

Durham E-Theses

Some problems of economic geography in Northern tripolitania: a study of agriculture and irrigation on the Jefara plain

Hill, R. W.

How to cite:

Hill, R. W. (1960) Some problems of economic geography in Northern tripolitania: a study of agriculture and irrigation on the Jefara plain, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8358/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

PART ONE cont'd

CHAPTER 10

The 0liye: dry or irrigated ?

A. Introduction.

The olive tree has a limited distribution in the world and is confined almost entirely to countries bordering the Nediterranean Sea. It thirives in areas which have relatively mild, moist winters and hot dry summers, but it will tolerate a little frost, although temperatures below $14^{\circ} \mathrm{F}$. can have disastrous effects on the tree's growth. The $57^{\circ} \mathrm{F}$. annual isotherm coincides approximately with the limit of olive cultivation. Cold winds and late frosts in spring may reduce yields. The water needs of the olive are small compared with most trees and cultivation is possible in areas which in some years receive as little as 6" of rain, provided that the average annual rainfall is 10-12". The best quality fruits are produced by trees growing on moderately fertile soils such as are found in many of the Mediterranean countries like Spain, Italy and Tunisia.

Olive trees have been grown in Tripolitania for at least 2,000 years and the existence of some 600 ruined olive-presses in the Jebel is evidence that the Romans produced olive oil in quantity. The tree lives to a great age and some old trees in the Jebel and the Wadi Beni Ulid may even date from Roman times. With cereal cultivation, the production of olive oil was the economic foundation of Roman settlement. In more recent years the olive has again returned to prominence, because, in the earlier phases, much of the Italian agricultural colonisation was dependant entirely on the planting of olives and the ultimate production of
$\because i_{i}$;ure ?n.

olive oil.
B . Number and Distribution of olive trees.
In order to fully appreciate the significance of the olive in the Libyan economy, and a.t the same time be aware of the importance of the Jefara Plain as a producing region, it is necessary to consider briefly olive cultivation throughout the whole of Tripolitania.

The number of olive trees in Tripolitania has grown considerably in the past 50 years (see fig. $23 a$ and Appendix VIb). In 1910 there were about half a million Arab trees, nearly all of which were mature. 'ine number of trees had remained fairly static under the Turkish regime but the arrival of the Italians brought radical changes. In 1920 there were no Italian owned olives but by 1925 the Italians had planted 680,000 trees (fig. 23b): this figure rose to $1,342,000$ in 1933 and reached a peak about 1944 at 2,411,000. Since 1944 there has been a decline in the number of Italian trees. The figures for the total number of olive trees show a similar trend, reaching a peak of $3,381,000$ in 1944, declining to $2,607,593$ in 1933 and rallying to $3,000,000$ in 1955. The number of Libyan owned trees has shown a steady but small increase from 1910 to 1944, fallowed by a slight decline. The ownership of olive trees in 1953 was as follows:-

Private Italian	51.3%
Libyan	31.8%
Demographic Italian	$\mathbf{1 7 . 1 \%}$

In 1910 unproductive trees in Tripolitania made up only 10% of the total number of trees, but by 1931 this had increased to
50% and eventually reached a maximum of 66% in the late 1930 's: in 1955 the number of unproductive trees had declined to 53% and in 1958 it was even lower. Today, however, there are probably still $1,500,000$ immature trees in Tripolitania, consisting of 57% on Italian Concession and Libyan hawãza farms, 28% on Italian Demographic farms and 15% on Libyan saniya farms. At present the total number of olive trees is still about $3,000,000$, although Robb thinks that a figure of $5,500,000$ is attainable in the future (20). Analysing the distribution of olive trees throughout the provinces, two interesting facts emerge. Firstly Tripoli and Western Provinces have just over half (53.3%) of all the olive trees in Trdpolitania, and secondly, the same two provinces have 62. 5% of a.ll the immature olives in Tripolitania:-

Table 10.1 Distribution of olive trees by province 1255. Tripoli and Western Province 53.34% (33.34% productive plus 20% unproductive).
Eastern Province 36.66% (20% productive plus 16.6% unproductive). Central Province 10% (6.7% productive plus 3.3% únproductive). The figures for Tripoli and Western Province are minimal for the Jefara Plain, for they do not include trees at Gasr Khiar or Ghanima. The Jefara Plain has more olive trees than any other region and even though a Iarge number of these are immature, it still succeeds in providing $30-40 \%$ of the oil produced in an average or fairly good year and up to 80% in drought years. When all the trees come into full production the Jefara Plain should be able to produce, on average over a period of years, 50-60\% of Tripolitania's olive oil.

In Tripolitania it is difficult to find out how much land is devoted to olive cultivation. This is mainly due to the frantical difficuities invoiveu: in the oases the olive tree is scattered irregularly amongst other fruit trees and crops; in the Dune Jefara it is often interplanted with almonds and associated with the interculture of a cereal crop in the winter and groundnuts in the summer. The only figure that seem to be available is that of $250,000 \mathrm{ha} .$, given by Robb (20).
C. Varieties of olives grom; life-cycle and methods of cultivation. The olive tree is grown under varied conditions in Tripolitania: on the saniya farm in the coastal oases; on the larger hawaza farms in the sandy Dune Jefara; in the Jebel and along the pre-desert wadis of the Cretaceous dip-slope. At one time, except for haphazard watering in the coastal zone, the olive was a completely dryland crop, but during recent years the number of trees being irrigated on the Jefara Plain has steadily increased. The olive trees can be sub-divided into three main groups:-

$$
\begin{aligned}
& \text { a. Indigenous. } \\
& \text { b. Tunisian. } \\
& \text { c. Italian. }
\end{aligned}
$$

The indigenous varieties may have been introduced by the Romons, but since no research work has been carried out on this problem, it would be wiser to refer to them as local. The main local varieties are Induri, Gargashi, Gariani, Rasli, Hammudi, Grushi, Laghiani and Telfahi. However, there are numerous other varieties growing in the Jebel which usually take the name of the district where they are growing, e.g. Kussabat.

The Tunisian olive is represented by one variety, the Shemlali from Sfax in Tunisia. It is increasing in importance each year
 is represented by four main varieties: Frantoio, Noraiolo and Leccino, which originate in Tuscany, and the Coratina, which has its home in Apulia and Sicily.

Little is known about the characteristics of many of the local olives and there is scope for a considerable amount of research work. Liarroni (10) points out the need for the'identification of olive tree varieties in Tripolitania in various localities and for making recommendations based on their productivity, yield of oil, normal resistance against pests etc., as well as their characteristics concerning allogamy and autogamy'.

The olive usually flowers in harch, fruits in April and is ready for harvest from October onwards; in the Jebel, however, harvesting may continue even into. January. The olive is usually propagated by agamic means and rarely by seed. Native cultivation is still very primitive; the Libyan places an olive cutting at the bottom of a hole about 3^{\prime} deep and them fills up the hole with soil as the cutting gradually grows up to ground level. By using this mothod the tree is finmily estailisineu and bears iruit at an earlier stage than trees raised from seed. liany of the local farmers still harvest the olive fruit by knocking or shaking the tree. Italian methods of cultivation are much less primitive: harvesting is carried out by hand picking, and pruning has been widely adopted; furthermore, fertilizers are being used more

288

extensively. Both Libyan and Italian farmers practise clean cultivation of two to three ploughings or discings in winter and spring, thus destroving weeds thrt wnold otherwise concumo voluoblc moisture, and at the same time preventing capillary action in the soil. G.B. Mazzocchi, the F.A.O. horticulturalist, propagates olives by planting stump cuttings (ovules) and branch cuttings.
D. General résumée of olive cultivation in each province, with special reference to Tripoli and Western Province.

Eastern Province is predominantly an area of dryland olive cultivation and production naturally varies with seasonal conditions. The main varicties are Gargashi, Rasli, and Frantoio, which together yield about $15-18 \%$ oil. In coastal areas the olive is confined largely to the Italian farms, where it is widely spaced in plantation form. In the eastern Jebel the olives round Kussabat are Libyan owned and are irregularly distributed. Large Italian plantations are evident again at Tarhuna.

In Central Province there are no large plantations covering many hectares, but instead the old, stately, Libyan olives are scattered irregularly over the Jebel in a search for moisture. Of necessity all olive cultivation in this region is dry and the trees therefore abound in the wadis and depressions. Although the old tree yields well in good years, production fluctuates from year to year, as droughts are not infrequent. The main varieties are Ghariani, Grushi and Shemlali, and they give high oil yields of about 20%.

The Jefara (Tripoli and Western Province) is the most important olive growing area in Tripolitania. It has the largest
number of trees and very soon will be the leading olive oil producer. Generally speaking conditions along the coast, both climaticaily anủ eapnjcaily are more favourable than anywhere else. The tree likes the light sandy, porous, surface soils, which are capable of absorbing heavy precipitation. Furthermore, the presence of a cemented layer, some metres below the surface, is useful to prevent the water from percolating too quiclrly beyond the reach of the olive roots; this hardpan is not completely impervious and does not prevent root development, which in the case of the olive, may be up to 15 metres underground. The coastal zone of the Jefara has the moderating effect of the sea during the hot summers, and coastal olives do not suffer the Ghibli in its most devastating form. But the olive growers still have their problems. The September rains, which are the most valuable because they help to provide a good amount of oil in the fruit, are unreliable and infrequent, and the most copious rains cone in November and December. These latter rains have a harmful effect since the oil is unnecessarily diluted. Occasionally the autumn rains fall early and because temperatures are still very high there is an out-of-season blossom and fructification, which can ofton unbalance a tifet fur several years.

Local, Tunisian and Italian varieties grow on the Jefara. The local varieties are the most suited to the climate since they are the hardiest trees and fruit more readily; the Telfahi, however, has a tendency not to crop in some years. They are generally limited in distribution to the small coastal saniya farms, where
they are scattered irregularly over the land, often only 10 metres apart. Trees give a regular harvest of small fruit which yield about 15% of oil. No recent figures for the distribution of local olive trees within the oases are available, but since the number of Libyan owned trees has not changed much over the last 30 years, Ferrara's figures can be used (5) - see Appendix VIc . He estimated that in 1932 there were just over 130,000 Arab trees on the Jefara, excluding Gasr Khiar. These today represent only 10% of all olive trees on the plain. Host Libyan trees are found in the oases of Zanzur, Zawia, Sorman and El lienshia; they decrease in number and density in the western oases and also inland at Ben Gashir, Azizia and Gasr Garabulli.

90\% of the olives on the Jefara Plain are on Italian Concession Farms, Libyan Hawāa farms and Italian demographic farms. Some of larger concessions may have up to 40,000 trees but the demographic holdings rarely have more than 1,000. All the trees are planted to a regular plan (see plates 21,22 and 23) and are often intermixed with almonds. The Frantoio, which gives a large, easily harvested pulpy fruit of over 20% oil yield, was formerly by far the most important variety and today still makes up 60% of some plantations. However, in Tripolitania it only seems to bear a good crop once in two or three years. The Coratina olive trees are much less numerous, but so far they appear to give better yields under dry cultivation than the Frantoio. However, as more of the Italian owmed plantations come into full production, it becomes quite clear that only along the coast are the Italian varieties vegetating properly and consistently bearing fruit.

The Tunisian Shemlali is increasing rapidly in importance, both on Italian and Libyan farms and most of the recent plantings ont the Jeiara Plain are of this variety, particularly along the coast. It is a regular bearer of medium sized fruit, which have an oil yield of a little under 20%. A large number of Italian varieties, especially on demographic farms, are being grafted with Shemlali (Farm study 25 is typical).

E. Yields and availability of moisture.

The main factor affecting the yields of olives is the amount of moisture available. Areas with a precipitation below 200 mms . are definitely marginal for olive cultivation, and where the precipitation is below 180 mms . olive cultivation is impossible. In Tunisia, olive oil yields have been measured in relation to the amcunt of water received by the tree. On irrigated lands which are given $8,000 \mathrm{~m} 3 / \mathrm{ha} .$, the oil produced per hectare is about l, $200 \mathrm{kgs}$. ; in Northern Tunisia, where the rainfall is 400 600 mms . the yield is $400-800 \mathrm{kgs}$. , and in the Sfax region, where the rainfall is 200 mms ., the yield is 300 kgs . Lewis discovered that olives at Sidi kesri were being irrigated with $2,400 \mathrm{~m} / \mathrm{ha}$. of water in addition to rainfall.

It is üifificuli lu generailse about yie.ias per tree on the Jefara Plain. Lewis estimates that the average yields for all districts, both Arab and Italian farms, is 29.3 kgs . of olives per irrigated tree and 17.5 kgs . per dry tree. Occasionally large mature trees, $\dot{\text { und }}$ favourable circumstances, may yield up to 75 kgs . of olives. A crop between 25 and 50 kgs . per tree is

292

considered satisfactory. Yields however fluctuate enormously
from year to year. The following figures calculated from statistics supplied by Dott. A. Rompietti, give yields of olives per tree, for INPS settlements, in a dry and wety year:-

Table 10.2 Yields of olives on INPS farms, 1954/5 (dry year) and 1956/7 (wet year) Kgs./tree.

	15		1956/7	
Settlement	Dry	Irrig.	Dry	Irrig.
Oliveti	-	7.6	10.02	4.4 .0
Bianchi	0.96	6.26	9.02	10.22
Hashian	2.0	6.485	10.52	20.7
Giordani.		2.844	9.37	21.2
licca	5.12	10.18	10.91	17.1
Corradini	0.376	1.515	15.02	40.0

In the dry year, yields of dry cultivated olives were nil in two instances and the rest were all very low; yields of irrigated trees were also low, but nevertheless some were as much as seven times greater than those of dry cultivated trees. In a wet year, yields of dryland olives averaged about 10 kgs . per tree, whereas yields of irrigated trees ranged from 17 to 44 kgs . per tree. Even in wet years yields from dryland olives are poor.

On the Jefara, dryland olives are usually planted 20 x 20 metres or 30×30 metres ${ }^{*}$, and irrjgated olives 10×10 metres or 10 x 20 metres. If the land is specifically designated for irrigated olives, and trees are planted closely, then there will be approximately four times as many trees per hectare than on land under dryland olives. Yields per irrigated tree are higher, and ¥

Combrement (3) recommends that with a rainfall of $160-300 \mathrm{mms}$. trees should be planted 20-24 metres apart, and with a rainfall of $300-350 \mathrm{mms}$. $15-16$ metres apart.
this, plus the greater density of trees on irrigated land, means that yields per hectare of irrigated olives may be as much as ten times greater than those from a hertore of drylend olivas. G.B. Mazzocchi ${ }^{\#}$ claims that, with irrigation and the necessary associated epplication of fertilizers, the olive tree will give yields four times greater than with normal dry cultivation.
wartin (ll p.2) writes "Les cultures modernes ont généralement été faites en sec; il. s'agit de plantations groupées en monoculture ou quelquesfois combinées avec des amandiers ou des céréals ... plus rarement on rencontre des oliviers qui profitent des irrigations par pluie artificielle ou cenaux d'arrosage practiqués aux sous-cultures d'arachides ou de céréals'. The F.A.O. 1952 report on agriculture states: "a few of the olive orchards are irrigated but fundamentally olives ore grown as a dryland crop. Water is very helpful and even essential in getting young trees started, but after the tree has 3-4 years start, it grows without water in the coastal belt". These descriptions of olive cultivation may have been truein the early 1950's, but today the situation is different. Hore olive trees are being irrigated and the switch from dry to irrigated cultivation continues. Farmers are realising that yields of dryland olives are generelly unprofitable in most areas with less than 300 mms . of rainfall. They are also realising that good yields cannot be expected even

[^0]Θ
B/90.

204

with a rainfall of over 350 mms ., if vines or winter cereals are grown between the trees. When Lewis ${ }^{\text {T }}$ submitted his report he concluded that some Italian farmers were irrigating their olives, for he quotes them as applying an average of $1,784 \mathrm{~m} 3 / \mathrm{ha}$. compared with 2,400 given at Sidi kesri; apparently therefore under-irrigating.

The evidence for this switch to irrigation is abundant. The following table, giving the number of olive trees on the INPS farr settlements in 1954/5, shows that at Oliveti, Bianchi, Hashian and Giordani, there are more irrigated than dryland trees; at licca only 3,000 more dry than irrigated. Ghanima stands out as completely dry. The latest figures available, which unfortunately are not complete for all settlements, indicate, if anything, a slight increase in numbers irrigated.

Table 10.3 Olive trees on the Italian Settlements (INPS)

	Dry		Irrigated	
Setilement	Total No.	No. Prod.	Total No.	No. Prod
Oliveti	13,187	7,471	15,336	13,636
Bianchi	13,710	532	18,559	4,134
Hashian	1,566	520	3,860	1,636
Giordani	6,937	72	15,883	1,576
Micca	15,985	41	12,260	1,305
Ghanime	24,509	5,933	325	33

Reforonco to the farim stuủies aiso emphasises the farmers ${ }^{i}$ desire to irrigate olives. It appears that many of the Italian varieties are not yielding at all well as they reach maturity and farmers are either irrigating them or grafting on Shemlali. At

[^1]
295

Ghanima, which as we have seen from the above table, is a settlement of dryland olive cultivation, grafting or irrigation is being tried. On form 39; 30 trees havo boon irrigated and give jojo higher yields; on farm 33, 20 trees have been grafted and on farm 34,50 trees have been grafted. Olive trees are often irrigated on the ENTE farms at Oliveti and Fonduk Et-Togar - see farm studies 35-40. On farm 41, which is typical of the saniya farms in the Tripoli oasis, Induri and Laghiani olives receive incidental irrigation when other crops are waiered. Niost of the INPS farms at Oliveti and Bianchi are either grafting their Italian clives or irrigating them. The farmer in study no. 26 for instance states that all his olives are irrigated and give yields 8 times those from dry olives. Most of the Italian concession farmers round Tripoli, however, at Gargaresh, Gurji, Collina Verde and Tajiura, are neither irrigating nor grafting their Frantoio olives (see farm studies 7-10). At Gasr Ben Gashir (farm study no. 11) some Frantoio olives are partly irrigated. A farmer at El Maia (no.6) thinks that Frantoio olives need irrigating, even when the rainfall is 300 mms . The large concessions tend to remain dry but some olives on farm no. 4 (1,029 ha. farm) are being irrigated; the farmer considering that hest results can be achicvod with the Frantoio as long as it is irrigated.

Views on the profitability of the olive differ. On buying his farm a. few years ago (study no. 3), Gargour found that all the olives were Italian and were not yielding very well. As a result he reduced numbers drastically and grafted the remaining 4000 trees
with Shemlali. Olives were to all intents and purposes abandoned in favour of citrus. Ricotti (study no. 2) has alvays considered that life oiive has no ruture in Libya and from the outset he has concentrated on citrus. In contrast, on the Mitchell Cotts farm, the management has expressed its confidence in the olive by increasing the number of trees from 10,000 to 20,000 . The Frantoio olive has been retained because it produces a good quality fruit, but it is thought essential to irrigate it.

One of the greatest disadvantages of the tree crop, particularly the olive, is the time it takes to reach maturity. Here again the irrigated tree wins. Local varieties of olives yield after 5-6 years if irrigated, but only after l0-12 years if dry; with the Italian varieties, it is $8 \mathbf{- 1 0}$ years and 15-20 years respectively. With irrigation, not only do trees yield more heavily, but they also start yielding at an earlier age. A further advantage of irrigation is that it allows winter and summer field crops to be grow between trees. With the dryland olive it is possible to grow winter cereals or vines between the trees for the first few years but only until the trees start producing.

It woula appear inat on the jefara rlain the farmer is likely to reap best returns by retaining the Frantoio olive and irrigating it. One big difficulty is the fact that the Olive Fly (Dacus oleae rossi), which causes severe damage in all Mediterranean areas, seems to attack irrigated Frantoio trees more severely than any other tree. Irrigated Italian Frantoio growing near the coast
are most susceptible to attack. The following samples, which were taken by liartin (11), show how the olive fly prefers to lay its eggs in the large Italian fruits:-

Table 10.4 Percentages of olive trees attacked by the olive fly at Kisurata, 1953.

Italian variety
dry
Italian variety Local variety Local variety
irrigated dry
irrigated

20\%
100\% 0%
6%

The presence of the olive fly grub in the fruit destroys an important part of the pulp and leads to lower yields; furthermore it also triggers off bacterial processes which make the oil acid. F. The olive oil industry.

1. Production of oliyes and olive oil. The only production figures available are estimates. The earliest are those of Ferrara (5) but many of these do not agree with those subsequently circulated by the Nazara of Agriculture. For example, for the year 1927 the files of the Nazara of Agriculture record the production of olive oil as 900 metric tons, whereas Ferrara gives a figure of approximately 5,000 tons.

It can be noted first of all that in Tripolitania, the production of olives, olive oil and sansa oil is increasing (see fīg. 22 and Appendix via a). Taking the period 1928/38 the highest figure for olive oil production is 2,800 metric tons, in the period $1938 / 482,700$ metric tons, but in the period 1948/57, 9,000 metric tons. Before and during the last war, the production of olive oil, in a good year, amounted to 2-3,000 metric tons, but more recently a good year will give

5-7,000 metric tons extracted from $30-40,000$ metric tons of olives. inany of the Italian owned varieties planted in the late 1930's are nour coming into funl proむuctioni Puriher reference to figure 22 also shows that the olive crop fluctuates from year to year; for example, in 1951/52 the total production of olives was 30,000 tons, but in the following year it was only 5,000 tons. This variability reflects the predominance of dry cultivation. Total yields in pre-var drought years are lower than total yields of drought years in the post-war period. Prior to the war, olive oil production in Tripolitania dropped below 1,000 metric tons on several occasions and in 1937 was only 37 tons. Since the war, however, there has never been less than l, 000 metric tons produced in any one year. wost of the Italian trees fail to yield in dry years, so the higher yields in recent bad years can only be attributed to an increase in the number of olive trees irrigated.

Figures for olive oil production in the provinces are only available for a few years, the last being 1952. In fair to average years Tripoli and Western Provinces account for approximately $35-40 \%$ of the olive oil produced in Tripolitania. In drought years this percentage changes radically. and in 1947 the two provinces on the Jefara produced 811 metric tons out of a total for Tripolitania of 936 metric tons. This share exceeds 85% and is further evidence of the irrigation of olives in this region.
2. - Processing of Olives When the olives are harvested they are taken to presses where the oil is extracted. The
residue, or pulp, which is left after this first pressing, is called sansa. Sansa is also pressed and gives sansa oil. The ulive oii produced in Iripolitania is very similar to that which comes from the Gabes and Sfax regions of Tunisia. It is strong, well-flavoured oil, excellent for those consumers who like full bodied oil for salads and cooking purposes (17 p.28). The Italian varieties yield the best quality oil. Yields of oil may vary from $\mathbf{1 2 - 2 5 \%}$ of the volume of olives pressed, depending on the variety and whether the tree is irrigated or has to rely on rainfall for its moisture supply. Irrigated olives may yield more fruit, but the oil content may be lower. Most of the oil presses in Tripolitania are old and produce a very acid oil, and generally the quality of the oil is below the standard demanded on the world markets. Four refineries exist in the Tripoli area and their production is consumed locally, largely by the fish canning industry. Most of the major mechanical olive presses are on the Jefara Plain, as is shown by the following table:-

Table 10.5 Distribution of types of olive presses.

Type Tripolitania Trip. \& West. East. Prov. Central Prov

Mochanical Animal Hand

There are still a large number of hand presses in Tripolitonia. Nearly all the sansa oil is produced by Industrie Riunite Pompeo Gherardi, which owns two out of the three existing factories. The firm extracts some olive oil of its
oum, but it has to buy most of its sansa pulp (70\%) from the many presses (about 500) throughout Tripolitania. In 1957 the firm bought almat ? 2 , sansa oil extraction is approximately 8% of the volume of sansa pulp (see fig. 22).
G. Karketing of olives.

Olive oil is one of Libya's principal exports and is likely to become even more important as more trees come into full production and nev plantations are made. At the moment production is so variable that in some years exports may be nil. The value of olive oil exports in 1955 was $£ 1)_{+17,000, ~ i n ~}^{1956}$ only $£ 161,335$ (including sansa oil), but in 1957 it jumped to $\mathrm{LLL}, 170,628$. *

Average exports of both olive and sansa oil are steadily increasing as the following table shows:-

$$
\text { Table } 10.6 \frac{\text { Export of Olive Oil }}{\text { (yearly average) Sansa Oil. }}
$$

Period
Olive Oil
Sansa oil

Of the olive oil produced in Tripolitania, about half is consumed locally, about one third is despatehed to Cyrenaica, and the rest is exported. Consorzio Agrario usually sells about $30-40 \%$ of the oil and the remainder is handled by private firms.

天
United Kingdom of Libya: 'External Trade Statistics'. Central Statistics Office, Linistry of National Economy.

During the period 1946-50 olive oil was bought at an average price of 19 piastres a Kilogram, but in 1958 Consorzio was
 presses, at l6-18 piastres per kilogramme: in the same year Hassan kassaud, another blive oil exporter, was paying 17 piastres. Prices seem to be dropping slightly. In 1955 the average F.O.B. price of olive oil in Tripoli was $£ 1257$ per metric ton, falling to £1240 per metric ton the following year.

Libyan oil is exported in bulk and is often unlabelled and ungraded. Until recently Consorzio has sent nearly all its olive oil to Italy for refining, because no customs duty was payable. Consorzio representatives remark that without Italy, Libya would have difficulty in selling her oil since it has up to 7% acidity. There is no denying the low quality of Libyan oil, for each year higin quality oil has to be imported - 40 metric tons in 1954/5. Today the Italian market is not so certain (22). In past years Libya has enjoyed preferential treatment under G.A.T.T., which allowed for the import into Italy of a certain quota of Libyan oil (2,500 metric tons) without payment of duty. Recently the Italian Government decided to introduce a 'Combination Scheme' which stipulates that Ttalian importers must buy local sccd-oil at a fixed price in a given proportion to the quantities of olive oil which they import. In 1957/8 there was a good olive crop in Tripolitania and exports to Italy exceeded the customs free a.llowance. Libya is now agitating for an import quota of 10,000 metric tons.

Half the sansa oil produced by Industrie Riunite Pompeo Gherardi is used in Tripoli for the manufacture of soap and the
 hand and transport costs are low, and there is no import duty on sansa oil. Pulp is usually bought by Gherardi at 40 piastres a matar of $13 \mathrm{kgs}$. . In 1957 Sansa oil was sold at 17 piastres a kg., but if the olive crop is poor the oil may fetch 20-22 piastres a kg .
H. Libya and the other world producers of olive oil.

Olive oil is the sixth most important vegetable oil in world trade. It is not likely to increase in importance because with 15f, it has the lowest extraction rate of any of the vegetable oils. The main producers of olive oil in 1956 were as follows:Table 10.7 win olive oil producing countries 1956
Country \quad lietric tons

Spain
396,000
Italy
170,000
Greece
163,000
Portugal
Turkey
Moroceo
93,000

Algeria
90,000
35,000
26,000
In the same year as above Libya (i.e. Tripoliitania) only produced 8; of Aléniás total. Tíaủe in olives is alnost entirely in the form of oil. The main importer is the United States. The leading exporter used to be Spain but this country has now been ousted from this position by Tunisia as is indicated by the following table:-

Table 10.8 Main exporting countries of olive oil in 1957.

Country
Tunisia
Npain
Moroceo
Greece
Portugal
Argentina
Libya.
Algeria

Mietric tons

34,000
22,000
20,000
15,000
12,000
8,000
5,500
4,000

Even as an olive oil exporter, Libya is not very important and is overshadowed by her western neighbour, Tunisia, which exported nearly seven times more olive oil than Libya in 1957.

Since 1953 there has been a slight decline in world prices of olive oil. The Libyan Government, encouraged by Dr. E.M.Rascovich, believes that olive oil is one of the commodities with the best prospects of earning foreign currency and it is therefore implementing a policy to foster the production and export of olive oil by :-
(a) abolishing export duties,
(b) Qrying to obtain exemption from Italian import duty with G.A.T.T. approval,
(c) assisting olive growers - loans for equipment such as presses, advice on cultivation, introduction of cooperatives.
I. Summary and Conclusions.

Figures for the production of olives show how sharply yields of this crop can fluctuate from year to year. The olive in Tripolitania is still largely a dryland crop, and it does appear that, although one of the hardiest of tree crops, it suffers just as much in drought years as a field crop such as barley. The higher annual average production of post-war dry years suggests
that a large number of olives are in fact irrigated. In consecutive bad years, the Jefara commands a higher percentage of Tripoiitanla's olive production than any other area. Even in average years it produces $30-40 \%$ of Tripolitania's oil and this is likely to increase to $50-60 \%$ as many young trees reach maturity. Since 1944 there has been a decline in the total number of olive trees in Tripolitania, due mainly to the fall in Italian owned trees; but since 1953 numbers have increased. This decline and revival can be attributed to the fact that between 1944 and 1953, many of the Italian trees, which came into production during that period, gave disappointing yields on the Jefara Plain and were thus destroyed. The Italian varieties of olive give the largest fruit and the best oil yield, but they do not give good yields under dry cultivation. To overcome the problem of poor and infrequent yields, the Italian trees have been either retained and irrigated, or grafted with Shemlali; or have been removed and completely replaced by Shemlali. Some Italian farmers are not sure that the Shemlali is the best graft; others consider the expense involved in purchasing grafts, plus the loss of possible revenue for 3-4 years whilst the graft takes, too great. If waier is available it may be more profitable to retain the Frantoio olives and irrigate them, for they yield the best quality oil. Furthermore, it is far easier to obtain loans from banks if the money is to be used for development which includes irrigation.

The Jefara Plain has the largest number of olive trees. Nost of these are Italian varieties, which are largely Italian owned and

305

a.t the sane time immature. Bearing this in mind, it would seem that a further shift to irrigation is inevitable. Some farmers on the plain oven concidci it essential iu waier Iunisian ollves, a fact suggesting that Tripolitania is a marginal area for olive cultivation. F.A.O. has been propagating olives at Sghedeida and Garrabulli but they have all been Tunisian or local varieties, not Italian.

The olive could become the leading crop in Libya if there is an expansion of dryland olive cultivation in the eastern Jebel associated with the control of soil erosion, and concomitant with this, more irrigation and grafting of olives on the Jefara Plain. Compared with countries like Tunisia, Spain and Italy, Libya is an insignificant producer. All the oil produced is so inferior in quality that it cannot break into the main world markets, and all exports are channelled to Italy, where the oil is further. refined. 'Ihis reliance on one market is dangerous and unhealthy, but until the quality of oil is improved, Libya can only hope that the Italian market remains open to her. The entire olive oil industry needs reorganising; all hand presses listed in table 10.5 should be scrapped and all olives in future should be handled by modern enoperatiye prosscs noar Tripoli. Dince ine oiive tree takes so long to mature and any changes in the industry are necessarily slow, it is doubtful whether private enterprise will have the enthusiasm for a reorganisation, as it did in the case of groundnuts. The Government must take the lead and make sure that more loans are made available for developrent purposes.

Is the olive tree stiml under dry cultivation, or is it being irrigated ? It seems reasonable to conclude that, except in favourable areas round Tripoli, a Iarge percontabe of olivo plantations on the Jefara Plain are already irrigated and more are likely to be so in the future. Most of the irrigated trees receive only a supplementary type of irrigation.

CHAPTER 11

The steady expansion of citrus.

A. Introduction.

In Tripolitania, citrus, like groundnuts, are almost exclusively confined to the Jefara Plain and 93\% of the trees are found in this region, all within the limits of sedentary cultivation. The highest concentration of trees is located round the tow of Tripoli, particularly on its southern margins; other areas of importance are Zavia, Sorman, El iaia-Zanzur, Tajiura, Suq el Jiumaa, and the Suani Ben Adem-Ben Gashir district (see fig. 2lb and appendix vira). The citrus tree is very sensitive and connot tolerate saline conditions, and its present distribution is mainly within the bounds of the Tyrrhenian deposits where the water fron the first and second aquifers is of excellent quality. Little or no citrus are grown in the eastern comer of the Jefara Plain, except on the Variani Concession where artesian water is being used (see chapter 6 and Appendix Vd).
B. Types of citrus cultivation.

Citrus cultivation can be aivided into several types according to the kind of farm on which it is found and also the purpose for which the crop is grown.

Citrus cultivation on the Libyan saniya farms is limited to the oases of Tripoli, Tajiura and Gurji, for the water in many of the western oases is too saline. About 20% of the citrus trees on the Jafara Plain arc on the saniya farns. All the fruit is grow for local consumption and the citrus tree is scattered

809

around the farm, having to compete in crowded conditions with numerous other trees such as date palns, olives and pomegranates. The number of citrus trees on each farm usually varies fron $750-$ 200 (farm study 42 gives 200 trees and the average number of trees on the demographic saniya is 150-200).
iost of the citrus orcharás planted by the Italians before the last war were to satisfy hone demands only and there was no real attempt to develop citrus in Tripolitania on a comercial basis. A small area of $\frac{1}{4}-4$ ha. in size was selected near the farm house and wos enclosed by wind-break trees such as tanarix cupressus, eucalypts and casuarina. Inside this enclosed area, citrus trees, mainly oranges, were planted $3-4$ metres apart (density of about $400 / \mathrm{ha}$.). Examples of these small citrus orchards, which in 1939 contained about 30% of all Jefaran trees, can be seen from the air in plate 21 , and also noted in farm studies 4, 5, 7 and 8. Noturolly, most of the Libyan hawāza farms have small areas of citrus because as we have noted before, many of them are former Italian doncessions. When water is available for irrigation most of the Italian demographic farns also have small citrus orchards, with the number of trees rarely exceeding 400.

There are, however, quite a number of specialised citrus farms on the Jefara Plain, which together occount for at least 50\% of all Jefaran trees. A fev of the Itolians, who took over private concessions before the war, decided that Tripolitanio had distinct possibilities as a citrus growine country, and thereiore

810

they devoted the whole of their farms to this crop. Some of the farms were nothing more than small orchards. Eugenio pinocchiaro,
 small orchards, just south of Tripoli: this is only 10 ha. in size and was developed on Sicilion lines with the trees closely spaced, anci irrigated by means of jedawl anci shall canals (as in plate 14̄). Occasionally areas up to 50 and 100 ha. were developed for citrus production on some Italian concessions. One of the best examples of these is the Ricotti-Prina Orchard, which is described in farm study no. 2. The farm is 600 ha. in total area but one third of this represents unusable lond; of the romaining $400 \mathrm{ha}$. , 100 are under citrus and 300 under eucalypts. What is now called the 'old orchard' vas plonted to citrus before the war, with trees closely spaced in the Sicilian style. A few years ago Ricotti decided that citrus cultivation was lilely to becone more and inore profitable and so he plantcd another 50 ha . of oronges and lemons; this time he used what he calls the American systen with trees 3.5 metres apart anc rows 6 metres apart. On his farm there are altogether 40,000 oranges (mainly ioro blood oranges), 7,000 tongerines, and a few lemons and grapefruit.

Gargour's farm at Tajiura (study no. 3) represents the most specialised and rost nodern of citrus orchards in Tripolitania and his recent plantings of trees have not been equalled by any other farner. Gargour et fils is a trading company of Palestinian Arabs who used to own citrus orchords in Palestine and export fruit from Jaffa to Western Europe. With the establishment of the

311

Jewish State they became refugees and they are now employing their talents in Libya both as citrus producers and traders. ${ }^{*}$ The Gargour farm has 125 ha. under citrus and in the last fey yearc about 60,000 trees, mainly oranges and lemons, have been plented. When all the trees come into full production citrus will be exported continuously from October until April.

Today, ${ }^{a}$ few concessions are turning to citrus; the farmer of ferm stuay no. 8 for instance, intends to develop 40 he. of his frres at Gurji for this crop.

C. Varieties anci iife-cycle.

The oronge is the most irportant citrus tree, with the others, in oruer of importance, being lemon, tangerine and grapefruit.

There are many varieties of oranges and Rascovich (13) maintains that with local ones inclucied, the total number approaches 10C. The nost important varieties are: Washington Tavel, Toro end Tarococo (jicilian). Tajiura Lin Demia (Iocal), Portugal, Doppio (blood), Late Valencia (Spanish) an Taffa, Callabria and Sucaro (Italian). The main varieties of lemons are: Locale, Commune, Peretto anć Lunorio (Sicilian), and Interdonato. Tangerines are representeả by Avana, Sanguino, Clementina (hybrid tangerine-orange), Locale, Palermo anci Sessima. Grapefiruit varieties are limiteci alømost entirely to Duncen and iarsh's Seedless.

* A list of the princjpal exporting companies in Tripoli is given in a booklet entitled 'Libyon Conmercial Information', produced isy the ixinistry of İational Ëconomy, Unitec Kingdom of Libya, 1957.

312

Citrus trees flover in the period iebruary - warch, and the fruit is reaciy for harvest between October and April, depending on the type and variety of iruit. The moct infortuit voriei,ies oi orenges are sub-divided as follows:-

Farly maturers: Washington Favel: Late October to Hovember. Toro: November - Deceniber
Portugal: December. Tarocco: December - J̃nuary.
dain crop: Demi Tajiura: usually ready January - rebruary although the fruit cen be left on the tree until April.

Late naturer:
Late Valencia: this closes the season in larch and April and supplies local surmer demand.
i. Cultivation.

Citrus are usually propagated by grafting. The required voriety of sweet citrus is graftea on to a bittcr rootstock, which has been grom from seed. lung of the local Libyan farmers, however, use suckers for propagation. Like all trees on the small Libyan swan, citrus are planted very closely and are often as little as 3 metres apart. Lost of the Italian trees are planted 4 metres apart and in 1939 Parrini (12) pointed out that this was too close, for he realised that with a 3 or 4 metres spacing, trees woulc be hopelessly overcrowded ofter l2-15 years. F'or oranges and gropefruits he recomended a 5-7 metres spacing, for lemons 7-10 metres and for tangerines $4-5$ metres. The usual spacing in metres at present eviaent ot Sidi i-esri is:-

Oranges	6×6 and $7 \times 7-$ depending on variety.
Lemons	8×8 and 9×9.
Tangerines	5×5.
Grapefruit	7×7.

313

i.azzocchi ${ }^{\text {F }}$ still considers that the trees at Sidi lesri are too close and he maintains that oranges should be given a spacing of at least 9 metres, ond 7 pmonc of at lesst 20 Eetras.

The fruit trees need attention during the winter and spring when they should be manured and the land between them ploughed. At Sidi lesri, 200 qts. of̂ organic manure is given one year and then in the following year 4 qts. of sulphate of ammonia, 12 qts. of superphosphate, and 4 qts . of suiphate of potash. The trees also need spraying in the winter and irrigating in the surmer. The land is usually ploughed in the winter only, because in the summer the soil is movlded into squares ond chonnels for distributing irrigation water (unless sprinklers are employed). lany citrus groves have their trees so closely spaced that only hand cultivation is possible.

E. Irrigation: Yields.

How much water does the citrus tree need ? In Californio, Hune considers that the tree needs between 8,750 and $11,250 \mathrm{~m} 3 / \mathrm{ha}$. (6). Table 4.14 suggests an actual irrigation need in Tripolitania of $6,278 \mathrm{~m} 3 / \mathrm{ha} .$, but a requirenent of $11,000 \mathrm{~m} 3 / \mathrm{ha}$. allowing for a 60% efficiency of water distribution, which is approximately that pertaining to canal irrigation of the type found on most farms. Fizzoochi has very definite views about the araount of water needed by citrus trees. According to him 14 irrigations are essential in the period April to October, and ε in the period November to Nerch. If canal irrigation is employed $800 \mathrm{~m} 3 / \mathrm{ha}$.

ж
Personal communication.
should be given at each irrigation, making a total amount for the year of 12-14, OCO m3/ha. - slightly more than the theoretical colculatioù siveit in dabie 4.14. Vith canals, he considers that trees need irrigating every 12-14 days, but with sprinklers every 10 days. However, only $400 \mathrm{~m} 3 / \mathrm{ha}$. is needed when the latter method is used, making a total for the year of only $9,000 \mathrm{~m} 3 / \mathrm{ha}$. Bearing these facts in mind it is doubtful if the trees at Sidi inesri are being given enough water. It was reported, on visiting the farm, that the trees are irrigated every 10-12 days in the summer, following the cessation of the rains in April, probably abolut 15 irrigations in all. Each irrigation is 300 $\mathrm{m} 3 / \mathrm{ha}$. so that the total amount given is approximately $4,500 \mathrm{~m} 3 / \mathrm{ha}$. , Which is well below the theoretical figure and that given by Hazzocchi. Either the trees are given insufficient water or the information collecteo is inaccurate.

According to Parrini (12), the Libyan fermer sterts to irrigate after the fruit has set in the second sumer month and applies water every $6-8$ days; the Italian farmer gives 10-12 irrigations a year. Lewis averaged the number of irrigations on Italien farms at 2l, each of $460 \mathrm{~m} 3 / \mathrm{ha}$., making a total of $9,660 \mathrm{~m} 3 / \mathrm{ha} \cdot$; on Libyan farms he estimated 23 irrigations of $269 \mathrm{~m} 3 / \mathrm{ha} .$, giving a total of $6,1 \varepsilon 7 \mathrm{~m} 3 / \mathrm{ha}$.

Samples of irrigation rates in farm studies are:-

315

Table 11.1 Irrigation of Citrus.

Barm Study
Humber
4
5
7
8
38
40

No. of
irrigations.
12
12
12
12
20
22

Anount per irrigation $\mathrm{m} 3 / \mathrm{ha}$.

400
300
400
500
400
400

Total quantity applied $\mathrm{m} 3 / \mathrm{ha}$.

4,800
3,600
4,800
6,000
8,000
8,800

Furthermore, farmer no. 25, who is not included above, gives 25 m 3 per year to each tree and assuring 400 trees per ha. the total amount given is probably $10,000 \mathrm{~m} 3 / \mathrm{ha}$. Gargour gives his young trees 60 m 3 a day, that is about $2-10,000 \mathrm{~m} 3 / \mathrm{ha}$. per year; Ricotti is probably applying less, $6=7,000 \mathrm{~m} 3 / \mathrm{ha}$. It thus appears that many of the citrus groves are receiving insufficient water.

Little information is evailable on yields, but according to Ricotti a good tree will yield 100 kgs . a year; his own trees yield on average $50 \mathrm{kgs}$. , a figure which he considers satisfactory. Yields from most citrus groves are, however, far below this. Lewis found that the average on all farms on the Jefare Plain was 37.25 qts./ha., whereas Ricotti's trees are yielding something like 200 qts./ha. Lewis also discovered that the highest yields were on Italian farns in the Tripoli area, but even then only 80 qts./ha. were harvested; yields on Libyan farms were even lower. It is clear that most of the orchards are badly managed, under-irrigated, under-fertilized, and altogether given either insufficient or the wrong attention. When Gargour took over his farm in 1953, at that time a typical example of an Italian concession citrus orchard, the trees were in a poor state, and the total yield from

2,500 trees was only 400 qts., i.e. 16 kgs. per tree. In 1957 Gargour had improved the yield of these trees to 3,000 qts., i.e. i¿U kg . per tree, but he still was dissatisfied. On the Jefara Plain the bad management of orchards, the lediterranean rily and Cochineal pests, and a deficiency disease, are keeping yields extremely low.

F. Statistical analysis of citrus cultivation.

The production of citrus is steadily increasing, as is evident in Tæble 11.2 below. Up to 1944 the total production of citrus did not exceed 3,000 metric tons in eny one year. Between 1945 and 1950 it did not exceed 5,500 metric tons, but in the last four years production has averaged approximately 7,300 metric tons per anpur. The biggest increase in production has been in oranges.

Table 11.2 Production of Citrus in Tripolitania. (metric tons)

Year	Oranges	Lemons	Tangerines	Grapefruit	Total.
1937	1,370	669	246	-	2,285
1938	$?$	$?$	$?$	-	$?$
1939	800	500	200	-	1,500
1940	1,100	600	300	-	2,000
1941	1,500	600	400	-	2,600
1942	2,000	650	350	-	3,000
1943	1,250	500	250	2,000	
1944	1,600	600	300	-	2,500
1945	1,900	700	400	-	3,000
1946	2,800	700	500	-	4,000
1947	3,150	750	600	-	4,500
1948	1,300	500	200	-	2,000
1949	4,000	700	800	-	5,500
1950	3,500	600	700	-	4,800
1951	4,000	700	1,030	50	-
1952	1,600	320	110	-	2,030
$1953 / 4$	3,500	600	400	100	4,600
$1954 / 5$	5,700	1,200	600	170	7,670
$1955 / 6$	5,900	1,100	650	200	7,850
$1956 / 7$	4,300	950	400	200	5,650
$1957 / 8$	6,000	1,000	800	200	8,000

In the late 1940^{\prime} s and early $1950^{\prime} \mathrm{s}$ there was a big increase in the plantings of citrus and it has been estimated that the trees nlanter 10lte-5 cunalleu biuse actually on the farms in 1945. The trees which were planted during this period are now coning into production.

The area of lanc under citrus is still expanding and between 1953/4 and 1957/8 that devoted to oranges increased by 45%, to lemons by 25.3%, to tangerines by 10.8% anc to grapefruit by 22. 2%. Orange trees are the most favoured.

Table 11. 3 The area ond number of citrus trees in Iripolitania $1953 / 4,1956 / 7$ and $1957 / 8$.

Year	Oranges		Lemons		Tangerines		Crapefruit	
	ha.	trees	ha.	trees	ha.	trees	ha.	
trees								

G. Prices.

Citrus are usually bought on the trees. The exporter will visit an orchard anc estinate the quantity and quality of the crop, and then offer a price. rinocchiaro usually pays $2-3$ piastres a kilogran and the following are his prices for the 1957/8 crop:$\begin{array}{llll}\text { Demmi oranges } & 3-3.5 \text { piestres per kg. } \\ \text { Portugal } & 2.5 & " 1 & " 1 \\ \text { Navel } & 4-4.5 & " & " 1\end{array}$

Prices vary with the variety and cuality of the fruit and the time of harvest. Ricotti sold his $1956 / 7$ crop of about $8,000 \mathrm{qts}$. on the tree, for fil8, 000 (about 2.25 piastres per kg.). Gargour's 1957/E crop of 7,000 qts. probably realiseà $x \mathrm{il} 7,500$. The

818

estimated averace price paid to farmers in the period $1946-50$ is 1.6 piastres per kg . for oranges and 0.7 piastres for lemons;
 it probably accounts for at least 10\% of total incone on many Italian farns, although generally less thon 5_{i}^{i} on most Libyon farms.
H. Larketine.

Citrus are now becorcinc a significant exporit and should increase in importance because the export of groundnuts seew to bo declining. The local consumption of citrus is steady at about 2,500 metric tons of oranges and 1,000 metric tons of other fruits, such of this being consumed in Tripoli, elthough a certain amount is sent by road to Cyrenaica. All the production over and above internal consumption is available for export, so that in the last few years, with production around 7,300 metric tons, the quantity available for export has been 3-3,500 metric tons.

The export of citrus in 1936 was only 33.7 metric tons, rising to 2,500 metric tons in 1950; today it is in the region of 3,500 metric tons, as was anticipated above:-

Table 11.4 Citrus exports from Tripolitania (metric tons)

Year Tangerines Oranges Lemons Grapefruit Total

$1953 / 4$	90	2,993	47	36	3,166
$1954 / 5$	274	3,178	227	66	3,745
$1955 / 6$	90	3,115	280	27	3,512
$1956 / 7$	62	1,179	146	54	1,981
$1957 / 8$	210	3,240	117	59	3,629

The export of citrus each year has a definite cycle; oranges leave the country from October to ilay, lemons and grapefruit from

319

September to February, and taigerines from October to Harch (see Appendix viro).

In recent years there has been o renrganicaticn of the ciinus trade in an attempt to break into the Western European markets. For this purpose techical rules were laic dom for the citrus exporters (17). Fruit nay be exported in three qualities: extra, standard and mercantile. However, exports or the first two qualities are only pernissible ir they are of the following varieties: Washington Navel, Ozal Blonde (Portugal), Tarocco, Demini Tajiura and Late Valencia. Vorieties of sweet oranes which are not mentioned in this list moy be exported as mercantile; only extra duality way be exported to Burope. These neasures, wich hove been introciuceú to improve tine quality of exports, are heving some effect and Tripolitanja is at last breaking into the Duropeon market. Prior to $1953 / 4$ no citrus was exported to Europe, but in thot year a: small consigmment of 30 tons was shipped, followed by 266 metric tons in 1954/5 and 519 metric tons in 1955/6.

Table 11.5 Destination of Citrus Exports 1956/7

Country	Oranges	Lemons	Tongerines	Grapefruit
Lalta	1,600	30	44	55
Gerrmany	100	110	12	-
Italy	50	10	4	-
U.K.	?	?	?	$?$

The bulk of the exports is still mercentile and is soing to ralta, but some exporters, such as Citexco (U. F.) Z̈td. and Eugenio rinocchiaro, ore sendine slall quantities of Iruit to Britain. s'inocchiaro exports citrus in 30 kgs . cases to Englond, Germany and Switzerland. Of his $1957 / 8$ export, Germany took 2,800 ceses
of oranges, United Kingdom 850, and Switzerland 400. In the sarie period he also sent 510 cases of grapefruit to Europe. He ships to London, liverpool and Fiamburg on a comiission basis and his C.I. i^{3}. prices in Europeon ports are usually fL50-£L80 per metric ton. ialta teles wost of his poor quality fruit, unwrapped in 10-12 kg. bozes, ot about $\underset{\sim}{2} \mathrm{I} 25$ per metric ton.

G. Conclusions.

In 1939 Parrini (12 p .7) envisased 'sranci estensioni di terreno adette per l'эsrume'. The expansion of citrus cultivation, which has bcen tokinf place over the last ten years or so, is still taling place today. There is abounding evicence for this.
iany Itolien farmers express their intention or desire to increase the area of their farm under citrus. When asked about their future plans, one of the most comon answers is 'incrementare Io coltura degli agrumi e irrettere un impianto a piogsia'. In the stucies, concession farmers 4, 5, 6, 7, ε, and 9 and demographic farmers $26,28,31$ and 38 gave this type of answer.

As indicated by the following table money is constantly being loaned for the expansion of citrus cultivation.

Table 11.6 Loons by private banks for citrus groves and fruits etc. 1957.

Bank
Banco di Sicilia
Banco di Napoli
Banco di Roma
British Bank of the Niddle 马ast Earclays D.C.O. Bank lifis

Total

Total amount lio. of Av. amount per loaned EL customers
73,717
6,473

customer EL

1,260 462

2I,500

$3,7.4 \%$

In 1957 almost a rillion pounds vere lomed out, some of it as credit on the crop, but much of it for the financing of planting. The orcu uf Iant Levuieut to citrus on the INPS farms continues to increasc and in eacin year during the period 1952/3-1958/9 there have been plantings of citrus ot Bianchi, Giordani and i.icca:-

Table 11.7 Planting of Citrus on Iiips Frms.

Settlement	1952/3		1953/4		1954/5		19556	1956/71957819589		
		nos.	h.a.	nos.	ha.	nos.	nos.	nos.	nos.	nos.
Oli̇veti	-	-	-	-	-	-	$\%$	-	-	-
Bianchi	11.92	6,680	2.49	1,980	6.692	2,472	?	1,896	2,3.8.5	3,0965
Hashian	-	-	-	-	-	-		-	-	-
Giordani	4.92	2,592	4,84	3,560	1,24	789	?	2,178	3,047	17,086
i.icca	6.86	L, 316	8.16	3,644	3.172	2,170		1,886	9,325	5,140
Corradini	-	-	-	-	-	-		59	-	-

With the continueo exponsion of citrus cultivation it is hishly probable that production will reach 20,000 metric tons in the next 20 years. With a very limited home consumption, the future of the industry depends on the export trade. What are the prospects ? As a citrus exporter, Tripolitenie is confronted with many difficulties which cannot easily be overcorie. She hes to break into a high class market which will only take extra quality fruit and which is already supplied by well organised ond capitalised proaucers such as Spain, Israel, Sicily and Forocco. dost of the Éuropean proaucers can send their oranges and lemons to Western Iurope by train; the others in the various parts of the fediterranean have infinitely better shinring facilitics then Trjpoli. The citrus tree in Tripolitania probably depends more on irrigation then in any other country, and this, plus the fact
that all packing neterial hes to be imported, makes Libya theoretically a high-cost producer. One of the biggest problens in Trinnlitanin in thot of post ani uivecoses. Infestations ore heavy in sone years and the effect on yields is considerable. The two main pests are the iediterranean Fly and the Cochineal sucker insect. The iediterranean $\mathfrak{F l y}$, Cerratitis Capitata, which lays its eges under the skin of the fruit, attacks many of the coastal orchards and only inland areas such as Azizia, Gasr Ben Gashir and Suani Ben Adem, plus a fev early varieties of trees alorig the coast, escape its ravages. lany of the European countries refuse to inport fruit that has ever a trace of this fly. The problem of the cochineal insect is summed up by liartin (9) - La lotta contro la cocciniglia degli agruri costitiusce dunque per la Ljibia un problema motto importante, non solo dal punto da vista della sanità e delle produttività degli alberi, ma anche dal punto Cia vista dell'esportazione'. Cochineal did considerable danoge in 1953 when it attacked groves in coastal areas as far west as Sorman, although not touching trees in inland districts at Azizia, Bianchi, Gasr Den Gashir and Garabuili.

The main problen in the next few years is lirely to be a deficiency disease. Almost all citrus groves, except those at Ben Geshir, bear leaves that are discolouring and showing yellow striations (1). Attempts have been mace to discover the nature of the deficiency, but there has been little or no response to the application of all typer of nutrients. Fartin ond Carraro suggest that the yellowing is due to a general hunger of the soil owing to

323

the lack of fertilizers prior to their experinents. In viev of the observations made in chopter 3, it is probable that the deficiency is due to the non-availability of certain plant nutrients, especiolly iron, because of the high pH values of the soil. This deficiency discase, of which a similar type is affecting groundnuts, is widespread among the citrus and is one of several reasons for the low yielos from most trees.

However, Tripclitania does have certain adventores as o citrus producer in the northern hemisphere. As we have seen in chanter 4, table 4.4, Tripoli and Azizia have warmer vinter conditions than mony other parts of the iediterrenean and the Portugal veriety of orenge, for instance, is ready for export in Novenber in Tripolitania but not until tie 15 th December in Sincily. Tripolitania has $15-20$ ajas advantage over Sicily which is the warnest port of Fediterranean Eurode during the winter months. With the right application of fertilizers high quality fruit can be produced on the Teiore Plain anc at the sanc time, despite the expense oir irrigetion, the exporter in Tripoli can buy his fruit at a cheaper price then meny other exporters can do in other countries. Tripolitenia is also fortunate in that any low quality fruit produced fincs a reacy market in i-alta, only 200 miles avay.

The need for new marketing orrangements is quicikly being satisfied. The enforcenent of certain export standords hos reduced the exported citrus to a few good comercial varieties, and the esteblishnont of Agrexport has at last enabled frujt to be sold in Western Europe narlets. Agrexport, which is a co-operative

324

societ; of producens and exporters, has, with the oic of a loan fror the Libyan z'inance Corporation, set up a paclins plant winch sorts, woshes, diries, brushes, waxes and grodes the fruit. iow private firlis are also settinç upacking plants. Ir ail these measures are carried out satisfactorily and methocis of citrus managerant on the ferms are improved, there is no reason why Tripolitania should not export high quality fruit to bestern Europe on a permanent basis. Orange producers on the Jefara need to concentrate on early anc late varieties, preferably the former because they suffer less attacis by pests, jn order to benefit from the higher prices which these comman abroad. T.angorine producers can find a ready market for the Clementina hybid, for it is ready for export durin; the first fortnight in December, just in time for Christmas. Gorgour thinks that more attention should be paid to the lemon since at the moment exports to Europe are almost nil. The late varieties of lemons in Tripolitania produce fruit which coulc be solc in Zurope in the early summer when denand is hish. The world production of lemons may not sotisfy demond in a few years time anc it will be a procucers' market; even today, lemons, which arow well under the advarse conditions of the deriora and are more resistant to disease than the other types of citrus, are fetchirg a better price on the Furopean narket than orenges. The only cisodvaitage oi the lenon is that it lives 50-60 years compared with the orange's 70-80 years.

Shinping is the biggest problem that faces the citrus
inaustry in Tripoli. Tripoli's fruit must be exported quickly in
in order to tale acivertoce of earlien caturinc dotes, but even tociay ships do not call resulerly or frequently. The Governnent
 subsidy in the event of their leavins port without full corooes. rinolly it is inportant to remember that citrus production in Tripolitania is still very small compered with that of other procucers; in Italy the procuction of oranges anc tangerines is about 100 tires greater thar that of Prinolitonio, saci in the Urited States about 1; 000 tines.

CHAPTER 12

Other Tree Crnnc-

Of the remaining tree crops, almonds, date palms, vines and castor are the rost inportant.

A. Almonds.

Almond trees, mostly in association with olives, were planted in large nur:bers by the -talians, particularly on their concession Farms. However, the alnonds were not destined to be a permanent crop. At one time the alnond ves not o common tree in Tripolitania ard in 1912 it is coubtful if the number of trees exceeded 10,000; however, by 1925 there were 70,000 trees, by 1930 540,000, and in 1940 1,740,000. Rumbers reliained steady for a while after the war but by 1956 had dropyed to $1,400,000$. Today nearly all the trees are productive anc they cover an area or opproxinately 30,000 ha. ${ }^{*}$ About 73; of Tripolitania's almond trees are in Tripoli and Western Province and about 25\% in Eastern Province; 80% of the nuts produced come from the Jeirara Plain.

The procilction of alnonds in Tripolitenia hes steadily increased fron 20 metric tons in 1931 to abou'i 3,000 metric tons in recent years. The alnond tree is a mach more reliable yielder than the olive and ycarly production is ruch nore stable. Productior figures by locaiity show thot Sug ill Jiumea, Garobulli, Aulad Ouein anc Er-Regiat (Suani Ben Adein, Azizia anci Gasr Ben Gashir ares), and Soran ore the wost important producing districts. reporited to have $1,300 \mathrm{ha}$. with 260,000 trees.

Table 12.1 Proluction of Alronds on the Jefare Ploin p 10colity in 1957
 Locality
 Production (ota.)
 Sug el Jiur!aa
 Tajiure
 $\begin{array}{r}1,500 \\ -200 \\ \hline, 000\end{array}$
 Garabulli
 Aulad Oucin
 Er-Rejiat
 Zawia
 Sormen
 Sebrota
 Gasr el Khior
 1,000 1,200 1,800 1,800
 1,000
 500 600

The alnond, which thrives in nany countries boruerinc; the inciterranean sea, is well suitec to the 'aziencia' type of farminc thet was estoblishec by the Italions. Tho tree starts its cycle
 the veriety: the horvest is corpleted in July onc the tree then rests for the remanint part or the suraer. It thererore takes full advantege of the wintor roins and the fruit is forred when there is still e moisture surplus in the soil; the tree slso suffers liثtle frol. tho Ghibli excent during the floweing poriod (see chaptar 4), and can resist all but the worst iroughts.

The alrond is an inlanc cron or the Jeirara because it dislikes the marine winds and olso the crusty sancy-linestone soils encountered along the coast. It thrives in alluvial soil.s, and it is not surprising that the best areas, where the crop grows at present, are the patches of Intermediate Soil (see chapter 3) at Gasr el Khior, Gasy Garabulli ano Gasr Den Goshin, which have a siall clay content. In these fovouraiole oreas the tree needs Iittle cultivotion anci little application of fertilizers. iost of the almoncs vere intcrplantec vith olives at a $9-10$
actre secting, in rows $18-20$ netres apart; some of the concession forners, however, ever plantec another rovoi olmonas between the original rovs, thus aivina ofinol specino of $9: 9$ metres or $10 x$ 10 تetres, anci a ratio of 3 ainonc trees to 1 olive tree. Then the almords were planter slono; as is the casc for about 20% or the trees, they vere usually spaced $10: x 10$ netres, Occasionally almores vere plunted in association with olives ond vines, but raxely vith vines slonc. Witale (17) was onc oi severel Itelion cuperts, who cislikec the feneral policy of using the alrond as a 'fill-in' cron Matil the olive starteä yielainc. Fe zaintained thet if crom alone the alionc woulc give gooci returns, 'il higliore sisten ci inpiontarc il nomorleto consiste nell coltura specializata'. İe slso dislined the ice of tatcrplenting olive: and almonds for other reasons. The original idea behind this interplantinc; scheme was thot when all the olives reached full production the almonc voulc io iestroyed, leavin". the olives spaced at $10 \times 1 \hat{C}$ netres or 20×20 metres to continue under dry cultivation. The al onas would be ranec wher they vould still heve $30-1: 0$ years in fill proauction. With trees interplantec et $=$ a $e n s i t y$ of 50 per ha. Vitale considered thot it would be impossible to cis out the almonce wi.thout cisturbine the roots of the olives. Todiey, trees are overcrowieci on heny forns in Trinolitonie sed irrigotion is beine practisec to obtain better Jiclus frcr fine olives, but azzocchi hae poiated out that this imyigotion is detrinental to the elrond tree.

There eppears to be no local variety in Tripolitania and

3I- those to be foum there ft prescrt ore Itolion. Almost all the trees have been grown fron seed, although iazzocchi is provin: infi vettor gielcs con be obtoined fron varieties grefted on to bitter alionc rootstock fro: february to April. The mair verieties grom (13) are:-

Pazzuto, which is mom on the world marrets as Avola Scelta, anc has a lares, smooth, hord-shellec nut.

Monana which yielce a clear white nut in a hord smocth shell, and tomether with Pizzuta nolses up 75\% of the trees. s'rasiulus - o vericty bearing e flat, elongated nut which has a selif hord shell.

A fev other varieties iron Sicily and Pugilia area also grow. The verieties listec tole $5-8$ ycars to come into full procuction and they then bcar every year for $30-40$ years. iarvesting, which is carried out D_{y} shaling the tree, starts when the husl: on the nut berins to split onk the averace yield oin muts in shell per tree is 3 l. $\because \mathrm{s}$. Eroc (4) sugaests that Zaef, Abioc, Constartine ond ilance ${ }^{-2}$ unision voricties ought to be introduced. Although formers opplied for perrission to uproot 200,000 trees in 1956, alnoncs hove been much nore successful than anticipatcd in many areas, and some farmors are reluctont to ciestroy ther , preferrinç to retain ther: anc continue with the olives anc almoncs in crowded conditions.

Binports of ainonas fnon Tripolitania overage about 500 netric tons per annun valued ot about $\mathrm{EL} 100,000$, and they conprise approninately 5% of Libya's total exports. 100 kgs . of nuts
 about 20 las. are suitable for export. About 70; of the nuts produceu ara of the horci-sheliea type anc. in 1958 they were being bought by the exporters ot opproximately ε piastres per kilogian. With a 20; extraction, anci shelline bageage and transportine costs of 4 milliones per lrg. Consorzio's ㄱ.0. \mathbf{I}. price in Tripoli harbour was 47.2 piestres per k g., onc 57.2 piostres C.I.r. in London and 57 piastres C.I.A. in Gemany. It is generally calculated that the prices paid to the formers are about one rifth of those reigning on the worla mariset. iost or the shellea olnoncis go to the United i-ingcion:-

	getric tons	value EL
Total exporit	4.67	108,347
Export to U.K.	406	91,635
Export to Gernany	43	13,320
Export to other countries	5	

Ezporters were payinc 20 piastres per kilograr or sbft-shelled almoncis in 1957 and 16 piastres per l-g. in 1958. The soft-shelled nuts are sold in shell for family consunption abroad, and in 1958 the ro. 0 . price was 26.4 piastres per leg. and the C.I.s' price 17.5 piastres a lig. The Libyan soft-shelled aliiond is inferior in quality to that produced in Italy and therefore only small quantities are solc in U.F., most exports going to Gernany. One of the nost important advantages of the alnond is the fact thot it will keep indefinitely, and if an exporter has cifficulty in finding a shjp, they can be stored for several

331

months or several years if necessary. Because of its goce storiñ qualities there is no real cycle in the export of the almond:-
t'able 12.3 ionthly export of Almonc s 1957/E

July 1957
August
September
October:
lYovember
December
January 1958
f'ebruary
iarch
April
rioy

5,080	kss.
5,080	$\prime \prime$
49,596	$\prime \prime$
48,920	$\prime \prime$
46,310	$" 1$
35,720	$\prime \prime$
29,110	$" 1$
15,200	$\prime \prime$
10,160	$\prime \prime$
62,500	$\prime \prime$
25,510	$\prime \prime$
66,305	$\prime \prime$

Libya is still a very srell prociucer of alnonds compered with Itely, which hes on averege amual production of 50,000 metric tons, Spain 30,000, U. 3.A. 20,000, Iran 7,000 ano Portugal 5,000.

The alnonds is giving far better yields then the Italians ever envisaged and in many respects hos shom itself more adaptable to the local environment than the olive. The Italians made a ristake when they planted o larger nunber of harísheiled varieties, because soît-sheiled nuts commonc a much higher price abroad. At the roment \hat{I} ev trees are being plantec on private farns; on a few of the IIPS faras trees are beinz planted to complete the cevelopment of each holding.

Table 12.4 Number of almond trees on Jins farms.

Year Oliveti Bionchi Hashian Giordani iicca Corradini

$1952 / 3$	753	229	52	140	9	535
$1954 / 5$	1,160	7,543	649	5,051	7,575	22,714
$1958 / 9$	1,160	27,555	649	34,855	37,639	32,157

iore almonds could be planted in the Inner and Dune Jefara, particulerly near Azizio, Suani Ber Ader: and Gasr Ben Gashir.

B. Date Palms.

Zuncrically the date palin is very irportant onc its fruit provicies a Large port of the Libyan's stople ciet, but commercially it is insignificont. The total nurber of trees in Tripolitania is approxinetely li million onc annual production varies from 20,000 to 40,000 netrice tons. The date palns are luostly mature and are distributed, 50; in Dastern Province, 45i. in Tripoli and Testern Province, and 5 i in Central Province. In tine iefara recion, palns are grom alrost exclusively in the coostal oases, and here they constitute about $15 ;$ or the farner's incone. Hearly all the palms belong to the Bikroari variety which proauces touch, coarse yello: dotes thot rarely mature in most years, and only a small percentage even in the hottest years. Farm Stuciy 41 , which
 total of 80 palras belonging to the Hamury, Ba'udi, Ta'buni and Khurre varieties; each polm yielding 19-25 kgs. $20 \mathrm{kgs}$. is considered o gooc yield anc the averaje for the Jefara coastal oases is about l2 lgs. The date paln is confined to parts of the Jefara Plain where the water table ic near the surface, because it likes to grow with its roots reaching dow intc water; it is therefore limited jn distribution to the cosstal oases and the spring-line oases near the Jebel (see fis. 15 for the depth of the water table on the Jefara lain). The palms find the best vater in the Tripoli, Suq el Jiuma and Zavia oases, ond here densities reach 100 per he.; to the west the density decreases and at Zuara there are only about 40 palms per ha., however it is still
novertheless very inportont because of its tolerance of saline vater.

Ihe distribution of palms teken frow 1952 tithe assessnents, shovs that Suq el Jiumaa and Zawia ore the rost important districts:-

Tripoli District	16,83	tree	assessed.
Sua ill üiunaa District	167,029		
Zavia District	4.74, 4.49	"	"
Zuara	62,4.07	"	"

r'rol: the following table it appears that the nost important oases for date procuction ore Lavio, Suq el Jiuman, Regdalin and Gasr el Khiar:

Table 12.5 Production of Dates by iudiriyo in 1258

Tripoli 0asis	900
Suq el Jiumae	12,800
Tajiura	250
Garabulli	$10 c$
Zawia	25,200
Sorman	1,100
Sabrata	2,300
Ajelat	1,600
Zuara	1,500
Regalin	9,000
Zlassa	780
Tiji	ε
Jaush	600
Gasr el Khiar	4,000

The Tripolitanian detc has no cownercial possibilities and at the sime time does not even provide o satisfactory food for the locol population. According to Dowson (9), nature dates on palns in Iral: and Tunisia have a l2-20t, moisture content, but Tripolitanian Cates in the sare condition have a moisture content of 40 ;. Dates will not keep unless they have three tinea nore sugar than water, and this is rarely the case with Tripolitonian cates. In many

334

years o surplus of dates is producedi in Tripolitanie but only a very shall quantity is exportec because of their appalline quality; they are produced in Ital. Western Europe deronds high quality fruit onc this is supplied by Tunisia, Iral anc Algeria. The only possiole vay of utilising the local date is by distilling it for industrial alchohol, convertins it into date syrup, or grincim; it dom mad nobing an animal jeed.

C. Vines.

The table vine has nevor been very inportant on the defera Plain jecause its production hes alwogs been for fanily consumption onc for a very limited monlect in Tripoli. Lost 0 the Libyon and Italian farmers grow afev vines to procuce tajle gropes for conestic use, and the nunder of vines has changec very little over the ycars, and probobly does not exceed 100,0C0-200,000. The sharof fluctuations in the total nunioer oit vines is aue to changes in the populerity of the wine varieties, whose numbers rose sharply before the wat onc since hove subsequently declined.
Table 12.6 Total nuriber of vines in Tripolitania in
1925
1930
1937
1940
1944
1953
1956

920,000

1. 3 361,000

29,061,000
41,298,000
42,525,000
10,576,892
1,650,000

The remarkable increase in the number of wine varieties in the 1930's is associated with the large plantings on the many concess-
ions that were being established at this time. Nost of the vines introduced were grafts of budwood from Italy and Tunisia, and nearly all plantings were in rows between olives (see plate 22 and table 2.6). With Italian colonisation riding on the crest of a wave the prospects for the wine industry were rosy. The Jefara is a healthy region for the vine, and it graws exceedingly well with miniral applications of fertilizers in the moisture oreas thot have over 250 mms. of rainfall. The Ghibii winds, hovever, are dangerous, and the vine is more susceptible to crought thon the olive or almond. Ihe wine varieties start yielding after $3-4$ years, ani are usuolly grom in rows ond pruned very short, as is the custoz in Tunisie and Sicily.

With the $\dot{\text { uenarture of }}$ lerge numbers of Italians, the vine drinlire population has declined, and with inciepencence has come a -osler gowerment which, for relisious reasons, discourases the draning of wine. These tro facts, in adition to the tares inposec o: the vine, anc the expansion of irrigstion conjoined with raising of cusil crops, hes resultec in the vine beconin; increasiraly unpopuzar, anu nu:bers inve been reãuced on almost every farn.

Gargour for instance (Faris Stucy 3) soon uprooteci the 35 he. of vines that were din the fern when he bought it. Reference to othor farm studies incijcate that hone of the Libyon howāa farrs hes vines, and thet of many of the Italion forns the area devotec to vines is th the process of beinc recuced:-

Toble 12. 2 Vinc cultivation ondi Pam Stucies.
ionre Study Area or ho. Oi
... vines

5	8 ha.		reauce	area.
6	35		chenge.	
7	4 "	To	recuce	area.
ε	2	1		
10	10	"	"	11
11	60,000 trees		change.	
24	2 ha.	To	reduce	area.
27	1 ha.	"	"	
2ε	1 "	"	"	"
29	1	"	"	"
30	1		change	
31	1	"	"	
32	23	"	"	
33	11	"	"	
34	22	To	reduce	area
35	5	1	"	
36	4 "	"	"	"
37	$3{ }^{\prime \prime}$	"	"	"
30	5 "	"	"	"
39	6 "	"	"	"
40	9	"	"	"

The contraction of the number or vines has been most narled and rapic on the Jefora Plain; understondably so, because the greatest expansion of irrigotion has occurred in this area. This is borne out by comparing the figures for the provincial distribution of vines in 2945 anc 1953:-

Table 12. ε Provincial Distribution of Tines, $\frac{1945 \text { anc } 1953}{(H 0 s .)}$
 1945
 1953

Tripoli ond ilestern Province Eastern Province Central Province

Tociay with the toval number of vines in Tripolitania only about lie million, ${ }^{*}$ there are probobly borely iallion on the Jefora \% In 1857/8 there were 910,000 vines in Cyrenaica, almost as many as in Tripolitania.

387

Plain. The present production or wine grapes is abou't 2, cic motric tons annually and of toble grapes about 3,000 netric tons onnually.

Despite the trenendous decrease in its popularity, Śici icosri is still carrying out experiments on the vine onc the varieties Italin, Baresani, Prio Vene 14 , ond Panse Precoce, are being grom. These flower ${ }^{\text {E }}$ ebruary to sarch and yield fruit Iron August to Septeriocr. The normal practice each year is to give the vine one or two irrigations of $40 \mathrm{Cm} 3 / \mathrm{ha}$., anc two or thrce cultivations. Son:e manure is applied and the vines yield $4-5$ lrilograms per tree after 2 years growth.

It is disappointing that the nurber of vines has declined so ropidy, but it is clear that there is no future for the wine industry under the concitions that exist at the moment. In 1958 the number of grapes harvested was still sufficient to produce $400,000,000$ litres of wine and the 1957 vintage was still untouched ${ }^{*}$ The price paic for wine gropes dropped from 250 milliemes per lig. in 1957 to 150 millienes per rg. in 1950. There is no tradition of wine making in Libya and fev of the Itelians are skilled at this art, and as a result no expensive wines are produced. It is also doubtful if Tripolitonian wines could compete with the cheaper wines consumed in rrance, Italy or Spoin, should inport restrictions de lifteç by these countries. The sonay nature of the athosphere and the poor quality fruit rule out the possibility of o dried fruit industry. Rascovich considers the only possible

Ir
Sunday Ghibli, 24 th August 1952.
policy is to allow the number of wine varieties to decrease anc to concentrate on improving the quality of table grapes producec by wrufing. Unly on sone of the MTPS farms does the plontings of vines oppear to ise takine ploce; plantings in recent qears being as follows:-

Bianchi Giordani i.icca Corradini

$1956 / 7$		-	0.5	17.98
$1957 / 8$	86.15	79.44	98.5	51.7
$1958 / 9$	65.3	96.75	29.5	-

1. Deciduous anci Other Fruit Trees.

These inclucic apricots, peaches, epples, pears, pluns, ponesronates, fisss, medlals and muberries. IVone of then has any comercial importance. riss and pomegranates are found on most Libyan faras and ore grom for family consumption. The pomegranate is a useful tree because it can vithstand heat and alraline soils, but the fruit of the present local variety easily burst open. Fig trees are more numerous and are grow widely on the Jefara Plain, particularly in coastol areas where they fruit and vegetatc well; they are drought resistont but they do need sone moisture at fruiting tine, otherwise they vegetate excessively and no fruit is formed. Apples, pears and pluns ore not very important and do not finc local conditions really suitable. Plurıs could be better adapted to local conditions by grofting on to a bitter almond rootstock.

Although less numerous than figs and ponegranates, apricots ond peaches arc more importont to this study because they do oifer possibilities for development. All the apricots are local
varieties, called mushmesh by the Libyans, and are grown fron nongrafted seedlings along the coast. Peaches have the same distributivuir uui most of then have been introduced anã grafted on to the bitter almond or the local apricot; the main varieties are Hay rilower, Triumph, Amsden and Vainquer. In coastal areas both the apricot ond the peach suffer infestations of the iediterranean Fly, but trees which escape attacks will give yields of up to $3-400 \mathrm{kgs}$. per tree. Away from the cosst apricots and peaches are not
 Inner Jefora are very healthy areas, but they arc much drier. This is one of the most difficult problens on the plain, for the best moisture conditions are to be found near the coast but these are the most unhealthy areos for many of the tree crops, particularly olives, citrus and deciduous fruit. Broc (4) considers that the cultivation of apricots could be profitable in the Inner Jefara and that the deficiency of rainfall could be overcome by waterspreading. He makes a theoretical calculation of the possible income that coula be derived from 500 ha . of land around the wadi el Hira, which is at present used for cereal cultivation. He considers that with 70 extra trees per hectare, and with fruit selling at 1.5 piastres per k. , the possible income for a 20 year period woulc be $\mathcal{Z L} 308,000$, that is about $\mathcal{2 L} 31$ per ha. per year. There is obvious scope for some expansion of the growing of decicuous fruit in the Inner Jefara and parts of the Dune Jefara. iazzocchi has been growine peaches and apricots under dry cultivation in the Jebel at Tarhuna and Gharian, and by grafting on to
hardy wild almond rootstocts he is achieving remerirablc yields without any irrigation whatsoever. The main difficulty would appear to be the lack of a marifet; Tripoli's intake is very small and although a fev tons of apricots are exported to calta every year, there must be an improver:ent in the quality of fruit and the refrigerator shipuing services, before comrercial export could be started.

E. Ascellaneous Tree Croos.

1. Castor. This tree or bush crop (see plate 25) appears to have spread over the Jefare Plain during the last 10 years, propagating itself almost like a weed. iony of the Libyan farmers are planting the seed with a little water, and then leaving it olone to look after itself. The castor bush has many valuable attributes: it is very hardy, grows rapicily and needs little attention except for the harvestirg and the husling of the seed; it grows well on waste lond, nakes a good dune fixcr ond winci-break; and the castor seed, rhen harvested, has good keeping qualities. The castor bush likes the Jefaran environnent ond its numbers are steadily increasing each year. It is particularly popular on the Libyan hawaza forns (see stucies 12, 13,14 and 16), on the inland saniya, and also amid the shifting cultivation patches in the Inner Jê̂ara.

The demand $\overline{\text { Ior }}$ castor oil on the world mariret is quite good. It is used as a lubricant, for medicinal purposes, anc for makinc paint, varnish, plastics, synthetic rubber and soap. Two factories for the production of castor oil were started
in Tripolitania after the wor, but they are now beine forced out of operation because the quolity of their product is so
 on seed. Lixports for certain recent yeors ere :-

Table 12.2 Exports oi Castor Seec and Oil in recent years

Year
1950
1954 1955
1956
1957

Castor Seed $\therefore \mathrm{T}$. ZL $?$
1102
2625
2153
1209
$?$
31,839
114,44
137,750
215,303

Castor Oil i..T. EL 300
402
331
79
$?$
-ost oí the seed and oil exponted goes to Italy because there is no tariff barrier. In 1957 Italy took castor seed valued at $£ L 215,093$ and castor oil valued at $£ 1$ ce, 989 ; the United Kingdom is the only other notable importer of castor oil. The main exporters are Mitchell Cotts and Consorzio. Efforts have been made to srow castor in plantations but these were not economically successful. Agronomically the Jefaro Plain seems well suited to a growing of castor and at present the main control on expansion is foreifin comptition, for even on the Italian marlset there is competition fron seed produced in Kenya, South Africe, Sudan and other ITorth African Countries. The total world production of castor beans or seed in 1958 was estimated at 528,000 metric tons; ${ }^{*}$ about 60% of this was in Incia and Brazil and these two countries are responsible for about 65; of the castor trade; both are likely to have increased \% Castor Boans, Internationsl Report, World Crops, Liay 1959.

342

poochetior in 1959. Procuction is also emponing in the U. S.A.
 oushes in California slrency supplica 20% of domestic require:..nnts.
2. Forge Coctus. The aivin woter nceds oi the lejor forase crop, luccrie, heve olrescy been emphesizec. anc there is no reason wing cactus coulc not be rone fully atilised as ringl feed.
 areas on Trioolitanio. Ït is honey, droucht resistant, and in
 pocsible sources oin mital feecu such as carob; dive oil delres, barley hay, one lucerne. The locel famer uses the pricirly Peor moinly for heduinë, ona rarely coes he recu the leovos to his oninels urless there is o severc arought. Prickiy pear coulã best be developed $\mathfrak{Y o r}$ livestocl: in areos which heve less
 with o three yean old plantation, onc he of ly, COO plants woula supply enouth leaves to feed 30 sheep for 200 cioys. In South Africe it is reportec tiat yielàs of 600-1, 000 cits./ho. are jeing obtained. Although not as high as for lucerne these yielas ore in areas of very low rainfall where there has been no ifrigation. The plantine of the prichly pest should ceitinitely be encouraged by the Governant.
3. Carobs. Although grom in :any parts of the Jefora Pleja, the cerob is not really popular amone the locals, and the total number in existence is shall. The Templiotive, Tyruiotilse ※

348

anc Saraine voricties which hove been introcuced, thrive on the deez, pemeable, liney soils of the ت̈eíara Plain ond many fine specinens of trees can be seen. Rcologically the carob is one of the tree crops wich is rost suited to concitions in the costern Jefera. It i.s a large legurinous evergreen which in August yields a $5-6 "$ pod which will lreep for as long as three years. The pod and its seed con De used for joth animal and nuan consunption. The corob, hoveven, tanes so lun: to reach profitable procuction tint the local farners understandably are not entinsinstic. It first starts to yicle when it is 10 years old, but it is no* in full prounction (75-100 until itt is 20 years olc. Abroad there is only a slall demanc for the carob, and with its umpopularity at home, procuction is likely to be static at the prosent anrual average of l, 000 metric tons.
4. Sicalypts. Private fomers hove at lost realised that the encalypt can be a profitable agricultural crop. Tro varieties ere grom in Trjpolitania: Eucolyptus Comaldulensis and Eucalyptus Gomphocerhala. These trees grov ropioly on the Jefora Plein in areas of over 200 ws. of rainrall, anc ofter 25 years they are full grom and reacy to be felleci. After the tree is cui dom it is not killed, anc mony shoots are sent up frow the sturnp. If three of these are selectec and allowed to frow for a whilc two can be cut cown to suxply sall timber aiter a fey yoars, and the remainino one can be left to form another tree, which in its turn can be felled when $20-25$ years
rhis process can taie place about 5 times and a farmer who crows a larae area of eucalypts will alvays have some trees to Iell in order to bring in sone much needed money curing a cirought perioc. Parmers ore being encouraged to plant trees by the porestry Departnent, ank seedings ore offered for sale at the nominal price of 2 milliemes each. It is estimated by lorestry officcis that the privete fermers on the plain are plonting about 1,000 ha. of eucalypts annuelly. (iror refercance to one particuler farmer who grows eucalypts see farm study 2).
5. Pistachia Vera. This is not a coinon tree and only two plantations ore to be found on the Jefara Plain: one an the eastem side of the Tripoli-Tarinune road, just south of Gasr Ben Gashin at the margins of sedentary cultivation, and the other at Sabrata. Razzocchi is usine the plantation south of Gesr Dea Gashir to suppiy graiting material (see plate 26). The pistachia is a nut troe that is grom widely in the Hediterranean area and j.t has very similar habits to the almonc. Like the carob, it is a tree which is ecologically suited to Tripolitania, but it has no conmercial possibilities at present.

CHAPTER 13

Groundnuts: the major water consuming crop.

A. General Information.

Of the twelve species of the genus Arachi, only Arachis hypogaea is of economic importance. Although very close to the pea family and often referred to as a peanut, the groundnut resembles a nut in taste, flavour and meny other respects. It is an annual field crop, growing in the warm season in tropical and subtropical climates and because it demands a moderate amount of moisture is generally found in areas of at least 1,000 millimetres of rainf'all. Heavier soils give the highest yields but lighter soils give better quality nuts. Jefaran soils are either sandy or light sandy loams, well-drained and well endowed with calcium carbonate, and they ollow easy cultivation and lifting of the crop and do not stain the white shells. These soils, however, suffer from the non-availability of plant nutrients.

Today the groundnut grow under full irrigation, is the chief cash crop in Tripolitania and is Libya's leading export. There is some home consumption by Europeans in Tripoli and also by the local Libyans, who like to eat the roasted groundnut while sipping their small glasses of tea, but the bulk of the crop is exported in shell to Western Europe. The Jefara produces about 99\% of all Tripolitanian groundnuts and a high proportion of farmers, particularly Italian, grow this crop. Read Lewis ${ }^{\ominus}$ reports the following figures

[^2]for Italian farmers: Oliveti, Zawia and Sabrata area 44.510 ; Hashian, Bianchi, Giordeni, uicca 100\%; 'l'ripøli and Fonduk EtTogar 60\%: Garabulli 33. 3c: Agizia; Gaar Pon Foshir and Suni Ben Adem 23.5\%. In the Zavia area Theodorou ${ }^{*}$ has show that in 1954 the average value of groundnuts was 40.5% of the total average gross income on Italian ferms, and 2.4\% on Libyan farms. At the present moment the number of farmers growing groundnuts is higher than ever before, and the value of the crop represents over 50\% of gross income on many farms.

B. Varieties.

There are three main varieties frorm on the Jefara Plain:-
a) Local Red (Spagnola Rossa) sometimes referred to as Tripolina or Italiana, and marketed and exported as Tripoli 4. It is a Valencia type of groundnut with erect hobits and large pallid green leaves; it has a short life-cycle of only four months and is therefore classed as early maturing. The shell or pod is long and narrowish and contains up to four shall red kernels, hence its market name of Tripoli 4_{4}, although the average number of kernels per pod is usually three. The Local Red produces good quality nuts winch compare very favourably with the best which are produced in Spain and other countries; it has good resistance to Gercospera and Rhizoctonia, the kernels are easily extracted ifrom the shell, germination is good and the nuts are easily lifted; premature sprouting is, however, a problem. According to Oram (7) farmers space their seeds F

B/96.

348

31 cns. x 16 cms.
b; Local White or Egiziana. This is a Chinese type of groundnut
 classified as semi-erect. It produces a broader shell which usually contains two large white to pale-pink nuts and is exported as Tripoli 2. It has a five-month life-cycle and is a late maturer. It also has good resistance to sprouting but is more susceptible to Cercospera and Rhizoctonia than Local Red. At planting it is more widely spaced by the local farmer and rows are usually 36 cms . apart and seeds 20 cllis. opart, but cospite this its yiclds are higher than the Red, although it hos a higher percentage of pods without kernels.
c) Virginio Bunch. Introduced by the Americans, this groundnut, locally know as Anericano, is increasing rapicily in polularity. The pods grow in a bunch fashion around the roots at the base of the plant ond usually contain two large kernels of pinirish colour. It is exported as Tripoli 2 and basically has much the same qualities as Locaj. White. It has a fivemonth lifecycle.

The local varieties were originally the most popular but now Virginia Bunch is increasing in importance and is tending to oust the Local White.

C. Cultivation by farmers.

After being handshelled mainly by women, groundnut seed is planted usually two per hole between April and the end $\bar{\sigma} f$ June and the crop.is harvested from September until late Novenber; most of
the planting, weeding and harvesting is done by hand. Since higher yields are obtained with a close spacing there is a strong argument for retaining hand planting for hy this method 250,000 plants can be grown per hectare whereas with mechanical planting the maximum possible density is 175,000 per hectare. Sometimes plants are threshed mechanically but rarely planted mechanically, and as long as labour is plentiful and cheap the continued use of hand planting will give good yields, which will help in sone measure to counteract the high irrigation costs.

The crops which are likely to be in rotation, if in fact a rotation is practised, are summer cereals such as maize, 'gseb' (millet) and tobacco, and occasionally winter crops such as potatoes, legumes and small grains. Groundnuts, however, often dominate the rotation on many farms and some farmers cut out their second winter crop, such as potatoes, in order to prepare the land fully for an early sowing.

D. Cultivation of groundnuts at Sidi Mesri.

liethods of cultivation, such as preparation of the land, application of fertilizers, seed spacing, tillage, rates of irrigation, date of sowing and harvest, seem to offer scope for improvenent particularly if production is to be maintained at the present level. It was with this consideration in mind that the experinental plots oí groundnuts were visited at Sidi hesri on 26 October 1957. Lere all seed is sow between the lst and the 20th of iay in order to obtain the highest yields and miss the winter roins at harvest time. The Local Red is planted in rows 30 cms. apart with 20 cras. between each plant, Local White and

Virginia Bunch 50 cns. by 20 cns. The local farmer is obviously plenting his Local Red too closely and in some cases is al.so sowing his seed either ton earty nr tinn thto. nther reforences to the cultivation of groundnuts at Sidi iesri will be made in loter sections on yields, and profitability.

The F.A.O. started experiments on groundnuts in Libya in 1954 and so far it has tried Virginia Bunch, Kanlikoro, Cote d'Ivoire, Virginia Jumbo, Tennessee Red, Improved Valencio, North Carolina, anā Virginia Runner. Of these only Virginia Bunch has shom signs of being a likely introduction ond in 1955 five tons of seed of this variety were imported from the U.S.A. and the 60 tons of groundnuts subsequently harvested were distributed to the formers on the Jefara Plain. It is now grow fairly widely but even so is unlikely to completely displace either of the two local varieties because experiments have show that neither of these is degenerating badily.

E. Analysis of crop statistics.

The rise in importance of the groundnut is quite phenomenal. Before the lest war the Italians only grew a few hectares and most of these were largely experimental; their lack of interest and foresight is borne out by the limitea number of Italian references available on this particuler crop. The following figures, obtained from the Statistics Section of the Nazarot of Agriculture, show the increase in the crop's popularity:- (see also fig. 25a)

MONTHY EXPORTS OF GROUNDNUTS FROM TRIPCU

352

Table 13.1 Production and orea of groundnuts in Tripolitania 1943-58.

Year.	Production in quintals	Area in hectares
1943	2,000	628
1944	5,000	750
1945	6,500	1,010
1946	7,800	1,000
1947	9,750	1,100
1948	15,000	1,250
1949	12,000	1,250
1950	19,200	1,600
1951	20,000	3,080
1952	31,620	$?$
1953	50,000	$?$
1954	80,000	$?$
1955	92,000	3,954
1956	110,428	4,475
1957	119,631	5,138

Production has increased nearly 60 times since 1948 and now seems to be steadying slightly. Figures for the production and area of groundnuts by provinces illustrates the importance of the Jefara Plain:-

Table 13.2 Proyincial Production and area of groundnuts. 1945, 1950 and 1956.

Year
1945
1950
1956

Iripoli and Western Province	
qts.	ha.
6,000	950
18,000	1,500
90,899	3,879

In 1945, Tripoli and Western Province produced 92, 3% of all Tripolitanian groundnuts, in 195093.75% and in 195698.8%. The figures for Tripoli and Western Provinces are exactly equal to those for the Jefara Plain because no groundnuts are grow at Gasr Khiar and Ghanima parts of the eastern Jefara which lie in eastern Province. In 1945, 83.3% of Tripoli and Western

353

Province's production cane from Tripoli Province but in 1956 only 38.2%; it is clear therefore that groundnuts vere introduceä
 the main expansion has been in the west.

Several demographic settlements of the Instituto Nazionale della Previdenza Sociale (INPS) are located in this western area of expansion and statistics have been kindly supplied by Dott. A. Rompietti, the director:-

Table 13.3 Production and area of groundnuts on INPS Farms 1953-1958.

		Bianchi				
	ha	gts. ha.	ha.	gts. ha.		qus.
1953	1894.0107 .3	6387.5325 .0	672.240 .1	6570.0287	5120.0225	.
1954	2424.5116 .3	8611.0353 .5	795.032 .3	11618.5332	7595.0	7.72.
	34.55 .0164 .8	9431.2388	1325.052 .9	11132.0383	4.024	25.03 .6
	56.0191 .1	109	. 05	13578.0500 .7		26.82 .7

The area of groundnuts has increased steadily in the Oliveti, Bianchi and Hashian regions, but at Giordeni and isicea an initial increase has been followed by a slight decline. Groundnut cultivetion was tried at Corradini (Ghanima) in the east but has since been curtailed because of inadequate water supplies for irrigation.

Following the large expansion in the area under groundnuts since 1943, what is the present distribution pattern ? Distribution figures provided by the statistics section of the Nazirate of Agriculture are available for the agricultural years 1955/6, 1956/7 and 1957/8, the lost two being merely estimates, increases of 20% and 8% respectively. The $1955 / 6$ figures are therefore
used to determine the distribution pattern :-
Table 13.4 Distribution of groundnut production on the Jefara Plain. 1956.

Locality
Hadbo el Khadra
Gurji
Suk el Jiumaa.
Sg edeida
Tajiura
Garabulli
Azizia
Suani Ben Adem
Production in Qts. Area in he.

Total Tripoli Province
7,775
3,600
$\begin{array}{lr}3,672 & 150 \\ 1,672 & 76\end{array}$
1,072
234 4,500 180 1,250 2,350 6,600

1,315

Jiuddaim	9,720	360
Zawia	11,592	504
Sorman	3,250	125
Sabrata (Bianchi)	1,210	55
Azzahra	10,000	500
Maseria (Giordani)	10,000	500
Ameria (Micca)	8,000	400
Hashian	2,000	100
Maamoura	360	20

Total Western Province 56,132 2,564

These figures have been used to draw fig. $24 c$ which shows distribution by the means of dots. The large concentration in the area of the Istituto settlements of Bianchi, Giordani and inicca is evident, and the other important areas are Zawia, Jiuddairn anc Sorman in the west, and a circular area bounding Tripoli in the south running Irom Gargaresh through Hadba el Khadra (Collina Verde) and Ain Zara to Sghedeida. Groundnuts are also grown in smaller quantities round Suani Ben Aden, Azizia and Gasr Ben Gashir. The area in the east is very small and is mainly found on the Variani Concession.
F. Yields.

Yields have grown steadily in the lest fifteen years. In 1947 the averace yield for Trinnlitanin wo anoroximatoly In qts./ha. whereas today it is about 20 qts./ha., although sone of the better farmers even produce 30 qts./ha. Yields vary considerably according to locality, type of variety grom, time of sowing, spacing or plants, applications of fertilizers and weter, and nature of rotation.

On the basis of the figures for production and areas by locality in 1956 which have already been quoted the following estimates of yields have been calculated:-

Table 13.5 Yields of groundnuts by locality, 1956.
Locality.
Yields in $\alpha t s . / h e$.
Hadbe el Khadre
25
Gurji
Suk el Jiumaa
2
Sghedeida
Tajiura
Garabulif
Azizia.
Suani Ben Adem 21.9

Tripoli Province 30
$\frac{26.4}{\text { Jiuddain }}$
Zawia
23.1

Sorman
Sabrata
21.82

Azzahra.
22
Haseria 20

Ameria 20

Hashian 20

Hamoura 20
reamoura 18
Western Province
Eastern Province
21.6

The average for the whole of Tripolitania is $19.5 \mathrm{qts} . /$ ha. but in
Tripoli and Western Province most yields are in the low 2o's and

1-a moura is the only locality with less than 20. Yields are higher in Tripoli Province, particularly in the Sghedeida and suani Ben Adern areas, than in Western Province. Since liamoura and Suk el Jiumaa have the lowest figures it would seem that yields on Libyan farms are lower than on the Italian forms. In the coastal areas from Hons to Lisurata, which lic east of the Jefora Plain, yields are poor mainly because of the lov quality of water used for irrigation and it is not surprising that the proportion of Tripolitenie's groundnuts coming from here is slovly declining.

Levis gives sone figures of yields by locality which he worked out from questionnaires; these also suggest lower yields on Libyan farms:-

Table 13.6 Yields of groundnuts by locality in ats./ha. After Lewis. ${ }^{\text {F }}$

Locality

Oliveti, fiemetri and Sabrata

Hashian, Bianchi, inicca, Giordani and Maamoura

Azizia, G. Ben Gashir and Suani Ben Adem

Tripoli and Fonduk
Garabulli, Ghanime and Gasr Khiar

Libyan Forms Italian Farms 14 18.33 23.4 12.5

On the whole these figures taken from Levis are lover than those worked out from government statistics but this is understandable because the former relate to a time several years \% Lewis, R. op. cit.

357

earlier. Except for Azizio, Gasr Ben Gashir and Suani Ben Adem, yielas on Libyan farms are lower than Italian; the average yield Sox aix jocalitıes is 15.552 qts./ha.

The most reliable figures for the Istituto farms can be computed from the statistics supplied by Rompietti, which have already been quoted:-

Village
Oliveti
Bianchi
Hashian
Giordani incea
Corradini

1253	1954	1955	1956	1957
17.6	20.8	20.9	21.8	27.3
19.6	24.5	26.4	21.2	23.4
16.8	24.6	23.2	22.02	21.8
22.8	35.0	29.1	27.0	24.6
22.7	22.8	30.1	25.38	25.78
13.69	9.4	6.9	10.0	-

Yields have shown a steady increase at Oliveti; at Bianchi, Hashian: Giordani and dicca there has been a rise followed by a slight fall, with 1954 or 1955 appearing to be the peak years. Yields at Corradini are very low showing how production is affected if insufficient water is given.

It has been mentioned earlier that in order to obtain maximun yields the date of sowing must be neither too early nor tọo late. Oram's researches have revealed the following results:-

Table 13.8 Yields of groundnuts in relation to date of sowing (10)

7th April
2.1st April

7 th may
21 st Hay
4th June 20th June

Tripoli_2

$$
100 \%=17.3 \text { qts. }
$$

Tripoli 4
63%
48%
133\%
141\%
111\%
103%

$$
100 \%=10.8 \mathrm{qts} .
$$

358

The best time for sowing is during the first three weeks in iay, earlier sowings giving poor germination and later sowings resulting in a harvest when the rains have startied.

Yields vary with the amount of fertilizer applied and the type of retation practised. The ideal combination of fertilizers seems to be 1.5 - 3 qts. of sumphate of amonia (21% nitrogen), 4.5 qts. superphosphate (18; phosphorous) and 1 qt. of sulphate of potash (48\% potassium). Apolication of nitrogen increases yields Dut if more than 4 qis. are given per hectare then quality is reduced and the plants are more susceptible to disease. Phosphates assist maturation and encourage the formation of heavy nuts; potash applications tend to make the plant taller and give a higher number of kernels per pod. Highest yields are obtained from land which is only cropped with groundnuts once in every three years, but unfortunately in Tripolitania many farmers are growing groundnuts on the same piece of land year after year. Compared with continuous cultivation of groundnuts, yields are increased by 104; after a green manure crop, 47\% after bare fallow and 57\% after millet.

Yields clearly vary with variety. At Sidi i-esri Local Red
give 18-20 qts./he. and Local White and Virginia Bunch 20-22 qts./ha. F.A.O. Field trials carried out by Oran in 1954 and 1955 gave the following results:-

	$\underline{1954}$	$\frac{1955}{21.1}$	qts./ha
Local Red	32.3	29.3	
Local White	29.9	28.2	

Spacing is an importont factor affecting yields and
fortunately Oram (7) has done valuable research on this question. He emphasises that trials have clearly shown the value of close snaring both fox row and saeus. mine uifierence veiween the best and the vorst spacing may well give yields which differ by as much as 10 qts. \%ha. With the Tripoli 2 varieties, in fifteen out of sixteen cases the spacing of seed at 10 or 15 cms . resulted in higher yields than 20 or 30 cms . Egiziana and Virginia Bunch therefore like a close spacing of $30 \times 15 \mathrm{cms}$., which incidentally can only be achieved by hand planting because the best mechanical spacing is 50 x 15 cms . or $50 \times 10 \mathrm{cms}$. The former seems to think that the Local Red needs a closer spacing than the other two vorieties and often plants two per hole; this assumption is erroneous. The best spacing appears to be $30 \times 20 \mathrm{cms}$. for the hand planter and 50×20 for the mechanical planter.

It has already been indicated by reference to Ghonima and Eastern Province, that insufficient irrigation or the use of poor quality water gives low yields. Theodorou* has shown that on Italian farms in the Zawia area, single-cropped irrigated land under groundnuts gives a higher yield than intercropped irrigated lend under groundnuts, 19.57 qts./ha. as compared with 15.15 qts./ha. The effects of irrigation are greatly reduced if weeds are not eradicated; unweeded trial plots have show yield reductions of 50% in 1954 and 66% in 1955 compared wi.th hand weeded plots.

अ
Theodorou op. cit.

It is interesting to onalyse the yields of nev verieties which have been tried in Tripolitenio. In the table below, from
 and are compared with those of the established local varieties:-

Table 13.9 Yields from varieties grown at Sidi mesri.

Variety	trial 1954 trial 1955 trial kgs. having kernels ats./ha. ats./ha. per kg. 1214						
Local White	$32 \cdot 3$	$39 \cdot 3$	22.8	25	73	2	0
Virginia Bunch	29.9	28.2	23.0	17	82	1	0
Konlikoro	26.4	25.6	-	21	78	1	0
Virginia Jumbo	-	24.9	-	20	78	2	0
Cote d'Ivoire	25.4	24.9	-	10	37	52	1
Chinese White		18.3	-	17	82	1	0
White Spanish	$27 \cdot 3$	22.9	22.5	25	75	0	0
Tennesse Red	21.6	21.2	21.4	14	39	42	5
Local Red	-	21.1	15.0	16	37	42	5
Valencia	-	19.9	14.9	13	37	44	6

Of the white groundnuts, the Local White and Virginia Bunch gave the highest yields; the latter did well on extension trials and gave a high percentage of two kernel pods. There is little to choose between the three red varieties; Tennesse Red did well on extension trials but otherwise there is no real reason for substituting it for the Local Red. By weight the red varieties have a higher percentage of sound pods.

It would seem that the three varieties currently grown on the Jefara Plain are well suited to local conditions and there is little likelihood that another foreign variety will be introduced in the near future.
G. Water requirements of Groundnuts.
'l'he groundnut is on annual summer crop which needs full

361

irrigation throughout its whole life-cycle. Workers in the Tinited Stotes (14) have calculcted that it needs $25^{\prime \prime}$ of water i,e. 6,250 m3/ha. and initchell's studies on evano-transbiration in i.alto suggest something in the order of $7,000 \mathrm{~m} 3 / \mathrm{ha}$. i-aximurn water is needed by the crop during the flowering and pod development period. The Italian farmers, who were settled in the area south of jisurata by the Italian settlement agency, Ente per la Colonizazzione delia Libia, vere instructed that groundnuts should be given an irrigation of $600 \mathrm{~m} 3 / \mathrm{ha}$. every 10 days making a total of 6-7,000 $\mathrm{n} 3 / \mathrm{ha}$. The instructions were based on eyperiences of irrigating groundnuts on the Jefara Plain.

At Sidi iesri, in 1957, groundnut seeds were planted with an initial irrigation of $350 \mathrm{~m} 3 / \mathrm{he}$. with subsequent irrigation depencing on the weather, but usually after 20-25 days. Under normal sumer conditions there is an irrigation every 10-12 days, but it the weathor is abnormally hot this may be reducen to 8 - 10 days, and even 6 days if there is a severe Ghibli. The usual amount of water given at each irrigation is $350-400 \mathrm{~m} 3 / \mathrm{ha}$. but this is stepped up to $450 \mathrm{~m} 3 / \mathrm{ha}$. when it is very hot. The total amount of water given per life-cycle varies between $6,000 \mathrm{~m} 3 / \mathrm{ha}$. in a cool summer, 7,000 $\mathrm{m} 3 / \mathrm{ha}$. in o normel summer and 9,000 m3/ha. in a very hot summer. Since Tripoli 4 has a shorter growing season it requires less water than Tripoli 2; the former is given about 12 irrigations at Sidi hesri and the latter 14-l5 irrigations.

In order to determine the rates of irrigation and the anount of water given on private farms, the writer referred to the
figures given by Levis and also asked for relevont information in the questiomaires which were distributed in August 1958. Levis' figures ${ }^{\text {T}}$ are as follows:-

	Itolian Farms	Libyen rarms
Average number		
of irrigations	28	18.3
Average amount		
per irrigation	$492 \mathrm{~m} 3 / \mathrm{ha}$.	$234 \mathrm{~m} 3 / \mathrm{ha}$
Average annual amount	$13.776 \mathrm{~m} / \mathrm{he}$.	282 m 3 ha

The Libyon farmer irrigates less frequently and gives a smaller amount of water per irrigetion than the Itolien; the Libyan clearly under-irrigates, hence the lov yields on many of the small Libyan rorms. With 2ε irrigetions and a total amount of water at $13,776 \mathrm{~m} 3 / \mathrm{ha}$. the Italian farmer is probably over-irrigating. Lewis' figures were based on only a sinall number of farins and are not necessarily typical. Furtherrore, they are several years old, end the farner today has had fore experience at irrigatina groundnuts. Information extracted iron the questionnaires recently circulated, is presented in table 13.10.

In this table, the number of irrigations given in 1958, which is considered an average year, is usually in the range 15-20. The amount of water applied at each irrigation is generally $300-400 \mathrm{~m} 3 / \mathrm{ha}$. The concession farms seem to be applying about the right quantity of water, but several of the demographic farmers are over-irrigating. The amount of water needed does depend on the methon of irrigation.
$\underset{r}{ }$
Lewis op. cit.

Table 13.10 Irrigation rates for groundnuts, 1958. No. of frarm ivo. of Amount per Total Type of Study Irrigations Irrigation m3/he. amount m3/ha. farm

4	16	400	6,400	Concession
6	18	400	7,200	
8	15	400	6,000	"
10	20	400	8,000	"
11	16	400	6,400	"
25	15	1,200	18,000	Demographic
26	21	300	6,300	
27	25	680	17,000	"
30 Sprinkler	20	520	10,400	"
${ }^{3}$ Canals	20	700	14,000	
31	22	630	13,860	"
34	15	1,000	15,000	"
35	16	350	5,600	"
36	16	350	5,600	"
37	15	350	5,250	"
39	16	350	5,600	"
41	15	800	12,000	Sonĩya

H. The Profitability of the Groundnut.

Despite the high cost of irrigation water the groundnut still remains a profitable crop, otherwise there would not have been such a sharp rise in production since the wor. What payrient can the farmor expect ? He can either sell his groundnuts on the local markets, or send them to an exporting company.

Weekly market prices in Tripoli, which are generally comperable with those paid by exporting compenies, ore available fror the Statistics Section of the Fazirate of Agriculture, and those for 1957 are as follows:-

Table 13.11 Ayerage weekly $\frac{\text { narket prices of groundnuts. }}{(\text { per kilogram) }}$

January	8.26 piastres		July	10.2 piastres	
February	9.6		August	10.4	
tarch	9.19	"	September	9.31	"
April	9.7	"	October	8.7	"
diay	9.2	"	November	7.65	"
June	8.94	"	December	7.4	"

Prices are at their lowest October-January when supplies are greatest, anc highest in July-August when the crop is only just Zuing siarieú iu ive irarvestea. It pays the former to lift his crop in August if he cen still obtain good yields, othervise it is better to store it until well ofter the new year. Wholesale prices in Tripoli fell from an index of 100 in 1946 to 80 in 1950, and are now about 66.

The price paid to the farmer by the exporting compenies has also dropped in recent years. In 1949 it averaged 8.3 piastres per kg., and for the period 1949-50 the average wos even higher at 9.3 piastres. In oruer to establish present buying prices several of the leading groundnut exporters were visited. In the year 1956/7, which was a good crop year, Gargour et fils paid an average of 10 piastres a kidogram for good dry standard quality nuts, but prices had to be loved when the 1957 crop became available and 7 piastres per kg . was the average price with occasionally 8 piastres beilug paid for really good nuts. Ey Jonuary 1958 only 6.5 piestres were being paid por kilogram.

In 1957 Consorzio Agrario, the Italion Co-operative established before the war, paid $\varepsilon .5$ piastres a kilogram for standerd quality nuts, having up to 4% of one kcrnel pods and 1% impurity, not differentiating between Tripoli 2 and Tripoli 4. About 6 piastres a kilogram were paid for black or damp nuts. for the same crop inassan hessaud was payïng $5-8$ piastres per kilogram for average nuts and occasionally 10 piastres for really good nuts.

Prices paid to the farmer have definitely fallen for in

194612 piastres wos a good average price, in 195010 piastres and today ε piestres.
lin wnle has henn donc or the uctual cupio vi growillg grounánuts. Oram states that the crop is relatively expensive to grow, costs being around $£ 250$ per hectare. After visiting the Government farm at Sidi iesri in October 1957 the writer was able to make some estimates in production costs. It must be remembered that at Siải iesri groundnuts are grown under near optimuli conditions, and there is no desire for a profit. Since efficiency is not therefore of great importance production costs will be near the naximun for the Tripoli area. Costs are as follows:-
(a) 120-125 kgs. per ha. of seed at fi8 per qt. $=f 19.6$ to £LIO

(d) 1.5 qts. of potassium sulphate at $£ \mathrm{LL} 2.5$ per qt. $=£ L 3.75$
(e) 4 labourers per ha. at 20 piastres a day for $4-5$ nonths
= £L89.6 to $\mathrm{KLII2}$
(f) Cost of water at 5-7 milliemes per cubic metre.
At 5 milliemes for Tripoli 4 - EL24
At 5 milliemes for Tripoli $2=$ EL30

With a yield of 22 qts./ha. and a price of 8 piastres a kg.

Income for Tripoli 4 - £L160

Approx. cost of raising crop $=$ えLI40
Profit $£$ L20

With a yield of 22 qts./he. - Income for Tripoli 2

- £L177
and a price of 8 piastres a kg. Approx. cost of raising the crop

$$
\begin{aligned}
\text { Profit } & =\frac{£ L 169}{£ L 8}
\end{aligned}
$$

iven the government farm can make a profit of 14.2% on Tripoli 4
and 5_{i} on Tripoli 2, so private farmers should do even better. Tripoli 2 is the most risky because it matures late and often
 forn there is a loss of filg per hectare if Tripoli 2 only fetches 7 piastres a kiloglam. Formers contrive to grow Tripoli 4 because it can be marketed earlier and can usurlly be solà at 8 piastres a kilogram. Water costs make up 17-20\% of total growing costs. In 1946 groundnuts were fetching up to 13 piastres per kilogron and thus it is not surprising that an area under this crop increased enormously. Today the market has steadied, and unless costs can be reduced there is unlikely to be a further exponsion. Oran argues that if a farmer has more than a few hectares of groundnuts, he can reuuce costs by mechanisation because hand labour is not cheap on a cost/efficiency basis and furthermore casual labour tends to be unreliable. wechanisation may not however bring dow costs in relation to yields, since as wo heve seen already maximum yields can only be obtained by hand planting.

I. Pests ond עiseases.

Cropping trends reflect the populority of a crop, which in turn depends on many factors. So far we have discussed the types of varieties grown, yields, water requirenents and profitability; other factors are pests and diseases, overseas marketing trends and capital ana credit facilities.

Pests do not present a serious problem although the mole cricket can be a nuisance on some farms. Fungal diseases are more prevalent and are having a slight influence on yields. Cercospera,
a leaf fungus commonly called 'leaf spot', attacks all varieties, but is nore severe in the case of Virginia Bunch. The other
 plants are too closcly spaced or overirrigated. Fungal diseases cain be avoided by having a rotation and not soving groundnuts on the same land for three to four years, by not giving too much nitrogen, by not planting too close, by not leaving irrigation water standing, and finally by harvesting the groundnuts as soon as they are mature, especially before the autum tains. Fungal diseases are most common in Septenber and October, so the early maturing Tripoli 4 is less susceptible to them.

Since no alternative profitable summer crop has been discovered groundnuts are often continuously grom on the same piece of land ycar after year. As a result a deficiency disease has appeared, showing itself as a progressive yellowing of the leaves which is usually accomponied by Cercospera; Tripoli 4 is usually more susceptible then Tripoli 2, although yields of both are severely reduced. The groundnut is a very exhausting crop and Oraln (10) has show in rotation trials that wheat yields after groundnuts are sometimes reduced by as much as 50% compared with yields after fallow, even though adequate fertilizers have been applied. Efforts have been made to find out which mineral is deficient. There is little response to phosphate unless applied to land recently brought into cultivation, little response to nitrogen unless applied to soils very low in agonic matter or bady leached by irrigation water, and little response to applications of

368

potash. There seeus to be no shortage oî the major plant nutrients.

A previnuc chepter hes indicatea indi jefaran solls are likely to suffer from a non-availability of plant nutrients because pir values are over 8 and the soil is therefore extremely alkaline. Under such conditions plants have difficulty in absorbing enough phosphate, iron, manganese, boron and other trace elenents. The problen of the groundnut deficiency disease has been briefly studied by Willimott (15) and he has initiated experiments to try to ascertain the effect of high alkalinity on the availability of certain nutrients. In trials the pll of a treated box of soil was lowered to 7.4 by watering with diluted sulphuric acid. Groundnuts grow in this box aid not exhibit yellowing as early or as severe as those in untreated boxes. iuch work still needs to be done.

The problem is becoming acute and since yields are falling so disostrously, some farmers are reducing their area under groundnuts. In the questionnairesfarmers were asked their future plans and few replied that they intended to increase their area under groundnuts as they had been doing in the past. Here are two typical onswers given by farmers in the Bianchi area where groundnut cultivation is the most intense:
(1)'Piantagioni di olivi, mandorli, agrumi in sostituzione delle arachidi perche le medesime sono affette de marciume'. (2) 'Cereali e foraggio - poco arachidi causa marciume' Groundnut production is suffering.
J. Exports of Groundnuts.

Conditions for exporting groundnuts. In the early 1950's exports begen to increase morc rapidly each year anc the newly arrived r.A.O. experts immediately realised the need for some compulsory standards for the export of edible groundnuts. In December 1954 certain trial standards were established by the government (1); these form the basis of those in existence today. If groundnuts are to be sold for immediate consumption and are not to be processed for oil the appearance of the shell is of the greatest importance, because buyers in the United Kingdom will pay up to 80% more for high quality Valencia type nuts which can be bought from Spain, Tripoli and Israel. Shells must be large creamy coloured and without stains; they must be dry with a maximum humidity not exceeding 6% and the kernels must rattle when the she?ll is shaken. For export, Tripolitanian groundnuts are divided into two types:-
(a) Tripoli 2 - each pod of 15 nims. minimum diameter should contain two kernels. Composed of Local White and Virginia Bunch varieties.
(b) Tripoli 4 - each pod of 14 mms . minimum diameter should contain 2-4 kernels. This type is represented by Locel Red. In addition each type is further sub-divided by quality, according to the percentage of shells or pods not conforming to the rules laid down, into Extra, Standard and liercantile. Crops failing to reach export standards can be sold locally or exported to the riediterranean countries at lower prices.

Table 13.12 The Trend of Groundnut Exports, 1945-57. (Total groundnuts exports per calendar year)

Year	Quantity in metric tions	Value	Percentage uf ciop
1945	23	¢L23,000	11. 5%
1948	54	£L54, 000	3.6\%
1949	104	£L104, 000	11.68\%
1950	107.838	£L98,00c	5.6\%
1951	495.216	?	25.18\%
1952	986.25	?	31.8
1953	4,133.392	?	82.5\%
1954	5,150.0	21583,000	77.2\%
1955	6,080.0	£1633,145	76.0\%
1956	9,190.0	2L818:40¢	99.5\%
1957	10,590,0	£し847, 228	87.2\%

Alnost all exports fron Tripoli are in shell for direct consumption anc durin; the lost few yoers the groundiut hos been Libya's chief export. In 1945 exports were a nere 23 metric tons valued at £L23,000, but in 1957 they had been increased to 10,590 metric tons valued at $\mathrm{fL847}, 228$. The proportion of the total crop exported has íluctuated, between 5 and 10% in early years to 82.5% in 1953. Figures have remained high, and in 1956 practicelly the whole crop was sent to Western Lurope to tak advantage of good rarket conditions.

Figures Ior calendor years are risleading because the export year is more akin to the agricultural year. Exports start in September ond tend to die out by June (see fig. 25b).

Gi the 1956 crop of $9,202.4$ metric tons, 8,773 tons were exported bwteeen the fionths of August 1956 and iay 1957 inclusive (see Appendix viria). During this period 65.7is of all groununuts exported were Tripoli 2 and the renainaer Tripoli 4 (34.3%). Of the Tripoli 2 groundnuts 57.3% were standard quality, 42.7%

371

iercantile; anc of the Tripoli $453 \cdot 32$ were standard and $46.4 \varepsilon_{\%}$ nercantile.
 were exported between the months ois September 1957 to August 1958 inclusive. 64\% of the groundnuts were Tripoli 2 and 36 Tripoli 4, roughly the sane proportion as the previous year. The Tripoli 2 is sub-divided into . 1168% extra, 47% standerd, 44% nercantile anc 9.07 sub-mercantile, the overall quality being generally inferior to that of 1956. Of the Tripoli 4, 55\% were standard, 4.68; mercantile and 2.17i sub-mercantile, little different from the previous year.

Table 13.12 Lan European markets for Tripolitanian groundnuts.

Country	$1954 / 5$	$1955 / 6$	$1956 / 7$	$1257 / 8$
Italy	3.019%	$4,935 \%$	16.27%	32.9%
U.K.	46.5%	23.68%	37.4%	24.68%
Germany	19.45%	39.5%	19.7%	16.75%
Holland	15.65%	11.51%	11.57%	14.68%

Up to 1951 exports were lergely to Italy because of the favourable import quota given by the İtalian Government. In 1951 and 1952 Italy, Tunisia anc France took the bulk of the exports, but in 1953 with a sharp rise in the amount of nuts sent abroad, the Western Huropean markets came into prominence. In 1954/5 and 1955/6 exports to Italy vere small and the United Fingdom and Germeny were the chief importers, but by 1958 Italy again takes the largest share of exports -- evidence of stiff'er competition in the Western European merkets, with Tripoli falling bock on the Italion market.

378

The countries have differing tastes in groundnuts (see Appendix virib. In 1956/7 Italy took mainly mercantile Tripoli 2
 Germany standarò Tripoli $2(80.7 \%)$, Holland mainly standerd Tripoli 2, falta mainly mercantile Tripoli 2 and 4 and Tunisia mainly mercantile Tripoli 4. Only Italy ond i:alta take sub-mercantile nuts.

The Export Cycle. - see fig. 25b. Exports are seasonal, starting in September and building up to a peak in October, November and December. Exports of Tripoli 2 generally exceed those of Tripoli 4 in host months except sometimes in September and October. Of the Tripoli 2 nuts standard quality nuts were generally higher than mercantile in 1956/7 but lower in 1957/8 particularly after Christmas. On average exports of standard Tripoli 4 exceed those of mercantile quality.

Export Prices of Groundnuts. If groundnuts have only 4% of one kernel pods and if 1 kg . of nuts gives 900 grams. of kernel, then they are considered standard quality. Standard nuts were bought from the farmer by Consorzio in 1958 at 8.5 piastres per kilogram. These were then sorted and put into 30 kgs . bags for shipping to Holland and Germany and 28 lbs. for shipping to the United Kingdom. re.O.B. prices for the 1958 crops worked out at about 9.1 piastres a kilogram (i.e. 8.5 piastres for the farmer, 0.4 piastres for the cost of sorting and 2 piastres the cost of bagging and transport to the ship). Total Cash Insurance Freight (C.I.P.), which includes a small percentage for Consorzio, was 11.2 piastres per kg. = £Ill2

378

per metric ton. If the market price in Western Europe is less than £LIl2 per metric ton then it is the farmer who is paid less. The average F .O.B. prices in Trinoli ner metric ton of standard gualitur was quoted by the Chamber of Commerce as follows:-

July-December	1955	£L92.5
Year 1956		£L109
Year 1957		£LI12

C.I.f. prices of Libyan groundnuts in Western Europe ports in the export year 1956/7 averaged $£ 1130$ per ton extra quality, $\begin{cases}\text { fLll5-120 }\end{cases}$ per ton standard quality, and fil04-109 per ton of mercantile quality. Insurance and freight usually adds £Llo per metric ton to $\overrightarrow{\text { r.O.B. prices. The C.I.r' prices are rather high when it is }}$ considered that at the same period the average price of Sudanese shelled nuts was between $£ 178$ and $£ L 73$ per long ton, and those for Nigerian shelled nuts were also fetching similar prices. Tripolitanian groundnuts are unshelled and depend on their good quality to command high prices.

World Producers and Exporters of Groundnuts. In order to place the Tripolitanian groundnut industry in its right perspective, it is necessary to look at world production and trade. Although of tremendous importance to Libya, her groundnuts only form a minute part of the world trade in this commodity. The increased groundnut production in Iripolitania has been in line with the trend in world production. In the period 1935-39 the average yearly world production was 9,564,000 metric tons, 1945-4910,810,000 metric tons, and in 1958 it had reached $15,500,000$ tons. The figure for 1957, $14,400,000$ metric tons was 25% up on the 1950-5 + average.
'I'he chief producers in 1956 were India - 4, 267,000 metric tons, Comunist C̛ina - 3,336,000, l'rench West Africa 1,100,000, Nigeria
 Brazil - 185,000. Some of the principal world exporters were Migeria with 455,200 metric tons, French West Africa 293,200, Sudan 64,400, India 12,400, Indonesia 1,600. In the same year Libya with a production of 9,202 metric tons (i.e. . 073% of the world total of $12,682,000$ metric tons) exported 8,773 metric tons (i.e. 1.93; of Figeria's exports).

K. Conclusions.

Production has been expending every year since 1945. Yiclds per hectare at first rose considerably but are now steadying. The quality of groundnuts exported has declined because many farmers have such large areas of groundnuts that they lack the labour and storage facilities to lift the crop quickly before the rains; for the same reason many farmers cannot get their crop to market in October and therefore cannot benefit from the best prices on the European market. In June 1958 there was still a small amount of the 1957 crop to clear and some sub-mercantile groundnuts had to be exported. The appearance of a defficiency disease has also caused some farmers to cut dow their acreage. Competition from other shellexporting countries is now fiercer; Egypt and Sudan with the help of government subsidies are undercutting Libya by 10\%, China has very cheap labour and therefore low production costs, and Israel has a high technical level of cultivation. All groundnuts in Tripolitania are grown by private farmers and there are no subsidies. Speculation has now been killed and production will

375

rationalise itself. The Jefara is good land for the groundnut and although the crop seems to be approaching the peak of its popularity itwill continue to play ail imporiant part in the economy of Libya as long as high yields and good quality are maintained.

F

The Groundnut crop may well have reached its peak of popularity for the November 1959 issue of Barclays, D.C.O. 'Overseas Review' states "the crop (1959) is well below that of last year since a smaller area was planted, and certain areas have suffered from disease".

378

CHAPTER 14

Cereals and Supplementary Irripgtion

A. Introduction.

In order of importance, the main cereals grow on the Jefara Plain are barley, wheat, maize, forage cereals such as oats and millet. In Roman times, Tripolitania like Cyrenaica, was an important grain producer, and exports to Rome were considerable. Todoy cereals are raised under varying conditions and grow extensively throughout much of Tripolitania. fost winter small grains are grow on dry land but an increasing area has been devoted to irrigated cultivation in the last few years. Before the Italians arrived the production of wheat was very small and barley reigned supreme. As a dryland crop, the latter is grow over wide areas of the Inner and Dune Jefara and in small areas between palm trees on the saniya farms of the coastal oases. After 1912, particularly in the 1920's, many dryland Italian Concession farms were established. Very little land on each of these farms was set aside for cereal cultivation alone, and most of each form was planted to oljves and almonds, with winter cereals being grown each year between the trees. The practice of growing wheat and karley between tree crops was continued until the trees reached maturity, although today some farmers still continue to grow field crops between productive trees. Part of the winter cereal crop on Demographic farms has been irrigated ever since the settlements were started. It is true to say, however, that after the 1939/45 War, even until 1950 and later, the area of irrigated
winter cereals in Tripolitania was very swall, but in recent years, conjoined with the expansion of groundnuts and the introduction of irrigation for the nitye tree; an incropecing nort of the herley and wheat crop has been irrigated. Italian and Libyen methods of cultivation differ considerably. The Italian concession or demographic farmer grows his winter cereals between tree crops and usually has some form of rotation; in contrast the Libyan usually grows his crop in the zone of shifting cultivation in the Inner and Dune Jefara, the land generally lying fallow for several years, although occasionally being cultivated continuously.

The summer cereals, मaize and millet, are of minor importance and their distribution is confined to the coastal oases and the shiall oases near the Jebel.

B. Barley.

This crop is the hardiest of the winter cereals. Although giving low yields, local varieties are able to withstand the dry and hot conditions that prevail in some winters, and they mature more quickly than local varieties of wheat. Barley forms a large part of the Libyan's staple diet and is the traditional winter cereal crop of the Jefara Plain; it is usually grown under a single crop system, mainly in the area of shifting cereal cultivation in fig. 9. In the Inner and Dune Jefara, barley is scattered by hand over the land after the first substantial autumn rains, and is then roughly covered with soil by ploughing with a primitive wooden scrotch plough. (imore details on shif'ting cultivation have been given in chapter 2). The farmer
sows his seed over a wide area because he is interested only in a large multiplication of seed not a high yield per unit area. A good harvest is only gathered if the winter and spring rains are satisfactory. The six-bladed local barley varieties are shortstrawed and well adapted to dry cultivation. In very dry winters, however, the straw becomes soft and this leads to a loss of harvest. The harvest is usually in April. The onnual production of barley in Tripolitania for the period 1930/1-1957/8 is given in Appendix IXa - l'igures show that the crop is intimately related to rainfall amounts and it is interesting to compare production figures with the rainfall graph given in fig. lod. In the drought years of $1935 / 6$ and $1946 / 7$ the production of barley dropped to 3,000 and 1,700 metric tons respectively; in the wet years $1943 / 4$ and $1948 / 9$ production soared to 125,000 and 135,000 metric tons respectively. An average yield is meaningless, but total yields of over 40,000 metric tons are usually considered satisfactory. The area actually sown to barley each year seems more stable than production and averages about 250,000 ha., although in drought years it contracts and in 1946/7 was only 9,250 ha. It is clear that in Tripolitania barley still is predominantly a dryland crop.

The provincial distribution of the barley crop is given for several years in Appendix $\mathbf{I X b}$. In the present context it is sufficient to quote figures for three selected years: average, good and bad.

879

Table 14.1 Provincial Distribution of Barley Production in three selected years (netric tons).

Year	Tripoli \& Western	Eastern	Central	
	Average year $1956 / 7$	48,076	15,678	12,372
Good year	$1944 / 5$	29,000	45,000	21,000
Bad year	$1946 / 7$	8,310	8,700	-

In a good year Tripoli and Western Province produced $34.7 \%_{0}$ of Tripolitania's barley; in a bad year about 50% and in an average year 63.1.\%. On the Jefara Plain the Barley crop is less affected by drought then it is in other areas and in recent years, since 1950, the Jefara has energed as the most important barley growing area in Tripolitania.

Statistics are available, for two recent years, for the provincial production of barley on cabila land on the one hand, and on Itolian demographic and Italian and Libyan hawāza farms on the other. These offer the first opportunity for an assessment of the amount of irrigoted barley produced.

Table 14.2 Harvest of Barley on Cabila and Azienda Land $\quad(3)$

Cabila Dryland

| Year | Tripolitania | Trip. and Western | Eastern | Central |
| :--- | :---: | :---: | :---: | ---: | ---: |
| 1954/5 | 32,500 | 20,000 | 2,000 | 10,000 |
| $1955 / 6$ | 74,000 | 35,000 | 17,000 | 22,000 |
| | | Azienda Land | | |

Province

Dry	$1954 / 5$ Irrig.
2,300	1,000
2,000	750
250	250
50	-

Tripolitania
Tripoli \& Western Eastern
Central

Tripoli and Western Province produced 61.5\% of Tripolitania's
total cabila barley production in 1954/5 and 47.3i in 1955/6. On the Azienda land the same province produced 87% of the dry barley in 1954/5 and 52.5\% in 1955/6: and in the same two geora 75\% snd 915\% of the irrigated barley respectively. Today the Jefara Plain is probably yielding an average of 500_{0} of the cabila land barley, 70% of the azienda dryland barley and 80% of the azienda irrigated barley.

Figure $24 a$, which is based on the statistics given in table 14.3, shows how the main concentration of barley production is in the areas oí sedentary cultivation - Tajiura, Zawia, Azzahra, Gasr Ben Gashir and Suani Ben Adem, with other areas of lesser importance being the Dune Jefara, and the Inner Jefara south of Tripoli. There is little or no barley produced in the south-vest.

Table 14.3 Production of barley and wheat by locality on the Jefara Plain (Quintals)

Locality

Tripoli City and Suk el Jiumaa Tajiura Garabulli
E'l Alawna and Aulad Ouein
E1 Kanajda
Er-Regiat
El-Khetna
New farms in above areas
Zawia and Azzahra
Bir el Ghnem
Sormen
El liaamoura
Sabrata
Ajelat
Zuara.
Regdalin
El Assa
Tiji and Jaush
Gasr el Khiar

Barley	Wheat
8,300	3,800
6,400	1,500
7,000	200
2,300	1,700
2,400	200
10,700	2,800
4,200	1,400
42,800	7,000
59,400	8,200
3,100	1,4000
6,200	1,800
300	100
7,900	2,500
6,000	1,700
7,400	1,200
5,800	1,600
3,900	2,100
200	120
1,000	300

Although a very hardy crop, ruore barley is being irrigated

381

at present than ever before. Appendix IXc gives the yearly production and areas of berley on the IITPS demographic farms from
 seen that at Oliveti, Bianchi, Hashian and inicca there has been a considerable expansion of the area of irrigated barley at the expense of dryland barley. At Giordani there has been an expansion of both the irrigated and dryland barley area, but the expansion of the irrigated area has been greater. Corradini (Ghanima) alone remains entirely dry. It is impossible to refer to the farm studies in detail, but barley is irrigated on the following Libyan hawāza: $12,13,14,16,17,18,20$ and 21 ; on the ETTE farm 36 at Oliveti; and the private sanīya farm, 42. Barley is also imrigated on some of the Italian concessions but unfortunately insufficient information is given in the farm studies. Plate 19 shows barley being irrigated by sprinklers on an Italian concession farm at Gasr Ben Gashir.

Yiuelds of dryland barley are very low. In a wet year (1943/4) the yield for Tripolitenia was 4.515 qts./ha., in a drought year (1946/7) 1.9 qts./ha., and in an average year (1956/7) 2.7 qts./ha. As a rule no fertilizers are given to dryland barley, and yields naturally fluctuate with the rainfall. Provincial yields for an average year, show that Tripoli and Western Province have the highest yield with 4.57 qts./ha., Central Province next with 3.2 qts./ha., and Eastern Province the lowest with 1.18 qts./ha. On the Jefara Plain, Lewis found little difference between yields F Lewis, R.: 'Irrigated Land-Use and Irrigation Report', L.A.T.A.S.. Libya.
of dryland barley on Arab land and yields on Italian land. The areas with the highest yields for both types of land were Tripoli,
 Theodorou* states that, in the Zawia area in 1952, the yield of dry, single-cropped barley wos 1.5 ats./ha. on Arab farms, and 2.9 qts./ha on Italian farms. Despite Levis' findings, it seems that Italian farmers are getting higher yields per hectare. Every year yields in the Inner Jefara are low and rarely exceed 2 qts./ha - see plate 28.

There is a big difference in yielas per hectare between dry anc iríigated barley. At Siai iesri, one hectare of irrigated barley yields $30-35$ qts., whereas one hectare of dry barley only. yields 6 gts ${ }^{\ominus}$ Appendix $\mathbf{I X b}$. gives the difference in yields between dry and irrigoted borley over a period of five years on the INPS farms. Irrigated yields are generally $4-5$ times greater, although they do fluctuate according to the amount of rainfall. Only about halî the quantity of seed is sown on dry land compared with irrigated land.

The barley crop is much more important to the Libyan than to the Italian. Theodorou calculated that in the Zawia area, barley represented 30% of the total value of production on Libyan farms and only 4% on Italian farms. Since this crop is so important, and because local varieties have such limited possibilities, experiments are being corried out at Sidi Hesri to find an early maturing, high yielding dry barley, and a high yielding irrigated barley, which will grow well under local conditions. Seed, $80 \mathrm{kgs} .+$ for irrigated land anả 60 kgs . for dry land, is usually F B/96
e Personal communication - Khairi Sghaier.

388

sow during the first three weeks of November. Varieties being tried are: California, Club iariout, Jordan, herzana and Athenais. fiariot has gielded 40 ats. /hs - uner irrigation. Exjeiniuents are also being carried out on local varieties such as Wadi iejenin, Tobruk and Hon.

C. Wheat.

Wheat is much less important than barley and in recent years the production of barley has been 3-4 times that of wheat. However, in the last decade, 1950-60, there has been no evidence of an expansion of the barley acreage, but in contrast there has been a general increase in the area of land devoted to wheat. In the period 1942/3 to 1949/50 the area of land under wheat in Tripolitania ranged from 17,000 to $35,000 \mathrm{ha} .$, with $1946 / 7$ an exceptional year with only 8,150 ha.; in $1955 / 6$ it was 44,460 ha., in 1956/7 80,392 ha. and in 1957/8 58,000 ha. Figures for the total production of wheat in Tripolitania, which are given in Appendix IXe, are not as closely related tc rainfall as are those for barley. This is duc to the fact that a larger proportion of the wheat crop is irrigated. Wheat usually finds conditions too harsh in the Inner and Dune Jefara, and in the areas of shif'ting cultivation, it is limited to distribution to the heavier lands (tin in Arabic - see chapter 3). A little wheat is grown on the coastal saniya farms, but most is produced on the larger hawāza farms.

The provincial distribution of wheat is given in Appendix IXb, and as in the case of barley three representative years afte taken:-

Table 14.4 Provincial Distribution of Wheat Production in three selected years (metric tons)

Good year 1956/7
Average tear 194.4. 5
Bad year 1946/7

Triooli \& Western Eastern Central

In a good year, Tripoli and Western Province produce 50.5% of Tripolitania's wheat, in an average year 70.8% and in a bad year 51. 5\%. Tripoli and Western Piwovince is therefore the most important wheat producing area in all years.

Table 14.5 indicates how much of the provincial production of wheat is produced on cabila land and how much on diry and how irrigated azienda land.

Table $14.5 \frac{\text { Harvest, of wheat on cabila and azienda land in }}{1954 / 5 \text { and } 1955 / 6 \text {. (metric tons) }(3)}$
Cabila land
Tripolitania
Tripoli and Western
Eastern
Central
1954/5 1955/6

Azienda land
Tripolitania
Tripoli and Western Eastern
Central

Tripoli and Western Province produced 80.5% of Tripolitania's total cabila wheat in 1954/5 and 65.7% in 1955/6. On azienda land, which includes Italian concession and demographic farms and Libyan hawäza farms, Tripoli and Western Province produced only 7% of the dry wheat but 83.4% of the irrigated wheat in 1954/5, and 7% and 93.5% respectively in the following year. Of the wheat produced on the Jefara Plain in 1955/6 therefore 73% (9,600 tons)
came from cabila land (shifting cultivation), 24% from irrigated azienda lend, and only 3% from dry azienda land. Of the 39,550 mptrin tons of boricy harvesteu uil lie Jefara in the same year, 87.6\% was from areas of shifting cultivation, 6.75% from dry azienda land and 5.65% from irrigated azienda land. Although the larger part of the wheat harvest still comes from cabila land, a significant amount is also produced on irrigated azienda land. In 1955/6 the production of irrigated wheat and barley on the Jef'ara Plain was roughly the same. Of the wheat grown on the azienda farms in $1955 / 6$ in Tripoli and Western Province, 88.8% was irrigated, compared with only 47.2% of the barley.

Wheat production is concentrated more in the areas of sedentary cultivation than barley. Table 14.3 shows that the main areas are: Sul el Jiumaa and Tripoli oasis, Gasr Ben Gashir, Suani Ben Adem, Zawia and Azzahra.

Appendix IXd gives the production and areas of wheat on the INPS demographic farms in the period 19521/3-1956/7. From studying this, it appears that there has been a shift in emphasis from dry to irrigated wheat, although there has been no expansion of the area of land devoted to irrigated wheat. Less wheat is being grown under dry cultivation. In 1952/3 Bianchi, $\mathrm{H}_{i} \mathrm{cca}$ and Corradini grew dryland wheat but in 1956/7 Corradini remained the only producer (Castelverde only has a few farms occupied and does not concern us here).

Yields of dryland wheat are usually much the same as those for dryland barley. Averages for the whole of Tripolitania are 2.76 qts./ha. for a wet year (1956/7), 3.43 qts./ha. for an
average year (1944/5) and 1.275 qts./ha. for a bad year (1946/7). Provincial yieläs for the year 1956/7 show that Tripoli and Western Province has the highest with 4.175 nts./ha.; Contran Province next with 4.05 qts./ha. and Eastern Province last with 0.89 qts./ha. Lewis discovered that there was little difference between yields for dryland wheat on Arab and Italian farms on the Jefara Plain, but for irrigated wheat yields on Italian farms were higher, 31.32 qts./ha.compared with 9.1 qts./ha. on Arab farms. Theodorou found that, in the Zawia area, none of the 70 Libyan farmers grew irrigated wheat, and that yields for dryland wheat on these farns were very low, 0.99 qts./ha. He also found that the Italian fermers, none of whon grew dry wheat, had two yields for irrigated wheat; if land was under wheat alone it yielded on average 14.33 qts./he., but if the wheat was grown between trees or interplanted with ony other crop, then yields queraged 10.39 qts. Yha. 13-15 qts./ha. would appear about the average yield for the Jefara Plain.

Yields of irrigated wheat on the INPS farms, which are given in Appendix $\mathbf{I X e}$, range fror: 13.03 qts./ha. to 15.66 qts./ha. at Oliveti, 11.46 to 14.4 at Bianchi, 11.83 to 15.5 at Hashian, 15.22 to 20.75 at Giordani, and 13.46 to 16.78 at kicca. In contrast, yields of dryland wheatrange from 0.964 ats./ha. to 4.8 qts./ha. Yields on a Concession farm at Zawia (study no. 4) are 25 qts./ha. For irrigated wheat and 5 qts./ha. for dryland wheat. The best growing concitions for wheat are to bc found at the Government Experimental farn at Sidi Nesri, and here yields f'or irrigated wheat are 40 qts./ha. and for dryland wheat 6 qts./ha.

387

There is obviously room for an improver:ent of cultivation methods on most of the private farms.

Although most of the variptips of whent which aie giuwn ui the moment, were introduced by the Itelians, many of them are not well suited to local conditions. A very hardy, early maturing, herd wheat is needed for dry cultivation, and a vigorous high yielding wheat, capable of withstanding heat, is needed for irrigated cultivation. Some Italian vərieties such as Florence Aurora, Hentana and Quaderna, adapted thenselves well to Libyan conditions, but F.A.O. continues to experiment with nev verieties. The Italian varieties of i ara and Fortunato, the foroccon B.T. 2306, and the Egyptian Giza l3a, all offer promise of being good, short strawed, soft wheat suitable for irrigation in Tripolitanie. Early maturing North African varieties such as D.77, Syndiouch iahmoudi and B.D. 3225 may well be suitable for dryland cultivation (4).
D. Other Cereals.

The other cereals are not very important. haize and millet, for instance, only amount to about 3.5% of the total value of production on Libyan farns and 0.5% on Italian farms. Nearly all maize, millet and oats are confined to Tripoli and Western Province, olthough a little is grown in Eastern Province.

Oats are only grown on a few Italian concessions on the Jefara Plain, where they are usually cut green and fed to animals. The largest acreage of this crop is on a concession south of Gasr Ben Gashir, which has the only large dairy herd in Tripolitania. The total production of oats each year in Tripolitania is only

388

2-400 tons, and there is not likely to be an increase in the future, because no expansion of the dairy industry is anticipated. ${ }^{\text {H. }}$ The lncal yorieties of asta are poor boing susceptible tu rusi and having little resistance to drought. Three new varieties have been tried at Sidi hesri - Palestina, Clinton and Nemaha; the first an early maturer, the second a medium early-maturer and the third a late maturer. Under dry cultivation at Sidi hesri these varieties have given green forage for two months.

On the Jefara about $60^{\%}$ of the maize crop is grow on Libyan saniya farms (plate 29) a Jthough small quantities are grown on some of the Italian ferms. There is little trade in moize, for on the swani (sing. sonīya) it is usually a subsistence crop, and on most of the larger Itelion forms it is only grown for home consumption. The maize seed is usually planted from the midde of iarch to the end of April and the crop is harvested 115-120 days later - midale of June to the end of Julp. It is therefore grow during the first half of the summer and needs full irrigation. The annual production of maize is only about 400-800 metric tons and as long as the crop continues to be grow for home consumption only there is not likely to be an expension. The maize gives good yields and grows quite well in the oases. At Sidi resri, with o soring of $15-20 \mathrm{kgs}$. of seed, and an application of 8 qts. of superphosphate; 2 qts. of ammonium sulphate and 1.5 qts. of potassiun sulphate, plus 200 qts. of manure, yields or 40-50 gts./ha. are being obtained. This is better than范

For information on the dairy industry see Vieira, $B / 94$.
the yields from any of the small grains at present grom in Tripolitania. New varieties such as Wisconsin and Fungus G.

isillet is hardier than maize, in that it will stand higher temperatures and also tolerate infrequent irrigation with inferior quality water. It is quite comon in the oases of the south-west Jefara: Shakshiuk, Tiji and Jeush. The two main types of millet grown are known in Arabic as Gseb and Ghafouli. Total gields for the whole Jafara do not exceed l, 000 metric tons per annum. In habits, the millet plant is very similar to moize. F. Cereals ond Hater ireeds.

It is nov an accepted fact that some of the winter cereals are given supplementary irrigation. The Arabs have probably been irrigating small areas of wheat and barley on the saniya farms of the coastal oasis zone for many years. lihen the Italians arrived in Tripolitania, they decided, that unlike olives, part of the cereal crop should be irrigated. Graiff (1 p.5) gives us on icea of how much land was set aside by the Italians for cereal cultivation.

Table $14.6 \frac{\text { Percentage of developed Italian land in }}{\text { Tripolitania set } 3 \text { side for cereals. }}$
Owner of land Total area developed
$\frac{\text { Irrigated }}{\text { cereais }}$
$\frac{\text { Dry }}{\text { cereals }}$
Private and State
minte
INPS

126,580 ha. 89,871 ho. 45,325 ha. 1.4%
1.9%
2.27% 6.79\% 5.42% 9.38\%

Several of the Italian agriculturalists working at Sidi Mesri before the last war advocated the increased irrigation of cereals.

Vivoli (8) 'favorire l'estendersi delle coltivazione irrigue', as the only way to achieve yields of 30 qts./ha.

Irrigation gives high and stable yields: and the smont of water needed for the irrigation of winter cereals is small compared with that given to groundnuts or citrus. Lewis quotes the average number of irrigations on Italian farms on the Jefara Plain as 4 , each being $363 \mathrm{~m} 3 / \mathrm{ha}$. and together making a total of 1,452 m3/ha.; on Libyan ferms there is an overage of 5 irrigations Eiving a total of $1,150 \mathrm{~m} 3 / \mathrm{ha}$. With a winter crop the amount of water needed depencis on the rainfall in any particular year; in some years only one watering may be required, in other years 4-6 waterings may be necessary. It would appear that in high yields are demanded, then wheat and barley must be irrigated with $1,500-2,500 \mathrm{~m} 3 / \mathrm{ha}$. over and above rainfall. At Sidi hesri winter cereals receive a total of $2,400 \mathrm{~m} 3 / \mathrm{ha}$. of water in addition to rainfall; this is giver in six irrigations which are at intervals of 20-30 days. Whenever possible, irrigation in inovember, December and January is avoided and in years of good rainfall only $3-4$ irrigotions of $350-400 \mathrm{~m} 3 / \mathrm{ha}$. are given.

Fertilizers must be applied to irrigated land under winter cereals, otherwise the soil is soon exhausted. At Sidi hesri, 2 qts. of Triplex (12:24:12) and 1 qt. of Sulphate of Potash are given per ha. Irrigated winter cereals therefore are costly to grow on the Jefara Plain, because they have to bear the expense of water and fertilizer costs. However with fertilizers and irrigation, yields are boosted enormously. At Sidi iesri dryland wheat gives 6 qts./ha, irrigated wheat 25 qts./ha, irrigated and

391

fertilized wheat 40 qts./ha. inany of the Libyan saniya farms over-irrigate and give too little fertilizers; on farm no. 41 of the studies, 2 jiabia of wheat aite given a lotai oí gū my of water - equivalent to $3,600 \mathrm{~m} 3 /$ ha . Wheat does not need this quantity of water in the Tripoli area.

No estimates are available for the amount of water given by the local farmers to maize and millet, but at Sidi iesri, maize is given a total of 4,800 to $5,600 \mathrm{~m} / \mathrm{ha}$. consisting of 12-14 irrigations of $400 \mathrm{~m} 3 / \mathrm{ha}$. Summer cereals need two to three times more water than winter cereals.

Th. The role of cereals in the country's economy.

1. Prices and costs of winter cereals. In the years 1957 and 1958, the average price of wheat per metric ton in Tripoli was fL30-35 and for barley $\mathrm{xL25}$. With information supplied by Khairi Sghaier at Sidi hesri it is possible to estimate the cost of growing irrigated wheat or barley on one hectare of land. The irrigated crop is given a mixture of Nitrogen, Phosphorous and Potash, - about 3-4 qts./ha. - at a cost of £L3. 9 per qt. Wheat seed is about fL3. 5 per qt. and barley seed $£ L 3$ per qt.

With one hectare of irrigated barley costs are:-

Pertilizers	£I4
Seed	£L3.6
Water	£L6
Labour	£L5
Total	£L18.6

If the yield of barley is taken as 30 qts./ha. then at a price of $£ 22.5$ per qt. the income is $£ L 75$. The difference
between income and costs is approximately $£ 155$ per ha. According to Rovland (5 p .131) the estimated cost of producing one hectare of dryland barley is approximetely $£ \mathrm{fL} 3.65$: with a yield of 3 qts./ha., the cost of producing l 1 dt. is approximotely fLl. If we take a yield of 5 qts./ha., which is high for most of the Jefara, then the income with a price of £L2. 5 per qt. is $x L 12.5$. When production costs are subtracted, the profit on one hectare of dryland barley is XLE. 85 compared with 15555 for one hectare of irrigated berley. However, the return on each quintal is very similar, えLl. 77 for dry and ELI. 83 for irrigated.

Returns from one hectare of irrigated winter cereals are far superior to those from one hectare of dryland crop, and whenever water is available it is more profitable to irrigate.

Broc ${ }^{\text {F }}$ however believes that an income can be derived from the cultivation of wheat in the Inner Jefara, as long as there is water-spreading from the wadis. He puts forward a hypothetical example of 500 ha. of water-spread land along the Wadi el Hira. He argues that in $\begin{aligned} & \text { five-year period, there will be }\end{aligned}$ one good year with a yield of 15 qts./ha., 3 average years with 8 qts./ha. and one bad year with no yield. With wheat at EL 25 per netric ton, the total income for 5 years would be £I4 8,750 i.e. $\mathrm{EL} 9,750$ per year. Even allowing for production costs this would seem profitable, but it is necessary to point out thot his yielas are optimistic.
2. Export of cereals? At one time Libya used to be an exporter of cereals but today they have to be imported. In 1945 for example 20,217 metric tons of barley were pronerter, but in 1955 and 1956 there were no exports, and in 1957 there was only one small export of wheat valued at $£ 2 \mathrm{~L} 33$, and in 1958 a small barley export of 703 metric tons. In 1956 wheat imports were 702 metric tons and barley imports 3,397 metric tons. At present something like 25,000 metric tons oî wheat are imported annually, plus any gift wheat and flour. Occasionally a little millet is exported from Tripolitania. Hore wheat and barley are needed to supply the home market.

G. Summary and Conclusions.

The Jefera Plain is now the most important producing orea for winter cereals, which are still predominantly a dryland crop; there has, however, been a shift towards irrigation in the last few years. The other cereals are insignificant.

The area of land suitable for drylond wheat and barley is very limited (see fig. lld), and even in the most favourable areas yields are lov and unreliable. Irrigated land is seven times more profitable to cultivate.

With the increasing home demand for cereals, Tripolitania is no:r forced to import. What should the Government's policy be ? Should there be a large expansion of irrigated cultivation to obviate the need for imports; or should the irrigation of winter cereals be discouraged ? Some writers, especially Rascovitch, ${ }^{\text {F }}$

\%

Rascovitch, E.i. 1953. B/93.

394

consider that further work needs to be carried out on the cost of production, yields and profits of irrigated winter cereals, so as to compare them with other crons of higher economic yiolis; such as linseed, sesame and sugar beet. Should not irrigated wheat be abandoned in favour of another irrigated winter crop, and $a . l l$ the demands for cereals satisfied by an expanded dryland production, and if this is deficient for a few years, by importing supplies from abroad ?

The present Government policy seems to be one of protection. It intends to encourage cereal production at home. In 1956/7 it purchased the entire cereal harvest at a fixed price through the Agricultural Bank, and subsequent to this it has increased the duty on imported flour from $£ \mathrm{LL} 2.5$ to $£ \mathrm{LJ}$. Such protective measures can only lead to an expansion of home production, and since only by irrigating his winter cereals, can the farmer make an effective profit, the expansion is likely to be in this direction. Fortunately winter cereals only need a small supplementary type of irrigation, so that demands on the underground water reserve for this purpose are small. With water-spreading, there are ©pportunities for a big expansion of winter cereal cultivation in the Inner Jefara. Any development along these lines can only come from the Government.

Criapter 15

Other ipiel Crops.

 pototoes are the most important; tobecco because it is a subsidy crop, anc potatoes because they are being exported to the Western European narkets in increasing quantities. Other crops account for a very small percentage of the farmers' income and rost of then are from for ferily consumption or for sole in the local markets.

A. Tobacco.

There are two tobaccos grow in Tripolitania: the 'Plain' type and the 'Fills' type. The former, of which there are many varictics, is irrigated and nes a luxuriant growth (see plate 32) but the quality of its leaf is poor; the latter, which is o rain crop ond spurns wotering, is small in size but gives a good. quality oriental leaf. Some tobacco was grown in Tripolitanis even before the Italions arrived but only in srall anounts on a fev of the coostal saniya farns, anu it wos only in the 1920 's that the cultivation of tobacco was in any sense organised. Todioy the inaustry is controllec by the State Tobacco ionopoly which has power to buy and manufacture all tobacco produceci in Tripolitania.

The growing of the oriental tobacco in the Jebel is centred on Tigrine near Gherian, where it was introduced by A.T.I., on Italian colonisiñ agency which developed farins in the Jebel specifically for tobacco production. At present, A.T.I's

396

buildings anc worehouses are in the process of being taken over by the Government sonopoly.
the s.l.d.e now rigicly controls the area of tobacco grown on private farms by issuing permits, and as a result statistics for this crop are the best organised and the most accurate of ony which are available for crops in Tripolitania. However, not all tobacco that is grown uncer licence reaches the Government factory, because a certain quantity is beins snugeled to beypt. Appendix X which gives the ionopoly's buying figures since 1925 illustrates the large number of varieties that are grown or have been from. In the perioci 1935-57 Perustitza, Samsoun, i.ear Dasterr, Eritrean anc Akhisar Jebel tobaccos have been grown, jut only Perustitza has been retained. The remaining tobaccos, Which are the 'plains' type, are nearly all confincd to the Tripoli, Tajiura, Gasr Ben Gashir, Suani Ben Adem ana Azizia regions (see iig. 26), although some grown on the Valdagno Concessjon near Khoms (not on the Jeíara) anci in recent years in the Rabta oasis.

1. Varieties of 'Plains' tobaccos: their characteristics, distribution and production.

Of the varieties included in Appendix \mathbf{x}, only Salento, Fezzani (Tombac when sun-cured), Burley and Brazile Beneventano are grom on private farms at the noment; Dumbarai, Jova, WAF and $G r^{\circ}$ are still at the cxperimentol stage; Erzegovina, Spadone and others have been discontinued. Ihe production and areas of the various varieties during four recent years are

Given in the following table：－
Table 15．1 Proauction and Areas of Tobacco Varieties 1955－58

Variet．	コンジラ		1956		1957		1958	
	ha．	M． t			ha．			m．t．
Salento	144	360	153	400	125	326	40	104
Brazile Benev．	25	56	13	39	－	－	40	104
Fezzani	163	432	160	397	111	280	80	200
Tombec	9	28	17	59	－	－	10	25
Burley	36	108	55	164	80	210	80	200
Maryland．		－	－	－	$\frac{1}{1}$	4	5	12
Dumbera	－	－	－	－	4	1	5	12
Java 1.	－	－	－	－	？		5	12

In 1958 the varieties in order of importance were iezzani and Burley，Salento and Brazile，Tombec，iatyland and Jave and Dumbara．
（a）iezzani．This variety vas introduced into Tripolitanis so long ago that it is now often regarded as indigenous． Its distribution is shom in fig． 26 and in 1958 licences were issued as follows：－

Tripoli	107	licences	11．42	ha．
Suq el Jiumaa	33	＂	29.51	$" 1$
Tajjura	616	$" 1$	62.78	$" 1$
Rabta	129	$"$	5.16	$" 1$

most $\overrightarrow{r e z z a n i}$ tobacco is grow on the saniya farirs in the Tajiuro oases．The plant has an average height of $27^{\prime \prime}$ and usually produces 12 graced leaves anc 4 lower leaves，which are strong anc rubbery，have a high moisture content and yielà a very strong tobacco．Seed is planted in beds in January anc by April the voung plants which are then a fev inches high，and ready for transplanting at the rate of 44,000 per ha．Farvestin ${ }_{B}$ is usually between July and October and average yields ate $2,500 \mathrm{kgs}$ ．of dry leaf at

23i~ moisture content. After the leaf has been air cured by the fermer, it is taken to donopoly warehouses and fermentar and matured in stachis of in, of its poor anc strong quality, \vec{e} ezzani is mainly solả as a chewing tobacco to the Cyrenaicans, although some is used in Tripolitania for snuff and cattle dip, and also for strengthening the taste of cigarette blends.

Tor:bac tobacco, which is much lighter and is derived fron the sun-cured leaves of untopped fezzani, is used exclusively for smowing in the 'archille' water pipes.
(b) Burley. This varioty was introduced Prow Italy in 1947 for the purpose of replacing Fezzani and also to preclude the need to inport flue-cured tobaccos. In distribution it is confineã to the Tajiura, Suani ben Aāem, Azizia anc Gosr Ben Gashir regions (see plate 32 and fif. 26) . The plant is very tall and grows to en averogc height of $78^{\prime \prime}$, usually bearing 35 graded leaves añ 5 lower leaves. 'l'he leaves, which are lishter than those of ${ }^{\text {rezand }}$ are either sun or air cured and then fermented anc matured in stacks of $18,000 \mathrm{kgs}$. Seed, which is imported annually from Italy, is sown in seed beds laic ciown in Jornary and loter young plants are subsequently transplanted ot the rate of about 20,000 per ha. (half the density for Fezzani). Hervest tine is from July to October ond average yields are $2,600 \mathrm{kes}$ per ha. at a 17i: moisture content. Burley üs used mainly as a filler tobacco because it has no
special taste. It will not replace a'ezzani because its flavour is not strong enough for the local population.
(c) Salontr. Haiz IUGlíar variety was introduced in 1928 and seed is still imported onnually from Italy. It is found on only a few farms in the area delimited in fis. 26. The plant, which usually bears 14 graded leaves and 4 lower leaves, grows to an avarage height of 40 ". The leaf is heavy, dart and slightly ovate anc: when harvested is silo-cured and then rature in stocks of 20,000 kes. The averane eensity of plonts per ha. is $16, C C O$ and the averace yiela por ha. is 2,600 lec. of dry leaf at a 19im roisture content. All tobacco from this variety is used for making the dark, strong cigarettes.
(a) Brazile Bonevento. This tobacco is planted and harvestec about the sar:e time as Burlej and solento. Ixcept for its slighter appearance, Brozilc resenbles Salcnto in nost respects anc it has the sane distribution.
2. Cultivation anc Irpigation. For tobacce, land is ploughed. once or trice during the perioci Jonuary to Lorch in preparation for tronsplenting which occurs in April, and since about 90 doys have to elopse between sowins and transplanting, seed beds have to be paic out in January. At the time or harvest the leaves are picked individuell: end then nost of then are strung: together in groups, to be oir-cured in the shace of trees. Throughout its grovit tojacco needs irrigating, but it mast be given gooc quality water of not more than 25 p.p.n.
soaiul. chloricie, otherwise the leaf will be less combustible (3P). Juajiríg ioy the juinle-like character of much of the
 Woter. Levis ${ }^{\text {F }}$ estinates thot the Italians are givins their tobecco crop a total of $13,312 \mathrm{~m} / \mathrm{ha}$., consisting of 32 irrigations oi 146 , whereas the libyons are only applying $5,500 \mathrm{n}: 3 / \mathrm{ho}$. in 20 irrigations of 275 m 3 . The number of irriGations anc the total amount of water given scen rather high. Prinzi anu Iregretti (25) consicier that tobacco only needs $2,300 \mathrm{~m} 3 / \mathrm{ho}$., fiven in $4-5$ vaterings of 400 m 3 fron iay to September; Trigona only suggests an irrigation every 20 days (34 po. $93-86$) anci the instructions given to farmers in 1929 (10) recommend that Salento be given only 5-6 irrigotions between the third week in April and the first week in September. Ronds (26) estimates that Fezzani, after an initial irrigation at transplanting and a 20-30 day dry period, should be watered every 5-6 days, and even every three days if it is abnormally not in midifune at the time of topping; Burley needs irrigating about every 8 days. Rands, however, decided that most of the farmers were over-irrigating, with the result that tobacco plants were too large and luxuriant. To prove this he carefully measured the quantity of water that was given to his experimental plots of Java and i.aryland at Sidi Mesri. The results comunicated to the writer (28) are given in the following table:-

[^3]Table 15.2 Irrigation of 1958 Experimental Tobacco
Plots at Sidi i.esri.

Spacinç of ila.ts	Variety	$\begin{aligned} & \overline{\text { io.of }} \\ & \text { irriga } \\ & \text { timns. } \end{aligned}$	juant. per ミrria.			Renar:s		Yields	
Im. xlm.	$\begin{aligned} & \text { laryland } \\ & \text { (1st.Gen.) } \end{aligned}$	19	310	$57 \mathrm{~m}{ }^{3}$	1,140	untopped	623 kgs	s. 5 reen	leaf
$1 \mathrm{~m} . \times 1 \mathrm{~m}$.	$\begin{aligned} & \text { ivieryland } \\ & \text { (Orig.) } \end{aligned}$	18	$3 \mathrm{~m}^{3}$	$54 \mathrm{~m}^{3}$	1,080	untopped	715	"	"
$1 \mathrm{~m} . \times 1 \mathrm{~m}$.	$\begin{aligned} & \text { Java } \\ & \text { (lst.Gen.) } \end{aligned}$	17	$3 \mathrm{~m}^{3}$	$51 \mathrm{~m}^{3}$	1,020	untopped	447.5'	"	"
$1 \mathrm{~m} . \times 1 \mathrm{~m}$.	Java (Oric.)	16	$3 \mathrm{~m}^{3}$	$48 \mathrm{~m}^{3}$	960	topped	647.5'	"	"
$80 \times 80 \mathrm{cms}$.	Marytand (1 it. Gen.)	15	$3 \mathrm{~m}^{3}$	$45 \mathrm{~m}^{3}$	900	tooped	850	"	"
$80 \times 80 \mathrm{cms}$.	$\begin{aligned} & \text { Miarylend } \\ & \text { (Orig.) } \end{aligned}$	14	$3 \mathrm{~m}^{3}$	$42 \mathrm{~m}^{3}$	840	topped	1,258.5"	'	"
$80 \times 80 \mathrm{cms}$.	$\begin{aligned} & \text { Java } \\ & \text { (1st.Gen.) } \end{aligned}$	18	$3 \mathrm{~m}^{3}$	$54 \mathrm{~m}^{3}$	1,080	topped	525	"	"
$80 \times 80 \mathrm{cms}$.	Java (Orig.)	11	$3 \mathrm{~m}^{3}$	$48 \mathrm{~m}^{3}$	960	untopped	627.5"	"	"

 senting minimua figures because the 1958 sumer vas cool. Irrigations were mace at intervals of 6-15 cays, depending on the locol weather anc suil conajitions. Mands aerees that oway froli the coostal belt nore frequent irrigations will be required ond he quotes ofarmer at Λ fizia who states that Salnto needis fron
 ninus 24 irrigations. Jven in a sumer with a hi.,h incidence of Ghiblis, when it mey be recessory to irriscte fon the sole purpose of sooliñ the soil surioce to prevent the tobacco leaves from beconine burnt, it is dcubtiful if more than $3,000 \mathrm{~m} 3 / \mathrm{he}$. would be applice at Sidi lesri. Sowever, it does appear that rates of irrigation are necessorily higher in the dzizia region than along
the coast where humio northerly wincis are exporienced during many summer days.
3. Wintations or the present varieties oi tobacco ond the search ior suitable nev varieties.

Rost leaves fron the 'Plains' tobaccos are strons and rubbery, and have poor burning qualities, furthermore, they arrive ot the factory anc warehousc in a filthy concition. iew irrigoted toboccos produce good lear, and it seems unlilrely that vith the clinatic and soil conditions prevailing in Tripolitania, that a tobecco will je produced that is of sufficiently high quality to breals into the vorld amiket. Salento is the best tobacco srom on the Jefara Plain, but although it is liked by the local population, it is of inferior quality conpered with that grom abroad. Exports of Burley and rezzani arc out of the question onc theip consurption a.t home is very limited.

Atternts have been :ncie to eradicate the bad burning qualitics of local tobaccos by the application of fertilizers, but without success. The S.T.M. therefore decided to search for foreicn aircured varieties which could replace the local varieties and furnish its factory with a better quality leai. In 1957 trials were carried out on the following varieties (27):-

Dumbara)		Jova Count
G.a'.)	Indian	l:aryland
I.A.F.)		Siam

The results of the trials showed that Java and larylond heo better quality, taste anc burning characteristics than any of the local varieties and at the same time appeared to grow well under local conditions. Java and 1 -arylond were grown in 7958 (28) to produce
seeds for cistribution to forms in 1959.
5. S.T...'s Policy 1952. Before the war the Italians were hoping to develop tobacco into the leading sumer cash crop, but today it has been overshodowed completely by groundnuts. The ionopoly realises thot there is no prospect of a pernanent export of tobacco even if new varieties adapt themselves well to local conditions; the jefara will never procuce a batches of Pezzani tobocco rere exportea to Algerio and Egypt respectively in 1957, but this wos only a chence export due to unsetiled concitions in those countries.

On the Ist Januery 1958 the stocks ir the ionopoly's warehouses, at the present rate of consumption, omounted to 50 wonths supply of Fezzani, 37 months supply of Burley and 32 :nonths supply of Salento. It is clear that with the very limited demond for Burley and Fezzani, the production of these two tobaccos ought to ve dirastically reduced. There was a shall export of Salento tobacco to Italy in 1948 and 1949 , but it is normally of poorer quality than the Italian leaf ana a reduction in acreage is therefore advisable. Despite this surplus of tobacco, production has been maintained at a high level for the last fev years anci some prices heve even been increased as indicated by the following table:-

Table 15.3 Averare prices paid to formers for all grodes of tobacco leaves, rms./kg.

	1056	1957
i'ezzani	120	120
Burley	120	134
Salento	121	125

In 1958 nearly 1,500 formers benefited fror what can be considerea on indirect form of Government subsidy. Fith the above prices and averase yjelds; thn fanmar's incume + ron 1 ha. of rezzani is approximately : ©L300, from 1 ha. of Burley $2 L 370$ anc fron 1 ha. of Salento EL 325 . These represent guaranteed incomes that are not related to the vagaries of a foreign rarket. Tobacco is the most profitable crop grom on the Jefara Plain.

The State Tobacco tonopoly, which is a social rather than an economic industry, has an enormous surplus of poor quality tobacco stacked in its warehouses. Fith the waintenance of present prices n në acreoges the only soiution is to find a leaf that is lore suitable for local monufacture, hence the ionopoly's experiments with sarylanci and Jave. Since these varieties will take several years to prove thenselves, production of 'plains' tobacco will continue to be based on Fezzani, Tombac, Salento (silo-cured), Brazile Beneventano and Burley. The area of lana devoted to tobacco is likely to remain constant for the next few years.

B. Potatoes.

Both for internal anā external morket 'la coltivazione delle patata deviene sempre piul inportante in Libia'. (7). The production of potatoes in Tripolitania was 657 metric tons in 1935 , 4,000 metric tons in 1950, aná 17,000 metric tons in 1956/7. Production is almost entirely confinea to the Jefara Plain, there this shallow rooting tuber finds the good quelity irrigation waser to its liking.玉ach year there is an export which starts in Decernber and finishes
in iay; in 1956/7 2, 282 metric tons of potatoes were sent abroad anc in $1957 / \varepsilon 698$ netric tons (lower because production was only 7, ©00 weiric tons). Production costs are high, but good quality potatoes comand excellent prices abroad if marketed at the right tine. Gargour, one of Tripoli's leadine exporters, consiciers that early potatoes will eventually replece groundnuts as the major cash crop.

The potato industry is nov well established ond imports and exports are closely controllea by the ifazir of Pinance and Eicononics. Only the following varieties are pernitied for export to Europe: Bintje (Dutch), Ficlipse (British) Sieglinde (Germen) and Etoile din Leon (French), the varicties that may be grown for locel consumption and for export to .editerranean countries are: Up-to-date, Arran Benner, iajestic anc̉ Bianconna di ilapoli. Seed potatoes hove to conform to certain standerds anc must be imported from csrtain specified countries; they are brought into Tripolitania from August to September ond again in ${ }^{\text {rebruary to } A p r i l \text {, and are }}$ sold at about fil33 per netric ton.
I. Cultivation (see plotes 20 ond 31). On the better farmed irrigateri lancis of the Jefara Plain the potato is grow in a three year rototion with groundnuts, maize (or another sumer crop) and autum sown cereals or peas. There appear to be three main times of sowing: to take best advantage of the winter rains tubers rust be plontea at the end of September and in October; for an export crop tubers must be sown between the midale of Foveriber and the midale of December so that they are ready for
I.arketine: in the early port of the nev year (these run the risil of fiost damage); spring som pototoes which need more irrigation neve to be put into the ground iror mid-rebruary to midimarch. Potatoes are usually in the ground fron 00-100 doys depending on the date of sowin:
inny formers are growing potatoes, and irrigation is now an accepted part of their cultivation. The need for irrination is eivident in table 4.14, and the number of irrigetions recomenCed by the Departinent of Agriculture (7) is:-

Autum som - obout three irrigations depencine on rainfall.
Sprine sow - about six irrigations.
At Sidi iesri the guturn crop is usually given $4-5$ irrigations of $400 \mathrm{n} 3 / \mathrm{ha}$. so that the maximur amount epplied is $2,000 \mathrm{~m} 3 / \mathrm{ha} \cdot:$ the sprin: crop receives o maximur total of $4,200 \mathrm{n} 3 / \mathrm{ho}$., consisting of 9-12 inrications of $350 \mathrm{n} 3 / \mathrm{ho}$. The former crop yieles 100-150 qis./ha. ant the letter crop 150-200 qis./ho. Yielus on private farms are lower, probably edout 50 ots./ho. ank reflect insufficicnt opplication of fertilizers rother than unaex-irrigation. sev farmers use os nuch fertilizer as the Government farm, which applies 20 netric tons of orgonic manure, 6 ots. superphosphate, 2 qts. sulphate of potash anc 4 gts. of sulphate of amonio, to each hectare of crop.
2. Potatocs on a Coidercial rarin. In 1958 i.itchell Cotts, (rarr. Study no. 1) grev 80 he. or early potatoes for the United Kingcion market. All the seed tubers which were Bintje, were planted in several sowings from September until the end of

Fover:ber and the first potatoes were ready for lifting in December. Cultivation methocis on this farm are good, and the
 potatoes is considered a gamble because cold spells in early spring can retard the crop sufficiently for it to meet competition Iron the Canary Islancis, Algeria onc Sicily, and in the 1956/7 season i.itchell Cotts lost $\mathrm{EL} 20,0 \mathrm{O} 0$ on earjy potatoes. 3. Prospects for Pototoes. The united kinguor is the ain market Icr potatoes. 'The IS57 exports vere valued at $\ell=76,000$; EL69,00C to the United Kingdon, ELT,037 to rrance and EIt 51 to Itcly. The light sancy soils yielcing a clean anc attractive tuber, the favourable finter teriperatures onc the proxinity of Europe: make the Jeĩora Plain an ideal area for the production of carly potatoes. The best norlet is undoubtedy Iondon ond it is not surprising thot the entry of Tripolitenia into the early potato trace is Lie result of the initiative oi British
 so populor in London, that it has investeci in a gradine plant in Tripoli and nov exports grece potatoes in 20 res. baskets. ${ }^{*}$ It is essential that the export or potatoes should be in the hemes oi highly specialised and capitelised firms, and fortunately several are operating in Tripoli at the moment. Potatoes must arrive in Eoncon in ircbruory onc i.arch, when they cen cow one ge lb., wissing this meriet meons selljng in competition with Conery Isponcs mather potato producers, mo prices árop to about 3 d lb. As long as producers give

409

suificient irrigation, use the best cuality woter (sce table 3.6), practise a rotation anc apply aciequate fertilizers, anc lifi ine pocavoes when they are shall and soft-slininned, sales will increase o: the Loncon narlat onc the potato could well replace the grourdnut as the leading cosi crop. C. Foraze Crops.

In the areas o: sedentory cultivotion fost animels ere lept for work, althouch a limitec numer of cows produce inill tor Sripoli: it is in the Dune Jeforo thè the mojcrity of sheep and تods ore reared. Hhc woring aninals are hainly fed or lincerne ond this crop is grom videly in the coostal zone. It will tolerate both high temperatures and poor cuality watcr, but it is a high water consumer and its ropic erovth anc numerous cuttings calls for frequent irrigation. It takes about 800 m 3 of water to produce 10 qts. ofi lucerne (32).

Sofsia, which is the locel name for luceme, is the najor fodder crop on the saniya farms, and without it the cattle, carels anc donlreys that operate the dalu voulc heve very little to eat. in preparing his land for safsfa the Libyan former applies animal Lianure at the rate or 50 metric tons per ha., ance after this has been ploughed-in, he sub-āivides his land into jedawl. The local seed is either the Khobbesi variety, winch has a large leaf onc gives heavy yielcs, or iefeli; which is a sinaller variety and gives lower jielc̄s. If a farrer is crowing his safsio in an area of sweet water he goes to Tojiura for his seed, but if he is growing it in an area of saline vater he goes to El ienshia.

410

Seed is usually sown in the spring fiow harch to the midule of April and after $40-45$ ciays it begins to foria flower buds; two days Iater tile iarmer mares his first cutting, and then subsequent cuttings at intervals of 20-25 days in the sumer and $30-40$ days in the winter. This continues for 3-4 years ond then the crop is plougheà-in. A gooù crop of local lucerne vill give an average of 8-10 anci sometines eveil 12 cuttings, with a production ranging from 2,000-3,000 qts./he.

Lucerne requires water throughout riost of the year. Prinzi and inegretti calculated that it needs a total of $10,800 \mathrm{~m} 3 / \mathrm{ha} .$, given in 36 irrigations ci 300 m 3 ; table 4.14 suggests a total requirenent of $17,300 \mathrm{~m} 3 /$ he. with jeaula irrigation. Lewis estimated that Libyan farners were giving on averace ar:ount of ع,908 m3/ha. and the Italian farmers $14,756 \mathrm{~m} 3 / \mathrm{ha}$.
rorage crops are grown on all the Government farias, ${ }^{\pi}$ primarily to feed t'ac animals at Sidi nesri and Garebulli; they include mized vetches, oats, peos, carrots, barley, trifolius and lucerne. Nearly all of theri are som between September and October. Lucerne may be sown ony time fron October to i-arch, although better results are obtained from the auturn sowings because the roots are more fully establishec by the advent of sumaler. All crops are heavily manured, and they are usually irriegated once a weé with $500 \mathrm{~m} 3 / \mathrm{ha}$. during the surner although every four days if the weather is very hot.

Lucerre is by far the nost inportent forage crop and will
$\%$
Infornation supplied by I. Garuccio, 29.10.57.
rel:ain so in the future because of its tolerance of brackish weter (see table 3.6). As yet the local verieties have proved theliselves superior to any exotic varieties. iost of the saniya farts Erow $\dot{-1}-1$ ha. anci the haväa up to 3 ha. The production of Lucerne will renain stable at the present level. The bis aisadvantage of the crop is its high water needs, ori: this hos led worters in Israel to experiment with the mangold 5 they heve shom thot rith only half the water recuireirents of lucerne, the mangolu can prociuce up to 500 qts./ha., which is considered a far efficient use of water. vengolds ar: plantec in auturn onu hervested between April and Ausust. The search for a hion yielciin: winter forage crop should be intensified, because there is no reason why fodder could not be grom in the winter and stored for consumption in the sumner, thus avoiding the use or large quantities of precious water in the hot season.

1) ' 'ronotoes.

The tomato is the next most inportant vegetable to the potato anc: it is grow as a commercial crop on cuite a nurber of farms, although never covering more than a few hectares. Some tomatoes are grown all the year round but the main sowings are in winter and spring. The spring crop, whici is the most important, has a growine season of $3-4$ months and is ready for harvest in June. On well managea Italion foriss with \exists density of 30,000 plants per ha., yuelas averəge 30c-400 ats./ho., but average yields on Libyan farms are only $50-80$ qts./ha. 'he main varieties that are F Isreel's Honcer Croj - tangold. Vorld Crops, April, 1959.

Grown on Italian farns are Costoluto wich is reacy in February, ond iarwande, Conet and San iarzano which are harvested in April,

The crop ineeds ilrigating all the year round; $10,000 \mathrm{n} 3 / \mathrm{ha}$. for the autum-sown crop from October to liay, and $14,400 \mathrm{~m} 3 / \mathrm{ha}$. for the spring crop fron iarch to June/July.

I! o recent production figures gre available, but since production averaged 9,200 metric tons per anmur between $19{ }^{2} 6$ anc 194, C , it is not unreasonable to assume that the present production in Tripolitanie exceeds 10, UCC metric tons. Eost of the tonatoes are srom for local consunption but an incressina quantity is beine exportec. Dxports, which go rainly to ralta and Italy, start in february and finish in June or July :-

Table 15.4	s:onthly Exports of Toratoes in 195ε
Lonth	Quantity (metric tons)
February	11.2
iarch	6.4
iay	30.5
June	0.9
July	1.4
	Total
	58.4

Because host of the tonotoes producea are subject to splitting and many of ther are very large they con only be used for culinary purposes. Reference to table 3.6 shows thet the tonato is high on the list of :wouerate salt tolerant crops, and with the introबuction of improved varieties anc the construction of a caming factory in Tripoli the production or tomatoes shoulc expand. A fev of the farn studies alreaciy indicate a snall increase in the
acreaze of tonatoes in the Inst fou years, and the same trend is evident on I:PS ferms, elthourh very slight:-

1a01e 1 2.5 Area of Tolatoes on I.PS roms.
SettIement
Oliveti
Bianchi
Hasinien
Giorciani
dicca

$1953 / 4 \quad 1256 / 7$

-	-
23.72	19
0.1	1
20.97	22
12.72	16
57.58	60

正. Other Vegetables.

A lare collection of vectables arc grom fo: farily consumption ond to seaz on the locei mrats. the most inportont are: peppers, melons, broad beans, onions, cabbaee, cauliflower, carrots, cclery, cucumbers, egE-plants, articholes (see plate 30), asparazus and garlic. On the soniyo far: sthe vegetables are all interplonted in a jurbled fashon, but on the lerger farms each crop is founc in well defineci patches that to;cthen cover a shall ored of up to 1 ha., sonewhere near the farn house.
hescovich, the \because A. \mathbf{H}. nerneting export, is convinceu that the
 lote crops of carrots, peas, asparagus onc cauliflower. Early vesetables are o high incone crop thot is ready for shinent from Tripcli up to 30 deys earlier then most other producing regions in the northera he.isphore. The export of early vegetables, like that of potatoes, roquires hishly specioliseci tracirs companies with large financial resources. Procuce must be marketed exactly when planned and this is very difficult with the infrequent visits
of refrigerator ships.
By searching through the statistics available in Tripoli it was pussinle to trace exports of carrots, peas and asparagus. aitchell Cotts Ltd. seems to be the onlypioneer trying to market early vegetables. Asparagus (variety Argenteuil Hatil from the Seine-Oise region of France) was first grow in post war years at Sidi hesri, but in 1957/8 intchell Cotts Ltd. grew 6 ha. of the green type of asparagus that is found in southern Irance, and then exported it from the middle of December to the end of February. In early 1959, 159 kgs . were exported by the company, probably by air for when questioned in 1958, the managerent stated that this method of transport would have to be used in order to overcome the shipping difficulties. iitchell Cotts is also growing early carrots. On the Jefara this crop is sown in October and is available for export froi. éanuary to iay; in this period in 1957 $232.1+3$ netric tons were shipped to Ioreign nerkets. Broad beans are quite an inportant crop on sone farms (see farle stucies) but there ja no export anc much or the crop is fed to animals. $F^{\text {r }}$. incellaneous Crops.

1. Fenna. Defore the war, the leaves of this aye-producing plant were exported to the wicrie itast, to Oarseilles, and to other =iorth Airican countries, but towey fev famers grow this crop snci exports are insienificant. There has jeen o serious cieterioration in the guclity of leaves exported in recent years anc this accounts for the fall in ievan for Libyan hema. Tho volue of exports vas $\mathcal{E L J}, \varepsilon^{4}+1$ in 195\%: $2=142$ in 1955, and $2 L 23^{4}$
in 1956. IIth the general contractio: of worlu cier:anc for heme the crop will probobly aiseppear prow the coastal oeses in a few years tine, cxcept for a few very sual areos which will supply loco? ciemac.
2. Straverpies. Sholl cuentities are procucec fron the enc of iovembor until rarch, but the fruit is small anc very sancy. Send is on excclient neaiu. in which to grow the strevberry and buch of the magish cros is shom ou light soil, but in Irripolitoni: sonc is constantly iveinc jlom \mathfrak{y} bout enc it clings to the fruit. If the varicties ore chensec, onc if the plont is protectec Iron sanc, muJchec, spinl:ler irrigotec onc sltocether given constant anc shillec attention, a fruit suitable for the Loncici Christmas norket coulc be produced, but it voulc have to be transported by eeroplane. There are so aran difficulties anc pit-folls in the production of a migh-class strawberry, that it woulć need a very brave trading company to atterpt comercial export, and for this reason there is not likely to be an expension of the area under this crop.
3. Plovers. These offer better prospects for the exporter than the strawbery. While the flowers in Europe are condemned to o hot-house existence, with all the cost that this involves, those on the \quad efefar Plein grour freely in the open throughout the winter and therefore con compete with forced flowers on the muropen markots. At the moncot Libya is oflower importing country but lascovich is cortain that glodioli, in the period liarch-June, end poin\#settias ot Christmas, would

416

sell well ot Covent Ĝarden.
4. Ixperimental Crops. Every country is searching for nev varieties or new crops which vill give better rcturns. In the introduction, the possibility of increased exports of agricultural crops onc the reduced import of rooc goods wos emphasised as a mears or destroying the permonent adverse trade balance.

One of the country's largest food inports is sugar, currently runinin at about 2,000 metric tons, and this has encourogec several experts to advocate the introduction of sugar beet. The crop hos much in its favour if it is from Curinc the wirter half or the year, and its acaptetion to hot and arid concitions is borne out by the fact thot 60; of all refined sugar produced in the U.s.A. comes fron irrigated beet (9). In the Imperiol Valley of south Celifornia it is plented in August and harvested in the following une; in this area its trenspiration rates ore only half those for lucerne and two-thires those of potatocs. The most volueble attribute of the sugar beet is its tolerance of salt water anc it heads the list in table 3.6. There is no possibility of growing this crob for export because oi high production costs, but it could be grown by farners to supply a local suabr monopoly. This vould eliminate the need for inporting sugar, and at the same tine woula proviue the farmers with another cash crop, which unlike groundnuts anc tobacco, woulc only need supplementary irrigation. It could become another subsidy crop. Rascovich consiaers that more attention should be paic
to linseed. ت̈e points out that the cost of production and the gields of this crop, are very much the same as for wheat, but it commonds a much higher price on the world markets. Finseed hos a very deep roctine system anc uncer dry cultivation will yield 10 gts./ho. in an average year ond 20 qts./ha. in a favourable year; in contrast wheat yielcis rarely exceed 5 qts. ha undor similar conáitions. Furtherrore, linseed is wore drought resistant then whoot onc since it ripens three weeks earlier, it wisses many of the spring Ghiblis. It has been crom on a Eew private farms, anc: also at Sidi iesri, where the Altanure variety has yielaed 20 qts./he. under dry cultivetion and 30 qts./he. under irrigation. Sesame, which could supply a cheaper edible oil than olive oil, coula be developed as a profitable sumi.er crop. Bxperiments have been carried out at Sidi resri on rope, ${ }^{\text {and }}$ sunflower, but no results have been publishec to indicate whether these two are suitable for introducing as sumer cash crops. Cotton has been tried, mainly becanse of its tolerance of salty irrigation water, but its quality was very poor and wholly unsuitable for export.

419

CGAPME 16

Surnary ond Conclusions

A. يй

In order to fully eppreciate the changine concitions of agriculture on the Jefora Plain it is necessery to reviev sore of the nore inportant observations made in the text.

The possibilities of = resion arc cetcrinec in part by its yeople and with sequent occupance different types of economies devclop. At the turn oftine century iorthern Pripclitenia was littlc developcd enc. Eernet, mitine in 1912, aptly cicscribes the coastal arees 'Au pieu ce le :ner Ies oasis so succè̃ont cie Lebcie à Is fontière tunisienne, neis en arrière, le pays est souvent semblòle à un désert, ciésert en petit, neis qui en a tout l'aspect et le ceractère'. Whus wes the Jefara Plain when the Itolians arrived; a fer coastal irrigated oases and inland a vast sandy eree vith frozing animals and ofev barley patches.

Lile the Israelis in the wegev in nore recont yoars, the Itnliars soon initiated zn enercetic colonisation progranre, ana transiomed lerge arees of the Dune Jefero and some of the unirrignted lanas bordering the coestal oases. In the eorlier stages most or the develowent was by concession ferners, but later the Itelian stete wos cirectly responsible. It was a plannec agriculturol econony based on the ciry cultivetion of tree crops such es olives, alroncs ane vines, ond fev holảings hea riore thon 1 ha. of irrigeted lond. During the perioc of intense cołonisation life on the saniya farms in the coastal oases
changei very little.
After the war the shortcoinings of dry farling were revealed as more of the trees conine into procuction gave insopointing yields. Interest in the possibilities of irrigetion increased, and as a result there hes been a significant expansion of the area of irrigotec lanci diring the lost ten years. One of the ains of this study wos to establish thot there hac in fact beon on incrose in irrigation. Results.showed thot more irrigation is practisec than wos enticipotec, sufficient in foct for grouncnuts to become the wajor export. I.t is worthrhile to su:marise the rain evidence for the increose in irrigation:1. Sales of irrigation equipant hove been at a hirh level For the pest five years.
2. 1 ore electricity has been sole to agricultural consumers in recent years.
3. Leny loans have been ede for the purpose of irrigation developuent
4. Defore the war tine olive ves consiciered a dryland crop, but today an increasing number of trees are irrigated.
5. Citrus cultivation is steadily exponding.
6. Vines and almoncs, drylenci crope, which together with clives formed the basis of prevar osriculture, are now decinine in numbers.
7. Groundnuts have developed as the leading cash crop since 1945.
\&. :heat and barley are given supplementary irrigation by
hany forners in the aree of secentory cultivotion,
9. .ost of the other fielc crops are irrigated; the area
 and tomatoes expands.

The exponsion of irrigation hes been largely the result of private enterprise, because after the war there vas no rigid control of agriculture by a central sovernmont. Some of the factors operating to encourarje the shift to irrigetion aro:-

1. The climate is unsuitable for profitale dryland cultivotion.
2. ifith drylence cultivotion tie light, sendy soils, which precioninate in the area, arc easily emoded by the wind.
3. Within the aree of the Tyrrheniar deposits gooc. reserves of high quality uncergrounc water are to be found.
4. Crop yields are much higher anc more relieble rith irrigation, onc at the some tine plents and trees oiten mature earlier.
5. With irriéation the fumer has flexibility because he has more control over production factors. He cen grow high incone crops that five quicl returns. Irrigation is the only way the snall farner can make noney; this apples to other countries besjdes Libya and Gottman (2) writes 'post-var experience in Palestine hes proved that only by irrigation can a famer be assurec of an incone enabling him to live on a Zuropeen stancare'.
6. It is auch easier to obtain loens for irrigation developnent, because bankers consiēer dry foring a 'risky business'.
7. Cheap power is available to the former. He can use electricity at a low tariff onc: buy customs free diesel oil.
8. The desire to expend irrigetion on the Jefare Dlain coincided with the wiciespreac eppearance of sprinlerer irrigation inmousnour the worlct. 'Iociay obout 80 , of Israel's citrus groves are sprinliler irrigoted (20). Sorinilers are iceally suited to the Jefara perneoble soils and the need to irriZote ficnc crops that arc growinc between trees. The expansion of irrigation is no:: steadying. It is inpossible to sumarise oll the resons for the but the followine are probobly the rost inportant:-
I. Falling vater-tables anc salt-water intrusion are evicience of overgunping. Cary ir his stuay or the efriculture of Gaudi Arabis (4) remorlis: 'the criticel anc. nost frightening fector is the relationshij between nechenicol pover anci potential water supali'. Such is the case on the Jefara where a laree nurber or pu:ps have been instollea onc the voter reserves have been overpu:ped in some ares. मinis probler of a falling weter-table is comon in anst regions which rely on underm grounc sources for the supply of infigeticn vater. One sixth oin the U.B.A.'s irrication water cones fror uncierround and the sost imortont orce where it is utilised is Californio. Here therc are :..any eaomples of fallirë water-tables. In the Comare area oi Ventura county, 5C riles $\because \because . \quad$.I. of Los Angeles, the inrigeter cultivation of lucerne, citrus, wolmuts, sucia bect, vceetobles, and ling beans has been expended consicerably in rocent years, anc now the watertablo is belov sco-level in nost localities and seawater
is iovina slowly inlenc. The position is not as critical on the \ddot{e} efar? Ploin, anc it is onls in localised areas that the water-table has fallen. There is no real danger or an arhaution or undersmond roserves becouse recherce is
 areas to ensure thet no sea-mator is alloved to infilytrote inlenc.
9. ..ny formers however have lost the iuiviol chthaias for irrörtion, not becsusc of afeline weter-tole, but beceuse of folling yielis, copecislly ou grouncuats. this is the lowical result che woulc expect fron the nonoculture oi an drrigated crop. The loc': or a rotetion anc insirnificont applications ci fertilizers, two essentiols that so with iarigation, have given lor yicles onc crcouragec the cicvelonnent oi a dericiency cisease.
 of some of the aricultural exports hes declined; the farner therefore receives less money for inis crop.

E. Sonctusions.

Tavine: thus establishec the nature of the post-war agricultural trencs, it nov remains to succost possible lines of future developnent. i-any writers advocate an expansion of irrigation becouse they agree with Cederstrol. 's dictui. 'uncercround water is the liey to oreal visorous economic life!. Ut is quite clear that irricotion hos many acivanteges anc that., if left alone, the private ísmer will continuc to expand his irrizated area.

- corine in zinc thot the Jofare zann ie the rost inyortant
 its ceveloprext : Bhounc the irwinetce aren be reauced na future crop procuction concontrated on aryerc trce crops? Or shoule the irrignter sren be o-pencec ? mexe are two rocuisitos of cevelopent policy: exricultuer ust be expencec

:Iith these comioions in ainc, whe presont itelc crops must
 neocs to remain stotic, periaps reducoc in areas of soriously falling water-tables nar cutencé elsember. The Ereatest e"phosis shoulc be placec on winter ilale cnope, becouse they
 raid to wheat and suar beet. Linsecd could be introduced as ancincr fieli crop. -ovever the combimed cultivation of
 are inpovec. Tinoushout this study there ins incen no real Fefencence tomials in the areas oi secemterj cultivation. This ie iccause at prosent the bailal has ho place iat the econony of the incivicual famor with the result that the soils, which are alreac; low in orconic motter, ore givea very little inarce This Cericincy is conon in other countrios enc Bunt writes (6 p.3(3) 'The histrie connon to ell those irrigetec sectors, is thet lucaotive cesia crops anc being arom bafoic the conservation of soil can ive assureci \mathfrak{y} a proper developnent of aninol

Susbracy', . .anc fodder crops anc aninds ore a necessity, and wht: tiese me the followion rotetion, Eiold crops can be jrom

a) Somercial croz - groundnuts, potatoes, tobacco.
b) Ceneans
c) Leguines
(i) Legnes

 witcr coos not consicuch thot return to the Itolion syster, which relied on drylnce tree crops, will in ony way solve the problea of a low stencore of livine on aciverse tracic belance. Development nust proccec in areos beyonc the present limits Oi recentay cultivation anc this cen only be achievec by cirect
 the tulucst scase oi the worc staze rinere forestry ends, so cepencent is agriculture on those thincs winch trees enc bushes con provice', ruch of the Bestem Jefary aceds afforesting so that the aray thousands of hectores of duncs cra be stobilised, before shall areas ca: be cievelopec for arriculture. In certain districts hovever, fhere the unes are not eatonsive anc the aoisture concitions ere nowe fevonable, slou Growize tree crops which are $\underset{\sim}{x}$ D/96.

ecclogically suitec to local concitions - carobs, pistachia anu coctus - shoulci be plonted and shifting cultivation ebendoned.
 Weter-spreacino is possible. Fǐ. 27 shows the rost fovourable Gistricts anc it is in cless l anc 2 oreas tiat the cultivation of apricots and peaches, and winter cereals, shoulc be nossible if water-spreading is practised.

The Jefora lying west of the 31 .enshar hills is o very diféicult oree and for the moment the only policy is to dig rore vells in on enceavoui to rec'uce overerazing and thereby facilitate
 Lr. Foyle's atternpts in Israel at irrigating zrozing plonts with brockisi water.

Finally there aze certain areas in the Dune Jefara, some of which are state owed (3) that are at present under shifting cultivation but culd be developec fow irrignted forlire. The rost favourable aree is to the south anc west of Dienchi where the underground water reserves are substantial. It was to this area that Anmed envisagea on extension of the electricity grid for the cieveloment of imigatec farinio (see fig. 19). The inazara or Africulture hos selecteci an orea knom as Babdiya, which lies between Azigio enci sicca. This will be oevelopec similarly to -aamoura, sici it is hopec will set the pattern for oll future development on the Jefora Plain. It is provosed that 115 farms of 4 ha. each shoulci be ceveloveci. Nater is aveilable in the first aquirer at $30-35$ metres belov the surface and in the second
aquifer 60-co metres below the surface. It is intenced that each well will hove a capacity of $40 \mathrm{~m} 3 / \mathrm{hr}$. onc will be fitted with four 5 h.p. clectric purns which will supply water for four farrs. Ittigation will probobly be by gravity neans although sprinklers are beine considereci. Dacin form will be completely irrizable and will be diviced into two perts; one for the cultivation of wheat and barley in the wiater anc the other for groundnuts and other crops in the sumincr. Treesmoinl: olives, citrus, soft-shelled variety elnoncis, anc palms rill be plonted but will not exceed 200 por ferm.

This project is envisoged os the proto-type of future settlenent schemes which it is hoped will help in some smell neasure to improve the livinc conditions of the rural population. The nev faris will be based on a mixed type on economy which inclucies trees and field crops, all depending heavily on irrigation. Irrigation is the most satisfactory method of mol.ing the dry land smile and is nov on intecral part of Jefaren agriculture.

Plate 21

Typical Italian Concession Land

The land is sub-divided into large rectangular blocks each with many olive trees and occasionally almonds; the dark grey patches indicate areas of groundnut cultivatiron. A mature citrus orchard is evident near the farm in the right foreground and in the centre of the photograph young citrus trees can be seen to the right of onother farm. Note the tall eucalyptus along the roads and tracks, and the sandy nature of the land, particularly in the distance.

Plate 22

Approaching Idris Airport from the South

A good example of dry cultivation. Several rows of vines can be seen growing between the widely spaced, mature olive trees and in the distance is the building where the wine is actually made. The vine is a hardy plant which is well suited to the heat and aridity experienced on the Jefara Plain, but unfortunately the local demand for wine is declining and many farmers are destroying their vines.

Plate 23

Dry Cultivation of Olives

The olive has been grow in Tripolitania for many years and was an important tree crop in Roman times. When the Italians started colonising they brought their olives with them and planted them on their concession and demographic farms. The mature trees in the photograph were planted in the middle 1930's; they are widely spaced and the land between remains fallow although ploughed several times a year. Today there are few large farms on the Jefara Plain which rely entirely on the dry cultivation of olives.

Plate 24

Grafted Italian Olives near Gurji
Of the large numbers of Italian olives planted prior to the 1939/45 war, many are now giving disappointing yields; since the Jefara has a drier and hotter climate than Sicily and southern Italy this is not surprising. Answers to questionnaires reveal that in the immediate vicinity of Tripoli and round Garabulli in the east, areas of over 300 mms . of rainfall, Italian olives give fair returns under dry cultivation; elsewhere many farmers have decided either to irrigate or graft with Tunisian varieties.

Plate 25

Castor Bushes in the Inner Jefara

Castor plants need careful handling with occasional vatering when young, but when mature they are hardy, need little attention and can be used as dune-fixers. In many parts of the Jefara the castor is growing wild almost like a weed, and is seeding itself. Since castor oil is still in high demand on the world market for medicinal and lubricating purposes, there is no reason why the export of castor seed should not be increased. Further agronomical research is needed however.

P1ate 26

The Pistachio Tree (Pistachia Vera)

This is a nut tree which grows widely in the liediterranean and the liiddle East, and like the almond is a useful source of food; there are however only two small plantations of this tree on the Jefara Plaizn. According to G.B. Mazzocchi, the F:A.O. horticulturalist seen in the photograph collecting grafting material, the pistachio is more resistent to dry conditions than the olive, but since it takes longer to mature and needs protection from winds, it has not attained the same economic importance. The tree in the photograph was grown from seed planted 26 years ago.

Plate 27

Groundnut Extension Trials at Sorman

The groundnut is now the major cash crop in Tripolittania and experiments have been carried out at Sidi Mesri to compare the yields of local varieties with those from abroad, especially U.S.A. In 1957 the American extension officer at Zawia planted North Carolina, Virginia Runner and Virginia Bunch varietires on a Libyan farm just west of Sorman. Such extension work shows the local farmer the correct way to grow groundnuts and it also gives an indication of the likely results to be obtained from foreign groundnuts in areas away from Sidi Mesri. In the photograph the crop is being inspected by a Palestinian extension worker.

Plate 28

The Barley Harvest in the Inner Jefara

Barley, which is grown $\mathbb{E n}$ the Inner Jefara by the Libyans, is entirely dependant on rainfall and as this photograph shows, yields are very low. A small area has already been cut and is seen stacked in the top right hand corner of the photograph; in the foreground the barley awaits harvest. The Jebel can just be seen on the horizon and castor bushes are evident in the fiddle distance.

Plate 29

Young Maize Plants

In inland areas, where the first water-table is
 Libyens, water being raised either by a small petrol pump or wind pump. This photograph, taken in early summer, shows part of one of these farms. The tree in the left foreground is a lemon, that to the right of centre a tangerine, and those in the background are olives; the maize growing in the irrigation squares is a subsistence crop.

Plate 30

Irrigating Artichokes in the Ain Zara district

Although this crop is limited in distribution to a few private Italian farms, this photograph is important because it emphasises two significant facts: firstly there is scope for the development of early winter vegetables for the Western European market; secondly such vegetables must be given supplementary irrigation. In the photograph the artichokes are being irrigated by the furrow method and the Libyan labourer is plugging an earth channel in order to divert the flow of water.

Plate 31

Inspecting Autumn-sown Potatoes

The increased popularity of potatoes, of which Dutch and English varieties are favoured, is due partly to the fact that two crops can be grown during the winter rainy season. This photograph summarises the cropping trends on an Italian Consession farm which is now owned by a Libyon. In the right background are moture olive trees whilch were originally planted under dry cultivation; in the left background is a citrus orchard planted just before the last war; and in the middle foreground and background potatoes are growing between immature orange trees. The sprinkler piping is evidence that the potatoes have recently been irrigated.

Plate 32

Burley Tobacco

There is more accurate information available on tobacco than any other crop because acreages are rigidly controlled by the State Tobacco lionopoly. All "plains" tobacco has to be irrigated and as a result grows rapidly and gives high yield, but its quality is poor. The main varieties grown are Burley, Salento and Fezzani, although efforts are being made to introduce Maryland and Java. The total area of land devoted to the crop is small.

[^0]: $\%$
 Personal communication.

[^1]: ※ Lewis, R. 'Irrigated Land-use and Irrigation Report'. L.A.T.A.S. Libya.

[^2]: * Klages, K.H.W.: 'Esological Crop Geography'.
 Θ Lewis R.H.: 'Irrigated Land-Use and Irrigation Report'. L.A.T.A.S. Libya.

[^3]: \bar{x}
 Lewis, R.H.: 'Irrigated Land-Use and Irrigation Report', L.A.T.A.S. (Point IV), Libya.

