W Durham
University

AR

Durham E-Theses

Analysts of meson-meson production

Ozmutlu, E. N.

How to cite:

Ozmutlu, E. N. (1978) Analysts of meson-meson production, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8302/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/8302/
 http://etheses.dur.ac.uk/8302/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

ANALYSIS OF MESON-MESON PRODUCTION

THESIS SUBMITTED TO

THE UNIVERSTTY OF DURHAM

BY

E. N. OZPMTw, B.sc., lec.

FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS

UNIVERSITY OF DURHAM SEPTEMBER 1978

The copyright of this thesis rests with the author.

W URVERIITF~.,

No quotation from it should be published without S et
; 8
his prior written consent and information derived '-,ﬁ“:-" EE‘E“‘:’?
LigRAR

from it should be acknowledged. 5,



Abstract

Acknowledgements

Chapter 1

Chapter I1I

Chapter II1

CONTENTS

Introduction

1.1 Survey of Meson
Spectroscopy

l.2 JPc =o** Mesons
1.3 Sumumaries of the Other
Chapters

Data and Formalism

2.1 Survey of TUT and ¥R
Production

2.2 Observabtles and Amplitudes

2.3 Properties and Formalism
of One-Pion-Exchange
Amplitudes

2.4 [xchanges and Amplitudes

s®, € Problem
3.1 Early History of the 8%

3.2 Poles and the Dynamical
Structure of the SX

3.3 TW —> TI{KK) Coupled
Channel Analysis in the
S¥ Region

14

19
19
23
27

33

43
43

59



Chapter IV

Chapter V

Chapter VI

Chapter VII

Appendix T

Appendix II

Appendix TIT

Appendix IV

Appendix V

Analysis of the T P — (Kw) P
Reaction

4.1 Introduction

4.2 Amplitude Analysis in
the Ao Mass Region

4.3 Amplitude Analysis 1in
the g Meson Region

4.4 Amplitudes As a Function
4.5 Conclusions

- 4+, -
Analysis of U P — (KK} n
. RN (K+V'-)F Reactions

5.1 Introduction
5.2 D Wave Studies
5.3 Threshold HRegion Analysis

s.% W — KK Phase Shirt
finalysis

5.5 Conclusions

PC

Classification of J'~ = o**

Mesons

Conclusions

Moments in Terms of Density
Matrix Elements

S-Matrix, State Normalization,
Phase Space,Cross Section,
Partial Wave Expansion

The W Coupling at the
Nucleon Vertex

Phase Space Calculation

ThH — W (¥ %)
Scattering

Page

69
69

70
79
86

90

o
9k
97
111

120

130

133

140

145

’-—‘
=
O

152
155

158



Appendix VI

Appendix VII

Appendix VIII

References

pensity Matrix Elements Tn
Terms of Di-Meson Production
Amplitudes

Classification of Phase Shift
Solutions

The Effect of the K K™ and
KO,KO lMass Difference

161

162

164

168



ABSTRACT

We study properties of mesons, which decay into the
(W) and (KE) channels, using high-statistics (meson-meson)
production data for reactions of the type

MmN — (TH) N

7N — (KN
with a primary interest in the JPC = O++ mesons.

We first investigate the properties of the S* and find
that it is a normsl Breit-Wignher resonance. We also prresent
evidence for a broad elastic T T resonance, the £ meson.
We propose forms of parametrization of the coupled channel
(MW , KK) T = 0 S wave to investigate the nature of the s
and €. We see that it is not possible to explain these
mesons simply as (qJ) states and that forces in the (qqqq)

sector are also important.

We analyse recent (K“K°) production data and find evidence
for a new I = 1, 0** meson, the 8%1300). This (K'K°) analysis
also gives evidence for the spin &, A2(1900) state, illumin-
ates the A, and g production mechanisms and determines the
g — KK branching ratio. We discuss the identification of
the 3(970) and 8%1300) and find the most natural answer 1is
that, besides the conventional (qq) nonet, there is a low

lying (qqgq) nonet of 0%* mesons.
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Using high-statistics (X'k”) production data, together
with the results of the (K'K®) analysis, we are able to
investigate T = 0 (KP) states. We first study the resonant
D wave(f,f',Az). Then using I = O D wnve as a reference

wave we carry out a WU — KK phase shift annlysis.
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CHAPTER 1

Introduction

Today we know a great deal about the micro-world of
elementary particles. The interactions among these
particles can be classified into four groups; strong,
electromagnetic, weak and gravitational forces. Our present
knowledge 1s not enough to understand the nature fully but
a huge amount of information has been accumulated during
the past few years. This information can be used to obtain
a better understanding of nature. The exlistence of four
different forces might indicate that their underlying
dynamics had different origins. On the other hand all

these interactions could be different manifestations of a

single dynamical form. On this point, a great deal of pro-
gress has been made towards the unification of electro-
magnetic and weak interactions and possibly also strong
interactions, based on Gauge Theories.

A big problem in this type of work is the gaps in our
knowledge of these interactions. When we try to unify
these forces, we have to look at limited experimental
information, and usually at the end we have to predict

some results rather than obtain confirmation from well-




known observations. So the obvious Jjob of getting more
information about these internctions individually must be
done both experimentally and theoretically. Tn this thesis
we study some of the problems concerning strong inter-
actions using recently available high statistics di-meson
production data.

The main feature of strong interactions is the
conservation of some guantum numbers. Hadrons, the particles
which can interact strongly, can be labelled by these con-
served quantities. These quantum numbers are the isospin,
baryon number, and strangeness. The charge independence of
strong interactions has led us to the idea of isospin. 1In
a world that only strong interactions exist, i1t is not
possible to distinguish proton from neutron or positive
charged pion from T° or J7T. This is best explained by the
existence of a symmetry in the theory. We can think of
proton and neutron as two different states of a single
particle, called nucleon. Similarly ft%, 71°% JU are the
three different states of a pion. There is a very close
analogue of the angular momentum; one canassign a quantum
number to the nucleon I=% and represent proton by I3=+3
and neutron by I3=-#%. We call this quantity isospin. We
can assign isospin to all observed hadrons. In this scheme
charge independence of strong interactions means an in-
variance under rotations in the "isospin space". This
invariance implies the isospin conservation under strong

interactions. Baryon number is assigned B=*1 for spin-
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half hadrons (baryons) and B = 0 for integer-spin hadrons
(mesons). Sum of baryon numbers of an initial and a final
state, related by strong interactions, are equal. The
properties of the K mesons and hyperons have implied the
existence of another conserved quantum number. These
nstrange" particles are produced in pairs by strong inter-
actions and decay into hadrons by weak interactions. This
indicates that strange particles have an extra property
which is conserved by strong interactions and violated by
weak. So we assign S = fl for the kaons and /\?,EE and
S = 0 for proton, neutron and pions. If we define the
hyper-charge as
Y = B + S,
we observe some regularities among the isospin and hyper-
charge of the hadrons.
Having introduced the isospin, we have already proposed

a classification scheme for hadrons. We have allocated
particles on the different representations of the group,
SU(2). Gell-Mann and Nishijims‘l) have classified hadrons
in terms of a larger group SU(3) combining isospin and

! hypercharge. Discovery of ¥ andnx‘particles in recent

{ years has led us to extend SU(3) to SU(n) by introducing

new additive quantum numbers e.g. charm, beauty ... The
smallest non-trivial representation of SU(n) has (n) dim-
ension, and all the other representations of SU(n) can be
congtructed as products of this smallest representation

and its conjugate one. This observation has been inter-

preted as if this smallest multiplet has contained (n)




elementary objects, from which all the hadrons could be
constructed. These basic bullding blocks are called quarks.
The number of different "flavour" of quarks 1s at least

four and probably more.

The quark model can classify baryons and mesons
successfully. But the symmetry is broken by the mass
splitting observed within multiplets. The deep dynamical
basis of the model is still unknown. Quarks have not been
observed as free particles yet. This suggests that the
quarks are confined inside hadrons by some yet unknown
mechanisms. TIn the recent years attention has focussed on
developing a quark dynamics consistent with the absence of
free quarks. The main problem of this theory is the
explanation of the confining forces. In the past years,
existence of gquarks was in doubt, because of the lack of
free quarks. However, the deep inelastic electron-proton
scattering has shown that proton is not a single, solid
objJect but it has a certain substructure. Detailed
snalysis of the data i1s consistent with the existence of
quarks "inside" the hadrons.

The discovery ofﬂq’and)& family and the charmed mesons
in the last three years, has given more evidence to support
the quark model. All the observed properties of these
particles can be explained by introducing the new '"charmed
quark". The theoretical basis is brovided by Quantum-
Chromodynamics, a non-Abelian gauge theory of strong inter-

actions in which flavourful and colourful quarks interact

via exchange of an octet of colourful, massless vector




gluons(z). The theory is
[sus)) 2 [sum)]

colour flavour

where n = 4 with u, d, s and ¢ quarks. Only colour singlet
states are supposed to exist in nature. Although the real
world is "colourless'", the colour degree of freedom manifests

(3

itself in various ways We can apply the ideas of QCD
to the old hadrons as well as the new ;nes. But the small
masses of the old hadrons and their many open channels
make the spectroscopic calculations difficult.

The problems of performing experiments which can pro-
duce mesonic resonances have caused difficulties in studying
the meson side of the scheme. However, the colliding beams
of et - e”, pp annihilation and the high statistics meson
production experiments, which have become available recently,
provide a rich source of information about mesons. Since
the symmetry rules can lead us to understand the dynamical
structure of hadrons, it is very important to study the
problems of particle classification. This type of work will
be the main check of the SU(4) and the other higher
symmetries proposed for hadron dynamics.

In this thesis we study some of the mesons using the

data for the reactions

R
Wp—> (MW )n
+ -
JXp —~—= (KK )n
Mo — (K+K-)p
0 -
M p— (KK )p




We shnll pnay particular attention to mesons with quantnm

numbers JPC = o**,

1.1 Survey of Meson Spectroscopy

The L-excitation quark model has provided a very
economical description of the hadron spectroscopy(h’s).
In the model, we assume existence of three different
"flavours" of quarks, u, d, s, which are the main building
blocks of the "conventional particles". Since we study
the "old particles" in this thesis, we limit our discussion
to three classical quarks for the sake of simplicity. We

give the quantum numbers of the quarks in Table 1l.1.

3

u(p) |'wWe /2 o | w3 /3 2/3
a(n) Wz -14/2 0 | %/3 /3 -1/3

s(\) o 0O =1 | 13 -2/3 -1/3

| Type i § I S B 4 Q;IB#I/Z

Table 1.1: The quantum numbers of
the classical quarks, where
Y =B + S. We show both names
of quarks, which are commonly
used.




< 2/3
S A LAY
/ \
d * ------ -1-/.3-_--,u /' \\
\ / , .
) ’ - / \ 12
: \T 7l : ] 172 : ’,’ ’\\ § =
£V 2N )/ , \ I
* / I ool S
\ 3 -3 - 3
|7 _ / d
\l
S Y-273 u

' (Quarks) (Antiquarks)

Figure 1.1: 3 and 3 representationg of
SU(3). 3 contains quarks while 3
contains anti-quarks.

Quarks belong to the 3 representation of SU(3) and anti-
quarks belong to 3 (Fig. 1.1). Mesons are quark-anti-nuark
states and baryons are three quark states. 9Quarks have

spin half and can undergo orbital excitations. If we take

product of

33 = 8 @ 1
3383 = 106868881 (1.1)

this agrees with the observation that mesons occur in 8
and 1 representations, but baryons in 10, 8 and 1. Including
the spin (SU(2)) we are led to consider the non-relativistic

orbital excitation quark model based on

SU(6) ® 0(3) (1.2)




where the rotation group 0(3) ariscs rrom orbifnl motion.
The parity of an orbital state of angular nmomentum L,

is

P = (=) for mesons (1.2)

P = (.)L for baryons (1.4)
and the total angular momentum is

— — -

J = L+ 8 (1.5)

where S is the total of the spin of quarks. S = 0,1 for
mesons and Lé, 3éafor baryons. AQuarks are fermions and
so for a q-qd pair, the C-parity of the neutral, Y = 0

members should be

c = () (1.6)
Using (1.3) and (1.6)
PC = (-)5*1 (1.7)

If we define the natural and unnatural parity for mesons
such

(-)J Natural Parity (1.8)

vl
1]

P = (-)J+1 Unnatural Parity (1.9)

natural parity mesons must have S = |, since J = L I,
So their PC must be positive. Hence the states which have

the quantum numbers

+-

= o*-, 177, 2%, 3% ... (1.10)

FPC




are not allowed for g-d palr. The only other mescenic

state which is forbidden in the auark nmodel has
J = 0 . (1.11)

It would have to have L = S because of its zero spin, but
then by eg. (1.6) its C should be positive.

We show the predicted SU(3) nonets together with the
corresponding observed mesons in Table 1.2. Only the
JFC _ 07* 177, 2**noncts are completely filled with well-
established mesons. I'or nll the other nconets we have
problems; either members of the nonets are missing or are
not well-established, or thecir propertice nre no* well
known. The situation for the baryon spectrum is much better.
This is not surprising since baryons are more directly
accessible experimentally. For Iinstance baryon resonances
may be observed in formation experiments (see Figure 1.2)
whereas the lack of mesonic targets prevents such experi-
ments in the case of mesons. Meson states are, in

general, studied by production experiments (see for

example, Figure 1.3). This type of experiment can suffer

Kim,” K R ="
/ ~

A Mesons

' Figure 1.2 Figure 1.3

PC
J
colliding beam experiments, and pp annihilation reactions
can, in principle, be regarded as formation experiments.

= 17~ meson states can be found directly in e‘e"
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SU(3) Nowet

S JPC [=t/2 | 1=1 I1-0 1=0
0 | 077 [k tuss) | 139 [wisse) | 1960
1] 177 [K*890) | §(330) |w(330) |d(Lo2D)
0 | 177 |Qe3s)l|BUIZIS) | 7 l
| AN K(1yo) [ A3 10) [§(1270) S'l\s 10)
11T Q3597 A 11007 Dli2gs) | E1
1] 0" K Guso)?| $(920) | $%(370) [£01200)?
o | 727t 1 A Lvsuo? 7 {
| 37 (L3t q(1b80) o (1635) !
A I A I 27 ! !
\ 177 W Uea?|S ool 7 1
o |3 ? ! 7 ?
LA™ et |A1900) [hizewe)| 7
N S t ! [
{ {27 7 ! ! !

b A possible assignment of meson

states. We do not show the radial excitation

states which would normally arise in any

inter-qusark potential model.

excitation state.

s
d radial

For example twe
£'(1600) which are put in L = 2
can’'also be allocated to a L =

1 state,
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from lack of statistics since the "mweson cloud" around the
nucleon is diffuse. Iiven when enoungh statisties are
available, we have to overcowme additional prohlems to
perform partial wave nn=lysis. We need a dynamicnl
production model to remove the unwanted baryon. Since
quantum number restrictions are stringent for meson
systems, for observing unnatural parity meson resonances
one needs at least three final state non-s%rangc mesons.
The analysis of cuch three meson states is complicated both
theoretically and experimentally.

So far we have assumed that the mesons nare quark-
anti-quark states. In theory there is no reason why mesons

cannot be (qqqq), (qaqddq) ... states. The recently

developed models of hadron dynamics, based on JCD, have

explored the possitility of such states. Moreover meson

states can be constructed only with gluons without any

(6,7,8)

quarks For instance Jaffe and Johnson have

predicted a much richer meson spectrum with small masses,

using a coloured-quark-gluon model based on a semi-classical

(6,7)

approximation to the M.T1.T. bag model Tn partic-

gPe

o +4
ular they have classificd the obhserved =0 mesons as

(qyqq) states. They have claiirned that there might be

++

gluonic hadrons (usually called gluehalls) with RS ,

2** mass around 960 MeV, 0-*, 1°%, 27" mass about 129C MeV,
o*7, 1**, 2%7, 3** with mass 1460 keV, o**, 2** mass 1590
MeV. These should be flavour and colour singlets. These

glueballs would be relatively narrow since their ccupling
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to normal hadrons violates the 021 rule. If they exist,
they might be a relatively important component in the decay
of the new hadrons. The new mesons decay by annihilation
into glue which could resonate before converting into
classical quarks. These gluonic hadrons must obey the decay
systematic of SU(3) flavour singlets. Robson has also pre-
dicted a rich spectrum of glueballs, suggesting a model in
which glueballs can be constructed from building blocks
(gluons), in analogy with the simple quark mode1(8). He
identified the S*(980) as a glueball.

Let us turn to the other alternative that mesons are
multiquark states, such as constructed from two quarks and
two snti-quarks (qqgg). According to Jaffe and Johnson's
predictions, the mesons made up as (qqgg) states are expected
to be very broad since a (qqgj) state could simply "fall
apart" into two (qg) mesons. Jaffe has claimed that the
JPC = o++ mesons (E, s* $,K) are the(qq3y) states not the
(q§), L =1, S = 1 states of the classical qusark model(7).
It is difficult to interpret the known properties of 0%+
mesons as the members of (qg) L = 1, S = 1 nonet, but as we
do not have enough information about these mesons it is hard
to select one of these two alternative interpretations.

This is a very crucial area of the meson spectroscopy, in
particular equally possible existence of glueballs and
(qq), (qqqg) states prevents us to go further without
having enough information about these mesons. However
recently observed (KK)S-wave enhancement at Meg~1.3 GeV
might provide a clue(g). There 1s uncertainty about its
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i{sospin. An Argonne group has claimed from K'x” production
data that it has I = 0(102 whereas & Notre-Dame group has
assigned I = 1 from s study of Koko production data9). 1In
this thesis we shall present strong evidence to show that
there 1s a I = 1 (KK) resonance with M=x1.3 GeV. Let us
call it ©. The existence of §(13oo), in addition to the

I = 1 8(970), supports Jaffe's prediction of having two
entire nonets of 07 mesons, one of which contains (qq33)
mesons, while the other covers (qg) mesons(7). It will be
very important to observe the other members of the second
0** nonet.

Jaffe and Johnson have predicted the existence of
other (qqdgd) multiplets, with masses below 1.6 GeV. For
example JPC = 0** 1, 8, 27 SU(3) multiplets at 1116 MeV,
1*+ 1, 8 at 1176 Mev, 1** 8, 8, 10, 10 at 1223 MeV, O**

1, 8 at 1418 Mev, 1** 1, 8, 27 at 1451 MeV. They have
noted that large widths of these states have made it
difficult to observe them. They also claimed existence
of (qf) states having quantum numbers which classical
guark model has forbidden, namely the states in (1.10).

In contrast to the very rich spectrum of meson states
predicted by such theoretical models, the experimental
meson spectrum is very poor. It is important to obtain as
much experimental 1nformat16n as possible sbout the meson
spectrum, in particular about the problematicsal 0** states.
Here we use available high statistics spectrometer data to

shed light on these problems.
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1.2 JEE = o** Mesons

We list the known O** mesons in Table 1.3, showing
their observed decay modes together with some of the

processes in which we observe them. We put question marks
after uncertain mass or width values.

Apart from the well-established JF° = o~*, 17-, 2**
nonets, only the 0** nonet has candidates for all its
members. Since the quantum numbers of the 0** mesons allow
them to decay into two O~* meson states, many of their

decay channels are experimentally accessible. They are

e, _— e -

G Masg [Widdh Seen Dec
Meson | | K

- J{MeV) [ (MeV) o den Rea ¥ oun

s, |17 [970]50 [T, w¥ Kp—0mZT"

Ktwo [ wp - (e,

S |17 [13o0)rre WK, KW e = (WK p

Ktws [ o (kh¥)n

A /1 150! ‘M)t? = ki()—»(Kt ) n
e —(em)p

S* | 0% [3%07|907 | mE, WK | Tp— (vtn)u

KS ’g e = (W)n

£ D+ \100? Qc-.r%q? 'IT*'U:-

1 - (THr)n

U S ——

Table 1.3: The known o*t* mesons

interesting states to study for many reasons. They provide
a useful testing ground for dynamical models. Also the

decay of these S-wave étates are suitable for studying
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symmetry breaking effects without kinematical complications(ll).
They provide information on the spin-orbit splitting in the

quark-antiquark interaction through comparison with the

JPC = 2++, and 177 states. A comparison of the decay rates

of the three different nonets (J'C = o**, 1Yt 2*) with
same quark-anti-quark relative orbital angular momentum is
important for higher symmetry schemes(lz). We know that
w, ® and f,f' are ideally mixed, whilevy is mainly in octet
and n' in singlet. When we have an established 0** nonet,

, it will be very interesting to study its mixing properties
and the extent to which its decays are governed by 0ZI rule.
I = 0, 0** mesons, having vacuum quantum numbers, can be

not the(qq) states, but constructed by some peculiar

dynamical effects, for instance they might be dilatons(S).
However, perhaps the most important reason to study the 0**
states is to clarify whether or not there exist low lying
(qqqg) states and glueballs in addition %o the conventional
guark wodel, (qj)states. The discovery of g, which we
describe in previous section, has already opened this
question up and made this subject a cruciasl area for further
studies.

Although many decay channels of the O0** mesons are
experimentally accessible, tn practice there are several
problems. We generally observe these mesons as a result of
phase-shift analyses. 1In these analyses, the L = 0 S-wave,
being the lowest partial wave, is less constrained by the
experimental observables than the higher L =1, 2, 3 ...

(P, Dy F ...) waves. Moreover it is relatively suppressed
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due to occurrence of (2L + 1) factors in the partial wave
decomposition of the cross section. With the present
accuracy of experiments, it is not easy to determine such
low partial wave contributions. The second challenge comes
from the ambiguities inherent in phase-shift analyses.
These ambiguities have nothing to do with experimental
accuracy; even if we have infinitely accurate data, they
will occur. More than one set of solutions can describe 3
given set of data and further information must be sought
to select a unique solution. This means it is difficult
to determine the S-wave reliably and any structure seen

in a S-wave amplitude is more suspect than those for the

leading partial waves.

Besides these general difficulties in determining an
L = O amplitude, the 0** mesons have their own problems.
The I = 1 $(970) is located just below the KR threshola
and consequently it 1s not easy to determine its para-
meters. A similar problem occurs for s®¥(980). There 1is
doubt about whether it is a resonance, or a threshold
effect, namely a cusp. The situation is complicated by
uncertainty in determining on which of the Riemann sheets the
poles occur. In addition to this we do not observe the s*
as a pesk in Tw S-wave but rather it is located on a broad
elastic background, which has been attributed(ll) to the
£(1200) meson. Two overlapping I = O S-wave resonances
(S!,Eﬂ) in a two channels situation (V"W , KK) makes the
problem of unambiguous identification particularly diffi-

cult.
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For the I = 3 K(1450) we may look at the recent
analysis of the SLAC data for the reactions

Ki P -—->(lLt ﬂ*) n
+ + +4
K P —_ (\( T ) ,3

at 13 Gev/c{13). They have found a structure in (KT )
S-wave at around 1.45 GeV, about 250 MeV wide, located on
an elastic, slowly varying background. However none of
the four solutions, that they have presented, show
structure that we can unambiguously interpret as two over-
lapping resonances. There is definitely one resonance in
(KW ) S-wave but its properties, and the nature of its
background, is uncertain and we need more information to
illuminate the (KW) S-wave amplitude.

We shall study many of these problems using recently
avallable high statistics di-meson production data. 1In
some cases we shall emphasise the necessity of more experi-

mental information.

1.3 Summaries of the Other Chapters

The rest of this thesis is planned as follows: we
shall give a brief survey of the recent high- statistics
di-meson production experiments in Chapter II1. We shall
also discuss the relations among observables and ampli-
tudes, the Chew-Low formulae for one-pion-exchange (OPE)
amplitudes, absorptive effects, the exchange mechanisms of

the reactions which we analyse in this thesis. We study
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the properties of the S* effect and its background (the £
meson) in Chapter IIT. We discuss the effects of the
various combinations of the S% poles on the complex energy-
squared plane and propose forms of parametrization of the
coupled channel (WTW, KK) T = 0, L = O amplitude which
allow for the presence of overlapping S* and & resonances
and permit a determination of their parameters. 1In partic-
ular we perform a coupled-channel analysis of the data for
the reactions ﬁ]’ —> (™0 )n  and W'P — (L' In  to
investigate the properties of the S and &. We shall
present an analysis of the reaction T p — (e~ w) P

in Chapter TV. We determine the amplitudes as functions of
t in A, and g resonance regions and also as a function of
the effective (K-Ko) mass in the region 1.0 <MK‘K° (2.0 GeV.
We shall study the production mechanisms and the properties
of the mesons, which can decay into K'K® final state. We
snalyse the data for the reactions i p—=(X'K")n and T'n —
(K*K™)p in Chapter V. Here we use the results of Chapter
IV to eliminate the T =0, I = 1 ambiguity. We study the
'L = 2 KK amplitudes of these reactions in detail. We
calculate explicitly the effect of the mass difference of

K*,K™ and ¥°,R° and asnalyse the data with Mkk<1.l GeV in

terms of the S* and & mesons. Finally we perform an
Tiw — VY V¥ phase shift analysis in Chapter V. We discuss
the possible classification schemes of the JPC = 0** pesons

in Chapter VI and summarise our conclusions in Chapter VII.
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CHAPTER 11

Data and Formalism

2.1 Survey of WW and KK Production

The early experiments of di-meson production reactions

had limited statistics. Development of spectrometers over
the past few years has provided facilities to perform high-
statistics di-meson production experiments. An example of
such experiments has come from a Saclay group(lu). They
have reported total 30000 events of W W° and T T  pro-
duction in 1970. Three years later a Berkeley group has
presen;;a\result of the 32100 events of

ntp — ntn- A

reaction(15), 1n 1974 a CERN-Minich group completed a very
high statistics study of reaction

TT'P —> Tt n7n
(over 300000 events)(lé). The ©h —MNT® {interaction has
been studied extensively using the data of these experi-
ments. For detalled reviews of the T interactions we
refer to the book by Martin, Morgan and Shaw(17) and the

CERN Report by Petersen(18), e shall use the data of the
CERN-Minich experiment to study the S%-§ problem.
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Six high istatistics experiments have been carried out

of (KK) production in recent years. We list these experi-

ments in Table 2.1.

No, of
Group Ref. Reaction P1ab(GeV/c)  Events
Argonne EMS (47) wp—>K'Wm 6.0 16,000
CERN-Minich (56) wp — K'¥mw 18.4 27,000
(with-£<0.2)
Argonne EMS (19) np — ¥ w 6.0 110,000
e — vty P 6.0 50,000
Zurich ) } o s
CERN )  (20) mp —» K ¥ n 8.9 6,400
Imperial Coll. )
Notre Dame ) (9) W'V — K¢ w 6.7 54200
Argonne ) S s
Geneva (21) Wp— ¥ Wp 10.0 40,000

Table 2.1

Since the KK state is a particle-anti-particle state, 1t
has the properties(22)

PIKRY> = (=)L kR (2.1)
CIKED = (=)F|¥k> (2.2)
¢ = (-)I*L (2.3)

where P and C are the parity and the charge conjugation
operators regpectively, G is tne G parity, L is tue spin of

the KK system and T is the total isospin, it can have

values

I = 0,1 (2.4)
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Thus the allowed quantum numbers for KR states are

y 2 3 3 see. (2.5)

For a given JPC, I can be O or 1.

The Kg Kg system can only have even values of angular
momentum. For a two identiecal spin-zero psrticles, Bose
statistics do not allow odd values of the angular momentum.

Therefore, the K°k° states, which can decay through the

KgKg state, can only have the quantum numbers

JPC ot ottt L (2.6)

b}

The K°K~ system has Q = -1 and therefore can only have
I =1.
The "W state has the same quantum numbers of those

in eqe (2.5). Since WTW system has G =+, from eq- (2.3)

L+1I = even (2.7)

where L, I are the spin and isospin of the Tw system;

for the " system we can have
1 = 0,1, 2, (2.8)

The equation (2.7) separates out isospin values of the

wW system for a given value of L. This restriction does
not hold for the KK system. This means if we observe a
new resonance in the KK system, it is not straightforward
to assign its isospin. On this point the K'K° system is
particularly useful to determine the isospin of resonances

of the KK system. Moreover, the K ¥ system, which has only
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J = even amplitudes, is alsc very valuable in sorting out
the phase-shift ambiguities of the kK production.

The charge-exchange processes

TP — nt o

np — k'

™n

s ™ 5 3

w
> ¥
° (2.9)

KS

o P —_— K;

have the common feature of dominance of one-pion exchange
amplitudes in the forward scattering region. This feature
allows us to study i — ¥T  and WT - kK interactions
by isolating the pion exchange amplitudes. At the meson

vertex W{nn) of the reaction

TN — Tw N

G parity must be always negative. This condition allows
only a small number of exchanges. Since there is no such
condition for the KK system, the number of allowed exchanges
is larger. The richness of allowed exchanges for the KK
production complicates the isolation of the one-plon-
exchange (OPE) amplitudes.

The KR production mechanism in the reaction

TTp — KKy p

—~~
no
o
A

is different from those in (2.9). The possibility of the
exchange of vacuum quantum numbers allows the exchange of

pomeron, f, etc., and the pion exchange is only allowed
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for the J = odd amplitudes by the G parity selection rule.
Therefore this reaction is not a good place to study the
one-pion exchange amplitudes, however it is very useful in
determining the contributions of the other exchanges in the

KK production.

2.2 Qbservables and Amplitudes

We consider processes of the type

TN — (v, »w, I N (2.11)

where w. are mesons. The amplitudes describing these

processes are functions of five kinematical wvariables. We

choose these variables to be (see Fig. 2.1)

S = (p1 + p2)2
t = (p_ -0p )2
2 5 5
M2 = (py + p,) (2.12)

6, ¢> , di-meson decay angles in the mlm2 rest frame.

At given incident momentum,
the process can be described
by four variables, namely

t, M,0 and ® in (2.12). The
decay angles 9,(1) can be

measured either in the t-

channel (Gottfried-Jackson)

Figure 2.1: Diagram of or s-channel (helisity)
process ™ N —> mm, N.

P; are the four-momenta frame. The specification
o} the corresponding

particles. of these two frames is shown




}
l
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in Fig. 2.2.

incident

outgoing N m

2

F r :2¢ The s and t channel frames.
The two frames are related by a

rotation x about the normal to
the v N — w w N reaction plane.

The experimental information consists of an intensity

distribution, for a given incident momentum:

da de
—_——— e T e—— . 01
WAt A St wi®e,dé) (2.13)

The left-hand side of (2.13) corresponds to the number of
events in the element dJdM At L L . On the right hand
side first term is proportional to the number of events in

the element AMdt and it is the integrated intensity

N=§Gu<Id)se— . (2.14)

W9, o) specifies the mg @, angular distribution. Tt

can be expanded in terms of spherical harmonics

Wi d)=Z Y2 Re Y (8, 6) (2.15)
7, ™

where (Y > are the expectation values of the corres-

ponding spherical harmonics and are called the normalised
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moments. The experimental data are usually presented in

the form
ALIM ) =N <YLY (2.16)

as functions of M and t. Aﬁ 's are generally called the

unnormalised moments.

The intensity distribution defined in eq. (2.13) may
be expressed in terms of helicity amplitudes. If we restrict
ourselves to the case that produced mesons have spin zero, we

can define the helicity amplitudes, either in t or s-chsannel,

as
g, (¢)

Hyy (™M 0, ¢) (2.17)
for fixed value of incident momentum. Here‘x,k denote the

initial and final obucleon hellcity components. The normal-

jzation of these amplitudes is such that

- 5,4
__d9o Z | My “ (2.18)
dM dt rl..ﬂ_
To discuss the production of the di-meson system, it is
s, (M) 5, (1L

convenient to decompose F*x \ 1nto a sum of ¥4A) g ampli-

tudes, corresponding to the production of di-meson states
of spin L and helisity AR. Tgnoring the channel label
AP
Hy (6m,0,8)=2 (L) HD (L) (58) et (2.19)
L NAhg o0

Substituting into the eq. (2.18)

de
dMdt d

. Wt A
:%: Z_ (lL\*lYQ lZLL-»l)L B

XA LA A

b A

R4 U LA 8

(H N \* HL\l ) & la $) a,l (6,¢) ) (2.20)

Y AN2e A0 gy 0
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We define the spin density matrix elements for di-meson

production
»*
R D T KR I Eie
?\Ql Aﬁl ) 3_ N— % \'\\’\)(U l ‘A"\A&L , (2.21)

where N is given by eq. (2.14). Using egs. (2.15), (2.20)
and (2.21) we can express the normalised moments in terms

of the spin density matrix elements:

17¢v
- R «1)(1L +1)
<\(L>=(qn) 2: Z_[ ) <L&vqollo> X
Ly, 2w by +1
L.,
(- ) <L Los A Al TMS Re Sxm Aas (2.22)
where (e. ) ™, W\\J,V1) denote Clebsch-Gordan coefficients.

Note thet the relations (2.19)-(2.22) are equally valid in
terms of eilther t or s-channel helisity amplitudes. The

| explicit expansions of eq. (2.22) are listed in Appendix I
in the case L,,L €4 1xg [,\2ad €1 . As the
experimental data are given more conveniently in terms of
moments, in the presence of more than one spin state of
produced di-meson system, we usually do not have information

oLy,

direct on fA,A . Instead we have information on linear

combinations of density matrix elements.
It is useful for the description of t-channel exchanges
to define the following combinations of the amplitudes (in

either the t or s-channel frames)

L'_", 1 L - _)l
Hm,fﬁ( Moo+ ) HoL NR IR TP PO
L= L
HX>‘0= H,\',\o . (2.23)

At high energies the amplitudes L\ and Fff;) describe
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the production of a di-meson system by natural and unnatural
parity exchange, respectively(23).

The t and s-channel amplitudes are related by usual
crossing relations. These relations are discussed in
reference (17) in full generality, here we summarise some
of the results: The crossing matrices are block diagonal
in terms of Fﬂ‘t amplitudes defined in (2.23). The ampli-
tudes with exchange of definite naturality are related among
themselves by crossing. The crossing transformation on the

nucleon helicities has the following properties: It is

diagonal in the forward direction for the unnatural and

natural parity exchanges amplitudes, i.e. flip — flip,
non-flip — non-flip. Except very close to the forward
direction, the unnatural parity exchange amplitudes trans-
form in an anti-diagonal way for the nucleon helisity
(flip—> non-flip) while the transformation continues to be
approximately diagonal for the natural parity exchange
ampli tudes.

2.3 Properties and Formallsm of One-Pion -
Exchange Amplitudes

Most of our knowledge on Wi —> T, Kk 1interactions

has been obtained from studies of the one-pion-exchange
(OPE) processes:

N — uw N

TN — K¥N. (2.24)
The importance of these processes is due to the dominance
of the OPE contribution. If we can 1solate this contribution,
the associated TW —>TTW, KK amplitudes follow immediately.
However there are complications. We never observe the one-

pion-exchange contribution alone in the processes of the
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type of (2.24). There are several other amplitudes giving
contributions to the observables besides the OPE ampli-
tudes. The amplitudes, corresponding to ﬁon-OPE exchanges
can give sizeablé contributions, specially in KK production
processes. Therefore we have to take into account all
possible exchanges and important corrections arising from
absorptive effects. In order to do this we should have a
dynamical model, together with high statistiecs data to
give information on these amplitudes.

We should extrapolate the scattering region amplitudes
to the pion pole, in order to determine the physical
v —» W (Kk) amplitudes. Let us consider the diagram
shown in Fig. 2.3. Even if we ignore all other contrib-
utions, the processes of
type (2.24) cannot give
directly the physical
wuw — T (WW) amplitudes.
Roughly speaking the physical

amplitudes for the reactions

in (2.24) are in the form
Flgure 2.3: OPE Diagram

in processes
N — ww{ kW) N
R is a meson resonance.

A~ V(NuN) ! - F(Y Al — awlwi)) (2.25)

l"'m'r,

where V(N T N) 1is the vertex function describing the

bottom vertex in Fig. 2.3, 1/(&—.4;)is the OPE propagator,
F(t) is a form factor satisfying Flwg)=1, and
A(rw — w%(KK)) are the physical TT —=> T T (k)

amplitudes. In order to determine the ’\(ﬁﬁ —>FF(VE))we
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have to calculate VINTNY) and F(t). The form of the
VI(NuN) vertex function can be determined using the
Feynman diagram techniques. The most model independent way
to determine F(t) is to fit the t-dependence of A in the
relation (2.25) bearing in mind the condition F{ w:h)= 1

In this way we con determine the TN — WnlKW) amplitudes
from TN — Tn(KK)N OPE amplitudes up to some known
kinematical factors. This extrapolation method was
originally proposed by Goebel, and by Chew and Low(2h),

and a detailed calculation was given by Ferrari and Selleri(zs).
Different conventions used by the different authors prevent
the use of their results directly. Therefore we review the
calculation using the currently accepted convention.

We follow the convention given in the book by
Pi1kahn'2®). We give the definition of the S-matrix, the
normalization of the states, the cross section, etec. in
Appendix II.

Consider the diagram in Fig. 2.3. We define the

kinematical variables such

s = (g, + q2)2
t = - 2
" (02 p3)2 ;
= (pi + p2) = Pg (2.26)

6, ¢ Polar angles of produced Tw(Wik)

in the R rest frame

We normalise the scattering matrix element T for this

process so that
() -
T=VINWN)—7 T (n5—TilKk), (2.27)

The terms on right-hand side of the eq. (2.27) are the
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same as (2.25). We introduce the shorthand notation:

C=T(ni — wrl{ki)), (2.28)

The S-matrix element

Sx:zgx;-f‘-(lv)l’ S('(Ql.* q,” r|—r,-",)V(NT‘ N) P T . (2.29)

f-wal
Using @gs. (A.T71.9) and (A.11.13) we can write the cross

section:

do = 1 o al
2[als; wy, wih]

2

| F ) ]

")S(S; Y (,‘)[V(NnN) b-w rZ
(2.20)

As we do not have any nucleon polarisation information, we
average over the initial nucleon helicity states and sum
over the final nucleon helicity states. 1In eq. (2.30) only
VI NT N} depends on the nucleon helicities. In Appendix
ITTI we show

3
%—Z \V(NHN),\J’_\ -Gt (2.31)

Al)"l.. ’
where GY7um =14 § (27).

The Lorentz-invariant phase-space element in eq.

(2.30) 3
4 4 -9 > db
Iips(sip pp)= (20 8' (4 q p-pop) (e ™ 1] 7E,
' (2.32)

can be re-written as

[AL‘M% Pph)=
¢

T
dt d™ _dlips (M5 pop)
(am* [a0s; v, i )% (2.33)

(see Appendix IV). Substituting eqs. (2.31) and (2.33)
into eq. (2.30) we obtsin

{ G-t

7->‘(S-) V“‘b ) "“I—.) (t - MI“)

CXL'\?S(ML; P VL) \ T ‘L-

FU At A MY

(Ga)t

da =

(2.34)
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So far we have explicitly calculated the N+wN vertex
factor and the (T'“""R'“) phase-space element. The

dlips ( Ml; P f,_) VTt (2.35)

describes the subprocess

At this point we treat the exchanged pion as an on-shell
real particle; the off-shell effects are described by the
F(t) factor. We show in Appendix V that

o 2
/D\L-?s(M‘) Flfl)lt!lzll:FMPZ (lL-ti)\TL(r'ﬁ ")“ﬁ(\ﬁl))l
Sl L=0 (2.35)

where J( represents the integration over the solid angle
S
\
element da=dddwn® , p=| Ml/L‘ - M’;)/L is the

ﬁii(\AEJ centre of mass momentum. Recall that

dM® = 2MdM (2.36)

and in the laboratory system (c.f. (A.11.12))

. : T L
>\(S, MIN'MIE ) = ‘1 PLn_\, W\N . (2.37)

Substituting eqs: (2.39), (2.36), (2.27) into eq. (2.34),

we find

de __ 1\ G =t fuv Ml?ﬂ

db aM  Poywd bm (bewd B
s 2
Z(un)\'r,_(m_,m(u))l (2.38)

L=9
This equation is the result that we seek. The right

hand side contains only known factors except F(t) and the

Tl'.' Once we determine F(t) we can obtain the mww — 77 (LK)

partial wave amplitudes, lt,immediately. Note
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that the eg. (2.38) is the cross-section of the "N —
wulwwN process. For observed processes with definite
charges (such as Wp =TT W ) ye have to include the
appropriate isospin Clebsch-Gordan coefficients.

The OPE amplitudes have distinctive features. They
have the pole 1/(t-w)) , and vanish as J-t at t = o.
These two factors give a characteristic t-dependence. The
OPE amplitudes have the pure nucleon helicity non-flip
structure and produce only helicity zero states of the
Tiv (KK) system in the t-channel. These properties can be
proved by noticing the W has spin zero, therefore J3 =m
should be zero for the NN and w{wn) , Wlkk) systems. So
for pure OPE, only < Y?‘\:D> moments of produced di-meson
system can be different from zero in the t-channel (see
Appendix I). But experiments show non-zero < Y,:,,u) mo-
ments in the t-channel (16, 19, 20, 21). This indicates
the existence of absorptive corrections and amplitudes
produced by other exchanges.

The absorptive corrections to OPE amplitudes have been

extensively studied for the resction W p —Wvwwn , (see

reference (17) and references therein). Let us assume that
M-p M5, wnlwi)
only the L = 0, m'D Y13 production ampli-

tude is produced by OPE in the t-channel. Ignoring the

t effect, by crossing we find the s-channel amplitudes
min

HL=L ~ J-t L=1 -t (2.19)
X A0 \T‘V"\lﬁ , \_\A‘AU \'-vv\L- +3

11

which vanish at t = 0. The data do not agree with this

prediction. For example the § meson production cross-section
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in TfP —> MW n  does not vanish at t = O. This has been
Lt

explained by the absorptive corrections to the H ampli-

Mt
tudes which do not vanish at & = 0. The simplest pheno-

menological way to introduce such contributions 1s to add

a constant %o the Pii amplitudes

L= -t
H ~—x C . (2.40)
PPRY L= ws
| The Williams mode1(28) or the "Poor Man Absorption"
| (29)
\

description assumes C = 1. We can let C be a complex

(30)

number The authors of ref. (30) have found s solution
with a small imaginary part of C. If we choose C to be a
real constant, we can make some specific predictions:

(1) all helicity amplitudes, for a given L, have a common
phase, (1i) all amplitudes, including the predicted non-
OPE amplitudes, are pure nucleon helicity flip in the s-

channel (except the negligible H°,, OPE smplitude),

+
(111) for the t-channel amplitudes

HS e

+4+ D
»N"L{ YINTEY

where C(M) is a real function of the di-meson effective

(31)

mass M, and L is the spin of the produced W system
Detailed fits to the experimental data have shown that

C(M) can be parametrized as a polynomial in M, and all
these predictions are consistent with the data(32’ 33).

2.4 Exchanges and Amplitudes
In this section we discuss the allowed exchanges for

the following di-meson production processes:




Tp — T n
wop > K ¥in
ﬂ—‘) ’K+V~-V\
™t — KW P

e — K K'p . (2.42)

In particular we want to determine the exchange contrib-
utions to the s-channel helicity amplitudes. Parity and
G-parity conservation gives relations between helicity
amplitudes in terms of the quantum numbers of the exchangeJ

t(23). Assume the process 1 + 2~»3 + 4 is mediated

objec
by the exchange of a Regge pole with 1ntr1nsic parity qg
G-parity G, spin J, signnture:S = (- ) , 1sospin I in the

t-channel ’;*—Z —> 3 | , (Fig. 2.4). We can apply

\\\s\\'/;y”’3 parity and G-parity conservation
E at vertices A and B. In terms of
lA (rlJG‘ J‘gl I )

l\: s-channel helicity amplitudes, the

Eé)fldh\ﬂ\\\ﬁ' results of this procedure are‘23);

re 2.4

Parity at vertex A:

.is = ( ﬁa—h'( R (2.%3)
‘.'\1*«.3 N T V\S 1. 'IL\_) ‘ H,\l-x('-,,\'-xt TooenTd
Parity at vertex B:
S Sy~ S, )3 A
H = - - H (2.44)
MAGA D V{S "[3"1‘( )T (=) S

Assuming 2 and 4 are the same type of particle, G-parity

at vertex A:
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S 1 A= Ay
Hy s = Gy ()7 ()

W N

H* (2.45)
Mgy A Ay
where 5., X, W‘ are the spin, helicity and intrinsiec
parity of particles 1, 2, 3, 4 respectively.
If we only consider production of the meson in the
processes in (2.42), we can describe them by a single

diagram (Figure 2.5), where R is the produced meson with
\;‘ 3 R spin L, helicity X , and
n intrinsic parity N&- Re-

: calling s“:l), SN:i/l,
4 n,GJS1)

N\ =" o V\N‘=+ and

2 4 fixing Av:'+1/1 we can
N N re-write (2.43)-(2.45) in
Figure ¢ simpler forms:
5 ~ CRACTETR (2.146)
Fhkxﬁ;o+ - Tis (=) Fh&-hJ 0 -
S L+AR+1 HS
~ - (2.47)
H'\k)‘ﬁio"' -‘bksvlk( ) “Xg Ay OF
S I , '\L"‘/?- S
~ QG -y -y" T H (2.48)
H,\&f\t",w vl( ' Ap+ 5 0 A

Let us consider the nucleon helicity non-flip amplitude

(1.e. X =+1/2), taking Ag= O, from equation (2.47)
‘—_ S L+1 )

lo+;o+2"lg V(K(—) Ho+'0*

1
which gives

{

NS =

Recsall the natural and unnatursl parity definition for

3 " (2.49)
: VL(—): V\R(). 2
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mesons

n s (-)L Natural Parity

VL = (-)L+1 Unnatural Parity.

EQ. (2.49) implies that a2 meson with natural parity in

kkzo state can only be produced by unnatural parity
exchange and vice versa.

For any value of A, with AH=AL=-+1/1 using (2.48)
S ] S
= (-
ka+;o+ G'l ) HAR+;U+
which implies that only exchanges which can satisfy the

condition

GVL:(‘)I (2.50)

can give a contribution to the nucleon helicity non-flip

amplitudes in the s-channel.

Now we take )«1=+1/'L . '\q=° 1/%, using equations
(2.46) and (2.48)

S N Y
H)\n")o*' - Vlg ‘) H)nf; 0 -

H°

Au+}0-

S T+1
Hacsor = Gn 0

which together give

S

;\R—;0+ *

H ,=G% (-7 H

',\k-‘, V)
The last relation shows that only exchanges which can

satisfy the condition
I J
¢ = (=) * (2.51)

can give contribution to the nucleon helicity flip ampli-

tudes in the s-channel.
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It is useful to know the small }t| behaviour rof the
different amplitudes, so we can identify the amplitudes by
studying their small |t] region structure. Near the forward
direction, helicity amplitudes have characteristic behaviour
described by the kinematical "half-angle factors" which
express the conservation of angular momentum along the
direction of motion. In the process T+ N(2) — R +N(l4)

S PAL- A+ ae ) /2
H ~ (-t) (2.52)
Ag Ay 04
The t-channel helicity amplitudes have similar small-%
behaviour, consistent with those of s-~channel amplitudes
and the crossing relations(17).
Now we discuss the exchange mechanism of the processes

in (2.42) individually:

1) T p — ™1 wn Because this is a
1

charge exchange process,

- o - the exchanged particle

(or Regge pole) has
I =1. The (w* n~)

system has definite

FL/)r/’/L\ﬁs\\\lw G-parity G = + so at

the top vertex of Fig.
Figure 2.6
2.6 G = -, as the pion

has G = -. Therefore only exchanges with 16 = 17 can give
contribution to this process. Ignoring the low lying

Regge trajectories, the only known Regge trajectories with

1% = 17 are:
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m ol - 1, g¥ = 07) Unnatural Parity
Al(IG =1, 3P = 1%) Unnatural Parity
A2(IG =17, JP = 2*) nNatural Parity. (2.53)

Using eq. (2.23) and egs. (2.49)-(2.52), we summarise

the possible exchanges in Table 2.2:

(_‘\l\f.\v\ 1 ¢
g - L\rww\-v\eQ Ef____ (\0 . S waerdl - b
\M’“(:Ulj L\NV. U ?‘-' NPeE ‘3:_‘;\(1.\}: [PRIS
L
H 4+ -0 Al \/ -t
L
‘—\ + 4o Ql C
HYT m "t
L~
A DU I S S A SR
¥4it.\ Al_ __k
[ H | EULALTN B A 3

Table 2.2: Regge exchange contributions
to the s-channel helicity amplitudes
in process v‘P —_ Tt~ n.

II) T p — Kj¥w
e —> KY Un
> K* K~p

vt n

These are all charge exchange processes therefore we

need I = 1 exchange. The (KK) system has G = (-)L+I, where

L is the spin of (KK) system and I = 0, 1 is the total
isospin. At the TT(KY) vertex we can have G = +,- with
The allowed exchanges for these processes

have I0 = 17, 1*. We have 1isted IC = 1~ exchanges in
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(2.53). The known 16 = 1t Regge trajectories are:

B(1¢ = 1* JP = 1*) Unnatural Parity

z(1G = 1+ JP = 27) Unnatural Parity

P10 = 1* JP - 17) Natural Parity. (2.54%)
The & is the exchange-degenerate partner of A1(3h’35).

The G-parity selection rule shows which exchanges can
contribute to the amplitudes with definite L and I of the
(KK) system:

L = even I = eveu G = -,(T,A7,A5)

L = even I = odd G = +,(B, & §)

L = odd I = even G = +,(B, Z2,f)

L = odd I = o0dd G = -,(W,A,A5). (2.59)

(o]
As we have explained in Section 2.1, the KSK: system
can only have even values of L.

There is a very useful relation between amplitudes of

“—P — KW n and wtn — K " P -

Figure 2.7

For the meson vertices of Fig. 2.7 the isospin Clebsch-

Gordan coefficients give
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<o ik, I1=0> =<1 u" 1wk, I=0>
KT BTk, I=0> =L n* 71 ki, T=0> (2.56)

ana.

<worntlkr;I=1D=-<Tmrn-jvie; I-15
¢ R IRy I=1D=-<nm B Ikk; 121D, (2.57)

Therefore if we denote H(n'P) as the amplitude of the
process WP — K+K—V\, AlT*m) as that for "'n —> k'K P
and A(I = 0), A(I = 1) as amplitudes for producing I = 0,1
of (KK)system respectively, then (2.56) and (2.57) give

A(T 1)

1) . (2.98)

A(T " p) 0) + A(I

A(TYn)

A(T

0) - A(I

Using eq. (2.23) and egs. (2.49)-(2.52), we list in
Table 2.3 the Regge exchange contributions to the s-channel

helicity amplitudes for the charge-exchange processes
7 N— (KK) N

EK C.\'\.uuv\qes

g-cheamne UPE NPE Smu-‘u'b
\M.Q:c.:l'iawg-c’= = Gz+|G=z- | G=+ behaviour
||t—° m B v/__—g
Hl-(--to nl Z C
Ty m | B -t
by, A, | Z J-t _
itt Al S -t
L+++i A‘L f V-t ]

.3: Regge exchange contributions to the
s-channel heliclity amplitudes in charge-exchange

Q TN —> (kK K)N processe
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III) n p > Ko K™ p

Here we can have I = O or 1 exchange. The (K°K™)
system has I = 1 and G = (—)L+I. Therefore at the T («°K)
vertex G = (-)L, and exchanges with 10 - o*v',1+,' are
allowed. We have listed the IG = 17°* exchanges in (2.53)

and (2.54), the dominant 16 - o*- exchanges are:

P (1% = o*, JP = 0*) Natursl Parity
8 (1% = 0%, 3P = 2*) Natural Parity
w (1% = 07, 7P = 17) Natural Parity (2.59)

where we ignore low lying q_and H trajectories. The G-
parity rule G = (-)L shows which exchanges can contribute

to the amplitudes producing a spin L of the (K°K~) system:

L = even G = + ([P, £)

L = even G = + (B,3,f)

L = odd G = - (w )

L = odd G = - (“‘AlAz). (2.60)

Table 2.4 the Regge exchange contributions to the s-channel

helicity amplitudes in the process ™~ P > (kW) P -

|
Using eq. (2.23) and eqs. (2.49)-(2.52) we list in
We should make some remarks about the NPE side of the Table

2.4: the pomeron is expected to couple dominantly to
amplitudes with no helicity-flip at the nucleon vertex,

that is Hf:l . Also it is a phenomenological fact that

L+

the f andw couple dominantly to H++1

, while the § and

A2 couple dominantly to amplitudes with nucleon helicity-
gL+ (36).
+-1

flip, 1i.e.
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bxcnanges |
S=chimme® UrE NPE Smald -t
L \no\'.«'.\;a o, 1-v I-1 1=v0 I:l bebhaviour
Hi-y B V-t
F*znro Z C
even Hl;’_1 B -t
HY 7 J-t
H, P f -t
HY% o P30 J-t
Hi o w V-t
L
)4-++ 0 Al C
0dad Hi:i A _
L &
H", w | R -t
Htit Lo A, ‘/:T

Table 2.4: Regge exchange contributions to the
s-channel helicity amplitudes in the
process. wp— (k") g y where L

1s the spin of (KYK™) system.
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HAPTER I1I
s*, € Problem

3.1 Early Higtory of the §*
Historically the s* effect was originally observed as

a (K?Ki) enhancement, rising sharply from the production

threshold@ in the process “_P ——=>(K:K§) n , which has a

strong OPE contribution(37). The (K°K™) system did not
(38)

show such a strong enhancement , therefore the (fog

threshold pesk has been identified as a resonance with

G.PC + ++
I'J"" =00 produced by one-pion-exchange(39). However

the resonance interpretation was not certain, since fits,

in terms of complex scattering length and SX Breit-Wigner

resonance formulae, could describe the data equally well(MO).

R few years later, this (K?K?) enhancement was also seen in

the (XK*k™) state(hl). As we have observed the ST effect

via TW — S*‘—° K K we should also expect to see the

§* {p THE— W scattering. Early phase shift analyses

of WTH—1T1 scattering determined the phase of L = 0, I =0

I=
Tu-»TT amplitude (S““?) complicated by the up-down

ambiguity, without any information on the s¥® (1, hz).

The first evidence of the S® effect in WK =T TN came from

(43)

a Berkeley group They reported the existence of a

narrow anomaly near the KK threshold in both the mass
distr;bution and angular distribution of the it~ system
produced in the reaction ﬁ*P-—a(w*n')ZF*' at 7 GeV/c.
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The anomaly in the Ttu effective mass distribution shows a
shoulder between 910-950 MeV, a sharp drop between 950-
980 MeV and a flat region above 980 MeV. The normalised
(\fl) moment has a strong drop at 980 MeV. Since
<yt ~ 10?, ~ Re(PS¥) , this anomaly indicates
a rapld movement either in the S-wave or the P wave. The
normalised <Y .Y moment has a sharp rise at 980 MeV, which
1s ~ \PZ7 (11t et , this means either the P wave
is increasing or the S wave is decreasing. All these
anomalies are most easily understood as a rapid variation in
the S, amplitude associated with the KK threshold. The
same group analysed the WW — W data, together with
(K*K™) mass spectrum, assuming that the .S::; amplitude
could be parametrized as a resonance which couples to the
T and KR channels(hh). They found that the .Si::
smplitude must start at about 900 MeV with phase 8 = 90°
and reach 8521180° at about 990 MeV, selecting the "down"
solution as the unique one. Selection of the "down"
solution as the physical one, has been confirmed by com-
parison with wtn~— W 1T° data(uS). The structure of
the SIT”? smplitude, determined by the Berkeley group, has
been confirmed by the results of analyses of the high
statistics data for the WP —>WT " process at 17.2 GeV/c
(16, 32, 33, 45)_

The structure of the SI;: amplitude indicates that
the 8* 1s located on a large background, which is
4~ 30°- 90" at around : M = 900 MeV. Morgan extracted

"=o T’"

I
the S® effect from the Smr amplitude and found a slowly

risine background phase reaches 900 around M. = 1100-1300

MeV and is almost elastic(ké). The structure of the
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background may be interpreted as a very broad, almost elastic
resonance with mass around 1100-1300 MeV, called the ¢
meson.

The nature of the S* 1s still uncertain, since the
resonance and the scattering length descriptions can fit
the ww —>T W data equally well. The old KK production
experiments, having limited statistics, cannot distinguish
these two possibilities either. However high statistics
ﬁ—p —>(«*¥)n experiments have been reported recently

(h7’ 56). These data contain information on the full

angular distribution of the produced K'X~ pair in the
threshold region and provide the opportunity to perform

a coupled channel analysis of the S* using Tp— IR |
and ﬂrp - K*K—n processes. This analysis gives information
on the phase of the L =0, I =0 Th — KK amplitude as well

as its megnitude.

3.2 Poles and the Dynamical structure of the §*

As we have discussed in previous section, the g™ effect
is associated with strong snomalies in the "w — WU and
WT — KKk channels. It is well known that such sizeable

anomalies can arise at the thresholdq of an open channel

- L8,k
only when the amplitude has poles near the threshold (48, 9’50).

To a good approximation we can discuss the S* in terms of
Just two channels, WIr and KK. All the phase shift analyses
of the Tw —> W1 scattering are consistent with negligible
4T inelasticity effects below the KK threshold . In this
two channel approximation the amplitudes have two right-
hand cuts on the complex S(total energy squared)-plane,

starting from the opening points of the two channels.
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Therefore we have to deal with a Riemann surface with four
sheets. The poles can occur on any of the unphysical sheets

and so lead to different ampllitude structure. So, in order

to understand the S*, it 1s crucial to know how pole posi-
tions on various sheets effect the amplitudes.

The T —=TiT and ThH—>K¥ scattering can be conven-
iently described either via the partial wavelé matrix or the

partial wave 1: matrix. As we are interested in L = 0, we

omit the subscript L from eq. (A.I1.19)

VA Vy
é = l + 2, kl T \f, (3.1)
where é,k and Iare 2x2 matrices in the channel space and
w [kt
~ = v .
where
VL
k‘z Log = %:(_S -4 ety )
— \ - 1 VA

T
are the pion and kaon centre of mass momenta with &= r1ﬁn

1 - o .0
or rli' Here we neglect the K',K~ and K ,K mass differences.
We shall study this effect in Chapter V. We introduce the
so-called Argand amplitudes by

'/.L

A= KT (3.4)

~ ~ r~
The normalization of the A amplitudes is such that, with

only a single channel open, unitarity gives
ImA = | A|2 (3.5)

The T 7 -<>FTH)Fii—9Kﬁ, KK —KK processes are described by
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elements

= 'ﬁﬁ —7“-1?
S11 S ( )
822 S (K KK)

= 8 = S(TUW —» xK), .6
512 01 (3.6)

These S matrix elements may be expressed in terms of phases

and elasticities by

"Le}:s‘ ‘m e'.l%.wn)
S =

— i(‘b\ Sl 3
V- vf e v ) e o
(3.7)
which satisfy the unitarity condition
gt st =1, (3.8)
The corresponding A matrix can be written using eq. (3.1)
and (3-“),
2.9 A~ H +
‘\Q- |- 1 1_‘11 ek%. 5,)
PN 3
A = . .
~ AR [Ca
2 2 (3.9)

The four Riemann sheets are shown in Fig. 3.15 where,
for clarity, we show the cuts dispiaced just below the real

axis.




- 48 -

Complex S plane

H

Figure 3.,1: The Riemann sheets for the
and KK channels. The cuts are dis-
placed just below the real axis for

clarity.

Sheets I, I1, III, IV correspond to (Imk1, Imk2) = +4,
-+, ==, +-, respectively. We refer to the physical sheet
as sheet I; the physical amplitudes are evaluated on the
upper side of the right hand cuts on this sheet.

A convenient way to %uarantee the singularity structure
and unitarity properties of S matrix elements is to introduce
an analytic function d(s) = d(ki’kz) with square root branch

points at k1 = 0 and k2 = 0(50’ 51). Then if we put

1
- Cl (S) = OQ(-\L. ) hl) (3.10)

ANy Al k)
_ auts) - o\(\t.;' \‘-'L)

= = (3.11)
L AI\S7 A{h\lkt)
s B d -\, - ly)
_C = = .
Sngn "1 FLARY dll,, k) (3.12)

we find that the SiJ (1,§ = 1,2) have the correct analytic

structure in the physical region. The poles of the S
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matrix are caused by the zeros of al(s) = d(s). This method
[ 4
can be generalised to many channel cases(so’ ’1).

For equal mass particles in each channel we can map the
whole four-sheeted s-surface onto a single plane by a
conformal transformation(so). S matrix elements are then
expressed as anaglytic functions on this plane without the
threshold cuts. Let us consider the following two

successive conformal transformations from s through k1 to

o ;]
S=4( 1k + my) (3.13)
{
k,=—A7:—(‘*’ '*"':\ (3.14)
where
As (e - W)™ (3.15)

in terms of ¢, and A k2 will be

klz__%_(w_.l_) . (3.16)

O

By these transformations the four Riemann sheets are mapped
onto the single '"w-plane". This can be easily seen by

considering the inverse transformation:

= -—:t—— ( \“ + !"L) (3-17)
A

A4 =) (3.18)

w A

Equations (3.17), (3.18) show that if a point S on sheet I

of S - surface is mapped to a pointus on the w-plane, then

the point s on sheet II, (111, IV) is mapped to the point

-ufl, (-0, w ]ﬁj (See Fig. 3.2).
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Figure 3,2: Images of the four Riemann sheets
on thew-plane. The bold line is the physical

region. The points 1,1 on theus-plane correspond
to the first and second threshold points on
the s-surface.

On thew-plane, the S-matrix can be expressed in
terms of 1ts poles and zeroes, as well as 1ts unphysical
singularities. For such a general expression of the S-
matrix, it is difficult to know explicitly what kind of
conditions unitarity imposes. However, for practical
purposes, it is often quite useful to have an approximate
form of the S-matrix which includes only a few relevant
poles(SO).

If the S* is a resonance, we should expect to

describe 1t by the usual two-channel Breit-Wigner form.

The S* is located very near to the ¥k thres hold , so we must
take carefully into account the opening of the new channel

by making the correct analytic continuation across the

threshold . This can be achieved by taking
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1/
\th (S - 4 V\‘:K) !/'2. Ol.\aov{- H‘V’QJ)\A—aloL
= O c\)’ Woeno 240

1

b, = +} Vel =+ vV L(wlv - S)'/?/'l Lelgoo )L\M\l\ano\_(_3.l9)

The two-channel Breit-Wigner form corresponds to choosing
Its)=wm =5 -1 l¥ b 4+ k) (3.20)

where m is the mass of the resonance, and D'm_are the couplings
to the TT and KK chanhel respectively. The Breit-Wigner
amplitudes, constructed from eg. (3.20), have two poles,

one on sheet II1 and the other on either sheet II or 1IV.

We can prove this easily by working on thew-plane; the
reality condition of the amplitude requires that any pole

off the real axis 1s accompanied by its complex conjugate

one. This means, a poleuur in the complex tw-plane is

accompanied by a pole at-uu: . If we write (50,52,53)

d(s) = d) = & (w-w ) (wew)[wew) (wew)  (3.22)

with the restrictions imposed by asymptotic behaviour of

the S matrix and unitarity

fzlwy) =l wt >1 (3.22)
and,
A<O 1B <A (3.23)
where
A = sin(argly))

B

sin(arg®d.)).

We can see that d@w) in (3.21) is equal to d(s)/A2 of eq.

(3.20). (A‘L: M';—M;‘. The m and '6’1 5 of eq. (3.20) are given by
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Mtz bomb 4 Al[(§—§")L+LtAB]

'3
¥, =208(8-8")(A-n)

¥, = 1A (8+8") (AB), (3.24)

The conditions (3.22) and (3.23) show that the pole
w, should be on sheet III, whilewr is either on sheet II
or IV, (See Figure 3.2). When a resonance occurs well
above both thresheolds, only the sheet III pole is mani-
fest in the amplitudes. However when a resonance happens
to be near a threshold , both of the poles play crucial
role.

It 1is possible to describe the S* effect in terms of
nthe KK scattering length", as an alternative paramet-
rization. To recall the definition of the scattering
length, let us assume there is only one channel open. The

L = 0 amplitude 1s of the form

Y
S - e 1
p=—=-t & -t : (3.25)
2 pIN xS -
We can expand the "ot $ " in the "zero effective range
approximation"® as(Sk)’
ke § = —%r-+---~-- (3.26)

where a 1s the scattering length. Similarly in the two

channel case we can write

218, uA
R. = V\Q,S - 1 -£ ! = L
e oI 23 ot 4, -

(3.27)

One can see from eq. (3.21) that_the amplitude has four
poles not two, but polesiu and ~-«s® are described by the
ssme parameters, therefore in eq. (3.21) there are only

two independent poles. Here we are talking about these
two inderendent poles.

-




- 53 -

wvhere

A= 5 —-% QM\W\v

1 7z

In the zero effective range approximation:

k, et A, = l R (3.28)

where o 1s the complex scattering length of the second

channel. If we write A22 in terms of o, we have
A=
T - ek,
We shall see that the amplitude will have a pole at

k.= ~ 1 /= (3.29)

on the sheet II. Iflaliis large, the pole is near the

second threshold ,(K,&=0). This could happen in the s®
case; a large KK scattering length would give a sheet II
pole very near the threshold and this pole can show it-

self as the S’E effect. Note that here we are dealing only
with a single pole, (and its complex conjugate one), there
is no nearby sheet III poles.

As we discussed in the previous section, the s* 1s
located on a large background which could be interpreted
as a resonance, in the WT channel. Therefore we have to
perametrize the Si:? amplitude by two overlapping structures.
There are several ways to achieve this but none of them can
serve perfectly. The most convenient way is to use eqQss
(3.10)-(3.12), employing a d(s) function which can describe
the overlapping structures. A suitable d(s) function can
be determined phenomenologically or from a dynamical model.

For the dynamical determination, it is convenient to use

the multi-channel N over D formalism, in whichd(s) can be
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taken to be detD. We can write the S wave [ matrix of

eq. (3.1) in the form:

T = N Q'* (3.30)

~

where‘N has the left-hand cuts, arising from the crossed
channels, and D has the right-hand threshold cuts. 1In

many channel cases, the normalisation of T is such that:

I‘MI =I“5_ I ) (3.31)
with
SJ:é = 9(8‘5;)\(: %.d (3.32)

where s; are the threshold points and k;are the corres-

ponding momenta. Using egs. (3.29), (3.30)

Tw D=-SN. (3.33)

One of the most important questions of elementary
particle theory 1s whether the low-energy mesons are pre-
dominantly (qq) composites as in the naive quark model or
whether some, or all are predominantly (meson-meson) states,
as in the old "bootstrasp" type models. If the mesons are
(qq) states, then in a many-channel model they would have to
be inserted as CDD poles, since the quarks are permanently
confined; they will never enter into an S-matrix description.
However it may be possible to take a contrary view here: 1In
the work on baryon resonances by Gustafson et 81(55)’ who
explicitly calculate the left hand cuts, it is claimed that

the low-energy states are (meson-baryon) composites and that

no CLUD poles are required. This appears to rule out the
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possibility that those bacyons are (gqq) states as in the
simple quark model. A simil~r argument is also possible
for mesons; resonances could be predominantly (meson-
meson) states and in the quark scheme we have to treat them
as (qqqq) states: Even within a particular realisat’on of
the gquark model this problem is not solved. For instance
in the MIT bag model of mesons, in addition to the (qq)
states, there are (qqdq) states with similar masses(6’7).
Therefore it will be useful to consider different possible
structures of the resonances and see to what extent the data
can distinguish between them. This shoud help illuminate
the nature of low-energy resonances.

Here we consider three different dynamical models for
the S* and the background (the § meson) to parsmetrize the
TT—> W, WT — ¥KW¥ S wave in the KR threshold region.
We also discuss two phenomenological psrametrizations, one
of which gives physical mass and couplings of Sx and £ ,
and the other which explores the two-chsnnel zero-effective-

range approximation.

I) Exchange Model

In this model we assume that the amplitudes are domin-
ated by forces in the wn and KK channels, together with a
coupling between them. We parametrize the diagonal elements
of D by linesr functions of s and the off-diagonal elements
by constants. We add approprizte threshold terms, multi-

plied by arbitrary constants. Thus
Se - S 1Y\, A - R

C-:iD% S “—:X\{- (3.35)
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which corresponds to anlﬂ given by

'X| )
N = ,
We calculate T:N Q" and impose the condition T12 = T21.
This ylelds
BeD , C=0L%A-8(S.-s)}/%, . (3.36)

Thus, for delD we have the 6-parameter form

disrzdetrD= Us-s -0k )($-5-17 )

(AR A - B(S-5) -1 B, ] . (3.37)
X
In the 1limit in which the mw —> ¥¥ coupling is ignored

this model permits a resonance inwn and one in Ki. The

former, which we identify with the £, gives the background
to the 8* state in the KK channel.

IT) Mixed Model

Here we permit an ¢ background in the wnw state as
before, but we do not include any forces in the T¥ —» KK
or KK—» KK amplitudes. Instead we include a g3 channel in

which there is a bound state. Thus

/
S-S5 i ¥ o A-iB\
9-_-. o 1 C-+ DYy
E s 6 -5 - (3.38)

We have ignored the threshold terms in the qq channel since
we assume that these are sufficiently distant not to affect

the results. When we impose T12 = T21 we find
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B=0 , O=-% AF/E . (3.39)

We can therefore write

disy=ded Q = (S, -5 -1 ¥ 1) 8-5-1¥4,) - AE (3.40)

which has five effective parameters ( 55_, S 53- CE, y,
— 1 ,e -
Xz_.-_.Zf‘AF /E p AE).
We see that this model is identical to model I except
that it has the additional restriction that B of model I

is zero.

ITI) Quark Model

Here we ignhore all forces in the meson channels and we
treat the'ﬂw—aqﬁ coupling to lowest significant order. 1t
is convenient to include two q channels (e.g.d;l and 8 of

SU(3)) and parametrize each as a linear function of s.

Thus we put
{ ) A+iB, C+10 L,
D= 0 1 E"!"F\L.L G+}H\L.L
I J S-S Y
K L X S, =S . (3.41)

Provided we do not go beyond second order off-diagonal

terms, we obtain

dks):&l!} (St-ag+h +§\LI(C+&S)+:\¢lle +g§)) (3.42)

where a,b,c,d,e,f are six real constants. Although they

both have six parameters, (3.37) and (3.42) are different.
In particular (3.42) does not allow any term of the form.
(ik ) (ik ).

1 2
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IV) B - n
This model has been used by several authors to
determine the s* parameters(ll’h6’52’53). The idea is to

modify the Breit-Wigner d(s) function in eq. (3.20) to
allow a background effect. This can be achieved by choosing

the d(s) function to have the factorized form:
d(s) = daf(s)aB(s). (3.43)

In this form we can separate out s® and the background.

dR(s) 1s given by (3.20). dP(s) can be parametrized in
seversl ways. Here we choose to parametrize dB(s) in

terms of an elastic 7" resonance (the £ meson).

e . (3.44)

8 J :
dlsy=w =5 -+ ¥k,

V) Constant Inverse K Matrix

Let us consider the one-channel zero effective range
approximation (see eg. (3.26)). Tf we write M ={/ain eg-
(3.26), then the amplitude in eq. (3.25) would be

At M/kx - 1.

If we generalize this to the two-channel problem

At Mt -

~o ~

thus we would get the usualt! matrix parametrization of the

amplitudes,
14 -1
A=K (m-r ko (3.45)

In the zero-effective-range approximation, all the elements
of M=K ' matrix are taken to be real constants. The KK

scattering length defined in eq. (3.28) is given in terms
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of Mij by
oL = Mu - \‘1 46)
= : (3.
dek M ~il M, ’
where ﬁl = kl(s=hmi). In this formalism the d(s) function
would be
. . 1
di=dd (A=) = (ML) M) - M

This 3-parameter description can provide a sheet II pole
and- the large background phase. For instance, the nwv — 7y

matrix element can be written

»

S - Hﬂ";tz Ma\*§ki

{ .
! V\R-| \Ll M“-: \Ll (3-1‘"8)
where
1 M,
- =M, -, (3.49)
e® 2 M- 349

In equation (3.48), the first term can give the sheet II
pole, while the second term supplies the large TV background

phase provided |My | << k, .

3.3 0w — W (K¥K) ¢ hannel
n 1 n

In order to study the properties of the S* we have
performed a coupled channel analysis by fitting WW and
KR production amplitudes direct to “-P —= v (16)
and Wp — XL n (47, 56) data. We have used t-

channel W1~ moments for T p —>W'W"w (yith -t < 0.15
GeV2) in 20 MeV bins through the mass range 0.8 < Mqy

€ 1.2 GeV (see Figure 3.3). We have ignored the ampli-

tudes produced by A, exchange, which have been shown to
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be negligible in the small t-region by an analysis of

(57)

Tp — W n  polarization data . For mwp — Kt nw

we have used the t-channel moments obtained at 6 GeV/e

by the Argonne EMS group(h7).

®° * MOMENTS

g (-t <0156ev?)

{Arbitrary Umits)

Y

t
Wty ‘V
—
1 1 i i L 1 L 4 1 - 1 1 A A -5
] 0o 1 o 08 09 1 H
Mrr (GaV)

Figure 3.3: The mass spectra of the unnormalised
nnw moments in the region L. %< Man < 1.0 GevV.
Here 0= N of egq. (2.14). The data are that of
the CERN-Munich 17.2 GeV/c w p—=-n~w*n experiment
(16), integrated over the t range t . < -t < -
0.15 GeV2. The curves are the fit using model I.

(- t € 0.08 GeV2) and at 18.4 GeV/c by the CERN-Minich
collaboration¢®) (- £ €0.2 GeV?). The exchange mechanisms
are more complicated in this reaction (compare Tables 2.2
and 2.3) and to study the Mki dependence it is desirable

to consider data extrapolated to the T -exchange pole.

Such a cross-section extrapolation has been done by the
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MOMENTS OF K'K® ANGULAR  DISTRIBUTION
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Figure 3.4: The t-channel moments of the K K'
angular distribution in the process n~p — kK K'n.
Here <Y 5=NL<YLD> 4in arbitrary units. The
data for Y3 were obtailned by the CERN-Munich
group by extrapolating the cross section to the
T -exchange pole (56). All the other moments
shown are normalized to these (non-evasive)
extrapolated values. The curves correspond to
the fit of model I (the dotted curve for <Yi>
is obteined if the $ tail phase is input). The
dashed curve for (Y ) is the fit using the
constant M matrix, model V.

CERN-Miinich group(56), and so we normalized all the

observed moments to these values. The moments obtained in
this way are shown in figure Ik,
We have analysed the data using the "Ochs-Wagner"

method(32’ 33). That is we have written the W and KK

production amplitudes in terms of W exchange via Chew-Low

formulae in the form:
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L&)

LsH. D -, A"
+0 N m
L = H:“: =Vlitay L,/ €M)
- L+
TR R DA o S I (3.50)

Here we neglect the A2 exchange. The observation of
< Y:,)1>=0 leads us to assume |L,|=IL_|. we use
L =8,P,D,F for L = 0,1,2,3 production amplitudes of the
v (KK) system, CNis the overall normalization factor, M
is the effective TW (KK) mass, and C(M) is a real function
of M, (see Section 2.3 and eg. (2.41)). The isospin de-

composition of the amplitudes of T'n — 1t 7w~ 1is

S 0 1 2
A :.; AL +—3- n,_ %or L even

A - mt bor L odd, (3.51)
and that for T'n~—> k'™ 1is
1
VKN
R < LA L P U (3.52)
NS !

|
\
|
|
l
|
\ At — Ht &op L evea
where Ai are given by equation (3.9). We have fixed Cy
for the™T system by requiring |A}(nn)|:]at the § peak,
and for KK fixing theg meson Wi/¥¥ couplings at their
SU(3) value and fitting the (Yi‘,) moment for T\") el A3
We parametrized C(M) as a quadratic function of M in each
channel. We give the list of density matrix elements in
terms of the L° + amplitudes in Appendix VI.

The observablews and KK moments can be expressed in

terms of L(%w1 — %) and L({Wi—>%k) using the relations
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given in Appendices I and VI. For each reaction we have
fitted the observed unnormalised moments N{ YLD with
J4£2,M¢1 | in terms of S, P and D production ampli-
tudes. A small contribution toTW production from the g
resonance tail was also included. We fixed the H; and ﬂc.:_
amplitudes using § and & resonant forms with the relative
W /KK couplings fixed at their SU(3) values. We fixed
the F:amplitude in terms of the elastic phase

%: = 8-3 —31.3 Mﬁ'ﬁ
.and set
2

A_ = .
5 0

We have investigated the I = 0 S wave parametrizations
discussed in Section 3.2 by fitting to the data keeping
the other partial waves fixed. The curves on Figs. 3.3
and 3.4 correspond to the best fit obtained using the

model I parametrization, eg. (3.37). The parameters

obtained are

sk-.-o."sq t0.08 ‘2{2-_0.0)94_. Q.03

0-9 '
%10 L (3.53)
A=-011 2 0.4LL R = 0.06%0.55 )

in units of GeV. There are systematic discrepancies in
the description of some of the WU moments which may be due
to using fixed Brelt-Wigner forms to describe the tails of
the £ and S resongnces. Similar systematic misfits in

(32)

this fegion were also found in the CERN-Minich phase-
shift analysis based on resonance parametrizations. In

the fit we allowed the P wave phase S:('ﬁ'ﬁ — K¥) to be
free. We found that it is in agreement with that predicted

by the tail of the § resonsnce just above the KK threshold ’
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but by M o = 1.1 GeV that it needed to be some 30° 1arger.
1f S:'(ﬁti—% ¥w) 1is assumed to be given by the ¢ tail,
and the other parameters left unchanged, then the dotted
curve is obtained for N{YLY for Kk production, (see
Fig. 3.4)

The values of four of the six parameters of model I,
eq- (3.93), are poorly determined and suggest that the I = 0

S wave is over-parametrized. SE is badly determined because

3& is large and the parameters are strongly correlated. As
expected from the values of B in eq. (3.53), model II, which

has this B = 0, gives essentially the same fit. Moreover,

the model 1V, eguation (3.43), with four effective parameters

Se= Mo 0 ¥, 4En LARIC I and %g also gives an

essentially identical fit, with

Meo = .938 % 0,05 Qra = 0133 0.004

° L 4 (3.54)
%E(‘lcaev\ = 86.5 Qi 0.39L 10,099

in units of GeV. The conventional T partial width is

We have found that model II1, equation (3.42), was

ruled out by the data since it is unable to reproduce the
necessary background in the 7% channel. Also the constant

\
|
\"“S‘:=(‘35 * 1) Mev, (3.55)

=1 . R . - . e s
M = K © matrix parametrization was unable to give a satis-

factory fit to the data. The best fit, using equation
(3-"‘7) ’ had

Mi1 = 0.095, M22 = -0.045, M12 = 0.163 (3.56)
t)

In practice (°B was parametrized in terms of a broad el-

astic Wi resonance. The best values were m, = 1.1,

¢ 3,9 with large, strongly correlated errors.
g
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in units of GeV. It gave the behaviour of N VYSS for
KK production shown by the dashed line in Fig. '3.4. How-
ever in this parametrization we were able to fit ¥K
N(Y'Dkeeping %il\’l“ —> KW%) as given by the § tail.
In this case there is only a nearby sheet TI pole, and the
absence of a nearby sheet III pole does not sllow hJ<~\'%>
to decrease rapidly enough with increasing Mki (52).

The I = 0 S wave amplitudes obtained in the fits are
shown in the Argand plots of Figure 3.5. There is no

ambiguity in the sign of the S wave A12 since the inter-

ference with the resonance tail contributions is compat-
SN‘

N

- ¥
ible with the KK production data provided ‘511 / 9

46
is positive( ). In Table 3.1 we show the s® pole positions

corresponding to the various parametrizations. We notice
that the sheet II pole position is very stable to changes
of the parametrization. In order to check this stability,
we have also fitted the data, parametrizing the I = 0 S

wave directly in terms of its poles (plus background) on

ua-plane(53). We sgain found the same sheet II pole
position.
N> TN N+ KR
o
0-91
097 La

Figure 3.5: The Argand plots of the L = O A;; and Ago
respectively. The continuous curves, with the mass marked
in GeV, are the S wave amplitudes obtained in the fit using
Model f. The dashed curve (open points) correspond to
Model V. The unmarked points for wn — k¥ correspond to
Mkﬁ = 1.02, 1.0375, 1.075 GeV respectively.
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In Table 3.1 we also give the ratio of the Sl couplings

to the two channels, defined as ITHL /’-Tll‘ at the sheet

II pole position and XK scattering length for model V,

as defined in eq. (3.46).

Model | Sheek I Shae L |(g¥/ahs)

I)EML\,W=Ae 0997 -i 0.017 | 0.833 -1 0443 4.0
tpooL F0.00% J¥p,043 t0.003

T)Mixed |[0.996-10.01F | 0.935~10.14b 3.9
+0.00% * 0.001 [+p.00% +0.005

N) Bre Wil 0.996 -1 0.016 ) 0,33 -1 0.0% 4.0
+0.003 tp,002 [+0.010 +0.00%

Y)M Ma}. 0%8?';0-011 A ==-9. 2 +‘ 10.1
t0.007% 10,002

Table 3,1: The S¥ pole positions and

couplings, the KK scattering length
in units of GeV.

The S* 1s also evident in the TT spectrum observed

in the reaction K‘? — T"ﬁ*(/\, 2°)(58). The data with
the P tail subtracted(sa) are shown in Fig. 3.6 together
with our predictions for the shape of the spectrum.

We have proposed forms of parametrization of the
coupled channel ( TT ,KK) 1 = 0 S wave which allow for
the presence of overlapping s*® and ¢ resonsnces and permit
an investigation of the nature of these mesons. We found
that model I11 (the quark model) is not able-to fit the

data. This shows, it is not possible to explain these

mesons as only (qq) states and forces in the meson-meson
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(g9qq) sector are also important. We also saw that models
I and II are overparametrized. 1Indeed, in the relevant
range of My s 1t is possible to describe the T = 0, §

wave with only four parameters ( m.s, %;;'3ii' SB ).
Although the results support model 11 (mixed model), within
the range of the analysis,the data does not contain enough
information to study the quark structure of s* and £ in
detail. Even the determination of the ¢ parameters is not
possible. Similar analyses over a wider range of P4“ﬁmay
be informative, but small changes of the higher partial waves
effect the I = 0 S wave structure drastically. Therefore
it is better to study the I = 0 S wave further where it is

dominant, i.e. in TF —>KK channel.

L T

20 <

pum—y—y

wr 'S WAVE' PRODUCTION (ARBITARY UNITS)

10 2]
Mirn’) Gev

Figure 3,6: The w nt mass distribution observed in
K*p —» n"n*(A,S°) in the S* region with the
background and § resonance events subtracted (58).
The continuous curve corresponds to the prediction
for Model I and the dashed curve to that for model V.
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We found that the sheet 11 S! pole is determined by
the data accurately, independent of the form of the para-
metrization. The data favour the two-pole (Breit-wWigner)
description of the s*. However this is not compatible with
prediction of P tail ) (WwT —> ki) phase. It is inter-
esting to note that the single sheet I1 pole description
(constant M matrix) is compatible with the § tail
5: (nn —>uw) phase. But with a single sheet I pole we
cannot observe the normal resonance behaviour of I = 0,

S{nn— K'\Z))(see in Fig. 3.5 open circles of TT—Y KK).
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CHAPTER IV

Analysis of the T p —» (v k:)? Reaction

4.1 Introduction

The high istatistics data for the reaction 'W-P —_—
K"K% allow a study of the meson spectrum that is more
selective than that for K'K~, K°k° production. The K X°
channel has 1isospin 1 and is thus accessible to even spin
states of odd G-parity (such as the § (0**), A2(o++)) and
to odd- spin states o’ even G-parity (such as the g(377)),
(see equation(2.3)). The data that are available on K-K:
production, therefore complement the information avallable
from the K'k~, KJKS, %, TN production data.

The even and odd G-parity K K° states are produced by
different exchange mechsnisms. The allowed natural and
unnatural parity exchanges (denoted by NPE and UPE) are
shown in Table 2.4. From studies of the SU(3)-related
reactions KN —{(«w)N we expect isoscalar NPE (pomeron,
f, andw exchange) and isovector UPE ( W exchange) to be
dominant(59’ 60, 61). The possiblility of pomeron exchange
means that at high energies even L K K° states should be
more copiously produced than those with odd L.

The X K° production data is very important as far as
the 0** mesons are concerned. The properties of the
recently observed S wave enhancement at around Mep = 1.3

GeV 1s not certsin(?s 10) p1though 1t has pesk in the



- 70 -

small t region, its t-dependence 1is different from
- exchange. In addition to this, tho interference between
isoscalar and isovector (KF)S waves has n distinctive t-

dependence in this region(19).

An amplitude analysis of
K"K® production data can answer the question of whether the
MKE <~ 1.3 GeV S wave enhancement has an I = 1 component and
if it has, how big this component 1is.

To extract the W'P —erK"Kf? amplitudes from the
experimental moments we use the combination of helicity
amplitudes with definite asymptotlic exchange naturality
(1.e. eq. (2.23)). Introducing the spectroscopic notation,

we write

3

T + 2 pg
T S R RT o (4.1)
”

+ =051 +4+0314

The interference terms can be rewritten in the form
RQ(L'L“)--\L‘\\L\(?LM‘HL-L (4.2)

where f is the degree of nucleon spin coherence (lDQ'E $1)
and ® 1s the relative phase between amplitudes L' and L.

4,2 Amplitude Analysis in the A, Mass Region

The t structure of the observed K K° t-channel moments
in the A, mass region, 1'2<Mkf<<1"+ GeV, 1s shown in

. . L . . - . L,0, 0N (5]
Fig. 4.1. The five largest moments MY o ' >,'N<Y ',i >

show the dominance of the NPE amplitude H’;t(;) =D, ,

and indicate thsat all other amplitudes will be much less
reliably determined. The non-zero N< Y1) moment is attrib-
utable to interference of D, with the helicity-two NPE

amplitude of D The structure of N ( Y‘o,7_> can be

2+’
accounted for by P.,D,_ interference and show no evidence for
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8 PoDy interference effect. The UPE amplitudes are much
harder to isolate. The moments NCYY) and NLY1 ),
taken together with N<Y > | imply small DoD_ interference,
but » larger SyD_ contribution. There is no evidence of
either a Py or P_ effect, except possibly SoPp 1nterference
in the first t-bin of N Y!).

As a result of these observations we performed an

smplitude analysis of the J <4, M&4 NCY LD moments

in the A2 mess region in terms of the magnitudes and
coherences of the NPE amplitudes D,, Do,, P, and of the
UPE amplitudes Do, D-, So. Neglect of Py, P_. means the
moments PJ<fY3{‘> are not included in the analysis, and as
NCY} > 1s also compatible with zero we do not determine
the P D,, coherence. Moreover the data cannot determine
reliably the individual coherences in the weak UPE sector.
We therefore assume nucleon spin coherence and, motivated
by T—-® exchange degeneracy, ( con &) D,D-:._i'

The relations between amplitudes and moments have been
given in Appendices I and VI. We 1list the contributions of
D,, below:

NCYES = - 1134 Re l Py 0y,)
NCYSY =-0.59% D)

vy = * (4.3)
N <Yy =-0.845 Rel D, D),

Some other moments also have contributions involving D2+:
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NCYsSS @ 10, "

N<YEY & 1ooss Rel P, 0%)

N Y)Y @ -0.639 1D,,1°

N CYYS o 0,783 Rel Oy 0

N <Y3Y 1 -0.293 Re (P, D)

N LYI%: 0443 |D,,I°

N <Y5y: -0.319 Re ( D, D) . (4.4)

| The results are shown in Fig. 4.2. We see the expected
dominance of the NPE amplitude, D,, in “")'——aﬂi P The

clear N (Y‘;) signal 1s described by a D. contribution

2+
of approximately 104 the magnitude of D,. The suppression

of the UPE D wave amplitudes (associated with B, 3 exchange)
is to be compsred with their relatively stronger W ex-
change structure in Ktp-ﬂvK!(1h20)tp,(see Fig. 4 of Ref.
(59)).

We may compare the values of |D)] of Fig. 4.2 with those
obtained from charge-exchange Ag production. Data are
svallable for ﬂ”V\-*A:P at 4 GeV/c(62), and for W p — ﬂ:V\
at 12 and 15 GeV/c(63). We interpolated the measured t-
channel partial cross-sections %o da/dt using the

1-Teat
form @, with o (N=-01+0.8t | To convert to

\iLfL we included a 4.7% A, — KR branching rat1o(37), we
multiplied by 4 due to isospin, and corrected to a 1.2 £
MKR'< 1.4 mass interval. The values obtained for \0,| at
Pp, = 10 GeV/c are indicated by the dashed line on Fig. 4.2.
The agreement between \c%\ obtained from charge-exchange

and non-charge-exchange reactions means that there is no

evidence for isoscalar UPE in 11'? — A;_ P
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Figure 4,2: The 10 GeV/c Wp — k™ K%p
amplitudes in the A, mass region. The

curve of 10s| shows the prediction ob-

tained CEX A3 production (62, 63). The
coherences &, and - S O. are assumed equal,

and are denoted SD. The SD and D,D», co-
herences are not well determined and the
curves only indicate the trend of the results.
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An interesting feature of thls analysis is the
importance of S wave K K° production in the A, mass
region (see Fig. 4.2). 1In general, it is difficult to
extract lower partial waves, and to study the reliability
of this determination of S, we repeated the analysis with P
included, together with P.=-0.5 P, , but with S, omitted.
The description of the moments was agaln reasonable, though
not quite as good as that with S, included and P, omitted.
Essentially the only change in the amplitude components
shown in Fig. 4.2 is that |S,| — 1 Ps] and, of course, no
SD interference. There are indicators that the solution
with large S, is the physical one. First, by comparing
to w exchange for K_,P—yK*(890)p, and by comparing the P
wave background in the g region (see the next section),
there are indications that P} £\ P,|. sSecond by com-

0 0
(19) gna KoKg (9) sroduction data (in particular

the equality of the N Y5> moments) 1t hss been noted

paring K'X

that the P wave W -exchange amplitude is small in our mass
range. Quantitatively we find this P, cannot account for
the required UPE contribution needed in K“K° production.
For these reasons we favour the X K° amplitude solution
with the relatively large S, snd'a small P, contribution.
Even if the two most forward points shown for|S,| are over-
estimated, due to the omission of a possible Po contribution
which peaks at small t ( T -exchange) and due to large
acceptance corrections, the t-structure still implies =
strong non-flip component (Z-exchange) in S, at small t.
This suggests that the bump observed in the S wave at
Mg = 1.3 GeV in K'K” and K:K: has a rather large I = 1

component.
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A2 production by NPE in the process ﬁ_|) —_ A; P
proceeds via pomeron and f exchange. A comparison with

K*(1420) diffractive production can give valusble informa-

tion onP and f exchange. We may write the D, amplitude

D,(A) = P+ 4. (4.5)

This contribution to the differential cross-section for A2

production, |D,(A;){2, ts shown in Fig. 4.3. It is obtained
from D+(K'K°) of Fig. 4.2 after correction for (i) the unseen
A, decay modes (using an Ay~ KK branching ratio of %.7%),
and (i1) for the finite mass interval (1.2-1.4 GeV) using an
A2 Breit-Wigner form.

This can be compared with K®(1420) production isolated
from the related Ktp-—»kﬁnfr reactions. High istatistics
dsta for these latter processes have been taken at the same
beam energy. These data were analysed(59) to determine the
K’ w® production amplitudes in the mass region 1.3y < qu
{ 1.5 GeV and KX (1420) production was also found to proceed
dominantly via the NPE amplitudes D,(K'w-). The differential
cross-sections for K<(1420) production, or more precisely
{D,12, are also plotted in Fig. 4.3, after correction for
the unseeﬁ+) kK*(1420) decay modes and for the finite mass
bin. The crossover at -t = 0.3 Gev? has been interpreted

. . o (60)
in terms of the pomeron, f and w exchange contributions,

h 4 -
DoK== P+ (] 3w) (4.6)
where the coefficients ¥ and F are introduced as we define

f° and % by eq. (4.5). Before confronting the data, it

1)

We include a factor 3/2 to allow for X*— ¥* %°, and
use a ¥¥—-wun branching ratio of 56.1%.
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Figure 4.3: The NPE cross-sections,

D+1c for wp-> A, p and K p — K’Uatﬂ’p
at 10 GeV/e. The cross sections are '
corrected for the unseen decay modes
and for the tails of the Breit-Wigner
distributions outside the fitted mass
intervals. This latter correction is
a_factor 1.5D and 1.52 for the A> and
k®(1920) mass intervals respectively.

The ratio R is discussed in section 4.2,
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is informative to anticipate values of the coefficients

Y and B - From SU(3)-invariance and magic f,f mixing we
expect @:1/1. To estimate the relative coupling of the
pomeron, ¥ , we may use the f,f' -dominated pomeron hypoth-

(64) (65,66)

esis According to thls scheme

Y=L+ vl - i Bt B (4.7)
o(w - °<¥

where <x;UQ are the usual trajectory functions. In the

symmetry limit r = 1, and the pomeron is an SU(3)-singlet.

The departure of r from 1 represents the effect of SU(3)

mass breaking.

To facilitate the comparison of A, and K*(1420) pro-
duction we plot in Fig. 4.3, the rastio

1/
[v(\(’”) se(we)] "
o(R) /2

versus t, where we used the differential cross-sections

R= (4.8)

G =5/ /dt =\ D, \7‘ ycshown in the upper part of the
figure. We have used the sum of K*' and K®  cross-sections
to remove the interference contributions between the even
(W,g ) and odd (W) G-parity exchanges. If we assume | wit
is small compared to ‘ﬂ>*% ‘z, then R is an indicator
og the relative strength of the pomeron and f contributions.
If the processes are dominated by pomeron exchange then we
expect that R =4 + v ,whereas if f exchange is dominant
we expect R=1 . From Fig. 4.3 we see that R = 1.25,
with a small error, for -t 0.4 GeV2. Suppose, for example,
at -t = 0.2 GeV® that ¢|})x 0.5 and that the relative
pomeron-f phase is 60°. Then this value of R implies that

theTP'-x contribution is 1:1 in “_(""gl" , and is 1.5:1
in Ko —a\("(\l.m)? at 10 GeV/c.
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4.3 Amplit

The t structure of the moments of the K“K° angular
distribution in the g mass region, 1'55<MKf< {1.85 GeV, is
shown in Fig. 4.4, The data do not allow a full amplitude
determination. We use the t-channel moments N(YE,‘) with
J$8, M =02 to determine the magnitudes and coherences
of the NPE amplitudes L,, and of the UPE amplitudes Loy
with L{4. We are led to this simplification by the
results in the A2 mass region. From the A5 snalysis we
expect that L+ﬁ§+ interference terms will contribute to
the M = 1 moments at least as strongly as LOL: interference
terms. The data are unable to determine both L_ and L2+.
However these small amplitudes only contribute quadratically
to the M = 0,2 moments and so it should be relisble to use
these moments to determine the more dominant L, and L,
amplitudes.

The N <Y;.-L> moments show that g resonance
production proceeds mainly by UPE (F,), and to a much
lesser extent by NPE (F.). The dominance of the N(Y‘{)

and NCY1)> moments, as compared to the other M = 2

|

1
moments, indicates a very strong D, component in the g
region. Moreover the J = 8 moments suggest that L = 4
(K-Ko) production by NPE exchange (G,) must be included in
this mass interval. The presence of sizeasble D, and G,

amplitudes make the determination of lF;] very difficult.
The difficulty is apparent from the expression for the

J =6, M =2 moment

\ NCYSD=-0.430 VR 1P- 0,258 16,1 - 0. 34Y Re (0, GP).

The "background" amplitudes, D, and G,, are associated with
pomeron exchange and are therefore enhanced relstive to the

Ww-exchange resonant smplitude F,.
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Figure 4.4: As for Fig. 4.1, but in the

é meson mass reglon,
1055( MkR< 1e85 GeV.

There is no evidence for the L = 4 UPE amplitude G,
either from Fig. 4.4 or from the moments as a function of
the produced K"K® mass (see Fig. 4.7). If we compare
l0+\ awd \0_| 1in Fig. 4.2 for A, production, since
L =2and L =4 amplitudes are produced by the same ex-
change mechanism, we expect a very small G, in comparison

to G,. We therefore set Gy, = O, and include only J2 7
moments with M = 2 in the analysis.
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In each t-bin we use the J$ 8, M = 0,2 moments to
determine the magnitudes and relative phases of the
amplitudes within the NPE sector (P,, D,, F,, G,) and
within the UPE sector (Sy, Pgyy Doy Fo). For each t-bin
all the solutions are enumerated using the Barrelet zeros

technique(®7). The detailed explanation of our method is

given in Appendix VII. 1In each t interval we selected
the physical solution by imposing the continuity of the

imaginary parts of zeros as a function of t and by
requiring amplitude magnitudes consistent with the presence
of the A, and g resonances. The ambiguity is essentially
only in the lower partisl waves; 1in particular for the
S’Po,+ and Do amplitudes. We note also, that the snalysis
assumes, within each sector, that the amplitudes have a
common coherence factor,~f . Within the UPE sector there
is no reason why this should be correct and so only the
dominant UPE coherence may be meaningful. F, is the dom-
inant UPE amplitude and the other UPE quantities are much
less reliébly determined. To sum up, we note that the
analysis should be reliable and unambiguous for D,, F,, G,

and Fo.

The results for the g production amplitudes and the D
and G waves, together with thelr respective coherences, are

n

hown in Fig. 4.5. The lower partial waves are, in general,
not so well determined and depend on the Barrelet solution
that is selected. For our solution the magnitudes of

Sos» Poy P+ are approximately 1.0, 0.6, 0.7 \/—E-\;/Gﬁv
respectively at -t = 0.15 GeVe; and 0.3, 0.1, 0.2
\/E:\:/G,,\/ at -t = 0.5 GeV2. The coherence of SoFg 1s

positive for all t, that of PoF, is ~ -0.4 for -t <0.3
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n"p—KK°p AMPLITUDES IN THE g REGION

' 1 ] 1 1 1 T I T ‘]

g production . I

DA

-t (GeVic)?

Figure 4.5: The 10 GeV/c W p — K u°‘,

amplitudes in the g mass region, 1.55¢
My = (1.85 GeV, obtained from the data

of Fig. 4.4. The extreme fluctuations
seen in the 347 <5 moments st -t =
0.29 GeV2 were removed before analysis.
Only representative errors are shown
for 10,] and the f), ¥, coherence.
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GeV and that of P,D, is negative for all t.

The difference of odd-L and even-L (K'K°) production
mechanisms is strikingly evident in Fig. 4.9 (see Section
2.4.I1I and Table 2.4). For UPE, the g production ampli-
tude Fq ( T -exchange) dominates the background D, ampli-
tude (B, Z exchange). On the other hand for NPE, g
production proceeds via F, (w exchange) which is smaller,
and of different t structure, than the even-L D,, G,
amplitudes (“D, f exchange). The expected single-helicity-
flip character of the NPE amplitudes is clearly spparent
for D, and G,.

The structure of |F | for g production may be compared
with thew -exchange contribution isolated from the .f

production reactions

A + d - )
O\G‘“Lg)E%(git* 11) .%\r:_(n*?—»g p)+ ;\—f:('ﬂ‘v"’gf)

) 1-1
- 2% (v, -—->g>°»\)]. (4.9)
(68)

Following Hoyer et al we apply finite-mass-sum-rules
and two-component duality to relate thecu-exchange con-
tributions to these resonance production reactions at a

given energy

. i (4
Ao (8) /At | Mg )
AT, (94)/ at \ M’;a / (%.10)

From our results for JF| (see Fig. 4.5) we can estimate
g production byw-exchange at 10 GeV/ec, provided we are

given the g-—axi branching ratio,

Anglz\gﬂﬂ/[&kia—ekiﬂ. (4.11)
at
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7711
Ldd

1
1

do,/dt(p prod.)
6 GeVic

mb / (Gevic)

01 - —
: B.R. (g—-—KK) = 1% :
~ =15% m
) ]
0.01 I I J Ji ] ‘ | ]
0 0.2 04 06

-t (GeVic)?

Figure 4,6: Data for.£ production by

w-exchange at 6 GeV/c, taken from ref.
(69). The curves are the finite-mass-
sum rule predictions, obtained from
the g production amplitude F, of Fig.
4.5, for two different values of the
g —» KK branching ratio.

Taking och-)zo_L, 409t in eg. (4.10), we then cal-
culate Ao, (§)/dt . In figure 4.6 we compare our

prediction with 6 GeV/c § production data‘®9), atter

allowing for the different beam momenta using the usual

-2
L -
g ~»KK branching ratios, result from the curve through

w dependence. The curves, shown for two different

| %) on Fig. 4.5. The comparison, which is most relevant

for 0.1 -t € 0.2 GeV2, favours a branching ratio
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Tla—= %8 = 5915 .
Tlg — oll) (4.12)

The 16 GeV/c data for isospin-zero-NPE § production(70)

has larger errors but a similar comparison ylelds com-
patible results.

The structure of |F | of Fig. 4.5 is indicative of W
exchange, and the values may be extrapolated to thew poie
(k= M'L“ ) to give a more direct determination of the g— KK
branching ratio than that we obtained from \F |. To do
this we use the Chew-Low form (see eg. (2.38))

do__t @t &G e

At ey, br [T oy D
with L = 3, where \‘-nn““’;u/Ll- M?ﬁ) , and

eV g'ﬁ\“ K\(_E

1 L -

We integrate over the experimental mass bin 1.55 - 1.85

\QL\LAM (4. 43)

-

L=

GeV. The total width of the g resonance is Y:V;5+T;i-*“

Resd
s where
b1 R

: k.‘ k; R

Toim,,) = ri( Q) D (k! R)

‘ 00 (e RY
with a barrier factor D(x) = 225 + h5x2 + 6xl+ + x6 and
interaction radius R = 3.5 GeV'l. We take the mass and

TR

width of the g resonance to bé mg = 1.69 GevV, Y= 0.18
GeV; and the momentum of the other decay channels, in
addition to the TW and KK channels, to be represented
by K, = g, We £t IF1" %o eqg. (+.13) with (Vor Tuz)
and the slope, b s, a8 free parameters. We omit the point
at -t = 0.09 GeV2 due to the large acceptance corrections
in the near forward direction. The fit is shown by the

curve through }£. | on Fig. 4.5 and corresponds to
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s Tee /T = 00561 D019

b5+ 1.1 GeV ™ |

If we tske the particle table value of the g —> T I¥
branching ratio, 'r%“ /T = 0.4 | then we find the
g —*XK branching ratio 1is

FKE/FZD-Dlg’ﬁO.OOH'

This determination is in agreement with the independent
estimation I"v_l/r 2 0.015 , which we obtained from
the NPE amplitude, F,.

The above numbers yield a ratio. of XR and T decay

modes of the g resonance of

TKE/TT\T: =D.056L * 0.01T.

This is to be compared with the SU(3) prediction value

. R 17
Fk.i - _1__[ \L:-i) - D 1'3 .
Tws L R e

Note that SU(3) comparisons are better satisfied without

including barrier factors{7Y) . o agree with the SU(3)
prediction, we would have had to input rﬁn/ F=0Ab which
would have led to rv.n /7 =V0.0vL.

4.4 Amplitudes As a Function of Mg

Here we analyse the same data as s function of the
effective mass of the produced (K"K°) system. We use the
moments N ¢ \’:'> , of the K~ angular distribution in the
t-chsnnel, in 50 MeV intervals over the mass range 1 £ My

¢ 2 GeV, integrated over the t interval 0.07 < -t < 1.0 GeV2

“~—
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Figure 4,7

"
observed

1 GeV2

p—’KK

%' R® mass (GeV)

K —>

corrected events per C.b.

(see Fig. 4.7).

decay.

R K® mass (GoV)

The mass spectra of the t-channel
acceptance corrected moments for 10 GeV/c

data, after allowance for the
Ky —=» mtwC
are integrated over the t

The data

interval 0.07 ¢ -t
The sensitivity of the data is 7671

To analyse the data we use the same method

to determine the amplitudes as the one we used in the g

resonance region

That is, we use the M = 0,2 moments with

€ 8 to determine the magnitudes and relative phases of

the amplitudes in the NPE sector (P,, D,y F,y G,) and in

the UPE sector (S,, Py, Dy, F,, Gylas a function of Mg in

the range 1< My

I and VI.

(2 GeV.

The relations among the amplitudes
and moments are given in eqs. (4.1), (4.2) and Appendices

For example, for each mass bin above Meg = 1.8 Gev
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where the amplitudes up to L = 4 are required, we use 16
moments to determine 9 amplitude magnitudes and 7 relative
phases. In principle, this assumes that, within each sector,
the amplitudes have a common coherence factor f . There is
no certainty that thls is correct. However, in practice,
at a given mass, often only one interference term is
important within each sector, and then the data give a
reliable determination of the corresponding spin-phase
coherence+)'§cuad>. For example, in the A2 mass region
the data determine §M¢ for SoDg and P,D, inter-
ference.

Even then the amplitude determination is not unioue.

The dats determine only ( ten ¢)L , and not the relative

K
phases ¢LC , and so there remain discrete ambiguities.
At each mass bin we obtain all possible solutions by using
the method explained in Appendix VII. We find that the
amplitude G,, deseribing L = 4 K'K° production by UPE, is
compatible with zero. This can be anticipated by in-
spection of the N ¢ Yf,'.L) moments. In the results
presented below we have therefore set Go= 0. For Mk
below 1.7 GeV we fix G, to be given by the tail of a spin

four resonance and fit only moments with J £ 7. For Myiz

below 1.5 GeV we fix the L = 3 amplitudes, Fy, and F,, %o
be given by the tail of the g resonance and fit only

moments with J X 5. The resonance forms are normalised to
fit the amplitude determinations in the higher mass bins.
We tabulate all the allowed solutions in each mass bin. 1In

the majority of mass bins these solutions give an

1)

The value represents the spln-phase coherence averaged
over the t interval of the data, 0.07¢ -t {1 GeV2
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essentially exact description of the data. Tn all but the
mass bin about 1.325 GeV (see the data fluctuations in
Fig. 4.7) and those above 1.85 GeV the fits have an sccept-
able X}. In Figs. 4.8 and 4.9 we present the solution
that is selected at each mass bin by requiring:
1) the dominance of S, just above the
K K® threshold (the higher partial
waves should be suppressed by the
factor of (kki)L in this region),
ii) The continuity of Im3; (UPE sector)
and ImZi (NPE sector) as a function
of the K'K® effective mass,
i11) amplitude behaviour consistent with
the presence of the A, and g res-
onances.
Leading resonant waves are essentially unchanged in magni-
tude by Barrelet transformations and the third criterion
is mainly helpful off resonance. The first two criteria
eliminate an slternative solution with P, similar in magni-
tude and structure to that shown for 8, below 1.4 GeV (see
Fig. 4.9) and with 8, smaller and structureless.
Above Mkﬁ = 1,6 GeV we see the emergence of L = U4
K"K° production. Unfortunately the data do not allow
reliable partial-wave analysis above 2 GeV so as to estab-
lish a resonance shape for G,. However, support for
resonance identification comes from the behaviour of the
D,G, interference contribution. This is the dominant
interference term in this mass range and, moreover, both
L=2and L =4 KK® states have the same production
mechanisms. The behaviour of (§ )  should there-
fore reproduce con (% - %, ) , where SLaré’the I=1KkR
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decay phases. Assuming &_15 given by the tail of the Ay
we see that the behaviour of '§Loa<b y as a function of

Mki s glves further confirmation of the spin 4 resonance of

mass M~1.9 GeV reported by the Geneva group(72).

4.5 Conclusions

Here we summarize the main results of our study of
K.Ko production dats in A2 and g resonance mass regions
and as a function of My in the range 1<Mm-< {2 GeV by the
reaction T — K‘K“P at 10 GeV/c:

l. We find A2 production proceeds dominantly by NPE,.
The t-channel D _ smplitude is dominant, but a non-
zero N<YL;7 signal leads to a D,, contribution
which is, on average 10% of \0,|. The curves shown
through the |0, and |0,| amplitudes in Fig. 4.8 and
4.9 correspond to A, Breit-Wigner fit with

Mma, = 1348 1 0.v01  Qeyv,
Mo = 0413 £ 0. 004 QeV (. 1k)
T

with interaction radius R = 3.5 Gev-l,

2. The UPE amplitude D, is consistent in magnitude
and t structure with that found in CEX Ag pro-
duction, and lends support to the assumption
that UPE is dominantly isovector in W p —> A, p.

3. S wave K'K° production is important in the A,
region, the t structure implying a strong
non-flip component at smallt (Z exchange).

Both the t and ¥ - structure of 5 amplitude
suggest the existence of an I = 1, JPC = o**

)
resonance under the A,. We call it §(1300).
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Figure 4.8: The t-channel amplitudes
describing K K° production by NPE ob-
tained by analysing the moments of
Fig. 4.7. Representative errors are
shown. The curves through the L 2>
amplitudes correspond to the Breit-
wigner fits of eq. (k.14) and (4+.15).
Only the coherences between signi-
ficant smplitudes are shown.
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UPE In w'p— K Kop (007<-t<t(GeVic)?)
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Figure 4,9: The same as Fig. 4.8,
but for UPE K"K° production

There is relatively little P wave K'K° production,
although the P,D, coherence is well determined.

A, and K%(1920) production are related using the
8,%'dom1nated scheme for the pomeron. We esti-
mate the pomeron relative to ] exchange and find,
for example, at -t~ 0.2 Gev2 a ratio 1:1 in

Tp — A, p at 10 GeV/c.

We find g production proceeds dominantly by

UPE (7 exchange). We extrapolate to theTW exchange
pole and find

VT M. /S = 0.0561 0,012,

i

Taking Fs+/ T = DO.2Y4 this gives

Tve
Y

= 0-013 t 0.00‘1 ]
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The curve shown through lF| in Fig. 4.9

corresponds to g resonance Breit-Wigner fit

with

1

1.6983 = 0,041 GQev
0.199 t 0.0Lk0 QeV (4.15)

™Maq
U g

with R = 3.5 GeV~1l,

g production by NPE (w exchange) is masked by

the production of L = 2 and L = % XK'K° systems
which can proceed by pomeron and ﬁ exchange.
Finite-mass-sum-rules and duality allow a com-
parison of the NPE amplitude, F_, with £ pro-
duction data. This hypothesis leads to an estimate
of the g =>KK branching ratio of Twa /T = 0.045,
Above 1.6 GeV we see the emergence of L = 4 K'K°
production. The t structure of G, shows that

L = % K'K° system is produced by NPE (1, &
exchanges). The data do not allow a determination
of the mass and width of this resonance, but the
behaviour of the D,G, interference term is evi-

dence for G, resonant structure.
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CHAPTER V

Analvsis of wp —> (k' )n, Mn —(K iy
' Beactions

9.1 Introduction

The (K'K™) system has a rich resonasnce spectrum, because
its quantum numbers allow it to couple many natural parity
meson resonances with I = 0,1, P = C = (-)L, G = (-)I*L,
(see Sec. 2.1, egs. (2.1)-(2.5)). Therefore the data of

the reactions

p — (KK, (5.1)
™n — (KK )p (5.2)
allow a study of resonances with LPC =ot*1 =0 S*, &
=15, %3 o1 T1-0¢; T=1p LC=2"1=0
PC -
g 8 1 I =1 A L =3 1=1p¢g, etc. In particular the

sum and the difference of the moments of reactions (5.1) and
(5.2) give valuable information on the interference of ampli-
tudes with the same L'C, but different I. Recall that if we
denote A(n p) as the amplitude of the process (5.1), A(Tr+n)
as that for (5.2), and A(I = 0), A(I = 1) as amplitudes for
producing a (KK) system of isospin I = 0,1 respectively, we
find

1)

1, (2.58)

A(M7p) A(T 0) + A(I

A(Ttn) A(T

0) - A(I

(see Sec. 2.4.II, eq. (2.58)), where




i A(
,D ; e e e fOI‘L=0,1,2 s e e

w A
. D>, DZ; F', FUV .

A(I=0)
A(I=1) =

1 [}
wm W
nu O
'U_‘ -
g
o
o

fOI‘ L = 0’1,2’3 I ]
here the superscripts denote the appropriate Regge exchanges
for producing a (KK) system by unnatural parity exchsnge, (we

neglect the NPE exchanges). We define using the relations

(2.58): )
e Tt
SAYRYE(NCYLD) +(N<YID) ~ Rel Al1e0) A*(T.0)) +
Re (A'Y(T=1) A*(1:1Y))

A<Y3Y f(N<Y’>) -(N(Y‘)) ~ Re (A1) A'(T-0) )4

Re (A'l1:0)A"(11)) ¥
where a known sum over Re(A' a%) terms is implied. Thus it is
possible to study S'-§ ! S’ &‘ - (-\z : S*) § -%' :
interference effects. However the determination of the
amplitudes is ambiguous. The data cannot fix the ratio of
A(I = 0)/A(I = 1). To illustrate this, let us suppose only

S(I = 0) and S(I= 1) amplitudes are different from zero:

then the data can be written as

SEYSY =218 5001 4 2160 T: 4\t

A<YLY=4 Rel S(3:0) S*(1:1)). (5.4)
For a given value of 32 VY3Y and A Y3S), there are
three unknowns to be determined: ;| S (Iag;)h [S(I=4)) and
Co) O, g1 -
of equations (5.4), according to different values of S(I = 0)/

Therefore there are infinite number of solutions

S(I = 1). It is easy to show that with.the presence of
higher partial waves this ambiguity remains for all values
of L. Therefore in order to have a meaningful determination
of the amplitudes we have to input some information into the
analysis. This input can be a dynamical model, or some

already known amplitudes, or both.
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The exchange mechanisms of the reactions (5.1) and
(5.2) have been discussed in Sec. 2.4.I1 (see Table 2.3).

We expect the dominance of the W -exchange amplitudes in the
small t region. This allows us to perform a 7T —> KK
phase shift analysis. But in the small t region, some other
amplitudes also give sizeable contributions (see (S, and
|0, in Fig. 4.2). 1In particular the I = 1 S wave, arising
from B and Z exchanges, has a large magnitude in the small

t region. Therefore we have to include such contributions,
besides the OPE, in order to perform a reliable extrapola-
tion to the plon exchange pole.

The data only determine the relative phases of the
amplitudes. A natural way to fix the overall phase of the
OPE amplitudes is to assume that the phase of the L = 2,

I = 0 amplitude is given by'g,y decay phases. Therefore we
need to know the detailed structure of the D(I = 0) ampli-
tude, i.e. the details of {-} interference.

In this chapter we first analyse the observed 2 { Y5
and A <Y"D> moments to determine the structure of the
D(I = 0) amplitude. Then we study S* -3 interference,
taking into account the K+K- and KO,RO mass difference. 1In
the fourth section we perform a ThW —¥u phase shift snalysis,
inputting the previously determined I = 1 S and D wave con-
tributions, found studying the (K"K°) system. We use the

% 8 decay phase to fix the overall phase. We discuss the
resulting S(I = 0) amplitude in conjunction with S (jW‘—aTu\

amplitude. In the last section we give our conclusions.
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5.2 D Wave Studies

The sum and the difference of the observed N <Y‘:)>
of reactions (5.1) and (5.2) show many interesting structures
indicating the existence of, and interference between, the
g, g"and A, resonances(lg), (see also Fig. 5.1). The data
are available in three t intervals as a function of Mk’
suitable for a mass and t-dependent analysis. The %<xmA g'
are produced by T and A exchange, while the A, is produced
by B and Z exchange. If we denote the appropriate amplitudes

by the symbols of these produced spin 2 mesons, then using
relations (5.3) we see that

SAYSY ~ T Ty 2 e () 4 1A

ALYy ~Re( 20y + Re (842,

Now 2<M"'> shows a peak in theS-A2 mass region (~ \-gll+ lﬂ,_\l )
and a drastic drop around 1.48 <MKE(1.'5'+ GeV which could be
attributed to &-&\ interference (~'1L(83“'),(73' )| The
difference of the moments, A’(Y‘{,)} shows no evident structure

in the S, A, region, but there is a clear structure in the
middle t-bin (0.08 < -t < 0.2 GeV®), in the region 1.35 ¢

My {1.5 GeV which may be attributed to %l- A2 interference(7h).
There are similar, but not so evident structures in the other

t bins with large error bars.

We fitted t-channel 2 (YD, TLY"D, 2K Y15 and
A<D moments as functions of both My and t simultan-
eously in order to determine the L = 2 (KK) production
amplitudes. The relations between amplitudes and exchanges

have been given in Sec. 2.4.11. We write the D wave ampli-

tudes, using relations (2.55) and the Table 2.3 as:
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T T T T T 71
oy ~| -t ?
E ol € 0.08 GeV | |
= L«
2z 501 } T
§ -..“-.t*- }J_*, = L—- b |
250 i + * L
-50 P
200
150 i
————+—+—
100 100k
-+=0.14 GeV' {
50 s0f- HH
[Ty TR -’-0-.-’-0;-‘* b= ¥ 3 e
150 ok * i
100 B
———————
30 100 , .
50{
0-0 3 g 80-0-o S ’-- T a= {+ ?-—W
-50'1 L L1 1 I N I N I I
1.0 1.2 1% 1.8 1.0 12 14 1.6
MKE(GEV)

reactions (5.1) and (5.2) at 6 GeV/c(19).

: The sum and difference of N Y1 of

The

curves are the result of the parametrization des-

cribed in the text.
effect, we used the averaged Itl value
bin, in the first t-bin (-t < 0.08 GeV

To take into account the t-..

™Min
£gr each mass

*
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W 1()

D, =H,,, (10,83

0 = W (120,48 .4)
Ay TS
D+ d ':.41 (1- O, g,'s)

? 24 .
Do = W L, Ay
A, 1 ) _ !
O = WM (320, %)
Do = v (14, A . (5.5)

That is we assume: (1) that &,X‘ are produced by VW and

A2 exchange, A2 by B and Z exchange and that g’ can also

be produced by A; exchange; (ii) the A;, B, Z exchange

amplitudes with lg=t1 are zero, (we use Ak.to denote the

t-channel helicity of the produced resonance); (iii) ampli-

tudes with AR;tI.are zero; (iv) the P exchange amplitudes

are zero.

We write the Dy amplitudes in s factorized form(3u):

D, = Apro(t) Ajeo (Mki) (5.6)
where A (t) is the "production" amplitude and contains all

the t-dependence of the smplitude. In other words it con-

tains all the information on the exchanged object and we

ignore the possible Mki -dependence of this amplitude. For

pion exchange we use

. J-t g L b= v )
H:,DM*—;—_—;«,? ) (5.7)

and for the other Regge exchanges, R, we took a simple Regge
form:

A (H= g, (- (43 &7 T (a8 (5:8)




- 100 -

where gp is the coupling constant, np = 3 for B exchange,

0 for A,.1 2 exchanges,’SQis the signature, a_ = 0 for B,

R
for Al and Z exchanges, and de.is the Regge trajectory.

The amplitude Adec(Mki) describes the decay of the

produced resonance into the (KK)channel. We assume that it

has no t-dependence. For W exchange it has the form

T _ 1=
F\mkmu)zc__@ Mea A (77 = i), (5.9a)

I N\,

and for the other Regge exchanges it is

Tve
Ad&(_( MKE) —W‘?[—M:;;_—;S.UL (5.9b)

where Cv’;'\/z (GY/ue)/ (Lot “n and
ey 8 () 20
RN e

mg is the nass of the produced resonance, F? is the partial

)

decay width of resonance R into the channel i, ki the

R
channel momenta, ki

R = 3.5 Gev'l is the interaction radius and

is the channel momenta at MKE = mR,

D(x) = 9+ 3x°% Xt
for L = 2.

[): amplitude is to be parametrized in terms of over-
lapping S,g‘ resonances. In particular we have to be able to
include the appropriate signs of the %-—’ TH, K& and the
&\""W;KE couplings. Now, we can write some of the
o**—» 07%0™" decay couplings in terms of al, the singlet
coupling, A8, the octet coupling and @, the 2** octet-singlet
mixing angle(71). We find:
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A Jis
R(4 - --&1:(—;@5;\% = st ® AT)

— " :.—l— ﬁ 1_\/{? 8
R(g 2T W & (——L-‘- 5~ DA -_—s Loy ® A )
R(g——ML\.L)-(-—iZ%«_ Bﬂl-\/}f u»-’)t)ﬂg)

RL\L"L\HLo)—-aKT!)= 98 . (5.10)

A0

We have compared these relations with the experimentally

known widths using the definition

(3 LL+A
r=2_ et v (5.11)
™R e
where mp 1s the mass of the resonance kp 1s the appropriate

channel momentum at the resonant mass mp. This fit gives

8 cwston, al o873 1.9,

(5.12)

e = 30.5 X 3.0, A

The results of the fit are shown in Table 5.1 (the experi-

ment values are taken from reference (37)):

AN URIVER
ot saILHDE STy

+ 113 DEC1978

SESTION
LigraRrY
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Decay Exp. Width (MeV) | SU(3) Prediction (MeV)

g'-° T 145.8 ¥ 1.8 145.6
} = xi 6.8 % 1.3 7.5
g‘—a-un _ 0.5
' K 40.0 ¥ 10.0 48,3
\

A2 - 13.7
K= LT 60.6 X 9.0 55.5

Table S.1: Some of the 2¥i—s 0”%o~*
experimental decay wldths compared with
the SU(3) predictions,

In particular the values of 6, A8 and A2, which are given

¥
in (5.12), yield the 8;3 coupling signs

R(g'~*“ﬁ‘1(+) , R{Y —» ww): (-)
Ry —vm): (=), R =) (=)

and

(5.13)

-3 -
4, = O T -
The formalism, which is to describe the overlapping

%,3\ resonances, should be able to incorporate and check
these sign differences. We shall use the mass matrix
formalism, (see for instance ref. (75) and references there-
in). We shall modify the formalism of ref. (75) slightly

to produce the usual Breit-Wigner form for single resonsnce

case. For two channels (labelled by i, j) and two resonances

(labelled bytt,u ) we write the partial waveI matrix ele-

ments as

T =G . (5.1%)
|a Gl‘t\_ Pt\b C‘ba )
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where @ 1is the coupling matrix

lb c}‘k t
and 9 is the propagator matrix. V is related to the ’4

matrix as follows:

(e Vo = (M7 58,

2
where S= Mki . The unitarity condition for Tij (c.f. eg
'3
(3.31)) requires the M matrix elements to satisfy, (assuming

the time reversal invariance):

R P

L
Unitarity can only fix the imaginary part of the ! matrix;

X

therefore we have the freedom to choose the real part of the
mass-squared matrix. Moreover, the mass-squared matrix is
not hermitian in general, so unitarity cannot be diagonalized
simultaneously with the mass-squared matrix(75). We choose

the real part of the mass matrix as

T
M Amt
M) = 5
e (M) AMr Mt .

L

In terms of the function d(s), which we introduced in

Chapter III (see egs. (3.10)-(2.12)), this gives

disyz ded (R7) = ( My -5 =i (¥ + ”;z\)\)x
1 (5.16)
(ME-s -3 (34 )) - (AM-‘(‘& +¥40%,))
where
1 2!+i
_%b : . (5.17)

The d(s) in eq- (95.16) incorporates the sign difference
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of the couplings because the term
(oM -0y, Y, +¥. v 0"
' r o ke Yo

contains terms like

I
r~ ) L
‘Xb?xb? ( b:ru:) ~ Qp4 QL: :
Note that the form of d(s) in eq. (5.16) does not give us
directly physical masses and widths of two resonances, since
it is not in factorized form of the two Breit-Wigner d(s)

function. However if the

(M = (N, Yy + Y N
term turns out to be negligibly small, to a good approxima-
tion, d(s) in eq. (5.46) can yleld the physical parameters
of two resonances. This formalism is closely related to the
K=M" matrix formalism. If we set AM'= D, the

formalism would correspond to adding two real poles in the

K matrix:

T= (-t

VU 'S 1'S W LI 1 I
" rqé_—-s r«}-—s

To fix the t-dependence of the amplitudes we take the

Regge trajectories as(35):

o< (t) = - 0.016 + 0.825 ¢
dBU—.) = - 0.246 + 0.825 ¢
dz(U = - 0.350 + 0.825 t
t . (5.18)

of L"";— 0.825
Ay

The t-dependence of OPE amplitudes is given by eq. (5.7)

with\%‘as a free parameter. We include a factor of

(1 + émd“n/(l—* E_I‘“d“) in the B exchange
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amplitude in order to relate its phase to the OPE ampli-
tude by T-8 exchange-degeneracy. We fix pB and DZ
o n ls)

amplitudes by taking

™ = 1.31 GeV
A'L

T - 0.005 Gev
Ay
1o}

. = 0.102 Gev
Ay

and fitting to the values of |0,| found for (k°k") system,
(see Fig. 4.2). We extrapolate from p; = 10 GeV/c of the
(K°K™) data to p, = 6 GeV/c of the (K'K™) data by including

ol-1
a factor (pL)

in amplitudes (see eg- (5.8)). We take the
g' maess and its Tiv and KR widths as free parameters and
fix the {—vqgh width to 1ts SU(3) predicted value,

(c.f. eq. (95.13)). We fix the g meson parameters as

Vﬁ% = 1.275 GeV
\'g'“"‘ = 0.146 GeV
r%‘; = 0.007 GeV
\';“*: 0.027 GeV .
That is, we use the branching ratio (g'-ﬁ Kﬁ)/(g -~ all) =

3.84 which was determined by the experimental group(19)-

To allow for decay channels other than TiT and KK for the
g and.g‘resonances we use an extended version of d(s) of
eq. (5.16), assuming that the %' can couple only to W ,
KK and mvl channels and that the other decay channels of

the g can be associated with momentum \¢ - 5y by writing:

37

d(S) = (V"\§ =S (U;'.:-T- '*'K;vj. + b‘;«.e,tﬂ(v"\’i' =S - (K}ﬁﬁ*xg’:ui+h’3}11))

~(ant-: (-ZS".‘T'?’,S'\WH * i vw K&\ ‘i))'L (5.19)
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1
where AM is a free parameter. Note that we input the

relative sign of the & - T, £|'°'ﬁﬁ in the second term
of eg. (5.19). We relate the overall normalization of D:‘
to Dl assuming Ay - 2 exchange-degeneracy, and allow a free
parameter r = gAl/gz to measure possible exchange -degeneracy
bresking effects. The Myg -dependence of () 1S given by a
simpleg‘ Breit-Wigner form (c.f. eq- (5.9b)). We neglect
the A, exchange amplitude and psrametrize the (5?(and D,)
amplitude using the Ochs-Wagner method(32,33); that is we

write for first two t intervals

n

n ]
Do=-¢,; 0, , 10,1=\071,

where ¢4 are (1 = 1.2) free parameters for each t bin. 1In

the third t-interval, observing that 2.<Y%1 > 1s not
consistent with zero everywhere(19), we take

DF=-c, DY , 10,1 =¢c,1 07,

where c3 and ¢, are free parameters. In the analysis we also
U

include an L = 3, Fo' , amplitude fixed by the g meson tail

with a g— TT branching ratio 24%, a g — KK branching

ratio 1.3%, m_ = 1.69 GeV, [ °°% = 0.18 GeV. The analysed
g

g
moments can be expressed in terms of smplitudes of eq- (5.9)

as follows:

ZTEYE>=2[0.853 (1054 1p8 i+ 1084 1031Y) + 0.5 151"

=059 (104107 1*))
| Sy =2[ 1103 Re ( DT )]
! 2<YIY>=2 0452 (10T < 10, 0)]

A<yE>=6[0.853 Re(DJ 08 + 0 027 .

0
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The results of this (Mki’t) dependent amplitude analysis
are shown in Fig. 95.1. They correspond to the parameter
values

= 1.513 ¥ 0.003 GeV

3
"

-—"
1]

0.68 ¥ 0.11 Mev
T 233219 Mev

AM" = 0.0072 ¥ 0.0037 GeV?

be =2.2%0.36ev?2

F:%gllaz = 0.256 ! 0.042

¢, = 0.165 ¥ 0.013

C, = 0.293 ¥ 0.015

C; = 0.257 * 0.015 (5. 20)
C, = 0.722 * 0.042 .

The resulting amplitudes are shown in Figs. 5.2 and 5.3.
We summarize the main results of this analysis below:

1) The data are compstible with the SU(3) predicted
sign difference of g—u T and &"J’ n couplings. We
checked this by changing the —}’gm 7(3._!_.“ to +}’sm‘_ Xg'ﬁﬂ with
the parameter values in (5.20). The 2 7(_L jumped to 432.1
from 191.5 for 230 data points, and the TT — K« ﬁilz_ D
wave changed to the dotted curve in Fig. 5.3. We refitted
the dsta keeping the sign positive. The best fit gave
2 )(}:?.18-5 with \Mg' ~1.4 GeV end r'ﬁ:—'= O Gev.
This means that the data definitely determine the ‘l(&—a'ﬁﬁ)
//ijtaﬁn) ratio to be negative.

(11) The second term in eq- (5.19) is small. Because
AM'L is small, and because X_ﬁ X&.T‘“ and ngj Xs ez heve

similar magnitude but opposite sign, and so cancel each
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1
other, Thus we can interpret the resulting g parameters, to

a good approximation, as the physical ones:

1513 I 1 Mev

™ s‘

Yok
Vo 43 % 9 Mev

\
v

(§'—> wn)/({—alh)

1.6 ¥ 0.6% .

The mass and total width of the 2' are in agreement with
PDG values(37). The values that the experimental group
determined(lg), ( hng‘: 1.506 ¥ 5 GeV, Y174= 66 L 10 Mev)
are different from our results. However %heir simple
parametrization of the “h'—ﬁ\/b, 1=0 L wave does not
include unitarity constraints, the effect of which could
change their values considerably. 1In our model unitarity
is built in by the use of the d(s) function. The 8'—0 TR
branching ratio exceeds the upper limit of 0.9% obtained by
(73)

Beusch et al This ratio is very sensitive to the
interference effect and the unitarity constraints. Thé
authors of ref. (73) do not consider the unitaritv, this
means their results could be in error. The quality of our
fit to §j<1\(t‘> , together with unitarity, is evidence
that our analysis is meaningful.

111) We find a {- A, interference shape within the
error bars, but we are unable to produce the structure in
A< YYD in the region 1.35{ Mg < 1.5 GeV. by 'R\ ﬁ-z inter-
ference. To maximize the ;- ﬂz interference term we add an

A
extra phase to the (1>1amplitude and we produce the curves

shown in Fig. 5.1 for A{Y1Y in that mass region with
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n
.
4

\
I

~t=0.14 GeV?

o Amp. Maq. (pb/GeV
Amp. Mag. (vb/GeV3)™
¥

—
N
]

|07

Fol
X
o o

lo2]

-
-
-
g

¢ The mass and t- dependence of the
= 2,3 amglitudes of the produced (K*x~)
system at 6 GeV/c. The t-dependent curves
are drawn at the ng values that the ampli-
tudes are 1arges That is Mg 1.2875 GeV
for I0DF] ;3 3125 for \Delang o2l 3 1.52
GeV for 10M) 3 and 1.675 GeV for |F)

rd
Ooxt = -127°. Recall that we have fixedlch from (K7K°)

production and lD:'l 1s well congkraaned by 2 < Y"L > . The

W~
ve

g‘— ﬁl interference term, which is 2 e (08 nJ ) , can
at most 2.\D°‘| \D:l y, and so cannot produce such a large
effect. The same problem occurs in the similar analysis,
which was performed by the experimental group(19). However
we believe their conclusion is in error. Thelr values of
\%”Q'and |Azf-cannot produce the -g-ﬂl interference

structure that they show. This is probably because their

. , .
70 1.2 1 MKR(GeV) 01 02 F GV
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[=0 nmr——KK 9
D Wave T

LU

0.1

Figure -2'.3: The TTwW — Kﬁ ﬁl‘::ﬁl D wave
Argand amplitude. The marked points are the
My values in GeV. The dotted curve corres-
ponds to the positiveR(}—=> nwn) ,R(}y>wr)
relative sign. Note that the radius of the
Argand circle is 0.5.

parametrization does not satisfy the required Schwarz-type
inequalities, \g‘\_ 1A > Re g\ (-);)

iv) The parameter r = gAl/gz is not equal to that which
would be expected for strong A] - Z exchange-degeneracy.
However we expect such an EXD violation, as the A, and 2
trajectories have Qo = - 0.35.

v) The presence of the g'changes the 8 Breit-Wigner
form of the L = 2, I = 0, T — KK amplitude, (see Fig. 5.3).
However the g and { couplings are such that we see very '
little effect of the } in TN —> T , or of the § in the
KR — KK channel.
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vi) The slope EH? 2.2 ¥ 0.3 GeV™2 found in this

analysis is consistent with b = 4.5 ti1a Gev'2 determined
from fitting the t-dependence of |F:ul1 for the (K"K©)
system in g meson region, (see Sec. 4.3, Fig. 4.5). Note
that we should compare b/2 = 2.25 ¥ 0.55 GeV~2 with by .
This is evidence that the OPE amplitudes have been isolated

reliably in both analyses.

5.3 Threshold Region Anaixsig

The data of reactions (5.1) and (5.2) allow a study of
s® -9 1interference. As we have discussed before, a unique
determination of the amplitudes is not possible without
feeding some extra informstion into the analysis. The ®
resonance production in the resction W p — (v wy) P
is overshadowed by strong 8(1300) resonance production so
it is not possible to determine the S meson production
amplitudes from the results of the previous chapter. There
are no other dats with sufficient statistics to fix the &
production amplitudes. Similarly there is no way of fixing
the S® production amplitudes accurately. Therefore we have
to study the exchange mechanlisms for Siand ® production and
to relate them using a simple dynamical model.

From relations (2.55) and Table 2.3 we see that the S*
1s produced by T (and A,) exchange and that the ® meson is
produced via B and Z exchanges. The data are available for
-t < 0.4 GeV? and Meg <1.1 6ev1?). They show the domin-
ance of the OPE wave amplitude (see Fig. 5.%4). 1In this
region of Mg, , the amplitudes with L > 0 are small and
24YeY and 8 YD are given mainly in terms of S
wave amplitudes as in egs. (5.4). A L\Y%D can thus be
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expressed in terms of the exchange amplitudes as follows:
° ¥
ALY = 4 Re (G 8" + SR ST (5.21)

As in M N — \ww) N studies, it is 3 good approxim-
ation to neglect Ay exchange. The data show a large
A<YSY in the threshold region{l®)  pig suggests,
together with the assumption SA‘E 0, that we have to
include the SB amplitude in the analysis. The data do not
indicate whether or not there is a sizeable S%. It is not
safe to assume that S = 0 in the threshold region,
especially knowing that the 3(1300) production has a large
g component. However the data cannot determine STr ’ sB

and Sz simultaneously. [or this reason, we first try to fit
the data neglecting Sz. Then we try to remove any resulting
systematic discrepancies by introducing sz,

We relate S“. and 8B by T-B exchange-degeneracy (EXD):(3M).
We allow EXD breaking by taking the W and B trajectories as
in egs. (5.18) and by allowing the coupling ratio, gB/gTT
to be a free parameter.

To study the (K*X~) system nesr its production thres=-.
hold, we have to face the problem arising from K", K~ and

K°, K® mass differences. We define the channel momenta for

the (KYK™) and (K°K°) states as, respectively

'3 V.
‘(:(MV_;_/L(—V“\LK‘)L

[

1
o2 (Mg 7q = v ) (5.22)

with myx = 0.244 GeV® and mio = 0.248 GeV2. Strong inter-
actions do not distinguish the (K'X~) system from the

(K°k®) system, but instead distinguish |xw ; I=0 > from
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IK K 1245 . These states can be expressed in terms of

\K'K™> and | k°%%:

v
i
~
Fl
V.,
)

l
~
N

/

1-0

lK ) Ve v -’ (5.23)
W5 1= = 2 e ity s ket e

The scattering amplitudes with definite isospin do not have
definite channel momentum. In Appendix VIII we derive the
S® contribution to the  TW — K'K~ amplitude, and the $
contribution to the ﬁw;—% K'K~ amplitude, taking explicit

account of this kinematic difference, kost Ke -
We have fitted t-channel observables 2 {3 |

ALYLY withd € 2 in four mass bins (centred on Mek =

0.9987, 1.02, 1.045 and 1.08 GeV) as functions of t and
Meg 1n the region -t € 0.4 Geve (19) (see Fig. S5.4). The
moments with M = 1,2 are compatible with zero indicating
that amplitudes with Af#t>are negligible. We include the

T and B exchange smplitudes with L § 2:

n

Q VY

:(‘TT({'MV-\’L) e

Al{mn — WHw) e “8e

S0yl M) B [T 85 ) VL A = )

Rs \\ﬁfl ogr% Vi

"1 = C};(*J }ﬂkg\ 312: Ql.g)
a1

Pzzca'g Ce V) ﬂa_u\¢)

DI:C’T\“: M) l[/.?: ALS\

8 V3 (5.24%)
D% =

o = Gt Ay, )
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where
Ty
c,H M= C -k e i) ﬁﬁig_
bt o
| - —h‘nol% _ -0.23
%R( )‘_( “8) ( PL)

Ry 9y (A4 &% )T - eg)

L)L« e.,:ry"' )

(1+€,"~r‘) )
A(S ) and A(i ) are the usual ? and S meson Breit-Wigner

Col) = Vot (- €78) [ (ogy ()"

forms. For the ¢ and A, we use Adec(¢) and A4 (A ) in the
form of eg. (5. 9). We fix D and () as in the previous
section (without the % in ‘) ) and P as the § tail by
fitting ALYLD ~ e (D] P.;”) (19) | we use mg, = 1.02

GeV and ‘:b 4 MeV. The overall normalization of the OPE
amplitudes is fixed by assuming that (& —> K \L\ /

(%-—;a&i):'&? ¥o. AlTn — vtw) in STi 1s given by eq.
(A.VITI. 11) end mm\ — K'W) 1in Bys given by egq.

(A.VIII.12). ©Opg is the Wi —» Tn background phase and
taken to be 80°. 1In order to relate SB to S' by T -B EXD

f" )]
o %v ) in SB
- T
Vi, st
and to allow EXD breaking we let gB/grr be a free parameter.

we have included the factors Rg/R,  and (

The other free parameters are the mass and % w , KK
coupling of the S*, the W -exchange slope parameter, B“, the
parameter gé' giving the normalization of POB. To fix

( gi)l‘ we use the SU(3) prediction

e\t 3 Ty N
l s ) Y (Cﬁal) ’
To determine the  meson parameters accurately we simult-

aneously fitted the'ﬁ1 mass spectrum for the reaction
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Figure S.4%a: The sum (£ ) and diffcrence (4 )
of the t-channel moments of reactions (5.1) and

(5.2) at 6 GeV/c (19).
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in units of GeV. Here we show 3 {vy®> ALY
° /7y

ZLYL), AL,




- 116 -

)
-
-
-t
-y
-
e
-
-
-
-
-
-
-
-
-
-

ot
~N
100 + + 1 -
F h‘ et & abibd S'a +11~°"-"--*--/—-\vr'-*\-u--- ——— eem s
T
-100 -} -} -14 i
L1 11 N N N 1 1 | B
o | B R B T T 7T T T 1 S I
Z
T T
h i b .
i + $retpa---It fﬁ-’:;:a;,;_--&,,,ﬁ-_,#%nﬂruw_-
-100 T ~+ + + 4
N | 1 ] L1 1 I N N | 1 | |
0.2 04 0.2 0.4 0.2 0.4 0.2 0.4

-t (GeV)

Figure 9.4b: As Fig. 5.4a but for 2{ YY) ALYL).

K'P — 2+(\385) (v\n‘) at 4.2 GeV/c(76). We could not
describe A{YL)in the last two mass bins without adding a
linearly rising phase to Dg which is 23° at My = 1.08
GeV. The results of the best fit are shown in Figs. 5.4

and 5.5 which correspond to

™o = 1.01 2 0.03 GeV
Lol \'= 0.35 £ 0.01 Gev
( q L. 0.88 ¥ 0.02 GeV
"“g = 0.974 % 0.005 GeV (5.25)
( «-;)’“z 0.251 I 0.018 GeV
be = 3.3 I 0.5 gev-2
/95 = 2.64 L 0,17
0.52 * 0.08

al
o=
n
'
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The resulting amplitudes are shown in Figs. 5.6 and 5.7.
We summarize the main results of the analysis below:

i) We were able to fit the data without including the
Z-exchange amplitude (S%Z). That is the § meson is produced
mainly via B exchange.

ii) The sign of the ST‘SB interference term (that
is Re( Py ~ BANLD , predicted by T-% EXD, is
compatible with the data. The RB/R“ term (which contains
the factor (1-&"8)/( 1 4 e ") ) gives a phase of
-68° to 82. s" contains a background phase, Opg, of 80°.
Thus apart from decay phases there is a 148° phase difference
between SB and Sw (see Fig. 5.7) which gives a large nega-

tive S—'—| -SB interference.

! T v I LI "q

m Mass 111) Pg is negligible except

Spectrum

at the & resonance mass, Mg =

(Events/20 MeV}
>
T

1.02 GeV. Similarly D° 1s

-
o

very small in this mass region.
12

These two facts mean that we
can determine the ratio,

|s™1 /1 5% \) accurately. We
N 7 have 2 <YLY ~ Re (5° 037),
T A YLy ~ Re(ST P3Y),

Mng (GeV) Z(Y’},) ~ R{(S“ DS*)and
Fig. 5.9: The (“V\) s s vav e A oR ~Te

mass spectrum observed ASNYS) ™ ik (® s )
in the resction

Xr - TY1395) (Qﬁ') so |9 is determined by
at 4.2 GeV/c (76). The

dashed line is the in- 2 <y! NACNYLD , and

coherent background to Z‘S °:>’ < L 0 ’, )

the § resonance. VSt by AVYe), 2<VYEID>.
We find Bp/8 q = 2.64 to be

compared with unity expected from strong W- B EXD. Note

H

that since o o =¢°IB, we would expect some violation of

EXD for the couplings.
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¢

iv) We determined the $ resonance

= ' l parameters by fitting (ﬁ'l\ mass
1 T
]
% i Ms=1.02 GeV spfcfrum, simultaneously with the
e (K K ) production data, and re-
2 LIS ~ quiring (%"i )1 =/ ( ‘3-""- )l .
a 3 3
L The results
14
rz\= 49.2 ¥ 3.6 MeV
10 (3
are consistent with the PGD values 31
8
((wgz9%0t 10 Mev
x
6 Tg=50% 2o Mev ) - The S
parameters are somewhat different
4 from those determined in Chapter
27k — III. In this analysis we ignored
—T ~4ﬁ1~_ all the information from the
04 .02 0.3 , "W — tn, I =0, S wave and
-t {GeV")
used a very small region of Mki'
Figur .6: The t- '
dependence of the So it is not possible to determine
amplitudes obtained
from the fit exp- reliable S% parameters in such an
lained in the text
and shown in Figs. analysis. However the resulting

(5.4) and (5.5). :

108 2 0L (p3/6ew’) e L = 0 A(WE = KiL)  amplitude is

1% lvane = 0003 [ 15 /62

in this Mki value. consistent with the results of

Chapter III1.
v) We found b = 3.3 % 0.5 GeV™2. This value is

different from by = 2.2 2 0.3 GeV™2 determined in previous
section. The same difference has been observed by the

(19) w

experimental group S" and D' are produced by the

same exchange mechanisms (OPE) and a naive expectation would

be that they have the same t-dependence. In our simple
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Figure 5.7: The amplitudes gt -t = 0.22
GeV2, in units of (W5/GeV))Z. The arrows
show the direction increasing Myg. The
points corresgond to the amplitude values
at Myg = 0.99487,_1.02, 1.045 and 1.08 GeV
respectively. PC is only shown at the
resonsnt mass, Mgn = 1.02 GeV, otherwise
it is very small,

model we assume that b“ has no ng dependence. Perhaps a
more detailed model could solve this problem.

vi) The data show evidence of ¢ production. The
moment Z (\(1,) ~ Re,( ST' P.f* ) is consistently positive
at Mkﬁ = 1.02 GeV, which indicates the phase of production
amplitude, Pg, is that of 7 -B EXD with a negative sign
(see Fig. 5.7).

vii1) We could not fit ALYLY ~ Re (< P5) without
adding some phase to P: . We observed the same problem in

Chapter III. The ignorance of the amplitudes Pg, Pgi can
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give such a discrepancy, but it is not possible to determine

these amplitudes from the data for reactions (5.1) and (5.2).
viil) We have explicitly calculated the K, K~ and

Ko, RO mass difference effects (see Appendix VIII). Although

this effect complicates the resonance forms, it does not

effect the results appreciably. The mixing arises from a

term proportional to

% (kg - k)2 = 0.00027 at M = 1 GeV.

The other modifications are of the form g2chand g2§(kc + k).

Their contributions are very small compared to g2kﬁ and
g2k1‘.

5.4 WW —> KX Phase Shift Apalysis

The in — wyny Interaction has been studied inten-

sively using data from OPE dominated reactions, such as

wp 1" 1Y W . One may think a similar analysis of,
for instance,TrP — ¥ k' v data can, in the same way, give
reliable information about i —> KK scattering. However
the exchange mechanisms of the reaction M‘P — K xty, are
more complicated than those for W p —> W T W ' (compare
Tebles 2.2 and 2.3). Therefore, the methods, used to

determine the 773 — u7w amplitudes from TY'P —> T T 'wm

data, can give misleading results when applied to Tm -— WY
scattering. A good example of this danger is the confusion
about the properties of the S wave peak observed in (X*K~)
and (Kg K¢ ) final states, around My = 1.3 GeV(g’lo),
Pawlicki et al.(lo’ 19) have isolated 15]' from 2 € YOI

of reactions (5.1) and (5.2) in the forward scattering

region (-t<0.08 GeV2) and observed a strong peak around
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Mkﬁ = 1.3 GeV. Having ighored the possible s? amplitude,
which can play an important role in the small t region,

they concluded that the T = 0 S wave (OPE S wave) should be
ten times larger than I = 1 S wave in this t region. On the

other hand Cason et al.concluded this peak is produced

entirely by the I = 1 S wave, by inspecting the t-dependence
of ]fif' for the (K: K¢ ) final state(g). This confusion
shows that it is misleading to draw conclusions from the
data for reactions (5.1), (5.2) and ﬁ"p — K ®ow with-
out studying the exchange mechanisms carefully.

The results of Chapter IV and Sections 5.2 and 5.3
provide enough information to perform a reliable w7 — Xw
phase shift analysis using the data for reactions (5.1) and
(5.2) in the small t region (-t €0.08 GeV?). Here we
summarize our present knowledge about (KK) production:

i) The OPE S wave is the dominant amplitude in the
region Mki {1.1 GeV. There is no sign of a sizeable Z
exchange amplitude, Sz, in this mass region. Moreover from
Fig. 5.6 we see that |S"|/1S3%) ~ 1 0 at -t = 0.05
GeV2. There i1cs an T = 1, L = 0 resonance with mass about
1.3 GeV in (KK) system, which is produced by both B and,
more dominantly at small t, 2 exchange.

11) The OPE P wave is compatible with the § —> K«
tail. Indeed it is possible to fit AKYLD> ~ Re (N7 PF™)

in terms of ‘i-x interference!19). 2 YLD
is consistent with zero in the small t region, indicating
that the I = 0 P wave is negligible.

111) The OPE D wave has a strong g-%' interference
effect. We use the {)|n# — Wi ) amplitude, determined in

Sec. 5.2, to fix the overall phase of the Tn — /72
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amplitudes. The K'K° production nnalysis nlso gives the
amount of A2 resonance production by B and Z exchange.

iv) The OPE F wave is compatible with the g meson
tall with braching ratios B¢ g — Tn) =14 %,
R | 94 = K®)=13 B%. There is no indication of
sizeable I = 0, L = 3 amplitudes.

This information shows that we must subtract the known
B

4 B
, 8%, D

contributions of the S 0 °

Doz amplitudes from the
KTk~ production data before performing a ™ —> KK phase

B

shift analysis. In order to determine the S° and SZ ampli-
1/7

tudes we fit 15,1 = ( 1881t 4+ 187 of the (Xk©°)

system as a function of Mki and t. We write the amplitudes

in the form:

S - V(L= & )T g (7% DY)
$2= C—Z(i"' E?ﬁdl) r( 1_“2)(&)’11-10(%1)

where CB and C

(5.26)

z are free parameters,,ynandcxlare given in

eqs. (9.18) and

) (5.27)
M’%'—Mllu:‘;\'
¥ = Wy ‘-g e /W “ 1
withnng y and ré. 3s free parameters. Recall that the

(K'K®) data 1s at p; = 10 GeV/c and that the (K'K) data
is at 6 GeV/c. To fit to the |S,) obtained from the (K'K°)
data as a function of t we integrate SB and SZ over the
experimental mass interval (1.2 { My < 1.4 GeV), that is
1.4
VA
2 2
|S°|=[ (158" +13%1%) d M ,J
kKw
AN

(5.28)
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We do not use the two most forward points or the points
with -t € 0.42 GeVe. To fit the )S.| of (KK°) as a
function of Mkﬁ we include a % resonance tail contribution,

parametrized as

- My
B($)=¢C QP( ! )

where C and b are free parameters. That is we use

1/
ls1={Cul DLy 4 1805)1%) (5.29)

where CN is a free parameter. The results are shown in

Fig. 5.8, and correspond to

' 007¢-1<10 GeV? |3 | 12{ Mg (16 GV

St ¥

a —

2 |2

P | 4

15 { 115¢

10} 10t

. (Background)
05} ¥ dost

W12 13 1AM GVl 01 02 03 0k - GV

8: The mass and t-dependence of |S,]
obtained from (K°K~) data. The curves corres-
pond to the results explained in the text. 1In
the mass-dependent figure, the background curve
1s the possible $ tail and the dashed curve is
the $' low energy tail.
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Cg = 16.2 (fixed)

C, = 40.9%5.1

met = 1.302 % 0.023 GeV

Ty = 0.220 I o.c4k Gev

C = 1.18 I 0.L4k

b = 2.81%1.¢

cy = 1.26 Zo.22 , (5.30)

In the fit we fixcd the magnitude of SP by estimating the
minimm size required by ALNYLD ~ Re ( S* $%") for
reactions (5.1) and (5.2), and by requiring that 15;) in
eq- (5.28) should not exceed the error bars in the large
t region.

As we already have enough information about the L =
1,2,3 (P,D,F) % — X waves, the main purpose of this
analysis is to determine the W% — X¥ § wave amplitude.
From the results of Chapter III and Section 5.3 we know that
the S wave should start somewhere near 180° in the Argand
circle (see Figs. 3.5 and 5.7). From the Mkﬁ dependence
of 24VY%) ~ 1S™1t just above the KR threshold , we
can conclude that the S* should be a normal Breit-Wigner
resonance (associated with two poles), and not a large
negative KK scattering length effect. As we have seen in

Chapter III and Section 5.3, it is not possible to des-

cribe A ( Yg) by interfering s* -S’ resonances. This
misfit could be due to ignorance of POB and Poz which can

8 2

interfere with S and S°. For this reason we do not fit
A<YLY and A<Y!)in the analysis. Instead we fix
the IPJ] by fitting A<Y3.,> (with -t <0.08 GeV2), taking

the form of IP. as the § meson tail and D: as the j meson.
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We perform an energy-independent T T —> Kic

phase

shift analysis using the observed 2 < Y3 D , Z< Y%,

SAYYY, A YLD, ALKYIY, 2L,
5<YY > , with -t <0.08 GeV?, of the reactions

(5.2). We first subtracted the

\Shm\l:\gs\‘*\sz\l
| ot DB 02
Rets‘hl D'j:‘L*): Qe(sz Dz»r)

1 ! I LI I | |

-+¢0.08 GeV’
|s™['

S (pb/GeV?)
XN

60 - i

4ol A

20 i
10 12 R i S
MKR (GGV)

Figure 5.9: |Sl’l\1, |p¥=t )\t and
Re 63 pi=47) yhich are subtracted
from the 6 GeV/c (K'K~) production data
prior to the 7% — ww phase shift _
analysis. The lowest curve is for 1D

contributions, shown in Fig. 5.9, from the data.

L=l\l‘

(5.1),

To do this

B
we used the sawe Dy and Doz as in Section 5.2 (see Fig. 5.2).

We also used the Sz and SB

given by (5.26) with the parameters
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11sted in (5.30) and py = 6 GeV/c. The 8% - D % inter-

ference term was calculated assuming the phnse between

these amplitudes 1s glven by 65- "(ﬁn decay phases. We
1

parametrize the other non-zero amplitudes @s:

M 1 o v
S=CT.(+'MKE)T?— A, (w7 — wi)

Ni (5.32)

T Yoo -
Fo = Calh, M) = A 1T - wi)
. NF A
where ALL Tii — W) are the Wi —9 Ww Argand amplitudes

as given by the Ay, element in eq. (3.9), C (%, M) 1s

m
given by eg. (5.24) with b = 2.2 GeV™2. We take tmin
into account by evaluating all the t-dependent factors at
the average | t| values of each mass bin. This average
value increases with 1increasing Mki due to the t;4, effect.
We fix | Qi\ as explained above, andlA;\ as in section 5.2
(see Fig. 5.10), and the overall normalization as in
Section 5.3. The free parameters are \Hl\,\ R{\, BSD,
ePD’ Cp and cp for each mass bin. We obtain a perfect
description of the data in each mass bin. The resulting
|A°,) and | A} are shown in Fig. 5.10. Note that since
we have fixed \ﬂ%}, there is no ambiguity in the deter-
mination of | A%l. The resulting cp and cp, which specify

the absorptive effects, are shown in Fig. 5.11. There are
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1
two possible solutions for the phases of the Ag and Ay
amplitudes, which correspond to the substitutions
B &> - B, and B e - 61’0 . We fix the overall

So 59 PO \
phase by assuming the phase of Ag is given by 8- 8 decay

phases (see Fig. 5.3). We plot in Fig. 5.12 the phases of

o

Ag,

A& of the solution for which the resulting A} phase 1is

| 1 A | 1 | | { 1

0.5} 'y Magnitudes of i
L Al(nn ——KK

oul o In nn ) |

¢ '
03 .”H +++++{ ..
0,2} -
°°°.,°°"P%Lo

0F T Al T
,/—- ° T Tt m e, — g = e
To00° 1 = )
1.0 1.2 1.4 1.6

r 0: Magnitudes of ALl ni — wit)
amplitudes. The errors on the 1Al are

very small and are not shown. 1A!l 1sg the
¢ tail prediction as explasined in the text.
\A}) is the g meson tail with B(g — KK)

= 1.3% and B(g — TT) = 2u%,

compatible with f tall phase at the lower Mkﬁ values. The
phases of the Ag, A} amplitudes of the other possible
solution move rapidly anticlockwise in the Argand circle,
and the A} phase is very different from the expected § tail
phase. Since Ag is very small in the region M { 1.2 GeV
it 1s not possible to determine the QSD and GPD reliably.
Indeed we can only determine these phases with very large

errors (% 60° on average).
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Flgure 5.11: The cp and ¢, in egs. (5.32).

Our two solutions are similar to Cohen's solutions
III.a and III.b(77). We favour the solution with the slow
variation of the AJ and A] phases (similar to Cohen's III.b).
We disregarded the other solution for two reasons:

1) Although the A: phase 1is ;onsistent with the ¢
tail near the threshold , it rapidly moves away from the
§ -tail phase, for instance %§= 245° at Mek = 1.1125 GeV.

11) The phase variation in the I = O S wave of the
elastic (Wi — 1w) channel is unable to match the fast phase
resulting for Ag ( B — KK). In the favoured solution,
the A} phase is consistent with the § tail phase up to
Mki = 1.25 GeV and then rises slowly. This latter phase
variation may be an indication of the 9'(1600)‘-9 KK decsy.

The results for cP = P_/Pg and cp = D_/Dg do not

show any systematic Myj dependence (see Fig. 5.11), and

they are not consistent with the Williams model (or the
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nek 8, (mm—KK) } + _
260 ? -
40+ + -
26} 5

200 _
180° -
160° -
1 ] [l
1.6
Mz(GeV)
Fi e ¢ The resulting % (ny — x i)

and $5|Tn —> &k ¥) phases for the favoured
solution. The curve is the £ tail %% pre-
diction. These phases are fixed by assuming
5: is given as in Fig. 5.3.

"Poor Man Absorption") prediction (c.f. eq. (2.41)). 1In
the analysis we assumed that the L_ amplitudes are produced
by OPE absorptive effects and ignored possible L_ contrib-
utions from B or Z oxchange. This could be the reason why

the ¢, 2nd cp values are not consistent with simple OPE

P

absorption model predictions. However the sign 1s consis-
tent with a OPE absorptive effect.

We are able to obtain an accurate determination of \AZ'
up to Mep = 1.45 GeV. The resulting values of |Ay] show a
strong 8* peak, reaching the unitarity limit at Mgg = 1.02 GeV.
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Beyond 1.15 GeV, \F\‘:\does not continue to fall off as the
tail of an s* resonance, but stays flat on average value of
0.325 throughout the mass region 1.15 ¢ Mki<(1.H GeV (see
Fig. 5.10). This information can help to determine the size
of the poorly known T = O T —>TTn S wave in this mass
region (see Ref. (78) for a recent review). If we ignore
the effects of the channels other than TW and KK, then

D]
Ytt (%) should be about 0.76 in the region Mo =115
=0

I=0

- 1.4 GeV. The behaviour of S (% — T ) and

gI=0 (57 —> KK) cannot lead to an unambiguous solution,
since we do not have any information about the phase of the
s1=0(K® —> KK) amplitude. However the resulting 3., in
Fig. 5.12, seems to be consistent with the phase of T = O,

Im —> UnT S wave.

5.5 Conclusions

The complexity of the exchange mechanisms for the
reactions (5.1) and (5.2) means that the (K'K) datg can
only be reliably analysed if we have further information on
contributing amplitudes. However using the results of
Chapter IV for (KK°) production to determine the I = 1
S and D waves, and inputing this information we were able to
perform an I = 0 S,D and T = 1 P,F partial wave analysis of
the (K'K™) data. 1In this way we obtsined rather asccurate
information about W% —> KK scattering. The main results of
this chapter are following:

1) We first determined the I = 0, WF—> KK D wave,
in terms of overlapping g and g|resonances. We described
the g- g' interference effect by the mass-matrix formalism

\
and found the g meson parameters


file:///Aoldoes
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V“&‘ = 1.513 ¥ 0.003 GeV
AN +
V‘R‘ = W3 2 9 Mev
B> n) = 1.6 1 g.ex.

2) We analysed the threshold region in terms of S%

and % resonances, relating the B to the W exchange amplitudes
by T -B EXD. We found that the data are compatible with
the phases of the amplitudes as predicted by T -B EXD and

determined the £ meson parameters as

Mg = 974 15 MeV,

V§‘= 49.2 * 3.6 MeV,

We were able to determine the S wave (KK) production ampli-

T R :
tudes, &' and S , and found [S"1/ ) By~ 40 at
-t = 0.05 GeV2. We did not find any evidence of an S&

amplitude in the threshold region. We explicitly calcul-
ated the effect of K*, X~ and K°, K° mass difference and
found that it was unimportant.

3) We fitted the |5 extracted from (K"K°) data, both
as function of Mg and t, in terms of s% and sP amplitudes.

[
We determined the % meson parameters as

Mgt = 1,302 Y 0.023 GeV
™™ = 200 % Ly jev

We then used the resulting SZ and sP in the (k*k™) production
data analysis by extrapolating them p; = 10 GeV/c to pp = 6
GeV/c.
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4) We found that the Tt —> KK P wave is given by
g- tail by fitting ALYYD in terms of ?~3 interference.
We also found that the TH — KK F wave is given by the g
meson tail with B(g — T1W ) = 244, B(g — KK) = 1.13%.

5) We performed a ww — KK phase shift analysis to
determine the I = 0 7W%#% — KK S wave. We determined its

magnitude and phase accurately up to MkE = 1.4 GeV. The

magnitude of MT —> KR S wave shows the strong S* peak in
the threshold region and stays flat at about 0.325 in the
region of MKR = 1.15 - 1.4 GeV. We found two possible
solutions, one of which gives S(TWHE —> KK) with a rapid
counter clockwise phase movement, while the other gives a
slow phase variation. We favour the solution with slow

phase.




_133-

HAPTER V

ication of JFC = o** n

In the last three chapters of this thesis we have
obtained a lot of information about the non-strange o**
mesons. We have seen that the S* is a normal Breit-Wigner
resonance with mgx = 980 MeV and | %1.;‘ )1/( 65';‘:‘)\2: .15,
There could be a very broad elastic T = O TN resonance,
called €. The I = 1 $(970) is observed clesrly in the
(79 ) mass spectrum and its ™ and KR couplings ratio.
is consistent with the SU(3) predicted value. In addition
to the $ (970), there is another I = 1, 0" resonance with
mass 1.3 GeV and width 220 MeV. The existence of two I =1,

0** resonances, % (970), §(1300), makes the problem of

classifying the o**

mesons a very delicate jJjob. However

one may question the existence of these T =1, 0** mesons.

The $(970) 1s clearly evident in the (“'\) mass spectrum(76’79).
We have also observed the & (970) production in the (K+K_)
system in the Section 5.3. The $(1300) is observed as a
pronounced peak in the (K_Ko) S wave mass spectrum (see

Figs. 4.9 and 5.8). Also the t-dependence of |S.| extracted
from (K'K°) production data in the region Mg = 1.2 - 1.1

GeV shows very clear indication of S'(1300) production

(see Fig. 4.2). Further evidence for §(1300) production

can be obtained from the (K*K™) production datal19) . 1n
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()] ~ .L
Fig. 6.1 we use the (K*K”) data to plot 2 < YLD = 2151
~ \= 1.\ ¥
and ALY S 4R (70 ) At Mz = 1.045 GeV;
and also 2151° and O NS (which is again sT=0. sI=1

interference effect since A\/Yg) is small indicating that
I=0 _ pI=l ynterference effect is negligible) at Mg =

1.275 GeV, as functions of t. The figure shows that the

D

exchange mechanism for S wave production at MKR = 1.045
and 1.275 GeV are entirely different. We know that in the
threshold region Sf is the dominant amplitude, and that
A< Y3 can be explained by including a small SP amplitude
(see Section 5.3, Fig. 5.4). The t-dependence of \S‘l at
M. = 1.2795 GeV 1s shallower than that at M

xk K
indicating the presence of other exchanges besides S‘T .

@ = 1.045 GeV,

Also A <Y?,> has a very different t-dependence in the

two mass regions. ALY ) , at Mki = 1.275 GeV, cannot

be described without introducing a large s amplitude. The

shallow t-dependence of \SI'L around MKE = 1.3 GeV has been

also observed in the reaction Tp — (K; K;) n (9).
Before the discovery of the % (1300) Morgan was able to

accommodate the O0'% mesons in a non-ideally mixed (mixing

angle about 70°) L = 1 (q3) nonet, provided the states were

taken to be $(970), K (1200), S®(980) and 2(1300)(11).

There are some outstanding problems with this classification
scheme. The 1” and 2++ nonets, which are the well-established
nonets, are ideally mixed, therefore one might have expected

an ldeally mixed 0** nonet. The other problem is the un-
certainty about the mass of the K_and ¢ mesons. For instance,

(13)

a recent analysis of the (KT ) system has shown the

mass of the ¥ resonance could be as high as 1.45 GeV, which
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Figure 6.1t The t-dependence of 2 {37 ~2151%

and A< 3> =4RelF=0eI=1*)  at M - = 1.045
GeV; and of 218t and ALYe> at Mg =
1.275 GeV. At MKE = 1.275 GeV we use

ZCYLD,TCvh), Teypand Tyl  to iso-

will violate the Gell-Mann, Okubo mass formulae for the o**
nonet. Also the § mass could vary from 800 MeV up to 1.3
GeV.

The §(13oo) has I = 1. Thus it cannot belong to an
SU(3) singlet, (that means it cannot be a glueball or a
dilaton). The simplest assumption is that there are two
0** nonets. If we assume that the §, W $¥and § are

members of the L = 1 (g§) nonet, then the § could be a
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member of the radially excited L = 1 (q§) nonet. However
this is very unlikely, because the mass difference of the
%'(1300) and the $(970), about 300 MeV, is small. We do
not expect to see the first radial excitation of the $(970)
below 1.45 GeV.

A possible way out of the dilemma has been given by
Jarfe'?). He has studied the L = O (qq3§) states, using a
simple magnetic gluon interaction to estimate the mass

(80)

splitting , and found that the lowest lying (qqqq) states

belong to a o** nonet. Interestingly an explicit quark-bag
(7)

model calculation estimates the mass of such states to

be about 1 GeV or less. So if the (qqdd) gtates exist, we
would expect to observe two o** nonets with masses below
1.4 GeV. Jaffe has identified the §, K , S'and & as the
members of (qqdg) 0** nonet and claimed the existence of
(q3) 0** nonet with masses around 1.3 GeV. However De
Rujula et al, has predicted the masses of (qa) 0** mesons
less than that(SO).

To discuss the problem in detail let us establish
notation for the members of a 0% nonet; we denote the I = 1
member by &, the 1 = 4 member by K\and the I = O members by
S and £ . If the nonet is ideally mixed we take S to con-
tain an (ss) pair and & to be built entirely of non-strange
quarks. For the (qqqq) states the quark contents of the
(7)

members would be

¢ = (undd)
A - -
S = ?ﬁf s8(ui + dd)
® = udss etc.
K = usdd etc. (6.1)

For the ideally mixed (qf) nonet, ¢ and  will be degenerate




-137-

in mass with the S state at a higher mass. On the other
hand, for the ideally mixed (qqdj) nonet, the  and S are
degenerate in mass and the & lies at lower mass. The
resulting mass spectrum for the two nonets is sketched in
Fig. 6.2. 1t was the approximate degeneracy of the observed
s®¥(980) and $(970) which prompted Jaffe to assign these
states to the (gq33) nonet, together with broad £ and K
states. This assignment seems to be in good agreement with
the observed properties of the S, W, s® and & . Indeed

the only obvious problem with this identification is the
Mass { S N
KI

[
—E& —8 /
—S —§

K > (QqGg) Nonet
—¢t /

) (@) Nonet

Figure 6.2: The mass spectrum of the (q3) and (qqqq)
nonets. The quark content of (qqgq) states are shown
in (6.1). The members of the other nonet have the
usual quark content of an ideally mixed (qq) nonet.

observed narrow width of the $ —» Wn decay; since this
qg3q) — (gqq) + (qg) "fall spart" type of decay, it
should be much broader. Of course the problem of the
masses of the HLand é still remains. In Jaffe's scheme the
mass of the & should be about 700 MeV and the mass of W_
would be about 900 MeV. The most important evidence, which
supports this assignment, is the existence of the Sk1300).

)
As we have discussed above, to identify the $(1300) as the
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radial excitation of the 5(970), although it is possible,
seems an unlikely explanation.

Having established the existence of second 0** nonet,
we should look for the other members of this nonet. We
expect to observe the &l —> T, Kk W ) V\‘——> K.',’ 5' —> i
decays. In the previous Chapter,we have found that the
I =0 Ti — KK S wave magnitude does not fall off as the
tail of S* with increasing Mg and there is a broad structure
in the region of Mkﬁ = 1.15 - 1.4 GeV, which coculd be
attributed to the £ . The I = 0 [w —>T N S wave is not
known very well, but the results of all the analyses(78)
agree that the I = 0 "% —7% § wave goes around counter-
clockwise in the Argand diagram more than two -full turns
by M_ ~ 1.7 GeV. This mesns that S;D has more phase
than that produced by two resonances, Therefore it is con-
celvable that there are three overlapping resonances,
¢ 5%, &

l
not possible to determine the parsmeters of the & and ¢

s, in the I = 0 W% —h S wave, but it is
’

from the presently avallable data. The situation is similar

in the I = 4 Ki — K% S wave (without, of course, the s*

y(13)

effect . It is agaln possible to accommodate a broad K\

and H: states in the I = 4 ¥ — KT S wave, though with-
out definitive identification.

The discussion given above represents an idealized
situation. There will be several complications. First the
members of the two nonets can mix by gluon exchange. Second

we expect some violation of ideal mixing. For example, in

a (qq§g) state ore (qq) pair spends 2 fraction of the time

(7)

in a colour octet state or in a 0"V state. In either
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case this will lead to violations of ideal mixing. Also
from a phenomenological point of view, we have to face the
problem of determining the properfies of several overlapping
resonances within a given partial wave.

The discovery of the 8k1300) has led us to classify
the 0** mesons in terms of two nonets. The only possible
solution of this problem within the conventional quark
model, in which the mesons are always (q3d) states, is to
assign the 8%1300) as a radial excitation of the §(970).
This explsnation seems unreasonable, because of the small
mass difference of the % and S‘. An alternative solution
has been proposed by Jafre(7) in which there are two nonets
with (q3) and (qqqq) states. An explicit calculation has
predicted(7) the mass of the (qqiq) O** mesons about 1 GeV
or less; which means we should expect to observe two O**
nonets with masses below l.4 GeV. There are some indications
for the existence of the members of the second nonet besides
% , but with the available dats, it is hard to draw any

firm conclusions.
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CHAPTER VIT

Conc n

We have studied properties of some wesons, which decay
into the ("W ) and (KR) channels, using high statistics

(meson-meson) production data for reactions of the type

T™N — (Tt N

TN —> (KW)N
with a primary interest in the JPC = 0** mesons. We have
obtained several other new results as by products of our
line of enquiry.

We have studied the properties of the sk effect in
Chapter IITI. We have found that the data favour the two-
pole description of the S®; that is the S* is a normal

Breit-Wigner resonance. We have determined

M, = 978 I 9 Nev

We have been unable to calculate reliable parameters for

the £ meson. We have seen that the S® pole positions are
determined by the data accurately, independent of the way
of parametrization. We have proposed forms of parametriz-
ation of the coupled channel (%W, KK) T = 0 S wave which

permit an investigation of the nature of the S¥ and &.
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We have seen that it is not possible to explain these
mesons simply as (qg) states and that forces in the
meson-meson (qqdg) sector are also important.

We have analyzed the data for the reaction 1F”P —_>
(K"K°)p in Chapter IV. We have found that A, production
proceeds dominantly by NPL, and that the UPE A2 production
amplitude is consistent with that found in CEX Aé)produc_

tion. We determined the A, meson parameters as

3
|
'+

= 1.318 0.001 GeV

I+

-
p~]
N

0.113 0.004 GeV,

We have seen that there is an I = 1 S wave resonance in the

A, mass region, called % (1300), with the parameters

+

VWS = 1.302
r%' = 0.220

0.023 GeV
0.044 GeV.

'+

The t-dependence of the S wave amplitude shows that the

% (1300) is produced by B and more strongly Z exchanges.

We have related A2 and K%®(1420)% production using the

%, &\ dominated scheme for the pomeron. We have estimated
the pomeron relative to 3 exchange and found, for example,
at -t~ 0.2 GeV° 5 ratio 1:1 n Tp—>P, p at 10 GeV/e.

We have seen that the g meson production proceeds dominantly

by UPE (T exchange), and found
B(g —> KR) = 1.3 % 0.4% .

We have compared the NPE (w2 exchange) g production amplitude
with NPE (w) exchange) £ production data and estimated

B(g — KK) = 1.5%. We have determined the g meson para-

meters to be .
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m 1.698 ¥ 0.012 GeV

4
rg

0.199 * 0.040 GeV.

We have observed the emergence of L = 4 (K"K°) production
above My-,0 = 1.6 GeV. The t-structure of G, shows that
1 + 4 (K'K°) system is produced by NPE (TR & exchanges).
The data do not allow the determination of the mass and the
width of this resonance, but D G, interference term suggests
that the G, amplitude is resonating.

We have analysed the data for the reactions

17— (W w)n

™ — (kh ) p
in Chspter V. We have fitted the combinations of r¢'<‘r?1>
moments, employing a mass-matrix parametrization to describe
the %,g' interference. We have determined the %' resonance

parameters to be

Wﬁ' 1513 ¥ 3 MeV
Tg' 43 ¥ 9 MeV

B %‘—>T|I|)= 1.6 I 0.6% .

We have analysed the data with Mkﬁ < 1.1 GeV in terms of
s® and % resonances, relating the B exchange amplitudes to
the T exchange amplitudes by W~B EXD. The data are com-

patible with W~ B EXD as far as the phases are concerned.

We have determined the % meson parameters to be

Wﬂs = 974 ¥ 5 Nev
V?Q= 49.2 ¥ 3,6 MeV.

We have calculated the effect of the K*K~ and K°,K° mass

difference and found that this effect does not change the
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results appreciable. We have found that the T —>KF p
wave 1s given by the § tail, and that the F wave is com-
patible with the g meson tail with B(g—>KK) = 1.3% and
B(g — T® ) = 24%. We have determined the T = 0 W¥W —> KK
S wave by performing an energy-independent analysis of the
data in the forward scattering region. The magnitude of the
TH —> KK S wave shows the strong S* peak near the KK
threshold and stays flat at about 0.325 in the region of
MKE = 1.15 - 1.4 GeV. We have found two possible solutions,
one of which gives the S wave with fast phase variation.

We have favoured the solution with slow phase.

We have explored the possible classification schemes of
the known O** mesons. The existence of two I = 1 O** mesons
has suggested the existence of two 0** nonets. A possible
classification scheme has been proposed by Jaffe, in which
there are two 0% nonets composed of (qg) and (qq3q) states.

}
The $(1300), in addition to §(970), is good evidence for

such a scheme.

This thesis contains a remarkable amount of information
about the O** mesons. Although we know quite a lot about
these mesons we still have a long way to go to reach the
final picture. The most important problem is to discover
the missing members of the two 0** nonets. Investigation
of ww , KR channels in other charge configurations or of
the Wq~channe1, would be invaluable in this respect. When
we have enough information about all the members of the o**
nonets, a quantitati&e anzlysis of the properties of these

mesons will answer many of the present questions, the most
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important of which is the possible existence of multi-quark

states among the o** mesons.
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APPENDIX I

Moments in Terms of Density Matrix Elements

Here we give the relations between the moments

defjned in (2.15), and the spin density matrix elements
L

ey m_ (2.21) for L, L € 4 and 1], 1 daa) €1 e

use eq. (2.22) to calculate the appropriate coefficients.
A given moment only contains terms with _L1*1<L 2] and
Mg~ A =M. L1+ LL must be even (odd) if J is even

(odd). These restrictions are embodied in the Clebsch-

LL - L, L
Gordan coefficients in eq. (2.22). Me-e Sy day = Re (S5, ).
~ o\ _ 00 11 22
Vun (Y] = 1.000 ¢ + 1.000 £ g * 2-000 9“ + 1.000 §°*
22 33 33 Ll
+ 2.000?1 + 1.000 5’00 + 2.000 ¢ Y 1.000 f
Lyl
+ 2.000 5’“
{ 1
Van (17 = 2,000 § 50 + 1.789F 2% + 3.098 £3; + 1.757 § 32
32 43 43
+ 3.3125’1l + 1.7%6?00 + 3,.3815’11
t o _ fo _ 21 2t 32
Juw (¥ = 2.000 §° - 0.894 ¢ + L.549 P50 - 1.014§ =0

+

+1.1+31+5’3§ 1.06932% 1.380})‘1*3
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=c=1". (A.17.1)
In these units
(GeV)™2 = 0.38935 mb. (A.T1.2)
We define the metric such that the four momentum
P = (E, py, Py pz) (A.T1.3)

satisfles
P = E® - p~ = m (A.T1.4)

where E 1s total energy of a particle of rest mass m. That

is the metric tensor is

3?“: o o =1 o

o o o -1 ) (A.I1.5)
We define the S-matrix elements so that
5|g=<g\;> 41 ) g"(v;-vs)-r;_g, (A.11.6)
i




We normalize the sinpgle pnrticle states

< ?o\ ,/\q\ (,\, ,/\t,> = ('L'n )ZZquL'(P«“ ?5) % ’\“’lb (A.TT.7)

where Pi and A.

+ are the particle four momentum and the

helicity respectively.

For a system consisting of n particles with four-momenta

P1 cose Pn, the Lorentz invariant phase space element is
given by
i 3
"
2 ‘i (A.TI.8)
CAL ()S 1---?‘) (\\) S )_t'

For the states with a given total four momentum P, we define

the restricted phase space element

dlips (558 0) = (22)'$"(P-ZP) oL ps (F--F0) arrg
where
5= (Z P;fL . (A.11.10)
We define the cross-section for the process

a+b —> 142¢t... n

13
(A.11.11)

oo i//'TV ' AL'D (() )\S(C\F‘)—bl# )]
l[A(S') \'-\L, ‘Mi)]/l

in the 1limit of infinite space-time volume TV, where

ns; wlq,v-\l\) 5[5 ‘(W\q+‘~5)”][3~ (""‘q“"*\,)tl

it

" ( )
A.TT.1
= (L V\.h" )1 2




The second formulae in (A.JI.12) is written in the centre-
of-mass frame of particles a,b, where q is. the three-
momenta. The third one is written in the laboratory frame

of particle b, with particle a moving with three momenta

lab
P .
The cross-section is given in terms of T, defined in

(A.TI.6), and the restricted phase space element (A.T7.9):

o= 1 Ahrﬂs;ﬂ"-ﬁ\\ 71*% .

A.TT.1
PV AT (‘ 3

We define the partial wave expansion of j}f of

(A.I1.6), in terms of Legendre polynomials Pr(x), as

'V
T(\))-"?’HSL‘ (2L+1)Pm‘r (A.I1.14)
L=o

where x = cosp-, @ iIs the scattering angle. Note that T,
have no © dependenée. They are called partisl waves. We

can define the partial wave S-matrix such that

S:g,L <% & S Vfifxz; (A.IT.19)

where k., kx are the initial and final three-moments

respectively in the centre of mass frame.




APPENDTX III

Th Cc in t _the Nuc n Vert

Since we study OPE processes we wish to study the form
of the i exchange coupling at the nucleon vertex. The

Dirac equation for a spin 4 nucleon of mass m has the form
(g - m)Ul,z(p) = 0 (Positive Energy) (A.ITT.1)

where

= b
F=7 P - (A.I17.2)

We use the representation of YU

1 o 0 .o 1
SS ( ) ) ¥= ) ‘B—:( )
o -1 - K !

LOERR AR A Ak 4 : (A.TTT.3)
where @ are the Pauli matrices.
The Dirac spinors for a spin 4 particle of momentum p,
with polar angles € and @, rest mass m, and energy E are
cos (6/2)
sin (G/2)e-1¢

U,(p) =\/E+m P cos (9/2)
E +m

P sin (6/2) ,~1¢

E+m

(A.TTI. W)




- sin (©/2) e1¢
cos (©8/2)

U (p) =V E+m P sin (8/2) Q:(b
- E+m

- Pc e
E+m
. (A.ITT.L)
Here U, correspond to nucleons with helicity of ¥ 1 respect-
ively.

For the vertex 'Vp - T hjs y we choose the coordinates
as shown in Fig. A.ITI.1. The spinors of N; and hly in this
frame are given by relation (A.III.4). For N; we have
=0, ¢ =0, pz=pj,andforN$wehave9,¢=0, y -
Using the Feynman rules, the vertex

function is:

t 0 g
Vig, ™ G Ul Y Uil 4

! (A.1T1.5)

where xgand A:are the heiicities of
the final and initial nucleons

respectively. Using the spinors of

eq- (A.IT1.4) we find

\/++ ~ G oy /2 [\/(Es*w\)(E:—M

b4
Figure A.I11.] “-/(E.-*“\)‘\Eg-“ﬂ‘:}

where m is the nmucleon mass. Simil-

arly

Vg_“‘(B Ew\B/z_[v[(E3+“ﬂ\lE;-wV)‘ v/TE;“H)(Es-V“)]-

Thus the contribution to the cross section is

'V—H\TL* [V \1= -2 G.L[ \’g P Cad D+ ' E—; E—g] .
(A.T11.6)
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Defining the square of the four-momentum transfer to be

b= (P- P 2Lt - B Eg + pigp e,

and averaging over the initial nucleon helicities and summing

over the final nucleon helicities, we find

A ! (X
2 \/ -Gt (.111.7)
z X%x' )‘:’\3\
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APPENDIX IV

ce lation

The Lorentz invariant phase space element occurring in
the expression for the cross-section for the reaction
q) + Gy —=> Pp + P, + Py is given in (2.32). Suppose Py
and P5 form a system R of mass M, then

2
PR =Py *+ Py Pa=M

We multiply the right-hand side of eq- (2.32) by

L - =

and re-write in the form

dLips(s;p1p2p3) = dLips(M2; plp2) %}(q1+ 9, = PR - p3)
X dLiPS(p3)dkpR : (A.IV.1)

Using
d'pp = (27)3 dLips(pg) dM2, (A.IV.2)

we find eq- (A.IV.1l) becomes:

1
dLips(s;pl,p2,p3) = %_ dLips(s; pR,pB)dLips(M2; pl,p2)<4r4 .
m

(A.IV.3)
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We calculate dLips(s; PR P3) in the centre-of-mass frame
of the reaction T N = RN, shown in Fig. A.IV.13 we find

dLips(s; pg, py) = PRAE AR ¢ (3 _ gy,
(2 W)24E

where three-momenta part of pp is

A
mu=|ﬁ\={A(55Jb,W)/qs] ]

Performing the & integration of do= d¢ dcos o

PR dcos ©p

dLips(s; pp, P3) = — - (A.IV.4)

Now

~ ~

<
t = (g - pp) = (E1 - E) - cos@

+ 2, Ppcosdp

dt

2 q,pgd cos 6p, (A.IV.5)

and so eq- (A.IV.4) becomes (c.f. eq. (A.11.12))

dLips(s; p., p.) = ___d¢t . = dt
R 3
16 1 91 s2 811[A(s;m2,m§)) 3

(A.IV.6)
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We have calculated [q;iLips(s; PRs p3) in terms of Lorentz
invariants, therefore we can use the result in any Lorentz

frame. Substituting (A.1V.6) into (A.IV.3) we obtain:

J'dLips(s;pl,pg,p3) = dt_dm? dLips(M2;p1, Pyl .
(““)2[k(s;m2,m§)] 3

(A.IV.7)
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PENDIX V

Tu — Tl Kk)  scattering

Here we evaluate

L?L‘?*(”l; (o) 1T

where

T=Tlwn — wvlww)),

py are the momenta of the produced mesons, and M is the mass
of the di-meson system. We calculate dLips(Mz; Py p2)
in the rest frame of the produced resonance, R. It is also

the centre-of-mass frame of the produced di-meson system.

<<

In the rest frame of the produced resonance



Py=0

9, S (hrp=t
E'L.: vn:“ * Py

where mm =MWy O mK according ss the produced system is

TH or KR. Also we have

Py = P, = (I‘141- m%)éi P

Q.
w
h

p2dpdcosedd

E=E1-0—E2=2\/m§|+p2

E (A.V.2)

Therefore, performing the integration of d¢

dLips(M?; p ,p ) = p dcose .
f¢ P P1oPa B M (A.V.3)

It is convenient to express C in terms of partial

waves using eq- (ATITI.14):

T=83vM Li (2L+1) T Lt - w5 (kW) P lab). (A.V.4)
=0

Substituting (A.V.3) and (A.V.4) into eq- (2.35) we find
2
_{Patzp&(Ml;f.,[’l)"Zl = 8w P M Aoy

o0
X
l 2 () TL_LTW—HH.,ULTL)) ()L\LDJ)B)\ ‘ (A.V.5)
L=o

Using the orthogonality relation of P { wb)
1

Ja.l‘er’)@(l-*t/i—) PL((.bJ)'c)) PL.LLMQ\ = %LLE
;; find

}
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o 1

Lzo

(A.V.6)

where TL(TIE —_— 'ﬁTI,UAV-)) can be written in terms of the

phase shift and inelasticity as

X S:n
T (55 = ey = e @
'2 \L'ﬁﬁ
and
—_— |( \,. -+ AL._ )
- nh A"
T (TlT\ —> ‘L-\_I-) ':/-—}---v—l—l——-—- €

for two open channel (WY and KK).
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APPENDIX VI

nsity Mat ements In Term
of Di-Meson Production Amplitudes

Here we give the relations between density matrix
elements and the definite exchanged parity amplitudes,
\-%1_= P'xixk, with L € ¢ ) 12,1€4{ . We use the spectro-
scopic notation for the amplitudes: that is: L = S,P,D,F,
G for L = 0,1,2,3,4%, respectively. The definition of the
density matrix elements is given in eq. (2.21). Using eq-
(2.21),(2.22) and (2.23) we see that:

N Re 61Y - R U, LY)

0V

vt .

N Re § 00 = Rell', 1)/ 2

U oL )

N Re 11=(Ze(L+L"++|_'_Lj)/L
MRe SYL =R (U, -Vl 0

For instance, with only L = 0,1 present, the density matrix

elements are:

N Re 831 = Re (5 0))

N Re $9% < R (SPN)/J1

N R §1% <)

NoRe ST =Re(PapX)/ 2

N R §3L=(ant+100t) /2
N Re €11 = (1ot - 10 ) /o,
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PPENDIX VII

C tion of Phas hift Solution

(67)

Barrelet zeros provide a convenient way of finding
and classifying all possible phase shift solutions. Con-
sider a case where only partial waves with L f contribute.

Then, using the spectroscopic notation,

A HL
Ag 0 Madg !
L
where Y are defined in eq. (2.19), the scattering
Ay 9
amplitude can be written as
13 e
H~2 L, Y (v, ), (A.VIT.1)
L=0 AR
where we use eq. (2.19) and
v ."..___...... )\(L -| ’\ \-b
2k e
¢ LI $) <
)\'\R,D L4 - (9, &) ’

and omit the nucleon helicities. The amplitude H 1n eq.
(A.VII.1) can be re-written in terms of the definite
exchanged parity amplitudes Ly, L_, L,, with |1 & 1 as:

2 "
H o~ Z (LL+1) [ L(> (’L(Z)-t- (A.VII.2)
L=zo
' b - ¢

! ’.
[\ gy’ -y d PL(ZJ
\ (L DY Vo dz
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where z = cos @ and we use eq- (2.23) and we set L_= 0.
)N
We also use the relations between \(L“ and Pé“ . There-

fore for UPE and NPE sectors we can write:

H(um:H'l:zh 300 2’~+(1\/? Po _3_)1 +( 25 Do )

V3s F, SV¥F. S SViFo V35 F,
. A.VII.3)

- [ 2-2)) ( 3
ie1

1)

where 4 =3 , and

s F V)
H(NPE)=H“[23+ ANE zl+(—~§——+—-i) z+(_l_‘m> v

_F - ﬂ Sie P sl @
Vo5 G, I
= H' sed sia 1T (2-17)) (A.VIT.4)
::1_

where i_: 4. Here we assume that the amplitudes in NPE(UPE)
sector are all nucleon spin coherent.
Since the amplitudes are complex, the "Barrelet"

t
zeros, Z; zi are complex. The ambiguities arise because

the data do not determine the signs of the Tm Zy or the

Im Z;. Thus there is a :Z;-fold ambiguity within the UPE
sector and a : 2° -fold ambiguity within the NPE sector.
From a given solution we generate thec other solutions by
first'determining the Zi(z{) and then making substitutions
24— Z,, (z;——> z;*) for the various combinations of the

zeros.

1)

In the analysis we take GoE 0.
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APPENDIX VIII

The Effect of the K*,K and
K9,K° Mass Difference

-\
Consider the m = ’lé matrix parametrization of L = O

S wave Argand amplitude (see eq. (3.45)):

3 ) -1 WA
A=l {mM-iw) L (A.VIIT.1)

~~

To describe “VL —> K'W and nh — KK we may define

two bases:
Bm I.. SL\'ﬁ»’L;-l:l)', "ll'l'l','i=05l |\L+V:>} | l;-°3%

Raniy I : %lﬁ\; 1245 ki), |us; 10 \"‘—"3-’:")% . (A.VITI.2)

The momentum matrix k y ¢an be written in diagonal form in

Basis I:
‘L,\ n 0 ')
0 PN :
"
~~ 0 n "‘ )
\ © 0 ) ’ (A.VITI.3)

where k'l and k. are the (T\\) and (T F ) centre of mass
n

momenta; and k and % are given by egs. (5.22). On the

other handL’] matrix has the block diagonal form in Basis II:




M‘l\ M,&-; ) 0
r'\ LY 1 r\ 11 () k\)
D 1B Nﬁ') NI—L

(A.V;II.&)

where M, describe and KK —» KK

“'L_’ 1“’! ) ﬁ'l_” v
(I =

1) processes; and Nij describe Tin - un,

Tn— LY

and KK —> Ki (I = 0) processes with L = 0. 1In order to

determine 'nTvl —> KW and wy —> \(" Y amplitudes, we

transform tji to the Basis 1.

For this procedure we need

to know the (II) —> (T) transformation matrix

(1) = 6 (11),
Using eqs. £.23) we find:
1 O 0 0
G| - O O 1_ 0
” : ° ;«i AL (A.VITI.S)
S T I DAY '
Then the tjlin Basis I is given by
M_ = C:! M. r"
l\,.‘ ~ ﬂu e
My 0 T S/ S T
-y,
M = L u\Jl\ Ny Vi Ny
S Ymomy, -V Ny, S N LMy -Nay)
'./T' \ -V .
s\ r ‘| 780 “Jn_ "“?‘_ ( ML'L— N)_"\ "5 (MZT+ N ) (A TII 6)

kN .

In order to calculate A matrix elements we need

det (M -5k




[(N"';\‘“)(Nlt';i") - Nl.\“ﬂ“‘t' . )l (Mn_ ;\L'[)‘(N..‘:\Lr.\)

(A.VITT.7)

where

The A( T —s ¥'K™) and A('ﬁq:——b K*k~) amplitudes are

-1

l/l

== g e, . ‘

Alas — k') = Y1 ( *) My [(Hu"\"o (Mu"\’*é) h H:’z
| ded (Hj-i k)

(A.VITI.B)
1 \/
= (k. )M
Aln 17 whe)e ) <My

[(N-i) (m SLY - N
d‘Q)Ll:\_l_‘.\k) n ) ﬂ_—}

(A.VIIT.9)

In our problem we have 1 = 1, ® and T = o, s* resonances
decaying into the (K'K™) finsl state.

In this case the Mij
and Nij elements are given in terms of resonance paraneters
by:

T L i_l T-vl W
STR/AR T AR i) N ANUL . Vil NS VA [\l
~ ~ 11} v o_ L) _ ! ‘.\,,L_

\M8 S V"\‘S S g S
-1 ( ?f)l Yl 9y ‘)?F
N=LU". | . As L - (ﬁs')ﬂ L -.mil__Lf-
~ 2 1l e Ty -t M-

(A.VITI.10)
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The A( v — K'K”) and A( i K'K™) amplitudes

becomes:
o gk )? Voo ,{ § T a2 S wp T
Aln > w) = & - s+ Js mo~s -] (qil) k L4 k, {!
wie) 3o, -p) L8 L95h) 17 JS) ]J
(A.VITI.11)
A
M \L l l‘\ lu |‘ |||| k; =
A‘T\"l—-ﬁ \L-\L)" ( ) &\N\ - S- -' ﬂsb) \"T.+ (%s# )zku}}
MUL-

(A.VIII.12)

where do_}( tji ':\,6\) is given by eq. (A.VITT.10). Note

that for k, = k_, A( Wi — K'K7) and (T — K*K™)

reduce to normal Breit-Wigner forms.
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