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Abstract

This thesis considers and evaluates mathematical models
and methods of data analysis used in the quantitative study
of hillslope profile form.

Models of hillslope profiles are brought together in a
critical and comprehensive review. Modelling approaches are
classified using five dichotomies (static/dynamic, deterministic/
stochastic, phenomenological/representational, analytical/
simulation, discrete/continuous).

Profile data to serve as examples were collected using

a pantometer in a 100 km?

square centred on Bilsdale in the
North York Moors. Geomorphological interpretations put
forward for this area include theses of profound lithological
influence, polycyclic denudation history, proglacial lake

overflow channels and profound cryonival influence.

Profile dimensions, profile shapes, angle and curvature
frequency distributions and bedrock geology can be related
via a fourfold grouping of profiles. The use of quantile-
based summary measures and of a method of spatial averaging
and differencing are advocated and illustrated.

Autocorrelation analysis of hillslope angle series appears
to be of limited geomorphological interest, as autocorrelation
functions tell a story of overall profile shape, which can
be measured more directly in other ways. Problems of non-
stationarity and estimator choice deserve greater emphasis.

Methods of profile analysis previously proposed by
Ahnert, Ongley, Pitty and Young are all unsatisfactory. A
method based on additive error partition and nonlinear smoothing
is proposed as an interim alternative, and results related
to bedrock geology.

An approach to model fitting is outlined which treats
specification, estimation and checking in sequence. A power
function due to Kirkby is used as an example and fitted to
field data for components. The exercise works well if
regarded as a minimum descriptive approach but much greater
difficulties arise if process interpretation is attempted.
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Chapter 1

INTRODUCTION

Alain once sald there are only two kinds of scholars:
those who love ideas and those who loathe them. In
the world of science these two attitudes continue to
oppose each other; but both, by their confrontation,
are necessary to scientific progress. One can only
regret, on behalf of those who scorn ideas, that this
progress, to which they contribute, invariably proves

them wrong.

Jacques Monod, Chance and necessity, Ch. 8

1.1 Subject
1.2 Aims and structure

1.3 Presentation
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1.1 Subject

This thesis lies in the field of hillslope profile
morphometry. The term 'morphometry' is here used in a
wide sense to include mathematical models and methods of
sampling, measurement and data analysis used in the study
of landsurface geometry. It is a convenient contraction
of the more correct term 'geomorphometry' (cf. Tricart,

1947; Evans, 1972).

A hillslope profile is a line connecting a drainage
divide at the crest of a hillslope with a drainage line
at its base. It is a 'wiggly line' (Scheidegger, 1970, 7)
in two dimensions (one vertical, one horizontal)
corresponding to a maximum gradient path in three

dimensions (one vertical, two horizontal).

The geometry of a hillslope profile is its form

sensu stricto. Form sensu lato includes characteristics

of soil, underlying bedrock, vegetation and climate.
Hillsiopes are modified by various processes operating
on the hillslope and at its flanks and endpoints. Full
understanding of hillslope form, process and development
is to be sought in the interaction of form and process
over time and space: this is the concern of hillslope

geomorphology.

In attempting description and explanation of hillslope
form, hillslope morphometry draws upon ideas and techniques
of mathematics and statistics. It is conwvenient to

distinguish various classes of prdblems arising in hillslope



morphometry (illustrated here by examples from the field

of modelling).

(i) Methodological problems (e.g. what degree of
simplification is permissible?)

(ii) Theoretical problems (e.g. what are the
geomorphological grounds for this model?)

(iii) Technical problems (e.g. what is the
mathematical basis of this model?)

(iv) Empirical problems (e.g. is a particular

model a realistic description of a given field profile?)

All these problems are important and need to be

considered carefully.

Any choice of research problem is usually a reflection
of an investigator's interests and competence and his
perception of the importance of problems within a
discipline. The choice made here reflects a strong
interest in methodological, theoretical and technical
questions and a belief that empirical investigation is
worthless without the backing of sound ideas and methods.
Contrary to the opinions of some fieldworkers in geomorph-
ology, such backing is not available unless specialist
investigation is undertaken into methodological, theoretical

and technical questions.

Discussion of this issue often slides into a puerile
debate over the relative merits of 'armchair' and 'muddy

boots' approaches in geomorphology. The simple answer



is that such approaches are complementary, not competing,

and that it is not a matter of one approach being superior
and the other being inferior. But this still leaves room

for argument over details (exactly how do these approaches
complement each other?), and the details are not a matter

for abstract discussion: antagonists must start to

consider specific circumstances.

1.2 Aims and structure

The aims of this thesis are as follows.

(1) To provide critical and comprehensive reviews of

work in modelling and data analysis in hillslope morphometry,
concentrating particularly on continuous models (Chs. 2, 3)
and profile analysis (Ch. 8). It is felt that the absence
of such reviews is a barrier to progress, and that as

well as hindering communication within each field, it
impedes understanding of models and methods by workers

outside.

(ii) To place procedures on a firm mathematical basis

and to evaluate their practical utility, concentrating

particularly on autocorrelation analysis (Ch. 7), profile
analysis (Ch. 8) and model curve fitting (Ch. 9). 1In
each case it is shown that existing geomorphological
practice has considerable technical shortcomings;
alternative procedures are explained and evaluated

empirically.



(iii) To consider the empirical role of hillslope

morphometry in geomorphology. This entails consideration
of the hypotheses put forward in the literature for the
field area (Ch. 4) and analysis of the implications of
morphometric results for these hypotheses (Chs. 6, 8, 9).
The aim is not to solve field problems or to provide new
interpretations of the geomorphology of the field area:
that would require much more work on forms, deposits

and processes than has been possible.

(iv) To set the field of hillslope morphometry within

a methodological and theoretical context, particularly by

relating ideas on continuous models to geomorphological
theory, the philosophy of science, and the methodology of
the natural and environmental sciences (Ch. 2). Here
scholarship can provide a clear formulation of genuine

problems and a dismissal of pseudoproblems.
The chapter structure is as follows.

Chapters 2 and 3 give a review of hillslope profile
modelling. Chapter 2, on principles, is almost entirely
non-mathematical: it examines methodological and
theoretical issues at length. This chapter should serve
as a nontechnical introduction for the general
geomorphologist. Chapter 3 gives a detailed and
comprehensive review of the models which have been
proposed; it is presented in a unified notation, and

includes some new results.



Chapter U4 supplies background information on the

field area, a 100 km?

square centred on Bilsdale in the
North York Moors. It discusses the hypotheses which have
been put forward and identifies the problems which may

be attacked using morphometry. Chapter 5 briefly describes
the sampling and measurement procedures used to collect
hillslope profile data for this study. Chapter 6

describes the field profiles, outlining the variations
which exist in profile form and in angle and curvature

frequency distributions. Some technical innovations

are employed.

Chapters 7, 8 and 9 place particular procedures on
a firm mathematical basis and evaluate their practical
utility. Autocorrelation analysis (Ch. 7) is a relatively
new technique in hillslope geomorphology: its usefulness
has not so far been examined systematically. Profile
analysis (Ch. 8) is a field with several competing methods:
an attempt is made to separate the wheat from the chaff.
Model curve fitting (Ch. 9) has not received careful
attention to date: even the relatively simple case discussed
here, a one-parameter nonlinear model, presents some

challenging problems.
Chapter 10 presents the conclusions of the thesis.

1.3 Presentation

Figures and Tables are not distinguished but are both

regarded as Exhibits (c¢f. Tukey, 1977). This practice



flouts convention, but saves separate labelling systems

and encourages hybrid displays. Exhibits are labelled
alphabetically within chapters (e.g. 2A, 2B), whereas
chapters, sections and subsections are labelled numerically

using a common hierarchical notation.

Algebraic notation is intended to be consistent
within individual chapters and is collated at the end of
each chapter. It has regrettably not been found possible

to use a single system of notation throughout the thesis.

Appendix I lists profile data and Appendix II gives

brief descriptions of computer programs.



Chapter 2

PRINCIPLES OF MODELLING HILLSLOPE PROFILES

About thirty years ago there was much talk that
geologists ought only to observe and not theorise;
and I well remember someone saying that at this rate
a man might as well go into a gravel-pit and count
the pebbles and describe the colours. How odd it

is that anyone should not see that all observation
must be for or against some view if it is to be of

any service.

Charles Darwin in a letter to Henry Fawcett,

1861,quoted by P. B. Medawar, Induction and

intuition in scientific thought, p. 11.

2.1 Geomorphology and hillslope morphometry

2.2 Philosophical issues in modelling

2.3 Approaches in modelling

2.4 Major geomorphological problems in modelling
2.5 Summary

2.6 Notation
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2.1 Geomorphology and hillslope morphometry

The science of geomorphology studies landforms and
related processes, and aims to describe and explain the
form of the land surface. Ideally such description and
explanation should be rooted in a systematic theory which

presents a coherent account of form, process and development.

Three systematic approaches are especially note-
worthy:
(i) the land surface viewed as a continuous rough surface
(Evans, 1972; Mark, 1975)
(1ii) the land surface viewed as a hierarchy of drainage
basins (Leopold et al,1964; Chorley, 1969; Gregory and
Walling, 1973; Douglas, 1977)
(iii) the land surface viewed as a set of hillslopes
corresponding to maximum gradient paths between drainage
divides and drainage lines (Carson and Kirkby, 1972;

Young, 1972).

These approaches all have great value. The idea
of a continuous rough surface is the most general,
whereas drainage basins and hillslopes are most readily
identified where fluvial (slope and stream) processes
are dominant. On the other hand, they are functioning
systems as well as natural geometric entities. Hillslopes
are conveniently simpler than drainage basins; however,
reduction to one horizontal dimension loses the effects
of plan curvature. Most of the landsurface is composed
of valley slopes (Young, 1972, 1) and so geomorphology

'is by necessity mainly a study of slopes' (Ahnert, 1971,3).
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The place of hillslope study within geomorphology,'and the
place of morphometry in hillslope geomorphology, deserve
more detailed examination. Recent diversification of
approaches within geomorphology has often seemed tantamount
to disintegration of the discipline. Geomorphology is in
motley disarray, a 'bandwaggon parade', to use Jennings'
(1973) picturesque expression. There has been much concern
that different 'schools' in geomorphology fail to under-
stand one another. Indeed, Chorley (1967, 59) asked
whether 'the study of landforms still exists as a

discrete scholarly entity' and commented upon 'the
inability of workers to identify broad common objectives

of even the most general character, or even to communicate

to one another their mutual objections'.

Hence it is important to outline a view of hill-
slope morphometry as part of a 'pluralist' geomorphology
in which the existence of different approaches is
recognised and resolved (Butzer, 1973). Butzer
identified four major directions of primary research in

the discipline:

(1) Quantitative study of geomorphological processes
(ii) Quantitative analysis of landforms
(iii) Quantitative and qualitative study of sediments
(iv) Systematic, regional studies of complex land-
form evolution through time and in the wake of

environmental change.

Research may also be classified according to the

geomorphological systems which are of primary interest
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(e.g. hillslopes, drainage basins, topographic surfaces).

A cross-classification yields a simple matrix representation
of contemporary geomorphology which allows hillslope
morphometry to be precisely located within current research
(2A). A glance at this diagram shows that hillslope
morphometry can be linked to other approaches to hill-
slopes (row linkages), and to other branches of morpho-

metry (column linkages).

This matrix representation reflects a simplified
yet structured view of the important directions of current
research. It may seem entirely uncontroversial.
Nevertheless, in stressing approaches based on replicated
systems (such as hillslopes or drainage basins) this view
to some extent stands opposed to a strong tradition in
geomorphology, which concentrates on interesting 'features'
and by comparison neglects supposedly 'featureless' areas.
This bias has had unfortunate consequences: '. . . the
geomorphologist at the present rate of knowledge can often
say remarkably little by way of description or explanation
about an ordinary "featureless" rolling landscape' (Lewin,
1969, 84). However, an allegedly featureless fluvial
landscape can be discussed in terms of its constituent
hillslopes and drainage basins. A concern for atypical
and striking forms should be supplemented by an analysis
of ordinary landscapes, which is of equal interest and

importance.

The analyses considered in this thesis are
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of methods of sampling, measurement and data analysis
(cf. the definition in Ch. 1.1 above). These analyses
must not be unreflective, so this chapter continues
with discussions of philosophical issues, approaches
and major geomorphological problems in modelling.
(Questions of sampling, measurement and data analysis

receive attention in Chapters 5 to 9 below).

2.2 Philosophical issues in modelling

2.2.1 Critical rationalism and the inevitability of theory

Discussion of philosophical issues is rare in
geomorphology, and the discipline is dominated by what
Reynaud (1971, 95-9) called 'the spontaneous philosophy
of geomorphologists', an antitheoretical empiricism
underlain by methodological principles which are frequently
implicit rather than explicit. In contrast this. thesis
adopts the viewpoint of critical rationalism set out by
Popper (Popper, 1972, 1976; Medawar, 1969; Magee, 1973).
According to this view, it is best to formulate ideas as
clearly as possible; and to subject them to severe
criticism. This applies, for example, at a methodological
level (such as when a methodological principle is in
question).and at an empirical level (such as when a
hypothesis is in question). It is interesting to note
the broad similarity of Gilbert's methodological ideas

(ef. Gilbert, 1886; Gilluly, 1963; Kitts, 1973).

Such a view is inevitable once one realises that

it is impossible to work without assumptions either at a



- 14 -

methodological dlevel or at an empirical level. There are
often occasions when the assumptions are triyial or uncon-
troversial, but in general it is valuable to review the
assumptions made in a piece of work, and to assess their
validity.

Some theory about the world is inevitable. Even
if we attempt merely to observe, we use implicit theéry about
what is noteworthy, and are influenced by preconceptions.
', . . The "facts" that enter our knowledge are already
viewed in a cettain way and are, therefore, essentially
ideational . . . Experience arises together with theoretical
assumptions not before them, and an experience without
theory is just as incomprehensible as is (allegedly) a

theory without experience' (Feyerabend, 1975, 19, 168).

2.2.2. Key terms discussed

Interest in philosophical matters is often associated
with a preoccupation with questions of definition, meaning
and terminology. It is, however, generally possible to
avoid arguments over definitions. '. . . Since all definitions
must use undefined terms, it does not, as a rule, matter
whether we use a term as a primitive term or as a defined
term' (Popper, 1972, 583 cf. Popper, 1966, 9-21; Geach,
1976, Ch. 9). Nevertheless, some key terms need to be
discussed in detail, because they may be unfamiliar, or

because they are in practice used in different senses.

One valuable distinction is between epistemological

and ontological questions. Ontological questions are about
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the world, its character and its history. Epistemological
guestions are about knowledge of the world, or more
precisely about the validity of claims to knowledge of

the world. This simple distinction can help to clarify
controversies (cf. Watson, 1969; Levins, 1970; Morales,

1975), as will be seen below.

The term theory is here used in a general way to
denote a set of ideas used in description and explanation.
These ideas may be implicit or explicit; and if explicit,

expressed verbally or mathematically.

The term system denotes 'a collection of components
which are either acting upon other components, being
acted upon, or mutually interacting' (Birtwistle et al,
1973, 13): that is, a collection of components which are
interrelated in some way (cf. Margalef, 1968, 2; Chapman,
1977, 79-82). 1In particular, 'system' is usually to be
understood as 'real-world system of interest' (Wilson,
1972, 31): in this thesis, the systems of interest are

hillslopes or fluvial systems at smaller or larger scales.

The term model denotes ' a simplified picture of
the system' (Birtwistle et al,1973, 14). 1In particular,
'model' is usually to be understood as 'formal representation
of a theory' (Wilson, 1972, 32); informal schemes, whether
verbal, graphical or implicit, are not here considered as

models.

These definitions contrast with usages:” common in

geomorphology. Many workers use the term 'model' in a
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catholic sense (especially Chorley, 1967; Thornes and
Brunsden, 1977). Model and system concepts are often
confused (tangled up) or conflated (taken as one) in the
geographical and geomorphological literature (e.g.
Harvey, 1969, Ch. 23; Chorley and Kennedy, 1971; Carson
and Kirkby, 1972, Chs. 1 and 2; Andrews, 1975, 8-10;
Sugden and John, 1976, 4). It is true that according to
the definitions given above models themselves may be
regarded as systems (Birtwistle et al, 1973, 15) but
such conflation is not encouraged in this thesis; a
sharp distinction is made between the two concepts.

A system is essentially a part of the physical world

(an ontological entity, in a sense) whereas a model is
essentially a human creation (an epistemological entity,

in a sense).

Both 'model' and 'system' are used in a great
variety of senses both within and outside geomorphology,
and there seems to be no very strong reason for regarding
any particular senses as essentially correct. Any
choice is admittedly arbitrary. That made here at
least seems simple and straightforward, and it does
allow various methodological and empirical issues to
be formulated clearly. In several ways, one may ask how
'good' a model is as a representation of a given system.
Even formulating such questions'is greatly aided by

a sharp distinction between 'model' and 'system!'.

If geomorphology aims to explain the form of the

land surface, then it is necessary to consider the.
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criteria for an ideal explanation. This is a large issue,

much debated both in philosophy and the sciences. Two
criteria deserve special emphasis (Popper, 1972, 191-3).
Firstly, an 'explanation' should be independently testable
and not ad hoc or circular. Secondly, it should relate a set
of conditions to one or more universal laws and initial
conditions. These criteria remain as logical ideals even
though many supposed explanations in geomorphology fail to
satisfy them. (The character of the 'universal laws' invoked

in geomorphology will be discussed below).

2.2.3. Why use mathematics?

It is reasonable to ask why the use of mathematics, an
abstract and formal exercise, should be of value in under-
standing geomorphological systems. Why should a string of
symbols on a sheet of paper have any relevance to the
behaviour of masses of soil, rock and water? This apparently
naive question raises some deep philosophical problems, yet
there do not seem to be more than a few scattered comments
upon the issue in the geomorphological literature. It is
tacitly assumed either that the use of mathematics is futile,
irrelevant or pretentious, or that as a standard scientific

procedure 1t needs little or no justification.

It is difficult to find a satisfactory answer to this
question, and some alleged solutions are unconvincing.
Atiyah (1976, 292) suggested that mathematics may be viewed
as the science of analogy, and that 'the widespread

applicability of mathematics in the natural sciences, which
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has intrigued all mathematicians of a philosophical bent,
arises from the fundamental role which comparisons play in
the mental process we refer to as "understanding"'. This
suggestion appears to be little more than a reformulation of
the problem, for equally striking questions immediately arise:
how and why are comparisons involved in understanding?,

are some kinds 'better' than others, and if so, in what

sense and why? And so on.

Hence a detailed consideration of the actual and possible
roles of mathematics in geomorphology is in order. In what
follows, mathematics is taken as 'given', a set of formal
languages which may be of use in description or explanation.
But it should be stated that the character of mathematics
is itself a matter for considerable philosophical dispute
(e.g. K8rner, 1960, 1971; Lakatos, 1962, 1976a, 1976b;

Kreisel, 1965; Steiner, 1975).

One fact frequently allowed to confuse the issue is
that geomorphologists often find mathematical
notation unfamiliar, puzzling or disturbing. Many would
feel happy with the string of symbols 'the slope is steep!

but not with the string '

EEI > 1". (The two could be

ox

construed as equivalent with conventional interpretations

of O ,I land > and appropriate interpretations of z, x and

Y- ). The unfamiliarity of algebraic notation is an important
educational and psychological issue, and the mathematical
weakness of most geomorphologists has far from trivial
consequences , but neither has much bearing on the
philosophical issue of the value of mathematics as a mode

of expression.
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Naturally it would be inappropriate to use mathematics
in situations where ordinary language serves the purpose as
well or better. The example just given might seem an
excellent case in point. Notice, however, that as soon
as we wish to say how steep a particular slope is, or to
define 'steep', mathematics becomes the appropriate medium:
numerical answers are required for these questions. Moreover,
the customary arguments from abuse or misuse are overplayed:
arguing generally against mathematical applications in
geomorphology on the grounds that some past applications
have been mistaken or misleading (which is certainly true)
is logically on a par with blaming a weapon for a crime.

No approach bears a guarantee of success, and it is absurd

to ask for one. There are many cases, actual or potential,

in which 'the mathematical formalism may be hiding as much

as it reveals' (Schwartz, 1962, 360). Hence it is not a
matter of asking for justification of a mathematical approach,
but of seeking a clear view of how and why mathematics |

might be useful.

Another common misconception is the view that the
usefulness of linguistic symbolism is obvious while the
usefulness of mathematical symbolism requires explanation.
Close examination shows that both kinds of symbolism raise
deep problems (cf. Craik, 1967, Ch. 5; Skellam, 1972, 15).
It is thus illegitimate to object to mathematical symbolism

as symbolism unless we also object to linguistic symbolism.

It seems likely that mathematics might be useful to
geomorphology in a variety of ways, nor is such multiplicity

particularly surprising: it also applies to ordinary language.
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(i) The idea of mathematics as a science of analogy
or pattern, noted by Atiyah (1976), is certainly of importance.
'Any pattern we see in the universe will be one for which a
mathematical treatment is possible; conversely, whenever
a new mathematical insight occurs, we are able to recognise
new kinds of patterns. If any of these occur in nature, we
have a totally unexpected application of the theory. And
this is how mathematics gets its power; for a pattern which
is hard to recognise in one area may be obvious in another.
By taking inspiration from the second we discover the
existence of the first!'! (Anon, 1973, 658). Naturally the
application of analogies must be careful: the relevance of
an attractive analogy can easily be exaggerated and analogies

require independent testing (cf. Wilson, 1969).

(ii) Ordinary language is essentially topological and
it is possible to give a verbal account of the important
variables in a system and indicate the connections and
relationships between them. Conversely many of the
topological 'box-and-arrow' diagrams in the geomorphological
literature could be translated into words without appreciable
loss of content. However, mathematical representations allow
algebraic and arithmetic specification of relationships
which indicate the form and size of connections (c¢f. Nelder,
1972, 368) and are thus more informative. It is more
informative to specify that a hillslope obeys a power
function than to specify that it is curved, and more

informative still to specify parameter values.
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(iii) An algebraic argument has the merit that in
principle assumptions are made explicit, derivations are
shown, and the character and form of solutions are made
plain. The logical structure of the argument is exposed
to public scrutiny, to criticism and to testing (c¢f. Ziman,
1968, 45). 1In contrast, a verbal argument may be astonishingly

difficult to evaluate.

(iv) An entirely algebraic argument divorced from
empirical evidence is usually regarded with suspicion.
Nevertheless, it is important to note the possibility that
mathematics may be used as 'a tool for gaining qualitative
insight into real phenomena' (Smith and Bretherton, 1972,
1507). If assumptions made are demonstrably weak, or if
results are qualitatively stable under perturbations of the
axioms, then it may be possible to produce 'robust theorems'
(cf. Schwartz, 1962, 357; Levins, 1970, 76: Levin, 1975, 785).
Alternatively there are methods for investigating the
qualitative properties of partially specified systems

(May, 1973; Levins, 1974).

(v) One point of view goes beyond this and stresses the
logical character of models, used as means of deriving the
consequences of initial assumptions. Their empirical realism
(truth or falsity) is regarded as secondary. Lewontin (1963,
224) argued that models are not contingent, but analytic;
models should never be said 'to be true or false in an
empirical sense'. 'A model is essentially a calculating

engine designed to produce some output for a given input . . .
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Models cannot produce really '"new" knowledge, but can only
demonstrate what is entailed by the theory from which the
model is built' (225). Similarly Morales (1975, 335) deplored
'the mistake of using models as mirrors of reality rather
than as heuristic constructs'. Models tend to be 'attacked,
or defended, as ontologically true or false rather than
epistemologically useful and insightful or obfuscating and
ineffectual' (337). Neither Lewontin nor %orales advocated

e

empirical irrelevance: they merely requestAa clear view of

models in which their logical character is appreciated.

(vi) It is sad but true that qualitative impressions
obtained in the field may be seriously misleading as well
as imprecise. '. . . A property which seems perfectly
apparent, or an "obvious' relation of cause and effect, may
upon careful measurement and analysis prove to be exactly
the reverse of the "apparent" or the "obvious"' (Leopold
et _al, 1964, 8). Thus in 1712 it was generally believed
that Northamptonshire was the highest county in England:
reliable methods of height measurement were only developed
later (Porter, 1977, 223). Recent psychological work on
geological observation has undermined the widely-held
belief that the impressions of experienced investigators
are objective (Chadwick, 1975, 1976). Hence the value of

quantitative measurement is great.

(vii) Where some geomorphological response is the
result of several factors, it is important to determine
their relative importance. This can only be done by

quantitative methods (van Hise, 1904, 605; Jeffreys, 1918, 179).
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(viii) A precise statement can be more easily refuted
than a vague one, and can therefore be better tested
(Popper, 1972, 356; cf. Ahnert, 1971, 11). In certain
applications, a high degree of precision may be spurious or
unnecessary, as has often been pointed out, but such

superfluity needs to be demonstrated rather than asserted.

2.2.4, Modelling and simplification

While the actual or potential role of mathematics in
geomorphology has received little detailed examination,
issues of simplification have been discussed more frequently.
In particular, it has often been alleged that models are
unduly simplified. Consider, for example, the following
remarks.

(i) 'Other scholars . . . have sought to contribute to the
resolution of morphological problems by a mathematical
treatment. Given the complexity of phenomena such a
treatment can only be applied to very simple forms' (Hol,
1957, 198; translated from French).

(ii) 'The direct attack by mathematical methods would seem
to offer very limited chances of success. Dealing as we
inevitably are with infinitely variable mixtures of solids,
liquids and gases, it is manifest that the parameters in our
imagined equations will not be constant, but themselves
unmanageably variable' (Wooldridge, 1958, 32).

(iii) '. . . Slope profiles are usually too irregular to be
described in their entirety by formulae' (Pitty, 1970, 18).
(iv) 'Quantitative models almost invariably lead to simplification
and to an increasing distance to reality beyond permissible

limits' (Blidel, 1975, 2).
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Clearly such charges need to be considered with care.
While much will depend on the details of geomorphologist's
purpose and geomorphological system, some general remarks

on simplification are in order.

In the first place, geomorphological systems are widely
recognised to be complex. Thornbury (1954, 21) regarded the
principle that 'complexity of geomorphic evolution is more
common than simplicity' as a 'fundamental concept" of
geomorphology, while Schumm (1973, 1977; Schumm and Parker,
1973) has even proposed a principle of complex response.

Yet it would be wrong to overemphasise the degree of
complexity found in geomorphological systems. Milovidova
(1970) showed how few of the logically possible landform
types actually occur in a given region; Connelly (1972)
put forward a similar view supported by results obtained

with entropy measures from altitude data.

In any case, it is desirable that models should be
simple. If a model is to be of any use, it must be a
simplified representation of the system of interest. An
exact copy would be useless in explanation (Hanson, 1971,
81). The desirability of simplicity is encapsulated in a
celebrated logical maxim known as Ockham's razor; its correct
version,is not, however, as sharp as is often supposed:
'frustra fit per plura quod potest equaliter fieri per
pauciora' or '. . . it is vain to do by more what can
equally be done by fewer' (Leff, 1975, 35; cf. Anderson, 1963,
176; Skellam, 1972, 27).
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In hillslope geomorphology, simplification is justifiable
in the many instances when the interest is 'in the average
properties of a hillside, not in all of its intricate details'
(Scheidegger, 1970, 3; cf. Kirkby, 1974, 2; Mizutani, 1974, 4).
Naturally, there are occasions on which the details are of
interest, but the point in this context is that in modelling
profiles the aim is merely to account for the overall form
of the profile, and not for all the infinite (sic) variability
(pace Wooldridge), nor for the profile in its entirety (pace
Pitty).

Unfortunately, the tail can also wag the dog. Simplicity
may be forced upon the modeller by the need for analytical
tractability (Schwartz, 1962; Kleme;, 1974). ‘'For complicated
phenomena like surface weathering and erosion it is impractical
to include more than a few of the known physical effects.

An attempt to do so would lead to a cumbersome model; indeed,
a detailed study of the fluid motion alone would be possible
only in highly idealised situations. It seems preferable
instead to use as simple a model as possible, for if we
describe only the overall macroscopic behaviour of the fluid
we can rely largely on conservation laws, and these retain
their validity even though the details of the small-scale

motion are unknown' (Luke, 1974, 4035).

It is disturbing to find that opponents of modelling
often regard it as unnecessary to substantiate charges of
oversimplification. The possibility that models might be

useful has been dismissed ex cathedra by eminent historical

and climatic geomorphologists like Wooldridge and Bflidel.
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Yet it is not clear that denudation chronologies and climatic-
geomorphological regionalisations are self-evidently innocent
of oversimplification: they are manifestly simplified schemes
which deliberately omit a multitude of details. Furthermore,
apparently simple models may have very complicated behaviour
(May, 1976a): it may be difficult to assess the simplicity

of a model itself.

Models should not be subjected to summary trial and
execution on a charge of oversimplification. It is necessary

to hear the case at length.

2.2.5 Models, domains and testing

The domain can be defined as the set of systems which
satisfy the assumptions underlying the model (cf..Cohen, 1966,
66 on 'domain of applicability'; Harvey, 1969, 89; Scheidegger,
1970, 150 on 'domain of application'). Strictly speaking,

a model should be tested empirically on a system which
belongs to ﬁhe domain. However, systems belonging to the
domain may well be very rare (or nonexistent) if the
assumptions behind a model are at all idealised. In practice,
as the geographer Guelke (1971, 47) remarked ironically, the
discrepancies between a model and reality have often been
'explained! by demonstrating that the test situation was

not applicable to it. Guelke was rightly critical of such
practice: 'Whatever the difficulties that a scientific
investigator might encounter in attempting to test his
models he may not regard the logical part of them as

beyond criticism because the ideal conditions for which

they were constructed do not exist!'.
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There are further difficulties. In the first place,
it may be difficult to identify systems belonging to the
domain if we have no independent evidence on the mode of
hillslope development. Clearly it would be circular to
infer past processes from present forms and then use those
inferences to identify an appropriate model. Secondly, the
idea of simplification is linked with that of approximation:
we would rarely expect an exact fit to model predictions.
This still leaves the important question of deciding how
much discrepancy is acceptable. In practice this may come
down to working with a poor model on the grounds that it is

the best we have.

The possibility of equifinality is important in any

discussion of testing. Equifinal systems are such that
particular system states may be reached in different ways
(von Bertalanffy, 1950). In geomorphological terms, a
particular morphology may be produced by different processes
or different combinations of processes. Equifinality is

now widely accepted in geomorphology (cf. Chorley, 1962,
1964; Cooke and Warren, 1973; Cooke and Reeves, 1976),
sometimes in the guise of 'convergence' (Wilhelmy, 1958;
Twidale, 1971; Douglas, 1976; Gossmann, 1976) or 'homology'
(King, 1953; Pitty, 1971), although it is still occasionally

ignored (for example see Scheidegger, 1970, 120, 143).

The main methodological implication of equifinality
is that its existence limits inference about formative

processes from morphological evidence. This applies to
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mathematical explanations as well as to verbal explanations
(Leopold et al, 1964, 500; among others). For example,. a good
fit obtained with a model based on a particular set of

process assumptions does not necessarily imply that the
assumptions are realistic. However, it does seem likely

that equifinality is not an absolute condition but relative
both to the degree of precision and to the set of descriptors
which are used. Be that as it may, equifinality is certainly

a major difficulty in model testing.

Identifying the domain, deciding on the discrepancy
acceptable and equifinality of form are all important problems
in testing, which must be combined with a realisation that
highly complex models tend to be both unhelpful and intractable.
As has been pointed out, however, a different view is possible,
in which the empirical realism of a model is regarded as
secondary, and its main role is that of a logical vehicle for
deriving the necessary consequences of initial assumptions.
There is much to be said for such a point of view. Ultimately,
however, the characteristic that distinguishes a scientific
theory from a mathematical argument is its applicability to

empirical reality.

2.3 Approaches to modelling

A variety of approaches have been used in modelling
hillslope profiles. These can be classified in a simple
way using five dichotomies (2B).

(i) Static/dynamic: according to time content (2.3.1.)
(ii) Deterministic/stochastic: according to probability

content (2.3.2.)
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(iii) Phenomenological/representational: according to process
content (2.3.3.)

(iv) Analytical/simulation: according to tractability (2.3.4.)
(v) Discrete/continuous: models treating hillslopes as
combinations of discrete components and models treating
hillslopes as continuous curves (Cox, 1977c). References

to reviews of discrete models are given in Ch. 3.1 and a
discussion of dividing profiles into discrete components is

given in Ch. 8.

2.3.1. Static and dynamic models

The difference between static and dynamic models is
simple: only dynamic models include elapsed time as a
variable. Static models of hillslope profiles predict
form at one time, often without any process implications.
Dynamic models of hillslope profiles predict either some
kind of invariant or equilibrium form; or a series of
successive forms, that is, the evolution of the hillslope
system. The idea of a static model is straightforward, but
ideas of equilibrium and evolution require detailed

examination.

The choice between equilibrium and evolutionary models
depends ideally on whether the time it takes for a system
of interest to reach equilibrium is short or long relative
to the time span being considered (Kirkby, 1974, 3; cf.
Schumm and Lichty, 1965). However, the decision must
generally be taken in ignorance, since knowledge of reaction

and relaxation times (Wolman and Gerson, 1978; Graf, 1977)
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and of rates of hillslope retreat (Young, 1974) is still

fragmentary.

Ideas of equilibrium have a long history in geomorphology.
Although most recent work follows the pioneer studies of
Strahler (1950), Leopold and Maddock (1953), Hack (1960) and
Chorley (1962), these authors acknowledge the influence of
Gilbert (1880, 1909) (on whom cf. Pyne, 1976). Moreover,
ideas of steady state formed one strand in classical
'uniformiitarianism', especially that of Lyell (cf. Hooykaas,

1970; Rudwick, 1970, 1971; Gould, 1975, 1977; Porter, 1977).

With such a background, it is not surprising that
'equilibrium' has appeared in geomorphology in a variety of
different guises (cf. Young, 1970a; 1972, 96-102 on concepts
of equilibrium, grade and uniformity in hillslope geomorphology;
Chorley and Kennedy, 1971, 201-3 on kinds of equilibripm in
physical geography; Tricart and Cailleux, 1972 on morphoclimatic
equilibrium; Statham, 1977, Ch. 1 on mechanical and chemical
equilibrium in geomorphology). The issue is further
complicated by a certain amount of confusion and disagreement
over the meaning of some key terms: witness the treatment
of 'dynamic equilibrium', 'equilibrium', 'quasi-equilibrium',
'steady-state! and 'time-independence! in the texts of
Easterbrook (1969, 428), Small (1970, 189), Pitty (1971, 70),
Gregory and Walling (1973, 18-19), Garner (1974, 29), Ruhe
(1975a, 86), Butzer (1976, 81-2), Twidale (1976, L24),

Douglas (1977, 227-8), Rice (1977, 222-4) and Schumm (1977,

4-5). No clear consensus emerges from these texts about
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whether these terms denote distinct conditions, nor about
how they may be distinguished. Moreover, these texts
indicate that the majority of geomorphologists understand
equilibrium to be essentially a matter of 'adjustment' or
'balance', and that geomorphologists often use equilibrium

terms in an inexact and metaphorical fashion.

One way to cut through such confusion, disagreement and
inexactitude is to return to primary sources in a bid to
isolate the fundamental ideas. The classic paper by Hack
(1960) is the primary source on 'dynamic equilibrium' theory.
Two strands of thought are intertwined in this paper. One
is critical, both of the Davisian theory in particular, and
more generally of historicism in geomorphology, the idea
that explanations in geomorphology must be historical
explanations (an idea very much alive: cf. Blidel, 1975).

The other is constructive: the dynamic equilibrium theory
itself. It is curious, and unfortunate, that while the
first aspect has often been discussed, the second has

largely escapéd critical evaluation.

The central idea in the dynamic equilibrium theory is
that of constant form. It is hypothesised (according to
Hack 'It is assumed') that 'within a single erosional
system all elements of the topography are mutually
adjusted so that they are downwasting at the same rate'

(Hack, 1960, 85).

The hypothesis of constant form could be tested in

principle by measuring rates of downwasting. Even if the
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hypothesis were upheld, however, it is clear that constant
form alone cannot explain the form of (say) a particular
hillslope profile. As Ahnert (1967, 24) pointed out, 'a
period of uniform downwearing must be preceded by one of
differential downwearing' to establish the existing topography
at a greater altitude . Or, to put it another way, it needs
to be shown, firstly, that the system will converge towards

a constant form condition, and, secondly, that this is a
stable condition. Constant form must be first attained and

then maintained (cf. Morse, 1949 and Lewontin, 1969 on stable

and unstable equilibria). Hack (1960, 86) aéserted that

'as long as diastrophic [sc. tectoniél forces operate
gradually enough so that a balance can be maintained by
erosive processes, then the topography will remain in a

state of balance even though it may be evolving from one

form to another'. This may well be true; but it takes

more than asseveration to establish a case. Moreover, it is not
at all clear that 'a state of balance' does not preclude
evolution 'from one form to another'. The dynamic
equilibrium theory becomes totally comprehensive, and

hence totally vacuous, with the parenthetical admission (Hack,
1960, 94) that 'erosional energy changes through time and
hence forms must change'. No definite hypotheses of any

kind accompany this unexceptionable statement. A criticism
made by the philosopher Gellner (1968, 165) in another

context applies to Hack's theory with particular force:

'If a man says - "I have the idea X, which applies to
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things except in as far as it does not" - we pay scant
attention to him: all ideas have the property of applying,
except in as far as they do not. To postulate one of them

with such a proviso is not much of an achievement'.

Hence Hack's (1960) dynamic equilibrium theory is
a combination of two components: an imprecise hypothesis of
'adjustment' and 'balance', and a precise hypothesis of
constant form, which is not supported independently. The
first, which receives most emphasis in Hack's paper, is
an alternative to hypotheses of 'relict' forms or 'polycycliec’
development made by climatic or historical geomorphologists.
The second, produced but not discussed in detail, has been
neglected until quite recently. It is, however, straight-
forward to formulate mathematically, and is thus the
component of dynamic equilibrium theory which finds explicit

expression in models of hillslope development.

The idea of 'constant form' needs mathematical
definition. Suppose that a hillslope profile is represented
by a curve

z = z(x,t)
Here z denotes height above the base of the slope,
X horizontal distance from the divide, and t elapsed time.
The following possibilities must be distinguished.

(i) The slope profile itself remains constant

(ii) The rate of downwearing is constant over space

3 z(x,t) = z(x)

and time; this contains (i) as a special case
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0z
—_— = - Z
(iii) The rate of downwearing is constant over space;

this contains (ii) as a special case

%z
dt

It seems likely that (i) - (iii) would all be regarded

= - o (ty, « =0

as 'dynamic equilibrium', 'steady-state' or 'time-independent’
conditions by many geomorphologists. But since all these
terms are frequently used in other senses, a different term
is preferable: 'constant form' (Smith and Bretherton, 1972)

is perfectly adequate.

Note that these 'equilibrium' states are here defined
in terms of properties which remain constant or invariant.
This procedure would seem to have wider applicability.
Hypotheses of constant soil depth or 'characteristic form!'
are further examples in which invariants can be specified
unequivocally (cf. Carson and Kirkby, 1972), and such a
clear specification might reduce the vagueness and confusion
frequently characteristic of statements on equilibrium in
geomorphological literature. However, the procedure cannot
be applied to all kinds of equilibrium conditions; a class
of counterexamples are states defined by variational principles
(e.g. minimisation of work: Carson and Kirkby, 1972, U4; Kirkby,
1977b). Furthermore, invariant forms may not be equilibrium
forms, although in large part this is a terminological issue.
According to Kirkby (1974, 9-10) characteristic forms are

not equilibrium forms.
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The idea of constant form finds its strongest
qualitative statement in Hack (1960), although it may be
traced to Gilbert (1880, 1909). Constant form hypotheses
have been incorporated in several models of hillslope
development, although not always with reference to dynamic
equilibrium theory. 1In reviewing this work, it is important
to resolve a fundamental ambiguity by specifying whether
(a) constant form prevails throughout geomorphological history,

or (b) landforms converge on a constant form condition.

In either case, (i) above is an extremely implausible
hypothesis. Either downwasting must be balanced exactly
by uplift, or if uplift is not included in the model,
downwasting must be identically zero: neither alternative
seems at all likely (Schumm, 1963; Ahnert, 1970a; Smith
and Bretherton, 1972, 1512).

In case (a), if (ii) above holds, then there is a
straight forward solution:

z(x,t) = z(x,0) - xt

The model was discussed briefly by Scheidegger (1961;
1970, 132-4) and Pollack (1968, 1969), although without
reference to any equilibrium ideas. If (iii) holds, then
we have the generalisation:

z(x,t) = z(x,0) - xt .
where ® is the time average, ,/(: Xo ol ((7,) dt’

t' is elapsed time.

Neither of these models is very interesting. It seems

unlikely that either (i) or (ii) would hold for long periods
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of geological time. Moreover, it is necessary to specify

an initial profile to obtain any particular solution, and

to explain the initial profile in order to explain the
profile at time t. Both of these requirements are difficult

to meet.

In case (b) we seek a constant form solution to one
or more equations specifying hillslope development. This
was first done by Jeffreys (1918); in recent years the
approach has been used by Smith and Bretherton (1972), Luke
(1974), Hirano (1975, 1976) and Kirkby (1976a, 1976b; Wilson
and Kirkby, 1975). It is no longer necessary to specify
initial profiles and the stability properties of the

constant form solution can be investigated analytically.

Equilibrium, in the guise of constant form, plays
a dual role in such models. It is a mathematical convenience,
a simplifying assumption which makes it easier to obtain
closed-form solutions. It may serve as a first approximation
to other solutions, as Kirkby has shown. It also represents
a physical hypothesis, and naturally requires empirical
testing. However, some theoretical support for constant
form solutions is provided by the stability results of
Jeffreys (1918) and Smith and Bretherton (1972), which
indicate the conditions under which constant form will be

maintained through feedback.

If there are no grounds for expecting any kind of

equilibrium, then evolutionary models are necessary, which

predict a series of successive hillslope profiles.
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Evolutionary models are very difficult to test
satisfactorily. Hillslope development is difficult to
observe except in special circumstances, and, contrariwise,
the special circumstances are so special that doubt must be
cast on their typicality (e.g. badlands studied by Schumm,
1956a, 1956b). The major difficulty is clearly the
discrepancy which may arise between human lifespans and

time spans of geomorphological interest.

Given but one profile for each hillslope, it is
possible to use the series of profiles predicted by the
model as a set of templates, and choose the most realistic
(cf. Pitty, 1972 on Davisian and Penckian predictions). This
is a procedure almost forced upon us unless we know the
appropriate elapsed time from other evidence (cf. Chappell,
1974). Such a procedure is unsatisfactory because it is

more difficult to refute a model in these circumstances.

An attractive solution to the testing problem is to
seek a spatial series of hillslope profiles which can be
treated as if it were a temporal series. This kind of
solution is often described as invoking ergodicity or the
ergodic hypothesis, but such use of terminology is sometimes
unjustified (for a fairly rigorous statement of ergodicity
see Scheidegger, 1970, 267). A looser term such as 'space-
time transformation' is preferable (cf. Chorley and Kennedy,
1971, 277-80 for applications in hillslope geomorphology;
Thornes and Brunsden, 1977, 23-5 more generally). Despite

widespread enthusiasm for the idea, it seems to be applicable
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only in very special situations (e.g. Savigear, 1952). 1In
particular, the assumption that profiles within a drainage
basin follow the same sequence but at different rates

appears to be false (Carson and Kirkby, 1972, 9, u405).

Evolutionary models frequently require the specification
of an initial profile z(x,0). This is difficult to supply
in most cases, but there are some exceptions, notably the

work of Mizutani (1974) on volcanoes and slag heaps.

2.3%3.2. Deterministic and stochastic models

If a model includes one or more random variables each
specified by a probability distribution, it is stochastic.

Otherwise it is deterministic.

There is a continuing controversy in geography (Harvey,
1969, 260-3), in geology (Watson, 1969, 491-2; Mann, 1970;
Raup, 1977; Whitten, 1977), in geomorphology (Leopold and
Langbein, 1963; Scheidegger and Langbein, 1966; Howard, 1972;
Shreve, 1975; Thornes and Brunsden, 1977), and indeed in
many other disciplimes, over the extent to which explanations
couched in probability terms are satisfactory. Debate on

this issue can be traced to preSocratic philosophy.

Two questions have often been conflated. First, there
is the ontological issue of whether the world is deterministic
or stochastic, either as a whole or in part. This is a
difficult issue which seems entirely open at present given
the uncertain status of stochastic models in quantum

mechanics. The question may even be undecidable in principle
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since the failure of a deterministic model need not be

ascribed to the stochastic character of nature.

Second, there is the epistemological issue of whether
stochastic explanations invoking random variables are
satisfactory. Many scholars feel uneasy about hypothesising
factors which by definition are unpredictable except in
probability terms, and it has been suggested that chance
is merely a label for our ignorance, used to cover a residue
of fact as yet unexplained. Hence only deterministic
explanations can be fully satisfactory. It does seem,
however, that a particular stance on this epistemological
issue need not entail a particular ontological view. It
would be entirely possible to use stochastic explanations
while holding that the world is essentially deterministic,

and vice versa; and, a fortiori, to use one or other kind

without committing oneself to any ontology. In Monod's
(1974, 110-2) terminology, one can recognise 'operational
uncertainty':while not necessarily admitting the existence

of 'essential uncertainty'.

A further point which needs some clarification is the
'meaning of the term 'random'. Three senses need to be
distinguished:

(i) Random in the sense of apparently haphazard or
chaotic, a report of a subjective impression: this is in
large part a psychological matter.

(ii) Random in the sense of equal and independent

probabilities.



(iii) Random in the sense of a random variable
characterised by a probability distribution: this is the
standard mathematical sense and the sense adopted here.

In this sense, random = stochastic.

Whatever the philosophical issues, the attitude of
mathematicians to the inclusion of random variables in
models is generally pragmatic. Whittle (1970, 19), in a
text on probability theory, took as a premise 'that there is
a certain amount of variability which we cannot explain but
must accept', while Bard (1974, 18) similarly wrote that
'unpredictable disturbances are as much parts of physical
reality as are the underlying exact quantities which appear

in the model'.

Random variables may appear in stochastic models in
many different ways; here we mention two (ef. Watson,
1972, 39-40)

(a) value at data point = value of deterministic function
+ random error

(b) value at data point = value at a point on a random
function.

Mathematically these model families are not really distinct:
‘the second can be regarded as a special case of the first

in which the deterministic function is identically zero.
However, in practice, models of type (a), which may be
called stochastic error models, are usually quite distinct
from models of type (b), which may be called stochastic
process models. In case (a), variability is split into
a systematic part, approximated by a deterministic funection,

and a residual or error part, treated as a random variable.
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The need for a random variable arises from the fact of
modelling life that no nontrivial data series would ever
be fitted exactly by a deterministic model: sampling
variation, measurement error, incorrectness of functional
form, and uncontrolled variables intervene. In case (b),
data are regarded as a realisation of a stochastic process,
which is a mathematical process operating in time and/or

space according to probability laws.

The usual idea is that deterministic functions capture
'smooth' behaviour while stochastic (random) variables mop
up the remaining 'rough' behaviour. This idea is subject
to two reservations. Firstly, 'rough' components need not
be treated in a probabilistic or stochastic manner, especially
in exploratory data analysis (cf. Tukey, 1977; McNeil, 1977).
Secondly, there are some deterministic processes with
extremely rough (apparently random) behaviour (May, 1976a;
Lorenz, 1976), and, conversely, some stochastic processes
with extremely smooth (apparently deterministic)behaviour
(Cohen, 1976; May, 1976b). This is mentioned largely
for completeness: these processes have not been applied

as yet in geomorphology.

2.3.3. Phenomenological and representational models

The distinction between phenomenological and represent-
ational models is based on a distinction between
phenomenological and representational theories made by

the philosopher Bunge (1964). A phenomenological model
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attempts only to capture the phenomena (sc. surface appearances);
a phenomenological model of a hillslope profile attempts only
an approximation of hillslope form, and neither in assumptions
nor in detailed structure does it try to reflect geo-
morphological processes or physical principles. A rep-
resentational model is more ambitious, aiming to represent

the underlying processes as well as surface appearances,

ideally representing them in terms of physical principles.

Terminology here is an awkward matter. These terms
are not entirely satisfactory, but more familiar and less
cumbersome alternatives seem unsuitable in other ways.
Parallel distinctions have been drawn between ‘empirical’
and 'rational' models in geomorphology (Mackin, 1963;
Young, 1972, 18); between 'empirical' and 'conceptual!
models (Clarke, 1973) or between 'operational' and
'physical' models (Klemeg, 1974) in hydrology; between
'empirical' and 'theoretical' models in ecology (Wiegert,
1975); and between ‘homomorphic' and 'isomorphic' models
in pedology (Huggett, 1975). None of these pairs is very

satisfactory in capturing a contrast in process content.

The term 'process-response model!' (Whitten, 1964;
Carson and Kirkby, 1972; Young, 1972, Ch. 10), considered
here equivalent to 'representational model', is not used,
partly because it lacks an antonym, and partly to avoid
confusion with the rather different term 'process-response

system' (Chorley and Kennedy, 1971, Ch. U4).
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It is widely accepted in geomorphology that, as far as
possible, landforms and related processes should be
explained in terms of mechanical and chemical principles
(Strahler, 1952; Yatsu, 1966; Carson, 1971; Statham, 1977).
This is merely an example of a more general attitude - that
explanations should make reference to actual mechanisms.
'"To explain a phenomenon, to explain some pattern of
happenings, we must be able to describe the causal mechanism
which is responsible for it' (Harré, 1972, 178). Hence there
is a desire to relate geological knowledge to physical theory
(Kitts, 1974), or to relate form to process in geography

(Harvey, 1969).

Although a quest for causal explanation leads to the
construction of representational models of hillslope profiles,
phenomenological models may still be of considerable
descriptive value (cf. Curry, 1967, 267). For example,
if upslope convexities may be approximated by power
functions, the parameter values provide a simple and
efficient means of comparing different convexities (Hack
and Goodlett, 1960). Furthermore, the importance of
description should not be underplayed: detailed and
systematic description has its place alongside explanatory

theory.

If the aim is to build representational models, how
is this to be done? Four levels may be distinguished in
process study, not necessarily exclusive, sequential or

exhaustive.
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(i) Recognition of processes from incidental evidence
(e.g. the supposed identification of creep from bending
trees, bulging walls, etc.).

(ii) Measurement of rates of operation. This allows a
decision on the processes to be modelled to be based on
quantitative evidence.

(iii) Identification of controlling variables. This
allows a choice of controlling factors to be included in
any model. Usually hillslope profile models have been
based upon the assumption that process rates are essentially
functions of profile geometry (especially gradient, distance
from divide, curvature). Non-geometric controls such as
mantle strength, moisture, texture and vegetation have
received less attention from modellers, but have often
been included in field investigations.

(iv).Elucidation of physical mechanisms. Processes
are analysed in terms of mechanical and chemical principles:
many models fall short of such integration. At some stage,
an empirical or phenomenological approach must be
employed. Hillslope profile models cannot in practice be
based on 'fundamental' physical theories such as quantum
theory or relativity theory (cf. Schoener, 1972, 390 on
ecological models). The 'universal laws' invoked in
ideal geomorphological explanations are usually those of

mechanics or chemistry (c¢f. Ch. 2.2.2).

A principle which is widely accepted in modelling

hillslope development is that a mass balance rather than an
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energy balance provides an appropriate framework. Fluxes

of energy performing geomorphological work are a negligible
component of hillslope energy budgets (Carson and Kirkby,
1972, 28; Young, 1972, 21; Kirkby, 1974, 2-3; cf. Hare,

1973, 188). Hence fluxes of material are the central concern,
and continuity equations allow these to be handled system-
atically (e.g. Carson and Kirkby, 1972, 107-9; Wilson and
Kirkby, 1975, 205-6; Kirkby, 1976b, 9-10).

While 'phenomenclogical' and ‘representational! are
presented here as polar opposites, it must be admitted that
in practice models exhibit continuous gradation in process

content.

2.3.4. Analytical and simulation models

Analytical models ideally take the form of sets of
equations possessing solutions in closed form, whereas simulation
models include those expressed in the form of computer programs
specifying sequences of operations. (No other category of
simulation models will be considered here). 1In practice,
these classes of model intergrade: solutions to many
equations can only be obtained using methods of numerical

analysis which must be implemented on a computer.

An ideal situation may be sketched as follows. The
modeller writes down a set of equations (usually ordinary
or partial differential equations, if a dynamic model is
being constructed), which represent empirical knowledge,
physical principles and any constraints which must be

satisfied (e.g. conservation of mass or energy). These
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equations are then solved in general using 'standard' methods

and in particular by inserting initial and boundary conditions.

If this ideal was always obtained, there would be no
need for simulation models. The story is, however, something
of a fable, not least because differential equations are
strange beasts. Many apparently simple equations possess
no simple closed form solution, and it is frequently necessary
to compromise, by seeking an approximate solution or a
particular kind of solution, such as an equilibrium solution.
In the latter case, the mathematical fact that a particular
solution exists does not support the physical hypothesis
that such a solution will be attained. Such a hypothesis

is a further statement requiring justification.

In contrast, a simulation model is much easier to
build, requiring only an elementary knowledge of computer
programming (FORTRAN, rather than a special simulation
language such as SIMULA (Birtwistle et al, 1973), has
generally been used in geomorphology). It is usually
possible to build models more complex than (tractable)
analytical models, while some difficulties facing
analytical models (such as the existence of thresholds
and the need to model magnitude and frequency distributions)
may be of little account: such features can be handled
easily. Correspondingly, the danger exists that a highly
complex model will be impossible to investigate systematically,
and it will never be clear which results are genuine and

which artefactual: to use May's (1974, 682) delightful
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expression, the model may be 'a multi-parameter, computerised
Goon show'. Howard (1972) has given a sober discussion of
the problems of computer simulation in geomorphology, while
Moon (1975) has reported a pioneer sensitivity analysis of
Ahnert's (1973) model. Such sensitivity analyses are vitally
necessary as complements to development sequences produced

by simulation runs (for an excellent ecological example, cf.

Steele, 1974).

2.4 Major geomorphological problems in modelling

Several kinds of complicating features are characteristic
of hillslope systems, and hence should ideally be reflected
in models of hillslope profiles. These are examined in

turn below.

2.4.1. Polygenesis

'Polygenesis' is a term describing the common (if not
universal) situation in which a landform has been produced
by a combination of different processes. Polygenesis is a
major kind of complexity frequently found for hillslope
systems. In so far as hillslopes are polygenetic, models
should reflect such an origin, although incorporation of
polygenesis should preferably rest onquantitative evidence

about the relative importance of different processes.

However, various kinds of polygenesis need to be
distinguished. Firstly, there are situations in which

different processes are acting more or less simultaneously

(for example, creep and rainwash). Secondly, there are
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situations in which processes have very different return

frequencies (for example, creep and large=scale failures).

Thirdly, late Tertiary and Quaternary climatic change may

have led to the succession of different suites of processes

(Young, 1972, 240-6); for example, alternation between
cryonival and warmer conditions in present day humid
temperate areas (e.g. Rapp, 1967; Black, 1969 and cf.
Ch. 4.4.3 below).

These situations may not be equally problematic. If
hillslopes are especially subject to large-scale failure when
steep and to slower processes when gentle, their form at
any time may reflect one or the other rather than a combination:
hence relatively simple models may still be applicable, at
least to individual hillslope components. Climatic change
is not problematic if slopes are essentially relict, or if
the contrast between different regimes has been unduly

exaggerated.
2.4.2. Feedback

Feedback loops are of great importance in geomorpho-
logical systems (Melton, 1958; King, 1970; Twidale et al,
1974, 1977; Crozier, 1977) and any realistic model must
thus mimic the major loops in operation. The most
general and most basic feedback relationship is between
process and form. Not only do processes affect forms, but
forms affect processes, both in general and on hillslopes

(Chorley, 1964, 71; Ahnert, 1971, 3-U; Young, 1972, 104-5).



I — e e e

- 50 -

As Smith and Bretherton (1972, 1506) put it, the physical
landscape may be idealised as a time-dependent, self-

forming surface.

Even this basic relationship is not always mirrored in
representational models. Some stochastic process models
(ef. Ch. 2.3.2, Ch. 3), which are based on the idea that
empirical data series = realisation of stochastic process,
do not allow feedback, because the relation between
generating process and generated series isasymmetric: the
characteristics of the series do not affect those of the
stochastic process. In this sense at least the stochastic
process postulated is not analogous to the geomorphological

processes in operation.

2.4.3, Thresholds

Many geomorphological systems contain thresholds or
discontinuities (Chorley and Kennedy, 1971, 236-U40; Reynaud,
1971, 47-50; Schumm, 1973, 1977). In the case of hillslopes,
good examples are provided by the thresholds which must be
crossed before slope failure occurs (e.g. Carson, 1976). The
existence of discontinuities poses difficulties for the
usual approach to modelling physical systems, centred around
ordinary and partial differential equations, as Souchez
(1966a, 212) and Aronsson (1973, 2) have remarked in a
hillslope modelling context. The use of differential
equations is generally based on the assumption that both

functions and derivatives vary smoothly and continuously.
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Hence there is good mathematical reason for a sharp division
between the models of soil and rock mechanics, mainly
concerned with the character of failure conditions, and the
models of profile development considered here, mainly
applicable to hillslopes subject to slower processes which
may be 'averaged' over whatever discontinuities are

present (c¢f. Carson and Kirkby, 1972, 110).

Naturally this division is unfortunate from a
geomorphological point of view. If hillslope development
must be attributed to a combination of threshold-dependent
and threshold-independent processes, then a model of
hillslope development should reflect such combination.
This can be done, to a certain extent, in a simulation

model (see Ch. 3.3 below for examples).

2.4.4, Magnitude and frequency

Most geomorphological processes are intermittent in
their action: even apparently continuous processes such as
soil creep may take place as a series of 'microcatastrophes!'.
Hence the magnitude and frequency of geomorphological events
need to be considered both in general (Wolman and Miller,
1960; Leopold et al, 1964, 67-94; Wolman and Gerson, 1978) and
for hillslopes (Carson and Kirkby, 1972, 102-4; Young,

1972, 85-7; 1974, T4-5; Starkel, 1976).

The 'Wolman-Miller thesis' is that events of

intermediate magnitude and frequency have most geomorphological

impact: major events have little effect in total because they
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are rare; frequent events have little effect in total because
they are minor. This principle certainly holds if the
frequency distribution of magnitudes above some threshold is
lognormal, and the relationship between work achieved and
event magnitude (again, expressed above a threshold) is a
power function. However, although the most valuable and
provocative generalisation available on magnitude and
frequency, the Wolman-Miller thesis should not be considered
as established truth. One important qualification (Wolman
and Gerson, 1978) is that extreme events of particular
magnitude and frequency must be seen in relation to the
rates at which recovery of specific forms takes place
between recurrences. For example, the speed of
revegetation of bare ground is a major control of the
effectiveness of extreme events.

Almost all continuous slope models handle the
magnitude-frequency issue by (implicitly) averaging over
frequency distributions and representing processes as
continuous in time (but see Kirkby, 1976a, 1976b for an
exception; and also Price, 1974, 1976 on alluvial fan
deposition). This is almost certainly necessary if analytiecal
solutions are sought, while conversely it is not a necessary
assumption for simulation models. Averaging over distributions
may be reasonable if processes such as creep and rainwash
are in question, but probably not in the case of large-

scale failure.
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2.4.5. Laterality

A profile is only an idealisation, valid to the extent
that horizontal or plan curvature (and thus lateral sediment
flux) can be neglected. Ultimately the aim must be the
modelling of landsurfaces, and some of the models
reviewed below attempt to do this (although Ch. 3 does
not cover all landsurface models). Complication comes
not only in the form of another horizontal dimension (e.g.
squaring computer storage requirements) but also in
qualitatively new features which should be incorporated,
especially the interaction of a drainage network and the

intervening slopes (Sprunt, 1972; Armstrong, 1976).

The discussion in Carson and Kirkby (1972, 390-6)
leads to an encouraging result: profile models are stable
in the sense that slight curvatures lead to only slightly
different predictions. Contrary evidence would imply that

only surface models can be at all realistic.

2.4.6. Lithological variation and soil properties

The influence of lithological variation upon hillslope
morphology has often been reported (cf. Young, 1972, Ch. 17
for a brief review) and the importance of rock characteristics
in hillslope development needs little emphasis. It is,
however, very difficult to incorporate rock properties in

models of landform development in a satisfactory manner.

Although it seems clear that the relative importance of

lithological variation should be assessed quantitatively,
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relationships between rocks and relief have often been
discussed without any reference to morphometric variables
(Cox, 1973, 3). In many cases 'resistant' beds stand out
as steps in slope profiles: how important are they in the
overall landscape? are they merely micro- or meso-features
on the scale of the slope profile, or can lithological
variation be held to dominate the landscape? These are

properly quantitative questions.

If the lithology underly¥ing a given profile is fairly
homogeneous, then it may be permissible to omit rock
properties from a model for that profile alone, although
clearly any comparison of profiles on different lithologies
should not follow this practice. Extreme heterogeneity
might also be taken as near-homogeneity if much of the
variability is on a micro-scale and can be averaged out.
One possible example would be a rapidly alternating

sandstone-shale succession.

In the more common intermediate situation, a naive
tactic is to assign differing 'resistance! values to
different strata. Several dynamic slope models allow

such variations.

Three difficulties deserve note. Firstly, resistance
values should be supplied independently in order to avoid
the circular arguments unfortunately characteristic of
rock-relief studies (Yatsu, 1966, 9-10; Sparks, 1971, 370;

Tricart and Cailleux, 1972, 17). If resistance values are
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given in an arbitrary fashion, drawing upon intuitive ideas
only, then nothing is done to break the circle. However,
the situation cannot be improved substantially without
overcoming some formidable problems of definition, sampling
and measurement. Secondly, if a soil cover is present, and
hillslope development is transport-limited, resistance is a
matter of soil properties rather than rock properties: to
use Chorley's (1959, 503) metaphor, 'bedrock is not to be
considered a parent of the related topography, but rather a
grandparent'. This simple point 1is not always observed in
models. Thirdly, resistance is frequently defined in
hillslope models as a single-valued property, whereas it is
well known that several different properties of rocks and
soils affect rates of mobilisation and transport (e.g.
Bryan, 1968, 1977; Sparks, 1971, Ch. 2; Thornes, 1975;
Statham, 1977, Ch. 2).

The lithology may allow extensive chemical removal
of material from the hillslope, although most models fccus
on mechanical removal. Carson and Kirkby (1972, 257-71)
reviewed appropriate models for chemical removal, while in
later work Kirkby (1976 a.) suggested the simple approximation
that chemical downwasting is spatially constant, which he
regarded as invalid only when chemical removal is unimportant.
However, the context of this remark is a model which assumes

homogeneous lithology.

Soil depth has been included in several models, usually
by postulating a relationship of some kind between soil

depth and weathering rate. The main difficulty is that
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virtually nothing is known empirically about this relationship
(Young, 1972, U6) although there is no shortage of hypotheses
in the literature (e.g. Culling, 1965, 246; Souchez, 1966a,

190; Carson and Kirkby, 1972, 104-6; and others below).

2.4.7. Boundary conditions

What can be said about the behaviour of slope endpoints
(Carson, 1969, 77) and about teetonic, isostatic and eustatic
rates? Assumed answers to these questions appear as

boundary conditions in some hillslope models.

In particular, (i) is removal of material at the
base impeded or unimpeded? (Strahler, 1950; Savigear, 1952;
Melton, 1960; Carson and Kirkby, 1972, 139-40).

(ii) is the stream downcutting and/or moving laterally?
(Smith and Bretherton, 1972).

(iii) are divides migrating laterally? (Carson and
Kirkby, 1972, 396-7).
All these possible forms of endpoint behaviour occur in nature

and deserve investigation.

There are some grounds for supposing that tectonic
and isostatic movements need not be modelled expliecitly.
Schumm (1963) argued that available quantitative evidence
on rates of downwearing and uplift supports the classic
Davisian hypothesis of relatively rapid uplift followed
by relatively long stillstands (cf. also Carson and Kirkby,
1972, 21-5). If this were correct, uplift could be

subsumed in an initial condition, much as Davis (1909) did
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in his cyclical scheme. But it seems dangerous to rely on
this interpretation, mainly because in some regions epeirogenic

movement seems to have occurred over a long period of time.

A more important reason for not modelling tectonic
and isostatic movements explicitly is that if the area
affected by uplift is large relative to the length of the
profile, it may be possible to treat uplift as a regional
rather than a local factor, or to treat it indirectly,
through river downcutting. This is a less restrictive
assumption than Schumm's quasi-Davisian hypothesis, and

thus renders the latter unnecessary.

The case of eustatic fluctuations is more complex.
Since sea level has varied over the latter part of geological
time, it has been suggested that pulses of downcutting
(*rejuvenation')have travelled up valleys leading to the
formation of valley-in-valley forms, marked by breaks of
slope and even terraces (Sparks, 1960, 220-4; Young,
1972, 239-U40). However detailed process studies have
revealed that such pulses may be quickly damped upstream;
that the morphological response to 'rejuvenation' may be
complex; and that forms attributable to 'rejuvenation'
are equifinal (Leopold et al, 1964, 258-66, 4l42-5;
Chorley, 1965a, 28; Schumm and Parker, 1973; Schumm,
1973, 1977). Hence it is difficult to know whether

eustatic effects should be modelled at all.

Kirkby (1971, 28) has suggested that the theory of

kinematic waves (Lighthill and Whitham, 1955) could be used
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to examine knickpoint propagation, but this idea has apparently
not been followed up. Luke (1972, 1974) briefly remarked on

the relationship of his models to kinematic wave theory.
2.5 Summary

(i) Hillslope geomorphology studies the forms, processes
and development of hillslope systems. Hillslopes are
usefully viewed as replicated systems, rather than as unique
or restricted features, and their study is related to that of
other replicated systems, notably drainage basins and
topographic surfaces. Within hillslope geomorphology,
morphometry - the quantitative analysis of -land form - is
a major approach alongside historical, process and sediment

studies. (2.1)

(ii) Since theory is inevitable, it is necessary to
examine ideas and assumptions critically. A few trouble-
some terms need to be defined carefully: in particular, a
distinction is drawn here between 'system' (i.e. real-
world system of interest) and 'model' (i.e. simplified
formal representation). The role of mathematics in
geomorphology, and the relationship between modelling and
simplification, are frequently misunderstood: attempts are
made to clarify the underlying issues. The testing of a
model in its domain, including the problem of equifinality,

needs close attention. (2.2)

(iii) Approaches to modelling hillslope profiles are
considered using a simple classification based on five
dichotomies: static/dynamic (including an extended examination

of the important idea of equilibrium); deterministic/stochastic
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(including a discussion of the role of probability in models);
phenomenological/representational (including a discussion of

the representation of geomorphological processes); analytical/
simulation (especially the particular advantages and limitations
of each kind); and discrete/continuous (for further discussion

see Chs. 3.1 and 8 below). (2.3)

(iv) Major geomorphological problems in modelling
hillslope profiles are assembled and evaluated (polygenesis,
feedback, thresholds, magnitude and frequency, laterality,
lithological variation and soil properties, boundary

conditions), (2.4)
2.6 Notation

d in ordinary derivative or in integral

t,t’ elapsed time

X horizontal coordinate
Z vertical coordinate
& rate of downwearing

average rate of downwearing
constant
in partial derivative

in integral

T e o 2 xl

l modulus
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Chapter 3

A REVIEW OF CONTINUOUS MODELS OF

HILLSLOPE PROFILES

... Prince Papadiamantopoulos turned out, in spite of
his wonderfully promising title and name, to be a
perfectly serious intellectual like the rest of us.
More serious indeed; for I discovered, to my horror,
that he was a first-class geologist and could under-

stand the differential calculus.

Aldous Huxley, Those barren leaves, Pt. II,

Ch. 1.

3.1 Introduction
3.2 Static models
3,3 Dynamic models

3.4 Notation
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3.1 Introduction

This chapter gives a fairly complete review of models

of hillslope profiles which treat a hillslope as a continuous

curve. Work on modelling topographical profiles and land-
surfaces is discussed when it is of direct interest, but

not studies of stream and river profiles (e.g. Tanner, 1971).

Related work on hillslopes treated as combinations of
discrete components (for example, free face and debris
slope) is not reviewed here, partly because the applicability
of such models will not be further éonsidered in this thesis,
and partly because there are good brief reviews by Carson
and Kirkby (1972, 140-7), Scheidegger (1970, 120-32) and
Young (1972, 105-9), which remain essentially up-to-date.
By contrast, the field of continuous modelling lacks a
comprehensive and up-to-date review. Models of special
features such as talus slopes or mass failures are not

covered.

There is little consensus in the field about notation,
and there are even some workers who demonstrably use
inconsistent or inappropriate notation. A unified notation
has been adopted here which should aid comparison, and

which may even encourage standardisation.

While an attempt has been made at completeness, there
is clearly insufficient space to list every major equation
in the literature, let alone to provide full proofs of every
result, or to cast the discussion in the rigorous style of

professional mathematicians. The surest guide to the character
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of particular models is the original literature: here only

an overview is provided.

The sharpest dichotomy in practice between sets of
models classified according to the scheme outlined above
(Ch. 2.3) is between static and dynamic models, which are
reviewed below in Chs. 3.2 and 3.3 respectively. A
thematic review seems most natural for static models,
while a historical review with connective summary appears

best for dynamic models.

The profile notation adopted here as standard is

given in 3A.

3.2 Static models

A list of static models proposed for hillslope profiles
is given in 3B. This list includes some models used
for hillslope components, glacially-moulded profiles and
topographical profiles. Over the last century, and
especially over the last twenty years, many functional
forms have been discussed in the literature, usually as
phenomenological rather than representational models. If
a hillslope resembles an arc of a circle or a Gaussian
curve, then that is that. If nothing more is claimed,
then nothing more need be discussed. Here three of the
more popular classes of model are singled out for attention,
together with some stochastic models which are relatively

novel.
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3B

Static models of hillslope profiles

Reference

Tylor 1875

Comments

Cf. outline of Mt. Tabor
(now Israel)

NORMAL
Thompson 1942, 121 Hill outlines
(GAUSSIAN)
Ashton 1976 Mt. Piper, Victoria,
Australia
POWER Tylor 1875 Parabola. Hirwaun, Wales.
SERIES Lake 1928 Parabola. Components.
Gwynedd, Wales.
POLYNOMIAL

Savigear 1956, 1962
Troeh 1964, 1965

Ruhe & Walker 1968

Lewin 1969

Clark 1970
Kleiss 1970
Ongley 1970

Young 1970b

Doornkamp & King 1971

Devon and Cornwall.
'Paraboloids of revolution!
fitted to three-dimensional
forms - quadratic in two
dimensions

JTowa

Incl. quintic. Yorkshire
Wolds.

Parabola. Western U.S.A.
Quadratic. Components. Iowa.

Linear. Components.
N.S. Wales

Components. Mato Grosso,
Brazil.

Linear, quadratic, cubic
discussed

Woods 1972, 1974, 1975 Colerado and Kentucky.

Parsons 1973, 1976b

Blong 1975
Cox 1975

Toy 1977

Cf. Cox 1975

Linear. Components. Italy,
Morocco.

Linear. N. Island, New Zealand
Cf. Woods

Linear. U.S.A.Cubic for
'average' profile
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3B (continued)

Model Reference Comments

CATENARY Davis 1916 Glacial trough cross profiles,
Montana. Idea mentioned by
several later workers.

ARC OF CIRCLE Lake 1928 Components. Gwynedd, Wales.

Juvigné 1973

Components. Belgium.

POWER FUNCTION

Hack & Goodlett 1960

White 1966
Drury & Nisbet 1971
Bull 1975, 1977

Cox 1977a

Toy 1977

Svensson 1959

Graf 1970

Doornkamp & King 1971
Drewry 1972

Till 1973

King 1974

Aniya 1974

Graf 1976a

Virginia. Cf.
Drury & Nisbet

Ohio

Cf. Hack & Goodlet:
Components
California,
Arizona, Utah.
Cf. Cox

Cf. Bull
U.S.A.

Glacial trough cross-
profiles

Glacial cirque long-
profiles

EXPONENTIAL

Dury 1966, 1970

Dury et al 1967
Dury 1972

Tangent-distance regressions.
Pediments

N.S. Wales
Semi-logarithmic regressions.

Pediments.
S. England
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3B (continued)

Kleiss 1970
Doornkamp & King 1971
Toy 1977

Model Reference Comments
Ruhe 1975b, 1977 Profiles. Iowa, N. Mexico,
Hawaii,
Puerto Rico. Cf. Cox
Cox 1977b Cf. Ruhe.
Bridge & Beckman 1977 S. E. Queensland
ASYMPTOTIC Lewin 1969 Yorkshire Wolds
GOMPERTZ
CURVE
COSINE Clark 1970 Western U.S.A.
CURVE
RECTANGULAR Clark 1970 Western U.S.A.
HYPERBOLA
Doornkamp & King 1971
LOGARITHMIC Milne 1878, 1879 Volcano slopes

Components, Iowa

Attempted & dismissed for
concavity. U.S.A.

ANGLE LINEAR
FUNCTION OF INDEX

Pitty 1970

Abrahams & Parsons
1977

Components

Components, N. S. Wales

ARMA

Thornes 1972, 1973

Haining 1977a

Tceland and unnamed area

Cf. Thornes
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3B (continued)

Model Reference Comments

FRACTIONAL Mandelbrot 1975a, Stochastic models
BROWNIAN 1975b, 1975c, 1977

FUNCTIONS

CYCLOID Bridge & Beckman 1977 S. E. Queensland

OTHERS Ruhe 1967 Deterministic (original

not seen)
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Z.2.1 Power series polynomial
This class of model has the general form
P
z=Zfo

Particular cases include p = 0(1)1 (or linear)

Z = bo + b.,Xx

1
p = 0(1)2 (or quadratic; including parabolas)
- 2
z2 = by + byx + b2x
p = 0(1)3 (or cubic)

Z = bo + b.x + b2x2 + b3x3

1
A similar family of models has the general form

X =ZBP2F

Most authors use 1low-order polynomials: the highest
order employed in hillslope profile models appears to be 7
(Toy, 1977). A linear model will naturally only be a good
approximation of a hillslope which has a nearly constant
gradient. A quadratic model is appfopriate for a smooth
convex or concave slope; a cubic allows an inflexion; and

higher orders allow increasingly complicated forms.

Polynomial models are phenomenological: the idea that
they can 'explain' hillslope profiles (Woods, 1974, 416) is
absurd, unless an extremely weak notion of explanation is
adopted (cf. Ch. 2.2.2 above). Since the form of the function
is not derived from geomorphological theory, the best that
can be hoped for is a parsimonious summary of the data

(Cox, 1975, 489; cf. Lewin, 1969, 72).

The linear model has been used (Doornkamp and King, 1971;

Blong, 1975; Toy, 1977) to estimate average angle 0 from the

relation
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dx

|

This seems pointless, if only because § can be calculated
directly from

tan B = Za

%,

3.2.2 Power functions

In its simplest form, a power function is represented by

Zg = % = ax?
although other versions are also found. Power functions
have been fitted separately to individual components (convexities,
straight slopes, concavities). They do not allow inflexions.
The model is again essentially phenomenological, although
one of Kirkby's models has a power function solution (see
below). The reader is referred to a debate on the 'allometric’
interpretation of power functions (Bull, 1975, 1976; Cox,
1977a; Bull, 1977) which will not be prolonged here. It
is also of interest to note the use of power functions to

model glacial trough cross profiles and glacial cirque

long profiles.
3.2.3 Exponential function

In its simplest form, the exponential model has the
form

7 = ae—bx , b>0
where e is the transcendental number 2.71828..., the base

of natural logarithms. The model is such that z tends to
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O asymptotically as x tends to infinity: it is. an ever-more-
gentle concavity. Since the model will not allow inflexions,
it can hardly be appropriate for entire profiles, unless an
upper convexity is absent or negligible. Nevertheless it
has been applied to entire profiles (Ruhe, 1975b; cf. Cox,
1977b; Ruhe, 1977).

A more complicated relative is implicit in the tangent-
distance regressions of Dury (1966, 1970; et al, 1967) on
pediment profiles, and another relative is implicit in the
'semi-logarithmic' regression used, but not explained in

detail, by Dury (1972).
3.2.4 Stochastic process models

In the last few years, a new kind of static model has
been introduced, following the idea that hillslope profiles

may be regarded as realisations of spatial stochastic processes.

Thornes (1972, 1973) has applied autoregressive models,
moving average models and mixed autoregressive-moving average
models borrowed from time series analysis to series of
measured slope angles. These models are all special cases
of the general ARMA model (Box & Jenkins, 1976; Chatfield,
1975, 41-51). The application of these models to hillslope

profiles faces several problems, which deserve discussion.

Firstly, the models are essentially phenomenological.
Secondly, in time series analysis it is usually natural to
suppose that the present is influenced by the past, but not

vice versa: the arrow of time limits plausible specifications.
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On the other hand, a point on a slope is related not only to
points upslope (downslope sediment flux) but also to points
downslope (e.g. basal undercutting). Thus the unilateral
ARMA models need to be replaced by bilateral models which
allow influences to operate in both directions. This problem
was recognised by Thornes (1976, 59), although Church (1972,
80) took a different view in a study of fluvioglacial stream
profiles: he argued that it was unlikely that control from
downstream would be effective for long distances. However,
those bilateral models of spatial stochastic processes

which have been discussed in the literature (Whittle, 1954;
Haining, 1977a, 1977b) seem inappropriate for the geomorph-
ological case in which upslope and downslope influences
differ in kind. Thirdly, feedback between form and process
is not captured by these models (ef. Ch. 2.4.3). Fourthly,
it seems possible that in certain respects results may be
artefacts of the measured lengths used in profile survey

(Thornes, 1973).

Mandelbrot (1975a, 1975b, 1975c¢, 1977) considered a
variety of stochastic process models for landsurfaces. The
most interesting are based on the class of fractional
Brownian functions. Given points P', P" which lie in a
real Euclidean space, a fractional Brownian function B, is

H
defined by a property of local differences

By (P') - By (P") = ABy, say
AB., is drawn from a normal (Gaussian) distribution with mean
H

zero and variance iP'P"\zH, or

{or pv| 2H
88, ~ N (o, fprpri*)
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H, the parameter of the process, lies in the interval O0<H K1,
Mandelbrot's model encompasses both profiles (space has
dimension 1) and surfaces (dimension 2). H=0.7 turns out

to generate quite realistic landsurfaces. Although a

Poisson approximation to a Brownian surface was motivated by
an idea of random faults, this is geologically unrealistic
and the model is best regarded as phenomenological. It is
here classed as static: Mandelbrot, however, was not clear
about whether the real Euclidean space in which points P 1lie
could be interpreted as physical space-time, which would

make his model a dynamic model.

Parsons (1973, 1976b) and Graf (1976b) have explored
the use of Markov-type ideas and transition probability
schemes for hillslope modelling. Such an approach treats
hillslopes as combinations of discrete components, and

will not be discussed here in further detail.

3.3 Dynamic models

The review of dynamic hillslope profile models which
follows is historical, by dates of authors' first key
publications in the field. This is the line of least
resistance: no other sequence appears at all satisfactory,
however. Some readers may prefer to read the connective
summary (3.3.22) first, and then to refer to modellers of

particular interest.
3.3.1 Jeffreys

Jeffreys (1918),best known for his distinguished work

in geophysics, published the first continuous model of
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hillslope development, although it was not presented as such.
This paper is of more than historical interest: its ideas
and results remain of signal importance, and it has been
sadly neglected by recent workers (cf. Cox, 1977c¢, for an

appreciation).

Jeffreys gave a dynamical treatment of the flow of
surface water during rain and then considered denudation
by viscous flow. The rate of denudation with uniform
soil was shown to be a function of d tan , where 4 is
the depth of water and § slope angle. If this product is
constant, there is an interesting case: 'The surface sinks
at a uniform rate all over retaining its size and shape,
but progressively sinking. This represents one case of

the "peneplain"' (Jeffreys, 1918, 184).

If a surface z = z(x,y,t) is such that contours are
parallel to the y-axis then the form of the 'peneplain'
can be derived. This special case is clearly that of a

hillslope profile z = z(x,t). It is given parametrically by

z =a-b (2 cosec 8 - sin 0 )

X c -b (cosec B cot O - cos D )

where a is a function of time and b and ¢ are constants.
This constant form profile is concave upwards and almost
parabolic except near the divide where it is nearly

vertical. This last prediction is not very realistic, but

was discussed at some length by Jeffreys.
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The idea of constant form, although present in the
'dynamic equilibrium theory' of Gilbert (1880, 1909),
appears to have been introduced independently by Jeffreys.
He provided some motivation for this idea by considering
the stability of the peneplain under small disturbances.

He argued that such a peneplain was stable for corrugations
running across the slope but not for those running down

the slope. This kind of instability was thought to be
counteracted much of the time by soil friability and

vegetation.

This paper is remarkable for its elegant and rigorous
approach and its concern to elucidate the mechanics
of surface water flow and erosion. It originated two
of the most valuable ideas of hillslope modelling:
constant form and stability under perturbations. Constant
form is introduced as a hypothesis, not as a theorem:
Jeffreys made it clear that it was 'an interesting case',
But did not claim wider validity for the idea. However,
the results of stability analyses provide some motivation
for such a hypothesis. Here there is a striking parallel

with the later work of Smith (see below).
3.3.2 de Martonne and Birot

de Martonne and Birot (1944), in a paper on slope
development in humid tropical climates, suggested that
regolith depth w (measured normal to the surface in this
case) followed

M

2t

= O SW\Q
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whence, using geometrical and trigonometrical identities, the
hillslope follows

?ES [ ‘ %“ézi‘ﬁ J =G

ot 22
(Here the partial differentiation symbol 2 has been used,
although de Martonne and Birot showed a cavalier disregard
for the distinctions between § (small difference), d
(ordinary differential) and Q). The movement of the
stream at the slope base was given by a quadratic

zb = blt + b2t2

The solution is cumbersome and given parametrically.
Choosing physically admissible values for the basal slope,
de Martonne and Birot considered the effects of different

downcutting regimes.

This model is not very well presented. The central
premise %% = a sin @ leads to the prediction that w
increases fastest on vertical slopes, which is absurd if
only because vertical slopes do not carry regoliths: hence
the need to choose 'physically admissible' values. The
main feature of interest is the treatment of different

downcutting regimes permitted by the quadratic.
3.3.3 Culling

Culling (1960) suggested that the diffusion equation
might serve as a phenomenological model for profiles and
landsurfaces. In one horizontal dimension
—_— = O —n
€ ox
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i.e., rate of downcutting is proportional to horizontal rate
of change of gradient. One salient advantage of this
equation, which also applies to heat conduction, is that

its properties are well understood (e.g. Carslaw and Jaeger,

1959).

It is easy to show that the diffusion equation follows
from an assumption that sediment flux S is proportional to
gradient, i.e.

. 9

Szatanf = a (—.sé )
From continuity

0z _ _’@_S =—2 [& (—3_2)] = qa_l_z

26 2% Ax X Ax*

Culling (1963, 1965) argued that the diffusion equation
was especially applicable to soil creep. The hypothesis
that creep is the result of numerous randomly directed
movements of minute extent made by individual particles
was shown to lead to a diffusion equation. Various
modifications and generalisations of the model were also
discussed, which allow for non-random influences and mass
transport. All three papers included several worked examples

for particular initial and boundary conditions.

While the physical validity of Culling's stochastic
hypothesis is doubtful, the diffusion model remains
available for processes with sediment flux proportional to
gradient. Indeed, if creep is regarded as proportional to
sin 6 ( ~ tan § for B <20°) this is an appropriate model
irrespective of the microscale mechanics which underlie the

process.
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3.3.4 Scheidegger

Scheidegger proposed several models of hillslope
development in a series of papers published in the 1960s:
convenient summary was provided by Scheidegger (1970,

Chs. 3.5, 3.6, 5.8).

A family of linear models have the general form

0z

2t
In particular cases (i) f = 1 (constant form) (ii) f = =z
(iii) r = —:%E . In each case straightforward analytical

solutions exist, but the models are admitted to be

simplistic at best.

A family of nonlinear models suggested as an
improvement has the general form

% ok (1 (B

The multiplying factor
[0 GV = (e eacs] = s

reflects the assumption that 'weathering' acts normally to
the slope. Since sec B increases as O increases between
0° and 909, the effect of this factor in the nonlinear
models is that steeper slopes downwaste relatively faster
as compared with the linear models. Since analytical

solutions are only available in special circumstances,
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numerical solutions are generally necessary. The special

cases suggested are (i) to (iii) above, the last being

regarded as most realistic.

Modifications and generalisations to these nonlinear
models include generalisations to allow for lithological

variation and for endogenetic effects (uplift or subsidence).

Although these models are motivated by various remarks
about supposed processes, they are best regarded as
phenomenological. The assumption that denudation acts
normally to the slope seems more appropriate for weathering-

limited development than for transport-limited development.

Writing in a more general context about large scale
landscape development, Scheidegger (1970, Ch. 5.8) motivated
a diffusion equation

az bl 1 ]
2t I* Dy

by an extended analogy between landscapes and thermodynamic
systems. Illustrative solutions show the decay of an
idealised range and of an idealised slope bank. Modifications
and generalisations of this model were discussed by
Scheidegger and Langbein (1966, 3-5). The analogy remains

an analogy; these models are also phenomenological.
3.3.5 Takeshita

Takeshita (1963) discussed various models for different
kinds of processes and presented results of simulations

obtained with finite difference schemes. The models
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included erosion rates normal to the slope and derivatives
with respect to arc length: they have been translated here
into partial differential equations of functions and derivatives

expressed vertically and horizontally.

Subduing recession follows

2 2
*Df. = _2—)<-[0\ tOMG]

in the case of lift-and-drop processes or the similar

relation
Z
— = -—?— [Q swn 9 :(
ot X :
in the case of soil creep, unconcentrated wash and
'agueous solifluction'. Parallel recession follows
. . ,
Dt X

in the case of rill wash and large-scale landslides while

steepening recession follows

2’% ) <‘§;:)[" v |(z-2)]

in the case of head-dependent processes such as fall,

gullying and mudflow. In practice these modes of recession

are frequently combined.

Takeshita appears to have been unaware that analytical
solutions are available for some of theseequations. Their
major interest lies in the process motivation supplied

by Takeshita.
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3.3.6 Young

Young (1963) built a set of what would now be called
simulation models, although his simulations were not assisted
by any computer - evidently a Herculean labour. The models
are centred around a continuity principle: eight equations
presented in an elaborate argument (Young, 1963, 49-50)

are in essence nothing more than a single continuity equation

B\S +:.a_2 =O
X 2t

Much of the interest of these lies in their relation
to Young's field experience, together with the variety
of conditions investigated. 1Initial slopes included a
straight 35° slope with level surface above, a 35° slope

with level surfaces above and below, and a level surface.

Sediment fluxes were given by the following equations

S = € sin 6 (i)
s=¢C,0°% (ii)
S = Cyx sin 0 (iii)
S = 03 x sin 9, distances on concavity doubled (iv)
S = Cy w sin ) (v)

(1) and (v) may represent creep and (iii) wash. (iv) may
yield an approximation to the effects of catenary variation
in texture. (ii) is an example of conditions in which
sediment transport is very much faster on steep slopes than

on gentle slopes.
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In addition, 'direct removal' was included in some
models. This term covers processes such as solution which
remove material from the slope profile in a time shorter
than the time step used in simulation. Assumptions
employed were

S =¢C >0

5 3

S C6 sin B

The rate of weathering was included in two models to produce

relative estimates of soil depth

C, w sin 9

7

C8/w

W
W

A variety of slope base conditions were considered:
no vertical erosion, with basal removal impeded or unimpeded;
varying rates of uniform vertical erosion; and alternating
periods of vertical erosion and no erosion with unimpeded
basal removal. One further feature of interest was that

rapid mass movement was assumed at angles above 35°,

reducing the angle to 350°.

These simulation models, which have influenced many
subsequent workers, contain many interesting ideas, which
in general are better investigated either analytically or
by computer simulation. Parsons (1976a) has recently

investigated similar models.
3.3.7 Trofimov

Trofimov and his coworkers at Kazan have published
several papers since 1964 on continuous models of hill-

slope development mostly in Russian. It is not possible



to give here an adequate summary and assessment of earlier

work.

Trofimov and Moskovkin (1976a) derived an expression
defining the stable equilibrium profile of a slope
developing under sheet flood erosion, which turns out to

be concave. They (1976b) used a continuity equation

X o€

for

S =q F

where q is water discharge and p sediment concentration

2 oz

+ bx + ¢) =~

X

The solution was obtained using Legendre polynomials: it

F = (ax

is a sum of an infinite series. Trofimov and Moskovkin
noted an important property of this kind of solution:

initial details become increasingly irrelevant.

They also derived a solution of the diffusion equation

2
9z _, 02
2t dX*

for the boundary condition of constant basal recession,i.e.

zy = z (bt, t) = O
3.3.8 Souchez

Souchez (1966a; cf. 1961, 1963, 1964, 1966b) considered
the development of a hillslope profile under 'viscous' and
'plastic' mass movements. It is, unfortunately, difficult
to follow his argument: in addition to several minor errors,
the presentation is marred by a deep-seated confusion over

coordinate systems. The following is a reconstruction.
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Both viscous and plastic flow follow

._.A_V - - T > T,

du M )
where v is speed of mass movement
u depth below surface, measured normally
T=cusin O tangential stress
g specific weight
T, critical stress
7] coefficient of viscosity

(cf. Strahler, 1952, 926).

For viscous flow T_= 0. If speed v = O at

u = ug then

V:‘rﬁ“g (w” —u*) TP
R

by integration, and average speed

_ ~ o sm B a2
S VAR AL
0 3.),, Y
0
The sediment flux 3
S = U\,ov = 6;‘:'0 SW\@
37]

o' (L22) 9 <20
3n X

From continuity
3

EEE B —_225 Crkko 2}71

eomvam—

e o ——

dk X e %™
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This is the diffusion equation yet again.

For plastic flow T, > : the system exhibits a
threshold. It is straightforward to obtain expressions
for v, v and S but the continuity equation is valid only

if the conditions for mass movement are met everywhere.

Apart from the difficulties surrounding his
presentation, the problem with Souchez's model is that there
seems to be little physical justification for positing either
viscous or plastic flow (Scheidegger, 1970, 97-8; Young,1972,
112-3). It is interesting, however, to see another motivation
for the diffusion equation, as a low-angle approximation to

hillslope development under viscous flow.
3.3.9 Ahnert

Ahnert (1966, 1970b, 1971, 1972, 1972b, 1973, 1976a,
1976b, 1977; see also Mosley, 1973, Moon, 1975, 1977T)
has been developing simulation models of hillslope and
landsurface development over the last decade. The emphasis
here is on the latest versions (FORTRAN programs; COSLOP
for hillslopes, SLOP3D for landsurfaces). The basic
structure of both programs is similar, and each is written

in a modular fashion.

Weathering rate depends on soil thickness. It may be
mechanical (decreasing exponentially with thickness),
chemical (increasing and then decreasing) or a combination

of the two. More 'resistant' strata, either horizontal,



Start

v
READ initial profile/surface
and program parameters

Y

v
Weathering

Vv
Downcutting (if any)
Repeat

. \/
main Waste transport

loop

v
Landsliding (if any)

WRITE results

AN

End

vertical or dipping, may be incorporated. Resistance
results in reduced weathering rates. Infiltration

properties may also vary with lithology.

Downcutting takesplace at one or two points. A

variety of modes of baselevel lowering are possible.

Waste transport may be by splash, wash, plastic
flow, viscous flow or sliding. Sediment flux for splash
follows

Ci
S o« Swm B

and for wash

S = r d% sin®3 8
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where r is a resistance variable ( modelled as a power
function of soil thickness) and d is depth of flow.

Plastic flow depends on a threshold w!

S o« (W swB —uw') W osmb W

while viscous flow occurs at all gradients
C
. 4
§ o« W Snb
Debris sliding occurs so that no slope above 35° carries

a regolith. (Note that rock faces above 45° are allowed).

These assumptions on waste transport (Ahnert, 1976b,
1977) are basically semi-empirical. They are a great
improvement on previous sets of assumptions in earlier
versions of Ahnert's models. The most obvious absentees
are options for rotational failure as opposed to
translational failure (c¢f. Hutchinson, 1968) and for

gradient-dependent creep
S o« tan B

The option for viscous flow is clearly meant to be the

alternative to such creep.

Assumptions about weathering and downcutting seem
relatively plausible, but this is probably a reflection

of present ignorance about these matters.

The great strength of these models is also their
great weakness. Modular structure and versatility combine
to make them attractive tools, although naturally they
must be used with care. More sensitivity analyses,

following Moon (1975), would be valuable.
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3.3.10 Devdariani

Devdariani (1967a) drew an analogy between stream long-
profile development and the conduction of heat in a

thermodynamic system, thus motivating a diffusion equation

‘ 2
oz 0z
2k X
with general solution .
oo "'bit
z = af J Sin ¢ X

=1
where the a’'s, the b's and the c's are constants, ordered

so that by <b,<b,<...<Db . As time t increases, the
1 2 3 co

first term comes to dominate the series so that

b .
z = a'e sin c¢x

dropping the subscript i = 1. As t2¢0, 20,

The model was generalised to allow for spatially
variable rock properties, stream discharge, etc., and
for the existence of a limiting profile z . (x) for

Dz
which _“lm ={) . The solution now takes the form

o 0o —b;€
! L . g
z = 2z, (9 + X a. e ¢; (x)
(=l
Devdariai suggested that models of this kind were
applicable to hillslopes developing under mass movement

or surface wash.

Assuming again that as t increases, terms indexed

by 1> 2 become negligible, the right-hand term becomes
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'bt, a function of time alone, and

the product of a'e
c(x), a function of distance alone. This is remarkably
similar to characteristic form solutions sought by

Kirkby (see below), although in the latter case, the

term corresponding to Z i (x) is often identically zero.

The main difficulty with this model is the form of
the solution which includes the sum of an infinite
series. In general, these are no grounds for assuming
that the b's and t are such that terms other than the
first may be neglected. The form of the limiting profile
Z i

lim
suggested how it might be determined from field data.

(x) is not specified theoretically, nor is it

This also applies to the functions ci(x). Moreover,
the idea of a limiting profile stands in need of detailled

geomorphologicai justification.

In a later paper, Devdariaii (1967b) suggested an

equation for sediment flux
. 0Z,
S = —o T4rel
DX

where Zrel is height above the limiting profile, so that

z (x, t) = = ' (x) + Zpel (x, t)

M\
Thus

IQZ; - ?azwd, : EEE - ?E%ma *.?ZE”M~

A 2% W W dx

The equation for S was generalised to a = a (x).
Using a continuity equation with an endogenetic term

'_bf -+ ?_Z = {‘\(X)t)
X 2t



it may be seen that

/)
g% = gi Flxt) = B[—: a(x) Zk&]-\—@(xt)

with solution required for znej(x, t). The model was again
regarded as applicable to both hillslope and stream profiles.
A series solution was obtained for general "f(x, t), and
some special cases were investigated. This model is subject
to the kind of criticisms made above, but remains of
interest as a phenomenological model taking uplift into

account.
3.3.11 Hirano

In addition to the papers discussed below (Hirano,
1968, 1972, 1975, 1976), Hirano has published ten other

papers in Japanese.

Hirano (1968) proposed a composite linear model

oz 2L? + BB

2t x>

Solutions were presented for the case of a 'finite mountain',

+ Cz

symmetrical about a divide at x = O, for the special case

¢ = 0, and for a variety of boundary conditions. Lithological
variations were treated by letting a, b and c become
functions of x, z and t. and endogenetic effects by

adding a function f to the model

2 _ a8z b2 Lz o+ F(xE)
I x> X

In particular, the endogenetic function was assumed

separable

f (x, t) = X(x) T(t)
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Examples of T were instantaneous impulse, uniform effect
and exponential decay. An example of X was a step function

X =1 x'<xb

0
x>xb

representing a fault scarp.

The basic equation, a second order linear partial
differential equation, permits a wide variety of solutions
depending on parameter values, initial conditions and

boundary conditions.
iz
Hirano suggested that the term u,§zi
(which is plausible); that the term b‘g—i

(thereby assumed €istance-independent); and was at a loss

represented creep

represented wash

to provide a process interpretation for the term cz. 1In
fact, the model is essentially phenomenological, and Hirano's
attempt to provide a process motivation is unconvincing. The
rationale for the model is, in large part, its tractability

which stems from its linearity in the derivatives.

Hirano (1972) reported some testing of this model on

a fault scarp and a valley wall in the Hira Mountains, Japan.
Hirano (1975) motivated the linear model
9z &iz + b‘b_g
PAd %™ X

as an approximation to

2, -
T[S ]

i
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itself regarded as a model of the combined effects of creep
and wash. He presented several constant form solutions
(although without reference to earlier work deriving such
solutions) and some more general solutions, both analytical

and numerical.

Most recently Hirano (1976) discussed a generalisation

of his linear model to two horizontal dimensions
2z 2z
( + 'aj ) <_ +—— ) + F(x'y)t)

(In some applications the function f was taken to be
identically zero). This equation can be transformed into

a diffusion equation by substitution. Hirano paid especial
attention to constant form solutions

bZ 227 i E bZJ_(aZ) 4 5 = 0
4 | 02 £ 92 ) Ly =

and to the relationship between channel and valley slopes.
3.3.12 Pollack

Pollack (1968) discussed various simple models briefly
with special emphasis on conversion of partial differential
equations to difference equations. The only original

model is the uninteresting equation
2z _ ¢ < 0
ot

where & is a random variable,

In a later and somewhat inaccessible paper Pollack
(1969) proposed a modified diffusion model

0z P "\ 0z I
—_ = é;; [?p‘<2) 5;-:] + \1(k,2)

2t
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where f, and f2 describe the characteristics of different
strata influencing the rates and position of stream down-
cutting and valley widening. Numerical experiments with
the model attempted to simulate the development of the
Grand Canyon, with some success. For an accessible summary

of this model, see Harbaugh and Bonham-Carter (1970, 531-5).
3.3.13 Aronsson

Aronsson (1973) discussed a model in which denudation
intensity £ is a function of position f (x, z). Denudation
was assumed to act normally to the slope, with transport
of material so rapid that loose surficial debris does not
affect the process (although in some applications a protective
regolith was assumed to cover the hillslope surface). Hence
the model is applicable to weathering-limited development,

rather than transport-limited development.

If P (x, 2) is a point initially inside the slope and
t (x, z) the time elapsed before P appears at the surface,

then t is given by
ds

t (x, z) = minj\fz;) s
where the minimum is taken over all curves which connect
P and the initial profile z = z (x, 0), and where s 1is
the arc length of the curve. This procedure resembles the
use of Fermat's principle in optics (cf. Gelfand and Fomin,
1963, Appendix I). Knowledge of the function t (x, z) is

in principle sufficient to describe the development of a

hillslope profile. Curves of the form t (x, z) = constant

describe profiles at particular times.
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Unfortunately, no general method is known for
calculating this function. However, a numerical procedure
developed by Rydman is applicable to some special cases
in which the initial profile is linear and denudational
intensity (inversely proportional to resistance) is constant
for each of a set of parallel horizontal layers which make
up the hillside. Aronsson presented the results of a
series of simulation experiments showing diagrammatically
the sequences of hillslope development under various

hypothetical conditions.

These results are implausible: many profiles include
vertical or overhanging components, generally only
possible in strong bedrock. Moreover, the procedure
demands a specification of an initial profile z (x, 0)

which is rarely practicable.

The central question is, however, whether the
Fermmat-type principle is a natural model for hillslope
development. In an earlier, more difficult, paper
Aronsson (1970) proved that the principle was a consequence
of certain axiams. Hence the question becomes whether
these axians are appropriate. This is in doubt, particularly
because of the assumption that hillslope development after
some time t depends only on the profile at t (Aronsson, 1970;

independence assumptions, 675; Condition D, 676).
3.3.14 Gossmann

Gossmann (1970, 1976) used a basic equation for

sediment flux




- 9l -

tww & 0>0,
S =&XM s O cos O +l>

0 6 <6,

Here the first term represents wash: the multiplying factor
sin B cos @ takes a maximum at 8 = 450 and is intended to
mimic the fact that wash erosion reaches a maximum at
intermediate angles (although the peak appears to be

much below 45°: Horton, 1945). The second term represents
processes which are independent of distance x yet

dependent on a threshold angle 9° . This flux equation
was combined with a continuity equation (unfortunately

misquoted)

™ o

Results from these equations for different parameter
values and boundary conditions were presented graphically
by Gossmam (1976). These results stem from a simulation
version of the model. They were compared with firstly,
semi-arid and arid conditions ('pedimentation' and surface
wash assumed dominant); secondly, 'periglacial'! conditions
(solifluction and surface wash); and thirdly, tropical
wet and dry conditions. Special equations were also

employed; for example, in the periglacial case the equation
s 30 cos 30 0 B30
S = 3x* snf ces O +{
o]
0 g >30

is meant to mimic the decrease of solifluction caused by
removal of fines by surface and subsurface wash. The term

sin 30 cos 30 reaches a maximum value at 8= 15° (although
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this maximum is 3}, not 1 as stated by Gossmann).

The most valuable feature of Gossmann's paper is the
link forged between hillslope modelling and climatic
geomorphology, especially as practised by Blidel and
his disciples, although many of the underlying theses are
accepted uncritically.(cf. Stoddart, 1969). On the other
hand, while hillslope development is modelled in a rational
way, the form of sediment flux equations is not always

motivated convincingly.

Subsequent simulation work in a similar style
(Rohdenburg et al, 1976) used the basic sediment flux
equations

S a tan 9

S = a x® sin® §
and explored the extent to which particular forms are
process~specific, paying special attention to basal

conditions.
3.3.15 Kirkby

Kirkby (1971, 1976a, 1976b, 1977a; Carson and
Kirkby, 1972; Wilson and Kirkby, 1975) has produced some
of the most valuable models of hillslope development at

present available.

The first family of models (Kirkby, 1971, Carson and
Kirkby, 1972, 107-9, 433-6) are best described through an

example.



Sediment flux is given by

S = ax | (—-%f)n

and must satisfy a continuity equation
S 0z
—_— + — = QO
X 2t

whence
D) ¥ 'BZ)Y\ dz 0O
é;: [.Q.X C’S; ] *‘-5; =
Kirkby sought 'characteristic form' solutions of the kind
z (x, t) = X (x). T (¢t)
i.e., the variables were assumed separable. This kind of
solution is often associated with exponential decay
T (t) = cle'°2t
(Wilson & Kirkby, 1975, 215-7; but beware typographical errors
in eqns. 6.214, 6.218, 6.224). With the boundary conditions
of horizontally fixed divide and horizontally and vertically
fixed base with unimpeded removal, an approximation to

‘:—\” +|]]

X(x) is given by
X( =z [ "(%)
N +1]

S\ X,

Since both z/zd and x/xb are dimensionless this funection

gives the shape of the profile. The scale of the profiles
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varies as Z3 since X, is assumed constant. In this case Zg
must decline exponentially for the solution to be valid:
and, indeed, this is consistent with the empirical finding
(but on a different scale, and over space rather than time)
that denudation rate is proportional to relief (Ahnert,
1970a). Furthermore, some simulation results suggest that
hillslopes may converge towards a state in which

dz = -cz2 , c>0
dt

Kirkby, 1976a, 259-60).

The special case m = O, n = 1 yields the familiar
diffusion equation, discussed by Culling and others.
Conversely, it may be seen that Kirkby has generalised the
diffusion equation, which now appears in its proper
perspective as merely one possible transport law. Exact
results available for this case encourage the contention
that empirical convergence towards characteristic form

solutions may be quite rapid.

Initial conditions do not need to be specified to
obtain characteristic form solutions. A further point of
interest is that the approximation to X (x) quoted above

is a power function, discussed above as a static model.

Signal advantages of the family of models of which
this is an example include, firstly, the empirical realism

of the sediment transport laws for many individual processes

such as creep and wash; secondly, the interesting and
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important idea of characteristic form; and thirdly, the way
in which the model generalises the diffusion model. The
main disadvantage of the solution obtained for X (x) is

its dependence on a restrictive set of boundary conditions.

(Note that in the more general case

s = Fx) ‘-%—,Z()h

RNCICIRRECIC NCLY

N

The n in the right-hand term is erroneously omitted from

Carson and Kirkby, 1972, 433, eqn. Bl)

(For applications of these models, see Kirkby and

Kirkby, 1974, 1976; Richards, 1977).

The second family of models (Wilson & Kirkby, 1975,
186-8, 199-200, 216-7; Kirkby, 1976a) all centre on the

sediment transport law

S = ¢ (et ) (-Z)

For example, with a continuity equation
W L2 _g
Ix 2t
and constant form
%2
2t

1
!
53

the solution is

Z

t

2

Q( 2
= e (+ )]

(Wilson & Kirkby, 1975, 199-200).
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The sediment transport law used for this family seems
to be quite good at representing the combined effects of
creep and wash, and leads fairly readily to a variety of
solutions (other examples are given in the references

cited).

The third family of models (Kirkby, 1976a, 1976b,
1977a) are exmplified by a simulation model which incorporates
climatic and hydrological variables (Kirkby, 1976a). For
other work including hydrological and pedological processes,

see Kirkby (1976b, 1977a).

Daily rainfall falling on a hillslope profile is
partitioned into overland flow, subsurface flow,
evapotranspiration and change in soil water storage.
Annual volumes are computed using an assumed frequency
distribution of daily rainfall. Sediment fluxes for
creep, wash and solution are computed as functions of
hydrological and morphometric variables, and the rate of

downwearing calculated from a continuity equation.

Creep (or splash and unconcentrated wash in arid
areas) follows

S = 10 tan © em? yr-l
and soil wash

S = 170 q2 tan @ em? yr'l
where q is annual overland flow flux in m2 yr'l. Solution
is calculated separately for each oxide using an approach

developed from that of Carson and Kirkby (1972).
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Simulation experiments reported were for a fixed slope
base. Input was an initial slope profile, climatic
parameters, and rock and soil parameters. Output included
slope profiles, flow volumes, rates of lowering and soil
thickness. The results included simulations of the
variations in slope profile development and sediment

¥ield with climatic parameters.

These simulation models, by explicitly incorporating
climate, hydrology and pedology, represent a great leap

forward in hillslope modelling.
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3.3.16 Smith and Bretherton

Smith and Bretherton (1972; c¢f. also Smith, 1971, 1974)
presented two very interesting models in an extremely
important theoretical paper. Both were motivated by the
example of sand-clay badlands, which have little vegetation
and a fairly impermeable substrate, yet are asserted to
embody the fundamental aspects of drainage basin evolution

while retaining relative simplicity.

The 'smooth surface' model is aimed at the basic
problem: how does an initial surface z = z (x, y, t) which
slopes only in the x-direction, falling monotonically away
from a divide at x = 0, evolve under rainfall-produced
denudation, and how does it come to assume a form similar

to that of known drainage basins?

The assumptions made in this model were set out very
clearly. The substrate is homogereous , rainfall is uniform
and steady,and there are no losses of water through
evaporation or infiltration. The surface z is smooth in
the sense that it is (at least) twice continuously
differentiable in the space domain, and (at least) once
continuously differentiable in the time domain. Both water
and sediment are assumed to flow downhill (rather than, for
example, in the direction of the free water surface), and

are constrained by continuity equations.

The key assumption, however, is that of a sediment

transport law
“Univer,
o L7/
o‘\\ascueNCE g
- & NG 1979
gECTION
Librar)
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S

f (g, q)
IVZ‘ = gradient

where g

and S is constrained by the inequalities

N of of
+>0 )5§>O ’3—3,>O ror 9,9 >0

The operator V is the directional differential
operator which yields the vector field of maximum gradient
when applied to landsurface altitude . z. Taking the
modulus gives the scalar field of maximum gradient.

4

Az 2. .
IV'z| = g would equal 57 if and only if 2— = 0, that
X Qy

is, there is no plan curvature.

This model was specialised first to one horizontal
dimension to solve for topographic profiles z = z (x, t)
with the boundary conditions that no water or sediment
crosses the divide. Solutions obtaiped were, firstly,
'constant form' solutions for which éé?==—ﬁx 3 the conditions
under which these are convex or concave were investigated;
secondly, time-dependent solutions for the special case

S=cqgflgl ;myn>0

provided that there is no sediment sink
e

g z dx = constant

o
and that 2n¥m, n + 1% m,

The solutions have the form
(~w +n ]_"
{

-~C
- 2 —_ ES ) n n—
z =¢% [l (Xl, ;0K x €%,
=0 ) X > ><b
where ¢, = 1/(2m - n)
Xp = c3t°2

and the constants c;, c3 reflect the no sediment sink constraint.
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Roughly speaking, it seems that if 0<m<1 there will be an
inflexion of the slope profile, but if m>1l, the profile will
be everywhere concave. Smith and Bretherton interpreted
these solutions as models of stream channels and noted that
they imply continuous declining development: steady state is

not achieved because the time-dependent term never vanishes.

The problem of initiation of channel-like features
was then treated using the method of stability analysis
which is standard in hydrodynamiecs (e.g. Chandrasekhar, 1961;
see also Allen, 1970, 61-5). The central question is whether
constant form solutions are stable under perturbations of
infinitesimal amplitude. In one horizontal dimension it
turns out that for any transport law S = f (g, a) the
constant form solution is stable: for example, knickpoints
(of infinitesimal amplitude) are always removed. In two
horizontal dimensions, the result is that channel-like
forms must grow on concavities, but will disappear on
¢onvexities. Smith and Bretherton suggested that these
stability results may be extended from the constant form

solutions to the more general time-dependent solutions.

According to Smith and Bretherton, a transport law,
to be realistic, should have an associated constant
form surface which is convex in the upper portion and
concave in the lower portion: it is then termed a
'landscape-forming transport law'. Such a law should be

able to account in broad terms for the existence of a
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stable channel network, which reflects an approximate
balance between positive feedback processes which cause
the necessary instability for channel growth and negative
feedback processes which give the necessary stability to

check unbridled channel growth.

A 'discrete channel model' is necessary, according
to Smith and Bretherton, because neither analytical nor
computer methods draw results on the later stages of
. channel development from the smooth surface model. The
aim is to model a continuous surface consisting of
discrete streams and valleys, but this involves a major
difficulty: the need to specify a law of lateral channel

migration.

Given that fluxes of water and sediment enter a
channel from both side slopes, how does the stream move
sideways? Or does it remain approximately fixed horizontally,
downcutting in the same place? Smith and Bretherton
hypothesised that a stream moves away from the side slope
contributing the larger sediment flux, and so there is a

tendency to equalise fluxes.

A model of a two-valley system, with side slopes at
an angle of repose, and relatively straight streams
with channel slopes much lower than side slopes, was
subjected to a stability analysis. The constant form
solution turned out to be unstable to perturbations of
infinitesimal amplitude. On the other hand, a model with

horizontally fixed streams produced embarrassing results:
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small streams become perched high up on the valley side
slopes of other streams. Since neither model seems very
realistic empirically or very well developed, the problem

of lateral channel migration remains unsolved.

Both the approaches and the results set out in this
important paper merit long discussion. The use of a
general model is linked with the aim of explaining typical
or quintessential fluvial topography in qualitative terms.
It follows that the Smith and Bretherton models cannot be

employed to explain differences in hillslope form over

space or time. However, it seems pointless to condemn
the models for failing to fulfil an aim for which they

were not designed.

The use of the transport law S = f (g, q), together
with other features of the model, was motivated by badland
situations in which surface wash is the dominant geomorpho-
logical process. Despite this, the results of the models
seem to carry over to a large extent to situations in which

other transport processes are important.

The use of constant form solutions is probably the
greatest weakness of the model, and needs greater justification.
Moreover, it is unclear how far stability under perturbations
of infinitesimal amplitude implies stability under perturbations
of finite amplitude. The only certainty is that the

mathematics are far more difficult (Lewontin, 1969).

All in all, however, these models are among the best
now available, not least in the links they forge between

profile modelling and surface modelling.
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3.3.17 Luke

Luke (1972, 1974, 1976) is a mathematician interested
in geomorphology. In a recent series of papers he has

shown some results of a qualitative, geometric approach.

Luke (1972) considered both the general case of a

landsurface z = z (x, y, t) developing according to
=z 2 '
> K By
and the special case of a hillslope profile developing
according to
z ' 2 '

2L (Z2) o« 2o -F(E)

ble )8 2t
Here f is an 'empirically determined function', although
in Luke's examples it is always a phenomenological function

of uncertain origin.

Luke showed that, given an initial profile or surface,
these equations may be solved for any time t using the
method of characteristics. This is something of a Pyrrhic
victory, since the determination of f and the initial
profile are generally nontrivial. Luke suggested a method
for determining f from actual profiled but this depends
on knowing the time t. Moreover, solving by characteristics
may yield multivalued solutions (vertical or overhanging
slopes): this difficulty is met by choosing the lowest z
value, a procedure which requires more justification

(but cf. Luke, 1976, for a note on multivalued profiles).
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The landsurface model is interesting but extremely
crude. Stream downcutting takes place on predetermined
paths in the (x, y) plane and is combined with hillslope

evolution.

In one example, Luke pointed out that after a
certain time the profile depended only on the function f:
a result which is relevant in particular to Aronsson's

axioms (see above).

Luke (1974) considered a surface developing according

to

2 g
= =-F(5,4.5)
where f, again, is an 'empirical function' and g is gradient

72\

This model is a generalisation of one developed by
Smith and Bretherton (1972) and applies mainly to surfaces
subject to surface wash. Unfortunately, Luke's treatment
of it falls between two stools. The general discussion is
vague about geomorphological implications, while special
solutions are given only for implausible situations which
lack interest. Finally, not a word is said to motivate

the constant form solutions which are derived.
3.3.18 Huggett

Huggett (1973a, 21-8; see also 1973b, 1975) put
forward a model for landsurface development in the wider
context of work on 'soil-landscape systems'. The key

equation is
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0
if— za_;c xzx]“*["z]*aj[my] a[”]

where Dy, Dy are diffusion coefficients, and Vg, V, are

y
speeds (Huggett wrote 'velocities') of bulk flow in X,y
directions. Huggett suggested putting vy = J\E;E ,
22

vy = _35- (which would be incorrect dimensionally) and
he modified the model to allow D, and Dy to be functions
of x, y and z.

This model is a nonlinear diffusion equation with
mass transport terms. It must be solved numerically,
especially in its more complex form. It is best classed
as phenomenological, since although Huggett interpreted
various terms of the complex model in geomorphological
terms not all the effects are very plausible. Apart
from some simulation results (including the case of a
heterogeneous bedrock) the model has been little developed

or applied.
3.3.19 Mizutani

Using physical principles, Mizutani (1974) proposed
two equations for the depth of erosion or deposition
measured normal to the surface in conditions where surface
wash and mass wasting are the dominant processes.

d = & Cal™ sn0] ()

¢ dl

where 1 is slope length measured along the surface

&, = a L™ (suf -sw @) ()

where Qc is a critical angle.
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These equations were manipulated to yield partial

differential equations for hillslope development,(i) becomes

™M 2 ™m—1 .

22 _ b ¥z o4 bx 2
'be Dxl X

with the simplifying assumptions (a) 1 = x; (b) (%EE )2

= tan® § may bpe neglected; (c¢) n = 1. Assumptions (a)

and (b) both imply gentle slopes.

In the case m = 2 the equation may be solved
analytically using some cunning substitutions. In fact,
a different manipulation using only assumptions (a) and

(b) would yield

9z Pl ™ ng

which resembles a model proposed by Kirkby (1971).

Using (a) (b) (c) equation (ii) reduces to

2 m [/ dz \
—_ = ) — + Son GL
2t ax IX - v /

Mizutani suggested a generalisation

i 02
%: - £ (2) % [%;Z(+P1(%)] + £, (,2)3,

which may be solved using the method of characteristics.

These models were modified to produce upslope
convexities, divide recession, plateau dissection and
radial valley development, and to allow for lithological

variation: in short, a variety of interesting applications.
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A further point to commend is the representational character
of the models, which are quite closely related to physical

principles.

Earlier work by Mizutani is quoted and summarised in

his 1974 paper. For later work in Japanese, see Mizutani (1976).
3.3.20 Grenander

Grenander (1975; 1976, 402-11) considered the height

of a landsurface z as a function of location on a circle x
of unit circumference, and of time t. The landsurface is
considered to be the result of interaction between an
erosion mechanism given by a diffusion equation

dz o '3_22

* >
and a tectonic mechanism which operates instantaneously at
discrete time points. The tectonic mechanism is a Poisson
point process in time, and a set of independent stationary

periodic processes in space. The total mass of the landform

2 dx. = constant

Ot~

which implies that 'average uplift!

|
IRIQEH = 0
0

Grenander showed that the stochastic partial differential
equation yielded by combining erosion and tectonic mechanisms
defines a height field in statistical equilibrium. He derived

expressions for time and space autocovariance functions,
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carried out some simulation experiments, and discussed the
estimation of pattern parameters from spatial data and

optimal retrospection of past topographical profiles.

Although elegantly and rigorously developed, Grenander's
model is not particularly instructive. The assumptions are
phenomenological and of dubious realism. The treatment of
a circular profile is difficult to relate to other work.

On a naive view, the finding of statistical equilibrium is
not surprising given that total mass is conserved. Finally,
all the important closed form results contain sums of
doubly infinite series which would be difficult to use in

practice.

Freiberger and Grenander (1977) considered the case
of a surface developing according to a stochastic partial
differential equation under the constraint of constant
total mass. The basic process is a two-dimensional diffusion
mechanism with two forcing terms, one additive random»
noise, the other a tangential force field representing
drag forces supposed to act on the surface from the
interior of the earth. According to the latter the
occurrence, amplitude and direction of point disturbances
are all random variables, and these disturbances are
propagated over the surface according to a specified
influence function. Analytical results were given for
a square in the (x, y) plane, which was mapped on to a
torus to avoid boundary effects. These results cover

stochastic characteristics of various fields, optimal data
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compression and noise suppression, and the statistical
geometry of random surfaces. The case of a height field

on a sphere was also examined.

The planar case was simulated with a discrete space,

discrete time FORTRAN program. The initial surface was flat.

The authors did not supply any detailed physical
justification of their assumptions, but invited comments
from geologists and geographers on the validity of their
model. It does seem to bear very little relation to current
ideas on geomorphological processes, whether exogenetic or

endogenetic.
3.3.21 New results

In this section some new results are presented which

extend Kirkby's models.

Constant form solutions of the form

€

c—

can be derived for the equations
i)g 'aZL ()
— + ———
ox 9t

S = OL)CM (-—27?;)

"

Combining equations
d M 9z \N°
~[o\x (——)] =
DX PL
Integrating, and using a boundary condition S = 0, x

ax (-2;;‘ >h = KX

H
o
]
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Rearranging _J\ (:2“
K\ M M
?E§ = — <;—- X
X S

Integrating again, and using the definition z = z4, x = O

1 k
z = 3 *(%)“(75)"'

=
=3
]
H
m
~
n

0 = 2 — (

‘ k

- ?\((

Z =( —_
A OL) k>xb
Dividing through

This constant form solution, which is exact, is equal

to the approximation derived by Kirkby (1971) to the space-

dependent function which appears in the variables-separable
solution

z (x, t) = X (x) T (¢t)
3.3.22 Connective summary

A historical review of ideas and results in dynamic
hillslope modelling over the last sixty years must clearly
be supplemented by a connective summary. This is attempted

here in a cross-classification of dynamic models (3C) and
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in an index of particular topies (3D). Note that it is not
always easy to decide which category should receive each
model in 3C. In particular, the categories 'phenomenological!
and 'representational' intergrade continuously. The
dictionary in 3D is not exhaustive of the topics covered

by particular workers, but it does serve as a systematic

guide to ideas and results of value.

Some general remarks on dominant themes are in order

by way of conclusion.

One recurrent assumption is that hillslopes may be
treated as self-modifying geometric systems. While such an
assumption is a mathematical version of the basic idea that
process and form are related by feedback (cf. Ch. 2.4.3 above),
it has the important consequence that distance, height and
especially gradient are regarded in most models as the major
controls of processes. By contrast, independent variations
in climate, hydrology and soil properties have received
little attention. Lithological properties have been
incorporated in several models, but generally in an

extremely crude manner (cf. Ch. 2.4.7 above).

Failure and solution are the most frequently neglected
processes. In the case of failure, neglect can be
attributed to intractability: threshold-dependent processes
cannot be handled easily in models based on differential
equations (c¢f. Ch. 2.4.4 above). In the case of solution,

ignorance is probably the major cause of neglect.
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Continuous hillslope development models have usually
been devised for transport-limited situations: weathering-

limited situations have received little attention.

Continuity equations are a firm and indispensable
basis for hillslope modelling, even though the value and
importance of continuity principles has only become fully

apparent quite recently.

Two key ideas, constant form and stability properties,
although introduced in the earliest work in this field, have
been rediscovered since 1972 (cf. Ch. 2.3.1 above). The
strategy of seeking robust qualitative results is a striking
innovation in a field which has until recently been

characterised by a marked lack of mathematical sophistication.

While many modellers of hillslope development have
also addressed the more challenging and more general problem
of surface development, relatively little progress has
been made on this front, largely because plan curvature
effects,slope endpoint behaviour and network development

remain poorly understood (cf. Ch. 2.4.6, 2.4.8 above).

There is little relationship between static and
dynamic models of hillslope profiles: the major exception
is that power functions arise as equilibrium (invariant)

solutions to some dynamic models.

Most dynamic models have been deterministic. Ideas
of spatial stochastic processes introduced quite recently

have failed to yield important new insights, although the
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use of stochastic errors in model fitting remains an interesting

possibility (cf. Ch. 2.3.2 above, Ch. 9 below).

Both analytical and simulation approaches are of value.
Simulation is necessary to handle thresholds and frequency
distributions, although simulation should be accompanied

by sensitivity analyses (cf. Ch. 2.3.4 above).

Despite increasing knowledge about process rates,
controls and mechanisms, bhenomenological models remain
popular. If models are to be of explanatory value, their
process content must be exposed to searching critical

examination: (ef. Ch. 2.3.3 above).




3.4 Notation

a, b, ¢ constants or functions with local meaning
By fractional Brownian function

d, d, depth of water, depth of erosion

d in ordinary derivative or in integral
D diffusion coefficient

e base of natural logarithms, 2.71828...
£, function, its derivative

g gradient

H parameter of BH

i subscript

k Kirkby parameter

1 length

m, n exponents

N ( ,) Normal (Gaussian) distribution

p integer power in polynomial

P, P', P" points 1in space

q discharge

r resistance

8 arc length

S sediment flux

t elapsed time

T function of t only

u, u, depths normal to surface

v, V speed, average speed

w, w' regolith depth, threshold

W rate of weathering

X, X horizontal coordinate, of slope base
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X function of x only

y horizontal coordinate

Zy Zys Zg vertical coordinate, of slope base, of divide
Zlims> Zpel height of limiting profile, height above it.
~x rate of downwearing

difference operator

-~

"
>

random variable

viscosity

D
D
n

angle, average angle, critical angle

-

sediment concentration
specific weight

summation operator

< ;{ Jﬂ bﬂ Q ™ D= o

Te tangential stress, critical value
is proportional to
in partial derivative
directional differential operator
co infinity
~ D

is drawn from, approximately equals

-

in integral

—_—

modulus

- tends to
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Chapter 4

THE FIELD AREA

The nobly silent hills loom up on high

In peace that stills my question whence or why.

Goethe, Faust, Pt. II, Act IV.

4,1 Introduction

Ii,2 Geological background

4.3 Geomorphological interpretations
4,4 Quaternary events

4,5 Summary
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4,1, Introduction

The field area in which slope profiles were measured
for this thesis is the 10km x 1Okm grid square SE 59, which
lies in the western part of the North York Moors. It is
approximately bisected by the valley of Bilsdale. The area
was chosen mainly for its relatively simple geological and

geomorphological history.

The general character of the Jurassic upland was well
described by Fox-Strangways (1892, 408). 'The Jurassic
rocks of Yorkshire form an isolated range of hills cut off

from the rest of the county, and from the elevated ground

composed of other geological formations, by a series of
large valleys, which form the great lines of drainage of
this part of England. From their peculiar geological
construction these hills present a bold front to the

north and west, overlooking the great plains of the Tees

and the Ouse, while to the south and east they gradually
fall away to low ground beneath the escarpment of the Wolds,

or are cut off by the sea'.

In this chapter, a review of knowledge of geological
and geomorphological history is presented for the field
area, drawing where appropriate on studies made in other
parts of the Moors and on field observations. The criterion
of relevance is that geological and geomorphological findings
should have direct or indirect implicétions for hillslope

profile morphometry.
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4.2 Geological background

4,2.,1 Jurassic strata

All the solid rocks of the field area date. from the
Jurassic Period (190-140 million yr). They were mapped
for the Geological Survey by Fox-Strangways et al (1885,
1886, 1892): the resulting Memoirs remain the most valuable
accounts for geomorphologists, despite a large volume of
subsequent work (cf. Hemingway, 1974 for a comprehensive

review).

Salient characteristics of the various Jurassic
formations are given in 4A, which is based on Geological
Survey sources, except that the Estuarine Beds have been
termed Deltaic (Hemingway, 1949). The Middle Jurassic
nomenclature proposed by Hemingway and Knox (1973) is
not employed because it cannot be correlated exactly with
Geological Survey mapping units. It is, however, clearly

preferable to the older terminology.

One important characteristic of the geological
succession is the marked vertical and lateral variability
found within formations. The lithological descriptions given
in 4A are generalised: the examples of vertical variability

given in UB provide a counterweight to such generalisation.
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4B Examples of sections in Bilsdale showing lithological

variability

| 1. Novey House, Ladhill Beck, in Grey Limestone Series

in. em. (rounded)
Shales with fossils

Grit

Hard, sandy siliceous beds 36 90
Sandy shales 60 150
Siliceous and calcareous beds 48 120
Shales

2. Blow Gill Farm, in Eller Beck Bed

Sandstone

Shale 60 150
Thin ironstone 4 10
Shale 36 90
Ironstone 6 15
Shale

3., Tarn Hole Beck, in Ironstone Series

Ferruginous shale 60 150
Ironstone - 5 13
Shale 24 60
Ironstone 15 38
Shale ) 105
Sandy band it 10
Shale 48 120
Ironstone b 10
Micaceous sandstone 24 60
Shale 144 365
Ironstone 21 53
Shale 60 150

Sources: Geological Survey Memoirs
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4,2,2. Structural history

The structural history of the North York Moors has

been relatively simple (cf. Kent, 1974).

The dominant post-Cretacecous movement has been
easterly tilting (cf. Smalley, 1967). As the top of the
Chalk subsided beneath the Tertiary in the North Sea basin,
the Pennine area correspondingly rose by 500 to 300 m. This
movement has been regarded as contemporary with Alpine

orogenesis, and thus essentially Miocene, but the evidence

from the North Sea supports a picture of continuing
subsidence and it thus seems likeély that the rise of the
Pennine area was a long-continued epeirogenic movement

initiatedin the early Tertiary.

In addition, the area of the Moors has suffered
anticlinal warping with an amplitude on the Dogger of at
least 500 m. relative to the Derwent Valley syncline to the
south. The crest of the fold is divided into separate
culminations by crossing meridional trends. A series of
domes may be distinguished from west to east along the
Cleveland anticline: the Chop Gate dome, the Danby Head
dome, the Egton dome and the Robin Hood's Bay dome. The
first of these takes its name from Chop Gate (559996) in
SE 59.

Taking account of uncertainty about magnitude and
spatial variation, it can be seen that post-Cretaceous
uplift in the field area has been of the order of 100 to

1000 m, an average of some 1.5 to 15 mm per 1000 yr.

Known faults are few in number and relatively minor.
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.3 Geomorphological interpretations

4.3.1 The influence of lithology

Archibald Geikie was in little doubt about the
influence of structure and lithology when he wrote his
prefatory Notice to the Eskdale and Rosedale Memoir

(FPox-Strangways et al, 1885).

‘. . . This region may be regarded as a vast model
exemplifying, in a striking manner, the relations of
topographical feature to the nature and disposition of the
rocks underneath. The strata being nearly horizontal and
little disturbed by dislocations, the valleys radiating
from the tableland can be traced out as the results of
erosion, with a precision and completeness unattainable in
other districts of the country where the geological structure

is less simple'.

Fox-Strangways (1892, Ch. 17; 1894) argued the case
in greater detail. He regarded the forms of hills and
valleys in the Jurassic upland as 'entirely due to sub-
aerial agents' (1892, 411) and related large-scale forms,
such as the drainage pattern, to structure, and small-

scale forms to lithological variation.

'. . . The main features of the district . . . occur
where there is the greatest geological difference between
succeeding strata, for instance where a thick bed of porous
sandstone succeeds to a considerable thickness of shale;
by the weathering away of which the rock stands out in a

bold feature overlooking the beds below. The thickest beds
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of shale are the Lias and Oxford Clay, and therefore it is
just above their outcrop that we get the main features of

the district’(1892, 417).

Broadly similar views have been put forward by
Elgee (1912, Ch. 12), Palmer (1973, Ch. 4) and de Boer
(1974, 281). Palmer (1956) examined the relationship
between differential weathering and tor formation at the
Bridestones (SE 8791) in the eastern Tabular Hills. The
only quantitative 8tudy of the relationship between lithology

and relief, however, is the work of Gregory and Brown (1966)

in Eskdale. They discussed areal frequency distributions
of slope angle for different geological formations, derived
from a comparison of a morphological map with Geological
Survey sheets. Weighted mean angles and resistance values

from their paper are reproduced in A4C.

Although these results are extremely interesting, the
methods and interpretations of Gregory and Brown require
criticism on several grounds.

(i) Morphological mapping is an unsatisfactory method
of data collection. It is predicated on the assumption of
geomorphological atomism (see Ch. 8.2 below), it lacks
replicability and it ignores internal variability.

(ii) As Doornkamp and King (1971, 126) pointed out
more generally, comparison of a morphological map and a
geological map 'is only a helpful exercise if it is known
that the geology was not mapped from surface form in the

first instance. "Feature mapping" of geology is bound to
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4c

Weighted mean angle and resistance for various geological

formations in parts of Eskdale according to Gregory and

Brown (1966)

Formation Weighted mean angle (deg) Resistance
Kellaways 2.26 High
Cornbrash 4,92 Very high
Upper Deltaic 3.36 . Moderate
Moor Grit 3.00 Very high
Grey Limestone 3.92 Very high
Middle Deltaic 5.03 High
Eller Beck 12.95 Very high
Lower Deltaic 7.11 High
Dogger 22.24 Very high
Alum Shale Low

Jet Rock 9.32 ' Moderate
Grey Shale Low
Ironstone Series 4,59 High
Sandy Series 6.49 High

Lower Lias 8.72 Moderate
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lead to the conclusion that there is a clear relationship
between geology and slope form. Where there has been sufficient
confidence in this relationship for feature mapping to have
taken place, the correlation between form and geology may

indeed be close. Feature mapping of the geology tends,

however, to overstate a relationship which may not always be

so precise in reality'.

(iii) The resistance values given by Gregory and Brown,
without any explanation of derivation, are open to objection.
Presumably they are based on impressions obtained in the
field of physical characteristics of the various rocks. Some
shales, for example, may literally fall to pieces in the
hand, while even well weathered grits can be broken only
with difficulty. While such impressions are unlikely to
be misleading, they may be irrelevant. Where a soil cover
is present, 'resistance' properties are pedological, not
lithological, and the very idea of a single measure of
resistance is dubious since several different processes

are operating (cf. Ch. 2.4.6 above).

(iv) Neither the strength of the relationship between
lithology and slope form, nor the possible variation in

the relationship with scale, is explored in any detail.

(v) The existence of particular modal or characteristic
angles is not demonstrated convincingly (cf. Speight, 1971,

for a fuller discussion of this issue).

(vi) Gregory and Brown tend to play down lithological

variation within formations (for example, their Fig. 7
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misleadingly describes each mapping unit as either shale, or
sandstone, or limestone, or grit: qualifying symbols denoting
variable succession or lateral variation do not sufficiently

of fset the impression of uniformity).

(vii) Palmer (1973, U45) criticised Gregory and Brown
for neglecting the position of the rock in relation to
the streams, a major control in 'an area that is still in
a relatively youthful stage of landform evolution'. For
example, moderately steep slopes occurring in the relatively

weak Lower Lias can be explained by their proximity to

recent river incisions in some valley floors. While
Palmer's criticism may be couched in questionable term-
inology, this kind of relationship must be remembered.
However, the position of strata in itself explains nothing:
what are important are the processes associated with that

position.

Some field observations in SE 59 throw light on the
question of lithological influence and can best be
considered in terms of scale. Much of the lithological
variation is on a microscale, and it finds morphological
expression at that scale. This is most clearly seen in
stream long profiles. Hard sandstone or gritstone bands
frequently outcrop as small waterfalls or rapids, commonly
l1m=-4min height (e.g. Blow Gill, 528932; Tarn Hole,
around 593981; Arns Gill, 533965; Proddale confluence,
518970; Ladhill Beck, 548925). Valleyside crags and tors
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(e.g. above Tarn Hole, 4D) are frequently larger features,
but the essential point remains valid: 'features' attributable
1 to lithological variation are often microforms when compared

with complete profiles.

On a larger scale, the relation between relief and
mapping units is clear in the broad contrast between
escarpments emphasised especially by Fox-Strangways
(1892, 414). 1In particular, the Middle Oolite corresponds
to the escarpment of the Hambleton and Tabular Hills
(illustrated in 4E). What remains least clear, ironically

enough, is the importance of lithological variation at the

scale of the hillslope profile: a major task of a
morphometric approach to hillslope profiles is to throw

some light on this issue.

Finally, two bluffs cut in the Upper Liassic shales
in Tripsdale (584995) provide small illustrations of
Palmer's criticisms (one is shown in 4F). Although
apparently very unresistant, these bluffs are steep
solely because of their position, being undercut by the

streanm.

k.3.2. Supposed planation surfaces (see 4G and 4H)

Davis (1895), writing on 'The development of certain
English rivers', regarded the topography as the result of
subaerial rather than marine denudation, and suggested
that it was in the mature stage of a second cycle of

denudation. However, the North York Moors, as only a
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small part of the area discussed by Davis, received but
passing reference. A more detailed interpretation of 'The
geological history of the rivers of east Yorkshire' was

given by Reed (1901), who postulated six cycles of denudation,
of which not all were cycles in the Davisian sense. Superimposition
of the drainage from a Cretaceous cover was followed by

early Tertiary planation. Versey (1939) regarded much of

the upland surface of the Moors as part of a 'Wolds Peneplane
[§ig] ', the very highest parts standing above the Peneplane
as monadnocks. He also placed planation in the early
Tertiary, followed by uplift, warping and faulting.

Hemingway (1958, 24; 1966, 16), on the other hand, considered
planation to have been marine, although he did not argue

this case in any detail.

Peel and Palmer (1955) introduced a dissenting note.
Since the 'peneplain' truncates the Cleveland Dyke, dated
by Dubey and Holmes (1929) at 26 million years (but see below),
they inferred a late Tertiary age, thus producing an
interpretation similar to that suggested for the 'peneplain!
of southern England. They also suggested that uplift of

the peneplain was discontinuous.

Palmer (1967) later showed willingness to entertain a
hypothesis of marine planation. 'There is no strong
argument against most of the surfaces having an initially
marine origin . . . the absence of contemporary marine or,
for that matter, residual land deposits is no embarrassment,

except to those who hold the conservative view that the
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upland surfaces coincide exactly with reconstructed Tertiary

surfaces' (1967, 17).

Palmer (1973) has recently extended this view,
producing an imperfect echo of Davis nearly eighty years
earlier: '. . . The main features of the relief may be said
to result from the incision of streams during the early
part of the present uncompleted cycle of erosion into a
peneplain produced towards the end of a previous cycle'
(1973, 22). The peneplain on the Moors is 'certainly of
late-Tertiary age' (32) since it truncates mid-Tertiary

folds and fault-produced irregularities.

However, '. . . what has been taken for a peneplain is
really a stepped surface, each step represented by a series
of hilltops and bevelled spurs that lie within a restricted
height range . . . Consequently a more appropriate model
than a simple tilted peneplain is one where the peneplain was
covered by the sea and then rose intermittently. around
the Cleveland axis to allow the sea to trim benches in it!

(33).

A '"tentative model' for denudation chronology in north-
east Yorkshire was given by Palmer (1973, Ch. 5) and some
key figures are reproduced in U4I, together with metric
equivalents, revised Quaternary stage names (Mitchell et al,

1973) and Pliocene dates (Berggren,1973).

In the Pliocene (according to Palmer) there was

discontinuous uplift Of the peneplain from the sea, while



Heights of marine benches and valley widening stages in

north-east Yorkshire according to Palmer (1973) Figures in feet (m)

Age Height
i Flandrian
Devensian
Ipswichian 0
Wolstonian
Hoxnian 280 (24)
Anglian
'ERNARY Cromerian 225-175 (69-53)
Beestonian
Pastonian 280-250 (85-76)
Baventian
Antian 350-300 (107-91)
Thurnian
Ludhamian 550-475 (167-145)
L Waltonian 1.8 million years
750-625 (229-191)
OCENE 1100-850 (335-259)

1500-1200 (457-366)
5 million years
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during the Quaternary glacially controlled sea-level fluctuations
were superimposed upon the pattern. The assignment of benches
higher than 550 ft. to the Pliocene, and those lower to the
Quaternary, is based on an analogy with southern England.

The absence of diagnostic deposits once again is 'no

embarrassment':

'There are no known beach or sea-floor deposits on
the benches,which is hardly surprising since there are
hardly any glacial deposits either that are older than
the Weichselian [sc. Devensian] , or last glacial age.
The wasting of the interfluves by weathering and soil
movement took care of such deposits, as it has taken care

of any Pliocene soils' (Palmer, 1973, 51).

The interpretation given by Palmer to hillslope
development is related to this 'tentative model' of
denudation chronology. The hillslopes around the
Bridestones were described as rejuvenated (Palmer, 1956),
and the hillslopes of the Moors as a whole were described
in essentially Davisian terms, emphasising stage of
development and attributing valley-in-valley forms to

rejuvenation (Palmer, 1973, Chs. U4 and 5).

de Boer (1974), reviewing studies of the physiographic
evolution of Yorkshire, struck a more sceptical note,
writing of a growing appreciation of 'the uncertainties
of explanation' (271). He pointed out that the most
recent dating of the Cleveland Dyke (at least 58 million

years, Evans et al, 1973) implies that early Tertiary
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planation is 'once more a tenable hypothesis' (272). de Boer
favoured the idea of a mainly subaerial, polycyclic denudation
history, postulated for the Moors by Davis, Reed and Versey,

including superimposition of drainage from a Cretaceous cover.

Such ideas on planation surfaces are open to objection
on a variety of methodological grounds. An extended
discussion of these grounds isunnecessarybecause there are
excellent accounts elsewhere: it is sufficient to rehearse

the major points briefly, and to cite appropriate references.

The various interpretations put forward over a period
of eighty years differ in several respects, particularly on
the number, date and origin of planation surfaces, but they
all share the major assumption that accordance of flats
implies former base-levelling (cf. Linton, 1964, 118).
However, the existence of a planation surface cannot be
inferred simply from accordance; it must be demonstrated
independently, and the alternative hypothesis must be
considered that the present landforms can be explained
without resort to several cycles (cf. Leopold et al, 1964,
499-500). Such hypotheses were put forward by contemporaries
of Davis, such as Tarr (1898), Shaler (1899) and Smith

(1899); by workers on Gipfelfluren, or summit surfaces in

mountain ranges (cf. Daly, 1905; Baulig, 1952, 173-T7;
Hewitt, 1972, 27-30); and by proponents of the 'dynamic
equilibrium' approach to landscape evolution (Hack, 1960;

Chorley, 1962, 1965a, 1965b).
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Hypotheses of planation surfaces are very difficult to
test satisfactorily, for two basic reasons. Firstly, land-
scapes including planation surfaces can assume a very large
variety of forms, given that a peneplain may be undulating,
uplifted, tilted, warped, faulted, dissected, and even
destroyed almost completely, yet still be detectable by
convinced enthusiasts. (The grossest anomalies can also
be explained as former monadnocks.) Secondly, there is a
lack of independent evidence on residual deposits and

tectonic history.

A final point is that any analogies with the supposedly
better understood geomorphological evolution of southern
England, and especially with the celebrated scheme of
Wooldridge and Linton (1955), should take account of the
fact that detailed geological and soil mapping in that area
has overturned accepted hypotheses (Worssam, 1973; Hodgson

et al, 1974; Shepard-Thorn, 1975; Catt and Hodgson, 1976).

These objections go far beyond the sceptical remarks
of de Boer (1974). Any alternative scheme of denudation
history would have to meet these objections, which would be
unlikely in the present state of knowledge. A more realistic
task for a morphometric approach is to provide quantitative

evidence on the hillslope forms which exist.

4.y Quaternary events

4.4,1. Glaciations

The Quaternary, the last period of geological time,
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included six cold phases in Britain. Glaciations are known
to have occurred in the last three, Anglian, Wolstonian and
Devensian (Sparks and West, 1972, 4-5). 1In Yorkshire, very
little is known about glaciations before the Devensian
(Penny, 1974). The Devensian glacial limit, however, is
clearly defined in the field area. During the last glaciation
much of the North York Moors stood above the ice. In grid
square SE 59 only about 0.1 km2 is covered by glacial
deposits, in Scugdale in the extreme northwest. The
escarpment of the Moors here acted as a rampart against the
ice. The date of the Late Devensian glacial maximum in

England was about 18000 B.P. (Penny, 1974, 254; Jones, 1977).

The 'Older Drift' (i.e. pre-Devensian) on the Moors
is neither abundant nor revealing. None has been reported
from SE 59. It may represent Anglian or Wolstonian glaciations
or both (Bisat, 1940; Penny, 1974; cf. Elgee, 1912 and
Versey, 1939 for the older idea of Tertiéry marine deposifion).
SE 59 may have been glaciated during one or both of these
stages, although no features have apparently been attributed
to glacial erosion, and nothing is known for certain about
this possibility. As Palmer (1973, 51) remarked, the Moors
are unlikely to have supported their own glaciers, but would

rather have been overridden by an icesheet from outside.

4.4,2 Supposed overflow channels

In his paper hypothesising 'A system of glacier-lakes in

the Cleveland Hills' Kendall (1902) briefly discussed some
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features to the north and west of the field area, which he
identified as former overflow channels that drained proglacial
lakes impounded between the icesheet and the northern
escarpment. Two 'channels' in particular might have allowed
water to escape southwards into Raisdale and Bilsdale, and

hence into SE 59.

(i) Between Carlton Bank and Cringle Moor at 528032,
regarded by Kendall (1902, 514) as of minor importance, and
not mentioned by Elgee (1908), Best (1956) or Arnett (1971a)
in subsequent geomorphological accounts. In the field this
feature is not very convincing as an overflow channel: a
broad flattish col, it could have allowed overflow if a
lake existed, but there is no sign of strong linear erosion

(see U4J).

(ii) In the Ingleby Greenhow Corner: 'The re-entrant
angle of the Cleveland escarpment at the eastern end is
breached by a splendid overflow-channel' (Kendall, 1902, 514).
This feature is difficult to place from its description, and
reference to 'the eastern end' of the re-entrant angle is
puzzling. All later workers have construed the description
as a reference to the col at Hasty Bank (573032), or have
independently regarded this feature as an overflow channel.
But if Kendall meant Hasty Bank, why did he not say so

directly? Ifhe meant somewhere else, where could it be?

Best (1956) included Hasty Bank in a group of high-

level channels which he attributed to an earlier glaciation,
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on the grounds of their weathered appearance and their lack

of association with low-level channels in the Vales of York
and Stokesley. Arnett (1971a, 14-15) suggested that meltwater
pouring through the Hasty Bank channel led to considerable
enlargement of Bilsdale, although no other geomorphologist
appears to have suggested meltwater erosion beyond the
channels. The Hasty Bank col is more convincing in the

field as a candidate overflow channel: it falls away rapidly

in a steep-sided valley towards Bilsdale (see 4K).

The presence of cols at these sites can credibly be
attributed to the beheading of Raisdale and Bilsdale by
scarp retreat (Fox-Strangways et al, 1885, 56; Elgee, 1912,
236; Palmer, 1973, U4l), but there appears to be no strong
independent evidence for the hypothesis of overflow channels.
Moreover, proglacial drainage of the kind postulated is now
believed to be rare (cf. Bonney, 1915, who made this objection;
Kendall, 1916, who ignored it; Sissons, 1960, 1961 and
Gregory, 1962a, 1962b, 1965, who reinterpreted Kendall's

work in Eskdale).

b.4,3 Cryonival conditions

During the Quaternary the North York Moors repeatedly
experienced cold climates, including cryonival conditions
in which frost and snow activity was significant. (The
term 'cryonival' is used as a more precise alternative to

the debased term 'periglacial': cf. Linton, 1969).
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Several geomorphologists have described cryonival
features and deposits from the North York Moors. Palmer
(1973, 58) voiced a general interpretation: 'Although information
is not as good as it should be, one gains the impression that
the hillslopes and their associated deposits owe much of their
present appearance to the effects wrought by a rigorous

periglacial climate'.

Dimbleby (1952) identified a system of fossil ice wedges
in the eastern Tabular Hills, but failed to find any else-
where in the Moors. These wedges were associated with till,
erratic pebbles and solifluction material and were assigned

to a pre-Devensian period.

Palmer (1956) regarded valley infill in Dovedale as a
solifluction deposit, although he was inclined to play down
the role of cryonival conditions in tor formation and
hillslope development. Solifluction deposits were also
identified by Gregory (1965) in Eskdale; by Tufnell (1969)
on Murk Mire Moor, Levisham Moor, and Lockton Low Moor, and
around Robin Hood's Bay; by Imeson (1970, 1974) in the
upper part of Bransdale; by Bendelow and Carroll (1976) around
Pickering Moor and Troutsdale; and by Jones (1977) in Kildale.
According to Arnett (1971a, 18) in cryonival conditions
'colluvial activity on the slopes was far greater than ét
present': he cited 'angular rubble' found beneath soil profiles

in Caydale.

Gregory (1966) described small 'nivation benches' in

Eskdale, attributing them to snow patch erosion, and
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assigned inactive mass movement phenomena (rotational slumps,
earth flow tongues) to cryonival conditions although without
arguing the case in detail. Tufnell (1969) alluded to frost
shattered sandstone on the North York Moors and to erected
stones on Murk Mire Moor. Palmer (1973, 57) cited angular
boulders exposed by peat fires as evidence for frost riving.

Catt et al (1974) reported loess in the Hambleton Hills.

Simmons and Cundill (1974) quoted evidence that peat
growth in two landslip bogs (NZ 683028, SE 674996) started
in the early Flandrian; this gives minimum ages for the land-

slips, which may have been associated with cryonival conditions.

Many sections in SE 59 show material which is clearly
colluvial rather than in situ (e.g. stream side sections at
592979 and 508977; trackside sections at 538954 and 549907).
The colluvial origin is clearly demonstrated when sandstone
cobbles and boulders are incorporated in a mantle resting
on shales, as at 592979 and 508977. The thickness of
colluvium is not great, being generally of the order of
1 m. Many other sections, however, are small and not
obviously colluvial. Whether the colluvium is a solifluction
deposit is difficult to say, although it is plausible when
the colluvium incorporates very coarse material. Surface
boulders are also common (for example, a conspicuous spread
around 549918), but it is not clear that these must all be
attributed to cryonival frost riving. An apparently inactive
and well vegetated landslip scar such as Kay Nest (583985 ;

see UL) may also be plausibly attributed to cryonival
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conditions of the early Flandrian or earlier.

Assessment of cryonival influence on hillslope
development is relatively easy in principle. It is a
matter of establishing how much development must be
attributed to (i) pre Quaternary time; (ii) relatively
warm conditions during the Quaternary; (iii) cryonival
conditions during the Quaternary; (iv) postglacial time;
and also to glacial erosion if this operated. This is
basically a question of the rates of slope retreat during
these périods and their durations (Young, 1974, 44).
Unfortunately, their durations are still very much a
matter for controversy, while rates of retreat must naturally
be inferred from contemporary observations of forms,

processes and deposits.

Two theses of cryonival influence may be distinguished
(Carson and Kirkby, 1972, 322).

(i) (Weak thesis) Many hillslopes display cryonival
features and deposits apparently little modified. Therefore,
postglacialslope retreat has been negligible and hillslopes
may be regarded as relict.

(ii) (Strong thesis) In cryonival periods a marked
acceleration of slope processes took place, leading to
profound alterations of profile geometry and basal accumu-

lations of cryonival deposits.

Such theses, both in general and as far as the North
York Moors are concerned, must be considered in the light of

the following points.
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Firstly, there is a idack of quantitative evidence on
past slope retreat under cryonival processes. From the
available evidence, Young (1972, 244) has suggested that
total retreat was of the order of 1 - 10 m. If this is

correct, cryonival influence may well have been exaggerated.

Secondly, there are problems of reporting bias and
sampling basis. Reports of cryonival features and deposits
are frequent in the literature, but workers failing to find
any in an area will write about something else instead
(Young, 1972, 241). Large and striking features and sections
are most likely to be reported, leading to a biased

estimate of the importance of cryonival activity.

Thirdly, as Young (1972, 2443 1974, T74) argued, the

unmodified condition of cryonival features and deposits

does not imply that postglacial activity is less intense
than cryonival. It may be accounted for by the shortness of

postglacial time.

Fourthly, it is difficult to say how many traces of
cryonival action have been destroyed or truncated, or to
assess the overall importance of preglacial or interglacial

retreat (Williams, 1968, 31i; Sparks and West, 1972, 116).

Fifthly, many of these features reported (e.g. wedges,
erected stones, angular boulders and even nivation benches)

appear to be only micro- or meso- forms compared with the

scale of the hillslope profiles.
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Sixthly, the cryonival origin of many features is not
always clear cut. The criteria used to identify cryonival
deposits are 'often very vague' (Carson and Kirkby, 1972, 322)
while there is growing appreciation of the difficulties of
distinguishing soliflucfion deposits from other colluvial

deposits (Benedict, 1976).

Seventhly, it is difficult to understand how any
appreciable modification of profile geometry could take
place without a great deal of rock weathering to supplement

downslope movement of the mantle (Carson and Kirkby, 1972, 323).

Eighthly, it is not clear that cryonival processes would
even tend to produce a radically different profile geometry,
although existing theory on cryonival slope development is

very weak (cf. Carson and Kirkby, 1972, Ch. 12; Jahn, 1975,

Ch. 17; French, 1976, Ch. 7). For example, while lobes and
terraces are distinctive products of gelifluction (Washburn,
1973, 189; Embleton and King, 1975, 112-9; Benedict, 1976;
French, 1976, 139-41) these are commonly micro- or meso- forms:
formation of such features is not inevitably associated with

fundamentally different profile shapes.

Hence the many reports of apparently cryonival features
and deposits must be interpreted cautiously. There are
several grounds for doubting a thesis of profound cryonival

influence.

h.4.4 Contemporary erosion

Imeson (1970, 1971a, 1971b, 1973, 1974) has studied

contemporary erosion in upper Bransdale. He clearly
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documented the relationship between heather burning and soil
erosion (Imeson, 197la) . The broader picture is one in
which unvegetated areas and channel sides contribute much
more sediment than vegetated areas, although in a 19 km2

basin most is deposited as colluvium or alluvium and does

not pass the outlet (Imeson, 1974).

Incidental observations by Palmer (1973, 59) and in
SE 59 underscore the importance of vegetatiogsestablished
systematically by Imeson. Rilling, sheet wash and dissection
of peat can be observed, e.g. above Crookleth Crags, around
555968. These are often associated with overgrazing and burning.
There is occasional slight gullying, notably along fobtpaths.
The footpath up from Beacon Guest is deeply inset around

564965, suggesting former gullying. It is quite well vegetated

now, which may reflect the great decrease in its use. Similarly

the old footpath through Black Intake (around 575992) seems
to have been gullied and then stapilised, although there are
further signs of erosion at the present (see UM). The most
striking example, at 586916, is a case in which a gully has
exposed bedrock over a reach of Tm, removing 90 cm of soil
(see 4N). Occasional landslips, as at 543905 (all dimensions
~ 20 m; see MO),have been active recently. A further
interesting feature is the 'bunker' or 'sheep scar'

(McVean and Lockie, 1969, 29; Evans, 1974),a crescent-shaped
scar enlarged by sheep, as at 543907, 532927 or 532935.
Apart from areas of peat erosion, however, all these bare

areas suffering erosion are minor and localised.
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4.5 Summary

(1) Geological Survey accounts of the Jurassic formations
in the field area remain the most valuable for the geomorph-
ologist, even though the usefulness of their stratigraphical
classification is limited by vertical and lateral variations
in lithology (4.2.1). Post-Cretaceous structural history
can be summarised very simply as a combination of epeirogenic

tilting and anticlinal warping (4.2.2).

(ii)The following theses have been advanced about the
geomorphological development of the field area, although

none has received very much critical examination.

(a) The thesis of profound lithological influence (4.3.1)
(b) The thesis of polycyclic denudation history (4.3.2)
(c) The thesis of proglacial lake overflow channels (4.4.2)

(d) The thesis of profound cryonival influence (4.14,3)

(iii) There is complete ignorance about the effects of

pre-Devensian glaciations on the field area (4.4.1)

(iv) The question of scale of feature is crucial,
particularly as far as features attributable to lithological

or cryonival influence are concerned (4.3.1, 4.4.3),
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Chapter 5

SAMPLING AND MEASUREMENT PROCEDURES

'Hill. VYes, that was it. But it is a hasty
word for a thing that has stood here ever since
this part of the world was shaped.'

J.R.R. Tolkien, The Lord of the Rings, Bk. III, Ch. 4

5.1 Introduction
5.2 Sampling
5.3 Measurement

5.4 Notation




_158..

5.1 Introduction

In this chapter sampling and measurement procedures
used to collect hillslope profile data in the field area are
discussed in the light of general principles. Although this
study does not offer innovations in procedures, the need to
give a brief report allows the introduction of some method-
ological ideas previously neglected in hillslope profile

studies.
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5.2 Sampling

The sampling problem is simple in essence. Given a
set of objects (a population), choose a smaller subset
(a sample) for detailed study. There are two fundamentally
different approaches:
(i) Choose objects quite arbitrarily, for example, those
which are interesting or accessible.
(ii) Choose objects according to some definite rule designed

to ensure that the sample is representative of the population.

This distinction corresponds fairly closely to that often
made between purposive and probability sampling (e.g.
Harvey, 1969, 356-69), but such terms are not very appropriate:
procedures covered by (i) may lack a definite purpose, in the
sense that choice may be essentially haphazard; while procedures
covered by (ii) may not be probabilistic, in the sense that

the 'definite rule' is deterministic.

It is clear that unless some definite rule is followed
to ensure a representative sample, there can be no strong
grounds for generalising from the sample to the population,
and any statements made about the sample should not be
attributed wider applicability. This should always be
recognised explicitly: whether it is important depends on

the purpose of the exercise.

Sampling theory is, in large part, a study of the
defiinite rules devised to generate representative samples in

various circumstances. It will be worthwhile considering
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different kinds of sampling problems to see how far they
arise in hillslope geomorphology, not least because there

is some controversy and confusion in this field over sampling
principles and procedures. (The classification used here is

not exhaustive. The terminology employed is original).

The classical sampling problem arises when the population
consists of discrete individuals which are a set in the strict
sense; that is, they possess no natural ordering and are not
indexed by time or space coordinates. Random selection is
the fundamental solution to the classical sampling problem:
objects are labelled numerically and a sample chosen using
a list of pseudorandom numbers or some equivalent procedure.
Although a variety of other procedures exists, in essence they
are modifications of simple random selection (e.g. stratification,
multistage sampling). See Stuart (1976) for an introduction

to classical sampling.

Classical sampling procedures might be appropriate in
hillslope geomorphology if the landsurface could be regarded
as a combination of discrete units, a view here termed

geomorphological atomism (for fuller discussion, see Ch. 8.2

below). This view is open to objection as a partial theory,
but here it is sufficient to note two limitations to an
atomistic approach to hillslope profile sampling. Firstly,
an initial survey stage is necessary to define the units of
a landscape before such units can be used as a framework for
choosing a sample of profiles. Secondly, attributes of

neighbouring units would tend to be autocorrelated, implying
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that random selection 1is not appropriate.

The serial sampling problem arises when the population is
a single-valued continuous series indexed by time or space
coordinates. Systematic selection is the fundamental solution
to the serial sampling problem: thus time series are generally
recorded at regular intervals, while various grids (with
square or triangular meshes) are increasingly being recognised
as the preferred class of sampling schemes for spatial series
(cf. Holmes, 1970; Evans, 1969, 1972; McCammon, 1975; but see
Hammersley, 1975, for a dissenting note on abstruse technical
grounds). Many continuous series arise in hillslope geomorph-
ology, and point sampling schemes have been used to measure
slope over a length centred at a point (e.g. Strahler, 1956;
Juvigné, 1973) or to measure soil properties or process rates
in plots centred on a point (e.g. Reynolds, 1975a, 1975b;
Anderson, 1977). Systematic schemes have not, however, been
universally used. In process studies particularly, some kind
of stratification is common, where sampling is linked to an
experimental design which aims to assess the effects of

controlling variables.

The path sampling problem arises when the population is
a set of paths on a surface. It does not seem to arise
outside geomorphology, nor is there a theory of paths on
surfaces which would lead to recommendations about sampling
procedures (cf. Longuet-Higgins, 1962; Switzer, 1976 for

theory on random surfaces). Since hillslope profiles are
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maximum-gradient paths, this means that there is no firm
theoretical basis for choosing hillslope profile samples.
By default, hillslope profile sampling has been treated as
a serial sampling problem, a problem of selecting points,
whether these are to be endpoints or intermediate points on

profiles.

It is first necessary to decide whether the target
population of hillslope profiles includes all profiles or
merely some subset. The most important consideration here is
plan curvature, and,as a first approximation, profiles may
be divided into three classes.

(a) Profiles with negligible plan curvature (straight
contours), e.g. on valley sides. ‘'Negligible' to be defined
operationally (see, for example, Abrahams and Parsons, 1977).

(b) Profiles convex in plan, e.g. on spurs

(¢c) Profiles concave in plan, e.g. in valley heads
Usually either (a) alone is regarded as the target population,

or (a), (b) and (c) combined.

Given the target population, it is possible to choose
a set of points on a map and identify profiles which éxtend
upslope and downslope from those points. (Any profiles not
belonging to the target population will naturally have to be
rejected). Whatever the details of point selection, this
approach is at best only an approximate solution to the

hillslope profile sampling problem.
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From a geomorphological point of view, a more direct
and natural approach to profile sampling is to use the stream
network as a basis for selection. Broadly similar schemes
of this kind have been used or suggested by Arnett (1971b),
Chorley and Kennedy (1971, 50-55), Young et al (1974, 17-19),
Summerfield (1976) and Abrahams and Parsons (1977). In the
simplest situation, slopes with straight contours have bases
at or near the midpoints of links in the stream network,
while slopes with curved contours have bases at or near
source or junction nodes. This approach presupposes well-
integrated fluvial topography, in which hillsides are in

clear and unambiguous relationships with streams.

While ideas from sampling theory, such as random and
systematic selection and stratification, appear in such
schemes, the choice of the stream network as sampling
framework is difficult to evaluate theoretically, however
attractive it may be for the geomorphologist. Moreover, the
identification of the stream network itself may not be
straightforward. Stream sources may be difficult to locate
and some permanent watercourses may appear to lack geomorph-
ological significance. There is much to be said for the view
that the valley network rather than the stream network is
appropriate for a profile sampling framework. Indeed, one
ideal would be for a sample of profiles to be chosen by
an iterative selection procedure which identified a
representative set from a sufficiently detailed altitude

matrix.
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However a sample of profiles is chosen, it is quite
likely that some profiles will prove unsurveyable (e.g.
land use may not permit survey; access may be forbidden or
dangerous). Hence 1in practice it may be necessary to modify
an initially chosen sample. There is, naturally, no guarantee
that such forced omissions will not induce biases in

representation.

The target population for this study was the set of
hillslope profiles with straight contours. Profiles with
negligible plan curvature are simplest to interpret, and
they are particularly appropriate for testing hillslope models

which neglect laterality.

As a first step the stream network in the field area
was delimited from Ordnance Survey 1:63,360 and 1:25,000 sheets,
and a list drawn up of stream 'systems' and 'major subsystems',
the terms being used in one-off senses (5A). A list was then

prepared of 'possible profiles' using specific criteria (5B).

This list includes 19 profiles. In fact only 11 of
these were surveyed, for two reasons. As research progressed,
it became clear that an adequate treatment of methodological,
theoretical and technical questions - the major foci of the
thesis, in short - would imply that the treatment of empirical
questions in the project would be less extensive than was
originally envisaged. In addition, this number of profiles
seemed sufficient to allow illustration and examination of

the methods developed in this study.
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5A

Stream syste io tems in SE

1. Stream systems i.e. discrete networks within field area

(i) Scugdale Beck system - flows into Leven, and thence
into Tees
(ii) Rye system - flows into Derwent
(iii) Ladhill Beck system - flows into Rye
(iv) Seph system - flows into Rye
(v) Riccal system - flows into Rye

2. Major subsystems
(ii) Rye system
Stonymoor Sike, Proddale Beck, Arns Gill, Wheat Beck,
Locker Beck, Blowgill, Eskerdale Beck, Thorodale Beck*

(iv) Seph system

Raisdale Beck, Hollow Bottom Beck, Ledge Beck (Tripsdale

Beck, Tarnhole Beck), Fangdale Beck, Todhill Beck

(v) Riccal system

Bogmire Gill, Bonfield Gill, Potter House Beck*
Notes
* ad hoc names devised by author
(a) Some short streams in upper Bilsdale are not marked beyond
the B1257 road. Carlton Watercourse (marked on 1:25,000) is
clearly artificial. The upper course of Kyloe Cow Beck is
also problematic.
(b) The 'major subsystem$' are the larger tributaries, larger
in terms of mainstream length and/or valley depth: however, the
decisions on these were fairly subjective, and no precise

criteria used.
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5B

Péssible profiles and actual profiles

Possible profile Crest GR Base GR
Scugdale 522995 520989
Stonymoor Sike 508978 515980 X
Proddale Sike 522970 524965 X
Arns Gill 528962 524965 X
Wheat Beck 506947 505960

Locker Beck 510937 510927

Blow Gill 534946 531953 X
Eskerdale Beck 519921 510927
Thorodale Beck* 516907 515915
Ladhill Beck 549924 555926 X
Raisdale Beck 546996 540987

Hollow Bottom Beck 554982 551987 X
Tripsdale Beck 581984 575987 X
Tarn Hole Beck 590976 598974 X
Fangdale Beck 560948 553948 X
Todhill Beck 571912 575905 X
Bogmire Gill 595929 585930
Bonfield Gill 600962 594964 X
Potter House Beck* 594912 590605

* ad hoc names devised by author X actually surveyed (cf. 6L)

Selection procedure

Take 'systems' and 'major subsystems' as given. Choose one
profile for each subsystem and one for each system without sub-
systems. Take a base approximately midway along relevant stream
link, or along part of relevant link within field area.
Valleyside should have approximately straight contours and
be relatively free of obstructions such as roads. It would
be convenient to have profiles on opposite sides of a ridge.

Arbitrary within these broad specifications.
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It is necessary, therefore, to stress the limitations
of this sample of profiles. Firstly, the number of profiles
is rather small to allow clearcut generalisations about the
field area. Secondly, a haphazard element entered into the
choice of profiles, given that research plans narrowed in
focus while data collection proceeded intermittently, and
that the original sample was not completed. Thirdly, it
is not demonstrated convincingly that the profile selection
procedure used produces a representative sample, although it
is not clear precisely what other procedure would achieve

this aim.

When slope endpoints were located in the field, it was
sometimes found necessary to move slightly, to avoid local
obstructions or local plan curvature (cf. 6L below for

actual endpoint positions).

These profiles are shown on a map in 5C, together with

major streams and major watersheds.
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5.3 Measurement

A ﬁrofile may be recorded in two ways, which are numerically
equivalent:

(i) As a series of measured lengths, 13; i = 1,...,n,
together with a corresponding series of measured angles

915 i=1,...,n.

(ii) As a series of coordinates, xj, Zs 3 i=1,..,n.
Naturally if (i) is chosen, and constant 1 is used, then the
horizontal interval, Ax , say, will not be constant in general;
and conversely, if (ii) is chosen, and constant Ax is used,

then 1 will not be constant in general.

The method of measured lengths and angles was used in

the present study and attention here is focused on this case.

It seems clear that measured lengths should be constant
and relatively short (Pitty, 1967; cf. Young et al, 1974,
31-3). Many hillslope profiles have been surveyed with
vériable measured lengths. In extreme cases, breaks and
changes of slope have been identified visually and used to
bound measured lengths. Naturally such a survey procedure
prejudices any interpretation of profile data, and (what is
worse) prejudices it in an unknown and complicated manner.

The case for constant measured lengths is thus very strong.

Gerrard and Robinson (1971) discussed the choice of
measured length in some detail. They warned that the results
of slope profile survey may vary considerably with the measured

length adopted. This warning was illustrated by angle
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frequency distributions obtained from repeated surveys using
different measured lengths. They also warned that microrelief
would influence readings made at very short measured lengths.
It does seem, however, that such warnings may be slightly
exaggerated. The effect of repeated survey is to mix scale
variation with measurement error (Gilg, 1973), while their
homily against microrelief rests on a dichotomy between
microrelief and 'the true nature of the slope' (Gerrard and
Robinson, 1971, 50) which seems dubious. There do not appear
to be any firm physical grounds for distinguishing sharply
between two components of topography, while results from

spectral analysis (e.g. Sayles and Thomas, 1978) support

the contrary idea that variations can be observed at all

spatial frequencies of geomorphological interest.

A short measured length (5 m. or less) seems preferable
to allow detailed recording of hillslope profiles. Naturally
superfluous detail can always be ignored or removed, while

detail finer than that recorded cannot be added without resurvey.

A pantometer (Pitty, 1968) was used to survey hillslope
profiles in this study. It was made by Dr. E. W. Anderson
and produces angle measurements for a constant measured
length of 1.52 m. (5 ft.) (Anderson, 1977, 100-102). Angles
were measured to the nearest 0.5° (cf.'Young et al, 1974, 13).
The procedure near the crest of each profile was to continue
measurement along an orthogonal until the crest was clearly

passed: the exact position of the crest was identified later

from the data.
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Measured angle series, together with notes on
vegetation, natural and artificial features, and basal

stream characteristics, are given in Appendix I.
5.4 Notation

i subscript

1 measured length

n number of observations
X horizontal coordinate
z vertical coordinate

A difference operator

© angle
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Chapter 6

DESCRIPTION OF MEASURED PROFILES

«e. Without words, there is no possibility of
reckoning of Numbers; much lesse of Magnitudes,
of Swiftnesse,of Force, and other things, the
reckonings whereof are necessary to the being,

or well-being of man-kind.

Thomas Hobbes, Leviathan, Ch. 4.

6.1 Profile form
6.2 Angle and curvature frequency distributions
6.3 Frequency distributions at different scales

6.4 Summary

6.5 Notation
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6.1 Profile form

If 1451 =1,...,n and ei; i=1,... ,n denote measured
lengths and measured angles in crest to base sequence, then

profile coordinates may be calculated from

J
X - = Z L cCos GL
J T
J=.‘J...)Y\
n
z. =3 L, sin;

J L=j+l

Profile height zq and profile length x, may be derived from

N
ZA = Z tb Stn 9(‘

=1

n
Xb = z:l LL Cos QL
L:

and average angle B is given by arctan (zg/%y) (ef. 3A).

These relations were used to produce profile coordinates

for the eleven profiles measured in the field area.
Dimensionless plots, in which z/z2g is shown against x/xy,
are given in 6A to 6K. Number of observations n, estimated
profile dimensions z4 and X, average angle é , endpoint
locations and bedrock geology are shown for each profile

in 6L. Identifiers are here introduced for each profile

and for each geological formation (see 6M for key).

The profiles fall readily into four classes:
(i) BO, ST, PR, PA: the four gentlest profiles, all

on the formation del.
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(ii) FA, LA: the next gentlest profiles, both gls/del.

(iii) TR, AR, TA: the next gentlest, all with bases
on uli,

(iv) HO, TO: the steepest, crossing four and five

formations respectively.

The dimensionless plots facilitate comparison of
profile shape. They give an immediate impression of
overall form. The vertical exaggeration of each plot is

cot O (= Xp/2g) -

(i) The four gentlest profiles, all on del, are
slightly convex in overall form, with steepening towards
the base (6A to 6D).

(ii) The next two, both on gls/del, are also slightly
convex. Indeed PA and FA are almost idehtical in shape
(i.e. dimensionless form) (6E and 6F).

(iii) TR, AR and TA, all with bases on uli, are more
strongly convex, with suggestions of distinct breaks of
slope bounding separate components. The most striking
feature on these profiles is Tarn Hole Crag (estimated
at 50°) on TA (6G to 6I).

(iv) HO and TO are the steepest profiles. The most
dramatic feature on HO is the failure scar below the crag.
TO is a remarkably steep profile on the scarp of the

Tabular Hills, being steepest near the crest (6J and 6K).

Dimensionless plots are used here partly as one
method of standardised comparison, and partly because

dimensionless curves originally obtained by Kirkby (1971)
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6M. Key to geological formation identifiers

Formation Identifier
Lower Calcareous Grit lcg
Oxford Clay oxf
Kellaways Rock kel
Cornbrash cor
Deltaic Beds del
Grey Limestone Series gls
Dogger dog
Upper Lias uli

Middle ILias mli
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will be fitted to these profiles. Against this must be
set an important reservation, that shape (dimensionless
form) must not be considered independently of size:

hillslope profiles must not be assumed isometric.

6.2 Angle and curvature frequency distributions

The study of angle frequency distributions is an
accepted part of hillslope geomorphology (cf. Strahler,
1950, 1956; Young, 1961, 1972; Gregory and Brown, 1966;
Pitty, 1969, 1970; Speight, 1971; Gerrard and Robinson,
1971; Juvigné, 1973; Statham, 1975; Carson, 1976, 1977;
Evans, 1977 among several others). Angle frequency
distributions have been compiled variously for all kinds
of slopes and for particular kinds, such as straight
components, while there has been interest both in the
general form of frequency distributions, and in the

identification and interpretation of modal or characteristic

angles.

Curvature is a property which has received less
attention. It is properly defined as the rate of change

40

of angle B with are length s, that is I; (cf. Ferguson,
1973 on river meanders). In hillslope geomorphology, a
variety of related curvature measures have been proposed
(e.g. Ahnert, 1970c, 78-9; Young, 1972, 137-43;
Demirmen, 1975, 258-60). In this study, constant
measured lengths LG=AS) allow the use of the simplest

measure, the first forward difference

AQ' = eéﬂ - ei,

"
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(cf. Wilkes, 1966, 18; Ferguson, 1975 on river meanders).

Frequency distributions are most commonly summarised
by moment-based measures, such as mean, standard deviation,
skewness and kurtosis (see Evans 1972, 1977 for major examples
of such an approach). The main disadvantage of moment-based
measures is their lack of resistance (robustness) to wild
observations or outliers (see Mosteller and Tukey, 1977,

Ch. 10 for a contemporary introduction to resistance and
robustness). The alternative approach taken here is to

use resistant measures which are quantiles (order statistics)
or functions of quantiles. As Pitty (1970) pointed out,

this approach is more appropriate for the kinds of frequency
distributions characteristic of hillslope profile data,

which often include outliers.

Given a sample of data, the order statistics are
the values ranked in numerical order, say

smallest has rank 1 ,..., largest has rank n
for the sake of argument. The minimum (min) and the maximum
(max) are easily defined as the extreme order statistics.
The median (med) is the middle ranked value, defined by the
following rule:

(i) if n is odd

med value with rank (n+l)/2

(ii) if n is even

med = average of value with rank (n+2)/2 and value with

rank n/2
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For defining other quantiles, it is helpful to
introduce the average function, ave ( ), and the floor
function (Iverson, 1962, 12), which gives the largest
integer less than or equal to its argument: for example,

floor (4.7) = 4 and floor (4.0) = 4.

The quartiles (loq, upq) may be estimated quickly
by the following rules:

(i) if n is not divisible by 4

loq = value with rank of floor (-'H'3 )
upq = value with rank of n + 1 - floor (ﬂ443 )
(ii) if n is divisible by 4
log = ave (value with rank of floor (-'Y\-+3 ), next larger
value)
- . n+3
upq = ave (value with rank of n + 1 - floor ( ),

next smaller value)

(For these estimators of quartiles, see Andrews et al,
1972; for the labels min, max, med, log, upg, see McNeil, 1977;

for the label ave, see Blackman and Tukey, 1959).

Other quantiles may be estimated by analogous rules:

the 5% and 95% points (p5, p95) are used here.

The spread (dispersion or scale) of a distribution
may be measured by differences of the form

an upper quantile - its corresponding lower quantile
Range (max - min), 90% spread (p95 - p5) and midspread or
interquartile range (upq-loq) show increasing resistance to

outliers.
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Finally quantile-based measures of 'asymmetry' and
'tailedness' may be devised as alternatives to moment-based
skewness and kurtosis. Various such measures have often
been used in sedimentology (Griffiths, 1967, 107-8), but

those used here appear to be new.

The ratio
upq - med
med - loq

measures asymmetry. It has a lower limit of O, a value of
1 for any symmetric distribution (e.g. Gaussian or normal),
and indefinitely large values for increasingly right-skewed

distributions.

An 'outer' quantile may be defined as one nearer an
extreme than an 'inner quantile'. Ratios of the form

spread between outer quantiles

spread between inner quantiles
can be used in

value of ratio for a distribution - 1

value of ratio for Gaussian - 1
which is a measure of tailedness. It has a lower limit of
0, a value of 1 for a Gaussian distribution, and indefinitely
large values for increasingly long-tailed distributions. If
outer quantiles are p5 and p95, and inner quantiles are loq
and upqg, then the Gaussian has a spread ratio .of 2.44., This

particular tailedness measure is used here.

Summary measures for angle frequency distributions

obtained from the measured profiles are given in 6N, which
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lists min, p5, loq, med, upg, p95, max, range, 90% spread,
midspread, asymmetry and tailedness. These measures are
based on absolute measured angles (that is, ignoring the
negative sign of angles on reversed slopes). Supporting

diagrams are given in 60 and 6P,

Medians and quartiles (60) are easily related to the
four classes identified above (6.1). BO, ST, PR, and PA
are clearly similar with low medians and midspreads; FA and
LA have higher values of both medians and midspreads. The
marked eurvature of TR is reflected by large spread and
high asymmetry. The remaining profiles, AR, TA, HO and

TO have increasingly large medians and midspreads.

Medians and midspreads (6P) supplement this picture.
There is a general tendency for midspreads to increase

with median, although TO (relatively low midspread) and

particularly TR (very low median) are discrepant.

Angle distributions mostly vary from approximate
symmetry to moderate right-skewedness; TR is notably
most extreme. They range from being moderately short-

tailed to being moderately long-tailed.

. These results on asymmetry and tailedness raise the
possibility of transforming the data to more nearly
Gaussian values (cf. Evans, 1977 for a recent review of
this issue). A transformation is monotonic if, for all
values, it satisfies the identity

rank of transformed value = rank of original value
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ibutions

6P Medians and midspreads of angle frequency distr
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The transformations employed for angle data are monotonic
over the usual interval Ooé' 6 $90°, and so the commutative
property
quantile from transformed data = transform of original
quantile
can be used to reduce the work in choosing appropriate
transformations. As an example, the transform ln tangent

has been used (6Q to 6S).

In this particular case the 1ln tangent transformation
is only a mixed success. It removes most of the relationship
between midspread and median, except that TR remains
discrepant (6R). Asymmetry and tailedness are sometimes
improved and sometimes worsened 6S), the pattern being
as follows:
asymmetry & tailedness better: PA, FA, AR, HO, TO
asymmetry better, tailedness worse: TR, TA
asymmetry worse, tailedness better: BO, LA

asymmetry & tailedness worse: ST, PR.

Curvature frequency distributions (6T) are all
centred near zero, approximately symmetrical, and rather
longer-tailed than Gaussian. They are distinguished

mainly by their spreads.
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6Q. Some measures for 1ln tangent transformed data

Profile med midspread asymme try tailedness
BO -2.34 1.05 0.72 1.02
ST -2.10 0.54 0.58 1.85
PR -2.17 0.66 0.80 0.85
PA -2.17 0.70 0.89 1.49
FA -2.00 0.80 0.83 1.77
LA -1.84 0.93 0.57 0.76
TR -2.25 1.81 1.07 0.93
AR -1.90 0.97 0.81 0.88
TA -1.74 1.00 0.94 1.79
HO =1.51 0.90 0.97 1.03
TO -1.09 0.66 1.00 -0.83
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dspreads of transformed data

i

6R Medians and m
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6.3 Frequency distributions at different scales

It is important to consider whether results depend
unduly on measured length, as argued by Gerrard and
Robinson (1971) in particular. One way of investigating
this question is to average adjacent angle values, compute
curvatures as differences between adjacent averages, and
recompile angle and curvature frequency distributions.

(On averaging and differencing methods, see Blackman and

Tukey, 1959; Curry, 1972; Cox, 1973).
In general, given a series uj; i = 1,...,n, an
appropriate method would be to calculate averages for

subseries of length n’

U ave (values in subseries j)

J l’oco,p

ave (values in subseries j) p + 1; n modulo n“40

(o]
n

J

where p is given by

n - pn’ = n modulo n’
(i.e., the remainder on dividing n by n’)
The corresponding differences are given by

ASy = By, - T

Varying subseries length n’ then amounts to averaging
and differencing at different scales.

In the case of hillslopes, subseries of angles of

length n’

do not in general correspond to measured lengths
of n’ times the original constant measured length, because
slopes may be locally convex or concave. In addition, the

appropriate averaging function appears to be

§ = acctan (Ssin 6 [ cos 9)
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Averaging and differencing were carried out for
subseries lengths n’ of 1, 2, 5 and 10 (corresponding to
total measured lengths of 1.52m, 3.04, 7.60, 15.20m).

In interpreting the results two points should be borne

in mind. Firstly, as n’ increases, the number of values
available to compile each frequency distribution decreases
(it is approximately n/n’ ), and results inevitably reflect
a combination of scale variation and sampling variation,
the latter increasing with subseries length. Secondly,
since original data were measured to 0.5°, differences of

this order are in no sense surprising.

Results for angle are given in 6U for selected
measures. The patterns shown are broadly as would be
expected. Minima and maxima approach each other as
subseries length increases and bumps and ruts are averaged
out. (The maxima for TA are an apparent exception, but
the stability in this case reflects a string of 12 measured
lengths on Tarn Hole Crag which could not be traversed with
a pantometer: an Abney level was used to estimate the
overall angle, and the distance over the string was
measured by tape). These figures show quite clearly
that maximum angle, favoured by Strahler (1950) and others,
depends strongly on measured length. On all profiles

except TA, maximum slopes for n’

= 10 are 7 to 25 degrees
gentler than for n’ = 1. More thought must be given to
this problem of scale variation by those seeking special

process interpretations for maximum angles. It is also
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variation of summary measures with scale

Angle frequency distributions:

midspread

n’ min log med upq max
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important to note from these results that only on HO and
TA are angles of 400 or more other than localised. The
minima are of less interest: they generally arise from

local slope reversals, often of human origin (cf. Appendix I).

By contrast median and midspread are relatively stable
measures, as would be expected from their resistant

characteristics.

Results are displayed graphically for four selected
profiles, one from each of four groups distinguished earlier
(BO, LA, AR, TO) in 6V and 6W. The marked contrast between
unstable min and max (6V) and stable med and midspread (6W)

is very clear.

Results for curvature (6X) show again that extremes
are unstable and the median stable. There is also a
systematic tendency for quartiles to approach the median,

which is expectable on geometric grounds (note again that

the curvature measure used here is Ae; no account has been

taken of varying As).

Averaging and differencing thus appears to be a
useful method of exploring scale variation, and of
identifying scale-variable and scale-constant morphometric

measures. The question of scale variation will arise

again in other ways in the following two chapters.
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variation of summary measures with scale

urvature frequency distributions:

midspread

log med upq max
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6.4. Summary

(i) Profile form is discussed for the profiles measured
in the field in terms of profile dimensions and profile
shape. A four-fold grouping is outlined, which is closely

related to variations in bedrock geology (6.1).

(ii) Angle and curvature frequency distributions are
summarised using quantile-based measures which are considered
more appropriate for data containing wild observations.
Median and midspread of angle can be readily interpreted

in terms of the four-fold grouping proposed earlier (6.2).

(iii) Spatial averaging and differencing of angle

series throws light on the scale variation of distribution

summary measures. Minimum and maximum angles are extremely
unstable, but median and midspread of angles are

satisfactorily stable (6.3).




6.5.8Notation

d

Mnemonics
ave

log

max

med

min

p5

P95

upq
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in ordinary derivative
subscript

subscript

measured length
number of observations
number in subseries
related to number of subseries
arc length

value of series
average value
horizontal coordinate
slope length

vertical coordinate
slope height
difference operator
angle

average angle

summation operator

average

lower quar tile
maximum
median
minimum

5% point

95% point

upper quartile
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Chapter 7

AUTOCORRELATION ANALYSIS OF HILLSLOPE SERIES

Schoolmaster: 'Suppose x is the number of sheep in
the problem'. Pupil: 'But, Sir, suppose x is not

the number of sheep'. [I asked Prof. Wittgenstein
was this not a profound philosophical joke, and he

gsaid it was.]

J. E. Littlewood, A mathematician's miscellany,

p. 41.

The idea of autocorrelation

Autocorrelation and hillslope profiles
Stationarity, nonstationarity and autocorrelation
Choice of estimator

Empirical results

Summary

Notation
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7.1 The idea of autocorrelation

The idea of autocorrelation is probably best approached
from the more widely-known idea of correlation. The correlation
r between two variables, u and v say, is a measure with the
following general properties:

(i) -t 7 < 1|.

(ii) r is positive if u and v are associated

directly, and negative if they are associated
inversely.

(1ii) The absolute value of r is 0 if u and v are

not associated (uncorrelated), 1 if they are
perfectly associated, and between O and 1 for

intermediate cases.

Particular measures of correlation may be distinguished
according to the precise criterion of ‘'association' which is
employed. If linear association is being considered, then
it is natural to take the Pearson product-moment correlation

coefficient

_ CoVv CbL,V) COV (u,v)
{Cvar () var(v) ] std (w) std (v)

where cov, var and std denote covariance, variance and

standard deviation.

For a set of observations uj, vi; i=l,... ,n we have,

cancelling a divisor common to numerator and demominator,

i ;Z::I(ué —R)(V‘- —V)
J[(:Z:‘:‘ (u, —u)")(é(\q -]
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where u, V are means
_ l N _ ( n

u = — Z vV = = V-
2 "

Putting uj - u = aj, vi - v = by then

2ab

Y = ifkaw %n
=y b2
j[ga’t;‘lb.]

For any real numbers aj, bi3 i=zl, ... ,n the Cauchy-Schwarz

inequality (e.g. Stephenson, 1971, 14) gives

=1 =1

@Mf ¢ Far b

whence

=
)i
i

N

The Pearson correlation coefficient is not the only
possible measure of correlation; other criteria of
association lead to other measures. If monotonic association

is being considered, then it is natural to compute measures
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based on ranks only, such as Spearman's rank correlation

coefficient.

Autocorrelation involves correlating one variable
(say u) with itself, rather than two variables (say u and
v) with each other. 1In particular, take the case of a one-
dimensional series uj; i=l,... ,n where the subscripts i
refer to position in a sequence, whether temporal or spatial.
(The case of observations in two or more dimensions will
not be considered here. In the two-dimensional case,
autocorrelation can be defined by a straightforward analogy
with the one-dimensional case if observations refer to a
regular lattice: a different approach is necessary for an

irregular lattice, for which see Cliff and Ord, 1973.)

Autocorrelation is the correlation between a series
and itself displaced. Thus by analogy with the Pearson

coefficient

r = cov (U ,Wivk)
k [Lvar () var (u., )]

Here k is the lag or spacing between observations uj; i=1,
... 5 n=k, which are being correlated with observations
Uj4ks i+k = 14k,...,n. The covariance is known in this

case as the autocovariance. For k = 0, ry = ro, the
correlation between a series and itself, which is exactly 1.

For k = 0,1,2,3,... , we have the autocorrelation function,
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rgs 'y, Too r3,.... A plot of the autocorrelation function

is a correlogran.

Some basic texts on autocorrelation and related subjects

are as follows:

(i) Agterberg (1974) and Schwarzacher (1975), reliable

texts intended for earth scientists;

(ii) Kendall (1973) and Chatfield (1975), general texts

on time series analysis.

7.2 Autocorrelation and hillslope profiles

Autocorrelation analysis of spatial series is now an
accepted technique in geomorphology, either in isolation, or
more usually in conjunction with spectral analysis or model
fitting. It has been used, for example, in the study of
stream and gully profiles (Melton, 1962; Bennett, 1976;

Richards, 1976; Alexander, 1977), of stream plans (Speight,

1965, 1967; Ferguson, 1975, 1976), and of topographic
profiles (Evans, 1972, 33-6; Drewry, 1975; Pike and Rozema,
1975; Webster, 1977). Empirical autocorrelation functions
were computed from hillslope profile data first by
Nieuwenhuis and van den Berg (1971), and subsequently by

Thornes (1972, 1973).

Why study autocorrelation properties of hillslope

profile data? There seem to be four main reasons.

Firstly, many standard statistical methods assume

independence of observations. If a variable v is independent
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of u, then the conditional probability distribution pr(v]u)
is identical to the marginal distribution pr(v). Loosely,
knowing u provides no extra information which would help in
predicting v. If v is independent of u, then u and v are
uncorrelated, i.e. r (u,v) = 0. (The converse is not
necessarily true, as may be seen from a counterexample
(Plackett, 1971, 65): if u is symmetrically distributed
about O, then v = [u| and u are uncorrelated, even though

v may be predicted exactly from u,)

However, spatial data tend to be strongly autocorrelated,
which implies that tabulated sampling distributions of
various standard test statistics such as Student's t and
Fisher's F are definitely invalid (cf. Moran, 1973; Hepple,
1974; Box, 1976; Haggett et al., 1977, Chs. 10-11).
Nieuwenhuis and van den Berg (1971) were the first to
discuss the problem of invalidity of standard methods in a
hillslope context. Their results suggested that a 10%
sample of tangents measured over adjacent 10 m measured

lengths would consist of approximately independent observations.

Hence the strength of autocorrelation present in
hillslope data affects the validity of some standard

statistical tests.

Secondly, it is possible that autocorrelation functions
and/or autocovariance functions might serve as descriptors
of surface roughness at different scales. It is a matter

of common observation that slopes are rough, displaying
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'bumps', 'ruts', 'microrelief' and even 'nanorelief' (Young,
1972, 201). Autocorrelation would seem a possible inverse
measure of roughness, for the extent to which values of
surface geometry can be predicted from neighbouring values

is inversely related to surface roughness.

Thirdly, some stochastic models (reviewed in Ch. 3
above) yield predictions of autocorrelation functions which

can be tested empirically.

Fourthly, models which are combinations of deterministic
and stochastic components can be fitted by assuming independence
of stochastic errors. The residuals, or differences between
actual and predicted values,should then be examined for

autocorrelation (Pitty, 1970; cf. Ch. 9 below).

The autocorrelation properties of hillslope profile
data are thus of interest for several reasons, and clearly

merit further exploration.

7.3. Stationarity, nonstationarity and autocorrelation

Calculated autocorrelations can be taken simply as

descriptive measures. For example, any measure of the form

N
S b
'T’ ~ L= [

mn n

2 2
“:Z% 2. b, ]
=1 i={
which satisfies 'rl €| has a natural geometric interpretation

)

as the cosine of the angle between the vectors (al, eee 58p

). It could be argued that actual values

and (b

»D

l’lll n
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of autocorrelations are the only subject of interest: what

values might have been is a hypothetical issue.

Nevertheless, one standard approach to autocorrelation
is centred on such inferential questions. The assumption
which is made is that the empirical series u;; i=1,... ,n
is one possible realisation of a chance or stochastic
process U. The inferential problem is to estimate the

parameters of this generating process.

Almost all the theory behind such an approach
considers the special case of stationary stochastic processes,
which are defined by the characteristic that expectations
of statistics are everywhere the same: that is to say, the
averages over all possible realisations are constant in time
and/or space. In particular, a process is second-order
stationary if expectations of first-order and second-order
statistics are invariant under translation of the origin.
(Higher order statistics might vary.) Such a process is

defined by constant mean
Efu] = p
and autocovariance function
ELQU -V -] = T

Here E is the expectation operator (see, for example, Whittle,

1970, Ch. 2).
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Putting k = O we deduce constant variance

Y. =°7

and scaling we deduce constant autocorrelation function

~

T,
Y, k
Synonyms for second-order stationarity are covariance,

mean square, weak, wide-sense stationarity.

It is usually argued that it only makes sense to
compute the autocorrelation function if the generating
process is second-order stationary (in a geological context
see Agterberg, 1974, 314-5; Schwarzacher, 1975, 166).
Otherwise the autocorrelation function is effectively a set
of variables, not a set of parameters, and it is indeed
extremely doubtful whether there is an estimation problem
in the classical sense. If this is true, it is very
restrictive: for if stationarity is a requirement, only
straight slopes can be studied by autocorrelation analysis
of angle data, and only slopes of constant curvature (single
convexities or single concavities) by autocorrelation analysis
of curvature data. An approach so restricted would be

geomorphologically useless.

However, attempts to step outside the framework
provided by stationarity face a general problem explained
clearly by Whittle (1963, 83): 'In dropping the assumption

of stationarity, one is left with scarcely any restriction
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upon one's model. For this reason, it is all the more
difficult to specify a model, or even to specify some of
the statistical properties of the variates (such as first

and second moments)'.

This view is perhaps a little conservative. Independence
or dependence of observations is an important issue, whether
or not there is any question of a stationary generating
process. Empirical autocorrelation functions might be of
some use as averaged descriptors even in nonstationary
situations. And increasing interest is being shown by
statisticians in nonstationary processes, notably in the

class of ARIMA processes discussed by Box and Jenkins (1976).

Nevertheless the standard response to nonstationarity
is to operate on the empirical series to produce a new,

approximately stationary, series, usually by dividing it

into nonstationary and stationary components. Detrending

by polynomial approximation, variate differencing, the
application of moving averages, demodulation and remodulation,
and variance-stabilising transformations have been the main
methods ﬁsed. None of these are universally effective or
free from secondary complications but in processing
geomorphological series the most important single issue

must be the physical rationale of any method for producing
approximate stationarity. For this reason autocorrelation
analysis finds its major application in analysing residuals

from process-based or process relevant models: any arbitrary
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specification of trend is likely to produce geomorphologically
irrelevant results. (However, first differencing is of
interest, because curvature deserves attention in its own

right.)

The sampling distribution theory of autocorrelation
functions of stationary processes has been extensively
investigated. One approximate but fairly robust result

for the null case Pk=(3 (k fairly small) is
Y o~ <___L_L
.~ N5 )
Both bias and variance are O (%;). Bias may thus be
neglected in practice for n» 200. This analytical result

is broadly supported by Monte Carlo sampling experiments

(Cox, 1966; Wallis and O'Connell, 1972).

(The term stationarity is used here to denote

invariance under translation of the origin, referring
uniformly to temporal, spatial and temporal-spatial

stochastic processes. Note, however, that homogeneity

is used by some authors for the spatial case. A further
point of importance is that processes in two or more
dimensions may also be characterised by the different
property of isotropy, invariance under rotation of

coordinate axes,)

7.4 Choice of estimator

Four different estimators of autocorrelation are

widely used. Different means are distinguished below by
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- N
w = 'j)%' Z u,(; » the mean of the whole series
=
n-k
—_ | .
w = _—kz u'C s> the mean of leading values
h=K =

n-k
= 1 E: u. ,» the mean of lagging values
-k ! tK
n-K =

(1) (e.g. Kendall, 1973, 40; Schwarzacher, 1975, 164)

This is the exact analogue of the Pearson coefficient, and,
from the Cauchy-Schwarz inequality, satisfies —| < Tké |

(2) (e.g. Granger and Hatanaka, 1964, 8; Quimpo, 1968, 367)
-k .
' n —/ -1
T (o =W g~
= =|

T = -
‘ L }; (w -w)

In this case the denominator only contains one variance

term, the variance of the whole series.

(3) (e.g.Kendall, 1973, U40; Agterberg, 1974, 315; Bath, 1974,
179; Drewry, 1975, 194; Richards, 1976, 77; Webster, 1977, 199)
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e K .2 (“- —T) (g — 1)

;%2“—1 (o, =2)

L:

In this case there is a further simplification: both terms
in the covariance are referred to the mean of the whole

series, rather than to separate means of leading and lagging

values.

(4) (e.g. Jenkins and Watts, 1968, 180-2; Fishman, 1969,
82-3; Chatfield 1975,24; Box and Jenkins, 1976, 32)

Z (w, =)W =T)

Y = _i=l

.Z (‘L; “‘1)1
=

n
The final simplification here is that the factor — has

n-k

been dropped.

What justification could there be for using (2), (3) or

(4) in place of (1)?

Firstly, use of the grossly biased (4) in particular
ensures positive estimates of variance spectrum ordinates;
otherwise meaningless negative estimates might be produced.

This is relevant only if spectral analysis is being undertaken.

Secondly, the gross bias of (4) may be practically

neglected for k <<n.

Thirdly, (2), (3) and (4) may be calculated more

quickly than (1). This is relevant only if computing
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facilities are not available.

Fourthly, it is often asserted that approximate estimators

are more efficient (i.e. have smaller variance) than the

Pearson analogue estimator (1), basically because the
denominator is a constant, not a function of lag, and

because the use of one mean for the whole series rather

than separate means for leading and lagging values would

reduce variability. However, sampling experiments for
stationary processes suggest that the gain may not be
appreciable (cf. Cox, 1966; Wallis and O'Connell, 1972;

Lenton and Schaake, 1973 in estimating f% in null and

Markov cases).

Fifthly, expectations of (1), (2) and (3) coincide

under second-order stationarity. This is the argument of
computational simplicity in another guise, and may be
rejected on the groundsthat estimation should not assume

second-order stationarity as a matter of course.

Note again that only (1) satisfies lTk"S | : the
others may lead to 'improper' estimates (ifk \>1 ), although

in practice this is likely only at long lags.

Examples of autocorrelation analysis in geomorphology
(7A) include cases in which estimators have not been
specified, cases in which estimators have not been made
completely clear, and cases of incorrect formulae. There
does seem to be a general preference for estimators (3)

and (4), partly because several authors used spectral analysis.
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It is concluded that the Pearson analogue estimator

should be used, and a fortiori that the chosen estimator

should be stated and justified. A safe procedure is to

use both (1) and (3): the difference between estimates is

a measure of second-order nonstationarity, which is of
interest in its own right. Such a procedure is also
preferable to the elaborate and rather impracticable tests
for nonstationarity which have been proposed (e.g. Priestley

and Subba Rao, 1969).

7.5 Empirical results

In this section empirical results are presented for
autocorrelation functions calculated for each profile, for
angle and curvature series, using two separate estimators
for lags k = O (1) 50. Various rules of thumb exist for
the minimum number of lags to be computed, partly because
a large number of autocorrelation coefficients are usually
redundant , and partly because coefficients become increasingly
unstable as k increases, since they are based on fewer
pairs of values. Davis (1973, 236), Chatfield (1975, 25)
and Box and Jenkins (1976, 33) all recommended not going
beyond n/4. The rule of thumb suggested here after some
experimentation (which included computing all possible lags!)
is to compute up to the smaller of 50 and floor (nﬁ%. (For

the floor function, see Ch. 6.2 above, or Iverson,6 1962, 12).

Autocorrelations for lags k = 1 (1) 5 (5) 50, for
angle and curvature, for all profiles and for 'Pearson' and

'abbreviated' estimators, i.e. (1) and (3) of Ch. 7.4, are
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displayed in 7B, 7C, 7E and TF. Differences between estimates
are displayed in 7D and 7G. These tables summarise 44
correlograms which cannot all be shown here. However, angle
and curvature series and the resulting correlograms for the
Pearson estimator are shown in TH to 70 for two contrasting

profiles, ST and AR.

In interpreting these autocorrelations, two sets of
questions, geomorphological and statistical, must be
considered. The most basic feature of 7B (Pearson for
angle) is the fact, expected on geomorphological grounds,
that angle autocorrelations do not in general dampen to
zero. 143 out of 154 autocorrelations in the table 1lie
outside the 0.99 confidence interval forfL=O, which was
calculated on the assumption that estimator bias could be
neglected and hence rk ~ N(O:‘vlf)' This disposes of any
notion that these angle observations can be taken as
statistically independent. Nor would a sampling procedure

akin to that suggested by Nieuwenhuis and van den Berg

(1971) work for these data.

The next idea to go is the fairly naive notion that
autocorrelation functions might capture the local property
of surface roughness. The correlograms in fact tell a
story of overall profile shape, as is clear from the
ranking on r, putting the profile with smallest value first:
ST, BO, PR, TO, HO, LA, FA, PA, TR, TA, AR. This ranking can
be compared with the groups distinguished in Ch. 6.1,

repeated here for convenience:
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(i) BO, ST, PR, PA: the four gentlest, slightly convex

(ii) FA, LA: the next gentlest, more convex

(iii) TR, AR, TA: the next gentlest, yet more convex

(iv) HO, TO: the steepest, more complex in form
Group (iii) with the strongest convexities (the strongest
trends in angle series) produces the three highest values of
ry. Group (ii) produces rather lower values, while the
multicomponent form of group (iv) results in still lower
values. With one puzzling exception (PA), the nearly
straight slopes of group (i) have the lowest values: they

almost lack trends in angle series.

The reason for this result, that positive autocorrelations
at short lags reflect profile convexity (or concavity),
can be seen by considering 7P. A straight slope would
correspond to a small region of the scatter diagram of
leading against lagging values, within which values would
be fairly evenly spread. By contrast a convex slope would
correspond to a larger region of such a scatter diagram,
oriented at an angle approaching 45©. Hence the auto-
correlation (correlation between leading and lagging
values) would tend to be higher for the convex slope than
for the straight slope. The global property of convexity
has an influence on the local property of autocorrelation,
because autocorrelation is based on a combination of

paired values from all parts of the slope.

Marked convexity (or indeed concavity) of slope is,

in statistical terms, marked nonstationarity of angle series.
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It has been considered whether autocorrelation functions
calculated from nonstationary series might be of use as sets
of averaged descriptors, contrary to the orthodox view

(Ch. 7.3 above). Moreover, the Pearson estimator of auto-
correlation does not depend on the stationarity of the series
to satisfy -(:<‘rk < |, and it allows leading and lagging
values to have different means and variances. In these
senses the Pearson estimator adjusts for nonstationary
behaviour. Nevertheless, the results in 7A show that
low-lag autocorrelations tell a story of profile shape, or
of nonstationarity. The naive idea that low-lag auto-
correlations would reflect local roughness collapses and

it can be seen that combination of results from different
parts of the slope allows autocorrelations to reflect

overall profile shape.

Hence the interest of 7B appears to be statistical
rather than geomorphological, because profile shape can be

studied more directly and more efficiently by other means.

7C (abbreviated for angle) is best viewed through
7D (Pearson - abbreviated for angle). Differences tend to
increase with lag. Apart from that, the differences serve
as measures of nonstationarity. The results presented for
each profile are summarised by the median absolute value;
the median being taken over the lags listed, k = 1(1)5(5)50.
The ranking (smallest first) is HO, ST, TO, LA, TA, PR, BO,

TR, AR, FA and PA. There is no simple story here, but it
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is clear that differences between estimators can be
appreciable even for low lags and series which visually

appear to be almost trend-free.

Pearson estimates tend to exceed abbreviated estimates.
The 154 values in 7D range from 0.243 to -0.040. 129 are
positive and 25 negative. This implies that the abbreviated
estimator imparts a downward bias, and reduces the number
of autocorrelations which would be correctly recognised as

significantly different from the null case.

Results for curvature (7E to 7G) differ strikingly
from those for angle. All ry values in 7E are strongly
negative and fall outside the 0.99 confidence interval for
{i= O. However, curvature autocorrelation functions dampen
much more readily than angle autocorrelation functions.
Only 27 out of 154 values in TE fall outside the 0.99
confidence interval for ﬁ§= 0, and only 16 out of 143 at

lags of 2 or more.

TF (abbreviated for curvature) is best viewed through
7G (Pearson - abbreviated for curvature) which shows a
straightforward picture. All tabulated differences are
very small, showing that the first differencing process
which produces curvature is sufficient to yield second-
order stationary series. It may be that rj of curvature
is a fair measure of roughness. Whether this is the case
or not, it is fairly conservative, ranging from -0.349 (PA)

to -0.584 (ST).
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7.6 Summary

(i) Autocorrelation properties of hillslope series are of
interest if only because it is important to know whether
values are statistically dependent. Angle series are
strongly autocorrelated, whereas curvature series dampen
much more readily affter strong negative values at lag one.
Otherwise, autocorrelation of angle is of fairly limited
geomorphological interest. It does not measure surface
roughness, but rather tends to reflect overall profile
shape, which can be defined and measured more directly in

other ways. (7.2 and 7.5)

(ii) The related problems of nonstationarity and estimator
choice deserve more attention than is customary in geomorphology.
It is important to state and justify the estimator used.

The Pearson analogue estimator is here recommended strongly,

(7.3 and T7.4)




7.7 Notation
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Mnemonics

cov
med
pr

std

var
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real numbers

expectation operator

Fisher's statistic

subscript

lag

number of observations

Normal (Gaussian) distribution
of the order of
autocorrelation, correlation
Student's statistic

real variable

means of whole series, leading values, lagging values
generating process

real variable

mean of v

autocovariance of process
mean of process
autocorrelation of process
standard deviation of process
summation operator

is drawn from

given

modulus

covariance

median

probability
standard deviation

variance
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Chapter 8

PROFILE ANALYSIS

If a man's wit be wandering, let him study
the mathematics; for in demonstrations, if his
wit be called away never so little, he must

begin again ...

Francis Bacon, Essays L: Of studies

8.1 The problem of profile analysis

8.2 Geomorphological considerations

8.3 Basic principles

8.4 Existing methods

8.5 Additive error partitions in principle
8.6 Aaditive error partitions in practice
8.7 Summary and discussion

8.8 Notation
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8.1 The problem of profile analysis

Profile analysis may be defined as the partition of a

hillslope profile into components which are relatively

homogeneous in some explicit sense. In other words, within

a component the value of some variable (say u) is approximately
constant. (The term 'partition' is used here both as a

verb, to denote the process, and as a noun, to denote the

result).

If u 1is angle 0 s then the components have approximately
constant angle, and may be termed segments. If u is
curvature 1; , then the components have approximately
constant curvature, and may be termed elements. Since
constant angle implies constant (zero) curvature, segments
are a subset of elements (but cf. Young, 1971, 1972 and
Parsons, 1977, who regarded segments and elements as

disjoint sets). This terminology is compared with that

of other workers in 8A.

For various reasons no need may be perceived for
any special method of profile analysis. Firstly, the
existence and bounds of distinct components such as
'free face' or 'debris slope' may be judged entirely
obvious. Secondly, the number of observations may not
be sufficiently large to require (or to justify)
sophisticated analysis. Thirdly, basic features of the
data may emerge quite clearly from graphical analysis

(e.g. Pitty, 1969, U43-53), or from inspection of averages

and differences (cf. Kulinkovich et al,1966; Hawkins and
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8A

Profile analysis terminology

Reference(s) Straight Curved Either
Leopold et al.

1960 facet element segment
Savigear 1965 facet segment
Savigear 1967 unit, component
Pitty 1969, 1970 component
Ahnert 1970Qc segment
Caine 1971 segment, component
Young 1971, 1972 segment element unit
Demirmen 1975 segment
Jahn 1975 sector
Graf 19760 component
Toy 1977 segment
This thesis segment element component

Note: The term 'component slope' is used by Young (1972,U4)

for a different purpose.
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Merriam, 1975). In contrast, attention is directed here
towards situations in which the existence of components is
considered problematic, the number of data is reasonably
large (number of values >100, say) and the need is felt for

a numerical method of profile analysis.

The partition of a series of values uj; i=1l,...,n into
k subseries may be regarded as the placing of k-1 markers
to indicate the bounds of the chosen subseries. k may take

any value between 1 and n.

Profile analysis may be considered as a combinatorial
problem (cf. Cliff et al, 1975, Ch. 2; their maximally
constrained case is equivalent to profile analysis, but is
denoted by their Fig. 2.5b, not by Fig. 2.5a). The series
u could be represented by a 'chain' with n-1 'links'.
Neighbouring values of u could be placed either in the
same component or in neighbouring components: each link
could be either 'intact' or 'broken;. There are thus 271
possible partitions of a profile of n observations. This
number increases explosively with n, with the simple but
important implication that as n increases it soon becomes
impracticable to inspect all possible partitions, and it
is advisable, if at all possible, to use a method other

than inspection to find the best partition, given some

optimality criterion.

The total number of possible partitions on-1 4
for all the possibilities for k=1,...,n; for example, the
1 possibility for k=1, the n-1 possibilities for k=2, and

so on. In general
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el N -ty e (=0
z ) E__;l(k—\) ,(Z:l (k=)' (n-k)!

(2:%) may be much less than 2P~1  depending on k, but it
grows rapidly with n, and with k-<;g . For example when

n=100, 200 and k=2(1)5

k (R GRSy
2 99 199
3 4 851 19 701
! 156 819 1 293 699
5 3 764 376 63 391 251

The problem of profile analysis is formally
equivalent to some other problems in data analysis, such
as the problem of dividing a time series into epochs or
periods (Fisher, 1958; Guthery, 1974; Hartigan, 1975) and
the problem of stratigraphical zonation met in geology
and palaeoecology (Gordon, 1973; Gordon and Birks, 1972;
Hawkins and Merriam, 1973, 1975). In each case, the
fundamental issue is the partition of a one-dimensional
series into subseries which are homogeneous in some sense:
this is a special problem in numerical classification.
Such partition problems, which are sometimes described
as plecewise approximation or segmentation problems, arise

in many disciplines: see, for example, the papers which

on Computers, such as that by Blumenthal et al. (1977).
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The two-dimensional case is also of great interest:
consider the role of regionalisation in, for example,
geography (Grigg, 1967; Spence and Taylor, 1970; Cliff
et al., 1975; Haggett et al., 1977), geomorphology (Gellert,
1972; Mather, 1972), geology (Henley, 1976) and terrain
evaluation (Mitchell, 1973; Ollier, 1977).

The basic similarity of partition problems emerges
most clearly from a formal statement. This allows ideas
and techniques to be borrowed where appropriate, and leads
to the embedding of profile analysis within numerical
classification. It is both remarkable and unfortunate
that profile analysis has not been recognised widely
within geomorphology as a numerical classification problem

(although note some passing discussion in Parsons, 1973).

The data u could in general be vector-valued, leading
to a multivariate classification problem (cf. Webster, 1973;
Hawkins and Merriam, 1974; Hawkins, 1976), but the multivariate

case of profile analysis will not be further examined here.

8.2 Geomorphological considerations

The primary purpose of profile analysis, as with any
classification, must be parsimony in description. If n
data values may be summarised efficiently by the attributes
of k components, where k<< n, then profile analysis yields a
convenient simplification. Profile analysis as discussed
here is a morphometric technique, although the method
could be applied to any one-dimensional data series. While

it may be hoped that a partition of a profile might be of
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interest to students of process or development, or to
practitioners of applied disciplines, such purposes are
here regarded as secondary to the aim of morphometric

description.

Nevertheless, it is important to discuss the geomorph-
ological grounds for profile analysis. Clearly profile
analysis is a valid approach if a hillslope may be
legitimately regarded as a combination of discrete components
(or, more generally, if a landscape may be considered as
a mosaic of discrete units). Two views may be identified
on this issue: one emphasising the atomistic character of

the landscape, the other emphasising its continuous

character. (It is commonplace in the physical sciences to
contrast atomistic and continuum views, or particle and
field theories: see, for example, the remarks of Holton
(1973, 1978) on these views as 'themata' in the history

of scientific thought.)

The atomistic view finds its strongest expression
in the morphological mapping procedures of the 'Sheffield
school', which are centred on 'the concept that there is a
small basic indivisible unit of terrain' (Mitchell, 1973, 49).
Waters (1958) and Savigear (1965) were the main proponents
of morphological mapping, while Gregory and Brown (1966)
and Doornkamp and King (1971, Ch. 6) provided further
discussion and worked examples. Morphological mapping in
particular and geomorphological atomism in general seem

to have three theoretical bases, as follows:
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(i) The idea that a polycyclic denudation history
associated with a fluctuating base level would produce a
landsurface which was a mosaic of slopes and flats
(Wooldridge, 1932; Linton, 1951).

(ii) The idea that process discontinuities would
be associated with morphological discontinuities, found
for example in the work of King (1967) and in the so-
called 'Nine Unit Landsurface Model' (Dalrymple et al.,
1968; Conacher and Dalrymple, 1977).

(iii) The idea that morphological discontinuities

may be associated with lithological discontinuities.

While in individual cases these ideas may be very
plausible, it still remains necessary to test such a
view as part of profile analysis, and thus to consider
the alternative possibility that a hillslope profile is
essentially a smoothly-changing continuous curve. An
emphasis on continuity does not seem to possess any
theoretical justification. It is rather that ideas of
continuous curves and surfaces are both natural and
convenient for any modelling approach centred on differential
equations, or for any morphometric approach centred on the

statistical analysis of spatial series.

The atomism~continuity issue is perhaps best
approached by comparing variability between and within
components. One possible pitfall here is that variability

measures may be unduly sensitive to the measured length(s)
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used in profile survey (cf. Gerrard and Robinson, 1971;
Gerrard, 1978). This could be investigated to some extent
by the aggregation approach used in Ch. 6.3 above for

analysing angle and curvature frequency distributions.

8.3 Basic principles

The following principles are suggested to underlie

profile analysis.

(i) Objectivity. A call for objectivity implies that

methods should be explicit and replicable. It does not
’ amount to a denial of the need or value of individual
interpretation or experience. In practice a full specification
of the algorithm used is required; for example, in the form
of a computer program. Making methods explicit and replicable
means that they can be discussed and evaluated, and, if

need be, modified or rejected.

(ii) Against adhockery. Ad hoc procedures, such as

arbitrary cut-off or allocation rules, should be avoided as
far as possible. Since profile analysis is a numerical
classification problem it seems eminently sensible to embed
the problem within the fields of cluster analysis and
numerical taxonomy (cf. Jardine and Sibson, 1971; Sneath

and Sokal, 1973; Everitt, 1974; Sokal, 1974; Hartigan, 1975).
If profile analysis has special features which need to be
handled by special procedures, then this case must be argued
explicitly. As a distinguished statistician once wrote,

'we make no mockery of honest adhockery'! (Good, 1965, 56):
but if a systematic procedure is available, adhockery deserves

all the mockery it may receive.

...
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(iii) Data analysis. A certain open-mindedness should

be entertained about the basic features of the data. 1In
particular

(a) While many geomorphologists use the term
"microrelief' it is by no means clear whether microrelief
is really a distinctive source of variation in principle,
let alone how it may be distinguished in practice (cf.
Ch. 5.3 above).

(b) It will rarely be clear prima facie how many

components exist, or indeed whether they really exist qua
components.

(c) It should be easy to vary the number of
components k. While for a variety of geomorphological and
psychological reasons the value of k chosen will often be
between 1 and 9, it is nevertheless vital that it should be
straightforward to consider different values of k. A
satisfactory method for profile analysis will not prejudge
the amount of detail required by the user, while k should
be changed if only to determine the sensitivity of the
resulting partitions.

(d) It is important that there should be some check
of the validity of supposed components in the form of a
comparison of variability between and within components.

(iv) Decency assumptions made explicit. If a method

of data analysis is regarded as a transformation of one
set of numbers into another set, it can often be shown that
there are conditions in which the transformations work best

according to given optimality criteria. The corresponding
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'decency assumptions' about the ideal character of data
should be made explicit, and the consequences of suboptimal
conditions should be known as far as possible. (The
excellent term 'decency assumption' is taken from Levins,
1970, 74).

(v) Direction-invariance. Results from profile

analysis should not vary with direction of data processing,
base to crest or crest to base (cf. Gerrard, 1974).
Formally, results from the series uj,...,un and the

reversed series Upsee- Uy should be equivalent. A component
is a component whether one is climbing up or sliding down.

(vi) Principles and practice. A further requirement

is that any method of profile analysis must also be useful
geomorphologically, which is in large part an issue for the
fieldworker. However, it seems vital that this principle
should not be allowed to override other principles, so

that a statistically dubious method is regarded as
acceptable geomorphologically, merely because it produces

apparently sensible results.

8.4 Existing methods

8.4.1 Ahnert's method

Ahnert (1970c¢) proposed that segments (i.e. components
in the terminology proposed here) should be regarded as
straight (sc. segments) if angle does not change twice in
the same direction in two successive measured lengths:and
total variation in angle does not exceed 3°. Concave and

convex segments (sc. components) are then distinguished by
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the direction of angle increase.

The choice of 3° for angle range is clearly arbitrary
and implies that the number of segments (sc. components)

is strongly influenced by measured length.

Juvigné (1973) independently proposed a broadly

similar method, which is open to similar objections.
8.4.2 Ongley's method

The method devised by Ongley (1970) tackles the
problem of identifying (rectilinear) segments rather than

that of profile analysis sensu stricto. Subseries of

profile coordinates x and z are entered in local regressions

with the implicit model

z = X+ ﬁx + €

where o(,@ are parameters and &€ stochastic error. Choice
of subseries for regression is determined by a complicated
algorithm: the program works its way up a profile. A
subseries is accepted as a segment if no residual exceeds
a prespecified tolerance in absolute size. Note that in

general segments may overlap.

Apart from the fact that Ongley's method is of no
use for identifying elements, it 1s unsatisfactory for
several reasons (cf. also Gerrard, 1974, 1978). 1In
practice it is difficult to choose an appropriate tolerance
value. At high levels considerable overlaps occur; at
low levels there may be a multitude of very short segments.

In either case, it is not easy to decide on a value for
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tolerance which would lead to much better results. Consequently
it may be necessary to rerun the program several times before

obtaining output satisfactory for the purpose in mind.

The algorithm for 'walking' the program upslope is
extremely clumsy. It is not surprising that it may lead
to direction-variant results: if data are reversed, and
the program instructed to walk downslope, completely
different results have been found to occur (contrary to
the suggestion by Gerrard, 1974). This seems to be a

fatal defect.

Ongley's method was applied to survey data for profiles
TO and TR.to illustrate these remarks. Tolerance was set
at 5m somewhat arbitrarily. (For his slopes on the Cobar
pediplain, New South Wales, Ongley used 0.3 ft. (90mm),
but these slopes were evidently both gentle and smooth.)
The data for TO and TR were read in both base-crest and
crest-base directions. Results for TO are given in 8B,
which lists terminal index numbers for each segment
identified. The indexes run in crest-base sequence in

both cases for comparability.

The most striking feature of the TO results is that
54 segments were identified in one case, and 107 in the
other. More detailed inspection shows the lack of
correspondence between the two sets of results: in fact,
no segment occurs in both lists. An alternative method
of comparing results is through frequency distributions

of segment lengths (8C): the differences are quite clear.
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8B Results for Ongley's method on TO

Tolerance = 5m.

Base-crest

1,44 6,45
20,52 21,54
33,61 34,62
43,69 45,71
55,80 56,82
63,94 64,97
71,113 72,116

11,47
25,56
39,64

9,46
22,55
36,63
46,72 48,73
57,83 58,85
65,100 66,102
73,177 74,2004

13,48
26,57
40,65
49,74
59,87
67,103
75,287

14,49
28,58
42,66
50,77 52,78
60,89 61,90
68,106 69,107
76,309

16,50

30,59
41,67

18,51
32,60
43,68
54,79
62,91
70,112

# segments =

54

Crest-base

1,118
96,127
108,135
117,142
125,158
133,195
152,227
171,237
186,245
206,259
222,269
238,279
246,294
255, 300

# segments =

(# measured angles

2,119
97,128
110,137
118,142
126,157
134,200
154,228
172,238
188,246
207,260
224,270
239,280
248,292
256,308

107

3,120 11,121 79,122

100,129
111,138
119,143
127,158
135,206
155,231
173,239
190,253
209,261
225,271
240,284
249,291
257,309

102,130
112,139
120,142
128,162
136,220
156,232
174,240
192,254
211,262
226,274
241,285
250,290

309)

104,131
113,140
121,147
129,168
137,219
157,233
176,241
196,255
214,265
233,275
242,289
251,292

86,123
105,132
114,140
122,150
130,174
138,224
161,234
182,242
199,256
216,266
235,276
243,291
252,293

90,124
106,133
115,141
123,153
131,180
139,225
164,235
183,243
201,257
217,267
236,277
244,293
253,293

95,126
107,134
116,142
124,155
132,189
142,226
170,236
184,244
203,258
219,268
237,278
245 294
254,296
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A user faced with the results in 8B and 8C and wishing
to continue would presumably rerun with lower tolerance,
but what value would he choose? Intelligent guesswork

would be the only guide.

The results for TR (8D and 8E) tell a similar story.
237 segments are identified by processing in one direction,
while only 93 are identified by processing in the other
direction. Once again no segment occurs in both lists.
There is a strong tendency to identify a multiplicity of
segments of approximately similar length as the program
works its way round a concavity or convexity. This is
hardly surprising since Ongley's method is, after all,

attempting to identify segments.

Parsons (1973, 1976b) independently produced a
superficially similar method also based on local linear
regressions. Various ad hoc devices reduce the influence
of outliers and lead to an analysis of the profile into
disjoint segments. This method is, however, also direction-

variant (Parsons, personal communication, 1977).
8.4.3 Pitty's method

Pitty (1970, 30-44) proposed regressions of angle

against index number with the implicit model
9 =O(+@L t+ €

where X, @ are parameters and € stochastic error. A cusum

test was suggested for changes in slope and a test using
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8D Results for Ongley's method on TR

Base=-crest

1,42
9,50
19,58
29,66
Lo, T4
47,82
56,90
64,100
72,108
80,116
88,125
96,135
105,144
115,152
124,160
135,168
| 145,178
- 153,186
161,195
169,200
177,213
186,222
195,230
209,238
219,246
229,256
237,309
284,318
300,326
309,335

# segments =

2,U3
10,51
20,59
31,67
41,75
49,83
57,91
65,101
73,109
81,118
89,126
97,137
106,145
117,153
126,161
136,170
146,179
154,187
162,196
170,205
178,214
187,223
198,231
210,239
222,247
230,258
258,311
289,319
300,327
310,336

237

3, 4y
11,52
22,60
33,68
b2,76
50,84
58,93
66,102
74,110
82,119
90,127
98,138

107,146

118,154

127,162

138,171

147,180

155,188

163,197

171,206

179,215

188,224

198,232

211,240

223,248

231,260

239,312

288,320

301,328

312,337

Tolerance

I, U5
12,53
23,61
34,69
43,77
51,85
59,94
67,103
75,111
83,120
91,129
99,139

108,147

119,155

129,163

139,172

148,181

156,189

164,198

172,207

180,216

189,225

200,233

212,241

224 2i9

232,261

249,313

290,321

303,329

313,402

:5m

5,46
13,54
24,62
35,70
by, 78
52,86
60,95
68,104
76,112
84,121
92,130

100,140
110,148
120,156
130,164
140,173
149,182
157,190
165,199
173,208
181,217
190,226
202,234
214,242
225,251
233,268
267,314
293,322
505,330
314,403

6,47
15,55
25,63
37,71
45,79
53,87
61,96
69,105
77,113
85,122
93,131

101,14

111,149

121,157

131,165

141,174

150,183

158,191

166,200

174,209

182,218

191,227

204,235

216,243

226,252

234,284

270,315

294,323

305,331

7,48
16,56
27,64
37,72
k6,80
54,88
62,97
70,106
78,114
86,123
94,132

102,142
112,149
122,158
132,166
142,176
151,184
159,192
167,201
175,210
183,219
192,228
205,236
217,244
227,253
235,296
276,316
295,324
306,332

8,49
17,57
28,65
39,73
46,81
55,89
63,98
71,107
79,115
87,124
95,133

104,143
113,151
123,159
134,167
144,177
152,185
160,193
168,202
176,211
185,221
193,229
207,237
218,245
228,255
236,302
281,317
297,325
308,333



Crest-base

1,256
238,264
252,272
260,281
268,298
276,314
296,342
334,350
343,359
351,376
369,391
385,399

170,257
243,265
253,273
261,282
269,300
277,316
301,343
335,351
344,360
352,380
370,392
386,400

# segments = 93

178,258
245,266
254,272
262,285
270,303
278,323
310,344
337,352
345,361
353,381
374,393
387,401

(# measured angles = U403)
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186,259
2U47,267
255,272
263,287
271,306
279,331
316,345
338,353
346,362
354,384
376,394
388,402

198,260
248,268
256,274
264,290
272,307
280,333
318,346
339,354
347,365
355,387
379,398
389,403

205,261
249,269
257,277
265,293
273,309
281,339
326,347
340,355
348,368
357,388
381,396

216,262
250,270
258,278
266,295
274,309
283,240
330,348
341,356
349,370
361,389
382,397

231,263
251,271
259,279
267,297
275,312
288,341
331,349
342,358
350,374
365,390
384,398
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regression output for breaks of slope.

Pitty did not discuss the choice of angle subseries
for regression. There is considerable confusion in his
account between three logically distinct issues: the
validity of the null hypothesis Ho :@:fD, the adequacy of
the model (assessed perhaps by a global lack-of-fit statistic)
and the independence of residuals. It is unfortunate that
two tests rather than one are proposed for this problem:
there seems to be no justification for this complication.
The cusum test has recently been shown to be totally
unsuitable for autocorrelated data (Johnson and Bagshaw,
1974; Bagshaw and Johnson, 1975), while the test for breaks
of slope implicitly assumes the adequacy of the regression
model which is one of the issues at stake. Finally, Pitty's
use of algebraic notation is inconsistent, which makes

understanding of his proposals difficult.
8.4.4 Young's methods

Young (1971) proposed three techniques of profile
analysis: best segments analysis, best elements analysis
and best units analysis (hereafter BSA, BEA, BUA). They
are a development of previous subjective methods developed

by Savigear and Young.

The variability of a subseries in either angle or
curvature (either case denoted here by u) is measured by

its coefficient of variation i.e. standard deviation . 100

J(ZLL lL-L?' _ -ll) o mean
- 1O

2L
w
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Go=2liyyg
where u = &2*t " and 1; denotes measured length.

NA

Curvature is in fact defined rather unsatisfactorily by

Young as
.. 200 (8, -6.)
! L, + Lo
¢ =200 B E) L=2,.n-|
LL'l + Zl\IL + L(.+|
| 200 (O = On-y)
Cn =

ey T L

In BSA a subseries is accepted as a segment if the
coefficient of variation of angle does not exceed a
prespecified maximum. In BEA a subseries is accepted as
an element.if the coefficient of variation of curvature
does not exceed a second prespecified maximum. BUA allows
for both segments and elements, depending on two prespecified

maxima.

There is an immediate difficulty here. Since segments
are a subset of elements, BSA and BEA are not independent.

Furthermore, the existence of BUA is both unnecessary and

confusing.

In these techniques, a measured length may fall into
two. or more components. This difficulty has to be resolved
if components are not to overlap. For example, in BUA,

'a measured length which falls into two or more slope units,
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each within the specified maximum variability, is allocated
to the longest unit; if two units are of equal length, it

is allocated to that with the lowest coefficient of variation;
if the coefficients are also equal, allocation is to a
segment in preference to an element' (Young, 1971, 5).

Hence since similarity and contiguity criteria do not

always produce a satisfactory partition into components,
Young's method assigns measured lengths whose status is

in doubt to 'the longest acceptable unit', defined in an

ad hoc manner.

Another fundamental difficulty is that like all
ratios, the coefficient of variation is not a stable
measure (cf. Kendall and Stuart, 1969, U47-8). As
denominators become smaller, values of the coefficient
tend to become extremely large. This produces a bias
towards short components for low mean angles or
curvatures ('flats' become short segments, 'segments'
become short elements). Young tackled this difficulty
by replacing means below 2 by a value of 2, but this is

clearly not a very satisfactory solution.

The coefficient of variation has the further dis-
advantage (Lewontin, 1966; Gilbert, 1973, 54), that it
rests on the implicit assumption that standard deviation

is proportional to the mean.

Young (1971) recommended coefficients of variation
of 10.0 (angle) and 25.0 (curvature), but remarked

(personal communication, 1975) that higher values might
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be necessary. O8F gives the numbers of segments and elements
obtained with maxima of 10.0 (10.0) 90.0 for profile Tripsdale
(TR). These results show that for this kind of data, obtained
with short measured lengths, very high coefficients are

needed to produce few-component partitions (but, once again,
the user would have to fall back on intelligent guesswork

in choosing new values for rerunning the program). It is

also clear that results are direction-variant: different
numbers of components may be produced by different directions
of processing, although the differences in numbers are

relatively small.

‘ 8G and 8H focus on a specific case: segments for 50.0.
The instability of the coefficient of variation leads to

many short gentle segments, particularly on the upper part

of the convexity. It is also clear how results are basically
an artefact of direction of processing: only 56 out of 403
measured lengths are allocated to exactly the same segment

in both cases. (The direction-variant character of

Young's method was first pointed out by Gerrard, 1974).
Results for 90.0 which are given in 8I, are even worse:

only 5 out of U403 lengths are allocated to exactly the

same segment.

Results for profile TO are given in 8J, which tells
a similar story: while the numbers of components are
approximately equal for different directions of processing,
the actual components may once again differ markedly.

The example of segments at 50.0 is particularly striking.

-




- 270 -

8F Results of best segments analysis and best

elements analysis on TR, by direction of processing

# segments # elements
Maximum Base-crest Crest-base Base-crest Crest-base
coefficient
of variation
10.0 284 284 379 379
20.0 208 210 357 356
30.0 139 130 339 340
4o.o 95 100 313 315
50.0 57 64 296 294
60.0 35 35 274 274
70.0 25 26 262 260
80.0 21 15 236 230
90.0 11 8 224 216

(#measured angles = 403)
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8G Results of best segments analysis on TR:

Base-crest

1,4 5
18 19
27 28,
b6, 47 48
73,89 90,

121,161 162
223,224 225

313,403

# segments =

Crest-base
1,4 5
17 18
26 27
42,45 L6,
66,67 68
99 100,

136,169 170

227 228,

# segments =

maximum coefficient of variat

6 7 8,9
20 21 22
29 30 31 32,35
49,50 51,53 54,65
91 92 93,98 99
163 164 165,167
226,228 229 230
57
6 7 8,9
19 20 21
28,29 30 31
47 48 49,50 51,53
69 70,74 75,90
103 104 105,114 115,129
171,175 176 177,182
229 230 231 232,255

64

ion = 50.0

10 11,16 17

23 24,25 26
36,40 43 42,45
66 67,68 69,72
100,102 103,115 116,120
168 169,217 218,222

231,242 243,311 312

10 11 12,16
22 23 24,25
32,35 36,40 41

54 55 ° 56,65
91 92 93,98
130,131 132,134 135
183 184 185,226

256,257 258,347 348,403
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81

Results of best segments analysis on TR:

maximum coefficient of variation = 90.0

Base=-crest
1,18 19 20 21
28,30 31,70 71,404

#segments = 11

Crest-base

1,25 26 27 28,30 31

#segments = 8

Ordered segment lengths

Base-crest

1,1,1,1,1,2,2,3,18,40,334

loq = 1 med = 2 upq

Crest-base

1,1,1,3,25,48,85,239

log =1 med = 14 upq =

522 23

32,116

18

66.5

24,25 26

117,164

27

165,403
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8J

Results of best segments analysis and best elements analysis

Maximum

coefficient of

variation

10.0
20.0
30.0
ho.o
50.0
60.0
70.0
80.0

#segments

on TO

#elements

Base-crest Crest-base Base-crest Crest-base

157
55
22

H Ul O

(#measured angles

155
58
22
10

e

Case of coefficient maximum =

291 291
267 266
253 253
238 238
223 225
200 200
182 187
169 170

50.0

Base-crest

Segment
1,272

273

274

275

276,309

Crest-base
Segment
1,309

Actual coefficient

41.41
0.0
0.0
0.0

41.50

42,79
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While the whole profile can be accepted as a single segment
at 42.79, this is not revealed by base-crest processing which
divides the profile into five segments, and thus fails to

find the optimum.

Recently Parsons (1977) discussed applications of
Young's methods (and elaborations of them) to a large amount
of profile data. For a critique of this paper and a reply,
see Cox (1978) and Parsons (1978). A further paper (Abrahams

and Parsons, 1977) is open to similar objections.
8.4.5 Assessment of existing methods

This survey has concentrated on Ongley's and Young's
methods as the most popular among geomorphologists. These
methods may now be considered in the light of the principles

proposed in Ch. 8.3 above.

The most striking feature is the ad hoc and arbitrary
character of existing methods, which have basically been
developed in ignorance of the large body of work on numerical
classification. Both Ongley's and Young's methods may be

highly direction-variant, which seems impossible to justify.

In neither case is it easy to vary the number of
components, since the parameters controlled are related to
the number of components in a complex and unknown manner.
Nor does either method allow comparison of between-component
and within-component variation. The problem of sensitivity

to measured length has been largely ignored, although it
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would be straightforward to apply these methods to aggregated
data.

Hence no existing method can be regarded as satisfactory.
Attention now turns to a method drawn from numerical
classification, which was originated by Fisher (1958),
generalised by Hartigan (1975), and which produces 'additive
error partitions'. This method is discussed in some detail

before being applied to profile data from the field area.

8.5 Additive error partitions in principle

Fisher (1958) proposed a weighted least-squares
criterion for partitioning a series u of length n into

k contiguous subseries

n
minimise Z W; ('\ki - ué )2

v=1
Here w; is a weight, ﬁi is the average of the subseries
which includes uj, and minimisation is over the (ﬁ:i)
possible partitions. This criterion is one of a family
of least-squares criteriawhich also includes criteria
for vector-valued u and piecewise functional approximation.
Various members of this family have been used in geology
and palaeoecology, mainly for stratigraphical zonation
(Gordon and Birks, 1972; Gordon, 1973; Hawkins and Merriam,

1973, 1975).

Hartigan (1975, Ch.6) considered additive error

criteria of the general form
k
minimise dj

=
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Here d; is a diameter for subseries j, and minimisation is
over the possible partitions. Hartigan mentioned, as
special cases of dj

d.
J

d;

where summation is over values of u which belong to

z:lvalue - medianl

E:lvalue - meanl2

subseries j. Clearly both these can be seen as members
of the family

dj = 2:‘ value - typical value‘

In principle the choice of diameter might be
justified by considering conditional probability distributions
for each subseries (Hartigan, 1975, 135), each of the form

pr (value of u| local parameter)
Classical results carry over so that p = 1 is the maximum
likelihood procedure for double exponential (Laplace)
distributions, and p = 2 that for normal (Gaussian)
distributions, assuming independent observations. However,
such conditional probability distributions are in practice
unknown (the task of profile analysis being in essence to
estimate local parameters); they may not follow any
classical distributions (results for marginal frequency
distributions discussed in Ch. 6.2 above show a broad
general tendency to long-tailedness); the form of distributions
may vary from subseries to subseries; and mutual independence
of observations from each distribution may well be a very
strong assumption (even though weaker than mutual independence

of all observations, discussed in Ch. 7 above).
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Such important reservations aside, additive error
partition methods produce optimal components for k=1,2,3....
The number of components is controlled directly, and both
generalised and detailed partitions may be produced in a
single program run. Component attributes (typical value,
variation, boundaries) are of course of great interest,
while partitions as a whole can also be compared for
different values of k, and for different profiles, perhaps

by considering the measure

| | K |
= CMithm (Z| AJ- )] = V , say.
J:

Finding the optimal partition is nontrivial computationally
given the combinatorial explosion of (E:i). However, it
can be tacked by a dynamic programming algorithm (Bellman
and Dreyfus, 1962; Hartigan, 1975). Such an algorithm
will always find an optimum, although it may not be
unique. This raises the question whether different
directions of processing would find different optima with
equal values of the objective function. It is conjectured
here that for real-valued objective functions of the kind
considered below, this is in principle an event of
probability zero (in the exact sense of the expression)
and direction-invariance can thus be assumed in practice.
This conjecture is supported by Hartigan (personal

communication, 1977).
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8.6 Additive error partitions in practice

Additive error partitions were produced for curvature

series 11==A9 using the least-squares criterion

n . _ \
minimise Z (Wi — U-(")
=\

for all eleven hillslope profiles, for k = 1(1)10.

The results showed a strong tendency for the method
to yield a large number of very short components. For
each partition of n into k, the k components can be
ordered numerically by their lengths (i.e. numbers of
observations included). This can be repeated for each
profile, and order statistics and functions of them
calculated over all profiles. Medians and midspreads over

profiles of ordered component lengths are given in 8K.

There is a clear pattern in these results. Least-
squares partitions pick up a large amount of local
roughness, 'bumps' and 'ruts', and declare many such
features to be components. This seems undesirable.
Accordingly it was decided to smooth the data before
partition. The original data are angles § which are
differenced to produce curvatures AB . If smoother series
are desired, then there are various possibilities:

(i) smooth angles, then compute curvatures

(ii) do not change angles, but smooth curvatures

(iii) smooth angles, then compute and smooth

curvatures.

The first possibility seems the most straightforward

and was therefore adopted.

-
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Naturally many smoothing methods are possible to
produce smoothed series v from original series u. Linear

smoothers of the general form
v, o= }I:N,I(LI ,

where ZN.
I

of i, have been frequently used in geography and other

= | and values I are those in the neighbourhood

disciplinés (e.g. Holloway, 1958; Rayner, 1971, 65-T4;
Chatfield, 1975, 17-20; Tobler, 1975; see Pitty, 1969,
45-9 for a hillslope example). Nonlinear smoothers have
attracted much less attention but are both simple and
advantageous (Beaton and Tukey, 1974; Velleman, 1977;

McNeil, 1977, Ch. 6; Tukey, 1977, Chs. 7 and 16).

The simplest nonlinear smoothers are running medians:

the gentlest is of length 3 whereby
vi = med (Uj_1, Ui, Ui41)

with appropriate end-value rules, here

vy = med (uj, u2)

v
n

med (u,_7, un)

Running medians are attractive as resistant or robust
smoothers which are less sensitive to bumps and ruts than
comparable running means (moving averages). (For a
contemporary introduction to resistance and robustness,

see Mosteller and Tukey, 1977, Ch. 10).

Nonlinear smoothing can be followed by linear
smoothing, for example by Hanning (Blackman and Tukey,

1959, 171 and references on nonlinear smoothing just cited):
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VL =+L‘-*‘L—l +—i—u,.t -1'—+iu.t+‘

Again end-values must be tackled in some way: here
v = %2 W, +'l3' Uy
Vo = % U +% W

Some preliminary experiments with running median of
length 3, followed by Hanning (3H for short), indicated
that it was too gentle. The procedure was thus repeated,
hence the smoother 3H3H. Smoothed angles, rough angles
(rough = data - smooth), and curvatures derived from
smooth angles were computed and plotted in each case.
This particular smoother is fairly conservative: it
still leaves much local variability, as can be seen
from a comparison of original and smooth curvatures for
profile TR in 8L and 8M, and in other plots for the
remaining profiles. The smoother removes some 69 to T78%

of variation on a linear scale (8N).

Additive error partitions were produced for these
relatively smooth curvature seriés. The distribu@ion of
component lengths (80) shows that a strong tendency to
produce a multitude of very short components persists
despite smoothing. There is, however, a broad tendency
for the shortest components to grow slightly longer, while
some (but by no means all) of the longest components

contract in length.

With this problem in mind, the component breaks. can

be examined (8P). Partitions are given for differing




YL J0J saangeaand TBUISTIO, 18

43040 |
"0Ch “0%e - Tote “052 “00e “0S1 001 €S

L

|

i ?fé i _g_\,?%%3222%%%

—l .

e

_283_
=
=

———————r e

_

S

“0e-

AN 16A

0c




- 284 -

YL J0J S8JN3BAIND UJOOUS K

. 43040

“QCh 05 “0QE 052 02 oSt . . T00I S .o_

1

-
-nU.

!

N

>

| sf ' %}\r?@%%%?agié,\ é " é}%i?»\zss ?{z;\és%sa




- 285 -

8N

Variability of curvature series before and after smoothing

Profile std % reduction midspread % reduction
BO 5.6 1.30 17 5.5 1.4 75
ST 4.8 1.14 76 4,5 1.1 76
PR 3.7 0.95 T4 3.5 0.9 74
PA 4,y 1.26 71 4.0 1.0 75
FA 4,8 1.29 13 5.0 1.1 78
LA 3.8 0.96 75 3.0 0.8 73
TR 6.1 1.60 T4 5.0 1.2 76
AR 4.3 1.34 69 4,5 1.1 76
TA 5.7 1.65 71 6.0 1.5 75
HO 9.4 2.88 69 7.0 2.2 69
TO 7.0 1.82 T4 T.7 2.2 71
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#curvatures =

295
287 292
287 292

#curvatures
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43 45 296 298
43 45 296 298 303
43 45 296 298

#curvatures

174 177
174 177
174 177
161 174 177
161 174 177
161 174 177

#curvatures =

392

24 26
24 26
24 26
24 26

Component bounds
393
382
382
381
298 299 382
298 299 381
297 299 381
298 299 382
298 299 381
452
429 433
429 U433
429
k29 433
4b29 433
304 306 U429 U433
271
264
264 265
261 264 265
264 265
261 264 265
261 263 264 265
261 264 265
261 263 264 265
261 263 264 265 266
2o
415
415 418
415 418
4o8 410 4i6 418
4Lo8 410 U415 U416 418
4o8 410 416 418
4o8 410 415 416 418
4o8 410 416 418
408 410 415 416 1418

385

385
385

385

434

386
386
386
386
386
386
386
386
386

440

390
390
390
390
390
390
390

4ys
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8P (continued)

FA #curvatures = 505

k

2 489

3 38 41

L 38 41 43

5 38 41 43 489

6 38 41 43 483 489

7 38 41 43 483 489 491

8 38 41 43 483 489 497 500

9 34 38 41 43 483 489 497 500
10 34 38 41 43 483 U489 491 497 500

LA #curvatures = 468

k

2 459

3 65 66

4 373 376 378

5 65 66 U559 462

6 65 66 373 376 378

7 65 66 219 221 459 462

8 65 66 373 376 378 459 462

9 65 66 219 221 373 376 459 462
10 65 66 219 221 373 376 378 Uu59 462

TR #curvatures = U402

k

2 394

3 251 253

4y 251 253 379

5 251 253 379 387

6 251 253 353 355 387

7T 251 253 353 355 379 387

8 251 253 353 355 359 379 387

9 251 253 342 344 353 355 379 387
10 251 253 314 342 344 353 355 379 387

AR #curvatures = 362

k

2 357

3 357 360
L 320 357 360
5 320 354 357 360
6 320 351 353 357 360
7 340 345 350 353 357 360
8 320 340 345 350 353 357 360
9 6 320 327 340 345 350 353 357 360
10 163 165 339 340 345 350 353 357 360




H
b

[
O\ O~1I A\ =\ K

ool
O

H
O\W o~ 0\ &R

=3

OWO~IC\\NT =W R

'—-I

411

411
411
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118
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16
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8P (continued)

#curvatures = 566

418

423 U4z Ly7
418 4y3  4y7
418 hy3
418 hy3
418 a7 4u3
418 L28 431 L43
418 428 431 uu3
#curvatures = 413

131
128 130
124 127 130
124 127 130
124 127 130
124 127 130
124 127 130 152
124 127 128 130 152
124 127 128 129 130 152
#curvatures = 318
270 271

270 271 300
270 271 300
270 271 300
116 118 270 271 300
116 118 123 270 271 300
116 118 123 270 271 300

28 30 116 118 123 270 271 300

448
48
448
448
h48

154
154
154

303
303
303
303
303
303

560
455
455 560
455 560
L5 560
455 U458 560
155
155 175
175
175
175
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numbers of components in a format which allows comparison of

the effects of varying the level of generalisation. It seems
likely that only genuine breaks will be maintained as the

number of components varies: breaks which appear and disappear
relatively quickly are likely to be spurious. Moreover, very

short components will be disregarded as lacking in geomorphological

interest.

BO is probably best regarded as an upper component
(1,380) with an irregular middle section (286,299); and a
relatively short basal component (381,393). On ST, the
breaks around 43 are caused by a track, while the very
short components around 300 are also attributable to
purely local irregularity. There is a good case for
identifying a basal component (430,452) and a long upper
component (1,429). Similarly on PR breaks in midslope
may be discounted and a break made near the base: (1,264)
and (265,271). Yet again on PA possible breaks near the
crest do not seem to have substantial significance and
the clearest break is between a long upper (1,408) and a

short lower component (L408,420).

In the case of FA the breaks near the crest are
caused by a ditch and once again the basal part is best
distinguished from an upper part, say (1,489) and (490,505).
On LA, there are basically four possible breaks: around 65,
around 220, around 376, and around 459. The first three
correspond to local irregularity, whereas the last can be

distinguished as the start of a short basal component (460,468).
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On TR three components may be distinguished: a long
convexity (1,252), a shorter convexity (253,353) and an
irregular basal component (354,402). AR is best taken
as an upper component (1,320) together with an irregular
basal component (321,362). On TA an upper component (1,411)
is evident. To this may be added an intermediate (and
irregular) crags component (412,455), a long lower component

(456 ,560) and a short basal component (561,566).

HO is a complicated case. The most appropriate division
would seem to be into an upper component (1,118), an irregular
crags component (119,175), and a third component reaching
to the base. (176, 413). Finally on TO the most important
break is at 270. A basal component may be distinguished
(271,308) including two minor irregularities. Breaks around
118 are attributable to a track while that at 16 is not

persistent: this leaves a long upper component (1,270).

The component bounds accepted as of probable
geomorphological significance are listed in 8Q, together
with underlying geological formations repeated from 6L.

The most obvious common feature, observed for every

profile except HO, is a distinct, relatively short and
often irregular basal component. Apart from that, there is
a broad but by no means perfect relationship between the
number of components accepted and the complexity of the
geology. BO, ST, PR, PA, FA and LA, all within the Lower
Oolite, are all accepted as one-component slopes above

their basal components. TR, TA and HO (although not AR),
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8Q Component bounds and geology

Profile Geology Component bounds
BO 1,380 381,393
ST 1,429 430,452
del
PR 1,264 265,271
PA 1,408 409,420
FA 1,489 490,505
gls/del
LA 1,459 460,468
TR 1,252 253,353 354,402
del/uli
AR 1,320 321,362
TA gls/del/uli 1,411 412,455 456,560 561,566
HO del/dog/uli/mli 1,118 119,175 176,413

TO lcg/oxf/kel/cor/del 1,270 271,318
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extending from Lower Oolite to Lias, all have appreciably
more complex forms. On the other hand TO, which extends
across five mapped formations in the Lower and Middle
Oolites, is accepted as one component above its basal

component.

These results suggest that diversity of underlying
strata is not inevitably associated with complexity of
hillslope forms in the sense of a multiplicity of distinect
components. Examination of the variation of within-component
mean of square V with k helps to complete the picture (8R).
The ranking of profiles by V is related to geology, but
much of the variability is on a microscale and does not
find expression at component scale, that is, between
components. (This conclusion is strengthened when it is
remembered that original data have been smoothed before

computing curvatures).

8.7 Summary and discussion

This chapter includes three distinct contributions
to the theory and practice of profile analysis.

(i) An extended formulation embeds the problem within
data analysis (8.1) and geomorphology (8.2); guiding
principles are suggested (8.3).

(ii) A critique of existing methods shows that none
are really acceptable (8.4).

(iii) Methods for producing additive error parti@ions

are attractive alternatives (8.5). 1In practice, however,
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least squares partitions of curvature series need to be
preceded by smoothing of original data. Components
identified on field profiles allow some inferences about
the relationship between profile morphometry and underlying

geology (8.6).

The method of profile analysis adopted here, a
combination of nonlinear smoothing and additive error
partition, is rather arbitrary and perhaps unduly complex.
It can only be regarded as an interim solution. Future
work would be best directed at these two families of
methods - nonlinear smoothing and additive error partition -
probably with the aim of eliminating one for the sake of

simplicity.

It has been argued above that optimality criteria for
partitions need to be discussed in relation to the appropriate
decency assumptions about the ideal character of data. The
case of Hartigan's additive error partitions is instructive
in this respect. It can be shown theoretically that
optimal subseries diameter depends on the conditional
distribution of subseries values, but it is also clear
empirically that this may well vary, both within and

between profiles. Hence no single diameter can be optimal.

In such a situation it is important to consider
adaptive methods of profile analysis in which the components
are. distinguished by procedures which depend on the
properties of the data. Ironically enough, apparently
suitable adaptive methods have only received prominence

since the work reported here was undertaken, notably
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adaptive methods of resistant/robust estimation (Mosteller
and Tukey, 1977), and of nonlinear smoothing (McNeil, 1977;

Tukey, 1977). Future work will examine these as possible

bases for profile analysis methods.




8.8 Notation
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curvature

in ordinary derivative
subseries diameter
null hypothesis
subscript

subscript

subscript

number of components
measured length
number of observations
power

arc length

value of series, average value
value of series
within component variation
weight

horizontal coordinate
vertical coordinate
intercept parameter
slope parameter
difference operator
stochastic error
angle

summation operator
number of

given

modulus
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Mnemonics

loq lower quartile
med median

pr probability

std standard deviation

upq upper quartile
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Chapter 9

FITTING CONTINUOUS CURVES TO HILLSLOPES

The Saturnian and the Sirian exhausted themselves
in conjectures upon this subject, and after
abundance of argumentation equally ingenious and
uncertain, were obliged to return to matters of

fact.

Voltaire, Micromegas, Ch. II.

9.1 The general situation

9.2 Specification and estimation: first approximation
9.3 Specification and estimation: further approximations
9.4 Deterministic estimation of the Kirkby parameter
9.5 Checking

9.6 Results for field profiles

9.7 Summary and discussion

9.8 Notation
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9.1 The general situation

It is clear that visual evaluation of model predictions
('the model profiles seem fairly realistic') cannot be
accepted as a satisfactory means of model testing: mere
'‘eyeballing' leaves too much scope for subjective and
arbitrary judgements. Model profiles should be fitted to
actual profiles statistically, and goodness-of-fit assessed
quantitatively. This much seems almost indisputable, yet
the many models which have been proposed in the literature
have received greatly varying amounts of statistical testing.
Some, indeed, have received none at all. Moreover, model
fitting has often been characterised by a cavalier disregard
for the statistical difficulties which arise in the process
(see, for example, Cox, 1975, on Woods, 1974 and Cox, 1977a on
Bull, 1975). This chapter provides a systematic discussion
of fitting time-invariant continuous deterministic models
to hillslope profiles, illustrated by the derivation and
application of fitting procedures for a model function

originally obtained by Kirkby (1971).

A framework for discussion is given in 9A. Model
fitting is here regarded as a three-stage process, as is
common in modelling literature (cf. Matalas and Maddock,
1976).

(i) Specification: the form of the model is decided

(ii) Estimation: the parameters are estimated

(iii) Checking: the residuals are analysed.




SPECIFICATION

ESTIMATION

CHECKING
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9A Hillslope model fitting as a three-stage process

Deterministic model function

4
Decide on variables, known constants, unknown parameters

-y
Choose estimators of parameters

Decide on stochastic error structure

Choose measure of discrepancy

Use linearising transformation?
Errors in variables?
Autocorrelated errors?
Estimate parameters by minimising discrepancy
(analytical solution or search algorithm)

Comparison of estimates

Lack of fit measures

Spatial distribution of residuals
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9.2 Specification and estimation: first approximation

The function K
z "X

L i €

Zd )(},

was first obtained by Kirkby (1971) as an approximate
characteristic form solution to a particular continuity
equation. It is also an exact constant form solution to
the same continuity equation (c¢f. Ch. 3.3.15, 3.3.21 above).
Moreover, it is related to the power functions used as
empirical static models by Hack and Goodlett (1960) and
others (¢f. Ch. 3.2.2 and 3B above). k is here termed the

Kirkby parameter.

The central question is the following: How can such
a function be fitted to an actual hillslope profile or a
component of such a profile? (The generalisation to cover
components 1s straightforward. Henceforth 'base' and

‘crest' imply base and crest of profile or component).

A first task in specification is to distinguish
between variables, known constants and unknown parameters.
In this case z and x are variables, z4 and Xy, are known
constants and k is an unknown parameter. Further algebraic
simplification is possible by scaling coordinates to
dimensionless variables. If we write
relative fall = v = 24~ 2

24

relative distance

u =X

Xp
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It is now necessary to make three related decisions:

(a) To choose estimators of the parameters

(b) To specify the structure of stochastic errors

(¢) To choose a measure of discrepancy between model

and data.

(a) An estimator is a procedure for estimating a
parameter; with any particular set of data it produces an
estimate, an actual number. The properties of estimators
are well discussed by Bard (1974), Plackett (1971) and
Silvey (1970), among many others. In practice four properties
are particularly important (Bard, 1974, 44):

(i) Small bias On average the estimator should

produce a value as near as possible to the actual value.

(ii) Small variance (efficiency) The spread of

estimat @ s around the average estimate should be as small
as possible.

(iii) Robustness The estimator should be stable under

slight changes in the probability distribution of stochastic
errors: in particular, it should not be thrown out by the
occurrence of outlying or wild observations.

(iv) Computability It should be easy to calculate.

(b) A model is often written in standard reduced form

(Bard, 1974, 26):

dependent = deterministic function of

variable(s) independent variable(s) + stochastic error(s)
and parameter(s)
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Why are stochastic errors included in a model? The
stochastic terms capture the remainder of the variation
not captured by the deterministic function (Gilbert, 1973).
This remainder will reflect one or more of the following:

(i) the influence of variables not included in the

analysis

(ii) inappropriate choice of model function

(iii) real but random effects

(iv) measurement error

(v) interaction among the other four

(Mark and Church, 1977, 71)

In the example of this chapter a first approximation
is to write

v=uk

t e
where € is stochastic error. The following assumptions

about € are standard

zero mean E(€5) = 0

constant variance 5

or homoscedasticity: E(é:i) = a constant
uncorrelated: E(Gj_éj) =0 i4)

(c) Fitting the model may usually be viewed as

minimising some measure of the discrepancy between the

model and the data (Nelder, 1975,7). The residuals may

be defined as a function of the parameter k

es (k) = v, - u% ; i=1,...,n

The sum of squared residuals is then

n

E: e} » a function of k.
. {

=1
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Minimising the sum of squared residuals to estimate an
unknown parameter is known as ordinary least squares

estimation (OLS).

Why should this particular measure of discrepancy
be used for estimation? Clearly it is necessary to consider
OLS in the light of the criteria emphasised by Bard (1974,44):

small bias, small variance, robustness and computability.

There is an important result for linear models, the

Gauss-Markov theorem, which is roughly that if the errors

€ satisfy the three standard assumptions in (b) above,

then the OLS estimators are unbiased, and have the smallest
variance of any linear unbiased estimator. (For fuller
statements, see Wonnacott and Wonnacott, 1970, 48-51 or
Silvey, 1970, 51-4). Hence there are some theoretical

grounds for expecting small bias and small variance.

OLS is not robust under all circumstances, and is
well-known to be unstable in the presence of wild
observations. Consequently many alternative procedures
have been proposed (e.g. Mosteller and Tukey, 1977;
McNeil, 1977). However, the hillslopes considered here
are well-behaved in the sense that bumps and ruts are
microscale features. Hence only least-squares criteria
will be considered for the discrepancy function. This has
two major advantages: they are relatively easy to compute

and they are fairly well understood in principle.




- 306 -

Returning to the Kirkby model the sum of squared residuals

may be written

ﬁ("a - Y
L=

k)l
L
This quantity is nonlinear in k and there is thus no closed-
form expression for the OLS estimator of k. This problem
could be tackled by using a search algorithm to find the
minimum value of the discrepancy and hence an estimate of
k(cf. Bard, 1974, Chs. 5 and 6, and Chambers, 1977, Ch. 6,

on search algorithms). It can also be broached by a fairly
straightforward trick at the expense of some complications.
In the next section this trick (a linearising transformation)
will be discussed together with ways of overcoming two
further problems (errors in variables and autocorrelated

errors).

9.3 Specification and estimation: further approximations

9.3.1 Linearising transformations

The deterministic function

can be reexpressed in logarithmic terms

Inv=kk1lnu
(Here and below natural logarithms are used). If it is
supposed that additive stochastic errors perturb this
deterministic function then

In v =k 1In u + e’
whence residuals may be defined

ej(k) =1n vy - k 1n uy
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and the sum of squared residuals formed
) 2
Se?(k) = Z(nv —k tnu)
L {

The limits of summation have not been specified in
this expression because the use of a logarithmic transformation
brings a minor problem in its wake. Near the crest of a
slope relative fall may be identically zero, and hence the
logarithm may be indeterminate. At the base relative fall
and relative distance are identically one. If measured
lengths of zero gradient occur at the crest they should be
omitted from the calculation, and an equal number of measured
lengths omitted syﬂwetrically at the base. Otherwise all
summations will be z: . Indices will be omitted from the
expressions below,tz;d it should be understood that the

limits of summation are determined by this procedure.

The substitution v/ = In v and u’ = 1n u in the model
above yield the obvious linear model
vz ku +¢’
with OLS discrepancy (or sum of squared residuals)
(v - ku’)?
The analytical derivation of the OLS estimator will

now be given. Expanding the term in parentheses
Z(V/ - klk’)z = Z@’z - 2ku'v’ + k"u’z)
= Tvr - 2kZw v+ kP Xu?

For a minimum it is sufficient that

%[z(vuwﬂ -0
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whence
23wV 2k Suw?t O
kK = 2wy /Zu"‘
DN ORI WY
- ¥ (vw)

The use of a linearising transformation is frequently

recommended: the problems are less frequently emphasised.
The account given here draws on Wonnacott and Wonnacott
(1970, 91-8), Johnston (1972, 27-53), Goldf eld and Quandt
(1972, Ch. 5) and Bard (1974, 78-80).

The linear model

m v = k bhow+¢

corresponds to the model

v = uf exp (¢')
with multiplicative errors. While it leads to a closed-form
estimator, the assumption of stochastic errors which are
multiplicative in the original metric needs substantive
justification. It implies heteroscedasticity (unequal
variances) together with some other problems (Goldf .eld
and Quandt, 1972, 136). As these authors wrote: 'In spite
of the possibility that there might be a priori reasons for
specifying the error term to be of a particular type, in
most cases the multiplicative form seems to be chosen for
its computational convenience. The two basic or pure
alternatives . . . are rarely contrasted.' Moreover, the
data ought to be allowed to reveal which of the two hypotheses

about errors is acceptable (Goldf eld and Quandt, 1972, 137).
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Goldf eld and Quandt proposed a generalised model
incorporating both additive and multiplicative error terms.
However, a simpler method of overcoming this difficulty
seems more appropriate for the hillslope model case.
Following a suggestion by Bard (1974, 79) a linearising
transformation is used together with weighted least squares
as a way of tackling the heteroscedasticity which is assumed
to be associated with the transformation. The connection
is given by a theorem which gives the relationship between

the variances of two random variables (s and t, say)
p
vor (£) = var (s) ( ot )
s
(see, e.g., Plackett, 1971, 59-60).

If an additive homoscedastic model is appropriate, then
vor (v|u) = var (€)
but if we transfarm by logarithms
Vor (In v“n UL> = var (¢/) wm var (‘2)(“\’;)2_
because

% (ln v) = ‘\(/'

Since in this situation the variance is not constant,
it is best to allow for this and weight each residual.
The WLS discrepancy (sum of weighted squared residuals) for
a linear model

vi=kw + €
with weights w is

S (v —kw e = Swv® = 2k T/ v+ ke u
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For a minimum it is sufficient that
2
2 [Z (v’—~kuf) w] =0
K.

whence

) S v+ 2k Zwut =0
k =Zwu’v’/wa’2

In the hillslope case, conditional variance of the

stochastic errors is proportional to (1)2. It is logical
v

to weight squared residuals inversely by variance, to
discount inherently more variable fluctuations. Hence

W = v2 and the WLS estimator is

L= SvElnvinuw
Svr (bnu)*

9.3.2 Errors in variables

It has been tacitly assumed so far that v is a
dependent variable, which is error-prone, and that u is
an independent variable, which is error-free. In geomorphological
terms, however, there is no justification at all for any
suchagsymmetric distinction. v is not a 'response! to !'factor!
u any more than u is a 'response' to 'factor!' v (to use the
excellent terminology of Tukey, 1977, 125-6). Nor is u held
at fixed values to see the resulting change in v. Both v
and u must therefore be regarded as subject to stochastic

fluctuation, a situation knownas 'errors in variables?'.
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A variety of methods has been devised for this situation.
A thorough review is given by Moran (1971). In the geological
and geographical literature the problem has been discussed
by MecCammon (1973), Till (1973), Mark and Church (1977),
Kuhry and Marcus (1977), and Mark and Peucker (1978), among
others. McCammon (1973) suggested minimising the discrepancy
¥ (et +we; )
where €1 and e, are residual distances measured perpendicular
to horizontal and vertical axes, and LA and w, are corresponding
weights. McCammon gave details of programs implgmenting a
minimisation algorithm. The main problem with this method is
the need for specifying weights beforehand, which really

requires detailed knowledge of error structure.

Till (1973) criticised the use of standard linear
regression in geomorphological situations where both
variables are subject to error. He recommended instead
the use of the reduced major axis, the line which bisects
the angle between the two standard regression lines. This
is the correct solution if the stochastic errors perturbing
the two variables have equal variances. Till reworked
some examples of fitting power functions to glacial
valleyside profiles given by Doornkamp and King (1971).

He fitted a reduced major axis to the logarithmically
transformed data, but using the assumption of multiplicative
errors and without commenting on obviously autocorrelated

residuals. The use of reduced major axes is clearly not
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"a general solution to this problem given the strong

assumption of equal variances.

Mark and Church (1977), discussing the problem of
errors in variables, criticised the misuse of regression
in earth science, especially in geomorphometry. (See also
Mark and Peucker, 1978, on geographical applications). They
reviewed solutions appropriate in different circumstances.
Most emphasis is placed on estimation procedures which can
be used when the ratio of error variances is known. The
main disadvantage of such methods is that they require
considerable knowledge about each variable. Kuhry and
Marcus (1977) recommended a covariance ratio method which
requires observations on a third variable, which is not

possible in this case.

None of these solutions seems acceptable for the Kirkby
model, and so the only possibility is to estimate parameters
for polar situations ((i)v aaresponse, u a-factor (ii) u a
response, v a factor) and consider the variation in results

(ecf. Moran, 1971, 251).

By symmetry OLS and WLS estimators can be derived for
the case in which u is regarded as dependent and v as

independent.

The OLS estimator of 1l/k in the multiplicative model

tn w = <|/k) (w v + ¢

is

Ylnv v w

2 ( (n V)l
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The WLS estimator of 1/k in the additive model is

Sut n v n v
>t (av)?

If it is assumed that

estimate of k = 1/(estimate of 1/k)

then these estimators may be compared with others proposed.
9.3.3 Autocorrelated errors

One of the standard assumptions about stochastic errors

& 1is that pairs of terms are uncorrelated

E(e.e) =0 L]
L)

Hence one possible problem is autocorrelation among error
terms, especially if data are time or space series. The
problems which arise when error terms are autocorrelated,
and methods for overcoming these problems, have received
much attention, especially in econometrics where linear
models are often fitted to time series (e.g. Wonnacott and
Wonnacott, 1970, 136-45; Johnston, 1972, Ch. 8; Stewart,
1976, 137-46). This work has recently been extended to

spatial series by statistical geographers (Cliff and Ord,

1973, Ch. 5; Martin, 1974).

Johnston (1972, 246-9) outlined the consequences of
using OLS estimators on a linear model when error terms are
autocorrelated. PFirstly, estimators of the parameters have
large variances. Secondly, standard significance tests are

invalid. Thirdly, prediction using the model is inefficient.
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Such problems may be sufficiently serious to warrant
the use of other methods as alternatives to OLS if there
are grounds for suspecting autocorrelated errors. If the
model 1is being applied to time series, then a first order
autoregressive (Markov) scheme may be appropriate for the

S AT N
E(m.)= 0
E (V]:“) a constant

This Markov model assumes unilateral influences: the past

where

is assumed to affect the present, but not vice versa. If
the model is being applied to space series then bilateral

or multilateral influences must be allowed. With a further
generalisation to allow the possibility of unequal weighting,

the formulation of Cliff and Ord (1973, 90) is obtained:

L = pLW. E 4+ M : L=
S - A

The bilateral case is more appropriate for hillslope profiles.
If pis unknown, then there are two possibilities: it

can be éstimated iteratively from the data, or a value can

be assumed a priori. OLS implicitly assumes F= 0; the

polar possibility is to assume F= 1 (Martin, 1974).

However, the assumption (= 1 brings some theoretical

problems in its wake, even for the linear model and time

series case (c¢f. Wonnacott and Wonnacott, 1970, 141;

Johnston, 1972, 245; Stewart, 1976, 145-6). Moreover, the

estimators used by Cliff and Ord (1973) and Martin (1974)
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would need further adjustment for nonlinearity and errors
in variables. Finally, such estimators are rather unstable
numerically because they are based on products and squares
of local differences which tend to be very small in the

case of hillslope series.

Since estimator formulation is difficult in this
case, and since no attempt will be made at either prediction
or significance testing, attention to autocorrelation will
here be confined to inspecting autocorrelation functions

of residuals.

9.4 Deterministic estimation of the Kirkby parameter

The case of the model function originally derived by
Kirkby (1971) is unusual because it is also possible to
estimate the Kirkby parameter k without any reference to
stochastic errors. This section is an intermezzo developing

this point.

Kennedy (1967, 22) introduced a 'height-length integral’
for hillslope profileswhich was defined by a graphical
example. This example was repeated by Chorley and Kennedy
(1971, 54) accompanied by an algebraic definition which is
in fact both meaningless and incorrect. For relative fall
v and relative distance u, a proper definition of the

integral (here called the Kennedy integral) is
|
f("—v)d\k = K ,» say
v

The integral is a measure of the shape of a hillslope profile.
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0<K<1l; K = 0.5 for straight slopes, K>0.5 for convex,

K< 0.5 for concave.

Kennedy (personal communication, 1977) computed values
of K graphically. It is also possible to compute K directly
from relative coordinates u and v. Putting y = 1-v, the

integral is the sum of n trapezia:
“ . 4 . . .
K =5 ( Yoot + i )(u,‘._ui ()
o= 2.
where
)

30 = l u'D = C)

As Chorley and Kennedy (1971, 290) hinted, there is
a simple relationship between Kennedy integral K and Kirkby
parameter k. Fiven that

K = I (‘-— V) Au
and v = uK °

then
(I - k‘>thk

|

E | kel ol
= w — — W

l

N
i

k+ o
l - K

K+1 k+ |

_K
|- K

Since the appropriate error structure for Kirkby's

—
-

and inversely

k =

model is not obvious, such a simple deterministic estimator

is highly attractive.
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9.5 Checking

9.5.1 General remarks

Each method of estimation yields an estimate of the
parameter, a set of fitted values for the 'dependent

variable! and a set of estimated residuals.
residual = observed - fitted

These results must be analysed carefully to check
the adequacy of the model. The basic approach is simple:
'a good fit does not prove that the model is correct . . .
a lack of fit constitutes strong grounds for rejecting,

or at least amending the model' (Bard, 1974, 198).
9.5.2 Comparison of estimators

In earlier sections several estimators have been
derived for the Kirkby parameter k, including one without
any reference to stochastic errors. Since it is never
certain in practice which assumptions are most appropriate,
it seems best to employ all the estimators, and to compare
the results. The underlying principle is that great
variability between estimators indicates an inadequate
model, while conversely if remainder terms are all small,
it should matter relatively little which assumptions are

invoked.
9.5. 3 Analysis of residuals

The set of residuals deserves to be studied in detail
(McNeil, 1977; Tukey, 1977). In analysing residuals, it is
best to supplement numerical investigation with graphical

display.
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Measures of overall lack of fit may readily be defined.
Three are used here: root mean square residual, midspread of

residuals and range of residuals.

The spatial distribution of residuals is worth
consideration, for as Cliff and Ord (1973, 71) reported,
good aspatial fit and good spatial fit are not necessarily
associated. Residuals should be plotted in serial order

and their autocorrelation properties investigated.
9.5.4 Against significance testing

Kirkby (1976b) and Moon (1977) have regarded the
assignment of significance levels to fitted models as
an important aspect of model checking. However, this
approach seems to be both unnecessary and problematic, for
three reasons.

(i) Individual hillslope profiles can be treated on
their own merits, without any reference to hypothetical
sets of approximately identical profiles of which they are
supposedly representative.

(ii) Those significance tests which at first glance
appear appropriate turn out on closer inspection to be
inappropriate for the hillslope case. For example, the
Durbin-Watson test for autocorrelated residuals is appropriate
only for a model with an intercept term and with stochastic

errors following a unilateral Markov property (cf. Wonnacott

and Wonnacott, 1970, 142-3; Johnston, 1972, 250-2; Stewart,
1976, 147-50).
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(iii) In hypothesis testing of the standard kind, we
decide between null and alternative hypotheses with specified
probabilities of error. The value of such a procedure is
very much in doubt, and is a matter of considerable controversy
among statisticians (Edwards, 1969; Barnett, 1973; Cox and
Hinkley, 1974), although it is rarely questioned in geography
(but ecf. Cox and Anderson, 1978). Naive significance testing
reduces model checking to a binary decision based on one
number (which may be wildly inaccurate) and a null hypothesis
(which may be totally irrelevant) (cf. Cox, 1977a on Bull,
1975). It is better to base any decisions on the indications

provided by all the model results.

9.6 Results for field profiles

The Kirkby parameter k was estimated by the five
estimators outlined above (see 9B) on the fourteen components
identified in Ch. 8.6 above which were based on 100 or
more observations (see 8Q and 9C). For each estimate,
residuals were calculated of the form

vi - oug i=1,...,n
The frequency distribution of residuals is here summarised
by min, loq, upq, max, range, midspread and root mean square
(rms). Autocorrelation functions were calculated for each
residual series up to a maximum lag determined by the rule
of thumb given in Ch. 7.5 above (the smaller of 50 and floor
(n/4)). 9D shows the number of angles in each component;

the Kennedy integral; the set of estimates; summary measures

for residual distributions (zero and decimal point elided);

l
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9B Estimators of the Kirkby parameter

Identifier Assumptions and definition
KMU Errors multiplicative; u controlling factor (9.3.1)
Shhw. hv
' 2
2. (n w)
KAU Errors additive; u controlling factor (9.3.1)

Svilnv muw
2 vt (Inw)*

KMV Errors multiplicative; v controlling factor (9.3.2)
‘ \2
S (n v)
v nw

KAV Errors additive; v controlling factor (9.3.2.)
S (nv)
>ur mvihw

KKEN Uses theoretical relation between Kirkby
parameter and Kennedy integral (9.4)

{

discrete version of J ((-—V) du
O
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9C Components fitted by Kirkby curves

Dimensions (m) (deg)
Profile Indices xb Zd é
BO 1,380 573 56 5.
ST 1,429 647 75 6.
PR 1,264 398 47 6.
PA 1,408 614 73 6.
FA 1,489 732 103 8.
LA 1,459 687 109 9.
TR 3,250 375 24 3.
TR 253,353 144 45 17.
AR 1,320 479 75 8.
TA 6,406 602 78 7.
TA 456,560 147 56 20.
HO 2,117 173 217 9.
HO 176,413 345 96 15.
TO 1,270 383 136 19.

N V1 O 0o W WwW v 93 O O ©© o O W,
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9D Results of fitting Kirkby curves

BO (1,380) # 380 K = 0.618
Residuals
Estimate min log upq max range midspr rms autocorrelatior
KMU 1.579 -035 -008 002 012 ouT 010 012 lag 4y o0.124
KAU 1.619 -027 -003 007 018 o4s 010 010 lag 38 0.132
KMV 1.588 -033 ~-006 003 013 o471 010 012 lag 43 0.115
KAV 1.612 -029 -003 006 017 ol46 010 010 lag 39 0.131
KKEN 1.615 -028 -003 007 017 0l5 010 010 lag 39 0.123
ST (1,429) # 429 K = 0.516
Residuals
Estimate min log upq max range midspr rms autocorrelation
KMU 1.196 -018 000 053 070 087 053 039 flag 50 0.641]
KAU 1.054 -044 -028 016 024 068 ohy 024  [1ag 50 0.653]
KMV 1.201 -017 001 054 071 088 053 040 [lag 50 0.641]
KAV 1.092 -036 -020 025 036 073 ol45 024 [lag 50 0.648]
KKEN 1.066 -042 -026 019 027 069 ohy 023 [lag 50 0.651]
PR (1,264) # 264 K= 0.572
Residuals
Estimate min loq upg max range midspr rms autocorrelatior
KMU 1.255 -040 -027 -001 016 056 027 021 lag 30 0.153
KAU 1.324 -024 =016 008 034 058 024 olk4 lag 31 0.131
KMV 1.259 -039 =027 =000 017 056 026 020 lag 31 0.108
KAV 1.329 -024 -015 009 035 059 024 o1l lag 31 0.137
KKEN 1.335 -023 =014 010 036 060 024 Ol4 lag 31 0.14k4
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9D (continued)
PA (1,408) # L4o8 K= 0.618
Residuals —
Estimate min loq upq max range midspr rms autocorrelatior
KMU 1.445 -085 -041 -010 009 095 031 037 [lag 50 0.626]
KAU 1.572 =073 =020 010 025 098 029 029 [lag 50 0.653]
KMV 1.455 -084 -039 -008 011 095 031 036 [lag 50 0.629]
KAV 1.556 =075 =022 007 023% 097 029 029 [lag 50 0.652]
KKEN 1.618 -069 -012 019 036 105 031 029 [lag 50 0.653]
FA (1,489) # 489 K= 0.625
Residuals
Estimate min log upq max range midspr rms autocorrelatior
KMU 1.446 -093 -053 =016 003 096 037 0l3 [lag 50 0.759]
KAU 1.604 -082 -025 012 025 107 037 032 [lag 50 0.796]
KMV 1.458 -092 -051 -014 OOu4 096 037 Ol2 [lag 50 0.764]
KAV 1.593 -082 -027 010 022 105 037 033 [lag 50 0.795]
KKEN 1.664 -~-078 -017 025 038 116 o4l 033 [lag 50 0.796]
LA (1,459) # 459 = 0.606
Residuals
Estimate min log upg max range midspr rms autocorrelatio
KMU 1.389 -082 -039 -007 006 088 032 o34 [lag 50 0.483]
KAU 1.538 -045 -006 012 030 075 018 018 Jlag 50 0.329]
KMV 1.401 -079 -036 -005 006 085 032 032 ([lag 50 0.472]
KAV 1.563 -039 -003 015 036 075 018 018 [1ag 50 0.309]
KKEN 1.540 -045 -006 012 030 075 018 018 [lag 50 0.328]
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9D (continued)

TR (3,250) # 248 = 0.652
Residuals
Estimate min loq upq max range midspr rms autocorrelatior
KMU 1.491 -115 -089 -008 o012 127 08% 068 lag 41 0.134
KAU 1.885 -033 -016 017 051 o84 033 020 lag 25 0.158
KMV 1.529 =106 -080 -005 016 122 075 062 lag 40 0.151
KAV 1.876 -034 -018 016 050 084 034 020 lag 26 0.162
KKEN 1.877 -034 -018 016 050 085 034 020 lag 26 0.160
TR (253,353) # 101 = 0.510
Residuals
Estimate min log upq max range midspr rms autocorrelation
KMU 0.982 =123 -072 041 062 185 112 062 [lag 25 0.324]
KAU 0.948 -128 -076 028 o049 177 104 062 [lag 25 0.313]
KMV 1.003 =120 -070 o047 069 189 117 062 [lag 25 0.328]
KAV 1.047 -113 -059 062 085 197 121 064 [lag 25 0.330]
KKEN 1.043% =113 -060 061 083 197 121 o6l [lag 25 0.330]
AR (1,320) # 320 K = 0.572
Residuals
Estimate min log upgq max range midspr rms autocorrelation
KMU 1.351 -064 =031 027 083 147 059 ol2 [lag 50 0.272]
KAU 1.3%322 =072 -039 023 O77 148 062 O43 [lag 50 0.285]
KMV 1.360 =061 =029 029 085 147 058 ou2 [lag 50 0.267]
KAV 1.434 -042 -013 o044 102 144 o057 o4y [lag 50 0.238]
KKEN 1.338 -067 -034 025 080 148 060 o42 [lag 50 0.278]
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(continued)
TA (6,406) # 401 = 0.622
Residuals
Estimate min log upq max range midspr rms autocorrelation
KMU 1.640 -051 -018 018 058 109 036 028 [lag 50 0.563]
KAU 1.610 -057 -022 014 o052 110 035 028 [lag 50 0.565]
KMV 1.688 -0u43 =-013 024 066 109 038 029 [lag 50 0.562]
KAV 1.762 -031 -~008 038 079 109 045 034 [lag 50 0.563]
KKEN 1.648 -050 -017 019 059 109 036 028 [lag 50 0.563]
TA (456,560) # 105 = 0.522
Residuals
Estimate min log upgq max vrange midspr rms autocorrelation
KMU 0.999 -084 -039 002 016 100 olo 036 lag 22 0.245
KAU 1.062 -068 =-026 016 036 105 042 030 lag 25 0.219
KMV 1.001 -084 -038 002 016 100 oh1 035 lag 22 0.249
KAV 1.086 -063 =024 021 Ob4 106 ous 030 lag 25 0.246
KKEN 1.093 -061 =-024 023 O0Uu6 107 olu6 030 lag 26 0.215
HO (2,117) # 116 = 0.603
Residuals
Estimate min log upq max range midspr rms autocorrelation
KMU 1.330 =113 =059 002 016 129 060 050 lag 23 0.239
KAU 1.482 =079 -025 024 049 128 Ohg 036 lag 24 0.234
KMV 1.335 =112 -057 002 018 129 060 050 lag 24 0.196
KAV 1.487 -078 -024 025 050 128 olg 036 lag 24 0.234
KKEN 1.518 -072 -020 030 056 127 051 036 lag 24 0.235
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9D (continued)
HO (176,413) # 238 = 0.407
Residuals
Estimate min loq upgq max range midspr rms autocorrelation
KMU 0.730 -014 003 030 043 057 027 021 lag 32 0.126
KAU 0.691 =025 =012 019 032 057 031 016 lag 40 0.151
KMV 0.733 =014 oo4 031 o0u3 057 027 022 lag 31 0.157
KAV 0.687 =-027 -013 018 031 058 031 016 lag 41 0.158
KKEN 0.686 -027 -013 018 031 058 031 016 lag 41 0.161
TO (1,270) # 270 = 0.431
Residuals
Estimate min log upgq max range midspr rms. autocorrelation
KMU 0.995 =017 036 096 135 153 059 080 lag 42 0.127
KAU 0.744 -077 -014 016 030 107 031 031 lag 45 0.140
KMV 1.029 =013 o2 108 148 160 066 089 lag 42 0.150
KAV 0.760 -071 -008 020 038 109 028 030 lag 43 0.154
KKEN 0.757 =073 =009 019 036 109 028 031 lag 44 0.128
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and autocorrelation characteristics, summarised by the first
value falling on or below the upper bound of the 0.01
confidence interval for null autocorrelation, or failing

that, by the value for the maximum lag calculated.

In interpreting these results, it 1s necessary to
establish which estimates are best for each component, and
then to consider the geomorphological implications of the
best estimates. In doing this the figures of 9D are
usefully supplemented by plots of residual series in

spatial order.

The estimators were ordered from best to worst for
each component, using the criteria (i) low rms (ii) low
midspread (iii) low range (iv) low autocorrelation (v)
symmetry of residual distributions about zero. Ties on any
criterion were resolved by invoking criteria lower in this
list. The criteria used here, and their ordering in this
list, are arbitrary to some extent, but it will be seen that
the results are sufficiently clearcut to remove serious
doubts about such arbitrariness. The choice of rms residual
as the most important criterion stems from the general
approach adopted here of using least squares estimators.
Naturally any monotonic transformation of root mean square
residual (e.g. to mean square residual) would give the

same ordering.

Estimators are thus ordered in 9E which gives

estimators and rms for each estimator and component. 9F
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9E Estimators ordered by performance with estimate and rms

Rank 1 2 3 it 5

BO (1,380) KAU KKEN KAV KMV KMU
1.619 1.615 1.612 1.588 1.579
0.010 0.010 0.010 0.012 0.012

ST (1,429) KKEN KAU KAV KMU KMV
1.066 1.054 1.092 1.196 1.201
0.023  0.024 0.024 0.039 0.040

PR (1,264) KAU KAV KKEN KMV KMU
1. 324 1.329 1.335 1.259 1.255
0.014 0.014 0.014 0.020 0.021

PA (1,408) KAV KAU KKEN KMV KMU
1.556 1.572 1.618 1.455 1. 445
0.029 0.029 0.029 0.036 0.037

FA (1,489) KAU KAV KKEN KMV KMU
1.604 1.593 1.664 1.458  1.446
0.032 0.033 0.033 0.042 0.043

LA (1,459) KAV KKEN KAU KMV KMU
1.563 1.540 1.538 1.401 1.389
0.018 0.018 0.018 0.032 0.034

TR (3,250) KAU KAV KKEN KMV KMU
1.885 1.876 1.877 1.529 1.491
0.020 0.020 0.020 0.062 0.068

TR (253,353) KAU KMU KMV KKEN KAV
0.948 0.982 1.003 1.043 1.047
0.062 0.062 0.062 0.064 0.064
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9E (continued)

Rank 1 2 3

AR (1,320) KMV KMU KKEN
1.360 1.351 1,338
0.042 0.042 0.0UL42

TA (6,406) KAU KMU KKEN
1.610 1.640 1.648
0.028 0.028 0.028

TA (456,560) KAU KAV KKEN
1.062 1.086 1.093
0.030 0.030 0.030

HO (2,117) KAV KAU KKEN
1.487 1.482 1.518
0.036 0.036 0.036

HO (176,413) KAU KAV KKEN
0.691 0.687 0.686
0.016 0.016 0.016

TO (1,270) KAV KKEN KAU
0.760 0.757 O.Ti44
0.030 0.031 0.031

KAU
1.322
0.043

KMV
1.688
0.029

KMV
1.001
0.035

KMU
1.330
0.050

KMU
0.730
0.021

KMU

0.995
0.080

KAV
1.434
0.044

KAV
1.762
0.034

KMU

0.999
0.036

KMV

1.335
0.050

KMV

0.733
0.022

KMV
1.029
0.089
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and 9G give further views of estimator performance. O9F shows
the absolute performance
(rms for this estimator - rms for best estimator) 2 O
and 9G the relative performance '
rms for this estimator
2 1

rms for best estimator

Good estimators score low on each measure.

It is clear that it can make a great difference which
estimator is employed. KMU and KMV are sometimes very
poor performers: the assumption of heteroscedastic errors
isusually unwarranted. KAV generally does well, while KKEN
and KAU are the two best estimators.. The good performance
of KKEN is pleasing, since it does not require any recourse
to ideas of stochastic errors. However, KAU appears to

perform marginally better overall.

This analysis of estimator performance leans heavily
on rms residual as a numerical summary. It would clearly
be possible to base the analysis on other criteria. A
second approach tried was the use of

this midspread - min midspread
and of

this midspread/min midspread
as analogues to the measures of performance given in 9F and
9G which are based on rms. The results, not reported here
but readily obtainable from 9D, support those already given,
but show a clear edge for KAU over KKEN as the best overall

estimator.

-



- 331 -

9F Absolute performance for each estimator on each component

Quantity tabulated is
(rms residual for this estimator on this component
- rms residual for best estimator on this component) x 1000

KMU KAU KMV KAV KKEN
BO (1,380) 2 0 2 0 0
ST (1,429) 16 1 17 1 0
PR (1,264) 7 0 6 0 0
PA (1,408) 8 0 7 0 0
FA (1,489) 11 0 10 1 1
LA (1,459) 16 0 14 0 0
TR (3,250) 48 0 42 0 0
TR (253,353) 0 0 0 2 2
AR (1,320) 0 1 0 2 0
TA (6,406) 0 0 1 6 0
TA (456,560) 6 0 5 0 0
HO (2,117) 14 0 14 0 0
HO (176,413) 5 0 6 0 0
TO (1,270) 50 1 59 0 1
max 50 1 59 6 2
upq 16 0 14 1 0
med 8 0 7 0 0
log 2 0 2 0 0
min 0] 0] 0] 0] 0
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9G Relative performance for each estimator on each component

Quantity tabulated is

rms residual for this estimator on this component

rms residual for best estimator on this component

KMU KAU KMV KAV KKEN
BO (1,380) 1.20 1.00 1.20 1.00 1.00
ST (1,429) 1.70 1.04 1.74 1.0 1.00
PR (1,264) 1.50 1.00 1.43 1.00 1.00
PA (1,408) 1.28 1.00 1.24 1.00 1.00
FA (1,489) 1.34 1.00 1.31 1.03 1.03
LA (1,459) 1.89 1.00 1.78 1.00 1.00
TR (3,250) 3.40 1.00 3.10 1.00 1.00
TR (253,353) 1.00 1.00 1.00 1.03 1.03
AR (1,320) 1.00 1.02 1.00 1.05 1.00
TA (6,406) 1.00 1.00 1.04 1.21 1.00
TA (456,560) 1.20 1.00 1.17 1.00 1.00
HO (2,117) 1.39 1.00 1.39 1.00 1.00
HO (176,413) 1.31 1.00 1.38 1.00 1.00
TO (1,270) 2.67 1.03 2.97 1.00 1.03
max 3.40 1.04 3.10 1.21 1.03
upq 1.70 1.00 1.74 1.03 1.00
med 1.33 1.00 1.35 1.00 1.00
loq 1.20 1.00 1.17 1.00 1.00

min 1.00 1.00 1.00 1.00 1.00
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9H gives a further picture of variation among estimators.
The quantity displayed is the difference between the parameter
estimate for a given estimator and that for the best estimator
for a given component, as given in 9E. KMU and KMV are
again indicted by their poor performance and KAU once more

emerges as better than its nearer competitors KKEN and KAV.

It is now appropriate to draw together the best estimates
(as defined using the list of criteria above), rms residuals
and Kennedy integrals (9I). At this stage some concreteness
is also introduced:multiplying rms residual by component
height gives a dimensioned measure of lack of fit. It is
now helpful also to list data on slopes above and below fitted
components, omitting trivially short sections (9J). In 9I
and 9J components have been ordered by value of Kirkby
parameter k. The fourteen components may be considered in

three groups. The largest group contains upper convexities

for TR, BO, TA, FA, LA, PA, HO, AR, PR, and ST. The

remaining groups are approximately straight midslopes for

TA and TR and concavities for TO and HO.

How are these fitted components 