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Preface

The work presented in this thesis was carried out in the
Department of Mathematics of the University of Durham between
October 1974 and August 1977 under the supervision of Dr. W.J.
Zakrzewski.

The material in this thesis has not been submitted previously
for any degree in this or any other university. No claim of
originality has been made for Chapter One and first section of
Chapter Two: the remainder is claimed to be original except where
otherwise indicated. Some parts of the chapters two, three and
four are based on a paper by the author in collaboration with
W.J. Zakrzewski and the remaining parts of the above chapters
and the whole of Chapter Six are based on two papers by the
author in collaboration with W,J. Zakrzewski and C. Barratt.

Seven
Chapters Five and 8@ contain some unpublished work by the author.

The author wishes to express his sincere thanks to Dr.W.J.
Zakrzewski for his continuous help, guidance and patience
throughout the stages of the present work, and also for critically
reading the manuscript and for correcting the English. He
furthermore wishes to extend his thanks and gratitude to Professor
E.J. Squires and to the Lecturers of the Departments of
Mathematics and Theoretical Physics from whom he benefited a

great deal by attending their lectures during the last three years.
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(iv)

Introduction

The concept of duality in strong interactions was first
introduced in 1967 by Dol2n, Horn and Schmidl. They studied the
constraints imposed by analyticity and crossing symmetry using the
techniques of finite energy sum rules and found that the direct
channel resonances and crossed-channel Regge poles provided, in an
average sense, equivalent descriptions of the same phenomena.

Soon after that Veneziano constructed a model2 for the four-
particle amplitude which satisfied most of the requirements of
duality. This model exhibits an infinite number of poles in the
s-channel or t-channel in such a way that duality is satisfied.
(The sum over the poles in s-channel is equivalent to the sum over
the poles in t-channel). In addition it was found that the model
could be generalized to multiparticle amplitudes3_5. The resultant
amplitudes exhibits factorization and possess similar properties.

Recently, Hoyer, Torngvist and WebberG, rekindled interest
in the multi-Regge limits of scattering amplitudes with their
observation that the conventional multi-Regge limit of the six-
particle amplitude of the Veneziano model shows, for some values
of momentum transfer, Regge behaviour corresponding to the exchange
of a trajectory which does not couple to the two particle states
and thus does not appear in two body processes. They were led to
this discovery by the observation that the multi-Regge limit of
the six-particle amplitude corresponding to the exchange of

ordinary trajectories7,

of
86 = D(“a :'C,)\/(o(a»d-uk') D(dt vt{)V(d{;db;Kl) D(db'tf)

has poles at nonsense wrong signature points
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resulting from two singular vertices and only one vanishing
propagator. As the full amplitude has no singularities at these
points eq.(l) cannot represent the asymptotic behaviour of the
amplitude near these poles. Hoyer et al observed that (1) does
not represent the correct asymptotic behaviour for c(tS-J and
that there is an additional contribution corresponding to the
exchange of a new trajectory P£=(di—0/h which dominates for
d;(—l. The contribution due to this new trajectory and its daughters
has compensating poles at nonsense wrong signature points, making
the full amplitude regular there. Recently Hoyer8 analysed the
behaviour of the eight point function in a helicity limit and
found that this amplitude exhibited behaviour corresponding to
the exchange of not only the ordinary trajectory and of the B
trajectory but also of a further trajectoryxr.?_;--\ «This led him
to speculate about a possible existence of a whole family of
trajectories <>(K=‘3':--‘-‘—§l >k =1,2,3, whose k = 1,2,3 trajectories
correspond to the(x,p,x trajectories mentioned above. He briefly
discussed their properties of which probably the most important
is the vanishing couplig of the cﬁ(to states with not more than

k particles.

The original discussion of Hoyer et al., which exhibited
the B trajectory exchange, involved the double helicity limit of
the six point function. Recently a discussion was given9 of the
behaviour of the six particle amplitude in the multi-Regge limit
exhibiting the contribution of the B trajectory. In this paper
it was also argued that the existence of new trajectories is not

expected to be confined only to the Veneziazno model and that most
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models are expected to exhibit unconventional behaviour for some
values of the transferred momenta.

In the first chapter we review the Veneziano model, especially
the parts which will be used in the next chapters. In chapter two,
after a brief discussion of the six point amplitude, we determine
the full contribution of the 28 exchange and one B exchange in
the seven point function, and we obtain the p-drparticle vertex.
In addition we find that in spite of the equivalepce of
signaturization and twisting on the o trajectory level, they are
different on the B trajectory level.

In chapter three we determine the full contribution of the
linear 33 and 2{3‘ exchange in the eight point function. (In order
to derive these results we use a mixed prescription for the
analytical continuation; some variables are contiﬁued to their
correct values straight away, some others are continued to
different values first and are continued to their correct values
after the asymptotic limit has been taken. We have not proved
the validity of this prescription in general but we believe that
it gives a correct final result and in the appendix we show this
explicitly for the six point function where the correct analytical
continuation is discussed in detail and shown to agree with the
results of the mixed prescription).

We consider the factorization properties of the new
trajectories by comparison of the expressions obtained for the
seven point function and the eight point function. We find that

due to the difference between signaturization and twisting the

complete contribution of the 38 exchange to the eight point
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function does not factorize into a product of two complete 28
trajactory - one particle vertices, determined from the seven
point function thus showing that simple factorization properties
of the trajectory are not shared by its siblings. However, the
factorization is violated only by a mismatch of some phase factors
and the patterns of its breakdown suggests an underlying structure
which we have so far been unable to unravel.

In chapter four we investigate the higher point functions and
show that the mechanism which allows to exhibit the contributions
of the B and¥ trajectories to the six and eight point functions
respectively when applied to higher point functions exhibits
contributions coming from the exchange of further trajectories
from the family suggested by Hoyer. Also we establish their
behaviour under the operation of twisting.

In chapter five we derive the structure of 38 and of the
2pd-vertices, where we show that the ;B vertex vanishes whereas
the struc::ture of the 2 f3ol=vertex is similar to the 3k vertex.

In chapter six we discuss possible phenomenological
consequences of these new trajectories. We look at these trajectories
in the conventional dual model (CDM) and the Neveu-Schwarz model
(NSM), and show that in practice only the (3“ of (NSM) can be of
any phenomenological importance. We discuss the assumptions made
in order to substantiate this claim and present proposals for the

phenomenological search for the effects due to these trajectories.
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In the last chapter we leave aside the Veneziano model
and investigate the mutual relation between Regge poles and
Regge cut and their contribution to the four point amplitude.
It has been shown that if the Pomeron singularity is linear
and has an intercept at one, the Regge cut corresponding to the
exchange of two such poles gives a negative contributionlto the
total cross section (absorptive cut"). In Regge field theory
language this fact corresponds to the imaginary triple Pomeron
coupling vertex. In this thesis we investigate to what extent
these results depend on the linear trajectory of the Pomeron.
To study this problem we choose to consider the square root
trajectory first suggested by Schwarzg_a. We find that the

results are basically unchanged although on the way to this

result we encounter some technical problems.



Chapter One - The Veneziano Model

In 1968 Veneziano constructed a model for the 2-2 scattering
amplitudez. The model is based on a narrow resonance approximation
and a linear form of Regge trajectories, and it possesses several
desirable features, like crossing symmetry, resonance poles, and
Regge behaviour.

For the simplest case of 4 neutral bosons with JP = 0+, the
non-diffractive part of the amplitude is described by (see Fig.l)

A4(s.t.u)= B [34(s.t)+ B4(u.t)+ B4(S.U) 1. (1-1)

where

q,(s;'l) = B(-'N(S))—Ollt)) r(""l‘”)r‘("d(ﬂ)

r\(_d(s).—ou-t)) (1-2)

with o((S)::-(,S-ro((O),etc. and has poles at o(s),clit)=n, n:infeae-f}("
The gamma function in the denominator prevents double poles which
occur ato{(s) and «({t)being both integer. It can be shown that
eqg(1l-2) and hence each of the three terms in (1-1) can be
completely represented by a sum of narrow-resonance poles in

either of two channels with residua that are polynomials of the

appropriate order in the other channel variable.

o£H)+l) |
Bq.l E.

n! h-otis)

(O((S)q-l) I
n-ofte) (1-3)

s

where

@ = T;—\(fw =(a+n-1) (&gn-2) - @+)a-

a3’
o \
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In order to find the asymptotic behaviour of A(s, t,U) as
A (9> we write eq.(1-2) as

' —ol 1) -1 —od(8) -\

B\‘_(S;’C)= ax % (i-x) ,
. (1-4)
and from now on for simplicity we assume unit slope for the
trajectories i.e. o=V -
Since (1-4) is defined for negative values of o, we first
take S—» - ,and keep t fixed, then continue in s. In this limit

the region X o in the integral dominates. To exhibit this we make

the following change of variable

Y= 3/(— S)
x < % .
and use L\ + —g—\ ~ e to obtain
S—»o0

o (1) = —olt)-] _
By(St) = () \ 44 4 3,
° (1-5)
or (¢)
i.e. Bq(s,f\-—-(’S) F(—dl-{))e
Similarly, B, (uU,t) gives
\ oL L+)
Bulu,t) ~ (-14)) S
% S—DOO F (1-6)

where to obtain (1-6) we have made use of S+t+U = ll'ml = fixed.

It is possible to show that the third term in (1-1) gives an

exponentially vanishing contribution to the scattering




amplitude provided the region in which the asymptotic analysis
applies is the entire complex plane except for small wedges about
the positive and negative real axis of an arbitrary small opening
angle.

To find the total contribution to the scattering amplitude
we add the two first terms in (1-1). In the full émplitude the
contribution of the second term appears with a factor T relative
to the contribution of the first term (see Fig.2). (Tt is the
twisting operator which is equivalent to the signature factor
on the « trajectory level, but as we shall see in the next chapters
this is not the case for all siblings).

So

-irait)] ol (¢)
Agl(st)=["(-aw)) T + € S (1-7)
where we have assumed 8 = 1 and have continued in s to its
positive values.
Next we consider the fi¥e point amplitude3 of the dual model.

We write the Bardakci-Ruegg representation for this amplitude3-5.

: ' T I O0(S) -~ -80($2) |
Bs= So o\x.o\X; X, ' X (I-X.) ' (|—-X._\
) _"°‘($|5) +°‘(S|) 4+ ((%,)
L1=%.) (1-8)
with oA(S«) =S +slt0) , oy sXlt) =t 4otlo) o

The independent variables are (see Fig.3)

3 2
t =(P-P) S, =S3u= (R+P)
-tg_r.(Pq"'FS)l S|5=S|S;K =(FI+ PS)
(2
S‘ = sl.'s =(P|_+P3) 'y




To obtain the double Regge limit of five point furiction, we first

let §,,5,,5,s —>->in such a way that 15 = K = fixed and also

s.S
keep tl't2 fixed and then continue S'slto their positive values.
We make the usual change of variables

3 Y.
X, = -:'é‘\ | —S.
and use y - _y
S-»00
to obtain o0 oo —ap-l =)

B sd syt § dn (s 8 4
Q"Pg_"gl‘;;"'g\g; K} . (1-9)

Next we apply the identity

X4iw
e.L S A3 TENY (X
Zoio (1-10)

to the last term in the exponential in (1-9) and perform the

3 ) ,31 and X integrations to obtain 7,10

\ . |
B~ (-S.;x (—s‘)“ {(—K) F-stst ) (=) F (’q"d"q‘*”"ﬁ)
+ ¥, &> "‘ti "(1-11)

To find the full contribution we add all relevant diagrams with

relevant twisting factors and end up with (see Fig.4)
- {7 o)) A I Z
A (S"Slit|l{1)K) ir‘(—d )lt +e J S\ f ' L"ql)LLI."'e } Te S

—l..‘ll(dfdd N|
r(ul'dt‘itlt l+e ] Kl IFl ‘—°‘| ;d1'~|4"; -!.E

r'(—ol;\[t”éi"“‘]

+ X e [ () 19
Z'Q—"t;_



Since Regge residues in Dual Resonance Model factorizell,
we can use (1-7) and (1-12) to define an & Reggeon Propagator

and also a Reggeon-Reggeon-particle vertex (we assumed that the

particle-particle-Reggeon vertex is one) as

—l.-TI‘°f| °‘I
D(°‘\'1|)=P(—N\) *c|+e ] S (l_l3a)
—n(og-o)7 N
V(N. )o(l;K‘) = r(dl’ul)[tltl"'e ] K\ IE(—Q("ML_Q"’".—-'E‘E

r('dl)[tz_*’ é("‘ﬂ_l

+ ¥, >
‘C‘, — 'C.:} ) (1-13)

respectively.

Fq¢. (1-13b) has nonsense wrong - signature zeros at

= —2n+ L (14T) , N=l2. T4, (1-14)
and the vertex function in (1-13b) has poles at the same points.

However in the double Regge limit of the five point amplitude

A5=D(°(|:-C|)V(°(”O(;}K) D(O(,_.t,_) (1-15)

the poles of the vertex function are cancelled by the zeros of
the propagator and the final result is finite. Thus we do not
expect nonsense wrong - signature zeros in the five point
amplitude. In the expression for the six point function in the

multi-Regge limit (Fig.5)

Ay =D(* TV oK) D TL) V (%ot K,) D(%s,T5)
(1-16)

there are two singular vertices and only one vanishing propagator



at of,z-1,-2,--~ with Taz4l,-l, e respectively and we see
that the amplitude is singular at these points. As we know that
the exact amplitude is regular at these points, eqg.(1-16) cannot

be the correct asymptotic behaviour of A_ at o,  -) . However

6

as it has been shown by Hoyer, Torngvist and Webber6 there is

another contribution from the exchange of a new trajectory which
v-1

is related to the o trajectory by p:gl———

=— ,which develops a

pole at &«,=-1 in such a way that the residua of these poles

cancel. It has also been showne"9

that in the region o +1< 0
this new contribution dominates, and that for o{,+| 0 the
contributions of both o and B are important. Hoyer et al. also
have shown that the pole at o{,=.2 which appears for T =-I

is cancelled by a daughter of the new trajectory which is parallel

to B and spaced by ..'z_ unit. In the next chapter we discuss some

properties of this new trajectory.



Chapter Two. The B8 Trajectory

2-1. The six point function and the B trajectory:

The contribution of the B trajectory exchange to the multi-
Regge limit of the Veneziano model six point function has been
discussed in detail in ref. (6,9,12). The two six point diagrams
that contribute to the B exchange are shown in Fid. (6-a and b).
Their contribution was given in ref.6, and it was -also evaluated
by a slightly different method in ref.9, and 12. Here we follow
the method of ref.1l2 to derive the contribution of both these
diagrams.

To determine the contribution of Fig. (6-a) we consider the-
Veneziano amplitude corresponding to diagram (7-a), and take
the Regge limit corresponding to Fig. (6-a). The amplitude of Fig.

(7-a) is defined for

5'3'\1 - S| <° S|3q ~ - s\St K\<°
Sq‘f\l "53<° - ssusf\l - SL53K1<°
Sy~ +8:X0 S,c ~468.S:1KiK$L 0 (2-1)

and so it requires continuation in §,, K,, K, amd¢

—im
S?— =—S,_e

e —zmy
K‘ = - K| e ¢ - e

(n 2-2
KL =" Kl e * ( )

We choose to continuelﬁ,K,,¢ first, keeping §, at its negative

values and to continue S2 to positive values only after the

asymptotic limit has been taken. In the appendix we justify this

prescription. There we show how the rotation of the integration



contours allows the continuation of 82 to positive values before
the asymptotic limit is taken and that both approaches lead to
the same final result.

Thus we take the expression for the six point function shown

in Fig. (7-a)

\ Sh
eon L LI Y L 2R -
86?_' tlTSS JX|Jxldx3 X| XL x; 3 _l‘—:‘x )
° < -S, ’
|- X3 )3 U=X2)(1- X\ X2 %;) -(‘_xgs‘s"“‘
= X, Xy C=%X, Xy ) (1- X, %) | =X, X X3/
$.5: K -
(\—x;m ) o Sas .t
L= X, X, X, (FX‘X‘X‘) (2-3)

in which °(L=°*(ti) and where for simplicity we have kept only
the asymptotic parts of all trajectories in channels whose
variables become large in the multi-Regge limit. The inclusion
of non-asymptotic terms, especially in relation (2-1) complicates
the discussion but does not alter the final result.

As the dominant asymptotic behaviour comes from X; =0 »

we expand the last six factors in (2-3) using
a ]
(1-%) =€»><Piiog(l-x)-a} caxpd-ax- ax ot

We keep as few terms in these expansions as required by further
cancellations. Thus in this case we keep only the two terms for

the factor involving S and only the leading terms for all other

2’
factors.

In this way we write



-—N‘—‘ —u'_" -—Ns"

|
36~z,z35 dx, dx. dxs X, Xe  Xs

1l
Q"Pi CXS1(1=Xa) = X513 1- %) 4 XaSu %o S~ %X §,82K,

’XlX3sl_53 Kz_ +X\Xl.¥3 S\SLS3 KI Kt¢} e

(2-4)

We introduce a helicity-like integral

X+ (00
+X X X3 $18:. 53 K, K.¢ A
e _ j d X PEX (SR XX $132S Kikat) |
T oamd
Y- o

change the variables X,z ?-l- » X3 =-—s-§; and let S,,S,—>® obtaining

S
ol, ™ g > ' LAl —6(, -1 A0\
By~ TiTs S\ S3 1 | 44, S dy, 3 deS dAXPEN XY,
o ° °© x

ami
.

A

>\—°‘3"‘ . y
33 Mpi‘g\ (\ -Xut X, S;K.) - 33 (\‘ Xo+ xlsl—’(l)"’xtst*xz%z (—X._S,_I(.K;_(‘

We perform the g' andg3 integrations obtaining

Y+ (o !

o, -\ L
B~ s s 2 (aaren | de T ety
A \ 3 T
X - o .
A\ o - X o(3-

r( >"'"l\) P(>"-°(3) (-x,_S;_ ”|KL¢} (i—x:.'i'x'-s"x‘) {\l=x‘-+x"5°K") *

Next we perform the )y integration and obtain

(<74

i \
o, ™3 —dy 1| Y

Bé ~ t|t3 $| 53 S dx.‘ X'_ - A«P{XLSL-{-x’-‘ S;} (‘—X;“"Xg_st K!)

o3 _,
(1- X +Xeo 5, K,_) M~ (-3) Z ’\f(_o(. s 03 =04y 15 z)
(2-5)
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-(‘-XL-\-X; S K\)("xz+ XS Ky)
XSz K, K:.‘P

function13. Using the relation of ’\}'(a,c:x) to the confluent

where Z = and "f‘(a,c;x) is the Tricomi

hyper-geometric function*

- c-1) I-C _
"'F(a—)C3X)=—rE(£%‘F( )C)X)-{-F( ; X .E(a-'c+|31-C,X)

(2-6)
we can rewrite (2-5) as

' —ly-| o ¢ ol
By~ TS S | Ak exPhusas 8 (okakisii)

&, o
(l-xL+stLK;) P (-%) ZF (-3 508152 ) 4%, 65%

(2-7)

As the dominant asymptotic behaviour of the integral comes
from X, o we change the variable of integration X, to g,_ x;(-s")
where 6P\ and let -S,—>% -

The expression (2-7) is not very suitable to find the
contribution for P=1. In this case it is more convenient to start
from eq. (2-4) and to introduce three helicity-like integrals
for the last three factors in the exponential,then change the

variables.

Iy

=g 0 YeSm o Xy

and let S,,(-S.), S3 —> w*After performing the 3“ g,_ and 33

integrations we obtain Y+ (0
o,

B~ Tty S s 53t )j 3N X, TEM PI-2T (-30) -

oo A+ PR S
O\ )\3"“.)’1( Xatdy-8) [ Ad X,y =) (-K ) € K. .

*Most of the special functions used in this thesis are in ref.13.
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Next we change A, —» %23 , A¢—>X1-N3 obtaining

R TR
Bg ~ (:r:;s S Sy s S dNANARS 1) M-)T Ohamy)
B-iw0

>‘\ A >‘3
P Ovade =Ng- ) PRy T -daeda) R -k ¢ .

(2-8)

We perform the >\3 integration and obtain
X+ (o0
y X -
. sty S\ ‘ S d, ¢ N A\, -
~TT3 S, (-8) Sy -;m-) o) L PON-) (A=)
¥ -

Be

N Ny
P("\\SP("xL\ F(M-“r—)f’o\z—“;) ("K\) ("K"-)

?_E('kl )'ka. ;= I—CP) d

Next we use the formula for the analytical continuation of

the hyper geometric function

| .y _Prsk-a) g ° b bal:d b
Klasbicsi-9) = — 277 4’ F(a.e-bsa b+:,_4.)+(a¢_, )

P(b)r(c-a) _
(29a)
and also
Ma-haN{-Ca1)
F A,C-d, A~ " = L . 4
2k ( bia-be;1) FlobsD Pcear] (2-9b)
to obtain finally: . X+ (o
&, o M3 | d), d\
B‘ ~'C.'t3 S| (‘5\.) 53 —[-_I-(—:“—‘) 7_"[) . i t i
A

PO PO PO € k0™
JEPN JOVIFRY [ GWIR YA

-
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A TTA L AT A~ %2) & g A AT Ny -2 A
A

X . .
T oy et (N =X 2) PreToly AT (Aa-M)
(2-10)

which is the most convenient form of exhibiting the
contribution of the & trajectory exchange.
To investigate the case 0'<[l<l we start from eqg.(2-7),

and rewrite it as

P

i ‘)

oo .
'B‘A/t,-css‘:(\ S°::3 —st\})dl-HP Sdgz g:. MP%'S;('Si)
) .

et 25 4o

(2-11)

where

-P I-P
A= 1= 8,0-5) - d.b5) K

-P 1-P
B=1- 31(-51) ’gz('s") Ke
c = 91(“5“)'_?“' Koo

To calculate the asymptotic behaviour of egq. (2-11) we first
continue X, KL,<? to their final values as given in (2-2) with

Sl—4>-a>and at the end continue 32 to the positive values.

. P X a-b '
U ; . (2-
slng|ﬁ(aqh,x)—§::;r o) e X in eq.(2-11) and keeping only

the terms which are needed we are left with

L



Poty-t+P —oly-2 t 2P
B‘ ~ TiTy $°\(\ $°:3 ("sz) So ng. 5; %PSL"E{—('S;) }

o
x,o(' K:(3 §¢ "Plot-sty) MM (o3 -0y 41) 4 °‘-<—-$°‘3§

-'/K“'/K,_ AUM(R, 40e3)
e e . (2-12)

For'q>=|the term in the curly bracket vanishes. This is due to

—an¢
the cancellation between the two terms in (2-6). However for 9=¢

which is the correct value for ¢ in this case, the two terms have

different phases and the resultant expression is non zero
1
{fk F(o(\—mr‘(us-“'ﬂ)+°‘|<’*°‘3} =

- . ~n( +°(3) —url-
- e ‘ For ¢= e o

The convergence of the integral requires =J-showing that the
L q z

effective power of Sz, which determines the form of the B trajectory

is Fz-:_ 0“?:' . Finally we perform the Y, integration in (2-12)

and continue the result to positive values of SZ._obtaining:

of
By w-TitiTy (&%) oap-L) (63K exp(-L) M -1-pa)

—(3;-\

-7 .
2 sf‘ ‘nes

. (2-13)
To derive the full contribution to the scattering amplitude

we have to consider also the diagram shown in Fig. (6-Y).

Calculation of the expression corresponding to this diagram

proceeds in the analogous way. We start with the expression

corresponding to the diagram shown in Fig. (7b). Now the amplitude

is defined for

SI3~‘SI <o s|35 ~-6,5.8; K\K;(P(o
SH-L""“S3<° Siy ~+858:2K, <o
5356«1-51 <o 535 ~ S;SgK; Lo . (2-14)

and so requires continuation in K|:K;.¢

-
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-
KI =-K €

|
K;_'-'—' KL&

We start with

y ! —o -l -8t Sy g St
Bé"/ T TeT, S AX.dxl.Jx3 Xy .89 K k ‘ )
4 ‘— X\XI_

—oly-} Y. % S, - S S1K,
| - Xy ) (|- «Xs ) )
—_3 _— 1- ¥ XX
( =Xy X3 L= X, X, Xa ( Vhems

-—-S._Sa Kz S‘S;S3 KI“&?
(1= %) (=X X X5) (s—x\x,_ )

(\-X,,X,)U-x'xl) | =X X Xy

(2-15)

I-Us
change the variable of integration X a to Uj by X3= T-‘i?f;

Qa L .
and as before use (\-X) = WP%- ax-a¥X —} for the last six
: L
brackets and keep only the terms which are necessary in further

steps. In this way we obtain

/ -ofy-| ol -1 sy~
Bé”tltz.t35 dX.dXLJ“3 X\ ' Xa v Ui '
°

v
X, S
Q’XPS) ~¥%15 1=%2) - Uz $3 U-Xa) = XaSz = ZhE #XiXaSiSaK,

L

+ X;_\X3 S;S3 K)_ - X‘XLU3 S|SL53 K|Kt¢ (’-Xt’} hd

(2-16)

Next we write the last factor in the exponential as a helicity -

like integral and proceed as before, obtaining
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!
/ «, o -0y -} t
Be ~TTala S, S3’ S dx, X, - axpy- XuSp - %y $2 }

—od
ol ol !
(\-xl-xlszk.) ‘(|_xl-xtszkl) ? Slr(—et.)l"(o(.—w\ y4

'E (~0¢ ,¥3-0+15Z) + & <——>°<33 .

(2-17)

Now

Z (l—xz'xl.sl K.)(l—xl-ylle,_)
xl(l’xl.) S; K\ K7_¢
and we see that the difference between (2-17) and (2-7) lies

only in the replacements:
4’—.-———" 4’(!—&\ ond S, —>-S2 -

The o{ contribution comes from the change of variable %X,S.= 3.,"
To exhibit this contribution we start from eg(2-16) and follow
the same steps as in the previous case. The final result is

—L'ﬂO(;

exactly the same as (2-10) apart from the additional phase @

as expected.

Cu

To derive the contribution of the B trajectory we change
. P :
the variable ¥, (—S-..) __.3,_ , oL PLV (l-e- Xy Sy —=> 00 an s,-»w)

and proceed in the way as before. The justification for the

analytical continuations is given in the appendix. Note that

' X2S:  _ 5 00 an S,—>®

!
Z f—— —'ﬂ - K,_C’+ U'xl-)¢
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To determine the asymptotic behaviour of (2-17) we first

continue K\,Kz,¢, to their correct values, keeping S_ large and

2

positive. This allows us to take the asymptotic behaviour of F

functions:

M(ola—,+1) e ! 3‘.:?:2
[ely—tt)

|F| (-—°i\,°<3—°‘|+'52) — (Yz?n} %P "'"—Kz' (=%

z>= T (-%0)

Then we temporarily continue the resultant expression in (2-17)
to S5,<¢- find its asymptotic behaviour as §,~—» -0 , and

continue the result back to $,—» 0 obtaining:

4 L

-, -\
B ~ T, Ty S| S; K| k,_ 04((’3 |/ /th de %, WP%‘XLSL

ol - c'ﬂ(%“’s)
- 2(—':_.51-‘. X;KS } { (oh dx)r("‘ ..°(|.\.|) + oﬁ@—b“;} -

SL
or asq’ +2TL (2-18)
=@ ,
/ o, &, o, oy S ¢
B = mtaty 88 K kT PR LR S T

§dx, % v exPyXesty
A 2
&, L Rt 0o - (T
=-M T, Tylek) e (Sak) & Pl--e)2 s € .
(2-19)
In addition to the above diagrams there are six other
diagrams shown in Fig. (8), which contribute to the six point
amplitude in the multi-Regge limit. They all correspond to<P=l-
Their contributions to the &,trajectory apart from the phase
factors are exactly the same, and are such that the complete

contribution corresponds to the fully signaturized expression
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7

A“—'-' DT VI, ., K.) D(dlltt)V(dl’dJ;Kl) D(ot3.Ty)

(2-20)

with
- - (el L

D(OL;-C-)=F(-0()(‘C+Q ) S ,

—(M(ota-ot)] o |
r(d\-ut)‘“zlta_i’e ] K, |E (—°(\,°l,_-o(|+\j —-E,)
\/(o(u"(._',K') = =
re-s)fz, 48"
o) >

+ €, e T2

and thus exhibits full Regge factorization.

However on the B trajectory level the expression in the
curly brackets in (2-12) and in (2-18) vanish. Thus the new
trajectory gives contribution to the full amplitude only when

a2m L

both °(| and 013 Reggeous are twisted (t-e- 4) = e ). The

complete contribution of the B trajectory is therefore given by

A / . d‘ d3 |
6 =-TLTT (1+T2) (SiK) oxPf-k ) (S3k:) ~ exp(- )

= (- 3. —i“[gi-

2 F-1-g2) s, e o (2-21)
As mentioned before for of,_)—‘ the o{, trajectory gives
the dominant contribution to the scattering amplitude, whereas
for o{, -1 the thrajectory is dominant: thus the dominant
contribution is given by eq. (2.20) for °¢-,_>-I)eq. (2.21) for o ¢~\
and for &, ~ -1 both eq.(2.20) and (2.21) have to be taken

into account (see Fig.9).

As it has been shown6'9 each one of the eq. (2-20) and (2-21)
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develops a pole at %z =-| , but their residua cancel each other.
From eq. (2-19) the structure of R—ot~ particle vertex can be
read of as

| K°‘ -k
M (-) ¢

V(o) 3, K) =
The phase factor of expression (2-21) shows that for the
B trajectories, T,,does not have the meaning of signature and
should presumably be thought of as representing some charge-like
9,12

quantum number . The 82 dependence of the diagrams of Fig. (6a)

and (6b), corresponding to the exchange of an ol trajectorv is
] oLy ol -Cnut) oly
given by (— Si) 4+ TrS: =\C2te Sy e

As signaturization involves symmetrization or antisymmetrization

of the amplitude with respect to S,~—>»-5,; we see that as

ol o, oly ol
(=S) +TaSy —> S, + Ta(-8.)

oy ¢y
= T2 ((—Sn.) '+'C:.SL) ,

corresponds also to the signature of thecdltrajectory. Thus
for the oA trajectories in the Veneziano model signature and
twisting '~ interpreted as a charge-like guantum number - are
equivalent.

However expression (2-21) shows that this is not the case
for the B trajectories as now the contribution of diagrams (6a)
and (6b) gives

2
("Sz.)(} (|+tz) ¢

under

@

(37- 2
S:— -S, ) (-S;) (l-l-'C:.) —> S, (""Z‘L)

and we see that T, (twisting) is inequivalent to the signaturization.
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Looking at (2-21) we see that the B trajectory exchange contributes
only to the amplitudes which are even under twisting h:1=*l)

and that the B trajectory is at least doubly degenerate as it

gives contribution to amplitude of either signature.

2-2. The seven point function and the two 8 trajectories

In this section we determine the complete 28 contribution to
the seven point function. To do this we determine the contribution
corresponding to all four diagrams shown in Fig. (10).

First we consider the simplest diagram, (lOa). To do this
we consider the Veneziano amplitude corresponding to diagram (1lla),

and take the multi-Regge limit corresponding to Fig. (10a). The

amplitude of Fig. (l1la) is defined for14

n~- S <o
S§7~—Sq <o
Siy~ S2<o
Sus ~ S3 <o

5'3'4 ~ "5|Sz K|< °

S3q§~ S. §3 KXo

Sug7~ ~S35¢K3<0
S

1345 ~ = 5,535, K, Kz¢l<o
331457"’ -SiS;8, K, Ks¢, <o

5'3\»57«) 3\313354K|K;K3<ﬁ,¢"l<0 (2-22)
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Where in the multi-Regge limit Kl'Kz'K3 are constant and Qﬂdk,q

resemble‘# in the six point function, and in the multi-Regge

limit are all numerically +1, although in this case one of them

('l) has to be continued to - ézm. Eq. (2-22) shows that the

following continuations are required:

~ L1
SL'—"‘SLe

Y
S&:- 538 ¢|:‘

in
K\=’K‘e ¢1=' .

(r et
KL‘—’Kie ’l"'e

K éﬂ (2-23)

Ka =-Ks °

We write the expression for the seven point function shown in
. 5
Fig. (lla) as
‘ syl —sly o)
-y -\ —sfy -} 1 )
B, ~TiTy de\dx,_d)(; dXy X, X, X, Xy

- S
s‘ ~-Sa Sy 4

X (1= X3) %q (1-Xs) - ¥ (-x))
(l—*‘(‘-h\) [\- __\}:_).(_&3;] [\--\-—_—-m V- Xyli=X

S|S,_K| ’SISIK‘- Slsuk:
(l’x\xl(l—xl\> k‘—x\.X3) k‘—- XIXU(|—XL‘)
S1S:S;3 Ky K:JP, S,_S_‘ng.‘)ﬁ%_ : S\SLS_aSHK\KlK;Q{
(\ - x.xzxs) (=% X5 Xy (1= XX eX3Xy)
(2-24)

and perform the relevant expansions obtaining
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e (Rl IS P IRV SRR B P
B, ~TTy de.dx,_dxzdxq X, X. X3 & Xy

e <53 ~8.8.K
X2 (1-X3) K3 (1-¥%2) 3 vS3 K
|- ——— |- (|—X;\(3
"‘xt‘(3 \'xt)(}

X F 5 =% S1(1-%2) = Xi X2 $1S2 K (1= X3) - X XeX35,9.53 Ki K,_q’,

<X Sp(1-X3) = X3S3Xy Sy Kali-Xa) = XaX3XuS2 835y KuKs¢,

4+ x\xtxlxu 5‘5;5339- K\K1K3¢,¢,_'L§ .

To exhibit the & trajectory exchange in the two external channels

we change the variables of integration

x!=g' , 8"

o Xy = 94

and let 5' , Sq—-u- o obtaining

\ < S 103
o Y —O(j.-‘ —-“3‘, xl(l—x) Xs(l—Xg))
87'\1 Z|zl+ S‘ 1 sqq' S dX;J)(g X,_ X's Q— -‘—:-;:——x:— \- ——_—|-X\.x3
-S53Ky 0 -, -\ —oly-.\
(-xexs)  §dgdyy 8, 4

MP i-a‘[h' X4 XaSaKil l—xss + XaX3S2S3 K Ka #.]

—.gu[\" X3 + X3Sy K)(l"Xt) +xtx3st53K1 K34:l

:\-g.‘éu XzX,S..Ss KiK. Ks q’! 4)1.?} °

-5 L

Next we replace all (I-X) by the exponentials WP%»SL.X-\-Z’-_)}

as shortly we are going to let - S;,-93—9 with -¥X{S;—=>®
1)

and (- S¢) £ X¢ held constant. Now we write the last term in

the exponential as




22

33xxs-gKKK¢¢‘[ P >
e L | dren(essinnet)
“anre ‘

X-—f@

perform 3‘ and 3¢+integrations and obtain

’ —“L" —“3" N\ 0(

«, o .
B, ~Tizy S,' Sy 3 dx.dx; Xo Xy A q‘”ﬂ?%.“tsl (-Xy

\-—Y;X3

T 2 T
4 XaSs(1-%s ) X3$aU-Xa) *:53( ’:t;A’ 4 X %18, 53K,
% "X;X} \—X._XJ 2 et g 3 )\

tt e AB
+ %X Stssﬁzz L S dxr(—x)r’O—e«\r‘O\—dq)(q‘)

2 2fnt
X- o (2-25)

where

A= 1=Xy + X252 Ki(1-X3) + X2 S2 X352 Ky Ko §,

B = |- X3+ XS5 Ka(1-X2) + XuSuX3S3KuKaf,

C = - XaSaXaS3 K KuKy 4’. (Pz.

As before, we rewrite the helicity integral in (2-25) in terms

of two ‘E functions, change the variables of integration

Yo y
Xl= . i } x3=_i—_1“
(—5::) ‘2 L_ 53) £

and let -9, -S3 — o obtaining

By~ Tty Sy (5} (- 8s) S:“(—'T(- R-K) (k) 4’ ‘P ”Pg"'h‘x;

-0 -2 —o{3-3

i '{(| Mod)-o0y Y M(Sy-00+1) + 3 <——->°(q} &”’J JJ du 33

2 2 L
(2-26)
Q,XFE_%____}__‘_&.:‘L Kx} ,

< 2
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o[ ~\
N

where (3=
A simple change of variables allows us to rewrite the last

term in (2-26) as

X1t ™ X
T- i“"ﬂ"*?‘_. S dx PN - O-B2-1) (- =)
n J .
=B 33-4 Bra)
= 2 {P(-l-por'((‘z-(m C2K)  E (=t pamfastis iy )

B3+
$T (=) (G5 B -2K:)  (F (=Bs=1s Pa- fr¥5- 1)

thus showing that

-t r -t L ~ - - t ~
B~ amizeue e o st (B gt Pl L 8
B2
O’XPSL‘JR;' "E; ’?3 { Y' (-1- (31)1"((‘:- {33) ('zkt) \E (’pz" ’ P.‘s'f‘r‘";-zliz:
T Fa} . (2-27)

Comparing with the conventional two Reggeon-one particle vertex7
we see that the two B-one particle vertex has essentially the
same form.

Next we consider Fig. (10Ob). To find its 28 contribution we
start wiéh the amplitude corresponding to Fig. (11b), perform
the required analytical continuations and take the asymptotic
limit corresponding to Fig. (10b).

The Veneziano model amplitude for Fig. (11b) is given by12
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! -l =Npaam) Vgl = Npq-)
/ 1
B.,~‘c.'c3tqj dx,dx.dxsdxq %, = Y Xa Xy

[
=3 - yy-! ~Sy-! gy -

(1=%) (1= %) (1- %3) (l—xu‘\

...°(|3u + %y +¥y - Xayg+ My g +8¢y ¢ 'qql.‘]*"/q""*’“
("'X‘xl) (\-’XLX';) (\-X;Xq\

"“‘345""(3(}""’(!341'“30‘ -0(3467_01‘*6.’&(3“‘*0(4‘7

(1- x:x2 %) (1-XaXgXe)
“i3ygy N3y g + Naggy - Nagg
(l— Xy xzx_,,xq) i
(2-28)
In the multi-Regge limit
S5, ~ =Sy S34p~ S:S3SuKaked,
S
13 ~N - SI S'3q67~5|$153K‘K1¢|
S S
3y~ Sa
St ~-882515¢ Kj KKy 4,6,
Sgg~ SaSyKa
5|3I+M"$|S]_ K\
S47~-Ss . (2-29)

and as the amplitude is originally defined only when all these

energies are negative it requires the continuations:

Sz."'slléfw ql =1
Ky« - K, e(Tr - en-n(
Kis-Kpg"

Ky =- K_-,ef'"

(P -27t
=€ * (2-30)
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We change the variable of integration Uy = |-X4 and proceed

as before obtaining: g4 (00

\
o, o b RV _ -
B, =Z.T1T4 S, sq*jamxs X2 Xy o L S dX [ =2 P(x-w)
A
..).o e R S ( )z
AB o Ny \-X3 o U=X3) ¢ g, =%
F(x_m.)(q) A B wpix‘s‘*\-x‘x, + XS ) =

2 X
x S ("'Xl)

- - X2X3S8,8,K, -
Jsm 1h33:5: K,

2 2
X xJ 5153 Kz%

z (2-31)

where
A= =%y+ %X:S2K, (1-X3) = X2 X35:53 K, Ka,

B =i- X353 (1-Xz)K3  XaX35:5; K'LKJ¢"~
(1=X3) (1= XaXy ) 1= XXy

C = X1X33;33K|K1K3¢.¢1 *

Next we perform the A integration, rewrite the obtained "{’
function in terms of |f functions and then letting S‘_SSK,_—')m’
replace each of them byits asymptotic form. Finally we continue
$,,¢,, 1. K and Kjto their correct values as shown in (2-30)
and at the same time continue S ts $,=-35; em.

we obtain

i
. ' | _N _' “‘)-l
’ . °<\ of Mq o _L-—‘—-— HY .
B, ~ TiTaTy 2T K 5. Ky 5y e ™ 10 dx.dxs X. X

T 7-5 a2 \
axp Xz S + X323 + X2 X3 S253K,
2 2 z X.Xa S253K2

(2-32)
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where we have kept only the lowest non-vanishing powers of X
in the coefficients of S, . Sy and §,S, Kz in the exponential.
As $,,S; . K. are negative at this stage, we perform the X2

and X, integrations and then perform the remaining continuations:

-
S,_-:-S,_e ';Tr
. Ky=-K.€
-t
s3= —s;e ,
obtaining
’ o, ™ _l- oy Xy -L . -0Ba-fa-2 P2 (i
By~ o TizyT, S, K|E’. )(54 Ky e™ Jm 2 S S

_L— L . (!l
o " é T(B24p3) {(’UQEL“) [ (-1-f2) (8- Ba)

B pasts Bampust ;- L) +r5z<-—*(‘3} y

2K, (2-33)

This result agrees (apart from the factor T3 ) with the expression

(2-27) corresponding to the diagram (10a).

By symmetry the contribution of the diagram exhibiﬁed in
Fig. (10c) is again the same.

Next we calculate the contribution of the diagram in Figq,

(10d). The discussion along the lines as before, this time with

the change of variables Uy=|-Xy and U = I-X, gives
] o¢, ==l &y X+ (@
B,~T.T.t ity S‘ S“q S A X dXy X, Xa > .}-1-“‘{ J\P(-)3P(A'°(‘)
Y-io
- L
AB -X 2 (\_xz)
F(XN)AB( )Q»)(Pix\s 2 %S
€1 T T Y TRIR RS
2
\-Xa (1-%2) XoXs $.51K
RSy ——— S + X X825, K, 4 Xr7322931Ka
TG Yk AR )

(2-34)
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where
- X
Az\-Yps, K, X3 + XaXs S2Ss K Ky § -
(l-xl)(l—x;xs) \-X;X;
\- X |
B=l-%X38,Ks * + Xa%3S8,8; Ky Kaf,
(1= %3) (1 Xa X, - X, %,

Co_ XeX38.5Kike Ks b §, .
(\"szs)l

The obtained expression has to be continued to

-7
K‘='K|e
T 2nt
K;_:‘K}_e ¢\=
-7 ant
K3= -K'se ¢1=
-zﬂi

'l:e .

We choose to perform this continuation in two steps: first we

continue K,,Kj . ¢_¢kand Q to their correct values and also S,,S;
n

)

v
to negative values 5;=-5;é 53=_53e « Not to let the phase

of the argument of the ﬂ’function, resultant from the A

ch

integration go outside the range % 3R/2

-27t
continue K, 1t K.= K,e Thus the second step of continuations

. . - - T . .
will involve sl=_slet") 33=—$3€‘; K;=—K;é“ln agreement with the

continuation required for all other contributions. Proceeding as

before we obtain
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|
L L R T

Y o ey ety ey )L
67«/'&.'(;1314 S\ sl} KI Kl e?\ K

X:SL X; S3 Xt X: sxss Kz—el'( } \
Wi — ' Tz 2 XeX3S:53 Kz |
(2-35)
This result agrees with the contributions of the other three

diagrams except that now K, is evaluated on the other side of

2

its cut. Thus when the final continuation is performed the

contribution of this diagram is different as now the K_ dependence

2
is evaluated on the other side of its cut (i.e. in the final

) . -(n {n .
expression effectively K, -—s -K.eand not K,—»-K,e as in the
expression for the other diagrams).

Notice that all four diagrams of Fig.(10) gave the same

S.,and S

2 dependence, apart from the above-mentioned difference

3

in the continuation in K2' This has come about as a result of the
different exponential factors from the J{ functions. They were
just of such a form as to cancel the linear terms in X, andXj
in the coefficients of S2, S3 and st3K2 in the exponentials

in (2-31) and (2-34) and also to change the sign of X:' and'Xz
terms so that they are all the same and ppsitive. This behaviour
generalizes to higher point functions; the B contribution always
comes in the same way. In the next chapter we shall show that
this is the case for the triple-g8 exchange contribution to the
eight point function. There we shall also derive the contribution

of a two B-one"% exchange. Before these however, we exhibit the

contribution of one B trajectory to the seven point function.
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2-3. The seven point function and one B8 trajectory

In this section we discuss the contribution of one B exchange
(in the second channel) to the seven point amplitude. We start
with the simplest diagram which is shown in Fig. (l2a). The

. . . 14
corresponding expression is

‘ et et L 2 -0(3-\ -8y -1 = S1-1\
B-’ Nz|t3 S AX|AXLAX3 JXQ. X| x.._ X3 xq ("’XL\

Q/;(Pi = XS (1-%) = XX S$i52K, - X3S3(1-%) - XaX35,53Ke
“X3SaXySy Ky L1-Xa2) +Xy$4 =X X3 Xy $2555 u Ko K3 ¢z.

4 X X2X3S,S; KIKL¢| + K\X:.xaxustst‘s-lsq'x' KI-K3¢|¢:.Y-§ °

In the multi~Regge limit corresponding to Fig. (12a)

Si3~-8,<o 547 ~-535eK;3<o

SSQ ~ 4 8y <o Si3476~ $,8,83 K,Kzﬂ( 0
s=476N—S3<0 5347“’-5‘5354 K;&¢1<°
956 ~ + Sy <o

Si3yqy~ +51528354 K KuK;, 9 ¢;7<°
Sty ~-8, 8K <o

5347(, ~ = S25;K,<0

It requires the continuation

-in tn
SL-‘Sle K3="‘ng
-7 —amt
S[’ _—Sue ¢' = e
T
K\ - - K|e ¢l = !
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Changing the variables of integration

y Y _dw
X\ S‘| » X3—- s y) x'& _Sq

and letting §,,S4,[-Sy) —> ® we get -

‘ —oly - -S|
B.,vt.-css°f‘ s:’ (-54;‘“‘8 dx, :l ‘ (1-%.) gdg{lg:d}]q

—0) -1 oy -oly -l _
gl 33 ' 34 ' e‘aq QJXF(’—3|(|—X;+ XzSLK\)

- 33("’(1*‘)‘;51'(\— Su.Ka "’Ju le-'! - 3qxzsthK34’;)

33, 33)(15:. Klkzq), (l=3c+ Kaq’z’“} ’

(2-36)
Next we introduce a helicity-like integration
P L
-\ XeSaKi K (1-94K
AP 9552 K K (1-9 kb1 - -'1&"'“" Eamskh ”“”
Y-t

Perform the J, and Js integrations and obtain

o —oly -1 -6, I i
By ~TiTy 8, s:(’ (—54)45 A Ko (1-x.) 3 A3 du
~Jtee, " g4 Coo A% - %
en 8L | dare-nro-wn Al
\—iw |

(2-37)
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where

A'= l"‘X:_-\- ) SH-TY K|

B=0-%)(1- Y4Ks) + X2 Ko (-4 ks )

C==-X252K Kz("gukxﬁ Vl) .
Next we perform the Xuintegration, express the result in terms
Z
of two Jﬂ functions, change the variable of integration X;(-Sn)lsgz

and letting - S, —» ® , obtain o :
T T JP —3:.

B,~TiTs s, 5:‘1 (-51)01634) de* 3 4. 3. . w e’

_‘Jq. -l_-_'_ ~ 3-8,

e e ™R Ly - P (g keh)

& oly =y
*(\’34'(34?;1) -+ ‘P‘ r'(ds—‘/\')r'("(\—d_;-tl) (l—gukzﬁ?J 3 *
(2-38)
After performing the g,_ integration we obtain (as 4),_: W=\ in this

case)
N (G ™3 Y - -1 _‘_-l.. oL,
B,,'V-Clt:s S, (-S.) S3 (-SW) y P("(Lt"‘> e &K) (- K':.)
«, = —
;P(N\—d3)P(c{3_o{\+l) ¢' + ¥, (-)6(3} S Olgq 34
- dy
(“34"1) e . (2-39)

Fdlowing Weisl5 we introduce

'/KJ "dli"' _ 3" o,
I‘= j dyq 34 e (“‘34KJ) )
and ¢ <o —aly-] -—34 V3

11: J d(,q 5'1 e LyuK;-l) )

%s
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which allow us to rewrite (2-39) as

_ YN Py L o) L Sty oy ~Bu-2 = Sy
B, ~(-2mi) e e S, sf S, S¢ (zea3)2 Ki Ki

K| Lﬂ‘(g

Ko
e P(-l-p;)[l“i‘ e I,_ °

(2-40)

. 15
(NS, -1
As 1,+e 1., = T(-9) V(d:,du,K;“))’e see that the appearnce of a B

trajectory in the multi-Regge chain is consistent with the
expectation based on Regge factorization. When compared with the
chain of ol trajectory exchanges, the appearance of a B trajectory
affects only the two nearest vertices and propagator in a way
that is already evident from the six point function; the vertices
and propagators further away in the chain remain unchanged.

The complete contribution of one B exchange to the seven
point function comes from addition of diagrams (12,a,b,c,d).

To find the contribution of (12b) we start with the amplitude
corresponding to the diagram (13b). Perform the required analytical
continuation and take the asymptotic limit corresponding to

Fig. (12b). In the multi-Regge limit shown in Fig. (12Db)

%3~’5|<° Sy~ ~S3Sy Ky<o

S‘ssc7~ - S <o Siag ~- 81583 KiKi§ <o

Sws =S¢ Ree~ SiSaSu Kiksh<o
556~ Su<o S ce ™ - $i81835u K KaKs 8, (o

Si4 ~ $15.K <0

Sis ~ $:2S5K, <o (2-41)
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and it requires the following continuations:

-n
Y |
Ki=-K @
-(n ¢L=\
Ky=-Kp €
o
K3 =—K;e

ant .

§-e

The corresponding expression is

1
‘Q(|-| —dl.’| _,bll—\ -8y -\
BI.7 ~T,Taly 5 dx.deJX;,o‘*q X, Xa X3 Xy
[~
G X X285 K
(1-%.) ‘L‘Kfi—x\s\ L R N RN N/

hallalk B

~ X3 KU-x;) + Xy X3S25;K, + XuSy-X3S3X¢Sy KyG-X) ¢

+ X2 X3X4S5:S53 54Ky K3 th.-x‘xl_xsxq $,5:53 54 Ki K2 K3 4’.¢._ng ¢

(2-42)

Changing the variables of integration

8| 33 \A"}
A5 *a= =5 b

letting $,, S53.5¢)> ® and followiny the same steps as we did
for Fig.(l12a) we find a result which agrees with eq. (2-40) apart
from a factor of T,

The contributions of diagrams (l12c) and (12d) can be
evaluated in the same way, with the same final result (i.e. we

. . . . - (noly
obtain (2.40) with a factor z;qbut without e ).

The addition of these four diagrams gives the full contribution

of one B exchange (in the second channel) to the seven point function.



Chapter Three

The eight point function and new trajectories

3-1. The eight point function and three B trajectories

There are several contributions to the complete three B
exchange in the multi-Regge limit of the eight point function.
These contributions are indicated in Fig. (l14). We start with
the contribution of Fig. (l14a), and introduce the multi-Regge
variables S; 'ti s =21, -5 KJ Yz, - and variables
corresponding to Ch s ¢2_ and 'L of the seven point function,

namely ¢’| )¢L,4>3, "L‘ ,VI_) , X (see Fig.l5a):

Sy ~- S, SM“.V-s|sL53$qk.K;Ks¢.¢,‘L.

Siy ~ S, S, o5 cq~ - S53 SuSe Ko Kufbla

Sus ~ S, S ys6y 81525354 S5 KiKaksKud, P 11X
St~ Sy

368 ~=Ss

Slzq. '\""515:.'(,

S

3"‘5 ~; Sls,} Kz
SQ‘S 6‘\’ SJ S", K3
5568 VRIS q.ss Kq

S
13 45 ~ - s\S;_Ss K, K‘_ql‘

3345 6~ S,_Sz Sq_ K:.KJCP

Suseg~ -85, 8cK Ky 9, (3-1)
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As the amplitude is originally defined when all the above

energies are negative it requires the continuation

- 8 |
Sz=-S;eL Kuz-Kye
Y | .
S, =-S18 4)':_| (aub3
. .
Sq:—sl}e 'l,(_';‘ L=t,2
[% 4 '
K|=—K|e ‘x-_-éz"‘.
Ky = - K,_e"“
o
K's - KJ e ’ a
The expression for the above eight point function i55
|
. — -l =Det B a-t -Ny-) e
38 =T Tg S dx|dx1. ng undxs X, ' XL ' X3 3 Xy Xg
o -SL -53 —Sq —S,_Ssk,_
o est)) [ XaUoUX) ) Xelok) \*_%_t__))
SN (1= X2 X3) (1- X3x4) 1= X3Xy¢ F= XXXy
_5351}K3 - S‘_S3$q K‘K3¢
-0 ) () ) Y oxpy-xisiliox)
V= XXy Xy

- XiX38,5, Kil=Xy) =% X1 %38,5,52 K K;ﬁ =X XXXy S\S;SJSQKlK\.KSQﬂ'Z

"XSSS ('—Xq) - qus 5455 Kq.(l- X3) -X;Yq. X5 S5354Ss K;Kq @3

- X1X3XyXs 1535455 Kz K3 Ky 6, 1 +XiXaX Ky Xs SiS:S35Ss K K KiKuf B,
?.ivll."x' } (3_2)
where we have already expanded some factors. Next we temporarily

keep Sz, S3 and S4 fixed while letting S$.,5¢ —>» 00 . The

asymptotic behaviour corresponding to the oltrajectory exchange

in these channels is exhibited by the change of variables

4 . Js
X‘S .-sl: ’ XS— -’S-; .
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we obtain

ra ‘ - —°(,_—\ —M3—\ _Q/Q‘—\ —Q(s—\
B~ TiTs S, s‘;‘sjdgjgsg A dxdxy J Xa X% Xy Y

LR 2

v L 2
+ X4 g XaX3S2S3 Ko+ XeX3S283Ke _y %,9.83Ks Xy 4+X,XyS384K
z 4 + 3 3 2

2 1
2

+ X:X: YJ.- 515354'{;‘34)1; }
o 2

- A
%Pi yl (l-x;'i' x:.Sz K| —x,_s;)(;K\ +xlX3S;S3 K| qu’.+xzx3xq5b53$4 K‘K‘_KSQ)‘Q:]

.

= &5 (1% +XySy Ky Xy SyXsKy 4XaX4S3Sa KKy Py + XaxXaXy stssu-K;K:KaMJ’l.)

+d1d5 XXy $2 8354 KKK Ky 94, 4, ‘L.'lezg o (3-3)

where we have used U—XSS ~Q‘Xfi)(5 +2<_;_§_§. as we shall shortly let
-52,-8y,-84—> 0 while keeping xz_(_st)l/‘ , Xq(-Sq)’/l and
%3 (- 53)‘/" fixed. We replace the last term in the second
exponential in (3-3) by a helicity-like integral, perform the
g| and Hsintegrations, let _$,,-S3, — Sy —»® and take the

limit of the resultant lF| functions, obtaining:

¢ q | "°‘z.‘| —u3" _Q(l'—|
BSNt'tS SI‘ 555 j JX;JX:;qu Y %3 Xq. _ | )
. X852 X3S, X4 Sg K.Kyd,

Xl z r A r 2 T Ll
251 X3 Si Xy 54 X2¥X3 S S3 K, X3 Xy SSS‘PKB
%P 2 + 3 + 7 + . + 3

Xg

X, X3 Xu S;53 S KKy & ¥
2 A3 Ay 324 Ky
+ 2 3 3 F2 % (.K\Q']_‘) ('K“‘Pz?x_) »

-
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<y Ll - LI
xX P(c(n"ds\r'(dS“"ﬁ‘l") + o, 6—*“;} eK‘ Ka K3 Ky

di

Next we change the variables X = _LS_T/. , 1 =2,3,4, let
=S)

-S,_-—>°° drop the remaining unimportant factors and obtain

v o N
Pesa 8" i) 6L (k)

Bs~t'z5 $°|<l (- s;)B‘(—SB\

—Bfafy-s L L. L-L
'XN.F(%-NS)F(MS'“!) +°(\6-—'>°(5} _2(3 ¥ (3" w

Kduo‘wdz \IG"—‘ \JF:.-?— Z—{;“-z qF%_—“—W-Z-\-UW@Kt‘)

+w2(zK3\-uWZ(zK;)(zK,)(hg , (3-5)

where we have also performed a further change of variables in the
last integral to exhibit its similarity with a corresponding
integral which arises in the study of a triple ol exchange
contribution to the multi-Regge limit of the six point function16.

_ —-2ML
We perform the necessary continuation letting X =@

)
comparing with the corresponding result for the triple o

exchange we observe that the only difference is the additional
exponential dependence on the Toller angles and the replacement
KL—->1K,'_,0(->(S*|)11’1 the final expression. The ¢dependence is again
given by the lE function.

Next we discuss the contribution of the diagram (l4b). We

. . . 2
start with the expression for the diagram: in Flg.(le)1 .
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/ ' TS VAR pe VAL B T RV
BS:'-CI-CI-CSS Ax.dxlAX3dx¢dxs X‘ 13 X; X3 Xq XS
— - —od (Sqy)-! —-a($3) ) —ot{Sy)-| —“(Seg\"
(l‘xl\ 0")‘;) (I'X3) (l_ Xq,) (l-xg)
- o2(Siag) +6{(S24) +, -o(Says5) 4o/ (Sag) +0ll33)
(1-%Xz2) (1-XuXa)
—od(Sysb) +02(53) +4(Sy) ~ol(Sgpg)+USy) + l(S¢8)
(1= Xsxu) (1-XgXs)
-0(Syays)t A (S124) +6/lS245) -0t (Sey) oS, o) F8LS, ) 4l Suse) -
(1) (1-x+30%)

=(S4568) - 000 S) +64(S ygg) +8(Sgy)
(I-X3%yXs)

~(559g) =ollSyyc) + ollSinys) +M(Srygt)
(I" X|X;_X3Xu.)

(1= X2 X3 Xy Xs)

—¢(S35) ~ O Syy5¢) +¢ (5378) +oL($,3)
(- X X X3 X4 X5 )

(3-6)

introduce Ul by X1=1—U1 and proceed as in the previous case

remembering that in the multi-Regge limit
S'3~ - Sl ~p - P
Sw,v_s‘szKl,_p.seo
- oP
568""‘55 —>
sllq ~) - Sl — - OO
Squ ~ $15:9; K|Kz¢..—>+ao
Sgbg~ — Sys5 Ky —» - o

S‘?-‘IS‘V -S$,.83Ks —» -

Si1u56~ 5,5:5:80 K.K,_K3¢:¢,_ Ly—> =+

S4s68~ - $35485 KoKy P, —» -0
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S ~ -$|$L535435 KiKe Ks"u“’.qzq’ﬁ.’lﬂ'—”‘“

137
S378~ ~S.5315¢4 K, K3¢L'_-> -

5;-,'45:_535455 K,_l’q%%‘h__»q-w .

we obtain

1 Y 4<0
/. o, W —8ly -y = Oly-\ &y
f\'B—x % Mg i-X3
PN P (h- 8 )P Ur-o) (a_) AUBS UPY SXas ! .
~M1X3
2 2 z
e (1-%) X, 51 (1=%)(1-%X &) X:33 (-%) (1= X%4)
= R o2 ——mm—mmm—>
2(1-X %) (1-Xa XaY(1-¥3 %g) 2(|-x;x,)"(|-x;X¢)1
2 (1 %) |
|- X3 - X3 -Xy
YaSu ——— & Xy Sy —— — ~ XXy S5 Ky —80—
RIS e STV o Xy ) T T XX Xe
2
“x? (- %) XaX SySy Ky —— ot
—X2X3 S 83 Kp— . 3¢ S3Sy Ky m
2 (1= X2 X3 Xy) *03
T
T -
XXy Sysuks VX XX Sasaseakad,
2(1- X2 X3Xy)
T 2 2
- Xa X3 Xy Sz2S3S4K, K;¢,_} (3-7)
z r
where
A=1- X252 K, IU—X'O - X3 X15253 K.Kz?. |- X4
=) 0-nx) (- XaXs) (- X XKW
- XLXSXG} 5153 Sy K.Kz_ Kg ¢'¢L|’L|
'-Y:.X3Xq
B= =¥y + XuSy Ky (1-Xa) +X3XqS354K3K4¢3(|_X\_)

- Xa%aXu S2S3SuKa K3 Ke $,4, 1,
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C = Xu XaXy $2S35¢ KiKaKsky 40,479, -

We proceed as before and perform the A integration, rewrite the
obtained ¥ function in terms of f functions and then, letting
$2S3S4K, K3, —> ¢ , we replace each of them by its asymptotic
form. The factor exp(%gi in the asymptotic form of each Ji function

leads to the cancellation of some terms in the exponential in

(3~7) in such a way that when X.,%,,1,, Ki, Ky are continued to

-in
their correct values, and S, to S,:-5,e¢ we obtain

. X, —-'7‘ Mg -"l"('“ "Lr'(-z.--ll?; ' Ax dX
BSN 2"L t|t;tSLK|S|) e (Ku»SS) e e S dxr_ s q

T b 3 I3 N
o L I S [y ¥ A X Sa ¥, S XS % X35, 83K
3 V3 44 A3 933K
X; X3 Xq Q"KP%. 2 + 2 * 2 + 2

z A 2 v 1
. ¥~ SaXySy K3 . X2 X3 Xy S2S3 Sy Ko Ka ¢;}
2 2 X

X 3%, 52535 ¢ Ka K3 ’
(3-8)
where again we have kept only the lowest non-~vanishing powers
of X;in the coefficient of different terms in the exponential.
Notice that although the coefficients of some terms in (3-7) were
negative the cancellation with the terms from |f functions
effectively changed the sign of all of them to being positive.
The obtained result is the same, apart from the T, factor, as
the expression (3-5) corresponding to Fig. (l4a).
A similar discussion can be given for other diagrams of
Fig. (14). For the diagram of Fig. (l4c) we start with the
Veneziano amplitude for the diagram in Fig. (15c) and then change
the variables X4= |- UgUs , Xg=\|-Ug, The calculation along

the lines as before, again gives the same result; i.e. we
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obtain (3-8) this time with T.T;3Tg factors. Similarly for all

the other diagrams; for the diagram of Fig. (14e) cbrresponding

to Fig. (1l5e) we change the variables ¥ =z|-\, ,xq=|-txqu5, x5=pu5

for that of Fig. (14f) corresponding to Fig. (15f) we take
X|=|--."-l|.x5-=|-u5 and for the one of Fig. (14h) (15h) we take
Xyzt=-U; , Xyal-Uy, Xs= |-UyUg Straightforward although

tedious calculations show that the result is again essentially

of the same form.

Closer examination of all analytical continations required
shows that although all eight diagrams lead to a similar
expression the variables K., K3 and(gwhich appear in (3-8)
have to be continued to different values. Thus

477_-_| for diagrams lu-a,b,c,d.eamda-

-1t

‘P:Q for il-l--ig and 4>'_= €+1M for 14-h
(n

K.,=-Kx€ for [q_a,j,,t,,d,f.amdg, and
-1

Kyz-K:6 for 14-e and 1u-4
and similarly for K3. To obtain the complete contribution we
have to add all those eight terms continued to their correct
values. Then we can compare the obtained result with the expression
for the complete two B - Reggeon particle vertex in order to
investigate the Regge factorization. We choose to follow the
method employed by Weis in his study of the o trajectory

15
factorization.
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We define

- - (e~ _@I 1 -fa-
\"Z¢ f&u(i;;.K:cg)=__‘9'_<.f_ 2(3 fa-t &o\z dz, z z, oxpi-z,-z.

+ 2,2, 2(K*(g)

= 5.6‘-13‘—“ é'|7‘ K (- (3-\)S JZ,_ Z, e LI-:.'L..(K'!;'&\]
o T (0( Betr)
) 3@| fr-t '7( P(~{&.-|) [I (BuPusK) + € Iz(p.,ﬁqu

where T and 1, are given by

‘/LK (; -2 2 |+Fl
I,-= dz, z, e~ (i-2z,K)
- - -Z; “’{SI
S dz, 77 &% (azaken)
'/zl(

and are real for Ko .

With these definitions we see that the full contribution of

the seven point function is given by

=, &, -4 Ny oy - r B3 _(11'{3,-(1!(!; —(3:.‘@1"*
Byz2m T,k S, € T,Ks' S, €1 sf S, e 2

] .
--'21 ' g ‘J'FL
e T TEBd QU T 1,0 pasbarka) € La(Purbs ko)
: |
42LT,T;3 /-u*'“(qz 1,003 B3 K:.)S .
(3-9)

A similar discussion of the complete 38 contribution to the
eight point function gives

O A P B o - Cupa-Cupa- (0 4
Bg=210Z,$, Ki €F zgKye Sg e"" S, Sy €

% PY- %, {

3(3'-'[33'{34- 6

=) »
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i[l(l) em ‘I U\ [1 (z)-€ 1 'I_(z;l(lrcutt;-rzq)

+'c,.‘r.3[ I,(0- é“{gl]'_z_ m] [ 1,(2)- é(mx Iz(")]

_L" 3

vty T,00- m@l_lu\].[l.w e 1.0

+‘c,.tq[I<a)I () - ﬁ 1(.)1 m-e_“ lllu)Ilu.) +

—L.Tlfg;i-i'ﬂfi; -(n

+ € 1,11 (2)] +T 1314[1‘ MYI)-¢ Fa I,DI.2)
- img, - (wp

- r'IlU)I,(zHe : ’ Izmlz_(u]} ) (3-10)

where T:(0) =1;(Baps.k) and T;2)=L (B pusKs)e

The expression in the curly brackets can be rewritten as

(nfs

[I m— I u)] I-e ]’_,_(n] QFS FSTRPS SAYTS XY
+20 plT Ry T84 (14T, 0 (D

+21 a.l;-'ﬂ B T.T3l 1+ 4) I‘(Z)Iz_‘—')

s
- ZL/J‘MT/ga.e C,_(‘c,s.,t“) 11(51,_(2)

ixf
2Ll B T,z (1+Ta) T, Tata) - (3-11)

Comparison with the expression in the ;urly bracket in (3-9)

shows that the expression in (3-11l) does not factorise into a
product of such terms. This lack of factorization stems from

the appearance of additional terms proportional to

ﬂémﬁuaﬁvijanIz(;) in (3-11) and the mismatch of some coefficients.
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Looking at (3-10) we see that when ,33 is continued to -2
the contribution of 38 exchange develops a pole whose residue

is proportional to |#Ta: To see this we notice that when

{33-\:—2.

/K 1+34
T L) 2— €77 (aks)
_ fs+2
while
"/?-Kz |+ 2

Ly~ € (ak) | Plase)

Thus I,(ﬂ -~ IT2¢2) ~/ cConstant and the whole contribution

of the pole at B3= -2 is contained in last two terms proportional
totT,zy and T,TyTy in (3-10). As ,nT .2+ -2} =T

we see that the residue of this pole is proportional to |-T3 o

It also has the expected symmetrical form and is not singular

at the poles of the trajectories Bz and 34. As we mentioned before
the structure of the 38 exchange contribution to the eight point
function is very similar to the contribution of the 3Is exchange
to the six point function; in the next section we shall see that
the poles of the 38 contribution are cancelled by the corresponding

poles of the !;Y‘(x exchange.

3-2. The eight point function and the AX trajectory

To exhibit the complete contribution of this exchange and
to establish the behaviour of the Xtrajectory under twisting
we have to return to the unintegrated form of the 38 contribution
given in eq. (3-8) and observe that as in the 3t case the

appearance of the further trajectory stems from the necessity
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dant
of continuation of ¢, to € which through the additional

helicity integration and limits of \F, functions leads to an
additional factor NMP{"X—;SJ} which in turn allows for the
scaling X33$3 = constant. As 43,._ +| only for the diagrams of
Figs. (14f and 14h) we have a complete parallel with the six

point case.

To find the contribution of Fig. (14f) we start with the

expression corresponding to the diagram (15f)ll:
¥ ! —o(Sp)~| 8ol —ahel M) ~X(Sge)-
—% -1 ~&(S24) -1 —8L(Syg)-) - N ($59) -1 - -|
(l—X.) ("‘xz) (|-X3) (I—"V) (" XS)
- S124) +¢LS 1) +8¢( S, 4) <~ (Sayg) +X(Say) +00(S4S)
(1-%1%,) (1= XuX3)
=S yg9) +8¢(Sys ) + N(S
57) ~™(Sgyg) +¢(S ot(S
(1= YaXy) (- XeXe) g) +X(S5y) +0u(S7g)
=S 1 yg)- S, y) 4 X(s,
1y) +X(S
(':—xﬂ(a_xa) <)
~¢($34g5) - o(Syg) + oLUSaysg) +oSysy)
(|'-_' X2 X3 X ¢)
= (Syg5y8)- o (Sg) + X (Sygy) + X Sg,g)
(1-X3XyXg)

~X(Siaygy) X (S145) +04(S 45 ) +0UUS 1457)
(I-— X} X;X3x4)

- (S1y57g) - S y57) +¢( S1457) +8{Syg,8)
(\-xtX3qu§)

~U(S124578) -0 S2a57) +8dS12457) + X (S14578)

(1= X X2 X3 XuXs) .

(3-12)
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In the multi-Regge limit

Sy ~v-$i1<0
Siry ~ -Sa<o
Sus~ 48, <o
Se75 ~-Syu <o
Sgg ~ -Ss <o
Sy ~ 8 S K <o
Siigs ~-S$283K, <o
Sgr54~ - S3Su ks <o

Sg7 ~SysgKy <o

wn

245 ~ S.S,,sa KIK?.¢|<O

53 6~ $.S3 Sy K, K1¢L<o

S
457~ S3S4S5 Ky Ky <o
S
124578~ ~$,S,8;3S 4 Kle.K_-,CP(fl?Z {o
[ )

E3368 ~ =S183348g szlK“‘Pa.(t’st <o
Siys7 v 81S283SySg K KKy Ke$ 900 %o
i3 T

The change of variables of integration

Xi=1-U, |, Xg=1-Ug
gives us
8 ”tltz.tqls 5 JU.JXLJX3JX4JNS' u| x?. X3 Xq us
Sy _S3 Sy

S -1

(1-u)) (1_1"-_“_"‘_3)_) [‘ Xa(l—xau—xv)k (‘_xq(v—m)x

F=Xa X3 B (1= X2 XY (1- %3 X4) V=XaXy
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S -1 -S|SzK| s!-s} KL
(1-us) [l WiXs (1-X3) ] & X..Xs('-xa-)]
(-X2) U= XaX3) | |~ X2 X3Xy
S1SyKj -$45¢ Ky
. XXy (1= X)) I Yo Ug (1-X3) ]
1= XeX3Xg ("K“)('-X3X§J
: -5, S, S, K Ke
|- U, X Xy (1-Xy) RE A 4>' -S$,8318y K-,,K;?‘_
("XZX3)( 1- Xe X3 X y) (l- XLXSX“\
-$354Sc Ky Ku $\8:.5:8 y Kk kit $, )
X3 XylUg (- ¥%2) ( | UiXeXaxy
(=X Xa Xy ) 1- X3 X4) 1-X 2 X3Xy

S8, SySs5 K K K‘lﬂ‘g"h

Xe X3 Xy U g
{— Xy X3Xy J
-s|$1$35'455 Ky Ky K3 Ku*¢L¢3?|11x
U.X-._X;Xq US'
- xLx,xq)‘ °  (3-13)

Next we ﬁemporarily keep S S, fixed and let $,, Ss— Go »

27535,

Then we change the variables of integration

\
U= 5

and obtain

X | o0 l
'Bs BTt 4Ts 5°f s‘:s j Jg,dgss dx. dxy dxy

—d|-‘ "dL-| _us—‘ _dq-—‘ .—ug—‘

-
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. \-Xy
=9 1- Xese K, —12X3 - K2 XaSaS3KiKa G, Xy
%Pg 3‘[ R VIV AV S 4 (1= X2 X3) (1= XuXa%4)

%2 X3 X ¢ Su S2Su K Ky K;Wk'h]
- X X;Xq.

- X
(I-X;Yq.\(l-—)(:.x;;u

1- X3

- X3XyS3Sy Ky Ky
(1-x4)(1-%3¥y) * e ‘P!

'Js[l- X4Sy Ky

4 Xa2X3 Xg S$2S3 Sy K2 K3 Ky ¢L4)3vli—]}
1-X, xsXq-

kR
S k2 3

Z L L
X3 S:S3K
-*45(‘. —‘_‘%_S_q -+ XQSar - X2X3S52853Kp = -)—(k—z—z—t-——’- +

N 3
X; xq S;Sq K3

X X3XyS283K, - X3 X4 S3S4Ky - 3

+ X2 Xy X2 5384 K3

T 2z 1
+ X1X3X437_53S4 K"K3¢z_+ X X3 Xy 515354K1K3¢1}.
' 2

(3-14)

Next we replace the last term in the first exponential in (3-14)

by a helicity-like integral, perform the Y and integrations and
\ s

obtain
e = o) Ng
‘_.S PN O O-v) (48) A" 8
ant C
Y-(w
w heve
Azl X282 K, - X3 —XLX3$1S,K.K1¢, 1— Yy

(1=%)(1- X2 X3) (1-XeX3)(1- X2 X3Xy)

+ X1X3 X‘-l- 5153 S‘PKI K?—K3¢I¢L7.|
|-X;X3\(q
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1- ¥

- X
=% - XaXy S35y K:'.K'-0¢3

B = 1-Xys4XK
P ) o) (XX ) (1- Xaxsx4)

K2 X3 Xy 91515y Ka K3 Ky ¢:.¢3 VL"
{- X..X:;Xq

X2 X3 Xy 52.5.3514- K Kz K3 Ky ¢l ¢; 4)3 'Li?z .

C=- = T
O—X;X;Xq-)

We perform the A integration and take the limit of the resultant

,Fi functions obtaining

Y ' —dl" —M3-\ —d“-,
¥ X X Xy
53 % \TeTyCyg 5|‘ Sg; S JX'LJx;qu i 3
o 'X;SLY3S3“QS\'-K&K‘4’1

[ 1 3
Y1 S %3 S %, S % ¢
QJXFa Lz.t*' N NI L.
2 3 2

T 2 11
Xz X1 S2 83 K2 Ry Ky SaSy Ka
= % - +
2

T 2

T 0 Ve
Xz X3 X¢ $:53Su K, K3fl} (_ K\Q‘l‘) - K“ﬁ'lt)

2

Q o/ e . M
Jl X D5 Y (Hg-typt) 4 X [ (¥ (¥-¥5+1) |

(3-15)
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A further change of variables

Xyz — X, = 3’
) % ’ 3 (—S!)‘/J ’

and the introduction of a further helicity-like integral replacing

the last term in the exponential in (3-15) lead in a similar way to

x - (a2~ -1 - ol Y ) § 6‘4 NE
Bs”"‘ztuts 2(l e SY‘ PP s, (—s;)p (&) (-S4)  Sg
o o R Bq
KPR | ER) K (eak) (2K

¢' b 0 % ‘Xu.r(d‘_gs)r(u;-o(.n) + o, (Aus}

pl
% q),_ r( {h-{iu)[’(Pw-p;H) + (‘;4—-“ (3.,% ,

(3-16)
Where we have used
jdx3-—3-,_— o’xPi 333g =3 (—Sb T’(-" ";—)
d (’_(3533()‘3 S3)
—1‘3-'3 %3
=3 (-S» [—'(-\‘3")
(3-17)
with Y3 - _|_ - .
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Thus

y Naoa il e
_Bg N a2 F(¥ye 1) el. g et'll(!u em‘h

* B, X V7 o ¢ N
S, Sa s, sq()q sss K.' K,_{h K;(; Ky

(3-18)

The contribution of diagram (14h) can be calculated in the
same way as the contribution of diagram (14f).

We start with the expression corresponding to Fig. (15h),
change the variables of integration ¥X,=z1-U;, , Xy = 1-Uy , Xg=1-UslUs,
and then U, = 3./5. » Usg =35/sg , replace the term in the
exponential which contains Y, , Y¢and all X¢ (t=2,3.4) by a
helicity-like integral ( A), perform the 9., 55 and then )
integration and take the limit of the resultant f  functions.
We obtain an expression similar to eq.(3-15) with the following
differences:

W SR
» X3 Xy S183SuKakah ]
7 3 in {(3=15) are

: %X
@xpgxssl,} and “-’)(?iL

replaced by: ™ N
0—’(?3-53[)(34-2(-3-4-53-——’(3-]& and 0’”’3

3 I=-X%X3

I S
¥ X1 Xy 525354 Ka Kﬁhg
2( I-x;)l
respectively. Then proceeding exactly as before we obtain the
s . 1 %3 Sy .
additional factor WF&—— —.._——} from the asymptotic
2 (1-%3) .
form of the \f functions, ending up with the integral
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with

Putting all factors together we see that the complete contribution

of a ﬁ‘[[l exchange to the eight point function is given by

Xa ~(wfa- (W Pe

ree-¥s) e

X o z -
= - T
%-%+% 2N T, T.CyuCs 3

é\d‘ sl sf‘* e ® K?l' k ey fe qu
. T I A G ND
(3-19)
on

Eq. (3-19) shows that sthe % trajectory level the signature factor
and the twisting operator are again the same. Also it gives the

structure of fB-Y- particle vertex which is

Vg vy w i 6 —
(B YsKY A~ K e -
BRI R F(= 1)



Chapter Four

Higher point functions and further trajectories

4-1. Higher point functions and further trajectories

The techniques used in the previous chapters can be applied
to the higher point functions. Their use allows us to exhibit
behaviour corresponding to the exchange of o, (3 and X trajectories
together with further trajectories from the family discussed by
Hoyera. The ten point function receives a contribution corresponding
to the triple ¥ exchange, its full contribution exhibits a pole
at the middle ¥=-3 which is cancelled by a pole in a contribution
corresponding to the exchange of a new trajectory 3§ with a slope{}-
Only two diagrams exhibit this exchange; they are: the one with
twists on all Reggeon lines, and the one with twists on all lines
apart from the § trajectory line (see Figs.l6a,16b). To derive
the contyibution of the S'exchange to the diagram (l6a) we start
with the Veneziano expression for the diagram (l17a) and perform

the change of variables

X,: - U Uz X¢ =1-Uy
Xz=1- Uz X,z 1-Uq¥e

Next we proceed as in the ¥ case, except that this time we keep
. 4 . . .
the terms up to X in the exponential corresponding to (3-7) in
the previous chapter. Next we introduce a helicity-like integration,

—ant
perform the U, and U; integrations and continue g, - Sue Sy L e.
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Next we perform the helicity integral obtaining additional terms
in the exponential from the asymptotic form of the resultant
Fi  functions. This procedure is then repeated - this time with

2 2
U, » Uy and 5. = S 547 and then again with
qu' SLS

3 3
X3 IXS MJ g% = 547. Ss‘
Szs. Ss9

The resultant X4 integration involves

..u*-—‘ I
dXQ Xy 3
° -y 54

Y
g X ]

Bu —Sy-¢

=(-%¢) 4  [(-3-34)
with

oy 3
5“=T"£‘

To find the contribution of the diagram (16b), we start
from the expression corresponding to the diagram (17b) and

perform the change of variables

X|—|-U|u1 XB‘.‘.l-—usu‘L‘*’
Xp=1-Ua Kqz |- Ugug
X5 = 1 —Ug

Then we proceed as before. The final X4 integration this time

is similar to, (4-1) with a relative negative sign, which shows

that the phase factor associated with the complete ) trajectory

. . . . ~(ndy
contribution is given by e (L—tq)~
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The next trajectory appears for the first time in the
twelve point function and so on. The trajectory with slope "lr—\
appears for the first time in the 2w+2 point function,Fig. (18a).
It appears in the chain shown in Fig. (18) where d'f; denotes

. . 1 . th \ 2 - &
trajectory with slope T in the K~ channel (ie. o =%, ,ed,;=B2,L =

R
in the previous notation).

To exhibit this exchange we proceed exactly as before. In
the expression for the 2n+ 2 point amplitude we introduce the
multi-Regge variables S¢,te [ Lshdywe2nay K_‘, s j=hee2n-a.
and a score of variables corresponding to ¢‘,¢,_ and 'l of the
seven point function. The most important amongst them are those

which symmetrically overlap the n-“‘ channel » (see Fig.l1l9),i.e.

‘f - S'\.Mr:«\ * S'\*hn&l S - Svm,m.u' Sn,“,3
P - ’ S
Sn,m—z- sn+‘,n03 Nt nel * S“""_“
g _ Sn-z,ms' Sn-tm-ﬂ& y .- f - Ss.‘u\ - S‘hlh-l
37 N-2

s 3
Sn-z.,mq‘ S“_h,“,s 3,20~ Sq,zn

g S?.,L'\'H' SB»I.V\

QA= ’ (4-2)
! Si.z2n - S3“:.M-l
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2
Where SLK‘-(Pi*PCH“ """ Fu) N The successive continuation
in fn_\, ?n_z y e TR will, in an onion-peeling way, convert
the exchange of 2n-1, trajectories into the exchange shown

in Fig. (18). There are only two diagrams with ( 2n¢2 ) external
legs which contribute to the exchange of a trajectory with slope

-% » they are the one with a twist on all Reggeon lines, and

the one with a twist on all lines but the V{n‘Reggeon line.
(Figs.18a, 18Db).

We start with the simplest diagram namely (18a). In this

) —2nd

case all ¥ s will have to be continued to €

The order of external particles will be different
depending on whether W 1is even or odd as shown in Figs. (19a,
and 19b) respectively. We re-arrange the diagrams (19a) and (19b)

as(20a) and (20b) respectively. The expression for (20a) will be

as follows

|
Bum. = t't*"'tn-utnﬁ"tzn-lj A, Iy dxn., dxydigy, - Jxr-n-u

“nﬂ-{‘ —N“‘"_Q_l _0(“ -1 -4 -\ -1 -

X\ A= - A4 "N“,H+z “;“‘P;'
2 . -1 x X.ou -
X " b ><zu4
"Nﬂ'hn—q -1 "q/nu,m{ -O(nn,ms -
(1-x.) e Cmxa) (1= Xana
- n-2, n_‘ <+ N2 0(
“&on-4 n- -

+ -
N-2, |‘H-5' +°(n-z_, n+y o(n-u.mrs d“'“‘)ﬂ.’j
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Where 0(“ Lynej is the trajectory whose argument S
il ¥ |

n-i,he)

involves all momenta between n-t and v\-j as shown in Fig. (20a).

We change the variables of integration by the following rule

XV\-'L = |- U“-l x“”_‘-‘l-U“*,_
Xl = |-~ u“_,_un_3 Xu‘_' = |- Uu;u”g
Xn_3 = |- uM-‘I. Uy.3 u!\—!{» X w3 = |- Unsez unfgul\{-l}

X, =V - UncalyzUuay Xanorz 1 -Unga UnpaUnegUnes

With Kpoy » Xnrand Xuel unchanged, although for
convenience renamed Wy_ ,Un ,O—MA Unst ©

Next, we temporarily keep $,,Sy,---- S

fixed but let
N1

Sl,su—; o . The asymptotic behaviour corresponding to the
-1
exchange of ™ trajectories in these channels is exhibited by

the change of variables

- PR, U _ o,
€ re—express all depe 1aence on L

4 PO e B LD \ - m
VWL » L= Z2o- - ER7e ) as a

product of exponentials in which we perform an expansion in the

power series of \l,’_ keeping as many terms as will be required by

further steps, and we replace the exponential which involves

g‘ MJ 35 and the product of all U by a helicity-like

integral.

Next we perform the 3‘ QMJ 3”\_\ integrations and obtain




N o(’-“" g+ (0 o c(:.n-! N
. . 1h-) AB
s s, ANp(NPO-)P(A-™') A B <C—§j
| S
(4-5)

where

S
A=1-a,u, ;"’ + &, U, U, ___Sl;“s -3 UpUaUy f‘_‘ig.‘—‘— +
T \

n Sazon n
v (=1) a_n_lu,_u3... Wy, 230

nat
4\:-!) a.n u‘_u3..-uh” S-;_...yu, G e

Sanoy
- - =, "*' S 1 -
B | L‘ uz“-z LN b?_ uL“‘z uz“-J ndl 1 w-2

+ e oo

S. Sana
n n S 1,04
g s
—een .(_|)b"-l ulh-t uz"_3 u“” -——lr—g—'—-s——“—*-z‘ + L-()b“ﬂuz_u_l uv\ S“‘ ‘
n-1 i}

...... . s p)
. ree 4 .Lu_3u”—l...u,_ LI

Sm-!
C: FrCiualUy . U,y Samz (4-6)
S SLH"
2

where LJ(PL*'THV*""E) . _J__jx".::/ol_\_/es all n'\.omenta between i, j, as

shown in Fig. (19) .

|
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The coefficients of (L [ , b(; , C, are functions of W and are
such that when W;—so ,Q;,b¢,¢; —| o their explicit
form is not very illuminating, and will not be given here. It
can be easily found by the explicit calculation.

Next we perform the helicity-like integral and express the
result in terms of two |F‘ functions and then calculate the limit
of each 'F" function for a large value of its argument (as we shall
shortly let (-S;)»® while keeping U((—SL)P fixed with P(l)o
We obtain an exponential factor QJY.P(.&EB-) from the asymptotic form
of the |E functions. After cancellation with the other terms in

the integrand we are left with

2
L
2 1 L"~z.n--z. S
U9 Uz S3 UnSa . +
%P{ r.z t . ~ PO + T+ -+ 2
2 2 1,2 L
Up Us S2SsKe + Us Uy Uy S25354 K Ko, +
2 2
ST R A+ higku orders in Ui}
d f t+ ‘ - _‘___ - .‘—— T ees. = —"'—' } ®
and a factor Q’AP%- K Ka Kan-r
The other factors which result from the 3\ and 4., , integrations
=1
Nl '
and helicity integrations are k-n(‘) ‘ ,L—- K,_n_z) Ki Kan-t

[ ¥ ] ) [] [
U, Uy Uy 393,20
and the phase factor necessary for the correct analytic

continuation of the amplitude.

2
Next we repeat the previous procedure this time with U;

H

replaced by U;;we change the variables of integration

4

bsak

- 37_!\-1
- " \

(" Szn-:.) %

U,

>y U,
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let - S, = Spo, —> @ and write the term which contains

3:. , 37_.‘_7_ and all U; as a helicity-like integral and then

perform the Y, and d,, integrations to obtain

X 40
1 n-2 + 2n-1

0('_ -dl’d "2'

59 (-Sinn) 2 dx )
% -t

P(X-di)F(X—dz:_L ) (-’5—?— )

(4-8)
where
4 r2 g PR T 1
A=\+a,u3 35 Uy Uy 53,s+....
S, S,
/ Sau- ’ / * b Sl -32LN
B= ‘4‘5 uzn 3 Mt 4 b, Uipa Uan-y —
2n- Th-|
' r z z %3,1»‘
C - -C| U3 uu saee s u?'n_s )
sz-t

/ 7 '
where as before oy ,L‘: ,C are functions of W;and are such that

’
ar | B
1Ci

7
{\ —>» O .a‘_ 0'0‘_.|c|—7‘==

As before we perform the helicity-like integration, take the

limit of the resultant ‘E functions and obtain an exponential

factor 04(? ) which again cancels the leading terms of the

other exponentlal factors leaving us with
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3 3 3 3 3
P U;3S: Wy Sy Upa Sy + Un Sy WUnar Shey
ax 3 3 3 - -
" 3 San 3 3 3 u3 <
- . Uzl U pn-2 Wm-y 2iney,
- zn-3 b + 374 S$3S¢K3 + - + h -3,
3 3 3
3 3 3 3
u“-\ u“ SV\,VH-Z u" u“+‘ Sh+|)“+3 +
3 - 3
2 3 3 3 3
uzn-q Uan-3 S:_n_-s,zn—l u3u“u5 335"’&5 K“qu)"_ ......
+ 3 3
3 3 3 3 30D
" un_-._ u“_| UW Sh-\)“'fl 4 \.l“.| U“ uV\-H SV\.V\+3
3 3
3 3 3
¢ Un Uny Unsa Swa,ney
3
3 3 3 3 3 3
Uanog Uzn-ygUsuez San-5,2n-| N 4 AUsUy - Upyoy Sysana
3
-+ -Hru.gku ovdsrn L u;} . (4-9)
We also obtain factors:
h-1
04:-\-‘ d:_ +1
» 1 . » \
) Y s = v - K - Kip-a
YXP i 2Ky 2K3 z"zn—'i L K )
-1
t 4 LS - o/ - _|__
'.(" Us Uy - Upyg Su.um) owhere ole= 5w
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Phase factors necessary for the correct analytical continuation
of the signaturized amplitude and an overall factor 3 .

To get the next trajectory we follow the same procedure as before,

changing the variables of integrations.

- 33 31!\-3

u = > u-;_ - =
3 Y3 "-3 Y3
S (an-a)
letting S35 %n-3 =~ and writing the term in the exponential

which contains \(33 . Jin.y @nd all Ui as a helicity-like integral

and then perform they_‘ and gu__3 integration and obtain

3 183 3 1h-3 X+
S°‘3 S°‘3 gd3-d3 & d) NN
3 Z1-3
X -(®
, -A
th-) Y
3 A'B
pO-3) P -oG7) (A2 ), o
c 'fn—J
where
o ” u3 S
A=1+a, %286
Sy
3
” ,4 Uan-y Sz"-bzn—l
-B = | + o, = * + o
szn-3
3 3 3
” “ e Uanet D4 ,an-
C=-c, Uy Ug in-4 Y 4,2n-)
SaSzn-3
4y ” d
and where again (2 S b" . Omd C, are functions of W,

such that W;— o gives aL-,LL-;C,—>| °
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Next we perform the helicity-like integration, take the
limit of the resultant.‘E functions, obtaining an exponential
”w 77

factor @ﬁPi ﬁf%} which again cancels the leading terms of

the exponential and leaves us with

Y g Y ' ’ y Y
Uy Sy Usg Sg U1‘a-g,5gzn-q Uy Us S4SsKy
4 4 W 4
Y
....... e Uy Us Uin-y4 Sg,2n-2 4
2

+M9kuavdavsj-nu(} °

We proceed in the same way to obtain a contribution corresponding
to the exchange of higher trajectories. The last integral will be

of the form

' U stuv:qsﬂk
3 A\, AP ) —

unUJVLL-S“y"

It gives us

where ol Z e e e
n 2

A quick glance at the phase factors which result from the helicity
integration shows that we are left with the following product of

terms,
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n-!

\"' (o("_ o(f"" )r(afn“_ ot'\+\) + o('| ol

-2
1h-1 tn-2

g,\_,_ F(dt-ol - )r(d 2 —o(z,_+|) +olt<,—»°¢1

n-1

-, -1 n+l A n-{ n+! n-! g
§ P = o (K=o )+ e -
(4-11)

We perform the required continuations and observe that the final

result can be written as

ol
Bmpe ™ TCe T T Ty, Si (-$)  S3 - kS
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The contribution of the second diagram (Fig.1l8b) can be
calculated in the same way. First we write the expression

corresponding to the diagram (21), and change the variables of

integration by the following rule

Xh-z-; \- U,
)(I = \- uv\—z“nq
Xn-3 = 1= Upp Un-zUnoy

X;_ =\ _U“_;_ u“—Bu'\-l&un-S

XV\+\

= |"'uN-o-l
Xopy = l= Uppt Uy p
Xﬂﬂ.: 1= Upy, un+2_un+3

Xanz= 1= Ungy Upgz Unaz Upr g

where X" and Xh_, remain unchanged. Then we continue following

the steps used in the previous case. The final integral in this

case is n
\ = *n-!
Un Y u“s“.{
{ du, oy §
J ! ninaYz n-t
° " (-Sn)
(4-13)
which gives
n
-N=-0ly | >
~ RN ((—l)M Sn) P(\‘“"'dn)
n
n ol n-d
with A n- m T
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Eq. (4-13) shows that the properties of odd and even numbered

sibling trajectories are different. All odd numbered sibling
-{nol'n
trajectories carry a phase factor of the form ( € *Tn )
and so for them twisting is equivalent to + signature. The even-
—t'ﬂd:

numbered trajectories have phase factor @ (lttm) and for

them the concepts of signature and twisting are not equivalent.

The appearance of only one(“ function - for the ci:trajectory -
demonstrates the decoupling of ciztxajectory from states with no
more than 2a2wn+2 particles. Eqg. (4-12) exhibits also the general
form of the two Reggeon - one particle vertex function for the
coupling of two adjacent Regge trajectories in the ﬁamily, and
L, L+l \

. . o .
shows that it is given by v/ (&": ,dl::_‘ , K\) = K M?i-\% m]
t

Also, a further generalization of the discussion of chapter (2-2)
shows that the two Reggeon - one particle vertex function for
the coupling of two trajectories with the same slope, i.e.
VLQ(“(» @,K) has a similar form to the familiar two Reggeon -
one particle vertex function (which corresponds to {=1 ); the
only difference is the appearance of an additional exponential
factor “’M’i- \-61—’;:-} and a replacement K — K+ We have not
been able to exhibit Regge exchanges which lead to the appearance
of Reggeon vertices, coupling trajectories which are further
apart in the familt (i.e. dn,d\hxwith K>l ). It appears that

such courlings vanish, and this is borne out by simple expectations

based on the factorization hypothesis.
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The O(Ktrajectory intersects o ol = 1-K , (K=2,3,- )
For (g L1-K the &y exchange dominates over the ™.,
h H o, o % K . L 1 o
exchange. However as K=gx~-7T'%Z the K

exchange (in at least the 2K+2 point function) dominates for
o((_ﬁiggﬂl i.e. for large negative values of the transferred
momentum, However we end up with a cautious remark.

The discussion above relied to some extent on the Regge
factorization. However as we have shown in chapter 3 the new
trajectories do rmot appear to satisfy any simple factorization,
which makes this discussion a little suspect. However, the
factorization is violated only by the mismatch of some phase
factors and it appears that there is some underlying structure
to the way the factorization is broken. We have not been able
to understand more fully this structure but we believe that the
discussion given in the last and in this chapter throws some
light on ‘this problem. At this stage however, it is not clear
whether the determined twisting properties of the new trajectories
should ke associated with the trajectories themselves and not

their couplings in the specific configuraticons that we have



Chapter Five

Triple Reggeon Vertex

In this chapter we try to evaluate the structure of the
following triple Reggeon vertices:
i) ol- G- {3 vertex
ii) (3-(5—[3 vertex.
We do this for several reasons. First of all it will allow us
to understand better the factorization properties of the new
trajectories. Also it will cast some light on the similarity
and/or dissimilarity of the ol and B trajectories. It will also
provide us with some information on the structure of the coupling
of two Reggeons to a particle with nonvanishing spin; we shall
be able to see whether such a coupling can only be obtained
by the continuation of the & trajectory or whether it can be
given also by the continuation of the B trajectory. 1If a
consistent picture emerges our results may be useful in a future

construction of a field theory involving only Reggeons.

5-1. Two 8 - one®™vertex

To obtain the structure of the 28 - X vertex we consider
the simplest diagram in which this vertex may appear, namely
the one which is shown in Fig. (22a). We start with the diagram
(23a), perform the required analytical continuations and take the
asymptotic limit corresponding to Fig. (22a). We write the

expression corresponding to diagram (23a), change the variable




of integration X, to X_ =1-U
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and obtain

3 3 3
) —-°l\“| __°(‘_,‘ -—bl3—‘ _Nq_) —-QS—‘
B% ‘S J%.JX;JU3AX40|"5 x‘ xl lA3 Y“ Xs
° -S4
Sl -Sa2 ’53
xl(‘_xq‘) u) _ xl.}(l-Xl)
JPPIR o SIS e o FREATRA
K' 1 t) I~ ¥ Xy 1% Xy
$s $|$LK\ —5153‘(1
t-Xg (I—Xq) 1= %, Xq (1-X C YeUs ]
( ) ( Ve “) T
-S3SyK
Uz Xy ] e : ~S1SyKs S4Ss Ky
|- -lTX_q-—' ("' X2 X‘l) (\- XQ-Xs(I-Xr.))
S, 5:.53 K\ qu’, S‘S;Sq, K\ K5¢,_

(1-%ixu3)

535455 K3 Kl{- ¢‘f
(!-— stuxs)

~$1S8:848s K

(1=Xi X X4 Kg)

where we have introduced the multi
Kj »y=t5 5 @ sy, as
- S|3N—S|

S'3«+5‘~'$t

wn

2134V S

»
-

<

se™ Se

63""55

n o

13¢5 ~ -S|SLK\
SSQ ~ S3 Sl Kl

(1- XXX y)
S1S¢S¢ KuKs 4’3
(V- XaxuXs)

KuKs ¢I—¢3Yl

’

-Regge variables S; 1, ,t=)h--§,;
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Sys48~ -S4 Sg Ky

S

3y ~ S84 Kg

5.34 ~ -S,8; S; K,K,_(h
S|3tl.5l,""''SIS?-S'-J-'(|I(5¢k
%‘4568 ~ —-S,_qus Ky Kg ?3
S

568 ~ - S3SqSs K, Kyf,

S
C3Q-S'-‘8 ~ S\SLSL‘_SSK;M‘,Kg 4’14%!10

As the amplitude is originally defined when all these energies

are negatove it requires the continuation

.
S,_:—S._e
r
S&:—S;;e
-(X
Sy=-Sye
o/ as “:“
M==-KhE
L _d =
K,_-—K,_é 4%'4)"‘¢3”4)4 '
n
Ks:—Kse
o
Kq, :—Kq.e
b |
Kg--Ksei
—lﬂl.
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As is well-known there is a nonlinear relation between K,. K and Kg
corresponding to the triple Reggeon vertex. We shall disregard it

at this stage; it can be imposed on the result at the end of

calculation.

Changing the variables of integration

2
z
APIX, S, + KeSooxuSuxe -4, Xu Sy +X4 S8 Xy Sux,

1
S 2
FX X 68 o Kg 4 XrRuSaSuKe _y sy K, xISag ke

2
2
-X'+5433 Ka- Xy 5!{-83 K;} 1, (5-1)
where
oo

I=S dgiolgs 3_\ 35

WP SL -:'L[ {- x:.-\'Xz_Sz(\-*q,\Kl + X165 ‘/\q.SqK\ KS?L]

—35[\ C ¥y 4+ XeSyl-X) Ky X2 Xy oS4 KuKs §,

£y Kasa KKy + e haSe KaKu by

+ &}j;XLSzXqu Ki Xy Ks 4’;‘*’3'& °

(5-2)
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We replace the last three terms in the exponential in eq. (4-15)

by three helicity-like integrals and perform the Y, and Y

1 5
integrations to obtain
¥+ 0
1:(—‘-)3 S d dP. dm C-NYPER)TEM () e m-eh)
an(
§-(® -
o-% Ng-P
AB '
N“‘*V"”s)(q) AL B

) P
Q’ 33\(1—51‘(\\&‘".) (‘ s XuSuKy K‘*q)q)

(5-3)
where
Az l- X+ XaS2 Ky (1-Xy) + XaXuS:Sy K KsP.
R= 1~ Xo + XySy(I-X2) Ku + X2 X¢S26 4Ky K ¢,
C=-XiXuSe Sy Kikyks 9, .
Next we perform the W integration obtaining:
§ + (o0 A P
3
1=(1_£) S dxdp m—,\w(—?)&‘ésxtst&h) (- Y s X Sy Ky Ke)
A
¥-(oo
o\ -\ “S") l ¥y~ 2 \ N
v, - -
&KA C—Kq) X X528 g Ke 1. P(4a-2+P 5)

5- P

AP(Ws-Pad-) « M r'(vs-v-.o«mr(°<|—>+°‘c—"+\\}
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WFQL S W B lk; = XoSal1-Xu) - Xl}Sq(l—Xt)—X:.SthSWKS‘g°
(5-4)

Where we have set {>‘=1> =6 _=¢4-_-| o

- (r(+p) ey
Since {{" P-pT( p-oxl) & olea[s} = e (-am() , whan Vl_:ezﬂ)
we obtain
o g VL oL (e e
(—K\)‘(—Kq)g e'K. K¢ Ks eL 2 '
21t N
- XXy S2S4¢ K3
‘6+\'w
NP SI -~ RS2 (1-%y) - XySuel1-X2) - X, S, ququ-g S d) d?
¥ - (o
A P ir(aep)
pL-kXP('F)(B:;XtSLKz\ (33?(454 Ks e * (5-5)
We perform the A\ and P integrations by using
§ ¢ieo N\ X
1 S dXx (-2 (-x) =g
2t
¥-co0
and obtain
o, g ,‘7—'? -—-:—<-- - (s +¥5) |
I=-ani(-K) (-ke) ™ 7 7

e

- ¥X151Xy S¢ K¢

U)(F% X252 (1-X4) 'quq(l'xz,) + X2S$2Y; Ky + Xy S99, K3

- X\_Xq.S;_Sq KS'}
(5-6)
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Substituting (4-19) into (4-14) we obtain

\ 1 | .
oy ol R g - "~ Ku K¢ -—tﬂ(ul‘*“s‘)
Bol-110) 8¢ S0 (o) €KY (-Ky) T e 7Y T e
°°A ' A x.et.,—\ x_dg-\ - oly - \
dx Xd T q 3
S_ Js S £ d ~¥2 Xy S2S4Ks
v T 2
L 3 XySeS KS‘;
S S L X y L2y .
Wf{\hzl +*“z,q 'gsxts‘ Ko- §a Xy Sekyt 2
(5-7)
\ Y
/ 2
Next we change the variables ¥, = 31/(_51) v, Xy = ‘34/650
and replace the last term in the exponential in (§-=7 ) by a
helicity-like integral, perform the Y2 and Y4 integrations and
obtain: Y41
. N % s 82y fa - Ro-f4-1
B'vL-lﬂt) 5\‘ S (-83) (-%) (- Su)(s"(.l_) 2 Ba- —l—- dn
-K5 ani
X- i

-yt

['(-n) Say, Yy e oD (n-Pu-) caKs)

frtt-w By+l-n ¢ s - (Yt ¥s)
(1—7-53‘(7—) Q"'?szs) ) ('Kq)s e

S R I -
eK\ K* K;. 0 (5 8)

We introduce two helicity-like integrations by applying the

relation
S Y
-2 A-a
/ a . N Te-21( -
(1+2) =70 n(-a)
¥ -

-
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to the terms in the last two brackets in (4-21), then perform

the Y3 integration and obtain:

o 5(‘ Ng L_L—-L

-

s oty By
(5 (-sa) T SET K Ky g R R Ks

~ ¢

B~ —2nl S, (-82)

- Pr-fPu-2 y (W
2 (:‘?)(:‘r)g dwdndf PEW PR
¥ - (o0

POmen-fo )7 (Pea-fun) PUmEP-S)

(_ zKl)m (-— ?—K:)P (-zK;)m .

(5-9)

Eq. (5-9 ) shows that the structure of f- @-cx vertex is

similar to the of-ol-oL vertex7, the only difference is the

replacement

K2, K3 .Ks — 2K 2Ky, 2 Ks and oL, ,oly —> 2\, put)

. - Ba-fy-2 _L
and the appearance of the additional factors 2 = f e Ks

5-2, The triple B vertex

To obtain the structure of the triple B vertex we consider
the diagram shown in Fig. (22b). We write the expression corresponding

to Fig. (23b) and change the variables of integration

X|= |—U‘
X3: '-u3
xl‘,e '—U3uq

obtaining
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! —of, - __d_._,| "dl"‘ —Nq-\ —N{—\
Sdu dx.dusdUydxs dXe U, X, U, Uy  Xs

-S, e

oy =1 S! -U, I-¥X 3
Xee (- u) [‘_ Y1 (- Us)(1-Xg) R

- X2 Xg (- Ug)

Sy -Ss S¢
[‘_ uqu-muw] - YU}y (o)
L= ¥a( 1- Us) I- X Xg (1-Us)
S|SL K‘ - S'LS; Ky
‘ u, Xz L1-U3)(1-Xs) Yo U3
[\-*-.Ll-us)][“xlxi"u’)] - - X (1-UY

SaSyKs -Sa55Ky -S:S8¢ K¢

k"“l“W) {piﬁx_s_} [t-x,xs (u—u,)}

|- Xg (1-Us)

SsS¢Ks S.sLs3k‘m|

‘ U|X1u3
-XgXe (=X (-t \-
\-Rg A¢ G 3)] [ G-XL)[l-XzU—ul)]]

- S‘LSJ SQK1K3¢1 S_;SquK;Kq¢3
. YaUaUy (1-Uy) &" U3byXs ]
| 1= X2 (1-uy) |- X§

$28s S¢ Ks K¢ §

p

5355 SeKyKs %
b= XaXgXb{1-Us) Q ;X;XL

L

$18,S¢ K.K&" - 51525 35uK, KLK3¢. 4)"21

[ UiXaXs(-us) U U Uy (-t
I-X2 X5 (1-Ua) [1- Xa(1-W) *

- 85,55 S¢ K, K¢ KL‘PS 4’4 1.
(R

- S3 54555, KiKyKs 4’34’4')_3

L Q- U; “4X5X¢,) . (5-10)
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Where we have already introduced the multi-Regge variables

S(', L"="6))-KJ J:‘lé ) ¢R » K:".-b ,’2"1 , 1=.|’__3

by observing that

S v-$,

33114(5 ~ Sa

S|31.q ~ S3
Sub ~ -5y
S

4657 “"SS

S,q~-S¢

Szubs ~ =881 K,
ng“ " S,_ S? Kl

Sty - S3Suks

Scs-’ -~ 3355 Kq

Sués79~ -S5S¢ Ks

5314657'“ 52 SgKe
Sey ~ =888 Kk h
S‘s:. 46 -315334K1K3¢:.

5 N-S_Q'SQSS K3Kq¢3

57

55579 -~ -S;SSSL Kq K§¢q

Sq_q(,;-'7 ~ ~5,5.5¢ K, K‘4>L

Sigt ~ $18283 54 K Ky Ky 4’|¢Ju

5571 ~ S;qugsé K3k‘f K§¢3¢U‘23

S, ubs 74~ SiSSs S¢ KiKs Ke §s 8,1,
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As the amplitude is originally defined when all these energies

are negative it requires the following continuations:

Y
+S,_-: -GS, €
-
53:—53e
S
Ss= - Sge
on )
KLZ—K‘_Q ;) Lz, 6

$oo » Lalyb

‘l,i,--e , t=hLn3 e

From six Ki only five are independent. Again, at this stage

we disregard this relation between them; it can be imposed at

the end of calculations.

Changing the variables of integration

3' - ‘é“ = ‘di-
u": -é—l ’ uu— —S—q D X‘s ¢
we obtain
¥ vy ¥ ‘ ol e\ el -\
B~ S, Sy S S deolu;dxg X : qu Uy :

- S - Ss

-5
*S(pu3“kxﬂ
¥ali-Us)(1-%s) (I—“3> \(- 1- XaXs (1-U3)
- XaXs Q-U3) |

- S$:53 KZ -535¢ K\f

Xl. u3 1 I" XLX; }
\_ l-—X,_(|—u3\ I-Xg(l—\k;\

- S;SsKL

i-t—xtxs(u&;;) I , (5-11)




where

79

—N‘—\ —Q(q." —-b(‘—‘

1- (dsdydye &7 4,7 4

ox Yl v+ X8 K U-ws)LI-¥s) ]
P - " o E_le|_u3ﬂ[\g—X;Xs(l-u!)]

- %) (1-43)
_34[Q Xy (1-43

-+ (l;S; K;] -3 L[\"xs +¥555(|'XI.)L"“3)K§
[=Xa(1-U3)

|
o P { -3 XaSe Uy S5 KK & Q-xl)b-xlu—u;i

1-Uy

- Y, X2S2Xg S5 K, K54>L I-¥2Xs (1= Us)

~ Jy XS U2 83 K, Ky ¢ A=Y Y XaSa2XsSs KSK6¢S(|—X3)
* =X (1-uy)

|
-3¢ UsS3 X585 Kaky ¢3 -%e

-4 { UzSaXg Sg Ky K*;4’q.

i It

+ 3, 94X SaUs 8y KiKaK,4

+ 3'36XLSIXSSS' KiKs Ke 4)5‘#6?1“‘“33

+ 84 UsSs Xe 55 Ky Kk, ¢3¢u23} :

(5-12)
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We replace the last nine terms in the exponential in (5-12) by

nine complex helicity-like integrals, perform the Yl'Y4 and Y6

integrations and obtain

Y+ a0

S dxidx. 0“‘3 dm dwmodmy dP dP dPy TT(-N)T(>2)

¥-to

9

l
I-(:5)
T=DT-m)Pl-ma)yPEm) P-PIPERIT (-P3)

T’(Xu+)\z+?.+f’;—°1\)r( Myawy+ Pt Ps- o )

(VD WD W X 8
P(P+PatAzama-ca) A
u“'xs-mz-?l-?s de-mr‘ml'?t‘PB
B D
Ay
Uz S.52 KiK. & ‘
z + vKa
* * ' (\-X;)[\—le"“3q

)L >‘3

Xe . X5 S5 I<\KI.4>(, -1 xtusszsthqu)z("ui)
I- Xa2Xg Li-U3) L= Xa(1-us)

My
m, |
Y\-l_xssg,sg Ks K!,,‘b_{l—u.\\ ( U;XcssssK;‘ KQ¢3'—_—__\
.\;} > |-—XS/
R

M3
Uy XsS3Ss Ky K;%) <_ Xo U3 Sz Sy K Ky K3§’|4’z‘l. (.-%\)
E‘ Xz(l-\l;\]z
P

(— X2XgS.S¢g (- Ll3) K Ks Kt 4’;4)6?‘)

5
(.. UzXs S3Ss K; KyKs CP;(PqVL_‘) ; (5-13)




81

where

(v=u3)(1-xs)
E-x,_(.-uJ)][\-x,xsu—u;)]

A= 1+ \(-,,Sz_K\

_ (=x2)(1-us)

= + u353 K3
1= Xa(1-Ua)

D=1-Xs + X5 Ss (l—xz)(l-US)Ks .

Next we change the variables

N, —> M-B

Aa—> d2-P
Xy — Xa-P
m—> M -B
m,—> Ma.-P

My— my-f3 |

perform the Pl,P2 and P3 integrations and taking the limit of .ﬂ
functiong we obtain
X+ (w0
To(f | ddn iy dmdndns 0O ns )
i
Y- (o0
W-N-h My -Ay-wey - m-M3
P LXB-"WI"V‘}) A B D
N >
{ X2X& S2S5 KKy (1- Us)
R2U35:283 KKz
(z 39123 4)lq_)(,_)tl-\(:.(\-)(;g) ( 1- X2 Xs (1-U3)
)3 wm,
qu:; S, 53 K2K3¢ -t (szs S.S¢ KS KL¢ (I—ul)
5= (1-Us) 5
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My Wy
(L\3Xs$3%5 K3Kq¢3—-|-;(—- (\A3X5 53$5K¢Kg¢q)
l—~Xg
RN Cwy - Wy
(- Xz“gSzSJK;) ~-XsU3 SsS3Ky
-X2 (- Xg
-—X;-m-\ k i
—\(;XSS;SS Ke(n-u_‘) !
)-\ (> —X +\ +)|6—3>
( f= X2 Xs (1-U3) vl\ M= X3V T Os-han) }

m, ]
{ vz . P(ml - AL)P(AL-”H‘"') *X ;Hm,z {Vl: F(M;—MS)P(MS'"\-“) *'mz.“""‘%

P - XeS2U3SsKe  UsXg$,S8c Ky  XuX355.55Kg (1-My)
% - X ) i °
-AL I—XS ‘-XtXS(J'ul)

3
Replacing the three curly brackets by (-anc) ‘”XPS—("(M,+ml+m3+).+);+)3)‘}

and changing the variables

>\\"‘>"\\'\z +,
“\| — "'M|—“\3 +°(‘
My —> - My- Ny + vy

allows us to perform the A,, m, and W, integrations obtaining

| | .
-R'"_ _JK— —\“(N\+N4+¥6)

&y & o
I :‘( K,) (- K;) * (-Ks) ’ e Ky Kg e

U-x)U-Xs) [ 1-¥aXs (1-uy)] R
(-XLuSS‘-SSKt)(‘USXS Ssssk‘l’)(’xt)(s SI—SSKL |"u3
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(1-"3)(1-Xs) wes J-un)l-uy)
'”(?i'x"st | =XaXs U-Us) ¥aSa " Nss 1-X ¢ X5 (1-Us)

\ YaXe S ScKe(1- U
- XUy S1853Ky ———— - U3Xg S3S5Ky - XaXg SeSsKe(i- W)

= £ I-Xs 1 —\(a.xgtl—u_\)
Y+l >3
S dh dm dy, [U-XD0-w) 4
_ - X2 (1-Ua) 4,3
¥-le
Y-“! Xz_

(1-¥s) qu (‘!_ %, L1-u)] -%l*) .

|-X1X5(|—“3\ ¢5

The last three brackets in the above expression are all one in

the multi-Regge 1limit, Thus each of the )\,_,\3 and M3 integrations
gives zero and we see that the expression under consideration
vanishes. This suggests that the triple B vertex vanishes or that
it decouples from the amplitude under consideration. To understand
this point further would require consideration of higher point
amplitudes. Thus it appears that simple expectations based on
assumed gimilarity between ol and (3 trajectories are not borne

out. This point deserves further study.




Chapter Six

Possible phenomenological implication of the

new trajectories on the Pion trajectory17

6-1. Introduction

The new trajectories found in the previous chapters were
determined in the conventional dual model (CDM). They provided
contributions to the general scattering amplitude that dominate
over the usual ( o level) contribution at large enough values
of transferred momentum. Thus the (;(: -';_-Ol— L) trajectory
dominates the ol trajectory for o < -\, the X@la— -\) trajectory
takes over for X <-3 and so on. However, since, as is well
known, the intercept O(.of the Regge trajectory in this model has
for reasons of consistency with unitarity of the derived dual
field theory a value of unity we see that the B contribution only
dominates for a momentum transfer (t) given by t {- (|+ulo)/°(' == 2"

-',-_- for the §

Even if we assume 'real world' intercept o=
and o= for the TT the corresponding B trajectories will
still be very difficult to observe experimentally since at such
values of it their effects are likely to be masked by the
contributions of Regge cuts. However, the CDM possesses no
nontrivial internal symmetry and it is possible that the
properties of new trajectories depend very strongly on the
internal Quantum numbers. This is indeed supported by the

18,19

consideration of the NSM which contains a Quéntum number
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resembling G-parity and thus distinguishes between the T 3ng §

trajectories. In this model the corresponding B trajectories
ﬁ“, @f are shifted upwards by 3/4 and /2 respectively above
their CDM counterparts. These shifts bring the P" and @g
within the range of possible phenomenological interest, and so
in this chapter we discuss their properties with this aim in
mind. We take the positive view that the new trajectories of
the NSM may appear in physical amplitudes and we consider how
to exhibit their contributions, and their possible phenomenological
consequences. Physical amplitudes involve baryons of course,
and not knowing how to include their effective assume that their
inclusion does not change the predictions of the Neveu-Schwarz
scheme. We derive confidence for this assumption from the
observation that the spectrum of states in the fermion-antifermion
channel of the Ramond dual model agrees with that of the NSM, and
also from the fact that the shift of the new trajectories in the
NSM is associated with the absence of certain states in its
spectrum.

In the next section we discuss the properties of the
trajectory and discuss its phenomenological consequences. Then
we briefly review the situation with other new trajectories in

both the G =4 and G:-seétors.
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6-2. The Pﬂ trajectory

The multi-Regge limit of the unsignaturized 6-point function
in the NSM has been studied in reference 20, where it was shown
that the relatively complicated form of the exchange in the pion
channel in fact represented the exchange of 2 exchange-degenerate
pairs of negative G parity trajectories; the two pairs (“—H:tJ—A;)
being of opposite naturality and having the common trajectory
function o= .‘E.pol'f Thus the pion pole at oly =0 1is a tachyon.
However, a good feature of the model, as shown in reference 20,
is the explicit absence of a spin 1 state (H) from the pion-
partner trajectory. Indeed, it is hoped that when and if the
model is rendered more realistic by giving the T and § realistic
intercepts, this good feature will be preserved. Thus, we use
realistic intercepts while also assuming the absence of this state.

The fully signaturized form of the:6-point amplitude were
obtained in ref.21., where it was demonstrated that the absence
of this pole in the unsignaturized amplitude leads to the
appearance of a wrong signature pole in the fully signaturized
amplitude which thus needs to be cancelled by another, previously
neglected, contribution to the amplitude. This other contributiocn
is provided by the p“=@& dn*%- trajectory, which intersects
the ®; trajectory at the pole position, is itself singular at

ﬁ“~=| and provides the necessary cancellation.

From its form we see that [3.“> oy everywhere in the
physical region so that the contribution to the amplitude of

the ‘guexchange dominates that of the pion exchange.
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What are the phenomenological consequences and how do we
look for the exchange experimentally?

The full contribution of o{y4 exchange to the multi-Regge
limit of the 6-point amplitude of Fig. (24) was shown in ref.21

to have the form

P‘b ~P(|-°’|)S|\-5°(‘T( d)"':—z S -g (I-—dﬂsa S“J

Eo{"&' V, (4t K) + Eﬂi‘_v’-u“{;.’K‘\
Sa, S,

Edtu" \/z L{s;‘t;;Kz + Edadl Vz(.tv'{z}f(l)l

S, oly
(6-1)
where
' $\S. s S3
-—LWL +("(N Ql)
—_ - rd - n >

The expression for the (3 trajectory contribution is easily
T

shown to be

(_’. -—(3:."'\ —l-WP;

L
éK (\-Pt)(l-i-tz) 2 e
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The above expressions are valid in the multi-Regge limit;

1’ S3 are not too large.

they also hold when the subenergies S
From (6-2) we see that B exchange occurs only if the Reggeons

&, ,oly =are both twisted and this, along with the absence in

(6-2) of the gamma functions of the ohaﬂddspropagators shows

that the B trajectory decouples from all quasi-2 body and quasi-

3 body final stats. Thus the energy dependence of the diagram

of Fig. (25) will, when neither pair of particles (23) or (45)
resonates, exhibit an additional contribution corresponding to

the exchange of the (Kntrajectory. Since, in the physical region
F“ 7’“4; this contribution dominates and its importance increases
with the increase of rapidity gap between the clusters (23) and
(45). This suggests the following possible phenomenological

search for such effects:

Consider the process shown in Fig.(25) for which we again
assume that the presence of nucleons does not alter the pattern.
Isolate the "pion-exchange contribution - i.e. the contribution
for which the exchange carries -meson quantum number. Study
the behaviour of this process as a function of the incoming energy
for diffgrent values of the invariant masses of the TTTN, TN
final state clusters (we choose the | paired with the outgoing
nucleon in such a way that the rapidity gap between this pair
of particles and the other pair in the final state is as large
as possikle). The events in which neither pair of particles in
the final state resonates should exhibit a different-enhanced-

energy dependence, and a different dependence on the momentum
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transfer between the two pairs of particles. In practice the

pion exchange can be isolated by choosing the momentum transfer
as small as possible since at 'ttn'W;'A'O the o/ has a pole
whereas the p1,contribution is regular. For large values ofltz\
the effects due to the {%,exchange should become more important,
leading to an effective | trajectory which is almost flat (see
Fig.(27), in which the intercepts have been shifted to their
physical values). We emphasise that this prediction of an
effectively flat pion trajectory applies only to genuine 6-body
processes, the (ﬁydecouples from any quasi-2 or 3 body. Final
state system for which (excluding the effects of Regge cuts)
o(n# =0y *

Due to the practical difficulties involved with the above
method of looking for'p“)we suggest the following alternative
method, based on the possible breakdown of Regge factorization.

Consider the four processes shown in Fig.(27) in which the
Regge line denotes exchange of a pion-like quantum numper. For
large incoming energy the amplitudes for the processes in Fig.

(28a,b,c,) are approximately given by

Sy
A NVNN S VNN

bl
B ~ Vuwg S Viw

0ll'l
C~ me S VNN
Where VNM 'Vunr ;V;”m denotes the (averaged) coupling of the

trajectory to the systems of 2N ,aN®% and 3t respectively. If we
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denote the amplitude of the process (28d) as D, Regge factorization
of the ™y trajectory shows that, in the absence of the gy

contribution, we expect

AD

cB

~| asymptotically.
However, the amplitude receives also a contribution from the (3y

exchange. Thus

c8 ! (!'l /
D=T+E , Whve EnmV STV © (6=3)

is this additional contribution. Thus we see that the presence

of the p“ trajectory will show up through

f‘_v_'#l but _A-P-=|+§-é—"">°° . o
c® c8 <8 s> (forall Prred t2), o0 py>otn s

Thus the detection of the breakdown of Regge factorization,
together with the increase of this ratio with energy would be
an indication of the additional (3¢ trajectory contribution.
The above is to some extent schematic since in practice
there are several amplitudes needed to describe the above
processes. Our problem rests in not knowing how to introduce
the spin effects of fermions into the picture. We have assumed
that such effects will not crucially affect the predictions.
Further it is probable that the predictions will be modified
by the effects of Regge cuts, which may shield the predicted
effect completely. However, it is hard to find any compelling
reason why they should mock the effect in 4. Thus a positive
signal in 4 would lend some credence to the existence of the Fn

trajectory and to its coupling pattern.
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6-3. Other new trajectories

In the odd G-parity channel we have21 in additional to
the (2.“ & new trajectory corresponding to the o{y, .,namely {3,_,: ‘wa
This trajectory (extrapolating the discussion to physical
intercepts) will only have any significant effect from around

le] DN ~05,Thus its effects may be difficult to observe
experimentally.

To look for the other trajectories we need to consider
processes with more particles in the final state. As is already
well known the eight point function shown in Fig. (29) will
receive contributions from the exchange of elg,@g,‘Xg It
has been shown22 that the form of Gg and‘Kg are

135’ (t) = "i o(s,[-t) ’ Kg u)=.|3_0(3t-t)+53— ,
respectively.

Oof these,\% is probably more important phenomenologically since
\lx(o) ~ dg(o\ whereas ég(o\ {olg (o) + To find the form of
further érajectories we need to consider higher and higher point
functions. The analysis becomes more and more involved as the
number of external particles increases, and general methods need
to be developed. Nahm has recently, using partition function
technique:? derived the form of the leading trajectories in both

G-parity channels considered together. His method gives

ole L | L =1
| B \KS :.Eciy +3 S} ‘+°G-+.%

el

P -

£ - Lo

4

vi-

-+

1
Gl

|
s E
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A summary of a precription which enables us to isolate the

relevant term in NSM intergrand that corresponds to the

trajectories found by Nahm is given in the appendix of ref.lf.

However., neither method yields the form of the remaining §, T

trajectories, let alone the W trajectories. To determine the

former we take the above found trajectories and, taking a hint

from the intersection pattern of the CDM, we look for a similar

pattern in the NSM. The following scheme emerges:

Bg =odg

¥¢ = (G

Xg= Yf

ok

%

4

”

GG|= ﬂu a} “n=\

A

5§ =t v+ dpg--2

o<
-
i
ol
4
=

flog}
"

™
"
|~

X
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This is the only consistent scheme that we can find. Further,
we expect the W trajectories to resemble those of the § channel
(guided by the known (_2“ = -I;_Qu ). Observe now that, if we use
the physical intercepts d“(o)=o , A gle) '=-§-_ » All trajectories
with f{-meson quantum numbers intersect at two points on the
Chew-Frautchi plot, Jy=zo0, t-0 ond ‘x-.-..‘_i ,t=o0 while
trajectories in the f meson channel have intersections at
J=1,t=0 and J=o, t=-L . Thus, in this scheme, we see that

the highest lying "effective" trajectory in the 11 (8) channel,
determined in processes with arbitrary numbers of produced
particles will be as shown in Fig.(29a,b,); i.e. in both cases
the trajectory flattens (approaching & = -:;_—) for all negative
values of momentum transfer. If however we restrict our
considerations to A finite number of particles in the final state
the effective trajectory acquires a slope of also for + <o,
as indicated by the dashed line in Fig. (29a(b)). The value of
the slope depends on the number of final state particles decreasing
as the latter increases.

Since the above is only true in high energy limits the
trajectories in the rho channel may be difficult to establish
experimentally so that at present energies the most hope must

lie with the establishment of the (2“ trajectory existence.



Chapter Seven

The Structure of triple Pomeron
vertex in the case of square

root trajectories

Introduction

As 1s well-known unitarity requires the existence of Regge
cuts besides Regge poles. These two types of singularities can
interact with each other and mutually influence each other. In
the case of trajectories with intercept close to one the Regge
cuts formed from such Regge poles are, for ¢ o, 2lso close to one
and the interaction between these singularities can have very
profound effects on the properties of each of them. To study the
effects of such interaction, and the resultant effects on the
asymptotic behaviour of the four point function, Gribo¥ in 1968
introduced the so-called Reggeon field theory24. This theory,
based on a Lggrangian, can reproduce all diagrams of the usual
Regge expansion. To take account of the absorptive nature of the
two Pomeron cut the basic coupling constant of the theory - the
triple Reggeon vertex - is taken to be purely imaginary. This
choice was shown to reproduce the signature rule for the Regge
cut and seems to stand on very firm theoretical grounds. However,
the original discussion was based on the linear form of the
Pomeron Regge trajectory and one may wonder whether this result
will have to be altered if the othér form of the Pomeron trajectory

is considered.
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In this chapter we use the rules of Reggeon field theory
to investigate the structure of the triple Pomeron vertex in the
case of square root trajectories. The reason for introducing such
trajectories was given in ref. (9a). Briefly, if the Pomeron is a
single pole, :)'-:NH) ) then the branch point of a cut corresponding
to the exchange of n-such poles is given by
T=o,(4) = nt(E/n*) - (n-1y - (7-1)

Thus, if of'(0) is finite, &{q(0) =1 , ol 5(0) = Lo (o)

and all singularities JFJ=o,(4) intersect at the point (J = 1,t o)
on the Chew-Frautschi plot turning this point into an essential
singularity. One way of avoiding this essential singularity as

' it has been pointed out in ref. (9a) is to require that the

' singularities arising from many Pomeron exchanges coincide with
the Pomeron itself, i.e.

oy Lt) = nat (t/n?) = (n1) = &L (4)

Thus o{lt) = 2ol (t/4) -\ (7-2)

For the two Pomeron exchange. The solution is given by

oL(4) = 1+ 37T

Since an amplitude with vacuum quantum numbers should be regular

at t = o, an additional singularity is required at

L4y = =%

Thus the partial wave amplitude has the structure

LY

Alyt)= [7-oc19)] | 754 (7-3)

with the reguirement that (74) is analytic at t = o. For t =o
eq

the amplitude has a single pole or a double pole at J =1

-
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depending on whether B(J, o) contains or does not contain a factor
(J - Q. We shall assume that in general B(J,o0) is finite at J = 1.
In the first section we evaluate the contribution of a single
pole and of a two-Pomeron cut to the scattering amplitude and to
the total cross section. In doing this we follow the technique
used by De Tar25 in the case of linear trajectories. We find that
the contribution of the poles and of the cut are of opposite sign.
In the next section we use the rules of Reggeon field theory
to determine the structure of the triple Pomeron vertex. We find
that, as in the linear trajectory case, this vertex is pure

imaginary.
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7-1. The two-Pomeron cut

In order to obtain the contribution of the two Pomeron cut
to the scattering amplitude, we start from a simple Pomeron pole.
The contribution of a simple pole to the scattering amplitude

can be evaluated using the Melin transform

Co

A(sm— Sol»ca(y,f)s a7

or
J J
- L)s) S
L4 reny en ey ec ].
where the contour ¢ is shown in (Fig.31l). (7-4)

Substituting (7-3) into (7-4) gives

M(-o2) c:é"&] 51 r(—as[u'md]

2(1-a) 2 (1-o¢)

ol

Als,t) <

(7-5)

where o, ol 50{(“;&("!)‘

Bg (7-5) can be written as

= (A-A)

Alsit)=—

where

-%a )
_r-d) s Jese ]

(¥a - el
AL_'F( o) S [t+e“ ] .
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The contribution to the imaginary part of the amplitude for

positive signature and at t = o is

L Ats,oy=ms Loys .

Using the optical theorem we see that the total cross-section is

Ot = Lg S . (7-6)
To obtain the contribution of a two Pomeron cut (shown in

Fig.32) to the scattering amplitude we folloow the calculations

of ref. (24)and write

ACs= - Ly Sa 0By (M2 10t B (Mo titart)

~
~r

b ~ X, .
r(-a.)[(-s> st ] re@y sy . € ]

+
z 20-a) | z 2(1-&,)

~ -

' : oy
r(—dz) (_s°)¢;+’;‘1 1 ' F(—:lu.) (_5‘ +S

2 2(1-%) 2 201-of,)
(7-7)
where o ; ':‘i 3ol (b)) ,:t (te) are the leading trajectories

in the 1; channel, and where we have defined the channel invariants
as indicated in (Fig.32);

(=

=(&‘%)
(ﬂ,+ '1.)l
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l
tu= QL-ﬁJ)

X

ty=(R-f) .

(7-8)
Ba and Bb are those parts of the two Pomeron - two particle
scattering amplitude which have a discontinuity in ﬂ: and H:
respectively. We have also set T; =+|-
Next we introduce Sudakov variablesze. To do this we define the

basis vectors

s

Befi- 2R

P, -

T
ﬁ,-ms.?a

T 1
with Po(zf;,ﬁaO('/s), &of(f%-
Any vector, in particular ?.' may be written as

q,sdﬁ('(gf(; "'@.1
Such that

@l.l * P,( = (pl_l_' P{L" o - @'1 =" ?IL.L

and such that

7al="°‘(35-?; ’ dlfq,:—'ilsloldd(idz?ll.
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Next, we evaluate the channel invariants in terms of these variables.

Eq (7-7) can be written as

Al = Ay ot Py g rPaw, Pag, (7-9)
where
2
Ayl = Sd tH (a)
witk
P(‘NI)F('MI) o, 8, B, .
= - S _ 1
H YRS S) +s .(s) *S 1 T(s.MasH)
(4
Tis.ne m,)- 3 lsl detd 6 B (Mg) By( M) (o)
(7-10)
and with a2 similar expression for A"ﬁ&’z , etc.

To obtain the asymptotic behaviour of A(s,t), we evaluate

its Mellin transform:

A(J’,ﬂ.f_gﬁgds & 7 dae e, t)

(7-11)

diac K (s,t) = dac, Atsp) et duse Al-s;t),

Alsit) = J{Z [ AT (s t)+T At(-s,t)] .
T
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Then the inverse transform is asymptotically given by:

r’\(s,t)g»_> zm S dT (- 3)7_'_ A (T,U—[(_S) LTS ]

(7-12)
In order to obtain the Mellin transform of (7-10a) it is
convenient to evaluate first the Mellin transform of I(S,H;.H:)
in (7-10c). The Mellin transform of T (g, M;,HL&) has been

explicitly calculated in ref. (25). It is given by:

Ufl
ILT’ 1|1’Q.l) T r,( B (T ‘huql) zL(T.QI.L)ql)
where o0 .
z e v . a2
B ('Lq,pqi) - I;’-:‘;“) \ dﬂa (Ha) a{h.chA(Ha)‘h)‘lu)

with a similar definition of Btg; S is a low-energy cut off
used in the definition of the multi-Regge limit (can be taken

(3
as I = My ).

]

Given the Mellin transform of T ( g,r4a,r4:_) the Mellin
transform of H in (7-10b) can be easily found. This was shown
in the appendix of ref. (24).

Thus

H (T)QIL’Q-L) = CI(T,N.»Nz)It(I’N\'“L)

+ -7+, 45, Conl —oly-oy \ oLyt G Lot
C(w”u!):r'( J+oi+%) Coo b (J-ti-o) Colm
[M(-3) Crluy

2 ch 97,
[}
LiB L‘AR‘
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F ( 3’+|) /Nm!‘.'“j cﬂl‘:ﬂ'ﬁlo &,-‘{Tla(,_

0‘“-&_—1\'(3-°’l| - N._)T' (J—ul‘dt+‘)

[(-T+oty 04y ) Al LT (T-04- o) Co L, G, Lets

C—(T,duldl)-; )
(-7 Aelyy

NI+ o laT Golus Golyy,

a’%“(j’%—“d

(7-13)

Then

T |

L T
Adﬂ)(z_ (3', ‘{)‘-’- \S d 1”_ C (T,‘xuuys

TEON )Bta(T-“-‘“’“qu*m
"1‘ 3—0(.-0(,_..\

T-ol—oly 4 |
> F("&ﬁp('d‘) B-LL(U' Mn-duqu’ql\.
T- o4y -4 (1) (1-ola)

(7-14)

Since the signature of a cut is the product of signatures of the
exchanged trajectories, the cut appears only in the positive
signatured amplitude if T, =T,=+!\-
The expressions for Ay . Ag ol - and A&";’(L are similar to
eq. (7-14).

The factor Cf does not, in fact, introduce singularities
into the partial wave amplitude, since to avoid right-signature
fixed poles, both Bﬁl and Efb must vanish at the zeros of

denominator of C'C i.e.
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T . T
Na,t. - Lﬂn('T-rl)Ba_[,(T;qu,qL) = finite
T\

Using the Mellin transform (7-12) we obtain

‘ ) N'!' N + S 8-
al a Ny S o
2 (an)’ S T

3 .
oin L (00, 480)

Al = AO(\N-,_(S’{) =

[ e YOS P

2] € e pesT

(1-o)(1- o0)

Also:
Az."Aa("O(z: Ad‘dl(u‘—»u')
Az = A°‘|31= A°(|bl~,_ (04— &, )

Ay= AZE, = Ay, (o8 —> & o0 )
(7-15)

When t=o 'and both trajectories are the same we see that

1

d 9, Na VY
(- ¢ Xa) (-otn¥a)

b

‘ ( suu-x« [|_ e:.n‘(a] [_,,«;.{-nc‘&a F(-'-"Y«)]

(0¥ d)z

( S IO § [ pi-tmiYa] Tt AR (140
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7-2. The structure of triple Pomeron coupling of Reggeon field theory

In this section we try to use the techniques of Reggeon field

24, 27 . .
to evaluate the triple Pomeron vertex in the case of

theory
Schwarz trajectories. To do this we start with the diagram shown

in (Fig.33). We define the propagator for a Reggeon of Momentum

9 as

G _ L
0(4'5)" (E+"xﬁ‘)(5-f¥f$_‘")

where E =1 - J and ¥ is real. Both E and q are conserved at each
vertex. Next we calculate the contribution of this diagram. We
find

(‘” . z o b 3 ’dE/
Cﬁ (E.9) = L o i‘EEL % j d g
(E“-Yﬁ;)(E-iYﬂ_‘) zm”

(=1) L
+

(En:f xquz)[@-y)ﬂ Y (4- ¥')'] (e +¥/3) (6= c¥/F)

=t -) [ - C\z 1 + t
(E'n'q')[ | Gmy~ (e +cxV) (E-0¥/gi)

t7.19)
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! /
Where 4, % E and E  are indicated in (Fig.33) and A

is the triple Pomeron coupling constant. We perform the E°

integration in (7-18) and obtain

s z“l (I."’ II—) (7_19)

where
l ' I
2V E-OWFE -\ ) - ()

2 ' l '
L= \d¥ —— — o
uw_{ E-HXH'—" N ¢ (g-_ﬁ‘ E+ LY 9t +(Y (?'7')L

or in terms of polar coordinates:

|

) |
I= d Ae— g | 2 T

"[ S ‘ E+Y § -ze¥f 0 +2Y ({11l & 2y

{

1.=- gdrd& ’

ET4Y ¢ +2EYr w2y lglrGs 2

ey

I,=-1T- S dr —
o JH r_weyr+d

8
|

E"-I-J-_Soir\/

syt + 4 EYr+d
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1 L
where d =E +% 9

Thus:

’Z’J uey+uy/E+y g}

-7
Yz. ’El‘t(lgl L"Y (E z+x‘¥z, _ l}E“

_ T (e +2e/ElyTe »«Y‘#L)
FEy)s O\ e

and substituting these results into eq(7-18) we get:

G('I,H= +()‘:' ( | 1_? zg'q-zE JEi—t(‘?l .\.Xz-gz]
ST (251') L ey LR

L

(E—[K ﬁt)(E +('X[¥—")

(7-20)

T
or in terms of J and t ,( t=-% )

G, N
A(T,{)':,G (71) =A*L)‘°

walgu_y)l_Yu\L] 75

- ¥t U-7) - ¥4

,[_pj [7_((-3)2+2(¢-I)m |}+ L
+

(7-21)
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Expression (7-20) has a branch cut as shown in (Fig.34) at
-L'ng_'-é E é +YVg* together with two double poles which
coincide with the branch points. The discontinuity across the

cut is given by

AMQ!A(EJ$)==

The scattering amplitude consists of two terms:; one corresponds
to double poles and the cut, and the other corresponds to a
single pole, i.e.

Alst)= A (st) + Al ot)

To obtain the scattering amplitude we find the Mellin transform
of (7-21). The Mellin transform of the second term (a simple pole)
can be easily found and its contribution to the total cross

section, by using the optical theorem is

A
6}; Nlags.

Next we find the Mellin transform of the first term in (7-21)

(7-22).

which corresponds to the contribution of double poles and the

cut and it is given by

P40¥Y-t T

. ')l S
| (S,‘t) = t_”o S 2 L] 54
e [Y {-—(I-T)]
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The above integral diverges. This results from the coincidence
of the poles and the branch points of the cut. But since we are
interested in the sign of the cut contribution we evaluate the
controbution due to the cut only with no double pole. To do this

/
we replace A, by A, given by

PIRCX:
J
/ i)‘: ﬁ s* 47 .
[Xl{: - (- 3)1] e

\ 1-c¥f-t

This replacement corresponds to the replacement of the diagram
in (Fig.33b) by the diagram shown in (Fig.35).
To perform this integral we change the variable of integration

-3 = Lax and then perform the X integration obtaining

A:.(-S"“ 2 N, S Jo(-a Lrgs)

(7-23)
where

4 3

. N1 v
-d =)< {l?®

The amplitude in (7-23) oscillates but since the total cross
section is proportional to the imaginary part of the scattering
amplitude at t = 0, we see that the contribution of the cut to

the total croszs section is given by

0~ ™ Tl ~

(7-24)
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and is constant.

In the first sectiop of this chapter we pointed out that the
contribution of a two Pomeron cut to the total cross section is
negative as in the linear trajectory case. Comparing eq. (7-22)
and eq. (7-24), according to the above statement '): must be
negative, i.e. Mo=tCTr which shows that the triple

Pomeron vertex is pure imaginary for both the square root

trajectories and for the linear trajectories.
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Conclusion

In the first section of this thesis we have studied the
multi-Regge limit of the Veneziano amplitude and discussed those
properties which are related to the appearance of new trajectories
(siblings). The first member of these trajectories (B) appears for
the first time in the six point function, it decouples from the
states with two or three particle final states, it has positive
signature and is related to the parent ( &)trajectory by the
relation (3:2‘; - li . We found that the appearance of this
trajectory alters the nearest Reggeon-Reggeon-particle vertices
and Regge propagators and that the twisting operator is not
equivalent to the signaturization , for this trajectory. We also
showed that the coupling of 28-particle has similar structure to
the 2 ¥X-particle vertex.

The next member of these trajectories (¥ ) appears for the
first time in eight point function. Its slope is %; of ¢
trajectofy's slope and it is related to the K trajectory by

X=5§—|- The twisting operator and signaturization are equivalent
(up to the sign) on the X trajectory level.

The next sibling trajectory which has slope _“; of the
trajectory appears for the first time in ten point function, and
so on, The trajectory with slope-% appears for the first time in
(n+2) point- function.

We have pointed out that the properties of odd and even

numbered sibling trajectories are different. For all odd numbered

sibling trajectories twisting operator is equivalent to * signature,
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whereas for the even numbered sibling trajectories they are
different.

We have also shown that the complete contribution of these
trajectories to the multi particle amplitude do not satisfy
conventional factorization requirement. We have also studied the
triple Reggeon vertex and found out that the coupling of 38
trajectories vanishes and the 28 vertex is similar to the triple
K vertex. Finally we discussed the phenomenological consequences
of these trajectories, and showed that the ﬂ"trajectory of the
Neveu-Schwarz model should be easiest to detect experimentally.

In ghe last chapter we have studied the structure of the
triple Pomeron vertex in Reggeon field theory in the case of
square root trajectories and we have shown that barring some
technical problems this vertex is expected to be imaginary like

in the conventional theory (with linear trajectories).
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Appendix

In this appendix we discuss the analytical continuations
which we have to perform in order to determine the asymptotic
behaviour of the amplitudes shown in Fig. (7) directly for
positive S,-
First we consider the amplitude of Fig. (7a). We start with

the expression (2-3) and proceed as in section (2-1), exept

that this time we do not expand factors involving s, and x..

2 2
(We shall perform the required analytical continuation to

positive S, before we take the asymptotic limit of the amplitude).

Proceeding as before we obtain

o, ! -,
B~ S, TS5 2y P(-o)P(-o) § dxe ¥ (1xe)

oly -ty o,
("xt"'x;S;K;) (—x;s;l<lKl¢)
(A.1)
. (l_)lr.‘-i- X182 K‘\(I—X;'&x‘.ssz)
’Y -—M\ ,dB-'N\*‘) °
'X\.S\.K|K1¢
To perform a continuation of this expression to any s, we
observe28 that as c
~Sp=1 Nl
el Xaot
(l-—"ﬁ - Dis( Xa )
20 pmN S
the expression (A.l) can be rewritten as
I -—d‘_—‘ —sl—\
o &3 L -
By ~ S 'TiSy Ta -9 (-oy) —— da X Og)
2 AN S
oLy -y o,
(1= X2 ¥X282 Ka) (- Xe$2K, Ked)

,Q-—X;-&X;Sa K\)(" X2 4X2 S, 'Sl)_)
V(oo ~ X285 KK, $
(A.2)
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where the contour of integration is shown in Fig.(3él Next the
contour is distorted as in Fig. (377) and then the radius of the
C2 is increased to %, with corresponding increases in contours
C1 and C3. In the limit of the contour 02 lying at o its

contribution can be neglected, for as |x,\—+=n the integrand

behaves as

-0y 4N =1 =53 ¥y —¥¢ -ol,_+°‘\+°’3"“‘sl
~ X \\’( ) ,.-X..S;) ~ Ka

and can be made to vanish fast enough by a suitable choice of
&, ,olz» ¥3 and Sz-

This allows us to keep only the contribution of contours
C1 and C3.

Next we perform the required analytical continuation (2-2),

and observe that during this continuation the phase of the

argument z of thé*%unction changes but does not go outside the

range - 2.y Largz {3y guaranteeing no unexpected contribution
from the previously neglected contour C2.
Now we take the limit &, —» + +l€. Notice that for
x2 on C1
i < -(nSy
-3 =52~ _ (S, e ale
(%e-1)  =U-%) e amd —— =1 anr $,>%
) —21i AleT Sy

while for x, on C, the corresponding factor vanishes exponentially

2 3
(7S
e
— -—> 0 . . . .
=20l Sy showing that the leading contribution comes

entirely from C The leading asymptotic behaviour comes from

1.
X, ~o - But
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(n (n
,\V('M\)d-s"v\*"jls ~ QV(—G/\,&(3—°(\*‘}X1SLQ -\-k‘:?‘*-:zz e )

X,a/0

- (1
%y S 4 VK *V/Ka € ) ,

= YQ‘NU&S‘N!*U( _2n Vv
e

so, using the relation which describes the behaviour of the "P

function when its argument z encircles the originga, we obtain

—ant (3=8¢4)
"F(—Nl )°l3'°"'+\')2) = @

. ] | -{n
’\V(—O(\ ;°(3-°(|+\)Q(z$:.* —'-<.+7<-‘)e )

~ani(otz-w)] [ (-ety)
+il-¢e r,(_dl\

Y ] 1 |
Flertamstsxesd™ Lo

(A.3)

The contribution due to the B exchange comes from the“[." function

in (A.3) and so we are left with the integral

oy, o ol - (sl y-ay)
Bé ~ S\ k\‘ Ty S:3 Kz‘ Ty P(—-M.)P("ﬂ'us) [l— e ]

'dl"‘ +°‘3

—nl‘d\ \l; d
X2 Xg

e S,
c\

-m
Feo, ota- s Xosae - %o

\3_
Ky Kz
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The contour C1 lies essentially along the imaginary axis; for

small x, its phase is slightly over W/, , for larger X, its

phase is just under T /2 (see Fig.38). As the B8 exchange comes

from the small x, this way of drawing the contour justifies the

approximation

.y \ \
(E -("o‘l y¥{3=-tsl; X, S20 - ',2"?,_3

—o4; -\
- (n oly-¥, 1Y)
S »oo Ki Kz P (-)
which together with a further change of variable x, = izz leads

directly to the result obtained in section (2-1)exp. (2-13).

To discuss the amplitude corresponding to Fig. (7b) we

proceed as in section (2-1) and obtain

\ $a-|
°<\ 5( 'dl_‘ b
B;.u S, S3° r'(—o(.)'ﬂ(—oll\g d X2 Xa (1-X2)

ds— M‘
- [y . rd [P 4 \
b—xz-xzbtm)

'\) ( oy, ol y = \-Q'x"x"s"K‘)(‘—X"-X"St&) .
- - +
DT (=% Su K Kad
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We perform a change of variables

and obtain
b“tc‘-q‘— ‘

« o, Ju
B’é ~ s:(‘ 533 p(—o(\)r‘(-us)(,(\ Klsl\ X 2 W,

~S2 48y w0y =y oy-oh
(\4\1-..) (1-waSe K")
( u'l.s" ‘ l -+ ‘ ) *
f\‘) O, 0y =%\ ¢ = K\? Kz¢ u,_S;IﬂKzQ

Next we distort the u, contour until it runs essentially along

the imaginary axis, like the X, contour in Fig. (38). This
distortion is possible as the contribution due to the quarter
circle at ™ vanishes. Next we perform the required analytical
continuation of K,, K2 and ¢ + As in the case of the
untwisted Reggeon the phase of the argument of the'* function
does not go outside the range - 3.;.} <”3 7-(3-;—'- showing that the
contribution of the quarter circle at ©¢ does indeed vanish.
Next we proceed as before. The contribution corresponding
to the B exchange comes from the Jﬂ function which expresses
the behaviour of thefy function when its argument encircles the
origin. Again, the way the contour is drawn justifies the

approximation of this'E function by its asymptotic behaviour;

then the u, integration can be performed; it gives the previously
obtained result (2-19).
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10.

11.

12,

13.

14.

15.

16.
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Figure Captions

Diagrams for the Veneziano amplitude describing scattering
of two spinless particles.

Diagrams which contribute to the Regge limit of four point
amplitude.

Five point amplitude exhibiting notation used in the text.
Graphs for the Veneziano amplitude of the five point function.
The multi-Regge limit of the six point function.

The multi-Regge limit of the six point amplitude corresponding
to the exchange of a B trajectory in the second channel.

The diagrams used for determining the Veneziano amplitude
of six point functions.

The mutli-Regge limit of the six point amplitude corresponding
to the exchange of dtrajectories.

A Chew-Frautschi plot of the o{/and B trajectories.

The multi-Regge limit of the seven point functions
corresponding to the exchange of double 8 trajectories.

The diagrams used for determining the Veneziano amplitude
of the seven point function.

The multi-Regge limit of the seven point amplitude
corresponding to the exchange of one B trajectory.

The diagrams used for determining the Veneziano amplitude
of the seven point function.

(a,b,c,d,e,g): The multi-Regge limit of the eight point
function corresponding to the exchange of 38 trajectories.
(£,h): The multi-Regge limit of the eight point function

corresponding to the exchange of 38 and one K trajectories.

The diagrams used for determining the Veneziano amplitude
of the eight point function.

The multi-Regge limit of the ten point functions corresponding
to the exchange of § trajectory.



Fig.17.

18.

19.

20,

21.

22.a.

24.

25,

26.

27.

28.a.
b, c,

29.

30.
31.
32,

33.
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The diagrams used for determining the Veneziano amplitude
of ten point function.

The multi-Regge limit of (2"*1) point function corresponding
to the exchange of a trajectory with slope -% in the nT
channel.

The diagrams corresponding to the Veneziano amplitude of
the (zn+2) point function.

The diagrams corresponding to the Veneziano amplitude of
the(;h+z) point function.

The diagrams corresponding to the Veneziano amplitude
of the (zwn+:) point function.

The simplest diagram which gives contribution to the 2z g
vertex.

The simplest diagram which gives contribution to the 38
vertex.

The diagram used for determining the Veneziano amplitude
of the eight point function.

The diagram used for determining the Veneziano amplitude
of the nine point function.

The multi-Regge limit of the six point function that
exhibits contribution of Ciuand p1ltrajectories in the
second channel.

A single Regge limit of the six point function.

A single Regge limit of the six point function corresponding
to the exchange of @“ trajectory.

The effective T trajectory after taking the P“
contribution into account.

A single Regge limit of the four point amplitude.
d: A single Regge limit of the five point amplitude.

The multi-Regge limit of the eight point function
corresponding to the exchange of oo, A8 and X} trajectories.

The effective trajectories in Tt and § channels.
The integration contour for the Mellin transform.
The two-Pomeron - cut diagram.

1,
The lowest order contribution of the é;
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Fig.34. The Regge structure in the E plane cut.

35. The modified Regge cut diagram (with external lines
amputated).

36. The integration contour in the X, plane.
37. The modified integration contour in the X, plane.
38. The part of the contour integral which gives non zero

contribution in the Regge limit.
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