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Abstract

The approach of calculating non-perturbative effects in Quantum
Chromoﬂynamics by expanding about non-~trivial classical sonlutions of
the equations of motion is described. Some of the techniques requirwed
for this are developed in references [1,2,3] on which this thesis is
predominantly based. The general self-dual sclutions are discussed.
With these as background fields the Green and masslegs Dirac functions
are sclved for arbitrary group representation. Then with the help of
these the dcterminants and collective coordinate zero modes required

for the first order quantum corrections are calculated.
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CHAPTER 1 - INTRODUCTION

Section 1 - Preliminaries

1t is generally believed that Quantum Chromodynamics (QCD) is the
theory of strong interactions. A great deal of progress has been made
in solving this theory perturbatively, that is expanding the fields
about the trivial solutions of the equations of motion. However it is
clear that perturbation theory cannot give us everything we want from
QCD. There must also be non-perturbative effects as indicated by the
existence of non-trivial solutions to the equations of motion - the
instantons first discovered by Belavin et. al. [4)]. One approach to
studying this problem is the semi-classical method where instead of
perturbing about the trivial solution one perturbs about the non-trivial
instanton solutions. This was started by 't Hooft [5,6,7] (see also
[8-13] ) who calculated the first order ("one loop") quantum corrections
about a one-instanton solution. Since then various people [14-21) have
attempted to extend this to more general instanton solutions. Also
Amati and Rouet [22) have shown in principle how to extend the one-
instanton case to all orders.

This thesis is based on a series of papers [1,2,3] which calculate
the first order quantum corrections about the most general self-dual
multi-instanton solutions of Atiyah, Drinfeld, Hitchin and Manin [28-
31]. The programme is not yet complete but the results obtained so far

-have since been extended a little by Osborn [23] and independently by
Berg and Lischer [24]. Their results are mentioned briefly in the
Conclusion (chapter 5).

It is well known that the first order quantum corrections are
given in terms of determinants of certain covariant Laplacian operators.
In section 4 we give a derivation of this result based on Schwartz [17,

19] which in my view makes some problems connected with "gauge fixing"
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covariant Laplacian, is calculated in chapter 4. By using the technigues
of chapter 3 this can be extended to the adjoint representation and by
the results of [25,15] the spinor and vector determinants are simply
related to the scalar - see section 4 for the vector case. Also relevant
to the first gquantum corrections are-the instanton zero modes which are
derived in section 11 and the required normalisation matrix is
calculated in section 15.

The determinants of operators @ are calculated by using

Stn(der®) = § T (1n6) - T ($6.67) (1)

where the expressions are suitably regulated and % denotes the variation
with respect to some parameters in 8. The inverse Gﬂ of the operator
is the corres-ponding Green function. In chapter 2, after explaining
in detail the properties of the most general instanton solution, the
Green function for the fundamental scalar Laplacian is derived. In
chapter 3 the appropriate results of chapter 2 are extended to the
adjoint representation. By a further trivial generalisation they are
also extended to arbitrary tensor products of fundamental represen-
tations. Chapter 4 introduces the regularisation method used (zeta
function regularisation) and goes some way towards calculating the
determinant. The remainder of chapter 1 introduces many of the well
known concepts required for the following chapters and serves to make
the conventions explicit, Finally chapter 5, the conclusion, discusses
what further steps have been done.

Appendix A explains some of the notations and conventions used
in connection with the guaternions e, . Appendix B studies the large |x]
behaviour of some of the functions occurring in the text. Appendix C
sketches the long algsbraic calculations required for section 14 on
the tensor products.

All references are collected together at the end in order of

appearance in the text and are referred to by square brackets, eg. [25].
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Equations are referred to by section and equation number in round
brackets, eg. (10.25). The section number is omitted if it refers to

the current section.

Section 2 - Yang-Mills Theory and QCD. $2
The Euclidean Yang-Mills theory for gauge group G is given by
the Lagrangian
LMM: '%?U(Eﬁad , Os«,p<3 (1)
where 9 is the coupling constant and the field strength tensor F;ﬂ

is defined by

Fo = AR - A, +[ALA] | A= L. (2)
A, is a matrix in group (x space and & is the trace of these matrices.
The gauge potential is defined by
R, = Agte (3)
where A: are the (real) components of the potential and t, are the
fundamental representation matrices of the group &G. They satisfy
[, 8] = factt €S- - e (4)
where f%; are the (real, totally antisymmetric) structure constants
of the group G, and they are normalised by
br(tats) = % 8, . (5)
Since the techniques for general instanton solutions apply equally
well to all classical compact simple Lie groups we will treat the
cases of G= 0(n), SU(n) and Sp(n) together, For each-of these the ---
generators ¢, are independant antihermitian nxn matrices. for 0(n) the
entries are real (hence t, are antisymmetric), for SU(n) they are
complex and for Sp(n) they are quaternionic. In the hermitian con jugate
for quaternionic matrices one takes the transpose of the nx n matrix
and the quaternionic’ conjugate (see Appendix A) of each entry. For
Su(n) only traceless ¢, are allowed otherwise the group generated is

antihermition
U(n). For sach group the number of independent n)<q(matrices gives the
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dimension N of the group:

0(n) : N=%n(n-1)
su(n) : N=n2-1 U(n) : N=n? (6)
sp(n) N=2n*+n

Thus the index on fq, runs from 1 to N and there are N independant
components of the gauge potential A, .

With the above definitions

Fup = Fep ta (7)
where the components
a a b ~c
Fap = 0ha ~ %Ac + fab Ae Ry (8)

are real. Hence using the normalisation (5) we see that the Lagrangian
(1) is positive

Lon = F.p - . (9)
It is also invariant under the gauge transformation

A=A = §'A.q + g'oq (10)

where 3(x) is an arbitrary position dependant element of the group (r

defined by

qes) = enp (gata) t.) (11)
so that

gierga) = 1, = qg¥) (12)

(3ah) are arbitrary real functions). The gauge invariance of (1) is
most easily seen in terms of the gauge covariant derivative

D) = 2=+ ALl | (13)
which under the gauge transformation (10) becomes

D,— D.:=3+D,(3 (14)
(in all differential operator equations like this both sides are
considered as acting on an arbitrary function to the right). from
(2) we can reurite the field strength as

Fep = [Da,D4] (15)

so using (12) it transforms as

F’Y’ — F‘P = *Fx 3 . (16)




Now we can immediately see that (1) is invariant because of the cyclic
property of the tracs.

The QCD Lagrangian is given by the Yang-Mills Lagrangian (1) with
group q1=SU(3) which is the kinetic energy and self interaction of the
gluons (spin 1 gauge particles), along with a kinetic term for the
quarks and an interaction between gluons and quarks. The quark fields
qé are four-component Dirac spinors with a colour index t=1,-,n=3
(it is a vector in group space) and a flavour index f=u,d,s,c,b, .
The interaction is determined by exact SU(3) gauge invariance with the
guarks transforming under the fundamental repressntation

Yy’ = g L (17)
The interaction term invariant under (10) and (17) which contains the
Dirac kipetic energy is

b1 7Dty (18)
where j, are the Euclidean Dirac matrices (see Appendix A), Dy is the
covariant derivative (13) and the conjugate * includes the spinor and
group vector transposes. Combining (1), (18) and a mass term for the
quarks gives the QCD Lagrangian

{-Qco = —7—'5‘”(,;7’5{’)4— %(“H T"‘D“‘% * qu';rq/‘) (19)

where m; are the masses of the differsnt quark flavours.

Section 3 - Quantisation of QCD. £3

The quantum theory of QCD is given in terms of the path integral
Z = [ (A1) o8] empl- ST, ¢, 4]) © ()
where S=-f&§md*u is the classical action and dD{] etc. are the measures
over the space of all functions A,(») with appropriate boundary con-
ditions. In order to have Fermi statistics for the quark31+ must be an
anticommuting field. In particular the expectation value of some guantum

OPEMI’—Orf is given by the following path integral over the classical f

Gt = [T £1a, 04 enpl-S) (2)




£3

o

All these path integrals :re calculated in Euclidean space as is every-
thing in this thesis. Amplitudes of real processes in Minkowski space
are obtained from the corresponding FEuclidean ones by analytic contin-
uation.

In order to calculate thess path inteqrals we need some approx-
imation scheme. The greatest contribution to (1) or (2) appears to
come from the fields which are close to those that minimise the action
as then the factor ezpﬂs) is largest. This is the idea of ordinary
perturbation theory, the classical action is a positive quantity and
minimised to zero by

Yt=b -0  A.-= 3*9‘3 . (3)
Such a gauge potential which gives zero field strength is a pure gauge.

However in addition to the contribution near the solutions (3)
one would also expect large contributions near where the action is
stationary. The requirement of stationary action gives the classical
equations of motion UL,E%]=O of which (3) is the trivial solution.
Other solutions are identified by the following observations made by
Belavin et. al. [4].

If one considers solutions where only A, is non-trivial one can
rastrict attention to the Yang-Mills action

S={L,udtx - - g o (Fep ) . (4)

We do not need to restrict the gauge group so G is arbitrary. The dual

~e

F of F is defined by
Fup = + € Pt (5)

[
so that F=F where ngs is totally antisymmetric and £ __-] . Then using

oy~

the fact that
P Frp = Fop P (6)

we obtain

S- ISJ- [F + ?(Fxp— )A***zﬁf“'rﬂf’] (7)

Since the first term is positive (cf. (2.9) ) this gives the following
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bound for S

| r~
S> s [fer (R Bop) o] (8)
or defining the topological quantum number 1-by
l Pavd .
4= —Iz«r:.lgtr(ﬁ%l:;ﬁ)dh (9)
the inequality (8) becomes
e §
Séé Iql . (10)
From (7) we see that the bound is saturated by

.,,,—+F , 9 posi:%ve (11)
ap=-@p , 9 negative

The number 1'in (9) is a topological invariant and always an
integer provided E$ vanishes sufficiently rapidly that the action
S is finite (so e is non-zero) and hence Ay tends to a pure gauge (3)
at infinity. We also need the technical requirement thet the limiting
pure gauge depends only on the direction of approach to infinity. This
is equivalent to A. being regular when mapped by stereographic proj-
ection on to the sphere st. The above result is shouwn by Belavin et.

[4] from the following easily verified observation:

_'rl,Zt tr(F.,/F:,,) = 3:«Qr (12)
whers
Qn= g Gupy (AR TARA) L (13)

The integration of (12) over all Euclidean space can be transformed

into a surface integral assuming A is regular everywhere

= lim gdg Qr . (14)

R-»00

As R tends to infinity A, tends to a pure gauge so(?h becomes

Qr = g ey (57049769 97959) (15)
where we have used (2.12) repeatedly and the antisymmetry of ¢ to put
the first term of Qh into the same form as the second. Then Belavin
et. al. show that (15) is the group invariant measure and that the
integral q of (14) counts the number of times the map 3(1) from the
S3 sphere |a]=R to G covers an SuU(2) subgroup of (.

Since for any gauge potential (with suitable boudary conditions)
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the number q (9) is always an integer, any smooth deformation of Ay
leaves q unchanged (this is its topological invariance) so the gauge
potentials can be classified into homotopy classes specified byq which
can take all integer values. The path integrals (1) or (2) therefore
split up into components where the integral over A in each component
is restricted to have its topological charge 1 equal to some specified

integer k. oo
-§/A]
2.5 [dme™

r-00 i-“‘

(16)
Within each component the action is bounded by (10) and minimised to
the bound when Eﬁ satisfies (11). Each component can be approximated
by expanding about the gauge potentials which satisfy (11). For the

k =0 component this is ordinary perturbation theory. To calculate the
first order quantum correction for all k is the aim of this work. The
solutions for positive k are called k-instantons and k-anti-instantons

for k negative. They are all constructed in section 5.

Section 4 - First Order Quantum Corrections about k-instantons. $4

We want to approximate the k th component of the sum (3.16).
To do this we expand the action about a particular solution of the
self-duality equation (3.11)
F;ﬂ=’E; . (1)
However there are many such solutions for given k. In the case of su(n)
there is a 4kn- (n* - 1) parameter family of such gauge ineguivalent
solutions - those that cannot be connected by a regular gauge trans-
formation (2.10). These self-dual k-instanton solutions we will write
as Fk(A,) where A, are 4kn- (n® - 1) real parameters. In addition all
gauge transformations of these are solutions
A*(S(x)‘)\) = cS"(x)A,(X)OJ(z) +3’(1)3x G(x) (2)
which is a further infinite dimensional parameter set (one set of gauge

rotation parameters for each point in space-time). This large set of
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solutions which minimise the action 1lead to problems. The first order
guantum corrections correspond to approximating the expansion of the
action by the constant value at the classical solution and the quadratic
part of the variations (the linear'part vanishes by the equations af
motion). The quadratic part gives rise to Gaussian integrations which
one can evaluate in path integrals except in those directions corres-
ponding to infinitesimal variations of the parameters in (2). In these
directions the quadratic term vanishes so the Gaussian integration
diverges. This problem is solved by fir;t Gaussian integrating in only
those directions orthogonal to the infinitesimal variations and then
exact integration in the parallel directions. This resolution corres-
ponds to the Fadeev and Popov procedure [2@ . It is easiest to under-
stand in the finite dimensional case and then assume the result gener-
alises to the infinite dimensional case. The following is an adaption
from the derivation by Schuwartz [17,19] which is particularly suited
to our formalism,
Consider the finite dimensional integral
IJ"(%} f(¢) Q?P(":L’ S(¢)) (3)
where ¢ is an n-vector. Supposs S(¢) is a scalar such that
S(4)2p (4)
for all ¢ and
S(3W) = (s)
where A, runs over some r (<n) dimensional manifold. Asymptotically
as %-»0 the integral (3) is approximated by steepest descent. To do
this we expand quadratically about ¢(})
S(e0)+4) = sC909) + $' Mg +0($?) (6)

where

'S

TS 7
9*;34{', ¢(>\) ( )
(95/24; {4m=o as ¢(>.) is a stationary point of S). Now M has r zero

=

§

eigenvalues corresponding to variations of the parameter A.
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PNQIL».:O I<agr (8)
2\ !

It is these directions that we should treat seperately. Instead of
integrating over each of the n components of ¢ we should integrate
over the n independant variables X, (i¢a¢r) and My (re1sben). The jz
variables are defined by

AR AIVER NN (9)
where 3,(}) is a basis of (n-r) orthogonal vectors to 396/8)\,\ . We then
make a change of variables from ¢; to (X“,rb) and integrate over the
latter. Note that for given ¢ the coordinates (A,r) are not necessarily
unique so there may be same multiple counting. This corresponds tao the
Gribov ambiguity [27] but can be neglected when we are considering only
low order perturbation theory. Under this change of variables the

integral (3) becomes

n-v

f&% T AF ) ee(-£ - Cpsimagp Tl ¥) o)

where the Jacobean factor A is the determinant of the nx n transform-

ation matrix following from (see (9) )

dat - (0, 9T, < (11)
AN W wl o R T o
thus .
- PR VIR SN :
A = Anx(_ﬂ_ AT 3 (X))
IV LR (12)
In the ¥ »0 limit it is reasconable to neglect the O(FEX?) term in
PN

the exponential and the O(r) term in A and f . Thus writing X_ =
A= du (')C,: ‘TLL)( \ +O(,~))
. N Lo~ A
T el
.S‘E’X'q' v T‘xb' ]
We can choose the (n-r) vectors ¥, to be not only orthogonal to X

e

but to be arthonormal to each ather, in particular we may choose them
to be eigenvectors of M when the orthogonality automatically holds.

Then the Jacobean reduces to

A= dut s (x;ox;' : ) - dees (ixar) (14)

When Eb are the eigenvectors of M with (non-zero) eigenvalues ey

.



i1 $a

M3 = 83, (15)

we can easily carry out the integration in (10) which becomes
[o(2) o™ (X . 09) SO TT (5200 (4,) (r6)
=rei
Note that in the Gaussian integraﬁion over p the terms linear in P
in (Af) vanish and those quadratic in | are a factor x,smailer than
(16) so the correction due to neglecting these terms comes in the
higher order guantum corrections. The product over the eigenvalues
in (16) would be just the determinant of M if it were not for the zero
eigenvalues. Reuwriting (16) we have
(g™ & U F (o) dee (XX ) /e i) (17)
where J;E means the product over only the non-zero eigenvalues or
equivalently the determinant of M+ where T is the projector onto the
zero eigenfunctions.
We generalise the above argument to the infinite dimensional
case, This could be treated by putting space-time on a lattice in a
finite volume and taking the limit as the lattice spacing goes to zero
and the volume goes to infinity. The required path integral for QCD
from (3.2) and (2.19) is _
[ af 3T 4l eap | - Sl -4 (3D 3£ (A7) (16)

in which the Gesussian integral over ¢t+ can be done giving

(4T exp(- S, [A1) F(A) . (19)

FIA) will contain terms like det(y-D+w) and (FD+m) uwhich depend on
A. (19) is then evaluated by expanding about the solution (2) and the
result corresponding to (17) is
£ R U o d o] F(R) dot (- {2 &) e ﬁ)/ des (- "0 2 ) 0
where ILthe adjoint covariant derivative and ?%g are defined on nxn
matrices g by

%p =04 +[At]l ;£ ¢=[r 9] . (21)
A1l the A, in (20) are evaluated at the classical solution A(q0),>)

of (2) with topological number k. SEQ] is the action given by (3.10)
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as Sﬁ'h@‘ with 3L the coupling constant corresponding to « in (17).
r is the number of zero eigenvalues of the quadratic part of the action
— It - 22
Dug = =[5, - 0.0, + 22, (22)

whose determinant (over non-zero eigenvalues only) corresponds to det M

111}

in (17). These zero eigenvalues are made up of r, gauge zero modes xL¢
where ¢bq is an arbitrary normalisable antihermitian matrix function
(r, is infinite in the continuum limit) and r, instanton zero modes z;,
which are the variations of the instanton solution orthogonal to the
gauge zero modes. The functions ﬁ, are chosen to be a complete ortho-
normal set of eigenfunctions DF—If and are the infinitesimal gauge
transformations of the instanton solution.
The Zi satisfy
Mg PuZ, =0 (23)

which ensures that an infinitesimal variation of A, proportional to Z,
preserves self-duality because yVﬁ is anti-self-dual so

APRVRY.PE ;‘n»“FSF“f’ (24)
vanishes precisely when F;P remains self-dual. Note the gauge zero
modes ¥, ¢ automatically satisfy (23). Further we require

PuZ, =0 (25)
which ensures that Zi is orthogonal to all the gauge zero modes ﬁlﬁ‘
provided the Zi are also normalisable. In section 11 we will construct
all the normalisable solutionsto (23) and(25) and hence show that
r|:=4kn (for SU(n) ). They turn out to be r, - (nz— 1) zero modes that
are true variations of the instanton parameters and (n? - 1) which are
of.the form 1&* where # is a unnormalisable function. IL+ correspond
to the (n® - 1) global gauge rotations but they are not quite such (see
section 11).

The zero mode determinant d¢€Xﬁx in (17) becomes

det(_fe.-(z:zi')) det (-0 . (26)

It splits into the two factors due the orthogonality requirement (25)

and the second factor arises from



det (]R80 (Reg )] =~ dot [er(df 0°h) = der(-9) (27)

due to ¢, being the orthonormal eigenfunctions of -n° . The normalis-

n

ation matrix of the instanton zero modes in (26)
Nggr = 'J:Cf(?izf:) ' (28)
is calculated in section 15.
In addition we need the ratio of determinants
bt o] T H g (29)
occurring in (21) where £h¢ is given by (22) and
Lo -, (30)

The ratio (29) is not the familiar result of

dee 5, [ Tt a, (31)
where
A, = - 2 32
(&) = -(975,42%,) (32)
is the quadratic part of the action with a "gauge fixing" term —ILI%
= 33
O)ep = Bog =T (33)
However since ¢ are the zero modes of Aﬁﬁ we have
= 34
A%Qﬁ;o,‘ 3) (34)
and as
det (-0,0) = det &, (35)

we obtain the result
deb i, = der Dy deE Do (36)
Thus the ratios of determinants (29) and (31) are equal. Further one

can show [25] EA, and detA, are simply related using the operator
Te =(S:90ﬁ ) (37)
. Mep3B/ -
Then evaluating T'T and TT' gives

= b
et - -C*r*s“z Sy )p,;m

oo Dy e "\oy (38)
i1 O
and : (O Sa‘)) o
Tt = a Q
T.Tp = "(Snxsgs +1KIY\P8)DIDS

= (g 935 7, A%s) Py S (39)
-(»* S 21’/.“,) =)

“p



where we have used the results (A.8) for 1 and ﬁ and the self-duality
of the potential through
Qe PRy = 1aFig =0 (40)
Thus we have the relationship first proved for general self-dual fields
by D'Adda and Di Vecchia [25]
bade D= bade TTT = fnde T'T = 4bader s, . (41)
This can easily be seen to be true from (38) and (39 in the context of
zeta function regularisation by the representation (16.4). Hence the
required ratio (29) or (37) becomes
-2
(det Aa) . (42)
Using the results of chapter 3 any result for the adjoint
rep-resentation such as (42) can be obtained from the corresponding
result for the fundamental representation. Thus all that we need to
calculate is
det (-D") (43)
which is the aim of chapter 4.
Because it contains so many infinite factors the expression (20)
is best normalised by the same in the case k=0 with Fkﬂfl where the

classical solution is given by (3.3). The answer is ( for SU(n) )

aecttge 47N L) PR e (e 5,
) J-d"[ojm] (det AO)—l{A‘

Since all the determinants in (44) are gauge invariant, if F(A) is

-lkn _ Rk
n_').n .(44)

also gauge invariant then the integral over the gauge function q is
trivial and cancels out between the numerator and denominator.
Notice that r, is the same for the case k= 0. This is because
we can choose the same set of gauge functions ¢, as before. Calling
the adjoint covariant derivative for 0 and k instanton number ¥, and
O, respectively, ¢, are the eigenfunctions of -Iﬁ . The determinant

corresponding to (27) for k=0 is

e teffon o) = - detfo o f D) D




where

B = O P (46)
i 2
with ¢, being the complete orthonormal set of eigenfunctions of -5, .
Thus the determinant (45) is

det o . det (-207), det at . (47)

But from (47)

(@")ae = a0t = fer(t ) e (4 0)

er(9 8 (48)
= %H“

where we have used the completeness relation for +, and the ortho-

i

normality of ?n. Thus deta.deta’=1 in (47) giving du(ﬂxt) in (44) as
expected. A similar argument shows that Ii arising in (26) independent
of the choice of orthonormal functions ﬁc

Further v, is zero for k=0. This fact is verified along with

r, = 4kn, (k#0) in section 11.




CHAPTER 2 -~ THE GENERAL SELF-DUAL GREEN AND DIRAC FUNCTIONS

Section 5 - Construction of the General Self-dual Instantons.

Atiyah, Drinfeld, Hitchin and Manin [28—31] have shown how to
construct the most general self-dual instanton solution of (4.1).
The construction involves only linear algebra and works for arbitrary
compact classical Lie group. Here the method is explained in elementary
terms [1,32] in the same way for all the groups Sp(n), SU(n) (u(n) )
and 0(n) though some differences between these cases are pointed out.
The most general solution of (4.1) is
Aula] = vin) & via) (1)
where v(») is some non-square matrix whose dimensions depend on the
group and the topological charge k. It is defined in terms of another
matrix A specified below by
N vin) = 0 (2)
and normalised by
viaveo = 1, (3)
The dimension and rank of the matrix A=) is such that there are exactly
n independent columns of v satisfying (2). The condition (3) then
implies that the columns are chosen to be orthonormal. The elements
of v{x) must be respesctively real, complex and quaternionic for the
groups 0(n), U(n) and Sp(n). With this requirement there is still an
ambiguity in v defined by (2) and (3). It can be multiplied on the
right by any element of the appropriate gauge group
Vi) =V (%) = v g(x) . (4)
Clearly v’ also satisfies (2), (3) and still consists of the correct
type of elements. The change (4) causes the gauge potential defined
in (1) to transfaorm as
A =Rl = 3+v+9¢(v3) = q'A.q + 9t9 (5)
where (3) has been used. Hence the transformation (4) is exactly a

gauge transformation (2.10).
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The matrix A defining v in (2) must be linear in x,. It is given
by
Alr) = o+ b (6)
where a,b are constant rectangular matrices and x is the quaternionic
representation of the Euclidean coordinates x,
N KRy (7)
(See Appendix A for the definition and properties of the quaternions
e.). In the cases of 0(n) and Sp(n), o and b have quaternionic entries
so the product bx is quaternionic. For U(n) the quaternions are rep-
resented by 2x 2 matrices (see Appendix A) and a,b have complex entries
and an extra two component index
A, = Ga+bgXga ISAR,6<2 . (8)
The dimensions of a and b are
(k+n) x k quaternionic for Sp(n)
(2k+n) x k complex for U(n) (or (2k+n) x 2k including the
two component index in the right hand factor) (9)
(4k+n) x k quaternionic for 0(n) (or (4k+n) x 4k,both the quat-
ernionic indices in the right hand factor).
The matrices v have dimensions of respectively
(k+n) x n real
(2k+n) x n complex (10)
(4k+n) x n quaternionic .
For each case one can see that (2) comprises the correct number of
equations to give v at least n independent columns of the appropriate
type. But first we should check that it is possible to choose v real
for 0(n). We require that the equation (2) holds as a complex equation
for each quaternion éomponent of A (v has none) so we can multiply it
on the left and right by € which is the two dimensional alternating

symbol acting on the two component gquaternion indices (see Appendix

A ). Now for quaternionic A
+ -t

T
EAE = (11)
by (A.3) where T is both the matrix and quaternionic transpose (ie.

+=T%x), Hence for 0(n) (2) is equivalent to Av=0 or taking the complex



conjugate

Av*=0. (12)
Thus both v+v* and i{v-v*) are independent real solutions of (2) and
all solutions may be chosen real.- |

The rank condition on A which ensures that v has exactly n
independent columns is that it must have maximal rank of k, 2k and
4k for Sp(n), U(n) and 0(n) respectively for each value of X,

So far equation (1) with (2), (3) and (6) define a gauge poten-
tial Ag since it is automatically antihermitian in the sense of section
2 by the condition (3). However for general a,b in A it is not self-
dual. The most general self-dual solution is given by the above con-
struction provided a,b satisfy the quadratic constraints

A+(%)A(") = f_'(w) 1,. (13)
This states that for each x,&4s must be proportional to the unit 2x 2
matrix in the space of the left hand 2-component index of Af and the
right hand 2-component index of A. fth is the matrix function of
proportionality and as implied by the notation the inverse exists
because of the rank condition above. For Sp{(n) the right hand 2-
component of A and the left hand one of A are contracted in the
guaternionic multiplication and so f is a kx k real symmetric matrix.
For 0(n) these central components are left uncontracted so f is 2k x 2k
real symmetric. For U(n) there are no central indices and f is kxk
complex hermitian.

The constraint (13) being true for all x can be shown to be
equivalent to

(1) oo =pl,

(ii) b = v 1, (14)

(iii) ob = g(bm)'s™ (t is the 2x 2 transpose only)
using the properties of quaternions in Appendix A.p and v necessarily

have the same properties as f above. Again one can show that (4iii)

is eqguivalent to




th = Do B
:ﬁf:g“ei (15)

for some Q. which again necessarily has the properties of j. Thus
A'a = ata + otbx 4 xtlhta + bthx* = (PA +2Q~,7‘m+\>x‘) 1, (16)
where we have used
efn+ xte, = Er(e,x) 1, =tr(ex g, = 2% (17)
which follows from (A.9). -
We will prove in section 6 that when (13) holds the R, constructed
above is indeed self-dual with topological charge k. The latter requires
that f is non-singular for all x including "« at infinity". Mors
precisely we need also that bthb or v is non-singular,
As mentioned in section 2 the antihermitian potentials for U(n)
are not automatically traceless (unlike Sp(n) and 0(n) ). If we want
the most general SU(n) potential we take the general U(n) solution

8

and perform a U(1) gauge transformation j(z)=e, (9 real) to make

it traceless

-0 0 -6 N
A‘—aﬂ,: - A,‘Ql + Q 3,&-29 . (18)
Thus we require
0=trAl cerfA eindd (bl =n) . (19)

(19) always has a real solution # as the antihermiticity of A, ensures
that trA, is pure imaginery and the integrability condition

ap trA, = D‘Erﬂ,g (20)
is easily verified by differentiating the definition (1) of Ax and

using the cyclic property of the trace.

Section 6 - Self-duality and Topological Chargs. $6

The requirement for self-duality (5.13) means that any quaternion
multiplying oA (on the outside 2-component indices) commutes with it.
This property will be crucial in many of the proofs throughout this
work. Before proving that the A, constructed in section 5 is self-dual

we introduce the projection matrix



P(») = v i, (1)
From (5.2) and (5.3) we see that it is indeed a projection and has
other properties:
p2=P
Pt =P
aste=pn=0 (2)
viP =v' Pv=v .

These properties are shared by
P = (-a(sa)'s = -aofd (3)
and hence by the completeness of the columns oftQ and v the eguality
implied in (3) does hold. In the AfZJ term of (3) the right 2-component
index of A is contracted with the left hand one of & for all groups.
For Sp(n) the outer indices are left uncontracted so P is a quaternionic
(k+n) x (k+n) matrix. For 0(n) the left hand 2-component index of A
is contracted with the left hand one of 5 and similarly for the right
hand index of A and f . From this one can show that P is real (4k+n) x
(4k + n). These conventions of contracting two component indices will be
followed throughout and not explicitly mentioned again.
From the definition (2.2) we can calculate the field strength
tensor
Fep = Pu(v4) =9 (v¥ie) + [V, vivg] (4)
where we have used the shorthand
Vi 2%V . (5)
Evaluating (4) gives
F:(s': v*;vp +V+‘/¢V+\"ﬂ — (ke p) (6)
where -(xwp) means subtract the same term with « and p interchanged

ie. antisymmetrise in them. Using (5.3) to switch the w derivative

on to vt and then using (1) gives

F'“p = V+¢("p)vp —(cﬂ"')ﬂ) , (7)

From (3) the I-f term is afd and by (5.2) we can transfer both the

derivatives on to the A's:

Fup = VFaLF &,V - (xe28) | (8)

6
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Because of the linearity of A (5.6) its d:rivative has a simple form

202 A = be, (9)
where by (5.7)

dn =eu , ‘ (10)
Using the property mentioned at the beginniné of this section that
quaternions commute with f,(B) gives

Fog = vb(ead -eped)fbiv . (11)
From the property of quaternions (A.9) we can immediately see that
F,qg is self-dual as ?'l.‘ﬁ:v'"v—f,tp is:

F(,L‘g =ZLv*B;\“P§b’f\/ . (12)

The topological charge is given by (3.9). To evaluate it we use

the result [3]

*""(Echwp)=292T (13)

where

T = tr(b*Pb§ b)) | (1)
Since Ep is self-dual the left hand side of (13) is exactly what
appears in the integrand of (3.9). The propefty (13) enables us to
replace the four dimensional integral of (3.9) by an integral over
the surface at infinity. Hence the topological charge is

q = - lim {dS,3,T . (15)

R-200 gjrl:R
By expanding § in powers of g; one can check that §=0() and bt0b = O(%)

(]

as |x]»0e (see Appendix B). Hence only the second term of T contributes

on the surface at infinity in (15). Using

1, = (k)% + o(a) (16)
since btb is requifed to be non-singular the integral (15) becomes
Q- ;'_#Sas.,(-j’;»)er(bfb(uw") . (17)

The integral deux‘/r* is just the angular integral_ﬁﬁl=2n‘. b'b is
a 2k x 2k matrix (for U(n) and Sp(n) ) hence the trace term just gives

2k so the result is that

9 = -,ﬂtr(&p&p)d“r = k. (18)
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The property stated in (13) and (14) can be verified directly
by differentiating (14). However this is somewhat tedious and not
repeated here. Nevertheless it is possible to derive the result
indirectly as is done in two different ways in sections 15 and 21.
These proofs use an intermediate result [3] which also accurs in the
direct proaof and is useful elsewhere
Ff = gtn(FLrPLS) (19)
where tr, means we only take the trace over the 2-component indices
(on the left of bt and the right of b). To verify this we use (5.13)
and (9) giving
ufls = _f(z_\.*be,ﬁeﬂo"’a)j . (20)
Differentiating again gives
0°f. 1, = - (2t Kbe)f + 2 §(Sfberelbia)f (Moo f  (21)
which we can simplify using the properties (A.11) for quaternions so
ey fbe, = —25{5‘1:}&‘2" = =21 (22)
where for the last step the constraints (5.14) are used. Then (21)
becomes
£§ = - 45 oo (bR)F + 4 Sen (Faf k) f (23)
which is identical to (19) by (3).
Using the result (19) and continuing in a similar fashion one
can verify (13) and (14) directly. A further interesting relation is

(see also Osborn [23])

T=$')1tr,9.\zfa = -4 ' b dtf (24)
which can be verified in a similar manner. Combining this result with
(13) gives

tr‘(ﬂ:{s F:cp) 29 34 c&t‘f (25)
result

which is a generalisation of an equivalenty for the 't Hooft solution
given by Jackiw, Nohl and Rebbi (JNR. [33]). The equivalence can be
seen when ddaf is calculated for the 't Hooft solution in section 10.

We have now completed the proof that the construction of section




5 gives a self-dual gauge potential of topological charge k. We have
not proved that it the most general selution. This is is a much deeper
statement and was proved by Atiyah et. al. [30]. However it is possible
to check that the solution constructed has the correct number of
parameters as required by the results of Bernard et. al. [34] for
general gauge groups. This is the subject of the next section.

The corresponding results for anti-self-dual gauge potential
are trivially obtained from all the foregoing by replacing x everyuwhere

by x",

Section 7 - Canonical Form of A and Parameter Count. §7

Not all the A satisfying the quadratic constraints (5.13) give
different A,. Under the transformation
Ao N =KAL (1)
where K and L are square constant matrices,Au, is unchanged provided
K and L are of particular form depending on the gauge group [30,1,32].
: KeSp(k+n) , L€ GL(R, k)
U(n): Ke U(2k+n), Le GL(C, k) (2)
: K e 0(4k+n), Le GL(H, k).
GL(Q, k) is the group of non-singular k x k matrices with elements
in Q (real, complex or guaternion respectively).
Under transformation (1)A§23 bscomes
A’fb' = TefkTkal = [tafal (3)
by (2) k'K=1. The fact that L does not act on the outer two-component
indices of A0 means thatlﬁ?g is still proportional to the unit 2x 2
matrix and |
NV (@

Hence A is still linear in x as A =d’tf'x with
o’ = Kal
b’ = Kbl (5)

and still satisfies the quadratic costraints so defining a self-dual

potential., If v was a solution of (5.2) then v'=Kv is a solution of




ATV=0 (6)
by (2) and the entries are of the correct type. The resulting potential
is
Ac = vIKTO Ky = vV = Ay (7)
since K is constant and K'k=1.
One can sees that (1) is the largest possible invariance in general
that preserves fAy. Using these transformations we can bringAQto a
special form. Here we do it only for U(n), however the procedure is
similar for the other groups (see [1,32]). Alsa in any other statement
that depends on the type of group we only treat U(n) for simplicity.
Since kb =v1, is hermitian kx k we can diagonalise it by a unitary
L and then since the diagonal elements (the sigenvalues of V) are real
and positive (b*b is non-singular) we can transform it to the unit
matrix by a diagonal L. So there exists some L such that Y=bl satisfies
B”)/ = lax. (8)
The 2k columns of b are thus orthonormal and we can adjoin a further
n columns orthonormal to the previous ones so constructing a unitary
(2k+n) x (2k+n) matrix U
U={ulb’) such that w'h'zo0. (9)
We can transform b’ using this unitary matrix as K

b > U’ (—%) (10)

This is the canonical form of b. Under the above transformations a

has also changed. We write the new matrices as

u, u, 0O o
a=({r, r, L): f 0 (11)
Y. r-“ o 1k

k3
where the v, blocks are kx k and the u; blocks are nxk with g being
the two component right hand index of a and b. The constraint (5.14iii)
then takes the form

r'n_ =", ’ f'_“ =-Ta (12)

(5.14ii) is automatic (it was assumed in the construction of b in (11) )



whereas (5.14i)
t
“afaﬂ = luA)fue +(C,) %e = [ASAg (13)
still has to be satisfied. We can further refine the canonical form

by diagonalising (13) with a unitary L. The form of b in (11) can be

preserved if simultaneously we transform by
K={ U (14)

where U is an arbitrary nxn unitary matrix so that K is unitary as
L+L==1. Thus in the canonical form of (11) the constraints take the
form of (12) with _

;n(a*G)J.g= P;S;J' gAg I<yjsk ; (<A 852 (15)
for some real positive constants Pie

There are still some invariances of (11), (12) and (15). They
are preserved by (14) with

Lhe=e®s,  rehicks Gl (16)
We may restrict U to be special unitary as the overall phase of the
unitary matrix may be absorbed into L without changing (n,b) . Thus
there are k+n? - 1 transformations (14), (16) which preserve the form
of (11), (12) and (15) without changing Py .

We can now count the number of parameters in the instantan
solution. In a. of (11) with the condition (12) there are 4kn+ 4k” real
parameters. The constraints (15) for a+g give 2k® real equations, for
n=8 but i#] give 2k(k - 1) equations and for a:g, i=j give k equations
or 4k* -k in total:'Hence there are 4kn+ k parameters remaining and
when the residual invariances of (14), (16) are taken into account

there are 4kn =~ (n* - 1) independent parameters of the instanton solution

in general.

For 2k < n the residual freedom of (14), (16) is not quite right.
Some of the matrices U do not change the u, part of b in (11). We can
use U to transform all but 2k of the n rows of u to zero. Then the

remaining invariance preserving this is of a 2k x 2k special unitary

o



matrix removing 4k* + k - 1 degrees of freedom altogethsr. Because of

the zero rows of a there are now only 4k .2k + 4k* parameters initially

in a with the same number of constraints thus the number of instanton

parameters for 2k <n is 4k* + 1. Hence the number of parameters for

U(n) and SU(n) agree with [34] as they alsa do for Sp(n) and 0(n) {ﬂ,32}.
The count of parameters can also be made in a similar way directly

from the initial form of the constraints (5.14) and agrees with the

above results. For 2k: n thers are 16k” + 8kn real parametsrs in (qﬂﬁ

with 10k” equations from (5.14) and a (2k+n) - 1.+2k1 parameter

invariance due to the transformations (1) with (2). For 2k<n we can

use K to make all but 4k rows of kyb) equal zero. Then :3|.2k—‘L parameters

are constrained by 10k® with a (4k)* - 1+ 2K* parameter invarince.

Section 8 - The Fundamental Scalar Green Function. §8

We can now use the construction of the general self-dual gauge
potential to soive some other equations of interest. In this section
the spin 0 (scalar) Green function in the background of A, is obtained
for the fundamental representation. from this it is possible to obtain
the spin % (spinor) and spin 1 (vector) Green functions using thas
results of Brown et. al. [35,36]. The corresponding results for the
adjoint representation are derived in chaptsr 3.

The fundamental scalar green function G is defined by

DG ay) = 1a8e-y) (1)
with D, the covariant derivative given by (2.13). We want to solve
(1) with A, given by (5.1). In this representation the Green function
transforms under gauge transformations (2.10) by

Glny) = gt Glx9)90y) (2)
To solve (1) we notice that as x2y, G must have the same singularity
as the ordinary scalar Green function in order to give the Dirac §

function on the right hand side. Thus




. . Hxy)
G(xy) = ~+ﬂ_’(:?;7‘ (3)

for some H where H(x,%x)=1 and it must have the same transformation
property as (2). The simplest expression in terms of the self-dual
construction of section 5 with these properties is v*(x)v(j) . In fact
this gives the correct answer so [1,32]

vz viy)

wn)E - 4
Gluy) P! (4)
though in principle there are many terms which vanish as x-y which
could be added to v*u)v(n). In order to prove that (4) solves (1) we

need to know how the covariant derivative acts on vi.

Devt = vt + v RV = vTOP (5)
by (5.3) and (5.1). Manipulating (5) in the same way as the the calcul-
ation of F;p in section 6 we obtian

D“v‘rz —v*be‘)ch. (6)
This result will be used extensively, Another useful result following
from this and the derivative of f (6.20) is
D, (vthe,§) = ~vibe,§ stbe,f - vbe.f (Atbex +£LbA)S . (7)
Then using (6.22) we see the 2(’.‘,‘151'.56“L cancels the e‘e:lo*A term giving
Dl v*be,f)=0. (8)
From (6) and (8) it is easy to evaluate the second covariant derivative

of vt

Dvt--vibe, A& = - 4vbfb', (9)
The Green function (4) can now be verified
2 | s ! + ! 1
D G("b) = _31(ml)v (‘K)V(j,"'z'a“(m;_—b)ﬁ)D*V (‘)’-\V(b} —QF(":?)-’») v (1-')\’(3) . (10)
The first term gives +S(x-n))v‘*(u)v(.3) which is equal to the right hand

side of (1) as viwveo=14, . The second term by (6) gives
- AE9de e £ Ay (11)
grc* (2 -y)*
(all matrices are evaluated at x unless otherwise explicitly indicated).

Using (5.2) and the linearity of A (5.6)
Nevip=(dw-aG)viy = (=-y) biviy) . (12)

Then the (n-y)«=(x-v) commutes with f to combine with (x- b)f from



(12) to give (7\--3)1 . Thus (11) is equal to
4 thipt
- —— Vb b v(y)
e R A (13)
which cancels the last term in (10) because of (9). Hence the result

is verified generalising that of Brown et. al. [36] for the 't Hooft

solutions,

Section 9 - The Fundamental Dirac Zero Modes. §9

The massless Dirac equation in the background field A, for the
fundamental representation is
U,{D.“lfzo (1)
where ¥, are the Euclidean Dirac matrices defined in Appendix A and
¢ is a four compaonent spinor (cf. (2.18) ). Following Grossmann[S?]
we urite * as two 2-component spinors
v () (2)
and (1) becomes
efD Y70, @ Dudy=0. (3)
for self-dual E¢ we have by (2.15)
V\ufDxDr,='i'lpr;p=o (4)
so that operating on the ¢n part of (3) with EIDL gives
e/ DuegDa = Sup i) DD = D° (5)
by (A.4). Hence D1qk=0 so Y, has no normalisable solutions as the
inverse of D exists (it is the Green function of section 8). Thus
we only need to consider the first part of (3).
Definingx by
) = X6 e (6)
where A is the 2-component spinor index of ¢L, the equation for ¢L
becomes
O-= (Ql)ca SM:D-'-'XS = D“(')Ce‘i)c (7)
by (AR.3). The ¢ multiplying the right hand side of (7) is irrelevant

so the equation we need to solve is'D,(XQ‘}=D. We see immediately
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from (8.8) that v*bf solves this [1] hence there are k independant
solutions for J%} which are the k columns of

vibef | (8)
One can see that this is O(ép} as’lxlwoo (this follows from (6.16)
and vﬂ9=OQ$ﬂ - see Appendix B) and hence is normalisable. From general
theorems (see eq. {38]) there are exactly k independant normalisable

solutions of

elD, 4.0 (9)

so (8) gives the complete set. This is also proven later in this section.

The ¢th solution is
e = vibe, f 1< gk (10)
with normalisation matrix

N+ [ o

where the Dirac trace has been taken. From (10) the integrand of (11)

is
Tt ot
which happens to be the right hand side of (6.19). Hence
= -1 2 3
N *ngc dtx (13)
which we convert to a surface integral and using (6.20) gives
N =-L. | as %f = LI A Jg,‘_f(d"!:e.,_#e:y&)f . (14)
R ,,,;; +E-um nlzQ

From the behaviour (6.16) of { the integrand is OGﬁJ and so the

integral is

~1 - 2 -1
N = l:fd%%(b*b) (ub.zs,f,)(w)' = 1% (wh) . (15)
Thus the ortho;gzkal solutions are
Ih
T (16)

There is an alternative derivation of (16) which shows this to
be the complete arthonormal set. This was first done by Osborn [39]
using the derivation of the Dirac Green function from the scalar Green
function by Brown et. al, [36]. The Dirac Green function is defined by

e DeSly) =13 Gl e, - Thedty) (17)




where {;(x) are the complete orthonormal set of solutions to (1).

The solution of (17) is [36)

x = % » 1+ 7s b i)
S( ’3) = b’on‘Du.G( '.‘J)+ 2 G( ID)D“]u. (18)
where G is the scalar Green function and
Gy, = - %“G(x,v,) s GlugPely) . (19)
Substituting (18) in (17) gives
eef ® D, G(x,9)D O
f (3 3@
Se-iel - by = (20)
(=-9) i, : + + j ELEFQ‘D“‘D‘;G("'I:))

where the right hand 4 x 4 Dirac matrix is written in 2x 2 block form
using the form of the Dirac matrices in Appendix A. From (5) the lower
right hand block is lgD’G(z,g)—'—S(ﬁ—j)lpl,‘ so confirming that there are no
4& companents opr. The upper left block can be calculated using the
explicit form (8.4) for G using similar techniques to previous calcul-
ations. After some work (see Osborn [39] for details) it gives

(8], DuCam)Dy = Slx-) Jag 1 - 1 Vibe fenbtbf ) g7 b vy (21)

so confirming that (16) is the complete orthonormal set.

Section 10 - Conformal Transformations and the 't Hooft Solutions. §10

5o far we have only considered the general formalism in terms
of the matrix A satisfying the guadratic constraints (5.13). These
have not been solved in general but certain classes of solutions are
known. When n2 2k Drinfeld and Manin [31] have essentially solved it
completely for the k instanton solution in U(n). Christ et. al. [32)
have solved (5.13) for k=3 in Sp(n)w (for k=1 [4] and k=2 [33] the
solutions were known before the construction of Atiyah et. al.). In
addition to describing the n 2 2k solutions we give here the solutions
;:orresponding to the 't Hooft [40) multi-instantons for 5U(2) = Sp(1)
as extended by Jackiw, Nohl and Rebbi (JNR [33]) using the conformal
invariance of the classical theory.

For n>2k in-U(n) we can always use the transformation (7.1) to
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make all but 4k rows of rows of(o,L) zero as mentioned in section 7.
Thus the problem is reduced to considering the n= 2k case. The general
gauge potential for n> 2k is then just that for n= 2k embedded in a

larger matrix with zeroes filling the rest

()
u(") A“ o .
A, = (1)
(o} Ol

For n=2k,using the canonical form specified by (7.11), (7.12)
and (7.15) we can choose v, and v, arbitrarily (4k?* real parameters).
Then r,, and r, are determined by (7.12). Choose k real parameters y,

O<P\~SP15""' < Mi (2)
so that the diagonal ata specified by (7.15) is positive definite as
required by the non-singularity of f in (5.13). The parameters pi are
still not arbitrary, they must be chosen to satisfy the inequalities

(ofa —r) 30 (3)

ie. the eigenvalues aof the left hand side are all non-negative. Then
since w is a 2k x 2k matrix we can always solve for it in

utu = ata —rtr (4)
by for example taking the square root of the right hand side. Also
Mi must be chosen so that

Ao = ata + riy e xtrext (5)
is non singular for all .

The ambiguity in w as defined in (4) just corresponds to the
unitary matrix U in the tranformation (7.14) so does not alter A,.
Hence the 4k?+ k parameters YT g uniquely determine A“. However
not all such parameters give different A. (though they would in the
correspanding case for Sp(k) ) due to the transformations of the form
(7.14) ,(7.16) so that if v and r'are related by

i(6:-;) .
(V‘,:a);j =e Mat)j 15 ek (6)
then with the same p; they give equivalent Au..Thus k - 1 parameters

are spurious (since only the dif‘f‘erenceﬂ;-gj occurs) giving 4k + 1
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true parameters as before. If the matrix (3) has some zero eigenvalues,
je. its rank is less than 2k, then one can solve (4) for an nx 2k
matrix w where n >rank(ata-r'r ). So these special cases give the U(n)
potentials for n <2k, the only problem is specifying when this occurs.

Before giving the INR solutions we show how conformal transform-
ations act on the self-dual solutions [1]. A conformal transformation
in Euclidean space is given by x#2” with

x'=(mxrﬂ)(aﬂ+yﬂ—l , % =(e-x"y)" (2'¢ -ﬂ_) (7)

where “:ﬁ:%ﬁb are quaternions. The transformation is non-singular

provided :
&= [M(;(;)] = Wyt oW ety) £ 0. . o
Under (7) the length element transforms as (dx)'—(da’)"
@) = ST, NG =k Jprr (9)
or equivalently
da)* = wON@d) el = K| w-wy[?, (10)

The gauge potential A (x) transforms in the same way as the derivative
9 giving
37.( D ,

/

Aalr) = T8 Aylx). (11)

0%

The conformal invariance of Yang-Mills theory means that if A, (x) is
a solution of the equations of motion then so is A;(z) given by (11).

For self-dual solutions one can implement the conformal transformation

(7) by the following transformation on the parameters of the instanton

a-—a’= a¢+bp

b—b'=be-ray. (12)
Then A becomes
NG alyneg)+ la{at”p)
=(a+bx)(yx+g) = AR)(yn+§) (13)
so
(A’(:))+A’{t) = (7x+¢)+A*(a')a(u7(zx+<f) . (14)

Now since A+{a)b(z) is proportional to the unit 2x 2 matrix for all x

the quaternion (ya+¢) commutes with it giving

rep) (yx+8) = [g2+$/* 1. - (15)
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hence Af>) also satisfies the constraints (5.13). Thus we obtain a
new self-dual solution with v'x) defined from Aﬁl). Because of (13)

v(#) is such a solution so

/ ’ - )
Pub) = Vi) Zvi) = 3% ')—vl«J—J Ag(x’) (16)
a"& I’

as in (11).
Atiyah et.al. [30] give the parameters (e,b) for the 't Hooft
solution, It is a simple matter to extend them to the INR [33] solution

by using (12). Thus for SU(2)=5Sp(1) we get
Gk = kop o= Sy
bi =fopi by =i 8y

where “hgi are quaternions and M real. These clearly satisfy the

184,k (17)

constraints (5.13) or (5.14) and are preserved in form by (12). B

the transformations (7.1) on A it is possible to restrict (17) to be
QA = —50\;/X‘, , Q;J :b.g‘)
loo; = >‘-/'\o ; lau = —Sﬂ

where v; are quaternions and \. are real. Hence there are 5k + 4

-k (18)

IS;’/_)\

parameters in this (only the ratio XJA, occurs). This is not in
canonical form but it is much more convenient as bothaﬁ andbg have

a diagonal form. With the parameters (18)
A
ALY 0_7(
o - | "t
S;j(‘);"d)
where the top block is 2x 2k and the bottom 2k x 2k complex for U(2)

(19)

or equivalently 1x k and kx k guaternionic for Sp(1). With (19),.a

solution of (5.2) is

"/: X.( H 1‘) -
V;(2) = Do) (—\rj:?ﬁ— 0sisk (20)
where the normalisation ¢, chosen to give (5.3), is
k \1.
(xy = 21
¢ .-a(ﬂ,—‘l) ( )

This gives the familiar gauge potential of JINR [33]

A“ (1.) = Z Vt(’x) 9‘ v(x) = -z "laﬂ 8 9‘ (22)
The choice of v in (20) is singular at x=y; but one can always choose
saluhnn

v so that this does not happen. The original 't HOOft‘lS recovered if

one sets jo=\ril in (18) and takes the limit Xfoau All the foregoing
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and subsequent expressions are well dsfined in this limit giving the
corresponding results for the 't Hooft solution.
The parameters X;,b; in (18) are not completely arbitrary as
NA must be non-singular.
EA+A5 = {x—:% ('j)rat)1 + S;J' (‘_’):‘7‘)1]-11 1eijck, (23)
We require that the determinant of this be non-zero for all X,
Consider the eigenvalue equation
JE;JAJ' b= pds (24)
which is solved by
)\-(‘ja“")i LA e )
o= T (;xﬂg)(r (i ")) - (25)
Multiplying by \:, summing and assuming .ng*J is non-zero we obtain
a compatability condition on 2
< M (26)

TI oie POTTRESC
Writing (26) as a k th degree polynomial in p we obtain the product

af the k roots p (the required determinant) as the constant term of

the polynomial. This gives

T Ak
det A'D =[)\’: SN l‘;(m-*)} (27)
#i

iz0

(the power of 2 is due to the unit 2x 2 matrix in (23) ). To check

that (27) is non-singular for all x we consider the critical points
x =4, some J (other x clearly give non-zero determinant as all terms
are positive definite). From these it is easy to see that det 8’0 # 0
if and only if xto 0gick
ity , osgic) k. (28)
Sipce only X? appear in the potential we can restrict to Ao .

The inverse of A4 can easily be calculated giving [391

€y N 4 .
G = o = —3—— s i)ck
5; (jr1T (jrﬂ%jyﬂf )¢ (29)

which despite appearances is non-singular as 145; praovided (28) is

satisfied. The projection matrix P is given by
-1 X;\_'\ (2_‘_,)(5_!,,)%
(y:-%)*(n;- )"

Using the above farmulae one can write down the Green function (Brown

Pyl = vitu)Vjial = $ 0¢h,j <k . (30)
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et. al. [36] ) from (8.4)

i k A?‘(‘).--l)f('oc -2)

G(sz) = -4_“1..#'/,(_“)¢U1_(.t)(1(_1)1'i=° (‘3;’7‘)1(5;—1)1 (31)

and the Dirac functions (Grossmann [37]) from (9.10)

k 42 t ' s
A -3\ A -x) ~% N:(9:-%) <k
. (x) = AL, Z L UJ A 3 A 1deg 32
q)' ¢ rU"—l)1j=° (\jj-x)+ ¢ (j:,l)* ( )
for the INR solutions. The normalisation of ¢ in (32) is given by

(9.15) as [39]

A - \s -1 2 )\.)\
sz =X‘¥+; Hdu = ﬁ’(&j ﬂ%‘}g,) =T (S;J- -5..)\1’7) , (33)
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CHAPTER 3 - ADJOINT REPRESENTATION AND TENSOR PRODUCTS

Section 11 - The Adjoint Representation and Variations of Instantons

In addition to the fundamental representation functions treated
in sections B8 and 9, physics requires us to understand the adjoint
representation (see chapter 1). This and all other representations
can be treated together by considering tensor products of the funda-
mental representation. In particular if ¢, transforms under the funda-
mental representation of group &, and similarly for ¢, under G,

R M R M (1)
then the tensor product is ¢,@9, which transforms under the fundamental
representation of @G, to give |

fod = gip o9 b (2)
The cavariant derivative is given by
D (404.) = (Dit) @ + 4,000 fu) (3)
where [ﬁ. is the covariant derivative and Ai the gauge potential of
the group Gy . The adjoint representation is given by Q=§;G with the

potentials satisfying

*
As =(A) (4)
and one performs the reduction
=ty (glegl) [¢ijen (5)

wvhere t* are the fundamental nx n representation matrices of the group
G (see section 2). To see this we apply the adjoint covariant derivative
(4.21) to (5). The matrix form of the field ¢* is (cf. (2.3) and (2.7) )
=97t (6)
so
Db b [, 81 = (3,64 A2 4" Ful ¥° 7
by (2.4). Inserting the form (5) of ¢b and using (2.4) again
(pm‘“c :{kji 9, * A:["‘:tq];..}(?‘;@ 4’11')
= (:;;(9‘(?:@’#3) + A:h(f)'k Q ¢;’ + ¢.;® A:jk‘l’:k]

where in the last step we have used ’A:j: dyk. Thus we sese that the

(8)
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right hand side of (8) is the same reduction (5) of the tensor product
covariant derivative (3) when the rslation (4) between the potentials
holds. Henceforth we will not perform this explicit reduction from
(}@Gfto the adjoint representation as this tends to hide the elegance
and unity of the various. formulae,

Before treating the adjoint representation and tensor products
in general we consider the variations of the instanton solutions.
Since there is a connection between these zero mode variations and
the adjoint Dirac solutions as discussed by Browa et. al. [38] this
will give us some insights into the adjoint representation as well
as being useful in their own right as discussed in section 4.

Under an infinitesimal variation SAW of the gauge potential,
the field E% changes by

§Fup = S[Dw, D) = [D.,885) - [2,8A]. (9)
With this variation E% remains self-dual provided the contraction
with the anti-self-dual tensar q“ﬁ vanishes. Thus by the anti-symmetry
Of Mg
e Mo = g D3R =0 (10)
which is the same as (4.23). But by (A.4)

'w\.,«‘sD&SAP = PudAe - L DOIA, (11)
and if we impose tha condition corresponding to (4.25) that 8A. is
orthogonal to the gauge zero modes

0w 3R« =0 (12)
then (10) becomes
efD,(epSAp)=0 . (13)
This is exactly the Dirac equation for the , components (9.9) except
that it is for the adjoint representation. Thus if + are the adjoint
Dirac zero modes
= hm o« 8R,=U\'+€:‘{’ (14)

where w and w' are arbitrary two component spinors.
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It is possible to find all the zero modes A, and hence ths
adjoint Dirac functions by considering variations of the parameters
of the instanton solutions [3,20,24]. The parameters are the constant
matrices (o,b) in A satisfying (5:13). The general variation of this is
3 = fa + Sha (15)

which in order to preserve the constraints must satisfy

sofa s 80 <1, (16)
Many of the solutions of (16) will correspond tp the algebraic trans-
formations (7.1) so do not give variations of A,. These are identified
later. The variation 8v in v resulting from §0 must satisfy the follow-
ing equations resulting from (5.2)

AtSy + 3afv =0 (17)
and from (5.3)

vty +vtdv = 0. (18)
The general solution of (17) is

W= -afsay sy du (19)
for arbitrary nxn du. The condition (18) that v must remain normalised
then implies

Su+gu+=0 . (20)
Substituting (19) into the variation of the expression (5.1) for A“

A, = vta, v +dvidwv

ok

= -vto (afsatv)- vtSafa™a,v +3,8u +ASu-SuA, (21)

where (5.1), (5.3) and (20) have besen used for the last three terms.
For the first two terms in (21) we use (5.2) that vA=&'v-0 to give
A= v*(SAfe:b* - be,f&&) v+ 08, (22)
The infinitesimal variation (22) is the most general satisfying (10)
by construction and the completeness of the self-dual solutions. The
term ILSu corresponds to an infinitesimal gauge transformation since

du is antihermitian by (20) and gives the gauge zero modes ¥, ¢ of

section 4. Imposing (12) (or (4.25) ) gives
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0=, R, = 2’ S +('DuV+3A)fe,fb"'v - vt Sb(f‘zu*k*vb—_) (23)

- (Dovtbenf )&V +vhe.f (5a'v D)

since
0,(8¢) = 9. (8c) + ALC - AL = (D.8)c - 8(ch.) (24)
by (4.21) and (9.19). Now the third and fourth terms of (23) vanish
because of the equation for the fundamental Dirac solution (8.8) and
its hermitian conjugate, hence (23) becomes
DS + V+bQ*g(SA+A—A+SA)f-€Kb+V ¥ v*Sbe,fe:lg‘v—vﬂo&,(flef%*v = 0. (25)
Since we can always choose b to be in the canonigcal form (7.11) we
can choose Yb=0. Making this choice and using the properties of the
quaternions (A.11), (25) becomes
» M +2v*bftq(ga+l>'l§"SA)fbfV =0. (26)
As 8b=0 and one can show that (16) implies
e, (Satba - xtht8u) =0 (27)
the two dimensional trace in (26) reduces to
tf.l( data —Q*Sa). (28)
with §b=0 the conditions (16) comprise 7k*real equations on the
4k(2k + n) parameters in fa giving 4kn+ k* independent variations ba..
Of these k*+n”-1 must be gauge transformations dus to the parameter
count of section 7 of the number of gauge inequivalent instantons.
These will be the da which correspond to the transformations (7.14).

that preserve the canonical form of b. These are

Sa = Ha -ah (29)
where
1o o Wt _h' 0 mxn
=1o kL O
A DA (30)

is an arbitrary antihermitian infinitesimal matrix so that {+H is
unitary and of the form (7.14). There are kK*+n® -1 independent var-
iations of this form as expected. One can then see that with $4 given
by (29) the 3A, of (22) with $h=o0, Su=0 is

iA, = Q¢ ;= -vihv (31)
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which is indeed a pure gauge transformation. Because of this extra
freedom of &a we can impose further constraints in addition to (16).
Since in (26) & only occurs in the term (28) it is natural to choose
the k* real conditions
U}(Sa*a'-ﬂfg“)=°' (32)
Then (26) is
ﬁug/_\kz)oagu =0 (33)
so §A, of (22) satisfies the condition (12) if Sufo. When we combine
condition (16) with. (32) on %a they are equivalent to
Sata = £(atsa) e ' (34)
To summarise, the variation of the potential given by
§A, = v*gafe: bfv - v"be“f Saty (35)
satisfies the two conditions (10) and (12) provided 8a satisfies (34).
Thus (35) gives all the instanton zero modes of section 4 satisfying
(4.23) and (4.25) when 8a is considered as a finite matrix satisfying
(34). Because of the counting after (28) and the extra conditions (32)
(or more directly counting the number of independent solutions to (34)
there are exactly 4kn independent $a. This confirms the statement in
section 4 that r, = 4kn.

There are still n? - 1 pure gauge transformations in (35) despite
the fact that D¢Sh:ih These occur when 8a is given by (29) satisfying
(32) so that $A, is the pure gauge of (31). For the large ix| behaviour
of v given in Appendix B (31) is

S =D 5§ - Whnmrr Off) e It 00 (36)
where w({x) is the unitary matrix with winding number k that occurs
in the pure gauge form (3.3) of A, as ix-0o (ses Appendix B). If ¢
was just W, SA‘ would be a global gauge transformation, but this would
not be normalisable so of no interest to section 4. All the 8R. of
(35) are normalisable with normalisation calculated in section 15.

Note that in the case k=0 solutions analogous to (36) do not
[
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occur. If they did they must solve if¢:o with H;ﬁﬂlg for unitary 3.
Then
S = 972 (347370 (37)
and since q is invertible
34/3* ENS (38)
for some constant nxn matrix ¢, However with this 8A;dl¢ vanishes
so there are no normalisable $A, sitisfying the conditions (10), (12)
for k=0.
There is another property because of the extra constraint (32).
If A, is initially an SU(n) potential - ie. it is traceless - then
the variation (35) is also traceless so preserving A« as an SU(n)
potential if (32) holds. In fact this is also true of (22) ($h#0)
provided & is traceless.
tr $AL = tr(e‘:k*F’SAf - SA*Pbe,‘f) + 2, telSy . (39)
Then using
Asa = s(SA*A)tS" , o*Sa= f(anfe (40)
(which follow from (16) and (32) ) and properties of the guaternions
one can show that (39) reduces to 3 tr(Su) . Note for Sp(n) and 0O(n)

§A, is automatically traceless since it is antihermitian,

Section 12 - The Adjoint and Tensor Product Dirac Function §12

Since the §A_ of (11.35) satisfies the conditions (11.10) and
(11.12) we can construct the adjoint Dirac zero modes from (11.14)
\‘,A:AQ“MSA.‘ =2v+SaquI;+V +2v%ihfucisa"v. (1)
Because there are 4kn Sa and w is an arbitrary 2-component spinor
there appear to be Bkn Dirac zero modes. However this is incorrect
as if du satisfies (11.35) then so does 5&ﬂ~'For any quaternion q which
can then be absorbed into u by W:ir. Thus there are only 2kn zero

modes in (1) which is the correct result by general theorems (see

for example [38]). It can be checked by a completeness relation

I's
)
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analogous to (9.20) for the fundamental representation (see Appendix
C and also the comment after (15.24) ).
We can rewrite (1) in the form

\.];" = v*bfafct"v - vic f bty (2)
where ¢, and ¢, are appropriate (2k + n) x k complex constant matrices.
Instead of giving them in terms of the $a by (1) (however see section
15) we can find directly the relations they must satisfy so that the ¢
Dirac equation ‘-
lef)g Dut'= 0 (3)
is solved [2]). Substituting (2) in (3) and using (11.24) gives
D‘(v*bc¢ E,‘}()C,TV - v'be‘iAf(c,Tv)ﬁu = Dfvic ) el kv, ()‘“e;l,*v)éétc 0. (4)

The first and last terms again vanish due to (8.8) so

vthe f &c f, etbty —vtbe €, f/afelbty = 0. (5)
By the properties of the guaternions (A.11) this becomes
2v+'ogfc\a+c,—c:£&i“)£} v =0 (6)

which will vanish and hence ¢“of (2) solve the Dirac equation if
+ . T
e, = A, (7)
Since this must be true for all » it is equivalent to the equations

(8)

\

+ — T,
A7C, T €A 6,

Ab+c'l = clTb SA »
These comprise 4k* complex equations for the 2(2k + n)k unknowns in
¢,, ¢, hence giving 2kn ‘independent complex solutions (¢,,¢,) - arbitrary
complex linear combinations of solutions still solve (8).

One can generalise (2) to an arbitrary tensor product as considered

at the beginning of section 11. The solution is [2}
(¢ign

- s R Vel r (R, Whad), 1o e (9)
where A;v; (1=1,2) are thematrices defining 91(1) for the group &, .
If G, are U(n,) groups and Aihl have topological charge k; with A, v
having the correct dimensions then c, is (2k, +n,) x k, and ¢, is
(2k, +n,) x k,. With the covariant derivative acting as in (11.3)

we see in the same way as for (2) that (9) solves the tensor product
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Dirac equation provided
WO = ALa , ATR (10)

(cf. (7) ). This has ﬁ::k,nl+-k1n' independent solutions.
By the results of section 11 the adjoint representation corres-
ponds to when

n.:Y\.._ ) k,=k1
A, =€ ,v,_.zv'* (11)

"
so that A1=A, (11.4) holds. Then the condition (10) is the same as

(7) and the tensor product Dirac function (9) becomes identical to (2).

Section 13 - The Tensor Product Green Function §13

Brownet.al{ﬁdconstructed the adjoint Green function for the
general 't Hooft solution. Using their methods Christ et, al. [32]
extended it to the most general S5U(2) solution. In a similar manner
one can further extend it to the tensor product of any two groups
and hence in particular to the adjoint represeﬁtation of any group [2].

One would expect from the fundamental representation (8.4) that

the tensor product Green function would contain a term

+ -
H(n,y) ( ' mv(”))-—'f*- (1)

v v(y) 47" fu-y)*
Here and henceforth we write the two factors of the tensor product
of (11.2) one above the other. The upper factor refers to G, with
Ay V, etc. and the lower factor to (r,. We have dropped the explicit
1,2 labels on the vix) etc. in (1) as they are always dstermined by
their position in the equations. With this convention the tensor product

covariant derivative of (11.3) can be written

=~ e D. 1 ) .
D‘_SD‘ —< 1 ¥ D,‘, . (2)
The Green function egquation is then
~ oo 7 1t D\~ e,
D.D. C,(:,j) =< Lt -rZD‘) G’("b\ :(138(1 M) « (3)

The covariant Laplacian on the left hand side of (3) acts on (1) to give
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<\ _[ vieovey) 2 Duvix)viy) 4
(Q) H(‘x‘j)_(v"{y)v(j)JXh—j) 4ﬂ1l"'3)1(D“v+(7‘)"(3) . ( )

The first term gives the right hand side of (3) but the second term
is non-zero so there must be an additional term in G. In deriving (4)
. we have used the Green function egquation for the fundamental repre-
sentation (B.1). The second term in (4) is evaluated as follows. Using
(8.6) and (8.12) the upper and lower terms are

~vimohe, For(x-y) by, (5)
Then by (A.10) we get a factor 2(1-3? which can;els the I/Pi—bf
term multiplying the second term of (4) to give.

i viob, fm b viy)

T e e (6)

vie) b £ ('K viy).

Here we have introduced the further notation that brokemn lines denote
contraction over the two-component indices of b,A. Later we will use
solid lines to denote contraction over the k component indices of b,

A and f. The arrow on the broken line means that the alternating 2x 2

matrix ¢,, bhas been inserted. Thus

A----- g8 = gﬂa

Ae-3---8 g 1sABs2 i———jsS;J- 14i,5 ¢k (7)
-

A---&---f = 8= E,4 ,

The identity for quaternions (A.10) used in obtaining (6) has the

diagrammatic form

R---@,---8 A-, B
=2 ¥ v (8)
€---q--- 0 ' ‘o ° ’

The (1—37* in the top and bottom parts from (5) come together to give
(1—3Xxjjf;(a—5f since for quaternions gxf=a’t by (A.3) so
(9)
The notation introduced above simplifies many of the expressions and
calculations since otherwise they would contain many contracted and
uncontracted indices on matrices which contain four or more indices.
In the Green function we need to add a term C toH in order to

cancel the term (6). Analagously to Brouwn et. al. [36] we try the
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|5

following form for C suggested by (6)

Vi) bk viy)
C--24 % (10)
vy b=t viy)
where )
k '|5cﬁ<<k,
<

JII = My, 1$j,4 ¢k (11)

is a constant k k, x k .k, matrix. Evaluating the second covariant
vth, f—[zm bth ..A*s\]
- v

I,Wv(gj
¥
v%,‘?_ e . (12)

(all matrices are functions of x unless explicitly shown otherwise).

derivative of (10) gives

]
L N v
Wb oo ab

This will cancel (6) if M is the matrix inverse of the term in square
brackets in (12). This term appears to depend on % so makinglﬂ non-
constant, but this is not the case. The 2 dependance cancels out due

to relations like

s, bt

Satbd o) (13)
where the left hand side is part of the ghird term and the right hand
side part of the second term in the square brackets of (12). (13)
follows from the use of (9) and the fact that b is proportional to

the unit 2x 2 matrix. Thus
l i{afa bktb ,atb, k
M, =JL'5+a*a farelle (14)
'

and the Green function is given by G=H+C yith H defined in (1) and
C in (10) withM as in (14).
We now examine some properties of M. Because the matrix in square
brackets in (12) was independant of » it shows that the right hand
side of (14) and hence M is invariant under
bob , a—arba, (15)

It is also invariant under interchange of « and b

B-—.a ; Q- b . (16)
This is because of the constraint (5.14iii) so that

'_.G+l’.'— _lbh:—

vy = N (17)
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Combining (15) and (16) shows that M is also invariant under

a-a b-—zb+q.:), (18)
Under the transformation

a-oax , b-2by - (19)
M only scales by (h“b’)——z. . Combining the transformations (15), (18)
and (19) we obtain the conformal transformation (10.12) on the
parameters («,b) under which M only scales by k"% given by (10.8).

In the constrpction of G we have to assume M is non-singular.

We have not proved this directly in general but i-t can be inferred
from the existence of various quantities in the following section.
Also in section 20,detM is svaluated for the INR solutions of section
10 and shown to be non-singular precisely when s's or f is non-singular

for all »,

Section 14 - Self-dual Construction for Tensor Products §14

The self-dual construction for tensor products was first treated
in [2]. The methods presented here are based on this reference. However
since the work of [2] Drinfeld and Manin [41] have also treated tensor
products on a more abstract basis. By making thei;:l‘:lore concrete it is
possible to simplify some of the algebraic proofs of this section [42].
However with the presentation here the connection with the earlier
results is clearer. Since many of the cal-culations are rather long
and tedious they are relegated to Appendix C where they are sketched.

The tensor product G®G, can be considered as a subgroup of
some larger group 6 For the case we are treating SI.A{n,)®Su(n1)C.SH(n.ﬂ¢)

~
so (= Su(ﬂ.n,). When the gauge.potetials of G\,G, are self-dual then

the gauge potential for (%G,

T Ac 1
Ae=(e ) )

£ ={'ﬂ+ )
LA I (2)

gives
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and hence is self—dual.’f:\l,‘ is also self-dual when considered as a
potential of G. Calculating the topological charge of A, from (3.9)
gives

E:k,n,+\<zn.. ' (3)
Hence’ﬁ; is a self-dual gauge potential in U(R)

A=nn, (4)
with topological charge 1: so must be given by some (2E+ﬁ) x 2k matrix
A and (2k+7) x T matrix ¥V as in section 5. The obvious choice of
the tensor product v®v, for ¥ is wrong as it has the incorrect dimen-
sion of (2E+ n+ dk‘kz) x N and also if it was correct,the tensor
product Green function S

x
Glay)=- \;—,%33)1 (5)
would be given by H( %y) in @3.1) which is wrong. However we can write
the Green function in terms of v@v, if we introduce the (2k +n ) x
(2k, ¥n,) = 2K + l'1v+4klk dimensional square matrix M defined by
ag=at bt

) bllﬂ+ ' ala* ) Ib" ‘b* Iq* (6)
with T being M defined in (13.11) and (13.14). Under the conformal
transformations (10.12) M is completely invariant. This is seen by
using the fact that M of (13.14) only scales and then checking that
M is invariant under (13.15), (13.16) and (13.19). In particular we

can replace & by A(x) without changing. With this replacement

vtix) viy) v'f(x)lg. () V(Y)
K (7)

Vi) vly) vt bl af ) v(y)

since only the last term of (6) fails to vanish by v'ma(a}=0 . From
A*(a;v(3)=(x-3)*b*v¢3) (8.12) we see that the right hand side of (7) is
AI-n’(x—jPC(r,j) with € given by (13.10). Combining this with H in (13.1)

gives the Green function as

"
Gixy) - ‘(x—ﬂ‘ {v,(ﬂevl(:)} fn —m.g{\/.(g)@vl(j)} . (8)

This is of the necessary form (5) if

’\7(1) = (|'m)%(v‘(t)®\/,(x)) . (9)
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For ¥V to have the correct dimension,]-M must have rank 2k + ¥ or exactly
4k k. zero eigenvalues and the remaining eigenvalues must be positive
so that (8) and (5) are equivalent. In Appendix C we construct the
4k k, unit eigenvectors X of M. Aiso ¥ in (9) must satisfy (5.3), (5.2)
for some Z and give thse correct AM fram (5.1). The first and last
requirements hold as the right hand side of (7) is q—ff"[ﬂ-y)tc()-,j) so
7o Viy) = {v,u) @Vz(x)}*{w{b)@vt(j)} + 4" (%-5)2Cla, ). (10)
Setting x=y gives
0TV = 101 (11)
and differentiating (8) with respect to Y and then setting 1=) gives
,ZL () =Tt T(m) = At 81 + LD A, (12)
The final requirement is to construct a ﬁ(ﬂ) linear in x of the
correct dimension s;tisf‘ying the constraints (5.13) and
Vit A (w) =0. (13)
~ producl‘
Clearly A cannot be the tensozx of A&, and A, as this is quadratic in
%. However the fact that A can be viewed as a mapping from the space
of massless Dirac solutions [30] suggests that the right hand k -
component index corresponds to the k independent pairs of matrices

(€,,¢1) used in the tensor product Dirac solution. In diagrammatic

form (12.10) becomes

~ate —'—‘] -afc ‘ He [ "—X
,__—] : “ov or ] ::'G+C ond } ':'-'b"'(.' ' (14)

(9) suggests that we define & in terms of a (2k+ A+ 4k, k) x k A.by
A=(i-m4R  eon _ (15)

so that it is projected down to the correct dimension. (Note that

I-M is not a projection as can be checked by any explicit numerical

example). Because of the property (C.15) of |-Mm we can add any linear

combination of the 4k, k, eigenvectors X to /l\& leaving X unchanged.

n
Using these facts suggests a form for A is

~ ofc - -AL -¢, 1erek
JaN } = ‘[ + +
:[ rR _ns Feea ! e «l _dfi Rer2 (16)
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where L, on the upper and L, on the lower rows are square matices of

dimension k, and k, respectively and 7l is defined analogously to X (C.1)

— G -l:". .qT IOQ“E I
[ - J”I ‘ L«:{NY ’ bei*[Q“I R, (17)

where N”N,,Q“ are square k .k, dimensional matrices. In Appendix C we

to be

show that
~~ ~ ,\
VEA = (wev) (1-m)a=0 (18)

provided the matrices N, N,,Q, satisfy

- - —L-
;:‘:[ N |]_ + bﬂ N Z]_ + '\‘aﬂo Q};, QDL—I =~ .
! - (19)
a _ btb - :C\lo-e.s _ —_—
a "!'l + JNJ 4 e ! Q"l .

It turns out that (I—T"I)g and hence A depend only on L,, L, (see

Appendix C). (19) determines N,,N,_,Q¢ in terms of L,,L, up to an
arbitrariness due to addition of X (C.1) which is then cancelled by
{-M in A. Thus A contains the k? +k: degrees of freedom of L, ,L,.
In Appendix C we also calculate
AR = A -m) A (20)
which is also independent of N;,N,,Qx and using some completeness

relations for the ¢, ,C; matrices it simplifies to (see Appendix C)

(A& )eys = (FA2), Vs (21)

%rs © [_C,ij ' [-c*l,::l (22)
¢t Pe, f

N - ij +E] ' (23)

e
Thus we see that A& is indeed proportional to the unit 2x 2 matrix.

whers

and

For suitable choice of L, and L,, Z is non-singular and since P=yv*
is a positive matrix and f is positive definite 1 must be non-singular.

I /4
Hence A'Q is also non-singular so satisfying both the conditions for
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a k-instanton U(R) solution thus verifying the construction for the
tensor product.

One can now see that all the arbitrariness due to L,,L, is con-
tained in the constant k& x'K matrix Z which exactly corresponds to the
GL(C, E) invariance of & in the original self-dual construction as
given in (7.1) and (7.2).

Having constructed 2§ and ¥V we can now rederive the functions
of interest from the corresponding ones in the fundamental represen-
tation. The Green function is given by (5) which we have already shouwn
is equal to that originally constructed in section 13. The tensor

product Dirac function is given by

~ ~ A -1 -
—v*bsf = ve% (1-m)bs 2

(z’) (24)
with normalisation ~y -
~Ley ©~
3 - B0 - EI(U("*")”

where we have used the results (9), (15) and (21). Given the full

(25)

expression for each of the matrices in (24) and (25), these are rather
complicated expressions. However they simplify greatly as shown in

Appendix C to
~a v*b} vfc, %ztf'}
= R
\'yr 2 sY (26)
v’fc, \,fuf
and normalisation
,Je,.,R ol f—l
[“’f\ys - e, (27)
where fl is the same as Sl in (23) but with all the implied &'s replaced

by b's. (27) can easily be seen to be true from (21) as

B = B &'a (28)

a
\n| » 00 n

since it is the quadratic term in &4

Thus we have reconstructed the Dirac solutions of (12.9) which

in diagrammatic form are

Ya - vbf]j V;:‘i (29)

A

with normalisation following from (27) and (26) of
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_ Ct (1 -l ) [wb)"
“’f‘f’:ﬂ“* =R, =T (wc‘,)"’/J ) ctC,] . (30)

The completeness relation for the solutions.(Zg) is obtained by
evaluating (9.20) for the tensor product Green function (see Appendix
C). Since the latter does not contain (<,,¢) explicitly the relations
give a completeness relation for the matrices (<¢,,¢;) which is used

in Appendix C to obtain some of the above results.

Section 15 - Normalisation of the Instanton Zero ‘Modes $15

Using the normalisation of the Dirac equation in (14.29) and
(14;30) we can obtain the corresponding normalisation of the instanton
zero modes (11.35). Also we can derive the expression for tT(F;ﬂliﬁ)
given by (6.13) and (6.14). First we do the latter.

For the adjoint represenfation there are always the following

four independent solutions to the Dirac equation (12.3) (see [ﬁ3,44])
4’4 = A'elﬂ'z +MF;F

(1)
4’ﬁ = Ae,.-G;XM_ FU,F

where w is an arbitrary 2-spinor. These correspond to those variations
of the instanton due to the conformal transformations (10.12) with
c=bw and c-a« respectively in the expression (14.29) for the adjoint
representation. For example in the first case of (1) the two solutions

are given by

(C')R =(b')a ) (Ca)g = (bl)p = IOTZR R=1,2. (2)
using the relation (12.11) for the adjoint representation. Then (14.29)
becomes
t{/: = vthe st -V bYY R =21, (3)
which can be shown to be equal to
‘abn‘ = % (ea‘ep-*)M F;p (4)

with E;g from (6.11),where the properties (A.10) of the quaternions

are used. The integrandof the normalisation integral (14.30) is then

R s * f
tr +A 4,A = ‘J; (e“e;-)ﬂ‘ (QFQ;)AS brF:"ﬁ F;s (5)

]
“ by (ete,sfe-(?{')ps HE,;F;S

-
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since F;g is antisymmetric and antihermitian, Setting k=5 and summing
gives the trace of the quaternions in (5) and using the results of
Appendix A this gives

B W e St (6)
But ﬁﬁ;,ﬂ;s is just the projection onto self-dual tensors hence

BN A a A (7)
The\}: on the left hand side is given by (14.29) and using the equality
of (14.24) and (14.26) we have

Jy = (V*gfj Z+), (8)

sa N e o,
N (z Feh Pl s.f2 )rj : (5)
But this containsjkq(Upb)f where all the terms are for the adjoint

representation. The same relation (6.19) must hold for this as the

proof goes through in exactly the same way. Thus (9) is equal to

| 2 _+
-Hz7F 2, (10)
or using the result (14.21) gives
'q'/’ aiﬂrs' (11)
Combining (11) with (7) gives the form of (6.13)
2
tr Fep g = 22 Jlae (12)

with Slgs defined in (14.23) and ¢, given by (2). So we get

‘H:Ej " El::aj (13)

which from the relation (12.11) for the adjoint representation becomes

Nee = tr( b*Pbf + b*bf). (14)
This is exactly | of (6.14) so (12) and (14) combine to give a proof
of the result (6.13), (6.14).

We can normalise the instanton zero modes (11.35)

A, = v*Safe; bty - V+b€,‘f So.*v (15)
with da satisfying (11.34)
Sotar = £(atSa) 5! (16)

using the normalisation (14.30) of the adjoint Dirac zero modes. But
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first we must make the connection between the & in the instanton
zero modes and the (<,,¢) in the Dirac zero modes more precise. In
the adjoint case the conditions on (¢,,¢,) are (12.7)

Aéfc. = c,TAEA. : (17)
Taking the hermitian conjugaté of (17) and multiplying by £ gives

fas, = &< (18)
Thus we see that if (C,,C:) is a solution of (17) so is (- ,¢) so

we can choose the 2kn solutions (¢.,C,) to have the form
i iy r Xvr
(Clacl}'(d:)dz. ) <
r v . ¢ r« =
(Cn l, C:_l) - ('_JI ’ J; )

Y r
for some d,,d . Thus we see that

v<kn (19)

v R *xrS

Cl = C| fg@ (20)

with the choice (19). Substituting (20) back in the equations (18) gives

(C(RFAEA - - L g, (21)
which can be reuwritten

RclfrAa = fgg A(N ) -Ale ' (22)
This is exactly the form of (16) sa

Sa; = C:k 1er gkn (23)

solves (16)./ is the right hand 2-component index of Sa. (23) aonly
gives kn of the &a, but as in the comment after (12.1) SQJI (1 a
quaternion) also solves (16) and gives new independent SAM so the
4kn Sa are given by
ga;f‘ = c,'k(er)“ l¢rshkn , 0€pse3d (24)

(Note that the right hand side of (24) does not give new (¢, ,C;)'s
as they are just linear combinations of the old). Using the gq of
(24) in (15) gives

SAT = wte feelbty - vihe ot f () v, (25)
The relation (20) between €, and ¢, means that part of the second
term of (25) is

n e Pﬁ(c J

eqi(re)

. (C r‘)

nl"

(26)
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where the property (A.3) has been used in the last step. Thus we see
that $A, of (25) is

aleped [VC “f bv ‘V”’fn)c(cm ] N 'R(‘?r’fi)A %’,:R (27)
with q)given by (14.29) for the adjoint representation which is equal
to (12.2).

The required normalisation matrix for Sﬁu is

N'r.sv Eftr[(sA:rJf S\AZ‘, (28)
so by (27) the integrand is ..
r R SS
fecel), (eyed) er( V), “4:,, )= 2 [eve), tr(% Y ) (29)

using (A.10). Integrating (29) by the Dirac normalisation (14.30)

gives us the required result

N so = 27" fened), ﬁrm (30)
where for the adjoint representation
_ - it R ~1
ﬂ_'a S = tr (c'rﬂ)+(l ) b[mo)—lbf) C:S (k,,b) I]+$RR' gss, l’,r'[((i,s J C,' (la*b) ] . (31)

The normalisation can be rewritten in terms of the $a™ by absorbing
the ev,er* into the fl.
mt -1 -t
N'r.sv = 2r tr[(S"r) (1-b(ww) [,*)SQ (o) + (8 ) $or (%) } . (32)

This is now true for any pair of Sa's satisfying (16).
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CHAPTER 4 - THE DETERMINANT OF D° AND THE AXIAL ANOMALY

Section 16 - Introduction and Regqularisation of Determinants

When one tries to gquantise Yang-Mills theory by expanding about
instanton solutions, determinants of operators in the background field
arise (see section 4). This chapter is devoted to calculating fhesé.
In particular we only need consider the covariant Laplacian for spin
zero fields in the fundamental representation. By using the results
of d'Adda and di Vecchia [25] and Brown and Creamer ﬁS] we can express
the spin 4 and spin 1 determinants in terms of the spin 0 result.
Further, using the results of section 14 [2] we can extend the funda-
mental representation to others, and in particular the adjoint. Thus
in principle any determinant required for physics is calculable.

However we have so far been unable to calculate the simplest
determinant completely. What has been obtained is the variation of the
determinant under arbitrary variations of the background gauge poten-
tial, expressed as an integral of a particular expression (18.8)[3).This
is closely related to the result obtained by Brown and Creamer for the
special case of the 't Hooft solution [15] (see also [20,23,24]). Also
it is idéntical to the result independantly found by Belavin et. al.
[20] and more recently by Berg and Lischer [24] for the general self-
dual solution. The latter group has also succeeded in integrating up
the variation to write the determinant as a sum of 4 and 5-dimensional
integrals. Even though the integrals for the full result have not been
done in general, it is possible to find the part arising from conformal
variations [3]. This is calculated in section 19 and the final result
will contain in addition a conformally invariant factar. The knouwn
conformally non-invariant factor can be evaluated explicitly for the
INR solutions in section 20.

The determinant of the Laplacian is highly singular with both

infrared and ultraviolet divergences. The former can be handled by
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calculating on a large sphere st of radius @. Then the divergence in
the 1limit e—o2 is cancelled by dividing ocut the corresponding deter-
minant with zero background field. In section 4 we saw that this was

a natural ratio to take. Once this is realised it is possible to do
all the calculation in Euclidean space Rﬁ The second divergence must
be handled in the usual way of reqularisation and renormalisation.

The most elegant scheme for this purpose for our cass is the zeta
function regularisation of Ray and Singer [45—4&]. This is introduced
in the remainder of this section. However Berg and Luscher [24] achievs
their results by Pauli-Villars regulators which at least for the first
order gquantum corrections is equivalent. They also work on 5* through-
out and only at the end take the limit a-eo and abtain equivalent
results to us.

Using the zeta function regularisation and the procedures of
this and the following sections we can rederive the result of the
axial anomaly. In the self-dual case the gives us another derivation
of the expression (6.13), (6.14) of f”iﬁl;¢ - the one originally
found [3] (see section 21).

We wish to evaluate the determinant of a positive definite self
adjoint differential operator 8 over a compact 4-dimensional manifold
(eg. s*). The (positive) eigenvalues X“X,f-- are discrete due to the
compactness requirement. Define the corresponding generalised zeta

function by

e = T (1)
This sum can be proven to be convergent for Rek)??.. If B was just
a finite dimensional matrix this sum would be finite and hence always
convergent and clearly

'Ie{o) = dim 8 | (2)
and

18(0) = ~dndet 8, (3)
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For general 8 we can define the determinant on the right hand side
of (3) to be given by these expressions using the analytic contin-
uation of (1). The latter can be given by the integral representation

of the zeta function

10 - rl{—)ﬁ TGl de (a)
where
g(t) = enp(-0) (5)
and hence can be defined by .
-2—; e%(u,j,t) = (07, (xy,¢) (6)
with
b (xy.0) = §(x-y) (7)

and the trace in (4) is the operator trace given by

Tr {7({:) =fd4,‘ tr( (7(7«,5 (:)) . (8)
The tr trace in (8) is the internal (eg. group) index trace. The heat
kernal'@ defined by (6), (7) is fully discussed by Gilkey [49] and

also in [50,51]. From the definition (1) we see that

Tep (8 =1 Tylo) (9)
for a scalar P thus
t;,r(opjmﬂ_\;e(o)ﬂ»t;ro) (10)

giving from the definition of the determinant (3)
de{‘(e/p) = }A-%m. det 9 . (11)
So te(o) acts exactly as one would expect of a dimension so (2) is
its generalised definition.
In Appendix A of [3] it is shown that the determinant of the
operator 9=-Jf+ék on the sphere S*lwith radius @ and scalar curvature

R has the following variation under the change of radius by éa

' |
~3 L detB =T () = %[@Sd+,[un(:).tr(ﬁ‘£,)]—$’§ lm} (12)
2y =\
where fNﬂ)=2(l+gJ for coordinates on S* obtained by stersographic

projection and N=t-] is the dimension of the gauge field represent-

ation (n for SU(n) and 2n for Sp(n) ). The integral in (12) is



58 §16

convergent and vanishes in the flat space limit a—<o. The remaining
term diverges but is independant of the classical solution so is
cancelled if we calculate

S o (dot /det6,) - (13)
where 90 is @ with A0 . Since the divergent term is independant of
the parameters of the instanton, the variation with respect to these
is also convergent. Hence we can take the limit at the start and
evaluate the variation of the determinant on flat space Rﬁ which

simplifies the calculation.

Section 17 - The Variation of the Determinant on Flat Space §17

We wish to calculate the flat space determinant of 9=-If, the
fundamental scalar Laplacian. The heat kernal defined in (16.6), (16.7)
has the asymptotic expansion as t»0

o0
_Ct("ljlb)’“ ;EtL;'? Q"{’(‘@“E (m-g){l "Z;oq.\(x,s))t". (1)
By equating powers of ¢ in the equation for q_me obtain [52-57]
@ (x-9)Dydulnn)=0 | ag(wx)=|

(2)

(L) na,(,,b),»(w-j)“])‘a,,(,.,o)=D“qﬂ_i(q.,,; "y

t 4

whiéh can be solved iteratively for A, (2,y) - From the integral
expression (16.4) for Y (s) we see that the value at s=0 and the
residues of the poles at $=1,2 are determined by the small t be-
haviour of“%q Thus the asymptotic expansion (1) enables us to cal-

culate these:

ks _, T(s) = n';:‘(tr A, (x2)d4x

@es gz 305) - n'?‘ft' a,uz x)d¥x (3)
T lo) = ,2'_-,{1 tr a, (1,,)(41--,\ .

T(s) is regular at s=o because thel/r(s) in (16.4) cancels the pole
in the integral. The a, (2,2} can be easily evaluated by repeated
covariant differentiation of (2) and then setting =Yy

Gol2)2) £ I

= < -
a,(xx) =D Q“(”’)L«:j =0 (4)
[]

G’_("l'l] < -::‘Dl‘b1 qn("l")l’:j & I'{ F:P E(,P .

The last result uses Eﬂ=[0,,9ﬂ] (2.15). Thus the residue at se<1 is



infrared divergent, at s=/ it is zero and

$(0) = Lo [dta (), (5)

1.t

This is - k/12 for self-dual solutions with topological charge k

defined in (3.9).
By subtracting out the pole at $=o in the integral of (16.4)

we can evaluate T'fo) . It is

29 1
T (o) - u,’f:—lf"”" e nJ«mFU de v Toe?) - IZ':F;[J"’ t""‘z"")} (6)
$=0

]

where the right hand side is defined by analytic continuvation to s=°

from sufficiently large § and

- (L
X As\s(s) $=0 (7)
is Euler's canstant. esz is the operator form of the functimwfriﬂ

(16.5). To evaluate (6) requires a complete knowledge of %imﬂ,q) S0 .
because of this and the resolution of the infrared problems in the
last section we take the variation of the parameters in D. We can
vary (6) directly or.equivalently first vary {(s) which gives us a
better understanding of why it works.
Since a,(x,» =1 its variation is zero so the residue of %Y(s)
at s=2 vanishes by (3) so $f(s) is regular everywhere. Also since
the action in (5) is stationary under arbitrary uériations about a
solution of the equations of motion, we have §%(9=0 from (5). Thus
in
§3() = a7, _[mdtt’ Tr[ttnisvﬂ (8)
the integral is regular at $=o. Hence the variation of the deter-
minant given by differentiating (8) (or varying (6) ) is given by
$1't0) =f°:{t £* Tr [Q*DLSD"J (9)
o

where again we mean analytic continuation to s=o. However since §%(s)

§ =0

is regular we can replace this Ey the 1limit as sno. With s=0(9) can

be integrated to give formally
&=00

[ T <% m‘] (10)

teo

where the Green function G is the inverse of DQ(8.1)
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DGlry) = Stx-y). - (11)
The upper limit t=s° vanishes as the heat kernal eCﬁ! vanishes (at
least on S+). The lower limit of integration t=0 gives -F—(GSDﬂ
-which is the right hand side of (1.1) but it is ill defined. However
we will show that when the integrations implied in (10) are done first
then the limit tvo exists so giving the regulérised definition of (1.1).
More rigourously one can integrate (9) by parts for large s and
analytically continue:

§T) = -5 r;e £t Tr[gtpic’r S‘D’] (12)
o

g=z0 )

Since
8D® =D, SA, + FA Do (13)
we can use the cyclic property of the T which also holds for differ-
ential operators due to integration by parts and the fact that the
functions occurring vanish sufficiently rapidly at infinity. Thus we
may rewrite (12) as
5%(e) = —sr:!t g 'l’.—[—e"ys/a":’): ¢ g8, SA.;NS (14)
=0
where,as in (9.19)
DuGlry) = 2 Glon) +Awl) Glay)
Glx ], = —3; Glam) + Glry) Auly).

We now see that the variation is much simpler to calculate as all

(15)

that is required is the residue of the pole at s=o of

_jd+ ¢ Tr[m.‘( Boeed . e ‘6.()] . (16)
This pole is determined solely by the constant term in the asymptotic
expansion of the Jr part as t»9, In fact as stated after (11) the
limit t-o of this part exists since the coefficients of the terms t/c*,
1/¢ and Vt% which could occur, .turn out to vanish., So we wish to

calculate

_tho% b[m“m(]')z Gl )y (9, ) + G (2,4,%) C—(,,ﬂﬁ)] (17)

as Evo. To do this we notice that as 1-’3

Gum) ~ - Gy (18)
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which is what gives rise to the potentially singular terms in (17).

So we split the Green function into singular and non-singular parts

wu] . - L[ 8w -
Gl = - (222 4 20s) (19)

where $ and R are non-singular as i»y and each have the same gauge
transformation property as G. For a special choice of § the contri-
bution from the singular part of (19) in (17) vanishes. This choice
is o,(»,v) - the lowest order term in the expansion of the heat kernal
(1) and is defined by (2i). The solution is _

Qg = aylny) = p%/)(ﬁ’ﬁo,,dxw) (20)
where P denotes path ordering of the A, matrices along the straight

line joining x to 4. One can check that with this ®, R in (19) is

indeed non-singular.

To show the singular part of (17) vanishes we evaluate
-
Jary B (M) Gy, (21)
(»-y)*
By considering an expansion of the integrand of (21) in powers of
(x—j) (it is clear that for small t only x close to Yy contributes
due to the exp-(x-yf¥/gt in'g.of (1) ) we see that the only integrals

arising are aof the form

k]
| 21-M —i/+t
?L[C”'Z. ?0’-1 2‘_1---' ZuN(Z ) e .

(22)
- for wn/2-m>-2 this integral is bonvergent. For ~ odd it vanishes and

Nfz -m

for ~ even it is proportional to t . The louwsst power of t arising

/2

in this way is t™¥* with n=l and m:=2 coming from the B'Ll/l'n—j)1 . Thus

only the first two terms in the t expansion of %ﬁujﬁj will contribute

as two. So we need only consider the

- ~(x-y4)' /4t
. [dry D80 (369 ) (z)

it
part af (21). Again covariantly differentiating (2) and setting ==y

we ses that .
a,{x,n) = D ‘Q\"_" =0

'D&Q.("':‘)N,:J = :‘:."Det‘Dl §l"=3 = —%['Dﬂ":ﬁ;ﬁ-] ¢ (24)

Provided the equations of motion are satisfied the latter vanishes

and hence
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D&ql("lo),’=b =[Da CNERTY) —'Aol'all".b)],“’ =0 . (25)

Thus n,(mm)=0(m-5)1 as x-2y s0 the lowest power of £ it can contribute

is t® which vanishes as t»0, We are left only with

{ —-(x-3)4< . (m-
,‘-,;;zfd*p 2 [(——,—) Do) 1,4 - 7-523—“ Fou)B(s,)] (26)
from (23). The second term vanishes as by (20)
@(’m)@nﬂ) =1 (27)

so the integral is of the form (22) with w=t and m=2 so is convergent
and is zero. The first term of (26) is expanded about %=y using the
fact that

2. (8¢) = 8D.C - 8DuC (28)

for any 8,C. The zeroth order term of T$i~4).8(y,x)] vanishes as

Du @ Phy)LU (29)
The first order term,by (28) is
- - S =
9 = ” -4D QD‘ = -3 .
zgiﬁ’ﬂ @w)-i(wﬂu:b (@, 3)0.3)-0p80:) 8 LJ T P (30)

The last step of (30) and also (29) were again obtained by differ-
entiating (2) and setting 2=y . The second order term is
> & e
(,)w,r} -+ | 31
55\ 0 8ems6n| - 88 0.5,] (31)

due to (28), (29) and by further differentiations of (2) becomes
%@U‘Ddt)f:@"’DygﬁD#§)ﬁ3 = '%([Dw ] [a, )«‘1 J,Fé;_\"'[D'q’F}u]) (32)

< (2., sz—l - Z{Dp; 7A .

Then using these the Taylor expansion is

Dv‘@("‘/b\ i(nl") x5 ("’(" U)p ‘[Dﬁ,ﬂr(mﬂ(x—j)‘,h-y)z + Oq'x-—lg\) (33)
The first term of (33) does not contribute as the integral over Y
in (26) vanishes. The second term becomes [Dﬂ,F,{L]
1

g ?ﬁw “Ffae _1g

g |4t %%y (34)
so it also vanishes due to the eguations of motion. Higher order
terms in (33) give contributions which vanish as t+0, so confirming
that the singular part of (19) gives no contribution to (17).

We thus see that the only non-zero part of (17) comes from the

non-singular R(z,4) term of (19). Using
1 -2t/st
Jérclc‘fd*le v/ = | (35)
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its contribution in (17) is

CStedet (DY) = 5700 = [dta e [IAued Tue] (36)
where

i > -
Juln) = 4;1[1),‘ R(xm) + Q(’":leu]“j . (37)

This is exactly the result of Brown and Creamer [15] which they derived
from(1.9) in a somewhat ad hoc manner. The result holds provided A«
satisfies the equations of motion, for arbitrary variations &4‘ away
from such a solution. In particular it holds for ,self-dual A, and
j; is evaluated for these in the following section. The special varia-
tions 8A¢ for changes in the parameters of the self-dual solutions

were given in section 11.

Section 18 - The Variation of the Self-dual Determinant §1B

" Since we know the Green function for the self-dual case (8.4)
all that we need to calculats ﬂf%g) which occurs in the current
(37) is the path ordered exponential Q(mdﬂ . This does not have a
simple closed form like the Green function G but all that is required
for the calculation of J, is the expansion of § as a power series in
(x-y) up to cubic order. Thé patﬁ ordered exponesntial can be evaluated

directly from (17.20) by using
@ (1;7) = 6) QKPIDA‘ dag = bom {V*("‘JP(’-) Pox) ---- P("n-‘] V(X-ﬂ

A;,,-X;—‘:o
\ (1)
2z A% +(I—>(-)‘3 , 0=3, <A< gN, A =]
One can then show that it necessarily has the form
lny) = v*m[l +(m-\,)‘bH(1,p)la+]Vi3) (2)

some H(»,y) . More simply [3] one can use (2) as an ansatz and solve
the defining equation (17.2)
(’X-')).L'B:@("fn) =0 = @(1,3)5, (=9 )u (3)
for Hfmg) as a power series in (m-g]. The required function is then
R( y)=-via bz y) brv(y). (4)

Writing h(xy) = (x-)* Hixy)  and substituting (2) in (3) we obtain

-
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(-9 S hr ) = g fen) # (2 9) f(2) & ) b hixay) (5)

Ny
Wiagl = —(r-9) 121+ Wia-g) bt aly) Fiy)i-g)t,

A

(2-ylg 59w
and 1-_41_3) and taking the difference of the tuwo

Writing % =}(x+y)
equations in (5) gives _
[f(,,l) fix 1)]+2fﬁ+1)b+(i+1)bh—k|a“’b('x ) fea-e) 2t (6)

2.
% 57, h=2<"
which can be solved iteratively for h as a Taylor series in z starting

from h(xx)=zo . The solution is
h =2at{fe + sfm{zaab - k*m&)z*}fﬁ)] +a(z*) (7)

which gives for R
(xy)= -+ Vq—gb(f{«) r¢f («){(m-.j)g(-x)b - L,m(i)(fx,\j)ﬂ‘) f(i)] iy + O(x-y) (

Using this in the expression for the current (17.37) it is easy to

show that
T, = aa Vb (enam - braek ) fbty (9)

It is also straightforward to show that this is covariantly conserved

as indeed one would expect [15)
(10)

pxSu = [Dau 3-“1 =0 .

In the expression (11.22) for the variation of the gauge potential

under instanton parameter variations
Bhu = VP (5Af elb* - be, £587)v + D & (11)
the term du that corresponds toc a gauge transformation will not con-

Integrating by parts gives

tribute in the determinant.
(12)

Jd“a tr[(&Su)]'u‘] = -fd*x tf‘[gu ('Duj.,_ﬁ =0

by (10) and Jy=0(v/1%%) as tal-00 , hence the non-zero part comes from
(A, 30) = = bf{be(e,Nb-b*Ae;)fL*P(SAfe*Io* be, f 3 )} (13)

It is possible to write this entirely in terms of P using the results

from section 8 of '
P (9P - ~& P
(3PP = -aetfP
PSP = -PSA}L (14)
Pou(PAP) =~ 4PLE .

This immediately gives
(15)

e { P (ParInP - 2,P2y(0P.P) P3P, aﬂ}
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which can be simplified using some relations obtained by differentiating

P=r.
pEP + 80P = N , PSPP =0
Po.P+alP=23r  PIPP=0
2ag,p.bﬁp +62P,P+P.9‘P =.91l° (16)

20.9,P. 3P + PI'P.P =0 ,

The terms in (15) where there is no second derivative of P vanish since
P3fqfarP=-;f8PFARP is zero by (16). The remaining second derivative

terms of (15) can be simplified using
ALLIL=3L 0P (1-0) _
ci(oe - PP PN 1-P) ' (17)

z —i(l—f’)atp ] ’P)
to give as a final result

= S det(-DY) = 1'10) = —q—';;vtfa«ﬂ u[ﬂ’ (ﬁ”(- -f)a’“(’-za,,m‘ﬁa,f’)] (18)
which is exactly as independantly obtained by Belavin et. al. [20].
The remaining problem is to integrate up the expression (18).

Some attempts to do this by Osborn [23] and Berg and Luscher [24] are
mentioned in the conclusion. However in the case of those variations
corresponding te conformal transformations it is possible to integrate
up the variation of the determinant completely. This is dane in the
following section.

§19

Section 19 - The Determinant Variation under Conformal Transformations

We wish to calculate the variation of the determipant of the
Laplacian where the gauge potential is replaced by its conformally
transformed potential A‘h)+f£117 . The new covariant derivativeTZh}
can be related to the old using (10.11) ,

DAAE fj;m’m- 9:“(% Ayl ) 35;{ D, . (1)
Thus the Laplacian becomes

2 )
(V)" = 2% D ) 227 (1)
P A Y § (2)

= w('u’)-3 'Dl(-t’}w(-t’)
where the latter result can easily be checked using the relationship

between x and %' (10.7) and the expression for w{10.10). Since in the

determinant % and »’ are dummy variables (2) gives
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detfD' Y] = du(-w D) (3)
For an infinitesimal conformal transformation (10.7) with
w= 148w , B=38, ¥ 8y , $=148f (4)
we have from (10.10)
Wzl aSw , fwe Le(S-89) s br(xSy) = TaTin, (5)

Hence

_ ] [>.54 - —]D’l
S“S(s)’nu = Sf(s)]u_,n,“ = ﬁ_’)y de b5 Tr otV T
o
oo = 1
= ’r,"{s)s’ de 2 T [Qtﬂ (,D’"Sw -3dw D)] = "r‘_()(c{e t’Tr{rD,D S]
- (Mo Tt (6
s )j rle Sw
where in the final step we have integrated by parts for large 5. Thus
S‘S'(o’) is given by the residus of the pole at §=o0 of
e 27 e[ )8 (7)
2[ 7 g xnE w(z)].
R de ¢ r[{r 17
Using the asymptotic expansion of (} (17.1), as in section 17 only the
o,(x,#) term appears and by the result (17.4) the residue gives [17,
18,19)

96

Since by (5) 8w is linear in x we can make use of the fact (6.13),

$Y@ = o [er(Fep R (8)

(6.14) that +trF, R =9*T to integrate (8) by parts twice.
[} P ﬂ
L o e

Jsﬁ[:-) (‘r""ru.*u.) T ]

4““‘ ﬂ-wo i =R
Since bL*PL{ in T (6.14) decreases like ju™t at infinity it gives no

(9)

contribution in the limit. The other term of T is asymptotically
Bof = L2 - (abtas atbx)(btb) 1217 4 o) (10)
which after integration in (9) gives )
$170) = & br (Mo » ab)(o) ] -
&t [(bﬂﬂy +37ta *b)(b*b)_l] - l“‘ t'(s¢ ‘S"") (11)
'2 tr [S(L"b) bth)” ] tr-( Sf + X&) .

The last step uses the conformal varlatlon of kb coming from (10.12)

l\

with (4) +
X(kﬁb) = (ax'r +b§u) b+b*(a§‘, + ng)

= bTa X] +dytath 4 (5¢*+S¢)b*b_ (12)

Now it is trivial to write (11) asa total variation by the fact that
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under the transformation (4) x’ given by (10.8) has the variation
§xt = S (x*¢?) < tr( S + 8¢ ). (13)
Hence
§/(a) = 5 S er bh -5 S (14)
The &r {1 we can reurite as & det and we can also absorb the x term
inside the fn as Sl k*=%Yk?=8«* as w=1 initially.
$5'0) = § tdn [der )] (15)
where bth=v1, and v is a kx k hermitian matrix.

The expression (15) tells us how the determinant varies under
conformal transformations. However since the A ) in the determinant
is expressible entirely in terms of(a,b) and is invariant undser the
transformations (7.5) (a,b) > Kfab)L , one would expect the determinant
from (15) to be so expressible. Thus

tI(OJ = ."z"z«\[d@e(\)}z )\(Q,b)] (16)
where A(a,b) is chosen so that 3’(o) has the correct conformal trans-
formation properties as given by (15) and makes it invariant under

the algebraic transformations (7.5). Hence we need

MKaL, kbL) = (det K)™* )\ (a,b)

Nar, b)) = k2 N(a,b) (17)
with @,b’ given by (10.12). To find such a function we notice that
the matrix (13.14)

M-.';', K = (O+a);,‘ (’o*lo)}-g + (L"b);k (o*q)j! - tr [(qu):k (b*a)lj] (18)
which was introduced for the construction of the adjoint Green function,
has the transformation properties B

M o (Krekt) M (k oK) (19)
under (7.5) and

m e M (20)
under (10.12) (see result mentioned after (13.19) ). Hence the deter-

minant of M transforms as respectively
- ¢k
det M —» (Jet K) * Jot M (21)
and dot M = 7 detm |
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So a possible choice for Afa,b) is @etfw)vw giving
§319 = L §ta der [(bbobep)m] (22)
(The matrices am» and b*b in (18) to (22) are all considered as the
k x k hermitian matrices p and v respectively - see (5.14) ). Using the
result (16.11) that
det(- DY) = pn'ﬂfv‘(']_ det (- DY) (23)
with §.6)=-%k from (17.5) we have e
3 det (D) = 3§ de | p? (habt)m . (24)
or by the result quoted in section 16 that the ratio of determinants

(16.13) is infrared finite
o{i(;z? = d‘*[(”’?@b‘b)l"\]—%uc . (25)
dat (- D)
C is some unknown function of (%b) which is invariant under both
conformal transformations and the algebraic transformations (7.5).
It must be determined so that the resulting EI(O) has the correct
variations of (18.18) under general parameter variations. This we do
not know how to do yet.C alsa contains a numerical factor (uwhich coul&
depend on k and the group) which is independant of the parameters of
the instanton so is not calculable by these methods, but in the con-

clusion we mention how Berg and Lischer [24] have calculated it by

using the complete answer for the SU(2) one-instanton case [5].

Section 20 - Conformal Behaviour of DetQJf) for the JNR Instanton $20

In the case af the 't Hooft or INR solutions of section 10 we
can explicitly evaluate the conformally non-invariant part (19.25)
of det(:Dﬂ [3]. Since this will involve the evaluation of det™M ye
will be able to show explicitly that M is non-singular precisely when
O'A or f is non-singular for all %. Using the solutions for (q,b)

given in (10.18) we have

(btb)y; = 8 + 22

L

(1)

x|

and
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» ‘ o X
- ) (2)
~4r (5 JXA:, 93)(‘%5‘JJ* x&; ‘jo) iy ek
= §, §(yi-u: )+ S NA §is Mk 1
w o (yimy;) + Qe AjAs a dis AiAr
Introducing J ! "';?—”(5° 9:) RS (3‘ UJ).
55=(‘3i“33)1)\;1)\34 ,osijek, (3)

(2) can be written

M = M8 59 50558 8 (a)
From (19.25) we wish to calculate det%ﬁfkdetﬂﬁ . :Since in the gauge
potential X.,_",\k and Mo, ----2Yu OCCUT symmetrically (see (10.21) and
(10.22) ) they must also do so in this expression. Though not immediate-
ly apparent one can check this is so by performing appropriate trans-
formations (a,b) ={a,b)L . This symmetry is useful in determining the form
of the result. The first factor is gpasily shown to be (cf. the coeff-

icient of the highest power of » in (10.27) )

et ()™ = 2 *E x-f)“'. (5)
DetM is rather more difficult. Defining
S.-'j,rs = S by o+ Soj Sjs t 35y S:fs_js (6)
then
det M7 = k:‘fk(ﬁ ’\:)1" det S (7)

where it is written so the above mentioned symmetry is apparent. To

evaluate detS we use

Sdn et S = br(S7'5S). (8)

To calculate S we use the methods of Brown et. al. [36] where they

effectively calculated M for the 't Hooft solution. The result is

S;J',r; = t;j S-“. SJ' - —;:t'_] Srs(x"‘r“‘&f) '.E t, S;J-(Sh 4,8‘,_'_)
5850t ¢ L85, 8, 2 b (9)

‘.‘ - L=0

'II &-'j € ( My + Mjs— My — V"Jr)

where
- ..
l:;. :(S.'.' L*J -
J {OJ) ’ ;_=") OSLJJsl( (10)
7’
and
k . . k
-1 . L= S o e
(W) = Py = 8 Zbtu-—by o, g (11)
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(ie. m is the matrix inverse ofp ). It can be verified that the product
of the matrices in (6) and (9) give unity. Using the expression (9)

for S and the variation of (6) we obtain

K
er(s785) = Z b5 8ey + 25 ¢35, Z(M;; Z (ea)* &) + 5 m () ES;J. . (12)
"')“" reisk . =0 )
By varying the expression (11) for p we see that (12) becomes
= . S0
S hdet S ZOEJJ‘S.J) Ss + lezg‘jskmj P (13)
Integrating up the variation gives
2 9¥ T 6 (14)
det S - 2 dekPos»{)‘k ")) "

where the integration constant of Zl¢ is found by comparing the term

. ‘L(xﬂ TT Sl which only comes from the main diagonal of det S
] I(J

and Jurp. From the result so far it is clear that d‘kF must also have
the permutation symmetry.

Determinants of the form of debp have been studied by Sylvester

k-
[58] and Borchard [59]. It can be shoun that in debp there are (k+1) ‘

terms each with coefficient plus 1 which are products of k tg's

til.jl't"'.jl U t;l«jk (15)

such that each index from 0O to k occurs at least once and there is

no factor which can be written in cyclic form

"'z.t;zi,’-----t‘-'_;_._ (16)
From (7), (14) and the construction of ddqp in which all the

-1
tﬁ are non-negative we can see that dot- M is non-singular if and

only if all the A,,o<ick and the s;,6o<i<jsk are non-zero. This is

)
exactly the condition (10.28) that A'A is non-singular. Finally the
conformally non-invariant factor of det(- Dﬁ in (19.25) is

[2“(%&0)\; )—Zk(TD\ ) “Es(g ), Aetp}l/uk )

with dﬂp given by the above construction.

Section 21 - The Axial Anomaly and the Index Theorem §21

In (6.13) and (6.14) we gave an sexpression for tr(FQ;Ep) for

self-dual solutions. We now present how it was originally found by




considering the axial anomaly (see section 15 for an alternative
derivation). In general the axial current is defined by suitably
regularising
J_: () = t‘”(l's Y« S(?u?l]) ' (1)
where 5(%7) is the fundamental fermion Green function defined by
wDe Sry) = 8(x-4) - T (ay], (2)
Tl is the projection operator onto the Dirac zero modes —'ﬁhw)=‘§4ﬂﬂ¢?h|
where *; is a complete orthonormal set of solutions to rD+=°. Defining
the Green function Gg by
~D)* Gelawy) = Stx-y) - TTary) - (3)
we can express the fermion Green function as
S(my)= -7 DG (my) . (4)
To define the axial current from (1) we regulate G, by

$=1

where as in section 17 we analytically continue from sufficiently

large s . Also

1]

W = G, (g, ©) (6)
(UI31{7F éé{aF
i (7)

& (24,0) = Sta-y) - TTa,y)

That (5) is a sensible definition can be seen by expanding Q¢ in a

solves the system

I\

complete set of eigenfunctions of (fo' and then (5) gives the correct
expansion of Gg. From (5) and (4) we can define the regularised axial

current of (1) by [60]

5 { - g~ S Y
j‘ () =—(’.‘E)‘( dtt tr[)’ J“X-D'Cthlj;b)]ﬂ:) ot (8)
_Using a%.f(m,np[%‘f(ﬂ,y\f%—ﬁf(v,v)]ﬁb and the trace property
5 Toon = - iy [ e efprr bV - 17024 B | )

By representing %T in terms of a complete set of eigenfinctions of
5D (334L=1\4{,\\ real) it is easy to see that
-_‘,
i 4 - 407 (10)

Then using the Dirac trace (9) becomes



12 §21

WA R T L

Z%Lmdf ¥ t"[ys %4: (*'“’t).”sd

where we have integrated by parts in the last step using (6) and the

(11)

u

fact that an1ﬂ=0. Again we need to find the residue of the pole of
the integral at s=1 which arises from the small t part of the integra-
tion., The residue comes from the constant term in the small ¢+ expansion

of é%rehyb). The constant term is

' 2
I67c

Qe (n,x) = TT (=,2) (12)
where a,. is defined in the same way as a, of seéiion 17 and TT arises
because Ti(»,y) must be subtracted from the whole expansion correspond-
ing to (17.1) to ensure (7) is satisfied. o,.(»x) can be calculated
in the same way as a,l»x) in (17.4) giving

au tx] = Sy o+ H(TunFag) + 4 D{oug Feg) (13)
with ¢ as given in Appendix A. Taking the required trace in (11) of
(13) and using the properties in Appendix A

(gt b (5,5 | (10)

Inserting (12) into (11) yields £he equation for the axial anomaly
[60,61]

2,301 = gmtr(Fpb) -2 7 (o) (15)
where the zero modes +; are chosen to have definite chirality €, =+|
given by

IR GRAR X (16)
(15) may be integrated to give the index theorem relating the topolog-
ical charge k to the difference in the number of positive and negative
chirality solutions (16) of yD¥=o.

In the case of self-dual solutions we can give explicit express-
ions for the various terms of (15) [3]. All the solutions of xD4“=d

have negative charality as TT is given by (9.20). Thus using the

expression for the non-zero block of Tl and the result (6.19)
brgsTTln) = - L tfa(f"*ﬂbf“’) (17)
i Ve (Flth) .

§

i
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We may use the result (9.18) of Brown et. al. [36] expressing the
Dirac Green function S¢ in terms of the scalar Green function G for
the self-dual cass.
S, (3] = 3D Glaa) O (18)

So the expression corresponding to (8) is

W= [ Tde e o (Pyoid 4 58 1 g B )| (19)
where %waw is given by (17.1). (The negative sign of (19) is due
to a negative sign in the regularised Green function corresponding

to (5) since @ is defined as the inverse of the negative definite

operator D'). The trace over the Dirac matrices gives

o -1
I0) = - r%?)f dp £ tr (ﬁﬂr - (]&5“)7«=3 L=l
7t Qr(*sr;).)j?f e fata [B‘ Gl #) G l29) - Gln2,%) Gl2,) ﬁ"]ma 5=1

where again we have integrated by parts. By using the same techniques

(20)

as in section 17 we can show that the singular part —@(r,-;)/q-r-;"(m-gf
of G(w,4y) does not contribute leaving
. 2 > 3
3200 = =t | B, Re) ke B,
= Loe[veafi)
by the expression for R (18.8). This can be written as a derivative

¥ (21)

using the properties of the self-dual matrices giving
3200 = ,,"Tc 3, er(Pbfl?). (22)
Inserting (22) and (17) into the expression (15) for the self-dual
case, it becomes
2T = co(Pof &) = Litr(Fyufy) - =0t er(fim) (23)
which on rearrangement gives us the required result (6.13), (6.14)

tr(FugRep) = 29" b fb7Ph + S ), (24)
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CHAPTER 5 - CONCLUSION

Section 22 - Recent Progress on the Determinant

To proceed further in non-perturbative calculations for QCD
by the philosophy af chaﬁter 1, one would like to be able to integrate
the determinant given by (18.18) completely. This might enable one to
study the statistical mechanics of the instantons in the same way as
has been done for the CP' model ‘in [62,63]. Recently some further
progress towards this end has been achieved by Osborn [23) and Berq
and Liischer ([24].

When the variation of the determinant in the form of (18.13)

is examined, one can see that there is a conformally invariant term

[23,24)
Se = T’T'TE-"J‘A‘}M E“ﬂfs tr(stj‘(‘kﬂkrlls) (1)
with
ke = fouf ™ = flatbecredtin) = fler(ctbe
S = §3§7 = f(asarsata) = fer(a8a) (2)

which at first does not appear expressible as a variation. In addition,
after some very lengthy algebra the remainder of (18.13) can be inte-
grated so that [23,24)

556) = g jam §] - e (ke k) + Btf(fva)] +96 (3)
(btb=v1,). In the first term the variation can be removed from the
integral (which is convergent).. _ The behaviour of the integrand
withaut the variation is

gerll). %2 et = & ()
at infinity,as
kal’\'jkzi—: ) f\”-" 1&';71 ar |a)|—»oo (5)
so the removal of the variation gives a divergent answer. But sincs
the divergence arising from (4) is independant of the instanton para-
meters (for fixed k) it can be subtracted without changing (3). Thus

the first term in (3) gives a contribution of r23,24]

(k) + #;‘Jd+’['# b(‘f,k“kpkp) + 'SLT(fva) —(-l%l‘—),} (6)
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to the determinant where «(k} is some undetermined parameter independant
constant.
Berg and Lischer [24] have succeeded in writing $0 as a variation
of a five dimensional integral
- 5J’L¢ega+u fupyd tr[K" 2K KKK K KK K"()SK] (7)
where ’
€t = (=)o), + ef (8)
is invertible for all x and t.
In the special case of the INR solutions (section 10) one can
show that §6 vanishes and the term corresponding to (6) can be simplified

to give [23,24]
o det (- = $0) = RO~ [l b e (59)0°00 e

det t(f)
-,—',_' .Z_Ln(x;—uj) - 6L é&. )\,1

(
LA SV (9)

QMF

m‘_

where &(k) can be related to u(k) . This is essentially the same as
that first derived by Brown and Creamer [15] and is also given (with
some errors) in [20].

Berg and Lischer also compute the constant u{k). To do this one
observes that for fixed k an SU(n) potential for n<2k can be embedded
in a 2k x 2k matrix and considered as an SU(2k) potential,and for n>2k
an SU(n) self-dual potential can always be reduced to an SU(2k) solu-
tion (see section 10). Also from the representation of the determinant

of (16.4) one can see that in the ratio

der (- D) (10)

o(e('_("D,l)
(A, in D, has topolegical charge k and in 0, has charge 0) the

n k:

denominator for 5U(n) is Dhepaﬂl . This is because R, “is a pure
gauge and

J 51 tD-‘

T(s) = fde £ Tre (11)

is gauge invariant so the D' in this can be transformed to f.i,.
Then the internal index trace in Tr gives the factor n in the zeta

function and hence in the logarithm of the determinant. Similarly
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when an SU{n) potential is reduced or extended to SU(2k) as above

Bdet ~Dp | = bo et -Dic {M&) #(n-2k) fdet (-2*), (12)

Hence the ratio of interest (10) is

su(n)

det (" Dkz) Jl{— ( 'D:)lsu(u) C o= C.I_Q.{-_(;D.I;.) (13)
et (- D;) Su(w) [du_ (_-01)]'2“ Jd-(- Df) Su(2k) *

Then the construction of Drinfeld and Manin [31] in section 10
gives all the SU(2k) solutions and one can argue from this that the
parameter manifold is connected. So «(k) is the same for all k-instanton
solutions irrespective of the group SU(n) so onl; needs to be calculated

for one particular example. A suitable choice is the SU(2k) instanton

solution [24] K fmeg —
AL -

Az =0 A (14)
0 A

where A: are SU(2) 1-instanton solutions. One can see for this that
it is self-dual with topological charge k and the logarithm of its
determinant is k times &«du(-l%ll) . Using the result (6) (B vanishes
for this example) we see that ofk) =ke(!). Since the 1-instanton deter-
minant has been calculated completely for SU(2) [5—12] one can compute

«(1) and hence u(k)[24].



Appendix A - Properties of Quaternions and Dirac Matrices.

The conventions used here follow closely those of [ﬂ,2,3] and
many of the following formulae occur there.
Call the generators’ of the quaternions ¢, (®=9,1,2,3 ) which
can be represented by 2x 2 matrices
e.= 1, € = -i% (o :1,2,3) (1)
where ¢, are the Pauli matices. Then an arbitrary quaternion is given

by ve
* = Xt (2)

where », are the four real components of the gquaternion x.
The quaternion conjugate * corresponds to the hermitian conjugate

on 2x 2 matrices also denoted by +. The 2x 2 transpose will be denoted

=t* . Various properties of the

by ¢ and the complex conjugate by * sot
gquaternions follow from those of the Pauli matrices.
+

*Qf—'-(’.o ’ Qq = ’Eq

- (3)
EQMEA :Q: , € =(°') , ct=¢"",

-i 0
We can make a connection between the quaternions e, and the

generators ﬁ,q of self-dual and anti-self-dual antisymmetric tensors

introduced by 't Hooft [5,6]:
+ - —
‘eo(-Q,s :%“Pll-rl-vl“ﬂ

_ (4)
M tp = E‘qs 1, ¢ “M«p
where
Y‘“P =G, V\aur; ) ;\urs‘ o;\qmﬁ (5)
and T%F is defined by
'\Ro(lg = - V\qpx ) r\qbc = &abe Y\Qob = ’Snb . (6)

i is defined similarly sxcept i&k:bfaw. ﬁ and 4 are respectively self-

dual and anti-self-dual:

Vep = 3 Cugys 7{73
. (7)
')“(‘ z-3 i“pa—S'\ls .
Some useful properties are
(1) Nupvp =4 dab
1)) Neeer =30 (8)

(o)) et = oy des v g

'\Qi.rlv\“'as 6“7 3,«5 — S._Sgpx - f,((]rs .

n



78 A

The same results hold with ﬁ except in (8iv) the € symbol occurs with
positive sign. A consequence of (Biv) is that #ﬁ;,ﬂ;& and #1:ﬁ1;y are
respectively the projections onto self- and antiself-dual antisymmetric
tensors.

From (4) we can immediately deduce
ex‘rf"' L2 et = 1 Sxﬂiﬁex*lp + p}j‘ex
22" - gt = Uiiag
ef % - %'l = 2ivag
tr(e,‘-Q/{") =1 g‘ﬂ = tr(e: fﬂ) .

tr is the 2x 2 or quaternionic trace and where it may be confused with

(9)

other higher dimensional traces it will be denoted by t~, . The four

matrices ¢, form a complete set of 2x 2 complex matrices. Following

from this
+
‘e")m "‘)cn= zsaosec
(10)
('QK)AB (eet)q) 2 Zinc Eag
which may be written equivalently as
g.aef = tna '
- 1M
g0e, =72tag” (1)
for any 2x 2 matrix a«. As a consequence
€“?¢+= 4. 4'1.
Qup*e.( = -2e, (12)
+o ot =
‘Q“QF Qa'ea - 45#3-11
and other such relations hold.
The Euclidean Dirac matrices can be represented by
o 2 -y, ©
7""(&: o) e ey = () 11) (12)
which satisfy
+ 2
Yo = %o, B e
{Tﬁlrp} = 15&‘5-11' (14)
ey = o
where { , } is the anticommutator, and
[ s ©
[ 74] - 4048 ; Tup = ::(vwg ) (15)
v V\of‘s



Appendix B - Large ixl Behaviour of the Self-dual Functions

One can solve the defining equations (5.2) and (5.3) for v(x)
in a power series inl/hh This enables us to deduce the large |xi
behaviour of the self-dual expressions occurring in the text.
We write
vin) = Vo) + Vi) #vi) E e o (1)
where v'(x) is ~ A" as lml-»00. Also we choose A(x) to be in the

canonical form (7.11) and uwrite ..

() @

where the upper block is nx 2k and the lower block is 2k x 2k. Similarly

v"¥ is written in block form

Vs ( i) (3)

where the upper and lower blocks are nxn and 2k x n respectively.

Solving
(a* +xtbt)v =0 _
vty =1 (4)
iteratively gives
Ve =(v\(-.)) y :( 0 ) e :(‘%ﬂ a.crmim) ) R (5)
0 | -k 2atu() \ + ‘;'-1_ *alxa uim
where u(x) is an arbitrary nxn unitary matrix so it is ~1 as jhjso00.

Substituting (5) into the expression (5.1) for the gauge potential gives
Ao () = WFBu + o Wou (o - efw)adu + O(j54). (6)

Then A, is a pure gauge which is Of%) plus a term of O(éﬁ). Because

in general throughout the text we assume A.(x) is regular everyuhere

all the topological charge must come from the behaviour at infinity

(see (3.14), (3.13) ). Due to the result (6) only the pure gauge part

of Ay will contribute in (3.14) thus to give the charge k required by

(6.18) the unitary matrix wfx) must have winding number k at infinity

(ie. it must cover an SU(2) subgroup of SU(n) k times as x runs over

a large sphere 83). For example such a matrix is

x\¥
) ( s o ) (7)

(o] 1:\-1



where x is the 2x 2 quaternion form of %, and x»/i%xl covers SU(2) once.
The combination kv occurs in many expressions. By (2) and (5)
this is
] . L

bty = _#1,,;\,_(_‘, ¥ ﬁ_'xc\,xa,u + O(,,p) (8)
sa it is O(,T;‘,) . The full behaviour of any term can then be seen hy
expanding § () (5.13) ;

fo= L) - L) (erbx eathra)li)
ol ()" (atbx +x¥b*a )(utb) (athx + b Vi)' - ):E(b*b)_'(qm?(b‘t)' "’O(h'] s)( )

giving |
Pb = —(l-b(b*b)"b*)qf + O(r—;\a.)

o+ -1 + e 0

WPh =+ 55 (1-b(it) k)2 + o). (10)

(Note bfv = _x% by (4) ).
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Appendix C - Algebraic Calculations for Section 14

As required by the construction of the tensor product self-dual
matrices in section 14, the matrix 7 defined by (14.6) must have

exactly 4k,k2 unit eigenvectaors. They are of the form
a-A b8 be G A~ Ca
X = v oy l N 4 l oY (1)
G b o be,

where H,g)Cu are k, xk, complex matrices. Taking the last term of m

in (14.6) and multiplyingby X gives

b ata— N «b -8 o be Pl
‘\Iv vJ*r‘y »"jw J (2)
Ll | o bl ‘oo u*b!e

Using (13.14) in the second term of this it becomes

b-4 b, ﬁ Ub—e a“:w —]
! L,LJ B bﬂ:{ a*a.-J b*b a*ﬁ ca"a a*be

Similarly the second last term of M in (14.6) times X gives
_ a—-( eta-A7 bb-A L-B1 bth-C otbe—
I D v P B v | T
as G btb a*a b*bo ‘atbe bth .
The first and third terms of M give
-—-a%h, f’:j -a*be, C -_a J
I{--\fﬂ - l;ﬂa »—J --42 bth
__ba A b B -b’HoC a Cx
_Jm;]_soj - ¥ ‘]
7 ota R AN ._.e‘a‘q / afLe

In (5) the fourth and seventh terms combine by (13.14) into
6. Cy AT .Q*b\i]
HESRIER (6)
AR AR

uhich_has the

(5)

To proceed we use the relation EAdE<D=8ALSGD 3 n&k

diagrammatic form

<
€
N
(
~

(7)

Then the second term of (6) is

asmf.ab, 0y . e ot ( -
I ,J A (8)
bztbs|~e ath’ “ ath '

The first term of this combines with the third term of (5) due to (7)

’P

and (13.17) to give

T2




B2 C

and the second term of (B) combines with the eighth term of (5) to give

Q\ Qﬂoe C¢
5£ ‘+b———J ) (1)
d *ath

Hence (5) becomes
a \_—C q-' 0+a A b+b - "(Z*L;.e‘“' C“
TR
e, AN R R
oth A aﬂo?] —gtﬁci}
+ NS g
o R NG ru )

Similarly the second and fourth terms of ™M times X yield (11) with

(11)

the top row now interchanged with the bottom. We see from (3), (4)

and (11) that MX=X provided
+ lib/@_} + =‘.ztlfe_°‘,'- Co '
A B (-oc"]
+ + R =0
O*d—] h";] :a'H,Q’u‘

These constitute 2k, k, equations for the 6k, k, unknowns in A G, C,

(12)

giving 4k k, solutions. That they are linsearly independent can be seen
by proving that X=°¢ implies A,#,(,=0. Using (12) in (3) the latter

becomes

I R Al

so calculating in the same way gives

a B
SANEE]

Hence X=0 implies 80 as ™M is invertible. Similarly using (4) and (11)
with the condition (12) we can see that X <0 implies A=O and (,=0. Thus
we have proven MX=X has 4k, k, independent solutions giving

~M)X =0 (15)
with X as in (1).

The remaining results required in section 14 are proven in a
similar fashion to the above result so they are only sketched here.
Next we check thatﬁ in (14.16) satisfies (14.18) provided (14.19)
holds. We first note that if we replace a by & inM uwhich leaves it

unchanged (see the comment after (14.6) ) and a by A in X then the




proof MX=%X fullows through exactly as ahove provided & is replaced
by A in the conditions (12). This appears to give us new eigenvectors
% for each choice of * in &, but the replacement of a by A in (1) just

1
gives us X with

A=A
R =B +2x, Co +2*A (16)
C;=C‘I_+1NA.

Also the conditions (12) with & replaced by A are the mame as (12) with
A6,C, replaced by H,ﬂ,-,‘ of (16).

Since M of (14.17) is of the same form asx we can replace & hy
A and check that (94.18) is true when the conditions (14.19) have the
same replacement. This simplif‘ies the caculation of ¥*A. Now

which in the same way as (3) was obtainsd frem {2) we got

v —T S A b*bj ‘“[ “albeid Ty %
*LH I v+bY AJ L mlr\h}_ " _'“J +@b ’Q} ----- Q.,LJL {. (18)

Thus

—&AL.‘

vth stal- —
(veavl)(lﬂ’ﬂ)?'l = +b?1 - + (19)

where L, and L, are given by (14.19) with ¢ replaced by A, Then using

"
this with (14.16) for A we see

Fr-m)A vi- IAVNE Me—y  SaLq K-
viav) (1-M)A = i’i —z",] "o _}*' . ,4—\'9 ’ ]
( ] 2 V*B" '\d.c A’AL Ya+c -\°+($ L (20)

which vanishes as &a is proportional to the unit 2x 2 matrix so con-
firming (14.18),

We now wish to calculate (l--'m)’)'l . By using the corresponding
relations in the caleculation of MX with & replaced by A we see that

in the same way as above

b ANaL A bl bbbt L
=N+ 3 3 ! . '
Q,r\m l:'Y— 4)’\.‘]'____ ¥ ! A -
beq— (21)

la\ L\\_ A-\ L) T I~
bil-sal A0 L AL b L Al of )

I-m)N  and hence (l—'m)ﬁ depends on A, N, Q, only through L., L,



as asserted after (14.17).

"‘/\4 ’.
For the caleulation of A% (14.20) we need 'n{:—'m)'n .

This

18

: + At
obtained from (21) again using the results for X'hﬂzﬁMQJ_ The ansuer

is
at 1 t _ 9 + +1
. LAA-[’J bl L b*b_‘!‘&é'- _ Lfb__q?— &bl
sl Tt Laar - c* Lo'o”}“&lo’
Lrafa Lyl : L LA e s (22)
T \—J—A"ﬂ-l_ * ,_\_*']_,}N L
Gt ——’T atal — bl L-
- - - - 4+
et ade—— Lt 'J'—{ e -Lh
and then by thiz and (21) and A given by (14.16) we obtain after a
lengthy calculation,using (7) many times,that
. .
~F ~ - .]C" -C } —IL"!
= -7 =§ ( [ ol £ 23)
RO A /\( ) “es IL* "}LJ 4_" : L ill__"L-.! LL¥, n_f-c__} (23)
which is proportionel to the unit 2x 2 matrix, where
¢ ] AT(A L;——I—_,zf Bzl [p—
ls e W e
" o Hode bt sobiws Ui sta T so-losn
. 24
E '~ A“‘-—'— b4 A b =T —.'.b"'L\.. A;IA“L'\ ' b:’::':' AV ( -l-)
o TiAd g T a0 T Mpadeay anLog
and €4, , €4 are the same as €, ,%, respectively but with the top

row interchanged with bottom. From (24), Zﬁg appears

x , but it is

to be guartic in

easy to check that in each aof the EAQ the quartic and

cubic parts both cancel leaving only those up to guadratic. Similarly

(21) and (22) are in fact independant of x as implied in their con-

struction, so are the same with A replaced by a.

Wle can easily show that the € matrices satisfy the following

relations '

A G AP T R C RS

Thaese are of the form of the equations (14.14) for ¢,,C, and

since

" ~
ﬂu,C{) sy 1srg k Form a complete set of solutions we must be able

to write

/\,;(C )

-
Erg = 1$A8e

(26)



for some matrix K. To determine X consider for example

IE'}.:C.J i I'{li] . (27)

-C -
Using (25) and (14.14) we imaediately see that (27) simplifies to J

XA L] e

The three other relations corresponding to (27) and (28) have the

thus from (26)

same expression in the curly brackets of (28) which is just .ﬂ,t of
(14.23). Hence X,,=(JY')r, and using this in £, of (26) and then sub-

. . . o -
stituting in the expression (23) for A A we ses that the latter
becomes the same as (14.21).

The tensor prnduct Dirac zero mode (1£.24) is calculated by

A

using (eva ) (1-mNn from (419). Then since b is the coefficient of

. . IN \ .
the linear term in » of A (14.16) we obtain

¢ . ~ b vic —
(V|®V1]+("’n’l)b€n =Y L,:J + ;rl‘-a

vie — vib

b Aary  we ,d“b e (29)
+  wid - AJ + “P/) + v 1
vt I,,*c alal e . a*b .

To show the equality of (14.24) with (14.26) we multiply the latter
r~ jr + -~
by AR=Z'0'Z. Then the resulting
vt — v*b.f_] -t (30)
3 ) L 2 30
v‘bf vie

can be calculated by the completeness relations (26) giving

E DRI LR o

By the exprecsions (24) for £,; and with the help of (7) this is
identical to (29) so completing the proof.

The completeness relation (9.20) for the Dirac zero modes can
be calculated for the tensor product rcase by using the tensor product
Green function given by (13.1) and (13.10). The calculation proceeds
in an exactly analogous fashioﬁ te the fundamental case so need not

be repeated here (cf. [39]) The result can bo written for the complete
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orthonarmal set of zero modes as

1 Yo Tr vie) viok . vierb Sl ] ftalbves)

N f

7c () ( ) = NP & 0"

Z 4/1\ \Yﬂ J x)b?(n) ﬂl]) gt Viy) e 22 o)

(32)
(
. s 7 1[(,)0 vio) uf(«)l,F(,A)[ (Z‘ ]’ 4)
+
*(a)b?(wl Jviy) ) fuﬁ htu(y)

where EM are the same as £, given by (24) but with A replaced by b
and b replaced by . One can show that the same cempleteness relations
(26) hold for ‘?M except that JL (which is the inuersemf’}-’\) is replaced

by U in which all the N's are replaced by b. Hence (32) simplifies to

e tr — Vﬂ) }bl’
,Z L’/A(?‘-) \1,-‘6(‘)) = T‘ (:ﬂ,} e _J/ f\ﬂ FL ¢ [. ) (33)

which is consistent with (14.29) and (14.30).
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