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ABSTRACT

Indium-thallium alloys in the composition range 16 to
31 at.% Tl undergo a martensitic phase transition from the
‘higher temperature fcc form to the lower temperature fct one.
Certain lattice properties of these alloys have been
‘investigated in the region of the phase boundary. The alloys
studied were in single crystal form and comprised of two (11.5
and 15 at.% T1) which always had a tetragonal structufe, and
two (25 and 27 at.% T1l) which on cooling transformed from fcc
to fct at 195 and 125K, respectively. Ultrasonic wave velocities
and attenuation have been measured by pulse methods in the
temperature range 4 to 423K (melting point =427K). In addition,
thermal expansion data for the alloys have been obtained. The
temperature variation of the elastic constants, determined from
the sound velocity results, is discussed with reference to
effects associated with the martensitic transition. One elastic
constant combination — -}(C11 -C12) — has been shown to
approach zero at the transition; theoretical calculations of
elastic constants from phonon dispersion curves computed from .
the optimised model potential theory show a similar result, and
the mechanism of the transition is interpreted as the collapse
of the slow transverse acoustic phonon mode propagating in the
ﬁ10] direction. Crystal stability conditions have enabled thé
limiting values of Poisson's ratio to be derived, and the
variation of that ratio and its limits has been investigated as
the phase boundary is approached. The order of the phase
transition is discussed; a second order process is suggested

by the results obtained.
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CHAPTER 1

INTRODUCTION




Indium and thallium are two metals in group 111 B
of the periodic table; indium (atomic number 49) is immediately
above thallium (atomic number 81). Their atomic weights are
114.32 and 204,77, respectively; they are each trivalent and
their atomic volumes differ by only about 10%. Indium has a
face-centred tetragonal (fct) structure, with c¢/a ratio of
1.08, while thallium is hexagonal close packed at room
temperature. The two metals mix to form disordered alloys
over the whole of the composition range. Of particular
interest to this work is the indium-rich end of the phase
diagram where the fct structure is found at room temperature
in alloys containing up to 22.5 at.% Tl, and a face-centred
cubic (fcc) one from that composition to 59 at.% Tl. The
position of the fecc/fct phase boundary is temperature
dependent, and varies from just over 15 at.% Tl at the melting
point (~427K) to about 31 at.% T1 at OK. This transformation
is difiusionless and proceeds by a lattice shear process: it
is thus of the martensitic type. |

lartensite was the name originally given to a form
of a high carbon steel which had transformed from austenite
on quenching; the term martensitic transformation now applies
to a wider range of transitions than to just that in steel.
The diffusionless nature and the lattice shear process are its
distinguishing features.

In order to study the physical processes taking place-
at and in the vicinity of such a phase transition it is an

advantage, and for some properties essential, to make

1 3FERB 1974
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measurements on single crystal material. The indium-thallium
alloys were chosen for study because preparation in single
crystal form is relatively easy; various other martensites,
such as steel itself and also nitinol (TiNi), are precluded

for this reason. A second advantage in an experimental study
is to have the phase transition occurring in a temperature
range easily accessible by normal laboratory methods. 1In this
respect, too, the indium-thallium system is eminently suitable,
for the temperatures involved lie between OK and about 427K,
depending on the composition of the alloy. Thus, by selecting
a suitable alloy composition it is possible to arrange for the
martensitic transformation to take place at a predetermined
temperature. Turthermore, it is possible to produce crystals
of either modification at room temperature. These in themselves
are features of the indium-thallium system which make possible
a more detailed investigation qf the transition than can be
achieved in almost any other martensite. (With a system such

as Au=147.5 at.% Cd, or with elements such as MNa or Li, Tc is
fixed for a given pressure.)

One possible drawback of In-T1l alloys concerns the
toxicity of thallium or, more exactly, of the Tl++_and Tl+++
lons. One or other of these ions is produced when thallium
metal comes into contact with skin, and the oxide or some other
salt results., Consequently great care must be exercised in the
handling of the metal. The alloys are less dangerous in this
respect, though, for the thallium is diluted by iudium, a less
toxic matcrial.

In appearance indium-thallium alloys are bright and
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silvery after a short etch in dilute nitric acid, but soon
become dulled and slightly grey in colour because of the
formation of a thin layer of oxide., The oxidation is not
extensive, however, and does not impede bulk ultrasonic
measurements.

Considerable effort has gone into a determination of
the crystallography of the fcc to fct transition, starting
with the work of Bowles et al. (1950), and later by Burkart
and Read (195%) and Basinski and Christian (1953). However,
the underlying mechanism causing the transformation is only
now being resolved, and the major aim of this thesis is to
investigate the suggested mecnanism — the collapse of a soft
acoustic phonon mode — from experimental and theoretical
approaches. Hopefully the results for the indium-thallium
case could be applied to other martensitic systems for which
there are fewer easily controllable variables to ease an
experimental investigation, and also for those involving metals
which, by their nature, cannot easily be modelled by existing
thecoretical methods. (The latter includes those containing
iron, nickel, gold or other noble or transition metals.)

Ultrasonic techniques have been larzgely usced in this
study. The propagation of a stress wave through a solid and
a determination of its velocity and attenuation in the medium
provide information concerning basic lattice properties of thé
material., 1In particular, the clastic constants can be found
and, since these are related to the binding energy of the
lattice, their variation with temperature gives information.

concerning the extent of the contribution to that energy which
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is anharmonic in the strain. The behaviour of the elastic
constants and ultrasound attenuation are of particular
interest in the study of any phase transition. In the present
work we have attempted to relate the results of the elastic
data to the behaviour of the crystal lattice in the vicinity
of the martensitic transition. Results of thermal expansion
measureinents have also been used to that end. TFurther,
ultrasonic methods allow of a direct investigation of the
softening of an acoustic phonon mode through the propagation

characteristics of an appropriately polarised wave.



CHAPTER 2

THE MARTENSITIC TRANSFORMATION AND ITS EFFECT

ON PHYSICAL PROPERTIES OF INDIUM - THALLIUM ALLOYS




Introduction

This chapter sets out to review the main physical
properties of indium-thallium alloys, with particular reference
to those concerning the martensitic phase transition. The
theories of the mechanism of the phase transition are outlined,
both from the standpoint of the atomic motion involved, and
from that of the possible underlying reason for the instabiliﬁy
in terms of the collapse of a soft acoustic phonon mode. The
elastic and ultrasonic data available are described, and a
brief account 1s given of studies of other, less related,
observed properties of this alloy system. The concern =
throughout has been to show the relationship between the
present work and the knowledge available from previous studies

of the alloys.

2a1 Martensitic transformations

2eT.1 General characteristics

Structural phase transitions can take place by either
civilian or military processes, in the terminology suggested
by Frank. In a transformation of the former type.the atoms
move independently of each other, while in the latter type the
motion is co-ordinated and much more well-defined. The
displacement undergone by any particular atom in a military
transformation can be specified beforehand; such displacements

are fractions of the inter-atomic spacing compared with a
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possible atomic movement over several inter-atomic distances
in a civilian transformation. Diffusion plays no part in a
military transformation; martensitic transformations are of
this type.

Originally the term martensite was used to describe
quenched high-carbon steel, in which the transformation from
the face-centred cubic (fcc) austenite to body-centred
tetragonal (bet) martensite occurred on rapid cooling, and
which was accompanied by an increase in the hardness of the
alloy. The name was given by Floris Osmond in 1895 to
commemorate the work of Adolf Martens, a metallographer who
had worked on the structure of steels. Since then many other
materials have been found which have similar transformation
properties: so wide is the range that it becomes difficult to
find an all-embracing definition of a martensitic transformation.
Petty (1970) gives the following: 'A martensitic transformation
involves the coherent formation of one phase from another of
the same composition by a diffusionless, homogeneous lattice
shear process.’

Other important characteristics include:

(i) The process of formation of martensite is athermal,
that is, it only occurs on cooling and not when the
temperature is held constant.

(ii) A start temperature Ms and a finish temperature M

f
are found. 'The temperature separation of Ms and Mf
differ between materials, and in the case of an alloy
can be affected by composition.

(iii) Thermal stabilisation can occur if the temperature

is held between Ms and Mf. Undercooling is needed to



restart the reaction.
(iv) Transformations are reversible with a temperature
hysteresis.

(v) The shear responsible for the transformation takes .
place on a habit plane peculiar to any given material.
or a homogeneous shear the habit plane itself is
undistorted.

(vi) There is a definite relationship between planes and
directions in the parent and the martensite phases.
A transformation matrix can be written down to
describe the strains involved in a particular

transition (Wechsler, Lieberman and Read, 1953).

A1l of these characteristics have been observed in the

phase transition found in indium-thallium alloys. A collection
of data for other non-ferrous metals and alloys which also
undergo a martensitic transformation is presented in Table 2.1

(Garwood, 1970).

2.1.2 The fcc to fct transition in indium-thallium
alloys
2.1.241 "he phase diagram

"ne phase diagram of the indium-thallium system 1is
given in figure 2.1(a). This is a composite diagram given by
Hansen and Anderko (1958) from the collected work of
Valentiner (1940), Guttman (1950), Lipson and Stokes (1941). (See also
Meyerhoff and Smith (1963) and Stout and Guttman (1952),) The
region of the fcc to fct phase boundary is shown enlarged in

figure 2.1(b), and is due to Pollock and King (1968).



BCC
FCC
rcT
HCP
BCT

* From Garwood (1970).

TABLE 241

Martensitic transformations occurring in

non=ferrous metals and alloys*

Metal or alloy
Ti
Ti-11% Mo
Ti-5% Mn
Zr

Li

Na
Cu=-40% 2n

Cu=Sn

Cu-Ga

Au=bL7,.5% Ccd
Au=-50% Mn

Hg

In-15 to 31% Tl

Structure

BCC

BCC

BCC

BCC

BCC

BCC

BCC

BCC

BCC
BCC

BCC
BCC

BCC

BCC

to

to

to

to

to

to

to

to

to
to

to
to

to

to

change

HCP
HCP
HCP
HCP

HCP (faulted)

FCC (stress
induced)

HCP (faulted)
FCT (faulted)

orthorhombic
FCC (faulted)

FCC (faulted)

orthorhombic
orthorhombic

brthorhombic

rhombohedral to BCT

FCC to FCT

body~centred cubic
face-centred cubic
face-centred tetragonal
hexagonal close-packed
body-centred tetragonal

This list is not exhaustive.
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The phase division line meets the solidus at just over 15 at.%
"1, and reaches OK at about 21 at.% Tl. Between these two
poinﬁs on the diagram there is a continuous variation of
transition temperature with composition. A 22.5 at.% T1 alloy
transforms at room temperature (290K). It is interesting to
note that the solidus and liquidus are very close together for
compositions up to about 40 at.% Tl. This means that a melt
containing up to that amount of thallium gives a solid of much
the same composition —— a most useful property where sample
preparation is concerned, and uniformity of composition is
desired. A two-phase region is shown in figure 2.1(b).

There nas been much discussion on the existence and possible
meaning of this region, especially with regard to the thermo-
dvnamics of the transition. Pollock and King (1968) describe
this section of the phase diagram as a 'realisation' diagram,
rather than an eocuilibriun one, and ascribe the difference
between MS and Mf as found 1in thgir polycrystalline samples to
the effects of strgss and strain in the sample and at the
transition interface, thus bringing the pressure variable into
play. Guttman (1950) concluded that there was in reality no
two-phase region because his X-ray photographs showed lines
from one or other of the two structures as the transition
proceeded, and never from both. It is likely that if an
actual piece of either single or polycrystal is considered as.
a whole, then the effect of stress within it acts to

cause certain regions or grains to transform before others,
thus giving rise to start and finish temperatures. But if one

grain or repion is considered, then the transformation occurs
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at one temperature set by the conditions of temperature and

pressure within it.

21,242 The crystallography of the traneformation

The first description of the crystallography of the
fcec to fct transition in In-Tl1l alloys has been given by Bowles,
Rarrett and Guttman (1950). The experimental observations
which they attempt to explain consist of micrographs of the
surfaces of single crystal alloys which show that, after
transformation, a previously smooth surféce becomes corrugated,
and a banded structure is observed. Further, each band has
sub-bands across it at angles of 60O to the main one, and on
adjacent bands the sub-bands are at 120° to each other. Figure
2.2 shows this effect in a crystal containing 21 at.% T1l.

The development of the bands is associated with the severe
strain at the fcc/fct .interface. Tc relieve the strain field
set up by passage of the transition interface, twins whose
strain is alternately positive and negative are formed in the
martensitic phase. Bowles et al. have found that the bands
occur parallel to {110} planes of the cubic material.

Two possible mechanisms are considered by Bowles et
al. 'l'he first assumes that there is a simple expansion along
one axis of the original cube and a contraction along another.
The high internal stresses would then be relieved by twinning
and the banded structure would result. The other mechanism
they consider is that of a double shear. If one shesr were to
occur on a {110] plane followed by a second on another {110}

o . . .
at 60 to the first then a tetragonal configuration would ensue.
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This process is illustrated schematically in figure 2.3.
Bowles et al. performed careful X-ray work to determine which
mechanism was nearest to reality. Their determination depended
on the slight rotation of axes (220) whicit would accompany a
double shear process, compared with no rotation for the more
straightforward increase in atom separation along one axial
direction. Their conclusion is that the double shear mechanism
is the one responsible: a shear on (110) in the direction B?O],
followed by a second on (011) along [bTﬂ . Additional confirm-
ation comes from the way in which the bands tilt the surface,
for each mechanism predicts a different result in this respect.
A more detailed analysis by Burkart and Read (1952) shows that
if the habit plane is an irrational one within about 1° of {110}
then an exact tetragonal structure could result, instead of
what is, strictly, & triclinic one from the model proposed‘by
3owles, Barrett and Gutitman. Burkart and Read were also ablé
to calculate the orientation of the habit plane from the
condition that the average strain at the cubic-tetragonal inter-
face must be zero.

In their experiment to find the mechanism of the
phase transition Bowles et al. (1950) also made observations on
the form of the transformed material. 'They find that for a
single crystal the bands in the martensite phase are at
different orientations in different regions. This is just
because the transformation is nucleated at several points with
habit planes whose orientation varies from one region to
another (there are six {110} planes in a cubic crystal, and

thus six possible habit planes.) The width of the main bands
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Figure 2,3

The cubic to tetragonal transition by the
mechanism suggested by Bowles et al. (1950).
The habit plane of the first shear is labelled 1,
and of the second is marked 2,



also varies. When nucleating centres are close, and the two
habit planes are at 60° to each other, Bowles et al. have found
that it is possible to obtain interpenetration of the bands.
When this happens the main bands in one region can extend into
the other in the form of sub-bands. Another of their findings
is that when the temperature 1s raised to reverse the trans-
formation the cubic phase thus formed is once again single
crystal. Subsequent cooling leads to a return to the twinned
tetragonal form by the same interfaces as on the previous
cooling.

From a practical viewpoint, the effect of the twinning
on crystal growth is that a melt containing between 15.5 and
22.5 at.% Tl assumes the banded twin form on cooling to room
temperature at atmospheric pressure. This limits the |
experimental determination of, for example, elastic constants.

Other cubic to tetragonal transitions are known.
Those in Cr-Mn, Cu-Mn, Fe~Pt, Au~Cd and BaTiO3 had been studied
before In-T1l, and the lamellae seen in In-Tl are of similar
form to those in Cu-Mn, Fe-Pt and BaTiO_. (See Bowles et al.

3
(1950) for a review).

2a2 Soft modes and phase transitions

Celal General features

The soft mode concept is one which has been invoked
to account for a number of displacive phase transitions; those
studied have almost exclusively involved soft optic modes.,

A soft optic mode is a normal vibrational mode of the crystal

lattice whose frequency tends to zero as the temperature tends
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to the transition temperature Tc' The effect of a soft optic
mode can often be seen in acoustic properties of the crystal,
such as sound velocity and attenuation, through optic phonon-
acoustic phonon coupling which can cause a softening of one
of the acoustic modes. However, it is also possible to have
a soft acoustic mode in its own right: since all acoustic modes
have zero frequency at zero wavevector (neglecting zero-point
energy) the definition must be modified to include as soft modes
only those whose slope Bq/ag tends to zero as w tends to
zero. Such modes have been discussed by Pytte (1971) and
Shirane (1971) in connection with the structural phase changes’
observed in V3Si and NbBSn.

Cochran (1960) first proposed the soft optic mode as
being responsible for the ferro-electric transition in BaTiO
at 393K, as well as for the cubic to tetragonal structural
transition seen at 105K in SrTiOz. Since then other perovskite
materials have received considerable attention, including NaNbO3
(Glazer and Megaw, 1972). Several general characteristics caﬁ
be given for soft modes, both optic and acoustic, although the
two types will differ in detail. When a lattice mode softens and
finally collapses the forces between the atoms in the direction of
the eigenvector of the mode become reduced, and finally vanish
at Tc' The atoms can then move into new positions and a new
structure is formed below Tc. In optic mode tramnsitions it is
one set of atoms which takes up a new position relative to
another set, as in SrTiO3 in which the tetrahedral array of
oxygen atoms rotates with respect to the shedtiuy and titanium atoms.

For an acoustic mode transition we envisage the atoms as able to move,
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again according to the eigenvector of the soft mode, into new
positions relative to their original ones. Thus in either case
the structure of the new phase is determined by the eigenvector
of the soft mode and the structure of the old phase. Dealing
primarily with soft optic modes, Pytte (1971) describes thé
mechanism of a soft mode transition as an instability of one

or more normal mode displacements for a latiice in which only
harmonic forces are acting. At sufficiently high temperatures
thermal fluctuations stabilise the lattice through the
anharmonic interactions which are, in practice, always present.
The transition temperature is that temperature at which thermél‘
fluctuations are insufficient to produce stability, and the
mode in question collapses. Pytte's analysis also holds wheﬁ
only acoustic modes are present. When an acoustic mode

softens it is possible in principle to detect this experiment-
ally from a measurement of sound velocity, since the drastic
reduction in certain of the restoring forces between atoms
means that an appropriately polarised wave will have a very

small velocity of propagation.

el The fcc to fct transition in In-T1l and soft modes

It has been suggested that the martensitic trans-
formation in indium-thallium alloys proceeds by a soft acoustic
phonon mode., The first definite evidence ¢ame from Pace and
Saunders (1972,1972a), although tentative suggestions had been
made earlier, Anderson and Blount (1965), as a result of a
discussion of the order of cubic to tetragonal phase transitions

in general, considered that, in the case of In-Tl, if a
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distorted tetragonal cell was formed then the instability of
a phonon mode polarised in the ﬁoq direction could be the’
cause of the transition. But this postulate was based on a
too simplified model of the crystallography of the transition.
Dynes (1970) also admitted the possibility of a phonon
instability, an idea based on his determination of phonon
density of states functions for In-T1l alloys by electron
tunnelling in the superconducting region. Such an instability
did not show up in his results, although he observed a slight
decrease in the average phonon energy, when plotted against
alloy composition, at about 31 at.% Tl. This was the
composition at which the fcc to fct transformation occurred at
the temperatures at which he was working, and also that at which
a maximum was seen in the superconducting transition temperature.
This result was by no means conclusive, but it was not
inconsistent with the idea of an unstable mode.

The evidence produced for softening of the transverse
mode polarised BTQ] propagating in the ﬁ1d] direction by
Pace and Saunders (1972) was based on elastic constant deter-
minations for various indium-thallium alloys., Pace and
Saunders combined their results with those of Novotny and Smith
(1965) and were able to show quite clearly that the modulus
v}(c11-c12), determined from the sound velocity of the {110},
hTQ] polarised mode decreased towards zero when the alloy
composition for the 300K transition was approached from either
the cubic or the tetragonal side. Such a result strongly
indicated that at the transition the modulus would be zero, as

would be the associated sound velocity.
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The order of the phase transition is closely linked
to the nature of the transformation process, as well as to the
thermal properties of the alloys. Both first and second order
processes have been postulated (Burkart and Read (1953);
Guttﬁan (1950) ), but we defér a discussion of this point

until chapter 8.

2.3 UJltrasonic and elastic data for indium-thallium alloys

The six independent elastic constants of indium were
the subject of work by Winder and Smith (1958), who used an
ultrasonic pulse-echo method for their determination.
Chandresekhar and Rayne (1961) remeasured these constants over
the temperature range 4 to 300K and Pace (1970) has made a
small correction to the value of C13 determined by these later
workers. The elastic constants of cubic alloys in the
composition range In-28 at.% Tl to In-39 at.% Tl have been
measured by Novotny and Smith (1965) over the temperature range
200 to 260K. HMore recently Pace and Saunders (1972) have given
data for tetragonal alloys containing 10, 16.5, 18 and 21 at.%
Tl, and for the cubic composition of 25 at.% Tl. The 10 at.% Tl
alloy does not suffer a martensitic transformation, and Pace
and Saunders were able to obtain the temperature variation of
all six of its elastic moduli between 80 and 300K. (The pulse-
ecno method was used for all the work described above.) Such
a complete determination was not possible for the other three
tetragonal crystals on account of their banded twin structure;

the results were given by Pace and Saunders for the quasi-
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tetragonal moduli obtained from the three velocities of wave
propagation along the ' ﬁ1OJ' direction in these twinned
materials. The temperature range for the measurements in
these cases was 290 to 390K, which included the transition
temperatures of the 13 and 21 at.% Tl alloys, at 367 and 320K,
respectively. But because of the limitations imposed by the
twinned structures more detailed information concerning the
tetragonal phase elastic constants could not be obtained.

‘’he object of the present elastic constant determin-
ations has been to extend the known data in two ways. Firstly,
two alloys which are cubic at room temperature (25 and 27 at.%

Tl) have been prepared, and the elastic constants C1 and

17 C12
qu have been measured as each allqy was cooled from 300K
towards and through its transition temperature. In the case of
25 at.% the transformation fcc to fcl occurred at about 195K,
while the 27 at.% one transformed at about 125K. As a result
it was planned to check directly the idea that the modulus
%(011-012) falls to zero at the phase transition, but without
the problems encountered by Pace and Saunders over twinning.
However, below the transition temperature in each case a
twinned structure results, so that meaningful results would
only be obtained above Tc. Even so, results of measurements.
approaching the phase transition from the cubic side with
temperature as the variable represent an advance on previous
work., The only way in which a study can be made of single
crystal tetragonal alloys as the phase transition is approached
is to investigate & composition which is very close to the

fcc~fct boundary at the melting point, but which is still in



the tetragonal form a fraction below the melting point. Such

a composition is always tetragonal and does not transform to
the cubic structure. It is thus free of twins, and can be
produced in single crystal form, yet measurements made as thé
temperature is increased towards the mélting point Tm represent
also an approach to the phase boundary, as required.

The second way in which the known elastic data was
extended was to investigate the behaviour of three tetragonal
alloys, including a composition chosen to accord with the
considerations expressed at the close of the preceding para-
graph. The three single crystals produced contained 10, 11.5
and 15 at.% T1l; the phase diagram given by Pollock and King
(1968), and shown in figure 2.1(b), shows the phase division
line meeting the solidus at about 15.5 at.% T1l, so that the
crystal containing 15 at.% Tl was the one whése properties clése
to Tm were of particular interest. The 11.5 at.% alloy served
as a source of additional data to detect trends occurring in
measured properties, while the 10 at.% alloy was only used to
extend some of Pace and Saunders' data on this composition to 4K.

Ultrasonic attenuation in indium-thallium alloys has
received very little attentmn. Pace and Saunders (1972) and
Pace (1970) report a sharp peak in the ultrasound absorptidn in
the vicinity of the phase transition, but no extensive study
of the temperature or frequency dependence of attenuation has
been made previously. The data available on indium itself
appears to be almost entirely centred around the normal to
superconducting transition region, although Bliss and Rayne‘

(1969) extend their measurements up to 80K. In this work the
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temperature dependence is examined; the widest range covered
was 4 to 423K, although the range varied from one sample and

direction to another.

2.4 A general survey of previous work on In-Tl alloys

Most of the work on indium-thallium alloys has been
performed at low temperatures, and has been centred on the
superconducting properties. The variation of superconducting
transition temperature with alloy composition has been studied
by Stout and Guttman (1952), Merriam, Hagen and Luo (1967) andl
Gubser, Mapother and Connelly (1970). Connected with such
effects, Stout and Guttman (1950) studied the Meissner effect,
while Connell (1963) has observed the penetration of magnetic
fields in superconducting alloys. Other work in the super-
conducting region includes that of Wraight (1968), Fischer et
al. (1967,1968) and Tilley et al. (1966). Sladek (1953,1954)
and Phillips (1955) have examined low temperature thermal
conductivity in samples containing up to 50 at.% Tl, and found
a maximum in thermal resistivity in alloys containing more than
15 at.% Tl at the destruction of superconductivity by a magnetic
field.

Concerning the mechanical properties of indium=-rich
alloys, the shape-memory effect has been reported by Nagasawa
(1971), while the rubber-like behaviour has also been described
by Burkart and Read (1953). Khayutin and Spichinetskii (1967)
have studied their plastic deformation, and conclude that |

indium deforms by slip, whereas the alloys do so by twinning.
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Postnikov et al. (1969) and de Morton (1969) have reported
results of internal friction measurements. Electrical
resistivity measurements are given by Stout and Guttman (1952a),
and by Predel and Sandig (1970). Yonemitsu et al. (1965) give
transport properties of alloys of indium with various metals,
‘including thallium, and Shiozaki and Sato (1967) report the
temperature dependence of the Hall coefficient.

| Eckert and Drickamer (1952) have studied the diffusion
of thallium tracers in indium, and have found that near the
melting point there is a rise in the diffusion coefficient,
and that grain boundary melting occurs.

We turn now to some studies of more.-direct relevance
to the present work. The thermal expansion of alloys of
various compositions in the range 19 to 35 at.% Tl has been
measured dilatometrically by Pahlman and Smith (1969).

Hill (1970) has studied the pressure variation of the modulus
%(011-012) at room temperature, and finds it to be large and

negative: (C ) tends to zero at a pressure induced fcc to

117%12
fct transition. Schwartz (1970) has reported the heat capacity
of three alloys (18.8, 28.9 and 34.6 at.% Tl) between 5 and
300K. One of the alloys — 28.9 at.% Tl — transformed in
this range and he found a slight deviation of about 1% in the
heat capacity versus temperature curve in the vicinity of thev-
transition. Other heat'capaciﬁy measurements ‘have beén
reported by Bucher (unpublished) at low temperatures.

The results of previous workers have demonstrated -

that the indium-thallium system, and particularly that part

involving the martensitic phase transformation, is only
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beginning to be understood. It is hoped that the work to be
described on lattice properties of a selection of the alloys

will go some way towards improving this understanding.



CHAPTER 3

SOME APPLICATIONS OF ANISOTROPIC ELASTICITY THEORY
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Introduction

A large part of tie experimental work to be described
c&ncerns the determination of the elastic constants of indium-
thallium alloy single crystals in both the cubic and tetr-
agonal modifications. This chapter sets out to show how the
propagation of stress waves in a cubic or tetragonal material
is governed by the elastic constants, and how the latter may
be determined from a knowledge of the wave velocities along
certain crystallographic directions. It also gives two applic-
ations of elasticity theory which will be of relevance to work
described in chapter 6f the restrictions on elastic constants
arising from crystal stability considerations, and the constr-

uction of some invariants.

301 stress, strain and Hooke's law

The elastic constunts relate the stress and strain
through Hooke's law, which states that for an elastic body the
strain within it is proportional to the stress producing that
strain, and so

€ij = Sijkldkl . (2.1)
Stress (3) and strain (E) are both second rank tensors, so
that 5, the elastic compliance tensor, is of fourth rank. The
sunmation convention is implied in equation 3%.1, which is a
more compact representation of 01 equations. The stiffness

~

ra)
tensor, C, is Jjust the inverse of 5, and hence

i35 = Ciskatia e (3.2)
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sgquations %.1 and 3,2 represent an harmonic, or second order,
approximation and S and C have as their components the second
order elastic constants. liigher order constants can be defined,
out we shall not concern ourselves with them here.
Before proceeding further, the formal definitions of

the stress and strain tensors used in equations 3.1 and 3.2
must be given.

Stress The component of the stress tensor (rij is the
force per unit area in the X, direction acting on an elemental
area on the plane normal to the xj direction.

Strain Let a point at (x1,x yX,) in a body move to the
-~

2

position (x U X5 US X +u1) as a result of deformation of the

1 >

body. Tne quantities Ugs Uy

u3 are components of the displ-
acement vector u of the point. Any general homogeneous defor-
mation can be considered as made up of a strain and & rotation

(e.g. Nye 1957). The strain tensor € is the symmetrical part

of the tensor & describing the deformation; the antisymmetrical

part gives the rotation. Thus
- X E
€ij = d(eij + eji) (%e3)
du,
where eij = S;; ' i=1,2,3 .

A component Eij represents the fractional change in length

along the Xy direction, if i = j, and halt the change in the

angle defined originally by the x5 and xj directions, if 1 # j.

The elasticity tensors have 01 components. However,
there are certain relationships between some of these compon-
ents which follow immediately from the symmetry of the stress

and strai t : s = C. . = C ..
strain tensors, and we can write bijkl ijlk jikl
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The number of independent components is thus reduced to 30.

An additional property of the tensor, namely that Cijkl = Cklij’
follows from the strain energy being a function of state. The
effect of this is to further reduce the number of independent
components to 21. Reduction to less than 21 can also occur,

but the details depend on the crystal symmetry under consider-
ation. A triclinic system requires all 21 components to
describe its elastic behaviour.

Because of the reduction to 21 constants a convenient
representaion is to use a symmetric 6x 6 matrix, and to denote
the stiffness components as Cij y 1,3 = 1,6, This in no way
constitutes a reduction in the rank of the tensor. The tensor

components are related to tlie matrix ones by the following

relations between subscripts.

Tensor 11 22 23 22,23 13,31 12,21
Hatrix 1 2 2 b 5 6
Thus b1232 —> C64 ’ C1111 —= Cq1 y and so on. The compliance

tensor components can be treated in a similar way, except that

factors of 2 or 4 are introduced (Nye 1957).

Smn = Sijkl if m and n are 1, 2 or 3;
- L .
= Zsijkl when m or n are 4, 5 or 6;
= usijkl when m and n are 4, 5 or 6.

Elasticity tensors can be written in a way which
shows a mixture of covariant and contravariant components: a
notation which takes account of this is to write a stiffness
il

component, say, as C}

ik * such a distinction does not affect

the analysis of sections 3.2 to 3.4, and will not be made until

%eH where invariants are discussed.
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3.2 Ygquation of motion of an elastic body

Consider the motion of a small rectangular volume
element of an elastic medium. The components of the net force
acting on this element can be equated to the acceleration
components by Newton's second law, and for a medium of density
Q we obtain Yo
= /o.s.i i=1,2,3 (7el)
where s and X are the displacement and position vectors,

respectively. Using equations 3.2 and 3.3 we can write

2 2
80—1 . _ c Békl B % b ol . a Sk o
¥y T ijklej B Skaxj 3x15xj ijkl

and hence

c i=1,2,2 (2.5)

ikl S1,k5 = 2%
in which the comma notation denotes differentiation with
respect to x, and where the fact that Cijkl = Cijlk has been
used. Lquation 3.5 is the equation of motion: we look for
solutions in the form of plane travelling waves. If the wave-
vector along the direction of propagation, or normal to planes
of constant phase, is k , then the solution for one of the

components of a plane wave 1s

ilwt-k.r) N
Sy = sOle - =", 1 =1,2,3 -

he particle displacement vector s is not, in general, parallel

to k. Let n (n1,n2,n ) be a unit vector in the direction of k.

2
_ 2T w . s .
Then k = > b= 5 n , where v is the propagation velocity, and
8 - -nn.s.. S or®Wi-k.r)
L,kj - Tk"3%o1 2 °

so that the equation of motion (3.5) becomes

2 . .
Cigk1%012Kk"y = PV Sgi » 1= Th2a3 . (3.6

Yhen equation 2,6 is written more fully as a set of three
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8 and s the set is known as Christoffel's

equations 1n 501, a2 0%

equations; 1if the displacement coefficients 551 are to be

determined, then the form of equation 3.6 means that the

determinant of the coefficients of the 504 must be zero, for if
(o}
7

not, only the trivial solution 501 = 802 = sog is possible.

The condition can be written as

2 ]
Ligwe? Lyp Y13
2 .
Liy  Los=pv Los = 0 (3.7)
2
Pz ey Pap

where the L's are linear combinations of two direction
cosines and an elastic constant, and are known as Christoffel's
coefficients., Equation 7,7 is a cubic in ﬁwz. For a given
propagation direction there are thus three velocities. The
particle displacement vectors appropriate to each one can be
found from a substitution of the three values for ﬁwz back
into equation %.6. ‘The turee displacement vectors are mutually
perpendicular: in the special case when they are all either
parallel or perpendicular to the propagation vector that dir-
ection is known as a pure mode direction, and a pure longit-
udinal and two pure transverse modes result. Quasi-pure and
impure directions are those in which only one or none of the
displacement vectors, respectively, is perpendicular to k.
Pure mode directions are to be preferred in ultrasonic work
because a standard X or Y cut transducer can be used to excité
one mode only; specially cut transducers would be required to
propagate any one of the modes in a quasi-pure or an impure
direction. In the next section we examine the propagation

along low-index directions in cubic and tetragonal systems,
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and find that all of the propagation directions nceded to
determine their elastic constants are pure, except for one in

the tetragonal case.

2e3 Solutions of the Christoffel equations for cubic
and tetragonal (T1) symmetries

We wish to obtain expressions for the propagation
velocities along low-index directions in terms of the elastic
constants for cubic and tetragonal crystals. The distinction
between the tetragonal Laue groups Tl and TII must be made at
the outset, because in the TI group, unlike the TII, the elastic
constant C16 is zero for a normal axial set and the elastic
constant equations are much simpler in form., The tetragonal
indium=-thallium alloys have TI symmetry:a material such as
Cawoa, in which the +z and -z directions are not equivalent, is
in the TII group. & detailed description of wave propagation
in TII crystals is given by Farley and Saunders (1972).

The form of the stiffness matrix for cubic and tetr-

agonal TI symmetries is given below.

Cubic Tetragonal (TI)

C11 C12 C12 0 0 o) C11 C12 C13 0 0 0
C12 C11 C,]2 0] o) 0 012 011 013 0 0 0
C12 C12 C11 0 0] 0 C13 013 033 0 0 0]
0 0 0. ¢y O O 0 0 0 ¢, 0 O
O 0 0] ) qu 0 0 0] 0 ] C44 0
O 0] 0 0 0 C44 0 0 0 0 0 C66

(%3 independent constants) (6 independent constants)
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For the cubic system Christoffel's coefficients are

L = nac +(n2+ n}a)cm+

11 1 %11 2

L12 = n1n2(C12 + 044)

L13 = n1n3(C12 + th) .
(2e8)

L = (n2+n2)C +n20

22 1 3 4y 2 11 ’

2 2 2
Lyz = (ng+ 0y, )C,, +nChy -

If propagation in the ﬁ10] direction is considered, then the
velocities depend on the elastic constants in such a way that
all of the independent elastic constants can be determined. A
useful experimental check is to compare values of 011 and C44
thus obtained with those determined from propagation in ﬁOO]
direction. The polarisations involved, and the elastic constant

equations are given in Table 3.1 (a).

The Christoffel coefficients for a tetragonal system

2 2 2
are Lig = By Cqq ¥ 85 Cgp * 25 Cyy
Lip = myny(Chy + Cpop)
L13 = n1n3(C13 + 044) (5.9)
L = 1120 + n2(3 + n2(3 )
22 % ™ Ye6 2 711 3 Ul
L23 = n2n3(C13 + 044)
2 2 2
L33 = (n1 + n, )044 + n3 033

Solutions are given in Table 3,1 (b) for propagation in [100],
001 , 110) and [011] directions. It can be seen that all

constants except C may be determined from propagation along

13

the first three of these directions; all the modes are pure in

these directions. From equations 3. 9 it follows that C can

13

be obtained by propagation in any direction in which the dire-

ction cosines n3 and either n1 or n2 are not zero. Convenient
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TABLE 3.1

Relations between elastic stiffness constants and

a)

b)

-gound velocities

Cubic crystals

Propagation Polarisation Elastic constant
direction direction equation
100 100 ,ov12= Cqy
100 X-y plane ,ov22 = CM—}
2
110 110 PV = s}(c11 + 0oyt 2C,,,)
= 2
110 110 pvy = 3(C = C))
110 001 /ov52 = Cyy,

Tetragonal crystails

Propagation Polarisation Elastic constant
direction direction equation
100 100 ,ov12= C11
2
100 010 pVo = C66
001 001 Pv,f = 033
2
001 x-y plane pv5 = 044
2
110 110 pVg = J;(c1,l *Cpp t 066)
= 2
110 110 pVo = %(c” - 012)
011 100 pv;' = #(Cy,, + Cgi) »
011 2 pv102= 3a o+ Ja® =B+ c?
011 ¢ +1/2 pv112= 3a IR s P

¢4 1is an angle which is
determined by the elastic

constants.
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directions would be those in the (110) plane at any angle tb
[110] except 0° and 90°, and those in the (100) plane except 0°
and 90° to [010) . Pace (1970) has considered their relative
merits from an experimental viewpoint, and has shown that prop-
agation in the (100) plane is to be preferred, on account of
the modes being quasi-pure instead of impure as in the case of
(170). He gives equations for finding a direction in the (100)
plane which is, in fact, pure and which depends on the elastic
constant values of the material in question. Such a direction
is known as an accidental pure mode direction. In the case of
indium-thallium alloys, with a c¢/a ratio of nearly 1.0, this
accidental pure mode direction turns out to be at about 430 to
the z-axis, so that the usc of a [O1ﬂ propagation direction

(at 45° to the z-axis) is acceptable, and excitation of the
quasi-pure transverse and longitudinal modes gave no difficulty
in practice., Furthermore, the equations relating sound vel-
ocity to elastic constants take on a simpler form, and become
those given in Table 3.1(b). All the quantities in the

. 2
expressions for v 0 (and v11) are known except C o Two

1

values result from this for C one positive and one negative,

13?
whose moduli differ by 2044. Farley (private communication)
has shown that only one of these solutions leads to the
observed polarisations for tetragonal materials. In the
particular case of indium-thallium it also happens that the

negative value of C violutes one of the Born stability

13

criteria, and is physically unreal. We consider the various

stability conditions in the next section.
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2,4 Crystal stability

2. 4.1 Strain energy density

The work done by the stress components dg_when a
crystal is subjected to a small change in its state of strain
can be shown to be (e.g. Nye 1957)

W = o.de, i=1,23 (3.10)
when the strain components change from €y to ei+dei. By
Hooke's law we may write

aw = Cijejdei . (3.11)
If the process is an isothermal one then dW gives the change
in free energy of the system, and the Cij are the isothermal
elastic constants. For an adiabatic change the intermal energy
changes and the expression for dW involves the adiabatic
éonstants. At the frequencies of the distortions caused by
ultrasonic waves the changes can be considered to be adiabatic;
the difference between the elastic constants defined in the
two ways is very small (Hearmon 1961).

Let the change in internal energy be dU.

Thus dU = C.

1353 € (2.12)

On writing out equation 3.12 in full and integrating, we find

an expression for the strain energy per unit volume.

- 4
where we have noted that Cij = Cji' Equation 3%.13% can also be
written o } ;
_ U = %oijcicj (3.14)
or, alternatively,
U o= o, . (3.15)

1



2.4.2 The Born stability criteria

The strain energy U must be a positive definite
quantity for a stable crystal lattice. That is to say, equa-
tions 3.13% or %.14% can only be zero when¢ and o are zero: it is
not possible to have a combination of Cij or Sij values which
gives a zero energy density when either o or ¢ is not zero.

How from equation 2.14 U is a homogeneous quadratic function in
o in which the Sij are the coefficients. Salmon (1912) has
shown that for such a function to be positive definite there
are certain restrictions on the coefficients. These come from
the requirement that the determinants of the principal minors
of the matrix of coefficients must each be greater than zero;

That matrix is given below, and the principal minors are shown

by dashed lines.

|
_511_: 512: 513{ Sqy! 845 :816
S12 S22, 823, Saivll 525 1526
13 P23 %33, %3l s 536
S Sou Sz S Sus ‘lsus
S16 Y26 536 Sug Y56 Sg6

As & result we find several inequalities., It is simpler at
this point to consider an actual example concerning a part-
icular symmetry. Vvie take tetragonal TI, whos: matrix of comp=-
liances has the same form as the stiffnesses given in section

Z.2y and the following inequalities result: 511>O; 5,703
2

813.

have been taken starting at the bottom right-hand corner; this

su470; 56670; 51{>$12H 533(811+S12)>2 The minors could



would result in another inequality, consistent with the first

, 2
set, of S11533>S13.

For a general axial set the simplification of the
matrix, as in section 3.3, is not possible, and all components

may be non-zero, But some of the inequalities still have a
’ |2
22”512 -

The dash indicates a compliance referred to the transformed

¢ 1
simple form: PP 622 ,333 ,544 ,555 ,066:>0; 611 S

axes, and whose value is given by the tensor transformation law:

Skl ° 21m®jn®kp®1q°mnpq (3.16)
in which the a's are the direction cosines for the

transformation.
35 Invariants

One invariant has already been encountered, namely
the strain energy density. An invariant is any quantity whose
value does not depend on the set of co-ordinates used to
describe it. There are several invariants which can be
extracted from a tensor, and Brillouin (1923) gives a method
of finding these in terms of the components. Examples for the
compliance tensor are: 811 + 822 + 533 + 544 + 855 + S66 and
Sqq 7 St 333 :

In chapter 6 we shall be interested in the volume
compressibility, B, which is defined as the iractional change

in volume when a material is subjected to unit hydrostatic

pressure, Or

1 3V
ﬁ— vs—ﬁ T * (3.17)

ilydrostatic pressure results in stress components Tyq0 GéE and
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(o4 only, each of which is equal to the pressure p. 'The

33
resulting strains are negative, and so
€5 % TigkkP e
The change in volume of a unit cube when the strains along the

three axes are€11, € and € _ is the dilation 4, and

22 33
A= (1+eﬂ)(1+e22)(1+£33) -1
= €45
= TOiikk®
A
and consequently g = - 7" Siikk . (2.,18)

Written in full the explicit expression for volume compress=-

ibiliﬁy is B = Sqq * Sop * 833 + 2(b12 + S13 + 523).(3 19)

To show that this is invariant we used the mixed

components of both the stress and strain tensors <71 and Gi .

k
Thus the compliance tensor is Sgt « Let this be referred to
. 1 2 3 1 2
the axial set x , x , x“. We now transform to the set y , y ,

3

Y”, and write the result as Tﬁg « Combining the transformatidn.

rules for covariant and contravariant components, we have:

illt = r %V—%—b—i (3.19)
Setting 1 = j and k = 1 equation 3.19 becomes
Sit _ Tﬁg bxi 3% bxz bx:
3xP ax? 3yt ¥y
-
= T (3420)

which establishes the invariance.
In an orthogonal exial system the metric tensor is unity, so

that the contravariant and covariant components of the various

tensors involved are equal. It is thus acceptable to write S;i'

a8 S, ikk®



CHAPTER &
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Introduction

The experimental work on the indium~thallium alloys
started with the preparation and growth of single crystals of
several alloy compositions from the elements. The conmpositions
chosen included two which had fcc structures at room temp-
erature, and which became fct below this, and three which were
fct at all temperatures up to the melting point. The single
crystals were examined and oriented before being cut to give
samples of the appropriate orientations for measurements to
be performed.,

'he measurements which were made consisted of:

1) The elastic constants for each alloy composition
over a wide temperature range, including the transition
temperatures of the fcc alloys.
2) The ultrasonic attenuation as a function of temper-
ature, for various frequencies and orientations.
z) The components of the thermal expansion tensor.
4) An estimation of the lattice parameters at room
temperature for selected alloys.
In addition the density of each sample was obtained by
Archimedes' method.

This chapter gives details of the apparatus and

tecnniques used to prepare the crystals and to produce the

data presented in chapter 5.



4o Sample preparation

Crystals of indium-thallium alloys have been grown
trom the melt using the horizontal zone method. Gtarting
materials were 99.9999 indium ingots and 99.999. thallium rod,
both obtained from Koch-Light Ltd. A pyrex ;lass boat of
about 4 c¢c capacity served to contain the melt, and its pointed
ends were sufficient to initiate the crystal growth without
aaving to use a secparate seed.

“he two metals were cleaned in dilute nitric acid and
washed thoroughly with distilled water to remove traces of
nitrate. .oubsequent handling of the indium gave no difficulty,
as thhat element does not react very quickly when in contact
witu air. lhallium, however, reacts mucn more rapidly, and a
brigit, cleaned surface vecomes dulled after about 15 seconds
exposure to the atmosphere; the reactivity of thallium is even
sreater when heated. .. special technique was evolved to cope

with tnese problems during the weisghing and meltin , of the alloy

constituents, and lhis is now lescribed.

“he approximate weishts of indiuwsn and of tnallium
whiicn would almost fill the boat were determined for the wlloy
composition required. /fter washing both metals as described,
tae roquired mass of indium, less about one ,ramn, was put 1into
tnz boat and was melted under a reduced pres.sure of nitrogen;
the boat and indius was th.on wzighed. The t.alliu: was dried on
tissue, and an amount approximately equal to the calculated
welglit needed was weiphed out as quickly as possible.

Ade=inmersion in distilled water dissolved the small amount of

oxide formed during the weighing;.

fhe pieces of tunallium were
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then put on top of the indium in the boat, witih the latter
poiitioned near the mouth of a long pglass tube through which
flowed a stream of nitrogzen gas. [he tube was sealed and
evacuated, and heat was applied with a flame to the outside of
the tube to melt the metals in the boat. ‘'he problem of the
extreme reactivity of thallium with any residual oxygen was not
then encountered, because wnen the indium melted at 15600 the
vieces of thallium sank beneath its surlace vefore melting.
further neating ensured that all of the thallium had alloved.
inen tne metal had solidified a further weishing of boat plus
contents led to an accurate determination of the mass of
tnallium present. [he exact amount of indium still required to
obtain an alloy of the desired comjpwsition could now be
calculated, and this quantity was weighed out accurately and.
melted in under a nitrogen atmosphere. WMixing of the alloy to
achieve homogenecity was achieved in the first instance by
maintaining, it molten under nitrogeh for about 50 hours with a
vertical temperature gradient of 20°¢ cm-1.

“eigning could be done to an accuracy of O.3 ng,
leading to a .47 uncertainty in the composition. ['ive alloys
of conmposition 10, 11,5, 15, 25 and 27 at.;. thalliun were

prepared in this way.

h .2 Crystal Growth

L,2.1 doats

The shape and dimensions of the boats used are shown

in figure 41 . The important design features were a point at
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D+

Figure 4.1 The pyrex glass boat in which crystals

of indium=thallium alloys were grown.
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each end, for seeding, and a smooth inside surface to reduce
nucleation centres, it first the boats were made from extruded
square section pyrex tubing, but later ones were formed by
allowing not glass to flow over a stainless steel mould.

Either method produced boats of satisfactory quality.
he2al Furnace

The horizontal furnace is illustrated in figure 4.2.
Constantan wire covered with heate-resistant electrical insulation
was wound toroidally to form the heater, and was arranged as

|
shown in fizure 4.2 ﬁ water passing through copper co:ls at
each end increased the temperature gradient at tlie solid =
liouid interface. The heater assembly was mounted on an
aluminium block through which passed two ruide rods., A third,
scrawed, rod also passed through the block, and wihen rotated
hy an electric motor it caused the heater to move along the
isuide rods. FA reversing switch in the motor circuit set the
sense of rotation of the screwed rod, and thus set the direction

of movement of the heater; two microswitches limited the

length of travel.
Ye2a42 Procedure

Indium-thallium alloys in the composition range O to
40 at, thallium melt, to within a few degrees, at 155OC. A
current of 1.46 amp through the heater winding produced the
temperature profile shown in figure 4.4, with a maximum temp-
erature of 16OOC, and a gradient of 15°C cm-‘I at the growth

1 , =1
interface, The zone speed was 2.4 mm hr . The boat and
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contents were supported on a glass slide within a lony pyrex
tube having a tap at one end and closed by a rubber buny at
tne other. Growth occurred under a reduced pressure of
nitrogen,

'he success rate for crystals which were single, or
whicn had about 90, of their volume single, seemed to depend
on whethef a fcc or a fct structure alloy was involved. For
fcc about 5 passes were needed to achieve this; for fct the
fizure was nearer 10. 7For each of tihe first few passes the
nurnber of grains in the material, as revealed by etchiny in»
dilute nitiric acid, d=creased with each pass, as did tie amount
of oxide accumglating on the surface. Fresumably the grain
size increased as tihe number of nucleation centres, such as
particles of dust or oxide, decreased as a result of the etching
of the surface after each pass. It was to enable etching to be
done between passes that growth in an open boat rather than in

a sealed tube was chosen.,

Z Zxaminetion of single crystals

a3 assessnent of crystal guality

rnach as-grovwn boule was in the form of a block about
245 by 1.6 by 0.0 e¢m. One such boule is illustrated in figure 4.5 .
Tizere vas little or no tendency ior the metal to adhere to the
glass, so removal from the boat presented no probleiis. ‘‘he boule
was etcihed in nitric acid (1:1 w,/w) for one or two minutes to

clean the surface. iAiny grain boundaries could then be seen

very easily; ‘the boule was repeatedly passed through the
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furnace until any zrains present were of such a size and
position in the boule as to leave most of the volume as single
crystal. Uf the crystals grown, three (10, 15 and 27 at.? Ti)
nad no grains visible, while tile other two (11.5 and 25 at.,. T1)
had small grains along one side. In subsequ=nt cutting of
ullrasonic sampies care was taken to avoid these defective
parts. ulip bands were visible after etching the fct samples;
especially in the 15 at... Tl alloy. They were observed on {110}
or {011} planes only, and each band was about » am wide. ilo
more than half of any one boule was so affected.

Back-reflection Laue photograpis were taken with the
X-ray beam incident on the etched as-grown surface: well-defined,
unsplit spots were usually obtained, indicating little surface
strain and no twinning (i ifure 4,6), Cf particular interest in
this respect was the lack of twinning in the 15 at.:;» Tl crystal.
wuoubt has surrounded the form of thie phase diagram in the region
where the fcc - fct phase boundary meets tihe solidus; the
phase diagram given by Hansen (19%8) shows a swall temperature
range in which the 15 at... alloy is cubic, whercas that of
Follock and King (19%8) suggests tiiat it is always tetragonal.

The vwork described here favours the second form.

4.%.2 OQOrientatiou

trientation of a cubic crystal vy the Laue back-
reflection mwethod presents little ditfficulty, but the procedure
is more couplicated for tetrapgonal :.aterials. e orientation
is all but complete once the [jOQ] direction nas been disiinguished

from the E1Cﬂ, since a l.aue photoxraph witi: the X-ray beam
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perpendicular to either of these planes will result in a spot
pattern of mm symmetry. Now the plane defined by [boﬂ and D1d]
contains E11ﬂ , an axis of pseudo-3~fold symmetry, while that
defined by [001 and [100] contains [011] , of m symmetry. |
Hence the ambiguity is removed once the pseudo-3~fold and m
symmetry directions, together with the 4-fold axis, have been
found. figure 47a illustrates this point. A knowledge of the
angle between the [Q1ﬂ direction and the z-axis leads to a
determination of the axial ratio for the structure (Figure b,7v).
"he tetragonal alloys studied had c/a very near to 1, and a
calculation was made, using the method of Appendix I, of the
angles between the pseudo-3-fold and the supposed x- and z-axes

to check the assignment of these last two.

4k,2.3 Lattice parameter and density determination

Debye=-Scherrer powder photographs were produced for
the 11.5, 15 and 27 at.% T1l alloys, and were indexed using a
Bunn chart. The resulting photographs are shown in figures 4,
8 - 10, together with the indexing. Values for the c/a ratio
were determined approximately from the Bunn chart; a Nelson-
Riley extrapolation produced values for 'c' and 'a'. The
measured values are given in Table 4.7 and are compared with
other lattice parameter measurements in figure 4.11. The
agreement is quite acceptable.

Densgities were measured by Archimedes' method
involving flotation in both distilled water and alcchol. The
results are shown in figure 4.12, together with remeasurements

of the density of some of the alloys prepared by N. G. Pace.
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(a)

Z
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C/a = ron 9
(b) a
Figure 4.7 (a)

Symmetry directions in a tetragonal
structure.

(b)  Determination of c¢/& ratioc from a
knowledge of symmetry directions.






TABLI

4.1

Measured lattice parameters of indium-thallium alloys

at.% Tl a (R) ¢ () c/a e tanG=c¢c/ a
1.5 4,67+40,02 | #.92+0.02 | 1.05 | 47°+3°11,072+0.018
15 L,72+0.05 4.91+40,02 | 1.04 b6+ | 1.036+40.018
27 4o 75740401 1.0

# © is defined in figure 4.7 (b)

The results are compared with those of Guttman (1950)

and of Matsuo and Kogachi (1971) in figure 4.11.




- 53 -

e e — : . : v Y g T
o ‘¢’
¢ 1
49} T
b .
- .0. -
48} i
<] o o
At | e «
471 T e ) o Matsuo and i
% s " Kogachi (1971)
i . e Guttman (1950) -
0 X This work
46 o’ .
T 20 30 20

Figure 4,11

a!‘.°/.T|

Lattice parameters of indium-thallium alloys.

¢ T a T I N
o
£ _ AT
(RN _ /rj =
€ -
2. P o7
{/ -
-~
>~ eor P -9 ]
a 7
c -~
o ~
a 76l - o Archimedes .
- - a )("*r'ay
’/
P sample prepared
by N.G. Paca
3 A A1 | 4
e} § 10 Y 20 'y

figure 4,12

1
a7, Tl

Densities of indium~thallium alloys.



Unly a slight deviation from Vegard's law 1s seen.

te'r  Preparation of ultrasonic samples

4ol Cutting the oriented crystals

Two differently oriented samples were needed for
measurement of the three independent elastic constants of
the cubic modification of indium=thallium crystals, and four
sanples needed to obtain the six independent constants in the
tetragonal form. Once a particular orientation had been set
up on the goniometer using back-reflection methods, the crystal
and gonlometer were ctransferred to the cutting platform of a
'Servomet' spark erosion machine. A copper plate of about % .am
thickness served as the cutting tool, and was positioned sb as
to cut the crystal in the correct direction., Sparking took
place under paraffin. ‘The Servomet had provision for limiting
the maximum current passed during cutting: for indium=thalliun
alloys the optimum setting was 0.2 amp (range 6 on the machine;.
4 larger current resulted in excessive pitcing of the surface.
Samples were produced from each boule so as to give as lar:e a
surfacec area as possible consistent with a reasonanlce thickress.
The thickness was usually about 3 to % mm. all samples were at
least & mn across, and most about 10 mm, so that 5 mm diameter
gquartz transducers could be used.

'he orientation of the cut face was checked using,
tne apparatus shown in figure 4132, whichwas constructed to fit
on to an X=ray :ienerator: after a short etch to remove the

deposit of carbon from the surface of the sample it was



Figure 1"‘017‘ An apparatus for checkin the orientation
> 2 Pr
of planed faces of ultrasonic samples.



attacined with zlue onto the central flat plate with the cut
surface in contact with the plate. When the three moveable
sactions were adjusted to be coplanar the design of the
apparatus ensured that the X{-ray beam was incident normally
onto the cut face. any slight misalignment could be estimated
by the movement of the appropriate section of the apparatus
which was needed to obtain the correct back-reflection spot
pattern; such misalignment could be remedied in the planing

Process.,

b oL, 2 Planing

For good ultrasonic work using the pulse-echo method;
samples must have flat and parallel faces. Indium-thallium
alloys are very soft, and conventional polishing techniques
are not suitable, so the method of spark planing was used to
prepare tie surfaces,

A brass disc about one incin thick and eipght inches
in diameter was supported in roller bearings and attached to
the wervomet so that it could rotate in a horizontal plane
above the cutting table. The lower surface of the disc was
turned in a lathe to make it reasonably flalt; there were six
radial grooves milled into this face to assist circulation of
the paraffin, and to remove swarf. Before planing the samnple,
the disc was used to plane a small circular table which was
fixed to the main platform. This process had the dual effect
of reducing the surface irregularities in the dis- and table
which resulted from machining, and of produciﬁg two surfaces

which were themselves parallel to a very small tolerance
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5

(about 1077 rad.), The disc could be raised by a servomotor
to allow a cut and cleaned alloy crystal to be attached to the
table by glue. (Cars was taken to prevent glue from getting
veneath the sample and thus destroying tne electrical contact
- and sample parallelism.) ‘The first face was planed, and the
crystal was turned over and the other face planed. In this
way two parallel surfaces were rformed: checks with a dial gauge
showed that the parallelism obtained was better than 3x10-q rad.,
If the smallest current range was used to complete the planing
process the surface irregularity was about 2-3 micron.
(Manufacturer's figure). In assessing the quality of the
surfaces and the parallelism required, the attenuation of
sound in these materials at the frequencies used had to be
considered. The alloys had a relatively large attenuation, and
the sample preparation methods described were adequate for the
measurements verformed. Where not, correction factors to allow
for the apparent increase in attenuation due to non-parallelism
could be applied. (Truell, Elbaum and Chick, 1969).

The methods of this and the preceeding section
resulted 1n samples whose orientations were within =+ % degree of

that desired, and which were parallel to less than 3x10 radian.

4.5 Ultrasonic measuring technigues

The propagation constant for any travelling wave in
a given medium is a complex quantity. The real part gives phe
velocity of propagation in the medium, while the imaginary part
gives the attenuation: an ultrasonic system can be used to

determine both parts for propagation of a stress wave in a solid.



4.,.1,1 Pulse-echo method

1f vibrations are induced at the surface of a
material, then a stress wave wilill propagate into the bulk of
the solid, and will suffer reflections and phase changes at
discontinuities 1in the medium, wherever they occur,; and
particularly at boundaries with air. it both the geometry of
the sample and the method of introduction of the wave are care-
fully controlled, then it is possible to obtain information
about the way in which the material and the wave interact. In
the pulse-echo method a sample is used which nas flat and
parallel faces; the wave 1is introduced by means of a short
pulse of radio-frequency (rf) oscillations applied to a piezo-
electric transducer bonded acoustically to one of the two
parallel surfaces (figure 4 14). The resulting sound pulse
travels back and forth between the parallel faces and becomes
smaller in amplitude as 1t does so. A sultable transmit-
receive (TR) device and an amplifier can then be used to display
on an oscilloscope the 'echoes' of the original pulse after
their conversion into an electrical signal by the direct piezo-
electric effect in the transducer. epetition of tne pulse of
rf at suitable intervals can result in a continuous oscilloscaope
display. The time interval between successive echoes 1s then
a measure of the (group) velocity of propagation once the sample
thickness is known, and the cime rate of decay of the pulse

amplitude leads to the attenuation of the sound by tne solid.

4.,5,1.2 Instrumentation

A schematic diagram of the exgerimental arrangeumcnt



Miguce 4,14(a) Ultrasonic sample and transducer
showing (schematically) the path
of the sound pulae.

front back

particle displacement
direction

Figure 4.14(b) The dimensions and alectrode configuration
of the transducers used in this work. A
Bhear transducer is shown; = Inngltudianal
one needs no flat to indicat- particle
displacement direction; aud s circular.
The shading represents gold plating.
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1s shown in figurelh15. A pulse of rf of about 1 microsecond
duration was fed to the transducer on the sample every milli-
second. Yhe resulting set of echoes went to an oscilloscope
through a mixer, where an adjustable exponential curve was
added to enable attenuation measurements to be made. Equipment
nanufactured by Matec Inc. was used as the basis of the
instrumentation. The Matec model 9000 included the rf pulse
generator, amplifier, TR junction and calibrated attenuation
comparator. Frequencles in the range 10 to 300 MHz were
available, although the high attenuation in indium-thallium
alloys effectively limited operation to 100 MHz. A second
system was also used, consisting of the model 6600 pulse gene-
rator and amplifier as one unit, and the model 1204A attenuation
comparator and master synchroniser as another. The second
system had the advantage of producing signals at a higher power'
and a greater facility for pulse width control — both of which
were used to good effect in highly attenuating samples. The
attenuation comparator had a calibrated range of attenuation

up to 4.2 dB/usec in five switched steps. The exponential
curve was produced by the discharge of a capacitor through a
variable resistor. In order to be able to measure attenuation
values greater than 4,2 dB/ﬂsec, often encountered, the range
was extended by the addition of an extra capacitor and a sixth
switch position. A calibration curve was produced for this

extra range.
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EXPONENTIAL
GENERATOR

DELAY
GENERATOR

]

MIXER }—o-

@._

——
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Block diagram of the inatrumentation

for the ultrasonic pulse-ecno system.
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$.5.2 The pulse superposition method

eDelel Introduction

thie pulse superposition method was developed from
the pulse-echo by McSkimin (1961), and is a systew which can
detect very small changes 1n sound velocity. Changes in
transit time as small as 2 parts in 106 can be observed. The
principle behind the method is that the frequency of the intro-
duction of rf pulses to the transducer is increased until the
time of transmission of one particular pulse coincides with
the return to the transducer of the p-th echo of the previous
one, where p is a small integer, usually 1, 2 or 3. If this
condition is fulfilled, the echoes will add, and, superposing
on each other, will produce a maximum in the received signal.
“hen superposition is exact, the pulse repetition frequency

(PRF) is given by

-1

PRF:ES-%»r%] (&e1)

in which & is the transit time; f is the frequency of oscill-
ation within the pulse; § is the phase angle between the
reflected and incident waves at the sample-transducer interface
and n is an integer with positive or negative values giving the
phase difference, in units of 2n, between the overlapping
pulses. Figure 4,16 shows the effect of varying n.

The method of determining experimentally the pulse
repetition frequency corresponding to this maximum condition,
together with experimental difficulties and an estimation of

the errors will be discussed below.
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Figure 4.16  Superposition of r.f. pulses.
Their phases differ by 2ni with
respect to the start of the first

pulse.
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h.5.2.2 sxnerimental arrangement
D L

‘the pulse superpositi&n method relies for its
precision on the stability of the frequency source used to
trigger the rf pulse generator. A crystal controlled frequency
synthesiser was employed: it had a short-term stability of 1
in 109 and long term of 1 in 107, with a sine wave output of
maximum peak-to-peak amplitude 8 volt. Frequenciés from 0.1 Hz
to 2 MHz were available in steps of 0.1 Hz. A block diagram
of the complete system is shown in figure %.17% The particular
set-up used was constructed by R. I. Cottam (Cottam 1973),

J. M. Farley (Farley 1973) and C. A. Maynell (Maynell 1972),

who all give fuller accounts of its operating characteristics.

b.5.2.% Operation

“hen the PRF, as set by the frequency synthesisef,
vwas 1 KHz) the system as described above was equivalent to_
either of the two Matec systems outlined in 4.5.1.2 , with the
exception of the attenuation comparator. But much higher PRF's
could be generated. A typical transit time for an ultrasounic
pulse to travel once across a sample and back was B/Asec. Thus,
for coincidence between one rf pulse and the first echo (p=1)
of the preceeding one, a PRF was required of 200 KHz, in this
case., Overlap between one pulse and the 2nd, 3rd or 4th echoes
of the previous one (p=2,3 or 4) would then require 100 Klz,
66.6 KHz and 50 KHz, respectively. "The duty cycle of the rf
oscillator used was such that it limited operation with 0.5
pmsec pulses to 250 KHz; a p value was chosen so that this

frequency was not exceeded.
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“he first step in a determination of sound velocity
by the pulse superposition method was to obtain an approximate
value for the transit time of the sound pulse in the sample
using the pulse echo method, [iither a calibrated delay or a
direct comparison of the echo train with the frequehcy
synthesiser output was used to determine that time. Hence the
approximate PRF needed for superposition could be found, taking
account of the limitation on the rf oscillator mentioned above.
With the rf generator tuned to the resonant frequency of the
transducer and the repetition frequency set at the calculated
value, the rectified amplifier output was displayed on a
Tektronix 585A oscilloscope using the 'B' timebase. A few of
the rf pulses were intensified on the screen by the 'A' time-
base, and using the 'B intensified by A' mode of display. A
sating pulse, which appeared for the duration of the intens-
ified, or 'iA' sweep, served to vias off the rf pulse pgenerator;
this resulted in there being no pulses applied to the trans-
ducer for that time. Consequently the ultrasound energy in
the sample was able to decay away sonewhat, and a more complete
set of echoes was seen. Figure 4,18 shows the appearance of the
display. The PRF could then be adjusted to obtain the maximum
amplitude of these echoes, and thus to find the superposition
condition, The 'A delayed by B' mode of cperation on the
oscillloscope eased this adjustment.

Once set up there was no need to change from this
last display mode during the course of a set of i zasurements
in which sound velocity was measured as a function of temper-

ature. In practice there were several maxima in close proximity.
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- Durotion of A
Fimaebase

Tigure 4.18  The appearance of the oscilloscone
trace at or near superposition of

echoes.




5.2l Determination of correct maximum

bach pulse tramnsmitted to the transducer and sample
consisted of a number of cycles of rf energy, and the reflected
pulses within the sample had a similar form, To get the
correct overlap the phases in the overlapping pulses had to
correspond., However, it was possible to obtain overlap in
which phases differed by a multiple of 21 with respect to the
start of the pulse (figure 4.16). One of the main sources of
difficulty lay in the determination of the correct overlap
condition, that is, when n = 0. 1In this connection it is
instructive to calculate the change in PRF corresponding to a
change in n of 1, using typical figures for ultrasound
frequency (f) and transit time ({). Let the period of the
pulses be T, where T = 1/PRF, and let a dashed symbol corres-
pond to the value of a quantity when n is increased by 1. If
p, $y f and phase angle ¥ in equation 4.1 are unchanged, then
n' =n+ 1 and T' =T + 1/f. This leads to an expression for

the fractional change in PRF

PRF - PRF! f

= V-mRF LT

TRT = (4.2)

Take f = 1.5x107 Hz and PRF = 2x’lO5

flz. 'Then the fractional
change in PRF is 2/152 , or about 1.3% . Consequently, if

the transit time could be measured initially using the pulse-
echo method to an accuracy of 1% , the superposition maximum
which corresponded to the correct transit time and, implicitly,
to the n = O condition, could be identified. In practice the

one required was usually quite easily distinguishable from the

others by this method.
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be54245 Iirrors in velocity measurcment

irrors in the measurement of sound velocity by the
pulse superposition method fall into three main categories;
the error due to phase changes at the sample-bond interface,
énd affecting the measured PRF through § in equation 4.,2; the
error arising from diffraction caused by beam divergence and
an error arising from the uncertainty in ultrasound path length.
Maynell {1972) has considered these various sourceé of error,.
and has shown that for the type of bonding materials, sample
thicknesses and ultrasound frequencies used in this work the
combined effect of the first two leads to an error of about
0.02% in the velocity, whereas the ef{fect of the last, that is,
of path length uncertainty, can be much greater, e therefore
consider that error source in more detail.

The ultrasonic path length depends on the thickness
of the sample, which is itself dependent on the temperature at
wnich it is measured. Determination of sample thickness was
made at room temperature using both a dial gauge and a micro-
meter; an average was taken of a number of measurements of
thickness made at various positions over the area subsequently
covered by the transducer. A typical result for a thickness
was 0.336% cm, standard deviation C.0002 cm, or 0,06/, The
systematic error arising from the calibration of the instrumenuts
was less than this when checked against a set of gauges. it
other temperatures the change in dimensions owing to thermai
expansion had to be considered. “Where a correction has been
made 1t i1s indicated on the appropriate graphs, but was

approximately 0.25% per 100 degrees Kelvin from room temperature.
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Thus the wminimun error at room temperature was about 008, but
in order to achieve this accuracy there had to be a reasonable
number (220) of well-formed echoes. If the attenuation was
high enough to reduce the number available, then the initial
transit time measurements could vary by up to about 25, in the
worst cases. hatever the quality of the signal there was
always the problem of determining the n=0 condition, as dis-
cussed in 4.5.2.4 . Taking all this into account an overall
accuracy of C.5: could be put on the sound velocity results
obtained.

The pulse superposition method was used in this
investigation because of its ability to detect small changes in
velocity, that is, its high precision. The precision obtained
st1ill depended on the quality of the echo train, but changes of

1 part in 105

could usually be detected, while those as small
. : 6 . 4 .

as 1 or 2 parts in 10 could be seen under good experimental

conditions. Thermal expansion had a much more pronounced

effect when the way in which a velocity changed with temperature

was considered.

4,6 Ultrasonic transducers and the acoustic bond

The most convenient method of conversion of rf energy
into ultrasound at megaherlz frequencies is the use of a piezo-
electric material. The main factors affecting the suitability
of any particular pilezoelectric substance are the magnitude of
the electro-mechanical coupling coufficient, the mechanical
strength of the material and the ease with which it can be

prepared in a suitable form. Quartz has an electro-mechanical



coupling coefficient of 1.2><1O—12 coulomb newton_q, which 1is
not as large as that of, say, LiNbOB or BaTiOB, but its
superior mechanical strength makes it the most common material
for transducers. Quartz transducers are usually either 'X-cut®
or 'Y-cut', to propagate compressional or transverse waves,
respectively. The X or Y indicates the axis of a quartz érystal
perpendicular to which the transducer face lies. The sheér
transducers had a small 'flat' cut from their cicumference to
indicate the particle displacement direction. The transducer
dimensions and electrode configuration were as shown in figure
“+.14; the diameter was limited by the size of the specimens.

A transducer is typified by its resonant frequency,
which is determined by its thickness and its elastic properties.
The tfansducers'used in this work had fundamental frequencies
of 10, 12 or 15 MHz. 0dd harmonics of these frequencies could
also be generated.

Very little energy transfer occurs at a solid-air
interface, so an acoustic bonding material is needed to couple
the transducer to the sample. I'or this purpose various viscous
substances are used, such as greases, silicone oils and resins.
Lach type of material has its own characteristics, and for a
particular sample and temperature range a process of trial-and-
error 1s needed to select the best one to use. ¥or bonding
transducers on to indium~thallium alloys a stopcock grease
'Nonaq', distributed by the [I"ischer &tcientific Company, was
found to give the best results; its disadvantage was that it was

nygroscopic. HNonaq gave a good bond in the temperature range
4 to 200K. Above 300K the decrease in its viscosity caused
deterioration in the quality of the acoustic bond, and a silicone

oil, of viscosity 60000 ¢s, was used for such temperatures.



L7 Sample holders and cryostats

bo7.1 sample holders

A sample holder for ultrasonic work must be able to
support the specimen, and provide an electrical contact on to
the centre electrode of the transducer whilst earthing the
outer one. The samplé holders used in this work each consisted
of a horizontal circular brass platform, which could slide
along three vertical rods passing tnrough holes 120o apart near
the circumference, and on which was placed the sample.
Adjustmenf of a screw enabled the platform and sample to be
raised until contact was made between the centre electrode and
a small spring-loaded copper plunger. Springs and collars
supported the platform so that the screw could be tipghtened
until sufficient pressure was applied to keep the sample in
position. such an arrangement i1is shown diagrammatically in

figure %.19.

L,7.2 Liquid nitrogen cryostat

ho7.2.1 Design

A cryostat made from stainless steel was designed
and constructed with the object of belng able to control sample
temperatures in the range 77K to Z00K; provision was made for
reducing the pressure in the sample chamber with a rotary pump,
while a diffusion pump was used to evacuate the irterspace.
The interspace pressure was indicated on a Pirani gauge.

Figure 4,20 illustrates the sample holder and heater assembly:
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‘The heater was wound non-inductively on a paxelin former, and
three nylon grub screws held it in position so that the sample
was at its centre. Constantan wire of such a length as to give
a resistance of %00R was used, and electrical connections were
made using two small plugs. An auxiliary heater, powered by a
variable a.c. supply (maximum 15 volt) was available when
necessary to increase the rate of evaporation of the liquid

nitrogen from beneath the sample, ,

L,7.2.2 'Temperature control

Heater current was provided by a Harwell temperature
controller; control was achieved by comparing the e.m.f. of a
thermocouple with a pre-set reference voltage. The current
supplied to the heater depended on a combination of the diff=-
erence between the thermocouple and reference e.m.f.'s and
the time rate of change and the integral of the measured e.m.f.
In this way overshoot of temperature could be avoided, and it
was possible to maintain a temperature steady to + 0.01K for a
period of an hour or more. Various internal édjustments were
made to the integrator and differentiator circuits in the
controller to compensate for the thermal inertia of the cryostat

and thus to prevent overshoot.

h.7.2.3 QOperation

Three copper-constantan thermocouples were attached
to the sample so that the presence of temperature gradients
could be detected. A calibration curve was produced for each

one (see 4.3.2). It was found that the 3002 heater with a max-
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imum heat output of 15W was not able to maintain a temperature
difference between the sample and the outer shell of more than
150K. 1In order to achieve a rate of cooling of about 50 degree
per hour, together with control possible at all temperatures
the pressure in the interspace had to be carefully controlled
with-a needle valve.

Measurements could be made over the temperature range
700K to 90K by immersion of the outer shell in liquid nitrogen.
For temperatures lower than 90K it was necessary to add liquid
nitrogen to the sample chamber, and to lower the pressure
within it to obtain a further reduction to 55K. Control of

temperature using the heater was not possible below 77K.

b,7.3 Glass cryostat and pumping system

A glass dewar system was uéed for measurements to
4,2K and below. The sample holder was similar in design to
that in figureltzo,except that no heater was used, and the
supporting tubes were thin-wall stainless steel to reduce heat
leaks.

Two dewars were used; one fitted inside the other.
The sample holder and specimen could be lowered into the inner
one, and a sidefap on the inner one enabled a rotary pump to
produce an interspace pressure of about 0.05 torr. The outer.
dewar was open to the atmosphere whereas the inner one was
connected to a brass head by means of a vacuum tight rubber
sleeve, and thus the pressure within the sample chamber could
be reduced. The pumping system is illustrated in figure 4.21.

Mercury and oil manometers measured the pressure in the sample
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chamber: when temperatures below 4.2K were produced by a
reduction of pressure above the liquid helium, 6 the temperature

was tound from a measurement of the vapour pressure.

4.8 Temperature measurement

4,3,1 Thermocouples

Copper-constantan thermocouples were used thréughout,
with junctions formed by electrically spot-welding the two
wires (40 SWG) together. [or the nitrogen cryostat with the
temperature controller a reference junction at a higher
temperature than the sample was peeded, and an ice/water mixture
was used. In the helium system a liquid nitrogen reference

sufficed.
4,8,2 Calibration

Four calibration points were found for each thermo-

cguple and a cubic equation of the form
Vv = A%+ BT® 4+ CT + D (4.3)

was fitted, as suggested by White (1959). A least mean squares
quadratic fit to the four points was also tried, and the
results compared with the form of tne curve obtained from the
British Standards Thermocouple Tables (Copper-Constantan). It
was found that in the cubic fit the coefficient of T3 was small,
so that either a cubic or a quadratic fit would have been
acceptable., No standardised temperature measuring device was
available to check the accuracy of calibration, although White

gives the accuracy for a cubic fit as 0.1K between 73K and 273K.
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The calibration points were:

1) 4,2K (liquid helium)

2) 773K (liquid nitrogen)

7) 196K (dry ice and acetone mixture)
L) 2734.2K (ice and water mixture)

S) 2300K (water whose temperature Qas

measured with an accurate
mercury-in-glass thermometer).

Points (2) to (5) were used for thermocouples on the nitrogen
cryostat sample holder, and points (1),(2),(4) and (5) with
those for liquid helium use. In addition the voltage déveloped
when both junctions were at the same temperature was measured
and gave the coefficient D in equatioﬁ Lk,3, 1In all cases this

e.m.f. was small (< 5.V).

4.8,3 Thermocouple leads and connections

if a thermocouple lead is not continuous to the
potentiometef then there is always the possibility that an.
additional e.m.f. will be produced at the junction with another
wire., Wherever possible the copper leads were taken directly
to the measuring potentiometer terminals, and were always
sheathed by PVC tubing to reduce the risk of their breaking.
When a connection had to be made it took place outside the
cryostat where the temperature gradients were small, and was
done by putting both wires together under a screw términal with
no attempt at soldering. No ill effects were found using this
method of connection on the nitrogen cryostat; the leads left

the sample holder through a neoprene vacuum seal.
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4,9 High temperature measurements

For measurements on indiuwwg-thallium alloys in the
temperature range 300K to the melting point («425K) the sample
holder and specimen were immersed in a bath of oil. A 1.5 KW
main heater and a 60 W thermostatically controlled subsidiary
one acted as heat sources. Fluctuations of temperature
throughout the bath were reduced by a motor driven stirrer.
Temperature measurement was by mercury-in-glass fhermometers:
up to 1450C a conventional'-}OOC to +200°C type sufficed, but
from 145°C to just below the melting point of the alloys a
Beckmann type of thermometer was used. The latter incorporated
an édjustable electrode in the capillary above the mercury
column; when the lower end of this electrode made contact
with the mercury meniscus an electrical‘circuit was completed
and.a relay switched off the 60 W heater. Temperature control

to + 3°C could be achieved in this way.

k.10 Measurement of thermal expansion

bo1041 The strain geauge method

The thermal expansion of a cubic material is iso-
tropic, while for tetragonal crystals the thermal expansion

tensor has two components, « and &__, which relate the strain

11 33

along the x (or y) and z axes, respectively, to the temperature
chanpge producing that strain. Thus a single measusement is
needed for crystals of cubic symmétry, whereas the expansion

in two particular directions is required in the case of
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tetragonal crystals., A d.c. strain gauge method was used to
measure the thermal expansion coefficients of indium~thallium
alloys. The gauges were in the form of thin foil mounted on

a thin plastic base. Two sizes were available: 2 by 1 mm and
2 by & mm, and the nominal gauge resistance of each was 120f.
The gauges were attached to the alloy crystals by means of an
epoxy resin adhesive. Pressure was needed while the glue was
setting in order to obtain a unifofmly thin film of gdhesive
beneath the gauge; failure to do so resulted in the glue
cracking when cooled. On the tetragonal samples the gauges
were oriented along the y and z directions of a (100) cut
sample. The principle behind the strain gauge method is that
a change in length of the gauge alters its electrical
resistance, and such change is related to the change in length
by the gauge factor. 'Thus a measurement of gauge resistancé
as a function of temperature enables the coefficient of
thermal expansion appropriaté to the orientation‘of the strain

gauge to be found.

k.,10.2 Bridge circuit

A resistance bridge was used to determine the change
in gauge resistance, and the circuit was a modified form of
that described by Chatterjee (1972). In essence it was a
Wheatstone bridge with equal resistances in the ratio arms,
and strain gauges in the other two. One gauge, attached to a
piece of silica glass, served as & reference, while the other
was attached to the sample. (In practice, the two pauges were

close together on the sample holder to keep them at the same
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temperature.) Connected in parallel with the two gauges were
two variable resistors of much larger value, and any small
changé in the resistance of a gauge caused by a strain led to
an out of balance current in the bridge; balance was restored
by adjustment of one of the parallel resistors. T§e circuit
is shown in figure 4.22. Potentiometers P1 and P2 were fen-
turn helipots each of total resistance 100Kfl. The potential
divider D could be adjusted to compensate for any initial out~-
of-balance due to any slight difference in the gauge
resistances. Potential divider T allowed for compensation to
be made for the effects of thermal e.m.f. developing in the
connections to the gauges; across T was connected a.thermocouple
with its junctions in water and liquid nitrogen. In this way
a variable e.m.f. of up to about 6mV was available to back off
the thermal voltage in the gauge leads. S1 and S2 were 2-pole
6-way switches ganged together to select different modes of
operation, including reversal of the bridge current.

The potentiometer P1 and potential dividers T and D
were duplicated on a separate mounting so that a second gauge
on the sample could be used, allowing measurement of thermal
expansion in two different crystallographic directions almost
simultaneously. The second unit could plug in to the main
one when required, and a 6-pole 2-way switch transferred the’
necessary connections. (It is not iﬁCiuded in figure 4.22.)
The functions of the six positions of 81/52 were as follows.

Position Function

1 Galvonometer shorted; no current
applied to bridge.
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Figure 4,22 Strain gauge bridge used in measurement

of thermal expansion.
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Position Function
2 Galvonometer in circuit; no current
applied; any deflection due to thermal
e.m.f.
3 No current applied; thermal e.m.f.

back-off potentiometer in circuit.

b ‘As 3 but current supplied from a
2 volt accumulator.

5 Galvonometer open circuit,
6 As 4 but current through bridge
reversed.,

4,103 Sample holder

The sample holder was of simple construction, and
consisted of a square copper platform of side one inch with a
small terminal block along one edge. It was attached to a 3/16"
diameter copper rod at one corner, which in turn led to a
wooden post. Thé platform was horiiontal and the rod and post
were vertical, and the whole assembly could be 1owéred into the
stainless steel cryostat. To prevent unnecessary strains the
sample and silica reference rested on the platform and were
only held in position by the leads of the strain gauges. Temp-

erature measurement was by copper-constantan thermocouple.

L,10.4 Operation

Initial balancing of the bridge was performed with
sample and reference at room temperature, and with P1 and P2
set at the same value, usually ééKﬂ: D was then adjusted to
give a balance, and thereafter no change was made to its
setting. At any other temperature the procedure was as given

below.
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i) switch position 2  Observe any thermal e.m.f.
ii) " 3 Adjust T until galvonometer
deflection is zero, and thus
back off thermal e.m.f.
iii) " 4L Adjust P1 or P2 to obtain balance.
The galvonometer zero could be
checked using switch position 5.

iv) : " 6 Reverse current and check that
deflection is the same as in (iii).

If the deflections in (iii) and (iv) were appreciably diff-
erent it was usually owing to an unbalanced thermal e.m.f. and
step (ii) was repeated.

The gauge factor is defined as the ratio of the

strain to the resulting fractional change in resistance of the

K Al/l

gauge: _
T Aar/r °

If AR is the change required in the appropriate parallel resis-
tor to restore the balance, then solution of the bridge

equation gives

or rAR
r ~  R{(R + AR) - raRr

where R is the initial value of the parallel resistance.
Since R(R+4R) >> rAR, the strain is given by

AL _ £ __oR

= T T XR(R+2R) (4ot

Thus a graph of strain against temperature could be
constructed, and the coefficient of thermal expansion at some
temperature was given by the gradient of the strain curve at

that temperature, for
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Introduction

The results of experimental measurementé on indium-
thallium alloys are presented in three sections. Firstly,
the thermal expansion behaviour is described; secondly, the
sound velocity and elasticity measurements and thirdly the
results of attenuation studies for the various alloy
compositions considered. A discussion of fhe sources of error
in the measurement of attenuation is included in the third

section.

51 leasurements of thermal expansion in In-Tl alloys

Meaéurements of thermal expansion were made in both
cubic and tetragonal alloys using a strain gauge technique, as
described in section 4.10 . For the tetragonal compositions
11.5 and 15 at.% Tl the strain was measured in the [uxﬂ and
[OO{l directions over the temperature range 150 to 425K, and
the results are shown in figures 5.1 and 5.2 . A small amount
of hysteresis was observed at temperatures near the melting
point: the resulfs shown for temperatures above 300K were
obtained during heating. 1In the cubic alloy measured (25 at.%
T1l) the strain gauges were attached so as to record the strain
in the [100] and h1Q] directions. Measurements were made
over the range 150 to 200K and the results are presented in
figure 5.3 The extent of the hysteresis in thermal expansion

near the martensitic transition can easily be seen. For a
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cubic material the thermal expansion is isotropic: the
difference in the slopes of the ﬁ(ﬂﬂ and h1d] curves in the
cubic region of figure 5.3% is a factor of 1.2, and this could
be due to a difference in the gauge factors of the two gauges.
(The wmanufacturers give a figure of 2,04 for the gauge factor.)

All these measurements were made with reference to
the expansion of a gauge attached to a piece of silica glass.
icheel and Heaus (1914) give the expansion of silica as

6 9 e

T° - 3.40 10712

L=1, (1+0.362 1071 + 1.813 107 o) .

This gives strains which are smaller than the measured ones for
the alloys by a factor of 102; therefore, no correction has
been made to the curves of figures 5.1 to S.%. The thermal
gxpansion coefficientsw11 and QBS are shown for thie three
alloys in figure 5.4. The coefficients have been obtained from
the derivative Jd¢ /3T , and the curves of figure 5.4 have been
smoothed to reduce the errors which can easily occur when the
derivative of an experimental curve is taken.

The accuracy of tne strain gauge method is not nigh,
and errors can be as large as 25% (Greenough, 1973, private
communication). Several determinations of the strain as a
function of temperature were made for each sample, and the
measurements were found to vary by up to 15%, although the
slopes of the linear regions were consistent to within less
than 5%. However, the main use to which the measurements were
out — correction of the measured ultrasonic sample thickness
for changes due to temperature —— meant that such a margin of

uncertainty was quite acceptable.
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b9e2 itlastic constants of In-Tl alloys

Sectal Cubic alloys

Three independent elastic constants 011, C12, qu are
required to determine fully the elastic bhehaviour of a cubic
crvstal. leasurements were made of the velocity of ultrasound
vaves (at about 15 MHz) in (110) and (100) cut samples of the
25 and 27 at.% Tl alloys as a function of temperature. The
modulus 611 was obtained from the velocity of longitudinal
wvaves 1in the ﬁOQ] direction, while Chh was given by that of a
transverse wave polarised ﬁ(Xﬁ and propagating in the B1Cﬂ
direction. TFinally, (011+012+2044)/2 resulted from
measurement of the velocity of a longitudinal wave in the same

direction., The modulus (C1 —qu)/Z could also be found directly

1

from a transverse wave polarised [17@] along the [11@ direction,

although 1t was only possible to find a value for this modulus

at room temperature on account of the high attenuation and low

velocity of the mode. Even then its value had an uncertainty

of about i‘N)% because the velocity was so low that only two

or three poorly defined echoes were available for measurement.
Turning first to the In-27 at.% Tl alloy, we present

in fizures 9.5 to 5.7 the results of the measured pulse

repetition frequencies as the temperature was lowered from

300K to LOK for wave propagation in the U1Q] direction

(longitudinal and [100] -polarised transverse modes) and in the

[10@]direction (longitudinal mode). ‘The temperature range

included the fcc to fct transition region. The precision of

the muasurements 1s indicated by the extent of the scatter on
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the nieasured points; the method was sensitive enough to detect
the slight depression which is shown in the curves of figures
5.5 and 5.0 and which occurred on cooling over a range of
about 30 degrées near to the transition temperature of 125K.
This effect was quite reproducible, and was seen on each of
several sets of data obtained. At first these results were
survrising in view of the large dip seen in the modulus 044 by
Pace and saunders (1972), but it was possible to make measure-
ments every 0.5 degrees in the vicinity of the transition using
the temperature controller, and it was ascertained that there
was, in fact, no discontinuity in the velocity leading to Chh'
Results for propagation in the h(xﬂ direction were not as
precise near the transition because of the much higher
attenuation encountered in that direction than in the [11@].
In practice it was not possible to obtain any recsults at all
until the (100) sample thickness had been reduced to about a
millimetre (or about one third of thé thickness of the (110)
sample).

On the warming cycle there was a slight difference
in the variation of measured pulse repetition frequency with
temperature in tnat the slight depression did not appear.

The very nature of the transformation mechanism
imposes certain restrictions on the experimental procedures
which can be used to obtain sound velocity and attenuation
results. ‘The shears producing the tetragonal structure occur
on [de] planes, and result in corrugation of the surface.
Three (110) samples were examined, and in two cases the

acoustic bond between sample and transducer was fractured near
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the transition temperature, resulting in the loss of the
received signal, whereas in the third sample this did not
happen.. There are six possible habit planes of the {516} type,
and presumably in the last case the aétual habit plane

coincided with the cut surface, s0 that corrugatibns did not
arise. Tor a (100) surface, which would always.become distorted
on transformation, a silicone oil bond proved satisfactory,

for such a bonding material does not become brittle at low
temperatures as Nonaq does, and so it could accommodate the
movement of the surface beneath it. The third (110) sample vas
used throughout the series of experiments, and no problems

were encountered with bond fracture. This fact is in line

with an observation of Burkart and Read (1953) who remarked

that the habit plane for transformations subsequent to the first
was the same as for the first one. We were also able to |
verify another of their findings, in that on warming from below
TC a cubic crystal returned to thelsingle crystal form; back-
reflection photographs showed unsplit spots.

The three elastic stiffness moduli C C. . and Cqu'

11 712

are shown in figure 5.8 as a function of temperature. The
measured sound velocities were corrected for thermal expansion
using, for this alloy composition, the data of Pahlman and

smith (1968). 1In plotting these results the error on 012 from

22 3(C,,+C, ,+2C,,) is about 3%, but the

3

the measured value offw

measured value of #(C C12) at 290K has been used to determine

),

11

the value of C_,. at that temperature (given the value of C

12 11

and the variation of the velocity v, was used to find its
2

temperature dependence. The absolute error on 011 and 044 is
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about 1%, so that within the experimental limits C11 = 012 at
the vmhase transition.

'Ihe corresponding results for the In-25 at.% Tl alloy
are shown in figures 5.9 to 5.11 for the observed pulse
repetition rates, and in figure 5.8 for the elastic constants.
Figure 5.8 enables a comparison between the results for the
two compositions to be made. The transition in the 25 at.%
alloy occurred near to 195K, and the attenuation of the sound
pulses was not as high as in the other alloy with a lower TC.
This resulted in a smaller reduction in precision of the
measurements at the phase transition. Comparing the curves of
figure 5.5 we see that the dépression in qu is larger for
the 25 at.% Tl alloy than for the other, and that C11 1is

approaching C near the transition tempéfature of both alloys.

12
A general point must be made concerning the data obtained in

the tetragonal phase of these two materials. When the structure
becomes twinned the new tetragonal axes become tilted reiative
to the original cubic ones. As a result the elastic constant
combinations which are related to the measured sound velocities
take on an unknown form, and thus the curves shown in figure

and 044 at tehﬁeraturasabove

5.8 only give the moduli C C

11 Y12
Tc' It is not surprising, therefore, that in figure 5.12, in

~ which is shown the variation of #(C 012) for the two cubic

17
alloys studied, the value of this modulus below 180K for the
25 at.% Tl alloy behaves in an anomalous way. It is clear,'

though, that there is no discontinuity in any of the moduli

at the transition.
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direction of a shear wave polarised [001] at 15MHs
in In-25 at.% T1

. J
IS0 " -
~ "
1 . 1
[« 1N .
g %
N °
I .
AY4 L]
L '.. .
L ] ... i
> S .
c .
o)
9 .,
o .
w ]
C .
b 0. B
e .
-o L]
L "
i .
o .
a. .
U .l o
L B . .
o
K E
: .
Q_ .
140 -
i L A L R -4 .
o Y/ 100 150 200 250 300
Temperature Ck)
Figure 5.9 The measured PRF for wave propagation in the [110]



- 307 =

T T T T —T
176 | 4
— ’
~ ‘.
[i} .
o
174+ ° . -
E :
x .'
) .
h . A
P S .
J .
<
o .
D .
f
9 XX
b L
[ ¥ * e
eI . 4
[»] .
P St .
— .
o .
Q- ) .
by .
o B *. -
“ .
-5 .
a. .
L ]
170 .. -4
L]
i A4 4 1 L
(o] 5o 100 180 200 150 300

Tempa.rarure K°K)
Figure 5.10  The measured PRP for wave propagetion in the [110)

direction of & lomgitudinel wave &t 1%&s
in In«2% at.% 1.

WA UNIVES
QURiA S IAYERST




- 102 -

(84 —

(p =3)

A 1 A I i A L A A A

8 Pulse repetifion Frequency (kHZ) 2

150

Figure 5.11

200 250
Tempearalture (o k)

The measured PRF .for wave propagation im the [100]
directien of a longitudinal wave at 14MHz
in In<25% at,% T1.

300



*UsATF aJe gjutod oY3 JO UOTIDSTIS ¥ UO 8)THIT L3UTelI80Un aYJ
*sfoTTe TI %°3® /2 PUB G2-UI JI0J UOT31SURI} OT131STS4JIem oY3

70 £31utota euz ut (S'o-''0)% sninpow ema jo worgerTes eyr  zLeG eanfrg
?v Ea.hogeméu.r . : 7]
Y] ”
cog 097 oty ~ o8 7/ o . oo}
Y ¥ =Y T T  § - \ _ _ In- - - A
;‘;). ., * ¢ \
s/ . . /
‘. \ V4 \ -
7 s /\ \ i
- \\. s \
. A . ®
e J \
/7 7
' o ya s
“ 119,4°52-¢1 | ., @ )
2 j . ‘
~, s/
1 » . ' o
.\ \
- 1L%,4°LT V1
s )
o \ -1
7/
Ve
o ) ) n | \ -

00.9

100

fo-0

Yoo

1'

('MD -"9)

(7-w2 wkp 01 4° 3qlun )



- 104 -

5242 Tetragonal alloys

None of the tetragonal alloys studied suffered a
martensitic transition, although at its melting point the
In-15 at.% Tl alloy was very close to the fcc/ fct boundary.
Measurements have been made of the six independent elastic

constants C 033, 044, C66 over the temperature

11° C12’ C13'
range %00 to 425K for the 15at.% composition, and over the
range 150 to 425K for 11.5 at.% Tl. The velocities v, to Vi
of Table 3.1 were measured by the pulse-echo method at room
temperature, and the various cross-checks were made; a set of
elastic constants at room temperature was determined for each
alloy. The results are given in Table 5.1. The temperature
variation of the stiffness constants Cij was found by measuring
v1. v2, Vk’ v7. Vg v1o,by,the pulse superposition method.
Figurea 5.13 and 5.14% show the results of the elastic constant
determination for In-11.5 at.% Tl and In-15 at.% T1,
respectively, after the velocities had.been corrected for
thermal expansion of the samples. It was possible to find

" directly a value for #4(C,,-C o) from a measurement of the

11771
velocity of the [17@]polarised transverse mode in the [11@
direction. For the 11.,5% alloy this was achieved up to
423K (melting point = 427K), but in the case of 15% a direct
measurement was only possible to 390K. Results for these
velocities are shown in figure 5.15.

Certain sound velocities have been measured to 4K.
High values of attenuation meant that an extension to 4K was

not possible with all the velocities examined, but those which

have been thus obtained are shown, together with the
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TABLE 5.1

Measured sound velocities and elastic constants for

In-11.5 and 15 at.% Tl alloys at 290K

11.5% 15%
. 2 . 2 .
* velocity 1€N velocity ﬁg
5 (10 (10

(10 cm/Sec)dyne/cm ) (105 cm/sec) dyne/cmz)
v, 2,34 4,265 2.28% 4,20
v, 1161 1.050 1149 1.062
v, 0.931 0,675 0.956 0.736
v, 2.325 4,155 2.281 4,18
Vg - - 0.950 0.727
Ve 24557 5.093 2.488 4,983
v7 0,48 0,18 0«39 0.122
Vg 0.94 . 0,688 1,046 0.881
V1o 2. bk 4,637 . 2.445 4,812
Vi 0,88 0,603 0.36 0.104

* Notation as in Table 3.1 )
Units
1.5% 4.27 3.92 3.93 4,21 0,678 1.05 1017 dyne em™%
15% 4,20 3.95 3.93% 4.18 0.73 1.06
S11 512 313 333 544 S66 Compliances (Sij)
11.5% 2,01 =0.85 =1.08 2.24 1.47 0.952 -11 2 -1
: . . 10 cm  dyne
15% 2,70 «1,31 =1.32 2.73% 1.37 0.943%

Cross-checks on elastic constants

Elastic constant calculated| observed [% error
combination value value

15% 5.135 - =4,983 3,0
o/, 2_
#(Cy,+Ceg) 11.5%| 0,864 PV = 0.688[ 20.4
15% 0.895 =0.881 1.6
- . 2 2 2
Velocities giving th: fWé fw5 po
11.5% 0,675 = 0,681

15% 04736 0,727 0,723
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polarisations involved, in figures 5.16 and 5.17. No thermal
expansion correction has been applied to the results because

of lack of data below 150K.

‘5.3 Attenuation measurements

All the attenuation measurements were made by fitting
a- variable exponential curve to the echo train produced by.a
pulse-echo method, and as described in section 4.5.1. This
gave an attenuation expressed in dB/usec: a conversion to the
unit of dB/cm was achieved by division by the speed of sound
x106.

The dominating feature of all the measurements made in
indium and in indium=-thallium alloys was a rising background
attenuation as thé teiperature was reduced. The rise commenced
at between 200 and 220K for most of the samples; other effects,
when they occurred, were seen superimposed on this background.

The results will be given first for the cubic alloys, and then

for the tetragonal ones.

5e%e Ultrasonic attenuation in In=-25 and 27 at,% Tl alloys

Attenuation measurements have been made in the
temperature range 80 to 300K for these alloys. Results are
shown in figures 5.18 and 5.19 for attenuation at 14 and 42 MH=z.
Both show a frequency independent absorption peak at the fcd/fct
transition: the peak was found for both longitudinal and
transverse waves, and its width was greater in the alloy with
the lower transition temperature. The peak position differed

on the warming and cooling cycles, as might be expected if it
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were associated with a martensitic transition with its
attendant temperature hysteresis. The results of figures 5.18

and 5.19 are for propagation in the ﬁ1Q] direction.

Introduction of a Bordoni peak in In-27 at.% Tl

An additional feature in the attenuation variation
of ultrasound propagation in the ﬁ1Q] direction of the 27at.%
alloy was a peak whose position on the temperature axis varied
with ultrasound frequency. The peak occurred on both warming
and cooling, except for the first few (about 5) cycles following
the cutting and planing of the (110) sample, when the peak was
only seen on warming. (Each cycle consisted of cooling below Tc
and warming again to room temperature.) The peak can be seen
in'figure 5.19 in the 42 MHz curve —— the circles on that figure
indicate the form of the attenuation behaviour during the -
initial cooling experiments. The results for several
frequencies are collected in figure 5.20. It was also observed
that after the peak had become established for both warming
and cooling its amplitude gradually decreased with time, until
~after about eight or nine months it had gone almost completely.

An absorption peak whose temperature of occurrence is
frequency dependent is éharacteristic of a relaxation type of
phenomenon. In such a case the relaxation time U can be
related to an activation energy E and temperature T by an
Arrhenius type of expression T = toexp(E/kT) , where k is
Boltzmanp's constant. If the attenuation depends on w{, and
is a maximum whenwU=1, then the frequency dependence of the

absorption peak isal:ugexp(-E/kT) s in which U% is an attempt
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frequency. Values of E and wb can be obtained from a graph of
lnw against T-1. Several determinations were made of the peak
position, and for a given frequency it was found to vary
slightly between similarly oriented samples cut from the same
boule, and between the polarisations of the sound wave. Figure
5.21 is the Arrhenius plot, and a straight line fit seems
reasonable. It is interesting to note that there is no
significant difference, within the limits of experimental error,
between activation energies for the longitudinal and transverse
modes. Uch a difference could, in principle, occur because of
the different nature of atom motion involved in the two
polarisations.

Bordoni peaks in face-centred cubic metals, and
theories to account for them, have been reviewed by Niblett
(1966). The various theories of the mechanism all involve
motion of dislocations, or of kinks in dislocations, by. -
interaction with the stress wave, The theory developed by
Seeger, Donth and Pfaff (1957) assumes that pairs of kinks are
formed in dislocation lines in a metal, and do so at a
temperaturé dependent frequency y. When the frequency of the
stress wave W is approximately equal to V then absorption of
energy can occur, whereas at other frequencies the extent of
the interaction is greatly reduced.

If a mechanism based on dislocations 'is assumed for
the In-27 at.% Tl alloy then not only is the change in peak
temperature accounted for, but also the observation that it was
only seen initially on warming, for at the phase transition we

suppose that large numbers of dislocations are introduced.
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These interact with the sound wave as the temperature is raised,
and then anneal out when the sample is left at room temperature
for a few hours (300K isa 0.7 of Tm). Subsequent cooling does
not, therefore, result in re-appearance of the peak. But if,
after several cycles the dislocations become pinned sufficiently
for annealing for a comparatively short time to be ineffective
in removing them, then the peak would appear on both parts of
the cycle.

The slope of the graph of figure .21 gives an
activation energy of 0.24+0.05 eV, and an attempt frequency of
1.4810.35x1012Hz. This compares with values for copper of
E=0.122eV, fo=3.8x1011Hz (Niblett, 1966); silver — (O.1243V,-
ux1012Hz); gold = (0.158eV, 7x1O1OHZ); palladium = (0.192eV,

6x109Hz) (Bordoni et al., 1960).

5.2.2 Ultrasonic attenuation in tetragonal alloys

The ultrasonic attenuation measurements made in the
temperature range 4 to 425K are presented in figures 5.22 to
5.26 for various propagation directions in the alloys, and also
for the [110] direction in indium. Irrespective of direction
or composition there was an increase in attenuation starting
at about 220K, and then rising more or less rapidly as the
temperature was reduced until a flattening out occurred,
followed by a slight reduction towards 4K. No obvious change
was seen in the region of the superconducting transition
temperature, and no further fall from the 4K value occurred in
the 11.5% alloy [001] for a reduction to 2.4K. The temperature

variation of attenuation in the [110] direction in indium was
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investigated, but the results were not very reproducible as
far as magnitude of attenuation was concerned. However, the
measured values for two cooling and warming cycles have been
included as figure 5.26 for they both show a maximum in the
attenuation at beteeen 50 and 60K. Its position was difficult
to locate more precisely because of the occurrence of a very
large rise in attenuation on warming at around the tempera£ﬁre
corresponding to the triple point of nitrogen (63.5K). Suéh

a peak has been ocbserved in GaAs by Cottam (1973) and he
suggests that it is due to the solidification of nitrogen on
the sample which results in a change in the reflection
conditions for the sound pulse at the solid/air boundary.

The attenuation behaviour on approaching the melting
point has also been measured. The results show a small rise.
ncar the melting point starting at about 20 to 70 degrees from
it: figure 5.27 collects the results obtained for the 11.5 dnd

15 at.% Tl alloys.

9eBe3 Errors in attenuation mcasurement

In addition to attenuation mechanisms which derive
from inherent physical properties of the sample being studied,
there are contributions to the measured attenuation from thg
gseometrical properties of the sample. These must be identified
and subtracted off from the measured values to obtain the true
attenuation being studied. The two main sources oi error arise
from d4iffraction of the ultrasonic beam and from non-
parallelismn of the sample. The first results from the fact

that a real transducer deviates from a true piston source and
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produces wavefronts which are not planar. The ultrasound beam
thus diverges and can strike the sidewalls of the specimen, a
process which leads to an interference between parts of the
beam which have travelled different distances in the sample.
This shows up as a non-exponential echo train. Truell, Elbaunm
and Chick (1969) give an analysis of the problem and show-ﬁhﬁt
maxima in the envelope of»the received pulses can be expected
at O.?}az/;, 1.05aa/q, 2.4a2/m and beyond. Here, a is the
radius of the circular source and A is the wavelength of the
sound wave. When there is a diffraction effect present the
attenuation can be measured by matching the calibrated -
exponential to the start of the echo train and to the top.df
one of the maxima. If the measured value thus obtained is @m,

then the correction to be subtracted is given by (Truell et ai.,

-
1969) S [,a(aa/x)] dB /cm,

where it = 0.78, 1,05 or 2.4 according to the maximum used to
determine “m' The correction is thus frequency dependent, and
is smaller at higher frequencies.

Truell et al. (1969) also derive an expression for
the effect of non-parallelism on the envelope of the echo train,
and show that it is modulated by a Bessel function. The
apparent increase in attenuation is less when the wedge angle ©
is smaller, and when the frequency is reduced, in contrast to
diffraction effects which have the opposite frequency dependence.
If the frequency of the wave 1is V_ then the attenuation due to

non-parallelism is given by (Truell et al., 1969)

o L -5
'&np = 8.7 10 “ya® dB/echo.
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An apparent wedging effect can occur in non-uniform samples in
which the variation of elastic properties can result in a
variation of transit times in different regions. The analysis
is then in terms of an effective wedge angle Oe, which can be
determined by the form of the echo train.

The work described here was carried out largely at a
single frequency, with the qualitative frequency dependence of
attenuation being of interest. Further, the changes seen on
variation of temperature were greatly in excess of any error
in the measurements from either of the above sources. Thus no
correction need be, or has been, appiied to any of the graphs
of attenuation versus temperature presented. A specimen
calculation of errors now follows in which typical values ére
used for the parameters involved.

i) Diffraction loss. Measure to 3rd maximum, occurring

2 6 -
at 2.4 a /4. Take¥ = 15x10 Hz, v = 2.Ox105 cm sec 1. Hence
A= 0.0133cm, and if a = 0.2 cm then ac/q = %,0cm. The
correction is thus Wm/2.413.0 = O.139«m, or about 14% .

ii) Non-parallelism. Let a and ¥ be as before, and take

8.7)(10—))(15)(10-6)( 0.2¢5x1 o=t dB /echo

]

-4
@ = 5x10 rad. Then «np

0.131 dB/echo.
If the sample thickness is O.3cm, then xnp = 0,217 dB/cm at 15MHz.
This last value is small compared with measured values of up to
20dB/cn, with a typical small value of 2 or 3 dB/cn.

Another source of error arises from the change in
bond characteristics with temperature. This is moroe difficult
to evaluate, but when certain sets of measurements were repeated
using a different bonding material there was no apparent

discrepancy in the results over a wide temperature range.



CHAPTER 6

POISSON'S RATIO 1IN

INDIUM - THALLIUM ALLOYS




Gl Introduction to Poisson's ratio

Interest in Poisson's ratio has stemmed from early
work on elasticity. Poisson (1329) described a molecular theory
of solids, and deduced a value for the ratié of lateral
compression to longitudinal expansion, as a result of a long-
itudinal étress, to be + for a central force polycrystal.

In practice, deviations from + were found for many solids.
vertheim (1848) performed experiments on glass and brass, and
as a result suggested, with no theoretical foundation, that
the ratio should be +. At the time of these workers theré was
discussion on the validity of the rari-constant and multi-
constant theories of elasticity. The former implied that there
were 15 independent elastic constants for a triclimnic crystal,
while the latter required 21. froﬁ the central force, rari-
constant, theory come the Cauchy relations, which are a set. of
six equalities between six pairs of clastic constants. A
Poisson's ratio of + follows from rari-constant considerations,
and interest in this ratio centred on attempts to test
experimentally the two theories.

From a mechanical engineering point of view it is of
interest to measure Poisson's ratio in constructional materials,
and values have been obtained for a wide range of solids.

Table 6.1 gives a representative selection. The usual methéd
of determining Poisson's ratio for isotropic solids is by
measurement of tne shear modulus G and the Young's modulus E°
by extensional and torsional experiments.

Then Poisson's ratio ¥V is given by

L .
v = E‘G‘ - 1 (001)
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TABLE 6.1

Poisson's ratio for various materials

in an isotropic form *

Aluminium 0.345
Bismuth 0.330
Chromium 0.210
Gold 0. 44
Iron (cast) 0.27
Lead 0.4k
Platinum 04377
Zinc 0.249

Steel (mild) 0.291
" (tool) 0.287

* Taken from Kaye and Laby (1966).



b

Very little work has been done on anisotropic media.
In an elegant experiment on the vibration of quartz plates
Wright and Stuart (1931) derived expressions, applicable to
quartz, of the variation of Poisson's ratio for directions of
applied stress in the xy plane; they gave the results for three
such directions. For cubilic crystals Turley and Sines (1971)
nave produced equations by which the Young's modulus, shear
modulus and Poisson's ratio can be calculated for arbitrary
axial sets, but in the case of Poisson'’s ratio they give no
example of an actual computation. The methods devised by
Turley and Sines and by Wright and 3tuart have Leen azimed at
simplifying the computational procedures so that calculations
can ve done by hand in a reasonable time. In calculations to
be more fully described below a method i1s used for verforming
a computer-assisted evaluation of Poisson's ratio in the plane
perpendicular to an arbitrary direction of applied stress. A
direct use of the tensor transformation law of équation .10
1s made and thus there is no need to invoke the special
procedures developed for particular symmeiries, mentioned above.
An appnlication of this method to arsenic, antimony and bisputh
has already been made (Gunton and Saunders, 1972).

Crystal stavility conditions impose limits on
Poisson's ratio. Those which apply to isotropic media are well-
known: any experimental value must lie between -1 and + 4. (See,
for example, Southwell 1941). In practice, no material is
known which has a negative value of ¥ (which would mean that a
longitudinal expansion was accompanied by a lateral cxpansion)
when it is in a polycrystalline form . Ledbetter (1973) has

discussed the meaning of the limits for central-force crystais.
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No previous work has been published concerning the limiting
values of Poisson's ratio for anisotropic media. A method for
deriving these limits for single crystals will be described,
based on the stability criteria of Born. This in itself is of
interest in the study of the elastic behaviour of solids in
seneral, but the prime object of this work has been to
investigate the way in which the Polsson's ratio of indiuwm-
thailium alloy single crystals varies in the vicinity ci fne
vinase btransition, and to compare the actual values {or this
ratio wilth calculated limiting ones lo gain insight into the
nature of the elastic instability that exists at the phase

transition.

6.2 Evaluation of Poilsson's ratio for single crystals

The generalised form of Hooke's law is

€5 % i %k

A A . L.
where ¢ and o are the strain and stress tensors respectively.
For tetragonal crystals belonging to the Laue group TI, which

includes thne point group of interest here, the elastic compliance

tensor components sijkl can be written 1n matrix notation as
‘ 5 s 0 0 0
11 T12 T4
X ) o 0 0
12 M 1 ©
3 D ] ) 0 0
1 1% T3s S
522 (6.3

0 0 ] 5 g

D L;, 4 U 0
0 0 O 5

0 Ly 0
O (J ; O O [ R

) o6 /
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Poisson's ratio relates lateral strain to longitudinal strain
as a result of a longitudinal stress. This ratio is thus

€ ./¢. ., and from equation 6.2 we can write
337 Cid '

J€.. = S8 ../ 8 o =

ii’ i jjii ii 1iii ii Z33ii

S.....

/ 1iii
(6.4)

Since a positive longitudinal strain is always accompanied by

a negative lateral strain for isotropic materials, Poisson's

ratio is defined as - S.... /5
jjii

values which are positive for such materials. However, in

.... 50 as to give practical
1111 :

single crystals the ratio has values which depend on the

directions of the strains, and both positive and negative

1 L t
values can be found, For an arbitrary set of axesx , y , 2z ,

] . 1
iij3 /"

iiii !
« To calculate ij, the

t
Poisson's ratio (l/.lj ) can be written as =~ S

using the fact that Sijkl = bklij

tensor transformation law must be used to obtain the primed

compliances from the unprimed ones. IBquation 3.16 is rewritten

here: .

a) z o
Sijkl aimajnakpalqunpq (2.10)

]
Let the transformed axes be defined as follows. Let the x axis

be in the direction of applied stress to produce the longitudinal

1 |
strain. Then y and z will be in the plane perpendicular to .

1 ]
Cx . 1If V12 is considered, it i1s then necessary to evaluate

1 !
- 512-/511 (using the contracted subscript notation) for

t |
various orientations of y in its plane. Note that 511 has a

constant value for a given direction of applied stress. The
method outlined by Turley and sines (1971) has been used to
calculate the direction cosines, relative to the conventional

1 .
crystal axes, of the y axis as a function of the angle it makes



with the meridianal tangent for the plane. [From the angles as
delined in figure 6.1 the direction cosines are
A B C

[aij} = DcosS - Esin® Fcos8 - Gsind Hcosé (6.5)

Dsin® + Ecos$ Fsind + Gcos$ Hsin

where A = cos¥cos/f E = ~sinw
B = sinxcos g P = -sinxsing
C = sin/g G = cosx
D = -cosxsing H = cosg

3ubstitution of values obtained from equation 6.5 into 3.16

leads  to the desired result. Equations for 811 and S1P for

tetraconal symmetry are given; cubic symmetry results follow as

a special case of those for tetragonal.

! it Lo . 2 2 ' 2 2.
Q — - « ] o) a 2 .
Siq = lag ra )8, v 2a a8, + a5 (1 d13 M5 *
b 2 2. 2 2 Lo
a,]'_5 S35 + a13 (‘I--a13 )544 +ay A, S66 {(6.5a)
sl L (ala? a2, a2 2 2 2y
Paa T 11 %21 12 %22 /711 21 Fq2 T B9 B2 P2

2, 2 2 2, 2 2. EER
* [aaz (815 + 3930 + a5 (a7 e a5 )] S13 % %oz 895 55y

* [a13a25(a12a22 * a11aawﬂ Sy * o852 1855,  (6.0V)

‘The form of equations 6.6 allows certain otaer primed

\

compliances to be calculated., Ior example, 532 can be found
<

by substituting a ay51 8, for a a a in equation

217 11 7127 993

Ul

6.6a, and so on.

i computer vrogramme has been prepared (ippendix III)
to perform these calculations as the angle & is varied from G
to 160”7, (The range 120° to %0° is identical to O to 1507
vecause of crystal symmetiry.} The programme required for input

data the unprimed elastic compliance constants and the direction
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Figure 6.1 Transformation of axes.
The direction of x' is defined by
the angles X and £. The axis y'
1s perpendicular to x' and is at
an angle § to a line, also perp-
endicular to x', which lies in the
plane containing x' and 2.
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cosines of the line perpendicular to the plane in wnich the

variation of Poisson's ratio was sought.

be% Qepresentation of results

Unlike Young's modulus, the Poisson's ratio cannot
be reoresented by a three-dimensional surface, because two
directions are needed to specify its value. A convenient
representation is to plot the angular dependence of the ratio
for a given plane Superimposed on a standard projection outo
a suitable crystallographic plane. The centre of thé plot
coincides with the point on the standard projection which
represents the plane perpendicular. 1In figure 6.2 is givern,
by way of illustration, the result for bismuth (Gunton and
Saunders, 1972) in which a projection onto the (C01) plane has
been used. Bismuth has trigonal RI symmetry, with the [001]
direction being one of three-{fold rotational symmetry.
Consequently figure 6.2 is three-fold symmetric asbout the point
representing [bOﬂ . It is interesting to note that negative
values are found. A 120° sector would be sufficient in this
case to represent completely the Poisson's ratio behviour; a
1800 sector has been used to show up more clearly the diifercnce
between the +y and -~y axes. [or tetragonal symmetrics only =
450 sector 15 required, while an even smaller section of the
stereosraphic projection is needed for a cubic system. But in
the diaprams given for indium-thallium alloys a 450 saector nas

been used throughout to ease comparison by inspection.
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~ Phd

Figure 6.2 Poisson's ratio
variation in bismuth shown on a stereo-
graphic projection onto the (001) plane.

The x, y and z axes are represented by the
points at the centre of diagrams C, A and O,
respectively. B' represents -y.
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6.4  Application to the indium-thallium alloys

The variation of Poisson's ratio has been investiggted
in planes perpendicular to a number of directions in indium-
thallium alloys of both the cubic and tetragonal forms. The
directions chosen were fairly evenly distributed over the
quadrant of the stereographic projection onto the xy plane
bounded by the x and y axes; they included the three crystall—
ographic axes and directions midway between. them. The
calculations were performed using room-temperature values_of
the elastic compliance data of indium and of the tetragoral
alloys containing 11.5 and 15 at.% thallium. In this way the
Poisson's ratio variation could be studied as the phase boundéry
was approached from the tetragonal side, using composition as
the variavble. In addition,; the behaviour of Poisson's ratio
of a cubic alloy of composition In-27 at.% Tl was determined
at 290K and at 200K and 125K, so as to enable an approach to
the phase boundary from the cubic side to be studied. Elastic
compliance data were taken from Table 5.1 and figure 5.8 for
the alloys, and from Chandresekhar and Rayne (1961) for indiuﬁ.
The results of the calculations are shown in figures 6.3 to 6.6,

several trends can be seen when the curves are
compared. Addition of thallium to indium results in a reduction
of the axial ratio, and an overall decrease in the anisotropy

of the elastic constants, as the cubic phase is approached.

Thus \011 - 033) and (511 - 533) both decrease towards zera,
as c - ) S - 5. ). Conse Sl e diagrams
as do ( 12 C13/ and (512 13) onsequently, tle diagrams

for the tetragonal alloys reflect this trend, and the curves
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J

Poisson's ratio variation in indium. The

diagrams are shown guperimposed on a atandaxd
projection onto the (001) plane. Direction

cosines fér the diagrams-shown are: A (0,1,0);

B (0,282,0.925,0); C (0.707,0.707,0); D (G,0.707,
0.707); E (0.5,0.5,0.,707); F (0,0.925,0.2382);

G (0,0.282,0.925); B (0.354,0,354,0.866); J (0,0,1).




J

Figure b.4 Poisson's ratio variation in In-11.5 nt.% Tl.
The direction cosines for the variocus diagrams
are as given in figure 6.3 '
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J
Figure 6.5 Poisson's ratio variation in In-15 at.¥% TL.
The direction cosines for the various diagrams
are as given in figure 6.3
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290 valve

i = 25K value

J The direction
cosines Ifor the
various diagrams
are -@s in -figure
6.% An

Figure 6.6 Poisson's ratio variation for :

In-27 at.¥% T1 at 290K and at 125K,

Where only the solid curve is shown it is
because the values for 125K are indistinguish-
able on this scale from those for 290K.
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centred on the DOO] and @10] positions become more nearly‘
circular until, in the case of the cubic In-27at.% T1 alloy,
they are truly circular, and are identical to the curve centred
on [001], by symmetry of tne point group. A similar decrease
in anisotrony can be seen 1n the curves labelled B on each
figure. But there are some curves in which another effect can
be seen. In curves C, D and I there is a marked increase in
anisotropy, particularly in ¢, which is centred on the [110]
position. The effect can be seen both as a function of
composition, in figures 6.3 to 6.5, and of temperature, as in
figure 6.6 . In both cases the increase
accompanies the approach to the phase boundary. DNow it is in
the {110} planes that the two shears occur which can be
considered to be the basis of the mechanism of the transition
(Bowles et al., 1950; Burkart and Read, 195%), and it is in
just these planes that the largest anisotropy of Poisson's
ratio is found. However, this fact 1s not of primary
importance when relating the Poisson's ratio behaviour to the
mechanism of the phase transition, for a similar form of
anisotropy 1is found-in arsenic (Gunton and Saunders, 1972).
figure 6.7 shows the stereographic projection onto the xy plane
for that element with the Poisson's ratio curvés superimposed
on it. The form of the variation for all directions of
longitudinal strain in the xy plane is similar to that for the
[110] direction in indium-thallium alloys, although the slip
and cleavage properties of arsenic (slip and cleavage plane (001),
no preferred slip direction) are very different from the alloyao,
in which no cleavage occurs and slip takes place on {110}

planes, <Consequently, before the variation of Poisson's ratio



Figure 6.7

_ Polsson's ratio variation in .

arsenic. The diagrams are shown
superimposed on the standard
projection onto the (001) plane.

C, A and O are centred on the

X, ¥ and z axes respectively.
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with orientation, alloy composition and temperature can be
satisfactorily related to the mechanism of the phase transition,
it is necessary to consider the limits on that ratio set by
crystal stability conditions; the next section is devoted to an
analysis of those limits. In section 6.6 the results of thg

present section will be compared with the limiting values.

6.5 Stability limits on Poisson's ratio

The requirement that the strain energy density be
positive definite for lattice stability implies that the bulk
modulus K and the shear modulus G must be positive quantities.
f'or an isotropic material, K and G are related to Young's

modulus E and Poisson's ratio v by

K = oo (6.78)
) -

L

and G = ST Y (6.70)

Thus the stability conditions that K and G are both greater
than zero set the two well-known limits of 0.5 and -1.0 on
Poisson's ratio. Treating now the isotroric material as a
s5pecial case of an anisotropic medium, we can derive the
upper limit by substituting the appropriate equalities between

the elastic comnlianc stant 5. =5__=5__; 50 . )
a nliance con 5 ( 11555 UBB’ 515 15223

for an isotropic medium in the gencral expression for

~

compressibility (equation 7.19

4 <
_ n _ + o 4o S = ; el
ﬁ = ¢ = S D, B a(s + 5 _ + 8 j) > 0
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also, for an isotropic solid 844 equals 2(811-512), so that

a5 . 1

v 2 0

12

i.e. V > =1

A value of Poisson's ratio of %4 would be found in an
incompressible fluid (B = 0), as may be seen quite easily by
considering a cylindrical element of fluid of length 1 and
radius r. Its volume V is equal to Wrzl. If the length and
radius become 1l+dl and r+dr, respectively, then for conservation
otf volume dV = 2rrldr + Wrzdl = 0. Whence -(dr/r) /(d1/1) = 3,
as required., A fluid cannot support shear. The other limit of
- 1 occurs when the shear modulus G 1s infinite, as can be seen
from equation 6.7(b).

To extend the derivation of the stability limits to
an ausisotropic medium, such as a single crystal, the volume
compressibility conditilon can be used as a starting point, but
not tne shear modulus cne directly, since the latter does not

in gencral involve S or

11 512, and we turn instead to the Born

stavility criteria discussed in section Z.4.2 . 1t will ve
shown that a positive definile shear modulus for isotropic
materials follows as a speclal case of the more general
expreszion derived for anisotropic media.

ror a homogeneous deformation the enerpgy density can
be written in matrix notation as %stij(yi(r‘ and 15 positive
definite if the determinants of the principal minc>s of the
matrix of compliances Sij ure all positive. OSeveral criteria
for stavility result, including the condition that 511822> .'31

the one of relevance here. The stability criteria hiave the

2
2 k]
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same form whatever axial set is used; therefore, for components

| t ]
referred to the set x , y , 2 we have

] L |2 (6 8)
519 520 > 545 .

and, since the bulk modulus is invariant under a general

transformation of axes,

1 t

] t t
S11 + 522 + S33 + 2(512 + & + 3 )> 0 (6.9)

1 1)
Before the limits on the ratio - 812/511 can be calculated
it is necessary to rewrite the conditions 6.8 and 6.9 in a form
which enables this ratio to be varied (or, equivalently, for

512 to be varied, keeping 51; fixed) independently of the
other compliances until the limits of the inequality are reached.
(As the equations stand at present this may not be possible
because the six terms involved are not necessarily independent

of each other, and a change in one of them may well imply a
change in another.) A suitable form for equations 6.8 and 6.9

is one in which all the compliances involved are independent;

in the most general transformation 21 compliance constants can

be non-zero, but the number of independent components -—— as
determined by the Laue group — remains unaltered. For example,
in the fct indium-thallium alloys there are always six
independent Si;’ but these need not have the same subscripts

as those which apply when the normal crystallographic set OJ-c.1

is used. Subject to certain restrictions for special cases of
the axial transformations, we are free to choose any six
components as the independent ones. But when a stress is

applied along a symmetry direction a special case arises and

1
all six compliances Sij in condition 6.9 are not independent.
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‘'he method used to find the relationship between any particular
dependent component and the six chosen independent ones is ;iven,
topetner with considerations governing the choice of independent
components f{or special cases, in Appendix II. It is sufficient
to note here that a set which is suitable under some conditions

1 t ] ¥ 1 1

IR o « €« &) » m 3 o€ =
811, 100 Spzr Sapn Sy and Sgg - (That which follows

will be written in terms of this setl, but the method can be

is

readily applied to any other set.) In equation 6.9 there are
] 1
now two dependent terms (313 and S, ) whose dependence on

the set of six must be found. We write

— [ g g o [ 2
513 = f1911 + f2b12 + f3823 + fLi_u33 + f5u44 + f6°55
Y ' ™~ ' ' ' ' - ' '
Sap T B4Bqq T ERSqn t B850t BYSg b 855, * BgSog
(6.10)

where fi and g, are coefficients determined by the
methods of the Appendix. The inequality 6.9 then bLecomes

1 t 1]
(1+g1+2f1>s11 + (2+g2+2f2)812 + (2+g3+213)b23

+(1+gq+2f4)s + (g5+2f5)s44 + (g6+gf )s5 0 (6.11)

33
Lince these compliances are independent, and noting that
t

!
511> 0, we can transform the inequality by dividing by 511

and rearranging, to give

1
V(2+52+2f9) < (1+g1+2f1) + . [(2+g3+2f7)82" + (1+84+21 )5
2 )

541 22
]
+ (g_+2f_)S + ( +df -
SR T 59]
.12)
Equation G.12 is of the form uk1<‘k2 and hence ”:kg/lﬁ ) ifl@ﬁ 0
or y> kz/k,] y if k1< 0.

In this way the condition thnat the bulk modulus must be
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positive definite leads to ceither an upper or a lower limit —

depending on the sign of (2+g +2f2) — on the Poisson's ratio

2
in a crystal of tetragonal TI symmetry.

The Born stability criterion 6.8 becomes

' ' ' ' ' ' 12

1]
511(g1u11 *By5,, 33523 + g4533 + g5844 + g6555)> 512

t

or, dividing by 511

and rearranging
2 i ! ' ' ' (6 )
TV m BV v By v g (BsSp5t £y Syn BoS), ¢ 855 > O (0212)

Setting the LH3 of 6.13 to zero and solving for y we obtain

two limits between which the inequality is true; the existence
of the negative coefficient of v2 ensures that the solutions
define a finite range.

Thus an upper and lower limit is set by the Born
stability criteria, and either an upper or a lower limit by
the requirement that the volume compressibility be positive
definite. From these the two limits that obtain in practice
may readily be found.

For the isotropic case g, = 13 g2=33=g4=35=g6=0, “and
either f =1 or f3=1 while the other f.  are zero. Then 6.13
becomes —1/2 + 1> 0 , which results in -1< v<+1, while 6.12
leads to #4Vv<2 or V< #: the limits are thus =1<¥ % in
practice.

One further consideration, which affects the
applicabitity of equation 6.12 needs to be discussed. For a
particular orthogonal axial system the numerical values of fi
and 8 depend upon the particular set of independent compliances
chosen. But because A is an invariant the LHS of inequality

6.11 must remain unaltered by this choice. Consider the case
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] ]
in wnicnh S., replaces &
66 P V55
L]

1)
g, are replaced by f. and g;» and 6.11 becomes

©

in the chosen independent set; fi and

' ]
(1+g1+2f1)511 3

1 1 v ] 1
+ (2+g2+2f2)812 + (2+g3+2f3)82

+ (1+g4+2f4)535 + (35+2f5)s44 + (g6+2f6)s66 >0 (6.14)

The limiting value of V as determined by this inequality (with
one set of independent compliances) will differ from that given

by 6.11 (using another set) unless (2+g2+2f2) is equal to

1
(2+gz4-2f2). Consequently the axial sets for which the limit

is defined by this method are restricted to those in which any
alteration in those compliances taken as independent does not

1
affect tne overall dependence of the terms in 6.9 on S For

12 °
the cubic and tetragonal symmetries this means that the limits,
as defined by this method, can be calculated along crystallo=-

graphic axes and midway between them,

6.6  Limits for the indium-thallium alloys

The calculation of the limits requires a knowledge
of the independent clastic constants for the axial set under
consideration, and the way in which the other depencdent ones
thhat enter into the calculation do, in fact, depend on then.
The 1ndependent constants for the various orientations
considered in the cublc and tetragonal systems are given in
Table 3.2 . The relations between dependent and independent
constants for the tetrapgonal system are of a simpler form
than those for the cubic, and it was possible to find the

relations by direct inspection, although the procedures given
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Table 6,2

Relationships between elastic compliances for various axial

configurati

ONSe.

(The directions of x' and y' are expressed

relative to the conventional crystallographic axes.)

Tetragonal

Direction Direction Independent Dependent
of x!' of y! compliances compliances
[01d 5199592159305 550 810056 | 8pp94q5 5557544
[100] 011] 513'312’525’525'544'56é 533=u2é; s1é=s1é
c e 7 oo bt ! ‘o Mo . o Pt !
[001] 8191522959398 929850855 | 83375453 5,578,
’ [P} ’ LA A T AR
[001] 5111522512151 30 840805 | S35 55375,
Y o~ FAel I [ P 1 - / . _o o 1]
[110] 0[11d 5110512051305 3305400566 | 52275443 5375,
45" to[001] S1105121523952208440866 | S5375557 8457545
c o e ! / ‘g ! a _o L
[oo1] any 5190592052505 330 500 5¢g | 5557558 S93=8,,
Cubic
Direction Direction Independent . *
of x' of y! compliances Dependent compliances
oL L a ! o_ fLoe 1 e ! -
019 & [001] S44154215¢¢ S15 = 5453 855 = 8,5
855 = 8,53 855 = 84y
J
100 ! = 5 . ‘o !
[r00] ) L 813 S12’/ 522 Y
011 S . 5 = g’ G
(011 S11184208¢5 | Sap = B(S80) af”qb
o 4 < qQ -
Yoz T F(E04%8,,) = % 5g¢
7 _'/ . ‘/ _ C"
: o, 33 = 9917 Saz = Sqp
001 S S =5 -1
. 51051205 13 = S99 7 ¥ ,
[ ~ _a ! I
Spp = 2549 = 845 = 28,
7/ 4 7/ ’
S = 8 S =S
, 12 127 Tae2 33
110]  [45° tof00r 5.8 5 = 1ts!. =18’ - 1a/
bao] s tolool | syqa8508,, | 85 sy, %751% B h
Sy = =E8L, FIR8), v3sy,,
- / o ’ o _ ]
] ., o2 T P11t Pz T s
110 5 - B 7 - 'w ~ ¢ - S /—
[ S110°12'%66 | 595 LACIPLEIY f 66
7 . o ! or o - ’
S5x = (81448050 + 35

* The dependent compliances given are those required by equation 6.9
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in sppendix II have been used to check the results.

The results of the limits calculations are given in
Table 6.% for indium, for the 11.5 and 15 at.% Tl tetragonal
alloys and for the 27 at.% Tl cubic one. DBoth the upéer and
lower limits, together with the value of Poisson's rétio
calculated from the Sij are listed for longitudinal stra;n
directions in the (001), (100) and (110) planes.

Consider first the cubic alloy. Table 6.3(d) shows
the variation of y and of its limiting value as the phase
transition is approached. In the plane normal to the [100]
direction the upper limit of 0.5 applies to all directions in
that plane, and it is an analytically determined one; that is,
it does not depend on the values of the elastic constants.

The lower limit in the (100) plane does depend on the elastic
constants; for the present case it does not differ appreciavly
from -1.0. 1In this plane the Poisson's ratio can be seen to
be approaching tie upper limit at 125K, that is, at a
temperature very close to TC. In a direction of 450 to the
[OOﬂ in the (110) plane there is again an analytic upper limit
of 0.5, whereas the lower one 1s approaching zero at the phase
transition, and again the calculated value of ¥ is tending to
its upper limit at 125K. A& similar occurrence is secn in the
[001] direction in the (110) plane, although here it is the
lower limit of -1 which 1s an analytic one, while the upper
limit is not and has a value of nearly 2.0. But in the [17@
direction in this plane both the upper and lower limits tend
towards the same value ( -1 ) with the observed value of

sandwiched in between them. Thus at 125K we {ind -0.9306,
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Table 6.3

Comparison of the observed values of Poisson's ratio with the

theoretical limits for indium and indium-thallium alloys

a) Indium (290K)

plane direction| upper | observed| lower

limit value limit

[001] 1.415 | 1.337 | -1.659

(110) | 45° to[007 | 0.519| o0.4k1 | -0.881
(179 | -0.298 | -0.453 -1

[001] 0.716 | 0.673 |-1.,180

(100) [011] 0.510 | 0.470 [-0.719
[010] 0.243 | 0.26k -1

x-y plane | C.514 | 0.486 |-0.848

(001) [11d 0.514 | 0.486 |-0.603

x-y plane | CG.514 | 0.486 |-0.848

b) Indium-11.5 at.% Thallium (290K)

plane direction| upper | observed| lower

limit value limit

[001] T.324 | 1.321 -1.660

(110) 45° to007 | 0.528 | 0.453 |-0.855
[17¢) |-0.265 | -0.416 -1

[001] 0.567 | 0.536 |-1.058

{100) (011 0.511 | 0.481 ~0.621
[010] 0.487 | 0.425 ~1

X~y plane | 0.507 | 0.480 {-0.946

(001) [110} 0.507 | 0.430 |-G.603

x-y plane | 0.507 | 0.430 |-0.946
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Table 6.% (continued)

¢) Indium=15 at.% thallium (290K)

plane direction| upper |observed| lower

limit value limit

[co1] 1,481 | 1,417 |=1.714

(110) 45° tofood] | 0.526 | 2.461  |-0.80%
(119 [-0.523 | 0,494 -1

[o01] 0.509 | 0.489 |-1.006

(100) [011) 0.511 | 0.437 |-0.799
[010] 0.527 | 0.h85 -1

Xx-y plane | 0,505 | 0.482 ~0.994

(001) [110] 0.504 | 0.482 |-0,584

X~y plane | 0.505 | 0.482 -0.994

d) Indium-27 at.% thallium

temperature plane direction| upper | observed] lower
limit value limit
[001] 1.788 | 1.757 -1
(110) 45° to[001] | 0.5 G485 | -0.179
290K (179] [=0.767 | ~0.787 |-0.928
[001] 0.5 0.496 -1
(100) [011] 0.5 0496 | -1.02
(010} 0.5 0.496 -1
Do1] | 1.946 | 1.937 -1
00K (110) 45°% tofooq) | 0.5 0.496 | -0.057
(179 -0.934 { -0.945 |-0,982
(100} all 0.5 0.499 -1
[001] 1.988 | 1.986 -1
. (110) 45° t0[001) | 0.5 0.499 | -0.014
' [170]  |-06.986 [ -0.988 |-0.996
(100) all | 0.5 0.50 -1
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—0.988 and -0.996 as the upper limit, calculated value and
lower limit, resvectively.

"he tetragonal alloys show & similar, although less
narked, trend in the approach of Poisson's ratio towards its
limit as the thallium content increases and the phase boundary
is approached. The proximity of the phase boundary is still
not —articularly close at room temperature, even for the 15
at.% 'L composition, and so the values calculated for v are
not very near to their limits. But because of the problens
associated with the srowth of a single crystal in the tetragonal
{form containing more than about 15 at.% TLl, it has not beoh
possible to obtain information at room temperature any closer
o thie boundary.

The upper and lower limits on Poisson's ratio
correspond to the value of the strain energy density U passing
tarough zero; for stability U sust be positive definite.

‘nere are two ways in which U can become negative. ‘When thne
volume compressibility is zero, the bBulk modulus is infinite,
fiowv the bulk modulus K can be related directly to the strain
ener:y density, throupgh (see, for example, Kittel,196G)

D
U = =K§° (6.15)

in which 3§ =€__ =

€ =€ ~ive ¢ i Torm di i . he
117%2% S22 to #ive a uniform dilation The

compressibility B is just the inverse of K, so that if 8 passes
throurh zero then K, and consequently U, changes from +o to -0 ,
and tnere 15 a singularity. ‘fhis corresponds to violation of
thic wener limiting condition on V. Ln the other hand, when

the Born stability criteria are violated, U can chanpge from

positive to negubtive without the singularity, because U can
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] i t 1
Soo 7 52

whereas in the first case U-o0 as K+~0. 1t can be seen,

tend to zero as, for example, ( 2) tends to zero,

511
therefore, that in the direction in the alloys corresponding
to the shear responsible for the phase transition, and only in
this direction, does the observed Poisson's ratio approach Fhe
limiting value set by instability of the second kind. It is
interesting to note that in this particular direction it is
also very close to its upper limit, and consequently the raﬁgé
of y for which stability exists is very small.

An analysis of instability associated with the
martensitic transformations seen in Li, Na and gCuZn has
recently been made by Clapp (1973) using a somewhat different
method. He has calculated the surface in strain gpace for
which the Born stability criteria are violated. This calculation
uses the third order elastic constants. He finds that the
strain required to produce instability has a minimum value (of
2%%) in the [11ﬂ direction for the three materials he
considered: this is just the direction of shear required to
cause the transformation fcc to bcec which is seen in those
materials. Clapp then proceeds to identify this form of
instability with a mechanism of nucleation of a martensitic
transformation, and points out that if there are regions
within a crystal in which there is a stress-free strain of
the appropriate type then near-instability can occur and
lattice vibrations will be of a much lower frequency and
larger amplitude than in the bulk. He thus suggests a
localised soft-mode theory for nucleation in these particuiar

martensites.
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6o7 Conclusion

It has been shown that as the martensitic transition
in indium-thallium alloys is approached, the value of Poisson's
ratio in various directions tends towards one of its limiting
values. The value of this ratio in the shear plane, in the
direction in which the shear occurs which is responsible for
the transformation, tends to the lower limit, set by the Born
stability criteria. This i1s consistent with a result obtained
for other martensitic transformations using a different method.
Both results are also consistent with a soft-mode mechaniem

for martensitic transitions.



CHAPTER 7

AN  APPLICATION OF THE OPTIMISED MODEL

POTENTIAL THEORY TO CALCULATION OF PHONON

DISPERSION CURVES FOR INDIUM - THALLIUM

ALLOYS
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Introduction

Theories of metals have been 1n existence for a long
time, from the early work of Drude (1900) . The
optimised model potential theory represents one of the latest
in a series of developments based on pseudopotential theory
(Phillips and Kleinman, 1959; Cohen and Heine, 1961; Austin et
al., 1962), in which pseudo-wavefunctions were made up of a
sum of valence and core electron states. The first model
potential was introduced by Heine and Abarenkov (1964,1365): -
any potential which could be adjusted so as to reproduce the
observed energy eigenstates could be considered as a possible
model potential. Further work by Animalu and Heine (1965) and
by Animalu (1965) extended the theory to a form in which it
could be applied to a set of 3% 'simple' elements (elements for
which the small-core approximation is valid). Shaw and
llarrison (1967) reformulated it, and Shaw (1968,19563a) optimised
it to remove some of the arbitrariness in the settine up of a
potential which had existed hitherto. It is Shaw's formulétibn
which has been applied here to indium-thallium alloys.

Once a potential has been set up it is possible, in
principle, to calculate any atomic or electyonic property for
a metal. Band structure calculations, both on metals and on
semliconductors, have been performed, together with computations
of electrical resistivity and of totél energy (leading to a
determination of stable crystal structures).

Llastic constants, too, can be calculated. One



- 158 -~

method is to find the second derivatives of the total energy
with respect to strain, as Cousins (1970) has done for the
hexagonal metals Be, Mg, Zn and Cd; an alternative approach is
from the evaluation of phonon dispersion curves.

Very little work has been reported so far for
applications of model potential methods to alloys. Inglesfield
(1969), using the pseudopotential formalism, has described the
evaluation of total energy for an alloy in terms of an alloying
potential, and also (Inglesfield, 1972) has developed a method
for solution of the Schroedinger equation for an impurity.inl
a host lattice. The latter method he has applied to a
calculation of the density of states for Mg in Li and Al in Li.
Clark and Dawber (1972) give a method for an alloy which
requires the density of states functions for the pure metals..
Matsuo, Kogachi and Katada have variously applied the Animalu
(1966) pseudopotential to alloys of In-Mg, Al-Mg (Kogachi and
Matsuo, 1971) and In-Tl (Matsuo and Katada, 1973) to try to
account for their observed structures. No previous work has
been published for calculations of phonon dispersion relations
for alloys by the model potential method.

In this chapter we extend the methods of Shaw (1968,
1968a) to computation of the optimised model potential and
average energy-wavenumber characteristics for random indium-
thallium alloys of up to 35 at.j% T1l, and use the procedures
outlined by Harrison (1966) to calculate the phonon dispersion
curves for these materials. In section 7.1 is given a brief
account of the theory underlying the setting up of a potential,

together with an explanation of the necessary nomenclature, in
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order that the application to random alloys can be discussed in
the following sections.

The object of the calculations has been to see
whether a lattice softening, thought to be the mechanism of the
martensitic transformation in these alloys, can be predicted
from basic atomic and lattice parameters within the context of
a harmonic model, (which is of limited applicability
close to a soft mode instability). We shall also discuss
briefly the stability problém encountered in indium by several

workers, and which this study, too, has brought to light.

In view of the necessary intermixing of established
ideas and new ones in this chapter, a short description of what
is original to the present work and what is not might be useful.
The optimised model potential theory for metallic clements is
due to Shaw (1968,1968a). The application to alloys of the
pseudopotential formalism has been given in outline by
Inglesfield (1969); a similar method can be used for model
potentials, but the details of the calculation of energy-
wavenumber characteristics differ. The evaluation of alloy
energy-wavenumber characteristics (whether screened or not)
from optimised model potentials has not been reported else-
where, nor has the calculation of phonon dispersion curves for
alloys by this method. The simplification of the ~xpression
for band-structure energy change, described in section 7.4.2
is also not mentioned elsewhere, although Finnis (private

communication, 1973) has independently derived a similar result.
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7el Cptimised Model Potential theory

7ele Introduction

The object in any model potential theory is to over-
come the problems associated with the deep potential well in
the vicinity of the positive ion core of a metal atowm. Because
the well is deep and its form is not known exactly it is nét
possible to perform calculations of electronic and atomic
properties of the metal using standard perturbation methods.

The equation which would have to be golved is

(T+V+V Yy = E V> (7.1)

which applies to an electron of wavevector k moving througn a
periodic lattice potential V., The electron wavefunction islwg>
and the energy eigenvalue required is Ek' Ve is a self-
consistent potential due to all the other electrons. In writing
equation 7.1 certain simplifying assumptions are implied, which
will be described in more detail below, but it is still not
easy to solve on account of the strong potential V.

To overcome that problem the real potential V is
replaced by a model potential W; real wavefunctionst;k) become

model wavefunctions'bla , and equation 7.1 becomes
' Xy = E . .2,
(T WED + VXS B X, ) (7.2)

Although the real and model wavefunctions are different, it is
always possible to obtain W such that the real energy eigen-
values are preserved, and then,)ck> can be related to Pyk>.

The advantage of equation 7.2 is that W is a weak potential, so

that it can be treated as a perturbation on the free electron
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potential, and calculations based on it can proceed. Tigure
7.1{a) shows diagrammatically the relation between the real

and model wavefunctions and potentials,

7ela2 Approximations

i)  The small-core approximation

The small~-core approximation means that overlap of
ion core potentials is neglected. From a practical viewpoint
this limits the applicability of the theory to so-called 'simple’
metals, such as the alkalis and simple polyvalent metals. The
theory does not apply to transition metals as it is presented
here; overlap of core d-states occurs in such metals, and other
methods have been tried for calculations of transition metal

properties. (See, for example, Heine (1969).)

ii) 5elf-consistent field approximation

The assumption is made thal any electron movesiin
a field due both to the other electrons and to the positive
ions. But the arrangement of the electrons is itself causing
part of that field. Thus any calculation of the screening of
a positive charge by the electrons must be carried out in a
self-consistent manner to allow for this interdependence.

1ii) Perturbation theory

The model potential is assumed to be weuk so that
a perturbation expansion will converge. <Calculations are

rarely carried beyond second order.
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Enargy-WavaFunchan

EnQr‘gy - wavetunclion

Ener‘gy- wave Funclion

V() ©)

Figure 7.1 Schematic diagrams of various forms of model
potential and model wavefunctions.
(a) A general form, showing the replacement of the
' deep potential V by a shallow one V.
(b) The form used by Heine and Abarenkov.
(0) The optimised form of Shaw.
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7ele? Construction of a potential

Before discussing the optimised model potential of
S5haw, which forms the basis of the work to be described, we
turn to the earlier ideas of Heine and Abarenkov (1965), to be
referred to as HA., HA used as £heir model a potential W which
varied as -Z/r beyond a model radius T from the ion centre,
and which had a constant value of A, for r<:rm. Z was the

1

valency of the ion in question, and A, could be adjusted to

1
give the energy eigenvalues required. ¥Zach orbital angular
momentum quantum number 1 required a different value of A, and

in the HA model 1 values up to cowere thought to be necessary.

The HA model can be written as

vV o= - ZAI(E) P r<r
1 m (7.3)
Z
= - T r> I‘m ,

which applies to a bare 1on core of charge %Z; the potential

due to conduction electrons must be added to this. P1 is a

projection operator which, when operating on the model wave-
function, picks out the component of the wavefunction corres-

ponding to the 1 value in question.' Al 15 adjusted to give the

spectroscopically observed energy levels; since it is the
electrons near the fermi level which are excited, the values of

A. are evaluated at E =E

1 Kk 7
When the model potential for a metal is rquired, as
distinct from a bare ion, the Schroedinger equation to consider

is

(T + }i':vi F VoY = E v, (7.4)

for the real wavefunctions, in which v, are the self-consistent

ion potentials, and
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(T *Z"’i + v )[>ok7 = Ek[)ék7 (7.5)
1

for the model wavefunctions. In both cases Ve includes the
interaction of all conduction electrons with the single electron
described by equation 7.2 . When many ions and electrons are
brought together to form a metal there is a reduction in the
energy, and a cohesive energy can be defined. Shaw (19658,1968a)
describes how the energy at which the model parameters must now
be evaluated is the fermi energy relative to the free ion.
Methods of calculating this energy will be given later.

Shaw (1968,1968a) made two important modifications
to the HA model. The first concerned the modelling of Al(E)
for all 1, from zero to infinity. 7The second had a bearing on
the choice of model radius R, .

M
For 1> 2 HA set A equal to AZ' as there were

1

essentially no spectroscopic term values for calculating these
well depths. However, there is no need to include 1> 2 at all,
or, more correctly’for 1 greater than the value 1O for which
there are core states in the ion in question, For example, in
indiun lO = 2, whereas in aluminium lO = 1 and in sodium lO = 0,
This is because the lowest eigenstate will have no nodes, and
any others will have nodes outside the core. Hence the potential
near the core due to these states will be weak already, and so
one of the main reasons for needing a model, the strong
potential near the core, will not apply in these cases.

The model radius of HA was a fixed distance: Shaw
allowed this quantity to depend on energy, and also to vary for

each 1 value required. Thus the new model radius could be

written as Rl(E), and the unscreened model potential for a
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single ion can now be written as

o

wy = vb(r) - %;g B(Rl—r){Al(E) + vb(r)}Pl (7.6)

. (1, r>0
w1th9(r)_{0' £<O

If the values fronm lo+1 to 00 are considered, then the effect
of these can be shown (Shaw (1968a)) to be at least 2 orders
smaller than for those up to 10, Hence the bare ion potential
can be approximated, with an error which is known to be small,

lO Z
-1Z=09(R1 - r)[Al - r]Pl . (7.7)

as w. =
0

e BTN

The criterion used for optimisation of the parameters
is to look for the smoothest wavefunction possible which
is nodeless within the core, as suggested by Cohen and Heine

(1961). The extra parameter introduced, R., turns out to

l’

depend on A so that no new variable is introduced by Shaw's

19

modifications. The optimisation conditions are

Al(E)}Rl = - v (R)
(7.8)
bAl - 0

Shaw has shown that these conditions are equivalent, so that
if the assumption is made that vb(r) is equal to «Z/r outside

the core, the optimisation condition can be written as

A (E) = Z/R
1 R,

. (7.9)

The procedure for calculating optimised parameters for specific

metals will be given in section 7.2 .

This completes our description, given in ocutline only,

of the optimised model potential. There still remains much

numerical work and computation to be done before functions
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based on 1t can be produced, and which enable calculation of
observable physical properties of a metal to be performed.

An important application, of relevance here, is the
calculation of phonon dispersion curves for a lattice. Such a
calculation provides a good test for a model, and considerable
effort has gone into the determination of lattice vibration
spectra in recent years, both from a theoretical and a practical
starting point. Pindor and Pynn (1969) have described a
calculation for hexagonhl crystals, and have applied it to
magnesium, while Shaw and Pynn (1969) have modified the comp-
utation to include the effects of exchange and correlation.

;hen such effects were included the experimentally determined
phonon dispersion curves were reproduced quite well.

Harrison (1966) has simplified some of the convergence
problems associated with the calculation, and it is his method
that has been used in the work to be described. The remainder
of this section is given to introducing and defining various
topics and functions which will be needed in the calculation

of phonon dispersion curves for the indium-thallium alloys.

7ol Contributions to the total energy

Three interactions are considered: the ion-ion (or
direct interaction), the electron~-ion (or indirect interaction),
the electron-electron interaction.

(i) The first, the ion-ion interaction depends only on the ion
separation, and not on their arrangement. It is thus a volume-
dependent term. The energy per ion can be written as

1
E, = —2—1\—12 vd(lri - rjl) (7.10)

i, i#)
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where Vd(r) is the energy of interaction of a pair of ions with
separation r.

(11) The electron-ion interaction depends not only on the
volume of the system but also on the arrangement of the ions.

Harrison (1966) gives the energy of the state k as

£2,2 +z (erg W )k Wl gy

E(k) = + (kWlk)
2m q (‘ha/am)(k2 - |5+3|)2

{(7.11)

and the prime indicates that q = O is ommitted. This
expression follows from a perturbation theory calculation taken
to second order. In the absence of the potential W equation
7117 would reduce to the free-electron result, and a spherical
fermi surface would ensue. The free-electron energy of the
perturbed system is represented by the first two terms of 7.11;
_the last term gives a contribution known as the band structure
energy, and it is this term which is affected by the ion
arrangement, |

(iii) Finally we come to the electron-electron interaction.
The effect of conduction electrons in the vicinity of an-ion
core is to reduce its inteructiqn with electrons furthef avay:
some of the positive charge is 'screened'. The result of the
screening is to modify the band structure enérgy. A screened
model potential is produced which takes into account the
effect of conduction electrons, and this then takes the place
of the unscreened potential in calculations performed for
a metal.

These interactions combine to give thiee terms in

the expression for total energy. The first is the free-
electron energy, the second is the band structure energy

and the third, known as the elecirostatic energy, arises from
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a combination of the ion-ion interaction energy, part.of the
electron-electron energy and the second term of equation 7.11.
The electrostatic energy can be considered as representing

the effect of positive ions in a 'sea' of negative charge.

Thus we may write the total energy as

Etot = bfe * bbs * hes ’ (7.12)

The essence of a calculation of lattice vibration properties
is in finding the way in which the total energy changes as the

result of an applied distortion to the lattice.

7.7.5 Decomposition of the matrix elements

If the model potential for a metal W consists of the
sum of potentials w centred on each of the N ion positions Ej’

then at r the potential is

N
Wir) = 5 wlz-r.i) . (7.13)
j=1 !

We can now write in full the matrix element (k+q|W(r)|k) ,
using equation 7.13 together with the expressions of which the
bra and ket vectors are abreviations.

<5+QlW(£)|5> = jl—1 Jé-1(5+9)-£ 2_w(|£_£ji)91£-£ aT

J
in which $l is the volume of the metal and the integration is

over all space. Multiplying and dividing the right hand side

by e j and rearranging, we have

£2-1§:-e-ig;£j Je—i(g+3).(£-£j)

X w(|xx | yelle(Zong) 4o

1 ~iger. 1 [ -i(k=-q).
—-Eje 4 £j - Jé 1(k-q) Ew(r)elb L ar
N4 7

.
T

Clera ¥ () 1KY

since (g-gj) has become a dummy variable. 'Qb = y the volume

per ion,
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The last equation can be written as

Cerafi]ky = sa)kralw|i (7.14)
in which .
s(a) = g o e Ty (7.15)
J ,
and Ckrqlwlky = :é Je_i(£+ﬂ)'£ w(g)eig'x dt (7.16)
o

The factorisation has produced two terms: one depends only on
the arrangement of the ions, and the other only on the
individual ion potential w. The former is called the STRUCTURE
FACTOR, and the latter is the FORM FACTOR,

The above analysis has assumed one type of ion present.
Let a vinary alloy have constituents A and B, and let the
fractionvof ions from element A be c. Let those of type A be
at positions Ti(a) ° and those of B at Lis)° Then equation

7.1% becomes

Wwir) = 2 wA(lg-g.l) + o2 wB(Ig-g.I)
. i ) i

1) 1B (7.17)
> {
Thus (kra WK = & 2 e '3 Ei creqlu’k)
- i(4) -
1 -1 . .
v o5 o2 TAeZ (keq v | kY

] -ig.r. A
= 5 2 e TEidkeqlv |k

P2 e TR keqwiant iy (7.18)
i(B)

Lguation 7.18 contains two sums; the first is over all ion
positions, while the secona is taken over all sites at which
there is an 1on of type B. 'he lattice over which the first
sum is taken is called the average lattice, and that for the
second sum is the difference lattice. There are thus two types

of structure and form factors involved. ‘hen ¢ is a wavenumber

-
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of the average lattice it is denoted by g, » and e 19°L = 1
at each ion position. Hence S(go) = 1, and equation 7.18
becomes, in this case,
Chra WKy = eQra lw'ky + (1-c)(keq IWolky - (7.19)
1f g is not on this lattice then S(g) = 0 and
(krq Wik) = S'(g)(5_+g|wB=wA|l(_> . (7.20)
For a random alloy the difference lattice is random, and

Harrison (1966) has shown that for such a lattice

1 » ¥ .
S (g) 5 (g) = c(=e)/N ; (7.21)
\ * ]
5§ (g) =8 (-q).
Because of its dependence on the type of ion(s)

present only, the form factor need only be computed once for a
mnetal or alloy. A calculation of any atomic property can then
proceed using a structure factor appropriate to the ion

arrangement under consideration.

7140 The energy-wavenumber characteristic

An important function in any calculation of metallic
properties is the energy-wavenumber characteristic. 1t gives
the contribution to the band-structure energy of the wavevector
q. The band-structure contribution to the energy of an electron
in state |k) is, from equation 7.11,

’

(B W] (kW] k+g)
B = >. 2 2 2 (7.22)
s q (h'/ 2mkk” - |§+g|)

The two matrix elements in the numerator can be decomposed as
described in section 7.7.5 to give an expression which consists

of a structure-dependent part, and a structure-independent part.
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Thus
Vi

Z 8" ()8 (q)¢k Iwl keq) (kg W] k)
E =
bs

(7.232)

. 2 -

5 h%2m) (k% - |k+g|)?
in which w is the unscreened bare ion model potential.
This equation may be rewritten as

’
*
By, = 2 5 (@85(Q)F(a) (7.24)

q

where F(g) is the energy-wavenumber characteristic; equation
7.2% is its defining relationship. Now the sum over g can be
changed to an integral over k provided that a factor g&g/8n3
is introduced. This represents the number of electrons which
occupy states in a unit volume of wavenumber space. Hence the

expression for F(q) becomes (for an element)
1
29 [ 5, (Ml

8m> (h%/am)(ka - |5+1I)2

The energy-wavenumber characteristic is based on the form factor
and, like that function, does not depend on the ion arrangement.
The general form of the energy-wavenumber characteristic is
shown in figure 7.2 ; of particular interest is the minimum
occurring at a point near to g = 2kf y called q e for at such
a wavenumber there is little contribution to the binding energy
from the band-structure part. It has been suggested (Heine and
Weaire, 1966) that elements assume a crystal structure such
that the principal reciprocal lattice vectors.avoid q,-

The form of equation 7.25 for alloys is similaer, but
it contains extra terms resulting from decomposition of the

alloy matrix elements.

7e1a? Lffective valency

It is useful at this stage to consider the effect of
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Figure 7.2 Schematic form of an energy-wavenumber

characteristic.



using a model wavefunction instead of the real wavefunction in
calculations involving the electron density. The electron

density is given Dby

a(r) = E: \fL(g)\é(g) . (7.26)
kgk o

This will equal % electrons per atom for the case of indium.
“ut in general the model wavefunctionﬂxk(r) will not lead to

the same result; a correction term is needed on(g))

nx) = ) X (X () + o (p) . (7.27)
kékf :

The last térm, when summed over k, gZives rise to the depletion
charge density ,o(r) .. Consequently, in performing any calcul-
ation involving the valency, an effective valency must be uséd
in order to be consistent with the model wavefuncti&n employéd.

E'3

The effective valency is given the symbol Z , and
* F 2
Z = Z(1 - o) (7.28)

£ 1s usually positive, and 1s often called the depletion hole.

7.1.8  Screening the form factor

'he screening calculation takes into account the
effect of the electrons near to a positive ion reducing its
influence on electrons further away. The result is expressed
as a correction term to the form factor discussed in section
7.17.5 and we obtain the screened form factor.

The electron potentisal can be calculated from the
electron density as gfiven in equation 7.27 after substituting

a perturbation expansion for ka .
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Shaw (1968 g gives the result for an elemental metal as

v Lk+ralvWl k) _
Ve = -L-té- i —_ + ./'?‘L' S(q) (7.29)
1 q k™ - | k+qj 0 |

W in equation 7.29 includes the electron potential, so that

<}£+ﬂ|W|£> = <_}_(_+3[W0| k) + Veq (7.30)

in which wo is made up of bare ion potentials. Substitution
of equation 7.30 into 7.29 allows a self-consistent determination
of Veq to be made; combining it with the unscreened matrix
element as 1n 7.30 gives the screened matrix element. This can
be decompesed as before to give a structure factor and a
screened form factor.

| When considering an alloy two types of form factor
are involved, as in equations 7.19 and 7.20. Evaluation of
the matrix element for the average lattice from equation 7.19
is quite straightforward, since it only involves the weighted
mean of the screened form factors for atoms of type A and of
type B, and the resulting form factor 1s correctly screened.
The procedure 1s sligntly more invelved in the case of the
difference form factor <g+q|w;3- w:Hg) o A simplified approach
is to decompose it into <5+q|w§ﬂ§) - (5+q[w;ﬁg) , as Kogachi
and Matsuo (1971) have done in the cases of In-Mg and Al-Mg
alloys for which the components have different valencies, but
this neglects altogether the screening difference introduced
by alloying. The reason why there is a difference lies in the
different form of the model wavefunctions for the two elements,
a difference reflected in the effective valence Z‘ through the

depletion hole calculation.

To attempt to compensate for this difference, we may



screel the difference form factor starting from an expression
for the electron density of a binary alloy which is similar in

form to equation 7.27 .

n(r) = E: )<k‘(£ﬁxk(g) + (1=c) Z: plr-r.j - c_zz\p(g-g
k¢k 1(B) i(A)
(7.31)
The analysis follows that given for an element by Shaw (1968a)
and the resulting screening correction is in terums of the
effective valences and the weighted means of the atomic volumes
and depletion holes of the two elements concerned.

This description of the screening of the difference
form factor has been rather brief because, as will be shown
below in section 7.4.2, there is no need to compute the diff-
erence form factor in the calculation of phonon dispersion

curves. Its value would be required, though, if a total energy

determination was to be carried out.

7e1.9 summary

An account of the ideas behind the optimised model
potential theory has been given, together with an explanation
of various functions which can be derived from it. The
extension of the appropriate sections to a binary alloy
system has been discussed. The sections [ollowing will
describe the determination of the optimised parameters for
indium and thallium, and will give the results of normalised
energy-wavenumber characteristics for indium and seleccted
alloy compositions so that a determination of their phonon

spectra can be made.

1)
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7al Delermination oi model parameters for indium

and thallium

Valel Model parameters for the ileine-Abarenkov model

The HA model required that the wavefunction for the
region inside the model radius should match smoothly to that
outside. 'This was equivalent to the requirement that the
logarithmic derivatives of the internal and external solutions
to the radial Schroedinger equation for the model wavefunction

should match at Using this condition Abarenkov (1965)

RM.
produced'a set of tables in which the quantity Al/Z2 was given

as a function of 2//2E for a number of values of ZR} he took

ﬁ
l values of O, 1 and 2. Yo find the well depths for a given
metal, the column of the tables with the ZRM appropriate to

that metal was used to produce & graph of Al/Z2 against E/Z2
for each 1 value up to 2. The curves had s number of
sinpgularities at which they went to infinity, but it was found
tnat Lhe points on the curves corresponding to the spectroscopic
term values for the metal fell on a straight line.

This was true for most metals, and the assumption was made

that for any other energy intermediate between the term values
an lnterpolation along the straight line would give Al for that

enersy; the required well depths for the HA model potential

were obtained by an 1interpolation at the fermi energy.

7elal Model parameters for the optimised model potential

From the optimisation procedure described 1in section

7e2.7 we require that

Al(E) = (7.322)
R 1



Shaw (1905) has interpolated Abarenkov's tables to find values
ot Al(n) which satisfy this equation, and as a result a set of
curves giving Al/Z2 as a function of E/Z2 has been produced.
Iinterpolation between the well depths corresponding to
spectroscopic term energiles is again used to determine Al(E)

for arbitrary E.

7ela? Term values for indium and thallium

For the present worl term values from spectroscopic
data have been taken from Bacher and Goudsmit (1932). Tor a
given ionisation state of an clement these workers list wave-
numbers corresponding to the various electronic states; they
are usually given relative to the lowest one, and are known
as the term values for those states.

In model potential theory we are intersted in the
term values of the free ion, that is, of In+++ and of Tl+++ in
the present case., The zround state electronic confipuration
for these elements 1is

2 5 .2 2,
In: 1s° 28° 2p° 3s Zp6 3d10 bs™ Lp

T1: 152 252 2p6 BSd 3p6 3d10 Ls“ Lp

6 2

4a 19 5s° 5p

6 6

4at0 4ot g2 58 5410
| 65° 6p

The highest core states in indium (4d) correspond to 1, = 2,

whilst those in thallium (4f) have lo = 3%, However, the f

states in thallium have not been modelled as their contibution

is very small compared to that for 1 = O (Appapillai and Heine,

1972). ‘Thus for both metals the values of the well depths

A A_ and A2 only have been sought.

0' M
The details of the calculation are given in Table 7.1

and the results are shown graphically in figure 7.3%. Atomic
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TABLE

7.0

Optimiged model parameters for indium and thallium

at spectroscopic term energies.

Energy corresponding to term value;

Values of Al/22

I
corresponding to each E/%4

from tables given by Shaw (1963).

Indium (2 = 3)
. L2 2 )
1 Term value E E/% Al/Z Ay hAl/bb
(en™ ) (a.u.) (a.u.)
01} 5s 22613% 1.0308 0.1145 | 0.1530 | 1, 3768
68 99255 04524 0.0502 | 0.1242 | 1.1176 | =0, 477
75 56706 0.2585 0.0287 | 0.1121 | 1.0090
11{5p | 168948 0.7701 0.0855 | 0.1674 | 1.5063 0. 208
6p 81545 0:3717 | 0.0413 | 0.1582 | 1.4235 |
2 | sd 97675 0. k52 0.0494 | 0.1290 | 1.1613 6.0062
6d 55602 G.253k 0.0281 | 0.1292 | 1.1625
a b c
Thallium (Z = 3)
' 2 2
1 Term value E E/Z Al/é A aAl/bE
Cem™ 1) (aeu.) (a.u.)
0 | 6s 240600 1.0973 0.1218 | 0.1656 |1.4908
75 101391 0.4622 0.0513 | 0.1298 {1.1683 | -0.508
8s 574173 042620 0.0291 | 0.1168 |{1,0515
1 | 6p 1764473 0.8043 0.0893 | 0.1843 {1,6587 0,468
7p 82748 0.3772 | 0.0419 | 0.1621 |1.4591 -
2 | 6d 95245 04349 0.0482 | 0.1178 |1.0602 0. 128
74 542044 0.2472 | 0.0274 | 0.1151 {1.0362 |
a b c
Notes a Term values obtained from Bacher and Goudsmit (1932)_

1cm"1§54.409x10'6 au,

obtained
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units have been used throughout the numerical work (e —h=m=c =13

energies are in Hartrees (1 Hartree = 2 Rydbergs) = 27.2e¢V).

7.7.4 ‘The fermi energy

The ostimised model parameters must be evaluated at

the fermi energy relative to the free ion E as described in

f‘!

section 7.1.7. Following Animalu and Heine (1965) we see that
this energy is made up of the fermi energy for an isolated ion Ef
and a contribution from the potential due Lo the rest of the

ions and conuction electrons in the metal. Thus we have

E = ef—(V+Z)r

¢ (7.33)

est

where z: represents the exchange and correlation hole

rest

around the electron and vre 1s the potential due to the rest

st

of tue system. Seitz (19%40) has outlined a way of relating the
bottom of the conduction band to the cohesive energy, (that is,

the energy required to form separated atoms). 1f Eo iz the

t
encrgy of the bottom of the band and Ef 1s the fermi level
|l
relative to E_, the E, is just (E0+Ef). Seitz has shown that

the conesive energy per electron Ec can be written as

E _ ﬁakz
c 2m

(13 BN

+E. +E +E +E - E (7.34)
i 0 x c

coul

where Ei is the 1onisation energy, E and Ec are the energies
X

due to exchange and correlation effects and Eéoul is the

electrostatic self-energy of the electron pas. Consequently

(Animalu and Heine (1965)) we have an expression for Ef as

B E -E +E
2m X c coul

(7.35)

. oA 2
€ = - H.I.E + B.w.B. + 2 vz

Melewme 1s the mean of the first 3 lonisalion energies of the

-~
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free atom and B.E.E. is the cohesive energy per electron.
Seitz (1940) gives expressions for L and E as
X coul

- _ ) . — Vel 2
E. = -0.916/15 ; = 0.0Ze" /R, .

coul
The rudius of the sphere whose volume 1s equal to the volume
per electron is ro Ra is the radius of a shere equal in volume

to the atomic volumel%. Animalu and Heine give the following

expression for V :
rest

res

Z 2 )
Voot = i-a[B - %(RM/Ra)} , (7.36)

in which RM is the model radius. (All the energies in equations
7.3%34 to 7.36 arc in rydbergs.) Table 7.2 shows details of the
calculation of Ef for indium and thallium by means of equations
7e37 to 7.30, together with sources of the data.

''his method of determining the value of Ef is not
completely satisfactory, but is probébly the best avallable at
present. Published values for the cohesive energy for indium,
and particularly for thallium, are subject to wide variation.
Bichowsky and Rossini (1936) cite values as widely different as
-28 and =45 Kcal mole'.1 for thallium. The values for cohesive
energy used in Table 7.2 are based on fipgures given by Kittel
(1965). But the largest single term in the determination of Ef

from equation 7.72%23 is V which 1s a radially dependent

rest’
term. A weighted mean value taken over a sphere of radius RM
nas bzen used by Animalu and Heine, using the fixed model radius;
some mean of the various optimised model radii might now be
more appropriate. Turther, the weignting factor was rather
arbitrary.

As a result of these considerations it would secem

that sny value for E_, determined by equation 7.%3 is subject to

f
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some uncertainty.
Telad Results

The model parameters AO’ A1 and A2 together witih: the
their energy derivatives have been evaluated at the fermi
ener;y relative to tihe free 1on, as given in Table 7.2, by use
of the curves of fipure 7.3, These parameters represent a
re-calculation in the case of indium, and are reporﬁed for the
first time by this method for thallium. Table 7.3 gives the
resulls and cowpares the figures for indium witlh those of Shaw
(1963a). 1{o give an idea of the effect on the well depths of
a change in the value used for the fermi energy, parameters
are given corresponding to Ef = =0.75a.,u., for both indium and
thallium, (That particular value has been chosen because it
will be required later in the calculations.) -Also, for
comparison, the Animalu and Heine parameters for these metals

are included in the table.

7e2s6 Other determinations of model paramcters

The earlier work of Animalu and Heine has already been
mentioned. Appapillai and Heine (1972,1973) have recently
used the quantum defect method of Ham (1955) to determine well
depths at the fermi energy for 33 elesments; their results for

indium and thallium are also shown in Table 7.3.
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TABLE 7.3

and thallium

Indium
— [ A A, | d3A_NE | A /3E |BA_/3E |
— - o) 1 2 0 1 2
'This work:
j E. = -0.5 a.u. 1¢3% | 1453 [ 1,16 | =0.465 | 0,028 | 0,006
} E, = =0.75 a.u. 1425 | 1.50 | 1.16 " " 1
{Shaw (1968 a) 7.3k} 1,49 | 1,09 | ~0.454 | =0.224 | 0,094
| Animalu and Heine (1965)| 1.32 | 1.46 | 1.10
Appapillai and Heine 1634 | 1452 [ 1,09 | =0.4322 | =0.270 0.094
(1972)
Thallium -
: : A, A, A, BAO/bE BA1/BE bAa/aE
This worlk:
Ep = -0.9 a.u. 1¢39] 1.71 | 1.11| -0.508{ -0.468 | -0,128
E, = =0.75 a.u, 1.32, 1.63| 1,10 L " "
Animalu and Heine (1965)] 1.44] 1,51 | 0,98
Appapillai and Heine 1.421 1,54 | 0,88 =0.462| -0,250 | 0.310
(1972)




Ve Calculation of form factors and energy-wavenumber

characteristics

~3

! Indium and thallium

‘The computation of form factors and energy-wavenumber
cnaracteristics for indium and thallium was performed using a
slightly modified version of the PL1 computer programme given
by Shaw (1963a). In addition to the two functions mentioned
it produced a value for the effective valence Z*. The programme
used is listed in Appendix III under the name MODPOT. The
input data required were the well depths Al and their energy
derivatives, together with the fermi wavevector kf, the valency
Z and the atomic volume.ﬂo. All these quantities were expressed
in atomic units. "The output gave the form factor and the enersgy

wavenumber characteristic for values of g/k,. from 0.1 to 5.0

f
in steps of 0.1, and from 5.4 to 7.0 in steps of O.h4.

By q/kf.= 7.0 both functions had decreased to less than 10-'5 of
their value at q/’kf= 0.1 . The enerpgy wavenumber characteristic
was normalised, so that it had a value of unity at q = O.

The norwmalised characteristic FN(q) was related to the

unnormalised form by

ryla) = -0y R . (7.%7)
om(z*)<

7eZa2 Indium~thaillium alloys

There are two types of form factor for a binary
alloy, as explaired in section 7.7.5. In section 7.4.2 it

will be shown that for phonon dispersion calculations there is

no riced to compute tne difference form factor, but only the
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average one. From equation 7.19 the latter is just the mean
of the form factors of the constituent elements, weighted

- according to the composition. In the case of the average

ener y-wavenumber characteristic such a simple treatment was
not nossible, for its value depended on the square of the form
factor, as in equation 7.25, and a direct separation was not
possible, Rewriting equation 7.25 with the average form factor

for a binary alloy and including the effect of screening, we

2
have on | 3 Z[ClwA(E)i+ (1-c)‘wB(£)ﬂ
Fav(q) = —*3 47k . 2 2
an- k™ - |k+q| (7.38)
0 2 A B 2
- [cvsc : (1-0)\[80]

in atemic units, and in which 22 = ¢ ﬂg + (1-0).&2 and VS is
the screening contribution. “The notation for the form factors
has been abbreviated to wA(E) and wB(E). The integral decoﬁ—
poses to give the average energy-wavenumber characteristic for

the alloy as

3 - ~e)2 ;
1av(q) = .c Fk(q) + (1=¢) FE(q;
~ A B, . .
op (g 2w ] g2 4 )
+ 2c(1=c) ”—3 d-k 5 > - =V cV .
8% ) k= - |5+q|_ omw 8¢ 'S J

(7.39)

where FA(q) and FB(q) are the energy-wavenumber characteristics

of elements A and B, 1In the computation of actual values of

-

w(q) for the alloy the first two terms on the R.H.S. of this

enquation were obtained from MODPOT directly, with data calculated
as described in section 7.2. Evaluation of the last term was
quite straightforward and was parallel to that for an element,
with the appropriate modifications to allow for the fact that

+

1t contained a product of two different form factors. These



- 187 =

modifications meant that certain intermwmediate functions involved
in the computation of F(q) for indium and thallium had to be
extracted from the calculations performed by MODPOT, and then
recosbined in the appropriate way to give the required results
for an alloy of a particular composition. A programme listed

in Apnendix ITII as COMBINE was written to carry out this task;
it gave the energy-wavenumber characteristics in their
normalised form. The results of these calculations are given

in Table 7.4, and those for indium and thallium are shown in

figure 7.4 .

7l Application of optimised model potentials to calculation

of the lattice vibration spectra of indium-thallium alloys

7elte The vibration spectrum

At finite temperatures the atoms or ions which are
bonded together to make up a solid are each vibrating about a
mean position. The frequencies of these vibrations are
quantised, and depend on the forces acting between the ions.
The vibrations of the i1ons can be decomposed into a number of
component sinusoidal oscillations. The introduction of a wave
of frequency w to the lattice, by, for example, either physically
causing a disturbance at the surface as with an ultrasonic
wave, or by transferring momentum to a nucleus through in-
elastic neutron scattering techniques, reinforces one or more
of these components of the thermal vibration and a conerent
wave will be propagated. That is the physical picture. In any
calculations the thermal motion is ignored and the ions are

considered as stationary unless a coherent wave is passing
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Figure 7.4

The normalised snergy-
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calculated using 7

Ef -] '='0075 8elUo




FR

(S
CJ

Co
-

L
(AR

e

&

~z

A

<}

-

N

O\

-

-1

[aY]

oY

(2N

14
(A

—

(aY}
%)

}

11

X4

AN

[V

N

(oY)

Oo

tJ

—'
[ %3

Il

- 189 -

-y

o4

2y

N

.

Y
z

,_

[aS A

W

[ Y3

N

u

e

8]

]
N

g

(03]

[
™~

fU%

(¥

PR

7

N

P

iy

“

o

O\

o

™y

24

oy
~i

L-‘%

J

—1

1
NG

N3
o

el

o8

N

—l

o

(AN

ABI
o

27?2

e

21

V.-

—l

i

[N

-
R

=t

L

.

e

e

L

I
ot

vy

[V}

~1

—1

",

(AN

N

-l



cYs

-TL 2LL

T

F

~
F(

TICS

FI3

¢

Fer2C

(W)

)
[
(¥4}

1
&
(8]

TEALLIU

ZECINT

TCMIC F

4
jul

a,
”

»

[a\]

o

N

5

/X

-~
“w

(AR
(AR

I~

U

c

e GB4G

cel

W

Gt

&L

(v
U

"
o

Ty

87278

N
(a3}

[eh

SN

T
o~
(r

=~

J

sT77 15

"y

[

™
ut
uy
[§ 4]

oy

- 190 =

(BN
o)

o
-

I~

.

(N

vy
[* 9

-flé‘lﬁ-
. 2"‘

227

¢
N
r-

5

m

o4

el

2

1F

Ity
Li
ny

L

LU AN

ST ™

SN

(40

n
u
(Y]

“4N
(A}
™M

.1:

-

[T
[V
(R3]
N

N

"~

e

22421

22171

™
w
wy
Uy

g
A

(o)

ur
AP Al
h.

-1

(S
Y

~

™
[
y

<)

—

AV

. 717

e LECLL

1"
%y

O

N

(V8]
']

w
N

LM

T

A}

4
o

("R

(K}

2-1

[@N]

N

it

O

[

(AR

- 9.

W

™)

S

-1
LAY

(AR

(8]

N
R
1"

EPA
(YR

B3
"y

oy

G

)

2
Ty

N

A

A8l

.72

“a)

~

4

(AR}

(I
(o8]

.. 3221

(IR

(AR
™y

(T8
(A
~y

)
~y

m

°7321

e

0

ol



- 191 =

through the lattice. The phonon dispersion curves give the
variation of the vibrational frequency w with the wavevector Q.
Because of the various degrees of freedom associated with the
assembly of particles there are several discrete values of w
associated with each 9' We can define a unit vibrational cell:
if this contains n atoms, then there are 3n modes of vibration.
wach of these is taking place at the same time, and tie system
is egivalent to a set of Zn oscillators. 1In order to simplify
calculations the amplitude of each component of vibration can

be assigned a value EQ; there are 3n such values and they are

known as the normal coordinates, Solution in terms of normal
coordinates is simpler because the oscillators can be considered
as uncoupled: Z“n normal modes result. The slope of a dispersion
curvebw/Bg at some particular value of Q gives the velocity

of propagation of a wave having the appropriate mode of
vibration and with that value of Q. ‘Three of the 3n modes are
known as acoustic modes, and for those modes w tends to zero

as g tends to zero: the slope Zw/bg near to Q = O gives the
velocity of sound in the medium. In an acoustic mode adjacent
10ons are vibréting together., It is also possible to have the
situalion, when there are two or more ions in the unit cell, in
which adjacent ions move out of phase with each other. Such
mode of vibration is called an optic mode: the frequencies ar.
senerally much higher than for acoustic modes, and do not
necessarily approach zero towards g = 0. In general there are
(2n-%) optic modes and 3n acoustic modes. Ior the case when

n = 1 (that is, there is one ion per unit cell, as is found in
indium, for example), there are no coptic modes. Indium-thallium

alloys have two types of ion in the lattice but there is no
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optic branch to the phonon spectrum. This 1is due to the slloy
being random, and so the vibrational unit cell can be considered
as being made up of ions on a face centred lattice (of either
cubic or tetragonal form), and each ion having a mass givan by
the mean, weighted according to the composition, of the
constituent ion masses, and thus there is still only one ion
per unit cell.

Consider now the acoustic branch of the spectrum.
The three normal coordinates gczare all perpendicular; each

EC} iz a vector, with three components in some axial system,
If one of these axes coincides with the direction of @, that
is, with the propagation direction, and if two of the three

components of a are zero, then a pure longitudinal or a pure

R
transverse mode results. The former implies that the
components of ECQ perpendicular to 3 are zero, while the latter
means that the ;Arallel component is zero. Suitable rotation
of the other two axes will then set one of the perpendicular
components to zero, also. Tor a general g, pure transverse

and pure longitudinal modes do not always result, but we shall

only consider such directions of Q in which the polarisations

of the a can be thus simplified.

)

Two assumptions have been made in the calculations of
phonon dispersion curves, The first is that the ion motion has
been taken as harmonic. This is only a Lrue description of the
lattice behaviour at the absolute zero of temperature. At any
finite temperature there are third and higher order terms
in an expansion of total energy in terms of ion displacements.

#owever, these higher order terms are usually small, but they



are responsible for such such ceffects as thermal expansion and
the variation of sound velocity with temperature. The second
assumption is that when an ion moves the electron 'cloud!' moves
with 1t. “xperimental results from neutron diffraction reflect
the motion of the ions, whereas calculations based on energy-
wavenumber characteristics give the motion of the electrons

1n the vicinity of the ions. This approximation is a good one
btecause of the large difference in the relative masses of ions

and electrons.

Tote2 itethod of calculation of phonon spectra

e wish to determine the change in total energy of
he system when a distortion of wavevector Q is applied.
Assuming harmonic motion we can then determine the frequencies,
corresponding to that energy change, of a set of 3n oscillators.
Only the simpler case of n = 1 need be treated here.
Contributions to the total enersy were discussed in

section 7.1.%, and equation 7.12 is rewritten here:
E = E + E + B , (7.12)

The total energy 15 nmade up of the sum of the free electron,
band structure and electrostatic energies. Thus the change in

total energy SEto is given by

t

v = 5 4
Dtot Efe * SI:bs + 8 eB

(740,

t=

5

Any cnange in the free electron energy arises from distortions
to the ferml surface because of volume changes; we are
restricting our treatment to constant volume, so that the

first term on the R.H.S. of equation 7.40 can be nepglected.
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The evaluation of the last two terms is given here in outline
only: for a fuller description of the procedures see Harrison
(1966) .

A displacement of the ions results in a change in
the structure factor S(g): if 94 is a lattice wavenumber, then
for a periodic displacement of wavevector g structure factors
Sgﬂoj;g) at q,%9 can be defined. e have already seen that
the band.structure energy for an undistorted lattice (of an

element) is given by equation 7 24:

! *
: _ - * o 9ol
Ebs iq_ 0(30) 5(9_0) (q) (7.2l

We now consider an alloy and find the effect of a distortion

on its band structure energy. The energy for an undistorted

alloy is
'
*
B, = 2 5(3)s(g )T, (a)
G5
- X \ o (7.h)
£ ) 8 (q)s'(QF,, . .(q)
£ - -— diff =
17
in which rav(q) and Fdiff(q) are the energy-wavenumber

characteristics for the average and difference lattices.
Harrison (19066) has shown that the structure factor S'(q) for

a random lattice is given by, for a binary alloy
E
5t (g)s'(q) = c(1=c)/N {7.02)

when there are cli ions of one type and (1-c)N of the other.

But a distortion applied to a random lattice leaves it randomn
and then its structure factor does not change. As a result the
second term in equation 7.41 remains unchanged and so does not

enter into the evaluation of SEbs'
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1t now remains to compute the structure factor for
the averazge lattice to second order in the vibration amplitudes

Q. e
~Q

Consider the case of a lattice with one ion per unit

cell and let the position of the ion in the j-th cell be £j°
If the distortion takes it a distance 853’ its position is

then r.+£rj which 1n terms of the normal coordinates EQ is
~jTes

iQar . * wiQar. ' .
r +or. = a. e = - + a. e =-— (7.43)
=j =3 _g J ._9. J ) J
E 3
where EQ = a q - From the definition of structure factor in
equation 7.15 the structure factor for the distortion is
-. . ] S .\ '
st@) = ) emialzgng (7.4)
J

By substituting equation 7.4% into 7.44 and expanding the
exponentlial we can obtain an expression for S(ﬁ) to any order
required. Harrison (1966) has shown that for the hafmonic
approximation it is sufficient to calculate the zero and second
order structure factors at 4 only, and the first order one at
+ @ +» The band structure energy follows from a substitution
of these structure factors into equation 7.24 and evaluation to
second order. The change in band structure energy is found by
subtracting off the zero order term (corresponding to this
energy for the undistorted lattice); Harrison (1965) gives

the result for one ion per unit cell, and it is rewriften here
for the case of a random alloy with propagation along a pure
mode dircction.

2 2
SEpg = Z[l@o*@-&% B+ [ (a0 20| B (079

—~0 (71:4 )
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larrison also gives the electrostatic energy change as

/

.-*2 2 « -q /LH’
SE . = ngi—il lim Zgj S (gq)s(qg) g———ir——~ (7.46)
o n-+00 q q

which follows from an expression of Fuchsl(1935). This 1s
analozous in form to the exwpression for the change in the band
structure enerygy, but with ¥(q) replaced by

2n'Z*2e2 e-qa/lu

2 q°

(q is a parameter adjusted to optimise the convergence in Fuchs'
expression). The squared structure factors in equation 746
téke the form of those discussed above. After making a
substitution for St(q)S(q) in 7.46 Harrison (1966) obtains us

the result for the change 1n electrostatic enerygy

/’

22 -1
217 e 2 2 a2
R R (R

-0

-1 -1
+ [(qo“-@_)2+qo’-2] - 2(qc;'2+ qolz) ) (7.47)
2 2, 2
X UE&.EJ -q;|a4]} .

Here qé'and q;- are the components of q, parallel and

perpendicular to Q; &, and a, are similarly the components of a .

=1

&)

tquation 7.47 holds for Q lying in a symmetry direction in the
crystal, with the vibration amplitude vectors parallel and
perpendicular to 9: for a more pgeneral direction this would not
necessarily be the case. tor the calculations performed, in
ehich the directions investigated were BOO], EKH] and B1é],
the form of equations 7.45 and 7.47 was sufficient.

The expressions for SEbs and SEes can each be
evaluated for the three displacement vectors corresponding to

one longitudinal and two transverse waves. The results for



—

\C

~J
'

SE + SE . = EO. ('/ob"o’)

This cquation gives the potential energy of the distortion per

-

ion. ‘The kinetic energy per ion is M E: a where M is
i=1,% °©

the mass of the vibrating ion for an element with one ion per

unit cell, or is the weighted mean of the two ion masses for a

binary alloy such as we have been considering. The sum of

the potential and kinetic energies for a simple harmonic osc-

illator is a constant, and consequently the freguencies follow

from

wS o= B /M. (7.49)

A computer programme was written in fortran to perform
the calculations of the lattice frequencies, based on an
evaluation of equations 7.45 and 7.47-9. It is liéted in
Appendix III as DISPS, together with an account of the

procedures used to evaluate the various functions required.

7.2 Summary of sections 7.1 to 7.h

The methods described have =znavled the following
calculations to be performed.

15 starting with the valency, fermi wavevector, maximum
angpular momentum quantum nwaber of the core states and the
optimised model potential well depths and their energy
derivatives, we have produced form factors and normalised
energy-wavenumber characteristics, together with values for
the effective valencies, of indium and of thallium.

2) The normalised energy-wavenumber characteristics



- 198 -

tor alloys of indium and thallium (up to 35 at.% T1) have
Leen calculated from a cowmbination of functions computed for
the elements. |
Phonon dispersion curves {or indium and iadium-
thallium alloys have been obtained from a harmonic model,
with the mean atomic weight, valency, effective valency,
atomic volume and lattice parameters of the alloys as the
input data.
The results of the calculations for the indium-thallium

alloys are presented and discussed in the next section.

7e5 Results and discussion

7501 fhe vionon dispersion curves

Before embarking on a calculation of the phonon
dispersion curves of the indium=-tnallium alloys themselves, it
was necessary to test the method used and the programme
developed by reference to a well-known material. Therefore the
dispersion curves of Aluminium were computed using the normal-
ised cnergy-wavenumber characteristic given by Shaw (1963a)
with a correction for exchange and correlation effects given
by Findor and Pynn (1909). 'the results are compared in figure
7.5 with those obtained by Yarnell et al. (1965).

There are at yresent no experimental measurements
available for the dispersion curves of indium-thallium alloys,
or of indium, although Rowell and Dynes (1971) have pgiven
density of states curves for both indium and thallium measured,
in the case of indium, by clectron tunnelling, and for thallium

by neutron diffraction. Consequently the validity of the
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=— [iog] fiie) —

Figure 7.5

The phonon dispersion curves for aluminium
calculated using the methods described in
this chapter, and the measured points

from neutron diffraction studies by
Yarnell et al., (1965).

calculation
-3 Yarnell et al,



theoretical curves can only be assessed at present by their
ability to predict thoe observed sound velocities.
initially the calculations were performed ror indium

and tue z2lloys with normalised ener;y-wavenuuber characteris.ics

taJ
based on a ferwi energy of -0.9 a.u.,, as in Table /.d. 1t was
found that the sum of changes 1in band structure aand electro-
static enersies (required by equation 7.%0) was negative for
values ol Qa/2m less than about 0.2, for certain polarisations
in certain directions. The mode most affected was that
volarized BTQ]for propagation in the B1Cﬂ direction. fMMoreover,
the sum SEbS + gEeS for that mode was very sensitive to changes
in ¢/a ratio and in model parameters, much more‘so than any
other mode, A negative total enerpy change implies imaginary
frequencies, which would be physically unrealistic for acoustic
modes, This problem could be overcome 1f the model parameters
were evaluated at a slightly different value for the fermi energy
from that used initially. HMention has been made in section
7e%ett of the difficulities involved in a deotermination of the
fermi cnergy relative to the iree ion. In the light of that
discussion it would appear to we quite acceptable to use a
value for Ef differin; somewhat from -0.9 a.u., and a value of
-0.75% a.u., was found to lead to changes in the total energy
which were positive for Qa/2w values at least as small as ©.005,
Che total energy change must, of cource, be zero at 2 = C (the
frillovin zone centrej.

in figures 7.6 to 7.¢ are shown the pironon dispersion
curves in three crystallographic directions, @OQ],ipOi], ﬁ10],
for indium and for alloys containin:: 15, 25 and %5 at.% thallium

for wiiich the energy-wavenumber characteristics used nave bveen
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based on the model parameters resulting from E_. = -0.75 a.u.

f
The model parameters are given in Table 7.7 and the FN(q) are

in Table 7.4, It can be seen immediately from figures 7.5 to
7.4 that the difierences between corresponding curves for the
four compositions are not large, except for the slope near g = 0
of the transverse mode in the [j10] direction, polarised [17@].
‘'his particular mode is the one of main interest here and in
figure 7.0 is shown the variation of the dispersion curve for
that mode as thallium is added to indium in steps of 5 at.k%.

It can be seen that the reduction in.Bw/ag near to 9 = 0 takes
place by an increase in the concavity of the curve. As
described in section 7.5.1, the velocity of propagation of an
ultrasound wave can be found from the slope Buq/ag of the
appropriate dispersion curve. This means that a direct
comparison can be made with experiment to check the low g
region of the curves. In all of these calculations the c/=a
ratio used has been that observed in practice. Numerical values
for the lattice parameters from which this ratio has been
obtained are as given in figure 4.11 .

The wajor objective of this study has been to
investigate from a theoretical viewpoint the assertion that the
phase transition 1s accompanied by the collapse of the [110],
[170] polarised transverse mode. (Dynes (1971), Taylor and
Vashishta (1972), Pace and Saunders (1972).) Measurement of
the velocity of sound in the [110]direction, with polarisation
ﬁTO] leads to a value of the elastic constanl combination
%(011-012), as described in table 3,1; the onselt of collapse

of the mode means that C approaches C (One of the Born

11 12°

stability criteria restricts C11-C12 to positive values.)
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Thus we present in figure 7.11 the variation of %(C11-012) with
alloy composition. Both the theoretical and experimental
results are shown, and in view of the sensitivity of the
calculations on the parameters involved the fit is surprisingly
good. However, the positions of the calculated points depend,
ultimately, on the model potential well depths used and on the

value chosen for E If a different value for the fermi energy

o
Ef 1s used, the well depths re-evaluated and a new energy-
wavenumber characteristic 1s calculated, then the effect of
this modification on the theoretical curve of figure 7.11 is to
raise or lower it relative to the position shown. DBut 1t still
shows a minimum near to 22 at.% T1l, which is indicative of wode
softening when the phase transition is approached from either
side. Thus it-can be seen that if a fermi energy value 1igs

chosen such that the calculated value of #(C ) for indium

11712

agrees with the observed one (and such a choice of Ef can be
made well within the uncertainty limits on that quantity),

then the values of %(C1 -C calculated for the addition of

17%127
thallium to indium also agree quite well with those observed.

#further, the approach of »-}(C1 towards zero shows that

1742
the calculated form of the dispersion curve for the ﬁ10],
[170] polarised mode has a slope which, 1n the long wavelength
limit, approaches zero at the phase transition. Such a result
is consistent with the collapse of this mode.

We turn now to the sound velocities predicted by the
computation for other modes. Table 7.5 lists these velocities,

and compares them with the observed ones for indium and alloys

containing 15 and 25 at.% Tl. As remarked by Cousins (1970),
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TABLE

A_comparison between obseved .and calculated sound velocities ‘
and elastic moduli

calculated observed elastic
> > constant -
++ .
n v oAV v AV glven by
. n n n n ovE
Indium 1 [3.25 | 8.02 2.50 | .54 Cq4
2 [1.89 | 2.7 1.29 | 1.21 Ceg
2 1433 | 1.26 " 0495 | 0.65 Chy
L 12.61 | 4.97 2.49 | 4,52 033
5 [1.30 | 1.23 0,95 | 0.65 Chy
6 |3.78 | 10.04 &(011+c12+2044)
7 |0.56 | 0.23 0,60 | 0.26 %(011-012) _
In-15at.% Tl
o 11 | 3.07 | 7.3k 2.28 | 4,20 C,1
2 | 1.42 | 1.57 115 | 1.06 Ces
L 13,23 | 8.38 2.28 | 4,18 033
5 [1.20 | 1.15 0.95 | 0.73 Cupy
7 | 0.3% | 0.09 | 0.39 | 0.12 ~}(c11 12),
8 | 1.29 | 1.33 0.95 | 0.72 Cy
In-25at.% T1 -
1 [ 2,19 | 4.13 2.18 | 4.10 11
2 | 1.21 ] 1.26 0.97 | 0.81 44
3 | 2.83 | 6.89 2.37 | 484 %(011+c12+2044)
4L | 0,15 | 0.02 - 0.16 | 0,022 s}(c11 12)
5 | 1.25 ]| 1.34 10,97 | 0.8 C#u '

. :
Chandresekhar and Rayne (1961) report the observed values.

“'velocity subscripts as in Table 3,.1.




the comparison of predicted longitudinal wvelocities with
experimental ones is not very productive, since a longitudinal
wave involves volume changes, whereas the calculation has
assuried constant volume. Comparing the shear velocities in
Table 7.5 we can see that the predicted velocities are
predominantly larger than the observed ones by a factor of
about 1.5. There may be several reasons for this. Indium has
proved to be a difficult metal to understand theoretically

(it ‘has not yet been possible to calculate the correct crystal
structure), and a potential which is adequate to describe all
of its observed properties has yet to be constructed. The
cause Tor the sound velocity discrepancies could, therefore,
lie in the potential used. On the other hand, the assumption
has also been made that the alloys behave in a harmonic fashion.
This is never rigorously true for any solid at finite
temperatures, but the validity of the approximation varies from
one solid to another. In the indium-thallium system near the
phase transition it is unreasonable to suppose that this
-approximation is a good one, and thus we should be.surprised

to find good agreement between results calculated in this

way and those determined experimentally. VWe shall discuss the
extent of the anharmonicity in the alloys in the concluding
chapter. But the variation of elastic properties with alloy
composition is seen to be qualitatively correct from Table 7.5 .
Kumar and Sharan (1972) have used a force constant model to
produce phonon dispersion curves for indium. Thelr results are
shown as dashed lines in figure 7.6 . A force constant
calculation uses the measured elastic data as its starting point,

and hence the slopes dw/3Q near to Q = O of the dispersion



- 211 -

curves given by Kumar and Sharan will be consistent with the
observed sound velocities. Consequently the regions on

figure 7.6 near to Q = O serve well to compare the results
obtained from first principles with those derived from
experiment. Kumar and Sharan note an 'abnormality' in the
higher frequency transverse mode of the B10] directiorn, which
they found to be slightly concave. This effect is seen, too,
in the optimised model potential result for that mode; 1in
addition the lower frequency transverse mode has & similar
shape. The ramifications of such a form for one or more modes
of the phonon dispersion curves are interesting. For phonon-
phonon interactions there is a principle which, as given by
Ziman (1950), states that the created phonon in a three-phonon
interaction must lie in a higher branch than at least one of
the destroyed phonons. When a shear branch contains a point of
inflection, as is found here in indium, then there are certain
values Tfor Qs g' and E” sucih that the condition Ei—q' = E”

can be satisfied by phonons whose wavevectors all lie on the

same branch.

7e5 a2 l.imitations on the method: the structure of indium

There has been much work done in recent years in
trying to establish a theoretical basis for the observed
crystal structures of simple elements. DSarly work centred on
the 'qo effect!, briefly mentioned in section 7.2.6, includes
that of Heine and Weaire (1966) who discussed the structures of
di- and tri-valent metallic elements, They found that in many

cases the observed crystal structure was, out of the various



- 212 -

possibilities considered, that one whose first few reciprocal
lattice vectors were turthest from the value q, at which the
first minimum of the enerygy-wavenumber characteristic occurred,
Fogachii and matsuo (1971) used a similar method in the analysis
of the In-Hg and In-Cd systems: they were able to show how the
chanzes in the position of q, as Mg or Cd was added to indium
could account for the change in structure at the appropriate
composition. They have also studied the In-Ga-Tl system in a
similar way (Matsuo and Kogachi, 197Y1J. 1In dealing with indium,
though, the 9q effect method has not been too successful.

Heine and vWeaire (1966) find that indium should be fcc, but
postulate the splitting of the {200} set of reciprocal lattice
points to give the tetragonal structure, because of the
proximity of 9 to the (200) reciprocal lattice vector.

There have been later attempts to resolve the problem
by the calculation of total energy of indium as a function of
c/a ratio. Heine and veaire (1970) describe a result which
gives a minimum in the energy curve at c¢/a= 1.0 witu another
minimum at ¢.95, although Finnis (private communication, 1973%)
has obtained a minimum at c/a= 1.25. This latter volue 1is
still far from the observed one of 1.08, but at least it is
greater than 1.0, The energy curve based on the energy-
wavenumber characteristic used for indium in the present work has
a stavle structure of fcc. <The band structure part (calculated
from cquation 7.24%) is shown in figure 7.12.

A possible solution to the problem has been suggested
by Matsuo and Katada (1973%) in connection with their study of

In-T1 doped with Sn and/or Cd, who have evaluated the strain
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cnergy for a tetragonal distortion of a cubic structure. They
write this energy (US) as the sum of three terms: the band
structure energy (Ubs), the Ewald energy (Ue) and another, as
yet unspecified, contribution (b).

U = U + U +A
5 bs e

The sum UbS + Ue was found to give. a minimum at c/a= 1.0,

The energy US was calculated from the observed c/a ratio and
experimental elastic constants, and thus it had a minimum at
c/a= 1,08, From this a variation in & with c¢/a could be
calculated. Matsuo and Katada find that the value of 4 is
comparable to, and opposite in sign to, the band structure
energy and also that its value is affected little when thallium
is added to indium. From this they coaclude that i1ts source

is an exchange interaction. Now the model on which Matsuo and
Katada's work is based is the pseudopotential of Animalu (1966).
We have recalculated U__ with the FN(q) used in this work for
indium, and also with that of Shaw (1968) for indium, and find
that both give values for UbS smaller by a factor of about five
compared with the Animalu potential results. (See figure 7.12.)
Thus the particular model used affects the result of this
calculation quite drastically; a recalculétion of A results in

a change of sign in that quantity, and in a reduction in. its
magnitude. It would seem, then, that this approach is not a
particularly profitable one to foilow, although it may well be
true that there i1s another contribution to the total energy of

indium and the alloys which, when included, would allow the

correct crystal structures to be predicted.



Ve R Jurther work and summary

It is possible in priciple, given a F(q) for indium
and the alloys, to calculate other physical properties, such as
the phonon density of states and the Grineisen parameter. Imn
view of the nature of the doubt surrounding the extent of the
applicability of the energy-wavenumber characteristics we have
not performed these calculations. It is obvious that before
much more theoretical work can be performed on indium and the
alloys a model must be constructed which satisfactorily
resolves the problem of the structure of indium. In the mean
time the limitations on the model must be borne in mind,

The test of a theoretical model is 1ts ability to
predict observable physical properties. Although we have seen
that the crystal structures of indium and its alloys with
thallium are not yet accounted for, yet the w;rk presented here
shows that as far as the prediction of sound velocities in these
materials is concerned the optimised model potential has met
with more success. Of particular interest to this work has
been the finding that one particular phonon mode — that for
propagation in the [ﬁ10] direction with polarisation ﬁTO} —
has a small value of Jw/3Q near to Q = 0 in indium, and that
on addition of thallium its slope passes through a minimum at a
thallium concentration corresponding to that for the fct to fcc
martensitic transition. Both the form of the variation of the
slope and the magnitude of the elastic constant associated

with that mode — %(011-0 ) — are in quite good agreement

12

with observation.



CHAPTER 8

DISCUSSION OF THE RESULTS, AND CONCLUSIONS
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Introduction

In the previous three chapters the various
experimental and theoretical results obtained for those indium-
thallium alloys studied have been presented. A certain amount
of discussion of the findings of the calculations has already
been pgiven in Chapter 7, and so in part A of this chapter we
discuss the experimental results., Part B consists of a more
seneral consideration of the conclusions reached, A discussion
of the experimental results has been left until this point
because it leads quite directly into the concluding remarks.

The experimental results will be discussed in the
order in which they are presented in Chapter 5, that is first
the thermal expansion of the alloys, then the ultrasound
velocity and elastic constant behaviour, followed by a brief
evaluation of the attenuation mechanisms found in these

materials.

Part A

561 Thermal expansion of indium-thallium alloys and
the Griineisen parameter

Measurement of the thermal expansion of the alloys
was undertaken primarily in order to make corrections for the
change in sample thickness with temperature when calculating
the velocity of sound in these materials from measured ultra-
sound pulse transit times. However, the behaviour of the

thermal expansion tensor component is of some interest in itself.
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'he most remarkable feature of the results is the negative
value of the tensor componento(33 over a wide temperature
range above about 20CK almost to the melting point. This
feature was found for both of the tetragonal alloys measured.,
The finding is in qualitative agreement with results for indium
by Collins et al. (1967) who found that “32 became negative
above about 220K and remained so at least as far as 300K — thé
nighest temperature for which they give results. Munn (1970)
has discussed the negative coefficient in indium in terms of
variation of the GruUneisen parameter and the elastic constants.
lie concludes that the effect is seen because of the magnitudes
of the elastic constants, (in particular the small size of

%(C11-C ) ), and not because of any large anisotropy in the

12
GriUneisen parameter, for he found the latter to be almost
isotropic.

The thermal expansion of a tetragonal material can be

expressed in the form (Baron and Munn, 1967; Munn, 1968)

q‘- - - ) - 2
2 o

3

A
{

N, = (Cq/V) (c11+c12)x33-ac13x11 / C33(C11+C12>'2C1

in which C,/V is the heat capacity (at constant strain) per
molar volume. The two independent components of the Grilneisen
tensor are 511 and JZB. From equations 3.1 the ratio X11/533
is given by

C
(C11+ 12)

+ 20135(11

Vv 2585t 2y

Y23 %3504,

(8.2)

Munn gives a value of 1.05 for this ratio in indium at 284K.

For the In-11.5 at.% Tl alloy we have calculated x11/ﬁzz over
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the temperature range 150 to 410K and find little variation
from unity, consistent with Munn's result for indium. Figure
3.1 shows the calculated variation of the anisotropy ratio
BH1/533 for the In-11.5 at.% Tl alloy. (In a cubic alloy the
ratio is always unity, by symmetry.) Thus the analysis of Munn
for indium would appear to hold for the alloys also, and so we
can conclude that, as in indium, it islpossible to nave highly
anisotropic, and even negative, thermal expansion coefficients
for the tetragonal alloys without a similar anisotropy in the
Griineisen coefficients.

A determination of the absolute values of 3%1 and X33
is made difficult by the paucity of specific heat data., However,
an estimate can be made based on the values of Cp given by
Schwartz (1970) for three alloys containing 13.8, 28.9 and 34.6
at.% Tl. He finds that at 300K each one has a value of Cp of
28.0 joule mole-1 OK-1, with a variation in this figure between
the three compositions of only 0.2%. If we assume a value of
28.C joule mole_1oK-1 for Cp in the alloys studied here, and if
we use the measured results of thermal expansion coefficients
at 200K, then we can use equations 8.1 to obtain values for 51

1

3 . ‘ H = = T .O/ .
and 55+ [he results are ?Sﬂ 2.4,?{33 2.2 for 11.5 at.% T1;

= 2.7y §,,72.2 for 15 at.% Tl; ¥ = 2.0 for 25 at.% Tl. The
22

cubic alloy has only one thermal expansion and GrlUneisen

coefficient; no negative value of X was observed, although in

the transition region a temperature hysteresis was seen. The

values of X for the fcc and fct sides of the transition

temperature were different (by a factor of almost two).



1-0

- 219 -

1 | . I 1 N
1So 200 150 oo 3So 400
Temperature ("k)
figure o,1 The temperature variation of 51

1/535
for an In-11,5 at.% T1 aliov.
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Sel l'emperature variation of the observed ultrasound
velocities and elastic constants

The first part of this section will deal with the
variation with temperature of ultrasound velocity observed in
the In-T1 alloys; it will be followed by a discussion of the

elastic constants.

8.2.1 Ultrasound velocity changes

In the absence of phase transitions most solids have
a velocity of sound which is almost temperature independent close
to 0K, and which varies approximately linearly with temperature
(with a negative gradient) above about 20K; the variation
continues in this fashion until near to the melting point. The
tetragonal alloys studied had a temperature variation of this
form: the few measurements which were possible at very low
temperatures (to 4.,2K) showed that the slope /3T indeed
approached zero as T tended to zero, while the remainder of the
measurements, obtained within the range 77 to 423K, showed an
almost linear variation. However, there were deviations from
1ineérity in longitudinal veloclities near to the melting point.
Figure 5.2 shows a collection of results for both of the
tetragonal alloys (11.5 and 15 at.% T1) of longitudinal and
shear velocities near to Tm (melting point about 425K).
Certain of these curves have a slope wnich is tending towards
zero as the melting point is approached. We can associate this
with a pre-melting effect rather than a pre-transition or
mode-softening one, since it has been seen to a similar extent

in both the 11,5 and 15 at.% Tl alloys, even though the former
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is further from the fct/fcc boundary at the melting point
than is the latter. The effect has also been seen in thg
In-25 at.% T1 alloy (Chung, 1973, private communication), in
which mode softening of the slow shear mode in the [110]
direction is almost certainly becoming reduced for an increase
in temperature towards T

The slopes v/ 3T vary somewhat between orientations,

and for the In-11,5at.% Tl alloy range from 2 45x102cm sec™ 1ok

.

for the shear wave velocities leading to C,,, to 1.88x103cm
sec™ 1 °k" for the slow shear mode propagating in the ﬁ1(ﬂ
direction. (Both figures apply to the linear portions of the
variation), and for the In-15 at.% Tl alloy the corresponding
values are 2,85x10° and 2.0%x10°, respectively.

The sound velocity in a perfectly harmonic solid would
not change with temperature, and any variation found in practice
is a reflection of the anharmonic contributions to the binding
energy. TLhus the slope of a velocity-temperature curve is
related to the anharmonicity in the binding forces appropriate
to the polarisation of the particular mode. From the results
for the tetragonal materials the greatest slope was found for
the mode polarised BTQ] and propagating in the B10] direction.

The velocity changes seen in the cubic alloys 25 and
27 at.% Tl fall into two sections: temperatures near to the
martensitic transition region and temperatures remote from that
region. In the latter section the behaviour was similar to
that for the tetragonal alloys, and need not be discussed

further at this stage.

In the vicinity of the martensitic transition there
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vere deviations in sound velocity from the curve produced by

an extrapolation of the variation in the cubic phase. There

wvas a depression in the velocity-temperature curves of between
0.2 and 0.3% . The depression was greater for the higher Tc

25 at.% alloy. This dip was seen in each of the measured curves,
for polarisations ﬁ10], E10]; B10}, @01]; BOQ], @OO]. However,
in the case of the last the higher attenuation caused the
precision in the measurements to be greatly reduced and the form
of the dip is not so well established. Also, the twinned
tetragonal form which existed below TC had a changed orientétion
with respect to the original cubic one, so that the direction

of propagation had effectively changed.

We can sum up the temperature variation in the
transition region of the 25 and 27 at.% Tl alloys by enumerating
four features of interest. Firstly, there was no obvious
discontinuity in the velocity-temperature curve at the fcc-fct
transformation. Secondly, the variation has been described as
a dip because the velocity curve eventually returned to the
line extrapolated from the cubic region. (This could only be
seen with confidence in the 6101 measurements because of the
ditfficulty with ﬁOO] propagation in the tetragonal phase of
these alloys, as discussed above.) Thirdly, the magnitude of
the dip and the temperature range over which it occurred
differed for the two alloys, being sharper for the higher Tc
25% alloy. Fourthly, the variation was rather different from
that observed in a 21 at.% Tl alloy by Pace and Saunders (1972),
in which a much more pronounced dip was seen in the fast shear
mode propagating along [ﬁ10],of about 2%%&, and extending over

only about 1OOK, compared with 500 or 40° for those reported



- 224 -

here. These results wiil be discussed further in section B.

8.2.2 Variation of elastic constants

Tor all of the six independent elastic constants for

the tetragonal alloys, except C and C and for all three

12 12}

of the cubic ones except C there are modes of sound

12
propagation which give their values directly. Thus the temper-
ature variation of these moduli can also be found directly.
The moduli C12 and 013 depend on a knowledge of more than one
velocity for their determination. The variation of elastic
constants for the tetragonal alloys is shown in figures 5.13% and
5.14; figure 5.8 gives the details for the cubic alloys.
Considering first the tetragonal alloys we observe
two effects. As the melting point is approached both the 11.5
and 15 7% alloys are becoming closer to the fcc/fct boundary.
These particular alloys melt and do not transform to the cubic
phase, but nevertheless the moduli are changing with temperature
in a way which suggests that a transformation would occur if

it were not for the melting process. From figures 5.13 and 5.14

the pairs of moduli C

11 and 033, 044 and C66 are tending to the

same value. (In a cubic phase each pair is equal.) The moduli

012 and 013 are also expected to tend to the same value, but

the larger error on the value of C means that no definite

13

conclusion can be drawn from this result. In any material which
transforms from tetragonal to cubic this overall trend would be
expected. But it can also be seen that the moduli C11 and C12

are becoming more nearly equal. This is not an automatic

feature of a tetragonal to cubic transition, but would result
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from a softening of the phonon mode whose slope near to Q = O

gave the modulus %(C11 ). Once again, no conclusions can

“C12
be reached for the variation of 033-013.

At a given temperature the 15 at.% Tl alloy is closer
to the phase boundary than is the 115at.% one, and the elastic
constant values reflect this fact. We find that the differences
between C11 and 033,

the former composition alloy than for the latter near the

and between C44 and C66 are smaller for

melting point. Also, C is less. Because of the low value

117C%12
of the ultrasound velocity which led to a determination of

+(C ), experimental difficulties prevented its measurement

117%12
in the 15% alloy above 278K, but an extrapolation to 423K shows
that its value at that temperature is very small, and is about

65% of its room-temperature value. It is interesting that the
temperature variations of the moduli C and —;—(C1

11 4=Cqp) are

such as to give an almost temperature-independent value of 012.
We now turn briefly to the cubic alloys. OUnly three

elastic constants are involved, and their temperature dependence

has been shown in figure 5.8 for the 25 and 27 at.% Tl samples,

after a thermal expansion correction to the sample thicknesses

has been applied. 1In the cubic region the values of C11 and
012 are tending to the same value at the transition temperature
Tc, within the limits of experimental error. (Tc has been

taken as the temperature corresponding to the top of the peak
in ultrasonic attenuation.) 1n the tetragonal phase the curves
diverge again. However, as remarked previously, the slight

change in orientation of atomic planes in the twinned tetragonal

form means that the measured velocities are no longer governed
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by the same elastic constant combinations as they were in the
single crystal cubic modification. As a result the elastic
constant variations below Tc must be treated with caution.

The elastic constant 044 derives directly from a measured
velocity, so that its variation is similar to that of the
velocity from which it is calculated (the lb01] polarised shear
wave propagating in the B10] direction). But here again, we
can only be sure that the measured velocity gives a value of

qu in the region above Tc.

8% Ultrasound attenuation in In-T1 alloys

The two main features of the temperature dependence
of the measured attenuation of indium-thallium alloys mentioned
in Chapter 5 — the peaks at the phase transition and the
overall rise, seen in all alloys, towards lower temperatures —
will be discussed separately.

The attenuation peak at the phase transition has been
observed in other alloy compositions (18 and 21 at.% Tl) and
its origin has been discussed by Pace and Saunders (1972a). It
may be attributed to an increased coupling between ultrasonic
waves and the lattice vibrations in the vicinity of TC brought
about by anharmonic interactions. Fleury (1971) discusses the
effect for soft optic modes. The temperature of the observed
peak was used to characterise the transition temperatures of
the cubic alloys, and to check any hysteresis in TC between
warming and cooling. The results of the measurements have been

given in figures 5.18 and 5.19 . An increased attenuation for
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higher frequencies was observed, but no satisfactory study was
possible of the frequency dependence of the attenuation because
the high values of attenuation found at relatively low ultra-
sound frequencies (15MHz) meant that values too large to
measure occured above about 50MHz. In a similar way to the
trend found in the extent of sound velocity deviations at Tc
for these alloys and for those measured by Pace and Saunders
(1972), the attenuation peaks also spanned a smaller temperature
range for higher values of T ;j figure 38.3(b) shows the
attenuation behaviour at the phase transition for 21, 25 and

27 at.% Tl alloys. At temperatures below Tc a further rise

was observed. A similar effect has been seen following the
transition in SrTiOB, and in that case it has been suggested
(Rehwald, 1970) that the rise is due to grain boundary scatter-
ing. Such a mechanism, though possibly a contributor, is
probably not the predominant one here, for a similar rise was
also seen in the 11.5 and 15 at.% samples below ~220K: these
alloys do not transform. HMoreover, the transition peaks
appeared to be superimposed on a rising background attenuation
which had a similar form for all of the alloys studied.

The mechanism of the attenuation in the tetragonal
alloys, and in the temperature regions of the cubic ones remote
from the>transition region, is far from clear. The features to
be explained are:

1) At low temperatures (§;2OK) the attenuation is very
high, and almost temperature independent. (lieasure-
ments were made to 4.2K on several samples, and at x2K
on one of those no reduction was observed from the

value at 4.2K.)
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2) 1In the temperature range of approximately 40K to 200K
the measured attenuation fell to a value of about 0.1
of its 4,2K figure. The steepness of the slope varied
between samples. Just before the fall a small peak was
seen at between 20 and L4OK.

z) Trom 200K to 350K there was an almost temperature
independent region.

4} his the melting point was approached a gradual rise in
attenuation was found, until within a few degrees of
Tm it had approximately doubled its 350K value.

The preceding four observations apply to longitudinal wave

attenuation; the directions studied were UO@], [OOﬂ , and h1Q],

although the effects did not appear to depend on propagation
direction. Shear wave attenuation was not studied extensively,
and not at all at low temperatures.

The phonon-phonon, or Akhieser type, mechanism for
damping depends on phonon populations of the various modes.
These vary with temperature according to the Bose-iinstein
distribution function, and at low temperatures the decrease in
population results in a drop in attenuation as the number of
phonons for interaction with the ultrasound wave decreases. But
if there is a very soft phonon mode, that is, one of very low
energy, then it would be possible to have a significant number
of phonons available for interaction at much lower temperatures
than for most solids. Consequently, the ultrasound attenuation
could be large, even at very low temperatures, and thus the
low-temparature attenuation behaviour seen in the alloys could

result from the presence of a soft phonon mode.
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As far as the sharp fall at between 40 and 200K is concerned,
there are several mechanisms which could be responsible and
which would lead to the observed variation in KL with tempera-
ture,

First we consider the Woodruff and Ehrenreich (1961)

expression for damping of a longitudinal mode.

o 2, .2
&,L = \J.68 ‘ "-)5 kT dB e

ol 's

1

(8.3)

in which § is the Grineisen parameter, , is the density, V is
the sound velocity, @ is the ultrasound frequency, T is
temperature, and k is thermal conductivity. £quation 8.2
predicts a constant value of attenuation NL above QD when

kae1/T. 3.3 can also be written as

Cvifﬁaq q?
S _———3;- (3.4)
3pv
since k:%CVvarth. If T varies with temperature, and,

specifically, decreases for increase of temperature, then w L
will also decrease,

Alternatively, one could look to the work of Mason
and Rosenberg on Al, Pb, Nb and Cu (Mason and Rosenberg, 1966,
1967; liason and MacDonald, 1971).
These workers were able to identify two components in the
observed sound attenuation measurements. One was a dislocation
component, and the other a square-law component (it varied as wz)-
fhe latter was shown to be made up of an electron viscosity
inversely proportional to resistivity, and a (smaller) phonon
viscosity. Their résults show that the square-law component
has a temperature dependence in Pb and Al very similar in form

to that seen in the indium-thallium alloys, in that it had a
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large rise on decrease of temperature (exponential) with a small
turnover at about 30K. Mason and Rosenberg reference results
for propagation in the DOO{] direction in zinc, for which the
slip plane for dislocation motion is (001). Propagation in

[poﬂ thus gave no dislocation component, and only the square-
law one was seen. However, it is unlikely that such a.
simplification is possible in the indium-thallium alloys, and
before either this or the previous mechanism can be tested
further a study of frequency dependence must be performed.

The final region of interest is that near to the
melting point, at which a rise in qL 1s again seen. Saunders,
Pace and Alper (1967) have described a rise in cxl‘in In2Bi
which occurred within about 1° of the melting point. As in
the case of the 40 to 200K region in the alloys we can only
speculate, but the Woodruff and Ehrenreich expression of
equation 8. % shows an increase in wl, for a rise of thermal
conductivity. A sharp rise in k for both metals and alloys
has been observed (Pashaeev, 1962) near the melting point, and
the specific heat anomaly has been described (Borelius, 1963).
Thermal data near the melting point is needed to test this
hypothesis, but if the cause is, in fact, an increase in k or

Cv then the latter appears to take place starting at about

20 or 300K from Tm.
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Part B

In this part we shall discuss the bearing of the experimental
and theoretical results for the indium-thallium alloys on
the lattice properties of those materials, with particular

reference to the martensitic phase transition.

8.4  Anharmonic effects in indium=-thallium alloys

3.441 Experimental observations

If the internal energy of a crystal lattice U is
expressed in terms of strain components then we may write an
expression for U involving products of strain components to any'
order desired. The harmonic approximation involves only second
order combinations. As a simple example we consider one strain
component only; let this be denoted by x. We may write

U = ax2 - bx’ -ch’- ceee (8.5)

in which the coefficients are all positive. The first term
represents a symmetrical, harmonic potential well, while the
other terms modify the well shape to make it asymmetrical.

A simplified account of the effect of anharmonicity on an
elastic constant can be seen as follows. The second order
elastic constant when the strain is x is given by 32U/bx%
1f x is a longitudinal strain the result is a constant such
as 011 or C33. The shear constants involve shear strains in
the second derivative. From equation 8.5 bZU /ax2 is equal

2
to 2a - 6bx - 12¢x” = ... The strain x is proportional to

temperature (see, for example, Kittel, 1966), and when quartic
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and higher terms are ignored the elastic constant is also
proportional to temperature. This results in the linear
variation of elastic constant with temperature seen in most
solids. An increase in anharmonicity can be represented by

an increase in the coefficient b in equation 8.5, and in
consequence of this the elastic constant will be reduced.
Moreover, if the range of temperature for which b has a larger
value is small, then the corresponding elastic modulus will
show a dip. Similar considerations apply for shear moduli.

The variation of elastic constants with temperature
through the martensitic transition in both the 25 and 27 at.%

Tl alloys shows a slight dip in the vicinity of Tc' The dip

is larger for the higher T alloy of 25 at.% . In figure 3.3(a)
is shown the temperature variation of the modulus 044 in the
vicinity of Tc for these alloys, and also that for 21 at.% Tl
reported by Pace and Saunders (1972). The results suggest an
increased anharmonic effect for alloys of lower thallium

content and higher transition temperatures. The attenuation

peak at Tc can also be considered to be a result of enhanced
anharmonic interaction, and in figure 8.32(b) is shown the
variation in longitudinal wave attenuation in the h1d] direction
in the same three alloys. The fractional increase in attenuation
from the 'base level'! is seen to be greatest for the 21 at.%

Tl alloy.

The variation in temperature range over which the
enhanced anharmonic effects are seen for the three alloys could-
be due to the fact that the apparent 'two-phase' region of the
phase diagram (figure 2.1(b), and Pollock and King, 1968) is

wider at lower temperatures.
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At this stage it begins to appear that a larger
variation of observed properties near the phase transition for
higher values of Tc might be a general feature of the alloys.
The magnitude of the peak in thermal expansion, as reported by
Pahlman and Smith (1968), appears to follow this trend. To
examine the hypothesis further we show in figure 8.4 the values
of elastic moduli for various compositions at various
temperatures. The moduli concerned are those for propagation
of longitudinal and fast shear waves in the [110] direction.,
(Figure 8.4 represents an extension, made possible by the results
of the present work, of a collection of data given by Pace and
Saunders (1972).) The data for 290K shows a fairly well-
established variation, and we see a dip in both the moduli
shown at about 22 at.% Tl. If the above reasoning is correct,
then we should expect a variation in modulus-composition
curves for different temperatures of the form shown in the

sketch below.

-~ \
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We now look to see whether the curves joining points represent-

ing lower temperature values have smaller dips in them than

that for 290K. The points shown for 200K and 100K are not

inconsistent with this idea, but there is still insufficient

data to form a definite conclusion for this aspect of the problem.
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Figure 3.4

The longitudinal and one of the shear moduli

for propagation in the [110] direction.

The

temperature corresponding to each point is
shown adjacent to the point (the units are
degrees Kelvin),
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Further work on the temperature dependence of elastic moduli

for other compositions is obviously needed here.

B le2 Debye temperatures and specific heat

The Debye theory of solids makes it possible to
calculate a value for the specific heat of a material from a
knowledge of the sound velocities. 'The theory is based on a
harmonic approximation to the lattice energy dependence on
strain, so that differences between observation and calculation
would be expected to arise whenever there is an appreciable
anharmonic contribution. For example, a harmonic solid has a
constant value of specific heat at high temperatures (greater
than the Debye temperature). In the Debye theory the lattice
frequencies are assumed to take on a continuous range of values
up to a cut-off frequency Vpy the frequency Vp is such that
the toctal number of lattice modes is 3n for a solid containing
n atoms. If the density of states function is N(v ), this

condition can be expressed as
Yo

S&(v) dv

To the cut-off frequency VD there corresponds a temperature GD '

Zn . (8.6)

known as the Debye temperature, and related to v by 6. = th/k.

D

In terms of sound velocities, the Debye temperature is given by

; L
_oafam NI, A 1\ aal’
o, = k(w) J(ﬂ + . 3) | (8.7
1

2
vs vy

D

where Var Vo and v5 are the three velocities of wave propagation
in some direction, and V is the crystal volune. The integral
is over all solid angle.

Three mode Debye temperatures can also be defined,
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and are given by

(E%V)% S;JB_ %{i} . (8.8)

©
I
Ll

For a real solid there is no one cut-off frequency, but a tail
on the high frequency end of the density of states function;
an effective Debye temperature Oe can be defined, (see
Liebfried and Ludwig, 1961).

We have calculated total and mode Debye temperatures
for indium-thallium alloys. In figure 8.5 are shown the fast
shear, slow shear and total Debye temperatures for alloys
containing different amounts of thallium., The room temperature
sound velocities for the calculations come from elastic constants
given by Chandresekhar and Rayne (1961), Hovotny and Smith (1965)
and by this work. Figure 8.6 shows the results of a similar
calculation for one alloy — In-27 at.% Tl — as a function of
temperature (including its transition temperature of 125K).

The computation of QD from sound velocities by means
of 8.7 or 8.8 centres around evaluation of the integral.

Alers (1965) reviews several methods available. These are
approximational methods, and reaguire a knowledge of sound
velocities in a small number of predetermined directions.
Such methods were found to be insuff;ciently accurate for the
indium-thallium alloys on account of the large anisotropy of
the velocity surface of the slow shear mode, and its close
proximity to zero in (110) directions. Figure 8.7 shows the
(110) cross-section for several alloys, including the 27 at.%
one. The method used here for evaluation of the integrals in

equations 8.7 and 8.8 has been to approximate them by a sum
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sources of the data are given in the text.
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Cross-sections of the slow shear mode velocity
surfaces for In, In-15 at.% Tl and In-27 at.% T1
at room temperature (290K). The cross-sections
are for wave propagation in the (110) plane.
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with a small value of Ajl. The Christoffel equations were
solved to find the velocities of sound propagation along 643
directions, each subtending an equal solid angle, in half of
the first quadrant of space. An angular spacing between
directions of 2° was used, which corresponded to a value of AN
of 1.218x10™° steradians.

A comparison between the theoretical results and
experimental ones is possible if the specific heat Cv is

computed from the values of 6, obtained. The expression for

D
Cv is X
T 3 D x4 X
CV = 9nk(g—\ S —x—e—g ax (8.9)
D (e™=1)
. . hv _ n .
in which x = T and Xy = GD/T . Tables are available for

evaluation of this integral, and Beattie (1926-7) gives values
of Cv/jﬂ( as a function of OD/T . CV has been calculated for
In-27 at.% Tl over the temperature range 117 to 300K.
Unfortunately there are no specific heat data available for this
composition, but Schwartz (1970) has reported the temperature
variation of Cp for In-28.9 at.% Tl. Ve have applied a
correction to his results to obtain Cv’ using the method of
Clusius and Schachinger (1952). The correction takes the form
cp-cv,= ACPE'T, with a value for A of 8.03x10-6 mole joule’1°x‘1.
Figure 8.8 shows the experimental results of Schwartz for Cp and
the corrected curve for Cv' The small variation in specific
heat at the transition in the 28.9% alloy (at about 90K) can be
seen. sSuperimposed on the experimental curves is the calculated
variation in C, for the 27 alloy. The calculated decrease of

D

©.. with temperature leads to a value of Cv which is almost

independent of temperature, and very close to the value 3R
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(=24.94% joule mole-1 OK-1 ). The interpretatation of figure

8.8 is complicated somewhat by the use of data for two
different compositions, but if we assume that the Debye model
results in a very small value of QD at Tc (because of the

very low velocity of one of the modes of wave propagation),
then the resulting specific heat should be very close to 3%R.
The fact that the observed specific heat is less than this
value in the 28.9 at.% Tl alloy means that its effective Debye
temperature does not, in reality, fall to zero. 7Thus we

find another limitation on the harmonic model in the vicinity

of the transition temperature.

8.5 Order of the phase transition in indium-thallium alloys

8a5a1 First and second order transitions

A first order phase transition is one which involves
a discontinuity in first derivatives of the free energy, while
a second order one is accompanied by discontinuities in second
derivatives ; in both cases the free energy itself is
continuous. (See, for example, Zemansky, 1951.) On that basis
there are discontinuities in volume and entropy at a first
order phase change and there is a latent heat associated with
it, while a second order one has continuous variations in
volume and entropy but discontinuities in specific heat, thermal
expansion and bulk modulus. (See, for example, Roberts and
Miller, 1960.) The elastic constants are related to the

J

are strains. We would thus expect a discontinuous change in

internal energy U by Ci = b“ZU/bxiax‘j , in which X, and xj
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elastic constants at a second order tramsition.

There is a type of second order transition at which
specific heat, bulk modulus and thermal expansion all change
very rapidly, but not discontinuously. Such a type is known
as a A-transition. At a ‘A-transition the elastic constants
also change very rapidly: Garland (1970) reviews the effects
on ultrasonic attenuation and velocity seen at many ) -
transitions. In some materials, such as NHuCl, the change in
modulus can be very pronounced, while in others it can be much
smaller., The fractional change seen in the velocity of a
longitudinal wave in [100] in RanF3 is only about 0.05%.
¥or a A -transition the Pippard equations relate specific heat,
thermal expansion and bulk modulus to the change in transition
temperature with pressure. Garland (1964) has applied these
equations to elastic properties of crystals, and has shown that

at a N-transition the modulus 7}(011 -C12) should be constant.

8.,5.,2 Application to indium-thallium

Both first and second order transitions have been
proposed for the fcc to fct transformation in indium-~thallium
alloys. The work of Guttman (1950) on X-ray measurements of
lattice parameters and on the nature of the region of the
phase diagram close to the phase boundary led him to conclude
that the transition was of second order because he found
(i) that any discontinuity in volume did not exceed 0.1% (and
probably not more than 0.03%%), and (ii) that all X-ray powder
photographs at room temperature had lines from one or other
structure and never both, suggesting no two-phase region on

the phase diagram. On the other hand, Burkart and Read (1953),
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who measured the change in length of specimens on transformation,
pointed to the discontinuity in Gibbs free energy implied by
their findings of discontinuities in strain at the transition,
and considered it to be of first order. The room temperature
variation of lattice parameters with composition (shown in
figure %4.11) was also considered to suggest a first order
process. Anderson and Blount (1965) considered the question

of a cubic to tetragonal phase transition on general, and found
that such a change ought to be first order, but were unable to
come to any definite conclusion concerning that in In-Tl. The
work of Pollock and King (1968) and their description of the
phase diagram as a 'realisation' one has already been discussed
_in Chapter 2. As a result of their work we might describe the
transition as of 'Pseudo-first' order when a macroscopic sample
is considered, but of second order for a region around a
nucleation centre where the transformation proceeds by a single
interface.

The results of the present work can usefully be used
to extend this discussion. However, in the interpretation of
the temperature variation of various parameters the effects of
anharmonicity must be kept separate.

Of the experimentally observable quantities mentioned
in section 3.,5.1, namely the thermal expansion, specific heat,
bulk modulus and the elastic moduli, results are available from
this work for thermal expansion and elastic moduli.

Considering first the thermal expansion component of the 25 at.%
Tl alloy in the two phases, we find that in the temperature

regions remote from the transformation its values in the two
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phases are almost indpendent of temperature and differ by a
factor of about 2, The results of Pahlman and Smith (1968)
for thermal expansion of other compositions also show a step,
but of a smaller magnitude than that seen here.

The ultrasound velocity data in the vicinity of the
phase transition have been discussed briefly in section 3.2.1,
in which it was remarked that no obvious discontinuity was seen.
These results are reminiscent of those found at a X-—transition,
11—012) with

temperature is not consistent with Garland's result, mentioned

although the variation of the modulus #(C

in the previous section, that 3(C ) should have a constant

117 €12
value. In figure 8.9 we show the variation with temperature of
sound velocity in the [ﬁ1@ direction for In-25% at.% Tl near to
Tc' after a correction has been made for thermal expansion of
the sample. An extrapolation has been made of the velocity in
the cubic phase and, neglecting the dip at Tc’ we can detect a
small step in the experimental curve. Hardly any step-like
effect was seen in In-27 at.% Tl. The data of Face and Saunders
(1972) for a 21 at.% Tl alloy shows a slightly larger step
between velocity values in the two phases. 1In each of these
cases the changes seen were very small (£ 0.3:), and when

taken together reinforce the notion that the transition in

in indium-thallium from fcc to fct is of second order and not
first. The specific heat data of Schwartz (1970) in which

there is hardly any change (~1%) in Cp at the transformation
for a 23.9 at.% Tl alloy is in line with this conclusion,

although it would be useful to have heat capacity data near Tc

for other alloy compositions to provide additional evidence.
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In summarising this section, we find further evidence
to that already presented by other workers to suggest that the
fcc to fct transition is of second order. Ignoring anharmonic
effects near to TC we have observed steps in thermal expansion
and in sound velocity (and hence in elastic constant), but in
the latter case the steps were very small in magnitude. A
A - transition has been considered as a possibility, although
the variation in C' with temperature is ﬁot entirely consistent

with such a model.

8.6 Soft modes and the martensitic phase transition —
a summary

The softening of an acoustic phonon mode as the
martensitic transition is approached has been the central theme
of this thesis, and we now bring together the experimental and
theoretical findings. Experimentally, it was the variation of
%(C11 -012) (or C') as a function of composition, which led
Pace and Saunders (1972) to propose as the transition
mechanism the softening of the [11(], ﬁifﬂ polarised mode.

In the more controlled experiments made possible by use of
temperature as the variable, we have been able to confirm the
decrease towards zero of the modulus C'; we present in figure
8.10 a summary of the temperature variation of C' for the alloys
studied, together with the variation in indium of that modulus
(from Chandresekhar and Rayne, 1961). Figure .10 shows quite
clearly the effect for the 25 and 27 at.% Tl alloys, while the
variation of C' for the 11.5 and 15 at.% Tl alloys shows for

the first time its behaviour in single crystal tetragonal
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materials as the phase boundary is approached. (If an
extrapolation of the phase division line is made into the
liquid phase then at 423K the 15 at.% Tl alloy is about 25°K
from the boundary.) From a theoretical point of view it has
also been possible to show a mode soitening, within the limit-
ations on the model potential theory discussed in Chapter 7.
The theory took as its starting points very basic atomic and
lattice parameters; the calculations showed that the stability
of the slow shear mode in the b1(ﬂ direction was very
sensitive to small changes in these, particularly to variation
in lattice parameter values. Other modes were affected very
little by these changes, and it would seem that the mode which
becomes unstable does so as small changes occur in lattice
dimensions on chBnge of temperature. But the postulate of mode
softening has been shown to be theoretically viable, as well
as experimentally so.

The experimental results for mode softening at the
transition are, gualitatively, in accord with the soft mode
theory of Cochran (1960) and its developments as outlined in
Chapter 2, for not only do we find that the slope of a
dispersion curve tends to zero at Tc’ but also that the atomic
displacements required to form tlie new phase correspond to the
elpgenvector of the unstable mode. The transition temperature
of a soft mode process is that at which thermal fluctuations
are no longer able to stabilise the lattice against the
instability of one or more of the modes. The ability of
fluctuations to produce stability depends on anharmonic inter-

actions; since the transition temperature for In-11 can vary



- 251 -

between O and 425K there must be a variation in its anharmonic
properties if a soft mode is, indeed, the mechanism of the
transition. t&vidence has been found for such a variation, aé
described in section 8.4 .

The theoretical part of the present work has shown
that the lattice dynamics associafed with the martensitic phase
transition in indium-thallium alloys are far from being
completely understood or accounted for, but that results
obtained so far suggest that further investigation should

prove profitable.

8.7 Suggestions for further work

The study of indium-thallium alloys described in this
thesis has brought to light a number of interesting features
which could be usefully pursued further.

The question of the mechanism or mechanisms
responsible for the ultrasonic attenuation variation with
temperature has not been satisfactorily resolved. Experiments
to measure accurately the frequency dependence of attenuation
both in the vicinity of the phase transition and remote from it
would be required. Around Tc one might look for a variation of
attenuation with frequency of the form « = (T-Tc)nf(u), and the
exponent n and the function f could be found. Such an
investigation has not been possible in the present work because
of the high values of attenuation encountered at Tc in the alloys
investigated, but the results obtained for temperature
dependence of attenuation would suggest that a suitable alloy

composition to use for a frequency study would be one which
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transformed at between 250 and 270K, or one containing about
23 at.% Tl. This alloy would have its attenuation peak at the
phase transition superimposed on a lower background value;

it could also be prepared in single crystal form.

Further investigation is suggested, too, into the
idea that physical phenomena associated with the phase
transition occur more sharply at a higher Tc' In this
connection it would be interesting to study the specific heat
variation near the transition temperature in the 18.3 at.% T1
alloy which Schwartz (1970) investipated. Unfortunately his-
data did not extend to temperatures greater than 700K (the 18.8%
composition transforms at about 350K).

Mention has already beenmade of the desirability of
producing the elastic constant variation withltemperature for
compositions other than those already reported. sSuch results
would enable figure 8.4 to be extended, and the compositional
dependence of elast{c moduli at temperatures other than 290K
to be found.

On the theoretical side a better model for indium
would allow the calculation of phonon density of states and
specific heats to be made. In the light of the discussion of
Chapter 7 a better model would be one which predicted the
observed tetragonal crystal structure. A further study of
anharmonic properties could usefully be made, leading to values
of the effective Debye temperature. Experimentally, the
pressure variation of elastic constants to obtain the third
order moduli would yield valuable information, and the validity
of Pippard's equations (1956) in these materials could then be

assessed to determine better whether a X-transition was involved.
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8.8 Summary

Lattice properties of In-T1l alloys have been studied
in the viecinity of’thé fcc to fct martensitic transition. The.
experimental aeﬁects have been investigated by ultrasonic aﬂd
‘thermal expansion methods, while a theoretical approach has
resulted in the calculation of phomon dispersion curves for
the alloys starting from optimised model potential theory. .in
‘addition a method of deriving the stability limits of Poisson's
ratio has been applied to the crystal structures as the
transition is apprpached, using e1asti§ constant data; the
onset of inatability has been fouﬂd to give a Poisson's ratio
which approaches its lower limit only in the direction of the
shear responaible for the structure change. The softening of
the phonon mode for propagation in the [11Q] direction,
polarised [17@] hﬁs been shown to occur both experimentally.
and theoretically; the transition mechanism has been interpfeted
as consistent with the soft-mode theory normally applied to
soft optic mode transitions. Ultrasonic attenuation peaks
have been found to accompany the phase transition, and are
attributed to enhanced anharmonic interactions. However, no
satisfactory explanation has been found for a large and rapid
rise in attenuation seen in all alloys below about 220K. An
increased anharmonic contribution to the strain energy can
be identified for alloys with a higher transformation
temperature. Evidence has been found to support the notion
that the martensitic phase transformation in In-T1l alloys is

of second order.
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Appendix I

Determination of the angle bhetween two crystallographic planes

ziven the goniometer settings for X-ray beam incidence along

their normals.

1) Gign convention for goniometer angles.

a) Rotation about vertical axis is positive if anti-

clockvise when viewed from above.

b) Rotation about either of the other two axes is positive

v

if anticlochkwise when viewed with the X~ray beam normal

or from the left.

N

.

_——

K-r..Y : S .
|

(Figure A1.1)

2) Two axial sets considered:
i) A set x, with x, vertical and x, along the X-ray beam.
ii) A set x; with x5 perpendicular to the goniometer

platform and x{ in the direction of the X-ray beam
when §=¢=¥= 0; 6,¢,8§ as defined in figure A1.1.

3) tiethod of calculation.

Let the goniometer settings be 9,¢,X‘ as defined in figure
A1.1, when a crystal has been oriented so that the X-ray beamn
is incident normally to a set of lattice planes. These angles
then give the Buler angles of the transformation of the axial

set x{. We require the direction cosines of x, with respect to

1
x{. The procedure is repeated for another set of planes.
Then the angle required is that between two lines whose
orientation with respect to a set of orthogonal axes is given

by the two sets of direction cosines calculated.



) Procedure

lLlet x' be defined by the anglesdﬁnuiﬁin figure A1.2. The y!
axis is perpendicular to x' and makes an angle of Slwith the

tanzent to a circle, centre O, in the x'-z plane.

(Figure A1.2)
1)

The direction cosines of x',y' and z' with respect to x,y,z are

A B C
Dcosg - Esin} Fcos§ - Gsin$ Hcos$
-icos$ - Dsin§ =-Fsin$ - Gcosd -Hsin}
where A = cosXcosf E = -sinx
B = sinxcosyg F = -sinmsiq}
C = sing G = cos«
b = -cosusiqﬂ H = cosg
For the present case x,]‘gx‘, x2‘_=_-z‘, x'=y' and consequently
3 ‘

the direction cosines of X, with respect to x{ are

coslcos ¢
-sinfcosY¥ - cosfsingsint

-cosfsingcosf+ sinfsin¥

J.et these direction cosines be Pqs p2, p. ; let another set

>

be p{, pé, p. . ‘The angle between the unit vectors
_ . . - 15 13 e

I; =Pl + ppl v Pk and &, = pgiio+ pij o+ opok

is given by sinn = |£1x _{21

The cross product is | i j k

P1 p2 PZ

Py Py P s
- - 3 . . . “ - o —
If this result is t1£ + tzl + t}i , then 51nq .\/t1 + t2 + t3 o

(1)  Turley and 3Sines (1972)
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Appendix 11

Jetermination of relationships between dependent and

independent elastic constants

The number of independent components of the elastic
compliance tensor in a crystal of a given symmetry is invariant
under coordinate transformations (rfumi 1952). For crystals of
the tetragonal (TI) Laue group, taken here as an example, there
are six independent constants. Let uany general, unspecified,
compliance constant be denoted by S.1 when referred to |
conventional crystallographic axes, or by S; when referred to
transformed axes; any symbol Sij with two suifixes represents

a specific compliance tensor component in the usual matrix

notation of Voigt. For a tetragonal crystal, let the six

-

1! S.2'

5 and B e 822

1
typical compliance constant whose dependence on the Si is

]
independent compliances be S ! Sq, 5 is a

3‘

required; we treat this case specifically as an example. hen

we can write

! ! | 1 t 1

1

and the dependence is established once the coefficients f.l are

known., The component 522 can also be written in terms of the

unprimed compliances:
= 5 %_5 ¥ X, 3, u 5. 2a2
S X 5. + S, o+ X5+ qbq + 555 + N6 5 (42.2)

and si can be similarly related to the S.1 hy
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51 = A1S1 + A253 + A383 + ALS, + Ass5 + A6S6 W
]
5, = B1S1 + 8282 + 3353 + qu + Bss5 + B686
L (A2.3)
‘I

The coefficients d in equation A2.2 and Ai,Bi,...Fi in A2.3
are fourth order combinations of the direction cosines
corresponding to the transformation under consideration, and
are determined from the tensor transformation rule of equation

2,16 . Substituting A2.3 into A2.1 and using A2.2, we have

]
- X3 o o - o 3
Sz2 XySq * X8, + MBSy + XSy v KSg
= A 3 i N A-S
= f,\(AL,‘S,l + A2 5 * ABS: + AHS + A5 5 + Ab 6)
+ £5(B)S, + B,S, + BS. + BS, + BoSg + BeSg) | o

+ f3(C1b1+ cees

r:J

+ fé(kqb1 + F252 + r303 + FLS, o+ 585 + b6b6)J

low the Si are independent (by definition) and hence we can

compare their coefficients in this equation, and we have

= ¥ w

N1 f1\1 + fZB1 + f301 + fl+ 1 + f5 1 + f6 .

x, = f1a2 + f282 + f3C + fq 5 ¥ f5E2 + f6 >

«3 = f1A3 + eese $ (‘\2.5)
= f f_E f F

V6 f1A6 + 2B6 + f3C6 + fLI-D6 + 5 6 + 676

Yalues of Ni’ Ai’ Bi’ ...Fi can be evaluated from equation 3.16
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using the appropriate direction cosines: equation A2.5 is a
set of six equations in the six coefficients fi and can be
solved by, for example, Gauss elimination to give the required

1
relation between the dewvendent compliance constant S__ and the

22
chosen six independent ones S;. Tiie same method can be
readily applied in the calculation of any other dependent
constant.

The choice of independent elastic compliances 1is
soverned by the requirement that the relations A2.5 must
themselves be indenendent, and thus lead fto a unique determin=
ation of the coefficients fi. In practice, this means that
for tetragonal TI crystals any six compliances can be considered
as independent provided that the transformation is such that
there is no coincidence between any transformed axis and
either an original axis or a direction midway between.
Bguations A2.5 can become unstable, nowever, even 1f the
coinciience of axes 1s not actually obtained but is nearly so.
The choice of independent compliances to Le used for a given
axial orientation can usually be made by inspection if these

considerations are borne in mind,

ffor example: 811 and 871 are independent, but after

a rotation about the x axis of 1900 511

'
and S__ are equal and
B

independent of 3 If the rotation is asgain about the x axis,

22°
, . o ! ! .
but is of 45 then 513 and 512 become equal, and are independent
1 1 1
of SE?' wnile 522 equals S, and both of these are indepcndent
¥
of S11. Therefore, a suitable compliance set for calculations

- . . 0 .
of the limits on Poisson's ratio at %5° to the z axis when the

o

apnliecd stress is along the ¥ axis would be S 5 S5 .,5
- o > 11171277270 7220 P hy

and
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APPENDIX III

The computer programmes

PRATIO

The programme takes as input data the direction
cosines of the direction which is perpendicular to the plané,in
which the variation of Poisson's ratio and its limite is sought.

Only two of the direction cosines are read in: the third is

L}
calculated from L =~/1 - (L,‘2 + L22) , and the integer variable

3

NORP is set at O if L, is negative and at 1 if it is positive.

3
Up to the CONTINUE statement labelled 28 the direction cosines

for the y' and z' axes (21,P2,P and T1,T2,T , respectively),

3 3

are calculated as y' moves around in the y'z' plane in 5° steps.
The method of calculation is as described in section 6.2, and
all direction cosines are referred to the untransformed axes-

X, ¥y 2. For each set of x', y', z' the programme produces -
the dependences of_two or more primed compliances on a
specified set of six other primed ones., The matrix C containé‘
Ox6 elements which give the direction cosine combinations for
the way in which 9 primed compliances can be found from the six
unprimed ones of the normal crystallographic set. The ordering
within C is as shown below — subscripts only are listed.

11 12 13 33 W4 66

110
12¢
130
33!
Gl
66"
22!
23"
55"

Thus 31; = C(3,1)8,, + C(3,2)5,5 + «uus + C(3,6)5,(.
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The simplification possible for cubic materials is made in the
first four lines of the CUﬁIC form of the programme on page
0003A. The coefficients Ay By oo F, and ® of Appendix II
can be obtained as the appropriate lines or columns of the
matrix C. In solying the six equations A2.5 for fi the
coefficients of th; RHS are put into thé matrix AV, and those_
of the LHS into the matrix S. A scientific subroutine GELG'
served to solve the set of 6 equaﬁions by Gauss elimination.
The particular compliances whose dependence on another six is
required govern the contents of AV, while the rows of C
appropriate to the compliances selected as independent fill the
matrix S. As given here the CUBIC form on page OO03A gives
f1" S12"
Suy's S11', 812', 355'; 811', CIPAN 866'; in each case the

results for three sets of independent compliances: 8

13'1 Sz3's Spp' and 55t

The corresponding ones for the TETRAGONAL version, on page

dependent moduli considered were S

. : ' and S 't oin t ? t ' '
O00O%B were 523 an 33 in terms of S11 . 512 ’ 313 ’ 322 '

|} ' v 3 ' ' '
55 and 822 and S13 in terms of S11 ’ 812 ' 523 ’

533', 544' and 566.' If the dependences of any other primed

compliances are required, it is thus necessary to change the
statements in the loop ending at the label 59 so as to put
the appropriate components of C into AV and S. If numerical
values of any of the primed compliances are required, it is a
trivial matter to insert a READ statement near the beginning of
the programme to read in values of the unprimed compliances,
and then a set of statements of the form

DO 250 I=1,6

511D=C(1,1)*COMP(I)+S11D
250 512D=C(2,1)*COMP(I)+512D -

The example given produces values for S11' and 812'.
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DISPS

The programme calculates the phonon dispersion curves
in three crystal directions: [001] ’ [110] and [100]. The
output lists the band structure and electrostatic energy
changes and the lattice frequencies for the three modes of
propagation in each direction, at equally-spaced values of 3 up -
to the zone boundary at 21/ a. The_inéut parameter SIZE is the
fraction of the origin to zone boundary distance between
successive values of 3. The programme starts by reading in.'
values for valency (Z), effective valencies of indium and
thallium (281 and 2S2), the lattice parameters in angstrom units
(AL and CL), the atomic weight of the alloy in atomic units (AM),
the atomic volumes of indium and thallium in atomic units (0M1
and OM2) and the alloy composition in percentage thallium (COMP).
The energy-wavenumber characteristic is read into F. The
reciprocal lattice dimensions and the fermi wavevector FWN a?e
calculated, The direction of propagation is taken as the z-
direction, with x- and y-directions in the plane perpendiculafbto
z and oriented along simple directions in the lattice. The
reciprocal lattice point spacings along the x, y and z axes are
labelled A, B and C, followed by the Miller indices of the
propagation direction. For each value of 3 the band structure
and electrostatic energy changes are evaluated according to

equations 7.45 and 7.47; the last part of the programme obtains

the lattice frequencies froma)=/(SEbs-+8EeB)/H » (equation 7.49).
The sum over q for the band structure energy change
is taken at all lattice points (except q=0) for which the

argument of FN(q) does not exceed 7'0’(FN(q) = O when q) 7.0).



- 264 -

The points are taken from a simple rectangular mesh of 93 points
of spacing m/a, T/a and 1Y c. Each point is tested to

determine whether its co-ordinates place it on the bet reciprocdl
lattice under consideration. If so, equation 7.45 is evaluated
and the result, labelled DEBSL or DEBST for a longitudinal

or a transverse mode, respectively, is added to the sum. (See
lines 5, 9, 13 and 14 of page 3.) A set of logical IF statements
performs the task of sorting out the points required from thdse
which are not; (the IF statements follow label 7 on page 2).
Interpolation of FN(q) is performed by the subroutine INTER,
which uses a four-point Stirlingvcentral-difference formula

over most of the range of q, and a Newton forward method for q/kf
<041 (see, for example, Friberg, 1965).

The procedure for evaluating the electrbstatic energy
change (equation 7.47) is rather more involved, and sums over
pafallel and perpendicular components of q, are taken
separately. The reciprocal lattice points are projected onto
the xy plane and for each value of 201 an analytical expression
is used to evaluate the sum over ﬂo"' Adaptation of a result

of Harrison (1966) gives, for a particular value of q_ %, the

P

sum over qo" extending from +® to - , and including n =0,

S 1 2
+ -

2 2 * 7 2 2
" " L - " i
q," | (Q+q ")+ (Q-9,")" +q, q,

2 2
L "
+ Eo

3o
%,
A

a,* q," 2 _ A T <2A _ -A T TR

L1 [ . 2eAcosB 2e AcosB e +1
e =2e cosB+1 e -2e cosB+1 e =1

i i = L ] = ”" i
in which A 2“30 '/go and B 2wg,/2° « In the programme this
is the function SM in lines 5 to 7 of page 1. When the values

of q " to be summed did not include q " = O the result was
=0 =0
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obtained from two applications of SM using differenf reciprocal
lattice point spacings and taking the difference of the two.
resulta; (see lines 3 to 19 on page 4: NC has the value 1, 2 or
2z for prbpagation in the [001], EI‘IO] or EIOOJ directions). The
sum was found to have converged sufficiently by gol=:6kf. In
order to reduce the computing time the sums are only evaluated
in the first quadrant and a multiplicative factor P is used o
to correct the results., When SIZE was 0.05 the programme

took about 60 sec. CPU time on an IBM 360/67.

COMBINE

This programme evaluates normalised energy-wavenumber
characteristics for the alloys starting from certain functions
obtained for each element from MODPOT, namely F, G, H, Fn(q),
€, 2* andJfl. Also the fermi wavevector kf'iS'required. The:
analysis outlined in section 7.3%.,2 has been carried out and the
un-normalised energy-wavenumber characteristicas FUNQ1 and FUNQ2
are computed. TFQUNAV is based on the product of matrix élements
for the two metals. The average energy-wavenumber characteristic
Fav(q) is obtained from CZFUNQ2+ (1-C)2FUNQ1 + 2C(1-C)FQUNAV,
in which C is the percentage of thallium. Renormalisation
is performed to give FNQAV. The programme is designed to carry
out this procedure for steps in thallium concentration of 5%

up to 35%.
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MODPOT

MODPOT is & slightly modified version of the PL/1
programme given by Shaw (1968a) to calculate normalised
energy-wavenumber characteristics and form factors for metals.
It requires as input data the fermi wavevector (KF), the
valency (2), the maximium value of 1 for which the potential A
has been modelled (LO) and the well depths and their energy
derivatives (AO,A1,A2, DAODE,DA1DE,DA2DE). The output consisfs
of the normalised energy-wavenumber characteristic FQ and férm»
factor WQ tabulated at q/kf values in steps of 0,1 up to 5.0
and in steps of O.4 up to ?7.0. In addition, the functions EPS,
F, G and H are given for each value of q/kf. The calculation
of FQ in lines 541-3 is the form to which the expression in
COMBINE for FQUNAV reduces in the case of pure indium,

For further details of the procedures used see Shaw
(1968a); the information given here is sufficient to enable tﬁe'
programme to be used., On an IBM 360/67 the running time was .

approximately 1400 seconds.
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