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Abstract

An investigation is made into the flow of fluids through
deformable porous materials with the aim of an application to articular
cartilage, which depends on interstitial flu;d for some of its mechanical
properties,

The law governing flows due to fluid pressure is shown to be valid
in a cylinder of material with the same permeability in all directions, both
with axial flow only and with axial and radial flow combined, up to Reynolds
numbers of about 1. A literature survey shows that there is a large range
of values of Reynolds numbers proposed as the limit of the validity of this
law, indicating that there is no universal “critical" Reynolds number in
flow through porous media.

The variation of permeability with strain is measured, both in
directions parallel and perpendicular to the direction of applied strain, in
a porous polymeric material.

A model of articular cartilage is proposed which consists of a
porous solid matrix, which has a reversible non-lineer load/displacement
characteristic, with liguid~filled pores. Assuming a simple variation of
permeability with strain predicts time-dependent deformations to a good
degree of accuracy, agreement being excellent at normal physiological
loads. Under oscillating loads, deformations are much larger than those
predicted by the model, and it is thought that tiis is due to the effect of
the bulk modulus of the cartilage, which becomes dominant in short term

responses.
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cross-sectional area of sample

area of pores
area of (pores + solid)

cross-sectional area of capillary tube
constents of force-deflection characteristic

ratio of mean free path and reciprocal of mean
pressure

constant (= (r+ %)89 Sv)

constant of integration
OlT

constant (= >

coefficient of consolidation

length which characterises size scale of porous
media (e.g. grain diameter)

distance separating two solid surfaces
void ratio

initial void ratio

Young's modulus of elastic material
porosity of model

function of strain

force to be carried

applied force

force carried by solid

force carried by fluid

sinusoidal force

acceleration dus to gravity

function of time only

head, height of fluid above surface of material
difference in head

thickness of' material

pressure gradient
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permeability

s0il mechanics permeability
radial permeabilify

axial permeability
permeebility in x, y directions
bulk modulus

characteristic length

length of a conductor

length of a conductor at strain
length of material

coefficient of volume compressibility
porosity

number of tubes

dimensionless constant ('shape factor')
load carried by soil

load carried by pore water
total load carried

fluid preésure

pressure difference

fluid potential (= P (aa"')
mean pressure

atmospheric pressure

applied pressure

flowrate

total flowrate

flowrate at mean pressure
external radius

capillary radius

Reynolds' number

distance from axis of symmetry
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m §>a jyﬂ gyn on

incremental distance in radial direction
size of element in radial direction
radius of cylinder

time

increment of time

original thickness of material

excess pore pressure

radial flowrate per unit ares

flowrate per unit area in x-direction
initial porosity

total volume

flowrate/unit area

flowratq/unit area in y-direction

axial flowrate per unit area

mass of fully swollen specimen

dry mass of specimen

mass of specimen at any given time
elastic modulus

distance along axis of symmetry

size of element in axial direction
originael thickness of cartilage
thickness at equilibrium after application of load
initial value of §a

congtant indices

deformation from original thickness
"instantaneous" response on compression
"instantaneous" response after release of load
creep deflection

strain (= S/E,)

strains in v, 0,2 adirections
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strain rate in & -direction
angle of element

potential gradient

density of fluid

total settlement

settlement experienced by thin layer
stresses in r, @, 2 directions
total applied stress

increment of stress

effective stress

dynamic viscosity of fluid
Poisson's ratio

kinematic viscosity of fluid

frequency of oscillation
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1. Introduction

The aim of this research project was to show how the mechanical
properties of porous materials are related to their porous nature. This
project arose because of the interest shown at the moment in the function-
ing of human joints. Attached to the end of each bone in a joint is a
thin layer of a substance called articular cartilage which is both porous
and deformable, and is crucial to the normal functioning of synovial
Jjoints since its presence enables the transmission of high loads whilst
maintaining contact stresses at an acceptably low level, and also enables
movement with very little frictional resistance.

Amongst engineers it is the lubrication mechanism which has
received a lot of attention, and there have been two basic lubrication
mechanisms postulated in human joints. It is postulated, in the so-called
theory of “weeping" lubrication(1) that when the cartilage is put under
load, fluid sseeps out of it and replenishes the lubricating fluid film.
"Boosted" lubrication has been proposed in two forms, the first(z) is based
on the fact that large molecules in the fluid are too large to pass through
the pores of the cartilage, so that filtration through the cartilage will
cause an increase in viscosity as the concentration increases. The second

(3)

form argues that, since the permeability (which can be thought of as
conductivity to fluid flow) is so low in cartilage, almost all the flow
ig in the film and the large molecules may have some attraction to the
surface of the cartilage, thus being prevented from flowing away from the
centre of the film.

It appears, however, that, from a theoretical study of the squeeze-

(1)(5)

film situation the permeability of cartilage is too low to play much

part in the lubrication except perhaps at thin films when boundary lubrication

regimes will be dominant, either in the "filtration" mechanism or in the
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"weeping" mechanism. The main role of permeability in the mechanism

of joint lubrication would therefore appear to be in affecting the
mechanical stiffness of the cartilage layer. It would appear that no
other material is quite so dependent on its porous nature as cartilage for
its stiffness, this being due to its low permeability combined with a
relatively low elastic modulus when compared with materials (such as rock)
with an equally low permeability.

This thesis therefore describes the work performed on other
porous materials in formulating a simple mechanical model of articular
cartilage which predicts its response to various forms of loading.

Chapter 2 is concerned with the law which governs the transport of
fluid through a porous material under fluid pressure, known as Darcy's
law. Much work has been done on porous materials in this respect in
connection with both soil and rock mechanics and a vast literature has
been built up about the validity of Darcy's law.

Chapter 3 looks at the permeability-strain relationship in porous
materials when large strains are imposed. For most practical purposes in
porous materials the permegbility is assumed constant, but bearing in mind
that articular cartilage can be subjected to compressive strains of 0.5,
this relationship has to be taken into account.

Having established this relationship, the theory for deformable
porous materials is then formulated in Chapter 4. The solutions to some
special cases are presented, and the numerical work (including computer
programs) which is needed to solve some of the other special cases is
described.s A mention is also made in this Chapter of the theoretical
approach made by engineers to the special case of soil mechanics.

Chapter 5 applieg this theory to the special case of articular

cartilage, making due reservations where necessary. The solutions are



compared to the experimental results already published and to some which
have been produced in this Laboratory.
Chapter 6 presents some conclusions from the work described in

the thesis.



2. Flow through Undeformed Porous Solids

2.1 Literature Review

The history of the study of the flow of fluids in porous media
dates back to 1856, when Henri Darcy, a hydraulic engineer based in Paris,
was engaged to enlarge and modernise the waterworks of the town of Dijon
in the South of France. He wrote about these experiences in a book,(s)
which describes in detail how he went about the task. It appears that
during his time in Dijon he was called upon to design a filter bed of
sand, and, finding there was no literature or design rules about such things,
he set out to perform some experimen£s-

He built an apparatus consisting of a vertical iron pipe flanged at
both ends, and fitted a grillwork inside the pipe which supported approx-
imately 1 metre of sand. Water could be admitted into the apparatus by means
of a pipe tapped into the vertical cylinder and could be discharged by a
tap near the bottom. The flowrate could be controlled by means of valves
at the inlet and exit from the c¢ylinder. Mercury manometers were tapped
into the open chambers above and below the column of sand, and these were
used for measuring the inlet and outlet pressures. He tested four different
types of sand, and was able to conclude that

q = -kl (24141)
where % is the total flowrate
T is the pressure gradient
k5 is a constant, to be known as the permeability of the sand.
Written another wey, Darcy's law can be expressed as
q = - “ni‘ (2.1.2)
where 5&} is the pregsure gradient in the x-direction, or, generalizing

(7))

the formula to any direction (see, for instance Scheidegger



q = ~kigrad p- r3) (2.1.3)
where 5 is the gravity vector (of magnitude a and direction downward)

and (a is the density of the fluid.

The present-day expression of Darcy's law is

= - Ke
V- Tﬁ\i (2.1.4)

where¥ is the flowrate per unit area of the porous material (filter
velocity)
and""is the viscosity of the fluid.
Carrying out a dimensional analysis of this formula, we find that
k= Nd* (241.5)
whereN is a dimensionless constant ('shape factor')
dis a length which characterizes the size scale of the pore
structure, e.g. mean grain diameter.

For many years this formula was thought to be an empirical one, but
several attempts have been made to verify it from first principles.
Hubbert(a) has put forward a derivation of it starting from the Navier-
Stokes equations, but his relating of microscopic and macroscopic quantities
appear rather tenuous and seems to rely on arguments which have not been
proved themselves. Both Whitakerg9) from the momentum equations, and
Poreh and Elatas10) from the Navier-Stokes equations, showed that Darcy's
law could be derived by neglecting inertial forces and provided that the
correct averaging processes are introduced. Thus, it seems that because
relationships between microscopic and macroscopic quantities are involved,
a recourse to statistics is required, in order to prove Darcy's law
totally (Collins,(11) Scheidegger(12)).

However,despite the absence of totally reassuring theoretical
analysis, investigators have extended the results of a steady, one-

dimensional, incompressible flow experiment to include transient, multi-




dimensional, compressible flow in anisotropic, compressible and elastic

(13} (14)(15) (12)

porous media, and it seems to be acknowledged that Darcy's
law plays the same role in the theory of the conduction of fluids through
porous solids as Ohm's law in the conduction of electricity, or Fourier's
law in the conduction of energy by heat.

Darcy's law, as discussed above, appears to give an adequate des-
cription of flow through porous media under a wide variety of conditions,
However, as in any branch of engineering, it must be expected that there
are limitations. Hudson and RobertsE16) and Leva and cOdworkers,(17)
have reviewed many experiments which Qemonstrate that Darcy's law is valid
only in a certain "seepage" velocity domain outside which more general flow
equations must be used to describe the flow correctly.

In order to characterise this seepage velocity domain, it is

customary to introduce a Reynolds number as follows:

Vd
Re = ‘EZi_ (2.1.6)

where, in addition to the symbols already defined, d is a microscopic
diameter associated with the porous medium ("pore diameter"). The occurrence
of the quantity d in the definition of the Reynolds number immediately
poses certain problems, in as much ag it cannot be properly defined, but
it is frequently taken as the grain diameter, as this gives the order of
magnitude of the pore size. HNevertheless, many investigations have been :.
attempted to establish a "eritical" Reynolds number above which Darcy's law
would no longer be valid, As in straight pipe flow, the contention was that
there exists a universal critical Reynolds number above which the flow in
the pores would become "turbulent". In these investigations, a great
discrepancy regarding the universal critical Reynolds number became evident,
(18) (19)

the values ranging from 0.1 to 75, although in the latter case the

Reynolds number was based on an interstitial velocity (velocity through



the pores), and converting this to a filter velocity gives a critical
Reynolds number of approximately 30. Nevertheless, the great uncertainty
in these numbers seems to indicate that Reynolds' numbers being equal does
not assure similarity of the flow in two different porous media.

It has generally been contended that the breakdown of Darcy's law
is due to the onset of turbulence in the pores as this is known to occur
in pipes. Mowever, it is well-known that turbulence in pipes occurs et a
Reynolds number of approximately 2000. In porous media, a breakdown of
Darcy's law occurs at much lower Reynolds numbers (even if the latter is
calculated with the interstitial velocity, rather than the filter velocity)
which indicates that an entirely different cause of non-linearity is
effective. The cause of non-linearity is that the inertial forces in the
fluid become significant with respect to the viscous forces. In view of
the Reynolds numbers being so small, it is inconceivable that true
turbulence (statistical velocity fluctuations) plays any role at all,
However, inertial effects will also become manifest in curved channels in
laminar flow and therefore it hes been concluded by Scheidegger(12) that
the breakdown of Darcy's law is caused by the non-linearity in the flow
equations describing laminar flow in curved channels.

The net result of these experiments is that above a "certain" value
for the seepage velocity, Darcy's law is no longer valid and a universal
characterisation of this value has not been achieved owing to the different
structures in various porous media.

The high velocity flow phenomena occurring in porous media have been
put into mathematical terms in several ways. Without attempting to under-
stand the physics of the effect, various workers have simply tried to fit
curves or equations to the experimental data so as to obtain a correlation

(12)

between pressure drop and flow velocity. Scheidegger has made a thorough

review of all the modifications made to Darcy's law for these high velocities.




(20)

McKinley, Jahns, Harris and Greenkorn have shown that Darcy's
law can be adapted for flow of a non-Newtonian fluid by introducing a
factor involving the square root of the permeability divided by the porosity.
It appears that the coefficient of permeability k_ is not constant
for the flow of liquids and gases through the same porous media. Fancher,

(24)

Lewis and Barnes and others have observed that air permeabilities are
higher than liquid permeabilities in the same porous medium as calculated
from Darcy's law. As far as a characterisation of the point where Darcy's
law becomes no longer valid for gas flow is concerned, the facts can be
summarised by stating that Darcy's law breaks down if the pore diameters be-
come comparable with, or less than, the molecular mean free paths of the

(22)

flowing gas. Ohle, quoting Klinkenberg,(zj) stated that the equation

which applies for flow of a gas through a porous medium is

k= Qmil | 4C
L3 A (f.—l’;) f‘mQG (201 07)

where fﬂn is mean pressure
(f'"r") is the pressure difference over length L

Q,. is volume flux at the mean pressure

C is ratio between the mean free path and the reciprocal
of the mean pressure

"\ is viscosity of the gas at the mean pressure

125 is an average capillary radius

It can be seen from the literature on the subject that Darcy's law
is widely held to be accurate for most purposes in describing the flow

through porous media, but doubts are still held about its theoretical basis.




2,2 Darcy's law in axial and radial flow

As has been stated in 2.1, Darcy's law is widely held to be
valid for most purposes describing flow through porous media, but doubts
still exist, and so it was thought prudent, in view of the fact that the
aim was to use Darcy's law to describe flow both axially and radially, to

investigate Darcy's law experimentally both in axial and radial flow.



2.2.1 Definition of Problem

In order to verify Darcy's law in two dimensions, the aim was to
allow flow both axially and radially in a porous material, measure the
flowrates and compare them with flowrates obtained theoretically assuming
Darcy's law to be valid.

It was necessary to assume Darcy's law to be valid in one dimension
in order to obtain a coefficient of permeability (by the very definition
of Darcy's law), which could be used in the computation, and so it was felt
that an investigation into the range of validity of Darcy's law in one
dimension shouid also be made,

The general scheme of the problem, showing boundary conditions,

]
is shown in Figure 1.

..10_




2.2.2 Theory

This theory applies for three-dimensional flow of an incompressible
fluid in an incompressible porous medium.

If we consider an undeformed porous material with axial symmetry,
i-e- a/ae =0

and examine the flowrates per unit area in an
element (see Figure 2)

If w is the radial flowrate per unit area

W is the axial flowrate per unit area

Continuity gives

Flowrate in

WwW.r.56.82 + wivs 3_:_') Seé&r

= Flowrate out

(ue %-‘:-Sv)(-n- 87)39813 +(w+%‘-:-SIXT* %)89-51
o Ou § (r+8v)80 8z 4 2 S2(v+ &")8987 +udr§esz =0
dr oz x

dulv§viosa + (5, 5.8 So*S_E(Sv)‘Se] uSr§oSz=0©
s;[rs f082 4+ (S )Sexr.]-o- )z‘ z L +

L
neglecting terms in (SY‘ s and dividing through by ~+&r S0 8= gives

2u, B, u

+ — =0
or oz g

(2.2.4)
r P

is the potential, which is defined as
? = ? + (;3 H
where F is the pressure in the fluid

and H isa height above an arbitrary datum level, then Darcy's law,

accounting for effects of gravity, can be written as

ke P
W= e (2.2.2)
Ka P
W == i‘ 3 (2.2.3)
where k'r' k;_

are coefficients of permeability in the v -

and
& — directions respectively.




Substituting (2.2.2) and (2.2.3) into (2.2.1) gives

2
Lﬁ-y--'. .a_.P.', _k_; a_f; = O
It T |\, ) 2 (2.2.4)
which is a form of Laplace's equation in cylindrical co-ordinates.

Bquation (2.2.4) is the governing equation for the potentials in

the fluid throughout the porous material, providing the material is

undeformed.

- 42 -



2.2.3 Numerical Analysis

The finite difference technique was used to obtain the solution

to equation (2.244) with the given boundary conditions.

Using Noblagzz*) the expressions involved are, in finite difference
form,
1%—P] = [P]f-|‘i - [P] a2
v 75 20~

] -l Pl

31 vz (Av)" (2.2.5)
iaz? = [P] -1 Z[f']v'z'f [Plv"’|

A 3
dz e (A=)

the nodal points being in the order as shown below,

{P]nl,i'ﬂ [P] Yo ot [P]r- L2l
[P:L-.l Flr.» [r] v, 2
[p]". e [p]' s i?]v-n,'e--

These formulae were substituted into equation (2,2.4) and an
expression for [P]r a Was obtained for all parts of the fluid.
?

The boundary conditions used were: -

2=0 P= r“ffl‘.’d O ST € Y
Yoy, ?=far..’{'3"‘ L>z>o0
z2=4 P"’Pdk*(’ﬂ" OsSrsv,

where PG'N\ is atmospheric pressure
P‘(rlid is applied pressure
{ is length of porous material,

_13_



although the last condition was modified slightly because it was found
that the fluid did not reach all parts of the porous material, and formed
its own boundary, a free surface, inside the solid itself. This boundary
was therefore, as will be shown later, found by trial and error.

A relaxation process was used to converge the ( v, 2 ) mesh of
potentials, so that all potentials in the grid eventually conformed to the
governing equation, and the applied boundary conditions. From these

potentials, the flowrates per unit area could be calculated directly from

@, -5

Darcy's laws~

Y=VYe ‘W Y=Y¥g
The evaluation of g—P at the boundary is, however, rather more
v
trouble than the calculation of the potentials. It is well known that

» numerical differentiation is notoriously unreliable (see Noble(zl'*)) and

any calculation of

[P},Mi = [Plra,-or,t
Avr
) . oP - Av
will only give an estimate of |=5— at Y= Ya- . To evaluate
or 2

2P

—] » therefore, a polynomial was fitted to the six wvalues of
v J e Yo
potential nearest the boundary in the horizontal plane, and this polynomial
was then differentiated "by hand" and the value Y s Y, substituted
into the subsequent polynomial, thus:-

Fitted polynomial is
] b 3 2
P=Ar +Br +Cr+Dr 4 EvaF

where A,B,C,D,E and T are constants,

[%ﬁ] = 5Av +4Bv.+3v(+2Dv+ E
L4

| f‘
This expression proved to give a much better estimate than any finite

difference expression, although the calculated values of [_P] helped in

-1)_’_—




the respect that they were always smoothly decreasing as the value of the
radius increased.

P

Once reliable figures had been obtained for [—- s

af Y=Ya
the flowrates were evaluated by integrating the flowrates per unit area
over the areas considered using the trapezoidal rule.

Several problems were encountered in the computing, especially in
specifying the boundary conditions.

As can be seen from the boundary conditions, for an infinitely small
step length, the potentials at the inlet corner are P, . and Papplad
separated by the infinitely small step length, thus causing an infinite
flowrate. Because the nodal points used in calculating a potential are
horizontal and vertical, as oppogsed to the diagonal method, the value
of the potential at the corner is never, in fact, used for the calculation
of the potentials. As the mesh size was decreased, the flowrates at the
corner became larger and larger and, in the limit, would have become infinite,
so it was felt that the solution of the potentials and flowarates was
complete (i.e. no more nodal increases needed) when the flowrates had con-
verged in the rest of the mesh, and the flowrates per unit area at ( Ya,© )
were extrapolated from the values of the other flowrates by means of curve
fitting. This was a problem both in the axial inlet and radial outlet
regions, but it was found that by using this method the values of the flow-
rate per unit area at ( va,0 ) in both directions were within 3%,

Another problem arose in the velue of [P] at v=0 .
Substitution of ¥ =0 into equation (2.2.4) gives a value to *; %":
of infinity. The values at these points were therefore found by assuming

the pressure distribution at the centre of the cylinder to be parabolic

about vy=0 i

P\* = L+ MVL



P
Symmetry is preserved by the fact that [%;:l is zero at the centre

of the cylinder,

reane = L+ M (ZAV)‘-
Preay = L ¥ M (A")‘
Thus ? ~ - L = 4Pr-: or Pr-ur
rzo 3

giving a value of the potential at the centre of the cylinder.

The last problem concerned the position of the free surface at the
top of the cylinder, as has already been mentioned. Initially, the
boundary was teken as being at the top of the cylinder, but negative output
flowrates there showed this to be an unresl situation. The solution lay in
the consideration of the equipotentials and streamlines (see Streeter(25))
of the flow in the porous materiale The position of a free surface was
assumed, and the potential mesh was then iterated to convergence. Lines
joining points of the same potential (equipotentials) were drawn, and if

these equipotentials cut the free surface orthogonally, ther the free

surface that had been assumed was taken as the boundary inside the material.

_16_



2.2.4 Fxperimental Work

For a diagram of the apparatus used in this experimental work,
see Figure 3,

In order to verify Darcy's law axially and radially, it was
necessary to investizate the law in one dimension and then use the coefficient
of permeability obtained from this experiment to calculate from the computer
program the theoretical flowrates ¥m both axially and radially. Therefore
it can be seen that a material was needed which was isotropic in all three
dimensions.

Because of this last requirement, it was decided to construct a
material from small beads of uniform size. In order to ensure that they
were almost undeformable and unlikely to be corroded by a tluid such as oil
or water, it was decided to obtain beads made from glass. The beads
obtained from manufacturers were claimed to be spherical and by systematic
sieving had diameters which were within the range of 0,89 to 1.0 mm,

The beads were contained in a cylindrical gauze cage (600 micron
mesh size) of dimensions 100 mm diameter by 130 mm length. In order to
obtain as close a packing as possible the beads were vibrated using a rod
connected to an oscillator. When the cylinder was completely full of close~
packed beads, a gauze lid was fixed to the cylinder so that the "solid" could

not be deformed in any way.

2e 2.10-01 A.Xial flow Onéz

Aroung this gauze cage was fixed a perspex cylinder of dimensions
150 mm diameter by 250 mm length which had trays at 10 mm intervals leading
out of the side of the gauze. The inlet to the cage was at the bottom and
the only outlet at the top. For one-dimensional flow, pipes were fixed in
each tragy to allow the connection of stand pipes to measure pressure at any

level in the porous material. Thus, with this arrangement, flow from the
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inlet through the solid to the outlet would be one-dimensional.

To enable to range of Reynolds numbers to be studied, distilled
water, two tyves of mineral oil (HVI 55 and HVI 4160s), and air were used
as percolating fluids.

The liquids were pumped through the apparatus by either a screw-
thread action pump (for low flowrates) or a helical gear pump (for higher
flowrates), connected to a variable speed gearbox. For the flow of liquids,
potential (head) differences were read from identical glass standpipes of
5 mm inside diameter, which was thought large enough to make any surface
tension effects negligible. Three standpipes were used to give two readings
of head difference for each value of flowrate. Readings were taken by
starting with a slow motor speed giving a low applied pressure and waiting
for conditions to stabilize, steady conditions being shown both by constant
head differences in the standpipes and flowrates being constant. Flowrates
were measured by collecting the outflow during a measured time and weighing
the contents. 4n increase in pressure was obtained by increasing the speed
of the motor, conditions were again allowed to stabilize and readings taken.
Temperatures of the liquids were read after exit from the apparatus in order
to obtain the viscosities of the percolating fluids. Densities of the
liquids at this temperature were also evaluated by weighing in a relative
density bottle,

For gas flow, two of the pressure tappings were connected to a
water manometer, Outlet from the apparatus was connected to a "Rotameter"
which measured gas flowrate on the principle of valancing the weight of
an aluminium float inside a tapered tube against the drag exerted by the
gas on the float. These are not very accurate devices and in order to

obtain a reasonably accurate range for the air flowrate, two Rotameters were
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used, one for low flowrates and one for higher ones. The air to the inlet
was taken through a valve from a compressed air supply, changes in pressure

being made by opening of the valve.

2¢2.442 Axial and Radial Flow

Once the tests had been concluded satisfactorily in the one-
dimensional case, the apparatus was sltered to make it amenable to axial and
radial flow simulteneously. This involved the cutting out of g 60° piece
from the perspex cylinder in the top four trays. This was so that flow
could pass out of the sides of the cylinder at each of the four heights,
and then be collected and weighed., It was thought at the time that these
outlets were sufficiently large not to hamper the flow coming out of' the
gauze cylinder and cause a resistance to flow. Any larger cuts might well
have endangered the stability of the perspex cylinder.

The tests were then performed by pumping de=-aired distilled water
into the cylinder and allowing it to flow out radially from the cylinder
of beads into the top four trays. Measurements of pressure were taken by
means of the standpipes fixed to the tappings lower down the cylinder, so
that the inlet pressures to the "radial flow" part of the fluid could be
evaluated. Again the pressures were controlled by means of a variable
speed gearbox connected to a helical pump. Flowrates were again measured

by means of weighing the outflow during a given time interval.
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2+2.5 IBxperimental Errors

In all experiments on porous materials involving liguids, the one
practical hazard which occurs is that of air coming out of solution, The
liguid is often passing through very small and tortuous channels and
cavitation effects are easily obtained. The eir then stays trapped in the
pores thus causing a smaller area through which the flow can pass. Hence,
for a constant pressure, smaller flowrates are observed as time passes,
This problem was overcome by de-airing the liquids beforehand and measuring
the flowrate to see that it was not decreasing with time for a constant
applied pressure. This was not as much a problem as feared because pore
sizes ranged from gbout 0.1 to 0.5 mm , which for a porous material is
fairly large.

Flowrates were measured for liquids by weighing the outflow over a

given time and the errors in these were as follows:-

HVI 160s
Veight 500 X 4 gm error ¥ 0,24
Time 100 } 1/'5$ec. error T 0.2%
error in flowrate = ¥ 0.4%
HVI 55
Weight 500 % 1 gm error ¥ 0,2%
Time 50 t 1/’E’sec. error % 04455
error in flowrate = ¥ 0,6%
Water
Weight 600 T 4 gm error ¥ 0,2%
Time 20 % 1/'Ssec. error ¥ 44

error in flowrate = 1.2%
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Fowrate for air was measured by means of Rotameters. The
manufacturers state that the error of an instrument o this sort is of the
order of 5% at full scale displacement of the float and thus errors are
greater for smaller displacements. 3i/ith the flowrates used, the maximum
error was never less than ¥ I,

Temperatures were measured to 0.2°C, and therefore errors in
viscosities calibrated from these temperatures would be of the order of 1%.
With the same figure for errors in density measurement, total errors for
Reynolds numbers were as follows:-

HVI 160s ¥ 2,45

HVI 55 Y o.6%
Water t3.2%
Air t 3i—e 5%

Differences in head were read from identical glass standpipes, and
it was thought that as differences were being measured, any errors due to
the apparatus, such as surface tension effects, would be cancelled out, and
the only errors which are not negligible are those associated with reading

the heights.

HVI 160s

Ah 10— 30 £ 0.1 em error ¥ 1% —= % 0.37
HVI 55

Ah 3—> 30 20,4 cn  error * 3 — % 0,37
Viater

Ah 15—=>5* 0,4 cm error ¥ 6,50 —= 2%
Air

Ah 14—»20 £ 0.1 cm  error I 7 —o 0.5%



file:///7ater

2.2.6 Bxperimental Regults

2.2.641 Axial flow

Graphs are plotted as a non-dimensional filtration velocity
(Reynolds number) versus difference in head per unit length.

Figures 4, 5, 6 and 7 show the variation of Reynolds number with
differences in head for various ranges of Reynolds numbers.

Figure 4 is for mineral oil HVI 460s giving Reynolds numbers of
the order of 0,002,

Figure 5 is for mineral'oiJTHVI 55 giving Reynolds numbers of the
order of 0.02. ’

Figure 6 is for distilled water giving Reyvnolds numbers of the
order of 5.

Figure 7 is for air giving Reynolds numbers of the order of 20.
Discussion
Figure 4

Low Reynolds numbers are obtained by using an oil whose density
(882 Kg/mj) is of the order of that of water, but which has e dynamic
viscosity of 230 c¢P. Darcy's law is shown to be valid by the linear

proportionality of Reynolds number to head difference,

TN

Figure b

Slightly larger Reynolds numbers are encountered by using an oil
of density 816 Kg/.m5 and a dynamic viscosity of 36 ¢P. Darcy's law is again
shown to be valid.
Figure 6

Using water (density 1000 Kg/m, dynamic viscosity 1 cP), the
gradual dominance of inertial forces is shown by the gradual tailing off

of the graph, so that eventually an increase in applied pressure will give

no increase in flowrate. From the graph it is very difficult to evaluate
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at which point the line starts to deviate from linearity, but perhaps the
graph is best left to show the increasing dominance of inertial effects
as the applied pressure is increased.
Figure
High flowrates are obtained using air (density 1.23 Kg/m3, dynamic
viscosity 0,01 cP), the readings from the two Rotameters agreeing fairly
well, Again the increase in inertial dominance is shown.
From these graphs we can examine the value of the coefficient of
permeability f'or the material independent of the fluid passing through it.
Irom equation (3 1—1+) k.. dp ﬁ‘_‘t d_P
"l dn " dx
but :‘l;.? = (‘a%
where g—: is the d:»_fferer\ce 1n head per unit length.
.V == "ica
o R = -g”[f’] [3d][Nd]dk
where [P,;‘] represents the flvld properties
and [Nd‘] is the permeability of the material.

Now Q‘/‘”‘ is the slope of the graph in each case

[Nd‘] = Ste %%][U‘]

where ”k is kinematic viscosity ( = n/{a )e

As stated before, the slopes of Graphs 6 and 7 are rather hard

to ascertain, but the largest one apparent in each case has been taken.

v o, Slope [Na*] .
HVI 160s 261 %1070 0,285 x 107> 1.98 x 1077
HVI 55 M3 x 1078 9.85 x 1073 1.97 x 1072
Water 1.0 x 1078 14440 1443 x 1077
Air 6.46 x 1078 0.041 1e7% x 1072
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As can be seen, the values of the coefficient of permeability are
all of the same magnitude and for values of small Reynolds numbers where
slopes can be evaluated easily, the values for the two types of mineral
0il are equal within experimental error.

For water and air, as has been stated, the slopes are extremely
difficult to evaluate and it i. quite possible that the figures for the
slopes of the linear parts of the graphs may be higher than those quoted.

The value of 1.98 x 10-9 m? was used in the theoretical analysis
as the coefficient of permeability of the material, and proved reasonably

satisfactory.

2.2.6.,2 Experimental Results for axial and radial flow

Figures 8 and 9 show the comparison of theory and experiment for
three-dimensional flow of water. The three lines and points in Figure 8
refer to the flow in each layer, layer 1 being the lowest layer and lgyer 3
the highest, whereas Figure 9 shows the comparison of theory and experiment
for the total flow involved.

Discussion

Tor the individual layers, agreement is poor for increasing
applied pressures and this could be put down to one of two things.

Inertial effects may be becoming increasingly significant, and although
this would account for flow in Layer 4 diverging away from the theoretical
line, it would not account for observed flowrates in Lgyer 2 being greater
than theoretical values. The other reason might have been that the perspex
spout used for catching the flow was causing a resistance to the flow and
consequently fluid inside the material was pushed up into the next layer.
This would account for observed flovrates in this layer being greater than

theoretically calculated.
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Tigure 9 lends a great deal of support to the latter conclusion
inasmuch that there is fairly good agreement between total and observed
flowrates and theoretically calculated ones at both low and high values of
inlet pressure. Therefore using Figure 9, it is clear that it is quite
valid to use Darcy's law to evaluate flowrates in axial and radial flow

simultaneously.
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2,3 Conclusions on validity of Darcy's law

A litergture survey and a series of experiments have shown
Darcy's law to be valid in one-dimensional flow for low values of
Reynolds number, ranging from zero to approximately unity and can be
used with safety between these limits,

It has also been shown that Darcy's law can be used with some

confidence to predict the flowrates in three-dimensional flow.
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3. Variation of Permeability due to Deformation of Solid

When large strains are involved in the compression of a porous
material, the constant of proportionality from Darcy's law, the
permeability, can no longer be regarded as constant with variation in strain,
although it is constant for a constant strein provided the range of
Reynolds Numbers is within the limits mentioned in Chapter 2.

A study, both of the literature and by experiment, with a
theoretical consideration, has therefore been made of the variation of

permeability with strain,
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3«1 Definitions
Throughout this work the following definitions have been used:

€ = strain = change in length from original length
original length

where compression is positive

. volume of pores
porosity =

volume of pores + solid

n

_ Yolume of pores
volume of solid

e void ratio

u

Now consider a cube of side a,
let v = initial porosity
3
Volume of solids = o ("")

If we compress the cube to a height H (with no lateral expansion)

Then € = (‘—:'E)

o

and, assuming all deformation is due to the closure of the pores, then

2
new vokume: = a H

o H - a.s(l-‘ v)

and volume of pores

3
= a (v—- e)
Porosity n = v-€
G-e
and Void Ratio = (v-€

Q-v,
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3.2  Review

3¢2.1 Theoretical Work

The most widely used expression for estimating the coefficient of

permeability from measured parameters is that derived by Kozeny(zs) and

later modified to add a further element of generality by Fair and Hatch.(27)

It is not possible to derive a relationship between permeability
and porosity on very general grounds, and one must be satisfied with
discussing particular idealized models of a conducting body. Most models
of this type are based on the flow of fluids in cylindrical tubes or
between parallel plane surfaces.

If $ ig the volume of fluid flowing per second through a tube
of radius ¥ along which is imposed a potential gradient, aﬂui ¢ » then
Poiseuille's equation gives

i
9 4%2—3‘“‘"

or the corresponding equation for flow per unit width of a plane slit

between solid surfaces which are separated by a distance D is

With a concentration of lhk tubes per unit area of total cross=-section of
the body, the total flowrate .
T
Q = w g = - 2T gud ¢
t gqb
Because, for this model the porosity f is equal to the area of conducting
>
channel per unit area of cross=-section, i.e. 1\;“=F the above
equation may be rearranged and written:
2
(Q = - Cﬁifl; rad
" J #
and comparison with Darcy's law (equation (2.1+4.)) for one-dimensional

flow gives

ku = -CLgf—:- (3.2.1)
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Let it now be supposed that, with either of the above models
conducting fluids in the direction of a principal axis, one adds an extra
set of plane slits, each with its plane perpendicular to the direction of
the potential gradient. Each of these slits will lie in an equipotential
surface and there will therefore be no tendency for them to facilitate
the movement of fluid, except that insofar as, at junctions between
intersecting slits, that slit which is the efflective conducting element
will have a locally increased width and will therefore make a slightly
enhanced contribution to the permeability. On the whole, however, that part
of’ the porosity which is contributed by the equipotential slits is
ineffective and may, for the purpose of assessing permeability, be regarded
as dead space. In any static measurement of total porosity, however, this
dead space is indistinguishable from the effectively conducting channels,
and the permeability will only be proportional to the total porosity if,
fortuitously, the dead space increases in the same proportion as the
effective space.

It is possible to give Equation (3.2.1) a tar more general appear-
ance and thereby to hide the fact that it is, by its derivation, applicable
only to the capillary tube mod:l, by writ%rg

=) )
and assigning the symbol AS to the specifiic surface area developed by the

oconductor, namely the total surface area of the solid part divided by the

volume of that solid part,

As =

N AN~y

)

K, =(§%\(t;“%ﬂl] (3.2.2)

which is known as Kozeny's equation.

and
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It is mainly used in evaluating the permeability of powders and
when used for a geometry for which it was not derived, the constant 2 is
usually replaced by an empirically determined "pore shape factor" which is

commonly in the range from 2 to 2.5.

5 02+ 2 B erimental Work
There appears to be a fair amount of literature comparing
permeability and porosity, especially in the fields of soil mechanics and

(28)

powder metallurgy (see, for instance, Mitchell, Hooper and Campanella,

(29)).

or Grootenhuis and Leadbeater But all this work seems to be applied
to the permeability and porosity of' different materials or powders with
varying porosities. No work appears to have been performed on the same
material as it is being compressed, which is what is required here.

Morgan(jo)

states that for the same material there is an approximately
lineer relationship between log (permeability) and log (porosity)
which means
k < (w)°
with p constant.
This would seem reasonable in the sense that zero permeability would result

(31)

from gero porosity, but the factor ,3 is not defined, Taylor states
that for fine-grained soil the relationship between void ratio and log
(permeability) is a linear one, but this only covers a small range in void
ratio.

These relationships all tend to bear out Fraser's statement:(jz)
"No correlation can safely be made between two samples on the basis of their

porosity, unless it is certain that all their physical properties are

identical."
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However, it would seem more reasonable to expect some sort
of correlation of permeability and strain from a material which is being
compressed and therefore does not diffeer in physical content, only in

pore shape and size.
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3.3 Experimental Work Performed

From the literature survey, it appeared that no experimental work
had been performed of the type that was required, i.e. the measurement of
the change of coefficient of permeability in the axial and radial directions
as a porous material was compressed, and that no theoretical model could be
produced which would simulate these characteristics. Therefore an experiment
was designed to measure these coefficients as an increasing applied
compressive strain was applied to the material.

A diagram explaining the orientation of axial and radial directions

with respect to the direction of the applied strain is shown in Figure 10,

3e3.1 Material

The requirements for the material to be used in the experiments

were

(1) to be reasonably thick so that large strains could be measured
accurately with dial gauges

(i1) to have as low an elastic modulus as possible so that the force

needed to compress a large area of the material to an appreciable
strain would be within the range of a testing machine in the
laboratory

(iii) +to have as large a permeability as possible so that measurement
of flowrate would be less susceptible to error

(iv) to have as large a porosity as possible, so that large strains
could be accoumplished before total closure of the pores

(v) to be "solid", in that strains would be transmitted equally
through the material and not just, as in a sponge, near the
parts of the material where the load was being applied

(vi) that the cut edges of the material could be capable of being

sealed, so that no fluid would pass through.




To fulfil requirement (ii), it was obvious that sintered metal
was not the answer, and that a plastic of some sort would be needed.
Requirement (i) was also a problem insofar as most sintered plastic is
made in thin sheets (of the order of 1 to 5 mm thickness) because it is
mainly used as a man-made substitute for leather in the shoe industry.
The information also was that any attempt to manufacture the material in
the laboratory to any reasonable thickness and area would probably result
in a very uneven permeability and porosity from layer to lgyer and complete
closure of the pores on one side of the material. Eventually, two filter
tiles were obtained from Schumacher Filters Ltd. These tiles were of
thickness approximately 20 mm and 1 m x 1 m areas Their quoted porosities
were L4O-45 per cent. One was a type intended for use in pneumatic
fluidisation and pneumatic conveyance of powders and granular products,
and the other a filter element for liquids and gases. Manufacturer's
literature quoted the elements as being made from a polyolefine base and
totally resistant to absorbing moisture. The material also had the
advantage of appearing to be made from sintered fibres, which as shall be

seen later, resembles articular cartilage in that respect.

3e342 Measurement of Initial Permeability

In order to have some data on the coefficient of permeability for
the filter tiles, some experiments were initially performed on the
undeformed material.

The method of measuring permeebility was the method of falling
heads A diagram of the apparatus is shown in Figure 11. A cylindrical plug
of the material of 10 mm diameter was wrapped with tape to stop flow out
of the sides, and fitted into the bottom of a copper tube., In order to
evaluate the head in the tube, a glass tube was fitted into the side of

the apparatus, so that the level in the copper tube could be measured.
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Water was allowed to fall through the material under gravity and
readings of head and time were taken. Difficulty was found in air coming
out of solution when ﬁassing through the small pores (of the order of 50/L
diameter). The air was found to collect on the face of the material,
giving a smaller area for the water to flow through. This gave the effect
of decreasing the flowrate and could be seen clearly from a subsequent
devigtion in the linearity of the graph plotted from the results. These
problems seemed to disappear when de-aired water was used.

The method of a falling head is probably the most accurate for
measuring the coefficient of permeability insofar as neither pressures nor
flowrates are measured directly and the consequent errors in their measure-
ment are absent. Providing the heights read are accurate and the cross-
sectional areas of the tubes (and the specimen) are known, then very little
accuracy should be lost in measurement,

The coefficient of permeability was evaluated by using the theory
shown belows -

Referring to Figure 11,

Darcy's law states that, for the x=-direction

DRNLS

as for Equation (2e144)

and in this case

dp _ pah
- ot

where h is the head of fluid above the sample

and T is the thickness of the sample

and Ve = (Axay) db

A dr
where € is time

’\ is cross-sectional area of copper tube

a is cross-sectional area of glass tube

4
dh - - kapgh
Brad & -~ 4
. = -%kpghA bt ¢
"‘°3¢k 'VVT(A-&G;) ¥ (3:301)
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where € 1is a constant.

Thus a graph of |n v will be linear with
a slope of [ _‘Er%::a)]

Both axial and radial. permeabilities of the tile were measured
in this way, and in the former case proved perfectly adequate. However,
radial plugs involved passing water through surfaces which had been cut
by hand, and in many cases the measured permeability was substantially
lower than in the normal case. It was discovered by investigation under
a microscope that, in the course of the cutting, the heat generated had
welded most of the materiel together, and almost sealed up the faces, and
in cutting much more gently and slowly and using cooling water, the results
were much more satisfactory.

It was found that the material was not homogeneous on the scale
that was measured, but over large areas these differences were found to
average out to an overall permeability.

Typical graphs of head and time are shown in Figures 42 and 13 for
the axial and radial directions respectively. IFigures 14 and 15 show the
variation of ‘°3=k and £t , and the linearity from which the
permeability can be calculated.

Slope of Graph = 1.35 x 1079 sec™

Slope of Graph = 1.12 x 1073 sec™1

in the axial case T = 20 mm
in the radial case T = 26 mm

Axial permeability = 0.275 x 10711 m?
Radial permeability = 0.295 x 10~11 n?

These values were typical of permeability in the unstrained material.
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3e3¢3 Measurement of Initial Porosity

Heasurement of porosity was obtained by initially weighing a
cube of known volume of the porous material and then placing it under water
and under vacuum until it was thought that all the air had been extracted
from the material. The cube was then taken from the water, any surface
water wiped away, and the whole specimen weighed again. This process was
repeated twice more to ensure that the specimen was full of water, and all
air had been extracted.

It was found that because of the fineness of the pores, once water
had entered the centre of the specimen, it stayed there until eveporation
occurred, and so it was thought that errors caused by the draining of part
of the interstitial water were minimal,

This method ensured that only the effective porosity (i.ee pores
interconnected with each other and finally to the boundaries) was
measured. The other method of measuring porosity is by compressing the
material until all pores are closed, and this therefore measures total
porosity (effective and ineffective pores).

The porosity was calculated from the results below:-

Volume of material = 31.2 x 10'6 ¥o.3 x 10'6 n

1+

Mass of material dry = 17.45 x 1072 £ 0.05 x 10~ kg

1+

Mass of material + water = 29,90 x 10-3 0.0 x 10"3 kg

Mass of water 1245 x 1073 * 0.1 x 1073 kg

Temperature = 20°C
Volume of water = 12,45 x 0.998 x 10°% o’

= 1243 x 1076 o

Volume of voids _ 12,43
Total Volume 3.2

Porosity = = 0.40 T 0,01
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3e3e4 Apparatus

A diagram of the overall apparatus for measuring permeability with
variation in applied strain is shown in Figure 16.

The purpose of the experiment was to pass water under a constant,
measured head through the porous plastic material and collect the outflow,
whilst a compressive strain was applied to the material, For the
construction of the porous specimens see below. The apparatus basically
congisted of a reservoir on either side of the porous material through
which water passed under gravity. Next to the specimen was placed a steel
plate with 256 5mm diameter holes bored through it into a reservoir. Led
out of the reservoir were two copper pipes connected at a T=junction to
either another reservoir at the inlet or atmosphere at the outlet side.

A constant head at the inlet was maintained by a simple overflow device.
Compression was effected by loading the apparatus in a HOCKN Denison
testing machine.,

Porous Specimens

Diggrams of the porous specimens are shown in Figures 17(a)
and 17(b).
Axial Permeability

A 150 mn x 150 mm square of porous plastic was cut and placed
between two 6 mm plates of Porosint brongze filter (Grade A of the same
size. The whole of the outside edge of this "sandwich" was then coated with
araldite in order to prevent leagkage around the sides. The bronze discs
hhad a much larger permeability than the plastic, so that no constriction
of flow was produced, and achieved a two-fold purpose., They provided a firm
base for the porous plastic to be strained equally across the area, and not
just where the steel plates were solid, and the discs also served to diffuse
the flow before it reached the plastic, so that flow took place over the

whole area, and not just in the places where the flow passed through the
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steel plate. In both these objectives the bronze discs seemed to prove
highly successful. Gaskets could not be used for sealing, because of their
finite deformation and the problems of its measurement in relation to the
subsequent measurement of deformation of the plastic, so the bronze discs
were pushed up againgt the steel plates and then plasticene was used to
seal the boundary.
Radial Permeability

Two 30 mm x 150 mm plates were cut from the bronze discs, and these
were glued to two 120 mm x 150 mm x 6 mm brass plates. These were then
placed as shown in Figure 17(b), and the sandwich made up with araeldite as
in the axial permeability case, The only passage for the flow was then
axial at the inlet and outlet and radial flow everywhere else. In this
manner, flow never passed through any cut surfaces and the consequent

problems mentioned in Section 3.3.2 were absent.

303.5 Measurements

The measurements telken were of flowrate, deformation and load.

Flowrate, as in Section 2,2.4, was measured by means of collecting
the outflow and weighing it.

Deformation was measured by means of dial gauges fixed to the
lower, stationary part of the testing machine,

Load was measured by the testing machine. This load was measured
only so that a repeated experiment without the porous plastic would give
the deformetions of the bronze discs alone and therefore deformations of
the plastic alone could be calculated by subtraction at the same value of
load.

It was found at the start of the experiment that the air in the

plastic material tended to block some of the flow of water, similar to the
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experience noted in Section 2,2.5. However, flow was facilitated at the
start by the use of a vacuum pump connected to the outlet side of the
apparatus which drew much of thisg air out initially, and results were then
found to be steady after the removal of the pump. It was always found at
the start of an experiment that flowrates tended to increase slightly for
small increases in load, and it was thought that this initial action was
dislodging any bubbles which may have formed on the surface. De=-aired
water was again used throughout the sexperiment for the same reasons as
noted before,

Almost every range of strain was covered at least twice, this being
done by releasing the load and then allowing a certain amount of relaxation
of the strain before applying the load once more,

The experiment was repeated identically without the porous plastic
so that the permeability and deformations of the apparatus alone could be
evaluated. It was found that the bronze discs deformed elastically in the
range tested, and flowrates only changed to a very slight degree when

these digcs were deformed.

3.3.6 Computation for permeability=-strain relationships

In both the normal and tangential flow cases, there are pressure
drops due not only to the porous plastic but also due to the rest of
apparatus, this being mainly due to the bronze discs. Therefore consider-
ation has to be made of their combined effect in producing the flow,

Consider the situation for a given flowrate

P
Pa

]

The pressure drop across the porous plastic

and the pressure drop across the apparatus

u

Total Pressure drop l\r =Pt P
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r. is given by Darcy's law:=~
2. = .EE £

F; is given by a constant of proportionality

Q = CA r; where CA is a constant

ap =a[3 L]
or k, =—3“—. (3.3.2)

Axial Permeability

It can therefore be seen that the permeabilities can be easily cal-
culated from the varying flowrates and thicknesses measured for increasing
strain by using equation (343.2).

Radial Permeability

As can be seen from Figure 18(b), flow in this case was two-
dimensional, and in order to obtain the permeability for a given flowrate
and thickness, resort had to be made to numerical methods.

In order to formulate the equations governing the flow, consider

the continuity equation in Cartesian co-ordinates:-

%-ﬁ-_a_v: = O
o ag

where W, is the flowrate per unit area in the x-direction

and v, 1is the flowrate per unit area in the y-direction,

J

Substitution of Darcy's law gives Laplace's equation to two dimensions:-

ka.z& k33—1E =0

x> aat
2 1
As in Section 2.2.3, writing %%J; and jif; in finite difference
% %y

form gives an expression for the potential at a point

(% (Pewsr+ ,-.,) P,_)
R[Sl Slfed ol 5]

Iteration of this expression throughout a mesh gives the potentials and

hence the flowrates (from Darcy's 1aw) for given boundary conditions,
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In this case, referring to Figure 418(b), the boundary conditions are

3=° osxs3m- P =0
U=H 12 % € 15 cm. P =2250 n|m"

Thus for a given strain (i.e. a given thickness) a value of ka s the
axial permeability, could be read from Figure 21, and then a value of
radial permeability could be found which satisfied the given output

flowrate.

3.3.7 Results

Results of variation in flowrate for a range of thicknesses of the
porous material are shown in Figure 19 for the exial {low case and Figure 20
for the radial flow case.

Figures 21 and 22 show the consequent variation in permeability with
strain calculated from the median line drawn through the flowrate results

for exial and radial flow respectively,
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3.4 Theoretical Considerations
In order to gain some insight into the mechanism of permeability
and its conseguent variation with strain, simple consideration has been
made of a model of a porous material consisting of tubes similar to the
approach by Kozeny already mentioned,(zs) but variations in the length of
a conductor,'previousky ignored, have now been taken into account.
Poiseuille's equation for the flowrate through a cylindrical

(25)

conductor is »
% = —(QGTL'_ afa.d ¢
8y
=_W1~AE

where % is the flowrate

v 1s the radius of the conductor
AP is the pressure drop along the length of the conductor
L. is the length of the conductor

Thus, if there are N, conductors,
Q - - “,WT* &p

%"t Le
where Q 1is the total flowrate

Darcy's law is

Q=--X%2e
n |
where L is the thickness
9
wNWry L
k = Yo (3.4)

Then iLf the total volume at zero strain is Vo (solids + voids)
Volume of' voids = V., .V

where v is the porosity.

Assuming that, in compressing the material to a strain € , the volume

change is due only to the closure of the voids, the total volume will

then be

Vo (1 - €)

_L!_j -



and thus the volume of voids now is
Vov -1V - Vo (s-6)] = V,(v-¢)

Still considering the solid consisting of w_ tubes, the volume of each

tube is now V_°ﬁ'_"f.).

e
and the cross=sectional aree of each hole is
W Le

where L@_ is the length of the conductor at strein €

g '“_'t - v°(V"e)
' Ne LG

™
. L) vc("e) LN
. Ny = —::- o
referring back to the "equivalent" expression for permeability
(equation ( 3.4 )), substituting L, for L. , we obtain
= Y
k = Yo (o) L
T L.3
Ve €
- is constant with € and if T is the original thickness

of the specimen at zero strein, then L = (\-e)T

t
and k< Seloellee (3ebat)
€
where Cy is a constant (= Y'gtr
.« ¢

A graph of the form

kK o (v-e}‘(n-e) (3u4.2)

is shown in Figure 23, and compares reasonably with the experimental
results., Equation (3.4.2) conforms to the reasonable assumption that, when
the strain is equal to the initial porosity, which if it is assumed that all
volume change is due to the closure of the pores, means that, with no lateral
expansion, all the pores are then closed, the permeability has the value of

zero and no flow of the fluid will take place,
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Comparing equation (3.4.2) with (3.4e1) gives the condition that
the length of a conductor remains constant with strain, This can only
be accomplished if the flow passages are increasing in length with respect
to the overall thickness, due to the continual closing of passages, in the
same proportion to the decrease in the overall thickness.,

If we now consider flow in the radial direction, referring to

Figure 18, Darcy's law becomes
Sk Ap w
"1 |
where ™ is the thickness of the material at strain

and L is the width and breadth.

Again comparing with Poiseuille's equation gives

"
k =

v
LeH

C1E |

now from before

1\'\"' - _V. !v-e)

'he Le

P N
and Kk <Y (v-e) (3edie3)
ﬂl'v\e NlLes

if T is again the original thickness

H/T < (~¢)

A curve of the form

)

(-¢) (3elials)
is shown in Figure 24, and again conforms to the condition that the
permeability becomes zerc when the strain is equel to the initial porosity.
Comparing equation (3el4e4) with (3.4.3) gives the variation of the length

of a conductor,
-1
Le < (v-€)

which satisfies the condition that as € —» Vv then Le—-b co ,
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It would seem reasonable in the radial flow case to expect the path length
to increase with strain, as the overall horizontal distance over which the
fluid has to travel remains constant.

The considerations are only meant to give an idea of how permeability
might vary with strain, and the assumptions deduced regarding the "length
of a conductor" can only be examined from a quantitative viewpoint.

In the case of axial flow, the actual thickness is decreasing, but
although the flow is predominantly uniaxial, on a microscopic level some
flow must take place radially and consequently an axial compression will
cause the area of' the holes for radial flow to decrease perhaps to zero,
which will, in turn, cause the flow path to change and consequently increase,
We can perhaps say that the "length of a conductor" may stay reasonably
constant,

However, in the radial flow case, the macroscopic length over which
the fluid has to flow remains constant with variation in strain, and because
of the diminighing area of flow causing increasing path length, as has
already been mentioned the "length of a conductor" must increase with
increasing strain,

Howiever dubious the assumptions mey appear, we can compare the
experimental results of Figures 23 and 24 with those of the fictitious
model porous material by adjusting the constant of proportionality so that
the permsability at zero strain is equal to the initial permeability. It
can be seen in both cases that the variation of the experimental permeability
can be reasonably represented by relationships of the form equations (3.4.2)
and (3.4.4), when large variations in strain are encountered. Probably
a better fit for small strains, however, to the axial flow results is by

the expression

(34445)



which differs slightly from equation (3ele2) throughout the whole range
and whose variation is shown by Figure 25.

Finally, if one thinks qualitativel& about the variation of
permeability with strain, it would appear that axial permeability would
always be less affected than radial permeability, because, in the latter
case, macroscopic flow is perpendicular to the direction of applied strain,

and flow channels are likely to be more affected in the plane of flow.
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3.5 Conclusions
From the experiments it has been shown that the variation of
permeability with strain can be represented to a fair degree of accuracy
for the porous plastic material tested by simple relationships of the
following forms:
In the axial flow case,
k oc (v-6€)

and in the radial flow case,
S

kK oG gv-_e)
(1-¢€)

Although the comments that there can be no definitive statement
about the varietion of permeability and porosity have been noted, this will
be true for permeabilities of different materials, For any material whose
porosity is being altered by an applied strain, especiaily one which has the
same basic form as that used in the experiments (i.e. sintered fibres), it
would seem reasonable to assume that the relationships above can be used to

a fair degree of accuracy.
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L« Theoretical and Numerical Analysis of the Load/Deformetion/Time

Characteristic of a Porous Solid

The theory will now be put forward for evaluation of the
deformation-time characteristics at certain loads, and, with the aim of
applying this theory to articular cartilage, certain restrictions have been
made, the main one of which is that deformation is uniaxial and that there
is no lateral strain. This restriction will be justified later in the
case of articular cartilage, but with this restriction and the other
assunptions noted, this theory can be applied to the case of any deformable

porous material.
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l+1 Theory
Assume initially therefore that the deformation is uniaxial
that the fluid is incompressible
that the solid is incompressible.
These assumptions mean that all volume change is effected by fluid
transfer in and out.
Now consider an element of a porous material which has axial symmetry,
and which contains a fluid (Figure 2).
The element has dimensions (in cylindrical co-ordinates) of S'\-, Y » 81
a&s shown.
U is the flowrate/unit area in the radial direction
W ia the f'lowra.te/unit area in the axial direction.
Because axial symmetry is considered, §o remains constant and
because only uniaxial deformation is considered, §v also remsins constant.
Thus &2 is varying, let the initial value of Sz  be Sz, .
Consider the continuity equation:-

Flow In = Flow Out + rate of volume increase.

urdofz + w (‘Hr s{) 04y = (u+ g—‘-:xf)(-r+s-r) §682 ;(w + %-: Si)(rq %’)SOSY ¥ VQ_
(4et141)

where Ve_ is the volume of the element.

Now V, = (r+ %’\SOS»-S.!
=C,q .82
where  Cqle(re+ S{)sesr] is congtant
Ve = Cm%_(sa)
Se = Sz, (-€z)

where e: is defined as "engineering strain" and the convention taken



such that compression is positive.
. ez = _(&"‘SE,)
3z, c
d =8 Ep v 32 .6y
E(Si) b (A

; €
Vp = - (re& )895.-8&('_ *a) (4e1.2)

3
Cancelling equal terms and neglecting terms of the order %3 Sripda,

equation (4e1.1) gives the continuity condition:-

__ - el =0
o %z (- el)

If Darcy's law is now used

(4e1.3)

Ww ==

we v

wWw = -

.3].';’ Slr

where k'r, kg are radial and axial permeabilities respectively,

and '\»" is the dynamic viscosity of the fluid.

2o ke Ip _ L2k 3p
o ™ x> M dr or

aw_ _ kg P _ L=
and de '7:31 'Tlaiaﬁ

and substituting these expressions into equation (4.1.3) gives

kri.r 3k".?+kf§?+kz—ﬂ+_!34’ +L

3r o # %2k (-¢) (ot ods)

which is the equation governing the fluid pressures in axi-symmetric
porous materials.

The other equations which are needed to solve for the pressures are:-

v = §i (€e) (ka1.5)
and kz = f (€:) (Le146)
where & and -f; indicate functions of €, , but assume both

permeabilities remain constant with variations in hydrostatic pressure and

time.,

-51 -



The next step in the formulation of the problem is to assume that,
at any time, the load applied will be carried by the force in the solid
mesh of fibres and the force generated by the hydrostatic pressure in the
fluid inside the pores.

ies F =FR+F; (heta7)
where F is the force to be carried

F. is the force carried by the solid
and F" is the force due to the hydrostatic pressure in the fluid,
and this statement is taken to be true at all times at every layer in the
porous material.

Now k = ';';(ez) (4e1.8)
and the function %s can be calculated from the variation of F  with
€z when F =0 . This latter condition is satisfied when the fluid
pressure throughout the porous material is equal to the external fluid
pressure (zero gauge pressure) which means that there are no pressure
gradients throughout the fluid, which in turn means that no flow is taking
place, which, from the initial assumptions, means that no deformation of the
material is teking place with increase in time., Thus a variation of FS
with €5 oan be obtained by applying a constant load Fs and allowing the
deformation to become constant, at which point the strain éai can be
calculated.

F} can be calculated by a summation of the fluid pressures in a
layer, each pressure being multiplied by its respective area. In a form-
ulation of this sort, the pores must be assumed to be randomly distributed
throughout the porous material, and therefore the area of the pores in
each lgyer can be calculated, and considering this area to be distributed
equally throughout the lgyer. Taking the assumption that the deformation

is uniaxial, which means that the total area of the porous material




(pores and solid) remains constant, the volume of the pores can be

measured by considering the porosity at a strain €z (see Section 3.1)

volume of pores
volume of (pores + solid)

porosity, n =

Now consider the ratio,

A = area of pores _
N 7 area of (pores + solid)

in one particular layer this will, in some way, be related to the porosity

(i.e. volume instead of area)

ol
A"\ =N (401.9)
where o is a constant
Now volume of solid = (1 - n)

volume of (pores + solid)

and therefore,

area of solid = (1 - n)“
area of (pores + solid)

but, by definition, aree of solid = (1 -4
area of (pores + solid)
(3
(1-4) = (1-n)
A, + (1 -4, = 1
« LS
n +(1-n) =1 (4e1.10)

to which the only solution for all n is ) = 1, and thus the ratios
A, and n are directly proportional.

From Section 3.1, the porosity at a strain €g is given by

(v- €5)
(- €z)

and thus the ratio of the areas of a layer at strain €5 will vary by

the same relationship. Thus with a constant cross-sectional area being
implicit in a uniaxial deformation, the area over which the fluid pressures

act can be calculated from a knowledge of the cross-sectional area, the
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original porosity, and the strain in the increment at that particular

time,
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Le2 Special Cases
Having formulated the general equations and assumptions, it now
remains to produce solutions to some of the special cases which can occur

in testing the properties of a porous material.

4e2.1 Radial Flow Only

The case of radial flow alone means that flow cannot take place in
the axial direction, the load being applied through flat impermeable plates.
The effect of gravity on the flow is ignored.

m«.ox__&mf

Referring to Figure 26(a), ehanges—of permeability and pressure

in the 2 -direction are zero ( 952 =0 ), and K, is a function of

time only, not of radius or of height.

Thus, equation (4.1.4) reduces to

a‘ kv 9 él
kv‘;—vz’-"‘-—sf"'(‘-Lea).go
_3— =z - £ ele
or = (v a'r) (.;énji', (ke201)

€2 and €, are independent of ¥ , so integration gives

2 €x v
v 3 =‘<%‘:TZ,‘§ + G(Y)

where G(t') is a function of time only, and using the boundary condition

at ¥v=0, .0 because of symmetry,

or
Qe = o

and R __-M€ r
or (.‘.ei)kr 2
P = -!_L.l-—v.‘::-y Q)
where H(b) is also & f".mcis,io%l)gf ?:ime only,
at r= R » P sQ- a
Ht) = m_ei
4kv("é2)
=M€ R
P 4k, (1- €2) (4e2.2)

where Q is the radius of the cylinder.

|
3
\
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To calculate the total fluid force, assume a random porosity (wm) and
integrate over an incremental area <ZWMwv8r
R A | S
- v dr
E = J M Gi (R 'V')
| S 4k, (1- €p)

2 i
- qnfak
9k7 (“ég) (14-- 2-3)

The porosity can be expressed as
n = M-€s)
(l— eg)

and making the assumption that k, varies with €z in the same way as

the porous plastic material of Section 3.3.6,

5
kr"ﬁ’.(L-_ei‘

(he204)
v (1- &)
substituting into (4e2.3)
. 5
= MR €V
= “+
f 8k, (1- €g)(v-€e)
substituting into (4e1.7) gives the total force applied
F =F + TR"é vs
S T k(- €e)v-€q) (4e2.5)
for a constant applied force F, and a Hookean solid (—%\_g ‘léi)
T
this becomes 4 5
R v
F —TWR Y€, = v
8k, (1- €a)(v-€e)
the solution to which is TR YE2
S o) \-
¢ Yo [“‘ae ""—-‘v")" |03¢( = eia/ )
gk, (me-R) L T )T ~ P, L

(v- ety )’
1)

iRl %Q.,)%.‘e; v
e Emelemr )
R (=t
(ke2.6)

which conforms to the boundary condition €gz=© when t=o0 ,

and k,is initial permeability.
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However, when strains approaching the initial porosity of the
material are imposed, most porous materials, at equilibrium, exhibit grossly
non~linear force-strain characteristics, and tend towards an asymptote when
the strain is equal to the initial porosity, beyond which all pores are
closed, énd any load applied is then compressing the solid material only.

It appears that a good approximation in most instances to these force-strain

characteristics is of the form

Fs = a €y
-A- | = be! (ll-02o7)

where & and b are constants, and this characteristic is assumed to
be totally reversible.

If this is substituted into (4.2.5)

F - &5&39 "'f“e é,_
® 7 (-bep) QK (1-ep)v-€a) (4.2.8)

the solution to which is

e A 'ﬁ‘(_“)

8k, (x-R) [(- 1)) TeNi=-Fq

18-l - 1)

0- b) _0=bRY L
—((v ¥-)  (v-S)-Ab-€a) v

(L:T.-% .,.bF_A) y-€2) “'s}](u.z 9)

2
where X = bFa-bTTRa , and the initial condition is él,_=o , when t=0 ,

If the load is taken off, equation (4.2.8) becomes

_a&mR* | MTR*éav
(-beg) K, (-€a)v-a) (4.2.10)

the solutlon to which is
€ - s:, v [ 3367 ““F;:) 7"(;-5%)'5(" )
e
"%(2‘1 g @—e.\)

-2(% ‘H)(@-ez\ Qf-é 3 }

(4e2.11)
the initial condition being that €=€, when €=0 .
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The addition of an oscillatory force E,Sh wt  to the constant
applied force Fa causes equation (4e1.7) to be modified to
Fo+ FSu wt = F5 o F‘, (42.12)
assuming that any deformations are slow and inertia forces can be
neglected. This causes all subsequent equations involving strain and time
to be non-linear, separation of the variable is therefore not possible,
and resort has to be made to numerical methods for the solution.

Le2.2 Axial Flow only

Because flow cannot take place radially, the effect is an axial
one alone and the problem becomes one-dimensional,
Referring to Figure 26(b), variations of pressure and permeability
in the radial direction are zero,
i.e, a/a,r =0
and the equation (4e1.4) reduces to
ki%tf,_-n-a_kz-gf-i- €a =0 .
2° 9z Iz (-€p) (4e2.13)
Again,the assumption is made that the axial permeability varies
in the manner shown by the porous plastic in Section 3.3.6,
3
k, = k.,ﬁv-‘-:)
v3 (he2.18)
The solutions to the equations have to be obtained by numerical methods
(described later), and the assumption of how the total force is carried
(equation (4.1.7)), and the force-strain relationship (equation (4.2.7))

are again utilized.
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he2+s3 Axial and Radial Flow Tozether

If compression between flat plates is assumed (Figure 26(c)), then
every element in a horigzontal layer would be expected to experience the

same strain at the same time, and this means that the radial permeability

along a layer is constant.

v
and equation (4e1.4) reduces to

k 2P E::QE kadp +-é!! 2p ZLEE_ =
i d ;I" * v v * az‘ ag oz (l—éz) (#.2-15)

which again must be solved numerically with equations (4e1.7) (he2.7)

(4.2.4) and (Le2.1L4).
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4.3 Soil Mechanics Approach

At this juncture it may be interesting to note the approach and

assumptions made by engineers in evaluating the consolidation of soil

(33)).

(see for instance
Consider the configuration for axial flow only of Figure 26(b).
Defining P., as the total load carried

Ps as the load carried by the soil

P.. as the load carried by the pore water

5

[ ]
then the effective stress o = ‘A

and the excess pore pressure wp = P"'/A
. ! r
the total applied stress o = & +w = 74 (4e341)
where A 1is the cross-sectional area of the cylinder.

The boundary conditions are as follows:-

A
in loading, E=0 , 0'=0, up=0o = 7

A

t=t o= O"=(0'—

) wp) o increasing with time

O>upr>o W, decreasing with time
t= o' =wos P'/A

and the total settlement of the piston is (31.

Pr ! J =
unloading, =0 ’ o = /ﬂ ) u‘,'a -, & =(¢+u')_ o
) o decreasing with time

—F"/A < up(:-a') < 0 , wpincreasing with time
o

Referring to Figure 27(a), consider a suitably thin horizontal
layer of the soil specimen and investigate its condition at some instant

during the consolidation process. Assume that the process is entirely
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one-dimensional (with no lateral va.riations) 30 that the velooity and
pressure of the pore water are only functions of the depth & measured
vertically downwards from the surface of the specimen, and of the time c.
Imagine that two small probes are inserted so that the pore-pressures of the
top and bottom surfaces of the layer are known. The sign convention requires
that the artificial velocity Va is taken as positive downwards in the
direction of % ; also a positive increment of excess head 8w is shown
which will cause an upward velocity, i.e. negative Vo .

The loading increment & (‘-‘- $o) applied to the specimen is such
that the initial aend final equilibrium states are Eo and E, , shown
in Figure 27(b). At the present time €  after the start of the consolid-
ation process, the state of the thin lgyer will be represented by some
point T between E, and E, ., The conventional assumption introduced
by Terzaghi in his classic theory of primary consolidation is that T
always lies on a straight line joining E, and E, . The slope of this

straight line which will change for different states ¥, , is defined as

- ﬁgl = ‘l+ €o) My (4-3-2)

where ™, is the coefficient of volume compressibility,
and € is the void ratio.

This definition allows a relation between settlement and effective
stress. Let d(a.r be the settlement experienced by the thin layer during
time 8t . The reduction in volume of the layer will be Ad(.1which can

be expressed as A Sz (— \ieeo)

éc _—_——-&' =—M'cda'

S e (4a3.3)
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Because of continuity, the reduction in volume of the thin layer must be

exactly matched by the volume of water expelled, which during time §¢ winl

be (OV& YAss St . Hence in the limit
oz
a_v“ ae = My 3_.6'
Y A - A Y (he30ls)

Since the loading increment is a fixed one of & =80 we have
Sc'+ 8u,~ T=awull 50 that

o' _ _du,
dc  dt (4e3.5)

and equation (4.3.4) can be taken a step further to give

aVa, Bu
~ . = —Ws
dz 2t (4e3.6)

Finally another relationship can be obtained between Vg and w by

employing Darcy's law,

v ke due
o= =
(g 3= (ka347)
Differentiating this with respect to 2 and combining with (4.3.6) gives
Ef &-“’z_i'a =mvf_3—“?
(g ¥ 0z ¥
usually written as
a“p- Cve &‘
ot Ig* (443.8)

Xe
where Cyc= £§™ve is the coefficient of consolidation.

Congidering the boundary conditions and configuration of

Figure 26(b), the solution can be obtained by employing Fourier analysis:-

2D —M‘Mh
w = 2 (e wr) S (T e
P e ™" (4e3.9)
and the proportion of the total settlement,
) -m o L1
T E — L (\-Gos u‘u\(t-—&;“ )

(L4e3410)
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T Cve
4 H*t
where M is the total thickness.

where M =

Biot has put forward a general theory of three~dimensional

(34)

consolidation in the subject of soil mechanics. The theory was later

(35) and viscoelasticitySBG)

(37)

extended to include the case of anisotropy
and solutions to the case of isotropy were produced. The basic
properties of the soil that were assumed in this work were:-

1. Linearity of stress=-strain relations,

2. Small strains,

3. The water contained in the pores is incompressible

4. The water flows through the skeleton according to Darcy's law.

In s0il mechanics, it is the first condition which is most suspect,
although Biot argues that Terzaghi's theory, the main parts of which are
shown in this Section, has been found quite satisfactory for the practical
requirements of engineering. In problems involving strains approaching the
porosity of the material, however, it is (1), (2) and (4), where the
constant of Darcy's law, the permeability, is changing, that cannot be
assumed, and therefore although the theory satisfies the soil conditions,

it will not satisfy the case of larger deformations of other porous materialse.
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4.4 Numerical Method

As in Section 2.2.3, a relaxation technique was used to produce
solutions to the governing equations which could not be solved analytically
for given boundary conditions.

Because in all configurations, the load was applied through flat
plates, it was assumed that the strains in the material in any horizontal
plane were equal, and thus the fluid pressures in any one layer could be
integrated to give the total fluid force in that plane.

It was found easier in the formulations to start off with fixed
points in the porous material and calculate the fluid pressures, forces and
strains at those points with respect to a fixed datum, rather than divide
each new thickness into a number of equally spaced nodes spread throughout
the material. Therefore the step length 8* was not constant either with
variations in time, or with variations in distaence from the datum at a
certain time, so the finite difference expressions used are modified forms

of" those used in Section 2,2.3:~
A
[‘a'?] = G-F, zz:‘(pzﬂ..f’:)

] -Gmactie i ]
dz Mg‘_' EI 6!;_‘ Az, re., b <

which become the same expressions as egquation (2.2.5) when adjacent step

lengths are equal.

Substitution of these formulae into the equations to be solved
(either (4+2.13) or (4.2.15)) gives an expression for Fi,r in terms of
the pressures surrounding it in a rectangular mesh. The general msthod of
solution is then to position equally spaced fixed points throughout the
column or area at time C=o , and make guegses at the strain at each of

these points for a certain increment of time E=t 4+ AE , The axial and

radial permeabilities can then be calculated and an iteration of the fluid
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pressures throughout the mesh can then taeke place, using the given
boundary conditions. These fluid pressures in any one layer can be
integrated by the trapezoidal rule and multiplied by their respective
fluid areas to give the total fluid force in that layer. The iorce in the
solid is then obtained by subtraction, and the strain thus evaluated from
the force-strain relationship. These calculated strains are then used as
the guesses and the step lengths Az ot this time can also be evaluated
from these strains. This process continues until convergence of the
calculation and guess occurs, and deformations in each layer are then
evalugted by multiplication of the average strain in the increment by the

step length, and the total deformation calculated by the addition of these.

Boundary Conditions

In the one-dimensional axial flow only case, the configuration used
was that in Figure 26(b), and one boundary condition used was that the
pressure at the surface where the load is applied is zero gauge pressure.
The other condition used was that there is no flow per unit area at the
very bottom of the material, i.e. from Darcy's law

Z=o , %g-o
This can be explained if one considers a configuration of a porous material
being simultaneously compressed by a porous piston at either end, then by
symmetry there can be no flow across the centre plane. The configuration
of Figure 26(b)is one half of this condition, and therefore there can be no
pressure gradient at the cylinder wall. The fact that there is (or can be)
a strain at the bottom of the cylinder is not inconsistent with this
condition, because on a molecular scale there will be flow out of the

next layer above this, and so in that small layer, which tends to a plane,

there will be a strain which is non-zero.
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This condition of zero pressure gradient is represented numerically,
by exactly the method used in Section 2.2.3, i.e, fitting a quadratic
function to the two nodal points next to the boundary, only with varying

step lengths: -

() = (Alj hd AE._)‘p(;) - P(‘) Ag."

P
(242,42, +Az.")

In the axial and radial flow case, the configuration was as in
Figure 27(c), and the conditions of no flow from the impermeable surface
together with the pressure being zero both at the surface where the load
is applied and at the edges of the cylinder, were
P=° for =R for all =
%‘;_so for Z2=0 for all

A block diagram of the computer program used to evaluate the

deformations from the given data is shown in Figure 28,
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5. Application to Articular Cartilage

Having formulated the theory together with some experimental
observations of deformable porous materials, it now remains to apply
this theory to the special case of articular cartilage, making suitable

reservations where necessary.
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5.1 Literature Review of Articular Cartilage

5¢1+1 Description
(38)

Despite the observation by Hunter that fibres ran from the
subchondral bone to the surface in articular cartilage, the general con-
sensus of opinion in the nineteenth century was that cartilage was a
completely homogeneous structure, and both Hassell(39) and Schéfer(ho)
based this belief on light microscopy of cartilage specimens. However,
Hultzkranz(41) deduced from pricking the surface with a blunt-ended awl
and producing splits, that the formation of these splits was due to fibre

(42)

orientation on the surface, Ramon and Cajal reported that cartilage
was a ground substance with numerous collagen fibres embedded in it, and
pointed out that collagen and ground substances have similar refractive
indices and thus could not be separated when viewed by ordinary light.
Benninghof(hj)(hh)<h5) suggested that these collagen fibres in cartilage
are made up from a three-~dimensional network of fibrils grouped together
to form thick fibres, and this seems to be the description of articular
cartilage which is generally accepted today.

Benninghof also suggested that these fibres are connected to the
underlying bone and pass radially towards the centre zone. 'When approaching
the surface of the cartilage, these fibres bend and run parallel to the
articular surface back to the bone layer. The effect was to produce a series
of arcades, and cells were observed to be located between the sides of these
arcades. Each cell wes seen to be surrounded by a layer of concentrically
disposed fibrils, which, Behininghof suggested, were arranged sc as to
support tensile forces whilst the ground substance supported the compressive

(46)

forces. MacConaill agreed with most of Benninghof's proposed structure,
but disagreed with this arrangement of arcades and suggested that the fibres

ran in oblique directions between the cartilage surface and the bone, and




proposed that this arrangement was effective in supporting the stress
distribution under physiological loading. However, Zarek and Edmards(h7)
have questioned the validity of this stress distribution, and the question
of the structure of cartilage and its relation to the stress distribution
applied appears a complex one.

Investigations into the orientation of the fibres at different
layers in the cartilage have been made by several workers (Little et alshs)
Davies et al,(AS)) but perhaps the clearest differences in the orientation
have been shown by McCall.(50) In g normal adult joint, three zones
exist: superficial, intermediate and deep. The superficial zone is the
bearing surface and is composed of parallel bundles of fibres which run in
directions parallel to the surface. Most of the cartilage thickness is
comprised of the intermediate zone which consigts of coiled S~-shape fibres
arranged in an open meshwork with large spaces in between. The deep zone
is composed of a tighter meshwork of thicker fibres arranged in a direction
perpendicular to the surface. McCall also showed thet in an osteoarthritic
specimen the zoning which predominates in the normel cartilage has been
lost and is replaced by a closely packed network of thick, coarsened fibres,

all running in a direction perpendicular to the surface.

5.1.2 Synoviel Fluid

The fluid in the cavities of freely movable joints of the body is
known as synovial fluid, which is a dialysate of blood plasma with the
addition of' & high molecular weight molecule known as hyaluronic acid.

A review erticle of its composition and properties has been written by
Davies(51) and its only property that will be mentioned here is the one
principally concerned in lubrication and deformation of articular cartilage,

the dynamic viscosity. Early investigators did not realise that the fluid
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(51)

was grossly non-Newtonian, but both King(52)and Davies have shown
that the dynamic viscosity of synoviel fluid is sharply dependent on the
shear rate., However, this viscosity characteristic is thought to be due to

the presence of the hyaluronic acid molecule in the fluid.

5¢1e3 Mechanical Properties of Cartilage

5.1.3.1 Compression

The most convenient method of studying the compressive properties
of articuler cartilage is the indentation test, because it enables tests to
be performed without removal from the bone. Barg53) Gbcke(Sh) and Hirsch(55)
performed these tests on human articular cartilage and all showed the main
features of indentation tests under constant load, namely an "instantaneous"
response followed by a time dependent one, They also exhibited incomplete
recovery after removal of the load, the so-called "imperfect" elasticity
which was investigated by Elmore et a1(56) and shown to be the effect of
performing the tests in air and thus not allowing the cartilage to take in
fluid which had been expelled during compression and consequently return to
its original shape and size. Sokoloffs57) using the same apparatus as
Elmore, produced figures of 4104 1bs/in2 for the Young's modulus of articular
cartilage, and 402 1bs/in2 and 724 lbs/in2 for the costal cartilage of
young (9-22 years) and old (42-66 years) people respectively. He also
demonstrated that there was no significant correlation between the magnitudes
of the indentations and the age of the individual concerned, and that indent-
ations varied considerably with position on the patella. The topographical
variation of the compressive properties of human articular cartilage have

(58) (59) (60)

been reported in a series of papers and the indentation-time
curves exhibit the same basic characteristics as demonstrated eerlier, i.e.

an "instantaneous" response followed by a time dependent one.
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In formulating his theory of "weeping" lubrication in human joints,
McCutchen(1) performed experiments by placing cartilage between two porous
glass sheets and squeezing them together with a series of increasing loads
1oad-deformatiop curves were plotted by allowing 30 minutes after the
application of the load to allow for wring-out and then reading the
deformation. From these experiments McCutchen obtained values for Young's
modulus of 5.8 x 106 dynes/cm2 for water-soaked cartilage and 3.2 x 106
dynes/cm2 for selt-soaked cartilage. Young's modulus for the immediate
deflection on application of the load was calculated to be 111 x 106 dynes/cmz.

Edwards(61) performed tests on c¢cylindrical pieces of cartilage from
dogs which were confined so that no movement, either of liquid or material
could teke place sideways. Graphs of thickness versus applied pressure and
liquid content versus time were plotted for a series of different loads.
Edwards also allowed the specimens to recover in normel saline and found
that the original dimensions were recovered after about 30 minutes.

(62)

Camosso and Marotti looked at the behaviour of articular cartilage
when subjected to compressive stresses. They performed compression tests on
cubes both of cartilage and bone intact and bone only and measured deflections
for different loasds. It was noted that the rate of deformation decreased
for increasing load for the cartilage and bone together whereas the
deformation rate increased for increasing load in the bone only case. The
authors, however, seemed to confuse the terms plastic and viscoelastic as
they are used in the engineering sense.

Linn and Sok‘loff(63) studied the movement and composition of the
extracellular water of cartilage. They performed tests on costal cartilage
confined only to move in the vertical direction and produced graphs similar

to those of Edwards. They also studied the amount of extra-cellular water

in costal and articular cartilage and found that about 50% by volume could
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be expressed from articular cartilage as opposed to 20% in costal cartilege
at 500 lbs/ in2. It was found that the rate at which cartilage imbibed

water was similar to the rate at which the deformation recovered although
there was an immediate linear deformation which was too large.to be accounted
for in its entirety on the basis of lateral fluid displacement from a
vertically compressed matrix, and therefore it was presumed that a rubber-
like lateral displacement of the matrix was involved,

Hayes and Mockros(sh)

studied the viscoelastic properties of human
articwlar cartilage and evaluated creep compliances for tersion and uniaxial
strain tests. In their strain experiments, cartilage was compressed between
pervious and impervious load pads and deflections noted. The results led
the authors to the conclusion that, even for load times of several minutes,
flow processes are not dominant in deforming normal cartilage. Cartilage
with an intact surface layer seemed to deform similarly with and without

a free draining boundary, whereas for degenerative tissue, deviations in

the mechanical behaviour occurred which could be attributed to fluid flow

from the matrix.

5+143+2 Tension

Experiments have also been performed to measure the tensile
properties of articular cartilage by Swanson et 31(65). Load-extension
tests were performed on specimens cut from the joints in such a way that
some were orientated with their collagen fibres in the direction of pull
and some at right angies. The results showed that the tensile strength of
the specimens tested parallel to their collagen fibre orientation was
between 100 and 200 kg/cm2 whereas the specimens tested at right angles to
their fibre orientetion had a tensile strength of 4LO to 100 kg/cmz.

Stiffness too varied according to the direction of loading from 500-1700

kg/cm (parallel to the fibres) to 200-500 kg/cem (across the fibres).
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Clearly the cartilage was stronger and stiffer when pulled in the same
direction as the fibre orientation, which would appear entirely logical
since in this case the fibres themselves were being stretched whereas in
the case on transverse loading the fibres were simply being separated from

each other,

5¢1el Permeability

Owing to difficulties in its measurement, because of the small
flowrates involved, only three investigators have reported figures for the
coefficient of permeability in cartilage. McCutchen(1) measured the
permeability by forcing fluid through a disk of cartilage under a known
pressure difference and observing the rate of rise of fluid in the upper
column, McCutchen quotes a figure of 5.8 x 10713 cm%/qyne sec as the
permeability in the normal direction. The tangential permeability was
measured indirectly by squeezing a disk of cartilage and megsuring the force
exerted by it during wring out. A mathematical analysis, assuming constant
permeability, enabled McCutchen to calculate the permeability from the rate
of deformation for a constant load. A figure flor the tangential permeebility
of 5.45 x 10_13 cm%/dyne sec. is quoted although the deformation is finite,
the permeability is reduced and the matrix carries some of the load, causing
this figure to be too small, perhaps, says lMcCutchen, by a factor of 2,
although he does not rule out isotropic permeability. It is also stated
that the normal permeability varies with depth, being greatest near the
surface., The quoted figures are 7.65 x 10_13 cmh/dyne sec, for the top

3 cmh/dyne sec. for the lower disk.

disk, and 4.3 x 10
Edwards,(61) in performing the confined tests on articular cartilege
also carried out tests of permeability on his specimens. Using a similar

apparatus to McCutchen, he obtained normal permeability coefficients of

1,09 x 10713 Om%/dyne sec. for saline and 3.3 x 10717 orl*/dyne sec. for
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Ringers solution. The pressure gradient used in both cases was 70 lbs/in2
which is important because not only does it force more fluid through but it
may compress the cartilage and make the pores smaller, thus reducing the
permeability., Edwards relates the flow out of cartilage and its subsequent
deformation to the consolidation of a soil but includes the comment that,
at equilibrium, the applied load is carried partly by elastic stresses in
the fibrous framework and partly by osmotic forces generated mainly in the
ground substance,

Maroudas also carried out permeability tests in applying an ion
exchange theory to articular cartilage. In measuring the permeability in
a similar fashion to both McCutchen and Edwards, Maroudas measured the fixed
charge density and varied the depth from which the layer of cartilage came.
As well as finding that the fixed charge density increases considerably with
the distance from the articular surface, Maroudas produced graphs of
permeability coefficient with variation in the distance from this surface.
In Maroudas' first paper on this subjects66) this variation appeared to
be an approximately linear one, decreasing from a maeximum value near the
surface,but no data was given in a region within approximately 2 x 10-2 cm
of the articular surface because of experimental difficulties involved in
dealing with slices of small cross-sectional area obtained near the surface.

(67)

However, these difficulties were overcome and a second paper showed an
unexpected decrease in the permeability in this lgyer. This was put down
to the fact that the bearing surface is made up of thickly packed smgller

fibres as has already been noted in this review,

5015 Theoretical Predictions of Mechanical Properties

Several workers have put forward predictions of how cartilage
behaves under load, but unf'ortunately most of these theories seem to have

little theoretical backing except in the method of curve-fitting.
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68)

Yannas suggested that the fluid traensfer in and out of the
cartilage accompanying deformation could be represented by a linear
relaxation process where the amount of fluid expelled depended on the time
and increment of load but was independent of the weight of fluid displaced
by any previously applied load. Thus the individual increments could be
summed to produce the total fluid expelled or imbibed at any given moment
in time, By taking the work of Edwards and using it to give the boundary
conditions, Yannas produced a theoretical curve for the uptake of fluid in
Edwards experiments and found exceptionally good correlation.

Hayes and Mockrosséh) in their investigation of the viscoelastic
properties of cartilage, applied linear viscoelastic theory to their creep
results by determining three exponential terms and four bulk compliance
coefficients for a spring and dashpot representation of a generalised
Kelfin solid to fit their experimental results for torsion and uniaexial
streain.

(69)

Fantuzzo and Graziati also presented a rheologic theory in which
a combinagtion of a spring, a dashpot, and a spring and dashpot in parallel,
were put in series and the response of an equivalent electric circuit
studied, The model was claimed to satisfactorily interpret the behaviour
of cartilage under dynamic stress? as observed experimentally, although
unfortunately the authors do not state what this behaviour is.

(58)

Kempson et al produced values for the Young's modulus of

(70)(71)

cartilage by using the equations formulated by Waters for the

indentation of thin sheets of rubber, and substituting the recorded

2
deformations after two seconds of application of the load. Hayes et al(7 )
also produced a mathematical analysis for indentation tests based on the

model of articular cartilage as being an infinite elastic layer bonded

to a rigid half space. The problem was formulated as a mixed boundary value



problem of the theory of elasticity and the solutions were suggested
as being useful in the determination of an elastic shear modulus of

intact articular cartilage.
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5.2 Reynolds Numbers of ¥Fluid Flow in Cartilage

To see whether it is valid to use Darcy's law for the flows in
articular cartilage, the Reynolds numbers can be estimated by calculating
the fluid velocities and using estimates for the pore diameter in articular
cartilage.,

Assume a diameter of a "pore" to be 60 x 10710 pn,

The maximum deformation rate seems to be of the order of 1 mm in
100 seconds, and as this is accomplished mainly by fluid flow out,

1 x 10"5 n/sec.
d
oV
n
10° x 1 x 10~ x 60 x 10
10~2

the flowrate/unit area

U

U

Reynolds number

0

60 x 10_9

It therefore appears that when flow is occurring in articular
cartilage, Darcy's law can be thought of as being entirely valid. Where
oscillating deformations take place, and deformation rates are higher than
those used above, it will be shown that very little extra flow above that

of flow due to the d.c.force is thought to be taking place.
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5.3 Some General Comments on Experimental Observations

The main experimental observations from work on the mechanical
properties of articular cartilage up to now have been:-

1. Same measurements of porosity and permeability.

2. The articular cartilage is mounted with good adhesion on a bone
backing which is very much stiffer than the layer itself,

3. The layer is capable of compressive strains in excess of LO%,
followed by complete recovery,

4. Under load, the deformation consists of an "instantaneous"
component followed by a creep component, and similarly f'or the
removal of load.

5. The response is very time~dependent.

6. The long term, i.e. equilibrium, load-displacement curve is
non=-linear but reversible,

7. Osmotic pressures of the order of one atmosphere are postulated..

In the case of an articulating joint, it would appear that the
cartilage surfaces on either bone-end are highly conforming, and therefore,
when dealing with expanses of the order of (square centimetres) and
thicknesses of the order of millimetres, it would appear that any large
strains that are imposed will be preaominantly unigxial. From this point of
view, indentation tests, although being highly valuable in looking at the
topography of the surface, and being able to be performed directly on the
femoral head, probably cause the same order of magnitude of strain in the
radial as in the axial direction.

In testing of materials, the case where no radial strain is allowed
is known as a confined test, and that where no constraint is put on the
radial strain as an unconfined test. As was noted in the assumptions for

the section on the theory of the deformation of porous materials, only axial
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deformation has been assumed in formulating the theory, and therefore in
theoretical terms only the confined test is considered, but, as will be
seen later, some experimental work has been performed on unconfined tests
and the relationship of these tests to the theoretical curves will be
commented upon. But because flow of fluid may take place in different
directions, no restriction has been placed on the flow,

It may be useful to consider the relationship between the
deformations in a confined and unconfined test for a Hookean elastic solid.

Using cylindrical co-ordinates and applying linear elastic theory, Hooke's

law gives
- [ on - ¥ove o)
€ = é-[a', - v(oe+ 0‘3\]
Ey = 'é’["'r - 9(0'9 + O‘;)]
where Gz'ér,éo are the strains in the Z vr,© directions respectively
%% ,%, 99 are the stresses in the #,6v,® directions respectively

Y is Poisson's ratio

and E is Young's modulus

For an unconfined test, Oy =Cp =©°
= T&
and ét ‘E
and for a confined test, €p = €Ep =0

20

\
€. = E {"’l V)
- 0';[!\41»)(\ Zv)l
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For a material such as rubber, W is very near to 0,5 and its resistance
to volume change is very large, so compression in a confined test will yield
very small strains compared with the results in an unconfined test.

The bulk modulus can be defined as the elastic modulus applied to
a body having uniform stress distributed over the whole of its surface, and

is related to Young's modulus by the expression

K= —

3(1-2v»)
where K is the bulk modulus.
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Liquids have no shear at rest but a bulk modulus can still be
defined for them, the bulk modulus of water being 2 x 10° N/m2.

In a confined test, assume that the solid and fluid are equally
compressed by the bulk modulus effect, the deformation due to which, as will
be shown, is very small compared to the deformation due to fluid flow in and
out. Because the articular cartilage can be thought of as composed of
70-80 per cent liquid, assume that the bulk modulus of both solid and fluid
is of the same order as that of the fluid (water) alone., Therefore under a
normal physiological stress of 1 x 106 N/hz, the strain due to the bulk
modulus effect is of the order of 10_3. Compared to total strains of 0.3
and above, this strain due to elasticity of the cartilage is negligible,
when referring to confined tests. It is thought that it is the deformation
due to the lateral expansion in an unconfined test which would account for
the instantaneous deflections noted by other workers. However, when referring
to the performance of articular cartilage under an oscillating load, it will
be seen that the strains due to the bulk modulus effect cannot be neglected
either in confined or unconfined tests.

To sum up, therefore, it is thought that, under load, the deformation
of articular cartilage does consist of an instantaneous component, followed
by a creep component, but that this instantaneous component is due to the
lateral expansion in unconfined tests, which can be neglected in confined
tests under constant load. EBxperimental evidence for this will be shown
later. The creep component, present in both types of tests, is due to fluid

flow in and out of the matrix,
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5.4 Results from Axial Flow Only

As can be seen from the literature survey, most of the experiments
performed on cartilage have been indentation tests or unconfined, and in
only two cases have results been reported from confined tests, Edwards on
articular cartilagesst) and Linn and Sokoloff on costal cartilage.(63)

In the former case, curves are presented of
1. Specimen thickness at equilibrium as a function of applied pressure,

2. percentage liquid exchange as a function of time for four differing
loads,
3. percentage liquid exchange as a function of applied pressure,
where liquid exchange is defined as !ﬁl:!!_
Ws - Wy
Ws is the fully swollen mass of the specimen,
W is the mass of the specimen at a given time,
Wp is the dry mass of the specimen.

A comparison between curves 1. and 3. show that the relationship
between the change in specimen thickness and liquid exchange is approximately
constant, showing that the deformation could be accounted for solely by
fluid flow out of the matrix. The weighing measurements were taken by
removing the cartilage from the apparatus after a certain time of loading,
and if there were any significant elastic response in loading, this would
recover immediately on removal of the load, so if the specimen thicknesses
were measured when the cartilage was out of the apparatus, all that would
be measured would be a deformation due to fluid flow out, which will be
proportional to the percentage liquid exchange. Curve 2, showed both the
variation of liquid content after application of the load, and also, after
equilibrium had been obtained, the load was released to show the swelling
curves, All results were for articular cartilage from the femoral head

of a dog, and the consolidation and swelling curves were for cartilage in
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normal saline solution at 20°C.

Edwards also gives values of permeability for the cartilage used
in the experiments using both normal saline solution and normal Ringer's
solution as the filtration liquid. The values quoted aret-

Specimen Thickness Pressure Potential K

nm 1bs/in? Gmh/dyn.s.
Normal Saline 0451 70 1.09 x ‘10-13
Normal Ringers 0.38 70 3.3 x 1013

Taking into account a viscosity of approximately 0,001 Ns/m?,
values are obtained of 1,09 x 10~12 u? ana 3.3 x 10~17 2 respectively,
the first one of which is certainly very low compared with other values of
permeability measured (see literature survey). There may be two reasons
for this, One is that the pressure potential of 70 lbs/in2 which was used
to force the fluid through the cartilage will cause a decrease in the area
of' the pores, although in a complicated way, varying through the thickness.

The other reason for the low permeability may be that the thickness
of 0,51 mm is probably not the total thickness and this thickness may have
been taken from the deeper parts of the cartilage layer where the fibres
are thicker and the permeability (as shown by Maroudas) is lower than the
averagge throughout the thickness.

Edwards does not quote an initial porosity as such, but he does

give figures from which this value can be deduced:-

1]

Tnitial dimensions of specimen = 6.6 mm diameter x 0,48 mm thick
Fully swollen mass of specimen = 16.2 mg.

Dry mass of specimen = 4.6 mg.

These figures give an initial porosity of 71%.

A computation of the experiments Edwards performed was therefore

set up to predict deformation with time under the loads that were used in
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the experiments. The curve given by Edwards of deformation versus applied
pressure at equilibrium is shown in Figure 29, A fit to this curve of the
form O = Esi which was used in the computation is also shown. The graphs
of percentage liquid exchange were converted to direct deformations, the
value of 1.09 x 10-16 m%/N gec as measured by Edwards was used for the
coefficient of permeability divided by the dynemic viscosity, and 0.71 as
the value for initial porosity. Effects on the deformations of varying
these parameters will be shown later, but the graphs for the four different
applied loads shown by Edwards, both for compression and expansion, are
shown in Figures (30) - (33).

Agreement at the two lower loads is good, but this agreement tends
to decrease as the applied load is increased. In all the graphs after the
release of load the agreement is good. Also shown on the graphs is the
difference that an assumption of constant permeability with strain would
make, and it appears that this malkes far more difference in the compression
of the cartilage than in the expansion.

Applying dimensional analysis to the system gives

() - #1G) &)

where S is the deformation
and o= the applied pressure,
For two constant applied pressures of 1,02 x 106 N/m2 and.

2.04 x 106 N/m2, Figures (24) and (35) show the variation of (sfio) with
C%{) for various values of (32/15) and Figures (36) and (37) show the
variation for various values of QI) « The variation of initial porosity
makes some difference to the response, and thig effect increases as the
strain becomes nearer to the initial porosity. To extrapolate this to the
situation of the initial porosity equalling the final strain means that,

as soon as the load is applied, the pores at the surface are closed up and
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no fluid flow through the surface can then take place.

However it is the coefficient of permeability which governs to
a large extent the deformation-time characteristic as would be expected,
and there is an inverse linear relationship between the time to reach a
certain strain and (kg%:_ for a given constant load.

At high loads the solution is more prone to instability, because
small changes in the fluid pressures will be accompanied by large changes
in strain, and the process does not converge when high fluid pressures cause
low strains which cause low fluid pressures., This instability does not
occur at the lower loads.

It is thought that from these curves it is reasonable to state that
it is probably not the initial values of the permeability or porosity which
cause the discrepancy at high loads. Because the agreement is so good at
the lower loads, it is thought that this descrepancy may lie in the
variation of permeability with strain when strains nearing the initial
porosity are encountered. This variation is not so important after release
of the load, when the difference between the curves assuming variable and
constant permeability is very slight, and therefore the predictions after
release of load aré very near the experimental results., It appears that
the variation of permeability with strain is approximately correct at low
straing, but is more severe than the one postulated at high strains.
However the simple relationship used gives good results for normal
physiological walking stresses(73) of 150-300 1bs/in® ( 1 - 2 x 106 I m2).

The way the deformation is avcoumplisiied with time is shown by the
way the strain varies with the depth from the surface as the time is
increased. Figure 38 shows this variation under a constant pressure of
1,02 x 106 N/mz. Because one of the boundary conditions is that the fluid
pressure at the surface is zero, all the loading at the surface must be

taken by the solid, so immediately upon application of the load the strain
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at the surface has the value of the final strain, and everywhere else the
strain is zero. As time increases, the strains in the lower layers are
gradually increased as fluid seeps out of them. Eventually, at an infinite
time in theory, the whole material is at the same strain, the final strain,
and no more deformation will then take place., The vertical lines on the
graph show the'positions of various points in the solid with respect to the
surface as the whole surface deforms with time., Figure 39 shows the
magnitude of the fluid pressures throughout this deformation, the pressures
bearing most of the load at the start of the deformation except at the
surface where the gauge pressure must be zero, and decrease as the strain
in the material and time increases.

Figure 40 shows the position after the constant stress of
1.02 x 106 N/m2 has been removed. Immediately after release of the load
the strain at the surface returns to zero, and the other layers then
gradually imbibe fluid and return to the original dimensions, when the
strain throughout éhe cartilage is zero. Figure 41 shows the magnitudes
of the fluid pressures in this situation. It should be noted here that
during the re-establishment of the original dimensions after the releaese of
load, the fluid pressures predicted by the theory are negative. In practice,
a fluid under tension mgy cavitate, and in this situation the fluid will not
sustain the negative pressures. Thus the cartilage dimensions will return
far more quickly to the initial conditions than the theory here predicts.

It is perhaps an indication of the theory predicting the release of load

cartilage under the conditions prevailing,

(74

Experiments have also been performed in this Laboratory on the
variation of deformation with time for various loadings on bovine cartilage

using the same configuration as the experiments performed by Edwards.
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The experiments were performed on the total thickness of cartilage attached
to the bone end, the diemeter of the specimens being 5.5 mm. The load was
applied axially so that flow could take place axially through a permeable
bronze disc which had a permeebility coefficient of about 108 times as big
as that of cartilage, so flow would not be impeded. Deformation was read
from an ultra-violet recorder to which was fed the signal of the average

of two displacement transducers positioned an equal distance on either side
of the applied load.

Initially it appeared that there was an instantaneous deformation
of about 0.2 mm, but it transpired that the p.t.f.e. liner in which the
cartilage was contained had deformed permanently under the constant loading
to which it was subjected. This deformgtion meant that there was room for
the cartilage to expand laterally, initially giving an axial deformation
of about 0.2 mm. It was thought that after this lateral expansion the
cartilege was in effect confined and could therefore be treated as such,
Unfortunately, reliable measurements of permeability have not yet been
obtained, the difficulties having been noted in the literature review.
Because the total thickness of a lgyer of cartilage was used, an average
coefficient of permeability of 5.0 x 10-19 m2 has been used, as this
figure seems a mean of measurements taken by other workers when working on
the whole lgyer. Strains in excess of 0,75 could be achieved by applying
very large stresses, so an initial porosity of 0.8 was used. As can be
seen from Figures (42) and (43) the agreement is again guite good,

An effect which has not been taken inte account in deformetion is
that of osmosis. Flow under osmosis will be into the cartilage due to the
concentration of large molecules inside the cartilage, and thus when
compression occurs in a laboratory rig, flow will only teke place under a
difference in fluid pressure from the equilibrium osmotic pressure. Thus

osmosis will tend to keep the fluid inside the cartilage whilst under
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pressures, due to the osmotic pressure in the fluid outside causing the
effective gauge pressure to be altered.

The application of a sinusoidal load (which will subsequently be
called the a.c. load) together with that of a constant load (subsequently
called the d.c. load) has also been investigated, as joints are very seldom
under static loads for very long. It appears that the deformations due to
the a.c. load oscillates about the d.c. deformation, although the two
deformations cannot be superimposed in theory because the d.c. stiffnass
affects the a.c. deformation., However it will be shown that in practice
the two effects can be treated separately.

In theoretical terms, assuming that inertia effects can be neglected
and that the force on the solid is equal to the addition of the constant
and sinusoidal forces at its appropriate time in the cycle, the deformations
predicted differ very little from those in the constant load case. The
frequency used in the cases of oscillating loads was 60 cycles/minute
(approximatihg to'that of a walking cycle), but because of computational
difficulties in the axial flow case, only the results from two cycles were

6

produced. These showed that for an a.c. stress of 1 x 10 N/mz, an a.ce.
strain of 6.25 x 10-6 was produced, giving a modulus of 1.6 x 1011 H/mz.
The phase difference was difficult to ascertain to any degree of accuracy
because the deformations computed were only for the first two cycles,

In practice it appears that in sinusoidal loading the bulk modulus
affect that has already been mentioned becomes significant, unlike the d.c.
loading case. The experimental results show that, in the confined, axial
flow type test, the response is of a sinusoidal deflection superimposed upon
the deformation due to the constant load alone, This asCe response appears

to lag the applied a.c, load slightly and has a modulus of 0.25 - 1.0 x 109N/m2

depending from where on the cartilage surface the specimen is taken., The
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deflection appears to stay approximately constant with variation in

time providing the a.c. load is kept constant. The frequency of oscillation
mainly used was 50 cycles/hinute, although it was found that altering the
frequency made very little difference to either the phase lag or modulus.
Figure 44 shows a typical hysteresis loop for one cycle at 50 cycles/hinute,
and gives a phase lag of about 150. To ascertain if this phase lag was
significant in talking about the elasticity of articular cartilage, the

same oscillating experiment was performed on a cylinder of rubber of the
similar dimensions. The results of stress versus strain for one cycle are
shown in Figure 45 and this shows a hysteresis loop with a phase lag of
about 110, approximating to that of cartilage. Therefore it would appear
that the a.c. response of articular cartilage in a conf'ined configuration
can be regarded as reversible as that of rubber, the modulus of which is

of the same order as the bulk modulus of water, i.e. all that is happening
on a short time cycle is that the fibres and water together which make up
the articular cartilage are being alternately compressed and relaxed due

to the bulk modulus effect.

It may be interesting to note the findings of Hayes and Mockros,(sﬂ)
who compressed human articular cartilage in a confined test with pervious
and impervious load pads. Their findings indicated to them that flow
processes were not dominant in the deformation, because deflections in both
cases were similar. This would therefore indicate a bulk modulus for the
cartilage of the order of 106 N/m2, three orders of magnitude different from
that of water, and also very different frow the bulk moduli of most liquids
or solids. These results seem totally at variance with other findings,

and the explanation may be that there was fluid flow around the sides of

the impervious load pad, the total sealing of a test of this kind being

difficult.
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5.5 Results from Radial Flow Only

The theoretical results for radisl flow only in a confined case
both for a constant load and alsc with the addition of a sinusoidel load
are much easier to produce, but are probably not so useful from the
experimental standpoint. In practice, to produce radial flow only means
making no restriction on the flow at the sides of the cylinder which then
makes the test unconfined,

However, looking at the theoretical results from a confined radial
flow test can show several salient points. Because the boundary conditions
are now different, the deformation in general takes longer to accomplish
than in the axial flow case. Figure 48 shows the variation of deformation
with time using the same thickness of specimen as in Edwards' experiment,
but now it is the radius of the cylinder which will make a large. difference.

Dimensional analysis gives

(8- 5[(5).65) . 9]

where 12 is the radius of the cylinder.

Figure 46 shows that for a given deformation, the time is inversely
proportional to (k'QQ;) (as given by Equation (4.2.9)). TFigure 47 shows
the effect of variation of initial porosity on the non-dimensional
deflection-time curve. It is interesting to note that, as shown by
Figure 48, on release of load, the rate of recovery of the deformation is
very much slower than in the axial flow case, and that all these curves
corresponding to no load are a constant distance apart, the distance depending
on the strain at which the load was released. This latter point also appears
from the solution to the conditions at no load (Equation (4.2.11)).

Figures (49) - (52) show the effect of an a.c. load superimposed
upon a d.c. load at different times during the deformation. These clearly

show that these a.c. strains, which, from the initial assumptions, are due
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to fluid flow in and out of the matrix, are very small compared to those
experienced when including the bulk modulus effect. These oscillations
lag the applied load by approximately 500, and, as can be seen from
Figures (49) and (52) reduce in magnitude as the d.c. load causes a
deformation, due to the decrease in the permeability and increased stiff'-
ness in the matrix, Initially the amplitude of the oscillations is of a
strain of about 0,0001 for an a.c. stress of 1 x 106 N/m2 giving a
modulus of 1010 N/m2. Towards the end of the displacement the modulus is
of the order of 101! N/m?.

It is also interesting to note in a conf'ined radial flow test, the
behaviour when a congtant strain rate is applied to the surface and
calculating the total force exerted by the specimen. This variation is shown
in Figure 53. Because the fluid force is directly proportional to the strain
rate, this force becomes dominant at high strain rates. Of course, the case
of a strain rate of zero corresponds to the stress=-strain curve at
equilibrium.

In the practical case of radial flow, the specimen is now unconfined
and there is no resistance to sideways motion, except for friction of the
specimen on the plates through which the load is transmitted. This effect
causes the specimen to become barrel-shaped under loading. The experiments
in this Lgboratory on unconfined tests,(7h) have shown that, for a given
load, there is a larger final strain than in the confined case, which can
be attributed to the lateral expansion due to Poisson's ratio mentioned
earlier at the start of this Section., Iigure 54 shows a typical curve of
deflection with time under a constant load, showing an instantaneous
displacement followed by a time dependent response, and on release of load
there is an instantaneous recovery followed by a slow relaxation as shown

by the theory. The instantaneous deflections on compression and relaxation
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are not equal in magnitude, the deflection on release of load always being
smaller. This can be explained by considering articular cartilage as being
a complete material for the moment. At the beginning of compression there
is physically more material than when fluid has been squeezed out at the
end of the time dependent deformation. Considering constant ceross-
sectional area A and a constant elastic modulus Y

Initially on compression

(-
X = (’A)/(s.yé )
(-]

where © 1is the applied stress
S
S.'fi.)

where &, is the instantaneous response on compression

At relaxation Y = "(a./ﬂ\/(
(

$, is the instantaneous response after release of the load
and 2 is the thickness at equilibrium before relesase of the load.
Combining these equations gives

S &‘-«-l

§ 7 =,

where S,_ is the creep deflection

Thus the ratio (ﬁ%;\ can never be less than 1, This expression
seems to fit the experimental values fairly well for calculating the
instantaneous response after release of load.

The variation in radial permeability will also be affected in
some fashion by this lateral displacement. Because the lateral displacement
is increasing, the cross=-sectional area will increase throughout and, when
the axial strain is egual to the initial porosity, the radial permeability
will not be gzero,.

Under an oscillating load, the a.c. strain initially is larger
than in the confined test, giving an elastic modulus of 0.04 - 0.1 x 1O9N/m2,

and the strains reduce with time, so that at equilibrium the elastic modulus
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is in the range 0.41 -~ 0.38 x 109 N/m2. It must be stressed thal these
values of moduli are calculated using the initial cross-sectional area,
and it would seem reasoneble to attribute most of the apparent increase
in the modulus to an increase in the cross-sectional area as the d.c.
strain increases due to a large value of Poisson's ratio. This latter
conclusion is borne out by the fact that the ratios of the elagtic moduli
at the start and at the end (i.e. the inverse ratios of the cross-
sectional areas at the start and end) appear to be related to the final
decs strain. The stress-strain characteristic for one cycle shown in
Figure 55 again shows a hysteresis loop which is derived from a phase lag
of about 160, but as has been shown in the confined case for rubber, this
lag may well be typical of the phase lag of a non-metallic material which
is within its "elastic" range.

It may be interesting to note quantitatively the effect of
performing an unconfined test on a specimen of articular cartilage and
holding the deformation constant. Having compressed the material initially
to a certain axial strain and hence using a force to apply this strain, the
instantaneous reaction of the cartilage is to expand laterally, The fluid
in the mesh of fibres is then under pressure, and over a time seeps out
to the atmosphere, and as this happens the force exerted by the cartilage
decreases as would be expected. Because of the loss of fluid the diameter
of the specimen, which initially had increased, returns slowly to its
initial diameter. Eventually, the fluid pressures and fluid force are
zerao and the slight load exerted by the cartilage is that required to
compress the solid matrix to the predetermined strain., Thus the instant-
aneous radial strain has disappeared due to the volume change of fluid flow

out, and the specimen has finished almost as if it were in a confined test.
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5.6 Results from Axial and Radial flow simultaneously

In referring to real joints, this combination is probably the
most realistic, in the sense that, although the displacement may be
predominantly uniaxial, flow will still take place in all directions,
the distribution depending on fluid pressures in the lubricating film,

Unfortunately, this is also the most difficult to compute, not
from the sense of the method of computation, which is the same as in a
one-dimensional axial flow case, but because so many more nodal points
have to be used when iteration is taking place, and the computing time
is therefore much lorzer.

However, some results have been computed, and these results are
shown in non-dimensional form in Figures 56 and 57. Figure 56 shows that
a variation in (k?éi) only meikes a slight difference {o the deformations,
even on the scale of a variation of two orders of magnitude. Figure 57
shows the effect of variation in (kl/z;-) on the deformation, and it
therefore can be seen that it is the magnitude of this factor which governs
the axial deformation rate, Comparing Figure 57 with Figure 3/ shows the
deformations are greater than with axial flow only. Although across a
layer the fluid pressures are almost constant, except very near the
boundary where they decrease to zero, these pressures are correspondingly
lower than in the axial flow case, creating larger strains and larger

deformations in the cartilage.

...93_



5.7 Discussion

To sum up, the experimental results seem to show that, both in
confined and unconfined cases, the response to an oscillating and constant
load together can be represented by the addition of a response due to the
constent load and a response due to the oscillating load. The consgtant
load response is due, in the confined case, almost solely to fluid flow
out of the cartilage, and the oscillating response to an elastic distortion
of the cartilage as a whole, the displacements being smaller in the
confined case than in the unconfined case as would be expected for any
material.

The modelling of articular cartilage as a deformable porous
material, the matrix of which has a reversible, recoverable but non-linear,
stress~strain characteristic, has shown that an approach of this kind will
produce constant load deformations to a fair degree of accuracy at normal
physiological loads, although because there is thought to be very little
fluid flow due to a sinusoidal force alone, under an oscillating load an
elastic modulus has to be added to account for the elastic deformations
which take place. It is thought, however, that the variation of
permeability with strain for cartilage, especially at strains nearing the
initial porosity, is slightly more severe than the one used and this would
give more accurate predictions of deformation with time at high loads.

In the actual working of an articulating joint, it would seem very
rarely that articular cartilage undergoes deformation due only to constant
loads for any length of time (perhaps sentries on duty, or spectators in
a crowd) and even then there is probably a constant shifting of muscles
creating varying loads in the joint., In any modelling of an actual joint
undergoing normal motion, it would therefore appear that deformations of

the cartilage layers will probably be elastic ones due to the varying
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pressures during a walking cycle but the thickness of the layers will bg
changing due to the fluid flow out under the average load throughout the
cycle.

However, in making observations of this sort, one must not lose
sight of the object of this investigation. The aim has been to produce
a model of articular cartilage which will predict the characteristics shown
in a laboratory rig. Only when this has been done can the model be used
with some confidence in the real situation of an articulating joint where
the behaviour will be governed by the conditions existing in the Jjoint.
These conditions will involve the fact that the pressures are exerted
on the cartilege by a fluid instead of a solid, and thus pressures on the
cartilage may vary with, for instance, distance from the centre of the

joint, which may affect the deformation.

_95_



6. Summary and Conclusions

With the eventual aim of looking at the special case of
articular cartilage, this thesis has reported work performed on
porous materials, and, because articular cartilage appears so dependent
on its interstitial fluid for some of its mechanical properties, the
main area of interest has been in the flow of fluids through porous
materials.

The law governing the flow due to fluid pressure, Darcy's law,
was investigated and a literature review revealed that the limit of its
validity was thought to range from Reynolds' numbers of 0.1 up to 75, and
ah experimental investigation showed that in the case of 1 mm glass beads,
the limit was of the order of 1. It was also shown that Darcy's law
could be used in predicting the llowrates to some degree of accuracy
when flow was taking place axiglly and radially simultaneously in g
cylinder,

The variation of permeability with strain was investigated in
directions parallel and perpendicular to the direction of applied strain
in a porous polymeric material, It was found that variations were more
pronounced in the perpendicular directions, as perhaps would be thought,
although both permeasbilities became zero only when the applied strain was
approximately equal to the initial porosity and thus all the pores were
closed.

The main conclusions from the work probably come from the section
applying the work in other sections to the special case of articular
cartilage. It appears that modelling articular cartilage as a deformable
porous material whose matrix has a reversible, recoverable, but non-linear

stregs=-strain characteristic, and assuming a simple variation in
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permeability with strain predicts the time-dependent deformations to a
good degree of accuracy, agreement being excellent at normal physiological
loads. The experimental work, which yill be reported in more depth later,
has shown that under sinusoidal loads the oscillating deformations can be
regarded as almost elastic, both in confined and unconfined cases, the
modulus of which probably varies with position on the surface of the

articulating joint.
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