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ABSTRACT

The performance of a lubricated, elastomer lined bearing is
dependent upon the surface deformations of the liner. This
investigation is concerned with the prediction of influence co-
efficients for rigidly backed, soft* layers by the finite element
method. These are applied in the pure-sliding, elastohydro-
dynamic lubrication problem, of a rotating rigid cylinder loaded
against a thin elastic layer, which covers the plane surface of a
rigid solid.

Theoretical solutions showing the influence of elastic
distortions upon friction, pressure and film shape are presented.
These are supported by experiments upon the same type of bearing.
Pressure measurements and the tangential force on the plane
surface for layers of various thicknesses are recorded as obtained
from two experimental rigs.

The persistence of hydrodynamic or boundary lubrication for a
soft layer compared to a rigid plane, under conditions of low speed
or low viscosity lubricant, is also illustrated by the friction

measurements.

*
The term "soft"” refers throughout to materials of low-elastic

modulus.
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I tax not you, you elements, with unkindness;

I never gave you kingdom, call'd you children,
You owe me no subscription: then, let fall

Your horrible pleasure; here I stand, your slave,
A poor, infirm, weak, and despis'd old man.

But yet I call you servile ministers,

That have with two pernicious daughters join'd
Your high-engender'd battles 'gainst a head

So old and white as this. O! 0! 'tis foul.

LEAR, Scene I1I, Act III,

King Lear.



CHAPTER 1

INTRODUCTION

1.1 Tribology of Elastic Layers

The study of the lubrication of moving contacts (tribology)
has attracted interest over the last ninety years. The effects of
elasticity and pressure-dependent viscosity have been combined in an
elasto-hydrodynamic analysis of rolling and sliding surfaces, the
result of work by a series of investigators as summarised by Dowson
and Higginson, Ref. 47,48.

For materials of low stiffness, elastic deformations within
the bearing affect the lubrication mechanism for relatively low
pressures. In comparison, the small variatiop of viscosity with
pressure through the beariné has a negligible effect. Such conditions
occur in bearings containing surface layers of low elastic modulus,
supported by a relatively rigid backing. The difficulty arises in
predicting the surface deflections, as it is inappropriate to treat
the layer as an infinite elastic solid.

It was the object of the present work to provide a numerical
solution to the deformation of such layers. Finite element
techniques were used to determine influence displacements for
uniform, linear and quadratic pressures applied to the surface of
the elastomer. A combination of these can be approximated to any
pressure curve. They were used in the elastohydrodynamic theory to
calculate lubricant film shapes, pressure distributions and friction
properties of a simple bearing. The theory was supported by pressure
and friction experiments on the pure sliding of a rigid cylinder

against a plane elastomer layer.




1.2 Bibliography

Research on bearings with compliant liners gained impetus
with the growing interest in animal joints. Jones, (1934), Ref. 2,
in a simple static friction experiment remarked upon the low co-
efficient of friction of a joint. Later, several investigators
report values of 0.003 to 0.025, Ref. 4-6, 12, 13.

Reynolds, (1886), Ref. 1, remarked upon the "self-acting
system of lubrication ...... of reciprocating joints". Simple
hydrodynamic lubrication of joints was proposed by MacConaill, (1932),
Ref. 3. Charnley, (1959), Ref. 4, disputed this due to the
conditions of load, etc. and suggested a form of boundary
lubrication. To explain the low coefficient of friction McCutchen
et al., (1959), Ref. 5-7, introduced the concept of "weeping"
lubrication. Dintenfass, (1963), Ref. B, discussed the possibility
of elastohydrodynamic lubrication and was supported by an analysis
by Tanner, (1966), Ref..9. Fein, (1966), Ref. 10, in experiments
on squeeze films and Dowson et al., (1966), Ref. 11,12, indicated
that the main method of lubrication would be elastohydrodynamic in
sliding or squeeze film conditions. They suggested that boundary
lubrication would occur only in cases of severe loading.

The effects of the properties of synovial fluid have also been
considered. As well as the fluid being thixotropic, Ref. 8, two
"enrichment" mechanisms have been postulated, Ref. 14-16. These
result in an increase of viscosity with decreasing film thickness
on normal approach, due to the retention of the hyaluronic acid
molecules in the contact zone as the base fluid flows away.

Higginson and Norman, (1974), Ref. 17, have shown that the
permeability of cartilage, allowing "weeping" and one of the

enrichment processes, is ineffective in the lubrication of joints,



except perhaps for very thin films indicative of boundary
lubrication. The analysis indicated that the second enrichment
mechanism, relying upon adsorption of the hyaluronic acid on the
cartilage surface, would be effective. The conclusion was "that

the mere presence of the soft impermeable layer has a greater effect
than do either of the more complicated mechanisms of weeping or
enrichment". The present investigation should provide an insight
into this aspect of elastohydrodynamic lubrication.

The frictional behaviour of elastomers has been extensively
studied, Ref. 18-22. Cohen and Tabor, (1965), Ref. 22, illustrated
the effects of lubricant and polymer properties on the friction
under conditions of dry contact and hydrodynamic lubrication. A
coefficient of friction as low as 0.001 was obtained for experiments
in full film lubrication of rubber on glass.

In the engineering field, bearings with elastomer liners were
first used in 1927 for water lubricated ships' stern tubes, Ref.
23,24. Their success over lignum vitae wés widely reported, Ref.
25,26. Busse and Denton, (1932), Ref. 27, and Fogg and Hunwicks,
(1937), Ref. 28, found the coefficient of friction for water
lubricated fluted and plain rubber bearings, to be 0.0l to 0.05
compared to 0.02 to 0.25 for their metal counterparts. Hother-
Lushington and Sellors, (1963), Ref. 29, reported on wear experiments
in boundary lubrication using water in plain journal bearings of
various materials including plastics.

In a pure sliding experiment involving a metal cylinder and
rubber plane, Higginson, (1962), Ref. 30, related the pressures to
elastohydrodynamic behaviour. This was supported by film thickness
and friction measurements on crossed perspex cylinders by Archard

and Kirk, (1962-63), Ref. 31,32. Roberts et al, (1969), Ref. 33,



used optical interference and Swales et al, (1972), Ref. 34,
capacitance techniques to measure film thickness of a lubricated
sliding rubber cylinder. Pressures were also obtained by the latter
using piezoelectric transducers. Jagger and Walker, (1966), Ref.
35, measured the coefficient of friction of synthetic rubber seals
operating in boundary lubrication conditions.

| Experiments directly referring to the thickness of the elastic
layer have been performed on several types of bearing. Dowson and
Taylor, (1967), Ref. 36, and Castelli et al., (1967), Ref. 37,
reported on the pressures found in circular plate thrust bearings
covered by thin elastic layers. Brighton et al., (1968), Ref. 44,
measured pressures in a journal bearing containing a thick Delrin
plastic liner. The friction variation for several layer thicknesses
was studied by Bennett and Higginson, (1969-70), Ref. 38,39, in a
pure sliding experimenﬁ on a cylinder and plane apparatus.

The first theoretical analysis, applied to an elastomer lined
journal bearing, was by Higginson, (1965), Ref. 40. The surface
deformation was determined from the local pressure. This
assumption was later used for pure sliding by Bennett, (1969-70),
Ref. 38,39, and for thrust bearings by Dowson and Taylor, (1967),
Ref. 36. Castelli et al., (1967), Ref. 37, also considered the
axisymmetric thrust bearing and gave an exact solution for the
@isplacements under any pressure (when described as superimposed
Bessel functions). Brighton, Hooke and O'Donoghue, (1967-69),

Ref. 41-44, analysed journal bearing liners in a similar manner by
app;oximating the pressures to a limited Fourier series. For
highly deformed surfaces Hooke and O'Donoghue, (1972), Ref. 45,
assumed the "dry contact" pressure curve, with alterations at inlet

and outlet for the hydrodynamic conditions. Non-dimensional film



thicknesses are given for pure sliding, journal bearings and O-ring
seals. Baglin and Archard, (1972), Ref. 46, using a similar method
introduced a "tilting pad" modification to the Hertzian pressure

curves; although layers were not considered.



CHAPTER 2

EXPERIMENTAL WORK

2.1 Introduction

The. aim of the experiments was to study the lubrication
characteristics of bearings containing elastomer layers of low
elastic modulus. A two-dimensional model was adopted. It consisted
of a rotating cylinder loaded against a stationary plane. The
cylinder was considered rigid, whereas the plane was constructed of
an elastic layer adhered to a rigid backing. The tangential forces
on the plane, the lubricant pressures within the contact zone and
the film shape were to be measured in various lubrication conditions.
However, it proved impractical to measure the film thickness
directly. Comparisons between the experimental and theoretical
pressures could be made, and then the film shape found from theory.
A series of experiments was also required to find the elastic

constants of the "soft" layer.

2,2 Friction

The experimental apparatus to measure the tangential forces
acting on the plane, had been developed in previous research, Ref.
38. Results had been obtained for starved and full lubrication,
Ref. 39. The new work involved an extension to the experiments in
full lubrication. Lubricants of two different viscosities were
used to study the region close to break-down of the full film where
"dry friction" began.

The rig consisted of two, contra-rotating, identical cylinders,

whose axes were nominally parallel and in the same horizontal plane.



Vertically
Suspended
Central Plane

Fixed Axis
Cylinder

Fig. 2.1

vot Pressure

Soft
Layer

Friction Rig

o § i

Steel Loading

Tapping.\ BalL\ Ang‘

\
O
0

g —————
=

%—_

Fig. 2.2

|

Pressure Rig

~—

Soft
Layer

Fixed Axis
Cylinder




A vertical plane block, free to move horizontally, was suspended
between the two, Fig. 2.1. The axis of one cylinder was fixed. The
other cylinder was mounted on self-aligning bell-crank arms, through
which a load could be applied. The plane block experienced a normal
load from each cylinder. Any tangential friction force was
indicated as a deflection of the beam supporting the vertical plane.
The arrangement had the advantages of doubling the friction force,
and overcoming the difficulties in measuring it when applying a
relatively lérge normal load to the same body. The whole assembly
was immersed in the lubricant to ensure full lubrication.

The cylinders were 115 mm diameter ground steel and could be
considered rigid. The central block consisted of a composite of
"rigid" Tufnol with elastic surface layers of polythene (Young's
modulus approximately 40 MN/mz). Plane layers of various thick-
nesses from 1 mm to 10 mm were used. In all cases it was important
to build the block up to the thickness of 40 mm (the design
separation between the two cylinders). The surfaces had to be
straight and parallel to each other. Shell "Tellus 29" and paraffin
of viscosities 10-1 and 1.5 x 10-3 kg/ms respectively, were the two
lubricants employed. The friction variation with cylinder speed

over a range of loads, was plotted for various soft layer thicknesses.

2.3 Pressure

A new rig was designed for the experiments for measuring
pressure, Fig. 2.2. The simple model of pure sliding of a roller
and plane was retained. A single steel cylinder 115 mm diameter
rotated- about a fixed horizontal axis. A perspex block
120 x 100 x 25 mm was loaded on top of the cylinder. A uniform soft

layer firmly attached to the block, formed the bearing surface with



the cylinder. The steel and perspex could be considered rigid
compared to the soft layer, a transparent silicone rubber of
Young's modulus 1.0 MN/mz.

The normal load was applied in the following manner. Two
steel balls were positioned on the centre line of the top surface of
the perspex symmetrically about the cylinder/block "line of contact".
A pivoted cantilever set perpendicular to the axis of the cylinder
rested on the two balls, so that a weight on its free end would
apply a load to the block. The height of the pivot could be adjusted
to ensure that the loading arm and block were horizontal.

Pressure measurement was by a mercury manometer. A vertical
hole through the centre of the block and soft layer provided the
main pressure tapping, diameter 0.5 mm. The block could be
traversed through the contact zone. The rig was immersed in Shell
"Tellus 299 viscosity approximately 0.1 kg/ms, to a level close to
the top of the block.

The pressure distributions for various loads and speeds were
found for a number of soft layer thicknesses. Even with the small
pressures the width of the "contact zone" was relatively large, up
to 15 mm. Thermal effects could be ignored as the temperature rise
through the bearing was small due to large film thicknesses.

Changes in viscosity of the lubricant due to temperature and pressure
variations were negligible. As the surface layer was stationary the
hysteresis characteristics of the elasticity of rubber under

dynamic conditions was avoided. The contact region could be viewed

easily, as the whole block was transparent.
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2.4 Film thickness

Light Source Pivot Loading Arm

i

Partially J Movable Axis
Reflecting Mirror Cylinder
Glass LSemi-Silvered
Plate Soft Layer

Fig 2.3 Film Thickness Rig

The friction rig was adapted to enable film thickness to be
measured, but due to various difficulties results could not be
obtained. Optical interference fringes developed in the gap between
the cylinder and plane were to be employed; hence it was necessary
to view the contact zone. The fixed axis cylinder and the suspended
Plane were replaced by a fixed plane. The moveable axis cylinder,
which had been diamond polished to an optical finish, bore directly
onto the plane. The latter consisted of a soft, surface layer of
transparent, silicone rubber backed by a "rigid" glass sheet. A
coating of silver was deposited on the surface of the rubber.

A suitable light source was used to produce the interference

fringes between the partially reflecting silver and the polished
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cylinder, Fig. 2.3. Fringes of equal thickness (e.g. Newton's
rings) would provide information on variation of film thickness.
On viewing the lubricant film through a spectroscope, fringes of
equal chromatic order would give the absolute geparation of the
surfaces at that point.

Although both types of fringes could be seen for the static
condition, when the cylinder was rotating none were apparent. The
film shape and thickness make both types of fringes difficult to
see. Due to the presence of the soft layer, the lubricant film was
nearly parallel in the central region and then diverged rapidly.
The fringes of equal thickness would be very widely spaced at the
centre and become merged at the divergence. With the large film
thicknesses the fringes of equal chromatic order would be close
together in the spectrum. It was found that small, localised
variations at a point in the film thickness, whilst the cylinder
was rotating, disrupted the interference fringes so drastically as
to make them indistinguishable. This was caused by imperfections
in the overall geometry of the cylinder and inherent vibrations
transmitted through the rig. These could not be reduced satis-

factorily, so measurement of film thickness had to be abandoned.

2.5 Elastic Constants, Experiments and Results

The Young's modulus and Poisson's ratio of the soft layers
were required for use in the computer programme. In a paper on the
contact elasticity of seal elastomers, Drutowski, Ref. 49, reported
a dependence of the modulus on strain life and an interaction of
elastomer énd fluid. However, a "before and after" test showed
that the strain conditions and the lubricants in the pressure/

friction experiments had a negligible effect on the elastic
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Counter-Weight Pivot Load Table
eight
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C —3 § — /-
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77N U
Microscop L;/ _ Tabl

Fig. 2.4 Apparatus For Measuring The Contact Area Of A -

Spherical Indenter.

constants. Young's modulus was measured under similar conditions
of strain to those found in the main experiments.

The calculation of the modulus was based upon the optical
measurement of the contact between a loaded; spherical indenter and
the plane elastomer. The relationship for a sphere contacting a
plane can be developed from an analysis by Hertz, Ref. 50. The
diameter d, of the contact area is given by

2
3 (1L - v)
4 = 6RrRP E (2.1)

where P is the indenting force, R the indenter's radius, E the
Young's modulus and v the Poisson's ratio. Combined with results
from a confined compression test, the modulus can be found and an
approximate Poisson's ratio obtained.

The main part of the apparatus was a pivoted lever carrying a
45 mm diameter steel ball at-one end and counter-weights at the
other, Fig 2.4. The sphere rested upon the transparent elastic

sample under test, which in turn was supported by a glass or perspex
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plate. The whole could be loaded by adding weights to a small
table above the sphere. The contact area was viewed and measured
from below, through a microscope using normal incident illumination.

The contact area diameter to the third power was plotted
against load. The slope of the linear portion of the graph G2.1
was proportional to the inverse of the elastic constants term in
Eq. (2.1). The Young's modulus for the polythene used in the friction
rig was known, only the properties of the silicone rubber were
required. In combination with a confined compression test the
results indicated a Poisson's ratio between 0.49 and 0.5.

The method had the advantage that the actual soft layers used
in the lubrication experiments could be tested. The initial slope
of Graph G2.l1 and hence Young's modulus was identical for each layer.
Only the thinnest layer deviated from a straight line; an
indication of the effect. of the rigld backing plate on the strain.
The curves were reproducible before and after the lubrication
experiments showing that the material was homogeneous and unaffected
by the lubricant or strain conditions. The Young's modulus of the
silicone rubber was found to be 1.02 MN/mZ; that of the polythene

was of the order of 40 MN/mz.
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CHAPTER 3

ELASTOHYDRODYNAMIC THEORY

3.1 Introduction

The investigation was aimed at bearings with surface layers of
low elastic modulus, e.g. rubber, plastics, articular cartilage. The
"zone of contact" was of the same order as the thickness of the soft
layer; the deformations of the bearing surface being affected by the
layer thickness. In the lubrication analysis, the effect of the
elastic distortions predominated over the variation of lubricant
viscosity, due to the relatively small temperature and pressure
changes. The bearing was considered long enough to neglect side-
leakage of lubricant.

The pressure distribution, friction force and film ghape, in
the simple pure-sliding case of a cylinder and plane, were to be
predicted from the theory for a given speed and lubricant. All
solids were considered rigid compared to the elastic surface layer

firmly attached to the plane, Fig. 3.1.
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3.2

Notation

Half width of pressure zone

Young's Modulus of elastic layer

Friction force per unit length of cylinder
£/ER

Film thickness

Film thickness where dp/dx = O

Central film thickness including deformation
Central film thickness excluding deformation
h/ER h'/ER

ha/ER hc/ER

Pressure

p/ER

Radius of cylinder

Thickness of soft layer

t/R .

Surface velocity of cylinder

nu/ER

Surface deformation of soft layer

v/R

Load per unit length of cylinder

w/ER

Distance through bearing

x/R

Proportion of length occupied by lubricant in cavitation
Viscosity

Angle around cylinder

F/W, Coefficient of Friction

Tangential shear stress

Poisson's Ratio

17
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3.3 Theory; Pressure and Film Shape

If the bearing is long compared with the width of contact so
that the side leakage can be neglected, the pressure in the axial
direction is constant and the problem is reduced to two dimensions.

The integrated form of the Reynolds equation is then

dp = 6nu (h - h')
dx n (3.1)
The expression for film thickness in Fig. 3.1 is
h = hc + 53_ + v
2R (3.2)

for a parabolic representation of the cylinder. The material to
which the soft elastic layer is attached and the cylinder are
rigid. The deformation v is due solely to the surface deflection
of the elastic layer. Equations (3.1l) and (3.2) can be rewritten

in dimensionless parameters

ar = GU(H-H'
dx H3
(3.3)
and
H = H + 52 + V
¢ 2 (3.4)

The boundary conditions for pressure are, at inlet P = O at
a large distance from the contact zone; at outlet dP/dX=0, P = P°
for the cavitation boundary condition. The cavitation pressure P°
is taken usually to be zero.

The pressure distribution and film shape for a particular
lubricant, speed of rotation, elastic layer and centre line
separation were evaluated by the folloving method:

(1) The elastic distortions and hence lubricant film shape
(Eg. 3.4) were derived from influence displacement coefficients

assuming an initial pressure distribution.
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(2) Reynolds equation was numerically integrated to provide a new
pressure curve,

(3) The curve was segmented into quadratics suitable for the
influence coefficients, and applied in Step (1). All
procedures were repeated until two successive pressure dis-
txibutions were identical.

Reynolds equation was integrated by Simpson's rule. The
problem took the boundary conditions of P = Po {(usually zero) and
dP/AaX = O, at the outlet point and was solved to find the pressure
at the inlet. As the position of the downstream, outlet point was
unknown, a trial value was selected. In general the inlet boundary
condition P = O was not satisfied so the chosen location was
modified accordingly. The iteration continued until the inlet
pressure was an accepfably small value.

The elastic distortions of the soft layer for a given bearing
geometry and pressure curve were obtained from influence displace-
ment coefficients. As described in Chapter 4, these were derived
by finite element methods for uniform, linear and quadratic pressure
variations of unit non-dimensional amplitude. The actual pressure
distribution was applied as a se;ies of quadratics; the surface
deformation of the soft layer being the summation of the individual
distortions due to each quadratic, as determined from the influence
coefficients.

For each set of solutions the elasticity, undeformed geometry,
centre line film thickness Ha and speed-viscosity parameter U, of
the bearing were specified. The latter two could be altered for
successive problems. The process began with an estimated pressure
distribution equal to either zero or a related solution. The

resultant distortion and thence a new pressure curve were found by
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the procedure described earlier.

To encourage convergence it was necessary to introduce a damp-
ing factor to the pressures before reapplying them to find the new
distortions. Instead of replacing the previous distribution it was
altered by a proportion of the new. Reiteration gave a pressure
curve which satisfied the elasto-hydrodynamic requirements of the
bearing. The next solution of the set took the initial estimated
pressure distribution equal to that found for the previous case. A
problem that would not converge from an initial pressure of zero
could still be studied by considering it as one of a set. The

detailed steps for the above procedure are given in Appendix II.

3.4 Theory; Load and Friction Forces

Q

Fig. 3.2 Forces on Roller and Plane
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For the cylinder and plane the width of the contact zone is
small compared to the radius of the cylinder. The length of an
element on the surface of the cylinder at angle 0 is R§O; Fig. 3.2.
Near the contact zone

RO = 6x
On this length the incremental load/unit width
6w = péx
hence from inlet to outlet of the pressure curve the total load/unit

width

or in non-dimensional terms

X

o
w = PdX
X

i

The inlet point for the pressure curve is chosen significantly
far from the "contaét“ zone to ensure that the pressures ara not
affected by its position. The tangential "friction" forees f1 and
f2 acting on the plane and cylinder are still appreciablé in the
pPre-inlet region. However, the same equation for the surface shear
forces may be used in the pre-inlet and pressure zones. It is
convenient to separate the two in the computation as the deformation
is negligible compared to the film thickness in the pre-inlet zone.

In the post-outlet region the lubricant forms thin streams
separated by air bubbles. Only a small propoition of the solid
surfaces experiences shear stresses. At any point in the cavitated

region, if z is the fraction of the clearance occupied by the

lubricant streams in the axial direction, then from flow continuity
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The end of the cavitation is unpredictable occurring somewhere
between outlet, x, and x = R. The contribution to the friction
forces at large values of x from this region is small. For
convenience the tangential shear forces are computed over the
region -R ¢ x € R. Only the force f1 on the plane is required, the
general expressioﬁ being

b 4 R

(o]
£, = J. T dx + J\ z T dx
1
-R xo

The shear stress at the stationary plane is

T = nu - hdp
h 2 dx

For -R € x £ X0 from Eq. (3.1)

T = ”2§(3h' - 2h)
h
For xo £xgsR, dp=0 and
dx
T = nu
h
Hence
X R
°.
£, = ™ (3n' - 2n) dx + M o oax
1l 2 2
h
-R X
o
or in non-dimensional terms
X 1
(]
1 L}
F = U ~.(3H' -2H) d&X + U - ax
1 2 2
H R
-1 X

o

Simpson's rule was used for the integrations to find load W and

friction force Fl.
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CHAPTER 4

FINITE ELEMENT ANALYSIS OF ELASTIC LAYERS

4.1 Introduction

The finite-element model of a continuum consists of values of
the function at a discrete number of points or nodes in the domain,
with piecewise approximations of the function over a finite number of
subdomains or elements interconnected appropriately at nodes on
their boundaries. The approximating functions over each element are
uniquely defined in temms of the values of the function at the nodal
points.

In the problems under investigation the strain distribution .
in an elastic continuum i{s required. The displacements at the nodal
points become the basic unknown parameters. The state of strain
within an element is defined in terms of these nodal displacements.
The stress throughout the element is found from these strains, the
initial strains and the elastic properties of the material. The
boundary stresses and any distributed loads on the element are
represented by a system of forces concentrated at the nodes. These
forces for all elements are equated to the external loading. A
stiffness relationship results linking external loading, distributed
loads and initial strain to nodal displacements.

As the problem under consideration is the prediction of dis-
placements in an elastic layer of rectangular cross-section; finite

elements of rectangular form are developed below.
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4.2 Basic Formulation

Elastic constants
E, v.

b t

Fig. 4.1 Quadrilateral Element in a Two-Dimensional

Elastic Domain.

The finite element technique is well documentated, Ref. 51-56.
The important relationships are summarised below with regard to
quadrilateral element idealizations of the elastic domain, Fig. 4.1.

Let the displacements at any point within an element be
defined by {f(x,y)}

{£} = [n]){8} (4.1)

The components of [N] are functions of position; {6} is a listing
of nodal displacements for the element. The horizontal u and the

vertical v movements of the node i are given by

u
{6} = { i}
1 Vi

and of a point within the element by

. {u(xIY)}
g} = vix,y) (4.2)

where for example the horizontal component

u = a, + Oa,x + Aoy + a

1 2 3 xy +teeos

4
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Hence the nodal displacements may be written as
{6} = [c]{a} (4.3)

and Eq. (4.2) in the form

{£} [P]{a} (4.4)
Hence

£} = [p][c]™tts} ama [N] = [¢][c]™

The strains may be represented by

“x Vo O _
{e} = e, = | © a/ay {3}
ny a’ay a/ax
= [Q]{a} (4.5)
then
{e} = [o][c) s} = [B]{s} (4.6)
If there are no initial strains before loading then the
stresées

{o} = [p]}{e}
assuming general elastic behaviour. The elasticity matrix [D] is
obtained from stress-strain relationships.
Let the nodal forces equivalent statically to the element

boundary stress be defined by

9
{Fi} = {vi}

By virtual work methods it can be shown that
T
(r} = (J[8]" [p][B] a(vol)){s}
if there are no distributed loads acting across the element.

Recognising this as a stiffness relationship the element
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stiffness matrix becomes

T
k] = IIB] [p] [B] atvol) ©(4.7)
If the boundary of the continuum is subject to a distributed
external loading say {g} per unit area, it can be represented as

loads at the appropriate nodes by

®), = [[M]"ig) darea) (4.8)

For equilibrium at node i

{Ri} = Z{Fi}
the summation being over all elements. Another stiffness relation-
ship can now be formed;

(R} = [x]{8}

where {§} now represents the nodal displacements for the whole
system and [K] the overall stiffness matrix formed from the
individual element stiffness matrices. The simultaneous equations
may be solved to find the nodal displacements. Convergence to the
correct solution with increased subdivision of the continuum is

ensured if certain criteria are followed, Ref. 52, 56.

4.3 Rectangular Element with Four Nodes

vjv

—— S

Zﬂ ¢+4

&= ¢ ol
1 3 u

Fig. 4.2 Linear Element
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As previously stated rectangular elements were chosen as the
elastic body could be easily divided into a mesh of such elements.
By imposing a cartesian coordinate system parallel to the sides of
the rectangle, coordinate transformations may be avoided. Consider
the rectangular element with four nodes each having two degrees of
freedom, Fig. 4.2. For continuity of displacement along the
boundaries it is necessary for the components of displacement u and v

of Eq. (4.2) to vary linearly along the rectangle's edges; for example

u = al + azx + a3y + u4xy
which can be written as
{£} = [P]{a}

(4.4)
Substituting the nodal coordinates yields four equations each
in u and v, which may be represented in the form of Eq. (4.3).
The strains are defined by Eq. (4.6) as
(e} = [@][c]7Ms} = [B](s}

The element stiffness matrix is

[x] = J[&]*[o][8] atvoly (4.7)
or taking the element thickness as constant throughout the continuum

(] = ([e]™ « [[le)"[o] (o] ex oy ) [c]™

The term within the integration sign may be multiplied out and
integrated explicitly. The relevant matrices are given in Appendix
I.

Although the concentrated nodal loads representing a dis-
tributed external load on the element's boundary may be found using
Eq. (4.8), it is simpler to calculate these by direct static
procedures. The results will be identical for this particular

element.
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4.4 Rectangular Element with Twelve Nodes

a . a
@~ -2 -9
b l 4
—_x
m
b ? ¢
O © 2 ‘4

Fig. 4.3 Cubic Element

Generally by using elements having several nodes along their
edges a better representation of the stress and displacement fields
may be obtained than would be given with the same number of nodes
using a finer mesh of simpler elements. The rectangular element,
Fig. 4.3 having four nodes and hence a cubic variation along each
side was developed. It is a special case of the more complex
curved isoparametric element, Ref. 53.

Using normalised coordinates (m,n) so that their values are
+1 on the faces of the rectangle, the displacement component u, for
example, may be expressed as

u = a, +a,m+c.n+o,mn+ 0 m2 +a n2 + a m2n +

1l 2 3 4 5 6 7
uemn2 + agm3 + °10n3 + u11m3n + alzmn3 (4.9)
where m = x/a, n = y/b.

Placing nodes at 1/3 and 2/3 along each side, the shape

function for a corner node is

1 2 2
N, = 35 (L+m)(l+n)[-10+9m + n“)]
where m = mm, and n=nn ; m and n, being both #*1.
For a node along the sides m, = 1l with n, = r%

the shape function is

) 2
Ni = 33 (1 + mo)(l -n){(l + no)
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and along the sides ni =12 l, with mi -? %-is
9 2
N, = 35 (1-.m)(1+m°)(l+n°)

From Egqs. (4.5) and (4.6)

[ 8u
x

{e} = 4 2! L = [B]{é}
oy

Ju ov

— i —

;ay 90X |

in which [8] = [B,, B,, Bj,...]

with

B = | o M

3y
)
) ax |

The 24 x 24 stiffness matrix of Eq. (4.7) may be partioned so that

the 2 x 2 submatrices are represented by
T T
[ki'j] = _U[Bi] [p] [Bj] ax ay = ab 1([B,]" 0] [Bj])
+1 ptl
with I (h) =J. I h(m,n) dm dn
' -1J-1

As the elasticity matrix for plane stress or strain may be

written in the- form

<i|1 d, o©
P] = |a, 4 o
o o d,
L L
then [ki'j] = 11 12
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_ oN, oN oN, 3N

L, = d21(_1 _;)) + d3I(_i _j)
om 9n dn 9m
_ oN, OoN, ON, 9N

L21 = d2 I(_J. _J) + d3I(_i _j)
n om dm on
[ 3N, 9N, f 3N, 3N

L22 = b_d3I(__l__j) + g_dlI(_:L_j)

b on 3n

The three integrations represented in the stiffness matrix
are carried out numerically by applying the Gaussian quadrature
formulae. They are stored to be used for every element. Half of
the matrix [ki,j] is independent 0of the dimensions of the element.
This is calculated once for all elements. Further reduction in
computation i; obtained by noting that the matrix is symmetrical.

If the boundary of an element is subjected to a distributed
pressure p which may be approximated by

P = 4+ rx + sx2 + tx3

then the equivalent nodal forces on that boundary are given by

Eqg. (4.8) so that

+a +1

R1=I Nipdx =aj Nipdm
-a -1
For the corner nodes x:L =¥ a
R = E[q + 1l x r + .!l.ixis + LQ_xit] (4.10)
4 15 15 35
and for the intermediate nodes xi'= t~%
2 3
Ri = ga[lq + ixir + é_xis + &7_'.xit] (4.11)
4 3 5 5 35

Similar equations may be obtained for other boundaries.
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4.5 Supporting Programmes and Element Testing

The elasticity problems involved their description as a mesh
of elements with appropriate constrained and loaded nodes. A set
of simultaneous equations relating nodal displacements to external
loads was established from the element stiffness matrices and
solved.

The entire programme and its working store were held in the
computer's core storage. Both elements were treated in the follow-
ing way. The parts 6f. the element stiffness matrix common to all
elements and common matrices required to evaluate the remainder,
were calculated and stored. The mesh nodal numbering was
automatically generated. The assemblage of elements to form the
global stiffness matrix was written specifically for each type of
element. Constraints were applied by setting the appropriate row
and column of the matrix to zero and the diagonal to unity. On
introducing the loads solution to the simultaneous equations was by
a "Cholegki" method due to Bettess, Ref. 57.

Even though the matrix was symmetrical and banded, storage was
a limiting factor. However, the "Irons Frontal Solution"
technique, Ref. 54, 57 became avallable. Reduction of stored data
was achieved by holding only "active" terms in the solution, in the
core storage. Much larger element meshes could be solved allowing
finer subdivision of a problem.

Only the "cubic" element was adapted for this solution routine.
A supporting programme created data such as nodal numbering, loading,
constraints and element dimensions. Constraints were applied through
Lagrange multipliers, Ref. 55. Flow charts for the linear and cubic

element are given in Appendix II.
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In order to test the elements they were used to solve for the
displacements in simple problems. The deformations of the plane
surface of a semi-infinite elastic body under a pressure, semi-
elliptical in cross-section were predicted. The mesh was
systematically altered in size and number of elements. The finite
element solution compares favourably with that predicted by the
Hertz equations, graphs G4.1 and G4.2. It was at this point that
the simple linear element was abandoned in favour of the more

versatile cubic element.

4.6 Influence Coefficients from Cubic Element

The cubic element was used to provide influence coefficients
for the surface deformations of a rigidly backed soft layer under a
pressure distribution of constant cross-section. Pressures of
uniform, linear and quadratic cross-section were applied to a layer,
whose dimensions, except for thickness, were semi-infinite compared
to the width of the pressure zone. Solutions for the ratio layer
thickness to pressure zone width of 1:10, 1l:1 and 10:1 were obtained.

For the finite element analysis, the layers were represented by
the two dimensional plane strain problem of an infinitely long
elastic body of rectangular cross-section, whose height was much
smaller than the width, Fig. 4.5. On dividing the body into a mesh
of elements all nodes on the base were constrained to form the rigid
boundary. The normalised pressures were applied as equivalent nodal
forces, Eqs.(4.10) and(4.1l) to the top surface. The axes of the
global coordinate system were taken along and perpendicular to the top
surface, the origin at the centre of pressure. Due to symmetry about

the vertical axis only half of the elastic body was considered. Nodes
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(a)

Pressure Cur Elements

il

Soft
Layer

Thickness
t

7z L 7 L L L L L 7 7

Nodes on Base Fully Constrained Rigid Base

(b) Ply P = constant -b < x € b

______ - - j:x

Nodes on Y Axis Con- Soft
strained Horizontally Layexr

________ z 7 7 7 7

Nodes on Base Fully Constrained Rigid Base

(c) Pl y P = kx -b€£x<b

Nodes on Y Axis Con-
strained Vertically

el .
H s Soft

v Layer

N

Nodes on Base Fully Constrained Rigid Base

Py P = k(xZ - b2/3)
‘ for -b £ x €D

\
I
Y 4-:5,

()

Nodes on Y Axis Con- _// Soft
strained Horizontally Layer
Nodes on Base Fully Constrained Rigid Base

Fig. 4.5 Finite Element Representation of Soft Layer Under

(a) General, (b) Uniform, (c) Linear, (d) Quadratic Loads
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hot1aonta . .
on the axis of symmetry were constrained in the uniform

-

and quadratic load cases and Qgg;ggggkiiy-in the linear case, in

order to represent the full problem, Fig. 4.5. Number and size of
elements were altered to ensure convergence to a solution.

Applying the three pressure curves each to the three soft
layers the graphs G4.3 to-G4.l11l show the surface shape for one
Poisson's ratio, O0.3. For the same pressure curve of unit width
the maximum deformation and the deflection remote from the pressure
zone decrease with decreasing layer thickness. For the thinnest
layer, surface deformation is almost proportional to pressure, graphs
G4.5, G4.8 and G4.11.

Graphs G4.12 to G4.14 show the effect of Poisson's ratio for
the uniform load only. For the thinnest layer the centre deformation
remains constant, being far enough from the edge of the pressure
curve to be unaffected by it. For this reason, taking axes parallel
to the global axes, origin at the point on the surface directly under
the edge of the pressure curve, the surface shape may be described
as an uneven function, i.e. f(-x) = - £(x). The graph G4.14
illustrates this feature.

To compare their compatability the three sets of influence
coefficlents, corresponding to the ratios of layer thickness to
width of pressure curve of 10:1, 1l:1 and 1l:10, were used on one
problem. The surface shape for the 1:10 ratio for a uniform load
was plotted using one hundred of the first, ten of the second, or
one of the last set of influence coefficients for a uniform load.

As shown by graph G4.15 the three sets are in good agreement.

The influence coefficients for the ratio l:1 were required in

the lubrication problem. Elastomers with a Poisson's ratio between

0.45 and 0.5 were used in the experiments. Graph G4.4 shows the


http://G4.ll
http://G4.ll
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surface shapes for Poisson's ratios up to 0.495; at higher values
the elasticity equations were ill-conditioned. A Poisson's ratio
of 0.48 was used for the soft layers in the lubrication problem as
a compromise between the two materials employed.

With the relevant influence coefficients the deformation and
pressure curves could be obtained from the lubrication computer
programme for a particular bearing. Such a pressure curve was
applied to a finite element programme to predict the surface shape
of the bearing's soft layer. Comparison of the two deformation
curves, graph G4.16, enabled both the influence coefficients and
part of the lubrication programme to be checked.

Graphs G4.4, G4.7 and G4.l10 represent the influence co-
efficients as obtained from the cubic, quadrilateral finite element
programme applied to a rigidly backed, elastic layer. The surface
deformations for pressure curves of uniform, linear and quadratic
cross-section are showﬁ. The influence coefficients were used in
the lubrication programme as described elsewhere, in the form of

data as given in Appendix III.




36

TANSSIdd NVIZ1¥3IH V 430NN AGOE JILSV13 NV J0 3dVHS JIVIUNS L[ 9 HAVED
SUTT-8x3Us) WOxJ 3DUe3ISTd

ag/x 0°2 8°1 9°1 Pl ¢l 0°'L 8°0 9°0 0 2°0 0
! m \\L‘\\\\\\L1HI||||‘
_ .
- e
_ P | v
Kgun = qz ‘5uo0z ainssaxd 3O YIPTM \\ g
. _ 8 §
Hh
' 0
1 _ m
H o
_ ! m
_ FARS
: ! .
_ |
: - 9L,
_ 1}
] : | .
“ s3pemeta 3191 O © 02
_ : suptyenba zazxay
p.C1
mIOHN
dz/a




- 37

qaz/x

UNSSTId NYIZLY3H V ¥3ANN AQOS JILSYTI NV 0 3dVHS JIVRINS 2749 HAWA9

SUTI-8I3U8) WOIJ sOUe]lsTId

8l 91 vl

0l

8

9 1

——-—a N

Kytun = qz [suoz mnameum 30 UIPTM

s3

SuO

oTd wu.ﬂw..n.m 0 0

ryenby nuu_om
p.C

) <
uoTjemIoag Pdeyams

N
—

9L.

0¢

c_OTX

qaz/a




38

oL: L= SSINDIHL 93IAVT © V0T 30 AIGIM V01 WHOAINN Y3ANA GIAV] 140S 40 NOILYWY043@ IIvAINS E€°1D HdVH)

I [ _OIX
| | T
_ 00¢
! M :
. : : j
¥ m 09l w
. i m &
| ; m 1| 3
_ _ m
Hoz1 8
P = i
C ! (2]
-2t | | 2
¢ 41, \\\ﬂuﬂm ” | w
” | . — .._.H
: | o
| | VAR
! _ €°0 n oF3ey suosstod _
. Ktug = qz ‘peoT 30 WPTH TEIOL
[ | -
! “ I Jor
I _
az/x 02 8l 9L bl 1 ol g Z I 1o
OUTT-9I3U3D WOIJ BDULISTJ _ — _ |




39

|
q m _ _
! | m _
.~ [ i
or = & \W |
€- —a\ \ - _ _
S6v°0 = 9 :
== 8%°0 X
I cpros9
€°0 = ® OTIRY SUOSSTO |
Katud = qz ‘pepT 30 PN Te3OL
!
: SUTT-8I3US) WOIJ DURISTA _
qc/x 0t 9°¢ AR 8°¢ 1M 0°¢ 9° 1 ¢’ 8°0 '

¢-OTX
qz/a
08
09 @
2]
Fh
[]
8
or 8
0
g
7]
et
0¢ 5
0




40

[+ 0L = SSINWIIAL Y3AVI © GV01 J0 HIGIM SOVO1 WOAINA ¥30NN ¥3AV1 LJ0S J0 NOILvW¥0430 3IVHINS G v HdVYD

o
~
L]

=
az/a

oL

A\ A
W\

o
S
]
lm

7]
uoTjewIOFad [VeIANG

£°0 n“oﬂumm suosstod

KZ1up = qZ ‘pPeOT: JO UIPTM Te3IOL

: ¢
_ !

ag/x 0L o0 .
SUTT-2I3US) WOZJ 3OULISTA { | | I | |




41

OL * L = SS3INAIIHL ¥3AV1 : Qv0OT 40 HIAIM

*Y0T YVANIT ¥3ANN Y3AYT 140S 40 NOILYWHO43Q 3IVAUNS 9°H9 HAWHD

| _ .
_ | _ | xw
: |
_ d |
, _ ! : :
kS : ‘ N\ ! ” */
MIO =d _ A
‘ . .
m
_ |
_ " |
_ m |
J i
i €°0 w oT3ey SUOSSTOd _
I ; : H
Aatun = az ‘peoT 3o yapTA TelOL |
i _
_ \ _
. |
@m0 ; 8 L g G b L

BUTT-9IJUID WOIJ SOuelIsId

b

o
N

00¢

09l

0¢l1

08

ov

9"
qz/a

uoT3ewIOIad I0VIANG




42

L ¢ L = SSANNIIHL ¥3AV1 : GVO1 40 HLQIM

QY01 YV3ANIT y30NN ¥3AVT 1J0S J0 NOILVWY043d IDVAINS L't 9 HdVyd

| ! ! 9-OTX
i m _ qz/a
| _ | .
i m { _ .
| _llln m | _ Aoom
N : _
WS _
mlO._.. = N _ m 09l w0
_ £
: 8
| 3
| | _, :
: 0zL &
o
i , | m
' ! -m.
m 08 =
_ ! 80 = ¢
: €70 = ® OT3ey suossTod _
A3TuUn s qz ‘peoT Jo :uvﬂ& Te3oL
| m | o
| | |
az/x 0'b 9°¢ '€ . "0 0
QUTT-8I3US) woxd SOueysTd ] _




43

_ _OTX
“ qz/a
m '
_
: 0§
q _ _ ;
] ! ' q
_ “ :
a | !
— = _ : (0]
g-PT =4af N _ @
H L]
_ o
i Q
1 \/Uf [
_ 0 &
! 0
; : g
m i / 8
| : . . . -
_ _ _ / 0z S
! £°0!= oT3ey mTOmm._"om
muds_ = qz ‘PeOT 3O WPIM TeioL | /
i I oL
az/x 01 60 80 [0 90 50 70 €0 20 "0 0
SUTT-9I3U8D WOZI BOUEISTA i | _ | _ |




44

oL :

L = SSINAJIHL ¥3AV1 : Qv01 40 HLAIM

tavY01 JI1v¥AvNOd H3ANN ¥3AY1 L40S 40 NOILVWY043Q 3IVAUNS 69 HdVYD

_ _ _ 9_OTX
_ i az/a
| i ] '
!
_ “
w w 02
_ _ : €°0'= oT3ey mudomm..nom
| fTung = qz ‘PEPT JO WIPTM Te3ol /
] . R
. : oL @
: | m
_ : !
3UTT-9I3UsH Woxj SOURISTQ 1 m
w@x gy 9°€ 2°€ 82 b0 0 ¥
! _ th
| | g
. ! : g
! _ ".....
; S
! oL-
|
g-01 = 3 _ 02
\Joe-




45

———

= SSINWJIAL Y3AV1 : QY01 30 HIGIM -Qv01 JILVYAVND Y¥3ONN d3AVT L1J0S JO NOILVWH043@ 3DVAINS OL°H9 HdVED

. ———

q-OTX

8¥°o
£°0

9

‘D OT3ey SUOSSTOd

AaTun; = qZ ‘PeYI 3O WAPTM Te3IOL

_
dz/%

SUTT-9I3U9) WOIJ S0URISTA

0t

9°¢

8°¢

ve

ol ma|

qz/a

(2]
=
2]
Hh
-]
Q
o
8
Hh
()
g
)
ot
=
o]
=]
oL-
02-

o€~




46

L : OL = SS3INNJIHL ¥3AV1 : @¥0T 40 HLQIM <£@Y0T IILviQYNO ¥3ANN d3AV1 140S 40 NOILYWY043Q 3IVAUNS L1°+D HdWHD

| _ o1
“ i
“ — —e1 qz/A

)

_ m.own oty mWOmMﬂom
| &7unl= qz ‘pedt 3O WIPTM TEIOL
m _ m )
: | .
SUTT-9I3USD WOIJ SOURISTQ i _
0 b0 20 L0 0

qaz/x c_. l J? E L0

uoTjewIoyed Soejans

[4¢]
]
o)
—
i
AR




47

OL : L = SSANMDIHL 43AV1 : QV01 30 HLGIM

JUTT-29I3USD WOAJI IDOUEISTA

*a¥0T WYOJINN ¥3ANN Y3AVT 140S 40 3IdYHS IIVANS 2L°¥9 HdVEd

oY

08

0¢l

uoTiewxoye( 90ovyaANS

az/x 02 8l 9| il 2L oL 8 9 b 2
_
| m
_ i
“ m m i
! .
: :
i _
_ _ 4
! y
| | /
m ! m
€v°0 = A
p°G = Q& :
] : ; "
m.o = Qa “ III’“ ——
! |
!




48

L [ = SSINMDIHL ¥3AV1 : QV01 40 HLIAIM TAV0T WYOJINN ¥3ANN Y3AVT 140S 40 3dVHS 3IV4HNS €179 HdAWHD
mﬂ..ﬂ.HIU.NU.ﬂWU Wox g UUE.MD.MHQ
qz/* 0¥ 9°¢ ¢°€ 8°¢ $°2 0°¢ 9°1 2°1l 8°0 0
| I i
| |
m _ | \
Sv0 = ﬁ_, “ A
— V0 =0
| \
M-o = a_f _. e

02

o
<

o
(Yo

Q
[+

uoT3eux0ag 8oeyans




49

Il - 0L =
_ |
_
m dUTT-9IIUID WOoXI |DURISTA m
qz/x 0°L 6°0 80 L0 9°0 G0 0 0
_
| |
Sp0O = A T — |
7°0=n !

o

o
I
>

uoTjewxozag 8deIaIns




50

“SINIWIOV1dSIA JONINTINI INIu3410 WOdd SNOILN10S 'Gv01 WYOJINM ¥3ANN Y3AVT 140S 30 3dvHS JJVRNS S17¥9 HAVED

| | | | | 4
. 3UTT-3I3U9) WOAd 20UeISTd _ _
qz/x . . . . . . . . .
0L 6°0 80 L0 9°0 S°0 EL0 ¢'0 ._.o *o
| . i _ . _
i | | m _ |
: | i ; I
_ | | i
. _ M | : "
i ! _ 4
: (OT:T = 3 I03 °s3Fa0) butrsp) | _
uoranNTos sifemadeTdsTd SousSnIIUI — l_ i
(1:1 = 3: I03 °sFood butsf) i
L. . . uoyjnios sjuswedeldsig SoueNTF I —0_0: v

€°0 =] oT3eY mc_vmmﬂom
T:0T ={ 3:4Z =
Koy SSaWO[TYL xakeT|: peoT Jo| WIPTM

(T:0T = 3 mmquoTE. I9keT|: qz .mmor FO YIPTH)
I uoFInIos ..Em_amﬂm 93 TUtd




51

SNOILIONOD °T1°H"3 H3IANN ,HNINVYIE YIAVT 140S. 40 IdYHS IOVAINS 9L° V9 HdVHD

ﬂ
i
: | (-0TAV°C = D
| Nno.ﬁx ‘0="H
9 . gpfo = & f96/1 = &
i : EUoT3TpUold "1 H &
f _ nnb ‘
¥ m ” co.an.now "33900 munms.nmnH [o)
i e | no.nus._”om JusweTE °3ITUT
' & i _ .5
| B
m _ ¢ g
BUTT-8I3Us) WOIJ SoUeR}ISTd m a
z=91 9 / i
q/X 8 9 ¥ 4 0 é- b- 9- 8- 0l- L=
\1\
T : /Fl -t
//\ ° i :
Nl
£ OTX
. a/a
i




52

CHAPTER 5

DISCUSSION OF RESULTS

5.1 INTRODUCTION

Several characteristics of the performance of the soft layer
bearing were measured and/or predicted. It was possible to compare
the theoretical and experimental tangential forces and pressures
for various conditions of speed-viscosity, gometry and load. The
lubricant film shape and elastic deformations of the bearing were
forecast by the computer programme. The relationship between the
minimum £ilm thickness and the load for several bearing conditions

was also plotted.

5.2 Friction

Two lubricants were used in the experiments providing a wide
range of the speed-viscosity parameter. The tangential friction
force on the plane was plotted against the speed-viscosity for a
series of loads. The limited number of results for the higher
viscosity lubricant compare favourably with the identical
experiments of Bennett, (1969), Ref. 38,39. Curves for the rigid
plane and a representative soft layer, 2.5 mm thick, are shown,
graphs G5.1 and G5.2. The slightly higher values of friction
obtained could be due to the poor surface finish of the planes.

It was hoped that an extrapolation of the soft layer curves
for low values of the non~dimensional speed would coincide with the
experiments using the low viscosity lubricant. For the 2.5 mm soft
layer, comparing graphs G5.2 and G5.3, the non-dimensional friction

in the experiment is higher than anticipated from extrapolation, a
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result common to the 1.25 mm layer. Graph G5.4 for the 5.1 mm
soft layer does indicate values of friction compatible with the
curve for the higher viscosity lubricant. It is possible that the
conditions of surface finish load and low viscosity lubricant were
not conducive to full film lubrication of the thinner layers.

The tangential forces for the rigid plane show a sharp
increase on decreasing.sliding speed as "dry" contact occurs. Much
lower speeds were obtainable in the presence of a soft layer. In
“terms of friction at low speeds, the benefit in using a thin soft
layer is shown to be considerable.

The computer programme results provided curves of load against
tangential force for various speeds, e.g. graphs G5.5 and G5.6.

From these were plotted friction force and coefficient of friction
against speed. The friction measured in the experiments for full
film lubrication was 5 to 10% higher than that predicted, G5.1 and
G5.2. This was possibly due to surface roughness and "side-leakage"
effects in the bearing. The coefficient of friction, e.g. G5.7 and
G5.8, is found to be slightly higher with a thin elastic layer

than without.

The non-dimensional friction force on a fixed rigid plane

loaded against a rotating cylinder is given by (Ref. 48)

F = O.79(UW)5
Graph G5.9 of the computer results indicates 0.80 as the coefficient.
A single curve is therefore obtained for the coefficient of friction
F/W against U/W for all loads. This is not true of the soft layers;
graphs G5.10 and G5.11 for 0.75 mm and 2.5 mm layer thickness may
be represented approximately by

F = O.75(UW)H + £(T,W)

Plots of coefficient of friction against U/W for a soft layer show
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several curves dependent upon the load W. As would be expected the

thinner the layer the closer the friction is to the rigid case.

5.3 Pressure

The pressure distributions for a rigid plane and soft layers
(Young's modulus 1.C MN/mz) of non-dimensional thicknesses 0.028,
0.056 and 0.1ll under various loads were found experimentally.
Neither load nor peak pressure could be controlled in the computer
programme. Hence a series of curves were obtained covering the load
ranges for identieal values of layer thickness and speed in the
experiments.

On comparing theory and experiment discrepancies were evident
at the "run-out" (outlet) point for all conditions. The cavitation
boundary condition in the theory was altered from zero to the
average empirical negative pressure, e.g. graph G5.12. A new set
of pressures were computed. Due to the large number of curves only
a selection is shown, G5.13 to G5.17. All show good agreement for
the shape of the pressure distribution between theory and experiment.
Divergence of theory and experiment mainly occurs at the run-out
point, if the experimental cavitation pressure still differs from
the chosen theoretical value.

As expected, increasing sliding speed, G5.12 to G5.14,
encourages a wider flatter curve for the same load and reduces the
influence of the layer thickness. All the graphs indicate the effect
of increased load. For a fully elastic plane there is a gradual
transition from a pressure distribution representative of rigid
solids to a near Hertzian curve at higher loads (P.126, Ref. 48).
There is a similar tendency shown by the soft layers, graphs G5.12

to G5.17, most prominent in the thick layer, although the Hertzian
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curve is not evident for the load range used. Reducing the layer
thickness delays the transition. The effect of the layer thickness
can be seen by comparing graphs G5.14 to G5.17. Graph G5.18,
obtained by interpolating from the theoretical curves for one load
and speed, shows the increasing influence of the rigid backing as

the layer thickness is reduced.

5.4 Film Shape

The lubricant film shape as well as the pressure distribution
was predicted by the computer programme. A selection of curves is
shown, G5.19 to G5.22, for the same variables as in the pressure
experiments. It can be seen that the rigid backing influences the
layer's surface deformation. For the loads at which this occurs a
small change in cavitation pressure has a minimal effect, G5.12 and
G5.19. All film shapes therefore refer to a cavitation pressure of
zero.

The change in form of the film shape as the layer thickness
is increased is shown in G5.20 and G5.21. There is an obvious
movement away from the "rigid" curve to one representative of an
elastic body.

Typical curves are obtained for increasing load for a
particular layer thickness, e.g. G5.22. The effect of load is more
evident, however, in the plots of centre-line and minimum film
thickness for various speeds, G5.23 to G5.25. The “rigid" curves
are derived directly from the Martin formula for rigid solids
(H = 2.45U/W). The "elastic" curves are plotted from the results
of Weber and Saalfield as presented by Koets (Ref. 48) for elastic
solids. Both are for cylinders lubricated by an isoviscous
lubricant. They represent the bounds within which the minimum £ilm

thickness for a soft layer should fall.
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At low loads the Martin formula is applicable to all. At
higher loads the film thickness for the soft layer diverges from
both "rigid" and "elastic" curves; the layer thickness determines
which it follows more closely. The difference between computed
centre-line and minimum film thickness is least for the thinnest
layer. For a gilven layer the minimuw film thickness is greater in
magnitude and less dependent upon load than the "rigid" theory

indicates.
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CHAPTER 6
SUMMARY

6.1 Conclusions

One objective of the analysis was to obtain the surface
deformations of a rigidly backed, plane, elastomer layer under any
pressure distribution. The finite element technique has been
applied effectively to calculate influence coefficients for three
ratios of width of load: layer thickness and two Poisson's ratios,
0.30 and 0.48.

The elastohydrodynamic lubrication problem of a loaded rigid
cylinder sliding againsf a rigid plane, covered with an elastic
layer, has been studied. Friction, pressures and film ghapes have
been predicted. The effect of the layer thickness on the film
shape is clearly illustrated. The variation of mirimum film
thickness with load for different speeds and layers has been
compared with results for rigid and elastic bodies. The transition
from the hydrodynamic {(rigid) regime to elastohydrodynamic is
delayed with reduction of layer thickness.

It should be noted that with decreasing film thickness and
increasing load, the main iteration in the computation to find the
pressure (steps d. to p., Appendix II.4) eventually becomes very
sensitive to changes in film shape. Even with a large damping
factor the problem then fails to converge. Although it was not
attempted, it is possible to obtain solutions for high loads, by
assuming that the deformation and pressure curves are identical to
the static loaded condition, except at inlet and outlet. The

influence coefficients could be used to predict both the static dry
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contact pressures for a given indentation and the deformations
under the modified curve.

The theoretical results have been supported by experimental
friction and pressure measurements. For the thinner layers the
coefficient of friction varies in a similar manner to the rigid
case, i.e. p = 0.8 (U/W)H. The thicker layers show a further
dependence upon the load. In the experiments, the addition of an
elastic layer allows much lower speeds Oor a lower viscosity
lubricant to be used in the bearing, before dry contact occurs.
Coefficients of friction as low as 0.002 were obtained at speeds
well below the breakdown for the rigid plane.

All aspects of the variations of the experimental pressure
curves with speed, load and layer thickness were predicted by the
theory. A comparison of the distributions for the same load shows
the tendency towards the "rigid" pressure curve with reduction of
layer thickness. It has been shown that the influenc; displacements
presented in the current work can provide an accurate
representation of the deformations of soft layers in lubricated

bearings.

6.2 Suggestions for Future Work

The theoretical work has been limited to establishing the
computational technique for finding the influence coefficients and
using them in a single lubrication case. The problems solved were
dictated by the parameters in the verifying experiments. The finite
element method could be employed alone in a comprehensive study of
the effect of Poisson's ratio on the deformation of soft layers.
Axisymmetric influence coefficients could also be developed. Small

additional computation would allow the sub-surface stresses to be
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calculated.

Any change in the type of influence coefficient derived would
be reflected in further possible solutions in the lubrication
problem. The analysis of several other bearing configurations could
be attempted, with a view to obtaining non-dimensionals to describe
minimum film thickness, friction, etc.

On the experimental side film thickness remains to be
measured. The materials are suitable for optical interference
techniques to be used. A new rig might be developed explicitly for
this purpose. The friction experiments could be extended to the
regime of boundary lubrication with the use of low viscosity
lubricants; although a careful study of the materials would be
needed. The range of the pressure measurements also could be

enlarged by altering the lubricant or layer properties.
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APPENDIX I

Matrices for the calculation of the stiffness matrix of the

rectangular element with four nodes (from Chapter 4).
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APPENDIX II

Comguter Programmes

ll

Linear Rectangular Plane Stress Element.

Cubic "Serendipity" Rectangular Element.

Data creation programme for cubic element and the "Irons"

solving routine.

Lubrication programme.

Detailed Steps in Linear Rectangular Plane Stress Element

Programme

(a)

(b)
(e)

(a)

(e)

(£)

(g)
(h)

Element and mesh sizes, elastic constants and nodal numbers
for constraints and loads read in.

Element stiffness matrix generated.

Nodes in the mesh automatically numbered and the band-
width of the main stiffness matrix found.

For each element, the position in the main matrix of the
coefficients for each node in the element was located.
Relevant coefficients posted into the main stiffness matrix.
Information on nodal loads and constraints collected.

For each constrained node, row and column of the main
stiffness matrix set to zero and the diagonal to unity.
Load vector generated from data.

Main stiffness matrix and load vector applied to solving

routine; nodal displacements as output.




87

2.. "'Cubic "Serendipity" Rectangular Element

The programme was used as a sub-routine in conjunction with
the "Irons" assembly and solving routine, Ref. 54,57. Those matrices
common to all elements were calculated for the first element only and
stored for further use.

Flow chart

|READ:- Dimensions ]

1
|Is _this the first element? |
L ]

Plane stress or plane strain? Generate
approp;;ate elasticity matrix, [D].

— _
Calculate coords. of Gaussian Integration
polnts and weighting factors.

Calculate Partial Derivatives of Shape

Functions for each node, at Gauss Points '
|

Gaussian Integration of products of

Differentiated Shape Functions, stored.
1

Formation of invariable part of stiffness

matrix; stored permanently.

Transfer stored invariable part of
stiffness matrix to place in element
stiffness matrix. Transfer stored
Integrated products of differentiated
shape functions.

Generate remainder of stiffness
matrix from element dimensions, -
elasticity matrix, and integrated
products of differentiated shape
functions.

Return.to Irons programme with
element stiffness matrix.
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3. Data creation programme for cubic element in conjunction with

"Irons" programme.

The "Irons" assembly and solving programme was written for
use with many different elements. The data input was of general
form making no allowances for order in either the mesh or element.
To facilitate input and checking a programme was developed to create
the "Irons" data for the cubic element. It relied upon the ordered
nature of the mesh to predict element and nodal numbers, element
dimensions, loads and constraints from the minimum of input. A 100%

reduction in data requirement was achieved.

Flow Chart

READ:- Type of problem, mesh size and loaded
element details; Dimensions of each row
and column of elements.

|
[ggnerate half-dimensions of each element 41
1

{OUTPUT:- Standard data for IRONS |

|

Generate nodal nicknames in mesh for each

element from mesh size data. Generate

Lagrange multipliers' nicknames for each

element with constraints.

|

OUTPUT :- Nodal and Lagrange multipliers' nick-

names for each element
|

Generate nodal numbers in standard element

which may be constrained.

|
|ourPuT:- Indicators for IRONS ]
]

READ:~ Type of load (General, Uniform, Linear
or Quadratic). Generate nodal numbers
in standard element which may be
constrained.

Uniform, Linear
For gxggﬁof Loading orgguadratic.

|
READ:- Pressure and coords. @AD:- Maxlmum Press.|
at intervals on curve —
enerate nodal lLoads.

louTPUT:~ Each element:- Indicators, Dimensions, Loads, Constraints.]|

General
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Elasto-Hydrodynamic Programme.

The influence displacements from the finite element solutions

were used to provide the deformed surface shape of the plane elastic

layer under e.h.l. conditions. The dimensions, elastic constants

and oil viscosity were specified; speed and/or centre line £ilm

thickness were varied; pressures, surface deformations, film shape,

load and friction force within the bearing were calculated.

Detailed Steps

(a)
(b)

(c)

(@)

(e)

(£)

(g)

(h)
(3

(k)

Input of Finite Element Data for Influence Displacements.
Conversion to non-dimensional influence displacements at equally
spaced points along surface.

Input of initial pressure curve as magnitudes at equally spaced
points (Simpson points).

Description of pressure curve as several quadratics. Co-
efficients and coordinates of quadratics stored for reference.
Calculation of pressure at "loading points" appropriately
spaced for the influence displacements.

Description of pressures as several quadratics between "loading
points".

Application of quadratics as summation of multiples of the
influence coefficients to give displacement at points spaced
similarly to (b).

Description of displacements as several cubics.

Use of cubics to give lubricant film thickness at "Simpson
points”; Simpson integration of Reynolds equation to find

inlet pressure.

Iteration to satisfy boundary conditions involving movement of

pressure outlet point and recalculation of (J).




(m)

{n)

(p)

(q)

(x)

(s)

(t)

90

Final integration to find new pressures at new "Simpson
points".

Comparison with old pressure curve using stored coefficients
of (d).

Update of pressure curve and re-application at (d) unless
limits satisfied.

Integration of pressure to find load.

Calculation of displacements outside pressure zone (in post-
outlet); description as several cubics.

Film thickness after outlet point at equally spaced points for
integration to find friction,

Integration for friction in pre-inlet, pressure, deformed post-
outlet and undeformed post-outlet regions, to find total

tangential force on place.




APPENDIX III

Influence Displacements for Soft Layer Under a

Uniform Load

Poisson's Ratio = 0.48

Width of Load : Layer Thickness =1 : 1

Distance
from
centre
line

X 10_2

0.0

4.1

8.3
12.4
16.6
20.8
25.0
29.1
33.3
37.4
41.6
45.8
50.0
54.2
58.3
62.5

—

miLE

Influence
displace-
ment

x 10°°

425.5
424.3
421.3
416.2
408.5
398.0
384.7
369.3
349.6
324.2
291.2
245.3
177.9
110.8

65.2

32.5

Distance
from
centre
line

X 10—2

66.7

70.8

75.0

87.5
100.0
112.5
125.0
137.5
150.0
216.7
283.3
350.0
550.0
750.0
950.0

Influence
displace-
ment

X 10-6

7.0
- 12.8
- 28.2
- 62.1
- 77.9
- 81.8
- B80.6
- 76.0
- 71.0
- 38.2
- 20.1
- 11.3
3.2
0.1l
1.0

91
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Influence Displacements for Soft Layer Under a Linear Load

Poisson's Ratio = 0.48

Width of Load :

Distance
from
Centre-
line

X 10-2

0.0

2.0

4.0

6.0

8.0
10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.6
29.1
31.6
33.6
35.6
37.6
39.6
41.6
43.6
45.0
46.4
47.8
48.6
49.3

Layer Thickness =

l:

1

) -
"I7|A_ 5 - 107

-+
Influence
Displace-

ment

x 10—6
0.0
8.4

16.7
25.0
33.2
41.3
49.2
57.0
64.5
71.8
78.7
85.8
9l1.6
98.9

105.5

111.0

114.7

117.6

119.6

120.7

120.3

118.3

116.1

112.4

106.9

103.2

98.4

Distance
from
Centre-
line

X 10_2

50.0
51.0
52.0
53.0
54.0
55.0
56.0
57.3
58.7
60.0
62.0
64.0
66.0
70.0
74.0
78.0
84.0
90.0
96.0
108.0
120.0
132.0
150.0
168.0
186.0
222.0
258.0
294.0

Influence
Displace-
ment

x 10-6
91.9
83.4
77.0
71.8
67.3
63.3
60.0
55.7
51.8
48.4
43.9
39.8
36.1
29.6
24.2
19.8
14.1

9.5
6.0
0.8
- 2.3
- 3.8
- 4.7
- 4.5
- 3.8
- 2.1
- 0.4
1.7



Influence Displacements for Soft Layer Under a Quadratic Load

Poisson's Ratio = 0.48

Width of Load : Layer Thickness =1 : 1
7 P
E- 10-3

Distance Influence Distance Influence
from Displace- from Displace-
centre- ments centre- ments
line line
x 1072 x 107° x 1072 x 1078
0.0 - 24.7 48.5 17.2
4.2 - 24.2 49.3 16.3

8.3 - 22,5 50.0 14.8

12.5 - 19.8 52.1 11.5
16.7 - 16.1 54.2 9.6
20.8 - 11.6 56.3 8.3
25.0 - 6.4 58.3 7.3
27.1 - 3.7 60.4 6.6
29.2 - 0.8 62.5 6.0
31.3 2.1 66.7 5.0
33.3 5.0 70.8 4.2
35.4 7.8 75.0 3.6
37.5 lo.5 83.3 2.6
40.0 13.1 91.7 1.9
41.7 15.2 100.0 1.5
43.8 16.9 133.3 0.2
44.4 17.3 166.7 - 0.1
45.1 17.6 200.0 - 0.1
45.8 17.8 266.7 - 0.1
46.4 18.0 333.3 - 0.0
47.1 18.0 400.0 - 0.0

47.8 17.8
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