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Abstract

The topological structure of a manifold can be effectively revealed by studying the

critical points of a nice function assigned on it. This is the essential motivation of

Morse theory and many of its generalisations from a modern viewpoint. One fruitful

direction of the generalisation of the theory is to look at the zeros of a closed 1-form

which can be viewed locally as a real function up to an additive constant, initiated

by S.P. Novikov, see [32] and [33]. Extensive literatures have been devoted to the

study of so-called Novikov theory on closed manifolds, which consists of interesting

objects such as Novikov complex, Morse-Novikov inequalities and Novikov ring.

On the other hand, the topology of a space, e.g. a manifold, provides vital

information on the number of the critical points of a function. Along this line, a

whole different approach was suggested in the 1930s by Lusternik and Schnirelman

[25] and [26]. M. Farber in [9], [10], [11] and [12] generalised this concept with

respect to a closed 1-form, and used it to study the critical points and existence of

homoclinic cycles on a closed manifold in much more degenerate settings.

This thesis combines the two aspects in the context of closed 1-forms and at-

tempts a systematic treatment on smooth compact manifolds with boundary in the

sense that the transversality assumptions on the boundary is consistent thoroughly.

Overall, the thesis employs a geometric approach to the generalisation of the

existing results.
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Introduction

Here we introduce the essential settings for the whole thesis. In particular, we recall

the Morse nondegenerate condition that is central to our studies. Then we outline

the content of each chapter and potential contribution to the field.

The manifold we use in this thesis is always smooth, meaning it is equipped with

a differentiable structure of class C∞. Let f : M → R be a real function on M , the

critical points of f are the points in M where the derivative df is singular, i.e. in

local coordinates (x1, . . . , xn), p ∈M is critical if

df(p) =
∂f

∂x1

(p)dx1 + · · ·+ ∂f

∂xn
(p)dxn = 0,

and that is
∂f

∂xi
(p) = 0 for all i = 1, . . . , n.

we denote the set of critical points of f as Crit f .

At each critical point p of f , we can define a symmetric bilinear form f∗∗ :

TpM × TpM → R over the tangent vector space as

f∗∗(v, w) = Vp(W (f)),

where v, w ∈ TpM are tangent vectors, and V,W are trivial extensions of v, w

as vector fields on M respectively. We call f∗∗ the Hessian of f at p. In local

coordinates with x = (x1, . . . , xn) ∈ Up where Up is a neighbourhood of p, we can

write V =
∑

i ai
∂

∂xi
and W =

∑
j bj

∂

∂xj
where ai, bj are constant functions, so that

the Hessian f∗∗ is written in the following matrix form:(
aibj

∂2f

∂xi∂xj
(p)

)
.

Then we call a critical point p of f Morse nondegenerate, if the Hessian f∗∗ at

p is nondegenerate, meaning that its matrix form has full rank n. Now the Morse

vi
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Lemma, in [28, Chapter 2] for instance, tells us that with such nondegeneracy condi-

tion, there exists a suitable local coordinate system (y1, . . . , yn) in a neighbourhood

U of p with yi(p) = 0 for all i, and

f(q) = f(p)− y2
1(q)− · · · − y2

λ(q) + y2
λ+1(q) + · · ·+ y2

n(q),

for all q ∈ U , where λ is a constant.

Then f∗∗ can be diagonalised to the following form:

−2
. . .

−2

2
. . .

2


.

Moreover, the number λ of negative eigenvalues is independent of the choice of

local coordinate systems. Again, we refer the details to [28, Chapter 2]. Therefore,

for each critical point p, we associate it with an index ind (p) as the number of

negative eigenvalues of the Hessian f∗∗ at p. If all the critical points of f are Morse

nondegenerate, we call f a Morse function.

Now we state the foundational result of Morse theory that relates the homotopy

type of a closed manifold M to the critical points of an associated Morse function

f in the following theorem of Morse:

Theorem 0.0.1 If M is a closed manifold and f is a Morse function on M , then M

has the homotopy type of a CW-complex, with each cell of dimension i corresponding

to a critical point of f with index i.

The theorem effectively summarises the beauty and simplicity of the original

Morse theory, and together with the following Smale transversality condition, we

can read off the cellular structural information of a manifold by simply looking at

the critical points and the gradient flow of a Morse function on the manifold.

Given a Riemannian metric 〈·, ·〉 on M , we have a gradient vector field v of f

satisfying df(u) = 〈v, u〉 for any vector field u ∈ TM of M . v generates a global
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flow on M , let x · t be a trajectory of x following the flow, we introduce the following

two objects from dynamics:

W s(p, v) = {x ∈M : x · t→ p as t→ +∞}

is called the stable manifold of p and similarly

W u(p, v) = {x ∈M : x · t→ p as t→ −∞}

is called the unstable manifold of p. A function f is said to be transverse or satisfy the

Smale transversality condition if any stable manifold W s(p, v) and unstable manifold

W u(q, v) always intersect transversely (or empty), with p, q ∈ Crit f . We elaborate

this property in the actual studies.

In the Morse situation, topics on the category of manifolds with boundary has

been explored with a strong analytic flavour. [4], [43] and [1] have all produced

analogous results in Morse inequalities and relative chain complexes via an analytic

approach of Witten. In particular [4] has obtained such results in very degenerate

conditions for a closed 1-form. In the category situation, [6] and [30] study the

relative version of the classical category.

The thesis is implicitly divided into two parts, part one, made up by the first

five chapters, is devoted to the development of a relative Morse-Novikov theory

with respect to a Morse function or a Morse closed 1-form, and beyond, namely, the

Novikov-Bott situation; whereas the sixth chapter alone as part two describes the

Lusternik-Schnirelman category approach to the issue of critical points in a relative

setting. We give a more detailed breakdown in the following:

Chapter 1 sets up the boundary assumptions of a Morse function f for a manifold

M with boundary ∂M , and verify these assumptions by identifying the correct

homotopy type of M . It goes further to the construction of the Morse chain complex

which lays the foundation for analoguous works in the closed 1-form case.

Chapter 2 continues on the Morse chain complex in a circle-valued function which

is equivalent to a rational closed 1-form, where we employ the inverse limit technique

of [38]. In Chapter 3, after a rational approximation of a general closed 1-form, we

are able to regenerate the construction of boundary maps in Chapter 2, together

November 24, 2009
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with the Latour trick, we obtain a relative Novikov complex and its chain homotopy

equivalence with the simplicial chain complex.

On the one hand, despite the introductory role of the first three chapters to a

relative Morse/Novikov chain complex, the main challenge there is the geometric

exposition of how to make the boundary condition compactible with the classical

Morse deformation retraction and the chain homotopy. Meanwhile, it is also vital

for the exact sequences relating the absolute Morse/Novikov complexes with the

relative one, which we detail in Chapter 4.

In Chapter 4, we construct a Morse function/closed 1-form that satisfies the

boundary assumptions and derive long exact sequences relating the relative homol-

ogy with the absolute ones. This leads us further to qan improved Morse-Novikov

inequalities.

Then in Chapter 5, we attempt to generalise the nondegeneracy condition in the

sense of Bott by constructing a spectral sequence, and pick up the other story line

in the development of Morse inequalities. We introduce the no homoclinic cycle

condition there in order to complete the geometric picture.

In Chapter 6, after departing from the conventional Morse nondegeneracy con-

dition in Chapter 5, we switch to the Lusternik-Schnirelman category theory with

respect to a closed 1-form, which allows rather degenerate behaviour of the critical

set. We extend Farber’s work to the relative case and show the link to the absolute

ones by an inequality.

Chapter 7 concludes the whole thesis.

November 24, 2009
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Chapter 1

A real Morse function on a

manifold with boundary

In this first chapter, we set up the assumptions on the boundary of our manifold for

the whole thesis, and test them on a real function to get the homotopy equivalence

statement and subsequent Morse inequalities, using standard techniques. More-

over, since a closed 1-form is viewed locally as a real function, the validity of these

assumptions lays the foundation for the rest of the development of the relative

Morse-Novikov theory.

1.1 Set up

Our chief interest here is in the category of smooth compact manifolds with bound-

ary, of which closed manifolds are just special cases when the boundary is empty.

Let M be such a manifold of dimension m, and we denote its boundary as ∂M .

Choose a smooth function f : M → R with Morse nondegenerate critical points,

i.e. a Morse function. Given a Riemannian metric 〈·, ·〉 on M , we equip M with

a gradient vector field v of f as dfx(u) = 〈vx, ux〉 for each x ∈ M and vector

field u : M → TM . The classical Morse theory empowers one to describe the

cellular structure of a closed manifold M by simply studying the critical points of a

Morse function on M and the trajectories of its negative gradient vector field. Here,

however, the flow generated by v is not necessarily defined globally on M × R, so

1



1.1. Set up 2

the next thing we want to do is to recover a global flow.

To achieve this, we firstly extend M to a larger manifold. Consider the boundary

∂M , and we have the product ∂M× [−1, 1] which inherits the product differentiable

structure of ∂M and [−1, 1] ⊂ R, then choose an interior collaring for ∂M in M ,

and identify it with the positive half ∂M × [0, 1] of ∂M × [−1, 1]. In particular, we

have ∂M ∼= ∂M × {0}. Now define M+ = M ∪∂M ∂M × [−1, 0], and f can also be

extended smoothly to M+. With a slight abuse of notation, we use the same f for

this function on M+. Fixing a Riemannian metric on M+, we have a gradient vector

field on M+. Furthermore, this gradient can be made to vanish near ∂M ×{−1} in

a smooth fashion, denoted v+. Having done all these, the negative flow generated

by −v+ is complete on M+×R. To be precise, we denote Φ : M+×R→M+ as the

negative flow generated by −v+ and often use the shorthand notation x · t = Φ(x, t).

Remark 1.1.1 With the latter Riemannian metric restricted to M , v+|M will also

be a gradient vector field of f |M restricted to M .

Suppose we have the product differentiable structure on a tubular neighbourhood

∂M × [−1, 1] of the boundary ∂M in M+, then any two local coordinate systems

will have the nth coordinate independent of the rest. Let (U, x1, . . . , xn−1, t) and

(V, y1, . . . , yn−1, s) be two local coordinate systems centred at z ∈ ∂M , then

−∂f
∂t

(z) ≤ 0⇐⇒ −∂f
∂s

(z) ≤ 0.

And s can be seen as a multiple of t by some positive function of x: s = K(x)t

because for any two coordinate systems, they have to respect the embeddings ∂M ×

[−1, 1] ↪→ M+ with ∂M × [0, 1] ⊂ M , where the orientation of the last coordinate

[−1, 1] is fixed. Bearing this in mind, we have the following assumptions on f .

Assumptions on f

After choosing a differentiable structure on M+, we assume the following:

A1 The function f has no critical point on ∂M . This implies that f has no critical

points in a neighbourhood of ∂M . Without loss of generality we assume that f

has no critical points in the interior of the entire collaring ∂M × [−1, 1].

November 24, 2009



1.1. Set up 3

A2 By the construction of M+, we have a readily chosen tubular collaring ∂M× [−1, 1]

of ∂M . We assume the partial derivative ∂f
∂t

, where t is the coordinate for [−1, 1],

is a smooth function on ∂M × {0} and zero is a regular value of ∂f
∂t

(x, 0). Denote

Γ = {x ∈ ∂M : ∂f
∂t

(x, 0) = 0}, this is equivalent to say Γ is a 1-codimensional

closed submanifold of ∂M .

Definition 1.1.2 We define the exit set B of f as:

B = {x ∈ ∂M : −∂f
∂t

(x, 0) ≤ 0} ⊂ ∂M.

A3 Fix a tubular collaring of Γ in ∂M , Γ× [−1, 1] ⊂ ∂M , so that Γ× [−1, 0] ⊂ B with

Γ×{0} ∼= Γ. Then when a point lies in the cubical neighbourhood of Γ in M+, we

write it in local coordinates:

(x, s, t) ∈ Γ× [−1, 1]× [−1, 1],

where x = (x1, · · · , xm−2), then we assume

∂f

∂s
(x, 0, 0) > 0.

Notice that the conditions A1,A2 and A3 do not depend on the particular

choice of collarings. However, in order to get that B serves as the exit set for the

negative gradient flow, we need a restriction on the gradients. We formalise the idea

by the following notion:

Definition 1.1.3 Let f be a Morse function that satisfies A1,A2 and A3. A

gradient v of f is called transverse on ∂M if the Riemannian metric is a product

metric on Γ and on ∂M with respect to the same tubular neighbourhoods as in A2

and A3.

The above definition can be easily adapted to Morse 1-form in the subsequent

chapters.

This will guarantee the negative flow of such gradient exits from the interior of

B only. We elaborate this property in Section 1.2.

November 24, 2009



1.1. Set up 4

Remark 1.1.4 We will keep this particular choice of gradient vector field on man-

ifold with boundary consistent throughout the thesis. So all the gradient vector

fields on manifolds with boundary is automatically chosen to be transverse in the

rest of the thesis, unless it is otherwise specified.

Remark 1.1.5 The enlargement of M to M+ is technically an auxiliary consid-

eration, to ensure the negative flow is defined over the whole original manifold M

including its boundary and so improves the description of the “flowing out” nature

of B.

Remark 1.1.6 The functions satisfy assumptions A1 and A2 are generic, we can

always obtain such ones by small perturbation near the boundary. Whereas A3 has

a more restrictive nature, in return, it guarantees the trajectories of the gradient v

exit through B without going back and forward, which provides the existence of some

continuous time-keeping function for each point exiting M . We shall elaborate this

fact in the next section. We are aware that similar conditions have been introduced

in the literature for the construction of relative Morse complex and Morse homology,

compare [4], [1] and [8]. Our assumptions are similar to the ones in [4], whereas [1]

takes a different model by assuming the flow will never go out of M but travel along

the boundary instead.

Remark 1.1.7 B is closed in ∂M , and the assumption A2 means Γ as the boundary

of B is also smooth. In fact, the whole boundary ∂M can be viewed as the union

of two closed subsets, namely, the exit set B and the entry set T according to the

directions of the trajectories of v, i.e. ∂M = B ∪ T and Γ = B ∩ T . One can also

consider the case Γ = ∅, in which case we generalise the statements in Milnor [29]

by allowing f to be nonconstant on B.

We stick to these boundary assumptions on manifolds with boundary throughout

the thesis.
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1.2. Homotopy type 5

1.2 Homotopy type

Primarily, we want to understand the homotopy type of a manifold with boundary

under the evaluation of a Morse function. In this section, we give a geometric account

of the problem. The deformation retraction of the manifold essentially comes from

the negative gradient flow of the underlying function, similar to the one described

in [28].

Notation 1.2.1 Suppose c ∈ R is a regular value of f on M , we denote M c =

f−1(−∞, c] and Bc = B ∩M c.

The new issue here is mainly to describe the exiting process of the negative flow

via B, whereas the handle body argument concerning the interior of the manifold

will be taken care of in the same fashion as described in [28, Theorem 3.2, page 14].

Theorem 1.2.2 Let M be a manifold with boundary ∂M , and f : M → R be a

Morse function on M with exit set B ⊂ ∂M and satisfying conditions A1, A2 and

A3. Moreover, if f has no critical points in M c, then Bc is a deformation retract of

M c, M c ' Bc.

Proof : Let v+ be the gradient vector field of f and Φ : M+ × R→ M+ be the

negative flow of −v+. Now because f has no critical point in M c, for any x ∈ M c,

according to Lemma 1.2.3, there exists a function β : M c → R such that

Φ(x, β(x)) ∈ Bc

Also by Lemma 1.2.3 below, β is well-defined and continuous, and we define the

deformation retraction r : M c × [0, 1]→M c as:

r(x, t) = Φ(x, tβ(x)),

for x ∈ M c and 0 ≤ t ≤ 1, then r0 is the identity map and r1 deformation retracts

M c into Bc. 2

Lemma 1.2.3 Suppose f has no critical points on M c, then there exists a real
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1.2. Homotopy type 6

function β : M c → R such that for each x ∈M c,

Φ(x, β(x)) ∈ Bc.

Proof : Define β : M c → R as

β(x) = min{t : x · t ∈ B}.

We want to show β is well-defined by arguing its existence and uniqueness, and

that β is continuous (in fact, in this case, β is smooth).

Choose a point x ∈M c, let γ : R→M c be the integral curve of −v+, with initial

condition γ(0) = x. We want to show by contradiction that after some finite time

tx ∈ R, γ(t) will be permanently out of M for any t > tx. Now γ′(t) = −v(γ(t)),

and

(f · γ)′(t) = df(γ(t) · γ′(t) = −df(γ(t)(v(γ(t)) = −〈v, v〉 < 0,

according to A1.

Then by the compactness of M c, there exists K > 0 such that (f · γ)′(t) =

−〈v(γ(t)), v(γ(t))〉 ≤ −K < 0 for t ∈ R. Suppose on the other hand, for all t ∈ R,

γ can be extended such that γ(t) ∈M c, i.e. the trajectory lives in M c forever, then

lim
t→∞

f · γ(0)− f · γ(t)

t
= 0,

since there always exists some L > 0 such that f · γ(0) − f · γ(t) < L by the

compactness of M c. This contradicts to the fact that, by Mean Value Theorem,

there always exists some s such that

−f · γ(0)− f · γ(t)

t
= (f · γ)′(s) ≤ −K,

for any interval [0, t]. Therefore, there exists t ∈ R, such that γ(t) /∈M c, according

to the Escape Lemma in [24, p.446, Lemma 17.10]. Now by Intermediate Value

Theorem, we conclude that there exists t0 ∈ R, such that γ(t0) ∈ B.

Now we want to show that the map β is continuous. Consider the negative

gradient flow Φ of −v+, observe that for any point x ∈ IntM c there exists tx ∈ R
November 24, 2009
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and bx ∈ IntB such that x · tx = bx. This is true as the assumptions and the choice

of B exclude the possibility that any points in the interior would reach Γ. Namely,

Γ = T ∩ B is the intersection of the entry set and the exit set, and we know from

assumption A3 that
∂f

∂s
(x, 0, 0) > 0 for (x, 0, 0) ∈ Γ× [−1, 1]× [−1, 1]. Hence with

the product structure of the Riemannian metric on ∂M× [−1, 1], γx(t) ∈ T × [−1, 0]

for any t < 0 and γ′x(0) ∈ TxB, where γx : R→M+ is the integral curve with initial

position γ(0) = x. This insists that any point (x, 0, 0) ∈ Γ × [−1, 1] × [−1, 1] has

to come from M+ −M outside of M and flows towards B. The following figure

demonstrates this fact graphically.

Figure 1.1: Gradient vector field and flow at the cubical neighbourhood of Γ

Now for x ∈ Γ, β is continuous near Γ by observing that for any ε > 0, x · ε /∈

M , and because the continuity of the flow, there exists a sufficiently small open

neighbourhoods Ux of x and δx such that for any y ∈ Ux there exists t ∈ [ε−δx, ε+δx]

with y · t /∈M .

Therefore, we are left to show the continuity of β : M c → R for x /∈ Γ.

Choose small open neighbourhoods U of x in M c and V of bx in M+ and an

open interval I ⊂ R containing tx, such that Φ(U × I) ⊂ V . In local coordinates

x = (x1, . . . , xm) and bx = (y1, . . . , ym−1, 0) of Rm in U and V , respectively.

Now let π : Rm → R be the projection of Rm to the last coordinate, and compose

function h = πΦ : U × I → R, then h(x, tx) = 0 and
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1.2. Homotopy type 8

∂h

∂t
=
∂(πΦ)

∂t
= d(πΦ)(

∂

∂t
) = dπ

(
dΦ

∂

∂t

)
= dπ

∂Φ

∂t
.

Now for any (x, t) ∈M+×R, ∂Φ
∂t

(x, t) = −v(Φ(x, t), therefore for (x, tx) ∈M c×R

with x · tx = bx ∈ IntB:

∂h

∂t
(x, tx) = dπ

(
− v(Φ(x, tx))

)
< 0.

by assumption A2 and the choice of B, where −∂f
∂t

< 0.

Therefore, by Implicit Function Theorem, there exists open neighbourhoodsW ⊂

U of x0 and L ⊂ I of t0 and a smooth function g : W → L such that for each

(x, t) ∈ W × L,

h(x, t) = 0 (i.e., x · t ∈ IntB)⇐⇒ g(x) = t

Therefore, the lemma is true. 2

Lemma 1.2.4 Suppose f−1[a, b] contains no critical points of f for −∞ < a < b <

∞, then Bb ∪Ma is a deformation retract of M b, M b ' Bb ∪Ma.

Figure 1.2: Deformation with corners

Proof : Let Φ be the flow of −v, then we define E and F as subsets of f−1[a, b]

as
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E = {x ∈ f−1[a, b] : there exists t with x · t ∈ B ∩ f−1[a, b]}

and

F = {x ∈ f−1[a, b] : x · t ∈ f−1({a}) for some t, and x · t′ /∈ B for all t′ < t}.

By Proposition 1.2.5 below, we know that both E and F are closed subsets of

f−1[a, b]. Then according to Lemma 1.2.3 we have a real continuous function β on

E, and by the construction of F there exists real continuous function α : F → R

such that for any x ∈ F , x · α(x) ∈ f−1({a}). Clearly α and β agree on E ∩ F , and

since they are both closed, we can paste the two functions together, then we obtain

a continuous function h : f−1[a, b] → R, with h|E = β and h|F = α, such that for

any x ∈ f−1[a, b],

Φ(x, h(x)) ∈ Bb ∪Ma.

Define the deformation retraction r : M b × I →M b as

r(x, t) = Φ
(
x, th(x)

)
It is clear that r0 is the identity map and r1 deformation retractsMa intoM b∪Ba.

2

Now we are left to show both E and F are closed.

Proposition 1.2.5 Both E and F are closed.

Proof : Let x ∈ f−1[a, b] \ E, then x · tx ∈ (Bb −B ∩ f−1[a, b]) for some tx ∈ R.

Since Bb −B ∩ f−1[a, b] is open, we can always find a small open neighbourhood of

x · tx disjoint from B ∩ f−1[a, b], and using the continuity of Φ, there exists a small

open neighbourhood of x disjoint of E. Hence, E is closed.

There is a similar argument for F . Namely, let x ∈ f−1[a, b] \ F , i.e. there

exists no t ∈ R such that x · t ∈ f−1({a}), which means x · tx ∈ Int (B ∩ f−1[a, b])

for some tx ∈ R, and here IntB ∩ f−1[a, b] is open, we can always find some open
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neighbourhood of x · tx disjoint from f−1({a}), and again using the continuity of Φ,

there exists an open neighbourhood of x in f−1[a, b] \ F , so F is closed. 2

Lemma 1.2.3 and Lemma 1.2.4 and their proofs together actually can tell us

more of the points flowing out via B:

Corollary 1.2.6 If x ∈ M and x · tx ∈ B for some tx ∈ R, then there exists a

continuous function βx : Ux → R on a neighbourhood Ux of x, such that for a point

y ∈ Ux, the function maps y to a real number βx(y) with y · βx(y) ∈ B.

Remark 1.2.7 Corollary 1.2.6 describes the local behaviour of the points exiting

through B, its usage will be exhibited in details when we study the Lusternik-

Schnirelman category with respect to a closed 1-form in chapter 6.

Lastly, we need a statement about the homotopy type of an interval of f−1

containing critical points of f , e.g. in Milnor’s Morse Theory [28]:

Proposition 1.2.8 Let p be a critical point of f : M → R and f(p) = c, choose

ε > 0 small enough such that f−1[c + ε, c − ε] has the only critical point p. Then

M c+ε ' Bc+ε ∪M c−ε ∪ eλ, where λ is the index of p. 2

Together, the following theorem states the homotopy type of a manifold with

boundary on which the assigned Morse function satisfying assumptions A1,A2 and

A3:

Theorem 1.2.9 Let M be a manifold with boundary ∂M , f : M → R be a smooth

Morse function and B be the exit set of f in ∂M , suppose f satisfies assumptions

A1, A2 and A3, then (M,B) has the homotopy type of a relative CW-complex,

with one cell of dimension λ attached to (M,B)(λ−1) for each critical point of index

λ, where (M,B)(k) is the k-skeleton of M relative to B. 2

1.3 Chain complex

After the intuitive geometric portrayal in the preceding section, we want to move to

some more abstract yet computable level of the issue. In this section, we construct

the Morse complex for a manifold with boundary and show its chain homotopy
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equivalence with the simplicial chain complex. The terminology introduced in this

section will be extensively used in the rest of the thesis. The essential techniques

are first given in [38].

With a fixed Riemannian metric, let Φ be the negative gradient flow on M for

a given Morse function f , we shall start with the following core notions for the

construction of the chain complex:

Definition 1.3.1 (Stable and unstable manifolds of Φ) Let p be a nondegen-

erate critical point of f , then the stable manifold W s(p, v) at p is defined as:

W s(p, v) = {x ∈M : x · t→ p as t→ −∞},

and similarly, the unstable manifold W u(p, v):

W u(p, v) = {x ∈M : x · t→ p as t→ +∞},

Where x · t = Φ(X, t).

Suppose the critical point p has index i, then the stable manifold W s(p, v) is a

i-dimensional immersed submanifold of M , and the unstable manifold W u(p, v) is a

(m− i)-dimensional immersed submanifold of M . For a detailed account regarding

the immersion of the stable and unstable manifolds we refer to [3, Chapter 6]. Fur-

thermore, we need the following transversality condition on gradient vector field v

of f :

Definition 1.3.2 We say a gradient vector field v of f is transverse if for any critical

points p, q with ind q ≤ ind p + 1, the unstable manifold W u(p, v) of p intersects

with the stable manifold W s(q, v) of q transversely.

Remark 1.3.3 The transversality condition of v is a generic property, according

to Smale [39]. Because of the compactness of our manifold, by the techniques in-

troduced in [29, Chapter 5, Theorem 5.2], we can and will always have it by some

small perturbation of any given gradient vector field. However, when it comes to

circle-valued functions and closed 1-forms in the coming chapters, some Baire type
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Figure 1.3: Self-indexing rearrangement

argument will be needed. Moreover, the transversality property is obviously pre-

served when switching to the negative gradient.

Now if v is transverse, [29] tells us that the function f can be perturbed locally

and enjoys the self-indexing property, namely, the critical points of f can be rear-

ranged according to their indices so that for p, q ∈ Crit f with ind (p) > ind (q), then

f(p) > f(q). See Figure 1.4 above.

However, a potential problem can arise if the space between the exit set and

entry set of the boundary is too narrow as depicted in the first picture of Figure 1.4.

We need to remove such obstruction by pushing up the entry set so that we have

enough room to bring the critical points with higher index above the lower ones.

See the second picture of Figure 1.3 below. Note that this may change the function

f on T , but the cellular structure remains the same.

Then we can construct a filtration of M as:

B = M−1 ⊂M0 ⊂M1 ⊂ · · · ⊂Mm−1 ⊂Mm = M,

where Mi − IntMi−1 contains only the critical points of index i.

Consider the relative homologyHi(Mi,Mi−1) of the filtration, according to Propo-

sition 1.2.8,

Hi(Mi,Mi−1) ' Hi(Mi−1 ∪ ei1 ∪ · · · ∪ ein,Mi−1) = Zn,
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Figure 1.4: Pushing up the entry set T

where eik is a stable disc containing a critical point of index i and n is the number

of such critical points in M .

So we define the ith chain group Ci(M,B, f, v) = Hi(Mi,Mi−1), a free abelian

group finitely generated by critical points of index i, and boundary map ∂ : Ci(M,B, f, v)→

Ci−1(M,B, f, v) to be the connecting homomorphism of the triple (Mi,Mi−1,Mi−2).

Next, we describe the geometric interpretation of this boundary map:

Definition 1.3.4 (Orientation of the manifolds) Choose an orientation ofW s(p, v)

and an orientation of the normal bundle of W u(p, v) such that its projection to p is

consistent with the orientation of W s(p, v) at p. Also we call the orientation of the

normal bundle of W u(p, v) coorientation. Consider the trajectory γ of −v between

p, q where ind p = i = ind q + 1, let X1, · · · , Xi ∈ Tγ(t)M represent the coorien-

tation of W u(q, v), then if the projection of γ′(t), X1, · · · , Xi onto Tγ(t)W
s(p, v) is

consistent with the orientation of W s(p, v), denote ε(γ) = 1 otherwise ε(γ) = −1.

Definition 1.3.5 (Incidence number between critical points) Let p : M̃ →

M be a regular covering space with covering transformation group G, also denote

the lift of the Morse function f and its gradient v as f̃ and ṽ respectively, then we

have the covering chain complex C∗(M̃, B̃, f̃ , ṽ) as:

Ci(M̃, B̃, f̃ , ṽ) = Hi(M̃i, M̃i−1),

and it can be seen as a ZG module as there is a group action of G on M̃ .
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Choose for every critical point p of f exactly one lift p̃ in M̃ , then we define the

incidence number [p̃ : gq̃] ∈ ZG as

[p̃ : gq̃] =
∑

ε(γ) · g,

where ind p̃ = ind q̃+1, g ∈ G and the sum is taken over the finite set of trajectories

between p̃ and gq̃.

Now for each pair p and q, regardless the choice of lift, there are only finite com-

ponents in the summation
∑

g∈G = [p̃, gq̃]q̃, as the number of trajectories between p

and q in the base is finite.

Definition 1.3.6 (Boundary map) After choosing a lift p̃ for each critical point

p ∈ Crit f in the covering space, we adapt the results in [29, pp.86-89] then the

boundary map ∂ : Ci+1(M̃, B̃, f̃ , ṽ)→ Ci(M̃, B̃, f̃ , ṽ) can be identified as:

∂(p̃) =
∑

q∈Crit if

∑
g∈G

[p̃ : gq̃]q̃

where [p̃ : gq̃] is the incidence number of p̃ and gq̃ by counting the trajectories from

p̃ to gq̃ with respect to orientation. Note it is well-defined as
∑

g∈G[p̃ : gq̃] ∈ ZG

and ∂2 = 0.

Now we successfully relate the chain complex of the filtration to the chain com-

plex of the CW -complex produced in the end of section 1, and we state it in the

following definition:

Definition 1.3.7 The Relative Morse-Smale complex of a Morse function f on a

manifold with boundary is given by:

CMS
i (M̃, B̃, f̃ , ṽ) =

⊕
p∈criti(f)

ZG

as a ZG-module with generators corresponding to the critical points of the function

f .

Before moving on, we want to modify the filtration of the manifold to prepare

the construction of the chain homotopy map between the simplicial chain complex
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and the Morse complex, this idea first appeared in [38] and is essentially useful for

our construction of the chain complexes in the rest of the thesis.

Definition 1.3.8 (Modification of the filtration) To begin with, we need a map,

say Θ : M ×R→M similar to a complete flow which agrees with the gradient flow

of −v except in a sufficiently small neighbourhood of ∂M . Recall the bigger mani-

fold M+ in the beginning of Section 1, the gradient vector field v+ of f : M+ → R

vanishes at ∂M × {−1}. This vector field generates a global flow on M+. Now we

retract M+ back to M and the flow is the Θ we wanted, in particular, notice that

Θ(x, t) = x for (x, t) ∈ ∂M × {−1} × [0,∞). Denote Θt(x) = Θ(x, t) and define:

M t
i =

Θt(Mi) if t ≥ 0⋃
0≥s≥t Θs(Mi) if t < 0

Now since each Θt is a diffeomorphism of M , {M t
i }ni=−1 is also a filtration of M ,

and Hi(M̃
t
i , M̃

t
i−1) ∼= Hi(M̃i, M̃i−1) induced by inclusion.

Note that for t > s we have M t
i ⊂M s

i , and for very large t, M t
i contains mainly

B and the stable manifolds W s(p, v) with ind p ≤ i, and for very negative t, M t
i

contains mainly the complement of the union of unstable manifolds W u(p, v) with

ind p ≥ i + 1. And this actually suggests a direct system jst : H∗(M̃ t
i ,

˜M t
i−1) →

H∗(M̃ s
i ,

˜M s
i−1) where each jst is an isomorphism and commutes with the boundary

maps:

Hi(M̃
t
i , M̃

t
i−1)

∂i //

jst
��

Hi−1(M̃ t
i−1, M̃

t
i−2)

jst
��

Hi(M̃
s
i , M̃

s
i−1)

∂i // Hi−1(M̃ t
i−1, M̃

t
i−2)

So let us define

Ci = M −
⋃

p,ind p≥i+1

W u(p, v),

then

Hi(C̃1, C̃i−1) = lim
→jst

Hi(M̃
t
i , M̃

t
i−1) ∼= Hi(M̃i, M̃i−1) ' CMS

i (M̃, B̃, f̃ , ṽ)
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Remark 1.3.9 In the language of spectral sequence, Hi(C̃i, C̃i−1) can be seen as

the E1 term of the spectral sequence, derived from the above filtration:

B ⊂ C1 ⊂ · · · ⊂ Cn = M.

Definition 1.3.10 A triangulation ∆ of M is said to be adjusted to v the gradient

vector field of f if the intersection of every i-simplex of ∆, σi, with the unstable

manifolds W u(p, v) of v is transverse, for all p with ind p ≥ i. Such a triangulation

is called an adjusted triangulation to v. We use the notation ∆ for a triangulation.

We denote the simplicial chain complex of a triangulated manifold M as

C∆
∗ (M,∂M)

The existence of adjusted triangulation is plenty, and [38] outline an inductive

construction starting from the 0-skeleton, here we only need to care about the exit

B, but since assumptions A1,A2 and A3 ensure the transversality of the flow to

B, the construction is essentially provided in [38].

For the convenience of the reader, we sketch here an inductive construction of

such triangulation in a general setting:

Given a random triangulation ∆, we show by a small perturbation, namely, a

diffeomorphism ψ : M →M isotopic to the identity, such that ψ∆ is adjusted to v.

Suppose we begin with B, since the assumptions A1,A2 and A3 have guaranteed

the transverse intersection of the exiting flow with B, the original triangulation will

do for B. Now for the relative 0-skeleton (M,B)(0), thanks to the compactness of M ,

ψ0 : (M,B)(0) → (M,B)(0) can be chosen by hand such that all the finitely many 0-

simplices composing with ψ0 are transverse to a finite number of all the unstable the

unstable manifolds. Suppose this has been done up to (k− 1)-skeleton (M,B)(k−1),

so that every i-simplex of ψk−1∆ with i ≤ k − 1 is transverse to unstable manifolds

of critical points with index bigger or equal to k − 1. Then the transversality on

k skeleton (M,B)(k) can be done inductively: ψk∆ is already adjusted near the

boundary of each k-simplex, so we leave a small neighbourhood of (k − 1)-skeleton

unchanged under ψk, and modify the rest of each simplex in a smooth fashion so

then ψk∆ is readily adjusted to v as intended.
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Now we are ready to define a chain map between the relative simplicial chain com-

plex of the manifold C∆
∗ (M̃, ∂M̃) and its relative Morse-Smale complex CMS

∗ (M̃, B̃, f̃ , ṽ)

induced by the Morse function f :

Definition 1.3.11 (Chain map ϕv) Denote the i-skeleton of the triangulated man-

ifold as M (i), and assuming an adjusted triangulation ∆ we have inclusion M (i) ⊂ Ci,

because σ ∩W u(p, v) = ∅ for i-simplex σ and critical point p with ind (p) ≥ i + 1

as transversality implies dim(σ ∩W u(p, v)) = −1. Now view the simplicial complex

as a cellular chain complex which shares the same homology, namely, the ith chain

C∆
i (M,B) = Hi(M

(i),M (i−1)), the above inclusion induces a map on this homology:

Hi(M
(i),M (i−1))→ Hi(Ci, Ci−1) which commutes with ∂ and hence

ϕv : C∆
∗ (M,B)→ CMS

∗ (M,B, f, v)

is well-defined.

Now with dimσ = ind p, the intersection σ ∩W u(p, v) is a finite set of points by

the transversality condition as dim(σ ∩W u(p, v)) = 0. By fixing an orientation of

the triangulation ∆, these points actually function in a book-keeping role on how

each free generator σ of Hi(M
(i),M (i−1)) is embedded in Ci. To be precise, consider

the case of only one critical point p of index i, we have the isomorphism of the

homology

CMS
i (M,B, f, v) = Hi(Ci, Ci−1) ' Hi(Mi−1 ∪D(p) ∪W u(p, v),Mi−1 ∪ (ei(p)− p))

where

ei(p) = W s(p, v) ∩ (Mi − Int (Mi−1))

is the i-disc of critical point p. In the case of the latter homology, the image ϕv(σ)

of σ matters only in the intersection with the unstable manifold W u(p, v). Now

W u(p, v) is shrinking along the modified flow Θ in Definition 1.3.7, Θ(ϕv(σ)) arrives

next to the i-disc ei(p) of p in finite time, So depending on the orientation, each

intersection point of σ∩W u(p, v) corresponds to a copy of ei(p) up to sign. Therefore

we lift everything to the covering and use the same notation ϕv , then we obtain a

similar incidence number [σ : p] ∈ ZG after comparing σ with the coorientation of

W u(p, v):
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ϕv(σ̃) =
∑

p∈Crit f
ind p=dimσ

∑
g∈G

[σ̃ : gp̃]p̃.

With the standard boundary map ∂∆ : C∆
∗ (M̃, B̃)→ C∆

∗−1(M̃, B̃), it is clear the

following diagram commutes:

C∆
∗ (M̃, B̃)

ϕv //

∂∆

��

CMS
∗ (M̃, B̃, f̃ , ṽ)

∂
��

C∆
∗−1(M̃, B̃)

ϕv // CMS
∗ (M̃, B̃, f̃ , ṽ)

Now we are ready to state the homotopy equivalence of the two relative chain

complexes based on the techniques in [38, Theorem 2.5]:

Theorem 1.3.12 Let f : M → R be a Morse function on a compact manifold M

with boundary ∂M satisfying boundary assumptions A1, A2 and A3, and v be a

transverse gradient vector field of f , also given an adjusted triangulation ∆, then

the chain map ϕv : C∆
∗ (M̃, B̃)→ CMS

∗ (M̃, B̃, f̃ , ṽ) is a chain homotopy equivalence.

Proof : Observe first that if ∆′ is a subdivision of ∆, ∆′ adjusted to v induces

∆ adjusted to v, and furthermore, we have the following commutative diagram:

C∆
∗ (M̃, B̃)

subdivision //

ϕv ((QQQQQQQQQQQQ
C∆′
∗ (M̃, B̃)

ϕvvvmmmmmmmmmmmm

CMS
∗ (M̃, B̃, f̃ , ṽ)

Therefore, according to Munkres [31] it is good enough to show the theorem for a

special smooth triangulation ∆. Now consider again the filtration in the beginning

of the section, we subdivide ∆ if necessary so that each Mi is a subcomplex for

−1 ≤ i ≤ n, and since subdivision preserves the dimension of each subcomplex, Mi

is of dimension i as a subcomplex of the i-th skeleton M (i), Mi ⊂ M (i), Moreover,

each stable disc ei(p) = W s(p, v) ∩ (Mi − Int (Mi−1)) containing the critical point p

with index i is a subcomplex.

Now we set C
(k)
i = C∆

i (M̃k, B̃) and D
(k)
i = CMS

i (M̃k, B̃).

Also the chain map ϕv : C∆(M̃, B̃) → CMS(M̃, B̃) induces ϕ(k) : C(k) → D(k)

and ϕ(k,k−1) : C(k)/C(k−1) → D(k)/D(k−1).
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Now notice that C(k)/C(k−1) = C∆
∗ (M̃k, M̃k−1) and we have the following isomor-

phisms for D(k)/D(k−1):

D(k)
∗ /D(k−1)

∗ = CMS
k (M̃k, M̃k−1) = Hk(M̃k, M̃k−1) ∼= Hk(M̃k−1∪

⋃
p∈Crit k(f̃)

ek(p), M̃k−1),

i.e. the quotient is nontrivial only at degree k.

Considering C(k)/C(k−1) = C∆
∗ (M̃k, M̃k−1), let σ ∈ C∆

k (M̃k, M̃k−1), because of

the choice of subdivision and transverse intersection of simplices with the unstable

manifolds of M , if σ doesn’t contain any critical points of index k, then ϕ(σ) = 0

by the definition of ϕ above. Therefore the only nontrivial preimages of ϕ are

those contain critical points of f and they are sent to the elements of Hk(M̃k−1 ∪⋃
p∈Crit k(f̃) e

k(p), M̃k−1) corresponding to the critical points they contain: if p ∈ σ ⊂

M̃k − M̃k−1 then

ϕ(σ) = ±ek(p),

where the signs depend on the orientation of σ and ek(p).

Now since ek(p) = W s(p, v) ∩ (Mk − Int (M−1k)) is a subcomplex, i.e. can be

written as a sum of simplices: ek(p) =
∑

σ⊂ek(p) σ, moreover, it is a k cycle in

C(k)/C(k−1), therefore,

ϕ(
∑

σ⊂ek(p)

σ) = ϕ(σp) = ±ek(p).

where σp is the simplex containing critical point p. So such one-to-one correspon-

dence ϕ(k,k−1) : C(k)/C(k−1) → D(k)/D(k−1) induces isomorphisms in homology:

ϕ(k,k−1)
∗ : H∗(C

(k)/C(k−1))→ H∗(D
(k)/D(k−1)).

Now we use induction and Five Lemma for the following commutative diagram:

0 // C(k−1) //

ϕ(k−1)

��

C(k) //

ϕ(k)

��

C(k)/C(k−1) //

ϕ(k,k−1)

��

0

0 // D(k−1) // D(k) // D(k)/D(k−1) // 0

There ϕ(k) is chain homotopy equivalence for each k, hence ϕv : C∆(M̃, B̃) '

CMS(M̃, B̃). 2

November 24, 2009



1.4. Homology and Morse inequalities 20

We want to end this section by introducing another chain map, between two

Morse chain complexes induced by different gradients. It is useful when we want to

compare two Morse chain complexes of a manifold.

Definition 1.3.13 For a manifold M with boundary ∂M , let f, g : M → R be two

Morse functions on M with the same exit set B ⊂ ∂M , and we also have vf and vg

the gradients of f and g, respectively. Then we have two relative Morse complexes

CMS
∗ (M,B, f, vf ) and CMS

∗ (M,B, g, vg). Now follow the construction in [29, Lemma

5.3], we have a map Ψ : M →M isotopic to identity so that Ψ(W s(q, vf )) intersects

W u(p, vg) transversely for each q ∈ Crit f and p ∈ Crit g. Since M is compact, we

can necessarily repeat Lemma 5.3 in [29] inductively in finitely many times to ensure

the existence of Ψ. Then the critical points of (f, vf ) introduce the filtration of M

as

B = M−1(vf ) ⊂M0(vf ) ∈ · · · ∈Mm(vf ) = M,

where each Mi(vf ) contains the critical points of f of index i only, similarly we have

a filtration of M according to (g, vg). Now we shrink each Mi(vf ) by the flow Θ

defined in Definition 1.3.8, so that it is contained in Ci(vg). Recall Ci(vg) is the

direct limit of the direct system induced by the flow of vg. So we have a chain map

ϕvf ,vg between the two complexes:

ϕvf ,vg : CMS
∗ (M,B, f, vf )→ CMS

∗ (M,B, g, vg),

induced by inclusion. Namely, after fixing orientation, we have incidence number

[q : p] for each q ∈ Crit f and p ∈ Crit g with same index by reading off the

intersection points of Ψ(W s(q, vf )) ∩W u(p, vg), so we can write down ϕvf ,vg as

ϕvf ,vg(q) =
∑

p∈Crit ind (q)g

[q : p]p.

1.4 Homology and Morse inequalities

According to the definition of the Morse chain complex CMS
∗ (M̃, B̃, f̃ , ṽ), CMS

i (M̃, B̃, f̃ , ṽ)

is free and finitely generated by elements corresponding to the critical points of f ,

having index i for each i = 0, . . . , n. Using standard arguments in the proof of
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1.4. Homology and Morse inequalities 21

the Euler-Poincaré theorem, we obtain the Morse inequalities statement for relative

Morse complex:

Theorem 1.4.1 Denote βi = rankHi(M,B) as the rank of Hi(M,B) and

ci = rankCMS
i (M̃, B̃, f̃ , ṽ) = |{Crit if}|

as the rank of CMS
i (M̃, B̃, f̃ , ṽ) or the cardinality of the set Crit if , then we have the

following equation for a non-negative polynomial R(t):

m∑
i=0

tici =
m∑
i=0

tiβi + (1 + t)R(t),

where m is the dimension of the manifold M .

Proof : This is equivalent to showing

k∑
i=0

(−1)k−ici ≥
k∑
i=0

(−1)k−iβi

for each k = 0, . . . , n.

Now let zi = rank ker(∂i) and bi = rank Im (∂i+1), then by the following short

exact sequences:

0→ Im (∂i+1)→ ker(∂i)→ Hi(M,B)→ 0

and

0→ ker(∂i)→ CMS
i (M̃, B̃, f̃ , ṽ)→ Im (∂i)→ 0,

we have

zi = βi + bi

and

ci = zi + bi−1,

since H∗(M,B) ∼= H∗(C
MS(M̃, B̃, f̃ , ṽ)) by the homotopy equivalence in the previous

section. Then we have

ci = βi + bi + bi−1,

and take the alternating sum of it, we get the inequalities stated in the beginning

of the proof. 2
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Chapter 2

Circle-valued functions

We apply the techniques developed in the previous chapter for the real case to a

circle-valued function, mainly following the treatment in [38]. Namely, we study the

critical points of a circle-valued function by lifting it up to the covering space. In the

total space, when restricted to a piece of finite copies of the base space, the problem

is reduced to the real case which is studied in the preceding chapter, and by taking

inverse limit, an analogous chain homotopy equivalence is obtained. However, in

order to demonstrate a clearer understanding of the essential mechanism, we shall

first work on the minimal regular covering.

2.1 The minimal covering space

Suppose we have a compact manifold M with boundary ∂M as before, and assign

a circle-valued function f : M → S1 on M . Here we can parametrize S1 by the

map t→ eπit from the reals to S1, and notice that locally f is real hence we call f

Morse if all the critical points of f are nondegenerate in local coordinates, and we

also assign an index to each critical point accordingly.

To study a genuinely interesting circle-valued function on a manifold with bound-

ary, we may first have some basic assumptions on the fundamental group homomor-

phism f∗ : π1(M) → π1(S1) = Z. Firstly let f∗ be nonzero, for if f∗ = 0 we can

find a lift of the map f : M → S1 to the real, which has been studied in the pre-

vious sections; further more, we assume f∗ to be surjective, otherwise, we can find

22



2.2. The chain complex 23

a lift f̄ of f to a finite covering S1 → S1 which induces an epimorphism f̄∗ on the

fundamental groups.

Denote G = π1(M) to be the fundamental group of M , and let ρ̄ : M̄ →M be the

minimal cyclic covering of M with covering transformation group Z = G/ ker(f∗).

Then we can lift f ◦ ρ̄ to a real function f̄ : M̄ → R with the assumption that zero

is a regular value.

Having a real Morse function f̄ : M̄ → R on the covering space, we can repeat the

construction detailed in Chapter 1, first enlarge the manifold M and fix a collaring

∂M × [−1, 1] for ∂M , then lift it up to the covering, we define the exit set B̄ to be

the subset of boundary ∂M̄ with non-positive partial derivatives along the normal

coordinates of ∂M̄× [−1, 1]; On the other hand, partial derivatives
∂f̄

∂t
is equivariant

under the group transformation on the covering, i.e.

∂f̄

∂t
(gx) =

∂f̄

∂t
(x)

for g ∈ Z. Therefore,
∂f̄

∂t
can be seen as a real function on the base manifold M

and the assumptions A1,A2 and A3 are defined as in the previous chapter. We

also have exit B defined by
∂f̄

∂t
:

Definition 2.1.1 (Exit set B of a circle-valued function) Consider
∂f

∂t
as a smooth

function on M , then B can be defined as follows:

B = {x ∈ ∂M : −∂f̄
∂t

(x, 0) ≤ 0}.

2.2 The chain complex

Suppose 0 ∈ R is a regular value of f̄ , let us set N = f̄−1({0}),MN = f̄−1([0, 1])

and N ′ = f̄−1({1}). We can choose a generator t ∈ G such that t(N ′) = N , in other

words, f∗(t) = −1. Consider the negative half of the covering space f̄−1((−∞, 1])

and denote it M̄− = f̄−1((−∞, 1]). Let M1
j = f̄−1([−j, 1]) and B̄j = B̄ ∩M1

j for

integer j ≥ 0. Now to define the chain complex for circle-valued function f , we

need the Smale transversality condition for the stable and unstable manifolds of the

critical points. In this case, in the covering space, there are potentially infinitely
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2.2. The chain complex 24

many intersections to rectify, the Baire space argument in [35, Chapter 4] can be

adapted to our situation and prove the existence of a Smale transverse vector field

in the covering space.

Now we are ready to define the chain complex: As the critical points of f repeat

themselves in each copy of M in the covering space M̄ , the modification of the

filtration in Definition 1.3.9 is also effective here in describing the chain complex of

M1
j : Let

Ci(j) = M̄− −
j⋃

k=0

⋃
ind (p)≥i+1

W u(tkp, v),

and then we define

CMS
i (M1

j , B̄j ∪Mj, f̄ , v̄) = Hi(Ci(j), Ci−1(j)).

Figure 2.1: CMS
∗ (M1

j , B̄j ∪Mj, f̄ , v̄) =
⊕j

k=1 Z(tkp)

Figure 2.2: CMS
∗ (M1

j+1, B̄j+1 ∪Mj+1, f̄ , v̄) =
⊕j+1

k=1 Z(tkp)

Since the negative gradient flow of −v̄ travels in the negative direction, and it

intersects Mj = f̄−({j}) transversely. So for each j, by Lemma 1.2.4 we can also
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2.2. The chain complex 25

carry over the isomorphism statement of Chapter 1 to here:

C∆
∗ (M1

j , B̄j ∪Mj) ' CMS
∗ (M1

j , B̄j ∪Mj, f̄ , v̄).

Here each CMS
i is generated by the critical points of f̄ in M1

j . Moreover, it can

be seen as a Z[t]/tj module generated by critical points of f , summarised in the

following formula:

CMS
∗ (M1

j , B̄j ∪Mj, f̄ , v̄) =
⊕

p̄∈Crit i(f̄)

Z(p̄) =

j⊕
k=1

⊕
p∈Crit i(f)

Z(tkp),

where Z(p) is a copy of Z generated by the critical point p.

Compare Figure 2.1 and Figure 2.2 where we increase the value j to j + 1, then

the chain complex becomes a Z[t]/tj+1 module instead of Z/tj.

And for each j, the boundary map ∂
(j)
i : CMS

i (M1
j , B̄j∪Mj, f̄ , v̄)→ CMS

i−1(M1
j , B̄j∪

Mj, f̄ , v̄) is

∂
(j)
i (p̄) =

∑
q̄,ind q̄=i

[p̄ : q̄]q̄.

It is well-defined as in Chapter 1.

Viewing such Morse chain complex CMS
∗ (M1

j , B̄j ∪Mj, f̄ , v̄) as a Z[t]/tj module,

we can read the boundary map over Z[t]/tj, namely, with uniquely chosen lifts p̄, q̄

of p, q:

∂
(j)
i (p̄) =

∑
q∈Crit i−1f

j−1∑
k=0

[p̄ : tkq̄]tkq̄,

where [p̄ : tkq̄] is the number of trajectories from p to tkq̄ according to sign.

Now we have a natural inverse system:

φj,i : CMS
∗ (M1

j , B̄j ∪Mj, f̄ , v̄)→ CMS
∗ (M1

i , B̄i ∪Mi),

where φj,i is the projection from a Z[t]/tj module to a Z[t]/ti module, for j > i ≥ 0.

Suppose we have only one critical point in Mi−IntMi−1, taking the inverse limit

of such inverse system, we get

lim←−C
MS
∗ (M1

j , B̄j ∪Mj, f̄ , v̄) = lim←−Z[t]/tj

=

{
(x1, . . . , xj, . . . ) ∈

∞∏
j=1

Z[t]/tj+1 : xj = φj+1,j(xj+1)

}
Φ∼= Z[[t]].
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The last isomorphism comes from map the Φ : Z[[t]]→ lim←−Z[t]/tj as

Φ(x) = Φ(
∞∑
j=0

ajt
j) = (a0, a0 + a1t, . . . ,

n∑
j=0

ajt
j, . . . ).

This shows the inverse limit is a Z[[t]] module, and the argument for several critical

points work similarly. Finally we need another ring to tensor with this module to

finish the preparation:

Definition 2.2.1 We define the Novikov ring as follows:

Z((t)) = Z[[t]][t−1] = {λ =
∞∑
−∞

ajt
j : |{tj with aj 6= 0, j ≤ 0}| <∞},

where |{ }| is the cardinal number of a set.

Now we define the relative Novikov complex of a circle-valued function as follows:

Definition 2.2.2 We define the relative Novikov complex of a circle-valued function

f as follows:

CNov
∗ (M̄, B̄, f, v) = Z((t))⊗Z[[t]] lim←−C

MS
∗ (M1

j , B̄j ∪Mj, f̄ , v̄)

The boundary map ∂i : CMS
i (M̄, B̄, f, v)→ CMS

i−1(M̄, B̄, f, v) is expressed as:

∂i(p) =
∑

q∈Crit i−1(f)

∞∑
j=−∞

[p̄ : tj q̄]tjq,

where p, q are critical points of f in M with index ind (p) = i and ind (q) = i − 1,

and p̄, q̄ are chosen lifts of p and q in the minimal covering M̄ .

Remark 2.2.3 If f̄(tj q̄) > f̄(p̄) then [p̄ : tj q̄] = 0 as the trajectories of the negative

gradient only travel in the negative direction, then for any choice of the lifting of

the critical points pi of f on M , there will only be finitely many tj q̄ with j ≤ 0

such that [p̄ : tj q̄] are not trivial, i.e.
∑∞

j=−∞[p̄ : tj q̄]tj ∈ Z((t)), which confirms the

boundary map is well-defined.
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2.3. The chain homotopy equivalence 27

2.3 The chain homotopy equivalence

We want to prove the chain homotopy equivalence between the simplicial complex

of the manifold and the Novikov complex of a circle-valued function.

Similar to the real function case, we firstly need a chain map from the simplicial

chain complex of the manifold to the Novikov complex by some smooth triangu-

lation adjusted to the gradient v. For each j, we already have such chain map

ϕjv : C∆
∗ (M1

j , B̄j ∪Mj)→ CMS
∗ (M1

j , B̄j ∪Mj, f̄ , v̄) by a well chosen triangulation ad-

justed to v. Recall in the first chapter, we show how to perturb a given triangulation

so that it is adjusted to v, and it turns out this is a generic property. As in [38], we

can always pick an adjusted triangulation ∆ in the base manifold and lift it up to

the covering, hence define the chain map ϕv = id⊗lim←−ϕ
j
v : Z((t))⊗Z[[t]]C

∆
∗ (M̄, B̄)→

CNov
∗ (M̄, B̄, f, v) as:

ϕv(σ) =
∑

p,ind p=dimσ

∞∑
j=−∞

[σ̄ : tj p̄]tjp.

Proposition 2.3.1 The chain map ϕv is a chain homotopy equivalence:

Z((t))⊗Z[t] C
∆
∗ (M̄, B̄) ' CNov

∗ (M̄, B̄, f, v).

Proof : According to the results in Chapter 1, we have the homotopy equivalence

C∆
∗ (M1

j , B̄j ∪Mj) ' CMS
∗ (M1

j , B̄j ∪Mj, f̄ , v̄)

for any finite j ≥ 0 or CMS(j) ' C∆(j) with shorthand CMS(j) = CMS
∗ (M1

j , B̄j ∪

Mj, f̄ , v̄) and C∆(j) = C∆
∗ (M1

j , B̄j ∪ Mj). Viewing CMS(j) and C∆(j) as Z[t]/tj

modules, we also has the following commutative diagram for any two j > i ≥ 0:

C∆(j) //

ϕjv
��

C∆(i)

ϕiv
��

CMS(j)
φji // CMS(i)

,

where φj,i is the projection from a module over Z[t]/tj to a module over Z[t]/ti, and

ϕjv is the homotopy equivalence, which induces isomorphism between the homology

groups ϕj∗ : H(C∆(j)) ∼= H(CMS(j)). Hence lim←−H(C∆(j)) ∼= lim←−H(CMS(j)) and

lim←−
1H(C∆(j)) ∼= lim←−

1H(CMS(j)). Also the commutativity of the diagram implies
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chain map lim←−ϕ
j
v : lim←−C

∆(j) → lim←−C
MS(j). Now since φji : CMS(j) → CMS(i) is

surjective, i.e. satisfying the Mittag-Leffler condition automatically, and Theorem

3.5.8 in [42] tells us the following exact sequences:

0→ lim←−
1Hi+1(CMS(j))→ Hi(lim←−C

MS(j))→ lim←−Hi(C
MS(j))→ 0,

and similarly,

0→ lim←−
1Hi+1(C∆(j))→ Hi(lim←−C

∆(j))→ lim←−Hi(C
∆(j))→ 0.

Therefore applying the Five Lemma to the following commutative diagram:

0 // lim←−
1Hi+1(C∆(j)) //

∼=
��

Hi(lim←−C
∆(j)) //

��

lim←−Hi(C
∆(j))

∼=
��

// 0

0 // lim←−
1Hi+1(CMS(j)) // Hi(lim←−C

MS(j)) // lim←−Hi(C
MS(j)) // 0.

we have shown the isomorphism in the middle termHi(lim←−C
∆(j))→ Hi(lim←−C

MS(j))

for each i.

Now since C∆ and CMS are free chain complexes, isomorphism in homology Hi

for each i yields the chain homotopy equivalence:

C∆
∗ (M̄, B̄)

lim←−ϕjv

' lim←−C
MS
∗ (M1

j , B̄j ∪Mj, f̄ , v̄).

Therefore ϕv = id⊗ lim←−ϕ
j
v is a chain homotopy equivalence. 2

2.4 Universal covering

In this section, we want to consider a bigger covering space, namely the universal

covering. Using the same inverse limit argument, we construct a relative chain

complex from the universal covering, and similarly obtain the homotopy equivalence

result.

Suppose f∗ : π1(M)→ Z derived from the circle-valued function f : M → S1 is

surjective as in the beginning of the chapter, let us consider the universal covering ρ :

M̃ → M which factors through the minimal covering ρ̄ : M̄ → M as a composition
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of the covering projection ρ̃ : M̃ → M̄ and ρ̄, ρ = ρ̄ρ̃. Let G = π1(M) be as

before and H = π1(M̄) = ker f∗ denote the fundamental group of the minimal total

space M̄ , then we have covering transformation groups Z, H and G for ρ̄, ρ̃ and ρ,

respectively. Since H = ker f∗ is the kernel of the homomorphism f∗ : G → Z, it

is a normal subgroup of G, H � G, which together with Z gives us a short exact

sequence

1→ H → G→ Z→ 1.

So we reconstruct G with subgroups H and Z as a semidirect product:

G = H oϕ Z,

where ϕ : H → H is an automorphism as ϕ(h) = t−1ht for h ∈ H and t ∈ Z as a

generator of Z with ξ(t) = −1.

Similar to the situation in the minimal covering for f̄ : M̄ → R, we get a lift of

fρ : M̃ → S1 to f̃ : M̃ → R for the universal covering M̃ . In the covering space

ρ̃ : M̃ → M̄ , for lifts Ñ , Ñ ′ of N = f̄−1({0}), N ′ = f̄−1({1}) we still have t(Ñ ′) = Ñ ,

therefore for each j ≥ 0, lifts M̃1
j , M̃j and B̃j of M1

j = f̄−1((−j, 1]),Mj = f̄−1({−j})

and B̄j = B̄ ∩ f̄−1((−j, 1]) induce Morse chain complex CMS
∗ (M̃1

j , B̃j ∪ M̃j, f̃ , ṽ) as

a ZHϕ[t]/tj module.

Definition 2.4.1 We define the Novikov ring as follows:

ZHϕ((t)) = ZHϕ[[t]][t−1] = {λ = Σ∞−∞ajt
j : |{tj with aj 6= 0, j ≤ 0}| <∞},

where aj ∈ ZH.

Definition 2.4.2 We define the relative Novikov complex as follows:

CNov
∗ (M̃, B̃, f, v) = ZHϕ((t))⊗ZHϕ[[t]] lim←−C

MS
∗ (M̃1

j , B̃j ∪ M̃j, f̃ , ṽ)

We also define the boundary map ∂i : CNov
i (M̃, B̃, f, v)→ CNov

i−1 (M̃, B̃, f, v) as

∂i(p) =
∑

q∈Crit i−1(f)

∞∑
j=−∞

(
[p̃ : tj q̃]tj

)
q,

where p ∈ Crit i(f) in M and p̃, q̃ are the chosen lifts of p, q in the universal covering

M̃ .
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By similar argument as in the minimal covering situation, we obtain the chain

homotopy equivalence for this chain complex:

Proposition 2.4.3 The relative Novikov complex of a manifold M with exit set B

of a circle-valued function f is chain homotopic equivalent to the relative simplicial

complex:

ϕv : CNov
∗ (M̃, B̃, f, v) ' ZHϕ((t))⊗ZHϕ[[t]] lim←−C

∆
∗ (M̃1

j , B̃j ∪ M̃j),

where ϕv is defined as a chain map by counting the intersection number of the

simplices of C∆
∗ (M̃1

j , B̃j ∪ M̃j) with unstable manifolds of critical points of f̄ , as j

tends to infinity:

ϕv(σ) =
∑
p

∞∑
j=−∞

(
[σ̃ : tj p̃]tj

)
p.

with the outer sum ranging over critical points p of f having index ind (p) = dim(σ).

2
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Chapter 3

Closed 1-forms

We discuss the Novikov complex of a general Morse closed 1-form in this chapter.

After the rational approximation of a closed 1-form, the boundary map of the cor-

responding Novikov complex can be described as in the circle-valued case, and then

we adapt a Latour trick to show the homotopy equivalence.

3.1 Connection with the Morse complex

In this chapter we consider a general closed 1-form on a manifold M with boundary

∂M . A 1-form ω is said to be closed if dω = 0, i.e. ω is a 1-cocycle in the de

Rham cochain complex. Also according to the Poincaré Lemma, locally ω can be

represented by a real function up to some constant added. So if {U} is an open

cover of M where each component U is simply connected (e.g. open convex subsets

of Euclidean space Rm), then there exists fU : U → R such that ω|U = dfU for each

U . With this property in hands, a closed 1-form is said to be Morse if locally each

fU : U → R with ω|U = dfU is Morse, i.e. whose critical points are nondegenerate.

Subsequently, ω inherits the notion of index and the property of having finitely many

critical points in a compact manifold M with boundary ∂M .

Also a closed 1-form ω induces a cohomology class ξ : π1(M) → R via homo-

morphism ξ([γ]) =
∫
γ
ω, with γ a smooth loop representing the homotopy class

[γ] ∈ π1(M). Notice the integral is independent of the choice of loops and closed

1-forms within the cohomology class, according to Stoke’s theorem. Since the com-
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pactness of M induces that π1(M) is finitely presented, the image Im ξ of ξ is a

finitely generated free abelian subgroup of R, so Im ξ = Zk for some k ∈ Z+.

Then if k = 0, ξ is trivial and ω is an exact form induced from some real function

f : M → R and we are in the case of Chapter 1.

When k = 1 and Im ξ = Z, we call ω rational. Let ρ̄ : M̄ → M be a regular

covering space of M , such that π1(M̄) = ker ξ. Then the covering transformation

group is Z and ξ = [ω] is trivial on ρ̄∗(π1(M̄)). Therefore ρ̄∗ω = df̄ for some

f̄ : M̄ → R. Now suppose t ∈ Z is a generator of the covering transformation

group, such that c = f̄(x̄) − f̄(tx̄) > 0 for all x̄ ∈ M̄ , then we can establish the

equivalence between a rational closed 1-form and a circle-valued function by defining

f : M → S1 by f(x) = exp
(
2πif̄(x̄)/c

)
, where x̄ ∈ M̄ is a lift of x ∈M , as we have

ω = cf ∗(dθ) where dθ is the canonical angular form. So the case when k = 1 we

refer to the preceding chapter on circle-valued functions.

Now assume k > 1, in which case we call the closed 1-form ω irrational. We want

to establish the homotopy equivalence on the relative chain complexes analogous to

the previous ones.

Similar to the circle-valued function, the exit set of a closed 1-form ω is defined

by the partial derivative of the pullback f of ω:

Definition 3.1.1 (Exit set of a closed 1-form ω) Let ρ : M̄ →M be a regular

covering space of M corresponding to the kernel ker[ω] of ω, then the exit set of ω

is defined as:

B = {x ∈ ∂M :
∂f

∂t
|(x,0) ≤ 0},

where f : M̄ → R is a real function such that df = ρ∗ω.

3.2 Novikov ring

Consider the universal covering space ρ̃ : M̃ → M , such that ρ̃∗([ω]) = 0. For the

construction of a general Novikov complex, just as what happens in the circle-valued

function case, we start with some more sophisticated coefficient ring, then get the

appropriate boundary map:
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Definition 3.2.1 (Novikov ring ẐGξ) Given a group G and a homomorphism

ξ : G→ R, then we define the Novikov ring as:

ẐGξ = {λ = Σ agg ∈ ZG : |{ag 6= 0, ξ(g) > K}| <∞, for all K ∈ R},

where ag ∈ Z, g ∈ G are generators of G.

Remark 3.2.2 Notice that when the map ξ : G → Z is surjective, the above

definition coincides with the Novikov ring ZHϕ((t)) defined in the previous chapter.

We make this precise here:

Choose an element t ∈ G of the additive group Z such that ξ(t) = −1, and

write H = ker ξ �G, then we identify G as a semidirect product of H and Z = 〈t〉

as G = H oϕ Z where ϕ : H → H is an automorphism ϕ(h) = t−1ht, so that

ht = tϕ(h). Then for each element h ∈ H and n ∈ Z, there exists unique g ∈ G,

such that g can be written as g = htn. Then

ξ(g) = ξ(htn) = ξ(h)ξ(tn) = −n

implies that for each element λ =
∑

g agg ∈ ZG, the number of nontrivial ag with

ξ(g) > K for any K ∈ R is finite, if the number of corresponding nontrivial an,h

with n < 0 is finite in
∑

n,h an,hht
n with htn = g. In other words, the map sending

htn to g = htn ∈ G induces an isomorphism between ZHϕ((t)) and ZGξ.

3.3 Novikov complex

We now turn to the definition of Novikov complex that generalises the idea of Morse

complex to the case of closed 1-forms.

Consider the universal covering ρ̃ : M̃ → M , choose a real Morse function

f̃ : M̃ → R such that ρ̃∗(ω) = df̃ and a lift p̃ in M̃ for each critical point p ∈ M .

Then the chain complex is potentially generated by all the critical points in the

covering, together with the Novikov ring defined in the previous chapter, we want to

show the boundary is well-defined. We do this by a rational approximation lemma.

Because Q ⊂ R is dense in R, the idea is to slightly perturb the original closed

1-form without changing the gradient vector field with respect to some Riemannian
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metric, so that the map ξ : G = π1(M)→ R is factorised through Q. Now since any

ξ ∈ Im (G → Q) can only have rank 1, this leads us back to the circle-valued case,

where the boundary is already defined. The approach is based on [38].

Lemma 3.3.1 Suppose we have compact manifold M with boundary ∂M . Let ω be

a Morse closed 1-form on M with exit set B ⊂ ∂M and v be a gradient vector field

of ω with respect to some Riemannian metric, then there exists a rational closed

1-form ω′ with the same gradient vector field v for a chosen Riemannian metric,

such that it coincides with ω in some small neighbourhoods of the critical points of

ω. Moreover, the cohomology class of ω′, denoted as ξ′ vanishes in the kernel ker ξ

of ξ = [ω], the cohomology class of ω.

Proof : First observe that we only need to fix the rank problem for the whole

manifold, as for the exit set B, i∗ξ : π1(B) → R filters through ξ : π1(M) → R, so

if ω is rational for the whole manifold M , it will be rational in B automatically.

We choose the minimal set of generators of Im ξ ⊂ R, namely, g1, . . . , gk ∈

Im ξ. Define Morse closed 1-forms ω1, . . . , ωk such that for each i = 1, . . . , k the

cohomology class ξi = [ωi] : G → R satisfies ξi(gj) = 1 when i = j and ξi(gj) = 0

otherwise and ξi vanishes on ker ξ. And because the critical points of ω are isolated,

we can also assume that ωi vanishes in a small neighbourhood Up of each critical

point p of ω. For this is possible by first representing ωi by some function fp on

the neighbourhood Up and then extending it trivially to the whole manifold as Fp

such that when we restrict Fp on a smaller neighbourhood Vp, it coincides with fp,

Fp|Vp = fp|Vp . Finally subtracting Fp from ωi to get ωi − Fp and repeating such

modification finitely many times will return us the desired situation.

Now choose ε = (ε1, . . . , εk) ∈ Rk with ‖ε‖ very small and define

ωε = ω +
k∑
i=1

εiωi.

Then ω still dominates the expression, meaning:

ωε(v(x)) > 0, (3.1)

for x with ω(x) 6= 0. And for any vector field X on M , in a neighbourhood Up of a
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critical point p,

ωε(Xx) = 〈Xx, v(x)〉,

for each x ∈ Up, where 〈 , 〉 is the original Riemannian metric. But we want to

have v as a gradient vector field for ωε as well, so before moving on to the next

stage, we need to modify the old Riemannian metric here. We again work on it

locally by choosing a set {Ui} of open subsets of M , so that together with the

neighbourhoods of critical points, they form an open cover U of M . Now we have

real function f : U → R on each U ∈ U with df = ωε|U . Then because ω is nonzero

on U , in particular 0 is not a critical point of f , we can adjust f with a suitable

local coordinate system near 0 so that f is a projection to the first coordinate, i.e.

f(x1, · · · , xm) = x1.

Let us write v =
∑

i vi
∂

∂xi
for i = 1, . . . ,m and consider v,

∂

∂x2

, . . . ,
∂

∂xm
as a

basis for the vector fields on U . Then we can choose a Riemannian metric g so that

this basis is orthogonal with respect to g, in particular, we define g(v, v) = v1 > 0,

which is true according to (3.1). With such Riemannian metric, it is easy to check

that u(f) = g(v, u) for any vector field u on U , i.e. v is a gradient of f and hence

ωε restricted to U . Glue these local Riemannian metrics together, we obtain a

Riemannian metric on M such that v is the gradient vector field of ωε.

So far, we haven’t said anything of ωε on the boundary when picking all the ωi,

and now we take care of this issue. Namely, we want to adapt ωi so they satisfy

assumptions A1,A2 and A3 on B as well as ω. In particular, for a neighbourhood

Vx of each point x ∈ Γ, function
∂f

∂t
is regular on (x, 0, 0), where fi : Vx → R is the

exact form of ωi on Vx.

Since ωi|Γ×[−1,1]×[0,1] is cohomologous to some ω′i on Γ, i.e. ωi|Γ = ω′i+dg for some

g : Γ→ R, extend g to the whole manifold M , name it g too, then ω′′i = ωi − dg is

independent of the last coordinate t on Γ, therefore

∂fε
∂t

=
∂f

∂t
+
∑
i

∂f ′′i
∂t

=
∂f

∂t
,

and so it is regular on (x, 0, 0) as
∂f

∂t
, where fε and f are local exact form of ωε and

ω, respectively.
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Hence, such ωε shares the same gradient vector field v with ω when εi are small,

and have respect to the boundary conditions on B. Finally, for each gi,

ωε(gi) = ω(gi) + εiωi(gi) ∈ Q

when εi ∈ R is carefully chosen for each i.

Set ω′ = ωε and ξ′ = [ωε], ξ
′ : G→ Q.

We have proved the lemma. 2

Definition 3.3.2 If a closed 1-form ω′ is modified from a general Morse closed

1-form ω as the lemma above, we call ω′ the rational approximation of ω.

Taking on this new closed 1-form and its cohomology class, we would have got

the relative Novikov ring CNov
∗ (M,B, ω′, v) with local coefficients Zϕ((t)), where ω̃

is seen as a circle-valued function. However, in order to stick to the original closed

1-form and its Novikov ring, we only want to apply the approximation lemma to the

boundary map, so that it is well-defined. In other words, we want to show that the

boundary map ∂ : Ci(M̃, B̃, f̃ , ṽ)→ Ci−1(M̃, B̃, f̃ , ṽ) as

∂p =
∑

q∈Crit i−1(ω)

[p̃ : q̃]q, (3.2)

where p̃, p̃ are critical points of f̃ of index i − 1 whose projections coincide with

p, q ∈ Crit (ω), respectively: ρ̃(p̃) = p, ρ̃(q̃) = q, so that we have [p̃ : q̃] ∈ ẐGξ∩ẐGξ′ .

Lemma 3.3.3 Let ω and ω′ be two Morse closed 1-forms that coincide in a neigh-

bourhood of each critical point, and there is vector field v as the gradient of both

1-forms. Denote the cohomology classes ξ, ξ′ : π1(M)→ R of ω and ω′ respectively,

then there exists real constants A,B and C,D with A > 0 and C > 0 such that

whenever there is g ∈ G = π1(M) and a trajectory γ̃ : R → M̃ of −ṽ between gq̃

and p̃ with critical points p̃, q̃ ∈ M̃ , then

ξ(g) ≤ Aξ′(g) +B

and

ξ′(g) ≤ Cξ(g) +D.
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Proof : Choose a path γpq from p to q in the base space M , such that when

it is lifted up to the covering M̃ , say γp̃q̃, together with γ from p̃ to gq̃, the loop

γ · γ−1
p̃q̃ = γ · γq̃p̃ represents the homotopy class g ∈ π1(M) in the base space. See

Figure 3.1 below

q

p

gq

q
γ

γ
qp

γ

Figure 3.1: The lift of loop γ in the covering

According to the observation in the next lemma, there exists K > 0 such that

|
∫
γpq
ω| ≤ K and so does ω′. Moreover, since ω and ω′ coincide near the critical

points, by compactness there exists an L with 0 < L < 1 such that ω(v(x)) ≥

Lω′(v(x)) for all x ∈M . Now consider:

ξ(g) =

∫
γq̃p̃

ω +

∫
γ

ω

≤ K −
∫ ∞
−∞

ω(v(γ(t)))dt

≤ K − L
∫ ∞
−∞

ω′(v(γ(t)))dt

= K − L(

∫
γq̃p̃

ω′ −
∫
γ

ω′ −
∫
γq̃p̃

ω′)

≤ K + LK + L
( ∫

γq̃p̃

ω′ +

∫
γ

ω′
)

= K(1 + L) + Lξ′(g).
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Setting A = L and B = K(1 + L) gives the first inequality; switch ω and ω′ in the

same argument we obtain the second inequality. 2

Corollary 3.3.4 Suppose ω is a Morse closed 1-form and ω′ is the rational approx-

imation of ω so that v is the transverse gradient vector field of both forms. Then

[p̃ : q̃] ∈ ẐGξ ∩ ẐGξ′ for p, q ∈ Crit (ω) with ind (p) = ind (q) + 1. 2

Denote C∗(M,B, ω, v) to be a module generated by the critical points of ω,

and when we consider it in the universal covering, it is naturally endowed with

a ZG action. Since ZG sits inside ẐGξ ∩ ẐGξ′ , we have a natural ring inclusion

ZG ↪→ ẐGξ ∩ ẐGξ′ and ẐGξ ∩ ẐGξ′ can be seen as a right module of ZG. So

we can view this potential candidate C∗(M,B, ω, v) as a ẐGξ ∩ ẐGξ′ module and

the boundary map can be defined within the intersection ẐGξ ∩ ẐGξ′ according to

Corollary 3.3.4 above. Now tensoring with ẐGξ, notice that

ẐGξ ⊗cZGξ∩cZGξ′ C∗(M,B, ω, v) ' ẐGξ ⊗cZGξ∩cZGξ′ C∗(M,B, ω′, v),

So by this way, we retain the original ring coefficients while define the boundary

map according to the circle-valued model.

Definition 3.3.5 We define the relative Novikov complex as a ẐGξ-module gener-

ated by the critical points of ω:

CNov
∗ (M,B, ω, v) =

⊕
p∈Crit (ω)

ẐGξ,

where the boundary map is defined as (3.2).

The rest of the chapter, we want to show the chain homotopy equivalence of the

following map:

ϕv : ẐGξ ⊗ZG C
∆
∗ (M̃, B̃)→ CNov

∗ (M,B, ω, v).

Here ϕv is defined similarly to the circle-valued case, and to end this section, we

claim ϕv is a chain map by stating the coefficients of ϕv(σ) lie in the intersection

ẐGξ ∩ ẐGξ′ :
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Proposition 3.3.6 Choose a triangulation ∆ adjusted to the gradient vector field

v of ω, then the map ϕv : ẐGξ ⊗ZG C
∆
∗ (M̃, B̃)→ CNov

∗ (M,B, ω, v) is defined as

ϕv(σ) =
∑

p∈Crit i(ω)

[σ̃ : p̃]p,

where σ ∈ C∆
∗ (M,B) with dim(σ) = i and σ̃, p̃ are translates of σ and p as ρ̃(σ̃) = σ

and ρ̃(p̃) = p. Then the coefficients [σ̃ : p̃] ∈ ẐGξ ∩ ẐGξ′ . 2

The proof goes similarly to Lemma 3.3.5 and we refer to [38, proposition 4.7] for

details.

3.4 Continuation

Before we move on to show the homotopy equivalence of the Novikov complex, we

need a relative version of the continuation argument.

Proposition 3.4.1 Let M be a compact manifold with boundary ∂M , and ωi are

cohomologous Morse closed 1-forms on M for i = 0, 1 such that ω1, ω2 lie in the

same cohomology class ξ, ξ = [ωi] ∈ H1(M). Assume the exit sets of ω0 and ω1

coincide, denote B = Bω0 = Bω1 , then

CNov
∗ (M,B, ω0) ' CNov

∗ (M,B, ω1).

Notation 3.4.2 Here we suppress the vector fields of ωi in the above statement.

To further simplify the notations in the proof, we use C
Nov(i)
∗ = CNov

∗ (M,B, ωi) and

Mi = M × {i} for i = 0, 1.

The proposition says the chain homotopy type of the Novikov complex depends

only on the cohomology class of the closed 1-form, its exit set and the covering

space. The argument for closed manifolds is given in [36].

Proof : Since ω0, ω1 are in the same cohomology class, they only differ by an

exact form, so let g : M → R be the Morse function with the same exit set B ⊂ ∂M ,

such that ω1 = ω0 + dg, and let τ : [−1, 1] → [0, 1] be a real smooth function with

τ(t) = 1 for t ∈ [−1,−1 + δ]∪ [1− δ, 1] and τ(t) = 0 for t ∈ [−δ′, δ′], where δ, δ′ > 0
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are small. Then we get a homotopy from ω0 to ω1:

ωt = ω0 + d(τ(t)g).

Notice we have the same Novikov ring ẐGξ where G is the fundamental group of

M , according to the hypothesis. Moreover, when lifted up to the universal covering

ρ : M̃ →M , the pullback ρ∗(ωt) of ωt is exact for each t, therefore, they correspond

to some real functions ft, or explicitly, there exists real smooth function f0 : M̃ → R

such that ρ∗ωt = dft = df0 + d
(
τ(t)(g ◦ ρ)

)
.

Now on the total space of the covering, we build a real smooth function F upon

ft:

F : M̃ × S1 → R,

so for (x, t) ∈ M̃ × S1, where −1 ≤ t ≤ 1 and S1 is parametrized by t→ eπit,

F (x, t) = f(x, t)− K

π
cos πt.

Observe that the critical points of F are simply the ones of f0 and f1, with the

indices of Crit f1 shifted one degree up as:

∂2 cos πt

∂t2
= Kπ cos πt = −Kπ < 0, when t = 1.

That is, for p ∈ CritF ∩M0, then ind F (p) = ind f0(p) and for p ∈ CritF ∩M1,

ind F (p) = ind f1(p) + 1.

Bringing the exact form dF down to the base space M × S1, it corresponds to a

closed 1-form Ω. We restrict Ω to a closed subset M × [−ε, 1 + ε] ⊂ M × S1. Now

let vi be the gradients of ωi with respect to chosen Riemannian metrics on Mi for

i = 0, 1; and we extend vi to (vi, K sin πt∂t) on Mi × [−δi + i, i + δi]. Then after

choosing a Riemannian metric for the rest of M × [−ε, 1 + ε], we glue them together

using partition of unity. With respect to this global Riemannian metric, we have

gradient vector field V of Ω on M × S1. Notice V = (vi, K sin πt∂t) near Mi for

i = 0, 1. We assume such vector field V is transverse.

Moreover, when considering the boundary

∂(M × [−ε, 1 + ε]) = ∂M × [−ε, 1 + ε]
⋃(

M × {−ε} ∪M × {1 + ε}
)
,
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we have

−∂F
∂s

(x, 0, t) = −∂f0

∂s
− τ(t)∂(g ◦ ρ(x, s))

∂s
≤ 0⇐⇒ x ∈ B̃,

for (x, 0, t) ∈ ∂M × [0, 1)× [−ε, 1 + ε], and

−∂f
∂t

(x,−ε) = K sin(−πε) < 0,

for (x,−ε) ∈ M̃ × {−ε}. Therefore, we have M × {−ε} ∪B × [−ε, 1 + ε] as the exit

set of U and it forms a corner.

Consider the pair (M̃ × [−ε, 1 + ε], M̃ × {−ε} ∪ B̃ × [−ε, 1 + ε]) in the covering

space, for each finite copies of M , it is a compact manifold with corners depicted in

Figure 3.2:

[−ε,1+ε]

M
~

B
~

B
~

X [−ε,1+ε]

M
~

X{−ε}

M
~

X [−ε,1+ε]

Figure 3.2: Manifold with corners (the shaded area)

Lemma 1.2.4 and Theorem 1.2.9 in Chapter 1 imply that each compact piece

of M̃ × S1 is homotopic to a CW complex generated by the critical points of F on

that piece. Now apply the inverse limit techniques and Novikov ring developed in

Chapter 2, we have chain complex of M̃ × [−ε, 1 + ε] as a ZGξ module generated by
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the critical points of Ω. Denote it as

C∗(M × [−ε, 1 + ε],M × {−ε} ∪B × [−ε, 1 + ε],Ω).

In particular, since critical points of Ω exclusively come from ωi for i = 0, 1, we can

identify the chain complex of Ω on M × [−ε, 1 + ε] by the following equalities:

C∗(M × [−ε, 1 + ε],M × {−ε} ∪B × [−ε, 1 + ε],Ω)

=
1⊕
i=0

C∗(M × [−ε, 1 + ε],M × {−ε} ∪B × [−ε, 1 + ε], ωi)

' CNov(0)
∗ ⊕ CNov(1)

∗−1

Accordingly, the boundary map ∂ can be split into the boundary maps ∂0, ∂1

of the two components CNov
∗ (M,B, ω0) = CNov(0), CNov

∗ (M,B, ω1) = CNov(1), respec-

tively, and a map φ01 from CNov(1) to CNov(0) by counting the trajectories going

from the critical points of M1 to M0. By the next Lemma 3.4.3, when K and δ

are chosen carefully, we can guarantee there exist no trajectories from M0 back to

M1, furthermore, ∂i is precisely the boundary map of the chain complex of Mi for

i = 0, 1. We summarise the information in the following matrix form:

∂ =

∂0 φ01

0 ∂1


The 0 in the bottom left corner reflects the fact that there exist no trajectories from

M0 to M1.

Now as boundary map, ∂2 = 0 induces the equality ∂0φ01 + φ01∂1 = 0, so if we

modify φ01 as the following:

ϕ01 = (−1)kφ01 : C
Nov(1)
k → C

Nov(0)
k , (3.3)

then ϕ01 becomes a chain map from C
Nov(1)
k to C

Nov(0)
k .

Similarly, we can construct a Morse function on M̃ × S1 × S1 based on the

homotopy ωt,s = ω0 + dτ(t)g + dκ(s)h of the four cohomologous closed 1-forms

ωi for i = 2τ + κ when τ = 0, 1 and κ = 0, 1. Here τ, κ : [−1, 1] → [0, 1] are

smooth functions with value 1 near −1 and 1, and value 0 near 0; and g, h are real

functions on M with the same exit set B, so that ω1 = ω0 + dg, ω2 = ω0 + dh and

November 24, 2009



3.4. Continuation 43

ω3 = ω0+dg+dh. Consider the closed subset U = M×[−ε, 1+ε]2, then the gradient

flow of the pushforward Ω exits through B×[−ε, 1+ε]2∪
⋃1
i=0 Mi×{−ε}×[−ε, 1+ε],

so we obtain the decomposition of the chain complex

C∗

(
U,B × [−ε, 1 + ε]2 ∪

1⋃
i=0

Mi × {−ε} × [−ε, 1 + ε]
)

= CNov(0)
∗ ⊕ CNov(1)

∗−1 ⊕ CNov(2)
∗−1 ⊕ CNov(3)

∗−2

with boundary map as follows:

∂ =


∂0 φ01 φ02 φ03

0 ∂1 0 φ13

0 0 ∂2 φ23

0 0 0 ∂3

 .

Now ∂2 = 0 induces similar anticommutative property for φij. It becomes a

chain map after modification of sign, denoted ϕij.

the following diagram summarises the information on chain maps:

C
Nov(1)
∗

ϕ01

��

C
Nov(3)
∗

ϕ13oo

ϕ23

��

ϕ03

||xxxxxxxxxxxxxxxxxxxx

C
Nov(0)
∗ C

Nov(2)
∗

ϕ02oo

. (3.4)

Moreover, we have the equation:

ϕ03 ◦ ∂0 + ϕ13 ◦ ϕ01 + ϕ23 ◦ ϕ02 + ∂3 ◦ ϕ03 = 0

this is essentially a homotopy equivalence between chain maps ϕ13◦ϕ01 and ϕ23◦ϕ02

under homotopy ϕ03. Therefore if we identify ω3 = ω2 = ω0 in the diagram (3.4), we

have shown that ϕ01 has a left inverse, repeat similar argument, we can find a right

inverse so that ϕ03 is a chain homotopy equivalence. And this proves the statement.

2
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Lemma 3.4.3 Following the notations of the theorem above, there exist K and δ

so that the gradient flow travels from M1 to M0 one way, in particular, if p ∈M0 is

a critical point in M0, then the stable and unstable manifolds of p are contained in

M0: W s(p, V ) ⊂M0 and W u(p, V ) ⊂M0.

Proof : We only need to show it is true for the case of i = 0. Since τ : [−1, 1]→

[0, 1] can be chosen so that τ(t) = 0 for any t ∈ [−δ, δ], where δ is positive, then
∂f(x, t)

∂t
= 0 for any point lies within M0 × [−δ, δ]. Therefore,

∂F

∂t
(x, t) =

∂f(x, t)

∂t
+K sin πt = K sin πt ≥ 0,

and in particular, there is no flow going out of M0. 2

3.5 Homotopy equivalence(with the Latour trick)

Now we are ready to show the homotopy equivalence between the Novikov complex

and the usual chain complex of the pair (M,B)(e.g. simplicial complex). When

applying a nice trick of Latour [22], extra attention is needed to make sure the

supplementary exact form we are constructing have the exit set coincide with the

original one. Let us do this in the following:

Lemma 3.5.1 Let ω be a closed 1-form one M with boundary ∂M and B be the

exit set of ω, then there always exists a Morse function F : M → R on M whose

exit set BF coincides with Bω, BF = Bω.

Proof : Choose a collaring for ∂M in M+ = M ∪∂M ∂M × [1, 2), denote it

∂M × (0, 2) such that ∂M × {1} ∼= ∂M and (x, t) ∈ Int (M) for 0 ≤ t < 1 and

(x, t) ∈M+\M for 1 < t ≤ 2. Let us cover ∂M×(0, 2) by {Int (T )×(0, 2), Int (B)×

(0, 2), ∂B× (−1, 1)× (0, 2)}, where ∂B× (−1, 1) is an tubular neighbourhood of ∂B

in ∂M , with ∂B × (−1, 0] ⊂ B and ∂B × [0, 1) ⊂ T , where T = ∂M −B.

Now define

g+ : IntT × (0, 2)→ R as g+(x, t) = −t
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and

g− : IntB × (0, 2)→ R as g−(x, t) = t

and

g : ∂B × (−1, 1)× (0, 2)→ R as g(x, s, t) = −t sin(πs).

We want g to satisfy the boundary conditions A1,A2 and A3, namely,

∂g

∂t
|∂B×{0}×{1} = 0,

∂g

∂t
|∂B×(0,1)×{1} < 0,

∂g

∂t
|∂B×(−1,0)×{1} > 0;

and
∂g

∂s
> 0;

and when we apply a partition of unity, the overall function G = φ1g
+ + φ2g +

φ3g
− does not produce extra critical points on ∂M for suitable {φi} subordinate

to {Int (T ) × (0, 2), Int (B) × (0, 2), ∂B × (−1, 1) × (0, 2)}, where 0 ≤ φi ≤ 1 for

i = 1, 2, 3.

Check:
∂g

∂t
= sin(πs) = 0 iff s = 0,

and

−∂g
∂t

= − sin(πs)

< 0 0 < s ≤ 1

> 0 −1 ≤ s < 0

,

and
∂g

∂s
= π cos(πs) = π cos(πs) = π cos 0 = π > 0.

Now set

G = φ1g
+ + φ2g + φ3g

−.

Notice there are four overlaps in the cover, as illustrated below in Figure 3.3.

Without lose of generality, we only need to check that G doesn’t produce extra

critical points on one of them e.g. for the points

(x, s, t) ∈
(
∂B × (−1, 1)× (0, 2)

)
∩
(
IntT × (0, 2)

)
,
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where s ∈ (0 + ε, 1) for some 0 < ε < 1:

∂G

∂t
=

∂(φ1g
+ + φ2g)

∂t

= φ1
∂g+

∂t
+ g+∂φ1

∂t
+ φ2

∂g

∂t
+ g

∂φ2

∂t

= −φ1 + t
∂φ1

∂t
− sin(πs) · φ2 + t sin(πs) · ∂φ2

∂t

Here
∂φi
∂t

= 0 for all i = 1, 2, 3 as we can define the bump functions φi independent

of t, therefore,

∂G

∂t
= −φ1 − sin(πs) · φ2

= −(φ1 + φ2) + (1− sin(πs))φ2

= −1 + (1− sin(πs))φ2 < 0.

So we obtain the desired G on the neighbourhood of ∂M .

(0,2)

Int B     (0,2)

Int T  

     Γ
Γ

Figure 3.3: Overlaps of the open cover

Now for any given Morse function f : IntM → R, we can glue f and G in a

similar fashion using partition of unity and modify the new function to be Morse,

then we have successfully constructed a function F for the lemma. 2

Let us state the homotopy theorem as the main result of this section:
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Theorem 3.5.2 Let ω be a Morse closed 1-form on a manifold M with boundary

∂M where B is the exit set of ω, then ϕv : ẐGξ ⊗ZG C∗(M̃, B̃)→ CNov
∗ (M,B, ω, v)

is a chain homotopy equivalence, i.e.

ẐGξ ⊗ZG C∗(M̃, B̃) ' CNov
∗ (M,B, ω, v).

The idea of the proof is to construct a cohomologous 1-form ω1 whose gradient

vector field is dominated by the gradient u of its exact component dF , so that the

chain map ϕu : ẐGξ⊗ZGC
∆
∗ (M̃, B̃)→ ẐGξ⊗ZGC∗(M̃, B̃, F, u) can be broken down

to ϕu = id⊗ ϕMS
u where the second map is an isomorphism proved in Chapter 1.

Proof : According to the previous lemma, we have a Morse function F sharing

the same exit set B as ω, denote its gradient as u. Now we modify ω locally so that

the new form ω′ is constantly 0 in a small neighbourhood of each critical point of

F . The idea is similar to the approximation Lemma 3.3.3. Suppose p ∈ CritF is

a critical point of F , then choose a contractible neighbourhood Up of p such that

there exists f : U → R with df = ω|Up . Restrict f to a smaller neighbourhood Vp

of p, and extend such function f smoothly to the whole manifold such that the new

function, say f ′ satisfies that f ′|Vp = f and f ′|M−Up = 0. See Figure 3.4 below.

Figure 3.4: Operation near a critical point

Now add−df ′ to ω to get ω−df ′, and we can see it vanishes in the neighbourhood

Vp of p; repeat this operation finitely as many times as the number of the critical

points of F , we obtain the desired new cohomologous 1-form ω′. Notice also that each

function vanishes outside a neighbourhood of the critical point which it is responsible
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for, i.e. it has no impact to the boundary, and therefore the assumptions for the exit

set B in particular. Now for sufficiently large constant K, the cohomologous closed

1-form ω1 = ω′ +KdF enjoys the same gradient vector field u of F , so the Novikov

complex of ω1 is really a Morse complex tensored with the Novikov ring of ξ = [ω]:

CNov
∗ (M,B, ω1, u) = ẐGξ ⊗ZG C∗(M̃, B̃, F, u), which has the same chain homotopy

type of ẐGξ ⊗ZGC
∆
∗ (M̃, B̃) by the chain map ϕu = id⊗ϕMS

u . Now according to the

continuation argument in the previous section,

CNov
∗ (M,B, ω, v) ' CNov

∗ (M,B, ω1, u).

Therefore the following commutative diagram ensures the homotopy equivalence of

ϕv:

CNov
∗ (M,B, ω, v)

' //

ϕv

))TTTTTTTTTTTTTTT
CNov
∗ (M,B, ω1, u)

ϕu=id⊗ϕMS
u

'uujjjjjjjjjjjjjjj

ẐGξ ⊗ZG C
∆
∗ (M̃, B̃)

2

3.6 Morse inequalities

The above homotopy equivalence statement can be rephrased in the form of Novikov

Principle for manifolds with boundary:

Theorem 3.6.1 Let ω be a Morse closed 1-form on a compact manifold M with

boundary ∂M , and suppose B ⊂ ∂M is the exit set of ω and satisfies the assumptions

A1,A2 and A3, then there exists a relative chain complex CNov
∗ chain homotopic

to ẐGξ ⊗ZG C∗(M̃, B̃) where G = π1(M) is the fundamental group of M , such that

for each i = 0, . . . , n, CNov
i is free and finitely generated by elements of a free basis,

with one-to-one correspondence with the zeros of ω of index i.

Similar to the real function case, since the number of critical points of index i

equals the rank of the ith chain group, we obtain so-called Morse-Novikov inequali-

ties:
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Theorem 3.6.2 Let βi = rankHi(M,B; ẐGξ) be the rank of Hi(M,B; ẐGξ) and

ci = rankCNov
i (M,B, ω, v) be the rank of CNov

i (M,B, ω, v), then there exists a non-

negative polynomial R(t) such that

m∑
i=0

tici =
m∑
i=0

tiβi + (1 + t)R(t),

where m is the dimension of the manifold M . 2
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Chapter 4

The exact sequences

So far we have constructed the relative Morse-Novikov complex for a function/closed

1-form. A natural step forward is to understand its relationship with the classical

absolute Morse-Novikov chain complex. In this chapter, we derive some exact se-

quences regarding this inquiry. We relate the relative Morse-Novikov complex and

the absolute ones when looking at a compact manifold with boundary. We begin

with the exact case and follow by the closed one. Most of the effort is focused on

constructing a Morse function/closed 1-form with exit set satisfying assumptions

A1,A2 and A3. The chapter is concluded with some improved Morse-Novikov

inequalities.

4.1 On a real Morse function

Given a compact manifold M with boundary ∂M , let us consider a 0-codimensional

submanifold of ∂M , denote it B, possibly with boundary. Our goal in this section

is to construct an exact sequence of Morse complexes. We first do this for the entire

boundary ∂M , i.e. we consider the pair (M,∂M); and then we consider a proper

submanifold B ⊂ ∂M and the pair (M,B). The latter situation is the one we

prepared in Chapter 1.
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4.1.1 Short exact sequence for (M,∂M)

Let f : ∂M → R be a Morse function on ∂M , we want to extend f to M in such a

way that it satisfies the following conditions:

1. It does not create extra critical points on a collaring neighbourhood of ∂M ,

namely, ∂M × [0, ε] for small ε > 0.

2. Let F be the extension of f , then the flow generated by the gradient of F exit

M through ∂M in compliance with the Assumptions A1, A2 and A3.

Fix a Riemannian metric, and let v be the gradient vector field of f on ∂M .

To satisfy the above condition, we first want to shift the boundary one unit up

along the t coordinate. Namely, we choose a collaring neighbourhood of ∂M , i.e.

∂M × [0, 2] ⊂ M , and identify ∂M = ∂M × {1}. Now define f+ : ∂M × [0, 2]→ R

as f+(x, t) = f(x) + t2−K for a large positive K. Then we have the gradient v+ of

f+ as v+(x, t) = (v(x), 2t∂t) with respect to the product Riemannian metric.

Suppose we have g : M − ∂M × [0, 1) as another real Morse function, we want

to show firstly:

Lemma 4.1.1 There exists a Morse-Smale function F with critical points the same

as the ones of f and g, and satisfies condition (1) and (2) above on ∂M × {1}.

Proof : Define a smooth function ρ : [0, 2] → [0, 1] such that ρ(t) = 1 for

0 ≤ t < 1 + δ with 0 < δ < 1
2
, and ρ(t) = 0 for t = 2, in particular,

∂ρ

∂t
< 0 for

2− δ ≤ t ≤ 2 . We want to show that function F = Lρf+ + (1− ρ)g does not create

any new critical points, particularly in the collaring ∂M × [0, 2]. Also observe that

what we need to check is essentially that the differentiation in the t coordinate is

nonzero.

On ∂M × [0, 1], we have

∂F

∂t
(x, t) = Lf+∂ρ

∂t
(x, t) + Lρ

∂f+

∂t
(x, t) = 2L · ρ(t) · t = 2L · t = 0 iff t = 0;
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On ∂M × [1, 2], we have

∂F

∂t
(x, t) = Lf+∂ρ

∂t
(x, t) + Lρ

∂f+

∂t
(x, t) + (1− ρ)

∂g

∂t
(x, t)− g∂ρ

∂t
(x, t)

= (Lf+ − g)(x, t) · ∂ρ
∂t

(t) +
∂g

∂t
(x, t) + (L

∂f+

∂t
− ∂g

∂t
)(x, t) · ρ(t).

Here

(L
∂f+

∂t
− ∂g

∂t
)(x, t) · ρ(t) = (2Lt− ∂g

∂t
(x, t)) · ρ(t) ≥ 0,

for large L as
∂g

∂t
is bounded on ∂M × [1, 2]. Similarly,

(Lf+ − g)(x, t) · ∂ρ
∂t

(t) +
∂g

∂t
= (Lf(x) + Lt2 − LK − g(x, t)) · ∂ρ

∂t
(t) +

∂g

∂t
> 0,

for sufficiently large K, as
∂ρ

∂t
≤ −c for some c > 0 and

∂g

∂t
≤ C for some C > 0 by

compactness. 2

Remark 4.1.2 This is again a rather technical lemma, similar results are abundant.

For instance, compare to [8, Lemma 1.13], where extra attention is paid to the

Riemannian metric.

With the extension F constructed above, the Conditions (1) and (2) in the

beginning of the chapter are readily satisfied on ∂M × {1, }. Nevertheless, F is not

automatically Smale-transverse, but the transversality condition can be restored

according to the Kupka-Smale Theorem, see [21], [39] and [3, Chapter 7]. Using

again the techniques in [29], we can perturb F slightly while keeping f = F |∂M
fixed so that it is transverse, then we propose a short exact sequence for the relative

Morse complex:

0→ CMS
∗ (∂M, f, vf )→ CMS

∗ (M,F, V )→ CMS
∗ (M,∂M, g, vg)→ 0,

where vf , vg and V are the gradient vector fields of f, g and F respectively.

Here CMS
∗ (∂M, f, vf ) is the Morse complex of f , and CMS

∗ (M,∂M, g, vg) is the

relative Morse complex following the construction in Chapter 1. The middle term

CMS
∗ (M,F, V ) can be seen algebraically as a direct sum of the two ends, i.e. gener-

ated by the critical points of f on ∂M and g on (M − ∂M × [0, 1), ∂M × [0, 1)) '

(M − ∂M × [0, 1), ∂M × {1}). We want to identify it with the simplicial complex

C∆
∗ (M) up to chain homotopy and confirm it is indeed the Morse complex of F .
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We build chain maps ϕ∂Mvf : C∆
∗ (∂M)→ CMS

∗ (∂M, f, vf ) and ϕ
(M,∂M)
vg : C∆

∗ (M,∂M)→

CMS
∗ (M,∂M, g, vg) as in Chapter 1. Namely, we choose triangulations adjusted to

vf and vg respectively, this firstly induces the chain map ϕvf . Now for ϕ
(M,∂M)
vg :

C∆
∗ (M,∂M)→ CMS

∗ (M,∂M, g, vg), since the flow of F exit ∂M × {1} transversely,

any triangulation of ∂M × {1} is automatically adjusted to vg in M − ∂M × [0, 1),

so ϕ
(M,∂M)
vg is well-defined too.

Now we want to define a chain map between C∆
∗ (M) and CMS

∗ (M,F, V ). We

choose a common subdivision ∆s of the above triangulations adjusted to both vf

and vg. Notice the unstable manifolds of the critical points in ∂M come from the

whole manifold, in particular, we need to reconsider the way we define incidence

number [σ : p] for σ ∈ ∆s and p ∈ CritF |∂M . Now since ∂M is a subcomplex of

M , we can talk about two cases, namely, the simplices from ∂M and the simplices

from M − ∂M . For σ ∈ ∆s|∂M , [σ : p] is defined as in the manifold ∂M with the

Morse function f ; and for σ ∈ ∆s|M−∂M , we first slide σ alone the flow going towards

∂M and then compare the intersections σ ∩W u(p, V ) ⊂M with the oriented stable

manifold W s(p, V ) ⊂M . Then we get [σ : p] and hence define ϕMV .

Now consider the following commutative diagram:

0 // C∆s

∗ (∂M) //

ϕ∂Mvf
��

C∆s

∗ (M) //

ϕMV
��

C∆s

∗ (M,∂M) //

ϕ
(M,∂M)
vg

��

0

0 // CMS
∗ (∂M, f, vf ) // CMS

∗ (M,F, V ) // CMS
∗ (M,∂M, g, vg) // 0

Since ϕ∂Mvf and ϕ
(M,∂M)
vg are chain homotopy equivalence, the Five Lemma shows

ϕMV is a chain homotopy equivalence too. Therefore, we indeed have a short exact

sequence for the relative Morse complexes:

Theorem 4.1.3 Let M be a compact manifold with boundary ∂M . Suppose we

also have Morse functions f : ∂M → R and g : M − ∂M × [0, 1), then there exists

Morse function F with F |∂M = f and F |M−∂M×[0,1) = g, such that we have the

following short exact sequence of Morse complexes:

0→ CMS
∗ (∂M, f, vf )→ CMS

∗ (M,F, V )→ CMS
∗ (M,∂M, g, vg)→ 0.

Remark 4.1.4 In fact, by the time we finished the development of this exact se-

quence for Morse complexes, we noticed [1] has the results already published. Nev-
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ertheless, we are aware of our construction of an explicit Morse function for the

whole manifold. Both approaches are based on a cobordism setting, namely, in our

context, the boundary Γ of the exit set ∂M × {1} is empty.

4.1.2 Another short exact sequence

Let B be a 0-codimensional compact submanifold of ∂M and let f : ∂M → R

be a Morse function on the boundary ∂M so that f−1((−∞, 0]) = B. Note that

the boundary of B needs not to be empty, in which case we denote it Γ, then

T = ∂M −B has boundary ∂T = Γ too. Γ is a 1-codimensional submanifold of

∂M , and we have tubular neighbourhood Γ× [−1, 1] of Γ with a chosen orientation

so that
∂f

∂s
(x, 0) > 0 for (x, 0) ∈ Γ × [−1, 1] where s is the coordinate of [−1, 1].

This construction is possible as we can always perturb f slightly in ∂M so that f

has no critical points on Γ, and then approximate f |Γ×[−1,1] by projection to the last

coordinate [−1, 1].

Now consider pair (M,B), since f restricted to B is still Morse and if we define

C∗(M,B, F, V ) to be the quotient of the two Morse complexes CMS
∗ (B, f, vf ) and

CMS
∗ (M,F, V ), we have the following commutative diagram:

0 // C∆s

∗ (B) //

'
��

C∆s

∗ (M) //

'
��

C∆s

∗ (M,B) //

��

0

0 // CMS
∗ (B, f, vf ) // CMS

∗ (M,F, V ) // C∗(M,B, F, V ) // 0

So by Five Lemma, C∗(M,B, F, V ) is chain homotopically identified with C∆s

∗ (M,B).

We want to relate this chain complex to our construction in Chapter 1. Namely,

adapt B as the exit set of a modified Morse function F̃ .

Firstly, We enlarge the manifold M similarly to the construction in the beginning

of Chapter 1, and rescale the tubular neighbourhood of ∂M in the previous section

as ∂M × [−2, 4] with ∂M ∼= ∂M × {0}, so that F |∂M×[−2,2](x, t) = f+(x, t) =

f(x) + t2 −K.

Then what we want to do now is to find an embedding i : ∂M × [−1, 1] ↪→

∂M × [−2, 2] so that the composition f+i : ∂M × [−1, 1]→ R satisfies assumptions

A1,A2 and A3, and also recognises B as the exit set. We do this in two steps:
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Step one, let a : ∂M → [−1, 1] be a smooth function so that 0 ≤ a(x) ≤ 1 for

x ∈ B and −1 ≤ a(x) ≤ 0 for x ∈ T , and a(x) = 0 for x ∈ Γ and 0 is a regular value

for a. Then we have an embedding ∂M → ∂M × [−1, 1] as x 7→ (x, a(x)). Note that

for the exact case at this stage, a can be chosen as a multiple of f adjusted to sign.

Step two, we define i : ∂M×[−1, 1]→ ∂M×[−2, 2] as i(x, t) = (x, a(x)+t). Now

we claim f+i(x, t) = f(x) +
(
a(x) + t

)2 −K on ∂M × [−1, 1] satisfies assumptions

A1,A2 and A3 on ∂M with exit set B.

For Assumption A1, we want to show f+i has no critical points on ∂M :

d(f+i)|(x,0) =

∂f∂xdx+ 2a
∂a

∂x
dx

2adt

 6= 0

This is the case as we chose a(p) 6= 0 nontrivial at any critical point p ∈ Crit f .

For assumption A2, we want zero to be a regular value of
∂(f+i)

∂t
|(x,0), i.e. a

needs to be regular at any x ∈ ∂M with a(x) = 0. This is again taken care of by

the definition of a.

For assumption A3, we want for any point (x, 0, 0) ∈ Γ× [−1, 1]× [−2, 2],

∂(f+i)

∂s
(x, 0, 0) > 0.

Now f+i(x, 0, 0) = f(x, 0, 0) + a2(x, 0, 0)−K and

∂(f+i)

∂s
(x, 0, 0) =

∂f

∂s
(x, 0, 0) + 2a(x, 0, 0)

∂a

∂s
(x, 0, 0) =

∂f

∂s
(x, 0, 0) > 0,

for we chose f to be so.

Finally, by the construction of a,
∂(f+i)

∂t
= 2a+2t is always positive on IntB and

0 on Γ and negative on IntT . So modify function F on M to F̃ with F̃ |∂M×[−1,1] =

f+i, then F̃ has exit set B, and C∗(M,B, F, V ) can be viewed as the Morse complex

of F̃ :

C∗(M,B, F, V ) = CMS
∗ (M,B, F̃ , V ).

Therefore we have the following theorem for the pair (M,B):

Theorem 4.1.5 Let M be a smooth manifold with boundary ∂M , Let B ⊂ ∂M

be a 0-codimensional submanifold of ∂M , such that a Morse function f : Γ → R

is regular on its boundary Γ ⊂ B. Then we can perturb f slightly such that there
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exists Morse function F : M → R with F |B = f and F |M−∂M×[0,1) = g for some

Morse function g : M − ∂M × [0, 1)→ R, and B is the exit set of F in the sense of

assumptions A1,A2 and A3, and we have the following exact sequence:

0→ CMS
∗ (B, f, vf )→ CMS

∗ (M,F, V )→ CMS
∗ (M,B, F, V )→ 0.

2

4.1.3 Homology and improved Morse inequalities

The short exact sequence in the previous section induces a long exact sequence:

Corollary 4.1.6 With the above settings for the pair (M,B), we have the following

long exact sequence of their Morse homology:

· · · ∂k+1→ HMS
k (B)

ik→ HMS
k (M)

jk→ HMS
k (M,B)

∂k→ HMS
k−1(B)

ik−1→ · · · ,

where HMS
∗ (B), HMS

∗ (M) and HMS
∗ (M,B) are the Morse homology of B,M and

(M,B) by functions f, F and F |M−∂M×[0,1) = g, respectively. 2

Now for each k, let rank (∂k+1) be the dimension of the image of ∂k+1 and βk(B)

be the kth Betti number of B, and so on. Then notice

rank (∂k+1) = βk(B)− rank (ik)

and

rank (ik) = βk(M)− rank (jk).

Because rank (∂k+1) ≥ 0, iterate it finitely many times, we get

k∑
i=0

(−1)k−iβi(B)−
k∑
i=0

(−1)k−iβi(M) +
k∑
i=0

(−1)k−iβi(M,B) ≥ 0,

hence
k∑
i=0

(−1)k−iβi(M,B) +
k∑
i=0

(−1)k−iβi(B) ≥
k∑
i=0

(−1)k−iβi(M)

for all k, and
m∑
i=0

(−1)m−iβi(M,B) +
m∑
i=0

(−1)m−iβi(B) =
m∑
i=0

(−1)m−iβi(M),

where m is the dimension of M .

We summarise these inequalities in the following polynomial:
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Corollary 4.1.7 There exists a non-negative polynomial R(t) such that∑
i

ti
(
βi(M,B) + βi(B)

)
=
∑
i

tiβi(M) + (1 + t)R(t).

2

Notice also for the Morse function F constructed in the preceding section, we

can improve the estimate of its critical points as follows:

k∑
i=0

(−1)k−iβi(M) ≤
k∑
i=0

(−1)k−iβi(M,B) +
k∑
i=0

(−1)k−iβi(B)

≤
k∑
i=0

(−1)k−ici(M,B) +
k∑
i=0

(−1)k−ici(B) (4.1)

=
k∑
i=0

(−1)k−ici(M). (4.2)

Here (4.1) is the standard results of Morse inequalities for function F and f on M

and B respectively; whereas (4.2) comes from the fact that the number of critical

points of F on M is the sum of number of critical points F on B and on M away

from B.

Therefore, we have the following improved Morse inequalities:

Corollary 4.1.8 There exists a non-negative polynomial R(t) such that

m∑
i=0

tici(M) =
m∑
i=0

ti
(
βi(M,B) + βi(B)

)
+ (1 + t)R(t),

where m is the dimension of the manifold M . 2

We provide a simple example in the followings to conclude this subsection:

Example 4.1.9 Consider a torus T− with two points deleted, hence with boundary

∂T− = S1 t S1, depicted in Figure 4.1 below.

Let f be the high function assign to T−. Then we have critical points p1, p2, p3

and p4 in the interior, a1, a2 and b1, b2 on the boundary circles. Note that a1 and

b1 have index 0, a2, b2, p1, p2 and p3 have index 1, whereas p4 has index 2. Now a

simple calculation shows us the Betti numbers of T−: β0(T−) = 1,β1(T−) = 3 and
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a
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1
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b2

p
1

p2
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4

Figure 4.1: Torus with boundary

β2(T−) = 0. On the other hand, β0(∂T−) = β1(∂T−) = 2 and β2(∂T−) = 0; and

β0(T−, ∂T−) = 0, β1(T−, ∂T−) = 3 and β2(T−, ∂T−) = 1. Hence we have a sharper

lower bound for the critical points (in fact in this case equalities):

c0 = 2 = β0(T−, ∂T−) + β0(∂T−) > β0(T−) = 1,

c1 = 5 = β1(T−, ∂T−) + β1(∂T−) > β1(T−) = 3,

and

c2 = 1 = β2(T−, ∂T−) + β2(∂T−) > β2(T−) = 0.

2

4.2 On a closed 1-form

Let Ω be a Morse closed 1-form on M with boundary ∂M , and let the flow of

the gradient grad Ω exit through ∂M with ∂M satisfying assumptions A1,A2 and

A3 (In fact, when the exit set is the whole ∂M , A3 is redundant as Γ = ∅).

Further more, suppose ω is a closed 1-form with its cohomology class [ω] = i∗([Ω]) ∈

H1(∂M). Here i∗ : H1(M) → H1(∂M) is the cohomology map induced by the

inclusion i : ∂M → M . We want to show the construction of such closed 1-form so

that we get a short exact sequence of the Novikov complexes analogous to the one

we constructed above from a real Morse function. We first suggest a slightly rough

version here:
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0→ CNov
∗ (∂M, ω)→ CNov

∗ (M,Ω)→ CNov
∗ (M,∂M,Ω)→ 0

Now we make this precise:

Theorem 4.2.1 Given a closed 1-form Ω′ on a manifold M with boundary, we can

always modify Ω′ slightly within its cohomology class [Ω′] ∈ H1(M) so that the

modified closed 1-forms Ω on M and ω on ∂M derive the Novikov complexes as

described above respectively, and they form a short exact sequence.

Proof : Let Ω′ be a closed 1-form on M . Consider the cohomology class [Ω′] ∈

H1(M) of Ω′, then we have its image i∗([Ω′]) ∈ H1(∂M) under the induced map

i∗ : H1(M) → H1(∂M). Choose a Morse closed 1-form ω on ∂M such that [ω] =

i∗([Ω′]), and let ∂M × [0, 2] be the collaring of ∂M with ∂M × {0} ∼= ∂M . We

extend ω to ω + dt2 on ∂M × [0, 2]. On the other hand, if we denote the restriction

of Ω′ on ∂M × [0, 2] as ω′ = Ω′|∂M×[0,2], there is a function f : ∂M × [0, 2] → R

such that ω′ + df = ω + dt2. Extend f trivially to the whole M , say F , such that

F |∂M×[0,1] = f and F |M−∂M×[0,2) = 0 then we have Ω′ + dF |∂M×[0,1] = ω + dt2 which

is Morse. Next, we perturb the closed 1-form Ω′ + dF on neighbourhoods of its

critical sets so it becomes nondegenerate without changing its cohomology class.

This is possible for Ω′ + dF is exact on each neighbourhood and we can add an

exact form with coefficient large enough so that the stable and unstable manifolds

intersect transversely.

We denote this modification Ω, notice Ω|∂M×{1} = ω + dt2 has gradient vector

field in the form (grad ω, 2t∂t), and its flow exits ∂M × {1} transversely, so

CNov
∗ (∂M × [0, 1], ω + dt2) ' CNov

∗ (∂M, ω)

and

CNov
∗ (M,∂M × [0, 1],Ω) ' CNov

∗ (M \ ∂M × [0, 1), ∂M × {1},Ω)

We also employ Smale transversality approximation on the gradient vector field

of Ω and ω, then the constructions of the three Novikov complexes are complete.

Now CNov
∗ (∂M, ω) = ẐHη ⊗ C∗(∂̃M, ω), where H = π1(∂M), η = [ω] and

C∗(∂̃M, ω) is a ZH module generated by the zeros of ω. Similarly, CNov
∗ (M,Ω) =
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ẐGξ⊗C∗(M̃,Ω), where G = π1(M), ξ = [Ω] and C∗(M̃,Ω) is a ZG module generated

by the zeros of Ω.

Consider the map i∗ : π1(∂M) → π1(M) induced by inclusion i : ∂M → M .

By slightly abusing the notation, we have a natural group ring homomorphism

i∗ : ZH → ZG, therefore, ẐGξ can be seen as a module of ẐHη and we can tensor

CNov
∗ (N,ω) with ẐGξ to get ẐGξ ⊗dZHη

CNov
∗ (∂M, ω).

The last thing we need to show now is that the map

id⊗ j∗ : ẐGξ ⊗dZHη
CNov
∗ (∂M, ω)→ CNov

∗ (M,Ω)

is indeed a chain map, where j∗ : C∗(∂̃M, ω) → C∗(M̃,Ω) is induced from the

inclusion j : ∂M →M .

In other words, we want to show the existence of the following commutative

diagram:

ẐGξ ⊗ Cq(∂̃M, ω)
id⊗j∗ //

id⊗∂∂M
��

ẐGξ ⊗ Cq(M̃,Ω)

id⊗∂M
��

ẐGξ ⊗ Cq−1(∂̃M, ω)
id⊗j∗ // ẐGξ ⊗ Cq−1(M̃,Ω)

Notice the chain complex C∗(M̃,Ω) consists of two components, namely,

C∗(M̃,Ω) = C∗(∂̃M, ω)⊕ C∗(M̃ \ ∂̃M × [0, 1),Ω)

so for σ ∈ Cq(∂̃M, ω), j∗(σ) = (σ, 0) ∈ Cq(M̃,Ω), and

∂M =

∂∂M φM,∂M

0 ∂M\∂M

 ,

here the bottom left entry is trivial because the flow of gradΩ exits out from ∂M in

one direction, i.e. the trajectories come from zeros of ω in ∂M stay in ∂M .

Now it is an easy exercise to show that ∂M · j∗(σ) = ∂M(σ, 0) = (∂∂Mσ, 0) =

j∗ · ∂∂M(σ).

Finally, we have the desired sequence over the Novikov ring ẐGξ:
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0→ ẐGξ ⊗dZHη
CNov
∗ (∂M, ω)→ CNov

∗ (M,Ω)→ CNov
∗ (M,∂M,Ω)→ 0.

2

Following a five lemma type argument, we find chain homotopy equivalence be-

tween each component of the sequence and the (relative) simplicial complex of the

underlying manifold:

Theorem 4.2.2 The following diagram commutes:

0 // ẐGξ ⊗dZHη
CNov
∗ (∂M, ω) //

'
��

CNov
∗ (M,Ω) //

'
��

CNov
∗ (M,∂M,Ω) //

'
��

0

0 // ẐGξ ⊗ C∆
∗ (∂M) // ẐGξ ⊗ C∆

∗ (M) // ẐGξ ⊗ C∆
∗ (M,∂M) // 0

.

2

Now consider a 0-codimensional compact submanifold B of ∂M , possibly with

boundary. Then choose a closed 1-form Ω in the cohomology class ξ, such that its

restriction on B satisfies the boundary conditions A1,A2 and A3. Namely, we

want ω = Ω|B to be free of critical points on Γ, where Γ is the boundary of B, and

−∂f
∂t

(x, 0) > 0,

for (x, 0) ∈ Γ × [0, 1) ⊂ B and f is the lift of ω on the covering space with partial

derivative
∂f

∂t
defined on B equivariantly. In other words, ω has only entry set but

no exit set on B, and therefore the Novikov complex CNov
∗ (B,ω) of B under ω is

consistent with our construction in Chapter 3.

Theorem 4.2.3 Let B be a 0-codimensional compact submanifold of ∂M , possibly

with boundary. Then we get a similar short exact sequence for the pair (M,B)

where B is seen as the exit set of a closed 1-form Ω with Ω|B = ω:

0→ ẐGξ ⊗ CNov
∗ (B,ω)→ CNov

∗ (M,Ω)→ CNov
∗ (M,B,Ω)→ 0.
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Consider the map ẐHη � ̂Z[H/ ker η]η ↪→ ̂Q[H/ ker η]η and the following com-

mutative diagram:

ẐHη

��

// ẐGξ

��
̂Z[H/ ker η]η

// ̂Q[G/ ker ξ]ξ

where ̂Z[H/ ker η]η → ̂Q[G/ ker ξ]ξ factors through ̂Q[H/ ker η]η.

Use shorthand notation Q(ξ) = ̂Q[G/ ker ξ]ξ. Now since Q(ξ) is a field, after

tensoring with the Novikov complexes in the previous exact sequence, we have the

following short exact sequence:

0→ Q(ξ)⊗ CNov
∗ (B,ω)→ Q(ξ)⊗ CNov

∗ (M,Ω)→ Q(ξ)⊗ CNov
∗ (M,B,Ω)→ 0.

This in turns induces a long exact sequence of vector spaces:

Corollary 4.2.4 With the above notations, we have a long exact sequence of ho-

mology of Novikov complexes:

· · · → HNov
k (B; Q(ξ))→ HNov

k (M ; Q(ξ))→ HNov
k (M,B; Q(ξ))→ · · · ,

where HNov
k (B; Q(ξ)), HNov

k (M ; Q(ξ)) and HNov
k (M,B; Q(ξ)) are the Novikov ho-

mology of M,B and (M,B) with coefficients in Q(ξ), respectively. 2

So we also have improved analogous results on Morse inequalities for the relative

Novikov complexes:

Corollary 4.2.5 There exists a non-negative polynomial R(t) such that
m∑
i=0

ti
(
βi(M,B) + βi(B)

)
=

m∑
i=0

tiβi(M) + (1 + t)R(t),

where m is the dimension of the manifold M . Here βi(M), βi(B) and βi(M,B) are

the rank of HNov
k (M ; Q(ξ)), HNov

k (B; Q(ξ)) and HNov
k (M,B; Q(ξ)) respectively. 2

Corollary 4.2.6 With the notations in the previous lemma and denote ci(M,B)

the rank of CNov
∗ (M,B,Ω), then there exists a non-negative polynomial R(t) such

that
m∑
i=0

tici(M) =
m∑
i=0

ti
(
βi(M,B) + βi(B)

)
+ (1 + t)R(t),

where m is the dimension of the manifold M . 2
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Chapter 5

Morse-Bott nondegeneracy

In this chapter, we generalise the nondegeneracy condition in the sense of Bott

and direct the interests to the homology of the underlying chain complexes. On

a manifold with boundary, instead of looking at the topology of isolated critical

points of a function, we study its critical set as a union of connected submanifolds

where the gradient vector field of the function vanishes under Bott’s assumptions.

While constructing the so-called Morse-Bott complex of a real function and the more

generalised Novikov-Bott complex, we keep an eye towards their homology groups

and finally obtain the Morse inequalities by a spectral sequence argument.

5.1 The settings

Let f : M → R be a real function on manifold M with boundary ∂M , f is called

non-degenerate in the sense of Bott if its critical set C = Crit (f) satisfies the

followings:

B1 The set of critical points C is a submanifold of M , called critical manifold. The

critical manifold is usually not connected, so C often is a union of connected

components of submanifolds of M , C =
⋃
iCi.

B2 Denote ν(C) as the normal bundle of the critical manifold, then the restriction

f̂∗∗ of the Hessian f∗∗ on the normal bundle ν(C) is pointlessly nondegenerate

in C, i.e. f̂∗∗ :
(
TpM/TpC

)
×
(
TpM/TpC

)
→ R is nondegenerate for every
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p ∈ C.

A function which satisfies assumptions B1 and B2 is called Morse-Bott function.

According to assumption B2, for each connected component C of C, the number

of negative eigenvalues of the Hessian f∗∗ is fixed for all points in C, this defines the

index of C , denoted as ind (C). Let v be a gradient vector field of f with respect to

some Riemannian metric, suppose it also satisfies the Smale-transversality condition,

we define the stable manifold W s(C, v) and unstable manifold W u(C, v) as follows,

respectively:

W s(C, v) = {x ∈M : x · t→ C as t→ +∞},

W u(C, v) = {x ∈M : x · t→ C as t→ −∞}.

Here x · t is a shorthand notation of the image of the gradient flow Φ : M ×R→M ,

generated by the gradient v with x · 0 = x for each x and t.

Consider a k-dimensional connected component C ⊂ C of the critical subman-

ifold C with index ind (C) = λ, then its stable manifold W s(C, v) is of k + λ

dimension. Similarly for the unstable manifold. Therefore, even for some other

l-dimensional component C ′ with index ind (C ′) = µ such that µ > λ, it is still pos-

sible that W u(C ′, v)∩W s(C, v) 6= ∅, when k+λ is sufficiently large, say k+λ ≥ l+µ

to be precise. This will cause problem when it comes to the construction of Novikov

complex for closed 1-forms, namely, the trajectories of v can flow back to the same

connected component of the critical manifold, in which case it is not possible to

construct a filtration for the manifold as we do in the real function case. To resolve

the problem, we introduce the no homoclinic cycle condition, namely, the existence

of a gradient vector field without homoclinic cycles in M . This roughly is to exclude

the possibility that a trajectory returns to the same connected component which

prevents us from getting a spectral sequence for the homology of M .

We will make this condition precise in the closed 1-form situation in the corre-

sponding section.

The definition for the exit set B ⊂ ∂M and the transversality assumptions

A1,A2,A3 are unchanged for both Morse functions and closed 1-forms.

November 24, 2009



5.2. Spectral sequences and the chain complexes 65

5.2 Spectral sequences and the chain complexes

In this section, we consider both cases: real functions and circle-valued functions

which represent closed 1-forms. For each case, our approach is to construct a filtered

complex from a Morse-Bott complex, and describe its boundary map by a Morse

approximation, so that some spectral sequence can be derived from this filtered

complex. Finally, the spectral sequence yields the homology groups of the manifold

due to its convergence.

5.2.1 For real functions

There are several different filtrations for a real Morse-Bott complex, we refer to

[18], [3] and [16]. A straightforward filtration can be based on the value of each

connected component under f , however, this approach requires more restrictions

(the self-indexing condition) on the destination of trajectories in the closed 1-form

situation. Therefore, we adopt a slightly more sophisticated approach which is

consistent with the no homoclinic cycle condition in the closed 1-form case.

The ordering

Namely, we order the connected components according to the destination of the flow.

Consider the set of connected components {Ci} of C as a set of vertices {vi}, each

vertex vi corresponds to one component Ci, and we connect two vertices vi, vj with

an directed edge eij(eji) if there are trajectories going from Ci to Cj (or vice versa),

the direction is towards where the trajectories point. Then we obtain a directed

graph without loops. We perform the following algorithm to get an ordering:

Notice the number of components are finite due to the compactness of the

manifold, so we do the following algorithm by finite repetition, in round j where

j = 0, . . . , n:

1. For a vertex, check whether there are incident edges pointing out, label it j if

there is not, otherwise repeat the check for the successive vertices where the

edges are pointing to.
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2. Having exhausted all the vertices by the above operation, collect the labelled

ones in a union C(j), delete them together with any incident edges from the

graph, and start it over again as round j + 1.

We end up having an empty graph after finitely many rounds, say n, and each

vertex is assigned uniquely to a specific order, for instance, C(j) is the union of the

components with order j. Let us formalise this notation:

Notation 5.2.1 For each j, suppose we reindex all the connected components with

order j as Cα with α ∈ A(j), where A(j) is the collection of all the new indices of

the connected components with order j. Then we denote C(j) as the union of all

the connected components with order j according to the above algorithm:

C(j) =
⋃

α∈A(j)

Cα.

Morse-Bott chain complex and its filtration(chain inclusion map)

Now we want to define the Morse-Bott complex and build a spectral sequence ac-

cording to the hierarchy of the connected components, which is convergent to the

homology groups of M .

A direct way of doing this is to define the chain complex as a direct sum of

chain complexes of the critical manifolds and then specify the boundary maps, but

to build on the previous chapters, we first approximate the original function f by

a generic Morse function with respect to the ordering, and then define the chain

complex with boundary maps from counting trajectories in a standard way.

Consider a connected component Ci of the critical manifold C in M , where f is

the Morse-Bott function on M , assign Ci a generic Morse function fi : Ci → R, i.e.

the gradient vi of fi with respect to some Riemannian metric is transverse, then we

have a Morse complex CMS
∗ (Ci, fi, vi) of fi on Ci as

CMS
∗ (Ci, fi, vi) =

⊕
p∈Crit (fi)

Z,

generated by the critical points of fi. Having done this to every connected compo-

nent Ci of C, we want to modify the original f out of these Morse functions fi’s,
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so that we can eventually pin down the trajectories from one critical component to

another to specific critical points of fi’s as we did in the real Morse function case of

Chapter 1. Please see [2] and [18] for similar operations.

Firstly, choose a tubular neighbourhood N(Ci) of Ci, then if z ∈ Ci is a point in

this critical component, we write a point inN(Ci) as (z, x1, . . . , xλ, yλ+1, . . . , ym−dim(Ci)) =

(z, x, y) ∈ N(Ci), where m is the dimension of M and λ = ind (Ci) is the index of

the critical component Ci. Let f+
i (z, x, y) = fi(z) − x2 + y2 : N(Ci) → R+, and

choose a bump function ρi : M → [0, 1] such that

ρi|Ci = 1 and ρi|M−N(Ci) = 0.

Then function Fi = f + ερif
+
i creates no extra critical points other than the ones of

fi and f , for ρi with small partial derivatives
∂ρi
∂x

:

∂Fi
∂x

(z, x, y) =
∂f

∂x
(z, x, y) + ρi

∂f+
i

∂x
(z, x, y) + ε

∂ρi
∂x

f+
i (z, x, y)

=
∂f

∂x
(z, x, y)− 2ρix+ ε

∂ρi
∂x

f+
i (z, x, y)

< 0.

where
∂f

∂x
(z, x, y) < 0 near Ci and ε is chosen to be sufficiently small to guarantee

overall negative value.

Moreover, if p ∈ Ci is a critical point of Fi, then its index ind Fi(p) = ind (Ci) +

ind fi(p) is the sum of the index of p as a critical point of fi in Ci and the index of

Ci. And the Hessian of Fi at p has the matrix form as

d2Fi|p = d2f |p + d2f+
i |p =



0

0


+

−

+



+

−


0

0


Repeat this process to fi on Ci for each i, we obtain a slightly perturbed Morse

function Fε out of the original f and f+
i ’s as

Fε = f + ε
∑
i

ρif
+
i .

Denote vε and vi to be gradient vector fields of Fε and fi respectively with vε close

to v. Now we construct a chain complex homotopic to the simplicial chain complex

according to our relative Morse theory of Chapter 1:
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Definition 5.2.2 Let Fε be a Morse approximation of a Morse-Bott function f on

M , and vε be the gradient vector field of Fε, then we define the Morse-Bott complex

of f as a direct sum of Morse chain complexes of the critical manifolds, and the

boundary maps are derived from gradient vε:

CMB
∗ (M,B, f) = CMS(M,B, Fε, vε) =

⊕
i

CMS
∗−ind (Ci)

(Ci, fi),

and the boundary map ∂λ : CMB
λ (M,B, f) → Cλ−1(M,B, f) is defined exactly the

same as in the Morse function case:

∂λ(p) =
∑

q∈Crit λ−1(Fε)

[p : q]q,

where [p : q] is the incidence coefficient by counting trajectories of −vε from p to q

with given signs according to a prescribed orientation of W s(p, vε) and W u(q, vε).

Now we want to show that we are able to construct Fε with care so that the

gradient vε of Fε preserves the ordering according to our algorithm in the beginning

of the chapter.

The following lemma makes this possible:

Lemma 5.2.3 For each two connected components Ci, Cj ⊂ C of C such that

W u(Ci, v) ∩W s(Cj, v) = ∅,

and there are no broken trajectories between them, then there exist open neighbour-

hoods N(Ci) and N(Cj) so that

W u(N(Ci), v) ∩W s(N(Cj), v) = ∅.

In other words, the lemma states that if there are no trajectories flowing from Ci

to Cj, then we can find some small neighbourhoods of Ci and Cj so that there are

no trajectories flowing from the neighbourhood of Ci to the one of Cj. Note that,

when i < j, according to our algorithm, it is automatically true that there exist no

broken trajectories from Ci to Cj.

Proof : We prove it by contradiction. Firstly, let us assume f(Ci) < f(Cj),

otherwise, the gradient of f will guarantee no flow from the level set at Ci to the

level set at Cj.
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Suppose for the i, j such that W u(Ci, v) ∩W s(Cj, v) = ∅, any open neighbour-

hoods N(Ci) and N(Cj) there always exist trajectories from N(Ci) to N(Cj):

W u(N(Ci), v) ∩W s(N(Cj), v) 6= ∅.

Let {Nk(Ci)} and {Nl(Cj)} be sequences of nested neighbourhoods of Ci and

Cj, respectively, with Nk+1(Ci) ⊂ Nk(Ci) and Nl+1(Cj) ⊂ Nl(Cj), so that

W u(Nk(Ci), vε) ∩W s(Nl(Cj), vε) 6= ∅,

and ⋂
k

Nk(Ci) = Ci and
⋂
l

Nl(Cj) = Cj.

Now for each k = l, choose a trajectory γk from Nk(Ci) to Nk(Cj). We want to

show that such condition leads us to one of the two situations that contradict the

hypothesis. Namely, the sequence {γk}k of trajectories between neighbourhoods of

Ci and Cj will converge to either a trajectory from Ci to Cj or a broken trajectory

that pass by some Cj′ , where Cj′ is a critical manifold that lies between Ci and

Cj, meaning f(Ci) < f(C ′j) < f(Cj). (In fact, there can be more than one critical

manifold between Ci and Cj, but the argument is essentially the same, so we stick

to the simplest case. On the other hand, in the case of no such critical manifold in

the middle, the argument can be simplified accordingly.)

Suppose Cj′ is such a connected critical manifold between Ci and Cj. Then

let {x1
k} and {x2

k} be the two sequences of points lying on trajectories between

the nested neighbourhoods {Nk(Ci)} and {Nk(Cj)}. Moreover, we assume {x1
k} is

between Ci and Cj′ , and {x2
k} is between Cj′ and Cj. Since M −

(
N0(Ci)∪N0(Cj)

)
is compact, the limits x1 and x2 are contained in M −

(
N0(Ci) ∪ N0(Cj)

)
, and we

claim the trajectory where x1 lies originates from Ci.

Suppose the trajectory in which x1 lies does not come from Ci. Then we can

assume that there exists some k0 such that γx1 ∩ Nk0(Ci) = ∅. By the continuity

of the flow, there exists a neighbourhood N(x1) of x1 such that for any points

y ∈ N(x1) the trajectory γy ∩ Nk0(Ci) = ∅. Since x1 is the limit of a subsequence

of {x1
k}, there exist xkn ∈ {xk} such that xkn ∈ N(x1) also lie in N(x1) for each

kn > k0. In particular, this says xkn /∈ W u(Nkn(Ci), v) ∩ W s(N(Cj′), vε) for any
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N(Cj′), i.e. γxnk does not belong to W u(Nnk(Ci), v), a contradiction to our choice

of the collection {γk}k. Therefore, x1 comes from Ci. Symmetrically, x2 ends in Cj.

Finally, consider the trajectory originates from Ci where x1 lies, it can either

ends in Cj′ first and then resumes there and reaches Cj after passing through x2;

or it bypasses Cj′ and reaches Cj directly. But either way, it contradicts to the

hypothesis in the statement. 2

Proposition 5.2.4 With the above notation, for each Cα ∈ A(j), there exists an

open neighbourhood N(Cα) of Cα so that the N(Cα) respects the ordering of the

algorithm, in other words, replace Cα by N(Cα), the algorithm will label N(Cα) by

j the same as Cα. 2

Then choose vε sufficiently close to v, we obtain a filtration of CMB
∗ (M,B, f) by

writing

C(k)
∗ (Fε) =

k⊕
j=1

⊕
α∈A(j)

CMS
∗ (Cα, fα),

where fα : Cα → R is the Morse function that approximates f on Cα. Then

C(1)
∗ (Fε) ↪→ C(2)

∗ (Fε) ↪→ · · · ↪→ C(n)
∗ (Fε) = CMB

∗ (M,B, f)

induces the desired spectral sequence with E1 term:

E1
k,l =

⊕
α∈A(k)

Hk+l−ind (Cα)(Cα, fα) ∼=
⊕
α∈A(k)

Hk+l−ind (Cα)(Cα).

We summarise the result in the following corollary:

Corollary 5.2.5 The homology of the Morse-Bott complex is isomorphic to the rel-

ative homology of the underlying manifold, therefore, the spectral sequence induced

by the filtered Morse-Bott complex converges to the relative homology:

Er
k,l ⇒ HMB

k+l (M,B, f) ∼= Hk+l(M,B) when r →∞,

with E1 term as:

E1
k,l
∼=
⊕
α∈A(k)

HMS
k+l−ind (Cα)(Cα, fα) ∼=

⊕
α∈A(k)

Hk+l−ind (Cα)(Cα),

where fα : Cα → R is the Morse function that approximates f on Cα. 2
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Morse inequalities

Notation 5.2.6 Denote βn = rank (Hn(M,B)) and βn(C(k)) = rank (Hn(C(k)) =∑
α∈A(k) dimHn(Cα).

Corollary 5.2.7 There is a polynomial R(t) with non-negative coefficients such

that

∑
k,l

βk+l−ind (C(k))(C(k))tk+l =
∑
n

βnt
n + (1 + t)R(t)

Proof : From Theorem 5.2.1 we know:

βn =
∑
k+l=n

rank (E∞k,l)

We want to show that there exists non-negative polynomial R(t) such that:∑
n

∑
k+l=n

tnrank (E1
k,l) =

∑
n

∑
k+l=n

tnrank (E∞k,l) + (1 + t)R(t).

Since the filtration is finite and the spectral sequence will reach stability after finite

pages, and it can be reduced to show for each r,∑
n

∑
k+l=n

tnrank (Er
k,l) =

∑
n

∑
k+l=n

tnrank (Er+1
k,l ) + (1 + t)Rr(t),

where Rr(t) is a non-negative polynomial.

Denote Zr
k,l = ker(dr : Er

k,l → Er
k−r,l+r−1) and similarly, Br

k,l = Im (dr : Er
k,l →

Er
k−r,l+r−1), then

rank (Er
k,l) = rank (Zr

k,l) + rank (Br
k,l), (5.1)

and by the construction of the spectral sequence, Er+1
kl = Zr

kl/B
r
k+r,l−r+1, therefore,

rank (Er+1
k,l ) = rank (Zr

k,l)− rank (Br
k+r,l−r+1), (5.2)

so

rank (Er
k,l) = rank (Er+1

k,l ) + rank (Br
k,l) + rank (Br

k+r,l−r+1),

therefore∑
k+l=n

rank (Er
k,l) =

∑
k+l=n

rank (Er+1
k,l ) +

∑
k+l=n

rank (Br
k,l) +

∑
k+l=n

rank (Br
k+r,l−r+1)

(5.3)
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Now take the alternating sum of the above Equation (5.3) from n = 0 to n = N

for any N , we have

n=N∑
n=0

∑
k+l=n

(−1)N−nrank (Er
k,l) =

n=N∑
n=0

∑
k+l=n

(−1)N−nrank (Er+1
k.l ) +

∑
p+q=k

rank (Br
p,q).

This is equivalent to

∞∑
n=0

∑
k+l=n

tnrank (Er
k,l) =

∞∑
n=0

∑
k+l=n

tnrank (Er+1
k,l ) + (1 + t)Rr(t),

for some non-negative polynomial Rr(t).

Suppose the spectral sequence becomes stable at page r0, i.e., Er0 = E∞, then

after repeating this process r0 times, and taking the sum of them all, we have the

following:

∑
n

∑
k+l=n

tnrank (E1
k,l) =

∑
n

∑
k+l=n

tnrank (Er0
k,l) + (1 + t)

r0−1∑
r=1

Rr(t).

Now R(t) =
∑n−1

r=1 Rr(t) is non-negative and the proof is complete. 2

5.2.2 For circle-valued functions

For general closed 1-forms, we follow the previous treatment as in the Morse situ-

ation, where we approximate such a 1-form to a particular type, a rational closed

1-form, which in turn is equivalent to the study of the circle-valued functions on a

manifold with boundary.

The settings

Let us recall the essential settings laid out in Chapter 2:

For a compact manifold M with boundary ∂M , let f : M → S1 be a circle-valued

function on M with exit set B, which is defined as in Chapter 2. Denote C as the

critical set of f on M , since locally f is seen to be real, we call f satisfying the Bott

nondegeneracy condition, if restrict to a tubular neighbourhood of each connected

component Ci of C, f satisfies conditions B1 and B2.

Assuming f∗ : π1(M)→ π1(S1) = Z is surjective. For simplicity, we consider the

minimal covering space ρ̄ : M̄ →M whose fundamental group π1(M̄) corresponds to
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the kernel of f∗, i.e. the covering transformation group of ρ̄ is the infinite cyclic group

Z. We are aware the rational approximation and the choice of minimal covering

would lose considerable amount of information about the closed 1-form in terms

of its cohomology class and the Novikov ring, nevertheless, the essential geometric

picture will be retained.

We can find a lift f̄ : M̄ → R of fρ̄, and denote M1
µ = f̄−1((−µ, 1]), Mµ =

f̄−1({−µ}) and Bµ = B̄ ∩M1
µ for integer µ ≥ 0. Furthermore, if v is a gradient

vector field of f with respect to some Riemannian metric, then denote its lift on the

covering space v̄.

Suppose we have the Novikov-Sikorav ring as

Z((t)) = Z[[t]][t−1] = {λ = Σ∞−∞aµt
µ : |{tµ with aµ 6= 0, µ ≤ 0}| <∞},

We want to construct a chain complex based on the critical manifold over the

Novikov-Sikorav ring, and understand its homology.

Firstly, let us make the condition of no homoclinic cycle precise:

Definition 5.2.8 Let {Ci} be the set of connected components of the Bott’s critical

manifold C in M , a homoclinic cycle of length n is a finite sequence of trajectories

γ1, . . . , γn, γn+1 = γ1 in M satisfies:

lim
t→+∞

γj ∪ lim
t→−∞

γj+1 ⊂ Ci(j)

for all 1 ≤ j ≤ n.

The concept of homoclinic cycle will be further explored in the next chapter,

where we deal with its relationship with the category cat(X,B, [ω]) with respect to

a closed 1-form ω.

No Homoclinic Cycle Condition

Let ω be a closed 1-form on M nondegenerate in the sense of Bott, we assume

that there exists a gradient vector field v of ω for a given Riemannian, whose flow

contains no homoclinic cycles. 2
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With the no homoclinic cycle assumption, we are able to perform the algorithm

describe in the beginning of the chapter and get an ordering {j} as for each connected

component Ci of C so that after reindexing, each Cα has order j for α ∈ A(j).

However, the flow of gradient v in M can still circulate around the whole M which

makes the filtration in the base space impossible. Instead, we look at each piece

M1
µ of the covering space, then we can have similar filtration as in the real function

case. Denote µC(j) as the union of connected components with order j in M1
µ, we

make the following simple observation:

Observation: Assuming the no homoclinic condition, the ordering of the critical

manifold C is preserved in the covering space, in other words,

µ0C(j) =

µ0⋃
µ=0

tµC̄(j),

where each C̄(j) ⊂M1
0 is a chosen lift of the union of connected component Cα for

α ∈ A(j) in M1
0 and t ∈ Z = 〈t〉 is a generator with f∗(t) = −1.

Filtration of the Novikov-Bott complex

For each µ we want to construct the filtration as in the real function case. The

new obstruction here to overcome is that each time when we approximate f̄ on a

finite pieces M1
µ by F µ, we get a slightly different gradient vector field vµ. This

increases the complexity of getting chain maps for the inverse system, and we want

to concentrate on this aspect of the construction.

Note also that the approach here is roughly analogous to Chapter 2, however,

the new obstacle we are facing here is that the Bott condition does not directly

imply self-indexing property on the critical set. So in order to preserve the ordering

and no homoclinic cycle condition as in the real function case, we have to adjust the

modification F µ of f̄ for each µ.

Consider the base manifold M , according to Lemma 5.2.3, for each connected

component Ci, there exists a neighbourhood Nµ(Ci) for each µ so that on the total

space M̄ , in the first µ copies of M1
0 we have Nµ(Ci) respecting the no homoclinic

cycle assumption as well as Ci for each i. With these neighbourhoods in hand for

each Ci, we can approximate f by some Morse function F µ so that the lift of the
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gradient vµ of F µ on the covering observes the no homoclinic cycle assumption for

the first µ copies, and therefore respects the ordering. With slight abuse of notation,

we denote the lifts of F µ and vµ restricting to M1
µ with the same notations F µ and

vµ. Let CMS
∗ (F µ, vµ) be the relative Morse complex of F µ on M1

µ, then we can define

the Morse-Bott complex for (M1
µ, Bµ ∪Mµ) as in the previous section:

CMB
∗ (M1

µ, Bµ ∪Mµ, f̄ |M1
µ
, vµ) =

µ⊕
k=0

⊕
i

CMS
∗−ind (Ci)

(tkCi, fi)

=
n⊕
j=1

C∗−ind (µC(j))(µC(j), fj),

for each Morse function fj : µC(j)→ R independent of µ. Then by denoting

µC
(k)(Fµ) =

k⊕
j=1

C∗−ind (µC(j))(µC(j), fj)

we have the following filtration:

µC
(0)(Fµ) ↪→ µC

(1)(Fµ) ↪→ · · · ↪→ µC
(n)(Fµ) = CMB

∗ (M1
µ, Bµ ∪Mµ, f̄ |M1

µ
, vµ)

Notice that when µ gets bigger each time, the tubular neighbourhood of each

connected critical component can be chosen to be smaller for the Morse approxi-

mation F µ. Moreover, for each µ, CMB
∗ (M1

µ, Bµ ∪ Mµ, f̄ |M1
µ
, vµ) can be seen as a

free Z[t]/tµ module generated by critical points of F µ, where t is a generator of the

covering transformation group Z.

Before the actual construction, we like to shorten the key notations to the fol-

lowing:

Notation 5.2.9 Let C∆(µ) = C∆
∗ (M1

µ, Bµ ∪ Mµ) and CMB(µ) = CMB
∗ (M1

µ, Bµ ∪

Mµ, f̄ |M1
µ
, vµ).

In order to obtain a inverse system where each map CMB
∗ (µ + 1) → CMB

∗ (µ)

is an honest projection of Z[t]/tµ+1 module to Z[t]/tµ module, we want to choose

these neighbourhoods carefully so that vµ+1 is very close to vµ and the chain map

CMB
∗ (µ, vµ+1)→ CMB

∗ (µ) is an identity, where CMB
∗ (µ, vµ+1) is the Morse-Bott com-

plex of M1
µ with gradient vµ+1 instead of vµ. More general, we want:

CMB
∗ (µ, vµ

′
) = CMB

∗ (µ), for any µ′ ≥ µ.
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We do this inductively. Suppose we already have the neighbourhoods and the

gradient vector field vµ for M1
µ. On M1

µ+1, we can choose each neighbourhood

Nµ+1(Ci) ⊂ Nµ(Ci) smaller and this guarantees the same ordering of each neigh-

bourhood Nµ+1(Ci) following the algorithm in Section 5.2.1. Recall the Definition

1.3.13 and notice vµ+1 and vµ coincide on the complement of the union of all the

neighbourhoods Nµ(Ci), and share the same critical points on M1
µ. Therefore, for

any p ∈ M1
µ, W u(p, vµ+1) ∩ W s(q, vµ) = ∅ where p ∈ CritF µ and p 6= q with

ind q = ind p. In other words, the incidence number [p : q] between two distinct

critical points p, q is trivial, when vµ+1 is chosen sufficiently close to vµ . With this

construction in hand, we readily get the following commutative diagram where the

horizontal maps PrMB are indeed honest projections:

· · · // CMB
∗ (µ+ 1)

PrMB
//

((PPPPPPPPPPPP
CMB
∗ (µ) // · · ·

CMB
∗ (µ, vµ+1)

=
77ooooooooooo

(5.4)

Now we want to have the following commutative diagram to compare the simpli-

cial chain complex and the Morse-Bott complex for each µ, and hence understand

the homology of the inverse limit:

C∆
∗ (µ+ 1)

Pr∆
//

ϕµ+1

��

C∆
∗ (µ)

ϕµ

��
CMB
∗ (µ+ 1)

PrMB
// CMB
∗ (µ)

(5.5)

where PrMB,Pr∆ are projections of the Morse complexes and simplicial chain com-

plexes respectively, and ϕµ is a chain map for each µ.

We summarise our goal in the following lemma:

Lemma 5.2.10 There exists a sequence {vµ}µ=0,... of vector fields vµ for each µ on

the covering M̄ so that we have the above commutative Diagram (5.5).

Proof : We do the construction inductively.

To define a chain map between each C∆
∗ (µ) and CMB

∗ (µ), let Ψµ : M → M be

a diffeomorphism isotopic to Ψµ−1. Viewing a triangulation ∆ as a diffeomorphism
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from a simplicial complex onto M as in [31, §8.3], then we want the composition

Ψµ∆ to be a triangulation adjusted to vµ for each µ. Suppose again this is done

inductively up to µ pieces on M̄ . This is possible when vµ is chosen close to vµ−1

(which we did) and the construction of Ψµ follows from [29, Lemma 5.3], therefore

we have the chain map ϕµ : C∆
∗ (µ)→ CMB

∗ (µ) for each µ.

Now suppose we have built the chain map ϕµ : C∆
∗ (µ) → CMB

∗ (µ) for µ by

choosing a triangulation adjusted to vµ. Notice that vµ is also a gradient of F µ+1

on M1
µ+1 for a suitable Riemannian metric, as vµ(F µ+1) > 0 for the points away

from the critical set in M1
µ+1. Nevertheless, we still need the transversality to make

a chain complex, so let vµ+1 be chosen based on the following three criteria:

1. Gradient vµ+1 of F µ+1 is Smale-transverse on M1
µ+1;

2. The chain map PrMB : CMB
∗ (µ+ 1)→ CMB

∗ (µ) is a projection.

3. The intersection W u(p, vµ+1) ∩ σ is transverse on M1
µ for each σ ∈ Ψµ(∆).

Moreover, the intersection number is the same as W u(p, vµ) ∩ σ on M1
µ.

Note that Criterion 1 is standard, and we have achieved Criterion 2 following

the construction that leads to Diagram (5.5). We will elaborate Criterion 3 in the

following. So far, we have built Diagram (5.5), and the rest of the proof is dedicated

to its commutativity.

Consider an i-simplex σ ∈ C∆
i (µ + 1), there are two cases: σ ⊂ M1

µ+1\M1
µ and

σ ⊂M1
µ. For the first case,

PrMBϕµ+1(σ) = PrMB
( ∑
p∈Crit iFµ+1

[σ : p]µ+1p
)

= 0;

where [· : ·]µ+1 is the incidence number under the vector field vµ+1, and it becomes

0 after the projection because all the nontrivial incidence numbers only arise when

the critical points are in M1
µ+1\M1

µ. And similarly Pr∆(σ) = 0.

For the second case,

PrMBϕµ+1(σ) = PrMB
( ∑
p∈Crit iFµ+1

[σ : p]µ+1p
)

=
∑

p∈Crit iFµ

[σ : p]µ+1p,

whereas

ϕµPr∆(σ) = ϕµ(σ) =
∑

p∈Crit iFµ

[σ : p]µp.
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Now we reduce the commutativity problem to the following equality:

[σ : p]µ = [σ : p]µ+1.

Our aim now is to describe our choice of vµ+1 and Ψµ+1 so that Ψµ+1(σ) ∩

W u(p, vµ+1) has the same number of intersection points as Ψµ(σ) ∩W u(p, vµ).

When the incidence number is trivial, i.e. no intersection, then we can always

find vµ+1 sufficiently close to vµ so that there is no intersection of the simplex with

the unstable manifold.

Otherwise, notice there are only finite number of intersection points of σ ∩

W u(p, vµ) by compactness of σ, without loss of generality, and we assume there

is only one intersection point z in the interior of σ.

Firstly, we make our choice of vµ+1 precise with respect to Criterion 3 above.

According to [5, Theorem 7.7], let ind p = k, then we can choose a neighbourhood U

of z with some suitable local coordinates, so that we have the following parametri-

sation:

U ∩W u(p, vµ)→ {0} × Rm−k, (5.6)

and

U ∩ σ → Rk × {0}.

In particular, z → (0, 0) for z ∈ σ ∩W u(p, vµ).

Let i : Rm−k →M be the injective immersion of the unstable manifold W u(p, vµ)

so that the composition with map (5.7) maps 0 → z → (0, 0). Choose unit disk

D ⊂ Rm−k centred at 0, and modify the parametrisation U∩W u(p, vµ)→ {0}×Rm−k

if necessary so that the composition

I : D
iD→ U ∩W u(p, vµ)→ 0× Rm−k

is the identity map mapping x→ (0, x).

Now according to [3, Parametrisation Theorem 27.4], we can choose vµ+1 arbi-

trarily C1 close to vµ so that the injective immersion i : Rm−k → M of W u(p, vµ+1

is C1 close to i. In particular, with respect to the parametrisation of U , the

following composition i′ : D
jD→ U ∩ W u(p, vµ+1) → Rk × Rm−k is defined as
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x → (g(x), h(x)) ∈ Rk × Rm−k for x ∈ D so that g(x) and h(x) are C1 close to

0 and f(x) respectively. To be precise, let

||dh− dI|| ≤ 1

2
,

then the procedure in the proof of Inverse Function Theorem, for instance [24,

pp 160], shows that h is injective in D. By choosing also that ||h(x) − x|| ≤ 1
2

for

all x ∈ D, then it is guaranteed that 0 is contained in the interior of h(∂D).

Now we manage to show the uniqueness of the intersection, in order to show the

existence, i.e. the solution of h(x) = 0 exists, we devise the following argument:

According to the generalised Jordan Curve Theorem, h maps the boundary ∂D

into Rm−k so that the interior of h(∂D) is a m−k-dimensional disk D′. Collapse the

boundary h(∂D) of D′, we have an m− k− 1 sphere S ′, similarly we get m− k− 1

sphere S from D, so that we have map h′ : S → S ′, now h′ is smooth and injective

at least away from the collapsing point, and the degree of h′ is 1, which shows which

h′ is surjective and hence h, i.e. the solution of h(x) = 0 exists.

With the similar process, we can find a diffeomorphism Ψµ+1 isotopic to Ψµ so

that Ψµ+1(σ) intersects W u(p, vµ+1) transversely on M1
µ+1 at the same number of

points.

We illustrate the idea in the following Figure 5.1:

Therefore, by our inductive choice of vµ and Ψµ, we show the diagram is com-

mutative. 2

Taking the inverse limit of the system (5.5) and tensoring it with the Novikov

ring Z((t)), now we finish the construction of our Novikov-Bott complex:

Definition 5.2.11 We define the Novikov-Bott complex as

CNovB
∗ (M,B, f) = Z((t))⊗ lim←−

µ

CMB
∗ (µ).

Proposition 5.2.12 For each µ, we have chain homotopy equivalence ϕµ : C∆
∗ (µ) '

CMB
∗ (µ). 2

This is the result of Chapter 1. We now want to understand the homology of

the inverse limit of the above system tensored with the Novikov ring Z((t)):
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γ
γ
v

µ v

µ+1

z
z’

µ+1Ψ   (σ)

Ψ  (σ)µ

Figure 5.1: Choice of vµ+1 and Ψµ+1

Since (5.5) satisfies the Mittag-Leffler condition, the inverse system (5.5) induces

the following exact sequence:

0→ lim←−
1Hi+1(CMB(µ))→ Hi(lim←−C

MB(µ))→ lim←−Hi(C
MS(µ))→ 0,

and similarly,

0→ lim←−
1Hi+1(C∆(µ))→ Hi(lim←−C

∆(µ))→ lim←−Hi(C
∆(µ))→ 0.

Therefore applying the Five Lemma to the following commutative diagram:

0 // lim←−
1Hi+1(C∆(µ)) //

∼=
��

Hi(lim←−C
∆(µ)) //

��

lim←−Hi(C
∆(µ))

∼=
��

// 0

0 // lim←−
1Hi+1(CMB(µ)) // Hi(lim←−C

MB(µ)) // lim←−Hi(C
MB(µ)) // 0.

we have shown the isomorphism in the middle termHi(lim←−C
∆(µ))→ Hi(lim←−C

MB(µ))

for each i.

Now since both chain complexes are free, the isomorphism of the homology

groups induces the chain homotopy equivalence of the following two chain complexes

after tensoring with the Novikov ring Z((t)):

Z((t))⊗ lim←−
µ

CMB
∗ (µ) ' Z((t))⊗ C∆(M̄, B̄), (5.7)
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and it also respects the filtration, i.e. denote

Ĉ(k) = lim←−
µ

µC
(k)(µ) = lim←−

µ

k⊕
j=1

C∗−ind (µC(j))(µC(j), fj),

we have

Z((t))⊗ Ĉ(0) ↪→ Z((t))⊗ Ĉ(1) ↪→ · · · ↪→ Z((t))⊗ Ĉ(n) = CNovB(M,B, f).

We summarise this section in the following statement:

Proposition 5.2.13 The filtered chain complex CNovB
∗ (M,B, f, v) induces a spec-

tral sequence with

E1
k,l =

⊕
α∈A(k)

Hk+l−ind (C̄α)(C̄α; Z((t))),

Er
k,l ⇒ Hk+l (M,B; Z((t))) .

Here C̄α is a chosen lift of Cα in M1
0 of the covering space with α ∈ A(k) the index

of the collection of order k connected components. 2

Morse inequalities of a rational Novikov-Bott closed 1-form

Since the filtration is finite, E∗∗∗ converges to the homology groups of M after finite

pages, and we have

E∞k,l =
Im
(
Hk+l−ind (C(k))(Ĉ

(k),Z((t)))→ Hk+l(M,Z((t))
)

Im
(
Hk+l+1−ind(C(k−1))(Ĉ

(k−1),Z((t)))→ Hk+l(M,Z((t)))
)

Meanwhile, according to Lemma 1.10 in [13], the Novikov ring Z((t)) is a principle

ideal domain, and the homology over such ring splits as a direct sum of a free module

and cyclic modules by the structure theorem for finitely generated modules, see pp 9

in [41] for example. Therefore, this spectral sequence resolves the extension problem

as well as in the real function case:

Hn(M,B; Z((t))) =
⊕
k+l=n

E∞k,l

so we can recover the rank of Hn(M,B; Z((t))):

rankHn(M,B; Z((t))) =
∑
k+l=n

rank (E∞k,l).
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Notation 5.2.14 Denote

βn(ξ) = rankHn(M,B; Z((t)))

and

βn(C(k), ξ) = rankHn(C(k); Z((t))).

This implies the Morse inequalities for a Novikov-Bott closed 1-form:

Lemma 5.2.15 There is a polynomial R(t) with non-negative coefficients such that

∑
k,l

βl+k(C(k), ξ)tk+l =
∑
n

βn(ξ)tn + (1 + t)R(t).

2

5.2.3 Examples of Novikov-Bott closed 1-forms with the No

Homoclinic Cycle Condition

In the subsection, we construct a generic example that satisfies the No Homoclinic

Cycle condition we took for granted since the beginning, and show it’s actually

preserved under Cartesian product.

Let M,N be compact manifolds with boundary. Let f : M → R be a real

function nondegenerate in the sense of Bott, and denote its critical set S =
⋃
i Si as

disjoint union of connected critical manifolds of f . Let ω be a Morse closed 1-form

on N and denote its critical set C = {pj} as a set of Morse critical points of ω.

Suppose we also fix two Riemannian metrics gM and gN on M and N respectively,

then we have gradient vector fields u and v of f and ω with respect to gM and gN

respectively.

Now consider the 1-form df + ω. It is closed and has critical set
⋃
i,j(Si, pj).

Take the product Riemannian metric (gM , gN) on M × N , then (u, v) : M × N →

T (M × N) is the gradient vector field of df + ω with respect to (gM , gN). For

any two connected critical manifolds (Si, pj) and (Sk, pl), it is easy to see that from

(Si, pj) to (Sk, pl) there exists no trajectory of the negative gradient (−u,−v), if

either W s(Si, u) ∩W u(Sk, u) = ∅ or W s(pj, v) ∩W u(pl, v) = ∅. Because under both
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gradient fields u and v, homoclinic cycle is absent, the observation leads to the

conclusion that (−u,−v) satisfies the no homoclinic cycle condition on M ×N .

In fact, we can generalise the above construction to the Cartesian product of any

number of manifolds with a Novikov-Bott closed 1-form:

Proposition 5.2.16 Let ωi be Novikov-Bott closed 1-form on manifold Mi, for

each i = 1, . . . , n where n is finite. Then with the product Riemannian metric, the

gradient vector field of
∑

i ωi satisfies the no homoclinic cycle condition on
∏

iMi if

for each i, the gradient of ωi satisfies the no homoclinic cycle condition on Mi. 2
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Chapter 6

Lusternik-Schnirelman category

with respect to a closed 1-form

In previous chapters, a substantial part is concerned with the estimation of the

number of critical points of a closed 1-form. But such treatments require the Morse

nondegeneracy condition of the critical points. In this chapter, we want to remove

this restriction and describe a different approach to the question, a generalisation of

the classical Lusternik-Schnirelman category initiated by M. Farber in [9] [10] [11]

and [12]. In particular, we give a relative version of the concept and show the link

to the absolute one via an inequality, which is achieved by a technical operation

of segmenting the larger movable set, see Theorem 6.2.1. To make the exposition

complete, we also provide analogous results on cuplength lower bound and estimate

of critical numbers of a closed 1-form.

6.1 Definitions

We want to work on the more general topological spaces, so firstly let us define a

continuous version of closed 1-form for topological spaces:

Definition 6.1.1 Let X be a topological space, a continuous closed 1-form ω on X

is defined to be a collection {fU}U∈U of continuous real functions fU : U → R, where
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U = {U} is an open cover of X such that for any pair U, V ∈ U , the difference

fU |U∩V − fV |U∩V : U ∩ V → R

is locally constant.

Two continuous closed 1-forms ω1 = {fU}U∈U , ω2 = {gV }V ∈V are called equiva-

lent if the union {fU , gV }U∈U ,V ∈V of the collections is a continuous closed 1-form,

i.e. for any U ∈ U and V ∈ V , the difference fU − gV of the two functions fU , gV is

locally constant on U ∩ V . A trivial example for such topological continuous closed

1-forms can be constructed as follows:

Example 6.1.2 Suppose we take the whole space {X} as the open cover, then any

continuous function f : X → R defines a continuous closed 1-form on X, denoted

as df . It is the continuous version of the exact forms, we call it a continuous exact

form.

In such an example, the two trivial closed 1-forms df and dg are equivalent

df = dg if and only if f − g : X → R is locally constant, i.e. constant on each

connected component of X.

The continuous version of the angular form can be constructed as follows:

Example 6.1.3 Consider the 1-dimensional sphere S1, suppose it is parametrized

by t → eπit and let it be covered by U, V where U = (−1
6
, 7

6
) and V = (5

6
, 13

6
)

and the functions θU and θV are angular functions, i.e. θU(α) = πα for α ∈ U

and θV (β) = πβ for β ∈ V , then θV |U∩V − θU |U∩V = 0, 2π locally constant, so

dθ = {θU , θV } is a continuous closed 1-form on S1. It is easy to see that dθ is not

exact.

We want to define the integral of topological closed 1-forms, and it leads to their

corresponding cohomology classes.

Definition 6.1.4 Suppose we have a closed 1-form ω = {fU}U∈U for some open

cover U = {U} of a topological space X, and γ : [0, 1] → X is a continuous path

on X. The line integral
∫
γ
ω is defined as follows:∫

γ

ω =
n−1∑
i=0

(fUi(γ(ti+1))− fUi(γ(ti))) ,
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where t0 = 1 < t1 < · · · < tn = 1 is a partition of closed interval [0, 1] such that

γ[ti, ti+1] ⊂ Ui for all 1 ≤ i ≤ n.

Remark 6.1.5 This integration is independent of the choice of partitions and the

open cover U , see Section 10.2 in [13].

The following standard results from [13, Chapter 10] lead to the cohomology

class of a continuous closed 1-form.

Lemma 6.1.6 Suppose we have two continuous paths γ1, γ2 : [0, 1] → X sharing

the same end points, i.e. γ1(0) = γ2(0) and γ1(1) = γ2(1). Moreover, if γ1 and γ2

are homotopic relative to the end points, then for any continuous closed 1-form ω

on X, we have the equality: ∫
γ1

ω =

∫
γ2

ω.

We sketch a proof here:

Proof :

The idea of the proof can be shown in the following picture:

Figure 6.1: Homotopy Invariance

Here, without loss of generality, we can assume both paths are covered by two

same open subsets, then choose p and q in the intersection respectively, it is easy to

see their integrals are equal. 2

This leads to the following definition:

Definition 6.1.7 Let ω be a closed 1-form on a topological space X, the homo-

morphism of periods: π1(X, x0)→ R is defined as:

[γ] 7→
∫
γ

ω,

where γ : [0, 1] → X is a loop represent a homotopy class of π1(X, x0) with base

point x0 = γ(0) = γ(1).
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Lemma 6.1.8 Suppose X is a locally path-connected topological space, then a

continuous closed 1-form ω = df for some continuous real function f : X → R on

X if and only if the homomorphism of periods determined by ω is trivial for any

choice of base point x0 ∈ X. 2

A continuous closed 1-form ω represents a cohomology class [ω] ∈ H1(X; R) =

Hom(H1(X); R) by the homomorphism of periods. Lemma 6.1.8 tells us that the

homomorphism of periods is independent of the choice of forms up to their coho-

mology class, two continuous closed 1-forms ω1, ω2 lie in the same cohomology class

[ω1] = [ω2] if and only if they differ by an exact form df of some real function

f : X → R.

For the purpose of our thesis, we are mainly interested in more specific spaces,

e.g. finite CW complexes and compact manifolds, and hence we adapt Lemma 10.5

in [13] to the following form:

Lemma 6.1.9 Let X be a finite CW complex, then any singular cohomology class

ξ ∈ H1(X; R) can be realized by a continuous closed 1-form on X. 2

Remark 6.1.10 Lemma 10.5 in [13] works for more general spaces.

Now we have adequate vocabulary to introduce the concept of category with

respect to a closed 1-form: let X be a finite CW complex and ω be a continuous

1-form on X, we introduce the concept of N movability of a subset of X for an

integer N ∈ Z as follows:

Definition 6.1.11 Let N ∈ Z be an integer and C > 0 be a real positive constant,

a subset D ⊂ X is N-movable with control C with respect to ω if there exists a

homotopy h : D × [0, 1]→ X such that h0 is the inclusion map, and for any x ∈ D

we have

∫ h1(x)

x

ω ≤ −N,

and for all t ∈ [0, 1],

∫ ht(x)

x

ω ≤ C.
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We will use the shorthand notation (N,C)-movable for a subset with this prop-

erty. Intuitively, an (N,C)-movable subset is a collection of points which can be

continuously deformed in X under a homotopy so that each of them is winding

around over distance N . The control C is just a measurement to ensure such defor-

mation does not relapse dramatically during its course. A trivial example can be a

null-homotopic subset of X, which firstly contracts to a point and then this point

will move around freely under a well-defined homotopy, provided ω is not exact.

The following figure shows a case when a subset D is not (N,C)-movable:

D

Figure 6.2: Counter-example of (N,C)-movability

Definition 6.1.12 Let X be a finite CW complex and ω be a continuous closed

1-form on X with its cohomology class denoted as ξ = [ω], then a Lusternik-

Schnirelmann category with respect to closed 1-form ω, cat(X, ξ), is defined to be

the smallest integer k such that there exists C > 0 such that for any integer N > 0,

there exists an open cover of X, X = U ∪ U1 ∪ · · · ∪ Uk such that Ui ↪→ X is

null-homotopic in X for 1 ≤ i ≤ k and U is (N,C)-movable with respect to ω.

This is the controlled version introduced in [14], in order to generalise the product

inequality of the L-S category. The original version of Farber’s category can be

obtained by letting C =∞. In fact, it is still an open question whether there is any

difference between the controlled category and the ordinary category with respect

to a closed 1-form, please see [14]. Nevertheless, the controlled version is useful

to study the lower bound of a product space with independent 1-forms for each

components, and it is also essential for us to obtain the inequality in the end of this

subsection.
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For a more detailed exposition of cat(X, ξ), we refer to [13, Chapter 10], and

now we define the relative version of the above category.

Let (X,B) be a CW pair, and ω be a continuous closed 1-form on X.

Definition 6.1.13 Let N ∈ Z be an integer and C > 0 be a real positive constant,

a subset D ⊂ X containing B is (N,C)-movable relative to B with respect to ω

if there exists a homotopy h : D × [0, 1] → X such that h0 is the inclusion map,

ht(B) ⊂ B for all t ∈ [0, 1] and for any x ∈ D, either h1(x) ∈ B, or we have

∫ h1(x)

x

ω ≤ −N,

and for all t ∈ [0, 1],

∫ ht(x)

x

ω ≤ C.

Since we are mainly interested in the relative version in the rest of the chapter,

by slight abuse of the notation, we call this property (N,C)-movable without the

reference to subset B, unless it causes confusion. Roughly speaking, it is a subset

containing B which can be continuously deformed in the space X, such that a point

either is pushed into B or travels over distance N as measured by ω.

Definition 6.1.14 Let (X,B) be a finite CW pair and ω be a continuous closed

1-form on X with its cohomology class denoted as ξ = [ω], then a relative Lusternik-

Schnirelmann category with respect to closed 1-form ω, cat(X,B, ξ), is defined to be

the smallest integer k such that there exists C > 0 such that for any integer N > 0,

there exists an open cover of X, X = U ∪ U1 ∪ · · · ∪ Uk such that Ui ↪→ X is

null-homotopic in X for 1 ≤ i ≤ k and U is (N,C)-movable relative to B.

Remark 6.1.15 Note that cat(X,B, ξ) is independent of ω in the cohomology class

ξ = [ω]. For any two closed 1-forms ω, ω′ in the same cohomology classes ξ differ by

an exact form df where f : X → R, since X is finite, f is bounded above by a real

number, say K ∈ R. then for any path γ : [0, 1]→ X,

|
∫
γ

ω −
∫
γ

ω′| = |f(γ(1))− f(γ(0))| ≤ K,
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So for any arbitrary N ∈ R, if there exists an open cover of X with respect to ω,

which consists an (N,C)-movable subset with respect to ω and k null-homotopic

subsets, then for the same N , we can find an open cover with an (N,C ′)-movable

subset and k null-homotopic subsets for ω′.

Remark 6.1.16 When B = ∅ is empty, our cat(X,B, ξ) coincides with cat(X, ξ):

cat(X,B, ξ) = cat(X, ξ).

Remark 6.1.17 When the cohomology class is trivial ξ = 0, the (N,C)-movable

component can’t satisfy
∫
ω ≤ −N for large N , so must have h1(X) ∈ B for

all x ∈ U , hence our category is equal to the relative version of the classical L-S

category, cat(X,B, ξ) = cat(X,B). The notion cat(X,B) can be found in a number

of papers, see for instance: [37], [6] and [30].

First of all, we want to state that this category is a homotopy invariant, the

proof is similar to the absolute one in Chapter 10.2 of [13].

Lemma 6.1.18 Let φ : (X,B) → (X ′, B′) be a relative homotopy equivalence

between finite CW-complex pairs (X,B) and (X ′, B′), and ξ′ ∈ H1(X ′; R), ξ =

φ∗(ξ′) ∈ H1(X; R), then

cat(X,B, ξ) = cat(X ′, B′, ξ′).

Proof : Let ψ : (X ′, B′) → (X,B) be the relative homotopy inverse of φ, ω be

a topological closed 1-form on X, and ω′ = ψ∗(ω) be the closed 1-form on X ′, then

there exists a homotopy r : (X,B) × [0, 1] → (X,B) such that, r0 = id, r1 = ψφ.

By the compactness of X, there exists K > 0 such that

∫ r1(x)

x

ω ≤ K, for all x ∈ X

Now suppose cat(X ′, B′, ξ′) = k, i.e., there is some positive real C > 0 and for

any integer N > 0,there is an open cover X ′ = V ∪ V1 ∪ · · · ∪ Vk such that, Vi → X ′

are all null-homotopic, and V is (N −K,C)-movable relative to B′. In particular,

there exists a homotopy h : V × [0, 1] → X ′, so that for any point x ∈ V , either
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h1(x) ∈ B′ or ∫ h1(x)

x

ω′ ≤ −N −K

and ∫ ht(x)

x

ω ≤ C.

Let U = φ−1(V ), Ui = φ−1(Vi), then X = U∪U1∪· · ·∪Uk, and since the following

diagram commutes up to homotopy,

Ui
⊂ //

φ
��

X

Vi
⊂ // X ′

ψ

OO

we have Ui → X null homotopic for all i. Hence the proof is reduced to find a

homotopy g : U × [0, 1]→ X to move U . Define gt to be

gt(x) =

r2t(x) 0 ≤ t ≤ 1
2

ψ ◦ h2t−1 ◦ φ(x) 1
2
≤ t ≤ 1

Then g is continuous since both rt and ψ ◦h2t−1 ◦φ are continuous for all t and agree

at t = 1
2
. Moreover, g0 = r0|U is the inclusion, and gt(B) ⊂ B since both rt(B) ⊂ B

and ψ ◦ h2t−1 ◦ φ(B) ⊂ B for all t. Finally, for any x ∈ U , either g1(x) ∈ B or∫ g1(x)

x

ω =

∫ r1(x)

x

ω +

∫ ψ(h1(φ(x))

r1

ω ≤ K + (−N −K) = −N

and ∫ gt(x)

x

ω < K + C, for all t ∈ [0, 1].

So it is true that cat(X,B, ξ) ≤ cat(X ′, B′, ξ′). Repeat the same argument to

get cat(X ′, B′, ξ′) ≤ cat(X,B, ξ), we have proved the lemma. 2

6.2 Properties

We detail the features of the relative category with respect to a closed 1-form in the

following two subsections, namely, an inequality that links the relatives categories

and a lower bound estimate.
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6.2.1 Inequalities

Let us firstly state the main inequality for relative categories:

Theorem 6.2.1 Let A ⊂ B ⊂ X be finite CW complexes and ξ ∈ H1(X; R) be a

cohomology class of X, then

cat(X,A, ξ) ≤ cat(X,B, ξ) + cat
(
B,A, i∗(ξ)

)
where the map i∗ : H1(X; R)→ H1(B; R) is induced by the inclusion map i : B →

X.

Proof : Suppose cat(X,B, ξ) = k and cat(B,A, i∗(ξ)) = l, let ω be a continuous

closed 1-form representing ξ, we need to show the existence of a real positive R > 0,

such that for any N > 0, there is an open cover of X which consists of k + l

null-homotopic components and one (N,R)-movable component relative to A.

Firstly, we want to modify the open cover of B to be open in X, we do the

following trick of deformation retraction:

According to Hatcher [17, Appendix A.2], there exists an open neighbourhood

N(B) of B in X such that there exists a deformation retraction D′ : N(B)× [0, 1]→

N(B) rel B with D′1(N(B)) = B. And we can extend its composition with the

inclusion map N(B) × [0, 1] → X to the whole space, denote D : X × [0, 1] → X

with Dt|N(B) = D′t for all t, according to Example 0.15 of [17]. By the compactness

of X, there exists K ∈ R such that
∫ D1(x)

x
ω < K for any x ∈ X.

Now according to the definition of the category, there is C > 0 and for any

integer N , there exist open covers X = U ∪U1 ∪ · · · ∪Uk and B = V ∪ V1 ∪ · · · ∪ Vl,

where Ui and Vj are null-homotopic for all i, j; U is (N + C + 1 + K,C)-movable

relative to B by a homotopy g, and V is (N + C + 2K)-movable relative to A by a

homotopy h.

On the other hand, as N varies, N(B) is not necessarily contained in U for

all N > 0, therefore, let us consider the intersection N ′(B) = N(B) ∩ U of N(B)

and U and restrict the deformation retraction to the closure of this intersection as

d = D|N ′(B) : N ′(B) × [0, 1] → X. Note we still have K > 0 with
∫ d1(x)

x
ω < K

for any x ∈ N ′(B). Also denote N ′′(B) an open subset of N ′(B) with N ′′(B) ⊂

N ′′(B) ⊂ N ′(B), in particular, N ′′(B) ⊂
(
d−1

1 (V ) ∪ d−1
1 (V1) ∪ · · · ∪ d−1

1 (Vl)
)
.

November 24, 2009



6.2. Properties 93

Secondly, to comply with the definition of relative movability, let us modify

g : U × [0, 1] → X such that points in A stay in A throughout the homotopy.

Now according to the Lemma 6.2.2 below, we can construct an open neighbourhood

N(A) of A in U with gt(N(A)) ⊂ N(B) ∩ U for all t ∈ [0, 1]. Then we define map

ϕ : U → [0, 1] such that ϕ|A = 0 and ϕ|U−N(A) = 1. So we have a continuous

homotopy g′ : U × [0, 1]→ X as

g′(x, t) = D(g(x, ϕ(x)t), t),

so g′t(N(A)) ⊂ N(B) ∩ U as gt does for all t, and for any x ∈ U , either g′1(x) ∈ B

or
∫ g′1(x)

x
ω < −N − C − 1 and for all x ∈ U and all t ∈ [0, 1],

∫ g′t(x)

x
ω < C + K for

some C ∈ R.

Now we want to show there is an open cover of X modified from the ones of X

and B, namely:

X = (U∗ ∪ V ∗) ∪ (U∗1 ∪ · · · ∪ U∗k ) ∪ (V ∗1 ∪ · · · ∪ V ∗l ),

where U∗ ∪ V ∗ is (N,R)-movable relative to A for some R > 0 and Ui, Vj are null-

homotopic in X.

We divide the argument into three parts:

(i) Null homotopy of V ∗j To get V ∗j , we firstly need to modify the Vj’s so that

they are open in X. Since d is continuous, we have Ṽj = d−1
1 (Vj) ⊂ N ′(B)

is open in X. Now we set V ∗j = (g′1)−1(Ṽj) and define the null homotopy

Hj : V ∗j × [0, 1]→ X as

Hj(x, t) =


g′(x, 3t) 0 ≤ t ≤ 1

3

d(g′1(x), 3t− 1) 1
3
≤ t ≤ 2

3

hj(d1g
′
1(x), 3t− 2) 1

2
≤ t ≤ 1,

where hj is the null homotopy of Vj, and we can see H t
j continuously deform

V ∗j to a point in X.
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Notice that V ∗j does not necessarily contain the original Vj but it encompasses

the points of U that reach Ṽj after flowing along gt.

(ii) Construction of V ∗ Here we want to modify V and the accompanied homo-

topy h so that the new V ∗ is open in X and (N+C+K,C+1)-movable relative

to A by some homotopy. Consider the closed complement V c = B − ∪jVj in

B, we have d−1
1 (V c) closed in X and thus denote Ṽ c = d−1

1 (V c) ∩ N ′′(B) a

closed subset in X. Meanwhile, denote Ṽ = d−1
1 (V ) ⊂ N ′(B) which is open in

X with Ṽ c ⊂ Ṽ . Notice also that there exists homotopy h′ : Ṽ × [0, 1] → X

for Ṽ as:

h′(x, t) =

d(x, 2t) 0 ≤ t ≤ 1
2

h(d1(x), 2t− 1) 1
2
≤ t ≤ 1,

such that for x ∈ Ṽ ,

either h′1(x) ∈ A or

∫ h′1(x)

x

ω < −N − C − 2K +K = −N − C −K;

and
∫ h′t(x)

x
ω < C +K for all x ∈ Ṽ and t ∈ [0, 1].

Now according to Lemma 6.2.3 below, there exists an open subset V ′ of X

with Ṽ c ⊂ V ′ ⊂ Ṽ and a homotopy H : X × [0, 1]→ X such that:

H0(x) = x for all x ∈ X;

and for all x ∈ V ′, either H1(x) ∈ A or∫ H1(x)

x

ω ≤ −N − C −K

and for all x ∈ X and all t ∈ [0, 1]∫ Ht(x)

x

ω < C + 1.

We set V ∗ = (g′1)−1(V ′).

(iii) Construction of U∗ Choose slightly smaller open subsets U o
i ⊂ Ui such that:

U o
i ⊂ U o

i ⊂ Ui and X ⊂ U ∪ U o
1 ∪ · · · ∪ U o

k ,
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then we define

U∗ = X −

(( k⋃
i=1

U o
i

)
∪ (g′1)−1(N ′′(B))

)
.

Define the homotopy G :
(
U∗ ∪ V ∗

)
× [0, 1]→ X as:

G(x, t) =

g
′(x, 2t) 0 ≤ t ≤ 1

2

H(x, 2t− 1) 1
2
≤ t ≤ 1

.

Check that Gt(A) ⊂ A for all t ∈ [0, 1] as both g′ and H are built with this

feature. For x ∈ U∗ it will travel over N distance as:∫ G1(x)

x

ω =

∫ g′1(x)

x

ω +

∫ H1(x)

g′(x)

ω ≤ (−N − C − 1) + (C + 1) = −N.

Similarly, for x ∈ V ∗ = (g′1)−1(V ′), after discounting the effect of g′ and

returning into V ′ ∈ N(B), H either pushes the point into A or to travel over

N distance as∫ G1(x)

x

ω =

∫ g′1(x)

x

ω +

∫ H1(x)

g′(x)

ω ≤ C +K + (−N − C −K) = −N.

also for all t ∈ [0, 1] and x ∈ U∗ ∪ V ∗,
∫ Gt(x)

x
ω < 2C + 2K + 1.

Finally, let us set U∗i = Ui unchanged, then X is covered as:

X = (U∗ ∪ V ∗) ∪ (U∗1 ∪ · · · ∪ U∗k ) ∪ (V ∗1 ∪ · · · ∪ V ∗l ).

This is true as (g′1)−1(N ′′(B)) is covered by V ∗ and V ∗j :

(g′1)−1(N ′′(B)) ⊂ V ∗ ∪ V ∗1 ∪ · · · ∪ V ∗l ,

where

N ′′(B)
(
⊂ d−1

1
2

(V c) ∪ d−1
1 (V1) ∪ · · · ∪ d−1

1 (Vl)
)

⊂ V ′ ∪ Ṽ1 ∪ · · · ∪ Ṽl;

and {U∗i } covers the rest of X.

Now U∗∪V ∗ is (N, 2C+2K+1)-movable relative to A and the other components

are all null-homotopic. 2
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Lemma 6.2.2 Using the notation as above, there exists an open neighbourhood

N(A) of A in X with N(A) ⊂ N(B) ∩ U , such that gt(N(A)) ⊂ N(B) ∩ U for all

0 ≤ t ≤ 1.

Proof : Given g : U × [0, 1]→ X, we have gt(a) ∈ B ⊂ N(B)∩U for any a ∈ A,

according to the hypothesis. For such point (a, t) ∈ A× [0, 1], by the continuity of

g, we can find some neighbourhood N t(a)× (t− δt, t+ δt) of (a, t) in X for small δt,

such that g(a′, t′) ∈ N(B)∩U for all (a′, t′) ∈ N t(a)× (t− δt, t+ δt). Note that the

size of the neighbourhood N t(a) here depends on t.

Now because of the compactness of [0, 1], the open cover
⋃
t∈[0,1](t − δt, t + δt)

of [0, 1] induces a finite subcover, namely, there exists t1, . . . , tn such that [0, 1] =⋃n
i=1(ti − δi, ti + δi). Set

N(a) =
n⋂
i=1

N ti(a),

we claim g(N(a)× [0, 1]) ∈ N(B) ∩ U .

For any a ∈ A, this is true as let any (x, t) ∈ N(a)× [0, 1] then t ∈ (ti−δi, ti+δi)

for some i, and x ∈ N(a) ⊂ N ti(a), i.e. (x, t) ∈ N ti(a)× (ti − δi, ti + δi) for some i,

which satisfies g(x, t) ∈ N(B) ∩ U by construction.

Now define

N(A) =
⋃
a∈A

N(a).

We can see N(A) ⊂ N(B) ∩ U and gt(N(A)) ⊂ N(B) ∩ U for all t ∈ [0, 1]. 2

Now we justify the lemma used in the proof of Theorem 6.2.1 for the extension

of the homotopy h to the whole complex X:

Lemma 6.2.3 Let ω be a continuous closed one form on a finite CW complex X.

Let B ⊂ X be a subcomplex. Suppose further that there exists C ∈ R so that for

an integer N > 0, we have an open subset U of X containing B and U is N -movable

with respect to B. Then for any given closed subset W ⊂ U with B ⊂ W , there

exists an open set U ′ with W ⊂ U ′ ⊂ U and a homotopy H : X × [0, 1] → X

satisfying the following properties:

1. H0(x) = x for all x ∈ X and Ht(B) ⊂ B for all t ∈ [0, 1];

2. For any x ∈ U ′ one has either H1(x) ∈ B or
∫ H1(x)

x
ω < −N ;
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3. For any x ∈ X and t ∈ [0, 1],
∫ Ht(x)

x
ω < C + 1.

The lemma states the validity of extending the homotopy for a relatively N -

movable set to the whole space X, so that a smaller open set remains N -movable

relative to B, whereas the control condition holds for the whole X under such

homotopy.

Proof : Let h : U × [0, 1]→ X be the original homotopy for U in the hypothesis.

Then we want to enforce the control condition on the whole space X. To do this,

we denote a smaller open neighbourhood U ′ of W with W ⊂ U ′ ⊂ U ′′, then use a

bump function φ : X → [0, 1] such that

φ(x) =

1 x ∈ W

0 x ∈ X − U ′.

Then we can define H : X × [0, 1]→ X as

H(x, t) = h(x, φ(x)t.

The homotopy H satisfies the requirements. 2

If A = ∅ is empty, Theorem 6.2.1 states the connection of the absolute category

and the relative category in an inequality as in the following corollary:

Corollary 6.2.4 For a CW pair (X,B) and a continuous closed 1-form ω on X, we

have

cat(X, ξ) ≤ cat(X,B, ξ) + cat
(
B, i∗(ξ)

)
.

where ξ = [ω] is the cohomology class of ω, and i∗ : H1(X; R) → H1(B; R) is

induced by the inclusion map i : B → X. 2

Assisted by Lemma 6.2.3 above, we can also derive a similar inequality for the

category of a product of CW complex pairs, see [14].

Theorem 6.2.5 Let (X,B), (Y,D) be two CW pairs, ξX ∈ H1(X; R) and ξY ∈

H1(Y ; R) be the cohomology classes on X and Y , respectively. Suppose also

cat(X,B, ξX) > 0 or cat(Y,D, ξY ) > 0,
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Then

cat((X,B)× (Y,D), ξ) ≤ cat(X,B, ξX) + cat(Y,D, ξY )− 1,

with ξ = ξX × 1 + 1× ξY .

Proof : Suppose cat(X,B, ξX) = k and cat(Y,D, ξY ) = l. There is C > 0 and

for any N let the open covers for X and Y be

X = U ∪ U1 ∪ · · · ∪ Uk

and

Y = V ∪ V1 ∪ · · · ∪ Vl

respectively. Here U and V are (N +C + 1, C)-movable relative to B and D respec-

tively.

Now for the closed subsets WX = X −
⋃

1≤i≤k Ui and WY = Y −
⋃

1≤j≤l Vj of

X and Y respectively, Lemma 6.2.3 above provides us with the existence of global

homotopies HX and HY , so that open neighbourhoods U ′ and V ′ of WX and WY

with WX ⊂ U ′ ⊂ U and WY ⊂ V ′ ⊂ V are (N + C + 1, C + 1)-movable.

Hence, the open product subset U ′ × V ′ ⊂ U × V contains WX × Y ∪X ×WY

and is (N,C + 1)-movable.

There for U ′×V ′ together with Ui×Vj cover X ×Y . And results in [7] and [19]

state the fact that the union of Ui × Vj can be covered by l + k − 1 null-homotopic

open subsets in X × Y . Therefore the inequality holds. 2

6.2.2 Cup length lower bound

We now provide a cohomology lower bound for cat(X,B, ξ) similar to the one in [14],

let us begin with some basic notions.

For a CW complex X and a continuous closed 1-form ω, we have a regular

covering space p : X̃ → X correspond to the kernel of the cohomology class ξ = [ω] ∈

H1(X; R), then we have covering transformation group H ' Zr = π1(X)/ ker(ξ).

Then the cohomology class of the pullback of ω is trivial in the covering, [p∗ω] =

0 ∈ H1(X̃; C), i.e., there exists a real function f : X̃ → R such that df = p∗ω.
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Definition 6.2.6 A subset O ⊂ X is called a neighbourhood of infinity in X̃ with

respect to a cohomology class ξ ∈ H1(X; R), if O contains the set {x ∈ X̃ : f(x) < c}

for some c ∈ R. Here f : X̃ → R is the real function obtained by pulling back a

closed 1-form ω with [ω] = ξ ∈ H1(X; C).

Notice the definition of a neighbourhood of infinity O is independent of the choice

of real functions, the argument goes similarly as for the independency of movable

open subset to the choice of closed 1-forms up to the cohomology class. Namely, for

two functions f, f ′ : X̃ → R, they can be pushed forwardly to two closed 1-forms

in the base space as ω and ω′ respectively. And there is a real function g : X → R

such that ω = ω′ + dg. Then f = f ′ + g · p, and because X is compact, there is

K ∈ R with g(X) < K. Therefore, the neighbourhood of infinity O defined by f

for some c ∈ R can also be defined by f ′ by c+K.

For a more detailed exposition of the above notion, we refer to [15], in particular

Lemma 3 in Section 3.

Definition 6.2.7 Let (X,B) be a finite CW complex pair and ω be a continuous

closed 1-form on X. Suppose p : X̃ → X is a regular covering corresponding to

ker(ξ) where ξ = [ω] ∈ H1(X) is the cohomology class of ω. Then a homology class

z ∈ Hi(X̃, B̃) is movable to infinity with respect to ξ, if in any neighborhood O of

infinity with respect to ξ, z is the image of a homology class in Hi(O,O ∩ B̃) under

the map Hi(O,O ∩ B̃)→ Hi(X̃, B̃).

Notation 6.2.8 Let H = H1(X; Z)/ ker(ξ), denote Vξ = (C∗)r = Hom(H,C∗). We

can think of Vξ as the variety of all complex flat line bundles L over X such that

the induced flat line bundle p∗L on X̃ is trivial.

Definition 6.2.9 In Vξ a bundle L is called ξ-transcendental if the monodromy

MonL : Z[H]→ C is injective, and ξ-algebraic if not.

Notice that if L is ξ-transcendental, the covering space p : X̃ → X induces maps

p∗ : H∗(X̃, B̃; C) → H∗(X,B;L) and p∗ : H∗(X,B;L) → H∗(X̃, B̃; C), because

p∗(L) = C.
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The following two assertions are the relative versions of Proposition 6.4 and

Theorem 4 in [14], their validity follows similar algebraic arguments provided in [14].

Proposition 6.2.10 Suppose L ∈ Vξ is ξ-transcendental, and v ∈ Hq(X,B;L) is

a non-zero cohomology class. Then there exists a homology class z ∈ Hq(X̃, B̃; C)

with v _ p∗(z) 6= 0. 2

Theorem 6.2.11 Suppose a flat line bundle is ξ-transcendental and there is coho-

mology class v ∈ Hq(X,B;L) with v _ p∗(z) 6= 0 for some z ∈ Hq(X̃, B̃; C) and

p∗(z) ∈ Hq(X,B;L∗), where L∗ is the dual bundle of L. Then z is not movable to

infinity with respect to ξ. 2

We now state the cohomology estimate of the category:

Theorem 6.2.12 Suppose L ∈ Vξ is ξ-transcendental, and v0 ∈ Hd0(X,B;L), v1 ∈

Hd0(X; C), . . . , vk ∈ Hdk(X; C) with di > 0 for all i = 0, . . . , k are such that

v0 ^ v1 ^ · · ·^ vk 6= 0 ∈ Hd(X,B;L), (6.1)

with d = Σidi, then

cat(X,B, ξ) > k

The maximal k gives a lower bound for cat(X, b, ξ), and it gives a cup length

estimate for cat(X,B, ξ).

Proof : Let v = v1 ^ · · · ^ vk, according to (6.1) and Proposition 6.2.10, we

can find a homology class z ∈ Hd(X̃, B̃; C) such that

(v0 ^ v) _ p∗(z) 6= 0.

Fix such a homology class z ∈ Hd(X̃, B̃; C), then it is possible to choose a

compact polyhedron K ⊂ X̃ such that z is the image of some homology class

in Hd(K, B̃ ∩ K; C) under the inclusion-induced map i∗ : Hd(K, B̃ ∩ K; C) →

Hd(X̃, B̃; C). We denote this homology class z′ in Hd(K, B̃ ∩K; C). Now we assert

the existence of a neighbourhood of infinity O∞ which possesses the following prop-

erty: if the image of a homology class under the mapH∗(K, B̃∩K; C)→ H∗(X̃, B̃; C)

has a preimage in H∗(O∞, O∞ ∩ B̃; C), then it is movable to infinity. Indeed, let
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O = f−1((−∞, 0]) ⊂ X̃ be a neighbourhood of infinity, and g : X̃ → X̃ be a covering

transformation such that ξ(g) < 0. Then

Vg = Im [H∗(gO, gO∩ B̃; C)→ H∗(X̃, B̃; C)]∩ Im [H∗(K, B̃∩K; C)→ H∗(X̃, B̃; C)]

is a finite dimensional complex vector space.

Now by the choice of g, we have gnO ⊂ gO for any n > 0. Since the inclusion-

induced map H(gnO, gnO ∩ B̃; C) → H∗(X̃, B̃; C) factors through H(gnO, gnO ∩

B̃; C)→ H(gO, gO∩ B̃; C), hence Vgn ⊆ Vg. Now finite dimensionality of the vector

space Vg implies the following chain

· · · ⊂ Vgn ⊂ · · · ⊂ Vg2 ⊂ Vg ⊂ V

stabilises after finitely many terms. Subsequently, there exists a sufficiently large

N > 0 such that Vgn = VgN for any n ≥ N . Therefore, fix such a N and the subset

O∞ = gNO will work.

So let us have such a neighbourhood O∞, then the pullback function f : X̃ → R

of ω with p∗ω = df gives values to points in K and O∞. In particular, we have

f(K) ⊂ [a, b] and O∞ ⊃ f−1(−∞, c), for some c < a < b. Note that c < a is always

available by increasing N if necessary.

Now assume the statement is false, then cat(X,B, ξ) ≤ k, in particular, for

N > b− c and some C > 0, there exists an open cover of X:

X = U ∪ U1 ∪ · · · ∪ Uk,

where Ui ↪→ X is null-homotopic and U is (N,C)-movable relative to B.

Now observe that vi ∈ Hdi(X; C) can be pulled back to some ui ∈ Hdi(X,Ui; C)

because of the null-homotopy of Ui.

Therefore, by naturality of the cup product, v = j∗(u) ∈ Hd−d0(X; C) for some

u = u1 ^ · · · ^ uk ∈ Hd−d0(X,U1 ∪ · · · ∪ Uk; C), where j∗ is induced by inclusion

j : (X, ∅)→ (X,U1 ∪ · · · ∪ Uk).

Let w be the image of p∗(u) via the inclusion-induced map

i∗1 : Hd−d0(X̃, Ũ1 ∪ · · · ∪ Ũk; C)→ Hd−d0(K, (Ũ1 ∪ · · · ∪ Ũk) ∩K; C),
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and restrict the lift (X̃, ∅)→ (X̃, Ũ1 ∪ · · · ∪ Ũk) of j to K as:

̃ : (K, ∅)→ (K, (Ũ1 ∪ · · · ∪ Ũk) ∩K),

then

̃∗w _ z′ ∈ Hd0(K, B̃ ∩K),

where ̃∗w ∈ Hd−d0(K; C) and z′ ∈ Hd(K, B̃ ∩ K; C). Notice ̃∗w _ z′ 6= 0 as by

naturality of the cap product, see [41, Lemma 5.6.16, pp 254] for instance,

i∗(̃
∗w _ z′) = i∗(̃

∗i∗1(p∗(u)) _ z′) = i∗((i1̃)
∗(p∗(u)) _ z′)

= p∗(u) _ i2∗(z
′) = p∗(u) _ j1∗i∗(z

′)

= j∗2p
∗(u) _ i∗(z

′) = (pj2)∗(u) _ z

= (jp)∗(u) _ z = p∗(j∗(u)) _ z

= p∗(v) _ z,

which is non-trivial according to our hypothesis. Here i2∗ : Hd(K, B̃ ∩ K; C) →

Hd(X̃, B̃ ∪
(
Ũ1 ∪ · · · ∪ Ũk

)
) is induced by the inclusion map j1i : (K, B̃ ∩ K) →

(X̃, B̃ ∪
(
Ũ1 ∪ · · · ∪ Ũk

)
) with j1 : (X̃, B̃)→ (X̃, B̃ ∪

(
Ũ1 ∪ · · · ∪ Ũk

)
).

And j∗2 is induced by the inclusion j2 : (X̃, ∅)→ (X̃, Ũ1∪· · ·∪Ũk) which commutes

with p in the following diagram:

(X̃, ∅)
j2//

p

��

(X̃, Ũ1 ∪ · · · ∪ Ũk)
p

��
(X, ∅) j// (X,U1 ∪ · · · ∪ Uk)

.

Again by naturality of the cap product,

i′∗(̃
∗w _ z′) = w _ ı̄∗(z),

where i′∗ is induced by i′ : (K, B̃ ∩K)→ (K, Ũ ∩K) and ı̄∗ is from

ı̄ : (K, B̃ ∩K)→ (K,
(

(Ũ1 ∪ · · · ∪ Ũk) ∩K
)
∪
(
Ũ ∩K

)
) = (K,K).

Therefore, ı̄∗(z) = 0 ∈ Hd0(K,K) = 0, and i′∗(̃
∗w _ z) ∈ Hd0(K, Ũ ∩ K) is

trivial. Consequently, the exact sequence

· · · → Hd0(Ũ ∩K, B̃ ∩K)→ Hd0(K, B̃ ∩K)
ı̄∗→ Hd0(K, Ũ ∩K)→ · · ·
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indicates the existence of a nontrivial preimage z0 of ̃∗w _ z in Hd0(Ũ ∩K, B̃∩K).

Now for the (N,C)-movable open subset U in X, its lift Ũ in X̃ has homotopy

h : (Ũ , B̃)×[0, 1]→ (X̃, B̃), which yields equality (h0)∗(z0) = (h1)∗(z0) ∈ Hd0(X̃, B̃),

where (h0)∗(z0) = i′′∗(z0) ∈ Hd0(X̃, B̃) with i′′ : (Ũ ∩K, B̃∩K)→ (X̃, B̃). And since

h1 : (Ũ ∩K, B̃ ∩K) factors through (Ũ ∩K, B̃ ∩K) → (O∞, O∞ ∩ B̃) due to our

choice of N > b − c for Ũ , there exists a homology class in Hd0(O∞, O∞ ∩ B̃) that

maps to (h1)∗(z0). In other words, i′′∗(z0) is movable to infinity, a contradiction to

the nontrivial value of i′∗(z0) according to Theorem 6.2.11:

v0 _ p∗(i
′′
∗(z0)) = v0 _ p∗(i∗(̄

∗w _ z′)) = v0 _ p∗(p
∗(v) _ z)

= (v0 ^ v) _ p∗(z) 6= 0.

We have shown the proof. 2

6.3 Homoclinic cycles and critical points

In this section, we study the critical points of a closed 1-form ω and homoclinic

cycles on a manifold M with boundary by the invariant cat(M,B, [ω]) developed in

the preceding sections. Here B is specified according to ω, namely, the exit set of ω.

In the manifold setting, we find it more convenient to study the modified category

rather than the one defined in the beginning of the chapter, namely, instead of

allowing the subset B to move within itself, we fix B:

Definition 6.3.1 Let ω be a continuous closed 1-form on a finite CW complex X,

denote its cohomology class as ξ = [ω], and B ⊂ X be a closed subset of X, then

cat0(X,B, ξ) is defined to be the smallest integer k such that there exists C > 0

such that for any N > 0, there exists an open cover of X, X = U ∪ U1 ∪ · · · ∪ Uk,

satisfying:

a) The inclusion Ui → X is null-homotopic in X for 1 ≤ i ≤ k;

b) The closed subset B ⊂ U and there exists homotopy h : U × [0, 1] → X rel

B such that h0 : U → X is the inclusion map, and for any x ∈ U , either

h1(x) ∈ B, or we have
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∫ h1(x)

x

ω ≤ −N,

and for all t ∈ [0, 1],

∫ ht(x)

x

ω ≤ C.

Remark 6.3.2 It turns out that cat0(X,B, ξ) = cat(X,B, ξ), we provide a proof

at the end of this section.

Now we specify B here:

Let ρ : M̄ → M be a regular covering space of M with π1(M̄) = ker([ω]),

then there exists a real function f : M̄ → R with df = ρ∗(ω). We repeat the

construction in the beginning of Section 2.1 in Chapter 2. Namely, we equip the

boundary ∂M of the M with a tubular neighbourhood structure ∂M × [0, 1) ⊂ M

such that ∂M × {0} ∼= ∂M , and a point in the tubular neighbourhood will be

denoted as (x, t) ∈ ∂M̄ × [0, 1). We denote the lift of this tubular neighbourhood in

the covering as ∂M̄ × [0, 1). Then for each x ∈ ∂M the equivariance of
∂f

∂t
enables

us to have a well-defined partial derivative
∂f

∂t
on the base manifold M .

Definition 6.3.3 Given a fixed inner collaring ∂M × [0, 1) of the boundary ∂M in

M , the exit set of ω is defined as:

B = {x ∈ ∂M :
∂f

∂t
(x, 0) ≤ 0}.

Additionally, we need the boundary assumptions for ω on B set up in the be-

ginning of the thesis, again the partial derivative
∂f

∂t
is capable of describing such

conditions. Recall:

Assumptions on ω on ∂M

A1 The function f̄ has no critical point on ∂M̄ . This implies that f̄ has no critical

points in a neighbourhood of ∂M̄ . Without loss of generality we assume that f̄

has no critical points in the entire collaring ∂M̄ × [0, 1).
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A2 The partial derivative ∂f
∂t

, where t is the coordinate for [0, 1), is a smooth function

on ∂M̄ × {0}, and zero is a regular value of ∂f
∂t

(x, 0). Denote by Γ = {x ∈ ∂M :

∂f
∂t

(x, 0) = 0}, this is equivalent to say Γ is a 1-codimensional closed submanifold

of ∂M .

A3 Fix a tubular collaring of Γ in ∂M̄ , Γ× [−1, 1] ⊂ ∂M̄ , with Γ× [−1, 0] ⊂ B. So if a

point lies in the cubical neighbourhood of Γ in M , we write it in local coordinates:

(x, s, t) ∈ Γ× [−1, 1]× [0, 1),

where x = (x1, · · · , xm−2), then we assume

∂f

∂s
(x, 0, 0) > 0.

By always choosing a product Riemannian metric near the boundary ∂M ×

[0, 1) and Γ × [−1, 1], these assumptions ensure the flow, which is generated by

corresponding gradient vector field of ω transverse to ∂M , exits through interior of

B transversely, and Corollary 1.2.6 in Chapter 1 ensures the continuity of the time

keeping for the emitting flow. Here we restate it in the category context:

Lemma 6.3.4 Let v be a gradient of ω transverse to (∂M,B) and denote by

UB = {x ∈M : there exists t ∈ R, such that x · t ∈ B},

then the function β : UB → R defined as β(x) = min{t : x · t ∈ B} is continuous,

and UB is open in M . 2

Notation 6.3.5 Let Φ : ∆→M be the negative gradient flow of a negative gradient

vector field v of ω, where

∆ =
⋃
x∈M

{x} × Jx ⊂M × R

with Jx as maximal interval for which differential equation γ′(t) = v(γx(t)) is defined

for map γ : Jx → M with γx(0) = x. we denote x · t = Φ(x, t) ∈ M as the flow line

passing x as t varies.
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Now let us recall the definition of homoclinic cycle which is a generalisation of

homoclinic orbit. Here we implicitly assume that ω has only finitely many critical

points. For a more general treatment see [23], where a more general definition of

limit set is considered. For a general definition of limit set, we refer to page 28

in [20].

Definition 6.3.6 A sequence of trajectories {γi(t) : R → M}1≤i≤n on a manifold

M is called a homoclinic cycle of length n if for each γi its limit limt→±∞ γi(t) exists

and satisfies:

lim
t→+∞

γi(t) = lim
t→−∞

γi+1(t) for 1 ≤ i ≤ n− 1, and lim
t→+∞

γn(t) = lim
t→−∞

γ1(t).

Let ω be a closed 1-form on M , we want to measure the displacement of a

trajectory by ω:

Definition 6.3.7 A trajectory γ is said to have displacement N by ω if its integral

with respect to ω equals N : ∫
γ

ω = N,

a homoclinic cycle {γi} has displacement N by ω if∑
i

∫
γi

ω = N.

6.3.1 Main result

Now we are ready to state the theorem:

Theorem 6.3.8 Let M be a smooth compact Riemannian manifold with boundary

∂M , and ω be a closed 1-form on M with exit set B ⊂ ∂M satisfying assumptions

A1,A2 and A3, if the number of critical points of ω is less than cat0(M,B, [ω]),

then any gradient-like vector field of ω contains at least one homoclinic cycle.

For the sake of convenience of the proof, we rephrase the theorem as follows:

Theorem 6.3.9 Let M be a smooth compact Riemannian manifold with boundary

∂M , and ω be a closed 1-form on M with exit set B ⊂ ∂M satisfying assumptions
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A1,A2 and A3, suppose there exists a gradient vector field of ω without homoclinic

cycles, then:

cat0(M,B, [ω]) ≤ number of critical points of ω

.

Proof : Suppose the gradient vector field of ω we choose satisfies the hypothesis,

i.e. for any N > 0 there exists no homoclinic cycle with displacement less than N ,

and the number of critical points of ω is k. For some C > 0 and any such N > 0

we need to show the existence of an open cover M = U ∪ U1 ∪ · · · ∪ Uk with U

N movable relative to B and Ui null-homotopic. Here ξ = [ω] ∈ H1(M ; R) is the

cohomology class of ω.

The idea is to use the negative gradient flow as prototype for the homotopies and

partition the manifold according to the destination of each point travelling along its

flow line.

Because the homotopy is modified from the negative gradient flow, the integral∫
ω ≤ 0 is always non-positive along trajectories, so we can choose control C = 0.

Let us fix N > 0, we want to construct an open cover of M as

M = U ∪ U1 ∪ · · · ∪ Uk.

We firstly define U as the open subset of all the points either reach B in finite

time or travel over displacement N in the negative direction:

U = {x ∈M : there exists some tx > 0 such that either x·tx ∈ B, or

∫ x·tx

x

ω < −N}.

Secondly, for Ui, we first need a so-called gradient-convex neighbourhood Vi for

each critical points pi, in order to construct open subsets. For each critical point pi,

the gradient-convex neighbourhood Vi is a small closed disc containing pi, such that

the points on the boundary of Vi who are leaving Vi have to travel over displacement

N before returning to IntVi. The existence of Vi is derived from the no homoclinic

cycle condition in the hypothesis, for the sake of completeness, we provide a more

detailed argument in Section 6.3.2 below, similar to [12] and [23]. Then we define

Ui for each pi as follows:

Ui = {x ∈M : x · tx ∈ IntVi for some tx ∈ R and

∫ x·tx

x

ω > −N}.
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The null homotopy of Ui can also be found proved in [12] and [23], which we also

supplement in Section 6.3.2.

Now we are left to show the movability of U . The subset U is open since it

is the union of two open subsets, namely {x ∈ M :
∫ x·tx
x

ω < −N for some tx >

0, where N > 0} and {x ∈ M : x · tx ∈ B for some tx > 0}, they are both open

according to some implicit function theorem argument and Lemma 6.3.3.

According to Lemma 6.3.4 and the Implicit Function Theorem, for each x ∈ U ,

there exists tx ∈ R, such that either x · tx ∈ B or
∫ x·tx
x

ω = −N . Moreover, the

map β : x → tx is a real continuous function on U . Therefore, we can define the

homotopy h : U × [0, 1]→M as

h(x, τ) = x · (τβ(x)).

Together with results in the rest of the section, we have proved the statement.2

To finish this section, we first supplement a proof showing the equality between

cat0(X,B, ξ) and cat(X,B, ξ):

Theorem 6.3.10 For any CW pair (X,B),

cat0(X,B, ξ) = cat(X,B, ξ)

Proof : According to the definitions, since cat0(X,B, ξ) requires B to be fixed,

which is extra to the definition of cat(X,B, ξ), so any open cover works for cat0(X,B, ξ)

would work for cat(X,B, ξ) as well, therefore, cat0(X,B, ξ) ≥ cat(X,B, ξ).

Now to show the inequality in the other direction, the idea is that we extend X

to a slightly bigger CW-complex X+ by attaching an external collar to B, namely

B × [0, 1], likewise, extend the homotopy in definition 6.1.11 to a bigger subset

containing B×[0, 1], and by showing the homotopy equivalence of the pairs (X,B) '

(X+, B × {1}), we shall prove cat0(X,B, ξ) ≤ cat(X,B, ξ).

We divide the details into two parts: homotopy equivalence of (X,B) ' (X+, B×

{1}) and then the inequality cat0(X,B, ξ) ≤ cat(X,B, ξ):

(i) (X,B) ' (X+,B× {1})

Let B× [0, 1] be an external collaring of B by identifying B×{0} with B in X,

so we now have a bigger CW complex X+ = X ∪B×{0} B × [0, 1], similarly, we
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denote U+ = U ∪B×{0}B× [0, 1] and B+ = B× [0, 1]. Then we have a natural

deformation retraction D : X+ × [0, 1] → X+ of X+ while keeping B × {1}

fixed as the homotopy extension of the homotopy d : B+ × [0, 1]→ B+ which

is

d(b, s, t) = (b, (1− t)s+ t).

Notice d(b, s, 0) = (b, s) = idB+(b, s) and d(b, s, 1) = (b, 1) ∈ B × {1}, i.e. d

fixes B ×{1}. Because of the homotopy extension property of (X+, B+), D is

well-defined and fixes B × {1} as well as d.

Now let r : B× [0, 1]→ B be the projection, we define the map r+ : (X+, B×

{1})→ (X,B) as

r+ =

x x ∈ X

r(x) x ∈ B+,

and we show r+ is a homotopy equivalence by constructing two homotopies,

namely

F : r+j ' idX rel B

and

H : jr+ ' idX+ rel B × {1},

where j = D1i : (X,B)→ (X+, B×{1}) composite with inclusion i : X → X+.

Let F = r+D(i× id) : X × [0, 1]→ X, then

F (x, 0) = r+D(i(x), 0) = r+(i(x)) = idX(x)

and

F (x, 1) = r+D(i(x), 1) = r+(D1(i(x))) = r+j(x).

Also F (b, 0, t) = r+D(i(b, 0, t) = r+(b, t) = b shows B is fixed in the homotopy.

Therefore

F : r+j ' idX rel B.

For the existence of H : jr+ ' idX+ rel B ×{1}, since jr+ = D1ir
+, we get H

by concatenating two homotopies R : ir+ ' idX+ and h : D1 ' idX+ . Easily,
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we obtain h : X+ × [0, 1]→ X+ by reversing the homotopy D:

h(x, t) = D(x, 1− t);

and R : X+ × [0, 1]→ X+ is defined as

R(x, t) =

x x ∈ X

(b, st) x = (b, s) ∈ B+ = B × [0, 1],

so R(b, s, 0) = (b, 0) = b = ir(b, s) and R(b, s, 1) = (b, s) = idX+ , and R(b, 0) =

(b, 0) ∈ X ∩ B × [0, 1] shows the continuity of R. However R does not fix

B × {1}, but by composite with D1, D1 ◦ R : X+ × [0, 1] → X+ recovers the

condition as

D1R(b, 1, t) = D1(b, t) = d(b, t, 1) = (b, 1).

So we have H : X+ × [0, 1]→ X+ rel B × {1} as

H(x, t) =

D1R(x, 2t) 0 ≤ t ≤ 1
2

h(x, 2t− 1) 1
2
≤ t ≤ 1.

It is true that H(x, 0) = D1R(x, 0) = D1ir
+ = (D1i)r

+ = jr+ and H(x, 1) =

h(x, 1) = D(x, 0) = idX+ . Therefore

H : jr+ ' idX+ rel B × {1}.

(ii) cat0(X,B, ξ) ≤ cat(X,B, ξ)

Since we are talking about finite CW complex, the compactness of X ensures

the existence of some real number K ∈ R such that∫ D1(x)

x

ω ≤ K for all x ∈ X,

where ω lies in the cohomology class ξ ∈ H1(X,R). Suppose cat(X,B, ξ) = k

and fix N > 0, then for N + K, we have an open cover of X as X = U ∪

U1 ∪ · · · ∪ Uk and let ξ′ = r+∗(ξ) ∈ H1(X+,R) and choose a continuous closed

1-form ω′ on X+ representing ξ′, [ω′] = ξ′. We want to show the homotopy

g : U × [0, 1] → X
i
↪→ X+ satisfying condition (b) for cat(X,B, ξ) can be
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extended to some G : U+× [0, 1]→ X+ rel B ×{1}, such that for any x ∈ U+

either

G1(x) ∈ B × {1}

or ∫ G1(x)

x

ω′ < −N,

and for all t ∈ [0, 1], ∫ G1(x)

x

ω′ < C ′ for some C ′.

Now consider the restriction gt|B : B → X of gt in B with gt(b) ∈ B for all t.

Firstly, we want to extend this map to B+ as g′ : B+ × [0, 1]→ X+ such that

g′|B×{0} = g for the continuity and g′|B×{1} = id. For any (b, s, t) ∈ B+× [0, 1],

g′(b, s, t) = (g(b, (1− s)t), s)

delivers the satisfaction, as g′(b, 0, t) = (g(b, t), 0) = g(b, t) ∈ B and g′(b, 1, t) =

(g(b, 0), 1) = (b, 1) = id(b, 1).

Next, define g+ : U+ × [0, 1]→ X+ as

g+(x, t) =

g(x, t) x ∈ U

g′(x, t) x ∈ B+.

However, since g′t(b, s) = (∗, s) keeps any point (b, s) ∈ B × [0, 1] in the same

level as t varies, i.e. g+ has not been exactly the homotopy driving points into

B × {1} or N distance, we need to modify it one more time:

Define G : U+ × [0, 1]→ X+ as

G(x, t) =

g
+(x, 2t) 0 ≤ t ≤ 1

2

D(g+1(x), 2t− 1) 1
2
≤ t ≤ 1.

Now let C ′ = C+K, G satisfies condition (b) of the Definition 6.3.1, therefore,

cat0(X,B, ξ) ≤ cat(X,B, ξ).

We have proved the equality. 2
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6.3.2 Proof of null homotopy of Ui in Theorem 6.3.9

Lemma 6.3.11 Let ω be a closed 1-form on a manifold M , for any neighbourhood

U of a critical point p of ω, there exists a closed neighbourhood V ⊂ U of p , such

that:

1. For any x ∈ M , Ix = {t : x · t ∈ V } is convex, i.e. Ix is either empty or a

closed interval [ax, bx] possibly half infinite or degenerate to a point: ax = bx.

2. If Ix is nonempty, then the function x→ ax is continuous.

Proof : This is a local problem so we can simplify it to a closed 1-form with

only one critical point p. Suppose further that there exists f : U → R such that

ω|U = df and f(p) = 0. Let ε > 0 be small such that the neighbourhood Nε =

Nε(p) = {x : dist(x, p) ≤ ε} ⊂ U , then the condition (1) is equivalent to the

existence of δ > 0 such that the trajectory γx of any x ∈ U with minimal distance

dist(γx ∩ f−1([−δ, δ]), p) ≤ ε
2
, we have

γx ∩ f−1([−δ, δ]) ⊂ Nε.

For such δ enables the construction of V to be the closure of

Oε = {x ∈ f−1((−δ, δ)) : dist(γx ∩ f−1([−δ, δ]), p) ≤ ε

2
}.

Notice V ⊂ Nε and for any x ∈ M with x · ax ∈ V for some ax ∈ R, then γx will

be in Nε until some bx > ax ∈ R, where x · t /∈ V and f(x · t) < −δ if t > bx. And

[ax, bx] is convex.

Now we want to show such δ exists. Suppose there is no such δ, then we have

a collection of points {xk} ∈ Nε with f(xk) ∈ [− 1
k
, 1
k
] and dist(xk, p) ≤ ε

2
such that

there exists tk for each xk with xk · [0, tk] ⊂ f−1[− 1
k
, 1
k
] and dist(xk · tk, p) > ε. Since

Nε is compact, we can choose a subsequence of {xk} converges to some point x ∈ Nε.

On the other hand, since dist(xk, xk · tk) ≥ ε
2

and the gradient vector field v of ω

is nontrivial away from p in Nε \ N ε
2
, tk are then strictly positive. So choose such

t > 0 ∈ {tk}, notice that

xk · [0, t]→ x · [0, t] ∈
⋂
k≥1

f−1[−1

k
,

1

k
] = f−1(0),
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which contradicts to the fact that

(f · γ)′(t) = df(γ(t))γ′(t) = −df(γ(t))(v(γ(t))) = −‖v‖2 < 0 (6.2)

For the second property, we firstly denote

∂−V = V ∩ f−1(−δ) = {x ∈ ∂V : for some small t > 0, x · t /∈ V }

and

∂+V = V ∩ f−1(δ) = {x ∈ ∂V : for some small t < 0, x · t /∈ V },

then for each x with γx∩V 6= ∅, using (1) above and the Implicit Function Theorem,

there exists ax ∈ R such that x · ax ∈ ∂+V and open neighbourhood Ux 3 x and

Iax 3 ax such that there exists continuous function ψ : Ux → Iax with ψ(x) = ax.

So we proved the continuity. 2

Lemma 6.3.12 Let ω be the closed 1-form on a compact manifold M , and v be a

gradient vector field of ω, which produces no homoclinic cycle in M with displace-

ment by ω less than N > 0, and for any x ∈ ∂−V = V ∩ f−1(−δ) = {x ∈ ∂V :

for some small t > 0, x · t /∈ V } defined as above, such that there exists some t > 0

with x · t ∈ IntV , then ∫ x·t

x

ω < −N.

What Lemma 6.3.12 says is that when a point exits the convex neighbourhood

V through ∂−V , it has to travel longer than N distance before returning to V .

Proof : Suppose the contrary, then there exists a sequence of points xi,n ∈ ∂−Vi
and sequences of real numbers ti,n > 0 and si,n < 0 such that:

(a) xi,n · [si,n, 0] ⊂ Vi and dist(xi,n · si,n, pi) < 1
n
;

(b) dist(xi,n · ti,n, pi) < 1
n
;

(c)
∫ xi,n·ti,n
xi,n

ω ≥ −N .

Pass {xi,n} to a subsequence, it converges to some point xi, so are {ti,n} and

{si,n} to some {ti} and {si}, respectively. According to the invariance of pi, as n

gets larger, it takes longer time to get closer to pi, (a) and (b) together with the
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continuity of the flow, we conclude that ti = ∞ and si = −∞, moreover, (a) tells

us that dist(xi · si,n, pi)→ 0 as n→∞, i.e. xi · si,n → pi as si,n → si = −∞.

Now we want to understand what happens to xi · ti,n as ti,n → ti =∞. We claim

it approaches some critical point pj. Suppose the contrary, then there exists ε > 0

such that Nε(pj) = {x ∈ M : dist(x, pj) ≤ ε} ∩ xi · ti,n = ∅, for all j = 1, . . . , k and

all ti,n. Then there exists c > 0 such that

‖v‖2
X−

S
j Nε(pj)

≤ −c,

i.e. xi · ti,n will keep flowing further and further in the negative direction, unbound-

edly. This is contradictory to (c):
∫ xi,n·ti,n
xi,n

ω ≥ −N . Therefore, xi · ti,n → pj as

ti,n → ti =∞.

Now if j = i, then we are finished with a homoclinic cycle with displacement

shorter that N , contradicting to the hypothesis in the lemma. If j 6= i, let Vj be

the convex neighbourhood of pj, let Tj be the entry time of xi, i.e. xi · Tj ∈ ∂+Vj.

Then for n large, dist(xi,n ·Tj, ∂+Vj)→ 0, the points xi,n spend similar time reaching

∂+Vj, for such xi,n, as its destination is pi, it has to exit vj by some finite time t′i,n,

i.e. there exists some point x′i,n = xi,n · t′i,n ∈ ∂−Vj. Pass such {x′i,n to a subsequence

converging to some x′o. Notice t′i,n−Tj →∞ as n→∞. Therefore similar argument

leads us to x′i · t→ pj as t→ −∞ and x′i · t→ pl as t→∞ for another critical point

pl.

Repeating this same argument for pl and so on, after at most k times, there will

be some critical point appears twice for the limits of the sequences of trajectories,

which forms a homoclinic cycle. We run into contradiction again. 2

Such disk Vp we constructed for a critical point p in the lemmas is called gradient-

convex neighbourhood of p. We can rephrase the definition of Ui for each critical point

pi of closed 1-form ω with this notion:

Ui = {x ∈M : x · tx ∈ IntVi for some tx ∈ R and

∫ x·tx

x

ω > −N}.

A null homotopy for Ui is equivalent to a homotopy mapping Ui into Vi, and we

shall finish the proof by constructing such homotopy hi for each subset Ui. Firstly,
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one can define a continuous function φi : Ui → R from Ui to the real as follows:

φi(x) =

0 x ∈ IntVi

ax x ∈ Ui − IntVi.

To show φi is continuous is equivalent to show it is sequentially continuous. Suppose

we have a sequence of points {xn} in Ui and it converges to some x∗, we want to

show φi(xn)→ φi(x
∗) as n→∞.

In the case that x∗ ∈ Vi, it is not possible that x∗ ∈ ∂−Vi as it would travel

longer than N distance before returning to IntVi, violating the definition of Ui. So

there exists some ε > 0 such that x∗ · (0, ε) ⊂ IntVi, in particular x∗ · 1
n
∈ IntVi

for any n ∈ R. Now observe that for large n and very small ε, xn · (0, ε) ⊂ IntVi,

for otherwise, there exists ε′n > 0 for each n, such that xn · (0, ε′n) ∩ Vi = ∅, i.e.

dist(xn · ε′n, x∗) ≥ dist(xn · ε′n, Vi). So we can choose δ < min{dist(xn · ε′n, Vi)},

then the δ-ball Bδ(x
∗) contains no xn and x∗ is not a limit point. Contradiction.

Therefore, axn ∈ (0, ε) and particularly axn <
1
n

for each n, so axn → 0 as n→∞.

For the second case that x∗ /∈ Vi, the second property of Lemma A.1 provides

the continuity for the map x∗ → a∗ which in turn shows the sequential continuity

in this context: xn → x∗ then an → a∗.

At the end, we define the homotopy hi : Ui × [0, 1]→M readily:

hi(x, t) = x · (φ(x)t)

.

This completes the proof. 2
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Chapter 7

Conclusion

The main motivation of this research project is to present a geometric report of the

relative homological information a closed 1-form reveals on manifolds with boundary.

We were aiming to achieve parallel conclusions stated in the literature, e.g. [4] which

takes on an analytic approach, but failed in the case of more degenerate settings,

namely, in the sense of Kirwan. For the stratification techniques in [20] are not

directly applicable in our situation.

Overall, we managed to generalise the results to Bott nondegeneracy with the no

homoclinic cycle condition imposed, and tackled more degenerate situations via the

Lusternik-Schnirelman category. The no homoclinic cycle condition seems essential

for our construction but is absent in other approaches, such as [13, Chapter 5]. In

the future, we wish to have better understanding of this obstruction and its links to

the category with respect to a closed 1-form generalised in [23].
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[38] D. Schütz, Geometric chain homotopy equivalences between Novikov com-

plexes, High-dimensional manifold topology, 469–498, World Sci. Publ., River

Edge, NJ, 2003

[39] S. Smale, Stable manifolds for differential equations and diffeomorphisms. Ann.

Scuola Norm. Sup. Pisa (3), 17(1963), 97–116.

[40] S. Smale, On gradient dynamical systems. Ann. of Math. (2) 74(1961) 199–

206.

[41] E. Spanier, Algebraic Topology

[42] C. Weibel, An Introduction to Homological Algebra, Cambridge Studies in

Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994.

[43] M.E. Zadeh, Morse inequalities for manifolds with boundary(preprint)

November 24, 2009


