
Durham E-Theses

The lateral distribution of the electromagnetic
component in extensive air showers of size 10(�4) to

10(�6) particles

Shaat, E. A. M.

How to cite:

Shaat, E. A. M. (1979) The lateral distribution of the electromagnetic component in extensive air
showers of size 10(�4) to 10(�6) particles, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/8369/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/8369/
 http://etheses.dur.ac.uk/8369/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


THE LATERAL DISTRIBUTION 

OF THE ELECTROMAGNETIC COMPONENT 

IN EXTENSIVE AIR SHOWERS OF SIZE 

1 0 4 TO 1 0 6 PARTICLES 

E.A.M. SHAAT, B . S c , M.Sc. 

The copyright of this thesis rests with the author. 

No quotation from it should be published without 

his prior written consent and information derived 

from it should be acknowledged. 

A T h e s i s s u b m i t t e d t o 
The U n i v e r s i t y o f Durham 

For the Degree o f 
D o c t o r o f P h i l o s o p h y 

BY 

J u l y , 1979 



ABSTRACT 

A small a i r shower array of diameter 120 m i s described. This 

array i s used to study extensive a i r showers of sizes ranging from 
4 6 

10 to 10 and also t o supply i n f o r m a t i o n r e q u i r e d f o r the hadron 

studies c a r r i e d out using a flash-tube chamber placed i n the Cosmic 

Ray laboratory of the U n i v e r s i t y of Durham. The array was also used t o 

t r i g g e r the Magnetic Automated Research Spectrograph which had i t s 

l o c a t i o n i n that l a b o r a t o r y . 

Kight l i q u i d s c i n t i l l a t i o n counters have been added to the i n i t i a l 

fourteen p l a s t i c d e t e c t o r s . The array d e t e c t i n g elements are located 

i n a t r i a n g u l a r geometry around the Physics Department. 

In the data handling procedures, the i n i t i a l array data were 

assembled, d i g i t i s e d and then t r a n s f e r r e d t o an o n - l i n e I.B.M. 1130 

computer disc where the data were p r i m a r i l y stored before being 

t r a n s f e r r e d to the l a r g e r I.B.M. 370/168 computer i n order to be analysed. 

The array could be t r i g g e r e d i n d i f f e r e n t ways depending upon the mode 

r . l i o s i M i and upon other experiments present. 

Results are presented showing the e f f e c t of the i n c l u s i o n of the 

l i q u i d counters on the accuracy w i t h which the analysis programme determines 

the l o c a t i o n of the shower core and on the shower size value r e s u l t i n g 

from the data a n a l y s i s . 

The depth of the l i q u i d i n the l i q u i d counters was 20 cm which 

means that these l i q u i d detectors responded to the photons and nuclear 

a c t i v e p a r t i c l e s of the extensive a i r showers. The l a t e r a l d i s t r i b u t i o n s 

of the electron-photon component of EAS as measured by one of the l i q u i d 

counters and one of the p l a s t i c detectors (5 cm t h i c k ) are deduced and 

compared w i t h the r e s u l t s of other experiments. The present r e s u l t s 

show good agreement w i t h those of other workers when the e f f e c t o f the 

thickness of the used detectors i s lakan i n t o account, except f o r the 

r e s u l t s of Hasagawa (1962). 



A comparison i s made between the d i s t r i b u t i o n s of the number 

flash-tubes discharged i n the red-side top measuring t r a y of the 

Spectrograph and the t h e o r e t i c a l l y predicted d i s t r i b u t i o n s . 



PREFACE 

The work done i n t h i s t hesis was c a r r i e d out d u r i n g the period 

1974 to 1979 while the author was working under the supervision of 

Dr. M.C. Thompson i n the Cosmic Ray Group of the Physics Department o f 

the U n i v e r s i t y of Durham. 

When the author j o i n e d the group, the A i r Shower Array was under 

c o n s t r u c t i o n . The author was responsible f o r the c o n s t r u c t i o n of e i g h t 

l i q u i d s c i n t i l l a t i o n counters w i t h t h e i r necessary e l e c t r o n i c s , the 

c a l i b r a t i o n of these counters and, together w i t h her colleagues, the 

running of the experiment. 

The analysis of the data reported here was c a r r i e d out by the author 

using the analysis programme of Smith (1976) w i t h some m o d i f i c a t i o n s . 

The i n t e r p r e t a t i o n of the r e s u l t s from the l i q u i d counters was the 

r e s p o n s i b i l i t y of the author. 

The design and operation o f the array has been described by 

Rada, et a l . (1977). 
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CHAPTER ONE 

INTRODUCTION 

1.1 H i s t o r i c a l Background 

At the end of the l a s t century, i t was believed that gases were 

p e r f e c t i n s u l a t o r s provided t h a t the applied e l e c t r i c f i e l d was not 

extremely high. However, E l s t e r and G e i t e l (1899), G e i t e l (1900) and 

Wilson (1900) discovered the existence of s i g n i f i c a n t r e s i d u a l conduct­

i v i t y i n samples of a i r i n t h e i r i o n i s a t i o n chambers although no known 

r a d i a t i o n s were allowed to reach t h i s a i r . The c o n d u c t i v i t y was 

explained as being due to e x t e r n a l r a d i a t i o n since i t was found that 

i t could be reduced by s h i e l d i n g the i o n i s a t i o n chamber by lead. 

At f i r s L i t was thought that r a d i o a c t i v e m a t e r i a l s on the earth were 

tlu! cnuHc of such c o n d u c t i v i t y . To t e s t t h i s assumption, Hess (1912) 

and soon afterwards K o l l i n r s t e r (1913, 1914) flew i o n i s a t i o n chambers i n 

balloons. As a consequence of t h e i r studies they found that as the 

balloon a l t i t u d e increased, the i o n i s a t i o n i n the chambers decreased up 

to an a l t i t u d e of 700 metres and then s t a r t e d t o increase. The i n i t i a l 

decrease could be explained as the r e s u l t of the i o n i s a t i o n chamber being 

i n c r e a s i n g l y separated from the earth's r a d i o a c t i v i t y but the eventual 

increase of c o n d u c t i v i t y had t o be due to another reason. Hess (1912) 

made a hypothesis to account f o r the observed i o n i s a t i o n increase i n 

which lie said that i t was caused by r a d i a t i o n characterised by high 

pencilr.il:i.on power a r r i v i n g from outer space. Owing to the observation 

that tin.' ioni.snti.on was nearly the same day and n i g h t , Hess concluded 

that the source of the r a d i a t i o n could not be mainly the sun. This 

p e n e t r a t i n g r a d i a t i o n became known as cosmic r a d i a t i o n . 

U.-ii 
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1.2 O h H o r v n t i on of Comrrir. R.ulinl ion Under Water 

M i l l i k a n and Cameron (1920) succeeded i n g i v i n g f u r t h e r proof that 

the r a d i a t i o n was e x t r a t e r r e s t r i a l . These workers lowered sealed e l e c t r o ­

scopes t o d i f f e r e n t depths below the surface of two lakes i n C a l i f o r n i a 

one at an a l t i t u d e of 1554 m and the other 3600 m above sea l e v e l . They 

found t h a t as the depth increased, the i o n i s a t i o n decreased r a p i d l y but 

t h i s happened j u s t w i t h i n the f i r s t metre or so of the water surface 

a f t e r which there was only a s]ow decrease of i o n i s a t i o n w i t h i n c r e a s i n g 

depth. 

These workers compared the r a t e of i o n i s a t i o n i n the electroscopes 

at the d i f f e r e n t a l t i t u d e s when they reached the same depth below water 

and found t h a t i t was not the same. However, when they looked at the 

equivalent depths t a k i n g i n t o account the a d d i t i o n a l 2046 m of a i r above 

the f i r s t l ake, the rates of i o n i s a t i o n were very near t o each other. 

Therefore, knowing t h a t there was an e q u a l i t y of the cosmic ray i n t e n s i t y 

at the two places, they came t o the conclusion that the i n t e r v e n i n g a i r 

between the two lakes was j u s t an absorber and tha t i t did not contain 

any sources of r a d i a t i o n . 

1.3 The Discovery of the Existence of Charged P a r t i c l e s Among the Cosmic 

Radiation. 

At the beginning o f the t w e n t i e t h century, gamma rays r a d i a t i n g 

from r a d i o a c t i v e m a t e r i a l s were the most p e n e t r a t i n g r a d i a t i o n s known. 

So the f i r s t i n t e r p r e t a t i o n was that the cosmic r a d i a t i o n ought to be 

high energy gamma rays. Some years l a t e r , Bothe and Kolhbrster (1929) 

ii.spd arrangements oT Ceiger Muller counters which enabled them to 

conclude t h a t amongst the cosmic rays observed i n the lower l e v e l s of 

the earth's atmosphere, there were some charged p a r t i c l e s . A year 

e a r l i e r , Clay (1927) discovered a r e l a t i o n s h i p between cosmic ray 

i n t e n s i t y and geomagnetic l a t i t u d e , and t h i s r e l a t i o n s h i p subsequently 
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became known as the l a t i t u d e e f f e c t . This discovery was used by Bothe 
and Kolhorster as evidence co n f i r m i n g the exi stence of charged p a r t i c l e s 
above the earth's atmosphere. A few years l a t e r , Compton (1933) 
measured the i n t e n s i t y of cosmic rays at various places over the e a r t h . 
Johnson and Street (1933) discovered the east-west e f f e c t , and t h i s 
demonstrated that the cosmic ray p a r t i c l e s were not j u s t charged but 
also t h a t most of the p a r t i c l e s were c a r r i e r s of a p o s i t i v e charge. 

1.4 The Discovery of some Cosmic Ray P a r t i c l e s 

1.4.1 The. P o s i t i v e Electron. 

Anderson (1932), while t a k i n g photographs o f cosmic ray tracks i n 

a v e r t i c a l Wilson chamber, discovered t h a t amongst 1300 t r a c k photographs, 

15 tracks were due t o p o s i t i v e p a r t i c l e s p e n e t r a t i n g a lead p l a t e w i t h 

masses much less than t h a t of the proton. These p a r t i c l e s were 

characterised as c a r r y i n g a u n i t charge and having a mass less than 

twenty times the e l e c t r o n mass. These new p a r t i c l e s became known as 

p o s i t r o n s and owed t h e i r o r i g i n to a photon e n t e r i n g the lead p l a t e 

from above, c o l l i d i n g w i t h a lead atom and as a r e s u l t knocking out from 

i t s nucleus an e l.o.ctron-posi t ron p a i r . 

1.4.2 The Pions and Muons 

l. a t t e s , O c c h i a l i n i and Powell (1947) were examining some photo­

graphic emulsions taken i n the B o l i v i a n Andes at a height of 5,500 m, 

when they found that some of the charged mesons which came to r e s t were 

able to produce secondary mesons and they showed t h a t mesons could e x i s t 

w i t h d i f f e r e n t masses. As f o r the secondary mesons, i t was concluded 

that they had the same mass and t h a t they were ej e c t e d w i t h constant 

kini'ti.c energy. I.attes et a l . (1947) gave the symbol IT to the primary 

mesons and the symbol, u to the secondary ones. Concerning t h e i r charge, 

i t was found t h a t both TI and u mesons carry a charge equal to t h a t of 
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the e l e c t r o n . 

1.4.3 The kaons and Hyperons 

At about the same time, Rochester and B u t l e r (1947) discovered 

the existence of heavier mesons. I t was found t h a t the new p a r t i c l e s 

could be c l a s s i f i e d i n t o two types. The f i r s t class contained the 

k-mesons and the mesons mass was c a l c u l a t e d t o be about 970 e l e c t r o n 

masses. The second class o f p a r t i c l e s were known as hyperons and were 

found to have masses between 2180 and 2600 e l e c t r o n masses. Both 

classes of p a r t i c l e s can decay i n many d i f f e r e n t ways. 

1.5 The O r i g i n of Cosmic Rays 

Since 1948, work has been done i n attempts to determine the o r i g i n 

of cosmic rays. At f i r s t , i t was thought t h a t the sun was the main source 

of the cosmic rays. The i s o t r o p y of the r a d i a t i o n was a t t r i b u t e d t o the 

capturing of the p a r t i c l e s i n the solar system by an e x t e r n a l magnetic f i e l d . 

Since s o l a r f l a r e s are always accompanied by an increase of cosmic ray 

i n t e n s i t y , i t was concluded t h a t there i s an a c c e l e r a t i o n mechanism 

a v a i l a b l e on the sun which i s responsible f o r generating p a r t i c l e s o f 

energy up to 10 GeV. However, w h i l s t the sun can be considered as a 

source of some of the low energy primaries i t can not be a source of 

p a r t i c l e s of the highest energy. The existence of very high energy 

primary cosmic, ray p a r t i c l e s must be due t o a much more powerful mechanism. 

I t was asmimed th a t the stars i n the galaxy could emit cosmic rays and 

that the cosmic ray p a r t i c l e s t r a v e l i n curved paths, due to t h e i r i n t e r ­

a c t i o n w i t h g a l a c t i c e l e c t r i c and magnetic f i e l d s , such t h a t they stay 

i n the galaxy f o r a long time. 

Fermi (1949, 1954) proposed t h a t a cosmic ray p a r t i c l e s t a r t s w i t h 

an appreciable energy when i t i s emitted from the s t e l l a r body. The 

p a r t i c l e then moves i n s p i r a l w i t h i n the l o c a l magnetic f i e l d . When 
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such a p a r t i c l e meets another magnetic f i e l d moving r a p i d l y towards i t , 
i t i n t e r a c t s w i t h t h i s magnetic f i e l d and owing t o t h i s i n t e r a c t i o n the 
p a r t i c l e w i l l be r e f l e c t e d gaining more energy. I f two f i e l d s o f t h i s 
k i n d capture the p a r t i c l e between them, the p a r t i c l e s energy w i l l 
c o n t i n u a l l y increase such t h a t e v e n t u a l l y i t becomes capable of l e a k i n g 
out. 

Colgate (1966) suggested the a b i l i t y of supernovae to provide an 

acc e l e r a t i o n mechanism which could y i e l d an abundance of elements the 

same as that found i n cosmic r a d i a t i o n . Afterwards, came the suggestion 

of O s t r i k e r and Gunn, (1969) t h a t pulsars which r o t a t e r a p i d l y o f f e r a 

possible a c c e l e r a t i o n mechanism responsible f o r cosmic rays o f very high 

energy. Kempa e t a l . (1974) surveyed the i n t e g r a l primary energy spectrum 

and found t h a t such a spectrum i s characterised by a bump i n the energy 

range between 1 0 1 3 eV and l O 1 ^ tfrakula et a l . (1974) explained the occurrance 

of sucli a bump as being due t o cosmic rays coming from g a l a c t i c pulsars 

and superimposed on the normal cosmic ray background. 

1.6 Methods, of Measuring the Primary Cosmic Ray Energy Spectrum 

The method of measurement defines the way i n which the spectrum o f 

primary cosmic rays i s expressed f o r the f o l l o w i n g reasons: 

(a) When the earth's f i e l d i s used as a magnetic analyser, which 

corresponds t o i n t e n s i t y measurements at various l a t i t u d e s , 

the i n t e g r a l p a r t i c l e f l u x i s found above a c e r t a i n t h r e s h o l d 

r i g i d i t y . 

(b) Using experiments on board s a t e l l i t e s or balloons, i n d i v i d u a l 

low energy n u c l e i can be recorded. The spectrum i s then 

defined according t o the number of n u c l e i e x i s t i n g i n a given 

range of energy per nucleon. 
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(c) I n d i r e c t studies of s i n g l e muons at the lower l e v e l s of the 

atmosphere give the number of primary nucleons w i t h energy 

per nucleon i n a given range. 

(d) At the highest energies,measurements of extensive a i r showers 

y i e l d the primary spectrum i n terms of primary energy per 

nucleus. 

I n the region below 10 9 ev/nucleon, d i r e c t measurements are u s e f u l 

such as those obtained using s a t e l l i t e s . Between 10 9 and 5 x 1 0 1 1 ev/nucleon 

balloon-borne detectors are used but the s t a t i s t i c a l accuracy i s low when 

Z becomes greater than two. For energies above 5 x 1 0 1 1 eV/nucleon there i s no 

d i r e c t i n f o r m a t i o n about p a r t i c l e s having Z greater than one. Knowledge 

concerning the energy spectrum i s deduced from observations c a r r i e d out 

at ground l e v e l of the fluxes of protons and muons and the a p p l i c a t i o n 

of an assumed model f o r the nucleon-nucleus i n t e r a c t i o n s i n the atmosphere. 

Such c a l c u l a t e d spectra are found t o be i n a good agreement w i t h both 

the d i r e c t observations at the lower end of the energy range and w i t h the 

extensive a i r shower measurements at the high energy end of the region. 

At the energies above 10 l i f ev, studies o f extensive a i r showers 

are used to measure the spectrum. The EAS technique gives i n f o r m a t i o n 

about the energy of the incoming p a r t i c l e s and hence the spectrum i s 

usu a l l y given i n terms of energy per nucleus. 

1.7 The I n t e n s i t y and Spectrum of Primary Cosmic Rays 

The i n t e n s i t y of primary cosmic ray a r r i v i n g at the earth's 

atmosphere decreases as the energy of the primaries increases such t h a t 

f o r an energy of = 10 7 ev per nucleon the i n t e n s i t y i s nearly equal t o 
—6 —2 —1 -1 —1 —36 —2 —1 —1 —1 10 m~ s sr ev" while i t f a l l s to 10 m s sr ev at an energy 

- 1 0 2 0 ev per nucleus„ 
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Greisen (1966) suggested t h a t there was a p o s s i b i l i t y t h a t the 
primary energy spectrum cut o f f at about 10 ?° ev. Such a cut o f f was 
explained by R o l l and Wilkinson (1966) as being a consequence of 
photonuclear reactions of the high energy primary protons w i t h the 
2.7°K Black Body r a d i a t i o n . I n these r e a c t i o n s , the primary protons 
lose energy i n photopion production. Hi l i a s (1975) suggested t h a t at 
energies above 10* 7 ev, i t was possible f o r n u c l e i t o s u f f e r photo-
d i s i n t e g r a t i o n on s t a r - l i g h t . From measurements made on a i r showers, 
H i l l a s concluded t h a t no such i n t e r a c t i o n s occur up t o about 2 x l 0 2 0 ev. 

I n the same year, H i l l a s c a r r i e d out a world survey of the i n t e g r a l 

primary energy spectrum, see f i g u r e 1.1. Grigorov e t a l . (1970) have 

made d i r e c t measurements of the spectrum using s a t e l l i t e s up t o energies 

of = 101'* ev but t h e i r measurements are at variance w i t h the r e s u l t s of 

other less d i r e c t methods at the highest energies. I n p a r t i c u l a r around 

1 0 1 5 ev per nucleus, the f l u x which i s obtained from a i r shower 

measurements i s higher than the f l u x reported by Grigorov and also the 

a i r shower measurements lead to f l u x e s which are above those obtained 

from i n d i r e c t muon c a l c u l a t i o n s . 

The Utah group ( E l b e r t e t a l . 1975) has studied m u l t i p l e muons 

underground which are due t o primary n u c l e i having energies up to 10 l l + ev 

per nucleon. H i l l a s (1975) suggests t h a t the primary parents are 

mostly n u c l e i (/.>1) and tha t at an energy of 10 1 1* ev per nucleon, there 

i s a reduction i n the proton f l u x w h i l e the helium and heavier n u c l e i 

increase r e l a t i v e t o a l i n e obtained by e x t r a p o l a t i n g the spectrum t o 

higher energies from the region of 1 0 1 1 ev per nucleon. H i l l a s (1975) 

p o i n t s out t h a t according t o the survey c a r r i e d out by Ng et a l (1973) 

of muon spectrum experiments, the primary spectrum up to 4 x 1 0 1 3 ev 

i s characterised by a slope = - 2.7, the l i n e marked U i n f i g u r e 1.1. 

Above t h i s energy and up to 1 0 1 6 ev, a bump appears i n the primary 
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spectrum, tlie o r i g i n of which has been explained i n section 1.5. 

At even higher energies there i s near agreement between the Sydney, 

Haverah Park and Chacaltaya EAS groups t h a t the spectrum becomes 

steeper and t h a t i t has a d i f f e r e n t i a l slope of -3.35 ± 0.15 t o about 

1 0 1 8 ev per nucleus. 



CHAPTER TWO 

EXTENSIVE AIR SHOWERS 

2 .1 I n t r o d u c t i o n 

S i n c e the d i s c o v e r y of e x t e n s i v e a i r showers i n 1938, a l o t of work 

has been done i n order to understand the f e a t u r e s of t h i s phenomenon. 

At f i r s t , the s t u d i e s were concerned w i t h the p r o p e r t i e s o f the phenomenon, 

but subsequent ly they began to concentra te on the p r o p e r t i e s o f the p r i m a r y 

p a r t i c l e s i n i t i a t i n g the e x t e n s i v e a i r showers . 

2 .2 f fcnera l P i c t u r e of the A i r Shower Development 

When the pr imary cosmic r a y p a r t i c l e s e n t e r the atmosphere, they 

i n t e r a c t w i t h a i r n u c l e i i n i t i a t i n g e x t e n s i v e a i r showers and produc ing 

secondary p a r t i c l e s . I t has been found that most of the s e c o n d a r i e s of 

these i n t e r a c t i o n s are charged and uncharged p i o n s . The n e u t r a l p ions 

decay i n a very s h o r t time ^ 1 0 " l f ; second i n t o two photons which by p a i r 

p r o d u c t i o n produce e l e c t r o n - p o s i t r o n p a i r s . These e l e c t r o n s i n t u r n 

produce gamma r a y s by the b r e m s s t r a h l u n g p r o c e s s . The r e s u l t i n g gamma 

rays i n i t i a t e more e l e c t r o n s and so e l e c t r o n - p h o t o n c a s c a d e s are 

generated and these c o n s t i t u t e the e l e c t r o m a g n e t i c component o f the 

showers . Due to coulomb s c a t t e r i n g i n the atmosphere, the p a r t i c l e s i n 

the e l e c t r o n - p h o t o n cascades spread over l a r g e a r e a s and a r r i v e at ground 

l e v e l some d i s t a n c e from the shower a x i s . As the number of p a r t i c l e s 

i n the showers i n c r e a s e s , the mean energy p e r p a r t i c l e d e c r e a s e s u n t i l 

the r a t e of l o s s of energy by the b r e m s s t r a h l u n g p r o c e s s becomes l e s s 

than that by i o n i s a t i o n . T h i s o c c u r s when the e l e c t r o n energy reaches 

the so c a l l e d c r i t i c a l v a l u e of 84 Mev. A f t e r t h i s p o i n t i s reached 

there i s a decrease i n the number of the shower p a r t i c l e s . 

I n a d d i t i o n to the e l e c t r o n - p h o t o n c a s c a d e , the charged p i o n s , 

n u c l c o n s and o ther secondary p a r t i c l e s produced i n the i n t e r a c t i o n s o f 

the pr imary cosmic r a y s and i n subsequent i n t e r a c t i o n s o f these h a d r o n s , 
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form a n u c l e a r cascade i n e x t e n s i v e a i r showers . 

T y p i c a l l y , i n the v e r t i c a l d i r e c t i o n charged p i o n s w i t h e n e r g i e s 

^ 10 Gev are more l i k e l y to decay i n t o muons and n e u t r i n o s than to 

i n t e r a c t , and c o n v e r s l y those h a v i n g e n e r g i e s ^ 10 Gev are more l i k e l y 

to i n t e r a c t w i t h a i r n u c l e i b e f o r e d ecay in g . The muons are c h a r a c t e r i s e d 

by a l i f e time of ^ 2 .2 us and there i s a h igh p r o b a b i l i t y that they 

reach sea l e v e l b e f o r e decay ing i n t o e l e c t r o n s . The muons posse s s h igh 

p e n e t r a t i n g power and can t h e r e f o r e be observed at q u i t e l a r g e d i s t a n c e s 

from the shower a x i s . 

2.3 The S tandard Model 

The p r o c e s e s s i n v o l v e d i n a i r shower can be understood through the 

models d e s c r i b i n g high energy i n t e r a c t i o n s . One model which i s used i n 

many c a l c u l a t i o n s i s based on the formula o b t a i n e d by C o c c o n i , K o e s t e r 

and P e r k i n s (1961) ( the CKP f o r m u l a ) . De B e e r e t a l . (1966) put the 

f o l l o w i n g p o i n t s as a summary f o r such a m o d e l . 

2 
1. High energy nuc leons have a mean f r e e p a t h of 80 g/cm 

and lose i n each c o l l i s i o n an average of 50% of t h e i r energy . 

The mean f r e e p a t h as w e l l as the energy l o s s i s energy i n ­

dependent . 

2 . Most of the produced secondary p a r t i c l e s are p ions b e i n g e i t h e r 

n e u t r a l , p o s i t i v e l y charged or n e g a t i v e l y charged and they are 

generated i n equa l numbers. 

1. i f the p ious are a l lowed to be e m i t t e d i n the backward d i r e c t i o n , 

t h e i r energy d i s t r i b u t i o n i n the l a b o r a t o r y system can be g iven 

by the e m p r i c a l CKP r e l a t i o n which i s 

where n ( E Q ) i s the m u l t i p l i c i t y o f the produced p ions and E Q 

i s the t r a n s f e r r e d energy. J"" and G r e f e r to the average energy 
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c a r r i e d by those p ions i n the forward and backward cones 

r e s p e c t i v e l y such that 

r = 2 ( E Q k - in ( i i Q ) n ) / n ( E o ) w h e r e k i s the inelast ic i ty c o e f f i c i e n t . 

4. The f r a c t i o n of the energy l o s t by a nuc leon which does not 

appear as p i o n s i s assumed to be s m a l l t h a t i t can be 

n e g l e c t e d . 

5 . I f the i n e l a s t i c i t y c o e f f i c i e n t K i s eq u a l to 0 . 5 , then the 

m u l t i p l i c i t y o f the secondary p ions w i l l be g iven by 

n = 2 .7 E * 
s p 

where E ^ i s p r o j e c t i l e nucleon energy i n Gev . 

6. C o c c o n i , K o e s t e r and P e r k i n s suggest t h a t the t r a n s v e r s e 

momentum, P , of the c r e a t e d p i o n s i s d i s t r i b u t e d a c c o r d i n g to 

the f o l l o w i n g e x p r e s s i o n 

f 0 \ . ) =• oxp ( - ^ ) 

Where 2p , which i s the mean t r a n s v e r s e momentum, i s assumed to 

be energy independent and to be equal to 400 Mev/c . 

7. The p ion i n t e r a c t i o n s are c a t a s t r o p h i c w i t h an i n t e r a c t i o n 

2 
l ength of 120 g/cm . The pions produced as the r e s u l t of p ion 

a 
i n t e r a c t i o n s h a v e ^ m u l t i p l i c i t y which i s the same as t h a t f o r 

i 

those produced by protons when k = 1, i . e . n g = 3 .2 E ^ 4 . 

8. I n some t r e a t m e n t s , the e f f e c t of f l u c t u a t i o n s i n the i n e l a s t i c i t y 

c o e f f i c i e n t has been taken i n t o c o n s i d e r a t i o n f o r nuc leon - nuc leon 

i n t e r n c t i o n s . The p ion i n t e r a c t i o n s however, are u n a f f e c t e d . 

2.4 Survey oT the P r o p e r t i e s o f the EAS components 

rt. has! becsn found that the components of a i r showers can be 

c l a n s i f i e d i n t o three main groups. These groups are the e l e c t r o m a g n e t i c , 

the muonic and the h a d r o n i c components. 
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2 . 4 . 1 The K l e c t romagnetic Component 

T h i s component i s the l a r g e s t component o f an a i r shower i n number, 

but i t doeB not c o n t a i n the g r e a t e s t amount o f energy . The f o l l o w i n g 

s e c t i o n s d e s c r i b e some of the main parameters o f t h i s component. 

2 . 4 . 1 . 1 The E l e c t r o n L a t e r a l D i s t r i b u t i o n 

The r e l a t i o n s h i p between the e l e c t r o n d e n s i t y and the d i s t a n c e of 

the p o i n t of o b s e r v a t i o n from the shower a x i s i s known as the e l e c t r o n 

l a t e r a l d i s t r i b u t i o n . The s t r u c t u r e f u n c t i o n d e s c r i b i n g t h i s d i s t r i ­

b u t i o n , has been measured by many groups at s e a l e v e l as w e l l as a t 

hifth a l t i t u d e s . G r e i s e n (1960) surveyed the r e s u l t s o f p r e v i o u s 

exper iments and deduced the s t r u c t u r e f u n c t i o n , 

„ / « 0 .75 3 .25 

•<•>•*>-Ŝ <£» ^ " ' i r e ? 
where p i s the d e n s i t y of p a r t i c l e s p e r square metre , N i s the shower s i z e , 

r i s the r a d i a l d i s t a n c e and r ^ i s the M o l i e r e u n i t and r e p r e s e n t s the 

s c a t t e r i n g l ength of an e l e c t r o n i n a i r . At s e a l e v e l , r^ equals 79 m 

w h i l e i t becomes equa l to about 120 m a t mountain a l t i t u d e s . At 

d i s t a n c e s l e s s than 100 m from the shower a x i s , there i s a good agreement 

between C r e i s e n ' s equat ion and a t h e o r e t i c a l one g iven by Ni sh imura 

and Kamata (1952 , 1958) which i s f o r a pure e l e c t r o m a g n e t i c cascade 

h a v i n g an age parameter equa l to 1 .25 . G r e i s e n (1956) approximated the 

N i sh imura - Kamata f u n c t i o n as 
s -2 s - 4 .5 

f ( f - ) = c ( s ) ( f - ) ( f - + 1) 2 .2 
r l r l r l 

where s i s the shower age parameter and c ( s ) i s a n o r m a l i s a t i o n f a c t o r . 

Tli i s f a c t o r in found to i n c r e a s e w i t h the age p a r a m e t e r , s , u n t i l the 

1 f i t t e r reaches a v a l u e of 1.25 and then i t d e c r e a s e s . I t i s a l s o found 

that the va lue of the age parameter s remains i n the reg ion 1.2 - 1.25 as 

the shower s i z e d e c r e a s e s from 10 9 to 10 3 . 
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The e l e c t r o n d e n s i t y i n the EAS can be measured u s i n g Ge iger 

M u l l e r counters and s c i n t i l l a t i o n c o u n t e r s . By us ing Ge iger c o u n t e r s , 

the l a t e r a l d i s t r i b u t i o n of i o n i s i n g charged p a r t i c l e s can be measured. 

With the s c i n t i l l a t i o n counters because t h e i r response depends upon the 

energy spectrum of the e l e c t r o m a g n e t i c component, t h e i r use g i v e s a 

somewhat s t e e p e r l a t e r a l d i s t r i b u t i o n . T h i s f a c t i s shown i n f i g u r e 2 .1 

where the s t r u c t u r e f u n c t i o n of G r e i s e n f o r s = 1.25 i s p l o t t e d t o g e t h e r 

w i t h that of Hasegawa e t a l (1.962) u s i n g s c i n t i l l a t i o n c o u n t e r s . The 

llasegawa f u n c t i o n i s given by 

N e x p ( ~ r / 1 2 0 ) 
p ( N , r ) = r- r - r 2 .3 

211(12011)J r 

I n a d d i t i o n u s i n g s c i n t i l l a t i o n counters i t i s c o n s i d e r e d that the 

measured shower s i z e s are most probably g r e a t e r than the true ones . 

The s t r u c t u r e f u n c t i o n obta ined a t s e a l e v e l by the Sydney group and 

r e p o r t e d by H i l l a s (1970) i s much f l a t t e r than t h a t g iven by G r e i s e n . 

T h i s i s due to the o c c u r r a n c e of many m u l t i - c o r e events i n t h e i r 

o b s e r v a t i o n s of showers i n i t i a t e d by p r i m a r i e s hav ing e n e r g i e s s l i g h t l y 

g r e a t e r than 1 0 1 5 e v . T h e i r f u n c t i o n i s 

p ( N , r ) = 2 . 1 2 x l 0 ' 3 N - ^ ^ y 7 ^ 2 .4 

The K e i l group ( H i l l a s , 1970) used a neon hodoscope and t h e i r d a t a 

are r e p r e s e n t e d by the l a t e r a l f u n c t i o n 

p ( N , r ) = 1 . 0 8 x l 0 " 2 N e X P ( " r / V 2 ? . ) . 2 .5 
( r + 1 . 1 ) 1 " * 

The l a s t two f u n c t i o n s are a l s o shown i n f i g u r e 2 . 1 . I t i s c o n s i d e r e d 

that f o r r a d i a l d i s t a n c e s g r e a t e r than 10 m, there i s s a t i s f a c t o r y a g r e e ­

ment between a l l the r e p r e s e n t e d f u n c t i o n s and t h a t the e x p e r i m e n t a l u n ­

c e r t a i n t i e s i n l o c a t i n g the core are the main reason f o r the observed 

d i f f c r e n c e a . 
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2 . A . 1 . 2 The Shower Age Parameter 

The shower age p a r a m e t e r , s , i n d i c a t e s the s tage of development of 

the shower. A va lue of s l e s s than u n i t y , means t h a t the shower i s 

s t i l l 'young' and that there w i l l be more development. A v a l u e of u n i t y 

corresponds to shower development r e a c h i n g a maximum. F u r t h e r , when s 

i s g r e a t e r than u n i t y , the number of p a r t i c l e s i n the shower i s d e c r e a s i n g 

and the shower i s c o n s i d e r e d as an ' o l d ' o n e . When s r eaches two, the 

number of p a r t i c l e s i n the shower has f a l l e n to one. 

K a r a k u l a (1968) p r e d i c t e d t h e o r e t i c a l l y the r e l a t i o n between the 

age parameter and the shower s i z e u s i n g the s t a n d a r d model mentioned 

e a r l i e r . A c c o r d i n g to h i s p r e d i c t i o n s , the shower age parameter v a r i e s 

only s l i g h t l y w i t h shower s i z e . However, i t i s found that the t h e o r e t i c a l 

v a r i a t i o n i s g r e a t e r than those of the e x p e r i m e n t a l r e s u l t s . F i g u r e 

2 .2 shows a comparison between K a r a k u l a ' s p r e d i c t i o n s f o r two v a l u e s of 

the z e n i t h a n g l e , 0, and the e x p e r i m e n t a l o b s e r v a t i o n s obta ined by 

Vernov e t a l . ( 1 9 7 0 ) . V e m o v ' s measurements show a s l i g h t i n c r e a s e i n 

the age parameter w i t h shower s i z e . However, Dixon and T u r v e r (1974) 

s i m u l a t e d showers and suggested that the age parameter decreases as the 

shower s i z e i n c r e a s e s . The i n c r e a s e found by Vernov can be e x p l a i n e d 

as be ing a consequence of u s i n g a s t r u c t u r e f u n c t i o n which i s f l a t t e r 

than that g iven by equat ions 2.1 and 2 . 2 . T h e o r e t i c a l c o n s i d e r a t i o n s 

i n d i e a t e that the l a t e r a l s t r u c t u r e of EAS depends upon the d i s t a n c e from 

the shower a x i s a t which the shower i s r e c o r d e d . T h i s dependance i s such 

that at large, d i s t a n c e s the f u n c t i o n i s f l a t t e r and at s m a l l d i s t a n c e s 

s t e e p e r . A c c o r d i n g l y , the age parameter measured a t l a r g e d i s t a n c e s 

from the shower a x i s i s expected to be l a r g e r than average and at s m a l l 

d i s t a n c e s l e s s e r * E x p e r i m e n t a l l y , i t i s found t h a t t h i s i s t r u e s i n c e 

the r e s u l t a n t average f o r the age parameter i s 1.15 at r a d i a l d i s t a n c e s 

I C B S than 20 m e t r e s . The continuous r e g e n e r a t i o n by the n u c l e a r a c t i v e 
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component of the e l e c t r o m a g n e t i c c a s c a d e , i s c o n s i d e r e d to be the 

reason f o r the approximate cons tancy of the shower age parameter 

w i t h shower s i z e . 

2 . 4 . 1 . 3 F l u c t u a t i o n s i n the A i r Shower Parameters 

The f l u c t u a t i o n s obta ined i n shower parameters are cons idered to be 

s t r o n g l y dependent upon the mass composi t ion of the p r i m a r y cosmic r a y s . 

I n showers c r e a t e d by p r o t o n s , f l u c t u a t i o n s would be due to s e v e r a l 

r e a s o n s , f o r example the v a r i a t i o n i n the depth i n the atmosphere at 

which the f i r s t i n t e r a c t i o n of the p r i m a r i e s takes p l a c e and the v a r i a t i o n 

i n the c o e f f i c i e n t of i n e l a s t i c i t y i n each i n t e r a c t i o n . Changes i n the 

m u l t i p l i c i t y and e n e r g i e s of the secondary p a r t i c l e s c o u l d a l s o be 

r e s p o n s i b l e f o r some of the f l u c t u a t i o n s . I f the p r i m a r y cosmic, r a y s 

are mainly p r o t o n s , then the expected f l u c t u a t i o n s of the age parameter 

w i l l be i n the range from 4% to 8% depending upon which model i s used 

for the h igh energy i n t e r a c t i o n s . The v a l u e s observed e x p e r i m e n t a l l y are 

about 10% which support the assumption t h a t the m a j o r i t y o f the 

pr imary p a r t i c l e s are p r o t o n s . As f o r h e a v i e r n u c l e i , s i n c e the showers 

i n i t i a t e d by them are c o n s i d e r e d to be s e v e r a l s m a l l showers superimposed 

upon each o t h e r , then the f l u c t u a t i o n i n s w i l l be the average of the 

v a r i a t i o n s which occur i n the s m a l l showers . T h e r e f o r e , the f l u c t u a t i o n s 

expected f o r heavy n u c l e i i n i t i a t e d showers shou ld be very much l e s s 

than 17. and probably neg l i .gable . 

f)i.xon and T u r v e r (1974) c a r r i e d out s i m u l a t i o n s t u d i e s to determine 

tho r e l a t i o n s h i p between the depth of the i n t e r a c t i o n of the i n i t i a t i n g 

primary p a r t i c l e of the shower and the shower s i z e measured a t s e a 

l e v e l , and the r e l a t i o n s h i p between the i n t e r a c t i o n depth and the depth 

at which the shower reaches i t s maximum development. These s t u d i e s 

were c a r r i e d out f o r an E of 1 0 1 5 ev pro ton i n i t i a t e d showers . F i g u r e 
P 

2 . 3 shows t h e i r r e s u l t s and i t can be seen t h a t the number of e l e c t r o n s 
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conta ined i n showers produced by a pr imary of a f i x e d energy f l u c t u a t e s 
g r e a t l y but i s not s t r o n g l y dependent on the depth of the i n i t i a l 
nuc l eon-nuc l eon i n t e r a c t i o n . 

2 . 4 . 1 . 4 C e n t r a l E l e c t r o n D e n s i t y 

The r a t i o between the centr.nl e l e c t r o n d e n s i t y and the t o t a l number 

of p a r t i c l e s i n the a i r showers i s a f u r t h e r parameter which depends 

upon the mass composit ion of the pr imary p a r t i c l e s . Such a dependence 

a r i s e s from the f a c t t h a t the c e n t r a l d e n s i t y i s approximate ly p r o p ­

o r t i o n a l to the energy per nucleon of the pr imary p a r t i c l e s w h i l s t the 

t o t a l number of p a r t i c l e s i n the shower i s c o n s i d e r e d to be r e p r e s e n t a t i v e 

of the energy per nuc leus of the p r i m a r i e s . The r e s u l t s o f Samorski e t a l 

(1971) are c o n s i s t e n t w i t h the primariesbeing most ly p r o t o n s . 

2 . 4 . 1 . 5 The l o n g i t u d i n a l . Development of E x t e n s i v e A i r Showers 

S t u d i e s of the e l e c t r o n component of showers are persued so t h a t the 

l o n g i t u d i n a l shower development can be i n v e s t i g a t e d . Lins ley et a l . (L962) 

and L a Po inte e t a l . (1968) found t h a t the shower s i z e at d i f f e r e n t 

atmospheric depths can be deduced by making e q u i - i n t e n s i t y cut s on the 

s i z e s p e c t r a observed at v a r i o u s z e n i t h a n g l e s . F i g u r e 2.4 r e p r e s e n t s 

the exper imenta l r e s u l t s of B r a d t e t a l . (1965) ob ta ined a t C h a c a l t a y a toge ther 

wi th the a e r i a l d a t a of Antonov e t a l (1971) taken a t a he ight of 10 km. 

From the da ta i t i s apparent that the e l e c t r o m a g n e t i c cascades c r e a t e d 

by n u c l e a r a c t i v e p a r t i c l e s as a r e s u l t of t h e i r i n d i v i d u a l i n t e r ­

a c t i o n s , a r c t y p i c a l l y very s h o r t and have l a r g e f l u c t u a t i o n s . The 

f i r s t of these c h a r a c t e r i s t i c s i s e x p l a i n e d as b e i n g a consequence of 

the r a p i d degradat ion of the energy of the n u c l e a r a c t i v e p a r t i c l e s , or 

i n o ther words, a t t r i b u t a b l e to the h igh m u l t i p l i c i t y of the s e c o n d a r i e s . 

http://centr.nl
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Dixon and T u r v e r (1974) i n v e s t i g a t e d the dependence of the f l u c t u a t i o n s 
of both the e l e c t r o n shower s i z e a t s ea l e v e l and the depth of maximum 
development on the energy of the pr imary p r o t o n s . F i g u r e 2 .5 shows 
t h e i r r e s u l t s together w i t h the r e s u l t s of o ther workers and some 
t h e o r e t i c a l p r e d i c t i o n s . There are only s m a l l d i f f e r e n c e s between the 
data and t h e o r e t i c a l p r e d i c t i o n s which are a t t r i b u t e d to the use of 
v a r i o u s d i f f e r e n t models. 

T u r v e r , (1973) i n v e s t i g a t e d the p o s s i b i l i t y that the r a t e of d e v e l ­

opment of a i r showers depends upon the nature of the p r i m a r i e s and c o u l d 

a f f e c t the average depth i n the atmosphere at which the showers r e a c h 

t h e i r maximum development and the degree of f l u c t u a t i o n s o c c u r r i n g i n 

t h i s parameter . I t has been found that the l e v e l of maximum development 

of showers generated by protons or l i g h t n u c l e i i s deeper i n the atmosphere 

than that of showers due to h e a v i e r p r i m a r i e s . A l s o the f l u c t u a t i o n s i n 

the l o n g i t u d i n a l development of the f i r s t c l a s s of shower are expected • 

to be g r e a t e r than those of the second c l a s s . 

2 . 4 . 2 The Muon Component 

Tt has been e s t a b l i s h e d that i n order to obta in i n f o r m a t i o n about 

the p r i m a r y p a r t i c l e s and t h e i r i n t e r a c t i o n mechanism, i t i s b e t t e r to 

study the muon component r a t h e r than the e l e c t r o n component of showers . 

T h i s i s due to the f a c t t h a t the i n t e r a c t i o n s between the muons and mat ter 

are r e l a t i v e l y weak, consequent ly the muon component at s e a l e v e l h o l d s 

miifh of the in format ion p e r t a i n i n g to the development of the EAS i n t h e i r 

i ' a r l y s tages and r e f l e c t s more t r u l y the energy of the p r i m a r i e s o f 

i n d i v i d u a l showers . I n a d d i t i o n to t h a t , s i n c e the d i r e c t i o n of t r a v e l 

of the muons r e p r e s e n t s r a t h e r w e l l t h a t of t h e i r p a r e n t s , i n f o r m a t i o n 

about the t r a n s v e r s e momentum of the p a r e n t s as w e l l as the l o n g i t u d i n a l 

development of the EAS can be obta ined by s t u d y i n g the l a t e r a l d i s t r i b u t i o n 

of muons of d i f f e r e n t e n e r g i e s . However, i t i s e a s i e r to d e t e c t the 
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e l e c t r o n s than the muons s i n c e the muons have a much lower d e n s i t y and 

l a r g e and expens ive w e l l s h i e l d e d d e t e c t o r s arc needed i n order to 

get a c c u r a t e d e n s i t y measurements and to a c h i e v e the r e q u i r e d d i s c r i m i n a t i o n 

of the muons from the e l e c t r o n s . Such s h i e l d i n g can be obta ined e i t h e r 

by p u t t i n g the d e t e c t o r s underground or by c o v e r i n g them by a dense 

absorb ing m a t e r i a l , f o r exampLc, l e a d . The t h r e s h o l d energy of the 

recorded muons i s d e f i n e d by the t h i c k n e s s of the s h i e l d i n g m a t e r i a l . 

EAS muons can a l s o be s t u d i e d u s i n g magnetic spec trographs w i t h v e r y 

l a r g e a c c e p t a n c e s , the muons be ing d e f l e c t e d in magnetic f i e l d s and 

hence t h e i r momentum c a l c u l a t e d . 

2 . 4 . 2 . 1 L a t e r a l D i s t r i b u t i o n of Muons 

C l a r k et a l . (1958) s t u d i e d muons of e n e r g i e s g r e a t e r than 1.2 Gev 

in showers of s i z e s ranging between 2 x 1 0 5 and 2 x 1 0 8 . G r e i s e n 

(1.960) used C l a r k c t a l ' s r e s u l t s i n o b t a i n i n g the f o l l o w i n g formula 

for the muon l a t e r a l d i s t r i b u t i o n , 

0 .75 - 0 . 7 5 - 2 . 5 
p ( N , r ) = I H ~ ) r (1 + -^r) 2 .6 

U 1 Q 6 320 

where p ^ ( N , r ) i s the d e n s i t y of muons p e r square metre , r i s the d i s t a n c e 

i n metres from the shower a x i s at which these muons f a l l and N i s the 

shower s i z e . 

The C o r n e l l group (Bennet e t a l . 1962) i n v e s t i g a t e d the dependence 

of the l a t e r a l d i s t r i b u t i o n s t r u c t u r e f u n c t i o n of the muons on t h e i r 

t h r e s h o l d energy i n the range from 1 Oev to 10 Gev. Such i n v e s t i g a t i o n s 

led them to the f o l l o w i n g r e l a t i o n s h i p . 

0 .75 - 0 . 7 5 - 2 . 5 0. 14r' 

f > „ < N . r . > V " 1 * . * ^ ) r (1 • ^ ( ^ ( I T ^ ) 
V U 

0 .37 

2 .7 

where E i s i n Gev and r i s i n m e t r e s . F i g u r e 2 .6 shows the curve ob ta ined u 

u s i n g t h i s formula together w i t h some e x p e r i m e n t a l r e s u l t s f o r E ^ ^ 10 Gev. 
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The u n c e r t a i n t i e s i n l o c a t i n g the shower axes are considered by 
Wdowczyk (1973) to be p a r t l y the cause of the r e l a t i v e f l a t t e n i n g of the 
experimental data at small distances from the core. 

Comparing the measured l a t e r a l d i s t r i b u t i o n of the muons w i t h the 

t h e o r e t i c a l expectation based on the standard model, i t i s evident t h a t 

the model p r e d i c t s narrower d i s t r i b u t i o n s than those observed. To get 

a wider l a t e r a l d i s t r i b u t i o n , i t has to be concluded t h a t e i t h e r the 

pions have a mean transverse momenta greater than 400 Mev/c or the 

muons are produced higher i n the atmosphere than the model assumes. 

2.4.2.2 The Relation Between the Number of Muons and the Number 

of Electrons i n Showers 

The t o t . i l number of muons N w i t h energies greater than E i n a 
) l ft & , j 

shower of size N can be obtained by i n t e g r a t i n g the l a t e r a l muon density 

over the r a d i a l distance, r. This number i s approximately p r o p o r t i o n a l 

to the number of electrons N^-''"'. The v a l i d i t y of t h i s p r o p o r t i o n a l i t y 

i s found t o e x i s t over a wide range. Also i t i s found t h a t the muon 

threshold energy has only a small e f f e c t on t h i s index such that the 

l a t t e r decreases only s l i g h t l y when the energy increases. 

2.4.2.3 High Energy Muons 

The study of high energy muons, i n p a r t i c u l a r t h e i r energy 

Hpof.trurn nnd charge r a t i o , enables i n f o r m a t i o n about the c h a r a c t e r i s t i c s 

of the high energy i n t e r a c t i o n s t o be obtained. Such high energy muons 

are the d i r e c t r e s u l t of the very f i r s t i n t e r a c t i o n s of the p r i m a r i e s . 

2.4.3 The Nuclear Active Component 

The nuclear active component plays a very important r o l e i n the 

development of the EAS since the i n t e r a c t i o n s of the p a r t i c l e s i n t h i s 

component lead to the muon and the electromagnetic components of the 

shower. The number of hadrons i n an n i r shower i s much less than t h a t 

of the other p a r t i c l e s and only because of t h e i r large energies, i t i s 

http://tot.il
http://Hpof.tr
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possible to separate them from the e l e c t r o n s . 

Croider (1.973) found that tin* t o t a l number and energy spectrum 

of the hadrons i n a shower of f i x e d primary energy, was a s e n s i t i v e 

parameter r e f l e c t i n g the model assumed f o r the high energy nuclear 

i n t e r a c t i o n s . This parameter can be obtained by studying the l a t e r a l 

d i s t r i b u t i o n of the hadrons. Kameda et a l . (1965) i n v e s t i g a t e d showers 

of e l e c t r o n size ranging between 4 x 101* and 4 x 10 6 p a r t i c l e s at 

sea l e v e l and got the f o l l o w i n g equation f o r the d i f f e r e n t i a l l a t e r a l 

d i s t r i b u t i o n , 
0.35 -1.2 - r / 

p(E,r,N)dEdr = 0.35N E e r°dE dr 2.8 
0 32 -0.25 where r = 2.4N " E , r i s the r a d i a l distance and N and E are o 

5 

measured i n u n i t s of 10 p a r t i c l e s and 100 Gev r e s p e c t i v e l y . Figure 

2.7 shows the r e s u l t s obtained by other groups f o r shower sizes i n 

the range from ^ ].0'J up t o ̂  3 x 10 6 p a r t i c l e s . I t i s found that i f the 

mean transverse momentum i s increased from 0.4 Ccv/c to a 0.6 Gev/c, 

there i s a good agreement between the experimental r e s u l t s and the 

c a l c u l a t e d energy spectrum based upon the standard model of de Beer 

(1966). Thus studying hadrons contained i n a i r showers, i t i s possible 

to deduce the transverse momenta involved i n nuclear i n t e r a c t i o n s . 

2.5 Some of the Previous Studies of the Electromagnetic Component 

2.5.1 The Tokyo Group 

The Hasegawa formula (1962) f o r the l a t e r a l s t r u c t u r e f u n c t i o n 

of the electromagnetic component (2.3) was deduced from the measurements 

ol)taiiu!d in the experiment c a r r i e d out by the Tokyo group. The ex­

perimental arrangements are b r i e f l y i l l u s t r a t e d i n f i g u r e 2.8. The 

detectors used i n th a t p r o j e c t were as f o l l o w s : 
2 

1. Eleven p l a s t i c s c i n t i l l a t i o n counters each of an area of lm . 

2. Five f a s t s c i n t i l l a t i o n d e tectors, four of which were located 

on the ground and one was placed about 6 metres above ground 
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l e v e l . These t l i > t i ' i ' L DI'H were used L n determine the 

a r r i v a l d i r e c t i o n of each recorded shower. 

3. A Neon hodoscope which consisted of about 1500 neon tubes, 
2 

2 cm i n diameter, spread to cover an area of 4 m known 

as the c e n t r a l zone. This hodoscope was used t o study the 

nature of the core o f the detected EAS i f t h a t core h i t w i t h i n 

the hodoscope's area. 
2 

4. Four s c i n t i l l a t i o n detectors each of 2 m area located a t a 
depth of 20 m.w.e. used to detect muons of energy 5 Gev. 

2 

5. Another muon detector having an area of 1 m placed under a 

block of concrete i n order t o detect muons o f energy ^ 1 Gev. 

The basic idea of t h a t arrangement was t o determine f o r each 

recorded shower, the shower size N, the l o c a t i o n of the shower core and 

the l a t e r a l d i s t r i b u t i o n of p a r t i c l e s using the s c i n t i l l a t i o n detectors ( 1 ) . 

2.5.2 The Sydney Group 

Sydney group, Bray e t a l (196A), studied the s t r u c t u r e of cores of 

a i r showers having sizes > 2.0 x 10"* using an array the arrangement of 

which i s shown i n f i g u r e 2.9. As seen from t h i s f i g u r e , the apparatus 

consisted of a c l o s e l y packed array of 6A large p l a s t i c s c i n t i l l a t i o n 

counters, a more t h i n l y spread array of about 500 Geiger counters (some 

of which were shielded) and 5 Wilson cloud chambers. Each of the s c i n t i ­

l l a t i o n counters was 41 cm x 41 cm x 10 cm and had i t s own p h o t o m u l t i p l i e r . 

These counters were mounted i n a 4 m x 4 m square g r i d contained i n a 

hut. Two Wilson cloud chambers, 30 cm i n diameter and 20 cm i n depth 

were included i n the array where a ' h a l f size (40 cm x 25 cm x 10 cm) 

s c i n t i l l a t i o n detector was mounted above one cloud chamber (Bray e t 

a l . , 1965). A s p e c i a l Gcigcr tray c o n s i s t i n g of 6 tubes each having 
2 2 an area of 115 cm and of 2 tubes of area 16.1 cm each was placed over 

one of the 64 s c i n t i l l a t i o n d e t e c t o r s . 
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l-'or each recorded shower, the numbers of p a r t i c l e s , C, r e g i s t e r e d 
by the cloud chambers were obtained by d i r e c t t r a c k counting and the 
Geiger response, G, was determined from the number of counters f i r e d i n the 
array. As f o r the number of s c i n t i l l a t o r p a r t i c l e s , S, t h i s was c a l ­
c u l a t e d by d i v i d i n g the pulse h e i g h t , v, measured f o r these S p a r t i c l e s 
by the pulse h e i g h t , v^, corresponding t o the passage of s i n g l e minimum 
i o n i z i n g p a r t i c l e s through the de t e c t o r . This pulse height, v^, was con­
sidered i n t h i s experiment to be the mode of the d i s t r i b u t i o n of the pulse 

heights r e s u l t i n g from the passage of these s i n g l e i o n i z i n g p a r t i c l e s . 
-2 

A comparison was then made between the d e n s i t i e s of p a r t i c l e s (m ) 
measured by the cloud chamber and by the ' h a l f ' size s c i n t i l l a t i o n 

the _ 2 

detector mounted above i t on^one hand and between the d e n s i t i e s (m ) at 

the s p e c i a l Geiger tray and some of the s c i n t i l l a t i o n counters i n i t s 

v i c i n i t y on the other. They found t h a t the r a t i o G/C was always near to 

u n i t y and that both the r a t i o s S/C and S/G were inc r e a s i n g w i t h decreasing 

core distance. 

2.5.3 The K i e l Experiment 

The main purpose of the experiment of the K i e l group, Bagge a t 

a l . (1965), was to study the electromagnetic s t r u c t u r e of shower 

cores. A plan of the detector arrangement i s shown i n f i g u r e 2.10. 

This f i g u r e shows that the apparatus consisted of 16 s c i n t i l l a t i o n 

counters each of im^ area and 5 cm thickness which were used to measure 

the p a r t i c l e d e n s i t i e s at d i f f e r e n t distances from the shower core. 

Kour of these counters were supplied w i t h f a s t p h o t o m u l t i p l i e r s to be 

used in the determination of the a r r i v a l d i r e c t i o n of the recorded 
2 

showers. At the centre of the array there was a 32m neon hodoscope 
2 

w i t h 176,400 flash-tubes placed under about 2.5 g/cm of wood. This 

hodoscope was used i n studying the cores of the EAS. The p a r t i c l e 

and f a s t t i m i n g data obtained by the s c i n t i l l a t i o n counters were 

recorded by the use of a d i g i t i a l system. The K i e l l a t e r a l d i s t r i b u t i o n 
equation f o r the electromagnetic component (2.5) was deduced from the 



Figure 2.10 Plan of the E . A . S . Array at Kiel. 

© = 1m2 scintillation counters 

a = 4m2 scintillation counters with additional 
fast timing photomultipliers. 

% = 32m 2 Neon hodoscope. 

(After Bagge et al. [1965]) 
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data obtained i n t h i s experiment. 

This a i r shower experiment was considerably extended and modified 

by Bagge et a l (1977) i n order to o b t a i n more d e t a i l e d and more accurate 

i n f o r m a t i o n on the region of the core of each recorded shower. The new 

array contained the f o l l o w i n g d e t ectors: 

L. 27 Unshielded s c i n t i l l a t i o n counters to he used i n the 

determination of the shower size and the core l o c a t i o n . 

2. 11 S c i n t i l l a t i o n counters connected w i t h 22 f a s t t i m i n g 

channels to measure the a r r i v a l d i r e c t i o n of the detected 

showers. 
2 

3. The 32 m neon hodoscope used i n the previous experiment and 

again used f o r the same o r i g i n a l purpose. 

4. 13 S c i n t i l l a t i o n counters shielded by 2 cm of lead t o study 

the energy flow of the electromagnetic component i n the EAS. 

5. Another neon hodoscope c o n s i s t i n g of 367, 500 f l a s h - t u b e s 
2 

covering a t o t a l area of 64m and placed under a layer of 
2 

880 g/cm of concrete to detect the shower muons and hadrons. 

2.5.4 The France-Poland Experiment 

This experiment was c a r r i e d out by Catz e t a l (1975) where an 

equation was assumed to represent the l a t e r a l d i s t r i b u t i o n of p a r t i c l e 

d e n s i t i e s as r e g i s t e r e d by l i q u i d s c i n t i l l a t i o n counters f o r shower sizes 

i n the range from 1.0 x 10 5 to 5.0 x 10 6. The equation (4.3) was 

s i m i l a r to that of the K i e l group (2.5) w i t h a s l i g h t m o d i f i c a t i o n made 

to ft'ivc a b e t t e r agreement w i t h t h e i r experimental data. The v a l i d i t y of 

the Catz equation was found to extend over r a d i a l distances from 2 m 

to at l e a s t 70 m. The arrangement used i n t h a t experiment i s shown i n 

f i g u r e 2.11. This f i g u r e shows that the array consisted of seven 
2 

l i q u i d s c i n t i l l a t i o n counters each of an area of 1 m which were placed 

i n a h o r i z o n t a l plane. These counters were used to measure the p a r t i c l e 
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density and four of them were also used to determine the time of a r r i v a l 

of the shower f r o n t a t each. Figure 2.12 i l l u s t r a t e s one of the s c i n t i l l a t i o n 

counters. I n a d d i t i o n t o these counters, there were two hodoscopes. The 

f i r s t one consisted of 8 boxes of 9 Geiger counters, each having an area 
2 

of 130 cm , to measure the density of el e c t r o n s . The second hodoscope 
2 

consisted of 200 boxes of Geiger counters each of 1500 cm area. This 
2 

hodoscope which had a t o t a l area of 30 m was placed under 40 cm 

concrete, 30 cm lead and 10 cm i r o n such t h a t muons of energies greater 

than 1 Gev only could be recorded. 

In t h i s experiment, the equation assumed f o r the l a t e r a l d i s t r i b u t i o n 

(4.3) was used to f i n d the core p o s i t i o n s of about 25,000 showers w i t h 

an accuracy of 2 to 3 metres. Using these l o c a t i o n s , the l a t e r a l 

d i s t r i b u t i o n of the d e n s i t i e s a t the Geiger counters was deduced. This 

was done by o b t a i n i n g the d e n s i t i e s a t the G.M. counters f o r every 

l o c a l i s e d shower and comparing these d e n s i t i e s w i t h those expected from 

the p r e v i o u s l y assumed formula to get the r a t i o of the G.M . t o s c i n t i l l a t i o n 

counter d e n s i t i e s as a f u n c t i o n of distance from the shower core. The 

l a t e r a l d i s t r i b u t i o n of G.M. d e n s i t i e s was then obtained by combining 

t h a t r a t i o w i t h the l a t e r a l d i s t r i b u t i o n of the s c i n t i l l a t i o n counter 

d e n s i t i e s . I t was found that there was an agreement between the l a t e r a l 

d i s t r i b u t i o n of electrons measured by G.M. counters and the Nishimura-

Kamata— Greisen f u n c t i o n (2.2) w i t h an age parameter, s, of about 1.25. 

As f o r the l a t e r a l d i s t r i b u t i o n of d e n s i t i e s measured by the l i q u i d 

s c i n t i l l a t i o n counters, i t was found to be c l e a r l y steeper than t h a t of 

the G.M. counters at r a d i a l distances below 20 metres from the shower 

core. 

2.5.5 The Moscow Experiment 

Alexeyev et a l (1977) c a r r i e d out an experiment t o study the l a t e r a l 

d i s t r i b u t i o n of electrons i n EAS w i t h N >.2.0 x 10 5. The detector arrangement 
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i s shown i n f i g u r e 2.13. The main d e t e c t i n g array which was c a l l e d 

the 'Carpet' consisted of 400 l i q u i d s c i n t i l l a t i o n counters arranged 

in a h o r i z o n t a l square of 14 x 14 m̂ . Each of these detectors was 
3 

70 x 70 x 30 cm i n size and viewed by a s i n g l e p h o t o m u l t i p l i e r . This 

main p a r t was placed i n s i d e the b u i l d i n g . Outside the b u i l d i n g there 

were 6 detectors placed such that four of them were at 30 m 

and the remaining two were at 40 m from the centre of the array. Each 

of these outside detectors consisted of 18 s c i n t i l l a t i o n counters of 
2 

a t o t a l area of 9m as w e l l as three sets of Geiger-Muller counters. 
2 

The f i r s t set consisted of 24 counters each of area 21 cm , the second 
2 

of 24 counters each of area 100 cm and the t h i r d of 72 counters each 
2 

of area 330 cm . Two other CM. trays were placed on the roof of the 

b u i l d i n g near the centre of the array and higher than the Carpet l e v e l 

by 10 metres. These trays contained two sets each of 48 counters. 
2 

The area of each counter i n the f i r s t set was 21 cm while that of each 
2 

i n the second set was 100 cm . 

I n order to obtain the re q u i r e d l a t e r a l d i s t r i b u t i o n , the angles 

of the a r r i v a l d i r e c t i o n of each recorded shower were determined 

using the delays of outward detectors r e l a t i v e to the c e n t r a l p l a s t i c 

s c i n t i l l a t i o n counter. Only showers w i t h z e n i t h angle 0^30° were 

included i n the data a n a l y s i s . I n the c a l c u l a t i o n of the core l o c a t i o n , 

the data from the c e n t r a l 400 detectors only \f/ete considered an<l . 

these data were f i t t e d by the Nishimura-Kamata-Greisen f u n c t i o n (2.2) 

using the l e a s t squares method. The shower size and the age parameter 

were also determined. The showers which had t h e i r cores i n s i d e the 

c e n t r a l array were the only ones to be f i n a l l y analysed. The data 

obtained by the s c i n i l l a t i o n counters of the outward detectors were used 

to determine the shower size N . A l l the d e n s i t i e s measured by the 
e 

s c i n t i l l a t i o n detectors and by the G.M. counters were then normalised 
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Figure 2.13 A Plan Of The Moscow Air-Shower Array. 
(After Alexeyev et al.[1975]) 
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to t h i H N to In; u s e d i n the d e d u c t i o n o f the a v e r a g e l a t e r a l d i s t -e 

r i b u t i o n f u n c t i o n . I t was found that the l a t e r a l d i s t r i b u t i o n of the 

s c i n t i l l a t i o n detectors was steeper than t h a t of the Geiger counters 

and t h a t w h i l s t the l a t e r a l d i s t r i b u t i o n of the Geiger counters could 

be f i t t e d w e l l by the N.K,G. f u n c t i o n w i t h an age parameter, s, of 

1.1, i t was not possible f o r that of the s c i n t i l l a t i o n detectors to 

be f i t t e d by the f u n c t i o n w i t h a s i n g l e value of s over the complete 

range of r a d i a l distance. 



CHAPTKH TIIHKK 

DURHAM EXTENSIVE AIR SHOWER EXPERIMENT 

3.1 I n t r o d u c t i o n 

The a i r shower produced as the r e s u l t o f the i n t e r a c t i o n o f a primary 

cosmic ray w i t h an a i r n u c l e i has the pr o p e r t y of extending over a 

large area at the l e v e l o f observation. Consequently, the detectors 

used i n an a i r shower array may be spread over a s i m i l a r area. The 

upper l i m i t o f shower size which can be c o r r e c t l y analysed f o l l o w s the 

size of the array d e t e c t i n g i t . 

Two important reasons were behind the idea of b u i l d i n g the Durham 

EAS array. The f i r s t o f these reasons was the need t o have data on 

p a r t i c l e s accompanying the muons t r a v e r s i n g the Magnetic Automated 

Research Sepctrograph (S3.5). The second, was t h a t the hadron studies 

using the flash-tu b e chamber (Cooper, 1974) required the knowledge o f 

the size and l o c a t i o n o f the extensive a i r showers accompanying the 

recorded events. 

The work f o r t h i s array s t a r t e d i n 1973 and was completed i n 1977 

when 8 l i q u i d s c i n t i l l a t i o n counters were, added, as p a r t of t h i s research, 

to the i n i t i a l 14 p l a s t i c detectors i n order t o improve the accuracy w i t h 

which the parameters of the showers f a l l i n g w i t h i n the array could be 

cal c u l a t e d . Figure 3.1 i l l u s t r a t e s the l o c a t i o n of each of these 

detectors together w i t h the MARS spectrogeaph and the flash-tu b e chamber. 

This f i g u r e shows t h a t the array has an e q u i l a t e r a l t r i a n g u l a r symmetry 

which was governed to a great extent by the s i t e s a v a i l a b l e f o r the 

detectors. The data obtained from a symmetrical array can also be used 

to detect any possible detector biases. Some of the p a r t i c l e detectors 

of the array arc located on the roof of the Physics Department while 

others are placed on the ground around the Department. The array has 

a diameter of 120 m. Owing t o the l o c a t i o n o f some of the dete c t o r s 

near w a l l s or b u i l d i n g s , the maximum z e n i t h angle of the showers which 
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can be accepted f o r the dntn analysis i s somewhat r e s t r i c t e d . T.n f a c t , 
a l l the detected showers are analysed but f o r the spectrum measurement 
and f o r studying the c h a r a c t e r i s t i c s of the showers only those w i t h 
cores f a l l i n g w i t h i n the array and w i t h z e n i t h angles less than 30° 
are u t i l i s e d . 

3.2 The P l a s t i c S c i n t i l l a t i o n Counters 

The p l a s t i c counters present i n the array can be c l a s s i f i e d i n t o 

four main groups according to t h e i r areas. Figure 3.2 shows the features 

of these d e t e c t o r s . The density pulses ( 3 . 4 . 2 ) from the detectors of 

the f i r s t and the l a s t of these groups are chosen to t r i g g e r the array. 

These detectors also provide t i m i n g pulses ( 3.4.1) according to which 

the a r r i v a l d i r e c t i o n o f the shower f r o n t i s c a l c u l a t e d . 

The f i r s t group comprises only one detector which has i t s p o s i t i o n 
2 

at the centre of the arr a y . I t has a geometrical area o f 0.75 m and 

consists of two i d e n t i c a l halves of 5cm t h i c k slab of NE102A p l a s t i c 

s c i n t i l l a t o r . Each o f these halves i s viewed by three p h o t o m u l t i -

p l i e r tubes. Two tubes are P h i l i p s 53AVP type and these are used f o r 

the purpose of measuring the density of the p a r t i c l e s passing through 

the detector. The t h i r d tube which i s a P h i l i p s 56AVP i s used t o supply 

the t i m i n g pulse t h a t i s taken as the reference of the t i m i n g pulses 

from the oth e r d e t e c t o r s . 

There are three detectors i n the second group each having an area 
2 

of 1.0 m and c o n s i s t i n g of four i d e n t i c a l 5 cm t h i c k quarters of 

unknown s c i n t i l l a t o r composition. These detectors are d i f f e r e n t from 

a l l others as they have t h e i r p h o t o m u l t i p l i e r tubes f a c i n g the broad 

surface of each o f the four q u a r t e r s . This has the advantage of 

Riving each detector a response which i s q u i t e uniform over the 

detector area. 
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The t h i r d group can be d i v i d e d i n t o three subgroups having areas 
2 2 2 of 1.6m , 1.2m and 0.8m . Each of the detectors has a thickness o f 

2.5 cm and i s made of the same m a t e r i a l used f o r the c e n t r a l d e t e c t o r . 

There i s only one detector i n the f i r s t and the t h i r d subgroups while 

there are two detectors i n the second one. A l l of these detectors 

are viewed by P h i l i p s 53 AVP p h o t o m u l t i p l i e r tubes. 

Concerning the f o u r t h group, i t contains s i x detectors which are 
2 

the backbone of the array. They are characterised by an area of 2.0m 

and consist of a s i n g l e piece of NE110 p l a s t i c s c i n t i l l a t o r of thickness 

2.5 cm. As mentioned before, they provide both density and t i m i n g 

pulses which are obtained from each detect o r by using four 5" diameter 

EMI 9579B p h o t o m u l t i p l i e r tubes and one 2" diameter P h i l i p s 56 AVP 

tube r e s p e c t i v e l y . 

Each p l a s t i c detector i s enclosed i n a wooden weather proofed box 

c o n t a i n i n g also the p h o t o m u l t i p l i e r tubes. The E.H.T. u n i t and the 

head am p l i f e r , described i n d e t a i l by Smith (1976), are mounted on one 

edge of the box. These boxes r e s t on i r o n frames. Both the box and the 

frame arc inside a wooden weather proofed hut. 

3.3 The L i q u i d S c i n t i l l a t i o n Counters 
In the a r r a y , there are 10 l i q u i d s c i n t i l l a t i o n counters each 

2 
having an area o f 0.26m . At two places i n the a r r a y , two of these 
detectors are connected together using a mixer which w i l l be described 

2 

l a t e r , to give detectors of 0.52m . 

I n each of these 10 counters, there are 53 l i t r e s of l i q u i d 

. ' s c i n t i l l a t o r g i v i n g a s c i n t i l l a t o r thickness of 20 cm. This l i q u i d 

consists of 91% Medicinal P a r a f f i n and 9% S h e l l s o l 'A1 mixed w i t h about 

33 grams of P. Tcrphi'.nyl and 0.55 grams of P0P0P. This mixture was 

prepared by adding the P. Terphenyl to the P a r a f f i n and heating both up 

to about 90°C t i l l the P. Terphenyl was completely dissolved. Then 
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the mixture was heated again together w i t h the P0P0P up t o 70°C. 

A f t e r d i s s o l v i n g the POPOP, the mixture was l e f t to cool before adding 

the S h e l l s o l . 

These detectors are located near the centre of the array as shown 

i n Figure 3.1. Five of them have t h e i r p o s i t i o n s on the roof of the 

Physic9 Department, two i n c l u d i n g a double one, are placed on the 

parapet of the roof and one i s located i n the l a b o r a t o r y near to the 

Magnetic Spectrograph. Each of the two detectors which are on the parapet 

i s r aised o f f t h a t parapet by two wooden supports about 10 cm t h i c k , 

while 1 each of the other detectors i s r e s t i n g on an i r o n frame about 

53 cm above the r o o f l e v e l . On the top of each detector, there i s an 

aluminium weather proofed cover of a c o n i c a l shape t o prevent any 

possible damage due to the r a i n . One of the s i n g l e l i q u i d s c i n t i l l a t i o n 

counters i s shown i n Figure 3.3. 

The l i q u i d i n each detector i s viewed by a s i n g l e E.M.I. 9530 5" 

diameter p h o t o m u l t i p l i e r tube f a c i n g the surface of the l i q u i d . 

Consequently, the response of these detectors i s very uniform over a l l 

the detector area. Figure 3.4 i l l u s t r a t e s the base c i r c u i t of t h i s 

tube which i s of the high current type i n order t o achieve good 

l i n e a r i t y f o r b i g pulses. This tube operates w i t h p o s i t i v e E.H.T. 

fed to i t s anode through a charge s e n s i t i v e a m p l i f i e r (C.S.A.) placed 

in the l a b o r a t o r y ( 3.4.2). The cable which takes the E.H.T. to the 

tube i s also used to carry the tube's pulse t o the input of the C.S.A. 

The pulses obtained at the anode of t h i s tube are negative and 

characterised by an exponential decay time constant of about 2 00 ns 

The li n e a r i t i e s of the used tubes were tested using a pulsed L.E.D. 

capable of generating phototube pulses s i m i l a r t o those produced as a 

r e s u l t of the passage of r e a l cosmic ray p a r t i c l e s through the 

s c i n t i l l a t i o n counters. Two f i l t e r s a c t i n g as analyser and p o l a r i s e r 
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were placed between the L.E.D. and the t e s t e d tube. By changing the 

angle 6 between the planes of p o l a r i s a t i o n of these two f i l t e r s the 

i n t e n s i t y of the l i g h t coming from the L.E.D. and f a l l i n g on the 

photocathode of the tube would be a l t e r e d f o l l o w i n g an i n t e n s i t y a 
2 

cos 6 law. The output pulses of the C.S.A. through which the E.H.T. 

was fed t o the tested tube, were taken to an os c i l l o s c o p e to measure 

t h e i r maximum heights. The n o n l i n e a r i t y of the C.S.A., which w i l l be 

described l a t e r i n t h i s chapter, was taken i n t o c onsideration i n 

t h i s t e s t . Figure 3.5 shows the r e s u l t s obtained f o r one of the photo-

m u l t i p l i e r tubes which operates on an E.H.T. of about 1.01 kv. From 

t h i s f i p u r e , i t i s c l e a r t h a t f o r t h i s E.H.T. value, the tube i s q u i t e 

l i n e a r . 

The high voltage required t o run the ten p h o t o m u l t i p l i e r tubes 

used f o r the l i q u i d s c i n t i l l a t i o n counters, i s supplied by an E.H.T. 

u n i t which i s set t o 2.0 kv i n the l a b o r a t o r y . The output of t h i s u n i t 

is connected t o the inputs of two p o t e n t i a l d i s t r i b u t i o n u n i t s such th a t 

each of the ten output voltages goes to one of the tubes v i a a charge 

s e n s i t i v e a m p l i f i e r . One of these two u n i t s i s shown i n Figure 3.6. 

By a d j u s t i n g the resistance of each of the f i v e r e s i s t o r chains, each 

tube was supplied w i t h a s u i t a b l e operating voltage. The 0.1 uF 

capacitors are used t o prevent any e l e c t r i c a l s i g n a l passing from one 

charge s e n s i t i v e a m p l i f i e r to the other. 

A c a l i b r a t i o n of the l i q u i d s c i n t i l l a t i o n counters was c a r r i e d out 

to determine the E.H.T. which should be supplied t o each p h o t o m u l t i p l i e r 

tube to give the tubes near i d e n t i c a l responses. For t h i s purpose, a 

pulse height analyser (P.H.A.) was used. The easiest q u a n t i t y to be 

measured when a p a r t i c l e d i s t r i b u t i o n i s obtained on the P.H.A. i s the 

peak or the mode of the d i s t r i b u t i o n r a t h e r than i t s mean. However, the 

mean pulse height i s the parameter which v a r i e s i n p r o p o r t i o n to the 
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number of the p a r t i c l e s passing through the det e c t o r , hence the detectors 

were always c a l i b r a t e d on the mode and the r a t i o mean to mode was 

calc u l a t e d i n i t i a l l y from one d i s t r i b u t i o n . The chosen value of the 

mode of the p a r t i c l e d i s t r i b u t i o n f o r p a r t i c l e s crossing the de t e c t o r 

i n ^ n e a r v e r t i c a l d i r e c t i o n was 50 - 10 mv. 

For one de t e c t o r , the d i s t r i b u t i o n of the output pulses of the C.S.A. 

connected t o i t s p h o t o m u l t i p l i e r tube was obtained t w i c e , namely when 

the p a r t i c l e s were t r a v e r s i n g the detector i n almost a v e r t i c a l d i r e c t i o n 

and also when they were coming from a l l d i r e c t i o n s . I t was found t h a t 

the mode of the v e r t i c a l d i s t r i b u t i o n was s h i f t e d by 6% towards smaller 

pulse heights w i t h respect to the second one. 

The f i r s t d i s t r i b u t i o n , the nearly v e r t i c a l one, was obtained 

using an a n c i l l a r y s c i n t i l l a t o r telescope. This telescope consisted 

of two small p l a s t i c d e tectors, one being placed on the top of the l i q u i d 

counter and the other below i t where a v e r t i c a l l i n e passed through the 

whole system. The p o s i t i v e E.H.T. needed to run each of these small 

detectors was provided through a C.S.A. The outputs of these two 

C.S.A's were d i s c r i m i n a t e d above a chosen threshold l e v e l . The output 

standard l o g i c s i g n a l of each d i s c r i m i n a t o r was fed to the input o f a 

coincidence u n i t such th a t i t s output was used t o open a gate on the 

Analogue to D i g i t a l Converter (A.D.C.) o f the P.H.A. Thus the pulse 

height d i s t r i b u t i o n o f the tested l i q u i d s c i n t i l l a t i o n counter was 

b u i l t up on the screen of the P.H.A. By measuring the mode of t h i s 

d i M t r i h u t i o n , the detector was e a s i l y c a l i b r a t e d . 

Since as mentioned before, the C.S.A. connected to the tube under 

c a l i b r a t i o n has a non l i n e a r r e l a t i o n between i t s charge input and output 

voltage, then the mean of the p r e v i o u s l y obtained d i s t r i b u t i o n could 

not be used to present the pulse height due to a s i n g l e p a r t i c l e 

crossing the detector i n almost a v e r t i c a l d i r e c t i o n . The t r u e 
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repr e s e n t a t i o n should be the mean of the d i s t r i b u t i o n of the charge 

packets from the p h o t o m u l t i p l i e r tube i t s e l f and which are the inp u t s 

to the C.S.A. Owing t o the presence of the E.H.T. accompanying the tube 

pulses, i t was not possible to get t h i s d i s t r i b u t i o n d i r e c t l y on the 

P.H.A. So the method used was to deduce t h i s r e q u i red d i s t r i b u t i o n 

from the already obtained one by using the c a l i b r a t i o n curve of the C.S.A. 

(Figure 3.9). The c o n t r i b u t i o n of two and more p a r t i c l e s t o the 

d i s t r i b u t i o n was considered to f i n d a more true d i s t r i b u t i o n of the 

tube's pulses f o r s i n g l e p a r t i c l e s passing through the detector i n a 

near v e r t i c a l d i r e c t i o n . The mean of the f i n a l d i s t r i b u t i o n was 

calcula: :d and the r a t i o mean to mode was found to be 1.1. 

I t was found t h a t the value of the i n p u t v oltage to the C.S.A. 

corresponding to the mode of the nearly v e r t i c a l d i s t r i b u t i o n of the 

C.S.A's output pulses was the same as the mode value of the d i s t r i b u t i o n 

of the p h o t o m u l t i p l i e r tube's pulses obtained when s i n g l e v e r t i c a l 

p a r t i c l e s traversed the detect o r . Therefore, i t was decided t o 

c a l i b r a t e each of the detectors on the mode of the outputs from the 

charge s e n s i t i v e a m p l i f i e r f o r p a r t i c l e s coming from a l l d i r e c t i o n s , 

s h i f t t h a t mode by 6% to the l e f t , f i n d the corresponding i n p u t voltage 

and then m u l t i p l y i t by the c a l c u l a t e d r a t i o of 1.1. The r e s u l t a n t 

q u a n t i t y was taken as the value of the pulse height obtained a t the 

anode of the p h o t o m u l t i p l i e r tube when a s i n g l e p a r t i c l e crossed the 

detector roughly i n a v e r t i c a l d i r e c t i o n . 

3.4 The E l e c t r o n i c Instrumentation 

The f o l l o w i n g sections describe the e l e c t r o n i c processing o f the 

pulse heights produced at the p l a s t i c and l i q u i d s c i n t i l l a t i o n 

counters of the array i n order t h a t subsequently the parameters 

c h a r a c t e r i s i n g each recorded shower event could be deduced. These 

parameters are the a r r i v a l d i r e c t i o n o f the shower, the shower size 
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and the core l o c a t i o n of the shower. To produce these parameters, the 

primary data must be coded and stored i n a form which enables the 

pulses from the t i m i n g and the density detectors t o be i n t e r p r e t e d i n 

terms of time measurements and p a r t i c l e d e n s i t i e s r e s p e c t i v e l y when the 

stored data are analysed afterwards. The Durham array i s o n - l i n e to 

an IBM 1130 computer which achieves a quick coding and s t o r i n g o f each 

event as w e l l as avoiding the use of any photographic technique f o r 

the purposes of data recording. The data are p r i m a r i l y stored on a 

magnetic disc i n binary form. 

3.4.1 The Timing Pulses 
2 

As was mentioned before, the 2m detectors are used w i t h the c e n t r a l 

detector to generate the array f a s t t i m i n g pulses. These pulses which 

are negative of 5ns width and semi-gaussian shape, enable the d i r e c t i o n 

of a r r i v a l of each shower event to be c a l c u l a t e d when they are converted 

to analogue form using Time to Amplitude Converters (T.A.C's). The 

ti m i n g pulse coming from the c e n t r a l detector i s chosen t o be the reference 

f o r a l l the other t i m i n g pulses since i t i s always the f i r s t t o a r r i v e 

to the l a b o r a t o r y f o r a l l shower angles. Accordingly, t h i s pulse i s 
TTA.C 

used to s t a r t a l l of the T.A.C's and subsequently each^ i s stopped a f t e r ­

wards by a t i m i n g pulse from one of the other t i m i n g d e t ectors. The 

heights of the outputs of these T.A.C's, which are p o s i t i v e r e c tangular 

pulses of 5us w i d t h , are d i r e c t l y p r o p o r t i o n a l t o the d i f f e r e n c e i n 

time between the a r r i v a l of the ' s t a r t ' and 'stop' pulses. Therefore, 

f o r a detector through which the shower f r o n t passes f i r s t , the 

corresponding T.A.C. output i s expected to be smaller than those 

connected to p a r t i c l e detectors through which the shower f r o n t passes 

l a t e r . Care must be taken to el i m i n a t e the delay e f f e c t of the cables 

as w e l l as the e l e c t r o n i c c i r c u i t s i n order t o deal only w i t h genuine 

time d i f f e r e n c e . This has been explained i n d e t a i l by Smith, (1976). 
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The block diagram of the array e l e c t r o n i c s i s shown i n Figure 3.7. 

I t can be seen that the t i m i n g pulses are a m p l i f i e d and d i s c r i m i n a t e d , 

using f a s t a m p l i f i e r s and f a s t d i s c r i m i n a t o r s , before going t o the 

T.A.C's. 

3.4.2 The Density Pulses 

The density pulses from each p l a s t i c detector's set of photo-

m u l t i p l i e r tubes are summed and a m p l i f i e d using p r e - a m p l i f i e r s , 

described by Smith ( 1 9 7 6 ) , before e n t e r i n g the l a b o r a t o r y . I n the 

case of the l i q u i d d e t e c t o r s , the charge coming to the lab o r a t o r y from 

each p h o t o m u l t i p l i e r tube goes to the input of a corresponding charge 

s e n s i t i v e a m p l i f i e r , which i n t e g r a t e s the output s i g n a l current of the 

detector. The E.H.T. required to operate the tube passes through a 

r e s i s t o r of loo left and then to the in p u t of the a m p l i f i e r which i s 

connected to the anode o f the tube. A b i g capacitor i s used to 

i s o l a t e the E.H.T. from the r e s t of the a m p l i f i e r . The in p u t and output 
i 

impedances of the C.S.A. are about 50 ft and^few ohms r e s p e c t i v e l y . The sch­

ematic diagram of one of these C.S.A's i s shown i n f i g u r e 3.8. I n 

t h i s a m p l i f i e r a capacitor i s used to feed back the output to the 

input stage. The voltage of the output pulse v

Q u t t i s p r o p o r t i o n a l to 

the input charge Q . which i n t u r n i s p r o p o r t i o n a l t o the area of the 

inpu t pulse according to the f o l l o w i n g equation 
V - - 1. f I . d t = - 4 — \ V. dt = - 4 — Area . 3.1 out cy C y ) i n c FR. n ) i n c pR. n 

where c^ i s the feed back capacitor. 

I n other words, V i s p r o p o r t i o n a l to V. W. where W. i s the out i n i n i n 
width of the input pulse. But since the widths of the pulses coming 

from the photomultLplier tube and going to the C.S.A.are constant, then 

V w i l l be; p r o p o r t i o n a l to the input voltage V. only. Therefore, out i n 
the C.S.A'H were c a l i b r a t e d and the r e l a t i o n s h i p between the input voltage 
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V. , and the corresponding output v o l t a g e , V , was found. This 
i n out 

c a l i b r a t i o n was done when the output pulses were connected to 

a 50 n terminator and the r e s u l t s are represented i n Figure 3.9. I t 

can be seen th a t the r e l a t i o n between V. and V i s not l i n e a r f o r 
i n out 

a V value? up to I v a f t e r which i t tends to be l i n e a r . The decay out 
time conHtnnt of the output pulses is about 5us. 

As was mentioned e a r l i e r , the array contains two double l i q u i d 

s c i n t i l l a t i o n detectors each c o n s i s t i n g of two of the single ones 

combined together using a mixer. This mixer sums the output pulses 

of the two corresponding charge s e n s i t i v e a m p l i f i e r s to give a common 

output pulse. The mixer accepts i n p u t pulses up to a maximum of 10 

v o l t s and has a 50 fi input impedance. I t comprises two i n v e r t i n g 

a m p l i f i e r s such that by connecting i t s output pulses to a 50 Q 

t e r m i n a t i n g r e s i s t o r , the o v e r a l l gain of the c i r c u i t i s about 0.95. The 

output has the same decay time constant as t h a t o f the i n p u t . Figure 

3.10 i l l u s t r a t e s the mixer. 

Each output of the head a m p l i f i e r s used w i t h the p l a s t i c d e t e c t o r s , 

and each output of the C.S.A's of the s i n g l e l i q u i d detectors and of the 

mixers of the double ones, i s connected t o the i n p u t of a d i s c r i m i n a t o r . 

There are three d i s c r i m i n a t o r u n i t s each c o n t a i n i n g e i g h t independent 

d i s c r i m i n a t o r s . The c i r c u i t diagram of one of these d i s c r i m i n a t o r s 

is shown i n Figure 3.11. The basic element of t h i s c i r c u i t i s a 

NA710 high speed comparator. The required d i s c r i m i n a t o r l e v e l can be 

achieved by a d j u s t i n g the v a r i a b l e r e s i s t o r connected to the base of 

the f i r s t t r a n s i s t o r and hence the p o t e n t i a l on the n o n - i n v e r t i n g i n p u t 

of the 710. The d i s c r i m i n a t i o n l e v e l f o r the pulses of the c e n t r a l 

detector i s chosen t o be of the order of 400 mv while t h a t f o r each 

other p l a s t i c detector i s about 200 mv. For the l i q u i d d e t e c t o r s , the 

l e v e l i s chosen to be about 50 mv. The output pulses of the d i s c r i m i n a t o r s 
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are used to monitor the counting r a t e of each i l e t e c t o r . The outputs of 
2 

the u n i t t o which the pulses of the c e n t r a l detector and the 2m 

detectors are connected, arc also used to d r i v e a coincidence u n i t such 

tha t i t s output t r i g g e r s hoth the array and the spectrograph or in 

other words establishes the shower events. This output i s produced 

3us a f t e r the a r r i v a l of the c e n t r a l detector's t i m i n g pulse i n the 

la b o r a t o r y . 

The schematic diagram of one of the e i g h t d i s c r i m i n a t o r s i n the 

u n i t used f o r the l i q u i d detectors i s given i n Figure 3.12. This f i g u r e 

shows t h a t the inputs to the d i s c r i m i n a t o r are also connected to a 

st r e t c h e r which lengthens the output pulses of the corresponding C.S.A. 

or mixer such t h a t the output has a decay time constant of about 50us. 

The s t r e t c h e r is needed since i t is found t h a t when an event i s 

established, the Analogue M u l t i p l e x e r (described l a t e r on) which t e m p o r a r i l y 

stores the. shower data would otherwise store a C.S.A1 s or a mixer's 

pulse height smaller than the true valu'2 owing t o the shortness of 

the pulse. The eigh t s t r e t c h e r s r e q u i r e d f o r the e i g h t l i q u i d detectors 

are contained i n one double w i d t h u n i t . Figure 3.13 i s the schematic 

diagram of a s t r e t c h e r which has a 50 SI input impedance and the c a l i ­

b r a t i o n curve of a s t r e t c h e r i s shown i n Figure 3.14. 

Tn the cases of the p l a s t i c d e t e c t o r s , the input pulses to the 

d i s c r i m i n a t o r s arc taken d i r e c t l y t o the Analogue M u l t i p l e x e r (A.M.) 

since they arc wide pulses of 2f) lis decay time constant. As said before, 

the shower data arc stored w i t h i n t h i s m u l t i p l e x e r f o r a short time 

before being converted i n t o a binary form which i s then permanently 

stored. The m u l t i p l e x e r consists o f a Master u n i t and three Slave u n i t s . 

Kach of these u n i t s has one master input and seven other i n p u t s . 

Therefore, by the use o f these four u n i t s , a t o t a l of 32 pulse heights 

can be tempo r a r i l y stored. I n order to hold the data w i t h i n a l l of 
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these u n i t s , a 'hold' command i s generated by sending the p r e v i o u s l y 

mentioned coincidence output pulse to the master input of the Master 

u n i t . The Master and the f i r s t two Slave u n i t s are used f o r the 

storage of the data of the p l a s t i c detectors while the t h i r d Slave u n i t 

i s used f o r the data of the l i q u i d counters. The operation of t h i s 

u n i t is shown schematically in Figure 3.15. Each input of the f i r s t 

three m u l t i p l e x e r u n i t s has an impedance of 50 ft and accepts pulses of 

height ranging between Ov and 10 v. The outputs of these u n i t s are 

rectangular voltage pulses having a w i d t h of 4 us and produced w i t h a 

gain of 0.4. Each of the eight inputs of the f o u r t h u n i t has a 1 k Q 

impedance and accepts pulses w i t h heights i n the range from Ov up t o 5v. 

I t s outputs are s i m i l a r to those of the other three u n i t s except t h a t 

the gain w i t h which they are produced i s about 0.8. 

The 32 pulse heights held i n the Master and Slave u n i t s are then 

routed s e q u e n t i a l l y through a s i n g l e output t o the input of an Analogue 

to D i g i t a l Converter (A.D.C.). This A.D.C.ha.s 1024 channels, Operates at 

50 MHz and converts i t s input analogue signals i n t o binary numbers such 

that the magnitude of each number i s p r o p o r t i o n a l t o the height of the 

corresponding i n p u t . Thus, the dynamic data are d i g i t i s e d . 

I n order to i n t e r p r e t and analyse each recorded a i r shower event, 

i t i s necessary to have a c e r t a i n amount of i n f o r m a t i o n to i d e n t i f y the 

event and the c o n d i t i o n s under which i t was stored. Consequently, f o r 

each event the r e l e v a n t i n f o r m a t i o n , known as the ' s t a t i c ' data, are 

stored together w i t h the dynamic data. The s t a t i c data are assembled 

in ili'vic.i'M c i i l 1 D i U u (!«ti'.s ( D . C . ) . These H ; I I C H c o n s i s t n f : 

1. An Kvi-iil I I I ' . ' K I IT which i ilenl i I 'i CM t h r l>c)j,i mi i \ \ y . nl t h e t l ; i i : i 

f o r every recorded event. 

2. A Run Number to be used f o r each p a r t i c u l a r series of data 

c o l l e c t i o n . 
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3. An Event number to i d e n t i f y i n d i v i d u a l events. 

A. A Trinner Modd Data Cnte which r e c o r d H the mode of t r i g g e r i n g 

of t h e data storage c y c l e . 

5. An Operational U n i t Data Gate which informs the computer 

analysis programme which of the detectors were working when 

each event was recorded. 

6. A Clock which allows r e a l time i n f o r m a t i o n to be stored and 

thus the time of the event's c o l l e c t i o n i s known. 

7. Event End Data Gate which announces the end of the data 

contained i n an event. 

Thus by the use of the Analogue M u l t i p l e x e r together w i t h the 

A.D.C. and w i t h the Data dates which supply binary i n f o r m a t i o n , a l l the 

required a i r shower data w i l l be i n the d i g i t a l form. 

In a d d i t i o n to the generation of the 'hold' command f o r the 

Analogue M u l t i p l e x e r , the output pulse of the coincidence u n i t i s also 

d i r e c t e d i n t o two other devices. These devices are a f l i p - f l o p to set 

the appropriate trigger-mode data-gate and the master c o n t r o l device, 

D.U.S.T. to i n i t i a t e a data storage cycle. 

The D i g i t a l Unit f o r Storage and Transfer (D.U.S.T.) c o n t r o l s the 

order i n which the shower data are coded and stored i n a temporary b u f f e r 

memory. Whenan event i s e s t a b l i s h e d and wh i l e the p a r t i c l e d e n s i t y and the 

f / i H t - t iming data are being stored i n the Analogue M u l t i p l e x e r , the output 

pulse of the coincidence unit generates a ' s t a r t cycle command' as i t 

enters D.U.S.T. According to t h i s command, the Shower Event Scaler i s 

increased and D.U.S.T. begins to read i n the f i r s t s i x Data Gates. 

Afterwards, t h i s u n i t sends a strobe pulse to the M u l t i p l e x e r to release 

the f i r s t pulse height which goes to the A.D.C. where i t i s d i g i t i s e d . 

The d i g i t i s e d data enter D.U.S.T. to be stored i n the memory. D.U.S.T. 

then sends a cl e a r s i g n a l to clear the A.D.C. output scaler followed by 
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a second strobe pulse to the M u l t i p l e x e r f o r the second pulse height 

and so on u n t i l a l l the A.M.'s data are d i g i t i s e d and stored i n the 

memory. The A.D.C. i s cleared again so t h a t i t can receive the data of 

the next event. By the same time, the A.M. has au t o m a t i c a l l y cleared 

i t s e l f w a i t i n g f o r the next 'hold' command. F i n a l l y , D.U.S.T. reads 

i n the l a s t Data Gate and becomes ready f o r the next s t a r t cycle command. 

Once the memory becomes f u l l , a f t e r the storage of the eleventh 

event, D.U.S.T. informs the o n - l i n e IBM 1130 to read our a l l the stored 

data and to w r i t e them on a magnetic d i s c where they may remain f o r 

a few days a f t e r which they are t r a n s f e r r e d to the la r g e r IBM 370/168 

computer to be analysed. A f t e r the memory has been emptied, more shower 

data can be acquired. 

Since three separate core stores are used i n the l a b o r a t o r y and only 

one cable i s connected from the l a b o r a t o r y to the IBM 1130, an i n t e r f a c e 

was constructed to enable j u s t one core store to be emptied at a time, 

the others being t e m p o r a r i l y r e s t r a i n e d u n t i l the previous one has 

completed i t s dumping cycle. 

More d e t a i l e d i n f o r m a t i o n about the Data Gates, D.U.S.T. and the 

computer i n t e r f a c e , i s given by Smith (1976). 

3.4.3 The D a i l y Checks on the Experiment 

Chocks were c a r r i e d out d a i l y to ensure t h a t a l l the Array 

e l e c t r o n i c s was working c o r r e c t l y . The si n g l e counting r a t e s , above the 

ehoHon d i s c r i m i n a t i o n threshold of each of the l i q u i d s c i n t i l l a t i o n 

counters and of the p l a s t i c s c i n t i l l a t i o n detectors were monitored. A 

monitor was also used t o check the coincidence rates between selected 

p a i r s and groups of the s c i n t i l l a t i o n counters. 

A l l the Analogue M u l t i p l e x e r channels which acquired data d u r i n g a 

day's run were checked. For the events recorded each day, histograms 

of the pulse heights stored from each m u l t i p l e x e r channel were obtained 
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by the IBM 1130 computer. These histograms were use f u l i n t h a t they 

pointed to various f a u l t s i n the data c o l l e c t i o n e l e c t r o n i c s t h a t 

occurred from time to time. 

3.5 The MARS Spectrograph 

Since the MARS spectrograph has been described i n some d e t a i l 

elsewhere (Ayre et a l . , 1972 and Thompson et a l . , 1972), only a very 

b r i e f d e s c r i p t i o n w i l l be given i n t h i s s e c tion. The physic a l dimensions 

of the spectrograph as w e l l as the p o s i t i o n s of the detectors i n the 

instrument are shown i n f i g u r e 3.16. B r i e f l y , MARS was a m u l t i l a y e r 

s o l i d i r o n magnetic spectrograph which consisted of f i v e l e v e l s o f 

p a r t i c l e d etectors separated by four rectangular blocks of i r o n . These 

magnets were used to bend the track of the cosmic ray p a r t i c l e t r a v e r s i n g 

the spectrograph and the amount of bending was a measure of the momentum 

of that p a r t i c l e . The fu n c t i o n of the detectors was to define and loc a t e 

the p a r t i c l e ' s t r a j e c t o r y . Two types o f detectors wereused i n MARS, 

p l a s t i c s c i n t i l l a t o r s and neon fla s h - t u b e s . The spectrograph comprised 

two separate halves known as the blue and red sides, the former being 

through the eastern side of the magnet block. 

Figure 3.16 shows t h a t the top l e v e l of MARS contained a t r a y on 

e i t h e r side of the spectrograph c a l l e d measuring t r a y s . These t r a y s 

consisted of eight layers of flash-tubes. The layers were separated 

from each other by aluminium sheets which formed the electrodes. I n 

each layer, there were 89 tubes each having a length o f 2m and a diameter 

of about 0.55 cm. The flash-tubes were f i l l e d w i t h neon gas and when a 

charged p a r t i c l e passed through any of the tubes, the gas i n the tube was 

ioni z e d . The a p p l i c a t i o n of a high voltage pulse w i t h i n ^ 3us across 

t h a t tube caused a discharge along i t and i n such cases the tube was 

said to have flashed. Since there was very l i t t l e absorber above the 

top of the spectrograph, the flash-tubes of the top measuring t r a y s 
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were m.riin)y discharged ns the consequence of the passage of ele c t r o n s 
rat h e r than muons through the t r a y s . Consequently, the trays were 
used f o r the measurement of the e l e c t r o n density i n the recorded a i r 
shower event. 

The whole system was designed t o operate a u t o m a t i c a l l y . The 

flash-tubes of the blue side measuring t r a y s were d i g i t i s e d . The method 

used being t h a t of Ayre and Thompson (1969). B r i e f l y , a small brass 

probe connected v i a a r e s i s t o r to the inp u t of an i n t e g r a t e d c i r c u i t 

e l e c t r o n i c memory, was placed i n f r o n t of each of the flash-tubes. The 

discharge of the tube was followed by the appearance o f a voltage pulse 

at the input of th a t memory. The i n f o r m a t i o n from the flash-tubes was 

sent to an IBM 1130 computer where i t was stored on a magnetic disk t o 

be t r a n s f e r r e d subsequently to magnetic tape i n order to be analysed on 

a l a r g e r IBM 370 computer. 

The flash-tubes of the red side measuring t r a y s were not d i g i t i s e d 

but they were photographed, each time the spectrograph was t r i g g e r e d , 

using two cameras viewing the trays through a system o f m i r r o r s . Front 

s i l v e r e d m i r r o r s were used and the cameras viewed the tubes from a 

distance of about 4.25 m. Each of the cameras used a 135 mm 

fo c a l length lens set at i t s maximum aperture of f/1.8 and had an open 

shutter viewing the flash-tube trays i n a darkened l a b o r a t o r y . 

Immediately a f t e r each event, a clock, event number, the date and the 

d i r e c t i o n of the magnetic f i e l d were i l l u m i n a t e d i n the f i e l d of view 

of the cameras. A f t e r each run, the f i l m was removed and developed, 

and the camera reloaded. 
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THE DATA A N A L Y S I S 

4.1 I n t r o d u c t i o n 

The previous Chapter showed how the array data of each recorded 

event are coded and stored on a magnetic disc on an IBM 1130 Computer. 

The present Chapter i s concerned w i t h the a n a l y s i s programme which i s 

used f o r the i n t e r p r e t a t i o n o f these data. Before the data are analysed 

they are t r a n s f e r r e d from the magnetic disc to a magnetic tape as w e l l 

as a 'p r i v a t e d i s c 1 and stored i n the archives of the Northumbrian 

U n i v e r s i t i e s ' M u l t i p l e Access Computer (N.U.M.A.C.) u n t i l they are 

required to be analysed. 

4.2 The Purpose of the Analysis 

The analysis i s c a r r i e d out i n order t o o b t a i n a l l possible 

infor m a t i o n about the a i r shower parameters. Such parameters are: 

the d i r e c t i o n of a r r i v a l o f the shower f r o n t , the shower core p o s i t i o n , 

and the shower size. 

The analysis i s executed using the N.U.M.A.C. computer. Before 

s t a r t i n g the a n a l y s i s the raw data, which are i n the form of channel 

values as i n i t i a l l y c o l l e c t e d on the IBM 1130, are di v i d e d i n t o 

groups according to the d i f f e r e n t run numbers present and are then stored 

i n separate f i l e s . Each of these f i l e s i s analysed depending on the 

amount of the data a v a i l a b l e f o r each event. The broad l i n e s of the 

analysis programme can be summarised i n the f o l l o w i n g order: 

1. Data c a l i b r a t i o n and conversion i n t o u s e f u l q u a n t i t i e s . 

2. C a l c u l a t i o n of the shower a r r i v a l d i r e c t i o n . 

3. C a l c u l a t i o n of the core l o c a t i o n and shower size. 
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4.3 The Analysis Programme 

The f o l l o w i n g sections describe the features o f the present 

analysis programme. This programme uses a minimisation package ( 4.4) 

i n which a t h e o r e t i c a l d e s c r i p t i o n of the s t r u c t u r e of the a i r shower 

i s f i t t e d to the q u a n t i t i e s observed by the array detectors. I n order 

to f u l f i l t h i s purpose the a v a i l a b l e raw data must be converted i n t o 

useful c a l i b r a t e d q u a n t i t i e s . 

4.3.1 The M o d i f i c a t i o n s of the 1976 Analysis Programme 

The ana l y s i s programme w r i t t e n by Smith (1976) was modified f o r 

the present data a n a l y s i s as f o l l o w s : 

1. The c a l i b r a t i o n c o e f f i c i e n t s of the detectors and the 

c a l i b r a t i o n curve f o r each m u l t i p l e x e r channel were introduced 

thus a l l o w i n g a more accurate conversion of the stored channel 

values i n t o a c t u a l d e n s i t i e s at the detectors. For the l i q u i d 

s c i n t i l l a t i o n counters, the curves combining the c a l i b r a t i o n 

curve of each C.S.A. and t h a t of the corresponding s t r e t c h e r 

channel were also introduced. 

2. For each detector an estimate of the minimum and maximum 

recordable channel values were c a l c u l a t e d by b i n n i n g up the 

stored channel values f o r th a t d e t e c t o r . A t y p i c a l d i s t r i ­

b u t i o n i s shown i n Figure 4.1. At high channel values, the 

p i l i n g up of saturated measurements can be c l e a r l y seen 

a l l o w i n g a r e l i a b l e estimate of the s a t u r a t i o n l e v e l of the 

detect o r . The c a l c u l a t e d minimum and maximum channel values 

were fed to the analysis programme. I f a stored channel value 

was found to be equal to or less than the minimum value or i f 

i t i s equal t o or greater than the maximum value, the detector 

was considered to have a zero p a r t i c l e density or to be saturated 

r e s p e c t i v e l y . 
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3. The programme was also modified to allow f o r o v e r w r i t i n g the 

data gate i n f o r m a t i o n such t h a t i f a c e r t a i n detector was 

opera t i n g during a p a r t i c u l a r run and f o r any reason i t was 

required to be switched o f f f o r the data a n a l y s i s , t h i s could 

be achieved using an added subroutine. 

4. In the 1976 version of the ana l y s i s programme, the co­

ordinates of the c e n t r a l detector were chosen as those of the 

s t a r t i n g p o i n t t o the minimis a t i o n r o u t i n e . I n the cu r r e n t 

v e r s i o n , the mean co-ordinates of any saturated detectors 

are used as the co-ordinates of the s t a r t i n g p o i n t . I f there 

are no s a t u r a t i o n measurements, the co-ordinates o f the detector 

which measures the maximum den s i t y are taken as those of the 

s t a r t i n g p o i n t . The present method gives a more accurate 

s t a r t to the min i m i s a t i o n programme and hence y i e l d s a quicker 

search f o r the ac t u a l co-ordinates of the shower core. 

4.3.2 The Analysis Procedure 

On e n t e r i n g the present analysis programme, subroutine HEADER i s 

c a l l e d to put i n the head t i t l e . The c a l i b r a t i o n curves of the m u l t i -

plexer-A.D.C. f o r a l l the array d e t e c t o r s , as w e l l as those of the C.S.Ar 

s t r e t c h e r f o r the l i q u i d detectors are then read i n by c a l l i n g subroutine 

RDCL and RDCLI r e s p e c t i v e l y . The minimum and maximum recorded channel 

values are also read i n by subroutine MAXMIN. This i s followed by 

c a l l i n g subroutine SWRD by which the new Data Gate i n f o r m a t i o n i s read 

in unci p r i n t e d out. Subroutine CALRD i s then c a l l e d to read i n the 

c a l i b r a t i o n c o e f f i c i e n t s f o r both the p l a s t i c and the l i q u i d d e t e c t o r s . 

For each of the p l a s t i c d e t e c t o r s , t h i s c o e f f i c i e n t represents the 

mean of the voltage d i s t r i b u t i o n at the output o f the head a m p l i f i e r 

f o r s i n g l e and almost v e r t i c a l p a r t i c l e s per square metre. For the 

l i q u i d d e t e c t o r s , each of these c o e f f i c i e n t s i s the mean of the 
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d i s t r i b u t i o n o f the input voltage to the C.S.A., when si n g l e and nea r l y 

v e r t i c a l p a r t i c l e s cross t h a t d e tector, m u l t i p l i e d by the area of the 

detector. 

The programme afterwards c a l l s the c o n t r o l l i n g subroutine 

CONTROL which i n s t r u c t s the way of c a l l i n g the analysis r o u t i n e s 

depending on the a n a l y s i s codes. These codes are read from a si n g l e 

l i n e F i l e i n which both the run number and the event number of the l a s t 

analysed event are stored in order to avoid analysis d u p l i c a t i o n . When 

CONTROL i s entered, an i n t e r n a l clock i s s t a r t e d to monitor the used 

Central Processing Unit (C.P.U.) time. The analysis codes are then read 

and a t i t l e page i s p r i n t e d . This i s f o l l o w e d , i f i t i s the beginning 

of the analysis o f a data f i l e , by c a l l i n g subroutine FLAGO which 

summarises the f l a g combinations, or i n other words the Trigger Modes, 

i n the f i l e . This subroutine i s one of the newly added subroutines. 

According t o the a n a l y s i s codes, several degrees o f analysis can be 

executed. These are e i t h e r a quick summary of the data contained i n 

the data f i l e , a summary and data p r i n t out w i t h o u t minimisation or a 

f u l l analysis. A flow chart of the r o u t i n e s used i n the present a n a l y s i s 

programme i s i l l u s t r a t e d i n Figure 4.2. 

I f f u l l a nalysis i s r e q u i r e d , the programme summarises a l l the data 

i n the input f i l e . This i s done by c a l l i n g subroutine SUMARY which 

produces a t a b l e showing the runs present, the number of the events i n 

each of these runs and the whereabouts i n the data f i l e of the f i r s t and 

the I n s t events i n each run. This subroutine also checks the presence 

of runs which contain less than 11 events, adds these runs to the 

previous run and p r i n t s out a corrected summary t a b l e . SUMARY c a l l s 

another subroutine ADDER such t h a t , i f the data f i l e contains more than 

one run, t h i s subroutine f i n d s the t o t a l number of events i n the whole 

data f i l e and p r i n t s out the combined runs summary t a b l e . Then subroutine 
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READ i s c a l l e d which reads i n t o an i n t e r n a l array the data on the source 

f i l e and decodes the T r i g g e r Mode and Operational Units Data Gate 

in f o r m a t i o n . I f the data are impure, READ p r i n t s a message t e l l i n g so 

and i n d i c a t i n g the reason f o r the i m p u r i t y . This reason could be e i t h e r 

out of sequence run numbers or event numbers, the f a i l u r e o f the A.D.C. 

to be cleared at the end of the l a s t a c q u i s i t i o n cycle of the previous 

event, the p i c k i n g up of the A.D.C. between events or the i n c o r r e c t 

reading of the data from the input f i l e . This subroutine also p r i n t s a 

message showing the t o t a l number of events to be analysed i n t h a t f i l e . 

The analysis i s terminated i f the source f i l e contains no data such a 

s i t u a t i o n being caused by rubbing out the f i l e or i t s being f u l l o f 

zeros. 

Following the data summary, subroutine COEFF i s c a l l e d which d i s p l a y s 

histograms of the i n p u t data and cal c u l a t e s the mode, mean and standard 

d e v i a t i o n on the mean f o r each of the m u l t i p l e x e r channels. These 

values are p r i n t e d out and stored to be used l a t e r on. 

A f t e r e v a l u a t i n g the previous s t a t i s t i c a l q u a n t i t i e s , CONTROL c a l l s 

subroutine ANALYZ. This r o u t i n e i s the one which c a l l s a l l the r o u t i n e s 

required f o r the various a n a l y s i s options and where the a n a l y s i s remains 

u n t i l the chosen C.P.U. time l i m i t i s reached. A previous r o u t i n e has 

found the l o c a t i o n i n the data f i l e of the l a s t analysed event . ANALYZ 

then begins the analysis from the next record i n the data f i l e . The 

f i r s t step i n the analysis demands the conversion of the in p u t data 

stored i n the i n t e r n a l array from being i n i n t e g e r form, the form 

d e l i v e r e d to D.U.S.T. by the A.D.C. i n t o r e l a t i v e times of a r r i v a l of 

the shower f r o n t at the array t i m i n g detectors and i n t o p a r t i c l e d e n s i t i e s 

as observed by each density detector. For t h i s purpose, ANALYZ c a l l s 

subroutine PREPAR which i s a t o t a l l y modified v e r s i o n of the 1976 

one such th a t a l l the subroutines c a l l e d are new ones. At the beginning 
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PREPAR c a l l s subroutine DATGATF. i n order to a l t e r the Data Gate i n ­

formation, i f r e q u i r e d , t o the information read p r e v i o u s l y by subroutine 

SWRD. Then PREPAR checks the presence of data f o r each operative 

detector by t e s t i n g i f the mean value of i t s data d i s t r i b u t i o n as 

cal c u l a t e d by subroutine COEFF i s higher than a p a r t i c u l a r channel 

value, chosen to be 20. The f a i l u r e of any detector t o pass t h i s t e s t 

causes the t e r m i n a t i o n o f the programme. This t e s t i s c a r r i e d out on both 

t i m i n g and density d e t e c t o r s . 

On a successful completion of the previous t e s t , PREPAR works out 

the p r e v i o u s l y c a l c u l a t e d means of the t i m i n g detectors T.A.C. 

d i s t r i b u t i o n s i n nanoseconds since these means are r e l a t e d to the time 

delays caused by pulse propagation i n t o cables and through l a b o r a t o r y 

e l e c t r o n i c s . This i s done j u s t f o r the switched on detectors and i n two 

steps. F i r s t , PREPAR c a l l s subroutine CAL which f i n d s the pulse height 

to each m u l t i p l e x e r channel which corresponds to each of these means 

using the m u l t i p l e x e r — A.D.C. c a l i b r a t i o n curves. Secondly, subroutine 

CALTAC i s c a l l e d t o convert these pulse heights i n t o nanoseconds using 

p r e c a l c u l a t e d slopes of each T.A.C. c a l i b r a t i o n curve. The same two 

steps are executed again f o r the event's t i m i n g data of the same d e t e c t o r s . 

This i s followed by c a l l i n g subroutine PHYTM which checks th a t each 

detector has produced a t i m i n g value which l i e s w i t h i n p h y s i c a l l y 

reasonable l i m i t s and works out the r e l a t i v e time of a r r i v a l of the 

shower f r o n t at t h a t d e t e c t o r . This i s done by s u b t r a c t i n g from the 

t i m i n g value observed by t h a t d e t e c t o r , the corresponding cable and 

e l e c t r o n i c delay obtained from the meaniof the detector's T.A.C. d i s t r i b u t i o n 

f o r t h a t run. The r e s u l t a n t s f o r the usef u l t i m i n g detectors are used 

by the minimisation routines i n c a l c u l a t i n g the d i r e c t i o n of a r r i v a l of 

the shower. Figure 4.3 shows the form of a T.A.C. d i s t r i b u t i o n . 

As f o r the density data, PREPAR s t a r t s by c a l l i n g subroutine 
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Figure 4.3 Schematic Diagram Of A T.A.C. Distribution. 
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MAXMN to check the presence of any saturated detectors. This i s followed 

by converting the event's density data, which are i n the form of A.D.C. 

channel values, i n t o numbers of p a r t i c l e s per square metre. To achieve 

t h i s , subroutine CAL i s c a l l e d f i r s t to determine the pulse height t o 

each m u l t i p l e x e r i n p u t which corresponds t o the stored channel value 

using the m u l t i p l e x e r - A.D.C. c a l i b r a t i o n curves. PREPAR then c a l l s 

subroutine CALDEN which, f o r the p l a s t i c d e t e c t o r s , d i v i d e s the 

detector's pulse height c a l c u l a t e d i n CAL by the detector's c a l i b r a t i o n 

c o e f f i c i e n t . For the l i q u i d d e t e c t o r s , CALDEN c a l l s another subroutine 

CALT where the C.S.A. - s t r e t c h e r c a l i b r a t i o n curves are used i n order 

to obtain the pulse height to each C.S.A. which corresponds to the pulse 

height determined by CAL. CALDEN then d i v i d e s the CALI r e s u l t i n g pulse 

height obtained f o r each l i q u i d detector by the corresponding c a l i b r a t i o n 

c o e f f i c i e n t . Thus, the density i n p a r t i c l e s per square metre measured 

at each of the array density detectors i s obtained. 

Both the c a l c u l a t e d values of the r e l a t i v e times o f a r r i v a l o f the 

shower f r o n t at the t i m i n g detectors and those of the d e n s i t i e s (nF .) 

observed by the d e n s i t y detectors are p r i n t e d out. For each detector's 

c a l i b r a t e d data, the decoded Data Gate in f o r m a t i o n i s also p r i n t e d o u t . 

This i n f o r m a t i o n i n d i c a t e s whether or not the detector i s switched o f f 

and shows i f any t i m i n g detector i s to be elim i n a t e d when the m i n i m i s a t i o n 

procedures are c a r r i e d out. I t also s p e c i f i e s any density detector which 

i s saturated and which i s t h e r e f o r e excluded from t a k i n g p a r t i n c a l ­

c u l a t i n g the shower size and the core l o c a t i o n . Next, the e r r o r s on 

the observed d e n s i t i e s are determined f o r use i n the minimisation r o u t i n e s . 

Each of these e r r o r s i s c a l c u l a t e d as the r e s u l t o f d i v i d i n g the square 

root of the quadrature sum of the Poissonian e r r o r (Regener,1951) and 

the detector's response e r r o r on the number of the p a r t i c l e s passing 

through the detector by the area o f . t h e detector. 
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Now tha t the c a l i b r a t e d data observed by a l l the us e f u l t i m i n g 

and density detectors have been obtained, the next step i s the c a l c u l a t i o n 

of the a r r i v a l d i r e c t i o n of the shower, the core p o s i t i o n and the shower 

size using the minimisation r o u t i n e s . I n order t o accomplish t h i s , the 

number of u s e f u l detectors as w e l l as the co-ordinates of the s t a r t i n g 

p o i n t to the r o u t i n e s must be known. PREPAR counts the number of u s e f u l 

t i m i n g and density detectors to be used i n the subroutine which 

i d e n t i f i e s the analysis o p t i o n to be chosen. There are four possible 

wayH to analyse an event. These d i f f e r e n t o p t i o n s , which are 

i l l u s t r a t e d i n table 4.1, depend mainly on the amount of data present. 

Concerning the co-ordinates o f the s t a r t i n g p o i n t , they are c a l c u l a t e d 

according to the new method mentioned i n the previous s e c t i o n . 

Returning to ANALYZ, the subroutine which determines the most 

appropriate analysis way matching the a v a i l a b l e data, i s c a l l e d . 

Since a l l the inform a t i o n r e q u i r e d f o r the data minim i s a t i o n i s obtained, 

ANALYZ c a l l s the minimising r o u t i n e s f o r a f u l l a n a l y s i s of the event. 

When the analysis i s completed, the answers are w r i t t e n out. Both the 

c a l i b r a t e d data and the analysed answers are then stored on a p r i v a t e 

disc f o r f u t u r e use together w i t h a l l r e l e v a n t i n f o r m a t i o n such as the 

event number, the run number, the t r i g g e r mode and the decoded data 

gates. This i s followed by checking the time t o see i f there i s s t i l l 

s u f f i c i e n t C.P.U. time f o r more events to be analysed. I f not, the 

programme stops. 

I n f a c t , the most r e l i a b l e o p t i o n amongst the fou r mentioned i s 

op t i o n number four since i t requires the presence of s u f f i c i e n t t i m i n g 

as w e l l as density data. So, the r e s u l t s deduced when o p t i o n four i s 

chosen are those to be used f o r f u t u r e c a l c u l a t i o n s . 



TABLE 4.1 

THE ANALYSIS OPTIONS 

Analysis 
Option Meaning $t R e l a t i v e 

Times £̂jr De n s i t i e s 

1 I n s u f f i c i e n t data for 
a n a l y s i s . No analysis done. 

< 2 < 5 

2 

TnHiifrir.ient t i m i n g data f o r 
f u l l a n n l y B I B . Three para­
meter (x ,y ,N) f i t to the 

c c 
density data, 0 assumed to 
be 0° and <fc assumed to be 
180° 

< 2 * 5 

3 Timing data used to 
c a l c u l a t e (8,c>). * 2 < 5 

4 

F u l l a n a l y s i s . Timing 
data used to c a l c u l a t e 
(n,<Ji). Density data 
used to c a l c u l a t e 
(x c.y c.M) 

5- 2 * 5 
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4.4 The Method of Array Data Minimisation 

The minimisation r o u t i n e s represent the basis of the analysis 

programmes. These r o u t i n e s consist of the C.E.R.N, programme MINUIT 

(James and Roos, 1 9 7 1 ) i n which several i n t e r n a l checks are used i n 

order to achieve c o r r e c t execution of the s u i t a b l e f u n c t i o n . I f , 

a f t e r the pre-chosen number of t r i e s ( 1 6 , 0 0 0 ) , MINUIT f a i l s t o converge, 

i t w i l l stop such t h a t the parameter values deduced from the l a s t 

attempt w i l l be returned. 

Concerning the minimisation procedure used to o b t a i n the a r r i v a l 

d i r e c t i o n of the shower f r o n t , the t i m i n g data measured by the u s e f u l 

t i m i n g detectors are f i t t e d to a plane i n three dimensions using a 

l e a s t squares technique based on a numerical m i n i m i s a t i o n approach. The 

minimisation method includes the minimisation of the f o l l o w i n g 

f u n c t i o n : 

F t = E ( t . . - t . . ) 2 4.1 r l lobs i c a l c 

where t . , and t . , are the observed and c a l c u l a t e d r e l a t i v e times lobs i c a l c 
of the shower f r o n t a r r i v a l at a p a r t i c u l a r detector i and where the 

summation i s made o v e r a l l the u s e f u l t i m i n g d e t e c t o r s . 

A f t e r completing the t i m i n g data f i t t i n g , no matter whether i t was 

successful or not, and provided t h a t there i s a s u f f i c i e n t number of 

u s e f u l density d e t e c t o r s , the a n a l y s i s continues by f i t t i n g a selected 

shower s t r u c t u r e f u n c t i o n to these density data by minimising the 

weighted l e a s t squares f u n c t i o n 

i c a l c P i o b s ^ 2 
K2 

iobs 



where p. - and p. , are the c a l c u l a t e d and observed d e n s i t i e s i c a l c lobs 
-2 (ra ) at a detector 1 and £. , i s the e r r o r on the observed de n s i t y at 

1 obs 
t h i s detector as c a l c u l a t e d i n the previous s e c t i o n . The summation i s 

also over a l l u s e f u l density d e t e c t o r s . 

The s t r u c t u r e f u n c i t o n which i s used i n searching f o r the core 

l o c a t i o n i s based on that of Catz (1975) since t h i s was obtained using 

s c i n t i l l a t i o n counters.TheCatz f u n c t i o n i s given by 
E xp(- r/l20) 

p(N,r) = 0.0157N = — « — 4.3 
( r + 1 ) 1 ' 6 2 

-2 

where p i s the density of p a r t i c l e s (m ) at a r a d i a l distance r metres 

from the core of a shower having a size N. Only one m o d i f i c a t i o n has 

been made to t h i s f u n c t i o n : to use (r+2) instead of the o r i g i n a l (r+1) 

term since i t has been found t h a t the use o f the modified f u n c t i o n gives 

a b e t t e r f i t t o the data than the o r i g i n a l Catz f u n c t i o n (see Appendix 

A). 

At t h i s stage of the a n a l y s i s both the core l o c a t i o n and the shower 

size are minimised together as independent v a r i a b l e s . Figure U.4 

represents a l l the q u a n t i t i e s p r i n t e d out by the programme when an event 

i s analysed using o p t i o n 4. An explanation o f a l l these q u a n t i t i e s i s 

also shown. 
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CHAPTER FIVE 

DATA SIMULATION 

5.1 I n t r o d u c t i o n 

I t has been seen i n the previous chapter how the an a l y s i s 

programme, through the minimisation r o u t i n e s , determines the l o c a t i o n 

of the core of each recorded shower. This chapter i s concerned w i t h 

studying the e f f e c t of i n c l u s i o n of the l i q u i d s c i n t i l l a t i o n counters 

as u s e f u l density d e t e c t o r s , when the m i n i m i s a t i o n r o u t i n e s c a l c u l a t i n g 

the. core p o s i t i o n s are executed, on the accuracy w i t h which the core 

p o s i t i o n s are determined. The study has been c a r r i e d out by using a 

programme which simulates data s i m i l a r to the r e a l data and analysing 

these simulated data w i t h and wi t h o u t the c o n s i d e r a t i o n of the l i q u i d 

d e t e c t o r s . I n each case, the displacement of each r e s u l t a n t core 

l o c a t i o n from the t r u e generated one in d i c a t e s how accurate the an a l y s i s 

programme c a l c u l a t e s the shower core p o s i t i o n . 

I n t h i s chapter, a study has also been c a r r i e d out to f i n d the 

e f f e c t of the i n c l u s i o n of the l i q u i d detectors on the shower size 

value r e s u l t i n g from data a n a l y s i s . 

5.2 The Simulation Programme 

On f i r s t entry to the s i m u l a t i o n programme, several tasks and 

i n i t i a l i s a t i o n s are performed. I n t e r n a l v a r i a b l e s and clocks have t o be 

reset and s t a r t e d f o r the random number r o u t i n e s . At t h i s p o i n t , the 

programme reads i n data supplied by the user to determine parameters such 

as shower size spectrum slope, the p o s i t i o n of the break p o i n t i f any, or 

input shower size s p e c i f i e d and index f o r the angular d i s t r i b u t i o n of 

the i n c i d e n t showers. The user may also specify maximum ground area 

for s i m u l a t i o n as w e l l as d e t a i l s of detector c h a r a c t e r i s t i c s and 

laboratory d i s c r i m i n a t i o n l e v e l s . 

When a l l the necessary i n f o r m a t i o n has been obtained, the si m u l a t i o n 

programme begins t o generate extensive a i r showers by c a l l i n g the main 
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subroutine EASGEN. On e n t e r i n g t h i s subroutine, the si m u l a t i o n codes 
are read from a s i n g l e l i n e f i l e which i n d i c a t e s how many showers are 
requ i r e d to be simulated and accepted by the array and shows the chosen 
event and run numbers f o r these showers. The number of the s u c c e s s f u l l y 
accepted showers i s also stored i n that f i l e . EASGEN continues by 
c a l l i n g subroutine SPEKY which e i t h e r s elects a shower size from the 
spectrum defined e a r l i e r or considers t h a t the shower has the prechosen 
f i x e d s i z e . This i s followed by a s e l e c t i o n of the shower's z e n i t h angle, 
0, and azimuthal angle, tf, according to the prev i o u s l y read i n f o r m a t i o n . 
EASGEN then c a l l s subroutine CORE t o sele c t the l o c a t i o n of the shower 
core. 

I t i s necessary to determine whether the generated shower succeeds 

i n t r i g g e r i n g the array. To do t h i s , subroutine TRIGRA i s c a l l e d which 
-2 

cal c u l a t e s the d e n s i t i e s (m ) measured a t the t r i g g e r i n g d e t e c t o r s , 

converts these d e n s i t i e s t o the corresponding pulse heights a t the 

mu l t i p l e x e r inputs and compares these heights w i t h the detector d i s ­

c r i m i n a t i o n l e v e l s . The d e n s i t i e s are obtained i n two steps. F i r s t 

the r a d i a l distance from the shower axis to each of the t r i g g e r i n g 

detectors has to be determined. Secondly according to a chosen s t r u c t u r e 

f u n c t i o n , the corresponding density i s obtained. The f u n c t i o n used i n 

t h i s programme i s that represented by equation 4.3 w i t h the mentioned 

m o d i f i c a t i o n (paragraph 4.3.2). From each density p, the mean number of 

p a r t i c l e s (pA cos8) i s c a l c u l a t e d . The a c t u a l number of p a r t i c l e s 

observed a t each detector i s then deduced by s e l e c t i n g an integ e r number, 

n, from a Poissonian d i s t r i b u t i o n defined by the parameter pA cos9. 

Using the integer number, n, the pulse height to the m u l t i p l e x e r i n p u t 

is c a l c u l a t e d by c a l l i n g subroutine VOLTDT where a value of t h a t height 

i s picked up from the detector's pulse height d i s t r i b u t i o n r e s u l t i n g 

from the passage of the n p a r t i c l e s through the detector. The pulse 

height f o r each of the t r i g g e r i n g detectors i s checked t o see i f i t i s 
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g r e a t e r t h a n t h e c o r r e s p o n d i n g d i s c r i m i n a t i o n l e v e l o r n o t . T h e f a i l u r e 
o f a n y o f t h o s e d e t e c t o r s t o p r o d u c e a p u l s e h e i g h t a b o v e t h a t m i n i m u m 
a c c e p t a b l e l i m i t , means t h a t t h e s h o w e r h a s n o t b e e n a b l e t o t r i g g e r 
t h e a r r a y a n d t h a t a n o t h e r s h o w e r h a s t o b e g e n e r a t e d . On t h e o t h e r h a n d , 
i f a l l t h e t r i g g e r i n g d e t e c t o r s h a v e s u c c e e d e d i n p a s s i n g t h e p r e v i o u s 
t e s t , t h e p r o g r a m m e c o n s i d e r s t h e s h o w e r a s a n a c c e p t a b l e o n e . I n t h i s 
c a s e , TRIGRA c a l l s s u b r o u t i n e VLTCH t o c o n v e r t t h e o b t a i n e d p u l s e 
h e i g h t s t o t h e c o r r e s p o n d i n g A . D . C . c h a n n e l v a l u e s u s i n g t h e M u l t i p l e x e r -
A . D . C . c a l i b r a t i o n c u r v e s . T h e p r o g r a m m e t h e n c a l c u l a t e s t h e c h a n n e l 
v a l u e s f o r t h e r e s t o f t h e p l a s t i c d e t e c t o r s i n t h e same m a n n e r d e s c r i b e d 
a b o v e . The l i q u i d d e t e c t o r s a r e t r e a t e d i n t h e same way e x c e p t t h a t 
a n e x t r a c a l i b r a t i o n c u r v e i s a d d e d t o a c c o u n t f o r t h e n o n l i n e a r i e t y 
o f b o t h t h e C . S . A . a n d t h e s t r e t c h e r . 

C o n c e r n i n g t h e t i m i n g d a t a , s u b r o u t i n e TRIGRA s t a r t s b y c a l c u l a t i n g 

t i n : r c l . i t i v e t i m e o f a r r i v a l , o f t h e s h o w e r f r o n t a t e a c h o f t h e o p e r a t i n g 

t i m i i i j ' , d e t e c t o r s u s i n g t h e p r e v i o u s l y s e l e c t e d v a l u e s o f t h e a n g l e s 0 

a n d <j>. T h e c a l c u l a t i o n o f t h e c o r r e s p o n d i n g A . D . C . c h a n n e l v a l u e i s 

d o n e a c c o r d i n g t o t h e f o l l o w i n g p r o c e d u r e . A t f i r s t , s u b r o u t i n e TACLE 

i s c a l l e d w h i c h a d d s t o t h e o b t a i n e d r e l a t i v e t i m e o f t h e s h o w e r a r r i v a l , 

t h e c a b l e a n d e l e c t r o n i c t i m e d e l a y w h i c h w a s f o u n d t o b e o n a v e r a g e 

o f t h e o r d e r o f 2 0 0 n s . A 5 n s m e a s u r e m e n t e r r o r i s t h e n a d d e d t o t h i s 

r e s u l t . T h i s t i m e v a l u e i s t h e n c o n v e r t e d t o t h e c o r r e s p o n d i n g p u l s e 

h e i g h t a t t h e m u l t i p l e x e r i n p u t u s i n g t h e p r e c a l c u l a t e d s l o p e o f t h e 

T . A . C . c a l i b r a t i o n c u r v e . F i n a l l y , s u b r o u t i n e VLTCH i s c a l l e d t o o b t a i n 

t h e c o r r e s p o n d i n g A . D . C . c h a n n e l v a l u e u s i n g t h e m u l t i p l e x e r - A . D . C . 

c a l i b r a t i o n c u r v e f o r t h a t d e t e c t o r . 

The n e x t s t e p i s t o c h e c k i f a n y o f t h e d e n s i t y d e t e c t o r s a r e 

s a t u r a t e d . F o r t h i s p u r p o s e , t h e A . D . C . c h a n n e l v a l u e o b t a i n e d f o r e a c h 

d e n s i t y d e t e c t o r i s c h e c k e d a g a i n s t t h e d e t e c t o r ' s p r e d e t e r m i n e d m a x i m u m 

r e c o r d a b l e c h a n n e l ( p a r a g r a p h 4 . 3 . 1 ) . I f t h e A . D . C . c h a n n e l v a l u e i s 

g r e a t e r t h a n t h i s , i t i s r e g a r d e d a s b e i n g a s a t u r a t e d m e a s u r e m e n t . 
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On r e t u r n i n g b a c k t o EASGEN, s u b r o u t i n e WRITS i s c a l l e d b y w h i c h 

t h e o b t a i n e d c h a n n e l v a l u e s f o r b o t h t h e t i m i n g a n d t h e d e n s i t y 

d e t e c t o r s a r e s t o r e d i n a s e q u e n t i a l f i l e o n m a g n e t i c d i s c t o g e t h e r 

w i t h o t h e r r e l e v a n t i n f o r m a t i o n s u c h a s t h e e v e n t a n d r u n n u m b e r s , bhe 

t r i g g e r mode a n d t h e d a t a g a t e i n f o r m a t i o n . T h e s e s i m u l a t e d d a t a a r e 

s t o r e d i n t h e same o r d e r a n d w i t h t h e same f o r m a t a s i s u s e d f o r s t o r i n g 

t h e r e a l d a t a . WRITS a l s o s t o r e s i n a l i n e f i l e t h e e v e n t a n d r u n 

n u m b e r s , t h e t r i g g e r m a d e , t h e a n g l e s 0 a n d <|>, t h e c o r e c o - o r d i n a t e s a n d 

t h e s h o w e r s i z e o f t h e g e n e r a t e d s h o w e r s u c h t h a t t h e i n i t i a l p a r a ­

m e t e r s o f t h e s i m u l a t e d d a t a c a n b e c o m p a r e d w i t h t h o s e r e s u l t i n g f r o m 

t h e a n a l y s i s o f t h e s e d a t a l a t e r o n . 

Now, t h e n u m b e r o f t h e a c c e p t e d s h o w e r s i s t e s t e d t o see i f i t i s 

l e s s t h e m t h e t o t a l n u m b e r r e q u i r e d t o b e g e n e r a t e d a n d a c c e p t e d . I f 

i t i s l e s s , EASCF.N c h e c k s t h e C . P . U . t i m e . I f t h e p r e - c h o s e n t i m e 

l i m i t i s r e a c h e d , t h e n u m b e r o f t h e s u c c e s s f u l s h o w e r s a r e p r i n t e d o u t 

t o g e t h e r w i t h t h e t o t a l n u m b e r o f t h e g e n e r a t e d o n e s a f t e r w h i c h t h e 

p r o g r a m m e s t o p s . I n t h e c a s e o f h a v i n g s u f f i c i e n t t i m e t o c o n t i n u e , 

EASGEN c a r r i e s o n g e n e r a t i n g m o r e s h o w e r s u n t i l e i t h e r t h e c h o s e n t i m e 

i s t o t a l l y c o n s u m e d , o r t h e r e q u i r e d a c c e p t e d s h o w e r s a r e o b t a i n e d . 

T h u s d a t a a r e s i m u l a t e d a n d s t o r e d f o r l a t e r a n a l y s i s . F i g u r e 5 . 1 

s h o w s a f l o w c h a r t f o r t h e s i m u l a t i o n p r o g r a m m e a n d f i g u r e 5 . 2 

i l l u s t r a t e s t h e s i m u l a t e d A . D . C . c h a n n e l d i s t r i b u t i o n w h i c h c o r r e s p o n d s 

t o t h e d i s t r i b u t i o n p r e v i o u s l y o b t a i n e d i n c h a p t e r f o u r ( f i g u r e - 4 . 1 ) . 

5 . 3 The E f f e c t o f t h e L i q u i d S c i n t i l l a t i o n C o u n t e r s o n t h e A c c u r a c y 

o f t h e C o r e L o c a t i o n D e t e r m i n a t i o n 

As m e n t i o n e d e a r l i e r , t h e a i m o f c a r r y i n g o u t t h e d a t a s i m u l a t i o n 

i s t o s t u d y how t h e p r e s e n c e o f t h e l i q u i d d e t e c t o r s a f f e c t s t h e 

a c c u r a c y w i t h w h i c h t h e a n a l y s i s p r o g r a m m e l o c a t e s t h e s h o w e r c o r e o f 

e a c h r e c o r d e d e v e n t . F o r t h i s p u r p o s e , d a t a w e r e s i m u l a t e d s u c h t h a t 
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t h e s h o w e r s w o r e g e n e r a t e d w i t h a f i x e d c h o s e n s h o w e r s i z e . T h i s w a s 

done f o r f o u r s h o w e r s i z e v a l u e s i n t h e r a n g e f r o m 5 . 0 x 1 0 ^ t o 1 . 0 x 1 0 ^ . 

T h e s i m u l a t e d d a t a w e r e t h e n a n a l y s e d t w i c e . F i r s t , t h e l i q u i d c o u n t e r s 

w e r e e l i m i n a t e d f r o m t h e c a l c u l a t i o n o f t h e s h o w e r c o r e p o s i t i o n . T h e n 

t h e d a t a w e r e r e a n a l y s e d w i t h t h o s e c o u n t e r s c o n s i d e r e d a s u s e f u l 

d e n s i t y d e t e c t o r s w h e n t h e m i n i m i s a t i o n r o u t i n e s r e s p o n s i b l e f o r 

d e t e r m i n i n g t h e c o r e l o c a t i o n w e r e c a r r i e d o u t . 

I n e a c h c a s e , t h e c o r e p o s i t i o n o f e a c h a n a l y s e d e v e n t w a s c o m p a r e d 

w i t h t h e c o r r e s p o n d i n g s i m u l a t e d o n e a n d t h e c o r e d i s p l a c e m e n t was 

d e d u r - u d „ T h i s d i s p l a c e m e n t was c a l c u l a t e d a c c o r d i n g t o t h e f o l l o w i n g 

e q u a t i o n : 

W h e r e X g , Yg a r e t h e c o r e c o - o r d i n a t e s o f t h e s i m u l a t e d s h o w e r a n d 

X . , Y . a r e t h o s e r e s u l t i n g f r o m t h e s h o w e r a n a l y s i s . T h e e v e n t s f o r 

e a c h o f t h e f o u r s h o w e r s i z e v a l u e s , w i t h w h i c h s h o w e r s w e r e g e n e r a t e d , 

w e r e t h e n d i v i d e d i n t o f o u r g r o u p s a c c o r d i n g t o t h e r a d i a l d i s t a n c e 

v a l u e o f t h e s i m u l a t e d c o r e s . F o r e a c h g r o u p , t h e c o r e d i s p l a c e m e n t 

h i s t o g r a m was o b t a i n e d . T h e r e s u l t a n t h i s t o g r a m s a r e shown i n f i g u r e s 

5 . 3 , 5 . 4 , 5 . 5 a n d 5 . 6 . F o r e a c h p a i r o f t h e s e h i s t o g r a m s ( w i t h o u t a n d 

w i t h t h e c o n s i d e r a t i o n o f t h e l i q u i d d e t e c t o r s ) , t h e n u m b e r , o f t h e e v e n t s 

f o r w h i c h t h e c o r e d i s p l a c e m e n t s l a y w i t h i n a d i s p l a c e m e n t r a n g e o f 

0 t o 2m, 0 t o 3m, a n d 0 t o 5m w e r e c a l c u l a t e d . T h e p e r c e n t a g e s o f t h e s e 

n u m b e r s o f t h e t o t a l n u m b e r o f e v e n t s p r e s e n t i n e a c h h i s t o g r a m w e r e 

p l o t t e d a s a f u n c t i o n o f s h o w e r s i z e . T h e r e s u l t a n t c u r v e s a r e s h o w n 

i n f i g u r e 5 . 7 ( a ) , ( b ) a n d ( c ) . T h i s f i g u r e shows t h a t w h e n t h e 

l i q u i d d e t e c t o r s w e r e n o t i n c l u d e d i n t h e a n a l y s i s o f e v e n t s w h i c h w e r e 

Y . ) X . ) + (Y c o r e d i s p l a c e m e n t 5 . 1 
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Figure 5.3 The core displacement histograms resulting from the analysis, without and 

with the consideration of the liquid detectors, of events simulated with 

a fixed shower size of 5-0x10^ and for 0 < R £ $ 1 0 m ( a ) and 10<R c<20m(b) 

R c is the radial distance of the simulated core. The results where 

without and with the liquid detectors are shown on the L .H.S . and 

R.H.S. respectively-
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Figure 5.4 The core displacement histograms resulting from the analysis, without and 

with the consideration of the liquid detectors, of events simulated with 

a fixed shower size of 1 0 x 1 0 5 a n d for 0 < R c < 10m l a ) , 10<RC< 20m (b), 

20<R c ^30m(c) and 30<R c s50mld) . The results without and with the liquid 

detectors are shown on the L.H.S. and R.H.S. respectively. 
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Figure 5.5 The core displacement histograms resulting from the analysis, without 

and with the consideration of the liquid detectors, of events simulated 

with a fixed shower size of 5 0x10 5 and for 0<R c <10m(a)JO<R c <20m(b) 

20<R r<30m(c) and 30<Rc<50m (d). The results without and with the liquid 

detectors are shown on the L.H.S. and R.H.S. respectively-
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Figure 5.6 The core displacement histograms resulting from the analysis, without and 

with the consideration of the liquid detectors, of events simulated with 

a f ixed shower size of 10 x 106 and for 20<R £ ^30m(a) and 30<R c«C50m(b). 

The results without and with the liquid detectors are shown on the 

L . H . S . and R.H.S . respectively-
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% where N̂ . is the total number of events present in the 

corresponding histogram and N is the number of events for 

which the core displacements lie within displacement range of: 

0 to 2m (a), 0 to 3m (b) and 0 to 5m ( c ) . R c is the radial 

distance of the s imulated core. 
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5 
K P i u - r n t i u l w i t l i n f i x e d H l i o w o r s i z e o f 1 . 0 x 10 n n d w h i c h h n d t h e i r 
c o r e s H i m u l n t c d w i t h i n a r n d i . n l . d i s t a n c e r a n g e o f 10 t o 20m, t h e n 
4 0 . 4 % , 5 3 . 5 % a n d 7 2 . 7 % o f t h e s e a n a l y s e d e v e n t s h a d c o r e d i s p l a c e m e n t s 
i n t h e r a n g e ( a ) 0 t o 2m, ( b ) 0 t o 3m a n d ( c ) 0 t o 5m r e s p e c t i v e l y . 
On t h e o t h e r h a n d , w h e n t h e l i q u i d d e t e c t o r s w e r e i n c l u d e d t h e s e 
p e r c e n t a g e s i n c r e a s e d t o b e 5 2 . 0 % , 6 7 . 4 ? a n d 8 2 . 7 % r e s p e c t i v e l y . 
A s i m i l a r i n c r e a s e i s a l s o s e e n f o r e a c h o f t h e o t h e r t h r e e r a n g e s o f 
r a d i a l d i s t a n c e o f t h e s i m u l a t e d c o r e s f o r t h e a b o v e s h o w e r s i z e . T h e 
same a p p l i e s t o t h e o t h e r v a l u e s o f s h o w e r s i z e i n e a c h o f t h e f o u r 
r a n g e s o f t h e s i m u l a t e d c o r e d i s t a n c e s . H e n c e , i t c a n b e c o n c l u d e d t h a t 
t h e i n c l u s i o n o f t h e l i q u i d d e t e c t o r s i m p r o v e s t h e a c c u r a c y o f l o c a t i n g 
t h e s h o w e r c o r e . 

As w i l l be s e e n i n t h e n e x t c h a p t e r , a n e q u a t i o n h a s b e e n o b t a i n e d 

- 2 

t o r e p r e s e n t t h e d e n s i t i e s (m ) o b s e r v e d b y t h e l i q u i d s c i n t i l l a t i o n 

c o u n t e r s . W i t h t h i s e q u a t i o n , t h e e f f e c t o f t h e i n t e r a c t i o n s o f p h o t o n s 

a n d n u c l e a r a c t i v e p a r t i c l e s , N . A . P . , i n t h e s c i n t i l l a t o r m a t e r i a l o f 

t h e s e d e t e c t o r s h a s e f f e c t i v e l y t a k e n i n t o a c c o u n t ( S 6 . 2 ) . T h e r e f o r e , 

i n o r d e r t o s t u d y t h e e f f e c t o f t h e i n t e r a c t i o n s o n t h e a c c u r a c y o f 

d e t e r m i n i n g t h e s h o w e r c o r e , f u r t h e r d a t a s i m u l a t i o n s w e r e c a r r i e d o u t 

u s i n g t h e m e n t i o n e d e q u a t i o n t o s i m u l a t e t h e d e n s i t i e s m e a s u r e d b y t h e 

l i q u i d d e t e c t o r s . T h i s was d o n e f o r t w o f i x e d v a l u e s o f s h o w e r s i z e ; 

1 . 0 x 10"* a n d 5 . 0 x 1 0 " \ A s b e f o r e , t h e s i m u l a t e d d a t a w e r e a n a l y s e d 

b o t l i c o n s i d e r i n g a n d i g n o r i n g t h e l i q u i d d e t e c t o r s i n t h e c a l c u l a t i o n o f 

t h e s h o w e r p a r a m e t e r s . I n b o t h c a s e s , t h e c o r e d i s p l a c e m e n t o f e a c h 

e v e n t was d e t e r m i n e d . F i g u r e s 5 . 8 a n d 5 . 9 a r e t h e r e s u l t a n t c o r e d i s ­

p l a c e m e n t h i s t o g r a m s ( e q u i v a l e n t t o t h o s e s h o w n i n f i g u r e s 5 . 4 a n d 5 . 5 ) . 

S i m i l a r l y , f o r e a c h h i s t o g r a m , t h e n u m b e r s o f e v e n t s f o r w h i c h t h e c o r e 

d i s p l a c e m e n t s w e r e f o u n d t o b e w i t h i n r a n g e s o f 0 t o 2m, 0 t o 3m a n d 

0 t o 5m w e r e d e d u c e d a n d t h e p e r c e n t a g e o f t h e t o t a l n u m b e r o f e v e n t s 
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Figure 5.8 The core displacement histograms resulting from the analysis, without and with 
the consideration of the liquid detectors, of events simulated with a f ixed 
shower size of 1-0x105 taking into account the photon and N.A.P effect and 
for 0 < R c £ 10m(a), 10< R c < 2 0 m (b), 20 < R c ^ 3 0 m (c) and 30<R<j£50m(d) . 
The results without and with the liquid detectors are shown on the L.H.S. 
and R.H.S. respectively-
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Figure 5.9 The core displacement histograms resulting from the analysis , without and 
with the consideration of liquid detectors of event simulated with a fixed shower 
size of 5 0x10 s taking into account the photon and N. A. P. effect and for 
0 < R c ^10m (a), 10<R C < 20m lb) , 2 0 < R c « 3 0 m ( c ) and 30 <R C «S50m (d). The 
results without and with the liquid detectors are shown on the L . H . S . a n d 
R.H.S. respectively-
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N 

p r e s e n t f o u n d , % ) . T h e p e r c e n t a g e s o b t a i n e d e a r l i e r w h e n t h e d a t a 

w e r e s i m u l a t e d n e g l e c t i n g t h e e f f e c t o f t h e p h o t o n a n d N . A . P . i n t e r ­

a c t i o n s ( t h o s e p l o t t e d i n f i g u r e 5 . 7 ) w e r e t h e n c o m p a r e d w i t h t h e 

p e r c e n t a g e s r e s u l t i n g w h e n t h a t e f f e c t was t a k e n i n t o a c c o u n t . T h i s 

c o m p a r i s o n i s s h o w n i n t a b l e s 5 . 1 a n d 5 . 2 f o r t h e t w o s h o w e r v a l u e s f o r 

w h i c h d a t a w e r e r e s i m u l a t e d a n d t h e t a b l e s show t h a t i n a d d i t i o n t o t h e 

p r e v i o u s c o n c l u s i o n t h a t t h e i n c l u s i o n o f t h e l i q u i d d e t e c t o r s i m p r o v e s 

t h e a c c u r a c y o f l o c a t i o n o f t h e s h o w e r c o r e , c o n s i d e r a t i o n o f e f f e c t s 

o f p h o t o n a n d N . A . P . g i v e s f u r t h e r i m p r o v e m e n t t o t h e a c c u r a c y w h e n t h e 

s i m u l a t e d c o r e r a d i a l d i s t a n c e i s b e l o w 2 0 m . 

5 . 4 T h e E f f e c t o f C o n s i d e r i n g t h e L i q u i d D e t e c t o r s o n t h e S h o w e r S i z e 

E s t i m a t e d b y t h e A n a l y s i s P r o g r a m m e 

I n o r d e r t o s t u d y t h e e f f e c t o f i n c l u d i n g t h e l i q u i d d e t e c t o r s 

o n t h e s h o w e r s i z e c a l c u l a t e d b y t h e a n a l y s i s p r o g r a m m e , a c o m p a r i s o n 

was made b e t w e e n t h e m e a n v a l u e s o f s h o w e r s i z e r e s u l t i n g f r o m t h e 

a n a l y s i s o f t h e s i m u l a t e d d a t a i g n o r i n g t h e s e d e t e c t o r s a n d i n c l u d i n g 

t h e m i n t h e a n a l y s i s . T h i s was d o n e f o r t h e t w o s e t s o f s i m u l a t e d d a t a , 

b o t h w h e n t h e p h o t o n a n d N . A . P .effects were n e g l e c t e d a n d w h e n t h e y Were 

t a k e n i n t o a c c o u n t . T a b l e s 5 . 3 a n d 5 . 4 show t h e r e s u l t o f t h e c o m ­

p a r i s o n f o r a l l e v e n t s i n d e p e n d e n t o f t h e s i m u l a t e d c o r e r a d i a l d i s t a n c e , 

R ^ , a n d f o r o n l y t h o s e e v e n t s w h i c h h a d t h o s e c o r e s g e n e r a t e d w i t h i n 

t e n m e t r e s o f t h e c e n t r a l d e t e c t o r r e s p e c t i v e l y . I t i s c l e a r f r o m t h e 

f i r s t t a b l e t h a t t h e o v e r a l l mean s h o w e r s i z e o b t a i n e d f r o m d a t a a n a l y s i s 

h a d n e a r l y t h e same v a l u e i n a l l c a s e s . On t h e o t h e r h a n d t h e s e c o n d 

L a b J c shows t h a t f o r t h e e v e n t s w h i c h h a d R < 1 0 m , i n c l u s i o n o f t h e 
c ' 

l i q u i d d e t e c t o r s i n c r e a s e s t h e r e s u l t a n t mean s h o w e r s i z e s l i g h t l y . 

A l t h o u g h t h e s t a t i s t i c s a r e p o o r t h e i n d i c a t i o n s a r e t h a t t h e i n c r e a s e 

i s g r e a t e r w h e n t h e e f f e c t o f p h o t o n a n d N . A . P . i n t h e l i q u i d s c i n t i l l a t i o n 

c o u n t e r s a r e c o n s i d e r e d by way o f t h e m o d i f i e d s t r u c t u r e f u n c t i o n . 



N 

Comp.-ir i i m n I K M . W C I - M l l u - V U ] . I K - M o l •-- Z ol>l . : i i I K M I I r o i n t h e . - i n u L y N i s 

o f d a L a s i m u l a t e d w i t h a f i x e d s h o w e r s i z e o f 1 . 0 x 1 0 ^ w h e n t h e 

l i q u i d s c i n t i l l a t i o n c o u n t e r s ( L . S c . ) w e r e n o t c o n s i d e r e d a n d 

w h e n t h e y w e r e c o n s i d e r e d . 

a : r e s u l t s o b t a i n e d f o r d a t a s i m u l a t e d w h i l e t h e p h o t o n a n d N . A . P . 

e f f e c t was n e g l e c t e d , 

b : r e s u l t s o b t a i n e d f o r d a t a s i m u l a t e d w i t h t h e c o n s i d e r a t i o n 

o f t h a t e f f e c t . 
R i s t h e r a d L a l d i s t a n c e o f t h e s i m u l a t e d c o r e , 

i : 

( a ) 

Displacement o<R <10tu c 10<R $20m c 20<R ;:30m c 
30<R 

c 
$50ra 

Range (») L.Sc.out I . .Sc . in L.Sc.out L . S c . i n L.Sc.out L . S c . i n L.Sc .out L . S c . i n 

0 to 2 58.5% 73.6% 40.4% 52.0% 24.2% 34.9% 10.7% 17.9% 

0 to 3 71.7% 84.92 53.5% 67.4% 37.9% 48.5% 25.0% 32.1% 

0 to 3 | 90.62 96.1% 72.7% 82.7% 65.2% 71.2% 60.7% 64.3% 

( b ) 

1 
Displacement 0<R 410m c 10<R 420m c 20<R £30m c 

i 
30<R <50m 

Range (m) L.Sc.out L . S c . i n L.Sc.out L . S c . i n L.Sc.out L . S c . i n L.Sc .out L . S c . i n | 

0 to 2 58.6% 75.9% 40.6% 53.5% 24.6% 35.4% 10.7% 17.9% j 

0 to 3 72.4% 87.9% 54.5% 69.3% 38.5% 49.2% 25.0% 32.1% 

0 to 5 89.7% 100% 72.3% 84.1% 64.6% 70.8% 60.7% 64.3% 



T a b l e 5 . 2 

N 
C o m p a r i s o n b e t w e e n t h e v a l u e s o f — Z o b t a i n e d f r o m t h e a n a l y s i s o t 

T 5 . . 
d a t a s i m u l a t e d w i t h a f i x e d s h o w e r s i z e o f 5 . 0 x 10 w h e n t h e l i q u i d 

s c i n t i l l a t i o n c o u n t e r s ( L . S c . ) w e r e n o t c o n s i d e r e d a n d w h e n t h e y 

w e r e c o n s i d e r e d . 

a : r e s u l t s o b t a i n e d f o r d a t a s i m u l a t e d w h i l e t h e p h o t o n a n d N . A . P . 

e f f e c t w a s n e g l e c t e d , 

b : r e s u l t s o b t a i n e d f o r d a t a s i m u l a t e d w i t h t h e c o n s i d e r a t i o n o f 

t h a t e f f e c t . 

( a ) 

Displacement 

Range (ra) 

0<R (10m c 10<R $20m cN 2CKR $ 30m c 30<R <50a c Displacement 

Range (ra) L.Sc.out L . S c . i n L.Sc.out L . S c . i n L.Sc.out L . S c . i n L.Sc .out L . S c . i n 

0 to 2 70% 85% 52Z 64% 35.7Z 47.6% 22.5% 31.5% 

0 to 3 85% 95.02 68% 80% 5 7.1% 66.7% 40.5% 48.3% 
1 

0 to 5 j 100% 
1007. 92% 100% 76.2% 83.3% 67.4% 74.2% 

( b ) 

Displacement 

Range (m) 

0<R $ 10m c 10<R $20m c 20<R $30m c 1 30<Rc450m Displacement 

Range (m) L.Sc.out L . S c . i n L.Sc.out L . S c . i n L.Sc.out L . S c. in L.Sc .out L . S c . i n 

0 to 2 69.6% 87% 50% 63.3% 3SZ 48% 22.5% 31.6% 

0 to 3 87% 100% 70% 83.3% 58% 68% 40.8% 
1 

49% 

0 to 5 
1 

100% 100% 93.3% 100% 78% 86% 66.3% 73.5% 



Comparison between the o v e r a l l mean values of shower size r e s u l t i n g 

from the a n a l y s i s , w i t h o u t and w i t h the c o n s i d e r a t i o n of the l i q u i d 

s c i n t i l l a t i o n counters, of data simulated w i t h f i x e d shower size of 

1.0 x 10 5 and 5.0 x 10 5. 

a: r e s u l t s obtained f o r data simulated w h i l e the e f f e c t of photon 

and N.A.I', i n t e r a c t i o n s was neglected, 

b: r e s u l t s obtained for data simulated w i t h the consideration of that 

e f fec t . 

Simulated 
shower 
size 

(a) (b) Simulated 
shower 
size w i t h o u t L.Sc. w i t h L.Sc. w i t h o u t L.Sc. w i t h L.Sc. 

1 .OxlO5 (8.33H.66U0 4 [8.38±1.53]104 18.35±1.61]104 [8.40±1.58]10A 

5.0xl0 5 [4.47±0.92]105 [4.49±0.79)105 [4.48+0.77]10 5 [4.50*0.76)10 5 



Table 5.4 

Comparison between the mean values of shower size r e s u l t i n g from 

the a n a l y s i s , without and w i t h the consideration of the l i q u i d 

counters, of data simulated w i t h a f i x e d shower size of 1.0 x 10' 

and for o<R $10m c 
a: r e s u l t s obtained f o r data simulated while the photon and 

N.A.P. e f f e c t was neglected, 

b: r e s u l t s obtained f o r data simulated w i t h the con s i d e r a t i o n 

of that e f f e c t . 

(a) (b) 

without L.sc. w i t h L.sc. without L.sc. w i t h L.sc. 

(8.4 ±1.2110* (8.6±1.0]104 18.4 i l . l l l O 4 19.2 ±1.13]104 

0 

I 
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However, i t can be seen t h a t i n a l l cases, the mean shower size 

obtained analysing the simulated data i s always less than the i n i t i a l 

shower size f o r which the simulations were c a r r i e d out. 



CHAPTER SIX 

RESULTS ANU INTKUPRETATION 

6.1 I n t r o d u c t i o n 

Chapter four described how the array data were analysed i n order 

t o o b t a i n the various parameters of the recorded showers. The a n a l y s i s 

was c a r r i e d out w h i l s t one of the l i q u i d s c i n t i l l a t i o n counters and 

one o f the p l a s t i c d e t e c t o r s were e l i m i n a t e d from the c a l c u l a t i o n of 

these parameters. Hence, the l a t e r a l d i s t r i b u t i o n of the e l e c t r o n -

photon component of extensive a i r showers as measured by each of these 

two types of de t e c t o r could be deduced. The shower parameters* c a l ­

c u l a t e d by the analysis programme were also used i n a comparison made 

between the d i s t r i b u t i o n o f the number of flash-tubes discharged i n the 

red-side top measuring t r a y of the specteograph (S3.5), and the t h e o r e t i c a l l y 

p r e d i c t e d d i s t r i b u t i o n . 

6.2 L a t e r a l D i s t r i b u t i o n of the Electron-Photon Component 

I t has been found by many authors, Bray e t a l (1965), Shibata 

e t a l . (1965), Dake et a l (1971) and Alexeyev e t a l (1977), t h a t the 

p a r t i c l e d e n s i t i e s i n EAS as measured by s c i n t i l l a t i o n counters are 

higher than those measured by e i t h e r spark chambers or Geiger M u l l e r 

counters placed a t the same p o s i t i o n as the s c i n t i l l a t i o n counters. This 

has been a t t r i b u t e d to the s c i n t i l l a t o r responding t o the e l e c t r o n -

photon cascade and to the i n t e r a c t i o n of nuclear a c t i v e p a r t i c l e s , NAP, 

i n the s c i n t i l l a t o r m a t e r i a l w h i l s t both spark chambers and Geiger 

counters respond only to the EAS c h a r g e d . p a r t i c l e s . Since the p a r t i c l e s 

i n the electron-photon cascade and the nuclear .active component are more 

energet i c near the shower core, the e f f e c t o f the i n t e r a c t i o n s o f these 

p a r t i c l e s i n the s c i n t i l l a t o r m a t e r i a l increases as the r a d i a l d i s t a n c e 

between the s c i n t i l l a t i o n counter and the shower core decreases. Also 

i t has been found from the work of s e v e r a l authors, and which was 
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summarised by Smith (1978), t h a t the c o n t r i b u t i o n of these i n t e r a c t i o n s 
t o the observed d e n s i t i e s increases w i t h i n c r e a s i n g depth o f the s c i n t i l l a t o r . 
This i s expected since the t h i c k e r the s c i n t i l l a t o r m a t e r i a l the greater 
the p r o b a b i l i t y of the nuclear a c t i v e p a r t i c l e s i n t e r a c t i n g and of the 
photons producing e l e c t r o n - p o s i t r o n p a i r s by p a i r p r o d u c t i o n . 

I n t h i s research and as mentioned e a r l i e r , the a r r a y data were 

analysed while a l i q u i d d e t e c t o r and a p l a s t i c d e t e c t o r were not 

considered by the an a l y s i s programme i n the c a l c u l a t i o n of the shower 

parameters. These two det e c t o r s were chosen t o be d e t e c t o r number 7 

and detector number 41 r e s p e c t i v e l y (see f i g u r e 3.1). The depth o f 

the l i q u i d i n the l i q u i d counter i s 20 cm and the thickness o f the p l a s t i c 

d e t e c t o r i s 5 cm. For each analysed shower which was found t o have an 

apparent value f o r the z e n i t h angle, 0 ,of ^ 3 0 ° and an accepted core 

r a d i a l d i s t a n c e , R,, ̂  50 m, the d e n s i t i e s observed by these two d e t e c t o r s 

were determined, by the a n a l y s i s programme, and t h e i r r a d i a l d istances 

from the shower core were c a l c u l a t e d . 

Figures 6.1 and 6.2 show the l a t e r a l d i s t r i b u t i o n s of the e l e c t r o n -

photon component measured by the two det e c t o r s and the experimental 

r e s u l t s are p l o t t e d together w i t h the best f i t curves. By comparing the 

two f i g u r e s , i t i s c l e a r t h a t the l a t e r a l d i s t r i b u t i o n curve obtained 

by the l i q u i d counter i s higher and a l s o somewhat steeper than t h a t 

measured by the p l a s t i c d e t e c t o r . This i s expected since the f i r s t 

d e t e c t o r i s t h i c k e r than the second. The equation r e p r e s e n t i n g the best 

f i t curve f o r the r e s u l t s of the l i q u i d s c i n t i l l a t i o n counter i s given 

by 

P d e t . " p o X (TTT> 6 , 1 

-2 
where p, i s the p a r t i c l e d e n s i t y (m ) measured at the d e t e c t o r , p det ° 

i s the de n s i t y given by the equation which represents the m o d i f i e d Catz 

l a t e r a l s t r u c t u r e f u n c t i o n used f o r the m i n i m i s a t i o n r o u t i n e s (S4.4) and 

r i s the r a d i a l distance (m) between the d e t e c t o r and the shower core. 
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Figure 6.1 Lateral distribution of the electron-photon component of E . A . S . , 
normalised to N= 21x10 s , as measured by the liquid scintillation 
counter, 7, (20 cm thick). The solid curve represents the best fit 
aquation. 
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Figure 6.2 Lateral distribution of the electron - photon component of E . A . S . , 
normalised to N = 2-1 x 10s, as measured by the plastic scintil lation 
counter, 41, (5cm thick). The solid curve represents the best fit 
aquation. 
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r + 3 
The term r + ^ represents the mentioned e f f e c t of the i n t e r a c t i o n s of 
photons and nuclear a c t i v e p a r t i c l e s i n the s c i n t i l l a t o r m a t e r i a l and 

2 

can be w r i t t e n as 1 + A where A • + . Table 6.1 i l l u s t r a t e s the 

r e l a t i o n s h i p between the value of the d e t e c t o r ' s r a d i a l d i s t a n c e r and 

the corresponding value o f A. This t a b l e shows t h a t the c o n t r i b u t i o n of 

the i n t e r a c t i o n s of photons and NAP t o the d e n s i t y observed by the 

d e t e c t o r decreases as r increases since f o r r • lm the d e n s i t y measured 

i s 100% higher than t h a t given by the modified Catz f u n c l i o n w h i l e f o r 

r - 20 id the density i s only about 10% higher. 

For the p l a s t i c d e t e c t o r , the best f i t curve was found t o be 

represented by an equation of the form, 

,r + 1.4. 
p d e t " p o x (FTT-> • 6.2 

S i m i l a r l y , the term showing the e f f e c t of t h e . i n t e r a c t i o n s of photons 
r + 1 4 0 4 and NAP, r^~t can be w r i t t e n as 1 + B where B = — — = - . I n thi.s * r + 1 ' r + 1 

case the increase i n the d e n s i t y due t o these i n t e r a c t i o n s i s less 

than t h a t observed f o r the l i q u i d d e t e c t o r such t h a t t h i s increase i s 

only 0.8% a t r = 50 m and reaches 20% at r =» 1 m. 

The r e s u l t s obtained f o r the two d e t e c t o r s are p l o t t e d again i n 

f i g u r e s 6.3 and 6.4 together w i t h t h e l a t e r a l d i s t r i b u t i o n s t r u c t u r e 

f u n c t i o n s deduced from various experiments. I n these f i g u r e s , the e r r o r 

bars on the present r e s u l t s are not shown i n order t o avoid confusion. 

By comparing a l l the curves and data shown i n the two f i g u r e s , i t i s 

c l e a r t h a t the Hasegawa f u n c t i o n (2.3) i s the steepest f u n c t i o n amongst 

a l l those presented. I f the other l a t e r a l d i s t r i b u t i o n curves are 

arranged i n descending order, i t can be seen t h a t f o r r a d i a l distances 

below 20 m the highest and steepest one i s t h a t represented by the 

r e s u l t s obtained a t Moscow f o r l i q u i d s c i n t i l l a t i o n counters having 

a thickness of 30 cm ( 2.5.5). Next, come the present r e s u l t s f o r the 

l i q u i d counter, 7, i n which the depth of the l i q u i d i s 20 cm. These 



TABLE 6.1 

The r e l a t i o n s h i p between the r a d i a l distance (m) 
of the l i q u i d s c i n t i l l a t i o n counter, 7, and the 
c o n t r i b u t i o n of the i n t e r a c t i o n s of photons and 
NAP to the observed p a r t i c l e density. 

Radial distance r(m) A : ( — ^ r ) v r + 1' 

1.0 1.0 

2.0 0.67 

5.0 0.33 

10.0 0.18 

15.0 0.13 

20.0 0.10 

30.0 0.06 

40.0 0.05 

50.0 0.04 
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Figure 6.3 Comparison between the present results obtained by the 
liquid and the plastic detectors, 7 and 41, and the 
air shower lateral structures due to several authors, 
normalised to N= 2-1 x 10s 
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are followed by the Catz f u n c t i o n (4.3) deduced Gir the { ^ a r t i c l e 

d e n s i t i e s as r e g i s t e r e d by l i q u i d c o u n t e t H which wero about 12 cm t h i c k 

(S2.S.4). Below t h i s f u n c t i o n are the present r e s u l t s recorded using 

the p l a s t i c d e t e c t o r , 41, which has a thickness of 5 cm, as w e l l as 

the K i e l l a t e r a l d i s t r i b u t i o n f u n c t i o n (2.5) obtained f o r p l a s t i c 

d e t e c t o r s of a s i m i l a r thickness and which, as seen, agrees w e l l w i t h 

the present r e s u l t s . The next curve i s t h a t r e p r e s e n t i n g the m o d i f i e d 

Catz f u n c t i o n (S4.4) which has been deduced f o r t h i n n e r s c i n t i l l a t i o n 

counters. F i n a l l y comes the l a t e r a l d i s t r i b u t i o n f u n c t i o n o f Greisen 

(1960) which i s to be expected since t h i s f u n c t i o n i s only f o r the 

charged p a r t i c l e s i n the EAS. 

Therefore, i t may be concluded from the p r e v i o u s l y mentioned two 

f i g u r e s , t h a t apart from the Hasagawa f u n c t i o n , t h ere i s a good agree-* 

ment between a l l the other l a t e r a l d i s t r i b u t i o n f u n c t i o n s and the present 

r e s u l t s i f the thickness of the d e t e c t o r s used i n each case i s taken i n t o 

account. 

6.3 The Comparison Between the Experimental Data Obtained by the Top 

Measuring Tray of MARS and the T h e o r e t i c a l P r e d i c t i o n s 

I n order t o c a r r y out t h i s comparison, i t was r e q u i r e d t o f i n d which 

o f the e i g h t layers o f tubes i n the red-side top measuring t r a y was 

most s u i t a b l e . For t h i s purpose, the e f f i c i e n c y o f the tubes i n each 

l a y e r , the p r o b a b i l i t y of each tube being discharged as a consequence 

o f the passage o f a p a r t i c l e through i t s i n t e r n a l volume, was i n ­

v e s t i g a t e d and the r e s u l t s are shown i n t a b l e 6.2 I t can be seen from 

t h i s t a b l e t h a t the tubes i n l a y e r s 4 and 6 were the most e f f i c i e n t . 

Therefore f o r each recorded shower event o f z e n i t h angle 0 ̂  30° and 

which had f a l l e n a t a r a d i a l distance ^.50 m, la y e r s 4 and 6 were 

scanned to know how many tubes were discharged i n each. The histogram 

of the shower size of these events r e s u l t i n g from the a n a l y s i s programme 

was then obtained ( f i g u r e 6.5). The events having shower size values 



TABLE 6.2 

The E f f i c i e n c y of the Red-Side Top Measuring 
Tray of the Spectrograph 

Layer 1 
(t o p ) 2 3 4 5 6 7 8 

Layer 
l£ f fici.ency 

% 
53.3 57.0 54.6 57.1 45.3 58.3 56.2 55.7 

Tube 
E f f i c i e n c y 

% 
82.6 88.3 84.5 88.4 70.2 90.3 87.0 86.3 
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Figure 6.5 Histogram of the shower size values resulting 
from the analysis of the scanned events. 
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i n the range from 1.0 x 10** t o 1.0 x 10 6 were d i v i d e d i n t o f o u r groups, 

each c o n t a i n i n g n e a r l y the same number o f events, and the a c t u a l mean o f 

the shower size f o r each group was c a l c u l a t e d . The ranges o f shower 

s i z e s , N, of the events i n these groups were as f o l l o w s : 

1.0 x 1 0 4 < N ^ 5 . 0 1 x 10 A, 5.01 x 1 0 4 < N ^ 1 . 0 x 10 5, 1.0 x 1 0 5 < N 

^ 2.0 x 10 5, and 2.0 x 10 5<N4l.p X 10 6. 

Each of these groups was i n t u r n d i v i d e d i n t o four approximately equal 

subgroups according t o the value of the r a d i a l d i s t a n c e , 1 ^ , of the top 

red-side measuring t r a y . For each of the r e s u l t a n t s i x t e e n subgroups 

the a c t u a l mean value o f 1 ^ was c a l c u l a t e d and the d i s t r i b u t i o n of the 

mean number of tubes discharged i n the two scanned l a y e r s was then 

obtained. 

The c a l c u l a t e d a c t u a l mean values o f the shower s i z e and of the top 

measuring t r a y r a d i a l distance were used t o deduce the corresponding 

t h e o r e t i c a l d i s t r i b u t i o n s . Owing to. the f a c t t h a t both the f l a s h - t u b e s 

o f the top measuring t r a y and the Geiger M u l l e r counters respond o n l y 

t o the charged p a r t i c l e s i n the EAS, the Griesen s t r u c t u r e f u n c t i o n 

( e q u a t i o n 2.1) was considered s u i t a b l e f o r c a l c u l a t i n g the p a r t i c l e 
-2 

density (m ) corresponding t o the evaluated mean shower size and mean 
r a d i a l d i s t a n c e . I t i s considered t h a t the p r o b a b i l i t y p ( n ) , t h a t n 

in 

o ut o f a t o t a l ra p a r t i c l e d e t e c t o r s , each of equal area s, are s t r u c k 

when the mean p a r t i c l e density i s p , i s represented by the f o l l o w i n g 

Foisson formula. 
/ \ ml r , — ps «n r —ps T m-n , , 

m n l ( m - n ) l «• J I J 

I n t h i s equation, each d e t e c t o r i s considered as a separate independent 

one. Thus f o r each c a l c u l a t e d mean p a r t i c l e d e n s i t y , the p r o b a b i l i t y 

d i s t r i b u t i o n f o r each la y e r was obtained using the above formula. This 

was done f o r n ranging from 1 t o 89 ( t h e t o t a l number of the l a y e r tubes) 

and where each tube was considered as a separate d e t e c t o r o f area S 



- 66 -

taken t o be equal t o the i n t e r n a l diameter times the l e n g t h of the tube 
covered by the el e c t r o d e m u l t i p l i e d by the tube's e f f i c i e n c y . This 
e f f i c i e n c y was assumed t o be uniform over the l e n g t h o f the tube. A 
Monte Carlo technique was used such t h a t the a c t u a l number of tubes 
discharged i n each of the chosen layers was sel e c t e d from the corresponding 
p r c c a l c u l a t e d p r o b a b i l i t y d i s t r i b u t i o n . F i n a l l y , the t h e o r e t i c a l 
d i s t r i b u t i o n f o r the mean of the number of tubes discharged i n the two 
layer8 was deduced. 

Figures 6.6, 6.7, 6.8 and 6.9 represent the obtained experimental 

and t h e o r e t i c a l d i s t r i b u t i o n s . The r a t i o between the mean o f each 

experimental d i s t r i b u t i o n and t h a t o f the corresponding t h e o r e t i c a l 

one i s shown i n t a b l e 6.3. I t can be seen from t h i s t a b l e t h a t the d i s ­

agreement between the experimental r e s u l t s and the t h e o r e t i c a l 

p r e d i c t i o n s decreases w i t h the shower s i z e . This may be i n t e r p r e t e d on 

the basis of f i g u r e 6.10 which shows the r e l a t i o n s h i p between the 

f i x e d values of shower s i z e w i t h which data were simulated, N. , (see 
in 

chapter 5) and the corresponding mean values f o r the shower s i z e , N , 

r e s u l t i n g from the a n a l y s i s of these simulated data. According t o t h i s 

f i g u r e , the mean value o f the shower size obtained by the a n a l y s i s 

programme i s always less than the value w i t h which showers were generated. 

Also i t can be seen from t h i s f i g u r e t h a t the mean value of N increases 
o u t 

4 from 0.8 N. to 0.92 N. as the value of N. increases from 5.0 x 10 i n i n i n 
t o 1.0 x 10 6. 
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Figure 6.10 Relationship between the fixed values of shower s i z e , N j n , with which data 

ware simulated and the corresponding mean values for shower s i ze , N o u t , 

resulting from the analysis of these simulated data. The error bar: represent 

the standard deviation on the corresponding mean value. 



A P P E N D I X A 

THE MODIFICATION TO THE CATZ FUNCTION 

As has been mentioned i n chapter f o u r , a m o d i f i c a t i o n was made t o 

the Catz l a t e r a l d i s t r i b u t i o n s t r u c t u r e f u n c t i o n ( 4 . 3 ) . The m o d i f i c a t i o n 

was to replace the o r i g i n a l term ( r + 1) by ( r + 2) since w i t h t h i s 

l a t t e r f u n c t i o n , a b e t t e r f i t to the data was obtained. An explanation 

fo r this can be summarised as f o l l o w s : 

1. 4,000 Events were analysed three times using the o r i g i n a l 

Catz f u n c t i o n to locate the shower core and determine the 

shower s i z e , the l i q u i d s c i n t i l l a t i o n counters being excluded 

i n the c a l c u l a t i o n s of these parameters. For each of these 

events, the observed and pre d i c t e d d e n s i t i e s f o r a l l the array 

det e c t o r s , i n c l u d i n g the l i q u i d counters, were c a l c u l a t e d by 

the analysis programme according t o the method described i n 

chapter fo u r . 

2. For each u s e f u l event, i . e . one having a z e n i t h angle ^ 3 0 ° 

and a core r a d i a l distance ̂ 5 0 m, the r a d i a l distance from 

the shower core to each of the l i q u i d detectors was found . 

3. These events were then d i v i d e d i n t o groups according to the 

values of the r a d i a l distances. 

4. For each group, the observed and p r e d i c t e d d e n s i t i e s of the 

l i q u i d detectors were r e f e r r e d to as Y and X r e s p e c t i v e l y . 

The s t r a i g h t l i n e Y = a + bX was f i t t e d to these data using 

the weighted l e a s t squares method where and and b were the 

i n t e r c e p t and the slope of t h a t l i n e . 

5. The r e s u l t i n g values of a and b f o r a l l of these groups are 

l i s t e d i n ta b l e AA. I t was assumed that the o r i g i n a l Catz 

f u n c t i o n (4.3), according t o which the p r e d i c t e d d e n s i t i e s were 

c a l c u l a t e d , does not make any allowance f o r the i n t e r a c t i o n s 

of photons and nuclear a c t i v e p a r t i c l e s i n the t h i c k s c i n t i l l a t o r 
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m a t e r i a l ol : the l i q u i d d e t e ctors. As was explained i n 

Chapter s i x , t h i s e f f e c t i s large a t small distances from the 

shower core and r e s u l t s i n a larg*increase of the observed 

density at the l i q u i d d e t e ctors. I t w i l l also be seen 

tha t t h i s e f f e c t decreases as the r a d i a l distance increases. 

Therefore, i t was expected t h a t the f i r s t data group would have 

a slope b greater than one and that t h i s slope should decrease 

to u n i t y as the r a d i a l distance increases. As seen from t a b l e 

A . l , the slope, b, f o r the group of l a r g e s t r a d i a l distance 

range may not be considered f a r from what was expected, but the 

slopes,b, corresponding to the other groups, e s p e c i a l l y the 

f i r s t one, are lower than i s to be expected 

Table A.l 

L.Sc. r a d i a l 
distance range 

(m) 

Number of 
poi n t s present a b 

0.5 to 5 742 -0.27 0.75 + 0.03 

5 to 10 1694 0.2 0.88 + 0.02 

10 to 20 5196 0.39 0.90 + 0.01 

20 t o 30 3075 0.42 0.91 + 0.01 

6. Table A2 shows the corresponding r e s u l t s obtained f o r one of the 

p l a s t i c d e t e c t o r s , detector 11 (see f i g u r e 3.1), where only 

1,000 events were considered. 
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Table A.2 

Radial distance 
range (m) 

Number of 
points present a b 

0.5 to 5 32 -0.13 1.00 + 0.05 

5 to 10 53 0.1 1.05 + 0.04 

10 t o 20 162 0.15 1.09 + 0.02 

20 t o 30 98 0.16 1.13 + 0.03 

7. Therefore, i t was concluded from the previous two tables that 

the o r i g i n a l Catz f u n c t i o n was q u i t e s u i t a b l e f o r data from 

the p l a s t i c d e t e c t o r s , which were used f o r the e s t i m a t i o n of 

the shower parameters, but not so s u i t a b l e f o r the l i q u i d 

counters which were ignored i n the c a l c u l a t i o n s of these 

parameters. 

8. Hence i t was found t h a t the o r i g i n a l Catz f u n c t i o n should be 

modified t o obtain a b e t t e r f i t f o r the present data from 

the l i q u i d d etectors. This was done by r e p l a c i n g the o r i g i n a l 

term ( r + 1) by ( r + 2 ) . 400 Events were then reanalysed 

using the modified f u n c t i o n w h i l e the l i q u i d detectors were 

also neglected i n t h a t a n a l y s i s . S i m i l a r l y the l i q u i d 

detectors density data ( i . e . p l o t s of the observed d e n s i t i e s 

against p r e d i c t e d d e n s i t i e s ) were f i t t e d by s t r a i g h t l i n e s 

using the weighted l e a s t squares method (as described e a r l i e r 

i n S.4). The r e s u l t s obtained i n t h i s case are i l l u s t r a t e d i n 

Table A.3 
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Table A.3 

L.Sc. r a d i a l 
distance range 

(m) 

Number of 
poin t s present a b 

0.5 to 5 75 -0.25 1.08 + 0.o4 

5 t o 10 182 0.34 1.02 + 0.03 

10 t o 20 518 0.33 0.97 + 0.01 

20 to 30 308 -0.25 0.94 + 0.02 

9. The comparison between tables A.1 and A.3 shows t h a t the 

use of the modified f u n c t i o n gave slopes, b, f o r the l i q u i d 

detectors higher than those which r e s u l t e d using the o r i g i n a l 

f u n c t i o n . Although the new slopes are s t i l l lower than 

e x p e c t a t i o n , i t was concluded t h a t the modified f u n c t i o n 

could be s u i t a b l e f o r the present data of the l i q u i d 

d e t e c t o r s . This conclusion was based on the f a c t t h a t these 

detectors were not included i n the data analysis and t h a t i f t h e i r 

observed d e n s i t i e s were considered' i n the determination of the 

core l o c a t i o n , the gradiants of the l i n e s f i t t e d to t h e i r data 

might have the expected values. 

10. This was tested by reanalysing the 400 events using the 

modified Catz f u n c t i o n and i n c l u d i n g the l i q u i d d e t e c t o r s 

i n t o the c a l c u l a t i o n s o f the shower parameters. The procedures 

described i n sections 2 to 4 were then followed t o o b t a i n the 

values of a and b i n t h i s case. Table A.4 i l l u s t r a t e s the 

r e s u l t i n g values which seem to be reasonable. This was 

understood since i t was found subsequently that the o r i g i n a l 

Catz f u n c t i o n was deduced f o r l i q u i d s c i n t i l l a t i o n counters 
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having an average thickness of about 12 cm (Hochart, 1976) 

and hence the previous assumption t h a t t h i s f u n c t i o n neglects 

the e f f e c t of photon and N.A.P. i n t e r a c t i o n s was not c o r r e c t . 

This i s probably the main reason f o r the values of b shown 

i n t a b le A.1 being lower than the expectations. 

Table A.4 

L.Sc. r a d i a l 
distance r,ange 

(m) 

Number of 
p o i n t s present a b 

0.5 to 5 66 0.05 1.52 + 0.04 

5 to 10 224 0.08 1.20 + 0.02 

10 to 20 646 0.06 1.10 + 0.01 

20 t o 30 450 0.09 1.07 + 0.01 

11. The e f f e c t of using the modified f u n c t i o n on the r e s u l t s 

f o r the p l a s t i c d etectors data, when the l i q u i d d e tectors 

were not considered and when they were considered by the 

a n a l y s i s programme, was also s t u d i e d . Table A.5 i l l u s t r a t e s 

a comparison between the r e s u l t s obtained when the o r i g i n a l 

f u n c t i o n was used and those corresponding to the m o d i f i e d 

f u n c t i o n f o r each p l a s t i c detector and f o r a l l values o f 

r a d i a l distance (see f i g u r e 3.1). The table i n d i c a t e s t h a t 

the use of the modified f u n c t i o n , w i t h or without the data 

from the l i q u i d d e t e c t o r s , does not r e s u l t i n g i v i n g 

s i g n i f i c a n t d i f f e r e n c e s i n the values of a and b obtained f o r 

each of the p l a s t i c d e t e c t o r s . 

12. Thus owing to the previous study, i t was decided t o analyse 

the present data using the modified Catz f u n c t i o n . 



TABLE: A.5 

(#; number of points present) 

Using the original 
Catz function (L.sc. out) 

Using the modified 
function (L.Sc. out) 

Using the modified 
function (L.Sc. in) 

Detector # a b # a b a b 
C 240 0.52 0.98 + .02 243 0.50 0.96 + .02 241 0.50 1.02 ± .02 
11 241 0.41 1.09 + .02 239 0.36 1.11 + .02 245 0.32 1.10 ± .02 
31 231 0.47 1.07 + .02 234 0.51 1.07 + .02 230 0.46 1.08 ± .02 
51 248 0.38 1.02 + .02 250 0.40 1.00 + .02 253 0.30 1.01 ± .02 
13 153 0.22 1.03 + .03 155 0.15 0.98 + .03 151 0.13 0.98 ± .03 
33 130 0.08 0.88 + .03 132 .0.04 0.95 + .03 135 -0.03 0.90 ± .03 
53 165 0.53 1.21 + .03 162 .0.24 1.20 + .03 170 0.44 1.22 ± .03 
32 204 0.07 0.95 + .03 208 -0.17 0.95 + .03 211 -0.24 0.95 ± .03 
41 230 0.15 1.04 + .02 235 -0.26 1.06 + .02 228 0.19 1.05 ± .02 

42 148 0.34 0.81 + .03 153 0.24 0.80 + .03 147 0.37 0.81 ± .03 
52 240 -0.42 0.94 ± .02 237 -0.29 0.95 + .02 250 0.03 0.95 ± .02 

61 253 0.13 0.93 ± .02 260 0.27 0.94 + .02 257 0.05 0.92 ± .02 

62 150 -0.09 -0.93 ± .03 147 0.03 0.95 + .03 153 0.12 0.94 ± .03 
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