

Durham E-Theses

An examination of regge cut models in high energy scattering processes

Fitton, Alec

How to cite:

Fitton, Alec (1974) An examination of regge cut models in high energy scattering processes, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8272/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

IN

HIGH ENERGY SCA'ITERING PROCESSES

```
AN EXAMINATION OF REGGE CUPS MODELS
    IN
    HIGY ENERGY SCATTERINC FROCEOSES
```

 THESIS SUBAITTED TO TH:
 UNIVERSTITY OF DURHAM
 BY
 AJEC FITTON B. SC. (JUNELM)
 FOR THE DEGRTE OF DOCTOR OT PHILOSOPHY
 | DEPAPTMENT: OF PHYSICS | OCTOSER | 1974 |
| :--- | :--- | :--- |
| UMIVERSITY OF | DURHAM | |

ABSTRACT

A phenomenolgical analysis of twn body scattering data with particular emphasis on the phase and energy dependence of Regge cut corrections is presented.

After a brief summary of the Regge philosophy and approach, we survey the evperimental data in chapter two. We note that al.l. hadronic processes, as distinct from photoproduction appear to exhibit strong Recce shrinkage at large $|t| c$

In chapter three, we motivate the eikonal model approach and show how it is used to calculate cuts in $\pi \mathbb{N}$ charge exchange and in photoproduction. Most of the phase problems encountered in the naive absorption models can be overcones provided we use the true elastic anplitude (which we represent as a sum of $P+p i$ poles) to generate the absorptive rorrections. We conclude tiits chapter by discussing how the shrinkage of the eikorial nodel cuts is inconsistent with the $\alpha_{\text {eff }}$'s of chapter two for hadronic processes.

We digress a little in chapter four to examine the important role played by t-channel unitarity and show how it can solve same of the problems outlined in the previous chapter by peaking the cut discontinuity at the position of the pole.

Finally, we propose a new scheme for calculating Regge cuts and in the last chapter construct a specific model tor πN CEX and π° photoproduction. A detailed examination of the cut diecontinuity provides a possible explanation for the different energy dependence of these ostensibly similar processes.

In conclision, we discuss the implications of our model for the traditional (Michigen and Argomie) approaches io Fegge cut phenomenology and suggest some areas which may provice jnteresting terts of the model.

ACKNOWLEDGENENTS
It has been a pleasure to work under the supervision of Dr. P. D. B. Collins and I am grateful for his patient and friendly guidance throughout the course of this work。

I have benefitted at different bimes from conversations with many of my colleggues in the Fhysics Department at the University of Durhain. In panticular Dr. F. D. Gault, Dr. A Martin and Dr. Pn U. Walters (row at the University of Glasgow).
I. should also like to thank Jrs. S. R. Davidson and Mr. J. B. Evans for their help in collecting and checining much of the experimental data and Dr. K. P. Worden for proviging the details of some of his work.

Finally I an grateful to my wife, Joyce, for her tolerance and encouragement during the last three years, to the Science Research Councill for financial support anil to my typists, Mirs. A. C. Robson-Cross and Nirs. D. W. Fhilpot.

PREFACE

Part of the work reported here has been done in colleboration with Dr. P. B. B. Collins and jis published in Nuclear Physics B68 125 (1974).

No part of this work has been subinitted for a degree in this or any other university.
INTRODUCTION 1
CHAPTER ONE GENERAL REGGE FORMALISRI
(1.1.) Introduction 5
(1.2) The continuation to complex angular momentum 6
(1.3) Regge poles in smehannel helicity emplitudes 12
(1.4) Exchange degeraeracy and nonsense wrong signature zeros 12
(1.5). Predictions of pure Regge pole models 14
(i.6) Regge cuts 17
(1.7) Absorptive corrections to Regge poles 21
CHAPTER TWO THE EXPERTMENTAL DATA
(2.1). Introduction 27
(2.2) The reaction $\pi^{-} p \longrightarrow \pi^{\circ} n$ 28
(2.3) Neutral pion photoproduction and related processes 35
(2.4) The amplitude phases and their joplane structure 38
(2.5) A general survey of effective trajectories 40
CHAPTER THREE THE ETENONAL NODEL
(3.1) The eikonal model 62
(3.2) The ejkonal series 60
(3.3) The new absorption models \because
Page
(3.4) Rerge-legge cuts ir: πN scattoring 74
(3.5) Regge-liegge cuts in thotoproduction 82
CHETER FOUR THE FRGORTANCE OR TMOHANNBL UNTMARTMY
(4.1.) Introduction 104:
(4.2) Gxibov's Reggeorn Dirgram Techaique 107
(4.3) The Roggeon cajoutus 1.10
CHEMER FIVE A NEV REGGE CUT RODET.
(5.1) Parameterization of the Regemponeron cuts a:20
(5.2) A Regre cut model for $\pi^{-} p \rightarrow \pi^{\circ}$ n 124.
(5.S) The R [P cut discminumty in photoproduction 130
CONCLUSTONS 139
APPENDE ONE 163.
APPMNDTX TYO 16%
REFHENCSS 169

INIRODUCPIION
The strong interaction is characterised, as its name suggests, by the strength of the force as oompered with the other fundamental forces which exist iri nature Rlectronagnetic, Weak and Gravitational. In nuclear physics it provides the binding force which holds the nucieus together against the repulsive effect of the coulomb interaction. The short range nature of the nuclear foree prompted Yukawa to postulate the existance of the π meson. Low energy (\sim I kev/c) nuclear reactions sinow a rapid variation in the cross section plotted as a function of centre of mass energy, which is well described by a sum of resonancess given by the simple Breit-Wigner fommala, As the enengy increases ($\sim 10-20 \mathrm{mev} / \mathrm{C}$) the rosomances menge to foma continuum which can, nevertheless, still bs interpreted as a sum of overlapping Breit-idigner resonances.

In elementary particle physics tie strong interaction also accounts for the forces between a group of particles known collectively as hadrons. A striking feeture is the richness of the hadronic spectrum compared to the jimited number of partjeles which do not experience strong interactions (leptons). As in nuclear physics, the cross section up to a few $\mathrm{Gev} / \mathrm{c}$ shows prominant resonance bumps which at higher energies begin to overlap into a continum. Hadronic resonances can be grouped into $S U(3)$ singlets, octets: and decuplets for baiyons and singlets and octets for mesons, whese quantum numbers may be generated by the quark model. There are as yet no firmly established exotic: resonances (ioe. those wiach
cannot be constructed in the quark model from quq for mesons and qqa for baryons).

The successes of field theories in describing Electronagnetic interactions carnot be carried over with any confidence into the strong interaction situation. One resscn is simply the strength of the interaction which proinbits the utilisation of the normal perturbation expansion techniques. A further problen is the complexity of the hedronic spectrun, which makes it extremely difficult to formulate a theory in which each particile necessitates the introduction of a new field operatior. If we try to construct e theory in terms of a limited set of operators, we violate the democracy which appears to exist amongst the hadrons by imposing the view that some particles ane more elementary than others.

A more appealing approach to strong interections
is in terms of the S-matrix, where the aim is to formulate a theory from a fev general postulates such as crossing, forentz invarience, conservation of probability etc.e Here the main interest is in the scattering amplitude anc by incIuding some additional assumptions about the analytic properties of the S-matrix we arrive at the Regge approach which bae been so successful in describing experimental data.

High energy two-body or quasi two-bod $\$$
processes are known to be peripheral, with the angular distributions often showing prominent peaks in the forward
 strongly correlated with the nresence ur absence of particles
(or resonances) in the crossed t (or u) channel. The integrated cross section also exhibits a power iaw dependence as a function or centre of mass energy. Both of these experimental. facts can be understood within the Regce irgmework, which places the known hadronic states on trajectories which are approximately linear functions of the square of the particile masses. The prediction that the differential cross section should "shrink" (become increasingly concentrated in the forward direction) with increasing energy, is also well verified experimentally.

As accurate data has become available for a wide range of experimental observables (polarisations, spin rotation parameters, asymmetries, decay correlations, etc; the emphasis in Regge phenomenology has shifted towards a direct. study of the amplitudes themselves. In one particular process it has become possible to extract the amplitudes in a model independent way. However, many features of the data cannot be adequately described in tems of the leading set of negat poles alone. We here adopt the most logical solution to the probiems of simple pole models - namely that Regge cuts are also important in the ful? scattering amplitude.

The most fundamental difficulty wj.th Regge cuts is the lack of knowledge of the discontinuity function. Most phenomenologists wor: in the absorpitive/eikonal model where the analogy to nuclear physics is once again strong. There is also consideraile debate about the structure of the input Regce pole residue and the mechanism which produces the
observed dips in differential cross sections.
Phenomenologists are continually appealing for higher energy data against which to test their models. In recert years this cry has been answered by the abiandance of data at sufficiently high energies to allow the symbol \gg to take on its fulil meaning. The Serpukhov machine provides for the collision of up to $70 \mathrm{Gev} / \mathrm{c}$ proton beans with a stationary target, whilst NAL extends the range up to 400 Gev/c. The CEIN Intersecting Storage Ring (ISR) facil.ity provides a centre of mass energy equivalent to a $3000 \mathrm{Gev} / \mathrm{c}$ proton beam striking a stationary target. At such ultra-high energies, the number of final atate particles is so large as to prohibit a detailed anaiysis of the energy and momentum of ench. This has ied to the study of "jnclusive reactions" in which one observes only a limited number (usually one) of the final state particles.

Wuch off the data, which has aiready come out of tict new accelenators, such as the rising total cross sections and appearance of structure in the pp differential cross section, provides a fascinating challenge to the ingenuity of Regge phenomenologists. In this thesis we concentrate on the quasi two-body data over the whole of the currently available energy range and look at its interpretation in the light or various Regre: cut models.

CHAPTER ONE
1.1 INMRODJOTION

We approach the problems of high energy scattering through the framework of S-matrix theory (1). where the S-matrix is defined to be the operator which transforms the incoming system of panticles into the out-going system. The probability for the transition to occur is then given by the square modulus of 3 , and conservation of probability then denands that S be unitary. By explicitly removing that part of S which represents the physically uninteresting situation in which the particles do rot inter... act, we arrive at a definition of the reaction or scattering amplitude (A). Haximal analiticity of the First Fine (1) nos states that the only singularities of A are those poles corresponding to physical particles and the cuts fenereted from them through the unitarity equation

$$
\begin{equation*}
A-A^{+}=2 A A^{+} \tag{1,1}
\end{equation*}
$$

In aprendix one we define the s, t and a chamela for a general two particle scattering process. Iis the simple case of equal masses, $A(s, t, u)$ is the physical amplitude for the \dot{s}-channel reaction when

$$
s>4 n^{2} ; t \leqslant 0 ; u \leqslant 0
$$

where s, t and u are all real.
It is possible to define an analytic continuation (2) of the amplitude intc the t-channel physical region.

$$
t>4 m^{2} \quad ; \quad 3 \leqslant 0 \quad ; \quad 1 i \leqslant 0
$$

The postulate of crossing symmetry asserts that the amplitude thus obtained is the physical amplitude for the t-channel process. Therefore the s, t and a channel reactions may each be described by the same analytic function $A(s, i, u$) evaluated in the appropriate region of phase space. 1.2 THE CONTINUATION TO COMPLEX ANGULAR MOMENTUM

The angular momentum structure of scattering amplitudes has long formed a basis for experimental and theoretical investigation. Following the work of Regge in potential scattering, it was recognised that the continuation to complex values of angular momentum provided, via the crossing postulate, a link between the asymptotic behaviour of the amplitude and its angular momentum structure $=$ it is the extension and development of this idea that forms the basic content of Refry thoery, where the high energy behaviour in the direct channel is interpreted in terms of the exchange of one or more coridosite particles, or Rene poles, in the crossed (t or u) charnel.

The problem therefore, is to extend the range of validity of the t-channel partial wave series, which for spinless particles may be written in the form

$$
\begin{equation*}
A(s, t)=16 \pi \sum_{l=0}^{\infty}(2 l+1) A_{l}(t) P_{l}\left(z_{t}\right) \tag{1.2}
\end{equation*}
$$

where $\Lambda(t)$ is the partial wave amplitude of angular momentum 2, and $P\left(Z_{t}\right)$ is the Legendre function of the First Find. The inverse of (1.2) is

$$
\begin{equation*}
A_{l}(t)=\frac{1}{32 \pi} \int_{-1}^{1} A(s, t) P_{l}\left(E_{t}\right) d E_{t} \tag{1,3}
\end{equation*}
$$

This representation breaks dom as soon as we encounter the first s (or u) channel singularity - that is outside the enlarged Martin-Jehmarn ellipse (3). To obtain information about the analytic properties of $A(s, t)$ outside this, region, we replace the summation in (1.2) by a contour integral in the complex angular momentum plane (1.). The partial wave amplitudes are now (complex) analytic functions of l close to the real axis, which are subject to the constraint

$$
\begin{equation*}
A_{R}(t)=A(l, t) \quad l=0,1,2 \ldots \tag{1.04}
\end{equation*}
$$

In order that the new representation be unique (equation (1.4) does not gaurantee this) the continued partial wave amplitudes must satisfy Carlscu's Theorem (3). Me shalt, for the moment, assume that a suitable definition of $A(f, t)$ exists.

The step of replacing (1.2) by a contour integral in the complex ℓ-plane is known as the Sommerfeld-iatson transform (1)

$$
\begin{equation*}
A(s, t)=-\frac{16 \pi}{2 i} \int_{c_{1}} \frac{(2 \Omega+i) A(l, t) P_{l}\left(-z_{t}\right)}{\sin \pi l} d l \tag{1.5}
\end{equation*}
$$

$A(\ell, t)$ is assumed to be analytic in the region close to the real axis enclosed by the contour c_{1} (shown below) so
only singularities of the integrand come from the vanishing of the denominator at integer values of ℓ. The argument of the Legendre Function is taken to be $-Z_{i}$ to compensate for the factor $(-1)^{\ell}$ appearing in the residue of the poles at integer ℓ.

The crucial step in the Recce analysis is to deform the contour $C_{1} \rightarrow C_{2}$ to expose the singularities of $h(\hat{l}, t)$, such as poles and cuts, for $\operatorname{Re}(\dot{\ell})>-\frac{T}{2}$.

Provided the behaviour of the partial wave amplitudes is such that the contribution from the large semicircle ($|\ell| \rightarrow \infty, \operatorname{Re}(\ell)>-\frac{T}{2}$) can be neglected, then

$$
\begin{equation*}
A(3, t)=-\frac{(2 \ell+1) \beta_{\alpha i}(t) \rho_{\alpha}\left(-z_{t}\right)}{\operatorname{Sin} \pi \alpha}-\frac{16 \pi}{2 i} \int_{c u t} \frac{(2 R+1) \Delta(l, t) P_{Q}\left(-z_{t}\right)}{\operatorname{Sin} \pi l} \tag{1.6}
\end{equation*}
$$

+:fixed poles + background.

In (1.6) we have exhibited the contribution iron a single Regge pole at $\alpha(t)$ with residue $\mathcal{F}_{\alpha}(t)$ and a single branch cut running from $l=\alpha_{c}(t)$ to $\ell=-\infty$ within discontinuity $\Delta(l,(:)$.

The babground integral is the contribution from the line

- i α.. $\frac{7}{2}$ to $+i \infty-\frac{7}{2}$ which vanishes as $Z^{-\frac{7}{2}}$ for $Z \rightarrow \infty$ (1). fiendelstam has show how it is possible to push the background to the left (Re(λ) $<-\frac{x}{2}$) so that the Rage terms always dominate the background asymptotically. 'This procedure is well known $(1,3)$ and alters non of the conclusions which we shall draw ir om (1, 6).

The interesting situation is one in which s $\rightarrow \infty$ (the s-chamel physical region). In this limit

$$
\begin{equation*}
P_{\ell}\left(-z_{t}\right) \underset{s \rightarrow \infty}{\longrightarrow}\left(-z_{t}\right)^{\ell} \tag{1.7}
\end{equation*}
$$

and using the kinematics of Appendix one, equation (1.6) becomes (neglecting the non Regge terns)

$$
\begin{align*}
A(s, t)= & -\frac{\beta(\alpha, t)\left(s / s_{0} e^{-i \pi}\right)^{\alpha(t)}}{\sin \pi \alpha(t)} \\
& -\int_{-\infty}^{\alpha} \frac{\Delta(l, t)\left(s / s_{0} e^{-i \pi}\right)^{l}}{\sin \pi l} d l \tag{1.8}
\end{align*}
$$

where s_{0} is a scale factor, and we have absorbce all extraneous factors into the residue and discontinuity functions β and Δ. Thus the trajectory $\alpha(t)$ completely determines the energy dependence of the first term in (1.8), the liege polite term.

We now return to the problem of obtaining a suitable definition of the partial wave amplitudes in which to make the continuation provided by the Sonmerfeld-Hatson transform. (Λ full account of this procedure for the general case of particles
with spin can be found in reference (4)). Froissart and Gribov have shown that a sufficient condition for the required continuation to exist is that the liandelstam representation (3) holds for the amplitude $\Lambda(s, t)$. We proceed therefore by wining a dispersion relation in s at fixed t, involving both the a and u singularities of A.

$$
A(s, t)=\frac{1}{\pi} \int_{z_{t_{0}}}^{\infty} \frac{D_{s}\left(z_{t}^{\prime}, t\right)}{\left(z_{t}^{\prime}-z_{t}\right)} d z_{t}^{\prime}+\frac{1}{\pi} \int_{-z_{u_{0}}}^{-\infty} \frac{D_{0}\left(z_{t}^{\prime}, t\right)}{\left(z_{t}^{\prime}-z_{t}\right)} a_{t}^{\prime}(1.0)
$$

D_{s} and D_{u} are the discontinuities across the right and left hand cuts respectively. (1.9) is only valid up to the number of subtractions required to make the integrals converge Substit... outing (1.9) in (1.3) and interchanging the order of integration gives

$$
\begin{equation*}
A_{2}(t)=\frac{1}{16 \pi^{2}} \int_{z_{0}}^{\infty}\left[D_{s}\left(z^{\prime}, t\right)+(-1)^{l} D_{u}\left(-z^{\prime}, t\right)\right] Q_{n}\left(z^{\prime}\right) d z^{\prime} \tag{1,10}
\end{equation*}
$$

where $Q_{d}(2)$ is the Legendre function 0 the second kind and

$$
z_{0}=\operatorname{miv}\left\{Z_{E_{0}}, z_{u_{0}}\right\}
$$

As we have already discussed, for the continuation (1.5) to be unique the large l behaviour of the eurplitude must satisfy Carlson's theoreni. The exchange forces represented by the u-singularities in (1.10) involve the usual factor (-1$)^{\text {l }}$ which also appears in potential scattering (Wajorana forces). This violates Carlson's theorem. 'The way out of the difficulty is to define amplitudes of definite signature $\beta(= \pm 1)(4)$.

$$
\begin{equation*}
A_{R}^{ \pm}(s, t)=\frac{1}{16 \pi^{2}} \int_{z_{0}}^{\infty}\left[D_{s}\left(z^{\prime}, t\right) \pm D_{n}\left(-z^{\prime}, t\right)\right] Q_{g}\left(z^{\prime}\right) \dot{a} z^{\prime} \tag{1,11}
\end{equation*}
$$

Thus the signature partial wave amplitudes $A_{\dot{d}}^{+}(t)$ coincide with the physical amplitudes for even/odd values of ℓ respect... ively.

Looking at the pole term in (1.6), we need to replace the factor $\left[\frac{P_{\alpha}\left(-z_{t}\right)}{\sin \pi \alpha}\right]$ by $\left[\frac{8 P_{\mathrm{xx}}\left(z_{t}\right)+P_{\alpha}\left(-z_{t}\right)}{\operatorname{Sin} \pi \alpha}\right]$ which, in the high energy limit, becomes

$$
\begin{equation*}
\frac{s+e^{-i \pi \alpha(t)}}{\sin \pi \alpha(t)} \tag{1.12}
\end{equation*}
$$

((1.12) is often called the "signature factor")
So the effect of introducing signature is to replace $\left[\frac{e^{-i \pi \alpha}}{S_{i . \pi} \pi \alpha}\right]$ by (1.i2) in equation (1.8) with a simil.in replacemont in the cut term, giving

$$
\begin{align*}
A(s, t) & =-\beta(\alpha, t)\left(\frac{8+e^{-i \pi \alpha(t)}}{\sin \pi \alpha(t)}\right)\left(\frac{s}{s_{0}}\right)^{\alpha(t)} \\
& -\int_{-\infty}^{\alpha_{0}(t)} \Delta(l, t)\left(\frac{8+e^{-i \pi l}}{\sin \pi l}\right)\left(s / s_{0}\right)^{l} d l \tag{1.18}
\end{align*}
$$

All. of the Rage formalism outlined above may be generalised to the case of particles with spin. Problems such as the need for amplitudes of definite parity, kinematic singularities and constraints and the analytic properties of tho
trajectory and residue functions are deatt with in detail in reference (4).

1.3 REGGE POLEG IN S-CEANDEL EELCTTY ABELTTUDES

The first term in (1.13) is the contribution of a simgle Regre pole to a t-channel helicity amplitude. for many punposes (particularly when considering absorptive corrections) it is convenient to work in terms. of s-channe]. helicity amplitides, In principle the connection between the two sets of amplitudes is provided by the helicity crossing matrix ${ }^{(2)}$. Cohen-Tanouaj.ji et al ${ }^{(5)}$ write the contribution of a t-channei Rezge yole to an s-channel helicity amplitude as

$$
A_{H_{s}}(s, t)=\left(-\frac{t}{s_{0}}\right)^{x / 2}\left(\frac{t_{0}-t}{s_{0}}\right)^{N / 2} \gamma_{H_{s}}(t) F_{H_{B}}(\alpha)\left(\frac{8 \cdots e^{-i v \alpha(s)}}{5 i n \pi(\theta)}\right)\left(\frac{s}{s_{0}}\right)^{0(t)}(1.14)
$$

where N is the net s.ochannel helicity filip.

$$
\begin{equation*}
N=\left|\left(\mu_{1}-\mu_{1}\right)-\left(\beta^{2}-3-\beta_{4}\right)\right| \tag{1-15}
\end{equation*}
$$

and

$$
\begin{equation*}
x=\left|\mu_{1}-\mu_{3}\right|+\left|\mu_{2}-\mu_{4}\right|-N \tag{1.16}
\end{equation*}
$$

The quantity t_{0} is the value of t wher $\theta_{5} \Rightarrow$ and is defined in Appendix one. S_{0} is usually taken to be $1 . \mathrm{Gev} / \mathrm{c}$ end the function $\mathrm{F}_{\mathrm{H}_{\mathrm{s}}}(\alpha(t))$ depends on whether the pole chcoses sense, nonsense, etc..
1.4 EXCHANGE DGGENERACY ARI NONSENGE MRONG SIGNATURE ZBRCG

Phenomenolofically, Regre poles of opposite signeture appear to occur in (exchenge degenerate) pairs such that

$$
\begin{equation*}
\alpha^{+}(t)=\alpha^{-}(t) \equiv \alpha(t) \tag{1.17}
\end{equation*}
$$

where the superscripts relate to even or odd signature.
Equation (1.1.7) is a statement of weak exchange degeneracy (EXD). Strong. EXD also demands equality of the residues.

$$
\begin{equation*}
\gamma^{+}(t) \equiv \gamma^{-}(t) \equiv \gamma^{\prime}(t) . \tag{1.18}
\end{equation*}
$$

Strong HXD therefore imposes a severe restriction on the pole terms in reactions where a pair of EXD Rage poles may be exchanged. For example consider
(A) $K^{-} p \rightarrow \bar{K}^{0} n \quad$ where the full amplitude is $A_{\alpha}+p$
(B) $K^{\prime} n \rightarrow K^{0} P \quad$ where the full amplitude is $\quad A_{\alpha}-p$ (The sign change in the rho contribution reflects the property that the rho is odd under charge conjugation.) If strong in holds, then (se e(1.14))

$$
\begin{array}{lr}
\rho(s, t)=\gamma(t)\left(-1+e^{-i \pi \alpha}\right) s^{\alpha} & \text { odd signature } \\
A_{\alpha}(s, t)=\gamma(t)\left(1+e^{-i \alpha \alpha}\right) s^{\alpha} & \text { even signature }
\end{array}
$$

(:We represent the contribution of a Regge pole to the full amplitude by its trajectory label.)

Now assuming that $\alpha(t)$ and $\gamma(t)$ are real for $t<t_{0}$, we see that the amplitude for (B) is purely real, whilst that for (A) is the same apart from a rotating phase factor.

$$
\begin{aligned}
& A\left(k_{p}^{-} \rightarrow \bar{K}^{0} n\right) \sim 2 y(t) e^{-i \pi \alpha} s^{\alpha} \\
& A\left(k_{n}^{*} \rightarrow k^{0} p\right) \sim 2 \gamma(t) s^{\alpha}
\end{aligned}
$$

Strong $\mathbb{E} X D$ therefore predicts equality for the cross sections and zero for the polarization in both reactions. Similar results are obtained for pairs of processes connected by "line reversal" $(4,6)$.

For example :-

$$
\begin{aligned}
& K^{-} p \rightarrow \pi^{-} \Sigma^{+} \\
& \pi^{+} p \rightarrow K^{+} \Sigma^{+}
\end{aligned}
$$

$$
\begin{aligned}
& k^{n *}-k^{n} \\
& k^{* k}+k^{n}
\end{aligned}
$$

Real
Rotating
Real
Rotating

Real
Rotating
Finally consider the signature factor (1,12). At right signature points (α even for \mathcal{S} even etc.), the denominator gives a pole which is: not removed by the numerator and must therefore be cancelled by a zero in the residue $\gamma(t)$. Strong EXD means that we must use the same residue for both signatures, so $\gamma(t)$ must have a zero at the wrong signature points also (since this is a right signature point for the other EXD trajectory). But the cancellation of numerator and denoninator in (1.12) occurs automatically at wrong signature points leaving an cverall amplitude zero, known as a wrong signatire nonsense zero.

1.5 PREDTORTONS OR PURE REGGE POLE HODELS

In (1.14) we have a simple formula which can be directly confronted with the experimental data. It is most easily tested in the few reactions where the t-channel quantum numbers are sufficiently restrictive to allow the exchange of only a single Regre pole. In one such process, pion rucleon eharge exchange (CEX), enough data exists to allow a complete separation of the amplitudes (see chapter two). \#e list below other processes of this nature together with the upper limit of the available energy range.

Reaction	Exchange (s)	Mas: $\mathrm{P}_{\text {lah }}(\mathrm{Gev} / \mathrm{C})$
$\pi^{-} p \rightarrow \pi^{0} n$	ρ	48 (200)
$\pi^{-} p \rightarrow \eta^{0} n$	A_{2}	50 (200)
$K_{L}^{0} p \rightarrow K_{s}^{0} p$	$\omega(\rho)^{(\xi)}$	10
$k^{-} p \rightarrow \eta^{\circ} n$	$k^{*}\left(k^{* n}\right)$	4.25
$k^{-} p \rightarrow \eta^{\circ} n$	$k^{*}\left(k^{* 2}\right)$	4.25

We have indicated in breckets aiter the first two react.ions the energy range which will soon be available from the NAi, machine.

Returning to (1.14), both the phase and energy dependence of the Regge pole contribution are conriletely fixed once we have specified the trajectory $\alpha(t)$, provided $\alpha(t)$ ard $\gamma(t)$ are both real. Furthemore, they are independent of ait helicity labels, so that in a given reaction, all helicit.y amplitudes corresponding to the exchange of a particuler Regee pole have identical phase and energy dependence. :le sheju. return to the question of determinerg $\mathcal{W}(t)$ from the exponinental data in chapter two. The phase rostriction predicts that the polarization should be zero in the process shom in the table above,if we allow only Regge pole exchange. linis simpliy is because polarizations depend on the relative phases of helicity amplitudes through formulae such as (A1.12).

The experimertal. data provides many severe tests of (1.14). There ïs now overwhelming evidence to suppori the conjecture that Rege poles al one are mot the onily singuarities which contribute to hich energy scattering amplitudes, ano that negge cuts arising from the second term in (1.13), are also jmportant. We list below some of the predictions of pure Regee
pole exchange which are in direct conflict with the data ${ }^{(8)}$. (i) The non zero polarization oberseved in $\pi N \operatorname{CEX}^{(9)}$ is a: direct indication of some other contribution besides the rho pole. This could be a secondary trajectory or it could be a cut.
(ii) The failure of the omega "crossover zero" (see chapter two in pp and $\overline{\mathrm{p}} \mathrm{p}$ to propagate, via factorisation, into other processes such as $\pi N \rightarrow \rho N$ or $\quad \gamma \beta \rightarrow \pi^{c} P$ which are also dominated by onega exchenge. Since cuts do not need to factorise, the addition of a destructive cut which generates the zero by pole-cut interference obviates this. Alternatively we could invoke a lower lying ω^{\prime} trajectory and form the zero by interference between it and the ω. In this case we would expect the zero ta move to larger values of It| as the energy increased.
(iii) The high energy ($\mathrm{P}_{\text {lab }} \geqslant 20 \mathrm{Gev} / \mathrm{c}$) total cross section data ${ }^{(10)}$ disagrees with the extrapolation of low energy energy fits done with simple pole models. In partioul.ar, these fits predict a constant total cross section at high energur coming from Pomeron (I) exchange, whilst the data exhibits a broad minimum ($\sigma_{\text {tot }}(p p)$) over the Serpukhov energy range, followed by a distinct rise through the NAL and IGR ranges. One explanation is the presence of destructive cuts which die away logarithmically to isolate the Pomeron pole contribution. However $\alpha_{p}^{(0)>1}$ is also a possible, if slightly more controversial explanation ${ }^{(11)}$.
(iv) The failure of NWSZ to apyear in reactions related by factorisation is also evidence to support the inclusion of important (non factorising) cut contributions. For example the NWSZ of the rho trajectory, which in pole models accounts for
the dip at $t \sim 0.6(\mathrm{Gev} / \mathrm{c})^{2}$ in $\pi^{-} \rightarrow \pi^{\circ} n$ does not appear in $\gamma p \rightarrow \eta^{\circ} p$ which is also dominated by rho exchange. The presense of a lower lying B contribution in the latter reaction has also been invoked to explain the absense of a dip ${ }^{(12)}$.
(v) The data on $\gamma p \rightarrow \pi^{4} n$ and $n p \rightarrow p n$ shows a prominant peair in the forward direction of width $\sim m^{2}{ }^{2}$. Both processes are dominated by π exchange which, because of its parity must decouple at $t=0$. The pole model therefore predicts a forward dip. Λ pion conspirator seems to violate factorisation, but a destructive $\pi \otimes P$ cut again provides an answer.
(vi) As we have mentioned, strong EXD predicts equality of the differential cross sections for pairs of processes connected by line reversal. Experimentally the rotating phase reaction lies above the real reaction in most cases (6) by an amount which requires a substantial breaking of RXD in pole models. Furthermore, to explain the polarization requires secondary trajectories. We might hope that auts would violate EXD in such a way as to reconcile theory and experiment. 1.6 RBGGE CUTS

As we have seen, Regge cuts are very desirable objects phenomenologically, providing at first sight a simple and appealing way out of severad problems inherent in the pure pole models. Most of the theoretical undorstending of Regge cuts has relied upon the Feynman diagram approach ${ }^{(13)}$. The most common method is to use the "weak coupling limit: to examine the analytic structure of the diagrams in perturbation theory and to hope that the results may hold true in the strong intaraction contcxt.

In addition to the obvious arcument that there is no reason why Rege cuts should not be present and furthermore give
important contributions to the fuzt scattering ampritude, Mandelstam ${ }^{(14)}$ demonstrated that cut,s are instrumental in removing many of the difficulties caused by fixed J-plane singularities at ronsense points of the amplitude (4). These arise from any diagrem which has a third double spectrel function (dos.f.). A third d.s.f. is also essential if we are to generate a true Regge cut. The simplest Feymmen diagram which does this is the "double cross" graph showm below, where the "bubbles" are complex scattering amplitudes.

If the asynptotic contribition to the bubbles is tasen to be Regre pole exchange, then the full diagrom fives a twoResgeon cut.

It has been demonstrated ${ }^{(15)}$ that the t-iterations of this diagram are important in "softening" the nature of the cut (i.e. forcing the discontinuity to vanish at the tip of the cut) and in removing the difficulties presented by the singularities mentioned above - in particular the Gribov-Pomeranchuk fixed pole at $J=-1$. The insertion of such a singularity into the t-channel. unitarity equation for the partial wave amplitudes,

$$
\begin{equation*}
A_{5}(t)-A_{J "}^{*}(t)=\rho_{J}(t) A_{5}(t) A_{J}(t) \tag{1.19}
\end{equation*}
$$

means that it iterates uti.l. it eventual.ly becores incompatible
with koxjmal Analiticity in $J^{(8)}$. Apant fion siving a Regge out, diagrams such as the one above have branch points which lie along the unitarity cut in such a way that A_{y} ard $A_{j} *$ must be evaluated on opposite sides of the cut. Since the fixed pole is present only in A_{d}, it remains a pole and is eventualiy cancelled in the physical amplitude isy the signature factor: Amati, Fubini and Stanghejlini (16) (AFS) looked at Feynman diagrams of the type shown below, tine essential feature of which is their planar topology.

That this diagram does not generate a Regse cut on the physical sheet was demonstrated explicitly by Manceistan (i4). In fact it. gives a contribution which, asymptoticelly, gose jare $s^{-3} \log (s)(17)$. The AFS mistave was in taking just the two... particle discontinuity term (OCO ($0<$) in the unitarity equation, which in fact behaves like (log(s) $)^{-1} s_{s} \alpha_{c}(t)$ (moving cut). Including the full spectrum of intermediate states (N) sees a cancellation of this term and the diagram has the fixed cut behaviour given above.

There are therefore,general arguments in favour of Regge cuts in any theory which has a non zero third d.s.f.. Manoelstan's anaiysis details the followjog specific properties of Regge cuts:-
(i) If the individual exchanges in the two Regegen ent are represented by Reoge poles with trajectorjes $\alpha_{1}(t)$ and $\alpha_{2}(t)$
then the branch point trajectory is given by

$$
\begin{equation*}
\alpha_{c}(t)=\operatorname{Max}\left(\alpha_{1}\left(t_{1}\right)+\alpha_{2}\left(t_{2}\right)=1\right) \tag{1.20}
\end{equation*}
$$

where

$$
\begin{equation*}
\sqrt{-\xi}=\sqrt{-t_{1}}+\sqrt{-\xi_{2}} \tag{1.21}
\end{equation*}
$$

If the input trajectories are linear functions of t

$$
\begin{equation*}
\alpha_{i}(t)=\alpha_{i}(0)+\alpha_{i}^{\prime} t \tag{1.22}
\end{equation*}
$$

then it can easily be shown that the constraint (1.20) leads to tine cut trajectory

$$
\begin{equation*}
\alpha_{e}(\theta)=\alpha_{1}(0)+\alpha_{2}(0)-1+\left(\frac{\alpha_{1}^{\prime} \alpha_{2}^{\prime}}{\alpha_{1}^{\prime}+\alpha_{2}^{\prime}}\right) \varepsilon \tag{1.23}
\end{equation*}
$$

Thus if one (or both) of the exchanged Reggeons is the Pomeron which has $\alpha_{p}(0)=1$, then the position of pole and cut coincide at $t=0$. equation (1.23) can readily be generalised to the case where more than two Reggeons are exchanged. Again, the Reggae pole (R) and its n-Pomeron sit $\left(\mathrm{R} \otimes \mathrm{F}^{\mathrm{n}}\right.$) coincide at $\mathrm{t}=0$ 。

Taking the typical Regecon and Pomeron trajectories

$$
\begin{aligned}
& \alpha_{R}(t)=0.5+t \\
& \alpha_{p}(t)=1.0+0.3 t
\end{aligned}
$$

we obtain the relative energy dependence (up to possible. factors of log (s)) shown belches for the two-Pomeron, ReggeonPomeron and two-ikegereon cuts.

(ii) The signature of the two-boson cut is simply the product of the signature factors for the iridividus exchanes.

$$
\begin{equation*}
f_{c}=f_{1} f_{a} \tag{1,21}
\end{equation*}
$$

(For the two-baryors cut $\left.\}_{c}=-\xi_{1} \xi_{2}\right)$
(iii) Although Regee poles have definite parity, cuts may contribute to both parities because of the orbital angular momenturn $(-1)^{\ell}$.
(iv) Cuts do not factorise.

1.7 ABSORPTIVE CORRECTIONS TO REGGE POLES

A conceptiaally appeating way of thinking about Reage cuts, is in terms on mutiple rescattering or absorptive corrections. The basic Regge pole exchange is modified by alastic scattering - usually jepresented by the Pumeron - it either the initial or final state. For exanple, we consiader diagrams such as

Sxperjmentally, bost of the inelastic two-bocty eross section is peripheral i.e. the dominant contribution is from impact parameters corresponding to the surface of the target hadron (b~1 fmo). Conversely, hich multiplitity collisions result from the projectile striking the certre of the iarget. Nov, the impact paraneter decomposition of a Regge pole anplitude such as (1.14) with net helicity flip N is

$$
\begin{equation*}
A_{N}(t) \sim \int_{0}^{\infty} b d b A_{N}(b) J_{N}(b \sqrt{-t}) \tag{1.25}
\end{equation*}
$$

This formula will be derived in detail in chapter three. However, for a simple exponential residue, a Regse pole has an impact parameter profile $A_{N}(b)$, which is peaked at small b. The addition of absorptive corrections, which aliow for the possibility of creating high multiplicity final states at shall b , tends to danp out the low partial waves to give an impent paraneter profile which is more peripheral iconing from a riat of radius R, with $R \sim 1$ fm).

The resulting t dependence is characteristic of the Bessel function, producing a typical dirfraction stjucture with the positions of the dips controlled by the index of the Bessel function and the paraneter R. In fact for $R \sim 1$ fin, the firsi zero of the Bessel furction with $N=C$ occurs at $t \sim-0.2$ (Gev/c) ? , whilst for $\dot{N}=1$ it is at $t \sim-0.0(G O v / c)^{2}$. These are in remarkable agreement with the position of the crosscver zero and tise dip in the pion-mucleon CBX differential cross section. There is also evideisce to support a further zero in the imaginary part of the non flin amplitude at $t \sim 1.2(\mathrm{Gev} / \mathrm{c})^{2}$ (18) which again conrelates ni.cely with the second zero of $\mathrm{J}_{0}{ }^{\circ}$

Also, the strongest low energy resonances appear to occur in the peripheral band of partial waves, by which we mean those for which $\ell \sim P_{c m} R$, with R~1 firn. Duality then leavis us to expect strong corrections to Regge poles, which alone are non-peripheral.

The early attempts to calculate absorptive corrections were based on the Sopkovich prescription ${ }^{(4)}$, in which the quantum numbers are carried by the Regge pole and absorption is incluriod by multiplying each partial wave by the square root of the elastic S-matrix to account for elastic scattering in the initial and final states. Typically, this is assumed to be adequately described by the Pomeron and we end up with (schematically) (19)

$$
\begin{equation*}
A(s, t)=A_{R}+i A_{p}(s, t) \Leftrightarrow A_{R}(s, t) \tag{1,25}
\end{equation*}
$$

In this equation, the syinbol ' 6 ' represents a convolution such as

$$
\begin{equation*}
A\left(B \sim \frac { 1 } { 8 \pi ^ { 2 } S } \int d t _ { 1 } d t _ { 2 } A (t _ { 1 }) B \left(t_{2} ; \frac{\theta(\varepsilon)}{\tau^{1 / 2}}\right.\right. \tag{1.27}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau=-t^{2}-t_{1}^{2}-t_{2}^{2}+2 t t_{1}+2 t_{2}+2 t_{1} t_{2} \tag{1.28}
\end{equation*}
$$

The result of convoluting two exponential, such as appear in a typical hegel residue, is

$$
\begin{equation*}
\exp \left(a_{1} t\right) \otimes \exp \left(a_{2} t\right) \sim \exp \left(\frac{a_{1} a_{2}}{a_{1}+a_{2}} t\right) \tag{1.29}
\end{equation*}
$$

A final point concerns the structure of the residue
$\gamma_{H_{S}}(t)$ in the basic Rage pole term (1..1.4). There are two possibilities, which give rise to two different cut novels.
(i) The strong cut model:

The hichigan group argue that the t structure observed in two-body scattering is mainly a geometric effect, characteristic of diffraction from the surface of the target hadron. The pole residues are then simple, exponentially decressing functions of t and all stiucture is a product of pole-cut interference. To fitt the date it is then necessary to multiply the cuts (the second term in (1.26) for example) by a constant, λ, which is interpreted as allowing for the possibility of diffractively produced intermediate states. Typi.cally, $\lambda \sim 1.5-3.0$ to fit the data, hence the name "Strong Cut Reggeised Absorption model " or SClian ${ }^{(19)}$.
(ii) The weak cut model:

An alternative approach ${ }^{(20)}$ is to assext thed the Regce pole is the main contribution to the scattering amplitude and as such dictates the $i \quad$ dependence, which is ony sIightly modified by the (veaker) cuts. Nokits in the poles are filled in by the cuts to yield dips in the differential cross section; $¥ X D$ adds predictive power to this approach. The nonsense factors mean that the pole changes sign within the regior or integration in (1.26) giving rise to cancellations within the integral, and cuts that are weaker than in SGRAM.

It i:s now clear from (1.26) how cuts interiere with the pole terns in a destructive fashion. Since the Pomeron is mainly imaginary (at least near to $t=0$), tiue rescattering corrections will be approximately 180° out of phase wi.th the pole. ilso (1.29) suggests that the cuts will die sway less dapidly than the pole as we go to lerger values of $\mid t i$. We therefore have a model in which the nole dominates near $t=0$,
with the cuts becoming relatively mone impontant and possibuy cancelling the pole at large |t|。

However, there are severst technical difiticulties inherent in the absorption mociel approach. Wandelstam's work: has emphasised the importance of the non nlanam reture of the rescattering diagrems in obtaining a thae novinay cat in ine jplane instead of a fixed (AFS) cut. The diagrams which we deve to motivate. the absorotion model are nonetheless definiteliy 11. anar.

The absorption model also generetes "hard cuts". Thes means that; the discontinuity $\Delta(J, t)$ in (1, is) is finite ex ins tip of the cut $J=\alpha_{c}(t)$. Bronsan and Jones (15) hove shom thau such a behaviour is incompatible with tomennel miterity which in fact frrees the discontinutty to vanien at this point.

Finally, there is also the problen of wether the input Renge pole aiready irncludes (in principle) some absorptiva corrections, since this already receivos contributions fron multiparticie intermediate states in the untanity mategrat Jin the Optical: Potential Nodel developed by Arnold (cil), the eikonal phase shift, X, (to be defined in chapter three) ju itneeriy related to the optical potential. A Regge pole gives a contribution to Im X, which thenefore corresponds to ansorntion or flux from the faput beam into various other competing chanols besides the one under consideration. Thus inciuding both the Regge nole and absorptive courections nay tead to donble councing. In the estronal model, the non planar structure of the diagrans avoids this problem

Th conclude shis chenter we mention wo predictions of the absorption mociei. The fajure of these to be subrentiated by
experiment (as we shall see in the next chepter), nndicates the kind of phase modifications required by the modet.
(i) The naive absorption morisl preaicte approximately equal absorption at small $|t|$ in both the reai and jmaginary part of the input pole amplitude. Consequentiy, if we use the $\rho G P$ cut to produce the crossover zero (Im $A_{++}=0$ at $t \sim-0.2(\mathrm{Gev} / \mathrm{c})^{2}$) in pion-nucleon CEX, we are forced to aceept; a similar zero in the real part of the non flip amplitude. One consequence of this is a lasge negative spike in the predicted polarization in the region $0.2 \leqslant|t| \leqslant 0.6$ (Gevic) 2 (13,20).
(iti) In section 4 ve Iistec pairs of reactions invoiving vector and tensor meson exchanges which are cormected by lire reversal. From equation (1.26), it tis clear thet in the "reor" process, dole and cut will be exactly 180° out of phase (tha Pomeron its assumed to be pure inaginaly). This will cieamy not be so in the rotating case. In addition, cencellations may oucur: within the integrels ((1.27)) in the latter case witch wili further reduce the effectiveness on the pole-cid canceiletione. We therefore expect the furl amplitude (pole plus destructive cut) to be Iarger in the rotating case. The data shows

$$
\begin{equation*}
\frac{d \sigma}{d t}(\text { reai }) \approx 2 \frac{d \sigma}{d e} \text { (rotating) } \tag{1.30}
\end{equation*}
$$

for the hypercharge exchange cases ${ }^{(6)}$, in direct contradiction to the predicted behaviour. The pair

achieve equality at about $5.0 \mathrm{Gev} / \mathrm{c}$ consistcnt with strong ExN , but below tinis energy the disagreement is in the same direction as (1.30).

2.1 IMRRODUCHION

In the major part of this wor: we shall seek to
use the sbundance of goor data which now exists oven a wide range of s and t on the two reactions

$$
\begin{aligned}
& \text { (A) } \pi^{-} p \rightarrow \pi^{\circ} n \quad(\pi N C N) \\
& \text { (B) } \gamma p \rightarrow \pi^{0} p
\end{aligned}
$$

to critically examine various Regge cut models. Polarisetion measurements and Finite Eneroy Sum Rule (ase) analysis, batio useful in fixing the detailed phase structure of the amplitudes, exist for both reactions. Kinematically the two reactions are very similar - the dominant amplitude being spin flis ($N=1$) in both cases. However, in (B) the flip occurs at the $\gamma \pi$ verter: ensuring that a different relationshic betveer pole and cut is required to obtain the correct phases. The photooroduction reaction can have $i=0,1$ ar 2 , and this rich amplitude stoume is a severe test of any cut model.

He shall apply our moriels mainly to (A) sud (3), but will infer from other global fits (ã- $\overline{2}, 4$) that; given SU(3) and approximate exchange degeneracy, any model which suecessfull.y describes these two processes also gives a reasonable fit to the wider class of $0^{-}+{\frac{x^{+}}{2}}^{+} 0^{-\cdots}+{\frac{\pi^{2}}{}}^{+}$reactions and those reicateci to (B) by SU(3) ard vector dominance. However, to support arguments which we shall present concerning the energy dependerat: of Reges cuts, it will be userul to consider data from a much wider set uf processes.

2.2 THE REACITON π - $p \rightarrow \pi 0^{n}$

The differential cross section for this process is remarkably well fitted in both its s and t deperdence, by a simple pole moden in which the rho chnoses sense ${ }^{(25)}$. Then the presence of $\alpha_{\rho}(t)$ in the doninant spin flip anflitude acoounts for the observed dip at $t \sim-0.6(G e v / c)^{2}$, and the flip to nonflip ratio provides the marked turnover in the forward direction. I'Lhe new data for the Serpukhov accelerator range ${ }^{(26)}$ ($P_{\text {Iab }} \leqslant 50$ Gev/c, $\left.|t| \approx 1.5(\mathrm{Gev} / \mathrm{c})^{2}\right)$ is still in guod agreement with this picture. In particular the dip remains fixed at $t \sim-0.6(\mathrm{Gev} / \mathrm{c})^{2}$, strongly suggesting that it is not ouse to a pole-cut cencellation mechanism in the spin flip amplitude (SCRAM). In thits case we would expect the dip to move to smaller values of 1 t as the relative importance of the cut increased with energy.

Mhis is supported by the enerpy drpendence of the difierential cross section as represented by the quantity $\alpha_{\text {eff }}\left({ }^{(+)}\right)$ defined in appendix two. A plot of this "effective" trajectory for the Serpurhov and other low energy data is sinom in fig. (2.1) (26). Whithin the errors it is in complete asreement with a linear rho trajectory. 'Two interesting conclusions can be drawn fron fig. (2.1) :-
(i) In all the "convential." eikonal/absorptive models of Regge cuts, the dominant $\rho \mathbb{Q} p$ cut has the approximate trajectory

$$
\begin{equation*}
\alpha_{c}(t) \approx 0.5+0.2 t \tag{2.1}
\end{equation*}
$$

if, as in cilapter one, we tske $\alpha_{\rho}(t)=0.5+t$ and $\alpha_{\mathrm{F}}(\mathrm{t})-1.0+0.3 \mathrm{t}$. The α_{efe} date is inconsistent with either a. weak or strong cut model in whith the eutis have the branch
foint trajectory (2.1). In particular the (strong cui) model of Collins and Swetman ${ }^{(27)}$, discussed in more detail in chapter three, gives the $\alpha_{\text {eff }}$ shom in fig. (2.2.) For $|t|>0.6(G e v / c)^{2}$ the shrinkage observed in the datia is much strongen chan is articipated on the basis of this model.
(it) The structure in fige (2, 2) in the dip
region $t \sim-0.0(G e v / c)^{2}$ is a general feature of 211 convential cut models ${ }^{(28)}$, whist the data exhibits ro suen deviation from linemity.

Using the large $|t|$ data available at 3.57 and 4.83
 out to $t \sim-5.0(\mathrm{Gev} / \mathrm{c})^{2}$ (29). Their trajectory js reprocinced in figo (2.3). Again the slope is in remarloble agrement with $\alpha_{\rho}^{\prime} \sim 1(\mathrm{Ger} / \mathrm{c})^{-2}$. However, one must be careful when seelines to apply Regge theory at such large vizues of it|, for such low values of s. For example, at $P_{l a b} \sim 5 \mathrm{Gev} / \mathrm{c}, \theta_{\mathrm{s}}=60^{\circ}$ conresponds to $t \sim-2.2(G e v / c)^{2}$, whilst $t \sim-5.0(G e v / c)^{2}$ is well into the backvard direction.

Thus, in pion mucleon CEX there is good covadence to suggest that the ρ trajectory continues to "sinsink" out to very Iarge values of $|t|$, in apparent contrediction to traditional cut models. We shall see Jater in this chapter, that this appesres to be a universal featire of all $0^{-}+\frac{1}{2}^{+} \rightarrow 0^{-}+\frac{x}{2}^{+}$data.

As we mentioned in chapter one, the measurement of a non zero polarization in $\pi N C E X{ }^{(80)}$ was instrumentel in forcing phenomenologists to think seriousiy about Regee ruts. Furthermore, the fact that the polarization is positive for $0 \leqslant|t| \leqslant 0.5$ $(G e v / 心)^{2}$, means that the anplitude prases predicted on the basis of the absorption model usirng \%eak or strong cuts $(19,20)$ are also
incorrect. Sufficient data now exists at $6.0 \mathrm{Gev} / \mathrm{c}$ for the elastic and charge exchange reactions to allow a complete decomposition of the isospin anplitudes (defined in appendix one) up to an overall phase ${ }^{(31)}$. We snall attempt to outline briefly, how the data fixes the structure of the $I_{t}=1$ anplitude.

In πN scattering, the $I_{t}=0$ amolitude is well deacribed by a sum of p and p exchanges. As expected $\left|A_{+++}^{0}\right| \gg\left|A_{+\ldots}^{0}\right|$, and also $\left|R e A_{++}^{0}\right| \ll\left|\operatorname{Tin}_{++}^{0}\right| ; ~ \operatorname{InA} A_{++}^{0}$ is strongiy peaked in the forward direction and has no zeros at least out to $t \sim-0.8$ (Gev/c). ${ }^{2}$ With this behaviour of the $I_{t}=0$ auplitude, the data forces the $I_{t}=1$ exchange amplitude to exhibit the following qualitai.ive features:-
(i) The crossover zero.

$$
\text { The } \pi^{ \pm} p \text { elastic differential cross sections }
$$

are equal at $t \sim-0.2(\mathrm{Gev} / \mathrm{c})^{2}$. If the $I_{t}=0$ component has the gross features indicated above, then

$$
\begin{equation*}
\frac{d \sigma}{d t}\left(\pi^{\bar{p}}\right)-\frac{d \theta}{d t}\left(\pi^{+} p\right) \sim \operatorname{Im} A_{++}^{0} \operatorname{I} m A_{t+}^{1} \tag{2.2}
\end{equation*}
$$

where all the relevant amplitudes are defined in aprendix one. The lack of structure in A_{++}^{o} forces a zero in $\operatorname{In} A_{++}^{1}$ in orler to explain this effect. This is the crossover zero wish is also observed at $0.1 \leqslant|t| \leqslant 0.2(\mathrm{Gev} / \mathrm{c})^{2}$ in FBGR analysis.
(ii) Using similar reasoning, the elastic pclarizations are given approximately by

$$
\begin{equation*}
P\left(\pi^{2} P\right) \sim I_{w} A_{+\phi}^{0} R_{e} A_{+\cdots}^{0} \mp \operatorname{Re} A_{+-}^{\prime} I_{m} A_{+\phi}^{0} \tag{2.3}
\end{equation*}
$$

Whe data has two striking faatures (32). Firstly, there is almost perfect mimor symetry betwren the $\pi^{+} P$ and the $\pi^{-} p$ which implies that the second term in (2.3) dcminates. Secondly, there
is an approximate double eero in the data near $t \sim-0.5$ (Gev/is indicating a similar behaviour for Re A_{+i}^{1}.
(iii) The Cax polarisation is given "exacti.y" by

$$
\begin{equation*}
P\left(\pi^{-} p \rightarrow \pi^{\circ} n\right) \sim \operatorname{Im} A_{* 4}^{\prime} \operatorname{Re}_{e} A_{+-}^{\prime}-\operatorname{Re}_{e} A_{p, 8}^{\prime} I_{v a} A_{4-}^{\prime} \tag{2;4}
\end{equation*}
$$

Now since the crossover zeroforces the first term to vanish at $t \sim-0.2(\mathrm{Gev} / \mathrm{c})^{2}$, the sign of the polarisation gives us directly the sign of the second term. All. Regge models have a single zero in $\operatorname{ImA}_{+-}^{1}$ to explain the dip in the differential: cross section at $t \sim-0.6(G \in v / c)^{2}$, but no zero for $|t| \leqslant 0.5$ (Gev/c) ${ }^{2}$. Therefore, the large positive polarisation observed in $\pi N C E X$ for $|t| \leqslant 0.5$ (Gev/c) ${ }^{2}$ means that ReA ${ }_{+-1}^{1}$ must not change sign in this region. We shall coment on the conseouencee this has for cut models later in this chapter.

Hence, the $I_{G}=1$ amplitudes which we shall take to be given by the rho pole plus its cuts, must heve the following structure at $6.0 \mathrm{Gev} / \mathrm{c}$.
$\operatorname{Im} A_{++}^{1} \quad: \quad A$ zero at $t \sim-0.2(\text { Cevv } / c)^{2}$
$\operatorname{Re} A_{++}^{1} \quad: \quad$ No zero for $|t| \leqslant 0.5$ (Gev/c) ${ }^{2}$
$\operatorname{Im} A_{+\ldots}^{1} \quad: \quad A$ zero at $t \sim \sim 0.6(\mathrm{Gev} / \mathrm{c})^{2}$
Re $A_{+-}^{1} \quad: \quad$ An approximate double zero near $\mathrm{t} \sim-0.5(\mathrm{Gev} / \mathrm{c})^{2}$

It is immediately apparent that the flip anplitude has exactily the phase structure expected of a nonsense choosing ρ pole, with relatively minor modilications coming from the suts. The non flip gmplitude has no such interoretation and su presumably receives appreciable cut correctinns. This supporte the viev that absorntion is nore important in non flip ampitudes ${ }^{(33)}$.

The FBSR analysis of Elvakejeer, Inami and Fingland ${ }^{(15)}$, suggests that the rin pole continues to dominate the non flip amplituce out to $t \sim-2.5(\mathrm{Gev} / \mathrm{c})^{2}$. In fact they observe zeros in Im at at $t \sim-0.5,-1.4$ and $-2.5(\mathrm{Gev} / \mathrm{c})^{2}$, with double zeros at $t \sim-0.5$ and -2.5 (Gev/c) ${ }^{2}$. Again, this is precisely the behaviour we expect from a nonsence chocsing ria pole with negligible cut corrections.

Beyond $t \sim-0.6(\mathrm{Gev} / \mathrm{c})^{2}$ there does noi exist a complete set of experimental observables with which to perform a model independent analysis of the anplitudes. Eowever, in view of the pole dominance of the flip amplitude, i.t is possible $t: 2$ use a model dependent approach. Wilvakajeer et al ${ }^{(34)}$ assumed that the phase ef the spin flip anplitude is well represonted by the rho signature factor with $\alpha_{\rho}(t)=0.5+t$. They were then able to extract the non flip amplitude for $0.8 \leqslant|t| \leqslant 1.4$ $(\mathrm{Gev} / \mathrm{c})^{2}$. Tryo of their conclusions are relevant to this discussion.
(i) There is evidence of a second zero in $\operatorname{Im} A_{++}^{1}$ at $\mathrm{t} \sim-1.2(\mathrm{Gev} / \mathrm{c})^{2}$.
(ii) With sone extra assumptions it is possible to estiate $\alpha_{\text {eff }}(t)$ for just the non flip omplitude A_{++}^{1}. Within maderstandably large errors this is again consistent with the normel rho tra,jectory and shows strong shrinkagc in this region. i.e.

$$
\begin{equation*}
\left.\alpha_{\mathrm{eff}}(\mathrm{t})\right|_{\text {non flip }} \underset{\rho}{\sim} \alpha_{\rho}(t) \quad\left(0.8 \leqslant|t| \leqslant 1.4(\mathrm{Gev} / \mathrm{s})^{2}\right) \tag{2.5}
\end{equation*}
$$

Further insight into the strusture of In A_{++}^{1} in other reactions may be extracted from a more detailed exemination of the data on elastic πN, $K N$ end $N \bar{N}$ djfferential cross sections. Equation (2.2) shows how we can isolate $\operatorname{Tin} \Lambda_{++}^{1}$ in $\pi n \mathrm{CBX}$,
which receives contributions from just rho exchange.
Unfortunately the $\pi^{ \pm} p$ difference is so small (approximately 4 mb at $\mathrm{t}=0$ and $\left.\mathrm{P}_{1 \mathrm{ab}}=5.0 \mathrm{Gev} / \mathrm{c}\right)$, because of the large flip to non flip ratio of the rio coupling to NN, that further analysis is very difficult. However, this is not the case in in and NF scattering. For example, if we represent the contribution of a particular exchange to the full amplitude by its trajectory label, then

$$
A\left(K^{\mp} p\right)=p+P^{\prime}+A_{2} \pm \omega \pm \rho
$$

Since the omega coupling to $N \bar{N}$ is mainly non fir, the difference in this case is appreciable (15 mb at $\mathrm{t}=0$ and $\mathrm{P}_{\mathrm{Iab}}=5.0 \mathrm{Gev} / \mathrm{c}$). Furthermore, if we assume that
(i) the $K^{+} \mathrm{p}$ forward differential cross sections are dominated by the non flip amplitude,
(ii) the P, P^{\prime} and ω have mainly non flip couplings,
(iii) the ρ and A_{2} couple mainly to flip amplitudes.
(iv) the contribution ($\mathrm{P}^{\mathrm{P}} \mathrm{P}^{\mathrm{r}}$) is predominantly jmaginery
at small t, the en

$$
\begin{equation*}
\frac{d \sigma}{d t}\left(K^{ \pm} p\right) \approx|F+p \cdot|^{2}+|\omega|^{2} \div 2 \operatorname{Im}\left(p+p^{i}\right) \operatorname{Im} \omega_{++} \tag{2.6}
\end{equation*}
$$

and the ω_{++}contribution may be isolated using the combination

$$
\begin{equation*}
\Delta \omega_{k}=\left.I m \omega_{r+4}\right|_{k N} \approx \frac{\frac{d \sigma}{d t}\left(k^{-} p\right)-\frac{d \sigma}{d t}\left(k^{+} p\right)}{\sqrt{8\left[\frac{d \sigma}{d x}\left(k^{*} p\right)-\frac{d \sigma}{d E}\left(k^{+} p\right)\right]}} \tag{2.7}
\end{equation*}
$$

A similar result follows for $\Delta \omega_{N}$, the omega contribnation in $p p$ and $p \bar{p}$ scattering. Banger et al ${ }^{(35)}$ have examined the data in this way and they isolate the crossover zero in $\mathrm{A}_{\mathrm{L}} \omega_{+r}$ at $t \sim \cdots .2(G e v / c)^{2}$ in both M ana $N \bar{N}$, with a seconū zero at

Jarger $|t|$ consistent with the anslysis of Evakaseer et al for the rho in πN. However, the magnitude of $\Delta \omega$ allows one to go further and extract the enercy dependence of Tin ω_{++}. The resul.ts of ref.(35) are reproduced in fig. (2.4) and again show strong silirinkage consistent with $\alpha_{i \dot{H}}^{\prime} \sim \mathrm{j}(\mathrm{Gev} / \mathrm{c})^{-2}$. So both the rho and the omega non flip amplitudes exhibit Regse shrinkage: which is an inportant conclusion since we know that the cuts are large in these mplitudes.
there is one point. where the non flip amplitude may be extracted unambiguously from the data - namely et $t=0$ from total cross section measurenents via the optical theorem. The behaviour of

$$
\begin{equation*}
\Delta \sigma(\pi p)=\sigma\left(\pi^{-} p\right)-\sigma\left(\pi^{\prime} p\right) \tag{2.3}
\end{equation*}
$$

should give an accurate estimate of $\alpha_{\rho}(0)$. The data is shown in figo(2.5). In a Regge model we expect

$$
\Delta \sigma(\pi p) \sim\left(P_{\text {lab }}\right)^{\alpha_{\rho}(0)-1}
$$

If we take the data for $P_{\text {lab }} \leqslant 70 \mathrm{Gev} / \mathrm{c}$ (Serpuchov range), the value obtained for the rho intercept is $\alpha_{\rho}(0)=0.69 \pm 0.05$, which is in rather serious disagreement. with the value $\alpha_{\rho}(0)=0.56 \pm 0.02$ obtained from the differentiel cross section at $t=0$ 。However, the recent data fron Nat ${ }^{(36)}$ casts doubt on the overall normalisation of the Serpuchov data. A good fit to just the low energy ($P_{\text {tab }} \sim 20 \mathrm{Gev}, \mathrm{C}$) plus NaL $(50,100,1.50,200 \mathrm{Gev} / \mathrm{c})$ Jota can be obtained wi.th $\alpha_{\rho}(0)=0.55$. Finally, it, should be noted that $A \sigma$ is an importent ingredient in any fit since it fixes both the magritude and eriergy dependence of $\operatorname{Im} A_{++}^{\prime}(t=0)$ 。

2.3 NEUMRAL PYON PHOTOPROUUCTION AND METATMD PROCGGGG

Having seen how the data on $\pi \mathbb{N}$ and other reactions fixes the behaviour of the vector mesons f and w, itis useful to look at these excharges in a completely different context. The reaction $\gamma p \rightarrow \pi " p$ is expected to be dominated by ω exchange, whilst the $S U(3)$ related procese remp receives the main contribution from ρ exchange,

The t dependence of the differential crose sections for π° photoproduction and πN cex are remersably siminer, with the former also showing the dip at $t \sim-0.6$ (hevic) ${ }^{2}$ and he
 provides the link between photoprociuction and purely haaroric reactions. VDN represents the photon as an incohenent sum of the vector mesons ρ, ω and ϕ, with the ϕ being completely negligible. (It is estimated ${ }^{(37)}$ that the ϕ contribution is loss than x_{0}^{\prime} of the ω in $\gamma p \rightarrow \pi^{\circ} p$). The oncea couples mainily to spin nor fip, and since we dutomaticelly pick up one unit of helicity filip at the o'r vertex, the most importent smplitude in neutral pion photoproduction is that due to singie filip onege exchange。

The $\alpha_{\text {eff }}$ for π° photoproduction is stiow in fig. ($\varepsilon_{6} 6$) and should be compared with the purely hadronic Csk reaction fig. (2.1). The difference between the two is stathing. IThilot we latter is approximatelv linear out to tu-1.5 (Gev/c; ${ }^{2}$, tie former shows linearity for $0 \leqslant|t| \leqslant 0.3(\text { gev,c })^{2}$ but has a marcea dip sollowed by a secondary morinum arcund $t \sim-0.6$ (bev/心)? This behavion is charaeteristic of aill cut models in when the branch point trajectary takes the form obtained by handelstan

energies and particularly at larger velues of $|t|$ would be useful in fixing the shrinkage of α eff (t) in the refion past the din. As it stands, fig. (2.6a) appears to support a SCRAB type nodel. with the dip produced by pole-cut interference and the thactory past the dip showing about half the shrinkage observed for $|t| \leqslant 0.3(\mathrm{Gev} / \mathrm{c})^{2}$, where presumably the pole dominates we shell see in chapter three, that a strong cut model fits this data very well. Nevertheless, it is possible that the presence of cuts in the weaker non $f 1 i p$ and double flip amplitudes could"postpone the really sitrong Regse shrinkage to lenger vaiues of $|t|$. In appendix one, we show the relevant formalism for the photoinduced reactions in tems of the four helicity amplituces $A_{-+}, A_{++}, A_{-}, A_{+-}$o If only the rho and onera poles contribut. to these mplitudes, then

$$
\begin{align*}
& A_{++}=A_{-} \\
& A_{+-}=A_{-+} \tag{2,11}
\end{align*}
$$

$$
(2,10)
$$

and the polarised photon asymnetry $\sum_{\text {, is }}$ identiceliny squat to one for all s and t. Unnatural parity exchanges such as B end H contribul:e to A_{+-}and A_{+}with the same sign, whilist cuts contribute to both parities. So the departure of Σ from unity measures
(i) the strength of the cuts in A_{+-}and A_{+}
or (iij) the strength of the umatural parity exchanges. It is difficult to decide which of the two is the most import,ent,

Since tunaturcil parity exchanges do not coupite to the single flip anpituder, iths parhans not surprising that Σ is significently different from one only in the region $\%$ the dip in the differential eross ocction, where A_{r-r} and A.... are simall.

As we shall see in chapter three, cute moserve (2.10) aso, but violate (2.11), so any reasonable cut model shoula reprotuce, at Jeast qualitativel.y, the data on the polarised photon asymatry.

A much more rigorous test of the anplitude phases is provided by the polarised target asymatry data, since this dopends on the relative phases of thie amplitudes. Tf we assume that (2.10). holds in all models, then near to $t \sim-0.6$ (Gev/c) ${ }^{3}$ we expect; the polarised target asymmetry to be civen (ampoximately) by

$$
\begin{equation*}
A \sim \operatorname{Re} A_{++} \operatorname{Tm}\left(A_{+-}-A_{-+}\right) \tag{2.12}
\end{equation*}
$$

It is therefore cructial in fixing the phases of the non amd double flip amplitudes.

If we allow only $\rho, ~(0, B$ and H exchanges, then the polarised target asymetry and the recoil nucleon polarisation are predicted to be equal. This foltows from equation (2.1.0). It has beon noted $\left.{ }^{(3} 7\right)$ that exchanges in the $?^{-\cdots}$ octet wolld contribute to A_{t+} and. A with opposite sjern, thus breselng this equality. No measurement of the recoil nucleor polarisotion exists at the present time so the prediction iffuntested.

Whe other cxperimental observables for wich data exists are the watio R of π° photoproduction from neutrons and protons, and the g^{0} photoproruction differential cross sectionn R fixes the ratic of the isuscalar (ω and H) to isovector (ρ and B) exchances. $S J(3)$ retates π and η photoproduction and the Clebsch-Gordon coefriejents are such thef the isovector amplitude is the important one in rp $\rightarrow \mathcal{F}^{\circ} p$. The rho coupinge to $N \bar{N}$ mean that it contributes natily to $A_{\text {+ }}$ and $A_{\ldots+}$ ir photoproduction. ithe absenee of a dip in g° photoproduction

the data (12) - They require either very strong cita or a 2 arge $\ddot{\text { a }}$ contribution (or both) to fill in the dip.

In fige(2.06) we plot $\alpha_{\text {efr }}(t)$ for the g° reaction. The errors are rather large for any firm sonclusjon to be diami. However, $\alpha_{\text {eff }}$ does show considerably more structure than is observed in hadronic reactions (comparc fige(2.1)). Furthemore; it is tempting to say that the structure, which we would want to blame on pole-cut interference, occurs before t $\sim-0.6(G \in v / c)^{5}$. This would then correlate nicely with the dominance of the rhe non/double filp ampitudes (ine. flip at the meleon vertex) and the absence of a dip at $t \sim-0.6(G \in v / c)^{2}$ in the differential cross section.

In section two of this chapten wo saw how the prositivo polarization in $T_{i}^{-p} \rightarrow \pi^{\circ}$ n leads to the conclusion that Re $\stackrel{1}{1}+$ does not change sign for $|t| \leqslant 0.5(G e v / c)^{2}$. Sow the absoiption model in which the elastic amplitude is mainly inerinory at $\mathrm{t}=0$, predicts that both real and jugeinary porte of the inpirt pole amplitude are absorbed approximately equally at small iti. Thus, if we have the crossover zero in $\operatorname{Im} A_{++}^{1}$, we are forced to accept a zero in Re A_{++}^{1} near to $t \sim-0.2$ ($\left.\mathrm{Gev} / \mathrm{c}\right)^{2}$ with disesterous consequences for the polarization. This is true whether the crossover zero is obtained by direct pole-cui interference (schain) or by atteinpting to use the ciatis to "pull in" the NWSZ from $t \sim-0.5(\mathrm{Gev} / \mathrm{c})^{2}$ to $\mathrm{t} \sim-0.2(\mathrm{Gev} / \mathrm{c})^{2}$. We can conclude that com though the magnitude of $\operatorname{Re} A_{++}^{1 .}$ is noonly determined by the data, it: 3 sign is fixed eid is in derect conflict with the absorption modet.

The reason for the failure is clearly the whons phase
in the absorbinf amplitude. With a Poneron having $\alpha_{p}(0)=1$, the position of the rho pore and the $\rho \mathbb{O}$ cut coincide at $t=0$, producing equal absorption in real and inasinary perts. Worden: ${ }^{(38)}$ has show that the solution is to add an extra component besides the ρ p. cut, which contributes with opposite sign in rear and imaginary parts at small |t. / This means that we require ormething whose Regge phase gives Re/Im < 0 for $1+1: 0.5$ $(\mathrm{Gev} / \mathrm{c})^{2}$. In the J-plane therefores, we require a singularity in the region $0<J<-1$. It is now clear why the Berser-Phillips "five pole fit" (39), in which the $I_{t}=1$ anplitude was paramet.. erised as a sum of ρ and ρ exchanges, predicted the πN CEX polarization comectly. The ρ trajectory lying half a unit below the rho, is in precisely the comect region of the implane to give agreement with the data.

Several modifications of the simple absorption modet have been proposed. One of these is, as we shall discuss in the next chapter, to add Regge-fegge cuts. The assentiat ingredient in all the models is that the non flip ampitude receives significant contributions from the broad J-plane spectrum $0.5<J<-1$.

The inclusion of lower lying singularities specificaily designed to reproduce the $6.0 \mathrm{Gev} / \mathrm{c}$ phases, meens that the extrapolation to low energy gives problems because the different terms cet "out of step" as we go dom in energy (33) This is reflected in the poor agreement of all the new absorption models with the FESN'sn As may be anticipated, particularly severe disegrement is observed in the non flir, insk, where the low lying contributions completely overwhelm the rho pole at low encjeg bringing the crossover zero in towards $t=0$ 。

A fingl point which we have mentioned before is that
c.ll absorption models in which the position of the cut is ejven by the frandelstam formula (1.23) cannot reproduce the strong shrinkage observed in πN reactions. We shall study this problem in greater detail in the next section.

Fig. (2.1.) and fig. (2.4) tocether with the results of ref.(33), provide strong evidence for Rogge shrinkage consistent with $x_{g}(t) \sim 0.5+t$ in botin the flip and non flip amplituaies in πN CEX. Therefore, it is interesting to look at a much wiaer set of reactions involving different amplitudes and exchangess in an attempt to determine whether vis is a universal featwe of all strong interactions. A review of α efis was presented in 1969 by G.C. Fox ${ }^{(28)}$, who came to the conclusion that only πN CEX exinibits strong shrinkage. Since then however, more detailed and accurate data over a wider range of s and th has become available which does not support this statement. We tierefore present a compilation of $\alpha_{\text {eff }}$'s, some of which we have calculated from the data as desoribed in appendix two and others which have been renroduced as they appear in the interature. Table (2.1) shows the processes considered together with the possible exchanges and the range of s and t over which the data extends.

For the class of processes $0^{-}+{\frac{\lambda^{2}}{2}}^{+} \rightarrow 0^{-}+\frac{1}{2}^{+}$which have only single flit and non flip ielitity empljtudes as in the prototype reaction πN Nex, there is no evidence to suggest that shrinkare does not percist out to and beyond $t \sim-1.0$ (Gev/c) ${ }^{\text {d }}$. In the dienest reactions and those for which data exists over the widest renge of s and t, this conjecture is most strongly sumprited.

Such reactions include

$$
\begin{align*}
& \pi^{-} p \rightarrow \pi^{\circ} n \\
& K^{-} p \rightarrow K^{\circ} n \\
& K_{L}^{\circ} p \rightarrow K_{S}^{\circ} p \tag{2.13}\\
& K^{-} p \rightarrow K^{+} A \\
& \pi^{+} p \rightarrow K^{+} \mathbb{S}^{+}
\end{align*}
$$

Until the data from NAL became available recently, the only diisturbing reaction was

$$
\begin{equation*}
\pi^{-} \rightarrow j^{0} n \tag{2.14}
\end{equation*}
$$

Calculatec frou the low energy data ($\mathrm{P}_{\mathrm{lab}} \leqslant 18 \mathrm{Gev} / \mathrm{c}$), α eff apreare to hatiten out around $t \sim-0.5(\mathrm{Gev} / \mathrm{c})^{2}$, which could be interpreted as bejng due to an $A_{2} E P$ cut. Several authors (40) have cominented on the difficulty of analyaing (exparimentelly) this reacion, aine there is the problem of separating the $\%^{\circ}$ from the much lares π° signal. All the data below 6.0 Gev/c comes essentialiy from one experiment ${ }^{(41)}$ and is rathem poor for $|t|>0.5(G \mathrm{~g} / \mathrm{c})^{2}$. Furthermore, an analysis of ρ and A_{2} exchange in the reactions

$$
\begin{align*}
& \pi^{+} p \rightarrow \pi^{0} \Delta^{+4} \tag{2.0.15}\\
& \pi^{+} p \rightarrow \eta^{0} \Delta^{+4} \tag{2.15}
\end{align*}
$$

supports the view that both the ρ and A_{2} exhibit strong fiegae shrinkeqe。In (2.16) the A_{2} trajectory is consistent with

$$
\alpha_{A_{2}}(t) \sim 0.5+t .
$$

all of this casts doubt on the reriability of the low
energy $\pi^{-p} \rightarrow g^{\circ} n$ data. Recents results from somputhon and NAL ${ }^{(36)}$ supporit this view and are in good agreenent with the A_{2}. as obtained from cther sources such as (2.16).

Panelly we sumarise the main features of the experimental
data which are particuiariy relevant to Regge cut ohenomenology.
(i) The 6.0 Gev/c amplitude analysis in $w N$ scettoring suggest that we need absorptive corrections which are strong in imaginary parts but weak in real parts.
(ii) Apart from the speidal case of photoproductions. Regge shrinkare appears to be a univcrsal feature of strong jinteraction amplitudes. A cut modet is needed which does not produce $\alpha_{e}(t)$ given by (1.23), but instead gives a branch poiiti trajectory which approximates to $\alpha_{R}(t)$ over the present Limited energy range. We attempt to formulate auch a model in chapters four and five.

REACTION	$\begin{gathered} \text { FIGURE } \\ \text { NO. } \end{gathered}$	EXCHANGE (S)	$\begin{aligned} & \text { Max } P_{1 a b} \\ & G e v / c \end{aligned}$	$\left\{\begin{array}{l} \operatorname{Max} t \\ (\mathrm{Gev} / c)^{2} \end{array}\right.$
$\pi^{-} p \rightarrow \pi^{\circ} \mathrm{n}$	2.1	ρ	48	1.5
$\pi p \rightarrow \pi^{n} n$	2.3	ρ	4.83	5.0
$k^{ \pm} p \rightarrow k^{ \pm} p$	2.4:a	Isolates $\operatorname{Im} \omega_{++}$	7.2	1.0
$N N \rightarrow N N$	$2.4 b$	Isolates $\operatorname{Im}^{〔} \omega_{++}$	16	1.4
$\gamma_{p} \rightarrow \pi^{0} p$	2.63	$\omega(\rho)$	15	1.4
$x p \rightarrow 3$	2.6 b	$\rho(\omega)$	6.5	1.0
$\pi-p \rightarrow \chi^{\prime \prime}$	2.7	A_{2}	50	1.2
$K^{-} p \rightarrow \bar{k}^{\prime \prime} n$	2.8	ρ, A_{2}	12.3	1.5
$K^{+} n \rightarrow K^{\prime} P$	2.9	ρ, A_{2}	12.0	0.8
$K_{L}^{0} p \rightarrow K_{j p}^{\prime \prime}$	2.10	ω	10	1. 5
$\pi^{+} p \rightarrow \pi^{c} \Delta^{+}$	2.112	ρ	8	0.8
$\pi^{+} p \rightarrow 3{ }^{0} \Delta^{++}$	2.11.b	A_{2}	8	0.8
$\pi^{+} p \rightarrow k^{+} \Sigma^{+}$	2.12,2.13a	$K^{*}, K^{* *}$	14	1.4
$K^{-} p \rightarrow \pi^{\circ} \Sigma^{\circ}$	2.13 b	$k^{*}, k^{2 *}$	16	0.9
$\pi^{-} p \rightarrow k^{\circ} \Lambda$	2.14.a	$k^{*}, k^{* *}$	15.7	0.9
$K^{-} p \rightarrow \pi^{6} \Lambda_{\lambda}$	2.143	$K^{*}, K^{* *}$	14.3	0.9
	2.1 .5 a	Isolates B	7.1	0.9
$\pi{ }^{-p-m} \rho^{n}$	$2.15 b$	Isolates π	17.2	0.9
$K^{+} p \rightarrow k^{0} \Delta^{1+}$	2.16	ρ, A_{2}	15.7	0.8

TABLE 2.1
Reactions for which the effective trajectory $\mathcal{X}_{\text {eff }}(\mathrm{t})$ has been calculated togetiner with the relevant excianges and the range of energy and t over which the data extencis,

FIGURE CAPTCONS - CHAPTER m:NO

2.1 Effective trajectory for the reaction $\pi^{-} p \rightarrow \pi_{n}^{\circ}{ }^{(26)}$.
2.2 Effective trajectory for the strong cut model: of ref". (2'p) for the reaction $\pi \bar{p} \rightarrow \pi " n$.
2.3 Effective trajectory at large $|t|$ for the reaction $\pi p \rightarrow \pi i n(20)$ 2.4 Effective trajectory for the non flip oneega exchange anmistude
in
a) $k^{ \pm} p \rightarrow k^{ \pm} p$
and
b) $N N \rightarrow N N$
from ref. (35)
2.5 The quantity $\Delta \sigma(\pi N)=\sigma\left(\pi^{\prime \prime} p\right)-\sigma\left(\pi^{*} p\right)$
2.6 Effective trajectory for the reactition
a) $\gamma_{p} \rightarrow \pi^{0} p$ from the data of ref.(42).
and
b) $\gamma_{p} \rightarrow g^{0} p$ from the data of ref. (43)
2.7 Effective trajectory for the reaction $\pi p \rightarrow \mathcal{g}^{\circ} n$. The points marked o were calculated from the data of ref. (11), winst those marked o are calculated from the serpurhov and list data ${ }^{(36)}$.
2.8 Effective trajectory for the reaction $k^{-} p \rightarrow \bar{k}^{\circ} n$ from the dats of ref.(44).
2.9 Fffective trajectory for the reaction $k^{+} n \rightarrow K^{\circ} p$ from the data of ref. (45).
2.10 Effective trajectory for the reaction $K_{L}^{0} p \rightarrow K_{S}^{0} p(46)$.
2.11 Effective trajectories for the reactions
a) $\pi^{+} p \rightarrow \pi^{0} \Delta^{++(47)}$
end

$$
\text { b) } \pi^{+} p \rightarrow \eta^{0} \Delta^{++(47)}
$$

2.12 Effective trajectory for the reaction $\pi^{*} p \rightarrow k^{+} \sum^{\gamma}$ from the data of ref.(48).
2.13 Effective trajectories for the reactions
a) $\pi^{+}, p \rightarrow k^{+} \Sigma^{+(6)}$
and

$$
\text { b) } k^{-} p \rightarrow \pi^{-} \Sigma^{+(6)} \text {. }
$$

2.11 Effective trajectories for the reactions

$$
\begin{equation*}
\text { a) } \pi^{-} p \rightarrow k^{\circ} \wedge \tag{6}
\end{equation*}
$$

and
b) $k^{-} p \rightarrow \pi^{0} \wedge$
(6)
2.15 a) Effective trajectory for the B exchange contribution in $\pi^{+} p \rightarrow \omega \Delta^{++}(49)$ 。
b) Effective trajectory for the π exchange contribution in $\pi^{-} p \rightarrow \rho^{\circ} n$ (50).
2.10 Effective trajectory ron the reaction $k^{+} p \rightarrow k^{*} \Delta^{++}$from J. P. Do Brio and C. Jewin (Mucro Cimento 19A 225 (1974)).

Fig $2 \cdot 1$

Fig $2 \cdot 2$

$P_{\text {labs }}<50 \mathrm{Gev} / \mathrm{c}$

Fig 2.3

Fig 2.5

Fig 2•6a

Fig 2.7

Fig $2 \cdot 8$

Fig 2.9

Fig $2 \cdot 10$

Fig 2.11a
Fig $2 \cdot 11 \mathrm{~b}$

Fig $2 \cdot 12$

Fig 2.13a

Fig 2.13 b

Fig 2.14

Fig 2.14b

Fig 2.15a

Fig 2.15b

Fig $2 \cdot 16$

CHAPICER THREE

3.1 THE BTKONAT HODES

In chapter one we introduced the ebsorption model, in which the rescattering corrections to single Regge pole exchange arc calculated by multiplying each term of the partial wave expansion by a fiactor which accounts for elastic scatiering. One of the fundanenteil problems with this appioach was that the diagrams had a planar topology. Consequently we could not be sure that we were calculating a true Refge cut, even though the rescattering term had the correct $s^{\alpha}(\log (s))^{-1}$ behaviour.

An attractive approach which utilises the close analogy between sissorption in nuclear and high enercy elementery particle physics, is the eilronal nodel first proposed by Glauben (51.). Of crucial importance is the composite nature of the scatteryme particle:s which allows them to break up into their constivents, scatter and then subsequently recombine. If we consider deuterondeuteron scattering, then we can draw the following diagrams.

Diegram (a) iepresento single scattering which in the high enorgy context is of course the basic Regeg pole exchances winist (b) and (c) are rescattering terms. At high enerpy, (c): where each of the constituonts of the first particle scauters once off eack conctituent of the other particle, is much nore probable than (b), where the interaction occurs twice between the same pair of particles. This pictue is fine for the deuteron
whose binding energy is smajl ($\mathrm{B}, \mathrm{Fo} / \mathrm{m}_{\mathrm{a}} \sim^{10^{-3}}$), but is difficult to reconcile with the highly bound systens which we encounter in strong interactionsa

In recent years many papers have appeared in the literature, which seek to justify the eikonal model in high energy scattering (52). The crucial non-planar structure is obtajned as follows. We work within the framework of ϕ^{3} theory and ascribe to each Regeon a two particle form factor vertex. Thus we are lead to consider the sun of diagrams

(a) is the usual Regge pole exchange which tin the eikonal model plays the role of the "born term", whilst (b) gives the AFS cut with the correct $s^{-3} \log (s)$ behaviour. The graph (d), in which the couplings are nested meximally agrees both in form and (approximate) magnitude ${ }^{(53)}$ with the second term of the eikonal series which we shall develop later. Furthermore, it has the correct topological (ciouble crons) struciure to satisfy the Mancelstan criterion for a true Regge cut. 'The contriblition from (c) where the rouplings are nested, but not maximelly, is one power of log(s) dow on (d). Finally, (d), (f) and the higher order diagrams give expressions which correspond to those obtained
by exponentiation of the basis Regge pole exchange, as in the eikonal series.

This in calculating the eikonal series we are suming the contributions from the set of graphs shown ebove. The structure of these graphs obviates those problems of the absorption model stemming from the non planar nature of the prescription. The addition of a two body form factor vertex ensures a cut-offe in momeirtum transfer, so that most of the incident particies' momenta passes up the sides of the diagram. (The eikonal model in nuclear physics is often called the "straight-line approximation".) This is also a feature of Gribov's Reggeon calculus and of course corresponds very closely to the physical situation at high energy.

A point emphasised by Caray (54) is that a complete theony should include both s and t-channel unitarity. Therefone we should also consider the t-iterations of the simple pole and cut ciagroms ass shown below。

The t--iterations ofregge pole oxchange play a vital role in "softening" the nature of the cut discontinuity and also jn removing the Gribov-Pomeranchuk fixed pole at $J=-1$. In chapter four we shall investigate further the effects of tchannel unjtarity on the phenomenology of Regge cuts.

3.2 mim zinonal gentes (4)

In the eikonal model we have an approximation to the full s-chamel partial wave series.

$$
A_{H_{s}}(s, t)=16 \pi \sum_{J 0 \mathrm{~m}}^{\infty}(25+1) A_{A_{s}}^{J}(s) d_{A_{\mu}}^{J}\left(\mathbb{Z}_{s}\right)
$$

This equation should be compared with (i oc) which was written for the case of particles without spin. H_{s} represents the set of s-channel helicity labels and $\mathrm{d}_{\mu_{\mu}}^{J}\left(Z_{s}\right)$ are the usual rotation functions.

In the high energy limit $s \rightarrow \infty, \mid t / / s \rightarrow 0$ the following replacement is valid

$$
d_{\mu_{j}^{\prime j}}^{5}\left(2_{3}\right) \longrightarrow J_{i j}\left(1(s+1 / 2) \hat{U}_{3}\right)
$$

The indey of the Bessel function is equal to the net s-chanrej. helicity flip (1.15) and θ_{S} is tie s-channel scattering angle. We now introduce the impact parameter b, defined by

$$
\begin{equation*}
J=q_{s} b-\frac{a}{2} \tag{3.3}
\end{equation*}
$$

In the large s, small $|t|$ limit, $\cos \theta_{s} \approx t /\left(2 q_{s}^{2}\right)$ so that $\theta_{s} \approx\left(-t / q_{s}^{2}\right)^{\frac{3}{2}}$, and in equation (3.2)

$$
\begin{equation*}
\left(J+\frac{1}{2}\right) \theta_{s} \rightarrow b \sqrt{-t} \tag{3.4}
\end{equation*}
$$

Thus we can now replace the summation over J in (3.1) b. an integral over impact paimeters

$$
\begin{equation*}
\hat{H}_{H_{S}}\left(5,6 j \approx 16 \pi \int_{0}^{\infty} q_{s} d b\left(2 q_{s} b\right) R_{H_{S}}^{J}(s) J_{N}(b \sqrt{-\xi})\right. \tag{3.5}
\end{equation*}
$$

The eikonal phase shift $\chi_{H_{S}}(s, b)$ is defined by
analogy with the normal phase shift $\delta_{J}(s)$.

$$
\begin{equation*}
A_{H_{s}}^{T}(s)=\frac{e^{2 i \delta_{3}(s)}-1}{2 i p(s)} \longrightarrow \frac{e^{i x_{H_{s}}(s, b)}-1}{\alpha_{i} p(s)} \tag{3.6}
\end{equation*}
$$

where we have now made the approximation discussed in the last section; that the only effect of the interaction is to alter the phase of the incident particles wave fronts, with no effect on its direction.

Now remembering that $\rho(s)=2 q_{g} / \sqrt{s}$ and from Appendix one

$$
\begin{equation*}
q_{s} \underset{s \rightarrow \infty}{ } \sqrt{s} / 2 \tag{3.7}
\end{equation*}
$$

we finally end up with

$$
\begin{aligned}
A_{H_{s}}(s, k) & =4 k \pi s \int_{0}^{\infty} b a b i\left(1-e^{i x_{N s}(s, b)}\right) J_{N}(b \sqrt{-b}) \\
& =4 \pi s \int_{0}^{\infty} b d b\left[x-\frac{i(i x)^{2}}{2!}-\frac{i\left(i x j^{3}\right.}{3!}-\cdots \cdot\right]_{N}(h, b)(3.0) \\
& =4 \pi s \int_{0}^{\infty} b d b\left[x+\frac{i x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots \cdots\right] J_{N}(b \sqrt{-k})
\end{aligned}
$$

where, for convenience, we have dropped the helicity labels on $X_{H_{s}}$. The crucial step is to identify the first term of this series with the Fourier-Bessel transform of the Rage pole amplitude via the equation

$$
\begin{equation*}
X_{H_{g}}(s, b)=\frac{1}{8 \pi s} \int_{-\infty}^{0} d t J_{N}(b \sqrt{-t}) A_{H_{S}}(s, t) \tag{3.10}
\end{equation*}
$$

The Regge nole therefore, acts as the born term in the series and plays the role of the potential in nuclear physics. The second term in (3.9) is the two Regeen cut and so on.

This formalism allows for an obvious extension to inelastic processes involving quantum number exchange, in which the basic interaction is treated to lowest order but full account; is taken of elastic scattering in the initial and final states. Continuing the anglogy with nuclear physics to include the Distorted Wave Born Approximation ${ }^{(55)}$, we make the replacement

$$
\begin{align*}
i\left[1-e^{i X_{H_{s}}(s, b)}\right] & \longrightarrow X_{H_{6}}^{R}(s, b) e^{i X_{H_{B}}^{Q l}(s, b)} \tag{3.11}\\
= & X_{H_{s}}^{R}+i X_{H_{s}}^{Q l} X_{H_{s}}^{R}-\frac{\left(X_{H_{8}}^{Q}\right)^{R} X_{H_{s}}^{R}+\cdots}{\alpha!} \tag{3.12}
\end{align*}
$$

where $X_{H_{s}}^{\eta}$ is now the Fourier-Bessel transicurn of the neges pole which carries the quantum numbers, and the second factor in (3.11) is the elastic S-matrix. If we include the λ introduceci by the Michicgan group to allow for the possithility of diffractively produced interne tiate states (for the "weak cut model" set $\lambda=1$), the fuil replacement (3.11) becones

$$
\begin{equation*}
X_{H_{s}}^{Q} \exp \left[i \lambda X_{H_{s}}^{Q 2}\right] \tag{3.1.3}
\end{equation*}
$$

and (3.8) is now (dropping helicity labels agatin)

$$
\left.A(s, t)=4 \pi \pi \int_{0}^{\infty} b d b\left[x^{R}+i \lambda x^{R} x^{e l}-x^{R} \frac{\left(\lambda x^{e d}\right)^{2}}{2!}+\ldots\right]\right]_{N}(b \sqrt{t})(3.14)
$$

As a stimple illustration of the use of these formulae which will prove useful later, we consider the effect of elastic rescattering - given by Pomeron exchange - on the single Regge
pole amplitude. For a helicity amplitude having net helicity flip $N(=0,1,2$, etc. $)$ we parameterise the Rage pole as

$$
\begin{align*}
A_{N}^{R}(s, t) & =i\left(s / s_{0} e^{-i \pi / 2}\right)^{\alpha(\theta)}(-t)^{R / 2} G_{N} e^{c_{N} t} \tag{3.15}\\
c_{N} & =a_{N}+\alpha^{\prime}\left[\ln \left(s / s_{0}\right)-\frac{i \pi}{2}\right] \tag{3.16}
\end{align*}
$$

Where we have obtained (3.15) from the general expression (1.14) by making the following replacements.

$$
\begin{align*}
& \alpha(t)=\alpha(0)+a^{\prime} t \\
& \gamma_{N_{s}}(t)=\gamma_{N j}(t)=G_{N S} e^{a_{N} t} \tag{3.17}\\
& F_{H_{0}}(\alpha(t))=1, \quad x=0 .
\end{align*}
$$

For the signature factor, which provides the liege phase, we have considered an odd signature Rage pole (egg. the rho) and made the approvinstion

$$
\begin{equation*}
\frac{1-e^{-i \pi}}{\sin \pi \pi}=\frac{i e^{-i \pi \pi / \alpha}}{\cos \frac{\pi \pi}{2}} \approx i e^{-i \pi \alpha / 2} e^{b t} \tag{3.18}
\end{equation*}
$$

and we have absorbed the factor $e^{b t}$ into the residue function. Equation (3.15) with $s_{0}=1(\mathrm{Gev} / \mathrm{c})^{2}$ repents a typical Regse parametrisation mich we shell use repeated ty throughout this work.

Fou simplicity, we take elastic scattering to be given by spin non flip Poneron exchange.

$$
\begin{align*}
A^{e t}(s, t) & =i \sigma_{T} s e^{c_{p} t} \tag{3.19}\\
c_{F} & =a_{p}+a_{p}^{\prime}\left[\ln \left(s / s_{0}\right)-i \pi / a\right] \tag{3.20}\\
\alpha_{p}(t) & =1+A_{p}^{\prime} t \tag{3.21}
\end{align*}
$$

The corresponding eitonal phases X^{R} and $\chi^{e l}$ are easily obtained by substituting (3.15) and (3.19) into (3.10) and performing the integration with the aid of the relationship ${ }^{(56)}$

$$
\begin{equation*}
\int_{-\infty}^{0} e^{c t}(-t)^{N / 2+m} J_{N}(b \sqrt{-t}) d t=\left(\frac{t}{\partial}\right)^{N}\left(-\frac{\partial}{\partial c}\right)^{m} \frac{e^{-b / 2 c}}{c^{w+1}} \tag{3.22}
\end{equation*}
$$

The result is

$$
\begin{align*}
& x^{R}(s, b)=-\frac{i\left(s e^{-i \pi / s}\right)^{\alpha(0)}}{8 \pi s} G_{N}\left(\frac{b}{8}\right)^{N} \frac{e^{-b^{2} / 4 c_{N}}}{c_{N}^{\alpha+1}} \tag{3.2.3}\\
& X^{R}(s, b)=\frac{i \sigma_{T}}{8 \pi} \frac{e^{-b^{2} / 4 c_{p}}}{c_{p}} \tag{3.24}
\end{align*}
$$

:!e now have to evaluate the series (3.14). To do this Let us consider just the secondteril, whit h is the Regeon-Pomeron cut. (The first term gives us back the Reggae pole (3.15).)

$$
\begin{align*}
& A_{N}^{(a)}(3, \theta)=\frac{i\left(s e^{-i \pi / a}\right)^{\alpha(0)}}{2} G_{N}\left(-\frac{\lambda \sigma_{T}}{\sigma_{\pi} c_{p}}\right) x \\
& \quad \times \int_{0}^{\infty} b_{d b}\left(\frac{b}{3}\right)^{N} J_{N}(b \sqrt{-E}) \frac{a \operatorname{axp}\left[-\frac{b^{2}}{4}\left(\frac{1}{c_{P}}+\frac{1}{c_{N}}\right)\right]}{c_{N}^{N+1}} \tag{3.?5}
\end{align*}
$$

To perform the integration we use the inverse or (3.22).
$\int_{0}^{\infty} b d b e^{-b^{2} / 4 b c}\left(b^{2}\right)^{\frac{\mu}{d}+m} J_{1 v}(b \sqrt{-t})=(-t)^{m / 2}\left(4 c c^{2} \frac{\partial}{\partial c}\right)^{m}(2 c)^{j+1} e^{c t} \quad(3.20)$
Then if we define $\boldsymbol{X}=c_{p} /\left(c_{p}+c_{N}\right)$, not to be confused with the eikonal phase shifts, we find

$$
\begin{gather*}
A_{N}^{(2)}(s, t)=i\left(s e^{-i \pi / a}\right)^{\alpha(0)} \dot{Q}_{N}(-t)^{N / 2}\left(\frac{-\lambda \sigma_{T}}{8 \pi c_{P}}\right) \times \tag{3.27}\\
x \quad X^{N(+1)} e^{c_{N} x_{N} t}
\end{gather*}
$$

'Fo generalise the notation to include the higher order terms in the eikonal series, we renlace X by

$$
\begin{equation*}
X_{n}=\frac{c_{p}}{(i n-1) c_{p}+c_{N}} \tag{3,23}
\end{equation*}
$$

The full series of cute R Q $\mathrm{p}^{\mathrm{n}-1}$ is then simply

$$
\begin{equation*}
A_{N}(s, t)=i\left(S e^{-i \pi_{2}}\right)^{\alpha(0)} G_{N}(-t)^{N / \alpha} \sum_{n=1}^{\infty}\left(\frac{-\lambda \pi_{T}}{Z \pi c_{\beta}}\right)^{n-1} \frac{x_{n}^{N+1}}{(n-1)!} e^{c_{N} x_{n} t} \tag{3.29}
\end{equation*}
$$

As expected, the first term gives us back the Regge pole and the whole sum represents the set of Reggeon-Poneron cuts.

$$
\begin{equation*}
R+R W P+R P P Q+\ldots \ldots \tag{3.30}
\end{equation*}
$$

Thus by taking a Pomeron which is purgly inaginary at $t=0(3.19)$, we have ended un with a two particle nut which has the opposite sign to, and therefore interferes destructively with, the input Rege pole. In fact by truncating (3.2.9) at $\mathrm{n}=2$ we remroduce the absorption model result. The eikonal method however, aflows us to calculate multi-Foneron and malli-Reggeor cuts.

For typical values of the Regge paraneters the series converges rapidly, (for example 5\% accuracy requires onl: the first four or five terms to be computed) and the main contribution is from the first two terms. Closer exaraination of the second term reveals thet as $s \rightarrow \infty$ its energy ${ }^{\text {dependence is } s^{\alpha}(\log (3))^{-1} .}$ and the cut trajectory $\alpha_{c}(t)$ is

$$
\alpha_{c}(t) \underset{s \rightarrow \infty}{\rightarrow} \alpha(0)+\frac{\alpha^{\prime} \alpha_{p}^{\prime}}{\alpha^{\prime}+\alpha_{p}^{\prime}} t
$$

as in the Nandelstam result. Also, the exponentiol t dependence of the cut is less than that of the pole, allowing the pole--cut
interference mechanisn to occur.

3.3 THE NEH ABSORPIION MODELS

All of the old absorvtion models $(19,20)$ fajil to reproduce the pheses of the rho amplitudes in πN CNX as revealed by the 6.0 Gev/c amplitude analysis. We have seen that one contributine factor is an inadequate description of the elastic amplitude used to generate the absorptive effects.axperimentally ${ }^{(31)}$

$$
\left[\frac{\operatorname{Re} A_{++}^{0}}{\operatorname{Tm} A_{++}^{0}}\right]_{t=0} \approx 20 \% \text { at } 6.0 \mathrm{Gev} / \mathrm{c}
$$

Therefore the representation of elastic soattering by a Poneron with intercept one is clearly insufficient, at least at 6.0 gev/c.

Several ways of changing the phase of the absorptive correations have leen proposed $(22,23)$ end Worden has shown that all owe their success to the introduction of lower lying J-ntane contributions. To avolã usijng ad hoc prescriptions to intruảuce the required phase modifications and to retain contact with Regge phenomenology, we prefer to describe the $I_{t}=0$ exchenge amplitude as a sum of Pomeron (P) and $P^{\prime \prime}$. Then, in addition to the $\rho \bar{y} P$ cuts with the usual intercept $\alpha_{c}(0) \sim 0.5$, there wint also be $\rho \mathbb{S} \mathrm{P}^{\prime}$ cuts. These will. considerably alter the phese of the total cut contribution since their intercept will be

$$
\alpha_{\rho p^{\prime}}(0)=\alpha_{\rho}(0)+\alpha_{p}(0)-1 \approx 0
$$

Coltins and Swetinan (27) have demonstrated that the result of using such a prescription is a distinct improvement in the phase of the $I_{t}=1$ amplitudes. In particulan their fit gives a positive polorization in the rogion $0 \leqslant|t| \leqslant 0.5$ (cev/c) ${ }^{2}$ consistent with the data. In the next section we shaliz briefly describe this model in ordeiv io be able to generalise tho enonst formalism to inciude $R Q p$ cuts, and to extend the model to
include neutral pion photoproduction and related processes.
However we should finst mention a recent paper by Worder (57) in which he uses the Gribov Reggeon calculus to establish symmetry relationships betweer the different Regse-regec cuts which may contribute to a given process. In the Reggeon calculus (discussed in grester detail in the next chapter) the two Regceor. cut is produced by a diagram of the type shown beiow

The N's are Giiboy vertices, which are the residues of the fixed poles in the appropriate Reseen-particle scattexing anplitudes. The Gribov vertices vanish if these mplitudes do not have a third dos.f(4). 'lhis is an analugous statement to tho Finkelstein selection rule ${ }^{(58)}$, which seys that liegse-nezee suts can only be present if there exists a planar s-iu dualtty diagram (i.e. both the s and u charmel non exotic). If wo make the followine assumptions:
(i) SU(3) symmetry is enact for the Regge residues,
(ii) Strong BxD holds for $\rho-A_{2}$ and $P^{\prime}-\omega$,
then itt is possible to derive symmetry relationships between the Gribov vertices.

$$
\text { E.g. } \quad N_{\rho \pi \rightarrow p^{\prime} \pi}\left(q_{1} q^{\prime}\right)=-N_{\mu_{A} \pi \rightarrow \omega \pi}\left(q, q^{r}\right)
$$

These in turn inply corresponuing relationsilips between the Reggillegge cuts, and predici a cancellation between the P^{*} D. ρ cut in $\pi N C E X$ and the $\omega \& A_{2}$ cut.

A useful way of representing the intenal symmetry properties of Regge-regge cuts ${ }^{(59)}$ is to use an extension of the technique proposed hy Harari and Rosner ${ }^{(60)}$ for Rege poles. If we have a pait of BXD Regge poles such as $\rho-\Lambda_{2}$ or $p^{r}-\omega$, shese add to give an amplitude with a rotating phase and subtnact to give one which is purely real. The duritity diagems corresponding to these two possibjlities for the relevant case of mesonbaryon scattering are shown below.

(a) represents the rotating case whilst, (b) is the real combination. to obtein a Regge-Regge cut we combine (a) anci (b) with the acditior of an extra twist of a pair of internal lines on both the upper and lower halves of the diagram. The resuilt is shown beiow where we take the explicit example of πn cux.

If we label tiie quark lines and remember that

$$
\pi^{0}=\frac{1}{2}(\overline{\mathrm{p}} p-\overline{\mathrm{n}} \mathrm{n})
$$

we see that the diaprain corresponds to the sase in which wo have the $n \bar{n}$ commonent of the π°. Fron this we must subtract
the diagram below.

Therefore we have

$$
\begin{gather*}
\left(P^{\prime}-\omega\right) \boxtimes\left(A_{2}+\rho\right)-\left(P^{\prime}+\omega\right)\left(A_{2}-\rho\right) \tag{3.30}\\
=2\left(P^{\prime} \Omega \rho-\omega K A_{2}\right)
\end{gather*}
$$

and if we assume exact EXD of the residues and trajectories we arrive at borden's conclusion - that the odd signature Rerge. Regex cuts in T N CoX cancel. Girardi et ai (01) tame this apmoach one stage further by adopting an explicit model for tine pomeron (in a duality diagram sense) and using this to examine the properties of $R \mathbb{Q} \quad \mathbb{R}$ cuts. If we accent that the cancellation in (3.30) is exact, then these cuts awe expected to provide the main correction to the simple $\rho+\rho \mathbb{N}$ cut model of πN N. However, the cancellation (3.30) only occurs if EXD holds. We shall indicate later why this may not be arch a good apmoximation and why the $\omega \mathbb{N} A_{2}$ cut my be smell. 3.4 REGGE-HEGGB CUMS TN πN SCATILRJNG

Collins and Sweden take for the $I_{t}=0$ amplitudes of appendix one the following sum of P and P^{\prime}.

$$
\begin{align*}
& A_{t o}^{0}(s, t)=i \sigma_{q} s e^{c p t}+E_{0} e^{c p i t} \alpha_{p}(t) x \\
& x\left(s / s_{0} e^{-i \pi / a}\right)^{x_{p}(0)} \tag{3.31}
\end{align*}
$$

$$
\begin{array}{r}
A_{+-}^{0}\left(s_{1} t\right)=\frac{\sqrt{-t}}{d m}\left[i c_{0} s e^{d p t}+F_{c} e^{d p^{\prime} t} \alpha_{p^{\prime}}(t) x\right. \tag{3.32}\\
\left.x\left(s_{3} s_{0} e^{-i \pi_{2}}\right)^{x / p_{1}(0)}\right]
\end{array}
$$

Where

$$
\begin{align*}
& c_{p}=a_{p}+\alpha_{p}^{\prime}\left(\ln \left(s / s_{0}\right)-i \pi / 2\right) \tag{3n.33}\\
& c_{p}=a_{p^{\prime}}+\alpha_{p}^{\prime}\left(\ln \left(s / s_{0}\right)-i \pi / 2\right)
\end{align*}
$$

with similar derinitions for d_{p} and $d_{p:}$
Now; Borger and Phillips (39) (BP) have proposed a model. of π iv scattering in which the $I_{t}=0$ amplitudes involve the sum of $P+P^{\prime}+P^{r r}$ exchanges, and are in good agreement with both the FHSR constraints and the 6.0 Gev/c amplitude analysis. To Iacilitate the fitting procedure, Collins and Swetman treated the $B P$ amplitudes as "data" to which they fitted the paraneterisations (3.31) and (3.3?) e This can be done ir two possible ways:
(i) We can treat the equations above as simply proviting a functional representation of the $I_{t}=0$ arplitude wich allows the integrals involved in the eikonal prescription to be done onalytically. We call this the "effective pole representation",
(i.i) Alternatively we can consider (3.31) and (3.32) as the input Regge pole terms to the eikonal series (3.9) whici generates the fuil set of multiparticle cuts

Both methods were tried by Coliins and Swetman and found to five approximately the same resultse. However, we are interested in using the $J_{t}=0$ amplitude to calculate acsorptive corrections to the pole in the $I_{t}=1$ amplitude. For this purpose, (i) is definitel. y superior since with this method we do not need to evaluate the full eikonal series, just the first two terms, with a corresyonding saving in computer time. We shail jescribe the "effective pole method" and use it when we extend the model to
photoproduction.
We proceed by substituting (3.31) and (3.32) into (3.10) to calculate the eikonal phase shifts. In an obvious notation these are.

$$
\begin{align*}
& X_{++i}^{o}(s, b)=\chi_{++}^{P}(s, b)+\chi_{++}^{P^{\prime}}(s, b) \tag{3.34}\\
& X_{+-}^{o}(s, b)=X_{++-}^{P}(s, b)+\chi_{+-}^{P^{\prime}}(s, b) \tag{3.36}
\end{align*}
$$

For the rho pole amplitudes, the best parameterisation was found to be in terms of the invarient amplitudes A^{\prime} and B corresponding to t-channel helicity non flip and helicity flip respectively. At high energy they are related to the usual scharnel felicity amplitudes of Appendix one by

$$
\begin{align*}
& A_{++}^{\rho}(s, t)=2 m F^{\prime}(s, t)-\frac{s t}{4 m^{2}} B(s, t) \tag{3.35}\\
& A_{+-}^{\prime}(s, t)=\frac{\sqrt{-t}}{2 m}\left(2 m A^{\prime}(s, t)-s B(s, t)\right) \tag{3.37}
\end{align*}
$$

For the amplitudes A^{\prime} and B Collins and Swetman take the typical Rage form

$$
\begin{align*}
2 m A^{\prime}(s, t) & =i\left(s / s_{0} e^{-i \pi / 2}\right)^{\alpha(0)} A_{0} e^{c_{1} t} \tag{3.38}\\
s(s(t, t) & =i\left(3 / s_{0} e^{-i \pi / 2}\right)^{0(t)} A_{0} e^{\epsilon_{2} t} \tag{3.39}\\
c_{i} & =a_{i}+\alpha^{\prime}\left[\ln \left(s_{i} s_{0}\right)-i \pi / 2\right] \tag{3.40}
\end{align*}
$$

Equations (3.36) and (3.37) have eikonal phases χ_{++}^{P} and $X_{+\ldots}^{P}$ defined as usual through (3.10). To calculate the cuts we now take

$$
\begin{align*}
X_{++}^{1}(s, b)=X_{++}^{\rho}(s, b) & +i \lambda_{++} X_{++}^{\rho}(s, b) X_{++i}^{0}\left(s, 1_{2}\right) \\
& +i \lambda_{+-} X_{+-}^{\rho}(s, b) X_{+-}^{0}(s, b) \tag{3.4.1}
\end{align*}
$$

$$
\begin{align*}
X_{t-}^{\prime}(s, b)=X_{t-}^{\rho}(s, b) & +i \lambda_{+-} X_{t-}^{\rho}(s, b) X_{t+}^{0}(s, b) \\
& +i \lambda_{t-0} X_{4+}^{\rho}(s, b) X_{t-}^{0}(s, b) \tag{3.42}
\end{align*}
$$

In practice the lest term in each of these equations is small and can safely be ignored. The first termis of course the pole, whilst the second term corresponds to the $\rho \mathbb{P}$ and $\rho \mathbb{L}$? cuts, or in the effective pole representation to the sum of cuts

$$
\rho \boxtimes P+\rho \otimes P \otimes P+\ldots+\rho \mathbb{P}
$$

We shall describe the model presented by Collins and Swetman in which the rho adopts the "fixed pole mechanism". in this case there are no nonsense wrong signature zeros in the rho xesidue and the input pole amplitudes are axactly those given in (3.38) arid (3.39). This model is undoubtribly the most successful in fitting the data. Also tested was a "sense choosing" model in which a factor $\alpha(t)$ was introduced into (3.39), and a "nonsense \therefore, choosing" model which also incorporates one $\alpha(t)$ in (3.38).

To calculate cuts we proceed as outlined in equetions (3.15) to (3.29) for the simple case of just $\mathcal{F} F$, except that in the effective pole representation of the elastic amplituce we need only consider the first two terms in the eikonal series. The eikonal phase shifts are

$$
\begin{align*}
& X_{+\infty}^{P}(3,6)=\frac{i \sigma_{P}}{8 \pi} \frac{e^{-b^{2} / \alpha_{4} c_{p}}}{C_{p}} \tag{3.4.4}\\
& \hat{A}_{++4}^{p^{\prime}}(s, b)=\frac{E_{0}\left(s / 3_{0} e^{-i / 2}\right)^{\alpha x_{p}(s)}}{8 \pi i z} \alpha_{p i}(0) \times \\
& \times\left[1+\frac{\partial!_{p^{\prime}}^{\prime}}{\alpha_{p^{\prime}}(0)} \frac{\partial}{\partial c_{p}}\right] \frac{e^{-b^{2} / 2 c_{p}}}{c_{p^{\prime}}} \tag{3.45}
\end{align*}
$$

which are then incorporated into (5.34).

We do not need (3.35) for the reasons already mentioned. The extra differentation $\partial / \partial c_{p}$ in the P^{\prime} eikonal is a result of the $\alpha_{p^{\prime}}(t)$ in the pole (no compensation mechanism) and arises through equation (3.22)

We now write for the full amplitude

$$
\begin{align*}
& A_{++}(s, t)=A_{++}^{\rho}(s, t)+A_{++}^{\rho P}(s, t)+A_{++}^{\rho P}(s, t) \tag{5.46}\\
& A_{+-}(s, t)=A_{+-}^{\rho}(s, t)+A_{+-}^{\rho P}(s, t)+A_{+--}^{\rho P}(s, t) \tag{3.47}
\end{align*}
$$

Where the individual terms are obtained by taking the Fourier... Bessel inverse of (3.41) and (3.42) using (3.26). We consider the $\rho \otimes P$ and the ρP^{\prime} cuts separately.
(i) ρP cuts

These are calculated in exactly the same way an in section two except that we now have two terms corresponding to the A^{\prime} and B parts of each helicity amplitude. In the flip amplitude, both enter on the same footing so that the cut is merely the sum of two similar terms. However, in the non flip ease the B part contains the extra t factor which requires a differentiation $\partial / \partial c_{2}$ in the cut (from (3.22)). Thus by direct analogy to (3.29) we can write

$$
\begin{align*}
& A_{++}^{\rho P}(s, t)=i\left(s / s_{0} e^{-i \pi / 2}\right)^{\alpha(0)}\left(\frac{-\lambda_{t+} \sigma_{T}}{8 \pi}\right) x \\
& \%\left[A_{0} \frac{x_{p_{1}} e^{c_{1} x_{p_{1} t}}}{c_{p}}-\frac{B_{0}}{x_{1} N^{2}}=\frac{\partial}{\partial c_{a}} \frac{x_{p_{2}} e^{c_{2} x_{p_{2}} t}}{c_{p}}\right] \tag{3.48}\\
& A_{+=}^{\rho p}(s, t)=i\left(s / s_{0} e^{-i \pi_{r a}}\right)^{\alpha(0)}\left(-\frac{\lambda_{t-} \sigma_{T}}{3 \pi}\right) x \\
& x\left[A_{0} x_{p_{1}}^{2} \frac{e^{c_{1} x_{p_{1}} t}}{c_{p}}-B_{0} X_{p_{2}}^{\alpha}-\frac{e^{c_{i} x_{p_{2} t}}}{c_{p}}\right] \tag{3.49}
\end{align*}
$$

Where we have defined

$$
\begin{equation*}
x_{p i}=\frac{c_{p}}{c_{p}+c_{i}} \quad(i=1,2) \tag{3.50}
\end{equation*}
$$

Note the extra differentiation in (3.48) and the fact that we have used only the second term of (3.29), not the full series.
(ii) $\rho \otimes P^{\prime}$ cuts

We define, as in the P case

$$
\begin{equation*}
X_{p^{\prime} i}=\frac{c_{p^{\prime}}}{c_{p^{\prime}}+c_{i}} \quad(i=1,2) \tag{3.51}
\end{equation*}
$$

Then examination of the eikonal phases (3.44) and (3.4.5) reveals that to go from P to P^{\prime}, we must
(a) make the replacement

$$
\begin{equation*}
\left(\frac{-o_{T}}{8 \pi}\right) \rightarrow \frac{i E_{0}\left(5 / s_{0} e^{-i \pi / a}\right)^{\alpha_{p}(0)}}{8 \pi s} \tag{3.52}
\end{equation*}
$$

(b) introduce the differentiation cussed by the no compensation factor $\alpha_{P^{\prime}}(t)$. That is we make the replacement

$$
\begin{equation*}
\frac{x_{p i}^{N+1} e^{c_{i} x_{p i} t}}{c_{p}} \longrightarrow \alpha_{p^{\prime}}(0)\left(1+\frac{u_{p^{\prime}}^{\prime}}{u_{p 1}(0)} \frac{\partial}{\partial c_{p}}\right) \frac{n_{p^{\prime} i}^{N+1} e^{c_{i} x_{p_{i}} t}}{c_{p^{\prime}}} \tag{3.53}
\end{equation*}
$$

where $N=1,0$. The following formulae are useful

$$
\begin{aligned}
& \frac{\partial}{\partial c_{p^{\prime}}}\left(X_{p^{\prime} i}^{N+1}\right)=\frac{(N+1) c_{i}}{c_{p^{\prime}}^{2}} X_{p^{\prime} i}^{N+2} \\
& \frac{\partial}{\partial c_{p^{\prime}}}\left(e^{c_{i} x_{p_{i}^{\prime}} t}\right)=\frac{c_{i}^{2} t}{\varepsilon_{p_{1}}^{2}} x_{p_{i}^{\prime}}^{2} e^{\varepsilon_{i} x_{p^{\prime} i} t} \\
& \frac{3}{\partial c_{p^{\prime}}}\left(x_{p_{i}^{\prime}}^{N+1} e^{c_{i} x_{p^{\prime}} t}\right)=\frac{e^{c_{i} x_{p^{\prime} i t}}}{c_{p^{\prime}}} x_{p^{\prime} i}^{N_{+1}}\left[\frac{c_{i}^{2} t}{c_{p^{\prime}}^{2}} x_{p^{\prime} i}^{2}+\frac{(N+1) c_{i}}{c_{p_{1}^{\prime}}^{2}} x_{p^{\prime} i}-\frac{i}{c_{p^{\prime}}}\right]
\end{aligned}
$$

Since, in (3.53), we need $\left(1+\frac{\sim_{p}^{\prime}}{\alpha_{p}^{\prime}}(0) \frac{\partial}{\partial c_{p}}\right)$, it is convenient to define

$$
\begin{equation*}
F_{p^{\prime} i}^{(N)}=1+\frac{\alpha_{p^{\prime}}^{\prime}}{\alpha_{p^{\prime}}(0)}\left[\frac{c_{i}^{2} t}{\frac{n^{2}}{-1}} x_{p_{i}^{\prime}}^{2}+\frac{(N+1) e_{i}}{c_{p^{\prime}}^{2}} x_{p_{i}^{\prime}}-\frac{1}{c_{p^{\prime}}}\right] \tag{3.6:5}
\end{equation*}
$$

Using this notation, the $\rho \otimes P^{\prime}$ cuts are

$$
\begin{align*}
& A_{+\infty}^{\rho p^{\prime}}(3, t)=i\left(s / s_{0} e^{-i \pi / 2}\right)^{\alpha(0)}\left[\frac{i E_{0} \lambda_{\phi+\infty}\left(3 / s_{0} e^{-i \pi / 2}\right)^{\alpha /(0)}}{8 \pi s}\right] \alpha_{p^{\prime}}(s) x \\
& x\left[A_{0} \frac{e^{c_{1} x_{p^{\prime}} t}}{c_{p^{\prime}}} X_{p^{\prime} i} F_{p^{\prime}}^{(0)}-\frac{B_{0}}{q_{m^{2}}} \frac{\partial}{\partial c_{2}} \frac{e^{c_{2} x_{p^{\prime} 2} t}}{c_{p^{\prime}}} X_{p_{2}^{\prime}} F_{p^{\prime} 2}^{(0)}\right] \text { (3.56) } \\
& A_{+-}^{\rho p^{\prime}}(s, t)=i\left(s / s_{p} e^{-i \pi / 2}\right)^{\alpha(0)}\left[\frac{i E_{0} \lambda_{\phi-}\left(s / s_{0} e^{-i \pi / 2}\right)^{\alpha p_{p}(0)}}{8 \pi s}\right] \alpha_{p_{1}}(0) \times \\
& x\left[A_{0} X_{p^{\prime}}^{2} \frac{e^{c_{1} x_{p_{1}} t}}{c_{p^{\prime}}} F_{e_{p^{\prime} 1}}^{(1)}-B_{p_{2}} X_{p^{\prime} a}^{2} \frac{e^{c_{2} x_{p^{\prime}} t}}{c_{p^{\prime}}} F_{p^{\prime} 2}^{(1)}\right] \tag{3.57}
\end{align*}
$$

Finally the full amplitude is oviained by combining all the relevant amplitudes in (3.46) and (3.4.7).

If the rho chooses sense or nonserse the formulae are further complicated by the $\alpha_{\rho}(t)$ factors which require extra differentiations similar to (3.54). However, since Collins ard Swetman concluded that the fixed pole coupling mechanise was the the most: successiful in describing the data, we shall proceed no further along these lines. Much of this formalism will carry over into the photoproduction case to be disscussed in the next section.

A useful preliminary step to a full data fitting progremae, i.s to actually fit the $B P . I_{t}=1$ amplitudes with the parameterisation above. The reasoning behind this is tinat the $B P$ mplitudes satisfy the FESR constraint and also the detailed phase information available at $6.0 \mathrm{Gev} / \mathrm{c}$ from the amplitude analysis: Since ine experinental phese sensitive data (polarizations) ís very scarce and has such large errors: it carries very litti.e wejght in the fi.t. It is very easy therefore, to get reascnable agreement with the differential cross section data from a completely spurious
phase structure. Fitting the BP amplitudes avoids such false minima in X^{2} by ensuring that the paraneters are in approxinately the correct region before going on to fit the actual data. Rapid convergence is usually obtained in this way.

Briefly, the results of the fit are:
(i) All the CEX data are weil represented in this model. including the polarization, crossover zero and the dip in the differential cross section.
(ii) Problems occur in the elastic polarizations because of the poor description of $\operatorname{Re} A_{+-}^{1}$ at $t \sim-0.5(\mathrm{Gev} / \mathrm{c})^{2}$. In chepter two we lescribed how the data forces a double ze:o in Re A.t. at this point, whilst the fit has oniy a single zero. More serjously $\left|A_{+-}^{1}\right|$ is too smoll at ismege $|t|$ so that the mirrur symunetry is badly broken.

This the conclusion is that the BP description of the elastic amplitudes fails to give a completely satisfactory fit to all the $T N$ data. The analysis of Kelly (21) indicates a slightly different structure for the $J_{i}=0$ amplitudes \cdots in particuler a zerc in Re A_{t+}^{o} at $t \sim-0.35(\mathrm{Gev} / \mathrm{c})^{2}$. A fit to these instead of the $B P$ amplitudes failed to improve the elastic polarizations, even though it generated (through the cuts) a difrerent phase phase structure in the $I_{t}=1$ contribution. This is an indication of the sensitivity of the cuts to the shape of tine absorbing : \because amplitudie. However, the model is still a distinct impiovement over the old absorption model without the Regge-Regge cuts.

3.5 REGGE-RIEGGE CUTS IN PHOTOPRODUCTION

Incouraged by the successes obtained in πN scattering by including Regge-Regge cuts to correct the deficiencies of the old absorption model, we decided to extend the approach to describe π° photoproduction and the other $\operatorname{SU}(3)$ related processes. The rich emplitude structure in photo-induced reactions makes this a severe test of the cut phases.

A recent analysis by Chadwick et al ${ }^{(62)}$ has shown that both the strength and shape of the diffractive amplitude in $\gamma_{p} \rightarrow \gamma_{p}$ and $\gamma_{p} \rightarrow \rho^{0} p$, are very much the same as in $\pi N \cdots \pi N$ when scaled by Vector Dominance. So, replacing π by Y at the meson vertex appears to have little effect on the $I_{t}=0$ exchange. We therefore take for the elastic anplitude the form given in equation (3.31), with the parameters fixed by the fit of Collins and Swetman to πN scattering (Taiule (3.1;). Using this amplitude to calculate the cuts makes the model highiy constrained in that the relative phase of pole and cut is compietely fixed, and the only freeaom is in the Regge pole parameters and the overall strength of absorption through the usual λ factors.

In the previous section we indicated thai it was uesful to fit the $B P$ amplitudes directly before going on to fit the actimal data. Worden ${ }^{(63)}$ has produced a model of π and η photoproduction whici desciibes most of the data and is also consistent with the FESR's. However, the obsorptive corrections are freely parameterised and the model also includes the lower lying B and H trajectories, so it is difficult to decide just how good the model really is. Nevertheless; the phases of the amplitudes shouid be reasonably accurrate. We therefore used Worder's anplijtudes in a similar way to the BP amplitudes in πN to obtain approximstely the correct phase structure before fitting the experimental data.

Our model ${ }^{(64)}$ is then one in which we include the two highest lying exchanges ρ and ω. In the notation of Appendix one we parameterise the poles as

$$
\begin{equation*}
f_{\mu^{\prime} \beta}^{R}(s, t)=i(-t)^{(N+2 \pi) / 2}\left(s / s_{0} e^{-i \pi / 2}\right)^{\left(\alpha R^{(0)}\right.} G_{\mu^{\prime} \mu^{\prime}}^{R} e^{C_{\mu^{\prime} \mu^{\prime} t}^{R}} \tag{3.58}
\end{equation*}
$$

where $R=\{\rho, \omega\}$, and as usual

$$
\begin{equation*}
c_{\mu^{\prime} \beta}^{Q}=a_{\mu^{\prime} \mu}^{R}+\alpha_{Q}^{\prime}\left[\ln \left(s / s_{0}\right)-i \pi / 2\right] \tag{3.59}
\end{equation*}
$$

The trajectories are linear functions of t_{s} with the intercepts constrained so thai they extrapolate through the physical particles. In Table (3.2) we define the Rage couplings along with the values of N and x for the different felicity states. S_{n} is again taken to be $1(\mathrm{Gev} / \mathrm{c})^{2}$.

The cut formalism is much simpler than in the last section because we have only one term in (3.58) instead of the two in πN because of the A^{\prime} and B parametrisation. If we again write for the full amplitude

$$
A_{\mu_{j}^{\prime}}(s, t)=\sum_{R=\rho, \omega} A_{\mu^{\prime} \mu}^{R}(s, t)+A_{\mu^{\prime} \mu}^{P Q}(s, t)+A_{\mu_{j}^{\prime \mu}}^{P^{\prime} R}(s, t) \quad(3,60)
$$

then the cuts are calculated in exactly the same way as before.
(i) $x=0$ amplitudes $(N=0,1,2)$
(a) RP cuts

$$
\begin{array}{r}
A_{\mu^{\prime} \mu}^{P R}(s, t)=i\left(s / s_{0} e^{-i \pi / a}\right)^{\alpha_{a}(0)} G_{\mu^{\prime} \beta^{\prime}}(-t)^{\alpha / / 2} \\
\times\left(-\frac{\lambda_{\mu_{p}, \sigma_{T}}^{R}}{8 \pi}\right) x_{p \rho}^{N+1} \frac{e^{c_{R} X_{p Q} t}}{c_{P}} \tag{3.61}
\end{array}
$$

Far convenience we have dropped the felicity labels on $C_{\mu \mu}^{R}$, and defined

$$
\begin{equation*}
X_{P R}=\frac{C_{P}}{C_{R}+C_{P}} \tag{5.62}
\end{equation*}
$$

(b) R P' cuts

If we make the replacements outlined in (3.52)
and (3.53), then

$$
\begin{aligned}
& A_{\mu^{\prime} \mu^{\mu}}^{B}(s, t)=i\left(s / s_{0} e^{-i \pi / 2}\right)^{\theta+(0)} G_{\mu^{\prime} j_{j}}^{G}(-t)^{\alpha / / 2} n
\end{aligned}
$$

where $\mathrm{F}_{\mathrm{P}}(\mathrm{N})$ is defined in (3.55) and

$$
\begin{gather*}
X_{P^{\prime} R}=\frac{C_{P^{\prime}}}{C_{R}+C_{p^{\prime}}} \tag{3.64}\\
\text { (ii) } x=2 \text { amplitudes }(N=0) \\
\text { Comparing }(3.22) \text { and }(3.58) \text { we see that the } N=0,
\end{gather*}
$$

$x=2$ cuts can be obtained by substituting $N=0$ in (3.60) and (3.63) and differentiating with respect to c_{R} (We actuality take $-\frac{\partial}{\partial c_{0}}$ to bring down the factor ($-t$) in (3.58) I) In fact

$$
\begin{equation*}
-\frac{\partial}{\partial c_{R}}\left(x_{P R} \frac{e^{c_{R R} x_{P R} t}}{c_{P}}\right)=-\frac{e^{c_{R} x_{P R} t}}{c_{P}}\left[x_{P R}^{3} t-\frac{x_{P R}^{2}}{c_{P}}\right] \tag{3.6!5}
\end{equation*}
$$

which gives
(a) R P cuts

$$
\begin{align*}
& A_{-f}^{R P}(s, t)=i\left(s / s_{0} e^{-i \pi / 2}\right)^{\alpha_{i}(0)} G_{-\phi}^{R}\left(\frac{\lambda_{-+}^{R} \sigma_{T}}{8 \pi}\right) x \\
& x \frac{e^{c_{R} x_{P R} C^{c}}}{c_{P}}\left[\frac{x_{P R}^{2}}{c_{P}}-x_{P R}^{3} t\right] \tag{3.66}
\end{align*}
$$

(Note: In reference (63), equation (11), which details the replacement needed to obtain (3.65) from (3.60), a minus sign has been omitted.)
(b) R $R P^{\prime}$ cuts

Here the differentiation $-\frac{\partial}{\partial c_{\alpha}}$ is more
complicated. Using a result similar to (3.65) for the p ' case, we find

$$
\begin{align*}
& A_{\mu^{\prime} j^{\mu}}^{\rho^{\prime} R}(s, t)=i\left(s / s_{0} e^{-i n / 2}\right)^{M_{R}(0)} G_{04}^{R}: \\
& x\left[\frac{i \lambda^{R}+E_{0}\left(s / s_{0} e^{\left.-i \pi_{/ 2}\right)^{\alpha} p_{p}(0)}\right.}{8 \pi s}\right] \alpha_{p,}(0) x \tag{3.67}\\
& x \frac{e^{c_{R} x_{P_{R} R^{\prime}}}}{c_{P^{\prime}}}\left\{\left[\frac{x_{P^{\prime} R}^{2}}{c_{P^{\prime}}}-x_{P_{R}^{\prime}}^{s} t\right] F_{P^{\prime} R}^{(0)}-x_{P^{\prime} R} \bar{F}_{P^{\prime} R}^{(0)}\right\}
\end{align*}
$$

Where

$$
\begin{align*}
\bar{F}_{p^{\prime} R}^{(0)} & \equiv \frac{\partial}{\partial c_{R}}\left[F_{p^{\prime} R}^{(0)}\right] \\
& =\frac{\alpha_{p^{\prime}}^{\prime}}{\sigma_{p_{1}(0)}}\left(\frac{2 c_{R} t}{c_{p_{1}}^{2}} x_{p^{\prime} R}^{3}+\frac{x_{p^{\prime} R}^{b}}{c_{p^{\prime}}^{2}}\right) \tag{3.68}
\end{align*}
$$

Thus equations (3.61),(3.63),(3.66),(3.67) form our prescription for the Rage cuts and the full amplitude is given by (3.60). . If we place the same interpretation on the elastic amplitude as before (effective pole representation), these equations correspond to the series of exchanges (fige(3.1))

$$
\begin{align*}
R & +R \boxtimes P+R \boxtimes P 区 P+\ldots \ldots \\
& +R \otimes P^{\prime}+R \boxtimes P^{\prime} \boxtimes P+\ldots \tag{3.69}
\end{align*}
$$

We again checked that if we use the parameters for the elastic amplitude obtained from the second method of fitting the $I_{t}=0$ amplitudes (see section (3.4)) and evaluate the full eikonal series to give (3.69), very similar results are obtained but they take very much longer to compute. 'therefore, we adopt the effective pole method for practical purposes, and by first fitting Wonder's amplitudes rapid convergence was achieved when
the experimental data was inserted.

3.6 RESULTS AND DISCUSSION

We display the results of the fit to the available π^{0} and η^{0} photoproduction data ${ }^{(65)}$ in figs.(3.2) - (3.6) and table (3.3). The agreenent with the data is excellent. Farticularly encouraging j.s the good description of the polarised target asymmetry, as this provides the most severe test of the non flip: and double flip amplitude phases. As we discuseed in chapter two, if $A_{++}=A_{-}$and $A_{+-}=-A_{-+}$, then $\Sigma=1$ identically. Looking at table (3.2), we see that the poles certainly satisfy this, whilst. (3.61) and (3.66) show how the cuts do not. The violistion occurs in the nor flip and double flip amplitudes and the deviation of Σ from unity measures the strength of thjes violation. It is of course important at $t=0$ and $t-0.5(\mathrm{Gev} / \mathrm{c})^{2}$ and is less significant at large $t 8$ i'ig.(3.3) reflects this general trenc. In our model, the unnatural parity components in the cuts replace the B and H exchanges used by Worden.

The ratiosof vector to tensor couplings at the nucleon vertex which we obtain are

$$
\frac{a_{v}^{\rho}}{G_{T}^{\rho}} \approx 0.2 \quad \frac{G^{w}}{G_{T}^{p}} \approx 0.9
$$

The rho is therefore in good agreement with typical values obtained in fits to πN scattering. The large value of the omega flip coupling is essential in cur model to obtain good agreenent with the neutron/proton ratio of fige (3.5). Worden includes, in addition to the B, the H meson (which is the isoscalar member of the 1^{+--}octet; with a large flip coupling with respect to the B. He is therefore able to preserve the small non flip onega coupling predicted by Vector Deminance ${ }^{(66)}$. To compare the Regge predietion with vill however, we must first extrapolate from the photon
to the vector meson mass m_{ω}^{2} and then down the Regge trajectory to the scattering region $t \leqslant 0$, so our value of 0.9 is by no means incompatible with VDM.

In fig. (3.7) we compare our anplitudes with those obtained by Worder, arid also show the effect of including the R W P' cuts. It is clear that this is mostly in the real parts as expected, and in fact is crucial in order to obtain a good description of the polarised target asymmetry (fig. (3.4)).

In fig.(3.3) we give the predictions for the polarised target and polarised photon asymuntries in ξ^{0} photoproduction, and for the ratio of η° photoproduction from neutrons and protons.

We aliso attempted to fit the data using a model with nonsense wrong signature zeros. The basic problem with such a model is that it predicts a dip at $\mathrm{t} \sim-0.5(\mathrm{Gev} / \mathrm{c})^{2}$ in tio differential cross section (dominated by rho exchange), contreary to the data. Even allowing $\lambda>1$ and a sutestantial B contribution we are still unable to fill in the dip compleiely. Of:; course, as the B exchange dies away with errergy, the dip is expected to deepen.

Finally, we return to Worden's argumerit ${ }^{(57)}$ that, provided
 cuts could be cencelled by $A_{2} \otimes \omega$ and $P^{\prime} \mathbb{\omega}$ wespectively. As fig. (3.9) shows, our neglect of the latter pair of cuts is equivalent to assuming a sinall coupling for the B - thus breaking exchange degeneracy. A similar argument explains winy we niight expect the $\mathcal{P M P}$ cut to be much larger than the w Λ_{2} in πN CEX.

It appears that tie inclusion of the P^{\prime} in order to
obtain a better description of the elastic amplitude can solve many of the problems of the old absorption models. The only worrying feature of this and in fact all the current absorption modeis, concerris the energy dependence of the cuts. This is revealed in two ways:
(i) As we extirapolate to low energies the cut begins to dominate the pole (their relative strength at $6.0 \mathrm{Gev} / \mathrm{c}$ is fixed by the ampitude analysis) causing severe disagreement with the FESR's (see chapter: two)
(ii) At high energies the cuts calculated in the ebsorpition/eikonal model predict too little shrinkage at large |t| in hadronic reactions. This is apparent from figs.(2.i.) and (2.2) for the particular case of πN CEX. In figo(3.10) we plot: $\alpha_{\text {eff }}(t)$ for the model of π° photoproduction which we have just described and compare it with the "data" oifig.(2.6a). The model reproduces all the features of the data and we are lead to conclude that a strong cut model in which the cut trajectory takes tine Mandelstan form (1.23) together with Regge-Regge cuts to produce the correct phase structure, is completely consistent with all aspects of the photoproduction data.

It is this puzzling fact that photoproduction is similar to purely hadronic reactions in all respccts excepi its energy dependence and that the absorption model produces cuts which have the correct energy dependence in photoproduction but not in liadronic reactions, that we shall attempt to invectigate further in the final two chapters.

Pomeron			P^{\prime}
σ_{T}	$19.92(\mathrm{nb}) / 0.3893$	E_{0}	$-43.31(\mathrm{mb}) / 0.3893$
a_{p}	2.02	$a_{p^{\prime}}$	0.23
α_{p}^{\prime}	0.49	$\alpha_{p^{\prime}}$	1.10
$\alpha_{p}(0)$	$1.0($ fixed $)$	$\alpha_{p^{\prime}}(0)$	0.55

TABLE 3.1
Parameters for the $I_{t}=0$ non flip N amplitude from reference (27)

TABLE 3.2
The couplings for Reggeon R exchanged in $\gamma_{p} \rightarrow \pi^{\circ} p$ from reference (12).

The decay width $\omega \rightarrow \gamma \pi^{\circ}$ gives $g_{w \pi y}^{2} / \not / x=0.038$ and the meson couplings were then fixed by the Vector Dominance relations $g_{\omega \pi \gamma}=g_{p \omega x}=g_{k s}$ and $g_{5 \rho}=3 g_{\gamma \omega}=0.06$.
M is the nuclide con mass.

Parameter	ρ	ω
α^{\prime}	0.80	1.00
G_{v}	2.19	15.56
$G_{r T}$	10.07	20.02
a_{++}	4.42	1.07
$a_{+\cdots}$	0.02	1.61
λ_{-+}	2.88	1.51
λ_{++}	2.93	2.39
λ_{+-}	2.70	1.65

TABLE $3 . \hat{5}$
The final values of the parameters obtained in the
fit to the data of reference (65). The trajectory intercepta were constrained so that the trajectories extrapolated throush the physical particles.

Also we set $a_{-+}=a_{+-}$and $\lambda_{-+}=\lambda_{+\ldots}$ for botin the rho and the omega.

A final $X^{2} /$ data point of 1,07 was achieved for 111 data points.
3.1 The sum of poles and cuts represented by equation (3.60).
3.2 Fit to the differential cross section for $\gamma p \rightarrow \pi^{\circ} \mathrm{p}$.
3.3 Fit to the polarised photon asymmetry for $\gamma_{p} \rightarrow \pi^{\circ} p$ (solid line). The dashed curve is the model of ref.(63).
3.4]i.t to the polarised target asymmetry for $\gamma_{p \rightarrow \pi} \rightarrow \pi^{\circ} p$ (solid line). The dashed curve is the model of ref.(63).
3.5 Fit to the neutron/proton ratio (R) for π° photoproduction. (solid line). The dashed curve is the model of ref. (63).
3.6 Fit to the differential cross nection for $\gamma_{p} \rightarrow \eta^{0} p$.
3.7 The π° photoproduction amplitudes at $6.0 \mathrm{Gev} / \mathrm{c}$
(a) Non flin amplitude.
(b) Single flip amplitude.
(c) Double flip amplitude.

In each case the solid and dosted curves show the result of our fit with and without the $R \otimes P^{\prime}$ cuts respectivel.y. The dashed curve is the model of ref.(63).
3.8 Predictions for various quantities in $\gamma_{p} \rightarrow \eta^{\circ} p$.
(a) The ratio $\left(\gamma_{n} \rightarrow \eta^{0} n\right) /\left(\gamma_{p} \rightarrow \eta^{0} p\right)$
(b) Polarised target asymmetry.
(c) Polarised photon asymmetry.
3.9 Pairs of Regge-Regge cuts which may cancel each other if $\pi-B$. exchange degeneracy holds, accordinf to the arguments of rex: (57).
3.10 Effective trajectory calculated from the nodel of π° plotopioduction presented in section (3.5) compared with the "data" of fig.(2.ba).

Fig 3.1

Fig 3.2

Fig $3 \cdot 3$

Fig 3.4

Fig 3.5

Fig 36

Fig $3.7 a$

Fig $3.7 b$
100^{\prime}

Fig 3.7 c

Fig 3.8a

Fig 3.8 b

Fig 3.8 c

Fig 3.9

Fig 3.10

4.1 IN'SRODUCTION

In chepter three we applied the eikonal Yormalism to the good, phase sensjlive data which exists in πN CEX and neutral pion photoproduction. The model was able to describe the phases of the amplitudes very successfully (the one doubt being Re $A_{+}+$ in the CPX reaction) over a limited energy range. However, as higher energy data has becone available a serious inconsistency has emerged between the shrinkage predicted by the model at large $|t|$ and that which is present in the data (see fjgs.(2.1) and (2.2.)). We clearly need a modification of the eikonal modei in which the cut trajectory approximates to that of the pole over a finite range of s and t.

It is of course well known that the eikonal model satisfies full s-channel unitarity, and in section (3.1) we indicated how the usual Regge pole exchange, when suitably jiterated, gives us the eikonal series. Thus the results of chapter three are consistent with unitarity in the direct channel. However, the complete theory must also satisfy unitarity in the crossed (t or u) channel. The importance of t-channel unitarity for Regge cuts is emphasised by the role they play in removing the difficultics presented by the Gribov-Pomeranchuk fixed pole at "J = -1. Furthermore, Gribov et al ${ }^{(67)}$ have shown how unitarity helps to fix the discontinuities across the Regge cuts in the t-channel partial wave amplitudes.

Several authors have discussed the effect of t-channel unitarity on the simple absorption model and one way of doing this is to use the K-liatrix formalism. Typically the absorption model has

$$
A(s, t) \sim \beta(t) s^{10(t)}-\beta_{c}(t) \frac{s^{\alpha_{c}(t)}}{\ln s}
$$

For simplicity we neglect the signature factor and assume that $\beta_{,} \beta_{c}, \alpha_{,} \alpha_{c}$ are real functions of t. The first term of (4.1) is. the Rage pole and the second term is the (destructive) two particle cut with $\alpha_{c}(t)$ typically given by (1.23). To exhibit the J-plane structure of (4.1) we take the Mellin transforin (partial wave projection) of this equation.

$$
\begin{equation*}
A(s, t)=\int_{s_{0}}^{\infty} d s s^{-5-1} A(s, t) \tag{4.2}
\end{equation*}
$$

The inverse is

$$
\begin{equation*}
A(3, t)=\frac{1}{2 \pi i} \int_{-i \infty+\gamma}^{i \infty e+\gamma} d \pi s^{5} A(5, t) \tag{4.3}
\end{equation*}
$$

In (4.2), s_{o} is the threshold for the amplitude $A(s, t)$ and in (4.3): γ is to the right of all the singularities in the j-plane. The absorption model therefore gives

$$
\begin{equation*}
A(J, t)=\frac{\beta(t)}{(J-\alpha)}+\beta_{c}(t) \ln \left(J-\alpha_{c}\right) \tag{4.4}
\end{equation*}
$$

Mukherji and Desai (68) impose t-channel unitarity bi demanding that the full amplitude $\tilde{\tilde{A}}(J, t)$ satisfy

$$
\begin{equation*}
\tilde{A}(J, t)=\frac{A(J, t)}{1-i p A(J, t)} \tag{4.5}
\end{equation*}
$$

where

$$
p=\left(\frac{t-4 m^{2}}{4 m^{2}}\right)^{1 / 2}
$$

By making suitable assumptions about the nature of the cut trajectory (they take a fixed cut corresponding to $\alpha_{\dot{P}}^{\prime}=0$ in
(1.23)) and the relative strength of pole and cut, they firid that uniterisation through the K-matrix formalism (4.5) has the following effects.
(i) It produces a pair of complex conjugate poles $\alpha_{ \pm}(t)=\alpha_{R} \pm i \alpha_{x}$ which lie on the physical sheet for $t<0$.
(ii) The discontinuity across the cut is sharply peaked around $J=\alpha_{R}$, and furthermore venishes at the jip of the cut $J=\alpha_{c}$.

$$
\operatorname{Disc} \tilde{A}(J, t) \sim \pi \frac{\beta_{c}\left(J-\alpha_{c}\right)^{2}}{\left(J-\alpha_{R}\right)^{2}}
$$

Compare this with the hard cut equation (4.4). (Note that for a fixecu cut $\alpha_{c}=\alpha(0)$ for all t_{0})

This simple analysis indieates that t-chamel unjerity could provide important modifications to the usual. Regge cut parameterations such as (4.1). In particular, the peaking of the cut discontinuity at the position of the prole, may change the energy dependence of the cuts in precisely the way we require in order to describe the strong shrinkage observed in the data.

One model which satisfied full multiparticle t-charnel unitarity is the Reggeon calculus developed by Gribov and others. In recent years this has been examined in great detail, particuiar attention being paid to the nature of the Pomeron and its couplings to i.tself, other Reggeons and the external particles. The calculus evclved from an earlisr technique proposed by Gribov for calculating diagrams involving Reggeons in a simiiar way to Feynmen graphs containing elenentary particles.
4.2 GRIBOV'S REGGEON DIAGRAM TECHNIGUE ${ }^{(69.70)}$

To illustrate the methods which can be used to calculate arbitrarily complicated Reggeon digrans, we consider the case of the two Reggean cut given by the diagram shown below.

The Feynman rules give

$$
\begin{equation*}
A(s, t)=i \lambda^{2} \int d^{4} q d^{4} k_{1} d^{4} k_{2} \frac{R_{1}\left(q, k_{1} k_{2}\right) R_{2}\left(q_{1}, B_{1}-k_{1}, \beta_{2}-k_{2}\right)}{\prod_{m=1}^{\xi} d_{m}} \tag{4.6}
\end{equation*}
$$

where the d's are propagators corresponting to the (eight) internal lines.

$$
d_{1}=k_{1}^{2}-m^{2}+i \varepsilon \quad \text { etc. }
$$

If R_{1} and R_{2} are taken to be the usual Regge pole anplitudes, then the complete diagram gives the two Reggeon cut. To evaluate the diagram, Gribov ct al use the Sudakov technique of writing the internal monenta in terms of their components in the plane of p_{1} and p_{2} and those perpendicular to this plane. They then assume that the Regge amplitudes give important contributions when
(i) the energy variables $s_{1}=\left(k_{1}+k_{2}\right)^{2}$ and $s_{2}=\left(p_{1}: p_{2}-k_{1}-k_{2}\right)^{2}$ are large, and
(ii) the momentiam transfers such as $\left(q-q^{\prime}\right)^{2}$ are small (i.e. \lll s).

After making the Sommerfeld-Watson trensform, they
obtain

$$
\begin{equation*}
F_{5}(t)=\int \frac{d^{2} q_{1}}{(2 \pi)^{2}} \frac{\gamma\left(q^{2}, q^{1^{2}}\right) N^{2}\left(t, q^{2}, q^{12}\right)}{\left(5+1-\alpha\left(q^{2}\right)-\alpha\left(q^{2}\right)\right)} \tag{4.7}
\end{equation*}
$$

where

$$
\begin{array}{cc}
\Delta=q^{\prime}-q & \Delta^{2}=t \\
\gamma\left(q^{2}, q^{2}\right)= & \frac{\cos \left[\frac{\pi}{2}\left(\alpha\left(q^{3}\right)+\alpha\left(q^{2}\right)\right)\right]}{\sin \left[\frac{\pi}{2} u\left(q^{2}\right)\right] \sin \left[\frac{\pi}{2} \alpha\left(q^{2}\right)\right]}
\end{array}
$$

and q_{1} is perpendicular to p_{1} and p_{2}. We can represent equation (4.7) by the diagram below.

N is then the residue of the fixed pole at $J=\alpha\left(q^{2}\right)+\alpha\left(q^{\prime 2}\right) \cdots-1$ in the Reggeon-particle scattering amplitude. It is essential that: the Reggeon-particle couplings have the non planes structure in order that N has both left and right hand singularities. If there is no cross (i.e. only s or u singularities) then $N \rightarrow 0$ and the diagram does not give a cut.

The trajectory of the branch point obtained from this diagram (and also the n-Recgeon exchange diagram) agrees with the Mandelstam result (1.23). One consequence of this for multiPomeron exchanges is that provided $\alpha_{p}(0)=0$, the Pomeron pole and its clits accurnulate at $t=0, J=1$. The same is true of a normal Reggae pole and the cuts formed by the exchange of the Reggeon with n Pomerons, except that in this case the critics l point is $t=0, J=\alpha_{R}(0)$. It is therefore important to con-
sider, at least at small $|t|$, what effect the pole has on the branch points, and indeed what effect the branch points have on each other. Gribov et al $(69,71)$ argiee that because of this coincidence of pole and cuts ot $t=0$, the main contribution to a n-Reggeon production process comes from the "pole-enhanced graphs't For example

is dominated by
is dominated by
(a)

(b)

In this chapter we shail represent external particles by solid lines and Reggeons by wavy lines.

Tiis means that to all graphs of tive type (a), we expect that there existic one of the type (b) in which tise bubble is replaced by the pole. We can therefore draw a pole-enhanced difgram forn the two-Reggeon cut considered earlier。

The approximation in which we consider only pole-enhanced graphe is then one in which we are neglecting cuts in the Recgeon-particle production anplitudes.

4.3 THE RBGCEON CALCULUS

Most of the work on the Reggeon calculus has been motivated by an investigation into the nature of the Pomeron, and in particular into the structure of its couplings to itself and other particles. In recent years there have been several problems connected with the self-consistency of a moving Pomeron pole with intercept $\alpha_{p}(0)=1$. S-channel unitarity has been used extensively to derive the so called "decoupling theorems" which require various Pomeron couplings to vanish (72). The most imp-ortant of these is the vanishing of the triple pomeron coupling $\Gamma\left(t, t_{1}, t_{2}\right)$ when the Pomeron legs are at zero momentum transfer.

$$
\Gamma(0,0,0)=0
$$

One way of obtaining this iesult is to consider the inclusjuve process

$$
a+b \longrightarrow c+X
$$

ir the triple Regge region $s \rightarrow \infty, s / m^{2} \rightarrow \infty, m^{2} \rightarrow \infty$. J.f we use the generalised optical theorem, the leading contribution to the total cross section is provided by the diagram

Jif bechas vacuum quantum numiers the graph is controlled by the triple pomeror vertex $\Gamma\left(0, t_{1}, t_{2}\right)$. When integrated over the
appropriate region of phase spoce, the result violates the froissart bound unless either $\alpha_{p}(0)<1$ or $\Gamma(0,0,0)=0$. Thus if we wish to preserve the Pomeron intercept at unity, the triple Pomeron coupling must vanish. We shall see that this zero also has a t-channel origin in the Reggeon calculus:

The Reggeon calcuilus (73) starts with the assumption which is open to question, that the Pomeron is a pole with intercept one. It is treated as a non-relativistic particle having momentum \underline{k} and energy $w=j-1$. The bare propagator is then

$$
\begin{equation*}
D_{0}(w, \underline{k})=\left(w+\underline{k}^{2}\right)^{-1} \tag{4,8}
\end{equation*}
$$

so that

$$
\begin{equation*}
\underline{\underline{k}}^{2}=-t \tag{4,9}
\end{equation*}
$$

Here: we assume for simplicity that \underline{k}^{2} is scaled so thet the Pomeron trajectory is

$$
\alpha_{p}(t)=1+t
$$

The bare tripile Pomeron vertex is "ir" and all ventiees are assumed to be analytic in w. The general interaction can then be written as a perturbation series expansion in terms of a Reggeon field operator ψ 。

$$
H_{\text {inb }}=\operatorname{ir}\left[\psi^{+} \psi^{\psi} \psi+\psi \psi \psi^{+}\right]+\Lambda \psi^{\dagger} \psi^{\dagger} \psi \psi+\Lambda_{1}\left[\psi^{*} \psi^{+} \psi^{+} \psi+\psi \psi \psi \psi^{+}\right]+\ldots .
$$

The renormalised propagator is
whers

$$
\begin{align*}
& D(w, \underline{k})=\left(w+\underline{\underline{k}}^{2}-\sum_{c}\left(w, \underline{k}^{2}\right)\right)^{-1} \tag{4,10}\\
& \sum_{c}(w, \underline{k})=\sum^{\prime}(w, \underline{k})-\sum(0,0) \tag{4.11}
\end{align*}
$$

Equation (4.11) ensures that (4.10), which is the Dyson equation for D, gives the Pomeron pole at $w=0, \underline{k}=0$.

Gribov and Migdal discuss the "weak coupling solution" to the calculus, in which D differs only slightly from its bare value D_{0}. That is

$$
\begin{equation*}
\sum_{c}(w, \underline{k}) \ll w+\underline{k}^{2} \quad \text { for } \quad w \sim \underline{k}^{2} \rightarrow 0 \tag{4.12}
\end{equation*}
$$

In this limit they show that the unitarity relation which defines Σ_{C}, reduces to a series expansion in the vertex function Γ_{n} for the transition of one Reggeon into n Reggeons.

This series only converges provided the triple Pomeron vertex coupling Γ_{2} satisfies

$$
\left(\Gamma_{2}\right)^{2} \ll w \quad w \sim \underline{k}^{2} \rightarrow 0
$$

and Gribov and Migdal argue that this constraint on Γ_{2} is a result of the instability of the Pomeron - that at $t=0$ it can decay into ar arbitrary number of Pomerons. They propose the general form

$$
\begin{equation*}
\Gamma_{2}\left(w, \underline{k} ; \sigma_{s} \underline{q}\right)=a w+b \underline{k}^{2}+c \underline{q}^{2} \div \ldots \ldots \tag{4.13}
\end{equation*}
$$

So the Pomeron is said to be quasistable at $w=\underline{s}^{2}=0$.
Equation (4.13) describes the general triple Pomeron vertex shown below.

We shall call this the "Gribov vertex" at which the energy; w, is conserved. The inclusive vertex has the extra constraints $w=k^{2}$
and $\sigma=\underline{\underline{k}} . \underline{\text { (which ensures that all the Reggeons lie on the }}$ appropriate spin shell). Thus

$$
\left[\Gamma_{a}(\omega, k ; \sigma, q)\right]_{\omega=k}^{\omega=k^{2}} \underset{\sigma=q}{ }=g_{p p p}\left(k^{2},\left(\frac{1}{2}(k+q)\right)^{2},\left(\frac{1}{k}(k-q)\right)^{2}\right)(4.14)
$$

It follows that the inclusive and Gribov vertices coincide at $\underline{k}=q=0$, where in fact they both vanish.

In the Reggeon calculus the triple Pomeron vertex (and all the other relevant amplitudes) satisfies an integral equation which we show in diagrammatic form below. The explicit form of this equation is given in refs.(70) and (74).

Candy and White ${ }^{(74)}$ have examined the structure of this equation in which the Kernel

The presence of the full triple Pomeron vertex in (4.16) means that ali the potentially singular contributions to K are softened and so cannot individually be responsible for the vanishing of $\Gamma_{2}(4.15)$. One point of view (first proposed by Gribov et al) is that the zero appears in the full equation (4.15) as a result of cancellations amongst the various terms in the iteration of K. This is only feasible if the terms alternate in sign and is therefore related to the sign of the two Pomeron cut.

The two Pomeron production amplitude and also the

Pomeron-Poneron scattering amplitude, satisfy similar equations involving K. This suggests that they too have zeros of the same form as Γ_{2}. For example

Now, by the process of enhancement discussed earlier, we might expect that the full two Poneron production amplitude near $t=0, J=1$, will be dominated by the Pomeron pole.

So that

$$
\begin{equation*}
A_{p o l e}(w, \underline{k} ; \sigma, q) \approx \Gamma_{2}(w, \underline{k} ; \sigma, q) \frac{1}{\left(w+\underline{k}^{2}\right)} B\left(\underline{k}^{2}\right) \tag{4.19}
\end{equation*}
$$

Where $A_{\text {pole }}$ is the pole enhanced part of the full amplitude and $B\left(\underline{k}^{2}\right)$ is the usual residue function. Consequently, we expect the leading contribution to the two Pomeron cut (near $t=0$) to be given by the completely enhanced graph.

The crosses on the internal lines indicate that these Reggcons satisfy the mess shell constraint.

Gribov et al have written down the general furm of the partial wave amplitude. They find (67)

where A and B are meal functions close to $J=\alpha_{c}(t)$, and $\alpha_{c}(t)$. is the usual two Pomeron branch point with $\alpha_{p}(0)=1$. Now since the pole and cut collide at $t=0_{5} J=1$, we expect that the Pomeron pole will appear in the partial wave amplitude. It can also be shown that the two Pomeron production amplitude and the Pomeron-lpomeron seattering amplitude take the form

If the Poneron pole in (4.21) wert to appear as a pole in A then (4.22) would have a square root branch point: thus violating the Mancelstam representation. It is therefore usually assumed that the pole is generated by a zero in D.

$$
\begin{equation*}
D(\alpha(t), t)=0 \tag{4.24}
\end{equation*}
$$

Bronzan (75) has show that in order that the two Pomenon cut contribute to the total cross section with opposite sign to the pole (in agreement witio the Mandelstam result and experiment), then $B(J, t)$ must be singular at $t=0, J=1$. The simplest solution to (4.24) whicis also satisfies this constraint is tiat both A and B share a double pole Z_{0}^{-2} which passes through $J=$ í
at $t=0$. From (4.22), the contribution from the pole enhanced graph will be

where g is the coupling of the Poneron to the externai paricles. Finally, the resjdue of the pomeron pole in (4.23) has a disuble zero: which is consistent with the triple Pomeron coupling posessing a first order zero.

Cardy ${ }^{(76)}$ has generalised this formalism to include the triple Pameron inclusjve vertex.

$$
F_{2}\left(\omega, s ; \omega^{\prime}, s^{*}, q\right)=\operatorname{man}_{(\omega, k)}\left(m^{2}\right)^{2} \frac{1}{2}\left(\omega^{i}+\infty\right), \frac{1}{2}(k+2)
$$

The relationship between it and the energy conserving Gribov vertex (Γ_{G}) is

$$
\Gamma_{G} \equiv \Gamma_{2}(u, k ; \omega, \sigma q)
$$

'The inclusive vertex $\Gamma_{\text {inc }}$, may have $w \neq w$ ' (i.e. the α 's not all the same), but is evaluated at $w=0, \underline{k}=0$. In both cases the final state Pomerons must satisfy the mass shell condition.

$$
w+\alpha^{\prime} k^{2}=0
$$

where we have now included the Pomeron trajectory slope explifeitly. For the ininal state Fomerons this becomes

$$
\begin{equation*}
\frac{\pi}{2}\left(w_{i}^{2} \pm \sigma\right)+\frac{\alpha^{\prime}}{4}\left(\underline{k}^{2}+\underline{q}^{2} \pm 2 \underline{r_{0}} \underline{g}\right)=0 \tag{4.26}
\end{equation*}
$$

Therefore

$$
\begin{align*}
w^{1}+\frac{\alpha^{4}}{2}\left(\underline{k}^{2}+\underline{q}^{2}\right) & =0 \tag{4.27}\\
\sigma+\alpha^{\prime} \underline{k}_{c} & =0
\end{align*}
$$

By studying the sehaviour of the kernal K in (4.15), Cardy concludes that the triple Pomeron vertex must vanish for small g^{2} like

$$
\begin{equation*}
\Gamma\left(\omega, k ; \omega^{0}, \theta, g\right) \sim-\frac{1}{2} a q^{2}+b(\omega-\omega)+O\left(\sigma^{2},\left(q^{2}\right)^{2}\right) \tag{4.28}
\end{equation*}
$$

Thus, setting $w=w^{+}$and using (4.27), the energy conserving Gribov vertex has the behaviour

$$
\begin{equation*}
\Gamma_{G} \sim a\left(w+\frac{\alpha^{\prime}}{2} \underline{k}^{2}\right) \tag{4.29}
\end{equation*}
$$

Which means that

$$
\begin{equation*}
\Gamma_{G} \sim a\left(J-\alpha_{c}(t)\right) \tag{4,30}
\end{equation*}
$$

where $\alpha_{c}(t)$ is the trajectory of the two Pomeron cut. 'The function Z_{0} which produces the zero in the triple Pomeron vertex is therefore a moving zero, having the same trajectory as the two Pomeron cut.

$$
\begin{equation*}
Z_{0} \sim \lambda_{i}\left(J-\alpha_{c}(t)\right) \tag{4.31.}
\end{equation*}
$$

So when we include enhancement, the leacing contribution to the two Pomeron cut has the behaviour

Note that if we exhibit the structure which is present in the Gribov vertices in the diagram of (4.32), we obtian the diagram below.

We can extend the analysis outlined above to include the case where we have non vacuum quantum numbers exchanged in the t-channel. If we consider the diagram

(where R represents a Reggeon having $\alpha_{R}(t)=\alpha_{R}(0)+\alpha_{R}^{r} t$), then (4.32) again gives the leading contribution to the $\mathcal{F} P$ cut even when the trajectories have different slopes (76). In this case the mass shell condition is

$$
w+\alpha_{\mathcal{R}}^{\prime} \underline{k}^{2}=\alpha_{R}(0)-1
$$

The Reggeon calculus therefore, provides lis with a representation (4.32) of the Reggeon-Fomeron cut discontinuity which vanishes at the tip of tine cut and is strongly peaked about the Regge pole position. The derivation of (4.32) relies heavily on the vanishing of the triple Pomeron coupling (which in turn is a consequence of demanding $\alpha_{p}(0)=1$) and indeed on the venishing of the Regge-Regge-Pomeron coupling, at zero momentum transfer. It. is possible to estimate the size of these couplings directly from the inclusive data ${ }^{(77)}$ and unfortunately for the Reggeon calculus they do not appear to vanish in the required linit. However, neither does the Poneron intercept seem to be exactly at one but: slightly above ${ }^{(11)}$.
i!evertheless, given that enhancement occurs we would still nively expect (4.33) to have the form

$$
\begin{equation*}
F(J, t) \sim f(J, t)\left(J-\alpha_{I}(t)\right)^{-2} \ln \left(J-c_{c}(t)\right) \tag{4.34}
\end{equation*}
$$

The Bronzan and Jones analysis (15) into the effect of: t-channel.
unitarity further suggests that:

$$
f\left(\alpha_{c}(t), t\right)=0
$$

i.e. We have a soft cut. Hence (4.32) may still be a reasonable parameterisation even though its exact derivation is suspect.

In the next chapter we shail investigate the consequences of this type of parameterisation for Regge cut phenmmenology. In particular, we shall use (4.32) as the basis for an explicit. model of the Regge-Pomeron cut which we sinail apply to $\pi \mathrm{N}$ CRX and neutral pion photoproduction.

CHAPTER FIVE

Tn Chapter two, we assembled a preat deal of evionce to support the riew that all hadronic two body scaitering ampiatures show strong Regge poie like shminoge out to large values of $|t|$; at Least $|i|<2.0(G e v / c)^{2}$. (We shall return to the problem of photo-induced processes which appear noi to shoink, later. in this chapters) Furthermore, we have shown how the absorptive/eikonal model can be mede consistent with the mplitude analysis by the inclusion of Jower lying contributions - nawely R D p' outs. However, the one characteristic feature of the eikonal model the energy dependence of the cuts which j t generates - is in severe conflict with the results of Chapter two. The problem therefore, is how to modify the eremgy dependence of the cuts to produce stroner starinkage at large $|t|$.

We have indicated in the previous chapter how t-chemne? unitarity, by sortening the mature of the cut discontinuity ard cansing it to peak around the position of the pole, can produce precisely this effectio Equation (4.32) is a parameterizetion of the cut; discontinuity which is zero at the tip of the branct cuti $J=\alpha_{c}^{\prime}(t)$, and also includes a double pole $\left(J-\alpha_{R}(t)\right)^{\cdots 2}$ 。 When this is inserted into the Sommerf eld-Watson transform, tine peaking of the integrend near $J=\alpha_{R}(t)$ should ensure that time cut behaves liice $s^{\left(x_{i}(t)\right.}$ over a finite range of s ard to of course as $s \rightarrow \infty$ we shall begin to see the contribution from $J \approx \alpha_{c}(t)$. We thercfore expect that the effective trajectonies of Chapten two should begin to show some deviation from lineerity as this term becomes impoitant. We shajl incilcate just when inis effect should become observabie ois the basis of our fit to $\pi^{-} p \rightarrow \pi^{0} n$ (section 5.2).
'lo evaluate the contribution of a Regre-Pomoron cut to the
scattering anplitude, we insert the form of the discontinuity (4.32) into the Sommerfeld-watson transiorm. For the particular case of an odd signature Regge pole, this gives

$$
\begin{align*}
& A^{R P}(3, t)=\frac{1}{2 \pi i} \int_{-i \omega \theta+\gamma}^{i \omega+\gamma} G(t)\left(i e^{-i \pi s / a}\right) e^{a J} s^{J}\left(\frac{5-\beta_{c}}{J-\alpha_{R}}\right)^{2} \ln \left(J-\alpha_{c}\right) \\
&(5.1) \\
& \equiv i G(t) F(s, t) \tag{5.2}
\end{align*}
$$

where $\alpha_{c}(t)$ is the branch point as given by the usual Mandelstam formula, $\alpha_{R}(t)$ is the Regge pole trajectory and $G(t)$ is an arbitrary residue function. We have also included in (5.1) an exponential cut-off in the discontinuity function ($e^{a j}$). By analogy io chapter three we now define

$$
\begin{equation*}
c=a+\operatorname{In}(s)-i \pi / 2 \tag{5.3}
\end{equation*}
$$

we can then write

$$
\begin{align*}
F(s, t) & =\frac{1}{2 \pi i} \int_{-i \infty+\gamma}^{i \infty 0+\gamma} e^{c J}\left(\frac{J-\alpha_{c}}{J-\alpha_{R}}\right)^{2} \ln \left(J-\alpha_{c}\right) d J \tag{5.4}\\
& \equiv D(s, t)-P(s, t) \tag{5.5}
\end{align*}
$$

In (5.5) we have divided the integral into two yarts - the contribution from the dipole at $J=\alpha_{R}$ and the principal value integral. The integration contour is shown below.

(a) Dipole

$$
\begin{align*}
D(s, t) & =\frac{d}{d J}\left[e^{c J}\left(J-\alpha_{c}\right)^{2} \ln \left(J-\alpha_{c}\right)\right]_{J=\alpha_{R}} \\
& =e^{c \alpha_{R}}\left(\alpha_{a}-\alpha_{c}\right)\left[1+\ln \left|\alpha_{p}-\alpha_{R}\right|\left(c\left(\alpha_{R}-\alpha_{c}\right)-\alpha\right)\right] \tag{5.6}
\end{align*}
$$

(b) Principal value integral

$$
\begin{equation*}
P(s, b)=\int_{-\infty}^{\alpha} e^{c J}\left(J-\alpha_{c}\right)^{a}\left(J-\alpha_{a}\right)^{-\alpha} d J \tag{5.7}
\end{equation*}
$$

If we rake the change of variable

$$
\begin{equation*}
x=\left(\alpha_{c}-J\right) \ln (s) \tag{5.8}
\end{equation*}
$$

then (5.7) becomes

$$
\begin{equation*}
P(s, t)=\frac{e^{c \alpha_{6}}}{\ln (s)} \int_{0}^{\infty} \frac{x^{2} e^{-\frac{c x}{\ln (s)}}}{\left[x+\left(u_{R}-x_{c}\right) \ln (s)\right]^{2}} d x \tag{5.9}
\end{equation*}
$$

Now

$$
\frac{d}{d x}\left[\frac{e^{-c x / \operatorname{lns}}}{(x+\beta)}\right]=-\frac{c}{\ln s} \frac{e^{-c x_{i} / \ln s}}{(x+\beta)}-\frac{e^{-\cos / \operatorname{lin} s}}{(x+\beta)^{2}}
$$

Therefore, we can write (5.9) as

$$
\begin{align*}
P(s, t)= & -\frac{c e^{c \alpha_{6}}}{(\ln s)^{2}} \int_{c}^{\infty} \frac{x^{2} e^{-c x / \ln s}}{\left[x+\left(u_{0}-\alpha_{c}\right) \ln s\right]} d x \tag{5.10}\\
& -\frac{e^{c \alpha_{c}}}{\ln s} \int_{0}^{\infty} x^{2} \frac{d}{d x}\left\{\frac{e^{-c x / \operatorname{lns}}}{\left[x_{0}+\left(\alpha_{p}-\alpha_{c}\right) \ln s\right]}\right] \\
= & \frac{-c e^{c \alpha_{6}}}{\left(\ln s j^{2}\right.} \int_{c}^{\infty} \frac{x e^{-c x / \ln s}}{\left[x+\left(\alpha_{R}-\alpha_{c}\right) \ln s\right]} d x \\
& +\frac{e^{c \alpha_{c}}}{\ln s} \int_{0}^{\infty} \frac{2 x e^{-\cos / \operatorname{lns}}}{\left[x+\left(\alpha_{R}-\alpha_{c}\right) \ln s\right]} d x \tag{5.11}
\end{align*}
$$

where we have integrated by parts the second term of (5.10). The integrals in (5.11) may be evaluated in terms of the expoential integral function $\mathrm{Ei}(\mathrm{x})^{(78)}$ to give

$$
\begin{align*}
& P(s, t)=-\frac{c e^{c \alpha_{s}}}{(\ln s)^{2}}\left[-\beta^{2} e^{c \beta / \ln s} E i\left(-\frac{c \beta}{\ln s}\right)+\left(\frac{\ln s}{c}\right)^{2}\right. \\
&\left.-\frac{\beta \ln s}{c}\right]+\frac{\alpha e^{c \alpha_{s}}}{\ln s}\left[\beta e^{c \beta / \ln s} E_{i}\left(-\frac{c \beta}{\ln s}\right)+\frac{\ln s}{c}\right] \tag{5.12}
\end{align*}
$$

where

$$
\begin{equation*}
\beta=\left(\alpha_{R}-\alpha_{c}\right) \ln (s) \tag{5.13}
\end{equation*}
$$

If we use the expansion ${ }^{(78)}$

$$
\begin{align*}
& E_{i}(x)=\gamma+\ln |x|+\sum_{n=1}^{\infty} \frac{x^{n}}{n n!} \tag{5.14}\\
& \text { (} \gamma=0.5772 \text { is Euler's constant), we can simplify (5.12) } \\
& \left.P(s, c)=e^{c \alpha_{R}}\left(\alpha_{R}-\alpha_{c}\right)\left(\alpha+\left(\alpha_{R}-\alpha_{L}\right) c\right)\left[\gamma+\ln \epsilon+\ln \mid \alpha_{R}-\varepsilon_{c}!\right]\right] \\
& +e^{c \alpha_{R}}\left(\alpha_{R}-\alpha_{B}\right)\left(\alpha+\left(\alpha_{R}-\alpha_{A}\right) c\right)\left[\sum_{n=1}^{\infty} \frac{\left[\left(\alpha_{c}-\alpha_{B}\right) c\right]^{n}}{n n!}\right] \tag{5.15}\\
& +e^{c \alpha_{6}}\left(\frac{1}{c}+\left(\alpha_{a}-\alpha_{6}\right)\right)
\end{align*}
$$

Finally: by combining (5.6) and (5.15) we obtain

$$
\begin{align*}
F(s, t) & =e^{c \alpha_{G}}\left(\alpha_{R}-\alpha_{C}\right) \\
& =e^{c \alpha_{R}}\left(\alpha_{R}-\alpha_{C}\right)\left(\alpha+\left(\alpha_{R}-\alpha_{c}\right) c\right)[\gamma+\operatorname{lac}] \tag{5.16}\\
& =e^{c \alpha_{R}}\left(\alpha_{R}-\alpha_{c}\right)\left(\alpha+\left(\alpha_{R}-\alpha_{B}\right) c\right)\left[\sum_{n=1}^{\infty} \frac{\left.\left[i \alpha_{c}-\alpha_{R}\right) c\right]^{n}}{n n!}\right] \\
& -e^{c \alpha_{c}}\left(\frac{1}{c}+\left(\alpha_{R}-\alpha_{c}\right)\right)
\end{align*}
$$

5.2 A BEGGE CI MODEL FOR $\pi^{-} p \rightarrow \pi^{\circ} n$.

For the odd signature rho pole contribution to the two independent s-channel helicity amplitudes, we write

$$
\begin{equation*}
A_{N}^{\rho}(s, t)=i\left(s / s_{0} e^{-i \pi / a}\right)^{0(\rho)}(-t)^{N / a} \alpha_{\rho}(t) G_{N} e^{c_{N} t} \tag{5.17}
\end{equation*}
$$

Where, as usual

$$
\begin{align*}
c_{N} & =a_{N}+\alpha_{\rho}^{\prime}\left(\ln \left(s / s_{0}\right)-i \pi / 2\right) \tag{5.18}\\
\alpha_{\rho}(t) & =\alpha_{\rho}(0) \div \alpha_{\rho}^{\prime} t
\end{align*}
$$

and we label the amplitudes by $N(=0,1)$, the net s-channel helicity flip。

She presence of $\alpha_{\rho}(t)$ in both the flip and non flip amplitudes means that the rho chooses nonsense. We did in fact. try a model in which $\alpha_{\rho}(t)$ appeared in only the flip anpintude (sense choosing). However, ir order to obtain a good description of the large $|t|$ differential cos section we had to add extra exponential to the pole residues. A better description of the data is obtained with (5.17), which has just a single exponential plus the nonsense factors (and fewer variable parameters).

Before we wite down the cut amplitudes we recall from chapter two that the amplitude analysis strongly suggest that the flip amplitude in πN CEX is well described by a simple (nonsense choosing) rho pole, ie. the cuts are small in this amplitude. We therefore include cuts only in the non flip amplitude and in the notation of chapter three we write for the $\rho \mathbb{P}$ cut,

$$
\begin{align*}
& A_{\phi-\phi}^{P P}\left(s_{i} t\right)=i\left(5_{1} / 3_{0} e^{-i \pi / 3}\right)^{\alpha /(0)} G_{0} x \tag{5.19}\\
& x\left\{\left(-G_{p}\right) F_{G_{p}}(3, t) \quad(i+b t)\right\}
\end{align*}
$$

Where $F_{c_{P}}(s, t)$ is the function defined in (5.16) with

$$
\begin{equation*}
c — \quad c_{p}=\frac{a_{0} a_{p}}{a_{0}+a_{p}}+\ln s m \frac{i \pi}{2} \tag{5.96}
\end{equation*}
$$

a_{p} is related to the slope of the Poneron contrabution to the forward πN cross section and a_{o} is the exponent whict appeers in the residue of the non flip poie $(\mathbb{N}=0)$ through (5.18). We adopt (5.20) so that the exponentiaj $|t|$ dependence of the cut is related to that of the pole in a similer way to the eikonal models Since our model is basically concerned with the energy dependence of the cut and soys little about the $|t|$ dependence, we have also included the factor $(1+b t)$ in (5.19). To allow for the presence of $\alpha_{\beta}(t$.$) in the pole.$

We require that the model describe the following features of the πN CEX dstai- (79)
(i) I'he 6,0 Gev/c amplitude analysis.
(ii) The differential cross section dats for the
energy range $5 \leqslant P_{1 a b} \leqslant 50$ (eev/c.
(iii) The available polarization data.
(iv) The data on $\Delta e^{=}=e^{-}\left(\pi^{-}\right) \sigma(\pi)$ which has recentl.y become avejleble up to $P_{\text {lab }}=200 \mathrm{Gev} / \mathrm{c}$ from NAL.
(v) The final piece of "data" is the $\alpha_{\text {eff }}(t)$ ef fig. (2.1) which we do not fit, but nevertheless we regard it as extrenely important that our model reproduce this data.

As our first attempt to fit the data we therefore had a simple ρ poie plus $\mathcal{S} \mathcal{F}$ cut model given by enuations (5.1.7) and (5.19). Hovevur we ercountered precisely the same problem as in the naive absorption model, namely the similarity ir phase of pole and cut at small $|t|$. Thus demanding $\left[m A_{++}=0\right.$ ot, $t \sim \sim 1.2$
$(\mathrm{Gev} / \mathrm{c})^{2}$ (the crossover zero) we also have an unwanted zero in Re A_{i+} at approximately the same value of t. With our freckly parameterised cut there are two possible courses of action.
(i) We could take the view that the phase of the $\Omega \mathbb{P}$ cut at $6.0 \mathrm{Gev} / \mathrm{c}$ is not the asymptotic phase. Looking at (5.1.6), the dominant contribution at small $|t|$ comes from the term $e^{c_{c}} / c$, where c is given by (5.20). If we allow a_{p} to. search over negative values we find that we can obtain an excellent. fit to the $6.0 \mathrm{Gev} / \mathrm{c}$ amplitudes. However the parameters are such that

$$
c_{p}=\frac{a_{0} a_{p}}{a_{0}+a_{p}}+\ln s-\frac{i \pi}{d} \approx-\frac{i \pi}{d}
$$

and we are essentially multiplying the small $|t|$ part of be cut by a factor "i.". The energy dependence of the fit is now completely incompatible with the Serpuknov data. In fact the model $\alpha_{\text {off }}$ is approximately linear for $|t|>0.4(\mathrm{Gev} / \mathrm{c})^{2}$, but curves over at coal $|t|$ until $o(0) \sim 0.25$. For this reason we reject this possibility.
(ii) The most sensible solution to the problem: remembering the arguments presented in chanters two and three, is to again add Regge-Regge cuts - in particular the $\rho \mathbb{C} \mathrm{P}^{\prime}$ cut. If we do this we should first remember that the cut trajectory will. be given by

$$
\begin{align*}
\alpha_{p p^{\prime}}(t) & =\alpha_{p}(0)+\alpha_{p^{\prime}}(0)-1+\frac{\alpha_{\beta}^{\prime} \alpha_{p}^{\prime}}{\alpha_{p}^{\prime}+\alpha_{p}^{\prime}} t \tag{5.21}\\
& \equiv \alpha_{\rho p^{\prime}}(0)+\alpha_{f p^{\prime}}^{\prime} t \tag{5.22}
\end{align*}
$$

So that in this case the pole and cut do not coincide at $t=0$,

Hence there is no reason to suppose that the pole "enhancement" of chapter four will occur. (Alternatively, the integration tron - ∞ to $\alpha_{c}(t)$ which appears in the Sommerfeld-Natson transform does not include the pole at $J=\alpha_{R}(t)$.) We therefore expect that the discontinuity across the $\rho \mathbb{E} P^{\prime}$ cut will take the form

$$
\Delta_{\rho p^{\prime}}(J, t) \sim\left(J-\alpha_{6}(t)\right)^{n}
$$

Which gives a contribution to the amplitude

$$
A^{\beta p^{\prime}}(s, t) \sim \frac{s^{\alpha_{c}(t)}}{(\ln s)^{n+1}}
$$

For simplicity we take $n=0$, and we therefore have a nomen absorption/eikonal model parametrisation for the o ${ }^{2} P^{\prime}$ cut:

$$
(5.26)
$$

The full helfoity amplitudes are

$$
\begin{align*}
& A_{++}(s, t)=A_{++}^{\rho}(s, t)+A_{++}^{\rho P}(s, t)+A_{++}^{\rho P}(s, t) \tag{5.25}\\
& A_{+-}(s, t)=A_{+-}^{\rho}(s, t) \tag{5.26}
\end{align*}
$$

where the various terms are defined in equations (5.1'), (5.19) and (5.23). As we have already mentioned, the best description of the

$$
\begin{aligned}
& A_{i+\infty}^{\operatorname{spi}}(s, t)=i\left(s / s_{0} e^{-i \pi / 2}\right)^{\alpha_{\rho}(\theta)} G++
\end{aligned}
$$

$$
\begin{align*}
& c_{p^{\prime}}=\frac{a_{n} a_{p^{\prime}}}{a_{n}+a_{p^{\prime}}}+\ln 5-\frac{i \pi}{2} \tag{5.24}
\end{align*}
$$

secondary maxjmum in the CEX differential cross section near $t \sim-0.8(\mathrm{Gev} / \mathrm{c})^{2}$ is obtained using a nunsense chocsing tho pole coupiting. Collins and Swetman (27) found that the use of the A^{\prime} and B invariant amplitudes improved the quality of their fit in this rezion. However, in our case such a description is uf littio practical value because of the extra paraneters we would bave, to generate the cuts.

The final values of the paremeters are shown in table (5.1). Because of the rather arbitrary t dependonce of the cuts, we are unable to compare most of these paraneters with those of the eikonel model fit described in Chapter three. However, the flip/non flip ratio of the rho couplings is in general egreenent. with ell ather estimates, as also are the trajectory parmetcre tow the various exchanges. In particular $\alpha_{p}^{\prime} \approx 0.28$ is consietent with the value obtaint from the small t shrinkage of the $p p$ differential cross section oven the T.Si range。 (11.)

In fig. (501) we plot the helicity amplituder at 5.0 (ex, These are obviously in excellent agroement with tho emplitude anmlysis - the cuts having modified the non Chip cmplititude to produce both the crossover zero and the approximate double zesc in Re $A_{\text {H. }}$. The fitt to the differential cross section data is shom in figo (5.2) mhere we have shown a selection of the available low energy data ($P_{\text {leb }} \leqslant 18 \mathrm{Gev} / \mathrm{c}$) along with the data from Serpukiov ($21 \leqslant \mathrm{l}_{\text {lab }} \leqslant 50 \mathrm{Gev} / \mathrm{c}$). The shrinkoge present in the data is clearly seproducea by the fit. The intercept $u^{\prime}(0)$ is fined by the fit to Δc^{2} (fig. (5.4.)), with the full modet $\alpha_{\text {eff }}$ in fic. (5.3). Tine recent NaL data at $50,100,150$ and $200 \mathrm{Gev} / \mathrm{c}$ hes cast coubt on the overall nomalisation of the Serpukhov desta and in the fit to $\Delta \sigma$ we have used oring the low errergy plus nill dai:a Firially we
show our fit to the available polarization data jri fige(5.5). It is clearly consistent with the more recent data of Hill et al, giving a polarization $\sim 20 \%$ for $|t| \leqslant 0.5$ (Gev/c) 2, in contrast. to the CERN measurenent of $\sim 60 \%$ in this region. An interesting prediction (which can just be observed in figo(5.5d)), is the appearance of a substantiai negative poiarization in the range $1.0 \leqslant|t| \leqslant 2.0(\text { Gev } / c)^{2}$ as we go to higher energies.

The only data which we have not included in our fit: is the wide angle CEX data from which Barger and Phillins extracted $\alpha_{\text {eff }}{ }^{(t)}$ for $|t| \leqslant 5.0$ (Gev/c) ${ }^{2}$. However, in fig. (5.6) we plot α eff (t) at large $|t|$ calculated from the model for three diff. erent energy ranges. Below 5.0 Gextc (whicis is the range andyser by Barger and Phillips), the shrinhage in our woiel is concistent with the "data" (figo(2.3j) for $|t| \leqslant 3.0(G e v / c)^{2}$, whion is weil beyond the range over which we might reasonably expect Regge theory to apply at such low energies: as we explained in chapter two Fig.(5.E) elso predjects that we shall observe some deviatjon oi (χ. eff from (approxinate) Jineari iy as Iarge $|\mathrm{t}|$ data becones aveilabie at Serpuknov or VAL.

A further appealing property of the model is the way in which it extrapolates down to low energy. In chapter two we discussed how the lower lying contributions present in the new absorption models to give the correct phase structure et 6.0 cev/s, are so sirong that they overwhelm the poje at low enerey, movine the crosenver zerc in towaris $t=0$. If we look at the non in ip amplitude in sur fit at $2.0 \mathrm{Gev} / \mathrm{c}$, v:e find that the crossorei zero lise moved in, but only to $t \sim-0.14(G e v / c)^{2}$ compared with its position of $t \sim-0 . Q(G e v / c)^{2}$ at. $P_{\text {Iab }}=6.0 \mathrm{Cov} / \mathrm{C}$. We should contrast thie with the eikonal model fit of Coiline and Swotman
in which the crossover zero has moved to $t \sim-0.7(\mathrm{Gev} / \mathrm{c})^{2} \mathrm{E}=$ 2.0 Gev/c.

Thus we have demonstrated that a simple model which incorporates a p 区 cut discontinuity peaked at the position of the pole, can describe all the features of the πN CEX data above $P_{l a b} \sim 5.0 \mathrm{Gev} / \mathrm{c}$, provided we also include the $\rho \mathbb{K} \mathrm{P}^{\prime}$ cuts in order that our amplitudes have the correct phases. There ane two predictions which can be made on the basis of this mode?:-
(i) Wes expect the strong shrinkage spparent in the currently available data to be modified according to fig. (5.6) when we Look beyond $t \sim-2.0(G e v / c)^{2}$ at Serpukhov and NAL. (ii) A weaker prediction jis the appaarance of a subst-antial negative polarization at hjeher erengy in the rogim $1.0 \leqslant|t| \leqslant 2.0(\mathrm{Gev} / \mathrm{c})^{2}$.
5.3 THE $R Q P$ CUT DISCONRINUITY IN PHOTOPRODUCTION

As we indicated in chapter two, the only reactime in which we do not observe Regge shrinkage ere the photo-inducen processes. These reactions have a much richer amplitude structure with non flip, single flip and double flip amplituses all contrib. uting to the cross section. One possibjilty is that the cul Amom continuity is still peaked at the pole, as in πN, with the observed structure in the photoproduction $\alpha_{\text {eff }}$ near it $\sim-0 . S$ (Gev/c) ${ }^{2}$ end the lack of shrinkage at lasge $|t|$, being dile to pole-cut interference which postpones the strong shrinkage veyord the limit of the available data.

To investigate this problen we lave attempted to reproduse the photoproduction amplitudee obtained from the exkonal model riti of section 3.5 - whicr we lnow have the correct phases to soinsisy
both the FESP's and the high energy asymmetry data - using nifftrent paraneterisations of the discontinuity function $\Delta(J, i)$. We rely heavily on the formalism of section 5.2 and because the cuts are freely parameterised, we require a new set of out pararim deters ($a_{p} s a_{p r}, G_{p}, G_{p r}$) from each helicity amplitude. However, to economise we set them equal in the non/double flip amplitudes, so that there are in fact eight free parameters (four for: the non/ double flip and four for the two single flip amplitudes) in all to describe the absorption.

$$
\text { As in } \pi N \text { CEX we write (R } \mathbb{R} \text { outs) }
$$

where

$$
\begin{equation*}
c_{P}=\frac{a_{N} a_{P}}{a_{N}+a_{P}}+\ln s-\frac{i \pi}{\alpha} \tag{5.28}
\end{equation*}
$$

And for the ir a P^{\prime} cuts

$$
\begin{align*}
f_{\mu^{\prime} \mu^{\prime}}^{R P^{\prime}}(s, t)= & i\left(s / s_{0} e^{-i \pi / a}\right)^{\alpha R^{(0)}} G_{\mu^{\prime} \mu}^{R}(-t)^{\alpha / 2} \\
& \left\{G_{p^{\prime}}\left(s / s_{0} e^{-i \pi / 2}\right)^{\alpha p_{p}!(0)} \frac{e^{c_{p^{\prime}} \alpha_{R p^{\prime}} t}}{c_{p:}}\right\} \tag{5.29}
\end{align*}
$$

with

$$
\begin{equation*}
c_{p^{\prime}}=\frac{a_{N s} a_{p^{\prime}}}{a_{N}+a_{p^{\prime}}}+\ln s-\frac{i \pi}{2} \tag{6.80}
\end{equation*}
$$

The $R \otimes P^{\prime}$ trajectory is defined in a similar way to (5.2.2) and we lave dropped the helicity labels on e_{p} and c_{p}, as well as on all the absorption parameters.

$$
\text { For the } N=0, x=2 \text { amplitudes we allow some extra }
$$

freedom (compare equation (3.66)) by multiplying botis (5.27) man (5.29) by a function of $t,\left(b_{1}+b_{2} t\right)$. 'rhe full amplitude is then, as usual, the sum of terms $R+R @ P+R \boxtimes P^{\prime}$.

As in section 5.1, the function $F_{c_{p}}(s, t)$ depends on the form of the Reggeon Pomeron cut discontinuity, by aralogy to (6.4).

$$
\begin{equation*}
F_{c_{p}}(s, t)=\frac{1}{2 \pi i} \int_{-i \infty+\gamma}^{i 0 s+\gamma} e^{\epsilon_{p} J} \Delta(J, t) \ln \left(J-u_{0}\right) d J \tag{5.31}
\end{equation*}
$$

We now look at some different possibilities for $\Delta(J, t)$. Note that the full cut discontinuity always has ar: exponentiat ead dependence which is included in the term $e^{c J}$ of (5.31).)

Our first consj.deration is

$$
\begin{equation*}
\Delta(J, b)=\left(\frac{J-a_{c}}{J-a_{p}}\right)^{2} \tag{5,52}
\end{equation*}
$$

This is simply the paremeterisation used in section (3.2) to fith
 choice of disconinuity it is certaing possjble to obtsin ine required zero in $\operatorname{Tm} A_{++}$at $t \sim-0.5\left(G \in \sigma^{\prime} c\right)^{2}$. Hovever, when we try to fit the non flio and double flip aplitudes (see figei.3.?) the results are rather poor, the model being unable to reprodince any of the structure present in these amplitudes, particu?ary Im A_+ . In fact the "fit" tends to make the cuits very weak in A and A_{+-}. Since, with just rho ard omege poles, the polarised photon asymnetry measures the strength of the non and double flip cuts it is particularly badly described in this nodel (being essentially one for all tho In fotg. (5.7) we show the polarised tanget asvametry resultine from our best fit. line descricpency between the nodel ano: the uata js obvious. Cur final. chect is to compare. $\alpha_{\text {eff }}(t)$ cal.cm wated from the model, with fig. (2.6a). Becanse the cuts are mall
in the norn and doubje flip amplitudes, there is no structure induced into α eff by pole-cut cancellations in these ariplitudes and the model shows typical Regge shrinkage, contrary to the date。 However, if we look at just the single flip anplitude we obtain the $\alpha_{\text {eff }}$ of figo (5.8). Here there is a zero in the imeginary part of the amplitude at $t \leadsto-0.5(\mathrm{Gev} / \mathrm{c})^{2}$, which is reflected in the slight deviation of $\alpha_{\text {eff }}$ from Iinearity in this region, It is clear that the reason why we do not see the effect charecteristic of the absorption model (fige $(2,2)$) is that at this value of t our new type of cut has approximately the samie phase and energy dependence as the pole - namely that corresponding to the trajectory $\left(X_{R}(t)\right.$. Thus the cencellation Is simply between two different functions of t (coming from two different exponeritis) slopes), which does not produce any wild fluctuations of (vere" Thiss could have import,ant consequences for Regse wt: phenomenology. In particular it could make the need for NWSZ redundant. In section 5.2 we used a noneense choosing rho pole with no cuts in the flip amplitude to fit the πN CRE datro since the flip amplitude in πN has the same form as the single flip photoproduction amplitude, it should be possible to obtain a zelo in $\operatorname{Im} A_{+-}(\pi N)$ at $\operatorname{trs}-0.5(\mathrm{Gev} / \mathrm{c})^{2}$ by pole-cut interference whilst still maintaining the approximate linearity of α eff"

However, it is apparent that (5.32) is not the correct: form of cut discontinuity with which to fit the photoproduction amplitudesc : e next tried two parameterisations in which we increase the contribution from the tip of the branch rut $J=\alpha_{c}$. rirstiy

$$
\begin{equation*}
\Delta(J, i) \sim \frac{J-a_{2}}{J-a_{R}} \tag{5.33}
\end{equation*}
$$

which gives

$$
\begin{align*}
F_{c_{p}}(s, t)= & -\left(\alpha_{R}-\alpha_{L}\right) e^{c \alpha_{R}}\left[\sum_{n=1}^{\infty} \frac{\left[\left(\alpha_{L}-\psi_{Q}\right) \sigma\right]^{n}}{n n!}\right] \\
& -\left(\alpha_{R}-\alpha_{c}\right) e^{c \alpha_{R}}(\gamma+\ln \varepsilon)-\frac{e^{c \alpha_{0}}}{c} \tag{5.34}
\end{align*}
$$

And secondly

$$
\begin{equation*}
\Delta(J, t) \sim \frac{1}{\left(J-\alpha_{k}\right)^{2}} \tag{5.35}
\end{equation*}
$$

from which we obtain

$$
\begin{align*}
F_{c_{n}}(\rho, t)= & \frac{e^{c \alpha_{R}}-e^{c \alpha_{c}}}{\left(\alpha_{R}-\alpha_{c}\right)}-c e^{c \alpha_{R}}(\gamma+\ln c) \\
& -c e^{c \alpha_{R}}\left[\sum_{n=1}^{\infty} \frac{\left[\left(\alpha_{c}-x_{n}\right) \varepsilon\right]^{n}}{n n!}\right] \tag{5.56}
\end{align*}
$$

Again we find jut impossible to reproduce the amplitudes of chapter three using either of these parameterisations for the R $\otimes P$ cut. Equation (5.33) undoubtably gives a better aescoittion of the single flip amplitudes thai i (5.36) or (5.32), but the non end double flip amplitudes are once again, very poon. The model $\mathcal{X}_{\text {eff }}$ is very similar for both these paraneterisations and in fact shows considerably more structiane than the previous attempt using (5.32). In fig.(5.9) we show α eff from the best fit to the sinplitudes using (5.33). However, because of the bad description of A_{+-}and A_{-}the fit t to the polarised targe ard polarise i photon asymmetries (fig.(5.10)) is clearly inadequate. Our final choice for the discontinuity is

$$
\begin{equation*}
\Delta\left(J, t_{1}\right) \sim \text { constant } \tag{5.37}
\end{equation*}
$$

which is of course similar to the usual absorptive/eikone? model clii discontinuity and gives

$$
\begin{equation*}
F_{c p}(s, t) \sim-\frac{e^{c \theta_{c}}}{c} \tag{5.58}
\end{equation*}
$$

Using this simple parametrisation of the $R \mathbb{P}$ cut we find that our fit to the non and double flip amplitudes is much better than with any of our other choices of $\Delta(J, t)_{e}$ We can ai so obtain a good description of the single fit mpintudes.

We know from our previous work (chapter three), that (5.37) is likely to be able to fit the photoproduction data, (This is not certain because the discontinuity may be more complex in the eikonal model.) However, the systematic approach which we have adopted makes it clear that this form for the discontinuity is crucial, particularly in obtaining a good description of the non and double flip amplitudes and hence the asymmetry date. The on? point which is unclear from this analysis is the choice of $\Delta(J, t)$ for the single flip amplitudes. It is impossible to choose between (5.33) and (5.37) on the basis of a fit t to the amplitudes of chapter three at a single energy. We thencfore confronted two simple model directly with the photoproducion date over a large of energies ($3.0 \leqslant P_{\text {lab }} \leqslant 15.0 \mathrm{Gev} / \mathrm{c}$).
(A) $\Delta(J, t) \sim$ constant in all amplitudes.
(B) $\Delta(J, t) \sim$ constant in A_{+-}and A_{++}, with $\Delta(J, t) \cdots\left(\frac{x_{2}}{5}-\omega_{f}\right)$ in A_{++}and $A \ldots$

By first fitting the amplitudes at $6.0 \mathrm{Gev} / \mathrm{c}$, we inmeci-
iately obtain good agreement with the phase sensitive asymmetry data which only exists at low energies. When we try to describe the differential cross section over the full energy range we find that model (A) is udcubtably the better of the two. In particular the dip at $t \sim-0.5(G e v / c)^{2}$ appears to deepen with energy when we fit with (B), contrary io the data (fig. (5.11)). For this reason we can clearly state that the best. description of the Regear-

Poneron cut discontinuity in photoprodaction is provided by the usual eikonal/absorptive type model, (Λ). We emphasise that in comparing the djfferent parameterisations of $\Delta(J, t)$, ail of the possibilities were treated on exactly the seme bosis as outlined above.

Havirg established that $\Delta(J, t) \sim$ constant gives the best results, we then changed the parameterisation slightly tio erable us to compare the cesults of the fit with that of chapter three. We have no more free paraneters, but we now write the R Q P cut as

$$
\begin{align*}
A_{\mu^{\prime} \mu}^{R_{F}}(s, t) & =i\left(s / s_{D} e^{-i \pi / 2}\right)^{\alpha_{R}(0)} G_{\mu^{\prime} \mu}^{R}(-t)^{N / 2} x \\
& x\left\{\left(\frac{-G_{p}}{c+c_{p}}\right)\left(s / s_{0} e^{-i \pi / 2}\right)^{\alpha \alpha_{A P}^{\prime} t} \exp \left(\frac{a a_{p}}{\alpha+a_{p}}\right) t\right\} \tag{5.39}
\end{align*}
$$

where

$$
\alpha_{R p}(t)=\alpha_{R}(0)+\alpha_{p}(0)-1+\left(\frac{\alpha_{R}^{\prime} \alpha_{p}^{\prime}}{\alpha_{R}^{\prime}+\alpha_{p}^{\prime}}\right) t .
$$

And in the case of the $N=0, x=2$ amplitude we maltichy (5.30) by $\left(b_{1}+b_{2} t\right)$. The $R 区 P^{\prime}$ cuts ane parameterised in a similan fashione

The resul.ts of this fit ${ }^{(80)}$ are sinown in cigse (5.in) to (5.16) and in table (5.?). We should emphasise that the parenetierisation is rather crude, particularly in the non hlip ($N=0$, $\mathbf{x}=2$) amplitude. A much betier description is the full eironal approach described in section 3.5 .

In conclusicn, the sikona! mudel is suscessful in photuproduction because it has the correct behaviour of $\Delta(J, i)$. Ary inodel which seeks to shirt the dominant contribuition to the discontinulty away from the tip of the cut towards the position of tire pole $J=\mathcal{U}_{R}$, will necesserily be inadequate in notoproduction.

POLE PARAMETERS		CUIT PARAREMERS	
a_{0}	4.60	$\theta_{\text {T }}$,	0.02
a_{1}	1.46	a_{p},	3.40
G_{0}	28.51	G_{P}	0.05
G_{1}	131.53	G_{p},	-1. 15
(0)	0.55	b	-0.09
α^{\prime}	0.93	$\alpha_{p}{ }^{\prime}$	0.28
		$\alpha_{1}{ }^{(0)}$	0.45
		$\alpha_{P}^{\prime}{ }^{\text {i }}$	1.08

$$
\text { TABLE } 5.1
$$

The values of the parameters obtained in the fit to the πN CDX data using the model of: section 5.2. The Pomernn intercept was fixted at $\alpha_{p}(0)=1$.

TABLE 5.2
The values of the parameters obtained in the fit to the photoproduction data using the modol of section 5.3. Parenceters for the double flip amplitude ($N=2$) dre jidentical. to those shwin for the non flip amplitude $(N=0)$ and b_{1}, b_{2} are the same for both rho sind omega exchanges.

The rho and omega tirajectories are those of sertion 3,5 ; whilst the P and P^{r} trajectories were fixad (from tabie 5, i) to be

$$
\begin{aligned}
& \alpha_{p}(t)=1.0 \div 0.25 t \\
& \alpha_{p^{\prime}}(t)=0.45+1.08 t
\end{aligned}
$$

There are two important points which we must bear in mind in order to obtain the correct behoviour of regge cut amplitudes.
(i) It is crucial ir fixing the phese of the full cut amplitude to include contributi:ons from the region -I $<J<0$. We bave chosen to do this by using Regge-Regge cuits, al.thougin several other methods hawe been proposed (81.). This phase problem, inherent in the old absorption model's but only made transparent by the amplitude analysis, has obscured the other basic flaw in the absorption model appioach - namely the form of the cut riscontinuity.
(ii) It now seems clear that the atrong shrinkage observed in hadronic procesees is due to some kind of pole enhancemert mechanism, which peaks the $R \mathbb{D}$ cut discontinuity at the position of the pole. In this respect, the absorption model which gives $\Delta(J, t) \sim$ constant (by this: we mean that the discontinuity has no singularities on zeros), is cleariy ineaequate. However, it appears that in photoinduced processes, this mechenism does not operate and the absorption model (provided we have the correct piase structure) is sufficient to describe the data.
i'jnally we note that pole enhancement of the cur discontimuity in hadranic reactions, may make NWSE unnecessary in orden to "Exrinain" the dips observed at. $t \sim-0.5$ (Gevic) ${ }^{2}$ in $\pi \pi^{-p} \rightarrow \pi n$ and $\gamma ; \rightarrow r^{\circ} p$. The structure in the phoioproduction $\alpha_{\text {eff }}$ at this point supports the pole -cut interference nechenijina. However: $i x$ this is the case, there as then the puzzling inconsistency of the absence of structure in the πN CLX $\alpha_{\text {enf }}$. Why should tha Argonne model work best in hadronic reactions and the wichigen nodel be mosit successfix in photoproduction?

Also., factorisation oil the ρ residue would sugeest that if we have a NWGZ, we should observe a dip in $\gamma_{p} \rightarrow \eta^{\circ} p$ (whicht is doninated by ρ exchange). In general, factorisation tests of this nature support the Michigan approach.

If we make the hypothesis that there are no N:WS2 and that all dips are produced by polemeut interference, we arrive at a consistent picture provided we assume that pole enharicement of the cut discontinuity occurs in hadronic processes (and not: in photoproduction). Then, as we have seen in section (5.3) ; pole-cut cancellation can still take place at $t \sim-0.5$ (Gev' 0) ${ }^{2}$ (in πN CYX for example) without destroying the linean behariow of $\alpha_{\text {effé }}$ in thjs region, whereas in $\gamma_{p \rightarrow \pi} \rightarrow$, pole-cui interference produces the observed structure in $x_{\text {eff }}$ -

It would be interesting to exteno this type of anaysis to other processes in an attempt to confirm this peculiaritor of the photon. There are two areas where good, accurate date could provide a stringent test of our hypothesis.
(i) vector meson production, which is related to paotopro.. auction by Vector Dominence may show that the pole entancemert effect is not a property of particular holicity amplitudes ie. G . those with one unit of helicity flip at the "meson" vertex $(\pi \pi \%, \pi \pi \rho$, etc. $)$). Fig. (2.15) shows that the unnatural parity exchanges in ρ and ω production (π and B rospecively) appesir to shrinls at large $|t|$, indicating that $\hat{A}(J, t) \sim$ corstant is a property of the photion.
(ii) A second set of reaetions is backward πN and baclownerd photoproduction. Examples of these along with the allowed (barron) exchanges are shown below ${ }^{(4)}$.

$$
\begin{array}{ll}
\text { (a) } \pi^{+} p \rightarrow p \pi^{+} & N_{\alpha}, N_{\gamma}, \Delta_{\delta} \\
\text { (b) } \pi^{-} p \rightarrow p \pi^{+} & \Delta_{\delta}
\end{array}
$$

$$
\begin{array}{ll}
\text { (c) } \gamma_{p} \rightarrow p \pi^{0} & N_{\alpha,}, N_{\gamma}, \Delta \delta \\
\text { (d) } \gamma_{p} \rightarrow n \pi^{+} & N_{\alpha,}, N_{\sigma}, \Delta \delta
\end{array}
$$

All of the argurents presented above for the forward reactions also apply here ${ }^{(82)}$. Firstly, factorisation is again a problem. Reaction (a) has e dip at $u \sim-4) .15(G e v / c)^{2}$ which mav be associated with a zero in the $N_{i x}$ emplituie at $\alpha_{\text {Nucjeon }}=-\frac{r}{2}$ However, we then have to assume that the N_{γ} coupling is small to avoid filling in the dip (in the EXD Iimit). Factorisation would nov suggest a dip in (c), which is not observed experimentally. Also, the photoproduction reactions show very little shrinkage whilst the hadronic processes do appear to shrink ${ }^{(28)}$; althrach the data only extends to $u \sim-0.5$ (Gev/c) ${ }^{2}$ (reaction (a)). So here again, experiment seems to support the hypothesje of a discontinuity dominated by the pole in hadronic processes and by the tip of the branch cut in photoproduction.

A systematic analysis of Regge cuts in these and other \because processes obviously provides a useful extension to injs line at research.

FIGURE CAPPIONS - CHAPTER FIVE
$5.1 I_{t}=1$ helicity amplitudes for the reaction $\pi p \cdots \cdots \cdots$
5.2 Fit to the differential cross section for $\pi-\pi \rightarrow \pi n$.
5.3 The effective trajectory calculated from the nodez of section (5.2) compsured with the "da'ta" of f"iga(2.1).
5.4: Fit to the data for $A \propto(\pi N)$.
5.5 Fit to the polarization data for Trp—ron.
5.6 The effective trajectory calculated from the model of gecing (5.2) out to $|t| \leqslant 4.0(G e v / c)^{2}$ for differont fincident best momenta.
5.'7 Fit to the polarised targeti asymnetry data fol" 大p-re"p with $\Delta(J, t) \sim\left(\frac{J-\alpha_{c}}{J-\alpha_{R}}\right)^{2}$ in all helicity emplibudes.
5.8 The effective tratectory of the singe fip amplitude in $\gamma_{p} \rightarrow \pi^{\circ} p$ with $\Delta(s, t) \sim\left(\frac{5-\alpha_{2}}{5-\alpha_{i}}\right)^{2}$ in thits amplitude.
 in all helicity amplitudes.
5.10 Fit to the polarized torget and polarjzed phaton wancers
 amplitudes.
 curve is the final fit with $\Delta(5, t) \sim$ concitent in aly helicity amplitudesa The damed curve shows the fit with $\Delta(J, t) \sim\left(\frac{J-\alpha_{c}}{J-\alpha_{A}}\right)$ in A_{++}and A_{\ldots}, and $\quad A_{u}(J, t) \cdots$ constant in $A_{-1 . .}$ and A_{-1}.
50.12 Fit to the differentiol cross section for $\gamma p-0.0$ p with $\Delta(\Xi, t) \sim$ constant jur ali helicity amplitudes.
 with $\Delta(J, L) \sim$ constart in all helicity amplitudes.
 with $\Delta(3, t) \sim$ constant in all lmelicity amplitudes.
5.15 Fit to the neutron/proton ratio (N) for T° photoproduction with $\Delta(J, t) \sim$ constant in all helicity amplitudes.
5.16 The effective trajectory for $\gamma_{p \rightarrow r i p, ~ c a l c u l a t e d ~ w i t h ~}^{\text {a }}$ $\Delta(s, t) \sim$ constant in all helicity amplitudes.

Fig $5 \cdot 1$

Fig $5 \cdot 2$

Fig 5.2 (cont.)

Fig $5 \cdot 3$

Fig $5 \cdot 4$

Fig $5 \cdot 5$

Fig 5.5(cont.)

Fig $5 \cdot 6$

Fig $5 \cdot 7$

Fig $5 \cdot 8$

Fig 59

Fig 5•10a

Fig $5 \cdot 90$

Fig $5 \cdot 11$

Fig $5 \cdot 12$

Fig 5.13

Fig $5 \cdot 14$

Fig $5 \cdot 15$

Fig $5 \cdot 16$

APPENDIX ONE

A1.1 EThenes

We shall use the following notation for the general scattering process

$$
142 \rightarrow 3+4
$$

'She invariant quantities s, t and u are defined by

$$
\begin{align*}
& s=\left(P_{1}+P_{2}\right)^{2}=\left(P_{3}+P_{4}\right)^{2} \\
& t=\left(P_{1}-P_{3}\right)^{2}=\left(P_{2}-P_{4}\right)^{2} \tag{h1,1}\\
& u=\left(P_{1}-P_{4}\right)^{2}=\left(P_{2}-P_{3}\right)^{2}
\end{align*}
$$

with the constraint

$$
\begin{equation*}
s+t+u=\sum_{i=1}^{4} m_{i}^{2}=\sum_{i} \tag{1}
\end{equation*}
$$

The s (t or u) channel process is that for which s (t or u) corresponds to the square of the total centre of mass energy. Thus

| s channel | $1+2 \longrightarrow 3+4$ |
| :--- | :--- | :--- |
| t channel | $1+3 \longrightarrow 2+4$ |
| u chanriel | $1+4 \longrightarrow 3+2$ |

The laboratory frame is taken to be the resit frame oi? particle \% 。 In terms of laboratory quantities

$$
\begin{align*}
& s=m_{1}^{2}+m_{2}^{2}+2 m_{a}\left(E_{1 a b}\right)_{1} \\
& t=m_{2}^{2}+m_{4}^{2}-2 m_{2}\left(E_{1 a b a}\right)_{4} \tag{i.1.0.3}\\
& u=m_{i}^{2}+m_{3}^{2}-2 m_{2}\left(E_{1 a b}\right)_{3}
\end{align*}
$$

'The incoming centre of mass theemonentum for the s-chanat process is

$$
\begin{equation*}
q_{G_{12}}^{2}=\left(s-\left(m_{1}+m_{2}\right)^{2}\right)\left(s \cdots\left(m_{1} \cdots m_{2}\right)^{2}\right) / 4 s \tag{L}
\end{equation*}
$$

wi a similes expression for $0_{S_{12}}^{2}$.
If the smchamel centre of mass scattering angle is θ_{s} s. then

$$
\begin{equation*}
t=n_{1}^{2}+n_{3}^{C} \cdots 2 q_{e_{12}} q_{34} \cos \theta_{s}+2 \varepsilon_{1} E_{3} \tag{A1-5}
\end{equation*}
$$

and

$$
\begin{align*}
\cos _{s}=z_{s} & =\frac{s(t-n)+\left(m_{1}^{2}-m_{2}^{2}\right)\left(m_{3}^{2}-m_{4}^{2}\right)}{4 q_{s_{12}} q_{s_{34}}} \\
& =1+\frac{t-t_{0}}{k_{1} q_{s_{1 x}} q_{54}} \tag{A3.6}
\end{align*}
$$

where t_{C} is the value of t corresponding to $\theta_{S}=0$ at hist ernes, a useful approximation is

$$
\begin{aligned}
& t_{0} \sim-\frac{1}{5}\left[\left(m_{1}^{2}-m_{3}^{2}\right)\left(v_{1}^{2}-m_{4}^{2}\right) m\right. \\
&\left.\frac{1}{s}\left(m_{1}^{2}-m_{2}^{2}-m_{2}^{2} m_{4}^{2}\right)\left(m_{1}^{2}+m_{2}^{2} \cdot m_{3}^{2}-m_{4}^{2}\right)+\cdots\right]
\end{aligned}
$$

Therefore, if either $m_{1}=m_{3}$ on $m_{2}=m_{4} \% t_{0} n \quad$ i/ s^{2} and becomes negligible extremely quickly o (Of course if ail moses are equal $t_{o}=0$). In the reactions which we are principality concerned with t_{o} can safely be ignored.

Equations (A1. A^{2}) to (a1.7) may be redefined for the t ox a channel process. In particular $\operatorname{Cos} \theta_{t} \equiv Z_{t}$ can be obtained from (K1. 6 ($)$ by the substitution

$$
\left(s, t, m_{2}, m_{3}\right) \longrightarrow\left(t_{8}, m_{3}, m_{4}\right)
$$

In the notation of reference 1 , the centre of masa helicity amplitudes for the s-chamel process are

$$
A_{\mu_{s}}(s, 6)=\left\langle\mu_{3} \mu_{4}\right| A(s, t) \mid \mu_{1}, \mu_{2},
$$

and for the t-whamel prosess

$$
A_{1_{2}}(a, t)=\left\langle\lambda_{2} \lambda_{4_{i}}\right| A(0, t)\left|\lambda_{1} \lambda_{3}\right\rangle
$$

where f_{i} represent the s mannel helicities and λ_{i} the t-whannel ones.

The amplitudes are normalised so thati the optical thooren becones

And the differertial cross sectiou ts

$$
\frac{d \sigma}{d s}\left(m b /(s e v / c)^{2}\right)=\frac{0.3893}{64+\pi q_{s, 2}^{3} s} \frac{1}{\left(2 v_{1}+1\right)\left(2 c_{a}+1\right)} \sum_{H_{s}}\left|A_{H_{s}}(s, 6)\right|^{2}(A 1, \theta)
$$

whore σ_{1} is the spin of particle one etc.
With this mmalisation the mplitudes are dimensionless. (Notc that $1 \mathrm{mb}=0.3893(\mathrm{Gev} / \mathrm{c})^{-2}$ 。)

A1. 2 PJON NUTULON MPLTTUDES AND OBGERVABIES
In ail $0^{-\cdots}+\frac{2}{2}^{+4} \rightarrow 0^{-\cdots}+\frac{1}{2}^{+4}$ reactions, there are four helicity amplitudes reduced to two by parity eonservationo it we label each ampijitude by the baxym helicity state, then the experimenteal observabies are

$$
\frac{d_{0}}{\omega_{0}}\left(m /(\dot{c e v} / c)^{2}\right)=\frac{0 \cdot 38 q 3}{64 \pi q_{s}^{2} 5}\left[\left|A_{i+1} i^{2}-1 A_{i-1}\right|^{2}\right] \quad(A 1,10)
$$

$$
\begin{align*}
\sigma_{T}(m b) & =\frac{0.3993}{29_{s a} \sqrt{s}} \operatorname{Im} A_{+m}(t=0) \\
p & =\frac{a I_{m} A_{+m} A_{+}}{\left|A_{2-1}\right|^{2}+\left|A_{5-m}\right|^{2}} \tag{A1.1.12}
\end{align*}
$$

To describe the particular case of πN scattering we use the t-chamel isospin mpratudes $\Lambda^{\underline{T}}=0$ and $\Lambda^{T_{t}=1}$ in terms of winch

$$
\begin{align*}
& A\left(\pi^{*} p \rightarrow \pi^{*} p\right)=A^{n}+A^{\prime} \\
& A\left(\pi^{\prime} p \rightarrow \pi^{0} n\right)=A^{\prime} \tag{1.1.13}
\end{align*}
$$

In this case we have eight amplitudes reduced to four by parity conservation. We label then $A_{\mu \mu}^{\lambda}{ }^{\lambda}$ for the general process

$$
\gamma_{2}+N_{\mu} \rightarrow 0^{-}+N_{\mu^{\prime}}
$$

We only need to consider $\lambda=1$ because of parity conservation so we now drop this superscript. The four indexpendent amplitudes are

$$
\begin{array}{ll}
A_{-+} & N=0 \\
A_{++} & N=1 \\
A_{-} & N=1 \\
A_{+}- & N=2
\end{array}
$$

where n is the net s-channel helicity flip. In terms of the ie amplitudes the experimental observables are:-
(i) Differential cross section.

$$
\begin{equation*}
\frac{d v}{d t}\left(m i /(\text { Gev /c) })^{2}\right)=\frac{0.3893}{128 \pi\left(s-m^{2}\right)^{2}} \sum_{\mu^{\mu} \mu^{2}}\left|A_{\mu^{\prime} \mu}\right|^{2} \tag{01.14}
\end{equation*}
$$

(m is the nucleon mass)
(ii.) Polarised photon esymeryy
(iii) Polarised target asymmetry

$$
\begin{equation*}
A=\frac{2 I_{m}\left[A_{-1}^{*} A_{-} \cdot A_{2-1}^{*} A_{+1+}\right]}{\sum_{M^{\prime} A}\left|A_{\mu^{\prime} A}\right|^{3}} \tag{j}
\end{equation*}
$$

(iv) Recoil nucleon polarisation
(v) π° photoproduction from neutrons

Where the subscripts s and v refer to the isoseatar and isovecton parts of the amplitude respectively.

Finally the amplitudes for petotomoduction are related to the above amplitudes by SU(3).

$$
\begin{equation*}
A\left(\eta^{\circ}\right)=\frac{a}{\sqrt{3}}\left[\frac{\partial \gamma \beta}{\partial \gamma \omega} A^{\beta}\left(\pi^{0}\right)+\frac{g \gamma \omega}{\partial \gamma \beta} A^{\omega}\left(\pi^{0}\right)\right] \tag{0.1.10}
\end{equation*}
$$

Where $a=1.23$ from the $?{ }^{n} \%$ mixing as given by the quadratic mass formula.

For the single Reggie pole exchange α (t), the forward
differential cross section takes the form

$$
\frac{d \sigma}{d t} \sim \beta(t)\left(5 / s_{0}\right)^{\alpha c(t)-e}
$$

$$
\begin{gathered}
\text { If } \alpha(t) \text { is a linear function of } t, \\
\alpha(t)=\alpha(0)+\alpha^{\prime} t
\end{gathered}
$$

we can write

$$
s^{\alpha(t)}=e^{\alpha(t) \ln (s)}=s^{\alpha(0)} e^{\alpha \prime \ln (s) t}
$$

Then (A2.1) becomes

$$
\frac{d \theta}{d t} \sim \beta(t)\left(s / s_{0}\right)^{2 u(0)-2} \exp \left[\alpha \alpha^{\prime} \ln \left(3 / s_{0}\right) t\right]
$$

So we expect that the width of the forward peak in the differential cross section will "shrink." Logarithmically with energy.

The behaviour of $d \sigma / d x$ is usually more complicated becurase of additional poises and other singularities such as here cuts which may contribute in a given process. However, in this case fit is possible to define an "effective trajectory" $\alpha_{\text {eff }}(t)$, and a computer programme has been written to calculate it from the experimental data. 'To do this we chance (A2.1) slightly and wite

$$
\begin{equation*}
P_{L}^{a} \frac{d \sigma}{d x} \sim N_{i} \beta(\epsilon)\left(\nu / \nu_{0}\right)^{i \alpha_{c \& i}(t)} \tag{12.2}
\end{equation*}
$$

Where P_{I}, is the laboratory beam momentum and

$$
\nu=\frac{(s-12)}{2}
$$

${ }^{w_{i}}$ is a t independent normalisation parameter associated with a
particular monentum (soy p) This paroneter may aiso be associabea with data at more then one monentun to allow a complete renomal. isation of all the data from (say) a particular expermental Eroup winch mey be suspectia

To detemine $\alpha_{\text {efin }}$ at $t=t$, the available date js inter. polated to obtajn values ot $t=i_{ \pm}$using a lineri interpojation in $\operatorname{Ir}(\mathrm{do} / \mathrm{dt})$ from data at adjacent values of ta α eif is then calchated by a least squepes fit of in (da/dt) acainst $\operatorname{In} \dot{\mu}$, ard the ermor estimeted using the variance covariance mathixa Naturally the ermors meflect the interpolation which has to be performed to obtain data at the came t value but different onergies from this point of view it is very useful to hape available deto on dofdt over a wide renge of encroy messura at the same tondow at each energy

The kinematic corrections to (k2.2) have been exanaco by Spino and Deram. (40) For equal mass scatteming (such as $\pi-p \rightarrow \pi^{0}$
 For unequal masses theis inclusion produces an umare mift of α ef'f, which may be impotent if we try to calculate ${ }^{\prime}$ eff. at lange $|t|$ using only low energy cata ing for exempleg proceses such as $\pi^{+} p+k^{+} \Sigma^{+}$. However, to obtain the effective trajectopies of chapter two, such corrections have been ignored, although we have incluned t_{0} correctily as indicated in Appendix 1.

REPERENGES

REPDRITCES

1．PoDoB．Collins and B, J ．Squires，Refce poles in partale physics（springer，Berin，1968）．

2．A．D．Wertin end ToD．Speamar，Fhementery particle theory （North Holland，Ansterden，i．970）。

3．joJo Squires，Compidex anguler homentan and particie phyoics （Fenjemin，New York，1963）．

4．Polo．B．Coliins，Physjes Reporte 1．C No．4：（197．1）．
5．G．Cohenmamoudji and Ph．Salin，Nuovo Cimento 5hh 412（1060）．
Go AoC．frving，hoD．Martin，V．Barcer，fuovo Cimento igA 670 （19＇73）。

7．FoJ．（filmen：Phys Rev 1.711450 （1968）。
8．F．D．B．Collins：＂How［mportent are Repeg Cuta？＂Spinapax Tracts in Nodern Thyaics 60 20 4 （197i．）．

9．PoL．Bonamy et al．Phys Iett 23 501．（1960）．
10．J．V Allaby et al，Phys Lett 30B 500 （1969）．
 preprint（April 19＇74）。

12．T．JJ．Geult，AcD．Wartin，GoLe Kane，Nucl Fhys got 120 （1971）．
13．Golke Cicuta and RoL．Sugar，Phys Rev 13970 （197ij。
14．S．Fandelstian，Nuovo Cimento 30 1ii27：1148（i．963）．
15．J．B．Bronzan and C．E．Joness Phys Rev 160 1．494（1967）． P．V．Jendshoff and JoC．Polkinghorne，Phyo liev 131 ie30（1900）．

16．De Amati，So Fubini，A．Stanghellini，Phys Iett if 29（1002）o
17．RoJ．Bden，PaVo Leandshoff，D．I．Olive and JoCc Polkinghoines， The Analytic S－matioix（Cambridge University Press，1965\％．

18．Fi Elvakajeer，T．Inami，CoA．Ringland，Phys Tett $44 B=1$（is\％）．
19．Fo Henyey，G．L．Kaine，Jon Punlin，MoHo lioss，Pays Rev 1.02 15 ＇79（1969）。

2íe Rot́o Amold，Phys Rev 1831525 （1907）．
2．2．BuJ．Hartiley and（Guto Kane，University of Rjehigen preprint， （Jamary 1973）．

2S．Geho Ringland，RoGo Roberts，DoPo Roys．Je＇Tran Thanh Vans， Nucl Phys B44 395 （1973）。

24．Bo Sadontet，Nucl Phys B53 185 （1973）．

25．Rojuno Phillips and W．Ramita，Phys Rev 13931.336 （i．965）． G．Hoblilex et al，Phys Jett 2079 （1966）。

26．VoNe Bolrtov et al，Institute of Hich Energy Physjos－Sempumhor （preprint 1973）．

27．Poj．B．Collins and RoA．Svetman，Nucvo Cimento liett 5793 （1972
28．G．C．iox，Talk at the 1969 Stony Brook Confemence（unpiblished）
29．T．Porger and RoJoNo Phillips，Nucl Phys B33 22（1971）．
30．P．Bonamy et al，Nuct Phys B16 335（1970），B52 392 （1973）． D．Hill et all，Phys Rev Lett 30239 （1973）．

31．F．Hal\％en and C．Hitchael，Phys Lett 360357 （19\％）． Rote Kelly，Phys Lett 39B 635 （1972）．

32．M．Borechini et als，Phys Lett 31B 405（1970）．
33．C．Ba Chiu，＂Phenonenology in Pertiicle Physics 1971＂， Editores C．B．Chin，G．C．Foxs MrdoGe Hey。

34．F．Elvekajeer，＇I．Trami，RoJoN．Phillips，Nucl Phys B64 301 （1973）．

35．Va Bawer，K．Geer，Fo Halmen；Nucj Phys B44 475 （1972）。
55．Wamo Apel et al．YVIT London Conference on High Energy Physios，July 1974．

37n G．R．Goldstein and Joto Owens，Phys Rev pri 865 （1973）．
38．R．P．Worden，Nucl．Phys 159205 （1073）．

39．V．Bercer and ReJov．Phillipgs Phys Rev 197 ？210（1969）．
40．R．J．N．Fhillips and Wo Farita，phya Lett 19 50n（igo5）．

41．O．Guisan et al，Phys Lett 18200 （1965）．
42．RoL．Anderson ét al，Phys Rev Th4 1987（1578）． fabe Osbome et al，pirys Rev Latt 29 1．02．1（1972）e W．Braunschweig et al，Nuch plys 820 191（1970）．

43．Rata indarson et al，Piny Rev 11127 （1070）． H．Braunschweitg et als Phys Lett 333236 （1970）e

44．Ne Aguilarmentitez et al，phys Rev Th 2583 （2971）． Fe Astbury et al，Phys Lett 26396 （1966）

45．Y Goldammidt．．Clemont et ai，Fhye Jott 2 2 B （1908） A．Firestone et als Fhys Rev letet 25958 （ 10% ）a J．Cline et，al，Phys Rev Lett 231016 （1903）
46．Gath Branderiburg et al，SLAC．emb－1339（Hovember 1073）．
47．RoD．Hethewe，Nucl Plyys B11 339 （1969）．
48．Soliforuss et al，Phys Rev Jett 23 160 （1960）． A。 Bashian et al，Stony Brook preprint（1cro）．
49．WaF．Buhl et al，Phys Jett 483393 （1974）。
50．Pa Estabrooks ana haD．Martin，Phys Iutt 42 B 299 （19\％）
51．ReJ．GIEubex，＂Jeetures in Theoretical Physice＂，Vola 1 （New Yom，Wiley，1059）a
52．For example pef．（e）and references therein．
53．Gaino Cicutáa and RoLa Sugars lhys Rev DE 970 （1．971）．
54．U．J．Cardy，Nucl Jhys B2S 44：5，477．（1971）．
55．For example refo（8）．
SGo We Nagnus and F o Oberheitinger，＂Special functinns of mathematical phrsics＂（Ghe？sea；New Yond，1949）。
5% RoP．Vordon，NucJ Phys $10 B 200$（1972）．
58．J．Finlalotain，Nuovo Cimento 5 a 413 （1971）．
50．PoDaBe Collins and PoKo Hut，Nuovo Cimento Lett 4 34：（1972）．
60．H．Harari，lhys Rev Jatt 22 582（1963）．
JoL。 Roener，Phys Rev Lett 2280 （1969）．
01．G．Giradi et 3］，Lucl Phys Be7 445 （19＇72）．

63．R．Fa Wordens Nucl Phys B37 2.53 （1．972）n
64：P．D．B．Collins and A．Fitton，Nucl Phys Bob 125 （1974）。 65．liata references：

$$
\begin{aligned}
& \frac{d}{d t}\left(x_{i}+\pi^{\prime \prime} p\right) \quad \text { Reference } 42 \\
& \frac{d}{d t}\left(Y_{p} \rightarrow j p\right) \quad \text { Refenence } 43
\end{aligned}
$$

$$
\begin{aligned}
& 29 \text { 16\%1 (1972). } \\
& \text { Target asymmetry PaSoL. Booth et al, Nucl Phys } \\
& \text { B38 } 339 \text { (1.973), } \\
& \text { Ha Bienlein et al, Fhys Lett } 408 \text { 181(107 } \\
& \text { Photon asymmetry RoL. Anderson et al., Phys Rov Lett } \\
& 2630 \text { (1.971). }
\end{aligned}
$$

66．J．L．klonso and D．Schiff，Nucl Phys B51 55\％（1973）．
67．VoNo Gribov，I．Y\＆Pomeranchuk，Kah．Terwartiroysan；Phys Iev 139 B1．84（1965）。

63．N．Hukherji and BeP．Desai，Phys Rev D7 4 4（19＂73）。
62．VoN．Gribov，Soviet Fnysics Jerl 20 414（1968）．
（ Zha linsp．Jeor．iliz 53654 （1967）．）
70．T．J．nuzinich，Feto Paige，Tw Jo Trmeman，Ling－Jite Hang； Pbys Rev 120 1048（1972）．
 Fhy Tott 2060 （1964）。

72．A review of the erguments used is given in ref．（74）．
73．V．No Gribov and MuA Migdal，Bov Jo Nucl Fhys 8583 （1960）＂ （ Yeo Jon 8 1002（108S））

75．J．B．Brorman，Phys Rev DS 100\％（1971）。

77．Rof．Roberts，Proceedjeg of the Fourteenth Scotish Unitrer． sition Summer School in Phericss Tuly－August 1073.

78．TuG。 Smabtayn and Iokn Ryahils，webles of Triaerals，Serjea and products＂（homemic Prese，New Yorls，1965）．

79．Deto leverences：

80．The rata used in the fit is the gane as in the efkonal modet fit of chapter three，Refenence 65．

81．See for example Referonves 22 and 20．
92．For a Scrali fit th beckward scattering Rome Kelly，Cum Kene； F．Henyey，Fhos Rev Lett 24 1511（1970）and for a general
 Nucl Phys B30 1

