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ABSTRACT 

The work described in this thesis is concerned with 

cluster-species and related systems, many of which are 

electron deficient. The term 'electron deficient' is used 

to describe a polynuclear species in which there are too 

few valence electrons to allocate a localised 2-centre 

2-electron bond to every pair of atoms which are within 

normal covalent bonding distance. The bonding in these 

systems may be rationalised instead in terms of the relation­

ship between the total number of skeletal electrons provided 

by the skeletal cluster units, and the total number of 

skeletal atoms. 

The aim of this work is to suggest new ways in which 

bond enthalpy contributions can be allocated to individual 

2-centre links in cluster systems. In order to obtain 

energy terms (E) which reflect changes in bond length, (d), 

relationships of the form 

E a d-k 

(where k=constant; 2<k,5) 

are proposed. Such empirical correlations are shown to 

be appropriate for simple main group systems and are applied 

in turn to boron hydrides, borane anions, transition metal 

carbonyls and to complexes containing multiple metal-metal 

bonds. Similar relationships are used to suggest possible 

bond orders in some systems. 

Finally, the extent to which skeletal electron counting 

methods may be used to rationalise the bonding ln boranes, 

ca.T'I..)Qra.ner:;, transition metal clu::;tcrr;, rua In gr·our a lusters, 

metal n-hydrocarbon complexes and small cyclic hydrocarbons 

is discussed. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Experimental Determinations of Thermochemical 
Quantities and the Estimation of Bond Energies 

Thermochemistry has always been an important branch 

1 

of chemistry as it provides valuable information about the 

energy changes which accompany chemical reactions, allowing 

one to compare the relative stabilities of compounds and 

predict the ease with which a reaction may occur. Fund a-

mental to all thermochemical calculations is the requirement 

for accurate values of standard enthalpies of formation of 

compounds from their constituent elements, all of which must 

be considered in the gas phase. Accurate determinations of 

heats of sublimation (or vaporisation) are therefore essential. 

The aim of this thesis is to suggest new ways in which 

experimentally determined thermochemical data may be treated 

to gain an insight into the allocation of energy to particular 

bonds in some transition metal and boron-containing systems. 

Actual methods of measuring thermochemical quantities by 

experiment are therefore not described; furt.her information 

on experimental techniques can be found in references 1-11. 

It is, however, worth commenting on the direct measurement 

of bond dissociation energies by spectroscopic and electron 

impact techniques as both methods produce results which must 

be treated with caution. 

Spectroscopic determinations of the heat of formation 

and bond dissociation energy, 0
0

, of a diatornJc 'molecule are 

by the Birge-Sponer extrapolation. 1•2 D
0 

is given by the 

approximate expression: 



D ar wo2 
0 

4 X w 
0 0 

w = vibrational frequency 
0 

X = vibrational amplitude 
0 

2 

Estimates of D
0 

tend generally to be too high and should 

only be used as approximate values. 

Thermochemical quantities deriv~d from mass spectro­

scopic electron impact data should also be treated with 

caution. The method relies on the determination of th~ 

appearance potential (A.P.) of an ion, MX +, in the mass 
n 

spectrum (i.e. the minimum electron energy required to pro-

duce the ion from its parent species, MXn+l); equation 1.1. 

The A.P. is then combined with the ionisation potential (I.P.) 

of the ion (equation 1.2) to give the appropriate bond dis-

sociation energy, (equation 1.3). The electron impact method 

measures individual bond dissocation energies for stepwise 

~+1 + e A.P. ) MXn 
+ + X + 2e- (1.1) 

MXn + e I. P. ) 
MX+ 

n + 2e (1. 2) 

MXn+l 
D(M-X) MXn +X 

D(M-X) = (A.P.) - (I.P.) 

dissocatioQ of a molecule, (see Section 1.2). These values 

are NOT equal to the mean bond dissociation energy with which 

they are sometimes confused. 

With the development of new experimental and theoretical 

methods, bond dissociation energies of many simple molecules 

are now known with a high degree of accuracy. The use of 

spectroscopic, photochemical, electron impact and pyrolysis 

methods have increased the data available regarding individual 

bond energies, especially in organic compounds9 and diatomic · 
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1 molecules. However, the allocation of energy to individual 

bonds in more complex systems, (e.g. transition metal carbonyls, 

organometallic compounds (other than those of the type R
3

_xMx 

etc.), and cluster or related compounds containing boron), 
. ' . 

is more d!fficult. Only a limited number of attempts have 

been made to solve this problem. 

For ~ diatomic molecule, A~, the bond dissociation 

energy is equal to the heat of disruption and can be estimated 

!f the standard enthalpies of formation for both gaseous A 

and A2 are known, (equation 1.4). 

----~) 2 A(g) 

(1.4) 

For a molecule R2 (which is NOT diatomic) dissociating into 

two free radicals R·, the mean dtssociation energy D(R-R) is 

given by equation 1.5. Values of AHdisrupt •. ~2 (g) and 

AHdisrupt.R•(g) are calculated from the appropriate standard 

enthalpies of formation. (This situation has been simplified. 

(1.5) 

No account has been taken of any changes in hybridisation 

which might accompany the change R2 --+ 2R·; see Section 1.2). 
/ In some cases however, the necessary thermochemical data ~s 

not available. For instance, in a polynuclear metal carbonyl 

system, bond energies cannot be estimated by considering the 

type of simple disruption process descrtbed above because 

enthalpies of formation of all possible metal carbonyl frag-

ments have not been determined. Instead, disruption of a 

metal carbonyl, Mx(CO)y' into metal atoms ar1d di~te carbon 

monoxide molecules is considered: 
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_ _.,.:. xM(g) + yCO(g) 

(This particular process is described fully in Chapter Four). 

The disruption of any cluster or cyclic system into atoms or 

small discrete units involves the fission of a variety of 

bonds of differing strengths. The problem posed is the 

allocation of a particular percentage of the total heat of 

disruption to a given bond. A summary of the data already 

available for each type of system considered in this thesis 

will be given at the beginning of each chapter. 

1.2 Intrinsic Bond Energy Terms and Reorganisation Energies 

Allocation of bond enthalpy terms in a molecule XYn is 

generally based on the disruption process: 

---~) X(g) + nY(g) 

The heat of disruption of XYn is given by equation 1.6. The 

standard heats of formation of the gaseous atoms X and Y 

correspond to values for their ground states. In the molecule 
-II· 

XYn however, X and Y will be in their valence states (X and 

Y*> and it would therefore be more correct to use the enthal-

0 * 0 * pies of formation 6Hf298x (g) and 6Hf29aY (g). True, or 

'intrinsic', bond energy terms are derived from thermochemical 

quantities which refer to the valence state. As an approx-

imation, it is generally acceptable to consider all the atoms 

or rragments of disruption in the1r grnund states. Rnerg,y 

terms so der1ved a.re the mean bond d1sr;oca.t1on energ1.es. Tt. 

1::; lwwe ve::r worth uuuside·r1 ng what e f' Cee t:; t..h~ u 1 I' l.'u r•tuwe:.H5 

between ground and valence sta.tes have on the ef;ltimated bond 

energy contributions. 

Figure 1.1 describes the disruption of the molecule XYn· 
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Figure 1.1 bisruption of gaseous XY n· 

X * {g) + n Y *(g) 

6E•= Promotion 
energy 

--~t.-X(g) + nY{g) 

6Hd. t tsrup . 

Initial disruption is to the valence states of the gaseous 

* * fragments X andY, i.e. to X (g) and Y (g). Such sta.tes are 

unstable with respect to their ground 3tates and sr>ontaneou:.; 
·II- ll 

relaxation will occur with a change of energy, -AE. Ag is 

the promotion energy; it cannot be measured directly, but may 

be calculated by the Slater-Condon theory of atomic spectra. 12- 14 

The total energy required for the dissociation of XYn is 

* therefore (~Hdisrupt. + ~E ). 

The simplest case for consideration is for atomic X and 

* * Y. The major differences between X and X or Y andY are 
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hybridisation and spin state. The disruption of e.g. methane 

into carbon and hydrogen atoms leaves carbon in an sp3 -

* hybridised valence state, C , which, as a result of possessing 

random rel~tive spiris, cannot be detected spectroscopically. 15 

The valence state is difficult to define but may, however, be 

expressed as a mixture of several spectroscopic spin states. 

The energy of the valence state is then calculable from the 

weighted mean of the energies of each contributing spectro­

scopic state. Estimations of the promotion energy of carbon 

in an sp3-hybridised valence state gives ll E* c 635kJ mol-l.l3-l4 

An attempt has been made to estimate intrinsic bond 

energies in boron halides. 16 Figure 1.2 shows the energy 

changes associated with the disruption of gaseous sx
3 

(X = halogen). The total energy, A H1, represents the sum 
·11-

of the intrinsic bond energy terms, r E (B-X), (equation 1. ·n. 

AHl AH * * ( ) = disrupt. + AE = E E B-X (l.'"f) 

Assuming that the halogen atoms possess sp-hybridised orbitals, 

the calculated values of ll H1 are 

mol-l for BC1
3

, and 1810kJ mol-l 

2820kJ mol-l 

16 for BBr3. 

for BF 
3

, 2070k.J 

These values 

compare with heats of disruption (from which mean bond dis­

sociati9n energies are determined) of 1929 (BF
3

), 1365 (BC13 ) 

and 1113 (BBr
3

) kJ mol-l; {AH~298 {g) B = 590, F ~ 76.7, 

Cl = 121.3, Br = 111.6, BF3 = -1109, BC1
3 

= -410, DBr) ""' -18ekJ 

-1 16 0 { ) 6 -1 mol , cf. llHf298a g = 5 OkJ mol in this thesis, see 
. ,.. 

Chapter Three). The average intrinsic bond energies, E {B-X) 

are therefore considerably larger than the mean bond diD-

sociation energies, {D{B-X) = 3
1 AHdi t ; av.E*{B-X) = srup • 

1 1 
3 AH ), and the importance of distinguishing between the two 

is emphasised. 
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Figure 1.2 Disruption of gaseous BX3 . 

-----~(g) + 3 X (g) 

~Hdisrupt. 

In most cases, calculations of enthalpies of disruption 

with respect to the ground state, and hence estimation of ~ 

bond enthalpy terms, are adequate and are widely accepted. 

The energetics of the stepwise removal of atoms, ligands or 

free radicals are however importar1t exceptions. 4 , l7 Carbon 

dioxide provides a useful example, Figure 1.3. In general 

one might estimate the mean bond dissociation energy w1th 

respect to the ground state as 2
1 6H · this gives disrupt.• 

D(C-0) = 802kJ mol- 1 . B,l1 The stepwise dissociation of 

gaseous co2 renders a separate bond dissociation energy for 

each step, the mean of which is 802kJ mol- 1 • Removal of one 

oxygen atom initially gives a carbon-oxygen valence state 

(co*) with sp-hybridised carbon. Reorganisation to the stable 
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Figure 1.3 Stepwise dissociation of gaseous C02. 

---=~~t. -CO* (g)+ 
O*(g) 

g 
~ ~ 

• 6E2 

c (g) + 
~ ~ ~ ~ 

20(g) 

t;
2

(C-0) 

.. 

~ ~ ~Hdisrupt. 

~E,• 

.4 ~ 
co (g)+ 

O(g) 

E1(C-0) 

carbon-oxygen triple bond will be spontaneous, (equatJon 1.8 

and Figure 1.3). The overall energy change 1s E1(c-o) ~ 

1 lr{ 
532k.J mol- , (i.e. the first bond d.l ssoc I at :Lon ener·p;y of' 

-~) CO(g) I O(t£) (.L.B) 

carbon dioxide). The second step involves the fission of 

the carbon-oxygen triple bondJ (equation 1.9 and Figure 1.3) 
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CO(g) * * --~) c (g) + 0 (g) --~) C(g) + O(g) (1.9) 

and the overall energy change is E2 (c-o) = 1070kJ mol-l, (i.e. 

the second bond dissociation energy of carbon dioxide). (It 

cannot be said that E2 is always greater than E1 ; e.g. in 

water E1 (0-H) >E2 (0-H)). 

This thesis will generally be concerned with mean bond 

dissociation energies, (sometimes known as bond enthalpy con-

tributions). Suggested values for such thermochemical 

quantities should not be confused with individual bond dis­

sociation energies or intrinsic bond energies, both of which 

require estimates of promotion energies from ground to valence 

states. In the particular case of transttinn metal carbonyl 

compounds, some attempt has, however, been made to estimate 

the reorganisation energies of terminal and bridging carbonyl 

ligands on their disruption to free gaseous carbon monoxide 

(see Chapter Four, Section 4.4). 

1.3 Use of Empirical Correlations for Estimating Bond Energies 

The allocation of energy contributions to individual 

bonds in a molecule has been a subject of interest for at 

least the last forty years. Bonds of a given energy are 

expected to possess other dlaracteristic physical constants, 

e.g. bond length, bond order, or force constant. It is 

generally accepted18 that as bond energy increases, bond 

length decreases and values of both bond order and force 

constant increase. It is not surprising, therefore, that 

many attempts have been made to establish empirical relation­

ships between two or more of these parameters in order to 

obtain realistic estimates of 1ndividual IJond strengths. 'l'he 

most commonly studied systems have involved carbon-carbon 
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bonds for the obvious reason that many compounds exist which 

contain c-c bonds of formal bond order 1, 2 or 3 and which 

have been fully characterised both structurally and thermo-

chemically. Table 1.1 summarises some of the relationships 

suggested which relate bond length (d), bond order (n), hond 

energy (~) and/or force constant (f) for c-c bonds. Several 

of these relationships have also been tested in other systems 

e.g. CO, CN, NO, 00 and NN bonds, (see column 2 of Table 1.1). 

Table 1.2 summarises a variety of empirical correlations 

developed to include other types of bonds, e.g. metal-metal, 

metal-oxygen, metal-halide and metal-hydride bonds and di-

atomic molecules. Other attempts have been made to correlate 

bond order-with bond length or bond energy, but specific 

relationships have not been suggested. (e.g. Smooth curves 

can 

for 

for 

plotted for d(M-M) versus n(M-M) be drawn through points 
2+ the series Nb6x12 , 4+ 2- 49 Mo6x8 , Re2c18 and Re3c19, and 

d(M-C) versus n(M-C) for a series of Mo-e bonds. 50 ) 

The mean dissociation energy of a bond, D(A-B), has 

also been estimated directly from values of D(A-A) and D(B-B) 

by Pauling's equation:51 

(1.10) 

where xA and xB are the electronegativities of A and B res­

pectively. A method of estimating D(A-B) as the reciprocal 

mean of D(A-A) and D(B-B) has also been suggested,52 (equation 

1.11) 

( 1. 11) 

Empi~ical methods for estimating bond energies can 

only be useful if the chosen relationship involves a readily 

accessible parameter. A bond strength-bond length correlation 
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TABLE 1.1 Some Suggested Empirical Relationships Connecting 
Bond. Length (d). Bond Order (n), Bond Energy -(E), 
and/or Force Constant (f) for C-C Bonds. 

(Units: d = A, E = kcal mol-1; f = mdyn.A-T 
unless stated otherwise). 

* Relationship 

E(d~) = A 

2/ 
(n 3)(d3) =B 

d = A + B(~)n 

dZ a z2(.2)n 
5 

n = Ad-2 + B 

E = Cd-2 + D 

( 

Comments Ref. 

Unreliable 6Hsublim.c 19 

Unreliable 6Hsublim.c; 20,21 

~ arises from [Nl + N2 
Nl + N2 

- 1] 
+ 1 

where N1 and N2 = Principal 
quantum numbers 

Variation of above; 22 

Z = Atomic number 

k = constant characteristic of 23 
bond type: kc-c = 3.1; tested 
in other systems ~c-o = ke-N = 
4.4; kN-o = 4.9); unreliable 
6Hsublim.c 

Unreliable 6 Hsublim. C; 

equations tested in other 
systems 

d1 = Single bond distance; 

N = Principal quantum number; 

Equation tested in other systems 

24 

25 



TABLE 1.1 (Continued) 

* Relationship 

E = A - Bd + Cd2 

d-2 = A + Bn 

E = Ad - Bd2 + Cd3 
-Dd4 

2 E = A - B(4-n) 

~=[~]-2 

E a d 

d = A - Bn 

d = A - Bn 

.12 

Comments Ref. 

Development of equation ref.23. 26 

Uses 6Hsublim.C= 5.888eV 
= 570k.J mol-l 

as best value; 
k not specified; 
(E in eV) 

Parabolic relationship replaces 27 
E = Ad-k suggested previously; 

Uses 6Hsublim.c = 169.8 kcal mol-l 
= 710 kJ mol-l 

Similar correlations for C-N 
and N-N bonds proposed. 

Suggested for cycloparaffins; 
an inverse relationship is 
suggested for C-H bonds. 

Assumes Pauling's scale of 
empirical bond energies i.e. 
E(single C-C) = 58.6 kcal mol-l 

= 245.2 kJ mol-l 

Tested in other systems 

Relation valid for ground 
AND excited states 

Tested for C-0 and C-N 
bonds 

28 

29 

30 

31 

32 

33 



TABLE 1.1 (Continued) 

* Relationship Comments 

Confined to hydrocarbons; 

-Dd-2 + Fd - G also proposes: 

d = A - B(E) 

E(C-H) = Hd-2 + Jd + K 

Derived from bond length/ 
energy data in 33 hydro­
carbons and derivatives 

Similar relationship 
assumed for B-N sy•tems; 

(E in kJ mol- 1 ) 

* A, B, C, D, F, G, H, J, K are constants 

13 

Ref. 

34 

37 



TABLE 1.2 Some Empirical Relatinnships Suggested for 
Systems Other than C-C Bonds 

( • -1 • -1 Units: d = A, E = kcal mol , f = mdyn.A 

. * Relationship 

E = A - Bd 

E a f 

unless otherwise stated) 

n•l 

Comments 

For B-B and B-H bonds in 
neutral boron hydrides; 
(see Chapter 3). ~H~29aB(g) 
is taken as 130 kcal mol-l = 543 
kJ mol- 1• 

For H - X bonds (X = Halogen} 

2 
d = ~1 + 4d (!)~ For M-M bonds; application of 

3 1 3. 
Bernstein's equation (ref.25) 

d 
1 

a n 

Ed = A + Bd 

For diatomic molecule comprising 
atoms of masses m1 and m2 ; 
p = group number of diatomic 

For Re-Re bonds with n = 1•4 

For diatomic hydrides 

For M-0 bonds;. 2 -15 k ~ 7 
(Es is defined as "bond 
'strength in valence units") 

Above equation adapted for 
Li-0 bonds; (Es in valence units) 

E = f(A + Bd2 + Cd4) For diatomic molecules 

Ref. 

39 

40 

41 

42 

44,45 

46 

47 
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TABLE 1.2 (Continued) 

* Relationship Comments Ref. 

do = A - Bvis For C-H bonds; vis = 'isolated' 48 
C-H stretching frequency; force 
constant data included; _do: r o 
(see Table 1. 3) 

* A, B, c = constants 
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seems a reasonable choice, since most compounds are character-

ised structurally. The range of bond energy-bond length 

relationships suggested in Tables 1.1 and 1.2 is varied. 

However, by setting the conditions that dE/d(d) < o34,37, 

and d2E/d(d)2 > o53, (i.e. a plot of E versus d must give a 

continuous curve of negative slope), several equations can 

be eliminated. Similarly, the range of bond length-bond 

order correlations suggested should be considered in the light 

of the limiting condition d --+ ao as n ~ o. Several 

relationships can therefore be eliminated.53 The simplest 

correlations which satisfy the conditions stated above are 

given in equations 1.12 and 1.13; the constants 

E(X-Y) = A[d(X-Y)]-k (1.12) 

d(X-Y) = B(n(X-Y))-p ( 1.13) 

A, B, k and p are characteristic of the bond X-Y. 

Empirical relationships involving bond length must be 

treated with caution, since values of d(X-Y) for bonds in 

different environments are influenced by a variety of effects; 

e.g. charge densities of X and Y, inductive effects, differ­

ences in hybridisation, conjugative effects, non-bonded and 

lone-pair interactions, and steric or ring strain effects. 

Many of these effects, (with the exception of th·:>se due to 

hybridisation), are small and of opposite sign to one another. 

Appropriate corrections made on d(X-Y) generally give a 

resultant uncertainty of ca.lpm which is comparable with the 

estimated experimental error. Hybridisation effects cannot, 

however, be dismissed as being insignificant. For instance, 

there are 6 possible environments for a carbon-carbon formal 

single bond (Figure 1.4) and it ha~ been suggested54 that the 
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Figure 1.4 Possible environments 
single carbon- cor bon 

for formal 

bonds. 

' -/C-C= 

~c-c== 
/ 

(f) sp-sp 

C-C bond length varies over the range 154.4pm (sp3-sp3, 

Figure 1.4a) to 137-4pm (sp-sp, Figure 1.4f). Such variation 

may well be due in part to conjugation effects, (in which case 

the formal bond order is no longer unity), but it is argued 

that the predominant factor is the change in hybridisation 

of the carbon a.tom.5 4-56 Hence f'or a bond X-Y, any bond 

length-bond order relationship should refer spec1f1cally to 

5'7 58 a part icula.r state of ltybr1d1. sat ton. • ( 

'l'he ctwlce nl' experl.rnl:lntaJ. l.lnl.tt lu 1.1.l.::1n llllflllr"l.l.ull .• 

Va.l ues of d ( X-Y) dete Pmt 11ud tJ.Y Li I l'fr.H'tm t; tuetml.ques ,.J.re uot 

strictly comparable; this problem is discussed in Section 1.4. 
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It is therefore suggested that relationships of the 

form shown in equations 1.12 and 1.13 might be appropriate 

for allocating bond energy contributions and bond orders to 

bonds of given length. Alternatively, the equations may be 

combined to give a bond energy-bond order relationship, 

equation i.l4. 

E(X-Y) = C[n(X-Y)]m 

(where m = kp from equations (1.12) and (1.13); 

C = constant) 

( 1.14) 

l.l~ Bond ~ngth : Definitions and Use of Experimental Values 

In Section 1.3 it is suggested that empirical relation­

ships connecting bond energy with bond 1.e ngth might be an 

effective method of estimating bond enthalpy contributions 

in molecules. Before embarking upon such work, it is necess-

ary to define 'bond length' and point out any possible diffic­

ulties in interpreting experimental data. 

Bond length is a measure of the distance between two 

nuclei and can be determined by a variety of methods, the 

most common of which are spectroscopy (particularly for di­

atomic molecules), electron diffraction (gas phase), X-ray 

diffraction and neutron scattering. Each technique involves 

a different internuclear distance parameter and each has its 

own symbol. The range of parameters used in spectroscopic 

and electron diffraction bond length determinations is partie-

ularly confusing; these are summarised in Table 1.3. When 

comparing bond £engths, it is highly desirable that the com-

parison should be made between internuclear distances derived 

by the same method. Unfortunately no one parameter is used 

universally, although electron diffraction results are very 



TABLE l. 3 

. * Parameter 

19 

Internuclear Distance Parameters Used in 
Spectroscopic and Electron Diffraction Methods.59 

t Method 

S and E 

E 

E 

s 

s 

s 

Definition and Comments 

Distance between equilibrium 
positions of nuclei 

Average value over the molecular 
vibrations of internuclear separation 
for a given temperature 

Distance obtained directly from 
electron diffraction data; r is a ,., 
related to rg by: rg = ra + u'-;ra 

where u = root mean square vibrational 
amplitude 

Distance for diatomic molecule 
defined by: 

2 h 
r o = -8-'11' .... 2-~ -B­

o 

where h =Planck's constant 
1.1 =reduced mass 

B
0 

= rotational constant for 
molecule in a state of' 
zero point vibration 

Applied to polyatomic molecules 
because of inadequacies of r

0 
model; 60 

for a diatomic,rs is defined as: 

r = .!. ( r + r )· 
s 2 o e 

Distance between mean positions of 
a toms in ~.tr-ounu f:itah: · ( r. 1 1, uuc o " ' ·z,.. g 
to d1. rcerent methods of' d~terrn1 nation). 



TABLE 1.3 (Continued) 

* Parameter 

r av. 

Method t 

E 

E 

S and E 

. 
Definition and Comments 

Distance between mean positions of 
atoms at a given temperature; 

ra is related to rg by: 

r a = r - [ <tJ.X2> + < !J.Y2> ] 
g 2re 

where <tJ.x2> and <6y2> = mean square 

perpendicular vibrational amplitudes 

Value of ra extrapolated to OK 

Distance obtained by simultaneous 
refinement of spectroscopic and 
electron diffraction data; 61 

(corresponds to refinement of rz and 

r~ ). 

* It is conventional to use 'r' for internuclear separation 
when applied to spectroscopic and electron diffraction 
values; the symbol 'd' is used elsewhere in this thesis. 

t S = Parameter determined by spectroscopic methods. 

E = Parameter determined by electron diffraction. 

20 
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TABLE 1. 4 Internuclear Parameters for tBut;y:l Chlorideb),bl.l; 
d in 2m 

ro rz r a s 

d(C-C) 152.5(3) 152.5(5) 153.0(2) 

d(C-Cl) 182.5(5) 183.1(15) 180.3(2) 

ro r r e av. 

d (C-C) 153.1(7) 152.1(4) 152.5(3) 

d(C-Cl) 181.2(19) 182.1(6) 182.7(5) 

often presented in terms of rg, the average internuclear 

distance. An example of the variation in bond length with 

differing parameters is given for d(C-C) and d(C-Cl) in tbutyl 

chloride, 63, 64 (Table 1.4). 

Structural data for the majority of compounds discussed 

in this thesis are derived either from electron diffraction 

or X-ray crystallographic studies. In a few cases the bond 

length data are the result of neutron diffraction work. The 

complications arising from the variety of electron diffraction 

distance parameters have already been discussed. In addition, 

accurate determinations of bond lengths by electron diffraction 

techniques are limited to molecules whose symmetry is known. 

Greater errors in d(X-Y) are incurred for molecules of un-

known symmetry. X-ray and neutron diffraction methods measure 

bond lengths in crystalline solids. Both methods can give 

accurate measures of internuclear separations although sub-

stantial differences can arise when determining the lengths 

of bonds involving light atoms, (in particular hydrogen). 

This difference in sensitivity is due to the nature of the 

diffraction in each case. X-rays respond to accumulations 

of electrons whilst neutrons are scattered by the nuclei them-

selves. Hence in a carbon-hydrogen bond, X-ray diffraction 



pea.ka rrorn the h,ydrop;on atomfl l"epresent the locati nn of' the 

h:tgheat electron dena! ty and this is generally shi rted towards 

the carbon-atom. Hence a value of d(C-H) ~ 80pm is typical 

of X-ray diffraction results. Neutron scattering however 

gives a realistic measure of d(C-H); values of lOOpm < d(C-H) 

< llOpm are common. The same problem arises with boron-

hydrogen bonds. It has been suggested that values of d(B-H) 

and d(C-H) determined by X-ray diffraction are typically 

ca. 65 66 lOpm shorter than values found by neutron scattering. ' 

Similar cqrrections are suggested for non-hydrogen bonded 

N-H and 0-H distances. 66 

In this thesis, structural parameters determined by 

the same experimental technique have been used wherever 

possible. 

1.5 Bond· Order 

In this work, empirical relationships between bond 

order and bond length or bond energy will be used. The term 

'bond order' should therefore be defined. In molecular 

orbital (MO) theory, formal bond order, n, is defined as the 

number of electron pairs occupying bonding MO's minus the 

number of electron pairs occupying antibonding MO's, 67 (e.g. 

bond orders in He2~ H2+, H2, o2 and CO are 0, !, 1, 2 and 3 

respectively). 

Various interpretations of bond order exist, but in 

this thesis all values of n are comparable. It is assumed, 

for example, that in the delocalised benzene ring system each 

C-C link can be assigned a bond order of 1.5, and that in 

graphite, the in-plane bonds of the delocalised fused-ring 
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system each have a bond order of ca. 1.333. (This assumes 

that bonding between the graphite planes is negligible; this 

is supported by the two-dimensional electrical conductivity 

of graphite). 

Chapters TWo and Three describe the thermochemistry and 

bonding in some boron-containing species. In its valence 

state, boron itself has a vacant p-orbital; its ground state 

electronic configuration is 1s22s22p1 (i.e. 3 valence electrons). 

Hence, sp2-hybridisation is common leaving a vacant Pz orbital. 

It is assumed in this thesis that whenever possible the boron 

atom will accept 'II' -electrons from adjacent atoms in order to 

completely fill the Pz orbital. Hence in boron trihalides 

'~~'-electrons are donated from each halogen atom to boron giving 

a total bond order for each B-X bond of 1.333. Further 

discussion can be found in Chapter TWo. 

1.6 Standard Enthalpies of Formation of' Elemento 

Many calculations in this thesis are concerned with the 

disruption of compounds into their constituent elements. It 

is therefore essential that reliable values of the standard 

enthalpies of formation of the gaseous atoms are used. In 

most cases, values of 6H~(g) are well documented; Table 1.5 

summarises data used in this thesis, (values of AH~(g) refer 

to 25°C,or 298K,and one atmosphere pressure). 

In the case of carbon, many earl.Y thcrrnocbernical :::.1tudies 

suffer f'rom the uncertainty in a value o1' AHsub.l 1 rnA.tion, ( l.iee 

Section Lj, •rable 1.1). However, a value of' '(H,.'(I<:J rnnl-.1 

ls uuw accepted. Boron has al~;o r.rcn.t.uu rnan.v pr·ob.l.em::; and 

estimates of its heat of sublimation spread over a range of 



ca. 120kJ mol-1 • The main expertmenml problems appear to 

be (a) incorrect measurement of temperature, and (b) the 

reactivity of boron at high temperature which makes the 

selection of material for an inert reaction vessel nearly 

impossible. 68 The weighted mean of all data prior to 1968 

gives 6H~298 B(g) = 556(18) kJ mol- 1 . 8 •68 This has been 

compared with data published since 1968 and in this thesis 

a value of 6H~298 B(g) = 560(12) kJ mol-l is used; (references 

in Table 1.5 list all sources from which data were considered). 

(Heats of atomisation of metallic elements will be considered 

in Chapter Four). 

TABLE 1.5 Standard EnthalEies of Formation of Gaseous 
Atoms, 6 H~298 (g). 

Element 6 H~298 (g) References 

kJ mol-l 

H 218. 0(4) 8, 69, 70 

B 560(12) 8, 68-72 

c 716.7(4) 8, 69, 70 

N 472.7(4) 8, 69, 70, 73 

0 249.2(1) 8, 69, 70 

F 79.4(3) 8, 69. '(0, r-(4 

Cl 121. 3(<1) a. 69. .-(0, 74 

Br 111.9(1) 8, 69. '(0, 74 
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1.7 Shapes of Cluster Compounds 

Boron hydrides, polynuclear transition metal carbonyl 

compounds and some cyclic hydrocarbon systems adopt structures 

which are relatable to complete, or nearly complete, tri-

angular-faced polyhedra. These have been classified according 
~(5-82 to the number of skeletal bonding pairs of electrons, -

(see Chapter Six, Section 6.1). 

In estimating possible bond orders ~1d energies in cage 
2-compounds (e.g. in the polyhedral anions BnHn considered in 

Chapter Three), the theory of skeletal counting becomes an 

important basis from which to work. The final chapter of 

this thesis is therefore devoted to the shapes and classific-

ation of clusters. 



CHAPTER TWO 

BOND ENERGY-BOND ORDER AND BOND 
ENERGY-BOND LENGTH EMPIRICAL CORRELATIONS 

IN SOME MAIN GROUP SYSTEMS 

2.1 Introduction 

26 

In this chapter, attempts are made to correlate bond 

energy with bond order and/or bond length in simple systems 

containing some main group elements with special emphasis on 

boron compounds. General relationships suggested in Chapter 

One, Section 1.3 (equations 2.1 - 2.3) are used. 

E(X-Y) = A[d(X-Y))-k 

d(X-Y) = B[n(X-Y)]-P 

~(X-Y) = C[n(X-Y))m 

(2.1) 

(2.2) 

(2.3) 

For sp2-carbon-sp2-carbon bonds, a plot or log E(C-C) 

against log n(C-C) gives a good straight line (Figure 2.1)37 

yielding equation 2.4: 

E(C-C) = 414.3(n(C-C)] 0 · 4276 (2.4) 

The logarithm of 'revised' bond energy terms calculated from 

equation 2.4 plotted against log d (C-C) also gives a linear 

correlation (Figure 2.2) (equation 2.5). 

E(C-C) = 1425[d(C-C)] -3· 2 ford in A 

- 3.582 x 109[d(C-C)]-3· 2 ·ror din pm 

Finally, equation 2.6 has been suggested as relating 

sp2C-sp2C bond length with bond order.37 

d(C-C) = 1.47l(n(C-C)]-O.l34 I 

for d in A 

- 147.l[n(C-C)]-O.l34 ford in pm. 

(2.5) 

(2.6) 



27 

Figure 2.1 Log E(C-C) against log n(C-C) for 
some sp2_sp2 carbon- carbon 
bonds; 37 [E in kcal mol-' 1. 

llog E(C-CI 

2·74 

2.70 

2-66 

2·62 
0 0·1 0·2 

log n(C-C)~ 
0· 

Figure 2.2 Log E(C-C) against log d(C-C) for 
some sp2-sp2 carbon-carbon 
bonds; 37 [E in kcal mol-'; ·d in A 1. 

r
log E(C-C) 

2 
ath na 

·75 0 

2-70 

2-65 

log d(C-C) ,. 
2·60 0.12 0·14 0-16 
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As boron-nitrogen and carbon-carbon bonds are iso­

electronic, it has been postulated that the rate of change 

of bond energy with bond length should be the same in both 

cases.37 Hence, equation 2.7 has been proposed. 

E(B-N) a(d(B-N)]-3· 2 (2.7) 

However, it has been noted that for bonds between atoms of' 

8 -1 
unspecified hybridisation, dE(C-C)fd[d(C-C)] _, -12 kJ mol 

whereas dE(B-N)fd[d(B-N)] ,17 kJ mol-
1

. 
8

3 

Relationships of the general form of equation 2.3 were 

also suggested for boron-halogen bonds, (equations 2.8 and 2.9), 

E(B-Cl) = 419.5(n(B-Cl)] 0 · 222 

E(B-Br) = 357.2(n(B-Br)] 0 •146 

(2.8) 

(2.9) 

on the basis of estimated boron-halogen bond enthalpy con­

tributions in the trigonal planar compounds boron trlhalide 

(or trihalogenoborane (Bx3 )~ phenyldihalogenoborane (PhBX2 ) 

and diphenylhalogenobora.ne (Ph2BX), (X = Cl or Br). It was 

assumed that n-electrons from the halogen atoms would be 

donated to the vacant Pz orbital on boron giving B-X bond . 
orders of 1.333, 1.50 and 2.00 in ~x3 , PhBX2 and Ph2BX res-

pectively. A value of D(B-Ph) was transferred from tri-

phenylboron (Ph
3
B) on the assumption that there would be no 

back donation of n-electrons from carbon to boron in any 

compound containing a phenyl substituent; (i.e. n(B-C) ~ 1.00 

in all cases).37 This assumption contrasts with the opl11lon 

that i.n Ph3_xB~ systems, values of E(B-X) are trans1'era1J.le, 

implyin~ that the phenyl groups are the nrtmary Gources nf 

11 -elect r·on~. BlJ-86 Competition bt:LW<:!<.:I"I f.H.Jt(!nt.l.n.l ·n-el(!c~tr·orl 

donors attached to boron Is c.Hr;eussec.i f'ur·\.t·l(::r 111 Sec 1.1. on 2. '"(. 
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In relating bond order to either bond length or bond 

energy in this Chapter, bonds between atoms of the same 

hybridisation are compared wherever possible. The effects 

of including atoms of differing hybridisation are discussed. 

2.2 Carbon-Oxygen Bonds 

Carbon-oxygen formal single, double and triple bonds 

are well documented and lengths and energies for such bonds 

are given in Table 2.1. A plot of log E(C-0) against 

log d(C-0), (Figure 2.3), gives a good straight line, (correl­

ation coefficient= -0.99934), of slope :-5 (equation 2.10), 

E(C-0) = 1.955 X l013(d(C-0))-5 (2.10) 

The values in Table 2.1 include carbon in different states 

of hybridisation and so attempted correlation of bond energy 

with bond order might not be expected to be successful. 

However, a plot of log E(C-0) against log n(C-0), (Figure 2.4), 

using values listed in Table 2.1 gives an excellent st~aight 

line, (correlation coefficient =1.0) and suggests the 

relationship: 

E(C-0) = 335.7[n(C-0)] 1 · 05 (2.11) 

In the case of C-O bonds therefore, it appears that hybrid­

isation effects may not be as significant as in c-c bonds. 

Combining equations 2.10 and 2.11 gives a bond length­

bond order relationship for C-O bonds of the form: 

d(C-0) = 142.2(n(C-0)]-0 •21 (2.12) 
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Figure 2.3 Log E against log d · for carbon­
oxygen bonds; [E in kJ mol-1

; 

d in pm]. 

i log E(G-0) . 

3.1 

2.8 

2.5 
2~5 2 ~0 log d(C-0}~ 215 

Figure 2.4 Log E against log n for carbon­
oxygen bonds; [E in kJ mol-1 

]. 

~log E(C-0) 

3.1 

2.8 

2.5 o.t. log n(C-0) M 
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TABLE 2.1 General Carbon-Oxlsen Bond 
and.Enersies. 8' 87, 88 

Orders, Lengths 

Bond Bond Order Bond Length Bond Energy 
pm kJ mol-l 

c = 0 3 112.8289 1070 

c = 0 2 123 695 

c - 0 1 143 336 

2.3 Boron-Halogen Bonds 

In a large number of its compounds, boron ls sp2-

hybridised and is able to accept n-electrons from adjacent 

atoms to completely fill its vacant Pz orbital, (Chapter One, 

Section 1.5). Figure 2.5 illustrates the back donation of 

n-electronic charge from halogen to boron in Bx
3 

where each . 
B-X bond is expected to have a formal bond order (n) of 1.333. 

Figure 2.5 11 -bonding in 
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If other substituents on boron are unlikely to be potential 

sources of ~-electrons, (e.g. hydrogen atom or alkyl group, 

see Section 2.6), the total n-bonding in the molecule may be 

assumed to be due to the halogen substituent(s). 

HBX2 , n(B-X) = 1.50, and in H2BX, n(B-X) = 2.00. 

Hence in 

Table 2.2 lists thermochemical data for several boron-

halogen compounds containing sp2-boron. For each of boron 

trifluoride (BF
3

), boron trichloride (BC1
3

) and boron tri­

bromide (BBr
3

), the mean bond dissociation enthalpy, D(B-X), 

is 5~disrupt.sx3 ; D(B-F) = 644.4, D(B-Cl) = 442.2, and 

D(B-Br) = 366.9 kJ mol-l. Other compounds in Table 2.2 are 

of the type Rxax
3

_x (x = 1, 2; R = H, alkyl), and an est1rnate 

of D(B-R) is therefore required. If it is assumed that 

D(B-R) is constant along the series R
3
B -----~) RBX2 (see 

Section 2.6), then values of D(B-R) can be transferred 

directly from the respective trialkylborane compound (R
3
B) 

to the halogeno-substituted derivatives. Table 2.3 gives 

standard enthalpies of formation and heats of disruption 

for boron hydride (BH
3

) and some trialkylboranes (R
3
B) as 

well as for the free radicals R·. Mean bond dissodation 

enthalpies for the process: 

-~::.. B(g) + 3 R• (g) 

are also listed in Table 2.3. Finally, Table 2.4 lists 

bond enthalpy contributions allocated to the B-X bonds with 

respectj.ve values of the bond orders, n(B-X). Bond dis-

sociation energies and bond orders for the gaseous diatomic 

BX molecules are also included in Table 2.4; (~H~29a(g) BF = 
-122.2,70 BCl = ll~9-570,7l, BBr = 238.170 •71 kJ mol- 1 ). 

Plots oL' log E(B-X) agalnst lop; n(IJ-X) l'or X::.: }i', Cl 

and Br glve good linear cor·-r·ela.t1.ons (l•'lgur·e 2.6), and, 
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TABLE 2.2 Thermochemical Data for Some Boron-Halogen 
Com12ounds; ( SJ2

2- B} 

Compound ~~298(g) fiHdisrupt. Ref. 

kJ mol-l kJ mol -1 

BF3 -1136.3 1933-3 8, 70, 71 

BC13 -402.7 1326.6 8, 70 

BBr
3 -205.0 1100.7 8, 68, 70, 71 

HBF2 -738.9 1674.9 71 

* 68 MeBF2 -832.6 2921.3 

* 4115.8 68 EtBF2 -874.4 

HBC12 -253.2 1273.8 71 

nBu2BCl -365.7 10704.6 4, 71, 90 

nBu2BBr -301.0 10630.5 4, 71. 90 

* These values are approximate. 68 



TABLE 2.3 Thermochemical Data for Boron H~dride and 
Trialkyiboranes (R~B) a.nd for the Radicals R .. 

Compound AH~298(g) A Hdisrupt. D(B-R) Ref. 

kJ mol-l kJ mol-l kJ mol-l 

BH3 
100.4 1113.6 371.2 70 

Me3B -122.3 4794.4 369.7 11, 70' 71, 90 

Et3B -152.2 8282.4 345.8 4,70.71,90 

nBu B· 
3 -285.0 15331.4 352.8 Jl, '71, 90 

Me" 142.3 1228.4 - 9,10 

Et· 108.4 2415.0 - 9,10,91 

nBu· 71.1 4757-7 - 9,10 
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TABLE 2.4 
I 

Mean Bond Dissociation Energies ~1d Bond Orders 
for Some B-X 1X = F, Cl, Brl Bonds 

Compound D(B-X) n(B-X) 

kJ mol-l 

. 
BF

3 
644.4 1.333 

HBF2 651.9 1.50 

MeBF2 661.6 1.50 

EtBF2 677.5 1.50 

BF 761.2 3.00 

. 
BC1

3 
442.2 1.333 

HBC12 451.3 1. 50 ' 

nBu BCl 2 483.6 2.00 

BCl 531.8 3.00 

. 
BBr

3 366.9 1.333 

nBu2BBr 409.5 2.00 

BBr 433.8 3.00 



Figure 2.6 LogE(B-X) aga'1nst log n(B-X) for 
X = F, B r , C l ; [ E in k J mol-1 l. 

I log E(B-Xl 

2.9 
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· log n(B -X) ____ ,. 
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surprisingly, in each case pass through the point associated 

With the diatomic, BX. As for C-0 bonds therefore, a change 

in hybridisation of the atoms does not appear to greatly 

influence any bond energy-bond order correlations. The 

suggested bond energy-bond order relationships are given in 

equations 2.13 - 2.15; the correlation coefficients are 

0.97825, 0.99942 and 0.98420 for B-F, B-Cl and B-Br bonds 

respectively. 

E{B-F) = 610.6[n{B-F)) 0 •20 

E{B-Cl) = 412.5[n{B-Cl)] 0 · 23 

E{B-Br) = 348.8(n(B-Br)] 0 •21 

(2.1)) 

{2.15) 

Equations 2.13-2.15 suggest that the rate of change of 

bond energy with bond order is much the same for all boron­

halogen bond·s, and that perhaps the three lines in Figure 2.6 

should be parallel. Equation 2.16 is therefore proposed for 

a general bond energy-bond order relationship covering all 

B-X bonds. 

E(B-X) = A(n(B-X)] 0 •20 (2.16) 

where A = 608.4 kJ mo 1-1 for X = F {a) 

A = 417.5 kJ mol-l for X = Cl {b) 

A = 346.4 kJ mo 1-1 for X = Br (c) 

(Values of the constant A are calculated assuming that each 

line must pass through the point associated with ax
3

). 

Bond length data for boron-halogen bonds ~/both sparse 

and often inaccurate. It therefore seems w1realistic to 

attempt to correlate either bond energy or order with bond 

length. 



2.4 Boron-Oxygen Bonds 

Table 2.5 lists thermochemical data for some boron­

oxygen compounds. The emphasis is on sp2-hybridised boron, 

although diatomic BO and triatomic B02 are also included for 

comparison. 

The mean boron-oxygen bond dissociation energies in 

gaseous BO and B02 are ~Hdisrupt. BO = 732.2 and 

! AH B02 = 679.2 kJ mol-l respectively. In all 2 disrupt. 
other compounds in Table 2.5, values of D(B-OR) cannot be 

estimated directly from ~Hdisrupt.; additional thermochemical 

data are required. Firstly, it is assumed that D(B-H) = 

371.2 kJ mol-l (Table 2.3) is transferable from gaseous BH
3 

to each of gaseous boronic acid (HB(OH) 2 ), dimethoxyborane 

(HB(OMe) 2 ), boroxine ((HB0)
3

), and borj.nic acid (H2B(OH)); 

(in all species boron is sp2-hybr1dised). 

Secondly, a value of D(B-nBu) = 352.8 kJ mol-l (Table 2.3) 

is assumed to be appropriate in di-n-butylbori~ic acid 

Thirdly, standard enthalpies of formation of 

the radicals ·OR (R = H, Me, Et, nPr, nBu) are required 

(Table 2.6). (Unfortunately literature values nf' AH~298 ·0R(g) 
vary greatly and tend to be inaccurate. 

Table 2.6 are the most recent available). 

Values given in 

Bond enthalpy contributions allocated to boron-oxygen 

bonds are summarised in Table 2.7. They are seen to fall 

into at least two general series, (a) D(B-OR) for R = H and 

(b) D(B-OR) for R = alkyl. A plot of log D(B-OR) against 

log n(B-0) emphasises this fact, (Figure 2.7). Points 

a~soctated w"lth J3(0H)
3 

(bor:l.c act<i), HIJ(OI-l)~) uud ~?13(0H) 

(n 1 ·.: IJ, 11Du) 11c nn nne l:t.ne (eq11.1tlnn ~.-1'7; r!n-rr•f'!]nt·lnn 

coefficient ~ 0.99834) whilnt a parallel line may be drawn 
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TABLE 2.5 Thermochemical Data for Some 
B?ron-Oxl~en Slstems 

Compound ~H~298(g) ~Hdisrupt. Ref. 

kJ mol-l kJ mol -1 

B(OH)3 -991.5 2953.1 70,71 

B(OMe) 3 -900.0 6319.7 4,70,71,90 

B(OEt)
3 -1003.0 9880.8 4,70,71,90 

B(OnPr)
3 -1077.8 134·13. 7 4,71,90 

B(OnBu)
3 -1147.0 16941.0 4' .. (1' 90 

HB(OH) 2 -640.0 2352.4 71 

HB(OMe) 2 -579·5 4597.3 4,70,71,90 

(HB0)
3 

-1210.0 4291.6 70,71 

H2B(OH) -290.0 1753.2 71 

nBu2B(OH) -547.5 11232.3 71 

802 -300.0 1358.4 70' '11 

BO 77.0 * 732.2 71 

* Value may be unreliable 
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TABLE 2.6 Standard EnthalEies of Formation and DisruEtion 
of Gaseous Radicais 1 ·OR 

Radical A H~298(g) A Hdisrupt. Ref. 

kJ mol -1 kJ mol-l 

"OH 38.9 428.3 10, 70 

·OMe 17.6 1602.3 92 

·OEt -17.2 2789.8 92 

·OnPr -41.4 3966.7 92 

·OnBu -61.5 5139.5 93 

through those points associated with B(OR)
3 

(R = alkyl) 

and HB(OMe) 2 (equation 2.18). Several points lie off the 

D(B-OH) = 537.l(n(B-0)] 0 •12 

D(B-OR) = 487.5 ( n(B-0)] 0 · 12 

suggested lines, 1.~. (HB0)
3

, B02 and BO. 

(2.17) 

( 2. 18) 

In each case 

bond enthalpy contributions were allocated assuming disruption 

into constituent elements, cf. disruption into gaseous boron 

and hydrogen atoms and radicals for all other systems. In 

addition, B02 and BO do not contain sp~B.· 

· The rather unsatisfactory picture which has emerged for 

boron-oxygen systems underlines the cautionary notes made in 

Chapter One regarding the energetics of disruption of compounds 

into gaseous radicals rather than atoms. An improvement is 

however made if revised bond energy terms, D(B-0), are calcul­

ated for the process: 

R1 xB(OH)3_x(g) -~) xR1 (g) + B(g) + (3-x)O(g) + (3-x)H(g) 

or: 

1 1 
R xB(OMe))-x(g) -~)X H (g) + H(g) I· (3-x)O(r~) 

+ (3-x)C(g) + 3(3-x)H(g) 



TABLE 2.7 Bond Orders and Estimated Bond Enthalpy 
Contributions for Some Boron-Oxygen Bonds 

Compound 
(gaseous) 

B(OMe)
3 

B(OEt)
3 

B(OnPr)
3 

B(OnBu)
3 

HB(OH) 2 

HB(OMe) 2 

BO 

D(B·~OR) 

kJ mol-l 

556.1 

504.3 

503.8 1 
) 

504.5 

507.5 
I 

562.3 

510.8 

529.7 

582.5 l 
583.0 ~ 

732.2 

mean 
505.0 

mean 
582.75 

n(B-0) 

. 
1.333 

1.333 

. 
1.333 

1.333 

1.333 

1.50 

1.50 

1.50 

1.75 

2.00 

2.00 

41 
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Figure 2.7 Log 0(8 -OR) against log n( B-0) for 
disruption into radicals, •OR; 
[E in kJ mol-1 1. 

o represents log D(B-OR) ; R = H . 
6 .. log D(B -OR) ; R =alkyl. • 2•9 ,1og 0(8-0Rl 
oe see text. 
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Figure 2.8 LogE(B-0) against log n(B-0) for 
disruption into atoms; 
[ E in k J mol-1 
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(Compounds involving OEt, OnPr or OnBu groups are not con­

sidered because of the increasing complexity of assigning 

C-C and C-H bond enthalpy contributions). Additional thermo­

chemical data required are: D(C-H)Me = 410 kJ mol- 1 , 10 •94,95 

D(O-H) = 460.2 kJ mol- 1 , 4' 17 and D(O-Me) = 355 kJ mol-l 

(calculated using 6H~298Me20(g) = -184.1 kJ mol-l 70 and 

6H~298 ·OMe(g) and ·Me(g) = 17.6 and 142.3-kJ mol-l res-

pectively (Tables 2.6 and 2.3). The revised energy terms 

D(B-0), are summarised in Table 2.8. A plot of log E(B-0) 

against log n(B-0) gives a good straight line, (correlation 

coefficient = 0.99834), with the exception of points due to 

BO and B02 (Figure 2.8). Equation 2.19 relating B-0 bond 

energy to bond order is therefore suggested. 

E(B-0) = 503.0(n(B-0)] 0 •13 (2.19) 

Possible reasons for the anamolous behaviour of BO and 

B02 are that (a) the boron atom is not sp2-hybrldlsed or 

(b) both systems are odd electron species. It 1s suggested 

that whilst both (a) and (b) may be contributory factors to 

the anomolous behaviour of boron monoxideand boron dtoxide, 

factor (b) may well be of greater significa~ce since changes 

in the hybridisation of boron (i.e. (a)) ha~ little effect 

on empirical correlations involving boron-halogen bonds. 

The examples given in this Section underline the 

difficulties affecting the allocation or bond enthalpy con-

tributions based on the disruption ol' a compound into radtcal 

species. However. in simple systems where complete atomis-

ation can be considered. more satisfactory results appear to 

be forthcoming and a bond energy-bond or·der relatlonshlp ror 

boron-oxygen bonds so derived seems realistic. It is not 

possible at the present time to correlate B-0 bond energy 
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TABLE 2.8 Bond Orders and Revised Mean Bond Ener~l 
Terms for Some Boron-Oxlsen Bonds 

Compound D(B-0) n(B-0) 

kJ mol-l 

( 
. 

B(OH)3 524.2 mean 1.333 

522.9 . 
B(OMe)

3 521.6 1.333 

HB(OH) 2 530.4 ) 1.50 

HB(OMe) 2 528.1 mean 1.50 
529.4 

(HB0)3 529.7 ) 1.50 

B02 679.2 1. 75 

H2B(OH) 550.6 

( 
2.00 

mean 

nBu2B(OH) 551.1 550.9 2.00 

BO 732.2 2.50 



with bond length since accurate values of d(B-0) are not 

available for many different systems. 

2.5 Boron-Nitrogen Bonds 

Several compounds containing sp2-boron attached to 

nitrogen have been structurally characterised either by 
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electron or X-ray diffraction techniques. Table 2.9 lists 

such data, along with boron-nitrogen bond orders which are 

estimated assuming that nitrogen acts as a source of n-elect-

ronic charge and that the Pz orbital on boron is completely 

filled. (Other substituents present are assumed not to be 

potential n-electron donors). Although diatomic boron 
2 nitride does not involve sp -B, it is included in the Table 

to give an indication of the bond length for n(B-N) = 2.00. 

Some values of d(B-N) do not appear to be consistent with 

one another (e.g. for a bond order of 1.50, d(B-N) = 139 to 

143.55 pm). Indeed, a plot of log d(B-N) against log n(B-N) 

gives a poor correlation (Figure 2.9; correlation coefficient = 
-0.93982), and this is attributed to a comparison of bond 

length data derived from different experimental techniques, 

(see Chapter One, Section 1.4). 

If values of d(B-N) determined by electron dl l'l.'r·ac:tlon 

only are taken along with the value of d(B-N) -:: 128.1 pm ror 

n(B-N) = 2.00, a better correlation is obtained, (Figure 2.10; 

correlation coefficient = -0.95040). A further improvement 

is made by using bond lengths determined by X-ray diffraction 

and spectroscopic methods only, (Figure 2.11; cor·relation 

coefficient 7. -~.9Rl02). 'l'hJn .l.n.ttc~r· p:lnt 1::: tlw·r·cf'nro u:;;ect 

to der1.ve equut·tnu 2.20· 'l'hl:.; ~il1t~J?;c~.:1.r.:; a va.lue ol' .l.'j8.'( pm 



TABLE 2.9 Bond Lensths and Bond Orders for Some 
Boron-Nitrosen Bonds 

Method of 
* 

Compound Structural d(B-N) n(B-N) Determination t pm 
and Refs. 

E 96 
. 

B(NMe2 )3 
143.1(12) 1.333 

. Boron nitride X 97 144.6 1.333 (hexagonal) 

(HB-NH) 3 E 98 143.55(21) 1.50 

(EtB-NEt)
3 

X 99 11~2. 3( 15) 1.50 

(MeB-NH)3 
XlOO 139 1.50 

(HB-NMe) 3 
ElOl 142(2) 1.50 

/N=N' 
E102 141.3(10) 1.50 

MeN NMe 
"-.a/ 

H 

BN(g) s 8 128.1 2.00 

t E = Electron diffraction; X =X-ray diffraction; 

S = Spectroscopic determination 

* Errors included where available 

** Bond order of 1.333 presupposes NO effective bonding 
between planes in boron nitride as in graphite; 
(Pauling103 has suggested n(B-N) = 1.22) 
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Figure 2.9 

llog d(B-NI 

2.20 

2.15 

2.10 
0 

Figure 2.10 

llog d(B-NI 

2.20 

2.15 

2~0 

0 
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Log d(B-N) against log n(B-N) for 
compounds with sp2_s and for 
diatomic BN ; [ d in pm l. 

o X-ray data. 
6 Electron diffraction data. 
a Spectroscopic data. 

0.1 0•2 log n(B-N),. 03 

Log d(B-N) against log n(B-N) ; 
electron diffraction and spectroscopic 

data ; [ d in pm ] . 

0.1 

6 Electron diffraction data. 
c Spectroscopic data. 

0.2 log n(B-N) ,. 0.3 



Figure 2.11 

llog d(i:l-Nl 

2.20 

2.15 

2.10 
0 
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Log d(B-N) against log n(B-N) ; 
X-ray and spectroscopic data; 
[ d in pm]. 

oX-ray data. 
c Spectroscopic data. 

0.1 0.2 log n(B-N) > 03 

Figure 2.12 Log E(B-N) against log n(B-N) for 

disruption into atoms; 

llog E(B-Nl 

2.7 

2.6 

2.5 
0 

[ E in kJ mol-11. 

R•H:Ma 

l~n(B-N) > 
0.1 0.2 0 
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d(B-N) = 158.7[n(B-N))-0.3l (2.20) 

( =159 pm) for a boron-nitrogen single bond. This compares 
' 

well with the sum of Pauling's tetrahedral covalent radii 

(158 pm) and with a value of 155 pm derived from the Stevenson-

Schomaker equation. 104 It is aiso striking that the bond 

length in borazon, (which is the cubic form of boron nitride 

and structurally analogous to diamond), is 159 pm for 

n(B-N) = l.Oo. 105 Lengths of other B-N formal single bonds 
106 are 161 pm in dimethylaminoborane dimer ([Me2NBH2] 2 ), 

lO'l · 157.5 pm in trimethylaminoboron trichloride (Me3N ,BC1
3

), 

. 159.1 pm in dimethylaminoboron dichloride dimer ([Me2NBC12] 2 ) 108 

and 158 pm in trimethylaminoboron trifluoride (Me
3

N ,BF
3

); 109 

(all lengths determined by X-ray diffraction). It therefore 

seems justifiable to extend the applicability of equation 2.20 

to bonds involving sp3-hybridised boron. Indeed, if values 

of d(B-N) = 159, 161, 157.5, 159.1 and 158 pm for n(B-N) = 1.0 

had been included in the original correlation (Figure 2.11), 

a correlation coefficient of -0.99192 would have been obtained 

and equation 2.20 revised to give: 

d(B-N) = 158.9(n(B-N)]-0.3l (2.21) 

Boron-nitrogen bond enthalpy contributions can be 

estimated for several of the simpler compounds considered 

previously in this Section. Thermochemical data are given 

in Table 2.10. As with the alkoxy-derivatives of boron, 

problems arise when considering the disruption of dimethyl­

amino-derivatives, e. g. tris (dtmethylE-.mino )borane, (B(NMe2 )3
). 

Firstly, consider the process: 

B ( g ) + 3 · N IVJe (g) 2 
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TABLE 2.10 Thermochemical 
Compounds 

Data for Some Boron-Nitrosen 

0 
1:!. Hdisrupt. Compound 1:!. Hf298 Ref. 

kJ mol-l kJ mol-l 

B(NMe2 )
3 

(g) -245.5 10448.8 90 

Boron nitride (c) -251.5 1287.4 8,37,68,70 

(HB-NH)3 (g) -532.4 4939.lJ 37 

(HB-NMe) 3(g) -524.5 8389.5 3'1 

BN (g) 477.0 556.0 
·II· 

2,8 

* The bond dissociation energy of gaseous boron nitride is 

controversial. Val,ues of 4eV < D
0 

< 7eV have been suggested 

a.nd are summarised in ref. 8 (addendum 1967). The value 

0 ( ) -1 110 of Mif298 BN g = 477 kJ mol is based on D
0 

= 5.7eV. 
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AH~298 ·NMe2 (g) = 123.4 kJ mol-l 9, 68 and hence 

D(B NMe2 ) = 391.9 kJ mol-1 • However for complete 

atomisation a value of D(B-N)= 402.9 kJ mol-l is obtained; 

--~) B(g) + 3N(g) + 6C(g) + 18 H(g) 

(subsidiary thermochemical data are: 

l0,94,95 and D(C-NMe) = 310 kJ mol-l 

-1 D(C-H)Me = 410 kJ mol 

10 ). Mean B-N bond 

enthalpy contributions for borazine ( (HB-NH)y. N-trirnethyl­

borazine ((HB-NMe)
3

) and diatomic BN a.re allocated assuming 

disruption to gaseous atoms (Table 2.11) and hence for com­

parison, the value of 402~9 kJ mol-l in B(NMe2 )
3 

appears 

more realistic than 391.9 kJ mol- 1• (Additional bond 

enthalpies required in the borazines are D(N-H) = 391 kJ mol-l 

9,73 and D(B-H) = 371.2 kJ mol-l (Table 2.3). A plot of 

log E(B-N) against log n(B-N) gives an excellent straight 

line, (Figure 2.12; correlation coefficient = l.O), and 

suggests the relationship: 

E(B-N) = 320.7[n(B-N)] 0 ·79 (2.22) 

The co-ordination complex trimethylaminoborane (Me
3

N,BH
3

) 

contains an sp3B-sp'N single bond and, from equation 2.22, 

would be assigned an energy of 320.7 kJ mol-l. 6H~298Me3N, 
BH3 (g) = -81.4 kJ mol-l 90 and hence taHdisrupt.= 5880.5 kJ 

-1 mol • The disruption of gaseous Me
3

N,BH
3 

into trimethyl-

amine and boron hydride requires not only the fission of the 

B-N bond, but also the rearrangement of a pyramidal BH
3 

unit 

to a planar molecule, (Figure 2.13). taH~298 Me
3

N(g) = 

-24.3 kJ mol-l 70 giving 6H = 4609.4 kJ mol- 1 • disrupt. 
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TABLE 2.11 Bond Orders and Estimated Bond EnthalEies 
for Some B-N S~stems 

Compound 

B(NMe2}3 

(HB-NH)3 

(HB-NMe)3 

BN (diatomic} 

Figure 2.13 

Hence: 

D(B-N} 
kJ mol-l 

402.9 

442.1 

( mean 

442.7 442.4 

556.0 

Rearrangement 
dissociation of 
borane. 

n(B-N) 

. 
1.333 

1.50 

1.50 

2.00 

of BH 3 unit during 
trimethylamine-

A value of 316.8 kJ mol-l is therefore pr·edicted for a boron­

hydrogen bond in trimethylaminoborane giving a reorganisation 

energy for pyramidal BH3 in the complex to free planar boron 

hydride of 163.2 kJ mol- 1. A similar result is obtained for 

triethylaminoborane (Et3N ,BH3}; i\H~298 (g). Et 3N ,BH
3 

and 

Et3N = -131.690 and -95.8 70 kJ mol-l respe·ctively, giv:l.ng a 
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reorganisation energy for BH
3

(pyr.) ) BH
3

(planar) of 
-1 ' 184.5 kJ mol . (Tnis assumes again that D(B-N) = 320.7 kJ 

These figures contrast with a value of 55-61 kJ mol-l 

obtained by molecular orbital calculations for the same re-
111,112 organisation in NH

3
,BH

3
. 

Crystalline boron nitride has not been used in the deriv-

ation of equation 2.22. Unlike the other boron-nitrogen 

systems considered, hexagonal boron nitride vaporises ~ 

decomposition and there is no appre~iable formation ot' gaseous 

boron nitride at high temperatures. 113-ll5 Any estimat:l.on 

of bond energy contributions must therefore entail use of the 

standard enthalpy of formation of crystalline rather than 

gaseous boron nitride. ~H~298 BN (c) = -254-.4 kJ mol-l 70 

8 -1 
giving ~Hdisrupt. = 12 7.4 kJ mol . A value of D(B-N) = 
429.1 kJ mol-l is therefore obtained if it is assumed that 

bonding between the planes of hexagonal BN-units is negl1g1.ble. 

This bond energy is higher than the 402.5 kJ mol-l pred1.ctcd 

from equation 2. 22 for a B-N bond o t' o r·der l. 3.3.3. Borazon 

has the "diamond-lattice" and so each B-N bond could Le alloc-

1 ated an energy of~ ~Hdisrupt.• It may be assumed that the 

heat of transition from hexagonal boron nitride to borazon 

is negligible37 and hence ~Hdisrupt.borazon = 1287.4 kJ mol- 1• 

Hence D(B-N) = 321.9 kJ mol-l which is in good agreement with 

a single-bond strength obtained from equation 2.22. It is 

possible therefore that the low value obtained for D(B-N) in 

hexagonal boron nitride results partially from the neglect of 

interactions between atoms in each plane. 

Equations 2.21 and 2.22 may be comb1ned to p;tve the 

bond energy-bond length relatiortnhtp: 

( ') 0"~) 
'··. '-J 
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This suggests that the change in energy with length of 

boron-nitrogen bonds is less than for carbon-carbon bonds 

and is not as previously indicated.37,B3 

2.6 Boron-Carbon Bonds 

Empirical correlations relating bond energy to bond 

order and/or bond length have been suggested for BX, BO and 

BN systems. It seems reasonable to assume therefore that 

similar relationships should hold for boron-carbon species. 

Unfortunately little data are available concerning systems 

in which sp2-boron is attached to carbon in the absence of 

any competing n-electron donors, (e.g. in diphenylchloroborane 

(Ph2BC1) and phenyldichloroborane (PhBC12 ) both substltuents 

are, in principle, capable of donating n-electronic charge 

to the Pz orbital on boron. This makes it difficult t.o 

assign bond orders to each bond). Organoboranes, (H3B where 

R = alkyl or aryl), appear to be the only systems in which 

n(B-C) can be specified. Throughout this work, a value of 

n(B-C) = 1.00 is assigned to an alkyl-boron bond (e.g. in 

trimethylborane, Me
3
B) although the possibility of stabilisation 

by hyperconjugation is a point of contention.ll6-l20 

Bond enthalpy contributions in trimethylborane (Me
3
B), 

triethylborane (Et
3
B) and tri-n-butylborane (nau

3
B) have been 

given in Table 2.4. In addition, tri-n-propylborane (nPr3B) 

also contains a formal single B-C bond. ·o n · 
!!. Hf298(g) Pr}3 

n 6 90 691 -1 and Pr· = -23 .7 and 94. kJ mol respectively. Hence 

D(B-nPr) = 360.2 kJ mol- 1 . In triphenylborane, (Ph3B), each . 
boron-carbon bond is expected to have a bond order of 1.333. 
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11 (The B n.m.r. chemical shift for Ph
3
B is similar to that 

for trivinylborane ((CH2 = CH)
3

B) for which a bond order of 

' 
121 ci ( ) 4 90 1.33 has been proposed.. ~Hf298 g Ph

3
B and Ph" = 130.0 ' 

and 325.9 122 kJ moi-i respectively; (a value of ~H~29a Ph•(g) = 

301.2 kJ mol-l has previously been recommended10 but the 

slightly higher estimate based on a value of D(Ph-H) = 460 

kJ mol-l 122 now appears preferable86 ). A mean bond dis­

sociation enthalpy of 469.2 kJ mol-l is therefore allocated 

to the B-C bond in Ph
3

B. 

It is therefore suggested that values of D(B-R) = 357.1 

kJ mol-l (average of R = Me, Et, nPr and nBu) and 469.2 kJ 

mol-l (R = Ph) are representative energy coritributj.ons l'nr 

B-C bonds of order 1.00 and 1.333 respectively. Assuming 

a .relationship of the form of equation 2.3, it is proposed 

that boron-carbon bond energies vary with bond order according 

to equation 2.24. 

E(B-C) = 357.l(n(B-C)] 0 ·95 (2.24) 

Trialkylboranes contain sp2B-sp3c bonds whilst tri-

arylboranes contain sp2B-sp2c bonds. It is anticipated 

that such changes in hybridisatlon may influence B-C hond 

lengths. It :l.s concluded that to suggest a bond length-

bond order relationship from the very few data a.vailai:J.Lt:: 

would be unrealistic. 
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2.7 Competition Between n-Electroh Donors Attached to 
Trigonal Boron; The Relative Donor Strengths of Phenyl, 
Dimethylamino and Halogeno Substituents 

In Sections 2.3-2.6 compounds containing a single type 

of n-donating substituent have been considered, and empirical 

bond energy-bond order/length relationships suggested. In 

many systems however, boron is attached to different sub­

stituents, all of which may be capable of back-donating n-

electronic charge to the boron Pz orbital. The relative 

donor strengths of such substituents, Y, determine the bond 

orders, n(B-Y). To a first approximation, it may be assumed 

that the donor properties of one substituent will greatly 

outweigh those of ano·ther (e. g. it is .suggested Cl > Ph ln 

Ph
3

_xBClx37), or that substituents are equivalent w1.th all 

n(B-Y) = 1.333. 84- 86 In this Section the relationships 

derived for BN, BC and BX (X = Cl, Br) systems are used in 

an attempt to estimate the relative donor strengths of phenyl, 

dimethylamino and halogeno groups. 

Table 2.12 lists standard heats of formation and dis-

ruption enthalpies for compounds of the type Ph
3

_xBXx 

Firstly consider diphenyl-

chloroborane (Ph2BC1) and phenyldichloroborane (PhBC12 ). 

Bond orders and energy terms are allocated a.s shown in 

Figure 2.14. 

For Ph2BC1 therefore: 

6 Hdisrupt.Ph2BCl = 26 Hdisrupt.Ph· + 

. . . 1426.6 

2 3 2E Ph + E Cl 

(~.25) 
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TABLE 2.12 Thermochemical Data for Phf_xBXx(X = Cl,Br) 
and (Me2N) 3_xBClx (x = 1,2 

Compound 6 H~298(g) 6 Hdisrupt. Ref. 

kJ mol-l kJ mol-l 

Ph2BC1 -93-5 11555.2 90 

PhBC12 -266.0 6458.7 71,90 

Ph2BBr -9.4 11461.7 90 

PhBBr2 -129.3 6303.3 71,90 

(Me2N) 2BC1 -334.8 7444.9 71,90,123 

(Me2N)BC12 * -401.3 4418.3 '71,90,123 

* Dimethylaminodichloroborane readily dlmerises in liquid phase 
The gas phase equilibrium: 

Dimer ... 2 Monomer -
is in favour of the monomer. 108 ~ 124- 126 6H~298 (g) is 

given for the monomer. 
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Figure 2.14 Allocation of bond orders and 
energies in Ph

3 
BCl [x=O ... 3]. 

-x x 

and for PhBC12 : 

6Hdisrupt.PhBCl2 = 6Hdisrupt.Ph· + 

E3 Ph + 2E2C1 

. 3 2 
1394.4 = E Ph + 2E C1 

From equation 2.16b: 

E2Cl = 417.5 (n2C1)0.2 

E3Cl = 417.5 (n3Cl)0.2 

(2.26) 

(2. 2'7) 

(2.28) 



From equation 2.24: 

E2Ph = 357.1 (n2Ph)0.95 

E3Ph = 357.1 (n3Ph)0.95 

(2.29) 

(2. 30) 

For the Pz orbital on boron to be completely filled, the 
sum of the bond orders of the bonds around the boron atom 

must equal 4. Hence: 

2 3 
2n Ph + n Cl = 4 (2.31) 

in PhBC12 
3 2 

n Ph + 2n Cl = 4 (2.32) 

Combining equations 2.25, 2.28, 2.29 and 2.31 gives: 

1.9975 =[4 - ;
3
c1]

0
"
95 

+ o.5846(n3c1>
0·2 

1. e • n3 C 1 = 1. 16 

Combining equations 2.26, 2.27, 2.30 and 2.32 gives: 

3-9048 = ~ - 2n
2c1 >

0 •95 + 2.3383(n
2c1 >

0 •
2 

2 
1. e. n C 1 = 1. 26 
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It is therefore suggested th~t in diphenylchloroborane the 

B-Cl bond is of order 1.16 and so has an energy of 430.1 kJ 

mol-1 . Each B-Ph bond must therefore have a bond order of 

1.42 and a mean bond energy of 498.3 kJ mol- 1 • In phenyl­

dichloroborane, the B-Cl bond order is estimated to be 1.26 

and hence an energy of 437.3 kJ mol-l is allocated to each 

bond. Hence the B-Ph bond is of order 1.~8 and energy 518.2 
-1 kJ mol • 

An equivalent calculation can be carried out for diphenyl-

bromoborane and phenyldibromoborane using the relationship 
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for B-Br bonds: 

E(B-B~ = 346.4ln(B-Br)] 0 •2 (2.16c) 

The results are summarised for both chloro- and bromo-

derivatives in Table 2.13. 

In bis-(dimethylamino)-chloroborane and dimethylamino­

dichloroborane both types of substi tuents are· capable of 

donating ,....electrons to boron. In Section 2.5 it was con-

eluded that consideration of the complete atomisation of' the 

dimethylamino group is preferable to disruption to the Me2N· 

radical. Hence, using enthalpies of disruption from Table 

2.12 and values of D(C-H)Me = 410 l0,94,95 and D(C-NMe) ~ 

31010 kJ mol-l, equations 2.33 - 2.40 can be written. (Bond 

orders and energy terms are allocated as shown in Figure 2.15). 

Figure 2.15 Allocation of bond orders and 
energies in {Me2N)3 ... xBClx [x =0 ... 31. 



~Hdisrupt.(Me2N) 2BC1 = 12D(C-H)Me + 4D(C-NMe) 

+ 2E2 + E3 
N Cl 

1284.9 = 2E2N + E3 
Cl 

6Hdisrupt. (Me2N)BC12 = 6D(C-H)Me + 2D(C-NMe) 

+ E3 + 2E2 
N Cl 

1338.3 = E3N + 2E~ 1 
From equation 2.22: 

E~ = 320 . 7 ( n 2 N ) O. 79 

E3 = 320.7 (n3N)0.79 
N 

From equation 2.16b: 

2 
E C1 

3 
E C1 

= 417.5 (n2 )0 •2 
C1 

= 417.5 (n3 )0 "2 
C1 

Assuming ); bond orders = 4: 

3 2 4 n N + 2n C1 = 

Combining equations 2.33, 2.35, 2.38 and 2.39 gives: 

[

4 _ n3 J 0.79 
2.0033 = 2 c1 + o.6509(n3c1 )0"2 

i.e. n3 = 1 10 C1 " 
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(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(?. • . 38) 

(2.39) 

(2. 40) 



Combining equations 2.34. 2.36. 2.37 and 2.40 gives: 

4.1731 = (4-2n2C1 )0 ·79 + 2.6297(n2c1 )0 "2 

2 
i. e • n C 1 = 1. 20 
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The B-Cl bond energy contributions so obtained are listed 

in Table 2.13 along with the boron-nitrogen bond orders and 

enthalpies. 

It is concluded that both chloro- and bromo-substituents 

are less powerful n-electron donors than either phenyl or 

dimethylamino groups. From a comparison of Ph
3

_xBClx and 

Ph
3 

BBr systems it is also concluded that a bromo-substituent -x x 
donates n-electrons more strongly than a chloro-group. and 

by comparing (Me2N) 3_x !Clx and Ph3_xBClx• dimet~ylamino groups 

are shown to off-load 1r-electronic charge more readtly than 

phenyl groups. Overall. the relative donor strengths of 

phenyl. dimethylamino. chloro and bromo groups are: 

Me 
2

N > Ph > > Br > C l 

This ,suggestion supports conclusions drawn from electron impact 

studies. 127• 128 

It has been proposed that allowance should be made for 

the differing donor strengths of substituents attached to boron. 

However, comparison of the B-Cl bond order and energy terms in 

Ph2BC1 and PhBC12 or of the B-Br enthalpies in Ph2BBr and 

PhBBr2 (Table 2.13) indicate that the estimated differences 

in bond orders are so small as to make only slight differences 

to the bond energy values. It can be concluded tha.t to f1 

fir::;;t approximation it is possible to allow transi'erance of 

D(B-X) between Ph2BX and PhBX2 • However. the energy most 

appropriate is less than in sx3 itself and it is not therefore 



o;; 

TABLE 2.13 Suggested Bond Orders and Bond Enthalp~ 
·contributions for Ph~-xBX~ (X = Cl,Br} and 
(Me2N'~-xBC!x ~x = !,2) 

Estimated Estimated 
Compound Bond Bond Order Bond Energy 

kJ mol-l 

Ph2BC1 B-Cl 1.16 430.1 

B-Ph 1.42 498.2 

PhBC12 B-Cl 1.26 437·3 

s~Ph 1.48 518.2 

Ph2BBr B-Br 1.23 361.0 

B-Ph 1.385 486.6 

PhBBr2 B-Br 1.27 363.4 

B-Ph 1.46 511.6 

(Me2N) 2BC1 B-Cl 1.10 425.5 

B-N 1.45 430.1 

(Me2N)BC12 B-Cl 1.20 433.0 

B-N 1.60 464.9 
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realistic to transfer one value of D(B-X) between all 

members of the series BX
3 

) Ph2BX as ha.s previously 

been suggested. 84-86 The estimated values of boron-phenyl 

bond energies in Ph2BX and PhBX2 also indicate that trans­

ferance of D(B-Ph) from Ph
3

B to each halogeno-derivative is 

not really valid, although reasonably satisfactory results 

can be obtained if this approximation is made.37 

2.8 Conclusion 

The studies in this Chapter have shown that empirical 

bond energy-bond order/length relationships of the type: 

E a 

d a 

E a 

-k d 

can be applied successfully to CO, BF, BCl, BBr, BO, BN 

and, by analogy, to BC systems. Changes in hybridisation 

of boron from sp to sp2 or sp3 states do not appear to 

seriously affect such correlations. 

The"t'ype of disruption process under consideration is 

important. Bond enthalpy terms calculated for the disruption 

of a qystem into free radical species may not necessarily be 

the same as energy contributions estimated for the total 

atomisation of the system. It is suggested that more con-

sistent sets of bond energy contributions can be de~ived 

from consideration of total atomisation processes wherever 

this is posslble. 

Bond energy-bond orde!'/.leugth r·elat.'l.onshlps .can be 

utilised to gain an insight into the relative ~-donor 
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strengths of various substituents. This has been exemplified 

using the systems Ph3_xBXx and (Me2N) 3_xBXx and the relative 

donor strengths of the various groupshave been successfully 

predicted. 



CHAPTER THREE 

BOND ENTHALPIES AND BOND ORDERS IN 

BORON HYDRIDES, BnHn+x (x=4,6) AND 
2-IN BORANE ANIONS, BnHn • 

3.1 Introduction 
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Boron hydrides of the general form BnHn+x (x = 4,6) 

or borane anions Bn~2- are systems in which there are too 

few valence electrons to allocate a pair or electrons to every 

pair or adjacent atoms which are within usual covalent bonding 

distance. The bonding in these compounds has been described 

in terms or 2-centre 2-electron (2c2e) and 3-centre 2-electron 

(3c2e) bonds. 129 A skeletal electron counting approach has 

also been used76,78- 82 in which each BH unit is regarded as 

a source of 2 skeletal bonding electrons. Further electrons 

are provided by additional H-atoms or negative charges 

associated with the eluate~ species. A detailed account 

or skeletal electron counting schemes is given in Cha.pter 

Six, but Table 3.1 and Figure 3.1 summarise the application 

to boron hydride systems. 

Sev~ral attempts have been made to estim~ bond enthalpy 

contributions in the neutral boranes. Treatments have 

generally used the 2- and 3-centre electron pair bonding 

approach and have assumed transferability of energy terms 

between similar bonds in a series of compounds, 13°-132 

(Table 3.2). The weakness of such treatments is the basic 

neglect or changes in bond energies indicated by varying bond 

lengths; (in the series B4H10 to B18H22 , 160pm ~ d(B-B) ~198pm). 

Although this weakness has been recogn1sed,l3l it has been 

assumed that errors so incurred will be self-cancelling. 
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TABLE 3.1 Classification of Boron Hydride Systems by 
Skeletal Electron Counting; 1see Ffgure 3.1) 

Number Number ot' Number of Class General Example Figure 
of Skeletal Vertices Name Borane 

Atoms Bonding of Type 
Pairs of Parent 
Electrons Polyhedra 

n + 1 Closo Bn.Hn 2- 2- 3.1a n n B6H6 

n n + 2 n + 1 Nido BnHn+4 B5H9 3.lb 

n n + 3 n + 2 Arachne 8nHn+6 B4H10 3.1c 

Figure 3.1 Boron hydrides with 7 skeletal pairs 
of electrons based on the 
octahedron. 
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TABLE 3.2 Previousll Su~sested Bond Enthal:el Terms 
in Some Boron Hldrides 

* -..Enthalpy Contribution kJ mol-l~ Parameter 

Prosen13° Gunnl31 Wade132 

B-B (2c2e) 347.7 332.0 310 

B"\!!rB (3c2e) 408.8 379.4 380 

B-H (2c2e) 389.5 381.4 375 
(Terminal) 

B"\!:!J:B (3c2e) 448.5 441.1 450 
(Bridge) 

Assumed 585.8 565.8 563 

l!l H~298B(g) 

* 2c2e = 2-centre electron pair bond 

3c2e = 3-centre electron pair bond 

Standard enthalpies of formation of the boron hydrides, 

BnHn+p' have been predicted from a plot of (l!!H~jn) against 

(1 + P/n) for known values· of l!l H~298 relating to gaseous 

boron, diborane (B2H6 ), pentaborane-9 (B5H9 ) and decaborane-

14 (B10H14 ). 133 This method suffers from the use of in-

accurate values of l!l H~298 B(g) and B10H14 (g). In addition, 

'tetragonal' boron was used as the basis for estimating an 

average boron-boron bond enthalpy contribution. It has 

recently been shown that this so-called 'allotrope' is in 

fact NOT pure elemental boron, but incorporates either carbon 

or nitrogen atoms in the lattice (i.e. B
50

c2 or B
50

N2 ). 134,l35 

One attempt has been made to allow for variation in 

bond energy with bond length.38 The linear relationships: 

E(B-B) = 228.10 - 103.63 d(B-B) (3.i) 



E(B-H) = 177.92 - 90.20 d(B-H) (3.2) 

(E in kcal mol- 1; d in A) 

are assumed. Equation 3.1 was derived using values of 

d(B-B) and E(B-B) from diatomic B2 and 'tetragonal' boron. 

Equation 3.2 was based on values of d(B-H) and E(B-H) from 

gaseous BH and BH2 . The method is unsatisfactory because 

of (a) the use of 'tetragonal elemental boron' and (b) reliance 

on inaccurate values of d(B-H) .in BH and BH2 . (Estimated 

bond energy terms in the neutral boranes lie in the approx-

imate ranges 

280 < E(B-H)terminal < 300 kJ mol-l, 

200 < E(B-H)bridge < 245 kJ mol- 1, and 

150 < E(B-B) < 220 kJ mol- 1 ). 

In the previous Chapter, bond energy-bond length 

relationships of the form: 

E(B-Y) = A[d(B-Y)]-k (3-3) 

were suggested for Y = N, and bond energy-bond order correl­

ations of the type: 

E(B-Y) ~ ~[ n(B-Y))m (3.4) 

were proposed for Y = F, Cl, Br, 0, N, c. It is reasonable 

to assume that slmilar relationships will apply to boron-boron 

and boron-hydrogen bonds. This Chapter is therefore devoted 

to the estimation of possible bond enthalpy terms and bond 

orders in a variety of boron hydride systems. 

3.2 The Development of Bond Energy-Bond Length Relationships 
for Boron-Boron and Boron-Hydrogen Bonds 

The neutral nido- and arachno-boranes, BnHn+4 and 

BnHn+6' form a series of closely related compounds, the 
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structures of which have been determined for many species 

in the range 2 ~n ,18. Thermochemical data are however only 

available for diborane (B2H6 ), tetraborane-10 (B4H10 ), 

pentaborane-9 (B
5

H
9

), pentaborane-11 (B
5
H11 ), hexaborane-10 

(B6H10 ) and decaborane-14 (B10H14 ). Standard enthalpies of 

formation and disruption are listed in Table 3.3. The 

enthalpy of disruption of gaseous BnHn+x into boron and 

hydrogen atoms will have contributory bond energy terms, 

E(B-B) and E(B-H), and it is assumed that these are dependent 

on the corresponding bond lengths, d(B-B) and d(B-H), according 

to equations 3.5 and 3.6. 

E(B-B) = A[d(B-B)]-k 
1 

E(B-H) = C[d(B-H)]-k 

(A, C, k and k1 = constants) 

(3.5) 

(3.6) 

Pure elemental boron exists in the a-rhombohedral 

crystalline form between temperatures of 800°C and ll00°C, 

and in the S-rhombohedral form above 1300°c. 136 Precise 

structural details are known for each allotrope. a-rhombo­

hedral boron possesses the simpler structure. It consists 

O,f discrete icosahedral B12-units, (average d(B-B) = 176.7pm), 

which are linked in a manner which is rationalised using 
137 

2c2e-bonds, (d(B-B) = 171p~), and 3c2e-bonds, (d(B-B) = 202.5pm). 

There are a total of 39 bonds of average d(B-B) = 180.2pm 

linking the 12 boron atoms of the unit cell, (Figure 3.2). 

The average boron-boron bond enthalpy contribution is estimated 

as f9 (12 AH~298B(g)) = 172.3 kJ mol- 1• (a-rhombohedral boron 

has a complex structure with 105 atoms and a. total of 3j6 B-B 

bo11ds varytng in :1 ene;th from 16'""( t.o 19lpm per unit ceJ 1. It 

is therefore unrealistic to use this allotrope init,ally for 

estimating an average value of E(B-B); a detailed analysis of 
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Figure 3.2 Structural units and bond 

types in ~-rhombohedral boron. 

(a) Icosahedral 

B12- unit 

' ' ' . ' . 
\ .· 

' ' ' . • • ' ' 

• • ' . 
' I . 

(b) Basal x y -plane showing 

3c 2e links. 

(c) Vertical yz -plane showing 2c 2e links. 
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TABLE 3.3 Standard EnthalEies of Formation and DisruEtion 
of Some Gaseous Boranes70,90 

Compound 6H~298(g) 6Hdisrupt. 

kJ mol-l kJ mol-l 

B4H10 66.1 1~354 

B5H9 73.2 4689 

B5Hll 103.3 5095 

B6Hl0 94.6 5445 

Bl0Hl4 31.5 8620 

the structure is considered later in this Section). Hence, 

from a-rhombohedral boron, an average B-B bond of length 

ca.l80pm will have an energy of ca.172 kJ mol- 1 • 

The terminal hydrogen atoms in boron hydrides may 

generally be considerep to have d(B-H) = 119pml38-l40 ; 

problems regarding location of H-atoms have already been 

noted (Chapter One, Section 1.4). Previously, 13°~ 132 values 

for E(B-H\erm. have been transferred directly f'rom BH3, i.e. 

~370- 380 kJ mol-1 . Since, however, BH
3 

contains sp2-boron, 

(which is NOT generally its hybridised state in borane systems}, 

and since d(B-H) in BH
3 

= 116pm 8•141 •142, it is anticipated 

that E(B-H)term.< 370 kJ mol- 1• The lowest value of E(B-H)term. 

previously proposed for d(B-H)term. = 119pm is 295 kJ mol-1 .38 

Hence it is suggested that 300 'E(B-H)term. ,370 kJ mol- 1 • 

Before equations 3.5 and 3.6 can be used to estimate 

B-B and B-H bond enthalpies, values of k and k1 must be found. 
143-147 Detailed structural data are available ror B4H10 J 

B H 148 B....H 138,139,144,149 BA-1 150, 151 and 
5 9 I ,--11 J 0'"10 J 
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Figure 3.3 Structures of some boranes. 

0 = Boron atom 

o = Hydrogen atom 
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B10H14 
152 ' 153, (Figure 3.3; Table 3.4). Since each borane 

contains bonds of differing lengths and, presumably, differing 

strengths, an expression for the heat of disruption in terms 

of individual bond enthalpy contributions will contain a large 

number of unknown quantities; e.g. equations 3.7 and 3.8 for 

s
5
H

9
. However by comparison with other main group systems 

(Chapter Two) it is anticipated that k and k1 will lie in the 

The variables in equations 3.7 and 

3.8 can therefore be given suggested limits or else be inter-

For B5H9 : d1 (B-B) = 169pm; d~-B) = 180pm 

d1 (B-H) = 119pm; d2 (B-H) = 136pm 

6Hdisrupt.B5H9 = 4El(B-B) + 4E2(B-B) 

+ 5E1 (B-H) + 8E2 (B-H) (3.7) 

i.e. 6Hdisrupt.B5H9 = 4A[d1 (B-B)]-k + 4A[d2 (B-B))-k (3.8) 
1 1 

+ 5C[d1 (B-H))-k + 8C[d2 (B-H)) -k 

related: 

E1 (B-H) = 300-370 kJ mol-l 

0 El(B-H) 

E1 (B-B) ·Eav. (B-B) 

k 
"Eav. (B-B) 

where Eav.(B-B) ~ 172 kJ mol-l 

dav.(B-B) ~ 180pm 

and 

(3.9) 

(3.10) 

(3.11) 
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Using appropriate expressions for each of the hydrides 

B4H10 , B
5

H9, B
5

H11 , B6H10and a10H14 , and substituting in 

values for the variables, AHdisrupt. can be estimated for 

each compound. Figures 3.4a-3.4f give graphical represent­

ations of some of the results obtained in terms of the differ-

ence between (AHdisrupt.>calc. and (AHdisrupt.>expt. for 

different combinations of the suggested values of the variables 
1 k, k , E(B-H)term.' E(B-B) and d(B-B); (d(B-B) and E(B-B) are 

varied only slightly). The best fit to the published thermo-

chemical data is found when: 

E(B-B) = 1.766 x 1011 (d(B-B)) - 4·0 

E(B-H) = 4.476 X 1011 [ d(B-H)] - 4•4 

(3.12) 

(3.13) 

These equations correspond to values of E(B-B) = 172 kJ mol-l 

for d(B-B) = 179pm, and E(B-H) = 330 kJ mol-l for d(B-H) = 119pm. 

Table 3.4 gives individual bond enthalpies, estimated 

using equations 3.12 and 3.13, and also calculated enthalpies 

of disruption (with experimental values for comparison) for 

nido- and arachno-boranes with 4' n' 10. a
5
H11 contains a 

unique endo terminally bound hydrogen atom, H1 (indicated in 

Figure 3.3c), which is also involved in partial bridge bonding 
1 to two basal boron atoms; d(B --- H )br. = 175pm and 

d(B-H1 )term. > 119pm. In this work,H1 is treated as a 

normal terminal atom with d(B-H) = 119pm. Allowance for 

partial-bridging character would add ca. 30-40 kJ mol~l to 

the calculated value of AHdisrupt.' (ttin Table 3.4). For 

all the boranes in Table 3.4 there is good agreement between 

calculaled and literature values of' the disruption enthalpy. 

Equations 3.12 and 3.13 can also be applied successfully 
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Compound 

B4Hl0 

B5H9 

B5Hll 

B6Hl0 

Bl0Hl4 

d(B-B) * 
pm ---------172xl 

185x4 

169x4 

180x4 

172x2, 176x2 

177xl, 187x2 

160xl, 174x3 

l75x2, 179x2 

180x2 

172x2, 176x4 

177x5, 178x4 

179x4, 197x2 

E(B-B)_t
1 kJ mol 

------------203xl 

15lx4 

217x4 

168x4 

203x2, 184x2 

180xl, 144x2 

d(B-H) 
pm 

ll9x6 

133x8 

119x5 

136x8 

119x8 

132~2 

134x4 

119x6 

134x8 

119xl0 

130x4 

135x4 

* E(B-H) _t
1 kJ mol 

330x6 

202x8 

330x5 

183x8 

330x8 

209x2 

195x4 

330x6 

195x8 

330xl0 

224x4 

189x4 

Calc· 6 Hdisrupt. Expt •. aHdisrupt. 

kJ mol-l kJ mol-l 

4403 4354 

4656 4689 

5081 tt 5095. 

5450 5444 

8617 8620 

* Structural refs. given on p.72 ; Mean e.s.d. in d(B-B) and d(B-H)!::: lpm. 
t 

Values of E(B-B) quoted as integers to co~respond to degree of accuracy of d(B-B); Mean e.s.d. 
1n E(B-B)!::: 5 kJ mol-1 ; Mean e.s.d. in E(B-H)!::: OkJ mol- 1 . 

tt See text 

-.l 
\0 
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to other systems. Equation 3.12 predicts a bond dis­

sociation energy of 275(5) kJ mol-l for the diatomic molecule 

B2 , (d(B-B) = 158.9pm8 ), cf. literature values of 280(39) 

kJ mol-l 1 and 289 kJ mol-l.70 Equation 3.13 suggests a 

) -1 disruption enthalpy of 1110(20 kJ mol for BH
3

, 

(d(B-H) = ll6pm), cf. literature value of 1114 kJ mol- 1 • 70 

In diborane, the agreement is not quite as good: d(B-B) = 
177pm giving E(B-B) = 180 kJ mol-l, d(B-H)term. = 119pm 

giving E(B-H)term. = 330 kJ mol-l, and d(B-H)br. = 133pm 

giving E(B-H)br. = 202 kJ mol- 1 . l54,l55 Hence, estimated. 

~Hdisrupt. B2H6 = 2310(60)kJ mol- 1 , cf. literature value of 

2392 kJ mol- 1 . 70 This discrepancy may be due to the unique 

doubly-bridged B-B bond which is unparalleled in other borane 

structures; each boron is co-ordinated to 4 H-atoms, (Figure 3.5) 

Figure 3.5 Structure of diborane. 

0 = boron ' 0 =hydrogen 

a-rhombohedral boron was used to estimate an approximate 

average boron- boron bond energy term for a. given bond length. 

Equation 3.12 can now be applied to the detailed structure of 

---------
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TABLE 3.5 Bond Len~ths and Strenfiths in a -Rhombohedral Boron 

Type of Bond Number per d(B-B) E(B-B) -l 
Unit Cell pm kJ mol 

Icosahedral 812 30 176.7 181.1 

Inter-icos. 2c2e 3 171.0 206.5 

Inter-icos. 3c2e 6 202.5 105.0 

this allotrope. Suggested bond enthalpy contributions for 

individual types of bonds are given in Table 3.5. They give 

a value of 6H~298 a-B(g) = 557(4) kJ mol-1, cf. literature value 

of 560(12) kJ mol-l, (assuming negligible heat of transition 

between the allotropes of boron). 

B-rhombohedral elemental boron consists of a complex 

lattice with 105 atoms per unit cell. 156 There is a basic 

B84 unit in which a central icosahedral B12 unit (average 

d(B-B) = 176.2pm) is surrounded by an icosahedron of 

icosahedra, Figure 3.6Aa. Adjacent Bg4 units are linked 

either by direct B-B bonds or via B10 sub-units, Figure 3-6Ab. 

Finally a 6-coordinate boron atom is sited at the centre of 

symmetry of two adjacent B10 units. The B-B links may be cate­

gorised as shown in Figures 3.6Aand 3-6Band Table 3.6. 

Individual bond enthalpy terms estimated using equation 3.12, 

(summarised in Table 3.6) suggest a standard enthalpy of 

formation of gaseous boron of 540(6) kJ mol- 1 • Although 
-1 this is 3.6% lower than the literature value of 560 kJ mol , 

it is a satisfactory result considering that the value depends 

upon the estimation of energies of a total of 336 bonds. 

Equations 3.12 and 3.13 therefore appear to give con-

:.;l::;t.cnt. J."cuultG fuJ.' a variety of IJoruu ruu.l 1Jurou-~1ydrugen 

systems. 
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Figure 3.6A p-Rhombohedral boron 

unit cell structures. 

(a) 8 -unit 
84 



' 
Figure 3.68 Structural units and bond 

types in p-rhombohedral boron. 

(a) Central icosahedron with 
I inks to rhombohedral ( r ) 

and equatorial ( e ) ~2 -
icosahedra. 

(c) Equatorial 112- icosahedron 
with links to adjacent 

icosahedral units. 

next 
rhomb. 
icos ... 

next 
rhomb. 
icos. 

(b) Rhombohedral 1/2- icosa­
hedron with links to 
adjacent icosahedral 
units. 

I --l[ 

(d) Links between e
84 

and 
s10 units: 

I= 884 ' 
or I= s84 , 

li = next s84 
II= 810 
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TABLE 3.6 Bond Lensths and Stren~ths in B-Rhombohedral Boron 

Type of Bond Figure Number d(B-B) E(B-B)_ 1 per Unit pm kJ mol 
Cell 

Central icosahedral B12 3.6Ba 30 176.2 183.2 

Rhombohedral ~-icos. 3.6Bb 60 184.0 154.0 

Equatorial ~-icos. 3.6Bc 60 180.8 165.2 

Central-adjacent icos. 3.6Ba 12 167.6 223.8 

Rhomb.-rhomb.icos. 3.6Bb 6 191.2 132.1 

Rhomb.-equat.icos. 3.6Bb 18 171.3 205.1 

Equat.-equat.icos. 3.6Bc 6 167.8 222.7 

Intra-B10 unit ( i) 3.6Ab 18 176.8 180:7 

Intra-B10 unit ( ii) 3.6Ab 30 186.2 146.9 

Inter-B10-B84 3.6Bd 60 180.8 165.2 

Inter-B84-B84 3.6Bd 30 184.1 153.7 

Octahedrally sited B - 6 168.6 218.5 



3·3 Predictions of Enthalpies of Disruption of 
Some Higher Boranes 
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There are a number of higher boranes the structures of 

which have been determined but the thermochemistry of which 

is, as yet, unexplored. Equations 3.12 and 3.13 can be used 

to calculate enthalpies of disruption from bond length data 

for octaborane-12 (BgH12 ), 157,l58 nonaborane-15 (B
9

H
15

), 159 

tridecaborane-19 (B13H19 ), 160 •161 and octadecaborane-22 

(a18H22 ), 147• 162 •163 (Figure 3.7). Suggested boron-boron 

and boron-hydrogen bond enthalpy contributions are summarised 

in Table 3.7 along with calculated enthalpies of disruption. 

(The degree of accuracy inherent in this method.of calculation 

means that (l1Hdisrupt.>calc. can only reali-stically be quoted 

to the nearest 10 kJ). Predicted values of standard 

enthalpies of formation can be estimated from the disruption 

enthalpies but, owing to the uncertainties in estimated values 

of &Idisrupt. (typically :t 100 to 150 k.J mol-l), such pre­

dictions are untenable. 

I~ general, standard enthalpies of formation of nido­

and arachno-boranes are positive and negligibly small in 

comparison to values of 6Hdisrupt.' (see Table 3.3). This 

feature allows l1Hdisrupt. to be predicted by an alternative 

method. Consider the atomisation process: 

-~, n B(g) + (n+x) H(g) 

The disruption enthalpy is given by: 

td-ldtsrupt. = n6H~298B(g) + (n+x)r.d-r~298H(g) - 6H~298anHn+x(g) 0.14) 

Substituting 6H~298s(g) = 560 and H(g) = 218 k.T mol-l gives: 

liHdisrupt. + 6H~298BnHn+x(g) = 7'78n + 218x (3.15) 

Generally, the left-hand side of equation 3.15 will be over-
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TABLE 3.7 Structural and Thermochemical Data for Some Hi~her Boranes 

** * E(B-B)_1t * E(B-H) 1 ·1" 
Calc. _1 Compound d(B-B) d(B-H) 

- P ..... m- Mmol _ - pm - ....llJ mol:__ 6Hdisrupt.kJ mol 

B8H12 167x2~ 173x4 227x2, 197x4 119x8, 129x2 330x8~ 23lx2 6920 (80) 

180x3~ 182x6 168x3, 16lx6 148x2, 132x4 126x2, 209x4 

B9Hl5 176x7, 179x2 184x7~ 172x2 119xl0 330xl0 8130 (110) 

184x6, 195x2 153x6, 122x2 133xl0 202xl0 

B13H19 170x3, 173x7 212x3, 197x7 119xl2 330xl2 11380 (140) 

176x2~ 179x6 184x2, 172x6 134xl4 195xl4 

180x2, 183x4 168x2, 157x4 

187x2 144x2 

Bl8H22 
tt 

172x2~ 176xl2 203x2, 184xl2 119xl6 330xl6 14700 (180) 

179xl6~ 18lx6 172xl6~ 165x6 133xl2 202xl2 

182xl~ 198x4 16lxl, 115x4 

* Mean e.s.d. in d(B-B) and d(B-H) = lpm. 
t 

Mean e.s.d. in E(B-B) = 3-5 kJ mol-1 ; mean e.s.d. in E(B-H) = 8 kJ mol- 1 ; all 
estimated enthalpies quoted to nearest integer. 

** Calculated 6Hdisrupt. quoted to nearest 10 kJ. 

tt Structural data is ca. equivalent for both isomers i.e. for n-B19H22 and iso-B18H22 • 
- - ~ 

I 

I 

(X) 
-.J 
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whelmingly dominated by 6Hdisrupt. and hence, equation 3.15 

approximates to equation 3.16. A plot of 

6 Hdisrupt. = 778n + 218x (3.16) 

~Hdisrupt. against n will be effectively linear for constant x. 

For nido-boranes x=4 and hence: 

6Hdisrupt. (NIDO) = 778 n + 872 (3.17) 

and for arachno-boranes x=6, giving: 

~Hdisrupt. (ARACHNO) =778n + 1308 (3.18) 

Figure 3.8 shows plots for equations 3.17 and 3.18 (two parallel 

lines) using experimentally determined enthalpies of disruption 

Figure 3.8 .6Hdisrupt. for boranes BnHn+x . 

1
6H_.. t ulsrup . 

[ kJ mol-1 1 

15000 

10000 

5000 

10 

Arachne 
[x = 6] '­

,Nido 
[x=4 l 

•• EKIWIIIIIIIIII valuea 

0 [J Predicted valuaa 

1 n---.. 20 
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Predictions of enthalpies 

of disruption for the higher boranes from Figure 3.8 give 

6Hdisrupt. B8H12 == 7000, BgHlS == 8200, B13H19 == 11400, 
-1 B18H22 == 14700 kJ mol • There is good agreement between 

these values and the values in Table 3.7 and it is therefore 

concluded that equations 3.12 and 3.13 can be applied success­

fully to boranes BnHn+x (x=4,6) over a wide range of n. 



3.4 Skeletal Bond Enthalpies and Relative Stabilities 
2-of Borane Anions, BnHn 
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In Sections 3.2 and 3.3 bond energy-bond length relation­

ships have been successfully employed in estimating boron­

bozonand boron-hydrogen bond enthalpy contributions in nido-

and arachno-boranes. In view of the close relationship that 

exists between closo-, nido-, arachne-, and hypho-clusters, 

(see Chapter Six), it seems reasonable to assume that the 

same energy/length correlations will hold for closo- and 

hypho-systems. 

The triangular-faced polyhedral structures of the closo­

hexahydrohexaborate(2-) (B6H6
2-), 164 octahydrooctaborate(2-) 

(B8H8
2-), 165 nonahydrononaborate(2-) (B

9
H

9
2-), 166 decahydro­

decaborate(2-) (B10H10
2-), 167 and dodecahydrododecaborate(2-) .. 

(B12H12
2-)168 anions have been established by X-ray crystallo­

graphy, (Figure 3.9). Skeletal ·boron atoms in these clusters 

are either 4-coordinate (filled circles in Figure 3.9) or 

5-coordinate (open circles) and the B-B links are classified 

according to these coordination numbers (i.e. 4-4, 4-5, or 

5-5 bond types). The polyhedral edge lengths vary markedly 

with the bond type (Table 3.8) and hence a variation in bond 

strengths is expected. Equation 3.12 (restated below) is 

used to suggest possible enthalpy contributions for the 

E(B-B) = 1.766 X lo11 [d(B-B~- 4 ·0 (3.12) 

skeletal B-B bonds. These are summarised.in Table 3.8 along 

with the total skeletal bond enthalpy, EE(B-B), for each 

cluster. As would be expected, EE(B-B) increases as the 

number of skeletal electron pairs (n+l) 1.ncreases. 



Figure 3.9 Close- B H 2- skeletons n n 

for n=6,8,9,10 and 12. 

(a) (b) (c) 

(d) (e) 

e = 4- coordinate atom 

0 = 5- coordinate atom 

91 
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TABLE 3.8 Structural Data and Su~sested Bond EnthalEies 
for Skeletal Bonds in BnHn2- Anions 

* E(B-B)_{ ** 
Anion Figure Edge d(B-B) rE(B-B)_ 1 Type pm kJ mol kJ mol 

B6H6 
2- 3.9a 4-4 169xl2 217xl2 2600(60) 

B8H8 
2- 3-9b 4-4 156x2 298x2 3390(40) 

4-5 172x4 203x4 

4-5 176x8 184x8 

5-5 193x4 127x4 

B9H9 
2- 3.9c 4-5 168x4 222x4 3780(40) 

4-5 17lx4 207x4 

4-5 173x4 197x4 

5-5 18lxl 165xl 

5-5 185x4 15lx4 

5-5 193x4 127x4 

BlOHlO 
2- 3-9d 4-5 168x8 222x8 4410(60) 

5-5 180x8 168x8 

5-5 182x8 16lx8 

8 12H12 
2- 3.9e 5-5 176x6 184x6 5330(100) 

5-5 178x24 176x24 

* in d(B-B) :!! lpm Mean e.s.d. 

t Mean e.s.d. in E(B-B) :!03-5 kJ mol-l 

** I:E (B-B) quoted to nearest 10 k.J 
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Table 3.9 gives the average enthalpy per polyhedron 

edge bond (EE(B-B);(3n-6 )), the average enthalpy per skeletal 

electron pair (EE(B-B)f(n+l)), the average enthalpy per boron 

atom (EE(B-B)fn), and the average enthalpy per skeletal atom 

of given coordination number, x, (Es(x=4 ) and Es(x=5 )). 

~~'able 3. 9 Average Skeletal Bond EnthalEies 2er Bond, Eer 
Electron Pair and per Boron Atom in BnHn 2- Anions 

Anion rE{B-B} EE{B-B} rE{B-B} EB(x=4) EB(x=5) (3n-6) (n+l) n 
kJ mol-l kJ mol -1 kJ mol-l kJ mol-l kJ mol -1 

2- 217 371 433 433 B6H6 -

B8H8 
2- 188 376 423 434 412 

B9H9 
2- 180 378 420 417 421 

BlOHlO 
2- 184 401 441 443 440 

Bl2Hl2 
2- 178 410 445 445 -

The following trends emerge from Table 3.9: 

(a) The average strength of the edge bonds (EE(B-B)f( 3n-6)) 

decreases as n increases, i.e. as the number of skeletal 

electron pairs available per edge bond (n+l)/(3n-6 )169 

decreases; (the bonds in B
9
H

9
2- appear weaker than might 

have been expected). 

(b) Values of EE(B-B)/(n+l) increase slightly from n=6 ~ 9 

and quite substantially from n=9 ~ 12. This suggests 

that the higher borane anions make more effective use 

of their skeletal bonding electrons than do the lower 

species. 



(c) Values of IE{B-B)/n decrease in the sequence 
2- . 2- 2- 2- 2-

Bl2Hl2 > BlOHlO > B6H6 > BgHg > B9H9 , 

(Figure 3.10, soiid line), indicating the greater 
. 2- 2-thermodynamic stability of B10H10 and B12H12 

This result is consistent with the thermal inter-
2- 170 conversions of BnHn species and observed high 
2- 2- 171 stability of s10H10 and B12H12 , as well as 

with trends in resonance energies of the three di-
172 2-mensional aromatic cages. (Again s

9
H

9 
appears 

to be less stable than previously suggested). 

(d) With the exception of s
9

H
9

2-, values of the average 

enthalpy per boron atom for (i) x=4 and (ii) x=5 

generally increase with n (Figure 3.11). For 

2- 2- 4 BgHg and s10H10 , the enthalpy per -coordinate 

atom is greater than that per 5-coordinate atom. 

94 

This supports the suggestion that boron atoms of lower 

coordination number have a greater share of the avail-

able skeletal electrons and are therefore negatively 

charged relative to other skeletal atoms. 169,l70 

2-In several instances, BgHg appears to be anomolous. 

In Figure 3.11 smooth curves can be drawn through points for 

n=6,8 and 10 when x=4 and for n=8, 10 and 12 when x=5· 

Revised enthalpies per boron atom for n=9 can be predicted 

from the plots giving Es(x=4 ) = 438 kJ mol-l and Ea(x=S) = 
431 kJ mol- 1 • This gives an average energy per skeletal 

4 -1 atom of ca. 33 kJ mol • The sequence of relative stabil-

ities of the borane anions is therefore revised to 

> B H 2 - > 
1.0 10 

r1. I B prolmlll.e ttmt the rmomolous value o~~ 

>:E(B-B)n=g t::; a consequence or t.h~ tricapped trigonal pris-
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Figure 3.10 Average enthalpy per boron 
atom in BnHn2- cages. 

l i:E(B-~ [kJ mol-~] 
440 

430 ~ . 

420 

6 

.. ·· . .. 

Figure 3.11 

l I:EB(x) 

[kJ mar'] 
440 

430 

420 

410 
6 

·· .. ····· ... ... • Predicted WIIUI ; 
... tilt . 

Average enthalpy per boron atom 
of coordination number x in 
BnHn2- cages. 

0 

ll 

( i) X= 4 

•• Prodlctecl WIIUIII 
••• leat. 
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matic cage being distorted by crystal packing forces which 

cause lengthening (and hence weakening) of B-B bonds to two 

of the capping atoms. The revised enthalpy term of Ea(x=4 ) 

~438 kJ mol-l implies an enthalpy contribution of 219 kJ mol-l 

for each bond to a capping atom. A revised length of 

d(B4---B
5

) ~ 168-169pm is therefore proposed. This is con-

sistent with the length of bond to the unique capping atom 

(Table 3.8) and suggests that a n
3

h structure (rather than 

) 2-a distorted cage is likely in solutions of B
9

H
9 

• For 

n
3

h symmetry, the bonds within the central prism of the 

2-B9H9 cage will be equivalent. Each 5-coordinate atom 

is. attached to 2 capping atoms and 3 other central-prism atoms, 

(Figure 3.9c). From the revised enthalpy terms Ea(x=5 ) ~ 

4 -1 ( ) -1 31 kJ mol and E B4-B
5 

= 219 kJ mol , a revised value of 

E(B
5

-B
5

) = 142 kJ mol-l is suggested (equat~on 3.19). This 

implies a value of d(B
5

-B
5

) = 188pm, which is in fact the 

average of the B5-B5 bond lengths listed in Table 3.8. 

-~~I:E(B4-B5) + I: E(B5-B5) l 
EB(x=5) -i (No. atoms with x=5)~ (3.19) 

2-Two further BnHn species are known .. : the heptahydro-

heptaborate(2-) (B7H
7

2-) and the undecahydroundecaborate(2-) 

( 2-BllHll ) anions. Although not characterised by X-ray 

crystallography, their structures are generally accepted to 

be the pentagonal bipyramid and octadecahedron respectively, 

(Figure 3.12).173-175 

2-The B7H7 cage contains two 5-coordinate and five 4-

cnorod:lnate atoms. 

terms o1' B:B(x-=ll) 

are predicted. 

From the graphs 

4 -1 -- .?3 kJ mol a.nd 
2-B7H7 is the most 

ln li'lgure j.ll enthalpy 

J 1-1 r\3 ( x-:::5 ) < < no k.T mo. 

highly reactive of all 
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Figure 3.12 2-Closo- B7H7 and 

s11 H1?- cages. 

(a) (b) 

e = 4 -coordinate atom 

0 = 5 -coordinate atom 

@ = 6 -coordinate atom 
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the known borane anions174 and it is anticipated that the 

plot of tE(B-B)/n against n shown in Figure 3.10will in fact 

have a minimum at n=7. This is indicated in Figure 3.13 

where a minimum value of IE(B-B)fn a 420 kJ mol-l is suggested; 

2- 4 i.e. the average enthalpy per boron atom in B
7

H
7 

is ca. 20 

kJ mol- 1• Hence IE(B-B)n=
7 

a 2940 kJ mol-l giving a value 

of EB(x=5 ) a 388 kJ mol-l. Using equation 3.19 and an 

equivalent expression for x=4, average bond enthalpies in 

BTH
7

2- of E(B4-a
5

) = 155 kJ mol-l and E(B4-B4 ) = 278 kJ mol-l 

are suggested. These energies imply bond lengths of 

d(B4-B
5

) =184 pm and d(B4-B4 ) = 159 pm, (from equation 3.12). 

These bond lengths are consistent with trends noted in the 

other anions, but all predicted enthalpies and bond lengths 

for B7H
7
2- must be regarded as approximate values. 

2-The B11H11 anion contains one 6-coordinate boron atom, 

(indicated as @ in Figure 3.12), and the cage is therefore 

unique among members of the series BnHn 2- ( 6 4t n ' 12). It 

therefore seems inappropriate to attempt predictions of bond 

energy terms and bond lengths for this system. 

Table 3.10 lists structural data for the anions 
2- . 

BnHn (n=6, 7, 8, 
2-lengths for a

7
H

7 
to a n3h skeleton. 

9, 10 and 12) including predicted bond 

and revised data for a
9

H
9

2- which refer 

Meaningful energy terms may be derived 

from these bond lengths using equation 3.12 and give an 

overall order of relative thermodynamic stabilities of 

2- 2- 2- 2- 2- 2-
Bl2Hl2 > BlOHlO > B6H6 = B9H9 > B8H8 > > B7H7 • 

--- -------
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Figure 3.13 Average enthalpy per boron atom 
in BnHn2- cages ; (revised plot 
to include n=7 ). 
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TABLE 3.10 
. . 2-

Structural Data for BnHn Including Some 
Predicted Bond Lensths 

Anion Bond Type Average d(B-B) Number of Bonds 
pm 

B6H6 
2- 4-4 169 12 

B7H7 
2- 4-4 159* 5 

4-5 184* 10 

B8H8 
2- 4-4 156 2 

4-5 175 12 

5-5 193 4 

2- 4-5 * B9H9 169 12 

5-5 188 9 

8 10H10 
2- 4-5 168 8 

5-5 181 16 

B12H12 
2-

5-5 177-5 30 

* Predicted or revised values;(see text). 



3.5 Bond Orders and Eiectron Distribution in 
. ,. 2-

Borane Anions, BnHn • 
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In this ChapteP bond order is denoted by n instead 

of the usuaZ n to avoid confusion ~ith the use of n as the 

numbe:r• of skeZetaZ atoms. 

2-Average bond orders in BnHn anions have previously 

been estimated from the even distribution of (n+l) skeletal 

electron pairs over (3n-6) polyhedral edge bonds, 169 although 

a second method has allowed for a change in bond order with 

coordination number. Assuming an equal electron distribution 

among the skeletal atoms, the edge bond order for a B-B link 

between atoms of coordination number x1 and x2 has been given 

by (n+l)(x1+x2 ); x . This method, however, underestimates 
nxl 2 

the extent to which the various types of bond differ. 169 

2-The octahedral a6H6 cage has 12 equivalent B-B bonds 

of length 169pm and estimated energy 217 kJ mol-l (Table 3.8). 

It may be assumed that each edge bond will have a bond order, 

n, of (n+l);12 = 0.583. Table 3.11 lists average bond 

energies calculated from average bond lengths (from Table 3.10) 

using equation 3.12. Using a fixed value of n = 0.583 for 

a bond of energy 217 kJ mol- 1, corresponding 'relative 

energies' are calculated for all other edge bonds, (column 5 

in Table 3.11). Column 6 of the Table gives the sum of these 

relative energies, ~(Rel.E.), for each anion. These values 

are compared with the number of skeletal.bond pairs, (column 7), 

and are found to reproduce values of (n+l) for n=6, 7 and 8 

thus suggesting a linear relationship between bond order and 

bond energy. However, r(Rel.E.) is greater than (n+l) for 
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TABLE 3.11 Relative Ener3ies for Skeletal Bonds 
in BnHn~- Cages 

Bond Number Avera~e Relative* (n+l; Anion E(B-B r. (Rel.E.) Type of Bonds kJ mol-l Energies 

B6H6 
2- 4-4 12 217 0.583t 6.996 7 

B7H7 
2- 4-4 5 278 0.747 7.895 8 

4-5 10 155 0.416 

B H 2- 4-4 2 298 0.801 9.026 9 8 8 -··. ... h 

4-5 12 188 0.505 

5-5 4 127 0.341 

B9H9 
2- 4-5 12 219 0.588 10.494 10 

5-5 9 142 0.382 

BlOHlO 
2- 4-5 8 222 0-596 11.856 11 

5-5 16 165 0.443 

B12H12 
2- 5-5 30 178 0.478 14.340 13 

·-. . . 

* by the rat·o·[Relative Energy]- 0.583 Relative Energy given ~ E(B-B) - 217 

t Fixed value given by (n+l);12 (i.e. average bond order) 
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for n=9, 10 and 12. There are two possible explanations: 

(a) The higher boranes make more effective use of their 

skeletal bonding electrons and hence values of r(Rel.E.) 
2- 2- 2-are anomalously high for a

9
H

9 
, B10H10 and B12H12 • 

(b) A linear bond energy-bond order relationship is NOT 

appropriate for the B-B polyhedral edge bonds. 

2-From Figures 3.10 and 3.13 it is suggested tha.t a
9
H9 and 

2- 2-B6H6 have similar stabilities whereas the s10H10 and 
2-Bl2Hl2 anions are considerably more stable. It is anti-

cipated, therefore, that the s6H6
2- and s9H

9
2- cages will 

utilise their bonding electrons to the same extent. Hence, 

whilst anomalous values of E(Rel.E.) for n=lO and 12 can be 

explained by (a), the high value of r(Rel.E.) for n=9 cannot 

be dismissed so easily. It is therefore concluded that (b) 

is a more probable explanation for the trend in r (Rel.E.) 

than is (a). 

It is suggested that an empirical correlation of the 

type: 

E (B-B) a [ii (B-B Jm 

might be applied to the polyhedral edge bonds in BnHn2-

systems in place of the linear relationship which appears 

to be unsatisfactory. One fixed point, based on the octa-

2- 8 hedral a6H6 cage, is already known: a bond of order 0.5 3 

has an estimated energy of 217 kJ mol- 1• The icosahedral 

a12H12
2- skeleton contains 24 bonds of length 178pm and 6 

bonds of length 176pm. However, all bonds link 5-coordinate 

boron atoms and so are approximately equivalent, (average 

d(B-B) = 17(.5pm). Each bond ln B12H12:?- therefore has 

an estimated average enthalpy contribution of 178 kJ mol-l 



and a bond order of (n+l);30 = 0.433· Equation 3.20 is 

therefore suggested as relating B-B bond energy and bond 

order (n). 
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E(B-B) = 309.2 [ n(B-B)] 0 •66 (3.20) 

Table 3.12 lists bond orders (n) calculated using 

equation 3.20, E n(B-B), and the number of skeletal bonding 

pairs of electrons, (n+l). Overall, values of E n (B-B) 

correspond well to values of (n+l) although in a7H
7
2- and 

2-BaHa the bond orders seem to be slightly underestimated. 

The extent to which bond orders vary with bond type may well 

therefore be ~estimated, (cf. bond orders obtained by MO 

treatments. 176,l77). 

Bond orders from Table 3.12 can be used to estimate 

differences in electron distribution at 4- and 5-coordinate 

boron atoms. For a 4-coordinate atom (B4 ) attached to 'a' 

5-coordinate atoms (B5 ) and to 'b' B4-atoms, the electron 

distribution at B4 (~6 ) is given by equation 3.21. Equation 
4 

3.22 gives the electron distribution at a 5-coordinate atom 

(P6 ); this atom is attached to 'c' B4- and 'd' B
5

-atoms. 
5 

PB
4 

= ~ {a n(B4 -B5) + b n(B4-B4)} (3.21) 

PB = ~ { c n(B4-B5) + d n(B5-B5 )} (3.22) 
5 

The results are summarised in Table 3.13. In all systems 

containing both 4- and 5-coordinate boron atoms, the atom 

of lower coordinatialnumber appears to be negatively charged 

relative to the remaining skeletal atoms. This supports 

previous results. 169,l7o,l77 With the exception of a
7

H
7

2-, 

both P and P8 increase with increasing nuclearity or cluster. 
BJI 5 
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TABLE 3.12 Estimated Bond Orders in BnHn2- Anions 

Anion Bond Number E(B-B)_1 n(B-B) E n(B-B) (n+l) Type of Bonds kJ mol 

2- 4-4 * 6.996 B6H6 12 217 0.583 7 

B7H7 
2- 4-4 5 278 0.851 7.765 8 

4-5 10 155 0.351 

B8H8 
2- 4-4 2 298 0.946 8.584 9 

4-5 12 188 0.471 

5-5 4 127 0.260 

B9H9 
2- 4-5 12 219 0.593 9.888 10 

5-5 9 142 0.308 

8 1o"1o 
2- 4-5 8 222 0.605 11.016 11 

5-5 16 165 0.386 

8 12H12 
2- 5-5 30 178 0.433* 12.990 13 

* Values of n calculated from (n+l)f(3n-6) 
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TABLE 3.13 Electron Distribution Around Skeletal 
Atoms 2-in BnHn Cages 

Bond Estimated Estimated Estimated 
Anion Type n(B-B) PB PB 

(Table 3. 12) 4 5 

2- 4-4 0.583 1.166 B6H6 -

B7H7 
2- 4-4 0.851 1.202 0.878 

4-5 0.351 

B3H3 
2- 4-4 0.946 1.180 0.967 

4-5 0.471 

5-5 0.260 

BgHg 
2- 4-5 0.593 1.186 1.055 

5-5 0.308 

BloHlo 
2- 4-5 0.605 1.210 1.074 

5-5 0.386 

8 12H12 
2- 5-5 0.433 1.087 -

. 
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2-This suggests that PB
4 

in B7H7 has been overestimated and 

that the equatorial bonds in the pentagonal bipyramidal 

skeleton should be slightly longer (and hence the axial 

bonds slightly shorter) than originally predicted. 

3.6 Conclusion 

The empirical bond energy-bond length relationships: 

E(B-B) = 1.766 X lo11 [d(B-B)] -4.0 

and 

E(B-H) = 4.476 X 1011 [d(B-H)] - 4.4 

can be applied to boron-boron and boron-hydrogen links in 

nido- and arachno-boranes, (BnHn+4 and BnHn+6), and enthalpies 

of disruption may be estimated with a fairly high degree of 

Using known structural data, dis-

ruption enthalpies for some higher boranes can be predicted. 

These values are in good agreement with approximate enthalpies 

predicted assuming 6Hdisrupt. a n for given x in BnHn+x 

species. 

The close family relationship between closo-, nido-, 

arachne- and hypho-clusters makes it realistic to extend the 

applicability of the bond energy/length correlations to the 
2-borane anions BnHn ( 6 ~ n ~ 12). The trends in bond 

enthalpy terms which emerge support previous results with 

2-the exception of values for B9H9 . This anomoly is ex-

plained by the effects of crystal packing forces which dis­

tort the cage causing lengthening of several B-B links. 

Revised bond lengths and strengths are therefore proposed, 

and the final suggested sequence of thermodynamic stabilities 
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2- 2- 2- - 2- > 2-is B12H12 > B10H10 > B6H6 - BgHg BgHg • Pre-

dictions regarding B-B bond enthalpy contributions and bond 

lengths in B
7
H

7 
2- ar:e also made. 

Assuming a bond energy-bond order correlation: 

E(B-B) = 309.2( n(B-B)] 0 •66 

2-estimates of polyhedral edge bond orders in BnHn cages 

are made and are used to calculate the possible electron 

distribution among the skeletal boron atoms. It is con-

eluded that atoms of low coordination number have the great­

est share of electronic charge and are therefore negatively 

charged with respect to atoms of higher coordination number. 

It may therefore be predicted that the capping atoms (i.e. 4-

coordinate) will be the most susceptible to electrophilic 

attack. 



CHAPI'ER FOUR 

BOND ENTHALPY CONTRIBUTIONS IN 
TRANSITION METAL CARBONYL CLUSTER COMPOUNDS 

4.1 Introduction 

The gas phase disruption of a mononuclear metal 

carbonyl, M(CO) , involves the separation of y CO groups 
y . 

from the central metal atom, the heat of disruption for 

this process being given by equation 4.1. 

--~) M(g) + yCO(g) 

AHdisrupt. = AH~298M(g) + yAH~298CO(g) - AH~298M(CO)y{g) 

1 
D(M-CO) = YAHdisrupt. 
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(4.1) 

(4.2) 

The metal-ligand mean bond dissociation energy, D(M-CO), (i.e. 

the mean energy required to remove a ca.rbonyl ligand unchanged 

from the metal carbonyl), is given by equation 4.2. Many 

moncmuclear metal carbonyls have been the subject of precise 

calorimetric measurements, and therefore values of D(M-CO) 

are readily detertnined. 178 ,l79 For polynuclear metal carbonyls, 

microcalorimetric methods are generally used to measure standard 

enthalpies of formation.5• 6•178 , 180 AH i disrupt. compr ses 

metal-metal, terminal carbonyl-metal and, perhaps, bridging 

carbonyl-metal bond enthalpy contributions. The question of 

allocation of differing amounts of energy to particular bonds 

therefore arises and has been the subject of several studies. 5•6 

178,179,181,182 

In any estimation of individual bond energies in metal 

carl.Jonyl clusters, une or more :limpllf.yl.ug assumption::; mUEit 

I.Jt! made to J•educe the number or unknown variables. The most 
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common is one of transferability of bond enthalpy terms 

from mononuclear metal carbonyls to their polynuclear counter-

parts in which the formal oxidation state of the metal remains 
178 unchanged. For example, in the series of iron and cobalt 

carbonyls, equations 4.3 can be written combining E(M-M), 

D(M-CO)term.and D(M-CO)br.· Solutions for each bond enthalpy 

term can be found assuming transferability of 

~Hdisrupt.Fe2 (co) 9 = E(Fe-Fe) + 6D(Fe-CO)term. + 6D(Fe-CO)br. 

~Hdisrupt.Fe3 (co) 12=3E(Fe-Fe) + 4D(Fe-CO)term.+ lOD(Fe-CO)br. 

D(M-CO)term. and D(M-CO)br. between members of each series 

of compounds. From the results, the following simple 

relationships emerge: 

(4.~' 

E(M-M) = 0.68 D(M-CO)term. 

D(M-CO)br. = 0.50 D(M-CO)term. 

(4.4) 

(4.5) 

Equations 4.4 and 4.5 are also assumed to be true for poly-

nuclear carbonyls for which no mononuclear species exist, and 

individual bond enthalpy contributions are estimated, (Table 

4.1).178 

A second approach has been to use values of E(M-M) taken 

from the bulk metals themselves. 178 For a metal with known 

heat of sublimation, ~H~298 M(g), and with coordination nurnuer, 

n, in the bu.ll< ztate, the metal-mota! bond enthal!J.Y 1~: 

I•:(M-M) 

Combining equations 4.4 and 4.6 gives: 
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TABLE 4.1 Standard EnthalEies of Formation and Bond EnthalEl 
Contributions for Metal Carbon~l ComEounds. 178 

Compound fiH~298( g ) l!Hdisrupt. E(M-M) D(M-CO)term. D(M-CO)br. 

kJ mol-l kJ mol-l kJ mol -1 kJ mol -1 kJ mol-l 

Cr(Co) 6 - 908(2) 646 108 

Mo(C0)6 - 916(2) 910 152 

W(C0) 6 - 885(3) 1069 178 

"Mn(Co) 5 - 768(6) "496 99 

Mn2(co) 10 -1598(5) 1068 67 100 

"Re(Co)5 686(6) 908 182 

Re2(co) 10 -1559(21) 2029 128 187 

Fe(Co) 5 - 724(6) 585 117 

Fe2(co)9 -1335(25) 1173 82 117 64 

Fe3 (C0) 12 -1735(29) 1676 82 11'7 64 

Ru3(co) 12 -1820(29) 2414 117 172 

os
3

(co) 12 -1644(29) 2666 130 190 

·co(co) 4 - 561(12) 544 136 

Co2 (co)8 -1172(10) 1160 83 136 68 

co4(co) 12 -1749(29) 2130 83 136 68 

Rh4(co)12 -1749(29) 2649 114 166 83 

Rh6 (co)16 -2299(29) 3496 114 166 83 

Ir4(co)12 -1715(26) 3051 130 190 

Ni (CO) 11 - 600(4) 588 1 1~7 



112 

D{M-CO)ter~. = 0.9 E{M-M) for n = 8 {4.7) 

D{M-CO)br. = 0.6 E{M-M) for n = 12 {4.8) 

Application of equations 4.7 and 4.8 to polynuclear 

carbonyls allows bond enthalpy contributions to be determined 

for systems for w~ich a corresponding mononuclear species does 

not exist, {i.e. forM= Ru, Os, Rh, Ir). Values obtained 

in this way compare favourably with those in Table 4.1 for 

most polynuclear systems. The empirical reLationships 

suggested by equations 4.7 and 4.8 are approximate, and can 

only provide an indication of the individual bond energies 
178 in metal carbonyl compounds. 

Metal-ligand bond dissociation energies in metal car-

bonyls have been estimated assuming that the standard enthalpy 

of formation per carbonyl ligand is constant, not only for a 

series of compounds Mx{CO)Y where M = specified metal, but 

for different metals as wel1. 183 A value of -157kJ per CO 

is suggested whereas previously descrtl:Jed methods 1?8 suggest 

a. range of values from -135 to -160 kJ per CO. No estimate 

of E{M-M) is made as the disruption process considered is: 

--~) Mx {g) + y CO{g) 

The enthalpy of disruption is therefore given by equation 4.9, 

and rearrangement to equation 4.10 shows the suggested linear 
1 0 dependence of D{M-CO) on Y 6Hf298 Mx(g). The linear relation-

ship is_ established 

D{M-CO) = ;6H~2gBMx(g) + t\H~2SI8co(g)- ~AII~298Mx(CO)y(g) 
18l~ j 85 using exper.lmentally deterrn1ned values of D(M-CO) ' for 

clusters of low nuclearity, and is used to estimate metal-

(4.9) 

(l~.lO) 
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ligand bond enthalpies for a wide range of carbonyl clusters 

of transition, lanthanide and actinide metals. 

A fundam_ental problem underlies the treatments of thermo­

chemical data which have been described so far; at some point 

in each calculation it has been assumed that a particular 

enthalpy contribution remains constant and may be transferred 

from one compound to another. No allowance is made for 

differences in bond energy which can be substantiated by 

variation in bond length. (It is assumed that metal-metal 

and metal-carbon bonds conform to the general concept that 

their bond energy will increase with decreasing bond length). 

In many of the carbonyl clusters considered, changes in bond 

length in going from one compound to another are small and 

may even lie within experimental error; (eg. d(M-M) in cobalt 
186 187 . 188 metal is 25l(l)pm ' ,in co2 (co)8 1s 252(l)pm , and in 

H39 190 co4 (co) 12 is 249(l)pm , ). Transferability of E(M-M) 

may be justified in such cases. However, iron and its car-

bonyls provide an example of a series of compounds in whieh 

transferability is not appropriate, (d(M-M) in iron metal is 
186 187 191 248(l)pm, ' in Fe2 (co)

9 
is 252(l)pm , and in Fe

3
(co) 12 

are 256(1) and 268(l)pm192 ). 

One attempt193 has been made to rationalise the bond 

enthalpy contributions in Rh4(co)12 and Rh6(co) 16 allowing 

for a change in the Rh-Rh bond length between the two clusters. 

Initially an expression equating the enthalpy of disruption 

with individual bond energies was established, (equations 4.11), 

and solved to give E(Rh-Rh) = 93 kJ mol- 1• Each equation 

was adapted to accommodate a slight weakening of the Rh-Rh 

bond with increasing length, (equations 4.12). The assumption 



TABLE 4.2 Bond Enthalpy Contributions in Rh4(co)12 and Rh6 (co)16 •193 

d(M-M) E{M-M) kJ mol-l D(M-CO) kJ mol-l - ,.......... 
----- Ref:6 

,.......... 
pm Ref.6 Equ.(4.12) Equ.(4.13) Equ.(4.12) 

Rh metal 269186 93(1) 7 93(1) 7 93(1) 7 184(8) 195 184(8) 195 

Rh4 (co)12 
273190 114(8) 86(11) 91(11) 166(8) 178(8) 

Rh6 (co)16 
278194 105(8)** 86(11) 89(11) 166(8) 178f8) 

* For CO adsorbed on film of Rh metal. 

** The value 105, (11/12 of 114), is based on the bond enthalpy contribution per 
octahedron edge. implicit in the method of refs. 6 and 178. 

-Equ.(4.13) 

184(8) * 195 

175(8) 

175 (8) 

.... .... 
~ 
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8Hdisrupt.Rh4 (co)12 = 2648(29)kJ mol-l 

= 6E(Rh-Rh) + 12D(Rh-CO) 

8Hdisrupt.Rh6(C0)16 = 3874(29)kJ mol-l 
(4.11) 

= 12E(Rh-Rh) + 16D(Rh-CO) 

Rh4 (co)12 

Rh6(C0) 16 

2648(29)kJ mol-l = 6(93-x) + 12D(Rh-CO) 

3874(29)kJ mol-l = 12(93-x) + 16D(Rh-CO) 
~ (4.12) 

is made that D(Rh-CO)br" = 0.5 D(Rh-CO)term.· The results 

are summarised in Table 4.2. An important feature of' this 

treatment which contrasts with earlier methods is the bonding 

description or the octahedral metal cluster in Rh6 (co)16 • 

Connor6 • 178 adheres to a classical 2-centre electron-pair 

bonding approach, considering there to be 11 metal-metal bonds 

resonating between 12 octahedral edges. Equations 4.12 and 

4.13 assign an equal metal-metal bond energy term to each 

octahedral edge in Rh6 (co)16 . An analogy is also drawn 

between the value or D(Rh - CO) in rhodium carbonyls and 

for CO adsorbed on a film of Rh metal. 

It is clear that the methods of treating thermochemical 

data and assigning individual bond energies for metal carbonyl 

systems are far from satisfactory. This chapter is therefore 

devoted to the development of a new method of allocating 

possible bond enthalpy contributions in metal carbonyls. 
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4.2 Development of Method 

It is now widely accepted196- 202 that analogies can be 

drawn between metal ciusters and fragments of the bulk metal 

although a recent photoelectron spectroscopic study203 has 

added a cautionary note to this concept. However, it appears 

justifiable to develop a method for treating thermochemical 

data based on the determination of the metal-metal bond 

strength in the bulk metal. By assuming a bond length-bond 

energy relationship of the type described previously (equation 

4.13), a realistic metal-metal bond enthalpy term for the 

E(X-Y) = A(d(X-Y)]-k 

(A = constant) 

metal carbonyl cluster may be suggested. 

is deduced in the following manner. 

(4.13) 

A suitable equation 

Metals generally adopt either face-centred cubic (f.c.c.), 

hexagonal closed packed (h.c.p.), or body-centred cubic (b.c.c.) 

structures. (A few metals, e.g. manganese, crystallise in a 

more complex form187). In a b.c.c. structure, each atom is 

surrounded by 8 nearest neighbours at a distance d, and by 6, 

slightly less strongly bound, neighbours at a distance Ll547d. 

The third and fourth coordination spheres consist of 12 and 

24 atoms at distances 1.6328d and 1.9149d from the central 

atom respectively. In a f.c.c. structure, each atom has 12 

nearest neighbours at a distance d1 • The second and third 

coordination shells contain 6 and 16 atoms at distances 1.4142d1 

and 1.732ld1 from the central atom respectively. For chromium, 

iron, titanium and hafnium, the metal structure changes with 

increasing t~rnperatw·e. rr all metal-u~tal dj.sLances are 

cor•rected to room temperature, the ratio d.l /d is approximately 
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TABLE 4.3 Structures and Bond Lensths for 
Some Transition Metals 

Metal Temperature Structure Nearest Distance Ratio 
(oc) Neighbour corrected* d1/d 

Chromium 

Iron 

Titanium 

Hafnium 

20 
>1840 

20 
916 

Room temp. 
882 

Room temp. 
Room temp. 

b.c.c. 
f.c.c. 

b. c. c. 
f.c.c. 

h.c.p. 
b.c.c. 

h.c.p. 
b.c.c. 

··disimce to room 
(pm) 7,204 temp. (pm} 

249.8 
261 

248.23 
257.8 

289.56 
286.35 

308.55 
303.1 

249.8 
254.1 

248.23 
252.8 

289.56 
284.5 

308.55 
303.1 

* Corrections made using coefficients of thermal linear 
expansion.?.05-207 

1.0172 

1.0171 

1.0177 

1.0179 
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constant (Table 4.3). (For alkali metals generally, d1/d = 
1.0180208). If the enthalpies of disruption for the b.c.c. 

and f.c.c. structures are written in terms of bond energy 

contributions depending on length, and the resulting ex­

pressions for &!disrupt. are equated, a value of k, (from 

equation 4.13), for metal-metal bonds can be found, (equation 

4.14). The heat of transition from b.c.c. to f.c.c. form is 

.u 4Bd-k + 3B(l.l547d)-k + Lll'di f?rupt. = • • • • • • 

(4.14) 

(B = constant) 

small enough as to make negligible difference to the deduced 

value of k, (see p.ll9). 

Equation 4.14 only takes into consideration the first 

coordination sphere for f.c.c. and the first and second spheres 

for b.c.c. structures. Additional terms in the series would 

involve interatomic interactions which are relatively weak 

and which can be justifiably ignored. 

with fully on p. 121. 

This point is dealt 

Sub.titution of d1 = 1.0172d into equation 4.14 gives 

k = 4.6; ratios of 1.0170 or 1.0175 would have resulted in 

values of k = 4.55 or 4.65 respectively. Hence for metal-

metal bonds, the following equations are suggested: 

E(M-M) = A(d(M-M)]-4· 6 

or log E(M-M) = C - 4.6logd(M-M) 

(C and A are constants) 

(4.15) 

(4.16) 

1 Fnr a r.c.c. crystal of the bulk metal, E(M-~) = 06Hdisrupt.• 

For a b.c.c. structure, E(M-M) has conventionally been allocated 

However, if' the 6 atoms in the second 
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coordination shell are to be considered as having significant 

interaction with the central atom, expressions for E(M-M)b .c.c. 
can be deduced as follows: 

E1 = E(M-M) for 8 neighbours at distance d from central 
atom 

E2 = E(M-M) for 6 neighbours at distance 1.1547d from 
central atom 

From equation (4.15): 

4.6 

-
El _ [ 1.1547d l 
E - d = 1.9380 

2 

Also: 

~H = 4E1 + 3E2 disrupt. 

Hence: 

El = ~Hdisrupt. 
5.55 

E2 :;: ~Hdisrupt. 
10.76 

Hence, for a series of transition metals which crystallise 

as either b.c.c. or close packed lattices, bond enthalpy 

contributions can be assigned and appropriate values of the 

constant A in equation 4.15 can be determined for specific 

metals, (Table 4.4). 

Determination of k(M-M) = 4.6 from equation 4.14 depends 

on the equivalence of the enthalpies of disruption of b.c.c. 

and f.c~c. crystals. In reality, account should be taken 

of the heat of transition, ~Htrans.· 

-1 (b.c.c. ~ f.c.c.) = 0.94 kJ mol 

For iron, ~Htrans. 
8 

, which is negligible 

when compared with ~Hdisrupt. = 417.1 kJ mol-l for the close 

packed lattice. The effect of including ~Htrans. is shown 

below: 
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TABLE 4.4 Bond Energies in Bulk Metals; Application of 
.E(M-Ml = A d(M-Ml - 4•5 

*t, 7,8,178 t* * Metal Structure Hdisrupt. E(M-M) d(M-M) Calc. A 
at room kJ mol-l temp. kJ mol-l pm xlol3 

Fe b.c.c. 417.1 75.2 248.2 0.780 

Ru c.p. 651.0 108.5 265.0 1.522 

Os c.p. 790.0 131-7 267.5 1.928 

Co c.p. 428.4 71.4 250.6 0.755 

Rh c.p. 557-3 92-9 269.0 1.396 

Ir c.p. 665.2 110.9 271.4 1.735 

Re c.p. 775-7 129.3 274.1 2.118 

Cr b.c.c. 397-5 71.6 249.8 0.766 

Mo b.c.c. 656.9 118.4 272-5 1.888 . 
w b.c.c. 853.5 153.8 274.1 2.519 

tE(M-M)c.p. = l1Hdisrupt.;
6

; E(M-M)b.c.c. = l1Hdisrupt.;
5

•
55 

* Mean e.s.d. in liHdis~upt: 5..:10 kJ mol-l and in d(M-M) 

,1 pm; mean e.s.d. in E(M-M) ~ 1 kJ mol-l 
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f.c.c. 6H + 6H = 6B (1.0172d)-k disrupt. trans. 

b.c.c. 6 H - 4Bd-k + 3B(1.1547d )-k disrupt. -

Substituting for AHdisrupt. and AHtrans. for iron gives 

k = 4.7. AHtrans. can therefore be ignored; this result 

is typical of metals in general. 

Equation 4.14 is fundamental to the determination of 

k(M-M) and it is therefore important to justify the number 

of terms used in the expression. Equating enthalpies of 

disruption for the b.c.c. and f.c.c. crystals results in 

equation 4.17 of which equation 4.14 is an approximation. 

AHdisrupt. b.c.c. = Midisrupt. f.c.c. · 

4B(d)-k + 3B(l.l547d)-k + 6B(l.6328d)-k + 12B(l.9149d)-k .••• 
(4.17) 

= 6B(d1 )-k + 3B(l.4142d1 )-k + 8B(l.732ld1 )-k ••• 

(B = constant; d1 = 1.0172d) 

The effect of including an increasing number of energy con­

tributions is summarised in Table 4.5. 

TABLE 4.5 Effect of Number of Coordination Shells 
considered on the value of k(M-Ml . 

. . 

Number of terms in Total number of Resultant 
equation (4.17) atoms surrounding k(M-M) 

central atom. 
....... -.. 

b.c.c. f.c.c. b.c.c. f.c.c. 

2 1 14 12 4.6 

3 2 26 18 4.9 

4 3 50 34 5.0 

Having established an appropriate bond length-strength 

relationship for each transition metal. metal-metal bond 
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enthalpy terms for a variety of metal carbonyls, Mx(CO)Y~ may 

be proposed. Values of D(M-CO) can then be estimated from: 

1 
D(M-CO) = y 6Hdisrupt. - EE(M-M) 

It.is assumed that D(M-CO)br. = 0.5 D(M-CO)term.i this is 

supported by the fluxional nature of most met~l carbonyl 

systems. 184 ~ 209- 2~ndividual bond energies so obtained are 

summarised in Table 4.6 along with previously determined178 

values for comparison. 

Several important features emerge from the data. Firstly, 

the metal-metal bonds in the clusters are generally weaker 

than previous treatments have suggestedJ consequently the 

metal-ligand bonds are slightly stronger. These conclusions 

support one previous set of results.193 Secondly, the degree 

of metal-metal bonding, expressed as a percentage of ~Hdisrupt.' 

appears to be about 6% for dinuclear clusters, 10% for tri­

nuclear clusters, 20% for tetranuclear clusters and 25% for 

hexanuclear clusters. Thirdly, a slight, but significant, 

increase in D(M-CO) is noted with increasing nuclearity of 

the metal cluster, i.e. as the number of carbonyl ligands per 

metal decreases. This feature has previously been noted,215• 216 

and also emerges from spectroscopic studies, particularly from 

matrix isolation work. 218 •223-226 Infra-red carbonyl 

stretching frequencies (vco> are a qualitative,217 (if not a 

quantitative), measurement of the C-O bond enthalpy. An 

increase in vco along the series M(CO)x x = 1 --. n therefore 

reflects the increasing carbon-oxygen bond strength. Figure 

4.1 shows how d n - orbitals on the metal combine with pn -

orbitals on carbon. The d 11 - lp n overlap is completely 

bonding~ whereas d 11 - 2p n is bonding in the M-C region but 

antibonding in the C-0 region. 218 The decreased transfer 



TABLE 4.6 Bond Len~ths and Bond Ener~ies in Metals and Metal Carbon~ls. 

t.Hdisrupt. d(M-M)t E(M-M) kJ mol-l D(M-CO) kJ mol-l %(M-M)* - .............. - - """'"' - - """'"' -
kJ mol-l Ref .178 

... 
Ref. 178 This worktt Ref .178 pm This work' This work 

** 417(4) 8 24al86 104 Fe 75 - - - -
Fe(CO)S 585(8l78 - - - 117 117 0 0 
Fe2 (co)9 1173(25)178 252191 82 70 121 123 7 6 
Fe

3
(co)12 1676 ( 29 )1 78 256192 82 65 121 126 14 10 

268 82 52 
Ru 651(8) 178 265186 109 109 - - - -
Ru

3
(co) 12 2414(29)178 285212 117 78 172 182 15 10 

Os 790(8) 178 268186 132 132 - - - -
os

3
(co) 12 2690(29) 5 288213 130 94 190 201 15 11 

Co 428(2) 8 251186 71 71 - - - -
Co2 (co)8 1160(12)178 252188 83 70 136 136 7 6 
co4(co) 12 

2121(29)5~180 249189~190 83 74 136 140 24 21 
Rh 557(4) 7 269186 

93 93 - - - -
Rh4(co) 12 

2648(29)178 273189~190 114 86 166 178 26 20 
Rh6(C0) 16 3874(29) 6 278194 114 80 166 182 32 25 
Ir 665(8) 7 271 186 111 111 - - - -
Ir4(co) 12 3051(29)178 269

214 
130 115 190 197 26 23 

·r eos.d. < 1 pm t - -1 mean e.s.d. - 2 kJ mol t ·i· me an e o s o d o "' 3 kJ mol -1 

* ** I~ ~(M-M) = 100 EE(M-M)/ b 0 c. c. metal; E (r~-M) = t. Hdisrupt 
0 

t.Hdisrupt. 15.55 
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Figure 4.1 Formation of a metal---. carbon 
tr-bond in metal carbonyl 
c_omplexes. 

d1T ) 2pTf. 

of electrons from the metal d-orbitals to empty carbon 2pn* 

orbitals which accompanies an increase in coordination number 

therefore has the effect of weakening the M-C bond and 

strengthening the c-o bond. This feature is illustrated 

in Tables 4.7 and 4.8 for several series of metal carbonyl 

species. For some compounds, {e.g. each of Fe{Co)
5

, Fe2 {co)
9

, 

and Fe
3

{co)12 ), more than one carbonyl stretching band is 

infra-red active. However, the general trend of increasing 

vCO, {and therefore E{C-0)), with decreasing nuclearity of 

cluster is apparent. 
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TABLE 4.7 Carbonll Infra-Red Stretching Freguencies for 
Some Related Metal Carbonll S~stems. 

( -1 Species Environment vCO em ) Ref. 
;;;:..... 

co Free gas 2143 216,219 

Fe(C0)5 
KBr disc 2115. 2033. 2003, 1980 220 

Fe2 (co)9 
Nujol mull 2082. 2026, 1845, 1833. 1825 221 

* Fe
3

(co) 12 Hexane 2046. 2023, 2013, 1867. 1835 222 
Ar Matrix 2110. 2056, 2051, 2036, 2032. 223 

2021, 2013, 2003, 1871, 
1867, 1833 

Ni(C0) 4 Matrix 2052 218 

Ni(Co)
3 

2017 

N~(C0)2 1967 

Ni(CO) 1996 

Ta(Co)6 Matrix 1967 218 

Ta(CO)~=: 
::> 

1953 

Ta(Co) 4 1943 

Ta(Co)3 1916 

Ta(C0)2 1897, 1891 

Ta(CO) 1831. 1819 

V(C0)6 Ar Matrix 1976, 1970 224 

V(C0)5 1952. 1943 

V(Co) 4 1893 

V(C0) 3 1920 

* Ar matrix spectrum probably resembles that or solid, cf. 
solutirin spectrum. 



'""A __ .,... 4 8 
.J.. .. .:; -=~ • Carbonyl Infra-Red Stretchins; Freguencies for Some Lanthanide Carbon~l SEecies 225 ,·226 ; 

-1 I 

(Values of vCO in em ) J 
I 

Species M = Pr M = Nd M = Eu M = Gd M = Ho M = Yb 

M(C0) 6 1989 1990 2000 1986 1982 2008 

M(C0)
5 1965 1965 1974 1967 1961 1995 

M(C0) 4 1940 1940 1968 1945 1929 1986 

M(C0)
3 

1885 1891 - 1901 1902 1976 

M(C0)2 1858 1861 1873 1864 1859 1966 

1'';( co) 1835 1840 - 1841 1830 1958 

----- --- ----

1-' 
1\) 

0\ 
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In the Ni(CO)n and V(CO)n series (Table 4.7), dis­

crepancies from the generalvco trend are noted, namely in 

Ni(Co) 2 and V(Co) 4. This underlines the fact that CO 

stretching frequencies can only be used as an indication or 

expected trends in bond strengths. A comparison of CO force 

constants (rc0 ) is really necessary but these cannot be 

derived accurately from the few observed frequencies which 

are available. However, the Cotton-Kraihanzel method 227 

may be used to give approximate values of reo and when applied 

to Ni(CO)n218 gives a series of force constants in line with 

the anticipated trend in bond strengths. One possible ex-

planation for the anomalous value of vCO in V(C0) 4 is that 

some bands are obscured due to band overlap or missed because 

of their low intensities. 224 In general though, trends in 

infra-red stretching frequencies are indicative of trends in 

CO bond strengths, but values of v CO must be used with caution. 

4.3 Prediction of Heats of Formation from Structural Data 

It has been established that possib~e metal-metal bond 

energies can be suggested using the relationship: 

E(M-M) = A(d(M-M)]- 4· 6 

and that when appropriate values of E(M-M), (estimated from 

structural data), are used in conjunction with experimentally 

determined enthalpies of disruption of metal carbonyl compounds, 

meaningful estimates of D(M-CO) can be obtained. An important 

application of this treatment is the prediction of previously 

undetermined heats of formation of metal carbonyls from known 

structur·a.l parameters. Recently, several new neutral osmium 
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of os
5

(co)16 , os6(co) 18 and os7(co)21 have been structurally 

characterised;230-232 (the metal-carbon and carbon-oxygen 

distances are known much less accurately than the metal-metal 

bond lengths). Metal-metal bond enthalpies can therefore be 

estimated using equation 4.18, ~ee Table 4.4). 

E(Os-Os) = 1.928 x 1013 [ d(Os-Os)] - 4.6 ( 4.18) 

The metal-ligand mean bond dissociation energy, D(Os-CO), is 

estimated by allowing what appears to be a realistic increase 

(based on 201 kJ mol-l in os3 (co) 1~ see Table 4.6) as the 

cluster nuclearity increases. Structural data and estimated 

values of E(Os-Os) and D(Os-CO) are summarised in Table 4.9, 

along with calculated standard enthalp:l.es of disruption and 

formation which are quoted to the nearest lOkJ. (The method 

of calculation does not justify a more accurate assessment 

oC these enthalpies). (6H1c~298 Os(g) o.nd CO(g) are taken as 
-17,178 -1 70 

789.9 kJ mol and 110.5 kJ mol ). The mono-

nuclear species, Os(Co) 5, is included in Table 4.9 for com­

parison. The value of D(Os-CO) = 205.4 kJ mol-l was estirmted 

using electron impact measurements and assuming a trigonal 
185 bipyramidal structure consistent with that of Fe(co)5. 

A correction for the high electron impact appearance potentials, 

(inherent in mass spectroscopic bond energy determinations), 

is included. By comparison with the trend of D(Os-CO) for 

Osx(CO)Y with x~3, a value of 205.4 kJ mol-l still appears 

to be marginally high. 



TABLE 4.9 Bond Enthal2~ Contributions and Estimated Standard Enthal2ies ofBb~mation 
for Some Binarl Osmium Carbon~ls. 

t t * 0 Species d(M-M) No. M-M E(M-M) D(M-CO) 6 Hdisrupt. 6 Hf298 -1 kJ mol-l pm bonds kJ mol -1 -1 kJ mol kJ mol 

Os (CO )
5 - - - 205.4185 1027 -790.8185 

OS 3 (CO )12 288213 3 94 201 2690(29) 5 -1644(29) 

03 5 (CO )16 275230 5 116 205 4240(50) -2050(50) 
288 4 94 

OS 6 (co \a 2TY
31 1 120 208 5035(60) -2280(60) 

278 3 110 
280 5 107 
283 3 102 ' 

! 

os7(co) 21 
282232 6 103 209 5870(70) -2660(70) 
285 5 98 
288 4 94 

t t -1 * 
_, 

I 

e.s.d. < 1 pm Mean e. s. d. :: 2 kJ mol Mean e.s.d. 3 , .. , ~ 
I == ,.:,_, mo ... 
I 

- ---- ~- --- -- ------------ ----- ---~-

1-' 
1\) 

\0 



4.4 Reorganisation Energies and Site Preferences of 
Carbonyl Ligands 
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The metal-ligand bond enthalpy D(M-CO) is the mean 

energy required to remove a carbonyl ligand, (whether in a 

terminal or bridging position), from the metal carbonyl 

cluster, and is the difference between the metal-carbon bond 

energy,6E(M-C), and the reorganisation energy 6E(C-O), of 

the coordinated CO group on being released to form free carbon 

monoxide. rrhe separate enthalpies can be determined 11.' the 

appropriate structural parameters, (i.e. d(M-C) and d(C-0)), 

are known with great enough precision. Whereas metal-metal 

bond lengths can be measured accurately using X-ray diffraction 

techniques, precise location of the carbonyl groups is con-

siderably more difficult. In many cases, d(M 0) can be 

determined with a fair degree of accuracy. A value of d(C-0) 

may then be assumed in order to obtain an estimate of d(M-C); 

( ) 214 e.g. in a recent structural study of Ir4 CO 12 , d(C-0) is 

assumed to be 114 pm. 

The interatomic distances in Fe2 (co) 9 have been deter-

mined by Cotton 19land are shown in Figure 4.2. The molecule 

contains three bridging carbonyl ligands, d(C-0) = 117.6(5) pm, 

and six terminal ligands, d(C-0) = 115.6(4) pm. The bond in 

free carbon monoxide is, (as would be expected from infra-red 

spec_troscopic data), shorter (d(C-0) = 112.8(1) pm 89) and 

therefore stronger than in the complex. The bond energy of 
8 

carbon monoxide is 1070(2)<J mol- 1 . It has previously 

(p. 29) been suggested that the energies and lengths of carbon-

ox.ygeu IJuuds, irr't!!3pect:lve of tl!el.r• rol"'rna.l. bowl orders, /H'e 

rt!lated according to equatton 11.1~. 'I'lH:! ene:q~y or au,y earbon-

(h.l9) 
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oxygen bond of known iength can now be determined. It 

follows from equation 4.19 that in Fe2 (co) 9 ~ E(C-O)term. = 

947(16)kJ mol-l and E(C-O)br. = 869(20)kJ mol- 1 . There­

organisation energies are therefore ~E(C-O)term. = 

123(16)kJ mol-l and ~E(C-O)b = 201(20)kJ mol- 1• r. 

The total energy assignable to the metal-carbon bonds 

in Fe2 (co)
9 

is given by: 

EE(M-C) = ~Hdisrupt. + E~E(C-0) - E(M-M) 

E(M-M) has been calculated to be 70kJ (Table 4.6) and 
178 

~Hdisrupt. = 1173(25)kJ mol- 1 , thus giving rE(M-C) = 
-1 2444(110)kJ mol , Hence: 

6E(M-C)term. + 6E(M-C)br. = 2444(110)kJ mol-l (4.20) 

Since there is no way of establishing with certainty a 

relationship between the length and strength of metal-carbon 

bonds, it is assumed that a correlation of the type E = Ad-k 

is realistic. 37 For carbon-carbon bonds, k = 3.2 and for 

metal-metal bonds, k = 4.6. Hence it seems reasonable that 

for metal-carbon bonds, k=4, i.e. E(M-C) = A[d(M-C)]- 4 . 

Equation 4.21 applies this relationship to the specific case 

E(Fe-C)term. 
E(Fe-C)br. 

Combining equations 4.20 and 4.21 gives the 

[
d(Fe-C)br. ]4 [201.6]4 
d(Fe-c)term. ~ 183.8 = 1.4474 (lJ.21) 

individual energies E(Fe-C)te and E(Fe-C)b = 241(10) and rm. r. 
166(8)kJ mol-l respectively. The implications of these values 

of E(Fe-C) with respect to removal of carbonyl ligands are: 

D(Fe-CO\erm. = E(Fe-C)term. - ~E(C-O)term. = 118(25)kJ mol-l 

D (li'e-CO)br. ~.:: 2E (Fe-e )b r. - ~E(C-0) br. 

The results are summarised in Table 4.10. 

= 131(25)kJ mol-l 

There appears to 



Figure 4.2 Structure of Fe2(C0)9 . 

[Distances in pm. 1 

Figure 4.3 Structure of 
Fe(C0)5. 

[Distances in pm.] 

0 

~Ill 
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~ c~ 

0 ,,s.::l.(3)c . ,.2.7(3) Fe, 
J'c,o 
c 
Ill 
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be a slight preference for the bridging ligand-site over 

the terminal site, but the errors in the calculated bond 

enthalpies, (which arise from quite substantial errors jn 

the interatomic distances), make it unrealistic to discuss 

site preference in quantitative terms. 

Analogies are often drawn between metal carbonyl clusters 

and carbon monoxide adsorbed on metal surfaces.l97,200 The type 

of coordina. tion adopted by adsorbed carbon monoxide ~m iron 

metal might provide evidence for site preference in iron 

ca.rbonyls. This aspect is d~scussed further in Sect.l.on J~.5. 

If the bond enthalpy contributions estimated for 

Fe2 (co)
9 

are realistic, compatible results should be obtained 

if the same treatment is applied to Fe(Co)
5

, the structure 

of which is also known accurately; 235 Figure 4.3. The 

carbon-oxygen bond lengths are 115.2(3)pm for both axial and 

equatorial ligands; (a slight difference between d(C-O)axial 

and d(C-O)equatorial would have been expected to correspond 

to the different values of d(Fe-C)axial and d(Fe-C)equatorial). 

Application of equation (4.19) gives E(C-0) ~ 963(12)kJ mol-l, 

and hence AE(C-0) = 107(12)k.T mol- 1• The enthalpy of dis-
_1178 

ruption of Fe(Co)
5 

is 585(8)kJ mol and therefore: 

EE(Fe-C) = 585 + ~AE(C-0) = 1120(60)kJ mol-l (4.22) 

Assuming E(Fe-C) = A[d(Fe-C))- 4, the following relationship 

between axial and equatorial metal-carbon bond enthalpies can 

be written: 

E (Fe-e) axial [d (Fe-e) equ. 14 [ 1~2. ~~~4 
E (F c) = d (Fe-e) = 1 o ~r ~ L 045 e- equ. axial · 

(4.23) 

Combining equations 4.22 and 4.23 glves E(Fe-C)a.x.tal = 

230(10)kJ mo.l.-l and E(Fe-C) "= :!~:o(.I.O)k.l mo.L- 1 • 'L'lle rnean equ. 
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TABLE 4.10 Individual Bond Enthalpy Contributions in Fe2 (co)9 and Fe(Co) 5 

Compound Bond d E(C-0) 1 
tJ. E(C-0) E(Fe-C) 

pm kJ mol- kJ mol-l kJ mol-l 

?e(Co)
5 c-oaxial 

( 
115.2(3) 963(12) 107(12) -

C-Oequ. 

Fe-e axial 180.7(3) - - 230(10) 

Fe-Cequ. 182.7(3) - - 220(10) 

~e,.., (Co)
9 c-oterm. c:. 

115.6(4) 947(16) 123(16) -

C-Obr. 117.6(5) 869(20) 201(20) -

Fe-Cterm. 183.8(3) - - 241(10) 

Fe-Cbr. 201.6(3) - - 166(8) 

D(Fe-CO) 
kJ mol-l 

-

123(16) 

113(16) 

-
-

118(25) 

131(25) 

I 

1-' 
~ 
\.n 



dtssociation energies of the metal-ligand bonds are therefore 

D(Fe-CO)axial = 123(16)kJ mol-l and D(Fe-CO)equ. = 

113(16)kJ mol-l, (Table 4.10). 

From the summarised results in Table 4.10, it is noted 

that the terminal iron-carbon bond in Fe2 (co) 9 is longer, but 

appears stronger than such bonds in Fe(Co)5. In view of the 

errors incurred in bond length determinations, (particularly 

in d(C-0)), such discrepancies cannot be regarded as being 

significant. However it can be proposed that for d(l"e-C) == 

1 181-184pm, an energy of E(Fe-C) ::;; 220-240kJ mol- is possib.ly 

realistic. 

Figure 4.4 Structure of Fe3{C0)12 . 
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Inclusion of Fe
3

(co) 12 (Figure 4.4) in these calculations 

is not feasible since the measured values of d(C-0),192 

~(C-O)term. range 107-121(5)pm and d(C-O)br. = 112(5) and 

114(2)pm), are clearly of low precision. (Some of the carbon-

oxygen bonds appear to be shorter, and therefore stronger, 

than in free carbon monoxide itself). Values of d(Fe-C) are 

also subject to a fairly high degree of error, (d(Fe-C)term. = 

182(2)pm, d(Fe-C)br. = 205(2)pm}. It is however plausible 

to suggest that in Fe3 (co) 12 d(C-O)term. = 116pm and d(C-O)br. 

~118pm by comparison with Fe(co)
5 

and Fe2 (co)
9

. Hence 

E(C-O)term. ~ 9?0kJ mol-l and E(C-O)br. = 855kJ mol-l ~quation 
4.19), giving 8E(C-O)t m = 140kJ mol-l and hE(C-O)b = er • r. 

-1 215kJ mol . Again by comparison with Fe(Co)
5 

and Fe2 (co)
9

, 

and allowing for a slight increase in the metal-ligand bond 

enthalpy term with increased cluster nuclearity, it is suggested 

that· d(Fe-C)term. = 182pm and d(Fe-C)br. = 200pm in Fe3 (co) 12 • 
. -1178 The enthalpy of disrupt1on of Fe

3
(co) 12 = 1676(29)kJ mol 

and EE(Fe-Fe) = 169kJ mol-l (Table 4.6). Equations 4,24 and 

4.25 can therefore be written. These give the results that 

lOE(Fe-C)term. + 4E(Fe-C)br. = 8Hdisrupt. + EE(C-0) - EE(Fe-Fe) 

= 3337kJ mol-l (4.24) 

E(Fe-C)term. [d(Fe-C)br. ]4 [200 ]4 
E(Fe-c)br. = d(Fe-C) = 182 = l.458 term. 

(4.25) 

( -1 E Fe-C)term. and E(Fe-C)br. = 260 and 180kJ mol respectively, 

and thus D(Fe-CO)term. and D(Fe-CO)br. = 120 and 145kJ mol- 1 . 

A preference for the bridging site is again apparent. A 

reassessment of the individual bond enthalpy contr.1 buttons 

!11 :1.11. I.IJJ'L~l.' lr·,,n l~ar•lloli,Yl:J wiLl l•c l'":::.;lillt! wlrell rwa·u accllrate 

cry:..;ta.J.J.net'i-l.ph I c data are a.vaiLJ.lJ.I.e. 



Analogies Between Metal Carbonyls and CO 
Adsorbed on Metal Surfaces 

A metal carbonyl cluster may be regarded as a model 

for carbon monoxide adsorbed on a metal surface. 197, 200, 236 

Photoelectron spectroscopic studies have provided evidence 

for similarities between the two systems and recently the 

photoelectron spectra of W(Co) 6 and Ru
3

(co) 12 have been com­

pared with spectra of CO adsorbed on tungsten and ruthenium 
236 

surfaces respectively. It appears that multimetal 

carbonyl clusters compare favourably with surface systems. 

However, caution is needed when applying such analogies 

because 

(a) photoelectron spectroscopy measures the excitation 

spectrum of an ionic system and it does not necessarily 

follow that ground state properties will be the same, and 

(b) comparison or a surface system with a metal carbonyl 

cluster limits the bonding description to a triply brid­

ging carbonyl group; (interaction of a CO molecule with 

e.g. 4 surface metal atoms cannot be paralleled in 

cluster bonding). 

Comparisons between the initial heats of chemisorption 

and estimated values of D(M-CO) for Mx(CO)y have previously 

been made.l78,193,197,237 These values are summarised in 

Table 4.11 along with results frum this work. A close 

correlation exists between ~Hadsorption and D(M-CO) and in 

some cases, (e.g. Rh 4 (co) 12 and Rh6 (co) 16 ), use of a bond 

length-uond energy relationship greatly enhances agreement 

between the two quantities. 

Adsorbed caruon monoxide has been studied structurally 

using infra-red spectroscopy. It is generally accepted that 
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TABLE 4.11 Com2arison Between Initial Heats of AdsorEtion 
of CO on Transition Metal Surfaces at 273K and 
Calculated Values of D(M-CO) in Metal Carbonyl 
Com2ounds. 

Metal Initial IJ. Hadsorption D(M-CO)* D(M-CO)* 
kJ 1-1 178,193,197, kJ mol-l kJ mol-l 

mo 237 (Ref.l78) (this work) 

Fe 146 117 117-126 

Ru - 172 182 

Os - 190 201 

Co 192 136 136-140 

Rh 176-184 166 178-182 

Ir 209 190 197 

Cr <Mo 108 108 

Mo 159-326 152 152 

w 209-335 178 178 

Ni 176 147 147 

* Values of D(M-CO) taken to cover range of x and y in 

M (CO) for each metal, (Table 4.6). ForM= Cr, Mo, 
X y 

W and Ni D(M-CO) in M(CO)Y = ~ !J.Hdisrupt. as in ref.l78 
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IR bands between 2140 and 1950 cm-l are representative of 

linearly bound CO, and that bands with vco < 1950 cm-l 

indicate either bridging CO groups or linear CO groups whose 

IR stretching frequency has been lowered as a result of e.g. 

high electron density on the metal itself.217 CO adsorbed 

on Fe surfaces has been studied spectroscopically. 238-241 

Five modes of surface bonding are possible, (Figure 4.5). 

Figure 4.5 Possible modes of bonding for 
CO adsorbed on Fe metal. 238 
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although structure (c) can be eliminated on the grounds that 

strong IR absorptions appear at 1950 cm-l (vc0 ) and 

580 cm-1 (6C0 ). The experimental value of vCO lies ambig­

uously between the regions usually associated with either 

terminal or bridging groups, but from force constant and 

group theory data it is tentatively suggested238 that CO is 

terminally bound on the iron surface with a C-O bond order 

of 2 to 3. Later work239- 241 supports these suggestions 

although X-ray and ultra-violet He(l) photoelectron spectra-
. 242 

scopic studies indicate that the Fe-CO interactions are 

more complex than might be expected from analogy with simple 

metal carbonyls. It is therefore difficult to draw any 

meaningful conclusions regarding site preference of carbon 

monoxide adsorbed on an iron surface for comparison with iron 

carbonyl compounds. 

Larger metal clusters are expected to be closer 

approximations to surface systems than are dinuclear or tri-

nuclear species such as Fe2 (co)
9 

or Fe
3

(co) 12 • It is anti-

cipated that the mode of bonding of CO adsorbed on rhodium 

metal will be related to that found in Rh 4 (co) 12 and Rh6(CO)l6' 

Figure 4.6. Accurate carbon-oxygen bond distances are not 

available for these compounds and it is riot possible to pre­

dict the relative stabilities of terminal and bridging ligand 

sites. However, CO adsorbed on alumina-supported rhodium 

metal has been studied by infra-red spectroscopy~43 

Absorptions are recorded at ca. 2000 cm- 1 ~ (corresponding to 

linearly bound CO, Figure 4.7a), at 2100 and 2030 cm- 1 , 

corresponding to an Rh (CO )2 grouping, 'J•'lgure J1. '7b), and a 

8 -1 ( broad band between 1 50 and 1900 em , corresponding to a 

mixture of bridging CO groups, Figures 4.7c and 4.7d). The 
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Figure 4.6 Structures of R~ (C0)12 and 

Rh
6

(C0)
16 

.-
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o = oxygen 

Figure 4.7 Modes of bonding for CO 
adsorbed on Rh metal. 243 
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relative thermal stabilities of the adsorbed CO molecules 

are Rh2 (CO) > Rh(CO) > Rh(C0) 2 • This supports the suggestion 

that bridging environments may be thermodynamically preferred 

to terminal sites. 

4.6 Conclusion 

The close relationship which exists between small metal 

fragments and the bulk metal allows the latter to be userl as 

a model for metal clusters. Use of the bond length-bond 

energy relationship: 

E(M-M) = A[d(M-M~-4 · 6 

allows metal-metal bond enthalpies which are consistent with 

changes in structural data. to be estimated for series of trans-

ition metal carbonyl compounds. By combining values of 

E(M-M) with experimentally determined enthalpies of disruption, 

estimates of D(M-CO), (the metal-ligand mean bond dissociation 

energy), can be obtained. 

The treatment can be further developed to gain insight 

into the preference of a particular ligand for bridging or 

terminal sites. It is tentat·i vely concluded that for 

Fe2 (co)9 and Fe3 (co·) 12 there is little difference between the 

binding energies of a carbonyl group to a terminal or bridging 

site, although slight preference for the bridging position is 

indtcated. Attempts have been made to compare these results 

with those obtained from spectroscopic investigations of carbon 

monoxide adsorbed on metal surfac~s. It is di L'1':1. cu .L t to 

rationalise the literature data avallu~lc for the Fe-CO system 

in terms of similarity to the cluster bonding in Fe2 (co)9 and 

This is probably a consequence of comparing a 
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dinuclear or t·rinuclear metal carbonyl, (which cannot 

realistically be classified as 'cluster' compounds), with 

a surface system. Such analogies do however appear to be 

more appropriate for larger clusters (e.g. Rh4 (co) 12 and 

Rh6 (co) 16) where studies of CO adsorbed on a rhodium surface 

indicate a bridging site to be preferred over a terminal one. 

It is anticipated that this work be extended when more 

precise crystallographic data are available. At present 

accurately determined C-0 bond lengths in metal carbonyl 

systems are lacking. 
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CHAPTER FIVE 

BOND ENTHALPIES OF METAL-METAL MULTIPLE BONDS 

5.1 Introduction 

In 1844, the first compound to contain a metal-metal 

quadruple bond, the chromium acetate complex, cr2 (o2CMe) 4 ·2H20, 

was prepared. 244 However, it was over a century later that 

the existence of multiple metal-metal bonds was in fact recog­

nised.49•245 Over the past fifteen years a large number of 

complexes involving double, triple and quadruple M-M bonds 

have been characterised, although of these it ts the bonds 

of orders 3 and ~~ which have aroused the most tnterest. 

Compounds which contain multiple M-M bonds typically 

involve the Group ]la and VIIa transition metals, and to a 

lesser extent the metals of Group Va and possibly Group VIII. 

Some examples are listed in Table 5.1 and are illustrated in 

Figure 5.1. Values of d(M-M) are given in the Table along 

with the Pauling values for the corresponding 'maximum valence' 

single bond distances; 246. (these lengths are appropriate for 

transition metals having a covalence of 9, i.e. 9 hybrid-spd 

orbitals). (Comprehensive surveys of compounds containing 

triple or quadruple metal-meta.l bonds can be round in several 

excellent reviews~ 275-279 

The degree of interaction in these very short metal-metal 

bonds has been the subject of much discussion. Indeed, 

ab initio MO calculations based on photoelectron spectroscopic 

results280 have been reported showing that there is in fact 

_!!£net M-M bondj_ng in cr2 (o2CMe) 4 ·2H2o despite its short M-M 

d.l.st:a.nce and tts ct:l.amagnettsm. 281 
llowever 1t has been argued 

t.IJHI. tllu .l.en,_~t.llenlu~; ol' \'.Ill! Cr·-l!I' l.J(JJlU 111 f-!:olug l'rorn nnh,ydrouG 
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TABLE 5.1 Structural Data for Some S~stems Involving 
~etai-Metai RuitiEie Bonas 

d(M-M) 
Pauling's 

Compound Figure Ref. Single Bond 
prn Distance246 

pm 
K2Re2cl8 ·2H2o 5.1a 247 224.1(7) 271 

cs2Re2Br8 5.1a 248 222.8(4) 271 

Na2Re2 (so4 \8H20 5.lb 249 221.4(1) 271 

Re2 (piv) 2cl4 5.1c 250 220.9(2) 271 

Tc2 (piv) 4cl2 5.ld 251 219.2(2) 276 

K3Tc2c18 .nH20 5.1a 252 211.7(2) 276 

Cr2 (o2cMe) 4.2H20 5.ld 253.254 236.2(1) ~52 

C r 2 ( o2CMe ) ~~ ( anhyd.) S.ld 255 228.8(2) 252 

Li 4cr2lVIe8 . 4THF S.le 256 198.0(5) 252 

Cr2 (PhNNNPh) 4 S.lf 257 185.8(1) 252 

Cr2 (TMP) 4 5.lg 258 184.9(2) 252 

Cr2 (DMP) 4 S.lh 259 184.7(1) 252 

Li6cr2 (o-C6H4o) 4Br2 .6Et2o 5.11 260 183.0(4) 252 

Mo2 (NMe2 )6 S.lj 261,262 221.4(2)* 278 

K4Mo2cl8 ·2H20 5.1a 263 213.9(4) 278 

Mo2 (o2CPh) 4.2 Diglyme 5.ld 264 210.0(1) 278 

Mo2 ( o2CMe ) 4. 5.ld 265 209.34(8) 278 

Mo2 (o2CH) 4 S.ld 266 209.1(2) 278 

Mo2 (PhNNNPh) 4 5.1r 257 208.3(2) 278 

Mo2 (DMP) 4 5.lh 260 206.4(1) 278 

cs
3
w2c19 S.lk 267 240.9(a) 280 

W2(C8H8)3 s.r1 268 237.5(1) 280 

W2 (NM~6 5.1j 269,270 229.4(1) 280 

Li 4W2Me8 .4Et2o 5.le 271,272 226.4(1) 280 

v2 (DMP) 4 s.lh 273 220.0(2) -
Rh2 (o2CMe) 4.2py 5.ld 274 239.94(5) 27?-

Rh2 (o2CMe) 4·2H20 5.ld 253,254 238.55(5) 272 

* Mean of d(M-M) for 2 crystallographic independent molecules 
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Figure 5.1 Structures of systems involving 
multiple metal-metal bonds. 
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Figure 5.1 (contd.) 
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cr2 (o2cMe) 4 to cr2 (o2cMe) 4·2H2o s caused by the competition 

of the additional axial ligands for a-electrons which are 

otherwise available for M-M bonding. 255, 282 The concept of 

triple, quadruple and even, perhaps,pentuple283 bonds in 

transition metal complexes is, however, now becoming accepted. 

A quadruple bond consists of a a-component (dz2-dz2 

overlap), two equivalent n-components (dxz-dxz and dyz-dyz 

overlap), and a ~-component (dxy-dxy overlap), the z-axis 

being defined to coincide with the M-M link, (Figure 5.2). 

The basic requirementfor maximum 6 -bonding is an eclipsed 

configuration. The triple metal-metal bond comprises a-

and 2 n-components. The Mo2 (so 4) 4 3- ion is reported to 

have intermediate character, i.e. a bond order of 3.5. 284 •285 

Several transition metal diatomic molecules have also 

been predicted to have bond orders ~ 4; 286- 289 the synthesis 

of these species by matrix isolation techniques has only 

recently been achieved. 

Whilst systems containing triple or quadruple metal­

metal bonds have attracted a great deal of attention struct­

urally, few conclusive results regarding their thermochemistry 

have been obtained. The diatomic, M2 , molecules are the 

simplest multiply bonded species and their dissociation 

energies have been estimated by spectroscopic techniques. 

Table 5.2 lists dissociation enthalpies (D
0

) for some gaseous 

M2 molecules and gives bond lengths and proposed bond orders 

where available. The enthalpy data, although sparse, gives 

an indication of the strength of these metal-metal bonds. 

A comparison with bond strengths in the bulk metal or suggested 

IJnnd st r·engths 1.n metal carbon.v 1 systems (Chapter Four) lends 

support to tile possible multiple bond char·acter or the M2 
molecules. 
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Figure 5.2 a-, 11-, and &-components of 
metal-metal quadruple bond. 
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TABLE 5.2 Thermochemical and Structural Data for 
Some Diatomic, M2' Moiecules 

Diatomic D
0

(M-M) t d(M-M) Suggested Ref. (gaseous) kJ mol-l pm n(M-M) 

v2 240-295 232 - 290 

241 289 

cr2 154 - - 288 

151(30) 289 

184 l 

328 
·IE-

> 4 287,288 Mo2 210 

406(20) 6 289 

Rh2 271(1) - - 291 

274(25) 292 

* Calculated value 

t Errors given where available 

Attempts have been made to estimate the metal-metal bond 
l~­enthalpy contributions in the metal halide 1ons Mo2c18 and 

2- ( ) ( Re2x8 X= Cl or Br , Figure 5.la). A semiquantitative 

indication or the strengths or the metal-metal bonds in these 

anions has been given from force constant data. Force con­

stants or 3.0-4.5 mdyn A-l for these Re-Re and Mo-Mo bonds 

were estimated, compared to values or ca. 1.0 mdyn A-l for 

the corresponding single bonds. Hence, strong metal-metal 

4 x-bonds or order 3 to were proposed for the M2x8 anions. 

Strong a- and ~components and a weaker 6 -component were 

293 1 suggested. A total energy of E(ReiRe) = 1530 k.J mol-

lla:3 l.JC:t.:ll ::iUggested from MO calcuJ.at lun::i l'or- the lloud ln 
') 

n~;2cl8'--; estimated component euurgi~:;; wt:r·e E
0 

.,.)60, >;En"" 96o~· 

and E6 "' 210 kJ mol- 1 • 29lJ However, the photochemical cleavage 
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2-of Re2c18 gives results indicating that the upper limit 

for the rhenium-rhenium bond enthalpy is ca. 540 kJ mol-1 • 295 

Application of the Birge-Sponer extrapolation using electronic 

spectral data (Chapter One, Section 1.1) has provided esti­

mates of E(ReDRe) and E(MoQMo) of ca. 480-540 and 460-670 
-1 2- 2- 4- 296 kJ mol respectively in Re2c18 , Re2Br8 and Mo2c18 • 

How~ver, bond dissociation energies measured by this method 

are typically ca. 20% too high and allowance for this has 

been made in a recent paper. 297 Values of E(ReaRe) and 

E(MoiMo) are both reduced to ca. 500 kJ mol- 1 • Finally, 
4-molecular orbital calculations for Mo2c18 suggest a value 

of E(MooMo) ~ 1245 kJ mol-l with component energies E ~ 250, 
a 

EEn ~ 780 and E 
6 
~ 215 kJ mol-l 298 ; the latter value shows 

a striking agreement with the previous value of E
6 

(Re2cl8
2-) 

~ 210 kJ mol- 1 • 294 The overall picture for quadruple 

metal-metal bond energies estimated either by spectroscopic 

methods or ab initio MO calculations therefore appears far 

from satisfactory with values for E(MBM) ranging from 480 

to 1530 kJ mol-l for M = Re and from l~6o to 1245 kJ" mol-l 

for M = Mo. 

Actual .thermochemical investigations of compounds con­

taining multiple metal-metal bonds are confined mainly to the 

hexa(dimethylamino)-tungsten and -molybdenum derivatives, 

although the standard enthalpy of formation of crystalline 

tetraacetatodimolybdenum(II), Mo2 (o2cMe) 4, has been deter-· 

mined as -1977(9) kJ mol-l and a molybdenum-molybdenum bond 

enthalpy of ca. 500 

Mi~298Mo2(NMe2)6(g) 
132.5 kJ mol-l have 

kJ mol-l suggested. 299 Values of 

= 128.2 kJ mol-l and!!. H~298w2 (NMe2 )6(g) = 

recently been measured.300 In order to 

calculate metal-metal bond enthalpy terms in these compounds, 
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it is assumed that values of D(M-- NMe2 ) are transferable 

from the mononuclear species Mo(NMe2 )4 .and W(NMe 2 )6 . However, 

because of the differences in oxidation state of the metal in 

going from mononuclear to dinuclear species and since D(M-NMe2 ) 

varies with oxidation state, the estimated values of M-M bond 

energies are subject to a large degree of uncertainty: 

E (Mo.=Mo) = 592 ( 196) kJ mol-l and E(W:W) = 775 (218) kJ mol-l. 300 

In Chapter Four, metal-metal bond enthalpy contributions 

in some binary transition metal carbonyl systems were estimated 

using the empirical relationship: 

E(M-M) = A(d(M-M)]- 4· 6 (5.1) 

Since most of the compounds contatning multiple metal-metal 

bonds have been structurally characterised by X-ray crystallo­

graphy, it seems logical to use the accurately determined 

metal-metal bond lengths as a basis for suggesting a self-

consistent set of bond energy terms using equation 5.1. 

a possibility is explored in this Chapter. 

Such 

5.2 Bond Length-Based Enthalpies for Multiple Metal-Met~l Bonds 

In Chapter Four the strength and corresponding length of 

a bond in the bulk metal were used as the basis for estimating 

bond enthalpy contributions in metal carbonyls using equation 

5.1; (for the derivation of this equation, see Section 4.2). 

In a close packed metal lattice, the bonds are essentially 

half-bonds and in the carbonyls Mx(CO)Y, the metal-metal links 

are aga.tn relatively weak and of low bond order. The extra-

pol aU.lll1 o t' em!)i rical correlatj.ons from bonds of order 1 to 3 

appearst.n be rea.l1.sttc for· a ·range or main group systems, (see 

Chapter 'J.'wo). It tt1ere f'ore seems f'eas 1.llle t0 attempt an 
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extrapolation of equation 5.1 over a range of metal-metal 

bonds of formal bond orders ~ to 4. 

Values of the constantJ AJ in equation 5.1 are first 

calculated for each metal involved in multiple bonding, (i.e. 

V, CrJ Mo, WJ Re, TcJ Rh), using the length and strength of 

the M-M bond in the metals themselves, (Table 5.3). Using 

these valuesJ bond energy contributions for metal-metal 

multiple bonds may be determined for a variety of complexes 

which have been structurally characterised. Table 5.4 lists 

a range of examples and compares the proposed values of 

E(M-M) with previous estimates. Besides triple and quadruple 

bonds, Table 5.4 also includes two metal-metal links which 

are formally double bonds. In all cases the suggested values 

of the multiple metal-metal bond strengths are considerably 

lower than previous methods have impl~d. 

The major differences between systems containing multiple 

metal-metal bonds (excluding diatomic molecules) and metal 

carbonyl species are: 

(a) The systems containing multiple bonds are more complex. 

(b) In some cases the coordination number of the multiply 

bonded metal is greater than in the metal carbonyl 

compounds. 

(c) The metal atoms involved in multiple bonding are not 

in zero oxidation state. 

(d) Many systems containing triple or quadruple bonds are 

ionic. 

It is perhaps not surprising therefore that direct application 

of equation 5.1 to multiple metal-metal bonds does not seem 

to be appropriate. 



TABLE 5.3 Thermochemical and Structural Data 
For Some Bulk Metals 

Metal 

v 

Cr 

Mo 

w 

Re 

Tc 

Rh 

* 

Structure 

b.c.c. 

** b.c.c. 

b.c.c. 

b. c. c. 

c.p. 

c.p. 

c.p. 

* ~H 3,178 *t 
disrupt. E(M-M) 

kJ mol-l kJ mol-l 

514.6 92.7 

397.5 71.6 

656-9 118.4 

853·5 153.8 

775.7 129.3 

695.0 

557·3 
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d(M-M) 187*calc.A 
pm x 1013 

261.8 1.230 

249.8 0.766 

272.5 1.888 

274.1 2.519 

274.1 2.118 

268.0 1. 711 

1.396 

-1 Mean e.s.d. in ~Hdisrupt. =5-10 kJ mol , therefore mean e.s.d. 

in E(M-M) ,1 kJ mol-1; mean e.s.d. in d(M-M) ,1 pm 

** 0 Chromium is body centred oubio below 1840 c. 



Proposed t * Previous Estimates1 Compound Multiplicity (n) d(M-M) E(M-M) of E(M-M) (kJ ~ol- ) -1 of M-M Bond pm kJ mol and Method** 

(n5-c5a5 )(0C)3V-V(C0)2 (n5-c
5
a

5
) l<n<3 246.2(2)301,302 123.0 

V2 (DMP) 4 3 220.0(2) 206.4 

Cr2 (o2CMe) 4.2H20 4 236.2(1) 92.6 

cr2 (o2cMe) 4 .(anhyd.) 4 228.8(2) 107-3 
4- in 

( 
cr2Me8 4 198.0(5) 208.7 

Li4cr2Me8 ; 4THF 

Cr2 (TMP) 4 4 184.9(2) 286.0 

Cr2 (DMP) 4 4 184.7(1) 287.4 

Mo2 (NMe2 )6 3 221.4(2) 307.7 592 ( 196) ; T300 

4- in 

( \ 460-670 ; B296 Mo2c18 4 213.9(4) 360.6 
/ (ca.500 for Mo2Br8

4-) ; B297 K4Mo2c18.2a2o 

Mo2 (o2cMe)4 4 209.34(8) 398.2 

Mo2(PhNNNPh) 4 4 208.3(2) 407.4 

Mo2 (DMP) 4 4 206.4(1) 424.9 
' 

cs3w2c19 3 240.9(2) 278.5 648.5 ; MO 267,304 

W2 (CgH8)3 3 237-5(1) 297.3 - I~ 



Compound 

w2 (NJ.le2)6 
4-W2Me8 in 

Li4W2Me8 .4Et2o 

Re3c19 

2-
Re2Cl8 in 

K2Re2c18 ~2H20 

Re2 (piv)2cl2 

Tc2 (piv)4cl2 
K3Tc2c18 ~nH20 

Rh2 (o2cMe) 4 .2H20 

( 

f 

Proposed 
Multiplicity (n) 
of M-M Bond 

3 

4 

2 

4 

4 

4 

4 

4 

t 
d(M-M) 

pm 

229.4(1) 

226.4(1) 

246(1)303 

224.1(7) 

220.9(2) 

219.2(2) 

211.7(2) 

238.55(5) 

E(M-M)* 
kJ mol-l 

348.7 

370.5 

212.6 

Previous Estimates1 of E(M-M) (kJ mol- ) 
and Method~* 

7'75 (218) ; T 300 

357 ; T 305 
) , ~27 ~ M03~5 -. 

326.5" 
- ) 1530 ; Mo294 

<540 . p295 
480-540

1

; B296 

348.8 

292.0 

342.7 

161.4 

t Structural references are only given for compounds not included in Table 5.1. 
* -1 Mean e.s.d. in E(M-M) ~1 kJ mol 

**Method of measurement: T =Thermochemical ; transferability of M-ligand enthalpies from 
mononuclear to polynuclear derivati~es 

MO = Molecular orbital calculations 
B = Birge-Sponer extrapolation using electronic spectroscopic data 
P = Photochemical cleavage of M-M bond 

..... 
\]1 
(X) 



5.3 Conclusion 

An empirical bond enthalpy-bond length relationship 

which uses as a basis the bonds in the bulk metal itself 

159 

does not seem appropriate when applied to triple and quadruple 

metal-metal bonds in complexes of the type ~x8x-(x=2 or 4), 

M2x93- (X = halogen), or ~L4 (L = bidentate ligand);. The 

enthalpies suggested by such an approach appear to be greatly 

underestimated when compared to literature data. It is 

therefore concluded that the proposed multiple metal-metal 

bond energies be used only as an indication of lower limiting 

values. Upper limiting values are given by dissociation 

energies obtained from spectroscopic methods and MO calcul­

ations, (see Table 5.4). 



CHAPTER SIX 

SKELETAL ELECTRON COUNTING IN CLUSTERS: 
CLASSIFICATION OF SOME MAIN GROUP, 

TRANSITION METAL AND HYDROCARBON SYSTEMS 

6.1 Introduction: Rules for Skeletal Electron Counting 

The close structural relationship between boranes, 
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carboranes and some transition metal structures was noted 

at the beginning of this decade. 75-78 Previously, the 

structures of the boranes and carboranes had been character-

ised as icosahedral fragments, (pentaborane-9 (B5a9 ) being 

the only exception). 129 Bonding within the borane skeletons 

was described in terms of. 2- and 3-centre electron pair 

links, 129 (see Chapter Three). However, the structural 

characterisation of the series of BnHn 2- anions (6 En '12) 

showed that the structures of other known boranes and car-

boranes could be rationalised in terms of the closo-

triangular-faced polyhedra list~d in Table 6.1 and illustrated 

in Figure .6.1.76 This qualitative idea was developed to 

give a set of simple electron counting rules which enabled 

clusters to be classified according to the number of skeletal 

bonding pairs of electrons which they possessed.75,77,7S 

The concepts involved in skeletal electron counting 

schemes are explained in detail in several review articles.79-82 

Using molecular orbi~al treatments, 129,306 the close-polyhedra 

shown in Figure 6.1 can be shown to be appropriate structural 

units for n skeletal atoms contributing (n+l) skeletal bonding 

pairs of electrons. The four main classes of cluster species 

are the closo-, n192-, araohno- and hypha-structures. 

are defined as: 

These 
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TABLE 6.1 Closo-Pollhedra with n vertices 

[ 

* 

n Polyhedron Figure 

* 5 Trigonal bipyramid 6.la ] 

6 Octahedron 6.lb 

7 Pentagonal bipyramid 6.lc 

8 Dodecahedron 6.ld 

9 Tricapped trigonal prism 6.le 

10 Bicapped Archimedean antiprism 6.lf 

11 Octadecahedron 6.lg 

12 Icosahedron 6.lh 

Close-polyhedron for n=5 is included for completeness 

although B H 2- has not been isolated. 5 5 

closo: a complete polyhedron of n atoms which 

contrib~te .(n+l) skeletal bonding pairs of 

electrons. 

nido: n atoms defining a polyhedron with one vacant 

site and having (n+2) skeletal bonding pairs. 

I 

arachno: n atoms defining a polyhedron with 2 vacant 

sites and contributing (n+3) skeletal electron 

pairs. 

hypho: n atoms defining a polyhedron with 3 vacant 

sites and having (n+4) skeletal bonding pairs 

of electrons. 

In addition to providing a rationale for the structures of 

borane, carborane and some transition metal clusters, the 

skeletal electron counting method gives an indication of . 
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possible new synthetic routes; (e.g. oxidative removal 

of 2 electrons from a nido-species should produce a closo­

species).307 

A number of transition metal 1r-hydrocar•bon systems and 

cyclic hydrocarbon systems have now been classified according 

to the number of skeletal pairs of electrons which they possess. 

For instance 1T-cyclobutadiene-iron-tricarbonyl, (1T-C4H4 )Fe(Co)
3

, 

cyclopentadienyl-manganese-trica.rbonyl, (1T-C5H5)Mn(Co)3, 

benze~e chromium tricarbonyl, (1T-C 6H6~.cr(C0)3 and 1T­

cycloheptatrienyl-vanadium-tricarbonyl, (1T-C
7
H

7
)v(co)3 are 

all nido-species based on the octahedron and the pentagonal, 

hexagonal and heptagonal bipyramids respectively, (Figure 6."2); 

(the hexagonal and heptagonal bipyramids are accepted as 

alternative 8- and 9-cornered polyhedra which are sometimes 

adopted in preference to the usual dodecahedron and tricapped 

trigonal prism).3°8 The cyclic hydrocarbons c4H4
2-, c5H5-, 

+ c6H6 and c
7
H

7 
are all arachne-species based on the octa-

hedron and the pentagonal, hexagonal, and heptagonal bi-

pyramids, (Figure 6.3).79,309 The non-classical carbocations, 

c5H5+ and c6Me6
2+ are nido-species based on the octahedron 

and pentagonal bipyramid, (Figure 6.4).76,80-82 

The aim of this Chapter is to indicate the wide applic­

ation of skeletal electron counting schemes, firstly by out­

lining new ideas for the classification of small cyclic hydro-

carbons and secondly by surveying structural patterns in main 

group, transition metal, metal 1r -hydrocarbon and cyclic hydro-

carbon systems. To facilitate this, Tables 6.2 and 6.3 list 

numbers of electron pairs provided by some common main group 

and transition metal skeletal units. (These Tables are based 

on ones found in references 79, 80 and 307). 



Figure 6.2 Some metal ll-hydrocarbon 
systems as nido-clusters. 
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Some cyclic hydrocarbons as 
arachne- clusters. 
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TABLE 6.2 Number of Skeletal Bondin Electrons 
Cluster Units; v = valence shell 
x = electrons donated b li and . 

v Main Group Element -
(E) -E 

(x=O) 

1 Li, Na [ -1) 
t 

2 Be, Mg, Zn, Cd, Hg 0 
:;;, 

3 B, Al, Ga, In, Tl 1 

4 C, Si, Ge, Sn, Pb 2 

5 N, P, As, Sb, Bi 3 

6 0, S, Se, Te 4 

7 F, t,; 1 , Br, I 5 

* R = alkyl or a -bonded aryl group 

t Cluster unit rarely found 

Some Main Grou 
element, E; 

/ Skeletal Cluster Unit 
* EH; ER EH2 ; EL 

(x=l) (x=2) 

0 1 

1 2 

2 3 

3 4 

4 5 

5 6 

[ 6]+ [7)+ 

1-' 
0'\ 
0'\ 



TABLE 6.3 Number of Skeletal Bonding Electrons (v+x-12) Provided by Some Common 
Transition Metal Cluster Units; (v = valence shell electrons of metal, M; 
x = electrons 2rovided bl ligan~). 

~s k e 1 e t a 1 c 1 u s t e r U n i t ....._ ........ Transition 
v l\1etal M(CO) M(C0) 2 M(n 5-Cp) M(Co)3 M(C0) 4 (M) M(PPh}) M(PPh3 )2 M(PPh3 )3 M(PPh3 )4 _ 

(x=2) (x=4) (x=5) (x=6) (x=8) 

6 Cr, Mo, W [-l~ ]+ [-2 1 t -1 0 2 

7 Mn, Tc, Re [-3 ]+ -1 0 1 3 

8 Fe, Ru, Os -2 0 1 2 4 

9 Co, Rh, Ir -1 1 2 3 5 

10 Ni, Pd, Pt 0 2 3 4 6 

t 
Cluster unit rarely found 

----~~ -------------- --
1-' 
0\ 

---..1 
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6.2 Cyclic Hydrocarbons as Cluster Species: 
Two New Cluster Types 

The manner in which the structures of some hydrocarbon 

systems resemble borune, carborane a.nd some transition metal 

~-hydrocarbon species has already been noted in the previous 

Section: the electron rich aromatic ring systems c4H4
2-, 

c5H5-, C6H6, c7H7+ and c8H8
2+ may be classed as arachne-

cluster species,79,309 and the carbocations c
5

H
5

+ and c6Me6
2+, 

(the pyramidal structures of which have been proposed from 

theoretical investigations and n.m.r. spectroscopic data310-318), 

may be considered as nido-species structurally analogous to 

s5H
9 

and s6H10 •80 , Sl, 3l9, 32° Further to these, benzvalene 

(and hence the recently trapped isomer, isobenzvalene321 ) are 

9 electron pair systems, the structures of which are derived 

from the dodecahedron with 2 vacant sites, 80 (Figure 6.6f). 

Cyclopropane- (c
3

H6 ) and the cyclopropylcation (c
3
H

7 
+).are 

arachne-species based on the trigonal bipyramid, 81 (Figure 6.6a). 

Desp~te the recognition of these few hydrocarbons as members 

of the structural groups to which boranes and carboranes belong, 

it is by no means appreciated that many other cyclic hydro­

carbons adopt structures clearly related to triangular-faced 

polyhedral skeletons. 

There is a wide range of small cyclic hydrocarbons con-

taining between 3 and 7 skeletal carbon atoms. Each CH or CR 

unit is capable of providing 3 skeletal electrons, each CH2 
or CR2 unit 4 skeletal electrons,and each CH3 unit 5 electrons, 

(see Table 6.2). Extra electrons are provided by any addit-

ional H atoms or overall negative charges. Hence, 

bicyclo[l.l.O]butane,324 c4H6, (Figure 6.6c) comprises 2 CH2 
and 2 CH units and is thus a 7 electron pair system analogous 



It adopts a 'butterfly' configuration which is 

derived from the octahedron. A variety of cyclic hydro-

carbons is surveyed in Tables 6.4 to 6.7. The number of 

skeletal atoms (n), the number of skeletal bonding pairs of 

electrons (s), and the parent polyhedron for each system are 

listed. The same hydrocarbons are illustrated in Figures 

6.5 - 6.8. Some systems have already been mentionedj many 

are classified as cluster species for the first time. 

Table 6.4 and Figure 6.5 list nido-cluster species. The 

only new member of this series is tetrahedrane. The tbutyl­

derivative (tBu4c 4 ) has recently been synthesised and its 

tetrahedral structure is supported by spectroscopic data.322 

Table 6.5 and Figure 6.6 give arachne-cluster systems. 

324 New members of this series are bicyclo[l.l.O]butane - , and 

the hexamethylbicyclo[2.l.l]hexenyl cation.3l5,3l9 The 

structure of this non-classical carbocation has been proposed 

on the basis of 1H and l3c n.m.r. spectroscopic data, and it 

has been concluded that the apical atom (c6in Figure 6.6g) 

will be positively charged relative to the remaining carbon 

atoms. If an a~alogy is drawn between the closo-borane anion 
2- + BaH8 and the arachno-carbocation c6Me6H , it is predicted 

that atom c 6 , (which occupies a high coordination site on the 

dodecahedral skeleton), does indeed have a lesser share of 

the electron distribution than do atoms occupying sites of low 

coordination number, (Chapter Three, Section 3.5). 

Tables 6.6 and Figure 6.7 list hypho-cluster species, 

none of which has previously been recognised as having a 

structure relatable to a close-polyhedral skeleton. The 
334 335,336 

puckered rings of cyclopentene and bicyclo[2.l.O)pentane ') 

are clearly defined in the skeleton or the dodecahedron, 

(li'tgures 6. 7c and lJ. '7d). PCJrllaps the must strlk.tng result 



TABLE 6.4 Clclic Hldrocarbons as Nido-SEecies; (see Fisure 6.5) 

Species Formula n 5 Parent Polyhedron Figure 

Tetrahedrane 322 
C4H4 4 6 Trigonal bipyramid 6.5a 

Cyclopentadienyl cation 3l0-3l4 C5H5 
+ 

5 7 Octahedron 6.5b 

Hexamethylbenzene dication 315-318 2+ 6 8 Pentagonal 6.5c c6Me6 bipyramid 

-. 
~ 

0 
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Figure 6.5 Cyclic hydrocarbons as nido­

species. 

' ' ' \ I 
' \ I 
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(a) (b) 

(c) 



...,~-v;y \.,;.L.L---c-nyurocar~ons as AraqJ:l!'lQ_--_~Qe_Q_J..~S_; l see .tt'l.gure o. o) 

Species Formula n s Parent Polyhedron Figure 

Cyclopropane C3H6 3 6 Trigonal bipyramid 6.6a 

Cyclopropyl cation 323 C3H7 
+ 3 6 Trigonal bipyramid 6.6a 

Cyc1obutadiene dianion C4H4 
2- 4 7 Octahedron 6.6b 

Bicyclo[l.l.O]butane 324 
C4H6 4 7 Octahedron 6.6c 

Cyclopentadieny1 anion C5H5 
- 5 8 Pentagonal bipyramid 6.6d 

Benzene C6H6 6 9 Hexagonal bipyramid 6.6e 

Benzvalene 

( Isobenzvalene 321 C6H6 6 9 Dodecahedron 6.6r 

Hexamethylbicyclo[2.1.1)hexenyl cation 31 5~319 c6Me6H + 6 9 Dodecahedron 6.6g 

Cyc1oheptatrienyl cation C7H7 
+ 7 10 Heptagonal bipyramid 6.6h 

Cyc1ooctatetraeny1 dication CgHg 
2+ 8 11 Octagonal bipyramid 6.6i 

I ...... 
-.J 
F\) 
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Figure 6.6 ( contd.) 
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TABLE 6.6 C~clic Hldrocarbons as H~Eho-SEecies; {see Fisure 6.7) 

Species Formula n s 

Cyclobutane 325-332 
C4H8 4 8 

Methyl-cyclopropane 333 C4H8 4 8 

Cyclopentene 334 
CSH8 5 9 

Bicyclo(2.l.O)pentane 335~336 c5H8 5 9 

3icyclo[l.l.l]pentane 337~338 C5H8 5 9 

2. 7 •.• ] 339 I Tetracyclo[3.2.0.0 0 heptane C7H8 7 11 

(Quadricyclane) ~ 
----- ---- ----

Parent Polyhedron 

Pentagonal bipyramid 

Pentagonal bipyramid 

Dodecahedron 

Dodecahedron 

Hexagonal bipyramid 

Bicapped Archimedean 

Anti prism 

Figure 

6.7a 

6.7b 

6.7c 

6.7d 

6.7e 

6.7f 

I 

I 

~ 
-...J 
U1 



Figure 6.7 
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Cyclic hydrocarbons as hypha­

species . 
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TABLE 6.7 C clic H drocarbons Derived from Closo-Pol hedra with More Than Sites Vacant; i 

see Figure 6. 8) ' 

Species Formula n s Parent Polyhedron Figure 

Cyclopentane 340-342 
C5Hl0 5 10 Tricapped trigonal 6.8a 

prism 

. . [ 2.8] 343 
C7Hl0 7 12 Octadecahedron 6.8b Tr1cyclo 2.2.1.0 heptane 

(nortricyclene) 

Cyclohexane: chair conformer C6Hl2 6 12 Octadecahedron 6.8c 

Cyclohexane: boat conformer C6Hl2 6 12 Octadecahedron 6.8d 

..... 
-.::1 
-.::1 



Figure 6. 8 
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which emerges from this series is the excellent agreement 

between predicted and experimentally determined values of the 

dihedral angles in cyclobutane, (angle a in Figure 6.7~ and 

bicyclo[l.l.l)pentane, (angle B in Figure 6.7e). The folded 

ring of cyclobutane is constrained by the n5h symmetry of the 

pentagonal bipyramid leading to a dihedral angle ~)of 36°, 

(cf. a literature value of ca. 35° 326-332 ). It is predicted 

that bicyclo[l.l.l]pentane has a geometry imposed by the n6h 

symmetry of the hexagonal bipyramid. This produces a dihedral 

angle (B) of 120° in perfect agreement with the measured 

value.337 

Table 6.7 and Figure 6.8 list several cyclic hydrocarbon 

systems, the structures of which are derived from triangular­

faced polyhedra with either 4 or 5 vacant skeletal sites. 

The puckered ring structure of cyclopentane may be derived 

from the 9-vertex tricapped trigonal prism, (Figure 6.8a). 

Both the boat and chair conformers of cyclohexane are clearly 

defined inthe 11-vertex octadecahedron (Figures 6.8c and 6.8d), 

a feature which has previously been noted. 80 The complex ring 

system of nortricyclene can also be rationalised in terms of 

its relationship to the octadecahedron (Figure 6.8b) and is 

3- 3-analogous to several main group species, e.g. Sb7 , P
7 

, 

se
3

As4 (see Section 6.3). 

The survey of cyclic hydrocarbons given in this Section 

is not comprehensive and it is anticipated that many more 

systems may have structures which are closely related to those 

of boranes and carboranes. It should be noted that skeletal 

electron counting cannot be used to rationalise the structures 

of all cyclic hydrocarbon systems, although several structures 

which at first appear to be un~elated to the appropriate tri­

angular-faced parent polyhedron are worthy of further consideration. 
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For example, cubane (C8H8), as its name implies, has a cubic 

skeleton.344 The 8 CH units provide 12 skeletal bonding pairs 

of electrons and a hypho-species based on the 11-vertex octa-

decahedron might therefore be predicted. This appears not 

to be the case. However, removal of the 6- and two 5-

coordinate skeletal sites leaves a framework of atoms which 

easily rearrange (via the cleavage of 2 bonds and formation 

of 2 new bonds) to give the cubane structure containing 12 

localised 2-centre c-c edge bonds. This feature is Curther 

noted in main group and transition metal chemistry (Section 6.3) 

and is illustrated in Figure 6.16. 

It may be concluded therefore that the potential use 

of skeletal electron counting methods in hydrocarbon chemistry 

has been greatly underestimated and that in fact a large number 

of cyclic systems have structures which bear a close family 

relationship to boranes and carboranes. It is further suggested 

that two new cluster types be defined as follows: 

fisco: n atoms defining a polyhedron with 4 sites 

vacant and having (n+5) pairs of skeletal 

bonding electrons. 

reticulo: n atoms defining a polyhedron with 5 sites 

vacant and contributing (n+6) skeleton 

electron pairs. 

(The suggested names ·'fisco' and 'reticulo' are derived from 

the Latin for a 'basket' and a 'small net' respectively). 
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6.3 Cluster Patterns in Main Group, Transition Metal, 
Metal w-Hydrocarbon and Cyclic Hydrocarbon Systems 

The number of ciuster species which have been synthesised 

and structurally characterised over the last ten or twenty 

years is vast. No one review has yet brought together main 

group, transition metal, metal n-hydrocarbon and cyclic hydro­

carbon systems as all possessing structures related to poly-

hedral skeletons. The primary aim of this Section is therefore 

to survey the large number of clusters now known in an attempt 

to show to what extent the same structural patterns hold for 

the different compounds. The survey is not exhaustive, its 

objective being to exemplify each class of cluster for a given 

polyhedron rather than to classify all clust~r species. (For 

instance there are numerous tetrahedral cluster compounds 

which have not been included in this Chapter; an excellent 

review of tetranuclear species can be found in reference 345. 

Further reviews of cluster structures may be found in references 

80, 81, 346 and 347). 

The data are arranged in tabular form according to the 

numbers of skeletal electron pairs (s) and parent polyhedra, 

(Tables 6.8 to 6.16). Each Table is followed by a corres-

pending Figure illustrating the structural types which may be 

derived from a particular polyhedron, (Figures 6.9 to 6.17). 

Points of interest arising from each Table are discussed in 

separate sub-sections. 
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6.3.1 Slstems with 6 Skeletal Bonding Pairs of Electrons 

For systems contributing 6 skeletal electron 

pairs, there exists an additional category of structure: 

the capped-closo cluster, i.e. a capped trigonal bipyramid. 

Here, the 6 skeletal bond pairs hold together 6 skeletal 

atoms. The capping metal atom uses its 3 vacant orbitals 

to bond to the 3 metal atoms of a triangular polyhedra~ face 

without modifying the bonding MO's in the rest or the uluster. 80 

os6 (co) 18 exemplifies this particular cluster type. 

Nido-species with 6 skeletal bond pairs are 

tetrahedral in shape. A wide variety of such structures 

is found in transition metal compounds and only a few have 

been selected to represent this group in Table 6.8. Simil-

arly, triangular clusters of metal atoms are common. It 

is interesting that both equilateral and isosceles triangles 

can be accommodated in the trigonal bipyramidal framework, 

(Figures 6.9d and 6.9e). 



TABLE 6.8 Systems with s=6 Based on the Trigonal 
Bipyramid; (Figure 6.2) 

Number of Cluster 
Skeletal Type Figure Examples 

Atoms 

6 Capped- 6.9a Os6(co)18 closo 

5 Closo 6.9b Os5(co)16 
HOs5 (co) 15 

-
Fe3(co)9(RC:CR) 

Bi 3+ 
5 

Sn52-; Pb 2-
5 

B5H5 -

C2B3H5 

* 4 Nido 6.9c H4Ru4(co)12 
Rh4(co)12 
H2Ir4(co) 10 

2-

H6Re4(co) 12 
2-

H2os4(C0\2 
2-

H2os
3

(co)9s 

co3 (co) 9cR 

H3Co0s(C0)12 
Co(Co)3c3Ph3 
( (n-C5H5 )W(C0) 2]2 (HC=CH) 

(n-C5H5 )Rh2Fe2 (co)8 

Fe2 (co)6B2H6 
t Bu4c 4 
p4 

Structural 
Reference 

231 

230 

348,349 

350 

351 

352,353 

351 

354 

355 

189,190 

356 

357 

358 

359 

360 

361 

362 

363 

364,365 

366 

322 

-
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TABLE 6.8 (Continued) 

Number of Cluster Figure Examples Structural 
Skeletal Type Reference 

Atoms 

* 6.9d Ru3 (co) 12 3 Arachne 212 

os
3

(co) 12 213 

[(n-c5H5 )Rh(C0)]
3 367 

C3H6 81 

C3H7 
+ 81,323 

3 Arachne 6.9e Fe
3

(co) 12 192 

H20s3(C0) 10 368,369 

H2Re
3

(co)12- 370 

B3H8- 371 

* A few typical examples have been selected from the wide 

range of tetra- and trinuclear cluster species with s=6 

which are known. 



Figure 6.9 Systems with s=·6 based on 

the trigonal bipyramid. 
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6.3.2 Systems with 7 Skeletal Bonding Pairs of Electrons 

As was the case for s=6, capped-closo structures are 

also found for some systems with s=7, i.e. 7 pairs of skeletal 

electrons hold together 7 atoms in a capped-octahedral arrange­

ment, (e.g. Os7(co)21 , Rh7(co) 163- and Rh
7

(co) 16r2-). 

Numerous closo-octahedral clusters have been character-

ised. Examples in Table 6.9 include transition metal, main 

group, and organometallic compounds. A second closo-specles 

with s=7 is noted: the capped-square based pyramid. Although 

of lower symmetry than the octahedron, the capped-pyramid is 

found to be the preferred structure for H2os6 (co) 18 and 

os6(co) 16 (CPh) 2 . 

Over the past few years several square planar Group 

VI cations have been synthesised and characterised. The 

structures of s4
2+, se4

2+, Te 4
2+ and [Te 4se 4_n] 2+ (n=l-3) 

can be rationalised on the basis of these cations being 7 

electron pair arachno-species. For completeness, the Group 

-- 2- 2- 2- 6 VI anions s 3 , se3 and Te3 may be included in Table .g 

as hypho-species, the n'on-linear structures of which may be 

derived from the octahedron. 
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TABLE 6.9 Slstems with s=~ Based on the Octahedron; (Fiezure 6.10l 

Nurriber of Cluster Structural Skeletal Type Figure Examples Reference Atoms 

7 Capped- 6.10a Os7(C0)21 232 
closo 

Rh7(co)16 
3- 372 

Rh7(co)16r2- 373 

* 6 C1oso(i) 6.10b Rh6(C0)16 194 

[Rh6(C0)15]2 2- 374 

co6(co)15 
2- 375 

co6(co) 14 
4- )'"(6 

H2Ru6(co)18 Yf7 

HRu6(co)18 
- 378 

Ru6(co)17c 379 

Ru4(co)12 (PhC=CPh) 380 

os6(co)18
2-;HOs6(co) 18- 381 

Co4(co)10 (EtC:CEt) 382 

Fe6(co) 16c2- 383,384 

N16(C0) 12 
2- 385 

Ir 4 (CO) 15 (C 8r-t 12 );.~ ( Cgli.I 0 ) 386 

B6H6 
2- 161~ 

B4C2H6 354,387,388 

B5cH7 388-390 

.. 
6 Closo(ii) 6.10c H2os6 (co)18 381 

os6 (CO )16 (CPh) 2 391 

5 Nido 6.10d Fe5(co)15c 392 

Ru5(co)15c;os5(co) 15c 393 

Os3(co) 10 (RC=CR) 394 

H2os3(co)9 (RC:CR) 395 

B5H9 148 
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TABLE 6.9 (Continued) 

Number of Cluster Structural Skeletal Type Figure Examples Reference Atoms 

5 Nido 6.10d B5H8Me 396 
(contd.) 

B4H8Fe(Co)3 397,398 

B4H8Co(1T-C5H5 ) 399 

B3C2H7 400 

B3c2H5Fe(Co)3 398 
.... H + lj5 5 310-314 

4 Arachno 6.10e s 2+ 401 
(i) 4 

Se 2+ ll·02 4 
Te 2+ 4 402,403 

[ Te4Se4-n1 
2+ (n=l .. 3) 40l~ 1405 

Bi 4 
2.- 406 

S2N2 40'7-409 
2-

C4H4 -

4 Arachno 6.10f H3os4 (co) 12r 410 
(ii) 

B4H10 143-147 

c 4H6(i. e. bicyclo [ 1.1. 0) butane) 324 

3 Hypho 6.10g 2-
s3 ; 

2-se
3 

; Te
3 
2- 411 

* A few examples only selected from the wide range of 

octahedral clusters which are known. 



Figure 6.10 Systems with s=7 based on 

the octahedron. 
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6.3.3 Systems with 8 Skeletal Bonding Pairs of Electrons 

The close-pentagonal bipyramid and its derivatives 

seem not to be well represented amongst transition metal 

compounds, although main group species with s=B are common. 

In meta lloboranes the group of triple-decker sandwich com-

pounds presen~interesting examples of closo-species. An 

example is illustrated below. 

groups each contribute a single skeletal electron, the 

remaining 7 skeletal bonding pairs being provided by the 

Two arachno-species are found with s=B; (i) a planar 

5-membered ring represented by c
5
H

5
- and several sulphur­

nitrogen ring systems and (ii) a structure based on the 

pentagonal bipyramid with one apical and one equatorial site 

vacant, e.g. B5H11 . 

Cyclobutane and methyl-cyclopropane as hypho-clusters 

have already been discussed, (Section G.2). /\ualogous 
'I 

~pectes IH'e f'ound J.n P 1~(cF3 ) 1~ a.mt H11 Be 11 (co)V.;·- resper.\.lveJ.y. 

As with cyclouutaue, the measur~d dHH.:tlroul angle in P4(cr··
3

)4 
is close to the predicted value of 36°. 



TABLE 6.10 Systems with s=8 Based on the Pentagonal 
Bipyramid; (Figure 6.11) 

Number of 
Skeletal 

Atoms 

7 

6 

5 

5 

4 

4 

Cluster 
Type 

Closo 

Nido 

Figure Examples 

6.lla B7H7 
2-

B5C2H7 

B4c2H6GaMe 

B4C2H6MLx(MLx=Ni(PPh3 )2 ; 

Fe(C0_)
3

; Co(tr-C
5
H

5
)) 

B
3
c2H5 (co(tr-C5H5 )) 2 

Various triple-decker 
sandwich compounds 

6.11b B6H10 
B5H9Fe(C0) 3 
B5cH9 
B4cH8 

B3C3H7 

B
3
C2H

7
Fe(C0) 3 

B2C4H6 

(BI)C
5

Me
5
+ 

(tr -c
5

H
5 

)Mn (CO) 
3 

2+ c6Me6 

Arachne 6.llc c
5

H
5

-
( i) 

R2C2N2S 

Ph2c2N2Se 
+ RCN2s2 

Hypho{i) 6.11e c 4H8 (i.e.cyc1obutane) 

P4(CF3)4 

Hypho(ii) 6.11f c
3

H5Me 

H4Re4(C0)152-

191 

Structural 
Reference 

173 

412 

1n3 

414 

423,424 

150,151 

398,415 

416 

416.417 

!~18 

398,400,419 

420 

421 

422 

315-318 

425-427 

426 

428 

429 

138,139,144,149 

325-332 

430 

333 

431-432 



Rgure 6.11 Systems with s=B based on 

the pentagonal bipyramid. 

(a) (b) 

(c) (d) 

(e) (f) 
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6.3.4 Systems with 9 Skeletal Bonding Pairs of Electrons 

Two basic closo-polyhedra are found for systems con­

tributing 9 skeletal bonding pairs of electrons, (Figures 

6.12a and 6.13a),although of these the dodecahedron is more 

common. This is expected as preference for low coordination 

sites is usually shown; (the dodecahedron possesses four 4-

and four 5-coordination sites whilst the hexagonal bipyramid 

contains two 6- and six 4-coordination sites). 

Table 6.11, lists clusters with structures derived 

f'rom the dodecahedron. A second 'closo'-species is noted; 

co8 (co) 18c 2- adopts a distorted square antiprismatic structure, 

(Figure 6.12b). Comparison of Figures 6.12a and 6.12b shows 

there to be little difference between the two cages; the 

central carbido atom causes distortion away from an idealised 

antiprismatic structure thus producing a skeleton not unlike 

that of the dodecahedron itself. The dodecahedral cage 

(D2d symmetry) is adopted by the B8H8
2- anion in the crystal 

lattice. However, in solution, the polyhedral skeleton may 

undergo rearrangement to either the square antiprism (D4d 

symmetry) or the square-faced bicapped trigonal prism (c2v 

symmetry). The energy barriers between structures are 

strikingly low. 175, 488 • 489 

The two possible hypho-species have been noted in 

Section 6.2. The puckered ring of cyclopentane is again 

seen in the sulphur-nitrogen cation s
3

N2cl+ in which the 

unique sulphur atom is bent out of the ring plane. A very 

recent addition to this group of clusters is the first fully 

characterised ferracyclopent-2-en-5-one in which the ketone 

group ls out-or-plane. 
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TABLE 6.11 sxstems with s=2 Based on the Dodecahedron; (Fif!iure 6.12) 

Number of Cluster Structural Skeletal Type Figure Examples Reference Atoms 

8 Closo 6.12a Fe4(C0) 11 (RC:CR) 2 433 
(i) 2- 165 BaH a 

8 * 6.12b co8 (co)18c2- 434,435 Closo 
(ii) 

6 Arachne 6.12c C6H6 (i.e. benzvalene and 321 
( i) isobenzvalene) 

6 Arachno 6.12d + 315,319 c 6Me6H 
(ii) 

5 Hypho(i) 6.12e c
5
H8 (i.e. cyclopentene) 334 

(PnMe2P)(Oc)
3

FeCOCH2C(C02Me)=C(OMe) 436 

s
3

N2Cl + 437 

5 Hypho 6.12f c
5
H8 (i.e.bicyclo[2.l.O)pentane) 

(ii) 335,336 

* See Sub-section 6.3.4 



Figure 6j2 Systems with s=9 based on 

the dodecahedron. 

(a l 

(c) 

(e) 

(b) 

(d) 

I 
I 

I " "" Q:--: ,, , ,, , 
\' I 

' ' 'ct 

(f) 
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TABLE 6.12 Systems with s=9 Based on the Hexa~onal. BiElramid; 
(Figure 6.1~) 

Number of Cluster Structural Skeletal Type Figure Examples Reference Atoms 

8 Closo 6.13a - -

7 Nido 6.13b (n -c6H6 )Cr (CO )
3 438,439 

6 Arachno 6.13c C6H6 -



Figure 6.13 Systems with s=9 based on 

the hexagonal bipyramid. 

(a) (b) 

(c) 
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6.3.5 Systems with 10 Skeletal Bonding Pairs of Electrons 

The tricapped trigonal prism and its derivatives 

produce several interesting examples of cluster compounds, 

in particular the hypho-species. The hexanuclear tellurium 
4+ cation, Te6 , has a prismatic structure which is easily 

rationalised in terms of its 10 electron pairs. (The cation 
6 447 Te6 + is also predicted to have a prismatic structure 

which, on the basis of its 9 skeletal bond pairs, can be 

rationalised in terms of localised 2-centre edge bonding). 
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TABLE 6.13 Systems with s=lO Based on the Tricaooed 
Trigonal Prism; {Figure o.l4.J 

Number of Cluster Structural Skeletal Type Figure Examples Reference Atoms 

9 Close 6.14a Ge 2-
9 

440 

B9H
9
2- 166 

B7H
7
C2R2 (R=Me;H) 441,442 

Bef2H8co (tr -CSHS) 443,444 

B
5
c2H7 (co(tr-C5H

5
)) 2 414,445 

8 Nido 6.14b B8Hl2 157,158 

B6C2Hl0 446 

6 Hypho(i) 6.14c T 4+ e6 447 

6 Hypho(ii) 6.14d co6 (co) 16P - 448 



Figure 6.14 Systems with s=10 based on 

the tricapped trigonal prism. 

(a) (b) 

(c) (d) 
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6.3.6 Systems with 11 Skeletal Bonding Pairs of Electrons 

Table 6.14 lists species which contribute 11 skeletal 

pairs of electrons. Besides the group of closo-borane and 

carborane compounds, a new antimony/tin cluster anion (Sbsn
9
-) 

has been produced which is predicted45l to have the bicapped 

Archimedean antiprismatic.structure. A series of related 

anions, [Pbxsn9_x] 4- (x=0•9) has been formed using Na/Sn/Pb 

alloys dissolved in ethylenediamine. These are predicted to 

have an 'open• 45l nido-skeletal structure. 

The Bi
9

5+ cation occurs in two slightly different forms. 

In Bi12c1 14, the Bi
9

5+ cation forms a slightly distorted tri­

gonal prism with three capping atoms. In the crystal lattice, 

this distortion (caused by the surrounding chlorine atoms453) 

is sufficient for the cage to be misinterpreted as a mono­

capped Archimedean antiprism. In B1 10 (Hfcl6 )
3

, the Bi
9

5+ 

unit is approximately regular. 454 

2+ 2+ 2+ The fisco-clusters Te6 , Te
3
se

3 
and Te2se4 each 

have a distorted 'chair' configuration, readily rationalised 

in terms of the 11 skeletal bonding pairs of electrons. 

' 
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TABLE 6.14 Systems with s=ll Based on the Bicapped Archimedean 
Antiprism; (Figure o .15,) 

Number of Cluster Structural Skeletal Type Figure Examples Reference Atoms 

10 Closo 6.15a BlOHlO 
2- 167 

2,2·-[1-s9H8s] 2 449 

B8H8c2Me2 450 

s
5

c2H7 [co(w-C5H5 )) 3 
414 

* - 451 SbSn
9 

9 Nido{i) 6.15b Rhg(C0) 21P2- 452 

* Bi 5+ 
9 453,454 

4- 455 sn
9 

4- 440 0~9 

[PbxSn( 9-x)1
4

-(x=0•9) 451 

9 Nido(11) 6.15c B7H9c2Me2 l~56 

8 Arachno 6.15d B8H14 457 
(1) 

8 Arachno 6.15e B1 2+ 351 
(i1) 8 

7 Hypho 6.15f c 7H8 (1. e. quadricyclane) 339 

6 Fisco 6.15g T 2+ e6 447,458 

•re
3
se

3 
2+; Te2seJ1 

2+ }.158 

* see Sui.JseeU.on (). -~.G 



Figure 6.15 Systems with s=11 based on 

the bicapped Archimedean 

{a) 

(e) 

anti prism. 

' / 
', ' I / '&/ 

(b) 

(d) 

{f) 

I 
I 

\ I 

M-~rr-'.:6 

"' 

{c) 

"' 
"' ,. 

(g) 
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6.3.7 Systems with 12 Skeletal Bonding Pairs of Electrons 

The iarge number of clusters with structures derivable 

from the octadecahedron is quite surprising. The closo-, 

nido-, and arachno-boranes and carboranes listed in Table 6.15 

are well documented. The structure of the recently synthes­

ised Sbsn
9

3- anion45l is also predicted to be derived from 

the 11-vertex polyhedron. 

The formation of a 'hypho~species with 12-skeletal 

bond pairs is illustrated in Figure 6.16d. The cubane 

structure has previously been described in Section 6.2,and 

Table 6.15 includes c8H8 with main group and transition metal 

examples of the 8-centre 12-electron pair systems which re­

arrange from the possible hypha-structure to the preferred 

cubic framework involving localised bonding. 

A remarkably large group of compounds containing 7 

skeletal atoms and having 12 pairs of bonding electrons exists. 

Several of these species have previously been noted as having 

structures related to the octadecahedron. 49° However this 

group of fisco-species appears to be more extensive than 

originally suggested. 

Finally two classes of reticula-cluster are apparent. 

The 'chair' and 'boa~ conformers of cyclohexane have previously 

been mentioned, (Section 6.2). The boat-fqrm is seen again 
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TABLE 6.15 Slstems with s=l2 Based on the Octadecahedron; 
· {Fisure 6.16) 

Number of Cluster Structural Skeietal Figure Examples 
Atoms Type Reference 

11 Closo 6.16a BllHll 
2- 173-175 

B9H9c2Me2 459 

B8c2H10co(w-c5H5 ) 444,445 

10 Nido 6.16b B10H14 152,153 

(B10H13J2 460,461 

B10H12 
2- 462 

B7c2H11co(w-c5H5) 463 

* Sbsn
9
3- 451 

9 Arachno 6.16c B9H15 159 

B9H14 - 464 

B7H11C2Me2 465 

8 * (Hypho) 6.16d Ni8 (co)8 (PPh)6 466 

(PhA1NPh) 4 467,468 

(MeZnOMe) 4 469 

c8H8 344 

7 Fisco 6.16e p7 3- 470,471 

As 3-
7 

1.~12 

b 3-s 7 473 

P4S3 474 

P3S4 
+ 475 

P3se3P=Se 476 

As4se3 477 

CTf1o (i.e. nortricyclene) 343 

6 neticulo 6.16f C6H12 (boa.t con rnnncr) -
(1) 
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TABLE 6.15 (con.tinued) 

Number of ·cluster Structural 
Skeietal Figure Examples Reference 

Atoms Type 

6 Retiaulo 6.16g C6Hl2 (chair conformer) -
(ii) 

86 478 

s3N3c13 479 

Te6 447 

* See Subsection 6.3.7 



Figure 6.16 Systems with s=12 based on 

the octadeca h ed ron. 

(a) 

(e) 

(b) 

.......... :break 
-·-·-=make 

(d) 

(f) 

(c) 

(g) 
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6.3.8 Systems with 13 Skeletal Bonding Pairs of Electrons 

The usual close-polyhedron envisaged for s=l3 is the 

icosahedron. However, H
3

Rh13 (co)24
2- adopts a structure 

resembling a hexagonal close-packed lattice; 12 Rh atoms are 

skeletal and one is sited at the centre of symmetry of the 

Rh12 cage. (Figure 6.17d shows the Rh12 skeleton). Of 

the remaining clusters with 13 skeletal pairs of electrons, 

carboranes and metallocarboranes are the predominant species. 

All are either closo~, n1do-, or araohno-systems with 

structures derived from the io9sahedron. 
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TABLE 6.16 S~stems with s=l2 Based on 

(i) the Icosahedron; {Fisure 6.l:z:{il) 

Number of Cluster Structural Skeletal Type Figure Examples Reference Atoms 

12 Close 6.17a Bl2Hl2 
2- 168 

BlOC2Hl2 480 

B7C2H9(Co(w-C5H5)]3 445 

Various metallo- 346 carboranes xc2B
9
H11 

11 Nido 6.17b B11H13 
2- 481 

BloCHll 3- 482 

B9C2Hl2 - 483 

a9H11SPt(PEt3 }2 484 

10 Arachne 6.17c Bl0Hl4 
2- 485 

a9H11 (NEt3 )s 486 

(ii) * an 'Hexasonal Close-Packed' Unit ; 
~Fisure 6.lz{iil) 

12 Close 6.17d H3Rh12 (co) 24Rh2- '487 

* See Sub-Section 6.3.8 



Figure 6.17 Systems with s=13 based on 

[i] the icosahedron. 

(a) (b) 

(c) 

[ii] .. hexagonal close- packed· unit. 

(d) 
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6.4 Conclusion 

The data presented in Section 6.3 indicates that, 

without a doubt, the use of skeletal electron counting for 

classifying cluster species has been underestimated in the 

past. One of the most striking features is perhaps the 

ability to rationalise the bonding in such species as the 

Te6x+ (x=0,2,4,6) clusters. The structures of all 3 cations 

are readily derived from the appropriate closo-polyhedra ~1d 

that of Te6 is rationalised in terms of localised bonding. 

This particular group of cluster species cannot !!! be 

rationalised in terms of any other one bonding picture. 
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CHAPl'ER SEVEN 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

The main aim of the work described in this thesis has 

been to suggest new ways in which self-consistent sets of 

bond energy contributions might be estimated for bonds in 

cluster species and related systems. 

The exploration of empirical bond energy-bond length 

and bond energy-bond order correla.tions in simple main group 

systems, (particularly in boron containing compounds), pro­

vided encouragement for the application of such relationships 

to more complex systems. 

The basis for determining metal-metal bond energies in 

metal carbonyl clusters has been to use the lengths and 

strengths of the bond·s in the bulk metals themselves. 

Although it was indicated in Chapter Four that some doubt 

had been cast on the feasibility of analogies between bulk 

metal fragments and metal clusters, it is extremely encouraging 

to find that the results of very recent molecular orbital 

calculations do in fact support such analogies. 49l It would 

therefore appear that an extension of this work is justified. 

An important application would be to metal n-hydrocarbon 

complexes. Estimations of metal-carbon bond enthalpies in 

such systems could be of great value in understanding the 

energetics of metal surface catalysis reactions. 

The limitations of the bond energy-bond length correl­

attons were noted in attempts to estimate the enthalpies of 

multiple metal-metal bonds. It appears that the environments 

in which multiple M-M bonds occur are not sufficiently like 

those in the bulk metals to allow direct analogies to be drawn 

between the two systems. 



The last part of this thesis has been devoted to a 

study of the applications of skele.tal electron counting 

methods. It has been shown that accurate qualitative 
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structural predictions can be made in clusters containing 

both transition metal and main group elements, and that 

previously, the potential of such electron counting schemes 

had been greatly underestimated. The data. summarised in 

Chapter Six brings the application of skeletal electron 

counting up to date. However, as the synthesis and 

characterisation of new metal and main group cluster species 

arenow frequent occurrences, the future updating of the 

information provided in this thesis will be of prime 

importance. It is anticipated that in addition to the 

two new cluster types reported in this work (i.e. risco-

and reticulo-species), further cluster groups will be recog­

nised in future years, particularly if close-polyhedra with 

13 or more vertices are considered as parent polyhedral 

skeletons. 



APPENDIX ONE 

TREATMENT OF ERRORS 

1. In Calculations 

For a function, f(x,y, •••• ), the error, 6f' in 

f(x,y, •••• ) is given by: 

Hence for a function: 

the error in y, ( ~ Y) is :· 

~ y = J nA 2 ~A 2 

• • • • • • • • • • • • • 

2 2 + l13 ~B + •••••••••• 
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For a function f = (x/y)k, the error in the function, ~f' 

is given by: 
r-------------------------------------------

~ = k2x2(k-l)Y-2k(~x)2 + k2x2ky-2(k+l)(~y)2······· 

2. In Graphical Representations 

In general, a graphical correlation is given by a least 

squares fit to a set of n points. This minimizes the sum, S, 

of the squares of deviations of points from the line: 

For 

and 

yi = a + bxi 

S = E (yi - a - bxi) 2 
(b

a = intercept) 
= slope 

:: = -2 E (y i - a - bxi )2 
= 0 

as = 
ab 
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For n points: 

E y i = na + b E xi (i) 

(ii) 

The 'best' slope is given by: 

(iii) 

The 'best' intercept is obtained by substitution of b from 

(iii) into (i). 

The correlation coefficient, r, (which is ± 1.0 for a 

perfect linear correlation between x and y) is given by: 

\ n E xi y i - E xi E y i l 
r =n [ n t x/ - ( txi >2][ n t y 12 - ( t y 1 >2] r/2 ~ 

In this thesis values of r~ 0.99999 or r~ -0.99999 are 

approximated to ± 1.00 respectively. 



APPENDIX TWO 

ABBREVIATIONS 

The following abbreviations for substituents and 

ligands have been used in the text: 

Bu butyl 

Cp i-cyclopentadienyl 

diglyme d1ethyleneglycold1methyl ether 

DMP 2,6-dimethoxyphenyl 

Et ethyl 

Me methyl 

Ph phenyl 

piv p1valato ((CH3 )
3
cco2 ) 

Pr propyl 

py pyridine 

THF tetrahydrofuran 

TMP 2,4,6-trimethoxyphenyl 
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APPENDIX THREE 

The Board of Studies in Chemistry requires that each 

postgraduate research thesis should contain an appendix 

listing all research colloquia, seminars and lectures (by 

external speakers) arranged by the Department of Chemistry 

during the period when research for the thesis was carried 

out. 

Research Colloquia, Seminars and Lectures Arranged by 
the Department of Chemistry between October 1976 and 
September 1979 (* indicates lectures attended) 

20 October 1976 

Professor J.B. Hyne (University of Calgary), "New 

Research on an Old Element - Sulphur" 

10 November 1976 

Dr. J.s. Ogden (University of Southampton), "The 

Characterisation of High Temperature Species by Matrix 

Isolation" 

17 November 1976 

Dr. B.E.F. Fender (University of Oxford), "Familiar 

but Remarkable Inorganic Solids" 

24 November 1976 

Dr. M.I. Page, (Huddersfield Polytechnic), "Large and 

Small Rate Enhancements of Intramolecular Catalysed Reactions" 

*a 6 December 197 

Professor A.J. Leadbetter (University of Exeter), 

"Liquid Crystals" 

26 Sanuary 1977 

Dr. A. Davis (E.R.D.R.), "The Weathering of Polymeric 

Materials" 
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2 February 1977 

Dr. M. Falk, (N:i~.c. Canada), "Structural Deductions 

from the Vibrational Spectrum of Water in Condens.ed Phases" 

*9 February 1977 

Professor R.O.C. Norman (University of York), "Radical 

Cations; Intermediates in Organic Reactions" 

*23 February 1977 

Dr. G. Harris {University of St. Andrews), "Halogen 

Adducts of Phosphines and Arsines" 

*25 February 1977 

* 

Professor H.T. Dieck (Frankfurt University), "Diazadienes -

New Powerful Low-Valent Metal Ligands" 

2 March 1977 

Dr. F. Hibbert (Birkbeck College, University of London), 

"Fast Reaction Studies of Slow Proton Transfers Involving· 

Nitrogen and Oxygen Acids" 

4 March 1977 

Dr. G. Brink (Rhodes University, South Africa), 

"Dielectric Studies of Hydrogen Bonding in Alcohols" 

9 March 1977 

Dr. I.O. Sutherland (University of Sheffield), "The 

Stevana' Rearrangement: Orbital Symmetry and Radical Pairs" 

*18 March 1977 

Professor H. Bock (Frankfurt University), "Photo­

electron Spectra and Molecular Properties: A Vademecum 

for the Chemist" 

30 March 1977 

Dr. J.R. MacCallum (University of St. Andrews), "Photo-

oxidation of Polymers" 



* 

* 

* 

* 
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20 April 1977 

Dr. D.M.J. Lilley (Research Division, G.D. Searle), 

"Tails of Chromatin Structure - Progress Towards a Working 

Model" 

27 April 1977 

Dr. M.P. Stevens (University of Hartford), "Photo­

cyc~oaddition Polymerisation" 

4 May 1977 

Dr. G.C. Tabisz (University of Manitoba), "Collision 

Induced Light Scattering by Compressed Molecular Gases'.' 

11 May 1977 

Dr. R.E. Banks (U.M.I.S.T.), "The Reactions of Hexa­

fluoropropene with Heterocyclic N-Oxides" 

18 May 1977 

Dr. J. Atwood (University of Alabama), "Novel Solution 

Behaviour of Anionic Organoaluminium Compounds: the Formation 

of Liquid Clathrates" 

25 May 1977 

Professor M.M. Kreevoy (University of Minnesota), 

"The Dynamics of Proton Transfer in Solution" 

1 June 1977 

Dr. J. McCleverty (University of Sheffield), "Consequences 

of Deprivation and Overcrowding on the Chemistry of Molybdenum 

and Tungsten" 

*6 July 1977 

Professor J. Passmore (University of New Brunswick, Canada), 

"Adducts Between Group y Pentahalides and a Postscript on .s7r+" 
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27 September 1977 

Dr. T.J. Broxton {LaTrobe University, Australia), 

"Interaction of Aryldiazonium Salts and Arylazoalkyl Ethers 

in Basic Alcoholic Solvents" 

\9 October 1977 

* 

* 

Dr. B. Heyn {University of Jena, D.D.R.), "o-Organo­

Molybdenum Complexes as Alkene Polymerisation Catalysts" 

27 October 1977 

Professor R.A. Filler (Illinois Institute of Technology), 

"Reactions of Organic Compounds with Xenon Fluorides" 

2 November 1977 

Dr. N. Boden {University of Leeds), "N.M.R. Spin-Echo 

Experiments for Studying Structure and Dynamical Properties 

of Materials Containing Interacting Spin-i Pairs" 

9 November 1977 

Dr. P.A. Madden (University of Cambridge), "Raman 

Studies of Molecular Motions in Liquids" 

*14 December 1977 

* 

Dr. R.O. Gould (University of Edinburgh), "Crystallo­

graphy to the Rescue in Ruthenium Chemistry" 

25 January 1978 

Dr. G. Richards {University of Oxford), "Quantum 

Pharmacology" 

1 February 1978 

Professor K.J. Irvin {Queens University, Belfast), 

"The Olefin Metathesis Reaction: Mechanism of Ring-Opening 

Polymerisation of Cycloalkenes" 



* 

* 

* 

* 

* 

* 
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3 February 1978 

Dr. A. Hartog (Free University, Amsterdam), 'Some 

Surprising Recent Developments in Organo-Ma~esium Chemistry" 

22 February 1978 

Professor J.D. Birchall (Mond Division, I.C.I. Ltd.), 

"Silicon in the Biosphere" 

1 March 1978 

Dr. A. Williams (University of Kent). "Acyl Group 

Transfer Reactions" 

3 March 1978 

Dr. G. van Katen (University of Amsterdam). "Structure 

and Reactivity of Arylcopper Cluster Compounds" 

15 March 1978 

Professor G. Scott (University of Aston), "Fashioning 

Plastics to Match the Environment" 

22 March 1978 

Professor H. Va~renkamp (University of Freiburg), 

"Metal-Metal Bonds in Organometallic Complexes" 

19 April 1978 

Dr. M. Barber (U.M.I.S.T.), "Secondary Ion Mass Spectra 

of Surfaces Adsorbed Species" 

15 May 1978 

Dr. M.I. Bruce (University of Adelaide), "New Reactions 

of Ruthenium Compounds with Alkynes" 

16 May 1978 

Dr. P. Ferguson (C.N.R.S., Grenoble), "surface Plasma 

Waves and Adsorbed Species on Metals" 



18 May 1978 

Professor M. Gordon (University of Essex), "Three 

Critical Points in Poiymer Science" 
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* . 22 May 1978 

Professor D. Tuck (University of Windsor, Ontario), 

"Electrochemical Synthesis of Inorganic and Organometallic 

Compounds" 

* 24/25 May 1978 

Professor P. von R. Schleyer (University of Erlangen, 

Niirnberg) , 

(i) "Planar Tetra-Coordinate Methanes, Perpendicular 

Ethylenes and Planar Allenes" 

(ii) "Aromaticity in Three Dimensions" 

(iii) "Non-Classical Carbocations" 

* 

21 June 1978 

Dr. S.K. Tyrlik (Academy of Sciences, Warsaw), 

"Dimethylglyoxime-Cobalt Complexes - Catalytic Black Boxes" 

23 June 1978 

Professor W.B. Person (University of Florida), "Diode 

Laser Spectroscopy at 16 ·pm" 

27 June 1978 

Professor R.B. King (University of Georgia, Athens, 

Georgia, U.S.A.), "The Use of Carbonyl Anions in the Synthesis 

of Organometallic Compounds" 

30 June 1978 

Professor G. Mateescu (Cape Western Reserve University), 

"A Concerted Spectroscopy Approach to the Characterisation 

of Ions and Ion Pairs: Facts, Plans and Dreams" 



*15 September 1978 

Professor w. Siebert {University of Marburg, West 

Germany), "Boron Heterocycles as Ligands in Transition 

Metal Chemistry" 

*22 September 1978 
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Professor T. Fehlner {University of Notre Dame, U.S.A.), 

"Ferraboranes: Syntheses and Photochemistry" 

12 December 1978 

Professor C.J.M. Stirling {University of Bangor), 

"Parting is Such Sweet Sorrow - the Leaving Group in Organic 

Reactions" 

14 February 1979 

Professor B. Dunnell (University of British Columbia), 

"The Application of N.M.R. to the Study of Motions in Molecules" 

\6 February 1979 

Dr. J. Tomkinson {Institute Laue-Langevin, Grenoble), 

"Studies of Adsorbed Species" 

\4 March 1979 

Dr. J.C. Walton {University of St. Andrews), 

"Pentadienyl Radicals" 

* 28 March 1979 

Dr. A. Reiser {Kodak Ltd.), "Polymer Photography and 

the Mechanism of Cross-link Formation in Solid Polymer Matrices" 

5 April 1979 

Dr. s. Larsson {University of Uppsala), "Some Aspects 

of Photoionisation Phenomena in Inorganic Systems" 

25 April l9rf9 

D!'. C. H. Patr·lck { Un.l. versl ty oJ' B.l.rmingha.ru), "Ctlloro­

('1 uorocarbons and Stra.to~pheric Ozone: An Appraisal o.f the 

Environmental Problem" 



1 May 1979 

Dr. G. Wyman (European Research Office, u.s. Army), 

"Excited State Chemistry in Indigoid Dyes" 
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*2 May 1979 

Dr. J.D. Hobson (University of Birmingham), "Nitrogen­

centred Reactive Intermediates" 

*8 May 1979 

Professor A. Schmidpeter (Institute of Inorganic Chemistryj 

University of Munich), "Five-membered Phosphorus Heterocycles 

Containing Dicoordinate Phosphorus" 

9 May 1979 

Dr. A. J. Kirby (University of Cambridge), "Structure 

and Reactivity _in Intramolecular and Enzymic Catalysis" 

*9 May 1979 

Professor G. Maier (Lahn-Giessen), "Tetra-tert­

butyltetrahedrane" 

10 IV!ay 1979 

Professor G. Allen, F.R.S. (Science Research Council), 

"Neutron Scattering Studies of Polymers" 

*16 May 1979 

* 

Dr. J.F. Nixon (University of Sussex), "Spectroscopic 

Studies on Phosphines and their Coordination Complexes" 

23 May 1979 

Dr. B. Wakefield (University of Salford), "Electron 

Transfer in Reactions of Metals and Organometallic Compounds 

with Polychloropyridine Derivat:J.ves" 



* 

* 
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13 June 1979 

Dr. G. Heath, (University of Edinburgh), "Putting 

electrochemistry into mothballs - (Redox processes of metal 

porphyrins and phthalocynanines)". 

14 June 1979 

Professor I. Ugi (University of Munich), "Synthetic 

Uses of Super Nucleophiles" 

20 June 1979 

Professor J.D. Corbett (Iowa State University, Ames, 

Iowa, U.S.A.), "Zintl Ions: Synthesis and Structure of Homo­

polyatomic Anions of the Post-Transition Elements" 

27 June 1979 

Dr. H. Fuess (University of Frankfurt), "Study of 

Electron Distribution in Crystalline Solids by X-ray and 

Neutron Diffraction" 
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