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ABSTRACT.

Various non-linear wave equations are found to possess solitons -
stable solitary waves which only undergo a change of position on
collision with each other. It is shown in chapter 1, how the wvarious
soliton properties of the sine-Gordon equation, uxy = sin u, may be
derived from 1its Backlund Transformation.

Most of the rest of the thesis consists of several attempts
to find Backlund Transformations for other equations of the form
uxy = F(u) by generalizing the usual form of the Backlund Transformation.
The only exception to this is in chapter 2 where equations of the
form U = A(x,y,u).ux + B(x,y,u).uy + C(x,y,u) are considered. The rest
of chapter 2 considers the effect of allowing the Backlund Transformation
to demend explicitly on the 1independent variables or on integrals
of the dependent variables.

The rest of this <thesis concentrates on allowing the Backlund

I‘n ew"

Transformation to depend on derivatives only of the "old" and
variablcé, u and u' . It is found that 1if u and u' satisfy
Uy =-F(u) where F'''(u) $ K.F''(u) and F''(u) $ K.F(u) then there are
no Backlund Transformations of the following form
Chapter 3. uy = P(u,u';pl,...,pN;ql,...,qM)

u} = Q(“)u';Plr---:PN;q11'°-)qM)

except possibly when M=1, N>7 and F(u) = Al.ecu + A2.e-2cu

Chapter k, u! = P(u,u',ux,u',u s u_,u )

Chapter 5. %(pﬁ+1 - pN+1) = P(po,pl,...,pN;pé,...,pﬁ) N<5
#(a' +a) = Q(pysPysee-sPyiDhse-esPy)
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CHAPTER 1,

%1.Introduction.

A soliton is a single wave pulse ( solitary wave ) which
emerzes from a collision with a similiar solitary wave having unchanged
shape and speed, Non-linear wave equations which possess solitons are also
found to possess an infinite number of conservation laws, Backlund
Transformetions and the initial wvalue problem may be solved using 1linear
methods only: Half a dozen, or so, equations have been found which
possess such soliton solutions.

The research for this thesis was started with the intention of
finding suitable candidates for elementary particle field theories. So
it 1is really only Lorentz invarient equations which are of interest.
The only Lorentz invarient soliton equation known is the sine-Gordon
equation. Consequently only equations related to the sine-Gordon equation
will be considered in this thesis,

The sine-Gordon equation

u, - U, =sinu (1.1)

orizinilly arose in connection with the theory of pseudopotential surfaces®
but alsc occurs in mnany physical . contexts 1 For example, the self-induced
transparency equations,® which incidently have soliton solutions, have
the sirec-Gordon equation as a 1limiting case, The sine-Gordon equation
miy be quantized as a field theory, where the solitons "survive
qunnbi::.tion'.’4 Note that (1.1) 4is Lorentz invarient in the sense that it

is unchanzed in form under the substitution

2t = (zvt)(1®)? ' = (t—vz)(l-\rz)-%

This thesis 1looks at the soliton concept from the viewpoint of
Backlund Transformations, ( Hereafter abreviated to B.T. ). A B.T. for a
given partizl differential equation consists of two equations which enable
ore to construct new solutions to the given equation from a given
solution, Sometimes the new solution satisfies a different equation but
in most cases considered the above definition of an auto-Backlund
transformation will apply. Note that the definition is (necessarily) vague
beczuse it 1is not clear what the best definition should be, It 1is part
of the aim of this thesis to investigate this. The exact form of the
B.T. will be given in each case considered,

It will be first shown that all the soliton properties of the

sine-Gordon' equation follow from 1its B.T. Hereafter sine -Gordon equation
will be abreviated to S.G. The final section of this chapter is a

crmary of this thesis - the aims and the results. (:iﬁmlﬁnx=uv }

HEN



2.

To conclude this section consider the following B.T.

u! = u - a.ex L utu) _
X (1.2)
ul = - - 2a”t.exp (u'-u)
If u is any solution of
=0
a, (1.3)
and u' is any solution of (1.2) then u' must satisfy
u' = exp u' 1.k
L= en (1.4)
So by incerting the general solution of (1.3) into (1.2) one obtains

the gpgeneral solution of (1.b4)

Motz that here as throughout this thesis subscripts denote partial
differentiation with respect to (w.r.t.) the variable displayed.

Bacause of the large number of equations involved the numbering of
each chavter 1s independent of the others. This is not too confusing,
I hope, since each chapter is almost self-contained. This seemed preferable

to mnaking the system of numbering of equations more complicated.

§2.S01iten Solutions.
The S.G. in characteristic coordinates is
u = sin u 2.1
o (2.1)

It has the B,T.

= u_ + 2a.sin 2 (u'+u)

=
-
|

- 1 (2.2)
u& = —uy + 2371 sin i(u'-u)

vwhere 3 is a constant.

If u is any solution of (2.1) then (2.2) have a solution. Further
this soluticn u' of (2.2) must satisfy (2.1). One may alternatively
replace u by u' in this statement,

0 is a solution of (2.1). Inserting this into (2.2) and.

integrating gives

Now wu

u' = .t exp (ax + a”ly + k)) _ (2.3)

vier2 % is a constant. This is the single soliton solution. It is
actually the derivative of u which ﬁs the solitary wave - the soliton.
To obtain further solutions it 1is easiest to first derive the "theorem
of permutzbility”,

Let u, be any solution of (2.1). Then 1let u' = u, and u' =u, be
two colutions of (2.2) with u =u, via constants a; and a, respectively.
Irfine

ug = ug + h.tan’l((a1+aa)(al-aa)-l.tan $(uy-uy)) (2.4)
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It is then straight-foward, for example, to show that

by - 2, 2a, s (2 o0)
2% o« \

EEZS = - 9Y + 2. .

Y 7/ 4 =
So it has been showvn that u3
dafined by (2.4) consists of
2 B.,T. with parameter a, applied
1° It :lso consists of a
B.T. with vparameter ay applied
to u,. This permutability is
illustrated in the Lamb diagran
shovn at right.

To obtain the two soliton

solution to’ (2.1) one sets
uy = 0 and u1 and u2 equal to
the arpro~riate single soliton

soluticn ziven by (2.3), in (2.4) :

A= ¢ Zan' A,+a, ) PO~ d [T’_ ('5,’ Sz.)] (2.5)
Coak [4 (-5,1-'5.,_)7

k'-k-'_

where Qi = a..x + a;l.y + ky R i =1,2 (2.6)
The chance of wvariable

x =Mz +t),y=3(z-t) (2.7)

takes one 1into real space-time, equation (1.1). Then

£, = (2 - v.t)(1 - ) + v, = (1-a2)(1 +a2) (2.8)

Note that if ay is real then vy is real with Ivil <1

I'low make a Lorentz transformation with velocity

V= —l-v,*+ J(I—V,‘)(/—f,_‘f

-~
'-f-A/_L

i

T:ien equation (2.5) is
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i'ow the single soliton (2.3) 1is a kink of magnitude 2n from
W =22m ot z = -~ to u=2(ntl)t at z =+ , From the above one sees
thet  (2.9) ‘at t=-o represents a kink and an anti-kink moving in
opposite directions, As t — +o , it also represents a kink and1 an
anti-kink but they have been displaced by an amount 2(1 - ) 2. 1n(U™t)
llote that the constants ay and ki need not be .real; all that
is required is that u 4s real., So, for example, with a, = aj =@+ iB ,
a and B real, in (2.5) one obtains the " breather "

e 4l %.M[w— #5) - ‘]@
crak [ (%7 rﬁz>+‘("+‘ﬂ

One can go on, for example, to find solutions representing collisions
X b
of N solitons™ and other breather-like solutions. This won’t be pursued
kere thournh. ‘

solution:

§=.Conservation Laws.

All scliton equations must conserve senergy becguse

o
o2
[{]

solitons rectain their shape and do-.-not ™ die out " over time. For
exanple, the equation of congervation of energy for the sine-Gordon
equation (2.1) 4in characteristic coordinates, is

00 9
5_;- + ;7E = O (3.1)
where D =2u® , F=cosu (3.2)


http://exa.-nj.ile

5.

Th= .2. can nov be used to generate an 1infinite number of
conservation laws as follows, Let a in (2.2) be infinitesimal and take

ot A
©u = Z oK (3.3)
AZ=Q

Then (2.2b) gives on equating powers of a

uy = u
Uy = 2uy
= Quyy 1 (j.h)
U, = 2uy_ + s(uy)s '
u, = 2uyyyy + 2(uy)2'uyy
ug = Euyyyyy + B(uy)z.uyyy + 5uy.(uyy)2 + (3/20)-(“y)5

If one now inserts (3.3) into (3.1) and equates coefficients of powers

of a then one an infinite set of conservation laws,

—

2% 37
b 0. Fe B AT oo

20, s _ o ‘=0l .. (3.5)

With

A= O } Sl
i the first few are
1 1 2
D. = -=(u
| o = Huy)
i D1 = 2u .u
! (3.7)
D. =2u .u + 2(u 2 ¢
2 7Yy (w)
D, = 2u_.u + by u o+ (u)3u
z oy YW oYW h'g
F. =cosu
J
F, = -2u .8in u
1 ¥
= - 2 -
F, = 2(uy) .COS 2uyy.51n LI 5.8)
F

x

7

= -fu ,u_.cosu -~ 2u__.sinu + (u )3.sinu
Yy lyy Yy (uy)

Clearly the derivative of a conservation law is again a conservation
law. From (3.7) one sees that D1 and D, are Just derivatives of D,

but that D3 is not. It will now be shown that the sequence of conservation

laws ~iven above contains an infinite number of laws, none of which

ig the derivative of the previous ones. Infact it will be shown that




é.

D0 and D2n+1 y n >0, give rise to gemuine conservation laws in that
none 1s equal to a sum of derivatives of the others.®

Define the order of (u )11 (u )12 (u )in to be i+ +1

) el ) e e e ey 1t n

vhere u,j is the jth derivative of u w,r.t. y. It 1is only necessary to
look at second order terms in D to prove the result in the preceding
paragraph since differentiation w.r.t. y leaves the order unchanged.

It is easy to show, by induction, that the first order term in
%un is u, . Then the second order term in D is

"\
74
Xn M LZ=:: Lt+1° 2n421-4 )"Q = Zﬂ( (3.9)

Then defina

Y =X - (xn-l)yy =3V Vo * hvév2n+1 + VsVop 2 B >1 (5.10)
Y1= xl - (xo)w = _v2v3 9 Yo = xo = V1V2
So it remains to prove that Iif
S P 2(-<) o |
Z A .| £ XL = Ay 1. (3.11)
£=0 by |
then ao=:11=...=an='0.
Tre cocfficients of ViVe s va¥s and vivh in (3.11) for n =2 glve
ny* la, =5a, +a; ¢ ha2 = 10a, + 3a1 + 3a, = 0 which indeed imply a, = a, =8, s= 0.
Surposz the result (3.11) has been shown to be true for n <N where
N > 1, Clearly then the statement (3.11) 4is equivalent to the statement
that if
J N Ve Ve _
g | S e e [+ A [ s P,
- v =0 w

then bo=b1=coo=bn.

The coefficients of Vv, . Vou,n s » 1= 1, « « « )N, 4n (3.12) give

b, + Te_=9
0 - N
=0
bo + 2b1 + b2 + bN

b, +2b,, * b, ., =0,1=1,...,8-3 (not required for N=3)

g2 * Py =0
Take (a)*(c)-(v) in (3.13) to give b; + b, = 0, Then from (@) in

(3.13) one has by induction that by +p, =0,1=1, ...,82. In



Te

particular by , + by ; = 0. Then (e) gives by , = 0. Then one has

bo = b1 = . e e = bN and the result 1is proved.

§b,Inverse Scattering,

The inverse scattering method allows one to solve the
initial value problem for the given soliton equation, (l.1) or (2.1).6
This method will be introduced via the B,T. In (2.2) replace u' by
I = tan 1 (u'+m) :
r = ’;—.ux.( 1+ T2 ) +4,T

Py =T,at,cosu + A(I2 -1 ).a2t.sinu

(4.1)

The equation T_+ 2P.T + Q.2 + R = 0 is equivalent ( though not

uniguely ) to

(wé)x - Powy = Quwy vhere T =(w2)(w1)'1

So equation (4.1) with a = 2i{ and after the change of variables
(2.7) gmives

(wl)z = (=3 + 1(88)2.cos u).w1 + (1(8¢)2.5in u - %(uz+ut)).wé

(w2)z = ( 1(8¢)2.8in u +%(uz+qt)).w1 + (348 - 1(8L)"2,cos u).wé (4.2)

(wl)t = (-3f - 1(8) 2. cos u ).w1 - (1(8t) *.8in u + %(uz+ut)).wé h.3)
o3

(w2)t = (-1(88)7t.8in u + %(uz*-ut)).w1 + (4L + 1(88)2.cos u).w?

Note that if u satisfies (1.1) then (4.2) and (4.3) are consistent.

It 1is desired to solve (1.1) given u and u at t=0. Only
solutions of (1.1) which tend to zero ( or a multiple of 2% ) as |z|
tende to infinity will be considered. The method 1s then as follows.

Define functions v and w which are solutions of - (4L,2) at t =0

and which have the asymptotic form

./\/"—‘7(.I>.Mf_%'.(g~ +$)_}} ‘4},7__60‘

0O
(b.4)
ATy F A E (3B) ey

Both v 2nd w exist and are unique in the upper half {-plane.
If w = (Wl,Wé) is a solution of (4.2) then W = (wé*,dwli) is a
linearly independent solution. ( * denotes complex conjugate ). So the

pair of solutions w and % form a complete system of solutions and ~
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one may therefore write for any real ¢
v =a(f).w+ b(l).w (4.5)

Yow a(f) cen be analytically continued to the upper half-plane and,
in particular, the =zeros Cj (3 2= 1,6e00,N) of a(f) in the upper half-plane
are at the discrete eigenvalues of (4,2). At these values

v(z,Cj) = cj.w(z,gj) (4.6)

Since (#,2) and (4.3) are consistent one may define v(z,t), at
fived z, to be the solution of (4.3) which equals v(z) defined by
(h,4) at t =0, Then v must satisfy (4.2) and (4.3) for all z and
t. From (4.2) and (4.3) as 2z —=+4w since u—+O0 one has

o [PeF ARG R 2 (50 5) T

_A_,e,(?( :ﬁ-(’S-J. -f-i_ 34—_l_ f]
t i 7 43>7 (
where A, and A, are constants. Also as z— +w

O

M f)'%i‘—{(g‘a;’z) £(s+85)7] oo

At fixed t, w and w are linearly independent solutions of (4.2)
so one nay define a(f,t) and b(f{,t) by (4.5). Then as 2z —= one has

from (%.5), (4.7) and (4.8) that a(f), b(L), CJ and c, are all
independert of ¢,

(4.7)

The solution to the initial value problem is then
L
M5, 8) ==y, 0)*f Kz, 7, *‘)-"ff’ (4.9)
1(3-1) .

where K(x,y;t) 1z the solution of the integral equation
# Sl Al
K(x,7)= 8" (xry) - /; [+ 8 lyea) b(405) Ko, <) by £<

1vfwa¥ &%f 41T15

- 4 /22’ C/&/-/{ a 5;--7(1-

SRS
AN
—_—
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§s. Swrary.
This thesls is concerned with looking for B.T. for equations

other than those for whiech B.T. are knowm, Here B.T. is used in the
widest possible sense, a8 in section 1; the B,.T. may involve intecgrals
or derivatives of the two connected solutions, or 4t may involve
additional auxilary dependent wvariables.

The oritinal motivation for this was to look for suitable candidates
for field theories. This was done from the wviewpoint of B.T. because
there is a well-defined procedure7 for determining whether or not a given
equation has a B.T. of the form under consideration. It 1is also known
that 2ll equations found to possess solitons also ©possess a B.T,B (By
this I mean that the analytic as opposed to numerical solution is
knovn)., Firally, as has been shown 4in +this chapter for S.G. , all the
soliton pronerties follow once the B,T. 1is known.

It becomes irmmediately that only certain, very particular, equations
possess B.T, Onec would 1like to understand why this 41s so. Pseudo-potentials
scerm to be a possible way of attacking this qucstion.9

It is known from mmerical studies'© that certain equations, for
exarmwle the double sine-Gordon equation

= gi + Zsin 2 .1
uxy in u 3 5 (5.1)

vossess sclitary wave solutions which seem to pass through each other
on collision - the soliton property. This result has taken over as the
main notivation for this thesis and accounts for the final three
chapters there-of,

The effect of explicit independent varisble dependence 1s considered
in chaopter 2, In particular, one looks for B.T. of the form

| - '
u, P(x,¥,u,u ’ux’uy) (5.2)
u} = Q(xxl')“iu'iuxiuy)
wvhen both u and u' satisfy

The e¢nse A =D =0 has already appcaredlland' gso the proof will not be
repeated here. Infact only the case PPP $o(p= ux) will be considered
in detoil., Solutions are found in this case in contrast to the situation
when A=B =0, The only B.T. that I have been able to find and which
are not sgzlready knovm are contained in chapter 2,

Chapter 2 also contains some consideration of pseudopotentials

u! = P(u,u',ux,uy) (5.4)

uy' = Q(u,u',uk,uy)




10.

Here it is demanded that u satisfies

Uy ® F(u) (5.5)

but u' is not made to satisfy any particular equation. Azain this work
will appear clsewherel® and so will not be repeated here. However some
consideration is made of the case when u' does not satisfy a second
order equation. Finally in chapter 2 all pseudopotentials of the fomm
u! = Po(u:u') + Pl(u’u')'ux

x (5.6)
u; = Qo(u,u') + Ql(u,u').uy
are found for equations of the formm
U, = A(u).ux + B(u).uy + C(u) (5.7)

If cne wishes to find B.,T. for (5.7) one still has quite a bdbit of
worx to do, but at least one can now say which equations of the form
(5.7) cannot have B,T, of the form (5.4).

ITzither of the above generalizations seems to leed far so for the
rest of this thesis it will be assumed that there is no explicit
indepcndent variable dJdecpendence and also that u and u' satisfy the sane

cquation., One possidble generalization one could try 1is to consider <that

(ui)m = Fi(uj) » i = 1,0...,“ (5.8)
has a B.T. of the fom
(i), = By lugougs (ug)y (ug)y) 1= lyee.,N (5.9)
(u;.):f = Qi(uj,u:", (uj )x! (ud )y)

If H=2 then one may replace (5.8) by
U, = Flu,u*) (5.9)

wvhere u and F are complex. In this case I have shown <that provided
(5.9) cannot be written in the form

(ul)w = F(ul) (5.10)
then F must be of the form
+ Ay et + /(*- e
F (4,// 4,(*) = Z A . 2 4 (5.11)
1;/':I 7 . :

vhere A,. and )\, are constants. Because of the incomplete nature of the

results iind alsoj because of (5.1)*© the most dinteresting case (5.10) has
been excluded I will not give the proof of the above result here. (The

case (5.10) was excluded because if one wants to use (5.9) as a model

field thecory one would 1like, for example, to have rotational symmetry

which excludes (5.10),)
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If additional dependent variables are excluded then all the B.T. can
depend on is derivatives and integrals of u and u'. Define

PR PR
fﬂ‘,’ o de Ve (5.12)

i

Xo
A
3

1l

P ———

"\

]

/947\vﬂ </ﬁ JL{: - AL‘,\ . /%;4 . - J%;i;~ . A

vierec n and m are non-negative integers. The most general B.T. would
then involve some finite number of terms from L an’ qﬁm’ u;m, p;m
and qém. ot only are the equations that one must satisfy then wvery
difficult to satisfy bdut the B.T, when obtained would appear to be of
not much use in solving (5.5). My only attempt at including integrals
in the B.T. is given at the end of chapter 2. The remaining chapters
then only involve B,T. with derivatives of u and u'.

The casiest way to ensure that the B,T., 1is useful in solving the
original equation is to allow only first derivatives of u'. That is
take the B.T. to bYe

u; = P(u,u';pl,...,pN;ql,...,qM)

(5.13)
uy = Quyu'3Py 00 ey P3a e e ry)

where p_ iz the nth derivative of u w.r.t. x and q, is the nth
derivative of u w.r.t. y. HNote that as u satisfies (5.5) one not

consider the mixed derivatives further,

Therc does not appear to be B,T. of the form (5.13) =0 one must
try something nore complicated, The next thing one can try is to allow
x derivetives of u' greater than one but to restrict y derivatives of
u' in the B.T. to one. This is done in chapters 4 and 5. In chapter
h, the B.T. iz taken to be of the form

T o ' J
! P(u,u ’ux’ux’uxx’uy) (5.18)
u; = Q(u,u',ux,u;,u¥x,uy) .
Without further simplification of the problem it rapidly becomes very
difficult to solve the consistency conditions. Consequently in the final
chapter u and u' are taken to satisfy

uxy =sinu + A.sin \.u (5.15)

and in analogy with the B.T. for 8.G. , (2.2) , the B,T. is taken to be
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P! + D, = P(DysPysecesP, ;3PP seeesD! )
n n 0’*1 n-1°c07%1 n-1 (5.16)

! - = eoe sp! eoe '
uy uy Q(Po’ ,pn_l ’po’ ,pn_l)

Unfortunately no B.,T. are found in these cases, although something seems
to be going on when, for (5.13), F(u) = A.exp u + B.exp -3u . Further
this seecms to be a property associated with the functions

[ty ()

rather than with the special form (5.13). That 4s, it seems to me that
I have not chosen the right form for the u' dependence in the B.T.
rather than there being no B.T. with higher derivatives for (5.5). Onme
thing that does seem worth ¢trying is to take the form
' = ! ' '
ul tu P(u,u ’ux’ux’uy’“y) (5.17)

' . = ' ' 1
uw uyy Q(u,u ’ux’ux’uy’uy)

I considered the other forms first because 1t scemed that 1if they
existed then they would be of more use in solving (5.5) than (5.17)
would be. The only other possible candidate for a B.T. for (5.1)
would seem to be (5.10).
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CHAPTER 2.

§1.Introduction,

The effect of explicit independent variables, of not specifying
the equation u' satisfies and of 1integrals in the B.T. is considered
in this charter. It also contains the only examples of B.T. which I
have been =able to find and which are not, I believe, known already,
Congsider the equation

Uy © F(x’y’u’ux’“y’uxx’uyy) (1.1)

Suppose this equation has a B.,T. of the form

u! = P(x,y,u,u’,u_,u )
* ¥ (1.2)
U; = Q(X:Y:“:“':ux:uy)

This last statement 41s to be interpreted to mean that for every
solution u of (1.1), equation (1.2) has a solution u' which also
satisfies (1.1).

It is assumed throughout this thesis that all functions are
differentiable as many times as required.

Diffarzntiate (1.2a) w.r.t.y and (1.2b) w.r.t. x and use (1.1)
to obtain {the equations which must be satisfied if the B.T. 1is to
exist:

F(i,;)a'} g ﬂ,"')

o + ;lf' Z/ + Elf:- Q + 27 . ’:-(i;iﬂf“;}‘; jb,vg qi) + jéé;' zﬂ
7 % o> (1.3)

= ¢, :ﬁP+Z§f+2£F{7fy, NIRRT £)
R [ b7 Y

i

It )44
vhere p=u_, q = y ) T=u_ ., t = uyy and
=W L L L+ 8 P+ o+ 2L F (Y5, « v, )
A 3__5),%/ 2 Z 5 (%7, <, £,%,7,
T =24 f'b—g-?/f' ;—:«Q’f +§Q.F(¢y/’u’€h”/")*%-r

is any solution of (l.1) so at any point (x,y) one may
chovse u, W, W, W, U arbitarily i.e. in (1.3) one may use x,
Yy,u,P,q,r and ‘'t as independent variables, It 1is further assumed
that, =t (x,y), one may choose u' independently of u and its derivatives

i.,e., it {5 =2ssuned that

u! L f(x,y,u,ux,uy,uxx,uw) (loh)
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This means that (1.3) is now to be considered as two equations for
the three unknowns F(x,y,u,p,q,r,t), P(x,y,u,u’',p,q) and Q(x,y,u,u’,p,q)
vhrre x, ¥,u,u’',p,q,r and ¢ arc all to be considered az indcpendent
variables., This sort of consideration may be carried out in all cases
considered; the details however will not, in future, be spelt out.

It is equations like (1.3) which this thesis solves. It turns out
that the number of B.T. is rather small., This makes 4t rather hard
to see what is actually "going on."

From now on, equality will be used in the sence of "identically
equal t2." This means that if one has two functions A and B which
zre functions of some variable set Q and =zatisfy A.B = O then one

deduce that A =0 or B=0 (or both). This is certainly true for
2ll 2 near some QO and one could carry the analysis through allowing
Q? near Q. only. At the end one could then see if one could "patch

0]
together" +the various pieces, For example, the equations U= sin u

can

and Uy = 0O have B.T. but does the equation
_ 0 u<o
Yoy T 'i gin u u>0

have a B.T. ? One can certainly satisfy (1.3) locally in this case
but one runs into problems in trying to make (1.2) hold for all
¥ and y. This problem will not be considered further. It will be
assuz2d from now on that 1if an equation holds in some region then
it holds everywhere, This 18 true, for example, 4f all functions
undar consideration are analytic.

The next section 1lists some +trivial B.T. and explains why the
case of P 1linear 1is always excluded from consideration. It has been
shovn elsevhere that 4f the F above depends on x , ¥y and u only

“en, for a B.T. to exist, one must be able to convert (1.1) into

u = H(u) , H''(u) = k. H(u) (1.5)
by a chanze of s8cale and / or a displacement of the dependent variable,
Sccticns 2 to g deal with the case when F 1is linear in both p and
q (but rot u) and when P is not linear in p. Apart from an obvious
B.T. the result is that (1.1) m=ust be reducible to
U, = A(u).ux , A'f(u) = K.A(u) , K constant

by a chance of dependent and independent variables, So it appears that
functions F satisfying F''(u) = K.F(u) , K constant, have some very
1 sirnificance for the existence of B.T.

S~ctiomg 7. and -8 are then a consideration of pseudopotentials of
tie formn (S.4) of the previous chapter, where u' does not satisfy

a second order equation. Most of the discussion centers around the
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nossibility of u' satisfying a Lorentz invarient equation., All pscudopotentials

of the form (5.4) of chapter 1 are found elsevherel®

and so the proof
will nrot be repeated in this thesis. Also consideration of the case when
u' saticfies a second order equation is not repeated herec.

Scctions 9 and 10 cover the problem givem by (5.6) and (5.7) of
thz previous chapter., The final sections deals with my only attempt at

ircludirg integrals in the B.T.

§2.Trivi=l Solutions.
First note that if F in (1.1) is 1lincar 4in the

dependent  variable {.e. if

F = AO + Alou + A2-ux + Aaouy + Ahoun + Asouw (20‘)
vhere AO,...,AS are functions of x and y only, then the equatien (1.1
trivially has a B.T. as follows. If v(x,y) is any solution of

= . + . . + . + . .
iy Ajev + ALV + A5 vy AoV, AS Yoy (2.2)

then, for all solutions u ef (1.1) and all constants K, u' =u + K.v
also catisfies (1.1). Dividing u' =u + K.v by v and differentiating gives

the B.T. @
u; =1 + V-l.vx. (u'-u)
* (2.3)

u} =u + v'l.vy.(u'du)
So for the rest of this thesis it will be assumed that F Js not
lincar in the dependent wvariable,

Now note that if (1.1) has the property that there exists a
fuzction £(x,7,u,K) such that for all solutions u of (1.1) and for
gome arbitury constant K, u' = £(x,y,u,K) 4s also a solution of (1.1)
tien (1.1) has a B.T, exactly as in the 1linear case, As a not so0
transy-orent cxamle consider the following, Let Ao 3 o o o A6 and K
be functions of x and y and let g be a function of y only. Further
guppose that A, 5 ¢ o o A6 » K and g satisfy

0
Age (611 (y) + (8')% ) * &) + Asg'(y) = 0
£ - A 1
K = AlK+g (?).rg{ + AB.KY ALK+ AS.KW (2.1)
Kxx $0
Then the cgquation :
Ty = : '
L Ayt Ajutg (y).ux + A3.uy +Au  + As.uyy + G(uxx) (2.5)

possesses a B,T, if G(r) is any function of period Ky o8

G(r) = sin(2mr(x_)™) . The B.T. 418 infact
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, ,e?(y)-,\/—[Q-ﬂy.}(u'—“~‘<))x]+ % 4 2%

= >

o/
AN

¥ ¥

(2.6)

)7 /(7) (44—44 K)-*' —2—7—

wiere v(z,x) is defined implicitly by
z = x.v(z,x) + £(v(z,x)) (2.7)
and f is an arbitary function.
lots that the gcneral solution of (2.6) 1is
u' =u+ K+ (a.x + £(e) )eexp g(y)
where a 1is an arbitary constant and f is the function appearing in (2.7).
Infact 1if Frr + O then it 1is not too difficult to show that the

B.T. must be of this trivial type 4i.e. of the form
a%—( f4(1/% ‘//”I)]:
[ﬁ/? ()5 Ve 14;'14‘?_] = 0

for some function A, This iz most easily seen by looking for a
rscudopotential where one has the freedom to replace u' by any function

of X,y,u and u',

§2.Quasilinsar Case,
Consideration will now be restricted to equations of the
form (1.1) but with F lincar in p and q. That is consider

u,, = A(:c,y,u).ux.uy + B(x,y,u).ux + c(x,y,u).u.y + D(x,y,u) (3.1)

'~

Haz2 the clznge of dependent variable v = g(x,y,u) wherc

H*7,3) = j:’% f - J‘jﬂ(,/y/?).dlf AT

On= “7en sees that v satisfies an equation of the form (3.1) but with
)

-

A =0, (Tote that g, > 0 so one may always solve v = g(x,y,u) for u.

Clearly if the original cquation had a B.T. then the new equation
would lLave one also. Hence, in place of (3.1) one need only consider

A .2 4+ 28 .u C = F(« (3.2)
A M (47,%, % %)
A

» B and C are functions of x , y and u only.
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Diffcrentiate the first of (1.3) w.r.t. t to obtain Pq = 0, Similarly
Qn =0, So onc has that )
) P P(X;Yiuiu'ip) . (3.3)
Q(X:Y)u:“')Q)

O
u

Orly the case
P 0 oAU
ot (3.4)
will be considered in the next few sectiona, So differantiate the second
of (1.3) twice w.,r.t, p and use (3.4) and F given by (3.2)

Au' =%' . (3.5-)
The cocfficiests of p° and p' in (1.3d) then give
O= 20 , 24 .2% .6)

>y aﬁ
'_b_éQ %M) [ p‘r-C “)z (3.7)
r EONE

The restt of this section 1s concerned with the case
B, 0 (3.8)
Differentizte (3.7) w.r.t. u' and use (3.5). Then diff. w.r.te q
=0
Qq
Then (%.6) gives Q, = O Then from (3.5) one may without 1loss of
generality (w.l.o.g.) take '

Q = A(x,y,u') (3.9)
Then ( 2.7) gives
BoA+C=A_ (3.10)

Substitute (3.9) into (1.3a) and equate coefficlents of q° and q*

O= 2 4 28 .2°F | (3.11)
A R (3.12)
QA P+ 28 A+ C= 20 L P Alnyu)+ 20 A 4 4 Cl4,y~)

A y oM 9 Lom J
wvhere A and C on the L.H.S. of (3.12) are functions of x , y and u',

Add B, times the p derivative ‘of (3.12) to the u derivative of
(3.12) and use gp $ O .,The coefficient of p imn this is

A =0 (3.13)

uu

Then one can see that the change of variable v = a(x,y).u in (3.2)

and (1.2) where ay + a.Au = 0 enables one w,l.0.g. to take

= : <1k
A =0 (3.1%)
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Further by the change of variable v=u+ a(X,Y) one sees that w.l.o.f.

Q=0 (30 15)
Then (3.9) and (3.10) imply
A=C=0 (3.16)
Now (3.12) is
PY =0 E (3- 17)
Then diff- (3. 11) w.r.t. Yy
=0 .
By (3.18)

Then because of the way B is defined in (3.2) and because of (3.17)
onz nay w.l.o.g. choose B = B(x,u).
Putting all this together one has that the equation

= A(x,u).uy (3.19)
has the B.T.
u_' = P(x,u',p-g) : (3.20)
u' =0 |

wiere g is a function of x and u only and satisfies g = A(x,u).

e B.T. (3.20) 1is not interesting though becauss from (3.19) one
has that p-g equals a function of x only. Also (3.20b) gives that
u' is a function of x only. Equation (3.20a) 1s then only a relation
between thase functions of x,

S, For B = 0O,
uu

From the oprevious section one need only consider ¢the case

B,, = 0. Then by a change of variable v = a(x,y)eu one secs that w.l.0.g.
B,=0. So from the way B is defined in (3.2) one may take
B=0 (4,1)
Diff, (1.3%a) twice w.r.t. g
a (s.2
Par = Yq ° v

If P, 1is zero then the R.H.S. of (1.3a) 18 independent of u' vhich

means since P f 0 that both Au. and C are independent of u'., i.e.
PP

(3.2) is 1linecar. So P+ $O0 and (4.2) then gives

2 = Qy(x,¥,u,u") + Q (x,¥,u,u')eq (4.3)
Zguation (1.7b) then gives :

3y = 9, ) (1.1)

QO = A(x,y,u') - QloA(x’Y:u) + k(x,y) (4.5)

Insertins these into (1.3b) gives w.l.o.g. Bince A is only defined up
to a2 Tunction of x and y that

C=4, (4.6)

k = }C(y)
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Substitute Q@ glven by the above into (1.3a) d4iff, w.r.t. p to obtain
By = Ay =V + Vo (A(xy,u' )0 A (x,7,u)He(¥)) + Voo (A .p+C(x,¥,u)) (4.7)

0=V, * eV (1.8)
where V=1n gp (+.9)
Alzo (3.h)implies vp $ 0 (4.10)

It is these equations which will bde solved in the next three
cections., The result is that by e change of wvarlables equation (3.1)
reduces to
U= Afu)eu_ (:.11)
vhere A''(u) = K.A(u) (4.12)

for sone constant K.
Infact all equations satisfying (4.11) and (4.12) have a non-trivial
B.T. In tho case A(u) = cos u and Ql = -1 one has that
Uy = u_.cos U (#.13)

has a B.T.- u' . u_ =1 - cos(u'+u)
X x

(b.14)
u& + uy =sinu + sin v
So for the problem given by (3.1) and (1.2) the 4inclusion of

evolicit x ard y dependence, for A=B=C=0 or Pbp * 0, gives no
B.T. which are not obtainable by a change of varlable from the
rroblen without explicit x and y dependence, Consequently the problens
B=C=0 and Rpp =0 in (3.1) and (1.2) are the only ones considered
wvhich 1involve explicit x and y dependence,

Mow  (4.7) to (4,10) will be solved.

Fer the rest of this section assume

Anm © CeAuy (4.15)

in (4.7) where ¢ 48 a function of x and y only. It will then be

shosm that by a change of varlable one may choose _
A=expu or A= Hu? ) . (b.16)

The regult (4,11) and (4.12) is then proved in the case (4.15).

Casn 1,

>
i

Q. = +1 ’ c $0 (4. 17)

Dol L, o wr - Q,-u (h.18)

ard us~ v instead of u',

e ' 1
From ('.15) A=a., +a .u .eXp c.u 4.19)

TS R

Thers AL, & and a, ar® functiors of x and y onrly.

Than (%.7) »rd (%.7) give on using (4.6) and equating coefficients of

. o
-¥p cu , €XD Qlcu s UeeXxp cu , u and u
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<
]
o

u (".20)
e, =9 (".21)
c=V, (".27)
c=Q.V, - Vn.(c.n + (1n az)x,) (4.23)
Q= “i(y)'vv + (al)x.Vé (h.2t)
N = vy + Vv.( ao.(l—Ql) ta.v+ k) + Vp.(al.p + (aO)x ) (4.25)

By revlacing u by e *.u (using (4.21) ) in (3.2) and (1.2) on=

s~~s that wv.l.o0.fg.

c =1 (h.26)
Then (%.27) and (4.23) glive
Vev+ (3-1).0n(pt(lnay) ) + Alxy) (h.27)
Substitat~ (:.27) into (4.25). The coefficient of 1ln( p + (In ag)x is
' Q!(y) =0 (h.2%)
snef, of vV is a, =0 (4.29)
~- ~= e 3 l.%
Ca-T2. o2 (» + (1n 12)x ) is (1n a2)xy + (ao)x = 0 (k.30)
Ca~ff. o vO s k + dy =0 (4.31)

In (*.?) set w=1u+1lna, to obtain Viy = Ve SXP W . The result (%.16)

iz th-z proved in this case.

Cso 2
Q =1, ¢ $ o0 (+.32)
S~% v=u -u (h.33)
-4 te~ v instezcd of u'. Then (h.8) gives
v,=0 (h.34)
Taen (.7) ueing (4.6) and (4.34) gives
e, =0, (11) =0 (b.35)

e e -1) = (T -1)v, ¢ Vet (Inayl ) (4.76)

n = Vy + (al.v + k).Vv + (al.p + (ao)x ).Vp (4.37)
Fromn (".75) one has w.,l.0.2. that o =1 (4.38)

T~ connistercy condition on (h.?5) and (R.3T) is

O= 4.2V ; f [ %2 - BN | (87« <) g £ 2 W
JVI . —I) (-(V"’)L .}f

(4.29)

ek vV o -
Corcistency condition on (e'-1)71,(4,36) anda (4.39) is (p component )
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A/
. - v /
-D—- { < (d" +,_> = 41. _.a_ . .// (4.,40)
| (o™ _ ™ r e
\ Sas 1 ) J \ J
CoafTici=nt of v in (4.40) gives 2y = 0 (4.40)
Thoe (1.N0) givas k=0 (k1)
- ,‘l ks ~y = l:_
Th-- (M.79) gives (ao)x + (1n a2)xy 0 (b.12)
Tion as in cese 1 equation (4.16) is proved,
Cis> 7.
c=0 (b.h3)
Frem (.22) nnd (4.15) one may take
A 2 hl
A =25 +a.u+tau (b.hh)
D"’-:".“ v = u' - Ql.u (hlhs)
andus> v inst~ad of u'. Then (4.8) gives
= L, 46
v, 0 (4.46)
ten (M.7) mives
= 2 s .V oot
0 - (ul ?.:l)‘vv + (ln ae)x P (“0 7)
- = . . - "!:'. -3 ! [ 1. -l. l'-"?‘
(1-0) = Vo(@pev - 3e3hQl ) + V.(p+ bragha(a), ) ¢-.h2)
NN
2.2,.v = Vy + ao.(IAQl) *a.vt a2.V2 + k).Vv + (al.p + (ao)x).Vp (3.19)
Nots that if a, =0 then (3.2) 4is linear. So
2, $ O _ (%.50)
Corzist-rey condition on (b 47) and (L.48) after using (4.147) to elininato
d~rivativez of V gives by (4.10)
! L .7:7-
R, - &, A o
= O (h.51)
Q (Qx_ Q) .._I._ 24.7.
f ; -~
i I A AL
I (). %0 then (4.51) gives QT =Q, . But then (b .h7) gives
(:°)x .V = 0. So one mst have
) (az)x = 0 (h.52)
Ir o_-;#:.\_l then (L.17) gives vv=o and then the coefficient of v
in (4.'2) is 2a, = O which contradicts (4.50). Hence
T 02 a h,53
¢ = Q (h.53)
I7 7. =9 then one may integrate (4.18) to find the p dependence of
V. If on~ than substitutes this ecxpression for V into (h.h9).(p+%°a£1.(al)t)
-3 e~guant -3 coemfficients of p and p° then one readily obtains that
(".1() =must hold, So take
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= i, 5h
Cr-cictrney on (L.47) and (h.18) gives

AR~ RN A 1a ) 3

Cormsiztaney on (%.55) and (4.47) then xives k = 0 and
=) - a2} 1.,-1
("O)x it - T (al)x + 82 '(al)x )y =0
Br 2 chra-e of voriable one then sees that (4.16) mst hold.
All c¢r3-s have now been dealt with., It has then been found that

i2 (".1%) uoldz then A must be given by (4,16).

£i11 considering (3.2) with (k.1) and (:.6) it hes
bo-r showm in the previous section that one need only consider

A $ c.A (5.1)

ts = function of x arnd y only. It is (4.7) and (4.8)

-t 2 4 QI.QI , n=1,2,5 of (4.7) to obtzin three
M r

fzr th~ two urknowns Vu, and V_

& YA _ LA QU -@.24_¢q, A rq
"o yu' ‘w 2 ol
D}

R, XA | A Q' 2A Q,2 | 31&3%,* ye|\= O
}/L('S 3 }MI'L - t 2«1, )1,( )1'(1 .
Q').D.’A - D_iﬁ Q3D3A — Q"(_)_jﬁ aja;/"' 'D_s_c. (').?)
NUIE ¥ RN yu p|
b o u
I'ste  4m-% if Q, =0 then (4.5) gives Q = A(x,y,u') . Tha coefficient
) is +then P, = 0. Then differcntiate (1.32) wer.t. u

? o( -Auulp + cu ) = 0

But tu-r (7.%) impli=s that (3.2) is 1linear in u. Herce

Q, $ O . (5.2)
I- (7.2) %~'ie the co~fficient of p, add coluan 3 to column 1, and
divii~ rews 1,2 and 3 by Ql ) Q2 ’ Q respectively
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A 24— 4, 4,
Pal ¢
V%A VA _ [' P

S | = o o

2 WA 4, 4,

}79_ 2,713
wvhier- ‘-_3 s }:l , ‘:-:? and k?' are functions of x. , ¥y and u only., Infact
ky = ?—é—f ) Ap= 2z (3——)”.‘/4 {=113 (5.5)
R, ) Q, rA J J /7.
I~ (3.°) :miltiply columrs 1 and 2 by kl . Tcke Au'u' times col. 3.

fram 2ol. 1 ond (Au, -%. ) times col. 3 from col. 2 . Then expand

0
-1omx = 1 using, from (5.5) that k; $0.
.bél A = 24, A' (5.6)
—, 2 —,
u o
whr b = kl.( Ay ~ ¥y ) - k2.( A - kg ) 5.7)
AE = k1'( Aururur T k1 ) - k’j'( Agr - ) )

iow A, =0 contradicts (5.1) so integrating (5.6) gives A2=K(x,y).A1

1,7 thar- ~xist f\mctions”uo » 8y and a, of x and y only such that

= + 5.0
A, = 89 *oaph) 250A (5.8)
Sowztituts (5.8) into (5.1) and  take 2,.TOW 2 - a;.row 1 from row 3
2
2R A 4, £,
1 /
yu b
= O
VA A Py A = L.
yu'? ne't - z (5.9)
p) - A =4 4
) O &1_/("* d..d(o—[.‘.‘f &, 4] Q. . ™1 ' ' ,
I7 %, ¢ *l.f-:l * a2.!'.2 than  dafine
/\: Llo'f' a'l ‘(01‘47_./(,—(7_

X} = ‘1./.,_— « <
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Trwe X tinez col. 3 from col. 2 in (5.9) and expand alomny row 3. One

cbi-irz a similar equation to (5.6) which on integration w.r.t. u' gives

p2 = K(x)y)'pl
viher- pl = Au' - ko - A..kl
Po = Ay = K - MKy
But t=is contradicts (5.1). Hence it has been shown that
v, o= al.kl * apn.k, (5.10)
Zquntion (5.1 sing . ar . imi
Zquttion (5.10) usinz (5.5) and (528) to eliminate A 18
a,. (1 - Ql).Auuu +a,.(1 - Ql).Auu = 0 (5.11)
By (5.1) %12 coefficients of A, and A in (5.11) must wvonish. One
thn z2-z  that Qi =1 unless a =a,=0; in this case (5.9) ana (5.1)
§ e r - = - 3 = 2 Fy
imly ny =%, i.ee A - =Ql.ay . Then from (5.8) one has in this casc
cnd =2 iIn 2all cases that
QT =1 (5.12)
It +ill Db~ showm in the rest of this section that
Ay = x(x,y).Auu , K }o (5.1%)
far  comin function K,
C-z- 1.
:‘.1 = 32 = 0 (5'11:)
o (5.1), (5.8) and (S.14) one has
2 3 -
D fire v o= u' -Q.u (5.16)
»4 pza vy instead of u'. Equations (h.7) and (h.8) than cgive
v, =0 (5.17)
- [ [a]
_ 1 1 - O
7=V (0 (10, )4305.v) + V. (o0 + (b)) (5.10)
2‘%.(1-@,1) +Go,.v = V. (2b2.v + 3b3.aﬁ) + Ql.Vp.(Z‘be.p + (bl)x ) : (5.70)

e e ~ T o= . 3 1 ( n +
v+ T . = vy + Vv.(bo.(IJQI) +b. v+ be.vz + b3.. +k )+ Vp.\bl.k (bo)x )

(5.21)

1

Consist~cy on (5.19) and (5.20) gives another equation with (5.19)
-+d (5.20) for the two unknowns v, and Vp. Hence

- 30, £+ 2%
O 'é-'!_(l Q')‘"}'é}‘/ 3AT S

I S N A o

(45 [4ie)e35v]  [eare]la(-a) o] 1k el
-34 [fv 4+ 3,4)41] -MJQQP_?

(5.22)
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Multivly row 2 by 5b% « Take 2b2.Q1 .Eimes row 1 from row 2. Then take

rov 2 “rom row %?, The only non-zero term in row 3 is then in the third
colunn, Since b. $ 0, the coefficient of V2 then gives

v

7b,. (b,),, 3b,. (b, ), (5.23)
T-¥e 7b..(5.70) - 2b2.(5.19)
v, = 2(v+ 3,07k (1)) _ (5.24)
Then  (5.1%3) crives
v, = -2(p + 3% (v,) )7 (5.25)

Int~crating (5.24) and (5.25) and substituting into (5.21) one obtains
th=t b, = O contradicting (5.15). This completes this case,

7

Cs~ 2.

240 , a; =0 (5.26)
Tharn from (5.11) and (5.8) one has
_ Q = *1 (5.27)
A = by tblv+bE s by.exp c.v » b, %0, by $40,c40 (5.28)
Tr-r vith v =u' -u ' (5.29)
~qu~tiore (%.7) anmd (4.8) give
Vu = 0 (3'10)
(b?)x = ¢, = o) (5.31)
[sh' cVv
e.(~7-1) = ( -1).vv + (cp + (1n b})x ).vp . (5.%2)
0 = vV o+ (p+3bh(by), ).V, (5.332)
oo.v o= V¥ (bl.v + b2.v2 + k).vv +.(bl.p + (bo)x ).vp (5.34)
Ta~ co~fficinrrt of p 4in the consistency equation betweem (5.32) and

(5.7*) then gives & contradiction,

1p 40 , W2 alke =0 (5%5)

Then from (5.8) and (5.11) one has

A=bg rbu (b, + bu).exp cou » by $40,cdo0 (5.36)

Q = *1° : (5.37)

With v =u' -u (5.%8)
*qustion (*.8) gives v, = 0. The coefficients of ul.e® in (".7) give

c, =0 (5.39)

cav, - VD.(c.p + (1n bﬁ)x )e (eV-1)2 (5.40)
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"C'v' _ = ‘CV -1 -] )
(c.v + 1), 1 =v,e .vv + Vp.(p + b3 .(b2)x + be.(b3 )x ) (5.21)

Corasigt~rcy on (5.40) a2nd (S.41) gives three equations for the two

ur'-nawns VV and Vp, The p component in the determinant thern gives

=~ ccriredicticn,

Cos~ ',
From (5.8) anmd the previous cases it only remsins to consider

a, $o , aa + ha $o (5.42)

ir orier to prove (5.13). Then one has

A =Dby+ bi.u * bjeexp c;.u + by.exp cyeu (5.5:3)

bl + 0 ’ b2 * 0 ? 01 + 0 ? 02 + 0 1 cl + 02 2 cl * ‘02 (5'“1‘)

From (5.11), Q, = +l1. So set v=u'-u (5.45)
Then (1,2) is v, = 0. So (4.7) gives

o = = = ’ 5

(\1) (ce)x (b ) o (5' ‘O)

c, = Vot v (c .p + (ln b ) ).(exp(ci.v) -1)"2 , 1=1,2 (5.47)

= Iy
0 = vy + Vv.(bi.v + k) + Vp.(bB.p + (bo)x ) (5.48)

Ths » comncnent of the consistency condition on (5.47) then readily
~ives o cortradiction to (5.4b).

Tha proof of (4.11) and (h.12) will be complet=d in
this z-2ticn, From the prcvibua section one has

cu bp.e_cu , b1+ o, b, o, cto (6.1)

l"‘. = bo + bxou + b1.°

Iv will rcw be shown that one may choose bo = b% =0 and b1 and b,
- [ =4

comzt rt, From (5.12) one must comsider two cases.

Crz~ 1,

Ql a +1 (6.2)

Tre  rrlev-%t equations are (5.45) to (5.48) with ¢, = -c, = c. The

congist-rey condition on  (5.47) is

(1n(b; +by)) =0 . (6.3)
Ta-r  golviv~y (5.47) for V and Vp and integrating gives
V = ?.lr(sinh fev) - 2.1n( p + ¢ (In b ) ) + a(x,y) (6.h)
Substituts (6.:) into (5.48)

by=k=d =0 (6.5)

-1 = .E
(o), (0 ), )y =0 (6.6)
By n.iir 1 change of dependent variable and by rescaling y one sces

that (..11) and (4.12) is proved in this case.
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C-5- 2
o2’

Q = -1 (6.7)

With v =u' - u (6.8)
~ou-tion (2.%) is V, = 0. Then (4.7) gives

c, = (bs)x =0 (6.9)

0 = vy + Vv.(2.b0 + b3.v + k) + vp.(b3.p + (bo)x ) (6.10)

—e =V ¥ Vp.(c.bl.p + (bl)x ).(b1 *+ b.exp -c.v)? (6.11)

te =V o+ Vp.(—c.ba.p + (b2)x ).(b2 +bj.exp c.v )~ (6.12)

Conmsist~ncy on (6.11) and (6.12) give

1 =
( .n(b1 + b2) )x 0 (6.13)
Sclvir~ (6.11) =2nd (6.12) for v, and Vp and integrating

1 1
Vv = -2.1n{o + ¢t (1n bl)x ) + 2.1n(b1.e2cv *+ by %Yy + a(x,y) (6.1%)
Substituting (6.14) into (6.10) gives that (6.5) and (6.6) mst hold.
So by = chinge of wvoriable exactly as in the oprevious case one

nay  showy that (B.11) and  (3.12) must hold.
Th=z proof of (4.11) and (4.12) is now complate.

§7.P:nuisggt1ntials.

Looking for B.T. makes it very difficult to see
"wi't i3 gcoing on.," This is primarily because so few equations
k=v- B.T. One possiblz gener-lization that one may make toallow
ncrs ~quitisns to have transformationas 18 not to specify the soquations

£h t the "naw" dependent variable satisfies. In particular ons

c:nzid~rs the equations
u' = P(u,u',u_,u_ )
X ( X y) (7.1)
u' = Q(u,u',u ,u
g } ’xiy
vhor- u satisfies
u__ = F(u T.2
Xy (u) (7.2)
1t 1 v~ u' is only specified by (7.1).

U-fortunataly =211 such transformations, except one, roquire
F''(v) = K.F(u) for some constant K. All transformations of ¢the form
(7.1) ~rd (7.2) are glven in tible 1 at the end of this chavter.
Th- 2v~ ~yception iz thz potential
u! = Kl.(ux)a + 2.K2.G(u) + X

Y.

L (1.3)
ay = 2.K;.G(u) + Ke'(“y) + K,

whars u satisfies u - G'(u) (7.h)
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and whsre Kl""’Kh ar> constants, It 1is called a potential because
tk- R.H.S. of (7.3) does not depend on u',®
Onc posgiblz use of these pseudopotentials is to demand that u'
g~tisfy 1 second ordsr equation. For example if (7.2) is
u__ = sin u .
- (7.5)

*nd the tr-rnsformation cannot bYe converted to (7.}) by replacing u!
by somn functiorn of u and u' then one has only two possibls B.T.
Th~ Pirst is Just the auto-B.T. (2.2) of chapter 1. The sccord is
=K. (sinh u' . zsinu + cos u )

X (7.6)

=K + ux.cosh u!’

A1l B.T. via (7.3) are also given in tadble two at the end of
this chrot=r,

This attack on the pseudopotentials in table omne does not secen
tz 217 nroduced much useful information =0 one 1is tempted to ask
i? th-r> is anoth=sr pomsible use,

I- z~n~rel all solutions u' of (7.1) satisfy two third order
gu~tio=z, as irm ths following example, If u satisfies

Uy = t.e(u). ' (u) (7.7)

th== th~ following equations have & solution i.e, are consistent,

1
(U;{)2 = u + L.a.£(u)
1

()" 1. £(u) (7€)
u . =2 . +-§.fu
y 2oty
vh-r~ o 1s a constint, If one differentiates (7.82) w.r.t. y or
(7.®) wu.r.t. x then one obtains
1
ot a f'(u . ut.u’ 2 .9
ay, = (). (agen) (7.9)

One mcy solve (7.9) for u

’ ’

A1 = 6? s (7.10)
{ Ay A |

wvhrre g'(v) 18 the inverse of f'(u) such that
(2" (v)) = vug'(v) - g(v) , (7.11)

’ - ,'
(78w pa= 2 )
Diffar-:ticte (7.9) w.r.t. x and eliminate u, u s Uy to obtain that
u' must  satisfy
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xx,,'.m- Loalaju, { Mg f _ A

Ay .y Juti

Diffrrentiating (7.9) w.r.t. ¥ one obtains, in a Bsimilar way, -a
saconrd e~quation which u' must satisfy.

liote that 4if u' is any solution of (7.12) (and the second
aqurtisn) then u defined by (7.10) rust scztizfy (7.7). So (7.8) is
rreally ounly "half a B.T." in that to go from (7.7) to (7.12) cne
the transformation (7.8) but to go from (7.12) to (7.7) one
ti2o  substitution (7.10).
I one iz to use (7.8) to solve (7.7) then one must be able
t5> sn2t soms gpecial solutions or properties of (7.12). For exarple

]

use

4]
1]

~

u

u
4]

el L

i th~ tronaformation (T.l) involves an arbitary constant which does
nct ~=me.r in the analcgous equations to (7.12) then one could

c~rstruct new solutions to (7.2) from a given solution as follows.

1).L-% LI be any solution of (7.2).
2) It =r-t+ (7.1) to obtain uéld wvhich must satisfy two equations

1ik~ (7.i2) =2=nd which deperds on some constant Kold vhiich does not

~nranr in the two third order equations.

7) Canr-r the constart K to somtr new wvnlue K obtaining =a ravw
old new

goluticn of the two third order equations, u;ﬁw say.

") Subrtitube u;nw into the analogous equation to (7.10) to obtain a

n=1  solution o2 ).

nev oolution u o to (7.2)

I7 orz wants the new solution to (7.2) to correspond to the
211 "-lus one soliton" , in analory with S.G., then the frees parnmeter
Must ccrrospond to  the velocity of the soliton i.,e. the two third
~2ri-» =quations must be Lorentz invarient. It 1is this possibility

whish is considerad in the next section,

§”.Lor-atz Invorisncas,

Consider the equation
uxy = G'(u) (8.1)

crd the transformation

- 2 (8.22)
Ayeu) # Aou = Kl““x) + 2.K2.G(u) + K5
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4 = 4 2 ~
Au,.uy + Au.uy 2.K1.G(u) + K2.(uy) + K, (8.2b)

wirrr~ A is a function of u and u' only.

LRV Y

-1l ('n.?{l) W.l‘-t. y or (8.20) W.I‘.t. X to Obtain

! = e . . - ' - o . - . . ' 'c -~ . '
AgreUy, = (PeKpop + 2.K5eq = A).G"(u) - A opea = A, o (Pe@’ +P'eq) = AL, ,eP
(8.3)
where p=u , Q= uy > P' = u; » Q' = u; .
Usw  2iffsrentiate (8.3) w.r.t. x and use the x derivative of
(P.7») to climinate u in favour of u'_ .
XX XX
ot = Y !
whers X, cnd X1 are functions of u, u' , p, p',q and q' . Infact
= (o.F ' - - 1 - -1
= (_.Kl.G (u) ALed - AL ).(2.K eD Au) (5.5)
- (A )AL, ca A, ')

T ' u'u’
In oprinciple, equations (8.2) and (8.3) can be =solved for u,
and "q. Equation (8.4) 4s then an equation for u' only.

o]

It is now assumed that (8.4) considered as 2an equation vhich
u' es-tizfies 18 Lorsrtz invarient. This means that if one 1lets
x =»+.x and y =27ty in (8.4) (keeping u' unchanged) then the
~qustion assumes the some form. Equations (8.2) and (8.3) may then

bs thouzht of as giving u, p and q as functions of wu', p', q'

Wa-t 21l this means 1is that one 1lets u' —u' , p' —2=2"1p',

o' = ', ul —ia'z.u;x , u =u(a) , p »p{a) and q —q(a) vwhare u(a) ,
2(=) 102 qa) are given by (8.2) and (8.3). After this Lorentz
Ltr-vzformiation multiply (8.h) by a and then differcntiate w.r.t. a

ard s8~t a2 = 1. The resultant equation must then .be 1dentically zero im

u',ubt, ', q" and ur . From (8.2) , (8.2) and (8.4) on differenticting

¥Wers.%., = oun~ obtains four equations for the three unknowns u, » P,

rrd q «The determinant of coaofficients in thiz ruet then wvanish,
The co-fficient of u;x in this determinant 1is then

-/’+44u'%--2’<1'6"(“) A‘J\“-LK,K 0 -'4«'4"./'

4

Aucar Y #haa TR0 O Acriy Al

!

XL ?'K &(“) “u ? -/ ";/ Auu"(f"?/’/(
| T ’< ¥4 (“) BILY S ,tttl'./<’
2% - X +<a, 2\X

% 77

(8.5)

¥
X%

.q'

r~

7

)
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vhr- Xl iz given by (8.5) and 1s to be thought of as a function

o7 v, u' ,p, P ,4aq and q' . Also

—‘Q‘—. o.—.O" - 0' - ePDey = -'-'
X, = (“'kl P + 2.K,.q Au) G''(u) A, G' (u) Auuu P.q Au'u'u P'.q

= Agryye (PeQ' * 2ea) - (Au.)‘l-Au.u.{(z.xl.p + 2.K,.q - A ).G"(u) (¢.7)

- - t 1 - L L
A ,oPeq = A -(pa' +p'q) - A, ..D'-q }

Using (8.2) one may consider (8.6) %o be an ~quation for u’,
u,p and q. It must bde identically 2zero in <these variables. If

this were not the case then one could write u' equals some function

L&

-4

u and its derivatives. But one obtains u' from u by integrating
(".”) a=d not by a straight substitution.

The case K1 = K2 = 0 seems rather uninteresting s0 assume
K, + 0 (8.8)

Multiply the last row of (8.6) by (2.K1.p-Au)2 to obtain a
nolymonial in p ( with ceofficients which are considered to be
functions of u, u' and q only). The highest power of p which

czeurs is five, Infact the coefficient of ps is

: : ALK :
Aa«"i/ *4««'?/‘“‘/'0(“) ol ll/ '444";
TAwwrd VAt Bt [Ack Y Ay Ay A
A, U sy
- [FII 1 4
4"<l' (‘1)‘+ /L+«¢(' t"fliL/iW9¢v(’Z’ :L /L444 /£4«";'I- 6L¢1'Z/
+ /—?ul“ ¥} - ’ + _Z—k 6l(“
; . [’)_ K,. G (m) A«u'i/-ﬂua";/] 1 )
ot (8.9)
It :c (0.,9) which will now be solved.
§i""§ 1.
Sunnose X, $ o0 - (2.10)
Tas hi-hest powsr of q irn (8.9) is then 5., Taking the coefficient
of qs in (8.9) and integrating gives w(l.o.g.

A = a(u).u' + b(u) . (8.11)

Mot~ +h-t in (8.11) one is stiil free to replace u' by an narbitary
furctior of u' .

Substituting (8.11) into (8.9) one sees that (8.9) is 1linear
in ' with coefficients which are functions of u anrd q only. The
hi-h-st powsr of q 4in the coefficient of u' 1y (£.9) 1is thren,

This term {8 infact
a'''"(u) - a”,a'"(u).a'(u) + a2, (2a')® =0 (8.12)
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Th- co-fficiant of u' in (8.9) 4is then

a'(u). (@.b'" - 2.K.6'). (a7h (a')® - )

1, -
+ 22" (2K .G+ X, -z b'.q).(c"2.(a')® - a'') = O

oanlcu'

(8.17)

It 2.0'" 4 (2')2 then the coefficient of q in (8.13) gives w.l.o.g.
b =9 hrcruse ore can always add a constanmt to A or to u' . The
cosfficiznt of q* in the term independant of u' in (£.9) then

giv-s or irtegratirg that a = (Cl.u + Co )2 ere Co and C1 are
corztants., But with b = O equation (8.13) gives om integrating

G(u) + %-Kzl.Kh = Ce.(a')2 = h.Ce.Ci.(Co + Cl.u)2 vhere C, is a comstant,
This means that the original equation (8.1) 4is 1limear., Herce

2.8 = (a')2 (8.114)

The cosfficisnt of q* in (8.9) thoem gives that a 1s o constant,
which one: nmry take to be one because it i3 possible to multiply
u' by = constent, That 1is

A =u' + b(u) (8.15)
Subztitute (8.15) into (8.6). It 1is readily shown that
p''(u) ¢ O - (C.16)
Trn» co-fficisnt of q3 in (8.6) is now
4 £~ LK ¢’ A~k L Ll K~ LKy F - Ky
LRy ¢7- 47K | - 4 ky.tf =9 (ean
¢ () Bl K, 4" AR YT

I ®''' 20 then the term independent of p in (8.17) gives on
{ut ~r=riing that

(-oE, 2,60 - b'.b"'"')? = C. (4.K,K G + 2.K,.K3 - i(p')2)

whars C g 2 constant, But this means that the original equation

is liv-ar {i.e, G''' = O. Hence

v’ 0 (£.15)
e 2aefriciant of p° in (8.17) is now .
b'.b" = h.Kl.K?.G' (8019)

T~ co-fficient of p in (8.17) is then
1)2 = I . . . +
(b') bk, . (2K, G KB)
But by symetry one must also ‘have
(b')2 = k.xg.(z.xl.c +K,)
mha  4ty-wsformation 18 then of the form (7.8) which 1s clearly rot

Lor-ntz invorient,




Shew 7,
-

-

K, = 0 (8.00)
Ta~ coe~iTiciant of q© 4in (8.9) gives on integrating
A=t +a(u)) (8.21)
™+ co~{ficient of q in (8.9) is then
(£r0)7hoerrr - (£1)7he' = 2K G (a7)Th(2K,0 + K )Y —2(at et ) et (&.22)

+2.(a') 2,
which et 2qual a constant, k say. Integrating gives
" 1 y=1 a '
Az1)7t = C.exp k(u' + a) (8.2%)

P.E.G+ K, = 02.(a')2.(a")'2.exp XK.a

It is row not too difficult to solve (8.9). For exsmple if k ¢ O
thsr on~ obinirs :

2 = (3/2)kTE (u + cz);1

2.%,.G + K = Chufu + cg)E

I 7a-v~ rot checked whether the equatiorns satisfied by u' ar~ Loreatz
{=v »i~-t or not. (I suspect not), Note that it 4is only (f.9) which

hrs b~ g2lved irn this step., Still even Iif the equations are

+y

(8.24)

Lor- %4z irvrrient for (P.24) this is not very interssting arnd so the
2+t r 1id not  seem worth pursuing.

Thie completes this section, It has not proved possible to find
Lo»~rtz inverisrt equations which u' @catisfies, With hirdsight, »erhons
thi. iz to be expectsd: if one wants the transformation to 1involv:
~ fr~- parcaster which does mnot appear in the equatiorns satisfi+d by
u' th-n it seems resasonable to supnossa that the oquations satisfied by
u' 7rat br "one order below the maxirmum," - in this case of secord
ord-r, If t{this is the case then there should be a much easzsler

n~thod of proof than that given above.

§9.1uﬁsilir°1r Equations,

Ir both this sectiomn ard the next the equation

u,, = A'(u).ux + B'(u).uy + C(u) (9.1)

iz ccraidor-d. All B.T. of the form (1.2) have already been found,
rxc-mt for the corge

u = Po(u,u') + Pl(u,u').ux :

(9.2)
ul = Qq(u,u') + Q (u,ut)ouy
vhich will be con;idered nowv, ( Explicit irdependent vrrizble dep~ndsncs
will =2t be comsiderad.) Rather than look for a B.T. it scens
rosi=r to 1look for opseudopotentizls i, let the equntion satisfied

by u' b-s arbitary. This is easzier because if one replaces u' by
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ary fuvciion of u and u' them (9.2) retaim the =same form. The
disadv14-~» of this approach is that one still has a lot of work
sd &ll B.T.

By raplecing u' by a suitable functiom of u ard u' it is

»os53ibl~ to choosa

Pl = 0 (903)
The coeflicient of pq in the x derivative of (9.2b) is ther
- )

int u' by a suitable functiom of u' only ir (9.2) ome

Q = 1 (9.5)
girce Ql = 0 implies that the transformation does not depend on u or
itz J-rivetives, The consistency condition on (9.2) implies

(Ry), = -A'() (9.6)
(P5), + (Bylye = B'(u) (9.7)
(Py), -3 = Poe(Qy), * C(uw) (0.8)

Zguaticrs (9.6) and (9.7) give

P. = W(u' -u) + B(u)

© (9.9)

A = 2Z(u') - A(w)

Sthstitutizy (9.9) imto (9.8)

Al + BaZ, + C = ZW, - W32, (9.10)
thr- r = u' -u (9.11)
Surmzz-  thunt

ARL " v
and T t Kl'z * K2.Z (9.12)

1 ]

wisre K1""’Kh are =zrbitary constants and primes denote difforentiation
r.r.t., u' or v as appropriate,

D:Tf-r-ntizts  (9,10) repeatedly w.r.t. u' keepirg u fixed

A CAANARR R AR IR R DT ¢ AN LA R L AR LD (9.13)

(W".Z”" - Z".W"”)(Z’.W" - w!.zii)

Divida (9.13) by W''.W'.Z''.Z' and then 4iff. w.r.t. u' and v,

tr-~rtirs u' and v as the independent variadbles,

2

(E)-£ () 4 (F) A5

(
LUV B(F) - BT ) (E




3.

Divi?d- by é (ﬁ”)i(z_”) and take Dl
dor\ W' | Rt L2 v

Th-r =zem~r-te variables and integrate

4[z2")= A._:{_(l'") 'y z”) (9.15)
Au'(z") Cwl= )T ZZ(

_VL)—_——A.X.(ML") ﬁ_(_) (5.16)

QU

w

vatre A, , A, =nd A3 are constants. Substitute (9.15) =nd (9.16) into

(7.1*) and separate variables toobtain , on integratiom ,

Zl\/ 107 Py
Z ’ .
V\/I\/ ’Z_A W’" - W”
-—f—l-‘ — 1L —— . ?_,__._ "_ Ag (9- lp)

w w' W'
I+t~~r:t~ (9.15) and (9.16)

Z_'-A,).'z”’-;g 2"+ A 27 (9.19)
( Z” 1 5
W A,).w’”—_- A, Wi AW (9.20)
w
D-fir~ X =2'"",(2')"r , Y=w'r.(w)? (9.21)

and Z''' , Ons thar obtzims a polynomial im X . But by (9.12) , X

|
|
|
|
|
|
'
|
| piss. (2.19) w.r.t. u' and use (9.17) and (9.19) to eliminate Z''1?
e vot 1 constart. So all the coefficients of x“ must vanish.

0 = 230505 + ADLA, | (9.22)
D= ALAL(L 4 hA3 - M)+ A?.(As - 3y, *ALAL - 3.As) (9.23)
'AE = A?.(_l + 21&5 + _AI,AS) - ’iAle.A.B.AS ZA (A 7 Ah) + Al.AS (9.2%
?A?_.A__; = EAB.AS' - ’SAI.AT + Ay (5.25)
A? = A (9.26)

The cz-fficient of Y* in the sgimilar equation from (9.18) and (9.20)

~p 7 3 [l
D = TA1-An A - ATA, (9.27)

Eauatiove  (9.22) amd (9.27) give
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5 =0 using (9.28) . (1 A3 = 0 than

cr2 cbt~ins 2a contradiction exactly as in the case A2 = 0 axc-pt

that »or- uses the cquations derived from (9.18) and (2.20) rather
th~: +hoss from (9.17) anmd (9.19).) With A, = O equations (9.2%)
a

If A1 * 0 thon one my take A

2
to (©.88) readily give AS = 0. But them via (9.19) ome has

contrzdiction to (9.12) . Hence

A =0 (95.29)
Then (0.2k) is
Pih, = 1+ 2.8, (9.20)
Mot~ thet if A, =0 then (9.19) gives Z''' = AS.Z" vhich contradicts
(9.12) . In a similar manner from (9.18) and (9.20) one may derivs
2.4 =1+ 2.,A. vhich is incompatible with (9.30) .

< 2
S» it has been showm that (9.12) cannot hold, Becsuse of tha

syrmetry in the problem betw2ern x and y one my w.l.0.g. assums
ARE] - " 1]
7 = K;.2'' + K2 (9.31)

Suprozs 2" $ x.2! (9.32)

for -1 constants K. Then substitute (9.31) imto (9.13) to obtain

~ =olyvonizl in X. Bacause of (9.32) the coefficienta of X in

this rmucst be 2zero, Hence

?""7"}"1'(’(1"’” - wvn) = wl.(wll.(Ki + K2) - wnn) (9.?2)

K KWt + 2(K1.W" - WK oW - W) m W (W - w".(xi + K2)) (0. %3)
KARANETRLL i AL ! o3

: K, + Ky (9.2%)

I'ota th2t it has been assumed that

wee + 0 and K, $ o (9.35)
Suhstituting  (9.74) into (9.32) one sees that
K, = 0 (9.3C)

Tqurtiors  (9.72) snd (9.%%) arec mow satisfied by virtus of (9.3h).
It X, =0 then one mnay show that W''' = Kl.w" .

hrs been shown that one of the following must hold

ARSI A (or W'' = K.W' )

= K.2' and W''' = K.W' . (9.37)

\]
|

Zrrr =2 K2 and W' = KW

Th~ actuzl transformations correspondinz to thesa cases will be dealt

with in tha next section,
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§19.0u-2i1in~zr Solutiors.
All pseudopotentials of the form (9.2) will now
bs Zound whean u satisfies (9.1).

C~s~ 1.
Z = Zy + Z,.0xp ku' y % o, xio
(10.1)
Wt # Wy *+ wl.cxp kv

vhers 2. Z1 ’ wo and w1 are constants,
- (10,1) into (9.10) amd diff. w.r.t. u treating u and v
as irdep-nd-nt variables. Then multiply by exp(-ku) and differentiata
ir v.r.t. u. Then becauss of (10.1) the coefficients of W',

axp(tv) 2nd terms indespomdent of those must be zero . Integrating

A= AO + A,.exp ku

i
B = BO + B1.cxp -ku (10.2
C =

CO + Cl.exp ku

uts (10.2) into (9.10) and equate coefficierts of exp (ku)

| - 7 - m 1 ' v, -
A\N' + ByZykeexp kv + € = zl.(w keW).exp kv (10.7)
vy - 1) . ,.

l.\.oo " + Bl-zlnkc Xp kV + Co = ZO.W (10. ")
Froo (10.h) and (10.1) one has Agy=Z, , By =0 and Cy=0.
Ta~ -~qu-tion (9,1) is then

. I ku
“Ij = Al'"" Uy * Cl.e

1hile  the  itrazasformation is found from (10.3) .

Crs_ 2.

2= ZO + Zl.u' + Zz.oku'

Z, b0, k$0,u, 40 (10.5)

P=Wy t WL+ wg.okv
Co~ffici =t of u'.e™ in (9.10) is wz.k.zl.o'k“ = Z,.k.W; o Hence _

Wp o= 2, =2 0 - (10.6)
P-r1 in’p adent of u' in (9.10) then implies

c =0 (10.7)
Tamn o (5.310) is :
(& - zo).w?.r."““ + (B+Wy)2, = O

Pittia- -1l this tog~ther one has that the oquation

=:.'. -9 . o 0 - . O°8
uxy 5 U u. Je (U.exp -ku) uy (1 )

has ti~ traasformation




l{ut- -

u.:' = I'-YOQ ':'"(u u) "’2¢Uo° ku

x 2 - (10.9)

L = -
uy = uy ZE'U + 22.e
wher~ U is any furction of u only 2and Z2 9 W2 ard k are coustants.
Caza 7%,

Z =2y + 20 , w'r o (10.10)

vhore %y and 2, are constants, Subastitute (10.10) imto (9.10) and
Ai7T. 1veret. u keeping v fixed., Then W'' + O implies on intecrating

A(u) = .r'.o + Zlou (10. ll)
Z\.B(n) + C(u) = Co

iwth~r> A, and C. are constanta., Substitute (10.11) into (2.10) 4ifr,

v v

ce.»,t. v z2rd use (10.10)

Zy =0 (10.12)
S or~ his thnt the equation

u_ = B'(u).u (10.1%)

ba Yy

h-s th~ {tranzformation

1 T _

4y = W(u'-u) + B(u) (10.1%)

u' = u

¥y y

Cre - v

P

Z =2 +2 .u'+ Zg.(u')z

== M (10.15)
W=ty + H.v+ W2.v2
The co-TTicierts of u' 4in (9.10) with u fixed are
Pol dpeu = Ly W - W2y (10.16)
?.w?.(:o-n) + zl.(wl-z.wg.u) = 2.z2.(w0-wl.u+w2.u2+n) + zl.(wl-e.wz.u) (10.17)
'(20 - f-)(w1 - 2.w2;u) =C + zl.(wo - Wieu + W, 2 + B) (10.18)

If @, $0 then (10.16) to (10.18) imply 2y=0,2,=A and C=0-
Bu% th~+ this is just (10.13) and (10.14) . So take

Z, = Wy, = 0 (10.19)

On> th-r h~s that the equation

u__ = A'(u).ux + B'(u).uy - Au) - B(ﬁ) +u (10.20)

xy

hos th- <reiaformation

ul = B(w) +u' ~uw (10.21)

u' - A(u) + u
(u) + u,

u!
Y
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Crz~ .
- ku!' -lu?

Z =2, % Z.0 +Z.e z, 40,240

° 1 % LT xio  (10.22)
. . kv -kv
o=yt Wea o+ Woee W, 40, W, 40
]
The co-ffici~nks of &% in (9.10) them give
-ku

1 - = + 10,7
Ll.(Zo A).e zl.(wb B) ( 3)
C =0 (10.24)
v - lu 10.25
JE.(ZO A).e = z2.(wo + B) ( )
C--not kave both 2y -A =0 and Wy + B = 0 because then (9.1) is U, = 0.
H-rc~ ~quations (10.23) and (10.25) imply
1 ku
Sheter = Zl.wa.e

Pu: 4his contradicts (10.22). Hence there are no transformations in

§i11.1- %5 rrels.

This =sectiom contains an attempt to gereralize <the usual
Z+finition (1.2) so as to find B.T. for

Uy = F(u) (11.1)

Ir vwerticuler ome allows P amd Q to depemd or integrals and derivatives
of u., [izte that if one allows integrals of functiomrsa of u ard u'
th-r (1i.1) hss the triviel B.T.

ul = 2.u + J(F(u') - a.F(u)).dy

(11.2)
4 = boug 4 J(F(u') - b.F(u)).dax
wherss o 'nd b nre constints, Because of this and because u szatisfies.
(11.1) ors neecd only consider the B.T. to depsnd on the waricbles
~iver in (5.12) of the previous chapter.
Az - first attempt keep the form (1.2) but allow P and Q to
d-»-rd or those varicbles im (5.12) of chapter 1 which involve at
ncat ore x integral and/or one y intagrﬁl. Ore may them clesr the
ivteor+ls by defining - v . (11.%)
Xy .
Ther one {8 1looking for a B,T. for equations of the form
v = F(v . 11,4
gy = Flvg) (11.4)
T:~ B,T. 18 trken to be of the form
v;Xy = P(v,v',p,p0',q,9",r,r',s,8',t,t",a,B,7,8) (11.5)

v! = Q(V)V':P:p')Q)Q';r)r')')S'Jt:t':a,317:8)
XYy



ho,

Thartre = = = = a = =
atre n=v, o, Qq Vy s T2V 2 B ny ) t er ’ Vo ? B qur ’
Yy = Ty md & =v y 2and similar for the primed varinablas but with

Diff~r-ntiate (11,52) w.r.t. y and (11.5b) w.r.t. x and use (11.%),

t will b= assumed that all derivatives of v up to and including
fourth orirr and also 211 Qderivatives of v' up to amd including
third or?'r c¢'n be taken as independent - excapt, of course kayy ’

v ~r4 véyy .« Whot this says is that v is any solution of (11.h),
11.5) is the 1low=st ord~r B.T. that one can write dowm and
w2 ~dditiona)l furctionz cannot bs found such that the B.T.
cren tu- form

v! . = A(':,v',p,p',q,q',r,r',s,s',t,t',G,B,‘r,&)

V-'--.:‘r = 3(v,v',p,0',2,2",r,r',5,8",t,t",a,B,7,5) (11.6)
Vi = c(v,v',p,p',q,9',r,r',s,s',t,t",a,B,7,5)

oy
7’;..7 = D(v,v',p,p',a,q",r,r’,8,8',t,t',a,8,7,8)

The orlr s~rious assumption here is tho one that the B.T. doas not
t-ve the form (11.9) .

Th+ co2fficisrts of y V! and V!

\'s ) V. s v » v
XXX xxxy ° Xyyy YWy
in (:1.;-:)y zad (11.5b)x give

Q"'=QQ—QB=Q8=0

But the» both P 2and Q are indepandent of @ and ® , So the

29e?2ici-rtg of both @ and 8 must be zero. Hence
P, =2.=0 (11.8)

Tt w'il1 be azsumed that F ig mot 1lirear. It is thea appareat that
P, =0 mk:s F linear ( from (11.53)y ) . Hemce and ainmilerly

P, + O » Q. + 0 (11.9)

The- cle~rly from the x and y derivatives of (11.5) ons has

- + '
P=F,*P.r+P.r+ P5-5
1=0Gy* Ql.t + Qa't' + Q3-7

wiste Potrd Qg (i= 0,.0.,3) are functioms of v ,v' , p,p' ,4a,4,
1 a4

(11.10)

~~1 s3' orly.

"t

Tt~ -<quations which then remzirn to be satisfied are

Vg 2 g e W e g A Q= [ F0) -Ae - by Fle
r r' Ve F’ 24 e
-Pi'P“. 4.=/ l

-/'-R"PB 4.:




h1.

09i £+ 2 £+ 20, .0+ 28 o'+ 38 = (Flo)- @ &,-
» 7

—&, q;
‘Q,”Q\.Q}

0': B_ﬁ;_‘--f’ /3%,\ 4—/0)-)3
7 7’

I+ ill be assun~d throughout that
F'''(s) $ K.F''(s)

Tor 11 constants K.
It will be showm in the rest of this section that
P] = P?_ = Ql = Q2 a0

Tic nrocf procesdns by contrandiction so sassune that
.';-J¥O vhore j =1 or 2

-
o)
o+
cr
+

= i* ore c¢an prove that (11.21) cennot hold then, by
syariry, on~ has  that  (11.20) must be true,

i . @ 2 °f (11.11) sxd elintnate 07" uaing
3;] / Yo’ Qo'

=q,q =q')

i =0 ~courtion,
i au io'\.(ql >

(11.12)
(11.13)
(11.14)

st[,o)
A= 0
A= i,’l.,

=3
(11.15)

(11.16)

(11.17)
(11.18)

(11.19)

(11.20)

(11.21)

the



__i o+ _ 4. F(/)I- U {2, 2

pLoE / 3£ 94 -

S

( (11.27)
/\ F4

T-2on (_l + 47’_9_) of (11.22), vhere Z/'= 2—47_/‘#&/?—4—)7 .

N

3 T - Fl)] - ?.f!?_ﬂ'f = 'a (11.73)
124’ ' 20’ ! Q/ o /l) ]

s <2—Z/_'*Q/' 2% -(3— + & ‘l) - Z/"(B-, ‘9‘) of (11.2°

Fla1$39" o N 5 O ) = o (11.24)
(1132, "/[%—Zf”}@%]]* 7 F)

I° M + O for 1=21,2 or 3 them oun sesz that (11.23) impli-~s
o’

zJ. $ 0 . TFurthar, by taking the operator occuring in (11.16), (11.17)

or (11.1%) acting on (11.24), Aepenmding on wheth-r P, , B, or .P3 is

“or-zaro, on1 obtains two homogoneous linear equations for th~ two

un'tisrms  vhich eore th~ cosfficierts of F''(s') and F'''(8') occuring

in (11.2"). But Zj.Q§+0 80 the determimant of coefficients 1i.e.

F'''"(s'),F'"(5') - F'""'(s').F''"'(8') must be zero. But this cortradicts
(11.1)). H-nce

2F,; _ .05
4 = 0 ~=1,2,3 (11.05)

- it is ~asy to show, from (11.11) to (11.14) that ‘
'(11.26)

P, = 5, =0 and P15 is a2 constant

T-%n (i + 73..}?_.) of (11.15) and wuse the { = 0 equation %o
20 90

S1imiest- Py e Th-n for i=1, 2 0or 3 on~ has

0
26 (2% + 428 hFle) +y. F(ﬂ)/ = 24, ;'-; 3;}
37’ }7/ 27/ (11.77)
T (l + P Q_) of (11.,27) and assume that
0
28 40 A=l e D (11 .73)

bV
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TarT Q.S-F”(S) = P;.F"(B') (11.29)

Toten _'_a_+ ;73.3_ of (11.29) and eliminate Q, . Bscauss of (11.19)
PR 90’ ’

on~» th-- s5ees  that P3 =0, Then (11.29) givas Q3 0. It is th-n

angy %42 show that the B.T. (11.5) does not depend on the "old"

v-ri=bl~ i.e, do~s not depend on v or 1ite derivatives. This is rot

ver7 irtcresting and so will be excluded, Hence (11.28)

Sc c2~ hos ’AQ_*‘ - 0
o’

cron (11.15) to (11.18), that Q; =Q,=0 . This coutradicts (11.21)

~=d =2 th= rasult {is proved.

cannot hold.

for 1 =1, 2 and 3 One my then shov ,

§17.Far N,=8, = 0.

It is showan 1in +this section that thera 2re no B.T.
of %a+ 2orm (11.5) for oquations of ths form (11.4).
From. the pre=vious section one has that (11.20) must hold.

= = = = 2.
P, P, Q, Q, 0 (12.1)
Th-- (11.11) to (11.18) give, by inspection, that

= + ! =
Py=Ay*A.D+ALD ’ P3 A (12.2
\ — ] =
Gy = By * B1-q * B,.q ’ Q3 35

vhtee A, ond By (i = 1,2,3,0) are Dunctions of v, v' , 8 ard s' orly.
Substitut- (12.2) 1into (11.11) %o (11.18)

A #+ Ao+ A, B,= F(s') - A, .Flo) (12.7)
d~’
3_@", 8, = @ =123 (12.%)
i~
W, , 6.2 20 _01,1,3 (12.5)
Piad 94
24: 4+ B, W =0 <=0,1,2,3 (12.5)
P e a,o'
9'44'4 53.3__4:"::0 4;0)1)1/'3 (12.7)
p.Pad Q.0 \
B, < + 8, o'+ 285 A= F(e') — & Flo) (12.8)
. 34’
’,)_34" A, =0 A= 1,23 (12.9)




bk,

06 4+ A, 28 = O =01, 3 (12.10)
r 9.2’
95, 1 /11 jif? = © !

I¢ will first be shown that Ao + 0 and Bo + O . So s=zuppose that

(12.11)

i /, (12.12)

A =0 (12.1%)

I > than desired to prove a contradictior, Now if BO + 0 then
(i”.") imnli~s  (with (12.5) to (12.7) ) that AL 5 A, and A3 are
corzicats, Yot (12.3) is F(s') - Ajes' = A, F(s) + A,.s . This contradicts

2 1
thr himoth-sis that F is not 1limear., Hence
By = O (12.1%)
Corsistenoy on (12.3) and (12.6) and also om (12.8) ard (12,11) inmly
Ane3, = AWF! (s') = Be.F'(a') (12.15)
Tant is, A, =3B, iz cqual to O or F'(s'). If the latter is trus

J
s~ (20.11) is F''(s').F'(s') = 0 which cortradicts (11.19). He-nc»

‘ Taor  co zist~ncy on (12.5) and (12.3) impliez B, = 0. Similarly (12.10)

| o7 (17.7) imnly Al =2 0, One then readily obtaiis a contradiction.
H-»c« (17.%) carnot hold., Therefore
Ay $ o , B, $ o (17.17)
Then  (17.%) to (172.12) imply that
A, & B, cre corstants for ial, 2 and 3 (12.18)

| A, =B,=0 (12.16)

A, B + (b= A) 0 2o = B Filo) <= 2 (12.19)

1T 4

\
Th+ =2cuzisterey equations betwsen (12.3) ard (12.5) , (12.6) , (12.7)
P
Ao’ oL

A, + AL by * (53—/43).?_/4.,.2_@ _ 53.’:7'0') 'AJ-F'/"’} (12,70)

3.0’ 97’

S Ty fren (12.7) to (12.12) one has

RS-

b, Ay + (,4,; —5,“).?_&‘ 268, = 44-.F'(/4') “=1,2 (12.71)

d.,0° o’

B, + 6, A, + (A -8 24 28, _
! 1.- 3 ( 3 g) 0 ;;;T"

ﬂ;-F’/ﬂ’) -8 .F () . (0.0



k5.

Ad2i~~ th~ 1 = 2 caquations and differentiating w,r.t. s8' gives

A, = B, = O (12.23)
P 2
Addi~x th- 1 = 1 mquations of (12.19) and (12.21) implins
= 7’.:"‘3
Al + Bl 0 (1 )
l.\."!-i (i".po) to (12.22 A +B -o (12.?5
3 3
T A, L5 th-r adding -A3.AI"' times (12.19) to (12.20) and using

(12.7") 2~a (17.25) one se=s that because F iz not linear one has

-~ cortradiction. Thare{fore

Al = Bl =0
But o+ th-n s-~es that (11.4) amd (11.5) have the form
er a F(s)
sl = P :,s',sx,sy)
"‘; = Q(S,u',sx,sy)

™~ r-gdlt ig known in this casa and so0 there are ro B.T. of ¢the
To:mv (11.5) for equationa of tha form (11.3) except thosa which are

alre~ady krowm .
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Table 1 All Bidcklund Transformations from ¢xy = F(¢)
Case F(¢) Bdcklund Transformation
[} | I 2
1 G'(¢) ¢x Ky.p* + 2K2.G(¢) + Ka.
v a 2
¢y ZKI.G(¢) + Kz.q + K“
\l - -U_ L -}_ 1
2 F(¢) L ") .cosh A ¢'.F(¢) + -2 . F'(¢)
where
F"(¢) = u2F($) ¢y' -1+ -;i q sinh A ¢'
ué¢o
u and A are real or pure imaginary
AP l-bkl.p-eAlp
' - "o
3 Constant ox 12.(1% Kp) + Al.e + K).2 [ N ]
\ 1
' ' 2q
¢y =2 -Fo' + K+ A
4 0 ¢ =Xré’.p + B(p)
A
L - c
¢ (Q)e
5 A ¢x' = Ac*?
oy = irq2 + £(4' - q)
¢},' = Q(¢', q)
K
| ' - a' o, L
7 Ky + K -6 ¢, = K, (K, + K ¢)e + =




able 2 All BHcklund Transformations to ¢xy' = f('¢',¢x' .¢y') via case 1 of table 1
ase F(¢) f£(¢' ,¢x' ,tby‘ ) Transformation
2a (4, k) (' -K) - (a, +2a,617>
1 .(232¢ +al) tloaz X 13 2 ¢x' - !Kz P [;] + kl
K K = K 4
172 Kle 2
r a +2a2¢ 12
' -
¢y - ixl q [ ] * k,
_ K -
1
? zlzz L [ ] [ 2 ]
2 22 (¢ +k) =4¢ A-K .[z1+zz-6¢] ¢x '“(2 n_L¢+k1] +1K1-2¢ —P_¢+k1
152
where
r 2
= 12 _ - 11 LI -
z) 24" +/4¢ 2K, Ok, =p') | o) = IK) LT}E] + XK, = 2¢" [tb_}ﬁ]
z, = 2" +/4¢'2 - 2K (K, -q')
.3 G'(¢) tv’2K1(q' - K,) ¢, = K;.G(4) + K,
p' - K
-1 —3 -
x G' [c [ ” ¢y ;xqu + K,
Kl
= 2 .
4 0 0 ¢, = Ky + 1K,p? - K.p
' . 2 -
¢y = 4Ka® + K - Kq
5 L tk, /2(¢y‘ - k“) ¢x' - k2 + k¢ - kap
2
‘ oy =4 [q k,] +k,
[ 0 0o ¢x' - -p
¢y' =-q+ £f(0+¢").(1q2 + K) .
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CHAPTER 3

§1.Introduction.

An attempt 4is made in this chapter to find B.T. for

equations of the form

Uy = F(u) (1.1)

other than the sine-Gordon. To do this the wusual form of the B.T.
considered previously needs to be extended. The first thing one might

try is to allow higher derivatives than is usual in the B.T. The

simplest case of this type is

u, = P(u)u'.vplypzt e o . ’PN;qu v o ,qM)

(1.2)
uy = QUu,u'yp 5Py ¢ o o B3%s o e ,qM)
where M and | are positive integers and
i i
) )
Py=F 9 = =% (1.3)
ox dy

The x and y subscripts denote partial differentiation. Note

that one need not consider the mixed derivatives of u in the B.T.
beciuse u  satisfies (1,1), The B.T. (1.2) is to be interpreted to
mean thot if u 1s any solution of (1,1) and if u' is any solution
of (1.2) then u' satisfies (1.1) also 1i.e, “'xy'= F(u')

If one had a B.T. of the form (1.2) theh one could find u'
given u by only integrating first order equations. If one allowed
higher derivatives of u' then one would need to 1integrate equations.
of order greater than one which would make the B.,T. of 1less use.

It will be assumed throughcut that |
F''(u) §K.F(u) :
F'*'(u) $K.F''(u)

and

(1.4)

for all constants K.

Wien looking for functions F which have the B,T. (1.2) one

first proves that F satisfies a linear equation




L,

n

m
F(u) = 5* Z; a5 ud exp(liu) (1.5)
i=1 j=

where the li are distinet but possibly complex., One also finds that
,M=1 or Nalc
It will be assumed throughout that there exists two constants A\

in (1.5), say A, and ), , such that for i=1,2 aio+0, a,, =0 if 3>

1j

If this is not the case then the proof should go through much the
same. However as the primary aim was to find B.T. for the double
sine-Gordon equation, this has not been done. The problem, though, 1is
set up in general in section 2,

It has been found that there are no equations of the form (1.1)

vith B.T. of the form (1.2) unless possibly A *2\, = 0. it is then
szovn that fcr M=1 one must have N> T if a B.T. is to exist.

§2,Definitions.

Various properties of the functions
n-1

d F(u)
fn(u,plp. P ,pn_l) =<-S;c- (2.1)

are discussed in this section. Some of these properties are known >3

but not, to my knowledge, equation (2.9) which is bdbasic to this
work.

The first few fn are

Hy
"

F(u)
2.2)

.-‘,
[}

o F'(u).p1

Hy
[}

3 FT (u).P? + F (\1).1)2
Purther, if Rl and 12 are complex constants then define, for k=i,2

and for n=1
fr(lk) _f (%}n-lexp()k.u)} .exp(-)k.u) (2.3)

go f(i) is a function Of P, o o o ,p,_; only and the first few

are
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n

H
24
3

| ol

(2.4)

5 = NPl NePp
_ 23 .3 2
I ReP] * PePyePy ¥ AePs
8k) _ i4 _a 3 .2 2 2.2
€57 = Nop] NP Py + MNP Py * SN, * Ny,
(k) _ s .5 4 _3 3 2 3.2 2 2
T g = kk.pl + 10)\k.p1.p2 + 15).k.p1.p2 + 10kk.p1.p3 + 1oxk.p2.p3 + Slk.pl.ph + )k.ps
One could, instead of using (2.3), define f( ) by induction
() _ n—1‘) (k)
fn+1 2—' i 'pJ+1)'kfn;] nz1l
i (k = 1,2 ) (2.5)

From (2.5) one may show by induction on n that Zfor n >

= NPy * (B1)epep, p + 3(e-1)(n2) X (py + NeP] p, g+ 00, ) (2.6

Define, for N>1
K-1

®m=2

N-1

(@f") = z f(‘;). 2; k=1,2

i=1 i

(%)
n

(2.7)

Dzfine for N>2
M-2

e s
= p)
Keopr » 2 (2.8)
= . 3/4 <

From (f.7) for i <N, it may be shown, by imductiom on 1, that

a1 .
(B s Ak) L 15NV (3)

)
I» mnost c¢ises the superscript s left off @ and @ and is

svm~d £o ba o

& Z d _?(_ and é'—' g c. D (2.10)

then
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A6-4Q = Z [0 Ceal g o

Thiz --oorrty will be used extensively throughout. From (2.7) , (2.8) ,
(2.2) -v2 (2.11) for X =1, 2 ona has

(ziatg;l: - ;ZZC 225’) )K: = - /Eﬁ. A, 522< X (2.12)

pravi’+d X is o function of Py s e Pyo orly .

Delire, for n>1,

-9 9,- 9 Y, | (2.13)

N+i
Thrr M1
()
‘ @“— 4=va‘-, f,,- 9;3' , Lsms#V (2.14)
n+/) ”V 0)
_ - 2.15
;{*4. = ¢§EZ [j Jfﬁ( :{ ézzw [T‘7p4‘ :r (2.15)
D-Tir = _
Ky 0, - 1) (2.16)
K.+2 = (%n(n—l)kl + 512).k;,1 n>1
Alzs 3~fina g(:) by f(:) = Ka.g(:) (2.17)
T~ first ILow g(:) are
(=
7 2) =1
8(;) =200 + 2)).py (2.18)

(3) 2 2
gy = 30+ 2)ep, + (3] + 5A A, + 3ND).p)

(3) _ 4 2 2 3 2 2 3

g ; (xl + 12).p3 + (12).1 + 190,00, 4 12).2).p1p2 + (hxl + TN, + 9N D+ hke).p
(3) 2 2 2 2y .2

B 5().1 + 12).ph + (2011 + 5111.§2 + 20).2).p1p3 + (1511 + 220, ¢+ 1512).p2

3 2 2 3 . 4 3 2 32
+ (3ox1 + 6hx1.x2 + 6hx1.12 + 3ox2).p§.p2 + (511 + 1h11.12 + 19303

3 4 4
+ lhkl.ka + 512).p1
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(h) a1
€5
<) . (b, + 3,)
T b 2’P1 (2.19)
() 2 2
g 5 = (7x1 + 612).p2 + (1n1 + 1500, + 6x2).p§
(&) 2 2
g¢ = (1111 + 1ox.2).p3 + (hexl + 68x1.12 + 30).2).p1.p2
3 2 2 3 3
+ (26).1 + 50).1.12 + }6).1.).2 + 1012).p1

%) .

h

(5)
g(z) = (1hx1 + 1o>..2).p2 + (32x§ + 3hx1.x2 + 1015).p§
2(6) .

5
©) . (i + s2).p, (2.21)

From (2.9) amd (2.13) 4f X is a fumction of p, , « . « , Py, OB
B X=[BY+ (Arh) 4B+ 4B -4 & x e

Then one may prove, by imduction, that for = >3

DB X < (B 7 [6-DAr 4], &,
F[ab A+ (D AT T X

Fron (29, (212) awd (2.15) ome has for 0<L<N :
7] -84, ]
- 8, [8ehr] Y] - B {[B44] 7]
= {[zgé), +h 2, D] + Ay + A g 09,] /f)
- § (B kBT A AL S f 7

(2.23)
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/(3) %/[3) /\-f-i /(/(JI A, /(1, - /( / (2.2b)

In a similar mamner it 13 possidble $0 prove that for = > 3

Fily = B+ [0 b ek4 77

(2.25)
F [h (=) + (n=2) AT, /j_-y
Since r(f) =0 ome has from (2.25) that rffi 1s a comstamt and
()« (3)aosn, + e2ny @D, a3
Hemce from (2.16) , (2.17) amd (2.26) ome has
M a1, a>2 (2.26)

Ee-1
Also from (2.25) amd (2.16) for = >3 ome has

;AH ( B+ )_P("\ -2). A /(1_] /-f ;1. + ;(T') (2.27)

From (2.18) amd (2.27) ome may prove, by inductiom, +has
(‘) = ( %(-2-3“&).).1 + (..-1).)L2).p1 ' (2.28)

gfzi ((1/6) (s>-3x7+80-6).2, + Im(a-1).3,).p, (2.29)

<31/2h)(3-‘-1hn3+3352-h6n+h8).1% + %(l3-312+hl-2).11.12 + %(la-l).1§>.p?

Provided 12 + 11 + 0 amd 11 + 212 + O ome may w.l.o.g. Sake K + 0
for all w . This 48 Dbecause 1if (1-2).11 + 2\, =0 for some m>2

theninstead of the sesquence defimed by (2.13) ome could use she

sequenrce ®n+' = &)1 'Sn - Sn 91 7\7/ 4- and 093‘—‘ -99| “9.._-— ‘S‘La

)

Howaver the case 1\, + 212 = 0 must be comsidered separately.

Case 2,

M + 2, =0 (2.30)
-9 .9
) ! ) 2 1

;7; = &, &91._i 531_49'

Dafine

(2.31)
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Also defime, for = a nom-negative inmteger,

gn-n' l

?n+{-; Xndd—l
7/#4' ' 'ljgnn‘-l

7

Then

~

=94 &

. (2.32)
<=6 9,11 ’

S s

A =7 9}!0

(2.33)

2=
il
.
1
N
32
ko

SO K

It is them possible to show, by 4imduction, that for n =0

O = j 'Z:,,,; - fjs’lnrs'j

(f ‘Ygz ‘D&Zm—y_ i 3/{1. 7 . (2.34)

g+t gn+3
gn+ +
AN O g AE

provided that the operators im the first ard secomrd 1linmes act onm

fusctions of P, , « + o, Py, Only . Is provisg (2.34) ome obtains

e R R A L,
0=7."7 A
A e G

In+g N gn+7°

o (2.35)
Nea J (2.35

A

i
2
,5\}
a2

3n+11 L T8Nty
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As an example of %he proof of (2.35) defime

En+#) _ )
=7.[{; J 79,,“.[:‘(';]

Them, by 1induction, 11-0 since clearly 11-0 and she 1 = 4 result

of (2.35) 4is proved.

Also 1im the proof of (2.34) ome obtains

2n+5 ¢n+s 97+
A9 g D g D 3, O
(¢n+¢) 71+-6) ?n+6) .
/{.“.f[ = ﬁ“(f‘ = /( f( /(1/1((:7 5)
(¢71+7) (8n+7) (@1+7) P nes
*"LM_’ —23’( +1A/f -2 A, ,(l(" %
(57/’*3) (f"*) ({n-r‘) (8’/71-7)
H, =B £ - AT A T (2.36)
gn+9) ({nfv (n+9) % n+2)
/{_’_I %’7‘ 7.11% g : -f-'Z,(,L.’!l r
(#1+:1¢) € nreo) (f Mro
. _ ') n
/f4~ﬂ = ﬁ/f . + /( 7(’ /lL( 1)
(¢n r’/) (7r+11) @
1¢4) yn-r/ I+
f‘“ ﬁf _'{1'/ : + Ay /f( ) A, ’f( Y
Oze may them prove, by {sductiomn, for mn =20 that for fixed m the
first mon-zero t(‘:) are as Tfollows
(En+7) 61\ (8n+L) 2(8126 )" (8=+5) 27A3(8128)"
Vg = MBI, Wl = sGEIG)T s Vg = 2T,
Wong) - engeng)® |, +GRD - sugeng® |, WY < engeng)® 7,
(6'+;’ ' -16a8(818)" t(s::éo) - 818 (813)"
Cases 3, ' ”et I\
— - «
Let r(f) be tshe coefficiemt of k.uk-l.olu in 2) [4,("( £ ]
PES '
’(f) .0
et ) } (2.38)
) _ n -/ /
’r—,-\ —4'=Z‘ ( a ).XA..4-1' 71?1

(wif/n A=A )
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Thew from (2.9) amd (2.38) ome has

(’7.) - () - (,:/l () 1)
rr:ﬂ4-l = ‘23 ff-’r( 7 ;7<:. 2_ afhv\ * /('.’/_°“ _/

Define

ﬂz'ﬂ,ﬂ_l-ﬂ_'ﬂ, )7\23
39\7\.. _MZ_"#"’;

225 z;%;_L -.'ZFL‘l 725 = - ;(; . [j?;QV + A 7;(1_:7
Thex from (2.9) , (2.12) , (2.39) , (2.41) amd (2.42) :

T() —25'7’(.3)+')_A/'f.+/(’+/("’

A+I

Omwe may them prove, by imductiomn om =, that for =m > 2
(n+t)

'\+|

rﬁ"{m“) +n A K a ..H)+ { = (—n-H). 'f(’?)

1

and for n>1

r(-+1) =20 if {1 <n , r(“l) - 21-l.l- [(l‘l)-’]i- /\’:-2

i |
This thes completes the basic properties of fa required,

§3.Lem§5.

Les P be a fumctiom of p,, . e+, p, i.e. 1im pardicular

4 . .
2_1—4:0 ’??e-:o f «O>7n

g
and suppose "

2 /. 2% -0
A= QX‘
where f, are gives by (2.1) . Further suppose $had

 F'(u) } KF()

(2.39)

(2.k0)

(2.41)

(2.12)

(2.43)

(2.44)

(2.45)

(3.1)
(3.2)

(2.3)
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It will mow be showm &hat P is a comstart, So for the rests of

this section assume b/’
el o (3.4)
dfn ? :

It is them dosired %0 find a comtradiction.

Diff. (3.2) w.r.%. u and use (3.4) %0 obtain that she determimant

of coefficiem$s muss be zero, Note thas from (2.1) fl have the form

n—I

)
/7\ =,‘_2, 067\4 ' F(‘ (M) nz (3.5)

F“)M)z LF and «

Lo =

only i.e. mot of u., So ome has that

where are fumsckioms of p1 2 0 0 o » p‘_1

aet( P2 0) ) m 0, 1,5 = 10,0 (3.6)
Inbegrating (3.6) gives thas F satisfies a 1limear equation, so
( (;" 7' Aq‘.«
F(—M)z Z 2 a... X (3.7)

<=1 l':o 7
vhere ‘ij and 11 are complex comstants and 1 and 11 are positive
imtegers,
Case 1.
Suppose '13 + O for some J >0 with 11 + O . In particular %ake
The O for j>k amd X =), $0 (3.8)
The coefficients of uk.exp Au amd k.uk'l..xpln in (3.2) are

R . P= 0O ‘ (3.9)

for { =1, 2. But thea from %he defimition (2.41) one has $hat

LT" + O for some k>0, a

(3.9) holds for all positive imbegers i ., Im particular i% holds
for i = m+l , Them from (2.45) ome has a comtradicsion, So it has

been showm that (3.7) muss be
L . n-i A,
- ! : (3.10)
Flay= Z A-u” + 2 A X

4=0 =l+/
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where L 1is a positive imteger less tham = , A, are complex comstants

i
and li are distincht, nom-zero complex comstands.
Case 2,

Suppose A $ 0 for L>O (3.11)

The coefficiemts of u" and uL-l in (3.2) are then

I
But these comtradics (3.,4). So % has beem showm that

L = 0 (3.13)

n
2 _ 0o S A, 2 =0 (3.12)
=2 IR

1

Caga 3.
Suppose there are two mnom-zero 11 . That isg take
A+ 0 amda 2, $ o (3.14)

The coefficiemts of exp X, u i (3.2) for 4 = 1,2 are

.@4. f =0 | (3.15)

Ther from the defimition (2.13) ome has +that (3.15) is true for
all positive imtegers 4 . Them { = w+l im (3.15) gives, using (3.h4),

that k . =0 . From the discussion below (2.29) this implies

+1

A +2), =0 (3.16)

But them from (3.15) amd (2.31) ome must have

’:;Z: fF= O (3.17)

for { = 1,2 .The defimitiomns (2.31) amd (2.32) then imply that (3.17)
is true for all positive integers 4 . Them (2.37) gives a
coutraiiction .%o (3.4) . It mow omly remaims to comsider :
Case L,

F(u) = Ay + Aj.exp Mu (3.18)

wvhere A , A, and Al are mom-zero comstants. Then (3.2) gives

0

,@'fz O L /(‘=A - of -~ O (3.19)
A
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The coefficient of p:-l in the first of (3.19) then gives a

contradiction to (3.4) ard the lemma is proved.

S4.That M=1 or N=l.

Differemtiate the first equatiom 4im (1.2) w.r.t. y and

the secomnd w.r.t. x amrd use (1.1) .

» m
F(“')—“-?_P-%-ra_’.g,u Z L2 s 2 U (t.1)
)1/{ ! 214' 1=/ “ . A=/ 1] )Z“.
~ m
F(«’)th.%'+Q§.P+ 2 L., .20, Z £ .29 (4.2)
U ru’ A=l Zﬂ- =1 ?Z'

where f, are gives by (2.1) and h, are given by

7(1. (4'/, 0 b )._. (2_;_)"-' F(M} (b.3)

The rest of this chapter is devoted %o the solutiomn of (4.1) amda (4.2).

piff. (4.1) w.r.k. q ., and (4.2) wr.t. py,
¥ o ws 29 Lo 0
2 I

W.l.c.g. both py amd q  appear in (1.2) . Because of (L.4) this means

2 40 ek 2@
v 2P

I1f P does mot depemd om u' +whem. the R.H.S. of (4.1) is independenmt

7 (b.5)
it

of u' which means that F is a comstant. Therefore

L | (.6)
. M

pire. (L.1) w.r.%. q twice and: use (4.4) amd (4.,6) . Them {ntegrate
to obtain (also similarly from (L4.2) )

P = P

o * F

1°Py
{t.7)
Q. = Qo + Ql'qM

vhere Po ’ P1 P Ql R Q0 are functions of “’“';pl""’pN-l;ql""’qM-l only.
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Substitute (4.7) imto (%.1) amd (4.2) amd equate coefficiemts of pg

and qM (o-qo-u)

M-'l
F(«'}=?i / 3/’ . f P+ 1 (4.8)
e 2. . 11- ?ry,.
A
M-t M=L
O=72 ¢, + 2 £ , 2 4. .Y (4.9)
o’ A=y )%1 ) 1+ }Z
O = -21; & + 2:2. - =,§3 / (4.10)
24 3»2;4-’
r7-2 M-
Flu)= 28 b+ > g 28 . Z %28 + £ @ (1)
] }m«' L= 0 ! 9/<;. 1= ;)Za
M= M=
O=% 7+ 2Z £, .28 , Z £ .24 (4.12)
v’ 1=o ., =/ 79
0 = 3_;{-{ . /' + L‘t‘ Aa=0 I, (4.13)
P, L.,
The result is already kmows ¢n the case M=1 and N= 1. So take
N>1 (.14)
e 38 (42 2 \(#0) - We (6.2 42\ (F2
e ( PRV (i ") )
24, [ 28, _ )]_ 28, 24, (b.15)
¥l 2fa ’ );(,
Take fll + 2 of (h;lS)

YLD VI
CF () 4 F'fat P, 20 27
{ (w) + Flur [ +M-”

U
D

|

(4.16)
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Note that (4.5) implies that P . $ 0. Ifr I + 0 then %ake
1 >y
63 2 4+ 2 of {(4.16) after daividimg by %EL . One them oObtains

}M 2%14 -1 o

a comtradictiom %o either (1.4) or (4.5) . Hemce

3—3' =0 (u.17)

Then (4.13) implies

0 ¢

__Q_‘ = 0 (4.18)
Ay

Equating coefficiests of py , dowm %o p, in (4,12) therm gives that

Q is a fumctiomn of ql,...,qM_1 orly, The lemma of sectiom 3 1is

1
ther applicable and ome sees that

Q, is a comstant (4.19)
The rest of this section is devoted %0 provimg that M = 1, So suppose
M>1 (k.20)
Then exactly as above for Ql one may show that

is a comstanmt (k.21)

Take (g, )3_ . )" of (4.8)
Q. F"(w )-— o ( )w, Q;M I) R, (4.22)
ek [( T ) @,](@ )%'*m-,)%' [(«z)%/f};zw qv](e i

of (:.8) amd mote that (4.5)implies Q, Lo

R AL P
.23

F(«) - F (=), (/,.w, + 2 ) of (4.23) %o obtain a
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comtradiction to (1.4) . Note that if (Q,

%) %=°

then (4.22) comtradicts (1.4) or (4.5) . Hemce (4.20) cammot hold amd

g0 it has beer showm that
M = 1 (b.24)

§5.That (B, $ o.

/,
It will be shown im this section that %—;, + 0

Since the proof proceeds by comtradictiom, for this section assume

W -0
Ju’ (5.1)
Then (4.9) , (4.10) amd the lemma of sectior 3 imply
P, is a comstant (5.2)
Take (P 2 . 2 )"‘ of (4.11) ‘
/ QKM—
s i ) - 2
P,.F(M)—?_Q_o.(ﬂ,.a_,+1 )Po (5.3)
)"4' ™ %y—-l

Take [(f.,,g%ﬂyo]( ) K +'DL., 7

of (4.11) amd use (L.5)
F(M)(’l 5 p = p P ) (P2 + 2 \'P
o P )( ' 97-,> ’
. (5.b)

Take Q 2 — Z / of (5.4) amd mote that Qo+<'>

' |
by (4.5) amd (4.24) . Also mote thab BZ;_/ _ F{-f«

| oA, _,

)’f,-; p,.F'“MI).(/’,.;},U%)V,,

(5.5)

Fl"(,u')-(f,.l’_f_ 2’
P4 Py
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3¢4' 2§fr,,,

Fr''(u').(5.4) - P'"(u').(5.5) to obtaim a comtradiction to (1.4) . Hence

Now (F' l + '3 )1 FO ’#0 by (5.3) amd (4.5) so take
\

(5.1) cammot hold amd it has beern showm that

Wy o0 (5.6)

P
§6.1£ N =-2.
The gemeral method %o be explaimed im the next section
only works if N>2 . The case N =22 needs to be dome separately
ap2 80 this section deals with it ., For N = 2 the equatioms to bde

golved, -namely (4.8) to (4.13), are, omn using (4,19) amd (4.24)

Flu)= 2fe @, + F(w)0 , f.Fifu). < (6.1)
v’ 73
O =24 .Q, + F(«) 2/, (6.2)
ru! IX
0 = 4 ], 20 A= (6.3)
gl v’
F ('@f’) = 9@ A, + Q,. f:(§4 ) + K. 9% (6.4)
ru’ ey
0 = ﬁo_ F' + Yo (6-5)
Ok prd

where P, , Pl and Q, are fumctions of u, u' and p only while Q"l

is & constaat,
Take 'F"IM-F(M..Q,.D_ +}_" .2&..(0’")"?_&’. £-2)
| - P (0, »)Hw 2% (
Pl.p.( F'(u).F'(u) - F(u).F*'*'(u) ) = F(u').F'(u) - Ql.F'(u').F(u) (6.6)
So from (1.4) ome has

P, = Al(u,u').p"' | (6.7)
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where Al is a fumctiom of u amd u' only. From sectiom 5

A
VLA (6.8)
}RA‘
So from (6.2) ome may write
Qy = Apfuu')p (6.9)

If Q, does mot depemd om u' thes R.H.S. of (6.4) is 1imdepemdent of

u' and yet F is mot a constant. Hence

%’, + 0 (6.10)
Ther from (6.4) ome has
P, = Ao(u,u').p (6.11)

Substitute (6.7) , (6.9) amd (6.11) imso (6.1) to (6.5)

Fla)= 20 A 4+ A F(u) + A, Flu) (6.12)
}MI
O = 2 A, ./]1 - A,. F/«) (6.13)
')’Ml
O = 4, . §.24 =0, | (6.14)
—a 4 AL} 1= . .
i YL g
Flu') = 38, A, + @, Flu) + 24, (6.15)
N ru
0 = 24 A, '_'4'2. (6.16)

Eliminate A, from (6.13) and (6.16) amd imtegrate to obtain

2 - F(w) + F () A,

6.1
e (6.17)
where Fl(u) is am arbitary fumctiom of u omly. Then (6.16) is
A2.(1 - 1?1(\1).A1 ) = F(u).Al (6.18)

Then .(6.13) is omn using (6.8)
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.314. I - F, (M) . A' . (6.19)

Take - 3%" + Q‘.Q%' of (6.19) and use (6.14)

F, is a comstant , k say (6.20)
First consider the case
x $ 0 (6.21)

Thea (6.17) +to (6.19) and (6.14) give om integrating
A, = k™ + K.exp -k(u'-Qlu)

A, = -k F(u).(1 + k2. K™, exp k(u'Qqu) ) (6.22)

2
wvhere K is a comstamt. Note that K $ O by (6.8) .Substitute (6.22)
into (6.15)

F(a') = Fu). (eK)™2 (@, - A" 2%+ g F(u)

6.
- k2 F'(u).( 1+ k2K, exp k(u'-Qlu) ) (6.23)

Take F'(q) - F(M)..( Q'_%AH_ }:'()_l) of (6.23)

F'(u).F(u') - Q.F(u).F'(u') = ( F''(u).F(u) - F'(u).F' () ).k (6.24)
x (1+k™,K2,exp k(u'-Qu) )

Take (.4._9_. - i‘_) of (6.24)
M
Ql.F(u).( F'''(u') - k,F'"'(u') ) = F'(u).( F''(u') - k.,F'(u') ) (6.25)

Simce F'(u) $ k.F(u) for all comstants X both sides of (6.25) must
vanish. But R.H.S. is mot zero by (l.4). Hemce it has beem shéwn

that (6.21) cammot hold. Therefore

F, = 0 (6.26)

Then (6.18) , (6.19) and (6.14) ‘give

Alau'-Ql.u+C

Ay = F(u).(u"' - Qeu + c)

(6.27)

wvhere C is a constant. Subatidute (6.27) imto (6.15) amd ome obtains

a comtradictiom exactly as above., This completes the case N = 2,



§7.F satisfies a Limear Equation.

In this section it will be showrn that

F satisfies a limear equation, First define
A
Then take :;L. of (4.9) . Ther by sectiorn 5 the determimant of

coefficients must be zero. Using (3.5) ome has

wt [F5¢, F, ... F 000 = 0 a2

vhere the rows are as showmm (k= O0,...,N-1).

AM=-N
Take f, .9 4+ Ay, 2 of (1.2) and use (b.11)
’ o ‘22’.
_ - £ ), ) (¢~ 21<) ,
it [@* FEu) FEw), . - -+ |F (+) |
£ M-3 +<) {f’-/f{)
-f-/(’.zlzv( [% QO’FA('“))--')F( /M))F /vf):7.~_<
(7.3)
Take f% '22- + 2 of (7.3) and use N >2 (from sectiom 6)
M K.,
, -27%)
l@/(f l? 6?{‘i Fr“f )(;41)" f:é?)(;wol - - ,éﬁ’ 2 /Ltf;):] = 0
(7.4)
Equatiom (7.4) implies that F satisfies a 1limear equation amd s0
£ £ Y WY
Fl)= 2 5 4.« 2% L (1.5)

A=0 /':>o -yf
From mow omn however it will be assumed that there are no repeated
roots, Exactly the same method as given baslow should work when
there are repested roots ; this will not bYe comrsidered though. That

is, from mow or it will be assumed that F satisfies

N .. ax
F () = Z Ad..e (7.6)

A=
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where the Ai and 11 are complex comstants with the li distinct.

Define va=u -Q.u (7.7)

and use v imstead of u' as imdepemdent variable. Them (4.10) is

?__f". = o y 1i=0,1 (7.8)
mn
Then from (k. 9) and sectiom 5 ome has
Ay <t
Z W.. % (7.9)
4—[

i

From (1.4) at least two A, must be mom-zero. Take

A1+o,A2+o,x1+o,12+o,11+12 (7.10)

Now the- coefficiemt of cxp(llqlu) om the L.H.S. of (L4.8) is

vhere W, and Pi are functioms of PysecesPy and v only.

Al.exp(llv) which is mot zero., Hence the R.H.S. must have a term
in exp(qulu). But this mearns that there must be such a term in
F(u). So the coefficieats of cxp(linu) in (4.8) to (4.13) (i=1,2) are

PVes
A

A: 4 = ZA._‘a_F_o + D r, + /(4). /’ (7.11)
r | r

O = Z,.2h + 8..°F (7.12)
"%

A,
AL (Fo-8 %) 32 v Ai 24 +q + BZ

i

(7.13)

O = f’.%.+ 'g ‘(7,114)

These hold for {i =1, 2 where Po ’ P1 ’ Z1 and 22 are functions
of PyseeesPy 4 and v onrly vhile Ql ’ 11 ’ 12 ’ ul and u2 are comstants,

(Actually, xiql has been replaced by 1, and W, is the old li.
Also the equations have bheen divided by some Aj and ZJ is the

W, of (7.9) divided by these AJ . The A of (7.11) to (7.14) are

ratios of the A, in (7.6).)

Also Ay and A, are WOoR-zero constants and /41- = A“'/Q'



§8.A Condition onm A,
In this section an equatiom which imvolves 11 and
l2 only will be derived, Definme
6? = Z:. 2 + ég) . < =1 "2
. 1 - )
t a.\/ )
(8.1)

ﬁ = (fo-Q,-/)-l + Dﬁ
v

fn+, - 1?, é,\ - ‘é ,.g, A o)

Z?yn = :Zﬂ . ;%; -+ éE)7\

Ther, by induction ome has

€m 2, () (0 ETTEET

n
(8.3)

' ¢

s €70 Z )T E e

N

Then from (7.11) amd (7.12) for m a positive imteger
o

£ 7
n
AN //'LV )
- 4 - £
gn fo - A?\"e 1 g‘r\‘ /’/ - ‘(8.5)
(7.13) amd (7.14) are, for {4 =1, 2
~”

v //ﬁL' .
AT 8.7 Lk 2k -Q 6
A 1 4

\

Also equations

{ 24, = AA' 2
C = /. 22, + 9 & (8.7)
r X
where A, and B, are comstamts for i=1,2. Infact
(8.8)

AL = B, = 0. , A1+O ’ 32+o.u1->.1/ql




67.

g; An - f.,‘ AI +Z:/4I' A"\- Zm‘/(l' A’
1= é?' 6,\ + TZ:/,AﬁL At\
Define

A=t [ 79 /f,)j

A=uet 29 25 2]
AB:M [/G,(},- ) /,m.; ,J
Aﬂv@f/fi-.--»%fi, f. ]

_ « /-
SRR

The dasired equation for 11 and 12 cam nrov be writtem im terms of

ne 2 f (8.9)

(8.10)

Al and AS . It is showm imn sectiom 10 that this equation implies

ll + 2)\2 =0 if N> 3%, The next sectiom deals with the case N =3,

Now eliminate the D ,...,Py , derivatives of F, amd P, from (8.4)

ard (8.5)
A4, L 4 U -0 (8.11)
. > -
4 o
4,' _B_F_D + AI'M - 43 € *+ d}‘e = AS ﬁ’ (8.12)
7 r
From (2.6) amd (8.10) ome has
oy = (-0 O ARy By (8.13)
Note that (8.13) holds evem for N = 3 provided
K, = 1 ; (8.111»)

2
Eliminate A, from (8.11) amd (8.12)
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s - 2h w] -f-?_/'.[d I A+-e/‘v—4 ﬁT:o
)~’ zyqv y | r 3 >

fpet 2 J
(8.15)
Take g of (8.15) for k=1, 2 and use (8.15) amd (8.11) to
A
eliminate the derivatives of Po and Pl .
«.P, = Bk.exp BV + 7 eexp BV (8.16)
vhere
£ = (€, 8) 4. + Aca} - 4 (& 45)
L~ Vs 1] =g L / /- <« 5 (8.17

Fe= (8,4) 45 - 4,(E4)~~9/4% + 444
Y, < (B, 4).4, -4, (€ 4) -, 4 G et 44

Iliminate P, from (8.16)

al.(Ba.exp KV + 7,.exp p.2v) = a2.(61.exp WV + 7 eexp uev) (8.18)

W
|

(- () X (6, 4) [ e 7] (€.0) [+ x_/t“]f

l )Y
» =(/,-/1).(7f,./1~,s,71).4(/4 74)

Take F,. 2. 4+ 2 of (8.18) amd use (8.16) to elimimate P, .
r

(8.19)

Fl'l + 2 repeatedly of (8.19) ome sees that the

Taking }/ .D /ﬁ,’,

coefficiemts of expu,v , exp B,V and exp (ulme)v sust all vanrish,
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# 4)%, =(6,.4)

o (0,4)) [ D, Qg - A, 4] = (D4) [H 45 - 4,4, @

This is the desired equation whick imvolves ).1 and ).2 only.

§9.1f£ N = 3.
It will bYe shown in the next sectiom that for N> 3

ome must have 12+ 211 = 0, However the case N = 3 needs to be donre

separately., So im this sectiom it will be showm that ).2+ 211 = 0

in the case N = 3 .,For N = 3 the equatioms to dbe solved are (8.4)
to (8.7) . That is

éf (Ao Ko+ A %) = + 6.4 (9.1)
¢

P (9.2)

,V //1-‘\/
f + ’{A/ 2, +Q'— _é "'6‘{'1 (9.3)

h. 92, 2g

= O (9.4)

P
vhere ‘fiﬁ:-z-g_‘f-a -/-A//(l._a_
4

(9.5)
= (/O-Q‘./,).Q_fxl.}’;’—(
53: g& gl—glgl = 23'\2‘.‘*(’(1—1’)"2 )
' . » ’9/(1.] (9.6)
where 23 = g' -Z_L— 'gz Z’
E,-E€ -8 -2
13 37 ¢ P
(9.7)

where ZQ—: gl 23 - 3 Z'
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Now (8.1) and smectiom 5 give g?/;-;o and }?_\/f:?O so must have Z, =0,

é’3 2 (9.8)
€ $ =9 (9.9)
Similarly g'). 23 = gg 27_ (9.10)
Now
/’v_"

€3p"+ (,{:—,("‘)Q_;(I_f',_ﬂ/ z, 4 “ +52/{

(9 11)

Let (9.9) act onm P,

/‘)XFZ;(,.)f’ —8/( [g ]-Q (9.12)
“A [25.21 EE S LI

Similarly

A=) (LA AP, = &/ﬂ [28,2- 62,147 ?—L]-I’”‘V
Au/d, [ 617_14/4, ZITZ«P'M’V (9.13)

Take p.-b%‘f 5-3— actimg om (22, + A,)(5.12) - (11 + 212)(9.13) .
8
One sees that the coefficiemts of exp W,v (i = 1,2) must bdoth vanish,

From (8.8) ome them has

(LA,+ 4, ).fgz . 7_1-]?_ (4, .,.7,,(7_).[1@12,__ gz -174 z 2,

(9.14
(A ) [, Tt - €2 = () (6, 205021
. (9.15
‘664_ 'Z/. —(/( + 4 )/ é 1+ Z, [,4/4‘ :é/::::

Take 6 of (_9.11*) . Them Yy taking P’ ')_%'f‘ %1— of this ome sees
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that the coefficiemt of exp ulv must vanish, That is
(2l1 + 12)(u1 + 2u2)0z1 - (11 + 212)(2u1 + u2)'z2 (9.17)

But from (8.8) W, =A/Q; ,amd if Z, =7, then taking /;_5‘?_/,,; ,B_
;=
of (9.5)1“‘.1 - (9.3)1{_2 gives a comtradiction, Hemce w.0.l.g. Ome may

take 11 + 212 = 0 in the case N= 3,

§10.That . 2).1 = 0,

This result has been proved in the previous section
for N=3 s0 for the rest of this section assume that

N>3, 2 +211+o,x +2).2+o and ":"o for m > 1 (10.1)

2 1

One may also w.l.o.g. take

l).llle >1 (10.2)
(n)

Dafine z i by
(12 - 11).2(5) - f(f) - f(;)

z(;:) . z(!_:-1) _ g (»-1) r)

( (10.3)
n-1 84

n>2
Them from (8.10) ome sees that A, equals some comstant (ron-zaro by
(10.1) ) times z(g:i) and that AS equals the same conmstant times

z(N&l) . Hence equatiom (8.21) is

D o) (b= (!
['9' }M—l ] [0@7- },:/) - A },v-l)]

-2 [g &0, D pet
= [ 9, 3 J.[:oﬂ,gy - A7 ]
Then from (2.4) , (2.9) amd (10.3) ome kas
(2) | 3
22 °h
. @) @) @) 0 (10.5)
() 39 2 (4-1) B3+ ko 48 b n !

Then from (2.24) amd (2.25) ome may prove, by imnductiom, that
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Zf, B } + '}()\) ;fn} (10.6)

) (;1—{) n—1
vhere }’n = %24\4 - £ _['(7\_.‘),(,4_/1].}2-’) (10.7)

()

From (10.5) anmd (10.7) the first few =z . bTe

z(;) =p, - (A + )08

) - By = (B + 3X)epyeppy + (23 + ) (A) + 2))p) (10.8)

z(g) =my - (A + M,)eppepy = (W) + 30,).p5 + (18)] + 2202, + €X5).57.D, |
=030 + ) + ) (N + N,

One may them prove, by induction, that

8: }C’:) + [“‘i ("‘-I)("\'?')/(r"' (7\—’)/(17 }f\\::) =0 (10.9)

‘9 5 /{ ’56\ + ;WH) 09 }fh, . (10.10)

"t ! Nt o
From (10.8) amd (10.9) ome has, Yy 11duction, that for mn>5

z(:) n—1 {3(: -31+h)). + (n- 1)1 } P,-P

(1/6) (a-1) (a*-5w+12), + 2(n- 1)(.-2)x *Py_3 (10.11)
{ (1/24)(3n -220%+69m2-98w+T2))2 + L (ne1)( 2 Lms6)A
+ 3(a-1)(n-2)23 } #.p, . + O(p, )
From (10.19) amd (10.11) so dividimg (10.4) by this giyeé
on using (10,10) that
ﬂ ’,(l'/—l) - ] ('/-—l) (A/} ot ('A/'I} .
R = A, + o . (10.12)
r L }V / ;'/ l }l‘/—l
- -
e ) ] [ p3mrE) 4+ (7-3)4,
070 47 }M , {3
=0

from (2.28) . Them from (10.3) ome has
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(f/-l

)
Dy, r [A (W30 8) hr (-4, ] V-0

From (10.8) for N =l this is (A - Z)(2\ + L).53 = O which comtradicts
(10.1) . So for the rest of this section ome may take .
N>L (10, 14)

From (10.8) amd (10.11) ome may show that for a> L
o)
@157\ = - [{ (9\1—3"\1'9-)/{'4-('7\—1)/(1]%“_1
+ i l_’i ('b'nq'—- L2 n+ §9nt— 78~ +72)’(11 (10.15)

4 ‘2-(;7\'5, 277+ 852 -35)/{,/{}_ + 1 (7‘\1"}")'(:[%,/
+ 0(7(7\-—9—)

3

From (10.8) , (10.11) amd (10.15) ome sees that the coefficiemt of

P)Py_3 in (10.13) is ().1-12) times

(1\:“-61\'%1'm-12)x1 + 3(x~:2-5n+8)1x2 =0

But this comtradicts (10.2) . So it has bYeem shown that A, + 2\ =0,

1 4
§11.For N = Be
It has bYeern showm that w.l.o.g.
A, +22. =0 (11.1)

1 2
It has also been showm that fa;) ma O for all {1 . That is=s

£>¢= £ @} - 093 «9‘ = 0 093 = 9, D - H I, " (11.2)

/

£ & 2 _ & P~ .
But b?_: 5'63_535’— 24_29—\/ )qu‘-fu and

2f, 4 0 then imply that
L, = ‘g, (<% 63 Z, = O (11.3)

g = O = g,é" gg g‘ (11.4)

%+ .
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0= é’q, fo= Ay .2 + By 4 - /f/} £ (11.4)
where A"_—_—__Ayvi' [')_ €"Z.,_~' 517, +/l 21‘217
. (11.5)
31, = ‘1/41_[5,7—, /1 21]
By taking ' P' EL + ja- of (11.5) ome sees that the coefficients

" K.

of exp ulv aad exp u2v must both vanish i.e. Ah - Bb =0,
rZ gl .Z.l - gz- le "f‘/[ ZI zl = O (11.6)
1,
£ z, oty z* = o (11.7)

Note that it is (8.4) to (8.7) which are being solved whem (11.1)
holds. From section 2 one would not expect the proof to repeat umtil
ome had done at least six cases, Hence only the lower values of N
will be comsidered im this thesis. For the rest of this section take

N = 3 (11.8)

From (2.14) ome sees that

D.- D = 48, = (h-4) 4.2 (11.9)
Ay = )x%

Thern (9.2) and section 5 imply

21‘?:=%.-[é,zz‘ €, 2] = X, 24 (1.10)
o él = €, = //(,. gB‘ (11.11)
Now from (9.1) to (9.5)

CE€X- € LX=-hig X o nXéLaxo
| XV

(11.12)
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Take *6 of (11.10) amd use (9.3) and (11.12) .
B2.(1 - pl.uz.zl).exp N Al.(l - pl.ul.ze).exp B v
_ (11.13)
bad Pllv(Pe' (11 +12)'p?)0(z2-zl)

Fron (11.5) amd (11.10) ome has

- - - Z,
é, Z_)_ = (ZL/, ) ./4/_ 21'22 (11.14)

Take -€ of (11.13) amd use (11.7) amrd (11.14) :

2(z, - Z1) = ua.pl.zl.(z1 + 2.z2) (11.15)

2
since W, = -2, . Then if ome takes éi acting om (11.15) then one
readily obtains a conmtradiction. So it has beem shown that there is

no B.T. of the form (1.2) when N = 3.

§12.For N = k4,

Tt will be shown in this sectiom that for N = L  there
are mo B.T. of the form (1.2) . Take, for this section,
N=U4 and S 2a, = 0 (12.1)

Then from (2.4) amd (2.7) ome may show that

[ A L) &S = (AT [B - B, -4 ] w=2)

where 09}: '%1' Ql— 81 S‘ 7: 081@3_ £3 ﬁ?_ (12.3)
Then (8.4) and section 5 imply, from (12.2), that

(p, + xe.pi).w - 3.7L2(p1.z5 +z) - z2) . (12.4)

e W= 2o g7, 7o 47,- g7, ws

Take 1ﬁ3 of (12.4) and use (8.6) and (11.12)
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[X} + 2/(1//K1_]W

= 4 z’””“./f [Aat b Al (6, 2.7 2-1]/4, +3h 1=K 12
_ 61.‘6/{1}‘? {/‘1 [A*lz'/,z]‘[z g‘-z‘_ g'zl.,/,?_zflq + 3/(1[#-//&21]

(12.6)
Now from (11.3)

€ (6262 ]=[6¢- €47

Then from (11.6) and (11.7)

g'l Z,= 2L g’ [’L gl 21-{'-/«4, Z, 27_:( + gz &_(zz’z]

Finally using (11.7) again gives

2
fl Z"L =0 (12.7)

Thes (11.3) , (11.6) amd (11,7) after a 1little algebra imply

2E€ 72, - 82,4422, = =323, B, 02

gl ) = -/"{7. Z/-L

_é' 'Z.L'—‘ -.23_—/’/I ZIZ’L_
£ 25 = ~ 22 (2234 01,2 2] .
gl éﬁ. 27-: - W —/’ -2' gl 27' VIZLEY—Z_; +/‘4/ _Z/-z?_z

Take é of (12.6) and use ‘(12.4)
[}

g. W =0 (12.10)

Then take f of (12.4) and use (12.9) and (12.10)
!
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2¢Z . - ™ * - . ® . . . - - .
3 (1 -p,.n,.2)) RyeZye {2y + 2.2, + B,.0,.2,.2,) (12.11)
Take of (12.11) . Themn taking of this one sees that

the coefficient of exp ulv must vanish., That is

Zp = %) = Dyels (12.12)

Then ore obtains a cortradictiomn exactly as im the case N = 3 . That
is use the proof im sectiomn 11 from equation (11.10) omwards. So

it has been shown that for N = U4 there is mo B.T. of the form (1.2).

13-F°r N = 5.

It will be showrn that for N =5 there are mro B.,T. of
the form (1.2) . Take (11.1) to hold and use the definitions in

(2.31) ard (2.32) . Ore then sees that

EK}+ 117—'4/(1]'7; = 9/{i E71_71'/(, 75] + 3'{1'[/7_* ’(1/11] g~

g _g (13.1)
Given ¢ amd 1 define f"\ for m>2 by the sane

sequence as im (2.31) and (2.32) . Them define z, b
. (13.2)

Then from (8.4) , (13.1) , (13.2) and sectiom 5 ome has

(p3 + 2.12.p1.p2).Z5 - 9.13. (2, - 2, - pl.z3) + 3. (0, + la.p"i).zh (13.3)
Then (8.5) , (13.1) amd (13.3) imply

27 ’(3 P" ['XQ'#_A'L;(/X;"L 1’('&'/(11 ’2'(11 /(,l/z]
L A
= { 9*1 [AL- AI'K'. A}Y‘f"}/(m [K—[’ Al)(,l]-/q4 = [/3+1/‘17(,. 7(,_]/45}!
. A,
+i q/(:. (67_’ 6‘ "/‘ 53] "”3/(1 [;(11‘}1//1]3,_ - [Kj +7-A\K,fl]lfs}(

(13.4)
Where

Ay = A, 2 b= B0 7, N
Ag = —é_L/{} +l43/4IZL 5,,: ng3+ 3V4.LZ1- 7_‘231
lq’; = é.l_ﬂq.’f' A}/"’/’Z"L 35:‘51 59—4'_.&/221_51/‘(171
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Take ﬁ of (13.3) and use (13.4)

75 = 27.33.7, (13.6)

Now :7‘ Z_ = 75 /7, s0 ome must also have
f’ gs - gg £ (13.7)

Let the operator im (13.7) act on P, . Hemce

N .
Ag-exp B,V + Bg.exp H,.v + 81. A35.P ; = 0 (13.8)

Take f 2 4 .E of this amd use (13.6) to obtain that the
7 o

coefficients of the exponentials must be 2zero, That is A6 - 36 = l"1 U

But this contradicts the result of sectiom 5. So it has been
shown that for N = 5 there are mo B.T. of the form (1.2).

§i14,For N > 5.

(n)
i

such that the first non-zero s(:) for fixed n is equal to 1 . Then

(n)

Defire = to be a comstant times the ¢t 5

of section 2

from (2.36) one may prove by imductiorm that

ey - Py ’(2‘”‘) =21y (2n+g) = APy (14.1)
s(gﬁfg) = 2Py ’(2n+g) = APy ’(2::? °
8n+9 8n+10
(6 +8) "2y P; (6:+8 ) - Ay Py
Define
3@ L@ )
(A - 2)ez’] t £y (1b.2)
z(:) - z(E;l) (:"i-). (‘;\ ne3, i , 5, 6.
Then
(3) : 6) ) 6
3., 705 + [fur hi'] 1.’ (1130
(9

2520/4— [ A3+ 24, A& ]. 4 _ (14.3b)
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At

’ﬁ}” t [t A (£ A4+ 40 -2 AL A /1]/9 7 (1. 3¢)

3 o ’ﬁb (4/* [/g* k(U £+ gxa./;) -As (x,‘/3+v,/{‘)—'2137(,3/(]4

(1k.3d)

; /‘L’*}"ﬂ//z
5. = K3+ Thig A

3 = Ket A(h 40110 2430,

K

}( - /g + xl (1;(/ 7(9—'1- SK“"(}) - /(’} (41/34“2—?(; /-:) - 2’{2’(/3;

3]
}? —:7(3 ’L’( 1%/

(;’»_- K4 .(.,'L/(-,_ /1 - 9—X77:%I1XL

(14.5)

36 = gy S Kty KO£ 62 A0 #2405,

,,([) - £, +4, (74, £t 5'7(3)—12(9/,1/4""’('7(16"14’)
- + F A £

Now equatiom (10,4) must hold when the 2z’s are defimed by (14.2).
One then easily sees that this is mot true im the cases N = 6
and N=7. (Use (14.4) and (14.5). ) Hence it has been shown

that there is mo B.T. of the form (1.2) provided N<8 . I have
not considered the situatiom when N> 7 ., It does seem that the
method of this sectiom is not suitable (arnd this is 80 because
the analogous equations to (10.6) amd (10.7) are very complicated.)

The best hope of a method for gemeral N seems to me to be that
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of section 13 , where hopefully am equatiom 1like (13.6) always holds,
Still the method of this sectiomn does seem to suggest that there
are no B.T. of the form (1.2) because equation (10.4) imvolves more
and more terms the higher N is. (Note that im sectiom 10, omre only
needed to consider the term ple_B.)

The important thing to notice about this chapter 1is that the
equation 11 + 212 = 0 comes about as a property of the operators
involved., So if omne chooses a more complicated u' depemdemce in

the B.T. them one should still obtaim this equation, The final

two chapters are am attempt at such a more complicated u' dependence.
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CHAPTER 4.

§i.Introduction.

Another attempt i{s made im this chapter to fismd B.T. for

LI F(u) (1.1)

Only derivatives of u ard u' will be allowed im the B.T. There
does mot appear to be B.T. of the form (1.2) of the previous
chapter so one must allow higher derivatives of u' ., The simplest
case of this type that one could have is
w_ = P(u,u',ux,u;,uy,uxx,uyy) (1.2)
u; = Q(u,u',ux,u;,uy,uxx,u’y) |
Ore could make P amd Q deperd om higher derivatives of u . However
this form has beem chosem s0 as to make u amd u' only occur to
second order,
It will be showm im this chapter that there are no B.T. of the
form (1.2). Both u and u' are assumed to satisfy (l.1).
It will bYe assumed throughout this chapter that

F'''(u) b K.F''(u) » F''(u) $ K.F(u) (1.3)
Define p=u_, q= ug r=u_, t = u and p' = u; (1.4)
It will be assumed that n,u',p,p',q,r,t,uxxx and uyyy are independent,

Differentiate (1.22) w.r.t. y amd (1.2b) w.r.t. x . The coefficiemts

of u amd u are
xxx Yy
P - Q - o - (1-5)

Thern one must have
P = _P + P X
° 1 : (1.6)
Q = Qo + Ql-t
where Pi and Qi ({ = 1,2) are functioms of u, u' ,p, p' and q only,

Them one must have



Lol s =2l g + 24 @ + 28 Flu) + 2 Flu) +, FIK

Mo ™ ' ‘s (1.7)
O =20 0 + 0 Qy+ 4 Fu?) + 27, Flu
vy /4 Yo [ K ( ) 7 /) (1.8)
0 == qu q “"Db/_'" 4:0 / . .
W’ ! W “) (1.9)
F(44'): Wc_/-l- A /’4 2% fo + 2% /44)4—6? F{q)
g1 . L. g p
r s I ‘)/1/ (1.10)
0= Lh L+ 28 L+ % fo + 28 Flu)
Y vy YT 27/ (1.11)
0 = )_9_;1_1/’ + 3; W= 0. (L12)

The rest of this chapter is comcerned with the solution of (1.7)
to (1.12) . It will be showr that these equations do not have a

solution. (Subject to (1.3).)

§2.That Q,=0.
It will be shown in this sectiomn that Q1 = 0, Since

the proof proceeds by comtradiction assume that

Q + 0 (2.1)

Take 7P [B——rQ' —](,7) °%r’[>‘j{/+c?")%"]'(l'g)‘

3§ A F/,,,\afo_F« P 2l @ Flu'). 25
)’“'kﬂ+q /5 {)/v._{ € F /

' &’
(2.2)
. ta +
Taking " ! -27/ , for m=1,2 , ome sees , from (1.3),
that g{%’:; O . But (1.8) amd (1.9) them inmply
P, is a conmstant (2.3)

1
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Define z =p' - P,-p (2.4)

and use z imstead of p' . Them (1.12) is

?;4. - 7 s 0/ J (2.5)
Ir P0 is nmot 1linear im p them (1.10) amd (1.11) readily give
that F is & constant., Hence
where P2 amd P_ are fumctioms of u , u' , z amd q onmly. Then

3
(1.7) to (1.12) give

Pl g = o+ Ua Ree [F)- AF()]. 20 4 fF) @7

2«4
“(at?) = Flua .f,'a' 27, | “
o= D—P‘Ll'q.*?ﬁ" =2 3 (2.9)
' Yy /
F(,HI): %% 1 MO./I + %F(’H)#—q’F’(M)p (2.10)

+ 2%, _F(M) _ (2.11)

7 7y
0=2% 4 .- 2% + f;& 1 =0,1. (2.12)
' 3‘7

L)% an p) ]= 2 [ F1) 28 1225 . )
! | Y Lo Yo el

7 (2.13)
Taking (Q"}%-+ ;5/) for m = 1,2 of (2.13) amd using (1.3) one

sees that

)ul



‘3_/2 3_4 — % _P3 (2.15)
» Iy Yy
2_"3 NI (L) 2_43 (2.16)

Then (2.7) , (2.8) , (2.14) , (2.15) amd (2.16) imply

f3F('M)3£S—’ - F'/M)‘/"a\pz (2.17)
P v’
Ir ?2!3 - O and P, $ 0 them airr, (2.8) w.r.t. u' to obtain a
}M’

contradiction to (1.3) .

1r A + O them (2.14) and (2.17) inply Pl.Ftu).z-PI.PB.F(u) .
nt’

Divide by P1 and 4diff., w.r.t. u' to obtaim a comtradictioan. Hence

Then (2.8) , (2.9) and (2.14) give that

P3 is a constant (2.19)
Define ¥z - P (2.20)
and use w instead of z . Them (2.12) s
28 _ o A= O, 1 (2.21)
A

Take (Q‘l)w' (2.10) - (QO)W' (2.11) amd differentiate repeatedly w.r.t. u
to obtain (Ql)w =0, using (1.3) . Then (2.11) amd (2.12) imply-

Q, is a coastant (2.22)
I (Qo)v-c thea (2.10) implies that F is a comstant., Hence

(Qo)w"'o and so (2.10) amd (2.21) imply

Py =M+ Mpu + My F(w) ¢ MLF () Zf’i*_ =0, vz9,,3 (2.23)
Equations (2.9) amd (2.10) them imply
-— . 1 -
O - Q" ’a__ﬂ/_f:‘ + Qi:‘ Az 0/. )3 (2-2,")

r oy



F(Ml)': Mo?f-?-:’ +/¢\/’a_g_‘, (2.25)

Q
)
3
¥
X
[

(2.26)
0= M,.29: 4 % (2.27)

= 1143 g_/’?_; + 62’_ F'{M), % (2.28)
Ir M3 = 0 then (2.28) comtradicts (1.3) or (2.1) .Hemce
My $ o (2.29)
Then (2.7) implies '

F''(u) = by + b .u+ b2.F(u) + bB.F' (u) (2.30)

Thea (2.7) implies

Flu) o = (M, + 45 3)p+L_ Qo + [Flw)- by]. 20 (23)
/v-/

F‘(-u’)./% = £,. 3 .+ M @, + [F/“ - J?} M (2.32)
ya 3~
O = '{’1-"(3'}7'6 + ‘aﬂ;.q,-r [F(u’) j oMy, (2.33)

(M‘L*'{/ M3) ?/* b o™ [F(«')-#,. 3724 a,vz (2.3)
vl

p=q- Q'l'l.u' : (2.35)
and use P imstead of q . Them (2.24) implies

Define

wﬂ:o =0,.., 3 (2.36)

)4/' !

- ] (]
If Q, AO + Al.u + A2.F(u ) where A, Al and A2 are fumctions of w

and p only, them one sees that the coefficieants of F(u') amd F'(u')

im (2.25) cammot both vanish. Hence
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Q, ¢ A (w,p) + A, (w,p).u’ + Ay(w,p) . F(u') (2.37)

Tasr (2.3%) and (2.31) must imply

0 L WM L o (2.38)

0f
Then (2.33) implies
W O My = P3 = O (2.39)
Y
Then (2.32) and p3 = 0 imply
M, = 24 - A, M

Ny 2 3=

But (2.29) , (2.39) amd (2.40) imply that b, = b, = 0 . Then (2.30)

contradiéts (1.3) . So it has beem skhowm that (2.1) cammot hold.

(2.L0)

Hence Ql - O (2.2&1)

§%.For Q= 0.

It has bYeen shown 1ir the previous sectiom that Ql =0,

Then (1.9) gives that P, and P, are imdependent of Q. Ther (1.7)

gives

Q = % * Q.9 (3.1)

Then (1.7) to (1.12) imply

Fila)f'= 2o @ur 2o Flu') + o Flu) + £.F ) A 02
' X %*

O= 24 @ + 24 Flu')+ 24 Flu) (3.3)
¢! AR :

0 = gﬂj«' + ?ﬁ’-. % 1-.,_(7) l . (3.4)

Flv')= 29 ¢ 4 22 g7 + 290 by + @5 Ff) ©-3)
e v’ 7'

0=, 0+ 2%:. L'+ %3, F (3.6)
W3-/ Yot / X v

0= 2% , #,2%. A=273 (3.7)
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Take g)}tg}’_(ifg_;ﬂ(};)_ 57_%.(%+/,5%9,,> (3:6).

?3,_ (29'51_,, P,.% = ?%; (Sé} —rﬂé?_i}’> (3.8)

Taking

f,-;—l.;_ -;ag of (3.8) ome sees that if this operator

acting om P1 is nmot zero then there is a fumctiom @ such that

G f K 2Ry = O A=7,3
P A’
d & 2 XK.2 713 ) - : :
Take 23 = + 3.9) 2€&€. | 2 oL D 3.4 to
7 [5= 3,1']( % (2 =] J
obtain 9_‘(3_F'(44') — O . It will be assumed for the rest of this
%l
section that K.
Einl} + O : (3.9)
AL
Hence
f,- 24 %% -0 (3.10)

o’ I
The rest of this section 1s devoted to provieg that (3.9) carnnot hold,
Case 1,
°0h 4 0 (3.11)
7 7
Then from (3.10) one sees that u , u' , p ard 2z may be used as
indepandent variables where 2z = z(u,u’,p,p') is given by

p' = flu,u',z).p + z

(3.12)
P, = {u,u',z
Equations (3.6) amd (3.7) imply
P, = Ao(u,u',z) + Al(u,u',z).p + Az(u,u',z).pa (3.13)

simce both Q2 and Q,3 independent of p' gives a contradiction to (1.3).

After some re-arranging amd defining A3 by (3.23) one has from

(3.2) to (3.7) that


http://fj.3L._jL

g Pl 5%; + ﬁ%- %%;' K\?7
°95_‘9%,*/'}%,+’433%
°9+:—9’7+ Ao 2

T /

B A =P~ )-f= LA Fl) - £ F~)]
EF'('u) f.f:(v]

9 Ay =) f = Ao Fl) - fFL]

CP=) - 7 Fl)]

N j( = J

D, A =0  =0,1,2,3
Dy Q. =0 A= 3
@3/= AL

$+ Q} -0

De @ = [F(’”) @ F(")] 3

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Consistency om (3.15) amd (3.20) gives, using (3.11) , that

9, =0, [ & .
AY L -7 F(M)] (3.26)

@1‘991 = £L‘Ql =0 | (3.27)
D8, - 8,8 A—A—,,@["’F(u

= [ 1(45-4) - _FM]

(3.28)

Ir A2 ¥ O them divide by it amnd differentiate w.r.t. 2z to obtain a

contradiction to (3.9). Hence
Ay = O (3.29)

Now (3.17) , (3.21) amd (3.27) ome has
[}Ea-a éD' - éB: ‘£)7.-1 A, =

Q. F"(u').[F(u')-f.F(u)] - F'(u').[F'(u')-F'(u)]} (3.30)
a F"(u).[F(u')-f.F(u)] - f.r'(u).[r'(u')-r'(u)]

Take of (3.30) ard eliminate Q; - Onme obtaims a polynomial inm

f with coefficients which are functioms of u ard u' only. By (3.11),
then, one has that these coefficients must be =zero. The coefficient

of 3 is

F''"(u').F(u).F'(u).F'"(u') = ( F''(u).F(u) + F'(u).F'(u') ).F'*''(u').Flu) (3.31)
Without too much difficulty ome then obtains that this contradicts .(1.3).
So it has been shown that (3.11) cammot hcld,

Case__?:

_ﬁ’ = 0 (3.32)
oF
Then (3.3) ’ (3.4) and (3.10) imply

P, 1s a constamt (3.33)

Definme z = p' - Pl'p (3.34)

and us& 2 imstead of p' . Them (3.5) to (3.7) imply
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3?1. = J IA.:' -L/ 3 . (3.35)
K
PO = Pj(u,u',z) + Ph(u:“"z)-P (3.36)

Substitute this imto (3.2) to (3.7)

}I’f f

Flu)fy= e @, + %_[F(uf) -/’,.F(u)]-t—f’l.F'/M)'
! % |

F'(M').}f = 'E_{:_; _ Q’L + ;__; ) ['F(fu’) _f'. F(M)] + /7_./:/14) (3.3

A= 3¢ . (3.39)

F(w’-) = 9, 3+ VY, P+ Q ,F(M) (3.10)

———'}"’9-33../)3. (3.41)

O= 2% | P 2% + Py 9% 1= 0 3 (3.42)
™ 344’ 27 / ’
Consistency on (3.41) amd (3.42) using (3 9) 1is _
< 1 p’ | l’ + /9 ( E— / U
[ Y Ju ) M' (3.43)
Consistency oam (3.40) and (3.42) is then ' .
( Pl.F'(u') - QB.F'(u) )oz = Ph'( F(u') - QB.F(u) ) < (3.4k)

Take 9 Q3 2. of (3.44) and eliminate P, . Take 2 F-2 4 4_,3_
M ' M '’ %
of the result and eliminate ?,0.&1 + Q,'&' It P1 = O then one
v ru’

obviously has a comtradiction to (1.3) . If P1+O then one has an

expression, limear im Q,3 and haviag no explicit 2z depemdence., Because

of (3.9) the coefficient of Q’ in this as well as the tem
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independent of Q3 must vamish, Take the coefficiemt of Q3 , multiply
by F(u) and subtract from F(u) times the term independemt of Q,3 .
One then has a contradictiom to (3.9).

Hence (3.9) cammot Ye true,

Sk, P _isa constant.

It has been showm im the previous section that (3.9)

canmot hold, From this, (3.6) amd (3.7) ome has that

Q; 1s a constamt (4.1)

Note that it 4is equatioms (3.2) to (3.7) which are beimg solved.

It is dJdesired to prove that Pl is a constant, so for the rest of

this sectior assume

2h 30 . (x.2)
'
It is then desired to fimd a contradictiom. Eliminate Q2 fron (3.2)

and (3.3) . Take )-%—f- Qg-)%, repeatedly of this to obtain

F(-u") F(w) Fila'). L= £.F )1
Q. Flu') Fillu) & Flu')f'= O Flgg \= O
Ry Flx) F(w) Q;.F”’q').;('— P F ) L (4.3)

Note that this implies that

Q, $ o (b.4)

Case 1.

P, $ A(u,u').p'.p™? (4.5)

Then the coefficieats of p' and P,.p in (4.3) must both vanmish,

Lookirg at the u dependeace Qf the coefficiemt of p' in (L.3) onme

sess that F must satisfy
F''(u) = ao.F(u) + al.F'(u) (4.6)

vhere a, and a are comstants, Substitutimg (4.6) into the p'

component of (L.3) amd using (1.3) ome obtains that

-Q3 a +1 (ho'{)

v—— ——— —— T oy
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From (4.6) amd (1.3) ome has that F(u) = Al.exp(clu) + A2.exp(c2u)
or F(u) = (Al + Aau).exp(cu) . Omly the former case will be comsidered

here, although the latter case is similar, That is take

F(u) = Al.exp(clu) + A2.exp(c2u) (4.8)
vhere Al s A2 ’ ¢ and c, are constants, and where
A, $0 , A, $0 , ¢ $0 , ¢ $0 , ¢ + c, amd ¢, $ -c, (4.9)
Define
w = 3(u'+) ’ v = 3(u'-u) (4.10)

Thean (3.3) and (3.4) imply

?.ﬁ" = I 1= o / (+.11)

24 / g

G S
ox LA Wa (v, 4,27 4 1AW (0, )4

Equations (3.2) to (3.7) ther are, for i = 1,2
v

C'\/
Al =w.h o 9 + 2 N
. % (.13
o= “/4-.;_5:+e LA Z (t0)
v G /
R T o K Y g AT e T Lol
> PP
0 = v

I~ 9;; (4.16)

Note that (4.15) amd (4,16) imply
[ (4.17)
— # 0.
oF
Eliminate P, from (4.15) and take 2. + /z. ;l
%’
P~ Zl_;z IV - W El!fs.:r C,WAW L W
@ )[ D T (7, f'l)[ > c,. v

(b, 1€
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1 A |/ # O then take

g % %,.,_; of (4.18) to

see that both sides of (4.18) must vamish., This , (4.15) , (4.17) and

(L.2) inmply that
Ctv/ "Cmﬁ’ C, Vv -C,v
e, w, [2 ]-: %-Wm-[ﬂ ' _e ]

Diff. w.r.t. p' amd use the fact that the R.H.S. of (4.18) is

zero to eliminate w2. One them obtains a comtradiction, Hence

P’-lp_' 4-2&_—_-_0 ) (]4.19)
F' I

Eliminate derivatives of P, from (4,14) amd (4.19) using (4.2)

LV g - -Cls’
W [T W [Sf0T ee
Consistency on (4.15) amd (4.16) is
093V‘/1‘ + C..*-(p:*’) w, =9 ' (4.21)

where

93:@ ‘)2’— + X_&?_/
I (4.22)
X‘—‘”L[%”u"’w] [ fK)a_-ﬁ.&;;

Take 09 of (4.20) and use (4.20) to elimimate W, . Take
3 .

, v, ..C1.v ,a
Wf 2 + £ —a-, + < —~ repeatedly of the result to see
that the coefficients of exp(cl-ce)v , exp(ca—cl)v ’ exp(c1+c2)v and
exp(—cl-ce)v mast vanish. The coefficient of exp(c1+c2)v is
(cl—cz).P1 = 0 which is a contradiction. Hemce (4.5) cannot hold.
Case 2,
P, = A(wu').p'.p™? (k.23)

Then (3.3) gives

Qo = B(u,u').( F(u)p™ - F(u').(p')™* ) (b.24)
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Take )0 %, 3_ of this to obtaim a comtradiction. Hence (4.2)
cannot hold, Thf is

L1

)’V]’
But then (3.3) and (3.4) imply that

P, is a constant (4.25)

§5.Po-is linear

The equations to be solved are (3.2) to (3.7)

vhere Pl and Q_5 are constants. Define

z =p' - P,.p (5.1)

and use- z instead of D' . Them (3.5) amd (3.7) give

'3—/;%; - 0 : (5.2)
Py = 24(w,u'yz) + Z (u,u',z).p (5.3)

Substi.tute (5.3) into (3.2) to (3.6)
F'(-CL'), = 24, _Q_l +[Fla')- P'F{M L
5= 2 G s [P AT 3%
Flla) o= 22 g + [Ffu')~ . Fw)]-22,
o & 5

0-&+Q3L—L‘ = (5.6)
du ’
Flw) = 2.5 + 2% 2, + & F(u) (5.7)
re %
O= 28 4 £3% 4 2, 2% (5.8

) u dv’ | Iy
As in the previous section, the proof will not be given _in the
case F(u) = (A1+A2u).exp(cu) because it 1is very similar to the case
under consideration, I have carried through the proof 1im this case

and found, as in section U4, that (4.2) cammot hold and in the

present section ome finds that (5.9) cammot hold.

<, F/‘V) (5.4)

= F F/’W) (5'5).
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For this section assume that

z, $ A(u,u').z (5.9)

It will be shown in this sectiom that (5.9) cannot hold,

If Z., is independemt of u' then comsistency om (5.4) amd (5.6)

0
gives that 23}: equals a comstant times 2z simce, by (1.3), one has
7
2 4 g 2 [f_("’_] *O ,But them (5.4) gives a contradiction
o ') UFE (v)
to (5.9). Hence ome has that
22: g 0 (5.10)
I |
1t 2% =0 then (5.5) and (5.6) give that 2, is a comstant
Nt
and that P, = 0 ., Define w= 2z - 2Z..u and use w instead of z., Then

1 1

(5.7) and (5.8) imply that
Zy = wo(u',w) + wl(u',w).u + wz(u',w).F(u)
Substitute this into (5.6) and use (1.3) to obtain Wy =0, One then

sees that the B,T. does not depend on u or its derivatives. Hence

0% 40 (5.11)
)14 ’

Eliminate Q, from (5.5) and (5.5) . Divide by (Z,) , and diff. w.r.t. z
=) ' N'7 L 2 0—'
r(f)b,?[ i(} %3_7)(%3,)] F() a? ﬂzl,%’ (&) 'f

'—‘-[':(M’)- f,-F(v)].).';-.j [%:;9)_;. - 1 (‘az -j

If both terms on the L.H.S. are 2zero thea integrating up gives

(5.12)

a contradictiom to (5.9) or (5.10). So take 2_ + QB_Q_
. 91{1

repeatedly of (5.12) to obtain
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F’@dﬂ FYu) F(M’) \
GFl«)  Fl) QuF(w)
Q F () Fw) @)

The u dependence of (5.13) implies
F''(u) = aO.F(u) + al.F"(u) (5.14)

=0 (5.13)

So, by the discussion below (5.8) take

F(u) = Al.exp(clu) + A2.exp(c2u) (5.15)

Substituting (5.14) imte (5.13) gives

Qy = +1 (5.16)

Define

vau' -u : (5.17)

and use v instead of u' . Them (5.6) and (5.4) or (5.5) imply

32 =0 =0, 1, (5.18)
W ’
G, .« G~
= A, (v)3). 4 “i(3) -2 (5-19)
Substitute (5.19) imte (5.4) to (5.8) to obtaim, for i = 1,2
v c.v
C"._l . } = ?io.v/«' + (( ! - f) \o + 2, (5.20)
v
v C v
(e -0).p= 2Zwr (27 - £) 22 (5.21)
Vi 3}
c{wf .
Y S A LA A . (5.22)
r T
' _ _ _ . 2 oWy
0 = CA..\A/,f + (ﬂ, /)M + ;= (5.23)
Note that if P, = O then (5.21) implies w2.exp(c1v) - Wl.exp(cev) .
Take the operator im (5.23) acting om this to obtaim W, = A(u).z™! .

1
But then (5.23) gives a coatradiction to (5.9) . Therefore

P4 O (5.24)
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Define

N, = w “v o
\'3“W .a__!-f—(‘e '-fl)-?L/"V\/,'-aL/’—"{'( ",;)D\M{
r o >
| (5.25)
(Fi—1). ™ 4 Z,.9%3 _ _ (¢ Q). g (5.26)
IV )bf
Use the conmsistency condition on (5.21) to eliminate derivatives of Z1
from (5.21) *
( 1_(1-) M C'LV

?(C,—ct).[z

(¢, + ¢ v
Wi (e 2T e (qmh0) 7k e (et e

-F'}-r- (- fe)e - (c,—/’,Q)# /

Qv

J

GV 2t 2 Civ
(f~v)ic wite T+ cl.v/,.elf -0 (5.27)

Take (f."’)l + 2.2~ repeatedly of (5.27) to elimimate W. ,

o % ’
LA wi and w; . One sees that the coefficiemt of exp(2c1+c2)v or
of exp(c1+2c2)v in the result must wvanish, In either case ome has

(e c, =P .c2)(p e - c2)(1>1 -1) = 0 (5.28)

If P1+0 then ome may w.,l.0.g. take el'Pl s e Then from the

above mentiomed sequence of equations from (5.27) ome may prove

that W, = ¢ .W..W. and W, = P°.W .exp(—cav) . Take 3 2. L 2,.2

3 17712 1 "1772 P 32/

of this last equatiom to obtain W, = A(v).z™? , which, from (5.23)

gives a comtradictiomn to (5.9). Hemce

P, = 1 . (5.29)

Consistency on (5 21) is then

B) (e""’-l) ;«f] [(z ] [_Tb (<‘* -:) )‘/] &‘G ")]

(5.30)
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Take }';fzo-l of (5.30)

z = A(v). Wt + B(v).wg1 (5.31)

where
¢, v -1

clv, ' ~
AMi ¢t e L (e'-1) - Cf-fq.(ec‘v-/)'f

= - () (T (25
) {4 €U e (T
= S (eclv")- (¢ R (22 “_y ).

piff. (5.31) w.r.t. 2z, multiply by Z, awd use (5.23). Solve this

{5.32)

and (5.31) for W, and w2 .

W, = A.(c,-¢ )(2,~cz)”> .
1 17%/\417% (5.33)

_ _ -1
W, = B.(c2 cl)(Z1 clz)

Substitute (5.33) imto (5.30) and use (5.21), to obtaim for a constanmt X :
A(v). (exp v - 1)™* = B(v).(exp e,V - 1)71.x
From (5.32) ome sees that this carmot be true,

So it kas been shown that (5.9) cammot hold. This completes this section.

6.Conclusion.

The proof that there are mo B.T. of the form (1.2) will
be comoleted im this section., From the previous section one has _tﬁat
(5.9) carnot hold, Hemce
z, = Afw,u').z ' (6.1)
Then (5.5) and (5.11) imply

QL = B(u,u').z™? (6.2)
Thern (5.7) implies
Zy = C{u,u').2® (6.3)
Substitute (6.1) to (6.3) imto (5.k) to (5.8)
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F'lu) = 2C B+ [Flu’)-p.F)].2C + A.F(«) (6.1)
e
F'lvw).f = 2C. Be [F(u)~bFlu)].A + £, F(x) (6.5)
yu'
o = %ﬁ_ + Q;i—ﬁ (6.6)
0 = 2C€ . @, 2L (6.7)
v >
F(v') =28 - BC + & F(u) (6.8)
Py
O =28 , P .28 — AE
N » + t - -—’ (6-9)
Yot
Note that (5.11) is
2A 6.10)
24 20 (
U
Eliminate B from (6.4) amd (6.5) .Repeatedly take the operator in
(6.6) and (6.7) actimg om this and use (6.10) .
F () F () Fla)  Flx)
o) wfl) o |
G GER) e PR
Q}?_Fi“(ul) Q;_F’”(’”;) FN(M) F’"/"()/ .

Suppressing the u' dependemce one may replace the first two columns
in (6.11) vy (O,l,al,aa) and (1"3’ah"5) respectively. Take F(u).col 2
from col 4 amnd F'(u).col 2 from col 3. Expamd along row 1.

In the resultant 3IX3 determinant again use the constant column to
expand along row 1 . In the resultant 2x2 determimant one sees that

the first columa is the derivative of the second. Integrating this

one obtains that
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F'''(u) = bo.F(u) + bl.F'(u) + b2.F"(u) (6.12)
where b0 ’ bl and b2 are constants,
Case 1.
F''(u) 4 cO.F(u) + cl.F'(u) (6.13)
From (6.11) , (6.12) amd (6.13) it is mot too difficult to see that
Q3 = +1
Qy = -1 amnd F'''(u) = K.F'(u)

(6.1k4)

or

If P = Q3 then (6.6) amd (6.7) give that A and C are imdependent

of u when u ard vs=su' - Pl.u are used as independent variables, Take

¥ LA, -t 2 .0,
- c - A, - Y1 of (6.5) where u amd v are
i m Pl
used as indepenrdent variables and use (6.12) and (6.14) :

Boou = Po*B * by.B, * BB (%)

With u amd v as independert variables, equatiom (6.9) gives, on

integrating, that B = D(v).exp A.u

Substituting this imto (*) ome obtaims that A(v) is a constant. This
contradicts (6.10). So ome must have
P, i Q} (6.15)

Consistency om (6.8) amd (6.9) imply

F'(u) + F'(u') = 2,A.F(u) + 2.C.( F(u') - pl.r(u) ) (6.16)
Define Vveu - QB'“ (6.17)
and use u and v as independert variables, Them (6.6) anmd (6.7) imply

A, = C, = O \ (6.18)
If Q, = -1 then (6.14) gives F(u) = F, + F .e“® + F_.e™ " where Fy »

o) 1 2

F, and F, are comstants. substituting this imto (6.16) one readily
obtains a contradiction., Hence ome nust have
Q3 - +] (6.19)

cu
If F(u) = (FO + Fou + Fa.ua).e or F(u) = (Fo + Fl.u).exp cu + Fp.exp cyu
ther (6.16) readily gives a conmtradiction. So take

F(u) = Fl.exp cju + F,.exp cu + F3°e1p eyt (6.20)

where § and cj are constants,
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Substitute (6.20) into (6.16), equate coefficiemts of exp c;u for

i=1,2,5. Then elimimate A and C from these equations

(G-c) (e 1) (¢ o ec'v) = (Cs-ﬁ)-(ecf;/) (¢ %
(6.21)

Since ¢, , ¢, and ¢, are distimct, ome sees that (6.21) cam only be

satisfied if
¢y = ey tcym 0 (6.22)
or equivalent e.g. c, = c3 + c, = O. So one may take
cu -cu
F(u) = Ky + Kjee + Ky.e (6.23)

Substitute (6.23) 1into (6.16) and solve for A amd C.

C = 1c.coth Zev

(6.24)
A = C.(Pl—l)
Substitute (6.23) into (6.4) or (6.5) to obtain
; B = KO.WO(V) + xl.wl(v).ec“ + K2.W2(v).e-cu (6.25)

| The terms independent of u im (6.5) amd (6.9) are then

O=2A W, + (I-#).A
Al

’ O = (fﬂ —-I) oW, A W,
| r
From this and (6.24) ome easily obtains a comtradiction. Se (6.13)
cannot hold,
Case 2.

F''(u) = co.F(u) + cl.F'(u) (6.26)
Substitute (6.26) 1imto (6.11) to obtaim a polynmomial in (F'(u'))/ (F(u'))
with constant constant coefficiemts.From (1.3) these coefficients must

vanish, It is them not too difficult to see that this can only

happern 1if
Qy = +1 (6.27)

Define veu -u (6.28)

and use u and v as independent variables. Then (6.6) and (6.7) are

A, = C, = O C (6.29)
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Only the case

F(u) = K .exp kju + K,.exp ku (6.30)
will be considered here. The case F(u) = (Ko + Klu).exp ku is very
similar and like the present case does not give rise to any B.T.
From (1.3) ome may take

K, 0 , K, $o , k, bo , K40 , X $k, amd k, ¢ -k, (6.31)

Now equation (6.,4) or (6.5) gives, on usimg (6.29) amd (6.30), that

B = Kl.wl(v).exp kju + K,.W,.exp ku (6.32)
Then (6.4) to (6.9), for i =1,2 , are '
L Lo
£..2 = 4C W, + (@ _/,).’lc + A (6.33)

L

Lo~ A Ao~
Lo f = Zé'w" (7 =F) A+ A<, (6.3)
A '
2 = lw, _ CW,. +| (6.35)

) %%
0 = 4w r (A=) dg L Aw 6.
B

Eliminate derivatives of W, from (6.35) and (6.36) . Differentiate the

result w.r.t. v and use (6.33) to (6.35) to eliminate derivatives

of A, C and Wi . One then has that

L. v AL,
—-P,): ,(4(‘? -f-l) (6.37)

Eliminate A from (6.37)

2 c,(r.e'z"v- Jz”‘/‘jv) -

2 A +1c,((

N

. (.e/!v-(—() - L ((’A"V.H> (6.38)
Note that if P, =1 then (6.36) implies A =k
From (6.37) amd (6.38)
~ n~ ~ A
2A ((4,4/_ -QX‘V) = ’{l ( 'e/’ ‘H)(P' - 'e'(.t ) ) '{-z. {e’ﬁ ﬂ) (’/"_\0'
(6.39)

l-kea

Also from (6.35) amd (6.36) :
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’{‘L

W, (/\1-4’,).(»2 V#'I) =7 (4"") (_e—f,“" {/.,_v)

(6.40)
- ’ p ,4"\/ i/I'P’ L A

W (4 -4) €)= (A=) (€T-27T)

Substitute (6.39) amd (6.40) into (6.36)

(‘lr“l—)'v {,Ln/
€ _(54,_31,_') -'LA..JZ'L F P (A=)

+ [(4——-fo)‘l"(‘~]'{4v+ [(’)"1)'41' {']'{4{‘, =0

One ther sees that, because of (6.31), this canrot be true.
So one sees that (1.1) has no B.T. of the form (1.2). The next

chapter is amrother attempt to fimd B.T. for (1.1).
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CHAPTER 5.

§1,Introduction.

A fipal attempt will be made im this chapter to
find B.T. for equations of the fom
Uy = F(u) (1.1)
by allowing the B.T. to depend on derivatives of u and u' only.
One is only interested im B.T. which are useful im solviag (1.1).
So one would 1like the B.T. to be as simple as possible, The
easiest way that this can be done and which kas not bYeen considered
previously is if one equation in the B.T. is an ordimary differential
equation 1i.e. take
Bley = PSP s ee sy’ sl e BR) (1.2)
for one of the equations of the B.T. pair. Here Py and p; are
the ith derivatives of u and u' respectively.
If the B.T. does not reduce to first order equations for
u' (considered in chapter 3) and if neither of the equations in
the B.T. reduce to an ordinary differential equation then it 1s hard
to see how the B.T. could be useful in solving (1.1). Unfortunately
from the result of this chapter there does not seem to be any B.T.
of this type for (1.1).
If one differentiates (1.2) w.r.t. y and assumes that both
u and u' satisfy (1.1) then if u' actually appears im (1.2) then
one may take the Bsecond equatiom in the B.T. to be
uy = Q(u,pl,...,pM;u',pi,...,pﬁ;u§) (1.3)
Actually, from the lemma of asection 3 of chapter 5, one sees that
the second equation must be of ‘this form provided only that the
simplest form of the first equatiom is (1.2).
To look for all B.T. of the form (1.2) and (1.3) is very
difficult. The main motivatiorn for this chapter was the xrumerical

results for the double sine-Gordon equation, Also, in all examples
considered so far ome has found that F(u) of (1.1) must satisfy
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a linear equation. So, for the rest of this chapter, instead of

(1.1) take the equation to Dde

u = simu + K.sin cu (1.b)
xy
vhere X &nd c¢ are coanstants with
K $ 0 and c.(c®P-1) ¢ 0 (1.5)

Even with this simplification it is very Jdifficult to work with
the forms (1.2) amd (1.3) .A reasonable assumption seems to be that
ome cannot tell whether u or u' is the "new" variable . Infact,
in analogy with the 8.G. it will be assumed that the B.T. has
the form
(Pfe1 = Pys1)= BPgsPysesesBysRgsP se o sBy) (1.6)
£{@' + @)= Q(pysPyseeesPysPsP] s+ sPy)
Note that if there is a B.T. of this form them &ince -u is a
solution of (1.4) whenever u is there is also a B.T. of the
form pu,, * P, =P 5 2 -a=Q. ‘
It is proved im the rest of this chapter that for N < 5 there

are no B.T. of the form (1.6) for (1.4).

For n>0, %:A,\-MM'*@\-C«DM + K G ol cu + K f s ceq

) T e

Now this is the definition of An ’ Bn » cn and Dn which are functionms

of DysecesD only., The first few are

n-1
A1=1 31-0 Cl=1 D1=0
A2 =0 82 =P, 02 = 0 ) D2 = ¢.p; L
» 2.2 (i.8)
A3 = -Dy 35 = Py c3 a - ‘.pl pj = c.p,
- = - p3 - - 2 . - - e3.p3
Au = 3.p1.p2 Bh p3 p1 L e C .p1 p2 Dh c.p5 c .p1

- B‘ (1.9)
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Differentiate the first of (1.6) w.r.t. y and the second w.r.t. =x.

The coefficient of q' -q imn the <first must vanish i,e,

?l - 0 (1.10)
2o

Also the coefficient of GN41 in the second must vanish 1{.,e.

EQ - O (1.11)
04
If P does not depend om u or u' them the coefficients of sin u'
and cos u' in the y derivative of the first of (1.6) must wvanrish.
The 1lemna of section 3 of chapter 3 1is themn applicable and one
sees that P - %pﬁ+1 cannot depend om p! for any m. But P does
not depend onm p&+1 . Therefore

;_f’ 4+ O (1.12)
Ao

Then from the y derivative of the first of (1.6) one has

Q = Q,.=in By * Q,.cos By *+ K.Q}.sin cﬁo + K.Q,.cos cB, (1.13)

Now consider the x derivative of the second equation in (1.6). If
Q does not depemd onr ﬁN then one sees that it cannot deperd on
BN_1 OF . . o OF Bo . But then the R,H.S. is independent of Bo

while the L.H.S, is not. Hence

?ﬁ 2 19, (1.1k)
3,6,/

Also .
P = Py *+ P.a (1.15)

Substitute (1.13) amd (1.15) into the y derivative of (1.6a) and

into the x derivative of (1.6b). Define

(1.16)
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M1

F - 2+ Z [A(A-A)er o A(aI-0)n] 2
M
£ ' . ° "'%. éL' 5; Lo
"'7\%’ [1(An*’4ﬂ)m'( (6t )"‘""o}%ﬂ
,EL N1 A ,q’ p ’ (1.17a)
— 1+ . °
5 Q1'§j<°+,,\=, [1( - r\) ac, & +41(£,\4—6,\),cnx°],92;(;\
M [ . /
+ 2 [{(Aﬁ-"n)-%"o“f*L(ﬁn—ga)-&wco]z
n=| Ebg>\
7 V-l (1.17v)
7y = 62}.%(°+ E‘ [{ (Ci= G)con ca(o~{(ﬂ,\’—0h)_«qcog]_a_.3
v

+ L(CHCD) o €y =L (048 o ca(] 2
ﬂ; [‘L(Cn ) \( ) ]5(6’,

(1.17¢)

-l
L= ir 2 ) e tlaima) o] §

= {
N

+ Z [4(-6) mmet 1(4- an)-wc«]-gﬁ

(1.174)
From (1.7) one sees that, for = > 1
Bn = En + pn-l

(1.18)

= F + C-p

n A a-1

wheare En aad Fn are functions of p1""’pn-2 only.

The equations to be solved are

2,¢=44 (-9
R Q =elc— Q. f (1.20)
A (1.21)
B Qe = =~ ey - Cf 45 (1.22)
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+  (1.23)

(1.24)
/:711 (=9 (1.25)

;7} P, = — C.o CKyp, (1.26)
}/4’ fi= 0. (1.27)

K (;ftvaja r’fv!) cr oy = % ( rt 1 6;’*“ )"aq;‘xs

[4 (A Ay erdo = 4 (8 ~8) = T £, (120

R
o
\)

?‘LPO = -LL(A/W-'I - AVH)"":‘O“’ + 1 (ﬁﬁ’f—ll _gt"ﬂ)'cad"
= [4 (A - Ay) .o dor 1 (8 + 4) comoo]. 1
f, = % (Cyf-’f"'cvﬂ)'wc'(’ =& (Fayy "'FVﬂ)""".‘co("

= [4 (/- @) om e £ (8 —g) o ],

,;4__ b, = J{_(Cfvf’,— ,\4,) i Cd, T T (4,,_, Mr,)_cnc.a(’

(1.29)

(1.30)

(1.31)

- ]:41 (<;Vf+—C},)_‘AL{~ c, ¥ {.(l&¢!1Pi&<)c4> qu:]_/i
It 4s equations (1.19) to (1.31) vhich one wishes to solve. The

rest of this chapter is devoted to solving these whem N <5 . It

is found that in this case they have no solution.

§2.Basic Results.

Three small results are found in this section., The
first is the case N =1, The second is to find how the operators in

(1.16) and (1.17) commute. The third is that P, must depend onm BN .

1
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For N=1, if Q is independent of Bl then (1.21) dimplies Q) = O.

But then (1.22) cannot hold. Hence

28, 1 0 (2.1)

P

Consistency on (1.21) and (1.23) is then

"9‘2(;'0).: .;_"’.g_;f (2.2)

Consistency on (1.22) and (1.23) is then
o (Mfm> -
f

i,e, P1 = c.Bl.cot cao (2.3)

Similarly from (1.19) , (1.20) and (1.23) one has

P, = Bl.cot a (2.4)

1 0
But (2.3) ard (2.4) cannot botk hold. This completes the case N=1,.
So from now on one may take
N> 1 (2.5)
From section 2 of chapter 3 and, ir particular, equation (2.9)

of that sectiom one may prove, in the notation of this chapter

2% - F D= b Fr LA A cono- (8] %],
(2.6a)
DF - F D=~ fH+ [ (aA) it (&b e [ D

0%1/573‘ /5{30%,= C-fgl'fl’ﬂi- , (2.6c)
+[{(c,./—c,:,).cn ¢ =4 (/- 4) <. Cdo].o@l
g)‘/;q—_,‘(;{r@l: —C./SI-% (5.6)

b (/) o oo € 4B+ L) e e ] )

@1 /5/4' -~ 7“- £1 1-: .. 7~ (2-7)

/ /
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Finally it will be shown that P1 must depend on BN « So suppose

—a-ﬁ = O (2.8)
Y%

It is then desired to find a contradiction. Differentiate (1.24) to

(1.27) w.r.t. By and use (1.1b)

D_Fi - J (2.9)
0K,
But then the coefficiemts of sim @, and cos a, im (1.24) amd (1.25)

must wvarish 1i,e.

M=

Z An- 20 _ o (2.10)
=1 a;(r\

A=

> 6.2 _ 4 (2.11)

= );(,\.h

Since N <S5 only is being considered one may replace N in (2.10)
and (2.11) by 4 . I suspect that the result that (2.8) canmot hold
for any N but it is not necessary to prove it here, So (2.10)

and (2.11) may be replaced by

26 _ ,»(I‘._B_/’, = O (2.12)
XA A,
24 2P - -1 -
A A + X. 7 A (2.13)
Consistency on these is
4 =0 (2.14)
PE

But then, from (2.12) and (2.13) ome sees that (2.8) canmot hold.

Therefore

2h 40 V< 4 (2.15)
2P )
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§3.For 91P0= 0.

It will be shown, at the end of this section that
9,0 =0 .
--z- [}
For the present assume that (3.1) is true. Define

9,-9.8- 8 8, -2

3
o@:(@/o—@/) -?_9_ +/L (3.3)
3 afﬁ’ 34 blgy_
Then (1.19) to (1.23) imply
P@.=0 A=, % (3.4)

From (1.23) , (3.4) amd (3.3) one has

P ﬁn/

From this and (1.14) one has

D, [ D, -8, = 857 (3.5)
L, H; = H; 9, | (3.6)
Now DD, 0= (95 + 3, &) 7 tron (3.2)

= 0@3 p, from (3.1)
Take @2_ of (3.5) to obtain
@‘2_3 Po =0 . (3.7)
So one may vwrite
—_ .8
Po—Ro‘f'A,-o(M_“'I“K1 Kﬁ’-l (3.8)

where @7. A" - 0 , A = (7) /) 2 . (3.9)



Then (3.5) is

DD =D = L QP =2 (3.10)

So one may write
£4/:='K3+'&=xﬂ;/ (3.11)

wvhere (3.9) holds for i =3, From (1.26) , (1.27) and (2.6) one has

7-} [@, /I_]‘-: - c* o(’,C,o? C.a’;

’_,‘71+ [8, 7 ]= - f== ea
Note that one may read off ,3«‘ [‘SI /’,7 and ,; [091 /’]
T

from (3.12) merely by taking ¢ = 1. So here and in all future cases

(3.12)

only the equatioms for 1 = 3,4 will be writtem down explicitly.

The case N =2 carm now be dealt with quite easily.

Case 1,
N = 2 (3.13)
Take 087_ of (3.12)
Py Ro= O
’?;3 ,(3 = 0 :
. ] (3.15)
"¥4— K}:-—}(L..a..; ca(,—c,./fl,.d—wx c &, :

Eliminate derivatives of P, from (1.25) , (1.27) amda (3.1)

Q2.( c.Bl.cos cay - P,.sin ca, ) = Qh.( Bl.cos aQ - Pl.sin @y ) | (3.16)

Then (%.9) , (3.15) and (3.16) imply

(R, + B,).sin ay.( c.Bj.cos cay - P, .sim ca, )

(3.17)
- (R2 + cz.ﬁl).sia cao.( B,-cos &y - P .sin g, )
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Take of (3.17) after dividing by sin ..sim ¢

0 0

2 a) (5.18)

(- B,-cosec® )

2 2 - 2
(R2 + Bl)‘( c .Bl.cosec cao) (R2 + ¢ .Bl,.

Note that if Q, =0 then (1.25) with (3.1) contradict (2.15).

Differentiate (3.18) w.r.t. 62 to obtainm 0 R, _0

26
Then differemtiate (3.17) v..r.t. 52 and use (2.15) to obtain a
contradiction.
Case_2.
It has Bow beern shown that
N>2 (3.19)

From (1.7) one may take, for n > 2,

c,"= -(r-1).c®.p.p _, + H_(Pyseeespy 5) (5.20)
D, = c.py; *+ F (Pyseeesp, 5)

Then from (1.28) to (1.31), (2.7) ,(3.8) , (3.11) amd (3.12) one has

313 Ry= -t ot . co> cox, - /11-[‘% (c.., - C,;_,)foc.”o - 4 (89 <

(3.21a

B, Ry= - e ety m R [ (o G )i e a L (R ) comc
_ (3.21b

";A. R, = 0O }«‘= ',’2)-3/4- . (3.22)
';_3 R, = =M cla ety LR, [i (Gt =G, 20 €= (A )=
(3.23a

Fo R = MO peetm A LG 6) it (478 ) e
(3.2%

;‘) Ao-; [-LL (”M.:-l + HI"#I') - I\/C-L fl'fy—l - {(CIV' - c,./)/’, - {(Q—’l "Q/.,).ﬁ
- . ’ > o N
+ [ 4 (Oﬂl’pﬁ/) b - {(Fm'/ "'FMH) +1 (p"’-; ’oﬂ—/)-ﬂl]““'; ¢ %o
(3.2ha

/; AO [ ( MH-”IV{-')" NC’- 0(,.//_,- {(CA/I +<)\/)PI 3 cy.l/ ¢ cr\/-/) R']""“

+[{(F'_’+,/ V+I)° FV"'F") /,'*‘C(ﬁ/ F')’L(o" .f.p,,_ A:Z

. oo C
(.24
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The rest of this section is devoted to provimg that (3.1) is true.

So, for the rest of this section assume

Fron (%.3) and (3.4) one has
R A - A 24, '
2% 29 .
[3"‘»/-1 o ¥r Ofw Ofp- 71,/ Yy aﬁ,/
= C

(3.26)

Take 592_ of (3.26) amd use (3.25)

= 29y (3.27)
3/%/; __;Zi/' 9/%/- bf%~/

Then, from (1.14) ome may write

28y + 2,28 _o A=, + (3.28)
dfv-i 1%
for some function Z;, . Thea from (3.26) and (3.27) ome may write
Engil + :Zfz-nggg. =0 A=l ... F (3.29)
0K -2 2w S
rake + 9. 9— of (1.19) to (1.22)
0Apq fﬁ/
28 + '23 P8 =0 A=/, ¥ (3.30)
'36€~z,—5 algﬁ/‘ :
Continuing in this fashion one obtains
28 ¥y 2y 994 —0 A=/, .- ,‘7" (3.31)
?’”‘o 2f%vf ¢ )

for some functionm ZN .

28, _ 9% _ o
L - =7 ten (3.28) 1s 2% _ 29 _,
3FLV/ B’h"/ 3/5«»/ b/&/b:
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Then differentiate (1.19) and (1.21) w.r.t. B

N to obtain a contradictiom
to (1.14) . So one has

2€, 20 28 2_@_} + O (3.32)
i Y%
Take O 2 2 of (1.19) amd (1.21) amd use (3.28) and (3.32)
'ado‘r o aﬁ/‘/
2 + 2 afo 08, 2/\/ + Z, -Z,/ (3.33)
0Ao Oﬁp/
Take 2 + 2y 2 of (1.20) and (1.22) and use (3.28) and
ES ) %

(3.33) to obtairn a comtradictior., So it has been showm that (3.25)
cannot hold,

§4.A Change of Variable.

Use (2.15) to define

Z = Pl(QO""’GN-I;BI""’BN)

(%.1)
and use z instead of B Also define x-x(ao,...,% 13Braeees N-l;z)
such that BN =X {.e, ‘
z = Pl(ao,...,aN 1,31,...,BN_1;X) (4.2)
Equations (1.23) and (3.9) are
EQ‘I. :’O A.= /, . - ?- ?
: / /
0Apr_ | (4.3)
e o ieo,3 ) |
) .
2,
Also (3.1) gives om imtegrating
X = z.a ., * R (4.4)

where Rh does mrot depend om «

N-1 °
M-t

T
. .2
@,% /‘-;Zo K 5; -+ 4; FA.fI . —21 (} ~r—) + ﬁ,_) aﬁv—

(b )2
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,E) — 2 4 + A2
5o ERY3 2, 7 )
Define (.5)
9. -5 2 Vf Ry .2 2
= AL . -
g R 2 2. gy /8 2/1 17 3//—1 % 22/
AE)' S/ 5994_ + X, - 5225
Now (3.11) is
R, = Ry+ By Ry §
(4.6)
Ro = ‘@9- Ry

If one defines Ro and Rl by (4.6) them ome finds that (3.23) and

(3.24) are satisfied provided (1.25) , (1.26) , (3.21) and (3.22) are

true, (Use (2.6) ) . So them (1.19) to (1.27) -, (3.21) amd (3.22) are

@‘;_9_ 1—}.2-. +ﬂ.,_..9_

3
ok, T, v -
»-3 o2

P . A L2 Ry 2
(%\4‘ Z xar/-é%ﬂ.-l' 4§’ ﬂ«rl 9{5; + K* Bﬁ,,_,.*— 3 )?;:

7= 42+ T G hen e (8 0) 0k e 2

3

4'_—

-C 2 Co(o._?. ,f- ”— [ (C +C,\) Coy Co~ {(0 +0)«<\(-¢]
Y (1.8
'7Z Q', l 4’4\% ( (C,\+C1\)M~ coly t 4 (0,\ 10, Lovcdo] -L

R4S

+ 2 [£(cl-0)m e d (B-0).0 ]2

L aSal | F’\
(4.8v]
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£,Q,=p.9, ‘ﬁ«r R, = <. f ®g (4.9)
@q_ 621: oy~ & f, ogf,q?: L coly — C/g; Q3 (4.10)
@3 Q“- = O , A= /} - )4_ (4.11)

— I ’ :
3 ﬂ+ = [Ji CCI‘/ +Cﬁ,)m C’(o" ':,L (F/\/ *Fﬁ/)h Cﬂ(a] (4.12a)

R I DA S
%Akz [+ (o = ) co + 1 (4 -8) co C‘(’] (4. 12b)

—% [{ (Gt *Camy)-om cto + 4 (G, #0-,)  Co €24 ]

'}73 Ry=-ehl cmcs, - AL.[{(C N N R R B e

, (4.13a)
'5[ A - _(_1_;)_0—;\ coly, — A'L {-{(C'V-,""( -—I)""'“ o+ t (0M_/T4,.I)Cf7 € «,
N (4.1%b)
';’4‘ R,= O ) a= 1, - ‘/7' (4.14) .

Also equations (2.6) give

8, 7. = 2 093 - 4 (b.15)

/
) (4. 16a
By T3~ ¥y Bo= ¢ 7+ [0 ~C)enen-L(2e R
. x.wz
B 7 By = —e f T ) st h o]
(4,160

The rest of this sectiomn is devoted to provimg that
20, PA 28&. £0 (5.17)
27

? /5’,,_ ~ 'Bﬁ,,,,
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where this means that all 3 X 3 determinants with rows as shown

cannot vanish (i takes on amy 3 distinct values from 1,2, 3 or L)

1t 2% - O thea 93 €, =9 gives ¥, - 2% -0
?2( 30‘,\/--,_ bfsp/-l
Take 93 of (4.9) to obtain A — 28, - O
aﬂ(ﬁ/—‘} apﬁ/-z

Contimuing in this fashion gives that Q, is a constant. Then (L4.9)

is Q, = O . But thea (4.10) canmot hold, Hence

2% =+ 0 (4.18)
i,
If é—({;" + XE—Q‘ =0 , 1=1,2,3,4 , then (4.11) implies
T
& L X, 2@ 0 a=i,.. % D . X 3
+ A (I “ . Take ,
39(,\/_1 M- ?’? Y, ,°7°) 90(-,\4. " 3}

of (4,9) and (4.10) (working down from m = N-2 toc a=1.) to obtain

2. : )
.__:Q_‘ -f-x,‘.a_g:l - 0 1://.-.)?')-0'\‘:—0/----/
3, 9} o

Take -2
P

-2

+ o < of (4.9) and use (4,18) and

’}’

2f 2&—) (_‘}4-%253) o@Xo =0
I#0 X%

2
Take S 'f' xo'%, of (4.10) to obtain a contradiction.
I

- 7 +)(%;Q; 7&0 ;4.':’/?/3 - ¥ (4.19)
po— 1 .

To prove (4.17) it is then only necessary to prove that (4,20)
cannot hold (because of (4.18) and (4.19)

. () &)
.2(" + x . 9._«):1 + X ?__Q_‘\ — o 4':/’_. (4.20)

So for the rest of this section assume that (4.,20) is true.

It is then desired to find a contradiction.
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2 + X(') 9 + XCL) .2 of (4.9) and (4.10) , working

Take
p)
A
dovn from n=N-2 to n =2 ,defining x(;’ and X2/ as one goes :
¢ -
98y 4 xﬂ)afq,. N X@) 2Q SETAR S

Similarly from (4.9) , (4.10) and (%.11) :

3) )
%5’ + X2, X@) 0% = =, T (4.22)
9fa" :C> 0\:.55_../ M=
2_ + X() XG) 9 an
Take Jot, - | aﬁ'/" o 5 of (4.9) a (4.10)
20 x© 2 0 =l o3

(5/
e. X _'.La':c/a A= ¢
where

x0) 4 o (b.24)
Then (4.9) , (b.10) , (4.21) , (4.22) and (4.23) give

)
X o€, ";P‘Q (1.25)
[} - I T
}2,
Xf”. 2% = < p. @G (1.26)
%

(3
rare ?%[?79/?,/ x¢ 2%  (#25) - );, 2 ’(f{a]@.‘
- . N |

and use (4.23) and (b.24) :

983 oy = b o e, 3_94 . (4.27)

7 /4

Multiply by x('lr) and use (4.25) and (4.26)

ake @ an en 1 X ((} 2
T 4 d th Bﬁy' + - .)}

obtain a comtradiction. So it has beem shown that (h.17) is true

of the result ¢to
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§5.That N > 3,

Define
AE)E; = c&;g Agg;_ - 522?_ 6223 (5.1)
O - 2 5
= 2 2.2 L (BR-4)2 s (DA-HR).D
%3 }2ﬁ’-zr ’ )9/5/—1 (3'% - )¢
Then from (4.9) to (k.11) (5.2)
095 . =0 1=/ .. 4 (5.3)

/ VAR
Now

@}‘95-"'095@3 = K—;_;—)%V 1+ [@3 (093/'(4___ g})_ (@3 KB “@r’(z)]_a

.

: * [$3 ("@3 Ry~ &G Ay) - o@; &]%/ (5.4)
But (@3 & ¢ _‘QS (@3> Q,- - 0 and (h..rr) then imply

K'L.: 0. (5.5)
2 Re= 2 8; Ry (5.6)
@_;' Ay =0 (5.7)

From (5.7) and (5.6) ome may write
Ry = Tp + Ty, (5.8)
R, = To * (T * Ty, ¢ Tio, (5.9)

where

@3 T,“ = O /4‘: O/---)_S (5.10)

The rest of this section deals .with the case

N = 3

In this case gpe equations to be solved are (4.9) to (4.}4) where
(4.7) amd (L.8) are
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‘ 5011

(5.12)
?;L = 92 4 ev C . 2 + C Co> € X, 2
¥ % J%o 0 g aft
Take 53 of (4.13)
T = —~ch e e,
’;3 3 } (5.13)
,774’7‘3 = O
3 T, = 0O
(5.14)

?'.7ii, = = ( C-l'/g, T 7h3~)"‘14;" C <,

Eliminate derivatives of '.l.'3 from (5.10) , (5(1_7:52—0 and %9_ TB: o

Cf‘F [Pl.mx‘,-}.,«; a(o]= Q_L. Cc.f,. Co> eky = 3, . ('_,o(o:z (5.15
Then (5.10) and (5.14) imply

(C'z_ll,-f-’@)_,a«; ¢, .[P‘_ma{o- }M oto‘l
(5.16)
= (f,-}—T}).e«Lo{o. ["F:'@"’C"(o ~ 3.~ C"’"a:(

Take ,5(12. of (5.16) after. multiplying by (sin ®,.sin ccxo)'1 to
obtain a contradiction. So it has been shown that N > 3 ., Infact

the rest of this chapter deals omly with the case N=154 ,
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§6.Lemma.
The rest of this chapter deals with the case

N = h (6-1)
Define w = B - z.a (6.2)

and use w instead of B, , . Them equations (4.9) to (bL.14) are

57 3, }af.f "y T3 2 (6.3)
@K:X"%o*ﬁr;;. */“/'2%11'7\0-2 + T 2

T

- Col e €y D | Cen K, 2

2
% %

+ ):C'(g"}' s ok - c‘.(d,"-r,d,‘).(_n C’(o:z.%‘, (6.4a)

T -0 2
3 -QB.ao(o-f.CAn oy a%

% -
(4 1’?— Qq_b-%(— + C“.--a— .f—C/l.c(r:; C°’a-3-

0 o=, ) (6.4)

S
r[Chcmed, =2t & f e e o - c.of;.}-wcdo].l
o

@6 Q; = ﬁl'QL- gé Q3= C'F"Q"' (6.5)

‘%é Ql’ e ok = /5,-‘?, «@5 Q,_-—-— oo e L, —~ c.’ﬁ,. QB (6.6

9 = . :6.7)
SQ-\' 0 4=//___ )_4— | (
F. T, =0 SENIIR = (6.8)

7,)7'3,_ = -l K, .cm e, +T5.c f a2 e X
(6.9)
74/7‘1':—-61/,-"—4&0(‘, - ¢. & teoca,
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%T,‘=-261.Xl,cncdo+7§-c-ﬁ,-t¢§cd0 }
(6.10)

’;3 T, = [C—-fz-i"‘ c3(o(,3+3 ol,.f,l) + (T,+7i)-<-/,7.0«l C o,
]2t Py —3c2p fljcm c, (6-11e

/;4,7-0 = [Cl.;, (o("l-r /gll) -3 e o(' /1],4_"\ c «,
(6.11b
+ ['C/«/‘ _ Cs(g.(,l_fl +F,3).-c.a(l.(7',+7i)].w ¢,

Further equation (4,16) gives

fg,{ @5 - 0@5 74. A= g9 . (6.12)

7°"")
@6’;3': %o@‘ + C.//.fyy_-—-c_fl.ﬂ-;c_a(o. o@_; j
(6.13)
@6,7\7/4_ = %{7—096' - C./’-A?/B o+ C.o('.w-?go(o_ogg
Finally (4.17) is

(6.14)

’af’l 3/‘"’. 7})#0

In the rest of this section it is showm that if (;—.X':’O) 1=/ . 4
1 20/

then X is a constant, provided ‘j.'3 + 0. S0 assume

T3 = 0 . (6. 15)
and
) ?-1' X =0 ) A= I)- ce 1 (6.16)
X is not a const.ant
From (6.9) and (6.10)
(6.17)

’;_b(’)_T-,_—T,)z Ty Cpy ey }

%4_(17‘1—7’,) = - 7:5 C. K. cood e,
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Define

Y=~ PF -7 A )

(6.18)
76 =h Y - A /73
Them from (6.8) , (6.16) =and (6.17) one has
7 -X=0 A=l (6.19)

E;Z (;LTT:L "-TVQ) = ‘Lﬁ--.TS : l?- P Qp e, + ‘33' Ben c_ag,:z

From (6.17) it is mot too difficult to show that (6.20)
%4 ((L—rl_—r') ¥ O (6.21)

Now (6.19) are 6 equations for the derivatives of X w.r.t. the

6 independent variables in the problem. So the determinant of

coefficients must vanish, But, from (6.17) and (6.20) one may

replace the column corresponding te %l(. by R.H.S. of (6.17) and (6.20,

g

Then since '1‘34!0 ome has, after some re-arranging (add Bl.cols to

col 1 ; divide col 1 by @ ; add Bl.z.col 5 + (32 - al.z).col 1 to col 6 ;

add B.col 1 - a.col5 to col 4 ; divide row 6 by c.) that

1
0 0 cos & 0 -sin aj -(a21 + le).cos ay
-cos ao sin ao 0 0 0 -2,a1.Bl.sin ao
0 0 cos cX, 0 ' -c.sin ey -ca.(ﬂ'i + ual).cos eyl
- 1 2 P
c.cos cd, sin ca, 0 0 0 -2, ¢ .Gl.Bl.sin cao
Ql.sin a ‘Ql.cos ao Qa.sin ao 1 Q2.cos ao Y1
c.QB.sin ca, Q5.cos ca, Qh.sin ?ao S | c.Qh.cos cao Ya
where (6.22)
Yl = -2.Q1.a1-51.008 ao an (aal + 5?).31! ao
= - . . . - 2
Y, 2.c2.a1 B, Q,3 cos ca c .Q,h.(a"i + ﬁ?).sin ca,
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Takeé{)f; of (6.22) . Because of (6.7) it omly acts omn « So one

1.
gseas that the coefficient of a": in (6.22) must vanish, That is

«CO8 CcQ

0 (6.23)

Take @6 and then @5 of (6.23)

Qh.sin uo = Q2.sin ca

C.Q), . cos T = Q2

6.24
; (6.24)
Using (6.5) ard (6.6) one then has a contradiction. So it has been

proved that (6.16) camnot hold, That 1is

If '13 $0 and ?X: O then X is a constant (6.25)
A

§7.That T, {0,

For this section assume that

= 0 .
. T3 (7.1)
One then wishes to find a contradiction. Note that the equatioms to

be solved are (6.5) to (6.11) ., Define
9 -9, 5 -4 9, (-2
Co3. = 2 2 - _
77 0 oF, + (7 Tl)‘j%t + (BT - & 77);%/
4 (09; n). 2 (7.3)
%

‘37 ?1' =9 , A=/, % (7.4)

Then (6.5) to (6.7) give

Now (;95 197 —_— '.@7 905) Q'\' =0 , -1‘?,//_,., % and (6.14) imply
G - , '
Ue (74— 7_71) = © (7.5)
g s
@5 T..L. =0 (7.6)

95(0@57-0_0@677):‘%77-‘ (7.7)

DB, =~ 8, H | (7.8)
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From (7.2) , (7.5) , (7.6) amd (7.8) ome may write

T2 = V1 + Vz.al ')
Ty = Vo * 2V¢ (7.9)
£, V. =
vhere
995\/4. =0 A= 0, . ../4— (7.10)
Equations (6.9) , (6.10) and (6.13) then imply
TV, = O
370 (7.11)
(5-/4',\/.7 = -’2_c'l_f5’..4—'~lc <, - '2,\/1,,4‘.‘\ X,
/(7»4_\/, = —-c_‘l_‘é’.o«.; CK, — \/'L"’""‘ c X, .
(1.12)
(3\/')_"' "'C'l Coo C . X,
7 ] (7.13)
4 VL = O
Be Vy = O
3
(7.14)
— _ 3 . ‘
;/4/ Viy = C'lgl'c"’_"“"""\/‘i-"”"‘ ¢ %o
} \/;’ - C'3.-414;~ C—°<o.
(7.15)
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From (7.13) it is mot too difficult to show that

oV,

75 + O (7.16)
Define n=8,-a.z (7.17)
and use o s dl ’ Bl s N, w and z as 1independent variables,
Define £ = v2(ao,a1,51,z,n,w) ' (7.18)

and use & imstead of w (which is allowed because of (7.16).)
Then (6.7) and (7.10) are

Z&. - o a=1,.. 9‘
22, /7
' (7.19)
Z\_/,“ - O 'l"-"@/..)f—
30‘|

Then (7.12) , (7.13) amd (7.15) imply

7 & 2_ oo ety D _ Cac €k, D - Cotoew D
3 3, t %, - % - 3
? Q,'_ao(-;-[cﬂ,cnco(—}mcd]?

T

(7.20)

?7'7_5'\/‘ - O

(7.21)
}f?,\/, = —Cf e cx, - T ek,
7'5 q, — CB_ - C,o(o

(7.22)

Ty Ve =
From (7.22) one may prove that

2\_/1" 'ié O (7.23)

%o
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Eliminate derivatives of Vh from and
in(caﬁlecos ca, - z.sin c@y ) = Qh.(,Bl.cos ay - z.sin ao) (7.24)
But thern (7.21) and (7.24) imply
(& + Bl).sin . (c.Bl.cos ety - z.sin cao)
= (c'z.ﬁ1 + £).sin L (Bl.cosao - z.sin ao)

which is clearly false., So it has been shown that (7.1) must be
false, Therefore

T, o (7.25)

§8.For T, Lo,

From (6.8) , (6.25) amd (7.25) one has that
‘1‘3 is a non-zero constant (8.1)
Define

,@ = l . T - 3 _ (8-2)
77 2wt éa/é' + (T) T’-)'éﬁ‘f(‘gsn ‘967;)-;%‘/“@571-2;
= D - B &K ' (8.3)
Then (6.6) to (6.7) imply
9,8.=9 , 4=/, o F (8.4)
Define

Dy = L5 D, - D, & (8.5)

=T, %g' + 8 (T-27) 5 (8, (87~ 87)- &7 ].2

T .2
Then (6.7) and (8.4) imply

Qg Q. =9 A=) 4 (8.7)

/'-/

+ o‘B;_ (8.6)

Now (cgg 93 - .Sg &)S) Q“ = , /.- /4" and (6.14) imply



Do [D(BTo -&T)-D,7, - Dy Ty =0

From (8.8) , (8.9) , (8.3) , (8.5) and ( 8.11) one may write

vhere

T

1

=UO+U
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5
@5 T, =0

D, D - D 8,

- 2
.Gl "5.U2.G

1 1

2
‘Qg ('/9. = ('{5-)- b{‘."(' + (/7' o{,

85[/1‘=0 g = O

—

, - } . - }

Then (6.9) , (6.10) , (6.12) , (6.13) amrd (8.12) imply

y3 (’{o: E.C.f,.oﬂ«: Qa(a g

}79,[/{0 = —CZ_C’l_f'-r-M,)_A; c «,

75 (—(' = -2 ct Coo Co{a-

A

—--Tg- €. Cemw cX, + § ‘?;.fehui c <,

}

(8.8)

(8.9)
(8.10)

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

(8.17)
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(8.18)
70(5— /50:.«7co(+’lcflbf.a«\c_o(
(8.19)
75 U, = O
(8.20)
(Lri —’L‘/)‘é“;CXo —'-Z.C.%.(_q c/o
?4. (./7 = 0 f\';//‘.) 9 (8.21)
Then (6.25) , (7.25) , (8.16) amda (8.21) imply
U, and U7 are constants (8.22)
1t DU _ O then aiff. (8.18) w.r.t. w to obtain I4 -~ O
e &
One then readily obtains a contradiction, from (8.18) . Therefore
2 40 (8.23)
Lo
Define .
o o= E o TG (8.24)
l’!2 = BE - 01.2 + %.TB.G?-

0’ % 2 ﬂl » B N amd w as independent variables.
g = Uh (uonal:alx’ll:ﬂé:") (8.25)

and use & instead of w . (allowed because of (8.23).)

Then (6.7) amd (B8.13) are
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YV
~

S a
2k, =0T, ?

' (8.26)
__a_;(_’.'l — O 4_0/ I)'L/S/ 5/(/ 7

Let w=Z(do,al,Bl,T]1,‘r|2,§) be the inverse of (8.25) . Then, from
(8.13) for i =4 one may write (after integrating)

= 1.y .02 - y_.a3 . .
Z = Ug+ 35U ai U,.ad + U.a (8.27)

Then from (6.5) , (6.6) , (8.14) to (8.20) one has

'@7 7 DF,«—'{(L{-;PU)Q_ P

A A
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o(@ . =0 A=t __, F (8.33)
4 q / J

/

,51} C/D:T_ —G_C.fl.ﬂx;ca(o i

(8.34)
#q/o{o.;_(fz, c.",f,r‘/,>..a4;co<a
/’\71] 0{:: "Lci'm‘—"(o |
'K (8.35)
';4/5./, = -T,. ¢Ccnex, + (Ml..a-;,'\ e,
(3} Uy = T} ¢ p e,
';/-4, ey = = 3. 2% c& A

"7‘177 Us =Tyt emed, + 24 Uy ax c,xu(
(8.37)

(8.38)
0/6 - (Ts,cl_’Z,L/?).ﬂ:\Cp(D ~’LC,%.C4"7 ¢ %o

F g = i oo e e 20
(8.39)
/5[/(/3 = c_71_m c X, - Uy o Loty \ 7

Also (6.1L4) is

R

T

gal) O (8.40)
AR
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%233 ’EZ{ = i%za. éE)g. " I o
8,% -7 &,

—)

(8.41)
& = +c gL
175 = B8yt h
| - —c 4 + el o &
%?}14— - /%"9? f 73 © 7
It will be showmn im the next two sections that (8.30) to (8.39)
have no solutions.
$9.1hat u, $ o.
For this section assume
U, = 0 (9.1)
A contradiction is then found as follows.
Define 1,
01 = UQ.BI + 2T3.n1 (9.2)
\)2 = T}'“E + !061
anrd use a, ,Bl » 0y, Y, and & as independent variables.
Now (8.%3) is
25,_{ —_ o A= /l"'/4— (9.3)
Df,
Also (°.LO) is
l ?_g-‘-' ?__gf ?Q-\ / # O (9.4)
I 27, 7y 7% |
Diff. (8.32) w.r.t. Bl and (8.3(;) and (8.31) twice w.r.t. B, and
use (9.4) . Integrate the resultant equations to obtain
2y = 2.Up T3 (0 - Up.By) + 0T, (U) + §) (9.5a)
= -1 - 1, -
Z, = 2. 810 (0,- U,.B)) + 3 Ty (v, U3) + B,-Ug (9.5b)
Z, = Ug ‘ (9.5¢)



134,

zh+z56 = U,.T7L. (u

o3 - 8.8)) + %15 (U, + Uy) - (9.53)
Zg + LBy = E. TB" (v, - 8.B)) + Ug.T5 + Us.By (9.5¢)
Zg + Zg-By = U (9.5€)
where
3_2;4 ) , AT // ) 9
of,
Then (8.28) to (8.39) imply
7 IHg ' lwx ’ 3§
= 2,2 + &2 4 Zy 2 (9.6)
1’ 27)‘ 2)71 ag
P = 2 2 4.2
= L, + + %9. 2
e e 12
:; = § 2 4—[(4 Coreoly, — 4+ T oiic & |2 fc,nco( 2
>0 e, b ©or 3 ST 5
(9.7)
97 ?.“ = O ) 17 ’/ ')4_ (9.8)
@io Q‘ Qlo Q5 =©
@ (9.9)
/oql-'""'“*’(o '9/0 Q,,—Aru\c,o(u
.@” Q, = @ 09/, @3 ¢ Q,_ n
(9.10)
73 7’( = —C 0/1.4«.; coly — 4 CtT'.; cos ¢ o, (9.11)
75 2’1: —-2—3 mca(o - ¢ A —(o (9.12)
47 = 0

(9.13)
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7} 2y = T bpLem (9. 14)
7, Zg = AT Cenex (9.15)
73 2= (7 ’27)- e ¢ K, (9.16)
h 2= 2eV e, 1 2y o ¢ %o, (9.17)
73 2y = - 9. < ¢ L, (9.18)
T3 2y T T3Cen kot 2 thy o c g 5-19)

Also (8.41) implies

2,7, = F 2,
.9,075:%@’04— mcxo.o@,,_ (5-20)
D, = Hb, + <.%

Now @“ 97 - 997 09”) Ql. = 0/ ’\'=// ) 4  and (8.40) imply

'@725 —_— &)” -2'

9,2, = 8%
0977_7 = 09”—23
&)" 097 = 097 o@,‘ (9.22)

Define



'@n_ = °®7 ‘910 ~ &0 ‘@7
@,3 = 5:\)709”_- o@n_o@_] \ (5.23)
W= 8,8, - 8; 8,
08:‘2,— 2/0- - 4 'Z” 2— ~+ -Z-,—z_ 2
) 1 D)7'1_ )5
R:=72,2 2.2
(3 — “I3 t €42 *ZI L9 (9.24)
07, 27, S 33

\@ =2 2 Z
4 =+ 492
| ' 27, !

Then (9.20) and (9.23) glive

?3 9,0 = 910 ;/} — (o2 cH,. $//
73 09,7_ = ‘9/1/0\{3 t Cal e, 08,, (9.25)
73 @l} — (@,37} +C‘.mco(°_09“

From (9.11) to (9.19) , (9.21) , (9.24) and (9.25) one has

77‘13 ., = C. ZFM ¢, (9.26)
|
Ty 211 = Ly Cm ok €L, el oy, (6.27)
/;} Zya T C"7'7"“"“‘:‘ < | (9.28)
| Ty T P ey (9.29)
T3 2,5 st eh + N2 e, (9.30)

o (9.31)
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/%“ZIG = -3 Zy e, (9.32)
Fy2,, = Lgemcso = 22y RS (9.33)
Ty 2= - CZ-Z7-"“* s (9.3)

Also (9.8) , (9.9) , (9.-10) and (9.23) imply

Do (€0, 8, %)= (0, =2 , O, out c5)
()@"L(QUQMQB»Q*): (0/ %, 9, C'%c’q’) (9.35)

A, (@, @,%,%)= (= e

LY .
) 0}“( .A-..\c_a(o>

$1+(Q,)Q1,¢?3/ ‘?r) = (0} ""‘7‘%/0) -3 mcx‘)}

From (9.35) :

[Cn d°'(cl'6910+£13)-AK"(C’!"@I?.*'"@FF)]Q\‘T/O) v |

=/
Yy
This , (9.4) and (9.24) imply

Ced X, L _- . (9-36)
—> ((‘_ 21,.1' 213) °"""\”<0'(C1-Z,o‘7"2,‘)
1 -
Ced oK (C .'Z(-f-zm) = Mdo(c?_z”.,.z,.?) (9.37)
"‘ > 1 —— -
<o (C . Z§+219> - Sn o(oCC‘lZn_ + 2,9 (9.38)
Take y of (9.36) and (9.38) to obtain
J
?.2, + Z13 = c"’.Zlo +2,=0 (5.59)
c®.2g + 25 = ‘:z.z12 +2,g=0
Then /513 of (9.37) gives
2.2g + 2y, = By H Ly (9.10)

Then (9.6) , (9.24) , (9.39) and (9.40) imply
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< @,0 + 09,3 =0 (9.41)

But from (9.35)

s
— 1 . N
(C (@,01— l}) ql_ C ,91,\0’0—4-\.\ 0‘0 #0
This is a contradiction. Hence (9.1) cannot hold., Therefore

U, $ o (9.142)

§10.conclusion.

The proof that there can be mno B.T. of the form (1.6)

for (1.4) will be concluded im this section. From (9..42) :

U, $ o (10.1)
; - 1.
Define Cl = Ue.ﬁ1 + 3 T}'nl
£, = Uemy + 082

and use @, , §1 R §2 R 53 and § as independent variables,

Then (8.%3) and (8.40) are

)_;Q_‘l. - O 1= //___/9‘ (10.3)
o%

PAD 7% Z@ + o (10.4)
25, 331 353

Exactly as in the previous section (diff. (8.30) and (8.31) twice
wv.r.t. & and (8.32) w.r.t. & and use (10.4) .) one may take (8.28).

to (8.39) to give

7 37’0+ 19504— 1‘35.,_‘# ).333 o
Do=wp2 W2, w2 0.5
d5, 25, 28
@ 3
= W, .2 + e 2. wr, 2
SR T TR -




: 23, >3
(10.6)
(10.7)
0%7Q1":’0 4”//-)9_
2 =Q D) - ¢
Y - " % R (10.8)
%/ Qv_':'—'ql @, Q?-:—C'QS
"@lé Q, = 0 og/é Q; = ©
(10.9)
@/é Ql-"‘mdo @,‘Q,,: o A,
7 \/\/I = -4 ¢ .7'}1. Cos ¢ (10.10)
,?-3 V\/ - =~ (. l'/7. 4'\'; Cv(o (10'11)
(10.12)
- O
3 V'3
74 \/Vfé,:: L 7ré;l. C.ov e, (10.13)

#3 WS = "“2-(7:3.C)1-c43c,(° —_ 7‘3[1_‘Cﬁ c o, (10. 1k

75\"/( = 1C-'§~'(”7- 5/—‘(1-;1’)“;"9 - L5 o e

(10.15

5 (10.16)
g T T Mem e, no

(10.18)
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Define
D, = &, °@'6 B¢ ‘97
9 = 8,8, -, 5,

e (10.20)

Exactly as in the previous section one may show that

v 2

and obtain a contradiction. (This operator acting on Q, is not zero. )
So it has been shown that there is no B.T. of the form (1.6)

for (l1.4), for N<5 . It seems, to me, very strange that one must

work so hard to prove this. It seems to suggest that there are

B.T. but that thecorrect u' dependence has not been chosen., Or

perhaps one really does need to include integrals or explicit

independent variable dependence or extra dependemt variables., I still

find it most. amazing that it is so difficult to find B.T. It

seems to me that the easiest way to proceed is to use the

results of section 3 of chapte; 3 in an expression which does not

specify what u' satisfies.
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