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Abstract

The second order potentials method of Bransden

and Coleman (1972) has been applied to electron impact

excitatiop'of lithium, sodium and helium atoms and to
proton impact excitation of helium atoms. The
calculations for the e-alkalis are presented in the
impact parameter approximation in the énergy range

10 - 200 ev., and in the partial wave approximation in
the energy range 10 - 50 ev, On comparing between the
two results, it is concluded that the impact parameter
approximation is reliable for energies larger than 50 ev.
The results for the electron and_proton scattering from
the helium atoms are presented in the energy range

100 - 1000 ev (kev for proton scattering),
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The electrori-abtom soattering problef can not be solved
exactly; aeven the simplest is a complicated three-body
problem. One mus t develop techniques that provide a close
approximatién to the exact solution of the problem. The
total cross section, the differential cross section, the
polarization of the impact radiation and the scattering
amplitude are all different quantities that can be compared
with the experimental measurements; which provide a valuable
test for the reliability of a particular model of scattering.

The technique that can be used to calculate an excitation
cross section depends on the energy at which the cross section
is required. The close coupling approximation is very well
established in the low energy regime, while the Born approx-
imation and the semi-classical approximations are accurate
in the high energy regime., It is the intermediate energy
region (higher than the threshold and up to the Born regime)
that neither of the two techniques is adequate. Previous
results in this energy region have been obtained for the most
part by extending the range of application of the low and
high energy approximations.

The work presented here 1s concerned with the
theoretical calculations of the scattering of electrons from
lithium, sodium and helium atoms and of protons from helium
atoms; in the intermediate energy regime using the second

order potentials method of Bransden and Coleman (1972).
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The general theory of scattering and some relevant scattering
models are reviewed in chapters one and two, A comparison between
the optical potential and the second order potential is mede in
chanter three and the reduction of the second order potentials in
the impact narameter and partial wave formulstions is disnlaved in
chapters four and five, The calculated total cross sections, the
dif'ferential eross sections, the nolarization fractions and the
Pano and Kacek parsmeters are oresented in chapters six and seven and
comnared with other theoretical calculations gnd with the experimental
data, rinally, satomic units will be used throughout but cross sections

L. . . 2
wiit be expressed in units of LN




CHAPTER 1.

GENERAL THEORY OF ATOMIC COLLISIONS.

141 Formal Solution of Schrodinger Equation,

There are two basic approaches to the study of collision
problems, in quantum theory. The first is the approach that
considers the inecident beam as being switched on in the
distant past, and the whole sfstem being stationary; one
then tries to obtain solutions of the schrodinger equation
subject to appropriate boundary conditions. The other
approach is the time-dependent scheme which considers the
interactions as pgrturbations that cause transitions from
the specified initial state to the permissible final state.

Our interest will be in reactions of the form;

8+ D cemmememer. & + D (1.1.a)

a+hb=—rm— c+d (1.1.b)
which represent, specifically, charged particle - atom
(direct or " rearrangement) scattering.

Since our target-atoms will be light ones and the
interactions are coulombic and time independent, we shall
pursue the stationary state approach in the centre of mass
system. |

The Schrodinger equation is

(H-E)LP = o ' (1.2)
where H is the total Hémiltonian of the system and has the
form H=H, + v, (1:3)
where Hy.is the gamiltonian of the arrangement v of
equation (1.1) when there is no interaction between the

aggregates, and it is assumed to have a discrete part besides

its continuum spectrum.
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Their eigenvalues and eigenvectors are such that

(H,y - E)©w =0 (1.l

We assume further, that to each state ®74 in the

continuous part of H-,y (which has an energy E), there
 belongs a corresponding state LPyo of H with the same

energy E, and that ©vo » Q,, are both normalizable,

at least in the delta-function sense.

Let us introduce, after Lippmann (Lippmann 1956),
the Green's functions which are Hermitian and correspond to
outgoing wavesy:

Gy(k)

{]
~

>

]
m
~r

{
-

(1.5)

]
~—~

>

1
o]
s

1
-

G(A)
where
AN =E+ ie; ¢ 1s a small positive real number
to make a(A), G y (71‘-—) _.:-'-»:'ell defined.
Operating on @m by G, (A) yields
6, (P, =E-F+1)T D, (1.6)

By adopting the eigenfunction expansion method (Mathews
and Walker 1965) and introducing the bras and kets
notation we obtain
. < -1
Gy(x ) = 4“_ ’ @-m)(E - E, + ie) <(Pm‘
(1.7)

where the sum over o includes an integration over the
continuum,
It I/:)_denotes an arbitrary complete state specific-
ation, we can write equation (1.7) as
' (1.8.a)
L aealp> = GID, (e i < D, >
CETGMIF? =2 <MD, o IS Ry



where is a representation of (T
<,‘l @n> @7“
in u -Tepresentation, or more specifically
- = (x) .8.b
<B.z<l¢)n > = ¥y, T EXPIkRIUIX (1.8.0)

which is the schrodinger wave function in co-ordinate space
and R, X are the vector of the incident particle referred
to the centre of mass and the internal variables of the atom.

respectively, and U(X) is the wave function of the targat atom.
Meking use of the 1dent1ties

L B B (1.9.a)

a+m1 = a7l (1 -b G@az)™ D (1.9.b)

it is easy to show that the following equalities hold
GOA) =G (A) (1 +V.GR) )= +cV,) G () (1.10.a)

G, (A) = G(x») (1 - v, G A= - G, (A) V) G()  (1.10.b)

(1 - Gy(") vy) (1+GA)v) =1 (1.10.¢)

From equations (1.3), (1.4) and (1.10.a) the solution of
(1.2) is

+ - +
Yo, = d»,,d_ + Gy.(k) v,,\p”_ (1.11.a)

or by equation (1.10.c)

Ve = (+reMv)e, (1.11.b)

The superscript positive sign on ¥ . refers to an
outgoing state from the definition of the Green's functions.
Equivalent equations for the incoming states are implied
and will be denoted by a negative sign superscript vhen

appropriate.




In the following discussion, 1 and f will replace «
to mean, respectively, initial and final channels, Then
the schrodinger solution for the direct collision is

ot - e Oy ot '

2 A S G#”WWiG (1.11.a)

wt = (1. GV ) @ (1.11.b)
ie i is

To get a solution for the reaction (1.1.b), remembering

that
H=H + Vv, = H =+ V (1.12)
and using the identity (Ww and Ohmura.. 1962)
“"‘le'.(A)Vf ) (1 + A V) =1+ G () (V. -V)

(113)

and operating on (1.11.b) by (1-Gf(k) W ) and
recognising that

A+6M -7 D=t aaw
we obtain

+ +
_ , (1.13)
LIJic = Gf“\)(" ©ia + Vf.' LIJr’ia )

Here we emphasise that equation (1.15) which represents
a solution of schrodinger equation in the rearrangement
channel is obtained from equation (1.1{.b) by transform-
ation. Therefore, we infer that while W explicitly
gives the direct scattering, it also 1ncludes implicitly

the description of the rearrangement scattering,




1.2 The wave equation in configuration space.

Equation (1.8.a) in configuration space becomes

.1 * . 2 (1.16)
(R.X|6, (AR x > _Z¢VLB,XME - B4l v (RX)
The conservation of energy requires that
E=_| k2 + W (1.17)
24 Y Y

where Ky 9 ky and W& are the reduced mass, wave vector

and binding energy of the channel vy respectively.

By taking the sum over o« in equation (1.16) including
the contihuum and using equations (1.8.b) and (1.17),

equation (1.16) becomes

.. .+ -
RX|6 AJEX > = (X) U1X) 6tk RE)
<R.x| Y |8.X > “? Uyg' B~ ° v (1.18)
+ ,
where G (k, R, R ) (see Messiah, 1970) is
+ ’ ii _R’
G(k, R, R) = - Ly expt\,r.k'B K|t (1.19)

¢ ¥ |

From equations (1.8.b) and (1.18) the integral equation

for the complete wave function when the incident state is

i, beCOmes;.

+ x) § f , . ;- +('R’)E) (1.20)
D RX) = ¢ BXIE dx/RG(. RXIVIRX) RS

where we have used

120~
YN
o—
3R
[}
IEQ
=
X

i
> 4N

v v ¢ .
(ARl > =y o)




and

¢ (RX;RX) = <3,3<|GV(A)|53,;'< > (1.22)

Now we are in a position to discuss the asymptotic
form of the wave function, which from equations (1.22),

(1.18) and (1.20) is

+ g ' 4 (1.23)
- , (RX)E (X Plik R ’
Lpic R0 me RS % Uvu') EX “Vb )Fia.va

where

'4-7b ‘_‘z /;X /dRu (X)EXP(LL%B YRX LI)(RX) (1.2k)

Equation (1.23) is in_terprgted as representing an incoming
veve in the.incident channel and outgoing waves in all c;han.nels,
with a scattering amplitude given by equation (1.24).

By the same method, the rearrangement solution

from equation (1.15) 1is

(1 25)
Q@ . Lim dF G(rv,r,Y)MrY)-e-Zu(v)sxmkr)g

ia reo €>0¢
The first term in equation (1.25) will vanish since Gf

does not propagate in the channel i, and

o4 .. (1.26)
- _u‘ d.ruw) XL k. FIvIEY) ORI

where we have used new sets of co-ordinates to be

ia.fb ~—

appropriate with the arrangement of equation (1.1.b) and

g is the scattering amplitude in the rearrange-
s, fh
ment channel,




1.3 The Reaction Rates and Cross Section.

The scattering cross section can be related to the
asymptotic form of the wave function in a similar manner
to potential scattering. Gerjuoy (1958.b) has formulated
an approach to describe the rearrangement collision based
on this idea. We will follow his approach considering
reactions in equation (1.1). (elaborate algebraic formula-
tions can be consulted from his work).

Assuming that Ii is the displacement of particle i
referred to particle 1 and.i} is the vector of the set of
Ji; 1 =2,n and n is the number of comstituents of the
system.

Equation (1.3) can be re-written as

[}
H=T +V (1.3)
where n ‘72
s 1V ’ =
T=-i2 2u, ! + 2 M, |#kv|v;<
and
Fi, .is the reduced mass of particle i relative £o

particle 1 and M, is the mass of particle 1. Iz ;'!Lﬂ
and kIJz are solutions of equation (1.2) at the same energy, shen

the generalised Green's theorem gives
_,/d” T O,- PTQ = /;S!-wu;tlz;qp =0 (1.27)
or

where J is the current density vector and




wheve W 1s the provability current ‘in the space cf (n-1)

particles with g B component

- - 1 -3{ '
W, o= 1 "‘PzV‘LH _kj_,:vitpzl . ™, #-‘.'LI{VJLP, (1.28)

28

- vy,
and

» 15 the ocutward vector dravn normal to the surface
element dsj; and the iategration is to be .-taken over an
infinite sphere in the space _z;

L ] +
If \J), 1s a solutlon of equation (1.2), so is ‘L.Pg
due to the Hermicity of H . Putting Ly‘ = LI)l

' " . -
and ‘;_Uz = LPi in equation (1.27) and wuobing thab the

. »
same equation holds for ®i and ®i vwe obtain

», . » | (1.29) -
fds J(ﬂi:ﬂi ) = - 2Im| /;‘Sv.w( @i 3 n‘ ) A

and

o = oIN)Y, (I)l. (1.30)

"Because of the presence of the bound state in @: s
the only non-vanishing terms in the r.tl_ghl; hand side of
eqﬁation (1.29) come from surface elements along the
dirc_*ct.lon of the formation of the arrangement i, In

analogy to the optical theorem, we conclude i:hat
. ; '
F = deJ(ﬂi;ﬂl) (1.31)

represents the total scattered current summed over all

reaction cnannels,



It is convenient to transform equation (1.31) from
the co~ordinates f; into a set of co-ordinates &y §chQd
is the vector Joining the centre of mass of the aggregates
¢ and d in the rearrange&ent (c,d) of equation (1.1),
Ecd refers to the internal variables of the bound system
of the same arrangement,

Assuning that Il behaves 'asymptotically like the
Green's function G(A) (after integrating over the internal

variables X.q)» equation (1.31) in the new co~ordinates is;
5 fes,
cd = >3 cd%d" e g (1.32)

_where
ed 1s the outward vector, normal to the surface ds 43
gcd is a vector current along the vector fed and is

* *
J o= 1 vz
cd T grgg kdedba Lalded ! (1.33)

and Kod is the reduced mass of the pair of aggregates

c and d, .and7 Z,q is

% .
= frlx U (xJ)n .ty 1
cd J %d “cded J.J.i ‘ch' ui i .

-~
b

(F%]
I
~s

Without any loss of generality, we will assume that a
and c are particles, while b and 4 are neutral atoms,
SO q;i is given by equation (1.8.b). However, there
must be a factor of EXPliP.R)  missing from equation
(1.8.b); where p is the total momentum and R is the vector

of the centre of mass of the system referred to particle 1.



10.

This factor contributes a delta function which expresses
the requirement of conservation of momentum between the
initial and final channels, We will drop this factor

throughout.

From equation (1.30), equation (1.34) becomes

z = 1u,6my DI (1.35)

It should be noted that G(A) Vfi>i implies an

integration over the suppressed argument, and care must be
made when manipulating formulas such as (1.10.a) according
to the boundary conditions (Gerjuoy 1958.a). From
equations (1.10.a) and (1.18), we have

z =t 01X IEXPlkIE-1) L.,J‘Q‘()Exp(iklr-m%ﬁlvii) (1.36)
B [r=fi -1l '
where
¥ = 2fed By (1.37)

Because of the presence of G(MA) in equation (1.35),
the surface integral in equation (1.32) is equivalent to

integrating over all space and evaluating the surface

integral at infinity only (see Gerjucy 1958.a). We need
the limit of Z whenr» » ;
. — r) -
inz == g v D
r >0 t { i (1038)

where use of equations (1.10.a) and (1.8.b) has been made,
and the braces imply an integration, and

- “Cd’ ikr) .
wn = o— ek (1.39)
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Substituting equation (1.38) inta-efuation (1.32) yields

P
F=_cd ./.d'éd k

T 2
= < V, >] 1.40
L g DY ©i (1200
which is the rate at which the particles ¢ and d are
scattered into a solid angle dn along a direction I 4

and with a wave vector Bcd .

The cross section for scattering of particles from the

arrangementa into the arrangementb is defined by

r = ' fy (1.41)
' kq
or from (1.40)
o~ - T} Kk dn (T 2
ab ﬁ%— —Eh— b ab' (1.""2)
a.
where
= <@y > (1.43)

It is useful to write equation (1.42) in the form

g = b [dn. if on? (1.4k)
ab . J b <o
where
LA Vb are the relative velocities in the channels

f’-‘g, _ Py T (1.45)
g Jb
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The sign 1s adopted to agree with equation (1.24).

Equation (1.42) is equivalent to equation (4.,26) of
Bransden (1970) which is calculated from the transition
probability.
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CHAPTER 2.

THEORETICAL MODELS OF SCATTERING,

2.1 Born Series.

+
The formal expansion of (L) from equation (1.11.2)

O, =:E=0(°?Va) o} (2.1)

So that the scattering amplitude from equation (1.45) becomes

is

- N
[ <]
fif(g ) :ET— fif(e) , (2.2)
where  _
f - - B + 1
e = e <CI?[vi(csi vi{* |(D‘> (2.3)

The nth Born approximation to the scattering amplitude is
defined by

fler=> The)
= (2.1

The first Born approximation (FBA) is obtained when
. n =1 in the equations (2.3) and (2.4).

This approximation depends on the assumption that the
incident particle interacts weakly with the target atom so
that its wave function may be closely approximated by a
plane wave, which would be the correct wave function in the
absence of all interactions, It has long been accepted that
the FBA gives an accurate account of the total cross section
for particular inelastic processes (Bell and Kingston.1974)
at high energy, though it remains unclear how high this
energy must be for the FBA fesults to be reliable within a

certain tolerance. It is equally clear, both on experimental
and/
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and theoretical grounds that the FBA can never describe
inelastic differential cross sections at large angles, buty
again, there is no way of predicting in advance.the ahgular
range over which one can expect FBA resuits to be accurate.
An obvious improvement over the FBA 1s to retain the
first two terms in equation (2.2) which gives the second

Born approximation,

f(e):..._<cp|v|cp>

The second term in equation (2.5) cannot be computed

(2.5)
] 5

exactly even in the simplest case. Further subsidiary
approximations must be employed. These normally involve
taking explicit account af the -lowest N statesand adopting
a mean excitation energy, together with closure, to complete
the sum arising from Green's function., Different authors,
(Holt and Moiseiwitsch 1968a, Woollings and McDowell (1972,
1973)) make different cholces of this mean excitation energy.
Results for inelastic transitions show a marked
improvement on the FBA differential cross section at large
angles (Woollings and McDowell (1972,1973), Buckley an
Watters 1975). This is attributed to the inclusion of the
initial state as an intermediate state, elastic scattering
being the dominant intermediate process.
The elastic transition in the second Born approxima-
tion makes a substantial contribution to the total cross
section., The peak in the forward directlion of the differemtial
cross section varies with the mean excltation energy

(Birman and Rosendorff. 1969).




15

Byron and Joachain (1973 b) argue thut in order to

include the leading term k=2 corrections to the FBA cross
i

=3
section, one needs to include real(ﬂ#e)) (together with
exchange) in addition to the second Born amplitude,because
-3 .2
the real(ﬂ#e) ) is of order k, and vill give

contribution of this order to the differential éross-section.

The difficulties arising from including extra terms
in the Bérn series and the uncertainties in the methods of
choosing the mean excitation energy make the chances of

improving this model doubtful,
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2.2 The Glauber Approximation.

Glauber (1959) has derived a formula for the direct
scattering amplitude, but the fact that the formula for
composite collisions involves seemingly intractable in;egrals
has meant that the application to problems in atomic physiecs
was delayed until Franco (1968) was able to reduce the five
dimensional integral for the elastic scattering amplitude
in electron-Hydrogen scattering to a one dimensional form.

We start from the exact integral equation for the wave-

function of equation (1.20).

+ . ' (2 6)
RX) = -
D RX) = (R %ubtgt)‘/;xjdn U(X)G(k R,B)WR,x)k_I_J(R,X)

Assuming the energy of the incident particle is high enough
to justify the substitution of kb = k44 equation (2,6) with

the aid of closure relation reduces to

. (2.7)
pJigx) = \,_J(R X) ~ ‘zm 2E_ Lim fdﬂ/w ExPlip( BRI VIR, x)LIJ(Rx)

i k..le i

£y
D
Ly}
D
£,
(1))
o3

12 ng &

(D
("l'

o
he Fourier integral representation of

G (k,, R , R) from equation (1.18).

The approximate integral equation of QL& in equation

(2.7) involves the internal co-ordinates X of the

composites in the inltial channel in parametrlc form only,

hence following Glauber (1959) we write

‘ (2.8)
l;pi RX) = E)O’li_ki-_R] F(R X) U(x)
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Inserting equation (2.8) in equation (2.7), we have

(2.9)

2H : - y . - -
FIRX)=1- Li ﬁRﬁPE -ik.(R- R iP(R- . .
(RX) s e SR XA IR RIEXAiPR- R VIR X) FEx )

p2. kiz- ie

Introducing t =P - ki equation (2.9) becomes

FIRX) =1~ _2K i /d_ﬁ/dt explit-(R- RN VIRX)F(RX) (2.10)
(2 TP a0 Ziakr e i
-t

By taking the Z-ccmponent of t along l_{i, the

t-intergration in equation (2.10) can be calculated, to

orcer of V/E, using the inlegral formula

o
fExp“qx) da = 2iTTQ(x)
g Q-ic

and equation (2.10) reduces to

~
[1¥]
-t
-
~—

FIRX) =1— 'k" j dRo(F- P ) Olz-z) VIR XIF IR X)
i
wvhere
Olx) is the step function, such that Q(x);1
for x>0 and zero otuerwise, p and F are the

projections of R and R onto a plane normal o 1:1 and Z 1is
are 1
alorng LYK

After integrating over the delta-~-function, equation

(2.11) is solved by

Y 4
_ - g i“ r'd 7’
FIR.X) = Ex ff Tﬁ!dz vix,f, 2] (2.12)
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Now inserting gLf intc equation (1.24) for the
. i

direct scattering amplitude and recalling equations (2.8)

=1 (2.12), we have

(2.13)
; ) Z
.(e):—_"_f’fdﬁ“' ien1 VIR X)UlX 4 faz vIXPZ)
if 3 Ja B il eetisg) YIRXI UK 1exe] k: zVixhzl]
vihers -®

(2.1

1 .Q
1]
X
]

I X

n

"o make enustion (2,13) mere armenable ror calculations,

wooanoge bihe natiy of iatezraticn of 4 alens tne

viseclor of Lne ceatiering cugle, wioleh implies t.abt q is
7

wrmal to 2 zad therefore, in oylincricalco-crdiuates,

v o T3

f(g)_.. _lk| / 2 Pl n ,* ~". o, . e (d--ll))

| and

j rMex) = < (x)"

==t % _—hl—— (2.19)
hera
> /
x = =X fdz VIX P Z) .
k. i —=I1=1 12 17
I - e 4

o

we recog.aise thnt oo tion (2.15) 13 tne dlavoer formutn,
waich for hyurogenic-iype oijenlcactionscan be pus into a

v

clased form (Thomes and Gerjucy 1971). Desplte the

simplicity/
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simplicity'énd resultant ease of calculations, Glauber's
formula suffers from serious deficiencies. Firstly, no
account is taken of rearrangement processes, because the
potential in the incident channel differs from the potential
in the final channel. Secondly, the approximation kh = ki

makes the derivation only valid for small angle -scattering
and leads to_a forward direction divergence of the scatter-
ing amplitude. Thirdly, the choice of the integration path
that makes g normal to z causes the scattering amplitude
to vanish if sl sm oIm| is odd,

where (i,m ) and (", m) are the quantum numbers in the
in;tial and final channels, Fourthly, the Glauber -
formula predicts no difference bgtween the cross sections
for electron scattering and positron scattering. Fifthiy,
it i1s obvious from equation (2.16) that the terms of the
Glauber multiple scattering series are alternately purely
real and purely imaginary. This is in contrast to the Born
series of equation (2.2) where the second order term

contains both real and imaginary parts.

Attempts have been made to remedy these deficlencies.
Firstly, by choosing different paths of iantegration (see
‘Gerjuoy and Thomas 1974) and secondly, though this is
laborious, by solving equation (2.13).

Byron (1971) derives equation (2.13) in an eikonalized
close coupling treatment in which he demonstrates that the
Glauber formula and cldée coupling approximation are
complementary. Byron and Joachain (1973a) propose that in
electron-atom collision, the direct amplitude ﬂf(e)
be computed from the following formula

fer= ‘f:(e) + f_Gale)

" ! (2.18)



wuhere f (g is tne amplitude in the seccud oruer —orn

aporoximaticn defined in equation (2.5) aud ﬁf%g)

is the Glauber formula arising from tha tnira term in tne
series of eauztion (£.16), substituted in equation (2.15).
Byron and Joachain, partly oa the busis of results obtaiacd

ol

for poteuticl seattering (3yron 2nd Joazhain 19730), argue

that equakbicn (2,18) yields the amplitude correetly te crder
ki_z (wvhen exchange ef7:cts ate included also), Their actinod

acpears to be sunerior Lo the Glounber formula pe-ausze it

MO

adicts differenst cross sect! for the elecoron and

;...
L‘.

positron scattering, and it she

G
z
-

vetter agrecaens wita

evperiment (Syron and Joacnziz 19Y3e).


http://anplitu.de
http://experi.rr.ent
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2.3 The multichannel eikonal approximation.

From the discussion of the preceding section, it is

evident that the total wave function QJ: can be approxim-

ated by an eikonal method which assumes the projections

of !L% on the ccmplete set U(X ) are small during the
|

entire collision, except for the projection on the initially
occupied bound state.
ile write the total wave Tunction as a trurcated sum

over target eigenstate

\IJ: = r% An(f,Z’ EXP“Sn(f,Z)JUn()j) (2.19)
then AL, ZIBXA sie, 2l satisfies
[ y2 +hf_zugm1%mmemn%am:o (2.20)
vhere
vigr = fUlxviexiux) ax (2.21)

are the interaction mabtrix clements, and R =(R,9,§}:(_f’,¢,2)
is the vector of tne incident particle in spherical and
cyli:drical co-crainates frames respectively., Ia the
eikonal method (Brassden 1970, p.79) equation (2.20) gives

%Jf@) as

sn(_/';Z) =k Z ,deYn(_,Z) (2.22)
and

YIR) = QR) — K (2.23)
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where

A
olRl =[k _ 2my(g ,]/'L (2.24)
n h nn°

Provided W1(B) 1s slowly varying with channel wave length
n .
(Flannery and McCann 1974a) the eikonal coefficients

Aéﬁz) satisfy

=1
#f f:1,2,-... N

Taking the azimuthal dependent factor out of the potentials,

and making the phase substitution

4
_ s . ¢ /
cf(p,z)_ Af(f,Z) EXPl-iAg + [dZ v;(f,zn (2.26)

where A '-="¥-"} is the difference of the azimuthal

quantum number of the chamnel i and f,

reduces equation (2.25) to

(2.27)

, N
i@ Qc,df z) = Clf2) v IR Z) pxPlilk- k) Z)
n fn nof

s Y, L V (P 2) =
Y ot T % 1G4 Y =&

Substituting () from equation (2.19) into equation
(1.24), we obtain the direct scattering amplitude with the
aid of equation (2.27) '

ﬂf 0y — _ i 2 . Lt .
18 = _Z?/d_f‘n’-ulz] EXFig P +ingd) . (2.28)
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and
1(P,8] = de o, 9.5!L2Z) exAia z)
1 Y (2.29)
- 30 .
and
[+ +]
1(P,B) = v :
27 / dZ[G-fo(f’/ Z) ., B ff]Cf(F,Z)Eme Z] (2‘30)
- .
vhere

qQ is the component of 9 in the Xy - plane, where

is defined in equation (2.14), and

—

@ =9,.9 = ki(1-cos(0) (2.31)

vhere 9, and 9, are the 2z-component and the mininmum

value of the momentum change 9 -

On completion of the #.—-integration using the integral
representation for the Bessel function of the first kind:-

n 2
JANY) = [=i) .
0
we obtain from equation (2.28)
fe) - .1’Amf pItdPITT - )
A —(-l)] d A 1-'121 (2.33

0
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The coupled equations (2.27), subject to the boundary
conditions C_(f, o) = &h , and equation (2.33),
|

are the basiec formulaeneeded to solve the scattering problem

in this method.

Now consider the following approximations:-

1 Y << & ey ok | (2.3%4)
3) k- K . Efi/ Y (2.36)

vhere % is the incident velocity of the projectiie,
%i is the energy difference. The first approximation is
an explicit high energy requirement to ensure that the wave-
length of the projectile is small compared with the atomic
dimensions. The last two approximations imply that the
scattering is confined to small angles only., Furthermore,
the small angle scattering is demonstrated explicitly when
a =0 . Assuming the above approximations in equations

(2.27) and (2.33) we have

dCelP,2) = i 5 Clp 2z i
, = y Vv (P,Z) EXAi € .
9z v % n fn A fn#v' ! (2.37)
and ®
f(e) :(_J’Ak Pdp Ji(Pd (P S
i i A Cf 1)~ if-] (2.38)
0
and

/
q :q(1-eﬁ ¢2§2 yz
i

(2.39)
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We recall that equation (2.37) is the standard impact
parameter approximation, which can be derived directly
from the time-~dependent Schrodinger equation when the wave
function is expanded in terms of the target eigenstate (see
McDowell and Coleman, 1970), Byron (1971) has'derived
equation (2.,37) in an elkonalized close coupling approximation.

His analyses lead to equation (2.38) with q= 2kf sin(elz)

instead of equation (2.39). We also note that'equation
(2.38) 1is in agreement with the formula of Baye and Heenen
(1974a), who choose a trajectory which makes the quantum
first Born approximation and the eikonal form of the impact
parameter Born approximation equivalent, With the further

approximation that € /v. —»0 equation (2.37) yields the
{

Glauber formula when N-— o -

From the above approximations we can see that the multi-
channel eikonal method is an improvement over the impact
parameter method and the Glauber approximation. This has
been confirmed by the work of. Flannery and McCann (1974, a,
b, 1975c),a) on electron-hydrogen and (b), (c) on electron-
Helium scattering. However, the adopﬁion of a straight line
trajector& in their treatment and the neglect of polarization
distortion and electron exchange makes this model less

accurate in the lower energy region.
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2.4 The Diagonalization Method.

A method which is connected to Born approximation and
the close coupling impact parameter method has been
suggested by Baye et al (1970), who describe the collision

problem in terms of time-dependent interaction picture in

which a time displacement operator ;L(t,go) transforms a
state vector la; {> into la,t> such that
i 2 _Ja t>= V(t) .

ot T T last> (2.40)

ang
a,t> = A.fL(t,%)|q,%> (2.%1)

where

Vit) = EXA-THt] v B@[iHot, (2.42)

where H and v are defined in equation (1.3) for the initial

channel.

It is clear that

=t ) = (2.43)

and (t, ) satisfies the differential equation
[a]

. a _ . .
'—a-;, o) =) e,y (2.44)

or in an integral form, with the aid of equation (2.43)
t
Dltie) = _i/VH') ntt’.g;dt' (2.45)
t
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Baye et al (1970) show that equation (2.45) can be

put (to a second order) into the form

(2.46)

tO

If t 1is taken to the limit, _

[+

t t 4
-ﬂ.(‘hfo) = m-i./.d"l V(t1) - ‘;Jdtl/’dtzl V(t1)[V( tzm
ts t

we expand. la,t>
to—=- 3, panad. id,

in terms of the eigenfunction of H, ’ la,t> being

included in the expansion,

|o,t.> = % cpm“ )Up (2.47)

the coefficients cpm are the transition amplitudesand

depend on the impact parameter P at a time t and are given

by

CFm(P;t ) = < Pl-.!'\.lm> (2 48)

The scattering amplitude is then calculated from
equation (2.38) using eguation (2.48).

Use of the first term in the right-hand side of equation
(2.46) reduces equation (2.48) to the first order diagonal-
1zation approximation which can be derived frqm equation

(2.37) (Callaway and Bayer 1965), only if

Z = V. ¢ ’ (20I+9)

[ TIE), Aty = o (2,50)

where

8 (t) = Vot LEWLIE ] (2.51)
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and

Tit)= /n(t') dt (2.52)
©

The works of Callaway and Dugan (1966) and of Baye
et al (1970) on proton-Hydrogen and Baye (1976) on proton-
Helium show that the first order diagonalization
approximation gives results no better than the first Born
appréximation. Including the second term in the right-
hand side of equation (2.46) yields the second order
diagonalization approximation,

The importance of the second order term is demonstrated
in the following:~- _
Firstly, if we expahd the exponent in equation (2.46) then
the first two terms in the series will account for the
semi-classical second order Born approximation (Holt gnd
Moiseiwltsch 1968b)., Secondly, the matrix elements connect-
ing some degenerate states which vanish in the first order
approximation, contribute to second order and hence 1ﬁcrease
the strong coupling between these degenerate states,
Thirdly, the matrix elements of the operator . are different
in the electron collision from those in the proton or
positron case., This is so because the second order term is
charge invariant while the first order term is dependent on
the charge of the projectile. This effect is reflected in
the results of Baye and Heenen (1973, a, byc , 1974 ) on
the proton and electron scattering from Hydrogen and Helium
atoms respectively. The second order dilagonalization method
has shown (Baye and Heenen (1973, a, b, ¢ ,1974 ) a
generalﬁimprovement over the first order method and Born

approxilmation., The basic alm of this method is to allow for
an/ |
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.an important extension of the basis set and to determine
the excitation for the states of higher levels, where the
results of this method lead to cross sections quite
different from those of Born approximation., However, the
straight line assumption limits the reliability of this
model to the energy region where the straight line and

constant velocity approximations are vd4lid,
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2.5 The Close Coupling Approximation..

The electron-atom collision problem can be discussed
in terms of a representation in which the total wave function
for the system of the incident electron and the target atom
is expanded in a complete set of target atom eigenstates,
such that

BX) = = UUX)F(R) dK U (X)FIR)
U T n=htl * K= K*© (2.53)

From the physical point of view, the completeness of
the set means that the expansion must deseribe all possible
distinct physical events as we noticed in Chapter One. 1In
other words, the wave function in equation (2.53) must
satisfy both of the boundary conditions in equations (1.23)
and (1.25). In préctical numerical calculations, only a
finite number of eigenstates may be included, and therefore
the expansion is no longer complete and the boundary
‘conditions in equations (1.23) and (1.25) cannot be
simultaﬁeously satisfied,

Castillejo et al (1960) show that the cohtinuum part
of equation (2.53) is singular, and by appropriate choice
of the path of integration, the boundary conditions are
satisfied. They suggést that the total wave function of the
system may be defined uniquely either by specifying the
asymptotic form that satisfies the boundary conditions in
equation (1.23) and (1.25) or by specifying the asymptotic
form that satisfies the boundary conditions in equation
(1.23) and by choosing the path of integration for the

Integral in equation (2.53). The first choice can be shown
to/
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to be equivalent to a symmetrized wave function (Peterkop

and Veldre 1966) of the forms

Nt
- =
\(gX) = =_ ALU (X)E(RN (2.54)

where A is an exchange operator, changing the order of the
electron co-ordinates, and Nt is the number of channels

included in the expansion,

In previous sections, the close coupling approximation
has been used where the symmetrization of the wave function
has been ignored. The problem was then solved in a
configuration space and further approximations vere employed.
For systems of light atoms it is a good approximation to -
neglect the spin~orbit interaction in the Hamiltonian., In
this case both L, the total angular momentum, and S, the
total spin, and their Z-components M and MS respectively;

are conserved during the collision.

For electron-alkalis systems, containing one electron
outside the closed shell, the equations of the close coupling
method are simplified considerably when it is assumed that
the same core functions are used for all states of the valency
electron (frozen core approximation). Since the atomic wave
function of the N-electron system is anti-symmetric with respect
to interchange of any two atomic electrons, we can write the

anti-symmetric wave function of (N+1 ) electrons as

g N -k .
(r, x) = <. o F
PO SRR F A A e
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where the notations

Y sl Q ms k, S a o
| -(ih m, S M 'l2"5 n5) , | i%"ﬁ %rq )
are the angular momentum quantum numbers of the atomic
electrons, and (K!,m m; ) are the wave vector and

angular momentum of the colliding electron,

VvV = (a | )
i1 l2
r =
: (ﬁ H s 5 L SM Mg )
X =X, %X, ..... '
LU XNJ
X
= 81 Peaa xk—“ ’ )_(k4 ¥-N‘1
Xg= (B0, ! space and spin variables of the x™ slectron.

. —k o
The function y (D“'. X RO ) ig

e (2.56)
Qir, ¥R 0 =2 010 Qe m g ‘k)y (R o S

where
(V]r’):%(\’,vl,.< L.m m LM 11.5 8
12i IS <G L B> (2,57)
and <YYLimmiitM >  1s the Clebsch-Gordan coefficient

(Rose 1957)y, Qv ) = oo

vy
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The quantum numbers denoted by r,  in equation (2.55)

define the incident channel. These will be retained only
when necessary, The sum over H is truncated to a small
number of teems.

The Hamiltonian of the ( N+1) electrons ig

=W ey ¢+ v (2.58)
where
H =1 _yp? (2.59)
Net 2 vNo'\ - /ENﬂ
&
V -—
= X (1 Ri‘Nﬂ) (2.60)

Hy is the atomic Hamiltonian, Z is the nuclear charge
1 ) :

11
and (R,
I,N 1 = ‘x BNﬂ'

By substituting eduation (2.955) into the

Hartree<Fock equation:-

/Q)( .10- ) (H-EVIE,X) R, axX R g0

we obtain the coupled integro~differential equation for the

function Fl W\M) in the notation of Percival and Seaton
(1957)

| 22 L LS

de, = 2% VP EIR) = 257 b S -

v ¥ W [ Yoyt =Wy TRl R (2.62)
where
2 2
L, =1 - {24 4 k¢ |
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{
and ch is the core potential (Salmona and Seaton.- 1961)
and is given by

l
VEIR) = ﬁ?(closed shells) | 21.1)[2Y°(l7“2 IR)EIR )
L5 BIBERY 8 ]
¢ (2.63)
2 5 g, A MY B _ 3
L
= s ¢/
VelRI1= -_ZR__QO‘,‘/ + < f,‘(H Ld it \r,‘u;l1 WR) (2.6%)

S, 7 1S 2
RRIFAR) =(1) S- ¥y ‘ .
W IRRIFIR) =y-1) %gx(ql.z,g Lyt )[(Gnh—-éﬁ.,Son (2.65)

/ /
AR, FIR) 4 By B Byt R )

2
k, =2(E- E"h’ .Enl1 ; enl1 are the target energy

in the state (niy) and the energy of the valency electron

in the state (nly ) respectively, and E 1is the total energy.

In general, f, ,ng" , 4 and clllzkare defined as
[ — Y .
fotyggign) = gt IR G0 (2.66)

~ L=ty ‘s
=(-1) gx‘ gL ]

R -]
o A A ”» ‘h"
YA(ABIFH = ?1;1_/A(t~;8(t)tdt+R/,;(t)B(tlf dt (2.67)
. 05 a
o
-— X R
Al ABIR) = /A(R)B‘R’d (2.68)
0
1
C -
= {w) ) w) D iw)dw
A /9‘ ,pz e (2.,69)
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PR E)(w ) are the radial part of the electron
orbitals and the Legendre polynomials respectively.
We notice that equation (2.62) is identical to that of

Percival and Seaton (1957) for the electron-Hydrogen atom
when VLZ. 1s set equal to zero.

The errors in the scattering S-matrix elements calculated
from the asymptotic form of F,(R) will be of quadratic order in

the error from the wave functions (Percival and Seaton'1957).

Burke and Schey (1962) assume the form of the scattering

wave as

Y2

LS LS )
F, (v /R) ~ k, -[Sin( GL ) S'luoc‘ + Tvv° EXH'QL_]J (2.70)

where we have retained the notation F (v, R ) instead

of ﬁJ R ) to refer to the incident channel, and

o = KR . lm . (2.71)
2
L
T,, 1s the partial wave amplitude.
If we set
3
C] — . N ‘rn 72
ag, ~ laq, = g% .72

where F_, are defined in equations (1.24%) and
aa, aq, -

(1.26), then equation (1.23) reduces to the form

* . <~ & 1.
@, ~ uierige & 4 =], et m g (2.73)
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From equation (2.55), the scattering amplitude is

2%

FIR) o Exﬂlgéﬂlé;u + = Taq EFliKR ] (2.74)

(]

When FIR) is expanded in partial waves, equation
b
(2.74) reduces to that of equation (2.70) and C]aCl

LS
(the scattering amplitude) is related to T,, . We follow
the method of Bransden (Bransden 1970) to relate q:ll, to

LS
Tw, Dby projecting the scattering amplitude on basis sets

that are diagonal in the total momentum.

The scattering amplitude at an energy E 1is
+
{ = k g
TGUOE ) < @a‘ ) ” Vu| kpq, > (2.75)

vhich can be put in the form

LBl = < @olllbmi q)q,“‘q,) > (2.76)

vhere < Q(kq)l is defined in equation (1.8b) and has the

normalisation on the energy shell:

3 4
< Qe Qi) > = 2mi § Sty o ki (2.77)

We define the basis sets that are diagonal in the total

orbital angular momentum such that

2#
> = = il"’(?"-?l' ak dn* () «
mm. [ %Tgmy @

Ma

S Hgmml 10 ) > (2.78)

i iy
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where the phase factor i‘Z is introduced to match the

phase of the asymptotic form in equation (2.70). The spin
appears only parametically. The normalisation and the

completeness relation of the basis sets are

<I;|r.n..> = §ta l,li,LM;dl;t'leM’) (2.79)

and

-—
?q-' >l =y (2.80)

Now the scattering amplitude is expanded in the form
- < " 'o

e qﬁ, < q)b(kbnlg SITIE><E l@afku)> (2.81)

We introduce

<G ITIR > ==L ns (2.82)

so that the diagonal elements will assume the form of those
of potential scattering. When kq (the wave vector in the
incident channel) is assumed to be along the Z-axis and
M=6,.then equation (2.81) with the help of equation (2,78)

reduces to

’
jral
ha=~3, 8m i " [2bed Py ()
rr, Ak K Lym,; b
o @
k) S

<4, 001L0> <y iy mmL 0> (2.83)

or/
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or

.-'.'_.'. !
fdo1s = inizl [ 259 By, iy,
rr, LTTH Bk k 72
m a’ba’s

<hlpoo 1Le> < l;é,nﬁm’z Lo> (2.8k4)

Detailed -applications of the close coupling approxim-
ation (see Moiseiwitsch and Smith 1968) indicate that the
method is of good value when all open channels and some of
the closed channels are included in the expansion. The
method, however, suffers from the drawback that it is only
slowly convergent, for systems of low polarizability such
as Hydrogen, as the number of states is enlarged (Ormond and
Smith 1964%), A related difficulty lies in the great increase
in computing time required as further states are added to
the basis. These drawbacks may be attributed to the insuff-
icient representations of different physical features such

as the distortion of the wave function of the target atom

(polarization) or correlatior

'T‘be 1'..lor1r nf M~ res

- L] e b o i N

and Norcress (1972) (using the close-coupling 3s- 3P states
of sodium, which is known to have 99% of the polarizability
coming from 3S-3P states) agrees with the experiment at

lower energies thus lending support to the above argument,




39

h systematlc lmprovement over the close coupling method
is to account for these physical features in an expansion
thzt has more favcirable co:avergence properties. Surke and
Tayler (1966 , Taylor and Burke 1957), use the close coupling
eXxpansion with additional'variaticnally determined correlation
fuazticons, Hevever, on comparing their results with the
calculations of sSurke et al (1967), wherein the =3 states
of electron=-.iydrcogen were explicitly iacluaed, it was found

Ereh tue rescrnances whien zrise from the on=3 states, due

[0

tc the loug range dipole effects, arc nct well represented
Ry the correlaticn terms, above the n=3 tareshsld, tine
'mé%};d s10us spuricus resonadices., It thus appears that the
cerrelation mothod i1s of value cnly if all cpen cnanuels are
includea in the truiicated expansion and the energy is below
timet at which resonaices wiich arise from the First set of
clased chanaels negin,

st enerplies beysnd the lonization thresnold, aillerent
$Con o are introuuced tou moudlify the crose coupling expansiorn,
Iwrke et 2l (1969) incorsurated to¢ close coupling nseudo-
states mobtaod in waich tive total wave function (for a two-

eleztron system) is expunded in the fcoram

RR) = (1 +a ) = R} F(ry) YV (7
A - Nty v 2 ]
R, R, lyl2

WA S %HR) aro ot secessarily bhe eigeciuncltions
of tre vound atowm, Tne Yirst few terms of the expansion
recreszent the eigonatates of the nound system, wnile the

aigner/



40

higher bound and contimum states are represented by pseudo-
states, chosen to be orthogonal to each other and to the
included eigenstates, but otherwise arbitrary. The choice
of pseudo-states can be made in a number of ways. At lower
energies, the pseudo-states should be chosen to give the

right polarizability, while at intermediate energies they

Q

ould be chosen to represent the correlation effect in the
final state (Burke and Webb 1970). Burke and Webb found
good agreemént between their results far the cross sections
for the exeitation of HI{1S-2S] by electron impact and
experiment., It can be argued in this case that at higher
energies it is less important to obtain the exact polariz-
ability, but the addition of pseudo-states is still
beneficial since they partially account for loss of flux to
channels, including continuum, which has not been explicitly
included in the calculation. The computed cross sections
for e-H (Burke and Webb 1970, Burke and Mitchell 1973) show
non-physical resonances close to each of the pseudo-states
threshold. Convergence was tested by Burke and Mitchell,
and they found it satisfactory for the states with (=0 -

A further test on the convergence of the method was
made by Callaway et al (1975) who used a combination of
oseudo-states method (including eleven states) and the
polarized.orbital method. To avoid the problem of a large
number of coupled channels, the variational.methods of
Nesbet (1969) and Nesbet and Oberoi (1972) were employed,
The non-physical resonances were avoided by varying the pseudo-
states parameters set so as to move the artificial threshold

away from the.energies at which calculations are desired,
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The computed cross sections for the e-H are in good agree-
ment with those of Burke and Webb (1970), which shows the
stability of the approximation as further pseudo-states

are added, An alternative method is to modify the close
coupling expansion by including effective potential terms
(optical potentials) to represent the influence of the

cmitted terms in the truncated expansion, and this will be

discussed in the following chapter,
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2.6 The Polarized .Orbital Close Coupling Method.

In this method the reaction of the scattered electron
upon the atomic system is to be accounted for. Long range
polarization effects, induced by this reaction, are important

as has been cited in the previous section.

The total wave function of an ( N+1) electron system

is the same as that defined in equation (2.55), but now

@(quk ﬁk o ) is a set of perturbed atomic wave functions

which are enérgy dependent.

Feautrier et al (1971) use the polarized orbital form
for @(qﬁ(" ﬁkai ) which was originally introduced by

Temkin (1957) and is of the form
<k = _ pol K.
@“E'X R = Q% +CD (F-, X8/} ¢2.86)

where @u;’?k ) represents the unperturbed atomic

wave functions. (j)m(ri‘-,-(-k 'Ek ) is the distortion of the

atomic wave function and Ry is the coordinate R, when
used as a parameter, Other notations are as defined in

section (2.5)

. pol
The introduction of the distorted part (O (5, %R}
in the wave function does not alter the Kohn variational

I .
prineiple, since CDDO(r‘ l‘i‘ R} falls off more rapidly
than --R-: s R —3 o »

Feautrier et al (1971) show that ;’_.’f?(mﬂ’ and

pol _iqd
Cb (F,x RM) satisfy the following coupled integro-
differential equations.




_E _ 1 o _i[ -
(H-B =~ Lo+ V] Fr, ) + ¥ f
ol i
et (h‘" " | ":'RN" l

=N
--N(H-Ellq)ﬂ;,R h(b |] IF”‘:’"N (2'87).

.and -
< 2 pol R
( 1
Tl g RIRRTN LR
| (2.88)
— ' pol
- N . e T, W + W —
A [ i By i =0
where
v%___ /@ (r, J“' )y @(r ﬁ“‘" d% No! (2.89)
. pol » —N o pol
v = - =N«
- f@ 5 ®0 ¢, a® (2.90)

- . - '1 - .
srirj = [ ,w Hy, - 1w K2 [(D(r, R lml]dt"'h? 91)
tos (@ ™ 1
G5 = Qth, ') z ’[C

"fr /(15(,, ) v Q5 ,R DRN' ALY TN (2.93)
I "
wrplgl_/gptr R (bpo(g, m f.(n ) aTN

g R HE ey ] N"(a 92)
R

{2.94)

pO' _.NJ »o\
where we set E‘RN.l’ ‘E ' ) R ‘1..1' : (b'i
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In addition to the direct potentials and

v

i

exchange potentials W.. , we have the direct polariz-
AT

o and the exchange polarization

/

apbear in the scattering equation (2.88).

ation potentials %?
i
. pol
potentials W
|

The system of the coupled integro~differential
equations (equations (2.87), (2.88)) is an intractable
problem. Feautrier et al (1971) make further approximations
to decouple the equations of the perturbed atomic wave

pol
function @ and the free electron wave function E.-

l
The reduced equation for tho is that of the first order

perturbation theory., Feautrier (1970) applied this method
for the calculation of the scattering of electrons from
lithium atoms. The results for the polarization of the
resonant line 2P-2S (including two states 2S-2P) show a
marked improvement over those calculated in the two-state close
coupling method of Burke and Taylor (1969)., Better agree-
ment with the experiment is.achieved in the energy region
above threshold up to 5ev. The two calculations seem to
converge at 5ev, which leads one tc believe that the
importance of the method is in the vicinity of the excltation
threshold.,

If only one state is included in equation (2.88)
(elastic), then the method reduces to that of the polarised
orbital method of Temkin (1957) which was generalized by
Vo Ky Lan (1971). The polarized orbital method, while it
gives good agreement with the close coupling method pelow.

the threshold with less labour, fails to give satisfactory

results/
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results above threshold. The exchange polarization term
which seems to be important below threshold for e-Li
scattering, plays no important role above threshold
(Vo ky lan, 1971).

McDowell et al (1973) use the polarized orbital method
in an alternative form, They set the scattering amplitude

as defined in equation (1.%3)
- 1 e
W =-dg <O g > (2.95)

where now L;% is calculated using the polarized orbital

method discussed by Vo ky lan (1971). Application of the

method to systems of Hydrogen and Helium atoms was very

successful in agreeing with the experiment in the.

intermediate energy range ( McDowell et al 197k,

Scott and McDowell 1975). Further application on electron
-alkalis has been reported and its comparison is left for

later chapters.
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CHAPTER 3.

The Optical Potential Method.

In chapter two we showed that the close coﬁpling
approximation would provide a'satisfactory method for the
study of the scattering problem in the lower energy
region. Another approximation scheme for the total wave
function(i?of the system 48 derived from the close coupling
optical potential method.

In this method one seeks to obtaln equations for the
scattered wave function FE(R) with a complicated but
" exact potential., In practice, one has to make an épproximation
for this potential. |

If P is a projection operator, that projects onto the
first N states in the infinite expansion of equation
(2.53), and is defined as

N
— I
"= & (3.1)

then our truncated wave function is
o= Py _ (3.2)

But ) from the discussion of chapter one, has a
formal solution as

+

P = ‘D + GW qy. (3.3)

where W represents the direct and exchange potentials, and

other notations are as defined in chapter one.
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From equations'(3.2 and 3.3) we have

LIJ; = 0 + cewy (3.4)

where the fact that [G , p] =0 has been used

(Mittleman and Pu 1962).
Subtracting equation (3.4%) from (3.3) we obtain

+ +

D = P, o+ s t-riw g (3.5)

or +

Po=tr p quew g

If we set QJ as

where
b= P +G°(1-P)WD° (3.6)

*
then our truncated wave function \[J, becomes

+* +
Li= 0+ oy W, 3.7)
where
U - p *
op = wo | (3.8)

Equations (3.7) and (3.8) are the basic equations for
the truncated wave function and the effective potential,
which were introduced firstly by Mittleman and Pu (1962).

The optical potentlial can be calculated by'iterating
the values of D' from equation (3.6). The first iteration

will/
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will give potentials of second order, These potentials
are the second order potentials in the method of Bransden
and Coleman (1972). The explicit form of U, in this

p
apvroximation is

N o0
U, = [ w b . :
op < m J";N W 6, Wi | . (3.9)

The scattering wave function from equation (3.7) and

(3.,9) using the properties of Green's function such that

2 2 oy - 1
(v & k) 6 (kuRR ) = 2 S‘R‘R’_ (3.10)
is
( 72 kz)F(R):zﬁ‘[w F { 1
sk [w e, /Knég,g)fn(a)dg’]e.ﬂ)
where
‘Yo~ W , ..
mlBRIT = v h Go‘kji-.R.R)\AGm_ (3.12)

From the definition of W, K consists of three

different terms, namely:
(1) polarization terms
(2) exchange exchange terms
(3) exchange polarization terms.
Since G,(kn,-R,R') is complex for open channels,

K is complex and its imaginary part represents absorption

from chaniels 0sng N to those channels with n> N+t
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CHAPTER L,

Application of the Second Order Potentials Method
to Electron-Alkalis in the Impact Parameter

Approximation.

4,1 The semi-classical formulation,

From section (2.5) we note that the equations for
electron scattering by alkalls system have the same form as
the equations for hydrogenic system, with an additional
potential caused by the core electrons. Therefore, one can
find one-electron descriptions of alkalis in terms of
pseudo-potentials, in which the combined effect of the
nucleus plus the inner electrons is replaced by a single net
effective potential for the valency electron,

Rapp and Chang (1972, 1973) calculated the one-electron
wave functions of the valency electron for Li and Na

atoms by using pseudo-potentials of the form

CUX) = —(M-1K1 X ]EXP[-de]X"‘.--— )(“1
v = T (4.1)

where M is the atomic number, anda is an undetermined
parameter. vy L—-—>l¥- as x—»0 , whereas 1%_
as Y —> ®

We will use these wave functions in our calculations
and theilr forms are given in Appendix A,

Starting from equation (3.11), neglecting exchange,

we set

RiB) s cff 2leeia 2] (%,2)
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C

vhere
R = f + k2 (%.3)
NUR'YS

% = k4 Gon k',‘
Assuming the high velocity corditions such Ghat

En k) = 0 amd  VIC,IP, 27 )<< velr ,z)

-

and the rectilineazr propagation so that

V= kg O
K, 37

where 1is the incident wave vector, and € -€ . € ,
m

is the energy difference between states m gnd n

we have

N
ik 9GIlP 2) - < P i !
! o—a—;ﬂ_ ! - 5?0[ VnAf,Z)cmlf,zlaﬂ.enmzsg'l +

00
/

0
' (a2 X (L7221 ¢ 1 Doetia s
£ [dz K L2510, e ’Wh%z-iqnzi},hs)
- 00

Tne potentials §"n aro too complicated to evaluzte
exactiy, the further approxlmatlén in which, for J# N
the energy €, of the target in state n is replaced by an
effeétive average energy € and corréspondingly kﬁ is

replacad by ®: . Using closure, we can vrite K = as

i 2 N ,
Knlf 20,2 ) = Go‘-"._"R-R"'/'nm!B'B" -2 vnj( RITIRY, 6)
j=0
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and the bar in thg) is to indicate that the core
potential is dropped due to the orthogonality (since VW
occurs only when nf j).

The semi-classical Green's function must be employed

In the kernels K, ., which is
KRR ) = =i Si / ; ’
G, [K,RR ) = —T (f - £2) OlZ-2) exri(z-219) (4+.8)
where
T = Kk o+ E,Kf (t.9)
€ = g - €

From equation (4.6) and %.8), equation (%.5) reduces

to
| (p,z) o
ik aGlLZ) = ST ' P
P Y h=0 [ Vamif, 2} Crlf,2) Exp(nenmz|s ] ¢
25 |
* %TEx”i-énZK’"/"z Knmd £122) ¢ 1£,7) ] ‘ (+.10)
’ -
and

M=

Ko £Z2) = ExPli €2 o -2 TIRVTURN (o q1)

—,
Q

On studying the second order diagonalization approx-
imation, discussed in section 2,4, we mote that it is an
intermediate in character between the ,solut:!.bn of equation

(4,70) and the semi-classical second Born approximation,



52

This can be seen from the series expansion for the matrix

elements of (P, o} as

A
4; L (4+.12)

< nla(P,oo)im> =

where
. :
am T ®nm
o0
"= li€nn2 K |
= a_ko' dZ v (,P,z)EXP nm
bt o0
2
ko _m & j=0
ij( F ZZ)EXP[”EnJh‘EJ'M_Z’Z)k?l - (%.13)
= VnjtF 221 Vil o 2g TEXPUTL € 25 4 g2y )k;’;]
If closure were used to calculate .., we would

have an approximation similar to the second order potential

method retaining contribution from all intermediate states,

including the continuum,
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4.2 Many Channel Approximation.

Equation (4.10) can be simplified further by
extracting the azimuthal dependenca using the transform-

ation

ctf,z1 = cn(f',Z)EXPl-ian| M, 1)

and the explicit form of ¥V _ .,k is given by

nm
Lozt = vt 2 ExPlig (s, - s D
' (4,15)
4 ’ .
Knm(_f.’ BRI P, 2,ZVExXPli § ! Sy - snll
where S, is the magnetic quantum number of the nth state,
and ¢ 1is the azimutnal angle,
Wle have
N
. calf,Z) = ' .
|k°g—-£-_' ,‘,.—;0 [ Vnm”' zZ) cm(f.-ZlEXPuenmz Ig‘l
K’ | (4.16)

- K] / ’. ‘
+_i1.’.(_EXP( 18261 (92 kP, 221G HF, Z) ]
L
- @

The number of coupled chanaels in equation (4.16)
depends on the number of states included and also on the
value of | of each staté;-where we have (2101 ) equations,
from each value of.| . 'From the symmetry of equation |
(+,16) and the properties of the kernels, we can reduce the
nuimber of the equations trom ¢ 2l+ 1 ) to ( |;1 ) fur each 1.

' To do so, we write down the symmetry properties of Vnm and /'nm

as

v - - O] . m ‘“’ -
nn = vm‘ll:n,lm b = (1) " Vm{(l-m,l -ml

(%.17)
e

,‘nn’(lm.lm ) = (-1 J fmﬁ"'m yL-m)

fmn

111



5k

Then equation (4.16) for magnetic quantum number (m)

and (-m ) becomes

_ c
kS Snim = = m ) C iy . ]
-
K | (4+.18)
1 - 1 / /g
- i_k:E)p[ 'Enlzk‘.’ ljdz Kn._ﬂlm:lm, crfllml
and -
ik, OCa1m =<—[v b ot o0 1
°S7 e nefl=m,1-m) Ctt_ 4 SLAFL
2
L_EXP[iE ZK' Kc,izIK (tm,l -m Y
+l—'{_ X [IGnl IS ] nr‘l-rnll-m),cn‘l'_ml.]

=00

on comparing equations (4,.18) and (4,19) with the .help of

equations (4.17) we have

m
Com = =11 Cricm - (4.20)

Therefore we can write equations (4.18) and (4,19) only

for m 20 as

kD Cam = S [§ vamit) alu- &, gy lmr.,;.fc g
3 Z b [{ " oot N i 21
m20 ZK,
exPlic Zc') 1 i€zl /aZ ) (1= o1
gt -i?:swllemzw;l dZ)Km(flm,lm) o1 édo” 1)«
- 0

')
KpplImil-m ) ¢ C i
When the included states are of the form (ns,nP ),

the equations (4.21) for the states with quantum numbers

(nlp ) are all equivalent regardless of the value of | ,
while/




while the states with ( nty1 ) assume different forn.

We write down the expliclt form of these cases after making

the transformation

o = LT g § e

mo ﬂlm
and

NS 2t ngaz,"ﬁ g3 and NBs ¢

as
ik 8By _
! °T_Z—L = [\{2 > f \‘39 ]EXPhG Zk.l
z 1
1__expli€zi (.22)
+ xfligze) [az| kg ,
k e‘ [ 11 Klzez \/E_Kmea ]
_ - co .

and similarly for Y i interchnngsin~ 1 iy 2,-

iko?%. :\IZ—VM

8 ExPlic 2,l) . "
l [ ] * 2 v B * -v
3 (Vn u)e

~.Expncz . (+.23)
ik J [\/‘x 8 K128 * u<33. K. 83]

The kernels

K K . (K
no,no /. “nig, iy ' Mt ° Knu' ni.1 ’-

are defined as

K = 8.z - - ¢ Vv STV

n = BRHISZE fy, 21711 |zvz’l' 2¥3V3| - j— vijvji ]
K =€ 4[ 'R V .UV .V ) eV V
13 XH- 'Ez"" hs - 113° Yzz:‘ 13”33 ‘:’u,’ T 1j 13_1

(K - K = -igzie! o <G ©
kY 3‘, EXP'|632|(° ,[/‘33_/3“_ 2[vV1 .V ] ogv '} J
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where the sum over j is to account for the spurious core

states of Li and 4.

The coupled integro-differential equations (4.22)
and (4%,23) can now be solved with the kernels Knm BLVER

by equations (4,24%), The transition amplitude for the
excitation of an atom from its ground state to the n-state

can be calculated subject to the boundary conditions

B (P, )

I
B

o (%.25)

and the scattering amplitude ‘f;(e) can nov be
) n

calculated using equation (2.38) and the total cross section

is

®
2

_ k 2
Oén = 2 kn /Pdf |Bn - SOnI ( g’ (%.26)
0]
5 .

Application of the impact parameter approximation to
the scattering of electrons from Li and Na atoms is
expected to be accurate for higher energies and small angles
as 1s shown in section 2.3, Being aware of this, we apply
the method down to lower energies, till 10ev, The
reason for this is to make a quantitative assessment on
the reliability and the range of applicability of the method
compared with the partial wave method, where -no further
approximations on the equation (3.11) are made.

We also apply the imhact parameter approximation to the
scattering of electrons, positrons and protons for the
statesof n= 3 of He atom, using a distorted wave in the

initlal state, We postpone this discusslon to Chapter Seven,
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4.3 The Choice of the Average Energy g.

The closure approximation inherent in the second order
potential method, requires the introduction of an average
effective energy for the states not explicitly included in
the expansion. Bransden and Coleman (1972) choose the
effective energy so that the effective potential in the
incident channel had the asymptotic form of the adiabatic
polarization poteantial. For alkali atoms (Li, Na), however,
the inclusion of np state in the two-state close coupling
expansion will account for 98% of the polarizability of the
target atom (Salmona and Seaton 1961). We therefore take
the average effective energy to be the energy of the lowest

state not explicitly inecluded.

P Numerical Methods.

The systém of equations (4.22, %.23) has a general form

Subject to the boundary conditions of equation (4.25) and
the limits of the integration are -wm<Z < ® .

To an order of R_3, the value of the transition

amplitude at a distance say Z =- Zo is
. =1
3P -z} = . Vol R ) Bl 2 K ITH(1-{T) Smo) P, -2,
=
no (4+.28)

L

Z, was chosen to make the error of order 10",
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The determination of the upper limit Z—s o
is different, because the second order potential will
introduce an error of order RZ when stopping at a
positive large distance and therefore Z should be made
large. The value of Z =100au is large enough to make the

error of order = 16‘.

With the new boundary conditions, a Hamming modified
predictor corrector method (Ralston and Wilf 1962), was
used to solve the system of equation (%.27).

In this method one needs to
1) predict a value of ¥ {( z;,,»

2) modify the predicted value by adding the truncation
error which gives $N(Zi’1’
3) find vy lz - from the differential equation
and  Ty12Z,)
%) find a new value of YN‘€+1)

5) correct the new value by adding the truncation error.

One very desirable feature of this method is that we
can estimate the truncation error in a very simpie fashion,
This is an invaluable ald in deciding when to change the
value of the step length, If the step error indicates that
the calculations are more accurate than we require, then the
step length is doubled, Conversly the step length is
halved if the step error is too large a value, Another
advantage of this method is that we need to calculate

F({z  w(Z)only twice at each step. The method is not
self starting, and the forward difference Newton's

interpolation formula is used to start the calculations.
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The integration of the non-local terms appearing in
F(z,nq)was calculated using a Simpson quadrature.

The kernels‘vnm in equations (4.22) are elementary

(Appendix A), vwhile the kernels f =~ are calculated
numerically using the method of Coleman (1972). These

kernels have a general form as (Appendix B),
1

fan = / Al Z,Z',F, - RGBS 5,8 ) ds
0

and were calculated using Gaussian quadrature integration

(Abramowitz and Stegun 1965).

The integrand A varies rapildly near the lower limit
and therefore the interval was divided into unequal
sub=~intervals such that

0 <5501,04<% 20,2, 028 s €06, 06 s ¢

A test on the accuracy of the numerical integration is
provided by the unitarity conditions (Sullivan 1972)
such that

[M=

5 Bn(f’,a) < 1

3
1}

To calculate the differential cross section and the
total cross section, the maximum value of p was 35 a..
which gives a convergence to 2%4. The integration for the
scattering amplitude, equation (2.38), was evaluated by
expressing it as a sum of an infinite series of definite
integrals whose limlits of integration are successive zeroes

of the Bessel function.
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CHAPTER 5.

Application of the Second Order Potential
Method to Electron-Alkalis using Partial Waves.

5.1 Partial Wave Formulation.

We start from equation (3.11) where Knm is defined in

equation (3.12) and Won 18

W = Vo (R) = W (R,R) (5.1)

where 1
W RE ) = (-1)!S u;(R')[]R- X ;—ki] u, (R)
(5.2)

for one-electron systems (Drukareve 1964), S is the total
spin and other quantities are as defined in chapter one or

section 2.5.

Expanding F(R) and Go(ki,B,B') in partial waves,

E R = T JomtmiaT 12 flzmzna)yt"'”"'1 (5.3)
nvn- - o J" 20 nlm l .
1 2 11 {5
2 ' <~ 2 ’ I ~ ay .q 7
J= 2 g(k ,R,R) YtR ) (R IR R o
6| KR.R e 9lk R, ylm ylm : (5.4)

the method of Appendix (C) in the notation of section 2.5
ylelds

LRy =2 2 .(v,,.-w”. )fv;m

(5.5)
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where

- S o I8 2 ’
Hvi‘R:R b= ﬁ;N va( R v°v“R ) gqt kv".R'R ! (5.6)

and gl has the explicit form (Bransden 1970) as

' , 1
9‘(k,R,R) = -ikRR j (kRe<!) Ntk Rs) (5.7)
: 1 l
with R <= min (R,K ), R> = max (R,K ) and j (kR) and
1
hl (kR) are the spherical Bessel function of the first and

third kind respectively (Abramowitz and Stegun.1965).

We have introduced the bar in '7' y using the same argument

as in chapter four,

An alternative method for deriving equation (5.9) is
to start from equation (2,62) using the method of Bransden

and Coleman (1972) (see Winters 1974).
2

As in the previous chapter, k2 1s set to ¥ and
using closure, sz simplifies to
U i .
l( R = ST vy ! o b e ; # !
va ,R) LA: gl"z(k'R’R"fh‘k'?,-“leth f‘“"?"j'z"‘"
t1 12

N
x P |RR) -
[ Ny N'is 4,- Y‘%S%WJR, Y,.(Ps ‘%‘1 Ri(S-S)

where

Z,\X‘Aa'f*R" = A(Ha(t)"'ln(RH min® m,n,“

muas " R t) man(R', t)

(5.9)
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In obtaiaing equation (5.5) we dropied terms of
second order in the excnange potentials, Tuis is
justified on accocunt of

(i) The complexity of these terms and the large
amount of computer time needed.
(i) The work of Ve ky lan (1971) shows thzt the
contribution of the exchange polarization term

is negligible above tnresnhcld,

5.2 Three Channel Approximation,

Our calculations in the impact paramceter metnod sicow
tnzt tae main coutribution to the secornd order :otential
comes irom the term in the elastic chanael. For tnis reason
and the practlcal difficulties in the numerical work, we
solve the eqguation (5.5) for the coupling of the staztes

(ns,nP ), (n is the ground state of the target atom),

when the second order putsatial term is in the elastic channel
vnly. In tals approximation, a three chainel problem
results, where for a total angular momentum L the taree

ciianiels are

v L
10 L
2 1 L-1
3001 L+1

The case for L=0 is exceptionz1l siice we have L[wo

channels only, and the channel with l1=1, 12=L is exzluded

by the parity conservation., We can write equation (9.5) as

2 v v -2 2 — <™ ;) - ’
( ;IR - lz ‘lz L J 1 ) R + kv )fv bl 2 ¢v—'~ (v"v va )fvl
@ |

/
4. 4 dR H(n‘,(nz,nam,z)*ﬁ1
o

0

0 (5.10)
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when the explicit form and the symmetry properties of

fA(H'lg’i1 fé;L) (Appendix C) together with equation (5.7)

are used, H(n 0l,, nbOlz) reduces to

® 4
- ’ v . - -
Hing Lynot, | =_ikRR Z_ (215 ,1) . Uk R<;hl,,lkn,).
’ l’2=° vi 2
= <—-3——-—lllh'°°'L°>2 1 (p IRR') _ = v e P
%0 T2L.1) (22 4) ﬁ,‘1 MSn’* " (5.11)

AL nSlR)SM:]
The sum over (n’ l;’ ) includes the spurious states of the
core electrons in the same manner as in chapter four and
the presence of the Clebsch-Gordan coefficients restricts

the values of A for each value of l; and L such that

2

and therefore we are left with one infinite sum only.
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5.3 Numerical Methods.

5e3.1 The iterative method.

Because of the integral terms in equation (5.10), an
iterative procedure was used to solve the integro-
differential equations, This method was originally presented
by Sasakawa (1963) and implemented by Austern (1969) for
nuclear physics applications and by Winters (1974) for the
scattering of electrons from hydrogen and helium atoms.

Let equation (5.10) be written, in matrix form, as
Lv F = UF (5.12)

wherey is a two-dimensicnal matrix and F is a column matrix.

The functions SL(X) and CL(X) are the usual regular and

irregular functions governed by the homogeneous part of
equation (5.12), they are (X) and (-X) multiplied by the

familiar spherical Bessel (J;(X)) and Neumann functions.

Furthermore the function

e{ = €+ 1S, (5.13)

is the outgoing wave solution, and is (iX) multiplied by
the spherical Bessel function of the third kind (n}(X))

(Abramowitz and Stegun 1965).
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The basic idea of the lterative procedure is that

i is computed by iteration of a trial wave function that

contains the scattering amplitude TL

n n
F = SLSW. + T, € (5.14)

T = —k s u;.L dR (5.15)

controls the accuracy of the asymptotic parts of the trial

wave function. The zero order form for E: is

. 2L ,1 + .
e = [, Bl Ry | 1]- of (5.16)

+ Which satisfies the boundary conditions of the exact

scattered wave both asymptotically and at the origin, 4 1is
an increment number and n is the number of iterations.
To begin the first iteration, the scattering

amplitudes T1° are determined when F® and Ef are

substituted from equations (5.14%) and (5.16) into equation
(5.19) leading to a set of linear equations. The dequence
of steps followed in the iteration procedure are:-
a) solve for T: in zero order form
b) insert these zero order amplitudes in the r;ght-
hand side of equation (5.12), to reduce_the right-
hand side to a single term explieit function that

contains no unknown parameters,
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c) Solve the inhomogeneous differential equations
(542) numerically.

d) Use the solutions so obtained to define an
improved set of scattered waves to replace EC
in equation (5.14). .

e) Repeat steps (a)-(d), using the improved scattered

waves,

5.3.2 The numerical solution of the second order

differential equation.

The differential equation (5.12) is set in the form

gzzF(X) = fX)FIX) 4+ gix) (5.17)
dX
where
- -2 2
f(x) = tztlz.ﬂx -k
and

gix}) = UF
which can be solved using Numerov method (Melkanoff et al
1966). In this method, equation (5.17) is replaced by the
algorithm

(102 f 16 = (2.582F e 02 f Ve
12 1+ i+l 6 i i 12 i-1 |-1

2
h (g +109 +g ) (5.18)
12 i+ i -1
where h = x;,, - x;, and in general F,,, denotes F(xi+1).
The value of h was set to equal 0.02 for X<O.4¢q and 0.1

otherwise,
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When X is large, a test for the as&mptotic solution
was performed using Burke and Schey (1962) method., This
method is based on the idea that once the potential has
reached its asymptotic form, and the exchange terms can be
neglected, the solution ef (5.12) may be written as

-
00 .y - . - q
E3 . Z[Sin(k.R)Z o) #P costkr! = b R

(5.19)

where j is t;he sum over all different values of kJ appearing

in the coupled-channel equations. Substituting equation
(5.19) into (5.12) when only the asymptotic forms of the
potentials are included, the following recursion relations

for the coefficlents aii and b?;are obtained.

2. 2 ' ij
{ k, . a : J
Lo [(p-1NP-2)-!”|iJ)}<%2 .
2k!P-1) bij i S M
J P . ﬁo ?’ Im  Pop-1
2 ij o
Ui 2 e .[(p-n(p-zz -'i“.-*”]b:- i
-2
A R . (5.20)
2 Kj‘ P IUP = mg-oé. C T
+1 =0 A Im “p_aat
vhere c::n are the asymptotic coefficients of the potentials.
The coefficients qij and b:'J are set to give the
o

leading term in the expansion of e; s they are

and

(5.21)
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Having determined alj and b:,'J from equations (5.20),
p

the maximum mumber of terms in the infinite sum over P and
the approximate value of the asymptotic distance, say Rd.,,
are calculated to a required accuracy (13103) in the

3
expansion for Ei .

when XzR(1 ) F 1is set as
n
F A . n-1 3
Lo~ DS BT g (5.22)

and on comparing the values of the left-hand side of
equation (5.22) with those values of the right-hand side
for two successive values of x, A and B can be obtained,
This method provides a valuable criteria for stopping ﬁhe
numerical solution of equatioﬁ (5.17) when the value of B

is equal to 1. The scattered wave function Et is now
n n n
—(F _AS
e, = 1§ L ’/TL

which is to be iterated again.

5¢3¢3 Numerical evaluation of the 1nte§rals.

To evaluate the scattering amplitude T::' .from equation

(5.15)sdifferent integrals arise due to the matrix y they

are ©
a) /s Vi Foax from the direct potentials
L U j :

0 - contribution,

b) ’ : from the exchange
/sx S,/ X Wix,x 1 F ) "
{ e ) potentials contribution,

[ -]

c) ’ / from the sscond order
ﬁx SL dx H {X,X1E(x') ' °e °
: 0 potential contribution.
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Nearly all of the above integrals were performed
using the method of Clenshaw and Curtis (1960), because
it is one of the most economical of all methods in the
sense of accuracy obtained for a given number of points and
it allows precise and reliable error estimates for each
number of points. The implementation of the method was
based on the work of O'Hara and Smith (1968) and Oliver
(1972) from which the error estimates were also taken,

The direct potential matrix elements were tabulated for
small values of X while their asymptotic forms were used for
large X.The long range behaviour of some potentials makes
the integral in (a) slowly convergent. For this case, the

infinite limit was set to the asymptotic distance (Ra) and

the remaining contribution was calculated analytically by
expanding sL as

Sin(X-Jm 1PIX] +CosiX- 1y la(x)
_2-. L 2 L

.1 -1
with the same expression for c, - The polynomials R IX } and @UX’
are given by Abramowitz and Stegun (1965). This expansion

Yogether with the asymptotic expansion of vij will lead to

% o
/Cos(ux)x‘"dx and /Sin(nx)x'“dx (5.23)

R
a Ra

which are calculated using their recursion relations and

the auxiliary functions given by Abramowitz and Stegun (1965).




The exchange terms Wiij were evaluated using

Simpson's rule and the second integral over the exchange
terms was calculated by the Clenshaw-Curtis method. The
prese:ice of the bound state wave functions in the exchange
terms makes the integral rapidly couvergent,

The symmetry property of ths second order potential in
x and X was used in tabul:sting the kernel HiX, x’)
only for values of x'<:x . The mel:od of winters (197kL)

4 /
wus followed in evaluating H(X, X ) in vwhich ZAA(%Z|XX)
[-)

of equation (5.9)are linear combinations of the integrals

4

’ 4 ’
My (al X X .) =AA(0|X X | . BA(qu X )+cA(alx X |

where <
A
, At [at 2 2EXPL-at )
AA(O IX x 1 = (X, X, )
0 Xs
4 x A 1
3 lalx ') (__s) A/t atexpl-at
Xs X
x<

’
c (le X ’ = A
A ( X< X<)_ dt t-2?\ EXPl-at

X>
Evaluation of the integrals a,, BA sud C, follows frem

i1

%1

the recursicn relaticns thet govern them and th

eir iani

(=3

ial

[}

values; there derivation is giveu iu annendix (L;. 4is
pocinted out by Winters (1974), the recursion relation for
A, (a|x, X, ) Dbecomes vastable in tue forward direction wnen
A>0aXe .« TFor this case the bzckward recursion relution
was used starting with a large value of A,  The pehaviour

of H(XX ) in the limit of XZ—s>o 13 worth exémining.
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Consider

( p2 1% X)
Z?\k noS X

2M=

Ya ,snr"’" Y, ¢P4, .,,s""g

=S
b

(5.25)

vhich, from the properties of A,, B, and C, , has an

- A1
X, behaviour and the leading term in the asymptotic

region comes from A =1, The asymptotic form of H (x,x')

in the leading term becomes

1

H XX | ”.:_i_&_[L Jtkx ' h o tkx - SL ) .
L (2L, 1) L-1 L1 0

1
k {k X5 ! f{x
» 4, R R J—f— (5.26)

X

where the function f{x_.) is calculated from equation

(5.25), v =1 when L-¢ and v=( ,1 oOtherwise,

Interpolation of H 1x, x' ) was avoided when ¥ and

’ /
% are small, because in this case the kernel H (X 6 X |}
changes rapidly. The asymptotic behaviour of H(x, x' )
was used to calculate the contribution of the integral for

large values of X. This was done by setting H.(x,x' )

as

1 1
Ho~ Ah (Rx, - St "% h,i%xy (5.27)

which when substituted for two successive values of X,

will lead to a set of linear equations for A1 and Az
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1

Using the expansion of ?] and Fn s linear combinations
L L

of the integrals of equation'(5.23) were obtained and
calculated in the same method as mentioned before, The
method of Corbato and Uretsky (1959) was implemented for
generating the spherical Bessel function ﬂ}x)-

5.3.4%4 Corrections for higher partial waves.

The integro-differential equations were solved for
values of L up to 15 partial waves. The coatribution from
the exchange terms was negligible for values of L higher
than 10. The scattering amplitudes for higher partial
waves (> 15) were calculated in the unitarized Born approx-
imation (Seaton.- 1961). The scattering amplitude in this

approximation is defined as

I

K|
T s [ ~2iR )1 =i
L iR M1-iR | (5.28)
vhere
}/ [ ]
R /2 '
j o= -tk Sk X1 V. s (kX (5.29)
(]
The differential cross section was calculated using

equation (2.84), The total cross section for the
excitation of the state np, with magnetic quantum number m

is from equations (2.84) and (1..44)

| AL S
Q'(ns‘”'?w” %—Z‘ZS” 2 i* [(ZL.‘INZL.‘”!% x
ks S 212
LU
/
LS LS , )
T <1‘2:-r‘n'm||.o> <1lp, ~mmLo> S"z'z

(5.30)
where S is the total spin, :
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Finally the total cross section for a transition from en

<

ns level to N|; is
Qins, Y | = = Ls |2
1] = X (25 e1)qo,q } | T
S, A2 k l '2 I (5.31)

ns

There are two sources of inaccuracy in the calculations
of the iterative method., The first due to stopping the
integration of the differential equation (5.12) in the
asymptotic region is of the order 3%. The second, due to
stopping the iteration process was of order 2.5%. Some
difficulty was found in obtaining results for the partial
wave L=0 with sufficient accuracy. 'We found it very
helpful to use the final solution at higher energy as a

zero order solution for a lower energy.
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CHAPTER 6,
Present Calculations on the Scattering of
Electrons by Alkali Atoms.
6.1 Introduction.

In this chapter, two different sets of calculations are
presented., The first set are the results in the impact
parameter method (IP). The calculations in this method are
of three types, where they differ to the extent to which the
second order potentials were included. They ares
a) IP.1, the impact parameter close coupling method

where equation (4.10) was solved with the

inclusion of n_s and n P states but omitting the

second order potentials in all channels,

b) Method IP.2, is as method IP.1 but with the
inclusion of the second order potential in the
elastic channel,

c¢) Method IP.3, uses the three-channel coupling, where
the second order potentials were included in all

chanaels.

The second set of calculations are in partial wave form,
agaln three different types of results are presented:

1)  Method PW.1, is the two-state (ns,nP ) partial wave
close coupling approximation where equation (5.10) was
solved when the exchange terms and the second order
potentials were omitted.

2) Method PW.2, is as method PW.1 but the exchange

terms were included,
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3) Method PW,3, is the two-state partial wave close
coupling approximation where equation (5.10) was

solved,

The calculations in the impact parameter method are
presented for the electron energies at 10, 25, 50, 100,
200 ev. The partial wave results are presented for the
electron energies at 10, 15, 20, 25, 50 ev, and both
calculations are given in tables (6.1 - 6.7) for e-Li and

e-Na scattering.

6.2 Total Cross Section for e-Li Scattering.

There have been several previous theoretical studies of
the e-Li scattering. Burke and Taylor (1969) have calculated
the elastic and the resonance excitation cross section in the
two-state close coupling approximation. Walters (1973) has
calculated the elastic and the resonance excitation cross
section in the Glauber approximation (GA). The elastic cross
section has been calculated in the polarized eikonal approxim-
ation (Sarkar et al 1973) and in a model based on a simple
adiabatic R~ polarization potentiai (Inokuti and McDowell
1974+). Several other models have been applied to the
calculations of the resonance excitation cross section., These
are, the distorted wave polarized orbital method (DWPO II)
by Kennedy et al (1976), McCavert and Rudge (1970) calculations
based on a variational model, and the calculations of
Vainshtein et al (1965) and of Felden and Felden (1973) based
. on a model that makes allowance for the repulsion of the

electrons in the wéve funetion,
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Gn the experimental side, there have been some recent
measureme:1ts for the resona:ice excitation cross secﬁion.
Different :..ormalization schemzs have been adopted for these
various measurements to obtain the absolute cross section,
Williams et al (1976) who measured the elastic znd the
resopaiice exéitation differential and integrated total cross
sections, ncrmalized the sum of the elastic plus tie inelastic
cross section in arbitrary units to the total cross section
of Kasdan et al (1971) aftazr subtracting the ionization cross
section at eucn energy. The most reccent measuremeats of

Zapesochnyl et al (1975) for the resonance excitation cross
section are normallsed to the Bor.a aprroximation crcss section
.o 30x taresnold energy. On the other nand, Leep and Gallagher
(1974) normalized their valu2s for the rescaahce cxcitation
cross section to tne Lorn approximetion cross secticn at
1404 ev,

The measuremeats of Williams ef al (1976) fcr tae
resonance excitation and those or Zapesochayli et al (1975)
are 1a ugreement to 5p» and they are larger tnan taose values
of Luep and Gallagher (1974} by about 15% in the energy region
10 - 30 ev.

Mathur et al (1971, 1972) nave calculzted the elastic
and the resonhaince excitation cross sectisas i1n the Ulsuber
aporoximation where tne core effect was igncred., Tae vork of
walters (1973) shows that the core effect makes a sigaifica:nt
contribution to the elastic cross secticn at tne higﬁer
enersles, Tielr resonance excitation cross sectins are in

disagreement with the calculations of Walters.,
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The method PW,2 is similar to the work of Burke and
Taylor (19%49). Our results in this method for the elastic
and the resonance excitation cross sections differ from those
of Burke and Taylor by about 5 - 8%4. We believe that this
difference is due to the use of different.target wave
functions in the calculations., We have calculated the Born
approximation for the elastic and the resonance excitation
cross sections which are shown in Figures (6.1 and 6.,2), and
our values are larger by about 54 than the calculated Born
cross sections of some other authors (Walters 1973 Gfeene
and Williamson 1974). We do not show the work of Burke and
Taylor and the work of Mathur et al in figures (6.1) and (6.2)
in the light of the previous arguments,

6.2.1 The Elastic Cross Section.

Figure (6.1) shows the elastic cross section calculated
in the method IP,2, PW.,2 and PW.3 together with those of GA
results, Born approximation and the measurements of Williams
et al (1976).

The agreement between the measurements and the theoretical
values is very poor in the lower energy region, where the
measured values are twice the valﬁes of PW.3 at 10 and 20 ev,
The discrepancy between the GA values and the PW.3 results is
about 10 - 15% in the energy region 50 - 10.ev, while there is
a good agreement between the IP.2 and those of GA results in
the energy range 20 - 200 eﬁ. The Born cross sections are

larger than the other theoretical values.
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The other calculations which are not shown in the figure,
are those of Sarkar et al (1973) which predict too large a
cross section. It is argued (Inokuti and McDowell 1974) that
the polarized eikonal approximation accounts for the polariz-
ability twice. The polarized orbital method (Dai and Stauffer
1971 and private communication) and the Inokuti and McDowell
(1974%) calculations based on the adiabatic polarization
potential, predicted cross sections close to those of Sarkar
et al (1973). The work of Walters (1976) showed that the
considerable difference between the calculations of Inokuti
and McDowell and the other calculztions based on the close
coupling approximation or the Glauber approximation is due to
the use of the adiabatic polarization potential. The results
of PW.2 and PW.3 coafirm the conclusion that at the higher
energies, the long range interaction (which is.accounted for
through the second order potential) is not dominant, unlike
the results of the polarized eikonal method, the polarized
orbital method and the work of Inokuti and McDowell would

s5uggest,

6.2.2 The Resonance Excitation

Figure (6.2) displays the results in the PW.3 and IP,2
.methods along with the Born approximation, the GA and the
DWPO II cross sections'and_the experimental data of Leep and
Gallagher (1974), Zapesochnyi et al (1975) aﬁd Williams et al
(1976). 1In the energy region 10 - 30 ev the results of PW.3
and those of DWPO II are in very good agreement with the
measurements of Williams et al and those of Zapesochnyl et al.
On the other hand, the IP.2 and the GA results show a better

agreement/
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agreement with the data of Leep and Gallagher in the same
energy region. The GA results show a maxima earlier than

the other theoretical calculations, In the energy region

30 -~ 50 ev, the results of PW,3 and the DWPO II Cross sections
are in betﬁer agreement with the datg of Leep and Gallagher,
while the GA cross sections are about 54 larger than the

PW.3 values and the IP,2 cross sections are 104 smaller than
the PW.3 values in the same energy regilon, A good agreemeﬁt
to 10% between the data of Leep and Gallagher and the
theoretical predictions is noticed in energy region 50 - 200 ev.
Because of the conflicting results from the experimental
measurements, no decisive conclusion can be drawn for the
agreement between the data and the theoretical predictions,
The work of Felden and Felden (1973) (nmot shown in the figure)
in the framework of the modified model of Vainshtein, predicted
small cross sections., Their values are smaller than those

in the IP,2 by about 50 ~ 30% in the energy region 10 - 50 ev,
and they show an earlier maxima. Other calculations not shown
are those of McCavert and Rudge (1970). Their values show

an improvement over the Born cross sections, but are still

he other theoretical cross sectiouns in the lower

energy region (<20 ev) where they produced their results,
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6.3 Total Cross Section for e-Na Scattering.

The theoretical models which have been applied to the
scattering of electrons from lithium atoms, have been applied
as well to the scattering of electrons from sodium atoms.

The Glauber approximation (Walters 1973; Tripathi et-al 1973a)
and the polarized orbital method (Garrett 1965) have been
applied to calculate the elastic cross section., The close
coupling approximation (Barnes et al 1965; Carse 1972;

Korff et al 1973), the Glauber approximation (Walters 1973, .
Tripathi et al 1973a), the DWPO II (Kennedy et al 1976), the
modified model of Vainshtein (Felden and Felden 1973) and the
variational calculations of McCavert and Rudge (1970) have
been applied to .the resonance excitation.

Enemark and Gallagher (1972) have measured the resonance
excitation cross section, using the Born approximation cross
section at 1000 ev for the normalization of their values. The
experimental data of Zapesochnyi et al (1975) for the
resonance excltatlon cross sections are larger than those of
Enemark and Gallagher by about 30 - 60% in the energy region
40 - 10 ev. '

6.3.1 The Blastic Cross Section

We show in Figure (6,3) the present results in the method
PW.2, PW.3 and IP.2 compared with the GA calculations (Walters
1973) and the Born approximation cross sections. One can
notice that the Born approximation cross sections overestimate
the elastic cross sections compared with the other calculations.
The cause for this large difference comes from the s -partial
wave (1=0) which violates the unitarity bound and contributes

60% of the total cross section,
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Walters (1976) has calculated the total cross section
(the sum of the contributions from the elastic, inelastic
and ionization cross sections) and compared them with the
measured values of Kasdan et al (1973). The experimental
data are iarger than the theoret;cal cross sections at the
intermediate energies, The discrepancy is about 10% at 10 ev,
but increases for higher energies, being 60% at 50 ev.
The difference between the results in the PW.3 method and the
GA calculations will account for the 10% disagreement with the
data at 10 ev. But we do not see how the large difference
bpetween the data and the theoretical calculations at high
energies can be explained, since the difference between the
GA calculations and the presesnt results is small at these
high energies. In conjunction with the results for the elastic
scattering of electrons from lithium atoms, one would speculate
some doubts on the total cross sections of Kasdan et al (1971;
1973) for the higher energies. _

The calculations of Tripathi et al (1973a) are excluded
from the figure because they ignored the core'effect, whi;e
the results of Garrett (1965) are too large. Thé large cross

sections from the

nnlar
- yv g el ols

3

ed corbital method at intermsdiate
energies are due mainly to the use of the adlabatic approxima-

tion which has doubtful validity in this energy region,

6.3.2. The Resonance Excitation

Different authors (Barnes et al 1965; Carse 1972 and
Korff et al 1973) have calculated the resonance excitation cross
section in the method PW.1, The results of Barnes et al and
those of Carse are in agreement to within 5%, they are 10%
larger than the results of Korff et al. Korff et al argue that
the/
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the difference between the two sets of results is due to the
use of different target wave functions, The present results
in the method PW.1 are closer to those of Barnes et al and
Carse.

Seaton (1962) has calculated the resonance excitation
cross section in the method IP.1. His cross sections are
larger than the present IP.1 results. The difference between
the two results is due to the distortion potentials which were
ignored in Seaton's work in addition to the replacement of the
interaction potentials by thelr asymtotic forms.

Figure (6.4) shows the results in the PW.3 and IP,2
methods compared with the Born approximation, GA of Walters
(1973), DWPO II (Kennedy et al 1976) and. the experimental data
of Enemark and Gallagher and Zapesochnyl et al. The
calculations of Korff et al (1973) in the seven-state close
coupling approximation (not shown) are in very good agreement
with the data of Enemark and'Gallagher. The measurements of
Gould (1970, quoted by Enemark and Gallagher 1972) are 10%
larger than those of Enemark and Gallagher, Enemark and
Gallagher suggested that the different cascade corrections and
normalizations could have caused the 10% difference between
the two measurements,

In the energy region 10 - 30 ev, the results in the PW,.3
and DWPO II methods are in agreement to 5% and are larger
than the data of EnemarklanA'Ggllaghér by about 20 - 6%, On the
other hand, the data of Zapesochnyi et al are larger than the
two calculations by about 20 - 12% in the same energy region.
The results in the IP,2 method are in better agreement with
the data of Enemark and Gallggher. We feel that the agréement
acnleved by the IP.2 and the GA calculations with the data of

Enemark/




Enemark and Gallagher neiow 20 ev is fortultous., Tiis cull be
scen I'rcm the GA rosults wacre they shoug cn carlior moxing
and therefore the agresment is an acciaeutusl one. Cn the
other hand the results in the IP.1 metiod sre smaller tnan
the results in the PW.1 method in the same cnergy rszgion, and
since they are the results of the caleculations of the same
equation ve can not expect tne IP method to yield better
results if we suppose taal the data cf Ynemark and Gallaghér is
reliaple,

In the region 30 - 50 cv, the P4.3 resulls are in
agreement with the data of bnemark and Gallagher. Ln thls enecgy
region all the thesretical calculations (apart from thae Born
aprroximaticn) are in good accord =with the experimental data
to 5%. In the energy region 50 - 200 ev, the 1IP,2 rcsults are
smaller than the other calewlations, but they start to joint
the curves of the other calculabizns at 200 ev. In this
encrgy reglon the agreement with the data of Enemark and Gallagher
is fairly good.

The other calculaticns not mentioned so far are the Ga
calculations of Tripathi et al (which are in disagreencat with

an

AL
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[

of Fel
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the calculations of Walters 1971), the calculstion
and Felden (1973) and thosc of McCavert aud Rudge (1970) which
are respectively smaller znd larger than the other thaeoratical

czlculations as in the lithium case.
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6.4 Discussion.:

Comparing the results in the IP.1 method with those of
PW.1 results in tables (6.1 - 6.4) for the elastic and the
excitation cross sections, shows the differences between the
IP and the partial wave approximations. These differences
are purely due to the semi-classical approximation, since we
are solving the same equation., We can see a substantial
difference between the values of the two sets for the elastic
as well as for the excitation cross sections. The discrepancy
is large at the lower energies and is about 8% and 104 at 50 ev
for the elastic and the excitation cross sections respectively.
The second order potential makes a substantial contribution
to the elastic cross sections, while the contribution to the
resonance transition 1s less significant. Comparing the results
for the resonance transition from the IP,2 and IP.3 methods,
shows that the effect of including the higher states is
insignificant for the e-Li results. This is in agreement with
the conclusion of Burke and Taylor (1969) who studied the
effect of 3d-state coupling in the low energy region. This is
not the case for the resonance transition of e-Na scattering,
where the coupling to the 3d-state makes an important
contribution to the cross section (Korff et al 1973). This is
also the case for the calculations in the IP.2 and IP.3 methods
which leads us to believe that the second order potential in
the elastic channel (IP.2 and PW.3 methods) does not account
fully for the effect of the coupling to the 3d-state. The
three channels must be included to obtain the right contribution
from the higher states. The extension of the three-channel
method to the lower energy region is very desirable, but the

numerical computations become time éonsuming even when the IP

method is applied,

f\
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6.5 The Differential Cross Section for e-Li Scattering.

6.5.1 The Elastic Differential Cross Section.

The results of the present calculations in the PW.3 and
IP.2 methods are displayed in figures 6.5a) - 6.5d4) for energies
of 10, 20, 25 and 50 eV.

At 10 eV there is a slight difference between the results
from PW.3 and PW.2 methods and their agreement with the measure-
ments of Williams et al (1976, they quote an error of ¥:5%) is
poor. They predict the shape of the angular distribution but
the data are larger than the present work for angles smaller
than 100°. Williams et al have extrapolated their values for
angle smaller than 10° and their values in the forward direction
are 50% larger than the present calculations. The GA calcula-
tions at 11 eV predict cross sections at 1.3° close to the
extrapolated values of Williams et al.

The results from IP.2 and GA calculations are in good
agreement with the results from the PW.3 method for small
angles, up to 60° for the GA and 40° for the IP.2 method.

The two calculations decrease rapidly for large angles.

At 50 eV, the IP.2 and GA results are in good agreement
with each other and are in agreement with the PW.3 resulﬁs at
angles smaller than 60°. The profile for'the other energies

is the same.

6.5.2 The Resonance Excitation Differential Cross Section.

We compare in figures 6.6a) - 6.64d) at 10, 20, 25 and
50 eV, the PW.3 and IP.2 results along with the GA calculations
at 11 and 54.4 eV, the DWPO II results at 12.1, 20, 27.2 and

54.4 eV and the data of Williams et al.
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At 10 ev, the DWPO 11 and the GA calculations are in
petier agrecment with the data in the forward directinn, but
tie PW.3 results are in better agreement with the data
elsewhere, The results from the IP,2 method are in very gocd
accord with tne PW.3 results for small angles, but they do not
s70w ti:re deep minimum at large angles.

at tne other energies, the same patteru can be noticed,
where abt 50 ev the DWPO II and tine GA calculaticns are strongly
peaked in the forward direction, vut they are in good agreement
wita the present calculaticns for small angles, The GA
caleulations oecome vanisniagly small beyond 600, while the
UWPU 11 are in hetter agrecment with the FW.3 results at large
angles,

In geaeral, the diflerential cross sections for e-Li
scizttering shcw 2 minimum around 90-100° and are strongly
peaked in Lhe forward direction, Tne preseat results fail to
show tihe strong peaklig in the forward direction, bub their
Ui shape of tue sgetiering augulesr distributions

arg Tuihe satisfactury.

5.6 The uiffereatial Crous Section for e-do Scuttering.
[ [ T e L I T P L o P T PR Ry
Ve sal LilC WLl LIL0 Virlel'2aillal LIV DS ULl UVLLOIL,

In figures 6,7a)= 0.7¢) we ~omnpare the preseant results
ab 1C, 15, Zu, 25 aaa 50 ev with the available data and the
wa caleulatic s,

The zxperimental data of Gouverw: snd delencret (1972) in
aruitrary uaits were aormalised to tue PW,3 resultbs ah the
enargies 16, 19 amw 23 ev, The wgreement between tie data
and tiia Pv,3 results is fair, where the cscillating siruvcture

is predicted saotisfactirily oulb zue nelgitt and wiaths ¢f the

o3eilinticas/
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oscillations are not in very.good accord with the measurements.
The GA calculations at 11 eV are in good agreement with the
present results for angles smaller than 60° but the& do not
show the oscillatory structure at large angles. The IP.2
results are in good accord with the PW.3 results for angles
smaller than 40°. The variations between the PW.3 and PW.2
results are small in all the angular range énd they show an
oscillatory behaviour at all the energies considered. The
agreement between the PW.3 results and the IP.2 and GA calcula-

tions at 50 eV is good for angles smaller than 50°.

6.6.2 The Resonance Excitation Differential Cross Section.

Figures 6.8a) - 6.8d) at 10, 20, 25 and 50 eV display the
results from the PW.3 and IP.2 methods along with the GA results.
at 11 and 54.4 eV and the bWPO IT calculations at 12.1, 22.1
and 54.4 ev,

At 10 eV, the GA and DWPO II results are close to each
other but are larger than the present calculations at the
forward peak, and are smaller elsewhere. Here again, the IP.2
results are in good accord with the PW.3 results for small
angles. The results from the PW.3 method show an osciliatory
structure in the large angle region for &1l the energies
considered, while the DWPO II calculations show a shallow
minimum in the same angular range.

At 50 eV, the agreement between the theoretical calcula~
tions and the measurements of Shuttleworth et al (3977) is very
good at small angles (where they are available). The GA
calculations at this energy become very small for angles
larger than MOO, while the DWPO II show a very deep minimwn at

100° and are close to the PW.3 for large angles.




However, the oscillations at large angles are believed to be
non-physical. Perhaps the switech to Born approximation in '
the calculations caused such oscillations. In conjunction
with the results for the resonance excitation of e-Li scatter-
ing, we notice that the present calculations predict small
cross sections in the forward peak, while the calculations in
the DWPO II and GA methods, though large, yield better
predictions at this angle. We thought that the neglect of
the coupling of the higher levels to the 31P level would
explain the difference, but the difforentiél cross sectidns
in the IP.3 method at 50 eV (which accounts for the effect of
the higher levels) do not make this substantial difference
between the two results. The work of Moores and Norcross
(1972) in the framework of the four-state close'qoupling
approximation does not show a strong peaking in the forﬁard
direction when comparéd with the DWPO II results gt 5 eV

(see Kennedy 1976).

6.7 The Polarization Fractions and the Fano-and Macek

Parameters for Li and Na.

Experimental determinations of the ﬁotai and differential
cross sections produced by electron impact have pro?ided
important tests for thebreticai models of eleqt:on-atom
scattering processes. However, obt#ining abéolute croes sections
is a difficult task for the experimentalists to overcome and,
as we have seen, a_considerabie disagreement between the experi-
mental data is mainly due to different normalization procedures.

The polarization of atomic line radiation and X parameter
are measurable quantities, but free from nérmalization aiffi-
culties and therefore they provide a better test for the theory

when the excitation to the an level is involved.
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| The percentage polaﬁization of the resonance line of Li
and Na at right angles with the incident beam is (F}ower and
Seaton 1967) |

P =300 x / (12Q, +24Q + X | (6.1)

where X = (9a-2) (Qo-Ql) and Q, and Q, are thelexcitation
cross sections of the level an with magnetic quantum nﬁmber
m=o, 31 respectively. The value of a depends on the ratio
2f the hyperfine structure energy separat;on‘to the natural
line width and is 0.413 for 6Li and 0.288 for Na.

In figures (6.9) and (6.10) we show the ﬁolarization
fractions calculated in the PW.3 and IP.2 methods together
with the DWPO II calculatibns and the measurements of Leep and
Gallagher for the case of Li and Enemark and Gallagher and
Gould (1970,'quoted_in Enemark and Gallagher) for the case of
Na. The calculations of Tripathl et al (1973b) in the Glauber
approximation are also shown. However, the-disagreement
between the total cross sections calculated by Walters (1973)
and those bf Mathur et al (197é) an& Tripathi et al (1973a)
fdr Li and Na respectively, cast doubt on the polarization
fractions calculated by Tripathi et al.

The present calculations in the PW.3 method are lower
than the experimental data for Li and Na, their agreement with
the data is only fair. dn the other hand, the DﬁPO'II values
are higher than the data in the same energy region cbnsidered
here. The predictions. of the hclarizatipn frgctionﬁ by the IP
method are very poor as is noticed'fromufhe figﬁres. Recently,
Kumar and Srivastava (1976) have calculated the poigrization
fractions for Li in the Glauber approximation:inclu¢ing_the |
core effect. Their values are close to the DWPO II values in

the low energy region and they are in agreement with the data

|
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of Leep and Gallagher to 2% above 50 eV.

In table (6.7) the polarization fractions calculated in
the PW.3 and PW.2 methods are compared. The small variations
between the two calculations suppest that the ﬁwn—utubn clone
doupling approximation is good for predicting the polarization
fractions in the infermediatg energy region.

Fano and Macek (1973) have developed a comprehensive theory
for the connection between the distribution of the emitted rad-
iation and the relevant scattering amplitude. This is expressed
in térmslof'an orlentation vector which is proportional to the |
expectation value of the angular momentum of the target atom
and an alighment tensor whose components are proportional to
the mean values of éxpressions quadratic in the componenté of
the target angular momentum. The analysis of the parameters
for the np-state of Li and Na atoms is similar to fhat for
H atoms. Following Morgaﬁ ahd McDowell (197%), the wavefunction
for this state is

|np> = a [np,0> + a, Clog,1> = |np,-1>7] (6.2)

where av(v=o,il) is the amplitude for exciting the state
Inp, M =v>.
We may define the quantities
4

<au, au> =0, ¥y =0, -1 (6.3)

where éu is the differential cross secticn for the excitation
of the M=y magnetic sub level and tne brakcets imply summation
over the spin states.

The general expression in terms of the T-matrix clements

for these quantities is
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k
_ 1 _f_ *g4 + L 2N -
ey s =l (200 o) e T o) |6

167°
where the superscripts + and - denote singlet and triplet and
k; and k. are the initial and final wave vectors. The off
diagonal term <ao,a1>'is complex.

If g=0, + 20, is the total differential cross section for
the excitation, the dimensionless parameter, A, is defined as

A = oo/o (6.5)

For an s-p transition, the alignment and orientation
parameters of Fano and Macek can be written, in the collision

plane, as (see Morgan and McDowell, 1975)

Al 301 -3\

(o]
1
AT = 27X
x§°1 = #A-1)
oﬁ_fl =-\NZT ¥ (6.6)

where

X = Re <ao,al>/o

<
"

Im <ao,a1>/c

Npte that the parameters X and Y are dimensionless quantities
also. The problem is_then reduced to evaluating the parameters
A, X and Y, _

We show in figures 6.11a) - 6.llc) for Li and 6.12a) -
6.12¢) for Na, the parameter A(6) calculated from the PW.3
method. These are compared with the DWPO II calculations of
Kennedy (1976) at 50, 25 and 10 eV respectively.

For the Li case, the agreement between the two calcula-
tions is good only at 50 eV. The common feature between the

two results is their predictions for the two minima, but the
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positions and the deéths of the minima are different in the
two results. - ' _

The structure of A(6) for the Na case is more complicated,
where three minima appear at -high energies. Again here the
agreement between the two calculations is only satisfactory for
anglessmalier than 40°,

Figures 6.11d) and 6.12d) display the PW.3 results for Li
and Na respectively, comparing the variations of A(8) at the
different energies 10, 15 and 20 eV.

The results from the IP method cannot be compared with
the other calculations since the quantization axis .adopted for
calculating the scattering amplitude is not along the incident
momentun. ‘

The parameters X and 'Y are calculated at several energieé.
Fig. (6.13) and (6.14) show the X parameter for Li_an& Na atoms
respectively and the results are compared with the calculations
of Kennedy (1976). The two calculations are in disaccord. For
Li case, the X parameter exhibits two minima and three maxima
at the lower energies (10 eV). The-vftr'\js-t;'minimum shifts towards
the small angle region and becomes a diﬁ'at highér energies
(50 eV). The behaviour of the X parameter for the Na éase.is
similar to the behaviour of Li at small angles but it has only
two maxima.

The Y parameter is displayed in fig. (6.15) and (6.16) for
Li and Na atoms respectively along with thé}calculations of
Kennedy. It appears that there is a difference in sign between
the present calculations and those of'kennedy, perhaps this
is due to a difference in defining the f pafameter. Morgan
(private commuriications) mentioned the wrong sign in all

their published papers. The Y parameter for Li case makes
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severe oscillations at large angles and higher energies
(50 eV). The structure for the Na case is a complicated
one.
Finally, we conclude this chapter by the following remarks:
The effect of exchange and the second order potential is
very noticeable at the lower energies for the elastic cross
section and to a lesser extent for the excitation cross
section. The impact parameter method while giving total
ecross section to 20% accuracy in the low energy region, fails
to give the right shape of thé differential cross section at
large angles. It can be said that the IP method predicts a
total cross section to 10% accuracy for energies larger than
twenty five times the first threshold energy, and it yields
good predictions for the differential cross sections for
angles smaller than 40°. TIts predictions for the polarization

fractions are very poor.
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CHAPTER 7.

The Excitation of the n=3 levels of Hellum
' by Electron and Proton Impact.

7.1 The distorted wave approximation.

In this chapter, the numerical calculations for the
excltation of the n=3 levels of helium by electron and
proton (and some results for the positron scattering) impact,
in the distorted wave approximation, are presented. The
general theory of the impact parameter aporoximation was
discussed in chapter four, its application is straight
forward, The couplings between the n=3 levels of hélium
and the couplings to the grduhd state and to the 21P states
are retained. In the notation of chapter four the coupléd

channel equation becomes

N
ik 8GPZ) = <= y(ezic (P Z) explic, Zk'} |
12 je0 J | j
. (7.1)
+ E_" Y lF, Z) C IF, Z) EXPli€Z '
where ﬁJFlZ’ ;L k=15,2P gtates)

thé ground state and the 21

P states respectively. These
‘amplitudes are taken from an unpublished supplement to the
works of Berfington et al (1973) and Begum et al (1973) in
which allowance for distortion and absorption in the elastic
channel was made by including the second order potential in
the elastic channel. The indices 1 and j refer to the

six n=3 levels of helium; 31S, 31Po, ;P:1, gDo, §D:1

1
30, .

f\"
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The actual number of levels for the n=3 states is nine, but
they are reduced to six levels only, when equation (%.21)
is used. The forms of the coupled differential equations,
neglecting the second order potential - termsg, for the levels

(nl0), (nl1) and (nl2) are
' . Ban — S B 4
"%-S—;m"~ e:_ v (ni0,k) kaﬁlenmz& ] ¢

NZ. = VIno, i) 3 explie, 7 Kl
R j ) nl,, [-]

ik DB, —uF S : 1,
° nim —'\’2 e Vinm,k) 8 EXPlie zK
2 k " k i 51+
< [ P; (7'2)
P Vinlm nle) =1 4
b , nim) o .V(!"'m;'.“-m)JBnM
where i€,z
g O Gy 2K ]
j o= nim.= nim = nF:" ) nD‘l ; nD2
k = ns ) nB nD

The matrix elements in equation k7.2) are evaluated in
a general form in Appendix A, The ground Sfate and the 2'P
wave functions of helium were those described by Flannery
(1970). For the excited states, the 31P and 31D wave
functlons of Goldberg and Clogston (1939) and 3'S wave
function‘of'Cohen and McEachran (1967) were used. The
coupled-differential equations (7.2) were solved numerically
by a step~-by-step iterative procedure using the five points
formulas (Milne. 1953). The differential cross sectiops and

the total cross sections are calculated in the same manner

as in chapter four,
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To assess the effect of coupling between the n=3

1P level, the cross sections

levels and of coupling via the 2
are obtained in a number of different approximations, for
electron, proton and positron excitation, which are shown in
tables (7.1), (7.2) and (7.3) together with the Born
approximation for comparison., These approximations differ
in the number of levels coupled through equation (7.1) as
follows:

‘(two-state, three-state and four-
LISk state approximation, when only

one element of the set k is

included)

[ 1S~ J ) (seven-state approximation, all
the elements of the set j are
included and are coupled to 1S

and to each other)

(18— 2R+ 2B ) (nine-state approximation)

R
j=x = { 35, 3R, 3R 30, ,30, ,39_}}




7.2 Excitation of helium by electron impact.

Recently,-a large number of theoretical calculations
have become available on the total cross sections for the
excitation of helium from its ground state to the n=3 levels.
These calculations were performed in a variety of different
models. Some fall into the regime of semi-classical
approximations, others are in Born approximation or its
modified forms. They are, the ten-channel eikonal approxim-
ation (E10) of Flannery and McCann (1975), the second-order
diagonalization (SOD) of Baye and Heenen (1974), the Glauber
approximation (GA) (Chan and Chen-(197h) for 31P excitation;
Chan and Chang (1975) for 3'D excitation), the distorted
wave polarized orbital approximation (DWPO) (Scott and
McDowell (1975) for 31S excitation), the second Born
approximation (SBA) (Woollings and McDowell (1973) for 31D
excitation) and the Born approximation (BA) of Bell et al
(1969), The difference between the results in the semi-
classical approximations(E10, SOD, GA and the present results)
will be, mainly, due to the different combinations in the
coupled channels and partly, due to the use of different wave
functions for the helium atom. On the expérimental side,
different investigators (Moussa et al- (1969) for n=3
levels; de Jongh and van Eck (1971), van Raan et.al (1971)
and Donaldson et al (1972) for 31P excitation) have measured
the absoluté total cross sections for the excitation of 
helium, Discrepancies exiét between the various measured
cross sections, particularly as to the position and magnitude

of the peak in the cross section,.
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7.2.1  3's State Excitation of Helium.

The total cross sections for 31S excitation are shown
in table (7.1). The variations in the cross section values
due to different couplings are noticable. It is interesting
to note that much of the change in the cross section that
occurs when transitions via the 31P level are taken into
account (goirgfrom column II to column III of table (7.1))
is cancelled when transitions via the 21P level are included
{column IV), Figure (7.1) shows the nine-state results
and the results of DWPO, E10, SOD, BA and the measurements
of Moussa et al.

The agreement between the nine-state results and the
measurements is good beyond 500 ev, they are 15% higher
than the experimental values at 100 e v. At 40O e v , the
measured cross sections show a sudden change which is not
noticed in any of the theoretical calculations. The
differences between the nine-state values and the E10 and
the SOD values are due to the effect of coupling of different
channels, The large discrepancy between the nine-state
results and the SOD results which include the effect of twenty-

L

twi~states, reflect

i

the importance of couplin
levels. The DWPO (which allows for the effects of distortion
in thé initial channel, including polarization, and also for
the distortion of the target by dipole polarization) results
are very close to the nine-state results above 200 e . v.

This agreement may suggest that the adoption of the impact
parameter approach for this transition is very reasonable

beyond 200 e.v,
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9.2.2 3P State Excitation of Helium.

From table (7.1) it 1s seen that the difference
between the cross sections calculated in the three
approximations is quite small for the strong transition to
the 31P level. Figure (7.2) shows the nine-state results
compared with the BA, GA, E10 and SOD results, and the
measvrements of Moussa et al? Donaldson et al and those of
de Jough and van Eck. The nine-state results are very close
to those of BA, E10 and SOD results., In general, the
maximum difference between the nine-state values and the
lowest theoretical values does not exceed 20% at 100 e.v ,
while the discrepancy is very small at 1000 e v. The
measurements of Moussa et al and those of de Jough and
van Eck are 25% and 6% lower than the nine-state values at
100 and 1000 e.v respectively, while the measurements of
Donaldson et al are 17% lower and 5% higher than the nine-~
state values at the same energles.

Within the errors of the experiments the agreement
between the theoretical predictions and the measurements is
satisfactory. The agreement of the Born approximation cross
sections with the cther calculaticns above éOO ézvf,
strengthens the conclusion that the Born approximation can
provide total éross sections for the optically allowed

transitions in helium which are accurate to within 10% above

200 e.v,
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7.2.3  3'D State Excitation of Helium,

The work of Woollings and McDowell (1973) in the
framework of the second Born approximation, indicates that
indirect coupling of the 31D level to the ground state via
the 2'P level 1s only important at small angles of scattering
(© < 5 for electrons) and is not expected to be important
for the calculation of total excitation cross sections
integrated over all solid angles. On the other hand,
table (7.1) shows that the cross sections for the excitation
of 31D level are very sensitive and more dependent on the
approximation employed. The inclusion of the effect of 31P
level caused a substantial increase, but this was cancelled

by the effect of the 2

1

P level., Similar evidence for the
importance of the 2'P coupling effect has been obtained by
Somerville (1963) for the excitation of Hydrogen by electron
impact. Figure (7.3) shows the nine-state results together
with the SOD, E10, BA and GA results and the measurements of
Moussa et al. The SBA results of Woollings and McDowell
(1973), (not shown), are lower than those of GA results,

From the figure, it is seen that theQ =& values remain
almost constant for energies higher than 600 e v. Agreement
between the measurements and the theoretical values is very
poor, they are 30% higher the nine-state results at 1000 e v.
This large-difference at such high energy can not be
attributed to a deficiehcy in the aporoximations considered.
It can be argued that the coupling from higher levels is not
important, since the SOD results are very close to the present
results for energies higher than 500 e.v. Moussa et al
suggested that some sort of experimental inaccuracy might

have caused thls large discrepancy. The measurements of

St. John et al (1964), (not shown), are still higher than
those/
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those of Moussa et al, put they show a strong rise in
Q. *E values at 200 e v. and do not show a straight line
behaviour above this energy.

743 Excitation of Helium by Proton Impact.

The theoretical calculations that exist, for the n=3
levels of helium are based on either Born approximation and
distortion approximation (see Van Den Bos. 1969a) or close
coupling impact parameter approximation (Vaa Den Bos 1969b)
and the SOD approximation (Baye and Heenen 19730).

The work of Van Den Bos in the impact parameter
approximation is very similar to this work but differs in
the number of channels included. His nine-state
calculations are similar to the present nine-state

1S level in his work 1is

calculations except that the 2
replaced by 31S level énd our ground state wave function
accounts for distortion and absorption in the elastic
scattering channel, 1In general, the results of the two
calculations show the same features.

There are few measurements for the excitation of 31P

level of helium (Hippler and Schartner (1974); Hasselkamp
et al (1971); Van Den Bos et al (1968); Thomas and Bent
(1967))., The agreement between the measurements of
Hasselkamp et al and those of Hippler and Schartner is very
good (see Hippler and Schartner (1974)), but those of

Van Den Bos et al (for E <150 kev) ahd those of Thomas and
Bent (for E >150 kev, and they quote an error of 35%) are
10% higher than the measurements of Hippler and Schartner.
For the 31S excitation, only the measurements of Van Den
Bos et al (1968 for E<150 kev) and those of sScharmann
utd/




and Schartner (1969a)are available. Van Den Bos et al

suggested that their 31S excitation results are the less
accurate cross sections in their measurements. Their values
are higher than those of Scharmann and Schartner in the

same energy region. Only the measurements of Van Den Bos

et al (E<150 kev) exist for the excitation of the 31D level.

7.3.1 3'S State Excitation of Helium.

The situation for the proton excitation is very
similar to the electron case. The variations due to different
couplings are demonstrated in table (7.2). There is a
difference of the order of 10% between the present results
and those of the SOD results (see Figure 7.4). The measure-
ments of Scharmann and Schartner (higher than Born
| approximation) show the same shape of Born approximation.
On the other hand, the presént results in the nine-staté
approximation and those of the SOD results have the same
shape, which is different from that of Born approximation.
The measurements of Van Den Bos et al agree to 10% with

the nine-state and SOD results,

SOD and BA results and the measuremeﬁts of Hipplér and
Schartner and the measurements of Van Den Bos et al. There
is, once more, a very good agreement between the various
theoretical calculations and the experimental measurements.
The nine-state results of Van Den Bos (not shown), are
slightly higher than the present calculations, The
discrepancy might be attributed to the effect of 3's level

coupling and the distortion of the ground state in this work.

P
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7.3.3 3'D State Excitation of Helium.

p

Again the contributions of transitions via the 2
and 31P levels are of opposite sign, but in contrast to the
electron case, this cancellation is much less complete and

indeed for the 31D excitation transitions via the 21

P level
are of major importance, Van Den Bos (1969b) found that
replacement in the six-state approximation of 31P levei by
21P level caused an increase in the cross sectibn by three-
fold and ten-fold at 1000 and 100 kev reSpectiﬁely. This
feature is common in the present fesults (sée taeble 7.2
column III and IV) and in those of SOD results, |

The Born approximation disagrees very badly with those

results that include transitions via the 21

P level (see
Figure 7.6). This may suggest that the 31D excitation cross
section is a typlcal feature in close coupling calculgtions.
The measurements of Van Den Bos et al are about half the

present nine-~state results.

7.4 The Differential Cross Sections for Electron-Helium
Excitation.

The only available measurements are those of
Lassettre et al (196L4) for the 31P excitation at small angles
(© <10 )." The nine-state results are compared with the
E10 results of Flannery and McCann (private communications).
Figures (7.7a, b, ¢), (7.8a, b, ¢) and (7.95, b, ¢) show
the differential cross.segtions for ﬁhe 31S, 31P and 31D
levels respectively. The agreement with the measurements
for the 31P excltation at 511 e v is-very.good. The two

results agree well for the 31P éxcitation,-but differ for
the/
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the 31S excitation for angles larger than 30°where it is
expected that the two approximations will be inaccurate.
The difference between the two results is most noticed
in the shape of the 31D excitation, where the discrepancy
is large for large angles and they show a different peak in

the forward direction.

7.5 The Polarization Fractions for Electron-Helium
Scattering.

The percentage polarization fractions for the radiation

1 1

emitted from the n'P and n'D states respectively (Percival

and Seaton 1958) are

p(n1P ) = u_
G+ a

1
and

P(31D)= 3‘Q~tG1-2G.2)
'(SG&"'IQQ1+ 5&2)

where (Q; i1s the total cross section for the excitation
of a sublevel i. Figures (7.10) and (7.11) display the
's and 3'D-21

-state results and the E10, SOD, and GA results are

polarization of the 3'pP-2 S lines, in which the nine
compared with those measurements of Moussa et al (1969) and
Van Raan et al (1971) (for 31P-21S line only). The two

's 1ine, while

measurements agree well (to 10%) for the 31P-2
the nine-state results show very bad agreement with the
measurements and with other theoretical values, The SOD

results are in very good agreement with the meuasurements,
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On comparing the nine-state values for the 31P-21S line
with the results of Berrington et al (1973) for the 21p_

21S line, one notes that the polarization is approximately
independent of the principal quantum number n. These

values ares

Polarization Fractions of the Rad;ation

emitted from He(n1l)

Energy 1 1

2'P 3P
(ev)
100 + 0,017 + 0.019
200 - 0.08k - 0,088
500 - 0.20 - 0,22
1000 - 0.26 - 0.27

For the 31D-21P line, the nine-state and SOD results
are in fair agreement with the measurements. A4bove 600 ev,
the measurements show a straight line shape, while the
theoretical values are still decreasing. The GA results
underestimate the polarization line, while those of E10
show a very steep rise in €he lower energies and they are

lower than the measurements.
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7.0 Polarization Fracticns for Proton-hielium czatt.riag,

©

Figures (7.12) and (7.13) show the nine-stute r
Lopstner with the Ba, Suu aund the uine-state reiulits of
Va:. ven 3os (1959b), the mazsurements of Jcharmans: aad

Senzrtuer (1957 for 3'P-2'5 1ine;1968b for 3'ub-2'S liue)

aeid thosz of Van ven Bos ot al (1988, ior w<135C kev).
Yhe taecratiezl vredictisns tor the 31}3-216 line, agarg
tros 24 valuas, sre in alsaqreement withh €ae measurenents,
It 1o striking unsv Lae BA resulis zre in gococd 2zreenent
vita tne neszarements vor wagrgies nigher tnan 500 e v anf
in tne celectreon cise, the uolarizaticn is indepondent of wa2
pri:wcical quanlum mmner i,

‘i'mao j1u-213 liae ig siailaxr te Lthne electron=heiium
sczltering cuse, where the preseint resulis are iua rair
agrzement with tine rewsuremeunts., The nine-state and tie
oUD results are very close to each uther, walle the nine-
state results of Van ve.. bos (19590) overestimate the
polerization values and the BiA values un.erestimate the
pclarization lins.

7.7 sxcltation of deiium vy Positrcen Impact.

The cross sechtions for the excitatioan cf nelium by
positron impact have been calculated, for comp:riscn wita
the electron-helium scattering cross secztions, since taere
are no experimental measurements for the rositron scatter-
ing. 'Taole (7.3) shows the cross sectiins in the
approximations (two—state, tiiree~-state aine Ilour-state for

1

1., . , . . . .
33, 31P and 3D excitation respectlvely) axxi tne seveu~state

appreximation,
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It is noted that the values of column I of table (7.3)

are approximately (< 5%) -equal to those values of columnIl
of table (7.1) for energies higher than 300 ev. This shows
that the sign of the potential has little effect in this
approximation. In contrast to that,the effect of the sign
in the dipole and quadropole couplings in the seven-state
approximation 1is most noticed in the 318 and 31D
excitation. The seven-state aprroximation (which includes
the effect of the 31P level) reduces the cross sections for
electron scattering for the 31S and 31P levels and increases
the cross sections for 31D level, while the positron
scattering cross sections for the 31S are increased and those
of the 31P and 31D levels are decreased., The increase or
decrease in the cross section for the electron case, are
not accounted for by the same amount for the positron case.'

This feature was noticed in the proton scattering also.
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Conclusions.

In this work, the second order potentials method has
been applied to the scattering of electrons from lithium

and sodium atoms in the impact parameter and partial wave

formulations and to the scattering of electrons and protons
from helium atoms in the impact parameter formulation.

In application to e-alkalis, the second order potentials
make a substantial contribution to the elastic cross section.
However, the agreement between the experimental data and the
calculated cross sections for the e~Li case is very poor.

The measured total cross sections for e-alkalis are 60% larger
than the theoretical calculations at energies as high as

20 - 50 ev., This large discrepancy at such high energy warrants
further work to verify the disagreement between the data and

the theoretical work,

The effect of the second order potential in the elastic
channel was less significant in the resonance traasition, and
the extension of the method to the three-channel to account
fully for the contribution from the coupling to higher levels
is very much desirable. The diversity between the experimental
measurements for the resonance excitation of Li and Na due to
different normalization procedures adopted, makes it difficult
to draw a firm conclusion on the agreement between the data and
the theoretical calculations in the intermediate energy region,

On the credit side, our calculations have predicted the
shape of the differential cross section for the elastic and
the resonance excitation quite satisfactory and the pdlarization

fractions are in falr agreement with the measurements,
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Application of the method in partial waves and in the
impact parameter approximation, highlights the fange of
applicablility of the later approximation, where it was found
that the impact parameter approximation is reliable for
energies larger than 50 ev and for angles smaller than 40P,

The application of the impact parameter approximation
vas generally adequate for the excitation of the dipole allowed
transition states of helium (31P state) at energies larger
than ten times the threshold energy compared with twenty five
times the threshold enérgy for the alkalis case,

The weakest transitions, specially the 31D level, shoued
an important dependence on the coupling to the 1ntermsdiate
states of the 21P and 31P levels, and their calculated cross
sections are larger (smaller) than the measurements for the

electron (proton) impact,
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APPENDIX A,

a) The radial part of the wave function of a state n is

normalized such that

< Rn'Rn,> = S-nn/

b) Wave fqncticns of Li atom

R (r) = N, (6 42, d
Ryg(r) = Ny (r-a,) (6227 + a3 eauT)
Ryp(r) = Nyr (™7 4 b, °37)
where
N, = k74739 A, = 2.131038 A, = 1.0001
N, = 0.6719289 a, = 0.869875 ay, = 0.713054
ay = 1.6028 a), = 2.05067
Ny = 0.219217 b, = 0.518 b, = 0.83k
b3 = 1.75

c) Wave functions of Na atom.

-A -
R,o(r) =N, (e L Rzeh3 )

r) = | - s S2T 'S‘I‘
Ry (r) = Nzﬂr 51)(6 *sye )
. - -byr -b3r
Rgp(r) = szr(e + byr e )
- ~CoT ~Cg r

Ry (r) = Nyr (637 + a, &%37)
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vhere

N, = 46,339 A, = 9.00738 Ay = 0.5458 A 17.99983

N, = 9,054 s1 = 0,20475 8, = 2.82724 s3 = 10.0
5, = 5.5
N2p= 0.59201 b1 = 0,938865 b, = 75.22339
b3 = 4,6236
N3 = 0.70224%4 c1 = 0,961 c2 = 0.7 c3 =4, 76
Cy, = 1h, c5 = 3,6
Ny, = - 0.148743 a, = O, kk a8y = ~25.4% 2, =" 3.8

It should be noted that the wave functions R1s for Li

and R1s, st and R2p for Na are spurious states that have to

be removed from the closure relation.

We calculated these wave functions in the variational
method,

We write down the form of the potentials, for a general
wave function to avoid repetition of the calculationé of
He, Li and Na. The interaction potential between the charge
particle, of charge Q, and the atom is

v = a VR - s a lR-—xiF1

where V¢ is defined in eq&aticn (%,1) for the alkali atoms
and is R otherﬁise, i =1 for alkali atoms and 2 for He.

In general the wave function will be of the form
Cpnlm(y = Rnl(x> Ylm(X)

where
Ko () = e, x3g% %

R

and/
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and

N .
p = S J o9 X
Rnl(x) Rn’l (x) ECJ xY e J

and
<Rnl'Rri ].'>= g g ’

nn %11

<<bnslv I anS> =Q[VC(R’+N:S_E|—RJ] A.1

By = CPo(2585) + €y b (3yay) + Cob (hyay),

<¢n5[vl ch\bﬂ? = <q)"prl v ]q.%s> (azimuth ¢~ independent)

. A2
=Varm Y IR} g NysMnp[ 6, - c, ]

.1
6, =(3g2 ] [ 3'(_9_ 4(_1__ vs(L- o veen)))]
a
2
G,= ¢, b1(2,a° ! .CTb1(3,a1' .C2b1(1.,-02_) 4 1ees

R = ™ < v > .

-mz
=Qq [ Vm,gm,m i B P ]
2
- gt 2
h,= R - Np  E
My~ m -
hym (-1 1T 2 J200 y (R1 2

2"5_,“1 an <2,1m-mz,n%'1,m><21,bo ,1°>x
1 I
[?Rr.(a-(—ig.. s (-sjg_ co (&)

e a3
~( C°b2(2’0°’ 0C1b2(3,g1).%bzllo'uz)....”
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<¢"SIV , d’?, > = Q 4T YZ‘ 'anNno[—'-'g‘Eg-" Hy ] Ak

X
—
H
=M
O
t3\‘
-
o~
+*
3
@,
[+]
3
—
Q.
-

H, - < | n
= ‘_Cnbz'z‘ lﬂn,

< v ](13 > = N [NZOT < 2-1$mzm1*|1-m|-m2>< 2150 0 |10 >
npm nD
1 my =
14017 < 21;m n'l‘,3m-m>x

- H
Y;‘-;:.R) (ﬂT“H‘ ) + 3 .
12 _ ]
<2100|30>Y‘R’(_ﬁ§_ He )]
mm2 7R

3 =%
n [+]
He = ZF Cp b (2en,0))
n
®
-q
S+Nn n
n
°.
g = ch b3(2.n,an)
n

(—':—%,- —~ Hg )+,|35Tr <22;m2nylbm1-m2> x
(R} ( | )]

< 225004 0> m_mz g
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]
M

>M

°M

>M

x
>M
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btn,a )

13

n bo(z.n,an)

LoD e'un'

o
Cn Bl2en, q,!

-a.t
Cnfd' g+n g

o

Chn bl‘(20n)cln)

8

H
-l
——

Lon

2L + 1

RLQF

—TB—-)G

and NnL is the normalization constant.

dt
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APPENDIX B,

The second order potentials in configuration space.

To evaluate the kernel K in equation (4.11), the
kernel /‘nm needs closer examination, the matrix elements

Vnm have been evaluated in Appendix A,

The kernel

= , - * [
/*nm _,l(l1m1,l2m2)_ /_'”"”l.n'.,‘“’ Y:,m,'azg B.1
|- x]le-x ]

where fi X ) i1s the product of the radial part of the wave
functions for the states n and m, can be expressed as a

linear combination of the inteyrals I(L,M) such thats

12
thmytm] = s [1214 .1u2|z.1;]/ <LbimmiLM > x B
/‘_H 154ymJ < CITaeT T b smmy o2

<y LoolLo > I(LyM |
and .

I

M) = Jffsxn KT
|’ x||B- x

K}
to
(98]

’

when the two-state close coupling (nos - nop) are

consldered, the special cases arise
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f€00;00) = I (0,0) B.k
f (00310) = T (1,0)
P (00511) = I (1,1)

£(10510) = I (O,I_OVWT* I (2,0/\15”
f 10511 (2(3) )¢ I (2,1)
_(' 3 -(21 (2,2)
10T .
/"(11;11) = I (0,0) - I (2,0)

LTT \I 20T1T

Becguse of the properties of the spherical harmonics,

pLmys Lmy) o = f (Lymys Lymy)
and - : B.5

m, + m,
p(Lm; 12m2)

/‘(11-—m1; 12-m2) = (=) |
furthermore, #(1,m,; 12m2) is real for any 1,,m;;1, and m,.

f=1511)

The spherical harmonies in the integral I(L,M) are
defined with respect to a coordinate frame (/) OXYZ with Z
axis along the incident veloclty V and the collision plane
as the XZ plane with the polar coordinates as (r,a,d).

To simplify the integral, it is more convenlient to use
a second frame (W) Oxy2z with polar axis along R,

R and R are coplanar,

The polar coordinates of R/ depend on its position
with respect to R. We have
R= f£ + V¥t B.6

7/

and R~ = P+ TVt
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Case I X
/ 4
R<R and t < ¢ p
/
here tQO and £t>0 and \\ /jl\e y2Z
therefore R lies to the left N \ /
of R in the xz plane and the A
/ <
polar angles of R are (@ ,0) v
as in Figure (B.1). Fig. B.1
To bring the UXyZ frame into coincidence with OXYZ
frame, the Euler angles are
=T, g=¢ , %$=TT B.7
and the transformation matrix that brings the system
Oxyz—>UXYZ is such that
m | ’ |
Yt} =1 37 g1 YW Fotm! ©
Im m'=-| B.8

l,ig)

and the coefficlents 1o are the elements of

the rotation matrix (Messiah 1970).

When the elements nh# 0 ) are substituted, the
special cases for n,s - n.p close coupling are:=-

p €00310)
F (00311)

COSIB) I(1,0) +\[2 sin@)I(1,1)

-sin(e) I(1,0) + coste). 1(1,1)
\z

[ = : ' i
 (10510) cgs.%_ey[ITO_:TT(_J_L . 1_;2&]. 2\]2 swe)cosre;[!g_oﬁ 1 2,1) ]
+ sintei[ 11600 _ 1z0 . [3
Lo y2o 7T 1o 1321 )
. - - * - S 2
FO0- pQO=1310= st Ligg) | ya) ] B9

eTTE
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2
+ Costol[ 1100 _Ilzg), l_a___ 112,2)]
10T

LT \ITQH_

+ Zﬁ—santelcoste)[ 3 1(2.”]
\l 2077

(10,11) = _s__&_q_cgs_x_e_[( m ~120) )

N L
+ (_Ij_ 112,2) )
10

- | 18,01 - 1i2.0) )]

J2om
. (cos&e)- Soncel)[J;o_ 1z ]

X
PN
Case II
/ /
when £ = t and R f P
o d
N
lies to the right of R in : ; ;7’ >
the x2 plane, the polar R]' /R
7 7
angles of R are (@,TT). _ [@/
*l
Fig. B.2

The only difference in this
case is that .I(L,M) of Case I is
to pe multiplied by (-1 )M.

The reduction of the integrals I(L,M) is done following
the method of Coleman (1972) and their final foi‘ms for

1=0,1, 2 and M= 0,1,2 are
)|

4
I (0,0 = _l?l/,\mv,rgjv: a¥

1
o/ 2

-]
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where

= (1-2 X2Y% + x2vH

and 3 B.10

A (a,b) = /dx f1X)x

/J(Y,.zq‘nnxv(z A ev-2q011]

I(10)"

RR’

where ) ,
T Y1 = (1 o [ A fo;RA LA 'A1(R/Y,oolJ

2 2 {o,RY)
+ _(J_Lyg._l_ [ (RY] A1(RY,¢,) - Ao, ]

A (o,R’l o(R')zA(R:ool

sSinl@® ) TZ'Y, S dY - s
2|R) ® [/ ‘ 2 ]

S, = A (0,8 ) -1K)2 A, (O,R")

= 2 2 2,2
TZ(Y)_ (1'Y)Q1+Y(1-XY)Q2
Q1f°,RYl - (RY)? A, lo, RY

243(1)

I(1,1)

where

Q =
/ / 2 d
q = Ao, RIY) - (RIY)" Ajlo,RfYI
‘12 - -1 !
sub = 2XYI(Z. XY?}
I (2,0)= [ ‘33*G)¢S=sub
_dY .
2 o/ S ']
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where

537 3 i agef) o (RE AJR oMt vexZ e 3x?)

&
+ 202 (1 - 3 AW, )+ 282 4_(0,m) ]

= ' 2 L
Q= -3+ 2Y + 3v ) 34f0,RY .zmszolP,RYhamv/‘A-(o.Rw ]
| RZ v N | 2
Ql - 4 2 b lo,0) + {3 022Y2 * 3XLYL,(‘3A (°’R’/Y’
3 —?—[ 3R (302Y "3Y,A2 P + '2

-2 «R'/le A IR/ Yy -‘R'/Y’L-' Az‘ﬁ/Y.w’) + 281 a7 «2,387") A1
1 .

16R’ 3 —h
° D

ay *S, ]
where
5 =_1_,[IX2- 4XZ 1) A L° R) .(R')LA (R’mu‘l-LXZ-le
4 TRR R AL 2 .
12 A (0y00] '2(1-X21A|°vR,’ ]
+ 2(RRIT A Lo®) 4 2(R) 0
2
- 2 2, . 4
=Vl Y [ 2RY) (1-Y) Afo,RY) « (143Y 7] Alo,RY) -(3 4 Y2tRy] A_‘!%RY']

W T TR

11V [ 1347 Aje,RA . 11238V R A2|R,'/Y,°°’

2 ' q 2
_ 2RI i-RY A AL, RIYF] (22 by e B alesl

2 x?" \ ,
I (2,2) = -3 -{1sn sint @) YI8 « & tegrmb
W?"z [} DW2 -55_]
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where

2
S, = (max-z.xz) A
(R)% -

’
2(o,R’1 - RY(3 +x2-l.xZ)A2l°-,R)

+ 2(1 - x2)'A°(o,R'--')

-2
o = - 112 YZPL gy /? A f0,RY1- 24J0,RY] + RY] AoRY) ]
Y

/ “-xzvznz oy Alo, R - 2A 10, HY) (q’lw-zmo,aﬁ!]
R L A o

In general b

1-n
A(a’b,=/x f£1X ) dX
’ a
and Y=':*‘/x or v=X/R y Z =CcosSi®)
x=M;::RR,§’:

The integrals in the set of equations B,.10 are to

be calculated numerically.
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ArPENDIX C

ve will cexpamd the following equation

2

2 - < . 4 . ’ ’ ‘ C.1
Lve . ’5“3’ = 2? (w SRR K4 BRNE LR 1dR (c.1)

ada

WhETe waa’ maad K 8re uefined in eguations (5.2) and (3.12)
respectively. We have drup-ad an- pecause the analysis

is -imiler b0 KU ot Kau, 21d will appear only in the final
firnm,

Tnc o dhae? Gountions (5,37 =nd (5.4%) i equaticn (C.1)

2.0 mulvinl:-ing by (R y“(ﬁ )] aud integrating over
|
d-n. ve o oaaee B o0 lz'mz'
f—_— . '2"‘2"‘ 1. R
K| | L ( = < W dR +*
o] 0 l' ’
l,m, | 2m (c.2)
) 2 2:3"‘?“ - fn‘l,’m' (R ) dR]
) le1,nl1m1 1
-] 0
2/ A H“ , '
WnIm nim "Jm = = JZI' M1M II.Z / CE N p(ﬁ R
T g 1 ‘;2\"‘2 2 /¥‘R’y‘mx R
-~ ~ r 2 2
Y IRV YIR) dnan “Y A £ IR e ke )
] ’ 110
li“z I;m1 ’ ‘-'i"'l' " 1 (c.3)
b - o
At twm ) & {‘agd !
and
- , BY; m’ A
K?Z’L‘mﬁnu-z Soqar, o1 i :ﬂ2 wd R Y lpz'u‘ﬂl T
am n" 1 VN AR 2 l'm, *ﬂq rq *m’l (C.'r)
and 9 (k nuR R
by s A -—
v I.I;(R"-' Y,‘P P:,,IR) X
"ﬂ"‘ﬁ.nﬂ"\‘ % b\ ”11 ni

dn d FRVY X I P RKD Y (%) VIR
/ Syt ylm B ¥m¢ Xe

(Gu '.=)
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To transform equation (C.2) from a representation

of | ) to a representationi we use
|1m1, l,m, p (|1'|2,|_)

<l1 b "!I',“ZILM>[|1 It M > Sgf2l, #1 i'2|!1|2m1mz>(C.6)

and multiplying by < \'2."\@; M > and summing over

my,m, using the fact that the Clebsch-Gordan coefficients

1
satisfy

;;’ < 4yl,m m‘,ILM>< 2,m,'mILM> gL SMM' (C.7)

and retaining the definition of , = ( n Ly L, ) we have

L'fv( R} = 2 VZ' [ W”:( R,R'lfJR'I dR

7 ] (c.8)
/ , / .
* Z/Kv‘;(R,R)f,{(R’dR g .
where 0
’ ’ [
W,glR,RITHR) = ?T- g,‘“ﬂz,l‘!z;- P}‘f,\(%'f',_iﬁi.
and
KARR) = 27 Vop(R) Vo (R) 9 (k,RR)

N T vy ty v (C.10)
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(C.7)when ()

In obtaining equation(C.10) , we have inserted equation
1

lp ™, mz) are replaced by | '1'7"":1& ) in
equation(C.4) and used the definitions

M < . / ’ %gﬂl
Ml = <ipimmiie ><(,|2,m‘rn£|LM>A Zc.11)
"R e
and :
f, gt ) n:é;’ <l m “E'LM><(1'20"‘;"9LM>“
1
2
dn dn, )7 (%) );(ﬁ ) D.(si('ﬁl .(5‘) R)(C.12)
/ o Ty R )C"H yé""z
and for equation ( C.9) 9,}'1'214 l;;'- )
is defined as
11 - H"Z'L '
Q, Uy pbhst ) =01 fA(.“z,,'“'z.,u (C.13)

From the symmetry properties of the Clebsch-~Gordan
coefficients-it is clear that

’ ! 7 ! R

For the special case f,\(OI-‘.,l; l'-‘_,-,l. ) ) using

equations (C.12) and (C.7) with tne help of (Rose.1957)

. SR

dny(n)y(n)y(n; = f L2141 215 +1) x
Lm lym ;
33 2 ™ l.rr(2|3.1 }

(C.1k)
<\ |2'm‘m4|3m3>< |.| Lot 00"30>
wo have
[ ) ’ 12
fulobl ) = [(2|2 o)

, o $ S .
[ Lo> Al
{21+ 12 +1) < 2 l1:0 ol |2L !

v A\
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APPENDIX D.

The integrals A,(a, R,R1), B,(a; R,R1) and
Cy(a, R,h1) from equation (5.24k) are

Re
1 -at
A- 27\¢2
Ay = Rs) [t e D.1
OA -at
B, = o _Es) e . D.2
R R> o
©
At -
C?\ = (ﬁ);{ ) G D.3
R>
aow G§°R< :
2 = — R 2 2
AO aTR<R> a R i "< * . . 2 RS ] D.k

Iategrating equation D.1 by parts twice we obtain the

recurrence relaticns for a>0

( -OR< N

{2A 1) 2&02) __2 02

A == Ax-1 — [1 * ]
0" ReRs

D.5

which is stable for A < GRe °
max

For Amaxé'°R< we begin with the expansion for

A
large nax

-aR< Adl .2

O R r ;
== (-R< <|1+9Rg Lg.a_gL__r_.
A2 2A 43 ( R>) L 2A+ b ’(2A+LM2A05 ] D.6

to give a reasonable value for A*max and then recur

downwards,
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In the same method

-aR. -aR
BO:%:—[R<.J;] - neR> [R>+1?_]

and its recurrence relation fora> g0 is

= Re By
BA R,
Similarly
-aRs
C,= —E
a

and in writing

® -t

<1
IR ! :/dtt e
B

(see Abramowlitz and Stegun 1965)

we obtain

and the recurrence relation for a>1 is

C, =-SRRe ¢, . e Re[R< |
A 2Taasgy M >[_§>$) [1

-SLBa_]
(27 1] (2A-2]

D.7

D.8

D.9

D.10

D-11

D.12
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Table g.1

. . . . 2
Total elastic cross sections for e-Li (wa “)

Energy | a - b c 1 2 3
eV
10 |1s.88 | 21.30 | =~ | 17.73 | 22.44 | 26.2
15 - - - | 13.0 | 14.85 | 17.18
20 - - - | 10.81 ] 11.85 | 13.27
25 | 7.43| 896 - 2,02 | 9.26 | 9.87
50 | 4.45 ! 4.90 | 4.96 | 5.06 | 5.16 | 5.33
100 | 2.58| 2.72| 2.78| - - -
200 | 1.56| 1.61] 1.62| = - -
d) IPY - b} 1P.2 c}1Ps3
R 2) PW.2 31PW-3




Table 6.2
2

Total cross sections (Wanf)'for'the Z7P excitation of e-Li

Energy :

a b c 1 2 3

eV :

10 | 53.89 | 49.10 | =~ | 63.18 | 57.66 | 51.89
15 - - - | 53.5 | 50.46 | 46.11"
20 - - - | 44.75 | 42.8 | 40.21
25 | 36.42 | 33,01 - | 38,72 | 37.89 | 36.12
50 | 20.75 | 20.0 | 19.75| 22.66 | 22.27 | 22.06
100 | 12.11 | 12.0 | 11.99 - - -
200 7.50 | 7.36 - -

7.29

See Table 6,1 for key




Table ‘6.3

- Total elastic cross sections for e~Na (Anaoi)

Erergy a b c 1 2 3
eV
10 | 15.71 | 22.64 - 19.97 | 23.16 | 31,87
15 - - - 15.61 | 17.36 | 21,99
20 - - - 12.19 | 13.74 | 15.85
25 7.44 | 8.91 9.75 | 9.97 | 11.57
50 5.30 | 5.72| 5.74 | 5,67 | 5.85 6.i7
100 3.19 | 3.31 | 3,32 - - -
200 2,681 2,69 | 2,69 - - -
See Table 6.1 for key




Table 6.4

' s ]
Total cross sections \na‘;z) ‘for the 3“P ‘excitation of e-Na

Energy
eV

m
o
(2]
=
N

W

10 | 47.16 | 42.35 - 57.29 | 52,30 | 47.54
15 - - - 49.06 | 47.11 | 42,71
20 - - - 41.17 | 40.00 | 37,97
25 | 31.84 | 30.36 - 34.87 | 33.87 | 32,78
50 | 19.76 | 18,97 | 17.96 | 22.21 | 22.00 | 21,77

100 | 11.87 | 11.50 | 10.85 | - - -

200 7.10 6.90 6.81 - - -

See Table B4 for key
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Table .N%_ e-He Excitation Cross-Section in ua,

2

The number in round brackets

(n) represents the power of nms.vv. which the entry should be divided

(<]
3ls 3p 3lp
Energy (eVv) 1 11 IXX IV I IX TIX Iv X 11 111 IV
100 5.00(3) }3.56(3) |3.12(3){ 3.46(3)| 36.60(3)]38.2 (3)]40.20(3) am «B8(3) | 10.30(4) wo.woa.\.v 34.17(4)}146-8(4)
200 2.65(3) 12.15(3) |1.95(3)] 2.10(3)| 26.43(3)]|27.18(3)|26.90(3)}27.82(3)] 5.84(4)| 5.64(4)]14.17(4)}6.92(4)
300 1.78(3) |1.54(3) |1.62(3)| 1.51(3)] 20.79(3)}21.13(3)|20.60(3)|21.03(3)] 4.05(4) uhwcﬁpv 8.49(4) | 4.56 (&)
400 1.36(3) [1.21(3) ;1.13(3)} 1.18(3)| 17.28(3)|17.69(3)|16.96(3)]17.35(3){ 3.06(4) N.wmva 5.76(4)}3.42(4)
500 1.09(3) |0.985(3)] 0.93(3)] 0.97{3)! 14.87(3)|15.10(3){14.11(3)]14.65(3)] 2.50(4)| 2.42C4)| 4.26(4)|2.70(4)
1000 0.55(3) 10.52(3) {0.50(3)|] 0.51(3){ 9.10(3){ 9.22(3) m.quwv 8.97(3)] 1.28(4)] 1.23(4)} 1.80(4)}1.35(4)
1 Born approximation, Bell et al (1968, 1969)
II Present work:- 2 state approximation for me excitation
. 3 state approximation for me excitation
4 state appreximation for wwc excitation
IIT Present work:—- 7 state approximation (not including transitions viathe Nwm levels)
Iv Present work:— 9 state MvwnoxMSNnmoa (including transitionsvia the Nwm level)



ats alp “ 3
Erergy (keV) I I1 111 v I II 11X Iv I II i 11X i
se 14.50(3) - 10.70(3) - 5.65(2)] 4.47(2)| 1.22(2) - mm,uoﬂb% m..mwﬁww 8.85(4) -
100 8.58(3){16.25(3)f 10.14(3)p1.51(3) 4.99(2)| 4.45(2)} 2.42(2)| 3.66(2) {16.40(4)|15.53(4)|10.53(4)| 51.44(4)
200 4.68(3)13.91(3)] 6.40(3)}5.84(3)} 3.76(2)| 3.56(2)} 2.75{(2)] 3.33(2) 9.90(4) 9.59(4)| 8.18(4)} 26-.94(4)
3co 3.21(3)} 2.82(3)| 4.40(3)}3.73(3){ 3.04(2)| 2.90(2)| 2.53(2)| 2.84(2) | 7.05(4)| 6.86(4)| 6,18(4)|15.92(4)
400 2.44(3)}2.290(3) 3.25(3)}2.69(3)] 2.57(2)] 2.50(2) N.N@ANV..N.awanv 5.45(4)] 5.34(%) 4.88(4)| 10.61(4)
500 w.cuﬂuv.w.NWva .2.55(3)}2.08(3) .N.N&Amv 2.16(2)] 2.05(2)] 2.10(2) | 4.45@4)] 4.31(4) 4.00(4)! 7.80(4)
1000 1.00¢3)} 0.94(3) 1.18(3)§0.96(3)] 1.41(2)}f 1.39(2) ﬂruqnny 1.39(2) N.uOon. 2.27(4)] 2.11(4)] 3.07(4)
1 wonl.ﬁvvnoxmsmnwon. Bell et al (1968, 1969)
IT1 Present work:- 2 state approximation for uwm excitation
state approximation for www excitation
state approximation for 3'D excitation
III Present work:— 7 state approximation (not inclufling transitionsvia the alp levels)
1V Present work:— 9 stdte approximation (including transitions via the NHM level)

The number in round brackets (n) represents the power of ten by which the entry should be divided




Positron=Helium Lxcitution Clono waciia. e
3ls 3'p 31p
Energy(ev) I II I 1I I II
100 %,21(3)  6.49(3) 36.9%(3) 27.55(3) 10.27(4) B.5(k)
200 2.35(3) 3.4 (3) 26.4 (3) 23.68(3) 5 75(4) 5.15(%)
300 1.64(3) 2.28(3) 20.63(3) 19.58(3) 3.¢ ‘a) 3.67(k)
400 - " 1.66(3) - 16.86(3) - 2.83()
506 1.02(3) 1.3 (3) 1%.82(3) 14.62(3) 2.-/{%) 2.29(4)
1000 526(3) 0.61(3) 8.96(3) 9.175(3) 258 1.19(k)
I present work: Two-state aporoximation for 3:3 axeltetion

II

present work:

Three~-state approximation fov 31P

exelostion
Four-state approximation for 3'J excitation

Seven-state approxismztion

Tne number in round brackets (2) represzass

the power of ten by which the .atr - s7:.ld

be divided,



FIGURE CAPTIONS

Fig., 6.1 Elastic scattering of electrons by Ii atoms.
———— Present work (method PW.3)

e — Present work (method Ip.2)

Ay s Glauber approximation (Walters 1973)

) Experiment (Williams et 21 1976)

— e O— Born approximgtion.

Fig 6.2 - $-2P excitation

AAADA A Experiment (Zepesochnyi et al 1975)

DD O Experiment (Williams et al 1976)

IT11 Experiment (Leep and Gallagher 1974)

® © 6 o DWPO II ( Kennedy et al 1976)
other symbols are as in Pig. 6.1

Figﬁ 6.3 Elgstic scattering of electrons by Na atoms.

AS in Mg. 6.1

Pig, 6.4 e—-Na 3s8=3p excitation

-------- Experiment (Zapesochnyi et al 1975)

AAAA Experiment (Enemark and Gallagher 1972)

® 00 9 DWPO II (Kennedy et al 1976)
other symbols are as in Fig. 6.1

Pig 6.5 Differential cross sections for the elastic
scattering of (=2)10 ev, (b) 20 ev, (ec) 25 ev
(4)50 ev electrons from lithium.

—_— Present work (method PW.3)

——— Present work (method IP.2)

A AAA Experiment (Williams et al 1976)

+ + 4+ Glauber approximation at llev and 54.4 ev

(Walters 1973)



The points at 0%n the GA calculations are in fact not
at 0° y8ince at this angle the Glauber approximation is known

to diverge for elastic scattering. They are at 1.3° for the
elastic e~li scattering and 2° and 1.4° at 11 énd 54.4 ev
respectively, for e-~Li excitation. For the elastic e-Na
scattering ,they are 2.6° and 1.34° at 11 and 54,4 ev
respectively and 2,3° and 0.55° at 11 and 54.4 ev for the

e-~ Na excitation.

Fig. 6.6 Differential cross sections for the 22P excitation

of lithium by
(a)10 ev, (b)20 ev,(c) 25 ev, (d)50 ev electrons. .

® ®© 00 DWPO II at 12 ev, 22 ev and 54,4 ev (Kennedy
et al 1976)

other symbols are as in Pig. 6.5

Fig., 6.7 Differential cross sections for the elastic
scattering of (a) 10 ev, (b) 15 ev,
(¢)20 ev, (4)25 ev, (e) 50 ev electrons from Na .

AAAA Experiment (Gehenn and Reichert 1972)

other symbols are as in Fig, 6.5

Fig. 6.0 Differential cross sectiong for the 32P
excitation of sodium hy
(a)lvev, (b)20ev, (c)25ev, (d)50ev electrons.
© 00 @ DWPO II at 12 ev,2? ev and 54.4 ev (Kennedy
et al 1976)
AAAA Exrperiment (shuttleworth et 2l 1977 )

other symbols are as in PFig. 6.5



Fig. 6.9

20006

——Q v——— ) ——

G mmme  cmee  m—

06 6
AAA A

Fig, 6.11

K X X

Fig, 6.12

Percentage polarizations of the resonance

line 2p-2s emitted from 6Li by electron impact,.

DWPO II (Kennedy et al 1976)
Present work (method PW.3)

Experiment (Leep and Gallagher 1974)

Glauber spproximation (Bripathi et al 1973b)

Present work (method IP.2)

Percentage polarizations of the resonance line
3p~3s emitted from Na by electron impact.
Experiment (Enemark and Gsllagher 1972)

Experiment (Gould 1970, quoted in Enemark and
Gallagher)

other symbols are as in Fig. 6.9

The parameter N for Li

(a)50 ev, (b) 25 ev , (e¢) 10 ev

Present work (method PW.3)

fvro
DWPO II (Xer

The parameter N\ for Na

(a) 50 ev, (b) 25 ev, (e¢) 10 ev

symbols are as in Pig. 6.11



Piges 6,13

Figo 6,15

6,16

i
o

Tig. Tol

e ™ o e e

St 0 s O wresttes § e

S Y 1

AAA A

The parameter X= Re<:a0a£>/q for Li
(a) 10 ev , (b) 25 ev , (e¢) 50 ev

Present work (method PW.3)
DWPO II (Kennedy 1976)_

The parameter X= Re<<aoaf>/0- for Na
(a) 10 ev ,(b) 25 ev , (c) 50 ev

symbols are as in Pig., 6,13

The XY= Im<<a°g:s/0- narameter for ILi
(a)10 ev

symbels are as in Pig., 6.13

The y = Im<a a;>/q parameter for Na
{a) 10 ev , (b) 25 ev , (c) 50 ev

symbols are as in Fig. 6.13

Excitation cross sections of the level 318 of
helium by electron impact, (QV2 Vergus gnergy), -
Q is the total .cross section in-n-a.o

and V is the velocity in a. u.

Present work (9-state method)

Born approximation (Bell et al 1969) .
F10 (Flannery snd McCenn 1975)

DWPO (S.cott and McDowell 1975)

SOD (Baye aﬁd Heenen 1974)

Experiment (Moussa et al 1969)



Fig. 7.2
e [ (e
2 [a) (o)

* +

b b b
me o T

Fig. 7.3

cwynes 3 4 ccacarem 8 9rwmens

Excitation cross section of the level 31P of

helium by electron impact -

S0D (Paye and Heenen 197%4)

Born epproximation (Beli et al 3969)
experiment (Donaldson et al 1972)
experiment (de Jongh and Van Eck 1971)

Glavber approximation (Chan and Chen 1974)

hor gymbols are as in Fig. 7.1

Bxcitation cross section of trhe level 31D
of helium by electron impact .

Glauber approximation (Chan and Chang 1975)

cther symbols are as in Fig, 7.1

Excitation cross section of the 318 level of

helium by prcton impact »

present work (9-state method)

30D (Baye and Heenen 1973c)

Born approximation (3ell et at 1968)
experiment (Scharmann and Schartner 1969a)

experiment (Van Len Bos et al 1968)

helium by proton impzct.

experiment (Hipoler and Schartner 1974)

other symbols are as in Fig. 7.4



Fig, 7.6

Fig. 7.7

T Sty s/ # ot

Execitaticn cross section of the 31D level of

helium by proton impscht

symbols are as in Fig. 7.4

Excitation differential cross section of the
313 level of helium by electron impact at

(a) 200 ev, (b) 300 ev, (c) 500 ev

present work (9-state method) .

#10 (Flanonery and McCann 1975)

Zyecitation differential cross section of the
.]
3'F level of helium by electron impact at

(2) 200 ev, (b) 300 ev, (c) 500 ev

experiment (Lassettre et al 120k)

other symbols are as in Fig. 7.7

$-_|_j

b
'
~J
O

el A L

s
»
Q
-
ct
[\
cr
I-.J
G
S
2

ifferential cross section of the
D level of helium by electron impact at

3
(a) 200 ev, (b) 300 ev, (c) 500 ev
b

Polarization fractions of the line 3 P-2's
emitted from helium by electron impact -
prezent work (9~-state method)

30D (Baye and Heenen 197k)

Glauber approximation (Chan and Chen 1974)

1

=
o

(Flamnery and McCann 1975)
experiment (Moussa et al 1969)

experimeuat (Van Raan et al 1971)



Pig. 7-11

1

Polarization fractions of the line 3 'D-2'p

emitted from helium by electron impact .

Glauber approximation (Chan and Chang 1975)

other symbols are as in Fig. 7.10

mmrvarm ) A Sswmeen g g veTeTe

other symbols are as in Fig.

Polarization fractions of the line 3'p-2'S

emitted from helium by proton imgact .

present work (9-state method)

50D (Baye and Heenen 1973c)

inpact parameter (Van Den Bos 1969b)
Born approximation (Van Den Bos 1969a)
experiment (Scharmaun and Schartner 1967)

experiment (Van Den Bos 1968)

Polarization fracticns of the line 319-21P

D

mitted from helium by proton impact ,

<

experiment (Scharmaun and Schartner 1969b)

.12
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