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ABSTRACT : '

This thesis realises'the Heed for describiﬁg caomputer curves
and rurfaces in terms of intrinsic quantities and ce?ta{n
properties relative to the Euclidean space 1in which thé& are
embedded. B
Chapter 1 introduces some of the i1deas and problems invoived

" An what :can be termed computational differentiasl geometry.
Chapter 2 présents some analysis of the major types of
computer curves in terms of a number of shape control parameters.
Chapter 3 gives a similar analysis of computer surfaces.
Chaptser ‘4 considsers the calculus of.variations in connection
with the minimal immersion aﬁd a particular invariantiy
defined functional analogous to energy.
Chapter 5 applies the energy funﬁtiongl to a class of computer
cﬁrves. | |
Chapter 6 looks at a number of surfaces in relation to surface
mappings and distortion. Some mappings are also derived. This
generally invalves the solutiﬁn of npon linear differential
squations the linearisation of which will almo;t certainly
rémove the Salient features of the theory.
A bibliography and a number of figures are provided following

chapter 6.




Chapter 1

Introduction

In recent years the introduction of the computer as an
additional tool in the in&uétrial design process has
stimulatéd considerable intersst in the development of
algorithms for curve and surface interpolation and
approximation {8-18}. The purpose of this thesis has
.been to appiy some of thé fundamental ideas of
differential geometry to this problem and to the problems
associated with deriving twp dimensional patterns from

given three dimentional surface representations.

Traditionally the design process has involved a

tremendous amount of repetitive work which has bsen time
cansuming, often irreversible and consequently expensive.
This process of producing sketches and drawings, making
models and applying numerous corrections and modifications
has .served to emphasise the need for what 1is now

familiarly known as Computer Aided (Geometric) Design.




The basis of CAD could be stated briefly as the
*mathematical definition of shapé'. More precisely one
is interested in deriving for some shape = which may exist
initially purely in the desiéhers' mind -~ a mathematical
representation as a surface in €3 which will be of such
form as can be held within a computer. The development
of such computer hardﬁare as 'real time' keyboards an&
graphics displays has meant that a designer can

directly dinteract with the coﬁputer to produce this
derivation by using the quick assimilation of computed
results to make decisions and thereby efficiently
guliding the computer until an acceptable represesntation

has bean obtained.

-

.-/

Ta achieve a surfaée representation 1t is clear that for
"all but the simplast.of shapes geometfically an implicit
: equation would Ee qnhapdy if at all obtainable since ws
shall be mainly interestéd in local_pro?artieé and having
'loballcontrol over the desoriptioﬁ. Consequently the
technique generally adopted is that Qf considering the
surface as being composed'of a finitae union of
topological squares commonly known as 'patches' (11, 13,
14, 15) which are normally arranged to satisfy conditions

which are analogous to a surface triangulation where:-

(1) no two patches have a common interior point,
(i1) to each side of a patch there correspond two and

only two patches with this common side unless



tﬁé side of the patch 1lies on the boundary
of the sQrface in which case it belongs to only
one patch,

(1i1) any two patches can be joined by a sequence of
patches where aach.petch in the sequsnce has one
and only one side in common with the next one in ~
the sequence, | -

' ‘:.(iv) all patches with a common vertéx can be arranged

| in a definite order so that consecutive patches

have a common side passing fhrough the vertex.

An explicit formin which each point 1s expressed in terms

‘of two curvilinear coordinates also enables us td dascribe

-~
-

a senss round thé surface. However, such.a'patch
representation is by no means uniqué and in addition to
thé above we insist that there are éide smoothness
-conditions which will ensure that neighbouring patches

are glued together differentiably to form the complste

definition.

All functions are computed as truncated polynomials by
digital computers and so it seems reasonable to use
polynaomials as the basils fqnct;ons for both curves and
for the surface patches. In practice for most
purposes cublcs for curves and bicubics for surfaces are
optimal in thét the degrees allow for sufficient shape

flexibility and the necessary smoothness criteria.

—
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fhe problem of 1nterpoﬁ$tion radgcas to one of dstermining
suitablse cdnstraints to impose on properties such as arc
iength, surface area and smoothness in order to uniquely
define the patch boundaries and'interiors from the o
verticesf ' We insist however, that we do not impose
restrictions which are peculiar to the particular

" parameterisation adopted and in particular we shall be
;ntarested in intrinsic properties; By.using elements
of intrinsic geometry we c;n us; the results and ideas
:of Riemanniqn-gqométry which 1is meinly‘intrinsic and

for which the literative is vast'{ﬁ}ﬂ This would also
-anable ldeas to proceed alohg more general lines loqking

_-:_atuauparticular field of tensors defined over

diffarentiable manifolds.

In placing oﬁf‘constraints wa must pay attention to two
“baslc results from the theorylbf cﬁrves and.surfaces in
g3. For curves, the andamental-existence and
. uniqueness theorem states that for érbitrary continuous
functions k(s) and t(s) .defined.oﬁ a.‘ s ¢ b_théﬁ there
exists, up to a rigid motion, a unique curve for which
k is the curvature, Tt 1s the torsion and s 1is fhe arc
length. Correspondingly, for surfaces if the functilons
E(u,v), Flu,v), Glu,v) are €2 and L(u,v), M(u,v),
N(u,v) C! on some open set containing (uo,vo) and satisfy
the compatibiiity equations of Gauss and-Codazzi and if

the quadratic-differential form Edu? + 2Fdudv + Gdv? is



.positive définite then there exists a unique surface,

up to Euclidean motion, defined an a neighbourhood of
(uo.vol ﬁaving E, F; G and L, M, N as first and second
fundamental coefficiants. Length and area considerations
force us to consider the the;ry of the calculus of
a'vériations to solve what amounts to a form of the gensral
Plateau problem which can be stated as 'given an n-1
dimensional closed submanifold T in En+k then find a
minimal submanifold M" with boundary aM™ = T .

Having achieved.a suitable mathematical representation
which will act as the geometric data base we can then
move an to consider other phéses of design which could

' be embodied in an overall interactive system. The mass

‘production of fashion articles for instance usually

requires specilially shaped tools such as jigs, moulds

" and patterns and it would be beneficial if these can be

acquired as soon as passiblé so that the manufacturer
can catch the market at its peak. = Thus if we could
use the computer -hsld de%inition to determine.shapes'for
‘patterns, which are normally two dimensional, this would
for instance facilitate automation of the drawing process
with the aid of digital plotters. and the cutting procsass

N

with the aid of laser beams or high pressure water Jjets.

The optimum mapping of a particular surface into €2 will
obviously depend upon constraints imposed by such things

as the elasticity of the material, the available




machiﬁery. the cost of the raw material and so on.

We will need to know whether the optimum mapping 1is

goling to praeserve some geometrical structure of the

surface. This will not ndrmally be paossible becaussa

- _Af.the restrictions this would involve and so we will
heve.to look at various norms for msasuring the departure
from the considered idsal. Such an ideal'm;ght be an‘
-isometry for example or mor;.generally cbnformal. It 1is
well known that every point on a surfspe has a neighbourhood
which can ba mapﬁed conformally on some neighbourhood of |

~any other surface, and this result has bsesn widely
Iexploited by cartbgraphers.' The natural_genéralisatioﬁ
.of-the conformal mépping is the quasiconformal mapping

'{7}wﬁich now pla;s an active role in the théory of analytic

functions of a single complex variable.

For each chosen ideal'ﬁe shall term ths départure from

that ideal the 'stretch’' or 'distortion' of the particular
. mapping and the optimum'soiutioq will be the mapping having

minimum stretch.

Althopgh this thesis will be concerned with applying

the fundamental ideas of differential geometry td computer
aided design an interésting and useful observation is
that the computer could become a very attractive tool in

differential geometry. A set which admits a patch

structure is a C* manifold with metric for some r

~




where r dépands upon how the patches are joined

‘together. Conversely if & manifold can be cubulated to
give 1t a patch structure then thelcomputar could be

used to calculate quantities on tHe manifold. This would
overcome'one slgnificant problem which has existed in

”thé past in that for practical convenience many calculations
héve been confined to a small numbsr of manifolds often

only surfaces of reyolution;

..Considerable effort has gone 1nto-computar aided design
in recent ysars but there 1s still a éreat need for
resaareh in many areas before a fully integrated CAD
systaeam could be cdhsi&erad as commercially viablq.

Even 1if CAD metﬁaﬁs tupn aut to be no cheaper than
-traQitional methods. they will certainly be quicker,
Qill'allow more options fo be considered and the
mathematical compatibility of such things as moulds and
patterns w&ll mean thét thg various cpmponents haking

up the_debign should assemble together more accurately.




Chapter 2

Computer Curves in E3

Definition 2.1

A Cubic curve in E? is one for which there exists some

parameter u in terms of which the equation of the curve
‘ - . . ™
can be written as :

rlu) = ap + aju + au?/21 + agudsar BNED!

where EiéEa for i=0,..3 |
_Thse pérameter u 1s only indeterminate to,Qithin an

affine transformation of tﬁe form u —>> u' = § u + in
wherse EE, n € R and so if we apply the restriction that
the curve contains two particulsr points in E3 with
speci?ied parameter values u = & and u = g say, then

the paramseter is uniquely determined; For convenience
we normally take o and B to be 0 and 1 and lqt 0 £ usg 1.
~We will use primes to dencte differentiation with respect
to arc length s and a Natural representation of.a curve

o is one for which s is the parameter.

TS Vet 5



Then s(u) ='f:|i(u]|du = 'fzf(u)du and so it is easy
N
to evaluate s using Gauss Quadrature with s = } w
imq
and verification that s is independent of the

if‘[ui] ’
parametrization follows immediately from the rule for
'changing the variable of an integral. We shall first
of all see that the cubic repressntation (15 places
restrictions on both the parameter-u and the curve

iteslf as a geometric object.

Proposition 2.2

The only cubic curve having a Natural representation 1is

.tha stralght line. A i o fﬁ..

To prove this, if”; .

r(s) = ag + a1s + ap82/2! + a;s3/31 then repeated
differentiation gives |

gtiV)[s] = {k"(s)-k(s)t2(8)-x3(s)}n '*.{2K'(8]T(S]+ﬁ(8]1'(5]}2

~ 3k(s)k’'(s)t = 0 where we have used the Serret-Frenst

formulaa.:

and whers k and t denote the curvature and torsion
respectively. .
Hence «kk’ = 2k't + k1' = k" - k12 - k3 = 0 => g =0
This means of course that we cannot take the arc length

as parameter if we restrict ourselves to cubics.
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Propositiun 2.3

- For given z£0ﬂ£1‘£0'£1§ C E3 with [to]|= [ta] = 1
then there are o2 cubic curves r : (0,1) — E3

such that

r(i) = r,oand r'@d) = t,

for i = 0.1.

‘This follows since if rlu) = ap + aju + a,u2/2! + azud/3!

then 8(ultlu) = a; + a,u + a3u2/2 and the four coefficients

"satisfy
89 * Lo
ay = sl0lty S | i
- 8; = 2V {3(r;-rp)-2s(0)ty-s(1)tP o (+)

‘a3 = 31(2(ro-r;)*3(0)tg+a(1)t,)

which means we have a doubly infinits'femily of curves

. parametrized by s(0) and 5(1].

Corollary

For given Jro.ry.to.t3f € E3 with [to| = |3 = 1
and given no.nlle R then there is a unique cubic curve
r:{o,1] —— E3 such that

r(i) = r, , r’'(i) = ¢ for 1 = 0,1

3 Iy =y ° |£"[i)l = K

i

In fact since rlu) x Flu) = K(u]éa(u]g where b = t x n

then we obtain s(0) and s(1) from :



1.

2{3ty x (r; = rg) - 8(1)tg x t1} = «p s3(0)b(0)

2(3t; x (rp - ry) - E(O)Eo X Ei} " Ky é3[1)2[1).

For the general curve r = r(u) it is normally convenient
to have the curvature ¥ and torsion T expressed in terms

of the derivatives of r.

Since r(u) = s(u)t(u) and
Tlu) = Eultlu) + s2(uxlulnlu) then
‘rlu) x £(u) = é3tu]K(uJE(u) where b(u) = t(u) x n(u) and

‘differentiation gives

Hlu) x Flu) = d {83 (wklu)} blu) - $*Culklulrlulnlu). .
, g 1k ( . )x! :

-Therefore E(u];{i(u) X Eﬁu)} v w-s8 (U2 ()T (u)

But #2(u) = 82(u) qnd'{é(u) xlitujiz = 8%(uIx?(u) and

"so k2(u) = {r(u) x r(u)}2/{r2(u}® = ' ()
Tt = [ru), Etu), Ttu) ] 7{rtu) x Flu))? (**)

Proposition 2.4

. The curvature K and torsion T of the cubic curvs £:[0,ﬂ-——*és
take the boundary values
k(0) = {(a; x 32)2/(312)3}%
k(1) -'[{_E_,_I X a, * &, xa; *+a; x ag/2}/{la; + a, + _9_3/2]2}3]!
1€0) = [a;, a2, 83)/(aj x a3)? ' o

(1) = [ a1, a2, 83, )/{a; x 8, + a1 x ag + az x a3/2}2

These results follow immediately by substitution of

r(u) = a; + a,u +a

3u2/2. E[h) = a, + aju and E(u] = a8,
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into equations .(*) and (**). Also as a consequence

of equations (*) and (**) we have

Proposition 2.5

.The_generél curve r = r(u) is planar'iff [i, i. r j= 0,

This follows because[ I, 2,.£ J - k27ta® and so T = O

implies that{ r, r, T ] = 0.

. Conversely if[r, £, r ]= 0 and © # 0 at some point then

there is. a neighbourhood of this point where T ¥ 0 and ‘so
k = 0 in this neighbourhood. ~ But this means that the arc

-,

is a straight-1ine and so t = O which is contrary to the

’,

hypothesis and s0 T = 0.at all points on r.

Any discernible points along the curve will be of

particular interest from the point of view of design.

Definition 2.6

A point of r ='r(u) at which r"(u) = 0 is called a point

of inflexion.

Proposition 2.7

If the cubic curver : (0,1]J— E3 has a point of

inflexion then :
(102 2z, 23] =0
and (11) &(0)8(1)[ty, ry-ry, ;] = 0O

where ry = r(i) and Ei = r'(i) for i = 0,1.



The proof follows because from (*) and (**)

2wl =[ £u), Flu), Flu)]/s60w)

and so k = 0 means that

[i[u). E(u). E(u]] =[_§1. az, 9_3] = 0

"or in terms of boundary values this means yhat

This means we have the following :

'Proposition 2.8

If the cubic curve r : [0,1]—— E3 1is such that

either

(1) [ a;,

where r, = r(i), t

1

as, 33] is non zero

L g

r1-ro. t; Jis non zero

L = D'i), i = 0,1

then r has no point of inflexion.

The proof follows from Proposition 2.7 if &(0) and s(1)

are non zero.

i[u]

E(ui

r(u)

and so[_f-_._ _E. £]= 0 which means the curve is planar and

And if s(D) = 0 then
Bul1-ul(r;~ry) + (3u-2)s(1)t,
8(1-2ul(x)-rp) *+ 2(3u-1)s(1)t,

-12(ry-rg) '+ 6s(N)t,

[to. ri-ro. £1] =0

And similarly if s(1) = 0

If the curve is planar then the point of inflexion of

Y

13

-5(0)5(1)[30. ry-rg, t; J= 0 by substitution of equations (+).



-.arc length.
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particular interest is the ons where n changes sign,
and control over such points is desirable since one 1s

normally concerned in keeping the number to a minimum.

In the non planar case the analogy would bes the point

where b' = 0 and b changes sign, for at this point the

curve crosses its osculating plans.

To detect whether d curve r = £[u] is to one side of

" or on a particular plane X then the obvious measure is

given by (r(u)-P).N where P is some point on X and N

;s its normal.

- .

' - -
In general we will only be able to define our curves

by cubics locally. We would now like to consider the

'problem of linking together several curve segments to

form an acceptable composite curve and to define in more
. !
precise terms what we mean by an acceptable curve.

Let r : . [a,b]——> E3 be a given space curve C and let
us assume that C is ‘smooth. The arc length of C can be

used to provide a 'natural' cubic extension as follows :

We first assume that C is paramstrized in what is ths

only geometrically significant way that is by means of

Since C is smooth we can write :




rls) = r(c) + (s-clr'(ec) + (8-c)2/2) r"(c) +.vuun.
+ (s-c]"/nlg(")(c) + 0 (s-c)?+1

where a < c < b.

If we usse thé Sefret—Franet formulae-then _
£(s)-= rlc) + (s-c)t + (8-c)2x/2!n + (s-c)3/3!
{k'n* k1b - K2t} +.[s-cl“)é!{(K”—Kfz-K3)£+
(2¢'t +x1"b - 3KK':_‘Z_} teanes * D[s‘-c]n+1.
where t, n, b, n; f are all evaluated at 5 = C.

Suppose now that we want to continue C be means af another
“curve T, which is cubic, with T' given by E : [c,d]J——— ES.
We take as parameter for T s the'arc 1ength.of C, and we "

‘let 8 be the arc length of T. w; write:
Fls) = rle) + (s-c)t + (s-c)2k/2ln + (s-c)3/3!
{k'n *+ ktb - KZE};

Then 1t is easy to show that at s = ¢ we have :

A L3

A A A
.EEEIKBKJ'_Q"“!"'-T: «= b, x' = k'

jo*

Thus we have found a smooth cubic continuation of the
"curve C from the point r(c), a < & < b. However we have
assumed that there are no other restrictions on I', and this
will not normélly be the case; "~ In general we will be.
looking to sclve the following problem :

-;Given } El- ces e En;1i c E3 we want to construct

a curve T where :
(i] I' passes through each Ei 1 =1, ceeeeean+t

(11]' I' is cubic betwesn b, and Qi+1 121, veees 0
(144) T ech for a suitable . " .

15

T kX ST e, T

P

e . —————

p—
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Such a curve is known as a Piescewlse Paramsetric Cubic or

Paramatric Cubic Spline {8,10,23), Thus the 1D segment
of ' from Ei to Ei+1 is of the form . .
o A1 i i 2,.4 i3, 1 < I .
Yy lu) = ap + ayu + a8, u/22 + aju /3"2d €E .u§[0.13

To determine T means we must determine for the n segments

the 4n vector coefficients gi

J
\
J =0, «..,3 or equivalently the 4n vector quantities

for 1 = 1, .... n and

11(01' 11(15. iiIOJ. ii(1J. Be requiring that k 2 0 we
are impoéing 6n scalar conditions and te avoid corners

we insist that k 2 1, which places an additional 2n
conditions. Jumps in the curvature vector are undesirable
gnd 8o this means k_? 2 and another 2n conditions. Now

we could impose further continuity constraints to give us

the final 2n conditions we now requirse. This would mean
that in addition to continuity of Ii' Ii” li" we would also

have continuity of torsion and rate of change of curvaturs.
In fact:if éhe points b, i = 1,....n*1 are coplanar
continuity of T 1is assufed gnd so one might instead ask
fdr.coﬁtinuity of K"i However in practice Figs{1-4}

the curves resulting from excessive continuity restrictions
at this discrete set of points indicate that we must relax
some of the conditions in order to gain control over ths
‘behaviour of the curve away from this set. This
inevitably means we must consider restrictions in some way
related to arc length. We have already shown (Proposition
2.3) that for bertain fixed end conditions then there ars

S2

00 “ cubics to choose from for sach segment depending upon

the values of the end speeds é(OJ and s(1). Also thers
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© is no requirement for these speeds to be continuous
across segments since-Cl continuity only concerns the
tangent direction. Therefore these could be used as
parameters for controlling the behaviﬁur of the curve
_away from'the segment endpoints. Manning {8} devised an
algorithm  which determines the'speeds based on an
approximation to a circular arc..;nd this has proved

to be effective.in practice. It is not clear however,
that aﬁy.geometics;gnificanceban be attached to this form
of contraint in a non-planar sifuation or indeed when the
segment end conditions are not symmetrical. Befofa
looking at this problem we consider the impfications of

the continuity requirements. <

-
-

Suppose that at fhe point Eis E3 wse are going to contiﬁqe
the curve a:[0,1]——E3 with B8:[0,17]J——>E3 such that
‘ g[k)(1) ='£(k](0] for "'some .k. Then if we express eapﬁ

condition in terms-of the parameter u we find i |

(1) k = O ' |
B(0) = af1) = Ei

(11) k = 1

Since, a(1) = s(1)a'(1) and 8(0) = S(0)8*(0)
‘then we require
B(0) = ¢al1) some scalar c > d

(1i1) k = 2

For a., i(u) = é(u]i(u).
E(u] = éz(U)K(U]ﬂ[U) + g(u)i(u) and so

k(ulnlu) ={a(u) - Blultlu)}/s2(u).
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But 8(u) = g (u), alul>/8Cu) , 52(u) = <4(u), &lul> and
~ig(u) = a(u)/slu)  and 80

cluinCu) = {8 (ul/<a(u),&(u)> = <a(u),a(n)> &(u)/<a(u),a(u)>?2

' Thus we require : _ ’

HEC1I/8201 ) - <8 (1),8(1)24(1) /<8 (1),8 (112

| =" {8(0)/82(0)) = <B(0),B(0)>B(0)/<B(0),B(0)>2

But since E(U)_-'cé(1). (k=1), we find that on rearranging

we get ' |

c28(1) = B(0) = <a(1),02 a(1)=B{0) >&(1)/42(1) (*)
Thus if we have 625(1) - E(UJ = dé[1j equation (®*) holds

for all valuss of d.

(iv) k= 3° .
For &, " a(u) = {3(u) = 3sCu)sCulklulnlu) = sCultlu)}/a®Cu)

but s(u)s(u) <£[u].§(ul> and so differentiating gives

s(u) = {<a(u),alu)> + a2(u) = 52(ul}/s(u)
or 8(u) = {<4(u),8(u)> + 32(u) =<a(u),d(u)>2/ "

<a(u),s(u)>}/s(u)

- Thus

a(u) = s (W [@ur-3<atu), 8 (u)> [(dcu)/<acud,acu)>} -
<a(u),glu)>alul/<a(u),a(u)>2]e (a(u)/<au),a(u)>)

[<atu),atu)> + d2(u) = <a(u),d(u)>2/32(u1]] /78200

and so we require




T [Ety - 8<a (17,8105 (@172 (1)) = <& (1),a(1)> a(1)/

<6 (17,6(1)>2] = (@(11/82010) [<3(1),501)> + §2(1) =

‘ <a(1),8(1)>2/62(1)]] /a2 (1) =
§"1(0) (B (o) - 3<f(0),800)>[( §(0)/62(0)) ~ <B(0),B(0)>8(0)/
<B(0y,$01>2] ~ (3(0)/42(0)) [<B0r,B(0)> + §2(0) =

<g(0),§(0)>2/8200)]]/42(0).

But since E(OJ = cé(1) I (k = 1)
and £(0) = c2a(1) - da(1) S (ko= 2)

we -find that this reduces to

'_{_E(m_- c3§'t11 - 3cdal1)} x a(1) = 0

Collectively these results mean that

~ .
rd . »
- . . .

P

Proposition 2,8

If « : 0,1 ——— E3 and g : (0,1)—> E3 are two curves

satisfying :

(1) g0} = al1)
(i1) B(0) = cal1)

(114)  B(0) = c23(1) - dé_}(ﬂ

(1v) :E(O] . c3§(1l - ché(T) + eal1) where c.d,e ¢eR c>0

are uniquely determined, then B is a C3 extension of Q.

For comparison {Figures -7,.8, 9} with results from

Chapter 5 we briefly describe two forms of curve
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" raepresantation already widely used in computer aided

design {12, 17, 18}.

Let I denote the unit intsrval, [0,1)and let -l F)

denote the number of sign changes of the function

'F : I_—',lRo

Definition 2.10

Let A : ' (I) ——s ¢cT(I) for some r such that

(1) A[dij fapfy) = a;A(fy) *+ apA(f3) for F;, f2 ¢ cT (1),
)}, G2, € R

(£1) A(1) = 1  where 1 : t ——2 1V t

~

(441) A(I) = I ~"where I : t +——at V t .- .

Then A is said to be Variation Oiminishing if

u{A(f)} ¢ u{f} Vv ¢ e CT(I)

This means that A(F) can only have as many poiﬁts af

inflexion as f.

Definition 2.11

-~

Let B, ! ¢’ (1) —— c (1) for each m be giQen by

? 1
B (f) = fl=)A
m jbg W
Jemy 1 m=-1i
where A, & t +— ﬁi)t (1-t) » t eI

Then Bm(f] is called the Bernstein approximation to f

of degree m.



The Bernstein approximoation has the following properties
) w{B (£} ¢ 2{B_(f)} g ui+)
whers Z{Bh[f)} denotes the zeros of Bm(fl.on 10,

(11) IFf f ¢ CnIIJ ’ B;R)IFJ——4—+ f(P) unifarmly as

m_"’m. p!O','l,...-.n

P
(r11) 8P (e = mi/{m-P)! Z-t-1)P'Jc§1fti)
" t=0 o, j=0 m
(P oy 5 3P . m-3,
B, ~(F) = ml/(m-P)! ) (-1) (9155
. t=1 J=0

*which means that these are simply functions of
: e s(E ' m-1 m-P
f-(OJ'f[m]....-'.f[m) and f(1).f[ m )'..Iilf( m ]
(iv) If P:I ——> R is a polynomial of degree m then
there is a unique set z f(DJ.f[%)......f{1] i
- defined by - '

f[%l - -% (ii{[m-r]!/m!}ﬁtr)

r=0 t=0

m-j 4 : .
e Y DT ™t tmer)t /mt yp (T)

r=0 t=1
(P}
& < h
' (v) .;f o, g f < Bp F en . ‘
o, € mP[m—P)l/mi{B;P)[f)} < Bp FOr p = 1,ce.m

and ag ¢ B _(f) g B¢

~-(vi) If g:I——> R is linsear, then from (1)

Z{B (f)-g} = .#{B_(f-g)} < ulf-g}

which means that Bm(f) does not oscillate about f.

Definition 2.12

Let r:I———E3 be given by

m .
. L d ' » 3 i- p'.ll‘
EFUJ 12011[u)_1 d, ¢ E 0 m

24




Then r is the Bezler curve of degree m for 3gicE3z.
F;gufe 5 shows typical Bezier curves for m = 3,5 and 6.

We see that r(0) = dy and r(7) = d ., and since

Aylu) >0, ue 10 and

“
Y

m ‘ -

) (':'L‘Ju'iH-'u]'m 1. [(14u]+u]m = 1 then 1f follows
i=0 .
that r lies within the convex hull formed by the d

1.

We confine our attention now to Bezier.pubic curves. For
3

any set of points i gi eEaii_D.thm1the corresponding

Bezier cubiec curve is given by' -

.5 .
rlu) = ] A, tuld,

jup 1

where _Xi(ul Q'(21u111-u]3-1“, ue I

. \
We shall see that the points gi control the geometry of

r in a nice way. Firstly, the curve contains do = r(0)

and d3 = r(1) and the tangent directions at do and d, are

“t(0) = 3(dy - dg)/8(0) and

T t01) = 3(d3 - dp)/a(1)

“-Then since the equation for the osculating plane of r

.is given by

[Rr.r.,z2] =0

at u » 0 we have

[

[ R-do. 3(dy-dg), 6(dg-2d;+d,) ] = O

This means that the osculating plane at r(0) contains

do.,dy and dj.

22



Similarly the osculating place at r(1) contains

dy,» d, and d,. Looking at this another way this means
that d, is thg point of intersection of the osculating
plahe at dy with'the tangent line at ég. And similarly
for élf Unfortunately these are not unique if the

’

curve is planar.

Further since k(u) = [#(u) x rlu)|/s3(u) we ses that
(Figure 5) :
k(0) = 2[(dg-d1) *+ (da-d1)|sin 8/3|d;-dg]|2

k(1) = 2|(d3-d2) + (d2-d1)|sin ¢/3|d3-d,]|?

" and since t(u) = [ rlu), rlu), rlu)]/(2lu) x Flu))2
T(0) = 2|(g3-gal-¥ 5(91492)|co§ o / Tty .. where

| €1 = Ig1-30111go-g;1'+ (dp=d;)|sin 0

T(1) = zlfgg-gb1'+ 3(é1;g2)|cnsr8 //Cz' :itwhgre

a2 = |d3-=dy||(d3=da) + (dp=dy)]|sin ¢

One other cﬁrve form‘of particular interest'{Figureusi
< is é spline analog of the Bezier form {17} and this
provides a type of moving average formulapion for a
_series of points in ¥ where in general the resulting
curve does not confain the points but 1s generated from
them in a predictable manner as far as the shaps 1is

concerned. >

" Definition 2.13

Let to.t1,...,tn be real numbers with t, g t; €00 € tn.

23
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Than a Polynomial Spline of order k is a map S : (to,tn)———»m
satisfying

(1) 'Sitti.ti+1] is a polynomiai of degree k-1

S (11) s e cf2

i

The real numbers t, are known as Knots and for fixed k
"and n such splines form a Vector Space over |R. A

~particular basis for this vector space is called the
B—Spline basis and this was first introduced by

Schoenberg {24}.

Definition 2.14

For reals tg, t1, «ecevess tn the B-Spline basis of order

-~

k 18 given by the following recursive formulation.

‘B, ,{(t) =1 for t, €t ¢ ¢t
i1 :

1 141
Bi.1tt] =0 for t, >t > t, .
B, (8] = {lt=t 0708, ,-t,0)B, (&) +

| ’{(ti+k-t)7[ti+k-ti+1)}Bi+1‘k_1[t)'

Therae are a numbar of alternative formulations {17}.

B~Splines have the following propserties :

(1) Bi.k(tT >0 for t, ¢t ¢t

Bi.k(t) = 0 for ti >t > ti+1

\

(11) }B,  (t) = 1
&7,k

(1i14) If r knots are coincident, say

ty " tgeq ™ e = tiip-q then continuity

is reduced and BJ'k € Ck-r-1.'J-u,a+1...,a+r-1.
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(iv) Calculations greatly simplify if t " me N, for

each m.

—

(vl 1In the particular case where there are just two
knots at m = 0 and m = 1 each with multiplicity Kk
then the B-Spline basis reduces to £he Bernstein
basis with )

. k-1,.4 k-1-1
Bi,k(t.] ( i )t (1-t] . » i‘o;-..-.;k-1

(vi) The kth order B-Spline approximation to f:[0,1] — R

is given by

Bk[fl -'gf(gilai.k where the

E-iu (ti+1 + ti+2 +-Il.l|. +ti+k-1]/(k-1]

are termed the Nodsas.

-~

-

(vii) B-Spline aﬁproximation is variation diminishing.

(viii) In contrast to the Bernstein approximation, local
changes in a function f produce only local changes

in Bk(fl.

Definition 2.15

The B-spline curve form of order k for the set of points

§P,Jc E3 , 4=0,.....n is given by
. n
r(u) = ] 8,

L LBk (LIP,
2

' K
The B-spline curve has the following bééic properties :

(1) If k is. even it can be shown that the knots of the
spline are 'opposite' the Ei whereas if k is odd




(11)

(111)

(iv)

(v)

' E;CO and interpolates the P

P and P

then the knets are ‘opposite’ the points

0

9, = (B +P, /2

i+1

Since the curve can be regarded locally as a

convex combination of P ,....., P the curve

Za+k-1

lies within a series of local convex hulls.

-

For a given set,gi}.i=0....n then 1if k=2, then

i linearly. As k

‘tends to infinity then r tends ‘to a single

. straight 1lins.

If £_is of order k and P P are

—_— 1’ —t+2""£1+k

- .collinear for some T then r contains a linear

ssgment on the line through Ea and P, where

B
T+1 & B <. @ § T+K.
If r is of order k_and £T+1. Er+2"""£1+k-1

are collinsar then-z touches the line through

where t+1 € B € a € T+k-1,

-—CL 8

wfhp B-sbline.cubic curve for the segquence Eo of points

in E3 is of the form

rlu)

where the B-spline scalar weighting functign Blu)

) Blu-alP

a

e
s <]

‘defined by

Blu) = [£3(u-2) - 4.£50u-1) + B.E3lu) - 4.E30ue1) +

5'3 EU"‘-ZJJ./B'

where Ek[a) = a$ for a 2 0

and Ek[a] = 0 for a < 0

26



.Explicitly_gis‘givan by
rlu) = {E30u-1i-1)-4.,E3(u-1)+6.E30u-1+1)-4,E3 (u-1+2)+ .

E3lu- i+3)}Pi 1/

¥ {E3(u-1-2)-4.E3bu-1-1)+6.E5(u-1)-8.E5(u-141)+ .
£3(u-1+2))p, /6
15{.E,‘;.,(u-:l--.'i)-4.5;3(u-:l-2-]+Ei.E,'3(u-;l.-1]-4.£3(u-i]+.-"

E3fu-i+1)}£1+1/6

*{E30u-1-4)-4,E3(u-1-3)46.53(u-4-2)-4.E5(u-1-1)+ .

E3(U'i)}£i+2/8

for 4 € u g 1i+1
which means that r(i) = {P, ,+4P,+P,  ,1}/6

Thus if Py, _, = P, = P,,, then rli) = P,

a

Di%farentiation with respect to u gives
£lu) a'{éztu-i-1J-4.gzcu-i3+s.52(u-1+11-4.a2cu-1+21+
Ezlu-i+3)}p, ./
-+ {Eplu-1-2)-4.E,(u-1- 1)*6 Ez[u 1)-4.E5(u-4+1)+
£y (u- i+2]}P /2 '

+'{eztu-i-31-4.52(u-1-2)+6.gztu-1-1)-4.52(u-1)+.

Eztu i+1)}Pi+1 2
+ {E(u-1-4)-4.£,(u~i-3)+6.E,(u-1-2)-4,E,(u-1-1)+

Eztu-i]}gi+2/2
and so
3(%) = {Ei+1 P,- 1}/2

r'_

Thus the speed s(i) = 0 if and only if Pi 1 = 31_1.
Also we can see that i1if Pi 17 Ei' Pi+1' £i+2 are not

coplanar then s(u) A 0 in 1 S u g i+1.

L N



Differentiating again gives

£lu) = {£; Cu-1-1)-4.8; Cu-1)+6.E; (Uu-1+1)-4.E; (u-1+2)+ .

E}(U-

1+43)}P, 4

+"{gy (u=i-2)-4,&; Cu-1-1)+6.E1 (u-1)-4.E3 Cu-1+1)+ .

EIIU'

+ {Ey Cu-1-3)-4.E; (u-1-2)46.E (u-1-1)-4.E; (u-1)+ .

E1 (u-

" *_,"{51 (u-1-4)-4.g; (u-i-3)+6.§), (u-1-2)-4.E; (u-i-1)+ .

EI(U
and so

;(i) --51_1 2

Since

r(u]

Eo(U

+ {Eo(u-1-2)-4.59(u-4-1)+6.Eg(u-1)-4,Eg(u-1+1)+

Eo(u-

+ {gglu-1-3)-4.Eg(u-1~2)+B.Eq(u-1-11-4.Eo(u-1)+

-Eo(u-

+ {Eg(u-1-8)-4,€o(u-1-3)46,Eo(u-1-2)-4.Eg(u-1-1)+

Eo[u
then
r(i) = 3(Py .4

K(i] = 8Y {(P
and the_tor51

1+2)}P,
i+1)}p

i+

i)}Pi+2

P,+P

-1 —1+1

g

i+3]}Pi -1

i+2)}P,

i+1))f_1+1

i]}P1+2

LIRS

xP i+t§i

—i+1 —1-1

on,

Py i+1]/{[P

X (P xP,

(XPy V4R,

i-1

L I

xP)+(P, XP

J} /{(P

{Eglu-1-1)"4.g0(u-1)+6.Eg u-141)-8.Eo(u-1+42)+ .

“Py-

+1

and so we find that the curvature 1s

243
117}
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o

The cubic weighting function B(u), which satisfies
(1) B(u)20 V u
(i1) JB(u-a) = 1
a

(11i) there exists aeR such that B(u) = 0 for all |u| > a ,

.

means that we can use the ’g“' as a means of shape
prediction and modification of the B-gpline cubic curve
and so this curve form is particularly attractive for

a design system from the designers' point of view.

29
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Chapter 3.

Cohpute}‘éﬁrfaééﬁ'in g3,

Definition 3.1

A Bigcubic surface in E3 is one for which there exist .
parémeters u and v in terms of which the aquation of the

surface can be written. as :

3

i
) a,.utvizitil
1, gm0 2J ,

The parameters u and v are indeterminate to within

rlu,v) e E3

- Eij
transformations of the form U t———y Qau + B-énd

Vte——o0p yv + § but if we wish the surface to pass _
. . ]
"through four particular points in E3 with specified

parameter values thesn the parameters are uniquely

determined. s

.

For convenience we will normally assume that r is defined

on [0,1] x [0,1] and the four points-chosen are the

four distinguishable boundary points r(i,J) for 1i,J e}0,1}.
The four boundary curves r(u,i),r(i,v) 1810,1} are cubic

curves in the paramseters u or v.

We will use r; and r, to denote the tangent vectors

. m—

A
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3£(u;v)/3u and 9r(u,v)/3v respectively and N for the
unit surface normal where N -”Igl-x £2]/|£1 X EZI' We
also use . x;y to denote the usual dot product or
inner product of Vector? X,V

If A : [a,b]—> 5 is a curve on a surface S then )
._A(t] = gtuti).v[t)] and since the arc length s alohg.l
is given by s = :Jb'fi[t],i(tJ> dt then along thae .

a
- parametric curvas v-vc and u-uc

: e
5 = f Y Elu,v )du and s -.j'/ G(u ,v)dv.-
. . 0 c o c

where E(u,v) = < 31.51'>.,F(U;V1 = < rj,ra2 >, -
G(u,v) = < ry,rs > are the First Fundamental

Coefficiants.

Proposition 3.2

. 3 e 0 '
Given 2 LI '-Eij""lij ic E where 1,je{0,1} then there
are oo 12 pbicubic surfaces r '[_.'_0.1:] X |:0,1:].———-> g3

such that :

(1) r(4,3) = o = - ' \

13
(110) 204,30 = X0 4,5 efo.1)

This follows because there are twelve degrees of fresdom
remaining for specifying the sixteen coefficients of the

surface equation.

L T
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Corollary 1

Given fgdj CByy o Lyg v niJZc E3 ', 1,3¢}0,1} then these
determine & unique bicubic surface r : [0,1] x [0,{]— E3

satisfying :

(£) zli.3) "= a4y o “
(11) r;(1,3) = ﬁid ,
C(444) rp(4,3) . Tyg

)

The vector r;, is often called the 'twist’ vector which
is a ‘misnomer because it is not an intrinsic property
of the surfacs, To see this if we consider the sphere

T I:‘ [o.wj X EO.ZW] [ —— E3  where

E(”'Y] = (a sin u cos v, a sin u sin v, a cos v), then

.ry2 = 0 1if and only if u = w/2,

Obviausly the above Corollary would also hold if we

.replaced condition (iv) by either r11i,j) = n or

’ _ —=i]
rpao(i,j) = n
;

/

Corollary 2

iJ'.

c 3 4 y
Given 3513' g.j, lijz C EY and reals LiJ' Mij' Nij where

i,J e§0,1§then there is a unique blcubic surface
r: [0,1] x [0,7]——> E? such that
(i] _t_'[ipj] -'gi.J' .

(111) ra(4.4) = y,,
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- (iv). ery (L, 3),N(L, 35 - - LiJ.

.iJ

<£12[ilJ)l_N_[ilJJ>. = M

Ji MiJ' NiJ are the values of the Second

"Fundamental Coefficients L{u,v),M(u,v),N(u,v) at the

Then L1

Y -
e val

four corners r(i,J). = - -7

‘Corollary 3°

-

I'4

Given }Eij'ﬁij'lijl C E3 and reals Hygo Ky, 1,3¢e}0,14

"‘then there are w"“ bicubic surfaces r : [0,1] x [0,1]~——sE3
‘such that : -
QESI SR L Y

(1) (4.9 =y

(iv) . The mean H(u,v) and GaussianK(u,v) curvaturss

' take the walles H(1,J) = H,, and K(4,3) = K

1J
for i,jelo,1}. L

i)

Corollary 4

for 1,3e}0,1} then there are oo !2 bicubic surfaces

Given 321;} c E3 and reéls E,,, F N

z

} oo

- [0.1] x [0,1]—> E3 such that

(1) rti,3) =g, "

(44) E(L3) =By L FU4,3) = Fuy o, G013 = By,
L(i.?] - Lij ’ ﬂ(i.J) = Mi N(i,]) = NiJ are

h I




the values taken by tha.fﬁndamental

. coafficients at the corners.

Each of the coefficients a in the surface equation

i3
can be expressed in terms of r and 1td derivatives on the

boundary. The. boundary curves - o SRS ‘-uw?:
rlu,0) = a,, *+ a;0u + a,,u2/2! + azqud3/3! . and,

rlo.v) = a5 *+ 89V * 89pv2/21 + ag3v3/al

b 4
are cubic curves and so. we can write

(1) a4, . r(0,0)
(11) ‘a,4 = r; (0,0}
- (411} a4, = r,(0,0) _ _
(iv) 2, = 21[3(r(1,0)-r(0,03} - 2r,(0,0)-r,; (1,07]
| = ry,(0,0) |
(v) .ags = 21(3{r(0,1)-2(0,0)} - 2r,(0,0)-15(0,1)]
= r22(0,0) ' .
(vi) a3, = 3![?(5(0;6)-1(1.QJ}+J£1(0,0]+£1(1.0£].
| | - £1115U'd) | '.
(vii) apy = 31[‘2{_1;(0,01-£m,1.)}+ r,(0,0)+r;(0,%]]

= Epgal0v)

\

Hence these coefficlents have ths significance of the-
cuble curve coefficients as far as the boundary curves

r(u,0) and r(0,v) are concernad.
It is elementary but tedious to show that :

{viii) a1l = 212[0,'0]

34



(ix) " &z
(x) " a1z
(x1) a3)
(xii) a;3
(x111) - &z,
(xiv) ‘a3z
(xv) 823
(xvi) a33

35

2[3{r2(1,0)-r(0,0)} - r12(1,0)-2r12(0,0))
5121[0101
2[3(r100,1)-r100,0)} - r32(0,1)-2r,,(0,0))

5212[050]

. o,

6[2{r2(0,00-r2(1,01} + r12(1,0)+r12(0,0)]
21112(U.0) . '
6(2{r1(0,0)-r1(0,1)} + £12(0,1)+r12(0,0)]

ra222100,v)

"4[9{r(0,0)+r(1,1)-r(1,0)-r(0,1)}+

L 3{2(2100,00-2,00,1)) ¢ £301,0)-r101, 1)}

3 {2(r2(0,0)-r,(1,0)) + rz(0,1)-ra01,1)} =+
-“4212(0.0]+£L2(1,1)*2(512[1.0]+£1£[0.1)i3

ri23200,0)

-12Es{gto'.ohgu.1)-3(1.01-310,‘1J} -
3{r;(1,1)-r;(0,0)+r;(0,1)-r; (1,00} -
2{r(1,1)-r2(0,1)+2(r3 (1,0)=r,(0,0))} +
{r1201,1)+2(r1200,0)+r3201,0))+r;2(0,1)1}]

ri1i1z22(u,0) |

-12 ES{EIO.OHE_H.1)-.3‘_(1.0]-2(6.1)} -
2{r;(1,1)-r;(1,0)+2(r;(0,1)-r;(0,0))} -
3{r2(1,1)-r2(0,0)+r,(1,0)-r,(0,1)} +

{r1201,1)+2(r1200,0)+r1,(0,1))+r;2(0,1))]

r22211(u,0)

36 [4{r(0,0)+r(1,1)-r(1,0)-r(0,1)} -
2{31t1.1)-£1(0.0)+51t0,1)-£1(1,01}' -
2{r,(1,1)-r2(0,0)+r,(1,0)-r,(0,1)} +
{r1201,1)+r1200,0)41r1,01,0)+5,,(0,1) 1]

r222111(u,v)

4



The surface squation coefficients ahd the second fundamental

coefficients are related in the following manner :

(1)

-(14)

o (441)

~at u=0, v=0

‘L= [a10. 801, a20]7]la10 x ap1l

M= [a10., 801, 211]7la10 x ag1l

N = [a10. 201, 202]/l210 x 201l s

at u=1, v=0

L "&}0. Elo: EJ/IEIO
M/=E1!o. Bio- EJ/|210
: _N ‘[ﬁ10' Bio» Ej/lﬁlo

. . where a;o = ajp *

Bio ® 201 *

a , 6 ® az, *
b % a;;+
e = 892 ¢

at u=0, v=1

a20

810l

Biol

810l

330/211-. = r1(1,0)
32;/2l + a31/31 = r,(1,0)
r;(1,0) '
agy/21 = r1201,0)

L = [ap1. Bo1s 9171201 % Bo1l
‘M = [agys Bors 8]/[a01 % Boil
N = [a01- Bo1s £]/]a01 % Bo1l

where ag; = 319 * 211 * a12/2l *+ a;3/31 = r;(0,1)

Bor1 = 291 *

4 = a9 *

o
n
o
(]
[ ]
+

8902

821

+

.303/2| .e rp(0,1)

822/21 *+ a33/31 = r;;(0,1)
a13/2l = 1;2(0,1)

36



37

(iv) at u=1, v=1
L = 5111{ Bi1: £]/ley1 * 81,1
M= fay1s Br1e B]/]eny % Bixl
N o= fayqo Bi1 l]glg_n x B}

whers a;; " .} ) gij/(i-1]ljl = r,0(1,1)
151 J§0 - ”ﬁ

Bin = I 1 a /i103-1 = r,01,1)
je0 j=1 —1J : .

B = 820 * 830 * 821 *a31 ¢+ (822+a3p)/2l
o .--.( + (823%833)/31° |
= ry;01,1)

h ='aj) *+ a1 *+ a1z + 822 + (a31+813+%832%323)/2!
A + 833/4

= ry201,1)
1l -"= 8g2 ¢+ ag3 + 812 *+ a13 * (az2+az3)/21}
. +(a32+a33)/31

= ryz(1,1)

We can now derive the expressions for the Gaussian and mean

" curvatures evaluated at the corners in terms of the surface

equation coefficienfs.

(i) at u=0, v=0 .
K = (Aagrgp-A2,17(Eq0] 01121
(A20A02-21; Eoojaioxaol
H = (Agz <a10.,810> * A20 < 201,801 > - 2, 111‘210-201’)/
(2£00la10%x201])
where XAz9*= Ea_lo-_a_ol-gzo]
Ag2= E§10-201-£oz]
.’*11"[&110-201.311‘]

£00" <a10,810%<2p1,801>- <aj0,a801>2
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(1) at u=1, v=0
K -'jxakg-kbzi/(€1o|g1oxﬁ1o|)
H= Q c<®10°210> *. 7‘;9_1'0'-.3_10’ -2 ,< 8308102 )/
(2630le10 x Byol) _ ) |
-where A~ [u19+810+2] _ , a
Ap = [210+B10-8] : )
A = [=10B10-2] |
€10 ® <210:210%<810°810> ~ <210°8)0>2
' (111)  at u=0, ve1 |
| K = ﬁxdﬁf-lez)(f5011201%501|2?
H o= (Ag<opyrmpr> * Ag<Bor+Bo1> ~ 2Xg<ag1:B801>)/
(260 Jagr * Bo1l)
where A, = [201+801-9]
Ay ® [201:801-8] N
A = [e01-801-5]
Eg1 " <201°201><Bg1-801> ~ <2g1+801>2
(iv) at u=1, v=1 |
k= ﬁkg,*i'lhzi/(Eii]E11¥£11123
- H = (Xy<ay10.011> ¢ Ag<Br1:B11> ~ ?1h<£1i'£11> )/
(231 a1y * 811 )
where 3. = [u;1-811-£]
A = [e11081104]
Ay ® [211-811-1]

E11 .® <211:0811><B11:831> - <g11+811>2

In Chapter Two we used the Serret-Frenet equations to reduce

conditions involving the derivatives of t, nand b to conditions
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minvolving t, n, b and the curyature and torsion scelars
K, T, Analagously for surfaces, we can use the Gauss-
Welngarten. equations :

. - 1 ‘2
rinlu,v) = rylu,vic,lu,v) + ) lu,vir,(u,v) + L{u,vIN(uU,v)

ria2lu,v) = r:z(u.vlgltu.v] +.ri2(u,v)£2(u.v) + M{u,vIN(u,v)

.izz(u.v] ="P;2[u)0131(u.vl:+”r§2(u,§)£2(u.v) +.N?u.v)ﬂ(u.v)
ﬂ;(u.vi = Bi(u.v)gl(u,v{ +3f(u.v]£2(u.v) |
Np(u,v) = Bi(u.v]gltu,v] +3:[u.v]£2(u;g]

tﬁ ekpress(the.derivatives of 51,'32 and N in terms of

il‘ 52' N and scalars f:J, fhe Chriétoffal symbols of the
sedoh&'kina which depend upon the first fundameﬂtel
coefficients and their derivetives, and BJ. the Weingarten
'coefficients which depend upon both the first and second

. fundamental coafficients.“- In fact

rl = (GE," = 2FF, + FEZJ/kz[EG-FZJJ

The e, - ro s - e
F22° (26F, = 662 - FG,)/(2[E6 = F2])

L Tli= (2€F, - EE, + FE,)/(2[EG - F2])
t2° (EG, = FE;)/(2[EG - F2])
22° (EG, = 2F€2'+ FG,)/(2[EG f.FZJ)

gy = (MF = LG)}/(EG = F2) |

By = (LF = ME)/(EG = F2)

B2 = (NF = MG)/(EG = F2)

B2 = (MF = NEJ/(EG = F2)"

Eor given functions;_E, Fs G, L, Mg N of u and v of

sufficiently high class then in genaral there is no surface

1
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r = r(u,v) for which E, F, G, L, M, N-are the first and

second fundamantal coefficients unless certain

compatibility conditions are satisfied.{ﬁ} . Using

* these conditions wa can show 1n fact that K depends only

41

-

. and not upon the second fundamental coefficients. ,

upon the first fundamental coefficients and their derivatives

The first fundamental coefficients have another important

role to play and that is in calculating surfaca area.
. ( -

Definition 3.3

The surface area of the bicubic surface r.: E0.1:| X [0",1]—-—’ Ef

is given by’

I'd

oann -
.A.-EIOJO‘/EE(U,V)G(U.V) = F2(u,v)]dudv

We can obtailn A using Gauss Quadratures whafa if we write

3tu,v) = EQu,vIB(U,v) = F2(u;v)

then X Z k 1J ulu ,ij

Hence we can evaluate A in terms of.tha coefficlients a or .

=13

r and its derivatives at the corners.

We have now basically covered all of the gecmotric

invariants which could conceivably be used in practice

in defining our computer surfaces.

In general bicubics will not provida us with sufficient degraes

. of freedom to dafina each surfaca globally in terms of a single

bicubic equation.
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Definition 3.4

A Piecewise bicubic sur%ace is a mapping R : [U,i‘ X [Ouﬂ———»Eal
w-uhare m, n € N such that R e c®[o,m] x [0.n] :and
' _R_I G=1,1] x D-1.'.I|' = 5_13 1,Je N 0 <1 £m, 0 <3 €n
. ‘where f_ij &t [0,7] x [0,————s €3 is a.bicubic
.,supfaceland.where EIQ,V]‘ﬁlgiJIU-i+1,V-J+15 fér all

(u,v) « fo.m]x[o,n].

The general problem we are - interested in solving is the

.§0110w1ng :

. *Given tgijlc E3 where ,i.J e N O0<igm, 03 £n then we
- would like to construct a unique piecewise bicubic surface

5 such that 7

-~ L

(1) R(1,3) = by, |
(i1) B_eck (0,m] x [0.n] for some k

o
.

and this means wa have‘’to fiﬁd mn bicupic surfaces esach i

safisfying certain boundary smoothness constraints,

Now any boundary curve of the bicubic surface Eij is cubilc
and uniquely determined by contraints at the two endpoints.
Hence adjacent bicubics sharing the same endpoint constraints

will share the complete boundary. Thus at each point p

of the common boundary-U = gonst. of Eij and £k1 we also

have Eéj 521 . If in addition we constrain the

p ' P i -

Eij so that at this boundary E%J = £§1
’ P P

have CC! contiﬁuity across this boundary. . We note that

then we will
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this last condition can be achieved by placing constraints

at the boundary endpoints.. For example if 511(1.v1 = gkl(ﬂ.v)

13 k1

is a common boundary of r and r ~ then 1if

£¥1(0,0]

(1) ridco,00

(11) r3d(1,0) riito,0) : .

13
(141) ry3 (1,0)

iJ .
[;v] r5554 (1,07

rh;0,0)

kl
,1'.2221(0'0)

then _x_'_:llJH.v] = _r_'_ll‘lto,v] for all v ¢ [0,1].

‘We can continue in this way to build hp.conditions involving
the surface eqhation coaééiciants which ansu§e that
properties like fundamental coefficients, curvatures, normals
and their derivatives are preserved across bicubic surface
boundaries as required. Although this will enable us

to select one from each of the mn 36=parameter families of
.bicubic surfaces which Fombined interpolate the Eij the
resulting piscewise bicubic will in general suffer a
similar disease to.tha ‘over’' continJous pilecewise cubic
curvs. Thereforse we will have to relax some of theée
boundary constraints in favour of some form of restriction

on the interior behaviour which inevitably means a .

restriction on the surface area,

In fact for some applications we may just required
continuity of N. At a common vertex p of four neighbaouring

bilcubic surfacés-conditions forcing continuity of the tangent



directions of the boundary cubics are sufficient to ensure
that all four surfaces have common normal at p. If Eij
and £k1 have common boundary EiJ(T.vJ = EKI(O,V) then the
no}mal will be cantinuous across the boundary 1f and only
if £%J(1.v]. Eflto.v) and _1;'2‘1(0.-v] E _r_'_%JH.vﬂ are
coplanar for each'v e.[0,1].. Putting E}J(1,v] -l£¥1iD;VJ.
is sufficient to ensure .this but it 4is not necassary since
h‘£¥1(0.v) x zg}fO.V) . ﬁEi}J(T.v] x'£§J(1.vi]

is satisfia¢ if

rileo,vy Suridon v« ardd o,
whers u,A are scalars with u > 0,

And similarly for the V = const. boundaries.

We consider briefly some forms of the bicubic representastion

'which are currently in use in CAD systems.

Definition 3.5

tet r ¢+ [0,1] x [0,7]———E3 be given by
| T & m, n, 1 .
rlu,v) = § T (e (1)
- 1=0 3=0 -

mei J . ._.,yN=J
vy (1 v? 911

where }Eijl CE3, m neN

Then r is called a Bezier surface {12}.

Ifmsn = 3 then r is the Bezier_bicubic'surface. We shall

see that the coefficients d bear nice relationships with

i)

43



the surface boundary properties, {Figure 10} :
(1) dgp = r(0,0)
(41) dg3 = r(0,1)
(111) d3p = r(4,0)

(iv) d3g = r(f,1)

Thus the points to be interpolated are coefficients in the

surface squation..

(v) 3(dyo = dgo) = r;(0,0) )

(vi) 3(dy3 = dg3) = ry(0,1)
(vii) 3(d3q = dzo) = r;(1,0)
(viii) 3(d3z3 = da3) = r3(1,1).

(ix) 3(dg; = dgg) = rp(0,0) =
(x) 3(dgs = dp2) = ra(0,1)
(x1) 3(ds; = dso) = rp(1,0)
(xii) 3(d33 = d3z) = 52(1,1j

Thus these coefficients of the surface equation 1lie on the

tangent planes to the surface at the interpolation points:

(xi1i) 6(dgg = dig * d2o = dig) = r11(0,0)

(xiv]) 6(dg3 = d13 * dz3 = d13) = r;;1(0,1)
(xv) 6(djq = dao * 3o = d20) = r£11(1,0) '

(xvi)

[22]
”~~
Q
—d
w
]
la
o
w
+

d33 = dz3) = ;) {4,1)
(xvi1) 8(dgg = do1 * d11 = dig) = r;,(0,0)
(xviii) 8(dy3 = dyp + Eoz-' do3) = r;2(0,1)
(xix) 8(d3y = dao * dao - d21) = r1201,0)
(xx) 8(d33 = d3p *+ daz = Ha3) = I12(1,1) .
(xx1) B(doo = do1 * do2 = do1) = r22(0,0) |

(xxii) 8(dgy = do2 *+ dp3 = dg2) = r22(0,1)



{xxidii)

(xxiv)

45

6(d3g = d31 *+ d3az = d31) < r22(1,0)

6(d3y = d3z2 + d33 = daz2) = ra22(1,1)

* Therefore at the interpolation point u;O. vel (= goo)

the second fundamental coefficients and the Gaussian and

mean curvatures are :

meo,0)
N(O,0)

)
K(0,0)

‘ln
‘. ;

. 4
L(0,0) = 6|(doo = d10) *+ (d2g = dig)|cos a
9/tdoo = do1) *+ (d11 = dro)|cos ¥
6| (doo = do1) * (do2 = dp1)|cos 8
(4nyny = SH;%/BHu
(n2|dio=dool? *+ nildor = dool2 = = . /..

H(0,0)

v

whers
ﬂi
'nz
n3

Ny

3ﬂ3|£10"£oo|[201'200|c°951/3nu

-|f200'£103 + (d20-d19)|cos a
[ tdoo=do1) + (do2=dg1)|cos B
|(doo=do1) + (di1-d1g)]|cos ¥

| dio-dool?ldo1=dool2sin? &

with a,B,v,8 as shown in figure 10.

We can therefore see that the main advantage of this

particular representation for CAD use is that propertises

of the surface are implied more dirsctly by the designers’

choice of the d .

=1]

In Chapter 2 we considered the Bezier cubic curve which we

can write as:




A A A
rlt) = t3dy + at2td, + 3tt2d; + tdg

A
where t + t = 1,

" The more obvious generalisation of the Bezier cubic curve

18 the triangular bicubic surface (Figure 11)

‘rlu,v) - u3A + 3u2vB + 3uv2C + vip + 3u2uE + v .
3vwiF + 3uw2G + 3vw2ﬂ + wal + Buvwl

where u + v + w = 1, }A,Q.E, ....i; c gd
For\this particular representation

‘rilu,v) = 3[u?(A-E) + 2uv(B=J) + vZ(C-F) +
RN 2uw(E=G) + 2vw(J=H) + w2(G-I)]
géfu.v) - 5[}2(9-51 + 2uv(C=J) + VZIE-EJ +
2uw(J=G) + 2vw(F=H) + w2(H-I)]
._gutu.v] = a[j(ﬁ-zg»fg_lk v(B=23+H) + w(E=2G+I1]]

rialu,v) = B[U(B=J+G=E) + v(C=F+H=J) + w(I-H+I-G)] .

r22(u,v) = B8[ulC=2J+G) + v(D=2F+H)+ w(F=2H+I)]
rinlu,v) = 6[A = 3E + 36 = I]

ri12(u,v) = 6[B - 23 + H = E + 26 - I]
Liz2u,v) = B[E = 23 + § = F + 20 - I]
T222(u,v) = 6[0 = 3F + 3H ~ I]

Along the boundary u=0,
3r/3w = 3[vZ(F=C) + w2(I-G) + 2vw(H=3)]
ar/av = 3[v2(D=C) + w2(H=G) + 2vw(F=J)]
Along v=0,
ar/3u = 3|uZ(A-B) * w2(G-H) + 2uw(E=J) |

ar/aw = 3[u2(E~B) + w2(I~H) + 2uw(G~=J) |



Along w=0, T : : : .
ar/3v = 3[u2(B=E) + v2(D=F) + 2uv(C-J)]
ar/du = 3[u2(A=E) + v2(C=F) + 2uv(8=1)]

Along the boundaries the normal is given by,

Eiuao - ukv][}“(ﬁ-g) x (BD-C) +.w“L£-EJ x (H=G) . i,

o+ v2w2[A(H=J) x (F=3) + (I~G) x (D=C)+(F=C) x (H=G)
+ 2v3w [(H=1) x (D=C) + (F=C) x (F=J7]
+ 2w [(1-8) x (E=3) + (H=3) x (48] |

where alv) = 1/|3ar/3w x ar/dv|

4

Similarly for ﬁl and N
ve0

w=0

Thus continuity of normal N across u=0 puts severs

-,

constraints on thé coefficients of the surface equation

since we must alresady have B, F. H, I as common coefficients

in order to have a common boundary. For a surfacse witﬁ

!

coefficients as above the continuity of r, x r, scross -

u=0 requires that for the neighbouring surface (see

Figure 11) we position P, @ and R such that §D, €, F, 0},
E, J, H, gi and }ﬂ. G, I, 5{ form three skew parallelograms.

This also moans that exactly six trianguler elements have

an internal vertex in the system as common vertex. Thus

" at each vertex we have a semi~regular plans hexégon.

For the above reprasentation of a surface, the continuity
conditions are so restrictive that there are virtually
no degrees of freedom left. This family of Bezier type

surfaces 1s therefore not rich enough and we can conclude

47



thet bicubic triangles aré unsuitable for surface fitting.
This is not altogether surprising since in constructing
smooth surfaces most of the difficulties arise from
- Epossing'the Soundaries and in introducing the extra
bounda?y we can anly pe ad&ing to our tfoubles. WQ.can.
cantrast this Qith_jinita"elemant analysis wharehtﬁg;
difficultias arise in jumping from one side of the elesment
.tolthe other, and so the-addition of the extra boundary
gi;ag us an extra stepping stons.

’ \
:The.ggtension.of B-spline curves to B-spline ;urfacas is
exadfly analogous to the developmenf of'Bezier.aurfaces

from Bezier curves

-

~

I

Definition 3.6

If the equation of the sdrfaca.can be expressed in terms

of B-spline functions 55_ E : . S

m n L )
r(u,v) ==} } B,_, . (u) B, .tvlp,. ,1{P c g3
- . '4=g j=g 1"k-k R T ,—1.11

2 2 .
then r is called a B-splins surface {17}.

Surfecefrepresentaticns of the types discussed abovs hE;B
been derived to ensure that most of the eng@naaring shapes
-likgly to be encountersed can be defined in su%ficiant
detail, albeit at a-cost of smoothness in the sense of

differential geometry. For other forms of analysis of

the resulting surface howsver smoothness becomes the oritical

48
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featurae. One way of achieving a coﬁpromise would be

to pracesd from the bicubic definition to & smooth
approximation taking over properties of the bicubic.

This could obviously be done for instence by wusing higher

order polynomials. In so doing instead of considering

constraints on.just one component of tha tensor ‘of second order

partial derivatives azr(au“au“ we could look at the tensor x: 8
: i _ .21 a, B _ .Y i i
where ths 3%x”/3u du ruB Xy nuBN

where (Nil is the unit normal and [naBJ the second

fundamental form.
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Chapter 4 : .
- .

Extremal Mappings of Riemannian Manifolds -

We make use of the following notation:-

(4) ™" =« u T _M" 1s the tangent bundle of the differentisble

. pem
n-manlfold M.

(i1) H(TM x TM, R) is the bundle of tensors of M of type
(2,0). In general H(TM x TM... x TM x (TM)*...x(TM)*, R)

R . r 8
is the bundle of tensors on M of type (r,s).

. (111) A section of H(TM x TM, R) is a (2,0) tensor.

Dafinition 4.1

A Rismannian manifold is a“differentiable manifold togéther‘
with a section g of H(TM x TM, R) satisfying .
(1) g(X,Y) = g(Y,X) , (i1) g(X,X) = 0 iff X = 0

whera X,Y3ére vector fields.

We write g(X,Y) as <X,Y> and this is the first fundamental

n
form on M. Thus for M = E" then <X,Y> = ) xiyi.
‘ e i=1



Definition 4.2

The second fundamental form on M is a section B of

H(TM x TM, NM) given by B(X,Y) = [5XY1N the normal

component of ¥ Y for the Riemannian connexion Vv,

X

BN o

"Thus if u1,...uk are local coordinates at x' ¢ M'g E"

X = (x1..;..x ) = (x (u1....ukl,...xn(u1....ukJ) and

(gij) ( i .——J } For a surface in E3 then

1 . S
giJ <X1.XJ> ’ Xi .ax/au 1=1,2 and 1if S -,

N =X, xX /|X x X i 1s unit normal then

VXJXi = agi/au

and normal components. And for a curve y on M with tangent

Erij K * biJN in terms of tangential

r' L
.Zy Xr'then : -

, . .
i i" k' r'ni k' r’
a(Zy XiJ/at: Ey St Y Y rkrjxi + Yy v bkrN

Theorem 4.3

Given a Riemannian symmetric:éonnexion V and a curve
[0, f]—— M with y(0) = p and YgeT M then there
is a unique Y(t) along y such that Vy}Y_-'D.
.o n: ) s .
To see this if X!,...X are coordinates at P,
n : -

V, X, = LT/ .X ., X, = 3/3X
X, "3 g 137K 1 i

[ ]

and y' = (X! (t),..,X" (t)) and
1
R SR s SR
X’ X
) 33

1° i,,.k

y Xgty XJ 11 5
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‘Thus we have a linear system of differential equations

FLE yixj'r'i‘J = D with initial condition Yo = yi(t)
: : . t=0
' A ' A A )
. Since (|Y-Y[2)* = 2 <Y-Y,¥_,(y-¥)> =0
- A X 'A.
“then |v-Y.|2 is constant and so since Y(0) = Y(0) we must
have uniquenaess. i MR

Definition 4.4

A Geodesic 1is a curvely with acceleration vector field

VY,Y’-zero.

Let T be a closed (n-1) manifold in E™**, we say that
X spans T 1f X is an n-submanifold and 93X = ﬂ.

“Let X : 0 ——» E"*, D closed ball in E" and X(3D) = T .

*Definition 4.5

{

o .

A variation of X is a map X : Dxul:-e.e:l — g™
L | . . . '
such that . A T : T
(1) Xg(z) = X(z) for each zeD '

(41) X (3D)
u

Xo(3D) = X(3D) for each u ¢ [ce. €]

X(z,u)

where X (z)
u

4

Thus for fixed zeD, iu(z} is a curve with velocity vector

Viz) = d(X (z))7du ‘called the Variation Vector Field
u=0 o _
associated with the variation X. And X,(0) is a surface

with first fundemental form_gi (u) = <iu i'xu J> and has area
1 n_
.L;’Edpt giJ[u)jdu cees du ..‘IDdAu.



It (ul.....un] arae coordinates for a'domain D in En

and X[ul;.....u") is a smooth map into En"k which 1is

sverywhere regular then X induces a Riemannian structures

on D and 1f we taks . <., > +to bs the usual 4inner product

n+k

on E then X*(< , >) is a metric tensor an D.

.i_

Definition 4.6

- xs0< , >1(a70ut,9/70ud) = <x, (0700, x, ta70ud)>
n+tk . 1 j o : ..
- 1 3X, /du IX, /3u.

1 -

-
-—

. The volume element of'{gij) is defined by

dv = /[_T:iet(g“):ldul... du”, and J_dv is the 'volume' of X.
- D

-
”

. .

If 6 1+ D x [~e.¢]——>E""" 18 a smooth variatian of X

which lesaves 9D fixed, that is G(z,0) = X(z) and

G(3D,s) = X(3D) then if V(z) = dG(z,s)/ds is the
' s=0 _

variation vector field of E.then for small enough 8,0

is regular and [gs 13

- ; 1 n_
volume element dVg /Eat[gaﬂdu_ ....c?u .

Definition 4.7

1¢f M" 15 & differentiabls manifold and X : M'—— gN*K

is regular then X induces a riemannian structurs on m" as
above. Furthermore X, is an isometry between each fibre:
on TM" and its imege 1in TEn+k. Such a map is called an

Isometric Immersion.

) = X;(< » ) 1s a metric tensor with
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'variation X which leaves 3D fixed then o

54

'Definition 4.8

An immersion X : M"——s E™*® 45 called Minimal if H = O

where H is 1ts .mesan curvature vector field;

‘We shall see that an isometric immersion X : M"— gk

ié minimal if and only if tﬁe volume of M" is atafionarQ with
respect to all variations with compact support in.Mn - 3Mn.
We remark here that this carries ovéf.fof immersions in

ﬁn+k having < , > as inner product, and in this cese ths

induced metric from a regular map is

a 1 J o o )
gij iaxa/au axg/au_ g“B whera_gue is just . < , >
in local coordineteg. -

-
-

., Proposition 4.8

.. With X, D, X as previodsly defined then there is a normal

- vactor field H along X (defined locally) such that for any

V'(0) = éﬁI<H.V> dV where V is the variation vector field
"D

of X.

. ?

To see this one considers the varation X of X with variation

vector field vV  (z) = dtiu(z)/du and by taking the

u=u

: o uo,
- - o
-area-.A[u) ._{D/[det_-gijfu]]dul...dyn one simply evaluates

dA/du » using the'fact that V is zero on the.boundary.

u=0

Suppose that v « [0,1]—>M 1is & curve.in M. The length

of Y is given by
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i

1
Lg(Y) = I'<Y'lt).v'ttl> dt

0

If vy : E0.1] X E-e.e:]——>l"l is & one paramcter variation
of y then ¥yo(t) = y(t) V te[0,1] and \?U(UJ = y(0),

- 1
Sy, (1) = v(1) ¥V oue[-e,e]. If we write L, = Loly, ) then

l - - 3
L, =J°_<yu(t]. Y (t)>

dt and using proposition 4.9 wa havs
1 .

<V,H><Y'[t].Y'[t)>i dt where V is the
0 (

variation vector field along y, which depends upon the

. d(L,)/du = —J
u u=0

variation and H = (Y'[tl/<y'(t).v’[t)>$)' is the curvature

vector which depends only on y.

’

Thus‘d(Lu]/du = 0 1f and only if H=Z0 and so
u=0
d(L,)/du = 0 for all variations fixing endpoints it
u=0 : :
and only 1if v is a geodesic, And if M = E" then

i

H = [Y'(t)/<y'[t);y'(t]>-)' = 0 means that Y"(t) = 0 which

on integration just gives a linear equation.

_&f X(s) is a curve in E" parameterized by arc length then
X"(s) is a vectar normal.to X and'X“[s] = 0 if and only if
X is locally the shortest curve Eetwean points an x.'

In this case H = X"(s! = B(X'(s),X'(s8)) and 1f the curve is

moved in the direction of X"(s) then its length will be _.

\ .
i

decreased.

Suppose that I' is a closed curve in E3 and 1et X : D —— E3
‘be a surface which spans T. Then X has area
ApX) = jD/@et(g“Udulduz and if X : D x [-e,e]— E3

is a smooth varation of X leaving 3D fixed with veriation

’




vector field V(z) = 3X(Z,u)/3ul and X{z,u) = iu(z)
u=0

has metric giJ(u) then d A(ul/du - -I<V,H>dAo =0

u=0
if and only if X 1s a minimal surface, whers

Alu) = I/[:det gij(u]:l dujduz. i
D .

If X : Mz—--——-"-E2+k is given locally in terms of conformal

LS

Coatte ..

coordinates then at sach point (giJ) is of the form

;[X? 0 ] and the Laplacian AX = (8X, ,...AX ) = H/AZ,

0 a2 Z2+k
" This means that X is minimal if and only 1f AX = 0 if and
only i1f all the coordinéte funcfions xi are harmonic.
If we put fu = axa/aul - aXa/§u2 » @ = 14¢.:.2+*k than érom
the bauchy Riemann equations‘each fa is énaljtic as a
complex function of. z = up ¢+ iup and also

- - , " -
-

2 L
(1) E 2 0

(143 ] [f |2 = 222
. a

.Proposition 4,10

Given that f;, fz......,fz;k are analytic functions of
z = uy+iupy on a simply connected domain DcC such that they
satisfy (i) and (ii) above then there exists X : D — E2+k

which is minimal and in conformal coordinates.

This follows by taking XB =_R9Jf8 B = 1,eas,2%k

Definition 4.11

"Let y : [a,b]———> M be a curve in M which is piecewise

smooth and continuous. The energy of y.'{4;6} is given by
b .
ED(y) ='Ij<y-,yv>dt.
- a
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Proposition 4.12

d_E(?J/du - - 2[?<q(t).Atv>ftﬂf:<U(t).vVV>d£]

u=0

where. Y : Ea,b_] X [:-e.ﬂ-———’ M is a one paramseter

variation of Y, AtV " Vie ~ Veo

ie theqump in the velocity
vector -, V(t) = v'(t) at the corner t, U(t) -'a§/ag

o - u=0

and VVV is the acceleration vector of y.

This result follows since

~d E(T)/du = dq: <¥r,¥'>dt]/du
. b - - - -

—~n IaE<VUY."Y.> L <y',vuy'.>]‘dt

= 2Jb<v Y',¥'> dt

a u .

.. =-|b -

= ZIa<v;,U,y'> dt
1f Yec!®, .. t] x (el  d=1,....m t; =a, t =D
then sincs

L AT AUY/AE <Y Uy > e <y, Y

wae have

t, - . ety
I <V . U,Y'> dt = <3y/3u,y>
t, . Y T
i-1 o -1

oty ) .
- I <3y/3u,v ,y'> dt.
Jyg Y. c
. i-1
Now 3Y/3y = 0 at t=0-or t=1 and so
b - m-1 - _ -
Ia<vy,U.y'> dt = - ¥ '<?Y/3U‘At v'>

in1 b _
=] <3y/au,y ,y's dt
' [e ,Y Y Y

Corollarx

Stationary points of the energy function are geodesics.

This fol}ows because if v 1s a geodesic then y 1s smooth




-t

geodesic, ' : . : ’ B LI

; : Ea‘b] X EEJE )E EGDG]"_‘_’M with
; .

and VVV = 0 and so d E(Y)/du = 0 V variations y.
u=0

' Conversely if.d E(y)/du = 0 for all variations Y

u=0

_then V V = 0 where defined and V is continuous so from

v

-

" the uniqueness'thaoram.for differential equations since

there 1is only one continuous solution thén Yy 18 &n unbroken

Definition 4.13

Let v : [é.@]-——————o M be a curve in M, Then y(t,u,w)

ie a two perameter variation of v 1f

(t,0,0) = y(t) ~

If we write y'(t) ="V, U(t) = 3y/3u, W(t) = a;/aw then
UCt) is a vector field alang the curve y(t.ug.wy) for

fixed ug, wy and W(t) = 3y (t,uy,w)/dw

WEWq

. Proposition 4.14

For a smooth geodesic y defined on E@ E] and a piecewise

smooth variation [t u,w) then

32E/3udw « - 2f {<u L8,V W>

ju=sw=0
* j <ULR(W,VIV + 232W/3¢2> dt

for variation vector fields U,W of the variation.§ of v.

Thislfollows from straightforward differentiation where

R(W,V)V = VNVVV - vvva - VEy.q]V and where.

W,V] = 373w 23/t =- 3/3t 3/3w = 0.
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CorolIary

T

Y

' If y(t,u,w) 18 a smooth variation with Y(a,u,w) = p and

Y[b uw) = q that 18 U(a) = U(b) = W(a) = W(b).= O
then

- .

32E/3udw = -2[0<U,R(W,VIV +32W/3t2> dt.

We shall use the following notation :
R = Zyly : [a,b] ——— M ;

q ‘ -} = =
np %yen |y Ca) p,Y(b) q %

)u}u is -vector fiseld along Y }

fl =

y

q -} = =

ad = [u;T nIU(p} ueq) = 0 {

We can therefors think of E, E,» E.., as mappings :
E: Q=— R, E, : TR — R, E,, : Tyﬁ X Tyﬂ ——3 R
such that if WeT @ than E,{W) = 3E/dw

_ w=0
and 1f U,WeT @ then E,,(U,W) = 32E/3udw

usw=0

Propostion 4.15

If yeﬂg is a piecewise smooth curva'oé shbrtest length
on M then y is a smooth geodesic and

E.(U) = 0, E, (UU) >0 V UeTyﬂg.

To see this, since geodesics are stationary points of E

then E,(U) = 0.

Also '[:L.:(y]:]z = [.‘fg<y'-.y'>i dt] 2

< w'f:<Y'-Y'>dtf: 1 dt (Schwe;z.Inequglity)

Ca E:(Y) (b-a)
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b

But if y is a_geodésic L_(y)«< L:[u) "V oae qg and so

a
b 2 b, =2 b, -
Loty J? ¢ [ ta)] « Ea(a)(b-a)
or E:(,Y]'(b-a) < E:(u](b-a] - -
- | : "= b b= b,z
Thus' for any variation vy of v, Ea(vl = Ea(Y(OJJ 3 Ea(Y)

and d2E(y)/du? >0 " ' : .

d oo

-t nay”

u=0

Ehysicelly we can interpret 'Energy' as follows. .If a
rubber band describes a curve I' when stretched between
th points'hf a frictionless curved surface S then ths
potential snergy arising from tension is proportional
to tﬁe énergy of I. In psrticular if we have an

equilibrium state then the snergy is-minimised and T

- . e T W B

‘18 a 'geodesic on S.°

Ltet p, q € E3 and let A : [0,1]——— E3? be any curve in E3

with A(0) = p and:A[1) 8 Q.

Then.Aeﬂg and the Energy of A is given by

1
E(x) = f0<N[t],A'(t]>dt _ o

We now consider [nézlg c @9 where

(a 129 . gkeﬁq
) c p

p A is a cubic curve i.

From this 12 parameter family of curves we can extract

a 2 parameter subfamily [n:]g as follows :

I o=

Let T , T e E3 with |T | = |7
'p" 'q p q

-than

2479 . 12,4 ' - ' a
(nclp ixe(nc Jp,x (t)1 .FATpf* (t)| ?qu ;

p. q
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for some ékj_ﬁl €R.

If E(A) is E(A) restricted to the set (ﬂi)g we will show

.in Chapter 5 that thére is Jupf one ldﬂé)g which minimizes E.

Definition 4.16

e T

L?t f'z Mh:—f;é—aNn be a smooth mapping of Riema;nieﬁ
hanifolds M [comqact] énd N. If [xl{..;..xm] and
[yl......,yn] are locél coordinates at peM and f(pleN
respectively then the energy_of f_ig given by

ECF) = In(gijéasfgfgl.1

. . A A
where ds? = gijdxidxj and qu =_gquy“dy8 are the metrics
in local coordinates, and fg = 3f°/3x » and *1 1is the

volume elsment of"M;_.A“v

The problem of deforming any given mapping into one for .

which 8E = 0 is considered in {6}. For this the Eyler

equations turn out to be'?? = .0 where
a _ 13 a, 3 _.h .a ‘a Y. B
T = g > [0f,/0x Tyyfh * Tay fjfi]

: A . |
where T,T are the Christoffel symbols on M,N and any map

for which'Tq= 0 is a Harmonic map. If we take M = s!

-then f i1s harmonic if and only if £(S') 18 a closed geodesic

on N,



Chapter 5

An Extremal curve in E3 cydf

Using definition 2.1 for the cubic curve equation we

can write any member of (nglg in the form

r(u) = ag + aju + apu?/21 + azud/al a, e E3

‘where u e E0.1:]

Definition 5.1

The energy of the cubic curve r is given by

- ' 1 ® []
. E(r) = I°<£(u).£(g)> du
Then .
r(0) = ag = p ‘
I(0) = $(0)t(0)

r(1) = s(1)t(1)
and we recall from chapter 2 that sach coefficient in

the cubic equation can be written in torms of thase as

a; = s(0)t(0)
a; = 6(r(1)-r(0)) - 4s(0)t(0) - 25(1)t(1)
a3 = 12(r(0)-r(1)) + 6s(0)£(0) + 65(1)t(1)
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Writing
- |e(1)-r(0)| =W
<r(1)-r(0),t(0)> = W cos @

“¢r(1)-r(0),t(1)y = W cos ¢ -

then

B ]

BV

<r(u),r(u)> = 9au* + 128ud + 2yu? + 46u + 82(0)
whers

4W(W-8(0)cos 8 - 8(1)cos ¢) + 82(0) + 82(1)

R’
n

T4 25(0)5[1] cos (0 + ¢J

«©
B

W(- 6w+7s(0]cos g + 58(1]008 $) - 282(0) - 82(1)
| ' - 33(0)5(1) cas (0 + ¢)

'.Bw(3w-5§[0)cos 0 f.ZQ(i]cps ¢J + 1182(0) - 282(1)

Y =
a . .+ 118(0)8(1) cos (0 + ¢J
6 = 35(1]w cos @ -.252[01 - 8(0)s(1) cos (6 + ¢)

And the energy of r is_given by

“E(r) = W(6W-5(0)cas 6 - 5(1) cos ¢)/5

+ (282(0) + 252(13--‘§(0]§(1]'cos e + ¢)1/15

.

from which it can .be .shown that E-takes on its minimum
when .
s(0) = SWEI cos 6 + cos ¢ cos (6 + ¢J_—']/E|6 - cos2(e + ¢):]

s(1) = 3w[§ cos ¢ *+ cos 0 cos (&6 + ¢i]/[36 - cos?(g + ¢E]

| . In a symmetrical condition whers 0 = ¢ then
'8(0) = s(1) = 3W cas 8/(5-2 cos?6)

Figures 12-15.show some examples of minimum energy cubic

F _curves. The boundary speeds ( ) satisfy :
| 5(1) > 0 4ff <r(1)-r(0), t(1)> > 0 1=0,1
, ali) = 0 iff <r(1)-r(0),t(4)> = 0 i=0,1



Using proposition 2.4 the curvature and torsion of
these cubics take the boundary values :

k(D) = (2/%(0,4,5(1))/52(0)

k(1) = (2/£06,8,5(0))/752(1)

T(0) = 3s(1)[£(0),r(1)-2(0),£(1)]/8(0)F(0,4,5(1))

i S

t(1) = 35(0)[£(0),£(1)-£(0),E£C10]/8(1)¢0p,0,8(1)3 .-
where Q(OI and';(1] are given by squations (*) and wherse

fla,b,a) = 3w[§w sin2a - 2q(3 cos b - cos a cos (a+b]i]
+ g s8in2(a+b)
and for the minimum energy planar cubic the curvature

takes the boundary valuaes

k(D) = 2|:3w sin 6 - 5(1) sin (@ + ¢J]/é2(0)

k(1) = 2[3W sin ¢ -"4(0) sin (0 + ¢)]/82(1)
where again §(0) and s(1) satis¥y (*).

And 1f 6 = ¢ then we have
®(0) = k(1) = 2 sin 0(5-4 cos20(5-2 cos268)/3W cos 20

1 ¢ (a2)Pi*1

S L -3
Let E { pl.pz.--uo.qn} c E and let E c pi

Proposition 5.2

Given & there 1s a unique piecewise cubic curve T which
satisfies
(1) T contains Py i =1,....n

'[;i] I' is represented by £i betwesen pi and Pyaq and

n

51(0] = r (1)
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w’

'(144) T e c?

(iv) 51 minimizes E on (RZJPi+1 for i=1,...n

c Pi

This follows bsecause at Py continuity of tangent direction

and'curvafure Oectormeans(proposition 2i9) that_we must

have ;i Cedi-1 o PR
= or ? R for some ¢ >0

u=0 u=1% .

and ;i c2';1-1 d ;1-1 _

: = ly=0 = -_f_ u=1 . - T us for some d,

ui . uoi_-1

By writing r and r 1 in terms of the cubic curve

u=0 u=1
coefficients and substituting in turn for these using the

equatioﬁs of propoéition 2.3 then we find that the second

condition for the cgntinuity of curvature vector at pi

i .
r .

reduces to {8} : T v
Mty = 3[}51.5’%’ -t
us=0 .,
+ <ii 1‘i1 > (51(1)-51[01{]
L] el [ - lu=1 [} [}
_<f‘ﬂf‘k‘ it t,
) “d e u=0 . u=0
_ <ri 1,ri 1> <ri.ri> t
— — — — _1"'1
u=1 u=1
ML~

where u, is an arbitrary scalar and where

[ ] - [ ] - [ ] -1 .1'
t = ri 1/'<ri 1.r1 > ¢
=4 -1 Lz L R
. u=0
140 ot it
u=1 -

"Hence these together with the equations (*) amount to

5n conditions involving

s T

'u'.E
u=1 i i

u=0
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which ares sufficient in number to uniquely define thse

curve T

Definition 5.3 ' a ‘

" The energj E of the bicubic surface r: EJ.1_-_] X @.1]-——-’E3

[ .

is given by. w?

- Tf1(1
- E(r) = _JOIOCE(U.VJ+G(u.v))dudv

where E and G are fhe two first fundamental coefficients.

The bicubic surface which minimizes E on some class of
surfaces satisfying specified boundary conditions will be

the surface which minimizes the Dirichlet integral {29}

within the class. -~
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Chabter 6.
Surface Mappings and Distortion ,

L

Oefinition 6.1

‘A Ruled surface 1s a two dimensional‘submanifold M of E?
with thé property that each point péM lies on a straight
line, cslled the generator at p, which also lies on M.
It is sasy to show thatj{ﬁ}:on_a ruled surface the

Gaussian curvature K 15 non positive. - Further :

Definition 6.2 SR )
If M has the property that the tangent planse is constant

along generators then M ié called Developable.

On a developable, the mean curvature is constant along
generators and a theorem due to Massay'{Z} states that

a closed connected surface is developable if and only

-1f the Gaussian curvature K = 0.

If we consider ‘the ruled surface R : I:O,ﬂ b [D.,ﬂ——-;) 3

-defined by



‘Rlu,v) = Rtu,0) *+ v[R(u,1) - R(u,07]

then thi

8 has v as the parameter along the generators.

And R 1s developable if

Di(u,%

) - B.[u,‘o]' _R_IIUDOJJ. 51 [u:1n u Y U

N

If we restrict ourselves to bicubics then the rulegsn

bicubic

r: [0,1] x [0.1]—-—.»E3 with parameter v along

genaerators is given by

rlu,v) = agg + 819 U *+ azqu/2l + asould/al

+ -V[E_OI + 'gllu + 321-u2/2l + g31q3/3l:]

And this is developable if [alu),pblul),elu)] =0

where
alu) = a1+ ajju + 8pyu2/21 + a3 ud/3l
blu) = ajq * 8zqu * a3qu2/2]
clu) = ay) + apu + agyu2/2l
Proposition 6.3 LS

Given ;gij) C E3 and real numbers E

13° Fij then there are

00" bicubic surfaces which are ruled, have v as parameter

along genaerators and which satisfy

. (1)

(i1)

rli. 37 = ayy
gy FULI) = Fiy t.ge Jo,11
are the Tirst fundamental coefficients E, F

E(i,J) = E

evaluated at the corners.
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Propgecsition 6.4-_

"/ Given Q_a_ij-.p_“i C E¥  then there isa unique ruled bicubic
surface haVing v as parameter along .generators such that

. 4) rl4,d)

[

(11) r,(4,3) = g, i.3efo.1} - S
And of course aihilar results hold for surfaces which are

bicubics with u_paraﬁeter_genaretors.

Definition 6.5

The Exponential map eip :t TM—> M 1is definad as follows.
If (p,Vd)e Tpm then exp(p,V) = exppV is the value at |V].

of the unique geodesic y(t) in M such that

(1) y(0) = p (ii) y'(t) = V/|V]
: ' t=0

That is exppV = Y(|v])

. \g,'-‘
Theorem 6.6

Let A : [a.b]—— M C E? be a cubic curve on the
developable surface M such that A(a) = A(b) and suppose

that A is contractible on M. Then M is a plane.

The proof follows since if A is contractible on M tﬁan
there is some closed disc inside A and we can find a generétor
G of M which cuts A twice. Thus we construct the map

: “w: [a.b]—s[a.8] such that | |

Au(t)) € 6 if A(tde G.
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Let [p.{] c [a.ql, Then we have smooth diffeomorphisms

/ a 1+ [e,d]——{c,d] x R and B= A X exp : [c.d] x R—m

wherae 8 is given by

Bt (t,r)——s pe M

]
-

.where p 1s the pbint of disténce r along the gener;tor

through A(t]. ,tonsiderlnow Just ImBon A, Let VcM be
a neighbourhood containing this image. Sinee_i ia-en.
embedding.there is a diffeomorphism y : V—3U c Ez.

Now fake the projection §: U-——;[ﬁ.f] c R,

Then u = 8yBa ': [c,d]—s[e,f] is smooth,.

Now since A is cubic we can write'

AGEE)) = ate) + [ule)-€)arce) * fute)-t2] /21 An(t)

+ [uttr-t]3/731 ante).

Since M is developable the tangent piane- is constant along

‘generators and so

Dou(e3) = A0e), 0 (), A tu(e)] = 0 e
. o Ty ol . ‘
But

ACGUEEINTCE) = A0 ¢ (U =1)AT e (ue£)AT + (pot)ut-1)A

e (u-t)272 A%« (u-t)2(ut-1/2 A

Therefore (+) rsducss to

(u(t)-tI A", a0, 2] a - 0 @ = constant

Thus XA is a plane curve on each open subset of S where S

‘contains alllmemba:s t of [a.,b] such that a generator

through A(t) cuts A again. not tangentially.



71

Consider two curves A : Ea.b:l-———» €3and p : Ec,d]—-——-» g3
which are not coplanar. Then.we can generate a developable

M which contains both A and u as follows :

If alr) and y(t) are points of A and u which lie on a

p q
generator of M then

.D-u_.k'.u.':] = 0 = flr,t) say.

And 3f ér + 3f 6§t = 0 and so
ar ot v
§r/6t = - [X-ua',u™)/R-u,2",u7]

. - olr, k)
Hence we just need to soive

'd

r .
dt
giving the solutions r = y(t) where

= =~ ¢(r,t)

flr,yp(t)) 0

.Suppose now that we want to find some mapping f of a portion
of a curved surface M where f : M—— E2, We assume
that f is defined on UcM whers U contains at lsast two points

of M. §

Let x,yeU. Then we given the following quantitive

definition for the distortion of f.

Definition 6.7

The Scales of the map f for each pair x,yeU is the ratio

s(f) = dE(f(x).f(y]]/dM(x.y]




where d.(f(x),f(y)) is the Euclidean distance betwesn
£(x),fly)eE? and dM(x.y) is thé_geodesic distance between

X,y EM. _ : . - ) _ .

- Ideally we. would 1iﬁe_s(¥] to be constant for all pairs

of points in U, but this will not usually be poasihlé.

»
R R

Definition 6.8 S

The minimum scale sltf)viéjgiyén by
. 8y(f) = Anf s(f)
- "‘.’ x:yEU
and the maximum scale s2(f) is given by

sa(f) = Sup  s(f) .
. . x.yeu

Then s3(f) and s2{Ff) are the best possible constants such that
sldé(x,y) < dE(f(x),f(y)),s ssz[x.yJ V x,yeU

fhis leads fo the following definition for distortion which
. ) X .

measures the extent to which é(f) is non constant.

/
'

Definition 6.9

The distortion §gof f is given by
§g = log s/

Then 0 ¢ §9 € = and §, is finite if and only i1f both s,,s, >0.

Definition 6.10

The map fgon U has minimum distortion 1f &g(fgo) § §¢(F)

for all maps f on U.
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If we take M = s® and U = Du is the closed disc of geodesic
radius ra. . Thus D = Lkesa t d_(x,%xp) € ra ifor some fixed
. .point xg e S%. Then {25} there is one and only one

minimum distortion map.fo on Da' This map is C® and

is the 'azimuthal eqpidistént ﬁrojection', which preserves
_both distanceg andldirecéions fromlxo. And in th;S'casa
Sg(Ffg) = log(d/sin al. This map-is in fact the inverse of

'

.the exponentiallﬁap. -

If M 1s.sﬁobth with Riéménnian ma%ric in.terms of local

cpordinates_givéﬁ by ds? = Edu? + 2Fdudv + Gdv2 then we can

- consider A, the assoc;ated Laplace - Belframi operatof.land

a‘gecdnd Riemannian metric on-M of the form o2ds? whare o

is positive and iﬁ/éz.. . The Gaﬁssiaﬁ curvature ﬁ associated

with this new metric is given_byi{zsi the formula |

ﬁ - (K - A logolk? . If % : M——3E2 is conformal and o

35 the infinitesiﬁal scale function o(x) ;:_lim's(f] | ’
. , . y —> 'S

then K is the.Gagﬁsian curvature of E2 at f| . But K

X . - X . .
and so the differential equation Alog o = K must be satisfied.

0

“

Conversély given any solution ¢ to the differential
equation Alog o = K the Riamannién metric o2ds? has
curvaturese 2 = 0. Thus {26} any sufficiently small
connected open subset of M with the metric o¢2ds?2 can be
mapped isometrically onto an Apan supsat of ‘the plane, '  .

which 1is uniqué up to'rigid motions of the plans,
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We consider .now .the construction of a particular mapping

f i1 M ——3 E2 which arises from .the inveraa‘of.the

exponential map. If M is a surface defined by

r.= r(ul,u?) where (u!,u2)e[D,1] x [0.1] then we first of

all apply a linear‘trans?ormation to ul,u? so that we

have g, ,(1/2,1/2) = 613; - o b

Now‘the-differantialequations for geodesics on M are

_ N 1
. d?ul « 1 du du 4
dsZ 1] ds = ds
d2u2 p2 gl gud - 0
deZ "743 ds ds

where the rk

14 ore the Christoffel symbols.

By imposing the 1initial conditions that:

T (1) ul(o) = 1/2 ,  w2(0).=~ 1/2,

" ‘\' '
and by taking al!,a? such that

(11) dul/ds = al and du2/ds

- a2.
g={ ’

séo
this will give solutions of the form yl = ul(s,al,a?)

and u2 = y2(sg,al,a?) and if we write

i 1M v _)
ol = JAl al)¥(a2)Ved
Auv
and solve for the A's then at s = 1 this gives

-1
A ui(1.al,a2)

f
m n
Let M and N be Riemannian manifolds with M compact and

let ¥ 1+ MM———3 N" be Cl. At peM take local coordinates

xi.and at f(p) y1 so that laocally ycl = fatxl{,...xm) and
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The differential f, has matrix representation (3f9/8xi)

relative to these coordinates whera.ui F__,;[af:ui]
' p X~

v ‘F[p]
Definitiod'6;11'
(1) . The distortion §; of f at peM is given by f;
8§, (f,p) = sup Neotudaf|2 = sup 6f fB 1,4
T ol ol 13
where g anH_g’-hré'thé metrics on M and N
Cand: ful]] =1
(11) The distortion of f is given by
51(f]'”- sup §;(f,p)
peM
: ' - 3 .
Now 1if f 1is an isometry ‘t'.hen.gi‘j . aefifj and so as a
measure of non-isometry we can take
ORI SO B, i 3 _ i3
§;(p,u ]. g' Bfifju u gijm 9
'Then the problem is to find the maximum of
B i3 i3] . '
] - - -]
'gql fifju u 1 subJact to gij u 1 0
If we write ‘ R ) ' ' : S
| B i3 . 13
L £ - - -
F(u) g Bf J 1 _Aﬁgiju u j]

then

aF/au’ = Bgf

ok a

BJ_:,‘ uJ - 0.
J 13 :
and so the distortion at p will come from the characteristic

raoats of the equation

R T . - - - -
‘det.[gasfi f _.xgijj 0 _

Definition 6.12 b

If peM and f ¢+ M ——— N 18 such that for each peM then




4

-

A Fe /| uf] is constant on TpM,.then'f is called

conformal.

Every smooth oriented 2-manlfold has' a conformal structure.
- If M and N are oriented C2 ‘'surfaces immersed in E3 the

" Euclidean metric imposes a speciflic conformal structurs

upon M and N. Conformal parameters may be introduced

on M for instance by means of isothermal coordinates.

" At sach point peMm let A be the matrix representation of

T MM and T
p

" the differentialif, relative to orthonormal bases of

n
f(p)N

rank f, = rank A = r at each point then r ¢ min(m,n)

and lat At be the transpose of A. If

- .
’) .

and rapk‘AtA ='r,

.I'FAI % Az * _Aalcnl..-;. Ar >Ar+1 ="Ar+2. [ A ] = . Am = 0

are the characteristic fqots of AtA-then we consider tqg

following ratio function “Arf.H of valume elements of M
and N {27} , where = N o
A s B = E N VERTRTS
. 11<..:<__ir 1 S
" Thus HAlf,ll'-=” l|f.]] 1s the ratio of distances.

At each peM let Sr“1 be a unit (r-1) sphere in TpM. It
rank f, = r = min(m,n) the image of st under f, 1s an

ellipsoid of dimension r-1.

Definition 6.13

f + Me———3 N is called K-quasiconformal if at sach point

76



“1if A;/Ap €& K2' at each point.

peEM then a/b € K where a and b are the largest and

N.

smallest axes of the sllipsoid f.(Sr—1] in Tf(p)

One may verify that £ i1s K-quasiconformal if and only.

Yooa

Let M-and N be oripnted'cz'§urfaces immersed in E3,

Definition 6.14

' |
f : M——>N is called a Teichmuller mapping if isothermal

"coordinates u,Q may be chosen in the neighbourhood of all

but a discrete set of exceptional points on M so that the
first fundamental forms at corresponding ﬁoints of M and N
are given by _ “

| ‘ds? = u(u,v)(du? + . dv2)

d82 = plu,v)(K2du2 + dv2)

In fact a Teichmuller mapﬁing is either a conformal mapPing
or else it is the K quasicon?ormal mapping characterisa&

by a particular Beltrami diffserential {7}. It is known

that {28} tss mapping minimising K aadngst all homeomorphisms

between closed Riemann surfaces R; and Ré of the same finits

~genus 2 2, which are homotopic to some fixed hameomorphism

between R; and R,;, always exists is unique and is Teichmuller.

Thus a Teichmuller mapping always exists between any two
closed oriented C2 surfaces immersed in E3 and ecach one
will give the most nearly conformal mappiﬁg betwesn the

surfaces among homeomorphisms homotopic to 1it.
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(1) A mapping f, which has the property that f,

78

Let r ¢ D — ScE3 'be a.representation of some surface

S in E3. We consider three mappings f,.f,,f; of S into
E2, ' |

. has

. . : 95
a distortion equal to zero and is such that on S-3s the

A9 By

distortion 'is a minimum. . . -

Consider first of all the mapping of S anto its

parameter domain O. “If the metrics on S and D are

do? and ds2 then
do? = Edu?’ + 2Fdudv + Gdv2 and ds2 = du2 + dv2

This mapping will producs stretching on 35 and so

do?2 ¥ ds? on_the boundaries. Therefore wae look

"

for a mappiné h ¢t D'"'"———> 0 such that tﬁe metric dse'2

on D' satisfies ds'?2 = do? on the boundaries. If
. zeD* let h(z) be given by usu(u’',v’'), v=v(u',v').
Then

- [du) fouzaur cauzave) fdu) o fdut) -
~{dv av/3u’ 3v/av’ dv' hidy® o :

And

do2 = (du dv][E F]'[du]

F G dv :
« {du’dv’) J;"E FlJ f{du*)
. - F Gl (dv'

So the new first fundamental matrix is J;ﬁ[E'F]J
' , F G
with parameférs u',v'.

" For a small displacament'[du') along aD' we require
. - UV'




that de’'2 = do? which means on 30°

(du’)2 "+ (dv')2 = (du'dv') J;' EFY J (du’)
. F 6 dv'

Wa iﬁ fact find & conformal h:D —————s D' which

echieves this. - For & small displacement dz on

90 we havs displacement h'(z)dz on 3D' and so to

.

. i unstretch the boundary we require

|h*(2)|| dz| = do = ¢(2)|dz|

whare ¢(z) = do/|d?| is the stretch factor at the

boundary point z. We therefore require h'(z)
analytic in D with [h'(le = ¢(z) on 30. If there
is such an analytic h'(z) then lpglh'(zJI- = u(z)

is harmonic i[ D and is therefore the solution of
IDirichlets p;;blem -for fhe given boundary function
iog ¢(z). Having obtained this unique ul(z) we

can find the conjﬁgate harmonic v{z) from the Cauchy
Rismann equations.(-.ux ; vy. uy n -vx] by integration.
'This will determine v(z) up _to an serbitrary additive
conétant, and '

h'(z) 8ufz)+iv(z]

and integrating gives us h{(z) which satisfies
[h'(z)] = ¢(2)

Then h(z) certainly maps the boundary onto a curve

with ds’'2 = dg¢2 but unfortunately we do not know

that 3D' is a simple closed curve.



(2)

» D" s8uch that 5 has
) 20"
distortion zero and where h reduces the distortion

Now consider h : O

at the point of maximum distortion in D'-3D°'.

" Now d02 - ds? = (E-1)du2 + 2Fdudv + (G-1)dv2.

At z e D 30 the distortion in the two principa1

- Taking det( iJ A6 ij)= 0 we have

A2 - (E+G)A + EG-F2 = O
and the solutionslll,kz are the magnitudes of the
principal axes of the infinitesimal ellipse about

r

z

If we choose h éﬁch that

-

8. = ﬁx1-1Jf + (Ap-1)2

48 minimised this will give the required sclution.

And in fact we can write
§ = (A3+25)2 = 201hp = 2(A;+2p) + 2
which is convenieﬁtly in terms ofﬂthe trace and

-~

detefminant of -the matrix.

A mapping f, : S——s ScE2 having the property

that f is conformal and is locally an isammatry on 3S.

We assume also that S is bicubic represented in terms

of parameters g and t by the equation
k
“r(s,t) = ) a, st a,, cE3
B J,k=0 3k ik

with 0 = [0,1] x [0,1].

directions is given by the characteristic roots of (giﬂ

80
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On S let the metric do? be given by
do? = Eds? + 2Fdsdt + Gdt?2
and if h : D' ———> D is given by e=s(u,v),t=t(u,v)
then
dg2 = E[sudufsvdvjz +.2F[sudu+svdy][tuqu+tqu]
2
| | * G [tudu+tvdvj
- 2 ' '
= [Esy2+2Fs t +Gt 2]du
+2[Es s +F(s t +s t )+Gt t Jdudv
L uv UV Vvu u v
v . +[Es,2+2Fs t +Gt 2]dv?2
Then f, + S ——>D' is conformal if and only if
.Es 8 + F(st +s t ) + Gt t = 0 - and
u v u v v u u v
E(s 2-5 2) '+ 2F{s t -8 .t ) + G(t 2-t 2) = O
u v .U u vV V u Vv

-

Solving these non linear differential equations
dill_givé a class of solutions from which we choose
the one giving the locai isomstry property on the

boundary.

Writing these equations'fﬁ matrix form we have
(s t ) (EF)(s '
“uu [F G][tz] 0 and

(s t ) (EFYfs ) _ (s t ) (EF)fs
N 3 N Ol R (S N M

which combined give

f{s, t J(E FY(s s ), [¢ O
sY tY{F 6 |tY tY 0 ¢
v \" u v

where ¢ ig a scalar."

wfiting 5-='[éj; w -;[d]. MM =:[E F]




(3)

Then (+) becomss

82

wa have _
. T, T . ' .
(3x/3w) M M(allagl = ¢1

Then ¢_1/2M(85/aﬁ) is orthogonel and so we can

write

(aw/ax) F[ w]ﬂ B o ' L (#)
' :

N
-y
Now Bince

M e (/E F/VE
0 VEG-FZ//E

[u ut)[1//e -F//ETEE?F2J].;['e w}

v: vell o YE/VEG-F2 -y @

Hence we have the two differential equations

Eapv/3t = VEG-F2yu/ys + Fav/)s
-Eju/3t = VEG-FZav/as ~ Fau/3s

P

The uniquenqss'comes by insisting that f is locally

an isometry on the boundary.

.If the metric on D' is dg'2 with dg'2 = du2+dy2

_then since along constant t, dg? = Eds2 and along

constant s, dg2 = Gdt2 then ihe required boundary

conditions are '

| (au/38)2 + (av)aa)z = é for telo,1]
(au/at)2 + (3v/3t)2 = G for acio,1|

which will give uniquensss up to rotation and

translation.

A mapping f4 : S—~— ScE2 which minimises a given

norm for the departure from isometry.




Let the metric ds? on S be given by

ds? = Edu?+2Fdudv+Gdv2

and let h ¢+ D——— D' = § be.giveﬁ by
xex(u,v), y=ylu,v) with metric ds? on S given by
ds? "= Edu2+2Fdudv+Gdv? '

where ' - ' e

E = x;2+y;2 , F = xyx2+ y1y2 » 6 = xa%+y,?
Let y = ds2/ds?, Then
(En-E)du? + 2(Fu-Fldudv + (Gu-Gldv? = 0
and the maximum aﬁd minimum values uy,up of
arise from £he condition

“ (Fu-F)2 = (Eufé](Gu-él

Writing L

-

H2 = EG - F2, H2 = EG - F2, 3 = (EG+EG-2FF)/2
then these values are

w = [J ¢ /(32-H2A2)]/H2

If fa'is an isometry then u; =Hz = 1 and

'J =H2 =H2, E=E, F «F, Ge=38

Two obvious normé for measuring the amount by which fj
. distorts S are-: |
(a) at each peS
617 (f3.p) = loglu;/u,y) ‘
'Then 51;6 and §; = 0 1f and only 1f u, = yu,
Also 6§ —» ® as$ y;— w Or ulz___'..o
* In térms of the fundamental coefficients,
§; (f3.p) -'2 log (J3+/C)/HA

where C = J2 -H2{H2,

83
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And a measure of the overall distortion of f3

is §; (f3) -,2![ 1p§tJ4/c)/ﬁ dudv
¢ . . D

-(b) at sach peS
. . .=
62 (f3,p) = (uy+u; -

;§é+u;1 -4)/2
Then 6,20 and 6,40 1if and only if u1=ﬁ2 ="
- Also §,—> = as ﬁi;f—+ o or u2—f0.
.in ;Brms of the :fundamental coefficienta.'.
§,(£,p) = (J/R2 "+ J/H2) - 2

The overall distortion of f3 in this case 1s

62(F3) = Jf [(J/ﬁ2 + J/H2) - 7] H dudv
. D _ |

To obtain the mappiég which minimizes the chosen norm we
can fdlloﬁ the normal methods of the calculus of variations.
IIf x = alu,v) and y = gl(u,v) is tha'extremél mapping fy
}ay-then we'consider ?_given,by | -

alu,v) = alu,v) + 8ECu,v)

8lu.v) = glu,v) + enlu,v) =

Then

A - A

E = E + 28a;E; + 2eByn; *+ 0062) + 0(e?)

A - - - - .

F = F + -6(0.152 + 0251] + S[Si'ﬂzl * -Szi']l) + 0{62) + 0(e%)
. . . : :

G = G + 28a,E, *+ 2efong + 0(62) + 0(e?)

. Tz re : )

H = HZ + 2eHlajn, - azn;) + 28H(BpE; = B1Ez) + 0(82) + 0(e?)
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Then _
e a A A .
§2(f) = ” '[(EG+EG-‘2FF)(1/ﬁ2+1./.H2)-2]Hdudv
VRN S Y
- ”.-[(g/.ﬁ?u/.Hz)—z]Hdudv

0 , .

*-ZGJJDTya€1“*-Yb§2) dudv '
) *.ZGJI (v ny "+ vy, n2) dudv + 0(62) + 0(e2)

AY -~

where Y_,Y .Y, Y, are functions of E,F,G,H,E,F,G,H and

"“9a/3u, da/3v, 38/ du, 38/ 3v.
If f3 is to minimise &8, then we require

.IJ (yaag/au + Yba&/av] dudv =0

D . .
JI (y _3n/%u + ¥y _3n/3v) dudv = 0
D c d

for arbitrary fuhctions E(u,v) and n(u,v).
I+ 0 = [0,1] x [0,1] then we require
aya/au + ayblav - =0
ayc/au + ayd/av = 0

with the boundary conditons
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Piecewise Cubics
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_where a is angle between

- .. .. [ . . t . LEU T pu
— A ICTE W ., . ' L. -

Lot e’

k(0) = 2ICEl/ 3|AB|2

1(0)=2ICH|cos o / IABICE]
t(1)=2IBK[cos 8 / |CDI[EE|

and B is angle batwseen
(AB = r(0) BG = r(0))

X
(€O = £(1)  TJ = £(1)) g «f

Figure 5

k(1) = 2|BF|/ 3]CD|?2

The

Bezier.

Curve



895
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Typical B-Spline Cubic Curves
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Bezier Curves

Figurg 7
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Extremal Cubics
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Manning Cubics

Figure 8
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Triangular Surface Boundary Continuity

Figure 11



‘Extremal Piecewise Cubics ( ¢t = 0 )
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Extremal Piecewise Cubics (t=0)

Figure 13



Extremal Piecewise Cubics ( T

Figure 14
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