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Abstract

The use of X-ray texture analysis techniqueé enables a

‘simplified picture of the microstructure of a rock to be built up.
In this thesis it is shown that, in spite of a wealth of evidence
pn pre-failure rock behaviour, a simple application of Griffith
theory to the assumed microstructure can provide an adequate
description of the failure characteristics of an anisotropic rock,
It is suggested that the crystallite structure within the rock
controls the pre-failure activity in such a way as eventually to..
ﬁroduce the crack formation initially deduced from that crystaliite
structure. These conclusions are drawn frem work done on two rocks

of different character, Penrhyn Slate and Lumley Mudstone.
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Comparison of theory and experiment for Penrhyn Slate at

p o= 15°,



26. Tomparison of theory and experiment for Penrhyn Slate at
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mark one standard deviation either side of the mean,
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version of the theory;
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1.  Introduction

The technique of using X-rays in teiture analysis, the
determination of crystallite orientation density distribution, is
novw well established (Barrett and Massalski, 1966) and is used in
‘many disciplines (Nightingale and Lewis, 1971; Dunn and Walter, 1959).
The geometry uséd in present commercial texture goniometers is due
to Shu;z (1949) and this forms the most common way of determining
textures, in metals at least, (Starkey, 1964, has developed a geometry
based on photographic film rather than a moving counter but his method

seems little used at present.)

Shulz' geometry has in fact been the subject of close analysis
by a number of authors (von Gehlen 1960; Chernock and Beck, 1952) and
subsequent workers have made use of and expanded this work to produce
accurate pole figures from A-ray data (Baker, Wenk and Christie, 1969;
Fayad, 1967). Despite all this, however, the data has only been used -
in a qualitative way in rock mechanies (Attewell 1970; Attewell and
Taylar 1969; Brace 1965), The purpose of this thesis is to examine
one particular anisotropic prcperty of a rock, that of strengh
anisotropy, and to try to relate this in a quantitiative way to the X-rzy

texture.

The process of failure in rock has been studied extensively
(see reviews by Murrell, 1969 and Brace, 1969) and these studies
have given the impression that the failure of rock is gradual and the

final shear plane is but the last manifestation. of a very complex

process. The data obtained (for example, Brace, Paulding, and Scholz,
1966) shows that there is indeed great activity within a rock some time
before it fails, and that this activity is related to the final failure,
This has been taken to show that simple {theories, for example,

those based solely on the theory of Griffith (1921) are not applicable

tv rock.



The previous studies of rock failure have only rarely

included any work on anisotropic failure (Donath 1961; Jaeger, 1960,
and there have been no attempts, to the author's knowledge, to déscribe
anisotropic failure by any other than the simplest exposé€ of Griffith
theory (Walsh and Brace, 1964; Hoek, 1964). The effect of the
pre-failure behaviour of rock on anisotropic failure theories seems to

have been ignored,

There are two related cooperative failure theories in
existence (Weibols and Cook 1968; Brady, 1569) and both of these can
be made to deal with anisotropic material by inserting a non-uniform
crack distribution of some sort. This thesis describes an attempt to.
do this and to relate the crack orientation distribution {o important

fabric elements determined by the X-ray texture method.



2a Texture Analysis

In studying the anisotropy of a given rock it is reasonable .
to suppose that such anisotropy is due at least in part to some

property of the minerals in the rocks.

Thus it is interésting to look at the orientation

distribution of the mineral crystals within the material.

The way to do this is to define some identifiable direction
within the crystal morphology, for example an optic axis, a pole to ;
twin plane or a pole to an X-ray diffraction plane, and to count the
density of these poles per unif solid angle. When such a density
distribution is plotted on the surface of 2 spherc the resulting pattern

is called a pole figure.

If two or more such directions can be defined and their
orientation’ density distributions measured, then a more compiete
description of the texture may be obtained. The adequacy of this
description being related to the crystallog¥aphic symmetry and the
(hkil ) multiplicity. In particular, if, for samples with an axial
symmetry, instead of plotting the distribution of a crystallographic
axis with respectic the sample axes, the distribution of the sample axis
with respect to crystallographic axis is plotted, then an inverse pole
figure is obtained, This type of plot is much used in studies of

metals and plastics.

For scamples with less than axial symmetry the crystallite
distribution function of Roe (1965) may be required. This function
expresses the inver:ns 2., figure as a series ol generalized spherical
harmonics and enables the pole figure for any given plane in the

particular crystal to be nbtrined, 1lowever, ther: are practical protlems,
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particularly in the case of polymineralic aggregates, of peak overlap

and low resolution,

There are two basic groups of techniques for obtaining data
for pole figurea: optical and X-ray. The optical techniques differ
in their methods of defininé the directions, within the crystal, to be
counted but they all require that the sample he placed on a Universal
Stage under a microscope so that the distribution may be obtained by
direct observation, There are therefore limits on the smallest size

and the largest number of crystals that can be counted by this system.

The use of X-rays is based on the selective reflection
properties of crystal planes, as described by Bragg's law. The apﬁaratus
is characterised by the fact that the source and detector always subtend
the same angle at the sample, this angle being related to the Bragg:
angle for the crystal planes of interest, and that the detector or the
sample or both are moved such that the resultant variation in intensity

bears a kncwn relation to the pole figure.

X-ray methods differ in detail, particularly in the detector
used, which may be photographic film (for example, Starkey, 1964) or a
counter of some sort, and a review of some of these methods has been
published by Barrett and Massalski. (op cit). A counter method is to be

described here.

The instrument used is a Philips X-ray texture goniometer#
making use of a geometry due to Schulz (1949). That is, the source,

counter and the centre of the sample surface are kept fized, the angle

* Texture attachment, PW1050; Goniometer, PW 1078/10; Diffractometer,
PW 1310; using Ni filtered Cw, radiation,




between them being chosen to select the diffraction line required, and

‘the sample is rotated about two axes through its centre point. The
first axis, line A A' in fig. 1, is the line of intersection between
the plane of the sample surface and thé plane containing the incident
and reflected beams, The second axis, B B' in fig. 1 is the normal

to the sample surface,

These two rotations bring successive sets of the planes at
different orientations into position so thét the detector may receive
X-rays reflected from them. The detector output is thus a continuously
varying analogue of the X-ray intensity corresponding to the volume of

crystal reflectors in the orientations singled out by the motion, *

If the selected orientations are plotted on a suitable
projection with respect to a defined set of axes in the sample, taking the
sample normal as the axis normal to the plot, then an outward d%rected
spiral scan is produced (fig. 2). The paremeters of this scan, that is
the time for one rotation of 2m in the angle ¥ and the change in
angle 3 for each such rotation, can be set to a number of standard
values on the Philips equipment and so the output from the detector may

easily be correlated with the position in the scan.

To increase the volume of crystals irradiated and thereby to
increase the statistical reliability of the count, the sample is
oscillated from side to side in its own plane and within the pléne of
fhe latitude (3) ring so that the beam sweeps across its surface, The
rotation about B B! is effected by 2 pawl and ratchet mechanism which
operates once every oscillation, ensuring thgt the same part of the

surface is always sampled,

* The quantity measured by this method is an integral quantity and
therefore takes account of crystal size, It differs in this respect
from the optical method which counts points irrespective of the
size of crysials producing tnose points,

R——— |



As the sample rotates through K the efrective scattering volume
increases as does the attenuating volume. According to the analysis
of Schulz (1949) these two effects cancel each other out, making the

diffracted intensity independent of s . (See appendix A)

This analysis depends on the assumption that the X-ray beam
does not leave the surface of the specimen and that all reflected

rays are counted by the detector. (Von Gehlen 1960).

Since the X-ray illuminated area on the specimen becoimes wider
for increasing 3 the edges of the spot will eventually fall outsidé
the specimen area and a loss of intensity results. For samples of
other than circular shape this fall of intensity will also vary with § ,
although a sufficiently small counter input slit should reduce this
effect. In addition to the spot size effect there is a defocusing
effect which occurs simply because the specimen surface is not norgal
to the plane of the X-ray beams and the reflecting volume ceases to
lie near the Braggz-3rentano focusing cirecle {Chernock and Beck, 1952).
These two effects combine to cauce a fall off in intensity.after 3::70”
though this angle is dependent on slit widtﬁs and two theta values
(Baker, Went & Christie 1969), as well as specimen size (Von Géhlen,
1960). One scan is therefore insufficient to complete a pole figure

for a particular specimen.

The method adopted in this study for completion of the pole
figure was to use thre- mutually orthogonal samples cut from a single
specimen and to combine the scans from these to satisfy the empty
annulus on the projected pole figure. This rquires that the texzture
of the sample does not vary significantly over the volume from which

the three samples we-: izien,
)Y



Although a chart record was made of each scan for visual
inspection, the data from the counter were collected automatically
at known sampling intervals on paper tape. The information was thus
in a suitable form for immediate use by the specially written

computer program. (See Appendix B).

The program accepts data on the setiings of the goniometer
scan rates and applies theﬁ to the intensity data to produce either an
equal angle or equal area projection of the spiral scan., The data from
two scans of a set of three is rotated into the same system of axes
as the third and overlayed with it, the average intensity beiné
taken whenever the value at any particular point is multiply specified.
The resulting raw projection can then be smoothed (Baker, wenk and
Christie, 1969) and any empty foints filled in to produce a complete
pole figure. For ease of printout the data is normalized to the maximum
recorded intensity, Imax, and plotted by a line printer to a modulus
10 (rounded up or down between increments) so that 10% contours can
easily be drawn. An integration may be performed under the pole figure
and a value'corresponding to the intensity that would be produced by
the same sample if it showed no preferred orientation may he produced.

This is the random intensity

{23

L= Yo SI(X,S) Slns JXJK .

10 s.—a
A contour of I, is plectied out. *

* This contour may, for conditions of simple mechanical rotation,
be shown to be a contour defining the intersection of the surface
of zero finite longitudinal strain with the plane of projection.
However this condition is too limiting to be of use,
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The ratio of Ir to Imax is called here the anisoiropic index and may
be used to indicate degree of anisotropy, though it iakes no account

of the shape of the distribution.

The sequence of overlayed pole figures to obtain the complete
pole figure is shown in rigs. 6 to 9., These show how the data from
three scans is combined and smoothed to fill in all the empty ﬁoints
on the mesh. The final printout is shown with the random intensity
contour marked by '+' characters, serving to pick Sut the overall

form of the texture.

The scans have been identified by letters A, B, & C in the
figures and these correspond to the letters identifying the samples
shown in Fig.4. This shows the spatial relationship between the three
samples and it can be seen that this relationship is upheld by the

plotting program.

The plot snown in Fig., 9 is of the illite basal reflection
for renrhyn Slate, corresponding to a 20 of 9 degrees (Cuh“ radiation),
and this clearly shown a maximum concentration normal to the cleavage
plane; that is the flat plate—like'crystallites have tended to align
with each other. Attewell and Taylor (1969) have shown that the
principal axes of this texture conform to the principal directions of the
tectonic stresses which developed the slaty cleavage at the point in

the rock from which the sample was taken.

The plot shown in Fig.13 is of the basal chlorite reflection
from the same samples of Penrhyn slate, with a 20 of 12,5 degrees
( Cuh‘ radiation). This plot has the same characteristics of the
illite plot, which is to be expectied since the two crystals have a
very similar morphology and it is the morphology of the crystals which
determine the rexture, with the major difference being that the

chlorite texture appears less drawn out in the y direction.

-



There are two difficulties which affect the accuracy of the
final texture representation. These are the determination of the
background radiation pickup and the allowance for 'fall off! in the

received signal as the sample tilts.

The fall off effect and the reasons for its occurrence have
alrecady been mentioned and, the use of three orthogonal samples is
supposed to allow for this effect by enabling a scan to be stopped
before the signal becomes noticeably degraded. However, even with
the high accuracy of the Philips texture-goniometer used to obtain
these textures it is usually possible to observe some fall-off for
quite small angles of tilt. The fall off is exaggerated by the rounding
in the printout and a variation of 1 to O may only be due to a

variation of 0.51 to 0.49.

Fall off variations of one unit may be seen in both the
illite and chlorite textures shown (Fig.9 and 13). These
variations appear as unexpected maxima at pointé on the a~ircumfrence
of the plot corresponding to the centres of the two scans used to
fill in the periphery. The width and clarity of these maxima is due
largely to the smoothing procedure used to fill in unspecified points
on the net which forms the plot, and ezamination of the intermediate
stages shown in Figs. 11 and 12 shows that the variation is quite small
and protably not much greater than the general noise level in the
signal. For this reason the degree of fall off may be taken as
sufficiently small so long as it is accepted that the printed pole

figure overestimates this variation.

The estimation of the amount of background radiation
contributing to the signal is of some importance as any error has a

direct effect on the a2apm:sent variation of Z-ray intensity with angle. This
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coupling is directly due to the use of the recorded maximum as a
normalizing factor. Any additive error in the final value of X-ray
intensity used may be catered for in any quantitative system using
the intensity in a linear fashion but some non-linear function, e.g.
square-root (Section 9), may be required in which case compensation

becomes more difficult.

The background rédiation is made up of X-rays scattered within
the cavity of the goniometer and, for smali 26 , X-rays from the source,
vhich in general has a non parallel beam, directly entering thé counter,
which itself has a non parallel entrance corridor. A representation of a .
20 scan for a peak at 20 = 9°is shown in Fig. 5. As can be seen, the
background consists mostly of.the direct component. The background for
the angle of interest is obtained by interpolating the intensitiy plot
under the peak and reading off at the required point. This interpolation
is complicated by the fact that the ends of the peak are not well .
defined and considerable variation is possible. Further inaccuracy
arises because of the rapid variation of the background over the region.
Thus a good reading can be spoilt by subsequent mis-setting of the 20
angle for the scan, Though every effort was made to avoid this, there
is bound to be an error from this source of a few percent in ail the

measurements.

It has been mentioned that it is possible tec describe the
orientation distribution of z crystal type within a sample more
completely by specifyiag the orientation distribution of the sample
within the c¢rystal axes., This inverse pole figure has been described
in terms of spherical harmonic functions by Roe (1965 and Baker, Wenk
and Christie (1969) and the essence of the description is given in
Appendix €, Those w.ausnr also describe the procedure required for
obtaining an inverse pole figure from a family of pole figurevs but tge
procedure is not immediately useful ior anything more complex than

quartz as any rock contains many minerals whose X-ray 20 peaks tend
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to overlap, thus making it difficult to obtain pole figures for all
but a few crystal planes. In particular, those pole figures given
for Penrhyn slate are sensibly the only ones obtainable for the
minerals concerned. As these pole figures were all that were required

for the present study no attempt was made to isolate any others.

Baker, Wenk and Christie, in their work on inverse pole
figures'use a particular spherical function, the Associated Legendre
Polynomial, to describe the pole figures from which they worked and it
was found convenient to use the same technique in this study when using
the pole figures for quantitative work on a digital computer.

Accordingly the intensity data, corrected for background, was fitted by a
least squares criterion by a function
o L
I(S %) =‘§ E_[(P{'(X)Sm(m B)Alm + H"(S)Cos(mb') Blm)
(see Appendix C) where LanJX;ue defined in Figs., 1 & 2 and the function ﬂr

is a Legendre polynomial with gquantwus numbers l and m .

The above function was fitted to the data for the illite
basal reflection in Penrhyn Slate with a value for the limit L of 8,
This gave some 45 coefficients, providing a not unreasonable load for
a fast digital computer. The result of the fit was printed out in the
form of a pole figure for comparison and this is shown in Fig.14.
This plot, in ;onjunction with Fig,9 shows that the fit is not perfect
but that sufficient of the form of the original is present to warrant
acceptance of the method and the coefficients obtained were used in all

subsequent computer analyses of ithis texture,
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3. Generazl properties of Stress - Sirain Behaviour

Any attempt to quantify the process’ of rock failure on a
theoretical basis must recognise the basic mechapism of that process, '
a mechanism that will be determined by the internal structure of the
rock material, Information about this structure and its properties
may be obtained directly, by observation under the microscope, by
optical data processing methods (Pincus and Dobrin, 1966; Gardner &
Pincus, 1968) or by X-ray fabric analysis (see section 2), or indirectly
by measurement of elastic properties, perméability or other physical

properties (Brace, 1969).

Direct observation reveals grains or small crystals of rock
minerals, joined in places by'some form of intergranular cement but
otherwise separated by cavities., These cavities appear to be mcre or
less interconnected and the fact that rocks possess some primary or
"intrinsic" permeability confirms this. From the mechanical point of
view this means that rock is highly inhomogenous, on an inter-crystalline
basis, and blehrly it would be difficult to model at 3ihis level, though
attempts have been made (Te'eni & Staples, 1969; Brace, 1965; Ko & Haas
1971; Hsiao and Moghe, 1969), Hovever, mo;t laboratory experiments
are on such & scale that the rock may be considered to be homoéenous
and rock data are wsed on an even larger scale in civil engineering
practice so it may still be worthwhile to btegin by studying gross

properties.

That intact rocks have highly non-linear stress~strzin behaviour
is now well known (Brace, 1969; Bieniawski, 1967; Cook & Hodgson, 1945:

Morgenstern & Tamuly Phukan, 1969) and a study of such bchaviour
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(Brace, Paulding & Schoiz, 1966) coupled with information on the variation
of resistivity (Brace & Orange, 1968) and microseismic acticity

(Scholz, 1968 ; Barron 1971; Knill, Franklin & Malone, 1968) with

applied stress lends insight into the bulk properties of rock and its
failure mechanism, Figure 15 shows a set of generalized curves for

these quantities. Such a set of curves may be the result of a

compression experiment on a cylinder of rock under confining pressure in

a standard triaxial testing'macﬂine. (The machine is a "soft" one because
strength failure is almost coincident with ‘rupture (Rummel & Fairhurst

1970). Failure is clearly brittle.

These curves may conveniently be divided into four regions

(Bieniawski, 1967) and each oI these regions will now be discussed.

Region 1: Charactesrized by the non-linear toe of the axial

strain line., The lateral strain line is almost straight.

Walsh and Brace (196G), working on rocks under hydrosiatic
pressure foﬁnd that the volumeiric strain versus presszur2 curve became
linear after 2 to 3 kb pressure. They proposed a model which assumed
that a rock was composed on a linearly elastic matrix containing more
or less equant cavities, called pores, and rather long and thin cavities,
culled cracks. The cracks were supposed to close under pressure, the
thinner cracks closing first. A closed crack could no longer contribute
to the volume compressibility and so the compressibility varied with
pressure. Simmons & Brace (1965) confirmed this picture by experiments
on vave velocity in materials under various confining pressures. They
found that apparently crackless materials (fused quartz, steel,
aluminium and fine-grained sandstone) did not show this low pressure
effect. This model may also be applied to the case of non-hydrostatic
compression, The =3:2.1 .ressure clcses cracks whosc normals are

sub-parallel to the applied lLoad, while the lateral presswre, which
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remains constant, has no further effect on the cracks, lateral

strain being a function of the Poisson ratio of the matrix and its
contained pores (Walsh, 1965c). Scholz (1968a) observed that the toe of
the stress—strain curve disappeared under high confining pressure.
Scholz also observed some microseismic activity in this region, an
effect which he explains as the collapsing of some weaker pores to form

closed cracks.

Region 2: Here, behaviour is linear. Unloading shows some
hysteresis but there is 1little or no permanent axial strain,

Resistivity is increasing.

Cook & Hodgson (1965), leClintock and Walsh (1962) and Hurrell

{1964) have shown that ciosed cracks may slide, and in doing so affect
the apparent elastic properties of the rock concerned.. Cook & Hodgson
also showed that the cracks which have distorted by sliding do not
immediately relax on relierf of pressure, thus some appareatly permanent
8train is introduced, preducing hysteresis, This permanent strain may
be removed by removing any confining pressure; Calculations.by Valsh
(1965 a and b) show that the effect of sliding cracks on the °
elastic constants of the rock is linear, the pores and virgin material
together behaving as a lirear elastic solid with its own modified

elastic constants.

The observed increase in resistivity is explained as being
due to the partial closure of the pores as they distort under pressure

(Brace and Orange, 1968).

Region 3: ™2 “g the onset of failure (failure initiaticn).
The lsteral strain curve hegirs to deviate from a straight line while
the axial stiress line remains liv=2ar. Permanent lcieral strains may

be observed, ihough the azial strains are sitill purely eliastic
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{Brace, Paulding & Scholz, 1966), Scholz (1968a) and Barron (1971)
have observed that microseismic activiiy begins to inc;ease at this
point and Scholz remarks that the total activity is proportional éo

+the inelastic volumetric strain. Wawersik (1968) has taken samples into
this region and sectioned them and reports "minor signs of intragranular
fracturing, loosening of grain boundaries, intergranular sliding and

some crushing of corners of isolated grains”.

The results of Wawersik and Scholz indicatle that some sort
of material breakdown has begun to occur and that this breakdown
corresponds to an increase in volume of the specimen., Unless the
mineral grains theuselves are increasing in size this result means
that cavities must be expanding, and according to Brace, Paulding
and Scholz (1966), only expanding laterally. Such an increase in
pore volume would produce the decrease of resistivity observed in this

region,

According Lu theoretical work by Brady (1969), in a material
containing open and closed cracks of roughly uniform size and having
all orientations, at failure initiation the closed cracks will be in
the correct orientation to fail first., However, experimental work by
Brace and Bombolakis (1963) and Hoek & Bieniawski (1965) as well as
theoretical wqu by Murrell and Digoy (1970), indicates that such
closed cracks will extend and curve so that the extension becomes

parallel to the applied compression.,

Such a mechanism has been invoked by Brace, Paulding and Scholz
{1966) to explain the generation of cavities that can open in a lateral
direction, while the model is consistent with the clastic model proposed

for regions 1 and 2,

Regicn 4: At the start of this region, the axial strain

curve bhecomes non~linear and the volumetric strain curve reverses
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direction. These two points do not always coincide exactly {Morlier,
1971) dbut they are sufficiently close to define the upper region
togethér. Unloading in this region shows permanent axial strain and

a decrease in Young's modulus,

The identification of this region is due to Bieniawski (1967)
vho, using Irwin's (1958) critical energy release rate theory, suggests
that in region 3 cracks are driven by the applied stress whereas in
Tegion 4 the critical energy release rate has been attained and cracks
propagate spontaneously, the necessary surface energy being acquired
at the expense of the elastic strain energy available in the roc#,
without any further input ‘stress. Horlier (1971) points out that this
is consistent with the instability implied by an apparent Poiesonrs
ratic of greater than 0,5. However, Morlier also proposes a different
mechanism, He states that, in region 3, "easy" cracks along planes
of cleavage ard grain boundaries propagate until stopped by a whole
grain, but, in region 4, the grains themselves then fail, and, being
stronger, once failing, continue to do so unimpeded., The latter
explanation is perhaps more in line with a geological conception of
a Tock while the former lends itself more to quantitative asnalysis.

Brace, Pavlding and Scholz (1966) do not distinguish region 4.

In summary, then, the following main points about the stress-
strain behaviour and internal structure of rock may be put ferward,
a) Rock is non-linear elastic and shows a form »f hysteresis,
Both the non-linearity and the hysteresis, may ve adequately explained by
vostulating that the cavities in the rock are in the form of pores and
cracks,
b) Failure is controlled by these cavities, in particulazr the

cracks, and fracture initiation occurs at stresses below the ultimate
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bearing (failure) stress (some 0.3 -~ 0.6 of the failure stress).

This effect has also been observed in rocks under tension

(Wawersik, 1968). .

c) Before failure, dilation occurs, the increase in volume being

mainly due to an increase in lateral strain.

Any theoretical discussicen of rock properties should include

these points either as a basis or as a prediction,
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4. Fracture Theories and Criteria

It is interesting to compare existing theories and criteria
for failure with the picture of rock behaviour just presented and
with observed dependence of rock strength on experimental conditions.
These criteria vary widely in appearance and it is difficult to divide
them into empirical and theoretical types since they all contain, of
necessity, a degree of empiricism. They will be presented, therefore,

in order of depth of treatment.

The maximum shear stress theory is perhaps the most obvious.
This states simply that, at failure, 65;— 6;) = const. However, it
predicts a failure plane angle of 45° and that the uniaxial tensile
strength will equal the uhiaxial compressive strength. The theory
describes the behaviour of some ductile metals but is inapplicable

to rocks.

Next, the Coulomb - Navier criterion proposes that the
effective shear stress across the eventual failure plane should be a
maximum, Thus, if 'C’l and G; are the shear and normal stresses
respectively. across a plane and}4 is a coefficient of internal friction
then ,7;’_f‘63 ='2; = the cohesion of the material. This approach
works better and fits the data for a significant number of rocks whose
Mohr envelopes happen to be straight lines. ’Z:and }A have no

physical significance however.

More generally, the failure envelope for a rock will not be
a straight line and Franklin {1968) found that he could fit the
expression

’an\x = ,/2. (2.07“_“)9

to most data, where 13 varied between 0.6. u.a U.8.
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A more systematic approach to the whole subject of brittle
failure was made possible by Griffith (1920) when he proposed that a
s0lid might contain flaws, envisaged as flat elliptical cracks, whose
action would be as stress raisers, thereby locally enhancing the
applied stress. By applying an energy balance principle to an
extending crack, Griffith obtained the relation

& -3

vwhere E, is the Young's modulus of the material, §§ is the crack
surface energy, ¢ the crack half-length, ﬁnd G¢ the siress required

to propogate the crack,

In a biaxial s_ztr'ess field such that G5 > -9 , Griffith's

formula becomes
(or-0;5+ 8T, (s465)=0
or when G} <~6y3
6;~-T=0

McClintock and Walsh (1962) and Murrell (1964) modified this
theory to include closed cracks, sliding, with a coefficient of friction

+» Their formula is

"}A(GT +6‘,) + (6‘." 6?)[1—“}_4; =4To

which may be rewritten in the form
4 R o
Gi= fom P Jigw —p S
This is a straight line, like the Coulomb-Navier expression,
and has had a similar degree of success in describing the results of
rock experiments, McClintock and VWalsh found for their dé-ta that /A
vas in the range 0.8 -- 1 while Hoek and Bieniawski (1965) found a wider

range of 0.5 - 1,5 fer various rock types.

Griffith's original theory tock nc account of the effect of

Y . T
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the intermediate principzl stress and a number of workers have assuued
that a variation of G; would have only a small, and therefore negligible
effect, Experiments by Murrell (1965) and Mogi (1971, 1967) have shown
that such an assumption is invalid and that the strength of rock ‘
observed when Gy>G1>G; is a function of both G; and O; . This

has also been shown in theoretical work on large discontinuities done

by Attewell and Woodman, 1971,

Murrell (1964) gegeralized the Griffith formula by analogy
replacing (G ~03) by.j{(()', -()‘;,)z+(()‘,— 6;)1-7-(61‘-6:5"} and (()T + 6;) by G7+02+G5
Thus the Griffith formula for closed cracks becomes .

% (o +0z 003 ) + V85 [ (65633 v (o5 @-553 )}
vhere & and 13 are functions of the crack friction and the siress

required to close the crack,

Mogi (1971), on the other hand, estimated a failure curve
based on & Von Mises failure criterion, which states that the
distortional strain energy, prorortional to the. octahedral shear stress,

2:;t , is related to the volumetric strain energy, or

Tt = '6'(6:&)

Mogi's criterion takes the form
Tt =§»(67+'x6;+o;)

. where (X is a parameter to be determined,

Looking back, it can be seen that a1l these formulae may be
written in the form
T n
“1(e)
Moreover, in most cases
3
F(@ o 0T
where 13 varies between % and 1., Such a similarity between results
is, however, a measurc :i' the form of real rock data and not of the

success of the theoretical predictions. That the Griffith theory,
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for instance, appears to be ameans to an end and not a description

of rock fracture may be seen from the experimental data on rock before
failure. Some form of failure initiation begins before fracture, in
both compression and tension, and Griffith suggests that failure
initiation should be coincident with fracture; also, failure initiation
should lead, in compression, to a distribution of S-shaped cracks

far removed from the simple ellipsoids treated by previous workers,
Thus, it would seem that Griffith's theory is only valid as a theory

for failure initiation and its applicability to fracture can only be

coincidence.

Barron (1971) has observed that the coefficients of friction
required to satisfy the modiried Griffith theory are greater than the
coefficients of friction for the same rocks, measured directly
(Jaeger, 1959) and he has used this fact, coupled with the fact that
the form of the Griffith theory is correct for failure to postulate
an imaginary effective crack, whose parameters are found from expefiment,
to describe fracture, leaving the actual crack ﬁodel, 7.th parameters
measured directly, to describe failure initiation. By this method he
is able to relate the occurrence of failure initiation and-fracture
to the applied stress field, though his results, being so dependent
on experimental data, are still 1lit%le more predictive than, say,

the Coulomb - Navier expression,

Clearly, any work based on a single detail, as Griffith's
work was based on a single crack, is of limited application in the field
of rock mechanics where the material to be dealt with is so complex
and interaction effects so difficult to study, either experimentally
or theoretically. In order to tackle such compiexity, statistical

approachss have been taken by a number of workers.

In the field of pure statiutics Weibull's (1929) weakest

[



f eyas

22

link theory was perhaps the earliest, He modelled a general solil.

by a distribution of strengths within the solid and worked out the
-probability that the solid would fail under a given stress, The main
result to come out of the theory was the prediction of a size effect,
diminishing as the sample volume became very much bigger than the flaw
volume, that is, as the number of discrete flaws became large., In

intact rocks with no visible flaws, there is no observable size effect

in normal laboratory samples, implying that the flaws governing failure
are very small (Brown E.T. 1971; Bordia F.K., 1971). The disadventage

of Weibull's theory is that there is no physical basis for the assumption

of the form of the distribution.

Weibols and Cook (1968) have suggested that the process of
failure may be controlled by the total amount of strain energy stored
by the deformed cracks within the rock and in particular that fracture
occurs when this strain energy reaches a maximum, Their procedure
for calculating the strain energy of the crack system takes full
account of the effect of the stress system on a closed crack's ability
to slide and the theory predicts correctly the form of the sirength
dependence on the magnitude of the intermediate principal stress., The
difficulties with the theory are that the coefficient of crack
interfacial friction required to fit the data does not seem to match
with directly-determined values and that the crack distribution upon
which the calculation is based is not necessarily the distribution
obtaining at fracture, The physical principles of the theory apgpear
to relate more to failure initiation, or ;o the initiatiun of unstable

crack growth, than to fracture.

The concept of a rock as a mass of, perhaps, interacting

cracks has also been used as the vasis of an approach vy T.a.y (1969).
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Brady used the stress field applied to his model rock to determine thé
density of open cracks, ihe density of closed and siiding cracks, and,
by Griffith's theory, the density of cracks that are in the process
of failing. He then used the results on dilatancy reported by Brace
Paulding and Scholz (1966) to form a semi—empirical stress-strain
relationship for the model. This stress—strain relationship is reiated
to fracture, he claims, by a critical volumetric strain criterion;
that is, the material fails when a maximum value of volumetric strain
is attained within the rock., The strain criterion is equivalent to
one in which the total density of deformable, and Griffith-extendable,
cracks reaches a critical value, representative of the number of
micro-cracks needed to join to form a failure plane, His argument thus
leadshim to an integration involving a crack distribution. He assuunes
that the final distribution is proportional to the initial distribution
and is thus able to.reduce his integral to 'known' functions., For a
random distribution function thia theory shows an apparently linear
relationship between 67 and G; with no dependence on ¢; when G; is
compressive, Brady also shows that a curved relation between 67 and G5

of the correct form, may be produced by assuming that the rock contains

a number of different phases and therefore cracks with a range of values

for interfacial friction. Such a material may be approzimated by a
homogenous material with an equivalent coefficient of friction which
varies with applied pressure, Preéumably the form of pressure variation

may be 'bent' to accommodate any ezperimental data.

Brady's theory is empirical in its approach and the results
are not conclusive but it remains as a major attempt so far to relate
cracking to stress-strain behaviour and stress-strain behaviour to

failure, The theories of both Brady and Veibols and Cook are able to
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relate rock properties tébsomething that is, at least in principle,
ﬁeasurable by other means than strength tests; that "something" is
the crack distribution and may be considered as a step towards a

fuller theoretical description of rock behaviour,
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5. Intrinsic Rock Anisotropy

Many rocks are banded or pcssess marked foliation as a result
of the geological conditions under which they were formed. Such
visual evidence of a defined directionality within the rock is usually
accompanied by a preferred orientation of the constituent mineral
crystals, a preferred orientation that can be determined by either
optical or X-ray methods.,- For fine-grained rocks, such X-ray evidence

may be the only sensible indication of any sort of anisotropy.

The presence of banding or foliation and its accompanying
crystallite texture indicates that the bulk physical properties of
the intact rock may show some anisotropy, either due to cryétal
anisotropy or a non-random crack distribution (for those properties
that are affected by the cavities of the material), and in most cases
that is so, Brace (1965) related variations in intrinsic (no cracks)
elasticity to fabric in quartzite, where the crystais have an ecuant
morphology, and Attewell (1970) showed a concordance between fabrie
and elastic properties for slate, whose crystais are platy in form,
Pinto (1970) and Rodrigues (1970) have obtained experimental data on
the variation of Young's modulus with direction in particuiar rocks.

Anisotrepy may also be induced by applied stresses. Tocher
(1957) observed a wave veloeity anisotropy in a rock under a non-
hydrostatic stress field and Nur (1971), reporting a similar effect,
suggests that the stress field may preferentially czlose cracks, creating
a non-random crack dis«tribution which will then account for the observed
anisotropy. Nur was able to predict velocity anisotropy from a given
distribution function but found that the inverse problem, that of
determining a unique crack field given a distrisution of velocities,

could not be solved,
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Observations by Nishihara (1954) and Brace (1964) of a
variation of Young's modulus with direction under a non-hydrostatic

stress were explained by Brace in a similar way,

A variation of strength with the direction of application of
the maximum principle stress may well also be expected, especially
in the case of slate with a well defined plane of weakness, or cleavage
plane, Such a variation is indeed observed, though for some rocks it
is not large enough to warrant separate sthdy and is considered
merely as a factor affecting the scatter of experimental results
(Bieniawski, 1967; Bernaix, 1969), Casagrande and Carrillo (1944)
were perhaps the first to study the effect quantitively and Jaeger
(1960) considered a rock where the shear strength varied according

to the formula

) 'Sl + 5" Cos 2 (x ——/j)
where S 1is the shear strength at an angle & (usually defining a
shear failure plane) when the cleavage plane or bedding is inclined at

an angle to the mavimum principle stress,
P

Donath (1961) expanded Jaeger's results and obtained a failure
cri%erion of the form

;= a~bCas2(20 —p)
This felationship was shown to fit reasonably well to his experimental

data on Martinsburg slate.

Rodrigues (1970) showed that variations in sirength could be
observed within the cleavage plane itself, and suggested the
following empirical relationship

oot - sutelearpsd <[5 + gt )er b=

Walsh and Brace (1964) and Hoek (1964) independently produced



27

a suggested mechanism for rock strength anisotropy. Their theory was
an -expansion of Griffith theory and used a non-random distribution of
cracg lengths, Walsh and Brace applied the theory to a distribution
of long cracks the planes of which were all parallel to each other,
and obtained a good fit to Donath's (1961) results, Hoek had similar-

success with his data.

For a crack system of particular length inclined at an angle

P to G6; , Walsh and Brace have suggested the equation:

C- c,[(uej"‘! ~ ] +2pp
2SanPCosp(1-/u‘ﬁnp

Tor the strength of that-system, where Cn. is the strength of the
equivalent randouw array of the cracks. The theory has the same data
fitting power as any Griffith theory and, by allowing (, to beccme a
function of angle (that is, by saying that cracks become, usually,
shorter as their orientation departs from bedding or cleavage)
then almost any form of strength anisotropy may be accounted for.
Barron (1971), for instance, has applied a multiple crack system to

2 sandstone with some success.

A proper test for such a theory would consist of a comparison
between the crack distribution suggested by fitting to strength data
and a distribution measured by some independent means, Such a comparison
has not been done, and although Walsh and Brace suggest that their
slate resulis are qualitatively correct and the theory is consistent
with the long cracks of Morlier, it seems doubtful if, were it
possible to measure a distribution, the result would be positive owing to

the known rapid changes in crack formation undergone by a failing rock,

Two other theories, those of Brady and of Weibols and Cook,

may be applied to the anisotropic strength behaviour sf rwock. Both
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these theories require a crack distribution known beforeshand, and the
introduction of a non-random distribution should produce a variation
in strength with direction. The next section compares the resultis

of these two theories when applied to Penrhyn Slate, a rock vhose
anisotropic characteristics, in intact form, can be specified in some

detail.
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6. Analvysis of Fenrhyn Slate

Penrhyn Slate was formed, during the Caledonian orogeny,
by dynamic metamorphism and its structural character presents
the summetry of the constraints that acted in its formation
(Attewell and Taylor, 1959). It is a fine grained rock, with a
well-defined cleavage and a wide variation in mineralogy and colour,
the particular form with which this study is concerned being the "hard

blue" form.

Strength analysis of this material was performed by
Linney (1969) and his data are shown in fig.16. It is clear from
the diagram that there is a great variation in strength with direction
with a minimuwm near P = 30°, This minimum may be expected at the
point where the maximum shear siress coincides with the rinimum shear

strength direction within the rock, that is, the cleavage direction,

Donath's cosine foruula for such curves may be generalised
to include any minimiam angle and is then written

6i~0; = 2\+L)Cosl(o< ~p)

Fig.17 shows the fit of this formula to the data for two
values of confining pressure. It would appear from this that the
data is rather less symmetrical about the minimum than is Donath's
surve althougﬁ it is worth noting that all the fitted curves had

minima at angles somewhere between p = 47° and g = 489,

Each point in Fig.16 represents but a.single sample and it
is therefore difficult to draw any quantitative conclusions from the
data. lovever, from the consistency found in the fitting of the
Donath formula and from the general appearance and self-consistency
of Linney's results, it would seem justifiable to use this data in a

general study of the properties of the rock failure theories,

e i
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It is clear that Penrhyn Slate is structurally anisotropic

but, in order to relate its apparent anisotropy to the strength data,

a detailed specification of the structural anisotrophy is needed.

The best information available for this purpose is the X-raytexture
diagram defining the sub-fabric (0001) illite, such a diagram for
Penrhyn Slate being shown in Fig. 9. The plane of the diagram is

the plane of the rock cleavage and the main feature is that there is
a maximum of reflected intensity normal to this cleavage, that is,
there is a maximum volume of X-ray reflectors lying in the cleavage
plane. This relationship and the finer relationship between X-ray
texture and crystal Tabric are discussed ié the section of this thesis

dealing with textural analysis.

The X-ray data only provide information on the volume of
crystal planes comprising the crystal fabric, but provide no
information on how these crystal planes are spatially distributed.

In particular there is no information on the sizes of the rock crystals

or on the siZes of the grains within those crystals. What is more

disturbing, and this is most important where failure theories azre to

be considered, there is no information on the cavities between the
crystals. This means that any attempt to form an idea of a
distribution of cracks for the material must be based on interpreting
the X-ray texture in the light of some additional fact or idea, in
this case the facts must be the supplied strength data and the idea
must be the failure theories to be tested. It must then be assumed
that a combination of interpretation and theory which fits the data
must be close to the true situation. Such an assumption is open to
criticism but, in the absence of any proven method of obtaining a

crack distribution, it will stand as a bhasis for this thesie,

There is one assumption which will eid the interpretatior of

the X~ray data and which canrn be made independently of any failure
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theory and that is that the anisotropy is sufficiently describea by
the X-ray texture due to illite (001). This assumes %hat the
structure of the rock is controlled by the crystals (illite, chlorite)
having a plate-~like morphology and ignores the contribution of the
more equant crystals within the rock, There is essentially no
difference between the c-axis sub-fabrics due to illite and chlorite
and either could in fact be-used., Any further assumptions concerning
the interpretation of the texture diagram will be mentioned ;n their

appropriate section,
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J. _ Weibols and Cook's Failure Theory

If one considers only explosive or catastrophic failure
of rock then one is considering a system in which there is a rapid
release of energy. This being so, it may be reasonable to suppose
that the eaergy concerned was stored within the material by the
distortion of the contained microcracks under stress, and this is

.the basis of the Veibols and Cook concept.

In particular, if, under compreséive stress, G, is the normezl
stress across a crack and (., is the shear stress associated with it
and if the crack is closed and has a coefficient of friction of f
then that crack will slide when

IT]>poa

and there will be an effective shear stress, for movement across the
crack, of

Ty =T -po
Under these conditions, the track will store recoverable energy o ,
vwhere

o =k(Tury
k being a constant, the value of which depends on the elastic constants

of the gsurrounding material.

The- total energy of distortion of the cracks will be the
sum of all the €@ 's over all the cracks which are sliding and for =
very large number of cracks this may be written as
W=k fw(s,x ) NG3,¥) dyd
wherethJ)is the number of cracks whose normals lie in the
direction (3,8) and the integral is taken over those values of 3 and ¥
for which Ti4> 0 . The constant k is assumed to be independent of

direction, though for an anisotropic matrix this will not be trus.
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The postulate is that the rock will fail when W reaches
some materially defined limit, W« , and the problem becomes one of
finding, for a specified principle stress system and known IS and
\vh“, ,Ithe amplitude of the stress difference at failure, This,
in effect, requires the solution of the equation.

W=W, ..

and can only be achieved if N(B,X )} is known,

The solution of the failure equation does not require W or
\VL;, to be known absolutely and it is possible, therefore, to usé
values of k and N which are only proportional to the real values,
Accordingly, in the rumerical solution of this problem, k has beer
taken as unity and N has been taken as the normalized distribution
function obtained directly from the Penrhyn Slate X-ray analysis, with

no modification.

The use of the above orientation distribution function
assumes that the cracks in the materiel vary in number but not length.
The assumptions leading to this are as follows: a) that the crystallites
in.the rock do not vary in size; b) that the crystallites are spatially
independent; c¢) that cracks are the voids at the flat faces of the
plate-like crystallites; d) that the cracks are spatially independent.
These assumptions allow the X-ray data to specify the number of
crystallites directly and hence to specify the number of cracks
directly and justification, or otherwise, for their use will be found

in the quality of the resulis,

The form of the function
J -GN )
is shown in Fig., 18 and, being smoolh and quasi-parabolic, ieads
itself to a simple Simpson's rule integration procedure, Two such

procedures, one for 3 and one for ¥ , were interleaved to perform
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the double integration. Each integration was done repeatedly, with
decreasing steé length, until a convergence criterion had been satisfied.
Execution time for the program was markedly dependent on the required
accuracy and as a suitable compromise between thé two factors, the
convergence criteria were set such that the overall accuracy of the

result was 1% or better.

Values of \A/ were‘obtained for various values of the variables
F P 6; and 6; and these values were plotted against G; to

produce a family of curves, an example of which is shown in Fig. 19.

Such a set of curves can be used to produce a solution for
\N%mx by choosing values of W until the values of 6, , given by the
curves correspond with the valves of Gy , given by experiment. However,
by observation it will be seen that such a fit would be impossible
with the given set of cur;es. These curves predict that the material
strength will decrease for,3=0°, 30°, 450, 60°, in that order and this
is in complete contrast to the experimental order which has the
minimum strength at P= 30°, An explanation for ‘this result has been
sought both in terms of human error in incorrectly specifi=d angles and
in terms of the prope;Lies of the theory itself, bul no sensible
conclusion has been reached and the result must stand on its own merit,
It would seem, itherefore, that the Weibols and Cook theory
is not applicable when used with this particular crack distribution
but in the light of information yet to be discussed this would appear

to be a property of the distribution rather than the theory.

A point to note about the curves of Fig.19 is that they

show a reduced dispersion in 6y , for reducing W , thus, for small w R

ot et "
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there will be no variation in strengtn with angle. This is precisely
the result that the Griffith theory wculd prcduce when applied to a
crack distribution where the crack lenglh was constant. As must'be
expected, this limiting value is lower than the minimum strength
value of experiment, The limit increases with increasing /4 and
approaches the !3 = 300 strength value when M approaches 0.8, but,
as this limiting & value is the value at which‘Z:“ just becomes
positive the usefulness of this result for strength predictions

must only be to provide an upper limit for the possible values

of /4 .
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8. Brady's Failure Theory

This theory is a mixture of analysis and empiricisms

- based on some aspects of pre-failure stress-strain behaviour of rock.
The work is based on a prediction of the permanent strains produced by
cracks undergoing failure and a failure criterion using the predicted
strains, Numerical predictions rely heavily on experimentally

determined strain and failure measurements.

Though the theory is quite capable of handling very general
stress systems it will be necessary only to consider compressi?e
systems in which &; = §3 in order to make comparison with the
data, This will allow only closed microcracks to be considered
(3ut see Murrell and Digby, 1970, for a discussion of failure due to

closed or open cracks).

Aé a rock is strained, a value of stress is reached at
which microcracking begins and permanent lateral strain becomes just
noticeable, although axial stress remains elastic. This leads to
_ two assumptions: first, that permanent laterel strain is due to the
extension of microcracks and, second, that microcracking does not
contribute to permanent azial strein, Thus, if the change in

strain g for a single microfracturing event is (dei), Brady writes:

(de)=0
(de,)=(Je,)

The last expression will be valid only if the crack distribution is

independent of the azimuthal angle & . -

These permanent strains will be functions of both crack
orientation (and possibly length, although Brady does not suggest
this) and stress, and, for a general crack distrib ution. where (X,7 )
ere the polar coordinates of the crack normal with respeci to O3

Brady's formula becomes

(e)=53 90 oy
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vhere B and m are constants, 6# is the macroscopic failure strength of
the material and g(X,p ) is an unknown function of the orientation

of the crack.

In general, the formula states that strains become larger
for increasing Gy, but, in particular that the strains become infinite
when the rock fails. This form is not unreasonable for strains and
stresses close to failure, but the existence of a finite post-failure
strength in a number of rocks studied in stiff testing machines
(Bieniawski, 1967; Rummel & Fairhurst, 1970; Wawerski & Brace, 1971j
suggests either that Brady's proposed form is incorrect or that the
formaiion of a failure plane immediately prior to failure allows the
operation of a mechanism other than differential crack extension.
However, as the failure planc does not begin to form until some 98%
of the failure stress has been applied (Scholz, 1968b) its presence
may conveniently be ignored for the moment and'Brady's results taken

as they stand.

From the incremental strain of each crack, the average

miecrocracking strain miy be given as:
es> = V2 Ap Eeye
.’Ilﬂ'
where A- B 'ty )P(/\, ,c)chd
[T 50920, drdy

and p=p rrrf’(,\,.),c) ch]r)éc
&Nk

'P(X,o,c) being the crack distribution probability, ,3 being the density
of microcracks able to extend, and f% being the density of flaws within
the specimen. Thus 1L and ql and ¢, and clére the limits defined

]
by the Griffith criterionl?T—pG;)z(%) with X a constant.,

Since <de>=0 the total sverage volumetric

microcrack strain is given Lyt

—(de)nAPé#FESN
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Now, Paulding's work on dilatancy (Brace, Paulding, and Sholz, 1968)
suggests to Brady that a critical volumetric strain criterion may be

operative. .Accordingly, he takes the total volumetric work done over
the microcrack strains:

Wi = ¥ {65 |deu|
vhere V is the volume of the specimen, and he states a criterion such

thatW =W,,, This is equivalent to the Weibols and Cook theory.

The total volumetric strain is given by:

: de;
.lAe;l = “C: A P (0'.'1'—67)'"
the limits being those over which microcracking may take place.

At this stage Brady states, without proor, that the above
work criterion is equivalent to the density criterion
pP=C
C being a material constant, BRither form of this criterion, he states,
expresses the assumption that total failure takes place when there is
a sufficient number of microcracks available so that the probability

of their joining up to form a macroscopic fracture surface is large,

The constant crack density form of the criterion requires
for its operation the evaluation of the integral

P [’"_L"[’«'ﬁ(x,,,,c) dhdn dc

vhere ¢ is the density of flaws within the specimen., For

‘P(xﬂrc)=P(A,0) the same distribution function as used for the

Veibolls and Cook theory evaluation may be used.

Using the same distribution function as that used in the
Weibols and Cook evaluation, that is, one in which the crack length is
assumed constant and the number of cracks is taken to vary, produces
much the same shaped plot when applied to crack densities with much
the same negative results as for the previous evaluation, The same

comments apply here as for the Weibols and Cook case. The apparent
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failure of these two related theories must, for the moment, be
assumed to be due to the crack distribution used. The following

section will deal with an approach which, hopefully, will resolve

this problem.
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9, Modified Approach to Failure Theories

It has been shown in the previous chapter that an approach
to rock strength anisotropy based on a crack distribution, where all
the crack lengths are assumed to be the same, does not fit with the
volume interaction theofies independently given by Brady and by Weibols
and Cook, The source of the discrepancy between theory and experiment
may lie with the theories or with the distribution, and, since the
formulation of the distribution function may be said to be based on
weaker assumptions than those used in the two theories, it would seem

reasonable to look for an alternative distribution function,

The work of Walsh :»d Brace (1964) and Hoek (1964) provides
the starting point for the formulation of a new crack distribution
function, These workers used crack distributions such that all cracks
had the same length and:-were all aligned parallel to the bedding or
cleavage plane of their material and they used their results to
postulate that a good fit with experiment could be obtained over a wide
range of the angle P by applying Gri{fith theory to a system cf cracks
the iength of which grew shorter as their orientation deparfed from the
plane of the beddiné. The implication wés that a crack length .
distribution could be derived from the experimental data and Berron

(1971) performed just such a derivation for a sandstone,

The problem in the present work is the inverse of this howsver
in that it is required to relate the strength variation to a known properiy
of the rock, in this case the X-ray texture. The problem is simplified
in the sense that it is known from the previous work that a variation in
crack length is required such that the longest cracks lie parallel to the
bedding and the form of the experimentzl data suggests that this variation

should be smooth wit: e zhortest cracks lying perpendicular to the
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bedding. A function of tais shape is, of course, supplied by the

X-ray texture function itself,

In the previous attempt at formulating a crack distribution -
it was assumed that crystallites, and hence cracks, could be considered
to be spatially independent. This assumption was the weakest of the
assumptions used but was nevertheless the most important in that it
formed a direct bridge between the assumptions of crystallite size and
the final assumed form of the crack distribution. In work on - wave
attenu;tion in rocks, Walsh (1966) observed that his results suggested the
existence of one crack for every grain. For the type of cracks Walsh
considered, that is, those which were just closed under very small
pressures, he thought that a crack to grain ratio of almost unity was
unlikely., The work of Brace, Orange and Maddon (1965) on electrical
resistivity of rock suggests the presence of a large volume of
contiguous pores within (most) rock and Walsh suggests that a rock
should have a looser structure than his own model with the attenuation
caused by larger displacements on fewer cracks. This immediatély impiies,
though Walsh does ncc¢ say so explicitly, that the cracks must be larger '
than his model suggests and each crack must therefore encompass more than
one grain, This means that it is no longer possible to assume that each
grain contributes one crack, It miist now be allowed that individual
grains may join together in some fashion to form larger cracks and if
this effect hgs some dependence on orientation then crack lengths may

vary with orientation.

In any rock, the grains or crystalliyes may take any
orientation, though the number of grains in any one orientation may be
a function of that orientation, and clearly cavities of many shapes will
form. In particular, crack shaped cavities-can only form between grains
which are subparallel {o each other although it is pocssible to imagine
a series of crack shaped cavities of many orientations all joining to

produce a lar-c crack which may be far from flat, However, while
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aczknowledging the internal complexities of such natural polymineralic
aggregates it is both necessary and reasonable to use a model of reduced

complexity.

Brace, Paulding, and Scholz (1966) have suggested that all
cracks which are going to close will have closed under a reasonably
low stress and Brady {(1969) has said that it will be the closed cracks
which will be in the correct orientation to fail first, The first point ‘
suggests that only cracks which are almost closed will close, the
second point shows that it is only necessary to look at closed cracks
of one orientation at a time and these two together mean that éhe
discussion may be limited to grains which ‘are subparallel, that is,
inlinterpreting the X-ray texture as a means to foruulating a crack
length distribution the data in each orientation may be considered in
isolation from the data for all other orientations. Berg (1965)
emphasises this point by suggesting that typical cracks in rock tend to
be very fine with aspect ratios, thickness/length, of the order of 10~
and this implies that crack faces are very closely parallel to each

other,

Given this assumption it should be possible to relate the
numbers of grains in a given orientation to the probability of forming
clusters of a given size and ithence to an estate of a crack distribution
function. Mack (1949, 1953) has studied an aﬁpropriate tvo dimensional
form of this problem and has produced a formula for the expected number
of a k-aggregate in a "random" disjribution of points, vhere a
k-aggregate is defined as k points which may be covered by a window of

known size.,

A window is an area of fixed size which is moved over the
surface to be examined and at each.new position, an inlicitesimal distance
away from the previous position, the number of points in the distributisn
falling within the window area is counted, If the number of pcints so

counted is "k" then a k-aggregate has been found., It is, of course,
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possible for a new window position to include exactly those points which
were counted in the previous position and Mack has allowed for this. In
the present application the points tc be counted are the centres of

crystallites sufficiently close together to form a large crack face.

There are, however, a number of problems associated with the
use of this method. For cracks considered to be associated with
crystallite faces, it is possible to imagine two crystallites, say,
sufficiently cluse as to beé overlapping, thus producing a crack length
of less than two unit crack lengths, A window which included all
reasonable pairs of cracks would also include all overlapping cracks
and it would be necessary to perform at least two calculations, with
different window sizes, to take the overlap effect into account. Such
a calculation would not of i*self be excessively difficult but there is
a further problem which may be difficult to overcome. There is no simple
way of distinguishing a k-aggregate that is also part of a k+1 aggregate.
In particular it may be seen that a 3-aggregate may-contain 1, 2, or 3
off 2-aggregates depending on the sizes of the windows used to viéw the
aggregates., For the case of clusters of two o£ three Zt¢ should be
possible to take account of this effect but the complexitly of the
problem increases with the size of the cluster being considered and.

rapidly becomes wimanageable, .

These problems, coupled with the complexity of Mack's
original expression, mean that it will not be possible to produce a
complete crack distribution function even though Mack's approach is

apparently suited to *he problem.

Por the purposes of Griffith's theory, it is not necessary
to have the complete distribution. All that ié required is a knowledge
of the length of the longest crack cluster in any orientation. In theory,
the longest crack 1s -~nly limited by the size of sample and the totdl
number of discrete unit cracks in the sample with that particular

orientation but clearly these limits are rarely reached, especially when



. Le
samples tend to be chosen so that they appear to be homogenous,

with no major flaws! A more rractical 1limit should be obtained if it

is assumed that the number of k-aggregates which are not part of (k+1)-
aggregates reduces the population available for (k+1)-aggregates.
However, this approach still requires the compiete distribution functiorn

and, as has already been noted, this is not available,

All that this leaves, then, is the indication that the
maximum length will be some function of the total number of unit cracks
and for the rest of this discussion it will be assumed that this
function is linear. This means that the aséumed maximum crack length
will be directly proportional to ‘the (0001) distribution function

as output by the texture-goniometer.

Having obtained some form of crack distribution, the

Griffith theory can be applied and predicted strength curves obtained.

The Griffith failure criteria can be written (Walsh and
Brace, 1964)

Cy=ITl-pa = 2[5
wvhere c¢ is the crack length and K is a constant, K and ¢ are to be found.
For the present work, c¢ is taken from the unmodified, normalised, X-ray
texture and the criterion becomes

IT| ~peow = B

I being the normalised diffracted X-ray intensity value, The values of

M and 3 have to be determined by experiment.

The process of finding values for M and B and using
these values to predict strengths was carried out in two stages. The

first stage involved the use of a direct application of the formula of
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Walsh and Brace to the simple distribution of cracks, all having the
same length and all being mutually parallel. The parameters for this
. formtllla (Co, the uniaxial compressive strength for a random array of '
the same cracks and }.4. , the coefficient of crack interfacial
friction) were chosen such that the theory gave a least squares

fit with the experimental data at P = 309 The value of ,A was
found to be 0.5, This value is determined largely by the position

( ﬁ({B) ) of the minimum strength value and can thus be very well
determined as this minimum position is clee;rly defined. A number

of curves of C“ =|’Z’]-,u0; as a function of angle were drawn for /u = 0.5
and various values of 67 and 65 (Fig.20). These curves may ove used
with a plot of IY/Z again‘st angle to determine strength valuves and
conversely strength values may be used with the ZZ« curves to

produce BAc values. For the simple crack distribution so far
considered there is only one B/c value at zero angle and the Walsh
and Brace distribution and results were used to find that for these
conditions the value of B/ff was 2.9 in the units used, This value
must correspond to the minimum ‘B//Z value for any more general function
that may be used to describe the strength data. As B is a constant
the function must also satisfy the maximum valuc of c¢. In the more
general function chosen ¢, the crack length, is the same as I, the
normalised X~ray intensgity and it is kmown that the largest value of

I is 8, This gives a value of B = 8.2,

The second stage is actually to plot the values of
‘B/fc' =B/ and to use the ’Z‘;ﬂ: curves to determine tre angles
for which failure will take place with a given sircss system. This
is done by superimposing the 'Z:“ curve on to the B//? curve such that,
for a given Gy , the two curves just touch. The angle through which
the 'l‘;{; curve must be disz;laced to produce this result is the angle at
which G; is the failure stress (s_ee Fig.21). The ‘B/I'E zivve is shown

in Fig.22 and a plot of strength against angle for four values of G; iu
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shown in Fi'.g.23. Experimental values for G;=0 are also shown in
Fig.25 and it can be seen that the fit of theory with experimental
data seems less marked for low values of g - This is because the
theoretical values are almost symmetrical about the minimum when the

data values clearly are not.

The fit of this theory with data is shown in Figs. 24 to
27 where (6‘. - 63 ) is plotted against o3 for various angles p o
These diagrams show a reasonable fit for angles greater than B = 30°
but a less than reasonable fit below that. It is to be noted that
the theory shows a linear relationship between G&; and G and thaf

the slope of this line does not vary significantly with P .



10, Discussion of Penrhyn Slate Results L7

The applied theory is a Griffith Theory and as such produces
a straight line plot between ¢; and 6; with the slope being depgndent
on the coefficient of crack interfacial frictidn, }4 « There is
however one less degree of freedom in fitting the Griffith Theory to
anisotropic data in as much as the value of M must also define the
angle f&m at which the minimum strength is observed such that
tanthh ==b¢u , and for this reason it seems reasonable to suppose that
the valge of /L obtained, giving, as it does, such a good fit to both
slope and minimum, will represent quite closely the average value of the
real coefficient of friction actually in force in the rock. Walsh (1966)
quotes values of M obtained experimentally for both smooth and
roughened crystal surfaces and the value of 0,5 fits into the range of
various crystal surfaces roughened by sliding across each other. This
must be reasonable as there will be sufficient displacement prior to
failure across already rough surfaces (involving more than one grain)
1o grind those surfaces and rcoughen them and it must be these ground

faces which control the final failure.

Finding the value of C; aporopriate to the experimental
data has no theoretical significance unless it can be used to give some
indication of crack size. However this needs soue knowledge of the
elastic constants of the intrinsic material of the rock and this data

is not available.

The fact that the application of Griffith's theory to the
simple crack length distribution provided produces an anisotropic
strength disiribution is not of itself remarkable but the result is, none
the less, a useful one in that the strength distribution so obtaired
bears a close resemblance to that obtained b& experiment. In particuler

there is quite a close fit between theory and experiment for angles (3230"
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and in this the crack distribution postulated rrom the evidence of -
clay mineral basal plane orientation distribution improves on the
simpiest distribution where all cracks are parallel, The crack length
distribution obtained from the X-ray data is not necessarily, and
indeed is unlikely to be, the true distribution, but the very fact
that such a distribution, obtained independently of the data it was
hoped to fit, does produce such results argues against simple

coincidence.,

The main difficulty in allowing the theory to describe the
experimental data lies in the discrepancy_between the two farf3<< 300.
This arises because the %heoretical curve is symmetrical about its
minimum, a symmetry wﬁich is not shared by the experimental points.
This symmetry is built in to the two components which go to make up the
final curve., The crack distribution is naturally symmetrical; and an
asymnmetric distribution seems most unlikel&. The 'Egcurve is almost
symmetrical about its maximum but what asymmetry there is does not

become obvious until some way below each peack and can have little effect.

The asymmetry of the experimental data is similar to that
noted by Donath (1961) in his data on Martinsburg slate. Donath in fact
only noticed a serious departure from his symmetrical curve in the
data for F): 0° and in this instaﬁce claimed that the constraining
effect of the sample end plates affected the result. This could well
be s0 as Donath also reports that the inclination of the shear plane
at failure followed closely the inclination of the cleav:ze plane for
angles (3 up %o 30° and a little beyond and under those conditions
the failure plane would have interacted with the end plete of the
compression apparatus., For a standard sample with a length to diameter
ratio of 2/1 such interaction would be expected for sheir uiaune angles

of less than about 26%

The interaction between the angle of the failure plane and
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the orientation of the sample reported by Donath is also seen in Pearhyn
Slate. The inclination, o , of the faiiure plane with respect to Gy is
plotted against P s the sample orientation, in Fig. 28a., for all the
samples of Penrhyn Slate at all angles and confining pressures. No
distinction is made between data obtained at different confining
pressures as no distinction was discernable. This plot shows a trend
towards coatrol of the failure plane angle by sample crientation and
it seems _signii‘icant that the data forp = 15° andp = 30° shows much
less scatter than that for.other angles. The relationship between
X and P indicated by this data may be generalised to the assumption
that x = P for psBOO and with this assumption some new results may

be obtained from the theory presented in the last section.

The expected form of interaction between the effective shear
stress and the crack lengths is shown in Fig, 21, Where the Tey curve
Jjust touches the B/ curve defines the failure point and it would be
expected that that point of contact would also define the angle, cx. ,
of the subsequent shear plaune, as shown. Normqlly this angle & would
lie quite close to the expected angle of 30° but, if i+ is known that
has some other constraint on it then a different situation obtains, 1In
particular, the case where 0(=/3 is shown :i:n Fig. 29 and this clearly
Trequires & higher value of G; than would normally be predicted. A new
set of values for 3; may be obtained using the assumption that for p<'5o<
then X = P and results for G; = O are plotted in Fig, 30. As can be
seen, the required upturn is obtained and a plot of (65 —-6}) against Q)
for {3= 15° in Fig.31 may be compared to Fig.15 which shows the same

plot obtained before “his modification. The improvement is significant,.

Fig.28b shows the relationship between o and {3 given by
the above considerations and modified by the applied constraint., It can

be seen that the prrdictod angles, ok, above P = 30° are larger than the
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data suggests but that the general form of the data is preserved.

Even so the answer is far from complete, For angles X ={3
close to zero the 2;Kcurve vanishes and the theoretical strength of
the rock becomes infinite. Thus the proposed modification still leaves

an unknown gape.

A more obvious, though perhaps related, deficiency is
expressed by the question: why should the shear plane be constrained to
follow the cleavage plane for only that range of angles? There is
nothing in the theories so far presented thch suggests any reason for
the region P < .30° being different from the region B> 30‘?, It is,

however, possible to imagine a mechanism and this is described here,

A number of workers (for example Brace and Bombolakis, 1963%;
Hoek and Bieniawski, 1966; Murrell and Digby, 1970) have shown that a
crack will propagate in the S shape form shown in Fig. 32a such that the
extensions tend to become parallel to 6; . Now the initially propagating
crack will be at approximately 30° to G; , but the new extensions will
have the effect of producing a new effective crack at a smaller angle
to 6;. Thus the crack will szem {o rotate either away from or towards
the cleavage plane according to wh?ther [<; is greater or less than 30°,
as Qhown in Fig.32b., In this way the failing cracks may become entrained
in the plane of weakness, the cleavage plane, and the orientation density
distribution will become depleted for crack orientations away from the
cleavage plane, This entrainment becomes less and less easy for {3
approaching zero and there must bte some gradual modification into yet
another failure mode, for example, the effective tensile stress mode of

Brown and Trollope (1967).

Having obtained a theory which enables the anisotropic
strength variations of a material to be predicted to a reasonable degree

of accuracy, it is necess:iry to examine the success of that theory in
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the light of the pre~failure behaviour of rock.

The fact that the proposed theory relies solely on a Griffith

" criterion immediately suggests that the pre-failure behaviour of the
material has been ignored. This is not necessarily true., The examination
of vock failure theories showed that only the Weibols and Cook and Brady
theories made any attempt to take into account a cooperation of cracks
in forming the failure but it is easily seen that these theories provide
little or no improvement over the Griffith one. In particular, the
constraints on the crack friction coefficient, p 1 are the same in all
theories, Exzamination of Fig.19 shows that the strain energy function,
for constant crack length, produces the sdme slope for the G against 63
line independently of .the total strain energy and there is no reason to
suppose that the change in the form of the distribution weculd change
that. Similarly the shape of the G; against ,3 variatiorn would remain
symmetrical as in the simple case though the detailed shape would depend
on the exact form of the B//c curve used and, as has been shown, this is
open to some manipulationf Thus the tvo cooperative theories would

produce very much the same resulits as the simple Griffith theory.

Where the strain energy and strain volume criteria do

depart from the Griffith theory is in their ability to predict the angle
of the failure plane. Neither theory contains any mechanism whereby the
expected failure plane angle may be derived and it would be very
difficult to modify either theory to take into account the crack
entrainment mechanism proposed for ’3-4 §O°. Such a modification is not
impossible and it may well be feacible to implement the appropriate
integration over a dynamic crack population by use of a digital computer
but, having done so, the answer would turn out to be a series of
applications of Griffith's theory and the.basis of the work, either
strain energy or strain volume, would vecome lost in ilo dera2il, Indeed
such theories become irrelevant when such a detailed model of the

structure hecomes available,
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I¥ would seem that, even for anisotropic data, the Griffith
theory still holds good despite a large quantity of data on pre-failure
rock behaviour which suggest that a more complex cooﬁerative theory is
required. The question is, if the Griffith theory is applicable to
rock failure rather than failure initiation then what is happening to
cause all the activity observed between failure initiation and failure?

Murrell (1969) provides the clue.

Murrell points out (Murrell, 1969) that the microqrack
events vhich occur prior to failure contribute to the formatioq of new
crack distributions and that there must be a whole range of crack
distributions formed during the pre-failure peridd.: He also points out
that any crack may propagate more than once as a stress distribution
becomes modified by the_surrounding activity. Morlier (1971) also
provides part of the answer when he suggests that initial microcracking
may be due to cracks in weaker material propagating until halted by, say,

a harder grain, causing fracture hardening,

Neither of the above statements contravenes any of the
observed pre-failure occurrences but, equally, neither necessariiy
implies cooperation in the sense of Weibols and Cook or Brady., However,
a form of cooperation is taking place in that the pre-failure activity

is setting up the required conditions for failure.

It was remarked in an earlier section that cracks in rock
were formed by associ.itions of sub-parallel grains. It was also pointed
out that cracks so formed may take all orientations and may join together
to produce larger cracks which are not flat but bend and twist in space
in an undefined manner. It is now possible to envisage such distorted
cracks as having weak points, say, at crystallite edges, and that under
stress these weakneuses will allow some form of microfracture. Such
wicrofractures will propagate only to the surface of the crystallites

concerned and any excess encrgy will appear as additional strain on the
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whole crack and as microseismic activity. In other words, the surface

of such a distorted crack will become ground and splintered until it
tends to become flat and the orientation of the resulting flat érack will
be just that orientation undergoing maximum shear streas. The overall
texture of the rock will not be altered by this operation, only the crack
distribution, and in fact it will be the crystallite structure of the
rock which will control the formation of the new crack distribution.

This modification of the crack distribution will only take place for those
orientations for which the shear stress is large, but within that
limitation the crystallite texture of the rock will define the final
crack distribution and not the initial one. In this wvay catastrophic
failure will not occur until a well-defined crack-like cavity, terminated
by some stronger part of rock material, has formed, whereupon the

Griffith criterion comes into play with all that that implies,
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11, Avnplication of Theory to Lumley Mudstone

Having obtained a theory which provides a reasonable fit to
experimental data for one rock, Penrhyn Slate, it is appropriate to
apply the same theory to a different rock and to examine the

differences, if any, exposed in the process,

The rock chosen is a Coal Measures mudstone, from Lumley,
County Durham. This is a lightly lithified material, with a well
defined cleavage, characterised by light and dark laminations derived
as a result of cyclic sedimentological regimes, It suffers from

rapid weathering on exposure.

Information on strength variation with cleavage inclination
was cbtained and the relationship between the two is shown ir Fig.*3 for
three values of confining pressure. It can be seen that the material
is not strong and is anisotropic with a strength minimum in the

region of £ = 300,

An X-ray texture diagram was obtained and is shown in Fig,34.
As expected, there is a maximum intensity perpendicularto the plane of
ithe cleavage but this runs off quite quickly to a wide plateau of
constant intensity starting at about 40° avay from the maximum, The
case of Penrhyn slate showed that the texture is significant up to
50° away from the maximum and therefore this plateau can be expected to

influence the predicted strength results,

The values of the two parameters of the theory, /* , the
coefficient of friction and B, from BAE' , were chosen by eye as this
enabled the effects of the theory to be evaluatied. The values chosen

were /4 = 0,6 and B =3,

The plot of B//E is shown in ¥ig.35 and shows the plateau
from the texture. Allowing for the rounding up of values orinted on

the texture diagram has little effect.as this can only be aisumed to

it The roof rock of the High Main coal seam
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come into force towards the rim of the diagram, that is at an angle
of 40° the intensity must be close to 3 as printed and can only fall
to 2.5. which rounds up to 3, towards an angle of 90°., This has teen

shown in Fig.35,

The strengths predicted using the theory are plotted against
cleavage inclination in Fig.36, for two of the values of confining
pressure that were used to-obtain the data shown in Fig.33, The
plateau in intensity is now seen to produce a cut-off in strength for

f < 70°, a cut-off which is not reflected in the experiméntal data,

For angles IB<: 70° however the predicted values follow the
usual pattern, and comparison of Gy vs. G; for varicus angles /3 ,
shown in Fig,37. indicated tl.<t only minor modifications to ® and M

weuld be required to make a good fit with experiment.

The results obtained with the theory here do not include the

effects of failure plane entrainment and yet Fig.37 shows that the
predicted strengths for /3 =15° fall quite close to the experimental
values. This is a na jor departure from the ideas put forward with

Penrhyn Slate and requires a certain amount of detailed discussior,

As shown in Fig.21 it is possible to make use of the -theory to
predict the angle of the failure plane, & , with respect to ¢7 . The
variation of o« with ,3 for Lumley Mudstone is shown in Fig.38 for
two different confining pressures. The averaged experimental results
are included for comparison. It is clear from this figure that
confining pressure dons have a significant effect on failure plane angle
and this may be explained by reference to Fig.39 where two 'Zq¥curves at
two different confining pressures are compared. This cowparison shows that
the lower the confining pressure the flatter thé ‘Z:H curve becomes,
and a greater variation in contact point between ‘Z:H and E»ﬁf will occur
for a flat 7:« curve than for a less flat one. This variation was

not so marked with Penrhyn Slate, an¢ was small e~ough to be ignored
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*
because the higher )7 values reduced the effect , As in the case
of Penrhyn Slate the predicted values of ©¢ are higher than the

experimental ones,

The plateau in the texture diagram manifests itself in the
o vs, {J plot as a dip in & for p> 65, this dip being greater for
low values of G . The experimental data shows a similar dip and it is
tempting to use this fact as a confimation of the plateau. This is,
however, still inconsistent with the strength data and it is felt that

further work is required before the conflict can be resolved.

The major difference between Penrhyn Slate and Lumley
Mudstone, and in the application of the theory to them both, seems to
be that Penrhyn Slate suffers a high degree of entrainment of oX with/9
whereas Lumley Mudstone does not, The fact that o  fcllows close to P
for some values of ’341 300 with Lumley Mudstone is not due to
entrainment but merely a ramification of the simple theory, Since
the theory otherwise works well for both rocks it becomes necessary to-
ask why one rock behaves in this fashion and another does not. It is,
of course, virtually Zwpossible to answer such a question on a study of

only two rocks.

Given that cracks do propaéate in order to cause bulk

failure it is reasonable to assume that they would prefer to propagate
along the plane of least strength, that is, the cleavage fissility
plane of the rock., Given also that cracks propagate in the sigmoidal
fashion described previously then, for /3<:30°, an extending crack
should, at some time, have the correct orientation to be entrained by
the cleavage fissility. This entrainment would seen to be the natural

course of events. Wny, then, does not Lumley Mudstone exhibit the effect?

* The radius of curvature of ‘Lyat its maximum incrcases with both

67 ,and G, .

| A
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The first significant fact is that entrainment enhances
the strength of the rock for those orientations at which it occurs.
This suggests that 4 crack finds greater difficulty in propagating if
it extends at small angles to the cleavage plane ( r< 30°) than if it
extends almost perpendicularly across the cleavage plane ( [32> 300).
That is, if a crack extends through the crystallites in its path, rather
than between them, this must occur most easily if the local shear is at

a high angle to the plane of the crystallite,

The second significant fact is that Penrhyn Slate has

undergone dynamic metamorphism, whereas Lumley Mudstone has not. Thus
the crystallites of any particular mineral are likely to show 1ijltlie
variation in average size.with orientation in Lumley Mudstone, but,
because of preferential growth under siress, crystallites in Pernchyn
Slate may well show a variation in linear dimensions with orientaticn,
Such an effect will, of course, make little difference to the analysis
of the X-ray texture as one large crystallite will appear the same as
two cr&stallites, of half the size, close together, but, it may have a
Isignificant effect on the ability of a crack to propagate across the
cleavage plane. In particular, it may be that a crack within Penrhym
Slate must extend by breaking through crystallites whereas a crack in
Lumley Mudstone may extend by passing round such obstacles since the

crystallites concerned are much smaller.,

The presence of more equant crysiallites within a rock
will, of course, modify the effect of the’ platy ones and “his modification
is not yet quantifiable., The mechanism of the formation of a failure
plane is also not fully understocod and thus the above suggestion for the

entrainment mechanism must be taken as a tentative one.
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12, Conclusion

Previous work (see Chapter 3) has shown that the brittle

failure of rock is a very complex process, made more éomplez by
anisotropy of the rock structure. Because of this it was suggested that
a simple theory, such as that of Griffith, was too simple to be of use.
However, Walsh and Brace (1964) demonstrated that strength anisotropy
could be included in the Griffith theory by allowing crack length to
become a function of orientation, and it has been shown that, despite

the complexity of the failure process, the simple Griffith theory may

be applied to anisotropic rocks with some success, provided %hat the
crack lengths used by the theory are taken as the crack lengths obtaining
in the rock immediately prior to failure, For the case of Penrhyn Slate
considered, the required orientation distribution of crack length

appears to be given by the unmodified data from the Z-ray texture diagram
of illite basal (0001) plgnes and it would appear from this that the
plate-like illite and chlorite crystals are a major factor in determining
the way that large cracks will form in the material. It has also been
shown that the lack of symmelry in the experimental strength data may

be explainea by allowing the failure plane to be entraii.cd by the cleavage
plane for sample orientations of,3< 30°, Such entrainment ‘has been

observed for Penrhyn Slate as well as for other anisotropic rocks,

The imporsance of these results is twofold, Firstly, they
show that the use of anisotropic material can provide a greater insight
into the mechanism of failure, as, in this instance, it has shown that
the Griffith theory still deucrites rock behaviour rather better than
any others, and, secowily, they show that it is possible to relate
quantitively an independently measured property, in this case X-ray
textures, to measured strength data and find reasonable agreement

between them,

P
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Examination of the data for Lumley Mudstone has
emphasised the applicability of the overall concept described here but
this has also shown that the angle, o< ;, of the failure plane is .a

significant parameter in the description of the failure mechanism,

The predicted angles, &< , for both materials used are

only in general agreement with the experimental data and further study
is needed to find where the discrepancy lies. However, there is a
significant difference between the form of the two sets of results in
that only Penrhyn Slate shows a proper entrainment effect. This has
been interpreted as a reflection on the internal structure of the
matsrials and it suggests that, for Penrhyn Slate, grain size (as well

as crack size) may be a function of orientation.

It was the original purpose of this work to examine ways

in which an X-ray texture, or pole figures, could be used in a
quantitative fashion to describe prope: ties of anisotropic material,
with a view to defining the accuracy requirements of the process for
obtaining the pole figures. In the present application the X-ray data
are already more accurate than the strength data and it will have been
observed that, for a rock with a smcothly decreasing orientation density
distribution of the fabric feature being studied (the situation which
applies to Penrhyn Slate), cracks with an orientation greater than
approximately 50° avay from the bedding plane can never take part in the
failure'process'as descrited in this Thesis. This implies that, for
strength anisotropy experiments, only one X-ray sample need be used.
Moreover, the orientation of the sample need not be specified very
tlosely as this will be given by the observed maximum, Thus, the fabric

determination may be greatly simplified.

It has been assumed throughout this Thesis that failure

has been due to closed cracks, and that these cracks have been controlled
oy one type of mineral phase only. Both assumptions are, to some

extent, justified by the results,
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The control of failure by the platy minerals within the

rock is, perhaps, obvious. Rocks which contain small amounts of

micaceous, allied platy, or other inequant minerals would not be

expected to show significant intrinsic strength anisotropy and there
is a clear relationship between such strength anisotropy and a

preferred orientation of plate-like crystallites.

The assumption that failure is by closed crack follows

from this in that the longest cracks within rocks of the type considered
here are best formed by the adjacent faces sf micaceous mineral
crystallites, Such cracks are likely to have small aspect ratios

(Berg, 1965) and would appear to close quite easily, this being shown

by a linear stress-strain relationship after the initial curve (Fig.15).
The presence of a positive, finite, value for crack interfacial friction
completes the connection and, thus, for rocks of the type considered,

open cracks appear to have very little effect.

In conclusion, strength anisotropy of rock has been
associated with a textural anisotropy observable by X-ray techniques
but it must be said that the structvral anisotropy, in the form of a
crack length orientation distribution, may only be a control on other,
more complex, perhaps, failure devices and may not describe the complete

failure mechanism.

The concepts presented here should allow the prediction
of the complete brittle strength orientation relationship for an
anisotropic rock from a single texture measurement and sufficient
uniaxial strength measurements to define éhe winimum stre.;sth orientation,
Further work on crack length orientation distributions and failure plane
formation is, of course, required, and it is hoped that this Thesis hes

sufficiently emphasised the importance of such work,
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Appendix A, Schulz' calculation to show jindependence of reflected

intensity on sample elevation

The independence of diffracted intensity on the sample

elevation angle s was given by Schulz (1949) as follows:

From Fig.3 an elemental volume at depth t is given by

VS dt
v Sine Coss
where W = horizontal width of beam

193]
I

vertical width of beanm

The path length thrcugh the material for X-rays diffracted

at the depth t is given by

L = 2t
Sing Coss

Now, if M is the linear absorption coefficieni for the

material and D is the scattering efficiency at the angle @ then the. !
totel intensiﬁy diffracted is given by
I = IODJexp (-2lut/sme Cosy ") av

where the integral extends over the entire volume of an infiniteiy

thick sample
Substituting for dV gives

DWS .
= —DHS -2ut / Sing C at
1 I e con exp ( 2 / $in9 0s } )



62

which becomes, after integration,

1

IDWS

2
showing that, for a sample of infinite thickness, or of sufficient
thickness to produce sensibly complete absorption, the reflected

intensity is independent of the angle.
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Appendix B

The texture goniometer Data Reduction programme

The Philips texture goniometer, in common with other
equipment of this type, scans along its observation spiral (Fig.2) at
a constant rate and the mechanism is so designed that equal increments
of time imply equal increments of Y and ¥ (Pigs. 1 & 2) and it is

this fact which provides the basis for the program.

For ease of handling, the X-ray intensity data was sémpled at
known fixed intervals of time and punched on to paper tape by an Addo-X
punch, Under some circumstances it was found convenient to repnach the
data on to cards (this was performed by a Computer Unit facility) but in
any case the program will accept the date in any form and in any format
provided that successive data items are in the correct sequence, The

data for each scan are terminated by a zero.

The program must be provided with information on the rate of
_ revolution (TIME) of ¥ , the rate of change of 3 with each full
revoluticn of & (TILT) and the sampling interval for the data (STIM).

With this information the program can work out the change in ¥ (§Y¥ )

and B (53 ) for successive data items such that

S¥ = 360 * STIM / (60 * TIME)
SS = TILT * SPIM / (60 * TIME)
The first data item is assumed to start withS: ¥ = 0 ind the angles

are incremented approximately for each item.

As the angular position for each point is determined then it
must be transformed from the sample coordinate system x .~ ¥, %o the

projection coordinate system X ,X;,X; . In the simplest case the two will
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be the same and no transformation will be required but in general a set

of 3 Buler angles will be required, these are:

A, a rotation about the x,axis taking x,»x% and x,~»x;
B, a rotation about x; taking x, > X,

C, & rotation about X, taking x/-»X, and x-+X,

These angles are taken as positive if a right hand screw moves away

from the origin and the coordinate transformation becomes:

X =Ly
vhere L-‘j is
Cos(A).Cos(B).Cos(C) , 5in(A).Cos(B).Cos(C) ,~Sin(B).Cos(C)
-Sin(A).sin(C) - +Cos(A).Sin(C)
—Cos(4).Cos(B).Sin(C) ,~Sin(A).Cos(B).sin(c)  , Sin(B).sin(c)
~Sin(A).Cos(C) +Cos(A).Cos(C)
Cos(A).Cos(B) , Sin(a).sin(B) . , Cos(B)

Having obtained the proper coordinates of the point the projection
coordinates are then found as

'xr;r.xir/(r»r)(,) i=1,2 :
or

X = X v/, i=1.2

for equal angle or equal area projection respcctiively, The data may now

be entered into the array at the appropriate (rounded) coordinate positicn.

It can happen, particularly near the centre of a spiral, that
a number of data points will fall into the same square on the net, This
possibility is catered for by keeping a total of the number of times

each net square is accessed and averaging the data entered,
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Some sampies may contain crystals of much larger size than
average for that sample and should such a crystal be in the correct
orientation and fall under the X-ray beam then the signal may be enhanced
by several hundred per cent, forming a spurious peak on the trace;

When this is done then the data is examined over the six current values

H(1) to H(6) and truncation occurs if

Max (u(4), H(3)) - mMax (u(6),H(1)) > PEAK

That is to say, PEAK represents a height above the wanted data such tha?t
data values above this value will be truncated. In such a case, new
values will be chosen for the points H(2) to H(5) such that they fall

on a straight line between H(1) and H(6).

Before being entered on%o the net all data values are
corrected for background. The background value (BKG) is determined

according to the wethod illustrated in Fig.S.

A scale factor must alsc be introduced and this is done
ihrough the parameter SCALE. This relates the millivolt reading of the
counter to counts per second and must include any scaling factor
introduced at the datalogger. Since the background value is normally
taken from the chart record the value of BKG must also be adjusted to

include the datalogger scaling.,

The data is collected and the pole figure built up, one
sample at a time, and it is possible to request‘a printout of the
intermediate states of the pole figure. The plot so obtained is a plot
of the average of (1 - BKG) /BKG, where I is the .data value appropriate
to each point on the net, and this plot therefore only serves to provide

an indication that samples have been correctly matched and little more.
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Vhen all the data have been entered the data are smoothed.
This has the dual function of reducing the effect of noise on the signal
and of filling unspecified points on the net with estimated values,
The smoothing algorithm is exactly as used by Baker, Wenk and Christie
(1969), that is each point takes the value of a weighted average of its
previous value and the 8 surrounding values. In order to avoid
distortion of the picture as the smoothing window is swept across the
net the new values are kept separate from the old and only old values
are used on each application of the algorithm, To ensure complete

coverage the net is swept twice with different weights used in each pass.

In order to avoid edge effects when the collated data is
smoothed, an annulus is defined on the net, inside the primitive circle
of the projection, such that any points within this annulus are mirrorcd
at the corresponding point outside the primitive circle, The width of
this annulus is specified by BAND in terms of lines in the y direction
of the paper. The dimensions of the storage array are calculated from
this value according to the projection being used., A value of 6 is
suggested for normal use, though if only the central parti of the

‘projection is being used a value of zero is more eppropriate.

Finally, for ease of printout, the data is nnrmalized to the
value of the overall maximum found in the set. If required, a value for

this maximum may be forced by the TOTMAX parameter.

Printout occurs with single characters, blank, ! to 9, 0, in
each print position, being the data value in that position to modulus 10,
The centre of each character position the location for its particular

value,

The printing devices normally used have a verti~al scale of 6
lines to the inch down the page and 10 characters to inch along the pagc.

This ratio is allowed for in calculating the x and y coordinates of the N
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projected points and is fixed in this program. The scaling of the
coordinates must, of course, be taken into account when working back

to angles from the printed diagram.

An integration may be performed on request to find the average
value of the X-ray intensity. This integration is performed simply by
summing the values in each square of the net and subsequently dividing
by the total number of squaies counted and is thus only valid for an
equal area projection. The result of this-integration is printed and
points within a certain tolerance of the value are replaced onlprintout
by a plus (+) character. Any number of printouts with this feature

may be requested.

The program is also designed to deal with data from a
transmission X-ray sample (Baker, Went & Christie, 1969) as well as the
reflection data. It is important that data from the two types of scan
be distinguished and space is provided for specifying "R" or "T" for
relevant information. One or other of these characters must be included

vhere appropriate as there is no default.



Data Input to PROJ 4

Card 1 Col
Card 2 - 5 all
Card 6 Col

Col

Col

Col

Col
Col

Col

10

12
16
17

F(5)

F(2)

F(2)

F(2)

B(1)

F(4)
A(1)
A1)

SO
4 title cards

Q
RAD

BAND

TOTMAX *
PINT *

IP *

Card 7 & subs, cards for (3 data sets

Col
Col
Col
Col
Col
Col
Col
Col
Col
Col
Col
Col

Col

1
3
7
11
14
19
23
28
33
37
41
45
73

Further list input

A1)
F(3)
F(3)
F(2)
F(4)
F(3)
F(4)
F(4.8)
F(3)

F(3)

A(8)

TIME

TILT

STIM

NUM

BKG

SCALE
SETPHI ~ *
A x
B - *
c *
PEAK *
IDENT *

N1, N2, N3........ad inf if Ni <1

causes print out with randomization + uses window

¥i o* 100%

Last Ni=Nj > 1

68

Sample Number

No. of data séts

"y" radius of output
circle

lines

(1-equ.Ang. Proj
(¢-equ. Area. Proj

Ror T

I - int. printout

Ror 7T

minutes

degree

seconds
nV

cps = mV + SCALE

trans only

rotation angles (degress)

mV

causes repeats of last printout.

Lastly 8888 signifies repeat with new data group

notes. If code 8888 or 99%9 is missing and Nj <1

9999 signifies termination

and next SNO < 7000

then prog will -ttempt to produce SNO copies of final printout.

* Optional Parameter
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Appeudix C

The Crystallite Distribution Function

Because two planes of one crystal type bear a constant
relationship to each other, defined by the crystal itself, then two
pole figures obtained from each of the planes will also bear a
certain relationship to each other, though such a relationship may
not be precisely defined (Baker, VWenk and Christie, 1969). Meieran
(1962) introduced the following description of the relationship between

the various pole figures,

One can draw a series of spheres'around a crystal, one for
each crystal form that ié to be plotted. If the radius of each sphere
is béhkd , the réciprocal of the interplunar spacing, the poles
to planes plotted on the corresponding spheres will form the

reciprocal lattice,

When the crystal is rotated into another orientaticn with
respect to a fixed coordinate system, the lattice of points rotates
with the crystal., The fabric may be generated by rotating the crystal
into a large number of orientations and at each orientation plotting
the poles to the various planes on the appropriate spheres. The points
on each sphere may be contoured and projected to produce pole
figures., The pole figures are related to each other since they were

produced by the same set of crystal orientations.

It is possible to describe in deteil how these dole figures

are related.

If rectangular cartesian axes are defined xth in the
sample and X,Y,Z in the crystal itself then these two -ciz o1 axes are
connected by a transformation T(wnx,¢ ) where1k,x,+ are the Buler
angles for the rotation and are as defined in Roe (1965). The des.ty
of the crystals having a particular orientation will be a function of

that orientation and the crystallite disiribution function of Roe (1965)



may be written as (¥, ¢)
where S:Cosog) and such that

20w g
'ngdsdz{:d‘{n ' : Eq 1.
o o -1
Since this function involves three angles it may not be
represented on the surface of a sphere, however an axis distribution

chart (Jetter et al, 1965) may be obtained by integrating with respect

to -4; and then projecting the result on to the surface of a sphere.

In the special case of the sample having axial symmetry about x
then is independent of 1’; and thé function may then be plotted
on a sphere, The resulting diagram, which shows the frequency .density
of the specimen symmetry axis with respect to crystal axes, is known as

an inverse pole figure (Barrett and Massalski, 1966),

In order to derive the crystallite distribution function from
pole figure data the ith reciprocal lattice vector r; is considered, The
orientation of p; is given by @i and 4;; in the X,Y,Z sysiem of the crystél,
and by ; and [ in the x,y,z system of the sample and these angles are

related by ‘the expression

Sine;  Cos pi l‘_S’c-\ ©: Cos é:
-{
Siax; Sc.‘f)‘- =T (9” 8,, 61) S‘."@i Sin 4’{ E"Z '
Cos X COS @;

where T is the transformation matrix previously defined and expanded

by Roe (1965).

Let I(g_.p..)be the intensity distribution obtained from a
goniometer suitably corrected for errors. Then the normalized pole

distribution is obtained from

4 (4p) = 1CLpY/[ T2y pddy dp: 43

~f
where ‘S = Cos ox¢;
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Now,ck(x_,[l‘.) and U(S,dr;t#) may be expanded in terms of
spherical harmonies and generalised spherical harmonics respectively,
(the symmetry properties of these functions have been dealt with by

Meyer, 1954) giving

3,04.8) -2 2 QLr(y)em 4.
and

- ~limyr ¢ ing)
“’(XJ’J" $)- Lza ‘::___LE;_qunn 2. (5) € E‘;S-
where 'F,'_“(‘S) is a normalised associated Legendre function and me(s)

defined by Roe, is a generalisation of this.

Using the orthogonality properties of the functions 4 and 5

gives

Q = % ﬁq (TG dydp

J’
o~

and

WL-".: 1/“.1 jf f‘d(§,4r’¢)zhn(§)e~(imﬂr+ L"¢)ASJZJJC1¢

The next' step, that of relating QL‘ and \n/‘_" has been tackled
differently by Roe and Baker, Wenk and Christie and, because of - |
differences in the normalisation used, the answers differ in the
multiplicative constants. Their formulae are otherwise essentially

the same,
Roe's method is simpler and will be presented hem

The transformation of coordinates represented by 2 may be |

applied to PL'(S) & to produce

e ? s S i A in
PR =G 2 20 Q)T ) s

where "2, = (o5 6
[Y

By multiplying both sides of 8 by u(§,¢,¢)¢'(s_‘n) and
integrating over the whole ranges of S,l{l', ¢, S ard P the required
L L
relation is obtained:

5 L L4 ca
2 (Y %L\«,{M_\ P ( EL.) &4 Eq 9.

Q

=
b

——d o

The Qi..\ may all be obtained from experimental data and the
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\&d_n may then be found from the set of linear equations 9 , or
conversely, given hﬁmn from a previous calculation an unknown 1(3'9)

may be found,

Since 9 has (2 +1) unknowns,n=(~L ... 0.. .1 ), then, in
general, (2l +1) pole figures need to be determined for its solution.
However, since the sample often possesses some sort of symmetry, many
of the V&mn cease to be independent and the number of pole figures

needed is less than (2l +1 ).

In working with a pole density distribution it is convenient,
numerically, to have it in the form of a functional expression rather
than a tabular plot since this simplifies the programming problems

associated with interpolation.

The required expression is given by equation 4; however the
function is complex and fails to take into account the interrelationships

of coefficients,

If Cy is written as f +ik  then equation 4 becomes
‘,m Lo L m

qi(ki’ﬁ) = %‘:‘_’.; mzth‘.&ibnﬂrn(&)coimﬁ + g‘mﬂ"-l(si’) Sin m[i.) E‘l1o

From Friedel's law the pole figure must always be centrosymmetric, that
is

9(}.p) =q9(-%, , p+em) £ 1

which, in conjunction with the property of Legendre functions
Lem .
[ ] m
R = C1) R £q12
leads 1o

Q,, =(f ) Q.. ' Eq13

Thus CQLM must be identically zero when L is odd, or

A, =hy,=0 for | oda Y
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nt
By taking Roe's definition of T (‘5) which has
. I
Q) = C1) o Q) where i =-~m Eq15
and applying this to equation 6 the simplifying relations
0"

A, N &,L- -

Lm i m E4'16
b‘m = (“1) L"l?rl-

are found.

Using the symmetry properties of sine and cosine and equations 15 and 16

enables cl(glp) to be written as
o L
90.p) = £ L, (AL TGsmp -BL R ({)Sinmp) 17

vhere AL,: Ay, ) BL°=O

A= 23, Blm=ll7lun

This form takes into account the possible simplifications
due to the properties of the functions used without assuming anything
about the symmetry of th.e measured texture. Since textures in rocks are
not always sufficiently well defined ard since it may be convenient io
have the symmetry axis not coincident with the sample axis then the form
equation 17 is quite suitable for general application to any problém

concerning rock texture.
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