist angle, using both eight-node and ten-
node elements with 1 x 6 and 2 x 6 meshes. The results are

listed on table 3.4.

In bending type of modes, the modified eight~node element
performed very well with 1 x 6 mesh. But for torsional modes
it was overflexible especially for large pretwist angles.

In this case, it was possible to increase the accuracy by

refining the mesh. Alternatively, by increasing the order of
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Mode 1/w 2.00 2.22 2.86 L.00 6.67
Meas. 2.57 2.57 2.71 2.91 3.15
0/0 Calc. 2.49 2.50 2.58 2.78 3,04
F.E. 2.43 2.54 2.73 2.97 3.26
Meas. 11 11.6 1 22
1/0 eas 5 37
F.E. 10.63 | 11.50 15.50 23.48 40,79
Meas. 15.5 16 17 18 19.5
0/1
F.E. 15.85 | 16.50 18,08 19.96 21.47
Meas. 30.7 33 ko 68 112
1/1
F.E. 30.55 | 36.3k4 L9 .67 75.25 |127.42
Meas. 38 Lo 42,5 49 Sk
0/2
F.E. 48,18 | 53.07 60.35 | 64.9 72.1
Table 3.3 Comparisons of the frequency parameters for the

tapered rectangular plate.,
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integration points in the direction of the curvature, better
results were obtained for torsional modes. Another alterna~
tive was to increase the number of nodal points in the direction
of the curvature. This was achieved by using ten-node

elements. The results obtained by using different number

of integration points indicate that this element too, exag-
gerates the flexibility of the structure when a low order of
integration is used. The best choice of integration order

for this element seems to be 4 x 2 x 2. Using 3 integration
pointa along the length of the blade gives overstlff represen-

tation for both eight-node and ten-node elements.

Two different frequencies corrésponding to some of the
modes are the result of coupled bending-bending due to the
pretwist. For instance, the second bending mode at 60°
pretwist angle have two frequencies. One of them is around
260 Hx  and second bending mode out of the plane of the root,
couples with the second bending mode in the plane of the root.
The other frequency which lies around 1320 Hz is the coupling
between second bending out-of-plane and first bending in-plane
modes. The value of thia frequency, though, is more likely to
correspond to the second value of the third bending frequency
(1200 Hz ) found experimentally. A similar discrepancy, in
the identification of the modes, is seen at 90o pretwiast angle.
The second values corresponding to the fourth bending frequency

almost coincide with the experimental fifth bending frequency.
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3.4. Curved Fan Blade

First shell problem which was solved to test the program
was the fan blade, originally studied by Olson and Lindberg.
They performed the experiments on a model which was constructed
by rolling a piece of sheet steel 3.048mm (0.12 inches) thick,
to a radius of curvature of 609,6mm (24.0 inches). This
curved sheef was then cut to size 304.% x 304.g mm (12x12 inches)
and welded to a steel block to simulate the clamped boundary

condition.

Initially Olson and Lindberg (43,44) used a cylindrical
shell element, with four nodes and 28 degrees of freedoms, to
predict the natural frequencies of this fan blade. Later
Lindberg et al (39,45) solved the same problem by using a
curved triangular shallow shell element which was more accurate
than the previous one. They predicted the first 25 frequencies

within a few per cent of error,.

The problem was also solved by Bridle (11) using power
series method, by Neale (42) using a hybrid shell element, and
by Martins and Owen (40) using the semi-loof element. The
original form of the thick shell element was used by Ahmad et al.
(2) to solve the problem. They noticed that the elcment was
too stiff. After the modifications Hofmeister and Evensen (3Q)o
and Bossak and Zienkiewicz (9) applied the element to the same

problem obtaining very good results.

Table 3.5 lists the first five natural frequencies reported
in the references mentioned above, together with the results of

a 4 x 4 mesh of this study which is in excellent agreement with

the experimental values. Table 3.6 contains the first seventeen

frequencies reported in (43) and (39), and the results of the
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R

Freq. Exp. * Ref. Present Ref.
No. (39 ) (39) b x L (43 )
1 85.6 86.6 86.2 93,5

86.6(43)
2 135 139 139.5 148
3 259 251 249.8 255

o 351 348.6 347.9 393
5 395 393 Lo5 LFL
6 531 533 549 534
7 743 752 771 782
8 751 746 756 792
9 790 790 847 863

10 809 813 91 862

1 997 1008 1100 1002

12 1216 1231 1383 1175

13 1252 1246 1266

14 1241 1266 1371

15 1281 1286 1583

16 1310 1303 -

17 1706 1652 1762

Table 3.,6. Comparison of the first 17 Natural Frequencies
for curved fan blade.
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Mode | Exp. 2x 2 3x2 |[2x3 |[3x3 |4xh
(39)
1 85.6 9k, 1 91.66 | 86.6 87.11| 86.2
86.6(43)
2 135 145 45 | 143.2 | 141.8 | 139.5
3 259 250.6 258 | 252.5 | 255.6 | 249.8
b 351 bo2,4 385 | 366 359 347.9
S 395 418 L48 | 411 430 Los
6 531 828 595 | 717 584 549
7 751 807 801 | 736 755 771
D.O.F.* 80 110 | 120 165 280

Table 3.7 Frequencies of the fan blade using different

meshes.
¢ Total number of degrees of freedom after the boundary
conditions.
Mode | 2 x 3| 2 x 3* 2x3 3x3| 3x3}| 3x3
( 30) | 3x2x2** | 4x2x2 3x2x2 | 4x2x2 | bx3x2
1 91 90 91 88 88 91
2 149 144 148 143 144 146
3 310 270 298 261 264 282
4 383 374 380 362 364 4o 7
5 556 455 535 461 L79 58 2

Table 3.8. Frequencies of the fan blade using 10-node elements
+ Results for 12-node element ref (30)
* Mesh used

** Order of integration
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modified eight-node element with 4 x 4 mesh. The values on
table 3.7 demonstrate the importance of the location of the
nodal points and the choice of the mesh used. Finally, on
table 3.8 the frequencies obtained by using ten-node elements
are compared with the results of the twelve-node element of

reference (30).

3.5. Circular Cylindrical Shell

This example was chosen to test the program on a cantilevesed
cylindrical shell. The configuration is shown on figure 3.1.
The experimental values of the frequencies for this cylinder
were reported by Gill (27). He calculated the frequencies using
the method given in (51). Wilson (57) also solved the problem
using five axisymmetric shell elements. The experimental and
the calculated values of the frequencies of the references
(27,57), and the results of the present study are listed on

table 3.9.

In the present study, the frequencies were calculated by
using modified eight-node elements with different meshes. Due
to the symmetry only half of the cylinder was considered. Even
with 2 x 2 mesh reasonable results were obtained for the simple
modes like 1/1, 2/1, 2/2. A finer mesh was required for the

accurate determination of higher frequencies.

3.6. Curved Cantilever Beam-Pipe Segments

The examples solved in sections 3.4 and 3.5, showed that
the program is capable of dealing with shallow and closed shell

structures. The hollow blading of chapter 5 consists of two
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Mode | Exp.| Ref. | Ref. 2 x.; 3x5 | bx8 4x10]| 6 x 8
n/me (27) 1 (57)

1/1 364 - 470 466 470 468 | 468 468
2/1 | 293 319 [ 315 289 - | 334 320 | 320 316
3/1 740 767 767 1274 916 821 | 816 779
L/1  |1451 | 1462 | 1461 - - - [1782 1527
5/1 2236 | 2361 | 2359 - - - - -
1/2 | - - 2061 - - - |2025 2055
2/2 | 827 | 1017 9u3 | 990 960 996 | 951 9l
3p2 886 | 928 914 - - 1061 | 986 932
L/2 {1503 | 1521 1517 - - - 1832 1597
2/3 |1894 | 2393 | 2212 - - - |2230 2213
3/3 |1371 | 1511 1459 | 1632 - - |[1593 1505
b/3 |1673 | 1726 | 1712 - - - [1992 1874
/b |2045 | 2158 | 2122 - - - |2338 2494

Table 3.9 Natural frequencies of circular cylindrical shell.

* n/m where n is the number of nodal diameters

and

Mesh used

number of nodal

circles +

1
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shallow shells, similar to the fan blade of section 3.4.,
connected by two circular pipe segments. The analysis in
this section was performed in order to decide on a reasonably

accurate representation of these pipe segments.

The cantilever beam with the cross-section shown on figure
3,2 was analysed. Being a slender beam, all of its lower
modes of vibration were of bending type. First six natural
frequencies - first three bending in X-Xx plane and first
three bending in Y-Y plane - were calculated by using
the closed form formula for the natural frequencies of a
beam. These modes of vibration coincided with the first six
modes of the finite element analysis which was performed by
using different meshes and integration points. The natural
frequencies were calculated by using both the eight-node and
the ten-node elements. The meshes used were either 1 x 8 or
2 x 8. Eight elements along the length were used in order to
have compatible results for the analysis of chapter 5 where
two beams similar to the present one were used as parts of the

oval cross-gection blading. The results are given on table 3,10.

The eight-node element with 1 x 8 mesh and 2 x 2 x 2
integration points was too flexible and did not give any
reasonable results. Increasing the number of integration points
from two to three in the direction of curvature improved the
results and brought them within acceptable limits. An additional
integration point along the length caused small increases in the
higher frequencies. A refined mesh with 2 x 8 elements gave

good results with 2 x 2 x 2 and 3 x 2 x 2 integration points,
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X
t=2.86 mm
|
Y
I = 745.012 mm#
xx
I = 154.144 r:ml‘+
Yy
Area = 48.249 mma
Length = 380.0 mm

1

E=2.11 x10" N/m°

Density = 7.85 x 10° kg/m3

Figure 3.2 Assumed cross section of the beam segment.
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later being more accurate. The results of ten-node element
was much better for both 1 x 8 and 2 x 8 meshes. Order of
integration did not change the results much, but the use of
three integration points along the length caused slight over-
stiffness of the element. For this particular problem, the
order of integration did not effect the calculated volume of
the elements, but in general the volume was calculated more
accurately by refined meshes or when ten-node elements were
used. More accurate results were obtained when the volume

was determined accurately.

The results indicate that the ten-node element is more
suitable for the finite element modelling of this beam. A
1 x 8 mesh with 4 x 2 x 2 integration points seems to be the

best choice when the economy is taken into consideration.

3.7 Conclusion

A modified eight-node element with the stiffness matrix
integrated at 2 x 2 x 2 Gauss points gave excellent results
for all plate and shallow shell analysis. Only in two cases,
those of pretwisted blading and of pipe segments, was this
element found to be too flexible. Increasing the number of
integration points from two to three in the direction of
curvature, increased the accuracy. In these two cases, the

performance of the ten-node element was very good.

For the numerical integration of the mass matrix
3x 3 x 2 Gauss points were used for both eight-node and ten-
node elements. Also 3 x 3 x 3 integration points were tried

for integrating the mass matrix of the eight-node element and
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4 x 3 x 2 integration points for the ten-node element. Their

effects on the results were unnoticeable.

For all the examples the mode shapes determined were in
a very good agreement with the mode shapes given in the

original references.
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CHAPTER 4

b, EXPERIMENTAL METHOD

The majority of the experiments were undertaken to
confirm the numerical predictions of the natural frequencies
and the mode shapes of an oval cross-section hollow blade.
In addition to these, some subsidiary experiments were per-
formed to see the effects of various assumptions on the

experimental and numerical results.

Geometry and construction of the shells, and the results
of the experiments are given in the related sections of
chapters 5 and 6. In this chapter, measurement of the geometry

of the shell, apparatus and the procedure will be given.

L, 1 Determination of the Actual Geometry of the Shell

After the blade was manufactured (see 5.2), some measure-
ments were taken in order to determine it s actual geometry.
A grid, which was later used in the finite element analysis,
wag drawn on the surface of the shell. Relative distances of
each node of the grid from a base line was measured by means
of a micrometer. The measurements were tak enboth along y =const.and
Zaconst. lines, Then, taking one of the nodes as the reference
point 2z coordinates of all the nodes were calculated by using
the two sets of data, thus cross=checking the results. At the
end, the average values were taken, and these were checked
against the direct measurement of the distance between the faces

of the blade.

In spite of the careful measurements there were some
differences between cdordinatee that were determined by different

methods. So, some adjustment had to be made by close visual
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inepection of the shell, Also, there was no way of measuring
the coordinates of the points at the bottom faces of the elements,
since they were trapped inside the shell. Coordinates of these

points were calculated analytically.

4.2 Appgratus and Procedure

All the experiments were conducted on a vibration table
which consisted of a cast-iron bedplate, mounted on a concrete
block. The flanged channels on the surface of the bedplate was
used to bolt the base of the shells on to the table. To prevent
the shell from rocking, it was found to be useful to use as many
bolts as possible. In some instances, it was observed that the
extra bolts were effecting the bending type of frequencies,

increasing them by up to 4 per cent.

The shells were excited over a large range of frequencies,
using 8n oscillator which was driving a coll through an
amplifier. In spite of the amplifier, the magnetic field
created was not sufficient above 500 Hz .,and it was necessary
to have the coil very close to the shell surface. The position
of the coil was often changed for a better excitation of different
modes. The improvement gained was small, although it marginally

helped in the torsional type of modes.

The response of the shell was indicated by riezoelectric
strain gauges cemented on the surface of the shell. Up to six
gauges were bonded to the shell, different ones being useful for

different modes.

Output from the gauges was displayed on the lower trace of

an oscilloscope where it was compared with the forcing frequency
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displayed on the upper trace. Usually the shell responded

at some whole number multiple of the forcing frequency.

When the core of the coil was not a permanent magnet, the
response of the shell was at twice the driving frequency.

The output signal of the guages reached their maximum when

a natural frequency was excited. This frequency was accurately

determined by using a Muirhead-Wigan Decade oscillator.

Once & frequency was detected, the identification of
the mode shape was done using a hand-held piezoelectric
guaged probe. The guage on the probe converted the displace-
ments of an& vibrating surface into an electrical signal which
was displayed on the upper trace of the oscilloscope instead
of the forcing frequency. By touching a particular point on
the shell with the probe, the signals were compared as either
in or out of phase with the signals from the strain gauge. A
thorough examination of the shell surface yielded the mode

shape for the particular frequency.



- 45 .

abnob c;ﬂ.:m I

1103

\ﬂﬂu

ssaTousnbagl [BINZEU 9Y3 JO UOTIEBUTMISLEpP a4} J0J 3TINOJIL)

113HS

*l°y aandty

adoosDn)|}19s0

e O

O
[—o0

8-068-0
J0ID})19S(0 apDRQ

NYOIM-QVIHHINW]

9il vdM

3 4NdNY

"1y JOISISUD.

Waosi ol

J0}D119S0




- 46 -

CHAPTER 5

5. QVAL CROSS-SECTION HOLLOW BLADE

In this chapter, the computer program which was explained
in chapter 2, and checked against several test examples in
chapter 3, was used to analyse hollow blading. The natural
frequencies predicted by the program were compared with the

_.results of the experiments performed on a model blade, and the

causes of some of the differences were studied.

The geometrical descriptions of the experimental and
the mathematical models of the blade are given in the following

section.
501 (-] (] £ B (-]

The blade was designed to have a constant cross-section
.of oval shape, conaisting of four circular segments with two
different radii of curvature along the whole length..(Fig.5.1).
To have a continuous surface, the circular segments were so
located that they would be tangent at the intersecting points.

This condition required the following relationship to be

satisfied:
R = 52 + b2 - 2 ar
= 2(b - r) (5.1)

The parameters of this relationship are as shown in Fig. 5.1.

and they were chosen as:

a = 105 mm r 6.76 mm

b = 20 mmr R

377.6 mm

The length of the blade was taken to be 420 mm.
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Due to the difficulties encountered during the manufac-
turing process (see Sec. 5.2.), the experimental model of
the blade had some geometrical imperfections. To achieve
a smooth surface then, was only possible by filing it along
the intersecting lines, and the true mathematical deseription

of the experimental model became impossible.

5.2 Manufacturing the Experimental Model

A model of the blade described im the previous section
was manufactured for laboratory testing. Two larger c¢ylindrical
segments were obtaimed by rolling two 200 x 420 mm steel sheets
of 2.54 mm thickness, to a radius of curvature of 380 mm. The
two small segments were cut out of a steel pipe of 13.5 mm

outer diameter. The wall thickness of the pipe was 2.75 mm.

Two succeasive different methods were employed to connect
the four pieces together and to fix the root of the assembly.

The experiments were performed for both cases.
5.2.1 de semb

In the first case brazing was used to connect the pleces.
The idea was to avoid welding, thus to prevent the pieces from
warping under high temperatures. But the pipe segments were
inevitably bent during the cutting process due to stress
relaxation, so the final assembly was a doubly curved shell
with an unwanted curvature along the length, (see fig. 5.2).
Since this curvature was non-uniform the symmetry of the blade
was lost. Measurements taken on the blade showed that the
geometric parameter b was varying from 16.5 mm at the tip

to 23 mm at the middle cross-section.



- 49 -

The root fixing was achieved by embedding 40 mm of the
blade into a solder base. The clear length of the blade for

this case was 380 mm.

The analysis in Section 5.3 has shown that the brazing
was not stiff enough to assume the blade as a single piece
of metal. Also the solder which was uased to fix the root
was too flexible to simulate the clamped boundary condition.
These difficulties were overcome in the second method at

the expense of using welding.
5.2,2 embl

In the second case the aim was to have the inter-
connections of the pleces stiff enough to treat the whole
blade as a single piece of metal, also to have the root
fixing as stiff as poassible to be able to assume that it was
clamped. For this purpose the brazing along the inter-connecting
lines was replaced by welding. Also the solder base was
removed and the blade was welded onto a steel plate. As
expected, the high temperature caused some irrecoverable local
distortions in the geometry. The measurements that were taken
to determine the final shape of the blade indicated that, in
addition to the unwanted curvature now, there was also a slight

pretwist on the blade.

To use for numerical analysis the coordinates of each
node were calculated. The finite element model of the blade
shown in figure 5.2 was drawn using these coordinates. This
geometry of the blade will be referred-as the real geometry of

the blade in the following sections.
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//%7%

VAN VAN

// ////2/

Figure 5.2 Real Geometry finite element model of the blade.

X See ?oo{naﬂ on page 5b.
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The average values of these coordinates yield to the

following approximate parameters for the geometry:

a = 105 mm r 5.5 mm

o
]

19 mm R 410 mm

The geometry of the blade described by these parameters
was used to determine the ideal mode shapes in Section 5.5.1.

and will be referred as ideal geometry.

5.3 Analysis of the Blade Assembled using Solder

In this section, the experimental model of the blade
described in section 5.2.1. is analysed. First three
natural frequencies obtained from the analyses are listed
on table 5.1. Column 1 contains the experimental frequencies,
columns 2 and 3 give the resulte of the finite element analyses.
As the results indicate the experimental model was too
flexible to give any comparable results. The frequencies
listed in column 3 were obtained by representing the brazing
between the pieces as hingegtin the finite element model. The
effect of this assumption on the ovalling and tor$ional modes
was to reduce them considerably, although it did not change

the bending mode at all.

The results showed that a rigid connection between the
pleces was not achieved in the experimental model, and over-
flexibility of these connections were resulting low torgional
and ovalling frequencies. Bending mode of vibration which was
independent of the type of connections between the pieces,
depends greatly on the type of root fixing which is discussed

in the next section.

*See_ oddendum on paje JL.



Mode Exp. 8 x 10 F.E.* 8 x 8 F.E,**
Bending 151 232 233
Ovalling 197 345 198
Tor$ion 256 317 135
Table 5.,1: First three frequencies obtained

experimentally and by finite element
analysis.
. rigid connections
s hinged connections

Frequencies given are in Hertz.

ADSESDU

The renrcesentation of the ainzce conncetions
was achicved in a simple way during the
¢limination process. The rotational degrues
of freedom, at thc nodes alony the line
connecting the pive seyment to the shallow
shell, were eliminated as goon as the
contribution of the elements alons the pipe
sesment were cosleted but before »ny con -
tribution fro. tie elements of the shallow
shell was includcda. The jroccss wng
reversod when crossiny the connccting line
from shell to pipe scament. The elimination
of u, v and v desrees oi frcedom wng done
followins the usual procedure.
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Sl t the t ng on the Natural Frequencie

To achieve the idealized clamped boundary conditions in
the experiments is very difficult. In this part of the study,
the behaviour of different experimental simulations of the

clamped boundary conditions was examined.

A set of experiments were performed on two identical
cylindrical steel pipes. The pipes had an outer diameter

of 50.8 mm and a wall thickneass of 1.59 mm.

The firat piece of pipe was 260 mm long and it was welded
on a steel block of dimensions 305 x 82.5 x 25.4 mm. The pipe
responded to the first bending mode (which also was the
fundamental mode of vibration) at two different resonant
frequencies. When it was excited to vibrate parallel to the
length:0of the base plate the resonant bending frequency was
found to be 602 Hz , whereas the same pipe responded to the
same mode of vibration at 564 Hz when it was excited to
vibrate normal to the previous direction. The second mode of
vibration was the first ovalling mode and it was found to be
1783 Hz , independent of the direction of excitation. The
The third natural frequency was the second ovalling mode at

2300 Hz.

The root fixing of the second piece of pipe was achieved
be embedding it into a block of solder having dimensions
84 x 75 x 26 mm. The average length of the pipe was 251 mm.
The resonant frequencies corresponding to the first bending
mode were determined to be 395 Hz and 417 Hz in two normal
directions. The ovalling mode responded to a resonant frequency

of 1796 Hgz. :
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Table 5.2 lists these experimental results, together with
the results obtained from the computer program. For the
numerical analysis a 6 x 8 grid was used, and due to the
symmetry, only half of the cylinders were considered. Clamped

boundary conditions were assumed for both cases.

Case Exp. Num, Exp. Nunm.
ength
mm) 260 260 251 251
[Mode
1 564/602| 706 395/417| 755
2 1783 1773 1796 1776
3 2300 2297 - 2358

Table 5.2. Comparison of the experimental and numerical
frequencies of two similar cylinders. Different
methods for root fixing were used for the
experiments.

As expected the results of the finite element analysis
gave a higher bending frequency for the shorter cylinder. But
in the experimental case, due to the effect of the different
methods of root fixing, the situation was reversed. The
solder base is definitely not suitable to represent the

clamped boundary conditions for the experiments.
5.5 Weld spemble lade

5:5.1 Finite Element Analysig using Ideal Geometry

The numerical analysis was first performed on a regular

geometric shape, approximated by the average geometric


file:///length
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parameters given in section 5.2.2., to determine the ideal

mode shapes for the blade.

A 10 x 8 grid (same as on figure 5.2) was used in khe
Analysis, and the length of the blade was taken to be 420 mm.
To represent the plpe segments at the sides, the cubic-quadratic
element of section 2.2. was used. The number of integration
points for these elements were 3 along the curvature, 2 along

the length and through the thickness.

The sketches of first 20 mode shapes, and deflection
curves for some of these modes are given in appendix 3. Since
these mode shapes were obtained by using a regular geometry, and
they show a regularity themselves, they are referred as ideal
mode shapes. In general, it is possible to clasaify them in
different groups except for the last, mode number 20. Inconsistent
shape of this mode could be due to the coupling of bending mode
with two nodal diameters, and the mode type 8 with three nodal

diameters.

Table 5.3 lists the frequencies obtained by using different
number of master degrees of freedoms with 10 x 8 grid. In
addition the frequencies for some of the symmetric modes which
were calculated by using only half of the blade (making use of

the aymmetry around 2z -axis) are included.

The frequencies listed in column 1, were calculated by
keeping both u and w displacements as master degrees of freedoms
at 92 nodes. Two different frequencies corresonding to mode 6
are the result of the coupling with the bending mode in
X - direction. Detailed tip deflections for these two frequencies .

are given in figure A.3.1. in appendix 3.
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Frequencies given in column 2 were obtained by keeping
only w displacements at 102 nodes. Since the master degrees
of freedoms were distributed more evenly over the blade than
they were in the previous case, they gave better results
eapecially for the mode shapes with three nodal diameters.

A similar comparison can be made between the second and third

columns where only 88 w displacements were kept as masters.

Columns 5 and 6 contain the frequencies which were
calculated by using only half of the blade. The retained
master degrees of freedoms which gave the frequencies in

column 5 were equivalent to the ones of column 3.

The frequenciea given in columns 4 and 7 were calculated
by restraining only siftand fouf nodes respectively at the
root of the blade, to simulate more flexible root fixing
condition. The greatest effect of this assumption was re-
flected on the bending frequencies which were reduced by about

30 per cent.

5.5.2. Finite Element Analysis - Real Geometry

The analysis in this section was performed on the geometry
that was described by the coordinates of nodes as measured
directly on the blade (Section 5.2.2). Thus, a closer
approximation to the geometry of the experimental model was

achieved.

The finite element idealization used was very similar to

the ideal geometry case of section 5.5.1, with the grid shown in

figure 5.2. The y=coordinates of the tip nodes were changing
between 413 mm and 417 mm, giving an average total length of

415 mm to the blade. In all the analyses in this section the

% See figure 5.2.09 page 50 for dhe locakion of these nedes.
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Column 1 2 3 4o 5 6 7+
Grid 10x8| 0x8 |10x8 |10xB8|]5x3|5x3] 5x38
Mod F 184 102 88 104 48 88 48
1 196.5 195.6 197 142 | 197 197 139
2 302.5 302.5 304 299 | 30k | 303 | 299
3 335.5 335.7 337 327 - - -
4 562 562 590.4 | 564 | - - -
5 553 553 589.8 | 551 | 589.8]| 581 | 567
6 809/879 821.5 837 83 | - - -
7 8o+, 7 8ok.5 873 809 | 873 866 | 809
8 953.6 955 962 961 | 961.5| 961 | 961
9 950 951 1040 1029 - - -
10 1062 1064 1148 1144 | 1148 11143 pabh
11 1047 1047 1372 1338 | - - -
12 1042,7 1042 1378 - | 1378 [1356 n363
13 1191 1191 1485 - - - -
14 1359 1359 1754 - - 1696 1696
15 1418.7 1436 1434 - - - -
16 1510 1502 - - - - -
17 1589 1583 - - - - -
18 1604 1598 - - - - -
19 - 1733 1755 - - - -
20 1514 1513 - - - - -
Table 5.3. Predicted natural frequencies for the ideal

geometry oval blade.

. Partial restraining of the root.
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master degrees of freedoms were chosen among the w displace-

ments only.

First seven natural frequencies are listed on table 5.4
with the sketches of the tip deflections of the modes, and
the results of experimental and ideal geometry analyses.
Higher frequencies, corresponding mode shapes, and some of

the deflection curves are included in appendix 3.
5¢5.3. erimenta sis

Some of the natural frequencies and the corresponding
mode shapes of the experimental model of the blade were

determined following the procedure given in chapter k.

The location of the nodal lines were very much effected
by the imperfections of the geometry of the blade, especially
for high natural frequencies. Also, for these natural
frequencies the magnetic field created by the coll was rela-
tively weak, These, together with the suppressive effect of
the hand-probe when in contact with the shell, made it extremely

difficult to identify the mode shapes of high freguencies.

First seven frequencies are listed on table 5.4. Sketches
of the mode shapes of these and some higher frequencies are

given in appendix 3.

5.5.4. Comparison of the Results

Table 5.4 lists the first seven natural frequencies
obtained from experimental and finite element analyses. These
frequencies and the corresponding mode shapes are in a good

agreement in all three analyses.
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The biggest difference between the frequencies is seen
in the bending mode. This is an expected situation since the
effect of the simulation of the clamped boundary cendition is
greatest for this mode (this was pointed out both experimen-
tally and numerically in sections 5.4 and 5.5.1.). Comparison
of the frequencies listed for real geometry and ideal geometry
.analyses also indicate that this mode is very sensitive to the
geometry used in idealization. Although the nodal coordinates
of the real geometry case were taken directly from the
experimental model of the blade, the accuracy of these
measurements is subject to discussion. Considerations of these
facts make the difference in the frequencies of the bending

mode tolerabdble.

Fifth mode, which is the second ovalling mode, of real
geometry and experimental analyses seems to couple with the
second tortion mode (figure A.3.20, and A.3.32). Also slight
coupling of sixth mode with the second bending can be seen on
figure A.3.20.(a). These are the first signs of the affect of
imperfections of the geometry on the mode shapes. Similar
couplings were observed in section 6.3.1, where the pretwist
of the blading was considered. Although the pretwist of the
geometry considered in this section was very small, the frequen-
cles correaponding to theae two sets of modes were fairly close
(within about 10%) and the overall irregularity of the geometry

may account for these couplings.

During the experiments a frequency at 708.5 Hz was

detected, but the identification of the mode shape was not
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possible due to the difficulties explained in section 5.5.3.
This frequency is inserted into the table as the experimental
second bending mode which is in a good agreement with the

finite element analyses.

Effects of the imperfections of the geometry on the mode
shapes become vieible at fifth mode, and increases as the mode
shapes get more and more complicated. Coupling occurs between
two or even three close modes, and the identification of the
resulting mode shape becomes very difficult, sometimes impossible.
In appendix 3, the shapes of some of the modes above 7 are
examined, and possible matchings between the results of dif-
ferent analyses are pointed. Some of the mode shapes that were
obtained either by the finite element analysis of the real
geometry, or by the experimental analysis are not included at

all, because of the extreme difficulties of identifying them.

5.6 the Material Properties and the Choice of Degrees
e n ] tural Frequen a and the Mode Shapes.

In all the numerical calculations performed in this chapter
the following nominal material data was used.

2

0.211 x 10'% N/m
f kg/m3

Young's Modulus

Density 0.785 x 10

0.285

Poissons Ratio

In order to observe the variation of the natural frequencies
with the changes in material properties, the numerical calcula-
tions were repeated for the real geometry of the blade using

10 x 4 grid for different material data.
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gl—

m‘:’- Cross-section Experiment.| R.G. L.G.
| © 142 158 1965
2 @ 296 306.8 302.5
3 @ 355 371.5 3355

4 @ 561 588.4 562
5 é ; 595 648 553
6 @ 812 836 8215
(708)* 739 804.5

are in

Table 5.4. Comparison of the results of the experimental and

finite element analyses., The frequencies given

. Mode shape was not identified experimentally.
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The results obtained are ligted on table 5.5. An increase
of 2.03% in Young's Modulus caused 1.014% increase; and 0.637%
decrease of the density caused 0.32% increase in all frequencies.
These changes are exactly as expected, since the frequencies are
directly proportional to (E /9)1,1. Changing the poissons ratie,
in the possible range of 0.25 to 0.33 effected different fre-
quencies in different ways, but in all cases the change in the

frequencies was less than 2%.

A similar observation was made by changing the master
degrees of freedoms retained. The results are given on table
5.6. Again 4 x 10 grid was used, and there were total 640 degrees
of freedom after the insertion of boundary conditions. In
general keeping more w displacements distributed over the blade
gives better results than any other combination of master degrees
of freedoms. An exception to this reasoning was seen only for

mode 6, and it was the effect of the bending mode in x-direction.

5.7. Disgussions of Results

Natural frequency analysis of an oval cross-section hollow
blade has been presented. The geometry chosen is interesting
from the point of view that it contains both thin-shallow and
thick-deep shell properties in it. The interesting part of the
numerical analysis on the other hand, is that the same type of
finite element was used to represent both types of shell

properties.

Difficulties that arose in manufacturing the experimental
model, imposed some limitations on accurate representation of

the mathematical model. Two different mathematical representations
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E 0.211x1c'>z 0.2153'1:16z 0.211x10 o..211x1<')z 0.211x10" | 0.211x10"
Q0.785 "1 0.785::104 0.780::104 0.785::104 0.785::104 0.785::13
V | 0.285 0.285 0.285 0.250 0.300 0.330
e ————— ey
1| 162.23 163.874 162.749 162.745 162.029 161.664
2 | 320.111 323,356 321.136 318.677 320.837 322.497
3| 375.274 379.078 376. 474 37%.120 375.883 377.317
4| 621.429 627.730 623.418 621.060 621.733 622,614
5| 660.429 666,754 662.174 659.237 660,541 661.738
7 | 782.532 790.466 785.036 782.689 782.534 782.674
6 | 870.081 878.902 872.866 864,331 872.888 879.153
8 | 1011.85 1022.11 1015.09 1006 .29 1014.62 1020.85
Table 5.5. Variation of natural frequencies with the material

properties.
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. D.O.F, 118 w 60w |60w+60u | 60w+60 v [60W+60 ¢ | 60W+60 g
MODE '

1 162.23 | 162.24 | 162.24 | 162.24 | 162.238] 162.243
2 320,111 320.261 320.227| 320.257 320.160| 320.253
3 375.274 375.953 375,580 375.949 375.355| 375.939
4 621.428| 624.996 624.275| 624.83Q 623.348| 624.601
5 660.062| 667.445 665.841| 666.719 666.546| 666.330
6 8720.081| 876.025 827.181] 856.149 871.007| 875.804

937.434

Vi 782.532| 790.022 786.725| 789.004 780.832| 789.476
8 1011.85 |1031.49 [1028.26 | 1021.58 [1018.83 | 1030.10
Table 5.6. Variation of the Natural Frequencieas with

different choice of master degrees of freedoms.
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were used for the finite element analysis. First, using a
regular but approximate geometric shape, general trend of the
idealized mode shapes were determined. Seven of these predicted
modes and the natural frequencies were confirmed by the
experiments. Later, the accuracy of the predictions were
further increased by describing the geometry of the mathematical

model closer to the.experimental one,

Some of the causes of the differences between the results
of various analyses were¢ studied experimentally and numerically.
The studies indicated that the clamped boundary conditions were
not simulated properly on the experimental model. In spite of

that, the results obtained were quite satisfactory.
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CHAPTER 6
6. FUTURE APPLICATIONS

The range of application of the computer programs which
are developed to serve a particular purpose is usually limited.
The limitations that isoparametric shell element has, are the
difficulties of modelling the sharp corners and multiple
junctions in the structures. For a structure where these
type of connections are dominant, it might be better to employ
some other element, for instance semiloof, for which they do
not represent any difficulty. On the other hand this new
element may not offer the same facilities as the original
one, for instance it may not be able to represent the proper-

ties of a thick shell.

In this chapter, some simple modifications are introduced
to extend the range of applicabllity of the isoparametric
shell element. Some assumptions are made for very sharp
corner connections and mulitple junctions. Also the stiffeners
are considered for hollow shells. However, if the nature of
the problem in hand changes considerably, it may be more practi=-

cal to employ a general purpose program for the solution.

6.1. Sharp Corner Conmnections

Inatead of an oval crosse-section, when an aerofoll cross
gsection is assumed for the hollow blading, as shown in figure
6.1, immediately a difficulty arises in representing the sharp
corner. To satisfy the continuity of the displacement between
the elements joining at this corner, the nodes which are

common to these elements must be defined uniquely. A unique
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definition of the nodes at the sharp corner is achieved by
assuming the nodal connections between the elements as shown
in figure 6.2. Application of this assumption to the section
shown in figure 6.1 introduces another difficulty. When one
defines the top and bottom points of the thickness vector at
the corner, and goes around the aerofoil cross-section by
defining the thickness vectors at every node, it is apparent,
when reaching the corner node again, that the top and bottom
points of the node have to be reversed. This does not affect
the continuity of the u, v and w displacements since they are
defined at the midpoint of the node, but may affect the rota-~
tional degrees of freedoms, OX and Fn since their definition
depends upon the thickneass vector. Defining two different
thickness vectors for the same node 1is discussed and illustrated

on a cantilever plate in the next section.

6.1.1. Cantilever Plate

The rectangular cantilever plate éhown in figure 6.3 is
represented using three elements. The direction of the curvi-
linear axes of each element are so chosen that the thickness
vectors corresponding to nodes 6,7 and 8 are pointed in opposite
directions for the elements 1 ﬁnd 2. Since the displacements
u, v and w are the displacements of the mid-point of the thick-
ness vector in the global system, they do not represent any
difficulty in joining the element matrices. On the other hand,
oK and P are defined as the rotation of the thickness vector

y;i around two orthogonal axis, VY, and ¥ normal to it.
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For a unique definition of ¥ and Y3; the following

convention was used.

Yii= ] % Yo (6.1)

t

where j %8 the unit vector in the global y direction.

Vai = V3 X Mi (6.2) .

For the simple geometry of the figure 6.3, the local
orthogonal axis Vi Vai and vy, are shown on figure
6.4, 1In every case, with the scheme given above, it is only
the Vai vector which will change direction when the sense
of the thickness vector V3 1is changed. Thus, only the P
displacement will be affected when top and bottom points of
a thickness vector are interchanged for different elements.
So, the displacements u, v, w, o¢ and P of Vs vector
of figure 6.4(a) correspond to the u,v,w, ¢ and - P of wvsi
vector of figure 6.4.(b). When the necessary transformation

is done for P degree of freedom, the assembly process can

continue in the usual fora.

The transformation requires the multiplication of the
entries of the matrix corresponding to P degrees of freedom
of the nodes 6,7 and 8 by (=-1). Physically, m, entry of an
element matrix represent the force acting on degree of freedom
i due to the unit acceleration (or displacement) of degree of
freedom j. Transformation, therefore, is achieved by keeping
the i (and then j) entry fixed for the P degree of freedom of
the reversed node, and multiplying the j (and then i) entries

of the whole matrix by (-1).
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Figure 6.2. Assumed connection of two isoparametric
elements at a sharp corner.

Figure 6.3. Finite element idealization of a rectangular
cantilever plate with the thicknese vectors
mis-matching between elements 1 and 2.

Figure 6.4. Local orthogonal axis and the rotational
degrees of freedoms for the elements 1,(a),
2 and 3,(b) of figure 6.3.
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6.1.2. V- Shape Crogs-Section Cantilever

To assess the validity of the assumption made for the
sharp corner connections, the cantilwer having the V-shape
érosa-aection, shown on figure 6,5, was studied both experi-

mentally and numerically.

The experimental model was constructed by welding two
200 x 100 x 2.54 mm steel plates together, with an angle of
27"between them., To simulate the clamped boundary condition,
it was then welded on a stcvel block. The determination of the
frequencies and the identification of the mode shapes followed

the procedure explained in chapter 4.

For the finite element idealization two different meshes,
one with two, the other with twelvé elements, were used. The
connections of the sharp corner were idealized using both top-
to~top and top-to-bottom matching of the thickness vectors. In

either assumption the same results were obtained.

The experimental and the numerical results are given on
table 6.1. The sketches of some of the typical mode shapes are
shown on figure 6.6. The agreement between the results is quite
good, and suggests that the assumption made for the sharp corner

connections is acceptable.

% This oy a uaform mesh with thpee elements along the \a—ngﬂn and

fwo across each plate.
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'

Z
Figure 6.5.

=X

Cross section of the cantilever with sharp
corner connection.

MODE TYPE B

MODE TYPE T

Figure 6.6.

MODE TYPE 2BR

Some of the typical mode shapes of the
V- cross-section cantilever.
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Table 6.1.

Mode Shape  Lxperimental 12_Elem.
B/0 130.9 127.1
BR/0O 235.0 254.,3
B/1 459.3 471.3
BR/1 545.9 616.8
T/0 772.5 822.9
B/2 1065.9 1156.2
BR/2 1128.2 1252.7
2BR/0 1194 .4 1357.0
T/1 1284,5 1385.4
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Frequencies (Hz)

134.8
304,9
545.7

891.1

Comparison of the experimental and numerical

frequencies for the V-Shape cross section cantilever.

The number given after /

in the mode shapes

indicates the number of nodal lines parallel to

to the root.
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6.1.3. Aerofoil Cross-Section Hollow Blading

Sharp corner connection idealization which was studied
in the previous section has been applied to two hollow
bladings having the aerofoil cross-gection shown on figure
6.1, One of the bladings was 400 mm long, shown on figure

6.7, and the other was 200 mm long. Eoach vsed a Bxlo mesh.

The first five of the predicted frequencies and the
corresponding mode shapes of these blades are given in
figures 6,8 and 6.9. The broken lines show the relative
displacements of the tip cross-sections. The displacements
of a lower cross-section is included if the mode had a nodal
line parallel to the base and they are shown by dotted

lines. The frequencies given are in Hertz.

The results given in this section are not supported by
any experimental analysis, since the foreseen difficulties
of manufacturing an experimental model have discouraged any
such attempt. Yet, the analyses performed on the individual
parts of the structure, like sharp corners, shallow shells or
cylindrical segments, have given good results previously.
Also, the studies reported in Section 6.4 where the analysis
of a hollow turbine blade with a similar geometry gave very
good results, imply that the results presented here should be

reliable.
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of the O.4 m long

aerofoil cross-section hollow blading.

Finite element idealizmation

Figure 6.7.
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Figure 6.8.

MOOE 1
12199

MODE 2
fudt

MODE 3
ted?d

MOOE &
12543

MODE $

First five mode shapes and the corresponding
frequencies of the O.4 m long hollow blading.
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Figure 6.9.

MODE
12384

MODE 2
=597

MODE 3
= 767

MODE &
1 =1052

MOCE 5
11070

First five mode shapes and the corresponding
frequencies of the 0.2 m long hollow blading
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6.2. Stiffeners

The stiffeners that may be used in a hollow blading are
approximated by massless rods connecting the nodes as shown
on figure 6,10, The rods are assumed to carry only the axial
forces. Thus they have only three degrees of freedom at each

end and they do not create any problem in the assembly process.

The configuration shown on figure 6.10 was solved with
and without stiffeners. The effect of the stiffeners was to
suppress the modes which require the relative displacements
of the opposite faces. The frequencies corresponding to other

modes were lidentical for both cases.

The only apparent difference was seen at mode 6 (see
figures AQ}: and A.3p), where two modes were coupling. The
frequencies corresponding to this mode for the non-stiffened
case were 809 Hz and 879 Hz . With the stiffeners the mode

became pure in-plane bending with a frequency equal to 866 Hz

6.3. Effect of Pretwisti

In section 3.3, the program was used to calculate the
natural frequencies of a pretwisted plate, and good results
were obtained. In this section, the effect of the pretwist on
the natural frequencies and the mode shapes of oval and aerofoil
cross-section blades have been considered. The analysis was
performed only numerically, and the results still require

experimental verification.
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Hollow Blading with
Stiffeners

Figure 6.10.

— 7%

A==

//

N\ N

<
T

ARAR AR a
WWI /(UY/ /Xﬂ\// / / /%,
O
//// AVA\

M,/////

5/

i\

////

R\

men [DEALIZLC CEUNETRY




- 80 =

6.3.1. Pretwisted Oval Blading

The oval cross-section blading having the idealized
geometry described in Section 5.2.2. was assumed to be
twisted linearly about the centroid of its cross-section up
to an argle of 60 degrees. The results are presented on
figure 6.11 as graphs of natural frequencies in Hz

plotted against the pretwist angle.

The numbers next to each line correspond to the mode

number, for the non~-twisted blade, as shown on figure A.3.3.

The mode shapes were much influenced by the pretwist.
Coupling took place between several modes, and this made
it difficult, especially for higher frequencies, to decide
the origin of the contributing modes. All frequencies but one,
increased with increasing pretwist angle. In some modes the
increase was preceded by a slight decline of frequencies at
the beginning. In order to reduce the effect of coupling,
the same problem was also solved with the stiffeners fitted
between the faces. The results are shown with dotted lines

on figure 6.11.

The rapid increase of the frequencies was suapected to
be due to the stiffening of the deformed elements and this

possibility is discussed in section 6.3.3.

6.3.2. Pretwisted Aerofoil Blading

An analysis, eimilar to the previous one was performed
for the aerofoil blading of section 6.1.3. The mode shapes

were effected by pretwist even more than the oval blading.
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Only two of the modes were identified relatively easily
through different pretwist angles, and they are plotted

on figure 6.12, This time a rapid decrease of the frequen-
cies was observed. Since a relatively fine mesh was used,

the possibility of not being able to inegrate the stiffness
terms properly due to the reduced integration order (30) seems

to be unlikely.

6.3.3. Pretwisted Cylinder

In order to see the effect of the distortions of the
elements on the natural frequencies, the cylinder of section 3.5
was reanalysed by assuming different pretwist angles. It was
observed that the frequencies corresponding to the simple modes,
like bending and torsion, were totally unaffected by the amount
of pretwist assumed. For more complex mode shapes somse
stiffening was observed in the elements, increasing with the

complexity of the mode in comnsideration.

The mode shapes, with a large number of nodal lines and
circles, of a circular cylinder are unsuitable to be reproduced
by isoparametric shell elements. The difficulty comes from the
assumed displacement functions being relatively simple compared
with the mode shapes. In order to reproduce a figure similar
to the mode shape with the mathematical model, the elements
have to be over strained. As a result, the elements become
overstiff for certain modes, and to be able to obtain accurate
results, one has to use a very fine mesh. When the elements
are distorted due to the pretwist, the shape that the elements

have to take, in order to describe a mode shape, becomes even
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Figure 6.11. Frequencies of oval
crosa-section blade am function
of the pretwist angle,

Broken lines show the coupling
modes. Dotted lines are the
resulte with the stiffeners.B/X
stands for bending in X direction.
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Figure 6.12. I
Effect of pretwist on the W
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more complicated. So in fact one should expect the stiffening
of the elements with the increasing angle of pretwiast. The
fact that the bending and torsion modes are unaffected by the
pretwist should again be expected because of the regularity

of the displacements of indicidual nodes.

It is clear, from figure 6.12 (b), that the effect of the
distortions of the elements on the natural frequencies of
simpler modes is very small. The largest difference is only
8% and it corresponds to the mode 3/2. The changes in all the

other frequencies are well under 1.5%.

Figure 6.13 shows the computer plotting of the cylinder
which was twisted 60 degrees. Figure 6.14 shows the oval
blading again with 60 degrees of pretwist angle. The meshes
shown are the meshes used in calculations. A close examination
of the two figures give the impression that the elements of
the oval blading are not distorted as much as the elements of
the cylinder. Also, a review of the mode shapes, shown on
figure A.3.3, shows that they are much simpler in the sense of
the relative displacements of the nodes, than the mode shapes

of a ¢ylinder.

As a result of this discussion it may be said that the
stiffening of the elements should effect the results of the
pretwisted oval blading 1less than it does the results of the
pretwisted cylinder, Still, the lack of a convincing explanation
for the common trend of some of the lines in figure 6.11 = i.e.

a negative slope followed by a sharp increase - and the lack of
any experimental confirmation make it necessary that care
should be taken in accepting the results, especially for large

pretwist angles, and complicated mode shapes.
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Figure 6.13. Figite element idealization of the cylinder with
60" of pretwist angle.
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wnnTHISTED OVAL BLADL, KO [CLACES«sn

Figure 6.14. Finite glement idealization of oval blading
with 60" of pretwist angle.
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6.4. A _Real Turbine Flade

The final excercise was performed on a real hollow

turbine blade (supplied by G.E.C.).

The experimental analysis of this blade was done by
G.E.C. They encased the root of the blade in lead alloy
surrounded by a large mass of cast iron. The method of
excitation was electro-mechanical. The natural modes of
vibration, between the frequency limits of 0-6 KHz were

reported.

For the finite element analysis of the blade the
idealization shown on figure 6.15 was used. Nodal coordin-
ates for this idealization were determined by taking direct
measurements on the blade. With these measurements it was
possible to determine the geometry of the blade only approxi-
mately. In the idealization two sharp connections were used,
and they were approximated as discussed in section 6.1. The
root of the blade was assumed to be clamped at the platform
level. The mesh contained 40 elements with 600 degrees of

freedoms, 160 of them were retained as masters.

The frequencies and the mode shapes obtgined from the
finite element analysis are given on figures 6.16 - 6,19,
together with the matching experimental results. The positive
and negative signs on the figures indicate the transverse
displacements of the faces, and "s" shows the stationary
regions. The sketches on the left show the pressure side, and
those on the right show the suction side. Plottings of the
tip and the middle cross section displacements are included

in appendix 4.
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In spite of the difference between the root fixing of
the experimental and the finite element models excellent
agreement was obtained for most of the modes. First tortional
made was found to be exactly the same in both analysis.
Results for the second mode were very close. Third mode
did not exactly meet the experimentsl mode shape where the
areas indicated with negative sign were much lower along the
blade length. The big difference seen between the frequencies
of the fourth mode was possibly due to the different assumptions
of root fixing. Fifth and eighth modes are again in very good
agreement both mode shape and frequencywise. Modes seven and
twelve show 8slight differences from the experimental mode
shapes. Modes 6,9,10 and 11 have not been detected during the
eiﬁéiiments. and one experimental mode found at 3005 Hz was not

encountered in finite element analysis.
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Mode 1 FE: 1064 EX:1064

Mode 2 FE: 1713 EX: 1717

Mode 3 FE:1915 EX: 1875

Figure 6.16. Mode shapes and the natural frequencies of the
hollow turbine blade. ’
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Figure 6.17. Mode shapes and natural frequencies of the
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Figure 6.18. Mode shapes and the natural frequencies of
the hollow turbine blade.
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Fizure 6.,19. Mode shapes and the natural frequencies of the

hollow turbine blade.
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CHAPTER 7

7. CONCLUSIONS

A numerical and experimental study of the vibrations
of arbitrary shell structures is presented. In particular,
closed, non-circular cylindrical cantilever shells have been
studied, as a preliminary step towards the understanding of

the dynamical behaviour of hollow bladings.

Finite element method was employed for the numerical
analysis, and a computer program based on the isoparametric
thick-shell element has been developed. At the beginning,
the element was inefficient in representing sharp curvatures.
Later, improved efficiency was achieved by increased the order
of integration and with the help of the additional nodes
inserted along the curvature. Some assumptions were suggested
to represent the sharp corners and multiple junctions in the
structure. As a result, the program has become applicable to
a large range of vibration problems. It has been used to solve
the problems of uniform and variable thickness plates, pretwisted
plates and shells, axi-symmetric and non-axisymmetric cylinders,
shallow shells and hollow bladings. The results obtained
agreed very well with the available experimental and theoretical

reaults of other researchers.

The imperfect geometry of the experimental model of the
oval blade was an inevitable result of the difficulties encoun-
tered during manufacturing. In spite of that the experimental
results agreed reasonably well with the finite element predictions.
The difference between the results was within 5 per cent for
most of the lower modes. Sensitivity of some of the modes to
the geometry and the boundary conditions was observed and the

difference in the results for these modes was within 11 per cent.
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Experiments have shown that by embedding the blade into
a solder base, it is not possible to achieve a root fixing
which is stiff enough to simulate the clamped boundary
condition., A similar observation was made for brazing which
was found to be too flexible to join the components of the
oval blading together. Welding, on the other hand, provided
stiffer joints both for connecting the components and for

fixing the root.

Further experiments with a better experimental model
would be interesting to perform for pretwisted and stiffened

oval blading.

The method and element used proved to be satisfactory
for the dynamic analysis of arbitrary shell structures. The

program is well tested and reliable.
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APPENDIX 1

A.1. Explanations on the Program

A.1.1. General Outline.

The computer program developed for the numerical analysis

in this thesis consists of four maln parts.

i) Data preparation.
ii) Construction of element matrices.
iii) Aesembly and reduction.

iv) Eigenvalue solution.

The program uses three devices. Device numbers 5 and 6
are reserved for input and output respectively. Device number
7 is used to store the topology and the nodal coordinates, so
that they can be referred whenever necessary during the

computations.
A complete liating of the program is given in Appendix 5.
A.1.1.1. ta Pre tion

Preparation of the input data to the program is given in

detall in Appendix 2. This data consists of two parts.

The first part contains the control integers, material

properties and the geometric parameters.

The second part corresponds to the finite element
idealization of the structure. According to the control integers,
the topology of the elements and the nodal coordinates are

elther read in through device number 5, or calculated by the
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data generation subroutines. In either case they are stored

on device 7.

Data generation is performed by three subroutines called
GENOD, GENTOP and DOF (See Section A.1.2). By using them,
the amount of the input data can be reduced considerably. They
can be employed for any structure having a constant cross-section
in one direction, provided that a regular mesh is accepted in
that direction. The input data describes the nodal coordinates
at one cross-section, and they are repeated(with twisting if

desired) along the length at different levels.

A.1.1.2 Construction of Element Matrices

This 1s simply achieved by programming the formulation
given in Sections 2.1.and 2.2. of Chapter 2. Element stiffness
and mass matrices are evaluated simultaneously in the main
program. After the first evaluation, if the consecutive
elements are similar, this step is either left out or replaced
by a coordinate transformation procedure (see Section 2.5. of
Chapter 2). In either case the computation time is reduced

considerably (See Table A.1.1.).

A.1.1.3. Assembly and Reduction

Assembly of the element matrices into the system matrices,
and the condensation of the system matrices are performed by
subroutine REDUCE, To reduce the required space, only the
lower triangles of the system matrices are stored. They are
stored row by row in a one dimensional array. Thus, the (i.j)th

entry of a matrix is stored in the kth entry of the array, where

k = j+ ix (1 - 1) /2. The assembly procedure follows the
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standard form given in the first Chapter of reference (58).
Then according to the information supplied with each node,
the system matrices are either condensed as explained in

Section 2.4, or left as they were.

A.1.,1.b4. Eigenvalue Solution.

For the solution of the eigenvalue problem of equation
(2.1.18) a subroutine available within the Engineering Science
Department was used. The routine is based on the technique
given in references (56,7). It solves the eigenvalue problem
provided that [K] and [M] are real symmetric matrices, and

[M] 4is positive definite.

The routine, first factorizes matrix [M] using Choleski
decomposition method, and then combines the [K] and [M]into
one matrix, reducing the problem into a standard form. Evalua-
tion of eigenvalues are done by tribisection, and of the eigen-

vectors by inverse iteration method.
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A.1.2. t of Sub- rams

In addition to the main part, the following function and

subroutines take part in the progranm.

GENTOP: Generates the mesh for the finite element idealisation.
GENOD: Calculates the coordinates of the nodes.
DOF; Determines the master degrees of freedoms as

instructed by the input data.
CONEL: Constructs the elasticity matrix {D]
INTEZR

Determines the abscissae and welight coefficients
for the Gaussian quadrature according to the number
of integration points given in the input data.

VECI: Determines the local orthogonal axes Vair Yoy v31'
JAKOB: Galculates the inverse Jacoblan matrix and/or
the determinant of the Jacobian.

THETA: Determines the direction cosine matrix.

\

SHODEN: This is the only function used in the program. It
gives the contribution of node i to the shape
function (or its derivative) of any point (éf,q ).

REDUCE: Performs the assembly and condensation of the systea
matrices (See Section A.1.1.3).

MAPRIN: Printe the system matrices which are stored in
vector form, after converting them into matrix form.

MATUNI: Any matrix given as argument is put into unit form.

MATCOP: Copies the first argument matrix [A] into the

second argument matrix [B]

MATNUL: Matrix [A] given as argument is returned as a
zero matrix.

TRNPOZ; Takes the transpose of the first argument matrix [A]
and stores it into the second argument matrix [B]

FORMT: Constructs the transformation matrix, for coordinate
transformation.
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Performs the necessary transformation when top
and bottom coordinates of a thickness vector
are defined interchangeably.

Solves the eigenvalue problem (See Section A.1.1.4).
A routine from *NAG 1library of NUMAC. Three
matrices A,B,C are given as arguments. Performs
the matrix multiplication [A] x [B] = [C]

Another routine from *NAG Library. Calculates the
inverse of a matrix.
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The program was written in "FORTRAN IV" computer language
using double precision. The machine used for the analysis was
IBM 370/168 under MTS. Since the system was using virtual
pages for storage, it was unnecessary to use dynamic allocation.
The dimensions of the system matrices allow them to expand up to
a size of 300 x 300 during the assembly process. The progranm
uses about 250 virtual memory pages which correaponds to just

over 1000 K bytes.

The run time of the program is affected by many variables.
In general most of the CPU time is used for the evaluation of
element matrices and for the reduction of the size of the system
matrices. The time required for reduction depends upon their
instantaneous size. By employing a careful node numbering

system this size might be reduced considerably.

The following table is included to give a rough 1idea

about the allocation of CPU time used within the program.
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seds. Operation Performed
1.30 Evaluation of an element stiffnens matrix for an
8-node element. Integration points 2 x 2 x 2.
1.92 Evaluation of a mass matrix for an 8-node element.
3 x 3 x 2 integration points were used.
1.67 Transformation of mass and stiffness matrices of
one element to use for another element.
2.22 Evaluation of a stiffness matrix for a 10-node
element integrated at 3 x 2 x 2 points.
2.16 Evaluation of a mass matrix for a 10-node element
integrated at 3 x 3 x 2 points.
0,01 Asasembly of one element into system matrices.
0.25 Reduction of the size of the system matrices
from 85 to 80
. 0 b2 Reduction of the size of the system matrices
from 105 to 100
1.66 Reduction of the size of the system matrices
from 180 to 175
3.52 Reduction of the sixe of the system matrices
from 180 to 165
2.86 Reduction of the size of the system matrices
from 220 to 215
4,70 Reduction of the size of the system matrices
from 220 to 207
10.19 Reduction of the size of the system matrices

from 255 to 233

TABLE A4.1.1.

CPU Time used during difference operations.
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DATA PREPARATION
Job description card; 1 card; FORMAT (20A4); Columns 1-80.
Control integers; 1 card; FORMAT (9I5)

5 10 15 20 25 30 35 4o 45
NO NONO NNC M1 M2 ISTEK IPRINT MAPRO NEY

If ISTEKK3 NO= total number of elements in the structure

If ISTEKZ} NO= total number of elements in the first row
of the mesh

Total number of nodes in the structure.
Total number of nodes that are to be constrained.
Number of the first eigenvalue to be found.

Number of the last eigenvalue to be found.

ISTEK: Control integer for data generation program (GENDAT)

If ISTEK < 3 GENDAT not to be used. All the coordinates
of the nodes and master d4.0.f. are to be
given explicitly.

If ISTEK >3 GENDAT is to be used andj

when ISTEK = 5, for the elements beyond the first row
ITYPE= 2

when ISTEK > 5, for the elements beyond the first row
ITYPE= 3

when ISTEK< 5, for the elements beyond the first row
ITYPE is the same as the elements in
the first row.

IPRINT: Output control integer.

= 4 instantaneous size, frequencies and eigenvectors
printed.

1 + topology and coordinates printed.

2

3 2 + element information printed.
= 4 3 + restrained nodes are printed

5

4 + physical and geometrical properties printed
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9 > IPRINT > 7 5 + Element coordinates, topology, boundary
condition, degrees of freedom printed

= 9 7 + Structural stiffness matrix printed
>10 9 + Stiffness matrix for stiffening rods printed.

Recommended value for IPRINT = 8

MAPRO: Number of different material property sets.
1< MAPROE 5
NEY: Number of elements along the shell.
3) Material properties; MAPRO cards; FORMAT (3 E 10.5)
Col: 10 20 30
‘B RO PR
E = Modulus of elasticity
RO = Density
PR = Poisson's ratio

This card is also used to give the sectional properties of
stiffening roda. When stiffeners are used, the value of MAPRO is

increased by 1 and on the additional card following information

is given:
E = Modulus of elasticity of the rods
RO = 0,0 (since the rods are assumed massless)
PR = Cross-sectional area of the rods.

4) Geometric properties; 1 card; FORMAT (2F 10.4)

Col: 10 20
RLEN THIC
RLEN: Length of Shell
THIC: Thickness of the shell at a reference point.

S) Restrained nodes; NNC/16 cards; FORMAT (1615)

(used to display the restrained nodes, also in GENDAT)
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6) Topology and element information; NO cards; FORMAT (14I5,412)
Col: 50 55 60 65 70 80
TOPOLOGY INTEG LTIP ITYP IPRO INVER
TOPOLOGY : Topology of the element is given. Nodal numbers must
be entered in the ocrder shown in figure 2.1.

INTEG: Three digit integer. Each digit shows the number of

integration points for the stiffness matrix of the
element in g,rl, q directions respectively. In case

of a 2-node element INTEG = INC (gee 7)

LTIF: Shows the type of element
x 2 2-node stiffening bar
= 8 8-node quadratic element

= 10 10-node cubic-quadratic element.

IIYPE: Makes repetitive use of the element matrices by

transformation.

= 1 Matrices are calculated independently.

= 2 Element has the same orientation and geometry and
the same material properties as the previous one.

= 3 Element has different orientation but the same
geometry and material properties as ithe previous
one.

IPRO: Element material property set number. IPROE MAPRO

INVER: An integer array of dimension 4. It is used when one node
is defined in two different ways for two adjacent elements,
i.e. when top and bottom coordinates are interchanged.
Nodal numbers in the element numbering system gorrespond-
ing to the nodes which are to be inverted are given in

this array. When not in use it is left blank.
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50-70

7*) Coordinates and d.0.f. of the nodes; NONO cards;
FORMAT(6E10,4, 2I5)
Col: 10 20 30 ko 50 60 65 70
XT XB YT YB 2T " ZB - NBOF IDIS
XT, YT, aT: Top coordinates of the node,.
iB, XB, ZB: Bottom coordinates of the node.
NpoF: Total number of degrees of freedom at that node
O¢NDOF {5
IDIS: Five digit integer. Each digit represents
the d.0.f. u, v, w, &, P respectively. Each
digit can take any value between O=3., Their
meanings are:
0: Slave d.,o0.f. It is to be eliminated when contri=-
butions of the elements to this node are completed.
1: Master d.0.f., to be kept in the eigenvalue problem.
2: Restrained d.o0.f., not to be included in the
structural matrix.
3 Slave d.o.f. Indicates that a hinge is assumed
at that node.
7)  Control integers for GENDAT; 1 card; FORMAT (13I5)
Col: 5 10 15 20 25 30 3% 40 4s
NOPAR 1INC ID 1IR IBCA IBC2 Is2 MIS1 MIS2 1ISAR
NOPAR: Total number of substructures used for the determination
of coordinates and topology by GENDAT., (In one substructure
there cgn-not be more than 10 nodes along the side).
INC: Increment between first and second level nodes.
AD: Number of levels where there are master d.o.f.
IR: Master degrees of freedoms. IR=IDIS (see 7*) at that level.

It can only contain O's and 1's.

separately.

2's and 3's are given
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NDOF (see 7*) of constrained end. If all restrained
IBC1 = O,

IDIS of constrained nodes. If all d.o.f. are

constrained then IBC2 = 22222.

IDIS of hinged nodes. It can not contain 1 or 2.

If no hinges, leave blank.

Only needed when making use of the'symmetry. Then

it equals to NDOF of the nodes along the axis of

symmetry.

IDIS of nodes along the axis of symmetry. It can

only contain O0's and 2's.

An integer array of dimension 4. If the number of
any node along the reference side of the substructure
is put in this array, its XT and XB coordinates are

corrected as XT = XB = (XT+XB)/ 2.0.

8) Angle of pretwist and master d.o.f. levels; (1+ID)/8 cards;

FORMAT (8 E 10.4)

Col.

g
E

|

&

10 . 20 80
TOTAN ws(1) .-'.'o-.ws(,?)
ws(8)lll....'.ll..'.l'.....ws(ID)
Total angle of pretwist in degrees. The structure is
twisted linearly along the length around the coordinate

centre. If no pretwist TOTAN = 0.0.

An array containing the y-coordinates of the levels

(along the length) where there are master d.o.f.
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9) INDE: An ineger which indicates the type of substructure
whose particulars are to be given. 1 card; FORMAT (I5)
= 1 Plate type substructure (reference line is straight)

2 2 Circular cylindrical substructure.

= 3 Any cylindrical geometry.

10/1) Geometry of the plate; 1 card; FORMAT (8 E 10.4)

Col: 10 20 30 ko 50 60 70 80
XTI YTI XBI YBI XTF YTF XBF YBF

X YTI kK XBI Bl: Coordinates of the node at one end of
the reference line of substructure.

XIF, YTF, XBF, YBF: Coordinates of the node at the other

end of the reference line.

11/1) Division of the line along the reference side of substruc-
ture. 1 card, FORMAT (2I5)
Col: 5 10
NOPT NTERS
NOPT: Total number of nodal points between the two end

coordinates given in 10/1.

NTERS: When a negative value is given to NTERS top and
bottom coordinates of all the nodes for that sub-~

structure are interchanged. Otherwise NTERS = O,

10/2) Geometry of the circular cylindrical substructure; 1 card;
FORMAT (6 E 10.4, 2I5)
Col: 10 20 30 Lo 50 60 65 70
XC YC RAD THIC AINI AFIN NOPT NTERS

XC: X-coordinate of the centre of circular segment ) if in
) x -2
XC: Z-coordinate of the centre of circular segment ) plane.
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THIC:

AINI:

10/3)

NOPT:

NTERS:

11)

12)
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Outer radius of curvature of the segment.
Thickness of the segment.

Angle(in degrees) between the positive X-axis and
the radius which connects the first node on the
segment to the centre. Angle is measured +'ve

from X to Z following the shortest path.

Angle (in degrees) between X-axis and the radius

which connects the final nodal point to the centre.
Number of nodal points between AINI and AFIN,
See 11/1.

Control integers for general cylindrical geometry;
1 card; FORMAT (215).
Col: 5 10

NOPT NTERS

Number of nodal points along the reference line of

the prismatic section.

See 11/1.

Node numbers; 1 card; FORMAT (10I5)

Node numbers, given in order, between the initial and
final nodes of substructure. There are NOPTE 10 such
points.

Topology indication number; 1 card; FORMAT (10I5)

Gives the midside nodes, next to the nodes given in 11.
0o : no midside node next to the node given in 11.

n : number of the midside node next to the node given

in 11.
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5)

6)
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-n nodes along this node are hinged or along the
axis of symmetry.
-1 3 coordinates of this node are calculated in an-

other substructure.

Geometry of the general cylindrical section; NOPT cards;
FORMAT (4 E 10.4).
Col: 10 20 30 ko
XATI XABI YATI YABI
coordinates of each node in the reference plane of sub-

structure are given in the order from initial to final.

be taken on the following points:

The coordinate system chosen must be right handed.
When data generation subroutines are to be used, choose
global y-direction along the length of the structure.
Top and bottom points of a node are decided according to

§ and corresponding global coordinates must be in accordance.
Symmetry and hinge facilities in GENDAT can only be used
if the axis of symmetry or the hinges are on a line
parallel to one of the global coordinates.
To usehinge facilities, element numbering system must go
faster in the direction of hinged line.
Symmetry and hinge condition in GENDAT can not be used for

the same run of the program.
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APPENDIX 3

This appendix contains some additional figures to Chapter

5. Also a comparison of these figures is included.

Some abbreviations are used for the identification of
difference mode shapes. In this convention IG stands for
idealized geometry, similarly RG and EX for real geometry and
experimental. For instance, IG-8 indicates the 8th mode given

in idealized geometry finite element analysis.
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Fi es
Elgure No: Notesg:
A.3.1 (a), A.3.1. (b) Tip deflections for two frequencies

coupled at mode I1G-6.

A.3.2. Key to the deflection curves. Shows
the location of the numbered lines of
the deflection curves in X-Z plane
(X~section).

A.3.3 (a) = A.3.3 (¢). Sketches of the mode shapes obtained
using I1.G., with 102 "w'" master d.o.f.
(92 u + 92 w) were used for mode 6.

A.3.4 - A.3,19, Deflection curves for some of the ideal
modes obtained by using 102 master
d.o.f. The curves are drawn only for.
the nodes on the top face. The deflec-
tion curves of the corresponding nodes
on the bottom face are either the same
(S) as the top ones, or the mirror
image (MI) of them. This is indicated
in the figures with the abbreviations
(S) and (MI).

A.3,20(a) - A.3,20(c). Sketches of some of the mode shapes
obtained for real geometry, using 90
{w), 129 (w) and 146 (w + u) master
degrees of freedoms.

A.3.21 = A.3,.31. Deflection curves for some of the
mode shapes of figure A.3.20, using
129 master degrees of freedoms. The
nodes of the top and bottom faces are
shown separately.

A.3.32(a) - A.3.32(Db) Sketches of the mode shapes determined
experimentally.
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Comparison of the Modes

8/9

10

11

Comparison with R.G. and EX.

Mode shapes match in all cases perfectly.

Very little coupling with 2nd tortion is seen in
experimental and RG finite element analyses.
Frequency increases with respect to the I1.G. analysis.
Experimental mode determination was difficult,
probably requires a better excitation. Effect of
imperfect geometry can be seen in R.G. mode shape.
Frequencies agree in all three analyses.

Difference between the frequencies of I.G., and

R.G, analyses is similar to the difference in

first bending mode. Experimentally a frequency was
detected at 708.5 Hz, identification of the mode
shape was not possible, accepted as 2nd bending
mode.

Frequencies are very close. EX-7/8 and R.G;-8/9/1O
have similar mode shapes, possibly coupling of I1.G.8
and 1.G.9, Deflection curves of R.G.9 are very
similar to the deflection curve of I1.G.9.

A remarkable resemblance between EX-10 and R.G.13/14,
Equivalent I1.G, mode is I1.G,10. Effect of choice of
degrees of freedom can be seen by comparing R.G,13
and R.G.14.

R.G, 11/12 are quite similar to EX - 9, and their
equivalent is 1.G,11. R.G.11 and R.G.12 represents
the same mode, slight difference is due to the

different master degrees of freedoms.
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;;gé_!g. Comparison with R.G, and EX

12/13 EX-~11 and EX-12 have more or less the same shape
which is similar to R.G.15, Although sketches of
I1.G.12 resemble to this shape, deflection curve
for 1.G.13 and R.G.15 show the same pattern. A
coupling between the two might have taken place.

15 EX~13 and 1.G.15 are quite similar, no correspon-
ding mode in R.G. group.

16 Deflection curves are similar to R.G,18's, no
corresponding mode identified experimentally.

18 Examination of the deflection curves show a
resemblance with R.G. 17.

19 EX~15 and R.G.19 have similar mode shapes. The

only possible mode corresponding to them in I.G.

group is I1.G,19,

Similar frequencies pointed above are listed on table A.3.1.
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Ideal Geometry Real Geometry Experimental
Mode Frequency| Mode Frequency Mode Frequency
No. He No. Hz No. Hz.

1 196,5 1 158 1 142

2 302.5 2 306.8 2 297

3 335.5 3 371.5 3 355

b 562 4 588.4 b 561

5 553 5 648 5 598

6 821 6 837 6 812

7 8o4.5 7 739 708

8/9 954/950 | 8/9/10| 979/1027/1004| 7/8 905/935
10 1042 13/1% | 1155/1249 10 1096

11 1047 11/12 | 1052/1109 9 980
12/13 | 1062/1191| 15 1299 11/12 1136/1157
15 1419 - - 13 1313

16 1502 18 1638 - -

18 1598 17 1541 - -

19 1733 19 1818 15 1633

Table A,3.1.

Frequencies corresponding to similar mode

shapes in three different analysis.
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Figure A.3.1.(a): Tip deflection for mode 6 at frequency =
. 809 Hs.
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Figure A.3.1.(b): Tip deflection for mode 6 at
frequency = 879 Hsz.
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Figure A,3.2: Key to the deflection curves.
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Figure A.3.3.(a): Predicted ideal mode shapes of the Oval
X-Section blade using the idealized geometry.
NNC stands for number of nodal circles.



=125~

mg.d' ng Top Face Bottom Face Tip section NNC
w
o .
- » *
aE =
o . - -
™~
nig ’ — ] : - 2
— - . - - -
® - L .
]
13| ' M : _ 2
HiEnER e
A
4 - L = s 2
.1 o - —1— - -

Figure A.3.3.(b).
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Figure A.3.3.(c).
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Figure A.3.4:

Mode &4, (S),

| T~
<//\ |

f = 562 Hz.
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Figure A.3.5: Mode 6, (MI),

£ = 821.5 Hz.

Figure A.3.6:

w

Mode 7, (8),

f= 804.5 Hz.

Figure A.3.7:

Mode 8, (MI),

f= 95‘# Hz .
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Figure A.3.8: Mode 9, (MI), f = 950 Hz,
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Figure A.3.9: Mode 10, (MI), £= 1042 Hz.

w
//////3
//////////f”—_“‘\\\\\\\\////////’———~\\\\\\\\/// L
2
Figure A.3.10: Mode 11, (S), f= 1047 Hz.
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Figure A.3.11: Mode 12, (S), £= 1062 Hz.
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Figure A.3.12: Mode 13, (MI), f = 1191 Hz.
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Figure A.3.13: Mode 14, (S8), f = 1359 Hsz.
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Figure A.3.14: Mode 15, (S), f = 1419 Hz.
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Figure A.3.15: Mode 16, (MI), f = 1502 Hz.
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Figure A.3.16: Mode 17, (MI), f = 1583 Hz.
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Figure A.3.17: Mode 18, (S), £ = 1598 Hz.
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Figure A.3.18: Mode 19, (MI), f = 1733 Hz.

Figure A.3.19: Mode 20, (S), f = 1513 Hz.
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Figure A. 3.20 (a): Mode shapes obtained from the finite

element analysis of the real geometry.
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Figure A.3.20 (b):
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Figure A4.3.20 (c):
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Figure A.3.21: Mode 8, f = 979 Hz.

L

Figure A.3%.22: Mode 9, f = 1027 Hz.
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Figure A.3.23: Mode 11,

f = 1052 Hz.

Figure A.3.24: Mode 13,

f = 1155 Hz.
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Figure A.3.25: Mode 15, f = 1299 Hz

Figure A.3.26: Mode 16, f = 1456 Hz.
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Figure: A.3.27: Mode 17, f = 1541 Hz.

Figure A.3,28: Mode 18, f = 1638 Haz.
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Figure A.3.29: Mode 19, £ = 1818Hz,

Figure A.3.30: Mode 20. f = 1876 Hs.
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Figure A.3.31¢ Mode 21, £ = 2005 Hez.
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Figure A.3.32(a):

Experimental mode shapes and natural
frequencies.
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Figure A.3.32 (b): Experimental mode shapes and natural
frequencies.
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APPENDIX &4

Deflection of the cross-section of the G.E.C,

turbine blade analysed in Section 6.4,
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Mode 1

Mode 3 Middle section

Figure A.4. 1(a).
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Mode 5 Tip section

o e e —

Mode 5 Middle section

A.l}.1. (b):




- 145

Figure A.4.1 (¢):

Tip section
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Mode 8 Middle section

- Mede 9 Tip section

Mode 9 Middle seclion

Figure A.4,1.(d):
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Figure A.4.1.(e):

Mode 10

Mode 11

Mode 11

Tip section

Tip section ~

Middle section
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Mode 12  Tip section

/ Mode 12 Middle section

Figure A.4.1. (f):
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APPENDIX 5

Listing of the computer program used in this thesis.
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