W Durham
University

AR

Durham E-Theses

Design and application of convergent cellular
automata

JONES, DAVID,HUW

How to cite:

JONES, DAVID,HUW (2009) Design and application of convergent cellular automata, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/84/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/84/
 http://etheses.dur.ac.uk/84/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Design and application of convergent cellular
automata
From morphogenesis to the design of reliable electronic systems and self-assembling

robotics

David Huw Jones

A thesis presented for the degree of

Doctor of Philosophy

Centre for Electronic Systems
University of Durham
England
February 2009

Dedicated to

My family, my friends, my colleagues. Everybody who made this possible.

Design and application of convergent cellular automata
From morphogenesis to the design of reliable electronic systems and self-assembling

robotics

David Huw Jones

A thesis presented for the degree of
Doctor of Philosophy

Abstract

Systems made of many interacting elements may display unanticipated emergent
properties. A system for which the desired properties are the same as those which
emerge will be inherently robust. Currently available techniques for designing emer-

gent properties are prohibitively costly for all but the simplest systems.

The self-assembly of biological cells into tissues and ultimately organisms is an
example of a natural dynamic distributed system of which the primary emergent
behaviour is a fully operational being. The distributed process that co-ordinates
this self-assembly is morphogenesis. By analysing morphogenesis with a cellular au-

tomata model we deduce a means by which this self-organisation might be achieved.

This mechanism is then adapted to the design of self-organising patterns, reliable
electronic systems and self-assembling systems. The limitations of the design algo-
rithm are analysed, as is a means to overcome them. The cost of this algorithm
is discussed and finally demonstrated with the design of a reliable arithmetic logic
unit and a self-assembling, self-repairing and metamorphosising robot made of 12,000

cells.

Declaration

The work in this report is based on research carried out at the University of Durham,
the School of Engineering, the Centre for Electronic Systems, England. No part of
this report has been submitted elsewhere for any other degree or qualification and

it is all my own work unless referenced to the contrary in the text.

Copyright (©2007 by David Huw Jones.
“The copyright of this report rests with the author. No quotations from it should be
published without the author’s prior written consent and information derived from

it should be acknowledged”.

v

List of publications

Prior publications of the author and supervisors (David Huw Jones, Richard McWilliam

and Alan Purvis) are listed below:

1. Journal paper: Design of convergent cellular automata, Biosystems, Decem-

ber 2008.

2. Invited chapter: Design of self-assembling, repairing and metamorphosising

Arithmetic Logic Unit, InTech publishing (expected publication July 2009).
3. Patent (pending): Self-repairing electronic data systems. Patent GB0802245.1

4. Conference paper: A bio-inspired model for the design of self-assembling

systems, Proceedings of BioNano 2009.

5. Conference paper: Mimicking the community effect, Proceedings of BioSys-

Bio 2009.

6. Conference paper: Mimicking morphogenesis for the design of robust elec-

tronic circuits, World academy of science, engineering and technology, July

2007.
Work by the author has been cited in:

1. Dependability analysis of a safety critical system: the LHC beam dumping sys-
tem at CERN: http://cdsweb.cern.ch/record/997680/files/thesis-2006-054.pdf

Acknowledgements

The list is endless. To name but a few...Professor Alan Purvis, Doctor Richard

McWilliam, the Jones clan, Rachael Stephenson, Chris Sparks, Ruth Vonberg, Paul

Harford, Katie Rutlidge, Dr Vernon Armitage, Dr James Blowey, Dr Dirk Schutz,

Joe Milbourn, Richard Curry, Christopher Paterson.

Contents

Abstract
Declaration
Acknowledgements

1 Introduction and objectives
1.1 Morphogenesiso
1.2 Biomimicry

1.3 Objectives of research L.

2 Models of Morphogenesis
2.1 Overviewo
2.2 Cannibals and Missionaries
2.3 A model of morphogenesis

2.3.1 Theresting state Lo

vi

iii

iv

vi

CONTENTS vii

2.3.2 The transient stateo oo 10
2.3.3 Turing instability inequalities 13
2.3.4 An example reaction-diffusion system 14

2.4 Experimental evidence for morphogenesis 16
2.5 A more comprehensive model of the developmental cycle 17
2.6 Conclusions 20
3 Design and simulation of morphogenesis 21
3.1 A morphogenesis simulation framework and results 21
3.2 Designing a genome to create a particular pattern 23
3.2.1 Evolutionary algorithms 23
3.2.2 Eggenberger’s evolution-development simulation 25

3.3 Wolpert’s French flag, 26
3.4 Miller’s French flag 26
3.4.1 Cartesian genomes 26
3.4.2 The simulation world 27
3.4.3 The evolution algorithm 28
344 Results. 29

3.5 LiusFrench flag 29
3.5.1 A new diffusion modelo 30
352 Results. 32

3.6 Conclusions 33
4 Mimicking morphogenesis with convergent cellular automata 34
4.1 Cellular automata, their classification and design 35
4.1.1 Class one cellular automata 36
4.1.2 Class two cellular automata 37
4.1.3 Class three cellular automata 37
4.1.4 Class four cellular automata 38
4.1.5 Reversible cellular automata 38
4.1.6 Langton’s lambda parameter 39
4.1.7 Models of independence 40

4.1.8 Mean field theory 41

CONTENTS viii

4.2 An equivalent matrix model L. 42
4.3 One dimensions, from first to last state 43
4.3.1 The transition function from first to last state 43

4.3.2 The conditions for convergence 44

4.4 Metric spaceso 45
4.5 The Lagrange multiplier 49
4.6 The conditions for a cellular automata to converge 51
4.7 Two dimensions, from first to last state 55
4.8 Conclusions 58

5 Designing cellular automata to converge to specific patterns 59
5.1 1D cellular automata design 59
5.2 Designing a 1D CA from the intended final pattern 61
5.3 Designing a 2D CA from the intended final pattern 62
5.4 2D cellular automata design example 63
5.5 Limitations on possible cellular automata states 64
5.6 Significance of additive CA limitations 65
5.7 Effect of increasing the dimensions of the CA 65
5.8 Effect of using a Moore neighbourhood 69
5.9 Conclusions 71

6 Non-linear cellular automata design 73
6.1 A sum-of-products representation of look-up tables 74
6.2 General case convergence analysis of cellular automata 7
6.3 Design of a look-up table transition functions 78
6.4 Stateredundancyo 82
6.5 Conclusions 85

7 Demonstrating robust patterns 87
7.1 Developing a three-by-three French flag 87
7.2 Developing a twelve-by-twelve French flag 88
7.3 Developing a sixteen-by-sixteen checkered pattern 91

7.4 Developing a 32 by 32 Welsh flag 91

CONTENTS ix
7.5 Developing a 250 by 250 Image “Lena” 93
7.6 Observations. 96

8 The community effect — a bio-inspired optimisation 101
8.1 The community effect in animal development 101
8.2 A community effect model oo 102
8.3 The design algorithmo 103

8.3.1 Grouping algorithm 103
8.3.2 State assignation 104
84 Results. 106
8.5 Observations. 112

9 Design for reliability: analysis and techniques 113
9.1 Ultrareliability 115
9.2 Reliability analysis o oo 118

9.2.1 Modelling component failure 120
9.2.2 Assessing the reliability of systems 126
9.2.3 Modelling failure modes 129
9.3 Existing techniques for designing systems to be reliable 133
9.3.1 Staticredundancyo 133
9.3.2 Dynamic redundancyo 134

10 Morphogenesis-inspired ultra reliability 137
10.1 Complexity versus reliability 138
10.2 ASIC implementations 138
10.3 A self-assembling self-repairing one-bit full-adder 140

10.3.1 Design considerations 140
10.3.2 A self-reconfiguring ALU design 145
10.4 Noticing failureo 147
10.5 Assessing the reliability of the ALU 151
10.5.1 Characterising the failure modes 161
10.6 Observations. 164
10.7 Conclusions 165

11 Morphogenesis-inspired self-assembly

11.1 Modular robotics

11.2 Existing self-assembly techniques . . .

11.3 Design of irregular 2D automata

11.3.1 Analysis
11.3.2 Partition scheme
11.3.3 Rule generation algorithm . . .
11.3.4 Assembler
11.35 Results.

11.4 Design of irregular 3D automata

11.5 Metamorphosis and self-assembling systems

11.5.1 Designing systems to metamorphosise

11.5.2 Results.

11.6 Conclusions

12 Conclusion

A Source code

A.1 Reaction-diffusion models

A.2 Design and test of convergent CA . . .

A.3 Self-assembling self-repairing ALU code

A4 Self-assembling 3D systems code

List of Figures

1.1

1.2

1.3

Abbreviated Injury Score (AIS) for liver damage

p(Survival) v. Injury score. Data based on clinical trials assembled

by AAAM [SWMKO5].

Leonardo da Vinci’s bio-inspired plane

166
167
170
172
173
174
176
177
178
178
180
182
183
186

194

LIST OF FIGURES xi

2.1 Clumping of cannibals and missionaries formed by Turing’s reaction-
diffusion analogyo 8
2.2 Example of Turing’s reaction-diffusion equations 16
2.3 Anterior-posterior determination in fruit flies 17
2.4 Morphogenesis patterns in fruit flies 18
2.5 Example of Meinhardt stripes 19
3.1 Simulated cell development 22
3.2 Evolved developed forms 25
3.3 Genome to boolean logic mapping 27
3.4 A French flag pattern developed from a single cell 30
3.5 The corresponding morphogen concentrations 31
3.6 A French flag pattern developed from a corrupt flag 31
3.7 A French flag pattern developed from null initial conditions 32
3.8 A French flag pattern repaired from corrupt initial conditions 33

4.1 Rule 36. A member of the class one set. This rule will always reach
a homogeneous state L oo 36

4.2 Rule 36, a member of the class two set. This rule displays sensitivity
to initial conditions.o Lo 37

4.3 Rule 30, a member of the class 3 set. This rule displays aperiodic

chaotic patterns and is used as part of the random number generator
in the software package Mathematica. 38

4.4 Rule 46, a member of the class four set. This rule displays complex
behaviour. 39

4.5 Rule 15, the output of this rule is independent of its inputs, because
the information moves from the centre to the right edge 41
4.6 Convergence in (R,d) 47
4.7 Convergence in (Xp|z; € {0,1}) 47
4.8 The Sierpinski triangle after 10 iterations 48

LIST OF FIGURES xii

4.9

4.10
4.11
4.12

4.13

5.1
5.2
9.3
5.4
9.5
5.6
5.7
5.8

9.9

5.10
5.11
5.12

5.13

5.14

6.1
6.2
6.3
6.4

Finding the Lagrangian of f constrained by g 50
Convergent 1D 2 state additive CA 95
Index of CA elements, and a row-major vector equivalent 56
Convergent 2D 2 state CA 57
The conesnail o 58
Desired 1D 6 cell CA pattern. 61
1D 6 cell CA developing from null and random initial conditions . . 62
Desired 2D 6 cell CA pattern. 63
2D 4 cell CA developing from null initial conditions 63
2D 6 cell CA developing from random initial conditions 64
An impossible CA state 64

Number of different CA states verses CA size. R is the CA modulus. 66

Log percentage of different CA states verses CA size. R is the CA

modulus. 66
The neighbourhood function of a stable CA of 16 cells in 4-D 67
A logarithmic plot of N versus the number of dimensions 68

The augmented neighbourhood function of a stable CA of 2 dimensions 69
The augmented neighbourhood function of a stable CA of 3 dimensions 70

A logarithmic plot of N versus the number of dimensions for both

the orthogonal and augmented neighbourhood functions 71

A logarithmic plot of N versus the size of the alphabet for both the

orthogonal and augmented neighbourhood functions 72
An XOR gate look-up table and its sum-of-products expression . . . 75
An implementation of a LUT-based cell 79
A 9 cell French flag pattern Lo 79

The rules a 9 cell French flag CA must obey 80

LIST OF FIGURES xiii

6.5

6.6

6.7
6.8
6.9
6.10

6.11

6.12

7.1
7.2
7.3
7.4
7.5
7.6

7.7
7.8

7.9

7.10

7.11

7.12

Development of a 9 cell CA from null conditions to a French flag

pattern Lo 80

Development of a 9 cell CA from random conditions to a French

flag patterno 81
A 6 by 6 CA pattern that cannot be formed by g 81
Percentage of all CA states that are possible using g, versus R . . . 82
An implementation of a LUT-based cell with an alias output 83
Design algorithm for gand h() 84

Percentage of all possible 1D CA states versus the size of the Re-
dundancy alphabet. R = Number of output states 85

Percentage of all possible 1D CA states versus the size of the Re-
dundancy alphabet S = Size of CA 86

The development of a three-by-three French flag from the null state 87
The development of a three-by-three French flag from a corrupt state 88
Errors v Time of developing French flag 88
The output rule of a twelve-by-twelve French flag 89
The development of a twelve-by-twelve French flag from the null state 89

The development of a twelve-by-twelve French flag from a corrupt

Errors v Time of developing French flag 90

A segment of the checkered pattern CA state map and its corre-

sponding state-output mapping 91

The development of a sixteen-by-sixteen checkered pattern from the

null state 92

The development of a sixteen-by-sixteen checkers flag from a corrupt

Errors v Time of developing checkered pattern 93

The development of a 32 by 32 Welsh flag from the null state 94

LIST OF FIGURES xiv

7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20

7.21

8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

8.15

9.1

The development of a 32 by 32 Welsh flag from a corrupt state . . . 95
Errors v Time of developing Welsh flag 95
The development of a 250 by 250 greyscale image from the null state 96

The development of a 250 by 250 greyscale image from a corrupt state 97

Errors v Time of developing 250 by 250 image 97
Errors v Time of developing 250 by 250 image 98
Input combinations for each cell 98
Results from compressing 40K images 99

Correlation between JPEG file size and number of rules and assign-

ments needed to encode it 100

Muscle cells developed in (a) a tadpole, (b) a conjugate of animal

and vegetal tissue [HGI0] L. 102
(a) Welsh flag, (b) Welsh flag in 560 communities 103
(a) Conflicting communities, (b) A solution 104
(a) Conflicting communities, (b) A solution 105
Communities created and solved per design iteration. 106

(a) Welsh flag, (b) Welsh flag in 1103 communities 106
(a) Greek flag, (b) Greek flag in 128 communities 107
(a) Czech Republic flag, (b) Czech Republic flag in 285 communities 108
(a) Canadian flag, (b) Canadian flag in 143 communities 108
(a) United Kingdom flag, (b) United Kingdom flag in 772 communities109
UK flag assembling from null over 140 iterations 110
UK flag assembling from random over 140 iterations 110
(a) United States flag, (b) United States flag in 480 communities . . 111
US flag assembling from null over 140 iterations 111

US flag assembling from random over 140 iterations 112

A comparison of mobile phone reliability 114

LIST OF FIGURES XV

9.2
9.3
9.4

9.5

9.6
9.7
9.8

9.9
9.10
9.11

9.12

9.13

10.1
10.2

10.3

10.4
10.5
10.6
10.7
10.8

10.9

The Large Hadron Collider 117
The LHC Beam Dump System 118

The effect of the shape parameter on the Weibull distribution (n =
Ly=0) . . 121

A characteristic model of the product lifetime, the bathtub curve . . 122
Yield of semiconductors [Gwe93] 123

A characteristic model of infant mortality, a Weibull plot with beta

A characteristic model of wear-out: a Weibull plot with beta = 1.4 . 125
An example fault tree [FilO5] 131
An example of static triple-modular redundancy 133

A comparison of the reliability of single and triple-modular redun-

dant systemso L 134

A comparison of the reliability of increasing modular redundant

systemso 135
The system cost of morphogenesis at different hierarchies 138
Alternative ASIC implementations 139

A fail-safe re-routing algorithm. (a) No broken cells, (b) one broken

cell, (¢) three broken cells 141
1-bit full-adder schematic 142
Alternative one-bit full-adder schematic 144
Different typesof cell 144
1-bit full-adder layout 145
A 1-bit adder self-assembling 146
Cell arrangements and boundary conditions for ALU 148

10.10 A 1-bit AND gate self-assembling 149

LIST OF FIGURES xvi

10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20
10.21
10.22
10.23
10.24
10.25
10.26
10.27

10.28

11.1

11.2

11.3
11.4

11.5
11.6

11.7

A 1-bit OR gate self-assembling 149
A 1-bit NOT gate self-assembling 149
A 1-bit subtractor self-assembling 150
A cell of the ALU design 153
A 1-bit ALUmadeof 16 cells 154
Comparison of different ALU designs 154
Reliability parameters for the ALTERA STRATIX IT 155
Markov model of the ALU, memory and processor systems 155
Reliability comparison (No redundant cells) 158
Reliability comparison (1 redundant cell) 159
Reliability comparison (5 redundant cells) 160
Reliability comparison (10 redundant cells) 160
Mean time to failure (MTTF) of ALU 161
Weibull curves for self-assembling ALU 162
Weibull curves for self-assembling ALU with 1 redundant cell 162
Weibull curves for self-assembling ALU with 2 redundant cells . . . 163
Weibull curves for self-assembling ALU with 5 redundant cells . . . 163
Weibull parameters for self-assembling ALU 163
List of ongoing self-assembling robotics projects [JAO1] 169
Two types of Molecule module. The male (a) has an active gripper

mechanism, the female (b) has a passive fixture. 169
Five snapshots of a Molecule translation experiment. 170

Inputs combinations, an irregular 2D CA and the flow of state in-

formation from the origincell 00 173
The state to neighbourhood function mapping 173
The partitions of a 2D array of 1000 cells 178

The array self-assembling and converging from the origin cell 179

LIST OF FIGURES xvii
11.8 The array converging from a corrupt pattern 179
11.9 The partitions of a 3D robot shape 181
11.10 A 3D system of 55,000 cells self-assembling from the origin cell . . . 182
11.11 The same 3D system self-healing from a corrupt shape 183
11.12 Views of the “Bumblebee” car 185
11.13 Views of the bumblebee’ robot 186
11.14 Partitions of the car model 187
11.15 Partitions of the robot model 187
11.16 The self-assembly of a 12,000 cell robot 188
11.17 The metamorphosis of a 12,000 cell robot into a car 189
11.18 A car that has been corrupted from the robot-car transition 190
11.19 A robot that has been corrupted from the car-robot transition 191
11.20 The self-assembly of a 12,000 cell car 192
11.21 The metamorphosis of a 12,000 cell car into a robot 193

Chapter 1

Introduction and objectives

The core idea is that nature, imaginative by necessity, has already
solved many of the problems we are grappling with. Animals, plants, and
microbes are the consummate engineers. They have found what works,
what is appropriate, and most important, what lasts here on Earth. This
is the real news of biomimicry: After 3.8 billion years of research and
development, failures are fossils, and what surrounds us is the secret to

survival. [Ben9g|

Engineering is a top-down approach to systems design. Given a specification, the
problem is first broken down into a number of smaller, solvable, problems; their
solutions are then re-assembled to create a complete design. Usually the sub-units
cannot be evaluated against the complete task specification and the failure of any one
can cause the entire system to fail. In contrast, biology uses a bottom-up approach:
starting with fields of homogeneous cells, co-ordinated co-operation produces struc-
tures that achieve solutions to complex specifications. Able to grow, renew and
self-repair, biological systems can create large, extremely reliable and complex, sys-

tems. The mechanism that makes this reliability possible is morphogenesis.

1.1. Morphogenesis 2

1.1 Morphogenesis

Morphogenesis is a distributed chemical process that is responsible for co-ordinating
the self-assembly and self-repair of biological systems. The abbreviated injury score
(AIS) [MSP*89] can be used to quantify just how reliable self-repairing morpho-
genetic self-repairing systems (such as the human liver) are. It is a measure of the
severity of an injury used as a tool for triage in accident and emergency departments.
Table 1.1 is an example AIS, the criteria for assessing the damage to a human liver.
Results from clinical trials compiled by the Association for Automotive Medicine
(AAAM) show an approximate correlation (see figure 1.2) between the AIS of an
injury and the probability of surviving it.

Grade | Type of injury Description of injury

1 Laceration Tear less than 1cm deep

2 Laceration Tear 1 - 3cm deep, less than 10cm in length

3 Laceration Damage of 25% to 75% of the hepatic lobe

4 Laceration Damage to more than 75% of the hepatic
lobe

5 Laceration Damage to the central major hepatic veins

6 Vascular Split into two or more large pieces

Figure 1.1: Abbreviated Injury Score (AIS) for liver damage

Another demonstration of the reliability of morphogenesis is evident in the sala-
mander family. Salamanders can regrow the same limbs repeatedly, as well as their
tail, jaw, and the lenses and retinas of their eyes. In terms of body mass alone,
the salamander can regenerate approximately 60% of itself in the event that it is

damaged.

A final, remarkable, demonstration is the self-repair capability of the ascidian (a
type of marine filter feeder). They have been reported to regenerate from just

partial blood cells to give rise to a fully functional organism [BC36].

1.2. Biomimicry 3

p(Survival) versus Abbreviated Injury Score

—

0.8

0.6

p(Survival)

0.4

0.2

3 4
Abbreviated Injury Score (AIS)

Figure 1.2: p(Survival) v. Injury score. Data based on clinical trials assembled by

AAAM [SWMKO5).

1.2 Biomimicry

Biomimicry is the study and imitation of natural systems. This is not a new
idea: Leonardo da Vinci studied the flight of birds before designing the Ornithopter
[Cut56], figure 1.3. More recent studies include the design of artificial neural net-
works and evolutionary computation. Another is the study of developmental biology,

of which morphogenesis is a part.

Figure 1.3: Leonardo da Vinci’s bio-inspired plane

This thesis is an exercise in biomimicry: the goal is to be able to mimic morpho-

1.3. Objectives of research 4

genesis in electronic systems, so as to improve their reliability. The first stage of

biomimicry is a study of the subject and the development of an appropriate model.

Various models already exist for morphogenesis. Alan Turing [Tur50a] was the
first to propose a model for morphogenesis that consisted of multiple point sources
of chemicals that diffuse radially and interact with each other. This study, and
subsequent work by Gurdon [HG90] and Meinhardt [Mei82], is the subject of the

second chapter of this thesis.

More recent models have been computational. Researchers in this field have used
supervised evolutionary algorithms to evolve local rules against a cost function that
is defined as the difference between the desired global arrangement and the global
arrangement that results from the systems development. Their models, algorithms

and results are the subject of the third chapter of this thesis.

1.3 Objectives of research

If the mainstream bio-inspired techniques are neural networks and evolutionary com-
putation, developmental biology is one of the more obscure. This is principally be-
cause the relationship between the local rules obeyed by each cell and the resulting
global arrangement is unknown. The lack of a suitable mapping from local rules
to global arrangement has cost the field in both the possible size and complexity
of the system, and also in the computational time necessary to search the possible
local rules for a solution. Thus one goal of the research presented here is to replace
evolutionary algorithms with a deterministic approach to designing morphogenesis-

inspired systems; this is achieved with a cellular automata model.

The invention of John von Neumann, cellular automata (CA), were used to study
self-replication. CA typically consist of arrays of identical computing cells that
locally and synchronously interact at discrete time intervals to determine their state.

Nowadays CA are the bailiwick of mathematicians studying chaos. Certain CA

1.3. Objectives of research 5

respond to small changes in their initial conditions with a disproportionately large
change to their final conditions. To the contrary, if CA are to be used as a modelling
framework for morphogenesis, they will need to be insensitive to initial conditions:
that is, regardless of their starting conditions, the CA must converge to the same
final form. An algebraic and functional analysis of this requirement is presented in

chapter four.

However, it is not enough for a CA model to simply converge to the same fixed point.
To be of use, the CA must be designed to converge to a fixed point we can choose.
Chapters five and six present an algebraic and deterministic design algorithm for
this purpose. Chapter seven demonstrates the results with the design of various
converging CA. Chapter eight demonstrates an improvement to the model that is

also bio-inspired.

In order to apply this model to the design of reliable electronic systems it is neces-
sary to infer electronic function to the form of this biological analogue. Thus, the
biological tissue becomes a massive parallel arrangement of small computing units;
the differentiated, fully-formed cell becomes instead an operational component of a

larger system.

Chapter nine introduces existing tools for system analysis of, and design for, re-
liability. Chapter ten describes, demonstrates and analyses the design of a self-
assembling self-repairing arithmetic logic unit (ALU) on a field-programmable gate-
array (FPGA) hardware and an alternative application-specific integrated-circuit
(ASIC). The design process requires a top-down discretisation of the design into
constituent components and the development of a bottom-up self-assembly algo-

rithm.

Self-assembling, self-repairing robotics has largely been the bailiwick of science-
fiction writers. The design of such a system with greater than a thousand identical
components is the subject of an IEEE robotics grand challenge for this century.

Chapter eleven describes how the rectangular CA model of morphogenesis can be

1.3. Objectives of research 6

adapted to the design of irregular three-dimensional shapes. This is then demon-
strated with the self-assembly and self-repair of a model of a robot shape formed
from 55,000 identical cells. Finally, this algorithm is adapted to converge to one of
many forms according to the initial conditions of the first cell. This makes possible
the design of metamorphosising systems: systems capable of transforming from one
form to another according to the demands of the environment or the challenges of
the latest task. This is demonstrated with the design of a 12,000 cell system that

can transform from a robot shape into a car shape and back again.

Chapter 2

Models of Morphogenesis

For nature, as we are so often reminded, is under no obligation to make

things simple just for our convenience [Cho01].

2.1 Overview

Here we present Turing’s ordinary differential equation model of morphogenesis to
show that spatiotemporal patterns can be formed by simple diffusion models. This
model is then elaborated upon to include Meinhardt’s system of five diffusing mor-

phogens which can better imitate observed biological patterns.

2.2 Cannibals and Missionaries

Imagine an island of cannibals and missionaries. The cannibals can have sex, cre-
ating other cannibals in the process. The missionaries cannot have sex but own
bicycles; two missionaries convert a cannibal into another missionary. This is the
analogy Alan Turing [Tur50a] used to describe his “Reaction-Diffusion” model of

morphogenesis. On such an island pockets of cannibals surrounded by missionaries

7

2.2. Cannibals and Missionaries 8

are formed.

Listing 2.1 is the pseudo-code of an agent-based “cannibal-missionary” island model,
Appendix A.1 includes a complete code listing and figure 2.1 shows an example result

of the model.

1 Create 500 missionaries and 500 cannibals.

2 Create a world of 128x128 discrete 2D square cells.

3 Place each agent in a cell chosen at random.

4

5 For each iteration of the simulation:

6 For each agent:

7 Move the agent left ,right ,up,down or leave it where it is. Each
movement is equally probable, and is determined by a random number.

8 For each cell:

9 Test for the presence of any combination of two cannibals or two
missionaries and a cannibal. The agents should be tested in order
of age, and the combinations only apply to agents adgacent to each
other in this sequence.

10 For each combination of two cannibals create another cannibal in the
same cell.

11 For each combination of one cannibal and two misisonaries, convert the
cannibal into a missionary.

12

13 Output a 128x128 bit image of the world. The cells dominated by cannibals, colour red.

The cells dominated by missionaries, colour green.

Listing 2.1: Cannibals and Missionaries pseudo-code

B cannibal
Missionary

Figure 2.1: Clumping of cannibals and missionaries formed by Turing’s reaction-

diffusion analogy

The spotty pattern formed by the missionaries (green) and cannibals (red) is anal-

ogous to the spotty pattern observed on the skin of a cheetah.

2.3. A model of morphogenesis 9

2.3 A model of morphogenesis

Turing proposed that the spots of a cheetah, the stripes of a zebra and every other
arrangement of cells within living systems could be explained by the diffusion of
chemicals he named “morphogens” and their interaction with each other. He sought
to show this by proving that a set of identical cells could, if isolated, have stable
morphogen concentrations. However if the morphogens were permitted to diffuse
between cells, the morphogen concentrations would become unstable and patterns

would form.

To demonstrate this model, let us consider a simple two-morphogen (1, x2) system

of cells in one-dimension !.

2.3.1 The resting state

If, for a moment, we consider small perturbations of the concentrations of the mor-
phogens about 7., the system’s resting state, we can use linear ordinary differential

equations (ODEs) (2.1) to describe their reaction and diffusion.

11 Q12

Where A =

Q21 A22

Let A be an eigenvalue of A. According to Cramer’s rule, the system will only have

non-trivial solutions if det(A — AI) = 0.

!This proof was derived from Turing’s paper [Tur50a], the lecture notes of Dr James

Blowey[Blo07] and the lectures notes of Professor Stephen Childress[Chi05]

2.3. A model of morphogenesis 10

det(A —)\[) = A11Q92 —)\(&11 + a22) +)\2 — 120921 (22)

Let
T = a1 + aso (23)
= Q11022 — Q12021 (2'4)

Therefore det(A — X\I) = A\ — TA+ D and its roots are given by:

A= (2.5)

From (2.1) we know x o e, thus for the resting state to be stable (change from

is opposed), both roots of (2.2) must be negative. Therefore D > 0 and T < 0.

2.3.2 The transient state

Now let us consider larger permutations of the concentrations of the morphogens,

as a result of diffusion of the morphogens between neighbouring cells.

Let each cell be a small cube of side A with the chemicals z distributed equally
within it. Each cell has an index ¢ from 0 to N and the cells are arranged in a 1-D

loop such that the neighbours of cell N are N — 1 and 0.

Ficke’s law states:

The flow of chemical from one cell to another is proportional to the
difference in the chemical concentrations of the two cells, the flow being

from the higher to the lower.

The flux, f;, of morphogen j into cell 7, will be:

2.3. A model of morphogenesis 11

flux fi = Kk a% (@7 —2)) + Kk a% (20 - 2t) (2.6)
= ky A% (20 =228 + 2T (2.7)
f2 = k’g A2 (.1'371 — 233'12 + l’l;rl) (28)

where {ky, ka} > 0 are constants of proportionality. Now

dz’
dt

= f(z) +M(z"" - 27" + 7 (2.9)

Ak 0 . .
where M = ') and f(z") determines the proportion of z' that remains
0 A® ko

in cell 7.
Note that because the cells form a loop, the system is closed and), z is constant.

If the width, A, of each cube tends to 0 we can consider the system continuous. If

s =A .i then the flux entering the position s, f(s) is given by:

= f(s) = M(Z(s— 8) — 23(s) + T(s+ A)) (2.10)

If we expand each term into its Taylor series through terms in A% then:

f(s) = M|#(s)+ dfl(ss) A +d2dz<j)%2 b (2.11)
~ M a2 dii(;) (2.12)

Let us assume A— 0, the number of cells, N — oo, N A— L, the circumference of
the ring. We want to study the linear stability of the resulting continuous partial

differential equation (PDE) in time.

2.3. A model of morphogenesis 12

0x(t, s 0%x
pa 0 X s
Where M has been redefined as , i = ki pa, po, the diffusion coeffi-
0 125

cients are finite and positive.

As the cells are in a loop we can look for pattern waves of the form:

x = el (M + ks)xg (2.14)

Where X is the angular frequency and k is the wave vector. If for some pq, po, k
there exists a solution to (2.13) in the form of (2.14) such that ®(\) is positive, the

concentrations of the morphogens within the tissue will form unstable patterns.

Substituting 92 of (2.14) into (2.13) gives:

dz -k 0
o A+ M 7 (2.15)
dt O _k2
20
— [a- " z (2.16)
0 ,u2k52

Again using Cramer’s rule:

ap — pik? — A a1

det =0 (2.17)
as1 Q22 — Msz - A

Which is a binomial of the eigenvalues of (2.16), A:

A= A4 =0 (2.18)

where

2.3. A model of morphogenesis 13

T = (an + axn) — kK* (1 + p2) (2.19)
= T—K(m + po) (2.20)
w = D- /,61/{32@22 — u2k2a11 -+ ,ulugk4 (221)

In order for patterns to form, (2.13) must be unstable. Therefore at least one of the
roots of (2.18) must have a postitive real component. As T' < 0, 7 < 0. Thus we
need @ < 0. Therefore at least one of a1; and ass must be positive. Because T < 0
at least one of ay; and age must be negative. Therefore ay1a90 < 0. Again because

Y < 0:

Qo1 + a11ft2 > 0 (222)

If a;; < 0 its corresponding entry in the matrix B, a;; — uik? + o is also negative.
Thus the chemical, x; will decay to the rest state ., in the absence of x5. Turing

called x; the inhibitor chemical and x5 the activator chemical.

2.3.3 Turing instability inequalities

From (2.22) and (2.3) one can deduce that, for the system to form stable patterns
to < 1. Thus the inhibitor chemical must diffuse faster than the activator chem-
ical. Referring back to the “cannibals and missionaries” analogy, the presence of
two missionaries in any given square inhibits the progress of the diffusion of the
cannibals across the island, however because the inhibitor-missionaries own bicycles

they diffuse more rapidly than the activator-cannibals.

Equation (2.21) is a quadratic in k2, if we differentiate it with respect to k* and set

it equal to zero, the minima can be found:

2.3. A model of morphogenesis 14

d
d_lzé = 21 pk? — (pags + p2an) = 0 (2.23)

Thus the minimum value of v is:

(agopty + agypz)?

min = D — 2.24
v 4 o (2.24)
As 1 must be less than zero:

Qo1 + a11fte > 24/ Hlu?D (225)

The Turing inequalities for a two morphogen system to show diffusion instability

are thus:

a1 +axp < 0 (2.26)

ay iz + aspy > 0 (2.27)
a11a99 — A19a9; > 0 (2.28)
Qo1 + Qi1 > 2\/#1#2(%1%2 - a12a21) (2-29)

2.3.4 An example reaction-diffusion system

An example two-morphogen system that meets these instability inequalities has the

following reaction equations:

dx 1
dx
d—; = (1 — 222) (2.31)

(2.32)

2.3. A model of morphogenesis 15

To find the unique equilibrium we set (2.30) and (2.31) to zero. Thus z.; = 2 and

4
Te2 = 9-

Assuming the system is linear about ., we can differentiate (2.30) and (2.31) to

form the jacobian matrix, A.

odx ddx 1 9
Nk B R R I
K I T R
This meets the inequalities:
23
ajp + a2 = —E <0 (234)
27
11022 — Q12021 = 1 >0 (2.35)
If uy = 1, we can calculate uy from (2.29).
-9 (%) 27
— 4+ —=>2 — 2.

This is true for all uy > %(7 + 44/3), a value which also meets the final inequality:

27 9
a1 e + Qoo < E(? + 4\/3) — Z >0 (237)

Listing 2.2 is the pseudo-code of a cell-based “reaction-diffusion” model of this ex-

ample, Appendix A.1 includes a complete code listing, figure 2.2 is the results of the

model.
1 Create a world of 64x64 discrete 2—d square cells.
2 Set the morphogen values a,b, in each cell to be 4.
3 Assign each cell a diffusion constant, B = 12 4+— 0.2.
4 Other diffusion constants are: Da, Db, s.
5
6 For each iteration of the simulation:
7 For each cell:
8 aSum = sum(a values of neighbouring cells (North, South, East, West))
9 bSum = sum(b values of neighbouring cells (North, South, East, West))

—
(=}

a = a — s*(0.5—a+ax*2*b)4+Dax*(aSum — 4=xa)
b =b — skx(l—ax**2xb)+Dbx*(bSum — 4xb)

[un
[

2.4. Experimental evidence for morphogenesis 16

12
13 Output a 64x64 bit grey—scale image of the world that corresponds to the strength of

morphogen b in each cell.

Listing 2.2: Reaction-Diffusion example pseudo-code

Figure 2.2: Example of Turing’s reaction-diffusion equations

2.4 Experimental evidence for morphogenesis

A two-morphogen system exists in a developing human body, shortly after the cre-
ation of the blastula. Two proteins, the BCD protein and the HB-M protein, create
a localised determinant centered about the zygote [Gri76]. Since these proteins
have different diffusion rates, and interact with each other, spatial concentration
patterns form. Different concentrations activate different genes in the genome of
each cell. These gene selections in turn correspond to different types of cell. Thus

the beginnings of form and cellular differentiation appear in the developing embryo.

A three-morphogen system exists in the developing fruit fly. The morphogens, bi-
coid, eve and caudal, are important for patterning the head, thorax and abdominal

regions of the embryo [RHT197]. Figure 2.3 shows the concentrations of each mor-

2.5. A more comprehensive model of the developmental cycle 17

phogen shortly after fertilisation. Figure 2.4 shows various other morphogenesis

patterns that have been sampled during the development of the fruit fly.

200 -

t,
bet e r A + ave
L S . o ot
+ ‘3;. g e ;‘:g\,‘% " + caudal
1801, ..gv'a’oiw + hicoid
g . ’t‘ had t £

i PUR
a* 0

ot A ' ‘. At *a

+ +

"3, & + ¢ + taad ., ’, 23

’ £

3 +

* 4 Py »

* 0 *, 4

* 3 . ’ s + o

het £ s Sy \‘ o -. R T T

% d £+ Myt ’ 03

0 20 tlD B0 80 100
Anterior-Posterior Position (%)

Intensity
=]
o

[}
=
T

+

[=]
+

Figure 2.3: Anterior-posterior determination in fruit flies

Image courtesy of Dr. Eric Lecuyer, Canadian Institute of Health Research

2.5 A more comprehensive model of the develop-

mental cycle

But experimental results suggests that control of the developmental cycle is not
as simple as systems of interacting morphogens. Most tissues have asymmetric
distributions of various properties: for example, in a hydra the nerve cell density
is much greater in the head than the body. Transplantation experiments [Mor04]
suggest that this polarity affects the decision of where to form structures relative to

the tissue.

Further work by the experimental biologist John Gurdon [Gur68] suggests that the

concentration levels of morphogens within a tissue are typically very small and

2.5. A more comprehensive model of the developmental cycle 18

Fig 2. Examples of locali zation/expression patterns observed inD. melanogaster embryos

Figure 2.4: Morphogenesis patterns in fruit flies

Image courtesy of Dr. Eric Lecuyer, Canadian Institute of Health Research

undetectable by the majority of cells. To ensure each cell in this tissue develops
in line with the rest of its surrounding cells, each cell that detects the presence of
a signalling protein transmits a chemical signal to its neighbouring cells. This is

known as cell-to-cell communication, or the community effect.

Meinhardt [Mei82] sought to incorporate these theories of development into a more
comprehensive model than that proposed by Turing. The following model, one of

many he proposed, uses five reaction-diffusion equations to form stripy patterns.

% _ % —ag + D(ZTQ T o (2.38)
% = ;—gi —ags + DQ% + po (2.39)
% _ Cs_glf " Cs_gf (2.40)

g1 and go are short-range activator substances. They form mutually exclusive feed-

2.5. A more comprehensive model of the developmental cycle 19

back loops. Each is subject to long-range inhibitor substances, s; and s;. That they

are mutually exclusive is ensured by equation (2.40).

Listing 2.3 is the pseudo-code of a cell-based five-morphogen “reaction-diffusion”
model described above, Appendix A.1 includes a complete code listing, figure 2.5

shows a result of the model with different diffusion rates D, and Dj.

1 Create a world of 128x128 discrete 2—d square cells.
2 Set the morphogen values gl,g2,r,sl,s2 in each cell to be 4(+/— 0.5).

3 Diffusion constants are: c,alpha,Dg,rho0,beta ,gamma,Ds,rhol

4

5 For each iteration of the simulation:

6 Diffuse gl,g2,r,sl,s2 across the world

7

8 For each row:

9 calculate the second derivatives of gl,g2,r,sl and s2 in the x axis.
10

11 For each cell:

12 gl += cxs2xglxgl/r — alphaxgl + Dgxd2gl + rhoO

13 g2 += cxslxg2xg2/r — alphaxg2 4+ Dgxd2g2 + rhoO

14 r 4= c*s2%xgl*xgl + c*sl*xg2xg2

15 sl += gammax(gl—s1)*Dsxd2s1l + rhol

16 s2 4= gammax(g2—s2)*Dsxd2s2 + rhol

17

18 Output a 128x128 bit black and white image of the world. If the strength of either gl

or g2 in each cell is greater than that of the average for the world, the cell—

pixel is black. Otherwise the cell —pixel is white.

Listing 2.3: Reaction-Diffusion example pseudo-code

Figure 2.5: Example of Meinhardt stripes

2.6. Conclusions 20

2.6 Conclusions

In 1952 Turing published the paper “The Chemical Basis of Morphogenesis” that
described a mathematical model of how morphogenesis might work. Despite being
largely condemned by biologists at the time his ideas, though incomplete, have
been shown to be largely correct. Further work by biologists such as Gurdon and
mathematicians such as Meinhardt have developed Turing’s ideas to better match

the experimental evidence.

Chapter 3

Design and simulation of

morphogenesis

Whereas Turing’s investigation of morphogenesis relied on mathematics with only
a cursory use of the computer, modern investigations have used computers to a
much greater extent. This is perhaps because of the greater available computational
power — Turing only had access to the “Manchester Automatic Digital Machine”,
a 40-bit 800Hz computer composed of 4,200 vacuum tubes, on which to demon-
strate his model. This chapter presents a summary of modern attempts to model

morphogenesis using computer simulations.

3.1 A morphogenesis simulation framework and

results

The influences on a developing biological cell can be grouped into the following

categories:

1. Genetic. A pluripotent stem cell can differentiate into a diverse range of

21

3.1. A morphogenesis simulation framework and results 22

specialised cell types. In contrast, a cell formed by mitosis can only take the

form of its parent cell.

2. Mechanical. Certain cells can move about a tissue during development,
thus affecting orientation and location within asymmetric tissues and choice
of neighbouring cells. Odell [OOABS81] suggests this can account for various

patterns that have been observed in development.
3. Chemical. The basis for morphogenesis, as discussed in chapter two.

4. Electrical. Fraser [FP90] showed that electrical activity can affect the for-

mation of synapses during the development of neural structures.

Fleischer [FB93] simulated the genetic, mechanical and chemical influences on a sys-
tem of discrete cells. Each cell determined its next state from its previous state and
the state of its local environment using ordinary differential equations (ODE). Each
cell then determined its behaviour from its next state, also using ODEs. Possible
behaviours include moving, adhering to neighbouring cells, diffusion of a chemical

morphogen, cell division or cell death.

Figure 3.1 shows two cell arrangements that the simulation produced. The simula-
tion starts with two types of cell. One emits the green morphogen and seeks to move
to areas of high green concentration, the other emits and seeks the red morphogen.

Whether a cell divides, moves or dies is a function of the morphogen concentrations.

Figure 3.1: Simulated cell development

Images courtesy of Fleischer and Barr

3.2. Designing a genome to create a particular pattern 23

The presence of rings in the pattern surprised Fleischer, who concluded that it was
neither trivial to predict the results of any given genome, nor to design a genome to

create a particular pattern.

3.2 Designing a genome to create a particular pat-

tern

The unsolved problem of Fleischer’s simulation — that of how to design a genome
to form a particular pattern — was partially solved by Eggenberger, Liu and Miller

using evolutionary algorithms.

3.2.1 Evolutionary algorithms

The power of biological evolution is easy to appreciate; engineers have singularly
failed to match the complexity or perfection of the design of the human body. How-
ever, in our haste to champion the successes of biological evolution, it is often easy
to ignore the huge populations and generations (approximately six billion humanoid
forms in this generation cycle, requiring four-thousand million years to generate
from simple multi-cellular organisms) that were required for these successes to be
possible. With today’s resources it is not possible to evolve anything to a degree
comparable to the complexity of a humanoid form. To the contrary, the number of
input combinations in a truth-table representation of a combinational digital circuit
increases exponentially with the number of inputs [Mil00] so that thirty-four million
cycles would be required to try every possible output from a comparatively small

twenty-five one-bit input circuit.

A large family of algorithms for evolution has been developed over the years, the

majority of which are some variant of four separate strains:

3.2. Designing a genome to create a particular pattern 24

1. Evolutionary programming (EP) involves the random creation of a popu-
lation of candidate solutions, each a finite state machine. Mutation is achieved
by randomly adding or deleting states, creating or reassigning existing transi-
tions. Stochastic tournament is used to select the fittest solutions. There is

no requirement that the population size remain constant, nor that any parent

create a fixed number of children [FOW66].

2. Evolutionary strategies (ES) were originally designed to find function min-
ima from large multi-variate functions. The candidate solutions evaluated are
thus real valued vectors. Evolutionary Strategies use any size population of

candidates, mutation and crossover [BS02].

3. Genetic algorithms (GA) involves the random creation of a population of
“chromosomes”: strings of bits that describe a particular solution. A selection
of parents is determined by means of a fitness test, and then amalgamated
via crossover or mutation to create a number of children. From this new

population another set of parents is selected[DM91].

4. Genetic programming (GP) uses an application-specific function set ar-
ranged in parse trees to represent a particular solution. Unlike GAs, GP does
not use mutation. Instead it relies upon a form of crossover between the most
successful individuals of a population, selecting random branches of the parse
tree of a solution and swapping them with branches from the parse tree of a

different solution [BFKN98|.

Another characteristic of evolving systems concerns open-endedness. When the
fitness criterion is imposed by the user in accordance with the task to be solved,
one attains a form of guided evolution. This is to be contrasted with open-ended
evolution occurring in nature, which admits no externally-imposed fitness criterion,
but rather an implicit, emergent and dynamic one (that could arguably be summed

up as survivability) [Shi97].

3.2. Designing a genome to create a particular pattern 25

3.2.2 Eggenberger’s evolution-development simulation

Of the four influences on a developing cell, Eggenberger [Egg97] simulated two:
genetic and chemical. Each cell could divide, die, or change state depending on its
local environment and its present state. An artificial genome programmed into each
cell governed this behaviour. A partially-closed GA was used to evolve this genome,

with each solution being evaluated against two fitness criteria:

1. The size of the developed system after cell division has stopped, compared to

an arbitrary ideal size.

2. The symmetry of the developed system about the x-axis.

Figure 3.2 shows some of the 3D multi-cellular organisms developed on Eggenberger’s

simulation.

Figure 3.2: Evolved developed forms

Images courtesy of Eggenberger

3.3. Wolpert’s French flag 26

3.3 Wolpert’s French flag

In 1969 Lewis Wolpert [Wol69] proposed that the arrangement of different types
of biological cell arises from a combination of intercellular interactions and cellular
responses to the chemical gradients formed by the radial diffusion of chemical mor-
phogens from cells. He likened this process to one of growing a simple French flag
pattern. Thus the standard for bio-inspired developmental biologists was defined:
to be able to develop a French flag pattern of cells from null initial conditions and

to be able to repair a French flag pattern from a corrupted pattern.

3.4 Miller’s French flag

Of the four influences on a developing cell, Miller [MBO03] chose to model just one:
the local and global chemical communications between cells. His model used a
simulation world that contained 256 cells. The world was responsible for diffusing a
single morphogen about one or many cell sources. Each cell used the concentration
of the morphogen at its location and the colour of the cells immediately surrounding

it to determine both its own colour and whether or not to emit the morphogen itself.

Each cell obeyed the same programming in determining its behaviour, this being

coded as a Cartesian genome.

3.4.1 Cartesian genomes

Cartesian Genetic Programming (CGP) is a means of describing a circuit diagram as
a series of numbers, termed the genome. CGP is Cartesian in that each node of the
described circuit is addressed in a Cartesian co-ordinate system. Each gene of the

genome describes a single component, its type and connections to other components.

In [LMTO04] the genotype consists of 40 genes, each of which describes the process

3.4. Miller’s French flag 27

and feed-forward interconnections of a two-input one-output boolean process. See

figure 3.3 for an example.

®_ = (5)
A LI

2,1 4.3,
— —
3 (6)
3.1 6.3
Genome: 1,2,1|4,3,2]4,3,1|5,6,3].....

Figure 3.3: Genome to boolean logic mapping

Listing 3.1 is the pseudo-code of a software simulation of the execution of a circuit

described by a Cartesian genome.

1 For each gene of the genome:
2 Create a row in the table with fields for input and output references and

values , and component function.

3

4 For each circuit execution:

5 Where the input references match those of the circuits inputs, populate the
input values.

6 Execute every row that has completed input values.

7 Where the output references of the completed rows match the input references of

uncompleted rows, populate the input values of those rows.
8 Repeat until all rows have been executed.

Listing 3.1: Simulating the execution of a circuit described by a Cartesian genome

3.4.2 The simulation world

Each cell is potentially a chemical point source. The diffusion of this chemical across

the array of cells is done at every time-step in accordance with the formula:

1 1
Cijirr = 5Ci50 + 3 Z Cpt (3.1)

2
klEN

Where C; ; is the concentration of the chemical at row ¢ and column j in the array.

3.4. Miller’s French flag 28

The neighbourhood N consists of the four cells nearest to (i,7). In the absence of
any live neighbours, a cell in Miller’s simulation will die at the next time-step. In
the presence of live neighbours, a dead cell will become alive at the next time-step.
Only live cells may emit morphogens. The concentration of the chemical at each cell

determines whether that cell stays alive or dies, and what colour it should output.

3.4.3 The evolution algorithm

Miller used a genetic algorithm called HereBoy [Lev00]. HereBoy combines features
from genetic algorithms and simulated annealing, and uses a population of two to

avoid the necessity to sort fitness values as follows:

1. One parent mutates at a rate calculated from equation (3.2), to form a different

child.
2. The fitness of the child is compared to the fitness of the parent.

3. If the fitness is better than the parent, the child replaces the parent as the

parent of the next generation.

4. If the fitness is worse than the parent, the child replaces the parent according

to a probability calculated from equations (3.3)

p(mutate) ez

p(mutate) — pm(l . currentfitness) (32)

best fitness

p(mutate) i,

p(reverse)mas

p(TGUGTSG) — pr(]- . cur?“entfitness) (33)

best fitness

p(reverse)min

3.5. Liu’s French flag 29

The pseudo-code of the application of HereBoy to the design of Miller’s morpho-

genetic French flag can be seen in listing 3.2.

1 Create a random 40—gene genome where each gene is a 3—integer code for the function and

input set of one component.

2

3 Do till fitness = 100%:

4 Develop the world over 9 time—steps using this genome in each cell

5 For times 6,7,8,9 evaluate the fitness of the solution by comparing the pattern

developed to that of the French flag.

6 If this genome has a higher fitness than that of its predecessor, keep it

except in circumstances determined by the probability p_reverse.
Calculate p-mutate and p-reverse

8 Mutate a number of genes of the genome, selected according to the probability
p-mutate

9 Repeat .

Listing 3.2: Simulating the execution of a circuit described by a Cartesian genome

3.4.4 Results

Figure 3.4 shows a French flag pattern being developed from a single cell. Figure
3.5 shows its corresponding morphogen concentrations. Figure 3.6 shows a French

flag pattern repairing itself from corrupt initial conditions.

This algorithm was capable of designing small self-assembling French flag patterns

and repairing minor damage to them.

3.5 Liu’s French flag

In contrast to Miller’s work, developing biological systems use more than one chem-
ical morphogen. As demonstrated in chapter one, the interaction of multiple mor-
phogens can create irregular localised concentrations. Miller’s work, limited to one
morphogen, can only form overlapping radial distributions about each point source.
Liu [LMT04] proposed a solution to this limitation that did not require the signifi-

cant complexity of simulating multiple interacting chemicals.

3.5. Liu’s French flag 30

iteration 0 iteration 1 iteration 2 iteration 3

iteration 4 iteration 5 iteration 6 iteration 7

iteration 8 iteration 9

Figure 3.4: A French flag pattern developed from a single cell

Images courtesy of Miller; nb in the author’s images “iteration n” is labelled “t = n”

3.5.1 A new diffusion model

At a particle level, diffusion is the movement of each particle from its present location
in a random direction. Over time, collisions amongst particles in the denser areas will
ensure that any local permutations in concentration disappear. Given a constantly
transmitting point source and a homogeneous medium, diffusion will create a radial

distribution with its origin at the source.

By increasing the probability a particle will move in a particular direction over
another, the chemical of which the particle is a part will no longer diffuse in a
radial distribution. Instead, a heterogeneous medium is formed with each discrete
location effectively a different concentration. Evolving this medium alongside the
cellular computation algorithms creates a solution of which localised spatial patterns

of chemical concentrations is a part.

3.5. Liu’s French flag 31

L | :a:l‘w a&
iteration O iteration 1 iteration 2 iteration 3
5]
e
| |
iteration 4 iteration 5 iteration 6 iteration 7

iteration & iteration 9

Figure 3.5: The corresponding morphogen concentrations

Images courtesy of Miller

iteration 9 iteration 10 iteration 12

iteration 13 iteration 14 iteration 15 iteration 20

Figure 3.6: A French flag pattern developed from a corrupt flag

Images courtesy of Miller

3.5. Liu’s French flag 32

The morphogen concentration at each point in the array is described as the sum
of two components: a concentration common to all cells on the same row which
is diffusing along the y-axis and a similar component diffusing along the x-axis.
The rate of diffusion along each axis is governed by a series of eight-bit values that
determine what proportion of the concentration at each point along each axis moves
left or right, up or down. These eight-bit values are determined by the evolutionary
algorithm. The development-evolution pseudo-code differs little from that already
detailed. Liu used 48 genes instead of Miller’s 40, and simulated the flag assembly

on a smaller, six by six, world of cells.

3.5.2 Results

Figure 3.7 shows a French flag pattern being developed from null initial conditions
and figure 3.8 shows the simulation attempting to repair itself from a corrupt starting

pattern.

t=9 t =10 t =11 t =12

Figure 3.7: A French flag pattern developed from null initial conditions

A simple program designed to test all possible starting patterns showed that this
model is capable of repairing the French flag pattern in the event that up to 25% of

3.6. Conclusions 33

t=5 | t=6 | t=7 | t=8

Figure 3.8: A French flag pattern repaired from corrupt initial conditions

the pattern is corrupt.

3.6 Conclusions

Fleischer proved the potential of simulated cellular development with the develop-
ment of complicated cell patterns. His work also showed that it is difficult to design
a developing system to create particular patterns — a problem which has affected all
such studies since. Eggenberger demonstrated the application of a partially-closed
genetic algorithm to the design of 3D cellular arrangements limited only in size of
arrangement and its symmetry about the x-axis. Miller and Liu used a closed ge-
netic algorithm to design a self-assembling, self-repairing simple French flag pattern.
Liu’s algorithm was capable of repairing up to 25% corruption to the flag pattern.
In the next chapter we will introduce a model of morphogenesis based on cellular
automata, then determine the conditions required for it to be able to repair 100%

corruption to the pattern.

Chapter 4

Mimicking morphogenesis with

convergent cellular automata

When the sum of the parts adds up to more than those parts then
that extra 'being’” — the something from nothing — is arising from a

field of many interacting smaller pieces [Kel95].

The complete human body consists of approximately 100 trillian cells. Morphogen-
esis is responsible for co-ordinating their differentiation from their original stem cell
form. It achieves this by means of long-range diffusions of chemical morphogens.
The community effect uses the diffusion of a different family of chemical signals
with a much shorter range. See chapters two and eight for more details of these

techniques.

Whilst the imitation of this technique to achieve similar resilience is the aim this
chapter addresses, to imitate regeneration on a similar scale is impractical. Thus
one consideration is which communication technique — the community effect or
morphogenesis — is more appropriate on a cellular automata of 10 to 100 cells.
Morphogenesis is principally responsible for cell differentiation; the community effect
for localised cohesion. Differentiation is a necessary part of systems design, but on

systems of 10 to 100 cells the community effect has the more appropriate scale. A

34

4.1. Cellular automata, their classification and design 35

typical cellular automata (CA) consists of homogeneous, locally-interacting cells, but
the cumulative effect of repeated local interactions can mimic long range interactions.
A CA that converges to a single fixed point, regardless of its initial conditions
is demonstrating the same resilience shown by regeneration of the liver, but at a

different scale and on a different platform.

The following chapter will introduce cellular automata then determine the neces-
sary CA design such that it will always return to form the same pattern using an

equivalent matrix model of CA and a functional analysis of a matrix metric space.

4.1 Cellular automata, their classification and de-

sign

Cellular automata (CA) systems are dynamic systems in which space and time
are discrete [Hoh68]. CAs consist of a number of identical cells arranged in an n-
dimensional array. Each cell can be in one of a number of states. The next state
of each cell is determined at discrete time intervals according to the current state
of the cell, the current state of the neighbouring cells and a next state rule that, in

the case of homogeneous CA systems, is identical for each cell.

Some famous CA include the Turing machine [Tur50b], Neumann’s self-replicating
universal constructor [Neu66], Conway’s game of life [Gar70] and Langton’s ant

[Lan86, Gal93, Gal9s].

It is difficult to predict the state of a typical CA after a significant number of
iterations. It is even more difficult to determine the next state rule directly from a
desired state after a significant number of iterations. Some efforts have been made
to classify CA behaviour and to study the correlation between this behaviour and

the form of its next state rule.

The behaviour of different CA can be separated into two criteria:

4.1. Cellular automata, their classification and design 36

1. The form of the output. Is the CA capable of forming simple, chaotic or

complex structures?

2. The dependence of the output upon the input. To what degree does changing

the input vary the output, where the input is the initial state of each cell?

Wolfram used a one-dimensional variant of Neumann’s cellular automata with each
generation of cells being displayed below its parent. Each cell has a two-state al-
phabet, that is it can be in one of two states that are displayed as black and white.
The next state of each cell is determined by one of 256 possible rules whose inputs
are the states of its two neighbours and its own state [Wol82]. Wolfram grouped
each of the 256 possible rules into four classes, described below, according to their

resultant form.

4.1.1 Class one cellular automata

Class one cellular automata develop after a finite number of time steps from almost
all initial states to a state in which all cells have the same value. After sufficient
iterations, any information in the initial state has been destroyed. Figure 4.1 shows
the development of a class one CA from a random initial state to a homogeneous
zero state, the CA array on the x-axis and the successive time steps displayed down

the y-axis.

Figure 4.1: Rule 36. A member of the class one set. This rule will always reach a

homogeneous state

4.1. Cellular automata, their classification and design 37

Of the 256 possible rules of a one-dimension two-state CA, 216 are members of the

class one set.

4.1.2 Class two cellular automata

Class two cellular automata generate simple structures from particular initial cell
state sequences. Changes to the initial state almost always affect the final state.

Figure 4.2 shows the development of a class two CA from an initial random state.

M o e e ey M = mmd e = = Rl = = R | ey = mmmp—— =

Figure 4.2: Rule 36, a member of the class two set. This rule displays sensitivity to

initial conditions.

Of the 256 possible rules of a one-dimension two-state CA, 24 are members of the

class two set.

4.1.3 Class three cellular automata

Class three cellular automata generate aperiodic chaotic patterns from almost all
possible initial states. Figure 4.3 shows the development of a class 3 CA from an

initial state of one live cell.

4.1. Cellular automata, their classification and design 38

Figure 4.3: Rule 30, a member of the class 3 set. This rule displays aperiodic chaotic
patterns and is used as part of the random number generator in the software package

Mathematica.

Of the 256 possible rules of a one-dimension two-state CA, ten are members of the

class 3 set.

4.1.4 Class four cellular automata

It has been hypothesised that class four CA are the only CA capable of being
computationally universal. Over time, given the right initial conditions, a class 4
CA will behave in part ordered and in part chaotic. The study of this behavioural
model is called complexity theory. Figure 4.4 shows the development of a class four

CA from a random initial state.

Of the 256 possible rules of a one-dimension two-state CA, six are members of the

class four set.

4.1.5 Reversible cellular automata

A CA is reversible if, given the rules it obeys, for every possible CA state we can
deduce what the previous state of the CA was. Thus there is a one-to-one mapping
from each possible state to its predecessor. If a CA is reversible it is possible to design

the rules it must obey to be in particular states at particular times by induction.

4.1. Cellular automata, their classification and design 39

Figure 4.4: Rule 46, a member of the class four set. This rule displays complex

behaviour.

A CA is second-order if each cell determines its next state based not only on the
states of its neighbours at time ¢ — 1 but also on their state at time ¢t — 2. If a CA is
second-order and there is a one-to-one mapping between the state of a cell at ¢t — 2

and its next state then it is reversible [Wol02].

Another way to make a CA reversible is to partition it into Margolus neighbourhoods
[TM90]. The CA is split into groups of neighbourhoods of two by two cells. As time
progresses, neighborhoods are alternate between even and odd coordinates so if
at t = 0 a neighbourhood consists of cells (1,1),(1,2),(2,1) and (2,2), at ¢t = 1 the
neighbourhood would become (2,2),(2,3),(3,2),(3,3). Each cell in the neighbourhood

determines its next state based on the state of the other cells in its neighbourhood.

4.1.6 Langton’s lambda parameter

Langton [Lan90] developed the Lambda parameter, A, as a means of categorising
different cellular automata. It is a measure of the distribution of state transitions

within the next state rule. This can be used to predict the complexity generated by

4.1. Cellular automata, their classification and design 40

a CA.

B No. of rules that lead to x

Az) = (4.1)

No. of rules

For chaotic systems the A region is centered about 0.5. For complex systems the A

region is centered about 0.25.

Another measure used to categorise CA is the mutual information between cells, C,
where the mutual information is defined as the sum of the entropy of the individual

cells minus the entropy of the cells as a collective [Lan90].

CN

1=3"" 5" plaes)logp (xl) = p(X;)log, <]ﬁ) (4.2)

c,r

Where:

1. C is the number of cells

2. R is the size of the alphabet of each cell

3. p(z.,) is the probability of cell z. being in state r

4. C'N is the number of possible patterns the automata can form

5. p(X;) is the probability of the automata X being in state j

This equation is formed by calculating the entropy of the array of cells, then sub-

tracting the sum of the entropies of each individual cell.

4.1.7 Models of independence

Two criteria determine the sensitivity to initial conditions of a CA, as defined by

the difference in entropy as the CA develops.

4.1. Cellular automata, their classification and design 41

1. The dependence of each rule’s output on its inputs. Class 1 CA saturate to
an homogeneous entropy minima after sufficient time steps. This is due to the
independence of most, if not all, of the outputs of each rule on their respective
input combinations. For instance rule zero, whose transitions will result in a

zero state, irrespective of whether the inputs are one or zero.

2. The dependence of each rule’s output on the position of each information
source relative to the active cell. The edges of a bounded CA are entropy
minima. Thus if information only propagates in one direction the information
of the CA will be forced to an edge then removed from the CA. Figure 4.5
shows the development of a CA that transconducts information to the right

edge until a homogeneous stable state is reached.

i

Figure 4.5: Rule 15, the output of this rule is independent of its inputs, because the

information moves from the centre to the right edge

4.1.8 Mean field theory

The probability of any cell being in the state one, p; is the sum of the probabilities

of any group of adjacent cells forming an input combination that maps to a next

4.2. An equivalent matrix model 42

state of one. If ng() is the number of cells needed to be in state 0, ny () the number

of cells needed to be in state one for a next state rule i then p; is given by [GL95]:

Dii+1 = Z prfft(i)(l — pl,t)"o(i) (4.3)

icRules—1

This assumes there is no correlation between the cell states at time, ¢t. This assump-
tion can be relaxed using Markov state modelling or local structure theory [GVKS87],

making the model more precise.

The statistical estimates created using the lambda parameter or mean field theory
can be used to approximate CA next state rules that result in a desired CA com-

plexity. They are commonly used to refine the search field of genetic algorithms.

The stated aim of this research is to be able to design CA to converge to a specific
pattern with a greater certainty than offered by available statistical tools and without
the overhead of genetic algorithms. Reversible CA, though trivial to design, are

restricted to converging towards a small set of possible patterns.

The following section will use matrix algebra to determine the requisite conditions

for a CA to always converge to the same state, regardless of its initial conditions.

4.2 An equivalent matrix model

For purposes of clarity, we will start with a one-dimensional CA of identical cells
that use information from their nearest neighbours (to the east and west of itself)
to compute their next state. Each cell computes its next state at the same time
and does so at each discrete time step. Let us index each cell (¢;) i € {1..N}, then
describe the state of each cell at time ¢ with an integer, ¢;; and the pattern of the

entire array as a vector, Cf.

If Cy is the initial pattern of cell states, f(Cl) is its subsequent pattern after one

4.3. One dimensions, from first to last state 43

time step, and f(f(Cp)) or f2(Cy) is its pattern at ¢t = 2; where f describes the

transition from one iteration to the next.

An additive CA is such that the next state of any cell is the result of assigning a
coefficient (v, w,x) to each member of the neighbourhood set, adding the states of
those in its neighbourhood to a constant k, and then applying a modulus function.
The modulus function mod r defines the size of the alphabet of the CA. Let us
now define a simple function that describes the transition for an additive CA from

one state to the next:

Citt1 = VCi_1¢ + Wi + xCip1 + Kk mod r (4.4)

A transition function for the entire array can be formed from (4.4) such that

f(C)=AC,+K modr (4.5)

Where K is a constant and the transition matrix, A, takes the form (when N = 6):

w x 0 0 0 0
v w x 0 0 0
0O v w zz 0 0
A= (4.6)
0 0 v w x O
0O 0 0 v w x
0O 0 0 0 v w

4.3 One dimensions, from first to last state

4.3.1 The transition function from first to last state

Iterating (4.4) twice gives (4.7), three times gives (4.9) and n times gives (4.11).

4.3. One dimensions, from first to last state 44

Ciro = AACi+K)+ K mod r (4.7)

= A°C,+AK+K modr (4.8)

Cis = AAAAC+K)+K)+K modr (4.9)
= A°C,+A*K+AK+K modr (4.10)

Ciyn=A"C;, + A" 'K+ A" K+ A" K- -+ A'K+K modr (4.11)
Using the sum of the geometric series equation:

k . 1 — phtl

f@)y=% =7t (4.12)

we can simplify (4.11) to:

— J— n—1 —
Ciin=A"C; + szo (AP) K mod r (4.13)

n

T A K modr (4.14)

Ciin=A"Cy +

4.3.2 The conditions for convergence

Thus for the output, Cy;,, to be independent of initial state, Cy—g, the term A™ Cy—
must equal zero. Given that n is greater than the dimensions of the CA, A" C,_
will equal zero if A is either an upper-triangular or lower-triangular matrix. Thus

either v or z and w of equation (4.4) must equal zero for the CA to converge.

4.4. Metric spaces 45

To prove this is the only form A can take for any CA from first principles we need

to use functional analysis and matrix metric spaces !

4.4 Metric spaces

The study of metric spaces allows mathematicians to study the continuity and con-
vergence of functions. Before we can use them to study convergence on a CA metric

space, we need to introduce a few terms.

Definition 1 A space is a non-empty set, X. The points of a space are the elements
of the set, x € X. An example space is the two-dimensional euclidean space R2.

The space M, »(R) is the set of all possible n x m matrices. 0
Definition 2 A metric, d is the distance between two points x,y € X of a space.

A metric obeys the following four axioms:

1. d(z,y) = d(y,z) ¥ xz,y € X. The distance from z to y is the same as the

distance from y to x.

2. d(z,y) >0V 2,y € X and x # y. A distance must be a real-valued non-

negative distance.
3. d(x,y) =0 x=yVz,yecX

4. d(x,z) < d(z,y) +d(y,z) ¥ x,y,z € X. Known as the triangular inequality,
the distance between any two points is equal or greater if travelled via another

point.

A commonly used metric is the euclidean distance function:

IThis proof was derived, in part, from the lecture notes of Dr Dirk Schutz [Sch05].

4.4. Metric spaces 46

(4.15)

Because the square of x; — y; is symmetrical about z; = y;, only equal to zero at
this point, real-valued and non-negative the euclidean distance meets the first three
axioms. To show that it meets the triangular inequality axiom, let v be the vector

y — 7 and v be the vector Z — 7.

|z +7|> = (u+7v) - (u+7) (4.16)

Using the euclidean inner product rule we get:

le+||*> = w-(u+7v)+v-(u+0) (4.17)
= u-u+2u-v)+v-0 (4.18)
< lal*+2fz-v| + ||v]* (4.19)

Now using the Cauchy-Schwartz inequality (|z - o] < |[@|||7]]).

[@+ol* < |[l* + 2[fllw] + o]* (4.20)

< (Il + [[71])? (4.21)

[z+oll <[] + vl (4.22)

Thus the euclidean distance function meets the triangular inequality axiom. o

Definition 3 To be a metric space, (X, d), d must be a metric on the space X g

Definition 4 A sequence of points x,, converges in (X, d) to a point x € X if for

any real number € > 0 there is an integer N > 0 so that:

d(xp,x) <eVn>N (4.23)

4.4. Metric spaces 47

Figure 4.6 shows a non-converging sequence and a converging sequence in the metric
space (R, d).

3

y(x) = mﬁ)?s sin(5x) y(x) = 3exp(—0.4z) sin(5x)

Figure 4.6: Convergence in (R, d)

Figure 4.7 shows converging and non-converging sequences in the vector metric space
(Xy|z; € {0,1}), where a black pixel represents a 1, a white pixel represents a 0 and

the y-axis shows the progression of time (from top to bottom).

é
Wolfram’s rule 22 CA Wolfram’s rule 15 CA

Figure 4.7: Convergence in (X,|z; € {0,1})

Definition 5 A transform f : X — X on (X, d) is a contraction mapping if there

exists 0 < A < 1 such that:

d(f(z), f(y)) < Ad(z,y) Vr,yeX (4.24)

4.4. Metric spaces

where A is the contraction factor. If 0 < A <1 this is a non-expansive mapping.

A common example of a contraction mapping is the Sierpinski triangle. Listing 4.1

shows the pseudo-code for creating the Sierpinski triangle using the affine transfor-

mation w : R? — R?:

w = + (4.25)

Using the values a = 0.5, b = 0, ¢ = 0, d = 0.5, e = 15 and f = —8 this

transformation has a contraction factor of 0.5.

Figure 4.8 shows the Sierpinski triangle after 10 iterations.

1 Start with an equilateral triangle with a base parallel to the horizontal axis

2 Do forever:

3 Shrink the triangle to half the original height and width, make three copies,
and position the three shrunken triangles so that each triangle touches the

two other triangles at a cormner

Listing 4.1: Sierpinsiki pseudo-code

“serpinski.dat”

Figure 4.8: The Sierpinski triangle after 10 iterations

Lemma 1 There can only be one fized point for each contraction mapping.

4.5. The Lagrange multiplier 49

Let us consider the alternative, that two fixed points a and b exist such that:

fla) = a (4.26)
f(b) = b (4.27)
For this to be so
d(a,b) = d(f(a), f(b)) (4.28)
< Ad(a,b) (4.29)

Therefore d(a,b) = 0 so the fixed point a equals the fixed point b.

4.5 The Lagrange multiplier

The method of Lagrange multipliers is a means of finding the maxima and minima

of multi-variable systems subject to one or more constraints.

Definition 1 The Lagrangian A(z,y,() of a function f(x,y) constrained by the
function g(z,y) = 0 is:

ANz, y,C) = f(x,y) + Cg(x,y) (4.30)

O

The stationary points of \/(z,y,() occur when the gradients of f, v/,,f and g,

Vazyg are parallel vectors.

This occurs when:

0
0
O) = 0 (432

—A(,y,() = 0 (4.33)

4.5. The Lagrange multiplier 50

Thus to find the maxima and minima of f constrained by g, we solve the partial

differential equations of A(z,y, () equal to zero.

For example, let us find the maximum of {z + y|z* + y* — 1 = 0}, shown in figure

4.9.

SR

ARH

R
R

s

SR A

bk,
HI
HHLLrY
ey Ry AN nat
LI LI “‘.\\\

4,
7 Ll Iy
TR

R
""‘:l‘;f,'"f'
)

l’,' ;

Figure 4.9: Finding the Lagrangian of f constrained by g

The constraint g : R? — R is g(z,y) = 1 — (z* + y?).
Therefore the Lagrangian A(z,y,{) =z +y — C($4 +yt— 1)

Partially differentiating with respect to (x,y, () gives:

ox
dy
0
/\(;2_:976) — 1—m4—y4:0 (436)

Substituting (4.34) and (4.35) into (4.36) gives:

4.6. The conditions for a cellular automata to converge 51

@) -

¢ = i(%)i (4.38)

So there are two critical points at j:(—é—i, —4\15) and the maximum value is —4\%

4.6 The conditions for a cellular automata to con-
verge

Let us define the metric space (M(Z), d) where:

1. Every possible pattern on a one-dimensional CA is a member of M(Z)

2. The metric, d is the euclidean distance function

[Cime = Tomtll = \/(C10 = 1) + (€20 — €202+ (Cn — Cup)? (4.39)

where n is the size of the CA.

Suppose our CA transition function f is:

The euclidean distance |Cy — Cy]|? is:

4.6. The conditions for a cellular automata to converge 52

Co,0 — Co,1
Cig—C¢C
||Oo - 01||2 = 1€0,0 —C0,1 C1,0 —C1,1 " Cno — Cn,l] Ho b (4-41)
Cn,0 — Cn,1
- =T r - B B
Co,0 — Co,1 Co,0 — Co,1
_ C1,0 — C1,1 C1,0 — C1,1 (4.42)
Cn,0 — Cn,1 Cn,0 — Cn,1
Therefore the euclidean distance ||f(Co) — f(Ch)||* is:
1£(Co) = fF(CHIIP = ((ACy+ D) — (AC, + D))" ((ACy + D)
—(AC, + D)) (4.43)
= (Co—C)TATA(Cy —) (4.45)

From (4.24), for f to be a contraction mapping, the distance between any two points
x and y must be greater than or equal to the distance between f(z) and f(y). To
prove that f is a contraction mapping, we need to show that the contraction factor
A is less than or equal to one for any two points in the matrix space. Let us find the

maximum value of A\, \,,.:

 (Co—C)TATA(Cy — Cy)
Mo = G (o — O (4.46)

Let us now solve equation (4.46) for an automata of size n = 2.

U
Let Cy — C; = and

w402 =1 (4.47)

This constraint is required so the denominator of (4.46) disappears. Therefore:

4.6. The conditions for a cellular automata to converge 53

u

Amaz = [u v]ATA (4.48)
v
a b
If A= , multiplying (4.48) out gives:
c d
Amaz = (au + bv)* + (cu + dv)? (4.49)

Let us now apply the method of Lagrange multipliers. From equations (4.49) and
(4.47) we get:

Au,v,¢) = (au+ bv)? + (cu + dv)* + (1 — u® — v?) (4.50)

Partially differentiating with respect to u, v and (then setting these equal to zero

gives:

d A %ZU’O — 2(a® + A)u+ 2ab + ed)v — 2uC = 0 (4.51)
ASCLRY) (g;)”’) 9(ab+ edyu+ 207 + P — 20 = 0 (4.52)
%5%0:1_13_@2 — 0 (4.53)

Dividing (4.51) and (4.52) by two, then re-arranging these results into matrix form

we get:

4.6. The conditions for a cellular automata to converge 54

a?+c ab+cd| |u U
= ((4.54)
ab+cd b+ d? v)
a c| la bl |u U
= ((4.55)
b d| |c d| |v)
U U
ATA = ((4.56)
v v

u
Therefore is an eigenvector of AT A and (is an eigenvalue.

From equation (4.24) and (4.56) we can see the scaling factor for the solution
v

is |C].

For the transition function f to be a contraction mapping, the scaling factor A must

be 0 < X < 1, so both of the eigenvalues of AT A must be 0 < ¢ < 1 and real.

If A consists only of integers, for its eigenvalues to meet these conditions A must
be a lower-diagonal or upper-diagonal matrix. This is equivalent to saying that the
calculation of the next state of each cell must depend upon just the state of the
cell to its left or the state of the cell to its right. Note that CA that determine the
next state of each cell according to the state of none of their neighbours would also
converge, however the solution would be trivial and the properties of such a system

are not of interest to us in our attempts to mimic morphogenesis.

Figure 4.10 shows the four one-dimensional two state additive CA that meet this

criteria.

4.7. Two dimensions, from first to last state 55

i

Cit+1 = Ci—14 + 1 mod 2

Cit+1 = Cip1¢ + 1 mod 2 Cit+1 = Cit1p

Figure 4.10: Convergent 1D 2 state additive CA

4.7 'Two dimensions, from first to last state

Let us index each cell of a two-dimensional CA with the tuple (¢, 5), then describe
the state of each cell with an integer, ¢; j; and the pattern of the entire array as a

matrix, C; (see figure 4.11a).

If Cy is the initial pattern of cell states, f(Cy) is its subsequent pattern after one
time step, and f(f(Cy)) or f%(Cy) is its pattern at ¢ = 2; where f describes the
transition from one iteration to the next. The matrix C; is first transcribed into a
row-major vector, Cy (figure 4.11b) in order for f to be a linear function of matrix

algebra.

Let us now define a simple transition function, f for the next time step:
Cijr1l = VCij1p + WCi1 5t + TCit1 5t + YCijpre + 2Ci5¢ +d (4.57)

where v, w, x,y and z are coefficients of the state of neighbours of each cell, and of

the state of the cell itself; and d is a constant.

4.7. Two dimensions, from first to last state 56

C C €11
i — i+1,j —

1,

| | | c13

C.. €2
i,j+1 - — —

th — C3 0

| | | -

] | | €31

€32

| | |

(a) (b)

Figure 4.11: Index of CA elements, and a row-major vector equivalent

A transition function for the entire array can be formed from (4.57) such that
f(C)) = AC, + D where D is a constant and the transition matrix (for a 3 by
3 CA), A, takes the form:

z z 0y 0 0 0 0 O
w oz T y 0 0 0 O
0 w z 0 y 0 0 0
v 0 0 z =z y 0 0
A= 0 v 0 w 2z x y 0 (4.58)

0 0 v 0 w2 0 0y
0 00 v 00 2 =z

0 00 0 v 0w 2z =z
0 000 0 v 0 w z

The spacing of the coefficients v, w, z,y and z within A depend on the size of the

CA.

Because the form of f is the same as for the one-dimensional equivalent the analysis
of the conditions for convergence is equally valid, as is the result — that A must be
an upper-diagonal or lower-diagonal matrix. This analysis is also equally true of a

CA of any number of dimensions.

4.7. Two dimensions, from first to last state

57

Figure 4.12 shows the convergence of a two-dimensional two state CA that meets

this criterion and uses the transition function:

t =192

Ciji+1 = Ci—1jt T Cij ¢ +1 mod 2

t = 256

t =275

(4.59)

Figure 4.12: Convergent 2D 2 state CA

This bears some resemblance to the pattern found on the shell of the cone snail (see

figure 4.13).

Note that the pattern of figure 4.13 appears from one corner and propagates towards

its antipode. This can also be seen in Miller and Lui’s self-assembling french flag

4.8. Conclusions 58

Figure 4.13: The cone snail

Image courtesy of Richard Ling

patterns of figures 3.4, 3.6, 3.7 and 3.8.

4.8 Conclusions

For an additive CA described by a transition function of integers to converge to
a single state from any initial state, the transition matrix must be upper-diagonal
or lower-diagonal. Thus each cell must use just one state-input from neighbouring
cells per axis to determine its next state. Also it cannot use its current state when

determining its next state.

Chapter 5

Designing cellular automata to

converge to specific patterns

This chapter will present a means of designing the local transition rules of one- and
two-dimensional additive CA in order that the CA converge to a chosen pattern.
The limitations of this additive CA architecture will then be analysed using an
NP-complete search. The effect of introducing diagonals to the look-up table, and

increasing the number of dimensions of the CA will be similarly analysed.

5.1 1D cellular automata design

A 1D CA converges if the next state of every cell depends only on the state of the
cell to the left or to the right of it. (See chapter 3). Thus the transition matrix, A,
is either an upper-triangular matrix or a lower-triangular matrix, and A" = 0 if n
is greater than the length of the CA. Thus (5.1) (derived from (4.14)) is simplified
to (5.2).

n

I-A

Ciin=A"Ci—o+ D mod r (5.1)

99

5.1. 1D cellular automata design 60

Ciin=D In > Size(C) mod r (5.2)

I-A

This is rearranged to form (5.3).

I-A)Cyn=D (5.3)

(5.3) is expanded to form (5.4). Note we’ve now set v to zero so the next-state for

each cell depends on the state of the cell to the immediate left of itself.

i 1 0 0 0 O O- -cu%- _d-
—zx 1 0 0 0 0| |[cotsn d
0 —z 1 0 0 O C3 t4n _ d mod r (5.4)
0 0 —x 1 0 0| |caten d
0O 0 0 —z 1 0| |csitn d
I 0 0 0 0 —=z 1_ | C6.t4 | _d_

(5.4) is simplified to form a series of simultaneous equations (5.5).

Cli+n =
—XCiin + Cot4n =
—XCotin t+ C3t4n =
—XC3t4n + Cap4n =

—XC4qtin + Csp4n =

Q. & . & o«

_xc5,t+n + Cﬁ,t+n -

Given a value for Cy,, (the desired convergent CA form), the simultaneous equations
of (5.5) are formed. If a solution to these equations exist, the values of x and d

describe the transition rule of the CA.

5.2. Designing a 1D CA from the intended final pattern 61

5.2 Designing a 1D CA from the intended final

pattern

Let us design a simple six cell one-dimensional CA such that it converges to form

the following pattern:

Figure 5.1: Desired 1D 6 cell CA pattern

The diagonal of the matrix of equation (5.5) is populated with the desired CA
pattern, such that (5.5) becomes:

1 = d (5.11)

—x = d (5.12)
0Oz+1 = d (5.13)
—r = d (5.14)
0Oz+1 = d (5.15)
-z = d (5.16)

From (5.11) we can determine that x = —1 and d = 1.

Figure 5.2(a) displays a CA of this design developing from null initial conditions to
the pattern of figure 5.1 in six cycles. Figure 5.2(b) displays a CA of this design

developing from random initial conditions to the pattern of figure 5.1 in six cycles.

5.3. Designing a 2D CA from the intended final pattern 62

t=0 10 10 |0 [0 [0 |O t=0 10 |1 |3 |0 |20
t=1 |1 |1 |1 |1 |1 |1 t=1 11 |1 [0 |21 |-1
t=2 11 {0 (0 |0 |0 |O t=2 |1 |0 |0 |1 |3]0
t=3 |1 (0 |1 |1 |1 |1 t=3 11 (0 |1 |1 |0 |-2
t=4 1110 |1 [0 [0 |O t=4 1110 |1 |0 |0 |1
t=5 1110 |1 |0 |1 |1 t=5 1110 |1 |0 |1 |1
t=6 1110 |1 |0 [1 |0 t=6 |1 |0 |1 |0 |1 O
t=7 1110 |1]0 |1]0 t=7 1110 |1 |0 |1 |0
t=8 11 10 |1 |0 [1 |0 t=8 |1 0 |1 |0 |1 O

(a) (b)

Figure 5.2: 1D 6 cell CA developing from null and random initial conditions

5.3 Designing a 2D CA from the intended final

pattern

A two-dimensional CA is robust if the next state of every cell depends only upon
the state of two cells, one to the left or right of it and one above or below it (see
Chapter 4). Therefore the transition matrix, A, is either an upper-triangular matrix
or a lower-triangular matrix, and A™ = 0 if n is greater than the dimensions of C.
A system of simultaneous equations are formed by setting (I — A) Cy,,, equal to D,

thus forming (5.17)

Cilt+n

C21,t+n

0

—x 1 0 O C12,t4n
0
1

d
d
- (5.17)
d
d

C22 t+n

Given a value for C;,, (the desired convergent CA pattern), the simultaneous equa-

tions of (5.17) are formed. The values of x,w and d describe the transition rule of

5.4. 2D cellular automata design example 63

the CA if a solution to the equations exists.

5.4 2D cellular automata design example

Let us design a transition function for a two by two cell CA such that it converges

to the following pattern:

Figure 5.3: Desired 2D 6 cell CA pattern

1 = d (5.18)
x = d (5.19)
—w = d (5.20)
Qw+—0x+1 = d (5.21)
From (5.18) we can determine that = —1,w = —1 and d = 1.

Figure 5.4 displays a CA of this design developing from null initial conditions to
the pattern of figure 5.3 in four cycles. Figure 5.5 displays a CA of this design

developing from random initial conditions to the pattern of figure 5.3 in four cycles.

010 110
t=20 t=2

010 0 |-1

1 |1 110
t=1 t=3

1|1 0 |1

Figure 5.4: 2D 4 cell CA developing from null initial conditions

5.5. Limitations on possible cellular automata states 64

0 |1 1|1
t=20 t=1

310 1]1-3

110 110
t=2 t=3

0 (0 0 |1

Figure 5.5: 2D 6 cell CA developing from random initial conditions

5.5 Limitations on possible cellular automata states

We have shown that every cell of a 1D convergent CA updates its state based on
the value of one input, and that every cell of a 2D convergent CA updates its state
based on the values of one input on each axis. In the event that the simultaneous
linear equations formed by the two inputs and the output of each cell contradict,
such a CA state will be impossible. Creating the simultaneous linear equations for

figure 5.6 demonstrates this.

Figure 5.6: An impossible CA state

0.2 +0w+d = 1 (5.22)
lo+0wtd = 2 (5.23)
0x+lwtd = 2 (5.24)
204+2w+d = 1 (5.25)

Equation (5.25) contradicts equations (5.24), (5.23) and (5.22).

5.6. Significance of additive CA limitations 65

5.6 Significance of additive CA limitations

Given the size of the CA, for instance a ten by ten CA, and the size of the alphabet

as defined by the modulus, r, there are 1% different CA states.

Given the three variables, x, w and d, their limit defined by R (since this defines the
size of the usable alphabet of the CA), the number of different rules and thus the

number of possibly different CA states is 7.

The final CA state is a function of the variables x,w, d, R and the size of the array.

Some combinations of these variables result in the same final CA state.

Thus calculating the actual number of possible stable CA states is a non-trivial task.
See listing 5.1 for the pseudo-code of an exhaustive search program. The results of

this empirical analysis are shown in figures 5.7 and 5.8.

1 for alphabet = 0 to 12

2 for width, height of array = 1 to 20

3 results = new array

4 for x,w,k < alphabet

5 for R < alphabet+1

6 create and iterate CA width4+height times

7 if final CA pattern is not already in results array,

add to array

8 show length of results array

Listing 5.1: Exhaustive CA analysis

This shows that a next-state rule that is formed from a linear combination of neigh-

bouring states will limit the number of possible patterns that can be formed by the

CA.

5.7 Effect of increasing the dimensions of the CA

Figure 5.9 shows the neighbourhood function of a stable CA of sixteen cells in four-
dimensions, represented as multiple two-dimension arrays. Equation (5.26) is its

corresponding transition matrix. The column vector C is now a row-column major

5.7. Effect of increasing the dimensions of the CA 66

Number of possible CA states verses CA size
8000 —

T
/ -

7000

6000 /.
) a bt -
] / i
IS
7] P
< 5000
(]
2 /
2 4000 N
o] B a & 4 A A N A
=% A
5 “j K A ‘
£ 3000 ,“ y
= | B o @@ o000 *----o
S | e
4 / N

2000 [

) -9 -0 [} d
1000
s - " - i o & a £ & £3 =] £3 =])
0 3 - ;;K 77777 ;; 77777 ;* 77777 T *¥ X G S SR Koo Koo L S SR
2 4 6 8 10 12 14 16 18 20

Width, Height of CA

Figure 5.7: Number of different CA states verses CA size. R is the CA modulus.

Log percentage of possible CA states verses CA size

100 T T
"log_%R=2" —+—
"log_%R=4"
"log_%R=6" ---%---
0 "log_%R=8" T
"log_%R=10"
— "log_%R=12"
— "log_%R=14" ----e - |
-100 T og 9R=16"
@ —'log_%R=18" -4
& Sk "log-%R=20" —v—
@ -200 B P
<< i
g -
o
2 -300
(%2}
o
o
© .
£ -400 X
[=2] i
S i} X,
-500 :
0| x
-600 Ry . I -
4 n‘o [}
-700 :
0 2 4 6 8 10 12 14 16 18

Width, Height of CA

Figure 5.8: Log percentage of different CA states verses CA size. R is the CA

modulus.

5.7. Effect of increasing the dimensions of the CA 67

vector.

For a sixteen cell system in four dimensions:

Figure 5.9: The neighbourhood function of a stable CA of 16 cells in 4-D

0000O0OO0OO0OO0OOOOO0OO0OTO0O®O0O®O
a 00 00O0O0OO0OO0OO0OOO0OOO0OO0O
b00O0O0OOOOOOOOOO0®O0O
0O ba 0O0O0O0OO0O0OO0O0OO0O0O0O0O
c 0000O0OO0OO0OO0OO0OO0OO0OOO0OO0OO
0 c0O0a0O0OO0O0O0O0O0OO0OO0OO0OO0OO
00 cObbOOOOO0ODOO0OO0OO0OO0OO
T 000 c¢cO0Oba0OO0O0O0O0O0O0O0O0 (5.26)
d 000O0O0OO0OO0OOO0OOOOO0OO0O®
0d0oO0O0O0OO0O0waO0O0O0O0O0O0O0
00d0O0O0O0OO0ODOOO0OO0OO0O0O0
000dOO0OO0OO0O0ODbDa0O0O0O00O0
0000dOO0OO0Occ0O0O0O0O0O0°O© 0
0000O0dOOO0OCcO0O0wa0O00O0
0000O0O0OdOOO0OTCccO0DO0O0O0
0000O0O0OO0OdGOOOS®EE0Dbado0

5.7. Effect of increasing the dimensions of the CA 68

The number of possible CA states, L depends upon the size of the CA alphabet, r,
the width of the CA, z and the CA dimensions, d, according to equation (5.27).

d

L=r" (5.27)

The number of possible CA rules, and thus given a sufficiently large = the number

of CA states it is possible to form as stable, M is given by equation (5.28).

M = rttt (5.28)

Thus the percentage of possible CA states, N, that can be formed is given by equa-
tion (5.29). Figure 5.10 is a logarithmic plot of N versus the number of dimensions

for increasing values of A.

N = 100.r%1—=* (5.29)

The log percentage of CA state forms possible v the number of dimensions

1e+50 T
A=l —
A=2
A=3 ---ooo-
A=4
1 e A=5 =
e A=6
il A=7 --
@ U A=8 -
2 e -
4 le-50 St ~A=10 |
Qo N
@
£
5
5 .
g le-100 s
7]
< NN
3]
© N
R le-150
[=2 '
<1 "
S AR
le-200 :
\
le-250
1 15 2 25 3 3.5 4 45 5

Dimensions

Figure 5.10: A logarithmic plot of N versus the number of dimensions

5.8. Effect of using a Moore neighbourhood 69

This shows that as the number of dimensions the CA exists in increase, the number
of possible stable CA patterns formed by an additive transition rule also increase.
However this increase is smaller than the increase in the number of impossible stable

CA patterns.

5.8 Effect of using a Moore neighbourhood

If the neighbourhood function is expanded to include all cells that are adjacent to
the cell, not just those orthogonally adjacent, the number of possible stable CA rules

increases (provided the number of dimensions is greater than 1).

Figure 5.11 shows the augmented neighbourhood function of a stable CA of two
dimensions. Equation (5.30) is the transition matrix for this CA. Note that the

matrix is still lower-diagonal, thus the CA is stable.

Figure 5.11: The augmented neighbourhood function of a stable CA of 2 dimensions

5.8. Effect of using a Moore neighbourhood 70

o

Q
> O O o O
o o o O
o o o o O

(5.30)

S

o
[a)
IS
(a] [a)] (aw] o]]

> O O O O o o O
o O O o o o o o

IS

o O O O

oS O O &

o o O

oS«

Q O

o

o

IS

o o o o o o o o o

Figure 5.12 shows the augmented neighbourhood function of a stable CA of three

dimensions.

Figure 5.12: The augmented neighbourhood function of a stable CA of 3 dimensions

Thus it can be seen that the size of the augmented neighbourhood, O varies with d
according to equation (5.31), and the percentage of possible CA states, N, that can
be formed is given by equation (5.32).

(5.31)

N=r2 " (5.32)

Figure 5.13 is a logarithmic plot of N versus the number of dimensions for both the

orthogonal and augmented neighbourhood functions.

5.9. Conclusions 71

The percentage of CA state forms possible v number of dimensions

1le+20

clmhogonal nleighbourhoc;d
augmented neighbourhood

1e-20 s =

le-40

1le-60

1e-80

le-100

le-120

Log % of CA state forms possible

le-140 X

le-160

le-180
1 15 2 2.5 3 35 4 4.5 5

Dimensions

Figure 5.13: A logarithmic plot of N versus the number of dimensions for both the

orthogonal and augmented neighbourhood functions

Figure 5.14 is a logarithmic plot of N versus the size of the alphabet for both the

orthogonal and augmented neighbourhood functions.

5.9 Conclusions

In this chapter we have demonstrated the process of designing CA to converge to
specific patterns using an additive transition function and simultaneous equations.
Since there are a greater number of simultaneous equations than there are coefficients
to solve them for, there sometimes exist CA patterns that cannot be converged upon
using additive CA. Using a brute-force analysis we have shown this technique is
limited to creating a small percentage of all possible CA patterns as stable final

states

5.9. Conclusions 72

The percentage of CA state forms possible v size of alphabet

100000 T T T
orthogonal neighbourhood —
augmented neighbourhood

1le-05

le-10

le-15 <

Log % of CA state forms possible

1le-20 : :

le-25
1 2 3 4 5 6 7 8 9 10

Size of alphabet

Figure 5.14: A logarithmic plot of N versus the size of the alphabet for both the

orthogonal and augmented neighbourhood functions

Chapter 6

Non-linear cellular automata

design

Since there are may be more cells in a CA than there are coefficients of neighbouring
cells, every possible CA transition function cannot be represented by the additive
CA model shown in the previous chapter. An alternative to this is to introduce

non-linear components to the transition function.

For instance, referring to example 5.6 from the previous chapter, a solution is to

introduce a ¢;;-1,;.¢4,j—1 term to the transition function:

Ctil,ij = TCri-1j + Wi -1 + YCri1,Ctij—1+d (6.1)

Four simultaneous equations with four variables can be derived from (6.1).

73

6.1. A sum-of-products representation of look-up tables 74

0z+0w+00y+d = 1
lx+0w+1.0y+d = 2
Ox+1lw+0ly+d = 2

2042w+22y+d = 1

Thusw=1,r=1,y=—1and d = 1.

A more general solution is to represent the transition function as a look-up table, the
inputs of which would be the present state of the neighbouring cells, the output the
next state of the cell. This chapter will prove that such a design is also constrained
to a one-input-per-axis design, then present a design algorithm for the formation of

the look-up table.

6.1 A sum-of-products representation of look-up

tables

Any system of combinatorial logic can be represented by a look-up table (LUT).
Figure 6.1(a) shows the LUT for a two-input XOR gate. Any LUT can be repre-
sented by a sum-of-products (SOP) boolean expression. If each row of the LUT for
which the output is high is represented as a boolean product, then a boolean sum
of each product forms the complete expression. Figure 6.1(b) shows the SOP of a
two-input XOR gate.

Thus the SOP representation of an XOR gate is f(a,b) = @b+ ba mod 2.

An SOP representation of any two-input boolean product is (a+ k1)(b+ k2) mod 2
where kq, ko € {0,1}. Note that this is commutable and distributable, so also equal
to ab + koa + k1b 4+ k1ky mod 2. A general case, g, for n-input boolean products

and boolean sum of products is:

6.1. A sum-of-products representation of look-up tables 75

a|b|f(ab)| Boolean products

0]0 0 0

Figure 6.1: An XOR gate look-up table and its sum-of-products expression

(c1+ki)(ca+ ko) -+ (ca+kn) = J[(ci+ k) mod 2 (6.6)

g = ZH(ci+ki,j) mod 2 (6.7)

If we use a LUT to determine the next state of each cell within a two state six cell

one-dimensional CA, the transition function would look like:

6.1. A sum-of-products representation of look-up tables 76

C1,t+1
Cot+1
C3t+1
Cati1

Cst+1

Ce,t+1

00 0 0 0 0] ey ki
(5 O 0 0 0 O Cot]f@l
0 V; 0O 0 0 O C3,t k@l
+
0 0 U; 0 0 0 Cqt]{71‘11
0O 0 O V; 0 0 Cs.t k’i71
0O 0 0 O Vi 0 Ce,t k@l
wy, 0 0 0 0 O C1t kio
0 W; 0 0 0 0 Cat ki72
0 0 w; 0 0 0 C3t ki’Q
X +
0 0 0 Ww; 0 0 Cat k’@g
0 0 0 0 Ww; 0 Cs,t k@g
0 0 0 0 0 w; Ce.t l{ii’g
0 Z; 0 0 0 0 Cit ki73
0 0 ZT; 0 0 0 Cot ki,3
X I mod 2
0 0 0 0 ZT; 0 Cat ki,B
0 0 0 0 0 €T; Cst ki,3
00 0 0 O O |cer ki3

(ViCi + K1) (WiCi + K 2)(XiCy + K;3) mod 2

(ViWiXiC,” + ViXiKi2Cs + WiX; K1y + KiiKioXs

+ViWiKi,3Ct2 + ViK 2K 3C, + WK 1 K, 3C, + K1 K 2K, 3) mod 2

Let us now consider the constraints on Vi, Wi, X; and Kj; such that the CA will

always converge.

6.2. General case convergence analysis of cellular automata 77

6.2 General case convergence analysis of cellular

automata

For the purposes of this analysis we are only interested in the independence of C,,
from C|, so we can ignore the powers of O, and combine the coefficients into an

all-encompassing matrix A;. We are interested in the form A; must take.

w;, z, 0 0 0 O
v, w;, ; 0 0 0

9(Co) =Y (ACo+K;) where A; = (6.8)
i=0 v; w; xz; O

0 0 v, Ww; I

0 0 0 v, W

o o o O
[en}

Expanding ¢"(Cj), when k is greater than three, gives a coefficient of Cy formed by

the multinomial of the transition matrices:

(Ag+ A+ Ay - +A,)"Coy (6.9)

The multinomial expansion can be described as:

n n 1 m
(@1 29 4o 1) = Zko,kl...,km (k‘o, ki, -, km) MR (6:10)

where the summation is taken over all sequences of ki, ks, - - -, k,, such that:

iki =n (6.11)
=1

and the multinomial coefficient can be expressed as:

6.3. Design of a look-up table transition functions 78

n n!
=" 6.12
(kg,kl,---,km) kolky!- - -k, ()

Thus the coefficients of every Cy term are constructed from a multinomial coefficient

and n members of the set A of transition matrices:

A={Ag A, Ay - AL} (6.13)

For every coefficient of Cj to be zero, every possible product of n members of A must
be zero. Thus the convergence criteria for f also holds true for g: every member
of A must be a lower-diagonal matrix or every member must be an upper-diagonal
matrix. For this to be so, x; must equal zero. Also either v or x must equal zero.
That is, the same criteria for an additive CA to converge also applies to any CA
that can describe its transition function with a look-up table; there can only be one

input per axis and it cannot include inputs from its own current state.

6.3 Design of a look-up table transition functions

Now we know the design-constraints for a convergent CA we can begin to design
them. Figure 6.2 shows a hardware implementation of a cell that could form part
of a synchronous CA. The next-state arithmetic is performed by the logic block f()

and the state is stored in a local register and shared with its neighbours.

The LUT determines the next state of each cell, and each cell uses an identical LUT
to do so. The entries in this LUT, the combinatorial logic it represents, will be

responsible for the final state of the convergent CA.

From chapter 3 we know that if the combinatorial logic function g represented by
the transition function is to result in a convergent sequence within the CA metric

space, after sufficient iterations, the output must remain constant.

6.3. Design of a look-up table transition functions 79

1 Cell output (its state)

~-— —
To / from
neighbouring
cell

To / from
neighbouring
cell

11213
11213
11213

Figure 6.3: A 9 cell French flag pattern

Cni1 = O, | n> width+height of CA (6.14)

= 9(Ch) (6.15)

Thus we can begin populating the LUT entries. At every time-step, including those
after t > n, each cell will use its inputs to determine its next state. Given that the
CA converges correctly, we know what those inputs will be from the final pattern.
For instance, consider the simple French flag pattern shown in figure 6.3 where

1=red, 2=white, 3=blue.

Each cell will use two inputs to determine its next state. Let us assume they are
from above and to the left of itself. If the boundaries of the CA are set to zero, the

rules each cell must obey can be seen in figure 6.4.

The remaining LUT entries may have roles to play during the convergence of the CA,
but their values are not critical to the formation of the correct pattern. Therefore

we can set them to equal zero. Listing 6.1 shows the pseudo-code for the design of

g.

1 Create a LUT entry for every possible combination of two—inputs

6.3. Design of a look-up table transition functions 80

above | left || output
0 0 1
9(0,0)=11g¢(0,1)=2¢(0,2) =3 0 1 2
g(1,0)=11]¢g(2,1)=21¢(3,2) =3 0 2 3
9(1,0)=11]g(2,1)=2]¢(3,2) =3 1 | o 1
2 1 2
3 2 3

Figure 6.4: The rules a 9 cell French flag CA must obey

2 Assign each entry the output = 0

3 For each cell in the CA pattern:

4 Determine the inputs to the cell assuming it has successfully converged. The
inputs come from above and to the left of itself.

5 Find the LUT entry that corresponds to this combination of two—inputs, and re—

assing its output to that of the cell state.

Listing 6.1: Design of LUT CA pseudo-code

Figure 6.5 displays a CA of this design developing from null initial conditions to the
French-flag pattern in six cycles. Figure 6.6 displays a CA of this design developing

from random initial conditions to the French-flag pattern in six cycles.

0/0{0 11213
t=0 (0]0]0 t=3 |1/2]0
0/0]0 11271
111]1 1123
t=111]1]1 t=4 111213
11171 1123
11212 11213
t=2 |1/0]0 t=5 11|23
11010 11213

Figure 6.5: Development of a 9 cell CA from null conditions to a French flag pattern

There still exist certain patterns that cannot be formed by convergent CA based on

6.3. Design of a look-up table transition functions 81

11113 11213
t=0 [0|1]2 t=3 |1/2]3
0120 1123
1122 1123
t=111[13 t=4 111213
11110 11213
11213 11213
t=2 11|23 t=5 11|23
11213 11213

Figure 6.6: Development of a 9 cell CA from random conditions to a French flag

pattern

transition functions of the form f or the form ¢. This is because the rules required
by each cell to form the final pattern may contradict each other. For instance, let

us consider a six by six French flag (figure 6.7).

111121233
111121233
111121233
111121233
111121233
111121233

Figure 6.7: A 6 by 6 CA pattern that cannot be formed by ¢

The rule formed for cell ¢; 5 (indexed ¢,, from 1 to 6) is g(0,1) = 1, however the
rule for cell ¢; 5 is g(0,1) = 2. Clearly ¢g cannot give two different outputs for the
same two-input combination. Other contradictions also exist in figure 6.7 - the cells
of column 2 form rules that contradict those of column 3, the cells of column 4 form

rules that contradict those of column 5.

6.4. State redundancy 82

The percentage of all CA states that are possible with a CA using boolean maths,
depends upon the size of the CA and its alphabet. Figure 6.8 demonstrates this
dependence for an eight cell one-dimensional CA by showing how the percentage of

possible, stable, CA patterns varies with the size of its alphabet.

Percentage of all binary CA configurations that are possible
100

WW
o8 %
o /
o
2 96
o
o
- /
© 94
T i
£
2 92
S
‘5 /
3 9 +
€
3 \ /\ /
< 88 \ /v
o
&
g 8 \ /
Qo
T
= 84
S
82 |
80
0 5 10 15 20 25 30 35 40

Size of alphabet, R

Figure 6.8: Percentage of all CA states that are possible using g, versus R

Thus if we increase the size of the alphabet available to each cell by adding states
that don’t appear in the output we can increase the probability of a design being

possible. These extra states that are unused as outputs are “redundant states”.

6.4 State redundancy

If a LUT-solution doesn’t exist for a CA pattern then we can change the pattern
to one for which a solution does exist. Then we can map the new pattern to the
desired convergent pattern with another LUT. Figure 6.9 shows a possible hardware

implementation of this approach.

There are some restrictions on which intermediate pattern the CA converges to. It

must be possible to generate the LUT rules to generate the new pattern. Also the

6.4. State redundancy 83

A Cell output

Logic, h()

Cell state

-— —
To / from
neighbouring
cell

To / from
neighbouring
cell

Logic, g()

Figure 6.9: An implementation of a LUT-based cell with an alias output

same intermediate state cannot map to two or more different output states.

An extreme application of this approach is to assign each cell its own unique in-
termediate state (e.g. a co-ordinate reference) then store a complete co-ordinate
to output mapping in A(), the logic unit responsible for mapping state to output.
However, the more the states the larger the cell memory needs to be and the more
entries are needed in each of the LUTs. Thus an optimum solution using as few

states as possible needs to be found.

The algorithm shown in figure 6.10 achieves this by designing the CA LUTSs in the
order they converge to their correct state. If each cell takes its inputs from above
and to the left of itself, the CA converges from the top-left corner. If each cell
takes its inputs from below and to the right of itself, the CA converges from the

bottom-right corner. Likewise for the top-right and bottom-left corners.

If the desired pattern is asymmetric, a more-optimal solution may exist if the CA
converges left rather than right, up rather than down. Thus the algorithm designs

a solution for all four input combinations then chooses the best.

Each cell state assignment is tested against two criteria:

1. This cell state acts as the input to two cells for which a state has already been

assigned. Does the input-output combinations these form contradict existing

6.4. State redundancy 84

LUT entries for f?

2. Does the state-to-output mapping LUT entry for ¢g contradict existing LUT

entries?

If the answer to both these questions is no, the cell is assigned this state. If not,
the cell is assigned another state. The algorithm first attempts to assign each cell a
state that has been previously used in the CA design. If this, and other previously
assigned states don’t meet the two criteria, a new state is added to the CA alphabet

and then assigned to this cell.

FO R each of the 4 combinations of possible reflections about the center cell in the horizontal
and vertical axis, do the following:

AlBJC] [CfB]JA] [G]H]! I ||H]| G
D|E|F FIEND| |LPJE|F F D
G| H]I I JH]G] [A]lB]C A

FO R each cell_, in a sequence of dia_gonal stripes from the top-left cell to the
bottom-right cell do the following:

15 6]

2|5

[4]

Let the Cell state = 0

state-to-output Add 1 to the
mapping contradicted by Cell state
existing mappings?
A

The transition logic function obeyed by this cell is that
the combination of cell-states of its neighbours to

the north and east correspond to an output that
equals the cell state

Is this
ransition logic function
contradicted by existing logi
functions?

Store state-output and
transition logic function.

Figure 6.10: Design algorithm for g and h()

6.5. Conclusions 85

The source code for this algorithm can be found in appendix A.2.
As the number of possible CA states increases, so does the number of possible CA
output patterns (see Figures 6.11 and 6.12).

Percentage of 1-D CA states possible versus size of redundant alphabet
100 —

*
% "R=2" ——
A "R=3"
90 b "R=4" k-
“’;’ HR:5H =]
/
80 o /
¥ /
70 : /
) /
) /
7] /
2 60 /
[=1 "/
o ul
g 50
@ ‘,“"
< ; /
© a0 . /
o /
R
30 f‘x
, /
; /
20 - =
eil — g
10 T
- — X
P e
0 1 2 3 4 5 6 7

Size of redundant alphabet

Figure 6.11: Percentage of all possible 1D CA states versus the size of the Redun-
dancy alphabet. R = Number of output states

6.5 Conclusions

Two new CA transition function schemes have been demonstrated. The first, a
single LUT implementation of g, goes some way to removing the limitations on CA
pattern imposed by the additive CA design, f. However there still exists certain
patterns that cannot be converged upon using g alone. Thus a two-LUT scheme
that uses an intermediate state and a state-to-output mapping has been introduced.
This scheme is capable of creating a CA that will converge to any desired pattern.
However, this comes at a cost to increased complexity of the cell transition function.
Both schemes have been brute-force analysed to assess what percentage of possible

patterns they can converge to, and the latter scheme has been analysed to find the

6.5. Conclusions 86

Percentage of 1-D CA states possible versus size of redundant alphabet

100
j S oo
van

% y vocgy

80

70 B il

60

50

20t/

% of CA states possible
~

30

20

10

0 1 2 3 4 5 6
Size of redundant alphabet

Figure 6.12: Percentage of all possible 1D CA states versus the size of the Redun-
dancy alphabet S = Size of CA

trade-off between this percentage and the increased complexity of the cell.

Chapter 7

Demonstrating robust patterns

This section will show solutions to Wolpert’s French flag, a checkered pattern and

the Welsh flag; designed using the algorithms presented in the previous chapters.

7.1 Developing a three-by-three French flag

This small design does not require redundancy to be robust, nor does it require an

LUT solution; instead an algebraic solution (see equation (7.1)) suffices.

CtJrl,z,y = Ct,x,yfl + 1 mod 4 (71)

Diagram 7.1 shows the development of the three-by-three French flag from an initial

state of zero.

t=20 t=1 t =2 t=3 t=4

Figure 7.1: The development of a three-by-three French flag from the null state
87

7.2. Developing a twelve-by-twelve French flag 88

Diagram 7.2 shows the development of the same three-by-three French flag from a

corrupt starting state that has been formed with a random number generator.

t=20 t=1 t =2 t=3 t=4

Figure 7.2: The development of a three-by-three French flag from a corrupt state

Figure 7.3 is a graph of the number of cells with incorrect states during the assembly

cycle versus time, starting from null and corrupt initial conditions.

Errors v Time of dewveloping French flag

T
french_null' ——
g "french_corrupt" —se— _|

Errors

Time

Figure 7.3: Errors v Time of developing French flag

7.2 Developing a twelve-by-twelve French flag

This design requires redundancy. Equation (7.2) is the cell transition function.

Ct41,2y = Ctaoy—1 + 1 mod 12 (7.2)

7.2. Developing a twelve-by-twelve French flag 89

The state to output mapping can be seen in figure 7.4.

State [Output

0-3 |Red
4 -7 |White
8 - 11|Blue

Figure 7.4: The output rule of a twelve-by-twelve French flag

Diagram 7.5 shows the development of the twelve-by-twelve French flag from an

initial state of zero.

t =10 t =11 t =12 t =13 t =14

Figure 7.5: The development of a twelve-by-twelve French flag from the null state

Diagram 7.6 shows the development of the same twelve-by-twelve French flag from

a corrupt starting state that has been formed with a random number generator.

Figure 7.7 is a graph of the number of cells with incorrect states during the assembly

cycle versus time, starting from null and corrupt initial conditions.

7.2. Developing a twelve-by-twelve French flag

90

t =10

t =11

t

12

t =13

t =14

Figure 7.6: The development of a twelve-by-twelve French flag from a corrupt state

Errors

60

40

20

Errors v Time of developing French flag

Time

Figure 7.7: Errors v Time of developing French flag

T T T
"arge_french_null" —+—
T "large_french_corrupt" —s-—
\
\
A
\
\
i
i
X 1
d 4 6 8 10 12

7.3. Developing a sixteen-by-sixteen checkered pattern 91

7.3 Developing a sixteen-by-sixteen checkered pat-

tern

A checkered pattern is formed with two redundant letters if diagonals are incor-
porated in the neighbourhood function. The next state LUT is derived from the
following segment of CA form 7.8(a), with the remaining combinations correspond-

ing to a next state of zero. The LUT of 7.8(b) shows the state to output mapping.

01112310
1101321

0-1]|Red
213(0(1/2

2 - 3 | White
312111013
01112310

(a) (b)
Figure 7.8: A segment of the checkered pattern CA state map and its corresponding

state-output mapping

Diagram 7.9 shows the development of the sixteen-by-sixteen checkered pattern from

an initial state of zero.

Diagram 7.10 shows the development of the same sixteen-by-sixteen checkers flag

from a corrupt starting state that has been formed with a random number generator.

Figure 7.11 is a graph of the number of cells with incorrect states during the assembly

cycle versus time, starting from null and corrupt initial conditions.

7.4 Developing a 32 by 32 Welsh flag

The Welsh flag has been chosen, in part, for its complexity. The design requires 100

redundant letters.

7.4. Developing a 32 by 32 Welsh flag

92

t =20

t =26

Figure 7.9: The development of a sixteen-by-sixteen checkered pattern from the null

state

Figure 7.10:

state

t =20

t =24

t =26

The development of a sixteen-by-sixteen checkers flag from a corrupt

7.5. Developing a 250 by 250 Image “Lena” 93

Errors v Time of developing checkers flag

300 , ,
"checkers_null" —+—
"checkers_corrupt" —
250_;
W
|I I||I
/1
200 bl
VY |
|] I'. | llll ?—'.
" | A A S 281 %
oy N || I.' \ g
S 150 bt :
i ¥ O T
L
100 -k
e
-
N
50 —k
=N
o
S,
0 Mlh-'i""-u-_l. e
0 5 10 15 20 25 30 35
Time

Figure 7.11: Errors v Time of developing checkered pattern

Diagram 7.12 shows the development of the 32 by 32 Welsh flag from an initial state
of zero.

Diagram 7.13 shows the development of the same 32 by 32 Welsh flag from a corrupt

starting state that has been formed with a random number generator.

Figure 7.14 is a graph of the number of cells with incorrect states during the assembly

cycle versus time, starting from null and corrupt initial conditions.

7.5 Developing a 250 by 250 Image “Lena”

The image “Lena” is a benchmark for image processing comparisons. It has been

chosen here to demonstrate the scalability of the design algorithm.

This design requires a 2236-letter alphabet and 60386 rules, almost one for each of
the 62500 cells. This suggests there is little repetition within the image.

Figure 7.17 is a graph of the number of cells with incorrect states during the assembly

7.5. Developing a 250 by 250 Image “Lena”

94

t =45 t =51 t =54 t =57

Figure 7.12: The development of a 32 by 32 Welsh flag from the null state

7.5. Developing a 250 by 250 Image “Lena”

95

TR R 1
i B e e e g
o etiaaagy

' P
L R

Figure 7.13: The development of a 32 by 32 Welsh flag from a corrupt state

Errors v Time of developing Welsh flag

1200 | |
"welsh_flag_null" ——
"welsh_flag_corrupt" —se—

1000

e e&@o@,%x
%

Errors
@
=}
o
b

200 %’M%
0 %m WWWWWWWW

0 10 20 30 40 50 60 70

Tirme

Figure 7.14: Errors v Time of developing Welsh flag

7.6. Observations 96

cycle versus time, starting from null and corrupt initial conditions. The corrupt
error-rate closely follows the null error-rate, such that at the scale of figure 7.17
they are indistinguishable. Figure 7.18 shows the error-rate for a smaller portion
of the development cycle, wherein the difference between development and repair is

apparent.

t=375 | t=400 | t =425 | t =450 | t =500

Figure 7.15: The development of a 250 by 250 greyscale image from the null state

7.6 Observations

The scheme proposed so far relies on each cell computing its next state from the
current state of two neighbouring cells. In a rectangular array of cells, most will
have two neighbours upon which they determine their next state, some will have one
neighbour and one will have no neighbours. In effect the desired pattern emerges

from this one cell (the origin cell), as shown in figure 7.19.

7.6. Observations

97

t =375

t =400

t =425

t =450

t = 500

Figure 7.16: The development of a 250 by 250 greyscale image from a corrupt state

Errors

70000

Errors v Time of developing Lena

I
Lena_corrupt ——
Lena null

FI00 01—

50000

40000

e

30000

20000

10000

100

200

Time

300

400

Figure 7.17: Errors v Time of developing 250 by 250 image

500

7.6. Observations 98

Errors

Errors v Time of developing Lena

63000

T
Lena_corrupt
Lena null

62000

¥ M
61000 WAl
60000 QwV&‘

59000 "

58000 \%%\w
A

57000

0 20 40 60 80 100

Time

Figure 7.18: Errors v Time of developing 250 by 250 image

r— Origin cell (no inputs)

Cells with
one input

\

Cells with two inputs —/A

Figure 7.19: Input combinations for each cell

The pattern emerges from this origin cell in diagonal stripes orthogonal to the origin-

antipode line. Thus for a four-by-four array assembling from null, the number of cells

solved by each iteration versus time is the sequence 1-2-3-4-3-2-1. More generally,

equation (7.3) shows the number of cells solved per iteration for a square array,

equation (7.4) shows the number of cells solved per iteration for a rectangular array.

s = number of cells solved, w = width, h = height, ¢ = time.

s = w—|t—w| (7.3)
w+h— |t —w|—|t—h|
2

7.6. Observations 99

The cumulative number of cells solved per iteration approximates to an S-curve as
the size of the automata increases. This can be observed in figures 7.3, 7.7, 7.11 and

7.14.

The reason for the perturbations away from the S-curve (as best seen in figure 7.11)
is the effect of the solved cells on those cells still to be solved. For these cells, the
states they observe in their neighbours are transient, however certain combinations

of these states will coincidentally correspond to correct cell outputs for these cells.

Two possible applications for this technique that are worth a brief consideration are:

1. Lossless Image compression A 100 x 60 pixel image of a checkers board
can be saved as a 24K bitmap file, a 236 byte PNG file, or a 196 byte GIF file.
If instead it is saved as a file that describes the rules and assignments that
are needed for it to self-assemble, the result is a 40 byte file. However, this
image only has two colours. The results from attempting to compress three
40K arbitrary photos can be seen in figure 7.20. Note that 'dtime’ refers to

the time required to design the compressed image.

Image | PNG size | Assignments | Rules | File size | Compression | dtime/s

1 54K 39125 78766 | 1571192 0.1 854
2 70K 39918 79916 | 1597680 0.1 1098
3 8K 39887 79864 | 1596560 0.1 875

Figure 7.20: Results from compressing 40K images

That the file sizes are actually getting bigger (by a factor of 10) suggests this

algorithm is not an effective image compression tool.

2. Image entropy analysis The algorithm presented in previous chapters is
a means of encoding an image as the relationship between each pixel and
its immediate neighbours. The number of unique relationships is inversely
related to the number of large or repeated features, or repeated relationships
between features. As such it is perhaps an appropriate method of evaluating

the entropy of an image.

7.6. Observations 100

The size of a JPEG file is a function of the number of high-frequency compo-
nents within an image, not their placement within the image. Thus an image
of eight repeated stripes of equal size will encode to the same size JPEG as
an image of eight stripes of different sizes. However, this is a simple test to
estimate the entropy of an image. Figure 7.21 shows the correlation between
the size of the JPEG file versus the number of rules and assignments needed
to encode it. Each of the points refers to a different sample image, the lines
are lines of best fit.

Entropy estimation v JPEG size

Estimated entropy

Figure 7.21: Correlation between JPEG file size and number of rules and assignments

needed to encode it

Chapter 8

The community effect — a

bio-inspired optimisation

Morphogenesis is the process that underpins the self-organised development and re-
generation of biological systems. Professor John Gurdon determined via a series of
experiments [HG90| that another mechanism assisted and complemented morpho-

genesis during the assembly of biological systems.

8.1 The community effect in animal development

By using a culture of Xenopus laevis (African clawed frog), blastula cells, Gurdon
was able to induce a tissue of un-differentiated (vegetal) cells to differentiate into a
concentrated block of muscle cells. Without the Xenopus stimuli, these cells would

have differentiated into epidermis cells.

Attempts to repeat this differentiation with just one animal cell were unsuccess-
ful, suggesting that an inter-community facilitator was at work within the larger
community of cells, ensuring the necessary correct differentiation of its constituent

cells.

101

8.2. A community effect model 102

Gurdon proposed an explanation, the so-called community effect. Namely that some
hitherto unknown short-range inter-cellular chemical communications were respon-

sible for re-enforcing the message of the morphogen stimuli within the community.

Figure 8.1 shows the muscle cells (in white) developed as part of this experiment,

in response to the Xenopus stimuli.

Figure 8.1: Muscle cells developed in (a) a tadpole, (b) a conjugate of animal and

vegetal tissue [HG90]

8.2 A community effect model

This model is an adaption of the cellular automata models demonstrated in earlier
chapters. Instead of an array of identically-sized cells, we group neighbouring cells
with common output values into larger community cells. The result is an amalga-
mation of cells of different sized rectangles. Figure 8.2 is an example division of the

Welsh flag pattern on 6000 cells divided into 560 communities.

Assigned to each community is a state. The origin cell of each community deter-
mines its next state and the dimensions of its community from an internal look-up
table and the states of its neighbours. Each neighbour of this origin cell (in the

direction of information propagation, e.g. north-west to south-east) then copies its

8.3. The design algorithm 103

(a) (b)
Figure 8.2: (a) Welsh flag, (b) Welsh flag in 560 communities

state and community dimensions, subtracts one from the appropriate dimensions
before passing this onto its neighbours. When a cell receives the dimensions of its
community with a zero for either its height or width it knows it must be a new origin

cell and determines its next state from its neighbours instead.

8.3 The design algorithm

The design algorithm for these heterogenous amalgamations of communities is sim-
ilar to the algorithm already presented for the design of homogenous arrays of iden-
tically sized cells. It is a two-stage process, cells are grouped into communities then

assigned a common state.

8.3.1 Grouping algorithm

Neighbouring cells with identical output colours must be grouped into larger rect-
angular communities of cells. There are two common approaches to this type of

problem:

1. A greedy algorithm: For each cell, make the locally optimum choice with the
hope of finding the global optimum. An implementation would be to iterate

over every un-grouped cell, grouping each with as many of its neighbours as

8.3. The design algorithm 104

possible. This approach is faster than alternatives, but will not necessarily

produce the optimum (i.e. fewest number of communities) design.

2. An exhaustive, NP-complete, search. An implementation would be to try
every possible grouping of cells, then determine which has the fewest number
of communities. This approach is much more computationally intensive than

a Greedy algorithm, but will produce an optimum design.

The algorithm demonstrated and evaluated here uses the faster, greedy algorithm.

8.3.2 State assignation

Each community must be assigned a state. This state maps (many-to-one) to both
an output colour and the dimensions of its community. The algorithm presented in
chapter five can, in principle, be used for this design. There are a few difficulties,
however, with simple iteration from the south-east community towards the top-left

origin community.

For instance figure 8.3(a) shows a community that starts with the cell at column
one and row one, (row,col)=(1,1); the algorithm needs to assign it a state value,
x, that is compatible with its dependents. This has three dependent communities,
(1,2), (2,2) and (4,2) that have already been assigned states. The rules needed for
each dependent community respectively will be (state above, state left)=(x,0) — 2
(where the 0 is a boundary condition), (x,2) — 2 and (z,2) — 4. Thus it can be

seen there is no solution for x for the latter two rules.

NN N O~
= =N O|N
e =1
L =1L
b =]
it =1k
N N N|o|=
= = (No]N
= ~=No|lw
I E Y (=]
= = |Ah|lo|wn
RN o [-)]
H = RO IN

BWN

AW NR

(a) (b)

Figure 8.3: (a) Conflicting communities, (b) A solution

8.3. The design algorithm 105

Figure 8.4(a) shows an example from the design of the Welsh flag. Communities
(2,1), (2,4) and (4,4) form a dependent loop; none of these communities can be

solved without the other two being solved first.

1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 0 0 0 0 0 34 34 1 0 0 0 0 of 34 34
2 20 0 0 0 0 34 34 2| 20 0 0 0 of 34 34
3 20 0 0 0 0 34 34 3| 20 0 0 0 o 34 34
4 3 0 0 0 118 204 118 a4 3 0 0 0| 118] 20| 118
5 2 0 0 0 118 20 118 5 2 0 0 0 118 20 118
6 4 0 0 120 128 4 4 6 4 0 0 120 128 4 4
7 0 0 5 4 164 20 20 7 0 0 5 4 164 20| 20
8 0 11] 122| 15 164 20| 20| 8 0 11 122 15 164 20 20

(a) (b)

Figure 8.4: (a) Conflicting communities, (b) A solution

For both conflicts, (8.3(a) and 8.4(a)) the solution is to divide the largest partition

into two smaller partitions. These solutions can be seen in figures 8.3(b) and 8.4(b).

A general strategy to overcome these conflicts is:

1. Once a community has been assigned a state it doesn’t change. To change it
later would require a re-assignation of state for every cell that uses it (directly
or indirectly) as an input. Also this would open up the possibility of the

algorithm not having an end.

2. Each community has neighbouring communities that depend on it to determine
their own state. If the propagation of state information is from the north-east,
these dependents are to the west and south of itself. Each community is tested:
are its dependents already solved for? If yes, solve for this community’s state

also, otherwise try the next community.

3. Repeat to (2) for every community in the design. If no communities have been
solved in this iteration, split the unsolved community with the most satisfied

dependents into two, then try again.

Figure 8.5 shows the progress of this iterative group-and-solve approach designing

the Welsh flag pattern. The red line is the number of communities that have been

8.4. Results 106

solved. The green line is the number of communities the design has been split into.

1400

1200

1000

800

Mo, of communities

EOO

400 -

200

0 100 200 300 400 500 E00 o0 200 300 1000

Iterations

Figure 8.5: Communities created and solved per design iteration

8.4 Results

Figure 8.6 shows the communities of the Welsh-flag pattern, after the design algo-

rithm is complete.

(a)
Figure 8.6: (a) Welsh flag, (b) Welsh flag in 1103 communities

This design, and those that are presented henceforth will be compared against their
equivalent created by the design algorithm presented in chapter six. The number
of assignments and rules per design are a measure of how efficiently the image has

been encoded. Each image is the same size (100 x 60 pixels). Rather than calculate

8.4. Results 107

the computational complexity of each algorithm, the time each design takes to be
completed is measured for both algorithms as implemented on a 3.2GHz Pentium

Xeon processor.

Original design algorithm With n communities of x; cells

Assignments | Rules | time/s | n, (T, maz(x)) | Assignments | Rules | time/s

3747 7829 50 1103(5, 510) 299 263 236

The number of assignments and rules needed for this improved algorithm is greater
than a factor of ten smaller than those of the algorithm in chapter five. However

the design time required is greater than a factor of ten greater.

Further examples (the flags of Greece, Czech Republic, Canada, the United Kingdom
and the United States of America) have been chosen for their increasingly complex

designs.

Figure 8.7 shows the Greek flag divided into 128 communities.

fﬂ

(a) (b)

Figure 8.7: (a) Greek flag, (b) Greek flag in 128 communities

Original design algorithm With n communities of xz; cells

Assignments | Rules | time/s | n, (T, maz(x)) | Assignments | Rules | time/s

429 1104 | 4 | 128(47, 686) 107 86 | 25

For the Greek flag, the improved encoding efficiency over the original algorithm is

lower. This is because the flag is formed from simple rectangles of alternating colour.

Figure 8.8 shows the flag of Czech Republic divided into 285 communities. Whilst a

simpler design than the flag of Greece, the presence of diagonals prevents the design

8.4. Results 108

from being split into a small number of rectangles.

h %
(a) (b)

Figure 8.8: (a) Czech Republic flag, (b) Czech Republic flag in 285 communities

Original design algorithm With n communities of z; cells

Assignments | Rules | time/s | n, (T, maz(x)) | Assignments | Rules | time/s

2408 5032 27 285(21, 1322) 181 124 26

The number of assignments and rules needed for this algorithm is greater than a
factor of ten improvement over the old algorithm. The design time is also compara-

ble.

Figure 8.9 shows the flag of Canada split into 143 communities. The flanking red bars
that form two-thirds of this pattern need just two communities to encode, however

the maple leaf in the center is more complicated, requiring 141 communities.

(a) (b)

Figure 8.9: (a) Canadian flag, (b) Canadian flag in 143 communities

Again a ten-fold improvement in coding efficiency is demonstrated. Of note is that
the design time for the improved algorithm is also shorter than that of the original.

This is because two-thirds of the design (4000 cells requiring 4000 state assignments

8.4. Results 109

and rule calculations in the original algorithm) can now be solved with just two

state assignments and the creation of two rules.

Original design algorithm With n communities of x; cells

Assignments | Rules | time/s | n, (Z, maz(x)) | Assignments | Rules | time/s

839 2571 15 143(42, 1500) 76 o8 9

Figure 8.10 shows the flag of the United Kingdom divided into 772 communities.
The presence of diagonals in this design prevents the design from being split into a

small number of rectangles.

) L
| | Ny

(a) (b)

Figure 8.10: (a) United Kingdom flag, (b) United Kingdom flag in 772 communities

Again a ten-fold improvement in the coding efficiency is demonstrated. The design

time is 1.5 times that of the original.

Original design algorithm With n communities of z; cells

Assignments | Rules | time/s | n, (T, maz(x)) | Assignments | Rules | time/s

3832 8482 | 117 772(8, 600) 219 187 187

Figure 8.11 shows the designed automata converging to the pattern of the UK flag
in 150 iterations. Figure 8.12 shows the same automata converging from a random

starting state to the pattern of the UK flag.

Figure 8.13 shows the flag of the United States divided into 480 communities. The

stripes form large rectangles while the stars form many, much smaller, communities.

Here the efficiency of coding improvement is not quite ten-fold, but the design time

is more than 75 times greater.

8.4. Results

110

t =100 t = 110

t =120

t =130

t = 140

Figure 8.11: UK flag assembling from null over 140 iterations

t = 100

t =130

Figure 8.12: UK flag assembling from random over 140 iterations

8.4. Results

Figure 8.13: (a) United States flag, (b) United States flag in 480 communities

(b)

Original design algorithm

With n communities of z; cells

Assignments

Rules | time/s

n, (T, maz(x))

Assignments

Rules

time/s

958

1616 7

480(13, 500)

82

74

527

Figure 8.14 shows the designed automata converging to the pattern of the US flag

in 150 iterations. Figure 8.15 shows the same automata converging from a random

starting state to the pattern of the US flag.

t =100

*I 5;-=.=.
t =110

t =120

t =130

t = 140

Figure 8.14: US flag assembling from null over 140 iterations

8.5. Observations 112

t =100 t = 110 t =120 t =130 t = 140

Figure 8.15: US flag assembling from random over 140 iterations

8.5 Observations

Presented in this chapter is a further refinement of the design algorithms presented
in the preceding chapters. This refinement is a minimalist model of a technique used

by biological systems to locally re-enforce the messages diffused by morphogenesis.

This improvement requires a more complicated design algorithm and a more com-
plicated assembly algorithm, but the design rules and assignments more efficiently

encode the intended global pattern.

Chapter 9

Design for reliability: analysis and

techniques

Reliability is, after all, engineering in its most practical form. James

R. Schlesnger (Former US Secretary of State for Defence)

The consumer will not tolerate electronic products that are prone to failure: cars
such as the Skoda Felicia or the Ford Pinto, motorbikes such as the BSA Dandy
scooter, computers such as the Apple III - these devices were all commercially un-
successful simply because of their high failure rate. For a product to succeed, the
designer must consider the intended lifespan of the device and then maximise the

probability of its survival for that period.

Within the systems upon which we depend, or choose to trust, for our survival - be
they aeroplanes, trains, armaments or systems critical to a country’s infrastructure
- failure cannot be tolerated without adequate notice and provision for repair or
replacement. 500 people died when Pfizer’s replacement heart valves failed, costing
the company upwards of $200 million. The structural failures of the de Havilland
Comet jet aeroplane caused five crashes before commercial flights were cancelled. A
designer must therefore consider the significance of a component failure and make

provisions for repair or replacement.

113

Chapter 9. Design for reliability: analysis and techniques 114

Components that are too costly to repair or replace, because of limited accessibility
or limited resources, cannot be subject to failure. The early operational failures
of the Hubble telescope were due to a flawed mirror. A space mission costing $8
million was required to fix the telescope with correcting lenses. Thus for a system to
succeed, a designer must consider the cost of repair when deciding on the required

level of reliability.

The British Post Office started the design for reliability trend. As owners of a Mark
I telephone exchange that used thermionic valves, the Post Office was plagued by
failure. In an effort to reduce the number of failures, and thus the running costs,
the department in charge of the exchange started collecting statistics on the number
and type of failures per week and discovered that, by leaving the valves constantly

turned on, the number of failures decreased.

Mobile computing platforms are the pervading technology of the 21st century. Every
device is a compromise of size, battery life, functionality and reliability. Connect
[Con05] reviewed the reliability of 38 different mobile phone models available in
2005. Figure 9.1 shows the proportion (grouped by manufacturer) of each that had

to be repaired after completion of the test cycle.

Mobile phone reliability survey
25.00%1

22.50%
20.00%H
17.50%-+
15.00%-

12.50%-

Frequency

10.00%+

7.50%-

5.00%-

2.50%-+

0.00%-

Column B
Manufacturer

I Motorola Il T-Mobile [l Siemens Il sharp [l Sony Ericsson [Nokia
[]Samsung I NEC H Sagem

Figure 9.1: A comparison of mobile phone reliability

Image courtesy of Connect Magazine

9.1. Ultra reliability 115

The current trend is for new devices to be smaller and more functional than their
predecessors. Modular redundancy, the use of extra copies of failure-prone hardware
that can mask, or take the place of its damaged counterparts, has costs in both size
and functionality. If this trend continues, the price of modular redundancy will

become greater and the reliability of mobile devices will decrease.

Aside from demanding applications, reliability engineers face a challenge from sys-
tems formed on unreliable mediums. Plastic electronics systems are formed on
flexible substrates, typically by the sequential deposition of conductive or semi-
conductive organic polymers (such as Poly-3,4-ethylenedioxythiophene) using ana-
logue or digital graphic printing technologies. Potential applications include flexible
displays, photovoltaics that can cover non-planar surfaces, and smart packaging,
including battery testers, flexible batteries and RFID tags. However, flexible sub-
strates are prone to distortion, potentially compromising the deposited system and
causing its failure. Redundancy is particularly well equipped to cope with the fail-
ure of known unreliable sub-systems, but is much less well suited to coping with a

system of which any part, or combination of parts, is likely to fail.

9.1 Ultra reliability

Redundancy, in its various forms, provides the reliability engineer with a versatile
set of tools for designing systems to be reliable. Despite this, there remain applica-
tions to which such tools might be inadequate. Since 2002 NASA have been running
a series of workshops under the title “Ultra reliability”; this with the goal of increas-
ing systems reliability by an order of magnitude across complex systems, hardware
(including aircraft, aerospace craft and launch vehicles), software, human interac-
tions, long life missions, infrastructure development, and cross cutting technologies
[Sha06]. It is not difficult to see the difficulties standard redundancy techniques
will face in long life missions (a manned mission to Mars will take upwards of six

months, the $720 million Mars Reconnaissance Orbiter has a planned life of at least

9.1. Ultra reliability 116

four years) that are vulnerable to cosmic rays.

The following case example describes the application of “Ultra reliability” to the de-
sign and assessment of a safety-critical system of the Large Hadron Collider (LHC).
The reliability of this system was assessed by the author whilst based at CERN, and

is quoted here with their permission.

The LHC Beam Dump System (LBDS) has been designed to achieve a set of demand-
ing safety and reliability standards. The role of the LBDS is to safely extract both
beams from the LHC into two graphite blocks. The LBDS consists of 15 horizontally
deflecting extraction kicker magnets (MKD), one superconducting quadrupole Q4,
15 vertically deflecting septum magnets (MSD), ten dilution kicker magnets (MKB)
and several hundred meters of transfer line up to a dump absorber block for each
ring (LHC). The LBDS is located next to the CMS detector of figure 9.2. The LBDS

system can be seen in figure 9.3

The Beam Energy Tracking System (BETS) is responsible for monitoring the energy
of the hadron beams within the collider tubes and setting the MKD power levels
accordingly. A failure of the BETS system could result in a 7TeV beam colliding with
precision, expensive and difficult to replace equipment that immediately surrounds
the collider tubes. This is why the specified failure rate is less than 1 failure per 10°
operating hours. To achieve this reliability, a static redundant system equivalent to
313

108-modular redundancy is used; as such the predicted hazard rate is 2.89.10~

failures per year which is within the specified acceptable limits.

This chapter will present a series of tools for the design of electronic systems that
self-assemble and self-repair. These tools are inspired by the study of morphogenesis

detailed in previous chapters.

9.1. Ultra reliability 117

CERN Accelerators
(not toescale}

a

proions

antipratons.

[

rutnnos to Gran Sasso ()
neudnans

elactrons

LHC: Large Hadron Collider

SPS: Super Proton Synchrotron

AD: Antiproton Decelerator

ISOLDE: lsotope Separator OnLine DEvice
F5B: Prodon Synchrotron Booster

PS: Proton Synchrotron

LINAC: LINear ACeelerator

LEIE: Low Energy lon Ring

CMGS: Cern Neutrinos to Gran Sasso

Cirum Saeesn (11
T kmy

o CERN 2

Figure 9.2: The Large Hadron Collider
Image courtesy of CERN

9.2. Reliability analysis 118

Figure 9.3: The LHC Beam Dump System

Image courtesy of CERN

9.2 Reliability analysis

In order to compare the reliability of any morphogenesis-inspired tools with that of
existing techniques, we need both metrics to describe failure and tools for analysing

the probability of failure [Fil05].

The following terms are used to describe the failure of a system:

1. Failure: the deviation of a system, or component of, from the specified be-
haviour. Failures are called “random” if they occur due to progressive degra-
dation (hardware), and “systematic” (hardware and software) if they are in-
troduced during the system life cycle [IBN96]. A progression of component
failures and their consequent propagations is the chain of events that typically
causes system failure. This is best described by the fault-error-failure model,

known as the “chain of threats” [BR90]

9.2. Reliability analysis 119

2. Error: refers to a system state that is contrary to the design. An erroneous

state may result in a failure.

3. Fault: that which causes an error. In software this is a mistake in the code. In
hardware this could be a broken track. Reproducible faults are called perma-
nent faults, and move the component into a persistent faulty state. Faults are
called transient if they happen under conditions that are difficult to reproduce

and predict.[Fil05]

Of the available metrics that relate the frequency of failure to the performance of
a system, only some are applicable to any given system. This subset is determined
by the consequences of a failure and by the possibility of repair - be it self-repair
or repair by an external influence. For systems where one failure is one failure too

many, the following metrics are applicable:

1. Reliability, R(t): the probability of correct service continuing till time, ¢.
This can be determined from the system failure rate, A, and equation (9.1) in

the case of the commonly used exponential failure distribution.

R(t) = e ™ (9.1)

2. Hazard rate, h(t): the instantaneous probability of the first and only system
failure occurring.

)

h(t) = R0 (9.2)

3. Mean time to failure (MTTF): the approximate amount of time expected

before a system or component fails; see “mean time between failures”. This is

also referred to as the “life expectancy” of a system.

1
MTTF = § (9.3)

For systems that can be repaired after suffering a failure, the aforementioned metrics

are less appropriate than:

9.2. Reliability analysis 120

1. Mean time to repair (MTTR): the total corrective maintenance time di-
vided by the total number of corrective maintenance actions during a given

period of time.

2. Mean time between failures (MTBF): An indicator of expected system
reliability calculated on a statistical basis from the known failure rates of

various components of the system.

3. Availability: the degree to which a system is operable and is in a committable
state at the start of a mission, when the mission is called for at an unknown

(i.e. a random) time.

MTBF
MTBF + MTTR

Availability = (9.4)

4. Maintainability: a characteristic of design and installation, expressed as
the probability that an item will be retained in, or restored to, a specified
condition within a given period of time, when the maintenance is performed

in accordance with prescribed procedures and resources.

5. Failure rate, A: the frequency with which an engineered system or component

fails, expressed, for example, in failures per hour. If the MTBF is constant,

A= MTBF™! (9.5)

9.2.1 Modelling component failure
The Weibull distribution

The Weibull distribution is a continuous probability distribution with a probability
density function of [Wil]:

f(t) = é(u)ﬂ—le—(t%)ﬁ

(= (9.6)

Where:

9.2. Reliability analysis 121

1. [is the shape parameter
2. n is the scale parameter

3. 7y is the location parameter

Chiefly due to its flexibility, the Weibull distribution is often used to model the
hazard rate of systems throughout their respective lifetimes. The distribution can

imitate many other distributions, including the normal and exponential, making the

Weibull distribution a powerful tool for reliability analysis.

3.5
b=05
b=1
3 H b=23 —
[
|
25 |
[
2 ||
|
= |
= |
15 -+
‘II".
i —
) /
. —
4] 0.5 1 1.5 2
Time (t)

Figure 9.4: The effect of the shape parameter on the Weibull distribution (n = 1,7y
0)

The bathtub curve

The lifetime of a product can be divided into three stages, “burn-in”, “useful period”
and “wear-out”. Each stage has its own associated failure mechanism. Together they

form the “bathtub curve” - a description of the lifetime of a population of products

of the same design.

9.2. Reliability analysis 122

0.025
o n=350
n=60
n=70
0.02 / \
/
/ /'Y
0.015
/ Y\
—_ / \
= \
= / \
/ N\
0.01 £
/
/ \
0.005
0 / —
0 20 40 &0 80 100

Time (t)

Figure 9.5: The effect of the scale parameter on the Weibull distribution (§ = 3,y =
0

Hazard rate

BURN-IN USEFUL PERIOD WEAR-OUT

Time

Figure 9.6: A characteristic model of the product lifetime, the bathtub curve

9.2. Reliability analysis 123

Infant mortality

“Dead on arrival” products are a consequence of the high failure rate that dominates
the first, and normally shortest, period of the lifetime of a product. This failure rate
is the result of manufacturing defects, be they errors in the assembly, defects in the
material or the constraints of the assembly line. Integrated circuits are one example
of a product population with a very high infant mortality rate; see table 9.7 for

typical values.

Product Area(mm squared) | Yield
386DX 43 1%
486DX2 81 54%
PowerPC 601 | 121 28%
HP PA 7100 | 196 27%
DEC Alpha | 234 19%
SuperSPARC | 256 13%
Pentium 3 296 9%

Figure 9.7: Yield of semiconductors [Gwe93]

As the product ages, the rate of hazards due to manufacturing defects decreases. A
characteristic model of this period of the life of a product is a Weibull distribution

with a beta less than 1. Typical values of a beta are between 0.2 and 0.6.

“Dead on arrival” products, from the point of view of a customer, are unacceptable.
Thus to combat this phenomenon a “burn-in and test” phase is often incorporated
into the manufacturing process. Burn-in is the process of exercising a product prior
to its release, the intent being to age the component beyond its infant-mortality
period. To facilitate quick accomplishment this process typically involves operating
conditions that are designed to accelerate the ageing process. This might involve
high or rapidly alternating temperatures, a vibration test and an exhaustive test of

all system states.

9.2. Reliability analysis 124

25

15 .

(1)

0 L L L L L L L
0 5 10 15 20 25 30 35 40

Time, (t)

Figure 9.8: A characteristic model of infant mortality, a Weibull plot with beta =
0.2

Intrinsic failure

Subject only to truly random failures, the second phase of the lifetime of a product
is characterised by its constant failure rate. Many such failure modes exist, but a

good example is the soft error rate (SER) of solid state memory chips.

SER is the rate of corruption of data stored in solid state memory. If a bit is flipped
from its previous value due to external, unintended conditions, the dataset of which
it is a part is corrupt. If that bit is read prior to it being corrected, the error
moves from being latent to being active, and a potential failure mode is created.
The flipping of a bit can be caused by electro-magnetic interference, cosmic rays or
alpha particle collisions, and is characterised against time as a random distribution,

the sum of which is a constant failure rate.

Little can be done to prevent SER. A component can be partly shielded from electro-
magnetic radiation, cosmic rays and alpha particles, but at significant cost and with

limited effect.

9.2. Reliability analysis 125

Wear-out failure

Electromigration, corrosion, thermal separation of layers or contacts; these are but
a few mechanisms by which an electronic component can wear-out. For mechanical
components wear-out is the primary failure mode. Often wear-out is expected and
not normally considered a failure, the cartridges of inkjet printers eventually run out
of ink and need replacing, for instance. The shortest-lived critical component will
determine the lifetime of the product. The MTBF parameter typically refers to the
wear-out probability of failure. The cumulative MTBF plots can be characterised

by a Weibull distribution with a beta that is greater than 1.

251

0 5 10 15 20 25 30
Time, (t)

Figure 9.9: A characteristic model of wear-out: a Weibull plot with beta = 1.4

The product lifetime

The product lifetime, as described by the bathtub curve, is produced by the super-
position of the Weibull distributions that characterise the first and third stages of

the lifetime of the product on to the constant hazard rate of the second stage.

9.2. Reliability analysis 126

9.2.2 Assessing the reliability of systems

The TTF distribution of a component is estimated from failure reporting, during
the system use, or from reliability runs and accelerated life testing [AR80] [Sho68§].
Alternatively, the TTF of a component or system can be calculated from known
component failure rates. The most popular reliability prediction tool is the Military
Handbook 217F. Various versions have been published by the Department of Defence
of the United States [DOD90], and more recently by the Reliability Analysis Center
(RAC) [RACI7].

MIL-HDBK-217F standard

This standard consists of models for various electronic components to predict failure
rates according to a number of parameters that include environmental conditions,

quality levels and stress conditions.

There are two methods used as part of this programme: a part stress analysis and

a parts count.

Part stress analysis

The failure rate is calculated as a function of various parameters: environmental and
operational temperatures, humidity, electrical fields, vibrations, radiations, voltage
and current ratings and power and quality [PN94]. The models used vary for dif-
ferent part types, but are derived by analogy with a chemical reaction described by

the Arrhenius equation (9.7) [Sho68].

TTF = CePa*T (9.7)

Where:

9.2. Reliability analysis 127

1. C'is the pre-exponential factor
2. E4 is the activation temperature of the component failure mode
3. k is Boltzmann’s constant

4. T is the temperature

Equation 9.8 is the model for a field-programmable gate array (FPGA).

Ay = (Cymp + Comp)momy, (9.8)

Where:

1. A\, = FPGA failure rate

2. €} = Die complexity failure rate

3. Oy = Package failure rate

4. mp = Temperature factor

5. mg = Environment factor

6. mo = Quality factor, related to the level of screening of the device

7. mr = Learning factor, related to the maturity of the device

Parts count

This method requires less information than the part stress analysis and is thus most
applicable early in the design phase. A base failure rate)\, is calculated from the

stress analysis equations for standard operating conditions, then it is adjusted with

9.2. Reliability analysis 128

respect to the quality factor and the environment [Bow92]. According to this method

the system failure rate is given by:

A= ZileiAi”Qi (9.9)

Where:

1. n = Number of part categories
2. N; = Quantity of the ith part type
3. \; = Failure rate of the ith part type

4. mo; = Quality factor of the ith part type.
Many criticisms exist about reliability prediction using the MIL-HDBK 217F":

1. The assumption of a constant failure rate bounds the applicability of the tool
to the useful period, which for many components ranges between two and five

years only [Eco04].
2. The failure rate is not apportioned in failure modes [Bow92].
3. The failure rates database quickly becomes obsolete [Fil05].

4. The stress analysis, based on the Arrhenius equation, is somewhat arbitrary

[Wat92].

Despite this, most complex systems have been certified using the MIL-HDBK-217F,
including the international space station (ISS), civil and military airplanes, avionics

systems and nuclear and chemical plants [Fil05].

9.2. Reliability analysis 129

Failure mode, effects and criticality analysis (FMECA)

A failure mode, effects and criticality analysis considers every constituent compo-
nent of a system for its probability of failure, failure mode and the subsequent
consequences of this failure. A resistor can fail open circuit, short circuit or drift in
resistance. According to the RAC FMD-97[RAC97]| handbook, of all resistor fail-
ures, 80% will be to an open circuit, 10% to a short circuit and 10% to a resistance
drift. This data, combined with that of the MIL-SPEC-217F [DOD90] handbook,
states that the hazard rate of a resistor failing to any one of the above failure modes

is one per million hours.

The criticality of a specific component failure is a product of the probability that
the component failure will cause a loss of system function and the amount of time

the component is operating.

A typical reliability analysis will use FMECA in conjunction with either a Markov
model or a fault tree: the FMECA to determine the probability of each Markov state
or fault tree leaf event occurring, and the system model to describe the consequences

of each ancillary failure event occurring.

9.2.3 Modelling failure modes

Reliability models are a function of system architecture and component failure statis-
tics derived from techniques such as the parts count. Such models are then analysed
against a description of the operating environment of the system, including the pe-
riod of time for which correct performance is expected. There are two categories of

models, combinatorial and state based.

9.2. Reliability analysis 130

Combinatorial techniques

Combinatorial techniques describe the system failure as the logic combination of fail-
ures occurring in its components. The basis is the structure function, ¢4 : X —10, 1],
a function of the state of the components X of the system arranged with respect to
the system architecture A, which returns the value zero if failed, or one if functioning

[Sho68].

The definition of the structure function may be applied at a lower level provided
that each component is given a binary variable = that refers to its state, failed
or functioning. As an example, a non-fault tolerant architecture will be sensitive
to the failure of every component, as modelled with a series combinatorial model.
Conversely, a redundant architecture will be sensitive to the accumulation of failures,

as modelled by a parallel combinatorial model. [Fil05]

The structure function can be disseminated into minimal sets of paths, p, and cuts,

X-

A minimal path set is the set of components that are all necessary for the system

to function. Thus the structure function is described by (9.10).

oa(X)=1-T[, 0 =p) (9.10)

A minimal cut set is the set of components whose failure leads to the failure of the

system. Thus the structure function is described by (9.11)

0a(%) = [T (w) (9.11)

9.2. Reliability analysis 131

Fault tree analysis

A fault tree is a Boolean expression of which the constituent elements assume one
of two values 0,1. The root of the fault tree is the system failure. A fault-tree

represents the system as a sum of minimal cut sets.

Voter
7N /’w -
H ‘ | W ’
Module 1 Module 2 Module 3
FAULT TREE

Figure 9.10: An example fault tree [Fil05]

State based models

A Discrete Events System (DES) is a stochastic timed automaton, which is formally
defined with a five-tuple set {X, E, §(z, €), 9,1} where X is the space of states, £
is the space of events, §(x, e) is the state function that calculates the state transition
given the event e has occurred, x is the initial state and v describes the distribution

functions for the events in E. [CL99].

9.2. Reliability analysis 132

Markov modelling

A Markov chain is a stochastic model that describes a DES. It can be used to
predict the probability distribution of a system governed by a stochastic process
provided the Markov assumption holds, namely: the future evolution of the state is
independent of the past and only depends on the present. Note, with respect to the
fault-tree analysis, the Markov model provides the probability distribution at time
t, in the space of states of the system, while the fault-tree gives the probability for

just one state.

For a finite state space X of size N, the total probability to be in state x; at time
t, given the initial state x; at time ¢, is described by the Chapman-Kolmogorov

equation [Tri82].

PIX(t) = ax] = Y pilt, to) P[X(to) = i] = P[X(to) = 2] Vilt,t) ~ (9.12)

where V' (t,t9),t > to is the N by N matrix of the conditional probabilities, with
V (t,t) = I, the identity matrix and p (¢, %) is the probability of moving from state
1 to state k£ in the time ¢t — t5. The probability distribution in X at time ¢ can be
derived from (9.12):

PO~ pma) (9.13)
where), Pi(t) =1

Q(t) is the matrix of the transition rates, and is defined as:

L Vit +dtt) -1
Qt) = lim 5

(9.14)

9.3. Existing techniques for designing systems to be reliable 133

9.3 Existing techniques for designing systems to

be reliable

Redundancy is the principal tool engineers use to combat failure. A number of

different forms of redundancy exist.

9.3.1 Static redundancy

Hardware redundancy is the use of additional resources to reduce the reliance on
single components. In its simplest form this is static or N-modular redundancy (see
figure 9.11): duplication of particular modules N times so that if N — 1 modules
fail, the entire system will still operate. Often a module failure is only detectable
by comparing its result to that of a number of other identical modules via a voting

system. This reduces the effective redundancy to a system failure in the event of

N _

> — 1 modules failing.

—} Module

D(i D(out
(|_n) —» Module (out)

—> Module

Figure 9.11: An example of static triple-modular redundancy

The reliability of a triple-modular redundant system, R3,s, is the probability of three
modules operating correctly plus the probability of any two modules operating cor-
rectly (see equations (9.15) and (9.16)). If you consider the reliability of the voter,
Ry, the reliability equation becomes (9.17). Equation (9.18) is the reliability of an

N-modular redundant system.

9.3. Existing techniques for designing systems to be reliable 134

Rsyy = Ry(R3, +3R3,(1 — Ry)) (9.15)

Rsyy = Ry (3R, —2R3)) (9.16)

Rsy = RV(3RM 2R3) (9.17)
(N

Ryv = Ry Z (1- Ry) RN (9.18)

After the failure of one module, the reliability of a TMR system is less than that
of a single module (see figure 9.12). This is because a failure in either of the two
remaining modules or the voter will now cause a system failure. Figure 9.13 shows

the effect increasing the available redundancy has on the reliability of the system.

Comparing R(t) for single and triple-modular redundant systems

1 T

T T T
R(t) for single module
0.9 R(t) for TMR, equation (' 9.18) - —

0.8

0.7

0.6

0.5

Reliability

0.4

0.3

0.2 s

0.1

Time

Figure 9.12: A comparison of the reliability of single and triple-modular redundant

systems

9.3.2 Dynamic redundancy

A more flexible, usually more efficient, reliability scheme is dynamic redundancy.
Dynamic redundancy uses a two-step procedure for the elimination of a fault. First

the presence of a fault is detected, second, appropriate corrective action is taken.

9.3. Existing techniques for designing systems to be reliable 135

Reliability v time for increasing modular redundancy

g = PR ,
\ 1-Mod ——
0.9 ‘ 3-Mod .
i \ 5-Mod ——
0.8 10-Mod ——
20-Mod

0.7 \ \ 40-Mod 1
06 \\ \ 80-Mod ——
AW
0.4 \
0.3 \\
\

0.2

o

Reliability

0.1

Time
Figure 9.13: A comparison of the reliability of increasing modular redundant systems

A good example is an offline uninterruptible power system (UPS) which activates a
redundant power supply in the event that a failure of the primary power supply is
detected. This subsection describes a small selection of the many different types of

dynamic redundancy:

1. Information redundancy: Checksums and parity bits are examples of in-
formation redundancy. These are extra bits used to confirm that the received
or retrieved data is the same as that which was previously sent or stored and

thus eliminate any errors caused by transient faults.

2. Time redundancy: The watchdog timer is a timeout mechanism that restarts
a process in the event that it fails to complete its responsibilities within a spec-

ified period.

3. Audits: This form of redundancy requires a detailed knowledge of the system
to which it is applied. An audit is an algorithm that checks the consistency
of different data structures. The Xenon switching system, used in modern
telephone exchanges, has a good example of a periodic audit. As part of

the system audit test, a check to compare the call occupancy of the system

9.3. Existing techniques for designing systems to be reliable 136

and the number of failed calls is called. If the call occupancy is much less
than maximum and calls are still failing, a periodic audit will detect this and
trigger another audit. This audit will cross-check the processor responsible
for allocating calls to routes and the processor responsible for requesting call

routes in the first place.

4. Task rollback: Although difficult to implement in hardware, the principle
of task rollback is simple: if the device has entered an erroneous state then
the system is reset to the last correct state. In practice this means storing
quantities of data that describe the state of components at specific checkpoints

within an algorithm.

In the next chapter we will use the reliability analysis techniques: minimal cut sets,
fault tree analysis, failure mode effects and criticality analysis and a parts count to
determine the reliability of a morphogenesis-inspired reliable ALU and an equivalent

triple-modular redundant system.

Chapter 10

Morphogenesis-inspired ultra

reliability

In previous chapters we have discovered and imitated the ability of biological systems
to create self-assembling patterns. If, instead of mapping to an output colour, the
state of each cell maps (many-to-one) to a component type within an electronic

system, the system will self-assemble into a potentially functional circuit [MBO3].

A similar technique was proposed and an “Embryonics” frequency divider was imple-
mented by Cesar Ortega-Sanchez et. al. [CMSTO00]. This used an array of identical
cells that determine their function with a cartesian co-ordinate system that uniquely
labels each cell. Each label corresponded to a cartesian genome (see chapter 3) that
described the function assigned to that cell. The work presented in previous chap-
ters allows us to use fewer labels and function descriptors, but at a cost of a more

complicated system and design algorithm.

137

10.1. Complexity versus reliability 138

10.1 Complexity versus reliability

To be of any use, a reliability mechanism must be less prone to failure than that
which it is trying to protect. However, as each cell must be identical, achieving this
homogeneity for large system blocks adds a significant cost in replicated function to
the design. Thus the optimum scale at which to discretise the design into a cellular

architecture is found at the minima of total cost of system hardware (see Figure

The system cost of morphogenesis at different hierarchies
T T T
3 7
l\ "
\ '
\ /
1Y &
Wy, r
e ! #
il b ¥
- A s
N /
LY . . i’
1 \COhﬁpIEXlty = number of cells x Complexity = number of cells x /
3 Y complexity of cell complexity of ;7
% b, next-state LUT system blocks 4
= kN l,’
= N S
LY /
LY !
by 4
by o
hY &
Ry s
A} £
4 i/
LY i
A 4
LY +
Ay 4
LY r
Ay !(
R . A —
. h) 4 . X
Complexity necessary for morphogenetic repair and system functigh
+
\\ !’
\‘ 'J'

Hierarchy level to which morphogenesis algorithm is applied.

Figure 10.1: The system cost of morphogenesis at different hierarchies

10.2 ASIC implementations

Existing reprogrammable devices (PLA, PAL, FPGA) are not optimised for the
fine-grained self-reprogrammable logic required for this self-assembling algorithm.
An appropriate custom Application Specific Integrated Circuit (ASIC) could be
optimised to use fewer units of logic than an equivalent FPGA implementation. One

possible embodiment of a cell within an ASIC is shown in figure 10.2(a). The state

10.2. ASIC implementations 139

of each cell must map to a component function, coded in the form of a bitstream
that can be written to a look-up table and executed. Every bitstream required for
the automata is stored in the function look-up table. The bitstream is selected by
the cell state, loaded into the execution look-up table and executed. Every time
the cell configuration changes (as detected by the cell comparator), the execution

look-up table is reloaded with a new bitstream.

An alternative embodiment is shown in figure 10.2(b). The function LUT is replaced
with much simpler logic and a sequence comparator. An externally stored program is
perpetually transmitted to each cell serially via the “program” line. Each bitstream
required for the automata is preceeded by a header that corresponds with the two
input-states to the cell. Each cell compares its inputs to those in the headers and,

if they match, re-programs the execution LUT with the bitstream that follows it.

Exe_in (n) Execution LUT

Cntrl £

14
e Exe_in (w)
. { | . Exe_out (e,s)
Operations LUT e Execution LUT }‘
xe_in (n)
1] ntrl

Cr
. Behav_out (e,5) \\ Shift
Register & Register

J

o

Behav_in (n) State LUT = Behav_in (n)

Behav_in (w)

Behav_out (e,s)

State LUT

(a) (b)

Figure 10.2: Alternative ASIC implementations

Another consideration is the use of redundant cells. Biological implementations
of morphogenesis have an advantage over any electronic implementations: in the
event of a cell being permanently damaged, biology can grow a replacement. This
is something that is currently not possible in electronic devices. Thus, redundant
cells — cells that can take the place of any other in the event of permanent failure
— must be an integral part of the design. In order for a redundant cell to take the

place of any damaged cell, every cell would have to be directly connected to every

10.3. A self-assembling self-repairing one-bit full-adder 140

other cell. An alternative is to place every cell on a shared bus and provide each cell
with an appropriate interface. Dynamic, in-situ re-programmable routing is another
possibility. There are already various algorithms [TSAT03] for managing dynamic

routing.

A final possibility is some sort of fail-safe strategy for each cell, limited re-routing
capabilities designed and programmed a priori, and strategically placed redundant
cells. One implementation is the application of multiplexers that respond to any
given permanent cell failure with a lateral displacement of inputs and outputs of
the cells on its row, as seen in figure 10.3. This ensures that the automata platform
can replace one cell in every row with an unused cell on the same row. In the
event that more than one cell has failed on the same row, requiring an impossible
lateral displacement of two cells, the multiplexers of the entire row will respond
with a vertical displacement of inputs and outputs. This ensures that an automata
platform can replace entire rows of faulty cells with unused rows of cells on the

automata.

10.3 A self-assembling self-repairing one-bit full-
adder

Let us use these morphogenesis-inspired principles to design a robust one-bit full

adder. The schematic for a one-bit full-adder can be seen in figure 10.4

10.3.1 Design considerations

In order to minimise the component count (and therefore the number of components
that contribute to the device failure rate) there are a few constraints to the schematic

design:

10.3. A self-assembling self-repairing one-bit full-adder 141

Operating

=
il
=

Redundant

Broken

1= 8

()

Figure 10.3: A fail-safe re-routing algorithm. (a) No broken cells, (b) one broken

cell, (c¢) three broken cells

10.3. A self-assembling self-repairing one-bit full-adder 142

A
T
Cin

Cout

Figure 10.4: 1-bit full-adder schematic

1. Every cell determines its state from two of its immediate neighbours. Other
than power and clock lines there are no global connections required for the CA
to converge to its correct state. If a full-adder is to be implemented on such a

platform, it would ideally not require any global connections either.

2. The cell has no bi-directional communications: it relies on two-inputs and
two-output lines in a feed-forward arrangement in order to converge. Likewise
an ideal full-adder design should be built on this arrangement. This means
each component cell cannot feed back data to a cell that lies earlier on on the

data path.

3. Each cell has two output lines, but the state-output is common to both. Again,
the most appropriate implementation of a full-adder design will piggy-back
these existing communications lines and not require additional networking.

One consequence of this is that no two data lines can cross.

4. Because we want this full-adder to be scalable, the one-bit full-adder modules
should be stackable, that is, if the modules are arranged one on top of one

another, the carry-out lines should connect to the carry-in line beneath it.

5. In order for the full-adder to be scalable, the CA state pattern must repeat

until it uses all the available cells.

6. There should be as few different cell-types (equivalent to the size of the CA

alphabet) as is necessary, and there should be as few cells per one-bit module

10.3. A self-assembling self-repairing one-bit full-adder 143

as is necessary.

Figure 10.5 shows how the schematic of figure 10.4 has been revised to ensure there
are no crossed data lines. Figure 10.6 shows the different cell operations and their
corresponding state assignments. Figure 10.7 shows the schematic laid out over 16

cells. Note that this design requires the following boundary conditions:

1. The cell connected to input “A” of the full-adder must be to the right of a
state “77.

2. The cell connected to input “B” of the full-adder must be to the right of a

state “27.
3. The top-left cell of the first bit of the full-adder must be below a state “1”.

4. The cell to the right of the top-left cell of the first bit must be below a state
“27. Since the bottom row of each 16 cell design starts with the states “1”
and “2” these boundary conditions propagate to the subsequent bits and the

design repeats until it runs out of cells.

Listing 10.1 shows the pseudo-code of a VHDL implementation, the complete listing
can be found in appendix A.3. Figure 10.8 shows the design (implemented on an

ALTERA FPGA) self-assembling.

entity cell
has inputs: a_in (data), b_in (data), n_in (state), w_in (state)

has outputs: c_out (data), d_out (data), e_out (state), s_out (state)

has a shared variable: state
has a ROM array: state_table

1

2

3

4

5 architecture of cell
6

7

8 (0,1,1),
9

10 (7,3,4),

11

12 has a process: determine_next_state:

13 loop entries in state_table till first two entries
match (n_in, w_in)

14 next_state <= the third entry in the

state_table
15
16 s_out , e_out <= next_state

17

10.3. A self-assembling self-repairing one-bit full-adder 144

ui—=n

A O) s C_in(x)A(x)B C OUT
B O ‘

A(X)B(X)B = A

w

/

v
!

O

Figure 10.5: Alternative one-bit full-adder schematic

on | [o8
Cell function

Cell states 0 1,7 2

3,4 5

Figure 10.6: Different types of cell

10.3. A self-assembling self-repairing one-bit full-adder 145

@)
Q
3
<
=
) -
Ain Y v
) > XOR XOR >
Bin v v Out
| | XORr/ XOR/
AND AND
> > | OR
Y

ano Auie)

Figure 10.7: 1-bit full-adder layout

18 has a process: arithmetic

19 case state is

20 when 0 => ans := b_in;

21 when 1 => ans := a.in or b_.in
22

23 when 7 => ans := a_in;

24 end case;

25 c_out <= ans;

26 d_out <= ans;

Listing 10.1: Full-adder pseudo-code

10.3.2 A self-reconfiguring ALU design

In order for the full-adder design to correctly self-assemble, the boundary conditions
of the array must be precisely set. If these are changed, the arrangement of cell
types will change. This effect can be taken advantage of by designing the cell
array to respond to changes in the boundary conditions with desired alternative

arrangements. Thus, the full-adder could be converted into a full-subtracter by

10.3. A self-assembling self-repairing one-bit full-adder

00

|

Figure 10.8: A 1-bit adder self-assembling

10.4. Noticing failure 147

changing one of the boundary conditions. Likewise, the array can be programmed
to perform other functions of an arithmetic logic unit (ALU) (e.g. AND, OR and
NOT gates) with different boundary conditions.

Since we want the design to scale, these boundary condition changes need to propa-
gate to the bottom of the 16 cell arrangement so that the subsequent 16 cells can also
re-configure to perform the requested function. This requirement is responsible for
some of the more esoteric logic arrangements (for instance a NOT gate being built
from two XOR gates and a NOT gate) present in the designs. Figure 10.9 shows
the logic arrangements and boundary conditions for the ALU functions, AND, OR,
NOT and SUBTRACT.

Figures 10.10 — 10.13 shows the AND, OR, NOT and full-subtractor designs self-

assembling.

10.4 Noticing failure

It is not enough for a system to be able to self-reconfigure and self-repair: it also
needs to know if it is broken in the first place. A logical extension to this bio-
inspired study is to imitate a biological “built-in self-test” (BIST) mechanism. When
a biological cell suffers a hard failure, an internal BIST triggers “Apoptosis”, a
biochemically and morphogenically distinct form of cell death. If necessary a new
cell is then formed to take its place. One such BIST trigger is the Cytochrome ¢
chain reaction that is caused by DNA corruption[LKY*96].

Cytochrome c is a small protein associated with the inner membrane of mitochon-
dria. Cytochrome c is released by the mitochondria in response to DNA corruption.
This is preceded by a sustained elevation in the cell calcium levels. Cytochrome ¢
interacts with the endoplasmic reticulum (ER) to prevent calcium inhibition of ER
calcium release. The increase in calcium levels in turn triggers an increase in the

release of cytochrome ¢ which then acts in the positive feedback loop to maintain ER

10.4. Noticing failure

148

Function and boundary condi- Cell arrangement
tions
5| | XOR/
A_in | AND 1
XOR/
B.in "IN || ane | T out”
AND, (2,7)
———» | XOR
A_in
— | OR ————>
B_in l l l Out
OR, (7,7)
— 5 NOT
A_in | |
: » | XOR XOR —————>
B_in l l Out
NOT, (5,7)
&
2
Y
==
e
XOR/H XOR/
AND AND
I s
g
3
2
Full-subtract, (4,7) "

Figure 10.9: Cell arrangements and boundary conditions for ALU

10.4. Noticing failure

149

t=0 t=1 t=2
— ;}@ | QLLD . \Hj) EE\ e e | 4>L i\‘} e
t=3 t=4 t=>5
Figure 10.10: A 1-bit AND gate self-assembling
‘]
o | = 55 =
t=20 t=1 t=2
o I
t=3 t=4
Figure 10.11: A 1-bit OR gate self-assembling
== % —
o = . j — E¥7:}7 b
t=0 t=1 t=2
D> o | e

Figure 10.12: A 1-bit NOT gate self-assembling

10.4. Noticing failure 150
! rJ T
= . 5
= — — 7 ?};;"M —
1
(. . .
t=1 t=2

v
N w w
— =P ﬁDﬁ&Dﬂ
35
at?
ﬂ""‘ ﬂam ﬂm
|%.J7
,,Dﬁﬁ%«—h

Figure 10.13: A 1-bit subtractor self-assembling

10.5. Assessing the reliability of the ALU 151

calcium release at pathologic levels. The calcium release in turn activates caspase

9.

Caspases are cysteine proteases, enzymes that cleave other proteins, and leave be-
hind a cysteine residue that cleaves other proteins at the aspartic acid residue.

Caspases are synthesised as inactive pro-caspases.

Caspace 9 then activates caspases 3 and 7, which are responsible for destroying the
cell. [LKY™96] Apoptosis-associated nuclear condensation is usually accompanied
by the activation of nucleases that first degrade chromosomal DNA into large sub-
units and then into smaller units of base pairs. [Wyl80] Plasma membrane integrity
is maintained during apoptosis, which prevents the leakage of cytosolic contents into

the extracellular domain. [RO00].

For the morphogenesis-inspired repair mechanism to be effective it is necessary to
imitate, or provide an alternative to, this mechanism. For the purposes of this
design we will assume hard failures can be modelled by “stuck-at” faults. If the
data and state variables are Manchester encoded as it enters the ALU, the cell
BIST simply needs to detect when a signal ceases to alternate between “1” and “0”.
If there is some such disparity, the monitor circuits trigger the electronics equivalent
of apoptosis, namely making this functional unit transparent to its neighbours using

techniques shown in figure 10.3.

10.5 Assessing the reliability of the ALU

The mechanisms of CA and morphogenesis require a homogeneous array of “stem”
cells that are capable of becoming any type of cell during system development and
repair. The LUT of FPGAs are conceptually just such a cell, but while some FP-
GAs are capable of partitioning and reprogramming a small portion of their entire
configuration, the bit-stream configuration data must be provided from a source ex-

ternal to the FPGA. This means that without a significant re-design of the FPGA

10.5. Assessing the reliability of the ALU 152

infrastructure, the application of mitosis (replication of cell function) is not possible.
As a result it is no longer enough for each cell to be capable of becoming any other
type of cell; instead, each cell must be capable of performing the function of any

other type of cell without any in-situ re-programming.

In order to assess the reliability of this self-repairing ALU and compare it to the
reliability of a standard ALU design and an N-modular redundant ALU design, each
will be implemented on a field programmable gate array (FPGA). The number of
logic blocks used by each component of each design and the systems dependence on
each will be used with the reliability analysis techniques described in the previous

chapter in order to assess the MTBEF of both.

There are a number of assumptions in this analysis:

1. The FPGA is an Altera Stratix II, the design software is Quartus. The fitting
process used by Quartus to convert the VHDL design into a netlist will not
necessarily create a netlist that uses the fewest number of logic units. As the
self-repairing ALU is more complicated than a standard ALU, if the conversion
does not create the smallest design possible the self-repairing ALU will be
affected to a greater extent. However, for this analysis it is necessary to

assume they are both affected equally.

2. Each design scales linearly. Thus an eight-bit ALU will use eight times the
number of logic units as a single-bit ALU. Also a triple-modular redundant

system will use three times the number of logic units (plus more for the voter)

as the single ALU.

3. The MTBF of the design can be assessed by considering the MTBF of the
FPGA and multiplying by the fraction of it used by the design. While this
ignores single points of failure (clocks, power lines, etc) it is not unreason-
able as the most common failure-mode of an FPGA are temporary, localised

degradation, typically due to stuck-at faults on interconnects [Tou99].

4. The ALTERA does not support partial reprogramming. Thus while the state

10.5. Assessing the reliability of the ALU 153

of each cell, their arrangement and interconnections are intrinsically self-
repairing, there is no way for the function each cell performs to be corrected
in the event of a failure. However, for the purposes of this analysis it will be
assumed that the hardware does support reprogramming and the necessary

logic is built into the BIST.

The VHDL code for the ALU design can be seen in appendix A.3. The cell com-
ponent can be seen in figure 10.14 and a one-bit ALU comprised of 16 cells can be

seen in figure 10.15

_ cell
£ O
o o
£
- I :
—{ b_in = c_out [—
o win2 o &_OU[2..0] fmmm
— reset o
o
5 5
°r 9
inst16 T »

Figure 10.14: A cell of the ALU design

Below are the results of compiling these designs for the Stratix 1T FPGA.

A 171-modular redundant system uses the same resources as the self-assembling self-
repairing design. A simple analysis shows the self-assembling solution can tolerate

a greater number of failures than its static-redundancy equivalent.

The 171-modular system can tolerate % — 1 = 85 module failures without a system

failure.

The self-assembling system consists of 128 identical cells. Provided the self-repair

code is still working, the system can tolerate 127 cell failures at any one time because

10.5. Assessing the reliability of the ALU

1
11

o
11

+1H
1]

Figure 10.15: A 1-bit ALU made of 16 cells
Component Logic units | % of FPGA
8-bit ALU 48 <1%
3-Mod 8-bit ALU 152 2%

— ALU 48 <1%
— Voter 8 <1%
171-Mod 8-bit ALU 9120 100%
8-bit self-assembling ALU 9120 100%
— Cell 87 1%

— BIST 1 <1%

Figure 10.16: Comparison of different ALU designs

10.5. Assessing the reliability of the ALU 155

each failed cell can copy the operating code from the one remaining cell.

Figure 10.17 shows the reliability parameters for equation (9.8) appropriate to the
ALTERA Stratix II FPGA. Using the MIL-HDBK-217F standard and a part-stress
analysis, the failure rate of the FPGA can be determined as)\, = 0.32 failures per
105 hours.

Variable Nomenclature | Category Value
Base failure rate Ch PLA > 5000 gates 0.042
Operating temperature e 25°C 0.1
Package failure rate Cs > 300 Pins 0.16
Environment factor TE Ground, Fixed 2
Quality factor TQ Undocumented 1
Learning factor 9 > 2 years 1

Figure 10.17: Reliability parameters for the ALTERA STRATIX II

While it is possible to form a fault-tree model of the ALU, this would be inappro-
priate because of its state-dependent failure modes. A more appropriate approach

is the use of a Markov model (see figure 10.18) of the three operating states.

Detected failure
7 and self-repaired
State 1

Operating correctly

State 2

Failure of one or
more BIST

State 3

Potentially
undetected failure

Figure 10.18: Markov model of the ALU, memory and processor systems

Using the Chapman-Kolmogorov equations (10.1) and (10.2), it is possible to analyse

this model in order to determine the probabilities and dynamics of each failure mode.

10.5. Assessing the reliability of the ALU 156

U _ pwyou (10.1)
where:

P(0) = [1,0,0] (10.2)

Q(t), the transition matrix, is derived from the Markov model. Each failure rate, A

refers to a transition between states.

T
- 0 0
QU)=1 M\ =X 0 (10.3)
0 A 0

From (10.1) and (10.3) it is possible to form three coupled differential equations,
(10.4), (10.5) and (10.6).

d
%Pl(t) = —MPi(1) (10.4)
%Pg(t) = M) — MP(t) (10.5)
d

2Bt = XP(1) (10.6)

Pi(t) = et (10.7)

Equation (10.5) can be rearranged to form (10.8).

%PQ(t) + MaPy(t) = M Py (2) (10.8)

Multiplying by the integrating factor e*2!, we obtain (10.9).

10.5. Assessing the reliability of the ALU

157

6>\2t%P2(t) + 6>\2t/\2P2(t) = 6>\2t/\1P1 (t)
d

E[eAQtPQ(t)] = 6>\2t/\1P1<t>

Substituting (10.7) into (10.10) gives (10.11).

d
—dt[e’\QtPQ(t)] = ety e M
d
—dt[e’\QtPQ(t)] = ety

Integrating both sides with respect to ¢ gives (10.13).

A
)\2tP t _ 1 (/\27)\1)t C
(& 2() —)\2 —)\16 +

Dividing both sides of (10.13) by 2! gives (10.14)

_)\1 ()\2—)\1)t C
PQ(t) = —()\2 —)\1)6>‘26 + €T2

Al -\t —A
= Cle 2t
N —)\16 + Ce

Substituting the initial conditions (10.2) into (10.15) we can determine C.

A
0 — (=A1)0 C —X20
—)\2 —)\16 + Ce
A1

0 =)\2_)\1+C

Substituting (10.17) into (10.15) we get a final answer for P(t).

(10.9)

(10.10)

(10.11)

(10.12)

(10.13)

(10.14)

(10.15)

(10.16)

(10.17)

10.5. Assessing the reliability of the ALU 158

A

Py(t) = ———
=N

(e= Mt — g2t (10.18)

The sum of the state probabilities must be one, because the system must reside in

one of the three states. (10.19)

ZiPi(t) =1 (10.19)

Thus the solution to (10.6) is found by subtracting the results from the previous
two results. (10.20)
Py(t) =1— Py(t) — Pa(t) (10.20)

Figure 10.19 shows the reliability (P;(t) + P»(t)) versus time of the self-repairing

ALU and an N-modular redundant ALU of an equivalent size.

Reliability comparison

1 T T
171-Mod

\ Self-assembling
0.8

\

0.4
0.2 \

\
0

0 200 400 600 800 1000 1200 1400

Time, 10”6 hours

Reliability

Figure 10.19: Reliability comparison (No redundant cells)

The reliability demonstrated by this self-repairing design is due to it being able to
tolerate those failure modes that can be corrected by reconfiguring the device. The
reliability of the self-repairing ALU can be further increased by introducing small
numbers of redundant cells to the design to replace irreparably broken cells. Figure

10.20 shows the reliability of a self-repairing ALU with 1 redundant cell as well as the

10.5. Assessing the reliability of the ALU 159

reliability of an N-modular redundant system of equivalent size. Figure 10.21 shows
the reliability of a system with 5 redundant cells, figure 10.22 shows the reliability

of a system with 10 redundant cells.

Reliability comparison

T
173-Mod
Self-assembling

0.8 \
0.6
0.2 \

0 500 1000 1500 200(

Time, 1076 hours

Reliability
o
~

| s

Figure 10.20: Reliability comparison (1 redundant cell)

In order to quantify the reliability improvement shown in figures 10.20—10.22 the
MTTF of each system will be calculated at 400.10° hours using equation (10.21).

4
MTTF = 0o (10.21)

In <ﬁ(e—400/\1 — 400Xz 4 €—4OO>\1>

With no redundant cells available to the self-assembling design, the MTTF is slightly
longer than that of its N-modular equivalent. However making available small num-
bers of cells significantly increases its MTTF (by a factor of 10'° hours in the case
of 10 redundant cells) performance over its equivalent N-modular design. This is
subject to a number of caveats already discussed, as such this performance increase
should be considered as an indicator of the potential for morphogenesis-inspired re-
liability. A more complete analysis would require detailed information of hardware
overheads for each system component and a partial-reprogrammable platform with

known failure modes.

10.5. Assessing the reliability of the ALU

160

Reliability

Reliability

Reliability comparison

T
180-Mod ———
Self-assembling ———

REA
il
NN

0 1000 2000 3000 4000 500(
Time, 1076 hours

Figure 10.21: Reliability comparison (5 redundant cells)

Reliability comparison
0.8 \ \
0.4 \
0.2

0 1000 2000 3000 4000 500¢

Time, 1076 hours

T
191-Mod ——
Self-assembling ——

Figure 10.22: Reliability comparison (10 redundant cells)

10.5. Assessing the reliability of the ALU 161

Redundant cells | MTTF (10°hrs) of self- | MTTF (10%hrs) of N-mod
assembling technique technique

0 5.28.10? 6.44.10?

1 2.07.103 6.46.10>

5 3.23.10° 6.49.10?

10 1.03.1012 6.54.10>

Figure 10.23: Mean time to failure (MTTF) of ALU

10.5.1 Characterising the failure modes

How does this self-assembling strategy affect the “bath-tub” model for the lifetime

of a system?

1. Infant mortality: If there exists redundant cells within the design, the sys-
tem is much better equipped to deal with manufacturing defects. Thus the

frequency of so-called “dead on arrival” products is potentially lower.

2. Intrinsic failure: Capable of self-repair, this system is almost completely
impervious to soft errors. Only if every cell were corrupted simultaneously

would the system fail during this stage of its lifetime.

3. Wear-out failure: The reliability assessment presented above is principally a
measure of the resistance of the device to wear-out failures. It has been shown

to potentially be a significant improvement on static redundancy techniques.

Using equation (9.2) and a Levenberg-Marquardt non-linear regression we can fit
the previously calculated failure rates to a Weibull curve. Figures 10.24, 10.25, 10.26
and 10.27 show the hazard rates and their matched Weibull curve for four redundant

cell configurations. Figure 10.28 shows the Weibull curve parameters for each.

Of note is the variation of the shape parameter. The closer the shape parameter is
to one, the flatter the variance of the hazard rate with time. While this corresponds

to a greater reliability, this is at a cost to the accuracy of any MTTF predictions.

10.5. Assessing the reliability of the ALU

162

weibull curve and Hazard rate with no redundant cells

T
Hazard rate
Weibull curve -

Hazard rate
=
(=]
[%]
o

600
Time 1076 Hrs

800

1000

Figure 10.24: Weibull curves for self-assembling ALU

0.018

0.016

0.014

0.012

0.01

Hazard rate

0.008

0.006

0.004

0.002

Weibull curve and Hazard rate with one redundant cell

1200

T T
"weibull 1" using 1:2

"weibull1" using 1:3 -

400

Time 1076 Hrs

800

1000

1200

Figure 10.25: Weibull curves for self-assembling ALU with 1 redundant cell

10.5. Assessing the reliability of the ALU

163

Figure

Hazard rate

Weibull curve and Hazard rate with two redundant cells

0.005

0.0045

0.004

T
Hazard rate
Weibull curve -

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

600

800

Time 106 Hrs

1000

120¢(

10.26: Weibull curves for self-assembling ALU with 2 redundant cells

Hazard rate

Weibull curve and Hazard rate with five redundant cells

0.00018

0.00016

0.00014

T T
"weibulls" using 1:2

"weibulls" using 1:3 -

0.00012

0.0001

8e-05

6e-05

4e-05

2e-05

0

0

600

200

Time 10°6 Hrs

1000

120C

Figure 10.27: Weibull curves for self-assembling ALU with 5 redundant cells

Parameter | Redundant cells

0 1 2 5
Shape, 3 79.9 120 56.2 32.8
Scale, n 4.44.10* |3.11.10* |1.78.10* |2.60.10*
Location, v | —3.76.10* | —2.69.10* | —1.28.10* | —1.46.10*

Figure 10.28: Weibull parameters for self-assembling ALU

10.6. Observations 164

Often designers prefer to be able to accurately predict the MTTF and thus plan

appropriate maintenance regimes.

10.6 Observations

Each of the 128 cells that make up the self-assembling ALU uses more logic units
(87) than an entire standard ALU design (48). Thus by a simple parts count, the
self-assembling design should have a failure rate at least 232 times greater than
standard design. That this is not the case is, in part, because of the self-repair
capabilities of the design — with no redundant cells this equates to a reliability that

is comparable to that of an equivalent N-modular redundant ALU.

The addition of redundant cells to the self-assembling design reduces Ay according
to N-modular redundancy equation (9.18). Furthermore, because one redundant cell
can replace any of the 128 cells, its effect on the reliability of the entire system is

approximately 128 times greater.

This technique, whilst demonstrating an improved reliability over an equivalent N-

modular redundant system, is not without cost:

1. The minimum size of the self-assembling ALU is a factor of a hundred times
greater than that of a single ALU and over thirty times that of a triple modular
redundant ALU.

2. The design algorithm is not trivial. Modular redundancy can be easily applied
to any system without a significant schematic re-design. This is not true of the
self-assembling approach. Firstly an appropriate level for cellular discretisation
must be selected. Next, the system function must be divided between cells such
that short, preferably not overlapping, buses between nearest neighbour cells
are the primary means of data transmission. Lastly the rules necessary to

co-ordinate the assembly and differentiation of these must be generated.

10.7. Conclusions 165

3. The design is relatively simple — a four by four pattern repeated eight times.
Increasing the complexity of the design will increase the number of rules each
cell must obey, increase the number of gates required for each cell and thus

reduce the reliability of the design.

For the reasons above, this approach may not be particularly applicable to the design
of reliable, commercial projects. However it certainly fits into the “Ultra reliability”
category. Any system that must operate in harsh environments (e.g. satellites and

space shuttles), or that cannot tolerate failure, could benefit from this technique.

10.7 Conclusions

The self-assembling, self-repairing capabilities of morphogenesis can be mimicked
in the design of self-assembling, self-repairing electronic circuits. These circuits are
formed on an array of discrete, identical cells. To achieve correct system perfor-
mance, each cell determines its state then uses this to determine its component
type. Furthermore, these arrays can be designed to metamorphosise into different
circuits depending on the boundary conditions of the array. This design approach
has been demonstrated with an ALU design on an FPGA and its reliability assessed
using state-based models and a stochastic analysis. Subsequently, this reliability
was compared to the reliability of an N-modular ALU of equivalent FPGA logic
unit use, and found to perform significantly better. A case for “Ultra reliable” ap-
plications was made, referring to the NASA program of the same name, and a study

performed by the author for CERN.

Comparing this work to that of Cesar [CMST00] is not feasible because his “Em-
bryonics” platform was used to perform a different function (a frequency divider)

and was implemented on a different platform (the Xilinx Virtex XCV300 FPGA).

The designs shown in this chapter are currently the subject of patent (pending)
GB0802245.1.

Chapter 11

Morphogenesis-inspired

self-assembly

Self-assembly describes the spontaneous aggregation of pre-formed modules into
well-defined, stable assemblies. This assembly happens without the assistance of

any external co-ordinating processes.

The design of large self-assembling systems has been the bailiwick of chaos math-
ematicians and computational evolutionists for the last ten years because the re-
lationship between locally-interacting modules and the general form of the larger

assembly is not well understood.

To complicate matters further, a common assumption is that each pre-formed mod-
ule is identical. This means that each component can take the place of another and
the replacement of damaged blocks is trivial. Also, the challenge of self-replication
is reduced from the procedure of copying the entire system once to that of copying

a small component of the system many times.

The following are some of the reasons self-assembling systems are of interest:

1. Robustness The robustness of morphogenesis as a means of co-ordinating

166

11.1. Modular robotics 167

assembly has been demonstrated in previous chapters. However in physical
realisations of self-assembly the system robustness also benefits from the fact
that these systems are usually composed of a large number of parts that can

be interchanged and that can replace each other if one of them fails [KGPV0S].

2. Manufacturing The possibility of bulk manufacturing elemental modules is
attractive from a practical point of view as it cannot be expected that each
component should be built independently. Bulk fabrication will ultimately
make self-assembly an attractive concept for industry [WZBLO5).

3. Delivery When the conduit cannot support a complete system, e.g. for rea-
sons of weight or size, self-assembling sub-modules could be an effective alter-

native.

4. Environmental There is considerable interest in the potential, especially at
micro and nano scales, of self-assembling systems. This is because there is a
perceived economic and environmental advantage; self-assembly may be a more

energy efficient, less wasteful alternative to existing manufacturing techniques.

Self-assembly has been studied in the context of biological systems, nanobots, chem-
istry and engineering. The IEEE [YWPS08] identified various grand challenges for
robotics research in the 21st century. One of these was the demonstration of a
self-assembling robot made of more than 1000 separate units. Specifically they
recognised the need for a distributed algorithm to co-ordinate this self-assembly.
This chapter will discuss an implementation of the convergent cellular automata
algorithm presented in previous chapters to the design of large-scale self-assembling

electronic robots.

11.1 Modular robotics

Robots are widely used in manufacturing, assembly and packing, transport, earth

and space exploration, surgery, weaponry, laboratory research, safety and mass pro-

11.1. Modular robotics 168

duction of consumer and industrial goods [0I08]. Modular robotics have potential
advantages over their less dynamic counterparts: including ease of manufacture and

repair, versatility and ease of transport.

The problem of delivering bulky medical devices to the stomach, be they for di-
agnosis or repair, has been the subject of a commercial modular robot developed
by Given Imaging [MMSDO07]. They have been testing designs for self-assembling,
small, swallowable devices to create a surgical “robot”. The work is interesting
as a concept since modular robots assembling inside the body could enable more
flexible and complex gastrointestinal-related robotic applications. Current capsules
typically get bigger by adding more functionalities whereas self-assembling modules

would have fewer such issues.

There is a growing interest in the design of self-assembling robotics. Figure 11.1 is

a list of 16 ongoing projects and the degrees of freedom (DOF) of each module.

One example, the “Molecule” (see figure 11.2) is a robotic module capable of aggre-
gating with other identical modules to form dynamic three-dimensional structures

[KRVMOS].

Molecules move by reconfiguring, or rotating about, their connections with other
molecules. Figure 11.3 shows an aggregation of 4 molecules rotating and reconfig-

uring so as to move across the table.

The requisite capabilities for each module of a self-assembling system are:

1. The ability to bond with other modules. The molecule project uses mechan-
ical grippers, a self-assembling robotic chair [DDDO0S§] uses a rack and pinion

mechanism, the CKbot [YWPS08] uses electromagnets.

2. The ability to move relative to each other. This may be provided exter-
nally, for example by using a vibrating table or a cushion of air [GGJO05].

Alternatively, each module could move itself on wheels, by rolling itself over

11.1. Modular robotics 169

Project DOF | Homogenous | 3D | Self-reconfiguring
ACM 1-3 Yes Yes No
Tetrobot 3-5 Yes Yes No
CEBOT 1-3 Yes No No
Fracta 12 Yes Yes Yes
Molecule 4 Yes Yes Yes
Metamorphic 3 Yes No Yes
Proteo 0 Yes Yes Yes
Crystalline 2 Yes Yes Yes
Fractal 6 Yes Yes Yes
Fractum 0 Yes No Yes
Mini unit 2 Yes No Yes
CONRO 2 Yes Yes Yes
[-Cubes 3 No Yes Yes
Polypod 2 No Yes No
PolyBot 1 Yes Yes No
SemiCylindrical 2 Yes Yes Yes

Figure 11.1: List of ongoing self-assembling robotics projects [JAO1]

Figure 11.2: Two types of Molecule module. The male (a) has an active gripper
mechanism, the female (b) has a passive fixture.

Images courtesy of CSAIL, Cambridge MA

11.2. Existing self-assembly techniques 170

Figure 11.3: Five snapshots of a Molecule translation experiment.

Images courtesy of CSAIL, Cambridge MA

and over [YWPS08], or by pivoting about connections between other modules

[KRVMOS].

3. Some means of determining which modules it should connect to. Also, in more
complicated systems, how and where it should connect to these modules. Cur-
rent self-assembling robotics use a sufficiently small number of modules that
complete Cartesian maps [BOTO00] are more practical than the work presented
in this thesis. However, as micro-electromechanical systems (MEMS) become
more capable and cheaper to manufacture, a means of designing massive self-
assembling systems may become more important. The following section will

discuss a few other existing techniques.

11.2 Existing self-assembly techniques

There are many proposed schemes for the co-ordination of self-assembly. This sec-
tion discusses three such schemes that have been designed for specific hardware

implementations.

11.2. Existing self-assembly techniques 171

Hierarchical maps. Murata [MKTK99] proposed a hierarchical map for the self-
assembly of mechanical structures from “fractum”, small motorised robots capable
of connecting to one another. The assembly program, stored in each cell, contains
a description of the neighbourhood of every cell within a simple structure. Cells
move randomly until every cell has a correct neighbourhood, at which point every
cell freezes. Then another simple structure starts to form about one of the frozen
cells. Because repeated simple structures need only be coded once, this algorithm

is more efficient than a Cartesian co-ordinate mapping.

PacMan. Butler [BBRO1] applied a two-stage process to the self-assembly of the

“Crystaline” robot:

1. The difference between the current configuration and the required final con-
figuration of cells is determined. A copy of the final configuration is passed as
a map, one cell to the next, till it reaches the final cell. If a cell is required in

a different location, it marks its current location on the map.

2. The route from each spare cell to its required location is determined. A recur-
sive search starts, progressing one cell at a time in axis order depth, height,
width, from the required location till a spare cell is found. Each step of the
search is marked with a “plan-pellet”. When a path is found, each “plan-
pellet” en-route is turned into a “path-pellet”. The spare cell will then move

along this path, “eating” each path-pellet en-route.

Melt and Grow. Rus [RV01] proposed a different scheme for the Crystaline robot.
The Melt and Grow assembly process is designed for systems of modules that can
only move adjacent to other cells, so the system must remain a single contiguous
cluster of cells. The initial configuration of cells is first “melted” into an intermediate
structure, which is a projection of the robot modules into a pool on the ground. In a
2D world, this pool is a 1D line. When the pool is complete, the desired configuration

“orows”, one cell at a time starting from one end of the pool.

11.3. Design of irregular 2D automata 172

Overlapping circles. Nagpal [NKC03] described the desired final configuration
using a network of covering circles. Overlapping circles are linked using local refer-
ence points relative to each circle. This circle representation permits the formation
of the entire structure by agents recursively executing only two simple primitives:

growing a circle, and triangulating the centres of adjacent circles.

Whilst appropriate to systems assembled from small numbers of complicated mod-
ules, the algorithms described above would not be trivial to implement on systems

made of greater numbers of simpler modules.

So far the platform we have used for simulating morphogenesis has been a 2D rectan-
gular cellular automata. FEach cell is identical, each cell only communicates with its
nearest neighbours and no co-ordinate scheme has been overlayed. On this platform,
and without the assistance of a global supervisory algorithm, we have succeeded in

designing the automata to converge to specified patterns.

The design algorithm for this scheme is complicated and requires significant com-
putational resources. However the assembly algorithm is local to each cell, trivial

to implement and requires no long-distance communications.

There are no rectangles in biological systems; moreover, it is not normal to expect
a self-assembling robot to form into a rectangle shape. The next section will adapt
the current convergent cellular automata design algorithm to the more general case

of self-assembling, irregular 3D systems capable of metamorphosis.

11.3 Design of irregular 2D automata

The scheme proposed so far relies on each cell computing its next state from the
current state of two neighbouring cells; the relative location of each neighbour to the
cell is common to every cell in the array. Therefore, if one cell updates according to

the state of cells above and to the left of itself, so does every cell. In a rectangular

11.3. Design of irregular 2D automata 173

array of cells, most will have two neighbours which they determine their next state
from, some will have one neighbour and one will have no neighbours. In effect
the desired pattern emerges from this one cell (the origin cell): as shown in figure
11.4(a,b). In the case of a partially-assembled CA, or a CA that converges to form
an irregular shape, this is not necessarily the case. This is shown in figure 11.4(c).

gi i origin cell
¢ Origin cell {no inputs) o onoincell partition 2 —

..... Lo

B o= -
£ i i L) L]

Yoo v | :

..... . " Al

Cells with : ; 4 #
one input Y ¥ ¥ ¥ :
L] ! s P iy i o (o
vy |y v |y L L L L

..... e R o e
Cells with two inputs A partition 1

(a) (b) ()

Figure 11.4: Inputs combinations, an irregular 2D CA and the flow of state infor-

mation from the origin cell

A solution is to allow each cell to determine its next state according to the current
state of two neighbouring cells as before, but to determine which two cells (above
or below, to the left or right) according to its current state. Therefore, while one
cell may determine its next state according to cells above and to the left of itself,
another might determine its next state according to cells from below and to the
right of itself. This “state to neighbourhood function” is a many-to-one mapping

(see figure 11.5).

Ci,j—>ne{

Figure 11.5: The state to neighbourhood function mapping

11.3.1 Analysis

If g() is the two input one output state look-up table common to each cell, and C;

is the row-major vector of the cells in the automata, the transition from one state

11.3. Design of irregular 2D automata 174

to the next for an entire rectangular automata can be described as:

Cer1 = g(Ch) (11.1)

Let C, = {Fl, EE} where P, is a partition of C,. If the partitions are entirely

separate, the next state of each can be described as:

P = g(P) (11.2)
P, = g(P) (11.3)
P, = g(PB) (11.4)

However, all but the first partition take inputs from the boundaries between itself

and its neighbouring partitions, so the next state of each can be described thus:

A= (P (11.5)
1
P, = g+ Z Neighbouring partitions) (11.6)
i=1
n—1
P, = g(P,+ Z Neighbouring partitions) (11.7)
i=1

As no partition takes state information from partitions it directly (or indirectly)
transmits to, the feed-forward nature of the automata is preserved. Thus, provided
g() conforms to the requirements for the automata to converge (as laid down in
previous chapters) a multiple partition automata with g() as its transition function

will also converge to a steady state.

11.3.2 Partition scheme

A first step in the design algorithm for irregular CA must partition the CA into
groups of cells with common directions of flow of information. This is not a trivial

task to automate. There are three variables to determine for each partition:

1. From which cell should the partition start disseminating state information (for

a square this would be one of the corners)?

11.3. Design of irregular 2D automata 175

2. In which direction (NE, NW, SE,; SW) should state information flow from this

root cell?

3. Which cells should be part of this partition?

The solution presented below is an efficient recursive algorithm, but it will not always

provide an optimum solution.

1. Find the cell furthest from the centre of mass of the automata. This is the

first root.

2. Apply the following recursive function to find the optimum azimuth for the

flow of information from this root.

1 azimuth = [0,0]
2

3 determine_azimuth (z,y,x):

4 if there is a cell to the east of (z,y,x) in this partition, azimuth[0] =
1
5 if there is a cell to the west of (z,y,x) in this partition, azimuth[0] =
2
6 if there is a cell to the north of (z,y,x) in this partition, azimuth[1]
=1
7 if there is a cell to the south of (z,y,x) in this partition, azimuth[1]
8
9 if azimuth[0] == O0:
10 call the function determine_azimuth with the adjacent cell on the
y—axis
11 if azimuth[l] ==
12 call the function determine_azimuth with the adjacent cell on the
x—axis

Listing 11.1: Azimuth search pseudo-code

3. Apply the following recursive function to explore the partition from the root

along the determined azimuth to include as many cells as possible.

cells_in_partition = [], bounds_of_partition = []

1

2

3 function explorer(z,y,x,azimuth):

4 add the location (z,y,x) to cells_in_partition array

5 for each of the two neighbours which this cell transmits to (determined
by azimuth)

6 call the function explorer(next-_cell ,azimuth)

7 for each of the two neighbours which this cell receives from (determined
by azimuth)

8 if already part of a partition, or equal to zero (empty space):

9 add its location to bounds_of_partition array

10

11.3. Design of irregular 2D automata 176

11

12 explorer (first_-root , azimuth)

13

14 remove repeated values from both arrays

15 if an element of the bounds array is also in the partition array, remove it
16 sort the bounds array by the cells distance from the first root

17

18 the next-root to explore from is the first element of the bounds array.

Listing 11.2: Partition search pseudo-code

4. While there exist cells not part of a partition, find the cell furthest from the
centre of mass of the automata that lies on the boundary between a solved
partition and a cell that is not part of a partition. This is the next root. Now

return to step 2.

The complete source code for this algorithm can be found in appendix A.4

11.3.3 Rule generation algorithm

The state value and the directions of information transmission must be determined
for each cell in the design. The directions are determined by the partition it is a part
of, and whether it is a neighbour of adjacent partitions. The state value assigned
to each cell is tested against the rules necessary to determine its position in the
automata as described in previous chapters. Each state value is also tested against
its mapping to the corresponding cell output and cell state information transmission
directions. The pseudo-code for this design algorithm is listed below. For a complete

listing see appendix A .4.

1 assignments = [], azimuth_lut = [] rules = []

2

3 for each partition:

4 for each cell in the partition:

5 determine its inputs from the partition azimuth

6

7 if this cell is a neighbour of a root for any other partitions:
8 add the necessary transmission directions to the cell azimuth
9

10 state = 0

11 while not solved:

12 if assignments[state] != cell_output:

13 state += 1;

14 goto start of while—loop

11.3.

Design of irregular 2D automata

177

15
16
17
18
19
20
21
22
23

if azimuth_lut[state] != cell_transmission_directions:
state 4+= 1;

goto start of while—loop

for each neighbouring cell to which this cell transmits:

generate the next—state rule

if this next_state rule violates existing rules:

state += 1;

goto start of while—loop

Listing 11.3: Azimuth search pseudo-code

11.3.4 Assembler

The system of cells self-assembles; no outside administration is required. Thus the

assembly algorithm only describes the actions of a cell, and is common to all the cells

in the automata. There are two parts to this process: one governs state informa-

tion reception and its subsequent analysis, the other governs cell state information

transmission.

e State reception and analysis.

1. The cell requests state information from all four of its immediate neigh-

bours.

2. One neighbour is chosen on each axis. If state information is available

from two cells on the same axis, priority is assigned to the cells closest to

the north-east (an arbitrary choice).

3. This neighbour state information is used to look-up the next state of the

cell from its state look-up table (also common to each cell).

4. The present state of the cell determines (via a look-up table) the output

of the cell.

5. The present state of the cell also determines (via a look-up table) in which

directions it will transmit its state information.

e State transmission

11.4. Design of irregular 3D automata 178

1. If state information is requested from a cell, it first determines in which

direction the request is coming from.

2. If the request is coming from a direction along which the cell transmits
information, the state of the cell replies to the request with its current

state; otherwise the cell replies with a null value.

The complete source code for this algorithm can be found in appendix A.4

11.3.5 Results

Figure 11.6 shows the partitions of a 1000 cell 2D system of cells. Figure 11.7 shows
this system self-assembling and converging to the desired stable shape. Figure 11.8

shows this same system self-healing from a corrupted shape.

Implementing the algorithm of chapter 6 using a python script, the derivation for this

1000 cell self-assembling system took 30 seconds on a 3.2GHz Intel Xeon processor.

Partition 1
Partition 2
Partition 3

. Partition 4

Partition 5

Figure 11.6: The partitions of a 2D array of 1000 cells

11.4 Design of irregular 3D automata

To adapt the design algorithm so far presented for the design of 3D systems is

straightforward. To expand the analysis presented in section 3 to consider the

11.4. Design of irregular 3D automata 179

t =129 t =36 t =41 t =46

Figure 11.7: The array self-assembling and converging from the origin cell

1 P o -
Ay R :
LI A PR - '

.l-l_ .;-.IJ| :|:=' ..,F _I'l

G T-an

A A | A
t=1 t=38 t=15 t =22
. .|'._.“_-,

t =29 t =36 t =141 t =46

Figure 11.8: The array converging from a corrupt pattern

convergence of 3D automata we must replace the row-major vector representation
of the automata with a row-column-major vector. This analysis shows that for a
3D automata to converge each cell must determine its next state according to the

present state of, at most, three neighbours: one per axis.

Thus f(), the transition function used by each cell to determine its next state, must
be a function of three variables, and the design algorithm of chapter six must be

adapted to reflect this.

While adapting the design algorithm is trivial, generating the shape for it to design

11.5. Metamorphosis and self-assembling systems 180

is not. Whereas in two dimensions we could use readily available images, models in
three dimensions are typically stored as vector diagrams — the automata needs a

three-dimensional bitmap. The process for generating these bitmaps is:

1. Design, or acquire from a large freely available online stock, a three-dimensional

vector model in Google’s Sketchup modelling package.

2. In order to create slices along the x-axis, create a large white rectangle in the

y-axis and the z-axis.
3. Take a screenshot, this image is the first slice of the bitmap of the model.

4. Move the white rectangle along the x-axis, delete any components of the model

that are not immediately adjacent to the rectangle.
5. Repeat to (3) until the bitmap is complete.

6. Use a simple python script to generate a three-dimensional array of values
from the slice images created. This is the three-dimensional bitmap for the

design algorithm.

Figure 11.9 shows the partitions of a 3D irregular shape (Marvin the robot [KA05]).
Figure 11.10 shows a system of identical cells self-assemble into this shape. Figure

11.11 shows the same system self-repair after being corrupted.

Implementing the algorithm of chapter 6 using a python script, the derivation for
this 55,000 cell 3D self-assembling system took 12 hours on a 3.2GHz Intel Xeon

processor.

11.5 Metamorphosis and self-assembling systems

Metamorphosis of biological systems refers to a sudden change in the form of an
animal via cell growth, differentiation and apoptosis. Notable examples include a

tadpole turning into a frog, and a caterpillar turning into a butterfly.

11.5. Metamorphosis and self-assembling systems 181

Figure 11.9: The partitions of a 3D robot shape

Metamorphosis in modular robotics refers to a self-reconfiguration. This can be
seen as a minimalistic approach to designing versatile robots that can support mul-
tiple modalities of locomotion and manipulation. The following are a few potential

capabilities of metamorphosis:

1. Growing to an a priori unknown scale, e.g. civil structures in time of emer-

gency [PSCI6].

2. Optimise gait for varying terrain: a snake-like slither for tunnels [BBRO1],
six legs to traverse rough terrain, long legs to climb stairs and wheels for flat

surfaces [KR99].
3. Obstacle avoidance in constrained, unstructured, environments.

4. Modifying manipulars to grip objects of different shapes and sizes.

11.5. Metamorphosis and self-assembling systems

182

t =80

t = 100

t =120

Various views

Figure 11.10: A 3D system of 55,000 cells self-assembling from the origin cell

11.5.1 Designing systems to metamorphosise

The designs presented so far have required the boundary conditions of the automata

to be zero. If the bounds were set to another value, the automata would converge to

a different state. Thus to design an automata to converge to one of multiple states

according to its boundary conditions, the design flow would be:

1. Set the boundary conditions to correspond to the first converged state.
2. Design the automata for this state.

3. Set the boundary conditions to correspond to the next converged state.

4. Design the automata for this next state, building on existing rules and state

output-azimuth assignments.

11.5. Metamorphosis and self-assembling systems 183

t =80 t = 100 t =120 t = 140

Figure 11.11: The same 3D system self-healing from a corrupt shape
5. Repeat to (3) for each of the remaining converged states.
Because the locations of every cell in the first design do not need to be populated
in the second design, the algorithm also needs a cell death trigger. In the following

analysis we will use Miller’s [MBO03] rule: a cell dies if all of its neighbouring cells

are also dead.

11.5.2 Results

The ability to metamorphosise was characterised in the movie “Transformers”. The
following 3D designs are loosely inspired by the hero of this film “bumblebee”, who

could turn from a car into a robot and vice versa.

The designs are rendered using the Mayavi rendering engine and a script interface

11.5. Metamorphosis and self-assembling systems 184

(see appendix A.4 for the code).

Figure 11.12 shows various views and notable features of the car model.
Figure 11.13 shows various views and notable features of the robot model.
Figure 11.14 shows the 35 partitions of the car model.

Figure 11.15 shows the 39 partitions of the robot model.

Figure 11.16 shows the assembly process (from null initial conditions) of the robot

model.
Figure 11.17 shows the robot model metamorphosising into the car model.

Part of the assembly algorithm is a cell-by-cell implementation of the following test:
if the cell has no inputs (i.e. it is disconnected from other cells) then it should die.
This can be seen in the robot-to-car example, where a significant number of the robot
cells become disconnected and “die” during the transition. The car then “grows”
new cells where required. If instead “death” and “growth” are metaphors for joining
a pool of spare cells, this algorithm can be seen as a partial implementation of the

“melt and grow” algorithm discussed previously.

In order to reduce the number of cell deaths and thus the time required to meta-
morphosise, we could adapt the cell death trigger by introducing a delay (e.g. “if
all your neighbours are dead, wait for two clock cycles before dying too”). However,
this also introduces potential feedback loops between old and new cells, creating

spurious cell groupings (see figures 11.18 and 11.19).
Figure 11.20 shows the self-assembly of the car model from null initial conditions.
Figure 11.21 shows the car model metamorphosising into the robot model.

In this metamorphosis there is less evidence of cell death. This is perhaps because

the car is a more cohesive design than the robot.

11.5. Metamorphosis and self-assembling systems 185

AT

0N

b

R A T A)
AL AL A

gl cdhi

Interior view

Figure 11.12: Views of the “Bumblebee” car

11.6. Conclusions 186

&
NN,
i ivirg

Front view Back view

Figure 11.13: Views of the ’bumblebee’ robot

In changing from the robot to the car, limbs become disconnected and begin to
die at a rate that is faster than the subsequent assembly algorithm of the car. In
changing from the car to the robot there are fewer extrema, so much of the cells of
the car are incorporated into the robot assembly process before they have a chance

to die.

11.6 Conclusions

Attempts to engineer biological chemical and nano systems to self-assemble to a
particular form have been limited by the difficulties of creating specific modules.
If overcome, the limited complexity of each module will restrict any attempts to
implement complicated self-assembly algorithms. Thus the bio-inspired minimalist

strategy presented in this chapter may be a more appropriate scheme.

Attempts to engineer electromechanical systems to self-assemble are currently lim-
ited by the difficulty of manufacturing the complicated locomotive and inter-module

bonding mechanisms. However, the study of micro-electromechanical systems (MEMS)

11.6. Conclusions

187

sspEoEred
Frrrrree
n
[l

Bottom view of car partitions

EEEEEE NN EREEEEE
AERFAAAAERSER
NMECCEDEEEEDE R
ODECCDDEUEOEEDEN
DECCEDEUUEEDE R
mEDCODEUCEmEWRNEE
mEpCUEUEEBENE N
mEECCUEUUEODEREE
MEEEEEEE S .
MEEEEEEEE S .
MEEEEEEEE S .

Top view of car partitions

Figure 11.14: Partitions of the car model

Front partitions Back partitions

Figure 11.15: Partitions of the robot model

11.6. Conclusions

188

SRR

Figure 11.16: The self-assembly of a 12,000 cell robot

11.6. Conclusions 189

Figure 11.17: The metamorphosis of a 12,000 cell robot into a car

11.6. Conclusions 190

Figure 11.18: A car that has been corrupted from the robot-car transition

is making progress in the development of small, easy to manufacture components
capable of locomotion and gripping. As smaller components become possible, the
emphasis of the self-assembly algorithms will be on simpler schemes capable of as-
sembling large numbers of components. Thus, the ability to co-ordinate the self-

assembly of thousands of cells into a cohesive structure may be applicable.

The metamorphosis capabilities demonstrated here are at present without a practi-
cal application. However, the trend towards large distributed systems has to-date
resulted in cumbersome networks of modules that are slow to adapt to changing en-
vironments. Without some adaptive abilities, self-assembling robots with thousands

of components will be less effective in changing environments.

Evidence of excessive cell death and growth in the metamorphosis results suggests
there are improvements to be made in the design process. Possibilities include:
considering the relative location of the root cell of each design, granting each cell a
slower death (i.e. waiting a few cycles before starting apoptosis), and converging to

an intermediate state with fewer extrema.

11.6. Conclusions 191

Figure 11.19: A robot that has been corrupted from the car-robot transition

11.6. Conclusions 192

Figure 11.20: The self-assembly of a 12,000 cell car

11.6. Conclusions

193

t =14

t =21

t =22

t =23

t =24

Figure 11.21: The metamorphosis of a 12,000 cell car into a robot

Chapter 12

Conclusion

We began with a brief discussion, model and analysis of an island populated by
cannibals and missionaries. Simulations showed that the difference between the mo-
bility and reproduction habits of the two populations created a clumping pattern of
cannibals surrounded by missionaries. Turing [Tur50a] used this model to introduce
morphogenesis as an explanation for the co-ordination of the differentiation of cells

in developing and repairing biological systems.

The objective of the research described in this thesis was to imitate morphogenesis
in silico. This with the goal of creating self-assembling and self-repairing electronic

devices. Previous attempts to mimic morphogenesis have had some success.

Fleischer and Barr [FB93| imitated morphogenesis on an electronic “developing”
system and demonstrated that some configurations could tolerate and repair a lit-
tle corruption. Miller [Mil00] and Liu [LMT04] simplified the model of Fleischer
and Barr and, using an evolutionary design algorithm, designed systems that could

tolerate and repair up to 25% corruption.

We sought to incorporate an intermediate step in the mapping from biology to

electronics, namely that of cellular automata. The results of this analysis are six-

fold:

194

Chapter 12. Conclusion 195

1. That to ensure the automata converges to the same state, regardless of initial
conditions, it is necessary that the next state rule of each cell is independent
of the current cell state. In addition, the next state rule can only depend upon
the state of one cell per axis, either the cell to the left or to the right, either
the cell above or the cell below. Thus a 1D system has one input to the next

state rule, a 2D system has two inputs.

2. That it is possible to find the mapping from local rules to global arrangements

using sets of linear simultaneous equations or a deterministic design algorithm.

3. That introducing redundant cell states and a state-output mapping (many-to-
one) makes more convergent automata states possible. Worst-case automata-

states require sufficient redundancy to uniquely identify each cell of the system.

4. That by making the automata a heterogeneous arrangement of cells of different
sizes the design of self-assembling flags requires fewer redundant cell state

assignations.

5. That the output of this automata can be mapped to different component
types, making the design of a self-assembling self-repairing arithmetic logic
unit possible. The subsequent analysis of the reliablity of this system suggests
it may be more reliable than equivalent n-modular redundant systems, though

further studies are required to confirm this.

6. That the cellular automata model can be adapted to design irregular shaped
systems. This was demonstrated with the design of irregular robot and car
shapes in three dimensions. Further, the design algorithm was shown capable
of designing systems capable of metamorphosising to specific shapes depending

on the boundary conditions of the automata.

Morphogenesis has been demonstrated applicable to the design of self-assembling
and ultra-reliable electronic systems. Thus remains the question, where else is it
applicable? Failure rates of electronic systems increase exponentially with tempera-

ture (see equation (9.7)) so perhaps morphogenesis-inspired reliability could enable

Chapter 12. Conclusion 196

computer processors to run without needing cooling fans. Perhaps also it could
be used to self-organise the behaviour of discretised computing networks, be they
super-computers or smart dust. This algorithm has been applied on systems for
whom longevity is essential, but it is equally applicable to the emerging field of
plastic electronics. These are electronics that no longer reside on the standard FR4
composite PCBs, instead their components are laid on flexible substrates that are
prone to stretching and ripping. One of the few remaining hurdles to the commer-
cialisation of this technology is reliability - billions of plastic RFID tags cannot be
printed if ten percent will fail, nor can large flexible LCD screens be rolled up if the
systems cannot withstand the stretching of the substrate. Morphogenesis-inspired

reliability engineering may be one means of overcoming this hurdle.

Bibliography

[ARS0]

[BBROI]

[BC36]

[Ben9g]

[BFKNOS]

[Blo07]

[BOTOO]

[Bow92]

J.E. Arsenault and J.A. Roberts. Reliability and Maintainability of

Electronic Systems. Computer Science Press, Potomac, 1980.

Z. Butler, S. Byrnes, and D. Rus. Distributed motion planning for
modular robots with unit-compressible modules. Proceedings of IEEE
International Conferance on Intelligent Robots and Systems, pages 790—

796, 2001.

N. J. Berrill and A. Cohen. Regeneration in clavellina lepadiformis.

Journal of experimental biology, 13, 1936.

J. M. Benyus. Biomimicry: Innovation inspired by nature. Perennial,

1998.

W. Banzhaf, F. D. Francone, R. E. Keller, and P. Nordin. Genetic
programming: an introduction: on the automatic evolution of computer

programs and its applications. 1998.
J. Blowey. Lecture notes for course: Mathematical biosciences. 2007.

D. Bradley, C. Ortega, and A. M. Tyrrell. Embryonics and immunotron-
ics: A bio-inspired approach to fault tolerance. 2nd NASA/DoD work-

shop on evolvable hardware, pages 215-2=24, 2000.

J. Bowles. A survey of reliability prediction procedures for microelec-

tronics devices. IEEE Transactions on Reliability, 41(1):2-12, 1992.

197

BIBLIOGRAPHY 198

[BR9O]

[BS02]

[Chi05]

[Cho01]

[CL99]

[CMSTO0]

[Con05]

[Cutb6]

[DDDOS]

[DMO1]
[DODYO]

[Eco04]

[Egg97]

R. Bell and D. Reinert. Risk and system integrity concepts for safety-
related control systems. Safety-Critical Systems, Techniques and Stan-

dards, pages 16-42, 1990.

H. G. Beyer and H. P. Schwefel. Evolution strategies - a comprehensive

introduction. Natural Computing, 1, 2002.

S. Childress. Case study 2: Turing’s model of chemical morphogenesis.

2005.
M. Chown. The magic furnace. Oxford University Press, 2001.

G. Cassandras and S. Lafortune. Introduction to Discrete Events Sys-

tems. Kluwer Academic Publisher, 1999.

O. S. Cesar, D. Mange, S. Smith, and A. Tyrrell. Embryonics: A
bio-inspired cellular architecture with fault-tolerant properties. Genetic

Programming and FEvolvable Machines, 2000.
Connect. Mobile phone reliability. Connect, 6, 2005.

F. Cutry. The flight of birds, volume Leonardo da Vinci. Reynal and
Company, 1956.

M. Dean, R. D’Andrea, and M. Donovan. A self-assembling chair.

www.raffaelo.name, 2008.
L. D. Davis and M. Mitchell. Handbook of genetic algorithms. 1991.
US DOD. MIL-HDBK-217. 1990.

M. Economou. The merits and limitations of reliability predictions.
Reliability, Availability Maintainability Symposium, RAMS, pages 352—
357, 2004.

P. Eggenberger. Evolving morphologies of simulated 3D organisms based
on differential gene expression. Proceedings of the fourth european con-

ference on artificial life, pages 205-213, 1997.

BIBLIOGRAPHY 199

[FB93]

[Fil05]

[FOW66]

[FP90)

[Gal93]

[Galog|

[Gar70]

[GGJ05]

[GLYS]

[Gri76]

[Gur68|

[GVKS8T]

K. Fleischer and A. H. Barr. A simulation testbed for the study of multi-
cellular development: multiple mechanisms of morphogenesis. Artificial

life ITI, 1993.

R. Filippini. Dependability analysis of a safety critical system; the LHC
beam dumping system at CERN. CERN archive, 2005.

L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial intelligence through

simulated evolution. 1966.

S. Fraser and D. Perkel. Competitive and positional cues in the pattern-
ing of nerve connections. Journal of Theoretical Neurology, 21:51-72,

1990.
D. Gale. The industrious ant. Mathematics Intelligencer, 15(2), 1993.

D. Gale. Tracking the automatic ANT and other mathematical explo-
rations. Springer, New York, 1998.

M. Gardner. Mathematical games: The fantastic combinations of john
conway’s new solitaire game “life”. Scientific American, 223:120-123,

1970.

S. Griffith, D. Goldwater, and J. M. Jacobson. Self-replication from
random parts. Nature, 437, 2005.

H. A. Gutowitz and C. Langton. Mean field theory of the edge of chaos.
Proceedings of ECALS3, pages 52-64, 1995.

A. J. F. Griffiths. An introduction to genetic analysis. W. H. Freeman
and Company, 1976.

J. B. Gurdon. Changes in somatic cell nuclei inserted into growing and
maturing amphibian oocytes. Journal of Embryology and Ezxperimental

Morphology, 20:401-14, 1968.

H. A. Gutowitz, J. D. Victor, and B. W. Knight. Local structure theory

for cellular automata. Physica D, pages 18-48, 1987.

BIBLIOGRAPHY 200

[Gwe93|

[HG90)]

[Hoh68)

[IBN96]

[JAO1]

[KA05)

[Kel95)

[KGPVO08]

[KR99)

[KRVMOS]

[Lans6]

L. Gwennap. Estimating [C manufacturing costs. Proceedings of the 31st

annual conference on Design automation, Microprocessor Report:15,

1993.

N. D. Hopwood and J. B. Gurdon. Activation of muscle genes without
myogenesis by ectopic expression of myod in frog embryo cells. Nature,

pages 197-200, 1990.

F. Hohn. Applied automata theory. Electrical science. Academic press,

1968.

U. Isaksen, J.P. Bowen, and N. Nissanke. System and Software Safety
in Critical Systems. 1996.

P. Jantapremjit and D. Austin. Design of a modular self-reconfigurable
robot. Proceedings of Australian conference on robotics and au-

tomataion, 2001.

K. Kirkpatrick and D. Adams. The hitchhiker’s guide to the galaxy.
Touchstone Pictures, 2005.

Kevin Kelly. Out of control: the new biology of machines, social systema

and the economic world. Basic Books, 1995.

N. Krasnogor, S. Gustafson, D.A. Pelta, and J.L. Verdegay. Systems

self-assembly: multidisciplinary snapshots, volume 5. 2008.

K. Kotay and D. Rus. Locomotion versatility through self-
reconfiguration. Robotics and Autonomous Systems, 26:217232, 1999.

K. Kotay, D. R., M. Vona, and C. McGray. The self-reconfiguring
robotic molecule. Proceedings of IEEE International Conference on

Robotics and Automation, 1998.

C. Langton. Studying artificial life with cellular automata. Physica D.,
22:120-149, 1986.

BIBLIOGRAPHY 201

[Lan90]

[Lev00]

[LKY*96]

[LMTO4]

IMBO03]

[Mei82]

[Mil00]

IMKTK99)

[MMSDO07]

[Mor04]

IMSP+89]

C. Langton. Computation at the edge of chaos. Physica D, 42, 1990.

D. Levi. Hereboy: a fast evolutionary algorithm. Proceedings of the 2nd
NASA/DoD workshop on evolvable hardware, pages 17-24, 2000.

X. Liu, C. Kim, J. Yang, R. Jemmerson, and X. Wang. Induction
of apoptotic program in cell-free extracts: requirement for datp and

cytochrome c. Cell, 86(1):147-57, 1996.

H. Lui, J. F. Miller, and A. Tyrrell. An intrinsic robust transient

fault-tolerant developmental model for digital systems. Proceedings of

GECCO, 2004.

J. F. Miller and W. Banzhaf. Evolving the program for a cell: From

french flags to boolean circuits. On Growth, Form and Computers, 2003.

H. Meinhardt. Models of biological pattern formation. Academic Press,
London, 1982.

J. Miller. Principles in the evolutionary design of digital circuits, part

1. Journal of genetic programming and evolvable machines, 1, 2000.

S. Murata, H. Kurokawa, K. Tomita, and S. Kokaji. Self-assembly and
self-repair method for a distributed mechanical system. IEEE Transac-

tions on Robotics and Automation, 1999.

A. Moglia, A. Menciassi, M. O. Schurr, and P. Dario. Wireless capsule
endoscopy: from diagnostic devices to multipurpose robotic systems.

Biomedical Microdevices, 2007.

T. H. Morgan. An attempt to analyse the phenomena of polarity in
tubularia. Journal of experimental Zoology, 1:587-591, 1904.

E. E. Moore, S. R. Shackford, H. L. Pachter, J. W. McAninch, and M. L.
Ramseonfsky. Organ injury scaling: spleen, liver and kidney. Journal

of Trauma, 29(12):1664-6, 1989.

BIBLIOGRAPHY 202

[Neu66]

[INKCO03]

[0I08]

[OOABS]]

[PNO4|

[PSCY6]

[RACO7]

[RHT+97]

[RO00]

[RVO01]

[Sch05]

J. Neumann. Theory of self-reproducing automata. University of Illinois

press, 1966.

R. Nagpal, A. Kondacs, and C. Chang. Programming methodology for
biologically-inspired self-assembling systems. AAAI Spring Symposium
on Computational Synthesis, 2003.

The Technical Museum of Innovation. Robotics: about the exhibition.

www.thetech.org, 2008.

G. M. Odell, G. Oster, P. Alberch, and B. Burnside. The mechanical
basis of morphogenesis. Developmental biology, 85:446-462, 1981.

M. G. Pecht and F.R. Nash. Predicting the reliability of electronic
equipment. Proceedings of the IEEE, 82(7):992-1004, 1994.

A. Pamecha, D. Stein, and G. Chirikjian. Design and implementation of
metamorphic robots. Proceedings of the 1996 ASME Design Engineering
Technical Conference and Computers in Engineering Conference, pages

1-10, 1996.
RAC. Electronic Part Reliability Data. RAC, Rome (NY) USA, 1997.

A. L. Rosee, T. Hader, H. Taubert, R. Rivera-Pomar, and H. Jackle.
Mechanism and bicoid-dependent control of hairy stripe 7 expression in

the posterior region of the drosophila embryo. The Embryology journal,
16, 1997.

J. D. Robertson and S. Orrenius. Molecular mechanisms of apoptosis in-
duced by cytotoxic chemicals. Critical reviews in toxicology, 30(5):609—
627, 2000.

D. Rus and M. Vona. Crystalline robots: Self-reconfiguration with com-

pressible unit modules. Autonomous Robots, 10:107-124, 2001.

D. Schutz. Lecture notes: Analysis year 4. 2005.

BIBLIOGRAPHY 203

[Sha06]

[Shi97]

[Sho68]

[SWMKO05]

[TMO0]

[Tou99]

[Trig2]

[TSATO3]

[Tur50a]

[Tur50b)

[Wat92]

[Wil]

[Wol69]

A. Shapiro. Ultra-reliability at nasa. 44th AIAA Aerospace Sciences
Meeting and Ezhibit, 2006.

M. Shipper. The firefly machine. Evolution of parallel cellular machines,
1997.

M. L. Shooman. Probabilistic Reliability: an Engineering Approach.
Mec-Graw Hill, 1968.

C. Schinkel, M. Wick, G. Muhr, and M. Koller. Analysis of systemic

interleukin-11 after major trauma. Shock, 2005.

T. Toffoli and N. Margolus. Invertible cellular automata: A review.

Physica D, 45:229-253, 1990.

D. N. A. Touba. A low cost approach to detecting, locating and avoiding
interconnect faults in FPGA-based reconfigurable systems. Proceedings

of the International conference VLSI design, 1999.

K. S. Trivedi. Probability and Statistics with Reliability, Quewing and
Computer Science applications. Prentice-Hall, New York, 1982.

Y. Thoma, E. Sanchez, J. M. Arostegui, and G. Tempesti. A dynamic
routing algorithm for a bio-inspired reconfigurable circuit. Lecture notes

i computer science, 2778:681-690, 2003.

A. M. Turing. The chemical basis of morphogenesis. Philosophical
transactions of the Royal Society, Ser. B 237, 37, 1950.

A. M. Turing. Computer machinery and intelligence. Mind, 1950.

G. Watson. MIL reliability: a new approach. IEEE Spectrum, pages
46-49, 1992.

D. J. Wilkins. www.weibull.com. Weibull analysis.

L. Wolpert. Positional information and the spatial pattern of cellular

differentiation. J Theor. Biol., 25:1-47, 1969.

BIBLIOGRAPHY 204

[Wol82] S. Wolfram. Cellular automata as simple self-organising systems. Cal-

tech preprint, 1982.
[Wol02] S. Wolfram. A new kind of science. Wolfram media Inc., 2002.

[Wyl80] A. H. Wyllie. Glucocorticoid-induced thymocyte apoptosis is associated
with endogenous endonuclease activation. Nature, 284:555-556, 1980.

[WZBLO05] P. J. White, V. Zykov, J. Bongard, and H. Lipson. Three-dimensional
stochastic reconfiguration of modular robots. Proceedings of the

Robotics: Science and Systems Conference, pages 161-168, 2005.

[YWPS08] M. Yim, P. White, M. Park, and J. Sastra. Modular self-reconfigurable

robots. Encyclopedia of complezity and systems science, 2008.

S0¢

Appendix A

Source code

A.1 Reaction-diffusion models

Listing A.1: Cannibals and Missionaries code
#!/usr/bin python

each player is of type (0 = missionary, 1 = cannibal)

each player can move up, down, left or right one place, or stay where it is

if two cannibals share a cell, they create another cannibal in the same cell

if two missionaries and a cannibal share a cell, the cannibal becomes a missioanry
the island is a 128%128 cell square

grid_dimensions = (128,128)

iterations = 100

initial_players = 1000

import random, math

responsible for location and movement of players
class player:
def __init_-_(self x,y,type):
self.x = x
self.y =y
self.type = type
def move_player(self):
rand = random.random ()
if rand < 0.2:
self.x 4+= 1;
elif rand < 0.4:
self.x —= 1;
elif rand < 0.6:
self.y 4= 1;
elif rand < 0.8:

self.y —= 1;
if(self.y == grid_dimensions [1]): self.y = 0
elif (self.y < 0): self.y = grid_-dimensions[1] — 1
if(self.x == grid_-dimensions [0]): self.x = 0

elif (self.x < 0): self.x = grid_-dimensions [0] — 1
return (self.x,self.y)

randomnly place ’initial_players’ number of players across grid
players = []
def initializePlayers():
print "startingginitialization"
for i in range(initial_players):
type = random.random ()
if type > 0.5: type =1
else: type = 0
x = math. floor (random.random () *grid_dimensions [0])
y = math. floor (random.random () *grid_-dimensions [1])
players .append(player(x,y,type))

detect collisions
cperson = (0,0)
def position-match (person):
if cperson[0] == person.x and cperson[l] == person.y:
return 1;
else:
return O0;

update cell with player in it
def check_cell (person,players):

cperson = (person.x,person.y)
sharingCell = filter (position_match ,players)
if len(sharingCell) > 1:

cannibals = 0

missionaries = 0

for person in sharingCell:
if person.type ==
elif person.type

missionaries += 1
1: cannibals += 1

if cannibals == 2:
cannibals = 0
players.append(player (person.x, person.y,1))
if missionaries == 2 and cannibals == 1:
missionaries = 0
cannibals = 0

for i in range(len(sharingCell)):

if sharingCell[i].type == 1:
sharingCell[i].type = 0

def typel(person):
return person.type

import Image
def main () :

initialize players
initializePlayers ()

iterations of simulation start here

for i in range(iterations):
print "no,of_ cannibalsy",len(filter (typel,h players))
print "total_players. " ,len(players)
cannibals_to_add = 0
print "startinggiterationg",i

move all the players
for person in players:
person.move_player ()

create new image of grid
image = Image.new("RGB" ,(grid_-dimensions [0], grid_dimensions [1]))
pix = image.load ()

for each cell in grid
for y in range(grid_-dimensions [1]):
for x in range(grid_-dimensions [0]) :

pix[x,y] = (0,0,0)
missionaries = 0

total = 0
cannibals_to_add = []
cannibals_to_convert = 0

for each player in grid
for person in players:
if person.x == x and person.y ==
total += person.type

create missionaries

if person.type == 0: missionaries +=
if total == 2:
total = 0
cannibals_to_add .append ((x,y))
if missionaries == 2 and total =—= 1
cannibals_to_convert 4= 1
missionaries = 0
total = 0

plndex = 0

convert cannibals

while (cannibals_to_convert > 0):
if players[plIndex]. type
= 1:

cannibals_to_convert

=0

players [pIndex].

type
else:

=0

pIndex +=1

for cannibal in cannibals_to_add:

players.append(player(cannibal [0] ,cannibal [1],1))

pixelate image

for person in players:
if person.type == 0: pix|[person.x,person.y] = (0,255,0)
if person.type == 1: pix|[person.x,person.y] = (255,0,0)

image.save("output"+str(i)+".png" ,"PNG")
main ()

Listing A.2: Reaction-diffusion example code
#!/usr/bin python

each cell has two chemical concentrations, a, b
each cell computes its CHANGE in concentration with the formulae:

a = a + s(16—ab)4+D(SUM(a of neighbours) — 4a)
b = b + s(ab—b—B)4D(SUM(b of neighbours) — 4b)
B = Bc +— BcVar

initial conditions

ae = 4.0

be = 4.0

diffusion constants
Da = 0.25

Db = 0.0625

s = 0.03125

s = 0.04525

Bec = 12.0

BcVar = 0.2

simulation settings
grid_dimensions = (64,64)
iterations = 2000

import random, math, Image
def main () :
global s

initialise simulation
initializeCells ()

simulation iterations start here
for i in range(iterations):

diffuse chemicals
updateCells ()
min = 10
max = 0
for k in cells:
if (k.b<min): min=k.b

if (k.b>max): max=k.b

create image
outputlmage (cells ,i,max, min)

print i,min,max
responsible for chemical concentrations of a cell
class cell:
def __init__(self ,x,y,B):
self.a = ae
self .b = be
self.x = x
self.y =y
self . B =B
determine next concentrations of each cell
def calculateConcentrations (self ,a,b):
self.a = self.a — s%(16.0—(self.axself.b))+Dax(reduce(lambda x, y: xt+y, a
) — 4.0xself.a)
self .b = self.b — s*x(—1xself.axself.bt+self.b—self.B)4+Dbx*(reduce (lambda x,
y: xt+y, b) — 4.0xself.b)
cells = []

randomnly initialize concentrations at each cell
def initializeCells ():
del cells [:]
for y in range(grid_-dimensions[1]):
for x in range(grid_dimensions [0]) :
B = Bc + ((random.random () —0.5)*2xBcVar)

cells .append(cell (x,y,B))

for each cell, determine its neighbours, then update its chemical concentrations
def updateCells () :
for i in range(len(cells)):
if (i>(grid-dimensions[0] —1)): index_up = i—grid_dimensions [0]

else: index_-up = i+(grid_-dimensions [0]*(grid_-dimensions[1]—1))

if (i<(grid-dimensions [0]*(grid_-dimensions[1]—1))): index_-down = i+
grid-dimensions [0]

else: index_.down = i % grid_dimensions [0]

if (i % grid_dimensions[0]) != 0: index_left = i—1

else: index_left = i+(grid_dimensions[0] —1)

if ((i—(grid_-dimensions[0]—1)) % grid_dimensions [0]) != 0: index_right = i
+1

else: index_right = i—(grid_dimensions[0]—1)

if (i==0): index_right = 1;

a=[cells [index_up].a,cells [index_down].a,cells [index_left].a,cells|
index_right].a]

b=[cells [index_up].b, cells [index_-down].b, cells [index_left].b,cells |
index_right].b]

cells [i].calculateConcentrations(a,b)

def sumOut(x,y):
return x.b+y.b

def maxOut(x,y):
if x.b > y.b:
else: return y

return x

save iteration result as an image
def outputlmage (data,i,max,min) :
image = Image.new("RGB" ,(grid_-dimensions [0], grid_-dimensions [1]))
pix = image.load ()
scalar = math. floor (255/(max—min))
for cc in data:
gg = ((cc.b—min)xscalar)
pix[cc.x,cc.y] = (gg,88,88)
image.save ("output"+str(i)+".png","PNG")
if __name__. —— " __main__":
main ()

Listing A.3: Reaction-diffusion Meinhardt example code

#!/usr/bin python

from numpy import =*
import math,Image

grid_dimensions = (y,x)
grid_-dimensions = (64,64)

diffusion coefficients
C

= 0.1
A= 0.2
Dg = 0.1
Ds = 0.06
Pg = 0.3
Ps = 0.4
GA = 0.5
B = 0.6
C = 0.3
A= 0.1
Dg = 0.1
Ds = 0.06
Pg = 0.001
Ps = 0.001
GA = 0.0004
B = 0.1

simulation parameters
iterations = 100

randomnly initialize grid

def createArray (initial_value):

random.random (grid_dimensions)*0.3+1
return arr

arr =

differentiate 2d data (using python—numerical
def differentiate (data):
aug-data = hstack ((data,data))
aug_-data = vstack ((aug-data ,aug_data))
return diff(aug-data ,n=2)

function diff)

def ddX(data,x,y):
if x==0: x = grid_-dimensions [1]
return data[y,x+1]
update chemical gl concentrations
def updateGl(x,y):
global gl,g2,r,sl,s2
ddgl_arr = differentiate (gl)
gl [y, x] =) gl:}[y,X] + ((Cxs2[y,x]*pow(gl[y,x],2))/r[y,x])—Axgl[y,x]+Dg+ddX(ddgl-arr
X,y)+Pg

update chemical
def updateG2(x,y):

g2 concentrations

global gl,g2,r,sl,s2

ddg2_arr = differentiate (g2)

g2[y,x] = g2[y,x] + ((Cxsl[y,x]*pow(g2[y,x],2))/r[y,x])—Axg2[y,x]+Dg+ddX(ddg2_arr
X, y)+Pg

update chemical R concentrations
def updateR(x,y):

global gl,g2,r,sl,s2

rly,x] = rly.x] + Css2[y,x]*pow(glly,x],2)+Cxsl [y, x]*pow(g2[y,x],2)—Bsr[y,x]
update chemical sl concentrations
def updateS1l(x,y):

global gl,g2,r,sl,s2

ddsl_arr = differentiate (sl)

s1ly,x] = slly,x] + GAx(glly,x]—sl[y,x])+Ds«ddX(ddsl_arr x,y)+Ps
update chemical s2 concentrations
def updateS2(x,y):

global gl,g2,r,sl,s2

dds2_arr = differentiate (s2)

s2[y,x] = s2[y,x] + GAx(g2[y,x]—s2[y,x])+DsxddX(dds2_arr ,x,y)+Ps
save results of iteration as an image
def outputlmage(gl,g2,sl,s2,r,i):

image = Image.new("RGB" ,(grid_-dimensions[1],grid_-dimensions [0]))

pix = image.load ()

if gl.max() == gl.min(): minl = gl .max()—1

else: minl = gl.min()

scalarl = math. floor (255/(gl.max()—minl))

if g2.max() == g2.min(): min2 = g2 .max()—1

else: min2 = g2.min()

scalar2 = math. floor (255/(g2.max()—min2))
for y in range(grid_-dimensions [0]) :
for x in range(grid_-dimensions [1]):
gg = ((glly,x]—minl)x*scalarl)
rr = (((g2[y,x]—min2)xscalar2)4gg)/2
pix[x,y] = (rr,rr,rr)
image.save ("output"+str(i)+".png","PNG")

def main () :
set_printoptions (threshold=nan)

create arrays for each of the 5 chemicals

global gl,g2,r,sl,s2

gl = createArray (1)

g2 = createArray (1)

r = createArray (1)

sl = createArray (0.1)

s2 = createArray (0.01)

centre

variations at of grid

=1
[S e ar
o

g2[31,29
22[30,29
g2[31,29
g2[31,29
g2[31,29

0

—

w

—

w

—
L o T
SIS N G G S G R G

simulation iterations start here
for i in range(iterations):
print gl.max(), gl.min()
print i
each cell in grid, update concentrations of each chemical
range (grid_-dimensions [0]) :
for x in range(grid_dimensions [1]):
updateG1l(x,y)
updateG2(x,y)
updateR (x,y)
updateS1(x,y)
updateS2(x,y)

for

for y in

save result as an image
outputlmage (gl,g2,s1,s2,r,i)

if __name__. == "__main__":
main ()

A.2 Design and test of convergent CA

Listing A.4: Python script to design and test convergent CA

#!/usr/bin/python

import Image, ImageDraw, ImageFont, pygame
import operator

import time

from random import randint

development cycle parameters
rotations [1]
display_rules_interval

0

test cycle parameters
random_init = 1
max._range = 6990

output image parameters
win_width = 400
win_height = 400

prefix = "cd"

display animation of test cycle
def displaylmage(filename):
import pygame
background = pygame.image.load (filename).convert ()

background = pygame.transform.scale (background,(win_width ,win_height))

screen . blit (background,(0,0))
pygame. display . update ()

save CA as image
def outputlmage(filename ,cell_array):
image = Image.new("RGB" ,(width, height))
pix = image.load ()
for y in range(height):
for x in range(width):
try:
pix[x,y] = cell_array [y*xwidth+4x]. dval
except :
pix[x,y] = (0,0,0)
image.save (filename ,"PNG")

cell location and assignments
class cell:
def __init-_(self x,y,val):
self .x

x

self.y =y

self.weight = (x+y)*—1
self.val = val
self.dval = val
self.solved = 0

for storing solution parameters and rules.
class solution:

def __init__(self ,rotation ,rules ,assignments, cost ,width, height 6 flag):
self . rotation = rotation
self.rules = rules
self.assignments = assignments
self.cost = cost

self.width = width
self.height = height
self.flag = flag

import sys,getopt
options = 7~
if len(sys.argv) > 1:

for opt,arg in getopt.getopt(sys.argv([l:],
ngiiio:", [vljam=n’vlimg=u’ndemo=n])[0]:

if opt = "-j" or opt = "--jam":
text arg
elif opt == "-i" or opt == "--img":
text arg
elif opt == "-d" or opt == "--demo":
options = arg
else:
text = raw,input("Enterulocationuofuexistingurulesetu(.jam)ufileuoruimageufromuwhichu
to,generate rules\r\n");
cells = []
rcells = []
flag = []

solutions = []

load existing solution (stored as a .jam file)
if text.count(’.jam’) > O:

"nnload, JAM file"""
import pickle
print "Loadingyurulesyfromy",text

f = open(text,"r")

solutions .append(pickle.load (f))

width = solutions [0]. width

height= solutions [0]. height

rotation = solutions [0].rotation

rules = solutions [0].rules

assignments = solutions [0].assignments
flag = solutions [0]. flag

max_range = len (assignments)

print "Cell matrixg dimensions " ,width, height
print "Assembling_usingyrotationy" ,rotation
print "Solution_uses " ,len(assignments),"assignments_ and" ,len(rules),"rules"

generate solution from image
else:

load image

print "Loadingyimage" , text

import Image, operator

im = Image.open(text)

print im.format, im.size , im.mode
(width , height) = im.size

load image into an array of cells
for y in range(height):

row = []

for x in range(width):
cells .append(cell (x,y,im.getpixel ((x,y))))
row.append (im. getpixel ((x,y)))

rcells .append (row)

flag .append (row)

assignments = {}

rule

if (1

s= 0
)

surround rcells array with boundary conditions — zero
from numpy import =
rcells = zeros ((height+2,width+2))

sort cells by their distance from one corner

rcells[cc.y+1,cc.x+1] = rval
cells .sort (key=operator.attrgetter (’weight’)) rval = 0
cells .reverse break
slice = 0
rval = 0

make rule for origin cell
makeRule (0,0, rcells [1][1])

function for storing next—state rule in an associative array print "Alphabet,sizeynecessary:_ ",len(assignments)
def makeRule(i,j,1): rule_size = 0
if not rules.has_key (i): for a in rules:

(
rules[i] = {}

rule_size += len(rules[a])
rules[i][j]=1

print "Ruleysizeynecessary:y " ,rule_size

for each cell determine its necessary next—state rule and assignments
for cc in cells:

while (1) :

solved = [1,2] # test cycle starts here
rval += 1
test against previous assignments cells = []
try: from numpy import x*

if (assignments[rval] != cc.val):

continue #initialise null array of cells

except KeyError: icells = zeros ((height+1,width+1))

pass

cell class, responsible for getting inputs from neighbours, determining next—state and

def n(y,x): output

return rcells [cc.y+y+1,cc.x+x+1]
class dcell:
def __init__(self ,x,y,init):
get state of neighbouring cells self.x = x
ne = n(—1,1)

self.y =y
e = n(0,1) =

self.val init
ss = n(1,0) try:
sw = n(l,—-1) self .output = assignments[init]
except:
test against existing rules self.output 0
try:
if rules[ne][rval] != e: def getInputs(self):
continue; return (int(icells [self.y,self.x+1]),int(icells[self.y+1,self.x]))
else:
solved [0] = 0 def update(self):
except : (y,x) = self.getInputs()
pass try:
try self.val = rules[y][x]
if rules|[rval][sw] != ss: except KeyError:
continue; self.val = 0
else: try:
solved [1] = 0 self .output = assignments[self.val]
except: except KeyError:
pass self.output = 0
store next—state rules # initialise cells either with a random state or a state = zero
for s in solved: init = 0
if s == 1: for y in range(height):
makeRule (ne,rval ;e row = []
elif s == 2 and cc.x == 0: for x in range(width):
makeRule(rval ,sw,ss) if init == 0:

row.append (dcell (x,y,0))
store assignments

assignments|[rval] = cc.val

else:
row.append(dcell (x,y,(randint (0, max_range))))

cells .append(row)
iterations = width+height+2
print "Simulatingyfor, " ,iterations ," iterations"

iterate the cellular automata
for i in range(iterations):

save CA outputs as an image

stri = ""

if i < 1000: stri 4= "0o"

if i < 100: stri 4= "o0o"

if i < 10: stri 4= "o"

stri 4= str (i)

i4+=1
outputlmage2(prefix+stri+".png",cells)

make a copy of the present value of the cells
for y in range(height):
for x in range(width):
icells [y+1,x+1] = cells [y][x].val

use the copy to determine the next state of the cells (so update is synchronous

for y in range(height):
for x in range(width):
cells [y][x].update ()

test solution — how many cells match the required output?
unmatched = 0
for y in range(height):
for x in range(width):
if cells[y][x].output != flag[y][x]:
unmatched += 1
print "This configuration iteration matchedg all_ but," ,unmatched," cells™"

A.3 Self-assembling self-repairing ALU code

Listing A.5: VHDL of self-assembling self-repairing full-adder

library ieee;
use ieee.std_logic_1164.all;

— a cell, one of 16 for each bit of ALU consists of:
—— 2 state inputs, 2 state outputs
—— 2 logic inputs, 2 logic outputs

entity cell is
port (reset: in std_-ulogic;
a_in: in std_-ulogic;
b_in: in std_ulogic;
c.out: out std-ulogic;
d_out: out std-ulogic;

n_in: in integer range 0 to 7; — STATE input (North)
w-in: in integer range 0 to 7; —— STATE input (West)
e_out: out integer range 0 to 7; — STATE output (East)
s_out: out integer range 0 to 7); —— STATE output (South)

end entity cell;
architecture state_cell_assembler of cell is
shared variable state : integer range 0 to 7;
—— declare and populate the next—state look—up table
type state_table is array (1 to 48,1 to 3) of integer range 0 to 7;

constant state_lut : state_table := (

—— ADDER code (boundary conditions key: 1)

(0,1,1),
(0,4,1),
(1,0,1),
(1,2,3),
(1,3,2),
(1,7,3),
(2,1,5),
(3,2,4),
(3,5,1),
(4,0,1),
(4,4,2),
(5,1,7),
(5,3,0),
(7,3,4),
—— AND code (boundary conditions key: 2)
(0,3,7),
(0,5,3),
(0,7,7),
(0,2,7),
(2,6,7),
(2,7,5),
(3,6,5),
(4,5,3),
(4,7,6),
(5,0,2),
(5,2,6),
(5,5,7),
(6,0,5),
(6,7,5),
(7,5,3),
—— SUBTRACT code (boundary conditions key: 4)
(3,0,7),
(4,3,2),
(4,7,6),
(5,4,7),
(6,2,3),
(7,0,4),
(7,6,4),
—— OR code (boundary conditions key: 7)
(0,0,3),
(2.,2,0),
(3,3,3),

(3,7,7),
(7,2,0),
(7,7,2),
—— NOT code (boundary conditions key: 5)
(2,0,6),
(0,6,4),
(4,2,2),
(4,6,7),
(5,7,4),
(7,4,6)
)
—— determine the next—state of the cell
begin
determine_state: process(n_in,w_in,reset) is
begin
if reset = ’1’ then
state := 0;
else
for i in 1 to 48 loop
if (state_lut(i,1) = n_in) and (state_lut(i,2) =
+w_in) then
state := state_lut(i,3);
end if;
end loop;
end if;

s_.out <= state;
e_out <= state;
end process determine_state;

—— perform ALU function on
arithmetic: process(a-in,b_in) is
variable ans std_ulogic;

when
end case;
c_out <= ans;
d_out <= ans;
end process arithmetic;
end architecture state_cell_assembler;

begin
case state is
when 0 =>
when 1 =>
when 2 =>
when 3 =>
when 4 =>
when 5 =>
when 6 =>
7

logi

ans
ans
ans
ans
ans
ans
ans
ans

A.4 Self-assembling 3D

inputs

b-in;
a_-in or b.in;
a_-in;
b_in;
(a-in xor
a_in xor
not a_in;
a_in;

b_in)
b_in;

and a_in;

systems code

Listing A.6: Design of self-assembling 3D systems code

#!/usr/bin/python

import Image, ImageDraw, ImageFont, pygame
import operator

import time

from random import randint

import the design as
from flag import =

a 3D array

save as
filename = ’transformer. jam’
depth = len (flag)
height = len(flag[0])
width = len (flag [0][0])
for z in range(depth):
for y in range(height):
for x in range(width):
if flag[z][y][x] !=

Assigments store (output,aximuth)
assignments = {}
rules = {}
rulesc = {}
store rule in an associative array
def makeRule(i,j,k,l,m):
if not rules.has_key(i):
rules[i] = {}
if not rules[i].has_key(j):
rules [1](j] = {}
rules [i][j][k]=1
create boundary cells in rcells array

bounds = []

from numpy import x

rcells = zeros ((depth+2,height+2,width+42))

alive = 0

for z in range(depth):

for y in range(height):

for x in range(width):

rcells [z4+1,y+1,x+1]
if flaglz](y]x] !=

def n(zz,z,yy,y,xx,x):

global bounds, cellsToSolve
if (zz+z,y+yy,x+xx) in cellsToSolve: return
else: return O
def n_(zz,z,yy,y,XX,X,p-arr):
global bounds, cellsToSolve
b = filter (lambda a: (z+zz,y+yy,x+xx) in a[l], p-arr)
if (zz4+z,y+yy,x+xx) not in cellsToSolve and len(b)!=0:

+yy+1,x+xx+1])
else: return O
def nn(zz,z,yy,y,xx,x):

0: flaglz][y][x] =

= flag[z][y][x]
0: alive 4+=1

return

int (rcells [zz+z+1,y+yy+1,x+xx+1])

int (rcells [zz+z+1,y

return

int (rcells [zz4z+1,y+yy+1,x+xx+1])

def getlnputs(z,y,x,azimuth):

Azimuth in range(1,8) — corresponds to
zf = 1; yf = 1; xf = 1;

if azimuth in (1,2,3,4): zf = —1
if azimuth in (3,4,7,8): yf = —1
if azimuth in (1,3,5,7): xf = —1
zn = n(zfx1, =z, yf*x1l, y, O, x)
zw = n(zfx1, =z, O, y, xfx—1,x)
zx = n(zfx1, =z, O, y, 0, x)
ze = n(zfx—1, z, O, y, xfxl, x)
zs = n(zfx—1, z, yfx—1,y, 0, x)
ne = n(0, z, yfxl, y, xf*l, x)
ee = n(0, z, 0, y, xfxl, x)
ss = n(0, z, yfx—1,y, O, x)
sw = n(0, z, yfx—1,y, xfx—1,x)

return (zn,zw,zx,ze,zs,ne,ee,ss , sw)

responsible

ac = []

for

def detAzimuth ((z,y,x)):
ac.append ((7,y,x))

determining azimuth of partition .

corner of cube

This is a recursive function.

print "detectinguazimuth fory" ,z,y,x,az
global az,azimuth
if az[0] == O0:
if flag[z][y][x] == 0: az[0] =1
elif z > 0 and flag[z—1][y][x] not in (0,°X’): az[0] =
elif z (depth —1) and flag[z+1][y][x] not in (0,’X’): az[0] = 2
if az[1] == O0:
if flag[z][y][x] == 0: az[l]=1
elif y > 0 and flag[z][y—1][x] not in (0,°X’): az[l] =1
elif y < (height — 1) and flag[z][y+1][x] not in (0,°X’): az[l] = 2
if az[2] == O0:
if flag[z][y][x] == 0: az[2]=1
elif x > 0 and flag[z][y][x—1] not in (0,°X’): az[2] =1
elif x < (width — 1) and flag[z][y][x+1] not in (0,’X’): az[2] = 2
if az[0] != 0 and az[l] != 0 and az[2] != O:
azmths =
([1,1,10,01,1,2],[1,2,1],(1,2,2],(2,1,1],(2,1,2],(2,2,1] ,(2,2,2]]
azimuth = azmths.index(az) + 1
elif (z—1,y,x) not in ac and az[0] != 0 and z > 0 and flag[z—1][y][x] not in (0,”
X’): detAzimuth((z—1,y,x))
elif (z+41,y,x) not in ac and az[0] != 0 and y > 0 and flag[z][y—1][x] not in (0,”
X’): detAzimuth((z,y—1,x))
elif (z,y—1,x) not in ac and az[1l] != 0 and x > 0 and flag[z][y][x—1] not in (0,”’
X’): detAzimuth((z,y,x—1))
elif (z,y+1,x) not in ac and az[l] != 0 and z < (depth—1) and flag[z+1][y][x] not
in (0,’X’): detAzimuth((z+1,y,x))
elif (z,y,x—1) not in ac and az[2] != 0 and y < (height—1) and flag[z][y+1][x]
not in (0,’X’): detAzimuth ((z,y+1,x))
elif (z,y,x+1) not in ac and az[2] != 0 and x < (width—1) and flag[z][y][x+1] not

in (0,’X’): detAzimuth((z,y,x+1))

responsible

else:

for i

in range (3):
if az[i] == 0: az[i] = 1;

azmths =

((1r,1,1],[1,1,2],[1,2,1],[1,2,2],[2,1,1],[2,1,2],[2,2,1],(2,2,2]]

print az

azimuth

for

azmths.index (az) + 1

def explorer ((z,y,x),azimuth):

find first
z = depth —1;

while

bounds.append ((z,y,x))

init_-root

1; yf
azimuth
if azimuth
if azimuth
z2 = z+zf;

zf =
if

dividing design into partitions. This is a recursive function.
= 1; xf = 1;

in (1,2,3,4): zf = —1

in (1,2,5,6): yf = —1

in (1,3,5,7): xf = —1

y2 = y+yf; x2=x+xf;

if z >= 0 and
try:
except ValueError:

y >= 0 and x >= 0 and z < depth and y < height and x < width:
a = cellsToSolve.index ((z,y,x))

if flag[z][y][x] not in (0,’X’):
cellsToSolve .append ((z,y,x))
flag [z][y][x] X’

if (z—zf >= 0) and (z—zf < depth) and (flag[z—zf][y][x]

not in (0,’X’)):
bounds.append ((z—zf ,y,x))
if (y—yf >= 0) and (y—yf < height) and (flag[z][y—yf][x]
not in (0,°X?)):
bounds.append ((z,y—yf,x))
if (x—xf >= 0) and (x—xf < width) and (flag[z][y][x—xf]
not in (0,’X’)):

bounds.append ((z,y,x—xf))
explorer ((z2,y,x) ,azimuth)
explorer ((z,y2,x) ,azimuth)
explorer ((z,y,x2) ,azimuth)

root
y = height —1; x = 03
flag [2][y][x] = O
x += 1
if x width: x = 0; y —= 1;
if y == 0: x = 0; y = height —1; z—= 1;

explore design ,

partitions
root_inputs

while

(1
]

(1):

try:

= (z,y,x)

partition and assign azimuths

root = bounds[0]

bounds.remove (bounds [0])
except IndexError:

print

break;

azimuth

03

"Design,splityinto, " ,len(partitions),"partitions"

az

= [0,0,0]; ac=][]; detAzimuth(root)

p =

print "Exploringyfrom,",r
cellsToSolve = []; explor

oot ,azimuth
er (root ,azimuth)

bounds = [x for x in bounds if x not in cellsToSolve]

print "cellsgin,partition
partitions.append((root,c

0

solve for each partition

for

(root ,cellsToSolve ,azimuth) i
p+=1
print "Solvingy fory",len (
cellsToSolve .sort (lambda

,u",len(cellsToSolve)
ellsToSolve ,azimuth))

n partitions:

cellsToSolve), "cellsyfromy" ,root,azimuth
x,y: ((y[0]—root[0])=**2 4+ (y[l]—root[1])=*%2 4+ (y[2]—root

[2]) **2 — (x[0] —root [0])*%2 — (x[1l]—root[1])*%2 — (x[2]—root[2])*%2))

for (z,y,x) in cellsToSol
rval = 0; tdir =
azmths =

ve:

]

[[1,1,1],[1,1,2],[1,2,1],[1,2,2],[2,1,1],[2,1,2],[2,2,1],[2,2,2]]
v=azmths [azimuth —1]
zf = 1; yf = 1; xf = 1;

if v[0] == 1: =zf
if v[1] = 1: yf
if v[2] = 1: xf

transmission di
if(z,y,x) == (1,6
find tx dir for
if (z,y,x+xf) in

if xf ==
else: tdi
if (z,y+yf,x) in
if yf =
else: tdi
if (z+zf,y,x) in
if zf ==
else: tdi
if(z,y,x) == (1,6

find tx dir for

is this cell an

sfr = (0,0,0)

b = filter (lambda

if len(b) >= 1 an
tdir .appe

b = filter (lambda
if len(b) >= 1 an
tdir .appe

b = filter (lambda
if len(b) >= 1 an
tdir .appe

b = filter (lambda
if len(b) >= 1 an
tdir . appe

= —1;

I
|
—

rections: 1,2,3,4 = n,e,s,w. 5,6 = up,down
,6): print "YO_.",tdir

this azimuth

cellsToSolve and (z,y,x+xf) != root:
1: tdir.append(2)

r.append (4)

cellsToSolve and (z,y+yf,x) != root:
1: tdir.append (1)

r.append (3)

cellsToSolve and (z+zf,y,x) != root:
1: tdir.append(5)

r .append (6)

,5): print "YO,",tdir ,p
new roots

input to the root of another partition?

a: (z,y+1,x) == a[0], partitions|[p:len(partitions)])
d b[0][0] != root:

nd(1l); sfr = (1,b[0][2])

a: (z,y,x+1) == a[0], partitions[p:len(partitions)])
d b[0][0] != root:

nd(2); sfr = (2,b[0][2])

a: (z,y—1,x) == a[0], partitions|[p:len(partitions)])
d b[0][0] != root:

nd(3); sfr = (3,b[0][2])

a: (z,y,x—1) == a[0], partitions|[p:len(partitions)])
d b[0][0] != root:

nd(4); sfr = (4,b[0][2])

b = filter (lambda a: (z+1,y,x) == a[0], partitions|[p:len(partitions)])
if len(b) >= 1 and b[0][0] != root:
tdir .append(5); sfr = (5,b[0][2])
b = filter (lambda a: (z—1,y,x) == a[0], partitions|[p:len(partitions)])
if len(b) >= 1 and b[0][0] != root:
tdir.append(6); sfr = (6,b[0][2])
if(z,y,x) == (1,6,5): print "YO_ ", tdir
tdir.sort ()
tdir = set (tdir)
if(z,y,x) == (1,6,5): print "YO_",tdir
solve next—state rule and assignments for this cell
while (1) :
solved = [1,2,3]; rval 4+=1

is there a contradiction in the assignments array?
if rval in root_inputs: continue
try:
if assignments[rval] != (flag-orig[z][y][x],tdir):
continue
except KeyError: pass

is there a contradiciton in the rules array

try :
if rules[rval][zn][zw] != zx: continue;
else: solved [0] = 0

except: pass

try:
if rules[zs][rval][sw] != ss: continue;
else: solved[1] = 0

except: pass

try:
if rules[ze][ne][rval] != ee: continue;
else: solved[2] = 0

except: pass

this cell is an input to the root of another partition, thus
check rules against zero—input combinations
if sfr[0] != O:
try:
a = rules[rval][0][0]

continue
except: pass
try:
a = rules [0][rval][O0]
continue
except: pass
try:
a = rules [0][0][rval]
continue
except: pass
root_inputs.append(rval)

a solution has been found, save rules and assignments in array
for s in solved:
if s = 1:
makeRule(rval ,zn,zw,zx,(z,y,x))
elif s == 2:
makeRule(zs ,rval ,sw,ss ,(z,y,x))

elif s == 3:
makeRule(ze ,ne,rval ,ee,(z,y,x))

assignments[rval] =
rcells [z+1,y+1,x+1]
rval = 0

break

(flag-orig[z][y][x],tdir)
= int(rval)

create the next—state rule for the root of this partition
zf = —1; yf = —1; xf = —1;

3

if azimuth in (1,2,3,4): zf =1
if azimuth in (1,2,5,6): yf =1
if azimuth in (1,3,5,7): xf =1
if root == init_root:
makeRule (0,0,0,nn(0,root [0],0,r00t[1],0,root [2]) ,roo0t)
else:
what inputs are available:
nnnn = n_(0,root[0],1,ro0t[1],0,root[2], partitions [0:p])
ee = n_(0,root[0],0,r00t[1],1,root[2], partitions [0:p])
ss = n_-(0,root[0],—1,ro0t[1],0,roo0t[2], partitions [0:p])
ww = n_(0,root[0],0,root[1l],—1,ro0ot[2], partitions [0:p])
zx = n_(1,roo0t[0],0,ro0t[1],0,root[2], partitions [0:p])
zzx = n_(—1,root [0],0,ro0t[1],0,root[2], partitions[0:p])
il = zzx; i2 = ss; 13 = ww;
if zx != 0: il = zx
if nnnn 0: i2 = nnnn;
if ee != 0: i3 = ee;
makeRule (il ,i2,i3 ,nn(0,root [0],0,ro0t[1],0,ro0t [2]) ,ro0t)
rules_count = 0;

for key,val in rules.items():
for key2,val2 in val.items():
rules_count 4+= len(val2)

save rules and assignments to file

f = open(filename ,"w")

import pickle

pickle .dump((rules ,assignments ,depth, height ,width,(init-root), flag_orig),f)

Listing A.7: Self-assemble and Render code for 3D systems

iterations = 100

interval = 3

import Image, ImageDraw, ImageFont, pygame
import operator

import time

from random import randint

root = (4,32,85)

import pickle

load design file from
filename = ?°

cell class, responsible for getting inputs from neighbours, providing outputs to
neighours , determining next—state and output.

class

dcell:

#initialize cell with location and state
def __init__(self ,x,y,z,init):

self.x = x

self.y =y

self.z = z

self.val = init
self . next_val = init

self.azimuth = []

determine output and azimuth from state
try:

self .output = assignments[init][0]

self .azimuth = assignments[init][1]
except:

self.output = 0

self .azimuth = []

from azimuth, determine appropriate inputs to next—state rule
def getlnputs(self):

zn = 0; zs O; n=0; s =0; e =0; w= 0; i = 0;

if (self.z,self.y,self.x) in ic: i = 1;

if 6 not in self.azimuth and self.z > 0: zn = int(cells[self.z—1][self.y
][self.x].getOutput(5,i))
if 5 not in self.azimuth and self.z < (depth—1): zs = int(cells[self.z

+1][self.y][self.x].getOutput(6,i))

if 3 not in self.azimuth and self.y > 0: n = int(cells[self.z][self.y—1][
self .x].getOutput(1,i))

if 1 not in self.azimuth and self.y < (height—1): s = int(cells[self.z]]
self .y+1][self.x].getOutput(3,i))

if 4 not in self.azimuth and self.x > 0: w = int(cells[self.z][self.y][
self .x—1].getOutput(2,i))

if 2 not in self.azimuth and self.x < (width—-1): e
self .y][self.x+1].getOutput(4,i))

return ([zn,zs],[n,s],[e,w])

int(cells [self.z]]

provide state—outputs to neighbours
def getOutput(self ,direction ,i):
if i == 1: print "Neighbour aty " ,(self.z,self.y,self.x)," settings: "

u'y
direction ,self.azimuth, self.val
if direction in self.azimuth: return self.val
else: return O
determine next—state , output and azimuth from state—inputs
def update(self):
(zz ,yy,xx) = self.getlnputs ()
zz.sort (); yy.sort(); xx.sort ();
z = zz[1]; vy = yy[1]; x = xx[1];
try: self.next_-val = int(rules[z][y][x])
except KeyError: self.next-val 0
if (z,y,x) == (0,0,0) and (self.z,self.y,self.x) != root: self.next_val =
0

if self.next_-val ==
self.output

I o

else:
try :
self .output = int(assignments|[self.next_val][0])

self .azimuth = assignments[self.next_val][1]

except KeyError:
self.output = 0
self .azimuth = []

load rules and assignments from design file

init = 0
cells = []
f = open(filename ,"r")
(rules ,assignments ,depth, height ,width ,root_temp , flag_orig) = pickle.load(f)
initialize 3D world
for z in range(depth):
slice = []
for y in range(height):
row = []
for x in range(width):
if (z,y,x) == root: row.append(dcell(x,y,z,design_root))

elif init == 0: row.append(dcell(x,y,z,0))

else: row.append(dcell(x,y,z,(randint (0, max_range))))

slice .append (row)
cells .append(slice)

print "Simulatinggfor_ " ,iterations ," iterations"

enthought is the mayavi rendering libraries

import numpy

from enthought.mayavi.scripts import mayavi2

mayavi2.standalone (globals ())

from enthought.tvtk.api import tvtk

from enthought.mayavi.sources.vtk_data_source import VTKDataSource
from enthought.mayavi.modules.outline import Outline

from enthought.mayavi.modules.surface import Surface

from enthought.mayavi.modules.iso_surface import IsoSurface

for each iteration of design assembly
for i in range(iterations):

initialize root cell

cells [root [0]][root [1]][root [2]].val = design_root
cells [root [0]][root [1]][root [2]]. next_val = design_root
cells [root [0]][root [1]][root [2]].azimuth = [2,3,6]

update each cell synchronously
for z in range(depth):
for y in range(height):

for x in range(width):
cells [z][y][x].update()

for z in range(depth):
for y in range(height):
for x in range(width):
cells[z][y][x].val = cells[z][y][x].next_val
if (i % interval) == 0:

setup data to be rendered (from cell output)
pppoints = []
sppoints =
for z in range(depth—1,—1,—1):
for y in range(height —1,—1,—1):
for x in range(width—1,—-1,—-1):
if cells[z][y][x].output != 0:
pppoints.append ([x,y,z])

sppoints.append(cells [z][y][x].output)

ff = numpy.zeros ((depth+2,height+2,width+2))
for z in range(depth):
for y in range(height):
for x in range(width):
if cells[z][y][x].output !=0

ff [z+1,hcight+1—y,x+1j = cells [z][y][x].

output

render data using mayavi engine

origin = numpy.array ([0,0,0])

dims = numpy.array ([width+2,height+2,depth+2])
spacing = numpy.array ([1.0,1.0,1.0])
mayavi.new_scene ()

sc = mayavi.engine.current_scene

sc.scene.background = (1,1,1)

spoints = tvtk.StructuredPoints(origin=origin, spacing=spacing,
dimensions=dims)

s = ff.transpose () .copy ()

spoints.point_-data.scalars = numpy.ravel (ff)

spoints . point_data.scalars .name = ’flag’

src = VTKDataSource(data = spoints)
mayavi.add_source (src)

iso = IsoSurface(compute_normals=True)
iso.actor.property.opacity = 0.4
mayavi.add_module(iso)
sc.scene.reset_zoom ()

