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Abstract 

An investigation i s made in t o the flow of f l u i d s through 

deformable porous materials with the aim of an application to a r t i c u l a r 

c a r t i l a g e , which depends on i n t e r s t i t i a l f l u i d for some of i t s mechanical 

properties. 

The law governing flows due to f l u i d pressure i s shown to be v a l i d 

i n a cylinder of material with the same permeability i n a l l directions, both 

with a x i a l flow only and wit h a x i a l and r a d i a l flow combined, up to Reynolds 

numbers of about 1. A l i t e r a t u r e survey shows that there i s a large range 

of values of Reynolds numbers proposed as the l i m i t of the v a l i d i t y of t h i s 

law, i n d i c a t i n g that there i s no universal " c r i t i c a l " Reynolds number i n 

flow through porous media. 

The v a r i a t i o n of permeability with strain i s measured, both i n 

directions p a r a l l e l and perpendicular to the d i r e c t i o n of applied s t r a i n , i n 

a porous polymeric material. 

A model of articular' cartilage i s proposed which consists of a 

porous s o l i d matrix, which has a reversible non-linear load/displacement 

characteristic, with l i q u i d - f i l l e d pores. Assuming a simple v a r i a t i o n of 

permeability with s t r a i n predicts time-dependent deformations to a good 

degree of accuracy, agreement being excellent at normal physiological 

loads. Under o s c i l l a t i n g loads, deforrnations are much larger than those 

predicted by the model, and i t i s thought that t h i s i s due to the effect of 

the bulk modulus of the cartilage, which becomes dominant i n short term 

responses. 
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Notation 

cross-sectional area of sample 
area of pores 

area of (pores + solid) 

A cross-sectional area of c a p i l l a r y tube 

a,b constants of force-deflection characteristic 

C r a t i o of mean free path and reciprocal of mean 
pressure 

C A constant (=(»•« tr) 

c constant of integration 

C, constant [~ 

C y c c o e f f i c i e n t of consolidation 

(£ length which characterises size scale of porous 

media (e.g. grain diameter) 

^ distance separating two s o l i d surfaces 

fi. void r a t i o 

& i n i t i a l void r a t i o 
O 

E Young's modulus of elastic material 

£ porosity of model 

|, function of s t r a i n 

F force to be carried 

f " a applied force 

^ force carried by s o l i d 

F j force carried by f l u i d 

F sinusoidal force 

<j acceleration due to gravity 

function of time only 

U head, height of f l u i d above surface of material 

difference i n head 

H thickness of material 

X pressure gradient - i -



K permeability-

K s o i l mechanics permeability 

K r a d i a l permeability 

K a x i a l permeability 

permeability i n x, y directions 

bulk modulus 

L characteristic length 

length of a conductor 

U length of a conductor at st r a i n 

i length of material 

coefficient of volume compressibility 

n porosity 

number of tubes 

IN/ dimensionless constant ('shape f a c t o r 1 ) 

Ps load carried by s o i l 

Pw load carried by pore water 

PT t o t a l load carried 

P f l u i d pressure 

d p pressure difference 

P f l u i d p o t e n t i a l (« p -*• 

P ~ mean pressure 

atmospheric pressure 

P*fp».«a 
applied pressure 

<v floTffrate 

Q t o t a l flowrate 

Q » flowrate at mean pressure 

R external radius 

c a p i l l a r y radius 

«« Reynolds' number 

r distance from axis of symmetry 

- i i -



Ar incremental distance i n r a d i a l d i r e c t i o n 

Sr size of element i n r a d i a l direction 

•a radius of cylinder 

t time 

St increment of time 

T o r i g i n a l thickness of material 

u p excess pore pressure 

IA. r a d i a l flowrate per unit area 

flowrate per un i t area i n x-direction 

V i n i t i a l porosity 

Vo t o t a l volume 

V flowrate/unit area 

flowrate/unit area i n y-direction 

w a x i a l flowrate per un i t area 

w s 
mass of f u l l y swollen specimen 

w , dry mass of specimen 

w mass of specimen at any given time 

V elastic modulus 

a- distance along axis of symmetry 

size of element i n axi a l d i r e c t i o n 

o r i g i n a l thickness of cartilage 
z , thickness at equilibrium a f t e r application of load 

ft. i n i t i a l value of £2 

constant indices 

i deformation from o r i g i n a l thickness 

So "instantaneous" response on compression 

"instantaneous" response after release of load 

creep deflection 

s t r a i n ( = 

strains i n r,©,* directions 
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G a s t r a i n rate i n £ -dir e c t i o n 

59 angle of element 

CjKuA ̂  p o t e n t i a l gradient 

8̂ density of f l u i d 

^ t o t a l settlement 

5^»T settlement experienced by t h i n layer 

C r,00,^4 stresses i n r, 0, a directions 

O" t o t a l applied stress 

CT increment of stress 
» 

CT effective stress 

*^ dynamic visoosity of f l u i d 

V Poisson's r a t i o 

kinematic visoosity of f l u i d 

U> frequency of o s c i l l a t i o n 
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1 • Introduction 

The aim of t h i s research project was to show how the mechanical 

properties of porous materials are related to t h e i r porous nature. This 

project arose because of the interest shown at the moment i n the function­

ing of human j o i n t s . Attached to the end of each bone i n a j o i n t i s a 

t h i n layer of a substance called a r t i c u l a r cartilage which i s both porous 

and deformable, and i s c r u c i a l to the normal functioning of synovial 

j o i n t s since i t s presence enables the transmission of high loads whilst 

maintaining contact stresses at an acceptably low l e v e l , and also enables 

movement with very l i t t l e f r i c t i o n a l resistance. 

Amongst engineers i t i s the l u b r i c a t i o n mechanism which has 

received a l o t of attention, and there have been two basic l u b r i c a t i o n 

mechanisms postulated i n human j o i n t s . I t i s postulated, i n the so-called 

theory of "weeping" l u b r i c a t i o n ^ that when the cartilage i s put under 

load, f l u i d seeps out of i t and replenishes the l u b r i c a t i n g f l u i d f i l m . 
(2} 

"Boosted" l u b r i c a t i o n has been proposed i n two forms, the f i r s t ' i s based 

on the fact that large molecules i n the f l u i d are too large to pass through 

the pores of the cartilage, so that f i l t r a t i o n through the cartilage w i l l 

cause an increase i n viscosity as the concentration increases. The second 

f o r m ^ argues t h a t , since the permeability (which can be thought of as 

conductivity to f l u i d flow) i s so low i n carti l a g e , almost a l l the flow 

i s i n the f i l m and the large molecules may have some at t r a c t i o n to the 

surface of the cartilage, thus being prevented from flowing away from the 

centre of the f i l m . 

I t appears, however, that, from a theoretical study of the squeeze-

f i l m s i t u a t i o n ^ t h e permeability of cartilage i s too low to play much 

part i n the l u b r i c a t i o n except perhaps at t h i n f i l m s when boundary l u b r i c a t i o n 

regimes w i l l be dominant, either i n the " f i l t r a t i o n " mechanism or i n the 



"weeping" mechanism. The main role of permeability i n the mechanism 

of j o i n t l u b r i c a t i o n would therefore appear to be i n affecting the 

mechanical s t i f f n e s s of the cartilage layer. I t would appear that no 

other material i s quite so dependent on i t s porous nature as cartilage for 

i t s s t i f f n e s s , t h i s being due to i t s low permeability combined with a 

r e l a t i v e l y low e l a s t i c modulus when compared wi t h materials (such as rock) 

w i t h an equally low permeability. 

This thesis therefore describes the work performed on other 

porous materials i n formulating a simple mechanical model of a r t i c u l a r 

cartilage which predicts i t s response to various forms of loading. 

Chapter 2 i s concerned with the law which governs the transport of 

f l u i d through a porous material under f l u i d pressure, known as Darcy's / 

law. Much work has been done on porous materials i n t h i s respect i n 

connection with both s o i l and rock mechanics and a vast l i t e r a t u r e has 

been b u i l t up about the v a l i d i t y of Darcy's law. 

Chapter 3 looks at the permeability-strain relationship i n porous 

materials when large strains are imposed, f o r most p r a c t i c a l purposes i n 

porous materials the permeability i s assumed constant, but bearing i n mind 

that a r t i c u l a r cartilage can be subjected to compressive strains of 0 .5 , 

t h i s relationship has to be taken i n t o account. 

Having established t h i s relationship, the theory f o r deformable 

porous materials i s then formulated i n Chapter 4* The solutions to some 

special cases are presented, and the numerical work (including computer 

programs) which i s needed to solve some of the other special cases i s 

described. A mention i s also made i n t h i s Chapter of the theoretical 

approach made by engineers to the special case of s o i l mechanics. 

Chapter 5 applies, t h i s theory to the special case of a r t i c u l a r 

cartilage, making due reservations where necessary. The solutions are 
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compared to the experimental results already published and t o some which 

have been produced i n t h i s Laboratory. 

Chapter 6 presents some conclusions from the work described i n 

the thesis* 
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2. Flow through Undeformed Porous Solids 

2.1 Literature Review 

The history of the study of the flow of f l u i d s i n porous media 

dates back to 1856, when Henri Darcy, a hydraulic engineer based i n Paris, 

was engaged to enlarge and modernise the waterworks of the town of Dijon 

i n the South of France. He wrote about these experiences i n a book , ^ 

which describes i n d e t a i l how he went about the task. I t appears that 

during his time i n Dijon he was called upon to design a f i l t e r bed of 

sand, and, finding there was no l i t e r a t u r e or design rules about such things, 

he set out to perform some experiments. 

He b u i l t an apparatus consisting of a v e r t i c a l i r o n pipe flanged at 

both ends, and f i t t e d a g r i l l w o r k inside the pipe which supported approx­

imately 1 metre of sand. Water could be admitted i n t o the apparatus by means 

of a pipe tapped i n t o the v e r t i c a l cylinder and could be discharged by a 

tap near the bottom. The flowrate could be controlled by means of valves 

at the i n l e t and e x i t from the cylinder. Mercury manometers were tapped 

in t o the open chambers above and below the column of sand, and these were 

used f o r measuring the i n l e t and outlet pressures. He tested four d i f f e r e n t 

types of sand, and was able to conclude that 

% = - k * C (2 .1 .1 ) 

where i s the t o t a l flowrate 

I i s the pressure gradient 

kb i s a constant, t o be known as the permeability of the sand. 

Written another way, Darcy's law can be expressed as 

<V • - ̂ du" ( 2 . 1 . 2 ) 

where i s the pressure gradient i n the x-direction, or, generalizing 

the formula to any direction (see, for instanoe Scheidegger^^) 
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% = -kjgraa p -^g) ( 2 .1 .3 ) 

where ^ i s the gravity vector (of magnitude cj and direction downward) 

and |» i s the density of the f l u i d . 

The present-day expression of Darcy's law i s 

^Ax ( 2 . 1 A ) 

where V i s the flowrate per unit area of the porous material ( f i l t e r 

v e l o c i t y ) 

a n d ^ i s the v i s c o s i t y of the f l u i d . 

Carrying out a dimensional analysis of t h i s formula, we f i n d that 

k = Nd 1 ( 2 . 1 . 5 ) 

wherel^is a dimensionless constant ('shape f a c t o r 1 ) 

A. i s a length which characterizes the size scale of the pore 

structure, e.g. mean grain diameter. 

For many years t h i s formula was thought to be an empirical one, but 

several attempts have been made to v e r i f y i t from f i r s t p r i n c i p l e s . 
(8) 

Hubbert ' has put forward a derivation of i t start i n g from the Navier-

Stokes equations, but his r e l a t i n g of microscopic and macroscopic quantities 

appear rather tenuous and seems to r e l y on arguments which have not been 

proved themselves. Both Whitaker, ' from the momentum equations, and 

Poreh and E l a t a ^ 1 0 ^ from the Navier-Stokes equations, showed that Darcy's 

law could be derived by neglecting i n e r t i a l forces and provided that the 

correct averaging processes are introduced. Thus, i t seems that because 

relationships between microscopic and macroscopic quantities are involved, 

a recourse t o s t a t i s t i c s i s required, i n order to prove Darcy's law 

t o t a l l y ( C o l l i n s / 1 1 ^ Scheidegger^ 1 2)). 

However,despite the absence of t o t a l l y reassuring t h e o r e t i c a l 

analysis, investigators have extended the results of a steady, one-

dimensional, incompressible flow experiment to include transient, raulti-
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dimensional, compressible flow i n anisotropic, compressible and e l a s t i c 
( l 3 ) ( l k ) ( l 5 ) ( l 2 ) 

porous media, and i t seems to be acknowledged that Darcy's 

law plays the same role i n the theory of the conduction of f l u i d s through 

porous solids as Ohm's law i n the conduction of e l e c t r i c i t y , or Fourier's 

law i n the conduction of energy by heat. 

Darcy's law, as discussed above, appears to give an adequate des­

c r i p t i o n of flow through porous media under a wide variety of conditions. 

However, as i n any branch of engineering, i t must be expected that there 
(16) (17) are l i m i t a t i o n s . Hudson and Roberts, and Leva and co-workers, 

have reviewed many experiments which demonstrate that Darcy's law i s v a l i d 

only i n a certain "seepage" velocity domain outside which more general flow 

equations must be used to describe the flow correctly. 

I n order to characterise t h i s seepage vel o c i t y domain, i t i s 

customary to introduce a Reynolds number as follows: 
o _ < ^ 

K « ~ ^ (2 . 1 . 6 ) 

where, i n addition to the symbols already defined, dL i s a microscopic 

diameter associated with the porous medium ("pore diameter"). The occurrence 

of the quantity <A i n the d e f i n i t i o n of the Reynolds number immediately 

poses certain problems, i n as much as i t cannot be properly defined, but 

i t i s frequently taken as the grain diameter, as t h i s gives the order of 

magnitude of the pore size. Nevertheless, many investigations have been ;. 

attempted to establish a " c r i t i c a l " Reynolds number above which Darcy's law 

would no longer be v a l i d . As i n straight pipe flow, the contention was that 

there exists a universal c r i t i c a l Reynolds number above which the flow i n 

the pores would become "turbulent 1 1. I n these investigations, a great 
discrepancy regarding the universal c r i t i c a l Reynolds number became evident, 

(18) (19) 

the values ranging from 0.1 to 75» although i n the l a t t e r case the 

Reynolds number was based on an i n t e r s t i t i a l v e l o c i t y (velocity through 
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the pores), and converting t h i s to a f i l t e r v e l o c i t y gives a c r i t i c a l 

Reynolds number of approximately 30. Nevertheless, the great uncertainty 

i n these numbers seems to indicate that Reynolds' numbers being equal does 

not assure s i m i l a r i t y of the flow i n two d i f f e r e n t porous media. 

I t has generally been contended that the breakdown of Darcy's law 

i s due to the onset of turbulence i n the pores as t h i s i s known to occur 

i n pipes. However, i t i s well-known that turbulence i n pipes occurs at a 

Reynolds number of approximately 2000. I n porous media, a breakdown of 

Darcy's law occurs at much lower Reynolds numbers (even i f the l a t t e r i s 

calculated with the i n t e r s t i t i a l v e l o c ity, rather than the f i l t e r v e l o c i t y ) 

which indicates that an e n t i r e l y d i f f e r e n t cause of non-linearity i s 

ef f e c t i v e . The cause of non-linearity i s that the i n e r t i a l forces i n the 

f l u i d become s i g n i f i c a n t with respect to the viscous forces. I n view of 

the Reynolds numbers being so small, i t i s inconceivable that true 

turbulence ( s t a t i s t i c a l v e l o c i t y fluctuations) plays any role at a l l . 

However, i n e r t i a l effects w i l l also become manifest i n curved channels i n 
(12) 

laminar flow and therefore i t has been concluded by Scheidegger that 

the breakdown of Darcy 1s law i s caused by the non-linearity i n the flow 

equations describing laminar flow i n curved channels. 

The net r e s u l t of these experiments i s that above a "certain" value 

f o r the seepage velocity, Darcy's law i s no longer v a l i d and a universal 

characterisation of thi3 value has not been achieved owing to the d i f f e r e n t 

structures i n various porous media. 

The high velocity flow phenomena occurring i n porous media have been 

put into mathematical terms i n several ways. Without attempting to under­

stand the physics of the eff e c t , various workers have simply t r i e d to f i t 

curves or equations to the experimental data so as to obtain a correlation 
(12) 

between pressure drop and flow v e l o c i t y . Scheidegger has made a thorough 

review of a l l the modifications made to Darcy's law f o r these high v e l o c i t i e s . 



MoKinley, Jahns, H a r r i s and &reenkor r ( 2 0 ^ have shown t h a t Darcy ' s 

law can be adapted f o r f l o w o f a non-Newtonian f l u i d by i n t r o d u c i n g a 

f a c t o r i n v o l v i n g the square r o o t o f the p e r m e a b i l i t y d i v i d e d by the p o r o s i t y . 

I t appears t h a t the c o e f f i c i e n t o f p e r m e a b i l i t y k „ i s not constant 

f o r the f l o w o f l i q u i d s and gases through the same porous media. Fancher, 

(21) 

Lewis and Barnes and o the rs have observed t h a t a i r p e r m e a b i l i t i e s are 

h ighe r than l i q u i d p e r m e a b i l i t i e s i n the same porous medium as c a l c u l a t e d 

f r o m Darcy 1 s l aw . As f a r as a c h a r a c t e r i s a t i o n o f the p o i n t where Darcy 1 s 

law becomes no longe r v a l i d f o r gas f l o w i s concerned, the f a c t s can be 

summarised by s t a t i n g t h a t Darcy ' s law breaks down i f the pore diameters be­

come comparable w i t h , or less t h a n , the molecular mean f r e e paths o f the 
(22) (23) f l o w i n g gas . Ohle, quo t ing K l i n k e n b e r g , J l s t a t e d t h a t the equat ion 

which a p p l i e s f o r f l o w o f a gas through a porous medium i s 

* A ( h - f O p~Oc (2.1.7) 

where i s mean pressure 

( f i - f O * s Pressure d i f f e r e n c e over l e n g t h L 

i s volume f l u x a t the mean pressure 

C i s r a t i o between the mean f r e e pa th and the r e c i p r o c a l 

o f the mean pressure 

i s v i s c o s i t y o f the gas a t t h e mean pressure 

*R t i s an average c a p i l l a r y r a d i u s 

I t can be seen f r o m the l i t e r a t u r e on the sub jec t t h a t Darcy ' s law 

i s w i d e l y h e l d t o be accurate f o r most purposes i n d e s c r i b i n g the f l o w 

th rough porous media, but doubts are s t i l l h e l d about i t s t h e o r e t i c a l b a s i s . 
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2.2 Darcy ' s lav; i n a x i a l and r a d i a l f l o w 

As has been s t a t ed i n 2 .1 , Darcy ' s law i s w i d e l y h e l d t o be 

v a l i d f o r most purposes d e s c r i b i n g f l o w through porous media, bu t doubts 

s t i l l e x i s t , and so i t was thought prudent , i n view o f the f a c t t h a t the 

a im was to use Darcy ' s law t o desc r ibe f l o w both a x i a l l y and r a d i a l l y , t o 

i n v e s t i g a t e Darcy 1 s law e x p e r i m e n t a l l y bo th i n a x i a l and r a d i a l f l o w . 

- 9 -



2 . 2 . 1 D e f i n i t i o n o f Problem 

I n order t o v e r i f y Darcy" s lav; i n two dimensions, t he aim v/as t o 

a l l o w f l o w both a x i a l l y and r a d i a l l y i n a porous m a t e r i a l , measure the 

f l o w r a t e s and compare them w i t h f l o w r a t e s obta ined t h e o r e t i c a l l y assuming 

Darcy ' s law t o be v a l i d . 

I t was necessarj ' t o assume D a r c j r , s law t o be v a l i d i n one dimension 

i n order t o o b t a i n a c o e f f i c i e n t o f p e r m e a b i l i t y (by the ve ry d e f i n i t i o n 

o f Darcy ' s l a w ) , which could be used i n the computa t ion , and so i t was f e l t 

t h a t an i n v e s t i g a t i o n i n t o the range o f v a l i d i t y o f Darcy ' s law i n one 

dimension should a l so be made. 

The general scheme o f the problem, showing boundary c o n d i t i o n s , 
0 

i s shown i n Figure 1 . 
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2 . 2 . 2 Theory 

This t heo ry a p p l i e s f o r th ree -d imens iona l f l o w o f an incompress ib le 

f l u i d i n an incompress ib le porous medium. 

I f we consider an undeformed porous m a t e r i a l w i t h a x i a l symmetry, 

i . e . c ° a n c ^ e x a m 3 - n e " th 8 f l ov / r a t e s per u n i t area i n an 

element (see F igure 2) 

I f u. i s the r a d i a l f l o w r a t e per u n i t a rea 

w i s the a x i a l f l o w r a t e per u n i t area 

C o n t i n u i t y g ives 

J lowra te i n = Flowrate out 

" da *•' 

|»[r ir IBS* + (fcrf*U] + ^ [ - S r 1 * ^ 1 - uSrS* = ° 

n e g l e c t i n g terms i n , and d i v i d i n g th rough by ~r g ives 

} r d% V ( 2 . 2 . 1 ) 

I f "P i s the p o t e n t i a l , which i s d e f i n e d as 

-? * f + ^gH 
where p i s the pressure i n the f l u i d 

and H i s a h e i g h t above an a r b i t r a r y datum l e v e l , then Darcy ' s l aw, 

account ing f o r e f f e c t s o f g r a v i t y , can be w r i t t e n as 

^ = ' ^ * Y ( 2 . 2 . 2 ) 

W = - ~ ^ (2 .2 . 3 ) 

where W a are c o e f f i c i e n t s o f p e r m e a b i l i t y i n the v— and 

a — d i r e c t i o n s r e s p e c t i v e l y . 
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S u b s t i t u t i n g ( 2 . 2 . 2 ) and ( 2 . 2 . 3 ) i n t o ( 2 . 2 . 1 ) g ives 

dr* y 3T fc.) ^ (2.2.4) 

which i s a fo rm o f Lap lace ' s equat ion i n c y l i n d r i c a l c o - o r d i n a t e s . 

Equa t ion ( 2 . 2 . 4 ) i s the governing equat ion f o r the p o t e n t i a l s i n 

t h e f l u i d throughout the porous m a t e r i a l , p r o v i d i n g the m a t e r i a l i s 

undeformed. 
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2.2.3 Numerical A n a l y s i s 

The f i n i t e d i f f e r e n c e technique was used t o o b t a i n the s o l u t i o n 

t o equat ion (2.2.4) w i t h the g iven boundary c o n d i t i o n s . 

(2L.) 
Using Noble ; the expressions i n v o l v e d a re , i n f i n i t e d i f f e r e n c e 

f o r m , 

(2.2.5) 

d a 

t h e noda l p o i n t s being i n the order as shown below, 

M 

These formulae were s u b s t i t u t e d i n t o equat ion ( 2.2.4) and an 

express ion f o r [ f l T 4

 W a a ob ta ined f o r a l l p a r t s o f the f l u i d . 

The boundary c o n d i t i o n s used we re : -

2 = 0 ? - fo^iou! O < r $ r«. 

where i s atmospheric pressure 

PdffUd i s a P P l i e < * Pressure 

i s l e n g t h o f porous m a t e r i a l , 
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a l though the l a s t c o n d i t i o n was m o d i f i e d s l i g h t l y because i t was f o u n d 

t h a t the f l u i d d i d no t reach a l l p a r t s o f the porous m a t e r i a l , and formed 

i t s own boundary, a f r e e su r f ace , i n s i d e the s o l i d i t s e l f . Th i s boundary 

was t h e r e f o r e , as w i l l be shown l a t e r , found by t r i a l and e r r o r . 

A r e l a x a t i o n process was used t o converge the ( r , * ) mesh o f 

p o t e n t i a l s , so t h a t a l l p o t e n t i a l s i n the g r i d e v e n t u a l l y conformed t o the 

governing equa t ion , and the a p p l i e d boundary c o n d i t i o n s . From these 

p o t e n t i a l s , the f l o w r a t e s per u n i t area cou ld be c a l c u l a t e d d i r e c t l y f r o m 

Darcy ' s l a w : -

The e v a l u a t i o n o f - ~ a t the boundary i s , however, r a t h e r more 
or-

t r o u b l e than the c a l c u l a t i o n o f the p o t e n t i a l s . I t i s w e l l known t h a t 

(2L.) 

numer i ca l d i f f e r e n t i a t i o n i s n o t o r i o u s l y u n r e l i a b l e (see Noble ' ) and 

any c a l c u l a t i o n o f 

w i l l on ly give an est imate o f a t * - Ya.~ . To evaluate 

I T - I , t h e r e f o r e , a po lynomia l was f i t t e d t o the s i x values o f 

p o t e n t i a l nearest the boundary i n the h o r i z o n t a l p lane , and t h i s po lynomia l 

was then d i f f e r e n t i a t e d "by hand" and the value r * s u b s t i t u t e d 

i n t o the subsequent p o l y n o m i a l , t h u s i -

F i t t e d p o l y n o m i a l i s 

p a A / * B r \ C r + l > A E r + F 

where A,B,C,D,E and F are cons tants , 

T h i s expression proved t o g ive a much b e t t e r es t imate than any f i n i t e 

d i f f e r e n c e express ion , a l though the c a l c u l a t e d values o f he lped i n 
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t he respect t h a t they were always smoothly decreasing as the va lue o f the 

r a d i u s inc reased . 

Once r e l i a b l e f i g u r e s had been o b t a i n e d f o r i - ^ - • , 
• a-

t h e f l o w r a t e s were eva lua ted by i n t e g r a t i n g the flowrate3 per u n i t area 

over the areas considered us ing the t r a p e z o i d a l r u l e . 

Severa l problems were encountered i n the computing, e s p e c i a l l y i n 

s p e c i f y i n g the boundary c o n d i t i o n s . 

As can be seen f r o m the boundary c o n d i t i o n s , f o r an i n f i n i t e l y s m a l l 

s tep l e n g t h , the p o t e n t i a l s a t the i n l e t corner are p a J_ > and p a f t . i / . ^ 

separated by the i n f i n i t e l y smal l s tep l e n g t h , thus causing an i n f i n i t e 

f l o w r a t e . Because the noda l p o i n t s used i n c a l c u l a t i n g a p o t e n t i a l are 

h o r i z o n t a l and v e r t i c a l , as opposed t o the d iagona l method, the value 

o f the p o t e n t i a l a t the corner i s never, i n f a c t , used f o r the c a l c u l a t i o n 

o f the p o t e n t i a l s . As the mesh s ize was decreased, the f l o w r a t e s a t the 

corner became l a r g e r and l a r g e r and, i n the l i m i t , would have become i n f i n i t e , 

so i t was f e l t t h a t the s o l u t i o n o f the p o t e n t i a l s and f l o w a r a t e s was 

complete ( i . e . no more nodal increases needed) when the f l o w r a t e s had con­

verged i n the r e s t o f the mesh, and the f l o w r a t e s per u n i t area a t ( f f t ) 0 ) 

were e x t r a p o l a t e d f r o m the values o f the o ther f l o w r a t e s by means o f curve 

f i t t i n g . Th i s was a problem bo th i n the a x i a l i n l e t and r a d i a l o u t l e t 

r e g i o n s , bu t i t was found t h a t by us ing t h i s method the values o f the f l o w -

r a t e per u n i t area a t ( V a f ° ) i n b o t h d i r e c t i o n s were w i t h i n 3$. 

Another problem arose i n the va lue o f \P\ a t r « O . 

S u b s t i t u t i o n o f v * O i n t o equat ion ( 2 . 2 . 4 ) gives a value t o g r 

o f i n f i n i t y . The values a t these p o i n t s were t h e r e f o r e f o u n d by assuming 

the pressure d i s t r i b u t i o n a t the centre o f the c y l i n d e r t o be p a r a b o l i c 

about T - o '•- f 

? T ; L + M / 
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Symmetry i s preserved by the f a c t t h a t | ^ ^ " | i s zero a t the cen t re 

o f the c y l i n d e r , 

4.P - P 
Thus P - L = r ' - 6 r f , a A r 

3 
g i v i n g a va lue o f the p o t e n t i a l at the centre o f the c y l i n d e r . 

The l a s t problem concerned the p o s i t i o n o f the f r e e su r face a t the 

t o p o f the c y l i n d e r , as has a l ready been mentioned. I n i t i a l l y , the 

boundary was taken as being a t t he t op o f the c y l i n d e r , but nega t ive output 

f l o w r a t e s there showed t h i s t o be an un rea l s i t u a t i o n . The s o l u t i o n l a y i n 
(25) 

t he c o n s i d e r a t i o n o f the e q u i p o t e n t i a l s and s t reaml ines (see S t r e e t e r ) 

o f t he f l o w i n the porous m a t e r i a l . The p o s i t i o n o f a f r e e sur face was 

assumed, and the p o t e n t i a l mesh was then i t e r a t e d to convergence. L ines 

j o i n i n g p o i n t s o f the same p o t e n t i a l ( e q u i p o t e n t i a l s ) were drawn, and i f 

these e q u i p o t e n t i a l s cu t the f r e e sur face o r t h o g o n a l l y , then the f r e e 

su r face t h a t had been assumed was taken as the boundary i n s i d e the m a t e r i a l . 

- 16 -



2.2.4 Exper imenta l Work 

For a diagram o f the apparatus used i n t h i s exper imenta l work , 

see Figure 3. 

I n order t o v e r i l y Darcy ' s law a x i a l l y and r a d i a l l y , i t was 

necessary t o i n v e s t i g a t e the law i n one dimension and then use the c o e f f i c i e n t 

o f p e r m e a b i l i t y ob t a ined f r o m t h i s experiment t o c a l c u l a t e f r o m the computer 

program the t h e o r e t i c a l f l o w r a t e s fck bo th a x i a l l y and r a d i a l l y . The re fo re 

i t can be seen t h a t a m a t e r i a l was needed which was i s o t r o p i c i n a l l t h r ee 

dimensions. 

Because o f t h i s l a s t requirement , i t was decided to c o n s t r u c t a 

m a t e r i a l f r o m s m a l l beads o f u n i f o r m s i z e . I n order t o ensure t h a t they 

were almost undeformable and u n l i k e l y t o be cor roded by a f l u i d such as o i l 

or water , i t was decided t o o b t a i n beads made f r o m g l a s s . The beads 

ob ta ined f r o m manufacturers were c la imed t o be s p h e r i c a l and by systematic 

s i e v i n g had diameters which were w i t h i n the range o f 0.89 t o 1.0 mm. 

The beads were conta ined i n a c y l i n d r i c a l gauze cage (600 micron 

mesh s i ze ) o f dimensions 100 mm diameter by 130 mm l e n g t h . I n order t o 

o b t a i n as c lose a pack ing as poss ib le the beads were v i b r a t e d us ing a r o d 

connected t o an o s c i l l a t o r . Vfhen the c y l i n d e r was comple te ly f u l l o f c l o s e -

packed beads, a gauze l i d was f i x e d t o the c y l i n d e r so t h a t the " s o l i d " c o u l d 

no t be deformed i n any way. 

2.2.4.1 A x i a l f l o w o n l y 

Around t h i s gauze cage was f i x e d a perspex c y l i n d e r o f dimensions 

150 mm diameter by 250 mm l e n g t h which had t r a y s a t 10 mm i n t e r v a l s l e a d i n g 

out o f the s ide o f the gauze. The i n l e t t o the cage was at the bot tom and 

the only o u t l e t a t the t o p . For one-dimensional f l o w , pipes were f i x e d i n 

each t r a y t o a l l o w the connect ion o f stand pipes t o measure pressure a t any 

l e v e l i n t h e porous m a t e r i a l . Thus, w i t h t h i s arrangement, f l o w f r o m t h e 
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i n l e t through the s o l i d t o the o u t l e t would be one-dimensional . 

To enable to range o f Reynolds numbers t o be s t u d i e d , d i s t i l l e d 

wa te r , two types o f m i n e r a l o i l ( f tVI 55 and HVI 160s) , and a i r were used 

as p e r c o l a t i n g f l u i d s . 

The l i q u i d s were pumped th rough the apparatus by e i t h e r a screw-

t h r e a d a c t i o n pump ( f o r low f l o w r a t e s ) or a h e l i c a l gear pump ( f o r h ighe r 

f l o w r a t e s ) , connected t o a v a r i a b l e speed gearbox. For the f l o w o f l i q u i d s , 

p o t e n t i a l (head) d i f f e r e n c e s were read f rom i d e n t i c a l glass standpipes o f 

5 mm i n s i d e diameter , which was thought l a rge enough t o make any sur face 

t e n s i o n e f f e c t s n e g l i g i b l e . Three standpipes were used t o give two readings 

o f head d i f f e r e n c e f o r each value o f f l o w r a t e . Readings were taken by 

s t a r t i n g v / i t h a slow motor speed g i v i n g a low a p p l i e d pressure and w a i t i n g 

f o r c o n d i t i o n s to s t a b i l i z e , steady c o n d i t i o n s be ing shown b o t h by constant 

head d i f f e r e n c e s i n the standpipes and f l o w r a t e s being cons tan t . F lowrates 

were measured by c o l l e c t i n g the o u t f l o w dur ing a measured t imu and weighing 

t h e con ten t s . An increase i n pressure was ob ta ined by i n c r e a s i n g the speed 

o f the motor, c o n d i t i o n s were again a l l owed t o s t a b i l i z e and readings t aken . 

Temperatures o f the l i q u i d s were r e a d a f t e r e x i t f r o m the apparatus i n order 

t o o b t a i n the v i s c o s i t i e s o f the p e r c o l a t i n g f l u i d s . D e n s i t i e s o f the 

l i q u i d s a t t h i s temperature were a l so evaluated by weighing i n a r e l a t i v e 

d e n s i t y b o t t l e . 

For gas f l o w , two o f the pressure tappings were connected t o a 

wa te r manometer. O u t l e t f r o m the apparatus was connected t o a "Rotameter" 

which measured gas f l o w r a t e on the p r i n c i p l e o f ba l anc ing the weight o f 

an aluminium f l o a t i n s i d e a t ape red tube aga ins t the drag e x e r t e d by the 

gas on the f l o a t . These are not ve ry accurate devices and i n order t o 

o b t a i n a reasonably accurate range f o r the a i r f l o w r a t e , two Rotameters were 
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used, one f o r low f l o w r a t e s and one f o r h igher ones. The a i r t o the i n l e t 

was taken through a va lve f r o m a compressed a i r supply, changes i n pressure 

be ing made by opening o f t h e v a l v e . 

2 . 2 . 4 . 2 A x i a l and R a d i a l Flow 

Once the t e s t s had been concluded s a t i s f a c t o r i l y i n the one-

dimensional case, the apparatus was a l t e r e d t o make i t amenable t o a x i a l and 

r a d i a l f l o w s imul taneous ly . T h i s i n v o l v e d the c u t t i n g out o f a 60° p iece 

f r o m the perspex c y l i n d e r i n the top f o u r t r a y s . T h i s was so t h a t f l o w 

c o u l d pass out o f the sides o f the c y l i n d e r a t each o f the f o u r h e i g h t s , 

and then be c o l l e c t e d and weighed. I t was thought a t the time t h a t these 

o u t l e t s were s u f f i c i e n t l y l a r g e no t t o hamper the f l o w coming out o f the 

gauze c y l i n d e r and cause a r e s i s t ance t o f l o w . Any l a r g e r cuts might w e l l 

have endangered the s t a b i l i t y o f the perspex c y l i n d e r . 

The t e s t s were then performed by pumping d e - a i r e d d i s t i l l e d water 

i n t o the c y l i n d e r and a l l o w i n g i t t o f l o w out r a d i a l l y f rom the c y l i n d e r 

o f beads i n t o the top f o u r t r a y s . Measurements o f pressure were taken by 

means o f the standpipes f i x e d t o the tappings lower down the c y l i n d e r , so 

t h a t the i n l e t pressures t o the " r a d i a l f l o w " p a r t o f the f l u i d c o u l d be 

eva lua ted . A g a i n the pressures were c o n t r o l l e d by means o f a v a r i a b l e 

speed gearbox connected t o a h e l i c a l pump. Flowrates were again measured 

by means o f weighing the o u t f l o w d u r i n g a g iven t ime i n t e r v a l . 
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2.2.5 Exper imenta l E r r o r s 

I n a l l experiments on porous m a t e r i a l s i n v o l v i n g l i q u i d s , the one 

p r a c t i c a l hazard which occurs i s t h a t o f a i r coming out o f s o l u t i o n . The 

l i q u i d i s o f t e n passing th rough very smal l and t o r t u o u s channels and 

c a v i t a t i o n e f f e c t s are e a s i l y o b t a i n e d . The a i r then stays t r apped i n the 

pores thus causing a smal ler area through which the f l o w can pass. Hence, 

f o r a constant pressure , smal le r f l o w r a t e s are observed as t ime passes. 

Th i s problem was overcome by d e - a i r i n g the l i q u i d s beforehand and measuring 

the f l o w r a t e t o see t h a t i t was no t decreasing w i t h t ime f o r a constant 

a p p l i e d p ressure . Th i s was n o t as much a problem as f e a r e d because pore 

s izes ranged f r o m about 0.1 t o 0.5 mm , which f o r a porous m a t e r i a l i s 

f a i r l y l a r g e . 

Flowrates were measured f o r l i q u i d s by weighing the o u t f l o w over a 

g iven t ime and the e r r o r s i n these were as f o l l o w s s -

HVT l60s 

Yfeight 500 t 1 gm e r r o r ± 0.2/5 

Time 100 t ^/^seo. e r r o r t 0.2# 

e r r o r i n f l o w r a t e = t 0.1$ 

HVI 55 

e igh t 500 ± 1 gm e r r o r ± 0,2fo 

e r r o r - Q,l$o Time 50 * 1 / c a e c -

e r r o r i n f l o w r a t e = ± 0.605 
Water 

Weight 600 1 1 gm e r r o r 

Time 20 i 1 / 5 sec. e r r o r 

e r r o r i n f l o w r a t e = 1.2/2 

± 0 . # 

+ 
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Flowrate f o r a i r was measured by means o f Rotameters . The 

manufacturers s ta te t h a t the e r r o r o f an ins t rument o f t h i s so r t i s o f the 

o rder o f 5$ a t f u l l scale displacement o f the f l o a t and thus e r r o r s are 

g rea t e r f o r smal ler d isplacements . V/ i th the f l o w r a t e s used, the maximum 

e r r o r was never l e s s than ± 3/2. 

Temperatures were measured t o 0.2°C, and t h e r e f o r e e r ro r s i n 

v i s c o s i t i e s c a l i b r a t e d f r o m these temperatures would be o f the order o f 

W i t h the same f i g u r e f o r e r r o r s i n dens i ty measurement, t o t a l e r r o r s f o r 

Reynolds numbers were as f o l l o w s : -

HVI 160s ± 

HVI 55 ± 2.6?2 

\7ater i 3 .?? 

A i r ± S—*> ± \jf° 

D i f f e r e n c e s i n head were read f r o m i d e n t i c a l g lass s tandpipes, and 

i t was thought t h a t as d i f f e r e n c e s were being measured, any e r r o r s due t o 

t h e apparatus, such as surface t ens ion e f f e c t s , would be canoe l l ed ou t , and 

t h e on ly e r r o r s which are not n e g l i g i b l e are those assoc ia ted w i t h r ead ing 

t h e h e i g h t s . 

HVI 160s 

A h 1 0 — * 30 ± 0.1 cm e r r o r ± —*• * 0.3,1 

HVI 55 

A h 3 — * 30 ~ 0.1 cm e r r o r ± % —*• ± O.jfo 

V/'ater 

A h 1.5 * 5 - 0.1 cm e r r o r - 6.5%—*» 2/« 

A i r 

A h 1 . 4 — » 2 0 i 0.1 cm e r r o r t -ft -> 0.5^ 
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2.2.6 Exper imenta l Resu l t s 

2.2.6.1 A x i a l f l o w 

Graphs are p l o t t e d as a non-dimensional f i l t r a t i o n v e l o c i t y 

(Reynolds number) versus d i f f e r e n c e i n head per u n i t l e n g t h . 

F igures 4> 5> 6 and 7 show the v a r i a t i o n o f Reynolds number w i t h 

d i f f e r e n c e s i n head f o r v a r i o u s ranges o f Reynolds numbers. 

F igure 4 i s f o r mine ra l o i l HVI 160s g i v i n g Reynolds numbers o f 

the order o f 0.002. 
« 

Figure 5 i s f o r mine ra l o i l KVT 55 g i v i n g Reynolds numbers o f the 

order o f 0.02. 

Figure 6 i s f o r d i s t i l l e d water g i v i n g Reynolds numbers o f the 

order o f 5* 

Figure 7 i s f o r a i r g i v i n g Reynolds numbers o f the order o f 20. 

Discuss ion 

F igu re 4 

Low Reynolds numbers are ob ta ined by us ing an o i l whose dens i t y 

(882 Kg/m"*) i s o f the order o f t h a t o f wa te r , but which has a dynamic 

v i s c o s i t y o f 230 cP. Darcy ' s law i s shown t o be v a l i d by the l i n e a r 

p r o p o r t i o n a l i t y o f Reynolds number t o head d i f f e r e n c e . 

Figure 5 

S l i g h t l y l a r g e r Reynolds numbers are encountered by us ing an o i l 

o f d e n s i t y 816 Kg/m^ and a dynamic v i s c o s i t y o f 3^ cP. Darcy ' s law i s again 

shown t o be v a l i d . 

F igure 6 

Using water ( d e n s i t y 1000 Kg/nr*, dynamic v i s c o s i t y 1 cP) , t he 

g radua l dominance o f i n e r t i a l f o r c e s i s shown by the g radua l t a i l i n g o f f 

o f the graph, so t h a t e v e n t u a l l y an increase i n a p p l i e d pressure w i l l g ive 

no increase i n f l o w r a t e . From the graph i t i s ve ry d i f f i c u l t t o evaluate 
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a t which p o i n t the l i n e s t a r t s to devia te f r o m l i n e a r i t y , but perhaps the 

graph i s best l e f t to show the i nc r ea s ing dominance o f i n e r t i a l e f f e c t s 

as the a p p l i e d pressure i s inc reased . 

Figure 7 

High f l o w r a t e s are ob ta ined us ing a i r ( d e n s i t y 1.23 Kg/m^, dynamic 

v i s c o s i t y 0.01 cP) , the readings f r o m the two Rotameters agreeing f a i r l y 

w e l l . Aga in the increase i n i n e r t i a l dominance i s shown. 

From these graphs v/e can examine the value o f the c o e f f i c i e n t o f 

p e r m e a b i l i t y f o r the m a t e r i a l independent o f the f l u i d passing th rough i t . 

From equat ion (2.1.4) 

"1 d* *% d * V - ^ d . * , d -

but T- a 

an AH 

where 7 - i s the d i f f e r e n c e i n head per u n i t l e n g t h . 
,. v - - y*ica £ 

where r iYi l represents the f l u i d p r o p e r t i e s 

and j lNld^is the p e r m e a b i l i t y o f the m a t e r i a l , 

ft* 
Now ' ' ' j * ^ 3 3 ^ ° P e ^ e graph i n each case 

where l>k i s k inemat ic v i s c o s i t y ( - " ^ i ) . 

As s t a t ed b e f o r e , the slopes o f G-raphs 6 and 7 are r a t h e r ha rd 

t o a s c e r t a i n , but the l a r g e s t one apparent i n each case has been t a k e n . 

Slope 

I W I 160s 261 x 10"6 0.285 x I0" 3 1.98 x 10~ 9 

HVI 55 44.3 x 1 0 - 6 9.85 x 10~3 1.97 x 10"9 

Water 1.0 x 10"6 14.0 1.43 x 10~ 9 

A i r 6.46 x 10"6 0.041 1.74 x 10~ 9 
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As can be seen, the values of the c o e f f i c i e n t of permeabili ty are 

a l l of the same magnitude and f o r values of small Reynolds numbers where 

slopes can be evaluated eas i ly , the values f o r the two types of mineral 

o i l are equal w i t h i n experimental e r ro r . 

For water and a i r , as has been stated, the slopes are extremely 

d i f f i c u l t to evaluate and i t i t , quite possible that the f igures f o r the 

slopes of the l i nea r parts of the graphs may be higher than those quoted. 

-9 2 

The value of 1.98 x 10 m was used i n the theore t i ca l analysis 

as the c o e f f i c i e n t of permeabili ty of the mater ia l , and proved reasonably 

sa t i s fac to ry . 

2.2.6.2 Experimental Results f o r ax ia l and r a d i a l f low 

Figures 8 and 9 show the comparison of theory and experiment f o r 

three-dimensional f low of water. The three l ines and points i n Figure 8 

r e f e r to the f low i n each layer , layer 1 being the lowest layer and layer 3 

the highest, whereas Figure 9 shows the comparison of theory and experiment 

f o r the t o t a l f low involved. 

Discussion 

For the i n d i v i d u a l layers , agreement i s poor f o r increasing 

appl ied pressures and th i s could be put down to one of two th ings . 

I n e r t i a l e f f ec t s may be becoming increasingly s i g n i f i c a n t , and although 

t h i s would account f o r f low i n Layer 1 diverging away from the theore t i ca l 

l i n e , i t would not account f o r observed f lowrates i n Layer 2 being greater 

than theore t ica l values. The other reason might have been that the perspex 

spout used f o r catching the f low was causing a resistance to the f low and 

consequently f l u i d inside the material was pushed up in to the next l aye r . 

This would account f o r observed flowrates i n t h i s layer being greater than 

t heo re t i c a l l y calculated. 
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Figure 9 lends a great deal of support to the l a t t e r conclusion 

inasmuch that there i s f a i r l y good agreement between t o t a l and observed 

f lowrates and t heo re t i c a l l y calculated ones at both low and high values of 

i n l e t pressure. Therefore using Figure 9» i t i s clear that i t i s quite 

v a l i d to use Darcy 1s law to evaluate flowrates i n a x i a l and r a d i a l f low 

simultaneously. 
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2.3 Conclusions on v a l i d i t y of Daroy 1s law 

A l i t e r a t u r e survey and a series of experiments have shown 

Darcy's law to be v a l i d i n one-dimensional f low f o r low values of 

Reynolds number, ranging from zero to approximately uni ty and can be 

used w i t h safely between these l i m i t s . 

I t has also been shown that Darcy's law can be used w i t h some 

confidence to predict the f lowrates i n three-dimensional f l o w . 

- 26 -



3« Var i a t ion of Permeability due to Deformation of So l id 

When large s t ra ins are involved i n the compression of a porous 

mater ia l , the constant of p ropor t iona l i ty from Darcy's law, the 

permeabil i ty , can no longer be regarded as constant w i t h va r ia t ion i n s t r a i n , 

although i t i s constant f o r a constant s t r a in provided the range of 

Reynolds Numbers i s w i t h i n the l i m i t s mentioned i n Chapter 2. 

A study, both of the l i t e r a t u r e and by experiment, w i t h a 

theore t ica l consideration, has therefore been made of the v a r i a t i o n of 

permeabili ty w i t h s t r a i n . 
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3.1 De f in i t i ons 

Throughout t h i s work the fo l l owing d e f i n i t i o n s have been used: 

£ = s t r a i n = change i n length from o r i g i n a l length 
o r i g i n a l length 

where compression i s pos i t ive 

n = porosi ty = volume o f pores 
volume of pores + s o l i d 

e = vo id r a t i o = volume of pores 
volume of s o l i d 

Now consider a cube of side a f 

l e t V = i n i t i a l porosi ty 

Volume of sol ids = 0 ? ( , - v ) 

I f we compress the cube to a height H (wi th no l a t e r a l expansion) 

Then 6 = 
a. 

and, assuming a l l deformation i s due to the closure o f the pores, then 

new volume;: a*"H 

and volume of pores = & 

Porosity a = 
<i-Zj 

and Void Ratio = (»-€) 
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3.2 Review 

3.2.1 Theoretical Work 

The most widely used expression f o r estimating the c o e f f i c i e n t of 

(27) 

(26) 
permeabili ty from measured parameters i s that derived by Kozeny and 

l a t e r modified to add a f u r t h e r element of general i ty by Fair and Hatch. 

I t i s not possible to derive a re la t ionsh ip between permeability 

and porosi ty on very general grounds, and one must be s a t i s f i e d w i t h 

discussing pa r t i cu la r ideal ized models of a conducting body. Most models 

o f t h i s type are based on the f low of f l u i d s i n c y l i n d r i c a l tubes or 

between p a r a l l e l plane surfaces. 

I f <y i s the volume of f l u i d f lowing per second through a tube 

o f radius r along which i s imposed a po t en t i a l gradient, ^ r a 4 <fi > then 

Po i seu i l l e ' s equation gives 

or the corresponding equation f o r f low per un i t width of a plane s l i t 

between s o l i d surfaces which are separated by a distance i s 

1 

the body, the t o t a l f lowra te 

With a concentration of *n tubes per un i t area of t o t a l cross-section of 

Because, f o r th i s model the porosi ty ^ i s equal to the area of conducting 

channel per un i t area o f cross-section, i . e . T i J T T T " the above 

equation may be rearranged and w r i t t e n : 

and comparison wi th Darcy's law (equation (2 .1 .4 . ) ) f o r one-dimensional 

f low gives 

(3.2.1) 
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Let i t now be supposed tha t , wi th e i ther of the above models 

conducting f l u i d s i n the d i r ec t i on of a p r i n c i p a l axis , one adds an extra 

set of plane s l i t s , each w i t h i t s plane perpendicular to the d i r ec t i on of 

the po ten t ia l gradient. Each of these s l i t s w i l l l i e i n an equipotent ial 

surface and there w i l l therefore be no tendency f o r them to f a c i l i t a t e 

the movement of f l u i d , except tha t insofar as, at junctions between 

in te rsec t ing s l i t s , tha t s l i t which i s the e f f e c t i v e conducting element 

w i l l have a l o c a l l y increased width and w i l l therefore make a s l i g h t l y 

enhanced contr ibut ion to the permeabil i ty. On the whole, however, that part 

of the porosi ty which i s contributed by the equipotent ia l s l i t s i s 

i n e f f e c t i v e and may, f o r the purpose of assessing permeabil i ty, be regarded 

as dead space. I n any s t a t i c measurement of t o t a l poros i ty , however, t h i s 

dead space i s indis t inguishable from the e f f e c t i v e l y conducting channels, 

and the permeability w i l l only be proport ional to the t o t a l porosi ty i f , 

f o r t u i t o u s l y , the dead space increases i n the same proport ion as the 

e f f e c t i v e space. 

I t i s possible to give Equation (3*2.1) a f a r more general appear­

ance and thereby to hide the f a c t that i t i s , by i t s de r iva t ion , applicable 

only to the cap i l l a ry tube model, by w r i t i n g 

and assigning the symbol Ag to the spec i f i c surface area developed by the 

oonductor, namely the t o t a l surface area of the s o l i d part divided by the 

volume o f that s o l i d par t , 

and 

0 - f ) 

(3.2.2) 

which i s known as Kozeny's equation. 
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I t i s mainly used i n evaluating the permeabili ty of powders and 

when used fo r a geometry f o r which i t was not derived, the constant 2 i s 

usual ly replaced by an empir ical ly determined "pore shape fac to r" which i s 

commonly i n the range from 2 to 2.5• 

3 .2 .2 Experimental Work 

There appears to be a f a i r amount of l i t e r a t u r e comparing 

permeabil i ty and porosi ty , especially i n the f i e l d s of s o i l mechanics and 

powder metallurgy (see, f o r instance, M i t c h e l l , Hooper and Campanella! 2^ 
(29) 

or Grootenhui3 and Leadbeater ) . But a l l t h i s work seems to be applied 

to the permeabili ty and porosi ty of d i f f e r e n t materials or powders wi th 

varying po ros i t i e s . No work appears to have been performed on the same 

material as i t i s being compressed, which i s what i s required here. 
(30) 

Morgan states that f o r the same material there i s an approximately 

l i nea r re la t ionship between log (permeabil i ty) and log (poros i ty) 

which means 

w i t h j3 constant. 

This would seem reasonable i n the sense tha t zero permeabili ty would r e su l t 

(31) 

from zero porosi ty, but the fac tor 8̂ i s not def ined. Taylor states 

tha t f o r f ine-grained s o i l the re la t ionsh ip between vo id r a t i o and log 

(permeabi l i ty) i s a l i nea r one, but t h i s only covers a small range i n vo id 

r a t i o . 
(32) 

These relat ionships a l l tend to bear out Eraser's statement: 

"No cor re la t ion can safe ly be made between two samples on the basis of t h e i r 

poros i ty , unless i t i s cer ta in that a l l t h e i r physical properties are 

i d e n t i c a l . " 
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However, i t would seem more reasonable to expect some sort 

o f co r re la t ion of permeabili ty and s t r a i n from a mater ia l v/hich i s being 

compressed and therefore does not d i f f e r i n physical content, only i n 

pore shape and size* 
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3.3 Experimental Work Performed 

From the l i t e r a t u r e survey, i t appeared that no experimental work 

had been performed of the type that was required, i . e . the measurement of 

the change of c o e f f i c i e n t of permeability i n the a x i a l and r a d i a l direct ions 

as a porous material was compressed, and that no theore t i ca l model could be 

produced which would simulate these charac te r i s t i cs . Therefore an experiment 

was designed to measure these coe f f i c i en t s as an increasing applied 

compressive s t r a in was applied to the mater ia l . 

A diagram explaining the o r i en t a t ion of a x i a l and r a d i a l d i rec t ions 

w i t h respect to the d i r e c t i o n of the applied s t r a i n i s shown i n Figure 10. 

3.3.1 Mater ia l 

The requirements f o r the material to be used i n the experiments 

were 

( i ) t o be reasonably t h i ck so that large s t rains could be measured 

accurately w i t h d i a l gauges 

( i i ) to have as low an e l a s t i c modulus as possible so that the force 

needed to compress a large area of the material t o an appreciable 

s t r a i n would be w i t h i n the range of a t e s t ing machine i n the 

laboratory 

( i i i ) to have as large a permeabili ty as possible so that measurement 

of f lowra te would be less susceptible to error 

( i v ) to have as large a poros i ty as possible, so that large s t ra ins 

could be accomplished before t o t a l closure of the pores 

(v ) to be " s o l i d " , i n that s trains would be t ransmit ted equally 

through the mater ia l and not j u s t , as i n a sponge, near the 

parts of the mater ia l where the load was being applied 

( v i ) that the cut edges of the material could be capable of being 

sealed, so that no f l u i d would pass through. 

- 33 -



To f u l f i l requirement ( i i ) , i t was obvious tha t s intered metal 

was not the answer, and that a p l a s t i c of some sort would be needed* 

Requirement ( i ) was also a problem insofar as most s intered p l a s t i c i s 

made i n t h i n sheets (o f the order of 1 to 5 mm thickness) because i t i s 

mainly used as a man-made subst i tute f o r leather i n the shoe indus t ry . 

The information also was that any attempt to manufacture the material i n 

the laboratory to any reasonable thickness and area would probably resu l t 

i n a very uneven permeabil i ty and porosi ty from layer to layer and complete 

closure of the pores on one side of the mater ia l . Eventually, two f i l t e r 

t i l e s were obtained from Schumacher F i l t e r s L t d . These t i l e s were of 

thickness approximately 20 mm and 1 m x 1 m area. Their quoted poros i t ies 

were 40-45 P©r cent. One was a type intended f o r use i n pneumatic 

f l u i d i s a t i o n and pneumatic conveyance of powders and granular products, 

and the other a f i l t e r element f o r l i q u i d s and gases. Manufacturer's 

l i t e r a t u r e quoted the elements as being made from a po lyo le f ine base and 

t o t a l l y res is tant to absorbing moisture. The mater ia l also had the 

advantage of appearing to be made from sintered f i b r e s , which as shal l be 

seen l a t e r , resembles a r t i c u l a r car t i lage i n tha t respect. 

3.3*2 Measurement of I n i t i a l Permeability 

I n order t o have some data on the c o e f f i c i e n t of permeabili ty f o r 

the f i l t e r t i l e s , some experiments were i n i t i a l l y performed on the 

undeformed mater ia l . 

The method of measuring permeability was the method of f a l l i n g 

head. A diagram of the apparatus i s shown i n Figure 11. A c y l i n d r i c a l plug 

o f the material of 10 mm diameter was wrapped w i t h tape to stop f l ow out 

of the sides, and f i t t e d i n t o the bottom of a copper tube. I n order to 

evaluate the head i n the tube, a glass tube was f i t t e d in to the side of 

the apparatus, so that the l e v e l i n the copper tube could be measured. 
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Water was allowed to f a l l through the material under g r av i t y and 

readings of head and time were taken. D i f f i c u l t y was found i n a i r coming 

out of so lu t ion when passing through the small pores (of the order of 50^. 

diameter). The a i r wa3 found to co l l ec t on the face of the mater ia l , 

g iv ing a smaller area f o r the water to f low through. This gave the e f f e c t 

of decreasing the f lowrate and could be seen c l ea r ly from a subsequent 

deviat ion i n the l i n e a r i t y o f the graph p l o t t e d from the r e s u l t s . These 

problems seemed to disappear when de-aired water was used. 

The method of a f a l l i n g head i s probably the most accurate f o r 

measuring the c o e f f i c i e n t of permeabili ty insofar as neither pressures nor 

f lowrates are measured d i r e c t l y and the consequent errors i n the i r measure­

ment are absent. Providing the heights read are accurate and the cross-

sect ional areas of the tubes (and the specimen) are known, then very l i t t l e 

accuracy should be l o s t i n measurement. 

The c o e f f i c i e n t of permeabili ty was evaluated by using the theory 

shown below: -

Referr ing to Figure 11, 

Darcy's law states tha t , f o r the x - d i r e c t i o n 

v * = - - ^ 

as f o r Equation (2.1.4) 

and i n t h i s case 

eU t 
where k i s the head of f l u i d above the sample 

and ~T~ i s the thickness of the sample 

A **" 
where t" i s time 

A i s cross-sectional area of copper tube 

O, i s cross-sectional area o f glass tube t 

, l o U c (3.3.1) 
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where C i s a constant. 

Thus a graph of l«j e U v*. t w i l l be l i n e a r w i t h 

a slope of [ - k f*rfl A v l 

Both ax ia l and radial - permeabil i t ies o f the t i l e were measured 

i n t h i s way, and i n the former case proved p e r f e c t l y adequate. However, 

r a d i a l plugs involved passing water through surfaces which had been cut 

by hand, and i n many cases the measured permeabil i ty was subs tan t ia l ly 

lower than i n the normal case. I t was discovered by inves t iga t ion under 

a microscope tha t , i n the course o f the cu t t i ng , the heat generated had 

welded most of the material together, and almost sealed up the faces, and 

i n cu t t ing much more gently and slowly and using cooling water, the resul t s 

were much more sa t i s f ac to ry . 

I t was found that the material was not homogeneous on the scale 

tha t was measured, but over large areas these differences were found to 

average out to an overall permeabil i ty . 

Typical graphs of head and time are shown i n Figures 12 and 13 f o r 

the a x i a l and r a d i a l direct ions respect ively . Figures 14 and. 15 show the 

v a r i a t i o n of ĴJeJ* and t , and the l i n e a r i t y from which the 

permeabili ty can be calculated. 

Slope of Graph = 1.35 x 10~3 s ec" 1 

Slope of Graph = 1.12 x 10"3 s ec" 1 

i n the a x i a l case T = 20 mm 

i n the r a d i a l case T = 26 mm 

AxisQ. permeabili ty = 0.2/5 x 10 ' 1 m" 

Radial permeabili ty = 0.295 x 10" 1 1 m 2 

These values were t y p i c a l of permeabili ty i n the unstrained mate r i a l . 
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3.3*3 Measurement o f I n i t i a l Porosity 

Measurement of porosi ty was obtained by i n i t i a l l y weighing a 

cube of known volume o f the porous mater ia l and then placing i t under water 

and under vacuum u n t i l i t was thought that a l l the a i r had been extracted 

from the mate r ia l . The cube v/as then taken from the water, any surface 

water wiped away, and the whole specimen weighed again* This process was 

repeated twice more to ensure that the specimen was f u l l o f v/ater, and a l l 

a i r had been extracted. 

I t was found tha t because of the fineness of the pores, once water 

had entered the centre of the specimen, i t stayed there u n t i l evaporation 

occurred, and so i t was thought that errors caused by the draining of par t 

of the i n t e r s t i t i a l water were minimal. 

This method ensured that only the e f f e c t i v e porosi ty ( i . e . pores 

interconnected w i t h each other and f i n a l l y to the boundaries) was 

measured. The other method of measuring porosi ty i s by compressing the 

mater ia l u n t i l a l l pores are closed, and t h i s therefore measures t o t a l 

porosi ty ( e f f e c t i v e and i n e f f e c t i v e pores). 

The porosi ty was calculated from the resul ts below:-

Volume of material =31.2 x 10"^ - 0.3 x 10~ 6 m3 

Mass of material dry = 17.45 x 10 -- 5 t 0.05 x 10~ 3 kg 

Mass of material + water = 29.90 x 10~ 3 - 0.05 x 10"3 kg 

Mass o f water = 12.45 x 10~^ i 0.1 x 10"^ kg 

Temperature = 20°C 

Volume of water = 12.45 x 0.998 x 10"6 nr 

= 12.43 x 1 0 - 6 m3 

Porosi ty = V o l u m e o f v o i d s = 0.40 i 0.01 
Total Volume 31.2 
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3.3.4 Apparatus 

A diagram of the overa l l apparatus f o r measuring permeabili ty w i t h 

v a r i a t i o n i n applied s t r a in i s shown i n Figure 16. 

The purpose of the experiment was to pass water under a constant, 

measured head through the porous p las t i c mater ia l and co l l ec t the outf low, 

w h i l s t a compressive s t r a i n was applied t o the mater ia l . For the 

construct ion of the porous specimens see below. The apparatus bas ica l ly 

consisted of a reservoir on ei ther side of the porous mater ia l through 

which water passed under g r a v i t y . Next to the specimen was placed a s tee l 

plate w i t h 256 5mm diameter holes bored through i t i n to a reservoi r . Led 

out of the reservoir were two copper pipes connected at a T- junc t ion to 

e i ther another reservoir at the i n l e t or atmosphere at the ou t l e t side. 

A constant head at the i n l e t was maintained by a simple overflow device. 

Compression was e f fec ted by loading the apparatus i n a fJOOKN Denison 

t e s t i ng machine. 

Porous Specimens 

Diagrams of the porous specimens are shown i n Figures 17(a) 

and 17(b). 

A x i a l Permeability 

A 150 mm x 150 mm square of porous p l a s t i c was cut and placed 

between two 6 mm plates of Porosint bronze f i l t e r (Grade A) of the same 

s ize . The whole of the outside edge of t h i s "sandwich" was then coated wi th 

a r a ld i t e i n order to prevent leakage around the sides. The bronze discs 

had a much larger permeabili ty than the p l a s t i c , so that no cons t r i c t ion 

of f low was produced, and achieved a two- fo ld purpose. They provided a f i r m 

base f o r the porous p las t i c to be strained equally across the area, and not 

j u s t where the s tee l plates were s o l i d , and the discs also served t o d i f f u s e 

the f low before i t reached the p l a s t i c , so that f l o w took place over the 

whole area, and not jus t i n the places where the f l o w passed through the 
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s tee l p l a t e . I n both these objectives the bronze discs seemed to prove 

h igh ly successful. Gaskets could not be used f o r sealing, because of t he i r 

f i n i t e deformation and the problems of i t s measurement i n r e l a t i o n to the 

subsequent measurement of deformation of the p l a s t i c , so the bronze discs 

were pushed up against the steel plates and then plasticene was used to 

seal the boundary* 

Radial Permeability 

Two 30 n™ x 150 mm plates were cut from the bronze discs, and these 

were glued to two 120 mmx 150 mmx 6 nun brass p la tes . These were then 

placed as shown i n Figure 17(b), and the sandwich made up w i t h a ra ld i t e as 

i n the ax i a l permeability case. The only passage f o r the f low was then 

a x i a l at the i n l e t and ou t le t and r a d i a l f low everywhere e lse . I n t h i s 

manner, f low never passed through any cut surfaces and the consequent 

problems mentioned i n Section 3*3*2 were absent. 

3.3.5 Measurements 

The measurements taken were of f lowra te , deformation and load. 

Flowrate, as i n Section 2.2.4> was measured by means of c o l l e c t i n g 

the outf low and weighing i t . 

Deformation was measured by means of d i a l gauges f i x e d to the 

lower, s tat ionary part of the tes t ing machine. 

Load was measured by the t e s t ing machine. This load was measured 

only so tha t a repeated experiment without the porous p l a s t i c would give 

the deformations of the bronze discs alone and therefore deformations of 

the p l a s t i c alone could be calculated by subtraction at the same value o f 

load . 

I t was found at the s t a r t of the experiment that the a i r i n the 

p l a s t i c mater ia l tended to block some of the f low of water, s imi la r to the 
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experience noted i n Section 2.2.5. However, f low v/as f a c i l i t a t e d at the 

s t a r t by the use of a vacuum pump connected to the ou t le t side of the 

apparatus which drew much of t h i s a i r out i n i t i a l l y , and resu l t s were then 

found to be steady a f t e r the removal of the pump. I t was always found at 

the s ta r t of an experiment that f lowrates tended to increase s l i g h t l y f o r 

small increases i n load, and i t was thought tha t t h i s i n i t i a l action was 

dislodging any bubbles which may have formed on the surface. De-aired 

water was again used throughout the experiment f o r the same reasons as 

noted before. 

Almost every range o f s t r a i n was covered at least twice, t h i s being 

done by releasing the load and then allowing a ce r ta in amount of re laxa t ion 

o f the s t r a in before applying the load once more. 

The experiment was repeated i d e n t i c a l l y without the porous p l a s t i c 

so that the permeabili ty and deformations of the apparatus alone could be 

evaluated. I t was found that the bronze discs deformed e l a s t i c a l l y i n the 

range tested, and f lowrates only changed to a very s l i g h t degree when 

these discs were deformed. 

3.3*6 Computation f o r permeabi l i ty-s t ra in re la t ionships 

I n both the normal and tangent ia l f low cases, there are pressure 

drops due not only t o the porous p l a s t i c but also due to the rest o f 

apparatus, t h i s being mainly due to the bronze discs . Therefore consider­

a t ion has to be made of t he i r combined e f f e c t i n producing the f l o w . 

Consider the s i t u a t i o n f o r a given f lowrate 

The pressure drop across the porous p la s t i c = p, 

and the pressure drop across the apparatus = p k 

Tota l Pressure drop Aj> = p, •+ p». 
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i s given by Darcy 1s l aw: -

Q = £ 
A ^ H 

p f c i s given by a constant of p ropor t i ona l i t y 

Q = C A pfc where C A i s a constant 

or 

»2 

A x i a l Permeability ^ ' 

I t can therefore be seen that the permeabil i t ies can be easi ly c a l ­

culated from the varying flowrates and thicknesses measured f o r increasing 

s t r a i n by using equation (3»3»2). 

Radial Permeability 

As can be seen from Figure 18(b), f low i n t h i s case was two-

dimensional, and i n order to obtain the permeabili ty f o r a given f lowrate 

and thickness, resort had to be made to numerical methods. 

I n order to formulate the equations governing the f low, consider 

the continuity- equation i n Cartesian co-ordinates:-

where U . K i s the f lowra te per un i t area i n the x - d i r e c t i o n 

and v M i s the f lowrate per un i t area i n the y - d i r e c t i o n . 

Subs t i tu t ion of Darcy's law gives Laplace's equation t o two dimensions:-

As i n Section 2.2.3» w r i t i n g and i n f i n i t e d i f fe rence 

form gives an expression f o r the po t en t i a l at a point 

I t e r a t i o n of t h i s expression throughout a mesh gives the potent ia ls and 

hence the f lowrates (from Darcy 1s law) f o r given boundary condit ions. 
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I n t h i s case, r e f e r r i n g to Figure 18(b), the boundary conditions are 

tj = o o $ tc ^ 3 * . p - o 

y = H 12 X ^ 15 p = 225o 

Thus f o r a given s t r a i n ( i . e . a given thickness) a value of , the 

a x i a l permeabili ty, could be read from Figure 21, and then a value o f 

r a d i a l permeability could be found which s a t i s f i e d the given output 

f l o w r a t e . 

3*3*1 Results 

Results o f va r i a t i on i n f lowrate f o r a range of thicknesses of the 

porous mater ia l are shown i n Figure 19 f o r the e x i a l flow case and Figure 20 

f o r the r a d i a l f low case. 

Figures 21 and 22 show the consequent v a r i a t i o n i n permeabili ty wi th 

s t r a i n calculated from the median l i n e drawn through the f lowrate resu l t s 

f o r a x i a l and r a d i a l f low respect ive ly . 
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3.4 Theoretical Considerations 

I n order to gain some ins igh t i n to the mechanism o f permeabili ty 

and i t s consequent va r i a t i on wi th s t r a in , simple consideration has been 

made of a model of a porous material consist ing of tubes s imi lar t o the 

approach by Kozeny already m e n t i o n e d , b u t var ia t ions i n the length o f 

a conductor, previously ignored, have now been taken i n to account. 

Po i seu i l l e ' s equation f o r the f lowrate through a c y l i n d r i c a l 

conductor i s j , , 

- _ IT T** Ap 

where <̂  i s the f lowrate 

y i s the radius of the conductor 

Ap i s the pressure drop along the length of the conductor 

L t i s the length of the conductor 

Thus, i f there are >\ f c conductors, 

where Q i s the t o t a l f lowra te 

Darcy" s law i s 

q . - h £ e 

where L i s the thickness 

••• k » ( 3 - 4 ) 

Then i f the t o t a l volume at zero s t r a in i s VD (sol ids + voids) 

Volume of voids = VD • V 

where v i s the poros i ty . 

Assuming tha t , i n compressing the material to a s t r a i n £ , the volume 

change i s due only to the closure of the voids, the t o t a l volume w i l l 

then be 
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and thus the volume of voids now i s 

S t i l l considering the s o l i d consisting of tubes, the volume of each 

tube i s now 

and the cross-sectional area of each hole i s 

where L f c i s the length of the conductor at s t r a i n € 

••• 

r e f e r r i n g back to the "equivalent" expression f o r permeabil i ty 

(equation ( 3.4 ) ) , subs t i tu t ing L f e f o r L t , we obtain 

V " . —r-

i s constant w i th c and i f I i s the o r i g i n a l thickness 

of the specimen at zero s t r a i n , then L 3 

m i w = e » f r " » M (3.4.0 

where C v i s a constant Y2J \ 

A graph of the form 

i s shown i n Figure 23> and compares reasonably wi th the experimental 

r e s u l t s . Equation (3*4*2) conforms to the reasonable assumption tha t , when 

the s t r a in i s equal to the i n i t i a l porosi ty , which i f i t i s assumed that a l l 

volume change i s due to the closure of the pores, means tha t , w i t h no l a t e r a l 

expansion,all the pores are then closed, the permeabili ty has the value of 

zero and no f l ow of the f l u i d w i l l take place* 
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Comparing equation (3.4.2) w i t h (3.4.1) gives the condit ion that 

the length o f a conductor remains constant w i t h s t r a i n . This can only 

be accomplished i f the f low passages are increasing i n length w i t h respect 

to the overa l l thickness, due to the continual closing of passages, i n the 

same proport ion to the decrease i n the o v e r a l l thickness. 

I f we now consider f low i n the r a d i a l d i r e c t i o n , r e f e r r i n g to 

Figure 18, Darcy's law becomes 

«V • c 

where H i s the thickness of the material at s t r a i n 

and L i s the width and breadth. 

Again comparing w i t h Po i seu i l l e ' s equation gives 

now from before 

and k * ¥z (*-•) (3.4.3) 

i f T i s again the o r ig ina l thickness 

A curve of the form 

0 - 6 ) (3.4.4) 

i s shown i n Figure 24> and again conforms to the condi t ion that the 

permeabil i ty becomes zero when the s t r a i n i s equal to the i n i t i a l poros i ty . 

Comparing equation (3.4.4) w i t h (3*4.3) gives the v a r i a t i o n of the length 

of a conductor, 

which s a t i s f i e s the condit ion that as €: —*• V then L f e — » * 00 . 
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I t would seem reasonable i n the r a d i a l f low case to expect the path length 

to increase wi th s t r a i n , as the overa l l hor izonta l distance over which the 

f l u i d has to t r ave l remains constant. 

The considerations are only meant to give an idea of how permeabili ty 

might vary w i t h s t r a in , and the assumptions deduced regarding the "length 

of a conductor" can only be examined from a quant i ta t ive viewpoint . 

I n the case o f ax i a l f l o w , the actual thickness i s decreasing, but 

although the f low i s predominantly un iax ia l , on a microscopic l e v e l some 

f l o w must take place r a d i a l l y and consequently an a x i a l compression w i l l 

cause the area of the holes f o r r a d i a l f low to decrease perhaps to zero, 

which w i l l , i n t u rn , cause the f low path to change and consequently increase. 

Vfe can perhaps say that the "length of a conductor" may stay reasonably 

constant. 

However, i n the r a d i a l f low case, the macroscopic length over which 

the f l u i d has to f low remains constant w i t h va r i a t i on i n s t r a i n , and because 

of the diminishing area of f low causing increasing path length , as has 

already been mentioned the "length of a conductor" must increase w i t h 

increasing s t r a i n . 

However dubious the assumptions may appear, we can compare the 

experimental resu l t s of Figures 23 and 24 w i t h those of the f i c t i t i o u s 

model porous mater ia l by adjus t ing the constant of p ropo r t i ona l i t y so that 

the permeabili ty at zero s t r a i n i s equal to the i n i t i a l permeabi l i ty . I t 

can be seen i n both cases tha t the v a r i a t i o n of the experimental permeabil i ty 

can be reasonably represented by re la t ionships of the form equations (3*4*2) 

and ( 3 . 4 . 4 ) , when large var ia t ions i n s t r a i n are encountered. Probably 

a bet ter f i t f o r small s t ra ins , however, to the ax i a l f low resul ts i s by 

the expression 

W oc ( v - e f (3 .4 .5) 
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which d i f f e r s s l i g h t l y from equation (3«4«2) throughout the whole range 

and whose v a r i a t i o n i s shown by Figure 25• 

F i n a l l y , i f one thinks q u a l i t a t i v e l y about the va r i a t i on of 

permeabil i ty v/i th s t r a i n , i t would appear that a x i a l permeabili ty would 

always be less a f fec ted than r a d i a l permeabil i ty, because, i n the l a t t e r 

case, macroscopic f low i s perpendicular to the d i r ec t i on of applied s t r a i n , 

and f low channels are l i k e l y to be more a f fec ted i n the plane o f f l o w . 
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3.5 Conclusions 

From the experiments i t has been shown that the v a r i a t i o n of 

permeabili ty w i t h s t r a i n can be represented to a f a i r degree of accuracy 

f o r the porous p l a s t i c material tested by simple re la t ionships o f the 

f o l l o w i n g forms: 

I n the a x i a l f low case, 

k oc 

and i n the r a d i a l f low case, 

(v- e) 5 

k oc * f-

Although the comments that there can be no d e f i n i t i v e statement 

about the va r i a t i on o f permeabili ty and porosi ty have been noted, t h i s w i l l 

be true f o r permeabil i t ies of d i f f e r e n t mater ials . For any material whose 

porosi ty i s being a l te red by an applied s t r a in , especial ly one which has the 

same basic form as that used i n the experiments ( i . e . s intered f i b r e s ) , i t 

would seem reasonable to assume tha t the re la t ionships above can be used t o 

a f a i r degree of accuracy. 
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4. Theoretical and Numerical Analysis o f the Load/Peformation/Time 

Characterist ic of a Porous So l id 

The theory w i l l now be put forward f o r evaluation of the 

deformation-time character is t ics a t cer ta in loads, and, w i t h the aim of 

applying t h i s theory to a r t i c u l a r car t i lage , cer ta in r e s t r i c t i o n s have been 

made, the main one of which i s tha t deformation i s un iax ia l and that there 

i s no l a t e r a l s t r a i n . This r e s t r i c t i o n w i l l be j u s t i f i e d l a t e r i n the 

case of a r t i c u l a r ca r t i l age , but w i t h t h i s r e s t r i c t i o n and the other 

assumptions noted, t h i s theory can be applied to the case of any deformable 

porous mater ia l . 
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4.1 Theory 

Assume i n i t i a l l y therefore that the deformation i s un iax ia l 

that the f l u i d i s incompressible 

tha t the s o l i d i s incompressible. 

These assumptions mean that a l l volume change i s ef fec ted by f l u i d 

t ransfer i n and out . 

Now consider an element of a porous mater ia l which has a x i a l symmetry, 

and which contains a f l u i d (Figure 2 ) . 

The element has dimensions ( i n c y l i n d r i c a l co-ordinates) of S1*", , St 

as shown. 

u i s the f l o w r a t e / u n i t area i n the r a d i a l d i r ec t ion 

w i s the f l o w r a t e / u n i t area i n the ax i a l d i r e c t i o n . 

Because a x i a l symmetry i s considered, S© remains constant and 

because only un iax ia l deformation i s considered, ST also remains constant. 

Thus Si i s varying, l e t the i n i t i a l value of &•£ be &*„ • 

Consider the con t inu i ty equation:-

Flow I n = Flow Out + rate of volume increase. 

(4.1.1) 

where \ ^ i s the volume of the element. 

Now Ve = (r+£r^S*SrSa 

where C r t^s(r + 5rj£©$rJ i s constant 

. 0* - r ^ < M 
. . V«. - dk-

where 6 e i s defined as "engineering s t r a i n " and the convention taken 
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such that compression i s p o s i t i v e . 

ft*) 

6, V. - - ( r . W W r l . j f i ^ ( 4 , . 2 ) 

Cancelling equal terms and neglecting terms of the order ^ S ^ t e S * , 

equation (4.1»l) gives the cont inui ty cond i t ion : -

a O 

I f Darcy 1s law i s now used 
kr 9P 

^ = " ^ dr 

^ a*. 
where k-r , are r a d i a l and ax i a l permeabil i t ies respect ively, 

and <y^ i s the dynamic v i scos i ty of the f l u i d . 

dw _ Wa <£P _ _l_ ^ ? l e 
a n d ai " " ^ a? ^ a* & 

and subs t i tu t ing these expressions i n to equation (4.1.3) gives 

(4.1.4) 

which i s the equation governing the f l u i d pressures i n axi-symmetric 

porous mater ia ls . 

The other equations which are needed to solve f o r the pressures are:-

and = ^ f e t ) (4.1.6) 

where £ ( and ^ indicate funct ions of £ a , but assume both 

permeabil i t ies remain constant w i t h var ia t ions i n hydrostatic pressure and 

t ime . 
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The next step i n the formulat ion of the problem i s to assume tha t , 

at any time, the load applied w i l l be car r ied by the force i n the s o l i d 

mesh o f f i b r e s and the force generated by the hydrostatic pressure i n the 

f l u i d inside the pores. 

i . e . F » F s -»• (4.1.7) 

where F i s the force to be car r ied 

i s the force carr ied by the 3 0 l i d 

and ^ i s the force due to the hydrostatic pressure i n the f l u i d , 

and th i s statement i s taken to be true at a l l times at every layer i n the 

porous mate r ia l . 

Now Fj * £ ( € 3 ) (4.1.8) 

and the func t ion ^ can be calculated from the v a r i a t i o n of F w i t h 

G z when Fj, = O . This l a t t e r condi t ion i s s a t i s f i e d when the f l u i d 

pressure throughout the porous mater ia l i s equal to the external f l u i d 

pressure (zero gauge pressure) which means that there are no pressure 

gradients throughout the f l u i d , which i n tu rn means tha t no f low i s taking 

place, which, from the i n i t i a l assumptions, means that no deformation of the 

mater ia l i s taking place w i t h increase i n t ime. Thus a va r i a t i on of ^ 

w i t h € e can be obtained by applying a constant load F s and allowing the 

deformation to become constant, at which point the s t r a i n <s4 can be 

calcula ted. 

can be calculated by a summation of the f l u i d pressures i n a 

layer , each pressure being m u l t i p l i e d by i t 3 respective area. I n a form­

u l a t i o n of t h i s sort , the pores must be assumed to be randomly d i s t r i bu t ed 

throughout the porous mater ia l , and therefore the area of the pores i n 

each layer can be calculated, and considering t h i s area to be d i s t r i bu t ed 

equally throughout the layer . Taking the assumption that the deformation 

i s u n i a x i a l , which means that the t o t a l area of the porous mater ia l 
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(pores and so l id ) remains constant, the volume of the pores can be 

measured by considering the porosi ty at a s t r a i n 6* (see Section 3.1) 
volume of pores 

porosi ty, n = K 2 

volume of (pores + so l id ) 
Now consider the r a t i o , 

_ area of pores 
n "" area of (pores + so l id ) 

i n one pa r t i cu l a r layer t h i s w i l l , i n some way, be re la ted to the porosi ty 

( i . e . volume instead of area) 

A A = ~ (4 .1 .9) 

where o<- i s a constant 

N o w volume of s o l i d _ _ n ) 
volume of (pores + sol id) 

and therefore, 

area o f s o l i d / . \ 
: r— = U - n ; 

area of tpores + s o l i d ; 
but , by d e f i n i t i o n , area of s o l i d a ( 1 _ A j 

area o f (pores + sol id) 

(1 - A n ) = (1 - n f 

A n + (1 - A n ) . 1 

n* + (1 - n f = 1 (4.1.10) 

t o which the only so lu t ion f o r a l l n i s °< ~ 1 , and thus the r a t ios 

A n and n are d i r e c t l y propor t ional . 

From Section 3.1» "the porosity a t a s t r a in i s given by 

W * , 

and thus the r a t i o of the areas of a layer at s t r a in 6 a w i l l vary by 

the same re la t ionsh ip . Thus w i t h a constant cross-sectional area being 

i m p l i c i t i n a un iax ia l deformation, the area over which the f l u i d pressures 

act can be calculated from a knowledge of the cross-sectional area, the 
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o r i g i n a l porosi ty, and the s t r a i n i n the increment at that pa r t i cu la r 

t ime . 
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4.2 Special Cases 

Having formulated the general equations and assumptions, i t now 

remains to produce solutions to some of the special cases which can occur 

i n tes t ing the properties of a porous mate r i a l . 

4.2.1 Radial Flow Only 

The case o f r a d i a l f low alone means that f low cannot take place i n 

the ax ia l d i r ec t i on , the load being applied through f l a t impermeable plates . 

The e f f e c t of g r av i t y on the f low i s ignored. 

Referr ing to Figure 26(a), changes of permeabili ty and pressure 

i n the 2 -d i r ec t i on are zero ( * ° )» i s a func t ion of 

time only, not of radius or of height . 

Thus, equation (4.1.4) reduces to 

| L (r | M » - S^i&I. (4.2.1) 

m 

€g and £ j are independent of v , so in tegra t ion gives 

where Gi(fc) i s a func t ion of time only, and using the boundary condit ion 

at V - O , s O because of symmetry, 

= o 

and h ^ - Z 

where i s also a function* of time only, 

a t f - - f t , f - O ^ 

... H (jk) » ^ l ^ g 

4 k r ( | - 6 e ) 

. p = j n i * . » ^ 
r *Ml-€ B ) (4.2.2) 

where ' f t i s the radius of the cyl inder . 
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To calculate the t o t a l f l u i d force, assume a random porosity ( n ) and 

integrate over an incremental area Tn.y.Zy 

* M » - € e ) (4.2.3) 

The porosity can be expressed as 

and making the assumption that k v varies with £ 6 i n the same way as 

the porous p l a s t i c material of Section 3*3.6, 
5 

V 5 

(4.2.4) 

substituting into (4.2.3) 
* • 5 

substituting into (4.1.7) gives the to t a l force applied 

F * F s * « i U - « . ) U . f ' U.2.5) 

for a constant applied force and a Hookean s o l i d I = ^ € 4 ) 

t h i s becomes * . 5 

8k„(i-««W»-6.) 
the solution to which i s trfl*Y6£ \ 

(4.2.6) 

.which conforms to the boundary condition O when t = 0 . 

and k 0 i s i n i t i a l permeability. 
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However, when s t r a i n s approaching the i n i t i a l porosity of the 

material are imposed, most porous materials, at equilibrium, exhibit grossly 

non-linear force-strain c h a r a c t e r i s t i c s , and tend towards an asymptote when 

the s t r a i n i s equal to the i n i t i a l porosity, beyond which a l l pores are 

closed, and any load applied i s then compressing the s o l i d material only. 

I t appears that a good approximation i n most instances to these f o r c e - s t r a i n 

c h a r a c t e r i s t i c s i s of the form 

5 -

A I - b d a (4.2.7) 

where & and b are constants, and t h i s c h a r a c t e r i s t i c i s assumed to 

be t o t a l l y r e v e r s i b l e . 

I f t h i s i s substituted into (4.2.5) 
a"0-»>*«) ^ ( • - 6 8 ) ( v - 6 8 f (4.2.8) 

the solution to which i s 

where X B bl^+TT^ 0. , and the i n i t i a l condition i3 6 a = 0 , when t s o . 

I f the load i s taken off, equation (4.2.8) becomes 

0 - b € ^ *IC.M«)(*-**f (4.2.10) 
the solution to which i s 

(4.2.11) 
the i n i t i a l condition being that 6 4= when t s o . 
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The addition of an o s c i l l a t o r y force F^ 4* 1**'* to the constant 

applied force RL causes equation (4.1.7) to be modified to 

assuming that any deformations are slow and i n e r t i a forces can be 

neglected. This causes a l l subsequent equations involving s t r a i n and time 

to be non-linear, separation of the variable i s therefore not possible, 

and resort ha3 to be made to numerical methods for the solution. 

4*2.2 A x i a l Flow only 

Because flow cannot take place r a d i a l l y , the effect i s an a x i a l 

one alone and the problem becomes one-dimensional. 

Referring to Figure 26(b), variations of pressure and permeability 

i n the r a d i a l direction are zero, 

i . e . / h r 

and the equation (4.1.4) reduces to 

d Z d s 3* ( > - 6 E ) (4.2.13) 

Again,the assumption i s made that the a x i a l permeability varies 

i n the manner shown by the porous p l a s t i c i n Section 3«3«6» 

(4.2.14) 

The solutions to the equations have to be obtained by numerical methods 

(described l a t e r ) , and the assumption of how the to t a l force i s c a r r i e d 

(equation (4.1.?)), and the fo r c e - s t r a i n relationship (equation (4.2.7)) 

are again u t i l i z e d . 
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4.2.3 A x i a l and Radial Flow Together 

I f compression between f l a t plates i s assumed (Figure 26(c)), then 

every element i n a horizontal layer would be expected to experience the 

same s t r a i n at the same time, and t h i s means that the r a d i a l permeability 

along a layer i s constant. 

and equation (if. 1.0 reduces to 

which again must be solved numerically with equations (4.1.7) (4.2.7) 

(4.2.4) and (4.2.14). 

3 o 
(4.2.15) 
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4.3 S o i l Mechanics Approach 

At t h i s juncture i t may be interesting to note the approach and 

assumptions made by engineers i n evaluating the consolidation of s o i l 

(see for instance ^ ^ ) . 

Consider the configuration for a x i a l flow only of Figure 26(b). 

Defining P T as the to t a l load c a r r i e d 

fs as the load carried by the s o i l 

fJi as the load car r i e d by the pore water 

then the effective s t r e s s ^" *f\ 

and the excess pore pressure u,p ~ *^/f\ 

the t o t a l applied str e s s or » ar + *A^» (4»3»l) 

where A i s the cross-sectional area of the cylinder. 

The boundary conditions are as follows:-

i n loading, t = o , <r'= o f vx p - cr - ^ 

t * t t , ^ - a ~ (°"* u f ) or' increasing with time 

0>u.p > O iA pdecreasing with time 

t = o , <r'=s P t/ A , u-p- - c r \ ar «(<T'+IA P)= 

and the t o t a l settlement of the piston i s |*r 

unloading, 
t" = t , t Vft > , or'decreasing with time 

<. ̂ ( a - f f O ^ ° , uyincreasing with time 
t s oo or' = o = Mp 

and the piston has r i s e n by ^ T . 

Referring to Figure 27(a), consider a suitably thi n horizontal 

layer of the s o i l specimen and investigate i t s condition at some instant 

during the consolidation process. Assume that the process i s e n t i r e l y 
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one-dimensional (with no l a t e r a l variations) so that the velooity and 

pressure of the pore water are only functions of the depth ft measured 

v e r t i c a l l y downwards from the surface of the specimen, and of the time t . 

Imagine that two small probes are inserted so that the pore-pressures of the 

top and bottom surfaces of the layer are known. The sign convention requires 

that the a r t i f i c i a l velocity V«. i s taken as positive downwards i n the 

direction of 2 ; also a positive increment of excess head &U. i s shown 

which w i l l cause an upward velocity, i . e . negative \&. . 

The loading increment applied to the specimen i s such 

that the i n i t i a l and f i n a l equilibrium states are and E , , shown 

i n Figure 27(b). At the present time t" after the s t a r t of the consolid­

ation process, the state of the thin l a y e r w i l l be represented by some 

point T between E„ and E , . The conventional assumption introduced 

by Terzaghi i n h i s c l a s s i c theory of primary consolidation i s that T 

always l i e s on a straight l i n e joining and E, . The slope of t h i s 

straight l i n e which w i l l change for different states Sr 0 , i s defined as 

- r , • (4.3.2) 

where n\ t i s the coefficient of volume compressibility, 

and C i s the void r a t i o . 

T h i s definition allows a r e l a t i o n between settlement and effective 

s t r e s s . Let <^»T be the settlement experienced by the thin layer during 

time S t . The reduction i n volume of the layer w i l l be Ad^» T which can 

be expressed as A S i ("""j^T ^ 

h - _ J * = -yv* v cdor' 
*• l + e ° (4.3.3) 
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Because of continuity, the reduction i n volume of the thin layer must be 

exactly matched by the volume of water expelled, which during time St w i l l 

be ( ^ " ^ AS* It . H e r ice i n the l i m i t 
oft ' 

Sv*. _ L I 5 ^ ^ f 1 

* s = ~ i + e B fct= v t a t (4.3.4) 
Since the loading increment i s a f i x e d one of ar * Sff we have 

Scr* -+ S»*.p-« c r " fc^tT so that 

JOT 1 _ __ 2tAp 
0 t = o t (4.3.5) 

and equation (4.3.4) can be taken a step further to give 

i t " " ' a t (4.3.6) 

F i n a l l y another relationship can be obtained between V,̂  and «-*. by 

employing Darcy's law, 

(4.5.7) 
D i f f e r e n t i a t i n g t h i s with respect to t and combining with (4.3.6) gives 

a** i t 
usually written as 

d ^ (4.3.8) 

where C Y C r = ̂ m V t i s the co e f f i c i e n t of consolidation. 

Considering the boundary conditions and configuration of 

Figure 26(b), the solution can be obtained by employing Fourier a n a l y s i s : -

*.,,». (4.3.9) 

and the proportion of the t o t a l settlement, 

£ -±_^ (i-0>4 «ar) ( 1 - Co* — ) g. 

(4.3.10) 
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where fJ\ — IT C v c 

4 H * t 

where H i a the t o t a l thickness. 

Biot has put forward a general theory of three-dimensional 

c o n s o l i d a t i o n ^ ^ i n the subject of s o i l mechanics. The theory was l a t e r 

extended to include the case of a n i s o t r o p y ^ ^ and v i s c o e l a s t i c i t y ^ ^ 

and solutions to the case of isotropy were p r o d u c e d . ^ e basic 

properties of the s o i l that were assumed i n t h i s work were:-

1. Li n e a r i t y of s t r e s s - s t r a i n r e l a t i o n s , 

2. Small st r a i n s , 

3. The water contained i n the pores i s incompressible 

4« The water flows through the skeleton according to Darcy 1s law. 

I n s o i l mechanics, i t i s the f i r s t condition which i s most suspect, 

although Biot argues that Terzaghi's theory, the main parts of which are 

shown i n this Section, has been found quite s a t i s f a c t o r y for the p r a c t i c a l 

requirements of engineering. I n problems involving strain s approaching the 

porosity of the material, however, i t i s ( l ) , (2) and (4), where the 

constant of Darcy's law, the permeability, i s changing, that cannot be 

assumed, and therefore although the theory s a t i s f i e s the s o i l conditions, 

i t w i l l not s a t i s f y the case of larger deformations of other porous materials. 
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4.4 Numerical Method 

As i n Section 2.2.3* a relaxation technique was used to produce 

solutions to the governing equations which could not be solved a n a l y t i c a l l y 

for given boundary conditions. 

Because i n a l l configurations, the load was applied through f l a t 

plates, i t was assumed that the strai n s in the material i n any horizontal 

plane were equal, and thus the f l u i d pressures i n any one layer could be 

integrated to give the t o t a l f l u i d force i n that plane. 

I t was found easier i n the formulations to s t a r t off with f i x e d 

points i n the porous material and calculate the f l u i d pressures, forces and 

s t r a i n s at those points with respect to a fixed datum, rather than divide 

each new thickness into a number of equally spaced nodes spread throughout 

the material. Therefore the step length &» was not constant either with 

v a r i a t i o n s i n time, or with variations i n distance from the datum at a 

c e r t a i n time, so the f i n i t e difference expressions used are modified forms 

of those used i n Section 2.2.3s-

l s * V 

which become the same expressions as equation (2.2.5) when adjacent step 

lengths are equal. 

Substitution of these formulae into the equations to be solved 

(either (4<>2.13) or (4.2.15)) gives an expression for i n terms of 

the pressures surrounding i t i n a rectangular mesh. The general method of 

solution i s then to position equally spaced fixed points throughout the 

column or area at time t = 0 , and make guesses at the s t r a i n at each of 

these points for a c e r t a i n increment of time C a C -f- The a x i a l and 

r a d i a l permeabilities can then be calculated and an i t e r a t i o n of the f l u i d 
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pressures throughout the mesh can then take place, using the given 

boundary conditions. These f l u i d pressures i n any one layer can be 

integrated by the trapezoidal rule and multiplied by t h e i r respective 

f l u i d areas to give the t o t a l f l u i d force i n that l a y e r . The force i n the 

s o l i d i s then obtained by subtraction, and the s t r a i n thus evaluated from 

the foroe-strain r e l a t i o n s h i p . These calculated s t r a i n s are then used as 

the guesses and the step lengths at t h i s time can also be evaluated 

from these s t r a i n s . This process continues u n t i l convergence of the 

calculation and guess occurs, and deformations i n each l a y e r are then 

evaluated by multiplication of the average s t r a i n i n the increment by the 

step length, and the t o t a l deformation calculated by the addition of these. 

Boundary Conditions 

I n the one-dimensional a x i a l flow only case, the configuration used 

was that i n Figure 26(b), and one boundary condition used was that the 

pressure at the surface where the load i s applied i s zero gauge pressure. 

The other condition used was that there i s no flow per unit area at the 

very bottom of the material, i . e . from Darcy's law 

This can be explained i f one considers a configuration of a porous material 

being simultaneously compressed by a porous piston at either end, then by 

symmetry there can be no flow across the centre plane. The configuration 

of Figure 26(b)is one h a l f of t h i s condition, and therefore there can be no 

pressure gradient at the cylinder wall. The f a c t that there i s (or can be) 

a s t r a i n at the bottom of the cylinder i s not inconsistent with t h i s 

condition, because on a molecular scale there w i l l be flow out of the 

next layer above t h i s , and so i n that small layer, which tends to a plane, 

there w i l l be a s t r a i n which i s non-zero. 
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This condition of zero pressure gradient i s represented numerically, 

by exactly the method used i n Section 2.2.3, i . e . f i t t i n g a quadratic 

function to the two nodal points next to the boundary, only with varying 

step lengths:-

P(L) S (Ai. + AQVM-PW-A*,1-
I n the a x i a l and r a d i a l flow case, the configuration was as i n 

Figure 27(c), and the conditions of no flow from the impermeable surface 

together with the pressure being zero both at the surface where the load 

i s applied and at the edges of the cylinder, were 

p = O for r * R for a l l 2 
|£ *0 for 2 - o for a l l r 

A block diagram of the computer program used to evaluate the 

deformations from the given data i s shown i n Figure 28, 
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5• Application to A r t i c u l a r Cartilage 

Having formulated the theory together with some experimental 

observations of deformable porous materials, i t now remains to apply 

t h i s theory to the special case of a r t i c u l a r cartilage, making suitable 

reservations where necessary. 

- 67 -



5.1 L i t e r a t u r e Review of A r t i c u l a r Cartilage 

5.1.1 Description 
(38) 

Despite the observation by Hunter that f i b r e s ran from the 

subchondral bone to the surface i n a r t i c u l a r cartilage, the general con­

sensus of opinion i n the nineteenth century was that c a r t i l a g e was a 

completely homogeneous structure, and both H a s s e l l ^ " ^ and S c h a f e r ^ ^ 

based t h i s b e l i e f on l i g h t microscopy of cartilage specimens. However, 

H u l t z k r a n z ^ 1 ^ deduced from pricking the surface with a blunt-ended awl 

and producing s p l i t s , that the formation of these s p l i t s was due to f i b r e 
(42) 

orientation on the surface. Ramon and C a j a l reported that cartilage 

was a ground substance with numerous collagen fibres embedded i n i t , and 

pointed out that collagen and ground substances have s i m i l a r r e f r a c t i v e 
indices and thus could not be separated when viewed by ordinary l i g h t . 

(43) (44) (45) 
Benninghof suggested that these collagen f i b r e s i n ca r t i l a g e 

are made up from a three-dimensional network of f i b r i l s grouped together 

to form thick f i b r e s , and t h i s seems to be the description of a r t i o u l a r 

c a r t i l a g e which i s generally accepted today. 

Benninghof also suggested that these f i b r e s are connected to the 

underlying bone and pass r a d i a l l y towards the centre zone, '//hen approaching 

the surface of the cartilage, these f i b r e s bend and run p a r a l l e l to the 

a r t i c u l a r surface back to the bone laye r . The effect was to produce a series 

of arcades, and c e l l s were observed to be located between the sides of these 

arcades. Each c e l l was seen to be surrounded by a layer of concentrically 

disposed f i b r i l s , which, Benninghof suggested, were arranged so as to 

support t e n s i l e forces whilst the ground substance supported the compressive 

forces. M a c C o n a i l l ^ ^ agreed with most of Benninghof 1 s proposed structure, 

but disagreed with t h i s arrangement of arcades and suggested that the fi b r e s 

ran i n oblique directions between the cartilage surface and the bone, and 
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proposed that t h i s arrangement was effective i n supporting the stress 

d i s t r i b u t i o n under physiological loading. However, Zarek and E dwards^^ 

have questioned the v a l i d i t y of t h i s stress distribution, and the question 

of the structure of cartilage and i t s r e l a t i o n to the s t r e s s distribution 

applied appears a complex one. 

Investigations into the orientation of the f i b r e s at different 

layers i n the cartilage have been made by several workers ( L i t t l e et a l ^ ^ ^ 

Davies et a l , but perhaps the clearest differences i n the orientation 

have been shown by McCall.^"^ I n a normal adult j o i n t , three zones 

e x i s t : s u p e r f i c i a l , intermediate and deep. The s u p e r f i c i a l zone i s the 

bearing surface and i s composed of p a r a l l e l bundles of f i b r e s which run i n 

directions p a r a l l e l to the surface. Most of the cartilage thickness i s 

comprised of the intermediate zone which consists of coiled S-shape fibres 

arranged i n an open meshwork with large spaces i n between. The deep zone 

i s composed of a tighter meshwork of thicker f i b r e s arranged i n a direction 

perpendicular to the surface. McCall also showed that i n an o s t e o a r t h r i t i c 

specimen the zoning which predominates i n the normal cartilage has been 

l o s t and i s replaced by a c l o s e l y packed network of thick, coarsened f i b r e s 

a l l running i n a direction perpendicular to the surface. 

5.1.2 Synovial F l u i d 

The f l u i d i n the c a v i t i e s of f r e e l y movable j o i n t s of the body i s 

known as synovial f l u i d , which i s a dialysate of blood plasma with the 

addition of a high molecular weight molecule known as hyaluronic acid. 

A review a r t i c l e of i t s composition and properties has been written by 

D a v i e s ^ l ) and i t s only property that w i l l be mentioned here i s the one 

p r i n c i p a l l y concerned i n lubrication and deformation of a r t i c u l a r c a r t i l a g e 

the dynamic v i s c o s i t y . E a r l y investigators did not r e a l i s e that the f l u i d 
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was grossly non-Newtonian, but both King and Davies have shown 

that the dynamic v i s c o s i t y of synovial f l u i d i s sharply dependent on the 

3hear rate. However, t h i s v i s c o s i t y c h a r a c t e r i s t i c i s thought to be due to 

the presence of the hyaluronic acid molecule i n the f l u i d . 

5.1.3 Mechanical Properties of Cartilage 

5.1.3.1 Compression 

The most convenient method of studying the compressive properties 

of a r t i c u l a r cartilage i s the indentation t e s t , because i t enables t e s t s to 

be performed without removal from the bone. Bar^-^ Go eke and H i r s o h ^ * ^ 

performed these t e s t s on human a r t i c u l a r cartilage and a l l showed the main 

features of indentation t e s t s under constant load, namely an "instantaneous" 

response followed by a time dependent one, They also exhibited incomplete 

recovery after removal of the load, the so-called "imperfect" e l a s t i c i t y 
(56) 

which was investigated by Elmore et a l and shown to be the effect of 

performing the t e s t s i n a i r and thus not allowing the cartilage to take i n 

f l u i d which had been expelled during compression and consequently return to 
(57) 

i t s o r i g i n a l shape and s i z e . Sokoloff, using the same apparatus as 
Elmore, produced figures of 101 l b s / i n ^ for the Young's modulus of a r t i c u l a r 

2 2 
cartilage, and 402 l b s / i n and 724 l b s / i n for the costal cartilage of 

young (9-22 years) and old (42-66 years) people respectively. He also 

demonstrated that there was no sig n i f i c a n t correlation between the magnitudes 

of the indentations and the age of the individual concerned, and that indent­

ations varied considerably with position on the p a t e l l a . The topographical 

va r i a t i o n of the compressive properties of human a r t i c u l a r cartilage have 

been reported i n a se r i e s of papers(58)(59)(6o) ^ e i naentation-time 

curves exhibit the same basic c h a r a c t e r i s t i c s as demonstrated e a r l i e r , i . e . 

an "instantaneous" response followed by a time dependent one. 
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I n formulating h i s theory of "weeping" lubrication i n human jo i n t s , 
(-0 

McCutchen^ ' performed experiments by placing cartilage between two porous 

glass sheets and squeezing them together with a series of increasing loads 

load-deformation curves were plotted by allowing 30 minutes after the 

application of the load to allow for wring-out and then reading the 

deformation. Prom these experiments McCutchen obtained values for Young's 
6 2 6 modulus of 5o8 x 10 dynes/cm for water-soaked cartilage and 3*2 x 10 

dynes/cm^ for salt-soaked ca r t i l a g e . Young's modulus for the immediate 

deflection on application of the load was calculated to be 111 x 10^ dynes/cm^. 

Edwards performed t e s t s on c y l i n d r i c a l pieces of ca r t i l a g e from 

dogs which were confined so that no movement, either of l i q u i d or material 

could take place sideways. Graphs of thickness versus applied pressure and 

l i q u i d content versus time were plotted for a s e r i e s of different loads. 

Edwards also allowed the specimens to recover i n normal saline and found 

that the o r i g i n a l dimensions were recovered after about 30 minutes. 
(62) 

Camosso and Marotti looked at the behaviour of a r t i c u l a r c a r t i l a g e 

when subjected to compressive stresses. They performed compression t e s t s on 

cubes both of cartilage and bone intact and bone only and measured deflections 

for different loads. I t was noted that the rate of deformation decreased 

for increasing load for the cartilage and bone together whereas the 

deformation rate increased for increasing load i n the bone only case. The 

authors, however, seemed to confuse the terms p l a s t i c and v i s c o e l a s t i c as 

they are used i n the engineering sense. 

Linn and S o k o l o f f ^ ^ studied the movement and composition of the 

e x t r a c e l l u l a r water of ca r t i l a g e . They performed t e s t s on c o s t a l cartilage 

confined only to move i n the v e r t i c a l direction and produced graphs similar 

to those of Edwards. They also studied the amount of e x t r a - c e l l u l a r water 

i n costal and a r t i c u l a r cartilage and found that about 5Q$ by volume could 
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be expressed from a r t i c u l a r c a r t i l a g e as opposed to 2 0 R ; J i n cos ta l car t i l age 

at 5 0 0 l b s / i n 2 . I t was found that the rate at which car t i l age imbibed 

water was s i m i l a r to the rate at v/hich the deformation recovered although 

there was an immediate l i n e a r deformation v/hich was too large . to be accounted 

for i n i t s en t i re ty on the bas is of l a t e r a l f l u i d displacement from a 

v e r t i c a l l y compressed matrix, and therefore i t was presumed that a rubber­

l i k e l a t e r a l displacement of the matrix was involved. 

Hayes and M o c k r o s ^ ^ studied the v i s c o e l a s t i c propert ies of human 

a r t i c u l a r car t i l age and evaluated creep compliances for tors ion and u n i a x i a l 

s t r a i n t e s t s . I n the ir s t r a i n experiments, cart i lage was compressed between 

pervious and impervious load pads and def lect ions noted. The r e s u l t s l e d 

the authors to the conclusion that , even for load times of severa l minutes, 

flow processes are not dominant i n deforming normal c a r t i l a g e . Car t i l age 

with an i n t a c t surface l a y e r seemed to deform s i m i l a r l y with and without 

a free draining boundary, whereas for degenerative t i s s u e , deviations i n 

the mechanical behaviour occurred which could be a t tr ibuted to f l u i d flow 

from the matrix. 

5 . 1 . 3 . 2 Tension 

Experiments have also been performed to measure the t e n s i l e 

( 6 5 ) 

propert ies of a r t i c u l a r c a r t i l a g e by Swanson et a l . Load-extension 

t e s t s were performed on specimens cut from the j o i n t s i n such a way that 

some were or ientated with the ir col lagen f i b r e s i n the d irec t ion of p u l l 

and some at r ight angles. The r e s u l t s showed that the t e n s i l e strength of 

the specimens t e s ted p a r a l l e l to t h e i r collagen f i b r e or ientat ion was 

between 1 0 0 and 2 0 0 kg/cm 2 whereas the specimens tes ted at r i g h t angles to 

t h e i r f i b r e or ientat ion had a t e n s i l e strength of 4 0 to 1 0 0 kg /cm 2 . 

S t i f f n e s s too var i ed according to the d irec t ion of loading from 5 0 0 - 1 7 0 0 

kg/cm ( p a r a l l e l to the f i b r e s ) to 2 0 0 - 5 0 0 kg/cm (across the f i b r e s ) . 
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C l e a r l y the c a r t i l a g e was stronger and s t i f f e r when pul led i n the same 

d irec t ion as the f i b r e or ientat ion , which would appear e n t i r e l y l o g i c a l 

since i n t h i s case the f i b r e s themselves were being stretched whereas i n 

the case on transverse loading the f i b r e s were simply being separated from 

each other. 

5 . 1 . 4 Permeabil i ty 

Owing to d i f f i c u l t i e s i n i t s measurement, because of the small 

f lowrates involved, only three invest igators have reported f igures for the 

( 1 ) 

c o e f f i c i e n t of permeability i n c a r t i l a g e . McCutchen measured the 

permeability by forc ing f l u i d through a disk of cart i lage under a known 

pressure d i f ference and observing the rate of r i s e of f l u i d i n the upper 

column. McCutchen quotes a f igure of 5 « 8 x 10 1 ^ cmVdyne sec as the 

permeability i n the normal d i r e c t i o n . The tangent ia l permeabil ity was 

measured i n d i r e c t l y by squeezing a disk of c a r t i l a g e and measuring the force 

exerted by i t during wring out. A mathematical ana lys i s , assuming constant 

permeabil ity, enabled McCutchen to ca lculate the permeability from the rate 

of deformation for a constant load. A f igure for the tangent ia l permeability 

of 5 o 4 5 x 10 cm /dyne sec . i s quoted although the deformation i s f i n i t e , 

the permeability i s reduced and the matrix c a r r i e s some of the load, causing 

t h i s f igure to be too smal l , perhaps, says McCutchen, by a factor of 2 , 

although he does not r u l e out i so trop ic permeabil i ty. I t i s also s tated 

that the normal permeabil ity var ies with depth, being greatest near the 

surface . The quoted f igures are 7 « 6 5 x 10 ^ cm /dyne sec . for the top 

disk , and 4 o 3 x 10 ^ cnA/dyne sec . for the lower d i s k . 

E d w a r d s , i n performing the confined tes ts on a r t i c u l a r car t i l age 

also c a r r i e d out t e s t s of permeability on h i s specimens. Using a s imi lar 

apparatus to McCutchen, he obtained normal permeability c o e f f i c i e n t s of 

1.09 x 10" 13 cmVdyne sec . for sa l ine and 3 . 3 x 10~ 1^ cmVdyne sec. for 
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Ringers so lu t ion . The pressure gradient used i n both cases was 70 l b s / i n 

which i s important because not only does i t force more f l u i d through but i t 

may compress the cart i lage and make the pores smaller , thus reducing the 

permeabil i ty. Edwards r e l a t e s the flow out of car t i l age and i t s subsequent 

deformation to the consolidation of a s o i l but includes the comment that , 

a t equil ibrium, the applied load i s c a r r i e d par t ly by e l a s t i c s tresses i n 

the f ibrous framework and p a r t l y by osmotic forces generated mainly i n the 

ground substance. 

Maroudas also c a r r i e d out permeability t e s t s i n applying an ion 

exchange theory to a r t i c u l a r c a r t i l a g e . I n measuring the permeability i n 

a s i m i l a r fashion to both McCutchen and Edwards, Maroudas measured the f i x e d 

charge density and var i ed the depth from which the l a y e r of c a r t i l a g e came. 

As w e l l as f inding that the f i xed charge density increases considerably with 

the distance from the a r t i c u l a r surface , Maroudas produced graphs of 

permeabil i ty c o e f f i c i e n t with v a r i a t i o n i n the distance from t h i s surface . 

( 6 6 ) 

I n Maroudas1 f i r s t paper on t h i s subject , t h i s var ia t ion appeared to 

be an approximately l i n e a r one, decreasing from a maximum value near the 

-2 

surface,but no data was given i n a region wi th in approximately 2 x 1 0 cm 

of the a r t i c u l a r surface because of experimental d i f f i c u l t i e s involved i n 

dealing with s l i c e s of small c ros s - sec t iona l area obtained near the surface . 

However, these d i f f i c u l t i e s were overcome and a second p a p e r s h o w e d an 

unexpected decrease i n the permeability i n t h i s l a y e r . This was put down 

to the fac t that the bearing surface i s made up of t h i c k l y packed smaller 

f i b r e s as has already been noted i n t h i s review. 

5 . 1 . 5 Theore t i ca l Predict ions of Mechanical Propert ies 

Several workers have put forward predict ions of how cart i lage 

behaves under load, but unfortunately most of these theories seem to have 

l i t t l e t h e o r e t i c a l backing except i n the method of c u r v e - f i t t i n g . 
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( 6 8 ) 
Yannas suggested that the f l u i d t r a n s f e r i n and out of the 

c a r t i l a g e accompanying deformation could be represented by a l i n e a r 
re laxa t ion process where the amount of f l u i d expel led depended on the time 
and increment of load but was independent of the weight of f l u i d displaced 
by any previously applied load. Thus the i n d i v i d u a l increments could be 
summed to produce the t o t a l f l u i d expelled or imbibed at any given moment 
i n time. By talcing the work of Edwards and using i t to give the boundary 
condit ions, Yannas produced a theore t i ca l curve for the uptake of f l u i d i n 
Edwards experiments and found exceptional ly good corre la t ion . 

Hayes and Mockros^*^ i n t h e i r inves t igat ion of the v i s c o e l a s t i c 

propert ies of c a r t i l a g e , applied l i n e a r v i s c o e l a s t i c theory to the i r creep 

r e s u l t s by determining three exponential terms and four bulk compliance 

c o e f f i c i e n t s for a spring and dashpot representation of a general ised 

K e l v i n s o l i d to f i t the ir experimental r e s u l t s for tors ion and u n i a x i a l 

s t r a i n . 

( 6 9 ) 

Fantuzzo and G r a z i a t i also presented a rheologic theory i n which 

a combination of a spring, a dashpot, and a spring and dashpot i n p a r a l l e l , 

were put i n s e r i e s and the response of an equivalent e l e c t r i c c i r c u i t 

s tudied. The model was claimed to s a t i s f a c t o r i l y in terpret the behaviour 

of cart i lage under dynamic s t r e s s , as observed experimentally, although 

unfortunately the authors do not state what t h i s behaviour i s . 
(58) 

Kempson et a l produced values for the Young's modulus of 

c a r t i l a g e by using the equations formulated by W a t e r s ^ f Q r ^.ne 

indentation of t h i n sheets of rubber, and subst i tut ing the recorded 
(72) 

deformations af ter two seconds of appl icat ion of the load . Hayes et a l 

a l so produced a mathematical ana lys i s for indentation t e s t s based on the 

model of a r t i c u l a r c a r t i l a g e as being an i n f i n i t e e l a s t i c layer bonded 

to a r i g i d h a l f space. The problem was formulated as a mixed boundary value 
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problem of the theory of e l a s t i c i t y and the solutions were suggested 

as being use fu l i n the determination of an e l a s t i c shear modulus of 

i n t a c t a r t i c u l a r c a r t i l a g e . 
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5 . 2 Reynolds Numbers of F l u i d Flow i n C a r t i l a g e 

To see whether i t i s v a l i d to use Darcy's law for the flows i n 

a r t i c u l a r c a r t i l a g e , the Reynolds numbers can be estimated by ca l cu la t ing 

the f l u i d v e l o c i t i e s and using estimates for the pore diameter i n a r t i c u l a r 

c a r t i l a g e . 

-10 

Assume a diameter of a "pore" to be 60 x 10 m. 

The maximum deformation ra te seems to be of the order of 1 mm i n 

100 seconds, and as t h i s i s accomplished mainly by f l u i d flow out, 

the f lowrate /uni t area = 1 x 10**̂  m/sec. 

Reynolds number = ( £ L ^ 
n 

3 -5 -10 
10 x 1 x 10 x 60 x 10 

I D " * 

= 60 x 1 0 - 9 

I t therefore appears that when flow i s occurring i n a r t i c u l a r 

c a r t i l a g e , Darcy 1 s law can be thought of as being en t i re ly v a l i d . Where 

o s c i l l a t i n g deformations take place, and deformation rates are higher than 

those used above, i t w i l l be shown that very l i t t l e extra flow above that 

of flow due to the d . c . force i s thought to be taking place . 
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5 . 3 Some &eneral Comments on Experimental Observations 

The main experimental observations from work on the mechanical 

propert ies of a r t i c u l a r car t i lage up to now have been:-

1. Some measurements of porosity and permeabil i ty . 

2 . The a r t i c u l a r car t i lage i s mounted with good adhesion on a bone 

backing which i s very much s t i f f e r than the l a y e r i t s e l f . 

3 . The layer i s capable of compressive s t r a i n s i n excess of 

followed by complete recovery. 

4 . Under load, the deformation consis ts of an "instantaneous" 

component followed by a creep component, and s i m i l a r l y for the 

removal of load. 

5 . The response i s very time-dependent. 

6. The long term, i . e . equi l ibrium, load-displacement curve i s 

non-l inear but r e v e r s i b l e . 

7 . Osmotic pressures of the order of one atmosphere are postulated. . 

I n the case of an a r t i c u l a t i n g j o i n t , i t would appear that the 

c a r t i l a g e surfaces on e i ther bone-end are highly conforming, and therefore, 

when dealing with expanses of the order of (square centimetres) and 

thicknesses of the order of mi l l imetres , i t would appear that any large 

s t r a i n s that are imposed w i l l be predominantly u n i a x i a l . From t h i s point of 

view, indentation t e s t s , although being highly valuable i n looking at the 

topography of the surface , and being able to be performed d i r e c t l y on the 

femoral head, probably cause the same order of magnitude of s t r a i n i n the 

r a d i a l as i n the a x i a l d i r e c t i o n . 

I n t es t ing of mater ia ls , the case where no r a d i a l s t r a i n i s allowed 

i s known as a confined t e s t , and that where no constraint i s put on the 

r a d i a l s t r a i n as an unconfined t e s t . As was noted i n the assumptions for 

the sect ion on the theory of the deformation of porous mater ia l s , only a x i a l 
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deformation has been assumed i n formulating the theory, and therefore i n 

t h e o r e t i c a l terms only the confined t e s t i s considered, but, as w i l l be 

seen l a t e r , some experimental work has been performed on unconfined tes ts 

and the re la t ionsh ip of these t e s t s to the t h e o r e t i c a l curves w i l l be 

commented upon. But because flow of f l u i d may take place i n d i f f e r e n t 

d i r e c t i o n s , no r e s t r i c t i o n has been placed on the f low. 

I t may be useful to consider the re lat ionship between the 

deformations i n a confined and unconfined t e s t for a Hookean e l a s t i c s o l i d . 

Using c y l i n d r i c a l co-ordinates and applying l i n e a r e l a s t i c theory, Hooke's 

law gives 

where &^€rQ9 are the s t r a i n s i n the S,r,9 d irec t ions re spec t ive ly 

0*a O ĵ are the s tresses i n the t ^ , ^ d irec t ions respect ive ly 

V i s Poisson's r a t i o 

and E i s Young's modulus 

For an unconfined t e s t , OV * ~ ° 

and 6 j - ^ I 

and for a confined t e s t , € & •= £ r - O 

For a mater ia l such as rubber, U i s very near to 0 , 5 end i t s res i s tance 

to volume change i s very l a r g e , so compression i n a confined t e s t w i l l y i e l d 

very small s t r a i n s compared with the r e s u l t s i n an unconfined t e s t . 

The bulk modulus can be defined as the e l a s t i c modulus applied to 

a body having uniform s tres s d i s t r i b u t e d over the whole of i t s surface , and 

i s r e l a t e d to Young's modulus by the expression 

is _ E 
K - 3 ( 1 - 2 v ) 

where K i s the bulk modulus. 
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Liquids have no shear at r e s t but a bulk modulus can s t i l l be 

defined for them, the bulk modulus of water being 2 x 10^ N/m^. 

I n a confined t e s t , assume that the s o l i d and f l u i d are equal ly 

compressed by the bulk modulus e f f e c t , the deformation due to which, as w i l l 

be shown, i s very smal l compared to the deformation due to f l u i d flow i n and 

out. Because the a r t i c u l a r car t i l age can be thought of as composed of 

70-80 per cent l i q u i d , assume that the bulk modulus of both s o l i d and f l u i d 

i s of the same order as that of the f l u i d (water) alone. Therefore under a 

normal phys io logical s t res s of 1 x 10 N/m , the s t r a i n due to the bulk 

modulus e f f ec t i s of the order of 10 -'. Compared to t o t a l s t ra ins of 0 .3 

and above, th i s s t r a i n due to e l a s t i c i t y of the car t i l age i s neg l ig ib l e , 

when r e f e r r i n g to confined t e s t s . I t i s thought that i t i s the deformation 

due to the l a t e r a l expansion i n an unconfined t e s t which would account for 

the instantaneous def lec t ions noted by other workers. However, when r e f e r r i n g 

to the performance of a r t i c u l a r car t i lage under an o s c i l l a t i n g load, i t w i l l 

be seen that the s t r a i n s due to the bulk modulus e f f ec t cannot be neglected 

e i ther i n confined or unconfined t e s t s . 

To sum up, therefore , i t i s thought that , under load, the deformation 

of a r t i c u l a r c a r t i l a g e does consist of an instantaneous component, fol lowed 

by a creep component, but that t h i s instantaneous component i s due to the 

l a t e r a l expansion i n unconfined t e s t s , which can be neglected i n confined 

t e s t s under constant load. Experimental evidence for t h i s w i l l be shown 

l a t e r . The creep component, present i n both types of t e s t s , i s due to f l u i d 

flow i n and out of the matrix. 
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5 . 4 Resul t s from A x i a l Flow Only 

As can be seen from the l i t e r a t u r e survey, most of the experiments 

performed on c a r t i l a g e have been indentation tes ts or unconfined, and i n 

only two cases have r e s u l t s been reported from confined t e s t s , Edwards on 

a r t i c u l a r c a r t i l a g e a n d Linn and Sokoloff on cos ta l c a r t i l a g e . 

I n the former case, curves are presented of 

1. Specimen thickness at equilibrium as a function of applied pressure, 

2. percentage l i q u i d exchange as a funct ion of time for four d i f f e r i n g 

loads , 

3 . percentage l i q u i d exchange as a funct ion of applied pressure, 

W« -W 
where l i q u i d exchange i s defined as —* 

V*f - W> 

W$ i s the f u l l y swollen mass of the specimen, 

W i s the mass of the specimen at a given time, 

Wp i s the dry mass of the specimen. 

A comparison between ourves 1 . and 3 » show that the re la t ionsh ip 

between the change i n specimen thickness and l i q u i d exchange i s approximately 

constant, showing that the deformation could be accounted for so l e ly by 

f l u i d flow out of the matrix. The weighing measurements were taken by 

removing the car t i lage from the apparatus a f t e r a c e r t a i n time of loading, 

and i f there were any s i g n i f i c a n t e l a s t i c response i n loading, t h i s would 

recover immediately on removal of the load, so i f the specimen thicknesses 

were measured when the cart i lage was out of the apparatus, a l l that would 

ba measured would be a deformation due to f l u i d flow out, Y/hich w i l l be 

proportional to the percentage l i q u i d exchange. Curve 2. showed both the 

v a r i a t i o n of l i q u i d content a f t e r appl icat ion of the load, and a l so , a f ter 

equi l ibrium had been obtained, the load was re leased to show the swel l ing 

curves . A l l r e s u l t s were for a r t i c u l a r car t i l age from the femoral head 

of a dog, and the consolidation and swel l ing curves were for c a r t i l a g e i n 
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normal sa l ine so lut ion at 20 C . 

Edwards also gives values of permeabil ity for the car t i lage used 

i n the experiments using both normal s a l i n e solut ion and normal Ringer 1 s 

solution as the f i l t r a t i o n l i q u i d . The values quoted a r e : -

Specimen Thickness Pressure Potent ia l K , 

mm l b s / i n 2 om / d y n . s . 

Normal Sa l ine 0 . 5 1 70 1.09 x 10~ 1 

Normal Ringers O . 3 8 70 3 . 3 x 10" 1^ 

Taking into account a v i s c o s i t y of approximately 0.001 Ns/m 2 , 

values are obtained of 1.09 x 1 0 " ^ m2 and 3 * 3 x 10~ 1 ^ m2 r e spec t ive ly , 

the f i r s t one of which i s c er ta in ly very low compared with other values of 

permeabil ity measured (see l i t e r a t u r e survey) . There may be two reasons 

f o r t h i s . One i s that the pressure potent ia l of 70 l b s / i n ^ which was used 

to force the f l u i d through the c a r t i l a g e w i l l cause a decrease i n the area 

of the pores, although i n a complicated way, varying through the th ickness . 

The other reason for the low permeability may be that the thickness 

of 0 . 5 1 mm i s probably not the t o t a l thickness and t h i s thickness may have 

been taken from the deeper parts of the car t i lage l a y e r where the f i b r e s 

are th icker and the permeability (as shown by Maroudaa) i s lower than the 

average throughout the thickness . 

Edwards does not quote an i n i t i a l porosity as such, but he does 

give f igures from which t h i s value can be deduced:-

I n i t i a l dimensions of specimen = 6 . 6 mm diameter x O.JfB mm th ick 

F u l l y swollen mass of specimen = 1 6 . 2 mg. 

Dry mass of specimen = 4 » 6 mg. 

These f igures give an i n i t i a l porosity of 71$. 

A computation of the experiments Edwards performed was therefore 

se t up to predic t deformation with time under the loads that were used i n 
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the experiments. The curve given by Edwards of deformation versus applied 

pressure at equil ibrium i s shown i n Figure 29. A f i t to t h i s curve of the 

form Or - — ^ which was used i n the computation i s also shown. The graphs 

of percentage l i q u i d exchange were converted to d irec t deformations, the 

- 1 6 L 

value of 1 . 0 9 x 1 0 myN sec as measured by Edwards was used for the 

c o e f f i c i e n t of permeability divided by the dynamic v i s c o s i t y , and 0 . 7 1 as 

the value for i n i t i a l poros i ty . E f f e c t s on the deformations of varying 

these parameters w i l l be shown l a t e r , but the graphs for the four d i f f e r e n t 

appl ied loads shown by Edwards, both for compression and expansion, are 

shown i n Figures ( 3 0 ) - ( 3 3 ) • 

Agreement at the two lower loads i s good, but th i s agreement tends 

to decrease as the applied load i s increased. I n a l l the graphs a f t e r the 

re lease of load the agreement i s good. Also shown on the graphs i s the 

di f ference that an assumption of constant permeability with s t r a i n would 

make, and i t appears that t h i s makes far more dif ference i n the compression 

of the car t i lage than i n the expansion. 

Applying dimensional ana lys i s to the system gives 

where £ i s the deformation 

and O" the applied pressure . 

For two constant applied pressures of 1 . 0 2 x 1 0 ^ N/m 2 and 

2 . 0 4 x 1 0 ^ N/m 2 , Figures ( 3 4 ) and ( 3 5 ) show the v a r i a t i o n of ( ^ s ^ with 

for various values of i ^ * / ^ ^ and Figures ( 3 6 ) and ( 3 7 ) show the 

v a r i a t i o n for various values of (y) . The var ia t ion of i n i t i a l porosity 

makes some difference to the response, and t h i s e f f e c t increases as the 

s t r a i n becomes nearer to the i n i t i a l porosi ty . To extrapolate t h i s to the 

s i t u a t i o n of the i n i t i a l porosity equal l ing the f i n a l s t r a i n means that , 

as soon as the load i s applied, the pores at the surface are closed up and 

- 8 3 -



no f l u i d flow through the surface can then take p lace . 

However i t i s the c o e f f i c i e n t of permeability which governs to 

a large extent the deformation-time c h a r a c t e r i s t i c as would be expected, 

and there i s an inverse l i n e a r re la t ionsh ip between the time to reach a 

c e r t a i n s t r a i n and ( ^ % o

v ) for a given constant load. 

At high loads the solut ion i s more prone to i n s t a b i l i t y , because 

small changes i n the f l u i d pressures w i l l be accompanied by large changes 

i n s t r a i n , and the process does not converge when high f l u i d pressures cause 

low s t r a i n s which cause low f l u i d pressures . This i n s t a b i l i t y does not 

occur at the lower loads . 

I t i s thought that from these curves i t i s reasonable to state that 

i t i s probably not the i n i t i a l values of the permeability or porosity which 

cause the discrepancy at high loads. Because the agreement i s so good at 

the lower loads , i t i s thought that t h i s descrepancy may l i e i n the 

var ia t ion of permeability with s t r a i n when s t r a i n s nearing the i n i t i a l 

porosity are encountered. T h i s var ia t ion i s not so important a f t er re lease 

of the load, when the d i f ference between the curves assuming var iable and 

constant permeability i s very s l i g h t , and therefore the predict ions a f ter 

re lease of load are very near the experimental r e s u l t s . I t appears that 

the v a r i a t i o n of permeability with s t r a i n i s approximately correct at low 

s t r a i n s , but i s more severe than the one postulated at high s t r a i n s . 

However the simple re la t ionsh ip used gives good r e s u l t s for normal 

phys io log ica l walking stresses^ 7 "^ of 1 5 0 - 3 0 0 l b s / i n 2 ( 1 - 2 x 1 0 6 N /m 2 ) . 

The way the deformation i s accomplished with time i s shown by the 

way the s t r a i n var i e s with the depth from the surface as the time i s 

increased. Figure 3 8 shows t h i s v a r i a t i o n under a constant pressure of 

6 2 

1 . 0 2 x 1 0 N/m . Because one of the boundary conditions i s that the f l u i d 

pressure at the surface i s zero, a l l the loading at the surface must be 

taken by the s o l i d , so immediately upon appl icat ion of the load the s t r a i n 
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at the surface has the value of the f i n a l s t r a i n , and everywhere e lse the 

s t r a i n i s zero. As time increases , the s t ra ins i n the lower l a y e r s are 

gradual ly increased as f l u i d seeps out of them. Eventua l ly , at an i n f i n i t e 

time i n theory, the whole material i s at the same s t r a i n , the f i n a l s t r a i n , 

and no more deformation w i l l then take p lace . The v e r t i c a l l i n e s on the 

graph show the posi t ions of various points i n the s o l i d with respect to the 

surface as the whole surface deforms with time. Figure 39 shows the 

magnitude of the f l u i d pressures throughout t h i s deformation, the pressures 

bearing most of the load at the s t a r t of the deformation except at the 

surface where the gauge pressure must be zero, and decrease as the s t r a i n 

i n the materia l and time increases . 

Figure I f i shows the pos i t ion af ter the constant s t res s of 

c . 2 

1.02 x 10° N/m has been removed. Immediately a f t e r re lease of the load 

the s t r a i n at the surface returns to aero, and the other l a y e r s then 

gradually imbibe f l u i d and re turn to the o r i g i n a l dimensions, v/hen the 

s t r a i n throughout the car t i lage i s zero. Figure 41 shows the magnitudes 

of the f l u i d pressures i n t h i s s i t u a t i o n . I t should be noted here that 

during the re-establishment of the o r i g i n a l dimensions a f ter the re lease of 

load, the f l u i d pressures predicted by the theory are negative. I n p r a c t i c e , 

a f l u i d under tension may cav i ta te , and i n t h i s s i tuat ion the f l u i d w i l l not 

sus ta in the negative pressures . T h U 3 the car t i lage dimensions w i l l return 

f a r more quickly to the i n i t i a l conditions than the theory here p r e d i c t s . 

I t i s perhaps an indicat ion of the theory predict ing the re l ease of load 

to some degree of accuracy that the f l u i d does not cavitate ins ide the 

car t i lage under the conditions p r e v a i l i n g . 

Experiments have also been performed i n t h i s L a b o r a t o r y ^ ^ on the 

v a r i a t i o n of deformation with time for various loadings on bovine c a r t i l a g e 

us ing the same configuration as the experiments performed by Edwards. 
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The experiments were performed on the t o t a l thickness of car t i lage attached 

to the bone end, the diameter of the specimens being 5 . 5 mm. The load was 

applied a x i a l l y so that flow could take place a x i a l l y through a permeable 
Q 

bronze d i sc which had a permeability c o e f f i c i e n t of about 1 0 times as big 

as that of c a r t i l a g e , so flow would not be impeded. Deformation was read 

from an u l t r a - v i o l e t recorder to which was fed the s i g n a l of the average 

of two displacement transducers posit ioned an equal distance on e i ther s ide 

of the applied load. 

I n i t i a l l y i t appeared that there was an instantaneous deformation 

of about 0 . 2 mm, but i t t ranspired that the p . t . f . e . l i n e r i n which the 

cart i lage was contained had deformed permanently under the constant loading 

to which i t was subjected. Thi s deformation meant that there was room for 

the car t i l age to expand l a t e r a l l y , i n i t i a l l y giving an a x i a l deformation 

of about 0 . 2 mm. I t was thought that a f t e r t h i s l a t e r a l expansion the 

c a r t i l a g e was i n e f f e c t confined and could therefore be treated as such. 

Unfortunately, r e l i a b l e measurements of permeabil ity have not yet been 

obtained, the d i f f i c u l t i e s having been noted i n the l i t e r a t u r e review. 

Because the t o t a l thickness of a layer of car t i lage was used, an average 
-19 2 

c o e f f i c i e n t of permeabil ity of 5 o 0 x 1 0 m has been used, as t h i s 

f i gure seems a mean of measurements taken by other workers when working on 

the whole l a y e r . S t r a i n s i n excess of 0 , 7 5 could be achieved by applying 

very large s tresses , so an i n i t i a l porosity of 0 . 8 was used. As can be 

seen from Figures ( 4 2 ) and ( 4 3 ) "the agreement i s again quite good. 

An e f f e c t which has not been taken into account i n deformation i s 

that of osmosis. Flow under osmosis w i l l be into the car t i lage due to the 

concentration of large molecules ins ide the c a r t i l a g e , and thus when 

compression occurs i n a laboratory r i g , flow w i l l only take place under a 

d i f ference i n f l u i d pressure from the equi l ibrium osmotio pressure . Thus 

osmosis w i l l tend to keep the f l u i d inside the c a r t i l a g e whi l s t under 
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pressures , due to the osmotic pressure i n the f l u i d outside causing the 

e f f e c t i v e gauge pressure to be a l t ered . 

The appl icat ion of a s inusoidal load (which w i l l subsequently be 

c a l l e d the a . c . load) together with that of a constant load (subsequently 

c a l l e d the d .c . load) has also been invest igated, as j o i n t s are very seldom 

under s t a t i c loads for very long. I t appears that the deformations due to 

the a . c . load o s c i l l a t e s about the d . c . deformation, although the two 

deformations cannot be superimposed i n theory because the d . c . s t i f f n e s s 

a f f e c t s the a . c . deformation. However i t w i l l be shown that i n pract ice 

the two e f f e c t s can be treated separately . 

I n t h e o r e t i c a l terms, assuming that i n e r t i a e f f ec t s can be neglected 

and that the force on the s o l i d i s equal to the addit ion of the constant 

and s inusoidal forces at i t s appropriate time i n the cyc le , the deformations 

predicted d i f f e r very l i t t l e from those i n the constant load case. The 

frequency used i n the cases of o s c i l l a t i n g loads was 6 0 cycles/minute 

(approximating to that of a walking c y c l e ) , but because of computational 

d i f f i c u l t i e s i n the a x i a l flow case, only the r e s u l t s from two cj'cles were 

produced. These showed that for an a . c . s t ress of 1 x 1 0 ^ N/m 2 , an a . c . 

s t r a i n of 6 . 2 5 x 1 0 ^ was produced, giving a modulus of 1 . 6 x 1 0 ^ N/m 2 . 

The phase dif ference was d i f f i c u l t to ascer ta in to any degree of accuracy 

because the deformations computed were only for the f i r s t two c y c l e s . 

I n pract ice i t appears that i n s inusoidal loading the bulk modulus 

e f f e c t that has already been mentioned becomes s i g n i f i c a n t , unl ike the d . c . 

loading case . The experimental r e s u l t s show that , i n the confined, a x i a l 

flow type t e s t , the response i s of a s inusoidal de f l ec t ion superimposed upon 

the deformation due to the constant load alone. This a . c . response appears 

9 / 

to l ag the applied a . c . load s l i g h t l y and has a modulus of 0 . 2 5 - 1 . 0 x 1 0 N/i 

depending from where on the car t i lage surface the specimen i s taken. The 
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d e f l e c t i o n appears to stay approximately constant with v a r i a t i o n i n 

time providing the a.c. load i s kept constant. The frequency of o s c i l l a t i o n 

mainly used was 50 cycles/minute, although i t was found that a l t e r i n g the 

frequency made very l i t t l e difference to either the phase lag or modulus. 

Figure 44 shows a t y p i c a l hysteresis loop for one cycle at 50 cycles/minute, 

and gives a phase lag of about 15° . To ascertain i f t h i s phase lag was 

s i g n i f i c a n t i n t a l k i n g about the e l a s t i c i t y of a r t i c u l a r cartilage, the 

same o s c i l l a t i n g experiment was performed on a cylinder of rubber of the 

similar dimensions. The results of stress versus s t r a i n for one cycle are 

shown i n Figure 45 and t h i s shows a hysteresis loop v/ith a phase lag of 

about 11°, approximating to that of car t i l a g e . Therefore i t would appear 

that the a.c. response of a r t i c u l a r cartilage i n a confined configuration 

can be regarded as reversible as that of rubber, the modulus of which i s 

of the same order as the bulk modulus of water, i . e . a l l that i s happening 

on a short time cycle i s that the f i b r e s and water together which make up 

the a r t i c u l a r cartilage are being alternately compressed and relaxed due 

to the bulk modulus e f f e c t . 

I t may be interesting to note the findings of Hayes and Mockros, 

who compressed human a r t i c u l a r cartilage i n a confined test with pervious 

and impervious load pads. Their findings indicated to them that flow 

processes were not dominant i n the deformation, because deflections i n both 

cases were sim i l a r . This would therefore indicate a bulk modulus for the 
6 2 

cartilage of the order of 10 N/m , three orders of magnitude d i f f e r e n t from 

that of water, and also very d i f f e r e n t from the bulk moduli of most l i q u i d s 

or solids. These results seem t o t a l l y at variance with other findings, 

and the explanation may be that there was f l u i d flow around the sides of 

the impervious load pad, the t o t a l sealing of a te s t of t h i s kind being 

d i f f i c u l t . 
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5.5 Results from Radial How Only 

The theoretical results f o r r a d i a l flow only i n a confined case 

both f o r a constant load and also with the addition of a sinusoidal load 

are much easier to produce, but are probably not so useful from the 

experimental standpoint. I n practice, to produce r a d i a l flow only means 

making no r e s t r i c t i o n on the flow at the sides of the cylinder which then 

makes the test unconfined. 

However, looking at the theoretical results from a confined r a d i a l 

flow test can show several salient points. Because the boundary conditions 

are now d i f f e r e n t , the deformation i n general takes longer t o accomplish 

than i n the a x i a l flow case. Figure 48 shows the varia t i o n of deformation 

with time using the same thickness of specimen as i n Edwards1 experiment, 

but now i t i s the radius of the cylinder which w i l l make a large-difference. 

Dimensional analysis gives 

where *fi i s the radius of the cylinder. 

Figure 46 shows that for a given deformation, the time i s inversely 

proportional to ( ^ V ^ 1 ) (as given by Equation (4 .2 .9 ) ) . Figure 47 shows 

the effect of v a r i a t i o n of i n i t i a l porosity on the non-dimensional 

deflection-time curve. I t i s inte r e s t i n g to note th a t , as shown by 

Figure 48, on release of load, the rate of recovery of the deformation i s 

very much slower than i n the axi a l flow case, and that a l l these curves 

corresponding to no load are a constant distance apart, the distance depending 

on the str a i n at which the load was released. This l a t t e r point also appears 

from the solution to the conditions at no load (Equation (4 .2.11)) . 

Figures (49) - (52) show the effect of an a.c. load superimposed 

upon a d.c. load at d i f f e r e n t times during the deformation. These clearly 

show that these a.c. strains, v/hich, from the i n i t i a l assumptions, are due 

- 89 -



to f l u i d flow i n and out of the matrix, are very small compared to those 

experienced when including the bulk modulus e f f e c t . These o s c i l l a t i o n s 

lag the applied load by approximately 50° , and, as can be seen from 

Figures (49) and (52) reduce i n magnitude as the d.c. load causes a 

deformation, due to the decrease i n the permeability and increased s t i f f ­

ness i n the matrix. I n i t i a l l y the amplitude of the o s c i l l a t i o n s i s of a 
6 2 

s t r a i n of about 0.0001 f o r an a.c. stress of 1 x 10 N/m giving a 
10 2 

modulus of 10 N/m . Towards the end of the displacement the modulus i s 

of the order of 10 1 1 hT/m2. 

I t i s also interesting to note i n a confined r a d i a l flow t e s t , the 

behaviour when a constant s t r a i n rate i s applied to the surface and 

calculating the t o t a l force exerted by the specimen. This v a r i a t i o n i s shown 

i n Figure 53* Because the f l u i d force i s d i r e c t l y proportional to the s t r a i n 

r a t e , t h i s force becomes dominant at high s t r a i n rates. Of course, the case 

of a s t r a i n rate of zero corresponds to the stress-strain curve at 

equilibrium. 

I n the p r a c t i c a l case of r a d i a l flow, the specimen i s now unconfined 

and there i s no resistance to sideways motion, except for f r i c t i o n of the 

specimen on the plates through which the load i s transmitted. This effect 

causes the specimen to become barrel-shaped under loading. The experiments 
(74) 

i n t h i s Laboratory on unconfined tests, have shown that, for a given 

load, there i s a larger f i n a l s t r a i n than i n the confined case, which can 

be a t t r i b u t e d to the l a t e r a l expansion due to Poisson's r a t i o mentioned 

e a r l i e r at the s t a r t of t h i s Section. Figure 54 shows a t y p i c a l curve of 

deflection with time under a constant load, showing an instantaneous 

displacement followed by a time dependent response, and on release of load 

there i s an instantaneous recovery followed by a slow relaxation as sho?m 

by the theory. The instantaneous deflections on compression and relaxation 
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are not equal i n magnitude, the deflection on release of load always being 

smaller. This can be explained by considering a r t i c u l a r cartilage as being 

a complete material for the moment. At the beginning of compression there 

i s physically more material than when f l u i d has been squeezed out at the 

end of the time dependent deformation. Considering constant cross-

sectional area A and a constant elast i c modulus ^ , 

I n i t i a l l y on compression 

^ - &«V(g. 
where O" i s the applied stress 

At relaxation X - ~̂*W S, 

where £ Q i s the instantaneous response on compression 

S, i s the instantaneous response after release of the load 

and 3t( i s the thickness at equilibrium before release of the load. 

Combining these equations gives 

i ° = h + i 

where i s the creep deflection 

Thus the r a t i o can never be less than 1. This expression 

seems to f i t the experimental values f a i r l y w e l l f o r calculating the 

instantaneous response after release of load. 

The varia t i o n i n r a d i a l permeability w i l l also be affected i n 

some fashion by t h i s l a t e r a l displacement. Because the l a t e r a l displacement 

i s increasing, the cross-sectional area w i l l increase throughout and, when 

the a x i a l s t r a i n i s equal to the i n i t i a l poroaity, the r a d i a l permeability 

w i l l not be zero. 

Under an o s c i l l a t i n g load, the a.c. s t r a i n i n i t i a l l y i s larger 
9 2 

than i n the confined t e s t , giving an elasti c modulus of 0.04 - 0.1 x 10 N/m , 

and the strains reduce with time, so that at equilibrium the elastic modulus 
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i s i n the range 0.11 - O.38 x 10^ W/m . I t must be stressed that these 

values of moduli are calculated using the i n i t i a l cross-sectional area, 

and i t would seem reasonable to a t t r i b u t e most of the apparent increase 

i n the modulus to an increase i n the cross-sectional area as the d.c. 

s t r a i n increases due to a large value of Poisson 1s r a t i o . This l a t t e r 

conclusion i s borne out by the fact that the r a t i o s of the e l a s t i c moduli 

at the s t a r t and at the end ( i . e . the inverse r a t i o s of the cross-

sectional areas at the s t a r t and end) appear to be related to the f i n a l 

d.c. s t r a i n . The stress-strain characteristic for one cycle shown i n 

Figure 55 again shows a hysteresis loop which i s derived from a phase lag 

of about 16°, but as has been shown i n the confined case f o r rubber, t h i s 

lag may well be t y p i c a l of the phase lag of a non-metallic material which 

i s within i t s " e l a s t i c " range. 

I t may be int e r e s t i n g to note quantitatively the effect of 

performing an unconfined test on a specimen of a r t i c u l a r cartilage and 

holding the deformation constant. Having compressed the material i n i t i a l l y 

t o a certain a x i a l s t r a i n and hence using a force to apply t h i s s t r a i n , the 

instantaneous reaction of the cartilage i s to expand l a t e r a l l y . The f l u i d 

i n the mesh of f i b r e s i s then under pressure, and over a time seeps out 

to the atmosphere, and as t h i s happens the force exerted by the cartilage 

decreases as would be expected. Because of the loss of f l u i d the diameter 

of the specimen, which i n i t i a l l y had increased, returns slowly t o i t s 

i n i t i a l diameter. Eventually, the f l u i d pressures and f l u i d force are 

zero and the s l i g h t load exerted by the cartilage i s that required to 

compress the s o l i d matrix to the predetermined s t r a i n . Thus the in s t a n t ­

aneous r a d i a l s t r a i n has disappeared due to the volume change of f l u i d flow 

out, and the specimen has finished almost as i f i t were i n a confined t e s t . 
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5.6 Results from Axial and Radial flow simultaneously 

I n r e f e r r i n g to real j o i n t s , t h i s combination i s probably the 

most r e a l i s t i c , i n the sense that, although the displacement may be 

predominantly unia x i a l , flow w i l l s t i l l take place i n a l l directions, 

the d i s t r i b u t i o n depending on f l u i d pressures i n the l u b r i c a t i n g f i l m . 

Unfortunately, t h i s i s also the most d i f f i c u l t to compute, not 

from the sense of the method of computation, which i s the same as i n a 

one-dirnensional axial flow case, but because so many more nodal points 

have to be used when i t e r a t i o n i s taking place, and the computing time 

i s therefore much longer. 

However, some results have been computed, and these results are 

shown i n non-dimensional form i n Figures 56 and 57- Figure 56 shows that 

a v a r i a t i o n i n ^ ^ j ^ * " ) only makes a s l i g h t difference to the deformations, 

even on the scale of a variation of two orders of magnitude. Figure 57 

therefore can be seen that i t i s the magnitude of t h i s factor which governs 

the a x i a l deformation rate. Comparing Figure 57 with Figure 34 shows the 

deformations are greater than with a x i a l flow only. Although across a 

layer the f l u i d pressures are almost constant, except very near the 

boundary where they decrease to zero, these pressures are correspondingly 

lower than i n the a x i a l flow case, creating larger strains and larger 

deformations i n the cartilage. 

f f e c t of v a r i a t i o n i n shows t h on the deformation, and i t 
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5.7 Discussion 

To sum up, the experimental results seem to show that, both i n 

confined and unconfined cases, the response to an o s c i l l a t i n g and constant 

load together can be represented by the addition of a response due to the 

constant load and a response due to the o s c i l l a t i n g load. The constant 

load response i s due, i n the confined case, almost solely to f l u i d flow 

out of the cartilage, and the o s c i l l a t i n g response to an e l a s t i c d i s t o r t i o n 

of the cartilage as a whole, the displacements being smaller i n the 

confined case than i n the unconfined case as would be expected for any 

material. 

The modelling of a r t i c u l a r cartilage as a deformable porous 

material, the matrix of which has a reversible, recoverable but non-linear, 

stress-strain characteristic, has shown that an approach of t h i s kind w i l l 

produce constant load deformations to a f a i r degree of accuracy at normal 

physiological loads, although because there i s thought to be very l i t t l e 

f l u i d flow due to a sinusoidal force alone, under an o s c i l l a t i n g load an 

el a s t i c modulus has to be added to account for the elastic deformations 

which take place. I t i s thought, however, that the vari a t i o n of 

permeability with s t r a i n f o r cartilage, especially at strains nearing the 

i n i t i a l porosity, i s s l i g h t l y more severe than the one used and t h i s would 

give more accurate predictions of deformation with time at high loads. 

I n the actual working of an a r t i c u l a t i n g j o i n t , i t would seem very 

r a r e l y that a r t i c u l a r cartilage undergoes deformation due only to constant 

loads f o r any length of time (perhaps sentries on duty, or spectators i n 

a crowd) and even then there i s probably a constant s h i f t i n g of muscles 

creating varying loads i n the j o i n t . I n any modelling of an actual j o i n t 

undergoing normal motion, i t would therefore appear that deformations of 

the cartilage layers w i l l probably be elastic ones due to the varying 
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pressures during a walking cycle but the thickness of the layers w i l l be 

changing due to the f l u i d flow out under the average load throughout the 

cycle. 

However, i n making observations of t h i s sort, one must not lose 

sight of the object of t h i s investigation. The aim has been to produce 

a model of a r t i c u l a r cartilage which w i l l predict the characteristics shown 

i n a laboratory r i g . Only when t h i s has been done can the model be used 

wit h some confidence i n the real s i t u a t i o n of an a r t i c u l a t i n g j o i n t where 

the behaviour w i l l be governed by the conditions existing i n the j o i n t . 

These conditions w i l l involve the fact that the pressures are exerted 

on the cartilage by a f l u i d instead of a s o l i d , and thus pressures on the 

cartilage may vary with, for instance, distance from the centre of the 

j o i n t , which may affect the deformation. 
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6. Summary and Conclusions 

With the eventual aim of looking at the special case of 

a r t i c u l a r cartilage, t h i s thesis has reported work performed on 

porous materials, and, because a r t i c u l a r cartilage appears so dependent 

on i t s i n t e r s t i t i a l f l u i d for some of i t s mechanical properties, the 

main area of interest has been i n the flow of f l u i d s through porous 

materials• 

The law governing the flow due to f l u i d pressure, Darcy's law, 

was investigated and a l i t e r a t u r e review revealed that the l i m i t of i t s 

v a l i d i t y was thought to range from Reynolds' numbers of 0.1 up to 75> and 

an experimental investigation showed that i n the case of 1 mm glass beads, 

the l i m i t was of the order of 1. I t was also shown that Darcy* s law 

could be used i n predicting the flowrates to some degree of accuracy 

when flow was taking place a x i a l l y and r a d i a l l y simultaneously i n a 

cylinder. 

The variation of permeability with s t r a i n was investigated i n 

directions p a r a l l e l and perpendicular to the direction of applied s t r a i n 

i n a porous polymeric material. I t was found that variations were more 

pronounced i n the perpendicular directions, as perhaps would be thought, 

although both permeabilities became zero only when the applied s t r a i n was 

approximately equal to the i n i t i a l porosity and thus a l l the pores were 

closed. 

The main conclusions from the work probably come from the section 

applying the work i n other sections to the special case of a r t i c u l a r 

c a r t i l a g e . I t appears that modelling a r t i c u l a r cartilage as a deformable 

porous material whose matrix has a reversible, recoverable, but non-linear 

stress-strain characteristic, and assuming a simple v a r i a t i o n i n 
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permeability w i t h s t r a i n predicts the time-dependent deformations to a 

good degree of accuracy, agreement being excellent at normal physiological 

loads. The experimental work, which w i l l be reported i n more depth l a t e r , 

has shown that under sinusoidal loads the o s c i l l a t i n g deformations can be 

regarded as almost e l a s t i c , both i n confined and unconfined cases, the 

modulus of which probably varies with position on the surface of the 

a r t i c u l a t i n g j o i n t . 
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