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e extend the results for asyamptotic s-channel
vertices in terms of covariant couplings to high spin
fermion and boson production. The formalism is applied
to diffraction, considered as proceeding by pomeron
exchange. It is found that the pomeron couples in a
similar manner to a vector object. In particular the
hypothesis is made that the pomeron coupling to the
N — ¥ vertex isZk . This is supported by fits to
the N —» N (%, 1520; %, 1688) data. The
behaviour of the pomeron as a vector cbject is understood

in the quark model and it is seen that most of thsz fermnion

.

daté can be described in an SU(6)w Guark model. The
breakdown of the approach for boson diffraction
dissociation is noted, as spin orbit terms are needed to
reproduce the data.

A relativistic quark model 1is presented for
mesons with spin Y, quarks which is closely related to
the non-relativistic harnonic oscillator model. The
conventional quark model spectrumn is reproduced with
particles lying on straight Regge trajectories, although

the masses predicted for the PC

i

+| states are large.
The most interesting feature of the wave-functions is
the natural inclusion of Spiﬂ—orbit terns which is
suggestive of the "curreant” gquark approach. The
comparisoﬁ of tne model predictions with the data is
encouraging and they include meson decay widths for
emission of a pseudoscalar or a photon. Diffraction

digsociution iIs also concsidered in the nodel and the



inclusion of spin-orbit interaction rectifies sone of
the difficulties of the SU(o),model applied to meson

dissociation.
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1. A survey of some topics related to diffraction

scattering and quark models

1.1 Introduction

| The aim of this chapter is to survey some of
the background material to diffraction scattering and
quark models, which are the main subjects of this thesis.

Diffraction scattering exists in particle
physics in analogy to optical diffraction because
particles have wave properties. Just as in the
optical case, the main features of the scattering may
be deduced without invoking any detailed dynamics.
for instance, if the notion of diffraction is to have
any meaning, it must be possibie to relate the total
cross-section and the diffractive slope. Also simple
arguments predic% wnich states may be produced
diffractively as well as the helicity structure of the
amplitudes. Finally the observation of approximate
energy independence for diffractive cross—sections is
easily made plausible in this view.

It might be expected that the above predictions,
which are in impressive agreement with data, would emerge
as a matter of course from more sophisticated theories,
but this is not the case. The cnaracteristic procedure
of present dynamical, but nevertheless partial theories,
is to relate diffraction to other processes without
autoﬁatioally incorporating any physical concept of

diffraction. Most notable in this resvect is Regge

\
S~ -
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theory wihere diffraction is unhappily united with
particle exchange proéesses. Clearly the correct
method is to build up the diffractive amplitude from
models of the inelastic production processes. This
is the procedure of the multiperipheral class of models,
however the approximation scheme is unrealistic. The
-most promising approach is the vector meson field
theory of Cheng and ¥Wu and it is interesting that it is
this theory wihich is most closely related to the naive
diffraction picture.

Given the hypothesis that hadrons are built
up from three basic constituents, the quarks, then the
SU(3), spin, parity and G parity spectrum of hadrons is
reproduced. This success is made all the more
incredible by fhe fact that no free quarks have ever
been obsefved. It is still possible to hope that
quarks exist but have very high masses, certainly
larger than 4 GeV, but even this is unlikely because
one of the quarks is stable and so should be detected
in cosmic rays if quarks can be produced at all.
Consequently quarks must be considered in some way
inseparable from hadrons and at least in this sense
fictitious.

Presumable quark model results will emerge
from some future bootstrap schemne, but in the meantime
the quark model may be used to abstract results,
without of course extracting so much as to imply
physical quarks. The most magnificent success of this

approach is the Gell-Mann current commutation relations
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and the associated chiral 3U(3) @ SU(3) charge
algebra. -

It is interesting to spectulate on wnich
bootstrapn scheme is likely to accommodate the quark
model results. The basic bootstrap idea is tco assune
that there exists a unique set of particles, tne
'physical ones, which‘are consistent with unitarity,
analyticity, Lorentz invariance and crossing. The
conventional approach to this hypothesis is to consider
a limited sector of the particle spectrum and attempt,
iteratively to produce consistency. Clearly any finite
scheme like this is inadequate because of the large and
probably infinite numbers of particles in the actual
spectrum, all of which are in some sense equally
significant. The only reasonable way of including
democracy is to assume all the particles from the
beginning in some approximation to the physical spectrun
and to test whether a solution of this forim can be built
consistent with the general principles. This is the
approach of the dual models where the first
approximation is to treat all particles as stable, or
equivalently to postulate straight Regge trajectories.
With this assumption a finite set of models, the dual
models, can be constructed satisfying all the general
conditions for a physical theory except unitarity.

The spectrum resulting from these models is very
interesting because although it fails to include SU(3)
symmetry, the spin, parity and G parity properties are

the same as the guark model. Of course there are many
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defects of the nodel including anonalous space time
dinmensions; however, -given the spectrua success it
is encouraging to hope that the successful quark
. model results may energe in dual models.

This conclusion is reinforced by the fact
that present dual models already have a parton
interpretation, and thus guarks and bootstrap pictures

may be complementary ideas in a future theory.

1.2 Diffraction scattering and the optical analogy

To obtain a general idea of the type of cross-
sections typical of diffraction we begin by considering
the most extreme case wnere nadrons are assumed to act
lixce comnpletely absorbing blacx discs. In the impact
paraneter representation the scattering amplitude fer

elastic spninless scattering is given b
P £

T(g)- Fa (bt ew) )

b
where t(b)z o % )
k,is the impzct parameter, Q. the momentum of the
outgoing particle and ?((b) is the eilonal. The

condition for complete absorption within a radius R
and no absorption outside is

" ~1 6<K (J-2)
te)=1 o L>R. |
Substituting condition {(1-2) into equation - 1-1) gives

the result

R _\CLLJS‘W\QC&-:(%

‘ (% C5q gbc f dd e = gni\}?(Qtr,(gws-.\ ) (1-2)
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I'ne differential cross-section is tahen given by
- o oY
gg‘ - _n.fp\‘r- l T! (g ]\.Qv»’\e) (I-Cf-)
€ o\,ﬁgm(g

which may be re-written at small nonentum transfer

in the form :
ds ~ Trre‘*gza[o(i-'_é ) (1.5)
ok *
—f <L
IT we take the nadron radius to be given by
the pion Coapton wavelength Rﬁu;%-«v-;F nat. units
(Y
then we correctly estisate the diffractive slope to be
approximately 10 nat. units. Of course this model
predicts oscillations in the differential cross--
sections and tae wrong relationshiv betwesn the elzstic

and inelastic cross-sections (Oluﬁ :.Z_QE ) Ltut these

detzils depend strongly on the sharpness of the

The simple shadow scattering picture also
predicts s-channel helicity conservation (S.C.4.C.) for
elastic scattering. To pﬁove this we need only show
that free propagation Of'a_waye conserves sfchannel'
nelicity. Clearly the total angular momentum J is a
constant of the motion (i.e. [.QT,F4§M&t] = O )
and hence we can deduce tnat Q-J = Q;,S, (QS QL=

q,'(ﬁ/\g)iOis a constant and this is just the s-channel
nelicity. Of course other conponents of J are
preserved, we could for instance caoose J, , but aere
the orbital and spin angular momentum coawvonents mix.

e now proceed to check this result in detail for

diffrection of a spinor object.



The provlem 1s to solve the free Dirac
equation subject to boundary coniitions appropriate
Tfor =z diffractive system as showvn in fip. 1. This
is most easily accomplished using the Green' function
technique, tne Green's function for a spinor object

being given by

. X . s
S‘,<ES.,>5') = (po\&o+¢§2-:é+m)G\a(;g,>g‘) ((-6).
where C:;T(L,x'>. is the scalar Green'é_function, whicn
is given by
ii(li-ﬁﬂ
X N oL e
G!’(x"\é)' ¢ ix-xd

The Green's funciion satisfies the equation
(po¥o- ¢ QX —m) SECx )=~ T, §'(x-%) (-3}

fron the free Dirac equation and the equation for the
Green's function we obtain the integral equation (1-8)

for the wave—function'qffﬁ)
Yy =i [ (T 0ex') Y ) - as)
1

- 1
vith  S9GuxY = % SP )%

Using Gauss' theoren, equation {1-8) may be re-written

o

as an integral over the surface 5 shown in fig. 1.
: =) « ‘_ |
Yt = - [ds, S e x) XA Y) (1.9)
S .

. A . . .
where N ig a wnit vector normnal to surface S. Taking



the linit as x—3 o0 egquation (1-9) reduces

to the form
5 {

. pe |

The integral over the nemisphere at infinity vaniches
so we need only consider the surface 2 = 0 where the
absorption takes place. If the absorption doesn't
affect the helicity then the wave-function on the

: o ez
surface is proportional to the incident wave (ik(p)JZ

where A is the initial helicity, waich may be taken for

definiteness to be+Vy . Then from equation (1-10) we
obtain the result
| ) ces%
| <o
1{(()0 o6 (FOXO_F'§+M>X{ o | = 2'0005'% s (-11)
~ P css$s
- £ 2
=7 E+M | 98,

which is just a spinor witn helicity in the direction of
the outgoing momentum and hence we have 5.C,.H.C. The
result is also easily proved for diffraction of electro-
magnetic waves. Il]. It is remarkable that this naive
prediction is strongly supported by the experimental
evidence available on elastic processes.

The success of this argument for S.C.H.C.

A

depends on tne assunption that the absorption does not
alter the helicitly. In optics Tiis will be false if the
diffraction systen has polarization properties (other

than circular). Thus consider light of a definite
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polarization state (say rignt-hand circular)
incident upon the diffraction system, then the
preferential absorption of one of the perpendicular
polarization states of which tae incident wave is
conposed, will produce some left-handed helicity

photons as in equation (1-12) below
f’cc’(\‘&n

(g H> —.Jé-v ( > + lu>) 5%6_) (v‘LID{—oj,,lu)),

system

£ H> « RILH (1.12)

1]

[K'H> (ﬂ=M>) is a right- (left-) nanded
helicity state and 1> -and i > are states with
polarization perpendicular to .the incident direction
and perpendicular to each other. Clearly the same

reasoning will apply to spinor diffraction. Hence
if a spinor object is incident upon the diffraction
system with helicity along tne direction of motion

(say the 2 direction), then with preferential

absorption negative helicity statves may be produced.

=g (-019) 5 b-itol3)
- WD gl> 1)

with
= (”‘X"' '713\/1_ @"— (‘ﬂ;"ﬂg)/l‘
lf>, Hf) and[%>.are states with spin in the X,y
and: = directions respectively. For pure s-channel

nelicity conservation the absorption in the X and W

directions must be the sane. However, 1t is impossible



to make the amplitude pure helicity flip because the
absorption is always positive and hence the non-flip
amplitude is bigger than or equal to the flip
amplitude.  For targets without spin (like TT ) such
preferential absorption is impossible because there is
no physical variable to define a special direction.

In the case of spinning targets 5.C.{H.C. will again
"hold because the system will have rotational symmetry
about the incident direction.

From th? preceeding discussion it is clear
that for diffraction of a complex system, made up of
several degenerate components, unequal absorption of
the conscituent components will préduce new states by
diffraction. It is through this mechanism that
diffractive particle production can occur [2] because
physical hadrons are made @p of many virtual states.
Of course the virtual states are not strictly
degenerate with the physical hadron and so have finite
lifetimes, however at very high energy the lifetime of
the virtual states may be considered to be essentially
infinite because the energy differences are so small.
Hence as in tae optical analogy, if the absorption of
the various "constituent" states differ, then the
outgoing wave will‘be contamninated by particles other
than the incident one. Scattering produced in this
manner is called diffraction dissociation and sometime
after this prediction was published, a nunber of
production processes displaying diffractive features

were experimentally observed.
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Clearly the internal quantum numbers (I,\/)B)
Qﬂ(ﬁetc.) of the virtual states composing the hadron
will be the same as the hadron itself and hence the
dissociated state will have the same internal quantum
nuhbers as the initial particle. This prediction is
strongly confirmed by experiment although some
controversy still surrounds the G-parity selection rule.
| The simplest example of diffraction dissociation
is vector meson photoproduction. Here the photon is
considered to make a virtual transition to a vector
meson in accordance with vector dominance.

|X>f,h = |X>.bam + m};—% f§’>-ba,e + cthervector mesons (1 iq)
? . .

As the vector mesons interact strongly with hadronic
matter, while the bare photon interaction is
approximately .a hundred times smaller, the process
procesds as in vector meson elastic scattering except
the incident vector meson is transverse and off shell.
Clearly 5.C.H.C. is expected just as in elastic scattering
and tais is confirmed by experiment [3]

Now consider the nucleon diffractive
prodﬁction processes. As in the previous example the

physical nucleon is analysed into its bare constituents.

iN>’,,g\ = lN>bc\,Q + éﬂN lﬁN>bm€~r G;r:m 'ﬁ'?l’N>+--- GK,\“{/\L; .. ((.,5-)

By parity and angular momentum conservation the TN
state will be in a i%. configuration and hence the
dissociation AJ—% ﬁ‘ will be quasi-~elastic in much the

same way as ‘X~4>f> . Consequently we ovredict the process



will have all the characteristics of elastic
scattering namely S.C.H.C. and differential cross-
sections displaying a sharp forward peak with slope
similar to elastic scattering. In fact the slope is
~anomalously high (see table 1) and this may be due to
the absorptivities of the N and TN states differing in
the peripheral region but being identical and fotal in
the central region. sxperiments have not been
performed with polarized targets and so S5.C.H.C.
cannot be definitely confirmed although it is
suggested by the sharp forward peak of the differential
cross-section.

Production of other Nxstates requires a chaﬁge
in the relative orbital angular momentum and hence these
processes are in a different category to the strict
quasi—elastic scattering occuring for N — P“ . In
the j= Q+/4 partial Wave,chinges in orbital angular
momentum produce the states D13. Fqg5 Gq7, etc. while in
the J: P-4 partial wave the states Dy1, F13 and G15 can
also be produced. The states Dy3, F15, Gq7, etc. are
the states experimentally observed, however the
existence of tne D44, F13, Gq5 ... sequence of states is
more questionable. Because of the change in orbital
angular momentum accompanying the absorption in these
processes, 5.C.H.C. is no longer expected and more s-
channel helicity amplitﬁdes will be populated, thus
giving less sharp diffraction peaks. In fact the
hypothesis of orbital production makes definite
predictions for the spin structure which are in accord
with data. (See Ch. 3). A further point is that,

all other things being equal the loss in orbital angular
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momentun in the production of these states implies

that these processes are less peripheral than the
quasi-elastic processes and hence have smaller slopes.
Of course processes producing more final states as in

N — Nwmr are possible but we will not consider these
in.detail as they are eséentially Similar td the

simple case already discussed, and'instead move on to
“considerations of meson dissociation.

The pion dissociation T{— 21T is forbidden
by G parity and hence the lowest mass pion dissociation
states occur in the 37 system. Quasi-elastic
scattering requires the final state to be a heavy pion
(0=*%) for wnich the only reasonable candidate is the
disputed E{1420) resonance. ‘To produce nigher spin
objects 5rbital angular momentum must be lost, and then
the states Aq (1**), Az (27%), 3% etc. can be
produced exactly in accord with the experimental
observaticns. Finally we ndte that this mechanism
does not commit itself to assuming that the,A1, A3, etc.
are resonances and this question depends upon the
dynamics of the 3iT system.

‘A surprising experimental observation is that
not only are all diffractive slopes approximately the
same, but also a 1drge class of non diffractive reactions
have comparable slopes and this suggests a common
production mechanism. Hence attempts have been made to

explain non diffractive pnenomenon along diffractive or
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absorptive guidelines and also the opposite, namely

to understand diffractive phenomena in a similar
manner to the non-diffractive. The most naive model
of non-diffractive processes is single particle exchange,
but this is ruled out on a number of grounds, one of
which is the experimental point that the slopes do not
in fact depend strongly on the mass of the exchange,

" with the exception of pion exchange. This and many
other objections can be overcome by supbosing the
exchange to be coypésite and it is then a Reggeon.

We will now proceed to give a brief account of this
point of view explaining how diffractive phenomena are
incorporated.

1.5 The Regge classification scheme

Hign energy two body processes can be
classified accofding to thé internal quantum number
excaange between beam and target and this is
empirically correlated with the energy dependence of
the cross-section as in table 2. [4] For diffractive
scattering there is no internal quantum number exchange
and the cross-section becomes nearly independent of
energy for high energies.

It is not necessary to connect the quantum
nunber exchange with particles [5] though this is both
suggestive and productive. It will be shown in
caapter 3 that the identification of particle and
quantunr number exchange leads to a natural explanation
of the energy dependences in table 2 with the exception

of diffraction. Further evidence in support of this
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hypothesis is the fact that when exchanges are
allowed the cross-section has forward "peaks'" but
when no exchange is possible then taere is no forward
peaks and the cross-section is about a hundred times
smaller than the comparable exchange process.

The exchange deemed responsible for
diffraction is called the Pomeranchuk or pomeron and it
carries vacuum quantum numbers, but doesn't appear to
correspond to any xnown particies wnich suggests that
the pomeron isn't-a simple Regge pole but rather some-
thing more complicated. Further evidence for the
special nature of the pomeron trajectory is that the
slope is rather small approximafely 1/2 Gev-2 compared

with a universal slope of about 1 GeV=?2

for all other
trajectories as shown in fig. 2. As the pomeron
trajectory passés through or near the point t = 0 J = 1
it is.very tempting to identify the pomeron with a fixed
J = 1 pole, which is known to give constant asymtotic
cross-sections, however this conjecture must-bé rejected
for several reasons. First of all such a pole is
incompatible with t-channel unitarity and secondly it

would not be absorptive and hence contradicts the belief

that elastic scattering is essentially a diffractive

phenomenon. Finally a particle pole on the pomeron
trajectory at J = 1 would have the wrong parity to belong
to the vacuun. It can be seen that the pomeron is a

somewhat mysterious entity and we will proceed in the
next section to consideration of models for production

processes which will illuminate the pomeron structure.
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1.4 DModels for diffraction scattering

Hadron elastic and total cross-sections are
of the order of magnitude (1/mw)2 ~ 20 mb and this
suggests a picture whereby the main contribution to
thé cross-section comnes from the outer or peripheral
pions, the central core of the hadron, which contains
multi-particle virtual states, contributing a much
smaller amount to the cross-section. We also observe
that the width of the elastic péak is of the order of
the pseudoscalar meson mass squared. Of course the
mathematical reason for this result is the relationship
between the cross-section and the elastic slope.
Physically however we may imagiﬂe that wnen the momentun
transfer becomes comparable wifh the pion mass, then
there is a high prooability of producing a pion in the
final state. ﬁriefly restated, the reason for the sharp
two body diffractive slopes is that hizgh momentum
transfer breaks up the hadron and so the two body cross-
section is small in this momentum transfer region,

This gives the reason wihy all two body slopes are
approximately the same, and the individual momentum
transfers in multi-particle processes are similarly
restricted.

The previous considerations suggest that at
high energy multi-particle processes will be dominantly
multi-peripheral, with resonances in the low sub-energy
chanﬁels, and hence in general tree diagrams as in fig.3
are appropriate. It is not clear which exchanges are

dominantly responsible for these inelastic production
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processes, tnough if the cross-section is not to

vanish with increasing energy then the exchange must

be the poneron. Experiment indicates the main process
is vector meson Regge exchange,

We begin by considering the historically
earliest multi-peripheral model due to Anati, Fubini
and Stanghellini (A.F.S.) [5] where the exchange was
~considered to be the elementary pion and the emitted
particles were vector mesons as single pion
enission is forbidden by G-parity. To make use of
this picture of pioduction processes in elasitic
scattering we consider the unitarity equation,
separating the elastic and inelastic intermediate
states as in fig. 4 and substituting iree graphs for
the inelastic amplitudes as illustrated in fig. 5. of
course it is impossible to sum explicitly over all these
graphs, though for the resfricted class of ladder
diagrams this may be achieved and this approximation
is the multi-peripheral model. We may also consider
the hypothesis that the sum over all possible gravhs
generate a Regge pole or composite exchange. This is
plausible because the Bethe Salpeter wave function for
say two pions bound by vector mesons, will include a
sum over all possibie graphs and not simply those of
the ladder approxihation. Accepting this conjecture
and identifying Ajpe1 with the imaginary part of a Regge
pole, we are able to understand why the pomeron behaves
as thouzh it were a Reggeon. However, the trajectory

is only predicted in the ladder approximation.
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In this model the unitarity equation can be
solved exactly and tais reveals a number of defects.
As the anplitude is dominated by Ajpey this form is
substituted into the elastic unitarity integral and
generates a cut, the A.F.S. cut as shown in fig. 6.
If the Regge pole is considered to consist purely of
ladder diagrams then it has been shown by Mandelstam [7]
"to be cancelled by other diagraas, but this objection
is spurious if the Regge pole includes other non ladder
terms. Also the_A.F.S. cut interferes constructively
with the pole whereas destructive interference is
favoured by experiment.

In the multi-Regge model the main ideas of
the A.F.S. approach are retained but the exchanges are
composite rather than elementary. Furthermore only
ladder diagrams'are retained in Ajpe] end this is, of
course, false; so tne model can then only be valid in
a limited region of phase space and even then only <o
the extent tnat it is valid to neglect the crossed
diagrams. One attempt to surmount this limitation is
by appealing to duality, whereby the s-channel resonances
can be accounted for in an average way by Regge exchanges.
However, in the case of pomeron exchange this duality
argument breaks down, also for a pomeron with unit
intercept multi-pomeron exchange is impossible because
the Froissart bound is exceeded.

If only one pomeron exchange is allowed as in
fig. 7 then this corresponds to the two fireball model
wnere production processes are associated with two jets

arising from tne breax-up ol tne projectile and target
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respectively. The exact manner of break-up is left
unspecified and may even be of a multi-peripheral type
provided po.eron exchange is excluded, however the
model is clearly suggestive of the diffraction
dissociation picture of Good and Walker. It is
interesting to observe that very little of A;,e7 is
made up of the known quasi-two body diffractive
processes and hence it is clear that multi-particle
states are very important. It is also tempting to
assume that the cross-section for states produced by
orbital change is small and consequently only low

spin fireballs are produced which will, therefore,
decay almost isotropically in its rest frame, but this
assunption is certainly in conflict with experimental
data.

As noted earlier the main defect of the multi-
peripheral model was the neglect of the crossed diagrams.
Cheng and wWu [8] calculate the elastic amplitude from thae
basic ladder diagrams including all possible twists as
shown in fig. 7 and thnis set of diagrams is called a
tower. The resulting tower amplitude mignt be expected
to be a moving pole, however the result diverges like

a fixed power.

. ¢
-Tﬂ.hd czl+d;l (X—IS')
o’\g

where X 1is a positive constant dependent on the type of
particle involved (e.g. scalar or spinor) and g is the
coupling constant, Phis result cannot be correct

because, like :multi-pomeron exchange in the multi-
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peripneral model the Froissart bound is violated .

Cheng and Wu conjecture that this problem might be
solved if s-channel unitarity is included by iterating
the towers in the s-channel as in fig. 3. The result
is effectively equivalent to an eikonal formula with
the tower anplitude playing the role of the potential.
The total cross-section is then predicted to grow like
(log s)2 which is as fast as is allowed by the Froissart
bound. This result is most interesting because
hadronic total cross-sections do indeed appear to rise
with energy in the prescribed manner. We also note
that tnese results can ve obtained in a much less
complicated manner in the droplet formalism of Yang f9]
and this approach is effectively an extension of the
ideas of Good and Walker.

1.5 The internal structure of hadrdns

i) Dual models

The simplest approach to the dual model is
to consider the hadron to be composed of an infinite
number oi partons. Consideration of two body scattering
by formation of resonances in this picture leads to the
Veneziano model [10]. Because the parton-parton
coupling constant is large and the number of diagrams to
a given order increases rapnidly with order the most
significant diagrams are those with a very large number
of interactions. Purthermore only planar diagrams
are considered because of the small probability of
partons passing one another without interaction
(see fig. 9) and nence the set of resonant intermedicte

sfates can be replaced by planar fishnet diagrams of hign



order as in fig. 10{a). The most important feature
to notice about fig. fO is that because of the
infinite nunbers of partons there is a symmetry
between the s- and t-channels and this is the duality
principle. (see fig. 10(b) and 10(c) ). If scalar
partons are assuned and the diagramns are treated
.statistically then the simple Veneziano model 1is
reproduced.

Taking the continuous limit for the fishnet
diagrams; the diagram in fig. 11 is obtained, and it is
found that the flow of momentum is analogous to the heat
flow in a conducting plate ]31]. Using this analogy it
is easy to construct the Veneziano amplitude for any |
given diagram and for instance the result for the box
diagram is symbolically indicated in fig. 12. More
examples of these diagrams will be given in a later
chapter, in particular with reference to the pomeron.

Before leaving the subject of dual models we
will outline the free Hamiltonién for nadrons in the
dual mocdels and the method of Ramond. In the ordinary
Veneziano model tne Hamiltonian is given by an infinite

set of covariant oscillators as in equation (1-15)

H = Zna a, +(0:,,;_

M

(en+r\%ﬂ> + Pa (1)

Po is the centre of mass momnentum and (ﬁnﬁn)
. Cas Rl .
are internal momnenta. and positions, da , Gn  are the
corresponding narmonic oscillator creation and

annihilation operators. Ramond assumes the cxistence
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of an internal time fZ conjugate to H and also a
corresponding Heisenberg equation of motion for any

operator ff as in equation 1-17
[H,§] = «df (1-13)

dv

From equation 1-17 it follows that the creation

operator is a simple exponential function of time as

below

(nT

A.18)

at(t) = qfc

From equations 1-17 and 1-18 we can define a set of
hadronic field operators in terms of the creation and
annihilation operators Qj(T) and an/f) for instance

the momentum operator given in equation 1-19

P 0 p g ~inT _ inT
Py = pr+2 pl = pf+ gy (0,8 M ae™") (1)
n=i
Any observable of the system is the time average of
the corresponding field operator over a complete cycle

~~

of the internal time from <T=-T to T-= T as below,
AL -
&= <OE> = zf-r_fﬁd"‘ O(<) (1-20)

For example the external momentum Po is the time average
of the field momentum P(ﬂ’J. Ramond [jZ] now uses
this relation to go from the free equation for the
external hadron to the internal field eguation. For
example if the free external motion is governed by the

Kiein Gordon equation

(ps -m3)@h) = O o (t21)
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then the correspcnding internal field equation is

given by the replacement po‘_:, <‘. FV(T) ¢/f):>

and the full eguation is shown below.
(<:P%) Ble):y = mg) 13> = © ()-22)

with o
Lo=<:1 P = g+l nald
n=l

We can now identify the equation (1-23) for the mass

squared operator as the original Veneziano model
. o
M = m&+ 2_ncata, (i-l?)
n=i ,

The time like states have negative normalization and
must be eliminated. This is achieved by subsidiary
conditions generalized from the simple gauge relations
1-24 for pure vector particles.

O= , a7 | Physcd shitey = <™ gl lfhy> (1-24)
on replacing <FV><QMT PI“> by (me.' P'Jf;; .'>

we obtain the Virasoro gauge conditions [13] 1-25
(A
L, 1Phg> = <" P P& DIPhy> = O (1-25)

In the special case of a tachyon ground state ni)=~-|
it can be shown [14] that all "ghost" or negative
normalization states are eliminated. The tachyon state
can be removed vy increasing the dimension of spéce but
we will pursue this no further and instead consider the
feraion dual model [12].

' To obtain the field equation corresponding to
the Dirac equation a generalization of tne Dirac matrices

[—:J ("L‘) is required such that

<riay =%, - (i-2¢)
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from the anti-commutation relations obeyed
by the Dirac matrices, we expect "equal time" anti-
comnutation relations for the generalized matrices

f:f?)as in equation 1-27

[0 6), R0 = 29,y Gn)§-=) (-2%)

-Finally we also require the adjoint matrix to obey the

condition 1-28
+ A ,
=Y ()%, (1-28)

If we assume expansion 1-29 : .
™) = ¥+ Jfaxgi(blvxzf"lb?f@"“) (1.29)
then fﬁv(t) nas the regquired properties provided tHe
kﬁs obey the anti-comnutation relations 1-30 and all

other anti-commutators vanisn.

{ b:’\” bﬂw'} = Gpv gmn “'20}

If the OniS are also assumned to commute with the k%[S

we obtain the zeneralized Dirac'equation 1-31 on

replacing ¥.p by <F’,(T)r‘r-(7)>
(Fo-mo)I¥> =0 (1-31)
with

Fo= LAY = B, XS JR(afba v B0y

n=
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The corresponding mass operator and mass squared

operators are

od
M = Mg ¥ dn(afhb, ebia,) (1-32)
n=1
and'
mi- mE+ 9 n (ata, «bba) (1-3)
nzi

The. b:- operators are clearly to be interpreted as
spin excitation operators just as the Qj' are
orbital excitation operators. As in the boson dual
model there are gauge conditionsé however, as we are
mainly interested in displaying the form of the fermion
dual model, we will leave our account at this point,

ii) The quark models

The three quarks u, d, s which form the

fundamental tripiet representation 3 of SU(3) have
quantum numbers as shown in figure 13. The hadron
SU(3) spectrum is now explained by assuming mesons are
composed of a quark-antiquark pair and baryons fhree quarks.
Then the SU(3) multiplet assignments are as below

Mesons 2 ® 3 = 81

Baryons 3® 3 ® 3 106868 8@ 1

It is possible to incorporate the spins and
parities of the states by including the orbital and spin
angular momenta of the quarks assumning that the guarks

are spinor objects. The group SU(6)C SU(2) ® SU(3)

is the most natural generalization of SU(3) and this
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includes the spin of the quarks in a non-relativistic
manner. If the spin and the orbital angular momentum
are assumed to be ‘independent, then a very crude
classificafion is obtained from the group

U(6) ® U(B6*)& 0(3) where 0(3) accounts for the
orbital angular momentum of the quarks.

The main difficulty with this symmetry, other
than the fact that spin-orbit coupling is not negligible,
is its non-relativistic character. The problem is that
angular momentum is not a relativistic invariant,
however, if the Lorentz boosts are confined to the
direction of the angular'mdmentpm projections, say the
z direction, then the wvalues Qf.these projections
remain invariant. Clearly it is possible to form a
relativistic sub—group of U(6) & U(6*) ® 0(3)
which is valid for co—linéar processes. To construct
this group a set of SU(2) spin operators commuting with
Lorentz transformations in the z-direction are required.

These are given by [}6]

\/\/x':"lxoxxx%: \606;( \]\/x*-:-—XOC);
wvfi\éo\éjxtf \6069 W?:-XOG‘j (1-3¢.)
W%:i\&x\éj = o W:—.o;t_




It is clear that ‘K}:Xj is invariant under a Lorentz
boost in the z-direction, while the operators VJX and
Wy have the matrix ¥, multiplying the usual SU(2)
operators so as to compensate the change in Xé: on a
Lorentz boost. The novel feature of these operators

is the negative sign for the anti-quark operators VV: and
@V: and this has the consequence that the meson wave-
functions differ from the ordinary SU(6) wave-functions.
The only orbital angular momentum operator to remain
invarianf under Lorentz boosts in the z-direction is L%
and so the reduced group is U(G)QJQD 0(2) .

If the quark model is to be combined with the
dual model then an infinite sea of guark anti-guark
pairs in an SU(3) singlet state are required bpesides
the ordinary valence quarks. One consequence of this
is that thé valence quark centre of mass is no longer
fixed tnus giving an extra degree of freedom which may
be exploited to enforce anti-symmetric statistics E7].
This soives one of the major difficulties of the simple
quark model, where although quarks are spinor objects
they are obliged to obey symmetric statistics [381.

If the quarks have harmonic oscillator interactions as

in the Veneziano model then because of the infinite
number of degrees of freedom we may write single particle
oscillator wave-functions for each quarlk. If the spin
is incorporated using the SU(6) scheme then the quark
equation is

mil ?éi - (P(I'(_‘\)z)(k'l) ¢( = '2‘“‘-3(’ Q}-Q('-t- (’Ov\ffa/\*’:) ¢i (j.gg‘)




where >, and P{ are the Jacobi position and momentum
co—ordinates of the 1% quark and r1; its contribution
to the nadron mass. It is interesting to attempt to
incorporate the quark spin in a more dynamical manner
as in the Ramond dual model. We then require an

equation for the mass operator as shown below

m ¥ - o (latvala) Vi = (Bt GO (1:36)

In writing equation 1-36 we have set ‘XTP‘*Qift'E%’

so as to reproduce the momentum term Aé correctly. We
now demand that the equation for the mass squared Iﬂ}
return to a form as close as possible to equation 1-3%5,
and consequently must not contain terms quadratic in
the creation or destruction operators. This criterioﬂ

is satisfied if
Lip Ky = Ay oy = O (1-3%)

Condition 1-57 is solved by the operators defined below

sy = L1246V - (1-38)

The quark spinors of the new equation are no longer of
the SU(G)W type because the equation is fully
relativistic and also contains spin-orbit interaction.
The presence of the spin-orbit term is most easily seen

in the squared equation displayed below

m, 1#: s - Zw(q’fql’ _, Xg G‘VGHJOV + constant )V’: (1'39).
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This simplistic formulation of a dual quark model is of
course not to be taken ser.iously because, among other
things, it is not parity invariant, however it
illustrates some concepts to be used in a later chapter.
Finaily we consider the quark model in the
formulation of current algebra. Tirst of all the
axial and vector currents are constructed from the quark
fields q}%) and the corresponding charges Cpfi and (DC

defined as shown
V. &)= CI(X) X/,A_L Qi) , Q¢ = fV (¢, t) clx

(1.39)
A= X% Q= [ Ao bt)

If the quark fields are assumed to obey egual time (anti)
commutation relations as in free field theory then the

following charge commutation relations are obtained [191

[@L,Q;\} 1&3;(6?& , YQL,(DQ_.[: ¢ iﬁ:@ck )[Qs;,er—.lzifijk G
(i-40)
where j%jh are the SU(3) structure constants. This
algebra can be reduced into two separate 3U(3) sub-
algebra's by defining new charges C;rkt {((@Lf(byg)

when commutation relations 1-40 become

L, 0.,1=0 , [ O, Oryl=1cFije Qs (1-41)

which correspond to an SU(%) X SU(%5) algebra. It is
possible that the charge commutation relations remain

exact even in an interacting quark theory and

consequently this algebra has a rather different status
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to the approximate U(b) &R U(o) ® 0(3) symmetry.
Despite this fundamental difference these algebras are
related, aud tnis will now be Iinvestizated.

Because current algebra is fully relativistic
we ‘anticipate that the related classification group will
also be relativistic and hence must be U(b)vv. In
.U(b)w the 2z direction.is given preference and this is
" achiecved in current algebra by considering the current
" matrix elements in a frame with infinite momentum in
the z direction. (I.M.F.) The x and y components of
the currents are unaffected by the boost into the I.M.F.,
while the z and t components become infinite aud equal.
Cleariy in calculating expérimental quantities only tne
current components which are infinite will give finite
contributions and hence the other components may be
neglected. CoﬁSequently fnere are 18 significant
current compohents and corresponding charges namely,

Q@ > (bfi 1+0,1,2,---- , & . As a U(6) algebra has
36 generators this is insufficient aund further charges
are required. These extra charges are obtained from
tne‘ tensor currents T(I‘V = CL/K) ‘5/7\/)_‘% Q(x). which arise
naturally in current algebra from commuting currents with
their divergences. = The tensor currents of siguificance
in the I.M.F. are T, , =70 yo and Tyx = T, o which
are infinite wnile the other components are finite or zero.
wvidently tne scalar and pseudo-scalar currents are
irrelevant., Thus we may define 18 more charges in this

~~ Pl o
frame T/ and Ciy 1=60,1,2,--- 8.

Y (3)

T @ = Se‘j Tcl(yyg(zs,f) O (-er)
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giving 35 "good" charges in all and these charges can
be shown to form a U(6)i algebra. Although this

1

algebra ic isoaorphic to the "constituent'" quark
classification algebra U(G)W it is not equal to it.

If ﬁnese grbups were equal tnen for the quarks of current
alggebra the spin would completely decouple from the
internzl motion as in U(5),® 0(2) and this is refuted

by a variety of experimental resultls, for instance the

-non-zero anomalous magnetic momenta of the neutron and

proton. Presumably, however, there exists a trans-
formation between one algebra and the other. This

idea is made more grapnic by introducing two types of

9}

auarics v i - i Ay - e Hpwvaetit T1(A
guarks the culrgnt auorss of tge exact “ka)current

-

and trhe "constituent! gquarics of the approxinate U(5XV

The problean is tihen reformulated as a transformation

between the current guaris and the constituent guarks.
The simplest model in which to consider this

transformation is the free quark model, but even in the

I.M.,7. this is not in general a good approximation.

The free Dirac equation for a quark in the rest frame

of the hadron is

(f~ mq ) =0 (1¢z)

where CL is the momentiun relative to the centre of nass.
Now on transforming to the T.M.Z. ql~4>C3 and (%C4>qu

and the equation becomes

o, P = (%%1 + %o MB'IP (1 44)
v/it}ln Ny = iC£L1_;Ea:
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Note tnat we have multiplied equation 1-43 by ‘Xo

as well as transforming to the I.M.F. to obtain equation
1-44 so that the elements of this equation are now just
the terms in-the U(6) current algebra (i.e.ijxgxﬁ,chg )
Now the constituent quark algebra is generated by

(Xbc& , 86y, O ) which are semi-diagonal and
consequently if equation 1-44 is "diagonalized" by a
Foldy-¥Wouthuysen transformation S we will be able to
connect the current and 'constituent quarks [QO]

S is given by
S = QXP (‘:&V%_L@> with tomfZOLJ.@ =9ﬁqi (l~¢,—'§)

Thus the relation between constifuent and current quarks

is given by
’Bb;urrer\t = SH wlézo.\sfu'fue/\{ </ t& 6>

The most important effect of this transformation is to
introduce a spin-orbit term QV%} into the current quark
spinor. It is interesting to find the corresponding
transformation in equation 1-36 which in the I.M.PF.

becomes
XO""q][/oo :(%'%L—iw\ggg.gg_L)']'b;o ('1.4_7.)

This equation is exactly soluble, however it is
sufficient for our purposes to display the ground state

solution.
gy gat \l 1o
Yo o IR (é - Ti)(m)
" 10, - @gl10%, g4
+@al |- ol <t<> ©(1-4%)
ag-af @)

(- ggt) 1+ @
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}QZ is a two dimensional harmonic oscillator grdund
state embedded in a Pauli spinor. The second
equation rather than the third is the most relevant
because here we take the noﬂ—parity invariant part of
the solution into the constituent quark spinor and we
may guess that the correct parity invariant solution is
obtained by replacing the "neutrino" type spinor by the
" Pauli Su(6),y spinor. The transformation is now of the
same form as the free quark transformation and it might
be hoped that even in the more general interacting case
a transformation of a similar form to equation 1-45
will be appropriate. Indeed this Melosh transformation
[26] model does improve a number of quark model
predictions. Despite this success,formulation of
relativistic quark models in terms of this transformation
is of very little use especially as it encourages the
unphysical assumption of single particle quark wave-
functions. The proper use of this transformation is.
as a simple algebraic formulation of the SU(6)

representation mixing,
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2. The properties and mechanism of

diffraction dissociation

2.1 Introduction

One of the basic problems in particle ophysics
is to understand the general collision AR—=CCy--- C,.
Experiment gives two very important hints. The first
is the small transverse momenta characteristic of all
‘the cutgoing particles and this is opposed to the
model where A and B stop each other in the centre of mass
because then transverse and longitudonal momenta are
treated synmetrically. The second is the rather slow
growth in multiplicity with increasing energy, perhaps
likxe logs and taus very little of the available kinetic
energy 1is transformed into natter. Both these points
argue 1in favour of a picture whereby the projectile and
target pass through each other becoming excited and
fragnent, but nevertheless retain most of the kxinetic
energy of the parent state. The angular distributions
for the breakup of the target and projectile
respectively become asynptotically independent of energy
and nence are diffractive. (See fig. 14). This
hypothesis 1s called limiting fragmentation [21].

Of course there are also other contributions to
the cross-section from particles moving slowly in the
centre oI .nass which are not obviously correlated with
eitnher the target or projectile. These may result from
very massive fragmentation states or alternatively arise

from non difiractive sources and as yet experiment has



_..4_2(_

not decisively settled this issue. Clearly an
important question to be resolved is the mechanism

of diffractive fragmentation and the aim of this
chapter is tb discuss this question in the context of
the low mass fragmentation states presenting some of

the relevant experimental evidence.

2.2 The_gggendencg_of diffractive cross-sections

on fragnentation mass and tne problem of

isolating tae quasi two body contribution

The dependence of the diffractive cross-
sections on the fragmentation mass My is obtained in the
inclusive experiment 4B-—> AX where X represents the
fragments fromn the breakup of B. Indeed most of the
diffractive data is obtained from "missing mags”
experiments of this sort wiaere only the parameters of
the outgoing particle A are measured and from this the
cross—-section is determined as a function of "missing
mass" M, and monentum transfer. A typical mass spectrun
is shown in fig. 15 and it will be noticed that it is by
no means resonance dominated even for low mass. Both
tne cross-section "bumps'" and the background appear to
become asyaptotically energy independeht as in limiting
frégmentation nlthough it has been suggested [22] that
either the background or the resonaaces disappear
asyaptotically.

The issue is further complicated by the fact
that not 2ll the cross-section bumps correspond to

genuine resonances. The evidence for this assertion is

]
[©)]
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very strong [23]. fne most important fact indicating
tais conclusion is that .nany oi the diffractive cross-
section bumps are not found in other production or
formation experinents, for example Ay, A3,(Q , L, and
_perhaps the 1% ',Y, 1410) and NS(S;, 1710).  The

N*( "', 1410) may be identified with the Roper resonance
P,, (1470) while the N*(ghf,1710) probably corresponds to
the F15 (1688) although the mass discrepancies are
‘disturbing. Furthermore some of these mass bumps are
very broad, for example the A, has a width of
approximately 400 MeV, and they do not fit the simple
Breit-Wigner resonance Iorma. Finally the decay

products of these "resonances" are surprisingly near the
threshold. Morrison has désignated such '"mass
enhancements'" D resonances [?3]. 0f course there are
also some genuine resonances produced diffractively, for
instance the N(3; , 1520) or Dy and probably

N (%4, 1688) .

2.% Possible mechanisms for diffraction dissociation

a) - Diffractive resonance excitation

The simplest view of diffraction dissociation
is of resonance excitation and subsequent decay as in
fig. 10. Certainly some diffractive production is of
this type; however, as noted previously there ié a large
background as well as kinematic mass enhancements which
superficially appear to be.resonauces. Clearly this
modél is totally inadequate to explain the mass spectrum,

even the resonance part alone because of the non Breit-

Wigner foram of the D "resonances'". Pfurthermore if the
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D-resonances are genuine resonance states then they
should occur in other production processes. For
example the charge exchange (C.E.X.) cross-section

»*© + .- . .
for N7 (%,',1638) is approximately 10 ;b (at 15 GeV)

~

~and as the N*'('Qf, 1410) has a similar diffractive
cross—-section we expect comparable C.E.X. cross-sections,
whereas in fact no signal is observed at all. Similar
reasoning applies to tne A, and ) mesons where again
-C.E.X. cross-sections of the order of 10 rb are expected
but are not detected. The possibility remains that
Reggeons do not couple to the D states but this is

ruled out by the existence of cross-~over phenomena.
Despite all these difficulties 1t seems probatle that
there is some direct resonance contribution even for the
disputed D states. The reacson for this is that these
states are expected in the quark model classification and
simple calculations in tnis model, wnich only allows
resonance excitation, underestimate the relevaat cross-
sections. furthermore we will present arguments in
section 2.3{c) which indicate that resonanée dominance

is possible but that the number of resonances is
considerably more than previously expected. Finally

we also note that if there are competing mechanisms then
interference effects are expected and this will produce
non Breit-Wigner resonance formns as in rho meson

production.
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b) Phe Deck mechanism and the multi-

peripheral picture

The rougn qualitative features of the
diffractive fragmnentation mass spectra, namely a
large background with peaks closely following the
various production thresholds, may be qualitatively
understood in analogy to non diffractive production.
-The fragmentation B—> X is similar to non diffractive
production with the mass My taking the place of the
centre of mass energy Aﬁ? Empirically non diffractive
production processes rise rapialy above the threshold
to a peak or peaxs and then fall with increasing energy
perhaps like !/ [§' . Hence if tnis picture is applied
to the fragnentation process then the main features of
the data are produced with no special emphasis given to
the resonances in preference to the backzround;
however, the picture lacks a detailed mecnanism and is
not gquantitative, It is, of course, possible to test
this picture by comparison with the corresponding
production data, for example the photo-production
¥3— X inelastic cross-section.

A specific model in which the D-resonances
may be understood 1s the peripheral or Deck mechanism
shown in fig. 17 winere the D resonance is identified
with a %inematic bump in the cross-section for the out--
going Tﬂ{Q state. It is important that the exchange is
a pion because then the states R and m emerge predominantly
in the same direction due to the pion peak and there is

the possibility of simulating resonance behaviour.
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Explicit calculation predicts the A4, Az, and L

peaks in reasonable agreement with experiment.

(See table 3 and fig. 18). Despite this success the
model is thebretically defective because theFﬁWT vertex
has been assumed to be independent of the off shell
pion mass and this is wrong. When the pomeron

becomes massless it will act in a similar manner to a
photon and if the pion exchange is also massless then
the P vertex vanishes on angular momentum grounds

in exactly the same way as the ¥7T vertex vanishes in
the forward direction. In practice these dips don't
seem to occur; for instance in the process X(>457ff”
pion exchange vanisnes 1

. . .
direction but is

Py p22 -

compensated by s and u channel nucleon exchange Born
terms required to preserve gauge invariance. Similarly
in the T{—=3M dissociation the full gauge invariant set
-of diagraas shown in fig. 19 maintain the pion peak
except of course wien the resonance R has spin zero.
Although this refinement destroys some oi the simplicity
of the Deck model it leaves all the results of the naive
calculation unaltered. We also note that because the

D peak occurs near them R threshold the outgoing

TR state will be in a relative S wave and hence the
effective spin of the D resonance will be the same as
the R state and the parity opposite.

The model must also explain wny Deck mass
enhancements cannot be produced non diffractively, for
instance in C.H.X. Clearly the Deck model cross-
section is determined by the size of the WA—=> 1T A

forvard peax rather than the total cross-section and the



-4 -

relevant non diffractive processes have forward dips
thus suppressing the corresponding Deck cross-section.
For example theTTp-éAfﬂ C.E.X. cross-section is
calculated from the relative size of the forward

peaxs for TT.kO—-"'n’—P and ‘TT'P—» T°n and this results in
a T p- H?ﬂ cross-section of approximately [pb
compared with 1O/Jb in the resonance excitation picture.
Cross-sections of this size will be unobserved and
consequently we understand wny the D-resonances are
peculiar to diffraction.

Consider the RMR coupling in the case where B
is .a pseudoscalar. Clearly it vanishes unless R is of
natural parity and hence the outzoing J resonance must
have unnatural parity. In the case where 8 is a nucleon
the state R can have eitner natural or unnatural parity.
‘However the ratio of the natural varity coupling to the
unnatural parity is ~ (ma+JNV)/(rnR -mwn) ~ 10 |
and hence the production of natural parity R states is
suppressed. Consequently the emerging I state will
have the sane naturality as the incident nucleon. In
general the Deck mechanism predicts the rule that there
should be no change in naturality at a diffractive vertex.
This anzatz, which was first discovered empirically by
Morrison 25] is in agreement with expériment, although
there is some dispute over its validity particularly in
the boson sector. We point out that none of the baryon
states listed in table 3 can have appreciable Deck cross-
sections, either because the N R vertex nas unnatural

parity or the outpoingirR state has relative orbital
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angular momentum otner than zero and hence is
relatively suppressed. For this reason it seems
probable that the cross-section bumps in nucleon

dissociation correspond to genuine resonances.

The Deck model also predicts the diffractive

helicity structure. Consider the fragmentation of a
‘pseudoscalar meson in the t-channel where the incident
_and outgoing particle R both move in the same direction.
The pion exchange evidently can not change the helicity
and hence T.C.d.C. is predicted for the R and
consequently for the D. There 1s considerable evidence
in favour of this prediction particularly for A4 and Q
production [26, 27]. We can also$consider the nucleoﬁ

dissociation and in exactly the same manner predict

T.C.H.C. Here again the prediction is consistent with
‘ €
experiment [28, 2?] but the amplitude '1'%,_£ is also

admissible. [ See table 1].

The Deck mechanism alone however fails to
explain the cross-over phenocmena. The most transparent
case is K°->Q anda K>>&° which will be unaffected
by normalization problems. The crossovers should be
determined by the TN crossovers and hence the G?)P cross-
section should be larger at smaller t and steeper than
C%F just as the?fp compared with.ﬁip [Bd]. This is
opposite to the data and hence there is at ieast one
other effect over and above the Deck phenomenon.

Finally we note that the Deck mechanism and its prediciions
are completely compatible with the Good Valker picture

discussed in Chapter 1.
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c) Intermediate or hybrid picture

arising from dual models

Diffractive fragmentation is similar to
inelastic production processes. In the Deck model
'multiperipheral processes are taken to dominate, but
this cannot be a complete picture. A better approach
is to substitute a complete model for the inelastic
_processes treating the fragmentation as a collision
PB-—>X5 where P is a pomeron. If the pomeron is
treated like a scalar particle, then the Veneziano model
may be used to predict the mass spectra in each of the
channels for boson dissociation [35]. These models
meet with considerable success especially considering
the fact that they are compared with data in a far more
detailed manmer than any of the previous pictures.

One general point arising from the dual models
is that the multiperipheral and resonance mechanisms are
both equivalent [3{] provided all the resonances are

included.
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3. 4 phenonenological analysis of diffraction

dissociation reactions

3.1 Introduction

In this chapter we study the diffractive data
from a phenomenological point of view adopting the
resonance excitation mechanisn. As mentioned in the
brevious chapter this mechanism alore is inadequate,
.particularly for boson dissociation where mass
ennancenent effects dominate over simple resonance
productidn. For this reason we restrict the detailed
data fits to mﬁ{3§,|§zo) and N*(SQ_,HDSQ)
which are well established resonances. This, howaver,
is not very much of a restriction as the differential |
cross-sections fop boson dissociations are so simple
that fitting is superfluous especially as it is known
from densify matrix measurements that only one t-channel
helicity amplitude is populated. The cross-sections
for fermion dissociation [33, 29, 33] N—» N (g, 1470

S, 1520 %", 1688 4,190 ) | show much more
structure. The N-— N*(%I'¢?C9 is sharply peaked in
the forward direction and is easily fitted with the
35.C.H.C. anplitude alone and here the main problem is
to understand tne anomalously large slope. The

n/;>(Vx(3i,|§20) cross—sections display a forward
dip and hence is inconsistent with S.C.H.C. unless
there is some coincidental dynamical reason for the dip

and we investigate botn these possibilities. Sinilarly

the N -=>N*(54",168%). is incompatible with 3.C.H.C.

as the cross-section shows evidence of a plateau in the
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small t region although one can dispute this. t29, 39]

furthermore the density matrices for the lV*<y£3’bgg)

decay have been measured [28] and they indicate that

the only non zero amplitudes are _r;iii .

| In fitting data we assume diffraction proceeds

by pomeron exchange and neglect meson exchange effects

and the possibility of cuts. The reason for these

simplifying assumptions was that our main concern in

data analysis was to study the helicity properties of

diffractive vertices rather than produce detailed data

fits. This is interesting because it is known that

S.C.H.C. is conserved at the NN and XP vertices while

T.C.H.C. is favoured at the TT—> A, and K-> Q

-vertices and is consistent with the data for the
ﬁJ—4>fV*(S§ﬁl688)- transition. As explained in

the previoﬁs chapter the Deck effect predicts the

results for boson dissociation and clearly it is

important to understand the helicity regularities also

observed in resonance‘excitation.processes.

Suppose some unified explanation of these
regularities does exist on the basis of some dynamical
theory (e.g. the quark model) then simplicity would be
expected in the covariant couplings rather than helicity
amplitudes. Considerations of this sort motivated us
to adopt the covariant approach to Regge physics.
Furthermnore covariant formalism obviates the need for

crossing and any apriori lorentz frane preference.
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3.2 The covariant approach to Regge physics

A Regge exchange is conceived of as the
exchange of a composite object, which will have a
nunber of excited states lying on a trajectory together
“with lower daughter trajectories as shown in fig. 20 [34}.
vonsider some two body scattering process where
the particles involved are taxen to be spinless for
simplicity. At hign energy and small momentumn transfer
-the cross-section will be determined by the exchange of
the lightest particles with the allowed quantum numbers.
It might be expected that good approximation to the
scattering amplitude. is -simply the exchange of the lightest

particle alone as in egquation 1 where the exchange has

spin J.
T~ g B(eQ) g o) @)
: my—€ S mr—+
where gI 1s the coupling constant and RT is the
Legendre polynomial with cos B replaced by P. Q This

result cannot be correct for a number of reasons the
most important of which is that the cross-section has

27-2,
Y and hence for J = 1 the

the dependence G ~
cross-section is constant and the J > 1 the cross-section
rises in violation of the Froissart bound. These
difficulties are resolved by noting that the exchange is
composite and so instead of taxing the value of the spin
at the lowest mass pole we should interpolate back along
the trajectory winere the effective spin is much smaller,.
For instance at t = O the effective spin of the vector

-1

meson trajectories is ~ 14, and hence ¢~ S in

accord with table 2 and indeed all the results in table 2



follow in a similar manner except for diffraction

where there are no Xnown poles from wnich to
extrapolate the pomeron trajectory. As the daughter
trajectories are lower in the J plane than the leading
particles their contribution to the cross-section falls
off more rapidly with energy and hence they can be
neglected. (Actually in dual models the degeneracy of
the daughters grows exponentially and hence they make
important contributions to the amplitude). Consequently
a good approximation to the scattering amplitude is the
exchange of the whole.set of particles on the leading

trajectory as in equation 2 below

T L 93 V) (3-2.)

‘tM:r

A1l the particles on the leading trajectory will have
the same naturality (e.g. the quark model) however it is.
also useful to define trajectories of a definite parity
as parity is a good quantum number and this is achieved
by introducing a factor (I j?GJT>/j4 . The series in
equation 2 can be approximately summed using the
Sommerfeld-vatson transform trick to give the usual Regge
result (equation %) provided the residue ﬁﬁ) which
interpolates the couplings g:if) has reasonatle analytic
properties.

(Tl't:((

Thagge = (6 ) U= W (3-3)

2 SiaTT )




L -iwd
The factor o mwald is the Regge propogator

where:fodﬁ) " is the trajectory function with Ead(m})=]~-

The covariant approach to degge physics
extends the preceeding results to scattering involving
-external spins by using the propogators and couplings
for hish spin particles [35].

High spin objects are described by Rarita
Schwinger wave functions. Consider for insteance the
‘wave function for a spin J boson, this will be built up
from J spin one wave functions &p (such that CZ-G =Q).
The product ‘EP ----- éﬂ? will contain all the spins
from J = O up to J, the irreducible representations
having definite spin. The irreducible reprecentatio
with spin J is totally symmetric and traceless 7;:fﬁf,ﬁ'.
Fermion wave functions are obtained by combining a boson
wave function with a Dirac spinor.

The vertex for a mpin S, particle making a

transition to a spin S, object coupling to a spin J

exchange is given by the expression

—- S ., s, m
V(su S .4 m:‘) W \/; %J.T{(T Vo XX by /,f. <3t")

Assuming S, and §, are intergers. If they are half-
intergers the labels F and vV just extend to Si-

Ejf is the coupling and examples of how this is deduced
are given in appendices’Z and 3. Because the maximum
total spin of thne particles 1 and 2 ig S, + S, only
the first S,¢ S;  of the internal o«  labels can couple

to the spin and the remainder will have orbital

couplings as in spinless scattering. The coupling
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can therefore by written as below

—~%

Vo VR, C"“’VS’.“-*""‘S,AL Fi--#s, ®°(s,fs,rf -.Q‘/T (36_)

" where G is the reduced coupling. The effect of S’.r5¢>J_
J will be explained in the subsequent sections.
The scattering amplitude for spin J exchange

is now written as

T Z Vis .. 7, m) \/(S;,Sg]’,mr)

My - mT
—s, S, ’"T
= TIU G(QZS"\}V Q“S.r'sl}-;'ca'(:r Zm % ]’Uk
) € - MT
- Y
% : (2.
Oo By, PGLas) YT (306)
where some of the indices have been suppressed. As
Zm 6;6\,”'*‘: —S,JV + éLmA{_V. and at high energy

¥
P. @>> P.OGDB/mE we conclude that the asymptotic
form for Z W}J,,( Sl ’guﬂ e o~ 94.(5, 9,,(.& N 90(!&_.

Therefore 1f 5. > ey ’ we have

J- (S, fs<)

T (s, s) Y™ Y

| IO e
17T e S, € - M} %g .50 SztSur (3 F

S*GHS S (SJS'J q}

If we now sum over the spin of the exchange we obtaln

the Regge pole exchange

_T.- ~ 916(3‘-)3’>1/) ? ol - (S,(S«.)@

%gye = STl e oo

7/73%'6(5%5}) '(/’)S}v (g.g)
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_ ~ 1Tl )
where the factor ¥, = (l'i QZ‘Wd )/24 is called

the signature factor and this comes from including the

term (~|t(%§j—>/2‘ in the sum so that the exchange

has definite parity. The spin content of the

—S, g
-amplitudes is contained in the vertices ¥ <Z'V/ *  and

in the next section we calculate the asymptotic s-channel
helicity vertices for the processes relevant for

diffraction dissociation namely 0 — J , 1 — .1 and

'é > dJd. The vertex may be written asymptotically in the'

form [36].
.._gz)L g‘)' Al' A| .
’L/fv‘ - V‘z_th Vg, - g P "'/L‘.S"_ #fr“ ¥, -~ (-t) V,\‘),_QC(," . q)a('g.rsl <gq )

the

k-

where we have extracted the basic 1 dependence o
vertex demanded by angular momentum conservation and kept
only the terms corresponding to the highest energy
dependence. in the amplitude. V&.)L 1s the s-channel

helicity vertex where A\, and A: are the initial and

final helicities respectively.

3.3 S-channel helicity vertices and boson dissociation

The s-channel helicity vertices Ifor bosons
where calculated from the couplings listed in tavle 4
using the information given in appendix 3 and the results
are presented in table 5, [37]- Referring to table 5 it
can be seen that for O -~» J transitions S.C.H.C.
corresponds to the coupling Ysp Ype,- = G g Wnicn
couples the external spin to the internal exchange spin
with the minimum amount of orbital coupling. The
reason for this is that the vertex AJ(PQ,-'-Q&&_ and
the only spin wave function with this property are

C;iJ'V G%y%' hence for the coupling Yy, Sﬁ*-~"$®sﬂ&

the final wave function must have helicity zero.
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IT.C.H.C. on the other hand corresponds‘to a pure
orbital coupling 3‘(Dd.-~ st(?ﬁf-'Qﬁktand hence
the t-channel helicity remains unaffected.
Mathematically this result can be seen as follows, in
the t-channel centre of mass the initial and final
bosons approach each other in a straight line and if
T.C.7.C. is to be violated at least one term in the
final state Rarita Schwinger wave function must be G;:f
and as c*t. Q:O the pure momentum coupling
conserves T.C.H.C.

We also note that for O —» J transitions
S5.C.H.C. 1is impossible for abnormzl vertices and as
the pousmeron has natural oparity, 5.C.H.2. implies
Morrisons rule for these processes. This result

follows directly from parity which for the vertices is

-‘— Al—kl t
. = + ([~ (’5"05
VA“A‘L - C) v’)*|n'>‘l :
as the initial spin 168 zero N, = O and for $.C.H.Z.
A, = O hence the abnormal vertex VQ; must vanish.

Of course T.C.H.C. also implies Morrisons rule for
identical reasons.
The vertices for the normal parity transition

I-;ﬁ | are included because of its relevance via
vector dominance to the process L f’ which is
experinentally accessible. The coupling concerving
S.C.i., for --%?' scattering is 8'4\, C\\%(. Qa’l -

2 (9'4,QVQ&J'QW(‘Q/CEJ‘}V‘:HCh is rather more complicated
then the simple results for 0 —>» J transitions. The

5.C.H.&. ccupling for the process X-%r? is obtained
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from the above coupling by applying gauge invariance
and is given by 8',“\, (\T},« @l— :23}""\(@1“@‘1‘ k-G 3#%)
where k is the momentum of the photon and 9;4= (k~GP§rv
- qz,kv> Pinally we consider the consequences of the
exéhange spin J bein; less than the external spin.
If the exchanje spin is such that a non zero coupling
implies an unphysical value for the orbital angular
~momentun then it is a nonsense coupling. For
example in P%P' vertex the coupling g p«, Qv
is nonsense for J.- = 1 because this implies that L=-1
(see appendix 3) which is unphysical. Alternatively
a coupling is nonsense for an exchange spin J if such
a spin cannot couple vecause it has too few spin labvels
to saturate the coupling. If‘Jo is a nonsense point
for some coupling and this spin also corresponds to a
particle pole_tﬁen clearly the residue must vanish at
this point. Suppose for instance the pomeron is
associated with a spin 2% particle then for O— S
transitions for S>3 the pomeron cannot both
couple and conserve 5,C.H. since the pomeron coupling
(5Hd|9r\d\.-ﬁ Qpc 1S nonsense for J < S and hence

must vanish.

3.4 Fermion nelicity vertices

The couplings given in table 6 for 4+~ S

vertices are easily deduced. In appendix 2 the %—%

3 )

J coupling is derived. All the higher spin transitions
%-—9 C follow trivially from this result and the boson

couplings of table 4 because in the Rarita Schwinger

formalism the -E~§,S ‘vertex is simply reducable to

'(?T(%y%)cg)CﬁYo,ﬁ—%) as can be seen by comparing
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tables 4 and 6.

Using the results of appendices 2 and 3 the
s~-channel vertices in table 7 are easily obtained.
Notice that the K@ coupling preserves S.C,H. in
“the L — % transition while for the O -— S-4
transition S.C.H. 1s preserved by the coupling 9',0(
and hence the coupling to preserve 3.C.H. for the
transition is gzsﬂxﬁ« 9“&-—- 9},;'{(3“{-'1‘?115 is readily
»verified from the tables. Similarly as the loﬁ

coupling preserves I.C.H. for <4 — £ transition in
the case L9 the T.C.H.C. coupling is
g, Fﬂ'.-‘ {%g“‘ @‘ @s—& . Referring to table 7 it can be

seen that the T.C.H.C. coupling populates all the s-channel
helicity vertices, conversely the S5.C.d.C. coupling
populates all the t-channel helicity vertices. Clearly
the coupling (g,fo@—{—ngﬁ,x 6,,"' Pr’-f‘{ foﬂL"' (?%f-li
is the most general coupling to populate only the t-channel
helicity vertices \/:,i and V:_;l .

Nonsense couplings are defined in exactly the
same way as for bosons, namely 2 coupling is nonsense
for exchange spin Jg if a spin Jo particle cannot
produce the coupling because it has too many spin labels.
(Orbital couplings Pp are of course irrelevant).
Just as in the boson case if the pcmneron is associated
with a 2% particle (4§ dominance) then it cannot
conserve 5.C.Hd. for s> S/ because tae coupling

is nonsense and must vanish.
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Supnose J o 1s a nonsense point corresponding
to some coupling function G, then if the exchange
has a pole at J, then the coupling must vanish at

X = Jg and even if there is no pole then the

coupling may vanish but need not. The behaviour of
the coupling at nonsense points is called the nonsense
mechanism and is restricted by the demand that the
~amplitude be analytic at these points. The other
vertex may be sense or nonsense and hence we demand
that the products 9a (j,f‘ and G, Qg be analytic.
The common nonsense mecnanisms are displayed in
table 8 [36].

In the case of pomeron exchange we are
interested in the behaviour of the couplings for
To= | (-1 zﬂ(;of) which corresponds to the point €=0.
If diffractive scattering is ©To exhibit a forward peak
in the cross-section, the strong fixed vole (S.F.P.)
mechanism is the only possibility. However, the
N%N*(z/;jyno), N¥(Sh, 16 88) cross-sections do
not have forward peaks and this could be due to other

nonsense mechanisms as the 5.C.H.C. coupling is nonsense
—'—

- T
at  Jp= for both the 47 -2 and A5 §
vertices. Of course, the density matrix results for
the N*(g/z*, 168’9) decay indicate that these

results are due to the presence of other amplitudes

than the S.C.'M.C. one rather than nonsense mechanisms,
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3.5 Morrisons rule and covariant couplings

For pion dissociations it was found that
Morrisons rule was a consequence of both T.C H.C. and
S.C.H.C. ConSLderlng the substitution rule V ((3 My M_ )
_')VA,\G m,,yﬂr)(\IOI fermion vertices we can see that
the boson result does not carry‘over to fermions.
T.C.H.C. for instance implies that the abnormal
amplitude is smaller than the normal amplitude by a
factor ~ M- /M+ provided @ ~ 5
(which will be true in most constituent models).

In the case of 5.C.H.0. the normal and abnormal
amplitudes will be of the same order. (again if SNJC )
This is unfortunate Dbecause (lorrisons rule in fermion
dissociation is consistent with the data and hence we
must conclude that § is not of the same order as j:

“or that there are accidental cancellations, for instance
m._ f) - fz = O..

We now consider an argument which suggests
that §'~ € and so the abnormal production is
suppressed in the forward direction and is hence
unobserved [38] .

The spin sum for the spin J propogator
Z Wm ”\y is composed of terms like
Z‘ M(}g Sdﬂ*ﬁd“ﬂ/m; . When this is summed over
J to obtain the Regge vropogator I"\IT—% < and hence
A‘*Aﬂ/m,} — Mg/ ¢ . The contribution of factors like
Dubp /L to the amplitude will be a power of v/
lower than the leading term and so it is usually

negleccted, however it contains a ‘/e singunlarity which

(&)
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must be cancelled. If the factor Ac(ﬂfl/{— is

3
contracted with momentum couplings, as P O~ M m!
it will vanisn for equal mass scattering and it is

assuned to be cancelled by daughters in the unequal

mass case. Now if we consider contracting Aﬂ

with the coupling 25(; (XSXFB then using the Dirac
equation we obtain /)f.—v m for the normal vertex
.and Xs [)_(.N w4 for the abnormal vertex, and so

for equal mass scattering the contribution of AslAF‘/{-_

to the normal vertex vanishes but does not for the

abnormal vertex. As this factor can occur in a leading

order contribution to an invariant amplitude, for

instance the A, contribution to IN ->7 WV and
IV N scattering [40’, 41] , céncellations from daughters

do not occur. Consequently ;S: must develop a zero at

t = 0 and hence 'we expect ~§ ~ t even in the unegual mass

case. Consequently %QLL;O at t = 0 for unnatural

parity production in agreement with Morrisons rule.

We have therefore proved that S.C.E-I'.C. and inde-ed any

X(g coupling is consistent with this modified Morrisons

rule.

3.6 Preliminary discussion to the data fits

As there are 6 independent couplings for
N> TN, )688), and as we do not wish our data
analysis to be just random fitting we must start
with some physical considerations. OQur view was that
because the pomeron nas a small slope and unit intercept

we expect that 1t will simulate the behaviour of a vector
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object, of coursenthis does not have the
implication that we believe the pomeron to be a
vector particle especially in view of the fact that

J = 1 does not correspond to a pole on the pomeron
“trajectory but simply for small t tne exchange will
have unit angular momentum. Hence the coupling will
be of the form g'f’ﬂ + 9, ZS(; . This alone is
sufficient to fit the density matrices of Lambsa et
al [28] because the only t-channel amplitudes produced
by this coupling are -réafk . In elastic
scattering the Xﬁ coupling alone corresponds to
5.,C.H.C. and hence we suggest that the generalization
of 5.0.d.C. to inelastic-nucleon diffraction is ‘Xk
or reduced gaama coupling (R.G.C.). Notice that this
hypothesis has the advantage over 5.C.H.C. that for
an -f dominated pomeron the coupling does not vanish
for Sg> S/, . In the fits to the data we also
consider the possibilities of more general gamma
couplings, T.C.43.C. and 3.C.H.C. General fits have
too much freedom to be of aﬂy value. A variety of
possible nonsense mechanisms were also considered as

a possible explanation for the small t structure in

N>NGI50) cna N N¥(%7,1688).
3.7 Data [its
As previously mentioned we assume pomeron
dominance and fit the differential cross-section
. - *
data ]_33] for WN=>7TN(;, IS 20) el N (5‘/L+, Ho89>

¥ (s,
and the density matrix data [?é] tor NT(57, ,‘f>983-
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The s-channel anplitudes are paramarlized in the form

RN «plt)

S , l
—T;\.)\L ~ (—{ 3 \/)n My 87TKP g*‘ v (8-”>
- —(wolp !
whére . (1+ )/2 ) © and VA.r\z
is the appropriate helicity vertex given in table 7.
The differential cross-section and the density natrices

are given by

de - ! | T -1 )
(‘_JtTt' 2 6‘}—7]'3'()12 lr\|>~z_l ( )
and
- _—
P % T T4 [T (5

in exponential ' dependence is included in the residues
along with the appropriate nonsense factor BJ(MF)

€A
thus 9'51'719 91 z G-LQA N‘ (dp). As the maximum léoer-OOOEF
we take t'=4.

.The first point to note i; that
Pra = UT&JQ”T{—{V)/ZZITP - (Reie)

and it is clear that bota T.C.H.C. (g,) and Xfe
couplings give g%z% = 0.5 ia the Gottfried-Jackson
frame. To distinguish between these two couplings,
or a linear combination of the two, requires more
accurate forward direction data than is presently
available. The presence of two t-channel helicity
amplitudes for R.G.C. suggests that there will be a
slight fall off in the small + region in the
differential cross-section while T.C.H.C. predicts no

such fall off.
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In fitting' TN->T N*(S'/J') 1628’) we find
that R.G.C. and T.C.4.C. are compatible with a1l the
data while S.C.H.C., with a 3.7.P. nonsense mechanism
is couaspatible only with the differential cross-section.
‘As there is so little forward structure in dﬁ)ﬂ*f
there is no point in fitting with a linear combination
of g, and g, especially as we note from table 9 that

My G G, - In fig. 22 we present a representative
best fit and also a fit using the Gell-Mann nonsgense
mechanisa. The factor ﬁl&ip)z p - | introduced
into each coupling by the G.M. mechanism causes a
forward turn over and the data is consistently under

fitted in this region. Tnhe sense choosing fit with

~

X-coupling approximates the T.C.H.C. and R.G.C. fits

as one might expect.

In fitting TTN->TN (3, 1v20) the
dominant influence is the forward turn over but even
here the couplings with G.4, nonsense factors underfit
the data in this region. The addition of multi-
pomeron cuts mignt improve the G.M. fit, but the effect
of sucn cuts would have to be inordinately strong to
bring our fit into line with the data. The T.C.H.C.,
R.G.C. and 3.C.H.C. (with S.7.P.) fail to it the turn
over and the best fit is achieved by gamma coupling
‘choosing either 5.7,P. or sense. A linear combination
of g, and g, gives a moderately good fit (table 10).

Density matrix data and predictions in the
helicity frane are given in fig. 24. for the N*(anlbgg)

only 5.C.H.C. fails to fit the data and we feel that this
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rules it out as a Viable hypothesis. There is no
density matrix data for tne N*3(, I520) and we present
predictions, the most interesting being that for gamma
coupling. It is clear from fig. 24b that 9%12 daﬁa
"with better that 10% error would serve to distinguish

between R.G.C. and gamma coupling.
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4., Some attenpts to unify diffractive scattering

by using the idea of constituents

4.1 Introduction

If a hadron is composed of constituents then
hadron-nadron scattering is reduced to scattering of the
constituents. For diffractive scattering the simplest
assunption is that all diffraction is the result of
elastic scattering among the constituents. The nost
general formulation of this idea is the model of Chou
and Yang‘(C.Y.) [42] which is flexible enough to
include tightly bound systems of a few objects as in the
quar< model or many and perhaps indefinite numbers of
internal degrees of freedém as in parton and dual models.

A specific exanple of the C.Y. model is to
assume the_constituents to be quarks. Unfortunately
however the non-relativistic quark model extended to
diffraction dissociation by using Glauber theory, as in
the C.Y. model, predicts zero-cross-section in the forward
direction for all processes except elastic scattering
43, 44].

Carlitz, Frautschi and Zweig (C.2.Z.) [45]
present a quark model in which the general systematics
of diffraction dissociation are predicted. The idea
here 1is to extend tne conservation of internal quantum
numbers ot diffractive vertices to the guantun nunbers
of the quark model. The most interesting feature of
this model is that it allows for a Hierarchy ofrstrengths
in diffraction dissociation due to the various symmetry
breaking terns and this meets with considerable success

for fernion dissociation.
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finally, Freund, Jones and Rivers (F.J.R.) [Aé]
and Carlitz Green and Zee (C.G.Z.) [47] use the idea of
duality to build a2 model for the pomeron coupling. This
~model can be extended and made more definite by the use
of exchange degeneracy (E.X.D.) arguments and then it
becomes the Kislinger model [48] which is closely related
to the C.Y. model. Unfortun.tely fhis médel suffers
from the same defect of the naive quari model in that it
predicts forward cross-section dips for all diffractive
processes except elastic scattering.

In this chapter we will describe and criticise

the various constituent models of diffractive scatterinzg.

4.2 The droplet model

Hadrons consist of a number of constituents, at
least in the minimal sense of the virtual perticles in
field theory, and so a collision can be decounosed into
the scattering of the constituents. Physically the
scattering is easiest to view in position space and at
asymptotic energies because of lorentz contraction, tne
transverse impact distance is the only relevant parameter
(See Pig. 25)

Consider a constituent of impact parameter bﬂ;
in A colliding with a constituent in 8 at impacf paraneter

b

a; then ths S matrix is

Slerba-ke) = € (4-1).

At high energies the long range forces due to particle

F‘..j

exchange become unimportant because the interaction time
becones essentizally instantaneous. Hence asymptotically

unless particles A, and %L are in line 1.e. b~fbn{* bQS::C)
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there will be no interaction i.e. S(b-f,b/;(—bad-\':l
. 2

and we expect Fij.~ & (bfﬁbA;’b({S> - The full

scattering matrix is the product of the individual

scattering matrices

S(&)= T Slktba -bg) = exp[-Z Fi;]
4y ‘4
= exp[— Jﬁq (,?&A) ﬂg(?}a) F(‘z*’k’mba) 0‘,5/% QIXa‘] .<4—'2<>

where S%(iA) and fh(}g) are the probability
densities of constituents being at X, in A and Xpr in B
respectively. The densities of constituents is
presumably reliated to the charge density and from this
hypothesis Iollow & nunber of iﬂteresting results Ior

elastic scattering the most important of which is the

Feynman-Wu-Yang conjecture_f4§] that

ds (nene)~ (de) Rl IR (43)

where F, and Fg are the electric form factors for

A and B respectively. Experimentally this relation
compares with the data very favourably. (See ref. 4,
ch. 5).

To extend.this formalism to include diffraction
excitation [45]53¥and ?& must be considered as q{-
numbers rather than < -numnbers and conseguently obey
computation rules like #/Tyy where ?ﬁ is some (Fermi)
field. 0f course there may be many types of field and
indeed to include all physical particles at least three
fields are necesszary for instance the u, 4 and s quark

Tields. However, as tne numher of different types of
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field does not affect the results this complication is
ignored. The s-matrix is now an operator and S0
inelastic transitions can be calculated by taking matrix
elements. When this formalism is applied to nucleus
nucleus scattering the model reduces to Glauber theory.

Chou and Yang take the fields in A to be
independent of the fields in B {i.e. [{ﬂq,fﬁ{] =0 )
because there is little momentum transfer between
colliding beams of high energy. Consequently the
collision just leads to a re-arrangement of the stuff in
the projectile and target. The predictions for elasticz
scattering are essentially similar to the g-number
tiieory proviled the "blackness™ of each nadron does noi
fluctuate much as the constituents move around.

Now consider the diffraction excitation process

elf to

o
=
ot
w

: X . o
AB — A" B where the stuff in A re-arran

uQ

e

3

* o S .
become A and similarly for B and B~ . he scattering

amplitude 1is

gk
~T) - Limiting amp as s -»eé = jﬂc/l}g 4 <SRBT ]S AR>
Déf' [ <AXEX|S-1]ag>] = [ <n*B%| SIARY | (4 4)

Just as for elastic scattering finite cross-sections at
infinite energy are expected for scme processes dependent
on tne nature of A% and B¥ and these are tnre diffraction
excitation reactions. Chou and Yang derive a number of
selection rules which we quote.

i) Because 5 depends only on space co-ordinates,
in the process AB —» X‘gt A and 8™ (also B and ﬁk ) must

have the same charge, G parity, Isospin, Iz, Strangress

and baryon number.
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ii) Spin parit& selection rule; for the diffraction
excitation process AB —» A B, A and A (also B and F¥)
cannot both be spinless and have the opposite parity.

iii) The differential cross-section will have a

- forward dip if the product of the parities is negative

%‘({Q”(n@%f\*@*)({:o = (14 B F B ) A (4-5)

iv) There is no left-right asymmetry as s —s o0  in
diffractive inelastic scattering off a transversely

polarized target.

Also since Q'UZ{: ’lﬂ,qx Yz ?704 has a

fluctuating phase for diffraction excitation processes it
is expected that diffraction éxcitation will have a
smaller cross-section than elastic scattering.
Furthermore the phase fluctuations will be more rapid for
higher excited states and so the cross-section will fall
as the masses of A and BY increase. Hence it can be
seen that although as s increases more and more channels
become open, the two body cross-section need not grow
without bound.

The predictions of the C.Y. model are summarized
in table 11, where the states listed are the quark model
predictions, not all of which are well established. It
can be seen that the C.Y. predictions for forward dips are
consistent with the feruion data presently available.
Elastic NN and N —& N*(‘bf, 1470) cross-sections both have
strong forward peaks and the N-—» N*(34—, 1520) a forward
dip as predioted. In table 11 there are a number of states
listed wnich are not seen and this could be due tc the
relative suppression resulting from the forward cross-

% o,
section dip; notice for instance that the N — N (3, , 1520)
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cross-section is a factor three smaller than the
oo NS T, 1470) cross-section.  The only other
orocess for waich the data is clear is the N— i
( SG+/ 1638) for which no dip is predicted in accord
‘with the data which nay however shnow a forward plateau
although tnis nas been disputed. Notice also that the
values of tne cross-section decrease with higher
excitation mass as anticipated.

The predictions for the boson data are more

difficult to test bpecause the extent to which the data

is quasi-two body is anbiguous. For pion dissociations

ct

the 44, A2 and A3 are all predicted to occur, the Ay and

A> with forward dips. The &4 data doesn’'t appzar to

8¢

exhibit any forward cdip, however the direct resonance
production is obscrued by mass enhancement efflects.

There is at present considerable contrcversy as to
whetner thne Ay is diffractively produced or not. If the
Ap is diffractively produced it will be a resonance
excitation process as it is forbidden by the Deck
mechanisa and we note that lixe the A4y 1t will be
relatively suppressed in the C.Y. odel because of the
cross—-section dip at t = O. The predictions for

i 4 K* are similar.

We also note that it is possible to produce
some resonances 1in double dissociation with forwnrd
peaks when the single dissociation cross-sections both
dip at t = O, for instance the N —» N (34, 1520)
N¥(Wf,1520) cross-section can have a forward peal even

though Hii > NN (%, 1520) cross-section dips at t=0.
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Finally it is also clear that the C.Y. model
will predict a generalized Feynman-Wu-~Yang expression
for the differential cross-sections in terms of the
transition form factors FA{\*(‘{) ) Fgax({') -

ds(rommed) = do| |RuWf (Fp©@  Goe)

4.3 A difficulty of the non-relativistic quark model

In the non-relativistic quark model the single
scattering approximation to Glauber theory predicts a
forward zero in the amplitude. To prove this we
expand the s-matrix operator in equation (4) of the

C.Y, model to first order.
T (ol & Eemiprbilad X 9by)]

A S (kth-by) dbedb |
5 (b % Pcmtotb Ay gl <k )IE> olbe G 7)
)

t

where the summation is over the quarks 2 in A and |
in B. Putting ;},_J;g:O for forward scattering and

making a transformation at variable we obtain

Tlg) = Z (b db; <w¥] ptb) Im>catlpte) 8y (4 8)

Now if A is say a baryon and 2= 3 we have

<A*’ ?(bl)}/'\‘> = gdf"{\‘ c/(vl\ CA-?::, "f/ﬂi (C|,C1,£1>7 A(C\,CL)EJ>

gz(ﬁ|fﬁ\‘t’ﬁl) (4’-'9)



- -

In the limnit s — o0 conservation of enerzy implies
qﬁkzzig and so clearly equation 8 is just the

orthonormaliltly eguation for tae wave-functions y%%'andyﬁ

and sinilarly ‘4ﬁ}iﬁﬂivz : hence'TTQ) = 0 unless A% = &
and v¥ = B.

Parry [50] sugzests that this embarrassing
result will be removed in a relativistic theory; the

point is that wihen Mg /My the lorentz contraction
effects on the initial and final wave-functions will be
different znd so orthogonality is 1ifted.

Byers and Frautschi [51] and Le Yaouanc et al [5é]
suggest tnat the d4ifficulty can be removed within the
context of a non-relativistic theory by woriing in a
frame in which the coanposite system moves siowly both
initially and finally. Sucn a systen is the Briet franme
and here the momentum transfer corresponding to forward
scattering does not vanish (also %5b:$(3 ) and hence the
single scattering anplitude does not vanisn for forward
scattering.

J.3. Bell [55} has gsneralized the non-
relativistic quark model for diffraction excitation to a
relativistic theory in the light plane formalism and
suggests that neither of the proposed methods of resolving
the forward zero in the single scattering avproximation
are vzlid.

D

4.4 The Carlitz, Prautscni, Zweig (U.2.%.) quark model

z

As explained in the previous section the naive
application of the quark mnodel to diffraction excitation
predicts cross-sections witn forward dips which is contrary

Lo cxporinent. JT is hoped tnat-this difficullby may be
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removed but in the meantime ignoring the problem we may
nevertneless predict the general systematics of diffraction
in the quark model. The paradigm model of this type is
due to Carlitz-Frautschi and Zweig [45].

C.F.2. extend the empirical result that there
is no change in I, 8, &, B, G at a diffractive vertex to
the conservation of the internal quantum numbers of the
quark model. They present two arguments for this
hypothesis

i) lIf a compound state results from elastic

scattering of its components then no internal
quantum numbers change.

ii) If the diffraction dissaciation amplitude
is built up by unitarity from a coherent sum

over intermediate states
I Tlheos AF0%) = 3= T (AR>X) o, T(xoie¥)  (4:10)
x

maximum coherence occurs when the quantun numbers
of the final state are as close as possible to the

quantum numbers of the initial state.

C.P.Z2. use the non-relativistic SU(6)
classification and for a particular 3U(3) multiplet there
is no change in quark spin or generalized charge conjugation
6 . A summary of the predictions is presented in table 11.
Consider Tirst the N —45 N reactions; only 56— 55
transitions are allowed in first order, thus
N = N°(hT, 1470), N*(s4", 16388) are allowed. Of course
there are 3U(5) synnetry breaking terms and hence the
55— 70 transitions ¥-» N3, 1520), ¥ (%,2190) do

occur but are relatively suppressed. Notice that the
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differential structﬁre for allowed reactions is
different from that for the forbidden reactions and
appears to conform to the predictions of the C.Y. model.
Indeed referring to table 11 it can ‘be seen that the
C.Y. model predicts a dip for all C.T.Z. forbidden
reactions. Aurthermore we note that the forward cross-
"sections for forbidden reactions are ~ 10%fof the
allowed results (see table 12) as expected:fnom“SUf6)
breaking terms but the total cross-section values for
forbidden reactions are only about a factor 3 less than
the allowed values which suggest a mechanism other then
5U(o0) breaking.
Now consider the boson dissociatcions for

which the only first order allowed processes are

T->Az and K — L. The transitions Ty —=> 44 A2 and
K-> K¥(1240) Q are both forbidden by guark 3pin
conservation. Although the W-> Aq and X — Q transitions
have cross-sections A'#aqa the prediction oi the C.F.Z.
model is not necessarily wrong because these processes
may be almost entirely due to mass ennancement effects.
Evidently Morrisons rule is not obeyed in general although
for W K projectiles all tne first order allowed
transitions are consistent with this anzatz,. This is
because 1f the quark spin remains zero then the spin of
tne produced hadron is-the samne as the orbital angular
momentun L of the guarks and thus the final parity

PS’ = - (-)L= )7 and hence AP = )7 which
is Morrisons rule. HoweQer, waen tane gquark spin changes
as in the transitions 77— A\,H1 there is no general

consistency with Morrisons rule.
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The main défect of the C.F.2. model is that
the spin is treated on exactly the same basis as other
internal variables and yet it is not a relativistic
invariant; hence the C.¥.Z. model will be frame
-dependent. This defect can be remedied by using the
relativistic SU(6),y ® CZ!z) vertex symmetry. As
this group 1s relativistically invariant for colinear
processes we treat the problem in the t-channel centre
of mass where the particles at a vertex all move in a
straight line. Clearly all the predictions of the
C.F.Z2. model remain the same except now in addition we
predict T.C.H.C. Of course, this camanot be entirely
correct because the N —» N transition conserves 5.C.d.
This result may also be included by allowing guark spin
flip which is the most general vertex interaction.
(Of course we maintain Lz = O for the leZ)symmetry).
Clearly we still predict the correct helicity structure
for N-» W (3T, 1520), N™(4,1638) namely the anplitudes

‘Tiﬁt% as both states have qguark spin % . furthermore

if the relative values of the flip and non-flip values
are adjusted to give 5.0.Hd.C., then the flip amplitude is
proportional to J:E" and hence we correctly predict a
forward dip for the 55 —» 70 transition N-— ﬁk(3{,1520).
Thus this modified C.#.Z, model reproduces all the fermion
data end this is essentially the approach of Le Yaouanc
et al [54], although they work in a non-relativistic
franework.

We now consider the modified C.F.Z. model applied
to bosons. Of course the successful prediction of

PT.C.H.C. for TT— A; and K— L are still maintained,
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. . . %
fdowever we now also allow TTJ?A|,A1and L= K (1420),GP

/

in first order but predict 0.C.d. flip {Ig ¢, ) rather
than T.C.3.C. and also forward dins in the cross-saction
as in the C.Y. model, both of which are contrary to the
dete. To obtain the correct result for -4, etc. we
must introduce a substantial amomnt of spin orbit inter-
action and 2 model with this property is presented in

Ch. 7

4.5 The twisted loop duzl guari model

The twisted loop quark model of #,J.R. Dﬂﬂ

5 based on the two component dwality

(=5

and C.G.%. [47]

ideas of Freund aand Harari [55]. In this picture the

o

hiza energy two bcody scattering ampnlitude A can be

i

Dsed 1nvo TwWo par

[t
ok

decon

1]

2, one Ape due Lo diffrzction
and the other A, corresponding to Regge exchanges.
According to the Freund-Harari hypothesis the Regge

contribution is built up from s-channel resonances whil

(44}

b

the diffrzctive amplitude corresponds to non-resonant
interaediate states.

" These ideas m2y be pictorially represented in
the gquark model [55]. In a scattering process quarx
lines are drawn for all the external particles and they
are connected in wvalid duality diagrams such that the
gquaric lines do not change their nature and %fi pairs in
the sane nadron do not anninilate. (Presumnably th
pair annihilation in the same hadron corresgond to wealk
and electromagnetic processesqq-» leptons).

flgs. 20, 27, 23, 29 and 30 display & nunber of

3!

valid guark duzlity dizgrans, together with the

o
5

=

ig. 26 and 27

(&

corresnonding Veneziano representations.

are the only wvalid diagrans corresponding to single



particle exchange for meson meson scattering. Fig. 25
will evidently contribute to Ag but fig. 27 cannot
because tnere are no s-channel poles. To construct
higner order diagrams the simple one particle exchange
diagrams are iterated using s-channel unitarity and the
results correspond to figs. 28, 29 and 30. Notice that
diagrams 28 and 29 both have s-channel poles and so
contribute to A,. Fig., 30 is interesting because it
corresponds to a two particle s-channel intermnediate state
which contributes to the background. furthermore as there
is no net exchange of quarks the t-channel singularity has
vacuun guantun nunbers and hence the diagram is a suitablie
candidate for the pomeron singularity. In the Fabini
Veneziano model this diagram can be computed and is in
general a cut, but for space-time dimensions 26 it

becomes a pole. Despite tize unphysical nature of this
result it is possible to extract some phenomenological
information from the diagrams alcne ignoring the detailed
mathematical correspondence and such a program correspcnds
" to the twisted loop quark model of #.J.R. and C.G.Z.

Using the duality transiormations as in fig. 30
it can be seen that the pomeron coupling is dominated by
resonances. The internal loop connecting the upper and
lower vertices may be regarded as a vacuumn fluctuation and
hence we may deduce that the pomeron has vacuum quantum
nwnbers i.e. SU(3) sinzlet with natural parity and

G=+1 . As the only well !mown resonances with these
properties are the f and {l it is assumed that the
poneron couples via 5 and §‘ in the 5U(3) singlet

comhination fl'
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The model can also include syanetry
breaking in the sense that the £ and f’ trajectories are
not degenerate, the §Ibeing heavier and hence lower.
Jor this reason the f and the f’ annot cancel one
another and hence diffraction dissociation is allowed for
any process Ifor which either the f or the f’ couple to
poth vertices, but of course we are mnainly interested in
the first order allowed processes. for boson
dissocociations the only significant restriction is
generalized charge conjugation G , @s 1in the C.F.Z; model
and thus in this model T-»Aq,42,4z are all allowed. The
N = %% transitions are not very interesting vecause all
the reactions listed in table 11 are allowed, The
nelicity properties of the pomeron coupling are, of course,
vredicted to be the samne as these for the f;f’ couplings.
For further nredictions the model must be made

nore guantitative f4i}. Referring to fig. 30 it can be

G

seen that tne J-plane amplitude may be written in the

form
Leax (£) 1)
5= Buw®) g (w4 Ligex® (4
SMT(JJ{) l'_\ T ol L‘(’) T——O«'J(‘t)
’/(T— ol (+))- is the vropogator for particle 2

whefe T and j are labels for tihae vacuum gquantumn numnber
exchanges, @iﬂwis the counling of T to the AAY vertex
and (a f) repr nts the pomeron singularity.

n

Tne Fubini Veneziano model Ior the poaeron taxes this

fora.
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It is not our intention in this survey to give
an exhaustive account of the predictions following from
equation 11, nowever we mention that the ratio of the pr
to 0" .cross—seotions are predicted with impressive
accuracy. One Tfurther interesting feature of equation 11
is that if the P is exchange degencrate with the j: then
the vertices wili, by vector dominance resenble the
electromagnetic coupling and nence the model is linked
with the C.Y. approach. The extreme form of this idea
is the Kislinger médel [hé] where the pomeron is replaced
by an 3U(3) sinzlet conserved vector current. Though

nis idea nakes tae predic%ive power of the model much
higher it is wrong because it implies that all normal
parity vertices vanish in the forward direction, (this
result is easily ‘proved in covariant formalism) which is
contrary to data. Hence we conclude that the idea of
identifying the pomeron with a conserved vector current
is wrong although it may be correct to assume the

pomeron couples like a vector particle.



5. Some approacnes to relativistic gquarl models

S.i Introduction

In this chapter we consider some attenpts to
incorporate relativity in the "constituent" quark model.
Such a generaligzation is certainly necessary so as to
include high energy scattering phenomena (c¢.f. Chapter 4
'section 3) and also because the internal quark velocities
are not small ccmpared with the speed of light,
particularly for mesons. Furthermore a relativistic
version of the moael is needed to provide a more adequate
theoretical basis for guarks.

If quarks are fundamental particles then the
starting point should be field, theory. The most nat*‘ali
model is to consider guarks to be bound by a neutral
vector "gluon" field and this view has proved successful
in formulating both the current commutation relations [19]
and light cone algebra [57]. However, if this picture is
taken seriously rafher then just a framework from wnich %o
abstract algebraic results then it leads to difficulties.
The mass sgpectrumn emerging from this model can be
predicted by considering the bound state problem in the
Bethe Salpeter equation (with the Ladder avproximation)
and it bears no relation to the physical mass spectrum [58].
Indeed any model for which the "potential™ is singular az
the origin will not lead to rising Regge trajectorics with
approximately even spacing [59]. Neglecying 3pin
complications exactly linear Regge trajectories are
obTtained from harmonic coscillator guark quark interactions.

Cleariy such nn interaction ia unphysical., This ig net
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only because taz hirmonic oscillator has infinite raare,

]

)

s potentials like -ﬁ\QxF(-L}FI> vould also give

j¢

approximately linear trajeclories for the low lying

states, but rather because the physicz2l oriigin of this
interaction is obscure. Of course this problean is not
confined to the guarx model as it is difficult to find

any dynaaical explanation wihatsoever for linear rising
trajectories altaough one suggestion [66] is that
‘trajectories continue to rise due to the effects oX
coupling to higher multiplicity intermediate states.
However, we will simply accept linearly rising trajectories
as a fundamental fact and this attitude conforms to the

duzl model phnilosophy.

ot

ivistic quark molels it is
important to maintain a close relation with the non-
relativistic model so that the successful predictions of
this model are‘nét destroyed. The most direct approach
is to construct covariant wave-funciions by boosting the
non-relativistic results, and this is quite simple because
in the 3U!6) quark model the spin is decoupled from the

potential. However, it is difficult to understand this

62}

result in a relativistic theory and indeed the evidence

favours a considerable spin-orbit interaction at least
for mesons. [Cnapter i section 5 ii}

The nost -straizhit-forward extension of the non-
relativistic gquarc model is to assume the potential to be
a covariant oscillator in a scalar equation and to

1
r

incorgorate guark spin by using boosted spinors. This is
the approach of Feynman Kislinzer and Ravndal (F.K.R.)

[51] the results of which are about as good as the non-
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relativistic.model but now there are rewer free parameters.
The main defect of tnis approach is that spin is not
treated dynamically.

Clearly a more adequate starting point is the
Bethe Salpeter equation for spinor quariks. However, in
a model of this sort, the calculatiornal sinplicity of the
f.K.R. approach 1is lost. The most interesting model of
this type is due to Bohn, Joos and Kramnner (B.J.X.) [62]
where the Bethe JSalpeter equation for a quark antiquark pair
bound bylthe most general covariant oscillator potential is
solved perturbatively from analytic solutions for the mass

zero equation.

5.2 Covariant wave-functions and the Bethe Salveter

eguation

A covariant wave-function describing a bound
state of n particles’qfﬁ,%-~n) transforms under & Lorentz

boost [\ as a tensor product of one particle states.
’l{f(l 2, ————7 S (/\\Ql(i’\\ Y,\(V\)’S(/(l.?,-~-f\) (s.1)

where S;UQ is the Lorentz boost for the itk particle.

Our main interest is in the two particle fermion anti-
fermion bound state which is described by a wave-function
ngg where & 1is the spinor index and (& the aﬁtispinor
index. %ﬁkﬂ can bé treated as a 4 x 4 matrix and iT
it is expanded in terms of invariants formed from the
Dirac bilinear covariants ["= (I, XY X;X} >

then it will automatically have the correct Lorentz

transformation properties.
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We now consider the equation for the covariant
wave-tunction due to Bethe and Salpeter [53] . The
two particlé Bethe Salpeter wave-function is
diagramatically represented on the left-hand side of
fig. 31. (Of course the inclusion of the propagators
is purely for convenience). The binding is due to the
repeated action of a basic irreducible potential V
composed of all graphs which do not separate into two
graphs when the constituent particle lines are cut.
(As these graphs are already included, see figs. 32 and
3%). Because the potential acts an infinite number of
times one further interaction will leave it unaltered
and ilence we have the Bethe Salpeter equation shown in
fig. 31. Clearly it is easy to generalize this equation
to bound states of several particles and fig. 34 shows
-fhe equation for a three particle bound state.

We now consider the spescial case of a fermion-
anti-fermion bound state; the Bethe Salpeter equation in

momentum space 1is

\48(9; fz’Cb)a"K lkon({k)

=\ _| ( 4%
’L/jf\‘(l (CL) U‘f ‘\'9(;” mtv\c{‘& (EI - 9{.1 *m%\(}S X ) ( 5
-2

where the repeated indices are sunmed over and ﬂ/i -—AFX{'J:
In position space this equation is in general an integro-
differential equation, however when the potential just
depends on the exchange monentum i.e. V(P;R$1\=vV(k~%).
then the eguation 2 becomes a differential equation |

(equation 5.%) in position space and this is the ladder

approxicaiion.

( g 41 ¢ ~ mq) '\l)‘;(x)(,%‘— -ia -\-Mq’) = A V&) ’li{o/z«) (S'3)
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X is the co-ordinate conjugate to q.

The Bethe Salwueter equation is homnogeneous
and hence the wave-function normalization is undetermined.
~The simplest procedure is to normalize to tnhe charge on
the constituents as in fig. 35. For spinor - anti-spinor

constituents the resulv is

el L1829 s (4 T [ s o)

L

_ (S-4).
=af,

wnere the facvor (gg‘f#'f’”%)- is to cancel th

[$]

extra propogator which would otherwise be included and

©p is the charge on the particle A and yU,_XBTPfK d

5.3 Relativistic wave—-functions from

physical considerations

The most general form for the pseudoscalar

ground state meson (Cfﬂj is [64]

Xp = S (A+RP +4PC + D g F") (5:5)

where A,B, C and D are even functions of (l'fj- If it
is assumed that the ground state is a pure S-wave as in
the non-relativistic quark model then eguation d reduces
to %p = s (A+QE) (s:t)
Similarly for vector mesons, neglecting all but the 5-
wave states (and therefore any spin orbit interoction)

we obtain ()(V = ¢‘ (A'+ R'@X- (s ?—).

where GSF is 2 spin one wave-function.
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If we wisnh to approxinate the non-
relativistic mcdel thean in the rest frame the wave-

function should act lite tae product of a spinor and

F

anti-gspinor at rest. Boosting this into the general

57.

(o)

framne we obtain the results [64,

Xe =% (1- £) Q)

e

Ky *G;('_‘ )COV(CL>

(s-£)

This is the approach of tiiz btocsted symmetry schemes
UJ(G,E)) hovever such wave-functions correspond *o
wenak binding.

IT the gquaris are regarded as rezl abjects with

v

a large mass Mg >  My.gon then the binding energy ~ 2

and the "individual cuarks" have effectively zero energy.
Hence we expect the amplitude for the "negative energy"

ane order as the

ch
oy
[0}
6]

part of the wave-function to be of
"Hositive energy" component. For the forms given in
equations 6 and 7 there are only two possibilities of

this type and these are
Yo = ¥ (1+ OHT,,)‘?) Ped)

(s.
Xe = & (1+ 00k )#) Bels) s
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Eguations 8, 9 and 10 are the three possible forms
for the 3ethe Salpeter wave-functions of the pseudo-
scalar and vector mesons considered by Llewellyn-
Smith[ﬁd]. Similarly it is simple to deduce the
expected form for the higher orbital states provided
orbital mixing and spin orbit terms are neglected.

We now proceed to discuss the expected form of
the Baryon wave-functions. This is important because
the solution of the Bethe Salpeter equation for baryons
is evidently much more difficult than for mesons. Ve

will Jjust consider the orbital momentum zero states as

bl —I hn
for mesons. Clearly the nucleon ~ W« 9(9(2 and
-t . . . :
the N ~ uX,C where U is some spinor and C the
charge conjugation matrix. In the case of the boosted

non-relativistic wave-functions the results are simple
and are [‘65—]
[X ( ) C U (PX aYp 1bCLQ)(Lc + CL')"?;C po o
.q)/ OL 1/ ﬂ)b'e_ ]%/Gl.z)
¥ m > Y ]
"4{& Cﬂl:j [¢ ( )C 'u (P)(Claftb‘f“tbclq)l + Cy C(;FC‘
psma J Walg!)

(s-11)
where u(p) is a free spinor of momentum P and mass My (MA)

Ga, 9b, g are the SU(3) quark wave-Tunctions
and C’_{ZA are the Clebsch Gordon co-efficients for
projecting spin 34 out of Vl@’

In the strong binding limit just as rfor
mesons the wave-function will be made un of & combination

of pure "positive energy spirnors" and pure 'negative
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energy spianors" with approxinately equal amplitude
and hence the nucleon is constructed from

ut(e) s (1- %N)(’_' + o u‘(P)Xg(H%N)C"’

and the N

u*(P)ﬁt (l- f—éA)C" + LI(()}Q,‘; (H%Q)C-l

w

(s-12)

where u*((A') is a positive (negative) energy free
spinor, and &« some phase. (Recall as in tre non-
relativistié nodel the quarx velocity is smnall). The
phase X is difficult to estinate although the value
(= + | would be consistent with meson s»lutions

Ziven in equation 5.9.

5.4 The Feynman Xislinger Ravndal quark model

The F.K.R. quar< model [61] generalizes the
harmonic oscillator non-relativistic gquari model [65]
to include relativity in the sinpnlest possible manner,
in particular the spin is taken to be independent of the
binding potential and orbital motion.

Jonsider tne non-relativistic anarmonic
oscillator cusr< model for mesons. If ©, , Ao and

X\, 2+ are tae momentum and positions of the quark

and =antiquarx respectively then the Hamiltonian is
{ 1 2 2
H = mcue. +‘2,+1C‘;Pa_ -+ m@wg (X.-E;‘J (s-13)
Defining %,-(P“(’L\/l and = X,-2¢. as the relative

moaentua and position, thnen in the rest frane ecuation

13 becomes

H= = 9"+ Mg e % (514



_qc)-

vefining Rjtlfn%LQé this may be rewritten in the fornm
Gy H = 4 (g2+ ) (5.

. . . . -L
Now the relativistic energy squared is ﬂﬂagﬂw\= (QVWfo4)

X 4mg+ &mgH  and hence if 4mg is added to
equation 5 .15 we obtain
T _ ( 1 Loy tant (SZI6>A
Mugcon = 4 G o)+ famstan

This equation nas tae advantage that the quark mass
does not occur explicitly.
The natural relativistic analogue of equation
5.15 is
K = = 2( p2ay pie 2w (-56)") S )
waere FQ’) (ﬁr )Dgr ?nd o are the 4-vector nmoaentum
and positions of the quark and antiquard. (Note
|<4~/44ﬂ%f4 then eguation 17 follows fron eguation 13).
Of course X has the dimensions of mass sguared and the

oscillator has been chosen to be 4-dinensionzl

. . i , Moo P .
covariance in a simple vay. Defining P, Q? tq. , Pt -9
and S0 X -3Cy equation 5.17 may be rewritten,

separating out the centre oI mass motion in the form
K= P = 4(qaerxt)
or K- P - g (qreetx) (s18)

]

Comparing with equation 15 K-P* is identified with the
mass sguared operator ‘ (In chapter 5 we will present
an alternative urgument for this result). Defining the
creation and anninilation operators

C{r (CL,J*"‘WXV)/’ZLO Apn= ( Cf,/—" “""xl)/\ﬁ»—\;

and settlng S2L= 8wy we obtain

?M(L= -'Sl(i?:QV + consTant (Sz,q)
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Clearly the states lie on strzizgzht Regge trajectories

ox Drw

: —1 m - . Y
with slope S . The ground state meson then
corresponds (apart from the spin; to the oscillator

vacuaui state 1d> deiined by Q?,ld> = QO and all

the higher excited states are generated by the action
of the creation operators, for instance the first
excited state is |d> Fron the conmutation

relations lfar,af]=—3rv it can be seen that the time-
like excitation Qg /d>' nas negative nornalization,
explicitly

” ao‘t’{0> ” = <ol Q(,C(;t'l0> = ('Olqoqo'f'-qg‘qolosz—- <ofe> =~ (S_-.ZCj
4 sinilar problsexn occurs in electrodynamics quaantized in

a covariant manner, (also dual models c.T. chz:

te

k3
-
~

*cJ

however in tnis theory there exist subsiduary (gauge

~—

conditions wihich decouple the unwanted states.

(Actually the time like states are czancelled by the
iongitudonal states and the gauge conditions effectively
decouple two states making the photon transverse).

B, X.R. eliminate tThe unwanted time like states by decree.
In the regt iframe a state \St> will contain no time iike
excitation nodes if Go{S>= 0 or MAa, (> = Cals>=0
and tais is the gauge condition adopted. However now
(unlike Q.E.D.) the set of physical states is no longer
complete and unitarity will be violated. As a

-

consequence the calculated matrix elements will be toc

]

big and so .K R. introduce an ad hoc correction factor

-

to compensate Jor this.
Quarks have spin Vg, and yet the operator

contains no reference to spin. Of course the spin has

- T T - P, Lo ERN . P RS RV
oo Coclucels S0 s SO TeuLin Tl CL2s% L MUlOoMm Uo Lol
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nen-relativistic model, however the spin is important

in the presence of interactions. for the purvose of
deriving the electronagnetic interaction from the mini-
mal substitution P%F%(TF'QLA{the terms Pf in eguations
5.18 is interpreted as fftfi woere i = e;r\&;IJ

To first order in the electric charge the electromagnetic

interaction 1is

Hom =‘ZZ\QL(f{L¢i*V(Li{i)EVyéP (s-21)

where <lF is the polarization vector of the electro-
) \
e Lo thxg L
magnetic field HT’— SR and V% is the current.

The axial current is given by ,4},2 XS' V,., .

Ve must now Ifind sone restriction anong the 4

conponents of the quark spinors. If the guaris qsve
very slowly inside the hadron as is reguired for the
non-relativistic model, then we may detsrnine the
spinors by assuﬁing the quarlks to be at rest. In the

weax binding limit we may use narity invariance for each
nf the quarks separately to relate the large and small

components, hence

Xo;‘i; z U for the gquark
.Xo;Vl = - V¢ for the antiguark

Multiplying by the nadron mass w1 and boosting into a

frane where the hadron is moving with 4-momentun

({5 - m§ Uuce=0Q for the guark
(@ 1‘“4) Ve = O for the aaitiguark
Al

Mis is essentially the prescrintion of 1.K.R. although
J p e &)

they use spinors (ratner than antispinors) for the anti-



_Qg_

guarks as well as thz guarks, presunably on the grounds
? &L =]

o

thet this mzaintains a closer relation to the non-

relztivistic aodlel. Thi

=
0

> 13 exactly the cane
procedure as in the boosted UIG,EB- wave-Tfunctions

‘discussed in section 3 except that the mesons have the

wrong parity. Thus tane spin part of the ovseudoscalar
neson 1is
— .
AW W) - unyat@r) o& ¥ (m- ) c (5-24)
Similarly the spin one wave-function is
Uy ut i) .
-t SAS).
(weryut) + uy W)y o€ 45 (m- ?)C (5-2%)
Uy uTh) |
winich are the sane as equation 5.8 apart from the charge
conjugzation 71atrix. We emnnnasise however that this weal:

binding prescription is completely independent of the
other components of the model and strong binding

prescriptions as in eguations 5.2 or 5.10 are equally good.

]

Tais is important because it is this aspect of the F.K.R.
model together with the anzatz for tine currents which
essentially deteraine the results of the model. The
narmonic oscillator form for the spacial part of the
wave-function matters much less as data exists only for
the low lying states.

The ¥.{.R. nodel for taryons is a simple

extension of the neso model. The quark spinors are

@]

constructed in exactly the sz2me way as for mesons. The
mass squared operator is slichtly more couplicated
because there are two degrees of freedom. From similar

argunents to those for mesons we obtain

K = _3< Lezs plepr |+ ¢t (x.-x:\li’(x.-X5\1+(M—x1\‘]> (s-20)
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Reinovin» the tera due to the centre of mass motion

( P = F,T[%;fp3)_ we obtain the mass squared operator
M= K+ P = -L(aa+b'b) =~ 6l pre g+ =i (pe Xt)] (5227

where SL= I2«s and we have cnosen the creation

operator at to correspond to motion of quarks 1 and 2

about their centre and 6+ to correspond to the motion

of quarikt 3 relative to the centre of mass, The

corresponding Jacobl co-ordinates are

g — %):: X~ .

e — ?\""ﬁ (N"'*{"ZX)X:\I?[‘_‘?‘(%IT'XL““X3>‘ X3]

The currents for baryons are defined in a

(s-28)

L

similar manner to those for anesons by tne minimal
prescription.

Experimental gquantities are calculated in the
theory by taking matrix elements of the currents in
direct analogy with non-relativisvic quantum mechanics.
Thus if 441 = Fu-+l4; iz a perturpvation for a meson
state then the aaplitude to make a transition from a
state t to a state ¥ is
<‘§{ Hl'l'2> = ('\{’sz_(alf_ ; g)ul()UI( “‘L\/ + e ((g‘lq>
wiaere |h;>and |h¢> are harmonic oscillator states and
wWwe have neglected unitary spin factors. Besides the
contribution due to Uy F4; U, there will be a
projection dus to &2& Ui tcecause gquark 2 will

change 7Moaqentun withh the meson. (See fig. %5; also

[

\

note spinor normalization JQu=1]) . f.{.R. consider

)

projections of tnis sort to be spurious and neglect them.

Blectronagnetic »nrocesses are calculated by

wWeovecnor curTeny, wWinen 18

conserved provided predicted masses are used. oKL,
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choose to include symmetry breaking by using physical
masses, however this causes some unpleasant results.

(See next cnapter). Decays by emission of a pseudo-
scalar meson ere calculated by replacing the pseudo-
scalar by the divergence of the axial current as in
P.C.4.0. theory but the constant of proportionality is
slightly different from the P.C.A.C. value. The results
enerzing fron these calculations for mesons are

considered in the next chapter.

5.5 The Betne Salpeter gquarx model of

Bohm J920s and Kranmer

o~
r o
LTor 2

Consider the Bethe 3alp:s

y¥)

ter eauation
quark antiquark bound Dy a covariant potential‘V, from

section 2 we have in the ladder approximation

(4‘-2 HL‘W\%\ (XP'(%)(E{ 9t _’”\q,\ = )g\/[q— k\)(Xf(k\ ézﬁ:%)‘f (s-20)

For finite values of the bound state energy the egquation
is extrenely complicated. However, for massless bouad
states (i.e. P = 0) the equation becomes more tractable
and is exactly soluble for the coulomb potential. The
reason for tinls simplification is that the equation

(see below) now exhibits CXZ.') syametry.

(=) %o @) (- ) = <) (Vlq-rry 0 (s31)

It is possible to define an analytic continuation in the
<1o variable to pure imaginary values [6?] and then

equation 31 displays CV#) symnetry. Making an (3(@),

expansion eguation 5 .31 reduces to a Thyperradial” eign-

value equaitliom ar A
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B.J..{. [62] approach the equark model in the
sane =pirit. The point is that the quarik mass P1$ is
large compared with tne meson masses for the low lying
states which suggests taking a first approximation
ﬂqﬂadron = 0 and tnen proceeding with a perturvation
"expansion inr“hadron/{ﬂq’-

Tne most general expansion for a local potential

is in terams of the Fermi invariants [*'%: (f,Xg,X},X}Xr)C;V 3

: S . .
Vig-R) k) = Z A K (q-k) COxay (s-32)

50 as to obtain aporoximately linear trzjector

}_l
o]
7}
ct
o
)

potentials zre cnosen to be covariant oscillators
Kil)= o((f((;xl signa{;=- S1gn (3L (s-33)
o{; is the depth of the well (below V = O)

The details of the calculation are both
complicated and tedious and we will simply quote some
of the results.

The first point oI interest is to note that a
relativistic quarx model does not produce as a matter of
course the non relativistic charge conjugatvion parity
spectrun. This result depends upon tne potential and
taere are two simple choices whicn give the non-

relativistic spectrum and these are
Ve = (300« X% Y Wor@rt) e T=A=0 (S-3¢)

Vo) = (¥ X}‘Ho}@cﬁb— &§f’h"§"x‘5‘)}\?’)(ld-r(sx‘) e \=S=0 ($.35)
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Both interasctions include scme nevative normalization
time like states. In the original paver [62 |
interaction 5.34 was chosen although in a more recent
paper [Sé].the interaction 'Kg)X§> is favoured,
(bzcause this leads to saturation of the quark forces).

In both cases the solutions correspond to one or other

iy

of the foras for strong binding suggested in section 3,
The advantage of the B.u.x. model over the
phenomnenological anzalz discussed previously is that
the parameters of the model are related to the meson
mass spectrun.

One important appelication is to mescn decay
annlitudes [63]. Guided by the duality diagram apvroach
the model shown in fig. 37 is used and produces resulté
which zre in reasonable agreement with experiments.
{The predicted decay widths are a little worse than

those predicted on the F.X.R. model).
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2. A reliativistic guars model Jor mesons

2.1 Insroluction

The ability ol the symmetric non-relativistic

~

haraonic oscillator quaric model to classify mesons and

-

baryons and to describe souae Teatures ol their inter-
actions is well establisned 115, 65L In the previous
tz to derive weliativistic

N

senerali-ations of the model wer:s described [bi, 521

od 65]. dowever, the basic puzzle ol the guarl model
resz2insy namnely what is the origin of the success of the
nodel ziven that ophysical quarks do not seen to exis?t

(see chapter 1). G course it is legitimate to exnlain

HEY

nce o9 guaril profuUucTionn DY ASSUNINE VEDY

@

neavy quaris. However if quarks can exis®t as {ree
particles then their properties are difficult to understand:

for instaance guarlks appear to obey symmetric statistics

whicn is inapsropriate for fernions znd 2lso the guark
force is not of 2 simple exchanges Tvype. We prefer tn

take a more abstract view of quarks as being in some way

B N

inseparable frca the nadron. Suecifics

o
-
r...)

‘g
O]
oy
L
;L

|-
a
'.)
]
U

concaived as an excitztion of some vasic extended object,
and the guoris are expected to arise nziurally as internzl

dezrees of iveedon in the free Field theory of the svsten.

In a wodel of tuis sort the haranonic interactions of Lhe

cuarks can be e22:3ily understood. An ewcaple of a model
~ A L PN oy Ty A edl wisorae o A aan A A sl
0L ThAls UFPpE 13 tile Quial arCcden Wiaere uvac exueencteld oDbjoon

- o~ N R . P e o e vy e L T -';';

iz & rotating string, execuning Itransverse Vlu;uu¢0ﬂblu3],
}-s B L T S T T PPN oy 1 TNma 1y nLe ) '] =N T
sut tuis S of the rnodel Jdoeos niot inclune QUL legrecl
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The inseparability of gquarks from hadrons may
be expressed by letting the quark massrﬂq‘become infinite.
That this 1limit relates the bound state guark dynamics to
-the dual model has been demonstfated by Susskinid [70] .
Susskind considers the Bethe Salpeter equation for two
scalar quarks in the infinite nass limit,wnen the
equation becomes linear. Solving this equation for
harmonic oscillator interactions it is possible to
obtain an expression for the four point function in the
narrow resonance approximation which is closely related
to the Veneziano formula. Indeed this model was the
precurscr to the siring models wnere an infinite set of
frequency modes are included. T'he Susskind model is

essentially identical to the #.X.R. model which we may

[

thereiore regard as tne lowest order approximation to
the rFubini Veneziano model.

It is our aim in tais cnapter to build a2 mcdel
similar to Ff.X.R. but incorporating spin in a dynamnicel
manner [76]. Because guarks nave spin VL the result

sho 2 alogous to Tl ow de auatic in ©
hould bz analogous to the lowest order eguation in th

V]

Ramond model [12} for Ifernions namely (chapter 1

equation 1.31)
[{5 -fi\&s(a*'r;c)”.‘_ lo‘;,at’)-mo‘j h‘l/> =0 ((O.l)

) , ), . . . ?
vhere the b’s are spin excitation operators and the QA S
orbital excitation operators. we interpret the negliect
of the higher excitation mnodes as being eguivalent to

neglecting the sea of quark antiguark pairs.
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Ve are avle to construct a model of this type
for mesons by deﬂaﬁding that the squored equation retain
harmonic oscillator forn. The main way that our egquation
differs from‘the dual model result 6.1 is by the
natural inclusion of substantial spin orbit terms and
this is suggestive of the Melosh transformation. of
course our quar.s are constituent quaris {(but not SU(S)N
quarks) wnereas the current guarks are regarded as
including the sea of virtual quark antiguari pairs.

In practice this is not tne case as the "free current”
quarks of the Melosh transformation &are constituent
quaris in exactly tThe same sense as our model.

Hovievar, if constituent guaris zare confined to mean
SU(S)w quarks then the '"small components® in both the
Melosn model and our model contained "constituent guark
antiguark" pairs and in this sense our model incorporates
current guars,

We are able to calculate the quark mass that
enters our model from pion decay aand unfortunately it

turns out to be of the same order as the pseudcscalar

meson nass just as in the non-relativistic model znd 350
the whole scneme seens to be self contradictory. This
is not the case. I7 quarks are inseparable from the

hadroa then the gusrk mass has no neaning and cannot enter
the matrix elements as a physical parameter althnough this

would be tie case 17 we interpreted tle ﬂ%mébao 1init

simply as an approximation to heavy guaris. The
prescription ﬂhm~>00 is regarded as a device for

obtaining consistent relativistic results while excluding
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quark propazation effects. The form of the matrix
elenents obtained in this manner is entirely znalogzous
to the duzal model and also the »,.{.2. model. Quaric
propagation effects are omitted not because the quarks
have lzrge mass but rather because gquarks are intrinsic
to hadrons and have no separate existence.

When dealing with the 0 T nonet we will assune
no 7' mixing and for tae 17  nonet we talke & 96 to

be ideally mixed.

6.2 The Model

Consider two quiarks oI momenta pq and pp bound

}_l

by a covariant potential V. The BS egquation is#*

(i-ma) & (fi-mg) = v ¢ (62}
and if the quark mass, MQ’ is large the equation can be

approximated by

(Aebrd=Cmy= %) = (mo-u)d o2)

where My is the effective quark mass.
Substituting for the centre of mass and relative momentum
variaovles F) “iven b z-fzf . the egquation

[ Lol ) % > < y P' = (1, ) PL 2 q, (V4 q 1

becones

[—ffi(x.” ¥H) +.ch,(x|~_xzr) et U] =0 (erd)

*We consider the gquari guzark eguation. The guark
antiquark result is derived using the charge conjugation

-l

ey am i
navriv.
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We choose the form of the interzction in the

3

ne Way 2s ... As one can derive their model fronm

1)

3

“

BS eguation for scalar quarks

(ﬁz—"h{\¢ (ez-mi) = V¢ (%)

Cgiving as M%—b o0

)

[ PHF?—MZ{,*%,%H):O (b-6)
the mevhod is strictly analagous. For harmonic

oscillator interaction this becomes

l’ Fl1+p:+2¢.o’*x‘z+ CJ Cf) =0
[ £ +1(q1+wlx‘)+c]<f) =0

2

(b 7)

vhere X"':—L(}%—X" I is the relative separation of
’J

the quarks and 'c' is a constant. Introducing creation

and annihilation operators
NEE) <(ir—‘°wf)' ((0‘8’\
We obtain the P.Y.R. model

[ Pty SLafal + 2c 7 ¢ =0 (6:%)

\ T T ) T
where S =%y and F=mMm the meson mass squared.
To obtain the interaction for spinor guarie we

1] i in the spin spe L et
ilinearize in the spin space 7.@':(5 to ge

ﬁ: (K"'Hﬁf) ~ Mo~ g_gﬂ (ol d_d&') (o 10)
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To ensure that the.squ:red eguation has oscillator form
. . . T
we must elimninate teras gquadratic in alt ang aP' by

the conditions
&l oy = oY =0 (b-11)

-

eq 6.4 determines the way in winich the internal
momenta enter eq 5.10 . These constraints suggest
tne form

o(iP‘J —'i(ffﬁ:)( W*XL'J) (5.12)
where Lorentz and parity invariance indicate how Py can
be expanded in terms of Fermi bilinear covariants.

Using eq 5.12 one can deduce that
. 0) @ -
NLAENGE R X% %) (5.13)

and the square root equation becomes

[ _Et'. (Xlr‘sz’l) - Myt ‘l—sg(d*a"“’l‘a-r)]d) = Q (6.14)
Lxplicitly
J_f;?;(xra FoLOT) = (XJ‘-X{‘)%— iwxﬂ‘X}"(X‘“—\fLP)xk (6.15)

we deduce that
. )
U(th\ T—‘I(«Jﬁ XS(})(X,'J—\&{’)(X,»(L\P (6.156)

This form of the intTeraction, linear in vposition variables,
waich, like the momenta, are contracted with Dirac

nmatrices can be seen to arise from the position momentum
symmetry characteristic of the harmonic oscillator.

eq {5.15) is clearly invariznt under the interchanse

4 (” ‘\z\
CloXYeL
Gp > - ok
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e note that because the interaction
LX[XH¥L)- does not contain a scalar potential ve are

wnable to cancel the large guark mass, m on which we

e} ’

have based our derivation, to get a snill effective

guark mass m The apoarent inconsistency which arises

0"
fron M, neing in fact mg we shall ignore in order to take

"advantage of th

(@)

mq-4>ao anzatz. The obviocus

1

advantage i3 th

Q]

elimination of gquark propagator effects
which estatlishes a close relation between our
relativistic results and non-relativistic results.

This philosophy is entirely consistent with that of
?.,K.R, (scalar gquarks versus our spinocr guarks) and our
desire to establish a calcnlationzal nrescription from-
which we can abstract systematics.

A further advantage of the infinite quark mass
picture is that we can regard the internal motion of the
constituent guaris as non-relativistic (although we are
then obliged to neglect the relative energy in the centire
of mass). This allows us to replace the Tour dimensional

operaters, OP by

R
M = Y~ Pt’ ma

4s M = (o,g).jzzthe rest frame, the close re’ationshin

with the non-relavivistic model is clear. As well, the

5

negative norm time like states are eliminated, These

-

es in the P.H.R. model are decoupled from physical

stz

(s

ct
Y
,—+

S

D

es by a -auge condition and tihis has the effect or
violatving unitarity. As & consequence, the F.LER. matrix
elements are too larze and they are obliged to reducs them

by using 'an adjustment factor'.
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5.3 DProperties of the wave functions

The solutions to eq o.14 an be built up

in a ifock space with a vacuun lO§> defined by

m,]_o,b= ) (6.17)

This 13 Jjust tne ordinary non-relativistic oscillator
zround state in the rest frame. A general solution of

©.14 can then be wfitten as
| pe> = Yp (1,7) 106>

WNeTre q& is a 4 % 4 matrix. Ia calculations, gquark
operators act on }b},.from the right, while antiguark
operatars act from the left, The invariance properties

of The solutions under charze coanjugation, Lorentz and

parity traansformations are defined in the same way as
for the BS wezve Tfunctions. In particular, charge

L

conjugation is defined by

C#JPT(-»/],,?)“)C—‘IO» = e Yo (1)1 06> (5.19)

Because the wave function does not depend on

the relative energy (a conseguence of the infinite gquark
mass approach) we can not use the invariant measure d“q.
This requires redefinition of the scalar product which we
do in a wvay motivated by r.X.R. That is, we replace
|0> by §0» the 4 ditensional vacuum state, which
also satisfies 5.18%, The spin part of the scalar
product is defined in the usual way, so we have

e, 1> = T GO, ) Vi1 ) o>

where (@~lO)-
+ X
J)—P((ql )(7‘) = %0 q> PI (7‘1;(43-> XO
EFotice tnat prescripiion brings the medel to the

same Tors as expected from a gauge theory.
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#e normalize the wave functions by using the
matrix elements of the quark current at zero momentun

transfer. "hese define the quark charge, €y

ey ~ |
<Yl JE(Z'] [4p> = - <ol T Yololom) ¥ Yolon,4t) (3p=20.(5.21)

and give

.

Yol 3O s T Yy Y Betfame)> 2 (5,223
q, .
waich for large mg becomnes

N"M‘LTF (% X/'J lf’p> and we note that our noraalization
in (5.21) is consistent with the general zaonroach.
As is obvious from the abowve, the minimal

vector current for the quarks is

% o ) '((1,7(__ _ q/qfds‘i' _q/-C\/J'F P
V)= Qq,\°yQ = Jz%\(rFe Q (5.22)
with P = exp (*ﬂb&gS and the centre of nass phase
factor neglected. The axial current is
9 GALTT YT )
A'J = - ng Xr FQ_ Q. (0.24)

Neglecting the unitary spin factor the anticuark operaters

are given by

1—

~q & S -4/, 757
-~ N5 a4
) 42ﬂ

@f}): Fernc (5.25)
where [ iz sither 7%,or X}X}. The corresvonding anti-
quark matrix elenents are given by

CRY o (ot
<o | O P> = F <ol Tr P O, 7,
-G QST a/ 5T : T, PN
o A5t _Q"l ST \I/(’, (,,)“.,}'r)c 'c o> (5.25)
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5.4 The Solutions

The solutions for the model were found‘by the
direct metiaod of writing eq (5.14) as a set of coupled
equations at the Pauli sninor level in the rest frame,
and 'algebraically reducing them To a single equation;

the details are given in appendix 4. The restrictions

a

of char:e conjugation and parity were applied from the
outset to divide the solutions into two classes character-
ised by the value of PC. The classes are PC = - 1 which
corresponds in the non relativistic guarik model to spin
zero, and PC = + 1 walcn corresponds %o sSpin one.
This relation vetween PC and quark s»in is maintained in
the relativistic wave functions, bubt oniy in general by
the large components. With some manipulation-one finds
that the large components are eigenstates of the number
operator and this is used to construct the full solution.
This solution,‘re—written in covariant form, can then be
1 \

verified by substituting it back into eg (5.14}

(see appendix 4).

6.4.1 X = -1

We reproduce the non relativistic result tnat
the ¢ = (—)J+1, P = (—)J mesons are forbidden and this
follows directly from the reguirement that tre interaction
be 3 dimensional., - In general however, tie interaction
can pe 4 dinensional, in which case this result becomes
strongly dependent on the spin-space structure of the
interaction [65].

Tne solution for a PC = - 1 state of mass m and

spin quantun nuabers (J,Jz) is

i e ) em S A sy e



for ¢ = (=)7

T INL T, T is an

P
H)
eigenstate of the haramonic oscillator number operator,

' T
‘—‘%quk with eigenvalue W, and J,J, are orbital

Z
angular moaeniun aquantun numbers. We note that in the
limit S22 0 the solution reduces to that for a free

{nass mo) quari and antiguarit with relative momnentun

zero and consequently taere is no admixture of undesirable

negative energy states. We also note that the zround

state pseudoscalar solution

lm Xs_(m—mo_‘fﬁb) | o> (6.28)

is simply a boosted non-relativistic solution
The pzrticles lie on strzight Regge

trajectories

Mtz Mg+ SAN | N2O, 2. (5.29)

If we choose the slope of the trajectory to be 527'= |

and take for mg the average of the square of the

pseudoscalar meson masses, m02 = 0.25 GeV? we reproduce

reasonably this section of the mass spectrum (Fiz. 39).
The presence of terans conta.ning the inverse

of tne pseuwdoscalar mass give rise to large symmetry

breaking aand the Van Royen-ieisskopf paradox f?ﬂ . Az

this results in unreasonable predictions and not only for

peceudoscalar neson decsy natrix elements, we avoid it by

q (4.1).

ct
[©)
(2
o

using predict rather taean physical nasses in

O

N

w
~—

Then the 07 Ysolution (¢ has the same spin structure

postulated by Gudeus [55] .

-

In the BS model of BJYX tae C solutions have a

L : . /f/
siwmilar form hut é/ﬂ} ig renlaced by v m This

guar=®

has the advantage of resolvine the Van Royen-Weisskopfl

AGOY in 4 ol W A
dox in 4 natural way [_J/..j .
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finally, it is interesting to observe that

Pad

in fixing the slepe parameter, S1 , we have fixed the
- part |
size of the .aadron [72]. The spacepof thae ground state

wave function is
2t N =
Cre3i-2% | Opun> ~ 2rp (55 )~ oxp () (5.50)

where R%= I/ = g/5‘)_~ ¥ natural units. R is

essentially the average separation of the quarks ang

=

deteriuines the size of the meson. The meson cross

: . 3 . C
section is TWR'~ L4 natural units ~ 10 ab, which is

not unreasonable.

N

5.4.

PC = + 1

In solving for the PC = + 1 vie have the added

difficulty that the solutions are not, in general, unigue

Howevzr Ior czecial cases, including the leading
trajectory, the states are unambiguous. Tnese cases

occur when the 3vuin is esqual to the orovital angular
mocmentun in the large components.

The problem of ambiguity arises because the

4.

eigenvalue egquation 2t the Pauli spinor level demands an

2

eigenstate of the nunber operator. As & direct

consequence the guark spin and tne oroital angular momentunm

=D
are decoupled and for a given meson spin,two possible
valucs oi orodoital angular momentua are allowed. Pnis

€

degeneracy aas tne compensation that there is no spin orbit

splitting. Also, 23 the [irst such case occurs for a

spin 1 meson with N = 2 the eifect is irrelevant Tor

practical lculations., fne criterion we impose to cet
SooLeeern 2ol ahlon Lo To realoe Gog Tess Iviigs wave

Fal

the wnasnhizvous soluitions.

function to have no spin zer> coaponents, in accora with
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The unnornalized 30 = + 1 states are then
given by

——

T A

)_ L Yo g(fy‘fc\&%h\e’?/q. 31)

mt-rp
) ) £ . . - . .
where C = P = (=), SP 18 & sSpin one wave function and

Ef(PﬂTGfX> is tnhe Levi-Civita tensor dotted into four

4 vectors. The solution has not been separated into
its possible spin states of 2+, £-\ and (. As in
the PC = - 1 solution we note that in the 1limit$§1=>0

A

the solution reduces to that for a free quark and anti-
guark (mass mg ) with relative momentum zero and we are

able to conclude tnat tnere is no negative energy
admnixture.

tem
The term l4~—¥g, walcn vanishes in the cas
m "'mo
J = f , is responsible for adding the extra orbital
angular momentum in the large components for the
cases, J = £=%* 1, where the solution is not unigue.
In order to understand the siznificance of the

other terms in eq. (6.%1) it is easiest to consider the

ground state vector meson solution
{ (m+moﬁ)q§ - idﬁ-ﬂié’(f"']*@?ﬁgl@- (5.32)

m) 1s closely related to a

2Jv o
The term involvinz (m + mg
boosted nonrelativistic wave-function. In fact if
my = m it is just tnat and the teram reduces to the
solution oi Gudeus Eﬁﬂ. Tne vector meson solution of
BJK

(l’r \ ﬂt |0> , (cbjo>—: .Qx‘a(-q;t/z.\‘z’). (3

iz 2also sinilary to this term.
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In the last tera of eq. (5.3%2), tne quark
spia is coupled to a P-wave orbital state (in the small
components) and hence corresponds to a spin orbit

interaction. This Feavure is avsent fron the golutions

Tea
of 3JX and Gudeus. Lxperiments, on the other hand,

indicate the necessity of some spin orbit coupliag,
even if it is not the anount predicted and conseguently
we regard this property of the solution as most Zesirable.
The presence of this spin orbit interaction does not
contradict our previous assertion that tnere is no spin
orbit splitting.

The mass spectrum is =zgzain linear and

independent of any arbitrzriness of the solutiocns. It is

rV]."-: m°\+ SZ‘(N“’l) (;"34>

@]

With the paraneters given previously the mass of the vector
meson is predicted to be 1.58 GeV, or about twice the
correct answer. Desvite the fact that this result,

wanicn comes from a sirong spin-spin interactlon, 18 mucn
too big, it is clear that spin-spin coupling is needed

to nake the vector mesons more massive than the pseudo-

gcalar nonet. -In calculations we will tate thz PC=1

trajectory to be

me = m&+ SuWNe .T). (5.35)

e have chosen the numbers so that tho average

value of tThe vector meson ness squared 13 approximately
correct. Also, as might be anticipated in view of the

o

non-relativistic approxinzation ol the internal motion,

D

the quantunr nusber spectrum displayed in Fig. 40 is

(9

identical tc that ziven by the non-reliativistic quaryk model.
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5.5 A4pnlications

—

¥ollowing 7.4,R. we calculats experineatal
observables fron current satrix elenents, neglecting
quarx propagation effects (ﬂht—éao). Unlice F,i.R. we
-have a problen with our vector currents as they are not,
in general, conserved, Ior particular cases aovever,
they are and tnese cover most of the important
applications. Tne specific cases where the electro-
magnetic curreat is conserved are the egual mnass
transition and the PC = + 1 to pseudoscalar meson

transition. Jor the rest we add a monentum tern to tre

coupling to ensure conservation.

scalar and vector mesons

w

©.5.1 Lepton decays of

n3¢e
et e s st - ity

From the correspondence in section 3 between
the BS and current normalization we have #ﬁﬁ = a}y where
Q= Uﬁﬁ& - The pseudoscalar meson decay matrix

element is then given by
<Vac | AF(OHQ_Twzson> = a(r XS'_XVW‘:'(HFOSE fe Fr, (5.%6)

1#}(hﬁo>is the pseudoscalar wave-function a3

the origin. Tne result is '§P 22%) (6.37)
f'\ e '

As already mentiored we cannot use the physical

v

masses because of the 1/m, term waich will give rise to

p

the lurge symmetry bread<ing in the Van Royen-Weisskoor

paradox. We avoid this difficulty by using unbroiken
nasses, np = M vwnich zive
§ = §.=0.112 a Gev (6.33)
N
. e
Comparing with crperizental values ~} g- = 0.105 GeV,
anp . - L
f‘ = 0.09% Ge¥ we see that 'a' is coanpatable with
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unity ani a smnall quark mass. This is consistent with
the earlier identiiication of My and m_ but incomnpatable
with the heuavy quars approxination. However, we are not
using a heavy quarXkX approxination in our calculation of
matrix elemnents, rather we are using it to generate
relativistic expressions sinilar in form to those of the
‘non-relutivistic quari model. The quarxs themnselves
are regarded as being inseparable from the nadron where
the quark nass can have little meaning.

Similarly the vector meson decay to a pair of
leptons 1s predicted. Neglecting the unitary spin

factor we have _
Ve | Vo o) TTmesead> = aTe X P, (¥=0) = g, "y Gy (5.39)

which gives the result

W

a 9_2_) 0-08a GaV (5 40)

3 —
T =390 =3¢~ =

The experimental result is

3,99,

= 0168 GeV , 3g,= 156GV go = <1606V (5.41)
Jd :

Taxzing a=1 we get about half the experimental
result which is comoparable with other quarik models. For
exannle BJX predict gy to be about twice the

experimental value with the quark mass deternined from

pion decas while 7, T.R. predict g = = ete.
Pa ) e O-‘T 1{ 9

urrent

(]

6.5.2 Matrix elements of the vector

The form factor for KT coupling in Ko, decay

rom the matrix elenent of the vector

ry

is calculated

current

<7 | Vplo) M) = ;EL%'I<%1_ %)(WTFF»_' (%‘%)(:\‘]m 42)
. s

&.(‘LZ\) (\Ok.\' (JR\ F 3y '5_.(0{,13((9}1“ (J'T»f"

i



fo be consistent we evaluaie (5.42) using unbroken
nasses, m@q o= My = mg and predict f (q“) . This
dses not agree with the experimental result of

£ LO)‘x f+(O) >~ 1,0 [75]. As this disagreement is
attributable *to currsnt coaservation =znd the use of
mbroiten masses 1t i1s clear that a symmetry breziing
schnene must be added To our model if these results are
to be well described. dad we used physical masses in
(6.42) we would nave achieved good predictions bub
violilated our prescripticn for calculation.

We nave more success In predicting the electro-

magnetic decays of the vector mesons. Heglecting the
unitary spin factor we obtain for the wmatrix elensnt of

the quarx curreat

T V= —i e U T meson>
- —L2m; F (]-1— (L%‘?z\l) Z‘(‘Cbéf Flél) (6.43%)

™M, Mg

where the kinematics are indicated in Fig. 41.
The first term in ea. (6.42) corresvonds to an

orbital nagnetic moment, while tihe second is analogous to

an intrinsic moment. The antiquarc amplitude differs
only in sign, so conbining with the unitary spin Tactor

we get the results in Table 13.
The upling consvant, g , i3 delined by
( -—eqbc(Fé f, ) (5.44)
and we nave used unbroien amasses in its evaluziion. The
quantities dotted into the Lovi-Civita tensor are taken

at their physical values, -rimarily for convenience, 28

act on tne reautihs,
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©.5.3 Meson decays Ly enission of a pseudoscalar eson

following T...R. we calculate the amplitude for
pseudoscalar meson eaission by replacing the pseudoscalar
neson interaction by the diverence of the axial vector
current waich is given by o
Al -q G/

QAL = -1 A F¥ g Q1A g Vs (6.45)
In the decays 1= 1707, 23170~ the corresvonding vector
current is not conserved and conseguently we should adjust
the axial vector current to be

-qf, 4/ —

?FA:’L = 'iMfrxfl—ﬁ;%f‘jL CL'(PITIDL)}QCL Aa—é 45‘(6.46)
where gq,8, are constrained to ensure electromagnetic
current conservation and g? + gg = 1. For the actuai
predictions presented in Table 15, we use eq. (6.4%5).

The overall strength of the interaction is
determined by ore adjustable paramefer f, and the decay
amplitude from an initial state, i, to a final stave,

by emission of a pseudoscalar is

T = f D <EIR AT (6.47)

where tne sunnation is over quarks and anti-guaris.
Expressions for the matrix elements with the unitary
factor Aq renoved are given in Table 2.

Decay widths are calculated using the formula

R ZITI® g\

where ¢ is the 3 moseatwn of the decay products (in ths
rest frame of the initial particle i) and the sumnztion
is over tie iniiial and final spins., The factor R is t»o

account Tor the dilferent chnarge modes alloved in ths
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In calculating the decay widths tne dynamical
quantities, the decay constants, are input using unbrosken

masses, while for the kinemnatic phase space, we use

physical masses. for exanple, the decay Qidth
L tetY = 2§ 3
M otat) = Qg-%}l%\ (6.49)

is calculated by putting physical nasses into o and
unbroken masses into (g/mq).

As can be seen from Table 15, this prescription
vields good agreement with data. However, this is not
surprising as it is simply reflecting the SU(3) symmetry
of thé coupling constants. In the r.X.24. model The
relative values of decay width for a given decay type are

in less good azreement with dats but this is due to the

Oy

synmnetry breaking introduced bty using physical masses
throughout. This problem is particularly acute in. the
case of decays into two pseudoscalar mescns where
different results are obitained depending on which meson is

£

replaced by the axial current. The use of unbroken
masses avoids this asymuetry.
The value of the coupling constant, f, is
expected to be close to that given by PCAC theory, that is
V

_f‘ =;? 7” /'m = 1.55 Using this value for the

= Janew [ M Qa = 195 : : L
coupling constant the decay widtas are found to be too
large and reduction to a value of f = 1.490 cev™ ! is
indicated in order to give a good fit to the data. We

display the decay width data, our best fit, and that of

T.HLR, (r}) in lable 15.
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[he results for the vector and tensor decay
widths are all within 20# of tae experimental values,
which is reasonably gcod considering tnat. we have not
introduced symnetry breax<ing, and it is an improvement

a - R

. P
on 2..l.3. Por the 2 —» 0717 decays our results are
less good than F.{.R's, however we could still wnodify
our results by generating the axial vector current from
a conserved current as in eq. (6.46).
In the other two types of decay considered,

+- - ++ - . , N
1" — 170 and 1 — 1 0 we again have the problem that
the unierlying current is not conserved and consequently

Iz

that these results could be improved. '

=]

he results as
calculated however are at least the correct order of
magnitude and are no worse than tnosé of F.A.R. On the
other hand the helicity »roperties, which depend
critically on the type of coupling are worse in our model

as can be seen from Table 16.

Deck effect [73].

6.6 Conclusions

| ‘e do not test the haraonic oscillator
cnaracter of our wave functiong because only the lowes?t
two states are used, it is the spin structure we test.
Jowever, nur basic assuaption of harmonic oscillator

Y

forces gave rise to Lhe spin sIructure so that any success

[

of the model iz attributable to this unotion.

0
n
o
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The lurge conponents of the wave--{functions
are analogzous to boosted non-relativistic wave-functions
nd occur in all relativistic medels. The nain

lifference ariszses from wnether or m is

m N
. quark nadron

rezarded as the fundamental mass., The novel feature

of our model is the inclusion of a spin orbit term in

the small comoonents wihiich, nonetheless, did not cause
splitting of the trajectories. This extra orbital term
is needed to produce some of our good results, the least
ambiguous case being the electromagnetic decays where

the orbital tera contributes haif of the result. Ve
regard this success in the electromagnetic case as ocur
most important result, as it does not depend on arbitrary
parameters.

The significance of the results for the decay
widths is hardér to evaluate beczuse the vprescription
which replacés the pseudosc:lar interaction by the
divergence of the axial vector current is not quite as
well established as the corresponding formalismn for
eleciromagnetic deczys. FPurther, we do ndt adhere
strictly to PCAC theory as we use a coupling constant
different (but not by much) from the theory.

Given that the relative success Tfor any one
decay type just depends on the SU(3) syametry and the

prescription To use unbroken masses, the fact that the

-

couplinez constant is =n indenendeant paramneter means that

C

Taible 15 contains only four independent results. Also,
v . - N . ++ - . R .
hecausa the data Tor the 17 > 1 0 decay is ambiguous,

1

Ders to compare with

rJ
9]
j &)
=
[o]
-
(u
\u
—
[
<
@]
3
[u]
o
[l
,,F,g_,
0
D
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)
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exneriment. Of these, two coapare well while the
third, B»wm is z factor of two out. fhis lack of

success may ve due o our decision not to modify the
axial vector current so that it corresponds to a
conserved electromagnetic current.

To sumnmarise, we have proposed an equation

in waicn tre internal guarik motion is closely related

to that in a non-relitivistic model but is treated in
a covariant way. Out” nodel is meost closely related

to that of ».¥X.R. but has the advantage of incorsporating

spin in @ more Jdynamnical way. In compensation feor
their simple treatment »f spin, 2. ..R. are able ©o
include baryoneg in their schene, The extension of our

model To include baryons is clearly tne next stevn,.
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7. Relatizichic quaris nodels and

giffracltion dissociation

7.1 Introduction

We now return to thne provles of treatin

(m

diffraction scattering in terms of elastic s

(¢]

attering

f the hadronic constituents

(@)

, assuning trhe constituents
to be guarks. As mentioned in chapter 4 the dynamical
version of the non-relativistic quark model predicts
cross—-section dips in the forward direction for all
except elastic scattering and this is contrary to data.

Nevertheless the non-relativistic 3U(5) guaric model of
C.F.Z. and its 3U(8),, generalization is able ta uaify
most of the experinental results for diffraction a
hence one is encouraged to believe that the difficultics

of the non-relativistic guark nodel are due ts The neglect
ivistic effects rather than z2ny intrinsic deizct

In this chapter we consider the application ¢f

relativistic guark models to diffraction. It is shnows
thav the ¥ = 0 zero in the single scattering amplizuds

for the non-relativistic nodel is not preseat in the
relativistic models. However, apart Irom this probdia=nm

the SU(S) C.7.3. model does not predict t

discociations correctliv as the

=

2 4, and K- g transitions
are forbidden whereas exserimeant gives large cross-sections,
The reason for this prediction is that in the T.1.7Z,

model 1nae basic guarx quaric anplitude is zsswa

]
Cu
e
@]
(@)
®
Ui
L&)
=
”

independent aand ence singlev triplet transitions are

forbidden. I'ne > A, Transition is 2allowed in a model

with quarc spin fiip hul then the TW 4, Irangition is
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also allowel and both cross-sections are predicted

to hove forward dips. Murthermore T.0.:1.C. is not
predicted. To obtain the correct results substantial
spin-orbit interaction is needed. Indeed the evidence

favours large spin ortit interactions for mesons gquite
apart from diffraction. dowever, for baryons the spin
orbit effects are much less prominent and this explains
the relztive success of the SU(&) quars model in this
sector.

The B.J.{. and F.«.R. models contain no spin orbit

interaction and s» li<e the C.®.Z. model fail o

reproduce the meson dissociation data. However, the
linearized oscillator model considered in chapter six
includes large spin orbit teras. furthermore, with a

general coupling tThe guark and antiquars scattering is
not the sane and tnis has the conseguence that the

7> B and W= transitions are allowed diffractively
contrary to the data. If we wish the model o include

the G-parity selection rule then this uniquely specifies

[N

the quark quark interaction to be spin independent as in
the C.0. 7. moael. Jdith tadls coupling the T 4,
transition is allowed wnile the Ti=» A;transition is
forbidden. farthermore the W= 4, vertex is predicted
to conserve T.0.d. while all the other successfiul

nredictions of the C.F.Z. model are retained. However,

in conmon with other quar: models {(c¢.f. B.c.<.) the

0]

inelastic transitions for instance - &, are predicted
to be of the sane order as the elastic transitions .

m

‘urthermnore the diffractive slopes are not predicted

correctly and tae two probless avd proauad.y roluated., A
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factor inhibiving the production of high mass states
as in the ', .1, médei is needed to predict cross-sections
in accord with the data.

We also consider how the relativistic approach
mizht be extended to include fermion dissociation and

also .nultiple scattering.

7.2 Diffraction dissociation ian the #.31.x. aodel Elﬂ

Because the poneron trajectory has a snall
| slope and intercept at spin one it is reasonzble to
velieve tiat the poreron coupling is sinilar to that

for a spin one object (c.f. chapters3 and 4). This

joN

I5i

suggests replacing tha iffractive vertex for the trans-

ition A — A% Dy

Ga=&) < Z<ﬁ*\\/yi\ﬁ> (7.1}

1

where t labels tne gquaris and antigquaris and VF ig a
vector ocject. The sinplest picture iz to assume the
coupling to be spin independent as in the C.7.Z2. model
but then tne T=> 3 transition is forbidden. Motivated
by the connection btetween the electromagnetic form faclors
and tne difiractive cross-section Ravandal [77] makes the
hyoothesis tnat the pomeron coupling is associated with
the 3U(3) singlet component of tue couserved vector

Il

current. 50 48 to reproduce the ovserved & parity
selcction rule the juari-quari and antiguariz-antiguark

couplings are assumed to be eqgual. As © = 0, J =1

does not correspond to a pole on the pomeron trajectory
and the slcpe i1s small we may replace the nomeron pronogatoxw

by a pure imaginary constant. Hence the amplitude for
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the process i3 —» A*8* is

_ . ‘ .

T ar> ) = L g CATV [ADC &% VI R (7.2)
N

whers Qe 1s a universal constant. Clearly the mnodel

allowe all transitions conzerving SU(%) quantun numbers
and generalized chnarge conjugation(;.

Unfortunately the ?,{.R. model predictions for

the electroazgnetic forn factors are bad [5{], and

consequently the »nresent molel will give wrong nredictions
for the elastic vertices. As elastic vertic=s are

needed to construct th

[¢v)

amplitude for the dissocization

arocesses A3 —» A%*¥83  we must arraanze the elastic vertex

to confora more closzely to the datz. Raevnial chooses
To arrac.ge vne O rervex Lo conserve 3.2.4. and have fne
experimental form factor. Similarly the TWT veritex is

taken to be the experimental pion form factor.

¥%
A1l tne nucieon dissociation processes N-=>N

are a11o/ﬂi and although th violates Morrisons rule it
is not necessarily wrong Ié9,5}5ml see chapter 2]

Ravndzal compares the D 3(1520) and *,.(1588) diffractive

1 15
production with the data. Tne model is successful in
the sense that the crosz-section is »7 the correct order
of maganltulie, aowever the shape of the diiferentiul
cross-section is not correct. The provlen iz the sams
as The Kislinger aodel [ﬁd] naaxely that currentw
congervation implies that the cross-section is zero at
t = 0.

The vredictions for bosons are not good and are
roughly similar To the SU(d)w model with guarik spin fli:

Both = A, and w—> 4, traunsitions are allowed but do not

~
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conserve .C.{.C. and lite the SU(5)w model predict
transverse helicities in the rest frame of tae produced

particle. furthermore the cross-sections for A1 and A,

production are predicted to be equal and abou:t a factor

2 -3 too bigz.

7.3 The Bethe Salwveter guari< model aoplied to
3

In thig section the C.F.Z. model of spin

i

AN

. T

‘

meson dissociztion L4

independent guari guark rforces is formulcoted in a
relativistic context [78}.

The scattering of two conposite objects 1is

considerel to be nade up of the scattering of the
individuzl constituents and tals 1s expresseld by the

Glaater multiple scattering expansion for the transition
matrix T.

- !

I-S=T = 2\_—; £ ‘sz‘Z éijﬁkﬁ *’é’_.ilé;jfmﬁm"“ (7.3)

-6*'15 the elastic scattering amplitude for scattering
of quark ¢ on guark 3 , tae quarks of course being in
different hadrons. The 7 on the summation signs indicate
omitting terns in which the sazne pairs ol guarks scatter
off each other more than once, for instaace tne factor
%%iéﬂ wnich is clearly included in the anplitude 'ﬁU
(see Tig. 42). fhe scattering aaplitude for the process
AB ~» 4#*5%  is given by <JA¥I%/1-3/ARD and how this ig
calculated in 2 relativistic model will be indicated
presently.

We first of a2ll consider the model for the quark

quari scattering aaplitude €y - The amost gineral aaplitude

Lo licze Taas fog o0 elasuvic scuviosasinng and 13 given DY

S' R
g = NZ M Mo 52 (s,4) (7.4)

viaere ’Mm - l/ Xs) Xr) \65-\1(/.' ) 6;”, me1,2,%, & A

S
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For spin independence as in the T.F.Z. model we would
| 4§, 2 .
€4 = Siy § ) SCA‘:((’:*'(’J» (7.5)

“the factor SQ beingz included so that the cross-section

is snergy independent, and this is the choice of

D

., Byers [73]. However, 1T is interz2sting to consider

the provlen a little further. Dilfraction proceeds
primarily by natural oparity exchanpe for waiich the reducad

coupling 'is

.

iz tae exchange has zovproxinately constant ancular

Adientul J o= 1 2ani There i3 no pols in thne

M

ion near
J 1, tne Iull quars quar : ;mglitude 1s approximately
(9,f" rql\f)ﬂ(g‘fﬂ ¥y = gy« 9. (el
«+ glx d3
wiere 'ﬂs : pt. 0 - tlence it can ve seen taai the

effect of choosing the scalar interaction is to set the

coupling g,= and tnis result corrssponds to

postulating T.C.7.0. Tor the iandividual guark quarl:
scatterings., The other simple cholice is 51 = 0 and

tuis corresosonids to 5.C.H. 0. It is clear that on niave

~

srounds tine model is expected to trivially revproduce .C.1L.C.

for bogsons out faill to produce 5,C.H.C. Tor NN scattering.
MNow consider fde scattering process Al-»Ar3*

by scattering of quzarkx i1 in A and j in B as shown in

fig. 43, clearly tne contrivution to the scattering

inplitude is given by

Z :S:‘“\ : ]: g d q Tl - 'XAX (ra+%, qr “3 r Xn(rq.fhcw(%‘ﬁfém@ﬂ

ot Qgt)('L

R N T S R
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For scalar interaction m = 1 f1'= [, §.=0 m+0

and §9(si5,4) = oy §) —> S fut)
S >0

It is assumed tazt the sane function SGQ)describes gquari
- quark; quari antiguark and antiquari-antiquaric scattering
so that the G parify selection rule 1is renroduced.
I'he resultis hzave been calculated by Byers [787 for the
Bethé Salpeter wave-=-functions of the B.J.X. oé]

mesons.

Wle first of all consider the transitions

-“-_)—(-\-[Q"r), R({*‘),A} (2"*) C e (i.e. singlet mesons).

The Tv—=> 2 anrclitude vanisrnes in accord with the

ion rule, but the traansitions conszservin;

4
e
€]
I}
P_J
cl
(]
&)
)]
}.__l
D
(@]
ct
'_a

UJ

G parity W=T, i, etc. are all allowed and conserve

3
T.0.H. as anticipated. UnZortunately all the allowed
singlet = singlet transitions have out comparable
nagnitude and increzse witn increasing J. This is

opposite to the data where the W= T anaplitude is much
bigger than the T AB aiplitude
For the singlet trinlet transitions tae model

fails completely as mizght be anticipated fron the non-
relativistic result. The cross-section for = A,

K->Q® etc. is no longer strictly zero but is never-
theless negligi <€A‘N°J_%T 63“-“— Wiéh “J‘K—\:Ni

)

and Pﬂq’ﬁf 4 Gey). Clearly it is inadequate sinply
to introduce spin dependent interactionsg as this would
corresaond to the 5U(5), model with quari spin flip
and oi course tLula 1s wrong. The reason for the

inadequacy of the B.Ji.{. model is the dbsense of spin

A LLE vave-Iunctions.

[

D10 Lar.as
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Clearly because of the lacik of success of the

-t

sinzle sca

[&)]

tering appro<iagtion it is not wortn
considering wultiple scattering corrections or applying
the model with anzalzed wave-functions to baryons.
Jowever, both these refinenents and easily incornorated

4

and are snown diagranatically in figs. 44 and 45.

7.4 Avplication of the linearized oszcillator

guar's moliel to diffractution Stht°“1ﬂ”

In a»plying tae linearized oscillator model to
diffraction we follow the aoproacs of Ravandal f77] and
ect Je sut d> not

denand current coaservation.

= o, Flgu)Qu+ ¥ )e ~ 2 (7.8)
With this coupling the guarik and antiquark aaplitudes
are not in general the sane and this has the consequence
that the ¢ carity can change at a diffractive verivex.

We choose g, = 0 to retain the G parity selection rule.

c‘f'
[6)]

The czlculations of diffractive vertices are
performzd in exactly the same way as for electromagnetic
transitions and the results are presented in table 17.

Fal 1
Y

The results for the singlet —» singlet transitions are
rather similsr o those of the B.J. 1. type modlel [73]

The wodel predicts 1'.C,i1.C. (any guars model does!) Ddut
the predicted cross-sections for the high mass production
orocesses i3 too big

(TTWJ5WTT)I ~ &% TTW~fWAu>tt=o' Piaysicatly this

bad result _riuses beczuse



witn nass. fo s2e this we consider the eiastic vertex
at zern .aoaentun tran.-sfer (1}/3-!3; { 1{JT> ol @a Mr -
In oriceipsl the diffractive coupling can depend on the
hadron mass, however in a model wiaere tne quarks are

considered to be real this is unintelligible hecause the

e e

pomeron interacts with the individual quarks and hence
-any nass dependence muszt come from the wave-funciions.
If we assune taat the diffractive size is about the sane
for all hadrons then this suggests that we divide our
orevious results by a factor Jm,mL . The basic

coupling (;& novw becocmes (ﬁgﬁmﬂn wWooicl 1S

~

N -
) : : . .« A dﬁ -:,wﬂ»)
dinensionless. ide now nredict Tzt de%ﬂ%ﬁu” *'glhfﬂq 3
' ik L= _ &=
'cica 1so9ores reacon2clzc althouzh thz iB sroluction Crocs -
section i3 sitill too big. To fit the differential
cross-section is still too big. To rit the differsntial

cross—section we must as.ume that tae coupling Lp is a
function of t as the t denendence arising from the
elenentary quari scaltering is too wea: (c.f., the 2.J.7.
moiel [7§] ).

m

t
‘
~

ne results for tie singlet-triplet transiticns
are an improveasent nn the B.J.I. type molel. The T—> Ay
transition is allowed, essentially because of the presence
of soin or2i!t interactlion, hovWever tne TI—> A, transition
is forbidden and this is consistent with Moorison's rule
Most other moiels eltner predict both the m—> 4

and A, transitions to be fordbidden or 2llowed (e.g. C.*.7.
. (48

e S e

Py

both forbidden, #.J.... both allowed). The evidence as

IS

to wnetner the A, is produced diffractively is in dispute,
(48

but it nas been argued that the energy depenience is
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inappropriate to 1iffraction. furtnermore we predict
T.C0.:0.0. Iox the ﬂ—?A1 transition and also

%(ﬁl\'%'ﬂ‘ﬂ)}elo ~ (O %(Wﬂ'—v‘&r A'”(‘.:O
which 1s roug:ly consistent with the predicted ’ﬁ‘ﬁ-—‘:TrA3
cross—-section.

We also consider the 59-af3 process wiich by
‘vector donlnance is related to vector meson photo-
proiuction ‘8—>~? . Although tae prediction Zoes
not correspond to pure 5.C.:1.C. as in ex»eriment [3],3
substantial anount of s-channel non-Tlip aaplitule is
present, (See tables 4 ani 5) and so the predicted
density natrices may not be too far astray.

Because oI thne relative lack oI success in

(O}

the meson sector it is not reasonable to give a detailed
discussion of baryon dissociation using anzatvzed
vave-functiions. Farthermore as spin oroit forces are
Less evident Tor baryons thaa mesons the predictions

for the helicity vertices for N —>» ¥ follow on general

grounds for any guark model. (5ee cnzpter 4).
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One oI our =aain concerns in this thesis has

been an investigation of diffraction s

Q

attering paving
particular attention to the helicity properties of
diffractive auplitudes. In chapter one we consilered

the conseguernces of the analogy between diffraction

~scattering and optical difiraction and zave a very sinple

argunent for 3.C.H.C. for diffractive vertices when the

yuantun nuabers of the produced state are the sane as

the parent state {(H~> N, X—%f>,!%—> e, ) Jowever,
the spin and puarity of a diffractive vertex nay change

and thren Taere is conside raEIe “JHL oversy 28 ©o the
proiuciion necaanisa. In caapier two we suppdrited tae
view tzhat auch of the boson vroduction (TT—%-Q,,IK—»(Qv
correcponis o mass-enhaoncemnent effects, zroovabdly

oroduced by a (no0odified) Decx mechanisn. Botnn 2.2.H.C2.

and Morrisons rule were preldicted in accord with the data.

However for feralon data the most proainant cross-section

veacs (x(Vy 1470) , 1% (3, ,1520) 1\1‘*(5/2+,1588}) seen to
corresonnd Lo genuine resonances. |

In caapter three we considered the fer.aion data
froa a pnenonenoclogzical point of view and assuned
diffraction to pracée& by pomeron exchange. e adonted
a covaricnt Regge foraalisn and calculate the asyunntotic
s-cnannel iziicity vertices in teras of covariant

resulis can be aoplied for any dejge exchanyg

DO

ouplings [or both boson and fernion transitions., These



We propose Tthnat the poaneron éoupling to the
N — 1% vertex is characterized by Xﬁ coupling and show
that this hygpotaesis is consistent with tne available
data. Hiﬁhout detailed fitting it is seen that the
elastic and N> ﬁ*(%{)1475) transitions are in accord
is. e it the data for 1T N—

with the nypotne

s
: *x (37 |C 'k]bgg o - cothesis a
TN (ViJSZ , testing the XF aypothesis and

other proposed helicity rules as well as considering
virious aonsense 12¢ainisas. It is deaonstreated that

toth t.C.:.C. aand XF coupling give satisfactory fits to

the data, but I.,2.d.20. cannot be & universal rule as 1%

-1y

ails for tne elastic vertex. (when Xp coupling reduces
to 3.¢.d.0.).

In the next chapter we coansidered sone

constituent models Jor 3iffraction dissociation. e
showed tuat an SU(H), mod 161 with guark spin flip was
onsistent with the fermion 1atsz. HJowever, the model

failed ts reproduce the1ﬁ%f%,}<%CQ data where spin orbdit
teras were neadei. furthneraors the sinzle scattering
amplitude in the non-relativistic guars model is predicted
to be zero in toe forward Jdirection for inelastic
transitions. In view of taz success of the 3U(9)w

nodel 1¢ was sugge t d taat this embarrassing
woulda not anpear in a relativistic model.

In chapter five we conszidered gone relztivistic

!._J

guar'e noiels and chapter six we proposed & new ande
Tne mnodel is closely related to the non-relativistic

har aornic onscill ctor aodel and as in the FLK.R. approach

. 3 e I R P T IS
Al e Tar o oaotiov T atiannt sinclioin

X7y t"‘v or + ‘v-\"_‘ﬁ_?q

trneoretical adeqguacy. It i< an innroveasst over the
] Y i
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i, R. model in thaf spin is treated dynanicilly,
nowever this refinenent mares the treatsent of baryons
more diificult, tae present mnodel being confined to
mesons. 3ut 1t is hoped taat tane treatment of baryons
as a three guars p?oblem (rather than di-guari-guarc)
will be possible. Our pnilosophy Tor justiryiag and
“iaproving tae nodel is Dbased on the Dual models where

tae "quarxs’! are regarded asg representing the internal

dezrees of freedom ol tae hadron but nsvertheless being
inse ole fron it. consequently the guarlc nzss has no
aeaning in our approach. Working in analogy with the
dual model 1t is znticipated that multi-quari effects
(ﬁfL%fL states, quark sea, 2tec.) aay be incluied in the
model. Already in the present version of the mnodel spin

orbit teras are naturally included and this is tne nost
novel feature of our model. Murthersore tThisz is suggsestive
of "curreat" guarlks, but we have not yet caeczed that our
model satisfies current algebra.

We test the model by considering the predictions
for decays by emission of pseudoscalar aesons and piaotons
and find reasonzble agreement with experinent. e als

consider 112 PG_\), F—? e'e and ng decay .

(’)

In chapter seven we eapply tre model to

diffraction lissociation, Because of the pressnce of

spin orbit tersns in our wave-functions the ?F1 transition
is allowed, but the1T-?lq&transition forbidden. This i3
inté“esting not only because there is sone experinental
support for this result but also because all orevious
nodels either zllow voth or forbid both. Murthermore

£, H.C. 1 predicted again in agreement witi experiment.
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Unfortunutely the predicted cross-section sizes are
wildly incorrect 235 we vpredict G’(T\_TF?T(TT)N G_(T(T\—?TT A3>
This result, however, is a disease onur model has in
coaion wWitn 5twer relativistic guark models (- .4.R,

and 38.J.%.).
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Apnendix 1 Basic Conventions

a) Units
Natural units are used Throughout with
R = C =1 and 1 GeV = 1 nat. unit

~14

Hence one natural unit of lenglth = = 1.97% % 10 "cm

1 GeV

10_27 cm2

and 1 mb = = ,%893% nat. units.

b) A-vectors

e ot i 4 et

S C
Contravariant 4 vector P(P = ( Ho» H’. Hz' Az> = ( A Q>

Metric g, = (15-1,-1,-1) with Ap = Gpv AY

vwhere all reosated indices are summed, Greek indices Fron

0 to % ani Latin indices over the wvalues 1, 2 aad 3.

, ) . . —- LG N N . . L ,
4 position xt = (x %5 where >© ig the tine and
€ the spocizl position.

o - . .
4-moaentun oparator PPP = iapf_ 1%; - (124 _12)

¢)Dirac matrices A
. o - VM WY
Anti comautation relations {X )\S } = -ngv
Yo = @ and ¥ = @0(
o~ r~
In the Dirac Pauli representati

¥ - [t O $¥i-¥X-/0 g
o -\ ~ \-g 0

0

o]

Pzuli natrices G

X (O -t . [t O

OT-(tO @*—(i O Oz*(o_\>
v v vy [ Gy O\e. GOL: Lol

and Y == XYY = [0 l>

e
Feynrnan s5losh %: /qr\&'u



In both cases %)3:> @

oint soinor T (o) = ()Y

4djoint sninor LAA(FQ = L*)(P) o

and if W transforans wnder a lorentz transforanation /\
— N _ el

to W'= S(f\\ W shen W —> G S ((\\

Normnalization conditions

O, (p) Uy(p) = 2m and ¥, (p) Vy(p) = -2m

the index A defines the spin direction.

o,

)

Yinematic invariants for ovasic scattering process 4B —» 2D,
Referring to fig. 406, we define tae invariant S
S={(ptea) = ( “ and this is just the squs £

= PA e& = ec-\-eb anc 15 1S Jus vihe sguire ol
the centre of mass energy in tine direct channel AR — 2D
which is also czlled the s-channel, €= (Fh«-PR)

= (PD‘P@L and this is the effective

mass squared of an exchange as shown in fig 47. In the
cnanns . AC — 39 4 t becomes the centre of mass

energzy and asnce thais channel is czlled the t channel.
aeferring to Lfig. 43 for scattering in the direct channel
centre of 1ass we have

t = m% -+ Y"\E - 2 ?OA Poc 2 P?'CGSGS/;:?O"’ % (l' CGS@)

Also b(:.(pA-be:.(PG-Pc\Z . In the channel iD -¥ C3

A u 15 thac centre oi masg enersy and nhernce this chainnel

,._
(9]
ks
o]
i~

o0
()
=
@
(2,
c =
9]
©
%

<

Vo
I
—
<
[@]



d) Jronc—sonTion Jarula
11 stovic are noraalizel sucna oot the

Srob oilivty lennivy = 2 Po nd hence tae prodability

iz a2 4-vector.
Ca- Ca

[d
~

current
"5r so0a1e process AN J|

.’Su_Jpasem 15 trz aaplitude £
Then the ~robibility /sec
; 2 n-\ de- ___
—aw 2T T e S (R ey T e
2 fon 2Rog 1 2001 j=0 @7

- () Z AT S panpeTee) [T@m) SGet- vtk oy

l?()ﬂ.z()ﬁ& (=t

YN is a relativistic invariant.

Mie dillerentinl cross-section for A — CJ inp

L - ﬁ"‘_ Z “m\?«

37 nass is dG -

ds 64 N" p>
v.iere q‘ 1s the outgoing morentum and P is the incident

momeatun, The invariagnt cross-o
|

d—g —- d_g dsr - U
d€ dsL 4t b¢T oS

5 \* L
wiin Gpts = (5% - 2s(ieed) + (n-meY) ~r S

Agymptotically do& ~ I E:\vn\z
dt s> 1b6WST
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Anpendix 2
. ,

R . - N :
vovarianit counlings for N vertices and

sotne theorens for feraion vertices.

The HJ counlings
B i =
Consider the Hi vertex shown in fig. 49 in

the rest froae of the exchange particle (i.e. the

. il 3 . ) Fra) . T‘T' > .
t-channel). The spin, 35 of the NI system is eithzr

O or 1 zad as the total angul2r nonentum must be J then

5
L

the crbital angular momentun L ig as Jiven below

for S =0, % =J and when 5 =1, L = J -1, J or J +1

If narity is counserved taen Ior natural parity vertices

H

L = dJ and for the unnatural pirity vertex L = J + 1, and
hence in zeneral there Zre tws inlependeal counlinge
As only one label @. is neceded to account for the

/

g system having spin 1 the natural parity counling is

(g‘f?‘*-g;gﬁ) 6&”"%7 . The momentun couplings

just corresponi to oroital angular mnomentum. The

unnatural parity coupling is simply obtained by multi-
plying the natural parity coupling by X

5 -

L N
Theorem: for fermion vertices \/-r( 3)m+,m-)=(—) \/H’)p’l_}m.;

wihere W]I:-&(m':yﬂ) and g, ¥ are the naturzal znd

wmaturai parity coupling functions resoectively.
Proof:
- G*(' oL : . .
Suppose 4) is tae coupling corresponding to
5 . : R o ot R .
the natural parity vertex V (3), then (§)Xg13 tine
coupling corresponding to the wmatural parity vertex
V (§> . The factor.xg can be obsorbded into the

initial spinor

4y L (o m =¥ SR Q= (LT +X =)@
Por



‘/él—{/-—

where CR is a two couponant spinor with helicity 3\

3 .
The vertex Vﬁ@)invalves tize factor (Eﬂ(g)u(P) wnile for
the vertex \/-(g) tahe gquantity is

corresponding

+

C(£)¥sle) = (s Jgoew' + A [ ) R
Clearly the results will wve identical on the renlacement

M—-mM or Mg —> Mg wvnile changing the zign
o the vertex for negative helicity. H

Hence we have

rule \/T(Cj, My M-> = (_XA-S‘ V—'('gl M-, Mf>

¢) Theoren: o obtain the
\(} V>

roa tae non flio ‘

‘ir >‘ * : >\

substitutions (Mg Yan-, 1‘32,\)—'\7 Z

Prooi:

<t
=3
[

For £ —»J vertices,

fiip vertex

ty

reguires the

Referring to table 6

it cuan be seen taalh thes only
relevant part ol thae coupling for tne spinor pari oi ine

viave-funcitions is G

( 32" ! ()l@ 82" g Je need only

prove tae tneoren Ior natural pariuy

vertices heczal

the theoren proved in

1
—— ._j‘m-], —_— "_x'Wfli
function is ’Llf = (¢, P Uyt C )

Now

Wy (97-11-\ ‘0(3 * 32,,X(s)u+ ~7 l(m'f Y204 "*’Cjznya@
Gy (9 Fov QXU ~ Qon JE (g

Srom parity U 6 We = — Youo, \[T (%

and a. Gu_ = Z(M+32n-."'€b,\3F@
Hence ﬂ-f Guy —» LTI G u-

unon the substitutions

: — _ .
Z(m1. gzn_‘ —“+ %2/\) — %L\-(Vl_t al\d 82n_‘,\\‘t—?'—7\4(m'('32n-|-‘— JJ/‘.).
Reecalling teat for Tflip vertices the angular

nonentun
factor l—'i; is divided

out we obtain the result that Tor
+ - - : - -
LY AT R -‘-AI\ . Ty & 1 .
\/ A__y \/_L \ e male the suostitutions
,“(mT

An v 82:\) e (\:]'lr\—\ el ;_Cj'l.1~. —(_‘l.__} 2—( (("1_‘.3,&“_\ + 8.?.,,) .
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, : ! ) . o
Sovari- it counlinis for g}?m and s-chuannel aslicity

- e ——— ——— T - "

vertice: Tnr Loroms

Congsider tho F f’ vertev in the regt frane of

ct
'
O]
&)

551t Joclizchange. e spin S of tnejael systen can
be 0, 1 o» 2 2n2 23 T total aagular moaentun must be J
tag orbilal angular nonentun L can tale on the values
listed pelow

Tor 3 2 L=Jd+2,J +12ndd

N

S = 1 L=J +%and d

andl for

If the exchange is of nztural parily zand nrence ti:e whole

vertex has natural parily, »irily conservation immlies
Q,)L = (—)I and rhence the allowed values of L are
Tor 3 = 2 L=J+2,and J, 3 =1 L =J and for
5 =0 then L = J. There are as a conzequence 5
independent couplings. Labelinz the incomin: fJ bv an
index p and tire Iinal Eﬂ by VY tne couplings are
S =0 1T =

) G Ry Q- Q.
S=1,2 L =2J %q'q)VQ‘(l_...Q%_
Qv«, QFQ&”“ Q“’J‘
9pa v, Qa(?-" Qo(d—
(bp CQVCQ«qul"'CQqT

Clearly only the internal labels «, zond &, are relevont

7]
1
o
=
il
a
|
S}

w
]
PO
=
i
[y
+
V)

and The reduced covariant coupling i3

G:V (1, "T) :[ 9th’®V Q".Q"‘I * Ga G Qd\(}\)«b*
K 3?"“‘ QV Q"(L B 84— 8V°(1Qf’®“'z T s %‘l"d\ vwy ]



rertices Zor hoions -

— - . — - - —————

son2 uretl results
Dae oart of thie vertex which gurviog
agyaptoticarly ausht be pronortionsl to (:&‘QLt "y

as otaar toras will corres oni to lower s-denendence in

the zazlitule. Usin,; Tais resule and tae forala listed
be low the asyantobic s-ciann2i aeglicity vertices given in

table 5 ~re encily reproluceld.,

5

@

ferniny to fi. S50

Initinl svin 1 vectors :roa w.lch tae itz Schwinser

wvave-functions are oullt are
T

| _ .
= = t i é_ =

d2

t

c

The final sgin vecvors 2

o~
‘l

>,
i

(4-94 )" = -q ¢

witol

-
5%
!
N
1
&
-1»
E
'+
s
~
SN’

T

1l
~
g
+
4
3
2
Y
~—
e
)
[
+
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Appendix 4

Phe solutions to _tuoe lincarized oscillator

aodel Tor mesons

Defining o= o/ 2 and é=E/,\\‘fb§ the
queri-quori equation in the rest Irase is
[p- (XTI = (g0 + £a7) 9> (1)
Rotational symmetry implies that the anzular momentin
and its % conamonent m  are ood guantum nunbers and

hence we may write the '-mvc—?unction in the form

IRF RS
(44)) = 0,8 ’
‘ hf |2, JpTg) 430>

A.4.2 The discrste syuaetries

(2)

.

If Ne is the parity of tihe .aeson then

because tiae anvtinarticle has ne_ative intrinsic parity

'("’Z,o) is the »narity for the corresconding quars gquarc

3
«

wave-Ffuact ion. Tnen ity invariance 13

par 5

V(49,72 -8)> % = -7p [¥(99.2.97)
( IO > (_).o, 'l> G)€I’2> < ( ) ()gl> ( Pr/ _ -'77|o ll>
O -t)J{ 08 > > /\ O ! P a—)*m 12

)Plfl

znice 71? = & rees witn tae non-
relativistic result as 1> and (4> are the large con-

ponents . Q=0 =L, = Ltl=40 | and nhence
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e conjugsation
Jhe guarX antiquark wave-function

IYPYQQX>=hP@iDC wiere C iz the charge conjuzation matrix
C={0d C'=CT  and C*=-|
: & O

Caarge conjugation invariaace is
T -l
. - _ ) T
Cly(qq;-a.-a > C™' = e [y(qg:2.65)>
iz the caarge conjugation parity. for the

wnere e
particle particle eguation this becones

1Y (aq,-2 - C' = e [Plag s a,8t 1> C
o | Yagioa,a)y = -de [Yrlyq: 2,8 >

(z)

P - T ol e NP ¥ =
L1CLCLy T3 02COD.IES

L
£

G\O‘IOT )% 1> _ 0 12D
W (T AR e 12> 1

'H> 1> Mee="e7le («).

rflence - -
DA Tec
D , 1D 1
sure s»in 1

FOT Mpe = x| = I, 14> L TEWG e,

=> \\>,Hp>ociq’*-.-.fnich 13 a pure spin zero o2je

20ject

and q(t

fhe non-

Jote thnat this resuli is exactly analogous to
relativistic result and this Follows from the decision to
taan 4-

i

j-dimensional rather
Then Ifor purity

Ty At g - T Aati e - -
Lor cnorge conjusation ﬁ%) ’7F
G

7{"7 "'72 P and |
ity Q@ '%(QC',“,\,)

under paAricy
’J

the interaction
¢. neglecting Qo ).

e

e
but for

C e s s
A1AEN3101mas (L.

a 4-dinensional lnteraction,
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—

Wnereas ¢

9]

1mrge conjuzation CArQ; (—Qo ,—g) and we
do not autonatically obtain the simole relation given

oy egu2tion 4.

Also 13> = -pe 12>
" Hence if 1> = | S=1> f(;(S=0>
Lhen 12> = Mec (- & (s=r> +($|g-.o>)_

A43 Reduction of t:e eguation to a

set of Paull spinor eguations

Mhe wave-function is written as & 4 x 4 matrix
7.%/,,(/; - where o is the index corresponding to quart 1
and ,‘8 guar< 2.
Hence

B A Foely  pid>
Lp- %(XG)TXS)]“P>: P p?@l@)

() gID-IDST gl el>gT
(% e N¥C>= 1ﬂl>—w>gT —§h>+R>§T (ﬂ
D (yC - G -Gl - ld>ET )
NG (YY) |y - [T TR -Gl 4—>Q’T) -
G+ IDGT  CID -1

from b and 7 we obtain
o« Yy = G122 + 1-DET Gl ledaT] )
NT ~ Gle-1y — 16-0gT S l3-20 « 2T

£ P =4 ( o 132y - 12T Q{w>+'w>é"') ()

~ - @ ety - 16r>ET - C ) + 126

vihere 12-2> = 3> - 12> etec.



idence from eguations 1, 5, 8 and 9 we obtain the set

of coupled equations

(P— €) > = 2{ ,5§ g (3-2> +13- z>6T} 78 {c’lzfz> lz+1>gT} (ioa.)

(pre) ey = —7':9{Q|3—1>+l2-2>g”} Lt {g ey - 12a)s™y (10b.)
p12 = La {oled-unet ok Figleisciemet]  (10c)
b1y = 183816 D 1087 - § a{g o> ruebe™h (10d )

golutions

Thurze conjugation iaslies {10 and |ﬂ> are

r

sure 5 = O sivates z21d hence
IS, 16> oC (Sé) P> As (1L-19)es <—On c(>)
Tow 6= ,0y0=-6; ,6T=0 and as {6:,6,3=0, 1. 8]=0

and [Gj, 0’3—’{ =0 then
gltted + lixe>gt =0
Hence eguations 10c and 104 reduce to

pIay = pid> = fa f ol - 1edgT] = 120520 111
or 13> = 125

Using tais result equations 10a and 10b become

(p-e)li> == (pre)is>= Latf o Rad ~i>eT( (12)

= l4>= <§_Ji" >Il> = e -2
R €tb
Jroa i Vl 12 we ootain .
2>=12>=_4a % 1> o - gil>} (13).

<



Je‘fining 0y = < O c'>> I(p> (12)

-1
Then
a {Ips™gin]=-2 <‘“— Gy = 2h 15
Qg Qe

ilote l?(> 1s 2 spin 1 object and so the affect of

(g,‘— g‘}a on a s»in O object is to step up the
spin vy ong unit. fron equations 12, 13 and 15 we

obtain tae ei:n value egquation
(€= p) > = 28 {a (x> - 0o} (16)
It is eusily s=mown that

§T§Qh>*lx>g7'§ = 2N<3 CS>ICP> woere N=G-Q (17)

where N is the nunber operator.

Thug substituting (1 15 we see tnat (CP> is an eignstate

of the nunber cperator and

é-Z____ /"l+4‘N

or
ml: —N - mg_f- ng;— Mé-t— QN (18)

Hdence e aave

&)

trai bt Regze trajectorics anld oo g =J
. I+ Y . .
Zor 7’1,06 =-| ) ‘?’(F = (—\ , "'(c’ (‘)J fhe grounl state

. , \ -+
so>lntion is ©ne pseadoscolar O )
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12 2nd 135 we ovtain

) 195>

S0 ecuations

4> = (%ﬁf

and

(D =(3) = -

iy X hare 1= (7

az ) (Pa«J>-

de must also chec':t that the solution is non spurious
(i.e. that it correspoads to positive enerzy).
Let S2—>» 0 then Ev P = l¢> =
|> ~ L (harmonicoscillator state)
L, r
As2 <M O- "('afb) O Hence {25 15> —> 0 and
Mg fbao .
so tae solution reduces to The product of twd positive
anergy spinors at resv ia tne absence of interaction.
o . o >0 _
(ITote 0dd parity J. states — O inile even
. : N s> O oy gy -
parity 4.0. states —_— constant) Hence we
deduce taat the solulion is non spurious.
A.4.5 Case II The PC = +1 solutions

W

Adding equations 10{a) and 10(b)

{3_£>f

quations 10(a) and 10(b) zives

plise> + el = (si+ 61 )-a

Subtracting
bl € leei>=- (g,-6 )a |ze2>.

10(c) and 10(4d)

b 342> = (Q—Q’z)- a 4>

10(c) and 10(3)

Adding

suvtracting

pl2=2> = -(gi+a) gt lend

/e obtain

15(a)

19(b)

19(c)

19(a)



..lg'z_

T R R
froa 19(a) and 19(d) we obtain

pro+el> = - Lgrg)a (@ra)a[v> 20(a)

siailarly suonstituting -equation 12(c) into 19(b) zives

the result
plyvely =-L (g glalgrs)d 19> 20(v)

Substituting the expression for 1 -» fron 20(a) into

20(b) we obtain the basic eizn value eguation.

p>|f> =@~ 8- 6)a 1> g +6)a (6,00)a | & 20()

A
AS +5AQT‘(Q' _ Ol)a'f' @)
Tote Shot eism value eauntion 20{(c) is identical to

equation 16 faor spin zero states because (ﬁ;fjgbgﬁ{§=d>zEC)
Now Irom caarge conjugation we mow that 11> and |4>

are spin one states and hence we nay write

S = [ e ‘S>> N§-€i<r'1>\ 21
F) ( ’§> ld> ( A~ = ) <p /

Now )
Gt lds eatls> L (a uedt d>)
2 (@i eatidy)  afls> -adid>

wnlich is 3 spin one object.

and ‘
o a | s> 1(0_[d>—<1+(u>)
! -
2@ - 9}) a l+> ~(a1d> TZ"(G_{(J>—Q,.Iu>)) O
which is o 5Din zero state. Jdefine

IS = agls> + L (afd> -aelu>)



US4

Then we obtain

Heraa (s ra)ari+>

a, (af1& +at1)«Lalal s rdld) L(ovlafies var 1) + alafis> -atiel>)
L (aclaf > eat ) ca(afisy -aflay)  Laglafia> cal [ ~ a, (@l (> m>)), /.

(22)
Also
—atl a i
a- Ix 3
Le-s gl -c\al+> = . (23)
which is a spin one state. Note that Ifrom 22 and 23

—ng Q6 ) Ho o ¢)4(G- GJOY ¢=(>= (N+2 )Is=1>

AnA e . - ~T e eaets : V hemene o
and lence the eign value eguation 20(c) becones

(- V) = #(ne2)

i.e. the Regge trajectory is
M= €3 = md+ SNz s2= Sus
Note that there are 3 degenerate eguations (fow lU>»HJ>
and 1S> ) and hence there is no effective s»in orbit
interaction at the two component level.
In the case J)=4 then the

solution is unigue and we have

(T-a)g [N 3 m> = O (24)

For the cases Jj=L%t] both angular aosaenta £ and 44
are alloved in gzeneral and the relative proportion is

"not deterained.



1S 4"

Then we obtain

Hora)a (g +a)a+>

a, (af > +at ls>) cLalaft>+dld) Llaplal catlsy) v afafls> ~a;tlel>)
L (ac(af (0> +al () +a-{af1 -a}le>>) 7 A aF > el (Y - ayal >t c(>)).

(22)
Also
tho  dahd
v -a- I'X 3
Ligi-s )glis-s\ale> = e PES)
which is a spin one state. Mote that [rom 22 and 23

s +e) a6 ) Haa)dia-dla] Is->= (e )ls=r>

and aence the eign value eguation 20(c) becsome

(c = 4(nNt2)

[4s]

i.e. the Regge trajectory is

YVI:; = E,\} = Mé + Q(Nfl)- s2 = Rus

Wote that there are % degenerate equations (for fu>-k1>
and 1> ) and nence there is no effective spin orbit
interacvion at the two conponent level.

In the case J=€ then th

[

solution is unigue and we have

(@-a)g IN; g m> = O (24)
For the cases J=LE| Dboth angular avazenta £ and i

are allowed in zeneral and the relative proportion is

not deterained.
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i) Dhe case j:€  C= k"—-(——\jﬂ

It iz easily seen that we may write the J—.Q

I,y =0, m> = <’L* L*jiw;ﬂ@ = Lela)nom

> = A T8> ang 1D AL )0m>

LS|

ron eguation 20(b) an? equation 24 we have

A.=-E p,

Mo
244_ = /I't'""'q- = - (L:_—J\;nmo ’41—
(o]
and A=A A= (Exmd A,
Letting Ay = A,

we have A('_—. —[E_mo> and A, =(E ).

]

Prom ec ion 2 N = 2nd hel :
From equation 24 (,QT‘QL)QM =0 and nrence from
equation 19{(c) we deduce that 17) = 12>

Equation 19{d) then reads -2p 1> = F'3'1> = ~(G fQ})Q,T [er>
F I Be(geg)gt N my = AL (Gire) gl e

= i (Q*/\l;\ g (ie ) 10,4, m>.

ilence the full solution mnay be written in the form

N1 (Erm) L6 0a) T EAL) e
,%:jﬂg = ' 'j N;ﬂ)m>.
MSE;1 _i\ﬁf(gr/\ {;) .g(f&,) — (E—mo) ,l:-g(\a‘d)
Lrame. -

Note as SA—>QO = —> Mg Qofu{\'on___» ~ G
O Oy

whichh corresponds t©d the product of U0 positive energy

soinors av rest and heonce the state is non-spuriosus.



ii) Case j= (%I

Q0

As tas elgn value equation deteraines only

the nunbzr of eoxcitations for a given angular momentum

two values of tae ortital momentun are possible.. As

stated in the orevious section when =0 the

solution 1s unique. ilso Tor tae leading trajectory
N-Q =40+ anl also N=0-1 J= N the

solutions zre ezsily seen ts be unigue. In all these

cases ]5>> = - 12> or the saall components have

spin one. This motivates us to adopnt the criterion
(no spin zero conponents) 13> == 12>, o fix the
solutions uniguely, Mis 1s arbitrary but as thae
first anbiguous case occurs Ffor N=2 J=[ it is
unimportant for praoticalicalculations. (We can, of

course, determine a seconé solution orthogonal to the

coriginal for caseg wWita 3Jbiguities),
+! ‘ o
\N;j,ﬁﬂ“> = 2 <‘Q/m;’m1‘Jm>f N;Q}m—m'> S’k (163)
bl

wahere & is a spin one wave-function and represents
~

the spin of the guarks.

iz

or pure s:in 1 wave-rfunciions (l§>==-‘i> ). and hence
342> oL (g,-gy)al-> =0 (25)
Fron equztion 20(b)
> = - EID> |
ot 21> =- (S 15 alio aid- (GE)i-> (25

Bauztion 25 also deteraines the orbital aixture a

6]
}_l
ct ~—r

implies

1> o€ L(g+a)a(@+a)gt|n;).m>

= (er)|N"J‘M> ”‘#_ (97 —ET)FJT(Q.'Q:)Q ’N, J,m>.
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Jhonse the mozaulicition snzh o tnat

> = 26 (W) 30> - HG-2) g e - )a [N;5,)
we obtain fron 25

1> = (Eeme)( (NN §,m> - LE-6) Tl -)a Ins),»).

l¢> = - (&~ '"O)QN*’?-),N T —L(G 6’)6 /cT >Q’N,b“‘>)
te-a)agola) = calis)

1 (QfI -G )gfg.gz (,‘55) = o af €.a (1\6_-5)-

dence (reaorializin xSk ) and orojecting to definite

angular mouentua states; we .ave

15> = T K0 memt, Lo [y, w5 (Eents) (Erme) g-0- 20 g.a)
mi o,
>J

o ((‘@HN) 0 M—M‘> (27)

Froa equation 19(4)

12> = - l2>*5'p( )O*l+>

and as

> = Qmo((t mg )N 0m> 9@, 6 )d" @ -a)al JJ,I,W>>
we have
12>= Lo (S )G+ G} gt NI >
,~J

dov - Yigeg)allg-g)ioy = 2(dtag) o (a)

Hence
12> = Z ’J A }(a/\ ) IQ)IN 0m " > o
mi

and the full solutior is given by
l NJ >> 2: G;Tﬂgx’ g - glf:g%%?) J (qﬁzéfhﬁm)éfwg_
(DA kT

SEmlahe e e (E-m)es SELEL ) 6,

J :
)‘C‘ﬂm‘INJ'g’M~MI> (23)

Yote 258 S2=> 0, E%st—»> 252 »1d the solution is

O S O S S N S L S S RN S T AR
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A4S Lorentz covariant for@_gg thie solutions

In the rest frane & = ¥ = mass of the state.

-t

In boosting to a general frase we make the replacements

M
¥
i

ﬁ@
D
o
Q

3
jog
v}
=3
2
]
-—
mn
Q
I
4]
[_l
O
3
-
2]

i

ne matrix vnart ol the wave-function will be expanded

in teras of the Dirac satrices anl [N =€, m>. is taken

to De a lorentz scalar rade up of fV;‘?; variables
e 3 o m
contracted with a wave-Tunction |

. (M +mMo) 16y O - (M +M0X0\ch = X{ (- ”’C\Q/O>C
O (M'Mo)'.c:ﬂ

/\Odb-fo-l'a ’ m
9 S Xg(m‘ G.Ff_%),

frame .

o -sain) . _Xe%C > % Lo C.

in an arcitrary framne

To obtain thne particle antiparticle eguation aultivply.
Nal

C and nence tas Lorentz covariaint solution for

o = =1 is

s %L ) o AT o

. Jm 1 ,
where ‘N)Lnf> = .T_Pr"ﬁN W ka ---7ﬁﬂ“ [@>.
with “T“M 15 2 3pin A vave—funciion formed from N

spin one wave-functions.


http://-fu.net
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In an exsctly similar manner the PO = +1

J‘; L2 solution nay be written in the forn

N0, feee> = [ (memod) %-EJE_K{% £ (etLx)] i, 0> 50)

vhere C(ARCD) = Epyre ARCD, &g

1s the antisynaetric pernutation symbol Ej/.;w\( z+]-

for even pernutations of the varizbles 0, 1, 2, 3 and
5_-'/,,\”.0» = ~1 for odd permutations.

- The zeneral solution for PC = +1 is

NG, f’Gf> ZCJ {(nwmo )(¢ '57;2(_;’{) -1 5%

% £(PrreX)] ING, A-mD
(31)

A.4.7 Yormalization of wave-ITunctions

Nornalization condition is
TeCPB D> = - Ra ) (52)
Tor the PO = -1 states
<t \(,JW.> = (NJLMII’7{r.¢,157+(m—”lafﬂxgxfxs"
[m-mell) + Lof T i g

Anything linear in 7] or ' vanishes as N[> =O

and also Tr (ol1d ¥o. of ¥ metrices) = 0 and thus
TeCPY P> = -2, N, L | Te PG, m> =-%oro G,
and hence state given by eguation 29 satisiies

normezlisation condition %2.

For PC = + J=X states

Tl = Smtm) [ reme )+ 1w (B X)X
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and hence

Te<F¥a> = <l ot Te LLY, Py JemdTe Y 8% YT 60,00

As L-P=0 we ootain
Tr <l§72{'n71r> == 8my N2, m| @-L,,L/JI N2 m>
Qfdf‘= Lol O~ &L in the rezt frane this has the

eign value - 4(0+1) and as é},(*’ is an invariant
and J =L the correctly mornalized state is

[Nj=0 fea-d = L [ (o)t - i@ X sterL) J(ws >

i+

The normalization for J=2+| is difficult in

general althaough the zround state vector meson solution

is already correctly normalized

(820 17D = [ (memo ) -1 87 X gleoffeX) ] 19>

A.4.8 Verificztion of covzriant solutions

it will now verify that equations 29, 30 and 31

do indeed satisfy the eguation

[ Mo i(ﬂ#’ 6{)] V> = - “]—-S;-f["(f/,"zf"f' "(‘/7”J] > 3

N

)

by substituting back into the eguation
i)  fhe PC = -1 solution

> = %, [lon-mo ) 557 & of T1g> C
P ys = X[ (P omm e ST T lerC
dys == % (aformmy - Simof TierC

1
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>
whners o }1;_1\78 U,Sed g?%g

Hence we ohtain

[mo- & (F+ @)T1w> = %[ Cimdp o S TipC )

O because P"?: O

"/(,.WD = =% | (M-mog)?/f - Js?fé_"?ﬁ:( 1>C
Tl ¥ = XL (m-moll ) + 5L 1] 10>C
=YD= X [l - 2 Hn 1>

o)

and
LAV X [ Bof + T2l o T16>C

Hence 0(+’7’2 Mj> = ‘ZXS" MOE;W?Z “/)> C

(ATIYD = % R TP
and therefore ' :
(o(p/{—a(_v]‘f) > = ng-ié Z——Mo"%-t-JS?7}—7P Jig>C (35)
substituting 34 and 35 into equation 33 we obtain
%[ mmd e 29 Id>C = O
Hence we obtain the eign value eguation
(m?-mgt 427 )Ig>= O

and the PC = -1 solution given by equzation 29 satisfies 3%3.
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ii) TIne PC = 41 solution

We have
9> = [mems BN - L ¥ s(Poiex)] 105C.

where f - e, + LALEN  and PA=Cry=0

R

RIS = [ (@) i B gl Ore)TIgnC

fl > =-[-m(Femefl <2 Pe(P7X) Tig>C
fence
[mo- £ (G BS19> = [ 4 (m-m)PA - i % moS(Ere) THC (35)
4155 |
A 1V> = [ (m-m)offh +i XK As(Erex)]]ipC
oo 19D =~ (e £ )7, A3 -G fstepted) - 2R ECterm) [19C

Hence we obtain the equation
(9, = )IW> = [ A A mg ﬁ/%[ AT +
25T o s(Pyre¥) 205 X £ @ffem) 110> C.

nAley = (I *—5'2_’(_"’2_*)év7lcp> = O

M-y |
X‘;‘)BS)((%\’%J\\‘V\> = [ MO_F.’?; '7/’/ EX/U%] + A< %_()ﬂg(ané\é)
- 2F % elenten) JIf C

fron which we deduce

ek = [T 35 (A1) - RSPt DC (50
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and

ot > < - el Dy 16y ¢

Also
0% 4= 7 194]
and as F_.,f-: P-é = O

we obtain
?7, [8, 4] = 20 % £(PyTe).

and hence

o(nf > = -2 Zeas E.’(f’ofre‘X)lC@C (38)

substituting equations 35, 37 and 38 into equation 3%

we obtain .
[ & (md-) A - 052 3 me g (psvax) i) €
= [ X lPfey) - IS (Pen)
st X S(PrEE) ] 19 C

which may be re-written
Dgd= O = [ hlmim) P+ @ [fstores) - (o
c(prten)]] ig> C
¥ 8= g 1 [6Y4]
[hstentex)-s(oopen)]= Lo, [¥F, elpqexs)]
= & (et ) [3]
2 s [X1Y] == 5 (%)

Hence we have
B =13 [% é’(fv?fé\é) - g(ﬂfén)}

= &,(7%Y) £ (Pofe)

AS

Now
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RB=|O 1T me
?oAt ¢
171 ¢

= -t LPE] + e [9f1]

| Lo 1 =(- g el )

ne[f4] =- T9e¢T + IA4T] 7e

Thus we may re-write

B = '(”]’7)1_1—13[9(‘[#] t [?7/7](716

R acts directly on the state l@> and nenc

. _(mg~mz>< [$d] - 2 [PopT 1 )

o

2_nt
m2i-m

S2

o =2 (ma=rt) A

S
Substituting into equation 39 we see tnat blql> =0

and hence verify that Il}f> is indeed a solution to

eguation 29.
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\'“.;!“1.11 S 5

] - — - ~t T, «C
2ne deczy Tt O | *,(13-4>TT40 > 21 exaiole

carculation

ifhe correctly nornsalized B 2nd w wave-Functions

Lln -l )« g of, T e 10>
U’"**’”"% )¢.- ‘w"s?%% C(g o e¥)]le>

%

2 Mo

sy =
“Y S A

wiere the unitiry gpin Factors hive Seen omitted. The
inemctics is given in fiz. 4.

A e AL
1 07 ung

(@)
(48}

}_J

S vya
Lo 2.

is for the quzr’:
+
. VU - s
Q/JF}/U=—“XI;§£FQ fo}
The decay auplitude Tor emission of a =2seulosscalzr fron
a gquar< line is

gD = FT (e s er ]
X{%X‘ Q_Q/ﬂ l(m - My —Ci‘)-f-\}}?g'd T /}Té ,0>

resulecs

Using the
[T g1e] = qe ot
. I )
qeMa 1 Pe Qe
[ 1= (- g e

Wwe obtoin the recult

(N,Q A‘”"lﬁ{>_ﬁ_1 }__ |F <C|[(ml_mo 3% -+ (JSZ X/‘S(P7]2CX>
™Mo

3 g(6,0.&%)] ﬁ [(m,—mc%) +J52 @L;;'\fg 1(fe %g) o>
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latings the trace this becomes

<3, AR = ~«<f‘: Ll [ mm, q € + Jﬁ(—ﬁ-élqﬂ’hfq‘ﬁc—;-?}')

Y‘lo

M (gt 6 Gg€) + S gf(@nzél) §M(q P, )

Mmz_ M "y
Iz
- £ g 00} a0 ) (nfe+ g )i
Simplifying and taiking matrix elements we get

) prye N
I AR == T E [ ey (fh-B10

veqel (i )« o= £0J1]

)66

In an exactly sinilar apanner the amplitude for pseudo-
scalar enission from an antiquark is

YiE < - F [ e (- G )0
= - -GGy - A= Lt
<L\3’l H R F ™M, M, !

qgaqe [ 2 (i () - 2l (me- T 0]

P“he unitary spin wave-functions are

@“-'— HJ )TT* ua Qnd 3° = \].Li,(uu-(-o((I)

using ideal
. 4
mixing <¢,\>, >‘:e¢2 {&> == (c\;)%‘dl({g> z\}_ll"_

flenice the full decay aaplitude is

T = FFE&(n-0¢) [(FR)g, + qr%’]@'f’e’;v

My M, o
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Cross cection, slope and helicity structure for
some quasi two body diffractive reactions

Regge classification schene |

Tabulation of the components of the D resonances
Covariant boson couplings

Boson aelicity vertices
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Nonsense mechanisms at o = Jo

m™N—-> ﬂ'N*(SQ}IbQQ) fit paramneters

m™N — T(N*(%I,ITZS) fit paraneter
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dissociation
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Slope B is defined by d_(_r - Ao Eloe ~ \SGeV.

‘Process sec(gigissz) ?}gvi—? Felicity structure
IN >IN 087 + .1 5 S.CLH.C.
T N->TN 14030 + 120 7 -9 3.2.H.C
KN => KN 1300 + 100 5 -5 5.C.H.3
RN->Rn 2200 + 100 7 -8 5.C.H.C
NN —> WN 2030+ %00 % % - 10 5.0.0.0

VRV £

¥ N = "N 13 + 3

i,l
\
Oon

|
(2]
U2
C
-

FN=>AN | 100 «+ 30 | 9 - 11 r.c.i. [25)
) |

-ﬂ'N—»AgN G+ 10 8 PAPRUIES BE Y

SN 5 _ 7 r.o.ic. [27]

KoN>Q"N 3 -~ 10 L.,

N> NE, 400 + 50 14 - 17 $.C.4.0

N>, 180 + 20 16 + 173

N No5nDg 140 + 25 51 + 15 Roth € ch.anos [29]

TN Dy 50 + 5 46 + 4 T Taa possible

NN>NFg | 290 + 20 45 + 1 Both tch aans 28]

wNoTFs | 155 & 5 18 1+ 2 TE ity mossivle
- T2 12 T




. - 169-

Srass—-cectina O

Type N . exchonss guaniua nanbers
Jdifiractive 0 - .2 vacuul guantun nunbers
forvuard 2 - 2.5 nen-stran 2 —ezs3ac

scattering

N
o
|
N
o

P A a .
soran’te esons

bac ward

3 -5 baryon gquanowa nunhers
scattering
Juantun nunbtesrs 2e2lon Cing
mxotic 10 - 15

to no lmown particle

e.5. AQR=3, AR=2 2%c.
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Jomponent state
—
(Q,f\)

Somnents

A,

Ay

R
L

N*(1300) ?

N* (14 10)

N (13 10)

F,TT
£,

K (€30),Tand p K
K*(1426), T

N

AT

NY(/¢70) T

has either a

o
&
6}
0
v

resonznce or

1

Mmass ennancenegny

In neithecr of these

states is the
system in a

relative s-waove
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TARLE 4

Covariant boson counlings (%)

G'(0,0) 9 G(o0) O

CD;(O/ ‘) E(Qc(\Qo(L“r 813;((« Q!:(O.‘\ 'g'ilcg;bd (QA)

| G (02) I UNRQr  G02) £5, 08RG K 9, )
T2 Gop R @y G S Jtuv

G:Va' (o 3> 9i Q« \ Qa’._q)d,_ QP C\‘)v st‘ Gf,:,g (6,2 > Ji g/'d‘( @ AB ( gl Q"{L()P“S @, Qc.' Tt
T+ 9, 99(,14 Qoel Qu'z Qon‘ REE! 34},4 Qv G%Qc f_2. Gupv Qo(JQG' A "gz Ty 3‘{35 )
9 e Gy For

G:V (L) 3, Op &y @x.@«z t 9 Ypv Qo(, de T 9 9pa, QVQC(z_

* Y4 Gyx, Qf' Qd\ T Qe (3)”(«_ Gv i,

* The notation iz 6 $,% where the + refers to a

noraal/abnornal counling
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Voo -
LN D

Boson helicity vartices (%)

V (O o) 9 V (0, 0) Q
Vo) . -9/0 Vo) -i5hE
Ve (eeTelp W) o
| \/;( 2) 9 plod) kg
V02)  laamelept  Ve02) LR -TH)
Goa) stAR tFLETeTe) Vo) o
\;, (0,2) -9/16(7 \/02(033 | ~£§/1LJ’2'
\4{@ ) (qa- 2T )RR \, (03)  a(f,-276 ) /_iE !
V (0,2) -3¢'g, /1L]Z8 + mc.‘(o,z) LS Jiedw e
(—’3(2 ‘*1‘1'91 % /P Jgo (T, + ‘ﬁ-fﬂ/&zo P
Vo(,(ql) € ( (92 3‘9 )/4JT«>’V+ N\ (02) O
(-T%,+ 79, - T9%+3,) /3 4
V(L) at/e S
\/+ (1 Y =9t/e - 9.
VIO (8Teagro )y
Vo) (9,729, +9,) 27 )
Ve () (9T7-29,R -T'g; “To, v \/,J,o
ravity VU3 = % (VT
Yar Acfinisiont 27 T, R Lipp s i 3
(#)he helicity mhase couventinng 1T Yoo a0 J 2ob ad
Fie: W T A% (195)) exeant w v PO "5 not
include o rioor ()M “or moxiticle 2.




9|ﬁg * 913%

(le F@. “+ C\h\ég‘)fo(gl fjr, -+ (Cjz?ﬂ.—rg'r-xﬁj ﬂﬂlr/

ot ¥l a8 (3 v i) e G

N (Cﬂs‘% "ﬂbX\“'>g(‘zF9F*V

(g6 + g% ) B2, e G s fe

v (g, (0 v9 %) g, b G B &

t (9 ()(? -+ Q\kxﬁ)g@r 9F3V fﬁﬁ@

+ (95 6, + ge¥g.) Yor Ipv Dpuc

a)

Abasraal couplings
c )= CH)Ye
: : t ‘ R
die novation is C: (S],gz waere tne + rercrs to
a aorizl/wonor ezl coupling. fhe nor.ality of o
vertex is tie gsroduct of taoz three norrnalities at

the vertex.



TARLE 7
zereion 1::91“— ?Le_r tices™ )
V:Ji (W) 20meg <q))
Vi () - 9% - 5 8 (T (meg,r9) - (megyc0,)
.1(1’, - (Meg, +91)/‘?

t'(meg, +q) /2 + €' (0T g,-a,)afiom' ~

VJ_,L'(’/Q;/J.)
(TZ(WQ +9, )-T(Nfgj +9y.) T(’“chr 1-96)‘)/\[75' m'

4 1(/-15‘/-1\ 9, {/Qr +(QT(mrg) fg ) (V"lff)z“'f’ls-\)

|
.» VLL('/z S‘/AS (mffj‘igl /4-

—R -
VJ_ % ('/2 7’1) - 39.f /{51?3 + € (KT(MrJ,Tqﬂ (mMe93+9¢ )/J?o M —

(3T -1Tgy+ e ) [JTTm? —
g (dg(m-rg.-f- 31) T (fojg r9e)+ ((mtﬁc *'96) (mrh*gx}) 300

Vf.si (V2,32 SR (mes, + 9,) /157 8 - 2t (3T, +4, )/ i@ m' -
-2 (ZT'L(Mf—ﬁi + 9,_) - 27(ﬂ1+92+ 9?_) + (m+3s‘*ﬁc>\/\ﬁ' 1z

-¢'9, /ibgig — (2T(neq, +9,) - M Go19,)) 2l ™’

Vpg (%)

\/;:{_ %'%) — (me g, t 923/2\1—3—"

] = A
abnornal vertices \/,.\f‘)‘ ( S My, M_)____é \/)\\),l(g-) m;)mr)(_)
i = (m‘rm—f(:l/(f—) ) My = (""*—'"‘5/}{,

Parity: \/— W= T (Ped S , -
- c) 1
reguires tuae substitutions:

fucleon £ VA
ucleos llg . \/A” \IF)\.)H\)-
(m+ 92/\ t 92"\ —> ps 92/\'1/2( b) £[92n—s —=T 2‘(“"";92/1 i f-glﬂ)

“)2 he helicity phase convenbions used here ave tuose of
Jacob and Wicxt, rerl.AlT 404 ,except taut we ta e(ii Oand
do not include a factor —}SI'AL for particle 2.




vchoosing

NC GM Chew 5FP

sSense
9e | (7o) (a-T) (a-3)" |
9, (-T) (x-T) («-T)* («-3)n |




TN—= 1 N* (%, 1688)

it paramneters

N oNnsQnsg QO\LP ‘L/\S G‘ Gl G3 G(f) Cé%;) C:'%) A O(;o r7\_1/Pt
Mechani <m mode|
TCHC (5338 i 230212 | 1-02,
S-F-f RGC 333 | 2F 93 1 (0%
Y- Coupling ¥#9 | -os 0S| 2.3 | 190 | 102
S CHC 209 130 2% | 2.24
TCHC 332 392 1 60 ] 3S
G- M. R.G-C 1003 242 | 60| 24
X—Ccut:h}\s 2256 1010 | 432 [-326 | 1§
S.C el 34901410 | <22 | 32
SQI’\SQ- X'CO\AP“/\S ?+S -25-1b “219 230 1 | ey

ac
LQ Guwe 9; = G L Ni(‘(“’) , dp= | + o((,'é

L) 9. ,9s and g, are covariaat nonesense coutlings ot «¢=|
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TABLT

———— g ot e

TN = NG5, 1S25)

109

fit paraneters

. ‘. ‘ . 3 . 1 ‘
YoONnsense (.ou\olv\g C'fu G’z 63 65:) A [ O(:o X/f)(;
ne_c‘\cwsm mode| : 1
T.CHC  |-91 25 loio | 22
SF-P RGC -1$3 ¥ l 010 3.0
G,, 6, SEF |-633 2 | 00% | I3
XCOu\D“/\S -10-9 -9 3¢ | 006 (2.
S-CHC 3 8 O 10 G4
T TCH-C -143- 6 1.9 ' o.59 Fb
GM R.G-C ~163.0 34 010 | Fb
G, G, V443 [-TEF 9 004s 60
XCOuplfnﬂ ~-1830 NEX S22 | ooy N
S-CHC 263 &S l 02 <. Q
Sence. Ycoupling 104 2048 | 356 | 0.i08 | 2

. At ,

b) Q¢ w a covaciant nonsence C(m@l(nﬁ at a=1
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ALt 11
Predictions of tae constituent
models o  diffrzction dissociation
N = (N Mocrisone C= & c Vv FTR Risliagar
gtuk taquark medel | rule allo wed? allow.ed d—i:‘i‘o ? allowed CBLJ_/ eX1
6 *Syr  N(940) Y Y N Y N
5 28 NHIe3 0) Y Y N Y Y
> el NGsao) | Y su): N Y X v
2 ip'.,; N’Yl%‘s‘d} N Su((,) ) Y Y | N
"6 NUeso) N Sue) 18" N Y Y N
E "Ps,; N*(1¥10) Y Sute) :S: N Y Y Y
> b, N*(1730) (N sule); S N Y Y \Yj
Doy N(log8) | Y Y N v RV
"Dy NT(1€460)7 N v N Y N
, zS;,zr N (1 150) Y Y | N - oy
D “Faz N*(2140) Y suy: N | Y % Y
(K) = =™ (1K),
quark model stedes, i
'Se- T(/¢0) Y Y N Y 1 N
*S- (350 G: N G: N & N G: N LGN
"+ R (1220) G:Y G: N el Y G: N &Y
e $(QuR) N PN SHN ey £¢ N pa
S« A,L1i0%0) Y SN Y Y Y
She A 0%) \ S, PPN S ( eh Y P
"Dy Ay 7y (164:0) Y Y N Y Y
D - G:N oGS N LertN ety Y
Da- G:Y ;s ‘N |G N c N Y
*Dy & N Gt SIPEN G:eb, N G.f° N Py
'S KGas) Y Y. N vy Y,
2. )& q0) N ANl VI B G PRI N Y
'O K(320) Y G N Y % N X
*0,- K. (1 00) N RS N ey €N c*
0. Q1340) Y SN Y Y Y
> B W™ (14-20) N Pb s N Y P Y £ Y
D, L(17&0)? Y Y N Y Y
S0 N |sigetn | P Y | CaPi N | PRy
* Oy Y S G N N g ¢ N Y
D, N Q: (! P W (b Y G PPN P Y

N = P(‘oclu(tcw\ of Rere M,]Au(d clotes ven {Sl\OJ TN (a(-ﬁ

Nz No

Y= Yes

G’ & k»»(\/uq

k (7._’-"!9,-’(13::‘ e r/ (-lf\(c.rr-a (G t -Lmlluln. I('(()/\

—gcJ bbb, L\(,(C,/\ Su(()) = SL([Q)) 'f"‘)‘"s"'\cl\(-(ﬁ-/\

Thbnoa L revn m-(- ' fa\‘7

= abSolu‘w fovbbidden for (\atu;a._)um{ ,Q?\(I'\QAS.Q (e, §,¢') [ See Ch R cnd Eubley |
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P

The_differentygl structure for

fernion dissocintions [33]

'dG tex O
Reaction wwo;<a; differential ST A
structure
=N-> % N P P strong w
D ~ 40 2ab/GeV forvard peak allowed
~ T 2 -
aN>TN (1470) | ~ | 1b/GeV forward peak allowed

TN TN (1v20)

TN - aN6%8)

TN = wN*(2040)

- 2
~2 x 10 1nb/'}c—V

~ 5 ’nb/C—eV2

forward dip 7

forward 2
plateau

forward dip

5U(5)
forbidden

allowed

SU(h)
forbiaden




Decay

3

wo— X
q§°—> T
¢°— 3

-2.89

-0.15

I+

|+




Decay Quark amplitude Ard{qluark amf.(.'(udg
type. -1 C§l 9 A 1> - 19, A [T

‘— _ _ .

S0T0T | -BE FNL Qe Hoet F e q e
—a‘O"‘” ot ' m, m1 F A, C[r(zv—a) pv m,mz = ’\Z(i/’C[V —pv

- + = (R v
A R o A AN Gy

=& )tdﬁé;/r i e) I

m, MLJS?.

S lo" |- Ff{(__‘..él*(m A2>_\_

Q€ g < (r%"LA N ﬁ‘)}

Jf;]_g_l.{_e‘.c—f P, P A2>+

m, M,

€ q € (mm\/\ - rf'\ih}}

et | S almnY-

er‘s—f m,”mz
28, et 1+ qeaqallee-

2mp )su + Fl-\%i]?}

= %G.'ﬁf [- (seermy )Y

.Ji“?m}rﬂx
« 28, prp. ST+ gaqal-(er,

- 2m,‘)§L -+ 2!’1,"*’"5] g

A, -
Y o=
2 =

Tzrx(g,

Pl'!ol:

Bbbreviations -
= [ I+ (%—":)1]

M: - P\'PL

[mimy = (oo ]

- s T
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Diffraction syétem,

Typical neson trajectory and possible

pomeron trajectory,

(a) ‘Pypical aulti-deripheral graph.

(b) ulti-peripheral tree with resonances
in some channels.

Diagramnanatic representation of the unitarity

eguation.

Contributions to inelastic intermediate states.

(a) An A.T.3. cut (b) A

Basic tower dicgrams.

Some contridvutions to the itterated towver.

(a) Plarnar dizgran.

(b) ©Non planar diagraa where partons pass
each other but do not interact.

(a) Pisinet Feynman diagram.

A

(b & ¢) Duality principal.. A sum over ali
t-channel poles is equal to a sum over
s—channel resonances.

Syanbolic represeﬁtation of Veneziano 4-point

function in tine anzalogue model.

Venezian» eguivalent of the box diagraa.

The guark guantun numbers.

Tliustration of liriting fragnentation wlere
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and P* respectively.
Mass fragnentavion spectirum for P—?JX

impact of o [33]
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Diffractive reszonance excisvation of particle Binto
nechnisn for producing  wnass ennancement D,
Peripherzl molel for dissociation T—=>2717
Gauge invariant peripneral model for TT—=377
fragnentation.

Possible excited states of a concosite object.
Kinematics Ior spin J exchange.

Ponzron fits to the ' N—‘?TI"N*G—/;, 1698’>

date of reference [33]
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circle line the best ¥- coupling fit with G.»l.
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(a) Poneron Tits to the g}%% data of [28]
for NI (688) in tie nelicity frame. Tull
linc represents R.G.C. and 7.C.3,0., dashed

line is 35.C.H.C.
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(b) Poneron predictions for Pri Tor A!(%Q,IYlf)
2 A

in the helicity frame. full line represents
X.G.C., and T.C2.!11.C., dashed line is S5.C.H.C,
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—

the

e

2}

cross—-section data.
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‘Predicted aass spectrun for PO

Picture of particles A and B just before collision
in the rest frane of 3.

Duality diagram with resonances in the s and

t channels.

Dualiﬁy dizagran with poles in the t and W channels.
Jdass renornalization diagrans for s and t channel
poles,

Vertex renornalizztion duality diagrans.

Duality dizzrans ifor vacuni exchange.

The Bethe Salceter equation for a bound stote of

two particles in nomentum space.
So0:me 3etae Salpeter irreducible
Soae ZBethe Salpeter reducible
The tetne Salpeter eguation for & taree particle
bound state. V is an intrinsic three body potential.

1

The current normalization for the Bethe 3Salpeter

equation; we neglect the second aiagran, anad any
effects due to renormalization.

The quark in meson z interacts with the electro-
magnetic field, and becanse of the spinor
prescription of the ¥.K.R. model the antiquark

also changes moaentun.

The Bethe Salpeter triangle approxinmation Ior

meson decay A .~> BC.

Surrent norialization in the 3ethe Salpeter equation.

-1 mesons.

I
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Predicted mass svectrun for PO
Zinenatics of deccy by emission of s photon or a

nseudoscalar meson.
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42. (a) Hinematics for scattering of quark 1

on quarkx }

2

(b) Illustration of double scattering of quark i

on gquari 4  wiaich is clearly included in

6]

the single scattering anplitude ‘tu
43, Contribution of the scattering oI gquari 1
on quars to the single scattering amplitude
for the process AB — A*B¥,
44, A contribution to the double scattering asaplitude.
/

45. Contribution of scattering of gquark C on C

to the barvon baryon scattering AD —» A¥3#%,

46, Definition of the momnentun for the process 13 — JID2.
47. A t-channel exchange.
48. Kinematics for the sollision AZ —» CD in the

centre of mass.

49. The NN' vertex for coupling

¥
<

to a spin J particle.
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