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for a research studentship. 



ABSTRACT 

This thesis i s concerned with dual resonance models, especially 

the Neveu-Schwarz and Ramond Models. The f i r s t chapter i s an 

introduction to the subject of dual models and i s concerned with 

the concepts that lead to them and early ideas of dual models. 

Chapter two presents, i n the operator formalism, the Conventional 

Dual Model and then the Neveu-Schwarz and Ramond Models and i s meant 

to indicate the more important features of these models. The: f i r s t 

part of chapter three deals with the s t r i n g pictures of dual models 

and various ways of considering dual models which can he considered 

to be related to the s t r i n g pictures. The l a t t e r h a l f of chapter 

three deals with the formulation of the Neveu-Schwarz Model by 

the use of a f i n i t e Grassmann algebra which extends the Conventional 

Dual Model, i n Koba-Nielsen variables, d i r e c t l y into the Neveu-Schwarz 

Model. The tree graph and one loop diagrams are calculated e x p l i c i t l y 

while the form for higher order terms i s given i n terms of automorphic 

functions. The f i r s t part of chapter four presents a method of 

obtaining the functions,involved i n one loop meson and fermion 

diagrams with external mesons, by the use of Neumann functions on 

an annulus, the boundary conditions on the annulus giving the different 

loop diagrams. The second part of chapter four deals with, the 

calculation of the Neumann function for one loop diagrams with external 

fermions and an attempt to obtain the p a r t i t i o n function which i s 

necessary to write down the complete amplitude at the one loop l e v e l . 

Chapter four i s completed by the construction of the one loop amplitude 

for four external fermions. 



CHAPTER ONE 

INTRODUCTION. 

In order to obtain an adequate description of elementary p a r t i c l e s 

and t h e i r interactions the best approach appears to be the construction 

of a model which obnyu a number of the c r i t e r i a which seem e s s e n t i a l to 

a correct theory, then hope that the model i s s u f f i c i e n t l y f l e x i b l e 

to be able to be modified to describe elementary particles,.or at 

l e a s t give new insights into the problem. Dual Models can be said to 

employ such an approach and although they give a f a r from complete 

description they can be considered useful as sn attempt to increase 

our understanding of elementary p a r t i c l e s . 
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DUALITY. 

Duality i s a phenomenological description of experimental data. 

At low energies .the scattering of two p a r t i c l e s can be described by 

the formation of resonances which subsequently decay. These resonances-, 

when plotted on a Chew -Frautschi plot^ take the form J=A + B m2,. 

where J i s the spin of the resonance and m the mass. On the plot the -

resonances appear to l i e on straight l i n e t r a j e c t o r i e s . - F o r high 

energies Regge theory provides a good description by-assuming that 

the scattering amplitude i s a analytic function of the angular 

momentum. The p a r t i c l e s then l i e on Regge t r a j e c t o r i e s a ( s ) = a(0)+a's , 

where s= (pi+ P2)2 i f the incoming p a r t i c l e s have momenta p x and p 2 

This gives a straight l i n e t r a j e c t o r y and for a p a r t i c l e of mass m 

and spin J then cc(m2)=J . The high energy behavior i s then described 

i n terms of Regge poles x , a A ( s , t ) ~ s " ^ where ot(t) i s a 

Regge pole and where A( s , t ) i s the scattering amplitude for fixed t , 

t being the momentum transfer squared.If there are an i n f i n i t e 

number of resonances and an i n f i n i t e number of Regge poles then, 

and only then, both methods may be equivalent. This i s the idea of 

duality, that the resonances i n the s-channel build up the Regge poles 

i n the t-channel, that i s the amplitude can be written as either 

a sum of resonances or a sum of Regge pole terms. This concept has 

been checked by the use of f i n i t e energy sum rules (F.E.S.R.) 3 

and appears to be a reasonable assumption. 
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THE VENEZIANO MODEL . 

Veneziano 4 constucted an amplitude to describe the scattering 

of n it-* n to which was, because of the quantum numbers involved, 

a convenient choice. The amplitude he obtained has the above duality 

properties, i s crossing symmetric and an a l y t i c . This amplitude gives 

an i n f i n i t e number of ReGge t r a j e c t o r i e s . The amplitude i s written as 
FOX*) a AO,tJ + AM + A(t,w) 

where a ( s ) = o(0)+ a 1 s i s the leading Regge tra j e c t o r y and B(a,b) 

i s Euler's Beta function which can be written as 

0 

The amplitude i s meromorphic which corresponds to the narrow 

width resonance approximation and, hence, i s not unitary. The amplitude 

can be written as a sum of pole terns 

where i s the Pochhammer polynomial* 

or, by using S t i r l i n g ' s formula, as a Regge term 

t Qui 

Veneziano also .considered the scattering of s c a l a r p a r t i c l e s 

with vacuum quantum numbers constraining the leading trajectory to 

pass through the s c a l a r p a r t i c l e and he concluded that the intercept 
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of the leading t r a j e c t o r y must be one, that i s ot(o)=l. 

Lovelace 5 and Shapiro** then produced an amplitude for rcn 

scattering where the amplitude for different isospin.states were 

b u i l t up from the function 

where cc(s) represents the p trajectory. This amplitude possesses 

the same properties as the Veneziano amplitude and also, as Lovelace 

pointed out, certain properties'which would be expected from c h i r a l 

symmetry. 

The duality properties of these amplitudes can be represented 

by quark diagrams. 7 , 8 

The second and t h i r d diagrams represent the poles i n the s and t 

channels respectively, and the diagrams represent the scattering of 

bosons. 4 

The Veneziano amplitude was then generalised so as to describe 

the scattering of N s c a l a r * p a r t i c l e s , which i s equivalent to 

generalising Euler's Beta function. a » 1 0 ' 1 1 when the quark diagrams 

for N p a r t i c l e s are- drawn i t can be seen that only (N-5) poles can 

occur similtaneously and that the amplitude i s given by a sum of 

t 

n 
5 
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, C(N-l)/2)l terms which are generalisations of the Beta function. 

Isospin can be added i n a t r i v i a l manner by the Chan - Paton 

procedure. 1 2 Due to the way the amplitudes can be represented . 

diagrammatically t h i s type of duality i s known as planar duality. 

KOBA-NIELSEN VARIABLES. 

One convenient way of writing down the N; point amplitude i s 

i n terms of Koba-Nielsen v a r i a b l e s . 1 3 ' 1 4 A variable z i s associated 
•. i 

with the i ' t h p a r t i c l e which has momentum k j and these variables 

l i e on a unit c i r c l e . The N variables allow too much freedom when 

constructing the amplitude and so three are a r b i t a r i l y fixed, 

t h i s allows only (N-3) similtaneous poles. The amplitude i s given 

Mix, 
where . . 

The Regge t r a j e c t o r i e s are written down as ^1) 

where a C Iff * fy* • '* • >•• * Vjf 

Poles then occur i n the' invariant mass s. . when z . -» z . 
ij i J 

The amplitude i s invariant under a projective or Mobius transformation 

A convenient choice for the fixed z ' s . i s 

V0' Vi -1> V 00 ' 
then by writing the remaining variables as C££ ss 3*L. 
then the amplitude can be written i n the Bardakci- Ruegg form. a 

AH * I IT J * * ; J ( l - x j ] [ ChXtjJ 1 ' 
0 t«X l*l<j'$*i 
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where % £ j s 3 C £ X f a X j ~ t and f { • I f c K - kj)* 
FACTORISATION. 

I t was shown, by using the Bardakci-Ruegg form, that the amplitude 

can be written i n a factorisable form* 5* 1 6 This can be represented 

diagrammatically as 

ft 

Using the above, variables the amplitude can be written in the form 

where <*(s)= ot(0)+ w2a' and d ( j ) i s the degeneracy of the l e v e l 

when a(s)=J, As the integer d ( j ) i s independent of tne number of 

external p a r t i c l e s t h i s means that the amplitude i s factorisable. 

UNITARITY. 

Ac the Veneziano amplitude uses the narrow width resonance 

approximation i t v i o l a t e s u n i t a r i t y but the violation-takes the 

same form as i n the Born term i n the Feynman-Dyson expansion i n 

F i e l d Theory hence there e x i s t s the p o s s i b i l i t y of constructing 

a perturbation s e r i e s to restore u n i t a r i t y in a similar manner 

to F i e l d T h e o r y . 1 7 * 1 8 As the Veneziano amplitude seems a reasonable 

approximation i t would appear l i k e l y that the perturbative corrections 

are small ,hence the expansion parameter i s small making the pcrturbative 

approach a reasonable one to pursue. The terms can be 

represented diagrammatically by three types of diagram;planar, 
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orientable and non-orientable loop diagrams. These higher order 
amplitudes are constructed by taking the N; point amplitude , 
joining together pairs of external legs and then Regg.eizing the 
joined l i n e s to produce a M loop graph with N-2M external p a r t i c l e s i 
To produce orientable and non-orientable terms an additional 
operation, c a l l e d a twist, i s needed. At the one loop l e v e l the 
planar loop i s represented diagrammatically by 

The twist i s represented by 

^ £ 3 — * 

which means that the orientable diagram, which has an even number 

of twists , i s represented by of twists , i s represented by 

for the case of two twists and four external particles.. The non-

orientable diagram has an odd number of twists' and for the case 

.of four external p a r t i c l e s with one twist, i t i s represented by 
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I t i s possible to calculate the one loop amplitudes i n terms 

of integrals, but unfortunately s i n g u l a r i t i e s e x i s t a t the end points 

of the integration. I t may be possible to "renormalise" some of these 

by the subtraction of a counter term whereas others may be interpreted 

as due to an exchange involving vacuum quantum numbers, a pomeron. 

So i n dual models i t "appears that i t i s not necessary to put in a 

pomeron t r a j e c t o r y as i t i s generated at the one loop l e v e l by Regge 

t r a j e c t o r i e s . 

CONCLUSION. 

At the stage i t appears that the Veneziano or Conventional 

Dual Model can be used to investigate elementary p a r t i c l e s as i t 

has a number of features necessary for a description of strong 

interactions of elementary p a r t i c l e s but i t i s by no means a complete 

theory. I t i s necessary to investigate further properties of the 

Conventional Dual Model and different ways of formulating i t , and 

eventually extending i t to more physical cases i f possible.. This 

i s what we w i l l discuss i n the remainder of t h i s t h e s i s . 



CHAPTER TWO 

THE OPERATOR FORMALISM. 

The operator f o r m a l i s m 2 0 ' 2 1 1 2 2 i s a useful method of under -

standing the structure of dual models. The N-point amplitude,which 

i s obviously factorisable, i s written i n a completely Lorentz co-

variant manner.The spectrum of the model can be e a s i l y examined i n 

t h i s approach and t h i s leads to the connection between the intercept 

of the leading trajectory, the dimension of space-time, and negative 

norm states, known as ghosts, though t h i s i s probably better 

understood by the consideration of a r e l a t i v i s t i c s t r i n g , an approach 

we s h a l l come to l a t e r . 

This formalism introduces either harmonic o s c i l l a t o r s and ' n 
e£ or operators and ci* which can be defined i n terms of n n -n 
the harmonic o s c i l l a t o r s . The harmonic o s c i l l a t o r s obey the follow­

ing commutation relations 

whereCj i s given by €j a | j g SF "\ j V I 

therefore there are D-l space dimensions rather than j u s t three, 

an important point as we s h a l l see l a t e r . The <xvs are defined by 

The fln's act as destruction operators and the a
 n ' s a s creation 

operators on the vacuum state , therefore 

The commutation relations of the a's are given by 
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u u 

A momentum operator p and a position operator q are also introduced, 
these obey r u 4n , / i V 

then where the slope of the Regge t r a j e c t o r y i s taken o 
to be one. 

Generalised momentum and position operators can then be defined 

i n terms of the a's.The generalised position operator i s 

q'faficf-Xini - i f £ ( £ n 2 n - 4 * 9 
and the generalised momentum operator i s given by 

P f a = i i dgto 

These have the following commutation relations 

The scattering amplitude for N p a r t i c l e s can then be written as 

to* * ± * 
where V&9'vs*€ « Z and i s the Fubini-Veneziano v e r t e x ? 1 1 2 2 

i means that the operator g i s normal ordered 

that i s lk,Qft) .ik.Q*Cf) -iUA'C*) -iktf*W 
: e . = € e € 
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.here Q (!)=R<lf-i*:» l " ? 

These have the commutation re l a t i o n s 

other combination being zero. I t can e a s i l y be shown using these 

relations that 

<ol IT Vfe ,ki)lo>- e'pfcu*; wi-firt ft ,«* 

from which we obtain the Koba-Nielsen 'form of the amplitude. 

The states of the model can new be written i n terms of the 

creation operators a ^ n but t h i s allows the existence of negative 

norm states, ghosts, due to the time components of the operators. 

By choosing the intercept of the leading t r a j e c t o r y to be one i t 

i s possible to construct an i n f i n i t e number of operators, known 

as the Virasoro operators, which under certain conditions make i t 

possible 'to show that the ghosts do not couple to the phy s i c a l , 

positive norm,states. 
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VIRASORO OPERATORS. 

The Virasoro operators 2 3 are defined "by 

[ =r - i z" ' PVzi' */ ±2 

where : : stands for normal ordering and P ^ z ) i s the generalised 

momentum operator. The contour i n t e g r a l i s taken around the origin. 

These have the properties 

For a function X(z) i f 

CU,X6fl *«7)x&> 
then X(z) has conformal spin J , therefore Q^(z) has conformal spin 

zero and ^ ( z ) has conformal spin one. The operators L Q , L + 1 and 

L _ j form a SU ( l , l ) sub-group 2 4 and have the useful properties 

By using the f i r s t of these r e l a t i o n s i t i s possible to rewrite 

the amplitude i n a convenient form. By choosing Z N
= 0 J z

2
= 1 * a n d zi™ 0 0 

then writing 
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<oMz„k,)* <oh* e-ik>-W 

then the amplitude can be written as 
AH 

then using * f c 1 ' 

and changing variables to X £ s ? i Z £ , f »• " TL% the amplitude 

can be written as 

When o(0)= 1 , which i s also necessary for the Virasoro operators 

to e x i s t , Q 1 
Y" io-\ 

and the amplitude becomes 

<0:k,!Ve(l,kl)ri-rV.Cl,ks)1J • • .V.(l,kwJ|kw:0> 

The amplitude i s now written i n terms of propagators,.-—!—and 

v e r t i c e s , V Q ( l , k ) . * 
1 

Unfortunately the requirement that «(0)= 1 implies that the 

lowest state on the leading t r a j e c t o r y has mass squared of minus 

one and hence i s a tachyon. As t h i s i s the ground state of the theory 

i t i s not possible to decouple i t from the theory. 
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GHOSTS. 

The states of the model may be written as 

l £ t f , n > = C„ J (*•.}'lk:0> 

these are eigenstates of the operator Lq with eigenvalues- -k.2+n where 

^ £ l « n • The coefficients C are chosen such that 

By writing 

and 

|W=V.Cl,Ki)LL V»Cl,KJM> 
Lo"l 

then the amplitude can be written as 

A complete set of states 

can be inserted into the amplitude to give 

This then allows the existence of ghosts which appear at the pole 

when£ff-*J due to the existence of time components of the operators. 

The vertex V Q ( z , k ) has conformal spin one 

therefore 
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then t h i s can be used to show that the operator (Lg-I^-l+n) on a 
vertex gives 

(L0-L,ri+ft)V.a,k)= VM,k) Cu-Ln-0 

Using the Virasoro algebra i t i s possible to show that 

CLo'Ln-lkJU s _ L _ (U-Ln-l+») 

When ( L Q - L n - l + n ) i s passed through a vertex and then a propagator 

i t reappears on the other side unaltered, therefore i t can be passed 

through a number of vertices and propagators. Now L 0 / i ( ; $ j u s t measures 

the momentum squared of. the state j ̂  g J j ^ , 

so 

Therefore ( L n - L -1+n) acts as a gauge on the state *J n 

1 , e ' (U-U- l+o) l^"0 

Now i f a s t s t e has the property that 1^1$) - (l~V)\^) 
then the operator at a residue of a pole gives 

from the gauge conditions above t h i s then gives 

<^miv^»0ifi-k-Wi)/v> » o 
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The state L,|fl$ i s then c a l l e d spurious as i s does not couple 

to , a tree state. I f a l l the ghosts states are spurious states 

then they do not couple to the physical states and then are absent 

from the theory. This then gives the gauge conditions for physical 

states LmHQ sO and £l #-(/ft>»0 , 
ABSENCE OF GHOSTS. 

The absence of ghosts i n the spectrum of the Conventional Dual 

Model can be proven under certain conditions 2 6 , 2 / and t h i s gives more 

insights into the structure of the model. .The f i r s t step i s to construct 

the D.D.F. s t a t e s 2 0 which describe the emission of a spin one, zero 

mass p a r t i c l e , the "photon", from a tree graph. These operators,acting 

on the ground state, give physical states and can be considered as 
i 

physical state operators. They are given by 

and are dependent on a p a r t i c u l a r reference frame where 

LI 11 

where k i s the.momentum of the photon and p. i s given by the tachyon 

state. 

These operators then have the commutation relations 
f An t A w l - fl Sij S*.Mft 

which means that the states they create are orthogonal but as they 

only have transverse degrees of freedom they do not create a l l possible 

states. I t i s possible to construct operators that create the missing 

longitudinal physical s t a t e s . ? Y ' 2 0 

As A p f u l * ^ p iih I then a state constructed from the 

A s have the property that . Due to a normal 
L 

ordering problem t h i s i s not true for the longitudinal operators A R 



-17-
so that a correction term * i s needed. such that m 

These then have the algebra 

These operators then give a l l possible states, both physical and 

spurious. The norm of these states can be calculated by using an 

isomorphism which has the same algebra as the above operators. 

where the f are operators analogous to the L n ' s but constructed 

from only D-2 s p a t i a l components of the a's . For D ̂  26 these 

give only positive norms , hence no ghosts e x i s t i n these dimensions. 

This i s the proof due to Brower? 7 When D >26 ghosts do ex i s t but 

when D=26 the longitudinal operators give n u l l states so that the 

D.D.F. states give a l l the physical states and there are only (D-2) 

sets of states, that i s .two sets of states have .decoupled. D=26 i s 

known as the c r i t i c a l dimension. 

I t i s also possible to prove that ghosts do1 not e x i s t for l e s s 

than or equal to the c r i t i c a l dimension by another method due to 
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Goddard and Thorn. 2 B A basis for a l l types of states can be constructed 

as follows . 

if t n fre H i \ r . o ) , ^ U f r - t M 
nst *** X»l J1M* 

I t can then be shown that a l l physical states are given by a sum 

of D.D.F. states and other states which i n twenty-six dimensions 

are n u l l states . Thus i n twenty-six dimensions the physical states 

are Just the D.D.F. states, and ,therefore, have positive norm. 

UNITARITY. 

Unitary i s , hopefully, implemented by a perturbative s e r i e s 

the Born term being the amplitude discussed above. The one loop 

graphs are e a s i l y investigated i n the operator formalism apart from 

the requirement that only physical states propagate around the loop. 

This does not provide a problem i n the tree graph as the gauge conditions 

ensure only physical states propagate. Brink and O l i v e 3 0 constructed 

an on-mass s h e l l physical state projection operator f ( k ) where 

£ P A* A* 

H = Lo-f 

They make use of the fa c t that 
CO 1.-H - ca-flM+rfluu* UP.) 

" J 2 i r i i kPfc) 
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for the c r i t i c a l number of dimensions and where k^1 i s a l i g h t - l i k e 
vector. This projection operator projects from the f u l l space given 
by the oc's onto the transverse space given by the A's, and when 
t h i s operator i s placed i n a residue i t i s e f f e c t i v e l y unity for 
D=26 showing that i n t h i s case the physical states are j u s t the 
D.D.F. states. 

This on -mass-shell physical state operator can be used to 

ensure that only the physical states propagate around l o o p s 3 1 

though t h i s i s a rather d i f f i c u l t procedure. What i s r e a l l y required 

i s a off-mass - s h e l l physical state projection operator and one was 

constructed by Corrigan and Goddard 3 2 enabling the calculation to 

go through easier. 

So the planar loop can be calculated by considering the i n t e g r a l 

j/k W ( v ( k , ) P V C k J . . . . V ( K ) P ) 

where the propagates contain the projection operators. To calculate 

non-planar loops i t i s necessary to have a twisting operator ft 3 3 

12» C-i) V " 
By combining the twisting operator with a propagator and making use 

of the gauge conditions i t i s possible to construct a hermitian 

twisting o p e r a t o r 3 4 ' 3 5
 A H , L*'1>r\ A fa'Lt 

which i s equivalent to using 

®=a ci-*)1*''" 
as the twisting operator. So by replacing the untwisted propagator 

by the twisted propagator non-planar loops can be constructed by 

taking the trace as indicated a d o v e . 3 B | 3 V The. r e s u l t s can be written 

in.terms of Jacobi Theta functions. (See table one) 
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When the loop diagrams were o r i g i n a l l y investigated i t was 

found that for the one loop orientable non-planar graph a new 

sing u l a r i t y appeared which had vacuum quantum numbers and so 

was termed a "pomeron1.1 Unfortunately i t appeared that the new 

sing u l a r i t y would viol a t e u n i t a r i t y but L o v e l a c e 3 0 pointed out 

that when the dimension of space-time was twenty-six and i f two 

dimensions of states decoupled then the pomeron would become a 

pole and therefore not violate u n i t a r i t y . This can now be under­

stood i n terms of the D-2 sets of physical states i n the c r i t i c a l 

dimension and the required r e s u l t s were obtained using the pro­

je c t i o n o p e r a t o r s . 3 2 ' 4 0 The only difference from the naive 

calculation using j u s t a twisted or untwisted propagator i s - t h a t 

the partion function i s changed from [f(o>)-] D to =[f(aj)]^~ D. 

The pomeron can be best investigated by using the Jacobi 

imaginary transformation (see table two) so that the pomeron 

sin g u l a r i t y i s given when the variable r -* 0 (a>-> l ) . The pomeron 

s i n g u l a r i t i e s then are an i n f i n i t e set of t r a j e c t o r i e s with a 

slope of h a l f that of the Regge t r a j e c t o r i e s and with the intercept 

of the leading t r a j e c t o r y being two , and are a set of factorisable 

p o l e s . 4 1 * 4 2 I t i s possible to show fa c t o r i s a t i o n e x p l i c i t l y 

by introducing two sets of harmonic o s c i l l a t o r s 4 1 the pomeron 

states then coincide with the states of a non-planar dual model 

introduced by V i r a s o r o 4 3 and S h a p i r o 4 4 and no ghosts propagate 

around the pomeron l o o p s 4 5 



-21-

THE NEVEU-SCHWARZ MODEL. 

The Neveu-Schwarz Model i s an extension of the Convention Dual 

Model but has much more structure with h a l f - i n t e g r a l l y spaced Regge 

t r a j e c t o r i e s to which can be associated a "G-parity'.' The leading 

from the theory but there i s s t i l l a tachyon, the ground state p a r t i c l e , 

of the model, at m2=- - . As the model i s based on the Conventional 
2 

Dual Model i t has a very similar algebraic structure so that the 

methods used for the Conventional Dual Model, can e a s i l y be adapted 

to the Neveu-Schwarz Model. 

The model introduces additional operators which commute with 

the a operators but anticommute among themselves. 

trajectory has intercept one and the tachyon a t m2=-l decouples 

A new f i e l d i s defined i n terms of these operators. 

The Virasoro operators are then given from the operators of the 

Conventional Dual^Model plus an additional term given by 

l - n 2 J2iri? J , 

A further set of operators are defined as 

which form an algebra with the Virasoro operators'. 



-22-

o 

The vertex function for the emission of a tachyon i s given by 

V6,kJ * kMCi) V,d,k) 

where V Q(z,k) i s the vertex function for the Conventional Dual 

Model. The tachyon in the theory i s usually c a l l e d a "pion" but 

obviously i s not the physical pion. The amplitude for N of these 

pions can be written down as 

which i s zero i f N i s odd as the b operators are'contracted i n pairs. 

This amplitude i s written i n what i s known as t h e ^ j formalism. 

I t i s possible to rewrite the amplitude i n another formalism, 

the formalism. 4 7 The advantage of t h i s formalism i s that there 

are a lot. l e s s states than the formalism but , of course, the 

same number of physical states. The ground state i s the pion so 

that the' tachyon at m2=-l i s not present i n t h i s formalism. Also 

i n t h i s formalism the G operators act as gauge operators. The N point 

amplitude i s - w r i t t e n , as 

<*>;MVfl,kx)LL_ . . . . V0,k N J |k M:0> 
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The physical states i n the formalism must s a t i s f y the gauge 

conditions 

L„\<t>>=rO rt-/,2, 
Gf\4>)**0 r*ith 

As each state has c i t h e r an odd or even number of b operators i t i s 

possible to associate a"G-parity" to each state depending on the 

number of b operators i n the state. The G-parity operator i s given 

by £ -

The inclusion of the b operators means that more ghosts are 

included due to the time components of these operators but there 

e x i s t s a. larger set of gauges due to the G operators and, therefore, 

the p o s s i b i l i t y of the ghosts decoupling from the model. 

The proof of the absence of ghosts depends on constructing D.D.F.. 

type states for the model which in the c r i t i c a l number of dimensions, 

i n this- case ten, give a l l the physical states. The proofs a l l use 

the formalism and are given by d i r e c t extensions from the proofs 

of the absence of ghosts i n the Convention Dual M o d e l . 2 6 * 3 ° ' 4 0 ' 4 a 

When the dimension i s l e s s than ten longitudinal operators are needed 

to give the complete set of physical states. 

THE RAMOMD FERMIOH MODEL. 

The free p a r t i c l e feactures of the Conventional Dual Model can 

be produced from the Klein-Gordon' equation for a free boson by i n t r o ­

ducing the generalised momentum and position operators and using 

the correspondence princ i p l e as proposed by Ramond50 This' method 

can then be used to extend the free Dirac equation into a free fermion 

dual model? 1 
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For the boson case the starting point i s 

The momentum i s replaced by the generalised momentum 

* m <?>>*-(di.rct)= o* 

This procedure then gives 

and -by the correspondence principle t h i s i s transformed to 

which as m2=-l and from the defi n i t i o n of the Virasoro operators 

can be written , when acting on a physical state/'V'^ as 

CL,~l)m*0 
From considering the usual ghost eliminating conditions 

p.a -0 
which i s rewritten as ft) sO , (l^P*)-^ 
then by the correspondence principle 

<?>).<*>?*) - <VP%0 
which j u s t gives the remaining gauge conditions. L/\\^fy ~ 0 

For the fermion case i t i s necessary to introduce generalisations 

of the Dirac matrices such t h a t 5 1 

where are the generalisations of the Dirac matrices 7^ and obey 

which are j u s t generalisations of the properties o f the Dirac' matrices. 

These conditions give 



m 
The form of the T's i s very s i m i l a r to the form of the H's i n the 

Neveu-Schwarz Model and so an algebra can be s i m i l a r l y constructed. 

£""tfe .-nttjos; } f c ± L k _ j : m . m : 

By adding the *s to the Virasoro operators of the Conventional 

Dual Model the following algebra i s given 

lFlt,Fm]*2Ln.m + 6H.m„ 

Starting from the Dirac equation and using the correspondence pr i n c i p l e 

which gives on a physical state 

The gauge conditions I«nl>y =0 are obtained from the square of the 

generalised Dirac equation. Ramond introduces further gauge conditions 

as follows 

u m * o FJV>=O . 

The states can be written as _ 

where u(k) i s a spinor. 
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IMTERA.CTIONS OF FERMIONS. 

To see i f a dual theory e x i s t s for fermions i t i s necessary to 

consider the. interactions of. fermionsvThcugh i n the operator formalism 

there i s a d i f f i c u l t y i n calculating the amplitude .for fermion -

fermion scattering and t h i s was approached gradually as the calculations 

became more complex. The d i f f i c u l t i e s of the calculations can be 

considered a major shortcoming of the operator formalism. 

The simplest form of interaction i s that for a fermion which 

emits mesons as i t i s propagated along. This can be represented 

diagrammatically by 

I I ' j 

I j ' i 
- J I 1 

where .the s o l i d l i n e represents a ground state fermion and the 

dotted l i n e s the emitted mesons. The emitted mesons are described 

by the Neveu-Schwarz Model and the formulation of the Neveu-Schwarz 

Model i s used to produce the a m p l i t u d e 5 2 1 5 3 I t i s necessary to 

define a generalised 7 5 by 

such that £ P ^ P ^fe)} * 0 

(keeping the notation r s even when the dimension of space-time i s 

greater than four.) 

The amplitude i s given by 

A*1 - u M t o W W W x ^(i,UM«W 
N To 

i n theBv formalism and where _ 

v,<i,k)« rv*a,k) 
As t h i s involves the Neveu-Schwarz Model the c r i t i c a l dimension 

must be ten, and because Of the s i m i l a r i t y of the fermion model 
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to the Neveu-Schwarz Model i t i s not d i f f i c u l t to prove that t h i s 
i s so. Schwarz deduced t h i s by considering the algebra of the model 5* 
and Corrigan and Goddard proved t h i s by using fermion physical state 
operators? 5 A necessary condition i s that the mass of the ground state 
fermion must be zero. 

*^[K,VAk)]*kf(i)V,0,k)=V,(i,lO 

J - ST JL S- - 6 
the amplitude can be written i n the ̂  formalism 5 5 as 

A\ - u(k,Ko.'klV,(l,kth V,0,k„.,)lk„iO)u(kJ 
Lc 

where {4 (k#) ST X k N U (kft) 

the zero mass of the fermion means that i t i s easier to work i n the 

formalism 5 6 

By dualizing the above amplitude i t ' i s possible to consider the 

emission of a fermion represented by 
I I t I 

1 
1 
1 
I 
i : " : i 
I ! • 

This involves the d i f f i c u l t y of finding a vertex function which 

changes the d operators to the b operators. The r e s u l t , obtained 

by Corrigan and O l i v e , 5 7 i s very complicated. I n the formalism 

the vertex i s given by ^ 

V , f c , k ) * V . M i ' V L , W & ) 
where 00 _ f 09 ^» 

•i 5 r fyxCtotj, \o>4 
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This vertex can be used to construct the amplitude represented by 
» \ t 1 

1 1 
1 1 

J 
! ' • 

by using s y, y*(9fljf 
By putting the two diagrams together the vertex allows the 

amplitude for fermion-antifermion scattering to be considered. 

For t h i s amplitude to be calculated using the operator formalism 

i t i s necessary to make sure that' only physical meson states propagate 

and because the mass of the f e r m i o n i s zero the ̂ f o r m a l i s m i s used. 

The meson propagator can be constrained to contain only physical -

states by the use of the projection operator but as t h i s i s not a 

Lorentz invariant procedure i t i s not obvious that the amplitude 

- i s Lorentz covariant. I f suitable gauge conditions e x i s t then i t 

i s possible that Lorentz covariance can be restored. Brink, Olive, 

Rebbi and Scherk 5 0 introduced gauges which are a sum of either the 

F 1 s or the G1 s and when they act on a fermion emission vertex give 

i n f i n i t e sums of the F 1 s and G 1s on either side of the vertex. 

One of the gauges makes i t possible to write the fermion emission 

vertex i n the ̂  formalism. So for a fermion tree changing into a 

meson tree the amplitude i s written as 

~ L ,<V,lV,(l,k)u(k)IV«>, zMv&WsuMKX 
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where the subscripts 1 and 2 stand for the different formalisms 

and I^J^S^ stand for the fermion and meson trees. 

By using t h i s vertex and the new gauges Olive and Scherk S ufound 

that i t was necessary to modify the meson propagator to produce a 

Lorentz covariant r e s u l t such that only physical states coupled. 

Instead of using 

the modified propagator , Lm"£ 

i s used where . 

A(x)=JctO-ACx?) 

This s t i l l leaves the problem of ac t u a l l y calculating the amplitude 

which i s not easy due to the matrices involved. Progress towards 

the r e s u l t was made by Co r r i g a n 5 9 and by Schwarz and Wub°and the 

amplitude was eventually calculated by Corrigan, Goddard, Olive 

and Smith 6 1 and by Scharz and Wu?2 •> 

LOOPS IN THE MEVEU-SCHWARZ-HAMOHD MODEL. 

The one loop graphs i n the Neveu-Schwarz Model can be c a l c u l a t e d 6 3 

i n the formalism, as a direct extension of the one loop graphs 

i n the Convention Dual Model and corrections can be made to the 

pa r t i t i o n function so that only physical states are propagated i n 

the l o o p s . 3 1 I n the Neveu-Schwarz Model there are two types of pomeron 

depending whether or not there are an even number or odd number of 

emitted p a r t i c l e s between the tw i s t s , producing even or odd "G-parity" 

pomeron. The pomeron i s a. pole i n ten dimensions and also f a c t o r i s e s ? 1 

The leading pomeron t r a j e c t o r y has intercept two and even G-parity. 
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Green 6 4 has calculated the planar loop diagram i n the Ramond Fermion 
Model 'which involves a fermion propagating i n a loop emitting mesons. 
This gives the r e s u l t that the leading divergence cancels with the 
leading divergence of the Neveu-Schwarz planar loop. The question 
then a r i s e s , what happens to the pomeron loops,is there a si m i l a r 
cancellation ? For t h i s to be answered i n the operator formalism 
i t i s necessary to have a twisting operator for the fermion l i n e . 
We s h a l l discuss such loops further on hut using a different formalism. 



CHAPTER THREE. 

RELATIVISTIC FREE STRING. 

Although the operator formalism i s useful for the construction 

of the Conventional Dual Model i t i s not the only method of under­

standing the structure of the model. By considering-particles as 

objects extended i n one dimension, that i s strings, i t i s possible 

to produce the res u l t s of the operator formalism by considering 

the interaction of s t r i n g s ? 5 The harmonic modes of the vibration 

of the s t r i n g give the spectrum of the model and constraints on 

the s t r i n g give the Virasoro gauge c o n d i t i o n s ? 6 * 6 7 1 6 8 A detailed 

investigation into.a free r e l a t i v i s t i c s t r i n g 6 9 leads to a deeper 

understanding of many of the features of the Convention Dual Model. 

Goldstone, Goddard, Rebbi and Thorn6** started with a c l a s s i c a l 

system for a one dimensional r e l a t i v i s t i c s t r i n g and proceeded to 

quantize the system , the quantization procedure revealing the 

structure of the system and the connection with the Conventional 

Dual Model. 

The r e l a t i v i s t i c s t r i n g sweeps out a two dimensional surface 

i n space-time which i s parameterised by 9Cju s ̂ u(f/T.) * O^Cflf 
The action for the system i s proportional to the area of the surface 

and i s given by */ Jtt . » 

By using the v a r i a t i o n a l p r i n c i p l e the equations of motion of the 

c l a s s i c a l r e l a t i v i s t i c s t r i n g are given by 

I 

a t 0 
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By choosing an orthonormal co-ordinate system 
the equations are simplified to 

the conditions of orthonormality acting as constraints on the system. 

This i s possible "because the surface the s t r i n g sweeps out can be 

rcparameterised as a function of.ff'and T 1 where a ' = a ' ( a , T ) , T ' = T ' ( a , r ) . 

The action i s invariant under a group of reparameterisations which 

can be considered as a gauge group of the s t r i n g , the above choice 

of co-ordinate system being a partucular choice of gauge. 

There are two methods of quantizing the system by the use of 

Poisson brackets because of the existence of the constraints. The 

f i r s t method, the covariant method, considers a l l co-ordinates and 

momenta to be independent, these are then quantised and the constraints 

are applied afterwards. The^surface i s described as 

ix,X<r,x) * fyC*) cmtxr 
where the q n are taken as independent co-ordinates and the momenta 

are given by u . 2 a » 

By def i n i n g 2 X nslfn-Ll\fy and ^ t\ s
 * - * / <\>V 

t h i s gives the variables y y # p 

which are, of course, j u s t the operators from which the Conventional 

Dual Model i s constructed and so these give the spectrum of the dual 

model but including ghosts. The constraint equations 

when calculated give, i n the c l a s s i c a l case, L =0 where 
JL 09 • n 
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which i n the quantum mechanical case goes to 

where \&} i s a physical state , and,because of the normal ordering 

problem, Q l 0 = 0 

The second method of quantization i s the canonical non-covuriant 

method where the constraints are used, to eliminate two degrees of 

freedom, the remaining independent variables are quantized. In t h i s 

approach l i g h t cone co-ordinates are used where Qu Oq^ Of Due to 

the freedom of reparameterising the surface a p a r t i c u l a r choice can 

be made such that y/ 

If* 

then s i m i l a r l y to the f i r s t method 

which implies 

one uuufi1.1 a 1.110 cy.uaoxutiii O I I C H give 

w r i t i n g t ^ ^ ^ ^ ^ ^ t h e s e imply « f L j . « fLfl 

so the independent variables are ^ (j^J ^ 

and these can be quantized using Possion brakets. This method produces 

only transverse states of the st r i n g , the a* s, and t h i s ensures 

that the spectrum i s always positive d e f i n i t e and we can now see why 

two sets of states decouple i n the Conventional Dual Model. This 

method i s non-covariant but i s self-consistent i f an algebra for 

the generators of Lorentz transformations can be constructed. This -

i s only possible when D=26 and the intercept of the Regge traj e c t o r y 

http://cy.ua


i s one. So t h i s gives us an understanding of the c r i t i c a l dimension 

and the necessity of <x(0)=l for the Conventional Dual Model, "but 

as. yet interactions have not been b u i l t i n . 

THE ANALOGUE MODEL. 

This method of describing interactions of the Conventional Dual 

Model gives an interpretation of the amplitude i n terms of quark 

diagrams. The Analogue Model 7 0 introduces an interaction region 

from the quark diagrams as follows, for the Born term and the planar 

one loop graph v / 

The amplitude for each component of momentum i s given by a functional 

integral over a l l configurations such that the energy loss is: minimised 

This i s j u s t the same as the heat loss of a uniform plate, representing 

the interaction region, due to e l e c t r i c currents, representing the 

momenta of the p a r t i c l e s , entering the boundary of the plate. 

The amplitude for the Born term i s given i n terms of the Koba-

currents on the interaction region. For the planar one loop graph 

the variables are the same as in the operator formalism a f t e r the 

Jacobi transformation has been used. 

n 
O 

Nielsen variables which represent the positions-of the e l e c t r i c 



-35-
This method can he reformulated i n terms of the Neumann function 

Ng&^Z^for the surface under consideration,where z. and z^, represent 

the positions of the momenta p. and p ; , then the amplitude for 
i j 

that p a r t i c u l a r surface i s given by 

the Neumann function being such that the normal derivative i s a 

constant on the boundaries? 1 For the Born term the Neumann function 

i s given by NgkijZj)- l o (H~Z>j) which gives the usual amplitude. 

The Analogue Model can be extended to non-planar diagrams and 

generally to a l l orders of diagrams by finding the Neumann function 

associated with a interaction region by using functionals on Riemann 

s u r f a c e s ? 1 | 7 a * 7 3 The Riemann surface i s given by the interaction 

region and the double of the Riemann surface i s constructed from 

t h i s and i s closed and orientable, on t h i s double automorphic functions 

can be constructed and the amplitudes are obtained i n terms of these. 

At the one loop l e v e l the different diagrams have as t h e i r double a 

torus but d i f f e r by the paths along which the z's are defined. The 

amplitude i n general i s given by -Ifi'fS 

where T i s a member of the group of projective transformations. This a 
i n f a c t j u s t gives the Neumann function for the interaction region. 

THE FUNCTIONAL INTEGRATION APPROACH. 

The amplitudes can also be written i n a functional integration 

form but are solved by the Neumann function for the surface under 

c o n s i d e r a t i o n ? 4 ' 7 5 The functional integration i s formulated i n 

terms of a Lagrangian density 
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which i s the Lagrangian density of a free s t r i n g but with imaginary 
time. The amplitude for a region D i s defined by the rudimentary 
amplitude 

where k^ are the momenta of the external p a r t i c l e s , and the functional 

average i s defined by . 

n Q being a normalisation constant. This can be calculated by changing 

variables «f « 

t h i s then gives the rudimentary amplitude „•* • - * / rji fi 

The d i f f i c u l t y with t h i s method a ad also the approach using 

automorphic functuins i s that the p a r t i t i o n funtion for loops i s 

not obtained d i r e c t l y . By s t a r t i n g from the operator formalism and 

rewriting the amplitude i n either the functional form or interms of 

automorphic functions i t - i s possible to obtain a term which gives 

the p a r t i t i o n f u n c t i o n ? 3 1 7 5 

THE PARTITION FUNCTION. 

One method of reproducing the r e s u l t s of the functional integration 

form i s by considering p a r t i c l e s to be made up of partons and describing, 

the interactions by a network of propagators and v e r t i c e s of these 

partons. Then i n the l i m i t of the number of partons tending to i n f i n i t y 

the dual amplitude i s g i v e n ? 6 ' 7 7 This method can also be formulated 



i n terms of an e l e c t r i c a l analogue which reproduces the correct 

r e s u l t s i n the l i m i t of the network "becoming dense, that i s continuous. 

This then allows a method of calculating the pa r t i t i o n function 

for single loop diagrams by taking an e l e c t r i c a l network with 

appropriate boundary conditions to give a cylinder, then by considering 

the energy dissapated and c a r e f u l l y taking the l i m i t as the network 

becomes dense? 8 This then reproduces the r e s u l t s of the operator 

formalism. 

THE INTERACTING STRING PICTURE'." 

As we have seen there appears to be a connection between free 

strings and the functional integration approach to the Conventional 

Dual Model. These two approaches were brought together by Mandelstam78 

The p a r t i c l e s are described by strings i n terms of the physical 

state operators, that i s i n the non-covariant method which means 

that only positive norm states are used. The interactions are b u i l t 

up by strings joining together then separating, an integration 

being taken over a l l possible paths, the Feynman Path Integ r a l . 

This produces the amplitude i n terms of a functional integration. 

Lorentz covariance i s not obvious i n t h i s approach and i t i s necessary 

that D=26 and a(o)= 1. This approach uses imaginary time for the 

calculation, giving an e l l i p t i c a l d i f f e r e n t i a l equation, at the end 

of the calculation i t can be changed back to r e a l time. 

The equations are obtained i n terms of s l i g h t l y modified variables 

of Goldstone, Goddard, Rebbi and Thorn? 1 The interaction can be 

represented by 

Iff? 
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A variable p i s . defined by. P =» TT * i> G? and x i s 

choosen to be 3C sL w Tne lengths of the strings are given 

by itr? The functional i n t e g r a l i s invariant under 

conformal transformations, so t h i s means that the variables can be 

transformed onto the upper h a l f plane. This i s achieved by the 

where z i s the variable which corresponds to p . The Z^'s are given 

by the i n i t i a l and f i n a l positions of the strings. I f Z > Z for 
r S 

r<s then as z -* Z^ p-+ -°> , when z passes through Z^ the 

variable p gains an imaginary part equal to the length of the 

f i r s t s t r i n g . As the variable z goes from plus i n f i n i t y to minus 

i n f i n i t y through the points-'Z the variable p goes along the 

boundaries of the strings i n a clock-wise manner. Maxima i n the 

variable z gives , i n p, the positions where the strings j o i n to­

gether and separate. The function i n t e g r a l can now be solved i n 

terms of the Neumann functions of the upper h a l f plane as t h i s i s 

equivalent to the p plane. I t i s possible to describe the 

scattering of excited states using t h i s method by writing the Neumann 

function i n terms of a Fourier s e r i e s . This approach has the advantage 

of only dealing with physical states but Lorentz invariance has to 

be proven. This method can be said to j u s t i f y the Analogue model. 
THE NEVEU-SCHWARZ-RAMOND MODEL AND INTERACTING STRINGS. 

The s t r i n g approach can be extended to the Neveu-Schwarz and 

Ramond Models and t h i s brings out the connection between.the two 
models and, i n f a c t , they are described by one model. 

The free r e l a t i v i s t i c string for the Neveu-Scharz Model 8 0 consists 

of the free r e l a t i v i s t i c s t r i n g for the Conventional Dual Model 

but with an additional two component Lorentz vector f i e l d 

transformation 

f-l 
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which represents a continuously distributed spin along the strin g . 
These additional variables have conformal spin one-half 

Sim i l a r l y as before the st r i n g can be quantized in both covariant 

and non-covariant methods , the l a t t e r method allowing the model 

to. be written i n terms of transverse positive norm states, but 

only when the dimension of space-time i s ten and the ground state 

has m2=-l/2 .The quantization procedure i s similar to that for the 

st r i n g i n the Conventional Dual Model and i t i s not worthwhile 

going into further d e t a i l . The Ramond Model can be obtained by 

suitably changing the boundary conditions of the string. 

The functional integration method has also been given for t h i s 

m o d e l 8 1 | 8 a and the Neumann functions are given by 

where b=l or 2 corresponds to the f i e l d s S* or S 1 where 
1 2 

and where p = T+ia . The correct boundary conditions have to 

be imposed on the Neumann functions, and imaginary time i s used. 

I t i s possible to put the two approaches together to produce 

an interacting s t r i n g picture for the Neveu-Schwarz-Ramond Model? 3' 1 

Interactions are represented diagrammatically by 

— > > 

S 

: r - + — 
1 1 • 
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The arrows represent the different boundary conditions on the ends 

of the str i n g s , the forward arrow means 

Two forward arrows on the ends of a s t r i n g represent a fermion, 

two backwards arrows an antifermion and arrows i n opposite directions 

a meson. There are two types of meson, those with a forward arrow 

at the top which Mandelstam denotes as a quark-antiquark p a i r , 

and those with a backward arrow at the top which he denotes as 

a. zero quark meson. The parity o f the former, i s ..opposite, to: .that 

of the corresponding zero quark meson, as the mass of the ground 

state fermion i s zero there i s no way of determining the absolute 

parity. 

The Feynman path i n t e g r a l technique can be used to produce a 

functional integration which contains the Lagrangian 

The fermion ground states are written i n terms of generalised 

Fauli'matrices a 1 where the zero mode operator i s 

The q*s are paired as - i o 1 ^ , - i a 3 a 4 , etc. and these form the 

basis states of the fermions. The solution i s given by 

™ + * * ^ t M t & I ' M 
i 

9 
"her Icr 

• and the backward arrow 

5 , - J 

where the product'H 1 i s over incoming fermion states and the; product 



31'' i s over incoming antifermion states, the pluG and minus 

signs are the h e l i c i t y combinations of paired indices of the a's 
m * * 

A l l other Neumann functions are zero. The Neumann functions can 

also be written as 

Mandelstam using these methods suceeded i n calculating 

the fermion-antifermion scattering amplitude and showed that the 

amplitude i s dual but the s and t channels are not i d e n t i c a l 

being constructed out of the different types of meson either quark-

antiquark or zero quark mesons. 

LOOP DIAGRAMS. 

So f a r we have not discussed loop diagrams i n t h i s approach 

to the Neveu-Schwarz-Ramond Model, one method these can be 

calculated i n the Neveu-Schwarz Model i s i n terms of automorphic 

f u n c t i o n s 8 3 

I t i s necessary to s t a r t from the operator formalism and then 

to rewrite the amplitudes i n terms of automorphic functions. This 

necessitates the introduction of- a Grassmann algebra 8 5' 8which consists 

of anticommuting variables such that 

A variable i s introduced to correspond to- each operator b ^ 

From these coherent l i k e states can be constructed which enables 

the amplitudes to be written i n terms of automorphic functions. 

Integrals over the anticommuting variables are formally defined 

The automorphic functions are s l i g h t l y different from the Conventional 
Dual Model. -

[0iMs<> > <Pi*<t>i 

as 
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THE MVEU-SCTIWARZ MODEL ITT A KOBA-NIELSEN FORM?3" 

The Grassmann algebra can be used to formulate the Neveu-Schvarz 

Model using Koba-Nielsen variables. Each p a r t i c l e has associated 

with i t a variable z^ and a variable <K >an element of a f i n i t e 

Grassmann algebra. The N point, amplitude, the Born term, can be 

written as 

1 tfl<J$9l 

The i n t e g r a l over the *'s can be written as a contour i n t e g r a l 
_2 

with measure • d<t» giving 

IKY; 

This i s evaluated by expanding the integrand and using the property 

of the algebra that 4>2 = 0. 

The only terms that contibute to the in t e g r a l are those with a 

complete set of the elements of the Grassmann algebra, i . e . 

$Ai" "$t* o r a permutation of t h i s . I f the number of external 

p a r t i c l e s i s odd then the amplitude i s automatically zero because 

i n any term of the expansion there w i l l be an even number of elements 

of the algebra,if a l l elements are not represented the i n t e g r a l 

over the missing ones gives zero, and i f a l l are represented then 

'there must be two the same which gives zero. To do the • integration 

the elements - have to be ordered as above and t h i s introduces a 

factor of where p denotes the p a r i t y of the permutation. 
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This then gives the amplitude i n terms of' Koba-Nielsen v a r i a b l e s 8 7 

Jp* J (*.-if*ZkifQKk&kirK). • >• bK*K) 

where the sum i s over a l l possible permutation of the indices, 

represented by i . where 
0 

* • * » 

As the Koba-Nielsen form i s Mobius invariant i t i s natural 

to look for a way of writing the amplitude i n terms of the • ' B 

such that Mobius invariance i s s t i l l true. For the Mobius trans­

formation 

Jin-* J*;Ccn+d)'1 

.'. jrdii jrdtiCcT>+ff% 

As CZi~2j) then to preserve the structure of 
(ciiicDCcij+J) 

the integrand i t i s necessary to have 

but to preserve the integration J$lJlfy{ ~\ i t .is necessary 
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to have CI VL 

Putting a l l these factors together produces a term Jl^C^^* *J 

so for Mobius invariance k^ i - j \ which i s j u s t the mass of the 

"pion" i n . the Neveu-Schwarz Model. So we see that for Mobius 

invariance to be possible a necessary condition i s that the 

ground state mass has ma= 

The question then a r i s e s i s i t possible to extend the Neveu-

Schwarz Model i n the same way? I n t h i s case Mobius invariance means • 

that the lowest mass p a r t i c l e has zero mass and using t h i s condition 

i t i s found that the four point function vanishes. This then appears 

to be a self-consistency i n the model. 

Now that i t i s possible to write the tree graph i n terms of 

the *'s the loop graphs can now be considered. Starting with the 

one loop planar diagram 6 3 (table three) we want to find a method 

of obtaining the function X (x) from the function ty(x) by using 

the * ' s . 

X (x) can be written a s 6 3 

1 9, MX) 

which then can be written as 

*JC0 UftnHflfltj/ 
by changing variables, using the Jacobi transformation, the function 

can be written- as a.n i n f i n i t e s e r i e s . 
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Now i|f(:i. .) can be written in terras of the z variables as 

which suggests making the replacement 

and 

where the factor ( - r ) n comes from the Mbbius transformation of • 

the minus sign being chosen. Expanding i n terms of the *'s gives 

This procedure then produces the correct amplitude apart from the 

p a r t i t i o n function where f (a>) i s replaced by f (cu) the power of 

t h i s factor being 2-Da-fl . 

Using the z variables makes the prescription for the amplitude 

more obvious as the term involving the exponential i n the function 

V(x) i s cancelled by a term a r i s i n g from the Jacobi transformation 

on the theta functions. 

An explanation for the choice of replacement for the factor 

i s given i n terms of the Mobius transformation 

given by b=c=0, a=d ^ = + r1 . When t h i s transformation acts 

on z. t h i s gives z-r 2 0'- and when i t acts on.'*., gives •.(+ r ) n 

j J J j — 
i n the planar loop the minus sign i s choosen. This can also be 

considered as the n times i t e r a t e d Mobius transformation given by 
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b=c=0, a=d _ 1 = (±r> . 

To obtain the functions for the non-planar orientable loops 

i t i s necessary to work i n terms of the variables defined on the 

r e a l a x i s as the functions can a l l be written i n terms of X + 

(see table four) so i t i s r e l a t i v e l y easy to extend the above 

procedure using the >|r's i n these variables but not modifying the 

exponential term. The variables are given byXj.'s /i* then for 
J Si 

N p a r t i c l e s on one boundary and M on the other 4 1 

~\ </>%<• "> <fa < ~U> <0 <&/H*1 </*N4M <•*•• </*#*\ < I 

As the function X~(x) can be written as 

then t h i s i s given by the replacement 

where the minus sign i s taken for X and the plus sign for X 

which give the positive and negative G-parity pomerons respectively. 

The functions X'fxe*"11) are obtained i n the same manner from 

\|f(xe ) . So now we can describe the one loop terms using the * ' s . 

.This method can e a s i l y be extended to multiloop amplitudes 

by making use of the structure of automorphic functions. • As. we 

have seen the Conventional Dual Model can be written i n terms of 

automorphic functions ft(p.>P.) which can be written a s 7 2 * 7 3 
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fit? * (ti-Wfyj-W). 

the form of which resembles the function used at the one loop l e v e l , 

of course. This immediately suggests the replacement of C/?(MM'Q(FIF) 

and where n i s the order of the transformation T . The a a 
positive or negative sign i n TgU^) is.chosen according to whether 

the channel under consideration has negative or positive G-parity. 

The modification of the amplitude i s given by 

which agrees with the method of Montonen?5 So we. can see the 

usefulness of t h i s method i n obtaining the multiloop amplitudes 

i n terms of automorphic functions which are obtained from the 

automorphic functions of the Conventional Dual Model. 



CHAPTER FOUR. 

NEVEU-SCHWARZ-RAMOND MODEL AND NEUMANN FUNCTIONS.92 

So far we have only considered the Neveu-Schvarz Model and 

naturally would l i k e to extend the method of using a f i n i t e Grassmann 

algebra to include the Ramond Model. As a f i r s t step we s h a l l rewrite 

the Neveu-Schwarz amplitudes i n terms of Neumann functions and then, 

at'the one loop level', consider both meson and fermion loops but with 

external mesons only. As the only difference between mesons and 

fermions are the boundary conditions'then the difference manifests 

i t s e l f i n the Neumann functions used. 

Returning for the moment to the Conventional Dual Model, 

amplitudes for excited p a r t i c l e s can be constructed using the 

Analogue Model by considering a dis t r i b u t i o n of momenta entering 

the interaction region 8 8 rather than at a point as for ground 

state p a r t i c l e s . The multipole expansion then gives the amplitude 

for excited p a r t i c l e s , and i n p a r t i c u l a r for spin one zero mass 

p a r t i c l e s the integrand for the tree amplitude i s .given by expanding 

and taking the c o e f f i c i e n t of Qty Btv » . - " € j t f f j 

where the e^ i s the polarisation vector for the i ' t h p a r t i c l e and 

k^.e^=0 . The three types of terms can be interpreted i n terms of 

the analogue approach as interaction terms between pole-pole, 

pole-dipole, and dipole-dipole. 

This then suggests the following approach for the Neveu-Schwarz 

Model, that the amplitude i s given by the c o e f f i c i e n t of ( j f ^ f »« ' $tt 

i n the expansion of 
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Remembering that * 2= 0, t h i s can e a s i l y be seen to be equivalent 

to the previous procedure for the tree amplitude. The second term 

can now be interpreted as as the interaction due to spin \ sources, 

which have charges *^ which anticommute. 

Considering the s t r i n g picture for the Neveu-Schwarz-Ramond 

Model 0 4 and remembering the boundary conditions for the forward 

arrows ar.e • 

and for the backward arrows are 

then these imply,that i n a source free space, S a can be written 

i n terms of two r e a l harmonic functions * and ¥ such that 

The boundary conditions can then be rewritten as $ - 0 , S 0 

for the forward arrow and XSU * for the backward 

arrow. The terms i n the Neveu-Scharz tree amplitude can be interpreted. 

as the contribution from two spinor sources 

at the points z. and z. on the r e a l a x i s with the source term 

k\0c S(*'*dSCyl which gives St r S? s K 0; 

Then the contribution to the Lagrangian action i n the upper h a l f 
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plane for the spinor f i e l d s i s given by 

This method may re a d i l y be extended to one loop amplitudes 

i n the Neveu-Schwarz Model by constructing the potentials for a 

surface as i n the Analogue Model. The interaction region considered 

i s an annulus and the boundary conditions are given by the boundary 

conditions on the s t r i n g . For the planar loop the boundary conditions 

given above mean that the function S a must be r e a l on one boundary 

and imaginary on the other. When the radius of the annulus i s one 

and the radius of the hole i n the centre i s r then the potential 

can be constructed by an i n f i n i t e number of poles a t ? f ^ % f 

This then gives 

which gives a contribution to the amplitude of 

** as-** Zj r / 

and the function X + ( z j / z ^ , r 2 ) i s imaginary when | z.J =1 and 

r e a l when \z^\ = r . This agrees with the previous calculation but 

the minus sign i s given automatically due to the boundary conditions. 

For the one loop non-planar orientable diagrams the even G- ' 

p a r i t y amplitude i s given by X ^ z . / z . ^ r 2 ) when both p a r t i c l e s 

are on the same boundary and when the two p a r t i c l e s are on different 

boundaries t h i s . i s modified by replacing z. by z r giving 

X ( zj- rlz^f r 2 ) . These can be written i n the upper h a l f plane variables 
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using the Jacobi transformation. The function S Q has the property 
that C 9+2Tt)ss-SaC0) for even G-parity exchange.. 

For odd G-parity exchange the f i e l d S a must obey the equation 

S o(0+2it)= S a ( 0 ) and the solution i s 

which i s imaginary when | zj =1 and r e a l when | z | =r. This 

then gives the contribution for p a r t i c l e s on the same boundary as 

40 

The funqtion Xq can be rewritten as 

and by using the Jacobi transformation as 

For p a r t i c l e s on different boundaries z. i s replaced by z .r giving 
J 0 

This then covers the case of meson loops but can r e a d i l y be 
i 

extended to fermion loops with the external p a r t i c l e s being mesons. 

For the planar loop the annulus must have the same boundary conditions 
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on each boundary and t h i s i s r e a l i s e d by 

which i s imaginary when |z| =l,r , t h i s then gives a contribution 

to the amplitude of 

CO 

which,using the Jacobi transformation,can be written as 

The even G-parity loops are then given by the same procedure as 

before, f or p a r t i c l e s on the same boundary the above function i s 

used and for p a r t i c l e s on different boundaries z. goes to z.r. 

For odd G-parity loops again Sa(0+2n)= S t f ( 0 ) as we l l as the . 

boundary conditions being the same on each boundary, these conditions 

give ^ 

which gives a contribution of 
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and where 

These functions can also be derived i n the upper h a l f plane 

variables d i r e c t l y by using the Neumann function given by 

Mandelstam 8 4 For the Neveu-Scharz Model the Jacobi transformation 

changes variables as indictated diagrammatically by 

C4 
6 ^ *9 

W 0 Xn 1' 

*2 
For a variable £. there are image points a t J j u ? . J j ^ 3 * * 
and when put i n the Neumann function give an i n f i n i t e sum 

where a factor 9* has been included to give the 

correct boundary conditions. The positive or negative square root 

of <on give the negative or positive G-parity loops. For p a r t i c l e s 
i n 

on different boundaries £. goes to £ e . This then gives the 

four functions for the Neveu-Schwarz loops. 

For the fermion loops the boundary conditions are different 

giving 



and when the image points are taken there appears to be a fermion 

source at i n f i n i t y and a antifermion source at zero, so the relevant 

Neumann function, including the correction factor, i s given by 
00 i 

which gives the correct functions taking the negative sign f or 

positive G-parity and the minus sign for positive G-parity. Again 

when the p a r t i c l e s are on different boundaries £ . i s replaced by 
i T t 

THE PARTITION FUNCTIONS. 

Although we have constructed the functions appearing i n the 

integrand of the one loop amplitudes the complete amplitude cannot 

be written down due to the lack of the p a r t i t i o n functions and 

measure.These have been calculated by Brink and F a i r l i e using 

functional techniques. They expanded the spinor f i e l d s i n terms 

of anticommuting variables and Fourier s e r i e s which obeyed the 

correct boundary conditions. These functions where considered on 

a rectangle where two opposite edges were i d e n t i f i e d i n such a 

x 
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manner that the correct conditions were obeyed for either G-parity 

loop, and the other edges had the correct boundary conditions 

for the s t r i n g under consideration. These made i t possible to 

investigate the properties of the pomerons i n the Neveu-Schwarz-

Ramond Model. They found that the leading even G-parity pomeron with 

intercept two i s present but the leading odd G-parity pomeron with 

intercept one cancells between the meson and fermion loops. Their 

r e s u l t s for the p a r t i t i o n functions are given i n table f i v e . 
NEUMANN FUNCTION FOR LOOPS WITH EXTERNAL FERMIONS. 

To extend the model further necessitates., the inclusion of 

fermions. The Born term for fermion-antifermion scattering has 

been given by Mandelstam? 4 So the next step would be the calculation 

of loop diagrams involving external fermions. The f i r s t step i n 

calculating the loop diagrams i s the construction of the Neumann 

function for mesons i n the presence of fermions. We s h a l l r e s t r i c t 

ourselves to two incoming fermions and two incoming antifermions 

but the Neumann function can e a s i l y be extended to include any 

number of fermion-ahtifermion p a i r s . The Neumann function can be 

calculated by using/the Neumann function for the Born term given' 

by Mandelstam. and the procedure used before. On the upper h a l f plane 

t h i s can be represented by 
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±n For a meson at £' there are image points at £* (a . , n=l,2,... 0 0 

T ±n ±n •> ±n „ ± n 

Again modifying the Neumann function by the square root factor, 

gives r _ 

HI*"** -J 

The i n f i n i t e products can be written i n terms of theta functions 

giving 

(For d e t a i l s of the calculation see appendix .) 

As i t i s easier to work with the theta functions, e s p e c i a l l y when 

when using the Jacobi imaginary transformation to consider the 

behaviour of the pomeron, i t would be usefu l to write the remaining 
so 

terms as theta functions. This i s achieved by noting that 

0/ult)0,CvfU ~ : JS • 

c 
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which, by changing the variable v to v+ g +h a n d rewriting both 

sides gives the l e f t hand side i n terms of 

right hand side i n terms of a i n f i n i t e sum. 

sides gives the l e f t hand side i n terms of 9^ functions and the 

where and 

The Neumann function can now be written i n terms of theta functions 

1 *>(Q$mw 
~~ TP TZTt* t . / e • ̂  / J , 

I t i s now obvious how to include more fermion-antifermion 

p a i r s , for a fermion at £~ and an antifermion at T the f i r s t 
X 8 

term i s modified by the factors i n the bracket being multiplied 

and the variables of the 0_ functions being modified to 
5 I 
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the second term i s s i m i l a r l y altered. 

The Neumann function for a fermion-antifermion pair on the 
i n other boundary i s given by changing, say, and £^ to T^e3 

and E^e 1 1 1, noting that i f a fermion i s on one boundary then 

there also must be an antifermion on that boundary, and vice versa. 

These conditions are r e a d i l y seen by considering the boundary 

conditions on an annulus and noting that i t i s impossible to 

match the boundary conditions otherwise. 

I f we are j u s t considering mesons then-the orientable 

non-planar loop Neumann functions are given as before, for an even 

number of mesons on each boundary the function i s as given and for 

an odd number on each boundary to goes to cue^ For mesons on 

different boundaries £' goes to 6'e 1 1 1. 

I f we consider the case where- S.= £. and 1= S then the 
1 j K 1 

diagram indicates that the function should reduce to the function 

for a meson loop. A l l the square root factors vanish giving 

«hich by using Q3i\,x)*$s(oi%) ^Q'o>t^.9iC<>it)9iCenJ^6>l%l 

gives 

1 bCpt) 

which i s j u s t the function f or a meson loop. 

A s i m i l a r procedure can be used to odtain the function for a fermion 

loop. In t h i s case !.= L and L.= £.a> , making use of the 
J K X I 

i 



-6o-
i n f i n i t e number of image points. This gives 

u 9>C^x) U^)[Q,fyl)9> 

j u s t the function for the fermion loop. 

The Neumann function can e a s i l y be written down i n terms of 

the variables on the annulus by using the Jacobi transformation 

on the theta functions, and most of the additional factors given 

cancel with each other giving 



-61-

THE PARTITION FUNCTION. 

In order to write down the amplitudes using the Neumann function 

involving external fermions i t i s necessary to know the p a r t i t i o n 

functions used. The methods used by Brink and F a i r l i e 8 7 for meson 

and fermion loops cannot be extened to cover t h i s case due to the 

presence of fermion and antifermion sources on the boundaries , 

which means that the function S cannot be written i n terms of a 
a 

Fourier s e r i e s . 

One way i t might be hoped to solve for the p a r t i t i o n function 

i s by taking a net on a rectangle and defining a function at the 

intersections of the net and then solving t h i s with the appropriate 

boundary conditions and then taking the l i m i t when the net becomes 

i n f i n i t l y fine. This method i s set up by writing Sj= *+iV and 

Sg= iijr, when these are put i n the Lagrangian 

the following conditions are given 

oy fa 3% 3y 

which means that 

Considering the f i r s t equation and the boundary conditions necessary 

for fermion and antifermion source terms t h i s gives' the boundary 

conditions for the rectangle as 
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Ca,h) 

c*,4 6>,o) 

T h i s , ' i n terms of the annulus,means that the fermion antifermion 

pair s are on the same boundary. The condition *(a,y)= - *(0,y) 

i s j u s t what i s needed to give the functions on an anhulus and i s 

related to the r e l a t i o n Sa(0+2it)a- S a(0), for odd G-parity exchanges 

t h i s would be replaced by *(a,y)=» *(0,y). The p a r t i t i o n function 

i s given i n terms of the eigenvalues of the function *(x,y) so . 

the equation that has to be solved on the net i s the matrix equation 

where * ^ i s defined at the point x=iAx and; y=j Ay where £ac and 

Ay give the s i z e of the mesh. The above equation i s obtained from 

The p a r t i t i o n function i s given by the square root of the product of 

eigenvalues which i s j u s t the determinant of a diagonal matrix 

with enteries which are the eigenvalues. In fact the p a r t i t i o n function 

i s given i n terms of the determinant of any matrix which i s s i m i l a r 

to t h i s 

1. 
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Unfortunately i t i s not possible , so f a r , to solve t h i s problem 

i n a closed form, which i s necessary to be able to obtain the p a r t i t i o n 

function, due to the necessity of the change i n the boundary conditions 

at fermion and antifermion sources. 

Although we cannot calculate the p a r t i t i o n function we can 

t r y and guess what i t might be. Remembering that for the Neumann 

function when 1̂. and5jc=£-^ the Neumann function for the meson 

loop i s given and when £..= £^ and ĝ u> the Neumann function 

for the fermion loop i s given then i t seems reasonable to assume 

that under the same conditions the p a r t i t i o n functions for the meson 

and fermion loops are given. C a l l i n g the p a r t i t i o n function required 

4> ( r 2 ) then a reasonable guess seems to be 

9,'Cow) 

z 

For the meson loop^ ̂ Ty^ J ~ I which when transformed into the z ̂  

variables gives / z j j s j ) * - / > and for the fermion- loop 

which 

e meson loop th 

0,'ColT') 

For the meson loop t h i s gives 

and for the fermion loop 



6k 

9Coix') 
t 

i 
2» 

9 torn 

These r e s u l t s then agree with the p a r t i t i o n functions for the meson 

and fermion loops (see table f i v e ) and hence the guess seems reasonable. 

This then gives for the p a r t i t i o n function 

[9,'io\r)]i 

2* 

Woixp 
v 
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ONE LOOP AMPLITUDE WITH EXTERNAL FEBMIOHS. 

To calculate the one loop amplitudes with four external fermions 

on the same boundary we follow the method of Mandelstam 8 4 which he : 

used to calculate the Born term. The Neumann functions used are 

those>on the annulus and the variables are taken to be the angles 

the sources make on the annulus. Diagrammatically t h i s i s represented 

as 

The Neumann functions are given by 

These are obtained from the Neumann functions on the upper h a l f plane 

by the Jacobi transformation and multiplying by t to cancel the 

factor given by the transformation. To do the calculation the 

annulus has to be mapped onto a s t r i p on the upper h a l f plane. 
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On t h i s s t r i p the lengths of two of the strings are taken to be 
i n f i n i t e s i m a l l y small, i f the length of s t r i n g i i s then 

where & i s small. The points where the strings j o i n together P a and 

Pp on the s t r i p correspond to the points on the annulus P a and 0^ 

' which are taken to be, to the accuracy required , 

A * A * SA > fi? *fi + $B 

To be able to do the calculation i t i s necessary to know the form 

of the conformal map from the annulus to the s t r i p . The conformal 
93 

map 

where V - C c and where T" ' *?1i!&3£ 
rrl 

maps an annulus onto a d i s c with a. s l i t - i n i t and the map 

p m u / / i - ftciten$/(\+ ft c*umi) I 

maps the annulus onto a s t r i p . So the mapping required i s given by 

when the variable i s on the ou,ter boundary of the annulus t h i s reduces 

to 
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As two of the strings are i n f i n i t e s i m a l l y small, which means that 

the points where the strings j o i n are close to P_ and 0_ , the 

above transformation i s taken as being s u f f i c i e n t l y accurate for 

the purposes of t h i s calculation. The points where the strings 

j o i n are then given by 

It--A +-A _ - i _ _ J 
"bp ' SiM(p-fi,) Si'nv(fi'fi2) sinnfi'fis) si*fr(fi-pj 

t h i s then gives the solutions 

This then gives s u f f i c i e n t accuracy to calculate, i n MandelstamJs 

notation,*, where 

<j>,« <+-ITH~> ^* <HH-*> 
where the plus and minus signs stand for positive and negative 

h e l i c i t y states of the p a r t i c l e s OWTJi^ 



-68-
The Neumann functions are calculated i n terms of the variables 

on the annulus but have to be multiplied by a factor involved i n 

the transformation from the s t r i p to the annulus, so the Neumann 

functions are of the form 

I f the Neumann function involves a factor of/ 2 3 J or ( 

then these cancel with factors from the remainding terms and, 

therefore do not have to be calculated e x p l i c i t l y . The other factors 

give r i s e to a term which either cancels with a s i m i l a r factor 

from the Neumann function or give a zero, as i n the Bom term. 

For example ^ .1 

This i s expanded to the necessary order of & to give the amplitudes 

*l ,*2 , a n <*''*3 ' ° * n e r Neumann functions involved with these 

amplitudes have to be expanded to si m i l a r order. For the amplitude 

the Neumann functions have to be expanded to a further order of 

& as when the Neumann functions are written i n the amplitude the 
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lowest order cancels. Although i t . i s necessary to expand the points 
where the strings j o i n to second order i n & for the separate 
Neumann functions i t i s not necessary to calculate them e x p l i c i t l y 
as the terms i n the amplitude involving t h i s second order correction 
cancel. The Neumann functions used are given, to appropriate order, 
i n table s i x . 

The term i n the functional integration which involves the points 

where the strings j o i n together i s 

where St (f?i i s the f i e l d due to the spin and X C/^ i s the usual 

variable of the r e l a t i v i s t i c s t r i n g . At the ends of the s t r i n g 

the t e r m 4 ^ vanishes. The terms give r i s e to a term 

whereof i s the momentum of p a r t i c l e r and N(p,P r) i s the 

Neumann function for the o r b i t a l modes , that i s the Neumann 

function for the ordinary r e l a t i v i s t i c s t r i n g . I n t h i s case 

6,'Coi-e) 

The terms 3^; can be contracted i n p a i r s to give 
ax, 

but such terms do not contribute i n t h i s p a r t i c u l a r calculation. 

The terms SfCp) are contracted i n p a i r s with the sim i l a r terms 

ar i s i n g from the Lagrangian giving the Neumann functions a l l 

r e a d i l y discussed. The terms involved breS^C/f^fS, ( f p ) and the 
terms where the h e l i c i t y states of. the p a r t i c l e s are f u l l . 

Positive h e l i c i t y states for fermions are taken to be empty and 

negative h e l i c i t y states are taken to be f u l l , for the antifermion 
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negative h e l i c i t y states are empty and positive h e l i c i t y states f u l l . 

As we are following Mandelstam we ars working i n four dimensions. 

The amplitudes also involves terms from the p a r t i t i o n function, from the 

o r b i t a l terms, and from a\term r which i s used to restore 

projective invariance, we consider these l a t e r . 

The parts of the amplitude which are given from the Neumann 

functions are denoted by F ^ For the amplitude *^ Q H * h e h e l i c i t y 

states are empty so the only contribution comes from 

G C f l ) f f o ) «• s } f o ) S/C/>m.) 

and rewritten i n terms of h e l i c i t y combinations the contraction of 

gives 

The remaining factors . . tbx. 6&)/give a term 

where (see table seven) 

This gives to dominant order i n 6 

The same term also appears i n 0^ and For * 2 the terms to be 

contracted which correspond to these are fc*V) and ay Vfr) 
n »Z 
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which give 

For 4. the expression to be contracted i s 

2<L t£>J S * f r ) 

as the h e l i c i t y states of p a r t i c l e s one and four are f u l l , t h i s 

then gives for the spin f i e l d terms 

The l a s t term i n t h i s expression does not contribute. S i m i l a r l y 

for *g and *^ the terms which are non zero are given by, for 

*2 
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1 (y®\m?Mi™^rM LX Si 

and for Oi, by 

I 

When we multiply by the Lorentz transformation factors 

these give 

2- by*/ L¥/»y (hm 

$ [i MUPrh'fcMlll [9, (Milt)9,CfirAlt). 

1 



23 mJ (A6)* Milfrfah-fiJW) 

k (f>,-Mf)9, (MArffL b S.U-AIX') - (2»k)fi-A)+ 

21 ^ l*M CA& fyitffii 'fah'Ml') 
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The term r , which ensures projective invariance, contains factors 

of \!>&. I axidlXys I which cancel with s i m i l a r terms from 

h J?^ . T must also produce a .term of B 2 to cancel with the 
-a _ 

term 8 i n the functions h.P. '. I n the Born term " i s constructed 
1 i 

from terms of the form (Z^ ~ Z j ) which correspond i n t h i s case to 

terms of the form tan it (&^~ 3 j ) / 2 • So T i s given by 

* Tf bunt 

T T 
where the product '', i s for 0 a fermion source and 3 an /•<> r s 
antifermion source or vice versa. This reduces to 

The p a r t i t i o n function i s given by 

and the o r b i t a l mode term i s given by 

'Z PT.fif 

where 

VCtifj) a .9, (MA*') 

http://PT.fi
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The variables 0̂  are integrated over from zero to two, and the 
variable r i s integrated over zero to one with the measure l / r 
where . The amplitudes are then given by 

CONCLUSION. 

The formulation of the Neveu-Schwarz and Bamond Models in*, 

terms of functional integration i s an extremely useful method 

and once the Neumann functions have been calculated i t i s 

possible to calculate one loop amplitudes of both fermion and 

meson! loops. For the one loop amplitude with external fermions 

there i s an uncertainty over the p a r t i t i o n function but apart 

from t h i s the amplitude can be calculatedand we have presented 

t h i s amplitude above i n the same manner as Mandelstam calculated 

the Born term for fermion scattering. 



TABLE ONE. 

CONVENTIONAL DUAL MODEL. 

PLANAR LOOPS. 

V6c,u>)= -ln-ix* ftCvttJ 

«s| 2tri 2iri 
ORIEMAHLE HON-FLAKAH LOOPS. 

where Cx,u?) sr V^SC/ltf) i f even no. of twists between 

x. and x. 

_ ^/jC^^f) i f 0 < i ( i n 0 , o f t w i s t s between 

x. and x. 

0 «rggs] x"4 fGce'V) 



TABLE TWO. 

' JACOBI TRANSFORMATION^ AND THETA FUNCTIONS. 

7 fry 

I »—i 
ftj.Al 

AM 



d,'cot*) - c-vxfi 9,'Coix) 

ISO 
± ** i \ = 2u;^tnirv-TrCl-^;]r( |-2u;Wtrtr^7 



TABLE THREE. 

NEVEU-SCHWARZ MODEL. 

PLANAR LOOPS. 

ORIENTABLE NON-PLANAR LOOPS. 

0-2 

Tift s X * & y j w ) i f x i a n d x j a r e ° n t h e 

same boundary 

and 

x. are on different boundaries 3 

The plus sign i s taken for an even number of p a r t i c l e s on each boundary 

and the minus sign for an odd number on each boundary. 



TABLE POUR. 

FUNCTIONS OF THE HEVEU-SCHWARZ-RAMOKD MODEL. 

MESON LOOPS. 

BXvH) 

FERMEON LOOPS. 





TABLE FIVE. 

PARTITION FUNCTIONS IN NEVEU-SCHWARZ-RAMOND MODEL? 

MESON EVEN G-PARITY EXCHANGE. 

88 

ft-V *" u-r*') [e/ara /Mow/ 

) 

MESON ODD G-PARITY EXCHANGE. 

P * ^ « * ' C i - o 1=55/ f f i f 
FERMION EVEN G-PARITY EXCHANGE. 

FEBMTON ODD G-PARI1T EXCHAHGE. 

ORBITAL CONTRIBUTION. 



APPENDIX. 

NEUMANN LOOP FUNCTION WITH EXTERNAL FERMIONS. 

i 4 

To write the Neumann function i n terms of theta functions the 

product i s dealt with f i r s t . 

hut 



so the product becomes 

' if 

so the product of theta functions gives 

This then leaves terms of the form 

fc* C1-5VV l « v 

writing ft)" X a n d 

then 

then the sum can be written as 



which by expanding the denominator and rewriting gives 

Now from Watson and Whittaker 8 0 

9,Ux}9,MX) 

by changing variables 'VT— 

9, CvfriW * j9tCvft) 

ft Cwf ^m(utt) 9>Mx) WulrJ 

c P s r ( U f a ) 



Putting a l l the terms together gives, for the Neumann function 

1 
" 1 'IS I 

+ 1 



TABLE SIX 

NEUMANN FUNCTIONS FOR ONE LOOP AMPLITUDE WITH EXTERNAL FERMIONS. 

" a 83 $(trh*ftPWW> ̂ -Aft'J ft (fiyPAVft 

*(}* Sffctih'te-Mx')- c .0 ^e-A)9^i(P,-m-Mn'L 

" W A - A W e.oMir; B,ifrMc)r 

A - Pi* SA * SX , fa + £0*S't 

\' 1 2 4ftflVA-A*AjirJ 



-1,YA-A)TV]) 

_ i 



9Mfrfi*trfiJF) 

• 



TABLE SEVEN 

MOMENTA OF EXTERNAL FERMIONS IN ONE LOOP AMPLITUDE.4 

1 
i 
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