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ABSTRACT

This thesis is concerned with dual resonance models, especially
the Neveu-Schwarz and Ramond Models. The first chapter is an
introduction to the subject of dual models and is concerned with
yhe concepts that lead to them and early ideas of dual models.
Chapter two presents, in the operator formalism, the Conventional
Dual Model and then the Neveu-Schwarz and Ramond Models and is meant
to indicate the more important features of these models. The: first
part of chapter three deals with the string pictures of dual models
and various ways of considering dual models which can be considered
to be related to the string pictures. The latter half of chapter
three deals with the formulation of the Neveu-Schwarz Model by
the use of a finite Grassmann algebra which extends the Conventional
Dual Model, in Koba-Nielsen variables, directly into the Neveu-Schwarz
Model. The tree graph and one loop diagrams are calculated explicitly
.while the form for higher order terms is given in terms of au£omorphic
functions. The first part of chapter four presents a method of
obtaining the functions,involved in one loop meson and fermion
diagrams with external mesons, by the use of Neumann functions on
an annulus, the boundary conditions on the anmulus giving the different
loop diagrams. The second part of chapter four deals with the
calculation of the Neumanﬁ function for one loop diagrams with external
fermions and an attempt to obtain the partition function which is

- necessary to write down the complete amplitude at the one loop level.

Chapter four is completed by the construction of the one loop amplitude

for four external fermions.




CHAPTER ONE

INTRODUCTION:
In order to obtain an adequate description of elementary particles
and their interections the best approach appears to be the construction
of a model which obeys a number of the criteria which seem essential to
a correct theory, then hope that the model is sufficiently flexible
to be able to be modified to describe elementary particles,or at
least give new insights into the problem. Dual Models can be said to
employ such an gpproach and although they give a far from complete -

description they can be considered useful as 2n atteﬁpt to increase

our understanding Sf elementary particles.




DUALITY.
Duality is a phenomenological description of experimental data.

At low encrgies the scattering of two particles can be described by
the formation of resonances which subsequently decay. These resonances.,
when plotted on a Chew -Frautschi plot, take the form J=A + B m5.
vhere J is the spin of the resonance and m the mass. On the plot the -
resonances appear to lie on straight line trajectories..For high
energies Regge theory provides a good description by-assuming that

the scattering amplitude is a analytic function of the angular
momentum. The particles then lie on Regge trajectories a(s)= a(0)+a;s,
where s= (p1t+ p2)2 if the incoming particles have momenta p, and p, |
This gives a str;ight line trajectory and for a particle of mass m
and spin J then a(m®)=J . The high energy behavior is then described
in tcrms of Regge poles *'2  A(s,t) ~ & « (t) where «(t) is a
Regge pole and where A(s,t) is the scattering amplitude for fixed t,
t being the momentum transfer squared.If there are an infinite

number of resonances and an infinite number of Regge poles then,
and only then, both methods may be equivalent. This is the idea of
duality, that the resonances in the s-channel build up the Regge poles
in the t-channel, that is the amplitude can be written as either
a sum of resonances or a sum of Regge pole terms. This concept has
been checked by the use of finite energy sum rules (F.E.S.R.) °

and appears to be a reasonable assumption.




' THE VENEZIANO MODEL .

Veneziano* constucted an amplitude to describe the scattering
of w m»nw which was, because of the quantum numbers involved,
a convenient choice. The amplitude he obtained has the above duality
properties, is crossing symetric and ana.lxll_tic. This amplitude giyes

an infinite mmber of Regge trajectories. The amplitude is written as

F(s,tw) = AGE) + AG,d) +Alt,u)

Moo (st = DU-AG) A . B(1-A(s),1~4(t)
FQ-@-a0)

where a(s)= «(0)+ a' s is the leading Regge trajectory and B(a,b)

is Buler's Beta function which can be written as

B(ab) = [ x*1-5)"
0

The amplitude is meromorphic which corresponds to the narrow
width resonance approximation and, hence, is not unitary. The amplitude

can be written as :J. sum of pole teims

Alst) = e [—"m (e},

F

" where ( a)n = (a‘“‘ is the Pochhammer polynomial,

[(a)

or, by using Stirling's formula, as a Regge term

- Al
AGE) ~  [O-ace) [aos]
S=p oo

t fixed

Veneziano dlso . considered the scattering of sca_lar particles
with vacuum quantum numbers constraining the leading trajectory to

pass through the scalar particle and he concluded that the intercept




. -:h_
of the leading trajectory must be one, that is a(0)=1.
Lovelace® and Shapiro® then produced an amplitude for =n=n
.scattering where the amplitude for different isospin. states were

built up from the function

o = Ca-4¢s) C(-4ce)
0 Cf'(l--us)-ouu)_

where a(s) represents the p trajectory. This amplitude possesses
the same prpperties as the Veneziano amplitude and also, as Lovelace
‘pointed out, certain properties’ which would be expect'ed. from chiral
synmetry.

'.l'ﬁe duality properties of these amplitudes can be represented

by quark-diagrams.”'8

_s>\'/< M=
N

The second and third diagrams represent the poles in the s and ¢
channels respectively, and the diagrams repre'sent the: scattering of
bosons. .

The Veneziano amplitude was tfxen generalised so as to describe
the scattering of N scalan particles, which is equivalent to
generalising Euler's Beta function. ?'1°'11 ynhen the quark diagrams

for N particles are drawn it can be seen that only (N-3) poles can

occur similtaneously and that the amplitude is given by a sum of
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, ((N-1)/2)! terms which are generalisations of the Béta tunction.
Isospin can be added in a trivial manner by the Chan - Paton
procedure.? Due to the way the amplitudes can be represented .

diagrammatically this type of duality is known as planar duality.'
) .

KOBA-NIELSEN VARIABLES.

One convenient way of writing down the N point amplitude is
in terms of Koba-Nielsen variables.*3''® A variab;l.e _z._i is associated
with the i'th particle which has Mentm kt'l and these variables
lie on a unit circle. Th'e N variables allow too much freedom when

constructing the amplitude and so three are arbitarily fixed,

this allows only (N-3) similtaneous poles. The amplitude is given

N . zk, )~
= ."' dﬂ (2 - ( "z.,u
. An e w.[l:m ) n.' ‘
J Va,lu,

c’!a 26 d
a'va,blc @ﬁfm

The Regge trajectories are written down as A.q -‘LCO)"'& 5
where 5")= Uﬁ"klﬁ*' v "'k)')

by

where

Poles then occur in the invariant mass si . when z : - z .

J

The amplitude is invariant under a projective or Mobius transformation

/ . (azi+b . -
z‘ = fc—zmg—- where GA bc :l '

.A convenient choice for the fixed z's .is

zl=0, ZN_I =1 ) ZN= oo ’ -
then by writing the remaining variables as ‘x; = _%n.
(2]
then the amplitude can be written in the Bardakci- Ruegg form.
I N<2

'n' d X; x:d.(‘o)"( W).l 'n' a LJ)'Zki'kj

52 , [ 2 KJ&N




2
where x£j= XiXipy? oo Xjut and §( l’(k,*k:,*- o ¥ k‘)
FACTORISATION.

It was shown, by using the Bardakci-Ruegg form, that the amplitude

15116

can be written in a factorisable form: This can be represented

diagrammatically as

Using the above variables the amplitude can be written in the form

00 d@)
AN.M”.='Z~Z_ (n 9o H'l) i (PraPiyeeeoPun
oo i= A,(.s;- ‘ Py o)

where a«(s)= a(0)+ =2a' and d(J) is the degcneracy of the level

when as)=J. As the integer d(J) is independent of the number of
external particles +this means that the amplitude is factorisable.
UNITARITY.

Ae the Veneziano amplitude uses the narrow width resonance
z.xpproximation it violates. unitarity but the violation-takes the
same form as in the Born term in the Feymman-Dyson expansion in
Field Theory hence there cexists thc possibility of constructing
a perturbation series to restorc wunitarity in a similar manner
to Field Theory.l”'!® As the Veneziano amplitudc seems a rcasonable
approximation it would appear likely that the perturbative corrections
are small ,hence the expansion parameter is small making the pcrturbative
approach a reasonable one to pwsue. The .terms can be

represented diagrammatically by three types of diagram;planar,..
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orientable and non-orientable looﬁ diagrams. These higher order
amplitudes are constructed by taking the N point amplitude ,
Joining together pairs of external legs and then Reggeizing the
joined lines to produce a M loop graph with N-2M external particlesi®
To produce orientable and non-orientable terms an additional
operation, called a twist, is needed. At the one loop lcvel the

planar loop is represented diagrammatically by

The twist is represented by

> = —3

——

which means that the orientable diagram, which has an even number

of twists ,is represented by'

-
/N 7\

for the case of two twists and four external particles. The non-

G
m

orientable diagram has an odd number of twists und for the casc

.of four external particles with one twist it is representéd by

}E\/E
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It is possible to calculate tﬂe one loop amplitudes in terms
of integrals, but unfortunately singularities exist at the end points
of the integration. It may be possible to "renormalise" some of these
by the subtraction of a counter term whereas others may be interpreted
as due to an exchange involving vacuum quantum numbers, a pomeron.

So in dual models it "appears that it is not necessary to put in a
pomeron trajectory as it is generated at the one loop level by Regge
trajectories.

CONCLUSION.

At the stage it appears that the Veneziano or Conventional
Dual Model can be used to investigate elementary particles as it
has a number of features necessary for a description of strong
interactions of elementary particles but it is by no means a complete
theory. It is necessary to investigafe further properties of the
Conventional Dual Model and different ways of formmlating it , and
eventually extending it to more physical cases if possible. This

is what we will discuss in the remainder of this thesis.




CHAPIER TWO
| THE OPERATOR_FORMALISM.

The operator formalism®C'21'22 jg g ygeful method of under -
standing the structure of dual models. The N-point amplitude,which
is obviously factorisable, is written in a completely Lorentz co-
variant manner,.The spectrum of the model can be easily examined in
this approach and this leads to the connection between the intercept
of the leading trajectory, the dimension of space-time, and negative
norm states, knom-l as ghosts, though this is probably better
understood by the considerat@on of a relativistic string, an approach

we shall come to later.

This formalism introduces either harmonic gscilla.tors a‘; and
a:;f or operators n’:l and a':n which can be defined in terms of

the harmonic oscillators. The harmonic oscillators obey the follow-

ing commutation relations
v v ] .
[an 9 am] = [ A J am =0

(qf:’am"]" -9 vgn,m g am=l2,.... ..
wheregpvis given by 900’1 P g“:-’ 9 (= "....D"I
therefore there are D-1 space dimensions rather than Just three,
an important point as we shall see later. The a's are defined by

‘x‘,’n:/r?az , Aﬂ.n = /r?af,'f
The dn's act as destruction operators and the a_n‘s as ;:reetion
. operators on the vacuum state IO) s therefore
A):-"o>= O 3y NS ',290“0'

‘The commutation relations of the a's are given by

[A"n ,JC’M]= - 3’“’ n 6mm,o
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A inomentum operator pu and a positibn operator q,u are also introduced,

these obey [ » 0] TR A d

TN _ _ .
then 0" 2y where the slope of the Regge trajectory is taken
to be one.

Generalised momentum and position operators can then be defined

in terms of the a's.The general:.sed position operator is

Q(z) f‘q -u\.lnz-‘z [Z'.(o\..,z ~diyz")

and the generalised momentum operator is given by
) ,
F ( 2= iz "(?’
T

di .
= p” -+ g(&{n{* X‘,z'”)
[Q}i(i) QQv(vﬂ’-" 2ir Guv €(z-y)
[.G),Quly]=+7 72 guo 5(z-Y)
[PG), Rv(y)]= dLET T §G-vy)

The scattermg amplitude for N partlcles can then be written as

T T (a2 <onrv&.,k>w>

o
Va.b,c .
~¢K, Q(ﬁ’ K .
whereV('i k)=.'e . Z and 1s the Fubini-Veneziano vertexS!'22
M H means that the operatore 0(1) is normal ordered

that is ., e-;u.ac:l: _ e-;k.qa) e—ak.Q‘Cz) e-;k.ofcz)
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e Q=T - ik 2
QH(e) = 'cg, a Laz"
QG = -i g -,-,-/T Lont”

These have the commutation relations

[QG), Q0] =2 L) gus
(@&, Qolyl=2 a(-Y guw 12I2ty!

other combination being zero. It can easily be shown using these

relations that

s}
il
= all;m (z;-z;)

from which we obtain the Koba-Nielsen Fform of the amplitude,

The states of the model can now be written in terms of the
creation operators t!li n but this allows the existence of negative
norm states, ghosts, due to the time components of the operators.
By choosing the intercept of the leading trajectory to be one it
is possible to construct an infinite number of operators, known
as the Virasoro operators, which under certain conditions make it
possible to show that the éhosts do not couple to the physical,

~ positive norm,states.
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VIRASORO_OPERATORS.

23

The Virasoro operators are defined by

Lm = = 1“2 | P(Z) ) m=0,tl,i’2 evo

where : : stands for normal ordering and P (z) is the generalised
momentum operator. The contour integral is taken around the origin.

These have the properties

Ln 10) = 0 ) m>/“’
[ Lny L.,.] =(a-m)Lnem + " (n*-1) Saem 0

[Ln , Qﬂ(l)] = g

' 2
[L,.,P'.‘cz)]ﬂ»(zg_ .n ) Pl
For a function X(z) if

[Ln ,X(z)] ( J—- +n7)X(z)

then X(z) has conformal spln J, therefore Q! (z) has conformal spin

Zero and Pp(z) has conformal spin one. The operators L » L, and

1
L_, forn a SU (1,1) sub-group®*® and have the useful properties

S X@e e _ X(*2)
M. XG)e™ = (1-12) X(—,fx;} ) st

g ‘."X(z)e'“":: (z.—;,'l):X'(z A ) Nslzl |

By using the first of these relations it is possible to rewrite

=1, and z.= w

the amplitude in a convenient form. By choosing z,=0, z 1

N 2
then writing
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<olVi(z, k,) = <otz"' e

VGask)D)= €47 10
then the amplitude can be written as

j"mj:‘%""daﬂd £ no lﬁ(ig .) (’é‘k¢nV(z.,k)x
o o -;k, 1&,’0) .

then using

V(z‘,k.) =z Voa,k ) -LLOZ:‘

Vo (z,k)= :e';k"aw:

and changing variables to X o= T Zi., e ee i,’-’ the amplitude

can be written as

Ol VIV, (k) PV, k) . . .. PVoll; Kya) e ey g
B 0' . ‘I..-MO) ( [— x‘ “0)
re

When a(o); 1 , which is also necessary for the Virasoro operators
to exist, P l
Lo-1

and the amplitude becomes

A %cn,k,)rl:‘_ VI 2

The amplitude is now written in terms of propagators ,._L. and

vertices, Vo(l,k). o

]
Unfortunately the requirement that «(0)= 1 implies that the

lowest state on the leading trajectory has mass squared of minus
- one and hence is a tachyon. As this is the ground state of the theory

it is not possible to decouple it from the theory.
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GHOSTS.

The states of the model may be written as

|3, = 6 T(a )"‘lk o>

these are eigenstates of the operator Lo with eigenvalues: -k2+n where

;2&:,1 . The coefficients C  are chosen such that

Kol A3, = Eign , E=2]
By writing
@) = <Ml Yt - -+ Vollyl.)

and

IV/>= VQC’, kj)t-,:]—- o0’ vOCl}kg.;)“(,ﬁO)
()
then the amplitude can be written as .

Au o <¢,#]" l\l/)
b comte soof sates 1z S 1080} (DLl |

. can be inserted into the amplitude to give

<0l 5\3 [{8,m) Dl f:TI— m%}l {3,m)Oml V)

._Z' <0l 3,0 Eoya ({A},nW/}

(Fon

This then allows the existence of ghosts which appear at the pole
when £3'l due to the existence of time components of the operators.

The vertex Vo(z »k) has conformal spin one
[Ln ,Vo Cf-l ,k)] = '!n (iji!. 4-0) V,(z,k)

therefore

[La=LqsVeCigk)] = aVo(l,k)
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then this can be used to show that the operator CLOALn—1+n) on a

vertex gives

(Lo-Ln=14n)Vsllyk)= Vollsk) (Lo=Ln=1)

Using the Virasoro algebra it is possible to show that

(Lo~La-lly = Lr (Lo=Ln=1+n)

When (Lo-Ln-1+n) is passed through a vertex and then a propagator
it reappears on the other side unaltered, therefore it can be passed

through a number of vertices and propagators. Now Lolk:O) Jjust measures

the momentum squared of.the state Lo lk:o> = ,k:o>

80

(LO'Ln"l'I'ﬂ)Vo(l,ku,,)lkm:c» =
=Voa: l\'u-c)(L_,"Ln-l) “‘n 30) = O

Therefore (Lo-Ln-1+n) acts as a gauge on the statelV) 28125

(Lo=La=l+n)I¥v)=0

Now if a stste h;a.s the property that L,l¢> =("'k”¢>

then the operator Lk

LV = <OI(Lo~1+K)1V)

at a residue of a pole gives

from the gauge conditions above this then gives

SOILLVD = BI(1-k=I+k)IV) =0
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The state l"kl¢> is then called spurious as is does not couple
tolﬂp?', a tree state. If all the ghosts states are spurious states
then they do not couple to the physical states and then are absent
from the theory. This then gives the gauge conditions for physical

states Lle) ='0 and (L,-I)I‘X}=0 .

ABSENCE OF GHOSIS.,

The absence of ghosts in the spectrum of the Conventional Dual

Model can be proven under certain conditions 26127

and this gives more
insights into the struiture.of the model..The first step is to construct
the D.D.F. states®® which describe the emission of a spin one, zero
mass particle, the "photon", from a tree graph. These operators ,act'ing
on the ground state, give physical states and can be considered as

physical state operators. They are given by

A, = £ P g8 0

=N
and are dependent on a particular reference frame where
&k =¢g.p=0
where ku is the mqmentum of the photon and p!" is given by the tachyon
state. -

These operators then have the commutation relations
¢ A
[An ’Am] = 0 8ij Sarmpo

- which means that the states they create are orthogonal but as they
only have transverse degrees of freedom they do not create all possible

states. It is possible to construct operators that create the missing

longitudinal physical states. 2h2o
; ‘ '
As [Ln ,A_m]"o ) n) l then a state constructed from the
AY? 8 have the property that Ln l¢7 =l . Due to a normal

ordering problem this is not true for the longitudinal operators Af'l

| | .
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so that a correction term ‘bm is needed such that
) o) L

These then have the algebra

[A?:Af:] = (""'")A‘:)-m 12 ",‘5;""'10
[A,: ’ A‘:] =n A:\-om

[QM 7Ajn] =0
[Af:” @m]" m Qmm

These operators then give all possibie states, both physical and
spurious. The norm of these states can be calculated by using an

isomorphism which has the same algebra as the above operators.

A:\"’xn ’/\‘:"71'\ y lp:0)—l0)

.where the 1”’5‘ are operators analogous to the Ln"s but constructed
from only D-2 spatial components of the ®'s ., For D < 26 these
give only positive norms , hence no ghosts exist in these dimensions.
This is the proof due to Brower2’ When D >26 ghosts do exist but
when D=26 the longitudinal operators give null states so that the
D.D.F. sta.te.!s give all the physical states and there are only (D-2)
sets of states, that is .two sets of states have :decm;pled. D=26 i.s
known as the critical dimension.

It is also possible to prove that ghosts do not exist for less

than or equal to the critical dimension by another method due to
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Goddard and Thorn,2®® A basis for all types of states can be éonstructed
as follows .
M 2V, '

fren, S AL 1900 e et

Azl T () mz
It can then be shown that all physical states are given by a sum
of D.D.F. states and other states which in twenty-six dimensions
are null states . Thus in twenty-six dimensions the physical states
are Just the D,D.F. stateé, and ,therefore, have positive norm.
UNITARITY.

Unitary is, hopefully, implemented by a perturbative series
the Born term being.the amplitude discussed above. The one loop
graphs are casily investigated in the operator formalism apart from
" the requirement that oniy physical states propagate around the loop.
This does not provide a problem in the tree graph as the gauge conditions
ensure only physical states propagate. Brink and 0live®° constructed

an on-mass shell physical state projection operator (k) where

XK= § igr"f; yx.-u

| .105' n‘i i:.?AinA;n

H

L-o"’é}
| lp-H = CDQ-IXLO-I).""Z: (D.n L,"l' L_n Dn)

D= bdz_ 7' I
" fh-éi k.Pz)
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for the critical number of dimensions and where X' is a light-like
vector. This projection operator projects from the full space given
. by the a's onto the transverse space given by the A's, and when
this opciator is placed in a residue it is effectively unity for
D=26 showing that in this case the physical states are just the
D.D.F. states. |

_This on -mass-shell physical state operator can be used to
-ensure that only the physical states propagate around loops3*
though this is a rather difficult procedure. What is really required
is a off-mass -shell physical state projection operator and one was
constructed by Corrigan and Goddard®2 enabling the calculation to
go through easier. -

¢

So the planar loop can be calculated by considering the integral

fd’k Trace (V(k) PV0). ...V (k) P}

where the propagates contain the projection operators. To calculate
non-planar loops it is necessary to_have a twisting operator 33
’“ -L-'
N=(¢e
By combining the twisting operator with a propagator and making use

of the gauge conditions it is possible to construct a hermitian
twisting operator®4!SS ! Lo"2 )LO'Lu
0= | dx x () (1-x

which is equivalent to using
@ =0 (-x)"™
as the twisting operator. So by replacing the untwisted propagator
- by the twisted propagator non-planar loops can be constructed by
taking the trace as indicated adove.3®'37 The. results can be written

in. terms of Jacobi Theta functions. (See table one)
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When the loop diagrams were originally investigated it was
found that for the one loop orientable non-planar graph a new
singularity appeared which had vacuum quantum numbers an& so
was termed a "pomeron! Unfortunately it appeared that the new
singularity would violate unitarity but Lovelace®® pointed out
that when the dimension of space-time was twenty-six and if two
dimensions of states decoupled then the pomeron would become a
pole and therefore not violate unitarity. This can now be under-
stood in terms of the D-2 sets of physical states in the critical
dimension and the required results were obtained using the pro-
jection operators.32'40 The only difference from the naive
calculation using Jjust a twisted or untwisted propagator is.that
the partion function is changed from [f@»)J_D to=[f0»)]24n..

The pomeron can be best investigated by using the Jacobi
imaginary transformation (see table two) so that the pomeron
singularity is given when the variable r = 0 (o> 1). The pomeron
singularities then are an infinite set of trajectories with a
slope of half that of the Regge trajectories and with the intercept
of the leading trajectory being two , and are a set of factorisable
poles.%1'42 Tt is possible to show factorisation explicitly
by introducing two sets of harmonic oscillators®’ the pomeron
states then coincide with the states of a non-planar dual model
introduced by Virasoro*® and Shapiro$}* and no ghosts propagate

around the pomeron loopss>
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THE NEVEU-~SCHWARZ MODEL.

The Neveu-Schwarz Model is an extension of the Convention Dual
Model but has much more structure with half-integrally spaced Regge
trajectories to which can be associated a "G-parity! The leading
trajectory has intercept one and ﬁhe tachyon at m®=-1 decouples
from the theory but there is still-a tachyon, the ground state particle.-:
of the model, at m2=- i . As the model is based on the Conventional '
Dual Model it has a very similar algebraic structure so that the
methods used for the Conventional Dual Model can easily be adapted
“to the Neveu-Schwarz Model.

The model introduces additional operators which commutée with

the a operators but anticommute among themselves.

Mo (vt yv '
U?nb:j"'ﬂ Seys s tsmisks e
A new field is defined in terms of these operators.

H@)= g(bfz"-r bty

The Virasoro operators are then given from the operators of the

Conventional Dual¢Model plus an additional term given by

L(-b, — ...L _d_. le H(z)d__{i)

n 2wz -

A further set of operators are defined as

G, = f_dz_z Pz).HG&) B

2z

which form an algebra with the Virasoro operators;
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[Ln ,Lm] = (n-m)L yom * .g (0 ~1) &m0
{C,, G;}-"' 2’;,-,.5 ‘I'.ZQ (Pa"t') 5)45,0
[LMGJ:" (‘%'r) Gﬂﬂ'

The vertex function for the emission of a tachyon is given by

Vie,k) = kHG) Vi(z,k)

where Vo(z,k) is the vertex function for the Conventional Dual
Model. The tachyon in the theory is usually called a "pion" but
obviously is not the physical pion. The amplitude for N of these

pions can be written down as

A= Okl b Msk) L V0K B lly:0)

which is zer; if N is'odd as the b operators are contracted in pairs.
This amplitude is written in what is known as théz;. formalism.

It is possible to rewrite the amplitude in another formalism,
the 3‘1 formalism.*/ The advantage of this formalism is that there
are a lot less states than the 3’. formalism but , of course, the
same number of physical states. The ground state is the pion so
that the tachyon at m®=-1 is not préesent in this formalism. Also
in this formalism the G operators act as gauge operators. The N point

amplitude is written as

A= @IV L. oo VU kya) ey 0
. °°%
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The physical states in the ;1_ formalism must satisfy the gauge

conditions

(Lo~£)IP)=0
L"'¢)=0 ne02,.....

‘;}'hdt>=’<? "=:5E,i%)-v. .o

As‘each state has either an odd or even number of b operators it is
possible to associate a"G-parity" to each state depending on the
number of b operazgrsl;n the state. The G-parity operator is given
vy G = (=) bin b

The inclusion of the b operators means that more ghosts are
included due to the time components of these operators but there
exists a. larger set of gauges due to the @ operators and, therefore,
the possibility of the ghosts decoupliné from the model.

The proof of the absence of ghosts depends on constructing D.D.F..
type states for the model which in the critical number of dimensions,
in this. case ten, give all the physical states. The proofs all use

_the 3 formalism and are given by direct extensions from the proofs
of ‘the absence of ghosts in the Convention Dual Model,28!3014tau
When the dimension is less than ten longitudinal operators are needed
to give the complete set of physical states.

THE RAMOND FERMION MODEL.

The free particle feactures of the Conventional Dual Model can
"be produced from the Klein-Gordon equation for a free boson by intro-
ducing the generalised moméntum and position operators and uéing
the correspondence principle as proposed by Ramond?° This method
can then be used to extend the free Dirac equation into a free fermion

dual model3?




..
 For the boson case the starting point is
_ P"- + mﬂ. - o
The momentum is replaced by the generalised momentum

pf = <(P%)
where M - M = »
(P*) = fds PG = p

This procedure then gives‘
PP +m =
and ‘by the correspondence principle this is transformed to
3 .
< P > + mﬁ =0
vhich & m®=-1 and from the definition of the Virasoro operators
can be written , when acting on a physical state l‘w), as
( Lo")lV’) =0
From considering the usual ghost eliminating conditions
7
pra =0 .
which is rewritten as P") < " P”> rpH ¥
y {P).z"P)=0 ,2"P)=&,
then by the correspondence principle
P P"). = G 7')=0
which just gives the remaining gauge conditions. L,J‘\V): o

For the fermion case it is necessary to introduce generalisations

t51

=%

where I‘u are the generalisations of the Dirac matrices ru and .obey
(0@, @) =2y 66-%) , GT=0 10,

‘which are just generalisations of the properties of the Dirac matrices.

of the Dirac matrices such tha

T'hese conditions give




M) = Zﬂ*c/qxs'z (d:;:- .,
{dm,d 1 = =9 8a,m

The form of the I''s is very similar to the form of the H‘s. in the

Neveu-Schwarz Model and so an algebra can be similarly constructed.

[a=-thdz = T4 JFim i ddle o'l Pe

% /2 J2wiz
By adding the L(n) 's to the Virasoro operators of the Conventional

Dual Model the following algebra is given

[Ln ’Lm7= (ﬂ""’)Ln'm " g n (4"’)6.»4#,0
_ (L, ’FnJ =(‘9 "'”)E"'"
{E'l :En} =2l nem + -D- ("1""") 5"""10

Starting from the Dirac equation and using the correspondence principle

which gives on a physical state

(Fo - '")W/)-O

The gauge condltlons L l‘\V) =0 are obtained from the square of the
generalised Dirac equation. Ramond introduces' further gauge conditions .

as follows

FalFo =) 1V> =0
Sy - (Reim) )=
Lal¥) =0 s . F;,W’)=0 ]

The states lW} can be written as X Yo
W =TT "Lf(«t*..,) Ik:0Yu (k)

where u(k) is a spinor.
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INTERACTIONS OF FERMIONS.

To see if a dual theory exists for fex_'mions it is necessary to
consider the: iﬁteractions of. fermions+Though in the opera‘l'..or formalism
there is a difficulty in calculating the amplitude .for fermion -
fermion scattering and this was approached gradually as the calculations
became more complex. The difficulties of the calculations can be
considered a major shortcoming of the- operator formelism.

The simplest form of interaction is that for a fermion which
emits mesons as it is propagated along. This can be represented

‘diagrammatically by

e = o e -
e o o - e
o o == @ -
e = w e
—— - e - .- .-

S
[ 4

—

where .the solid line represents a ground state fermion and the
dotted lines the emitted mesons. The emitted mesons are described
by the Neveu-Schwarz Model and the formulation of the Neveu-Schwarz

Model is used to produce the amplitud;?zus% jt'-i’ dis necessary to
5
define a generalised y° by [*=Y (")"" nen
5 M } -
such that {rl ,"'" (i) =0
(keeping the notation I'> even when the dimension of space-time is
greater than four.)

The amplitude is given by

A = GURIORMOKIL .. Vo Duli)

in the’g formalism and where

V.(l,k)= 5 Vo (1,k)

As this involves the Neveﬁ.-Schwarz Model the critical dimension

must be ten, and because Of the similarity -of the fermion model
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to the Neveu-Schwarz Model it is not difficult to prove that this

is so. Schwarz deduced this by considering the algebra of the model>*
and Corrigan and Goddard proved this by using fermion physical state
operators®> A necessary condition is that the mass of the ground state

fermion must be zero.

[ Vol k)] = k. POV 0, k)=, (1,)

and | = .Ei_ - _hfé
Fo Fo Lo

- the amplitude can be written in the formalism>> as
[}

Al = GO L - -V, (1)l :0)5 (k)

By uaing

vhere ulky)=¥ kn U Ckn)
' the zero mass of the fermion means that it is easier to work in the
3’; formalism?®
By dualizing the above amplitude it‘is poésiﬁle to consider the
emission of a fermion represented by .

RS

R e o e o o ke e -t

This involves the difficulty of finding a vertex function which
changes the d operators to the b operators. The result, obtained

57

by Corrigan and Olive, is very complicated. In the 3’. formalism

the vertex is given by

K sz
Ve(z,k)=Vo (2 k)2 & Wiz)
"herewa’ 4 s“’le"?(‘é ¥*LbB,G) ”Z:: % iy bys By (204
HE Z;; by A @b, 10)
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| BpCz);-:rz.é__' (-;)'f‘(:.:z.t) ) B, Ga)= (2" (;:‘_-t )
A=y () &5

This vertex can be used to construct the amplitude represented by
'

-
-

[
I
——L-'J—-.-,

ba.r using V;_(z’ k) - yo v;(;’ k)x’

By putting the two diagrams together the vertex allows the

amplitude for fermion-antifermion scattering to be considered.

Rl

For this amplitude to be calculated using the operator formalism
it is necessary to make sure that' only physical meson states propagate
and because the mass of the fermion-is zero the Bifomalism is used.
The meson propagator can be constrained to contain only physical.
states by the use of the projection operator but as this is not a
Lorentz invariant procedure it is not obvioﬁs that the amplitude

-1s Lorentz covariant, If suitable gauge conditions exist thep it

is possiblé that- Lorentz covariance can be restored. Brink, Olive,
Rebbi and Scherk®® introduced gauges which are a sum of either the
F's or the G's and when they act on a fermion emission vertex give
infinite sums of the F's and G's on either side of the vertex.

One of the gauges makes it possible to write the fermion emission .
vertex in the :k; formalism. So for a fermion tree changing into a

meson tree the amplitude is written as

L SV, O W) )1V =,<w,|v,a,k)¥,u(k)l%>z
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where the subscripts 1 and 2 stand for the different formalisms
and "\VF> and'%,) stand for the fermion and meson trees.
By using this vertex and the new gauges Olive and Scherks"’_found
that it was necessary to modify the meson propagator to produce a

Lorentz covariant result such that only physical states coupled.

Instead of using /i Lo~
f dx o t
o X

the modified propagator f L.'*
G

X Ak)
is used where

A= det (1-A&)
refel
A,,(x):x’dl,a gy Res 53 (L-—)' C.,;,

This still 1eaves-the problem of actually calculating the amplitude
which is not easy due to the matrices involved. Progress towards

the result was made by Corriga.n59 and by Schwarz and Wu®%nd the
amplitude was eventually calculated by Corrigan, Goddard, Olive

and Smith®' and by Scharz and wWuf2 >

LOOPS IN THE NEVEU-SCHWARZ-RAMOND MODEL.

The one loop graphs in the Neveu-Schwarz Model can be caa.lcul.a.ted?‘5
in the '3'1 formalism, as a direct extension of the one loop graphs

in the Convention Dual Model and corrections can be made to the
partition functian so that-only physical states are propagated in

the loops.3! In the Neveu-Schwarz Model there are two types of pomeron
depending whether or not there are an even number or odd number of

emitted particles between the twists, producing even or odd "Glparity

pomeron. The pomeron is a pole in ten dimensions and also :E'act‘.or:ues'u

The leading pomeron trajectory has intercept two and even G-parity.
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Green®? has calculated the planar loop diagram in the Ramond Fermion
Model which involves a fermion propagating in a loop emitting mesons.
This gives the result that the leading divergence cancels with éhe
leading divergence of the Neveu-Schwarz planar.loop. The question
then arises, what happens to the pomeron loops,is there a similar
cancéllation ? For this to be answered in the operator formalism

it is necessarﬁ' to have a £wisting operator for the fermion line.

We shall discuss such loops further on but using a different formalism.




CHAPTER THREE.

RELATIVISTIC FREE STRING.

Although the operator formalism is useful for the construction
of the Conventional Dual Model it is not the only method of under-
standing the structure of the modgl. By considering-particles as
objects extended in one dimension{ that is strings, it is possible
to produce the results of the operator formalism by considering
the interaction of.strings?5 lhe harmonic modes of the vibration
of the string give the spectrum of the model and constraints on
the string give the Virasoro gauge conditions®€'67168 A detailed
investigation into.a free relativistic string69 leads to a deeper
undersﬁanding of many of the features of the Convention Dual Model.
Goldstone, Goddard, Rebbi and Thorn®? started with a classical
system for a one dimepsiona; relativistic string and proceeded to
quantize the system , the quantization procedure revealing the |
structure of the syétem.and the connection with the Conventional
Dual Model.

The relativistic string sweeps out a two dimensional surface
in space-time which is parameterised by X y= xﬂ(d' 'C),:“;;‘Tr

- oo

The action for the system is proportional to the area of the surface ¥*'%®

and is given by - = > o =
5"'93’?& f °‘°'/( %35 ( ¥

By using the variational principle the equations of motion of the

classical relatlvistic string are given by

LAt _
7270 oo Ll

0
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By choosing an orthonormal co-ordinate system
() | ()0
31 ’ 20/ N9

ho cquut1ons are simplified to

l—z-a——-—;=0) ax "0 ,I=o;ﬂ

14 T
the conditions of orthonormallty acting as constraints on the system.
This is possible because_the surface the string sweeps out can be
‘reparamsterised as a function of ,0'and T' where ¢'=0'(0,7),T'=T'(0,%).
The action is invariant under a group of reparameterisations which
can be considered as a gauge group of the string , the above choice
of co-ordinate system being a partucular choice of gauge.

There are two methods of quantizing the system by the use of
Poisson brackets because of the existence of the constraints. The
first method, the covariant method, considers all co-ordinates and
momenta to be independent, these are then quantised and the constraints
are applied afterwards. The surface 1is described as

x'(0,T) = Z 1,.(15) comno .
where the q, are taken as independent co-ordinates and the momenta
are gi b ¥

given by Pﬂ-‘:.'La ",

n ‘ %&
n?
By def1n1ng7.&”=2f,-bﬂq,, and A-n A-n / 070
this gives the variables
JL” ’ AL-n ) fh: ,“o
which are, of course, just the operators from which the Conventional
Dual Model is constructed and so these give the spectrum of the dual

model but including ghosts. The constraint equations

2’.;) z-r.)z ( )(ax =0

when calculated give, in the classical case, Lnfo where

n=% S & nemBom
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which in the quantum mechanical case goes to Ln’¢) =0

where ,O} is a physical state , and,because of the normal ordering

problem, C Lo~ A@))'¢) =0

The second method of quantization is the canonical non-covuriant
method where the constraints are used to elifninate two degrees of
freedom, the remaining independent va.riab:_Les are quantized. In this
‘approach light cone co-ordinatesare used -where q*. aei: G- Due to
the freedom of reparameterising the surface a particular choipe can
be made such that r- g

2¢*

then similarly to the first meth%i

which implies
4 ’
+ L 4
An*0 ;n#0 .72k, g,.-.-O
the constraint equations then give
00

Ln=‘5_‘ Z (af. m‘tmm"'d:mgﬂvm = Q-mi-nfm)

ms @0

writinginziz's_m,&umthese imply * ns 15 o= ;_-g*
) x& 28
0 [

. s - &
so the independent variables are é.'d ) q', P P‘
and these can be quantized using Possion brakets. This method produces
only transverse states of the string, the ,a"n s, and this ensures
that the spectrum is always positive definite and we can now see why
two sets -of states decouple in the Conventional Dual Model. This
method is non-covariant but is self-consistent if an algebra for
the generators of Lorentz transformations can be constructed. This -

is only possible when D=26 and the intercept of the Regge trajectory _
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is one. So this gives us an understanding of the critical dimension
and the necessity of _a(p):l fpr the anvcntional Dual Model, 5ut

" as, yet interactions have not been built in.

THE ANALOGUE MODEL. .

This method of describing interactions of the Conventional Dual
Model gives an interpretation of the ampljtude in terms of quark

diagrams. The Analogue Model”®

introduces an interaction region
from the quark diagrams as follows, for the Born term and the planar

one loop graph
\_/(
—_
N\
\ g
O —_ —7

N

The amplitude for each component of momentum is given by a functional

integral over all configurations such that the energy loss is minimised

A = f d (CMﬁgut’aC&Mt) exp (-€)
Jd(contigwations)

This is just the same as the heat loss of a uniform plate, representing
the interaction region, due to electric currents, representing the
momenta of the particles, entering the boundary of the plate.

The amplitude for the Born term is given in terms of the Koba-
Nielsen variables which represent the positions.of the eléctric
currents on the interaction region.- For the planar one loop graph
the variables are the same as in the operator formalism after the

Jacobi transformation has been used.
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This method can be reformulated in terms of the Neumann function

~8 é&!‘)for the surface under consideration,where z_and zj represent

)
the positions of the momenta pi and p j » then the amplitud_e for

that particular surface is given .by

the Neumann function being such that the normal derivative is a
constant on the boundaries!® For the Born term the Neumann function
is given by NB(Z;,?‘;):' (.n (ii'ij) which gives the usual amplitude.
The Analogue Model can be extended to non-planar diagrams and
generally to all orders of d;lagrams by finding the Neumann function
associated with a interaction region by using functionals on Riemann
surfaces’*'72173 e Riemann surface is given by the interaction
region and the double of the Riemann surface is constructed from
this and is closed and orientable, on this double automorphic functions
can be constructed and the amplitudes are obtained in terms of these.
At the one loop level the different diagrams have as their double a
torus but differ by the paths along which the z's are defined. The

2pifs

amplitude in general is given by

expllif; A6eiz) - [U(z.- TaG)z- sz.,)) (2.2;)’

where Ta is a member of the group of projective transformations. This

in fact just gives the Neumann function for the interaction region.

THE FUNCTTIONAL INTEGRATION APPROACH.

The amplitudes can also be written in a functional integration
form but are solved by the Neumann function for the surface under
consideration?*!'7> The functional integration is formulated in

terms of a Lagrangian density

1@)= -+ (3]
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which is the Lagrangian density of a free:string but with imaginary
time. The amplitude for a region D is defined by the rudimehtary

amplitude

Sexpli 7 £ JA40) 8aus 1))

where kl are the momenta of the external particles, and the functional

average is defined by

A, == f.--.jﬂ“’?;c«,y)A@f)expgAx«'yI (3)

n, being a normalisation constant. This can be calculated by changing

varliables

=Plx,y) - & (IN(Z,9; > J]
@(:c,y) @C“;}/) /-_2-_-;?9/55 k,(i) V4 9 )

this then gives the rudimentary amplitude

ot 87 38 k) expld & [ 4315 kDb 5INie o8]

ty) o

The difficulty with this method aad also the approach using
automorphic functuins is that the partition funtion for loops is
not obtained directly. By starting from tﬁe operator formalism and
rewriting the amplitude in either the functional form or interms of
automorphic functions it-is possible to obtain a term which gives
78175

the partition function.

THE PARTITION FUNCTION.

One method of reproducing the results of the functional integration
form is by considering particles to be made up of partons and describing
the interactions by a network of propagators and vertices of these
partons., Then in the limit of the number of partons tending to infinity

the dual amplitude is given’®'77 This method can also be formulated
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in terms of an electrical analogue which reproduces the correct
results in the limit of the network becoming dense, that is contimuous.
This then allows a method of calculating the partition function
for single loop diagrams by taking an electrical network with -
appropriate boundary conditions to give a cylinder, then by congidering
the energy dissapated and carefully taking the limit as the network
becomes dense!® This then reproduces the results of the operator

formalism.

THE INTERACTING STRING PICTURE.

As we have seen there appeérs to be a connection between free
strings and the functional integration approach to the Conventional
Dual Model. These two approaches were brought together by Mandelstam’®
The particles are described by strings in terms of the physical
state operators, that is in the non-covariant method which means
that only positive norm stétes are used. The interactions are built
up by strings Jjoining together then separating, an inteération
being taken over all possible paths, the Feynman Path Integral.

This produces the amplitude in terms of a functional integration. .
Lorentz covariance is not obvious in this approach and it is necessary
that D=26 and a(0)= 1. This approach uses imaginary time for the
calculation, giving an elliptical differential equation, at the end

of the calculation it can be changed back to real time.

The equations are obtained in terms of slightly modified . variables
of Goldstone, Goddard, Rebbi and Thorn®* The interaction can be

represented by

-2 fy
: ~2w )
A L
Y Y,
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A variable p 1is. defined hy. /’ =T+ Cor and x is
¥
choosen to be 26 -'-'b‘r . The lengths of the strings are given
4
by ZTI'P - The functional integral is invariant under

conformal transformations, so this means that the variables can be

transformed onto the upper half plane. This is achieved by the

transformation P = ﬁ 2 ﬁ+(n(1‘zr)
=

"where z 1is the variable which corresponds to p . The Zr's are given
. by the initial and final positions of the strings. If Zr > Zs for

r<gs thenas z = 2 p—» -o , when z passes through Z1 the

1
variable p gains an imaginary part equal to the length of the

first string. As the variable z gbes from plus infinity to minus
infinity through the points-’-zr the variable .p goes along 1;he
"boundaries of the strings in a clock-wise manner. Maxima in the
variable z gives ,in p, the positions where the strings join to-
gether and separate. The function integral can now be solved in

terms of the Neuma.rm functions of the upper half pi;a,ne as this is
equivalent to the p plane. It is possible to describe the
scattering of excited states using this method by writing the Neumann

function in terms of a Fourier series, This approach has the advantage

of only dealing with physical states but Lorentz invariance has to

THE NEVEU-SCHWARZ-RAMOND MODEL AND INTERACTING STRINGS.

The string approach can be extended to the Neveu-Schwarz and
Ramond Models and this brings out the connection between.the two
models and, in fact, they are described by one modelj

The free relativistic string for the Neveu-Scharz Model®® consists

of the free relativistic string for the Conventional Dual Model

but with an additional two component Lorentz vector field
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which represents a continuously distributed spin along the string.
These additional variables have conformal spin one-half ',

N » Hr s ";‘ M A 4), ' 5|2
(5, se0-(e)S! s S-S
: 3
Similarly as before the string can be quantized in both covariant
and non-covariant methods , the latter method allowing the model
to.be written in terms of transverse positive norm states, but
only when the dimension of space-time is ten and the ground ;tate
has m°=-1/2 .The quantization procedure is similar to that for the
string in the Conventional Dual Model and it is not worthwhile
going into further detail. The Ramond Model can be obtained by
suitably changing the boundary conditions of the string.

The functional integration method has also been given for this

mode1®!'82 and the Neumann functions are given by

(L+L ) Kilop) =2w 8°Go-p) buss
(%C'L‘?Z'f) bi(l’:/") =L Sz(/J-/)’) S1,b

‘'where b=1 or 2 corresponds to the fields Si or SZ where

and where p = T™io . The correct boundary conditions have to

be imposed on the Neumann functions, and imaginary time is used.
It is possible to put the two approaches together to produce

an interacting string picture for the Neveu-Schwarz-Ramond Mode183184

Interactions are represented diagrammatically by

S
[4

1
A qr, VL\ Y

1
P
:.z_--..s- -
Ry
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The arrows represent the different boundary conditions on the ends
of the strings, the forward arrow means
:‘;"".S; ) gﬁé; = EE:S;
or ¥

-and the backward arrow

S.-..-.Sz ’ %_‘o.f} 5"%_‘5"2

Two forward arrows on the ends of a string represent a fermion,
two backwards arrows an antifermion and arrows in opposite directions
& meson. There are two types of meson, those with a forward arrow
at the top which Mandelstam denotes as a quark-antiquark pair,
and those with a backward arrow at the top which he denotes as
a. zero quark meson. .The parity of’'the former:is.opposite,to: that
of the corresponding zero quark meson, as the mass of the ground
state fermion is zero there is no way of determining the absolute
parity.
The Feynman path integral technique can be used to pro&uce a

functional integration which contains the Lagrangian

L0546 5GBS S (R

The fermion ground states are written in terms of generalised
Pauli-matrices o~ wanere the zero mode operator is
The d's are paired as -io'c®, -i0%¢?®, etc. and these form the

basis states of the fermions. The solution is given by

| KP{?,Z)""K-*&”)'Z z {.ﬂ-( '-Z ; Tré.%

where the product:Il' is over incoming fermion states and the product
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- II'' is over iﬁcoming antifermion states; the plus and minus
signs are the hellclty combinations of paired indices of the a's
=:f£= (1, if;Lf
All other Neumann functions are zero. The Neumanq funetions can

also be written as

K(z,z)= El:_fﬁri‘-h é:—;f) 'n'(z_-_z;' é]T( -Zr)

bi(zﬂ') = kib (1997') > Kaa Ciﬂl) = Kai (z :1'#)

Mandelstam®® using these methods suceeded in calculating
the fermion-antifermion scattering amplitude gnd showed that the
amplitude is dual but the s and t channels are not identical
being constructed out of the different types of meson either quark-
antiquark or zero quark mesons.

LOOP DIAGRAMS.

So far we have not discussed loop diagrams in this approach
to the Neveu-Schwarz-Ramond Model, one method these can be
calculated in the Neveu-Schwarz Model is in terms of automorphic
functiong®® |

It is necessary to start from the operator formalism and then
to rewrite the amplitudes in terms of automorphic functions. This
necessitates the introduction of“ a Grassmann algebraas‘aﬁhich consists
of anticommuting variables 1 such that

M:m-o s ¢ ¢¢

A variable ¢, is introduced to correspond to- each operator b,.
From these coherent like states can be constructed wﬁich enables
the amplitudes to be written in terms of automorphic functions.
Integrals over the anticommuting variables are formally defined

as .£44N;==C) ) U/&kt’dbi:z ,

The automorphic functions are slightly different from the Conventional
Dual Model.
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'THE_NEVEU-SCHWARZ MODEL IN A KOBA-NTELSEN FORM®*

The Grassmann algebra can be used to formulate the Neveu-Schwarz
Model wusing Koba-Nielsen variables. Each particle has associated
with it a va_ria'ble' z; and a variable Oi;an element of a finite

Grassmann algebra. The N point. amplitude, the Born term, can be

written as
Au=J- ]_]:M T_r,dz‘ ’}T (z.-z,- )"
*———— HTe

V¢, b"

The integral over the ¢'s can be written as a contour integral

with measure ¢ 2 d® giving

Aw / Tds: f f]“"" T, (-g-0i)™"%

13 %/ Ifis M
dVa,5,¢ ¢

This is evaluated by expanding the integrand and using the property
of the algebra that ¢2 = 0,

2helg e YA T A2
Tr(z‘-g‘, ¢‘d>) ‘= = 5”(2; 2.;, (1+ Fa";é%J

’o‘t é )5”

The only terms that contibute to the i'nteg_ra.l are those with a

complete set of the elements of the Grassmann algebra, i.e.
¢'¢z....¢~ or a permutation of this. If the number of external
particles is odd then the amplitude is automatically zero because

in any term of the expansion there will be an even number of elements
of the algebra,if all elements are not represented the integral

over the missing ones gives zero, and if all are represented then
‘there must be two the same which gives zero. To dc the ¢ integration
the elements ' have to be ordered as above and this introduces a

factor of (-1)° where p denotes the parity of the permutation.
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This then gives the amplitude in terms of Koba-Nielsen va.r:La.bles87

ﬂ”‘*’» ]T (z'-z w5t I)r(Z K)ok k). ... Ckiyrk,)

d,b,& z‘. 163)(th Z“). P [itu-| ?bN)

where the sum is over all possible permutation of the indices,

represented by i;j where

‘l“'l} ‘:,“'h’ L P “N.‘“ﬂ

“‘i’ (G‘r * s . "“"

As the Koba-Nielsen form is Mobius invariant it is natural
to look for a way of writing the amplitude in terms of the ¢'s
such that Mobius invariance is still true. For the Mobius trans-

%= ;= azieb ;. ad-be=l
CZied

dz; - dz Cegied)?

, Tz wz. Cezind)™

¢! -
dVabe dVa,bye

ASC;;'%‘) Cio-i,,)

then to preserve the structure of
(‘ !006‘ )Cc £4 X ?J) '

the integrand it is necessary to have

b; —  0(czivd)”

' (g2 -0;0;) — (z;-2;-0:0;)
(CZ&#JKC;JM

but to preserve the integration j@iﬁ' b‘: =l it .is necessary




b
to ave dP;= db; (czivd)
[ zk-l

Putting all these factors together produces a term 7[ C&‘*
so for Mobius invariance ki -4 which is just the rtxass of the
"pion" in.the Neveu-Schwarz Model. So we see that for Mobius |
invariance .to be possible a necessary condition is that the
ground state mass has m®= -%.

The question then arises is it possible to extend the Neveu-
Schwarz Model in the same way? In this case Mobius invariance means -
that the lowest mass particle has zero mass and using this condition
it is found that the four point function vanishes. This then appears
to be a self-consistency in the model.

Now that it is possible to write the tree graph in terms of
the ¢'s the loop graphs can row be considered. Starting with the
one loop planar diagram 63 (table three) we want to find a method
of obtaining the function X" (x) from the function V¥(x) by using
the ¢'s.

+
X (x) can be written as®®

Y(x) = o 0,(01%)9, (oIT) 6, (vt L

9; (‘V,t) ’ 2‘)’

e-%
e‘

which then can be written as

)= i d (0518 (EIT)
Xt #J&’) (91(’51‘0 8 (¥17)

by changing variables, using the Jacobi transformation, the function

can be written as an infinite series.

=L ﬂ_zl (=) (™)
) ( n§( l-rz I (R ) ’
I=Z
7




~l5-

Now w(iij) can be written in terms of the z variables as

Vi) =w¥ G-z T (omr*ailzj=r2i)
Vag' 7 (L2 )ei-z; )

which suggests making the replacement
(zi-z)) — ( z;-‘:‘gj-¢’.’@-) |

and

(2i=3r™") = (2; -2 r"=0;0;¢)"

vwhere the factor (-r)n comes from the Mobius transformation of ¢

J

the minus ‘sign being chosen. Expanding in terms of the ¢'s gives

‘ -2k ks . e ‘ ¢
e 50+ 2k .4, im ) (x;)

This procedure then produces the correct amplitude apart from the
partition function where f(w) is replaced by f(w the power of
this factor being 2-D=-8 . ®

Using the z variables makes the prescription for the amplitude
more obvious as the term involving the exponential in the function
V¥(x) 1is cancelled by a term arising from the Jacobi transformation
on the theta_functions. |

An explanation for the choice of replacement for the factor
(zi~Zir 34) is given in terms of the Mobius transformation

1 n

given by b=c=0, a=d = + r ., When this transfcrmation acts

on z, this gives zjrzn* and when it acts on.“l"_j gives °j(t r)?

J

in the planar loop the minus sign is choosen. This can also be

considered as the n times iterated Mobius transformation given by
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b=c=0, a=d "} = () .

To obtain the functions for the non-planar oriental;le loops
it is necessary to work in terms of the variables defined on the
real axis as the functions can all be writter; in terms of X+
(see table four) so it is relatively easy to extend the above
procedure using the ¥'s in these variables but not modi:t‘y-.i.n'g the

exponential term. 'i‘he variables are given by xg.-. /{_.’J then for
(]

N particles on one boundary and M on the other 41
w4 <|

As the function X>(x) can be written as

% o0 n g 4
vty S @)W - G wrip)
X ) 'n-'-z-;' l-w'ay) niZ-‘:' (pi ~pjw”)

then this is given by the replacement

(pi=pin) = (ppmpi’= Gl % 0:6))

+ -
where the minus sign is taken for X and the plus sign for X
which give the positive and negative G-parity pomerons respectively.
+,. im . .
The functions X (xe” ) are obtained in the same manner from
" ¥(xe'"). So now we can describe the one loop terms using the ¢'s.
.This method can easily be extended to multiloop amplitudes
by making use of the structure of automorphic functions. - As.we
have seen the Conventional Dual Model can be written in terms of

automorphic functions ﬂ(pif,p 3) which can be written as’2'73




_1;7_

expl2k ki Gpisp)) = ai-p) T pi-Taellp- T (PJ)
voip; “' (p;- K‘F‘)X/’ T(/e,))

the form of which resembles the function used at the one loop level,

of course. 'fl‘his immediately su'gge.sts the replacement of (/);-E(A,)

byf (- Talp)-0:Te(8)

Tl anivh , T0)- GI™ ¢
*’J "'9"' | (CAPJ

and where n, is the order of the transformation Ta « The
positive or negative gign in Ta("i) is.chosen according to whether
the channel under consideration has negative or positive G-parity.

The modification of the amplitude is given by

T Cf kkF Cpisps)pig;

faofi
Fe ‘3 J)- Z: "")
P N VN PEAP)

" which agrees with the method of Montonen®® So we. can see the

usefulness of this method in obtaining the multiloop amplitudes
in terms of automorphic functions which are obtained from the

automorphic functions of the Conventional Dual Model.




CHAPTER FOUR.

NEVEU-SCHWARZ-RAMOND MODEL AND NEUMANN FUNCTIONS.®Z

So far we have only considered the Neveu-Schwarz Model and
naturally would like to extend the method of using a finite Grassmann
algebra to include the Ramond Model. As a first step we shall rewrite-
the Neveu—Sct;wa.rz amplitudes in terms of Neumann functions and then,
at“the one loop level, consider both meson and fermion loops but with
. external mesons only. As the only difference between mesons and
fermions are the boundary conditions then the difference manifests
itself in the Neumann functions used.

Returning for the moment to the Conventional Dual Model,
amplitudes for excited particles can be constructed using the
Analogue Model by considering a distribution of momenta entering

the interaction region 88

rather than at a point as for ground
state particles. The multipole expansion then gives the amplitude
for excited particles, and in particular for spin one zero mass

particles the integrand for the tree amplitude is .given by expanding

e"f( Z ﬁ(kt’sblC!b"z_}) +€: K v €5

i (z o"zj) (.z‘-z,,)

and taking the coefficient of @) €rp ----- €y
where the e, is the polarisation vector for -the i*th particle and_
ki.ei=0 . The three types of terms can be interpreted in termg of
the analogue approach as. interaction terms between pole-pole,
pole-dipole, and dipole-dipole.

This then suggests the following approach for the Neveu-Schwarz
Model, that the amplitude is given by the coefficient of ¢,¢,- 0o v 0“

in .the expansion of

Y1 k‘.k (n (zi-2;) +9;
ex (2 5 ke )*&T-‘z:)‘)
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_Remembering that ¢2= 0, this can easily be seen to be equivalent
to the previous procedure for the tree amplitude. The second term
can now be interpreted as as the interaction due %o spin % sources; .
which have charges ¢i which anticommute.

Considering the string picture for the Neveu-Schwarz-Ramond
Model®* and remembering the boundary conditions for the forward
arrows are -

§7=8 5 25 =25
or o

and for the backward arrows are

5128 5 %ﬁ-’"%‘;&

then these imply,that in a source free space, S, can be written

in terms of two real harmonic functions ® and ¥ such that

5,= §Co,¥) +i V(oY) |
5, = 8Cr,0) -+ Vio,)

The boundary conditions can then be rewritten as Q 0 {I o

for the forward arrow and O 3@ =0 for the backward
arrow, The terms in the Neveu—Scharz tree amplitude can be interpreted .
as the contribution from two spinor sources ki (g:’ and k‘ (gj)

at the points z and z, on the real axis with the source term

ki & S(:t-h)gy which gives 8,z §;° = K @)
(x~%;)

Then the contribution to the Lagrangian action in the upper half
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plane for the spinor fields is given by

Kok 0.9, .

Cz;~-2Z)

This method may readily ' be extended to one loop amplitudes

in the Neveu-Schwarz Model by constructing the potentials for a
surface as in the Analogue Model. The interaction region considered
is an annulus and the boundary conditions are given by the boundary
conditions on the string. For the planar loop the boundary conditions
given above mean that the function S « must be real on one boéundary
and imaginary on the other. When the radius of the annulus is one
and the radius of the hole in the centre is r then the potential

2 2
can be constructed by an infinite number of poles at Zf° J zZr

This then gives

Sh =2 Zed Kok
-n=-” y (=-r*g)

which gives a contribution to the amplitude of

' 42 = Vi bo-thethefo-: e
KO (For )= 5 k0l

and the function X+(z.j/ P r2) is imaginary when I zil' =1 and

real when Izi|= r . This agrees with the previous calculation but

the minus sign is given automatically due to the boundary conditions.
For the ane loop non-planar orien‘bg.'ble diagrams the even G- -

parity amplitude is given by X+(zi/ zj,ra) when both particles

a.re on the same boundary and when the two particlés are on different

'bounda.ries. this .is modified by replacing z‘_j by zjr glving

X +(zj r/ ii » r2). These can be written in the upper halfplane variables
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using the Jacobi transformation. The function Sa ‘has the property
that 8 ( 6+2m)=-5 _(0) for even G-parity exchange..

For odd G-parity exchange the field Sq must obey the equation
Sa(9+21:)= Sa(G) and the solution is .

which is imaginary when |z| =1 and real when |z | =r. This
then gives the contribution for particles on the same boundary as

ki k08 Xe (—1 o) =2 Z -G (+2if Je b d;

2

The function X; can be rewritten as

x:(z}f’)_-: -2’:' +n§ Q:L(_‘;:_"U

Cler®)

and by using the Jacobi transformation as

X3 (o) = T X*06™™)

For particles on different boundaries z4 is replaced by za.r giving

X Gt = X X(xe",we™)

This then covers the case of meson loops but can readily be
extended to fermion loops w:;Lth the external particles being mesons.

For the planar loop the annulus must have the same boundary conditions
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on each boundary and this is realised by

SheS ZK Jaizi

ne-e J (z-r "Z;)

which is imaginary when |z| =1,r , this then gives a contribution
to the amplitude of

ol

k0. t1z; 32" i-kj @ "41—&2 ! r
Kk 0:0; X (.Z%" ) k / d’,{; Ri-zjr*)

which,using the Jacobi transformation,can be written as

X'z r'e™) = ¥ Xo (xw)

The ev.en G-parity loops are then given by the same procedure as
before, for particles on the same boundary the above function is
used and for particles on different boundaries z’j goes to zjr.

For odd @-parity loops again S (6+2m)= Sd(e) as w?ll as the .
boundary conditions being the same on each boundary, these conditions

glve ”

e 3 Z(z'ar’)k . 3T 0(E) K0

rz-0® J z z)f J .Lﬂf

which gives a contribution of

i kO (5o b 5 - ki3 Cerir)- W%

2nr “Cgrr) 24ar




and where

These functions can also be derived in the upper half plane
variables directly by using the Neumann function given by
Mandelstam®4 For the Neveu-Scharz Model the Jacobi transformation

. changes variables as indictated diagrammatically by

-J,{e-u’o w_,;”;,l

TIm

)
and when put in the Neumann function give an infinite sum

o0 ¥)
- (5:50)* x= 3
n:.Z.;o C Sé'fjw" ’ ¥

where a factor (&'jé W") has been included to give the

- 4 } *2
For a variable E,j there are image points at IJW J“’ PRI R

correct boundary conditions. The positive or negative' square root

of @ give the negative or positive G-parity loops. For particles -
in
e .
J
four functions for the Neveu-Schwarz loops.

on different boundaries §J. goes to § This then gives the

For the fermion loops the boundary conditions are different

giving




and when the image points are taken there appears to be a fermion
source at infinity and a antifermion source at zero, so the relevant

Neumann function, including the correction factor, is given by

5 csxwam) (’“’)/ e

nEe00 2(3 '3 w" -(3‘:-

5,

which gives the correct functions taking the negative sign for
positive G-parity and the mimus sign for positive G-parity. Again

when the particles are on different boundaries & j is replaced by
in
§je .

THE PARTITION FUNCTIONS.

Although we have constructed the functions appearing in the
integrand of the one loop amplitudes the complete amplitude cannot
be written down due to the lack of tﬂe partition functions and
measure,These have been calculafed by Brink and Fairlie®® using
functional techniques. They expanded the spinor fields in terms
of antipommuting variables and Fourier series which obeyed the
correct boundary conditions. These functions where considered on

a rectangle where two opposite edges were identified in such a
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manner that the correct conditions were obeyed for either G-parity
loop, and the other edges -had the correct boundary conditions
for the string under consideration. These made it possible to
investigate.the properties of the pomerons in the Neveu-Schwarz-
Ramond Model. They found that the leading even G-parity pomeron with
intercept two is present but the leading odd G-parity poﬁeron with
intercept one cancells between the meson and fermion loops. Their |

results for the partifion functions' are given in table five.
NEUMANN FUNCTION FOR LOOPS WITH EXTERNAL FERMIONS.

To extend the model further necessitates. the inclusion of

fermions. The Born term for fermion-antifermion scattering has

been given by Mandelstam®® So the next step would be the calculation.
of loop diagrams involving external fermions. The first step in
calculating the loop diagrams is the construction of the Neumann
function for mesons in the presence of fermions. We shall }estrict
ourselves to two incoming fermions and two incoming antifermions

but the Neumann function can easily be extended to include any
number of fg?migqfahtifermion pairs. The Neumann functiop can be
calculated ‘by using the Neumarn function for the Born term given ' .
by Mandelstam and the.proceduxe used before. On ‘the upper half plane

this can be represented by
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:I:n'
For a meson at &' there are image points at £' o ., n=1,2,... »
in N o EN *
and for the fermions image points at 'Eiw , o, 'ﬁ(m ’ gla) ",

Again modifying the Neumann function by the square root factor,

gives

(-12253) Wi T (53" Sw)(f‘ SN §w-5v: 5.
(S 3) 'Z;" 2(s- §'0") L“l;’,.l.., {1 }w)(f'v /(;' )( '54“’

- T4
U [.f 5; )(S'S;w 2‘5«?- .,wé(‘.f :J:-Skw”jz
* u? uv- ¥ S~ ‘E. s'ﬂﬂk“;'
- -
()= crsshed [9 R
=678 R ot

n

(5 g,:)] _ ["7'( o Y0 GA6 Y 53, (ZS‘)'“’

ST RGN

(For details of the calculation see appendix .)

.J

As it is easier to work with the theta functions, especially when
when using the Jacobi imaginary transformation to consider the
" behaviour of the pomeron, it would be useful to write the remaining

terms as theta functions. Th1s is achleved by noting that

9 (uevl¥)B, (o) _ cotwu cotwvs sz -&ﬂlﬂ(ﬂu*mv')
0,(ulT)(vIT) L o
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which, by changing the variable v to vt '2r -'—é-

and rewriting both

sides gives the left hand side in terms of 0, functions and the

right hand side in terms of a nite sum.

3

'il: 93(u+v[‘5)9,(01t2 i Ak :ﬁ %“’%(TLJ% .
) | -60 .‘_3; |

0, (1Y) lult)  n=

. A
e ueln (%) e ve b (-?—g-)

AW

The Neumann functio can now be written in terms of theta function

K(S {)= i 9(}(5—{;‘«) ;U9

@%}9 L, g

) (ﬁ) ;)9 (L,'C) 9

o’ 85 (%(# ;’t) : o] 9;(%-’1‘)9 :T)Q (TT)Q @’;‘C) :

(Y10, (370; 9

B L9, ((1-; ]i)x)gl G;,-c) 9(1,1)9 (, ,T9(§vr/9 @ﬁt)

It is now obvious how to 1dmo fe

pairs, for a fermion at §f and an antifermi

ermion~antifermio

at 15 the first

term is modified by the factors in the bDracket being multiplied

v 0 (-;—:,T) B (ﬁ’r)
8, (5 0% )

and the variables of the 95 functions being

)

modified to

“ .
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the second term is similarly altered.

The Neumann function for a fermion-antifermion pair on the
other boundary is given by changing, say, 'g‘ and §l to Rei“
and glei", noting that if a fermion is on one bpundary then
there also must be an antifermion on that boundary, and vice versa.

_.’J.‘hese conditions are readily seen by considering the boundary
conditions on an annulus and noting that it is impossible to
match the boundary conditions otherwise.

If we are just considering mesons then.the orientable
non-planar loop Neumann functions are given as before, for an even
- .numb'er of mesons on each boundary the function is as given and for
-an odd number on each boundary w goes to me:"':t For mesons on
different boundaries &' goes to §'ei“.

If we comsider the case where Ei= Ej and 'ﬁ(= & then the
diagram indicates that the function should reduce to the function

for a meson loop. All the square root factors vanish giving

5 8,(%v)001)
'2 93(':'{)9;(?{19

which by using 05 (1,¥)=8,(007)  anaf), (047)=8, LITIG( ﬂlﬂg‘@l‘f}

gives

{ 5001109, (0lt) 8,(5:T
7 - ;,.—(?R)Z

which is just the function for a meson loop.
A similar procedure can be used to odtain the function for a fermion

loop. In this case §j= §k and §i= ;0 5 making use of the

~
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infinite number of image points. This gives

‘ 0, (%w’:t)e (OI'C) 9, t)g (~ )
93 (w?,Y)9, (§,z) 8, (g.,-c} ) ..,,'c)

g ({-w *1)0,(o1) 9.(5+5T), (‘1"‘) .’
(w9 50,65 1) 9.(?‘ )

:1)9 o) _ ; g,o08,0m8,(0
o8, ($:0) z 8, (g- Y

&

=i 0
2

just the function for the fermion loop.

' The Neumann function can easily be written down in terms of
the variables on the annulus by using the Jacobi transformation
on the theta functions, and most of the additional factors given

cancel with each other giving

6 ({Ex P o @ TAG MG ’,r *
93(@4 ARZIE )00 ERBE;

. N\-

L o,EE ) BETETAG 06T
T g, (R0 ET) [9. & ﬁ,‘c}a 179(1,1}
-g'—(—-) ) "% ) Wﬁ

1wt

, zz),' , . ; 3
__V.:'an:;jig ’ Vz;‘é, vV Ln‘ff‘;.%b) |
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THE PARTITION FUNCTION.

In order to write down the amplitudes using the Neumann function
involving external fermions it is necessary to know the partition
" functions used. The methods useéd by Brink and Fairlie®” for meson
and fermion loops cannot be extened to cover this case due to the
presence of fermion and antifermion sources on the boundaries ,
which means that the function Sa cannot be written in terms of a
Fourier series.

One way it might be hoped to solve for the partition function
is by taking a net on a rectangle and defining a function at the
intersections of the net and then solving this with the appropriate
boundary conditions and then taking the limit when the net becomes
infinitly fine. This method is set up by writing 8= o+iy and

8,.= ¢-iV¥, when these are put in the Lagrangian

2
s.(fg’_"+a‘§’_y)s, -?Z(g;‘-a%)‘?:

the following conditions are given

w=3;¢ ) 31 _=-M
3y ¢ dx dy

which means that

0 .30..0 P4 WW=0 .
3:3'+ ¥y Y +3‘y’

Considering the first equation and the boundary conditions necessary
for fermion and antifermion source terms this gives' the boundary

conditions for the rectangle as
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) o 20.
CO,L) 920 :i:':o + 4 o: -%:‘;-0 (a,b)

¢(¢fy)¥ - W%y) |

(X — (")0)

This, in terms of the annulus,means that the fermion antifermion
pairs are on the same boundary. The condition ¢(a,y)= - ¢(0,y)

is just what is needed to give the functions on an anhulus ahd is
related to the relation Sa(9+21t)=- Sa(e) , for odd G-parity exchanges
this would be replaced by ¢(a,y)= ¢(0,y). The partition function

is given in terms of the eigenvalues of the function ¢(x,y) so .

tﬁe equation that has to be solved on the net is the matrix equation .

"J" b‘)*l ¢t"; ¢ n., +L¢-‘ =

where ¢ij is defined at the point x=iAx and; y=j &y where &x and

Ay give the size of the mesh. The above equation is obtained from

-lag%;ﬂ my,

The partition function is given-by the square root of the product of
eigenvalues which is just the determinant of a diagonal matrix
with enteries which are the eigenvalues. Iﬁ fact the partition function
is given in terms of the detézminant of any matrix which is similar
to this

0., LY I -

he (M), )= 16°48]= 1A8B7 = IA]

M
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Unfortunately it is not possible , so far, to solve this problem
in a closed form, which is necessary to be able to obtain the partition
function, due to the necessity of the change in the boundary conditions
at fermion and antifermion sources.

Although we cannot calculate the -partition function we can
try and guess what it might be. Remembering that for the Neumann
function when §i= §J. and§k=§1 the Neumann mncti-on for the meson
loop is given and when §j= 'E'k and §l= §ia) the Neumann function
for the fermion loop is given then it seems reasonable to assume
that under the same conditions the partition functions for the meson
and fermion loops are given. Calling the partition function required

+
¢F(r2_) then a reasonable guess seems to be
. §

sonn=1 [o(EzY, o)
Lj),’ (o lt')

P
z .
For the meson 1oop( ?‘J , which when transformed into the z
variables gives [BjZ¢ )} s | , and for the fermion loop ( TJ—J' =l
ok

.whlch glves (H) ’(.,)

For the meson loop tl’ns gives

9,(0!1‘)]’_ 2-;[ 93(0"67.# L)
9.'(011:‘)J ) I_G.'(O"C)J \nw )

and for the fermion loop

[
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These results then 'agrqe with the partition functions for the meson

and fermion loops (see table five) and hence the guess Seems reason

This then gives for the partition function

0:()= 2]
[9, (o11)]?

e kT (e )(’*f’"' i:z.)

=2 @((%Z’t)]t e.xr(‘l“y

XTI
vt (S

2wi

able.



~65-

ONE LOOP AMPLITUDE WITH EXTERNAI, FERMIONS.

To calculate the one loop amplitudes with four external fermions
on the same boundary we follow the method of Mandelstam®* which he:
used to calculate the Born term. The Neumann functions used are
those on the annulus and the variables are taken to be the angles

the sources make on the annulus. Diagrammatically this is represented

as
ermson
T
.. ant:fermion
[ e
ankilermion )
-,
fermion

The Neumann functions are given by

K*(B:, B)= § BrlBs-Biri(Bi-B8sBIIT) Bl01T)
" 0:GCB-FF3-PIT) Bi(A-ilT)

_ 4.
X _9_4_@,; -ﬁ.lt’)&m-ﬂ; It) 8, (p:-B,1T) b, (P -A,It)| -
0, (Bi-BIt)0(Fi-B31T) 0 (- PolT') 6 (B -plT)

K™*(8;,5) = = K¥ (8., p1)

These are obtained from the Neumann functions on the upper half plane
by the Jacobi transformation and multiplying by T to cancel the
factor given by the transformation. To do the calculation the

annuwlus has to be mapped onto a strip on the upper half plane.
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6n this strip the lengths of two of the strings are taken to be
infinitesimally small, if the length of string i is qi then
Azd)=-d3 , d,=-d3=i
where _ ® is small. The points where the strings join together Py and
pﬁ on the strip correspond to the points on the annulus Ba and BB
" which are taken to be, to the accuracy required ,
Loz B+ A , ,b‘.p’ =p318B
To be able to do the calculation it is necessary to know the form
of the conformal map from the annulus to the strip. The conformal
map®®
KEsn (4K g oK 5 )= Q:GrloylT’)
b; GFy 1 T”)

ind .
where V'SC € and where T :-Z;l«r_%r

maps an annulus onto a disc with ai.slit - in'it and the map

e (1 Gl 1Ty Gl LEITY )) |
g { 9;(;'%‘»%1?‘)) (+ Blxhgrc/

maps the annulus onto a strip. So the mapping required is given by
* L (n(S)s (B-BIT)
= & (n , - --92 ('r Nz
pef s ( Bs (& W(E) + (6T

(1+ 8, (il (5)+@-FIIT)
0; (LU (§)+(p-89IT7)

when the variable is on the outer boundary of the annulus this reduces

to
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pr 2 dslntann(8:8)

St

As two of the strings- are infinitesimally small, which means that
the points where the strings join are close to t32_ and [33 , the
above transformation is taken as being sufficiently accurate for
the purposes of this calculation. The points where- the strin.gs

join are then given by

%:0

-4 -1
"f smn(ﬂ-ﬁ;) :mrr(ﬂ"ﬁ) san(p-ps) sinw(pFa)

this then gives the solutions

= sngll-Ba) sinv(f2-F.) ﬂ--.cmrr(ﬂ. .;):m“r(ﬂ; ﬁ,)
.nmr(ﬂrﬁz)f sinw (fs- ﬂq) Mv(ﬂrﬁ’*mﬂfﬁz‘ﬁ)

This then gives sufficient accuracy to calculate, in Mandelstam!s

notation, ¢i where

¢, = <+r+IT+®) ¢:= -=ITH )
b= <+=1TIH=> b= G-ITI-Y)

where the plus and minus signs stand for positive and negative

helicity states of the particles {3 !' ' T' 2 ')
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The Neumann functions are calculated in terms of the variables
on the annulus but have to be multiplied by a factor involved in
the transformation from the strip to the annmulus, so the Neumann

functions are of the form

(2 3k g.;_;:)z' K*(6:.1)

|

‘3

If the Neumann function involves a factor of or (
3#4 pp

then these cancel with factors from the remainding terms and,
therefore do not have to be calculated explicitly. The other factors
give rise to a tem 'which either cancels with a similar factor

from the Neumann function or give a zero, as in the Born term.

For example -3

™ : sinulBi-pil] N5t u[,f,)
() (22K )= (7 Ginetp ) einet 1

v.k Q‘i!(gl'ﬁ:'ﬂﬂﬂmt) 9 o1t WJ‘C)& M,rl)ﬂ @f,l‘[}ﬂ (F:‘ Als
20,3 (ps-PrPrPNTIS (b P.1T) 8,(5a10) 0, (B~ BIT IR AT IR ored - -}

. )%5'%,4'% Oi5:8:580T)  [BlBAITING, @JU]
7 \fa ) BlpAbAC ) |0(A-BITR(B-BIT)

This is expanded to the necessary order of ® <to give the amplitudes

¢ 1 ,¢2,and-.¢ the other Neumann functions involved with these

3 J
amplitudes have to be expanded to similar order. For the amplitude
¢l; the Neumann functions have to be expanded to a further order of

® as vwhen the Neumann functions are written in the amplitude the
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lowest order cancels. Although it. is necessary to expand the points
where the strings join to second order in ® for the separate
Neumann functions it is not necessary to calculate them explicitly

as the terms in the amplitude involving this second order correction
cancel. The Neumann functions used are given, to appropriate order,
in table six.

The term in the functional integration which involves the points

where the strings join together is

Gip) = SiGPI(+il) (o)

where 5,‘(/)) is the Field due to the spin and x.(ﬂ) is the usual
varia.ble' of the relativistic string. At the ends of the string
- the term "' vanishes. The termsa& give rise to a term .

F N N‘/’:/’:)
wheref,. is the momentum of particle r and N(p,'pr) is the
Newnann function for the orbital modes , that is the Neuma.nm

function for the ordinary relativistic string. In this case

N[ﬂwﬁl) le[ﬂb,ﬁ) = [n 91 @'ﬂ‘lt)
, 8/(oit’)
The temsal;" can be contracted in pairs to give (d-za)‘%at ‘N[ﬂf’)

2T
but such terms do not contribute in this particular calculation.

The terms S,‘(p)_ are contracted in pairs with the similar terms
grising from the Lagrangian giving the Ne"umann ﬁ_mctions all
readily discussed. _The terms involved ares,‘(fJ ’.{,‘@’) and the
terms where the helicity states of: the particles are full.
Positive helicity states for fermions are taken to be empty and

negative helicity states are taken to be full, for the antifermion
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negative helicity states are empty and positive helicity states full,
As ve are following Mandelstam we ar:z working.in four dimensions.
The amplitudes also involves terms from the partition function, from the
orbital ’germs, and from a.term TI' which is used to restore
projective invariance, we consider these later.

The parts of the amplitude which are given from the Neumann

functions are denoted by Fi’ For the amplitude ¢, all the helicity

3
states are empty so the only contribution comes from

Clpu)bten) = 5\ ) 7)) 2 )

and rewritten in terms of helicity combinations the contraction of

57p0) S7tpu) cives -4 (ﬂ)‘f’@ﬁ)‘%’%ﬁ)

(-)( ‘f){
The remaining factors : . - & give a term

§2.5 N8 g_ﬁ > 77 Nepo. 4o

where { ¢ :,--L-(fr b g f py) (see table seven)

This gives to dominant order in o

-t (%%)' .g.%i)" 5% I-A)(l-s)_

The same term also appears in ¢, and ¢h For ¢ the terms to be

)
contracted whlch correspond to these are ____ﬂb, and a.___(ﬁﬁ)
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{%ﬁg f:."’ N@p,fr)} [ g-ﬁ Z" P, “N Vo fo )].—.—.

r:l

=872 12pe Y (-6) - £ 9/ (AcpIT) f2s¢8) (1-
RGOt Ry e

+ 50 ‘(8-8)T) - t: 9. (B gt
9: [ﬂz'ﬂ:lT} [/ (ﬂs"ﬁ.rt)

 here ‘=2 8 (ult’
Gl = g Bl /

For ¢1 the expression to be contracted is

28 57(p) 6(ps) 6 (pa) S7(p1)

as the helicity states of particles one and four are full, this

then gives for the spin field terms

NARGANAR AN G
K" ) K BBt (s BIK (BysP))

The last term in this expression does not contribute. Similarly
for ¢2 and % the terms which are non zero are given by, for .

‘2
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and for ¢h by

as(iyeE) @) fk"lﬁ,ﬂp)’( P

m-ma,,s,)K‘"(ﬂwﬂJ]

When we multiply by the Lorentz transformation factors
l‘l""% s h=-l, ’1.;:”5@ ’ ‘M”

these give

hhiz 4 2 (aﬂn)g—ccfg)é‘)"

X 93 (z(ﬁ:fﬂz Ps ﬁ‘”-cy {91@; ézlt‘) 9,(&-& lt 5’
93 (‘i(pl pz"ﬁ.‘l IB‘-)‘Z} 91 (ﬂl ﬂl,t} gl[ﬂz"ﬁ.lt)

.? [gl(zm bt omn)] [o (BBJT )8, ﬁ’slr)]]

0, (1(hrFs*Ps AN | o B8 (B-AIT) ]
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| ‘1 F -A %(ﬁl'ﬂzﬂﬁs)l T}
| 2’ 3#4) (3#) (A8} B Al )IT)

1[91 {ﬂ:'lgl.ll")& [,6}-;2]-('”[&9 QZz g/ ’- oot [[..A)_t .
l 9! (ﬂl'ﬂj’t?&l[’:'ﬂh,?l}] L 8, (ﬁ'ﬂllt ::T‘l

£ 0/ B:-AIT) - £ 8 (BB )
2 0(BrBiIT) Lo (g-pulT)]

hyf = & Wl 90 ) ) (-A)-B) 85 (3 (b £ PIIT)
Ok) Fs) (AB): By(1(p:-por APUT)

o [8, (8478, (8-A0TY]E
0,(B~B31T) 0, (8,-8T)

hf= & [ t/2a)% s - A-B)0, 3B b-Pip )
) /a ) @ [é‘:(’{/ﬁ'ﬂz"ﬁz el

4
x S (3B-Br-BBNT) [0, (5-p1v' )0, By-BIT B RIS AN
9!(52 ﬂ:.i'c)@ (B:8It) [ g & 2

[9. (B it')., 08-pit) .LQ:L 1+h-p5A)IT). 19,(‘/#: ﬁ*ﬁd'f’)]
0.8y ﬁzlz) (8, Mc) 28, (8P ArANT) * 0, o1 )
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The term 1" which ensures projective invariance, contains factors

% % -
of (gﬁ:) 2 dé‘f ) ‘ which cancel with similar terms from

nF, . r must also produce a'texm of & to cancel with the

2 .
term B in the functions hiFi " In the Born term I is constructed
from terms of the form (Z. - Z.) which correspond in this case to

terms of the form tan =w (B - B )2 . So T is given vy

PTG T e T tonnlis Tt
xlfl’/unﬂ(ﬂr_-gw)

where the product };rs is for B

antifermion source or vice versa. '.l‘hls reduces to

[_zz SAE tﬂnﬂ[&iz")bmwm%&)
ean'n'(ﬂ_-:zﬁl:} -

a fermion source and ﬂa an

"=(35)

The partition function 1s g.wen by

(Fpcocsespief . [Eulilhtortypic)
9’ it’) 0, o1c’)

" and the orbital mode term is given by
‘2 f‘c °
:’;‘,: V/( p‘- P ﬁ‘.) vf

where

YV4:,8) = 8, (fi-6;IT)
é/corr)
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The variables Bi are integrated over from zero to two, and the
variable r is integrated over zero to one with the measure 1/r

where T':’ {nr + The amplitudes are then given by
i

Lt r e e
¢£"" f 07,; l];dﬁ ;[‘E‘ly(p’;, p,-) 2f “ba 93(%(;9.’}9:*)3;’1’4)1'(')]:
d 9,"0"“)

¥ FH;F;

CONCLUSTON.

The formulation of the Neveu-Schwarz and Ramond Models in.
terms of functional integration is an extremely useful method
and once the Neumann functions have been calculated it is
possible to calculate one loop amplitudes of both fermion a.-nd
meson. loops. For the one loop amplitude with external f‘érmions
there is an uncertainty over the partition function but apart
from this the amplitude can be calculatedand we ha.w_re presented

this amplitude above in the same manner as Mandelstam calculated

the Born term for fermion scattering.



TABLE ONE.

CONVENTIONAL DUAL MODEL.

PLANAR LOOPS.

’ Xy X Xpgg oo o0 0 X,

'\V(«-,w) *=1m. 98?[ e b.x _}(;26,)

= exp —‘?Hx’\ll{x,w)

Vx,w) = -Lwix? 0,(riY)
- 8.01%)
£ = (=) , v=az s (aw

=l Awi 2wi

ORTENTABLE NON-PLANAR LOOPS.

L
Ay= fTralx. [_?i-]zf(“’f ,WMWM(%, w) |

=

where %, C&';w)‘: V/(x / w) if even no. of twists between

X, and x,
= wr(g, w) if odd no. of twists between
' ' X, and X,
1 J
V. (xw)= 27 exp _(_vﬁx;] 9, (vix)
’ [ 2law] gfCo1t)

_ explex] ot Txe™
= exr[z_?&;}x V”C- :W




'JACOBI TRANSFORMATION AND THETA FUNCTIONS.

velix |, Claw , =y, Y=L
i i - T

vishn , Yslar | el =20

2%¢ Wi

B.(v'1¥)= =i C-1x) exp(BZE) 9, (1)

0, (v'IY)= (Xt expéi'—,"t‘i-‘) 0, (v1¥)




B(v'IT) = (-iUT exp Jl;g_\’.') 03 (V1)
0,(v'1v)= ¢ espfint) 0,(vIY)
0,/cort) = ¢ix)? 901t

,, IY) = _
0. (orx) a%r iy 9,(viv) Lw

6,6r1t)=. 2 L G w4 sinfanr)

= Z.wi'.sinuvﬁ;(l-wu)ﬁ( - 2u'eos v +1")
- fvi)= 24 “Z: w'E ;a?((uoi)wv)

= 2% cosmy Ea-wﬂ) E( 1+ 2u'coslmv vw™)
SWit)= |+2 g w cos(2mm)

= E(l-w") L’: (l fz w"'&“,ZW &wz”-?

O.arlx)= |+ 2 g (-l)"w'gcos(mv)
= ﬁ (1-w") E(l Q™ costnv + ww? |

A%}

9.'(Olt)=. 2wt :ﬂ:( "'“’“)3




TABLE THREE.

NEVEU-SCHWARZ MODEL.

PLANAR LOOPS.

A 1de~ g M W) %

=l

X Z (")f;ll‘ k.‘l.kimx *(x.-‘.- m)“’)

ORIENTABLE NON-PLANAR LOOPS.

A= ]Tol-'(‘ [ *(w '\l/ (xi; ) %

P
X Z ) ;[!:‘ k‘g‘k‘m & (7‘.‘. ,w)

' Xz.’ (“;J"“)) = Xt(xij’w) if x, and Xy are on the

same boundary

- X.‘:.;. ( xiioW)gxi(Z.'j e",,, W) if x, and

x;j are on different bounda.riés

The plus sign ié taken for an even number of particles on each boundary

and the minus sign for an odd number on each boundary.




TABLE FOUR.

FUNCTIONS OF THE NEVEU-SCHWARZ~RAMOND MODEL.

MESON LOOPS.

X'la,0)= & 6: (VX8 (011)0, (vIT) _ 1
ek B (viT +XGr)

,,é: e [g)"' Z S ( O

’ nu. iz “a “w

X7 (zu)=X"Gee ) = § 0.010)8, 0T)8,(r1T) . 1 X Vot
92 (‘V’U t

X~ Cyw)= X* Co06™™) = 0, (ORIB01T)8, v )
8.6

-.onfz,r) = Z -(m—)—

X-(x,W) = X (xe "‘ =¢ 91 COI‘C) 93@,.:) @(Vlt)
" o ) (Vl'C)

+
=%%&md
FERMION I.OOPS.

X5 (x,w) = %9, (oi)8,(07) S;thcz _ 1 X*(z, rzeui)

=3t f-?—-(f) "'f}_ (—‘)'%Lts_)z-

[+

VoG = Yied) 4 B0LOOIT)A0N
ez(V"C)

2 2%,
= -.é- X (%(‘, )




(i) = ~ ) - i) = .
XiCea)= +§ BT i, 4 OTD) (6,

- (1+ ")
znz-co (‘tw"z)

Xo 7(“—;“7) Xo Cxe Py,




TABLE FIVE

PARTITION FUNCTIONS IN NEVEU-SCHWARZ-RAMOND Moma:L‘39

MESON EVEN G-PARITY EXCHANGE.

) - T e )< 2%[8 (o:r[ 9,1 VRLiT)
f(l') n=) (I_rzn) 9, Co'.c, (o,.c)

"5.’ ’4'- -‘5 T n-i Z s
=2 anw) W ;!Ilg::’,,)-z HW‘LT

O T e - B 9 com i)t

fe) " (1= 8,0it) 9.'(on:)

| 3 "k -w '4' - '(w)
eﬁﬁ | nsl (1= w ('(nw w £0w)

FERMION EVEN G- PARITY EXCHANGE.

8. T G- ﬁgeg co:z)]* 2t o, o 10)"

. £(r*) i n-l Cl=¢ 8,/(olt’) §/oIT .
ot/ , low) - 4615 ) 2 0 Go
= 1 “law/ A (few” f’(w

FERMION ODD G-PARITY EXCHANGE.

M =l = d?'(w)

Fir*) £Go]

£ir) = 7?( )= 273 [p 1) = z'é(-zt)gﬁl’(olt)] :

"1 %émﬁi -T(I-W") 221 w%'é?.n’:’)% Fls)




APPENDIX

NEUMANN LOOP FUNCTION WITH EXTERNAL FERMIONS.

. c-"(sx)*w (55068 BB S -5
K, 89 2 ‘z%x—s_')‘[[ (wi..ofﬂ(zxi- L )55-;‘ 2

To write the Neumann function in terms of theta functions the

product is dealt with first.

= (5R)65(85,)(5'-5) jf
($-5:)(5-5.)(8' m) m

. $u-S5" Jw"")ﬁw-ﬁw")(f; 5™
(=3 (%5 W""?a "fkwm)(rk- w'™

_ 053N plnes) 1 BNl Blde) o

QA AR AR )ll';‘w)(f'i“ﬁ

T B d ”)(l YE "'”)
A

. but 9'(?,'(:) ~w*(o)(_y_) ]T(I*W).’T(hwx)(l'u’.'Z)
- Gyt ™




so the product becomes

0 -1)0.6,7)0.%50)6, (£, 9
0,0 ). (08550

Now 9' (xw’ ,‘t): 9,(v-tp'C|'C)-"' 9:(1,.5) ('l)’ -ﬂ 'f

80 ‘the product of theta functions gives

0.65Y6,65/1) 0,519, (i,t)
0, (}1'5)9 @'fc)séj!' va% g

. This then leaves terms of the form .

" Z%nszgﬂz(j )

jvrriting _ (sf): x and ( $ ;“)

| ;)
then 2 v L
u =

then the sum can be written as

] £1 = 5 44
CIZ w’-ac ¥ = z.:e__.. (' Pw 1y*
nz-:n (1- 2" =) "Z'- lexw”) *

+ %;(")M;z)




which by expand:.ng the denominator and rewriting gives

c . Z—Z C_’)n n(m-t}( m.J.ym-x:(m-t) -_n)

Now from Watson and Whittaker®®

%-1;""'1': ‘)Cé Q,; (0"3 = cobrurcobwy -rlof Z: wm.siuZw[nu fﬂ"’)
y(u v nst M=)

. . .L
by changing variables A V'%f 5

B (v FrdlT) =% B 0,(viT)

", Qv F A8 = Oy (unIT)E,BIT)
0 (v+F 116, (ulT) 9 s (1T Olult)

= cobwus coh'(vd, 4 }f [' f;f W™ sinlelnuem me% fg.)
= =t lfz - [~y _ZbZZCIf‘W [xyzw'-x'y'gu’-ﬂ
ned 0 3 cint1) ned 'z"- :
-.flx’- 2l [w 2y .x w ¥
‘ l’x ¢ + Z_o l+y*w"’l) (,‘7iwnq))

, 8 (uwl‘t)& (oht) = =2ix* 2 7 o (,,,g)(,,.;) ,,d (mﬂl
T 2“7‘ RN Lot

-'& y’)

gty SEerre s Y

asl m>l




., & Balusvltg o) _ = (.,)ﬂ(jjlf £ { g
2 83(1"1) 91(“"() n=ZWO'0 (x.xlwnj 2 é{il,

' Putting all the terms together gives, for the Neumann function

K= ({5 oR oo 8.6, 0 g
3398 (51| 7800 YR )

ye
2

+i 0 o g (g pE e
AT A e Y e )




TABLE SIX

NEUMANN FUNCTIONS FOR ONE LOOP AMPLITUDE WITH EXTERNAL FERMIONS.

( gtaj"%(gg)"‘! K (hupil=i(2 Vi) 5" o)t

X 93 ("}( BiPs 'ﬁ:‘ﬂ'-” T') [ 9, @"ﬂz IT')& (Bs-A) T')]éx
O (z(p P 'ﬂg‘ﬁy)l’d 8, (Br-A.1tY) 8 (B3-AiIT)

x(|+ S((A-s)Q.’(p,-g,tr'} - C oD (BN BrbAANT),
9, (B-pIT) A 28 2 R (1APrAANT)

A 9.’(l92'ﬂ5“:') 9:(ﬁ :ﬂ‘}rt) _ 9.’( 81T’

« B (8.(B-BITY) . 6/ (B AIT) . 0. (-8, n:'))
2 (9| (fs- P11 ¥ d, (B~ AlT) O, (F-AIT')
Pz Pt SA+8C |, Ba=fs+ 5B+ 5°C

2p [T2BYE K8, )= (567 Qul3(BrbebrfIIT) pat
(%) (”," G605 By (3 (P Bt BRI 64

o&fo B 1 (8-Br B4 BIIT)
(l S tha i

e )

X [91( ﬁl’ﬁh.rc‘) b (/33-;9.[ tﬂ
6. 85 1T 0, (B2-Al) 'C')J

+59.'(£5-1931'C').__Q_ ...__B_ Ql’[ﬁ.?'ﬂll-c.) .',9.'[&&’.(')
0.(A:BlT) 28 289,(B-BIT)  9,(B-A.IT)
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TABLE SEVEN

MOMENTA OF EXTERNAL, FERMIONS IN ONE LOOP AMPLITUDE 24

.. F.U_)'-“ _ EH-':' ((—t}t , Pz(ﬂ: "(‘b)i

27 Ty
Pz [ §(2s1t] P, i8(set)
Ctfi 2/’ Gt 2/7”
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PH P (CE]°
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