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ABSTRACT 

The interactions o£ some aromatic nitro-compounds with nucleophiles in 

protic solvents and in protic-dipolar .aprotic solvent mixtures have been 

investigated using the techniques of proton magnetic resonance and visible 

spectroscopy and stopped-flow spectrophotometry. 

The rates of reaction (nucleophilic reactivities) of a series of 

substituted thiophenoxide ions 11rith l-chloro-2,tl-dinitrobenzene in 95/5 (v/v) 

ethanol-~ater, determined by a stopped-=low spectrophotometric method, 

correlate better with their carbon basicities than with their proton basicities. 

In met.hanol 4-methoxy-3,5-dinitrobenzaldehyde is in equilibrium with its 

hemiacetal formed by solvent addition to the carbonyl function of the 

aldehyde group, the equilibrium constant for hemiacetal formation c~ 8) 

being obtained from p.m.r. measurements. In the presence of methoxicie ions 

1-ieisenheimer complex forn1ation obcur.s by base· addition to the parent aldehyde. 

Kinetic and equilibrium data are reported for complex formation in methanol. 

In dimethyl sulphoxide there is straightforward formation of Meisenheimer 

complex. 

The formation of 1:2 adducts f~·om 1-X-2, 4, 6-tr ini trobenzenes (X = m·ie, 

OH, NH
2

, NHMe, NMe
2

) and sodium sulphite in \.,.ater is characterised by only 

one relaxation time. P.m.r. measurements also indicate the existence of 

one isomer of the 1:2 adduct at equilibrium. Hm.,rever when X = H such 

measurements reveal the presence of both ~is- and trans-isomers. 

Ring-activated glycol ethers cyclise in the. presence of aqueous base to 

give spiro-complexes. Equilibrium and kinetic parameters for complex formation 

and decomposition are much higher than the corresponding values for their non-

cyclic analogues. The spiro-complexes derived from 1-(2-hydroxyethoxy)-2,4,6-

trinitrobenzene and -2,4-dinitro~aphthalene undergo general acid catalysed 

decomposition. On going from spiro-complexes which contain 5- to those which 

contain 6- and 7-membered dioxolan rings there is a dramatic decrease in complex 

stability. 



Equilibrium and kinetic data have been obtained for the spiro-complex 

derived from 1-(2-mercaptothioethoxy)-2,4,6-trinitrobenzene and are compared 

with data for the corresponding di-oxy complex. P.m.r. spectroscopic and 

stopped-flow spectrophotometric evidence has been obtained for the cyclisatton 

in basic media of 1-(2-hydroxythioethoxy)-2,4,6-trinitrobenzene which 

subsequently decomposes to picrate and ethylene sulphide. 
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CHAPTER 1 

A SURVEY OF '!'HE INTERACTION OF ELECTRON-DEFICIEJ.i1' 1\ROI<lA'l'ICS WITH BASES 

GENERAL INTRODUCTION 

The production of brightly coloured solutions by electron-deficient aromatics 

1 in basic media was noticed as early as 1882. It was the work of Jackson and 

2 
Gazzola in 1900 which resulted in the postulation of the quinoid structure (1.1) 

N0
2 

( 1. 1) 

OR 

( 1. 2) 

for the products obtained from the reaction of picryl ethers "lith alkoxide ions. 
' 

Shortly afterwards chemical evidence for this was presented by Meisenheirner
3 

when he obtained the sams product from reaction of 2,4,6-trinitroanisole with 

potassium ethoxide and 2,4,6-trinitrophenetole with potassium methoxide. Thus 

the possible alternatjxes of addition at a nitro group or at. an unsubstitut.ed 

ring carbon atom to give (1.2) were discounted. 

Considerable evidence has been advanced over recent years in support of the 

original assignment though it is often now represented as (1.3) with the negative 

charge delocalised. 

I 

' N0
2 

( 1. 3) 

However the nitro group para to the site of addition, as 

will be seen later, has been shown to be important with respect to charge 

delocalisation. 
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Since the early work of Jackson and Gaz~olo, 'Meisenheimer complexes', or 

a-complexes as they are nm.,r generally known, have been the subjec·t of intensive 

research especially over the last ten-fifteen years. Aspects such as structure, 

stability and their role as intermediates in nucleophilic aromatic substitution 

reactions have been widely studied. Thus a wealth of literature no\.,r exists on 

4-10 the subject and a number of excellent revie\·ls have been \"lritten. It is 

therefore unnecessary to give a comprehensive survey of t.he literature in this 

introduction. However salient features and points of interest in the field will 

be mentioned. The discussion will be divided into t\"IO main sections: st:ructural 

investigations and adcluct stability. 

Before beginning, pe.rhaps a brief mention should be made of other possible 

interactions, 5 apart from a-complex formation, of activated aromatic compounds 

\'1 i ti1 bases. One possibility is either partial electron transfer from the base 

to the aromatic nucleus giving a "IT-complex ( 1. 4) (sometimes referred to as a 
l 

11 
'charge-transfer' complex ) or complete transfer of an electron giving a radical 

:!3 

( 1.4) 

N0
2 

( 1. 5) 

.:. 

anion ( 1. 5) • Alternatively proton abstraction from the ring may occur yielding 

an aryl carbanion (1.6) or from the side chain as in 2,4,6-trinitrotoluene or 

.N0
2 

( 1.6) 

N0
2 

( 1. 7) 

2,4,6-trinitroaniline giving anions (1.7) and (1.8). 

NH 

N0
2 

( 1. 8) 

12,13 
However evidence suggests 
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that the concentrations of species (1.4), (1.5) and (1.6) are small compared \·lith 

the concentration of complex (1.3). 

Nucleophilic aromatic substitution will occur if the parent compound 

contains a labile substituent, such as a halogen. Many studies have been made 

. 14-19 
and the subject has been extensively revJ.e\·led. It has been clearly 

established that substitutions in suitably activated aromatic substrates proceed 

14,15 
via a two-stage addition-elimination mechanism involving a discrete intermediate 

(1.9) as opposed to a synchronous SN2-type mechanism involving a transition 

' N0
2 

N02 

{ 1. 9) ( 1. 10) 

( 
1 ) \ • 20-22 state ... 10 where aromaticity in the ring is retaJ.ned. 

The existence of the two-step mechanism has been demonstrated in the reaction 

H 
X R -~/ X 

2 

{: N0
2 k1 

' + 
R

2
NH + k_1 + X + BH 

I [B] 
I li I 

N0
2 

N6
2 

N0
2 

(1.11) 

of 1-X-2,4-dinitrobenzenes with secondary amines. Evidence in support of the 

above scheme is as follo~r1s: 

(i) For a series of substituents (X= Cl, Br, so2Ph, oc6H4No2 (~)) the observed 

15 
rates are all within a factor of five of one another. This cannot be 

rationalised by a one-step mechanism but can be explained in terms of the two 

stage mer.~ansim if k~>>k 
1

. 
L. -

(ii) General base catalysis is often observed especially in the case where 

X=F (poor leaving group) • Removal of the amino proton from (1.11) renders it 
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more likely to decompose to products rather than revert to reactants since R2N 

is a poorer leaving group than R2NH. 
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STRUC'I'URAL STUDIES OF MEISENHEH1ER COIIIPL~-;XES 

Experimental techniques 

Several spectroscopic and crystallographic techniques have been used in the 

study of anionic a-complexes. 

The infrared spectra of the crystalline salts obtained from 2,4,6-trinitro

anl.sole and various alkoxides \'lere extensively studied by Foster and Hammick
23 

24 and later by Dyall. The spectra indicated a lm-tering of the N-O stretching 

frequencies and this is consistent with increased negat.ive charge on the nitro 

groups. Also bands were observed, not present in the spectra of the parent 

25 ethers, which corresponded with the spectra of ketals, as \'lould be expected 

from the fully covalent structure (1.3) but not from the charge-transfer comp;tex 

( l. 4) • 

As a result of the intense colours produced by nitro-aromatics in basic 

solution, visible spectroscopy hats proved a useful and convenient t.ool. in both 

kinetic and equilibrium measurements. Foster26 obtained the visible spectrum 

of the product from potassium methoxide and. 2,4,6-trinitrophenetole. The same 

spectrum was produced from 2,4,6-trinitroanisole and potassium ethoxide. This 

. 26 27 result was used as ev1dence ' for the presence of the same species. However, 

t . t d. 28 1 t 1 d h t th . .. 1 t f . t f" more ex ensJ.ve s u J.es a er revea e t a · e V1S10 e sper..: ra o a va:r.1e y o_ 

dialkoxy complexes (1.3; R = R' and R ~ R') have virtually identical spectra 

with two maxima in the 400-800 nm region. 

29-31 32 Crystallographic studies by Destro and Ueda independently have been 

more conclusive. Using picryl ether-alkoxide complexes (1.3; R = R' =Me, 

R = R' = Et) they showed that alkoxy groups in the complex were equivalent and 

that the Ro-c1-oR' plane is orthogonal to the benzene ring. 

0 angle was found to be 109 , very close to the tetrahedral bond angle required 

for sp3 h~bridisation. Despite this, the benzene ring was very nearly planar. 

In addition, the measurements revealed that the c4-N bond distance is 

significantly shorter than the c
1

-N and c
6

-N bond lengths, indicating that most 
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of the negative charge resides on the nitro group para tc:) the site of alkoxide 

group addition. Thus Meisenheimer's original postulation of (1.1) is possibly 

a close representation of the charge distribution. 

Perhaps the most convincing spectroscopic technique which has been used in 

the study of l\1eisenheimer complexes is n.m.r. spectroscopy. Ever since Crampton 

and Gold
33 

obtained the 
1
H n.m.r. (p.m.r.) spectra of solutions of 2,4,6-

trinitroanisole and 1,3,5-trinitrobenzene with potassium methoxide, the 

technique has been extensively used to provide the most di:n:!ct and often 

unanmiguous evidence for the existence and structure of anicnic a-complexes. 

The remainder of this section will be devoted to some examples of the use 

of spectroscopic methods in the structural studies of activated aromatic 

compounds \.,rith a variety of nucleophiles, most attention being given to 

complexes derived from alk.oxides. 

Complexes derived from oxygen basxs 

(i) Alkoxide ions 

Crampton and Gold
33 

obtained the p.m.r. spectrum of the complex produced 

from 2,4,6-trinitroanisole and potassium methoxide. The parent ether dissolved 

in dimethyl sulphoxide (DMSO) showed ~we bands (relative intensity 2:3) at 69.07 

(ring protons) and 4.07 p.p.m. (methoxyl protons) relative to internal tetra-

methylsilane (Ti•iS). The solid complex dissolved in DMSO again showed two 

bands but shifted upfield from the parent anisole at 68.64 and 3.03 p.p.m. 

(relative intensity 2:6). The singlet due to the methoxyl protons indicates 

their equivalence in the complex and is eviden-ce for structure ( 1. 3; H. = R' = Me) • 

The upfield shift of ring proton bands is generally observed on complexation, 

and would be expected, ~priori, to result from the delocalised negative charge 

in the adduct. However it has been ascribed to a reduction in the ring current 

since the ·electron density in the ring has been shown
34 

to be less in the complex 

"than in the substrate, a conclusion also reached by Destro et a1
31 

from the 

structural parameters of the ethyl picrate-ethoxide complex. More sophisticated 

calculations35 have in fact predicted a negative charge density in the ring. 
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The formation of stable 1,1-dimethoxy-complexes may in some cases be 

preceded by the formation of transient species resulting from addition at 

unsubstituted ring positions. Thus using a concentrated methoxide solution 

. . 36 d . 1n DMSO, Serv1s obtained a spectrum inm~ iately after mix1ng the solutions 

showing new bands (doublets at 60.4 and 6.2 p.p.m. of equal intensity) which 

were evidence for attack at c
3 

to give (1.12; R = R' =Me). With time a 

OR' 

(1.12) 

spectrum resulted corresponding to the 1,1-adduct (1.3; R = R' .,_,Me). These 

37 
observations were substantiated by Foster and l?yfe. ln the light of these 

results, it seems likely that the initial fast reaction observed by Ainscough 

and Caldin
38 

in the reaction of 2,4,6-trinitroanisole with ethoxide ions at low 

temperature, and attributed to 1T-complex formation, resulted from (1.12; R' = 

Me, R = Et). Crampton and Gold found that increasing the proportion of methanol 

. h 1 1 d . 'd . h . 39 
1n t e so vent resu te 1n a more rap1 convers1on to t e c

1 
1.somer. However 

kinetic evidence for (1.12: R = R' =Me) in methanol has been obtained by 

B . 40 . . d fl h d ernascon1. us1.ng a temperature-Jump steppe - 0\•l met o . 

In methanolic solution, changes in the visible spectrum with base 

. 28,41 
concentration were attributed to the formation of h1gher adducts. The two 

maxima at 410 and 490 nm (1:1-complex) were replaced by a single band at 490 nm 

(1:2-complex) as the methoxide concentration was increased. These results were 

f . d b . 42 h h b . d . . h ( 1 13) con 1rme y Serv1.s w en e o ta1ne p.m.r. measurements cons1.stent w1t . . 

MeO OMe 

( 1. 13) 

MeO OMe 

N0
2 

(1.14) 
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A colourless species v1as produced at very high base concentrations which 

. 43 44 was postulated as the tn.-adduct ' (1.14) . The observed changes in the 

spectrum of the 1,1-adduct as the sodium methoxide concentration increases are 

in accord with Abe's calculations.
44 

He predicted that the mono-, di- and tri-

adducts should show two, one and no absorptions respectively in the visible 

region. 

45 
The spiro-Meisenheimer complex (1.15) has been prepared by Murto, and 

n 

(1.15) 

46 
Foster et al showed that it had spectral properties characteristic of 

complexes of the type (1.3). 
46 

Thus the p.m.r. spectrum confirmed the structure 

(1.15) and showed the equivalence of the methylene groups in the dioxol.an ring. 

The interactions of 2,4-dinitro-6X-anisoles anu 2,6-dinitro-4X-anisoles 

(X = OMe, H, Cl, co
2
-, CONH

2
, co

2
Me, CN) with methm:ide ior:. have been 

investigated. Pollitt and Saunders
47 

obtained the visible spectra in methanol 

and dimethylformamide. In general two bands were observed; the band between 

350 and 400 nm was present in the complexes from both types of anisole. The 

adducts from the 2,4-dinitro series had the longer wavelength band in the region 

480-530 nm and it occurred between 535 and 612 nm for the 2,6-dinitro compounds. 

Both series converged to the spectrum shO\·m by complex ( 1. 3; R = R' = t-1e) , and 

thus structures (1.16) and (1.17) were favoured for the adducts. 

( 1. 17) 
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4 48 49 . For the series X = H, R = R' = alkyl, p.m.r. spectroscopy ' ' has confJ.rmed 

the structures suggested by Pollitt and Saunders. Close correspondence 

f th · 'bl 50 
d 

51 •52 
1 d f dd (1 16) (1 17) o - e VJ.SJ. e an p.m.r. spectra ata o a ucts • and • 

with those of the spiro-complexes (1.18) and (1.19) has helped confirm the 

structures. 

n n 
0 0 0 0 

N0
2 

( 1. 18) ( 1. 19) 

51 
It is interesting to note that the p.m.r. spectrum of (1.18) shows an A2B2 

3 pattern for the methylene prot.ons, indicative of the sp hybridisation of c
1 

t 

and the dioxolan and benzene rinl]s being orthogom:.l. 

53-61 
Terrier and cm.;orkers have performed extensive stopped-flow kinetic 

and p.m.r. studies of the reaction of various substituted dinitroanisoles \'lith 

sodium methoxide. h · h d 1 d55 h bl T us usJ.ng t e steppe -f ow metho t e).' \vere a e to 

obtain the initial spectra of methoxide adducts of ~-X-2,6-dinitroanisoles in 

methanol-DHSO mixtures \"lhich were consistent with ( 1. 20) • 'l'!te spectrum rap.i.O.ly 

OMe 

H 

OMe 

X 

( 1. 20) (1.21) 

changed to that of the thermodynamically stable adduct (1.21). The rates of 

conversion of (1.20) to (1.21) depended on X and the solvent composition. 

Complex (1.20) appeared to be the most stable with X - so
2
cF3• 

59 
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In the case of 2-X-4,6-dinitroanisoles, the initial formation of (1.22) 

and (1.23) has been observed;
57

•
58

'
60 

the adduct resulting from addition at the 

3-position, (1.23), being the more stable. For X = Cl, ( 1. 22) \ ... as observed in 

. 60 
a DMSO-methanol solvent mixture containing >85% DMSO. 

and 

and 

OMe 

I 
N0

2 

(1.22) 

v. . bl 34' 4 7' 62 1.s1. e 

1.24; X = CN) 

1. 23; X CN) 

OMe 
X 

H 

OMe 
I 

N0
2 

( 1. :B) 

and p.m.r. 
34,62 

spectra, consistent with 

have been obtained. The prior formation 

in methanolic DMSO has been detected 
63,64 

MeO OMe 

( 1. 24) 

adducts ( 1. 21 

of adducts (1.20 

and in the case 

of 2-cyano-4,6-dinitroanisole, Terrier
54 

has found both 1,3- (1.23) and 1,5-

adducts (1.22). 

Using the isomeric dicyanonitroanisoles, Fendler ~t a1~ 5 
have established 

the structures (1.25) and (1.26) for methoxide addition. The initial formation 

NC 

N0
2 

( 1. 25) 

OMe 

CN 

( 1. 27) 

MeO OMe 

( 1. 26) 

OMe 

( 1. 28) 

of the 1,3-complex (1.27) was observed by p.m.r. spectroscopy of solutions in 

DMSO and also by calorimetric studies. However the isomer (1.28) was not 

detected. The 1.,1-dimethoxy-complex of the tricyano derivative has been 
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1,3,5-Trinitrobenzene gives a red solution in methanolic sodium methoxide, 

13,41 . 
the visible spectrum beJ..ng similar to that of complex (1.3; R = R' =Me). 

33,37 
The p.m.r. spectrum of the adduct (1.29) in DMSO showed two sets of bands 

N0
2 

( 1. 29) 

at 58.4 and 6.1 p.p.m.: the position of the high field band (triplet~ J = 1.5 

Hz), corresponding to the ring proton at the site of addition, is compatible 

? 3 
with a change in hybridisation from sp- to sp of the ring carbon. 

Adducts from 1-X-3,5-dinitnobenzenes have received some attention. Pollitt 

and Saunders
67 

collected visible spectral data for a series of substituents 

(X = NMe
2

, OMe, Cl, co
2 

, co
2
Me, CN, CONH 2). The spectra showed two maxima 

(351-392 and 498-594 nm depending on X) ·and it was originally suggested that 

each band was a contribution from (1.30) and (1.31). 

( 1. 30) 

HO\·lever comparison with 

N0
2 

(1.31) 

the spectrum of complex (1.29) did not support this. 

68 
Foster and Foreman obtained conclusive n.m.r. evidence in DMSO solution 

for methoxide addition at c
2 

to give (i.30; X= CN, CF
3
). Using stopped-flow 

spectrophotometry, 'I'errier et a1
69 

found that in methanol-DMSO solution 

containing >35% DMSO, (1.31; X = CN) was formed rapidly and slowly isomerised 

to ( 1. 30) • 
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With X = co2t-1e, 
70 

methoxide ions appeared to show very little 

discrimination for the three unsubstituted ring positions, the equilibrium 

mixture of isomers baing ca. 7:3 in DMSO-rich media. Comparison with the 

spectral changes observed with sulphite and acetonate ions as nucleophiles 

indicated that 

Recently, 

methoxide ions attacked at c
4 

initially prior to equilibrium. 

71 
Fyfe et al have developed a rapid-flow n.m.r. technique and 

used it to observe the methoxide adducts produced by 1-cyano-3,5-dinitrobenzene 

in methanolic DMSO. Adduct (1.30; X= CN) appeared to be the thermodynamically 

stable species, from spectra recorded on a stationary solution. Using flowing 

solutions bands were observed which corresponded to both c2- and c4-adducts. 

A limiting flow rate was achieved \<lhen there were approx_imately equal 

concentrations of adducts (1.30 and 1.31; X= CN) suggesting that methoxide 

ions showed little kinetic preference for the ring p0sitlons. As a result of 

these findings, it seems likely that mixtures of isomers may be produced 
( 

69,70,72 
initially prior to rearrangement to the thermodynamically stable c2-adduct. 

The initial interaction of picramide with base can result in two 

possibilities, eitl1er proton loss from ~he amino group or complex formation. 

73 
The conjugate base (1.32) was suggested by Green and Rowe and (1.33) was 

No
2 

( 1. 32) (1.33) ( 1. 34) 

postulated as the structure of the product of the interaction. 74 '
75 Gold and 

76 
Rochester found evidence in a visible spectroscopic study, in the case of 

picramide, for both adduct formation and proton loss and concluded that tfie 

adduct was in fact (1.34; R' = R" = H, R =Me). In the case of N,N-dimethyl-

picramide, where proton transfer is unlikely, there was evidence for the 
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formation of the adduct ( 1. 34; R • = R" = R = ~1e) and also for a d:l-adduct 

(1.35; R' == R" =Me). 

NR'R" 

N0
2 

( 1. 35) 

I 

N0
2 

( 1. 36) 

H 

OR 

The proportion of conjugate base formed appears to increase in the series 

picramide < N-methylpicramide < N-phenylpicramide. In some cases addition to 

the conjugate base has been observed at higher methoxide concentrations to give 

(1.36; R =Me, R' =Ph). These findings have been well substantitated by 

36 39 42 48 77 
p.m.r. measurements. ' ' ' ' 

For dinitroanilines the dominant interaction 
39 

appears .to be proton loss. 

In contrast to the observations on simple picramides, the existence of 

0-COmpleXeS ( 1. 37) bonded at C
1 1 derived from the interaction Of 21 6-dinitro-4-X-

78 79 anilinopropionamides and potassium methoxide in methanol, has been reported. ' 

The relatively stable neutral complex (1.38) was isolated. It was postulated 

ivleO 
TH3 

HNCH-C-NHMe 
~ 

I 
I 
I 

/N'02 0 

( 1. 37) 

MeO 

+I 
N 

CH 3 I 
HNCH-C-NHl.lle 

~ 
NO "'o 

2 

-/' 0 OH 

( 1. 38) 

that hydrogen bonding occurred between the amido group and an ortho nitro group 

in the conformation adopted by the complex. Alkylation of the amido group 

removed any possibility of hydrogen bondir.g and amino proton loss resulted. 

Alkylation of the amino group caused complexation to occur at the 3-position, 
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steric effects preventing 1,1-complex formation. 

1,1 a-Complexes involving amines have been isolated and their stabilities 

. . d 80-82 l.nvestJ.gate . N-2-hyd:::-oxyethyl-N-methyl-2,4-dinitroaniline and related 

compounds in basic solutions cyclise to give comples (1.39) and (1.40). The 

ammonilm1 salts of 2- (methylamine) ethylnitroaryl ethers could be trapped out by 

acidification of (1.39) under controlled conditions since aryl ethers of this 

n 
0 N-Me 

N0
2 

N0
2 

( 1. 39) ( 1. 40) 

type readily rearrange to arylamines. 

83,84 t 
More recently n.m.r. spec'Lroscopic evidence has been presented for 

the existence of 1,1-complexes derived from 1-sec-amino-2,4-dinitronaphthalenes 

and sodium ethoxide. They are preceded by formation of the less stable 1,3-

adducts. 

A number of Meisenheimer-type adducts from a variety of activated aromatics 

have been isolated and their structur~s elucidated by n.m.r. spe~trosr.npy. 

N0
2 

(1.41) 

N0
2 

(1.42) 

Foster et a149 have confirmed structures ( 1. 41) and ( 1. 42) , ( 1. 4fl) having 

originally being prepared and its structure suggested by Meisenheimer.
3 
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0 

OMe 

OMe 
X 

(1.43) ( 1. 44) (1.45) 

C 1 (1 43) f ub t . d t h b · db Pl.'etra85 (X -- LJ) amp exes . rem s s 1.tute ropones ave een ass1.gne y rc 

86 
and Abe (X = N0

2
) . With 2-chlorotropone, Pietra

87 obs~rved initial attack 

at an unsubstituted ring postion (C7) to give (1.44) before the substitution of 

the chlorine. 3-X-1-nitroazulenes
88 

(X electron withdrawing group) form 

a-complexes with methoxide in methanol. When X = No
2 

the adduct (1.45) is 

formed. In contrast, when X CF 3Co addition of base at the carbonyl group 

occurs. 

Considerable interest has been shown recently in adducts formed from 
t 

activated heterocyclic aromatics with bases and their role as int;:!rmediates in 

nucleophilic heteroaromatic substitution. The aza group has a similar 

. . f . b . h . 11 d d' 89 
act1.vat1.ng e.fect to the n1.tro group ut l.S somew at less ster1ca y eman 1ng. 

Consequently a number of adducts from substituted nitro-pyridines and -pyrimidines 

have been reported. 

Some t\-Jenty years ago, Mariella
90 

observed colol.J:!:ed sc..lutionG produced in 

nucleophilic substitution reactions by chloronitropyridines with sodium methoxide. 

91 
Fyfe obtained p.m.r. and visible spectroscopic evidence for the 3,5-dinitro-

pyridine-methoxide adduct in DMSO solutions. The visible spectrum of the 

( 1. 46) ( 1. 4 7) 

complex shm-1s a band at ca. 487 nm and the bands at o9. 73 and 9.14 p.p.m. in 
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the p.m.r. spectrum of the parent heterocycle were rep;Laced by bands of equal 

intensity at o0.G2, 8.30 and 6.08 p.p.m. on addition of sodium methoxide. Fyfe 

found no evidence for the formation of adduct (1.47). However this isomer 

9'2 
\'las later identified by Miller et al \'lho also confirmed Fyfe' s assignment of 

the c2-adduct (1. 46) . 

MeO 

0 N ... 
2 

OMe 

( 1 .48) 

OMe 

(1.49) ( 1. 50) 

(-1.51~ (1.52) 

Meisenheimer complexes from the pyridine analogues of 2,4,6-trinitro-

anisole have been characterised. Thus the crystalline solid adduct (1.48) 

. . 62 93 
has been isolated and spectral data obta1ned. ' The kinetically favoured 

94 . 
methine adduct (1.49) has been detected by p.m.r. measurements 1n methanol-

DMSO solutions and by stopped-flow spectrophotometry
95 

in n.ethanol and 

methanolic DMSO prior to its isomerisation to the thermodynamically stable adduct 

( 1. 48) . With 2-methoxy~3,5-dinitropyridine only one species (1.52) was 

b d94 I 96 • h • d f • h ( 1 5 ) ( 1 51) o serve w1t no ev1 ence o e1t er . 0 or • . 

97 
have also been performed. 

Studies on pyrimidines 

Recent interest has been shown in complexes derived from suitably activated 

5-membered ring heterocycles. 

(1.53) 

98 
Thus Illuminati et al have prepared complex 

0 N·' 
2 

( 1. 54) 

OMe 

y 

(1.55) 
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( 1. 54 J X = S, Y = OMe) from 2-methoxy- 3, 5-dini trothiophene, ( 1. 53; X = s, 

Y = OMe) in methanolic sodium methoxide. 3,5-Dinitrothiophene99 (1.53; X s, 

Y =H) is reported to give complex (1.54; X= s, Y =H) rather than (1.55; 

X S, Y = H). This conclusion was reached by use of the 2-deuterated 

compound. However a later investigation by Terrier
100 

revealed that deuterium 

exchange at the 2-position is rapid and that substrates ( 1. 53; Y = D) could· not 

be used to determine struc·tures with any certainty. But Illuminati's 

postulation of ( 1. 54) for the adduct \otas supported by using the c4-deuterated 

100 
compound where isotopic exchange was found to be slm1. · The complex produced 

from 3,5-dinitroselenophene proved to be (1.54; X= Se, Y =H) on the basis 

of the magnitude of the J77 
Se-H 

100 
coupling constant. The substrate (1.56; 

(1. 56) (1.57) 

~ = No2 , Y = CN) gave adduct (1.57; X = N02 , Y = CN) with methoxide in both 

. h d. 101 . h 1 102 
DMSO-r~c me ~a and ~n met ano . However (1.56; X = CN, Y = N02) gave 

(1.57; X = CN, Y = N02) in DMSO but was found to undergo methoxide addition at 

102 the cyano function in methanol, 

3-nitrothiophenes (1.56; X = No
2

, Y 

103 A recent report indicates that 2- and 

H and X = H, Y = N02) give complexes 

(1.57; X = N02 , Y = H and X = H, Y = N02) with methoxide in DMSO and are 

believed to represent the first example~ of mono-nitro compounds containing 

no other activating groups w1lich give Meisenheimer--type adducts. 

(ii) Hydroxide ions 

The fairly rapid formation of substitution products has resulted in 

hydroxide ions being used less extensively than alkoxides in the study of 

Meisenheimer complexes. 1 2 4 6 . - 1 104 d. 1 . For examp e , , -trin~troan~so e rea ~ y g~ves 

picrate ions in aqueous alkaline solution. It seems likely that the reaction 
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proceeds via an intermediate of the type (1.58; X= OMe) although there is no 

N0
2 

(1.58) 

X 

N0
2 

(1.59) 

evidence for the build up of such an intermediate in \.,ater. However utilising 

recently developed rapid mixing and recording techniques, adducts derived from 

hydroxide ions have been detected and studied. 
105 

Gaboriaud and Schaal, using 

a stopped-flow technique, investigated a series of 1-X-2,4,6-trinitrobenzenes 

in fairly concentrated sodium hydroxide solutions. They obtained the visible 

spectra of transient species and assigned them to structure (1.58; X= H, Cl, 

OMe) . 
106 107 

However later work by Bowden and Cook and Crampton et al seems 
t 

to indicate that the observable intermediate is (1.59). The possibility of a 

di-adduct formed by hydroxide addftion at two unsubstituted ring positions 

cannot be excluded. When X= No
2

108 
a_comparatively stable adduct of type 

(1.59) is formed. Decomposition of the substrate to give picrate (t~ ca. 

2 min. at pH 10) presumably occurs by direct displacement involving the 

intermediate (1.58; X = N0
2
). 

1091 110 
fo.lore recently Abe and Hasegawa have used a rapid scan recording 

technique to observe the visible spectra at various times shortly after mixing 

of a series of 1-X-2,4-dinitrobenzenes (X= H, OMe, Cl, F, 0C
6

H
5

, oc6H4No2 (~), 

co
2
-, SCN) in aqueous DMSO containing sodium hydroxide. Two species were 

X X HO X 

H 

OH HO 
I 

N0
2 

( 1. 60) ( 1.61) ( 1.62) 
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were observed, the first having A between 565 and 6!;)0 nm and consistent: with 
max 

(1.60), the second with A 480-550 nm is consistent with either (1.61) or 
max 

(1.62) since both contain the 1,3-dinitropentadienyl lT-ele.::tron system. 

Except for X H, the final spectrum corresponded to that of the 2,4-dinitro-

phenoxide ion. 

Complexes derived from carbon bases 

The intense purple-coloured solution produced by 1,3-dinitrobenzene in 

alkaline acetone was first noted by Janovsky and Erb
111 

in 1886. Since then 

large numbers of compounds containing active methylene groups have been 

observed to give coloured solutions with nitro-aromatics in basic media. Now 

generally known as the Janovsky reaction it has been widely applied as a test 

for such groups. 

N0
2 

·(1.63) 

t 

( 1. 64) 

O=C-CH 3 I 
CII 

I 

(1.65) 

112 
Canback originally suggested (1.63) as being the adduct on the basis of the 

electronic spectrum. 
67 

He \'las later supported by Pollitt and Saunders. Foster 

49 
and Fyfe in a p.m.r. study confirmed (1.63) and could not detect any of the 

isomer ( 1. 64) • h 1 3 . b 113 . f th T e presence of excess , -din1tro enzene g1ves ur er 

reaction. 114 ( . 5) d Thus the final colour produced results from the anion 1.6 forme 

from the oxidation of the initially formed Janovsky complex by the excess 

dinitrobenzene. 

With an electron-withdrawing substituent, X, at the 5-position of 1,3-

dinitrobenzene there is the possibility of the nucleophile attacking at either 

the 2- or the 4-position. Hence the two maxima observed
61 

in the visible 
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spectra of adducts from (1.66) in alkaline acetone have been attributed to 

X 

( 1. 66) (1.67) ( 1. 68) 

addition at the 2-position (1.67) (shorter wavelength band) and the 4-position 

(1.68) (~_onger wavelength band). A substituent at either the 2- or 4- and 6-

67 
positions resulted in only a single band. 

Conclusive spectroscopic evidence for the carbanion adduct from 1,3,5-

37 
trinitrobenzene was obtained by Foster and Fyfe. They observed the p.m.r. 

spectrum of the 1,3,5-trinitrobenzene-methoxide adduct in acetone. The initial 

spectrum of the met.hoxide complex was slowly replaced by bands corre3ponding t.o 

(1.67, X= NO~). Generation bf similar adducts has been achieved by the 
£ 

addition of a tertiary amine to solutions of 1,3,5-trinitrobenzene in a number 

115 1 . d 116 h . . of' ketones or a iphatic m.tro-compoun s, t e am~ne serv~ng as a proton 

acceptor 

+ + 

Janovsky complexes derived from ( 1. 66) and acetone in the preseill.;e of base 

have been investigated recently. Gi tis and cov1orkers 
117 

found that the c2-

adduct (1.67) alone was formed \o,~hen X = Me or OMe but both (1.67) and (1.68) 

were formed if X was electron-withdrawj_ng. The isomeric adducts have also been 

118 
observed from a series of derivatives of 3,5-dinitrobenzoic acid. 

The interaction of 1,3,5-trinitrobenzene and ketones in the presence of 

secondary or primary amines has been the subject of some speculation. Foster 

d f 
119 'd 'f' d d' h 1 . '1" d 2 t 1 1 3 d' 't an Fy e ~ ent~ ~e N,N- ~et y -p-n~troan~ ~ne an -ace ony - , - ~n~ ro-

propane among the products. They also isolated a red compound from the 

120 
reaction mixture as did Osugi and Muneo. It showed an intense absorption 
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121 
at 510 nm and was similar to a red product isolated by Abe some years 

earlier. No consistent analyses for this compound were reported. However 

122 . 
Strauss and Schran later 1solated a crystalline red solid and they 

interpreted their p.m.r. data in terms of a cyclic adduct ll.69; R
1

=R
2

=H, R'=Et). 

I-I 

H H 

(1. 69) 

The cyclic adduct was obtained with primary and secondary amines but only the 

Janovsky complex (1.67; 
115 

X = No2> resulted with triethylamine as base. 

123 
However Foster and cmo,~orkers found that cyclic adducts could be formed from 

more acidic ketones such as acetylacetone or dibenzyl ketone in the presence 

of triethylamine. 

124 
As a result of this, Strauss postulated two disti!1Ct mechanistic 

pathways for the production of bicyclic adducts. In the case of acetone, 

diethylamine but not triethylamine would result in cyclisation, and since the 

basicities of the two amines do not differ appreciably an enamine intermediate 

was suggested. 

+ acetone 

enamine + 1,3,5-TNB 

~CH2 
(CH..,CI·I..,) ..,N-C. 

-' L. L. 'cH 
3 

enamine 

j 

+ H 0 
2 

( 1. 69 ~ R =R =H, R' = Et) 
1 2 

With more acidic ketones such as acetylacetone, rapid equilibration between 

(1.70 and 1.71~ R = cH
3
co) via a delocalized carbanion intermediate was 

thought to be involved. 
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2 

( 1. 70) 
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N0
2 

(1.71) 

Foster et a1
125 

showed the possibility of stereoisomerism at the carbon 

atoms a to the ketonic funct:i.on. Thus t\-10 products were isolated using 

dibenzyl ketone \dth small differences in their spectral properties which they 

attributed to the cis- and trans-isomers of (1.69; R1=R2:-:Ph). The field of 

carbanion additions and resulting cyclizations has been well reviewed recently 

126 
by Strauss. 

There have been a number of reports of a variety of Janovsky-type 

complexes involving the production of carbon-carbon bonds. 
t 

.127 
Bernascon~ 

has shown that under conditions of excess substrate, 2,4,6-trinitrotoluene gave 

a a-complex by attack of the benzyl anion on the substrate. It was not 

possible to obtain a p.m.r. spectrum to elucidate the site of attack since the 

production of a small concentration of radical anions wiped out the spectrum. 

· The ambident nature of the phenoxide ion has been demonstrated
128 

with 

1, 3, 5-trinitrobenzl'me cmd potassium phenoxide in iu~thanolic Dl>i!:iO. The initial 

p.m.r. spectrum, corresponding to the methoxide adduct, slowly changed and was 

assigned to the carbon-carbon bonded a-complex (1.73) formed by rearomatisation 

0 

( 1. 72) (1. 7 3) 

of the initially formed complex (1.72). 
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Nilsson and Wennerstrom have reported a-complexes (1.74) - (1.76) 

derived from org9,nometallics and 1,3,5-trinitrobenzene in pyridine. The 

species were well characterised by p.m.r. and visible spectroscopy showing 

( 1. 74 ) 1291 130 ( 1. 75) 131 ( 1 . 76) 132 

features typical of anionic a-complexes. Unlike complexes derived from 

oxygen bases, adducts such as (1.76) do not decompose to nitro-compound and 

protonated nucleophile (compare :n::!f. 128j . Instead compounds believed to 

. (1 7~) l d h . d 132 
be nitronic ac~ds . ' can be iso ate and c aracten.se . Under mild 

MeO OMe 
o

2
N 

oxidi~e> 
" ll1 N0

2 ~2·· 

( 1. 77) ( 1. 78) 

conditions (1.77) can be oxidised to the corresponding substituted biphenyl. 

133 
Recently Beletskaya has produced p.m.r. evidence for anionic a-complexes 

derived from 1,3,5-trinitrobenzene and organotin compounds in DMSO. Thus 

organometallics used in this way have considerable potential in organic synthesis. 

h d . 134-141 l d . d f T ere have been a number of stu ~es on comp exes er~ve ·rom 

nitroaromatics and cyanide ion, and the results were ascribed to (1.79; X= H). 
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X 

"'NO 2 
H 

CN 
I 

II 

N0
2 

( 1. 79) ( 1. 80) 

1 1
138 f d . 'd f h' . h f h Bunce et ~ oun conclus1ve ev1 ence or t 1s 1n t e p.m.r. spectrum o t e 

complex generated in situ in chloroform. 2, 4, 6-'rr ini trotol uene formed the 

c 3-addu~t (1.80; X= CH
3

) whereas addition at c
1 

occurred for the benzaldehyde 

(1. 79: X = CHO). Both (1.79 and 1.80: X = OCH
3

) were formed from 2,4,6-

trinitroanisole with the c3-adduct predominating. 

Complexes derived from nitrogen bases 

The interaction of 1,3,5-trinitrobenzene and aliphatic amines in a variety 

of solvents has been studied by a number of workers. Various _modes of 
t 

interaction are possible and the solvent used may be important. Zwitterionic 

adducts
142

-
144 

such as (1.81) have been postulated. The ion-pair (1.82) was 

H 

I ., 
N02 

(1.81) (1.82) 

,. NO 
2 

I 
N02 

( 1.83) 

also considered for polynitroaromatic compounds in liquid ammonia and for the 

colour produced by piperidine and 1,3,5-trinitrobenzene in acetonitrile. 
145 

In the latter system a donor complex (1.83) may also be produced. 

Crampton and Gold
146 

in a comprehensive study of 1,3,5-trinitroben~ene 

and aliphatic amines in DMSO solution by p.m.r., u.v./visible and conductivity 

measurements shO\oJed that the interaction produced a pair of ions. No 

interaction with tertiary amines was detected. The most likely pathway for 

a-complex formation involves initial attack by amine to give the zwitterion 

followed by deprotonation by another molecule of amine to give the negatively 
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charged adduct. 

Picryl ethers appear not to have appreciable interaction with amines. 

42 
Originally a zwitterionic intermediate was suggested but was later proved 

147,148 
to be a dealkylation product. However using hindered picryl ethers 

149 
and hindered amines, Clapp et al managed to form neutral complexes in 

solution at low temperatures. Thus with mesityl picryl ether and !_-butylamine 

in tetrahydrofuran at -57° a deep red solution resulted, the p.m.r. spectrum of 

which was consistent with (1.84; R' = mesityl). On warrr.ing the solution 

( 

to room temperature, the colour changed to the bright yellow of t.ne resulting 

substituted picramide. 

Aromatic amines have been thought to be involved in charge transfer 

150 151 
complexes, ' however there have been several interesting reports by 

Buncel and coworkers of aromatic amines displacing methoxide ions fro~ the 

1,3,5-trinitrobenzene-methoxide adduct giving the amine cr-c:omplex, Thus 

addition of aniline to the potassium salt of (1.29) in DMSO caused the bands in 

the p.m.r. spectrum of the methoxy complex to slowly disappear while bands at 

68.45, 6.30 and 5.88 p.p.m. (J = 8.8 Hz) attributed to (1.85) 
152 

increased 
NH-Hl 

in intensity. The transformation was also followed by observing the changes 

H 
I 
N-Ph 

(1.85) 
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in the visible spectrum of diluted samples of solutions used for the p.m.r. 

measurements. 
. 153 

The assignemnt was substant1ated by use of N-methyl-2,4,6-

trideuterioaniline which served to removed the NH-H
1 

coupling and reduce the 

complexity of the spectrum resulting from the aromatic protons of the amine 

which masked the signal for the H1 absorption. A complex having similar 

spectral characteristics was obtained from 1,3,5-trinitrobenzene and potassium 

. 'l'd 154 an1 1 e. 
155 

A more recent report by Buncel has revealed that the 

trinitrobenzene-anilide a-complex can be readily formed fr-om trinitrobenzene and 

aniline· in the presence of DABCO or triethylamine in DMSO. 

Complexes derived from sulphur bases 

1,3,5-Trinitrobenzene dissolves in aqueous sodium sulphite giving a dark 

156 157 . 1 d red solution and it was from such a solution that Henry 1so ate a dark 

red crystalline solid which w~s very stable when dry. The analysis yielded a 

stoichiometry of 1 TNB:2 sulp~ite. Norris originally suggested a charge-

158 . . 135 159 
transfer complex but v1s1ble and p.m.r. spectral measurements 

indicated a 1:1-o-complex (1.86; X= H) at low sulphite concentrations and 

a 1:2-complex (1.87; X= H) at higher sulphite concentrations. The 

X 

I 

N0
2 

( 1. 86) 

X 

02N~NO? 
o3:Q:o: 

N0
2 

( 1. 87) 

interaction of 1-X-2,4,6-trinitrobenzenes with sodium sulphite is the subject 

of further study in the present work. 

Adducts from trinitrobenzene and picramides with thiolates and thiophenoxides 

. 160 
have been observed. With picramides complex formation predominates over 

proton abstraction. 
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Sodium thioethoxide and ethylthiopicrate gives complex (1.88) 161 with 

SEt 

I 
N0

2 

( 1. 88) 

H 

SEt 

EtS SEt SEt 

SEt 

(1.89) ( 1. 90) 

some of the 1,1-adduct (1.89}; (1.88) quickly decomposes, the final product 

of the reaction being (1.90). Similar effects were observed with 2-ethylthio-

162 
tropone. 

' 
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THE STABILITY OF MEISENI-IEIJ.'.1ER COMPLEXES 

Since the structures of anionic a-complexes are now well characterised, 

recent studies have tended to concentrate on factors affecting complex 

stability. Kinetic and equilibrium measurements have shown that four of 

the main factors are: 

(i) nature of the parent compound, 

(ii) the attacking nucleophile, 

(iii) the solvent, 

(iv) micellar and cation effects. 

Before discussing these a brief mention will be made of the methods which 

are often used to determine the equilibrium constants. 

For reactive substrates, complexation occurs at low base concentrations 

and thus equilibrium constants can be determined directly by measurement of the 

optical density at an appropriate wavelength provided the extinction coefficient 
\ 

163 
of the complex is known, or indirectly via Benesi-Hildebrand plots. 

Less reactive substrates, on the other hand, are only significantly 

converted to complex at very high base concentrations. Hence equilibrium 

constants calculated in terms of stoichiometric base concentrations are not 

true thermodynamic values. 
164 

Ho\'tever the extension of acidity function concept, 

. 165 
originally proposed by Harr~ett and DeyYu~, to basic media has helped to overcome 

this problem. 

The acidity function of a medium, H , is defined as 
0 

H 
0 

= 1.1 

and is the measure of the ability of the medium to transfer a proton to a 

neutral indicator molecule. 

B 
+ + H 

In aqueous alkaline media, the ionisation of an indicator by proton loss 

may be used to define an H acidity function. 
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BH + OH B 

H 
[BH] 

= pK -log ---
BH lO[B-] 

In the case of base addition to the indicator:-

K 
R + OH 

_,_ 
....- ROH 

+ 

the appropriate function is J whici'1 is defined as 

J = p (KK ) 
w 

+ l [ROH ] 
og1o 

[R] 

1.2 

1.3 

When the solvent is methanol rather than water then a scale defined relative 

to a standard state in pure methanol is preferred. The JM scale, defined 

. 164b 
accord1ng to Rochester as in equation 1.4, has been widely used. 

+ 1.4 

K is the thermodynamic equilibrium constant for methoxide .i.on addition to 

a neutral substrate and K OH is the autoprotolysis constant of methanol. 
Me 

Thus if the acidity function (JM) of the medium is known and the ratio 

of complex to substrate is determined, then the the:r:modynamic equilibrium 

constant is easily calculated. Though the values of the equilibrium constants 

so obtained are probably not as accurate as those determinr:-d directly, they 

nevertheless give a value of the appropriate order of magnitude. 

Having considered methods for determining equilibrium constants for 

adduct formation, factors affecting their magnitudes will now be discussed. 

(i) Nature of the parent ~ompound 

Equilibrium constants and rate coefficients for Meisenheimer complex 

formation from a number of substrates and methoxide ions in methanol at 25°C 

are collected in Table 1.1. The main points which emerge from the data are: 

(a) greater thermodynamic stability of adducts formed by alkoxide addition to 

the alkoxy-substituted carbon in polynitroanisoles compared to the adducts 

derived from the analogous polynitrobenzenes; 



~----------------------------~---------------------------------------------------

Substrate 

1,3-Dinitrobenzene 

2,4-Dinitroanisole 

2,6-Dinitroanisole 

1,3,5-Trinitrobenzene 

2,4,6-Trinitroanisole 

2-Cyano-4,6-dinitroanisole 

4-Cyano-2,6-dinitroanisole 

2,4-Dicyano-6-nitroanisol~ 

2,6-Dicyano-4-nitroanisole 

2,4,6-Tricyanoanisole 

OMe 

I< 

-1 (l.m,,le ) 

-5 4.6 X 10 

. -5 
9 X 10 

17,000 

2,€00 

280 

10 

34 

0.4 

TABLE 1.1 

Addition at Ring Carbon Carrying 

k1 

-1 -1 (l.mol sec ) 

.2 X 10-3 

17.3 

18.8 

6.1 

2 

ca. 12 

K 

-1 
(l.mol ) 

-6 1 X 10 

23.1 

2.71 

H 

k1 

-1 -1 
(l.mol sec ) 

7,050 

950 

,.. 

Reference 

72 

166,167 w 
0 

166 

167 

40,64 

64 

64 

65 

65 

66 
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(b) kinetic preference for addition at an unsubstituted ring carbon atom; 

(c) the importance of a nitro group para to the site of attack. 

The stability of the 2,4,6-trinitroanisole-methoxide adduct over the 

1,3,5-trinitrobenzene-methoxide complex has been interpreted in terms of 

electronic and steric effects. 
13 

The inductive effect of the methoxy group 

~ould favour base addition at c 1 through withdrawal of negative charge from 

this position. However, removal of the steric strain experienced by the 

methoxyl group and the ortho nitro groups of the parent ether on complexation .. 
was considered to be more important. The bending of the methoxyl group out 

of the plane of the ring and consequent reduction in the steric interaction 

provides a driving force for complexation. Crystallographic studies provide 

. 30-32 
ample support for thJ.s. 

Bernasconi 
168 

has suggested that a further reason ,.,.hy addition is 

favoured at a position already carrying a methoxyl group may be the stabilising 

3 
influence of multiple alkoxy substitution on an sp carbon atom. There is 

'd 169,170 3 
ev~ ence that sp carbon atoms carrying two or more alkoxy groups are 

stabilised relative to those carrying one or no alkoxy groups. 

The faster rate of attack at an unsubsti.tuted ring carbon atom \·las explained 

by Crampton and Gold
39 

in terms of steric effects. They suggested that the 

ztcric strain passed through a maximum beb1een the parent and the 1, 1-dimethoxy-

complex whereas steric effects \·lould ·be expected to have a smaller effect in 

the transition state leading to the 1,3-complex. This argument was 

64 
criticised by Fendler et al on the grounds that 1,3-complexes were not 

observed with 1-methoxy-2,4-dinitronaphthalene and 1-methoxy-2,6-dinitrobenzene. 

. 168 
The faster formation of the 1,3-complex has been explaJ.ned in terms of 

resonance stabilisation of the form 

~~H3 ~CH 3 
o

2
N N02 

o
2
N N0

2 

OCH
3 

) 

H 

NO N0
2 2 
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Such stabilisation is largely removed on going from the parent to the 

1,1-complex, and thus its rate of formation will be reduced compared to that 

for the 1,3-complex. The factors governing 1, l- and 1, 3-·complex formation 

d t b 'l' t t b . l d th '11 l?l ll d f . h. an s a 1. 1. ·y appear o e more 1.nvo ve an I-ll. er a owe or l.n l.S 

calculations which predicted that the 1,3-adduct should be the thermodynamically 

stable species while the 1,1-complex should be formed more rapidly. 

The effects of dimethoxy substitution and of a par~ nitro group with 

respect to the site of attack can be seen by comparing the complexes derived from 
4. 

2,6-dinitroanisole and 1,3-dinitrobenzene. In the former relief of steric 

strain is the dominant factor whereas addition occurs para to a nitro group 

in 1,3-dinitrobenzene. 

There appears to be a balance bet...1een steric factors and addition at an 

unsubstituted ring carbon. Thus 2-methoxy-3,5-dinitropyridine and 2-methoxy-

N:Me 
I / 

N~N 
OMe I 

OMe 

(1.91) (1.92) 

5-nitropyrimidine result in complexes (1.91)
94

•
96 

and (1.9:.!)
97 

respectively on 

methoxide addition. The steric requirement of the aza group is less than 

that of a nitro group and if a rnethoxyl group is not flanked by two nitro 

groups then there is no driving force for 1,1-complex formation. 

Zollinger et a1
34 

calculated that most of the negative charge of a o-

complex resides on the ring substituents especially the para nitro group. 

However a more refined method
35 

indicated that a considerable proportion of the 

charge is present in the n-electron system, though of the ring substituents 

the para nitro group still carries most of the electron density. Thus the 

ability of the ring substituents to delocalise the negative charge is 

reflected in the complex stability. Comparing the equilibrium constants for 
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2,4-dinitroanisole and 2,4,6-trinitroanisole gives a value of ca. 38 kJ for 

the stabilising effect of an ortho nitro group. A similar value is obtained 

on comparing the equilibrium constants for 1,3-dinitrobenzene and 1,3,5-

trinitrobenzene. 

Replacing the nitro groups of 2,4,6-trinitroanisole successively by a 

less electronegative substituent such as a cyano group has a marked effect on 

. 64-66 
complex stabil1ty. A comparison of the data for the isomeric cyano-

dinitroanisoles and 2,4,6-trinitroanisole reveals that replacing a para nitro 

group has a much greater effect than replacing an ortho group. Replacing all 

the nitro groups by cyano groups results in a 42,500-fold decrease in complex 

stability. 

The para nitro group also appears to be important as regards 1,3-complex 

stability. Thus the 1,3-dimethoxy-2,4-dicyano-6-nitrocyclohexadienate complex 

65 
(1.28) was not detected. Likewise a transient species from 2,4,6-

. . 1 . - . 1 . . d. 66 
tr~cyanoan1so e \·Ia~ not ooservee1 by either n.m.r. or ca or1metr1c stu 1es. 

(ii) Variation of reactivity v!ith attacking nucleophile 

For a meaningful comparison of nucleophilic reactivity, a study should 

be made of complexes dervied from a single substrate and a variety of bases in 

a given solvent system. However many studies have involved a number of 

diffenmi:. solvents (see '!'able 1. 2) though the equilibrium constants for formation 

of 1:1-cornplexes of 1,3,5-trinitrobenzene with a number of sulphur and oxygen 

160 
bases have been measured in methanol. The values reveal that the order of 

complex stability in EtS > MeO > PhS > PhO . (See footnote to Table 1.2 

113 
regarding PhO ) . In water the carbon basicity of sulphur and oxygen follows 

the same trend as above, sulphite ions resulting in a much more stable complex 

than hydroxide ions. 

The greater affinity of carbon for a carbon rather than an oxygen 

nucleophile has been demonstrated by the observation that the stable adduct 

produced from addition of either methoxide ions or diethylamine to 1,3,5-



Nuc_leophile 

EtS · 

PhS 

HO 

CN 

* 
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TABLE 1. 2 

Equilibrium Constants for Formation of Adducts from 

1,3,5-Trinitrobenzene with Various Nucleophiles 

Solvent 

Methanol 

DMSO 

Methanol 

Hethanol 

DMSO 

Methanol 

Water 

Water 

Methanol 

Ethanol 

!!_-Propanol 

i-Propanol 

n-Butanol 

t-Butanol 

K 
-1 (l.mol ) 

23.1 

ca. 109 

3.5 X 1o3 

1.95 

8 X 104 

<2 X 10 -3 * 

2.7 

2.5 X 102 

39 

1.27 .. 1o3 
.n. 

1.47 X 1o3 

1 X 104 

2 X 1o3 

r: X 
..... 5 

.J ~v 

Reference 

168 

160 

... 
160 

160 

160 

160 

104 

159 

172 

172 

172 

172 

172 

i72 

It \'las assumed that addition occurred via oxyg-en, however recent results 

by Buncel have shown that phenoxide ions can form complexes through carbon 

addition. (Ref. 128). 

trinitrobenzene
37

' 119 in acetone is in fact the acetonate complex. A similar 

situation is observed between the ambident phenoxide ion and 1,3,5-trinitro-

benzene mentioned earlier. 

The interaction of 2,4,6-trinitroaniline with oxygen and sulphur bases 

parallels the carbon and Br¢nsted basicity series above. Thus sulphur bases 

(PhS-, EtS-) preferentially form complexes through attack at the c
3 

position 
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. 160 whereas oxygen bases abstract amino protons besides form1ng the c
3
-adducts. 

For substrates such as 2,4,6-trinitroanisole, where isomeric addition is 

possible, the mode of interaction depends greatly upon the nucleophile. 

Methoxide ions give the c1-adduct while sulphite ions result in addition at 

c3 • It seems that bulky nucleophiles like sulphite have a greater steric 

requirement at c1 and therefore form stable 1,3-complexes. 

(iii) Solvent effects 

A change of solvent has quite an important effect on Meisenheimer ... 

complex stability (see Table 1.2). The solvent systems used in the main have 

ranged from the protic solvents water and methanol, to the dipolar aprotic DMSO. 

174 
'rhe main difference between the two solvent types is their ability to 

solvate anions. 

Protic solvents have a greater hydrogen bonding interaction with small 

anions such as OH , Cl , OMe and are therefore better at solvating these 

species than larger anions like SCN , r 3 , picrate where the negative charge 

is.more dispersed. HO'tlever dipolar aprotic solvents have a greater 

polarizability interaction with large, easily polarizable, anions and are 

therefore better at solvating these than smaller weakly polarizable species. 

. 33 
Crampton and Gold concluded from n.m.r. measurements that only the 

efficiency and not the mode of interaction changed in transferring from say 

methanol to Dt-1SO. Ho\11ever for highly activated substrates such as picryl 

chloride
175 

there is a slow reaction with DMSO leading to picric acid. 

Methoxide ions, not being easily polarized are therefore desolvate.d in m~so 

compared with methanol and consequently become more effective as nucleophiles. 

This is manifest in the increase, by several orders of magnitude, of the 

9 -1 
equilibrium constant from ca. 15 in methanol to ca. 10 l.mol in DMSO for 

the 1,3~5-trinit~obenzene-methoxide adduct. This increase of ca. 108 gives, 

t h · · h h · · · f f . . t ~1eOH DMSO . o a roug approx1mat1on, t e c ange 1n act1v1ty coe 1c1en , yOMe-' 1n 

going from methanol to pure Dl-1SO. Thus using Parker's nomenclature
174 

the 

equilibrium constants in both solvents can 'be related by the following expression 
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MeOH DMSO 
Ycomplex 

MeOH DI\1SO l-1eOH DHSO 
YTNB Yor-1e-

The activity coefficients of the complex and the parent nitro-compounds should 

change in the same way and therefore cancel; being large polarizable species 

they should be better solvated by DI>lSO. As would be expected there is a la~ge 

increase in the equilibrium constant for methoxide than for thiophenoxide 

(ca. 104 ) since the former is destablised to a greater extent. 

65 It was shown that the increase ~n equilibrium constant on changing to 

DMSO (for the isomeric dicyanonitroanisoles) resulted from an increase in 

k
1

, the rate constant for complex formation, and a decrease in k_ 1, the rate 

constant for decomposition. The increase in k
1 

can be explained in terms of 

the desolvation of the methoxide ion making it a more effective nucleophile -

a 'naked' species being able to attack a given site faster than one surrounded 

by a solvent cage. The smaller rates of reversal to parent in the aprotic 

medium are attributed to the stabilising effect of the solvent on the highly 

polarizable a-complex. 

The arguments on solvent effects presented above, though giving an 

adequate qualitative description, are really a gross over-simplification of the 

problem. A better understanding is obtained with a knowledge of the enthalpy 

and entropy changes involved. 
176 

In fact calorimetric data have been obtained 

for the 2,4,6-trinitroanisole-sodium methoxide reaction. The ~H . is 
react~on 

-1 
ca. 63 kJ mol more exothermic in 95% DMSO than in methanol, the main 

contribution to this being the desolvation of the methoxide ions for which the 

-1 
heat of transfer from methanol to DMSO is endothermic by ca. 42 kJ mol 

For the 1,3,5-trinitrobenzene-thiophenoxide
177 

system the driving force here 

-1 
is stabilisation of the complex, the heat of transfer being ca. 42 kJ mol , 

similar to that of the 2,4,6-trinitroanisole-methoxide adduct. 

Using 4-cyano-2,6-dinitroanisole and 4-nitro-2,6-dicyanoanisole Terrier 

et a156 have shown that the stabilising effect of DMSO on the 1,1- and 1,3-
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complexes is approximately the same, the ratio of the equilibrium constants 

being independent of the solvent composition. The ratio of the rate constants 

for complex formation is also not solvent dependent indicating that transition 

state stabilisation is the same. 

Bunce1
172 

has measured the equilibrium constants (see Table 1.2) and 

entl1alpy changes for the 1,3,5-trinitrobenzene-cyanide complex in alcoholic 

solvents ranging from methanol to t-butanol. The enthalpy change in 

methanol was approximately zero, the entropy change being !".;mall and positive • .. 
-1 

In !-butanol, however, the enthalpy change was ~· 63 kJ mol and the entropy 

change -26 e. u •• This shows that the main effect is desolvation of the cyanide 

ion. 

(iv) Micellar and cation effects 

Since the similarity-between protein and micelle structures and 

enzymic and micellar catalysis was recognized, there has been considerable 

179 interest in the effect of micelles on the rates of reactions. 

F dl d k 180,181 h . . d h ff f . 11 en er an co\'Tor .ers ave 1.nvest1.gate t e e ect o m1.ce ar 

surfactants on Meisenheimer complex equilibria. Cationic micelles such as 

hexadecyltrimethylammonium bromide increase the rate of formation and decrease 

the rate of decomposition of a-complexes; anionic micelles have a retarding 

effect on complex furmation and little effect on complex decomposition. 

Neutral micelles do not appear to effect complex formation or decomposition. 

The rate effects can be interpreted in terms of incorporation of the aromatic 

substrate into the micelle which, depending on its charge type, attracts or 

repels the anionic nucleophile. 

It has been Shown
182- 184 that the · 1 'l'b · t t 1.ncreases_ n equ1. 1. r1.um cons an s 

for Meisenheimer complex formation which cannot be accounted for in terms 

of an ac'idity function or a salt effect, result from ion-pairing of cations 

with the a-complex. The results show that t.he main effect on the 

equilibrkum constant \'Tas a decrease in the rate of complex decomposition and 

2+ 2+ + + + 
that the order of ion-pairing effectiveness was Ba > Ca >> Na - K > Li • 
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It was suggested that the ion-associate is of the form (1.93) with the 

cation held by a cage effect between the t~t1o oxygen atoms of the methoxy groups 

(1.93) 

+ 
N 

-/ '-000 n+ 
M 

(1.94) 

and the electronegative substituent in the ortho position. 

.. 

This was 

favoured over the specific association of the cation with the para nitro group 

(1.94) since the 1,3,5-trinitrobenzene-methoxide equilibrium is only slightly 

affected by the presencE'. of added cations. 

Evidence for ion-pairing and the formation of (1.93) in particular has 

recently been shown from work with spiro-complexes
185 

and 1,1-dimethoxy-

. 186 
complexes in the presence of crown ethers. Values for the equilibrium 

constants for spiro-complex formation do not vary with base concentration 

and added salts unlike the analogous 1,1-dimethoxy-complexes. Formation of 

(1.93) is presumably not favoured sterically in the case of spiro-complex. 

In the presence of 18-crown-6-ether, equilibrium and rate constants for 

complex formation from a number of substituted dinitroanisoles were virtually 

independent of sodium methoxide concentration. The association constant for 

4 -1 187 
sodium ions with 18-crown-6-ether is 2 x 10 l.mole , some two orders of 

magnitude greater than values calculated for association with Meisenheimer 

complexes, and hence the concentration of free sodium ions available for 

association with the o-adducts will be small in the presence of a slight 

excess of crown ether. 
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CHAPTER 2 

EXPERIMENTAL 

SOLUTIONS AND PREPARi\TION OF SUBSTRA'l'ES 

A. Solvents 

Water - Distilled water was boiled to remove carbon dioxide and 

subsequently protected from the atmosphere, by passing through a stream of 

nitrogen. .. 
Methanol - AnalaR (A.R.) grade material was used without purification. 

Ethanol - Commercial material used without purification. 

Dimethyl sulphoxide - The commercial material was allowed to stand over 

calcium hydride for t\-10 or three days to remove water and then fractionated 

under reduced pressure, the middle fraction being collected. 

Deuterated solvents - Deuterium oxide, tetradeuteriomethanol, deuterio-

chloroform and hexadeutP.riodimethylsulphoxide, all of which \'lere of iso1:opic 

purity >99%, were cornme~cial samples used without purification. 

B. Base and nucleophile solutions 

Sodium hydroxide - A.R. sodium hydroxide pellets we:re \'lashed several times 

with boiled-out distilled water and the washing discarded. 'l'he remaining 

solid was dissolved in more distilled water. The solution was standardised 

with O.ll-1 hydrochloric acid using phenol red indicator. 

Aqueous buffer solutions187 - Depending on the pH range :required, 

aqueous buffer solutions were prepared by taking 50 ml. of 0.025M borax 

(pH range 8.00-10.80), 0.05~ potassium dihydrogen phosphate (5.80-8.00) or 

0.05~ potassium hydrogen phthalate (2.20-5.90) and making up to 100 ml. with 

the appropriate volume of O.lM hydrochloric acid or sodium hydroxide and 

water. 'More acidic buffers were prepared by adding a known volume of standard 

sodium hydroxide solution to the appropriate carboxylic acid to give the 

required [RCOOH]/[RCOO-] ratio. The pH of the solutions \'las checked with an 

E.I.L. Model 23A direct reading pH-meter immediately before use. Acetic, 
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monochloroacetic and formic acids (98-100%), co1nmercia~ samples, were used 

without purification. The acetic and formic acids were standardised 

against 0.1t!_ sodium solution using phenolphthalein as indicator. 

Hydrochloric acid solutions were prepared by diluting h.R. concentrated acid 

(d = 1.18) and standardising against O.lt!_ sodium hydroxide. 

Sodium methoxide - Freshly cut pieces of sodium were washed with methanol 

and then immediately dissolved in A.R. methanol, which was purged with dry 

nitrogen prior to and during the addition of the sodium. The methoxide .. 
solution was centrifuged and the resulting clear solution titrated against 

standard hydrochloric acid. 

Potassium and lithium methoxides - These solutions were prepared in an 

analogous manner to that for sodium methoxide. 

Substituted sodium thiophenoxides - A weighed amount. of the appropriate 

thiophenol was dissolved in a knovm volume of absolu'..:.e alcohol and the 

required quantity of standardised sodium hydroxide solution in water added, the 

solution being made up with the necessary volume of 3olvent to give the 

composition 95/5 (v/v) ethanol-water, the solvent system used. A sufficieut.: 

excess of the t:hiophenol was used to ensure a negligible equilibrium 

concentration of hydroxide and ethoxide ions. 

Aqueous sodi~~ sulphite- A.R. Na2so3.7H2o was dried in an oven at 140°C. 

Solutions of knmm concentration "'ere made up from the anhydrous solid and 

boiled-out distilled water. 

C. Added salts 

Sodium chloride, barium chloride and sodium sulphate, used to maintain 

constant ionic strength, were dried A.R. grade reagents. 

D. Substituted thiophenols, RC6H4SH 

The following were commercial specimens: R = H, 4-fluoro, 4-chloro, 

4-bromo, 4-methyl, 3-methyl, 2-methyl, 4-!-butyl, 4-amino, 2-amino and 4-nitro. 
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'J'hiols \.,ri th R = 3-chloro, 3-bromo, 3-methoxy, 4-methoxy, 3-acetyl and 4-acetyl 

188 189 
were prepared from the corresponding anilines via the xanthate esters. ' 

'rhe preparation of 3-methoxythiophenol was typical. 

( 2. 1) 

( 2. 2) + 

(2. 3) + NaOH 

HCl, NaN0
2 

-----~ 

5°C 

(2. 3) 

! ~ICl 
SH 

() 
~'ben 

3 

+ 

(2. 2) 

.. 

+ + KCl 

+ NaS.CO.OK 

Concentrated hydrochloric acid (77 ml.) was added with stirring to!!!_-

anisidine (2. 1) (50 gm., 0. 4 mole). The precipitated amine hydrochloride 

was dissolved by adding water (ca. 80 ml.) and \.,rarming. The solution was 

cooled to 4-5°C before being diazotised with a pre-cooled solution of sodium 

nitrite (28 gm.) in water (ca. 140 ml.). The temperature was maintained at 

5°C throughout the diazotisation (ca. 2 hours). 

The resulting red oily solution was added, with stirring, over 1~ hours 

to a solution of potassiwn ethyl xanthate (65 gm.) and sodium carbonate (55 gm.) 
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in water (400 ml.) at 7o0 c. To prevent clecompositiof! of the diazonium salt 

(2.2), only a portion of the solution was in the dropping funnel at any one 

time, the remainder being kept in an ice bath. After the addition, the 

temperature was maintained at 70°C for a further 35 minutes. The dark 

red-brmlln solution \11as cooled in an ice bath before the xanthate ester (2. 3) was 

decanted from the aqueous layer. 

A solution of sodium hydroxide (55 gm.) in wat.er (120ml.) was added to 

the xanthate ester in methanol (500 ml.) and the mixture heated under reflux 

in a nitrogen atmosphere for 3 hours. After the hydrolysis, an equal volume 

of water was added and the solution acidified with concentrated hydrochloric 

acid. Most of the resulting red-brown oil was decanted off and the aqueous 

layer extracted several times \'lith ether. The combined oil and ether 

extracts were dried with cac1 2 overnight. After removing the ether, the 

product (2.4) was fractionally distilled under reduced pressure (ca. 5-·10 

mm Hg), the middle fraction being collected (ca. 90-100°C) (lit. 96-100°C/ 

9-10 mm Hg). 
190 

All thiophenols thus prepared and liquid commercial specimens were 

purified immediately prior to use by g.l.c. on a column packed with 17% 2-

cyanoethylmethylsilicone on Chromosorb P. 

The p.m.r. spectra of the thiols diluted with carbon tetrachloride 

indicated the expected structures and showed the absence of major impurities. 

E. Aroma ti.c nitro-compounds 

1,3,5-Trinitrobenzene and 2,4-dinitrochlorobenzene were recrystallised 

commercial specimens, m.p.'s 121°c and 51°C respectively (lit. 122.5°C and 

51oc). 190 

Picric Acid - Commercial picric acid was recrystallised from methanol to 

. 0 . 0 190 
constant m.p. 122 C (l1t. 122.5 C). 

Picramide, m.p. 191°c (lit. 192°C) 190 and N,N-dimethylpicramide, m.p. 141°C 

(lit. 138°C) 
190 

were recrystallised samples prepared in earlier work. 
159 



- 113 -

N-Methylpicram.ide
191 

-Picryl chloride (15 gm.) was. dissolved with 

warming in methanol (ca. 100 ml.). 40% Aqueous methylamine (ca. 8 ml.) in 

methanol (10 ml.) .,.1as added with stirring. After some time, product 

precipitated from the resulting dark solution. The crude solid was collected 

and recrystallised from methanol. 

2, 4, 6-Trinitroanisole \'las prepared by reacting one equivalent of picryl-

chloride with sodium methoxide in methanol. Water was added and the 

resulting oily product recrystallised from methanol. 
.. 

4-Bromo-3,5-din.itrobenzaldehyde was prepared by two successive 

. t . f 4 b b ld t . f 11 . h d f d d . h 192 
n~·rat~ons o -ramo enza e1yae, o ow~ng t e metho o- Ho gson an Sm~t. 

CHO CHO CHO 

HNO] 
-~ 

Br Br 

H2so
4 o2N N0

2 
85°C Br 

( 2. 5) (2.6) (2. 7) 

4-Bromobenzaldehyde (2.5) (20 gm) was dissolved in concentratc6 sulphuric acid 

(50 ml.) and treated gradually with fuming nitric acid (5 ml.) at room 

temperature. Aft.er temperature changes had ceased the mixture was poured onto 

ice and the product collected. The crude 

mononitro-compound (2.6) (17 gm.) was dissolved in 98% sulphuric acid (68 ml.) 

and fuming nitric acid (17 ml.) was added over 65 minutes. The resulting 

golden yellow solution was maintained at 83-85°C for ca. 2 hours, after which 

time the mixture was allowed to cool and was then poured onto ice. The 

cream-coloured solid was filtered off, washed with water and then with an 

aqueous solution (ca. 0.1~) of sodium bicarbonate, which removed considerable 

amounts of the mono- and dinitro-carboxylic acids. The p.m.r. spectrum of 

the untreated product in DMSO showed singlets at 610.1, 8.8, 8.7 and 8.3 p.p.m. 

After washing with sodium bicarbonat.e the only bands remaining "1ere at 10.1 
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and 8.0 p.p.m., of relative intensity 1:2, ascribed to_the aldehydic and ring 

protons respectively of 4-bromo-3,5-dinitrobenzaldehyde (2.7). The washed 

product was r.ecrystallised from methanol. Yield lOgms. m.p. 124-29°C 

4-Methoxy-3,5-dinitrobenzaldehyde - •rhe bromo-compound (7 .4 gm.) was 

dissolved in the minimum volume (~. 60 ml.) of \'larm methanol (50°C) . 

1.1 Equivalents of sodium methoxide (11.8 ml., 2.54~ in nethanol) were added 

slowly with stirring. An immediate orange-red colourat'ion was produced \'lhich 

faded siightly after the methoxide addition. After about 3 hours, a yello\'1 

solid separated and most of the methanol was removed. Water was added, 

the solid dissolved and a dark brown oil separated. The aqueous layer was 

decanted off and the oil washed with more water. Recrystallisation from 

I 0 870 ( . 860 ) 192 petroleum ether (40 60 ) produced pale yellow needles, m.p. C l1t. C • 

1- ( 2-Hydroxyethoxy) -2, 4-dini tronaphthalene, 1-· ( 2·-hydroxyethoxy) -2,4-

dinitrobenzene and 1-(2-hydroxyethoxy)-2,6-dinitrobenzene were samples prepared 

. 1' k 184 1n ear 1er wor • 

1-(2-Hydroxyethoxy)-2,4,6-trinitrobenzene \'las prepared using the method 

of Blanksma and Fohr. 193 Sodi urn hydroxide ( 5 • 4 ~. ) in .,.,a ter ( 5 ml. ) and 

ethylene glycol (42 ml.) were added to a solution of picryl chloride (11 gm.) 

in ethylene glycol (20 ml.) ~lu dioxan (4 ml.). The stirred mixture was 

0 
heated at 60-70 C for 12 hours. The deep red solution was neutralised with 

dilute sulphuric acid. A yellow oil \•las deposited which slowly solidified. 

0 . 0 193 
P.ecrystallisation from water gave pale yello~ crystals, m.p. 62 C (ht. 61 C). 

1- ( 3-Hydroxypropoxy) -2, 4-dini tronaphthalene_ - Sodi:.m1 (0. 57 gm.) was . 

dissolved in propane-1,3-diol (35 ml.). A slurry of 1-chloro-2,4-dinitro-

naphthalene (6.3 gm.) in the dial (ca. 50 ml.) was slO\·lly added to the stirred 

solution. of the sodium salt, the mixture being warmed on a water bath. After 

approximately an hour, the red solution was poured into water (ca. 750 ml.). 

After a short time, solid precipitated from the red solution. Adding a 
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drop of concentrated sulphuric acid resulted in discharge of the red colour 

giving a pale yellow solid in a yellO\'<' solution. The product was filtered 

off at the pump and ,.,.ashed several times with water. After drying over 

P2o
5 

under vacuum, the crude solid was dissolved in warm benzene and pale 

orange-brown needles appeared on standing. Further crystallisation resulted 

on the addition of petroleum ether (80/100°), m.p. 93-5°C. (Found: c, 52.9; 

H, 4.1; N, 10.0%. Required: C, 53.4~ H, 4.1~ ~. 9.6%). 

1-(4-Hydroxybutoxy)-2,4-dinitronaphthalene was preparc;d in a similar 

way, using the same quantities of reagents. 'fhe butane-1, 4-diol was warmed 

to assist reaction wlth sodium. The product was worked up as described 

above. Precipitation from benzene with petroleum ether (80/100°) produced 

0 
a pale yello"' solid, m.p. 71-2 C. (Found: C, 55.8; H, 5. 5; N, 8. 6%. 

Required: c, 54.9, H, 4.6~ N, 9.2%). 

1-(2-rvtethoxy)-2,4-dinitronaphthalene- The sodium salt of· 2-

met.l'l.oxyethanol, prepared by dissolving sodium ( 1 gm.) in the alcohol (50 ml.) , 

was slowly added (over~· 1 hour) to 1-chloro-2,4-dinitronaphthalene (10.5 

gm.) slurried in 100 ml. of the alcohol. The temperature was gradually raised 

to 50°C during the addi t.ion and maintained there fo1.· a further hour. After 

cooling to room temperature, the orange-red solution was poured into a large 

volume of "'ater (ca. 800 ml.) acidified by the addition of a drop of 

concentrated sulphuric acid. The precipitated yellO\'l solid \·las collected, 

0 
dried and recrystallised from a benzene-80/100 petroleum ether mixture 

giving pale yellow crystals. Y. ld B 76-8°c. 1e gms.,. m.p. (Found: c, 53.1; 

H, 3.3: N, 9.2%. Required: c, 53.4 1 H, 4.1~ N, 9.6%). 

1-(2-Hydroxythioethoxy)-2,4-dinitrobenzene- The method used by 

194 
Culvenor et al for the picryl derivative was followed. 2,4-Dinitrochloro-

benzene .(8.1 ~n.) was dissolved in ab~olute alcohol (150 ml.) and 2-mercapto-

ethanol (3.1 ml.) added. A slurry of anhyurous sodiu~ acetate (4 gm.) in 
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absolute alcohol ( 100 ml.) .,.1as slowly added to the stirred solution. The 

mixture was then heated to 70° for two hours on a water bath. After cooling, 

the product was precipitated when the solution was poured into a large volume 

of water. The fine, pale yellow solid was filtered off, dried and 

recrystallised from benzene giving bright yellow needles, m.p. 101-3°C (lit. 

100oC) . 194 

1-(2-Hydroxythioethoxy)-2,4,6-trinitrobenzene was prepared in a similar 

way. To picryl chloride ( 10 gm.) in absolute alcohol ( 125 ml.) 2-mercapto-

ethanol (3.1 ml.) was added. Sodium acetate (4 gm.) was slurried in 

absolute alcohol (100 ml.) and slowly added with stirring to the solution 

which turned from yellow to orange-red. After stirring for 1~ hours the 

solution was warmed to 50°C on a water bath for ca. 30 minutes. After cooling, 

the mixture was poured into water and the precipitat.ed product collected. 

Recrystallisation from benzene of the dry solid yielded the required material, 

m.p. 72-3°C (lit. 72°C) . 
194 

Spiro-complex derived from 1-(2-mercaptothioethoxy)-2,4,6-trinitrobenzene

Pietra
195 

has recently prepared the spiro-complex (2.8) from picryl chloride 

and ethane-1,2-dithiol. 

Cl 

(2. 8) 

Picryl chloride (5 gm.) \•las dissolved in methanol 

KOMe :l> 
MeOH 

(2. 8) 
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(~. 60 ml.) and ethane-1,2-dithiol (1.7 ml.) was added. One equivalent 

of sodium methoxide in methanol was slowly added to the stirred solu·tion 

at room temperature. There was an imm~diate red coloura·tion which faded 

after the addition of each of the first few drops Addition of further 

drops of sodium methoxide resulted in a persistent red colour. One equivalent 

of potassium methoxide in methanol was added. After about half an hour some 

toluene was added and the mixture cooled to ca. -20°C. The dark red powder 

was collected. (Found : C , 18 • 3 ; H , 1. 5 ; N , 8 . 1 % • R~quired: C, /.8.0; 

H, 1.7; N, 12.2%). Analysis for potassium chloride revealed a content of 

ca. 18%. The p.m.r. spectrum of the product in DivJSO-d
6 

showed the absence of 

any major organic impurities and was therefore used without any further 

purification. 

SPECTROSCOPIC TECHNIQUES 

A. Visible spectroscopy 

Since the complexes produced from the interaction of aromatic nitro-

d ' th 1 h' 1 h 1 t' t' ff' ' 6 
I 
8 ' t'~- ' 'bl compoun s Wl. nuc eop 1 es ave ar9e ex 1nc 1on coe -J_cJ.ents 1n 11e Vl.Sl. e 

4 -1 -1 
region, (e: ca. 2 x 10 l.mol em , 400-700 nm) '· visible spect.roscopy has max-· 

been the major-tool used in studying both the kinetics and equilibria of the 

interactions. 

The general spectral shapes were recorded on a Unicam SP800 or SP8000 

instrument at room temperature (20±2°C). For quantitative work, accurate 

optical densi~y measurements at suitable wavelengths were determined on a 

Unicam SPSOO spectrophotometer, fitted with a thermostatted cell compart~ent 

Solutions, on which measurements were to be performed, were made 

up immediately before use by appropriate dilution of freshly prepared stock 

solutions. 

For reactive substrates (P) \'lith large equilibrium constants (K) complete 

p + Nuc A K 
A = ---P.Nuc. 
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conversion to complex (A) was achieved in dilute base solution \;Jhere any 

further interactions (e.g. higher complex formation) are negligible. In 

such cases the extinction coefficient, EA' of the complex (A) at the 

appropriate wavelength was found directly using the Beer-Lambert law: 

optical density (O.D.) log1o 

where CA is the concentration of complex (equal to the stoichiometric 

substrate concentration for complete conversion) and 1 is the pathlength 

of the cell (1 em., unless otherwise stated). Knowing EA' the concentration 

of the complex in less basic solutions could then be determined. 

For less reactive substrates, with small equilibrium constants, where 

side reactions involving uncomplexed substrate took place, the extinction 

coefficient of the compJ ex in water \'las determined by an extrapolation 

166 procedure as follO\·ts. On going fro!ll \'later to 100!1. DMSO the equilibrium 

constants for complex formation increase by several orders of magnitude. 6 ' 8 

Thus for a given base concentration it was possible to achieve complete 

conversion to complex at some H20-DI-ISO composition, above \"hich increasing 

the DI-1SO content resu.l ted in a linear increase in the optical density. 

Extrapolation of the linear portion to 0% DMSO gave a value for the optical 

density for complete conver.Rion. t:o complex in pure \•Ia ter. 

B. Proton magnetic resonance spectroscopy 

Two instruments were used: a 60 MHz Varian HA56/60 and a 90 MHz Bruker 

HX90E. Measurements were usually made at ambient probe temperature (40±2°C 

for the Varian and 22±2°C for the Bruker) unless otherwise stated. Freshly 

prepared solutions of substrate (ca. 0.2~) in the appropriate solvent were 

used. Tetramethylsilane (TMS) was used as internal reference. HO\'Iever for 

aqueous solutions the sodium salt of 4,4-dimethyl-4-silapentane sulphonic acid 

was used. 
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c. Stopped-flo.,., spectrophotometry 

This has been the main technique employed for the kinetic measurements in 

the present work. However, because of its versatility the stopped-flow 

apparatus has also been used for equilibrium and spectral shape measurements 

as described later. 

The instrument used here was a 'Canterbury' SF-3A apparatus (Nortech 

Laboratories Ltd., formerly NP Consulting) recently developed by Caldin and 

196 
coworkers. As it is someNhat different to other stopped-flo\\' instruments 

at present available (e.g. the Durrum D-100 Series), some comment is perhaps 

appropriate. 

Monochromatic light from a Bausch and Lomb high intensity grating 

monochromator (1350 grooves/nm., 500 nm blaze 33-86-76) Nas directed into a 

siHca measuring cell (2 mm. path length) by means of a flexible silica light 

guide and from there by another light guide to a photomultiplier. The 

signal from the photomultiplier was fed to a Tektronix 5103N D11 single-beam 

storage oscilloscope. (Time-base calibrated within 5~ and volts/division 

calibrated to better than 2%) . 

One advantage _of the present system is that optical alignment is 

eliminated by use of the flexible light guides and consequently the mixing 

chamber and observation tube can bl::! i1wnersed in a large thermostat tank 

together with glass coils containing the reactant solution (see Figure 2.1). 

Thus the solution reaching the mixing chamber and the mixed solutions are at 

thermostat temperature. 

The two reactant solutions are taken from reservoirs into 2 ml. driving 

syringes which are connected to the thermostatted coils by glass tubing. 

Activation of the syringes either pneumatically or manually causes reactant 

solutions at bath temperature to mix in the chamber and pass into the light 

path. Spent reactant solution is forced out into a stopping syringe the 

plunger of which comes up abruptly against a block, thus stopping the flow. 

At the same time the osci_lloscope time-base· is triggered by a microswitch and 



REACTANT 
INLI£VS 

5YiitUNGIES 

UGMT GUUDIE ~~ 
(PHOTOMULTBPUIER) 

MIXING 

FIGURE 2.1 

STO~PBNG 

OBSEllVA11'10N ----...,.-:!~~~ 
POINT 

WAST~ 

OUTLlEV 

UGHV GU6D~ 
( !Ff~OM UG~Y 
SOUI:tCE) 

CCNTROLLED COILS 



I 

- 50 -

the reaction in the stationary solution is followed spectrophotometrically. 

Only reproducible traces were measured for both kinetic and equilibrium 

measurements. 

As stated earlier, besides kinetic measurements, equilibrium and spectzal 

shape measurements were made. They were performed on substrates where the 

life-time of the complex was too short to observe by conventional means. 

Optical density measurements were determined as follows. The base 

solution was placed in the light path and the voltage to the photomultiplier 

adjusted (between 0.5 and 1 k.V., depending on wavelength) to give, typically, 

5 volts for full scale deflection - 0 volts corresponding to 0% transmission 

and 5 volts corresponding to 100% transmission. 

0 volts 

l -

~ 
~· ~ 

I ""' "r-.. ... 

x volts 

5 volts l 
I 

........ 
~ 

I 

FIGURE 2. 2 

~ --

1 o• transmission 

-.;; 

--
100% transmission 

With base alone in the light path the photomultiplier signal was displayed 

and stored on the oscilloscope screen. This was taken as 100% transmission 

(5 volts) i.e. it was assumed the base solution had zero absorption. Without 

allowing the signal to be displayed, both reactants were flushed through the 

cell a number of times to remove any effects of back diffusion into the coils. 
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Runs were performed until voltage changes \vere reprodt~cible. A typical trace 

is shown in Figure 2.2. 

Knowing the mV/division setting on the oscilloscope, the voltage change, 

x, was determined. The optical density was calculated as follows: 

light intensity, I, reaching photomultipLier o. voltage, V, displayed. 

Thus, 

v I 
0 0 -v I 

I v 5 0 0 
loglo Hence O.D. = loglO I log1ov 5-x 

Such optical density measurements were repeated at different wavelengths so 

obtaining a spectrum. 

for kinetic measurements scale readings were not converted to optical 

densities but were used as a direct measure of concentr.at:!.on. This is valid 

if the-optical density changes involved are <0.02. This can be demonstrated 

in 'l'able 2. 1. 

TABLE 2. 1 

v v 
0 0 for y=l] Vertical Scale Reading (y) Volts (V)* log( /V)=O.D. y X [log /V 

0 5.00 0.0000 

1 4.98 0.0017 0.0017 

2 4."96 0.0035 0.0035 

3 4.94 0.0052 o.oqs2 

4 4.92 0.0070 0.0070 

5 4.90 0.0088 0.0087 

6 4.88 0.0106 0.0104 

7 4.86 o.ot"23 0.0122 

8 4.84 0.0141 0.0139 

* For 20 mV/division and 5 volts for 100% transmission 

As can be seen the scale is approximately linear in optical density. 
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For a kinetic run a suitable time-· base was chosen so that ca. 90% of the 

reaction could be follo.,.Ted on the first trace. The oscilloscope was then 

triggered by depressing the • automatic trigger • button to obtain an • infini t:y • 

scale reading. Where a reliable 'infinity• reading could not be obtained 

owing to secondary reactions, rate constants were calculated by Guggenheim's 

197 
method. Rate constants quoted, the average of 5-6 kine1:ic runs, were 

reproducible within 5%. 
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CHAP'l'ER 3 

A STOPPED-FLOW KINETIC STUDY OF THE REACTION OF SUBSTI'I'UTED 

THIOPHENOXIDE IONS WI'I'H 1-CHLOR0-2, 4-DINITROBENZENE - CORRELATION 

OF THE RATES WITH PROTON AND CARBON BASICITIES 

INTRODUCTION 

Thiophenoxide ions and thiolate ions in general, having been recognised 

to be strong nucleophiles, havP. been "Vtidely used in studies of nucleophilic 

ub t . t' 14,17 s s ~tu ~ons. Also it has been noted
198 

that sulphur nucleophiles 

often have greater reactivities than \·10uld be expected from their Br¢nsted 

basicities. The latter give a measure of their thermodynamic affinity for 

protons represented in equation 3.1 

RS + RSH 3. 1 

Thus for the reaction of a series of oxygen nucleophiles "VIith chloroacetate 

ions a good correlation \·las observed between the rates and the basicities of 

the nucleophile. HO\'lever sulphite and thiosulphate ions had enhanced 

reactivity compared to their Br¢nsted bas.icities. 198 

This variance between reactivity and basicity has been explained in terms 

of the ease of polarisation. An atom whose outer electron shell is easily 

distorted (polarised) will readily adjust to the requirements of the transition 

199 
state. Thus for a series of atoms, those which have outer occupied 

electronic shells further away from the nucleus are necessarily more readily 

polarisable and therefore should be better nucleophiles. 

Basic and nucleophilic species clearly can be defined in a similar manner 

in that both possess a pair of electrons capable of being donated to an 

electrophilic substrate. 
17 

However it has been suggested that nucleophilicity 

should refer to rate phenomena and basicity to equilibria. 
200 

S"VTain and Scott 

have quantified the relative reactivity of various nuclephiles in terms of 

the linear free energy relationship ( 3. 2) "Vlhere k is the second-order rate 
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Sn 3.2 

coefficient for nucleophilic attack by a species whose nucleophilicity ~s n 

on a substrate whose sensitivity to a change in nucleophil.e is S; k is the 
0 

rate coefficient for attack by water, the solvent to which the above equation 

applies. The limitations of an equation such as (3.2) were realised and a 

number of modifications have been made to take into account such factors as 

polarisability and basicity. 
17 

It has also been suggested that it is not reasonable to compare 

nucleophilic reactivity with basicity in the Br¢nsted sense. Rather the 

displacing tendencies (nucleophilicities) of various reagents at a given atom 

should be compared with their thermodynamic affinities for that atom. 

Therefore nucleophilic displacements at carbon, for example, should be 

f d I b b • • I 
173 h h d • ff • • f } re erre to the car on as1c1ty, or t e t ermo ynam1c a. 1n1ty o· t1e 

nucleophile for carbon. 

The formation of stable Meisenheimer-type complexes froin 1,3,5-trinitro-

benzene and a variety of nucleophiles has provided a convenient and relatively 

easy method for determining carbon basicities. Equilibrium constants, K, 

+ Nu K ' 3.3 

( 3. 1) 

which can readily be determined, were obtained for a series of oxygen and 

. sulphur nucleophiles with 1, 3, 5-trinitrobenzene, and the values obtained used 

as a measure of carbon basicity. 
- _. 160 

For the sulphur bases EtS and PhS , 

carbon basicities are considerably enhanced compared to the values expected 

from their proton basic.ities. This can be explained in terms of the 'hard' 



- 55 -

201 
and 'soft' acid and base concept; sulphur being a .'soft' polarisable base 

has a greater affinity for the 'soft' carbon atom than the 'hard' proton. 

In the present work the nucleophilicities of a series of substituted 

thiophenoxide ions have been determined by measuring the rates of displacement 

of chloride ion from 1-chloro-2,4-dinitrobenzene in 95/5 (v/v) ethanol-water. 

The rates are compared with the 'carbon basicities' of the thiophenoxides as 

measured by their thermodynamic affinities for 1,3,5-trinitrobenzene in the 

same solvent system. 

EXPERI l-iEN TAL 

The preparation and purification of the solvents of the substituted 

thiophenols is described in Chapter 2. Kinetic measurements were made using 

a 'Canterbury' stopped-flow spectrophotometer. The increase with time of the 

concentrations of the reaction products, substituted phenyl 2,4-dinitrophenyl-

sulphides, was measured. These have absorption maxima in the 350 nm region. 

However owing to the absorption of the substituted thiophenoxides at this 

wavelength measurements were made in the 400-410 nm range where the products 

still show significant absorption ans 1r1here there is little interference from 

absorption by the substrate or the nucleophiles. 

Nevertheless some difficulty was encountered with thiophenoxide ions 

containing 3-acetyl-, 4-acetyl- and 4-nitro-substituents. These thiophenoxides 

show considerable absorption in the visible region and therefore to obtain 

a suitable change in optical density, measurements were made at longer 

-4 
wavelengths (410-500 nm) using a substrate concentration of 5 x 10 M. For 

the 3- and 4-acetyl-substituents an increase in absorption with time was 

observed at the wavelength of observation. However 2,4-dinitrophenyl 4-

nitrophenyl sulphide has a smaller absorption than the 4-nitrothiophenoxide ion 

at 503 nm and thus a decrease in optical density with time was observed. The 

slowness of the reaction in this case also gave rise to some difficulty. A 

stable baseline and hence a reliable 'infinity' value could not be obtained. 

197 
~ate constants were therefore evaluated using Guggenheim's method. 
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The concentration of 1-chloro-2,4-dinitrobenzene used for the other 

5 -2 
substituted thiophenoxides was 5 x 10- ~and two base concentrations (1 x 10 

-3 
and 5 x 10 M) were used in the presence of different excesses of the 

substituted thiophenol. 

A well-known problem encountered when \'larking with thiols is their 

aerial oxidation202 to the corresponding disulphides especially in the 

presence of base. Since the rate of oxidation was expected to be several 

orders of magnitude slower than the substitution reaction under investigation 

no special precautions were taken. However measurements were made as soon as 

possible after preparation of the solutions. 

RESULTS AND DISCUSSION 

In all cases the concentration of the substituted thiophenoxide ions \'las 

in large excess (>10) over that of the substrate and the measured changes in 

absorbance followed first-order kinetics. A set of data from a typical. run 

is given in Table 3.1. The calculated second-order rate coefficients k(= k b I 
0 s 

TABLE 3.1 

-5 
Rate Data for the Reaction of 1-Chloro-2,4-dinitrobenzenc (5 x 10 ~V with 

-2 I ) 25o Sodium 3-Methylthiophenoxide (1.03 x 10 M) in 95% (v v Ethanol-Water at 

Time Scale Reading 
(sec) (arbitrary units) 

k . ous 
(sec-1) 

0 1.95 

0.05 2.80 3.32 

o. 10 3.57 3.46 

0. 15 4.21 3.48 

0.20 4.75 3.50 

0.25 5.20 3.50 

0.35 5.85 3.46 

0.40 6. 10 3.44 

0. so 6.50 3.43 

0.65 6.91 3.45 

"" 7.50 
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[Nasc6H4R])were, within experimental error, independent of the excess 

concentration of thiol. This can be shm-m by reference to the data for 4-

bromothiophenol given in 'l'abl e 3. 2. The thiolate anion is therefore the 

TABLE 3.2 

Invariance of Second-order Rate Coefficient, k, with Base and Thiol 

Concentrations for Reaction of 1-Chloro-2,4-dinitrobenzenes with 

Sodium 4-·Bromoth:i:ophenoxide 

[4-Bromothiophenol] t . h -
[HO J t . h k k 

S Ol.C --s Ol.C obs 

(M) (!'!) -1 (sec ) (l.mole 
-1 -1 

sec ) 

0.02 0.005 0.44 ± .01 88 ± 2 

0.03 0.005 0.43 ± .01 86 ± 2 

0.02 0.010 0.85 ± .02 85 ± 2 

0.04 0.010 o. 86 ± .02 86 ± 2 

sole nucleophilic species and unionised thiol does not participate in the 

reaction. 

The second-order rate coefficients for the reaction of the substituted 

thiophenoxides with 1-chloro-2,4-dinitrobenzene arc given in Table 3.3. It 

is well established that the products of the reaction are the substituted phenyl 

2 4 d . . h 1 1 h"d 203,204 , - J.nl.trop eny su p l. es. The nucleophilic displacement of chloride 

ion by thiophenoxide will occur by the accepted two-step intermediate complex 

h 
. 17 

mec anJ.sm. 
204 205 

Bunnett et al ' have shown that the rate-determining step 

is the formation of the intermediate complex (3.2). 

Cl 

+ 

(3.2) 
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TABLE 3.3 

Rate Coefficients for the Reaction of Substituted Thiophenoxides with 

1-Chloro-2,4-clinitrobenzene in 95% (v/v) Ethanol-Water at 25° 

Substituent 10- 2k a b 
K pK 

-1 -1 - -1 a 
(1. mol sec ) (l.mol ) 

4-NI-1
2 

21.0 ± 0.6 2.65 X 10 -3 10.45 

4-0Me 9.6 ± 0. 2 450 9.71 

4-Me 6.4 ± 0. 1 143 9.60 

3-Me 3.4 ± 0. 1 69 9.52 

H 1.90 ± 0.05 4 3. 2 9.20 

4-F 1. 82 ± 0.04 34 8.88 

3-0Me 1.96 ± 0.04 29.5 9. 14 

4-Cl 0.98 ± 0.02 6.0 8. 41 

3-COCH 3 
1. 20 ± 0.02 4.9 8. 27 

4-Br 0.86 ± 0.02 4.8 8.33 

3-Cl 0.56 ± 0.01 2.2 8.09 

3-Br 0.61 ± 0.01 2.0 8.20 

4-COCH 3 0. 32 ± 0.02 0. 5 7.47 

2-Me 2.15 ± 0.03 70 9.87 

2-NH 2 
3.4 ± 0.1 59 9.02 

4-NO 2 
0.03 ± 0.01 

a Equilibrium constants referring to equation 3. 3 (Nu-

from reference 189. 

b The apparent acid dissociation constants (K ) for the thiophenols from a 

reference 189. 
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It does not seem unreasonable to assume that the intermediate complex (3.2) 

might bear some resemblance to the 1,3,5-trinitrobenzene adduct (3.1; Nu = 

In fact a plot (Figure 3.1) of log k versus log K gives an 

excellent straight line (slope = 0.51 ± 0.2, correlation coefficient r 0.99). 

However a similar plot (Figure 3.2) of log k versus pK values for the 
---- a 

corresponding thiols shows more scatter (slope= 0.65 ± 0.05, r = 0.97). 

There is thus definitely better correlation of the nucleophilic reactivities 

of the substituted thiophenoxide ions with their carbon basicities than with 

their proton basicities. 

Correlation even holds good for the ortho substituted thiophenoxides 

where steric effects are most likely to be dominant. This is exemplified in 

the case of the 2-methylthiophenoxide ion. Figure 3.2 indicates that the 

reactivity of 2-methylthiophenoxide is considerably reduced compared with that 

expected from its proton basicity. This is likely to result from steric 

interaction in the transition state leading to the intermediate (3.2). 

However the point for 2-methylthiophenoxide falls virtually on the line in 

Figure 3.1 showing that the steric effects almost cancel. This is not 

surprising since it would be expected that the transition state for the 

substitution r-eaction might be similar to the a-complex (3.1; Nu = RC
6

H4s). 

~ +-J... ... ,_ • • .206 . . . d . . d t h f r·ur ..... ermore, ~ '- uas De en e:u·guea tna t the ecrease J.n acJ. s rengt o 

2-methylhiophenols and 2-alkylthiophenols in general compared with their 3-

and 4-isomers results from steric inhibition of solvation of the anion. This 

factor will tend to increase its reactivity.as a nucleophile while steric 

crowding in the transition state has an opposite effec·t. 

H0\11ever when the ortho substituent is an amino group there is a very 

slight enhancement in the rate compared with that expected from the proton 

basicity. This can probably be explained in terms of a stabilising effect 

resulting from hydrogen bonding of the amino group \llith the ort.ho nitro group 

in the transition state. 
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It is interesting to note that excellent agreement is observed (see 

Table 3.4) between the nucleophilic reactivities of substituted thiophenoxide 

ions and their carbon basicities for a number of systems quoted in the 

literature. 
. 208-210 

In fact t\·Jo groups of workers have reported good carbon 

basicity-rate correlations for reaction of thiophenoxides with three different 

types of substrate since the equilibrium constants for 1,3,5-trinitrobenzene-

189 
thiophenoxide complexes were published. In all cases quoted in Table 3.4, 

correlation coefficients for the carbon basicity-rate plots are significantly 

closer to unity than for the proton basicity plots. 

Rate data are often correlated by means of these Br¢nsted-type plots 

or the Hammett ap relationship. The magnitude of the Br¢nsted a values 

and the value of p are often assumed to measure the extent ~f charge 

development in the trancition state. Thus for the present work a a value 

of ca. 0.5 could be interpreted in terms of roughly half the negative charge 

being transferred from the nucleophile to the substrate in the transition state. 

However the use of the Hammett relation and Br¢nsted a and a values has 

1 b ... d 213 . h h . . f 1' f recent y een cr1t1c1se , 1n t at sue 1nterpretat1ons o 1near ree energy 

relations are not consistent with structure-reactivity correlations invoking 

variable transition states. This is well exemplified in the similarity of 

the a values for the reaction of substituted thiophenoxide ions with £

nitrophenyl acetate (0.54)
208 

and £-chloronitrobenzene (0.47)
207 

and for the 

present work (0.51), the rate constants encompassing six or.ders of magnitude. 

It is obvious that rate-equilibrium correlations will improve as the 

differences in structure and environment of the compounds being compared are 

decreased and it was suggested
209 

that carbon basicities derived from 

Meisenheimer complexes were particularly suitable for correlation with the 

rates of nucleophilic addition at activated olefins since both involve attack 

2 
at an sp carbon. This is borne out by the better correlation for substrates 

2 
"'hose site of attack is an sp carbon over those where att.ack is either at an 

3 211 
sp (4-substituted benzylbromides ) or an sp hybridised carbon (ethyl-
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TABI.E: 3. 4 

Br¢nsted 13 Values and Correlation Coefficients (r) for Rate Correlations 

of a Number of Substrates and Substi 1:uted Thiophenoxides \-lith Carbon 

(log- K) and Proton (pKa) Basicities 

Substrate a pK b log K Reference 
a 

a r a 

1-Chloro-2,4-dinitrobenzene 0.65 0.97 0.51 

4-X-Nitrobenzenes X = r, 0.49 0.950 0. 39 

Cl 0.59 0.961 0. 47 

Br 0.58 0.947 0.46 

I 0.57 0.938 0.45 

4-Nitrophenyl acetate 0. 72 0.961 0.54 

Phenylvinylsulphone 0. 37 0.901 o. 30 

2-X-3-Y-thiophenes 

X = N0
2

, Y = Br o. 43 0.91 0.36 

X Br, Y = N02 
,.., ll'l 
Ve""'::L. 0.832 0. 34 

4-X-Benzyl bromides 

X = OMe 0.14 0.889 0.12 

Me 0. 20 0.925 0.13 

H 0.20 0.939 0. 15 

Br o. 26 0.950 0. 19 

N0
2 

0.37 0.932 0.28 

Ethyl phenylpropiolate 0.24 0.879 0.23 

Ethyl 4-methoxyphenylpropiolate 0. 24 0.90 0.24 

a 
Solvent: 1 95/5 (v/v) ethanol-water 

2,5,6 Methanol 

4 50/50 (v/v) ethanol-water 

3,7,8 Ethanol 

b pK values were those for the appropriate solvent system. 
a 

r 

0.99 

0.992 

0.990 

0.983 

0.978 

0.998 

0.995 

0.969 

0.937 

0.954 

0.947 

0.964 

0.981 

0.983 

0.916 

0.958 

The values in 

methanol not quoted in the literature were taken to be those in 95/!J (v/v) 

ethanol-water less 0.6. 

207 

208 

209 

210 

211 

212 

212 
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1 . 212) pheny propl.olate . 'l'his may be fortuitous since different sets of thiol 

substituents were used in each case and therefore such a comparison is not 

strictly justified. However the undoubtedly better rate correlation generally 

observed with carbon basicities results from the fact that in each reaction 

a carbon-sulphur bond is formed. 
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CHAPTER 4 

AN EQUILIBRIUM AND KINETIC STUDY OF METHOXIDE ADDITION TO 

AN ACTIVATED ANISOLE CONTAINING AN ALDEHYDE GROUP 

INTRODUCTION 

Meisenheimer complexes resulting from methoxide addition to highly activated 

anisoles have been extensively investigated. 6 '
8 Results indicate that at 

least two electron-withdrawing substituents are required for complexes to be 

observed·. Equilibrium and kinetic measurements have been made for complexes 

of the ;type (4.1) derived from 4-X-2,6-dinitroanisoles and methoxide ions in 

X 

( 4. ].) 

methanol and data for a number of such complexes are collected in Table 4.1. 

X 

H 

* 

Kl 

-1 
( l.rnol ) 

6 1.5 X 10 

17,000 

280 

6 (5*) 

2 (1. 2*) 

4.3 X 10-3 

9 X 10-5 

TABLE 4.1 

kl 

-1 -] 
(l.mol sec ·) 

141 

17.3 

6.1 

o. 36 

k_l 

-1 
(sec } 

-d 
2. 6 X 10 -

1.04 X 10-3 

22.0 X 10-3 

6 X 10-2 

Reference 

59 

64 

64 

181 

181 

166 

166 

Revised values based on measurements made in the presence of 18-crown-6-

ether - reference 185 
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A number of electron-withdrawing groups, X, have thus been used, but 

there is no report of Meisenheimer complex formation from an anisole 

containing an aldehyde group which appears to have considerable electron-

- 214 
withd~awing ability reflected in its a or a values. 

With aldehydes it is well known that competing reactions occur involving 

solvent or nucleophilic addition to the carbonyl group forming the hemiacetal 

h . t 1 . 215 or em~ace a ~on. Considerable work has been done on the hydration of 

216 
aliphatic aldehydes and ketones, notably by Bell and coworkers. 

.. 

Studies 

on substituted benzaldehydes in basic solution have indicated the formation 

. 1 
217 d 1 "1" h d of hem~aceta s, an recent y equ~ ~brium constants ave been determine 

for the reversible addition of hydroxide ion to the carbonyl group of a series 

of substituted benzaldehydes in water.
218 

The abnormal activation parameters 

observed for the nucelophilic substi tut.i..on reaction of chloroni·trobenzenes 

containing aldehyde or cyano groups \-litl! methoxide ion in methanol were 
219 

attributed to the reversible formation of hemiacetal. or imido ester respectively. 

The results which follow indicate that for 4-methoxy-3,5-dinitrobenzaldehyde 

in methanol competition exists between Meisenheimer complex and hemiacetal 

formation. 

EXPERI!vlENTAL 

P.m.r. measurements 

Spectra were recorded at 60 MHz and at 90 MHz. Substrate solutions 

(ca. o.2M) were made up in the appropriate solvent just before they were 

required. The Meisenheimer complex was generated in situ on adding, by 

syringe, methanolic sodium methoxide (2M) or lithium methoxide (1M). 

Visible spectral measurements 

Spe!==tral shapes \-lere recorded on Unicam SP800 and SP8000 instruments. 

Optical density measurements for equilibrium and kinetic data were made a·t 25°C 

using a Unicam SPSOO spectrophotometer. It was found convenient to make kinetic 
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measurements by addition from a syringe of a small volume of a concentrated 

solution of the parent aldehyde in methanol to a solution of methanolic 

methoxide which had previously been thermostatted in the measuring cell. 

Meas~rements were begun ca. 10 seconds after mixing and continued at suitable 

time intervals over 3-4 half-lives. Infinity readings were taken after 10 

half-lives. The data for a typical run are given in Table 4.2. Rate and 

* 

TABLE 4.2 

·Rate Data for the Reaction of 4-Methoxy-3,5-dinitrobenzaldehyde 

(3.9 x 1o-·5t-1) with Sodium Me1-.hoxide (2.02 x 1o-·
2

.M) in Ivlethanol at 25°c 

Time 
(sec.) 

0 

2S 

so 

7S 

100 

130 

160 

195 

240 

300 

360 

.., 

Measured at SOO nm 

Optical Density* 1o\ 
obs 

0.020 

0.041 4.50 

0.061 4.67 

0.079 4.75 

0.09S 4. 79 

0.112 4.84 

o. 126 4.83 

0.140 4.82 

0.1S6 4.89 

0.172 4.92 

0.183 4.88 

0.21.7 

equilibrium measurements made by M.A. El Ghariani have been included for the 

sake of completeness. 
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RESULTS ru~D DISCUSSION 

P.m.r. spectra 

The spectrum of 4-methoxy-3,5-di!litrobenzaldehyde dissolved in deuterio-

chloroform shows three sharp singlets with shifts (o) 10.1, 8.6 and 4.2 p.p.m. 

and relative intensities 1:2:3 which are attributed to the aldehydic, aromatic 

and methoxy protons respectively. In Dt-1SO the spectrum is very similar, the 

shifts being &10.1, 8.8 and 4.1 p.p.m .. Addition of a little concentrated 

sodium methoxide in methanol to the substrate in DMSO causes an immediate rea 

colouration and new bands appear at &9.13, 8.28 and 3.02 p.p.m. with relative 

intensities 1:2:6. On increasing the sodium methoxide concentration, these 

bands grow in intensity at the expense of those due to the parent. The nm.,r 

bands are consistent with the Meisenheimer complex (4.1; X= CHO) and the 

shifts to high field observed on comple}tation are similar to those found in 

6,8 
analogous systems. 

However spectra obtained with methanol as solvent are more complicated. 

A solution of the parent in neutral methanol has a spectrum with three small 

bands at &10.03, 8.67 and 4.1 p.p.m. attributed to the unchanged aldehyde. 

In addition more intense bands are observed which can be assigned to the hemia~etal 

(S in the scheme) formed by so'!vent addition to the carbonyl group. The ring 

protons '"' \ \~13' give a singlet _ .... .l"n ,...,.. 
al.. UO • .L.C. p.p.m. while the CH (H ) aild OH (H ) 

a y 

protons show spin-coupled bands at <55.60 and 7.25 p.p.m. respectively. The 

low field portion of the spectrum is shown in Figure 4.1. The assignment given 

above is confirmed when tetradeuteriomethanol is used as solvent, the spectrum 

being similar to that in methanol except that the bands due to methanol addition 

at the carbonyl group are missing. Hemiacetal formation is fairly slow at 25°C 

and it is some minutes before equilibrium is established. Measurement of 

the relative intensities of the ring proton resonances at equilibrium gives 

a value for the equilibrium constant, K (= [S]/[P]), of 8 ± 1. 
s 

Such 

quantitative equilibriwn measurements for hemiacetal formation have recently been 
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The addition of a little sodium methoxide to a solution of the parent 

in methanol results in the disappearance of the Hy resonance through proton 

exchange with the solvent (see Figure 4.2).. Combined resonances are now 
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observed for the H and Ha protons in the parent and hemiacetal. 
0'. ~ 

This 

indicates fairly fast exchange on the n.m.r. timescale. Addition of further 

methoxide causes the bands cue to the Meisenheimer complex to increase at the 

expense of the combined parent and hemiacetal peaks (see Figure 4.3). 

Eventual complete conversion to complex is achieved with a sodium methoxide 

concentration of ca. 1M. However with lithium methoxide as added base, it is 

only possible to achieve ca. 50% conversion to complex even at high base 

concentrations. P.m.r. data for the parent aldehyde, Meisenheimer complex 

and hemiacetal are collected in Table 4.3. 

Visible spectra 

4-Methoxy-3,5-dinitrobenzaldehyde dissolved in methanol gives a colourless 

solution. In the presence of sodium methoxide a red colour develops and the 

spectrum shows maxima at 370 and 500 nm. This colour change is reversible on 

acidification. Since the charge on the hemiacetal ion, S-, is isolated from 

the ring charge delocalisation is not possible and therefore the anion would 

not be expected to show any absorption in the visible region. Thus the 

observed spectrum is attributed to the Meisenheimer complex, C. 'I'he spectral 

shape is independent of base concentration but the optical density increased 

with increasing base concentration up to a concentration of ca. 1M when further 

increase caused no spectral change. Spectra of similar shape were obtained 

using lithium or tetra-!!_-butylanunonium methoxides, ho'lrever the limiting optical 

density achieved with lithium methoxide was only about half that obtained 

using the other two methoxides. This substantiates the p.m.r. data which 

indicates ca. 50% conversion to complex using lithium methoxide. 

In methanol-DMSO mixtures spectra are similar to those in methanol but 

with the maxima shifted slightly to longer wavelengths. In media rich 

(>90%) in DMSO a transient yellow species was observed prior to the formation 

of the time stable complex (see Figure 4.4). By analogy with previous 

k 
6,8,57 . 

wor , this transient species 1.s the isomeric Meisenheimer complex 

formed by methoxide addition t.o an unsubsti tuted ring c&rbon. As with other 
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TABLE 4.3 

Chemical Shift Data [o(p.p.m.)] 

Parent Aldehyde (P) 

Solvent H "s OMe a 

Oeuteriochloroform a 
10. 1 8.6 4.2 

Dimethyl sulphoxide a 10.1 8.8 4. 1 

Methano). 10.03 8.67 4. 1 

Tetradeuteriomethanol 10.03 8.67 4.10 

Meisenheimer Complex (C) 

H "s OMe a 

Dimethyl sulphoxide 9.13 8.28 3.02 

Methanol 9.11 8.53 3.0 

Hemiacetal (S) 

H "s OMe (ring) OMe H a _]_ 

Methanol S.Gob 8.22 4.02 3.5 7.25b 

Tatradeute:riuml::!l:hanol 5.60 8.23 4.02 

a 
Spectra recorded at 60 MHz 

b 
These bands exhibit spin coupling with J ca. 7 Hz. 
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1,3-complexes, its stability in methanol-rich media is too low for its 

observation. Visible spectral data for the 1,1- and 1,3-complexes is given 

in Table 4.4. 

TABLE 4.4 

Visible Spectral Data for the Isomeric Complexes of 

4-Methoxy-3,5-dinitrobenzaldehyde and Methoxide 

~ 
-4 

10 E ~ 10-4 E 
max max 

(nm) -1 -1 (l.mol em ) (nm) -1 -1 (l.mol em ) 

1,1-complex a 370 1.9 500 1.5 

1,3-complex b 398 1.7 465 1.7 

a Methanol b· 96~ (v/v) DMSO-methanol 

~quilibrium constants 

Optical density measurements and equilibrium constants for lithium, 

tetra-~-butylammonium and sodium methoxides are given in Tables 4.5-4.8. 

The measurements can be interpreted in terms of the Scheme given earlier. 

In neutral. methanol the parent aldehyde, P, is in equilibrium with its 

hemiacetal, S, with an equilibrium constant, Ks(=[S]/[P]) the value of which 

was directly determined from p.m.r. measurements. In basic solution, as with 

215-219 
similar systems, there will be an equilibrium between the hemiacetal and 

its conjugate base, s-, denoted by K
3

(=[S-]/[S][OMe-]). There is also a direct 

path between P and S involving methoxide attack on the carbonyl group of the 

parent, the equilibrium constant for which, K
4 

= [S-]/[PJ_[OMe-] = K
5
K

3
• The 

equilibrium constant for Meisenheimer complex formation is K
1 

(=[C]/[P][OMe-]). 

f d
182,183,185 

Evidence has been put orwar for the existence of ion-

pairing of Meisenheimer complexes with cations in methanol. In the Scheme 

the association-constant for ion-pair.ing is denoted by K
2

(=[I.P.]/[C][Mn+]). 

Such association constants generally decrease in the order barium > sodium > 



- 71 -

TABLE 4.5 

Equilibrium and Rate Constantsa for the Reaction of 4-Methoxy-

-5 3,5-dinitrobenzaldehyde (3.9 x 10 M) with Lithit~ Methoxide in 

Methanol at 25°C 

[LiOMe] b 3 
O.D. Kc 10 kobs 

--1 
(M) (1. mol ) -1 (sec ) 

0.0096 0.083 17.3 5.8 

0.0192 0.13 15 5.9 

0.038 0. 17 11 7.8 

0.058 o. 195 8.7 7.9 

0.096 0.22 6.4 7.9 

o. 193 0. 24 3.7 10 

0.92 0. 29 ( 1. 1) 

a Data obtained by M.A. El Ghariani 

b Measured at 500 nm 

c 
Calculated from equation 4.1o· using the values K

3 

k c 
1 
-1 -1 (l.mol sec ) 

0.97 

0.94 

1.1 

1.05 

1. 21 

1.5 

-1 
30 l.mol , K = 8 

s 
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TABLE 4.6 

Equilibrium and Rate Constantsa for the Reaction of 4-Methoxy-

3,5-dinitrobenzaldehyde (3.9 x 1o-
5

M) with Tetra-n-butylammonium 

Methoxide in Methanol at 25°C 

[Bu~OMe] O.D. 
b 

Kc Kc (calc) 
c 

--1 
(l.mol ) 

0.0105 0.10 20 20 

0.021 0.16 18 18 

0.042 o. 23 15.5 16 

0.063 0.27 14 14 

0.084 0. 30 13 13 

0.10 0.32 12 13 

0.80 0.56 

a 
Data obtained by M.A. El Ghariani 

b 
Measured at 500 nm 

c Calculated from equation 4.3 using the values, K
1 

d 

-1 -1 -1 
l.mol ,K2 = 10 l.mol , K3 = 30 l.mol , Ks 8 

Calculated from equation 4.10 using the values K
3 

K = 8 
s 

to\ kl 
d 

obs 
-1 

(sec ) 
-1 -1 

(1. mol sec ) 

5.7 

6.0 

6.1 

7~7 

8. 1 

6.5 

210 

-1 
30 l.mol , 

1.09 

1.1 

1.09 

1.4 

1.5 

1.2 
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TABLE 4.7 

Equilibrium and Rate Constantsa for the Reaction of 4-Methoxy-

3,5-dinitrobenzaldeh~de 
-5 

( 3. 9 X 10 M) with Sodium Methoxide in 

Methanol at 25°C 

[NaOMe] b c 3 d 
O.D. Kc Kc (calc) 10 k b k1 0 s 

(M) 
-1 (l.mol ) 

-1 
(sec ) -1 -1 (l.mol sec ) 

0.0096 0. 115 26 24 

0.0192· 0.19 25 24 

0.029 0. 26 28 25 

0.048 0.33 27 25 

0.067 0.37 26 25 

0.115 0.43 25 25 

0.67 0.56 

1.0 0.58 

1.4 0.58 

0.01 
e 0.25 76 74 

o.o2e o. 32 62 61 

0.04e 0.38 47 45 

a Data obtained by M.A. El Ghariani 

b Measured at 500 nm 

c Calculated from equation 4.3 using the values, K1 
-1 -1 

d 

K2 = 30 l.mol , K
3 

= 30 l.mol , Ks = 8 

Calculated from equation 4.10 using the values K3 

K = 8 s 

4.55 

4.55 

5. 1 

5.45 

6.5 

-1 
= 210 l.mol , 

-1 
30 l.mol , 

e Made up to constant ionic strength, 0.1M with sodium chloride 

1.07 

1.12 

1.23 

1.30 

1.50 
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TABLE 4.8 

Equilibrium and Rate Constants for the Reaction of 4-Methoxy

-5 
3,5-dinitrobenzaldehyde (3.95 x 10 M) with Sodium Methoxide 

in Methanol at 25°C 

[NaOMe] O.D.a c 3 
k1 

d 
Kc Kc (calc) 10 k b 

0 s 

(M) -1 (l.mol ) -1 (l.mol ) -1 
(sec ) 

-1 -1 (l.mol sec ) 

0.0039'8· o.o6b 29 27 5.32 1.4 

0.00705 o.1ob 30 27 3.78 0.98 

0.00976 0. 135 31 27 4.47 1.14 
~ 

0.0202 0.217 30 28 4.89 1.2 

0.0404 0. 320 30 28 5.00 1.3 

0.0728 0. 395 29 29 5.79 1.4 

0.0976 0.43 29 29 6.01 1.5 

a Measured at 500 nm 

b -5 
Measurements were made with a substrate concentration of 7. 9 x 10 1\11. 

c 

d 

The values quoted are the actual values divided by 2. 

-1 
Calculated from equation 4.3 using the values K = 240 l.mol 

1 
-1 -1 

K2 = 30 l.mo~ , K3 = 30 l.mol , Ks = 8 

Calculated from equation 4.10 using the values K
3 

K = 8 s 

-1 
= 30 l.mol , 
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tetra-~-butylammonium, and little association is obseryed with lithium ions. 

The n .. m.r. results show that in the presence of sodium methoxide complete 

. conversion to complex is achieved at sufficiently high ba~e concentration and 

therefore the limiting value of the optical.density obtained with sodium 

methoxide corresponds to complete conversion to complex (plus ion-pair) . As 

the visible spectral shape does not change over the whole range of base 

concentration, where the fraction of ion-pairs would be varying, it can be 

assumed that the extinction coefficients of the complex, C, and its ion-pair, 

I.P., are identical. Thus the stoichiometric equilibrium constant, KC, can be 

defined as follows: 

= 

= 

[C] + [I. P.] 

([P] t. h- [C]- [I.P.])[Oflle-]f s o1.c ree 

o. D. (500 nm) 

(0.58-0.D. (500 nm))[OMe L tree 

But [P] t . h = [C] + [I.P.] + [P] + [S] + [S-] 
S Ol.C 

4.1 

Substi.tution for [p]stoich' [C] and [I.P.] in equation 4.1. in terms of K 1, K2 , 

n+ 
K

3
, K

5 
and [M ] gives 

K1 (1 
n+ 

Kc 

+ K
2

[M ]) 
= 

1 + K + KsKlOMe -] s 

4.2 

In the present case K = 8 and thus equation 4.2 reduces to 
s 

n+ 

Kc 

K
1 

(1 + K
2

[M ]) 
= 

9 + 8Kl0Me-] 
4.3 

n+ 
The implications of equation 4.3 with respect toM will be considered 

for each methoxide in turn. 

(i) Lithium methoxide 

When using lithium methoxide as base it can be assumed that K2 = 0 

. 182,183 
in the light of prev1.ous results. Therefore equation 4.3 reduces to 



= 
9 

which on rearranging gives 

1 9 = + 

In agreement with equation 4.4 

(Figure 4.5). The value of K1 
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1 a plot of -- versus 
Kc 

-1 (210 ± 40 l.mol ) 

obtained from the intercept and slope respectively. 

(ii) Tetra-n-butylammonium methoxide 

4.4 

[LiOMe] is linear 

-1 
and K

3 
(30 ± 6 l.mol ) 

. 182,183 
Tetra-~butylammonium 1ons are known to stabilise Meisenheimer 

are 

complexes probably by dispersion interaction. Association constants appear to 

be independent of ring suhstituents in the complexes and have values of ca. 

-1 
10 l.mol • Using this value for K2 and_ the values of K1 and K3 calculated 

using lithium methoxide, excellent agreement is obtained between the observed 

values of KC and those calculated using equation 4.3 (see Table 4.6). 

(iii) Sodium methoxide 

With sodium ions it is thought that in the ion associate the cation is 

held by a cage effect by the two methoxy groups at the position of addition and 

by the t!lectronegative ortho-substituent. 
. 182,183 

For sodium 1ons association 

-1 
constants are in the range 20-100 l.mol depending on the ring substituents. 

-1 
.Ta~ing a value of.K2 = 30 l.mol , experi~ental and calculated values of KC 

are found to agree well for the data given in Table 4.7. The effect of sodium 

ions on the equilibria can be seen by comparing the values of KC obtained 

at constant ionic strength with those obtained in the absence of added 

salt. The calculated values of KC given in Table 4.8 correlate better with 

-1 
the exper.:i,mental ones using 240 l.mol as a value for K •. 

J. 

The addition of barium ions produces quite a marked increase in the 

stoichiometric equilibrium constant, KC, (see Table 4.9) and this is in 

. 183 
agreement with observations made with other 1., 1-d1methoxy-complexes. 



FIGURE 4.5 

0·3 

0·2 

1 Kc !mot r,l 

0·1 

t____ . ---- - - - . I 

0 0·1 0·2 
[ LiOMe] (M) 

Plot of equation 4.4. for reaction of 4-methoxy-3,5-dinitrobenzaldehyde \'lith lithium methoxide in methanol. 
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TABLE 4.9 

Equilibrium Constants for the Reaction of 4-Methoxy-3,5-

dinitrobenzaldehyde (3.95 x 1o-5
M) with Sodium Methoxide 

in Methanol in the Presence of Added Barium Chloride 

3 2+ o.o.a K' b 1o-3K I 
c 10 [Ba ]stoich Kc 2 2 

I 

I 

a 

b 

c 

L· 

(M) -1 (l.mol ) 
-1 

(l.mol ) -1 (l.mol ) 

1 0. 241 36.5 785 2.25 

2 0.281 48.2 777 2.22 

5 0.321 63.6 511 1.35 

10 0. 366 87.7 413 0.98 

15 0. 399 113 384 0.83 

Measured at 500 nm 

-1 
Calculated from equation 4.5 using the values K1 = 210 l.mol , 

-1 -1 
K2 = 30 l.mol , K3 = 30 l.mol , Ks = 8 and assuming no 

association of the barium ions with methoxide. 

Calculated from equation 4.5 using the above values and assuming a value of 

? 
10~ for the association constant of barium and methoxide ions. 
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It is easily shown that equation 4.3 is modified to give 

+ + K
2

'[Ba2+J) K1 (1 + K
2

[Na ] 

Kc = 4.5 
9 + 8Kl0Me -] 

to take into account ion-pairing between the complex and barium ions. Using 

the values of K1, K2 , and K3 as above and the observed values of KC, values 

for K2 • can be calculated (Table 4.9). They are somewhat lower than those 

obtained for similar complexes. However the values of K2 • were calculated 

using t~:te stoicl).iometric concentration of barium ions which will in fact be 

considerably reduced through ion-pairing with methoxide ions. Assuming a 

2 
value of 10 for the association constant of barium and methoxide ions in 

methanol, the concentrations of free barium ions were determined and these 

were then used to re-estimate values of K
2

• (Table 4.9). The decrease in 

the calculated values of K2 • may result from not taking into account the changes 

in spectral properties t·Jhich t·rere observed with the 2-methoxycarbonyl complex 

1 t . . h b . . 173 on camp exa 1on w1t ar1um 1ons. 3 -1 A value of ca. 2 x 10 l.mol would 

therefore seem appropriate for K2 •. It should be noted that the values obtained 

are only very approximate and they should be regarded as giving an order of 

magnitude. However they do demonstrate the strong association of the complex 

with barium ions. 

Kinetic measurements 

Observed first-order rate constants for complex formation are given with 

the equilibrium data in Tables 4.5-4.8. 

A rate equation can be derived in terms of the above Scheme, as follows, 

where k 1 is the rate constant for Meisenheimer complex formation and k_ 1 

the rate constant for reversal to reactants. 

4.6 

But [C + I.P.] = [P] . - [P] - [S] - [S-] 
sto1ch 

4.7 
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Assuming P;:::! S 1 S ;: S and C ~ I. P. are all fast equil_ibria 1 substiuting for 

[I.P.]I [S] and [s-] in 4.7 and then for [C] in 4.6 gives 

d 
~c + r.P.J 

At equilibrium 

- k_1([~]stoich- [P](1 + Ks(1 + K3[0Me-]))) 
= k 1[P][OMe ] - --------~----------n-+----------------

(1 + K
2

[M ]) 
4.8 

d 
~c + I.P.] 

k 1 ([P] t . h- [P] (1 + K (1 + K3[oMe-]))) 
- - S 01C 00 S = 0 = k 1[P]

00
[0Me ] - n+ 

( 1 + K
2

[t-1 ] ) 

- n+ -k
1
[P]

00
[0Me ](1 + K

2
M ) + k_ 1[P]

00
(1 + Ks(1 + K

3
[0Me ])) 

[P]~toich = k_1 

Substituting for [P] . h in equation 4.8 gives 
sto1c 

d Ft:Ec + I.P.J = 

F'rom equation 4 • 7 [ C + I. P. ] = [p] . h- [P](l + K (1 +. K
3

[or>1e-])) 
sto1c. s 

d Ft:Cc + I.P. J 

Hence equation 4.9 gives 

-d[P] 
k

1 
[OMe -] 

----- = ([P] - [P] ) (--------
dt 

But 

--·· 
·• . 

= 

w 
1 + K

5
(1 + K

3
[0Me-]) 

d[P] - ---- = 
dt k b ([P] - [P] ) 

0 S DO 

k = 
obs + 

and using equation 4.2 

kobs = ([OMe -] 
1 + Ks(1 + K

3
[0Me-]) 

+ 

4.9 

4.10 
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Values of k 1 calculated using equation 4.10 and given in Tables 4.5-4.8 agree 

well for the three methoxides. 

Values of rate and equilibrium constants obtained from the present work 

are collected in Table 4.10. 

TABLE 4.10 

Equilibrium and Rate Constants for the Reaction of 4-Methoxy-3,5-

dinitrobenzaldehyde with Methoxide in Methanol at 25°C 

8 ± 1 -1 
k1 1 o. 2 

-1 -1 K - l.mol = ± l.mol sec s 

210 40 -1 
k 5 1 1o-3 -1 

K1 = ± l.mol = ± X sec -1 

K2 = ca. 30 l.mol 
-1 

I 2 103 -1 
K2 = ca. X l.mol 

K3 30 ± 6 l.mol -1 

Comparing these results with the data giVen in Table 4.1 shm.,rs that the 

aldehyde group has a similar stabilising effect to a cyano group. However 

in the light of the present work and Miller 1 s earlier results with aldehyde 

d ub ' 219 ' b h h dl I lt f 4 an cyano s st1tuents, 1t may e t at t e Fen ers resu s or -cyano-

2 6 d . . . 1 64 1 , - 1n~troan1so e are anoma ous. Their structural measurements were made 

in DMSO and consequently incursion of imido ester formation would not have 

been detected. It would therefore he of :i.ntP.r.P.st to obtain the p.m.r. 

spectrum of 4-cyano-2,6-dinitroanisole in methanol. In the present case if 

'hemiacetal formation is neglected the value of the equilibrium constant for 

complex formation turns out to be an order of magnitude smaller than the true 

value of K1. 

Thus it would seem preferable to make structural studies in the same 

solvent as that used for kinetic and equilibrium measurements. This argument 

has recently been substantiated in a study of the methoxide addition to a 

th . h d . . 102 cyano 10p ene er1vat1ve; in D!vtSO base at.tack occurs at a ring carbon 

whereas in methanol attack is at the cyano group. 
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CHAPTER 5 

A KINETIC AND ~.M.R. STUDY OF THE INTERACTION OF 1-X-2,4,6-

TRINITROBENZENES WITH SODIUM SULPHITE IN WATER 

INTRODUCTION 

Complexes formed from activated aromatic acompounds and sulphite ions in 

aqueous media have been observed and characterised for some time. Sodium 

sulphite solutions were known to dissolve'1,3,5-trinitrobenzene and 2,4,6-

. . 1 . . 1 156 f h. h d tr~n~troto uene g~v~ng co oured solutions rom w ~ch t e parent compoun s 

could be re-isolated. d k 134 . d h . . ... 1 Cuta an Beranc ~nvestigate t e v~s~u e spectrum 

of 1,3,5-trinitrobenzene (TNB) in dilute potassium sulphite solutions and 

showed that the observed spectrum resulted from a 1:1 interaction in which they 

postulated (5.1~ X= H) as being the adduct. 

(5. 1) 

X 
I 

(5.2) 

The changes in the visible spectrum observed on increasing the sulphite 

concentration were attributed to the formation of higher complexes resulting 

.from the addition of two or three sulphite groups. The isolation of a 

2- . 157 
red crystalline solid of stoichiometry 1 TNB:2 so

3 
from aqueous solut~ons 

was also an indication of higher complex formation. 

P.m.r. studies of the reactions of sulphit~ ion with a number of 1-X-2,4,6-

trinitrobenzenes (X= H, OH, OCH
3

, NH
2

, NHCH
3

, N(CH
3

)
2

, NHPh and NCH
3
Ph) in 

water and aqueous DMSO have clearly established that the coloured species are 

a-complexes having the basic structure (5.2). 
159 

Thus for X ~ H there was 

no evidence for sulphite attack at c
1 

to give species such as (5.3i and (5.4). 
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X 

I 
N0

2 

(5. 3) (5.4) 

However 2,4,6-trinitrobenzaldehyde is unusual in that sulphite addition 

221 
apparently occurs at unsubstituted ring positions and at c1. 

The possibility of cis-(5.5) and trans-(5.6) isomerism in the 1:2-addicts 

6,8 
had been suggested but until recently no spectroscopic eviuence for such 

X 

(5.5) 

0 N' 2 

. 
(5. 6) 

isomerism had been observed. However in a kinetic study of the interaction 

222 
of 1,3,5-trinitrobenzene and sodium sulphite in water, Bernasconi and Bergstrom 

found evidence for the formation of two distinct species of similar stability 

2-having the stoichiometry 1 TNB:2 so3 thought to be the cis- and trans-isomers 

(5.5 and 5.6; X= H). 
. 221 

It has also been shown that one of the 1:2-adducts 

from 2,4,6-trinitrobenzaldehyde exhibits cis-trans isomerism. 

In the present work the formation of di-adducts from a series of 

1-X-2,4,6-trinitrobenzenes (X = H, OMe, OH, ·NH 2 , NHMe and NMe 2> has been 

investigated. For X ~ H kinetic measurements on 1:2-complex formation were 

made to see if, introducing time as an additional parameter, it is possible to 

'separate' the cis- and trans-isomers. 

EXPERIMENTAL 

P.m.r. measurements 

Samples were prepared by dissolving the substrate in a solution of sodium 
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sulphite (1 or 2~) in \-later or deuterium oxide to give. ca. 0.2M solutions. 

Spectra were recorded at different temperatures between ~· 6 and 8o0 c as soon 

as possible after making up the solutions. Spectra were recorded at 60 MHz 

(X = H) or 90 MHz (remainder) using sodium 4,4-dimethyl-4-silapentane-1-

sulphonate as internal reference. 

Kinetic measurements 

Kinetic runs were performed by mixing aqueous solutions of the substrate 

with aqueous solutions of sodium sulphite in a 'Canterbury' stopped-flow 

spectrophotometer and monitoring changes in light absorption. Solutions for 

kinetic runs were prepared by the appropriate dilution with water of stock 

solutions of the substrate in methanol and sodium sulphite in water, constant 

ionic strength being maintained by the addition of sodium sulphate. Measurements 

were made at wavelengths in the range 400-550 nm. 

RESULTS AND DISCUSSION 

P.m.r. spectra 

(i) 1,3,5-Trinitrobenzene 

The spectrum of a solution of 1,3,5-trinitrobenzene (ca. 0.2M) in 

aqueous sodium sulphite (1~) shows bands which can be attributed to the two 

isomers (5.5 and 5.6; X= H). The solutio~ cooled to 5° gives a spectrum 

with two sharp bands at o8.6 and 8.5 p.p.m. attributed to the hydrogens at 

2 the sp hybridised carbon atoms in the di-adducts and two sharp bands at 

o6.05 and 5.9 p.p.m. attributed to the hydrogens attached to the sp
3 

hybridised 

carbon atoms (see Figure 5.1). As required for complexes of 1:2 stoichiometry 

the bands at o8.6 and 6.05 p.p.m. have relative intensities 1:2 as do the bands 

at o8.5 and 5.90 p.p.m •• At this temperature the isomers are ~resent in the 

ratio 6:4. 

0 On warming the sample to 30 , the bands at o8.6 and 6.05 p.p.m. remain 

sharp while the bands from the other isomer broaden considerably, (Figure 5.2). 
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FIGUl~ 5.1 
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" 
l I I 

9 8 7 6 
6(ppm) 

P.m.r. spectrum of 1,3,5-trinitrobenzene (0.2M) in aqueous sodium sulphite solution (1M) at s0 c. 



FIGURE 5.2 

I I 

9 8 7 6 
S (ppm) 

P.m.r. spectrum of 1,3,5-trinitrtibenzene (0.2M) in aqueous sodium sulphite solution (1M) at 3o0 c. 
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The broadness of these bands at probe temperature explains the failure to 

b h 
. 159 

o serve t em ~n previous measurements. This broadening, which is re.versed 

on re-cooling, could be explained in terms of an increase in the rate, 

for one isomer, of sulphite exchange either between ring positions or with the 

solution. Alternatively an explanation for this effect may be found in 

considering the non-planarity of the 1:2 complexes. Thus in structures (5.5 

and 5.6; X = H) the substituents H and so3 may take up either pseudo-axial 

or -equitorial positions at the sp
3 

hybridised carbon atoms analogous to 

substituents in cyclohexane. However in the trans-complex (5.6, X = H) 

repulsion between No2 and the bulky sulphite groups may result in a near 

planar molecule rendering the two hydrogens equivalent. On the other hand, 

in the cis-form (5.5; X= H) one of the two possible conformations (5.7) or 

(5.8) may be much preferred. 

H 

situation where change 

It is therefore possible to envisage a 

NO -2 

H 

rate of 'flipping' of the molecule about AA', and 

hence interconversion of the confor.mer.s, (5.7) and (5.8),, with temperature 

could result in the observed broadening. It-would seem reasonable to suggest 

that (5. 7) would be the conformation preferred since the electrosta·tic 

repulsion between the sulphite groups in axial positions and the nitro group 

carrying the localised negative charge would be considerably reduced compared to 

(5.8) where the sulphite groups are 'equitorial'. 

223 
These p.m.r. results are in accord with those found by Strauss in 

deuterium oxide and are consistent with Bernasconi's
222 

kinetic treatment in 

terms of cis-trans isomerism. 
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(ii) 2,4,6-Trinitroanisole 

The spectrum of a freshly prepared solution of 2,4,6-trinitroanisole in 

1M sodium sulphite solution in deuterium oxide at 25° shows, apart from the 

residual solvent peak, two sharp singlets at cS6.1 and 4.18 p.·p.m. of relative 

intensity 2:3 attributed to the ring protons anq the methoxyl protons 

respectively in the 1:2-adduct (Figure 5.3). Cooling the solution to ca. 5° 

has no effect on the position or shape of the band at cS6.1 p.p.m.; the 

absorption also remains unchanged at 50°. However singlets at cS6.27 and 

2.82 p.p.m. begin to increase in intensity at the expense of those at cS6.1 and 

4.18 p.p.m. (Figure 5.4). After some time at 50° and on returning to 25° the 

initial absorptions almost disappear leaving intense bands at cS6.27 and 2.82 

p.p.m. A small band at cS3.36 p.p.m. is also present (Figure 5.5). 

These changes in the spectrum can be accounted for in terms of demethylation 

of the uncomplexed anisole by sulphite ion to give picrate and methanesulphonate 

ions, as follows:-

0 

o
2
N N02 0 

I 
> + H C-S=O 

3 I_ 
0 

N02 

The picrate ion then forms the 1:2-adduct with sulphite resulting in the 

band at cS6.2 p.p.m. (see picric acid). The small absorption at cS3.36 p.p.m. 

almost certainly results from methanol produced by direct nucleophilic 

substitution of the methoxyl group by the solvent or even by sulphite, though 

the latter seems unlikely since steric effects around c
1 

in the intermedia·te (5.9) 

(5.9) 
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FIGURE 5.3 

s 

I I ______ _ __j 

6 5 4 3 
6(ppm) 

P.m.r. spectrum of 2,4,6-trinit%·oanisole (0.2M) in 2M sodium·sulphite solution in o
2
o at 25°C immediately 

after preparing the sample. Bc:.nd marked 's' is solvent peak •. 



FIGURE 5.4 

s 

- I 

6 5 4 3 
S(ppm) 

P.m.r. spectrum of 2,4,6-trinitroanisole (0. 2~1) in 2M sodium sulphite solution in o
2
o at ca. 50°C. 

Recorded ca. 30 mins after preparing the sample. Band m•~rked 's ' is solvent peak. 



FIGURE 5.5 
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~ 
I I I 

6 5 4 3 

6(ppm) 
P.m.r. spectrum of 2,4,6-trinitroanisole (0.2M) in 2M sodi~~ sulphite solution in o2o. Temperature 

returned to 25°c and recorded ca. 2 hours after preparing the sample. Band marked 's' is solvent peak. 
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would be expected to be large. The peak at 62.82 p.p.m. can be attributed 

to the methyl resonance of methylsulphonate. Addition of a drop of methanol 

resulting in an intense absorption at 63.36 p.p.m. confirmed the above 

assignment. 

(iii) N,N-Dimethylpicramide 

The spectrum, recorded at 25°, of a 0.2M solution of N,N-dimethyl-

picramide in 2~ sodium sulphite in deuterium oxide shows two sharp singlets 

at 66.31 and 3.17 p.p.m. of relative intensity 1:3 assigned to the ring and 

methyl protons respectively in the 1:2-adducts. No change in the shape or 

position of the ring proton resonance was observed over the temperature range 

0 7-87 and no new peaks appeared at the higher temperatures. 

( i v) N-l-1ethylpicramide 

The spectrum of the 1:2-adduct of N-methylpicramide at 25° shows three 

sharp singlets at ~6.29, 6.16 and 3.23 p.p.m. of relative intensities 1:1:3. 

The presence of two singlets in the ring proton region has been accounted 

for
159 

in terms of structure (5.10) in which the amino proton is hydrogen-

bonded to an ortho-nitro group thus making the ring protons non-equivalent. 

No2 
{5.10) 

No changes in the ring proton resonances were observed over a temperature range 

of ca. 40° around room temperature. 

(v) Picramide 

The ring protons of the picramide-sulphite 1:2-complex absorb at o6.21 

Cooling the sample to 10° and warming to ca. 80° has no effect on the p.p.m •• 

shape or position of the absorption. However a few minutes at the higher 

temperatures is sufficient to cause the disappearance of the ring proton 
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resonance as a result of some further interaction between uncomplexed substrate 

and either sulphite ion or the solvent. 

(vi) Picric acid 

The di-adduct of picric acid and sodium sulphite shows a single 

resonance at o6.3 p.p.m. for the ring protons. The spectrum remains unchanged 

on cooling to 7° and warming to 40°. However above this temperature the band 

broadens considerably and moves slightly to lower field. Sharp singlets of 

roughly equal intensity appear at o6.48 and 5.75 p.p.m •• The broadening 

effect is reversed on cooling back to 25°, although the two sharp singlets 

still remain. 

The appearance of the two singlets at o6.48 and 5.75 p.p.m. almost 

certainly results from decomposition of the substrate. The broadening with 

temperature of the resonance at o6.3 p.p.m. might, as in the case of the 1,3,5-

trinitrobenzene system, be due to sulphite exchange or to an increase in the 

rate of 'ring-flipping'. 

The n.m.r. results indicate that decomposition of the substrate occurs 

most readily with picramides, 2,4,6-trinitroanisole and picric acid, while 

N-methyl- and N,N-dimethyl-picramides are more resistant. The equilibrium 

constants for 1:2-adduct formation from the latter two substrates are at least 

two orders of magnit-ude higher than those fer the other compounds. T'nis 

suggests that decomposition involves nucleophilic attack on the substrate, 

~r possibly the 1:1-adduct. Thus as expected the 1:2-adducts which carry 

several negative charges are resistant to nucleophilic attack: 

Chemical shift data for the 1:2-adducts are collected in Table 5.1. 

Kinetic measurements 

-5 -4 
The concentrations of substrate were generally between 10 and 10 M whereas 

the concentration of sulphite ions was always at least an order of magnitude 

greater. Thus. attainment of equilibrium followed first-order kinetics. A 

set of data for a typical run is given in 'I' able 5. 2. 
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TABLE 5.1 

Chemical Shift Dataa for the 1:2-Adducts from 1-X-

2,4,6-Trinitrobenzenes and Sodium Sulphite 

X Rin51 Protons Methyl Protons 

H 8.6 ( 1) 6.05 (2) 

8.5 ( 1) 5.9 (2) 

OMe 6. 1 4. 18 

OH 6.3 

6.21 

NHMe 6.29 (1) 6. 16 (1) 3.23 

6.31 3.17 

Shifts measured in p.p.m. downfield from internal sodium 4,4-dimethyl-

4-silapentane-1-sulphonate 

TABLE 5.2 

Rate Data for the 1:2-Complex Formation of N,N-Dimethyl-

-5 -2 picramide (1 x 10 M) and Sodium Sulphite (2 x 10 M) at 

Time 
(m. sec) 

0 

50 

100 

150 

200 

250 

300 

350 

00 

Ionic Strength 0.3M in Water at 25°c 

Scale Reading 
(arbitrary units) 

6.52 

5.00 

3.85 

3.01 

2.40 

1.94 

1.60 

1. 35 

0.60 

k 
~1 
(sec ) 

5.9 

6.0 

6.0 

6.0 

5.9 

5.9 

5.9 
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Measurements were made in the wavelength range 400-550 nm and the 

observed rate constants were independent, within experimental error, of the 

wavelength of measurement. This can be demonstrated in the case of 2,4,6-

trinitroanisole by reference to Table 5.3. 

In all cases over the wavelength range studied, and regardless of sulphite 

concentration, only two relaxation times were observed. The first process 

(1:1-complex formation) was always accompanied by an increase in absorbance 

irrespective of wavelength and sulphite concentration. The second process 

manifested itself either by an increase or decrease in absorbance depending 

on the wavelength and sulphite concentration. Thus for 2,4,6-trinitro-

anisole at 550 nm a decrease in absorbance was observed at all sulphite 

concentrations. 
-3 

However at 430 nm, low sulphite concentrations (<2.5 x 10 M) 

-3 
resulted in an increase and high sulphite concentrations (~2.5 x 10 M) a 

decrease in absorbance. 

The observed first-order rate constants are given in Tables 5.4-5.8. 

Though the present work is primarily concerned with 1:2-adduct formation, 

rate constants for 1:1-complex formation of 2,4,6-trinitroanisole and picric 

acid are given (Tables 5.9 and 5.10) to complement those reported recently 

b . 1 224 y Norr~s et ~· 

The plots of kobs versus sulphite concentration are consistent. with the 

following scheme:-

p + 

2-
P.S03 

so 2-
3 

+ 

2-
P.S03 

2-
p. (S03 ) 2 

k1 
K1 = k 

-1 

k2 
K2 = k 

-2 

Since the relaxation times are well separated then according to standard 

. 225 
procedures, the observed rate constants for the attainment of each 

equilibrium are given by:-

= + 5.1 
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TABLE 5.3 

Invariance of Rate Constant for 1:2-Complex Formation with 

a Wavelength for 2,4,6-Trinitroanisole and Sodium Sulphite 

in Water at 25°C 

1o3[so
3

2-J >.. k 
cbs 

(M) (nm) -1 
(sec ) 

12 400 0.42 ± .02 

430 0. 39 

500 o. 38 

550 0.43 

25 400 1. 78 ± • 1 

430 1.66 

500 1. 81 

550 1.61 

50 400 5.10 ± .2 

430 4.66 

500 4.94 

550 4.87 

75 400 9.53 ± .2 

430 9. 72 

500 9.61 

550 9.95 

100 430 17.08 

500 16.6 

measurements were made without added salt 



a 

b 

c 

d 

a· 
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TABLE 5. 4 

(i) Rate Constants for 1:2-Complex Formation of 2,4,6-Trinitro-

anisolea and Sodium Sulphiteb in Water at 25°C 

to
3
[so/-J k 

cbs 

(M) -1 
(sec ) 

1 0.14c 

2 o. 18 ± .Old 

5 0.31 ± .Old 

7.5 0.49 ± .Ole 

10 1.1 ± • 1 

25 3.5 ± .• 1 

50 7.8 ±.1 

75 11.6 ±.5 

Substrate 1.5 x 1o-5
M unless otherwise stated. 

Made up to ionic strength 0.3M with sodium sulphate 

Determined via Guggenheim's method 

Substrate 1 x 10-4M e Substrate 5 x 1o-5M 

(ii) Rate Constants for 1:2-Complex Formation of 2,4,6-Trinitro-

Made 

anisole and Sodium a 
Sulphite in t·1atcr 

5 
10 [Substrate] 

3 2-10 [so
3 

] 

(M) (M) 

2 10 

4 50 

1.5 100 

1.5 200 

4 

2 300 

4 400 

up to ionic strength 2.1M with sodium sulphate 

k 
cbs 

-1 
(sec ) 

3.8 ± . 1 

30.5 ± 1 

62 ± 4 

129 ± 10 

124 ± 10 

169 ± 10 

275 ± 10 
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TABLE 5.5 

Rate Constants for 1:2-Complex Formation of Picramide 

and Sodium Sulphitea in Water at 25°C 

5 1o3[so3
2-J 10 [Substrate] k 

obs 

(M) (M) -1 (sec ) 

5 5 7.9 ± • 3 

10 8.4 ± • 3 

2 20 9.S ± • 3 

2S 10.3 ± • 3 

1.S so 13.7 ± • 3 

100 20.8 ± • 3 

a Made up to ionic strength 0. 3M with sodium sulphate 

TABLE 5.6 

Rate Constants for 1:2-Complex Formation of N-Methylpicramide 

and Sodium Sulphitea in Water at 2S0 c 

s 1o3[so 2-J 10 [Substrate] k h 3 c-s 

(M) (M) 
-1 (sec ) 

1.5 s 1.7 ± .04 

10 3.3 ± . 1 

20 6.4 ± .2 

30 10.2 ± .3 

so 16. 1 ± • 3 

100 33.4 ± 1 

a Made up to ionic strength 0. 3M \11ith sodium sulphate 
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TABLE 5.7 

Rate Constants for 1:2-Complex Formation of N,N-Dimethyl-

picramide and Sodium Sulphitea in Water at 25°C 

5 to3[SO 2-J 10 [Substrate] k 3 obs 

(M) (M) -1 (sec ) 

1 1 0.19 ± .01 

2 0.45 ± .01 

5 1.4 ± . 1 

10 3.2 ± • 1 

20 5.9 ± . 1 

50 15.4 ± • 1 

100 32.3 ± • 1 

a Made up to ionic strength 0.3M with sodium sulphate 

TABLE 5.8 

Rate Constants for 1:2-Complex Formation of Picric· Acid and 

Sodium Sulphitea in Water at 25°C 

5 1n3rc:::n 2-, 1o [Substrate] 1..-... ~-3 ... ·~obs 

(M) (M) 
-1 

(sec ) 

34 25 5.3 ± • 3 

8 so 6.7 ± .2 

46 100 11.9 ±· .2 

8 200 27.2 ± .3 

3.1 300 50.0 ± . 3 

2.6 400 77.7 ± 1 

a Made up to ionic strength 2.1M with sodium sulphate 
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TABLE 5. 9 

Rate Constants for 1:1-Complex Formation of 2,4,6-Trinitroanisole 

and Sodium Sulphite in Water at 25°C 

5 3 2-10 [Substrate] 10 [so
3 

] k cbs 

(M) (M) -1 (sec ) 

10 1 39.7 ± 1 

5 2 45.0 ± 1 

2 5 59.5 ± 1 

1 7.5 70.5 ± 1 

2 10 80.2 ± 2 

2 12 86.1 ± 3 

TABLE 5.10 

Rate Constants for 1:1-Complex Formation of Picric Acid and 

Sodium Sulphite in Water at 25°C 

5 1o3Cso
3

2-J 10 [Substrate] k cbs 

(M) (J.i) . 
-1 

(sec } 

35 20 116 ± 2a 

23 122 ± 2b 

40 120 ± 
... a 
,{. 

12 so 142 ± 2b 

17 60 124 ± 3a 

80 132 ± 3a 

12 156 ± 3b 

a Made to ionic strength 0.3M with sodium sulphate up 

b Made to ionic strength 2.!M with sodium sulphate up 
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+ 5.2 

Equation 5.1 indicates that a plot of k versus sulphite concentration . obs
1 

should be linear. However equation 5.2 describes a more complex dependence 

on sulphite concentration, which is quadratic at low concentrations 

2- 2-
(K1[so3 ]<<1) and linear at high concentrations (K 1[so3 ]>>1), equation 5.2 

reducing to:-

+ 5.3 

Formation of the 1:2-adducts involves the interaction of two negatively 

charged species and it would be expected that the activity coefficients (f.) 
l. 

II 

of the species will vary with ionic strength (I) according to the Debye-Huckel 

limiting law 

2 
Ae fi 5.4 

where A is a constant (= .509) and e is the charge on the ion.
226 

From 

transition state theory the rate constant for a reaction in a given medium is 

related to the activity coefficients of the reacting species in that medium 

i h d 
. 227 

v a t e Br¢nste -BJerrum equation 

k ,.o 
1\, 

fAfB 
;t 

f 
5.5 

where k0 is the limiting value of the rate constant at zero ionic strength, 

;t 
and f can be regarded as the activity coefficient of the transition state. 

Combination of equations 5.4 and 5.5 readily gives:-

log k = 
0 

log k + 

Thus equation 5.6 predicts a variation in rate with ionic strength. 

5.6 

Although 

equation 5.4 refers to very dilute solutions compared to the ones used in the 

present work, it nevertheless gives an indication of the variations expected 

on changing the ionic strength. It would be anticipated that the change in 

k with sulphite concentration will not follow equation 5.2 unless constant obs 
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ionic strength is maintained. This can be shown in the case of trinitro-

anisole by reference to Figure 5.6. 

4 For picramide, N-methyl- and N,N-dimethyl-picramides, where K
1 

> 10 

-1 3 l.mol , equation 5.3 should hold for sulphite concentrations >10-M and 

this is in fact observed (see Figure 5.7). 

sulphite concentration were straight lines. 

Thus plots of k b versus 0 s _ ___;.,__..;;.. 

The slope and intercept gave 

values for k2 and k_2 respectively. However in the case of N-methyl- and 

N,N-dimethyl-picramides, the intercepts are small and therefore cannot be 

determined with any accuracy. The values of k_2 for these substrates 

quoted in Table 5.11 were obtained from combination of the present k2 values 

159 
and equilibrium constants determined by Crampton. 

In the case of 2,4,6-trinitroanisole and picric acid, where the equilibrium 

constants (K 1) are at least 

2-
between kobs and [so3 ] is 

two orders of magnitude smaller, linearity 

respectively. For 

of the k b versus 
0 52 

2- 2-not observed until [so
3 

] >0.01~ and [so
3 

] >0.2M 

these substrates k2 was determined from the linear portion 

2-[so3 ] plot. Substitution of this value into equation 5.2 

together with K1 obtained from the first relaxation time yielded a value for k_ 2 • 

The rate and equilibrium data for 1:2-adduct formation are given in 

Table 5. 11. 

The low stability and smaller rate constants of formation of both 1:1-

and 1;2-complexes of the picrate anion almost certainly reflect the initial 

negative charge on the substrate. 

It is interesting to note that the equ~librium constant for the formation 

of the di-adduct of N,N-dimethylpicramide and methoxide ion in methanol at 25° 

-1 76 
is ca. 1 l.mol , over three orders of magnitude smaller than that tor 

complexation involving sulphite ion in water. Allowing for the fact that 

water is better than methanol at solvating the more localised negative 

charges of the 1:2-complex, it indicates the greater affinity of sulphur than 

oxygen for carbon especially since the steric requirement of the sulphite ion 

will be much greater than for methoxide. 



FIGURE 5.6 
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Plots of kobs _ve_r~.s~u~s sulphite concentration for 1:2-complex formation from 

2,4,6-trinitroanisole (0) \-lithout added salt, (+) sclution made up to ionic 

strength 0.3~ with sodium sulphate. 
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Plots of k b versus sulphite concentration for 1:2-complex formation from 

as---- . 
~0) picramide, (e) N,N-dimethylpicramide ~1d (0) N-methylpicramide. Ionic 

strength 0.3M maintained by addition of sodium sulphate. 



TABLE 5. 11 

Rate and Equilibrium Data for 1:1- and 1:2-Complex Formation for 

1-X-2,4,6-Trinitrobenzenes and Sodium Sulphite in Water at 25°C 

X k1 k_1 '{a .. 1 k2 k_2 K a 
2 -- -

-1 -1 (l.mol sec ) -1 (sec ) -1 (l.mol ) -1 -1 (l.mol sec ) -1 (sec ) -1 (l.mol ) 

Hb 3.54 X 10 4 125 286 ( 221) 195 21 c 9.3 (9.2 ) 

1.2 0. 13 9.2 

OMe (4. 8 ± 0.4) X 103 35 ± 2 140 ± 20 (210)c 170 ± 10d 0.12 ± .02d 
3d 3 

(1.4 ± 0.3) X 10 (0.9 X 10 )C 

65o ± soe 

OH 280 ± 23d 109 ± 1d 

567 ± see 112 ± 3e 275 ± se 4 ::!: 1e 

4f 
7f 31: 3 

5. 7 X 10 8.1x10 (8.6x10) 
4f 

0.2f 4f 4 
1.4 X 10 7 X 10 (6. 8 X 10 ) 

NH 2 

NHMe 

137 ± 2d 7 ± .1d 

333 ± 4d (0.19) g 

NMe2 
4. 1 X 10 

3f 
0.14f 

4f 4 
2. 9 X 10 ( 3 X 10 ) 323 ± 3d ( .005) g 

a k1 k2 
Kinetic values ( /k_ 1 and /k_ 2>. Figures in parentheses are equilibrium values 

b 

e 

From reference 222. 

~· Ionic strength ~~-

c 

f 

From reference 159. 

Reference 224. 

d 

g 

Ionic strength 0.3~. 
k2 

C,:~.lcula tee. from /K
2 

69e 

19. 6d (18. 5) c 

(1. 8 X 103) ~ 

(6. 2 X 104) C 

'.0 
-.,] 

I 
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224 
As with the 1:1-complexes, the increased stability of the 1:2-adducts 

of N-methyl- and N,N-dimethyl-picramides results mainly from smaller values 

of k_ 2 rather than steric factors favouring complex formation. 

It seems from the present work that when X ~ H only one isomer of the 

1:2-adduct is formed. It may be that the substituent at c1 (X) forces the 

ortho-nitro groups into such a conformation which allows for more effective 

solvation of the negative charges on the adjacent sulphite groups and on the 

nitro groups themselves. 
. 222 

Assuming Bernasconi's ass~gnments for the cis-

and trans-isomers of the 1,3,5-trinitrobenzene 1:2-complex it may be inferred 

that for X ~ H the trans-complex is formed since the values of k2 are very 

similar. This fits in with the supposition, presented earlier, that the 

observed broadening in the p.m.r. spectrum results from the cis-isomer. 

1 . 1 . h b . d 228 th f '1 t b A ternat~ve y, ~t _as een po~nte out at a~ ure o o serve a 

third relaxation time in such systems may be due to an equality or similarity 

in the rates of dissociation for both cis- and trans-isomers. Nevertheless, 

it can be argued that since there appears to be no evidence, especially in 

the p.m.r. spectra, for the existence of two iso1oers at equilibrium, only one 

isomer is preferred, the concentration of the other, if formed at all, being 

too small for detection. 
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CHAPTER 6 

EQUILIBRIUM AND KINETIC STUDIES ON SPIRO-COMPLEX FORMATION IN WATER 

INTRODUCTION 

There is convincing structural evidence for spiro-complex formation on 

2 . 49' 52 treating suitably ring-activated -hydroxyethoxy aromatics (6.1) w1th base. 

Solid complexes of structure (6.2)-(6.5) have been isolated from the respective 

(6. 1) (6. 2) 

(6. 4) 

n 
0 _,0 

(6. 5) 

I 
N0

2 

(6. 3) 

glycol ethers. Analysis of the p.m.r. spectra of solutions of these adducts 

has confirmed their spiro structure. 

3 Such complexes have also provided convincing evidence for the sp 

hybridisation of the c
1 

carbon atom of the cyclohexadienyl systems in 

52 
Meisenheimer complexes. Thus the non-equivalence of the methylene protons 

in (6.5) results from two protons being cis (HA) and two protons being trans 

(H8 ) to the ortho-nitro group as shown in (6.6.); 

(6.6) 
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b . 8, 45 It has een ~nferred that spiro-complexes have considerably greater 

stability than their corresponding non-cyclic analogues. However Fendler 

52 
et al reported similar equilibrium and rate constants for complexes 

(6.2) and (6. 7). Nevertheless, in contrast with Fendler's report, results 

(6. 7) 

b . d b 184 . d. . d bl t b. 1 . . f 1 o ta~ne y Crampton ~n ~cate cons~ era y greater s a ~ ~t~es or comp exes 

(6.2), (6.4) and (6.5) than for their dimethoxy analogues. 

Spira-Meisenheimer complexes are also of current interest as models for 

the intermediates in nucleophilic aromatic substitution reactions. They have 

n 
_.Me-= 0 

(6. 8) (6.9) 

data for (6.8) 81 and (6.9> 229 in water and water-DMSO mixtures. 

In the present work equilibrium and kinetic measurements have been made 

in water for the fcur differently activated complexes (6.2)-(6.5). The 

results indicate, as found in methano1! 84 that the kinetic and equilibrium 

parameters are many orders of magnitude greater than those of their non-cyclic 

analogues. 

EXPERIMENTAL 

Solutions of suitable concentration were prepared immediately before use 

from freshly made stock solutions of reagents. U.v. and visible spectral 



- 101 -

shape Jn•!dSu.rements \K're wade with a Un:i.cam SP8000 n;)cording spectrophotometer. 

Accurate optical d.-::~m;i ty values for equilibrium det:enninations \·Jere made 

using an SP500 inst:.r:umen t. Kinetic data were obtained using a 'CantedJury' 

stopped-flow spectrophot.ometer. Both kineU.c and. equilibrium measurements were 

made in the visible region of the~ spectrum at. the absorption maxima of the 

!>pir.o-complexes. P.m.r. spectra for the 2,-1,6-trinitrobcnzene derivative 

were recorded with a Varian Hl-'.56/60 instrument .. 

RESULTS 

The results obtained for the four complexes \vill be treated individually. 

Hm-tevcr t:he following general conside.rations are applicable in all cases. 

Sp.i.r.o-complex !ormation 

In the pre!;ent case the probable mechanism for spiro-complex formation 

· k · 1 184 . A l J.n al alJ.ne met ia is t.hat suggest.ed by Crampton and Berrwscorn. and 

represented in the follO\ving scheme. 

K 
+ OH 

~--

OCH
2

cH
2
o-

R 

The parent glycol ethel~ is in fast eqHilibrium 1r1it.h the glycolate anion 'llhose 

internal cyclisation to the spiro-complex is sl0\·1. At: the wavelength of 

measurement the parent ethers sho111 little or no absorption. Since there is no 

possibility of the:: negative charge on the glycolate anion being delocalised 

into the a1=omatic system, it is assumed that t.hc anions will have zero or very 

-\\-\\'~-; ;- .. --/'1) ' .... , 
f Lo t ": 

\ - " ;.;(;'I·-~~ 
\ ~ ~ ~ " . ..) 

I ~ =" -. 
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sm~ll extinction coefficients at these wavelengths. 

The measured stoichiometric equilibrium cor.~.tant, KC, can then be defined 

by E!quation 6. 1 from \·ihich equatiur~ G. 2 can be readily cleduCE!d. 

____ [s:e.:~ro comp!_':;:x] ___ _ 
6. 1 

([glycol ether] + [anion])[OH-] 

6.2 

Kinetic measurements were made using concentrations of base in large excess 

of the subst.ru.t.c concentl:·ation or in buffer solutions \·ihere the pH was constant 

during any one kinetic run. In either case att.ainment of equilibrium 

followed first-order kinetics, the rate constant for which is given by 

equation 6.3. 

k 
obs 

k l K[ Ol·l-] 

(1 + K[OH-]) 
+ 

Formation of hydroxide adcucts from spiro-complexes 

6.3 

In alkaline media containg >0.1~ sodium hydroxide the fast formation of 

the intensely coloured spiro-complex was followed by a slower process resulting 

in a decrease in absorption in the visible and an increase in the u.v. region 

of the spectrum. ThE.•se changes \-lere reversible and did not result i.n 

destruction of the substrate. If it is assumed that an interaction occurs 

between spiro-complex and one hydroxide ion to form an adduct A then equation 

6.4 results. 

spiro-complex + OH A K 
2 

6.4 

Measurement of the relaxation times by stopped-flovi spectrophotometry 

revealed that in all cases the second process associated with the decrease in 

absorbance was at least an order of magnitude slower than that for spiro--complex 

formation. Equation 6.5 for the observed first-order rate constant for the 

225 
slower process is obtained by standard methods. 

k I 

obs [ -1 r -., 
1 + K CH • + KK 1 L OH .l 

+ 6. 5 
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Very much slO\.,rcr irr•E!vcrsible rei:l.ctl.ons rr~sul·ting in the formation of t:he 

respective substituted phenols Here also observed. 

The variil.t.:i.on of spectral shape with base concentration is shown in F lgurc 

6.1. T\-.ro reversible equilibria are present. 'rhe first interaction, 

dominant in dilute base solution, ·corresponds to spiro-complex formation (6.2) 

4 4 -·1 -1 
with A 495· (e: 1.8 x 10) and 342 nm (e: 1.3 x 10 l.mol em ) . Dat.a for 

max 

a typical kinetic run are given in Table 6.1. 7\s the base concentration is 

a. 

'l'ABI.E 6. 1 

Rate Data for the Formation of Complex (6.2) from 1-(2-Hydroxy:

cthoxy) -/., 4-dinitronaphthalcnc (6 x lo-6
r-1) at pHa 10.5 in Water at 25°C ·------ . 

'J'ime 

(m. sec) 

0 

5 

10 

15 

20 

25 

30 

40 

50 

60 

70 

co 

Borax buffer, 1. 25 X 1o- 2M 

Scale Re:adi~_!l 

(arbitrary units) 

1. 45 

2.27 

2.94 

3.S8 

4. 18 

4.55 

4.94 

5.54 

5.95 

6.30 

6.50 

7.11 

k 
obs 

-1 (sec ) 

31 

31 

31 

33 

32 

32 

32 

32 

32 

32 

increased the changes indicate conversion to a second species with A 275 
max 

4 4 -1 -1 
(c 2 x 10) and 300 nm (c 1.8 x 10 l.mol em ). Eventually a very slm11 
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Visible spectra of 1- ( 2-hydroxye thoxy) -2, ~-din i tronaphtha1ene ( 3 x 10 -S~) in ·,;ater cor..taining (a) 0, 

(b) 0 .0::., (c) 1.0 and (d) 2 .OM sod!:u.-:1 hydroxide. 
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reaction gave a species \•lith a spectrum (). 390 and 1130 nm) identical to that 
max 

of 2,11-dinitronaphthol. 

Equilibrium and kinetic data for spiro-complex fo:-:mat"ion arc collected 

in 'l'able 6. 2. 
--2 

Conversion to comple>~ is complete in ca. ]. x 10 l't sodium 

hydroxide and thCl:efore opti~al denuity measurements in aqueous buffer 

solutions allo•,Ted direct determination of KC. 'I'he values obtained are 

independent of base concentration and this indicates that in equation 6.2 

K[oli-]<<1 [ ( 3 4 -1] and therefore KC gives directly KK
1 

= 3 ± 0. ) x 10 l.mol . 

The value of the rat.e constant, k , for spiro-complex formation decreases 
obs 

-1 
\\'i th decreasing pH to a minimum value of 2. 3 ± . 1 sec at pii 7 and this 

value then corresponds to k_
1 

in equation 6.3. 

is Hnear (Figure 6.2) with slope (= k
1
K) (~ ± 1) x 

A plot of k versus [OH-] 
obs ----

<1 -1 -1 
10 l. mo 1 sec • Linearity 

here again indicutes that K[OH-]<< 1 (ser:) equation 6. 3). The result:s in 

Table 6. 2 sh0\·1 that vuriation of buffer. concentration at constant pH does net. 

affect the va.l ue of k \•ii thin experimental error, i.ndic.::.ting the abse:1c(; 
obs' 

of buffer catalysis. 

Observation by stopped-fJ.o~,oJ spectrophotometry at. 495 nm E;hows ~hat ir. 

soluti.ons cor.ta.ining >0.1!'!_ sodium hydroxide the initial fast build-up of 

colour is followed by a much sloi.<.•er fad.ing reaction. ~leasurements of optice.l 

density afte_t: t.he att:a.inmt'!nt of the second ac;:uilibri.u.'ll are given in "!'able o. 3 

and \-iere used to calcula;:.e values of K~, the equilibrium constant for higher 
,e. 

complex formation, :.;sing r<.
2 

= (0.535-o.o.
495

i/O.D.-!
95 

:< [OH-]. 'l'he values 

thus obtained increase with base concentration no doubt. reflecting tha-:. t!-1e 

basicity of the !llediui!l should be represen':ed cy an acidity function, of the 

164b . . h h f. ld b d t . r.. J
2

_ type ·-m~c t esc .~gures cou e use ·.o cte..::~ne. 

Rate constants for the second relaxation ti~e at two base concentrations 

are in '!'able 6. 3. In this case since K[OH-J<<l«K
1
K[m('] .:quation 6.5 reduces 

to 

k I - k2[0H-] 
obs 

+ 
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Plot of k b \•ersus [OH J for spiro-complex formation from 1-· (2-

o s -
hydrox:yethoxy)-2,11-dinitronaphtJu\lene in water at 25oc. 
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'.rABLE 6. 2 

Equilibrium and Kinetic Data- for Formation of Comple~~3l_~rom 

Conditions O.D.a 10 
-4 

pH Kc k ---··-··- obs . 
-1 (l.mol ) -] 

(sec ) 

7. 1 b 2.2 

7.4 c 

7.6 c 

B.o d 0.003 

8.97 d 0.123 3.2 

9.0 e 

9.23 d 0.180 3.0 

9. 36 d 0.239 3.5 

9.65 d 0.301 2.9 

9. 77 d 0. 347 3.1 

9.9 f 

10.0 g 

10.04 d o. 393 2.5 

10. 14 d o. 431 3.0 

10. 32 d 

10.5 d 0.480 2.8 

t"o. 72 d 

10.86 d 

12 h 0.535 

a -5 
Measured with Unicam SP500 for 3 x 10 M substrate at 495 nm 

b 

d 

f 

g 

h 

Phosphate 
-2 buffer, 2.5 x 10 ·M 

buffer, l. 25 -2 
Borax X 10 l·1 

Phenol-sodiwn phenoxide, 2.5 X 

Phenol .. sodium phenoxide, o. 25l-1 

Sodium hydroxide, 1 X 1o- 2M 

c 

e 

10-2M 

-2 
Phosphate buffer, 5 x ]0 M 

Borax buffer, 5 x 1o-2
M 

± 0. 1 

2.4 

2.3 

2.5 

3.2 

3.2 

4.4 

6.3 

9.9 

10.1. 

22 

32 

51 

65 



a 

b 
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'l'AllT.E G. 3 

Eqt~.UJ.:.!2E..!:.'3..~~nd K.inctj c DCI.ta ~.9E...2.!X.dro~~!c:l~. l'...ddi.t.i<?~~-'?

.Spj_~omplex_j_6_!.?J .. J.~-~2_-SHl_.2~~~~.1.::::.:-.;: __ ~_!:__?50C_ 

[NaOH] O.D. K 
b 

----- 2 
-1 

(l.mol ) 

0.01 0.53S 

0.10 0.490 1.0 

0.15 0.46 1.1 

0.20 0.43 1.2 

0.31 0.30 1.3 

0.51 0.29 1.6 

0. 71 0.22 2 .o 

1.0 0.16 2.3 

Measured at 495 nm 

Calculated using K
2 

= (0.535-o.o. 495 l/O.n. 495 x [NaOH] 

k I 

obs ---· 
-·1 (sec: · ) 

0.04 ± 0.01 

o.os ± 0.01 

Combination of k
005

' with the known values of K
2 

enabled values of k
2 

and k_;. 

to be determined. ·These measurem~nts were not made at consto.nt. i.on.Lc 

strength so that some variatfon of these parc-u-nete!"s ·..;ith ba::;e concem::raticr. 

would be expected; formation of these higher complexes involves reaction of 

two negatively charged species and a 90sitive salt effect would, a priori, ~e 

expected. 

( ii) ~- ( 2-Hydroxye.tt:.oxy)- 2, 4.. 6- ~r.i.ni t!:ohenzer:e 

The p.m.r. spt~ctrum of the glycol ether has bands at o9.1 (singlet; 

equivalent ring protons, 4.6 (singlet; OH) and 3. 7 and 4.2 p.p.m. (t'tlo 

multiplets; methylene protons). In water in the presence of one equivalent 

of base, the spe.ctrum ShO\o!ed peaks at o0.55 (singlet; ring protons) and 4.3 

p.p.m. (singlet; methylene protons) attributable to the spiro-complex. 
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In aqueous solutions the~ parent ether is in 'i!quilibrium with t:he spiro-

complex, ), 
max 

4 lj -1 -1 
-117 (E 2.5 >: 10) and 470 nm (£ 1.8 x 10 l.n1ol cm ) . Even 

in neutral or slight) y acidic mr~dia some complex is present indicating a 

very large value fo:r KK
1

• 
7 -1 4S 

'l'he vulue of 1.8 x 1.0 l.mol obtained by l·!urto 

is in accord Nith this. 

Rates of colour formation, measured at. 420 nm by mixinq solutions of t.he 

-4 
parent in 10. .!:!_ hydrochloric acid with alkaline buffers \·~ere accurately first-

orde~·. The data for a typical run are given in Table G.4. Variation of the · 

a 

TABLE 6.4 

Rate pata for the Formation of Complex (6.3) from 1-(2-Hydroxy

_ethoxy)-?:,4,6-_!:rini.!:!.Eben~~J.?~0-614)_at._Ett 7.5 in t'i'at:.er at /.5°C 

Time Sci!::!~ Rea~ing 

(sec) (aJ:bi trary units) 

0 1.63 

o. 5 3.08 

1.0 4.22 

1. 5 5.18 

2.0 • 5.00 

2.5 6.27 

3.0 6.63 

3.5 6.90 

4.0 7. 15 

4.5 7.30 

"" 7.70 

Phosphate buffer, 5 :x 10-
2

M 

k obr; 
--1 

(sec ) 

0.54 

0.55 

0.57 

0.57 

0.56 

0.56 

0.56 

0.57 

0.57 

rate constant \·lith pH is given in Table 6.5 and, within experimental error, 

the values of kobs are indE-Jpendent of buffer concentration. From the plot 

of k 
1 

versus [0£-J-] which \'las linear (r~igure 6. 3) a value of (1. 6 ± 0. 3) x 10
6 

ODS 



a 

b 

d 

f 
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Conditions 

!'i. 8 b 

6.0 b 

6.0 c 

6.0 d 

6.2 b 

6.6 h 

7. () b 

7.5 b 

8.0 b 

8 [' .. ) e 

8 •. , e 

9.0 e 

9.0 f 

9.25 e 

k obs 
----=-1 

(sec ) 

0.11 ± 0.01 

0.11 

0.11 

0.11 

o. 12 

0.15 

o./.5 

0.56 

1.4 

5.3 

8.4 

15.6 

30 

-6 -4 
Substrate concentration is in the range 5 x lo - 1 x 10 M 

-2 Phosphate buffer, 5 x 10 .-l·l 

Phosphate buffer I o. 1M 

Borax buffer, 0.125M 

c 

e 

-2 
Phosphate buffe:t.· 1 2. 5 x 10 !:! 

Borax buffer, 1.25 x 1o-
2

M 
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1;-IGURE 6. 3 

-----------·------------------~------------------------
1 

Plot of kobs ~sus lbH-] for sp.i.l:o--con1plex formation from 1-(2-

hydroxyet:hoxy)-2,4-di.nitronaphthalenc i:1 water e.t 25°c. 
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-1 -l . . 
l..mol !-;ec: \.,.as obtc:.1ned for k

1
K. For ·thh; substrate also k[OII-]<<1. 'l'he 

j_nterce!}t ,.;as t:oo small to det".cl~minc a value of k _
1 

\·lith any accuracy. 

Hov~ever using equation 6. 3 for every point in the range 6 S pH S 7 g«ve k _
1 

= 

·-1 
0.095 ± .01 sec . Combinat:ion of this value v.'ith that for k

1
K gives a value 

7 -1 
of 1. 7 x 10 l. mol for KK.

1 
\'ihich is in excellent. agreement \·lith t:hat obtained 

45 
independently by l-1Ul~to. In more acidic solutions the values of k : 

ons 

increased above the minimum value due to an acid catalysed pathway between 

par~nt a.nd complex. '!'his \vill be discussed in detail in Chapter 7. However 

these effects are unimportant: above pH 6 and need not be considered in this 

instance. 

In solutions containing >0.1!i sodium hydroxide further reversible 

reactions occ:ur ,.,.h.i.ch ca.n be sho·.-1n by reference to Figure 6. 4. In the range 

0.1-l.m~ base the absorption at. 417 nm decreases in int:ensity and that at 

480 nm increases. 1\s the base concentration is increased furthm: a band in 

the u. v. at A. 290 nm increases at the ~;::xp. en::;e of "tl:1e visible absorntion. max r 

'l'hese changes can be interpreted in terms of t\-10 successive equilibria involving 

the spii.:o-com;?lex vlith one (A) and two (B) hydrox:!.de i.ons rcspoctively. From 

the changes in optic.:,]. dcnsi ty \d th base concentration, it was possible t.o 

calculate approximate valueR for the equilibrium const.ants K
2 

and K
3 

(defined 

as [B]/[A][OH ]) as!1uming that, as with other di-adaucts containing th:r:ee nitro 

6,8,44 . . 
groups, con1plex A 'ttill only have one absorptton J n the visible reg~on. 

-1 
'l'hus K

2 
has a value of ca. 0.1 l.mol at lt>l base increasing to ·a. 2 at 2r-1 and 

0. 5 at 31'\ base . 
-1 

'I'he value of K
3 

is ~· o. 5 1. mol at 21-:t base and increases 

with base concentration. 

Kinetic measurements of t:he formation of adduct 1\ from the spiro-complex 

'trere made at 420 nm in solutions containing 0. 3-0. 5t>! base. The value 

-1 
obtained for the first-order rate. constant., k b 1

, is 0. 9 ± 0. 2 sec In 
0 5 

this instance equation 6.6. will apply but as K2[oH-]«1 and hence k_ 2>>kiOH-] 

the value of l~obs 1 1t1.i.ll be close to that of l~ .. 2 . 
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'rhe visible spectrum of a solution of the substrate in dilute (<0. 11'1) 

sodium hydroxide so) utions hu.s c:t m<n:imum at 575 nm attributed to the spiro-

complex (6.-1). In more concentrated solutions a second inte:r:action is also 

giving rise species \'lith ). 297 (£ 2.2 10
4 -1 -1 

present 1:o A nm X l.mol em ) 
max 

(Figure 6.5). Since appreciable concentrations of A v1ere formed before complete 

conversion to spl.ro-complex v1as achi~ved, it Has not possible to determine 

directly the extinction coefficient of the l~tter. However using Dn 

166 184 
extrapolation procedure ' on data obtained in Dl'-lSO-water mi"tures .,.1here 

4 -1 -1 
conversion to complex \·/as complete gave e: = ( 1. 85 ± o. 2) x 10 l. .mol Cll) • 

The measun:!d values of KC in Table G. 6 are constant in dilut.e base solutions 

but decrease in solutions containing >0. 1!:! sodium hydroxide. One e:;:plana tion 

could involve the K[OH .. ] term in equation 6.2. However it sr:Jerr.s unlikely that. 

the values of K \~ill differ great:ly amongst t.he substrates stuci(.::d ;::.nci. a more 

plausible e>:planation is the intervention. of higher adduct fcn:mation. 

Examination of the system by stopped-flO\'/ spectrophotometry at 575 nm indicates 

that after the initial spiro-complex formation, typical data being given in 

'.l.'able 6. 7, a sl.m-1e:r: reaction occurs accompanied by a decreas.::: in absorption 

at this \·mveJ.ength. Tiw relaxation times of these processes .:n:e such that t.he 

opt:ical density measur:·ed 'tlith a conve~tion<J.l spectrophotor::et•:r cor.-respo:r:..c:is to 

the value after the attainment of the second equilibrium. 

therefore be determined as follows. 

and 

At equilibrium 

[parent] t . 
1 

= [parent] 
S Ol.C 1 

[soil:o] = ___ ..,_ ___ _ 

K I -

c 
____ _j~piro ]_ ____ _ 

([pa:t:ent] + [A]j [OH-] 

+ [spiro] + 

Values of K
2 

may 

[A] 6.7 

6.8 

6.9 
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(, ( nm) 
Visible spectra recorded immediately after preparing t...'"l.e Sa!:).ples of 1-(2-hydroxye"thoxy)-2,6-dinitrobenzene 

(4. 7 x 10-SM) in water contai:dng (.:~.) 0, (b) l.O, {c) 2.0 and (d) 4.0M sodiu:n hydroxide. 



TA:S!.E 6.6 

Equilibrium and Kinetic Data for Co~ple.K Formation fro~ 1-(2-Hydroxyethoxy)-2,6-Ginitrobenzene in Water at 25°C 

c:; 
[NaOH] ·o-[P .. , 1 _areP..o..._

5 
... .,., Equilibrium O.D.a Ki::: 

c 
c 

K..., 
L 

. d 
!Cobs k. o.os 

,e 

a. 

c 

f 

.... o~c •. --
(1\lj) (M)· 

27 0.010 

24 0.020 

21 0.030 

15 0.051 

15 0.051.g 

7.5 0.051 

9.0 0.071 

6.0 0.103 

6.0 0.206 

6.0 0.31 

3.0 0. 35 

6.0 0. 41 

6.0 0.51 

6.0 o. 72 

Measured with a Unicam SPSOO at. 575 r..m. 

Calculated using equation 6.11. Cl 

.1: 

0.064. ... 

.t: 

0.113 ... 

.1: 

0.147-'-

.t:: 

0. 172J.. 

.1: 
0. 167 .... 

o.oa5f 

0. 14.1 

0.131 

0.230 

0.30 

o. 36 

0.40 

0.44 

_, 
(l.mol -, 

1.29 

1. 30 

1. 31 

1. 31 

1.25 

1. 30 

1. 31 

1. 30 

1.28 

:i.. 21 

1.16 

1.09 

0 0' 
--~ 

-1 
(l.mol ) 

(0. 3) 

0.59 

0.55 

0.57 

0.64 

-1 
(sec ) 

1 .,0 -1- .... 
--V ..:. ;'I 

v 

155 ± 8 

143 ± 4 

152 ± 5 

180 ± 8 

185 ± 8 

218 ± 8 

-1 
(sec -, 

0.105 

o. 110 

0. 115 

b Calculated usinc KC = O.D. (575)/([Parent] .... x 1.85 x 10
4-o.D. (575))[0H-] 

- S o...Ol.Cn 
R ... .t:: 1 .~: .,.. . .. s-5 e R t f 1 "' • . ... s-5 . a .... e o.:. co our J..Or!!'la ... :.on a... 1 nm. .a e o co our ..:aa~ng ac.. 1 n:-1.. 

il-1(!i:l!':t.l!=cmcnt:-; wE~.::-c: lnud•~ wj t.ll 4 em ceLL:-.;. v.::,lueG quoted for i em p.:lth-length. 
g Hade up to ionic st!'ength 0. ~~·i v1i th ~<:.C~ 

..... ,_ 



'J'ime 

(m. sec) 

0 

2 

4 

6 

8 

10 

12.5 

15 

17.5 

20 

00 
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TAm.e 6. 7 

Scale RE!adi'"!3. 

(arbitrary units) 

2.20 

3.59 

4.60 

5. 32 

5.00 

6.08 

6.40 

6.55 

6.63 

6.71 

6.80 

k obs 
-·1 (sec ) 

180 

184 

189 

191 

1B5 

195 

1911 

188 

197 

which corresponds to the measured 'lalue of the equilibrium constant at higher 

base concentrations 

[A] 
= 6. 10 

Substituting in equation 6.10 for [spiro] from equation 6.9 and [A] from equation 

6.7 and rearranging gives 

1 

1 
- ') 

K I[" Oli ]'" ·c . 

[parent] _ 
- 2 

K 1 ([parent] ~ . 
1 

-[spiro])[OH J 
C S -..Ol.C l 

--~parent] 

[spiro][OH-] 



- 11.3 -

1 1 1 
= (·--- - ---) ----·-

Kc' KC . [OH-] 2 
6. 11 

Treatment of the data in 'l'able 6.6. a.cco:r:LI.ing t~o) equu.tioa 6.11 aL the highr:1r 

-1 
base concentrations gives a value for K

2 
of 0.6 ± 0.2 l.mol . 

1\n alternative approach t:o the calculation of K
2 

values is afforded by 

stoppcd-flml spectrophotometric measurements. The t1·1o relaxation times 

corresponding to spiro-complex and di-adduct. formation arc Sl.tfficiently well 

separat.ed to allu1·1 t.lle determination of optical densities both before and after 

the attainment of the second equilibl:inm. This enabled the ch<mge in spiro-

complex concentration 6[ spiro] bet111een the first and second equilibria to be 

calculated. The equilibrium concent:r.ntion of the di-adduct A is related to 

ll[ spiro] and KC as follo~.,rs:-

[A] = t.[spiro] + ll[parcnt] 

where ll[parent] is the concr:>nt.ratio:1 of subst:ca·l:.e converted tc the spiro·-col!lplex 

to maintain the equilib}:ium. 

But. ll[pa:rent] = 

A 

~L~2.E.'" J
KC[OH-·] 

6[spiro](1 + 
__ 1_ __ ) 

K r~·· J, 
CLVI1 

6.12 

Using equalions 6.12 and 6.10, measurements with a series of different base and 

-1 
substrate concentrations gave K

2 
= 0.6 :: 0.2 l.mol , in good agreemem: •11ith 

th~ value above determined independently. 

A plot of k for spiro-complex formation versus base concentration is 
obs ---

linear (Figure 6.6) and absence of curvature indicates that K[OH-]<<1 

(equation 6.3). 
-1 -1 

The slope therefore gives a value of 160 ± 20 !.mol sec 

-1 
for k

1
K and the intercept 137 ± 5 sec for k_ 1. 

Subst:itut.ing the values of. KK 1 and K2 toget.hcr 1-Jith kobs' a.nd the base 

-2 -1 -1 
concentration in equation 6.5 gave values fork (= 6 >-~ 10 !.mol sec ) and 

2 
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versus [OH-] for spiro-comple>~ formation from l-(2-·hydroxyethoxy)
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-1 
k_ 2 (= 0.1 sec ). 

-· 114 -

A much sl O\\'er irreverisble r.eact . .i.on \·ias obser.v'-'!d p:roducing 2 1 G-dini tro--

phenol 1 A 4 30 Jlnl. 
mrlX 

The results in this case can be treated in a similar rr~nner to those of 

the 2,6-dinitrobenzene isomer. The spiro-complex shm-1s absorption in the 

visible region with A 
max 

4 -1 -1 
487 nm [E (1.5 ± 0.3) x 10 l.mol. ern determined 

166 184 . . 
by the extrapolation procedure ' ment~oned earlier]. Optical density 

( <o. lf.l) ('!'able 6. 8) gave a value for KC of 0. 05 1. mol -
1 

\-!hich was independent: 

of the base concentration. Examination at 487 nrn by stopped-flow 

spectrophotometry of solutions containing higher base concentrations revealed 

that the very rapid colour fo:r:mution \-:ns follmved by a slo\oTer rE"!action in 

which the absorption decr:eased t.o a smaller value and remu:;.ned constant for 

some time. This is interpreted as indicating t.he formc<tion of a second adduct. 

A having a smaller visible absorption than the spiro-complex. Again 

stopped-flow spectl.'ophotornetric measurements allowed optical density changes 

to be measured betHeen the first and second equilibria. By means of 

-1 
equations 6.12 and 6,1C a value of K

2 
= 0.8 ± 0.2 l.mol was then calc~lated. 

'l'he rate of colour formaU.on at 487 nm \':as very fast. Measurement by the 

stopped-flm.; technique at 0. 5!:!_ and 0. 8!:!. base gave a minimum value for k . of 
oos 

-1 
ca. 620 sec and this will therefore represent a minimum value fork .• 

-l 

Since rate measurements of this order of magnitude are reaching the limit of 

h d fl l . ' • I 
2 30 1 f 14 5 - 1 f 1 t e s toppe - ow tee unque, Bernascmu s va ue o ca. 0 sec or K 

-1 

obtained using a temperature-jump method may be more appropriate. The rate 

constant, k b 1 

0 5 

-1 
for the fading reaction had a value of 0.7 sec in o.SM 

sodium hyd:roxide giving an approximate valne for k _
2

• 

A much slm·:er irreversible reaction gave 2, 4-dinitrophenol 1 A 360 and 
max 

400 nm (shoulder). 
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TABLE 6.8 

~quiHbrium Dat.a fo!:_5:_ompl_ex Formation f!·om 1- (2-Hyd_roxy

cthoxy) -2, 4-dini trobenzene in \\1~_!-e~!__?_?_~-

5 
10 [Parcnt]Stoich [NaOll] Kc 

(M) (1•1) 

135 .Ol.O 

120 .020 

105 .031 

75 .051 

75 .051b 

37 .051 

45 .071 

30 .082 

30 .10 

30 • 21 

30 • 31 

30 .41 

30 .52 

30 .62 

30 .72 

30 .83 

a "1'3asured with a Unicam SPSOO at 487 nm. 

4 em path-length. 

b Made up to ionic strength 0.21vl with_NaCl 

.050 

.078 

.098 

.111 

.117 

.053 

.093 

.081 

.085 

.163 

.244 

.318 

• 376 

.466 

.523 

.584 

-1 
(l.mol ) 

.061 

.053 

.051 

.049 

.051. 

.046 

.049 

.056 

.046 

.044 

.045 

.044 

.042 

.043 

.041 

.041 

Values quoted are for 
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DISCUSSICN 

•rhe spectroscopic evidence for tho formation in r:Jethanolic r.;odium mcthox:i.de 

of spiro-complexes rather than, for exnmple, alkoxj.cJ.e adducts has been 'l.'ell 

established. 184 
Visible spectra in water containing dilute base correspond 

closely to those in methanol and the similarities of the equilibrium and 

kinetic parameter:-; indicate that in this solvent too spiro-complex format.ion is 

being observed. . 230 h 1 . , d . f f Bernascon~ as a r~o prov~cle r1rguments ~n avour o 

spiro-complex formation in the case of complex (6.5) in aqueous DMSO solutions. 

Futthermore p.m.r. spectra indicate the formation of (6.3) from the parent 

glycol ether in aqueous base. 

Equilibrium and rate constants for the formation in \'later of spiro .. complexcs 

from 1:ht• parent glycol ethers are collected in Table 6. 9. The corresponding 

values in methanol are also quoted, as a.ce the value for t.he corresponding 

1, 1-dimAthoxy co:nplcxes. The increase in values of KK
1 

\'lith the incre:ase 

in u.cti·vatiou in tiie aro1natic system results both from incre~ses in the 

values of k 1K and decreases in k_ 1• The measurements do not allow 

determination of lhe values of K, the equilibd.um con~>tant governing proton 

loss from tl1e glycol side chain. HO'I!ever for comparison, the corresponding 

values for. reaction of hydroxide ions \·Jith 2-methoxyethanol and 2-chlo:r.oethanol 

Ol r. d 5 .. -1 . , 231 are . v an 0. J .• mol respect~ ve~y. It seems probable in view of the 

isolat:icn of the hydroxy-proton from the aromatic system t.hat the values of K for 

the four glycol ethers studied will not vary greatly so that the values of KK 1 

will largely reflect differences in values of K1• 

Perhaps the most significant fact deriving from these results is the 

high value of k_ 1 compared to the value for the corresponding process for the 

analogous 1,1-di.methoxy .. Meisenhei.mer complexes. For example the value for 

k of 0.095 
-1 

for complex (6. 3) be compared with values 5.5 10-4 
-1 sec can X 

and 6 10 
-4 -1 d232,233 for the cleavu.ge of methmd.de ion from X sec reporte 

complex (6. 10) in \'later. Similarly the value of k_ 1 for complex (6.2) is 



TABLE 6.9 

Equilibrium a~d Kinetic Data for Spi~o-complex and 1,1-Dimethoxv-co~plex Formation in ~ethanola at 25°C 

Spiro-com;plex 1,1-Dimethoxy-complex 

Complex KK b c :,. K k_1 K1 k k_l KK, 1 ~ 

.. 1. 1 -- - - --
-1 -1 -1 -1 -1 -1 -1 -1 -1 (l.mol ) (l.mol ·) (l.mol sec ) (s.ec -, (l.mol ) (l.rnol -sec ) (sec ) 

4 4 
9 X 104 2.3 

-3e 
3 X 10 3.9 X 10 

(205) d (0.93) d 
1. 8 X 10 

(6- 2) 3 3 (2. 5 X 104) (6. 5) 
-~ d 

( 3. 5 X 10 ) (3.8xl0) (4.6 X 10 -) 

7f 
6 ·o-4 h 

1.7x10
7 6 X J. 

(6- 3) 1. 8 X 10 · 1.6 X 10 0.095 (17,000)g ( 17. 3) g 
( 1. 04 X 10-3) g 

.~ ·-2 -...J 
1.3 1.2 1. 6 X 10 137 -5 i 

(6- 4) (0. 22) (0. 22) (80) (360) (9 X 10 ) (-) (-) 

0.05 >30 >620 
-5 i (2.1 X 10-3)i (6. 5) -2 (>5. 5) (>500) (4. 6 X 10 ) (42) l. 

( 1. 1 X 10 ) 

a Values in parenthesis refer to methanol as solvent - from reference 184 unless otherwise state. 

b Eq'.l.ilibriuln values c 
Kinetic values d Reference 182 e 

Reference 234 

= Reference 45 g Reference 64 h 
Refe~ences 232, 233 i Reference 166 

j Reference 167 
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1>1e0 OMe 

No
2 

(6.10) 

-3 -1 
three orders of magnitude larger than that (1.8 x 10 s~c ) for methoxide 

loss from the 1, 1-dimetho>:y-2,4-dinitronaphthalene: adduct i.:-1 water. 
234 These 

results ·thus confirm those obtained in. methano1 184 \llhich indicated ·that the 

rate constants for ring-opening of spiro-complexes ar€ much hiyher than for base 

expulsion from non-cyc:lic analogues. This has particular significance in 

view of the fact that spiro-complexes have been used as models for the 

. d . 1 h'l' . b . . . 81,82,229,230 
~nterme iates ~n nuc eop 1. ~c aromatJ.c r.u st1.tut1.on react1.ons. 

One possible explanation for th~ difference in complex decomposition is the 

release of steric strain in the opening of the dioxclan ring of the spiro-· 

adducts, although, as will be discussed in Chapter 8, relief of ring-strain 

may not be a dominant factor affecting· the magnitude of the k_ 1 values. A 

further effect indicating the ease of ring-opening of spiro-complexe!: is the 

observation of general acid catalysis in their catalysed decompositior.; this 

will be discussed in detail later. 

The values of KK
1 

in water for complexes (6.2), (6.4) and (6.5) are between 

five and ten times larger than the cor~esponding values in methanol (T~ble 6.9), 

this increase resulting from larger values o~ k 1K and smaller v<'llues of k_ 1• 

Some of this increase may result from the larger values of K expected in ~ater 

235 
than in methanol. The increase in complex stability in aqueous media 

may also be due to the better solvating capabilities of water. In both 

methanol and water the relative stabilities of the four complexes (6.2)-(6.5) 

parallel those of the corresponding non-cyclic syst.ems. 

It is also of i.ntcrest to compare data for corr.pl.ex (6. 5) \'rith those for the 

similarly activated complex (6.8). The equilibrium cor.stant for t.he formation 
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10
-3 -1 

of (6. 8) is S x l..mol , u factor of V2n smaller than t.he value for (6. 5) 

-l 
\·:hile the value of k_

1 
(930 sec -) for (6.8) is similar to that for (6.5). 

, fl]_ 1 L 30 
Bernascom. ~;,!:_ ~_!_ hilve arguecl that one of the main reasons resulting in 

l.he lower st:ability of (6. 8) is ground state reson<wce stabilisation (6.11) <-> 

(6.12) resulting in a smaller value of the rate of formation, since the rates of 

H 3c, + /CI-r2cH 2o 
N 

N0
2 

(6.11) 

~wo; 

N0
2 

(6. 12) 

of reversion l.o reactants arc virtually identical for (6.5) and (6.8). 

There is evidence from visible spectr.::ll shape and slopped-flo.,., 

spectrophotometric measurements for further reversible interactions in more 

concentrated ( >0. H!) sodium hydroxide solutions. In the light. of the many 

6 8 
knO\..m examples ' of the formation of higher hydro:dde and alkoxide addnct.s 

from activettt:·d aromatic compounds in concentrated base solutions, it. seems 

likely that the observed inte!.·act.:i_ons are of this type. In the c;:~_se of the 

spiro-complexes (6.2) 1 (6.4) and (6.5) the results indicate only one further 

interaction \·<i th hydroxide ions so that the most probable st.ructurc for the 

hydroxide adduc!:s arc respect·.ively (6. 13) 1 (6.14) and (6.15). 

11 
0 0 

N0
2 

(6. 13) 

0 N 
2 

,--1 
0 0 

'oH 

(6.14) 

For complex 

ll 
0 

(6. 15) 
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(6.5) there are two pO!>Giblc sites of attack, hm-rever addition at the 5-position 

is precluded since the two negative charges cannot be localised in an 

analogous manner to (6.15). 'l'\110 interact.ionn arc observed for complex (6. 3) 

and likely structures for the adducts wi1:h one and t\110 hydroxide ions are 

(6. 16) ancl (6. 17) respectively. Unfortunately p.m. r. measurt>ments Hhich · \110uld 

n 

-N0
2 

(6. 16) (6. 17) 

unambiguously prove these structures \'rere not successful due to solubility 

problems. Nevertheless, as \'lould be expected for structures h-.,ving no 

delocalised negat.ive charge (6.13)-(G.15) and (6.17) shmot absorption in the 

u.v. region of t:he spectrum at about 300 nm, and not in the visible region. :'he 

absence of visible absorption in the spectrum of these complc~XE!S rules out the 

possibility that they might arise from hydroxide addition to the parent glycol 

ethers rathnr than to the spiro-complexes themselves. Complex (6.17) appears 

to be one of the n.rst examplcn of an adduct forrn~d by 3dci ticn of th:Lt!l:! basic 

groups to a benzenoid ring, although multi-charged adducts have pr~viously 

236 
been postulated. 

184 
No formation of higher complexes was observed in solutions of 

methanolic sodium metho:<ide of similar concentration, although corres!:.:onding 

interactions •.vould presumably also be observed in methanol at sufficiently hiqh 

methoxide concentrations. Thus there appears to be a special propensity for the 

237 
formation of di-adducts in water. For example N,N-dimethylpicramide gives 

I , . dd . . d '1 . . h d . d 1 . 76 - d. t 1e Cl1-a uct J.n water even 1n 1 ut.e soe11um y roxJ. e so ut1on ana so 1.um 

sulphite readily gives di-adducts in dilute solution as mentioned in the 

previous chapter. The ready formation of these complexes in water may result 
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from the ability of this pol<~.r solvent to st·.ab.i.lise multi-charged species 

especially \'lhcn the charges arc localised on the niU:o groups. 

'I'he equilibrium and rate constants associated \"i th the forJr.at.i.on of the 

hydL"o>:.ide adduct:s are SUI'Jl.murised in '!'able 6. 10. These values \·;ere obtained 

Adduct 

(6. 13) 

(6. 14) 

(6.15) 

(6. 16) 

(6.17) 

>.. 
max 

(nm) 

275,300 

297 

ca. 500 

290 

TADLE 6. 10 

K2 
a 

k2 

-1 
(1. mol ) 

-1 -1 
(J..rnol ·sec ) 

1.0 0.04 

0.6 0.06 

0.8 o. 5 

o. 1 0.09 

a Equilibrium constant defined as [hydroxide adduct]/[spiro][OH .. ] 

k 
-2 

-1 
(sec ) 

0.04 

o. 1 

o. 7 

0.9 

in solutions containing o. 1-1.0~ sodium hydroxide r:md are therefore not 

thermodynamic: values, but should be regarded as giving the orders of 

DJagni tude of the parameters quoted rather than precise vaiues. HO\·lever it 

ls of interest to note: that the equilib.rium constcmt K
2 

for format.ion of the 

hydroxide adduct from the trinitro-substitut.ed compound is smaller than the 

corresponding values for hydroxide addition to the d.initro-cornpounds. This 

may be associated with the very high ste~ility of the spiro-complex (6.3). 



- 122 -

CHAP'.rER 7 

'rHE GRNERAI. l\CID CA'rALYSED RING OPENING OF SPJHO-CO!IlPLi~XES 

INTRODUCTION 

The results presented in the pl7evious chapter indicate important differences 

between spiro-complexes and similarly activated 1,1-dimethoxy-complexes. In 

particular the values for the rate constants fo:r.: ring opening of the spiro-

complexes are orders of magnitude greater than rates of decomposition of non-

cyclic analog~es. A probuble consequence of this ease of ring opening is the 

observation discussed in the present work of general acid catal)'Gis in their 

revE~rsal to the parent glycol ethers. 

This behaviour of spiro-complexes is interesting in vie\·1 of their use as 

" 1 f ' t d ' t ' 1 h ' 1 • t • b t • t • t • 81 1 81 1 2 2 9 1 2 30 moae s or ~n erme ~a ·es u1 nuc eop 1. J.c aroma ·1c su s -~ ut.1.on reac ~ons. 

229 
Bernasconi and Gehriger in a recent kinetic study of the formation of 

N0
2 

( 7. 1) 

n 
He-N NHiv!e 

N0
2 

(7. 2) 

0 N' 
2 

r-l 

( 7. 3) 

complex (7.3) found the reaction to be subject. to general acid catalysis. 

'l'his probably results from the unexpectedly high value of the rate const.ant k _ 1 

for reversion of the Z\·li t.terionic intermediate to the parent (7. 1) so that in the 

overall reaction to give (7.3) deprotonation of (7.2) may be the rate limiting. 

It was then suggcsted
229 

that in some cases general base catalysis in 

nucleophilic aromatic substitution reactions may result from slm" prot.on transfer 

rather than slow leaving group departure. Although not disputing this 

argument, it may he that: spiro--complexes are subject to special factors not 

present in non-cyclic analogues and their use us intermediates in nucleophilic 

aromatic substitution reactions may not be meaningful. 
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EXPERIMENTAL 

Kinetic measurements were made at 25°C with a 'Canterbury' stopped-flow 

spectrophotometer in the visible region of the spectrum at the maximum 

absorption of the complexes. The rates of ring opening of the spiro-complexes 

(6.2) and (6.3) to give the parent glycol ethers were measured in acidic 

buffers and in dilute hydrochloric acid solutions. Experimental data were 

obtained by mixing solutions of the spiro-complex (~. 10-SM- generated in 

situ by making up solutions of the parent ether in very dilute sodium hydroxide 

.-4 
ca. 10 M) with appropriate buffers, and monitoring the decrease in light 

absorption with time. The acidities of the solutions were measured by mixing 

0 equal volumes of the substrate and buffer solution and recording the pH at 25 • 

RESULTS 

The proposed mechanism for the formation of complexes (6.2) and (6.3) 

in aqueous alkaline buffers was given in the previous chapter and for that 

scheme the first-order rate constant governing complex formation is given by 

equation 6.3. No buffer catalysis could be detected in phosphate, borax or 

phenol buffers. In the present work the observed rate constant, k b , for 
0 s 

the ring opening of complexes (6.2) and (6.3) in acidic solutions can be 

expressed by equation 7.1 as a pH independent term k_
1 

together with terms due 

to catalysis by protons and undissociated acids. 

= + + 7.1 

The decomposition of the complex was in all cases an accurately first-

order process and typical data are given in Tables 7.1 and 7.2. 

The results presented in Table 7.3 for complex (6.2) show that in acetic 

acid-sodium acetate buffers the observed rate constant depends linearly on the 

concentration of undissociated acid but is unaffected by acetate ions. 

Catalytic coefficients for the acidic species were calculated and are given in 

the footnotes to Table 7.3. 
-1 The value of 2.3 sec required for the 

uncatalysed ring opening of (6.2) is in precise agreement with that obtained 
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TABLE 7.1 

Rate Data for the Decomposition of Complex (6.2) (1 x 1o-5M) in 

Formic Acid (0.26M)-Sodium Formate (0.26M) Buffer at 25°C 

Time 

(m. sec) 

0 

10 

20 

30 

40 

50 

60 

70 

80 

00 

Scale Reading 

(arbitrary units) 

6.22 

5.03 

4.10 

3.42 

2.83 

2.38 

2.00 

1.62 

1.41 

0.60 

TABLE 7.2 

k 
obs 

-1 
(sec ) 

23.8 

23.7 

23.0 

23.1 

23.0 

23.2 

24.4 

24.2 

-6 Rate Data for the Decomposition of Complex (6.3) (3.3 x 10 M) in 

Chloroacetic Acid (0.10M)-Sodium Chloroacetate (0.10M) Buffer at 25°C 

Time Scale Readins 

(m.sec) (arbitrary units) 

0 5.75 

so 4.78 

100 3.98 

150 3.37 

200 2.85 

250 2.45 

300 2.17 

350 1.92 

400 1. 73 

00 1.00 

k 
obs 

---1 
(sec ) 

4.6 

4.7 

4.6 

4.7 

4.7 

4.7 

4.7 

4.7 
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TABLE 7.3 

Kinetic Data for the Ring Opening of Complex (6. 2) in Acidic 

Buffers and in Hydrochloric Acid in Water at 25°C 

[HA]St ' h 
+ - a Acid [Na A ]Stoich pH k k calc 0l.C obs 

(M) (~) 
-1 (sec ) 

-1 
(sec ) 

0.026 0.026 4.65 3.4 3.4 

0.105 0.105 4.7 5.3 5.3 

0.26 0.26 4.7 8.8 9.2 

0.026b 0.026b 4.4 3.2 3.6 

0.105b o.1o5b 4.45 5.1 5.5 
Acetic 

0.26 b 0.26 b 4.65 8.8 9.2 

0.026 0.013 4.3 3.8 3.8 

0.105 0.052 4.45 5.6 5.5 

0.26 0.13 4.45 9.6 9.4 

0.052 0.105 4.9 3.7 3.8 

0.026 0.026 3.6 7.6 8.3 

Formic 0.104 0.104 3.6 12.9 13.0 

0.26 0.26 3.55 23.1 22.8 

0.025 0.025 2.9 38 34 

Chloroacetic 0.10 0.10 2.9 54 56 

0.25 0.25 2.9 100 100 

0.01 187 182 
Hydrochloric 

0.018 300 320 

a -1 
Calculated from equation 7.1 with k_ 1 2.3 sec , and with the following 

values for the catalytic coefficients for acidic species: proton (1.8 ± 0.3) x 10
4 

-1 -1 -1 -1 -1 -1 l.mol sec. J acetic, 25 l.mol sec ; formic, 60 l.mol sec ; chloroacetic, 

-1 -1 
300 l.mol sec • 

b Ionic strength, I = 0.3~, with sodium chloride 
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for k_ 1 from the measurements in alkaline media. The value for k_
1 

was also 

determined in deuterium oxide. Measurements in solutions where 6 < pH < 8 give 

the value of k_
1 

directly since terms due to catalysis by hydroxide ions, protons 

or buffer are negligible (Figure 7.1). The data in Table 7.4 give a value 

TABLE 7.4 

Solvent Isotope Effect on the Uncatalysed Ring-Opening of Complex (6.2) 

Solvent 

6.2 

7.1 

7.1 

8.0 

~c 

7.5 

7.6 

a Phosphate buffer, 0.05M b 

c pD = pH+ 0.4 - Reference 238 . 

Conditions 

a 

a 

b 

a 

a 

a 

k cbs 
-1 

(sec ) 

2.4 ± 0.1 

2.3 

2.2 

2.4 

1.7 ± 0.1 

1.75 

Phosphate buffer, 0.025M 

for the solvent isotope effect k_ 1 (H 20Vk_
1 

(o2o) of 1.3. The rates in hydrochloric 

acid are too ~arge to allow determination of k0 0
+/kH o+ with any certainty. 

3 3 
The results for the acid catalysed ring opening of (6.3) are given in 

Table 7.5. Again catalysis by protons and undissociated acid in addition to 

a spontaneous process is evident. The calculated values of the respective 

catalytic rate coefficients are collected at the foot of Table 7.5. Since in 

this case the catalytic coefficient for protons is an order of magnitude smaller 

than for complex (6.2), the k
0 

o+/kH o+ isotope effect can be determined with 
3 3 

a little·more certainty. The data give a value of 1.5. 

The catalytic rate coefficients for the various acids can be correlated 

239 
in terms of the Br¢nsted relation first proposed by Br¢nsted and Pedersen. 
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FIGURE 7.1 

6 8 10 
pH 

pH-Rate profile for the formation (0) and decomposition (e) of the spiro

complex from 1-(2-hydroxyethoxy)-2,~-dinitronaphthalene in alkaline and 

·:acidic ·buffers. 
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pH-Rate profile for the formation (0) and decomposition (G) of the spiro

complex from 1-(2-hydroxyethoxy)-2,4,6-trinitrobenzerie in alkaline and acidic 

buffers. 
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TABLE 7. 5 

Kinetic Data for the Acid Catal~sed Ring-Opening of Complex (6. 3) 

in Buffers and in Hydrochloric Acid in Water at 25°C 

[HA]Stoich 
+ - a Acid [Na A ]Stoich .E!!. k k obs calc 

(M) (M) 
-1 (sec ) -1 (sec ) 

0.025 0.025 4.65 0.16 0.16 

0.10 0.10 4.7 0.22 0.23 

Acetic 0.25 0.25 4.7 o. 35 0.36 

0.25 0.125 4.4 0.41 0.41 

0.125 0.25 -5.0 0.21 0.22 

0.026 0.026 3.65 0.61 0.63 

Formic 0.104 0.104 3.6 0.85 0.87 

0.26 0.26 3.6 1.25 1.25 

0.025 0.025 2.9 3.6 3.3 

Chloroacetic 0.10 0.10 2.85 4.7 4.4 

0.25 0.25 2.9 5.9 6.0 

0.0093 20.8 20.5 

Hydrochloric 0.0186 39.3 40 

0.030 60 60 

0.0093 31.7 31 
DCl in 020 

0.0186 60.5 61 

a -1 
Calculated using equation 7.1-with k_

1 
0.095 sec and with the following 

values for the catalytic coefficients for acidic species: 
3 

proton, 2.2 x 10 

-1 -1 -1 -1 -1 -1 
l.mol sec ; acetic 0.9 l.mol sec ; formic, 2.3 l.mol sec ; 

-1 -1 
chloroacetic, 12 l.mol sec • 
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It relates the effectiveness of a catalyst to its acid-base strength and 

can be represented, for acid catalysis, in the form of equation 7.2 

= 7.2 

kHA is the catalytic rate constant, Ka the acid dissociation constant and GHA 

and a are constants for a given series o~ catalysts in a given solvent. 

Hence 

= + a log ~A 

= 7.3 

Thus plots of log kHA versus pKa, shown in Figure 7.3, are linear and give 

values of the Br¢nsted coefficient, a, of 0.5 ± 0.1. From these graphs 

catalytic effects of weaker acids such as dihydrogen phosphate ion can be 

estimated. Such estimates confirm that under the experimental conditions used 

in the present work and in the previous chapter, no catalytic effects would be 

observable due to phthalate, phosphate or borax buffers. 

DISCUSSION 

.The spiro-complexes (6.2) and (6.3) and Meisenheimer complexes in general 

are structurally related to acetals and ketals. These are normally 

hydrolysed in acidic media by an A1 mechanism involving pre-equilibri~T. 

protonation followed by rate-limiting breakdown of the protonated substrate 

according to the following scheme.
240 

+ + H 
-ROH 

+ROH 

+ ROH + 

Participation of the solvent as nucleophilic reagent in attacking the 

protonated substrate giving an A2 mechanism appears not to take place. 

mechanism would involve transition-states such as (7.4) or (7.5). 

Such a 



FIGURE 7.3 

4 

3 
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Br¢nsted plots for the acid catalysed ring opening in water; A, complex (6.2) and B, complex (6.3). 
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H 

H 

\ I I <S+ 
H 0----C----o- R 

2 I 
OR 

I <S+ <S+ 
0--·-R----OH 

"./ 2 
c 

/ "-o-R 

(7.4) (7. 5) 

General acid catalysis involving proton transfer as part of the rate

determining step has only been observe~41 when C-0 bond breaking is facilitated 

by a good leaving group, for example (7.6), or by formation of an especially 

O
Et 

OEt -P Me 
OMe 

Me 

(7.6) (7. 7) (7.8) 

stable oxocarbonium ion us in (7.7), or by ring strain as in (7.8). Having 

a good electron-withdrawing phenyl substituent in (7.6) also has the 

simultaneous effect of reducing the basicity of the substrate thus increasing 

the possibility of rate-determining protonation. It should be noted however 

that spiro-complexes (6.2) and (6.3) differ from normal acetals in that they 

are negatively charged so that reaction with acid involves charge neutralisation 

rai:.her than charge formation. Moreover the reactions of Meisenheimer 

complexes and spiro-complexes in particular are very much faster; the 

240,241a 
uncatalysed decomposition of acetals is extremely slow. This 

difference probably results from the fact that the incipient cation intermediate 

is energetically unfavourable, whereas the corresponding species for 

Meisenheimer complexes resembles the uncharged final product. 

The present results show that the ring opening of the complexes (6.2) and 

(6.3) to give the parent glycol ethers is subject to general acid catalysis 

which indicates that proton transfer is involved in the rate-determining step. 

This in itself therefore excludes an Al mechanism. Furthermore the value of 
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1.5 observed for the isotope effect k
0 

o+/kH o+ for complex (6.3) is 
3 3 

241a 
by the Al mechanism \.,.here values are usually >2. 7. 

too low 

for reaction One 

possible mechanism is slow proton transfer to give (7.9) followed by fast c-o 

n 
0 OH 

(7.9) 

bond-breaking. This is the mechanism shown to be operating in the case of 

complex (7. 3) • However the acidity of (7.9) is likely to be many orders of 

229 
magnitude higher than that of the corresponding acid (7.2) (pK 6.64), since 

a 

to t d th d 1 h 1 . 11 242 h pro na e e ers an a co o s typ~ca y ave pK 
a 

values of -3 to -4. 

It could be argued that the acidity of (7.9) will be decreased relative to a 

normal protonated ether because of its zwitterionic nature. Nevertheless 

. . 154,189 -
ev~dence suggests that the c6H

2
(N02)

3 
entity is electron demanding 

relative to hydrogen. Thus it can be concluded that (7.9) would be very much 

more acidic than the catalysing acids. However the results indicating values 

of 0.5 for the Br¢nsted coefficient, a, imply that the proton is about half way 

between catalyst and substrate in the transition state. This renders 

the above mechanism very unlikely. 

241a,b 
A much more probable mechanism is one postulated for the general 

acid catalysed hydrolysis of acetals in which proton transfer and c-o bond 

cleavage are concerted (A-SE2) . This is shown in the following scheme. 

n 6-
0 JJ---- -H- ----A .·· 

+ HA ~ 

~02N 

(7. 10) 
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The effect of partial C-O bond-breaking in the transition state will be to 

increase greatly the basicity of the oxygen in the dioxolan ring, making the 

value of a = 0.5 reasonable. Additional evidence in favour of a concerted 

process comes from comparison of the complexes (6.2) and (6.3) themselves. 

Previous results indicate a faster rate of spontaneous ring opening of (6.2) 

than (6.3), and therefore the greater susceptibility to acid catalysis of 

(6.2) suggests that c-o bor.d-breaking is involved in the rate-determining 

step. 

The principle of microscopic reversibility
243 

dictates that a pathway 

exists via the above scheme for the formation of the spiro-complex from the 

parent glycol ether. This has been observed for both complexes in acidic 

buffers (see Figures 7.1 and 7.2). The possibility must also be considered 

that this rather than the alternative path described in Chapter 6 is the 

major pathway for spiro-complex formation in alkaline solutions. This would 

then imply that hydroxide ion catalysis of ring-closure involves a transition 

state (7.10; A= OH) while the ring opening involves a bimolecular reaction 

of the spiro-complex with water. There are two pieces of evidence that this 

is not the case. Firstly data in Table 7.3 indicate that the uncatalysed ring-

opening of (6.2) proceeds at rather similar rates in H
2
o and o

2
o with 

k CH 0\ /~ tn ~' , ~ .~.·~.~. water were acting as a general acid the reaction -1· 2-••·"-1'~2V/ .l.o.li 

. 244 
should be much slower 1n o2o. Secondly, the Br¢nsted plots can be used 

to calculate the values expected for catalysis by water assuming that water 

fits these plots. 
-4 

The value predicted for reaction of (6.3) is 1 x 10 

sec- 1 compared with the experimental value of 0.095 sec-
1 

while the predicted 

-2 -1 -1 
value for (6.2) is 1.7 x 10 sec compared with the observed 2.3 sec . 

These results suggest that the uncatalysed ring-opening is a unimolecular 

reaction. and that the major pathway in alkaline media is as shown in Chapter 6. 

Comparison with dialkoxy-Meisenheimer complexes 

38,64,232,234,245,247 f h 'd t 1 d There have been several reports o t e ac1 ca a ys~ 

decomposition of 1,1-dialkoxy-complexe5 such as (7.11). General acid catalysis 
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I 
I 

N0
2 

(7. 11) 

38 245 
was not observed and an h1 mechanism has been postulated. The failure 

to observe general acid catalysis in this instance might result from the less 

ready ·c-o bond breaking and/or easier protonation of the ether oxygen. 

·Evidence that c-o bond breaking is facilitated in spiro-complexes relative to 

the non-cyclic systems has been presented earlier and it has been suggested 

that this may be due to the relief of steric interactions in the ground 

. 246 
state of the sp~ro-complex. Nevertheless comparison of the hydronium ion 

catalysed decomposition of (7.11) (kH o+ 1.2 x 10
4 

l.mol-
1
sec-

1
)

232
r
245 

with 

3 -f -1 that of (6.3) (kH o+ 2.2 x 10 l.mol sec ) indicates that the dialkoxy-
3 

complex is more readily protonated than the spiro-complex. This implies that 

the basicity of the ether oxygen in (7.11) is greater than in (6.3) and it is 

of interest to speculate on the reasons for this increased basicity. It has 

182 183 . been shown ' that ~n methanol 1,1-dimethoxy-complexes interact with alkali-

metal cations by ion-pair association. It was suggested th~t a favourable 

site existed between the oxygen atoms of the methoxy groups where a cation might 

be held by a cage effect. No such interaction with cations was observed for 

184 
spiro-complexes either in methanol or water. A stabilising effect in the 

case of the proton similar to that observed with other cations would account for 

the increased basicity of (7.11). 

The question, of course, arises whether general catalysis would be 

expected. to be the exception or the rule in the acid catalysed decomposition of 

a-complexes, in the light of the difference between cyclic and non-cyclic 

adducts mentioned earlier. It must be mentioned however that the decomposition 
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of the sodium ethoxide adduct of 1,3,5-trinitrobenzene is subject to general 

1 
. 248 

cata ys~s. Ainscough and Caldin
38 

also observed catalysis by acids other 

+ than H3o for the decomposition of the product of the 'fast' reaction between 

2,4,6-trinitroanisole and sodium ethoxide. Originally thought to be a 

charge-transfer complex, it seems almost certain to be the 1,3-adduct (7.12) 

i th 1 . ht f 1 t 36 d ,_ . . 40 d . n e ~g o a er p.m.r. an h~net~c stu ~es. Buffer catalysis has 

OMe 

(7. 12) 

249 
also been observed in the reactions of several hydroxide ion adducts. 

It is worth noting that in the cases where general acid catalysis is 

observed (spiro-complexes and adducts formed from attack at a ring carbon 

carrying hydrogen), the k_ 1 values for the uncatalysed decomposition are 

several orders of magnitude larger than for those complexes where only specific 

hydronium ion catalysis is observed (1,1-dialkoxy-complexes). Therefore it 

seems probable that the observations of general acid catalysis with spiro-

complexes which is not peculiar to these adducts results from the easier C-0 

bond-breaking rather than an increase in basicity of the system. 

The specific base-general acid mechanism of base catalysis in nucleophilic 

aromatic substitution reactions, a mechanism which has been favoured by the 

majority of recent discussions, 
19 

requires that the decomposition of the a-

complex (7.13) be subject to general acid catalysis and that the equilibrium 7.4 

+ R'NH 
2 - + 7.4 
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is established rapidly. This has been demonstrated in the reaction of 2,4-

dinitronaphthyl ethyl ether with n-butyl- and ~-butyl-amine in DMSO. However 

Bernasconi has shown229 in the light of his results with complex (7.3) that 

under certain circumstances proton transfer from nitrogen may be the rate-

determining step. 
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CHAPTER 8 

THE EFFECT OF RING-SIZE ON SPIRO-CO~WLEX FORMATION 

INTRODUCTION 

The work presented in Chapter 6 involved comparison of the values of 

rate and equilibrium constants for formation of spiro-complexes with those for 

similarly activated 1,1-dimethoxy-complexes. The results show that rate 

constants for both complex formation and decomposition are orders of magnitude 

gr~ater -than those for the non-cyclic analogues. 246 It has been suggested 

that the main reason for the higher value of k_
1 

in the case of the spiro-

complexes involves relief of steric strain on ring-opening. 

Measurements made so far, however, have involved spiro-complexes with 

five~membered dioxolan rings. Therefore to obtain more information regarding 

kinetic and equilibrium parameters for spiro-complex formation, the present 

work has involved investigation of the cyclisation of the parent ethers (8.1; 

n = 3,4) to the complexes (8.2; n = 3,4) containing six- or seven-membered 

rings. 

I I 

~ 
No

2 

~ I , 
~y 

N0
2 

( 8.1) (8.2) 

EXPERIMENTAL 

P.m.r. measurements were recorded in Dt-lSO-dG at 20° with a Bruker HX90E 

instrument. u.v.-visible spectral measurements were made with Unicam SPSOO 

or SP8000 instr~~ents or with a •canterbury• stopped-flow spectrophotometer. 

Rate constants associated with spiro-complex formation were determined using 

the stopped-flow method. Measurements were made in the region of the 
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absorption maximum of the coloured species at which \-lavelength the reactants 

were transparent. Although a slower reaction yielding 2, 4-dini tronaphthol \'las 

also observed, the base line after completion of the initial colour forming 

reaction was sufficiently stable to allow an 'infinity• value to be obtained. 

Rate constants for the slower process were determined, using the SP500 

spectrophotometer, by measuring the increase with time of optical density at 

430 nm. 

Besides its use for kinetic measurements the stopped-flow spectrophotometer 

. . 
was used to determine equllibrium optical densities and general spectral shapes. 

RESULTS AND DISCUSSION 

In the presence of dilute (<0.1~) aqueous sodium hydroxide both the parent 

ethers (8.1; n = 3,4) immediately gave a red colour with ~ 495 ± 2 nm. 
max 

This was followed by the fairly fast formation of the yellow 2,4-dinitro-

naphthol identified by the u. v. -visible spectrum \·Jhich showed maxima at 390 

and 430 run. The rate constants for 2,4-dinitronaphthol formation were measured 

at several base concentrations. The values of the second-order con.stant \'lere 

-2 -1 -1 
found to be (6 ± 1) x 10 l.mol sec for the t\-lO parent compounds. In 

media containing DMSO the initial red colour was more intense and faded less 

rapidly. 

In view of the fact that Hasega1,r1a and Abe, 
109

' 
110 

in a related sys·tem, 

have obtained visible spectral evidence for the formation of adduct (8.3) as 

an observable intermediate from 2,4-dinitroanisole and hydroxide ions in 

aqueous DMSO, the possibility must be considered that the observed red colour 

results not from spiro-complex formation but rather from hydroxide addition. 

The most likely adducts are (8.4) or (8.5). 

(8. 3) 

N0
2 

· 

(8.4) 

Though visible spectral measurements 

(8.5) 
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are not structurally meaningful, p.m.r. measurements are more conclusive in 

6,e 
this respect. Measurements in water were precluded by low solubility and 

the fast decomposition of the substrate. Measurements in DMSO were more 

successful. 

P.m.r. spectra 

The spectrum (Figure e.1) of 1-(3-hydroxypropoxy)-2,4-dinitronaphthalene 

0.2M in DMSO-d
6 

shows three sets of bands ~ue to ring protons at ~e.9o (singlet; 

H3), e.6~ (overlapping doublet of doublets; H5 and He) and e.o3 p.p.m. 

(multiplet; H
6 

and H
7
). These positions are close to those observed for 

2 4 . th 52,1e4,234 other , -d1nitronaphthyl e ers. The a-cn
2 

group absorbs at ~4.40 

(triplet, J = 6.5 Hz), the S-CH
2 

group at 2.oe (pentet; J = 6.5 Hz) and the 

y-cH
2
. group at 3. 70 p.p.m. (triplet; J = 6 Hz), ·while the hydroxy proton gives 

a broad band at ~4.20 p.p.m •. 

On the addition of sodium deuterioxide in deuterium oxide .thP .spectrum 

which results is that shown in Figure e.2. The aromatic protons now absorb 

at ~0.92 (singletJ H
3
), e.77 (doublet of doublets; He), e.05 (doublet of 

doublets, H5) and 7.40 p.p.m. (multiplet; H6 and H7). Generally the 

aromatic protons show shifts to high field expected on formation of an anionic 

complex. 

resonance~ 

The small shifts to low field on complex function of the H3 and He 

analogous to 
!;'} 1 Rlt ?"':111 

tho::;~ observed previously in similar systems.--'·~-'--·-· 

The reasons advanced by Fendler et al
52

'
234 

for the direction and magnitude of 

the shifts of the aromatic protons on complexation may be applicable here. 

Of particular interest is the appearance of bands due to the m~thylene 

protons in the complex. These give two overlapping triplets at ~4.26, 

two quartets at ~3.el and a multiplet at ~2.oe p.p.m. (Figure e.3). The 

sharp band at ~4.0 p.p.m. marked 'S' in Figure e.2 is due to the rapidly 

exchanging hydroxylic protons in the solvent. Addition of different base 

concentrations resulted in the shift of this solvent absorption and indicated 

that no bands are obscured by this peak. 
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P.m.r. spectrun1 of 1-(3-hydroxypro:poxy)-2,4-dinitronaphthalene (0.2M) in DMSO-d
6

• Bands marked 's' are due to solvent. 
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FIGURE 8.2 
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P.m.r. spectrum of 1-(3-hydroxypropoxy)-2,4-dinitronaphthalene in DMSO-d
6 

after the addition of sodium 

deuterioxide in n2o, Bands marked 's' are due to solvent. 
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FIGURE 8. 3 

-Ja.s---

H I 
a 

Splitting patterns for the H and H 1 protons in complex (8.6) a a 

The observed spectrum is in agreement with structure (8.6) in which the 

molecule is symmetrical about the plane of the naphthalene ring. The two 

equivalent protons labelled H are cis and the two equivalent protons labelled 
a 

H6 H3 
I 

' HS N02 

Hal 

J.f ••• ~/HB 
·-u 

~ ca. 20-30° 

(8. 6) (8. 7) 

H 1 are trans to the 2-nitro group. a From the spectrum a value for J 1 of a a 

11 Hz is·obtained which is in the range expected for geminal coupling constants 

f th 1 h d . . mb d . 2 50 or me y ene groups attac e to oxygen 1n s1x-me ere r1ngs. The values 

of the vicinal coupling constants are JaB 8Hz, Jaa' 8 Hz, Ja1B -1Hz and Ja'B' 
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7. 5 Hz. Since vicinal coupling constants are related to the dihedral angle, 

"" . th K 1 . 2 50 I 2 51 ( . 8 1 h ~, v~a e arp us equat1on equat1on • , w ere A, B and C are constants 

dependent on the system) , these values provide information as to the 

J . = A + B cos ~ + C cos 2~ 
V1C 

8.1 

conformation in the dioxolan ring. Equation 8.1 indicates that the coupling 

constants are large \'Then ~ is close to 0° and 180° and small when ~ is close to 

90° (Figure 8.4) Hence the observed values are best described by a situation 

J . 
V1C 

0 20 40 60 80 100 120 140 160 180 

FIGURE 8.4 

represented diagrammatically in (8.7) where the dihedral angle between Ha and "a 

is ca. 20-30°. However it should be noted that the possibility of the observed 

spectrum representing the time-average of two or more conformations in rapid 

equilibrium cannot be discounted. If this is the situation then the measured 

coupling constants are \'teighted averages. Confirmation of the assignment of 

the n.m.r. parameters was provided by irradiation of the a and a· methylene 

protons at ~2.08 p.p.m., when the expected pair of doublets, J = 11 Jz, was 

observed for the a and a• protons. The a-hydrogens would be expected to be the 

downfield doublet since they are closer to the ortho-nitro group. Thus the 

observed spectrum is not consistent with the alternative structures (8.4) and (6.5). 

The spectrum of the parent (8.1; n = 4) shm'ls bands due to t.he aromatic 

ring-protons very similar (±0.04 p.p.m.) to those observed for (8.1; n = 3). 
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The a-cH2 group absorbs at ~4.32 (triplet; J = 6 Hz), the 8-CH2 group at 

1.98 (pentet; J =6Hz), the y-cH2 group at 1.70 (pentett J =6Hz) and 

the ~-cH2 group at 3.53 p.p.m. (triplet; J = 6 Hz), while the hydroxyl proton 

gives a singlet at ~4.35 p.p.m •• The spectrum in the presence of base 

indicates cyclisation to give the spiro-complex (8.2; n = 4) but provides less 

precise structural information than the .spectrum of (8.2; n = 3). Bands 

are observed due to the aromatic protons at 8.90 (singlet; H
3
), 8.73 (doublet 

of doublets; H8), 7.93 (doublet of doublets; H5) and 7.40 p.p.m. (multiplet; 

The methylene protons a to the ring now give a multiplet at ~3.85 

and those 8 to the ring a band at ~1.71 p.p.m .• Collected data for both 

complexes are given in Table 8.1. 

Kinetic and equilibrium data 

Kinetic measurements were made with base concentrations in large excess of 

the substrate concentration so that first-order kinetics were observed. 

Typical data are given in Table 8.2. Collected data for measurements made in 

water and in water-DMSO mixtures are given in Tables 8.3 and 8.4. It will be 

assumed, and justified later, that in these media as in DMSO the initial 

colour-forming reaction is spiro-complex formation. The mechanism of complex 

formation in alkaline media will be assumed to be the same as that suggested 

earlier for the n = 2 complexes. The measured equilibrium and rate constants, 

KC and kobs' will therefore be given by equations 6.2. and 6.3. 

The parent molecules (8.1; n = 3,4) are unlikely235 to have pK values 
a 

-1 
much lower than 15 so that values of K will probably be less than 0.1 l.mol . 

Hence at the sodium hydroxide concentrations used in the present work, the 

values of the term (1 + K[OH-]) in equations 6.2 and 6.3 will be close to unity. 

Accordingly plots of k b versus base concentration were linear and yielded 
0 s 

values of k_ 1 (intercept) and k 1K (slope). Combination of these data gave 

values of KK 1 (kinetic) . In water the values of k_ 1 can be obtained reasonably 

accurately although, because of the smallness of the slopes, particularly for 



TABLE 8.1 

a 
Collected PMR Data for the Parent Ethers (8.1; n = 3,4) and Spiro-complexes (8.2; n = 3,4) 

H3 H5 :sa H6 H7 a-cH 2 
8-CH 

2 
y-CH 2 

(8.1; n = 3) 8. 90 (s) 8.60(dd) 8.03(m) 4.40(t)b 2.08 (p) b 3.70(t)c 

(8.2; n = 3) 8.92(s) B.OS(dd) 8. 77 (dd) 7.40(m) 4.26,3.8 d 2.08{m) 

{8.1; n = 4) 8.89{s) 8.56{dd) 8.03 (m) 4.32{t)c 1. 98 {p) c 
1. 70 (p) c 

(8.2; n = 4) 8.9l(s) 7.97(dd) 8. 7·~ {dd) 7.4l(m) 3. 84 (m) 1.72{br,s) 

a All shifts are on the cS scale and quo1:ed in p.p.m. relative to internal tetramethylsilane 

b 
J = 6.5 Hz. 

c J = 6 Hz. 

d 
J , =11Hz, J a = 8Hz, J 0 , = 8Hz, J , 0 = 4Hz, J , 0 , = 7.5 Hz. 

CLCL CLp CLp CL p CL p 

s = singlet, m = multiplet, t = triplet, p = pentet, dd = doublet of doublets, br = broad 

o-CH 
2 

3.53{t)c 

OH 

4. 20 (s) 

4.35(s) 

......... 

1-' 
A 
1-' 
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TABLE 8.2 

Kinetic Data for the Reaction of 1-(3-Hydroxypropoxy)-2,4-dinitro

naphthalene (2. 34 x 10-
5

M) 1r1i th Sodium Hydroxide (0. 10M) in Water 

Time Scale Reading a k obs 

(sec) (arbitrary units) -1 (sec ) 

0.20 2. 77 1.04 

0.40 3.35 1.05 

0.60 3.78 1.02 

0.80 4.17 1.03 

1.00 4.46 1.02 

1.20 4.73 1.04 

1.40 4. 93 1.04 

1.60 5. 10 1.04 

1. 80 5.20 1.02 

00 5.80 

Measurements at 500 nm 
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TABLE 8.3 

Kinetic and Equilibrium Data for SJ2iro-complex Formation 

from 1- ( 3-Hydroxypropoxy) _-2, 4-dinitronaphthalene at 25°C 

Medium 

Water c 

80/20 (v/v) 
Water-DMSO 

60/40 (v/v) 
Water-DMSO 

40/60 (v/v) 
Water-DMSO 

a Values· are 

[NaOH] 

(M) 

0.025 

0.025 d 

0.050 

0.075 

0.10 

0.15 

0.012 

0.023 

0.047 

0.081 

0.110 

0.012 

0.024 

0.050 

0.012 

0.024 

o.oso 

quoted for 1 

5 O.D.a,b 10 [Substrate] k obs 

(M) 
-1 

(sec ) 

4.67 0.89 ± .02 0.020 

4.67 o.BB 

4.67 0.93 0.039 

4.67 0.99 0.056 

2.34 1.04 0.040 

2.34 1.12 0.056 

4.4 0.32 0.060 

2.2 o. 34 0.055 

2.2 0.41 0.100 

1.5 0.53 0.096 

1.2 0.60 0.087 

1.0 0.185 

1.0 0. 30 

1.0 o. 56 

o. 5 1. 13 

0. 5 2.08 

o.s 4.42 

em pathlength. 

Kc 

-1 (l.mol ) 

1. 3 e 

1.3 

1.3 

1.4 

1.4 

sf 

8 

8 

8 

8 

b Measurements at 500 nm c Contains 0.5% DMSO from stock solution of substrate 

d 
Containing 0.10~ sodium chloride. 

e Calculated (1.4 0.4) 1o
4 -1 -1 

with a value of e: = ± X l.mol em 

f ( 1. 6 ± 0. 4.) 104 -1 -1 
Calculated with a value of E X l.mol em 
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TABLE 8.4 

Kinetic and Eguilibrium Data for SEiro-complex Formation 

from 1-(4-Hydroxybutoxy)-2,4-dinitronaphthalene at 25°C 

Medium [NaOH] 5 10 [Substrate] 

(M) (M) 

0.075 4.4 

0.10 4.4 

Water 
c. 

0.125 4.4 

0.15 4.4 

0.20 4.4 

0.037 3.3 

0.055 6.5 

80/20 (v/v) 
0.073 3.3 Water-DMSO 

0.092 3.3 

0.110 3.3 

0.015 1.63 

0.037 1.63 
60/40 (v/v) 

0.055 0.82 Water-Dfo1SO 

0.092 0.82 

a Values are quoted for 1 em pathlength 

b Measurements at 500 nm 

k obs 

-1 (sec ) 

0.68 ± .02 

o. 70 

0.72 

0.73 

o. 76 

o. 34 

0.37 

o. 38 

0.41 

0.43 

0.14 

0.22 

0.28 

0.42 

c Contains 0.5% DMSO from stock solution of substrate 

O.D.a,b 

0.019 

0.026 

0.032 

0.037 

0.048 

0.040 

0.125 

0.079 

0.095 

0.108 

0.086 

0.145 

0.090 

d 4 -1 -1 
Calculated with a value of "- = (1.3 ± 0.3) x 10 l.mol em 

e e: = n. 5± 
4 -1 -1 

0.3) x 10 l.mol em 

f e: = ( 1. 8± X 10
4 -1 -1 0.3) l.mol em 

Kc 

-1 (l.mol ) 

o.5d 

0.5 

0.5 

0.5 

0.5 

2.5e 

2.5 

.., "' Lo.J 

2.5 

2.5 

30 f 

30 

30 
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(8.2; n = 4), values of k
1
K are less reliable. As the proportion of DMSO is 

increased the accuracy of k1K increases while that of k_
1

, whose values approach 

zero, decreases. 

An alternative approach to the calculation of KC values, and hence KK
1

, is 

afforded by the use of stopped-flow spectrophotometry to measure values of 

optical density after completion of the initial colour-forming reaction but 

before appreciable decomposition to 2,4-dinitronaphthol has occurred. Such 

values are given in Tables 8.3 and 8.4. Unfortunately the measurements do not 

yield ·values for the extinction coefficients of the complexes in water since 

163 
Benesi-Hildebrand plots have intercepts close to zero. However in media 

rich in DMSO conversion into complex was complete so that extinction coefficients 

could be obtained directly. For example for (8.2; n = 3) in 80% DMSO A max 
4 -1 -1 508 nm e: = 2.7 x 10 l.mol em • By analogy with previous results, values 

of E will decrease with increasing proportion of water in the solvent. Thus 

extrapolation of data obtained in water-or.tso mixtures gave the values of e: 

quoted in Tables 8.3 and 8.4. The necessarily high uncertainty associated 

with these values leads to the high error limits given for the calculated 

values of KK1 (equil.). The data collected in Table 8.5 show that the 

agreement between KK
1 

values determined kinetically and spectrophotometrically 

is not particularly qood. This may indicate that the values used for e: ~re 

too high or that measured values of k
1

K are too high. 

6,8 
As expected values of the equilibrium constants KK

1 
increase as the 

proportion of DMSO in the solvent is increased. These ch~~ges reflect the 

increase in values of the rate constants for complex formation and the decrease 

in the rate constant for ring-opening resulting from the stabilising effect of 

DMSO on the complex. The steady change in the values of the parameters with 

.81,230 
solvent .composition, also observed by Bernascon~ for spiro-complexes, is 

a strong argument that the mode of interaction does not change with solvent. 
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TABLE 8. 5 

Variation of Rate and Equilibrium Parameters with Solvent Composition 

(8. 2; n=3) 

(8.2; n=4) 

-1 
k_

1 
(sec ) 

k
1
K 

-1 -1 (l.mol sec ) 

K1K 

(kinetic) (l.mol- 1) 

K
1
K 

-1 (equil.) (l.mol ) 

-1 
k -1 

(sec .) 

k 1K 
-1 -1 (l.mol ;:;ec ) 

K1K 

(kinetic) (l.mol- 1) 

K1K 
-1 

(equil.) (l.mol ) 

Water 

0.85±0.2 

1. 7±0. 3 

2.0±0.5 

1. 3±0. 4 

0.64±0.04 

0.6±0.3 

0.9±0.5 

0.5±0.2 

80/20 (v/v) 
Water-DMSO 

0.28±.02 

2.9±0.3 

10±2 

8±2" 

0.30±0.02 

1. 2±0. 1 

4±0.5 

2. 5± 1 

60/40 
(v/v) 

0.07±.01 

10±1 

140±30 

0.09±0.01 

3. 5±0. 3 

40±5 

30±5 

40/60 
(v/v) 

90±5 
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Evidence for spiro-complex formation in water 

Using stopped-flow spectrophotometry it was possible to determine the 

visible spectra of the initial complexes in water. The position of the 

absorption maximum at 495 nm is exactly the same as that for the spiro-complex 

(8.2; n=2). Addition at the c
3 

position, ortho to the two nitro groups, 

6,8 
would be expected to give rise to absorption at longer wavelengths. Thus 

complex (8.5) or a complex produced by internal attack of the side chain at 

c
3 

are rendered unlikely. d . th 1 182 However by analogy with the J.lne oxy-comp ex 

(8 .. 8) where ). is 498 nm, the adduct (8.4) might be expected to show absorption 
max 

(8. 8) 

in this region. Furthermore this structure, (8.4), is almost certain to be 

an intermediate in the substitution reaction leading to the reaction product 

2,4-dinitronaphthol. If it is assnmed that the data in Table 8.6 refer to 

formation of adducts (8.4; n = 3,4) then the knowledge that the second-order 

TABLE 8.6 

Equilibrium and Rate Data for Spiro-complex Formation in Water at 25°C 

Complex K1K k
1

K k -1 
-1 (l.mol ) 

-1. -1 (l.mol sec ) 
-1 

(se;c ) 

(8.2; n = 2) 3 X 104 9 X 104 2.3 

(8.2; n = 3) 1.7 
a 1.7 o. 85 

(8.2; n = 4) o. 7 a 0.6 0.64 

a Average from kinetic and spectrophotometric measurements 
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rate constants for nucleophilic displacement in ... rater have values of (6 ± 1) x 

2 -1 -1 
10- l.mol sec leads to the conclusion that expulsion of hydroxide from (8.4) 

is faster than expulsion of alkoxide by at least an order of magnitude. Such 

k d 1 f 1 1 . . d . 252 d f h. a mar e reversa o norma eav1ng group ten enc1es oes not avour t 1s 

hypothesis. 

Further evidence that the observed colour is unlikely to result from (8.4) 

comes from measurements with 1-(2-methoxyethoxy)-2,4-dinitronaphthalene, a 

compound structurally similar to the substrates under inves·tigation but where 

spi:to-·complex formation is not possible. 1 t . ' ' 10-5M In so u 1ons conta1n1ng _ 

substrate and o.5M sodium hydroxide the change in optical density at 500 nm 

was <0.001 (quoted for 1 em cell). Assuming a value for the extinction 

4 -1 -1 
coefficient at this wavelength of 1.5 x 10 l.mol em allows an upper limit 

of 2 x 10-
2 

l.mol-
1 

to be set for the equilibrium constant for complex formation. 

However in media rich in DMSO the substrate gives an orange colour with base 

which may signify hydroxide ion addition. 

Though hydrolysis of these compounds probably proceeds via intermediates 

such as (8.4) nevertheless there is the possibility of a dealkylation mechanism 

taking place, as follows 

0 

Measurements in Df.tSO-rich media with the 2-methoxyethyl derivative seem to 

indicate that this is not the case and the fact that DMSO appears not to 

change the mode of interaction would suggest that such a mechanism does not 

occur in water. 18 -However use of OH would prove conclusively which is the 

major pathway since the dealkylatio.n mechanism would result in no 
18

o 
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incorporation in the naphthol unlike the intermediate complex mechanism. 

Effect of ring-size on spiro-complex formation 

The results in Table 8.6 show that there is a very large decrease in 

stability on increasing the ring-size from five to six or seven members. This 

decrease reflects large changes in values of the rate constant for spiro-complex 

formation while values of the rate constant for ring-opening are little 

a.ffected by ring-size. Some decrease in the values of the equilibrium constant, 

K, governing proton loss from the side-chain might be expected as the number 

of methylene groups increases due to attenuation of i~ductive effects. A 

further possible reason for variations in the values of K might be differential 

stabilisation of the parent alcohols by intramolecular hydrogen-bonding 

to the 2-nitro group. There seems to be no compelling reason why such 

stabilisation should increase with increasing chain length. However the pK a 

values for 1,2-ethanediol, 1,3-propanediol and 1,4-butanediol are reported to 
.... .,C' 

'.j.:J 
be equal. 

The main differences are then likely to be connected with the internal 

cyclisation step. The present observation that the rate of cyclisation falls 

dramatically on going from (8.2; n = 2) to (8.2; n = 3) has a parallel with 

kinetic studies involving neighbouring-group participation.
253 

For example 

measuremen~s wi~h halohydrin anions, Cl(CH2imo , indicate that the rate of 

cyclisation decreases by 103 on going from m = 4 (five-membered ring) to m 5 

(six-membered ring). One important fac~or is likely to be the loss of 

rotational freedom of the side-chain. This will lead to an increasingly 

unfavourable entropy loss as the chain length increases. The effects of ring-

size on ring-strain are less easy to predict. Formation of the dioxolan ring 

in the spiro-complex (8.2; n ~ 2) involves eclipsing interactions between 

adjacent'methylene hydrogens. However a model indicates that little 

deformation of bond angles is required so that this may not be a particularly 

strained structure. The proposed structure (8.6) for the six-membered ring 
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involves some expansion of bond angles, and unfavourable interactions between 

adjacent hydrogen atoms is still present as the conformation adopted is only 

partially 'staggered'. It may be that in the seven-membered ring (8.2; 

n = 4) ring strain is less than in the six-me~?ered case. Therefore a decrease 

in ring strain working in opposition to the expected increase in entropy loss 

would provide an explanation for the similar stabilities of (8.2; n = 3) and 

(8.2; n=4). Other factors such as solvation may also be important. 

The similarity of k_ 1 values in Table 8.6 probably indicates that most 

of the· entropy loss and ring-strain connected with cyclisation are already 

present in the transition state for ring formation. The slightly larger value 

of k_ 1 for (8.2; n = 2) may be as a result of steric interactions caused by 

the completely eclipsed conformation of the methylene hydrogens in the 

dioxolan ring. However as a whole the argument of ring-strain being the 

cause of the high rate of complex decomposition for spiro-complexes relative 

to thetr non-~ycltc analogoues· is prob;~hly not justified. An alternative 

explanation may be found in terms of the conformational differences about the 

c-o bonds in the two types of complex. . The preferred conformation of the 

1,1-dimethoxy-complex will be as shown in (8.9) in which there is considerably 

(8.9) 

more freedom about the c-o bonds than in the spiro-complexes. Much of this 

freedom may well be lost on passage to the transition state for c-o bond 

breaking and hence the smaller values of complex decomposition for the non

cyclic adducts. 
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CHAPTER 9 

THIO-ANALOGUES OF SPIRO-COMPLEXES 

INTRODUCTION 

There have been several previous studies of the formation of a-complexes 

from trinitro-activated substrates and thiolate ions. Spectral data and 

equilibrium constants have been reported for the addition of sodium thioethoxide 

d h . h 'd 1 3 5 . . b 160,177 d . ili 160 an t ~op enox~ e to , , -tr~n~tro enzene an some n~tro-an nes. 

In these· cases addition occurs at unsubstituted ring positions. Pietra and 

Biggi
161 

studied the reaction of sodium thioethoxide and ethyl thiopicrate 

and found n.m.r. evidence for the formation of t\-.10 products (9.1) and (9.2). 

0 N' 2 

(9. 1) 

0 N' 2 

SEt 

I 
N0

2 

(9. 2) 

Both isomers were present at equilibrium with the 1,3-adduct (9.2) predominating. 

This is in marked contrast to the analogous reactions of oxygen bases with 

alkyl picrates where addition at the 3-position is kinetically preferred but 

addition at the 1-position gives the thermodynamically more stable product. 

Pietra and Biggi's result suggests that the stabilising effects of two 

thioalkoxy groups attached to the same carbon atom are diminished relative to 

40 168 
the effects of two alkoxy groups. ' By removing the possibility of attack 

at an unsubstituted ring position, Pietra et a1 195 isolated and characterised 

a stable gem-adduct, the spiro-complex (9.3), for which kinetic and equilibrium 

data have been obtained in the present work. 

The preference for 1,3-adducts also appears to be the case when only one 

oxygen atom is replaced by sulphur. 254 Thus Gitis et al observed that complex 

(9.4) predominates in tl1e reaction of methyl thiopicrate with methoxide ions. 
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II· 
s s SMe n s 0 

(9. 3) (9. 4) (9. 5) 

However evidence will be presented later for the formation of the spiro-

complex (9.5). 

A. 1-(2-MERCAPTOTHIOETHOXY)-2,4,6-TRINITROBENZENE 

EXPERIMENTAL 

Freshly prepared stock solutions of buffers and substrate \-lere diluted 

with water to give test solutions of the· appropriate concentration 

immediately before measurements were made. u.v.-visible spectral shapes were 

recorded using a Unicam SP8000 spectrophotometer and equilibrium.optical 

density measurements were obtained using an SP500 instrument. Kinetic 

measurements of comple:< decomposition in acidic buffers and dilute hydrochloric 

acid were made using the stopped-flow method by means of a 'Canterbury' 

spectrophotometer. P.m.r. spectra were recorded using a Bruker HX 90E 

instrument. 

RESULTS AND DISCUSSION 

The complex (9.3) dissolved in water gives a dark red solution which shows 

4 absorption in the visible region at ~ 458 (€ 1.8 x 10 ) and 550 nm (shoulder; 
max 

3 -1 -1 
€ 7.7 x 10 l.mol em ) . The spectrum of the complex dissolved in DMSO has 

4 
~ 454 (€ 2 X 10 ) r 540 (shoulder; 

3 3 -1 
€ 8 x 10 ) and 565 nm (€ 8.6 x 10 l.mol 

max 
-1 

em ). The complex in water undergoes slow irreversible decomposition. 

DMSO the rate of decomposition is much slower, in accord with previous 

6 
observations that DMSO has a stabilising effect on anionic a-complexes. 

In 
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The p.m.r. spectrum of the complex dissolved in DMSO-d
6 

shows two singlets 

at 68.33 and 3.86 p.p.m. attributed to the ring and methylene protons 

respectively. Thus the spectral data are in agreement \'tith Pietra' s 

b . 195 o servat~ons. 

Equilibrium optical density measurements and calculated equilibrium 

constants, Kc' are given in Table 9.1. The values of KC were evaluated using 

a 

TABLE 9.1 

0 Equilibrium Measurements-for Complex (9.3) in Aqueous Buffers at 25 C 

4.22 

4.65 

5.15 

5.65 

6.10 

6.63 

7.2 

7.6 

Measurements made at 458 nm 

a O.D. 

·.o98 

.225 

.426 

.583 

.653 

.710 

.715 

.720 

(l.mol- 1) 

9.5 

10 

10 

9.5 

8 

equation 6.2 assuming an analogous mechanism for complex formation. 

Rate measurements for complex decomposition were carried out under 

conditions where the pH of the solution did not vary or the concentration of 

acid was in large excess of the substrate concentration. Hence first-order 

kinetics were observed; a typical data set is given in Table 9.2. 
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TABLE 9.2 

-5 Rate Data for Decomposition of Complex (9.3) (3.1 x 10 M) 

in Dilute Hydrochloric Acid (5 x 10-3
M) at 25°C 

Time 

(m.sec) 

0 

10 

20 

30 

40 

so 

60 

70 

lXI 

Scale Reading 

(arbitrary units) 

7.21 

s.oo 

3.40 

2.35 

1.58 

1.09 

o. 75 

0.5"4 

0.04 

k cbs 

-1 
(sec ) 

37 

38 

38 

38 

38 

39 

38 

The results in Table 9.3. for complex decomposition in various acidic 

buffers and dilute hydrochloric acid indicate the absence of general catalysis 

and only a feeble catalytic effect due to hydronium ions. This would suggest 

a mechanism for ring-opening according to P.q1.1~.tion 9. 1. in \·!hich proton 

SCH2CH 2s SCH2cH2SH 

O.,N N02 o
2
N N02 

k_l 
L 

H+ + + _____,., + H --
~ 

...--
1 Ka 

N0
2 N0

2 

(9. 6) (s-> (9. 7) (SH) 

transfer reactions between (9.6) and (9.7) involving buffer and solvent species 

are fast compared to k 1 and k_ 1 and are probably diffusion controlled.
255 

9.1 
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TABLE 9.3 

Kinetic Data for Decomposition of Complex (9. 3) in Acidic 

Buffers and Dilute Hydrochloric Acid in Nater at 25°C 

[HA] + - 5 1o10k K a Acid [Na A ] 10 [Substrate] pH k obs 1 

(M) (M) (M) -1 (sec ) -1 -1 (l.mol sec ) 

.026 .026 1.4 4.71 60.6 ± 1 4.2 

.065 .065 1.4 4.70 60.3 4.3 

Acetic. .13 .13 1. 4 4. 72 60.2 4.0 
.26 .26 1.4 4.78 60 3.5 
.039 .013 2 4.2 46 4.4 
• 39 .13 2 4.2 39.5 

.026 .026 1. 4 3.65 40 ± 1 

.065 .065 1.4 3.62 40 

.13 .13 1.4 3.60 39 
Formic .26 .26 1.4 3.60 37 

.039 .013 1.5 3.22 40 

.195 .065 1.5 3.17 37 
• 39 .13 1. 5 3.10 36 

.025 .025 1.5 2.92 38 

.063 .063 1.5 2.9 37 

.125 .125 1.5 2.92 34 

Chloroacetic .25 .25 1.5 2.80 31 
.02 .005 1.5 40 
• 1 .025 1.5 2.5 37 
.062 .062 1.5 2.93 37.5 
.062b .062h 1.5 2.58 37.6 

4.5 5.o5C 86 ± 2 4.3 
3.0 5.2oc 120 ± 3 5 

.0025 3.1 39 ± 1 

.oo25b 3.1 38 

.005 3. 1 38 

.oo5b 3. 1 37 

HCl .0075 3.1 39 
.oo75h 3.1 37 
.01 1. 5 39 
.OS 1. 5 40 
• 1 1. 5 41 
.25 1. 5 42 

DCl .005 1.8 33 

a Calculated using equation 9.5 with k_
1 

39 
-1 

sec 

b Made up to ionic strength 0.25M with sodium chloride. 

c 
Phthalate buffer, 0.025M 
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Moreover the absence of general acid catalysis and the very small catalytic 

coefficient of hydronium ions seems to suggest that the major pathway between 

the complex and (9.7) involves a spontaneous ring-opening of (9.3), which is 

supported by k_ 1 (H 2o)/k_ 1 (o2o) = 1.2 ± 0.1 indicating no involvement by the 

solvent. In contrast the decomposition of the oxygen analogue, complex (6.3), 

in acidic media involved a concerted proton transfer - ring-opening mechanism. 

The observed rate constant for decomposition of the spiro-complex 

according to equation 9.1 can be derived as follows: 

d[Spiro] 
dt = 

Assuming equilibration of S and SH is fast compared to k
1 

and k_
1 

then 
d[Spiro] 

dt = 
. [SH] 

k 1 [sp~ro]-k 1K --. - a[H+] 
9.2 

where K = a 
is the acid dissociatio~ constant of the thiol. 

From the stoichiometry 

[Spiro]stoich [Spiro] + [s-J + [SH] 

[SH] = [Spiro] t . h - [Spiro] - [S-] 
s o~c 

-10 -1 + -6 
Since K is of the order of 10 mol.l (see later) and [H ] >10 M then 

a 
[SH] 4 

> iu- and thus [S-J can be neglected. cs-J 
Substituting in equation 9.2. gives: 

d[Spiro] = 
dt 

At equilibrium 

k
1
K 

k_
1
[spiro]-~ (constant-[Spiro]) 

[H ] 

0 = 
k

1
K 

k 
1
Cspiro] - __ +a (constant-[Spiro] ) 

- eq [H ] . eq 

Combining equations 9.3 and 9.4 gives: 

9.3 

9.4 

d[Spiro] 
dt 

k1Ka 
k 

1 
([Spiro]-[ Spiro] ) + -- ([Spiro]-[Spiro] ) 

- eq [H+] eq 

. . 
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= + 9.5 

This is formally equivalent to the observed rate constant for complex formation 

in basic media. 

Inspection of the data obtained in dilute hydrochloric acid reveals that 

-1 
the observed rate constants passes through 'a minimum (39 ± t sec ) which 

corresponds to the pH independent term k_ 1 in equation 9.5. Data in Table 

10 -1 -1 
9.3 indicate a value of (4 ± 1) x 10 l.mol sec for k 1K. Combination of 

8 -1 this result with k_ 1 leads to a value of (10 ± 2) x 10 l.mol for K1K, in 

good agreement with that obtained from equilibrium measurements (Table 9.1). 

The decrease in the observed rate constants with buffer concentration 

noticed with formic and chloroacetic acid buffers may result from sotne kind of 

mediQm effect rather than a direct salt effect as added sodium chloride causes 

little change in k b • 
0 s 

Comparison with the dioxygen analogue 

The kinetic and equilibrium parameters for complexes (6.3) and (9.3) are 

listed in Table 9.4. The larger values of K1K for complex (9.3) compared to 

TABLE 9.4 

Equilibrium and Kinetic Parameters for Complexes (6.3) and (9.3) in Water at 25°C 

Complex K1K k
1
K k1 

a 
k_1 

-1 (l.mol ) 
-::y -1 

(l.mol sec ) -1 (sec ) 
.-1 

(sec ) 

(6. 3) 1. 8 X 107 1.6 X 1o6 1.6 X 1o7 .095 

(9. 3) (10 ± 2) X 10 
8 

(4 ± 1) X 10
10 

(4 ± 1) X 106 39 

that for the oxygen analogue (6.3) reflects a larger value of k 1K, however the 

k_ 1 value is also larger. Nevertheless it must be remembered that thiols are 
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stronger acids than alcohols by 5 or 6 pK units. 256 
a 

Assuming a pK of 10 
a 

4 -1 
for (9.7) gives a value forK of~· 10 l.mol whereas a value forK of 

-1 -1 
ca. 10 l.mol is likely for the oxygen analogue. Thus the rate constants 

for spiro-complex formation of both sulphur and oxygen ccn~lexes are approximately 

the same. This leads to the result that the equilibrium constant, K1, for 

spiro-complex formation is about three or four orders of magnitude greater 

for the dioxolan complex than for its thio-analogue. This contrasts with the 

1 f 1 3 5 t . . .b 160 h ddi . t b t. t t d resu t or , , - r~n~tro enzene, w ere a t~on occurs a an unsu s ~ u e 

ring position and values for the equilibrium constants for addition of methoxide 

and thioethoxide are 23
167 

and 3.5 x 103 160 l.mol- 1 respectively. This 

reversal in stability parallels that observed by Pietra for the ethyl thiopicrate-

161 
thioethoxide system. 

One possible reason for the instability of 1,1-dithioalkoxy-complexes 

relative to the 1,3-adducts is steric crowding around the c 1 position, sulphur 

being more sterically demanding than oxygen. This is supported by the large 

value of k _
1 

for ( 9. 3) \·Then compared to the oxygen analogue ( 6. 3) • 

. 40 168 
Bernascon~ ' suggested that the stability of 1,1-dialkoxy-complexes owed 

itself in part to the particular stabilising effect of electronegative 

substituents attached to the saturated carbon atom. It could be argued 

therefore that the much reduced electronegativity of sulphur compared to 

oxygen contributes to the relative instability of thio-analogues of 1,1-dialkoxy-

complexes. 

The absence o~ any significant effect on the rate of complex decomposition 

256 
by acidic species is indicative of the weak proton basicity of sulphur. 

Indeed the use of thioacetals as protective groups for carbonyl functions in 

synthetic reactions, in spite of their ready formation~ 57 is not very attractive 

b f h . . d h d 1 . 258 
ecause o t e~r resistance to ac~ y ro ys~s. 

201 
In terms of Pearson's 

concept of hard and soft acids and bases it might be expected that a more 

likely way of effecting decomposition would be the use of a 'softer' acidic 

species (sulphur being considered as a soft base) . In this respect the 
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dramatic catalytic effect of added mercuric ions (see Table 9.5) on the 

decomposition of complex (9.3) is not unexpected. 

been used to effect cleavage of thioacetals.
259 

TABLE 9.5 

In fact mercury (II) has 

Kinetic Data for the Decompositiona of Complex (9.3) in 

the Presence of Added Mercuric Chloride 

6 5 
10 [HgC12) 10 [Substrate] k obs 

(M) (!:!) 
1 (sec- ) 

2.6 1.8 43 

5.2 5.4 51 

7.7 5.4 68 

10.3 5.4 100 

a Chloroacetic acid buffer (0.025M) at pH 2.90 
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B. 1-(2-HYDROXYTHIOETHOXY)-2,4,6-TRINITROBENZENE 

194 
It has been shown that 1-(2-hydroxythioethoxy)-2,4-dinitrobenzene ~1d 

the analogous picryl derivative undergo a reversed Smiles-type rearrangement in 

alkaline media to give the substituted phenol and ethylene sulphide according 

to the following scheme. 

(9. 8) 

0 
I 

N0
2 

(9. 9) 

1 

The results obtained in the present work for the picryl system support the 

above scheme and the kinetic and thermodynamic para."TTeters obtained are compared 

with complexes (6.3) and (9.3). 

EXPERIMENTAL 

P.m. r. spectra of the substrate in DMSO-d6 in the absence and presenc.e of 

base were recorded using a Bruker HX90E instrument. Spectral shape measurements 

in the u.v.-visible region of the spectrum were made by means of a Unicam SP800 

spectrophotometer and a 'Canterbury' stopped-flow spectrophotometer. Kinetic 

measurements were made using the stopped-flow method for the picryl derivative 

and a Unicam SPSOO for the 2,4-dinitrophenyl deri\•ative. 
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RESULTS AND DISCUSSION 

The p.m.r. spectrum of a o.2M solution of the substrate in DMSO-d
6 

shows 

three sets of bands at o9.14 (singlet), 3.59 (triplet; J =6Hz) and 3.04 

p.p.m. (triplet; J = 6 Hz) ascribable to the ring, a-cH
2 

and a-cH
2 

protons 

respectively. The hydroxyl proton gives a broad band centred at ca. o3.60 

p.p.m. Support for this assignment comes from the spectrum of the 2 1 4-

dinitrophenyl derivative. In this case the hydroxyl resonance (o5.21 p.p.m.) 

is split into a triplet (J ca. 6 Hz). The methylene proton absorptions occur 

at 153 •. 32 and 3. 79 p.p.m., the latter being a quartet through coupling with the 

a methylene protons (J ca. 6Hz) and the hydroxyl proton (J ~·6Hz). Thus 

the resonance at 63.59 p.p.m. in the spectrum of the picryl derivative can be 

assigned to the methylene protons a to the ring and the 3.04 p.p.m. resonance 

to the a methylene protons. 

Addition of less than one equivalent of sodium deuterioxide in D2o produced 

a bright red solution and resulted in the appearance of new absorptions at o8.71 

(singlet) 1 8.47 (singlet), 4.62 (multiplet) 1 3.58 (multiplet) and 2.47 p.p.m. 

(singlet) . With time the bands at o8.71 and 2.47 p.p.m. increased in intensity 

at the expense of those at o8.47 1 4.62 and 3.58 p.p.m. The latter set of 

bands are consistent with the spiro-complex (9.10)1 the non-equivalence of the 

N0
2 

(9.10) 

two methylene groups being caused by the two different heteroatoms in the 

five-membered ring. By comparison with the methylene proton resonances for 



- 162 -

complexes (6.3) and (9.3) at ~4.3 and 3.86 p.p.m. respectively, the-multiplet 

at ~4.62 p.p.m. can be assigned to the "ss' protons and the multiplet at ~3.58 

p.p.m. to the H ' protons. 
<la 

Vicinal coupling of the methylene protons results 

in multiplet splitting of the resonances; equation 8.1 indicates that JaB> Jas' 

since the dihedral angles are 0 and 120° respectively. Addition of further 

base causes the parent peaks to disappear and the signals due to the complex 

to increase in intensity. Eventually only peaks at ~8.71 and 2.47 p.p.m. 

remain and these can be ascribed to the picrate anion and ethylene sulphide 

respectively. 

Addition of dilute sodium hydroxide solution (<0.1~) or aqueous alkaline 

buffers to an aqueous solution of 1-(2-hydroxythioethoxy)-2,4,6-trinitrobenzene 

-5 
(ca. 4 x 10 M) results in the rapid formation of a red colour which slowly 

fades leaving a yellow solution. The u.v.-visible spectrum of this final 

solution has~ at 355- and 410 nm (shoulder), characteristic of the picrate 
max 

. 236 
anJ.on. Investigation of the system by stopped-flow spectrophotometry 

confirmed that there are two relaxation times. For the fast process an increase 

in optical density was always observed between 380 and 560 nm. The spectral 

shape in this region had ~ at 435 and ~· 500 nm (shoulder) , similar to 
max 

6,8 
that observed for other picrylic Meisenheimer complexes. The second 

relaxation time was accompanied by a decrease in optical density at wavelengths 

>450 nm and an increase at wavelengths <450 nm. This isosbestic point shifted 

to lower wavelength as the pH and hence the proportion of the initial species 

increased. 

Optical density measurements made at 435 nm after the first relaxation 

time are given in Table 9.6 together with calculated equilibrium constants. 

Both relaxation times followed first-order ~inetics and typical data 

are given in Tables 9.7 and 9.8. The same rate was obtained for the second 

process irrespective of the wavelength of observation. Rate constants for 

the formation and decomposition of the complex at different base concentrations 

are given in Tables 9.9 and 9.10. 
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TABLE 9.6 

Equilibrium Measurements for Complex (9.5) in Aqueous Buffers at 25°C 

pH a 5 b 103 K 10 [Substrate] O.D. 
c 

(M) -1 (l.mol ) 

8.4 4.02 .021 9.9 

8.9 4.02 .055 9.8 

9.15 6.1 .133 8.0 

9.45 4.02 .142 7.0 

9.50 4.27 .168 7 .o 

9.75 4.27 .240 6.3 

9.88 4.02 • 325 7.9 

10.40 4.02 .492 5.2 

4.02 .87 c 

Borax buffers o.o125M b Measured at 435 nm and quoted for 1 em path-length 

Optical density for complete conversion in 10- 2~ sodium hydroxide 

TABLE 9.7 

Rate Data for the First Relaxation Time for the Decomposition at 25°c 

·of 1- (2-Hydroxythioethoxy) -2,4 ,6-trinit-robenzene 

Time Scale Reading 

(sec) (arbitrary units) 

0 o. 70 

o. 1 2.55 

o. 2 3.82 

o. 3 4.75 

0.4 5.38 

0.5 5.80 

0.6 6. 10 

o. 7 6.33 

011 6.85 

( ll "" •• , .... -c..,. 
-5 

10 l·t) 

k obs 
-1 

(sec ) 

3.58 

3.54 

3.58 

3~58 

3.54 

3.51 

3.53 

at pH 9.88 
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TABLE 9.8 

Rate Data for the Second Relaxation Time for the Decomposition at 25°c 

of 1-(2-Hydroxythioethoxy)-2,4,6-trinitrobenzene (4.02 x 10-5
M) at pH 9.88 

Time Scale Reading 

(sec) (arbitrary units) 

0 0.80 

2 1.85 

4 2.75 

6 3.52 

8 4.13 

10 4.65 

12 5.13 

14 5.45 

16 5.78 

18 6.02 

co 7.36 

TABLE 9.9 

k 
obs 

.---1 
(sec ) 

0.087 

0.088 

0.089 

0.089 

0.088 

0.090 

0.088 

0.089 

0.088 

Variation of the First Relaxation Time ~rtith pH for the Decomposition of 

1-(2-Hydroxythioethoxy)-2,4,6-trinitrobenzene in Aqueous Alkaline Buffers at 25°C 

5 10 [Substrate] 

6. 1 

4.27 

4.27 

4.02 

3.65 

3.65 

4.02 

3.65 
a 

Borax buffers - 0.0125M 

E!!.a 

9. 15 

9.50 

9.75 

9.88 

10.2 

10.4 

10.4 

10.6 

k 
cbs 

-1 
(sec ) 

2.46 ± .05 

2.65 

2.95 

3.55 

4.3 ± .1 

5.3 

6.0 

6.6 
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TABLE 9.10 

Variation of the Second Relaxation Time with pH for the Decomposition of 

1-(2-Hydroxythioethoxy)-2,4,6-trinitrobenzene in Aqueous Alkaline Buffers at 25°C 

5 pH a >..' 10 [Substrate] k 
obs 

(M) (nm) -1 (sec ) 

6.1 9.15 500 .025 

4.27 9.50 500 .043 

415 .043 

4.27 9.75 500 .061 

410 .060 

4.02 9.88 500· .089 

408 .089 

3.65 10.2 500 .117 

3.65 10.4 500 .134 

4.02 10.4 500 .140 

400 .139 

3.65 10.6 500 .151 

a Borax buffers - 0.0125M 
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The results can be accommodated in terms of the following scheme: 

N0
2 

(9.11) 

o
2
N 

assumed 

K' have 

-

0 

N0
2 

C~CH2 + s/ 

N0
2 

kd 

(9. 5) 

OCH
2

CH
2

SH 

o2N~N02 

y 
N0

2 

(SH) 

that the proton transfer equilibria 9.6 and 9.7 are fast and 

values of ca. 10 
-1 

and ca. 10
4 

!.mol -1 
respectively. Then the 

parent + OH K _ .... 0 9.6 ........--

SH + OH 
K' s 9.7 

+ OH 
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equilibrium concentration of 0-, which is given by K[parent][OH-], will be 

always small at the base concentrations used in the present work. Each 

process will be considered in turn. 

First relaxation time 

The rate constant for the colour-forming reaction is defined by: 

d(O.D.eq- O.D.) 

dt(O.D. - O.D.) 
eq 

where O.D. = optical density 

From the stoichiometry 

[Spiro] = [parent]stoich - [parent] - [S-] - [SH] 

If equilibrium 9.7 is fast then [SH] = 
[S-] 

Substituting in equation 9.8 gives 

[Spiro] [parent] t. h- [parent]- [S-]{1 
S Ol.C 

Similarly if spiro ~s fast then [S-] = 

and [spiro] X constant = [parent]stoich - [parent] 

where constant = 1 

But O.D. a [spiro] 

1 

+ 

O.D. a ([parent] t . h - [parent]) 
S Ol.C 

x----constant 

1 
Similarly O.D. a ([parent] t . h - [parent] ) eq s o1.c eq x----constant 

. . 

. . 

O.D. - O.D. a ([parent] - [parent] )' x --1--
eq eq constant 

d[parent] 
dt 

d([parent] - [parent] ) eq 
dt([parent] - [parent] ) eq 

= k b ([parent] - [parent] ) 
o s eq 

1 

9.8 

9.9 

9.10 

Thus spiro-complex formation should show first-order kinetics and this 

is observed experimentally (see Table 9.7). 
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Since equilibrium 9.6 and 9.9 are fast then 

d[spiro] 
dt 

Substitut~ng for spiro from equation 9.10 gives 

d[spiro] 
dt 

d[spiro] 
At equilibrium dt = 0 

[parent] . h - [parent] 
k ( sto~c ) 

-1 constant 

0 = 
[parent] t . h - [parent] 

k
1
K[parent] [OH-] - k ( s o~c eq) 

eq -1 constant 

9.11- 9.12 gives 

9.11 

9. 12 

d[spiro] 
dt 

[parent] - [parent] 
k ( eq) = k

1
K[OH-]([parent]- [parent] ) 

eq + -1 constant 

But from equation 9.10 
d[spiro] 

dt 
= 

~arent] 
dt 

1 
X-......;;.--

constant 

d[parent] 1 -
dt x constant= k1K[OH ]([parent]-

k 
obs 

= X 

+ 

constant + 

[parent] ) 
eq 

k_
1 

([parent] - [parent] ) 
eq 

constant 

It seems probable that the value of the constant (1 + - 1
- (1 + ----1--~>> will 

K2 K' [OH-] 

be close to unity. Measurements of equilibrium optical densities indicate 

4 -1 
an apparent extinction coefficient of the spiro-complex of 2.2 x 10 l.mol 

-1 
em By comparison with similar complexes an extinction coefficient in the 

2-3 x 104 l.mol- 1cm-l 6 •8 ld b d range wou e expecte . It is therefore possible to 

achieve a minimum conversion of ca. 80% of the total substrate to spiro-complex 
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~ ~l~i~s of hi~~- This sets a lower limit of 4 for the value of K2 . 

The value of K', the equilibrium constant which governs proton loss from the 

thiol group to hydroxide, is likely to be in the range 10
4 to 10

5
• For 

. th K 1 f 2 h h th' 1 ' 9 38 260 
compar~son e p va ue or -et oxyet ane ~o ~s • • 

a 
With the 

stated values of K
2 

and K' then the value of the constant will be close to 

unity so that equation 9.13 will apply. 

k 
cbs = + 9.13 

A plo~ o~ kobs versus [OH-] gives a straight line with intercept (k_
1

> 2.2 ± 

-1 . 4 -1 -1 
2 sec and slope (k

1
K) (1.4 ± 0.2) x 10 l.mol sec • Combination of k

1
K 

3 -1 and k_
1 

gives a value of (6.2 ± 1) x 10 l.mol for K
1

K. 

Second relaxation time 

The derivation of the rate equation for the second relaxation time can 

be treated in two ways: 

(i) Assuming kd is the rate-determining step 

d[picrate] = kiS-] 
dt 

kd[spiro] 
= 

K2 
9.14 

d[J2icrat~l = d[spiro] d[parent] 
dt dt dt 

9.15 

d[spiro] 
(1 + 1 = dt K

1
K[OH-] 

9.16 

k 
d[spiro] . 1 = [spiro] obs dt 

9.17 

From equations 9.14 and 9.16 

= d[spiro] (l + _ __;;1;___ 
dt -K

1
K[OH ] 
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Using equation 9.17 

= k b (1 + 1 ) 
0 s -K

1
K[OH ] 

Rearranging gives 

1 
9.18 

The same equation is obtained by considering the rate of picrate formation. 

1 1 
A plot of -k--- versus 

obs K [OH-] 

5 ± 0.5 sec) and slope (~ • --1-

gives a straight line with intercept 

= -4 -1 
(6 ± 0.2) x 10 sec.mol.l ) • 

K2 
(- = 
kd 

kd K1K 
3 -1 

Combination of slope and intercept gives a value of (8 ±·0.5) x 10 l.mol 

for K
1

K, in good agreement with the value obtained from equilibrium measurements • 

. An estimate of the value of K
2 

and hence kd can be made as follows. 

If K for (9.11) is ca. 10-l l.mol-l then K
1 

for the spiro-complex (9.5) is 

Considering complexes (6.3) and (9.3) 

Assuming 

and hence 

K
1 

(6. 3) 

K
1 

(9. 3) 

that K
1 and 

1.8 X 10 8 

1 X 
._5 
J.U 

K2 

kd 

= 

K2 for complex (9. 5) are 

8 X 104 
= 

1(" 
-·2 

= 45 

9 sec -1 = 

(ii) Assuming k_ 2 is the rate-determining step 

d[picrate] = 
dt 

From equations 9.15 and 9.16 

= k b (1 
0 s + 

1 

in the same ratio then 



Rearranging gives 1 
k obs 

+ 
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1 

k_
2

K
1

K[OH-] 

1 -1 
In this case the intercept gives a value for ~and hence k_ 2 is 0.2 sec 

. 3 - 2-1 
Again the slope leads to a value of 8 x 10 l.mol for K

1
K. 

1-(2-Hydroxythioethoxy)-2,4-dinitrobenzene 

For comparison, rates of 2,4-dinitrophenol (2,4-DNP) formation were 

measured for the 2,4-dinitro analogue. Date are given in Table 9.11. 

TABLE 9.11 

Variation of the Rate of Reaction of 1-(2-Hydroxythioethoxy)-2,4-dinitrobenzene 

a 

-5 0 (4. 2 x 10 M) \oTith Sodium Hydroxide Concentration at 25 C 

[Sodium hydroxide] 

(M) 

0.01 

0.025 

0.05 

0.075 

0.10 

Measurements made at 400 mu 

104 k a 
obs 
-1 (sec ) 

2.06 

4.64 

9.09 

13.7 

16.3 

In this case there was no evidence for spiro-complex formation in aqueous 

media although in DMSO solutions a transient red coiour was observed. 

Therefore the species likely to be present in appreciable concentrations are 

the parent, the phenol and possibly S-. 

As before expressions for the observed first-order rate constant can be 

derived in two ways. 

(i) AssUming kd is the rate-determining step 

k 
obs = 

d[2,4-DNP] 
dt([2,4-DNP] - [2,4-DNP]) 

00 

9.19 
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[2,4-DNP] - [2,4-DNP] = [parent] + [S-] ... 

But 

[parent][OH-] 

= 

Substituting in equation 9.20 gives 

[2,4-DNP] ... 

d[2,4-DNP] 
dt 

- [2,4-DNP] = 

= 

[s-"J 1 = KK --
[spiro] 1 K2 

K2 [ s- J (1 + _ ___;;;....._._ 
K

1
K[OH-] 

Using equations 9.19, 9.21 and 9.22 gives 

•. . 

k obs 

1 
k obs 

= 

K
1
Kkd[OH-] 

9.20 

9,21 

9.22 

1 1 -3 -1 
A plot of -k-- versus is linear, the intercept giving kd ~· 5 x 10 sec 

cbs [OH-] 

(ii) Assuming k .., is the rate-de·termining step -, 

d[2,4-DNP] 
dt 

= 

Substitution in equati~n 9.19 gives 

k = obs ([2,4-DNP] - [2,4-DNP]) ... 

Since the only species present in appreciable concentration will be the parent 

and 2 , 4-J?NP 

[2,4-DNP] - [2,4-DNP] = [parent] .., 



k cbs 

k cbs 

= 

= 

Experimentally 

k_
2
[spiro] 

[parent] 

= 

but 
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[spiro] 
[parent] 

Assuming that K
1

K values for complexes (6.5) and (9.8) are in the same ratio 

as observed for complexes (6.3) and (9.5) then 

0.05 
= 

= = 
-1 

sec 

Although the results do not prove conclusively that either kd or k_ 2 is 

the slow step governing the second relaxation time, it seems probable that 

kd is rate-determining. 

this is the case. 

There are a number of points which suggest that 

(a) If ring-opening of the spiro-complex (9.5) by cleavage of the carbon

-1 
sulphur bond is rate-determining, then the value of 0.2 sec for k_2 is not 

-1 
consistent with a k_

1 
value of 2 sec for carbon-oxygen bond-breaking when 

compared to the rates of ring-opening of complexes (6.3) and (9.3) (Table 9.4) 

where the rate for the sulphur analogue is some two-three orders of magnitude 

greater than for the dioxolan complex. 

(b) For the 2,4-dinitrophenyl derivative there is no detectable red 

colouration indicating that there is no build-up of spiro-complex which m~gh~ 

be expected if k_2 were rate-determining. 

(c) It was shown
194 

that decomposition of the 2,4-dnitrophenyl derivative 

in the presence of 2,4-dinitrochlorobenzene yielded 74% of 1-(2,4-dinitro-

phenoxy)-2-(2,4-dinitrophenylthio)ethane. However attack of (0-) on the 

2,4-dinitrochlorobenzene results in the same product. Nevertheless present 
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results suggest that the rate of ring closure to give (9.5) will be several 

orders of magnitude greater than substitution of chlorine from 2,4-dinitro-

chlorobenzene. (Compare the rates of reaction of substituted thiophenoxide 

ions with the same substrate given in Chapter 3 together with the fact that 

sulphur nucleophiles have greater reactivity than oxygen nucleophiles). Thus 

production of the substituted ethane in high yield in the presence of 2,4-

dinitrochlorobenzene would seem to indicate that kd is rate-determining. The 

magnitude of the kd values for the picryl and 2,4-dinitrophenyl compounds 

would seem to favour kd as the slow step in that they reflect well the leaving

group ability of picrate and 2,4-dinitrophenoxide ions as indicated by their 

261 
pK values. 

a 

leaving groups. 

Such correlations have been observed262 with similar aryloxy 

Kinetic and equilibrium data for complex (9.5), collected in Table 9.12 

TABLE 9.12 

Kinetic and Equilibrium Data for Complexes (6.3), (9.3) and (9.5) in Water at 25°C 

Complex KlK Kl 
a k1K kl 

a 
k_l 

-1 (l.mol ) -1 -1 (l.mol sec ) -1 (sec ) -1 (sec ) 

(6. 3) 1.8x 107 1.8x lo8 1.6x 106 1.6x lo
7 .05 b 

lo9 5 1n ,. b 
(9 = 3) 

, 1 x lo 4 X 10~"" 4 X 10° 19.5 .... X 

(C-O (8 ± 1) X lOJ (8 ± 1) X 104 (1. 4 ± • 2) X 104 1.4x 105 2.2 ± 
. (9.5) ( 

5 (C-S 4.5 X 10 45 >9 

a -1 
Esti1nated assuming that K for the parent alcohol and thiol are 10 and 

10
4 

respectively. 

can be compared with those given for the dioxolan and dithiolan complexes (6.3) 

and (9.3). In considering the equilibrium K1 for complex (9.5) it is 

interesting to note that the K
1
K value indicates a somewhat lower stability for 

this complex than the di-oxygen analogue. The reduced stability, reflected in 

• 2 
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a lower k
1

K value and a correspondingly larger value for k_
1

, can be accounted 

for in a number of ways. Replacement of oxygen by sulphur would be expected 

o+ o-
to introduce steric effects. rn addition the polarisation (C--0 ) of the ether 

linkage favouring attack by 0- at the ring carbon atom i5 considerably reduced 

in thioethers as a consequence of the smaller electronegativity of sulphur. 

. 40 168 Related to this is Bernascon1's. ' argument that 1,1-dialkoxy-Meisenheimer 

complexes owe some of their stability to the electronegative alkoxy 

3 
substituents at the sp hybridised ring carbon atom. 

Comparison between the equilibrium K
2 

and the dithiolan complex is not 

as easy since the data for (9.5) are estimated values only. However results 

seem to indicate that formation of the oxathiolan complex via the thiolate 

anion is much less preferred when compared to (9.3). One piece of evidence 

which supports this is the greater rate of irreversible decomposition of (9.5) 

indicating that the concentration of the thiolate is appreciable. This 

of course assumes that (9.3) decomposes in an analogous way to give thiopicrate 

and ethylene sulphide. 
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