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ABSTRACT

Many theoretical treatments of quantum-mechanical scattering
processes require the numerical solution of a set of second order
ordinary differential equations of special form (with first derivative
absent). The methods used to solve such sets of equations are gener-
ally based on step-by-step methods for solving a single second order
differential equation over a fixed mesh,. For example Chandra (1973)
has published a computer program which uses de Vogelaere's method to
solve the differential equations arising in a close-coupling formul-
ation of quantum mechanical scattering problems. Chandra's program
makes no attempt to monitor the local truncation error and leaves
the choice of steplength strategy entirely to the user.

Our aim is to improve on existing implementations of de Vogelaere's
method for a single second order equation by incorporating a method
of truncation error estimation and an automatic mesh-selection facility,
Estimates of the truncation error in de Vogelaere's method are estab-
lished together with an upper bound for the local truncation error;
the interval of absolute stability is found to be [-2,0] and it is
shown that the global truncation error is of order h4 where h is the
steplength,

In addition the characteristics of a method due to Raptis and
Allison are investigated. A numerical comparison of computer
programs which incorporate the methods of de Vogelaere, Numerov, Raptis
and Allison and Adams-Bashforth Adams-Moulton, with an automatic error
control is performed to determine which program gives the most reliable
and efficient solution of the single channel radial Schrddinger
equation,

A modification of Chandra's program is provided which performs

the numerical integration of a set of coupled second order homogeneous



differential equations using de Vogelaere's method with an automatic

error control.
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INTRODUCTION

Recent years have seen an upward trend in the number of comparative
studies of methods and their associated automatic implementations for
solving systems of first order ordinary differential equations of the
type

yi = f(x’ Yl, YZ: =T yn) . i=1, 2; ===, n, (1)

Equations of order higher than ome,e.g.

y(r) = f(x, Y y': y": Il y(r-l))

(2)

can be readily reduced to a system of first order equations by use of

the following set of simple substitutions,

y =y
[] ]
y = ¥ =,
11 1]
y = yZ = y3
1
f
]
(r-1) ' =
y = Y1 Yy
)
Y, = E(x, ¥15 ¥y =7, YLD (3)

and the methods for solving equation (1) are then immediately applicable
to solving (3). |

Special differential equations of the form

y = fx, ¥ | (4)
and systems of such equations arise in a variety of physical contexts,
In atomic and nuclear scattering problems we are interested in solving
sets of coupled integrodifferential equations of the general form

2 2 N N e ' ' '
d” +k. - [. ({1 = :
{d_, i Elifﬁ >} v J_j=f,1vij<x)yj<x) + 'ZJ-;LK”(X )y (x ddx

i=1, 2,---,N. (5)
In the close coupling approximation equation (5) reduces to a system

of coupled second order differential equations in the case of no exchange,

is when Kij =0 for i, j=1, 2,---, N and our study relates to the

= 7 vty §97¢ \
sscr:oﬁu“?e
Library

cal solution of such a system, in particular to the 'single channel'




equation when i, j=1, Even in the presence of exchange the integro-
differential equations can be replaced by a larger set of coupled
second order ordinary differential equations,

Despite the frequent occurrence of such systems of equations there
appears to be a total lack of comparative studies of automatic methods
for their solution, Indeed, the use of automatic methods for the
solution of such equations seems to be an area which has been entirely
neglected; programs which are currently available for solving (5) make
no attempt at controlling the local truncation error which arises from
the method used in the integration, and changes in steplength are made
entirely at the discretion of the user,

In Chapter 1 we give a discussion of the radial Schrddinger equation,
Some comparisons at fixed steélength have appeared using the methods
of de Vogelaere (1955), Numerov and Runge Kutta in the main, and these
are discussed in this Chapter. An argument in favour of the need for
automatic techniques is also put forward,

A number of direct methods exist for solving (4); the use of such
methods is more intuitively appealing than those methods in which (4)
is reduced to a system of first order equations thereby introducing
first derivatives into the equatioﬁs and perhaps giving rise to a less
efficient method of solution, In atomic collision processes, the -
step by step integration of (5) consumes a large proportion of the
total computing time and it seems appropriate to make use of methods
designed specifically to cope with second order differential equations
with first derivative missing. A study by Ash (1969) of the asymptotic
errors produced by the use of linear multistep methods as applied to
solving the equivalent first order system and direct methods for
solving (4) leads him to recommend the use of direct methods for such

problems, We note here that if a linear multistep method designed

! . +1
to solve y = f(x, y) has truncation error proportional to hP"" where



h is the steplength then the global error is proportional to hp; by
contrast a linear multistep method for the solution of y" = f(x, y)

with truncation error proportional to hp+2 has global error proportional
to hP, Both methods are said to have order p.

A major aim of this work is to improve on existing implementations
of de Vogelaere's method which is a fourth order step by step method
for solving (4) and in Chapter 2 we give a detailed study of the method.
De Vogelaere's method has a truncation error which is proportional to
h5 and we shall see that the global error is proportional to h4. We
also develop truncation error estimates which lead to an efficient
automatic error control in computations based on de Vogelaere's method.
The implementation of de Vogelaere's method with automatic error control
is discussed in Chapter 3 and Qe give a description of the test program
along with the test runs performed.

We have also studied Numerov's method together with the method
of Raptis and Allison (1977) for solving the single channel radial
Schrddinger equation, and these methods together with their automatic
implementations are described in Chapters 4 and 5 respectively,

Chapter 6 describes .the N.A,G. routine DO2AHF which uses a variable-
step variable-order Adams method to solve a system of first order diff-
erential equations and in Chapter 7 we present a numerical comparison
of the methods of Chapters 2-6 for solving the single channel radial
Schrddinger equation,

In Chapter 8 we provide a modification of Chandra's (1973) pro-
gram; the modified version is designed to solve a system of coupled
homogeneous second order differential equations. Chandra's program
uses de Vogelaere's method to solve the differential equations over
a fixed mesh; by inserting into Chandra's program our own routine for
de Vogelaere's method which has an inbuilt automatic control on the

local truncation error per unit step we hope to improve on the efficiency



30.

(with respect to- the number of function evaluations performed in the

numerical integration stage) of the calculation.



CHAPTER 1

The radial Schrodinger equation

§ 1.1 The form of the equation

Scattering experiments provide valuable information concerning
properties of quantum mechanical systems and such experiments study
the effect of directing a monochromatic or monoenergetic beam of
particles at a target, In practice the incident beam is collimated
by a series of slits and the products of the collision which result
from the interactién of the incident beam with the atoms of the tar-
get are measured by some form of detector,

The time independent Schr8dinger equation for the total system
of incident particles of tybe 1 colliding with particles of type 2

is

|
o

(H - E) %/ (%, %,) (1.1)

for structureless particles where E is the energy of the system and

H is the Hamiltonian given by

tg 2 TLZ 2
H= Zm; vl " 7m, Vv 2t Vi (37 %) (1.2)
where m1 and m2 are the masses, h- = %ﬁ where h is Planck's

constant and V12 is the real potential energy of interaction which _ _
is a function of the relative position of the interacting bodies.

IQ is the wave function which describes the motion of the scattered
particles and predictions about the position of the particles can

be made by calculatinglgglz;gy itself cannot be measured directly

in the scattering experiment,

1f we define the relative co-ordinate x by

X - X4 - L"Z
and the centre of mass co-ordinate}é by
X = ™3 +mX

—

(m1 + m2)



then we can write equation (1,1) using (1.2) as

2 92 .2 42
-T;_Mv -%Vx + Vlz(")'E]qf’ (2, %) = 0 (1.3)

where we have assumed that the interaction potential is spherically

symmetric, M= m, + m, is the total mass and m = "1 ™2 is the
m1+m2
reduced mass of the system, If now we use separation of variables

to write %/(51, 52) as

w0 - POY@

we obtain the pair of equations
2 2
_’E\sz V. q) ) = Ec(’) X) (1.4)

2 o 2 .
BV s v, Vw = s

where E = Ec + Er‘ (1.4) and (1.5) represent the Schrddinger
equations for the centre of mass motion and the relative motion
respectively and it is the solution of (1,5) in which we are inter-
ested,

Equation (1.5) must be solved subject to two boundary conditions
the first of which specifies the solutions to be regular at the origin;
the second specifies an asymptotic condition which represents the

solution as an incoming plane wave and an outgoing scattered radial

wave, The boundary conditions are thus given by
L‘)(g) = 0 (1.6)
. ikx
Sy e~ Sikx e £( 6
P& one e 50, ¢) (1.7)

where f is the scattering amplitude which is a function of O and q),
the polar angles of X. The method. of partial waves can be used
to convert the partial differential equation given by (1.5) into a

set of ordinary differential equations. Since we have assumed that



the interaction potential is spherically symmetric the wave equation
(1.5) can be separated in spherical co-ordinates (x,a,qb. In spher-
ical co-ordinates the Laplacian Operatorv2 may be written as

2
vz = ;1(2 ?x(x%{) - %22' LZ(G,CP)

X

where

2
2 _ 2 {1 d ,sinD d 1 d
e = K [sine 36 O 3 )t op?|
The operator L2 represents the square of the orbital angular momentum

and the spherical harmonics Ygp (e,¢» are defined to be the eigen-

functions of L2 and L, which is the Z component of L given by

4 9
L, = -th<
Zz a(P
We have :
2 _ 2 )
LY Y, @0 = L+ DRy, @4
and
L, Y, @) = mkov 6.
where ﬂ/ m are quantum numbers with L2|m]. The function
oz Y(x) ,
Yy @ &)y 0.

is then a solution of (1.5) provided that y(x) is a solution of the

following radial equation

5 B} ;
&y o A 2y vty 0 (1.8)
2 . x2
dx
where k2 = %% Er is the energy of the projectile in rydbergs and
2m

V(x) = {5 V().

We in;roduce now the notion of channels, Thus far we have
considered processes in which two structureless particles undergo
an elastic collision. We now consider the process in which an elec-
tron is fired at a hydrogen atom, The outcome of such a process

may be any one of the following:



- (i) e + H
- *
e + H > (ii) e~ + H
. - - +
(iii) e + e + p

where (i) represents elastic scattering in which the projectile and
the target remain in their original states, (ii) represents inelastic
scattering in which the target remains in an excited state after
collision where H* denotes an excited state of the hydrogen atom, and
(iii) represents the ionisation of the hydrogen atom. Each of the
possible outcomes is referred to as a channel and a process of the
type above is referred to as a many channel collision, In processes
such as the low-energy scattering of electrons off protons the only
possible outcome is elastic gcattering,
é- + p+ E — e_ + p+

and such processes are referred to as single channel processes,

Equation (1.8) is an example of a single channel equation and
it must be solved subject to two boundary conditions the first of
which requires that the soclution be regular at the origin, that is

y(0) = 0. (1.9)

If the potential V(x) is negligible for values of ¥ greater than some

r, (in the so called asymptotic region) then (1.8) effectively re-

duces to
d?y: = [_ﬁ(_l_:le_) - k2] y(x) (1.10)
dx

for which the solutions are kxje(kx) and kxyp(kx) where it(kx) and

xt(kx) are the spherical Bessel functions of the first and second
kind. For large values of x >r,, y must be a linear combination
of the two independent solutions of (1.10). Thus

y(x) ST Akxj, (kx) - Bkxyp(kx)

where A and B are dependent on k and we have



kxil(kx) ;:;;o sin(kxj%lﬂ)
and
kxxL(kx) ~;:;w —cos(kx-%ﬂﬁ),
Therefore
y(x) ;i;;b A sin(kx-leﬁ7 + Bcos(kx-lEW)
2 2
or
y(x) oo c sin(kx-%ﬂﬂ’+gu) (1.11)

where tan gﬂ = B. The second boundary condition is given by (1.11),
The angle }l isAthe (real elastic) scattering phase shift of the Lth
partial wave introduced by the potential V(x), and the calculation
of this quantity leads to the determination for example of the
scattering amplitude and scattering cross section. We write

!

where we think of Rﬁ as a one-by-one mactrix; in the study of inelastic

"R = tan §n
L

scattering by a target system there will be many channels describing
the excitation of internal states of the system, in which case the
so called reactance matrix R will be a higher dimensional square
matrix. The constant C in (1.11) is a normalisation constant which
specifies the asymptotic amplitude and which together with St_com:__
pletely determines the solution y(x). Thus the phase shift is
evaluated by numerically integrating the differential equation for
the radial function and examining its behaviour in the asymptotic
region. Since equation (1.8) is homogeneous in y(x), a solution
which is multiplied by an arbitrary factor will also be a solution

of (1.8); thus the constant C is arbitrary and we can fix it by

setting dy = constant, where X, is the starting point of the
dx Ixg

numerical integration.



In a2 many channel problem where there are N possible final
states resulting from a given initial state of the system, we are
required to solve a set of coupled second order differential equat-

ions of the form

N -
£y - C[ﬁ (LS = ot o + Vi y 09,
dxl%ﬂ( 3 Ll 'sz— ‘j

et q=14,---,N  (112)
wheregyw is the kronecker delta and the solution yH(X) is the radial
wave function of the projectile in the pth scattering channel, For
an incident beam of a given energy it is possible that this energy
will be sufficient to excite some of the states allowed in the eigen-
function expansion but insufficient to excite higher states and de-
pending on whether kﬁ is positive or negative we refer to the pth
channel as being open or closed respectively. For physically mean-
ingful collision processes kﬁ must be positive; for solutions which
arise from negative values of kﬁ the general solution of the approp-
riate Schrddinger equation in the asymptotic region will involve a
linear combination of increasing and decreasing exponentials, How-
ever as the radial distance increases the exponentially increasing

solution dominates the contribution to the solution from the decreas-

ing éxponential and such a solution would be physically meaningless,
Thus any physically significant solution of the radial equation for
ki<( 0 must have the form of a decreasing exponential in the asymptotic
region, Suppose that there are n, open channels corresponding to
kﬁ'>-0, p=1, ---, n, and n, closed channels corresponding to kiALO,
p=n + 1, ===, ng + ng where n, + np = N. Then N solutions must

be found to satisfy the appropriate boundary conditions; in particular

each solution must be matched to the correct asymptotic form, accord-

ing as kﬁ is positive or negative,



10.

In this work we are interested in solving (1,10) for all channels

open, that is, subject to the boundary conditions

Yoy (0) =0 (1.13)

: . 1 1 .
. s k x -5 £ + R _Le
Yy G‘);C\‘Suv in ( " 3 C" ) Y cos(k“x 3 uu) (1.14)

where we have added another subscript to the solution; for an incident
wave in channel v the wave function for a wave scattered in channel

u has the asymptotic form given by (1.14), R is the (symmetric)
reactance matrix from which valuable information (e,g. scattering
amplitudes and cross sections) regarding the nature of the scatter-
ing process can be extracted, and the calculation of R is the gbject
of most calculations for atomic collision processes, From R we can
readily evaluate the (unitafy) scattering and transition matrices,

the so called S and T matrices, using the following formulae

(I - iR)™L (I + iR)

w
n

T (I - iR)TR .

The S and T matrix asymptotic forms are given respectively by

. .1 , . _ 1 g
~i(ky% - 3£ m)_ ik x - 4 Yu)
yuv(X) 3(/—-;0& Ly ® M Zhy Suve u

and
. 1
_ , 1, ik % - 5 & n)
-= ) e 2 ‘
ML -;_;—OS woin Cyx = 5 Lmd + T8 u u
In our numerical calculations we work with real rather than complex
numbers so that we shall use the asymptotic boundary condition given

by equation (1.14),

§ 1.2 Numerical solution of the single channel equation

The calculation of scattering phase shifts by integrating a single
channel Schrddinger equation generally involves three stages:

(i) unless the differential equation is self-starting suitable



11.

values must be generated)

(ii) the differential equation is solved in a step by step
fashion as far as some Yo, which may perhaps be determined
by the program, and finally

(iii) a phase shift is extracted,

Each stage of the calculation may be effected by a wide variety
of different methods. For example, starting values may be provided
by Taylor expansion or by the initial use of a self-starting numerical
technique such as a Runge-Kutta method, and phase shifts may be ex-
tracted by fitting the numerical solution to asymptotic forms of
various degrees of complexity.

We consider the (real) potential function V(x) to have the foll-
owing expansion in the vicinity of the origin

Vi

v(x) = =+ Vy + Vax + --—

The potential function is such that

2
x V(x) x¢>5 0

and at small values of x the solution can be expanded in the following

power series

y(x) =

Thus if we substitute the above into (1,8) we arrive at the following

set of equations

o0
jzgkr + s)(r + 5 - l)afxr+s - L+ 1) arxr+54 kZarxr+s+2

=0

r+s+1 _T+842 . r+s+3 _

s
+ and set r to be zero

r
If we equate coefficients of the powers of x
we obtain the indicial equation

[ s(s -1)-2€+1)]a, = o



12,

For ao'—‘# 0 we have

8 = -e or & +1
and we reject the choice of s = -4 since we want physically signifi-
cant solutions and we require the solution to be regular at the origin.
Thus the regular solution of the radial Schrddinger equation given
by (1.8) may be expressed as

L+

1 2
y(x) = «x [a, + a;x + ax” + ---]

for sufficiently small x, and the coefficients are given by the

equations
28 + L)a, = V,a
2(2@ + 3)a2 = Vla1 + (V2 - k2)a°
i(28 + i+ Da, = vlai;1 '+(v2 - &) a;_ o+ 1 Vjai—j’i> 2 (1.15)
i=3

From the series for y(x) an expansion for y'(x) is readily obtained;
thus if X the starting point of the integration, is provided it
is possible to calculate y(xo) and y“(xo) sufficiently accurately
in order to start the integration stage of the calculation.

The second stage of the calculation may now be entered, This
is the stage of the calculation with which we are mainly concerned,
in which some numerical method is employed for the step by step in- _
tegration of the radial Schrddinger equation from the starting point
into the asymptotic region where the effect of the potential becomes
negligible, We shall carry out in later chapters a detailed compar-
ison of a number of methods for solving (1.8) all of which incorpor-
ate an automatic steplength selection thus giving an error control
based on an estimate at each step of the integration of the truncation
error per unit step,

The final stage of the calculation involves evaluating the phase

shift, If y(x) is represented sufficiently accurately by the asymp-
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totic form (1.11) when x exceeds some distance R then, for any X

and X, greater than R, we have

tan SL = y(x2) { kxlje(kxl)}' - y(xl) {kxzjc(kxz)} ' (1.16)
y(xl) { kxzyt(kxz)k -y(xz) 5 kxlye(kxl)}

There are a variety of techniques some more eléborate than others

for calculating the phase shift, but as we are concerned primarily
with the second stage of the calculation, that is, the numerical in-
tegration of the radial Schr8dinger equation, we choose to make use

of the straight forward method given by (1.16) above for calculating
the phase shift. The phase shift thus obtained is determined to
within integer multiples of T .' Consideration should be given to
how a specified accuracy of the phase shift can be achieved in this
part of the calculation and we shall compare the relative efficiencies
of the various numerical methods which we test in calculating the

phase shift of a given problem to a required accuracy,

§ 1.3 Numerical solution of a system of coupled differential equations

In solving (1,12)-(1.14) we are concerned with the provision
of suitable starting values, the integration of the system of differ-
ential equations and the calculation of the reactance matrix R,

Since we are solving N second order differential equations and
each solution has two integration constants it is necessary to satisfy
2N boundary conditions before the second stage of the calculation
may be entered, namely the numerical integration of the system of
differential equations, N boundary conditions may be s;tisfied
by requiring that equation (1.13) holds, that is, by requiring that
the solutions be regular at the origin, and the remaining N boundary
conditions may be taken to be the values of the first derivatives at

the origin. Alternatively if the integration is started at X s in
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the vicinity of the origin, then use can be made of the known start-
ing series for the solution and its first derivative to provide the
necessary 2N boundary conditions, However, the specification of
these 2N conditions will give rise to one solution only and since
the general solution of (1,12) involves N arbitrary constants it is
necessary to specify N different choices of the initial boundary con-
ditions, It is also important to note that these starting conditions
whicﬁ satisfy (1,13) will not in general lead to solutions which sat-
isfy the asymptotic boundary condition given by (1.14), Thus we
need .to generate N linearly independent solutions of (1,12), The
N different sets of starting conditions can be represented by a (2N x N)
matrix X, the columns of which are linearly independent, The general
assumption is that if the columns of oK are linearly independent then
the respective asymptotic forms will also be linearly independent,
However, due to the finite word length of computers it may be the
case that this linear independence is not maintained during the course
of the integration, We shall discuss this point further in Chapter
8. The ith column of ™€ contains 2N elements of which (2N-2) elem-
ents are zeros and the (2i-1)th and (2i)th elements correspond to
the values of the ith component of the solution and its derivative
respectively at the origin (or alternatively at xo).

The system of equations can then be integrated step by step N
different times for each vector of starting conditions, out into the
asymptotic region where the solution is then matched to the correct

asymptotic form, and the R matrix is calculated,

§ 1.4 Some recent comparative studies at fixed steplength

Some comparisons of algorithms for the solution of coupled sec-

ond order differential equations of the form (1.12) have appeared
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in which numerical methods of integration are used over a fixed mesh.
Some use of stepchanging facilities has been made with regard to
problems where the integration mesh is divided into n predetermined

(i-D, .

regions where the ith region uses a steplength of 2 ;

thus changes
in steplength occur only when stepping from one region to another

at which point the steplength is doubled, No regard is paid to the
estimation of the local truncation error of the method and to its
subsequent control,

It is important to establish the criteria which are to be con-
sidered before any comparison between the methods is made and it is
equally important to appreciate that any conclusions drawn as to the
relative performance of the various algorithms must necessarily reflect
the performance of the computer code as a whole and not just the method
of solution, Different implementations of the same method might
lead us to reformulate our views on the performance of that particular
method.

In comparing different algorithms for the solution of (1.12)
one is generally interested in the reliability and efficiency of such
algorithms, The reliability of an algorithm is reflected by how
well the numerical solution approximates the true solution; the eff-

iciency of an algorithm is measured by such things as the number of
function evaluations required to achieve specified accuracies in the
solution, the storage required by the computer in solving the system
of differential equations and the overhead which is a measure of the
computer time required to solve the problem independent of the time
required for performing the necessary function evaluations,

One of the earliest comparisons of numerical methods for the
solution of the radial Schrddinger equation, undertaken by Froese

(1963), considered four different methods given below.
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(a) 4th order Runge-Kutta method

] = ]
Y ol Y +%(k1+2k2+2k3+k4)
! 2
Vil = ¥, + hyn + % (k1 + k2 + k3)
kl = f(xn,yn)
1
k2 = f(xn + h, Yn +h Yn )
2 2
kq = f(x_ 4+ h, y +Ey'+§2kl)
n 2 n 2 n 4
K = f(x_ +h, y +hy' +h%k)
4 n > 7n n 2 2
(b) Nystrom method
1 = 1
Yo+l ' +%(k1+4k2+k3)
y = y + hy ' + h2 tk + 2k, )
n+l n yn 3 1 2
k1 = f(xn. yn)
k, = f(x +h,y +hy!'+ 32 ki)
2 2 8
k = f(x_+h, y + hy ' +-h2k )
3 n ' n n - 2

(¢) Kutta - 52 me thod

' 2
2yn - Y1t h™ (k, + 10k, + k3)

Ynt+1 = 12 1 2
k1 B f(xn-l-’ yn-l)

k2 - f(xn’ yn)

ky = f(x +h, 2y - Yoo t h2k2)

(d) Numerov's method

} 2 " " 2
= (2yn - Yo-1 + h” (10yn + Y1 ))/(L - h7E )

12 12

For a detailed discussion of Numerov's method see Chapter 4,

yn+1 n+1l

Froese studied the relative accuracy and efficiency of these
methods in solving the single channel radial Schrddinger equation

for atomic hydrogen using a fixed steplength throughout and concluded

that the relative accuracies of the methods are in agreement to within
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a factor of ten and that the Numerov method is 'best' in the sense
that it requires only 1 function evaluation per step compared to 4,

3 and 2 function evaluations respectively for methods (a), (b) and
(c). Methods (b), (c) and (d) all take account of the special form
of the differential equation and we would expect these methods to

lead to a more efficient solution of the differential equation,
Reference to method (b) is made in a discussion by Scraton (1964)
concerning numerical methods of solution for the differential equation
y" = £f(x, y).

Blatt (1967) asserted that the Numerov method is clearly superior
to the fourth order Runge Kutta method because of the higher order
local truncation error in the Numerov method which is proportional
to h6 where h is the steplength; the local truncation error in the
fourth order Runge Kutta method is proportional to h5. Sloan (1968)
subsequently pointed out that Blatt's conclusion is unjustified and
showed that the cumulative errors in both methods are proportional
to h4, using an approach suggested earlier by Kopal (1955). A com-
parison of the actual errors obtained using the methods of Numerov
and Nystrom in solving

Tx) = -y(x)

with the initial conditions

y(0) = 0, y'(0)=1
for a fixed steplength was made; the errors are easily found by com-
paring the numerical solution with the analytic solution y(x) = sin x,
The comparison showed that the Numerov method is only slightly superior
if the same steplength is used in both methods, but that it is clearly
superior when the comparison between Numerov with steplength h and

Nystrom with steplength 2h is made, This is a more reasonable com-

parison since the Nystrom method requires function values at the half-
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way points.

Lester (1968) and Lester and Bernstein (1968) have solved a
system of coupled second order differential equations of the form
(1.12) using the method of de Vogelaere (1955), which is a fourth
order step by step method (with local truncation errér proportional
to ﬁs) for solving y"= f(x, y). For the system of equations

2
- ( [ESg—— { = -
diz yi(x) fi(x, Yl\x), y2(x)) ] yN(x))! 1 1’ 2’ 3 N

the algorithm performs the integration from x tox by cyclic

n+l

use of the equations

n
<

yi,l i,o % i,o i,1 i,1

in the notation of Lester (1971) where

<
n

yi(x + sh),

dyi(x + Sh),

dx

<
1

n
]

fi(x + sh, yl,s’ y2,s’-—-’yN,s)

and h = X+1 " %qr The neglected terms are of order h4, h5 and
h5 respectively, Lester chooses to neglect a comparison with the
well used Numerov method on the basis that the Numerov method requires
separate procedures for both starting the integration and changing

the steplength, The integration using de Vogelaere's method how-
ever presents no such problems and this method is compared for a

fixed steplength with the fourth order Runge-Kutta-Gill (Hildebrand,
1956) procedure, referred to henceforth as the RKG procedure, for

the problem of two coupled harmonic oscillators for which the analytical

solutions are available, The method of de Vogelaere is found to
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be faster than the RKG process by a factor of approximately two and
it is noted that the de Vogelaere algorithm performs two function
evaluations per step compared to four in the RKG process, It is
not clear however whether any stepchanging was in fact performed dur-
ing the execution of de Vogelaere's method and this comment is equally
applicable to a comparative study by Allison (1970) of de Vogelaere's
method with the matrix and iterative Numerov methods for the cal-
culation of cross sections for the rotational excitation of molecular
hydrogen by heavy particle impact,

Allison's study concludes that the relative speeds of the methods
to calculate the square of the modulus of the S matrix for sets of 4,
9 and 16 coupled equations are in the order:

matrix Numerov < de Vogelaere < iterative Numerov,

and that the accuracy of the methods for this calculation is best
for the matrix Numerov method followed by the de Vogelaere and iter-
ative Numerov methods. The range of integration for the comparison
of the methods consists of two regions, the second of which uses a
steplength which is twice the value of that used in the first region,
corresponding to the usual practice of using a predetermined mesh,

Raptis and Allison (1977) have examined a method which is essen-
tially the Numerov method in the nonclassical region, that is for

k2 - V< 0, but which solves the radial Schrbdinger equation more

efficiently in the classical region, that is for k2 - V>0 by
exploiting the a priori knowledge of theasymptotic form of the sol-
ution, This method is compared with the Numerov method in solving
the single channel radial Schrddinger equation for a Lennard-Jones
potential for a range of values of k and z and phase shifts accurate
to three decimal places are computed. The number of integration

steps required over the range of integration using the Raptis and
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Allison method is reported to be often less than half the correspond-
ing number required using the method of Numerov. Raptis and Allison
state that the truncation error of their method can be used to control
the interval size but it appears to be the case that no such control
was used in their study.* They also report a rapid increase over
the Numerov method in the optimal interval size allowed from trunca-
tion error considerations. For a detailed discussion of the Raptis
and Allison method and its automatic implementation see Chapter 5,

A recent study by 0'Shea (1978) examines numerical methods for
the solution of a system arising in the close-coupling formulation
of the Schrodinger equation with exchange terms. The methods in-
cluded in the comparison are the Numerov and de Vogelaere methods
and some fourth order Runge Kutta type methods; the Runge Kutta
me thods consist of methods (a) and (b) studied by Froese and the
classical fourth order method, as applied to a system of first order
differential equations, both with and without a Richardson-type
truncation estimate correction, The relative efficiency of the
methods is measured by the computer time and storage requirements
of the metho¢sand on this basis the conclusion of the study is that
de Vogelaere's algorithm is the most efficient. With reference to
the problem of an electron colliding with an oxygen ion, 0'Shea shows
that the computer time taken to solve this problem using de Vogelaere's
method with a steplength of 2h is less than half that taken using
_Numerov's method with a steplength h, with the times for the various
Runge Kutta methods lying between those for de Vogelaere and Numerov.
It is also shown that de Vogelaere has the minimum storage require-
ments, the number of arrays required being precisely half that re-
quired in the Numerov method, 0'Shea states that the de Vogelaere
method is very much superior to all of the other methods tested in
* The published (1978) version of their paper indicates that the step-

length is automatically doubled if the truncation error estimate falls
below some value,
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the efficient use of computer time; we feel however that too much
emphasis is placed on the ability of de Vogelaere's method to use
a larger steplength of 2h compared with a steplength h in Numerov
in achieving the same accuracy in calculating the phase shift, The
point at which the contribution of the exchange terms can be consid-
ered insignificant is the same for all of the algorithms and it is
important to note that a single step of 2h performed by de Vogelaere's
method requires 2 function evaluations, the same number being required
for two steps of length h in Numerov's method. Since the number
of function evaluations directly affects the computer time required
for the solution of the system of equations this suggests that the
superiority of de Vogelaere over Numerov is a consequence of the
relative computing efficienc& of the two methods, It is also import-
ant to note that the matrix Numerov method (see Smith, Henry and Burke,
1966; Allison, 1970) considered by O'Shea warrants a matrix inversion
at each step of the calculation; this is a penalty of the implicit
nature of the method, By contrast the method of de Vogelaere is
an explicit method and it may be the case that some inefficiency
arises in the implementation of Numerov's method thus leading perhaps
to considerably higher overheads than those encountered in the part-
icular implementation of de Vogelaere's method.

A more detailed discussion of O'Shea's work may be found in his
Ph.D, thesis (1971) where the superiority of de Vogelaere's method
in the above respects is again emphasized, 0'Shea states that to
his knowledge 'no worthwhile investigation of the stability of de
Vogelaere's method has yet been undertaken’' and he suggests a part-
icular quantity (which is readily calculated from previously calcul-
ated values of the solution and its first and second derivatives)

be used 'as an ad hoc criterion for stability'. He also states,



22,

following de Vogelaere (1955), that the same quantity may be used

to give an indication of the accuracy of the calculations, but beyond
recognition of this fact no further consideration is given to the
matter,

Some other comparisons of methods have appeared such as the use
of perturbation and Numerov methods for the solution of systems of
coupled second order differential equations (see e,g, Riehl, Diestler
and Wagner, 1974) in addition to some comparisons of differential
and integral equation techniques for the numerical solution of the
radial Schrddinger equation. In particular Stern (1977) compares
the phase shifts computed for the static electron-hydrogen potential
using the standard fourth order Runge Kutta method and Numerov's
method with the correSpondigg phase shifts obtained from quadrature
solutions of the (Fredholm) integral formulation of the radial Schrd-
dinger equation; the quadrature formulae which are considered are
the composite trapezoidal and Simpson rules and an n-point Gauss-
Legendre formula. Stern concludes that of the three quadrature
methods the composite trapezoidal rule is the most reliable particu-
larly when computing phase shifts at very low energies and that all
the methods yield phase shifts of similar accuracy provided that a
sufficient number of pivotal points are used in the quadrature methods
and the steplength in the Runge Kutta and Numerov methods is 'small
enough', He reports that at low energies using the methods of Runge
Kutta and Numerov discrepancies arise in the computed phase shifts
for different values of the steplength h (Stern considers h = (0.1,
0.05, 0.01)). He unfortunately refers to these discrepancies as
'instabilities' but we suspect that this failure of the phase shifts
to agree for a particular energy and angular momentum value at diff-
erent values of h is a consequence of the method used for the phase

shift calculation, Stern comments that the steplength in the methods
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of Runge Kutta and Numerov can be adjusted automatically until a
specified accuracy is achieved but no consideration is actually
given to such automatic methods on the grounds that the necessary
computer time is not easy to predict, However if a particular
accuracy is requested then we should reasonably expect to use more
computer time particularly at the more stringent error requirements,

In summary, we have looked at a number of comparative studies
involving methods applicable to solving systems of equations of the
form (1.12). Although these studies are by no means comprehensive
they do give some guidance as to the relative performance of various
methods for a fixed steplength, Our interest lies primarily in dir-
ect numerical integration techniques; it is probably fair to say that
the most widely used method }or solving (1.12) is that of Numerov,

The method of de Vogelaere has also been used fairly extensively (e.g.
Verlet, 1967; Lester, 1968, 1971; Chandra, 1973; Basavaiah and Broom,
1975; Launay, 1976); however despite the frequent use of de Vogelaere's
method we are unaware of any previous error analysis, or any study

of the stability of the method.

§1.5 The need for automatic integration techniques

To our knowledge no consideration has been given to the use of
fully automatic methods for solving the radial Schrddinger aquation,
Such methods provide an estimate of the local truncation error per
step or per unit step at each step of the integration and according
as this estimate is less or greater than some specified tolerance
an increase or decrease in the steplength is performed.

There appears to be a general belief that in scattering problems
it is valid to multiply the steplength successively by some integral

factor as x increases, as for example, Chandra (1973) invites the
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user of his program to do. Allison (1970) argues that in many pro-
blems the function V(x) is a rapidly varying function for small x,
gradually becoming smoother and finally tending to zero for large x
and that to integrate such a problem efficiently requires a steady
increase in steplength, This suggests that satisfactory error
control could be achieved by calculating some measure of the trunca-
tion error, and doubling the steplength whenever this quantity is
less than some specified tolerance, However for scattering problems
this approach is not entirely reliable, Ultimately both the calcul-
ated solution and its attendant error are oscillatory functions, and
therefore it is possible to find a small local error at some point
and a substantially larger error a few steps later, We contend that
whatever numerical method is used automatic steplength control re-
quires not only a procedure for increasing the steplength when this
is desirable, but also a facility for steplength decrease and the
ability to detect when this is necessary,

Indeed the manner in which the steplength changes during the
course of the integration may provide valuable information to the
user concerning the nature of the solution, When solving an initial
value problem for an ordinary differential equation we are normally
interested in the actual or global error, the difference between the
numerical solution and the exact solution of the problem, While
estimates of the global error can sometimes be obtained, for example,
by two parallel integrations and some form of global extrapolation
(Shampine and Watts, 1976) it is not possible in general to Simultan-
eously estimate and control the global error. We therefore adopt
the more modest goal of controlling the local error; the extent to
which our control of the local error per unit step controls the global

error then depends on the stability of the differential equation,
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We choose to follow Hull et al (1972) and control the estimated error
per unit step instead of the estimated‘error per step; when a differ-
ential equation if integrated over a fixed interval, a decrease in h
results in an increased number of steps, and the error criterion
adopted should take some account of this,

With regard to integration over a fixed range, the simplest
strategy which can be used for changing the steplength is that of
halving and doubling, since if h is restricted to undergo changes
by factors of two, we ensure that the endpoint of the range of
integration is reached without any need for interpolation, This
strategy is frequently used in variable step-variable order Adams
codes, and in particular in the N_A.G. routine DO2AHF which solves
a system of first order ordinary differential equatiomns.

The use of a varying steplength is important in reducing the
computational work with respect to the number of steps and hence the
number of function evaluations which in turn leads to increased
efficiency in solving the differential equation. A variety of
methods for changing the steplength using linear multistep methods

are discussed by Krogh (1973).
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CHAPTER 2

De Vogelaere's method

§2.1 Derivation of Method

The method of de Vogelaere (1955) is a fourth order step by
step process for solving

2
d % = f(x, y) (2.1)
dx

subject to the initial conditions

y(xo) = Yo z(xo) =z

where Y, and z are specified numbers and

z(x) = dy.

The method is equally applicable to solving systems of such equations,

The general step of de Vogelaere's method, leading from Xon to

Xont2 — Fon + 2h, for a fixed steplength h, may be described as

follows:
Given Yon' Z2n° f2n and f2n-1’
(i) Yonp1 T Yoq *REpn * %2 (4%20 = Fpn-y) (2.2)
1) fonm = fGpnirs Yongt) (2.3)
(i11) y, ., = y, + 2hz, + %2(4f2n+1 + 2f2—n) '(2,_4)
(Av) £y = f(Xpni9s Yonyo) (2.5)
(V) zphp T gt Ry + 480 F fanga) (2.6)

3
where Y and z are approximations to the exact solution y(xn) and its

first derivative y'(xn) at the mesh point - The local truncation

errors in Yont and

5 . , 4
2 Zy 042 are.of order h™ and that in Yonsl is of order h'.

De Vogelaere's method makes use of an intermediate point at the mid-

point of the interval ([x the solution is predicted at this

2n* Xons2l’
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point to third order in equation (2.2) and the predicted value is

then used in the corrector equation (2.4) to obtain the solution cor-

rect to fourth order at the end of the interval.

We follow de Vogelaere and give a derivation of the method in

terms of finite difference expansions, For a derivation based on

Taylor expansions the interested reader is referred to Coleman and

Mohamed (1978), We set up the machinery by introducing the notation

. X
(n), =Jo(n—1) eax, @ f - g oo

and we see that

X Px
S; jo f(x)dx2

(@)

= Ppexy - Poy -
(2.1) may be written as |
, = @
and we also have
oo W L,

= 1, 2

x [(1) (1)
o f(x) - £f(0) tdx

(1)f(0

)x.

We can express f(x), using Newton's forward difference formula, as

£(x) = £ +7T Af + ——X(x;h) Azfo + x(x'h)gx'Zh)a\3f° + ===
2'h 3'h
and substituting x = uh leads to the formula
_ u(u-1) 2 u(u-1)(u-2) .3 o
g(uh) = £+ uAf_+ T £+ BT ATE + .
Thus
u u
(z)f = h2 s j f(uh)du
oJo

24

This may be written in the form

2 3 4 3
Rk Wy afp U4 a2 (u2u)
o2 o6 o

(3u5-15u4+20u3)+ --

3
+ AT E T3¢0
(2. 7)
B (2u3+u4),
7% ;

[og?)
yx Ex f(x)dx® = b’ 22 -DP p, (-ua® £
= P (o}
o Jo p=o s
) u2 u3
where x = uh, PZ,o(u)= 7 PZ,I(U) =g P2,2(u) =

3 4 15u4 + 3u5); ---

P (u) = (20u
2,3 360
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Similarly, Newton's backward difference formula, expressed as

£(x) = £ +3 af_ x———(’,‘“z‘) A’ £, + x(x+h)gx+2h) a3 £ g+ ===
2'h 3'h '
leads to
o0
xJ’x 2 2 51 P
Jo o £(x)dx = h p;g Qz,p(u) A f_p (2.8)
where x = uh, Q2 (u) = P, p(u) for p=0. By including terms up
s P )
to fourth order in the forward difference form for (Z)f, and then

differentiating with respect to u and substituting the appropriate

value for u we obtain

(1) ¢ _ (Vg _ gl 26 1 4 o .
2 o T B2t g AR, - g Ay 4o (2.9)

It is now possible to derive de Vogelaere's method by integrating
Newton's difference formulae and considering various truncations of
the expansions (2.7), (2.8).

When x = h, corresponding to u = 1, and Af_. is neglected in

1
(2.8) we have

(2) (2) (1 - n2 1
£1- ) fo % oh h (2fo)
or
- h2
¥q = Yo + hzo + 2 fo- (2.10)

where §1 signifies an approximation to y(xl) of second order,

Similarly when x = h and Azfo is neglected in (2.7) we have

(2) (2) (D¢, - n2ilp 1 ¢
£ - £ - fh =758 + g af]
or
2
= _ h® (2f + £) (2.11)
Yy S Y, + hz° +% o 1

where ;1 represents an approximation to y(xl) of third order,

Another third order approximation to y(xl) may be obtained by

neglecting A2f -2 when x = h in (2.8), Then

(o] Q

1 1
1. .1, ¢
1 [5f, +¢g A

~1]
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or

1+ ).

The above formula corresponds to (2.2) for n = 0,

By neglecting A‘3 fo when x = 2h in (2,7) we have

(2) _(2) _ (1) - 2 4 £ 2¢
22 £ £ _2n ® [2f 45 Af 4 0.4%f ]

or
h2
Y, = ¥y, + 2hz + 3 (2f  + 4f )
which is a fourth order approximation to y(xz); the formula for Yq
corresponds to (2.4) for n = O,

Finally by neglecting A4f in (2,9) we arrive at

-1

z = Z +%(fo+4f1+ f2)

which is the well'known Simpson rule; the formula corresponds to (2.6)
for n = 0O,

The starting value of the independent variable is taken to be
zero and we regard each step to be comprised of two intervals of
length h, We assume that iin—l is known to third order and that
Yon:  Zog» f2n are known to fourth order, The general step lead-

ing from x = x2n+2h is then given by (2.2) - (2.6), in

2n B0 ¥on42

which Yont1’ £ ony1 2T calculated to third order and Yon+2®' Z2n42°

f2n+2 are calculated to fourth order, These values then serve as
initial values for the next step and cyclic use of (2.2) - (2.6) en-
ables the solution to be obtained over the range of integration.

It only remains to start the method. The values of Yo and z
alone are insufficient to start the calculation and de Vogelaere has
suggested two separate methods for providing the additional starting
value; fo is computed from (2.1),

Method (a) : A second order approximation ;1 is calculated using
)

(2.10) and the corresponding function value fl = f(x1,§1) is calculated
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(also to second order) by use of equation (2.1), Equation (2,11)
may then be used with El replacing f1 to give a third order approx-
imation ?1 to y(xl) which can now be used in (2.3) - (2.6) with n=0,
Method (b) : A second order approximation for y(x_l) can be calcul-

ated using the backwards form of (2,9):

h2
Y. = ¥, - bz + 7 £ (2.12)
and the corresponding function value f 1= f(xo-h, y—l) is calcul-
ated to the same order using (2,1). It is now possible to use (2,2) -

(2.6) with n = 0 to provide the solution over the first step since
(2.2) only requires f_1 to be accurate to first order,

To our knowledge method (b) has been used exclusively until
Coleman and Mohamed (1979) ° in all applications of de Vogel-
aere's method to solve the radial Schr¥dinger equation; perhaps a
reason for the continual neglect of method (a) as a means of starting
is that once Y has been calculated in method (b) it is possible
to enter the general step immediately. In termé of asymptotic error
estimates the methods are equivalent, both giving approximations for
y(xl) with errors of order h4. We shall see later however that in
practice the accuracies of the two estimates may be very different,

The de Vogelaere algorithm has some similarity with Runge-Kutta
methods but it involves only 2 function evaluations per step whereas
a Runge-Kutta method of the same order requires 3 (see e,g, Scraton,
1964). Unlike Runge-Kutta methods, the de Vogelaere algorithm is
not self-starting but this difficulty is easily overcome by use of

either method (a) or (b).

§ 2,2 Estimation of the local truncation error for a fixed steplength

The leading terms in the local truncation errors in Yir Y5 2,

correspond to the first neglected terms in the finite difference ex-
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pansions (2.7) and (2.8) from which the formulae for Yi» ¥ps 2, were

2
derived. Thus we see that the leading term in the truncation error
in the step from x_ to x, is

o 2
> ' or g’y Y (2.13)
45 o 45
where we have used ASf o 23 fo"'. Since in general we do not

have the fifth derivative of the solution readily available during
the calculation we must find some means of estimating (2.13).

It is possible by setting x = h in (2.7) and neglecting the A3f°
term to generate a further approximation for y(x,) which is of fourth

order, We shall denote this fourth order approximation to y(xl) by

* h
Yy, v ere
* 2 1 1 2
Y1 = yo+hz + h [zf +6Afo—24Af°]
that is
* h h 7 6 ) (2.14a)
y, = vy, *hz +357 (7, + 6f) - £, .
h2
=y, - hz2 + 24 (7f 5 + 6f1 - fo) (2.14b)

where (2,14b) is obtained from (2.1l4a) by first substituting for Yo

using (2.2) with n = 0 and then substituting for z using (2.6)

with n = 0.
* =
I1f method (a) of starting is used the difference (y1 - yl) is
given by
* = hz
yp =¥y = 25 (-, F 28 £))

where we have used equations (2.11) and (2, 1l4a). We make use of

the following Taylor expansions for £ £, about the point X!

1 ~2
. 2 3
h h m
= ' - " - —_——
£ £, + BES + S £+ g £ +
_ ' 2 n _l_q._ 3 rt e
f2 = fo + 2hfo + 2h f0 + 3h fo +

to obtain
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* 7 " "
e - e 4 o®) (2.15)

24 ° 24

<
y—
|
<
Pt
1]

In the next step Y, is calculated using equation (2.2) with n =1

and the difference (y3* - y3) is given by

* _ .2
Y3 = ¥3 = _1212(4f1 - 9f2 + 6f3 - fa)
where y3* has been obtained from the analogue of equation (2.1l4a),
We make use of the following Taylor expansions for fl’ f3, f4 about
X
o
£ = £, - hf + e, - h3f2"' + o
2 2 6
f _ ] hz 1" h3 "
3 = f2 + hf2 +h f2 +h7f, 4 ---
2 6
£ = £+ 2hf, + 20°f + 4hOF
4 = Fgh ARL, + 2 7 3 2 + o=
ta obtain
4 5
* _h " h m 6
A f2 24 f2 + 0(h7). (2.16)
"
Further use of Taylor expansions for f2 s f2"L about X, permits an

estimate of (2,13) by consideration of a suitable combination of the

). We find
5 m

differences (yl* - §1knﬂy3* - ¥3

%* * = ~hf
Coeo b5 . .
which is 2% times the allowed error, Thus the leading term in the
truncation error is given by
2 0 =~ B [(yy" - vy + 30y, - I )
2_h = 8 [(yg =-y3)+3(y; =yl (2.17
a5 o 15 3 3 1 1

If instead, method (b) of starting is used, we consider the
difference (yl* - yl) in the first step, where y, is given by equation

(2.2) with n=0. We have

Y 1" n1
y, -y, = ne " - nf + o(nd) (2.18)
1 3 o EYA o
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which follows directly from equation (2.16). We can now obtain

the following linear combination of (2.16) and (2.18):

¥ +* 5 "

which is ﬁ2+ times the allowed error, Thus the leading term in the
8

truncation error is given by

S mn * %
2 bW f == 8 [(yy -yg)-(y; -y

%5 ° 45 1

)], (2.19)

An estimation of the truncation error for a general step from

X0 to R 42 is given by
2 bof, * * 2.2
2 Why = 8 {0043 7 Yone3" 0 anya 7 Yopu?1 (2.20)
45 45

regardless of which method of starting is used,

Q
S 2.3 A bound for the local truncation error

The error analysis described here is based on three functionals
which are related to the truncation errors in the formulae (2.2),
(2.4), (2.6), For an arbitrary function y(x), having p+l continuous

.derivatives, we define the functional

Z,[y(x),h] = y(xth) - y(x) = by (x) - Hlby (x) = y (x-)] . (2.21)
6 -

Taylor's theorem can be expressed in the form

y(x+jh) = y(x)+jhy'(x)+—--+(jﬁ)py(P)(x)fgp+153(j-s)py(p+1)(x+sh)ds
p! p. b

and we make use of the following Taylor expansions for use in (2.21):

1
1 n (151 v
y(x+h) = y(x) + hy (x) + Ezy (x) + h3y (x) + Eé J\ (1-s)3y1 (x-sh)ds
2 6 6 o
" n m 2 = 1v
y (x-h) =y (x) - hy (x) +h (-1-s)y~ (x+sh)ds .
o

Thus it can be shown that

+This factor is incorrectly quoted as 8 in de Vogelaere (1955, p.123);
45
consequently the factor appearing in his error estimate is also incorrect
and should be read as 8 ,as in (2.19).
45
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1 o
(,Kl[y(x), h] n? H (1-5)3y Y (x+sh)ds + f (1+s)y1v(x+sh)ds]
6 _1

1
S Gl(s)ylv(x + sh)ds (2.22)
-1

I
o35

with

IN
o

G, (s) {(1 +5) , -1< s

(1 -S) s 0< s £1
For -1% s < 1, 1 (s)Z O. Since Gl(s) is of constant sign on the
interval of integration equation (2.21) may be written using the Mean
Value Theorem as

£ | [y(x), b

with

h“clyl"(x +0.h), -1, <1 (2.23)

(o]
]

Ln
1 j G, (s) ds =
1 6 -1 1

0|~

We now define the functional

Lo ly(x), bl = y(x + 20) - y(x) - 2hy (x) - hZ[4y (x+h)+2y (x)] (2.24)
3

and we make use of the following expansions:

y(x+2h) = y(x)+2hy (x)+2h%y (x)+4hdy  (x)+2n*y!V(x)
3 3
5 2 4 v
+h”~ (2-8) 'y (x+sh)ds
24 VYo
y (x#h) = y (x) + by (x) +h2yVo+nd [ (1-5)%yY (xbsh)ds.
2 2
Then
2 1
dﬁz[y(x), h} = EE [ X (2-5)4yv(x+sh)ds - 16 S (1-s)2yv(x+sh)ds]
24 o o
5 2
= h” J Gz(s)yv(x+sh)ds (2.25)
24 o
where
- 4 2 . . <
Gz(s) = | (2 -s8) - 16(1 - s) s 0&£s< 1
(2 - ) , 1€s<2



35.

For 0458<1, GZ(S) = s2 (sz - 8s + 8)20 and for 14S<2, GZ(S) = (2-3)250.

Thus GZ(S) is of constant sign on the interval of integration and we

have
Lyly(x), bl = nleyV(x +0,0), 040, <2 (2.26)
with )
A J; G, (s)ds = 2 .

The third functional required is

Ly[(0, ] = y(xszh) - y'(x)-h[y"(x)+4y"(x+h)+y"(x+2h):| (2.27)
3

and the standard expression for the truncation error in Simpson's

rule gives

£ 3ly(x),n] = h5c3y"1 (x +850), 026, <2 (2.28)
= _ L
where c3 = - 30

Let y(x) be the exact solution of the initial -value problem
(2.1). To investigate the local truncation error in the step from

X to x we suppose that the starting values at x,  are exact,

2n 2n+2
that is
[}
Yon y(xy,) ’ zgn = Y (%5,)
_ n _ ", )
f2n -y (x2n) } £fon-1° Y (x2n-1 )

In view of the assumed starting values,
i; ( h _ 1 2 " "
1 [3(xpp)s BT = y(xop00) = y(xp) = By (%) - % [4y (x54)=y (%9101

2

= y(xy 1) = Yo ~ b2y, - % (4f,, = fpq]

= y(xy 1) " Yone1 (2.29)

2n+1

is

e ation error at x
Thus the truncati 2041

3 - ' 4 1v _ Z
Y1) = Yons1 g.y (x,, +01 1), 140,41 (2.30)
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If we assume a bound on the fourth derivative of y for all x in the

appropriate interval [a, b] namely

lylv(x)l < M, |, x€fa, b]

we obtain
4

h
- P
) = Yont1 | < 8

[y(x M (2.31)

2n+1 4

Similarly,

_ ! 2 1" "
oy () b1 = vy )=y (i )=2hy Gy )-h7[4y (xp, 1) 42y (xp)]

3
_ f 1"
_y(x2n+2)-y2n-2h22n- % 4y (x2n+1)+2f2n] ! (2.32)
The truncation error at X )42 is given by
Y% 2)=Yo o = (X, o) = yo_ = 2hz, = h(4E, . + 2£ )
2n+2” "7 2n+2 2n+2 Yon 2n T = ‘*ton+l 2n

3

=L ly(x, ),h] + & nl[y"(x, ) - £, . 1.
2 2n 3 2n+1 2n+1 (2.33)

To obtain a bound on this error we assume a Lipschitz condition

|£x, 93 - £x,| <k ]y-n | (2.34)

for all x in [a, b] and all finite y aner. Then if

[yo| <M, xefa, b]

we obtain the bound

5 6
Y(¥on42) ™ Yone2 ' £ 2 h'MAKRh- M. (2.35)
45 6
Finally,
! ' " " "
o£3[Y(X2n),h] =y (x5, 007y (%, ) - % [y (x, ) + 8y (%, 1) +7 (x, 5
| " " (2.36)
-y (x2n+2) T % T % [f2n+4y (x2n+1)+y (x2n+2)] ’

We thus have

h{f, + 4f

: an+1 E2n+2!

1 ]
Y (X0 2)72g000 =¥ (X 10072 -

)]

="{’3[>'("2|n)’h] + % hly (x2n+1)_f2n+1]+%[y (%9n4.2)7Fon40]

(2.37)

Now i .
if we assume a bound on the sixth derivative of y for all x in
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[a, b]:
o] < owg
we obtain the bound
’Y‘(xz +2) = Zyn.o ézhi M+ 525(3+Kh2)M4+g§h6M5 (2.38)
n 90 18 135

§ 2.4 stability analysis

If y(x) is the exact solution of the initial -value problem (2,1),
the global truncation errors in the function and derivative values

at the end of the nth de Vogelaere step are

(1) _ -
en - y(x2n-1) y2n-1 (2.39)
(2) _
e = y(xzn) - You (2,.40)
en(3) - h[yl(xzn) -z, ] (2.41)

where the factor of h in the third definition is introduced to simplify
the form of later equations.

Equation (2.29) may be rearranged as

) = y(xzn)+hy.(xzn)f%Z[4y"(x2n)-y"(x2n_1)]ﬁil[y(xzn),h] (2.42)

and equation (2.2) is given by

y(x2n+1

2
Yon+1 Yon * Bopq * B 145y, - fon-1] ]
Therefore subtracting we have
(1)' (2) (3) 2 1" f n ]z ) h
®n+1 = % +en f%h [y (x2n)_f2n]-% y (x2n-1)_f2n-1 K 1[y(x2n B

(2.43)
Equation (2.32) may be rearranged as

)=y(x2n)+2hy'(x2n)+hz[4y (xy,,1712y (x2n)]ﬁz2[y(32n)sh] (2.44)

y(%y 42 3

and equation (2.4) is given by

2
= Yo, * 2hz .t h [4f2n +2f

Yon+2 2 3 IPRCI T P
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Thus
(2) (2) ( )
“arl = ©n “n gh [y (x2 +1) 2 +1]+22 [y (x ‘f2n1+b[2[Y(x2n),h].

(2.45)
Equation (2.36) may be rearranged as

Y ey <xzn)*§[y"‘xzn)+4y (Ry )Y (3y )4y ly(x, ), (2.46)

and equation (2.6) is given by

Zont2 T 2 2n+% [Eyn + 4501+ fonal
Hence
(3) (3) 2"
n+1 n +g [y (x n)-EZn] + % h-ly (x2n+1) - f2n+1]
2 n z
#ETY (gnyp)Fpnyp] + byly(y), bl (2.47)

In accordance with normal practice (e,g. Lambert, 1973) the

stability of the method is discussed with reference to the eqﬁation

" 2
y = Ay
In this case the equations for the cumulative errors simplify to
A En+1 = B En + q1n+l (2.48)
= (1) (2) (3),1 - T
where e = [en > e > e 17, 41n+1—[]£1’i:2’ hﬁ;] and the
matrices A and B have the form
' r— -
A =[ 1 0 ol, 8 = [8& 1+42F 1]
6 3
-4h 1 0 0 1+2h 2
3 3
-4h -h 1 -0 h 1
) 3 J ! 3 -

with

Since A is non-singular equation (2.48) may be written as

-1
sn+1 - CEn + A ﬁz n+1
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where _ -
_ -1 _ —E 2 - .
C A B 6 1 + 3 h 1

-2k 2 1+2h+2857 2 2(1+2h)
- 9 3
9

-2k 2(1+%) ll-(6#&3—;‘& R 2) 1+ 20+ 252

755 3¢ o+ 3 5" |

The characteristic polynomial of the matrix C is

P, B) = 67 - (12 + 23f + 8R%)x” + (6-2R - 4R%)r + &
The "Schur criterion" described in Lambert (1973, p. 78) can be used
to show that/O(r,E) is a Schur polynomial, in other words that all
its zeros lie inside the unitcircle if and only if h € (-2, 0). Thus
the interval of absolute stability of de Vogelaere's method is [-2,0].
The moduli of the zeros of/d(r, h) are plotted in Figure 1 for a range

of values of h, The three zeros, though distinct, have the same

modulus when h = -1,732 (to three decimal places),

§ 2.5 The cumulative error

(i)

For the purpose of this section we redefine the quantities e ,

i =1, 2, 3 in equations (2.39) - (2.41) to be

(L _
en = h[y(xzn_l) = an_ll (2049)
(2) _
e = y(xzn) Yon (2.50)
(3) _ !
en = y (x2n) -2z, (2.51)
Notice that the leading terms in én(l), en(z), en(3) are proportional
to hs, A comparison of equations (2.2), (2.4), (2.6) with (2,42),

(2.44), (2.46) respectively leads to the following set of equations:

2

1) (@, 3 L7, 5 n
n +l=he_ +h°e_ f%h [y (xzn)-fzn]-% [y (xy _)=Ey 1]ﬁilrx ),hj (2.52)

]+2h [y (x, )-£, 14, [y(x, ),0](2.53)

‘J\'

(2)_ (2)
€n+1 ©n

(3) /IRl
+2hg ~+4
h [y 1) ann1
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(3) (3) 1" " n
€+l ~ ©n +%[y (xy )-Epp] # %h[y (x2n+1)-f2n+l]+%[y(x2n+2)_f2n+2]
+a"é3[y(x2n), h] (2.54)

where

4, . = by (x40 n) 146, <1

1 1Y 1 ’ 1
L, = h5c2 y' (x +0,h) . 0<6,42
1;3 - hsc,3 g1 (x +8 5h) , 0¢9, <2

If as in the previous section we assume a Lipschitz condition

'

for all x in the appropriate interval [a, b] and all finite y and 0

<K

£(x, y) - f(x,rL)

and if

Vl(x)

IYN(X)’ < M, y(x) & M < Mg, x € [a, b]

YIRS

equations (2.52) - (2,54) give the bounds

(e leff’i . hLs2 2K)] (2)| +h2’ (3)] b RS e,

€+l 6 3

)|, 4 2.2 l.(?.), l (3], .5
n+1‘3hK ol +(1+3h1<) e +2heln |+hc2M5

| )|, & (1) h (2) (2) l (3)

Capy | =3 K l n+l +3K(|'en I+len+1|)+ ,+h°M6 .

(1 2 (3) .
Then for Ien ) <X, lefl )é/gn, Ien |§ Xn the following set of

equations is satisfied

h2 : 2.2 2 g
o 1 = KX+ R(1+3hK)B 4+ h Xn +o, (2.55)
4 2.2
Aoyl = FhKet o+ (1 +35K)B 4+ 2112{n +S}2 (2.56)
X . + B +A ) +X +§ (2.57)
n+l 3 n+1l 3 n n+1 n 3 *
= 5 = 5 = 5 ) :
where 91 h_ cMy, S'Z hoc, M., S—3 hocM..  Equations
(2.55) - (2,57) may be written in matrix form as
A = 2.
LLE Bu, 4—2 (2.58)
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_ T _ . e T .
where u = [°<r1’ Bn,x’n] , 2 = [yl, &2, 23] and the matrices
A and B have the form
A =1 o o B o= [ b2 h(1420200) h?
6 3
-4hK 1 0 0 (142h%K) 2h
3 3
-4k «bK 1 0 hK 1
L3 3 | I 3 |
A is clearly non-singular. Now e is obtained by multiplying
equation (2,58) on the left by A-lz
u Cu_ + A_lg (2.59)
—n+1 -n = )
where
_ - -~
¢ = ale={n%k h(1+2h%K) h2
6 3
2032 1+2h%k+8h k2 2ht4hK
9 9 3
20%k? (14h%K) 3K(6+1_4h21<+§h"1<2) 1+2h%keank?
| 9 3 3 .3 9 9
and
-1 4
A E‘ = [ h C1M4 1
6 5
4 nh Ke M, + h c M
3
4k(1+h%K)n%c M, + nOke M_+hoc M
= = 14 = 25 36
E 3 3 1.

We look for a bound on the second component of u

and a measure of

this component can be obtained by considering the vector norm of U,

given bylLEn".
Jeil -

sup

Jun i © | uy

We consider the subordinate matrix norm defined by

and we consider in particular the infinity norm where "E,Lodenotes

the maximum absolute row sum of C.

that

Then from (2.59) it follows
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“H“““w < | 6”0‘.,” L.+ "A‘1§||°o_ (2.60)

The row sums of C are given by

h[1+h(1+§)+§h21<] (2.61)
1+ 2h + 2h2K+%h3K (K + 6) +§h4K2 (2.62)
142hK + 2h2K( 1+195) +%ti31<2+ §—7h"1<2(1<+5)+g—7h51<3 (2.63)

and both (2.62) and (2.63) are bounded by 1 + 2ah where a is a con-

stant which can be specified for h< some ho' Thus we have
e < 1 + 2ah
D
and
. i 5
leaial < (1 +2an) [u ||+ M,
where M is a constant suitably defined for all hsého. It follows
that
: 2 (14 2am)" u o [CGr2an)” -1). n*M
I ”w = ‘ EN = 2ah
-2anh 4
< 2anh " u ” + [e. -1]. h'M
€ —0 i 0 2a
= esln - %) u " o ealexo) _1} oo
=3 2a
where we have used 2nh = x - x,.  Thus for any h > 0, constants a

and M exist such that, for all h<hg,, -

a(x, - x_) 4
y(x2n) = Yon s‘ie'~ Zn "ot +h %; e?(x2n_- xo) -1} (2.64)
where
8 = max [thy(x_il) - y_'ll,ly(xo) - yol, z (xo) -zo,}.

In particular if the initial conditions Yo = y(x,) andz j = a(xo)
are satisfied exactly then

€= hfyx) -y

which is of order h4 if equation (2,12) is used to compute Y-
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We have shown that the global truncation error is of order h4
where h is the steplength; the dependence on the steplength h can also
be seen in an alternative approach described by Kopal (1955, p.219) and

the explicit form of the global error for the initial-value problem

y = -y, y(0) = o0, y© = 1

is calculated in Coleman and Mohamed (1978).

§’2.6 De Vogelaere's method with variable stepsize

An appealing feature of de Vogelaere's method is the ease with
which an arbitrary change of steplength can be introduced without
the need for interpolation or additional function evaluations, If

a steplength h1 is used as far as LI the quantity f2n-1 refers to

the mesh point Xon-1 - xzn—hl. If we now change the steplength to

h2=ch1, f2n-1 must be replaced in equation (2.2) by f2n-l’ an approx-

imation for f at x2n-h2. This can be achieved by defining

Fan-1 = fap e C fpp 7 fy) (2.65)

which has a local truncation error of order h22.

We have established that the leading term in the truncation error

in the step from x, to ¥2n+2 is
5 "m

2 h’f

45 "

and we showed in §2.2 that an estimate of this quantity is given by

the expression

5 m - P

*
207f, = 8 [(yyy3 - yones) = Uongn = Yone’l-

45 45
The truncation error per unit step, which is a more appropriate

basis for decisions about the steplength, is approximated by

* *
( - - -
Zgh[“y2n+3 y2n+3) (y2n+1 y2n+1)] (2.66)
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When the steplength is changed the expression given by (2,66) has
to be modified, There are three separate cases:

@) Immediately following a step change

let h1 be the steplength used in the step from X9n-2 to Xon and

in the preceeding step, and let h2 = ch1 be the new steplength for

the step from x t

2n o x2n+2. We shall consider the forms of the

* * *
differences (y2n-11 - y2n-1) and (y2n+1 - ) where Yontl is a

Yon+1

fourth order approximation to y(x ); the form of y;n+1 has been

2n+1

discussed in Section 2 and is given by

» 2
% _ h_ _
Yonel = Yon T hE,, 57 (T Ey, +6f5 01 - font2) (2.67a)
. h2
= Yong2 " MZynen toag (TEgp o6, o, -f ) (2.67b)
for the general step from x, to i?n+2 with constant steplength h,
*
In the step from Xy -9 O X, we have Yoa-1 8iven by
* z h2 £ 6f £ ) (2.68)
Yon-1 = Yon-2 T BiFnop 4B (7 5 5+ 05 17 5! e

24

where we have replaced n by n-1 in equation (2.67a).

Yon-1 is given by equation (2,2) with n replaced by n-1 and h re-
placed by hl:
- b hi> (4 £ -f ) (2.69)
You-1 = Ya2n-2 ¥ M1%op-2 T 21 -2 = “2n-3 :
and we have )
2
. . (4f 9f 6f £ )
Yoan-1 " Yon-1 = 2% “M2n-3 7 7'2n-2 T ®f2n-1 T o
. h? £ " hf e ]
T -1 = - 0
3 2n-1 5 2n-1 + O(h1 ) . (2, 70)
* . ]
In the next step from %0 to X942 = ¥on + 2h2, Yon+l is given by

*

12
- 2
Yonel You + 2 (75, + 6f £, ..) (2.71)

2% 2n 2n+1 2n+2
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Equation (2.65) combines with (2,2) to give

2
= : h :
Yonsl Yo * Ry 25 + gz[(3+c) £, = ¢y 4] (2.72)
and for ¢ = 1 equation (2,72) correctly reduces to (2,2),
We have
* n 2. ¢ h2 3 1 " 6
: - = £y £ 2.2 £
Yourl ~ Yon+l _2 (1 + 2) o0+l 2 (2 + i ) el F O(hz),
24 36 .
(2.73)

An estimate of the truncation error following the stepchange may

now be constructed using a suitable linear combination of (2,70) and

(2.73) to eliminate the terms in hl4 and h24, Thus we consider
* G 2 * _ .5 7 12 m 6
Oane1 = Yong1) =1 ¢ 1+ DWpp g =9q.1)= By (lig=e2) £, +0(hy )

3 72

and an estimate of the truncation error per unit step is given by

h24 m - 1 2 5 " - %
— f = —_— —_— ’ ' s B - - d -
45 2n 2h," &5 hy™ 50 F Bellyy g = Y1) =X(yy 1 = ¥y )]
5h, (12+7c-c?)
(2.74)
where
oL = % 3 (2 + ¢).

(ii) The second step after a stepchange

If the steplength h, = Chl, introduced for the step from x

2 2n
to x2n+2 is retained in the next step, the equation
4 . 5 -
% _ h n. h ) 6
Y3 " Yones T 22 Fanes T2 fans O 0(Rp) (2.75)

follows directly from (2, 70). An estimate of the truncation error
in this case is given by considering the following combination of

(2.73) and (2,75):

h 5

2 5
) =3¢ 3+

Cc

1 2., * * 1 mo 6
3 (M) U3 = Yone3) " Wane1™ Yonn 52 ) Ey 0 0y

and an estimate of the truncation error per unit step is given by
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, * *x
b€ LA Wonys = Yanes) ~ Oanyr = Vo] (2.76)

Shy (1 + se + 32)

where
1 2
/Lg = 3 (1 +8).

(iii) Two stepchanges in Succession

If x - X = 2h

2n ~ *2n-2 T 2P1 Fongp T %p = 2y, and x,

2n 2? 2n+4 ~ Xon+2 = 2h,,

with h, = chl and h, = clhz, we have by analogy with equation (2,73)

p 5
* h L] h 3 1 \ " 6
y -y = "3 (1+2 ) f -3 (é + = +-——2> f + 0(h,”) .
2n+3 2n+3 2% 'ci 2n+3 36 cl c.1 2n+3 3
(2.77)

The appropriate combination of (2,73) and (2,77) is

1 2y % 1 _ 4 2 *
3 3+ 00043 7 Yones) =3 S0 O+ 00041 7 Yon)

5 .
= '[‘(—1+7_+£>+1<-2+.-1.2-+@2>+32(l +—2->} + 0%
2
216 91 ¢, e c, L cé\c c | 3

and we have the following estimate of the truncation error per unit

step
2ne (A, - ) -~ (v =y, )] (2.78)
1 Yon+3 T Y2n+3 1'Y2n+1 ~ Yon41 .
2 2 2
5h3 [e7(12 + 7c1 - c1 ) + c(20 + 12c1 - 2c1 ) +4+2c1]
where
= .1“. g x =lc3
/5 1+ dh, . 3@+ e)

We have presented.estimates of the truncation error per unit
step which allow.-for every conceivable sequence of stepsizes in
computations based on de Vogelaere's method, Two steps of de
Vogelaere's method are required before an estimate of the truncation
error can be obtained since the error estimate involves a linear

*
combination of the differences (y2n+1 - ) for two consecutive

y2n+1

steps, With these estimates readily available it is now possible
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to consider an implementation of de Vogelaere's method which will
permit an efficient automatic error control which automatically
selects steps as large as possible while satisfying some error

criterion specified by the user,
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CHAPTER 3

RADISH - an implementation of de Vogelaere's method

with automatic error control

Introduction

We investigate the performance of an automatic implementation

in Fortran IV of de Vogelaere's method to solve

v = £(x, y(x)). (3.1)
We are interested primarily in the application of de Vogelaere's
method to solve the single channel radial Schr8dinger equation where
f(x,.y) is given by

£(x, y) = [-8(8 + 1) k2 + V(x) y(x)

2
X

and a description of the program RADISH to solve the above problem
will be given, The test program listed in Appendix 1 solves the
single channel radial Schrddinger equation for scattering of an
electron by the static potential of atomic hydrogen, The test

program thus solves

2
X

Cyx) = [m_u) -k -2 (143 e'z"] y(x) (3.2)
for a specified energy E = k2 and angular momentum [, and calculates
the scattering phase shift,

As we are concerned mainly with the control of truncation errors,
in the numerical solution of the differential equation, we use only
the most straight forward methods for providing suitable starting
values for the integration stage and for the extraction of a phase
shift; the program is written however so that the user may readily
substitute his own initialisation and phase-calculation routines,

The subroutine DEVOG which is the main routine in RADISH solves

(3.1) using de Vogelaere's method where f is supplied as a function
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sub-program. The choice of steplength within DEVOG is made accord-

ing to the strategy described in§‘3.2,

§3.1 Programming de Vogélaere's algorithm

We have seen.i11§2.1 that for a fixed steplength the general

' i = 1 .
step of de Vogelaere's method leading from Xgo B0 Xo o0 = X, + 2h 1is:
Given Y2n* 22n° f2n and f2n-1’
= r 2 ‘ -
Yon+1 Yon + B2y + %— 4ty £ -1 (3.3)
Bant1 = H*2n41, Yonsn) (3.4)
h2
Yons2 = Yo ¥ 2hz,  + 3T (4f2n+1 + 2f2n) (3.5)
font2 B(%90429 Yont2) (3.6)
= h
Zonb2 - %an t3 Ulpn + 4Epn t Epnpn) 3.7
Following de Vogelaere (1955) we introduce the quantities
2
= =h =42
Zon = hzpns Fon =3 fons P T3P fpny
and equations (3,3) - (3.7) may now be written as
= + 2, + 2F - iF (3.8)
y2n+_1 Yon 2n 2n 8 "2n-1 :
F _ 4.2
20+ 1 = b By 05 Yoner) (3.9)
Yon+2 = Yon + 2zZn + F2n+]_ + 2F2n (3.10)
1.2
Fontb2z = 30 £(%p007 Yonyo) . (3.11)
Zonk2 = Zan f Fon f Fonyg t Fonga . (3.12)
If at the nth step of the calculation we let
Y = y,, 2 = 2,, FEVEN =F, , FODD = F, ,

equations (3.8) - (3.12) can be formulated using the FORTRAN statements

as:
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A = Z + FEVEN (3.13)
Y = Y + Z (3.14)
FODD = Y + FEVEN - 0,125 * FODD (3.15)
FODD = 4_0% H2* F(X+H, FODD) /3.0 (3.16)
z = Z + FODD (3.17)
Y = Y + 2 (3.18)
FEVEN = H2 * F (X + HH, Y)/3.0 (3.19)
z = Z + FEVEN (3.20)

where X represents the mesh point x, and H, HH, H2 represent h, 2h,

2n
HZ respectively, F is a function sub-program which represents £
and which calculates the second derivative of the solution, Thus
we emerge from (3.13) - (3.20) with

Y = z =

FEVEN FODD

Yont+2? Zont2? Fone2? Fontl®

The general step may be implemented essentially by using (3.13) -
(3.20) and the cost per step in terms of arithmetic operations is
9 additions and 6 multiplications; 2 function evaluations are required
per step.

The steplength h at each step will be chosen so as to make the
estimated error per unit step less than some prescribed tolerance;

thus we estimate

4 * *
_[_‘_51_1 [ (Y2n+1 - y2n+l) = (an_l - yzn_l)] (3.21)

TRERR =

from which a decision can be taken as to whether to keep the same
steplength h for the next step or to increase or decrease h according
as the estimate is respectively less than or greater than the prescribed
tolerance, The precise strategy adopted is described in §‘3.2,

I1f a steplength h1 is used as far as k2n’ and the steplength
is then changed to h2 = chl, a sufficiently accurate estimate for f
at x, - h2 is given by
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f2n-1 B on + c(f2n-1 - fzn) . (3.22)
At the end of the final step which uses the steplength h1 we have
= > = 1 2 —ﬂ 2
Y Yon? Z h1z2n’ FEVEN 3 h1 f2n’ FODD = 3 h1 f2n-1
Then if we define
_ 4 2
Fo= o3 0y b

we can use the following implementation of (3.22):

F = 4,0%C2* FEVEN + C**3*(FODD - 4, O*FEVEN)
where C, C2 represent e,cz. Thus if the steplength is changed from
h1 to h2 it is necessary to update the values of Z, FEVEN and FODD
for the next step, This is effected by the following FORTRAN state-

ments:
z = C*2Z (3.23)
FEVEN = C2 * FEVEN (3.24)
FODD = C2 * FODD (3.25)
FODD = 4,0 * (1,0 - C)* FEVEN + C*FODD . (3.26)

An estimate of the truncation error per unit step is now given

by
= 8 *oo- (y, * ) 3.27)
TRERR = 8C [(y, .7 = ¥ouuq) "oXYyn g = Yop_q)] (3.
5hy (12 + 7C - c2)
with
o = % c3 (2 +C) ,
The next step from i2n+2 to x2n+4 will either

(i) retain the steplength h2,or

(ii) require a further change in steplength to h3=Clh2 in which
case further updating of the values Z, FEVEN, FODD will be
required,

The corresponding estimates of TRERR are then given by
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* *
(1) 4C[ A (y = Yone3) = Y = Yyui1)]
2n+3 2n+3 2n+1 2n+1 (3.28)
5h1 (1 + 5C + 302)
. . 2 2 * _ *
(1) 246" C" [A(yy.5 ™ Youu3) = Xy 0y = Yprp)]
(3.29)
Sh3 Y
where _
= 1 2 PV = 1.3
/5 (143, 1 3¢ 2+¢p
and
X = 02(12 + 7C1 - Clz) + C(20 + 1201 - 2C12) + 4 + 2C1.

§ 3.2 Steplength strategy

The user is required to specify as input for the subroutine
DEVOG, a parameter EPS which is the largest allowed local error per
unit étep. Since the magnitude of the solution may not be known

in advance the program RADISH calculates at each step
TOL = EPS «x Max{l, |y2n|} , (3.30)

so as to provide an absolute or relative error criterion according
as the absolute value of the calculated solution is less or greater
than unity, The calculated Yon is deemed satisfactory if

| TRERR| < TOL. (3.31)
If this inequality is not satisfied the step is rejected and it is
necessary to restart from Yon-2 with a decreased steplength, Since
the local error per unit step varies approximately as h4 we argue
that a steplength «h would give a truncation error of approximately
oL4 TRERR, and we can therefore estimate a suitable X , When the
inequality (3.31) is almost satisfied a difficulty could arise, in
that the value found for X is almost one, and a large number of very

small adjustments of steplength may be required before a satisfactory

value is found, To avoid this we arrange that when a decrease is
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necessary a non-trivial decrease is carried out, by choosing

1
L = (0.5 TOL> .
TRERR

Successive decreases in steplength must be allowed where necessary
and are monitored accordingly.
When the calculated Yon has been accepted as sufficiently accurate

we consider whether or not a steplength increase is justified. One

approach would be to choose a new steplength Ch>h, such that

c¢* | mrerR | < TOL,
and this would result in a change of steplength at almost every step.
Experience shows that by allowing the steplength to increase at succ-
essive steps, particularly at the beginning of the integration, the
progress of the solution is hampered, often due to the need to de-
crease immediately after an increase in steplength, Thus to avoid
frequent increases by small amounts, and, much worse, increases
followed by immediate decreases, we introduce a number of restrictions,
The steplength is allowed to increase only by a specified factor C

(typically C = 2) and this increase is carried out only if

c4| TRERRI<1 0.5 TOL, (3.32)
for three consecutive steps, The numbers in Table 1 given below

come from a test run at a stage when the steplength is 0,035880,

TABLE 1

*n Y20 IRERR
0.378 0.167 -5.9 x 1070
0. 450 0.241 7.5 x 1077
0.521 0.331 3.7 x 1078
0.593 0.435 7.5 x 1070
0. 665 0. 556 1.0 x 107/

0.737 0.692 1.2 x 10
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In this calculation EPS = 10-6 and C = 2 so the inequality is satis-
fied if |TRERR|< 3 x 1078, as happens on the second line of Table 1.
Because we require this inequality to be satisfied at three consecu-
tive steps the current steplength is not changed, a decision which
is windicated by later lines of the table when we recall that by
doubling the steplength we would increase the local error per unit
step by a factor of about sixteen.

The subroutine DEVOG also requires an initial steplength h
which must be supplied by the user, Because of our automatic error
control the value of h supplied is not particularly important; if
it is unnecessarily small some time may be wasted since we have
adopted a rather conservative approach to steplength increases,

Given the initial steplength h the subroutine DEVOG calculates
the initial step of the method using method (a) of starting of§ 2,1,
We prefer to use method (a) of starting to method (b) and indeed
advocate its use in all calculations for the solution of the radial
Schrddinger equation, We shall devote the next section to a dis-
cussion of the merits of method (a) over method (b) and to its sub-

sequent implementation in the subroutine DEVOG.

§ 3.3 The initial step

Methods (a) and (b) of starting described in§ 2.1 both provide
an approximation for y(xl) with an error which is proportional to
4

h-, We shall consider an asymptotic expansion of the error result-

ing in the computed solution at x, for both methods. The normal

1
practice has been to use method (b) of starting in all applications
of de Vogelaere's method to solve the radial Schrddinger equation;

this method of starting calculates a fourth order estimate for y(xl)

using
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2
- h
yp = Yot hz b (4f - £ ) (3.33)
where f-l is given by
f_1 = f(xo -h, y_l)
with
h2
Y1 = Y- hz, + 5 fo (3.34)

and it is apparent that for sufficiently accurate starting values

Yor 2 f0 any error in Y1 must be a combination of the error in the

o)

term (EE f l) in (3.33) resulting from the error in y_, @nd the

local truncation error in (3.33).

The differential equation which we are studying has the form

y"(x) = g(x)y
and we write 8 = g(xk), k =0, 1, ~--, Then if we define the

error in the approximation y_, to y(x_l) by

Sy_l = y(xo - h) - Y., (3.35)
we have
3 v
h + ---
Sy_l = 6— %

where we have used the Taylor expansion of y(x_l) about x  in (3.35).

The difference between y. and the true solution y(x,) is given by
1 MAh!

Syl = y (xl) = yl

where
h2
y) = Yo *hzg g (4 - ) .
We use
B(x_ps y(x_)) - £(x_y, y23) = &_; Sy_l
to express y, in the form
h? W nt 2 + o(h®)
Y= Yo thy 3 fotgth T 12 ol'@fg—lsy-.l
" 2

4
h h 5
A f a
y(x,) 3 ‘o +% B S'y-l + 0(h”).

Thus
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2
_ B v 5
§ v, s fo "¢ B ¥y, + o) (3.36)

where the second term in (3.36) is of order hs.
In order to compare the form of the error in the computed
solution at Xy with that obtained using method (a) of starting we

investigate the errors in ;1 and ;1 where

3. = h
yp. T Y % hzo t 3 fo (3.37)
Q2 h2 -
y, = ¥, *t hz 4+ g (2f + f,) (3.38)
with
£, 0= f(x;, ).
The error in'§1 is given by
3
~ -~ h -
S’Yl = y(x) -y, = ¢ £
and we have
£x,y(x)) = £k, y) = g &9
Thus we can express ?1 as
2 3 4 2
2 = h Wer b e hT o- 5
1 Vo + hzy, + 5 £+ T E +7, £ - -é--gISyl._,{. o(h>)

and hence

Syl = Y(xl) = yl
4 n. - 2
= ~h_f h -~ 5
= 5 5% + g g1§y1 + 0o(h7) (3.39)

where the second term in (3.39) is of order hs.

The leading terms in Syl and S;l are very similar in form, but,
for the Schrddinger equation with eﬁ#O, Lg(X)i is generally a rapidly
decreasing function of x near the origin. Cénsequently 8.1 may be
substantially greater than 8, The following numerical example
demonstrates this effect, with {=1, E = 0.01, x_ = 0.04, and

the equation (3,2) used in the test program, Taylor expansion about
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the origin gives

7.767540 x 10~ 2.

1.568756 x 10 >

Yo , g

The precise method of choosing the initial values X5 Yoo 2 fo will

o,
be explained in §3.5.1 which describes the main routine of RADISH,

Then with h = 0.025 method (b) of starting gives

y, = 4.099156 x 1073,
by method (a) we get
= -3
y; = 4.093352 x 10
and the exact solution is
y(x,) = 4.093015 x 1073,

In this case|§y1| exceeds |S§1| by a factor of about 18, which is
close to the factor by which g_; (= 8758) exceeds 8] (= 445),

Our conclusion is that when solving the Schrddinger equation
method (a) is superior to method (b). The less accurate method is
used for example by Chandra (1973) in a computer program to solve
the differential equationsarising in a close-coupling formulation
of quantum-mechanical scattering problems. The argument in favour

of method (a) can be applied to a more general function £(x,y) simply

. 'Bf)
by replacing = by (7;; x = x,.
Equation (3.5) shows that the error S;l contributes the term

(% h2 g, S,?l) to the error in Yo Although this term is of order

h™ it may, when g, is large, exceed the O(hs) truncation error in
the formula for Yoo and therefore it is imperative that its magni-
tude be controlled. Having obtained ?1 from equation (3,38) and
Y, from equation (3.5) we may use the formula

* h2

Yy, = ¥y - hz2 + 3, (7f2 + 6f1 - fo)

which gives a new estimate for y(xl). The error in this approximation
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is of order h5 and consequently
3 * 7

¥y, = vy, -y .
This allows us to monitor the contribution from S;; to the error in
Yo and to adjust the steplength accordingly. With the completion
of the first step the cumulative (actual) and truncation errors
equate and the truncatd on error at the end of this step is given by
2h times the truncation error per unit step, Thus a reasonable re-
quirement of the method is that the absolute value of the actual
error in Y, be less than or equal to 2h TOL where .

TOL = EPS x Max -{1, Iyzl} ,

and we ask that

4 2 =
.l . yd
3 b7 g § v, 2h TOL
be satisfied before proceeding to the next step, We make this

condition more restrictive by requiring
‘hgl §y,| < oL
that is
; |
lh ) < TOL (3.40)
where
$E = £ )y - Exy, 5y
1 - *10 N1 X1 Y17
Thus given the initial steplength h the subroutine DEVOG calculates

;1, ?1, Yy and yl* and the steplength h is considered satisfactory

at this stage if the inequality in (3.40) holds, If this inequality
is not satisfied a more suitable steplength is found by using the
fact that S§1 varies approximately as h4, and the calculation is
repeated, When A is known to the required accuracy we calculate
Yas Vs Vs and Yo and then use (3,21) with n = 2 to estimate the
truncation error; if this is small enough the calculation continues,

and if not a smaller steplength is chosen and the calculation begins

again, It is in fact possible to estimate the truncation error per
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unit step a step earlier after the first two steps have been com-
pleted using equation (2,17) and thereafter using equation (3.21)
for as long as the steplength remains constant; however we choose
to estimate this quantity after the completion of the third step
thereby using equation (3.21) alone to estimate TRERR, until a
change in steplength is necessitated, In this way we dispense with
the need for additional programming in initially estimating TRERR.
Thus we do not interfere with the natural flow of the coding for a
constant steplength and we feel that this approach is satisfactory
despite the loss of two function evaluations in the event of the
estimated TRERR calculated after the first three steps being too
large.

We now give a listing gf the FORTRAN statements required for

the calculation of the first step from xo to x, using method (a) of

2

starting. We start with

- h
X0 = x_, YO = Yo Z0 = hz , FO = 3 £ .

The method (a) of starting consists of the following statements:

Y = YO+ Z+ 1.5 * FEVEN (3.41)
FODD = 4,0% H2* F(X0 + H, Y)/ 3.0 (3.42)
Y = Y+ (FODD - 4,0* FEVEN) /8.0 (3.43)
FODD = 4.0% H2* F(X0 + H, Y) /3.0 (3.44)
Zl = Z + FEVEN (3.45)
Y = YO+ 2,0% Z1 + FODD (3.46)
FEVEN = H2* F(XO + HH, Y) /3.0 (3.47)
Z = 21 + FODD + FEVEN (3.48)

where Yoo zo,fo can be obtained from a starting series so that at

the beginning of the calculation YO, ZO, FO are readily available,.
The cost in terms of arithmetic operations required for the

first step for a given H is 1l additions and 12 multiplications;

3 function evaluations must be performed,
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§3.4 Subroutine DEVOG

The subroutine DEVOG is applicable to any linear or non-linear
equation of the form (3.1) and is based on de Vogelaerds method
which is described in the preceeding Chapter. Our implementation
of the method makes use of the results of §2.6 which enable us to
monitor and control the local error and thus relieve the user of the
task of steplength selection. Subroutine DEVOG is written in double
precision form to solve (3.1) where f issupplied as a function sub-
program, For ease of identification, all statements which refer
to the scattering problem, rather than to the numerical solution of

the differential equation, are placed between lines of asterisks,

§3.4,1 Input

The parameters which must be supplied to DEVOG as input data

are:

H : the initial steplength (see §3.2)

X0, YO, z0, FO : the starting point, and the values of the solution
and its first and second derivatives at that point,

EPS, C : the tolerance parameter and factor by which the
steplength is increased when an increase is per-
mitted (see§ 3.2).

XF : The calculation terminates somwhere between XF - H

and XF + H unless earlier termination has occurred
because of convergence of the phase.shift to the

required accuracy.

§ 3.4,2 The structure of DEVOG

Figure 2 overleaf shows a flow diagram for this subroutine, and

the function of the variables used is described in comment cards in



62,

I =0
¢.~ =
Calculate Yi» 15 B
* d S £ S
y y an .
2 71 1 <
N A
*L\\\\\\\‘ Calculate
Srfllé TOL | new H
Yes
I =1
Calculate LL
Z 7
Yore1 209 Yop49 <
No "
Yes
Calculate TRERR ) /N No
No Calculate /////
ITRERR| € TOL >—>~—{ new H >— I>2
Yes
I=1+1 Recall data
update storage from last step
Y
Yes . De
Calculate crease H
phase shift
No NG
< | Exit Y

H too small

X + H>XF

Yes

Increase H

Yes

Exit

FIGURE 2

\/

Restart section
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the text of the program,

If the initial steplength used were very large it would be
possible for the calculation to proceed to.'XF without providing an
estimate of the truncation error, To avoid this difficulty DEVOG
takes H to be either the value supplied by the user or (XF - X0)/5,
whichever is the smaller, Lines (180 - 208)" of DEVOG calculate
§1, ;1, Yy and yl* as described i11§3.3 and, if necessary, reduce
the steplength repeatedly until the estimated contribution to the
error in Yy from that in ?1 is sufficiently small,

Lines 218 -~ 294 implement the de Vogelaere algorithm to advance
the calculation one step of length 2H, evaluate the truncation error
estimate, and decide whethe; or not to.alter the steplength, The
natural flow of control corresponds to a 5ituation where the step-
length is neither increased nor decreased,

If at line 256 it is decided that the truncation error is too
large, control is transferred to lines 313 - 339 for the steplength
decrease, and thence to the restart section-(lines 361 - 383), followed
by a return to the main loop at line 218,

The decision to calculate a phase shift is taken within the
function subprogram F, When the calculation has progressed suffic-
iently far that a phase shift calculation is worthwhile, the parameter
IPS is assigned - the value 1, When this condition is encountered
at line 278 of DEVOG the subroutine PS is called to calculate the
phase shift; the current value of X and the calculated phase. shift

are then printed.

The line numbers quoted are those appearing on the right-hand side
of the listing, corresponding to the sequential numbering of the

card deck.
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If the steplength is to be increased line 287 transfers control
to the steplength increase section (lines 344 - 356) which then leads
to the restart section and back to the beginning of the de Vogelaere
loop.

Apart from that required to bring about changes of steplength,
the only branching that occurs in DEVOG arises from the need to treat
the truncation error differently in certain cases, At lines 240
and 270 this Jjust involves by-passing some statements, and when a
non-trivial branching occurs (at lines 241 and 370) we have imposed
an IF..,THEN,...ELSE structure in the interests of readability,

Exit from the de Vogelaere loop occurs (see line 280) if the
subroutine PS indicates, by setting JCONV'= 1, that the phase shift
has been calculated to the required accuracy., Otherwise termination
occurs when it is noted (at line 293 or line 382) that the next step
would take the calculation beyond XF. In either case the usef is
informed of the reason for termination, and information on the number
of steps carried out and the number of increases and decreases .of

steplength is also printed,

§‘3.4.3 Modifications to solve other problems

If the lines between rows of asterisks are deleted, DEVOG will

solve the equation
' = Ex, y)

and will terminate somewhere between XF - H and XF + H where H is
the current steplength, Values of the solution at each successful
step may be printed by a WRITE statement placed after line 256, If
the calculation is to end precisely at XF it is necessary only to
adjust the final step so that XF is a mesh point; alternatively,

to avoid a very large reduction in steplength when XF is very close



65.

to a mesh point, it is possible to look two steps ahead and take actiom
when X + 2H exceeds XF.

The test program is based on the Schr8dinger equation in the precise
form of (3.2), for positive energy E, However DEVOG is equally app-
licable to bound state problems (E<0), Also any desired changes
of variable may be introduced, as for example in bound state problems
where it is convenient to take the logarithm of the radial distance
as the integration variable{ provided only that the resulting differ-

ential equation has the form (3.1).

§ 3.5 Description of program RADISH

Figure 3 below shows the relationship between the six routines

of the program RADISH which solves the radial Schr8dinger equation

n
y (x) = [-L—(L‘-—;'——l—) - E + V(x)] y (%) (3.49)
X
MAIN
-1 REG
F DEVOG PS
AIREG

FIGURE 3

Double precision is used for all REAL variables,

§ 3.5.1 The main routine

The program applies to a potential which, in the vicinity of
the origin, has the expansion
Vi

vix) = _1 + v, + V3x+ _— . (3.50)

The first four coefficients are read as data at line 28 and are stored
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in the array VCOEFF,. The regular solution of the Schr8dinger

equation (3.49) may be expressed as

y(x) = s [a, +ax+ a3x2 + === (3.51)

for sufficiently small x, and the coefficients are given by the

equations

2 (L+1) a, = Va

2 (2k+ 3) a, = Vlaz-’r,(Vz—E)a1

6 (1 + 2) a, = Vya,+ (V,-E)a, + Va2,

4 (22 + 5) a. = Via, + (Vy-E)a, + Vya, + V8, .
Having read the coefficients Vl’ V2’ V3, V4, the program then reads
the parameters EPS,C and XF.  For given values of these parameters

an arbitrary number of calculations may be carried out, for different
values of the energy E and angular momentum L. Execution germinates
when a negative value of L is read.

The program calculates the coefficients a,, --=)ag with a, = 1,
Although the value of H supplied to the subroutine DEVOG is not part-
icularly important, we have chosen to provide a fairly realistic value

by using the power series to estimate, a priori, the truncation error

in y,. For L£4 equation (3,51) shows that

) \' ) .
y (0) = 5! a1

and therefore we take

_[aseps | % | 3Eps '
o= T
ly¥ (o) 251l

For L> 4 some other approach must be used; it would be quite satis-

=
&=

factory to supply an arbitrary numerical value, e,g. 0.1, Altern-~
atively if the form of the first, second and third derivatives of
V(X) with respect to x are known, then by successively differentiating

equation (3.49) we can find an exact value for yz= yv(xo) in terms of
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Xgo» Yo! 2o and f£,. Thus we have
{[ -24L(L+1) (XO)J [L(L+1) + V(XO0)-E _2_1_._(_11;_+_1_)+V xoylLvo
X0
6L(L+1) "(xo)}+ L(L;l) + V(X0)-E 2l z0
X0 j

+ 3[‘—21‘(—1";1—) + v'(xo)] FO

Notice that for y = sin kx substitution of L = 0 = V in the above
expression leads to

2
yo = E ZO

corresponding to

\ 5 _ .4
o k~cos kxo = k Zg

<
[

From the series for y(x) an expansion for y'(x) is readily
obtained. On the assumpti&n that the magnitude of the first neglected
term in each of these expansions gives a measure of the error in trun-
cating that expansion, X, is chosen so that Yo and hz, are given
sufficiently accurately by the first four terms, We require

IaslloHs

£ 0.1 EPS

HOD#S) [a [,

Then y,, z, and fo are computed from the truncated expansion and the

subroutine DEVOG is called.

The common block EKLL1 is used to transfer parameters to the

routines F and PS,.

§ 3.5.2 The function F,

This subprogram, which is called by DEVOG, calculates

F(X, y) = [LLIL’_%)' + V(X) = EJ y -«
X

In the listing of program RADISH in Appendix 1, V(x) is given by
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V(x) = —2(1+%) e"2% (3.52)

corresponding to the static potential between an electron and a
hydrogen atom, Here it is also decided when a phase shift should

be calculated; when

&J’ZL)AE and V(x)l < EPS . |E -L(L—‘;l)
X X

the value IPS = 1 is returned to DEVOG.

§ 3.5.3 The subroutine PS,

If the potential is such that
. 2 . _
lim ¥ V() = 0
X—o0

the general solution of equation (3.49) has the asymptotic form
y(x) -~ A [S(x) + tan¥ C(x)] (3.53)

where § is the scattering phase shift, A is a normalisation constant,

and

S(x) = kij(kx)-f\-sin(kx - %Lﬂ ) (3.54)
X —>0D
C(x) = =-ky (kx)~cos(lx - -;-Ln: ). (3.55)

X—rod

If y(x) is represented sufficiently accurately by the asymptotic

form (3.53) when x exceeds some distance R then, for any X and %,
greater than R, we have
tan§ = Y%p) S &) - G ) S ) (5 56)

The central part of the subroutine PS (lines 424 - 433) cal-
culates the phase shift from this formula, prints the current phase
shift estimate and indicates, by setting JCONV = 1, when successive
estimates agree to the required accuracy, To guard against spurious
convergence X, and X in the formula (3.56) are required to differ

1 2

by at least one atomic unit,
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On the first entry to this subroutine the phase shift is
arbitrarily set equal to zero and values of the functions S and C
are stored for use on the next entry.

The COMMON block EKLLL transfers parameters from the MAIN
routine (see_§3,5,1) and PHASE, which appears only in PS, is used
to ensure that information required on the next entry to this sub-

routine is not lost on returning to the calling program,

§3.5.4 The functions REG and AIREG

The functions S(x) and C(x) defined in equations (3.54) and
(3.55) are calculated by using the recurrence relation

. F1.(2)
£ () + £, (2 = (1) 225 (3.57)

which is satisfied by the spherical Bessel functions jL(z) and yL(z)f
Forward recurrence for yL(ﬁ) is stable for all values of Land z, and
this is the method used in AIREG. The accuracy of the calculation
is comparable to that of the built-in functions DSIN and DCOS.

For 2>L, REG also uses forward recurrence, but this process
is unstable for z<L and it is then necessary to recur backwards,
The procedure adopted is that suggested by Corbatod and Uretsky (1959),

which involves using (3.57) with starting values ﬁv = 0 and ﬁv

+1
arbitrary, and then normalising by using the known values of j (z) and j,(2)
Corbaté and Uretsky provide a prescription for choosing v such that,

for specified L and .z, jL(Z) is calculated with a relative error no

greater than some specified S; we have chosen § = 10-7. The dimen-

sion of the array PF restricts the size of L but REG prints a warning

if there is any difficulty from this source; the difficulty can be

overcome simply by changing the DIMENSION statement,

The recursive evaluation of jL and Yy, is most useful when we

wish to evaluate spherical Bessel functions of different orders
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Ssimultaneously for a particular value of the argument. It may be
that for the present application, where only a single value of L
is relevant to a particular phase shift calculation, there are more

efficient methods, but this is peripheral to our main concern,

§ 3.6 Test runs

Program RADISH was tested for a number of different potentials
V(x) and phase shifts calculated for each problem for a specified
range of values of E and L to enable comparison of the computed
phase shifts with the published results, However as the aim of
Chapter f is to present a comparison of the performance of various
test programs each of which incorporates a different numerical method
with automatic error control for the solution of (3.49) we shall
leave a detailed discussion of the results of de Vogelaere's method
to Chapter 7; Chapter 7 investigates the reliability of each of the
numerical methods in controlling the global error during the numerical
integration stage of the calculation and compares the relative effic-
iency of the methods in calculating the relevant phase shifts.

Errors in a phase shift calculation can arise from the starting
values supplied to the differential equation solver, from the method
of solving the differential equation, and from the asymptotic fitting
procedure, Thus a comparison of phase shifts calculated by different
methods gives information on the performance of the test program as
a whole, but not specifically on the behaviour of the differential
equation solver, To obtain a better understanding of the performance
of DEVOG we solved the following differential equations over specified

ranges for different values of the accuracy parameter EPS:

1"
(i) y = - k2y; Y, = sin kx,, 2z = k cos kx,, x5 = 0.0l
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(ii) y" =<)—2€9‘ - kz)y; Yo * xojl(kxo)’ Zg T %x[x‘.}l(kx)]L 1 %=0.01
. o

(i) and (ii) were solved for k = 0.1, 0.2, 0.5, 1,0, 2.0, 5.0 rep-
resenting a wide range of values of the energy E; for each value of
k (i) and (ii) were solved with EPS = 10", n =3, 4, 6, 8. The
exact solufions of (i) and (ii) are y(x) = sin kx and y(x) = le(kx)
respectively, The parameter EPS is a bound on the local error

(absolute or relative as appropriate) per unit step, and to provide

a meaningful comparison we have found

max yexac_:t - Jeale
[%4,d] max &1, IYexactB
for d = 5, 10 and 20. The above quantity provides a scaled maximum

k&] -";\AW'\:\, dandad b\a (A" Xey/

error over various stages of the integration and/is tabulated in
Tables 2 and 3 in § 3.7 for each of the problems (i) and (ii) through-
out the ranges of k and EPS, We also tabulate the initial value
of the steplength H supplied by the main routine for use in DEVOG;
this value of H however is not necessarily the initial steplength
accepted by DEVOG as sufficiently small, In addition the tables
display the number of function evaluations carried out on the interval
[xo, 20]. RADISH can be used directly to solve (i) and (ii) by
reading in L = 0, 1 for problems (i), (ii) respectively and specifying
V(X) = 0 in the function program F; we dispense with the starting
series in the main routine and provide instead exact starting values
for x,, Yor Zo and f, since the exact solutions of (i) and (ii)
are known, The results for problems (i) and (ii) given in the next
Section were obtained using RADISH with the initial value of the step-
1 v 4

length chosen to be[45 EPS\& where y * = k z,. In the case

v
Yo
‘s . 4 . v
of problem (ii) the quantity k 'z ) serves as an estimate for y = but

is exact for problem (i).
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Our main interest in DEVOG lies in its efféctiveness in solving
the radial Schr8dinger equation of the form (3.49). We can draw
up tables of the same form as Tables 2 and 3 where the "exact" result
is obtained by writing our second-order differential equation as a
pair of first order equations, and using a high accuracy variable-
step, variable-order subroutine, namely DO2AHF, from the N,A,G. Library.
Subroutine DO2AHF is described fully in Chapter 6, Program RADISH
whicl is used in Chapter 7 to solve a number of scattering problems
using de Vogelaere's method must be slightly modified to provide in
particular the same starting point and initial steplength for a
particular problem to allow a meaningful comparison with the other
numerical methods tested for the same problem; details of the mod-
ifications required in RADIéH will be described in Chapter 7, A
discussion of the results of program RADISH which solves (3,2) and
calculates the phase shifts for electron hydrogen elastic scattering
in the static approximation without ény of the modifications required
in Chapter 7 is given in Coleman and Mohamed (1979). The starting

values X Y, and z  are determined in the main routine of RADISH.

§3.7 Test results

The effectiveness of the steplength strategy in controlling the
global error for problems (i) and (ii) of§.3.6 is evident from
Tables 2 and 3. If we denote by a the factor by which each value
of the scaled maximum error exceeds the corresponding EPS then aéax,
which represents the maximum such factor a, is 2,60 for problem (i)
and 26.3 for problem (ii). As expected, as the energy increases
for a particular EPS the initial steplength supplied to DEVOG is
decreased and this is evident from the tables. Equally évident is
the fact that as the accuracy parameter becomes more stringent for

a particular value of the energy the initial steplength supplied to
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DEVOG decreases, This decrease in initial steplength is reflected
by the number of function evaluations carried out for the range of
integration,

The interested reader is referred to Coleman and Mohamed (1979)
for a tabulation of the scaled maximum errors in solving equation

(3.2) for the same range of values of k and EPS used in problems (i)

and (ii). In this case a ax = 3.31. The test run which accompan-
ies the test program RADISH in Appendix 1, is for EPS = 107® and
PSIG = 10°* for the following values of E and L:
L = 0,1, 2
E = 0.16, 0.25, 0.5, 0.8, 1.0, 4,0, 9.0, 16.0, 25.0,

The low energies (E < 0,8) were chosen to allow comparison with
results quoted by Burke and Smith (1962), and some results at higher
energies may be compared with those of McDougall (1932), Chandrasekhar
and Breen (1946) and of Moiseiwitsch and O'Brien (1970), In many
cases we get exact agreement with the published values, and where
there are small discrepancies our results are confirmed by calcula-
tions which we have carried out with more stringent accuracy re-

quirements, Table 32 of Appendix 1 compares phase shifts computed

using (a) EPS = 10'6, PSIG = 10°%
(b) EPS = 1078, pSIG = 10°°
(¢) Eps = 10°%, psic = 1073

with the published result for the range of values of E and L. The
agreement between the phase shifts obtained using the accuracy para-
meters given by (a) and (b) indicate that we can have confidence in

our results for the phase shift,
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TABLE 2
EPS k d=25 d =10 d = 20 INITIAL H N
1073 0.1 5.16(-5) | 5.16(-5) 7.43(=5) 3,998 8

0.2 7.36(-4) | 7.36(-4) 2.07(-3) 3.444 8
0.5 | 6.96(-4) | 1.29(-3) 2.23(-3) 1.095 20
1.0 1.52(-3) | 1.49(-3) 1.17(-3) 0.461 54
2.0 1.51(-3) | 1.25(-3) 1.15(-3) 0.194 126
5.0 | 1.16(-3) | 1.12(-3) 1,13(-3) 0.062 390
107% | 0.1 | s5.16¢-5) | 5.16(-5) 7.43(-5) 3,998 8
0.2 | 9.13(-5) | 1.22(-4) 1.98(~4) 1,936 12
0.5 | 1.57¢-4) | 1.45(-4) | 1.48(-4) 0.616 40
1.0 1.52(~4) | 1.44(=4) 1. 24(~4) 0.259 9%
2.0 | 1.43(-4) | 1.24(-4) 1. 14(~4) 0.109 220
5.0 | 1.24(-4) | 1.14(-4) 1.14(-4) 0.035 686
10°% | 0.1 | 8.52(-7) | 5.84(-7 1.25(-6) 1.456 16
0.2 5.25(-7) | 1.17(-6) 1.86(-6) 0.612 34
0.5 1.99(~6) | 1.46(-6) 1.42(=6) 0.195 120
1.0 |.1.46(-6) | 1.42(-6) | 1.24(-6) 0.082 284
2.0 | 1.42(-6) | 1.24(-6) 1.15(-6) 0.034 686
5.0 | 1.24(-6) | 1.14(-6) 1.13(-6) 0.011 2164
1078 | 0.1 | 8.53(-9) | 4.43(-9) 1.44(-8) 0.461 46
0.2 | 4.37(-9) | 1.44(-8) 1.77(-8) 0.194 112
0.5 | 2.08(-8) | 1.42(-8) 1.42(-8) 0.062 370
1.0 1.43(-8) | 2.13(-8) 1.93(-8) 0.026 818
2.0 | 2.60(-8) | 2.28(-8) 2.12(-8) 0.011 1896
5.0 | 2.11(-8) | 1.96(-8) 1.96(-8) 0.003 5978
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TABLE 3

EPS d=375 d =10 d = 20 INITIAL H N

1073 9.41(-4) | 9.41(~4) 3,40(~4) 3,998 8
7.91(-4) | 5.18(-4) 2.54(-4) 3.998 26
1.40(-3) | 5.82(-4) 5.80(-4) 3.834 42
1.04(-3) | 7.39(-4) 6.38(~4) 1.612 80
1.29(-3) | 1.13(~3) 1.20(-3) 0.678 116
7.52(~4) | 7.75(-4) 8.04(-4) 0.216 298

107% 1.70(-4) | 1.07¢-4) | 4.82(-5) 3,998 22
1.99(-4) | 9.50(-5) 4.34(-5) 3,998 34
1.33(-4) | 1.36(-4) 9. 70(-5) 2,156 70
1.50(~4) | 8.28(-5) 4.84(~5) 0. 906 140
6.35(-5) | 3.99(-5) 3.38(-5) 0.381 268
3.42(-5) | 3.36(-5) 3.39(-5) 0.121 632

1076 5.11(-6) | 2.99(~6) 1.39(=6) 3.998 50
5.19(-6) | 2.56(-6) 1.25(-6) 2.143 74
3.03(-6) | 1.48(-6) 1.17(=6) 0.682 164
1.33(-6) | 1.02(-6) 9.58(=7) 0,287 306
7.98(-7) | 1.16(-6) 1.34(-6) 0.121 562
1.38(-6) | 1.52(=6) 1.59(~6) 0.038 1332

1078 3.30(-8) | 1.85(-8) 1.27(-8) 1.612 92
1.29(-7) | 7.20(-8) 3.64(-8) 0.678 170
2.63(-7) | 1.33(-7) 6.64(-8) 0.216 414
2.33(-7) | 1.16(-7) 5.83(-8) 0.091 812
1.01(-7) | 5.04(-8) 2.73(-8) 0.038 1714
4.27(-8) | 2.41(-8) 1.76(-8) 0.012 4274
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CHAPTER 4

Numerov's Method

§4.1 Derjivation of method

Numerov's method for solving

g" o= f(x, y) (4.1)

is well known and is expressed as:

Civen Yo-1 Yn
3

- 2 ‘
2y -y, +h% (£, +10f +£ ) (4.2)

y
n+l 12

1

where Yy is an approximation to the solution at the mesh point X .
We shall give a derivation of (4.2) in this Section., We can use

Taylor's theorem to express the solution of (4.1) at x + h as

x+h

y(x + h) = y(x) + hy'(x) + j - (x + h-t) y'kt)dt.
X
Thus we have
+h -h
a2 y(x-h) = y(x + h)-2y(x) + y(x-h) = r (x+h-t) E(t)dt+ f (x-h-8)f(s)ds
X X

and substitution of +zh, -zh for x + h ~ t, x - h - s respectively
leads to the equation

Azy(x-h) = h2 jl z{%(x+h-zh) + f(x-h+zhi}dz.
o
We introduce the operator E:

EPf(x) =  f(x+ph)
and we see that the backward difference operator can be expressed as
V= 1-&t
Thus we have

1
A%y(x-h) = n? [o 2 J(1-m? + (1 -V )2‘2} f(x+h)dz .

We use the operator expansions
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(1 -V)% = 1-2V+ 2021V 72 - 2(2-1)(2-2)7 +2(2-1)(2-2) (z-3)*
2 6 24

+ m———-

(I-V)z-z = I+(z—2)V+(z-2)(z-1)72+(z-2)(z-l)zV3+(z—2)(z-l)z(z+1)V4+---
2 6 24

to express a2 y(x-h) as

aZy(x-h) = n? [1 U+ 1V 174y ---J £(x+h).
12 240

If we truncate the above expansion at the term involving the fourth
difference of £ and substitute X for x we have

2 b
+10f +£ 1) - h° 77 ..

2
y -2y +y .ah” (£
n+l n n-1 340

13 n+l

Thus equation (4.2) provides a two step method to obtain the solution
of (4.1) with the leading term of the local truncation error per step
given by

2 4 6 vl
..h_ V f -~ —h_ y . (4.3)
220 n+l 240 n+l

We shall use Numerov's method to solve the single channel radial

Schrddinger equation in the form

vy (x) = [t(tn) -E + v(x)J y(x) (4.4)
X

and we shall be required to provide two starting values, namely Yo

and y,. Details of the implementation will be described in § 4.4,

}4.2 Characteristics of Numerov's method

Numerov's method has been studied at a fixed steplength by a
number of authors (see §1.4) to solve the radial Schrddinger equation,
The characteristics of the method such as the local truncation error,
the region of absolute stability and the cumulative error are well

known and we shall discuss them briefly in this Section,
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§4.2.1 The local truncation error

We saw in the preceeding Section that the leading term in the

local truncation error in the step from x to x is given by (4.3).

n+1
A bound for the local truncation error may be obtained from a more

explicit form for the local truncation error by considering the func-

tional defined by

;[,[y(x);h.] = y(x+h)-2y(x)+y(x-h)—h_2 {y” (x+h)+10y”(x)+y"(x_h)}
12

for an arbitrary function y(x) having six continuous derivatives, After
using the appropriate Taylor expansions we arrive at the following

form for L[y(x);h]:

1
Liyeosel = 28 [ (e)y (xeshyas (4.5)
720 “-1
with
G(s) = |-6(-1-8)2+10(-1-5)3, -14s< o
6(1-s)5-10(1-s)3 , 0<¢s <1,

G(s) is negative over the range [-1, 1]; thus we may write (4,5) as

41y(x);h] = 108 cy'l(x+BOn), -1<0<1 (4.6)
with
c = 1 ‘flc(s)ds=-L
720 ‘-1 240

If y(x) is the exact solution of (4.1) and we assume that the.

starting values at x and x are exact, that is

n-1

~
<
I

y(xn)

yn (xn)

+h
It
<
~~
L
=]
1
—
N~
Hh
[

then

il[y(x);h] = y(xn+1)-Zy(xn)+y(xn;1)'%; {;f"(xn+1)+10y"(xn)+y (kn-lz}
2 1"
= y(xn_H)-zyn+yn_1-hE { y (xn+1)+10fn+fn_1} . (4.7)

The truncation error at X is given by

+1
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y(xn+l) "y T y(xn+1) B 2yn T Y1 " %E (fn+1 + 1Ofn + fn—l)
= Liyoshl + 02 [y ) - £ 4
yAXIS 17 [y *n41’ ~ n+1]' (4.8)

To obtain & bound on this error we assume a Lipschitz condition given
by equation (2,34):

£(x, y) - f(x,q,)| £ KIY-FLI
for all x in the appropriate interval [a, b] and all finite y andq.

We also assume a bound on the sixth derivative of y for all x in [a, b]:

]yv'l (x)] £ Mg x€[a, b},

Thus we obtain the bound

:6 2
y(x )-y h™ M, + hK Jy(x_ ,.) -~y
l n+1 n+1 270 6 13 n+l n+l
whereby '
y(xn+1) T Vel £ —Ei Mo
240
1 - h%K
12
Then for all h <« ho £ ’12} we have
K
y(x ) -y < w®n (4.9)
n+1 n+1; = :

where

Mg
2401 - hOZK
12

§4.2.2  Absolute stability of the method

We shall establish the interval of absolute stability for Numerov's
method using the boundary locus method which is discussed in Lambert
(1973, p. 82).

The locus of the bowrdary of the region of absolute stability is

given by



80,

h(0) = Alexplib)) (4.10)
6 (exp(i@))

where/o,é‘ are the first and second characteristic polynomials of

the stability polynomial
n(r, h) = P(r) - he(x) = o.
/2 and 6 are given by

plr) = ML 1, 0 (r) = (r2 + 10r + 1).

1
12
Thus

h(8) = 12(-18 + 16cos© + 2 cos 20)
(102 + 40 cos8® + 2cos 208)

so that the boundary of the region is an interval of the real axis;
the end points of the interval are'given by the maximum and minimum
values of the function h (0 ). Thus the interval of absolute stab-

ility is found to be [-6, O].

§4.2.3 The cumulative error

We can find a bound on the cumulative error using Henrici's
approach (1962, p. 312). Numerov's method expressed in general

multistep form is

2 _ 2 2
Sy Ve TN F B oy (4.11)
i=o i=o
where
O(o B 1= 0(2 ! 0<1 = -2
B, = 1 = B,, B, = 3
o 12 2 1 6

The exact solution satisfies
2 []] 2 n h " ) ﬂ
y(xn+2h)-2y(xn+h)+y(xn) = %E {)r (xn+ h)+10y (xn+ +y (xn}i- y(xn+1),h],
Then if we assume

- h§ = 0,
y(xu) yplé , M 1

with

h? < k7 l"(z"z-l‘
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we obtain the following bound

Iy(xn)—ynl - ,en’ < F*[B(xn'a*)s “"(xn‘a*)zNha]ew[(xn‘a*)z k]

(4.12)

for a < xnsé b, where K is the Lipschitz constant defined in (2, 34),

* %
a and [ are given by

a® = a-nf

N

r* = [
1-hZKet, ™8,

where | and X are constants (see Henrici) and B is given by
Bo= (g + (8] + |85 = L.
Thus the cumulative error is of order h4,
The dependence on the steplength h can also be seen in an alternative
approach described by Kopal (1955, p. 219). We consider the applic-

ation of Numerov's method to the solution of

y'= -y, y(@) = ¢ y (0 =1 (4.13)

for which the exact solution is y(x) = sin x, Substitution of (4,13)

in (4.11) leads to

2
y = 24312 - 5h }. y -y
n+2 {W n+1 n

and the solution of this difference equation is given by

n n
Yy, = Ar1 + Br2

where A and B are arbitrary constants and r,, r, are roots of the

characteristic equation

r2-2<12-5h2>r.+ 1 = o.
12 + b2

Notice that the product of the roots is unity, thus we write Iy, Ty
as

rl,2 = cos?) + isin¢

and hence



82,

If now we set

N
=
n
aQ
+
[ N
Q

it follows that

Yy = Clcos n4) + 02 sin n(P
<= Clcos nh+Czsin nh—ClnhSSin nh+C nh5 cos nh .
480 480

For exact starting values, that is y(0) = 0 and y(h) = sin h, we

obtain

Thus the cumulative error is given by

. 4
u = sinx-y = (1-¢C,)sin x - C.,h x cos x
N n 2 2256
= h4 (sin x - x cos X) + --- , (4.14)
480

The corresponding result obtained for de Vogelaere's method is given

in Coleman and Mohamed (1978) as

u = gf_(9 x cos x -5 sin x) + ~=- . (4.15)

D 180

In particular when x = g the leading term in the estimates given by (4, 14)an

o NlA

(4.15) is h4 and -Bﬁ r
180 36
results as can be seen from Tables 4 and 5 in §'4.3.

spectively which agrees closely with numerical

§ 4.3 Numerov's method with variable stepsize

A feature of linear multistep methods for equation (4.1) which
have a local truncation error of order hP*? is that the global error
is of order hp, (see Henrici, 1962) and we have shown that for Numerov's
method the leading term of the local truncation error is proportional
4

to h6 whereas the global or cumulative error is proportional to h-,

This contrastswith the hybrid method of de Vogelaere where the local
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truncation error is of order h5 and the global error is of order ha,
We chose to control the local error per unit step in an attempt to
control the global error in calculations based on de Vogelaere's
method, In view of the difference of a factor of h2 in the local
truncation and global errors for Numerov's method we suspect that a
control of the local error per unit step per unit step will give a
better control of the global error than will a control of the local
error per unit steb. Of course the extent to which these error
controls are effective in controlling the global error will depend
on the stability of the differential equation.

An estimate of the 1ocay.error per unit step is given by

5 vl

-h” y
240 n+1

(4.16)

and an estimate of the local error per unit step per unit step is

given by

vl

4
h yn+ 1 »

240

(4.17)

We have used the methods of de Vogelaere and Numerov with a

constant steplength over the range LO,_E] to solve the problem

2
" ' _ _
y = -y, y(0) = 0,y (0)=1, x¢€ Lo, n] which has the
' 2]
exact solution y = sin x, At each step of the calculation in de

Vogelaere the local truncation error per unit step is estimated and

in the calculation based on Numerov's method estimates of the local

truncation error per unit step and per unit step per unit step are

provided. Table 4 shows the maximum error and the maximum truncation

error per unit step multiplied by the length of the range of integration

which is recorded over the range [9, E] using de Vogelaere's method for
2

a range of values of steplength h, Also tabulated is the appropriate

value of the leading term of u_ in (4.15). The corresponding

D

results for Numerov's method are recorded in Table 5 along with an
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TABLE 4
h uDg=—§fgi Max.error in | Max, trunc,error per
36 [0,%} unit step x &
_ -1.7(-5) -9.1(-6) 1.9(-5)
20
n_ ~-1.1(~6) -8.1(-7) 1.3(-6)
40
T -2.1(-7) -1.8(-7) 2.7(-7)
60
n_ -6.6(-8) -5.8(-8) 8.3(-8)
80
n_ -2.7(-8) -2.4(-8) 3.5(-8)
100
x| -1.3(-8) -1.2(-8) 1.6(-8)
120
n -7.0(-9) -6.6(-9) 8.8(-9)
140
T -4.1(-9) -3.9(-9) 5.2(-9)
160
T -2.6(-9) -2.4(-9) 3.3(-9)
180
x| -1.7¢-9) -1.6(-9) 2.2(-9) ‘
200
TABLE 5
h uNﬁ=Eﬁ Max.error in | Max, truncerror per| Max, trunc.,error per
480 [OLE] unit step x m_ unit step per unit
2 2 step X T
2
w_ |1.3(-6) 1.3(-6) 5.5(-7) 3.5(-6)
20
x |7.9(-8) 7.9(-8) 1.9(-8) 2.4(-7)
40
n_ |1.6(-8) 1.6(-8) 2,5(-9) 4.9(-8)
60
n_ |5.0(-9) 5.0(-9) 6.1(-10) 1.5(-8)
80
n_ |2.0(-9) 2,0(-9) 2,0(-10) 6.3(-9)
100
x__ {9.8(-10) 9.8(-10) 8.0(-11) 3.1(-9)
120
n__ |5.3(-10) 5.3(-10) 3.8(-11) 1.6(-9)
140
n__ |3.1(-10) 3.1(-10) 1.9(-11) 9.7(-10)
160
n__ |1.9(-10) 1.9(-10) 1.0(-11) 6.1(-10)
180
®__ |1.3(-10) 1.3(-10) 6.3(-12) 3.9(-10)
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estimate of the maximum truncation error per unit step per unit
step multiplied by the length of the range of integration,

It is clear from Table 5 that the control based on the error per
unit step per unit step provides a better estimate of the maximum error
in Numerov's method and we shall consider in§'4.4 automatic implement-
ations of Numerov's method which control the local error per unit
step and the local error per unit step per unit step, These implem-
entations will be referred to as NUMEROV1 and NUMEROV2 respectively,

Estimates of the errors are obtained by using the divided diff-

erence form for the sixth derivative of y, that is we approximate

vl

]
Yier1 by 6! f[xk_s,x

k-4’xk-3’xk-2’xk-1’xk’xk+1] which in the case of

evenly spaced mesh points corresponds to using backward differences,
We therefore need to calculate the solution at a2 minimum of seven mesh
points before an estimate of the truncation error can be obtained,

Suppose we have reached the mesh point X4l with a constant

steplength h and that at this point the estimated error per unit step

or per unit step per unit step exceeds the tolerance parameter, Then
t
the solution must be recalculated at the new mesh point X1 where

X + rh

R+l k

with r < 1, Thus we shall require an estimate of the solution at

‘1
the mesh point X 1 where

)
= X, -~ rh
k-1 k
in order to use equation (4.2) to advance the solution to the new

mesh point X1

Thus a disadvantage of a stepchanging mechanism

in Numerov's method is the requirement of an interpolation procedure

when decreasesin steplength are performed. It is necessary to pro-

1
vide an estimate of the solution at X, _q to the same degree of accuracy
as that produced in estimates obtained by Numerov's method, Thus

we use the calculated solution at the mesh points X X1 Koo
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Xe-3 Xpegr Xpos to generate the divided difference form of the
fifth degree interpolation polynomial interpolating the solution at
these points,

If the estimated error per unit step or per unit step per unit

step at x is less than the tolerance parameter we consider whether

k+1
an increase in steplength is justified, The steplength strategy will
be discussed in§4.4.2. -

It is possible to derive a generalisation of Numerov's method

which is appropriate for integration over two unequal intervals of

length h and k., We consider the new method to have the form

Yol = Ayn + Byn_l + (Cfn+1 + Dfn + Efn_l) + R (4.18)
where

X, < x4 + h, X 1" % + k.

When h = k the method given by (4.18) reduces to that of the familiar
Numerov method for a constant steplength, that is

A = 2, B =-1, C="h =E D = 10h°

12 12

and R is the leading term in the local truncation error given by

R = -n° vl

36 L

Substituting the following Taylor expansions

' 2 n 3 m 4 1lv .5 v.6 vl
y =y - ky +k vy -k y +ky k™ y 4k y —-
n n+1 n+1 2 n+l 6 n+l 24 n+l 120 n+1 790 n+1+
2 n 3 mne 4 1V
- - ' -
Yoo1" Yna1~(HOY o +BHO Ty, ) =(bt)7y o +HBE) Ty 0y
2 6 24
- (at10)°y_ Vet Viene-
120 720
_ " _ " [1 ] 2 ]-V 3 ] v 4 vl o
fn - yn - yn+l - kyn+1 + %— yn+1 %—yﬁ+1+%zyn+1 +

= "
n-1 Yn-1 Y+l - (h+k)yn

Hh
]

2 1v 3 v 4 vl
+1 + (E%E) yn+1 _(EEE) yn+1+(h§%) yn+1+

in equation (4.18) and equating the coefficients of y and the first

n+l
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six derivatives of Yot V€ obtain the following values for the co-

efficients in (4.18):

A = (htk), B=-k, C=1 (hksk?-n?)
h h 1z
D = (h+k) (h% + 3nk + k%), E = k (h%+ bk - k)
12h 12h
R = -1 ( 4k° + 10nk* - 1003%k% - an) y ¥
720 n+1
e ]
- 1 (-5k® < 15n® - snfktrisnticeiantieandiy YL 4 oy
1440 ntl '

Notice that when a constant steplength is used over the interval
[xn—l’ xn+1], corresponding to the method in (4.2), Y41 15 2 fifth

order approximation to the solution at X1 when the steplength is

changed from h in [xn-l’ xn] to k in [xn, is a fourth

xn+1]’ Yn+l
order approximation, We shall refer henceforth to the method of
(4.18) - (4.19) as the generalised Numerov method and that of (4,2)
simply as the Numerov method, The generalised method has been used
by Burke and Seaton (1971, p. 61) in connection with solving a set
of integro-differential equations; the equations are reduced to a
system of linear algebraic equations by applying the generalised
Numerov method. The method used by Burke and Seaton differs from
that of Robertson (1956) which uses Numerov's method over a finite
range of integration with a finite number of evenly spaced mesh points,
The use of the generalised Numerov method allows Burke and Seaton to
consider a finite range of integration comprised of a finite number
of unevenly spaced mesh points; the mesh spacing is determined prior
to the numerical integration of the equations and is calculated sub-
ject to an intuitive model which is set up to provide "function values
with anapproximately correct distribution of nodes”. (see Burke and

Seaton, p., 56).

We shall discuss in$4.4.2 the suitability of the generalised
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Numerov method with an automatic steplength control with regard to

solving the radial Schrddinger equation given by (4.4).

§‘4.4 Implementation of Numerov's method with automatic error control

We shall discuss the programs NUMEROV1. and NUMEROV2 which are
aitomatic implementations of Numerov's method to solve y" = f(x, y).
NUMEROV1 wuses a local error per unit step criterion and NUMEROV2
a local error per unit step per unit step criterion, The steplength
strategy used in both versions is discussed i11§4.4.2 and we shall
see that in the case of the generalised Numerov method various quest-
ions are raised as to how best to effect the change over from the
Numerov to the generalised Numerov formula (or vice versa) when a
change in steplength is required.

The test program which used Numerov's method to solve the single
channel radial Schrddinger equation, given by (4.4), for scattering
of an electron by the static potential of atomic hydrogen is a special
case of that listed in Appendix 2 which uses the method of Raptis and
Allison (1977). A discussion of the Raptis and Allison method is
given in Chapter 5; it will suffice here to say that this method is
a generalisation of Numerov's method.

The subroutine NUMOV which solves the differential equation in
programs NUMEROV1I and NUMEROV2 differs for the two programs only
with respect to the type of error criterion used to control the step-

length in the numerical integration of the differential equation,

§.4.4.1 Programming the Numerov algorithm

Numerov's method applied to equation (4.4) is expressed as

_ 2 n " "
Vel = Ve " V1 % {y k1t 10 F Vi }
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= W Ve t w2 1A - V() P
12 1] %1
1
+10 X(I;;l) E +V(x) y + [IZ(EH) -E+v(xk_1)_lyk_1
k Fk-1 |
or
2 \‘1 - . - 2 - - 2 2
(1 - %’\H_yk-n (1 l’;_)\k) Y, (1 _111_2 )\k_l)yk_1+h /\kyk (4.20)
where
Ae = bdrvp-Eeve.
r

Since values of the solution calculated at previous mesh points will
be required before an estimate of the local error can be made we shall
use the arrays XX, F to store the values of the mesh points and the
corresponding calculated solutions; F(K + 1) will correspond to the
calculated solution i+l at the mesh point Xetl which is stored in
XX(K + 1). We shall be required to provide two starting conditions,
namely F(1l) and F(2); the problem of starting the solution will be

considered separately in §4. 4,3,

We introduce the quantities

2 2
Y = [1-n"\ F(K+1), YK = (1-h") \F(K),
( 13 k+%) ( 13 ;)
YPREK = [1-h%\ F (K- 1), HVF = h2\_ F(K),
E¥ k-1 k
_ 2
v = )\k, H2 = h°,

If the steplength h hasl been used as far as x, we shall have

2 2 2
Y = [1-h“ A VF(Kk), vk ={ 1-h°)\ (k-1), YPREK =(1-h°)\ . \F(K-2)
( 12 k\) < 12 &) ( 12 k2>

with

F(K) = y,, F(k-1) = F(K-2) H2VF = h2>\k_1F(K-1),

k-1 V-2

In order to advance the integration one step to X, 11 e must update

+1

the values of YK and YPREK for use in the next step; we do this by
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setting

H2VF = H2* v* F(K)

YK = Y

YPREK = YK
where V is still A\ K Then we use the following FORTRAN statements
to calculate the solution at LWL

Y = 2,0%YK - YPREK + H2VF (4.21)

- F(k+1) = Y/(l.0 - H2*V[12.0). (4.22)

Notice that if we write (4.1) as

o= f(x, y) = gx)y
then V is just the function g(x) so that the second derivative of
the solution at X, is given by V*F(K). The calculation of this
quantity is effected within the calculation of the quantity YK. We
choose to evaluate the second derivative of the solution in this way
in the program text rather than use a function subprogram, as was
the case in program RADISH, since the use of equation (4,21) as a
means of advancing the integration one step results in a decrease in
the number of arithmetic operations required per step,

Suppose the initial steplength which must be supplied by the
user-is h.and that we have calculated the solution at the mesh points
XX(1) = h, XX(2) = 2h, ---, XX(K+1) = (kél)h. The leading term in
the truncation error per step at XX(K+1) is given by

'5%; ykii
and we estimate this error by using the divided difference form for
the sixth derivative of vy, Subroutine DIVDIF sets up the table of
sixth divided differences of the solution at the points XX(K+1), XX(K),
XX(K-1), XX(K-=2), XX(K-3), XX(K-4), XX(K-5). This routine will be

described in more detail in§4.4.4. DIVDIF returns the value DD

which is an estimate of the sixth derivative of the solution, Notice
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however that the sixth divided difference table will tend to

estimate the value near the midpoint of the range of mesh points
considered rather than at Xl which is the point at which the estim-
ate is required in order to consider what action if any must be taken
in the next step, that is, whether an increase or decrease in step-
length is required. The use of any divided difference table which
uses past values of the solution to estimate the associated derivative
of the solution at a given mesh point will inevitably introduce a
'lag' in that the estimated derivative curve will lag behind the

true derivative curve, However our calculations show that this

lag does not affect the accuracy of the solution obtained.

An estimate of the local error per unit step is given by
5 i

TRERR = =~ h
240

DD (4.23)

and this quantity is calculated in subroutine NUMOV of NUMEROV1,.
Program NUMEROV2 calculates

TRERR = - DD . (4.24)

h_
240

§4.4.2 Steplength strategy

The user is required to specify a parameter EPS for use in the
subroutine NUMOV; the value of EPS is transferred to NUMOV by the
common block EKLLI, In the case of NUMEROV1 EPS is the largest
allowed local error per unit step and in the case of NUMEROV2 it
is the largest allowed local error per unit step per unit step.

Program NUMEROV2 calculates at each step

TOL = EPS x Max {1, ,yk+1l} (4.25)

so as to provide an absolute or relative error criterion according
as the absolute value of the calculated solution is less or greater

than unity, and the calculated Yietl is accepted as satisfactory if
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[TRERR| < TOL (4.26)
where TRERR is given by equation (4.24), 1If this inequality is
not satisfied the step is rejected, a new value of the steplength X h

is found and we start again from the mesh point x, -« h (see §4.3)

k
using an interpolated value for the solution at this point, Since
the local error per unit step per unit step varies approximately as

4 .

h', we argue as in §3.2 that a steplength o(h would give a truncation

error of approximately (x4 TRERR, and we choose

1.
ol =( 0,5 TOL\4
| TRERR |

When the calculated Vit 1 has been accepted as sufficiently accurate
we consider whether or not a steplength increase is justified, In
order to avoid additional iﬁterpolation it 1s necessary to restrict
increases in steplength to a factor of C = 2, Notice that in program
RADISH the value of C was also taken to be 2 but C is not confined
to this value, since for any value of C which is specified by the
user the implementation remains valid. By considering only increases
in the steplength by a factor of 2 in subroutine NUMOV we can use the
stored values of YPREK and Y to obtain the solution at the next step
with a steplength of 2h,

Suppose we have reached the mesh point XX(K+1) with & constant
steplength h and at this point we have

|TRERR| < TOL
The steplength will be doubled only if
16 [TRERR| < 0.5 - TOL

for 3 consecutive steps, Then if a steplength of 2h is to be used
in the next step we shall require values for the solution at the mesh
points XX(K-1) and XX(K+1) calculated with a steplength 2h so.that
equation (4.2) may be used to advance the solution to the next mesh

point, If we define
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L 2y
Y. = (1 - (207 )\ r> F(r) (4.27)

12
we shall require the values of YK_l and YK+1 for use in equation
(4.21) where YK_l and YK+1 are the new values of YPREK and YK res-
pectively, Now YPREK is given by

) 2
YPREK = <1 - b7 A k_1> F(K-1)

12
and
2
Yo = (1 - (2h) }\k_1> F(K-1) .
12

Thus we have

Yeo1 = 4 YPREK - 3F(k-1). (4.28)
Similarly

Yool = 4Y - 3F(R+D) . (4.29)

Program NUMEROV1 . accepts the calculated Yier1 if
|TRERR| < TOL (4.30)
where TRERR and TOL are given by equations (4,23) and (4.25) respec-
tively. 1If the inequality in (4.30) is not satisfied the step is
rejected, as in NUMEROV2,,6 but now o is chosen to be
X = (O.STOL)_%—-
ITRERR |
since the local error per unit step varies approximately as hs. The
corresponding test which must be satisfied for 3 consecutive steps
before the steplength is allowed to double is
32 |TRERR| < 0.5 TOL ..

We consider now the steplength strategy for the generalised

Numerov method, If we consider a local error per unit step criterion
and if the method is used to advance the solution from Xy to X1 where
X, = x _;+hand X1 = F T By oo hl+ll

an estimate of the local error per unit step is
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TRERR] = 1 (5h3h + 2h4 - 2h 4. Shh 3)DD (4.31)
= 1 1 1
360
where DD is an estimate for ykil' Suppose that we have reached the
mesh point X 1 with a constant steplength h, Then at this point

an estimate of the local error per unit step is

5

TRERR = -h~ DD
240
where DD is an estimate for ynii . Suppose that

| TRERR| > TOL.
Then a decrease in steplength is required and the calculation must

be restarted from the mesh point X with a new steplength h. say,

1
However the local error per unit step which previously varied approx-~
imately as h5 will now vary approximately as
[ (2+500 - o3(5+ 200)] b (4.32)
by virtue of equation (4,31) where h1 = ol h, We now require that
|TRERR1| < TOL.

However a difficulty arises if we consider using the form in (4.32)

to provide a value for of ; we used the argument in NUMERO¥1 and
NUMEROV2 that if the local error per unit step and per unit step

per unit step vary épproximately as h5 and h4 respectively then a
steplength oh will give an error of approximately < TRERR and

o<4 TRERR where TRERR in both cases involves an estimate of the

sixth derivative of the solution, But notice that for the general-
ised Numerov method TRERR and TRERR1 involve an estimate for the sixth
and fifth derivative of the solution respectively so we cannot combine
the two estimates of the local error per unit step to provide a value
for <, One possibility would be to perform the necessary decrease

in steplength from h to h., = o h as if the next step were taken with

1

the Numerov formula. Thus by employing the same strategy used for
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decreases in NUMEROV1 we choose
X (o 5TOL > 1
TRERR
It is now possible to use the generalised Numerov formula for the
next step which has length ¢{h, followed by the Numerov formula if
this step is accepted, Notice that no interpolation is required.
However a steplength Ah which is acceptable for the Numerov method
may well prove to be too large for the generalised method since the
leading term of the local truncation error in the former method
is a factor of h times that in the latter. This would necessitate
a further decrease in steplength to h, = Bhl =X Bh and the problem
immediately arises as to how to calculate B in practice, An estimate
of. the local error per unit step is
3 4 4 3

TRERR2 = _1 (5h™h, + 2h" - 2h, - 5hh

)DD (4.34)
360 2 2 2

where DD is an estimate for the fifth derivative of the solution at

X+l = x + h2. Thus the local error per unit step which previously
varied as the quantity in (4.32) will now vary approximately as

[(2 + 56¢B) - o3B2(5 + 2:<B)I%,
We require

| TRERR2| < TOL.

A suitable choice for B can be obtained in terms of the computed
quantity TRERR1 but involves solving & quartic equation in B, This
does not constitute a practical means of estimating the new steplength.
It may be that some other strategy proves to be more satisfactory and

we shall give no further consideration to the method. We concentrate

instead on the familiar method of Numerov,

§ 4,4,3 The initial step

We are required to specify two starting conditions namely Yo and

¥q which represent the solution values at the mesh points x and X, =
(o]
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X, + h, These are calculated in the main routine of NUMEROV1. and

NUMEROV2. The initial step of Numerov's method calculates y, and

may be expressed as

SNy (o)
Y, ( - %;7\ ) Yy (?_:'§§X§> (4.35)

With the completion of this step the cumulative and truncation errors
equate and the truncation error at the end of this step is h times

the truncation error per unit step in the case of program NUMEROV1

and h2 times the truncation error per unit step per unit step in the
case of NUMEROV2. - In Chapter 7 we give a numerical comparison of
various programs including RADISH, NUMEROV1. and NUMEROV2.. to solve
the radial Schrddinger equaéion (4.4), In order to provide a reason-
able comparison the same starting point X, must be used in each pro-
gram and thus the same criterion must be used for choosing X, in

each program, In §I3.5.1 the criterion for choosing X was such

that the first neglected term in the expansions for Yo and h2° was
less than 0,1 EPS, In order that the contribution of the error from
Yo to Yy in (4,35) be controlled we ask that a times the first neglected
term in the expansion for Yo be less than O, 1hEPS in program NUMEROV]

and less than 0.1h2EPS in NUMEROV2, where

a = 1-h_2}\° < L (4.36)
1 -thz
12

Similarly we ask that b times the first neglected term in the expansion

for y, be less than 0.1h EPS, 0.1h? EPS in NUMEROV1, NUMEROV2 res-

pectively where

b = +5h2h; (4.37)
z .
A,
12

The criterion adopted in Chapter 7 for choosing X, is
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jag | x> < 0.1 x EPS x Eps (4.38)
in the notation of §3.5.1. The condition given by (4.38) will ensure

that the appropriate criterion for choosing Y, in each method is
satisfied, In order that the contribution from the error in Y1 to
that in Yo be controlled we ask that

|b$y1| < n'Eps (4.39)

r

where Syl = ar(xo-f-h)l‘+ represents the first neglected term in the

expansion for Y1 with 5<4r<9 and i = 1, 2 in NUMEROV1, NUMEROV 2
respectively, The first 8 coefficients of the expansion for the
potential given by (3.50) are read as data in the main routine and
-the coefficients 3y, --= A, are calculated with a; = 1. If the
inequality in (4.39) is not satisfied for r = 6, ---, 9 then a more
suitable steplength olh is found with

e = . o.5n Eps -

[b a9(x°+h)L+9|

If the inequality in (4.39) is satisfied with the new value of the
steplength for r = s say (6<s8<9) then the accepted value of ¥y is

such that the first neglected term in the expansion for Y1 is as(xo+h)L+€

The accepted values of Yo and y, are passed to the routine NUMOV
in the argument list of NUMOV. It may happen however that the first
estimate of the local error per unit step or per unit step per unit
step is such that

|TRERR| > TOL

in which case a new value for y, must be provided by the routine NUMOV,

§4.4.4 Description of programs NUMEROV1. NUMEROV2

Figure 4 below shows the relationship between the seven routines
of programs NUMEROV1 ™ and NUMEROV2 which solve the radial Schrddinger

equation given by equation (4.4).
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MAIN
REG
POT
NUMOV PS
AIREG
DIVDIF

FIGURE &

Program NUMEROV2 differs from NUMEROV1 only with respect to six
FORTRAN statements which we discuss in part (ii) of’§5.7.3. So for
the main part of this Section we shall describe program NUMEROV1;
Appendix 2 contains a listing of the program EXPFIT1 which is an
automatic implementation of Fhe Raptis and Allison method with an ergor
per unit step criterion. T; obtain a listing of NUMEROV1 would re-
quire only a few minor modifications to EXPFITI. Thus we have chosen
to provide a listing of EXPFIT1; EXPFIT2 is the corresponding general-
ised version of NUMEROV2 which uses an error per unit step per unit
step criterion in the Raptis and Allison method.

Double precision is used for all real variables, We shall
discuss each of the routines in Figure 4 in this Section.

(i) The main routine

This calculates the values of the initial conditions Yor Y1
as described in §4.4.3. The first 8 coefficients in the expan-
sion of the potential in the vicinity of the origin, given by
equation (3,50) are read as data at line 21 and are stored in the
array VCOEFF. The 9 coefficients in the expansion of the
regular solution of (4.4) which are given by equations (1.15)

of §1.2 are calculated with a; = 1 and a_ replaced by a,

1 +1°

Having read the coefficients Vi, V,, ---, Vg the program then

reads the parameters EPS, L, E, PSIG and XF. C the factor by
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which the steplength is increased is set to 2, For given
values of EPS and XF an arbitrary number of calculations may

be carried out for different values of the energy E and angular
momentum L, Execution terminates when a negative value of L
is read.

In the listing in Appendix 2, H is taken to be O.1. This
value is completely arbitrary; for comparison purposes the initial
value of H in each of the programs tested for a particular problem
must be the same in order to provide a meaniningful comparison
of the metﬁods. It is possible to provide a more realistic
value by using the power series given by equation (3.51) to estimate,
a priori, the truncatgon error in Yos as was done in § 3.5.1.

The common block EKLL1l is used to transfer parameters to

the subroutines NUMOV, PS and POT.

(ii) Subroutine NUMOV

The subroutine NUMOV which is written in double precision

form solves the differential equation
y' = f(x, y).

NUMOV has been written so that the structure of the routine
is similar to that of DEVOG. Indeed the NUMOV routine is
identical to routine RAPAL described in Chapter 5 (see § 5.6)
with the exception of a few statements, The input to NUMOV is
as for RAPAL; NUMOV is obtained from RAPAL by deleting lines

(240 - 254)%, 297 - 300, 331, 346 - 353, 371 and 373 - 378.

* The line numbers quoted are those appearing en the left hand side
of the listing of EXPFITl, corresponding to the sequential numbering
of the lines in a file containing EXPFITI.
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In addition the labels in lines 301 - 302, 354, 379 are deleted
and line 262 is replaced by the following FORTRAN statement:
9 CALL DIVDIF (DD, K, J, JD)

(see part (iii)).

Subroutine DIVDIF

This subroutine sets up the tables of sixth divided differences
of the solution at the mesh points XX(K+1), XX(K), ---, XX(K-5).
The elements of the table are stored in the array D the dimen-
sions of which are 6 by 7. The rth column, r = 1, ---, 6, of
the table is stored in D(r,I1), I=1, ---, 8-r, The array'X(7)
stores the values of the seven mesh points which are being
considered:

(1) = XX(K+1I-6), I=1 ~---, 7.
The estimate of the sixth derivative of the soluticn is given
by

DD = D(6, 1) - D(6, 2) .
x(1) - x(7)

The arguments of DIVDIF are DD, K, J and JD; J is 1 on initial

entry to DIVDIF and is subsequently set to zero to distinguish
between the first and later calls. JD>0 signifies that a
decrease in steplength has been performed.

Subroutine DIVDIF as listed in Appendix 2 is for the method

of Raptis and Allison which requires a more complex routine
for estimating the derivatives in the local truncation error;
notice that the listed version of DIVDIF involves two extra
parameters in the argument list, However the version of DIVDIF
which we require for use in conjunction with the routine NUMOV
is contained within lines 415, 417-418 and 467-505 of EXPFIT1

with lines 417 and 482 replaced by
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DIMENSION X(7)
and
1 CONTINUE
respectively; we also reduce the number of arguments in the
call to DIVDIF by two to the four discussed above, namely DD,
K, J and JD. A COMMON statement which holds the arrays XX,
F and D in common enables values of D to be used in the de-

crease section in NUMOV.

(iv) Subroutine PS

The arguments K, JP and JCONV of PS are described in comment
cards in the text of the program, The function of this routine
is as described in §3.5.3; one less argument is required in the
present version of PS since the mesh points and the corresponding
solutions are stored in the arrays XX, F which are relayed to
PS by means of a COMMON statement, This is the only difference

from routine PS as used in program RADISH,

(v) The function POT

This subprogram is called by NUMOV and the main routine
of the program to calculate the potential V(x). The decision
as to when a phase shift should be calculated is taken in POT;

when

TGz

L4) < E and |V(x)| < EPS IE - L(L+1)
X “xZ

the value IPS = 1 is returned to the calling routine,.

(vi) The functions REG and AIREG

REG and AIREG have been described in §3.5.4 and they are

used in exactly the same form as in program RADISH,
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§ 4.4,5 Test runs

Programs NUMEROV1l and NUMEROV2 have been tested for the same
set of problems as tested by program RADISH. Details of the test
problems and results will appear in Chapter 7.

We consider here the solution of the following problem over a

specified range for different values of the accuracy parameter EPS:

2
" = - . = i = i =
y (3 k‘>y, Y, xojl(kxo), Y, xljl(kxl), X, 0.01 .

This problem is problem (ii) of §3.6 for which the exact solution is
y = le(kx). We solve the problem for k = 0.1, 0.2, 0.5, 1.0, 2,0,

5.0 with EpS = 10 ™

, 0 =23, 4, 6, 8, We provide exact starting
values for Xys Xps ¥ and A in the main routine along with the initial

value of the steplength which is chosen to be

1. 1
240 EPS \ 5 240 EPS A
(Fert A

in the case of NUMEROV]1 , NUMEROV2 respectively where we use the

vi o kﬁyo. If the initial steplength is very

approximation Yo
large it is possible for the calculation to proceed to XF (the
end point of the integration which we take to be 20) without pro-
viding an estimate of the truncation error. To avoid this difficulty
the main routine takes H to be either the value supplied by the user
or (XF - X0)/7, whichever is the smaller,

Tables 6 and 7 in the next Section show the results obtained

using NUMEROV1 and NUMEROV2 in solving this problem; results for

the same problem solved by RADISH are tabulated in Table 3 of §3.7.

§4.4.6 Test results

A study of Tables 6 and 7 shows that NUMEROV XY is more effective

in controlling the global error than is NUMEROV2:| Notice that the

number of function evaluag;ggst\:gquired in NUMEROVYQ is generally
‘\\em Unipe’_.‘
/0‘\ science %

- 7 vui 1979
SECTION
Library
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far greater, sometimes by more than a factor or two, than the corres-
ponding number in NUMEROVL1. This is a consequence of the more
stringent error requirement in NUMEROV2 when H is less than unity;

the relatively few cases where N in NUMEROV1 exceeds N in NUMEROV2
occur when the steplength accepted in NUMEROV2 as sufficiently small
exceeds that accepted in NUMEROV1 and both steplengths exceed unity.
Note that the value of H listed in Tables 6 and 7 is the initial step-
length supplied by the main routine for use in NUMOV and that this
value of H is not necessarily the initial steplength accepted by
NUMOV as sufficiently small,

The values of amax in Tables 6 and 7 are 6.64 and 7,31 respectively
which are considerably smaller than that in Table 3 for de Vogelaere's
me thod. However the value of a ax does not reflect the superiority
of the Numerov method with a local error per unit step per unit step
criterion over that with a local error per unit step criterion; this
superiority is apparent from a study of the scaled maximum errors
in Tables 6 and 7. A more useful insight into the relative perfor-
mance of each method in terms of its reliability in solving the
problem is provided by considering the number of cases where a, which
is the factor by which the scaled maximum error exceeds the corres-
ponding EPS, exceeds unity as a percentage of the total number of
cases tested. Tables 6 and 7 each provide 24 cases corresponding
to 6 values of the parameter k and 4 values of EPS. From Table 6
we see that a exceeds unity in 12 cases (for EPS = 10-6, 10-8);
thus the corresponding percentage is ap = 50%. From Table 7 we
have ap = 25% and the superiority of NUMEROV2 over NUMEROVI1 in
controlling the global error is immediately apparent; the penalty
incurred however is an increase in the number of function evaluations

required in NUMEROV2,
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Note that for Table 3 apil 79% which far exceeds the corresponding
values of Tables 6 and 7. However notice that the factor a over the
range of EPS and k values exceeds the value five only at the more

stringent accuracy requirements, If we denote by a the percentage

pS

of cases where a exceeds 5 times EPS then for Table 3 ap5 = 25%.

The corresponding values for Tables 6 and 7 are ap5ﬁ= 4% in both

cases, We conclude that NUMEROV2 solves this problem more reliably

than NUMEROV1 and RADISH in terms of controlling the global error,
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Munmzpay |
TABLE 6
EPS d=5 d = 10 d = 20 INITIAL H| N
1073 3.17(-6) | 2.87(-6) 1.99(~6) 2.856 8
4.73(-5) | 3.38(-5) 1.93(~5) 2.856 6
2.20(-4) | 6.51(~4) 5.02(~4) 2,856 25
5.59(-4) | 4.85(-4) 5.21(~4) 2,856 45
4.30(-4) | 5.40(-4) 6.39(~4) 2.239 69
4.79(-4) | 4.88(-4) |  4.85(-4) 0.621 155
1074 3.17(-6) | 2.87(-6) 1.99(-6) 2.856 6
4.73(-5) | 3.38(-5) 1.93(-5) 2.856 6
5.36(-5) | 2.84(~5) 5.04(~5) 2.856 34
6.34(-5) | 5.42(-5) 6.43(-5) 2.856 55
6.00(-5) | 7.95(-5) |  8.49(~5) 1.413 98
6.30(-5) | 6.74(~5) 6.96(-5) 0.392 242
1078 3.17(-6) | 2.87(-6) 1.99(-6) 2.856 6
4.25(-6) | 2.70(-6) 2.60(~6) 2,856 28
1.89(-6) | 2.18(~6) 1.68(~6) 2.856 63
2.24(-6) | 1.80(-6) 1.93(-6) 1.484 118
1.64(~6) | 1.75(=6) 2.09(-6) 0.562 225
2.05(-6) | 2.22(-6) 2.30(-6) 0.156 548
1078 3.38(-8) | 2.61(-8) 1.49(-8) 2.856 37
4.12¢-8)| 2.14(-8) |  4.55(-8) 2.856 64
6.08(-8) | 6.64(~8) 3.73(-8) 1.559 140
4.67(-8) | 3.72(-8) 3.62(-8) 0.591 304
3.68(-8)! 3.62(-8) 4,19(~8) 0.224 597
4.19(-8)| 4.10(-8) 4.11(-8) 0.062 1491
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NMNUumMFRoOV 2
TABLE 7
EPS d=>5 d = 10 d =20 INITIAL H N
1073 . 17(-6) | 2.87(-6) 1.99(=6) 2.856 6
.73(=5) | 3.38(-5) 1.93(-5) 2.856 6
.37(-4) | 3.88(-3) 3.15(-3) 2.856 8
L75(-4) | 2.44(~4) 2.90(-4) 2.856 47
.27(=4) | 1.82(-4) | 1.94(-4) 2,739 94
.43(-5) | 5.83(-5) 5.92(-5) 0.551 253
1074 .17(-6) | 2.87(-6) 1,99(-6) 2.856 6
.73(=5) | 3.38(-5) 1.93(-5) 2.856 6
.84(=5) '5.83(—5) 4.65(=5) 2.856 35
.03(-5) | 2.50(-5) 2.87(-5) 2,856 65
L46(=5) | 1.62(-=5) 1.95(-5) 1.540 137
.84(-6) | 6.77(-6) 7.46(-6) 0.310 400
1078 .17(-6) | 2.87(-6) 1.99(-6) 2.856 6
.31(~6) | 4.50(-6) 2.47(-6) 2.856 26
.98(-7) | 7.12(-7) 4.62(~7) 2.856 83
.26(-7) | 2.62(=7) 2.67(-7) 1.638 188
J43(-7) | 1.44(-7) 1.69(-7) 0.487 418
.45(-8) | 6.88(-8) 7.16(-8) 0.098 1304
1078 .43(-8) | 2.04(-8) 1.12(-8) 2.856 38
.56(-8) | 8.27(-9) 2.38(-8) 2.856 73
.16(-8) | 5.77(-9) 6.27(-9) 1. 742 216
.03(-9) | 3.27(-9) 3.63(-9) 0.518 539
.27¢=9) | 1.91(-9) 2,14(-9) 0.154 1249
.79(-10)| 7.98(-10)] 8.01(-10) 0.031 3965
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CHAPTER 5

The Raptis and Allison method

Introduction

This method has been developed by Raptis and Allison (1977, pre-
print) specifically to solve the radial Schrddinger equation

y (x) = [e +1) - E + V(x) ] y(x). (5.1)

The method takes into account the known form of the solution of (5.1)
in the asymptotic region, Some work has been done on methods for
solving second order differential equations which exploit the a priori
knowledge of the form of the solution (see, for example, Gautschi 1961;
Gordon 1969; Lyche 1972), We shall concentrate however on the work
of Raptis and Allison which is a development of some earlier work of

Lyche (1972) in which it is recognised that for problems of the form

y (x) = f(x, y), y(J)(a) =0, j=0, 1, ---, r - 1 (5.2)
where the form of the solution is periodic or exponential a polynomial
approximation to the solution is not always the best approximation
which may be applied. The multistep method

_Z', iVn+i 2 ByE(x sy Yoo) (5.3)
i=o i=o
where D(k = 1 and o(o and B do not both vanish can be used to solve

(5.2) and a polynomial approximation of degree p is such that the op-

erator K Kk
L ly(x); bl = Zo(iy(xﬁ.h) - " i By, ¥V (x + ih) (5.4)
i=o 1=0
annihilates y(x) = 1, x, x2, -— xp+r-1. If instead we require that

1; annihilates functions of the form e“* or x"e": which would be more
appropriate in the case of solving (5.1) the penalty introduced is

that the coefficients in (5.3) are dependent on the steplength h.
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Lyche considers the multistep method
koo, (n) - W Spm g O
2 it Yo 231 Yoti (5.5)
i=0 i=o

with first and second characteristic polynomials given by

k .
PhH = S, it
i=o
and
k i
s = S pmi’,
i=0

Then if the operator i is defined by

k k
L iy(x);n) = éoo(i(h)y(x+ih) -1" 3 B,y Pxean)  (5.6)

i=o
we can use the following reqult which appears in the form of a Lemma
in Lyche (1972) and which i; appended by Raptis and Allison (1977).
The appended result reads:
Suppose h is fixed and w € (]: . Let n>r if w = 0 and n21

otherwise, Then

L5, h) =0, m=0, 1, ===, n - 1
and

L 1x"e"; n1# 0
if and only if the functionsb given by

b = L) - o (5.7)
log" (%)

has a zero of exact multiplicity s at ? = eWh, where s = n if w# 0
and s =n -1 if w = 0,

The method of Raptis and Allison is a two step method (k = 2)

and we derive the method in the following Section,

§5.1 Derivation of the Raptis and Allison method

We consider the method
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B, (h) y (x + ih) (5.8)

INC

Zilo(i(h)y(x+ih) = h

i=o i=o
for solving (5.2) with r = 2, We have a(z(h) = ] and we can make
use of the following consistency conditions for the method:
L) = A1) = 0, (1) = 20(1) .
Thus we have

oLy (M) =1-= olz(h), oil(h) = -2

Bo (h) + 51 (h) + 32 (h) = 1.
We can evaluate the B coefficients by using Lyche's result with r = 2,
The coefficients are then given by the solution of

P

In order that the reciprocal of a root of an equation also be a root,

Wik o 10g? @E ViR ) o (ViM), 1 =1, 2 . (5.9)

as is required in (5.9), we must have

B(h) = B,(h).
Thus the first and second characteristic polynomials in (5.9) are
pG)y = 52-2f41
o)) = B {7+ B (W] + B (h) . (5.10)

Substitution of (5,10) in (5.9) leads to

A
BZA - 2e +1

B, (D)[1 +e PINZ 4 A2 B, (h)

e P _adt 1 = p w1+ ey u? 4 pPeMp () (5.1D)

where AA = w.h, p = w,h and the solution of the system (5.11) is

1 2
= T _a By2 A
Bo(h) (1 iAf )e (1 : ) e = B,(h)
elil+esn) -d. A (L+e?H)
B () = (1= 92 - (- M1+
22 uZ .(5.12)

@M1 + e“H) -el (1 + )
For the application of (5,8) to the solution of the Schr8dinger equation

(5.1) it is convenient to take w, = w and w, = O since the asymptotic

1

form of the solution of (5,1) involves a single exponential argument,
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Notice that the method may be applied to both the bound state problem
(where E < 0 in (5.1)) and the scattering problem by taking w to be

real and imaginary respectively, We are interested in the scattering
problem and we set w = ik 'in (5.12), We thus arrive at the following

forms for Bo(h) and Bl(h):

2.2

B (h) = k°h” =~ 2(1 - cos kh) _  B,(h)

° 2kZhZ (1 - cos Kby~ 2 (5.13a)
By(h) = 2 3 (k’n® + 2)cos kh. (5.13b)

k“h* (1 - cos kh)
and the corresponding operatoz'gfannihilates the functions
1, x, x2, x3, sin kx, cos kx
for k+ 0.

For small values of kh, Bo(h) and Bl(h) are seen to have the

following power series expansions:

By () = B(h) = L [ 1+ xkn)’+ )+ --i} (5.14a)
12 20 504

B (h) = 1 {5 - eb)? - - ---‘} ) (5.14b)
6 200 504

Now if we take w = O we see from (5.14) that

(h) = 1 = (h), B,(h) = 10

corresponding to the use of Numerov's method in whichci annihilates

the functions 1, x, x2, x3, x4, xs. Thus Numerov's method is seen

to be a special case of (5,8).

§5.2 The local truncation error and its estimation for a fixed
steglength

For an arbitrary function y(x) having p continuous derivatives

we define the functional

Lly(x);h] = Y(X+2h)-2y(X+h)+y(X)-h2 {Bo(h)y"(x+2h)+81(h)y"(x+h)

+g )y (0} (5.15)

and we make use of the following Taylor expansions:
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y(x+2h) = y(x)+2hy (x)+---+1 (20)Py(P)(x)1 hp+1‘rz(Z—s)py(p+l)(x+sh)ds
: Vo

P. P

y(x+h)

y(x)+hy (x)4---+1 hPy(P)(x)41 nP*1 jl(l-s)py(p+l)(x+sh)ds

P P. o

y (x+2h) = y (x)}42hy (+-——+ 1 (20)P" 2y (P)(x)

p-2)!

+ 1 hp-l\rz(Z-s)p-zy(p+1)(x+sh)ds

(p-2)! A

g (x+h) =y (x)}thy " (x)3b—-=t 1 BP2y(P)y

p-2)!

+ 1 Pl jl(l-s)p-zy(p+1)(x+sh)ds
(p-2)! o

in (5.15). Then for p = 5 we have:

L tyGoshl = b2[1-2p ()-8 (W)]y (x)+h’[1-2_(h)-8, (0)]y ().

4r lv
+h*[7 -28 (h)-18,(h)
0 [1-dp (-1, (0 |y
L4 3 6
+h8 1 P? (2-8)7y " (xtsh)ds- ;_\fl (1-5)°y" H(x+sh)ds
1120 J 60

(o]

2 1
-1_(h) j (2-s)3yV1(x+sh)ds-;BI(h)j (1-s)3yV1(x+sh)ds] .
o 6 o

6
(5.16)
Now if we make use of the identity
2,(h) + B;(h) = 1
from§5.1 we can express (5.16) in the simplified form
L lyGoshl = 1112 (0)1y™(x) + b2 [1-128_(0)]y"(x)
) o
12 12
6 2 1
+h s 6(s)y"  (xtsh)ds (5.17)
120 Yo

with

G(s) = (2-s)° - 2(1-s)i - ZOBo(h)(Z—s)3-ZOBl(h)(1—s)i )

It is possible to show that Bo(h) =2 1 by considering the function

12
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2
B(h) =1 = 6[k*n” - 2(1-cos kn)] - (1-cos kh)k’h’ (5.18)
12 12 k4h“ (l-cos kh)
where we have subétituted equation (5,13a) for Bo(h), For all values
5.1&
of kh the numerator in (5+26) is non-negative, Thus Bo(h)2>_l .
12

Now for 0 <s <1,

G(s) ~208_(h)[s” + 6(1-5)] + [s* + 10(1-s)] (5.19)

and for 1< s < 2,

G(s)

(2-5)3[(2-8)% - 208_(h)] . (5.20)
Thus by using the fact that Bo(h)ga-%i we see from (5.19) and (5,20)

that G(s)< O for 0< s < 2, Hence we may express (5,17) as

L 1y(x);h]

n* [1-128_ (W) ]y Y Ce)+n2[1-12p_(h)]y" (x)+hCey Vi (xt0h),

12 12
o< 0=y, (5.21)
with
2
c = 1 ~f G(s)ds
120
(o]
= _1 [16-2108_(h)] .
360
Notice that when Bo(h) = %5 equation (5,21) reduces to
Liy(x);h] = -n® yVi(x40h), 0<8<2 (5.22)
240

which represents the local truncation error in Numerov's method.
Now if we use the form for ﬁo(h) given by (5.1l4a) we see that
the leading term of the local truncation error is proportional to h6

and is given by

N { Ky Vx) yVI(x)}. (5.23)
240
Notice that (5.23) vanishes for y = sin kx and y = cos kx. In order

to estimate the quantity in (5.23) we consider using the divided

difference forms for the fourth and sixth derivatives of y, that is

vl
k+t1 °Y

] which in the case of

we approximate yi:l by 4! f[x ] and y

k=3’ ¥k-2° *k-1’ *k’ Fk+l

]
6. £lx 50 Xp g Xpog0 Fplzr o1 X Fpq

evenly spaced mesh points corresponds to using backward ' differences,
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Thus we consider constructing a sixth divided difference table for
the calculated solution from which we can extract both the fourth

and sixth divided differences needed for estimating (5.23). How-
ever it was observed in § 4.4 that the sixth divided difference table
will tend to output an estimate for the sixth derivative of the sol-
ution at the midpoint of the range of mesh points considered, that

is at X o) similarly the fourth derivative will be estimated at

the mesh point X 1- It is important however that the estimates

for the fourth and sixth derivatives appearing in (5.23) are made for
the same mesh point, The difficulty can be overcome in the case of
evenly spaced mesh points by approximating yiil by 4! f[x

k=4’ Xk-3’

X But in the case of unevenly spaced mesh points the

Xg-2' 10 Xl

problem must still be resolved. Notice that we can express

Ky o+ vl

as the fourth derivative of
2 "

k“y(x) + y (x) (5.24)
with respect to x. Hence it is possible to estimate (5.23) by con-
structing a fourth divided difference table for (5.24) over a range
of five mesh points, When solving the radial Schrddinger equation
given by (5.1) we use

2 " =
K2y(x) +y (x) = [1(2:1) + V(x) JY(X)' (5.25)

We shall discuss the necessary implementation for estimating the local

error in §5.7.

§5.3 A bound for the local truncation error

"
If y(x) is the exact solution of y = f(x,y) and we assume that

the starting values at X s are exact, that is

xn+1’

Yn ~ y(xn), Yn+l = y(xn+1)
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f = y'(xn), £ = y (x

n n+l )

n+1l

then we have

;&[y(xn+1);h] - y(xn+2)-2y(xn+1)+y(xn)-h2{jBo(h)y"(xn+2)
H1-28 (0] ¥ (x4 (W (x )]
= y(xn+2)-2yn+1+yn-h2{jBo(h)y"(xn+2)+[1—230(h)]fn+1

+ g 1 (5.26)

is

Thus the truncation error at x
n+2

2
y(xn+2)—yn+2 B y(xn+2)-2yn+1+yn-h { Bo(h)fn+2+[1-230(h)]fn+1+Bo(h)an

= LlyCey mlen’p (0 ]y (502 0 (5.27)
To obtain a bound on this error we assume the usual Lipschitz condition
|[£(x, ¥) - €G] < K]y- 0|
for all x in the appropriate interval [a, b] and all finite y and1 .
We also assume a bound on the fourth, fifth and sixth derivatives of

y for all x in [a, b]:

[ylv(x)lé M4,lyv(X)ié M, ly"l(X), < M.
It is necessary, in addition, on inspection of equation (5,21) to
provide a bound for each of the quantities

1- 12 Bo(h) (5.28a)

16 - ZIOBo(h) . (5.28b)
It is clear from the form of the leading term in the local truncation
error that we shall require bounds of the form

|1 - 128 ()| < Ak’

|16 - ZIOBo(h)Is; B

where A and B are constants which are suitably defined for h< some ho'

We may write (5,28a) as

1-12 _(h) = kh’(1-cos_kh)-6k’h’+12(1-cos kh)
k¢h4(l-cos kh)
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- k2h2[k2h2 Kn® R6J- 6k2h2+12[k2h2 k*n® 4 1k5n® RS]

2 24 2 24 720

k“h* [k‘h‘ k4hé R6]

2 24
(5.29)

where
R = -k h_ cos? » Rg = k38 cos n 0«$ ,rlé kh.
6. 8!
Further simplification of equation (5,29) leads to
[; k6h6+k8h8 cosf - k8h8 cost\]
40 720 2.1680

1KAh? [1 - K22 i cos?J
2 12 360

[—-kzh2 k%n4 cos{ - k4h4 cos J

1-12p_(h)

20 T 7360 1680

1 - k%h? | k%4 cos g]
_.+_
12 360

(5.30)

Now for O< kh<r it is possible to show that the denominator of (5, 30)
which may be written equivalently as

d(kh) = 2 (1l-cos kh) (5.31)
kZh2 .

is a monotonic decreasing function of kh; for O<khx<r we have

d(kh) > ﬁz

Thus for O0<kh < ¢

1-128_(h) | < (k®h? + k*h® + k4nt) ;2
(o)

_
200 360 1680/ 4
= wn?/1 o+ 17 %) P
20 5040 4
so that
1128 (W) | < &Pn® (1 + 17 n2> =
20 5040 4
£ K*n?
4 ; (5.32)

Similarly we write (5,28b) as

16-210B_(h) = 16k2h2(1-cos kh) - 105k*h> + 210(1l-cos kh)

k¢ h? (l-cos kh)
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= [ 3-3k h2 + _2 k4h cosg -1 k4h4cosZJ
2 4 45 96
[1 - k%h% + k*h?* cos§
12 360 J

Thus for 0 « kh < g,

16-21080(h)] £ (g +3 K2n? + 2 et 4 k4h4) 2
2

Sl

£ (3 +3 ﬂ? + 79 nﬁ o
2 4 1440 4
(5.33)
Thus for 0 £ kh < n we obtain the bound
4 1v 5 R ,
y(xn+2)-yn+zlé n* [1-128 ()] |y (x)| +h_,1-12[3°(h)Hy (x)
12 12
6 l vl I 2 _ '
+h '16 2103 (h) ,y (x+8h)| +h IB (h)lK’y(xn+2) yn+2l,
360
We have shown previously. that By (h)z iZ and we seek an upper bound
on B (h) for 0 £ kh<qgx . Bo(h) is a slowly varying function of kh
and Bo(h) increases for increasing kh, Thus by considering the form
for Bo(h) given by (5.13a) we have that for 0 £ kh < =«
1l < B (hc nz -4 <« 0,15 , (5.34)
12 4 nl
Hence
2
Y(x10) = Yopo|< nOk2M, + n'kMs + h6M6>
48 48 10
|1 - 0.150%K]|
and for all h< h,< |20 we have
3K
y(x ) -y < bO1N, + NG (5.35)
n+2 n+2! = 4 6 :
wherg
N, = (Mg + hoMs) , Ng = M6
4BTI-0. I5R%K) 10(1-0. 15h3K)

$5.4 Absolute stability of the method

This is an area which has not been considered by Raptis and

Allison. We shall consider the application of the boundary locus
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method to determine the interval of absolute stability, The locus

of the boundary of the region of absolute stability is given by

h B) = P(exp(iB))
& (exp(iB))

where
/O(r) = r2-2.‘-’+1, o(r) = Bc,(h)r2 + [1-250(h)]r + Bo(h).
Hence we have

h(@)=  -2[1-3B,(h)] + 2[1-4B,(h)]cos® + 2B _(h)cos 28 (5.36)
[1-4go(h)+5301(h)]+4po(h)Ll-zBo(hjkosa+2po‘(h)cos 20

which implies that the boundary of the region is an interval of the
real axis, If we equate to zero the first derivative of Eaﬂ) with

respect to ) we have

sin © {4[302(h) c0328+4[30(h)[1-230(h)]cos e +[l—ZB°(h)]2}= 0

from which it follows that

sing = 0 (5.37a)
or
cos B - EEQM]= 0. (5.37b)
L 2Bo(h) d

The end points of the interval of absolute stability are determined
by the valuesof O which satisfy (5.37). 1If equation (5.37b) is to

hold then we have

cos @

2g_(h) - 1
28 (h)
with
- 2 (h) < 2g_(h) - 1 <2 (h)

since B (h) is positive, It follows that (5,37b) will hold only if

=~ ©

Bo(h)2'4- Hence for Bo(h)<1% the endpoints of the stability interval
are determined by the roots of the equation (5.37a), that is byO =0

and®=n for which
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h(0) = o0
t-l('n:) = =4
1-4p_(0)
For B_(h) = %’

h(©) —_— -2(1-cos ©)
ZBo(h)cos © + 1-ZB°(h)

as
cos & ZBo(h)-l
28, (h)
That is,
h(@) —> - oo.
Hence for Bo(h)<3% the absolute stability region is{f:%%gfﬁj s 0]

and for Bo(h)Zv the region is [~co ,0]. The smallest stability

TP

interval occurs when ﬁo(h) has its smallest value, that is when Bo(h) =
%5; the interval of absolute stability is then given by [-6,0] which
is the stability region for Numerov's method. The larger the value

of Bo(h) the larger is the corresponding interval of absolute stability,

§ 5.5 The cumulative error

The exact solution satisfies

y(x_+2h)-2y(x_+h)+y(x_)=h’ { B,(B)y (x +2h)+[1-28 ()] (x 4+, (W)y ()}

+ZIy(x_,)sh]
If we ignore rounding errors the numerical values Yo satisfy
2
Yn+2 2yn+1 + Yn ~ h ‘{Bo(h)fn+2 + [1_2Bo(h)]fn+l *'Bo(h)fnlg'
Now if we assume
(x ) - lgg h§, u = 0, 1
y " y“ K s

with

h’g (h) < 1 and 0 <kh< ¢
K
we obtain the following bound
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HEREALEEN T (8(x,-2"2§ + (xn'aﬁ)z(k2N4+N6)h4]exp[(xn‘a?)zlﬂ*KB]
)

(5.38)
. * *
for a<x < b, where K, a and " are defined in.§4.2.3. B is given by
n
Bo= | (W) + [1-2p_(h)[ + Iﬁo(h)!
which for 0 < kh< r is just 1 since $5<p_(h)< 0,15

Thus the cumulative error is of order h4.

§ 5.6 The method of Raptis and Allison with variable stepsize

If the solution is advanced one step from x .1 tox by the

+1 n+2

method of Raptis and Allison estimates of the local error per unit

step and per unit step per unit step are given by

5 2 1v vl
-h?  (k“y +y 3y - (5.39)
240 n+1 n+l
and
4 2 1v vl
-h~  (k°y + y_.7) : (5.40)
240 n+1 n+1l
respectively, We shall discuss in §5.7 automatic implementations

of the Raptis and Allison method, namely EXPFIT1 and EXPFIT2 which
use (5.39) and (5.40) respectively as a means of controlling the
global error of the method,

It was noted in§5.2 that

Vex) + y(x)

k2y

may be expressed as the fourth derivative of
2 [}

k“y(x) +y (x) (5.41)
with respect to x. We therefore need to calculate the solution at
a minimum of five mesh points before an estimate of the truncation
error can be obtained from a fourth divided difference table of the
quantity in (5.41), If a decrease in steplength is required we

shall need to have available a fifth divided difference table of the

solution y(x) so that values from this table may be used in the inter-
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polation procedure which is 2 necessary feature of steplength reduc-
tion in the Raptis and Allison method just as it is in Numerov's
me thod (see'§4.3). .

We shall discuss i11§5.7.2 the steplength strategy which has
been adopted in programs EXPFIT!l and EXPFIT2; the strategy is precisely
the same as that adopted in NUMEROV1 and NUMEROV2 respectively, the
only difference being that the updated values of FORTRAN variables
needed for the step after a change in steplength must be modified

to take account of the h dependent coefficient B.

§ 5.7 Implementation of the Raptis and Allison method with automatic
error control

We shall discuss prOgréms EXPFIT1 and EXPFIT2 in this section
and a listing of EXPFIT]l is provided in Appendix 2; the test program
solves the single channel radial Schrddinger equation given by (5.1)
for scattering of an electron by the static potential of atomic
hydrogen,

The method of Raptis and Allison applied to the problem in (5,1)
is certainly a valid approach for obtaining the solution in the class-
ical region; in the non-classical region however the behaviour of the
solution is difficult to predict. Thus in practice we shall use the
Numerov method out to the classical turning point and thereafter use
the method of Raptis and Allison whereupon the coefficients of the method
will vary with the steplength h, Raptis and Allison state that the
local truncation error can be used to control the interval size but
there is no evidence from their study to show that this has been put
into practiCE.* In particular they have studied the method for solving

equation (5.1) with V(x) given by

V(x) = SOOG"a'- ?1<6> (5.42)

b.9

which is a Lennard-Jones potential; they claim that a comparison with

% See footnote on page 20,
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Numerov's method to solve the above problem using the same starting
conditions indicates a rapid increase with the Raptis and Allison
method over Numerov's method in the optimal interval size allowed
from truncation error considerations, We shall give a comparison
of programs NUMEROV1 and EXPFIT1 in§5.7.5 when applied to solving

(5.1) with V(x) given by (5.42).

§ 5.7.1 Programming the Raptis and Allison algorithm

The method of Raptis and Allison applied to equation (5.1) is

expressed as

2 _ 2 2 2
(5.43)
where
A r = !ﬁ%i%l - E+ V(xr).
r

The XX and F arrays are used just as in NUMEROV1 and NUMEROV2 to store
the values of the mesh points and the corresponding calculated solu-~
tions. Since we initially use the method of Numerov up to the
classical turning point, at which point we enter the

classical- region, the calculation of the initial step will be pre-
cisely as described in §4.4.3; values of F(1) and F(2) are calculated
to sufficient accuracy and passed to the routine RAPAL in the argu-
ment list,

We introduce the quantity BO; BO represents the value of Bo(h)
and is %E up to the classical turning point and thereafter its value
will be given by equation (5.13a). For small values of kh a better
representation of (5.13) is

B () = By(h) = «k%n% - 4 sin’(Gkn)

4k%h4sin? lkh)
2

(5.44a)
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ﬁl(h) = 4sin2(%kﬁ) - kzhzcos kh
2kZh4sin? (1kh' (5.44b)
7")

and beyond the classical turning point we calculate Bo(h) using
equation (5.44a), Raptis and Allison have noted that the only
modification required to computer codes that implement the Numerov
algorithm is the replacement of the coefficients by subroutines which
evaluate (5.44), The calculation of Bo(h) from (5.44a) involQes

only a few lines of programming in RAPAL and it is in fact unnecessary

to calculate Bl(h) from (5.44b) since we can make use of the simple

relation
2g (h) + g, (h) = 1
We introduce the quantities .
_ 2
Y = (1-nh BO/\k+1) F (K+1),
K = (1 - n%BO) ) F(K),
YPREK = (1-hZBoXk_1) F (K-1),
H2VF = n\ F(K),V = N, H2 = h
- R FRL V= A - '

If the steplength h has been used as far as X then in order to advance

the integration one step to X we must update the values of YK and

k+1
YPREK for use in the next step, We do this by setting

H2VF =  H2% V* F(K) (5.45a)
YPREK = ((BO - BOL) %F(K-1) + BOL*YK)/BO (5.45b)
YK = ((BO - BO1)*F(K) + BO1#Y)/BO (5.45¢)
where
1
BO1 = BO = TE

in the Numerov stage of RAPAL; for the change-over step from Numerov
to the Raptis and Allison method BO = %E and BOl is given by (5.44a),
Thereafter BO and BOl are equal for as long as the steplength re-

mains constant. We shall discuss the case of steplength increase

and decrease in § 5.7.2.,
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The following FORTRAN statements calculate the solution at x

k+1
Y = 2,.0%¥ YK — YPREK + H2VF (5.46)
F(K+1)= Y/(1,0 - BO*x H2 * V) . (5.47)

An estimate of the local error per unit step during the Numerov stage

of RAPAL is
TRERR = -_-h> DD (5.48)
240
where DD is an estimate of ykii. During the Raptis and Allison stage

of RAPAL the estimate of the local error per unit step is given by

(5.48) where now DD is an estimate of the fourth derivative of

2
(Kyip1 + Yierr -

§ 5.7.2 Steplength strategy

The parameter EPS which is specified by the user is transferred
to RAPAL by the common block EKLLI. EPS which is used in EXPFITL
and EXPFIT2 is the largest allowed local error per unit step and per
unit step per unit step respectively, The strategy used in EXPFIT1
and EXPFIT2 corresponds exactly to that used in NUMEROV1 and NUMEROV2
respectively, However during the Raptis and Allison stage of RAPAL
the B coefficients are now dependent on the steplength h and we shall
therefore need to modify the updating of the variables YPREK and YK
to account for this,

We consider first the change-over from Numerov's method to the
method of Raptis and Allison, Suppose we have reached the mesh
point XX(K+1) using Numerov's method with a constant'steplength h
and at this point the classical region is entered, Then we must
use the Raptis and Allison method to calculate the solution at
XX(K+2) and at all subsequent mesh points, The current values of

YPREK, YK and Y are
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YPREK = (1—h230(h),\(_1) F (K-1)
YK = (1-h230(h)Ak) F (K)
Y = (1-h230(h))\k+1) F (K+1)

where Bo(h) = %E' I1f we define

- 2,
Y = (1-hB_ (WA F (r)

1
where B (h) is given by equation (5.,44a), we shall require the values

of YK and YK+1 which are the new values of YPREK and YK respectively

for use in the next step, We have

_ 2
Yo = (1-h78, (WA F (W)
and thus
Y = (Bo(h)-Bo (h))F (K) + B, (h)YK - (5.49a)
B, (h)
Similarly
Yo, = (B(h) = B (MF (kel) + g (MY  (5.49)
B, (1)

The FORTRAN implementation of (5.49) is given by (5.45b, c¢) with K
replaced by K+1,

If at the mesh point x a decrease in the steplength h is

k+1
required then the following FORTRAN statements update YPREK and YK:

YPREK = FPREKL * (1.0 - BO*H2%V)

YR = F(K)*(1.0-BO*H2*V)
where FPREK1l is the interpolated solution at xk-rh where rh is the
new steplength (r< 1), BO is %5 during Numerov's method and is
given by equation (5.44a) when the Raptis and Allison method is
used,

Suppose that after reaching the mesh point Xl with a constant

steplength h an increase in steplength is required; if the step-

length is doubled for the next step we shall require values of the

solution at the mesh points XX(K-1) and XX(K+l) calculateé.with a-

steplengthJh, We redefine
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2
Y, (1-(20)" B (20)A ) F (x) .

Now YPREK is given by

YPREK = (1-h%p (WA, ) F(k-1)
and
- 2
Ye oo = (1-6h7B (20)A, ) F (k-1).
Thus we have
YK_1 = 430(2h)YPREK +(Bo(h) - 4B°(2h))F(K—1) .
B,(h)
Ssimilarly
Yeo = 4B (20)Y + (B (h)-4B (2W)F(K+1)
B, (1)

Thus we use the following implementation to update YPREK and YK:
YPREK = (C2*BOL*YPREK + (BO - C2*BOL)*F(K-1))/BO
YK = (C2%BOL*Y" +(BO = C2%BOL)#F(K+1))/BO
where C2 = C*C and C(;Z) is the factor by which the steplength is
increased, BOl and BO represent BO(Zh) and Bo(h) respectively; the
next step uses a steplength 2h so we write

BO = BOl .

§5.7.3 Description of programs EXPFIT1, EXPFIT2

Figuré 5 below shows the relationship between the seven routines
of programs EXPFIT1 and EXPFIT2 which solve the radial Schr8dinger
equation (5.1); EXPFIT]l uses a local error per unit step criterion
and EXPFIT 2 a local error per unit step per unit step criterion in
‘the automatic integration of (5.1).

We shall concentrate on a description of EXPFIT1 since EXPFIT2
is obtained simply by replacing six FORTRAN statements which appear
in EXPFIT1; we shall discuss the necessary modification in part (ii)

of this Section, Double precision is used for all real variables.
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MAIN
REG
POT RAPAL PS
ATREG
DIVDIF

FIGURE 5

(i) The main routine

Since the initial stage of the Raptis and Allison algorithm
uses Numerov's method the calculation of the initial conditions Yo
and ¥y is precisely as described in §4.4.3. The main routine in
EXPFITL is thus identical to that in NUMEROV1 (see $4.4.4 part (i))
with the exception that the common block EKLL1l is used to transfer
parameters to the subroutine DIVDIF as well as to RAPAL, PS and POT.
The main routine now calls the subroutine RAPAL in place of NUMOV

to perform the automatic integration of (5.1).

(ii) Subroutine RAPAL

Subroutine RAPAL uses the method of Raptis and Allison to solve

y = f(x,y)
using a local error per unit step criterion,. The parameters which
must be supplied to RAPAL as input data are;

H : the initial steplength,

X0, X, YO, Y1 : the starting point along with the next mesh point
X = XO+H and the values of the solution at these
points.

XF : The calculation terminates somewhere between XF-H
and XF unless earlier termination has occurred
because of convergence of the phase shift to the
required accuracy,

Lines (216-226)* calculate the values of YPREK and YK for use

* The line numbers quoted are those appearing on the left hand side of
the listing of EXPFITL in Appendix 2,
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in the initial step of Numerov's method and lines 233 - 305 implement
the Raptis and Allison algorithm to advance the calculation one step
of length H, evaluate the truncation error estimate and decide whether
or not to alter the steplength and/or the B coefficients in the num-
erical method of solution, The initial stage of the calculation

uses Numerov's method with constant B coefficients up to the classical
turning point beyond which the B coefficients vary with the interval

h in the Raptis and Allison method.

The decisions to change over from Numerov's method to the method
of Raptis and Allison and to calculate a phase shift are taken within
the function subprogram POT, Both these decisions are characterised
by the parameters IPS which is assigned the value 1 in POT when
the classical. region is rea;hed. When this condition is encountered
lines 246-250 of RAPAL calculate Bo(h) for subsequent use in the
Raptis and Allison method and at line 281 the subroutine PS is called
to calculate the phase shift; the current value of x and the calcul-
ated phase shift are then printed, The IF condition at line 240
ensures that the first seven steps are taken with the Numerov method
regardless of the value of IPS.

If at line 271 it is decided that the truncation error is too
large control is transferred to lines 324-360 for the steplength de-
crease and necessary updating of YPREK and YK and thence to the be-
ginning of the main loop at line 233; if the initial H provided by
the main routine to RAPAL proves too large then lines 160-170 recal-
culate Yl with the new steplength,

If the steplength is to be increased line 290 transfers control
to lines 364-384 for the steplength increase and necessary updating
of YPREK and YK; line 384 then transfers control to the beginning

of the main loop,
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Exit from the Raptis and Allison loop occurs (see line 283) if
the subroutine PS indicates, by setting JCONV = 1, that the phase
shift has been calculated to the required accuracy; otherwise termin-
ation occurs when it is noted (at line 236) that the next step would
take the calculation beyond XF, In either case, as in DEVOG in
program RADISH, the user is informed of the reason for termination
and information on the number of steps carried out and the number of
increases and decreases of steplength is also printed.

The corresponding subroutine required for use in EXPFIT2 may be
obtained by replacing lines 169, 263, 289 and 325 of RAPAL by

IF (DTERM. GT. O.5DO*H*H*EPS) GO TO 22,
TRERR = -H**4*DD/2,4D2,
DTRERR = DTRERR*C*¥4
and
Cl = (0,5DO*TOL/DTRERR)**0, 25D0
In addition lines 90 and 94 of the main routine must be replaced by
IF(DTERM.LT.H*H*EPS) GO TO 17,
and
16 C1l = (0. 5DO*H*H*EPS/DTERM1)**0, 25D0 .
Similarly if the above FORTRAN statements replace the corresponding
statements in NUMEROV1 we obtain program NUMEROVZ,
The test program EXPFIT1 is based on the Schrddinger equation

in the precise form of (3.2) for positive energy E,

(iii) Subroutine DIVDIF

The parameters which must be supplied for calls to subroutine
DIVDIF are DD, K, J, JD, IPS and JB. The first four parameters
are described in §4.4.4 (part (iii)). In addition the value of DD

serves to distinguish between calls made to DIVDIF for the purpose
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of calculating an estimate of the derivative in the truncation error
estimate (see§‘5.2) and calls made to extract the values needed for
the interpolation process in the case of a decrease in steplength
during the Raptis and Allison method; DD is set to zero immediately
after the values for interpolation have been found, The parameter
IPS has been discussed in part (ii) of this Section. JB is set to
zero during the Numerov stage of the algorithm and is set to 1 when
the classical region is reached (when IPS = 1), On the next step
which uses the method of Raptis and Allison the value of JB is 2 and
this indicates to DIVDIF that the fourth divided difference table
of (k2y+y") must be set up; thereafter JB has the value 3.

The array D1(4,4) is introduced to store relevant values in the
case of a steplength decrease during the Raptis and Allison method,
A detailed description of DIVDIF is provided by comment cards in the

listing of EXPFIT1 (see Appendix 2).

(iv) Subroutine PS and functions POT, REG, AIREG

The above have been discussed in§ 4.4 (parts (iv)-(vi)) and are
used in precisely the same form here, the only exception being that
POT initialises the calculation of the phase shift by setting IPS =1
when the classical region is reached. (The calculation of the phase shift
could be initiated, if desired, in the so called asymptotic region,
simply by introducing another parameter, TPS2 say, in calls to the
function POT; the calculation of the B coefficients would be characterised
by the value assigned to IPS), POT is called by DIVDIF, RAPAL and the

main routine of EXPFITIL.

§ 5.7.4 Test runs

Programs EXPFIT1 and EXPFIT2 have been tested for the same set of
problems as tested by programs RADISH, NUMEROV1 and NUMEROV2 and details
of the results for these test problems will appear in Chapter 7,

We consider here the solutions of the following problems over
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the range [xo, 20].

. " _ 2 . - A S . -
(l) y _(Ez- k)y.i yo onl(kxo), yl xl_]l(kxl)’ xo o.ol

for k = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 with EPS = 10 ",n=3, 4,6, 8.
. "o 2 o _ _ _
(ii) y -[ﬂ(i__—;—]!)-k +500(%:l %3 yi ¥, 0, ¥q y(xl), x1—xo+h, X 0.7,
h=0.01, for L=0, 2, 4 with k=3.0 and =0,5, 10 with k=10.0.

Problem (i) corresponds to problem (ii) of§.3.6 for which the exact

solution is y = le(kx); exact starting values for Xyr X1 Y, and yq

are used and the initial value of the steplength is chosen to be

1
[(240 EPS 5 (zo - x%)]
min k6 ' yo ' 7

in the case of EXPFIT1 and

o G (55)]

in the case of EXPFIT2, The results for this problem using EXPFIT1
and EXPFIT2 are tabulated in Table 8 and Table 9 respectively of §5.7.5.
We have removed the restriction in both programs that the first seven
steps be performed with the Numerov method; since the potential func-
tion V(x) is zero for this problem the Raptis and Allison stage is
entered when

2 - k2 < 0

%
is satisfied and for small values of k with a large (> 1) initial
steplength (acceptable for the Numerov stage of the algorithm) the
Raptis and Allison stage may be entered fairly quickly, perhaps even
at the third step,

Problem (ii) corresponds to the test problem considered by
Raptis and Allison (1977 preprint) where V(x) corresponds to a
Lennard-Jones potential, They specify X, = 0.7 and an initial
steplength of 0,01 and a table of results is provided which shows

the phase shift obtained accurate to three decimal places for the

various values of k and { using the Numerov method and the method
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of Raptis and Allison, They also list the 'final interval' and
the number of steps used by each method. It is not clearly stated
what starting conditions were used but we have chosen to provide

1078, with an initial steplength of 0.0l and initial

Yo = 0 and Yy

mesh point X 0.7 as in Raptis and Allison, Table 10 shows the

results obtained when NUMEROV! and EXPFIT1 are used to solve this
problem; we show for each value of k and L which is tested the

corresponding phase shift 2 to three decimal places along with hm s

ax

the largest interval used and N, the number of steps’

required to solve the problem using Numerov's method and the method

of Raptis and Allison, The integration is terminated when the phase

shift has converged to the required accuracy;the integration is performed
. -6 Lo

using EPS = 10 = and PSIG = 10 ',

§5.7.5 Test results

The relevant statistics which may be extracted from Tables 8 and

9 are respectively
8 ax - 47,3, ap'£:7OA, apS—-26A

and

& ax - 47.3, ap-’—‘ 52%, ap5c17% .
We see that EXPFIT2 is more effective in controlling the global error
than is EXPFIT1l; however the value of 3 ax far exceeds that in Tables
6 and 7 where the method of Numerov is used and a comparison of the
corresponding values of ap and ap5 also seems to favour the method

of Numerov with respect to control of the global error, Against
this if we compare Tables 7 and 9 we see a substantial decrease in
the number of function evaluations as used in EXPFITZ2 compared with
NUMEROV2 sometimes by a factor which is greater than three, Sim-

ilarly a comparison of Tables 6 and 8 favours EXPFIT1 over NUMEROV1

in terms of the number of function evaluations and the factor by
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which °~ this number is reduced in EXPFIT1 is sometimes
greater than two, In all but one case (when EPS = 10-8, k = 0.1)
the number of function evaluations used in the programs incorporating
the Raptis and Allison method is consistently less than that in the
programs incorporating Numerov's method, We maintain that those
cases where Numerov's method appears to give a better control of
the global error than the method of Raptis and Allison are a conse-
quence of NUMEROV1 and NUMEROV2 accepting a smaller initial value
of the steplength; also for small values of k and large values of
the corresponding initial steplength accepted, the Raptis and Allison
stage may be entered fairly quickly, as noted in§,5.7.4, with the
result that the steplength ;néreases with higher frequency than it
would otherwise do in the Numerov stage of the algorithm, In order
to fully appreciate the advantages to be gained in using the method
of Raptis and Allison a more useful comparison might be ko pro;ide
each of the methods with the same initial value of the steplength
which is acceptable to both methods and then keep this steplength
fixed throughout the range of integration, A comparison of the
actual errors then incurred clearly shows that the method of Raptis
and Allison is superior to that of Numerov; the Raptis and Allison
method has the effect of damping out the error in the later stages
of the calculation so that the largest error occurs in the early
stage of the integration, typically in [xo, 57.

In particular we consider the case corresponding to EPS = 10~
k = 2,0, We have not included in Tables 8 and 9 results for this
case; unfortunately the initial value of the steplength accepted by
EXPFIT1 and EXPFIT2 (2.239 and 2,739 respectively) on the basis
that the appropriate error criterion is satisfied is totally mis-

leading since a study of the actual errors incurred using the large
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initial steplengthsshows them to be of the same order of magnitude
as the computed solution and in some cases the order of magnitude
exceeds that of the computed solution. We chose to provide the
same initial value of the steplength h to subroutines NUMOV and RAPAL
and arranged for h to remain fixed throughout the range of integration,
Then with h = 0.25 for k = 2.0, EPS = 10 > we obtained the following
scaled maximum errors for d = 5, 10, 20 respectively in NUMOV:
8.31(-5), 1.03(-4), 1.20(-4)
and
2.99(-5), 1.53(-5), 7.87(-6)
in RAPAL. We see from these results the increased effectiveness
of the method of Raptis and Allison over Numerov's method for solving
the problem at hand for a fixed steplength,
Table 10 shows the results obtained for problem (ii). It is
immediately apparent that the method of Raptis and Allison is able
to use larger values of the steplength thus resulting in a decrease
in the number of function evaluations required. In addition
the method of Raptis and Allison uses considerably less time (some-
times by a factor which is near a half) than Numerov to perform
the numerical integration and extraction of a phase shift. We
have not compared actual errors which reSult-from each method since
it is observed that the equation given in problem (ii) is essentially
unstable; this is reflected by a small change in the starting
conditions giving rise to a substantial change in the computed

solution,
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TABLE 8

EPS d=5 | da=10 d=20 | INITIAL H N

1072 3.17(-6) | 2.87(~6) | 1.99(-6) 2.856 6
4.73(-5) | 3.59¢-5) | 3.82(-5) 2,856 6
4.37(-4) | 2.36(-4) | 2.88(-4) 2.856 6
3.06(-4) | 3.34(-4) | 1.95(-4) 2.856 31

* * *

2.65(-3) | 1.33(-3) | 6.93(-4) 0.621 58

1074 3.17(-6) | 2.87(-6) 1.99(-6) 2.856 6
4.73(=5) | 3.59(-5) | 2.19(-5) 2.856 6
5.07(-4) | 5.28(-4) | 3.77(-4) 2.856 17
2.46(-4) | 1.43(-4) | 7.30(-5) 2.856 35
1.24(-4) | 6.31(-5) | 3.22(-5) 1,413 59
4.95(-5) | 2.70(-5) | 1.48(-5) 0.392 97

1078 3.17(-6) | 2.87(-6) | 1.99(-6) 2.856 6
4.73(=5) | 3.59(-5) | 4.24(-5) 2.856 8
2.82(-5) | 1.44(-5) | 7.32(-6) 2.856 35
2.84(-5) | 1.40(-5) | 7.19(-6 1,484 63
6.18(~6) | 3.15(-6) | 1.66(-6) 0. 562 112
2.73(-6) | 1.45(-6) | 7.57(-7) 0.156 204

1078 2.39(-8) | 2.02(-8) +| 1.25(-8) 2.856 43
4.01(-8) | 1.96(~8) | 1.26(-8) 2.856 58
4.91(-8) | 2.51(-8) | 2.21(-8) 1.559 96
5.11(-8) | 2.52(-8) | 1.27(-8) 0.591 179
4.37(-8) | 2.38(-8) | 2.24(-8) 0.224 274
1.77(-7) | 1.15(-8) | 6.62(-9) 0.062 525




135,

TABLE 9

EPS k d=5 | d=10 d=20 | INITIALH | N

103 | o.1 17(-6) | 2.87(-6) 1.99(-6) 2.856 6
0.2 73(-=5) | 3.59(-5) 3.82(-5) 2.856 6
0.5 37(-4) | 3.36(-4) 2.88(-4) 2,856 6
1.0 43(-3) | 1.72(-3) 9.37(~4) 2.856 22
2.0 * * *
5.0 .06(-4) | 5.96(-5) .| 3.59(-5) 0.551 80

107 | o.1 .17¢-6) | 2.87(~6) 1.99(-6) 2.856 6
0.2 .73(=5) | 3.59(-5) 2.19(-5) 2.856 6
0.5 .37(-4) | 3.36(-4) 2.88(~4) 2.856 6
1.0 .30(-4) | 1.22(-4) 6.45(~5) 2.856 36
2.0 46(=5) | 3.29(-5) 1, 74(-5) 1.540 62
5.0 .15(-5) | 6.55(-6) |  3.52(-6) 0.310 136

10°% | o.1 .17(-6) | 2.87(=6) 1.99(-6) 2.856 6
0.2 .73(-5) | 3.59(-5) | 2.19(-5) 2,856 6
0.5 .46(=5) | 1.18(=5) 5.97(~6) 2,856 37
1.0 .85(-7) | 3.48(-7) 2,01(-7) 1.638 112
2.0 .56(-7) | 8.23(-8) 5.04(~8) 0.487 177
5.0 17(-8) | 2.40(~7) 1.34(-~7) 0.098 360

1078 0.1 .01(-8) | 1.56(-8) 9.53(-9) 2.856 45
0.2 .52(-8) | 8.60(-9) 1.70(~7) 2.856 67
0.5 .26(-9) | 1.36(-7) 1.45(=7) 1. 742 141
1.0 .10(-9) | 1.78(-8) 1.06(-8) 0.518 262
2.0 .50(-8) | 1.04(-8) 6.15(-9) 0.154 479
5.0 .70(-9) | 3.19(-9) 1.21(-8) 0.031 1024
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TABLE 10
NUMEROV RAPTIS AND ALLISON
1 § B ax N S B ax N
3, 0 -0.590 0.045 609 -0.590"| 0.364] 260
3. 2 -1.288 0.046 593 -1.288 0.091| 276
3. 4 0.144 0.046 615 0. 144 0.091 344
10. 0 -0.431 0.012 1446 -0.4317  o0.122| 343
10. 5 -0.298 0.012 1454 -0.299 0.042 | 4a44
10. 10 0.378 0.012 1417 0.378 0.023 | 698

The values of the phase shift presented by Raptis and Allison

(1977) for (k,1) = (3.0, 0) and (10.0, 0) should be negated.
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CHAPTER 6

A variable-step variable-order Adams method

Introduction

The N.A.G. routine DO2AHF (N.A.G. Library, 1974) integrates
a system of first order ordinary differential equations over a
specified ®nge, using a variable-step variable-order Adams method
(Shampine /Gordon, 1975), The routine obtains an estimate of the
local error at each step and varies the order and steplength auto-
matically to keep this estimate below a prescribed tolerance level,
We shall discuss iJL§6.1 the particular Adams Bashforth-Adams Moulton
method used which lends itself to an efficient implementation in
routine DO2AHF, A detailed discussion of all the various features
in;orporated in DO2AHF would prove rather lengthy and we shall
describe only the basic features such as the initial stage of the
integration, the error estimation and the strategies adopted for
changing the steplength and the order. For a more detailed
description of the algorithm employed in DO2AHF the reader is
referred to Siemieniuch (1972).

Our reason for using DO2AHF is twofold; first as a means of
solving

y = f(x, y) (6.1)

where

f(x, y) = [Q(£+£) -E + V(X)] y(x)

p

as a method in its own right in program NAGMOD, and second to
incorporate its use in programs RADISH, NUMEROV1, NUMEROV2, EXPFIT1
and EXPFIT2 to generate high accuracy parallel solutions to those
calculated by the methods of de Vogelaere, Numerov and Raptis and
Allison, Program NAGMOD uses a modified version of the routine

DO2AHF to compute the solution of (6.1) where of course (6.1) is
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treated as the pair of coupled first order differential equations

Y1 = Y9
'
Yo % £(x, yl) (6.2)
where we have substituted y, =y in (6.1). Details of the modific-

ations required to DO2AHF specific to our needs appear in §6.2.

In order to study the actual erro;s which accumulate in routines
DEVOG, NUMCV and RAPAL during the course of integration in cases
where the exact solution of the problem is not known we use DO2AHF
to provide solutions to high accuracy at the same points which have
been chosen automatically in these routines; thus we may regard the

N.A.G. solution as an 'exact' solution of the problem,

§ 6.1 Description of DO2AHF

The routine DO2AHF uses the kth order Adams Bashforth formula
combined with the (k+l)st order Adams Moulton formula in the PECE

mode to calculate the solution of the first order equation

y = f(x, y), y(x)) =y, (6.3)

or systems of such equations, The solution of (6.3) at the mesh

oint x may be written as
P n+l y X

n+l
y(xp) = y(x))+ f £(x, y(x))dx, (6.4)

X
n

The Adams Bashforth formula of order k uses a polynomial Pkn(x) to
/

interpolate the values f , £ ,, ---, £ ., where f = £(x,,y,)

and is given by

Pnsl

X
= y + ‘L P n(x)dx . (6.5)

This is an explicit formula for the so called predicted value Potl

of the solution at xn+1. The Adams Moulton formula of order k+l

uses the same values which are used in (6.5) along with and is

pn+1
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given by
Xn+l
Yn¢l = Ya * J\ Pk+1’n(x)dx (6.6)
*n
where
Pk+1,n(xn+1-j) = fn+1_j’ J = 1) =T k
. - P _
Pk+l,n(xn+1) fn+1 f(xn+1’pn+1) . (6.7)

This is an implicit formula which yields a corrected value for the

solution at X

+1°
One representation of the interpolating polynomial Pk n(x) is
3
the divided difference form:
Pk,n(x) = f[xn]+(x-xn)f[xn,xn_1]+---
_ cxYemm(x- - (6.8)
+Hx-x J(x-x _ )---(x X 2 EDX X e ]

which in the case of evenly spaced mesh points reduces to the back-

ward difference form:

= k-1,
Pk,n(X) = fn+(x-xn)an+---+(x-xn)(x-xn_l)---(x-xn+2_k)v fn (6.9)
h (k-1)! hk=!
where h is the steplength, The routine DO2AHF is based on the
divided difference form (6,8) of the interpolating polynomial, Most

steps in the integration are taken in groups of constant steplength
and constant order and these stages will use (6.8) in the reduced
form (6.9); the form (6.8) proves convenient particularly for error

estimation when estimates at different orders are required.

§6.1.1 _Efficient implementation of the Adams methods

An efficient implementation of the Adams Bashforth-Adams Moulton
method described above has been fully discussed in Shampine/Gordon
(1975, Chapter 5), Introducing the quantities

hy T X T Ry
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s = X - Xy
n+l
Y;(atl) = h o +h +---+h o 1P
ol (n+l) = h+l iz 1
Bl(n+1) = 1
Bi(n+1) = Lyl(n+1)\P2(n+1) ---\Pi_l(n+1), i1

\yl(n)(yz(n) === 51 (m)

f[xn] = fn’

¢, (n)
G

\yl(“)qg(“) '“q’i-1(’“)f["m”‘m-1'"'”‘n-i+1]'i:> 1
(6.10)

we see that a typical term of Pk n(x) is
H

(x—xn)(x-xn_l)---(x-xn_i+2)f[xn, xn-l’---’xn-i+1]=ci,n(s)4>i (n)

where
ci’n(s) = 1 , 1 =1
sh.,, = s ,i=2
qﬁ(n+1)
shy 1\ [3Bpar ()= fsh L+, _o(n) ;123
q&(n+l) \yz(n+1) ) qi_l(n+1)
(6.11)
and
¢ ") = )P (). (6.12)
Thus
k *
CI él ci’n(s)q)_l (n) (6.13)
and x
n+l k "
pn+1 = Yn + J‘ (Zl €i Ss) (}Si (n)> dx
X i= )
n

k —
y+h 2{1 (P () Xoci’n(s)ds. (6.14)

i=1
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Finally we obtain the following form for the predicted value Pt

1
k *
Pn+l = Yo hn+1 ji: gi,lCPi (n) (6.15)
i=1
where
g. = 1 , i =1
i, =
d q
1 , 1 =2
q(q+1)

- o
81, q ~Xi-1(mDe , 123 . (6.16)

i-15, g1’
The corrected value is given by (6.6) and we may write

Pk+1,n(x) = Pk n(X)+(X-Xn)(X-X _1)———(x—x )fp[x

, n n-k+1 n+1’__-’xn—k+l]

(6.17)
where we have introduced a superscript p on the divided difference

associated with Pk+l n(x). Equation (6.17) may be expressed as
b}

= %
Pk+1,n(X) Pk,n(X) + ck+1’n(s%Pk+1(n+l)
and integration of the above equation with respect to the variable s

yields

1
1 5 p
Y+l yn+hn+1j|o Pk,n(xn+5hn+l)ds+hn+l ock+1,n(s)%k+1(n+l)ds

+h pP
Pht1 n+1gk+1,1(Pk+1cn+1) . (6.18)
If a corrector of order k is used then equation (6.18) is replaced by

(Shampine/Gordon, 1975, p.1l0l)

= P
Yo+l Part + Pogl 8, 1P a1 (04D, (6.19)

which corresponds to taking one less term in (6.18), The Milne error

estimate for the algorithm is then

- P
Posl (Bt gk,l)(F er1 (PFD) (6.20)

The method uses formulae of orders onme up to thirteen and considers
only halving and doubling of the steplength in cases where the step-
length must be decreased and increased respectively, The 8, 1 ©°-

’

efficients are stored as fractional constants for k = 1, --~, 10 and



142,

for k = 11, ---, 14 they are computed from the recurrence relation
(6.16); notice that for a constant steplengthnx&(n+l) = %. The

summation in (6.15) is performed in reverse order starting with the
highest order divided difference in order to minimise machine round-

off error and the current value of the independent variable x is
computed by subtracting (ST-1) times the current value of the step-
length H from the value of x at the end of the integration range,

where ST is an integer variable and is the number of steps left to the
end of the range for the current value of the steplength, The deriv-
atives of the predicted and corrected values Pot1 and Y41 2FC evaluated
using an auxilliary routine AUX (N.A.G. Library, 1974) which is supplied
by the user. Differences associated with Pk,n(X) and Pk+1,n(x) of
(6.5) and (6.6) must also be evaluated; several of the computed diff-
erences are retained for the next step and the computations are organ-
ised so that they - are as economical of storage as possible (see

Shampine/Gordon, 1975, Chapter 5),

§ 6.1.2 Strategies for order and steplength selection

The estimate given in (6.20) of the local truncation error will
in general overestimate the quantity since the Milne error estimate
requires the predictor and corrector formulae to be of the same order,
Suppose we have reached the mesh point X - The routine DO2AHF accepts
the predicted value at x ., = x +h as sufficiently accurate if the
absolute value of the error in each component of the predicted value
of the solution is less than 0.1 times the error allowed in a mixed
error test; if G(I), I=1,---,N is the real array which contains the
error bounds specified by the user for each of the N components of

the predicted solution vector YP(I) and the estimate of the local

truncation error in each component is E(I) then a mixed error test
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requires
[Em| < o x s+ [vrD)]) (6.21)
in order that the predicted value be acceptable, This error test

is specified by an integer variable T which is set to 1 on initial
entry to DO2AHF, The values T = 2 and T = 3 give an absolute and
relative error test respectively, that is

[ @] < oo (6.22)
and

B M] < 6D x ]Yp(x)l : (6.23)

If the error criterion in (6.21) is not satisfied then the step-
length is halved and the integer ST is doubled; in addition the diff-
erence table associated with Pk’;(x) must be retabulated and an efficient
algorithm (Krogh, 1973) is incorporated in DO2AHF specifically for
this purpose, The corresponding algorithm for doubling the steplength
is also incorporated in DO2AHF, However the use of these algorithms
as described by Krogh (1973) can sometimes lead to a catastrophic
growth in errors, particularly in the case of halving the steplength
(see Hall and wWatt, 1976, Chapter 6) and Krogh's modification of the
halving algorithm is employed; when used on the next two steps after
halving it has the effect of smoothing the differences,

The decisions to change the order and double the steplength are
performed simultaneously after the corrected value of the solution has
been obtained. The estimateé of the local truncation error are
weighted so as to simulate a doubling of the steplength; thus to in-
crease the order from k to k+l and the steplength from h to 2h the
error in each component of the corrected value of the solution must

- (kt2) times the error allowed in

have absolute value less than (0.1)2
a mixed error test, An increase in order from k to k+l is only per-

formed if at least k+l steps at order k have been taken, The counter

QO is used for this purpose, At the beginning of the integration
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Q0 is set to -1; thus two steps must be acceptable before increasing
the order from one to two in the initial stage of the algorithm,

The integer variable Q denotes the current order, Q0 is increased

by one after each successful step and for values of Q0 2> Q we can
consider either increasing the order by one or doubling the steplength,
or both, After suitable modification of the steplength and/or the
order, QO is reset to zero, No such restriction is placed on de-
creases in steplength,

Using the corrected differences estimates of the local truncation
error for the orders k-1, k and k+l are computed where k is the current
order of integration, The order in the next step is selected accord-
ing to the minimum value of the weighted error estimates obtained at
these three orders, If the Qteplength is doubled then the integer
variable ST must be halved; however in cases where ST is odd immediately
before an impending increase in steplength no increase in steplength
is performed until the criterion for steplength doubling is again sat-
isfied with ST even, The justification for this strategy is that an
important feature of.the algorithm is the automatic choice of an
initial steplength such that any subsequent halving or doubling of
this steplength over the specified range of integration will cause
the integration to terminate exactly at X + HO where X is the initial
mesh point supplied by the user and HO is the length of the integration
range,

Finally we consider an additional test which is introduced to
guard against the order becoming too high. With the retabulation
of the difference table it may be the case that for large values of
the order k some of the higher order differences have become un-
reliable; for a well behaved function the kth divided difference
usually decreases in magnitude as the order k increases, Thus a

sudden increase in the magnitude of the kth divided difference for a
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particular value of k signals either that there is a discontinuity in
the derivative of the solution or that round-off errors have accumul-
ated to such a level that we can no longer consider the divided diff-
erence table to be reliable, Routine DOéAHF reduces the order to
k-1 if such 2 condition is encountered; if the calculated differences
are still unacceptable the order is reduced by one successively until
the differences become acceptable, We also note that as the order

k increases the regions of absolute stability decrease fairly rapidly
and a further advantage of tﬁe lower order methods is that they in-

volve less computation,

§ 6.1.3 The initial stage

Routine DO2AHF calculates EPS which is the smallest positive real

number such that

1,0 + EPS > 1.0
and SMAX which is the largest integer such that SMAX and -SMAX can be
represented on the computer, According as the integer variable T is
1, 2 or 3 on injtial entry to DO2AHF the error test given by (6.21),
(6.22) or (6,23) is adopted for testing the error in each component
of the predicted solution vector.

The array @A(I), I-1,---,14 is set up and contains the values
gk,l’ k=1,---,14, Routine DO2AHF chooses its own initial value of
the steplength to ensure that the rénge of integration HO is made up
of ST intervals of length H where ST is an integral power of two and
H is chosen to be as near as possible to the initial value of the
steplength supplied by the user, Before estimating the first step
of the algorithm the value of T is negated, Q is set to 1 and QO is set
to -1, It is now possible to proceed with the calculation of the

predicted and corrected values for the solution at the first and
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subsequent mesh points,

An error indicator IFAIL is used by the routine; if the integra-
tion has been successfully completed the value IFAIL = O will be re-
turned, The values IFAIL = 1, 2 indicate respectively that the
number of steps required to complete the interval exceeds SMAX and

that H=0 or H> HO on a second or subsequent entry to the routine,

§ 6.2 A modified version of DO2AHF

For the purpose of using routine DO2AHF to provide high accuracy
parallel solutions to those calculated by the methods of de Vogelaere,
Numerov and Raptis and Allison we use DO2AHF in the form described in
§6.1. In Chapter 7 we shall compare the reliability and efficiency
of the routines DEVOG, NUMOV and RAPAL in controlling the global error
in the solution of (6.1) and in extracting a phase shift for a partic-
ular value of the energy E and angular momentum{ . In order to in-
clude the routine DO2AHF in this comparison we shall require that it
incorporates an error per unit step criterion and that the error test

|E (I), £ G(1) xMaX{ .1, lyp (I)’}
H

for each component of the predicted solution vector YP is satisfied.
Of course the same initial steplength and mesh point must be supplied
in DEVOG, NUMOV and RAPAL in order to provide a meaningful comparison,
We shall refer henceforth to the modified version of DO2AHF as DNGMOD
and to the program which uses DNGMOD to solve (6.1) as NAGMOD. DNGMOD
requires as starting values the solution and its first derivative at
the initial mesh point,.

In order to compute a phase shift a decision must be taken within
NAGMOD as to when such a calculation should begin, The decision is
actually taken within the auxilliary routine AUX and the calculation

of a phase shift is signalled when the integer parameter IPS is set
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to 1 in AUX, Just as in program RADISH the phase shift is calculated
in routine PS which is called by routine DNGMOD; if the phase shift
has converged to Ehe required accuracy the integer parameter JCONV is
set to 1 in DNGMOD and when this condition is encountered ST is reset
to 1 which has the effect of automatically terminating the calculation
in DN GMOD. A message is printed to the effect that the phase shift
has converged to the required accuracy along with information concern-
ing the number of function evaluations performed during the course of
the integration, Figure 6 below shows the relationship between the

six routines of program NAGMOD.

MAIN

REG

AUX DNGMOD PS

AIREG

Figure 6

§6J Test runs

Results for the performance of program NAGMOD in solving equation
(6.1) in the equivalent form of two first order coupled differential
equations for a range of values of E and { will be described in
Chapter 7,

We consider here the solution of problem (i) of.§5.7.4 in its
equivalent form of two first order coupled differential equations,

The exact solution is y = le(kx) and exact starting values for x ,

Y, and z_ = dy are used, The initial value of the steplength

o dxlx = X5

is chosen to be

h = min [EPS , EPS
|20]  [%ol

where fo may be easily calculated and EPS is different to that calcul-
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-n
1

ated internally in routine DNGMOD and takes the valuesEPS = 10
n=3, 4, 6, 8 for a range of values of k, The above estimate of

the initial steplength incorporates an error per unit step criterion
and is based on the assumption that the error of a first order method
is h times that of a zero order method, The results for this problem

using NAGMOD are tabulated in Table 11 of § 6.4,

§'6.4 Test results

We see from Table 11 that routine DNGMOD does an extremely good
job of controlling the global error and we note that DN®IOD has a
number of sophisticated features which are absent from routine DEVOG,
NUMOV and RAPAL., The value of a oy 15 0.572 and consequently a and
ap5 are both zero, However the penalty introduced in gaining such
high accuracy is reflected by the large number of function evaluations,
most noticeably for the lower energy values; even at the high energy
values the number of function evaluations far exceeds the corre;ponding
number in Table 7 for program NUMEROV2, Since.the method starts with
a formula of first order the initial value of the steplength is nec-
essarily small particularly when the accuracy requirement is high.
The value of H which is tabulated is that which is accepted by DNGMOD
as sufficiently accurate for the first order method; the value supplied
by the user will invariably be decreased in order that the new step-
length adhere .to the steplength strategy of DNGMOD (see§ 6.1.3).

Notice that for EPS = 10 C with k = 1.0, 2.0, 5.0 routine DNGMOD

returns the error indicator IFAIL 1l; the initial value of H accept-
able in DNGMOD is so small that the computer is unable to handle the
large number of steps required to complete the interval, The typical

behaviour of routine DNGMOD is for the order to increase fairly rapidly

in the initial phase of the integration once an appropriate steplength
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at each order has been found,

One might argue a case for using NAGMOD with an error per step
criterion in view of the exceedingly small (relative to EPS) values
of the scaled maximum error, a, which appear in columns 3 - 5 of
Table 11 throughout the range of EPS, However a test run using
NAGMOD incorporating an error per step criterion to solve the problem
Qf§6.3 proves to be totally unsatisfactory with respect to control

of the global error, The initial steplength is chosen to be
1 1

b = min ELSY' , (ees\2
EX ol

and the initial steplength accepted by routine DNGMOD is tabulated in
Table 12 along with the scaled maximum errors for the above problem,
The relevant statistics are

8 ax = 271, apﬁ:88°/., aps-'-r67%

and we note that in the majority of cases a exceeds EPS by a factor

far in excess of five throughout the range of EPS,
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TABLE 11

EPS k d=5 |d=10 = 20 INITIAL H | N

1073 | o, 1.23(-4) | 7.54(-5) . 77(=5) 0.122(-2) | 136
0. 1,50(-4) | 7.53(-5) . 77(=5) 0.122¢-2) | 129
0. 2.35(-5) | 1.18(-5) .40(~-5) 0.610(-3) | 169
1. 3,32(-6) | 1.66(-6) L11(-4) 0.305(-3) | 272
2. 1.77(-6) | 1.53(-4) .28(-4) 0.305(-3) | 419
5. 1.66(-4) | 1.17(-4) . 10(~4) 0.152¢-3) | 648

1074 | o. 2.71(=6) | 1.66(~6) .32(-7) 0.305(-3) | 185
0. 3.32(-6) | .1.66(~6) .32(-7) 0.305(-3) | 198
0. 4.62(-7) | 2.21(-7) .21(~7) 0.152(-3) | 229
1. 5.71(-8) | 1.50(~5) . 72(-5) 0.763(-4) | 294
2. 2,23(-6) | 4.41(-5) .21(-5) 0.381(-4) | 468
5. 8.21(-6) | 1.00(-5) .07(=5) 0.191(-4) | 864

10°® | o. 8.87(-11)| 5.45(-11) | 2.73(-11) |  0,953(~5) | 251
0. 8.08(~12)] 4.05(~12) .03(-12) 0.477(-5) | 273
0. 1.20(-12)| 3.16(~12) .12(~9) 0.238(-5) | 305
1. 2.60(-10) | 7.85(-8) .27(-8) 0.119(-5) | 412
2, 2.32(-8) | 6.94(-8) .17(-8) 0.596(=6) | 644
5. 3.03(-8) | 1.52(-8) .68(~9) 0.298(~6) | 1267

1008 | o 5.53(-12)| 3.40(-12) | 1.70(-12) | 0.149¢-6) | 261
0. 8.68(~12)| 4.34(~12) 17¢-12) | 0.745(-7) | 321
0. 1.16(-12) | 2.24(-12) .12(-11) |  0.186(-7) | 379
1. * * *
2. * * *
5. * * *

*  IFAIL = 1
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TABLE 12
EPS =5 d = 10 = 20 INITIAL H N
1073 L14(-2) | 1,93(-2) .64(-3) | 0.390(-1) 58
.33(-2) | 1.17(-2) .83(-3) | 0.195(-1) 83
.05(-2) | 5.25(-3) .63(-3) | 0.976(-2) 109
.05(-2) | 5.79(-3) .05(-3) | 0.976(-2) 123
.35(-3) | 1.18(-3) .29(-3) | 0.488(-2) 201
.95(-3) | 9.74(-4) .57(=4) | 0.488(-2) 517
107 .55(-3) | 5.25(-3) .63(-3) | 0.976(-2) 94
.40(-3) | 1.70(-3) .52(-4) | 0.,488(-2) 123
.40(-3) | 1.70(-3) .52(-4) | 0.488(-2) 116
.10(=4) | 4,05(~4) .03(=4) | 0.244(-2) 233
.29(-4) | 2.15(-4) .73(=4) | 0.244(-2) 282
.83(-5) | 4.14(-5) .81(-5) | 0.122(-2) 557
1078 .23(-4) | 7.54(=5) L 77(=5) | 0.122(-2) 134
.50(=4) | 7.53(-=5) .77(=5) | 0.122(-2) 128
.33(-7) .96(-6) .88(-6) 0.610(-3) 176
.32(-5) | 1.16(-5) .82(-6) | 0.610(-3) 230
.77(-6) | 1,01(-6) .45(=-7) | 0.305(-3) 507
L27(=7) | 7.19(-7) .80(-7) | 0.305(-3) 964
1078 .71(-6) | 1.66(-6) .32(-7) | 0.305(-3) 183
L41(-7) | 2.21(-7) .10(~7) | 0.152(-3) 181
L42(-7) | 2.21(-7) .11(-7) | 0.152(-3) 263
. 71(-8) .32(-8) .19(-8) | 0.763(-4) 383
.89(-8) | 2.52(-8) .36(-8) | 0.763(-4) 617
.93(-9) .62(=9) .91(-9) | 0.381(-4) 1153
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CHAPTER 7

Numerical comparison of RADISH, NUMEROV2, EXPFIT2, NAGMOD

Introduction

We have developed six programs, namely RADISH, NUMEROV1, NUMEROV2,
EXPFIT1, EXPFIT2 and NAGMOD which incorporate numerical methods with

automatic error control for the solution of

y'(x) = [L(Lx+ 1) - E + V(x) ] y(x) , (7.1)
We are now in a position to undertake a numerical comparison of the
performance of the methods of de Vogelaere, Numerov, Raptis and Allison and
the Adams Bashforth-Adams Moulton method of Chapter 6, when used to int-
egrate (7,1) with automatic error control, We shall investigate the
reliability of each of the numerical methods with respect to control

of the global error and we are also interested in the relative effic-

iency of the programs in calculating the phase shift for problem (7.1)

for a range of values of energy E, angular momentum L and the potential
function V(x).

We saw in Chapters 4 and 5 that NUMEROV2 and EXPFIT2 do a consid-
erably better job of controlling the global error in the numerical
integratioa stage of the calculation than do NUMEROV1 and EXPFIT1
respectively and for this reason we exclude NUMEROV1 and EXPFIT1 from
our comparison, .

In order that the comparisons be meaningful we must provide as
far as possible the same starting conditions for the solution of (7.1)
and in‘§7.1 we discuss the modifications which must be performed in
order that the programs may be reasonably compared, We describe the

test problems in_§7.2 and the results and conclusions of our numerical

comparison are discussed in§ 7.3.
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_§7.1 Criteria for comparison,

The initial values which must be supplied to programs RADISH and
NAGMOD are approximations for the solution and its first derivative,
Yo and z,, at the starting point X i programs NUMEROV2 and E*PFITZ
require approximations for the solution y, at X and y, at the next
point X, where X, = x°+h with h the initial steplength, The same
values of X and y, must be used by each program and we arrange that
the second starting condition is such that the accuracy attained in
the computed solution at the end of the first step meets the necessary

requirement particular to the method of solution being used, To this

end the criterion for choosing X, in the notation of §3.5, is

L+5

|ag ¥, "< 0.1 x EPS x EPS (7.2)

(see§4,4,3), Yy, is then computed as

4 . :
_ L+i
Yo = i£=,1 a, X . (7.3)

The first 8 coefficients of the expansion for the potential V(x) given
by (3.50), are read as data in the main routine of each program and
the coefficients a,, ===, a4 are calculated with a, = 1. In order

that the term hz be given sufficiently accurately we take

J
. _ 2! L+1-1
z = 2t (L+1I) arx, s 4 J<8

where J is the first value of I (>4) for which the following condition
holds

I x°L+J< 0.1 x EPS x EPS. (7.4)

==

h(L+I) | a1

This criterion is also used for choosing z, in NAGMOD, The criterion
for choosing i in NUMEROV2 and EXPFIT2 has already been discussed in
§4.4.3, |

Thus the following modifications must be made to program RADISH

in order that it be used in the numerical comparison; 8 coefficients
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of the expansion for the potential must be supplied to the main rout-
ine and Xys Yo Z, must be chosen as described above,

In order to study the actual errorswhich accumulate in routines
DEVOG, NUMOV, RAPAL and DNGMOD during the course of the integration
we shall use routine DO2AHF to provide high accuracy parallel solut-
ions to those calculated by the methods of de Vogelaere, Numerov,
Raptis and Allison and Adams Bashforth-Adams Moulton respectively. Now
routine DO2AHF will require the value of z, and the main routines of
RADISH, NUMEROV2, EXPFIT2 and NAGMOD must provide the value of z, for
this purpose,

We shall provide the programs with the same value of XF, the
endpoint of the range of integration; it is not necessary however when
solving (7.1) to insist that the integration end exactly at XF. In
the case of NUMEROV2 and EXPFIT2 the integration will stop somewhere
between XF-H and XF and in the case of RADISH it will stop between
XF-H and XF+H, The integration in NAGMOD will stop precisely at XF
since the steplength within routine DNGMOD is in fact chosen to meet
this requirement,

We shall solve a set of test problems which are determined by the
form of the potential V(x) in equation (7.1). One aim is to produce
a set of tables of the form of Table 12 which records the scaled max-

imum error over [xo, d] where d = 5, 10, 20. The values a , a

max’ p

and ap5 which may be extracted from the tables reflect the reliability
of a particular algorithm in solving the test problem for a range of
values of energy and angular momentum subject to different error re-
quirements. Our second aim is to compare the phase shifts computed

by our programs with the published values and to compare for each
program the CPU times required by the computer to perform the numer-

ical integration and extraction of the phase shift.

We have tried as far as possible to write programs RADISH, NUMEROV2
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and EXPFIT2 to the same specification, The steplength strategy is
the same for each of the numerical methods employed in these programs;
increases are limited to a factor of two and decreases must be allowed
wherever necessary and the appropriate decrease factor chosen, De-
creases in NAGMOD however are restricted to halving only, The step-
length criteria adopted in RADISH, NUMEROV2 and EXPFIT2 have been seen
to work quite adequately in each program although it may well be that

these criteria could be further improved.

§7.2  Test problems.

We consider the numerical solution of (7.1) over the range [xo,ZO]
with an initial steplength of 0.1 (this value is completely arbitrary)
supplied by the master driver to the integration routine (DEVOG, NUMOV,

RAPAL or DNGMOD) with the potential given by one of the following:

(i) v(x) = -z(u;)e'zx
X
(ii) V(x) = -2(l+_3_+l x+_1x2) e
x 44 8
(iii) V(x) = -2e°%
X
for the following range of values of k(E = kz):
k = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0
-n

with L =1, and EPS = 10 ', n = 3, 4, 6, 8.

For each of (i) - (iii) we have drawn up tables which for programs
RADISH, NUMEROV2, EXPFIT2 and NAGMOD display the value of EPS, k, the
scaled maximum error‘ﬁ’gber 5, 10 and 20 units, H the initial value

of the steplength accepted as sufficiently accurate and N the number

of function evaluations performed over [xo, 20]. The values of a oy’

ap and apS in each table are also shown. Those tables for (i) - (iii)
are 1isted.h1§7.3; the potentials of (i), (ii) and (iii) are respect-

ively the effective potential between an electron and the ground state
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of a hydrogen atom, the effecti;e potential between an electron and the
2s state of a hydrogen atom and the screened coulomb potential,

In addition we solve (7.1) for a range of values of E and L with
V(x) given by (i) ~ (iii) where the values of E and L are chosen to
allow comparison of the computed phase shifts SI,With the published
values, The range of values of E and L are tabulated along with the
published value of the phase shift and the computed phase shifts ob-
tained from RADISH, NUMEROV2, EXPFIT2 and NAGMOD. These calculations
are performed for EPS = 10-6, PSIG = 10-4. Also tabulated are the
CPU times required by the four programs to perform the numerical
integration of (7,1) and to extract a phase shift, Some other test

problems have also been considered, namely the solution of (7.1) by

each program with V(x) given by (iv) - (vi) below:

(iv) V(x) -2e %

2<1+l )e-Zx
X

- -2x/ P
2(l+1>e 2x-o((x),o£(x) = 9-2e zx(x5+2xa+9x3+gx+27 x+27>
4 23

(v) V(x)

(vi) V(x) 2/
X 2 2 2 4

o ~ £/
The results have been tabulated as for (i) - (iii) but we shall not
present the tables here,

All calculations are performed on .the NUMAC (Northumbrian Univer-

sities Multiple Access Computer) IBM 370/168 computer and all real

variables used in the calculations are in double precision form.

§ 7.3 Test results.

Tables 13 - 15 display the scaled maximum errors over the range
of integration [xo’ 20] for (i) - (iii) respectively using program
RADISH. We notice that a, the factor by which the scaled maximum
error exceeds EPS exceeds unity at each of the tolerances tested

particularly at the more stringent ones. The maximum value of a,

-8 .
a which exceeds 5.0 is recorded for EPS = 10 and for EPS in

max’

the range 10", n = 3, 4, 6 a does not exceed 2.5.
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Tables 16 - 18 and 19 - 21 display the scaled maximum errors
over [xo, 20] using programs NUMEROV2 and EXPFIT2 respectively for

(i) - (iii).  The values of a ax Obtained using NUMEROV2 are less

than 5.0 and consequently aps is zero. a exceeds unity only at the
more stringent tolerances (EPS = 10-6, 10_8) but the percentage of
such cases which is reflected by the value of ap is very small. A

comparison of the number of function evaluations performed by RADISH
and NUMEROV2 for each of (i) - (iii) shows that NUMEROV2 is more
efficient in this respect, NUMEROVZ2 and RADISH both control an error
which is proportional to h4 where h is the steplength for NUMEROV2 and
2h is the correSpondiné steplength for RADISH; the coefficient of the
error in NUMEROVZ is smaller by a factor which exceeds five and this
might explain why the steplength increases more rapidly in NUMEROVZ2,
The values of 3 ax obtained using EXPFIT2 are higher than those of
NUMEROV2; again a exceeds unity only at the more stringent tolerances
and ap, although slightly higher than in NUMEROV2, remains small.

Note that the values of H listed for NUMEROV2 and EXPFIT2 for a part-
icular test problem are the same; this is to be expected since EXPFIT2
initially uses the method of Numerov until a chaﬁge-over to the Raptis
and Allison method is effected, This change-over subsequently speeds
up the calcdlation by allowing a more rapid increase in the steplength,
This is reflected by a substantial decrease in the number of function
evaluations performed using EXPFIT2 over NUMEROV2 particularly in cases
where the energy is large; EXPFIT2 often uses less than one third of -
the corresponding number of function evaluations of NUMEROV2,

Tables 22 - 24 display the scaled maximum errors over [xo, 20]
using program NAGMOD. 8 ax is less than unity and consequently ap
and aps are both zero. The values of H accepted by routine DNGMOD
as sufficiently accurate are exceedingly small and are approximately

-8 .
one order of magnitude smaller than EPS; for EPS = 10 = the routine
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consistently returns the error indicator IFAIL=l, While program
NAGMOD does an extremely good job of controlling the global error

the excessive number of function evaluations which must be performed

particularly at the larger tolerances (EPS = 10-3, 107%) is clearly
undesirable, We have rerun program NAGMOD incorporating instead

an error per step criterion (this will relax the condition for choos-
ing an initial value of H) for the solution of (7.1) with the potential
given by (i) - (vi). We still find that a large number of function
evaluations must be performed although the number is considerably
less than in NAGMOD with an error per unit step criterion particularly
for EPS = 10-3, 10°%. At the larger energies and at the more strin-
gent tolerances the number of function evaluations performed is consid-
erably less than in RADISH and NUMEROV2, The values,of a ax however
for (i) - (vi) are large and vary from approximately seven to seventy
five when an error per step criterion is used in NAGMOD and in additiom
the ratio of ap5 to ap is fairly large; a number of cases occur where
a exceeds EPS by a factor which is far in excess of 5.0. Thus we
see that NAGMOD with an error per step criterion does a relatively
poor job of controlling the global error,

Tables 25, 27 and 29 list the published and computed values of
the phase shift QL for test problems (i), (ii) and (iii) respectively
for a range of values of energy E and angular momentum L. The CPU
times (in seconds) required to perform the numerical integration and
calculation of the phase shift for test problems (i), (ii) and (iii)
are listed in Tables 26, 28 and 30 respectively.

In most cases the phase shifts produced by the four programs agree
within themselves to the number of figures quoted in the published

values; where there are small discrepancies our results are confirmed

by calculations which we have carried out with more stringent accuracy
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requirements (e,g, EPS = 10-8, PSIG = 10-5), In particular if we use

a more stringent accuracy requirement in RADISH and EXPFIT2 for problem
(iii) then the agreement between the phase shifts obtained using RADISH,
EXPFIT2 and the remaining programs is much improved. Of the four pro-
grams, EXPFIT2 performs by far the least number of function evaluations
in the numerical integration stage of the calculation particularly at
the higher energies and we might expect EXPFIT2 to be the most efficient
with respect to computer time considerations, NAGMOD uses consider-
ably more function evaluations than does RADISH which in turn used$S
more than NUMEROV2,

The CPU times which are listed in Tables 26, 28 and 30 are subject
to variations of approximately + 5% due to a time sharing environment
but it is possible to ascertain which of the programs is the most
efficient in terms of the amount of CPU time required to perform the
numerical integration and subsequent extraction of the phase shift,

At small energies the CPU times are comparable for RADISH anq NUMER OV 2
(being slightly in favour of RADISH) and we see that EXPFIT2 is less
efficient than NUMEROV2 in this respect. At the larger energies (E> 1)
RADISH uses less time than EXPFIT2 and considerably less (often by a
factor which is near a half) time than NUMEROV2. In all cases EXPFIT2
performs less function evaluations than does NUMEROV2; however the
overheads in EXPFIT2 are higher than in NUMEROV2 because of the addit-
ional complexity of routine DIVDIF in EXPFIT2. For more complicated
forms of the potential we might expect EXPFIT2 to be the most efficient
of the programs with respect to computing time, As expected, the CPU
times required by NAGMOD far exceed those of RADISH, NUMEROV2 and
EXPFIT2.

We ask the question: which program gives the most reliable and
efficient solution of (7.1) for the range of data considered? Pro-

gram NAGMOD with an error per unit step criterion undoubtedly gives
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the best control of the global error. However the excessive number
of function evaluations which must be performed disqualifies NAGMOD
from the point of view of efficiency, Of the remaining three pro-
grams NUMEROV2 and EXPFIT2 give the best control of the global error.
If one is interested primarily in efficiency then EXPFIT2 requires

the least number of function evaluations but RADISH is the more eff-
icient with respect to computer time considerations. This presumably
is due to the method of calculating the truncation error estimates
which in EXPFIT2 is a time consuming process; subroutine DIVDIF might
well be improved to give a more efficient process for the calculation
of the derivative required in the truncation error estimate, Each

of the programs give reliable values for the phase shift and we would
recommend the use of program RADISH to the user who is interested in
extracting a phase shift with the minimum expenditure of computing time,

RADISH also gives a good control of the global error for EPS = 10_3,

10-4, 10-6; the user interested in extracting phase shifts will not
normally request high accuracy in the solution. For the user who is
primarily interested in the control of the global error in the numerical
integration stage of the calculation we recommend the use of program
NUMEROV2 or EXPFIT2; at the most stringent tolerance tested, that is

EPS = 10_8, NUMEROV2 gives a slightly better control of the global

error than does EXPFIT2 but for the lower (realistic) tolerances either
of the two programs is recommended. If in addition phase shifts are

to be extracted the choice between the two programs is more clear-cut,
With respect to the efficient use of computing time we recommend the

use of NUMEROV2 for low (<1, say) energy values and EXPFIT2 for the

higher energy values,
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RADISH for problem(i)
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EPS k | d=5 d = 10 d = 20 u N

1073 0.1 | 4.58(-5) | 2.39(-5) | 1.17(-5) . 1000 18
0.2 | 4.66(-5) | 2.32(=5) | 5.64(-5) . 1000 38 -
0.5 | 4.52(-5) | 5.22¢-4) | 7.06(-4) . 1000 44
1.0 | 6.57(~4) | 9.21(-4) | 1.65(-3) . 1000 64
2.0 | 5.65(-4) | 8.71(-4) | 1.06(-3) . 1000 106
5.0 | 1.19¢-3) | 1.32¢-3) | 1.33¢-3) 1000 | 202

107% 0.1 | 7.18¢-5) | 3.48(-5) | 1.81(-5) 0667 52
0.2 | 7.24(-5) | 3.36(=5) | 1.69(-5) 0667 56
0.5 | 7.37(-5) | 3.72(-5) | 1.13(-4) 0663 78
1.0 | 5.06(~5) | 1.05(-4) | 1.60(-4) .0573 114
2.0 | 7.44¢-5) | 1.04(-4) | 1.14(-4) . 0686 190
5.0 | 1.03(-4) | 1.10(-4) | 1.18(-4) .0537 | 388

1078 0.1 ] 1.61¢-6) | 8.66(~-7) | 3.50(-7) . 0086 126
0.2 | 1.74(-6) | 8.47(-7) | 1.30(-6) . 0086 140
0.5 | 1.79¢-6) | 8.91(-7) | 8.18(-7) 0085 | 226
1.0 | 2.23(-6) | 1.44(-6) | 1.58(-6) 0083 344
2,0 1.52(-6) | 9.90¢-7) | 8.51(-7) . 0082 630
5.0 | §.94(-7) | 6.38(-7) | 5.81(-7) 0071 | 1432

1078 0.1 | 2.85(~8) 1.48(-8) 6.76(-9) ,0013 314
0.2 | 3.10¢-8) | 1.56(-8) | 8.90(-9) 0013 364
0.5 | 4.60(-8) | 2.32(-8) | 1.90(-8) .0013 602
1.0 | 8.86(-8) | 4.44(-8) | 4.38(-8) .0013 998
2.0 | 9.70(-8) | 4.84(-8) | 2.69(-8) L0013 | 1702
5.0 | 3.38(-8) | 2.18(-8) | 1.80(-8) L0009 | 3496
fnax = 9:70, & = 7%, a = 8%
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RADISH for problem (ii)
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EPS Kk d =5 d=10 | d=20 H N

1073 0.1 | 1.97(-5) | 8.32(-6) | 3.36(-6) | 0.1000 40
0.2 | 2.33(-5) | 1.29¢-5) | 7.37(-5) | o0.1000 42
0.5 | 1.32(-4) | 9.97(-5) | 7.11(-4) | 0.1000 46
1.0 | 4.87(-4) | 9.68(-4) | 1.06(-3) | 0.1000 62
2.0 | 6.40(-4) | 8.64¢-4) | 9.00(-4) | o0.1000 108
5.0 | 1.17¢-3) | 1.18¢(-3) | 1.29¢-3) | o.1000 | 202

107% 0. 3.80(-5) 1.82(-5) 9.17(-6) 0.0795 58
0.2 | 4.09(-5) | 2.07(-5) | 1.11(-5) | 0.0784 58
0.5 | 4.92(-5) | 2.71(-5) | 8.63(-5) | 0.0751 76
1.0 | 6.04(-5) | 3.86(-5) | 8.03(-5) | 0.0729 122
2.0 | 3.27(-5) | 7.37(-5) | 9.80(-5) | o0.0741 198
5.0 | 9.84(-5) | 1.06(-4) | 1.09¢-4) | 0.0530 | 386

1078 0.1 | 1.84(-6) | 8.81(-7) | 4.18(-7) | o0.0123 142
0.2 | 1.80(-6) | 8.45¢(-7) | 4.21(-7) | o.0121 150
0.5 | 2.52(-6) | 1.55(-6) | 1.35(-6) | 0.0115 196
1.0 | 1.95(-6) | 1.77¢-6) | 1.57¢(-6) | 0.0095 294
2.0 | 1.35(-6) | 1.06(-6) | 9.97(-7) | 0.0090 596
5.0 | 9.16(-7) | 6.34(-7) | 5.65(-7) | 0.0071 | 1434

1078 0.1 | 8.32¢-9) | 5.42¢(-9) | 2.58(-9) | o0.0017 366
0.2 | 8.49¢-10) | 2.47¢-9) | 1.23(-8) | o0.0017 398
0.5 | 3.24¢-8) | 1.80(-8) | 2.60(-8) | 0.0016 580
1.0 | 4.28(-8) | 2.82(-8) | 2.18(-8) | o0.0015 | 840
2.0 | 7.74(-8) | 4.11(-8) | 2.42(-8) | o0.0014 | 1676
5.0 | 3.45¢-8) | 2.12¢-8) | 1.72¢(-8) | 0.0009 | 3520

e = T Th 8 T Sl a o= 4L
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RADISH for problem (iii)

163.

EPS d=5 d =10 = 20 H N

1073 .24(-5) | 3.74(-5) | 1.86(-5) | o0.1000 38
.22(-5) | 3.59(-5) | 6.35(-5) | o0.1000 38
.53(-5) 4.46(-4) 6.19(-4) 0.1000 44
45(-4) | 9.27¢-4) | 1.37¢-3) | 0.1000 62
.95(-4) | 8.51(-4) | 9.34(-4) | 0.1000 | 106
.17(-3) 1.31(-3) 1.33(-3) 0. 1000 202

107 .18(-5) 2.86(-5) 1.45(-5) 0.0548 - 56
17¢-5) | 2.71(-5) | 5.16(-5) | 0.0548 60
J77(-5) | 2.69¢-5) | 1.53(-4) | 0.0553 76
.73(-5) | 1.09(-4) | 1.61(-4) | 0.0570 | 110
.35(-5) | 1.08(-4) | 1.17(-4) | 0.0698 188
.03(-4) | 1.13(-4) | 1.17(-4) | ©0.0538 | 382

1078 .36(-6) | 1.20(-6) | 5.33¢(-7) | 0.0079 128
.45(-6) | 1.20(-6) | 6.46(-7) | 0.0079 140
.37(-6) | 1.17¢(-6) | 1.27(-6) | 0.0080 | 226
.48(-6) | 1.54¢-6) | 1.38(-6) | 0.0081 | 348
47(-6) | 1.00(-6) | 8.78(-7) | ©0.0084 | 620
01(-7) | 6.39¢-7) | 5.77¢-7) | o0.0071 | 1434

1078 .62(-8) | 4.38(-8) | 2.14(-8) | o0.0012 | 320
.80(-8) | 4.43(-8) | 2.20(-8) | ©0.0012 | 364
.99(-8) | 4.53(-8) | 2.26(-8) | o0.0012 | 604
04(-7) | 5.18(-8) | 4.06(-8) | o0.0013 | 974
.23(-8) | 4.61(-8) | 2.57(-8) | o0.0013 | 1726
.38(-8) | 2.15(-8) | 1.77(-8) | 0.0009 | 3514
e T 104, s nw, o= 20



164.

TABLE 16

NUMEROV2 for problem(j)

EPS k d =5 d =10 d = 20 H N
1073 0.1 [4.90(-6) | 3.19¢-6) | 1.65(-6) | 0.1000 24
0.2 |4.74¢-6) | 3.10(-6) | 3.27(-5) | o0.1000 24
0.5 |7.27(-6) | 3.92(-4) | 7.05(-4) | 0.1000 33
1.0 |[5.07(-5) | 5.15(-5) | 6.82(-5) | o0.1000 57
2.0 |2.72(-5) 4.21(-5) 4.63(-5) 0. 1000 102
5.0 [5.20(-5) | 5.59(-5) | 5.92¢-5) | o0.1000 198
1074 0.1 [3.00¢-7) | 2.68(-7) | 1.48(-7) | o0.1000 31
0.2 |3.17¢-7) 3.60(-7) | 4.37(-5) | o0.1000 31
0.5 |1.85(-6) | 5.11(-5) | 1.29¢(-5) | 0.1000 49
1.0 [2.67(-5) | 2.53(-5) | 3.58(-5) | 0.1000 73
2.0 |1.46(-5) | 1.96(-5) | 2.00(-5) | o0.1000 127
5.0 |5.76(-6) | 6.28(-6) | 6.55(-6) | 0.0688 351
1078 0.1 |8.18(-8) | 2.89(-8) | 5.61(-8) | 0.0548 70
0.2 |8.11(-8) | 2.76(-8) | 1.69(-6) | 0.0550 76
0.5 |7.58(-8) | 2.83(-7) | 3.85(-7) | 0.0565 122
1.0 [3.30(-7) | 2.75¢-7) | 3.49(-7) | 0.0618 211
2.0 [1.56(-7) | 1.87(-7) | 1.55(-7) | 0.0667 421
5.0 |6.74(-8) | 7.25(-8) | 7.53(-8) | 0.0189 | 1067
1078 0.1 |6.26(-10) | 6.33(-10) | 3.34(-10) | 0.0174 175
0.2 |6.72(-10) | 1.49(-9) | 2.61(-8) | o0.0174 187
0.5 |4.27(-10) | 4.33(-9) | 1.86(-8) | 0.0179 336
1.0 |3.47¢(-9) | 3.22¢-9) | 4.70¢-9) | 0.0197 630
2.0 [1.69(-9) | 1.90(-9) | 1.88(-9) | o0.0160 | 1246
5.0 |7.56(-10) | 8.00(-10) | 8.75(-10) | 0.0057 | 3222

= == 2% =
a 2.61, a 2%, a 0



TABLE 17

NUMEROV2 for problem (ii)

165,

EPS k | d=s5 d =10 d = 20 H N

1073 0.1 | 2.35¢(-5) | 2.88(-5) | 1.10(-5) . 1000 26
0.2 | 2.82(-5) 4,41(-5) 1.35(-4) . 1000 26
0.5 | 1.09(-4) | 1.01¢-4) | 3.89(-4) .1000° 28
1.0 | 2.58(-5) | 4.20(-5) | 4.49(-5) . 1000 56
2.0 | 4.02(-5) | 4.02(-5) | 3.95(-5) . 1000 102
5.0 | 5.23(-5) | 5.60(=5) | 5.73(-5) . 1000 198

1074 0.1 | 4.94(-6) | 4.66(-6) | 1.45(-6) . 1000 34
0.2 | 5.45(-6) | 6.15(-6) | 4.34(-5) . 1000 34
0.5 | 1.52(-5) | 8.63(-6) | 2.29(-5) . 1000 42
1.0 | 1.71(-5) | 3.17(-5) | 3.98(-5) . 1000 61
2.0 | 1.50(-5) | 1.68(-5) | 1.78(-5) . 1000 129
5.0 | 4.61(-6) | 4.88(-6) | 5.01(-6) . 0650 376

1076 0.1 | 2.16¢-7) | 1.49¢-7) | 1.37(-7) .0782 77
0.2 | 2.31¢-7) | 2.03¢-7) | 1.07(-7) .0790 85
0.5 | 5.06(-7) | 2.68(-7) | 3.60(-7) . 1000 98
1.0 | 1.98(-7) | 1.90(-7) | 1.84(¢-7) . 1000 198
2.0 | 1.38(-7) | 1.18¢-7) | 1.18(-7) 1000 | 413
5.0 | 5.78(-8) | 6.07(-8) | 6.23(-8) 0182 | 1103

1078 0.1 | 2.41(-9) | 1.58(-9) | 2.22(-9) . 0248 207
0.2 | 2.55(-9) | 1.88(-9) | 2.61(-8) .0251 227
0.5 | 5.49(-9) | 2.92¢(-9) | 5.23(-9) L0274 296
1.0 | 3.93¢-9) | 3.65(-9) | 3.83(-9) .0278 557
2.0 | 2.09¢-9) | 2.21(-9) | 2.28(-9) 0193 | 1164
5.0 | 7.60(-10) | 8.73(~-10) | 9.31(-10) | 0.0055 | 3188

= 2.61, a ==47, a

max

pS




TABLE 18

NUMEROV2 for problem (iii)

166.

EPS =5 d =10 d = 20 H N

1073 0.1 |1.04(-5) | 4.62(-6) | 2.31(-6) . 1000 24
0.2 [1.07(-5) | 4.77(-6) | 3.46(-5) . 1000 2
0.5 |9.31(-6) | 2.45(-4) | 7.29(-4) . 1000 31
1.0 |4.39¢-5) | 4.64(-5) | 6.12(¢-5) . 1000 56
2.0 |2.78(-5) | 4.22(-5) | 4.48(-5) .1000 | 102
5.0 |5.33(-5) | 5.68(-5) | 5.89(-5) . 1000 198

1074 0.1 |2.72(-6) | 1.37(~6) | 6.92(-7) . 1000 31
0.2 |2.78(-6) 1.29(-6) 4.55(-5) . 1000 31
0.5 |3.17(-6) | 6.06(-5) | 3.48(-5) . 1000 48
1.0 | 2.20(-5) | 2.26(~5) | 2.97(-5) .1000 71
2.0 [ 1.25(-5) | 1.55(-5) | 1.59(-5) . 1000 133
5.0 | 5.65(-6) | 6.11(-6) | 6.37(-6) 0684 | 353

107° 0.1 | 1.68(-7) | 8.35(-8) | 4.52(-8) L0497 72
0.2 | 1.70¢-7) | 7.18(-8) | 3.74(-7) . 0498 78
0.5 | 1.72¢(-7) | 2.017-6) | 1.20(-6) . 0506 128
1.0 | 3.36¢-7) | 2.62(-7) | 3.16(~7) 0530 | 209
2.0 | L61(-7) | 2.24(-7) | 1.77(-7) 0538 | 410
5.0 | 6.37(-8) | 6.82(-8) | 7.06(-8) 0186 | 1084

1078 0.1 | 2.77¢-9) | 1.17(-9) | 3.90(-10) | 0.0156 189
0.2 | 2.76¢-9) | 1.21(-9) | 4.40(-9) 0157 | 218
0.5 | 2.59¢-9) | 1.34¢-8) | 1.30(-8) .0159 328
1.0 | 3.93(-9) | 3.21(-9) | 4.27¢-9) 0167 | 617
2,0 | 1.76(-9) 2,16(-9) 2.28(-9) .0169 1189
5.0 | 7.18(~-10) | 7.82(-10) | 8.37(-10)| ©.0056 | 3303 |

ey = 201, &= 8y a =




167.

TABLE 19

EXPFIT2 for problem(i)

EPS k d=5 d = 10 d =20 H N
1073 0.1 (4.90(-6) | 3.19¢-6) | 1.65(-6) | 0.1000 24
0.2 |4.74(-6) 2.98(-6) 2.94(-6) 0. 1000 25
0.5 |2.65(-6) | 2.31(-5) | 8.50(-5) | 0.1000 27
1.0 |4.79(-5) | 2.68(-5) | 7.82(-5) | 0.1000 33
2.0 |2.02(-5) | 3.68(-5) | 2.93(-5) | 0.1000 43
5.0 [8.35(-6) | 1.69(-5) | 1.24(-5) | 0.1000 59
107% 0.1 |3.00(-7) | 2.68¢-7) | 1.48(-7) | 0.1000 31
0.2 |3.17(-7) | 2.73(-7) | 5.62(-7) | 0.1000 31
0.5 |3.35(-7) | 1.27¢-5) | 6.18(-6) | 0.1000 38
1.0 {3.91(-6) | 9.56(-6) | 1.28(-5) | 0.1000 45
2.0 [1.29(-6) | 4.53(-6) | 3.12(-6) | 0.1000 69
5.0 |2.06(-6) 2.22(-6) 1.93(-6) 0.0688 107
1076 0.1 |8.18(-8) | 2.89(-8) | 5.77(-8) | 0.0548 70
0.2 |8.11(-8) | 3.01(-8) | 1.38(-7) | 0.0550 71
0.5 | 7.18(-8) 2.13(-7) 7.33(-7) 0.0565 90
1.0 | 7.20(-8) 1.25(-7) 1.01(-7) 0.0618 125
2.0 [3.82(-7) | 1.90(-7) | 9.87(-8) | 0.0667 171
5.0 |1.59(-8) | 1.56(-8) | 8.84(-7) | 0.0189 312
1078 0.1 |6.26(-10) | 6.69(-10)| 4.56(-10) | 0.0174 176
0.2 |6.72(-10) | 7.00(-10)| 1.29(-7) | 0.0174 177
0.5 |4.02(-10)| 2.66(-9) | 3.90(-8) | 0.0179 255
1.0 | 3.67¢(-9) | 4.16(-8) | 2.21(-8) | 0.0197 329
2.0 | 7.78(-9) | 6.61(-9) | 1.17(-8) [ 0.0160 490
5.0 | 1.00¢~-9) | 4.15(-9) | 3.08¢-9) | 0.0057 823
, ‘a = 12,9, a &= 17%, a = 4%.

max P p5




TABLE 20

EXPFIT2 for problem(ii)

168.

EBS =5 = 10 d = 20 H N

1073 0.1 | 2 35(-5) { 2.88(-5) | 1.10(-5) . 1000 26
0.2 | 2.82(-5) | 4.39(-5) | 2.44(-5) . 1000 26
0.5 | 1.09(-4) 9.36(-5) 7.43(-5) . 1000 27
1.0 | 1.86(~5) | 2.38(-5) | 5.80(~5) . 1000 32
2.0 | 2.60(-5) | 4.15(-5) | 3.68(-5) . 1000 38
5.0 | 1.80¢-5) | 7.68(-6) | 1.43(-5) . 1000 57

1074 0.1 | 4.94(-6) | 4.66(-6) | 1.09(-6) . 1000 34
0.2 | 5.45(-6) | 5.87(-6) | 3.23(-6) .1000 35
0.5 | 1.53(-5) 6.22(-6) 1.32(-5) . 1000 36
1.0 | 2.07(-6) | 1.52(-6) | 5.09(-6) . 1000 49
2,0 | 1,91(-6) 2.79(-6) 2.12(-6) . 1000 66
5.0 | 1.54(-6) | 7.45(-7) | 9.14(-7) . 0650 105

1076 0.1 | 2.16¢-7) | 1.49(-7) | 1.29(-7) .0782 78
0.2 | 2.31(-7) | 2.03(-7) | 1.07(~7) .0790 81
0.5 | 5.08(-7) | 2.71(-7) | 3.30(-7) . 1000 81
1.0 | 1.62(-7) | 1.16(-7) | 7.49(-7) . 1000 107
2.0 | 1.48(-7) | 2.55(-7) | 1.49(-7) . 1000 157
5.0 | 2.55(-8) | 1.27(-8) | 2.07(-8) .0182 294

1078 0.1 | 2.41¢-9) | 1.58(-9) | 2.03(-9) .0248 206
0.2 | 2.55¢(-9) | 1.92(-9) | 2.51(-8) .0251 212
0.5 | 5.50¢-9) | 2.02¢-9) | 1.93(-8) .0274 247
1.0 | 2.35(-9) | 1.93(-9) | 5.21(-9) .0278 331
2.0 | 5.27¢-9) | 1.18(-8) | 8.90(-9) .0193 469
5.0 | 1.24(-8) | 6.33(-9) | 3.80(-9) .0055 788

nax = 251, a & 17, a g = 0




TABLE 21

EXPFIT2 for problem (iii)

169,

EPS k d=5 d = 10 = 20 H N

1073 0.1 | 1.04(-5) | 4.62(-6) | 2.30(-6) . 1000 24
0.2 | 1.07(-5) | 4.82(=6) | 2.12(-6) . 1000 25
0.5 | 1.04¢-5) | 3.14(-5) | 9.43(-5) . 1000 27
1.0 | 3.88(-5) | 3.39(-5) | 6.12(-5) . 1000 31
2,0 | 1.77¢-5) | 2.54(-5) | 3.42(-5) . 1000 42
5.0 | 8.17(-6) | 1.55(-5) | 1.18(-5) . 1000 58

1074 | 0.1 | 2.72¢-6) | 1.37(-6) | 6.92¢-7) . 1000 31
0.2 | 2.78¢-6) | 1.29¢-6) | 8.08¢-7) . 1000 31
0.5 | 2.89(-6) | 1.35(=5) | 6.81(-6) . 1000 37
1.0 | 3.89(-6) 1.20(-5) 1.15(-5) . 1000 45
2.0 | 8.55(-6) | 7.84(-6) | 4.76(-6) . 1000 63
5.0 | 1.64(-6) | 2.07(-6) | 1.80(-6) . 0684 107

107° 0.1 | 1.68(-7) | 8.35(-8) | 2.16(-8) L0497 73
0.2 | 1.70¢-7) | 7.18(-8) | 5.22(-7) .0498 74
0.5 | 1.74(-7) | 2.89(-7) | 3.64(-6) . 0506 92
1.0 | 3.37¢-1 | 2.16¢-7) | 2.11¢-7) .0530 123
2.0 | 1.40(-7) | 8.37(-8) | 6.16(-8) .0538 167
5.0 | 1.05(-7) | 1.15¢-7) | 6.63(~-8) .0186 405

1078 0.1 | 2.77¢-9) | 1.17¢-9) | 5.81(-10)| 0.0156 189
0.2 | 2.76(-9) | 1.21(-9) | 907(-8) L0157 193
0.5 | 2.84(-9) | 3.21(-9) | 1.58(-8) .0159 261
1.0 | 2.56(-9) | 1.82¢-8) | 1.25(-8) 0167 338
2.0 | 1.67¢(-9) | 5.16(-9) | 9.00(-9) .0169 476
5.0 | 5.58(-10)| 3.82(-9) | 3.37(-9) 0056 841
aax - 2-97, - ap-'.= 17%, ap52 4%




TABLE 22

NAGMOD for problem (i)

170,

EPS d=5 d =10 d = 20 H N
1073 0.1 |9.88(-9) | 4.89(-9) | 1.98(-9) .606(-3) |254
0.2 |1.05(-8) | 5.16(-9) | 2.55(-9) .606(-3) |326
0.5 |5.50(-8) | 1.59(-7) | 7.85(-5) .606(-3) |206
1.0 | 1.43(-8) | 7.03(-8) | 9.43(-5) .607(~3) |302
2.0 [2.96(-8) | 1.14(-4) | 1.28(-4) .607(-3) {376
5.0 |8.60¢-5) | 4.26(-5) | 3.58(-5) .304(-3) | 708
107 0.1 |7.91(-10) | 6.03(-10)| 4.07(-10) | 0.761(-4) |285
0.2 |2.29(-10) | 1.32(~10)| 1.95(-9) . 761(-4) | 297
0.5 | 1.05(-9) | 1.80(-8) | 5.07(-8) .380(-4) | 298
1.0 | 2.27(-9) | 1.95(-5) | 5.97(-5) .380(-4) | 368
2.0 |7.99¢-6) | 3.93(-5) | 1.97(-5) .380(-4) | 464
5.0 |8.19(-7) | 9.70(-6) | 1.54(-5) .381(~4) | 802
1076 0.1 | 1.43(-8) | 9.42¢-9) | 3.02(-9) .596(-6) | 318
0.2 | 7.07(-10) | 9.13(-10)| 1.50(-8) .596(-6) | 392
0.5 | 6.40(-10)| 2.40(-8) | 4.40(-8) .596(=6) | 364
1.0 |2.65(-10) | 5.01(-8) | 1.20(-7) .596(~6) | 478
2.0 |2.35¢(-8) | 3.28(-8) | 1.09(-7) .596(-6) | 624
5.0 | 5.13(-8) | 2.55(-8) | 1.27(-8) .298(-6) [1262
1078 0. * * *
0. * %* *
0. * * %*
1. * * *
2. * * *
5. * % *
& ax - 0.597, ap = 0 = aps

* IFAIL = 1



TABLE 23

NAGMOD for problem(ii)

171.

EPS d=5 d = 10 = 20 H N
1073 0.1 | 2.06(-9) | 1.05(-9) | 1.76(-9) .604(~3) | 306
0.2 | 1.13(-8) | s5.80(-7) | 3.28(-6) | 0.604(-3) | 226
0.5 | 3.62(-9) | 5.85(-8) | 3.76(-5) .605(-3) | 256
1.0 | 2.95(-8) | 9.78(-6) | 2.65(-4) .606(-3) | 269
2.0 | 8.88(-6) | 9.63(-5) | 1.21(-4) .303(-3) | 362
5.0 | 1.50(-4) | 1.30(-4) | 1.14(-4) .304(-3) | 687
1074 0.1 | 6.95(=12) | 5.94(-10) | 9.26(-9) .380(-4) | 316
0.2 | 1.42¢-7) | 6.83(-7) | 3.63(-6) .380(-4) | 286
0.5 | 3.55(-9) | 3.99(-7) | 3.45(-5) .380(-4) | 310
1.0 | 4.68(-11) | 5.54(-7) | 7.03(-5) .380(-4) | 421
2.0 | 4.43(-6) | 1.20(-5) | 6.00(-6) .380(-4) | 461
5.0 | 6.61(-6) | 8.64(-6) | 1.17(-5) .381(~4) | 808
1070 0.1 | 7.60(-10)| 1.69(-8) | 5.32(-8) .595(~6) | 388
0.2 | 6.72(-13) | 7.24(-10) | 3.55(-7) .595(-6) | 382
0.5 | 3.42¢-11)| 1.65(-9) | 1.24(-7) .596(-6) | 374
1.0 | 1.01(-10)| 3.04(-7) | 2.41(-7) .596(-6) | 487
2.0 | 4.13(-8) | 5.45(-8) | 5.37(-8) .596(-6) | 625
5.0 | 1.52(-8) | 7.60(-9) | 5.46(-9) .298(-6) |1279
1078 0. %* * *
0. * * %*
0. * % *
1, * % %
2, * * *
5. * * *
8. = 0.703, a = 0 = a;

* IFAIL

1




TABLE 24

NAGMOD for problem (iii)

172.

EPS d=35 d = 10 d = 20 H N
1073 0.1 | 1.89(-8) | 1.00(-8) | 4.87(-9) .607(-3) |228
0.2 | 1.87¢-8) | 1.06(-8) | 5.78(-9) .607(=3) |222
0.5 | 1.80(-8) | 9.11(-9) [ 8.59(-6) .607(-3) |222
1.0 | 1.71(-8) | 2.12(-5) | 1.84(=4) .607(-3) |250
2.0 | 1.61(-5) | 2.09(-4) | 2.70(-4) .303(-3) |323
5.0 | 8.13(-5) | 4.03(-5) | 2.92(-5) .304(-3) | 673
107 0. 8.29(-9) 1.04(-8) 9.66(~9) .380(-4) | 264
0.2 | 8.92(-9) | 1.59¢-8) | 7.16(-8) .380(-4) | 250
0. 1.30(-10) | 3.89(-8) 3.39(-6) .380(-4) | 308
1.0 | 8.35(-8) | 2.12(-5) | 4.92(-5) .380(-4) | 326
2.0 | 6.40(-6) | 2.62(-5) | 1.37(-5) .380(=4) | 426
5.0 | 6.14(-6) | 9.15(-6) | 9.49(-6) .381(-4) | 794
1078 0.1 | 7.42(-13)| 1.78(-11) | 3.11(-10) | 0.596(-6) | 392
0.2 | 6.98(-11)| 1.10(-9) | 2.97(-8) .596(~6) | 366
0.5 | 1:34(-13)| 5.73(-11) | 8.38(-9) .596(-6) | 446
1.0 | 1.44(-9) | 1.08(-7) | 5.14(-8) .596(-6) | 479
2.0 | 8.08(-8) | 6.36(-8) | 1.20(-7) .596(-6) | 569
5.0 | 2.65(-8) | 1.32(-8) | 8.99(-9) .596(-6) [1226
1078 0. * * *
0. * * *
O_ * * *
]_. * * *
2. * * *
5. * * *
a e = 0.492, ap = 0 p5
% JFAIL = 1



TABLE 25

Problem (i)

173.

E L | RADISH | NUMEROV2 | EXPFIT2 | NAGMOD | PUBLISHED *
RESULT
1.0 o | 1.27 1,275 1.275 | 1.275 1.275
4.0 0 | 0.834 0.834 0.834 0.834 0.834
.0 0 | 0.645 0.645 0.645 | 0.645 0.645
16.0 o | 0.536 0.536 0.534 0.536 0.536
25.0 o | o.463 0.463 0.463 0.463 0.463
0.16 1 | 0.0146 0.0146 0.0146 | 0.0146 0.0147
0.25 1 0.0260 0.0260 0.0260 | 0.0260 0.0260
9.5 1 0.0584 0.0584 0.0584 | 0.0584 0.0584
0.8 1 0.0924 0.0924 0.0924 | 0.0924 0.0924
0.16 2 0.0005 0.0005 0.0005 | 0.0005 0. 0005
0.25 | 2 0.0014 0.0014 0.0014 | 0.0014 0.0014
0.5 2 0.0055 0.0056 0.0055 | 0.0056 0.0056
Values of tan So’ Sl, 92
*, = 0 : Moiseiwitsch and O'Brien, 1970 (p. 194, Table 1)
L = 1,2: Burke and Smith, 1962 (p. 472, Table 1),
TABLE 26
Problem (i)
E L | RADISH | NUMEROV2| EXPFIT2| NAGMOD
.0 0 | 0.022 0.038 0.050 0. 142
4.0 o | o.036 0.060 0.059 0.147
9.0 0 | 0.042 0.082 0.064 0.199
16.0 0o | 0.058 0.119 0,062 0.233
25.0 0o | 0.066 0.152 0.085 0.285
0.16 | 1| 0.025 0.029 0. 046 0.185
0.25 1 | 0.026 0.030 0.039 0.139
0.5 1 0.030 0.033 0.043 0.145
0.8 1 0.032 0.036 0.039 0.147
0.16 2 0.034 0.042 0.051 0. 145
0.25 2 0.031 0.039 0.060 0.160
0.5 2 0.030 0.037 0.044 0.156
CPU time in seconds to calculate 90, %i’ SZ'



TABLE 27

Problem (ii).

174,

k L RADISH NUMEROV2 EXPFIT2 NAGMOD PUBLISHED*
RESULT
0.5 0 2,770 2,770 2.770 2,770 2,745
0.831 0 2.224 2.224 2,224 2.224 2,219
1.225 0 1.808 1.808 1.806 1,808 1.812
1.803 0 1.432 1,432 1.452 1.432 1.437
2.345 0 1.208 1.208 1.208 1.208 1,208
Values of So
* Mott and Massey, 1965 (p. 123, Table b).
TABLE 28
Problem (ii)
{

k L RADISH NUMEROV 2 EXPF1T2 NAGMOD
0.5 0 0.032 0.035 0.054 0.176
0.831 0 0.035 0.044 0.067 0.187

1.225 0 0.045 0.070 0.060 0.205

1,803 0 0.065 0.109 0.082 0. 201
2,345 0 0.086 0.159 0.118 0. 302

<

CPU time in seconds to calculate

SO




TABLE 29

Problem (iii)

175,

k L RADISH NUME ROV 2 EXPFIT2 NAGMOD PUBLISHED¥
RESULT
0.5 0 8.4463 8.4485 8.4463 8.4463 8.4276
1.0 0 1.9285 1.9286 1,9252 1.9286 1.9284
2.0 0 1,0052 1.0054 1.0054 1.0054 1.0054
3.0 0 0. 73780 0. 73782 0.73782 0.73781 0.73781
4.0 0 0.59870 0. 59881 0.59856 0. 59881 0. 59880
5.0 0 0.51046 0. 51058 0.51052 0.51058 0.51057
1.0 1 0.24792 0.24793 0.24789 0.24793 0.24793
2.0 1 0.33453 0.33456 0.33454 0.33455 0.33455
3.0 1 0.32778 0.32788 0.32788 0.32788 0.32788
4.0 1 0.30614 0.30625 0.30620 0. 30625 0.30624
5.0 1 0.28386 0.28394 0.28387 0.28393 0.28393
- <
Values of tan So’ tan %1
*

Holt and Santoso, 1972 (p. 505, Tables 4, 5).

TABLE 30

Problem (iii)

k L RADISH NUMEROV2 EXPFIT2 NAGMOD
0.5 0 0.024 0.033 0,051 0.153
1.0 0 0.032 0.044 0.048 0.169
2.0 0 0.038 0.078 0.065 0.191
3.0 0] 0.057 0.123 0.076 0.218
4.0 0 0.080 0. 169 0.082 0. 302
5.0 0 0.09% 0.214 0.097 0. 346
1.0 1 0.039 0,050 0. 054 0.179
2.0 1 0.056 0.079 0.074 0. 180
3.0 1 0.068 0.121 0. 105 0.219
4.0 1 0.079 0.139 0.100 0. 293
5.0 1 0.104 0.180 0.119 0.323

CPU time in seconds to

calculate 90, g
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CHAPTER 8

Numerical solution of coupled homogeneous

second-order differential equations

Introduction

We are interested in solving a set of coupled homogeneous second
order differential equations of the form (1.12). The method of de
Vogelaere (1955) has been used in érogram SCAT by Chandra (1973)
which is generally available, from C.P.C, Program Library, to users

to integrate the coupled equations

5 NBND
2 NEy [h o Ls 2 =
d : kD w2V, U,  aAs1=1,---, .
x ui - Zl[l(r +1) S‘iJ K %lj+ VlJJUJ+ 2' RlB)\] i=1 NP (8.1)
= B=1

where, in the notation of Chandra, Ui is the radial wave function of
the projectile in the ith scattering channel, r is the independent
variable, NP is the number of coupled equations and NBND is the number
of inhomogeneous terms RiB in each channel which arise from the in-
clusion of exchange terms in the model of the scattering process; the
Lagrange multipliers XB ensure that the continuum wave function of
the scattered electron is orthogonal to all the wave functions of the
occupied orbitals of the target system, (see Burke and Chandra, 1972),
We describe in§'8.1 Chandra's program SCAT which uses the method
of de Vogelaere to solve (8.1) over a predetermined mesh and h1§8.2

we shall consider the solution of (8.,1) with R;g =0, Vi,p using a

B
modification of SCAT which uses de Vogelaere's method with a variable
steplength, We describe iIl§8.3 the test runs which were performed
using SCAT and its modification CHMOD. The test results are given

h1§8.4 and finally h1§8.5 we consider some additional modifications

to program SCAT whicﬁ might be desirable,

_§ 8.1. Chandra's program SCAT

SCAT solves (8.1) over the range [o, ra] by use of outward integ-
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ration over the range [o, ro] (Chandra's region 1) and inward integ-
ration over the range [r, ra] (Chandra's region 2) where r, is specified
by the user and is such that the sum of the short-range attractive
potential terms and of k2 is comparable with the centrifugal barrier
term in (8.1). If we assume that there are NA open channels so that
there are NB = NP - NA closed channels, SCAT generates in region 1 a

(NP x NTOTl)-dimensional solution matrix F1 of hopefully linearly
independent solutions where NTOT1 = NP+NBND by integrating outwards

NP different times the equations

2

P

1 .
L. F . =0,4i, j=1, ===, NP (8.2a)
k=1 Kk
and
2 L. FP =R, , i=1 NP, B=1, ---, NBND (8.2b)
ik @ k,NP+p ip? T » NP, B=1, ’ .

=
]

1

subject respectively to the following boundary conditions at XX the

first mesh point

F,, (XX) =%, (XX) = , d F,, =§. (L+1)(XK) i,j=1,---,NP
ij ij FrR r=xx ij v ’
(8.3a)
and
1 1.
=0=4d i =1, --- =1,---,NBND (8.3b
Fi,NP+B (xx) =0 I Fi’Np+p rexX =1, » NP, p=1,---,N ( )
where
(.2
L= |4, - 4D+ ki]gij -2V
dr T 2

If this outward integration were continued into region 2 the solution
would contain components of elkilr, i =NA+ 1, ---, NP in the closed
channels and for large values of the independent variable r these
terms would dominate the physical solutions which are oscillatory in
nature, Thus SCAT generates in region 2 a (NP x NTOT2) - dimensional

solution matrix F2 of linearly independent solutions, where NTOT2 =
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NP + NA + NBND, by integrating inward NP times the equations

N
2 . L

2 Lik ij =0, 1i=1, , NP, j =1, -=-, NP + NA (8.4a)

=1

o

~

2
L, Fo, =R, _,i=1, ---, NP, g =1, ---, NBND (8.4b
ZA ik k NP+NA+B 1[3 B ( )

subject respectively to the following boundary conditions at r,

-

r=r dr 1ij

2
F2c) =6 (), 4 52 , i=1,---,NP, j=1,---,NP+NA
ij*"a ij ra’ 4o 1]

a r=r_
(8.5a)
and
P (r,)=0= d F ° ' i=1,---,NP,B=1,111 (8. 5b)
i, NP+NA+B "a I i ,NP+NA+PB =y »174, NP, B=1, r—-,NBND .
a

where Zfij are a linearly independent set of 2NP solutions of the
asymptotic form of (8.1) (see Chandra, 1973) and these are generated
by program ASYM (Norcross, 1969), the main subroutine of which is used
in conjunction with program SCAT to solve (8.1),

The solutions in regions 1 and 2 must now be matched at the point

ro so that the solutions and their first derivatives are continuous

at ro- Then
| NIQTL - 1 <. <
Uij rik akj s O0<r £ r,
k:l i = 1:—_-’NP
E%gTZ 2 j=1,---,NA
< r<
£ Fii ®NTOTLHK, § y TS TET,
(8.6)
gives a complete set of NA linearly independent solutions for each
NToT +
channel. The coefficients aij’ i=1, ---, NTOTl,NTOT+1,———4yTOT2.j=1,

~--, NA are obtained by solving a set of inhomogeneous linear simult-
aneous algebraic equations (given in the matrix form in Table 1 of
Chandra, 1973, p. 424) and the reactance and cross section matrices

thus obtained.
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We shall describe the routines used by program SCAT, in particular
routine DEVGL, which performs the numerical integration of (8.1) using
de Vogelaere's method over a predetermined mesh, The program in its
published form is limited by the dimensions of the arrays to six

coupled channels each with three inhomogeneous terms,

§8.1.1 Master driver

~a

The numerical integration is performed over a predetermined mesh;
regions 1 and 2 are each made up of a number of intervals and as the
integration crosses each interval the steplength is changed by a pre-
determined factor, The input data relating to the choice of mesh
points is read by the master dri?er and the full set of input data
read by the master -driver. for each problem is as follows:

IBUG(I), I =1, ---, 14 This array is responsible for the printing
of intermediate results obtained during the
calculation; if IBUG(I)=0Y I then no inter-
mediate results are printed.

HX The initial steplength supplied by the user.

XX The value of the first mesh point supplied
by the user,

RA The inward integration is started at r s
program ASYM calculates the solutions at RA,

NIX1 The number of intervals in region 1.

NIX Total number of intervals in the whole range
(if NIX1 = NIX no inward integration is per-
formed and RA is the matching point).

IHX(1), I=1, ---, NIX This array stores the integral multiples
of HX; the steplength in the ith interval

is HX * IHX(I).



IRX(1), I =1, ---, NIX

DELE

MAX?P

INPHS

NP

NA

NBND

Lp(1), I =1, ---, NP

IRFN

IPH

NPL

we(I), I =1, ---, NP
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This array stores the cumulative number of
mesh points for each interval. IRX(I) should
be even,

This parameter controls the methods of sol-
ution to be used by program ASYM.

The maximum value of k in the asymptotic
expansion of the potential:

XP
= ; C.(k) r-k_1 (8.7)
1

%

V..
1]

=
]

A logical variable which controls the inclusion
of a term in the asymptotic solution at RA
(see Chandra, 1973, p. 420).

Toéal number of coupled equations,

Number of open channels,

Number of bound-state orbitals giving rise
to inhomogeneous terms.

This array stores the angular momenta for
NP equations.

£ 0 signifies that the linearly independent
solutions are not to be combined,

>0 signifies that the solutions are to

be combined to form the final radial scatt-
ering wave functions,

= 1 signals that the next set of data should

be read in

2-signals the end of the input data.

0 signals that the CN and VV matrices for
the potential should be read in,
This array stores the energy values in atomic

units for NP equations, first for NA open



ZZ
CN(1,J,K),I=1, ---, NP
J=1, ---, NP
K=1, ---, MAXP
VV(I1,J), I=1, --~, NP(NP+1)
J=1, ---, iRAZ
BND(1,J,K), I=1, ---, NBND
J=1, ---, NP

K=1, ---, IRA2
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channels and then for NB=NP-NA closed
channels,

The net. charge,

This array stores the coefficients of

r-k-1 in the asymptotic expansion of the
potential given by (8.7).

This array stores the upper triangular part
of the symmetric coupling potential matrix
Zvij' I is the sequence number of the
upper triangular element of Vij starting
from the first row, and J is the index
pumber of the mesh point (including the
half intervals) at which the potential

is evaluated; IRA = 2*IRX(NIX).

If NBND > 0 the array stores the value

of the jth channel wave function of the

ith bound-state orbital at the kth mesh

point (including half intervals),

The above data is transferred to the routines of program SCAT

in the main via a number of common blocks (see listing of program SCAT)

and also through the arguments of SCATER which is called by the master

driver, In particular the common block BLCK1 transfers the mesh point

data, that is HX, NIX1, IHX, IRX, TRA=IRX(NIX), IRA2=2x%IRA, RA, to

various routines in SCAT,

BLCK2 transfers the data specifying the

differential equations, namely NP, NA, NBND, LP(I), WP(I) and BLCK3

contains VV(I,J), CN(I,J,K),

ZZ along with IRT(I,J) which is a symmetric

matrix which stores the sequence number of the upper triangular elements

of the potential matrix (starting from the first row). Details of

all the common blocks used may be found in SCAT,
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§8.1.2 Subroutine SCATER

This is the main routine whose arguments are INPHS, DELE, MAXP,
XX, IRFN. After printing the input data and checking for the compat-
ability of the mesh point data SCATER calls routine INTEG which in
turn calls INTOUT to perform the outward integration in region 1 and
routines ASY&Mand INTIN to calculate the asymptotic boundary conditions
for the solutions at RA and to perform the inward integration in region
2 respectively. With the completion of the numerical integration
routine SCATER then calls routines OVRLP (if NBND>0), MATCH, XSEC
and RADFUN (if IRFN >0). These routines will be described in later

Sections.

§ 8.1.3 Subroutine INTEG

INTEG

1
INTOUT INTIN
DEVGL
l DRV2|
Figure 7

Figure 7 above shows the various routines called by routine INTEG
and their relation to one another, The arguments in the call to
routine INTEG are INPHS, DELE, MAXP, XX; the latter is the only
argument in the call to INTOUT which integrates the equations (8.1)
from XX the first mesh point to the matching point r subject to the
initial boundary conditions given by (8.3) and assuming that the
solution is regular at the origin, De Vogelaere's method is used
to generate NP+NBND linearly independent solutions for each channel

over a predetermined mesh, Consider for example test run no.2 of
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Chandra's paper which uses the following input data:

HX = 0,02585 = XX, RA = 7,238

]
e

NIX1 NIX.= 3
IHX(I) =1 2 4

IRX(I) = 80 120 150

NP = 2, NA =2, NBND = 1
LP(I) = 1 3
WP(I) = 0.5 0.5

Then INTOUT integrates (8.1) over region 1 which comprisés 79 steps of.
length HX over the interval [XX, XX + 79(HX)] = [0.02585, 2.068].

The solutions are regular at the origin and use is made of this fact

in subroutine SIMPSN (see 8.1.5). INTOUT uses the method of de
Vogelaere in routine DEVGL with constant steplength to perform the
numerical integration using method (b) of starting (see_§2.1) with

x_; = XX - HX. Routine DEVGL will be discussed in greater length

in §8.1.4. ’ For each of the NTOTl1 boundary conditions INTOUT integ-
rates (8.1) for each of the NP equations; once the initial step of the
de Vogelaere algorithm has been computed in INTOUT routine DEVGL is
called repeatedly (79 times in all) to advance the solution one step
of length HX until'the integration has reached the end point of region
1. Notice that the values of the potential and the second derivative
of the solution are required at equal intervals of length HX in [XX,
ro] and also at the half intervals; the potential values are supplied
as data by the user and the second derivatives are calculated by
routine DRV2, The mesh points are stored in an array W(K), K=1, ---,
IRX(NIX1) and the corresponding solutions are stored in the array
FUN(I,K), I=1,---,NP,K=1,---IRX(NIX1). Both arrays are written

on disc and are held in the common block BLCK?7. The solutions at

r, and the corresponding first derivatives are stored in the FBl and



FDR1 matrices in the common block BLCKS.

Subroutine ASYM calculates sets of 2NP solutions aﬂd their deriv-
atives at RA; these are stored respectively in the FX and FX1 matrices
in common block BLCKS.

Routine INTIN whose only argument is MAXP is then called to
integrate (8.1) over region 2 from RA to the matching point r subject
to the initial boundary conditions at RA, as calculated by ASYSM .
INTIN uses the method of de Vogelaere with constant steplength to
integrate (8,1) for each of the NTOT2 boundary conditions; the initial
step uses method (b) of starting where x_. in the case of test run

1
no, 2 of Chandra's paper is RA + 4HX. Region 2 is made up of two

intervals the first of which’[4.l3§, 7.238], uses a steplength of

-4HX and the second, [2.068, 4.136], uses a steplength of ~2HX until
the integration has been advanced to r, = 2,068 the end point of region
2, The first step is calculated in INTIN and thereafter DEVGL is
called to generate the numerical solution at each mesh point. The
mesh points and solutions of region 2 are again stored in the W and

FUN arrays respectively and the solutions and their corresponding

first derivatives at r are stored in the FB2 and FDR2 matrices

respectively in the common block BLCK9. Note that if NIX1=RIX

no inward integration is performed and RA becomes the matching point,

§8.1.4 Subroutines DEVGL and DRV2

The following arguments appear in calls to routine DEVGL:

H The current value of the steplength

HS *H

H1 The previous value of the steplength after a change in
steplength

LSWT = 1, signifies that the computation should proceed for
the given H

= 2, signifies that a change in steplength has occurred
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and that the computation should proceed with the modif-
ications which are required to gake account of this,
K2 The index number of the bound-state orbital which is
to be used to generate the K2-th inhomogeneous solution,
K31, K32 The index numbers of the mesh points corresponding to
the mid and end points of the particular step; suppose
the step is of length H starting from the point X,
Then K31, K32 corresponds to the index numbersof the

points X+H, X+H respectively,
2

The routine is written to perform the numerical integration of
(8.1) over one step of length H using de Vogelaere's method; each
step is effected by a separate call to DEVGL and the user emerges
from routines INTOUT and INTIN having completed the numerical integra-
tion over regions 1 and 2 respectively, If on entry to DEVGL, LSWT=1
then DEVGL uses,essentially equations (3.13) - (3.20) of\§3.1 with
H, HH, H2 replaced by H, H, HS respectively to advance the solutions
one step, If LSWT=2 ﬁ chan:e in steplength has occurred and values
for the next step must be updated; the factor by which the steplength
has changed is given by C = H/HL. No attempt is made to estimate
the truncation error in the numerical calculation and the solutions
are calculated at a set of predetermined mesh points,

The second derivatives of the solutions are calculated using
routine DRV2, Suppose the solution is to be advanced from the mesh
point X to X+H. Then the second derivative of the solutions at the
intermediate point X + H is determined by a call to routine DRV2

2

whose arguments are K2 and K31. Similarly for the point X + H the

arguments used in the calling sequence of DRV2 are K2 and K32.

§ 8.1.5 Subroutines OVRLP and SIMPSN

Routine OVRLP is called by SCATER only when NBND>O to initialise

the
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parameters for the calculation of the so called 'overlap integrals'
which are necessitated by satisfaction of the following orthogonality

condition (see Chandra, 1973)

NTOT1 ! TOT2 )
;il ok %ij * ;ii Tsk ®NTOTl4k,j O J=1s -=-» NA, p=1, ---,NBND
k=1 k=1

where

12 %51 §r° R, F dr, k=1, ---, NTOT1, B=1, ---, NBND

NP r
a
2 = 5 \r R, Bszdr k =1, --—, NTOT2, B=1, ---, NBND.
i=1 b

The values of R,  are stored in the BND array for each of the IRA2

ip
mesh points and the solutions F;k and Fik are stored in the array FUN,
I'1 and I2 are the overlap integrals of the NTOT1 linearly independent

solutions of region 1 and NTOT2 solutions of region 2 with the NBND
bound-state orbitals, Routine OVRLP calls routine SIMPSN ko calculate
I1 and 12 which are stored in the arrays OVLP1(I, J,), OVLP2(I, K),
I =1, ---, NBND, J = 1, ---, NTOT1l, K = 1, ---, NTOT2, which together
with the BND array are stored in the common block BLCK4.

Subroutine SIMPSN uses Simpson's one-third rule to evaluate the
integrals I1 and 12. For test run no., 2 of Chandra's paper the first
call to SIMPSN by OVRLP calculates I, %2’ I,

the solutions at the origin together with those stored in the FUN

I for region 1 using

array at the next 80 mesh points. Similarly the second call to

2 2 2 2 2
SIMPSN calculates I 113, 114, 115

11° Iys for region 2,

§ 8.1.6 Subroutines MATCH, XSEC and RADFUN

These routines are called by SCATER in turn, MATCH sets up
the matching equations at the point r (see Chandra, 1973, p. 424)

and calls the routine MAOlA to solve the resultant set of inhomogeneous
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linear simultaneous. algebraic equations; solving these equations NA
times enables the full (NTOT1l + NTOT2) x NA solution matrix for the
unknown coefficients a to be obtained, Relations (15), (16) of
Chandra (1973, p. 422) may be used in particular to separate and store
the NA x NA elements of the reactance matrix K (in the notation of
Chandra) in the KMT matrix,

Routine XSEC which is subsequently called by SCATER evaluates
the S(scattering), T(transition) and CSM (cross section) matrices of
BLCK1l and XSEC makes use of routine MAOLA to invert a matrix and
routine MLTY to multiply two square matrices,

Subroutine RADFUN is finally called by SCATER if IRFN> O and the
NTOT1 linearly independent solutions of region 1 are linearly combined
with the NTOT2 linearly inde;endent solutions of region 2 for each

channel to form NA radial scattering functions for NA open channels.

>
§ 8.2 CHMOD - a modification of Chandra's program,

Chandra's program SCAT is written in FORTRAN IV and may be run
in its original form on an ICL 1907 computer, Only very trivial
modifications were required in order to run SCAT on the IBM 370/168
computer, The numerical integration stage of any quantum mechanical
scattering problem consumes a considerable proportion of the CPU time
required to solve the problem in full, Thus any saving in CPU time
during the numerical integration stage would certainly be desirable
and we consider the effect of replacing routine DEVGL in SCAT by a
coupled channel version of routine DEVOG which uses an automatic error
control to select steps as large as possible at each step of the num-
erical integration. The introduction of DEVOG necessitates the cal-
culation of the potential function within the program at the mesh

points as they are generated by routine DEVOG; program SCAT by contrast
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requires the user to specify a priori the mesh spacing for the numer-
ical integration and in addition the values of the potential and the
bound-state orbitalsat these points must be supplied as data to the
master driver routine of SCAT,

A number of modifications to the routines of SCAT both trivial
and non-trivial will be required in order that the modified version
CHMOD solves (8.1) automatically, The master driver reads the
following data:

1BuG (1), 1 =1, ---, 14, DELE, MAXP, INPHS, ZZ, NP, NA, NBND,
Lp(1), 1 = 1, ---, NP, IRFN, IPH, WP(I), I = 1, ---, NP
as in program SCAT; in addition HO, XO, RO and RA which now comprise
BLCK]1 must be supplied and they are respectively the initial steplength
for the integration in region 1, the first mesh point in region 1,
the matching point and the point at which the inward integration is
started, EPS and C must also be supplied by the user and they are
the tolerance parameter and the factor by which the steplength is
allowed to increase; EPS and C are transferred to routine DEVOG by
means of a common block CEPS, The elements of the CN array are also
specified and routine SCATER is called.

Routine SCATER is simplified since we discard the compatability
check on the mesh point data and we also dispense with the setting
up of the IRT matrix. The arguments of SCATER are INPHS, DELE,
IRFN, and SCATER calls INTEG, MATCH, XSEC and RADFUN in turn (we are
considering the equations to be homogeneous so that routine OVRLP and
hence SIMPSN are not required), MATCH, XSEC and RADFUN are used in
the same form as in SCAT with only minor changes to the common blocks
and to the dimensions of the arrays.

The major changes have been made to the numerical integration
routines namely, INTEG, INTOUT, INTIN, DEVGL, DRV2 the first three

of which are replaced by INTEG; DEVGL has been replaced by a coupled
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channel version of DEVOG, and DRV2 includes the calculation of the

potential at the required mesh points.

\§ 8§.2.1 Numerical integration routines of CHMOD,

The routines INTEG, INTOUT and INTIN of SCAT are replaced by just
routine INTEG in CHMOD; INTEG now provides the initjal values required
for the outward and inward integrations and two calls are made to DEVOG
for the integrations in regions 1 and 2, DEVOG has been modified
to integrate NP second order coupled differential equations subject
to a set of K3 initial boundary conditions over a specified range of
integration [XO0, XF]. Program SCAT performs the outward and inward
integrations within routines INTOUT and INTIN respectively by integr-
ating the NP equations over all the channels for each of K3 initial
boundary conditions in turn (K3 = NTOTl, NTOT2 in INTOUT, INTIN res-
pectively). However in order to incorporate an automatic steplength
selection it is necessary to perform the integration over all the
channels for each of the boundary conditions simultaneously and a
large number of the variables of DEVOG as used in program RADISH must
be replaced by two dimensional arrays. Routine DEVOG stores the
mesh points in the W(K) array and the solutions are stored in FUN(I,J,K)
where I ranges over the number of equations, J over the number of
boundary conditions and K is the index number of the mesh point includ-
ing the half interval points, The first call to DEVOG performs the
automatic outward integration from XO to RO and the second call per-
forms the automatic inward.integration from RA to the matching point
RO. DEVOG is written so that the integration ends exactly at the
end point of the interval which is specified by the user,

The arguments which must be supplied to routine DEVOG are the

initial steplength H (although strictly speaking each step in DEVOG
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is of length 2H), K2 the number of inhomogeneous terms, K3 the total
number of linearly independent solutions generated over the range of
integration and XF the end point of the range of integration, For
the sake of simplicity we have taken K2 to be zero; if K2 is non zero
then the values of the inhomogeneous terms (corresponding to the values
of the BND array in SCAT) at the mesh points generated by DEVOG must
also be calculated, K3 is set to be NTOTl in routine INTEG before
the first call to DEVOG is made for the outward integration and on
exit K3 is set to be KO the number of steps carried out during the
range of integration; the mesh points and the corresponding solutions
are then stored in the WO(K) and FUNO(I,J,K) arrays, I = 1, ---, NP,
J=1, ---, K3, K=1, ---, KO. If in order to reach r, the end
point of the interval of outward integration the steplength must be
reduced from h, to h, say, then the initial steplength for the inward

1 2

integration is taken to be =h Before the second entry to DEVO;

1
K3 is set to be NTOT2 in routine INTEG and on exit K3 is set to be
KI, the number of steps carried out in the inward'integration from
RA to L the mesh points and the corresponding solutions are then
stored in the WI(K) and FUNI(I, J, K) arrays respectively, 1 =1,
---, NP, 3 =1, ~--, K3, K= 1, ---, KI.

Routine DRV2 whose arguments are K2, K3 calculaLes the value of
the potential at the current mesh point using the explicit analytic
expression; the second derivative of the solution at this point may
now be returned to routine DEVGG.

A detailéd description of routines DEVOG and DRV2 as used in

CHMOD for test run no. 1 of Chandra's paper is provided by comment

cards in the listing in Appendix 3.

§ 8.3 Test runs,

(a) Programs SCAT and CHMOD were run for the single channel case
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of electron-hydrogen elastic scattering in the static approximation
for the range of angular momentum and energy values listed in
Table 13 of§ 7.3. The integration in both programs was started
at X0 = 0,01 with an initial steplength of H = 0.01l. In the
case of program SCAT the steplength was kept fixed throughout
the range of integration [XX, RO]; program CHMOD uses the same
initial conditions with EPS = 10_6 and the steplength is varied
automatically sc that EPS is the largest allowed error per unit
step. The results obtained for the phase shifts using SCAT and
CHMOD were compared with the published results in Table 31,
Notice that SCAT and CHMOD return the value of the tangent of the
phase shift, The effect of varying the matching point was
studied for RA = RO = 8: 10, 12, 15 atomic units.

(b) Prograés SCAT and CHMOD were run for test run no, 1 in Chandra's
paper which calculates the reactance matrix (the K matrix in the
notation of Chandra) for electron-hydrogen scattering in the
strong-coupling approximation when only the 1ls and 2s atomic
states are included in the eigenfunction expansion, with exchange
neglected. The input data specifying the above problem is as

follows for program SCAT:

INPHS = T, DELE = 0,0, MAXP = 1, IRFN = 1
HX = 0,0304572 = XX, RA = 13,70574
NIX1 = 1, NIX =4

IHX(1) = 1, 2, 4, 8

IRX(I) = 50, 90, 130, 150

NP = 2 = NA, NBND = O

LP(1I) = 0, 0

wp(I) = 0.5, 0,125

The explicit analytic expressions for the potential in (8.1) are



192,

-3x
-2(1+l)'.2x, v, (x) = 492 (2 + 3x)e Z
X 27

2V11(x)

2v,,(x) = -2(1 +3+1x+1 x2> e ™
X 4 4 8
(see Burke and McCarroll, 1962),
Program CHMOD uses the same initial starting point and steplength but
the steplength is varied automatically during the outward and inward
integrations. CHMOD is run for the above problem for a range of

values of EPS = 10"

, 0 =3, 4, 5, 6, 8 and the elements of the K
matrices thus obtained are compared with the K matrix obtained

using SCAT.

§ 8.4 Test results

(a) The phase shifts S produced by SCAT and CHMOD agree exactly with
each other up to the number of figures quoted in the published
result and the phase shifts for SCAT and CHMOD are unchanged
over the range of values of RO which are tested. Table 31 below
shows the values of tan So’ 91, %2 obtained using SCAT, CHMOD
along with the published results of Burke and Smith (1962) and
Moiseiwitsch and O'Brien (1970), In addition the number of
function evaluations performed by CHMOD over the range [XO, RO] is

movided for RO = 8, 10,

TABLE 31

E | f | SCAT,CHMOD | PUBLISHED RESULT NO, ,OF EN EVALS_ BY CHMOD

1.0 0 1.273 1.275 144 184
4.0 0 0.833 0.834 222 272
9.0 0 0. 644 0.645 352 438
16.0 0 0.535 0. 536 414 514
25.0 0 0.462 0.463 496 616
0.16 1 0.0146 0.0147 112 124
0.25 1 0.0260 0. 0260 140 142
0.5 1 0.0584 0.0584 138 160
0.8 1 0.0927 0.0924 162 170
0. 16 2 0. 0005 0. 0005 110 118
0.25 2 0.0014 0.0014 124 138
0.5 2 0.0055 0.0056 136 162
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Program SCAT performs 1600 and 2000 function evaluations for

each value of E,Qr tested when RO = 8 and RO = 10 respectively,
We thus see a drastic reduction in the number of Ffunction eval-
uvations performed by CHMOD when compared with SCAT, For the

low energy values (E<1) CHMOD uses less than 10% of the number
of function evaluations used by SCAT and even at the high ener-
gies this percentage is approximately 30%. Of course the user
of SCAT might decide chat region 1 should contain more than one
interval, for example he might choose to provide the following

input data relating to the mesh points:

HX = 0.01, XX = 0.01, RA = 8 = RO
NIXI = 4

IHX(I) = 1, 2,-4, 8

IRX(I) = 100, 150, 200, 250.

SCAT would then perform 500 function evaluations which is consid-
erably less than the corresponding number required when the initial
steplength remains fixed throughout [X0, 8]. With this particular
choice however of input data CHMOD will still require congiderably
less function evaluations than SCAT and this would hopefully result
in less CPU time being required for the numerical integration
stage.of the problem,

This test run provides us with a more convincing case for using
CHMOD over SCAT in terms of reducing the CPU time required for

the numerical integration; this test run uses a predetermined

mesh based on the user's intuition about the approximate behaviour

of the solution, The K matrix produced by SCAT is
K =[:1.138853 3.854753(-1)]
3.854697(-1) -3.256686(-1)

and SCAT performs 300 function evaluations during the numerical
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integration stage of the problem, Program CHMOD produces the

following K matrices for the range of values of EPS:

(i) EPS = 1072, K =[1.135174 3.848934(-1)]
[3.845751(-1)  -3.259578(~1) |
(ii)  EPS = 1074, K =[1.138839 3.854565(-1)]
3.854490(-1)  -3.256349(~1)]
(iii) EPS = 107°, K =[1.138745 3.854520(~1)]
3.854437(=1)  -3.256742(~1).
(iv) EPS = 10'6, K =[1.138980 3.854975(~1) ]
3.854974(-1)  -3.256579(~1).
(v)  Eps =108 =[1.138996 3.855010(-1) ]
3.855010(-1)  -3.256565(-1)

"The following table shows the number of function evaluations per-

formed by CHMOD in producing the K matrices of (i) - (v).

EPS | NO. OF FN. EVALS.
1073 86
1074 130
1077 144
1076 258
1078 754

The value EPS = 10-8 is extremely stringent but we may regard
the elements of the K matrix produced by this value of EPS to

be 'exact' since CHMOD for the main part of the range of integ-
ration uses steplengths which are far smaller than the smallest
steplength used by SCAT. For EPS = 10°* the elements of the

K matrix produced by CHMOD are in good agreement with those
produced by SCAT; moreover the number of function evaluations
performed by CHMOD is less than half that performed by SCAT.

Even with EPS = 10—6 CHMOD requires 86% of the number of function

evaluations performed by SCAT. We have emphasised previously

that the numerical integration of the differential equations
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(8.1) uses a considerable proportion of the CPU time which is
required for the solution of the problem and in view of the
tremendous saving in terms of the number of function evaluations
to be gained using CHMOD in preference to SCAT we would advocate
that routine DEVGL be replaced by DEVOG in program SCAT, of
course program CHMOD in its present form is purely a research
code and would require a certain amount of fine tuning and
optimisation before being made generally available to users as

a preferable alternative to SCAT.

\§ 8.5 Discussion,

As noted in Chandra (1973) the accuracies of de Vogelaere's
algorithm (and in addition Simpson's rule) as used in SCAT depend
implicitly upon the mesh point data supplied by the user, We have
shown in the previous Section that by incorporating our own routine
DEVOG into program SCAT in place of routine DEVGL we are able to
produce accurate results in CHMOD while at the same time using a
considerably reduced number of function evaluations in the numerical
integration stage of ghe calculation, In addition the potentiai and
bound-state orbitals which were previously supplied by the user to
SCAT at a set of predetermined mesh points are now determined as
the calculation proceeds at the mesh points which are generated auto-
matically by routine DEVOG in program CHMOD.

We have already noted that program CHMOD is by no means optimised,
CHMOD in its present form is limited by the dimensions of the arrays
to five coupled channels each with two inhomogeneous terms, However
this restricti on could be easily lifted and the efficiency of program
CHMOD improved with respect to computer storage considerations,

I1f inhomogeneous terms are to be included in the scattering model
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then program CHMOD will require an auxilliary routine which calculates
these terms at the required mesh points, In addition a modification
of routine SIMPSN in SCAT is necessitated; previously in program SCAT
the use of routine SIMPSN required that an even number of steps be
performed over each interval of regions 1 and 2 using the de Vogelaere
algorithm, With the introduction of a variable stepsize in the
algorithm Simpson's one third rule lends itself to the calculation

of the overlap integrals; consider the evaluation of the overlap integ-

rals over one step of the range of integration [xr, xr+1] say, where

X1~ % + h, Now the de Vogelaere algorithm produces fourth order
approximations to the solutions at X and X1 and a third order app-
roximation to the solution at the intermediate point X 1 Thus

2

Simpson's rule, which is a fourth order quadrature method, uses the

points X s X to evaluate the quadrature of the bound-state

r+1° *r+1

orbitals with %he solutions over the step [xr, xr+1].

The question of maintaining the linear independence of the solutions
generated in regions 1 and 2 is an important one and it would be nice
to have some sort of check within CHMOD to ascertain whether this linear
independence is violated and furthermore to take appropriate action
if this is the case. The problem arises because of the finite word
length of computers, A recent article by Scott and Watts (1977) con-
siders the problem of maintaining linear independence in the solutions
of linear two-point boundary value problems and a computer code SUPORT
(Scott and Watts, 1975) using superposition coupled with an orthonormal-
isation procedure and a variable -step Runge-Kutta-Fehlberg integration
scheme produces the solution of such problems. Consider now the
numerical integration in CHMOD, The range of integration is in two
parts; CHMOD provides a (2NPxNTOT1) - dimensional matrix 0 of initial

boundary conditions (at XO) the columns of which are linearly independent
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for the outward integration in region 1 and a (2NPxNTOT2) - dimensional
matrix B of initial boundary conditions (at RA) the columns of which
are also linearly independent for the inward integration in region 2,
The corresponding solution matrices F1 and F2 are thus generated in
regions 1 and 2 and the final solutions are obtained by solving the

so called matching equations thus providing NA solutions for each
channel, We shall consider the problem of how to maintain the linear
independence of the solutions F1 in region 1, We start the solgtion
using the matrixol of initial conditions and our aim is to ensure that
the NTOT1 columns of & remain linearly independent over the range [XO,
ro]; one way to guarantee numerical independence of the solutions is

to keep them nearly mutually_orthogonal over the range of integration,
Scott and Watts (1977) use the modified Gram-Schmidt procedure to
orthonormalise the solutions of the homogeneous and particular equations
for the particular linear boundary value problem. This method might

also be used in Chandra's program to replace the old set of vectors

oL 4
old by a new orthonormal set new
O<old - 0<new P
where P is an (NTOT1 x NTOT1) upper triangular matrix defined by the
modified Gram-Schmidt formulation, Alternatively the matrix:0(old

could be orthogonalised using the Householder and singular value
decomposition processes (see Nash, 1973), We shall require a test
which determines when and the frequency with which this orthogonalis-
ation process must be performed, Suppose that at some point in the
integration in region 1 the columns of & start to lose their numerical
linear independence; then if a singular value decomposition of the
matrix o were performed at this point (e.g. using the numerical
procedure of Golub and Kahan, 1965) the condition would be indicated by

the presence of one  or more zero (relative to some tolerance) singular
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values of o< . Thus proceeding in this manner throughout region 1

we would be able to obtain NTOT1l linearly independent solutions at

L Similarly in region 2 we would obtain NTOT2 linearly independent
solutions at r, by ensuring that the columns of B throughout region 2
remain linearly independent. The elements of the reactance matrix

c ould then be obtained in the usual way by solving the resultant set
of inhomogeneous linear equations. Note that if NBND~> O the overlap
integral terms must be evaluated over the various intervals defined

by the orthonormalisation points at which the condition of continuity
of the solutions must be imposed. The implementation of the ortho-
normalisation procedure referred to above would of course be expensive
in terms of computing time but the advantages and disadvantages of
such an implementation w0u1d:be worthy of investigation, Program
CHMOD would be more suitable than would SCAT for the introduction of
such a procedure since CHMOD soclves the set of coupled equations sim-
ultaneously over the number of channels and the number of boundary

conditions,
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SUGGESTIONS FOR FUTURE WORK

We have studied the ability of programs RADISH, NUMEROV2, EXPFIT2
and NAGMOD which incorporate the methods of de Vogelaere, Numerov,
Raptis and Allison with a variable stepsize and a variable-step
variable-order Adams method to solve

y = £(x, y) (1)
where

f(x, y) = [L(L}: 1) - E + V(x)] y(x)
It is important to note that the conclusions of§7.3 relate to the
relative reliability and efficiency of the programs (as they are written)
and not only to the methods themselves to solve equation (1). The
work of Chapters 1 - 8 suggests areas for further study which we shall

discuss below.

The following fourth order Runge Kutta method

_ 2
kO = h f(xo, yo)
k h2f h h '
= x +h, y +hy + ko)
1 ( o] 2 o 5 O g
- 2 !
k2 = h f(x0 + h, Yo + hyo + El (2)
2
1
y, T ¥+ hyo +1 (ko + 2k1)
: 6
| 1 _ h | J
y, = Y, +% (ko + 4k1 + k2)

solves (1) directly using a total of three function evaluations per
step. It would be interesting to include in our numerical comparison
of Chapter 7 a program which uses the method in (2) with automatic
error control, Unfortunately the method does not possess a natural
error estimator. Shampine and Watts (1971) have compared a number

of different error estimators for the local truncation error of
Runge-Kutta methods; one-SUch estimator is that of England (1969)

which for the method in (2) might be formulated as
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= ¢ > , -
ry = 3k H 8k +Eok, + 8ok + &k + 8k (3)
with

2
ky = BoE(x;, y))
k, = h’fx, +h, y, +hy +k
4 ("1 VT2 3)

2 2 ke
8

- 12 '

ke = hUf(x; +Xh, yo+Bhyo+xoko+Xlk1+sz2+b’3k3+X4k4)

where the parameterso(, B, Xi’ i=0,1, ---, 4, S/i, i=0,1,---,5

are to be chosen so that the error in the solution at X is given by

y(x)-y, = r,+ 0(a®).
It may transpire however that it is not possible to obtain a fourth
order method and a fifth order error estimator with six function
evaluations, An investigation of the feasibility of using (3) as
an estimate of the local truncation error would be instructive albeit
lengthy, The general feeling is that Runge-Kutta methods, certainly
for systems of first order equations, 'particularly the 4th-order
versions, are rather expensive for high-accuracy work, but very comp-
etitive with other methods when only a few figures are required'’
(Walsh, 1974). It would be interesting to see how the method of
de Vogelaere compares with the Runge-Kutta method in (2) when low
accuracies in fhe solution are requested.

We have seen in Chapters 6 and 7 that program NAGMOD with an
error per unit step criterion in routine DNGMOD does an extremely
good job of controlling the global error in the numerical integration
stage of the calculation but that it also uses an excessive number
of function evaluations in the process. NAGMOD uses routine DNGMOD
for the numerical integration and this routine is a modified version
of the N.A.G. routine DO2AHF which uses a variable order Admas method

based on Krogh's algorithm (1973), Routine DO2AHF is soon to be

withdrawn from the N,A,G. Library and replaced by routine DO2QAF which
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is based on Hindmarsh's (1974) code GEAR REVISION 3, A comparison

of DO2AHF and the GEAR code has been made by Gladwell (1979, private
correspondence) and it is reported that the GEAR code generally uses
less than half the number of function evaluations of DO2AHF. The

GEAR code.is particularly well suited for the solution of stiff systems
of first order differential equations but contains as an option an
automatic implementation of the variable order Adams Bashforth -

Adams Moulton methods for the solution of non-stiff problems, The
major difference however between DO2AHF and the GEAR code lies in the
adopted steplength strategy; the former only changeé step by halving

or doubling while the latter chooses an optimum value of the steplength
when a decrease or increase ;n steplength is required, and in addition
uses interpolation to output the solution at points which are specified
by the user, This would probably account for the decrease in the
number of function evaluations which are performed. However it might
be more appropriate to solve (1) by employing a variable-step variable-
order routine which solves (1) directly; we would expect such a routine
to be more efficient and we would welcome the design of a code spec-
ifically for this purpose,

We discussed in Chapter 8 Chandra's program SCAT to solve a set
of_c0up1ed'homogene0us second order differential equations and a
modification thereof in program CHMOD. Several modifications such
as those discussed in§ 8.5 could be applied to CHMOD with an aim to
optimising the program with respect to computer time and storage
considerations,

The iterative Numerov method has been studied by Allison (1970)
and compared with de Vogelaere's method and the matrix Numerov me thod.
Tt would be interesting to investigate the performance of the method
of Raptis and Allison when incorporated into a matrix and iterative

Raptis and Allison method,
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EPS AND C ARE REQUIRED BY THE SUBROUTINE DEVLG. EPS IS A TULERANCE
PARAMETER, ANU C 1S THE FACTOR BY WHICH THe STEPLENGTH IS TO BE
INCREASEVD IF THE LOCAL TRUNCATION ERRGR IS SUFFICIENTLY SMALL.

L PROGRAM RADISH
C PRUGRAM RADISH
C BY J.P.CULEMAN AND J.MUHAMED,
L
C
C
¢
C
C
C FUNCTION SUBPROGRAM.
C
C
c
IMPLICIT REAL*8{A-HsK,0-2)
COMMON/ EKLLL/EsKyPSIGyEPSsL,sL 1
DIMENSION VCUEFF(4),AL(5)
C
C DATA LARDS MUST BE AS FOLLOWS:
C
L
C
C AND 13 TU 24.
L
C
C AND 28 TO 39.
C IN THE LAST CARD L IS NEGATIVE.
C
C
READ(14,1) (VCGEFF(I1),1=1,4)
C
C ABOUT THE ORIGIN.
C
WRITE(Z2,5)
C A CAPTIGN 1S5 PRINTED
REAC( 152) EPS,C
C
C
C
C

4 READ(1493) LsCyXF,yPSIG
IF(L.LT.0) STULP

0001
co02z
0003
0004
0005
0006
GC07
ooos
000s
oo1io0
goll
0012
0013
0014
0015
0016
0017
0018
00ls9
€020
0021
0022
0023
0024
002¢%
0026
0027
co2¢
0029
003¢
0031
0032
0033
0034
0035
0036
037
CG3¢&
0039
0040

1
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LINE NJMBER

41.000
42.000
43.000
44 .000
45.000
46 .000
47.C00
48 .000
45.000
50.000
51.000
£2.000
53.000
54.000
55.000
56.000
57.000
£8.0060
59.000
¢0.000
61.000
€2.000
63.000
64.000
€5.000
66,000
€7.000
68.000
£9.000
€. 0G0
71.000
12.000
13.000
74.000
15.000
76 .000
i1. 000
78 .000
79.000
£§0.000

o

aNeleEeRakR

C

PROGRAM RADISH

0001

PAGE

2

A NEGATIVE VALUE OF L INDICATES THE END UF THE DATA.
WRITE(23s5) EsiL .
PRINT THE VALUES UF TAE PHYSICAL PARAMETERS E,L
WRITE(2457) EPS,C
PRINT THE VALUES OF THE STEP-CONTRCL PARAMETERS EPS,C
HRITE(2:8) PS1Gy XF
PRINT THE VALUES OF THE TERMINATIUN CGNDITIONS PSI1G.XF;
THE CALLULATIUN IS TERMINATED WHEN THE RELATIVE UDIFFERENCE BETWEEN
TwO SUCCESSIVE ESTIMATES UF THE PHASE SHIFT IS LESS THAN 3R EQUAL TO
PSIGy LR WHEN THE POINT X=XF IS RtEACHED, WHI1CHEVER CUMES F1RST.

**%* STARTING SERIES

A(l1)=1.000
A{2)=VCCEFF(L1)/ (2.0D0*(L+1))
W=VCOEFF{2)-E
Al3)=(VLIEFF(L)*A(2)+W)/ 4% +6)
Al4)={VCOEFF(1)*A(3)+k*A{2)+VCUEFF(3))/ (6% +12)
AUS)=IVCIEFFL L) *Al4) +HxA{3)+ VCUEFF(3)*A(2)+VCOEFF{4))/{3%L+20)
H={3.750-1*%EPS/DABS{A15-L) )i **0.250D0
H IS THE FiRST STEPLENSTH TRIED (SEE DEVGG).

C**xWARNING: THIS CHOICE LULF H MAKES SENSE GNLY IF L DUOES NUT EXCEED 4.

[N o

oo

AL4=1.0D0/(Lt4)
AL5=1.0D0/{L+5)
X0=(0.1DO*EPS/DABS{A(5)))**AL5
X1=0 0. IDO¥EPS/{H®(L+5)*DABS(A(S5))))**AL4
IFIX1.LTeX0) XO0=Xi
THE CHUSEN VALUE OF X0 ENSURES THAT THE FIRST NEGLECTED TERMS
IN THE TAYLOR EXPANSIGNS FGR YO AND HZ0 DU NOT EXCEED 0.1%EPS.
XL=X0*=*L
YO={XO*(XO0*(X0*A(4)+A(3))+A{2))+A( 1) )*XL*XO
ZO0={ X0 {X0* (XO*A(4)*(L+4)+A(3)¥{L+3) ) +A(2)%{(L+2)}+{L+1)*A(1))=XL
K=DSQRTHLE)
Ll=L*{L+l)
FO=F(X0,Y0,0)
WRITE(2,3) X0,Y0,20,F0
PRINT THE STARTING VALUES X0,Y0,20,F0

CALL DEVUGLHysX0,Y0,20,FO,EPSsCyXF)
GU TU 4

0041
0042
0043
0044
0045
0046
0047
0048
004S
0050
0051
0052
0053
0054
0055
0056
00517
0058
0059
0060
0061
0062
0063
0064
0085
0066
0061
0068
0068
007¢C
0071
0072
0073
0074
0075
0076
0071
0078
007s
G680

oIf



C PRCGRAM RADISH 0001
LINE NUMBER TEXT PAGE 3

81.000 C 0081
€2.000 1 FURMAT(4D16.8) 0082
83.000 2 FURMAT({2D12.3) 0083
84 .000 3 FORMAT (13,3D1243) 0084
£€5.000 5 FORMATAHL1L5H1TEST RUN: SUGLUTICN OF THE RADIAL SCHRODINGER EQUATION g0es
€6.000 1 YOO+ {E-V(X)-LIL+1)}/X%%2}Y=0 WITH CALCULATICGN OF PHASE SHIFT) 0086
87.000 6 FORHMAT (1HO,19HPHYSICAL PARAMETERS, 7X; 6HE =3D13e69lHy s 2X,5HL = 00817
€8.000 1413 00gE&
89.000 7 FORMAT{lH 423HSTEP-CUNTROL PARAMETERS 33X 6HEPS =,D010.3,3XslHj:2X, 0089
$C. 000 15HC =,010.3) €0sC
61.000 8 FORMATI 14 ,22HTERMINATION CONDITICNS 54X s6HPSIG =4Dl1 oG4 92X g1Hy32X45 0091
$2.000 1HXF =30ll.4) €092
$3.000 9 FORMAT(id4 »L5HSTARTING VALUES»11Xs6HXO =4011le492Xy1Hy 32Xy 5HYOD = ¢cg92
94 .000 1,011e492X31Hs 22Xy 4H2Q =29D114492Xy1lHy 32X 94HFO =,D11.4) 0094
€5.000 END C095

ne



LINE NUMBER

S6.000
€1.000
98.000
€S.000
100.000
1€1.000
102.000
103.000
104.000
105.000
106.000
167.000
108 .000
1€5.000
110.000
111.000
112.000
113.000
114.000
115.000
116.000
117.000
118.000
119.000
120.000
121 .000
122.00C0
123.000
124 .000
125.000
126.000
127.000
128.000
129.000
130.000
121.600
132.000
123.060
134.000
135.000

OO OO0 RO CONNO OO OO

(gN aNal gl (w) (gl o el e

SUBROUTINE DEVOG{H»X0sY¥0,20,F0,EPS,CyXF)

TEXT

C0sSé

SUBRGOUT INE DEVOG{HsX0,Y0,20,F0,EPS,C»XF)

THIS SUBRUUTINE SOLVES THE DIFFERENTIAL EQUATION

YO=F{ XsY)
BY DE VUGELAERE®S METYHUD, GIVEM THE INITIAL VALUES YO=Y{X0l,
20=Y'{ X0}, AND FO=F{X0,Y0l.

EPS 1S AN JPPER BOUND IMPOSED UN THE ESTIMATED TRUNCATIGN ERROR
PER UNIT STEP. THLS BOUND APPLIES TO THE ABSOLUTE OR RELATIVE
ERRUR ACCUKDING AS THE ABSOLUTE VALUE OF THE SGOGLUTION AT THE
PJINT UNDER CONSIDERATIUON IS LESS OR GREATER THAN 1.

H oo 1S5S AN INITIAL STEPLENGTH SUPPLIED BY THE USER.

AT EACH STEP THE LOCAL TRUNCAT ION ERROKR IS ESTIMATED. IFf THIS 1S
TOO LARGE THE CURRENT STEP 1S DISCARDED AND A SMALLER STEPLENGTH IS
CHOSEN. WHEN THt ESTIMATED YRUNCATION ERRGR 1S SUFFICIENTLY SMALL
THE STEPLENGTH 1S LINCREASED FGR THE NEXT STEP.

C ooTHE USER-SUPPLIED FACTUR {E.Ge. 2) BY WHICH TRE STEPLENGTH 1S

INCREASED WHEN THIS CAN BE DONE WITHGJT EXCEEDING THE BOUND EPS.

THE STATEMENTS BETWEEN LINES OF ASTERISKS REFER TO THE SCATTERING

PROBLEY RATHER THAN 7u THE INTEGRATION OF THE DIFFERENTIAL EWQUATION.

IMPLICIT REAL*8(A-HsK,0-2)
NINC COUNTS THE NUMBER OF INCREASES IN STEPLENGTH REQUIRED
DURING THE LOURSE OF INTEGRATIUN.

NINC=0 :
NDEC COUNTS THE NUMBER OUF DECREASES IN STEPLENGTH REQUIRE)D
DURING THE COURSE UF INTEGRATIGN.

NDEC=0
THE INTEGER 1 CGUNTS THE NUMBER OF STEPS CARRIED GUT

1=0

DESCRIPTIUN ANU INITIALIZATICN OF VARIABLES REQUIRED FOR
BOOK-KEEPING AWND ERROR CONTROL .

2t



L INE

SoUBRUUTINE DEVUGIH 2 X09Y0,40,F0cPS40 3 XF 4 0096
NUMBER TEXT
136.000 C J1I AND JS REPRESENT RESPECTIVELY THE NUMBER UF SUCCESSFUL STEPS 0136
137.000 C LARRIED DUT WITH THE CURRENT H AND THE PREVIUOUS 0137
128.000 C SUCCESSFUL H. 0136
139.000 5 J1=0 0139
140.000 JS=0 0l40
141.000 C J2: THE STEPLENGTH IS INCREASED FROM H TU C*H IF FOR 3 SUCCESSIVE 0141
142 .000 C STePS THE PREDICTED TRUNCATIUN ERROR +1TH A STEFPLENGTH OF CxH IS 0l42
143,000 C SUFFICIENTLY SMALL. J2 IS USED AS A CUUNTER FGR THIS PURPGSE. 0143
144.000 J2=0 0144
145 .000 C JD: WHEN A STEPLENGTH BDECREASE IS NELESSARY A NEW H IS CHUSEN. 0145
146. 000 C CALCULATIUNS MAY SHOW THAT THIS 1S INADEWUATE, SU A FURTHER 0146
147.000 C REDUCTIUN IS REQUIRLD. JD KEEPS TRACK OF THE STEPLENGTH 0147
148.000 C “DECREASES IN SUCH A CASE. IT IS INCREASED BY 1 51TH EACH 0l4a8
149 .000 C DECREASE AND 1S SET T0 ZERU WHEN AN ACCEPTABLE H HAS BEEN FOUND. 0149
150.000 JD=0 0150
1£1.0C0 C Cl 1S THE RATIU OF THE CURRENT H TO ThE PREVIOUS SUCCESSFUL VALUE. 0151
152.000 Cl=1.0D0 0152
153.0C0 CZ=L1*L1 Cl&3
154.000 C TR1: AT THE 1TH STEP TR1 1S THE DIFFERENCE BETKEEN TkO ESTIMATES 0154
155.000 C OF YI2I-1). INITIALLY 1T IS GIVEN AN ARBITRARY LARGE VALUE. Q155
156.0G0 TR1=1.002 0156
157.000 C 0157
158.000 [ %ok %% o e e e e o ade oo o e ofede s e e ofe o ok e e ol ok Al ok o et ek R e R kg sk g ok ok ok ok ek 0158
159.000 C IPS IS INITIALLY ZEKRDO ANU IS5 CHANGED TU 1 BY THE FUNCT ION SUBPROGRAM 0159
160.000 C F{XyYy1PS) WHEN THE ASYMPTUTIC REGION 1S REACHED. 0160
16¢1.000 I1PS=0 0l61
162 .000 C THE PARAMET ERS JP AND JUONV ARE EXPLAINED IN THE SUBROUTINE PSe. 0l62
1€3.000 JP=1 01623
164.000 JCONV=0 0164
165 .000 C %ededo g sk ool sk ook 3k ok ko o ale XKt o 4 i e e ool e e ook % 3ok g ol ook oo ok % Aok ook sk koo ok ko R R K 0165
166.000 C Ol66
167 .000 HMAX={ XF-X0}/5.0D00 0167
168,000 C IF A STEPLENGTH GREATER THAN HMAX WERE USED THE TRUNCATION ERRGR 0168
165.000 C WOULD NOT 8k ESTIMATED BEFORE XF IS REACHED. 016¢
170.000 IFIH.GT HMAX ) H=HMAX 0170
171.000 C 0171
172.000 C+xXINITIAL STEP 0172
173.000 C IN THIS SECTION Y1 IS CALLULATED, THE CUNTRIBUTIGN FRUM THE ERROR 0173
174 .000 C IN Y1 TU THAT IN Y2 1S ESTIMATED, ANu THE STEPLENGYH H IS DECREASED, 0174
175.000 i IF NECESSARY, UNTIL THIS CUNTRIBUTION IS SUFFICIENTLY SMALL. Q175

e



LINE NUMBER

176 .000
177.000
178.000
175.000
180.000
181.000
182.000
183.000
184.000
185.000
1£6.0G00
187.000
188.000
189.000
150.000
191.000
152 .000
193.000
154.000
195.000
156.000
167.000
1$8.000
15S.000
200.000
201.000
«02.000
203.000
2C4.000
2C5.000
<C€.C00
207 .000
2G8.000
¢€S.000
210.000
«11.000
¢12.000
213.000
¢14.000
215.000

s i aXal

C
C

c

SUBROUTINE DEVOGIH s X0, YO LU0y FUEPSeL AT Uuv e
TEXT

A STEPLENGIH ACCEPTABLE FOR Y1l MAY BE FUGUND INADEQUATE WHEN ClLi76
THE ERRUR IN Y2 IS ESTIMATED; IN THAT CASE THIS SECTION wlLL BE 0177
REPEATED. THE CUUNTER 1 1S ZERU WHEN THIS SELTIUN IS FIRST USED 017¢
AND 1=1 AT ANY LATER ENTRY. 017s
i=H*10 018¢
H2=r%*1 0181
FEVEN=H2*F0/3.0D0 0182
F21=FEVEN 0182
Y=Y0+Z+1.5D0%FEVEN 0184
X=X0+H 0185
FODD=4.,0DU*H2%F(XsY,1PS)/3.000 0186
Y=Y#+{FUDD~-4.0D0O*FEVEN) /8000 0187
FGDU=4.0D0%HZ2*F1{X,Y, 1PS1/3.0D0 0188
X=X+H 0189
Zl1=Z+FEVEN 0190
Y=Y0+2.0DO*ZI+FDDD 191
FEVEN=H2%*F({ X, Y»IPS)/3.0D0 0192
2=21+FODD+FEVEN €193
IF(1.6T.0) GG TU 4 C164
THIS TEST AVOIUS UNNECESSARY COMPUTATION IF I=]1 leEs WHEN H IS 0195
LESS THAN A VALUE ALREADY FUUND ACCEPTABLE FOR Yl. 0196
YODDL=Y-2+( 1. 401*FcVEN+3 ODO*FUDD~-2.0D0%F21)%b.250-2 01917
XOH=X0#+H 0168
FODD1 =4. ODO*Hc*F(AOH YODD1 +1PS)/3.000 0166
Y1ERR=0.7500% (FODD1-FCDD) /H 0200
DY1ERR=DABS{Y1ERR] 0201
DY=DABS{Y) 0202
TOL=EPS+*DMAX1{1.0D0,DY) 0203
IF{DYLERR.LT.TGL) GO TOC 4 0204
Cl={ 0. bDO*EPS/DYlERR)**O.ZDO 0205
H=C1l*H 020¢
GG 70 5 0207

4 Jl=Jdl+l g2c8
F2I=FEVEN 0209
ERRFAC=4,.000/(4.501%H) 0210
X=X+H 0211
ERRFAC 1S A FACTOR WHICH APPEARS IN THE TRUNCATION-ERROR ESTIMATE. 0212
0213

I1=1 0214
0215

e



LINE NUMBER

<16.000
«17.000
218 .000
¢19.000
220.000
221 .000
222.000
223.000
£24.000
225.000
226.000
227.000
228 .000
229.000
<30.000
231.000
232.000
£33.000
234 .000
2325.000
236 .000
237.000
238.000
239.000
240.000
241.000
242.000
243.G00
244 .000
245.000
246.000
247 .000
248.000
<49.000
250.000
<21.000
252.000
253.000
2£4.000
255 .000

C

cococooo0

oo

oo

SUSROUTINE DEVOG(HsXO Y0 ,Z20,F04EPSsCyXF) €096
TEXT PAGE 4
021¢é
C*xxGENERAL DE VUGELAERE LOOP 0217
3 Z=2+FcVEN 0218
Y=Y+ 021¢
YULD=Y+FEVEN-0., 1250 0%F0DD 0220
FODD=4% 000 %H2*F (X, YUDD, IP5}/3.0D0 0221
X=X+H 0222
2=Z2+FJDD 0223
Y=Y+Z 0224
FEVEN=H2%F{ X,Y,iPS)/3.0D0 0225
I=7Z+FEVEN 0226
THIS ZUMPLETES THE EVALUAT ION OF Y(21+1) AND ¥Y{21+2) 02217
0228
0225
TRUNCATIUN ERROR ESTIMATE. 0230
FIRST A MJRE ACCURATE ESTIMATE IS OBTAINED FUR Y{2I+1}. TRZ IS THE 0231
DIFFERENCE BETWEEN THIS AND THE EARLIER ESTIMATE GF Yi{2l+1l). TR1 IS 0232
THE ODIFFERENCE BETWEEN THE TWO ESTIMATES OF Y{(2I-1)} FROM THE D233
PREVIQUS STEP. 0234
YUDD1=Y-2+#{1.4D1%*FEVEN+3.0D0%FODD—2.0D0*F2]) *%6.25D-2 0235
TRZ2=YJUDL1-YCDD 0236
TR2 HAS TO BE MOD1FIED ON THE 2ND STEP WITH A NEW Hy AND ON THE 187 0237
STEP WITH A NEW H IF CNLY ONE STEP WAS DUNE WITH THE PREVIOUS H 0238
TR21=TRZ 0239
IF(I.LE.2) GO TO 32 02440
1F{Jle EQleleORe{JleEQe 0. AND.JS.EQs1)) GO TO 30 0241
GO TO 32 0242
THEN MUDIFY TR2 0243
30 TR2=BETA%*TRZ21 0244
1F{JleEeO) TR2=BETA1%TR21 0245
CUONTINUE 0246
TRERR IS THE ESTIMATED TRUNCATION ERROR PER UNIT STEP 0247
32 TRERAR={TR2-TR1 )*ERRFAC 024¢€
DTRERR=DABS{ TRERR) 0249
I¥ TRUNCATIOGN ERRCR IS TuLU LARGE GO TO 14. THIS DOES NDT APPLY TO 0250
THE FIRST STEP SINCE TkU STEPS ARE REQUIRED FGR AN ERRDR ESTIMATE. £251
THE PARAMETER TOL PROVIDES AN ABSOLUTE OR RELATIVE ERRUR CRITERICN 0252
ACCORDING AS THE ABSOLUTE VALUE GF Y IS LESS LK GREATER THAN UONE. 0253
DY=0ABSLY) 0254
TUL=EPS*DMaX1l{1l.0u0,DY) 0255

'GI¢



LINE

SUBRUUTINE DEVGG{H:XD2Y0D9Z04F0,EPSsCeXF)

AUMBER TEXT
256.000 LF(DTRERR.GT «TOL.AND.1.GT .1) GO TO 14
257.000 C
258.000
2¢9.000 C CURRENT STEP ACCEPTED. DATA STURED FROM PREVIOUS STEP UPDATED.
260.000 JD=0
261 .000 Ji=Jl+1
2€2.000 TR1=TR21
263.000 F21=FEVEN
264.000 l1=2
2€5.000 FEVENL=FEVEN
266 .000 FUDD1= FOLD
2€7.000 Yl=Y
2¢8.000 H1l=H
269.000 ( UPDATE ERRFAC IF NECESSARY
270.000 IF(Jl.6T.2) GG TO 31
271.000 ERRFAC=4.000/{4.5D 1%H )
272.000 1F{JleEWel1) ERRFAC=0.8D0%(C2/H)/(3.0D0%*C2+5.0D0%C1+1.0D0)
273.000 31 i=I+1
274.000 C
375,000 0w ot kgl ek e e e okl R R R Kok ok Beok ok o e sk ak ok g0 ok R ok ke ek
2764000 . C THE PHASE SHIFT 1S CALCULATED 1F 1IPS=l, WHICH MEANS THAT X IS
217.000 C  SUFFICIENTLY LARGE
278.000 IF (IPSeEWel) CALL PS(X,YsJPsJCGNV)
275,000 C  THE CALCULATIUN IS TERMINATED IF THE PHASE SHLFT HAS CUNVERGED
280.000 IF {JCONV.EQa1) 506 TO 1
281 .000 C 3¢ 302 e ¥ e 2 3 e S ool i o dealk sk ok 3k o Ak R Ak ok ks ok ke e alk ok o R ok sk sl e ot e ke ok kool ke ol e dk ik ke kR e ek e ok e ke ek
282.000 C
283.000 C
264.000 C  PREDICT TRUNCATION ERRGR FOR THE NEXT STEP WITH A STEPLENGTH UF C#H.
285.000 C IF THIS IS SUFFICIENTLY SMALL GG TO 13 TO INCREASE THE STEPLENGT He.
286.000 10 DTRERR=DTRERR*(*%4
267.000 IF{DTRERK.LT.(0.5D0%TOL)) GO TO 13
288.000 J2=0
289.000 C
250.000 C  STEPLENGTH UMCHANGED FOR NEXT STEP. UPDATE X AND RETURN TG BEGINNING
261.000 ¢ OF LOUP BUI EXIT IF X EXCEEDS XF.
2$2.000 23 X=X#H
253.000 IF(X.6T.XF) 6O TO 2
254.G00 GU TU 3

¢65.000

C*%*END JF DE VUGELAERE LOOP

00sé

PAL

J

0256
0257
0258
0256
0260
0261
0262
0263
0264
0265
0266
02671
0268
0269
021C
0271
0272
02713
0274
0215
0276
c2717
0278
02176
0280
0281
0282
0283
0284
0285
0286
02€7
0288
0289
0290
0291
0252
0293
0254
0295

9t



LINE

SUBROUT INE DEVUG{HsX0sY0 ,205F0,EPS,( s XF) G096
NUMBER TEXT

296,000 C G266
£%7.000 C c257
298 .000 C PRINT THE FINAL VALULS OF T,NINCU,NDEC ANLU RETURN TO CALLING PROGRAM. 0298
289.000 1 WRITEL2,6) I4NINCy NDEC 02SS
2¢0.000 RETURN 0300
301.000 2 WRITE(251231,NINC,NDEC 0301
32¢2.000 RETURN 0302
203.000 C 0302
304.000 C 0304
305.000 C THE CODING KELEVANT TD THE CHANGE OF STEPLENGTH 1S CONTAINED 0305
306,000 C BETWEEN LINES UF DASHES. 0306
3(7.000 C 0307
308 .000 { == e S - — S - —_—— -— 0308
3(S. 000 C 03C¢
z10.000 C 0310
211.000 Cx%x*STEPLENGTH DEULREASE 0311
212.000 c IF TAE LAST STEP WAS UNSUCCESSFUL JUMP OVER THE UPDATING SECTICN 0312
213.000 14 JD=JD+1 0313
314.000 IF{Jl.EQ.0) GU TO 20 0314
215.000 JS=Jl 0315
316.000 J1=0 0316
:17.G00 TR3=TR1l 0317
218.000, F2ll=F21 0318
319.000 Cl1=Cl 0319
2¢0.000 ca2l=Ce 0320
321.000 20 C1=(0.5D0*TIL/DTRERR)}*%Q. 2500 0321
222.000 C SINCE THE LAST STEP 1S REJECTED X IS REDUCED BY 2H BEFORE 0222
323.000 C H IS GIVEN ITS NEW VALUE 0323
324.000 X=X-2 +0DJ *H 0324
225.000 H=C 1*H 0325
326 .000 NDEC=NDEC+1 0326
327.000 C IF I=2 ENTRY TU THIS SECTIUN MEANS THAT H WAS TGO LARGE IN THE LAST 0327
3¢8.000 C TwG STEPS SU IT IS NECESSARY TO RESTART FRLM XO WITH THE NEw H 0328
329.000 IF(I«.EQR.2) GO 10 5 0329
2320.000 2=L1 033¢
331.000 F2i=FZ2il 0331
332.000 FEVEN=FEV EN1 0332
333.000 FODD=FODD1 0332
234,000 Y=Y1 0334
335.000 C Cl NO4 BELIMES THE RATI(C OF THE NEW H TO THE LAST SUCCESSFUL H. 0335

6
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LINE

SUBRUUTINE DEVOGI{HsX02Y0,Z0,F0,EPS,CyXFI c0seé6
NUMBER TEXT PAGE

236.000 Cl=H/H1 0336
zZ327.000 C2=C1*C1 0337
338.000 C NOw ENTER R£START SECTION 0338
329.000 GO TU 16 033%
240,000 C 0340
341.000 C 0341
242.000 Cxxx STEPLENGTH INCREASE 0342
343,000 C NG ACTIUN TAKEN UNLESS JZ2=3. 0343
344.000 13 J2=Jd2+l 0344
245.000 IF{J2.LTa3) GL TO 23 0345
346 .000 J2=0 0346
347.000 JS=Jl1 0341
248.000 J1=0 0348
349.000 TR3=TRZ21 034$S
280.0400 F2il=F2I 0350
351.000 C11=Cl 0351
352.000 C2l=L2 0352
33,000 NINC=NINC+1 0353
354 .000 Cl=C 0354
355,000 C2=C1*Cl 0355
226.000 H=C 1*H 0356
357.000 C 0357
358.000 C 0358
359,000 Cx%xRESTARY SEZTIJN. THIS PROVIDES THE DATA NECLESSARY FOR REENTRY TGO 0359
360.000 C THE DEVUGELAERE LGOP WITH INCREASED GR DECREASED H. 0360
3€¢1.000 16 H2=H¥*H 0361
362.000 2=Cl*Z 0362
3¢63.000 F21=C2%F21 0362
2¢4.000 FEVEN=C2Z2*FEVEN 0364
365.000 FODD={2*F (VD 0365
3¢€6.000 FODD=4.000%{ 1« OD0O-Cl)*FEVEN+CL*FGDD 0366
367 .000 ALPHA= (2. 0D0+(1)*C1*L2/3.0D0 0367
368.000 TR1=ALPHA®TR3 0368
269,000 C SUME UDIFFERENCES UCCUR IF THE PREVIGUS STEPLENGTH WAS USED GNLY CNCE 0366
370.000 1F{JS.EQe1) GU TO 21 0370
371.000 GU Tu 22 0371
372.000 C THEN LALCULATE APPROPRIATE ERROR TERM WHEN JS=1 0372
373.000 21 ERRFAC=4.8D0%C2%C21/((C21*(-L2+7.0D0%C1+1.2D1)+2. 0D0O*C 11%(-C2+5 0373
374 .000 1 LOUO*C 141.001)+2.0D0%(L1+2.000))%H) 0374
1F(JD.EQ.1) BETAL=BETA 03175

275. 000

37



LINE NUMBER

27€6.000
377.000
378.000
379.000
380.000
281.000
382.000
2E3.C60
3€4.000
385.000
286.000
387.000
3€8. 000
2€S.000
390.000
361.000
262.000
353.000
394.000
395.000
396.000
257.000

QUDRUUILUINE LPEVULLINs AU IV L Uy UsEF o0 r AR

0096

TEXT PAGE
GU TO 24 0376
ELSE 0377
22 EKRFAC=1.6D0¢(C2/H}/{1.2D1+7.000%C1-C2) 0378
CGNT INUE 0379
24 BETA=ALPHA/ (L2%(2) 0380
X=X+H ' 0381
IF(X.GT XF) GU TO 2 0382
GO 70 3 0383
0384
—- e — - 0385
038¢
6 FORMAT {1HO, 46HPHASE SHIFT HAS CONVERGED TO REGQUIRED ACCURACY/3SHNU 0387
1MBER OF INTEGRATIGN STEPS CARRIED OUT, 16/7S5HNUMBER OF INCREASES IN 038¢€
2 STEPLEN3TH REQUIRED DURING THE COURSE UF INTEGRATION, 13/ 75HNUMBER 0386
3 OF DECREASES IN STEPLENGTH RCQUIRED DURING THE COURSE OF INTEGRAT 0390
4I0NyI34/77) 0391
12 FGRMAT{1H0,52HTHE END GF THE RANGE GF INTEGRATICN HAS BEEN. REACHED 0392
1/39HNUMBER 3F INTEGRATIGN STEPS CARRIED LUT,16/75HNUMBER OF INCREA 0393
2SES IN STEPLENGTH REQUIRED DURING THE COURSE IF INTEGRAT ION,13/75H 0394
3NUMBER OF DECREASES IN STEPLENGTH REQUIRED DURING THE COURSE GF IN 0395
4TEGRATION, 13,777 0396
END 0397

‘bIE



LINE NUMBER

356.000
355.000
400.000
4Cl. 000
402 .000
4C3.000
404.000
405 .000
406 .000
407.000
48,000
409.000
410. 000
411.000
412.000
413.000
414.000
415.000
416.000
417.000
418.000
415.000
420.000
421.000
422.000
423 .000
424.000
425 .000
426.000
421.000
428.000
42G.000
4£30.000
431.000
432.000
433.000
424,000
425.000
436.000
§37.000

s¥akskzXalalaks Xkl akakakakaknleka

(el g

JUDRUUVILNG FfOlIAT 3 JIM sJdLUNYVS

TEXT

SUBROUTINE PS{X,Y s JPyJCONV)

THLS SUBRGUTINE CALCULATES THE PHASE SHIFT FROUM THE SGLUTION OF
THE SCHRJIDINGER EQUATION AT ThG POINTS XM AND X AT LEAST ONE
ATUMIC UNIT APART.

Y IS THE VALUE OF THE WAVE FUNCTICN AT X

JP=1 ON FIRST ENTRY T0L THiS SUBROUTINE AND =2 ON LATER ENTRIES
JCUNV IS SET EQUAL TO ZtRO IN THE CALLING PRCGRAM. IT IS CHANGED
TO UNE WwHEN THE RELATIVE DIFFEKENCE BETWEEN TWGO SUCCESSIVE
ESTIMATES OF THE PHASE SHIFT 15 <=PSIG

COMMUN BLUCKS:
EKLL1 TRANSFERS ENERGYs, WAVE NUMBER, ANGULAR MOMENTUM AND THE
TULERANCE PARAMETERS PSIG AND EPS FROM THE MAIN PRUGRAM
PHASE WHICH 1S USED CNLY IN THIS SUBROUTINE STORES DATA FROM
THE PRECEEDING ENTRY TG THE SUBROUTINE.

IMPLILIT REAL*BIA-HsK,0-2)

COMMON/EKLLL/E, K,PSIG,EPS,L,LI/PhASE/XH,YM SMaCMyPSM
IF {(JP.EQ.1) LU TC 1

THE FUNCTION OF THE SUBROUTIN: ON THe FIRST ENTRY IS TO STORE DATA
WHICH WILL BE USED LATER IN A PHASE-SHIFT CALCULATIGN.
XINC=XK-XM

IF(XINC.LT.140) RETURN

KX=K*X

S=REG{KX,sL)

C=AIREG(KX,L]J

ANUM=Y% SM-YM* S

ADENDM=YM *L~Y*(M

A=ANUM/AD ENUM

PSHIFT=DAa TAN{A)

WRITE{2,5) X4 PSHIFT

P=DABS{{PSHIFT-PSM)/PSHIFT)

IF (P.LT.PSIG) JCONV=1

STJRAGE J3F DATA FOR NEXT PHASE-SHIFT CALCULATIGN
PSM=PSHIFT
XM=X

L= r o

ofY



LINE NUMBER

SUDRULTINE FOolAsY oJF s JLUNVY

438 .000
439.000
440.000
441 .000
442.000
443,000
444 .000
445,600
446 .000
447.000
448.000
449 .000
4£0.000
451.000
452.000
423,000
454 .000

(S

FORMAT (1HO45X31HXy 11X, 11HPHASE SHIFT)

FORMAT(1l4 ,011.4,5X,013.6)

RETURN

THI5 SECTION IS USED ONLY ON THE FIRST ENTRY

KX=K*X

S=REG (KX, L)
C=AIREGIKX,L)
PSHIFT=0.00D0

JP=2

WRITE(2,4)

GO Tu 2
END

0398

PAGE

2

0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
044€
0449
g45cC
0451
0452
0453
0454

197



LINE

NUMBER

455,000
456 .000
457.000
458 .000
459.000
4¢0,000
461.000
4€2.C00
463.000
464.000
465,000
466 .000
467,000
4€8.000
469.000
49GC.000
471.000
4172.000
473.000

OO0 n

o0

REAL FUNUL P LIUN FX*01 Ay Yol ol

TEXT

0455

REAL FUNITIUON F#*8{X,Ys1PS)

THIS SUBPRUGRAM RETURNS THE VALUE OF Y"(X).

IPS 1S SET EQUAL TO ZERO IN THE CALLING PRGGRAM, AND IS CHANGED TQO
1 WwHEN THE ASYMPTUTIC REGICN HAS BEEN REACHED 1.E. wWHEN V({X)
CAN BE NEGLECTED IN COMPARISGON WITH L{L+1)/X%%2-E,

IMPLICIT REAL*8{A-HyK,yG-2)

COMMON/EKLL1/EKsPSISIEPSsLyL1

EPS IS THE TULERANCE PARAMETER USED IN DEVGG

PSIG 1S5S NOT USED IN THIS SUBPROGRAM
V==2.,0D0%(1.000+1.0D00/X)*DEXP(-2. 0DO*X)

HERE V 1S THE POTENTIAL FOR AN ELECTRON IN THE STATIC FIELD
OF THtE HYURUGEN ATOM

A=LLl/ [X*X )-E
IF{AclLTe0.0D0.ANDDABSIV ) dLTLEPS*{-A))
F={A+V)*Y

RETURN

END

IPS=1

0455
0456
04517
0458
0459
0460
0461
0462
0463
0464
04€5
0466
0461
0468
0465
047C
0471
0472
0473

2114



LINE NUMBER

474.000
475.000
416,000
417.000
473.000
479.000
480.000
4£1.000
482.000
483.000
484.000
485.000
486 .000
4£7.000
4€8.000
489.000
450.000
491.000
492.000
453.000
494 .000
455,000
456 ..000
457.000
4$8.000
499,000
5C€0. 000
501.000
502 .000
£C3.000
$04.000
5C5.000
€€6.000
507 .000
5C8.000
509 .000
£10.000
£11.000
512.000
£§13.000

(2N aNaNasNalgN el

o0

e XelaKelinl e

el eNal Rl

REAL FUNCTION REG*8(X.Ll)

0474

PAGE

1

REAL FUNC TIUN REG*8{X L)

SPHERICAL BESSEL FUNCTION OF THE FIkST KIND TIMES X.

RES{X LI=X%xJL{X) IN THE NGTATION OF ABRAMOWITZ AND

STEGUN HANDBOULK OF MATHEMATICAL FUNCTICNS P437.

IF L DGES NUT EXCEED X FORWARD RECURRENCE IS USED, OTHERWISE

BACKWARD RECURRENCE IS USED WITH STARTING CONDITIONS FOUND AS

SUGGESTED BY CORBATO AND URETSKY J. ASSOL. COMP. MALH. VOL 6,
PP 366-375 (1959).

IMPLICIT REAL*8({A-H,0-2)

DIMENSION PF{40)

IF (L.GT«X) GU TO 3

FORn ARD RELURRENCE
A=DSINIX)
IF (L.EQ.O) GG TO 2
B8=DLUS {(X)
FAC=1.000/X
X2=FAL+FAC
DO 1 J=l,L
Al=A R
A=FAC*A-B
B=Al
FAC=FAL+X2
CONT INUE
REG=
RETURN

s e e e e o 50 30 o o o o o el e skl e e ke ok sk ok ek R ke o ke

W

A RELATIVE ERRUR LESS THAN 1.0D-7 1S DEMANDED WHEN BACKWARD
RECURRENCE 15 UStL. IF THE DIMENSION OF THE ARRAY PF 1IS
INSUFFICIENY TO ENSURE THIS ACCURACY A wARNING IS PRINTED.
IF {L.GE.40) GO TO 6

ERLG=23.25D0

ERLG 1S THE ABSOLUTE VALUE OF THE LGG TQO THE BASE 2 OF DELTA
WHERE DELTA IS THE MAXIMUM PERMITTED RELATIVE ERRGCR IN REG.
NUL IS DEFINED BY EWJN{31)
U=2.000%*X/DFLCAT (2*%L+1)
NUL=L+IDINT(ERLG*{0.1D0+0.175D00*U*(2.0D0-u*ul)/{1.0D0-u*U})])

GF CURBATO AND JRETSKY.

0474
04715
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
049C
0491
0492
0492
0494
04S5
0496
C4s7
C4G¢E
0459
05GC0
0501
0502
0503
0504
0505
050¢
0507
05Cé€
0509
c51¢C
0511
0512
0513

X7



L INE NUMBER

£14.000
515.000
£16.G00
517 .000
£18.000
£19.000
520.000
£21.G00
522.000
£23.000
£24.000
£25.000
£26.000
£27.000
£¢8.000
529.000
£30.C00
531.000
£32.000
£33.600
£34.000
£35.000
£36.000
£37.000
£38.G00
539 .000
£40.000
£41.000
542 .000
£43.,000
£44,000
£45.000
£4€6.C00
547 .000

REAL FUNCTILIUN REG*8(X,L) 0474

TEXT PAGE 2
NP=1DINT{ X~0.5D0+DSQRTIERLG*0.35D0%X) ) 0514
IF (NP.LT.L) GU TO. 4 0515
U=2. 0D 0% X/DFLUAT(2*NP+1) 0516
NUP=NP+IDINT(ERL G*(0.1D0+0.17500%U*(2.0D0-U%U) /(1.0D0-U%*UI)) 0517
BALKWARD RECURRENCE BEGINS WITH THE SMALLER UF NU1l AND NUP. 0518
IF (NUP.LT.NUL) NUl=NUP 0519
REDJUCED ACCURACY WHEN NU1l TGO LARGE FOR DECLARED ARRAY 0520
IF {NUL.GE.40) GO TG 7 0521
PFINUl+1)=1.0D-10 0522
FAC=DFLOAT (INU1+NUL+13/X 0523
PFINUL)=FAC#*PFINUL1+1) 0524
X2=2.0D0/ X 0525
J1=NUl-1 0526
DO 5 J=1,J1 0527
FAC=FAC-X2 0528
PFINUL-J)=FAL*PFINUL+ 1-J)-PFINUL+ 2-J) 0529
CONTINUE 0530
CRN=(PF{ 1)/X-PF12))*DCOS(X)+DSINIX)*PF{1) 0531
REG=PF{L+1)/CRN 0532
RE TURN 0533
0534
6 WRITE(2,100) L 0535
100 FURMAT(1ld s3HL= ,13,52H TOC LARGE FOR ARRAY DECLARED. REG REPLACE 0536
1D BY ZERU) 0537
REG=0.0D0 0538
RETURN 0539
0540
7 WRITE(Z910L) L4NUL 0541
101 FORMAT(1lH ,31HFOR} BACKWARD RECURRENCE WITH L=,13,32H THE CALCULATE 0542
10 VALUE OF NUl 1S s13,24H SINCE THIS IS TUO LARGE/45H FOR THE DECL 0543
2ARED ARRAY NULl IS REPLACED BY 39) 0544
NU1=39 0545
GO TG 4 0546
END 0547

Ri14



RECAL FUNLI LUN ALINRTOVDYO LALJ 548

LINE NUMBER TEXT PAGE 1
548,000 REAL FUNCTIGN AIREG*8{X,L) 0548
£46, 000 C SPHERICAL BESSEL FUNCTION GF THE SECOND KIND TIMES -X. 054%
550.000 C AIREGd Xy L)=-X*YL(X) IN THE NOTATION OF ABRAMOWKITZ AND 0550
551.000 C STEGUN HANDBOUOK DOF MATHEMATICAL FUNCT IGNS P437. 0551
££2.000 C CALCULATION IS BY FORWARD RECURRENCE. 0552
553.000 C NO OVERKF_-OW PROTECTION IS INCLUDED SINCE THIS RUUTINE 0553
€£4,.000 C WILL NOUT BE CALLED FOR VERY SMALL VALUES OF X 0554
€£5.000 C 0555
556 .000 IMPLICIT REAL*8(A-H,0-Z) 0556
557.000 A=DCUS (X) 0557
558,000 IF {L-EWe0) GU TO 2 0558
559,000 FAC=1.0D0/X 0559
£€¢€0.000 B=-DSIN(X) 056C
£61.000 X2=FAL+FA( 0581
562 .000 DO 1 J=1,L 0562
£€3.000 Al=A 0563
564 .000 A=FAC#*A-B ' 0564
565.000 FAC=FAC+X2 0565
566,000 B=Al 0566
567 .000 1 CONTINUE 0567
£€8.C00 2 AIREG=A 056 €
£6S.000 RETURN 0569
570.000 END gs7cC

ST



0] 1 2
0.16 1.0575 0.0146 0.0005
1.0575 0.0146 0.0005
1.0577 0.0145 * Kk ok
1.0575* 0.0147% 0. 0005*
0.25 1.0447 0.0260 0.0014
1.0447 0.0260 0.0014
1.0445 0.0258 0.0012
1.0448%* 0.0260% 0. 0014
0.5 0.9908 0.0584 0.0055
0.9908 0.0584 0.0056
0.9912 0.0583 0.0054
0.9909* 0.0584* 0.0056%*
0.8 0.9356 0.0924
0.9356 0.0924
0.9351 0.0919
0.9356%* 0.0924%
1.0 0.90550 0.111468
0.90552 0.111474
0.90562 0.111103
0.90567*%*{ 0,111510%*
'4.0 0.695
! 0.695
0.689
0. 694+
9.0 0.572
0.573
0.570
0.569+
16.0 0.492
0.492
0.486
0.490+
bS.O 0.434
0.434
0.429
0.432+

aab.



da-t.

Corresponding to each value of E and I there are 4 tabulated values

of the phase shift:

b

**

dxk

the

the

the

the

refers

refers

refers

first corresponds to using EPS
second corresponds to using EPS

third corresponds to using EPS = 10

= 10'6, PSIG = 1074
= 10'8, PSIG = 107 °
"4 ps1G6 = 1077

fourth corresponds to the.published result,

to the published result
to the published result

to the published result

phase shift failed to converge

range of integration,

of Burke and Smith (1962).
of Chandrasekhar and Breen (1946).
of McDougall (1932).

to required accuracy over specified



8 L4 PRUORKRAM TLEO19 INC OUDKRUUIINE RAFAL DY OULYINGLG THE .KADRAL
LINE NUMBER TEXT PAGE -

1.000 € THIS PROGRAM TESTS. THE SUBROUTINE RAPAL BY SOLVING. THE RADIAL

2,000 C  SCHRODINGER EQUATION. Y &#{E-L(L+1)/X*%2-V(X))Y¥Y=0 FOR SPECIFIED

3.000 C PROJECTILE ENERBY Es ANGULAR MOMENTUM L, AND POTENTIAL VIX).

4,000 C  ALL REAL VARIABLES ARE IN DOUBLE PRECISION FORM.

6.000 C ,

1.000 IMPLICIT. .REAL®8.(A=Hy0~1)

8.000 C OMMON/EKLLL/EsAK4PSIGSEPS,C,L,L1

9.000 COMMON VCOEFFL8)A19) F{:8000) s XX{8000) sD(647) 5JY

11.000 C DATA CARDS MUST BE AS FOLLOWS: :

12.000 C THE FIRST TKC CARDS CONTAIN~-8 REAL NUMBERS, COEFFICIENTS IN THE

13.000 C  EXPANSION OF V{X)s.IN FIELDS OF L6 .COLUMNS STARTING AT COLUMN 1.

14,000 C THE THIRD CARD CONTAINS 1 REAL NUMBER (EPS) 'IN.COLUNNS 1 TO ‘12: -
15.000 C  EACH SUBSEQUENT CARD CONTAINS; AN INTEGER 1L) IN COLUMNS 1 TO 3, =
16.000 C AND & REAL NUMBERS {E, XF, PSIG.H) LN ‘COLUNNS & TO 15, 16 10 27, ~
17.000 C 28 TO 39 AND 40 TO Sl.- =
18.000 € IN THE.LAST"CARD L IS NEGATIVE. gi
19.000 ¢ CHANNEL 1 IS THE INPUT: DEVILE AND CHANNEL 2 THE OUTPUT. DEVIGE. 3¢
20,000 C

21.000 READ(1,1) . (VCGEFFII):I 198) . %
22.000. C VCOEFF(i) 1S THE COEFFILIENT OF X**(I-2) .IN THE. EXPANSIJN OF VLX) -

23.000 C; ABDUT THE ORIGIN:
24.000 C

25.000 HRITE(2,55) .

26.000. C A:CAPTION IS PRINTED
27.000 : READ{1,2) EPS~ -

28.000 C=2.0D0 .
29.000 C  EPS AND C ARE REQUIRED. BY THE SUBROUTINE RAPAL. EPS IS A TOLERANCE

30.000 C PARAMETER, AND C 1S THE FACTOR BY WHICH THE STEPLENGTH IS TO BE-

31.000 C  INCREASED IF THE LOCAL.IRUNCATION'ERROR IS SUFFICIENTLY SMALL.-
32.000 C - :
33.000 4 READ(153) L+E2XFsPSIGsH : .

34.000 IF{L.LT.0). STGP - ;g
35.000 C A NEGATIVE VALUE OF L- lNDlCATES THE END OF THE DATA. o
36.000 WRITE{2+6)-EalL" :
37.000. C PRINT..THE.VALUES OF THE. PHYSICAL PARAMETERS E, L

38..000 WRITE(2,7) EPS;C.

39.000. C  PRINT THE VALUES OF THE STEP=CONTROL PARAMETERS tPS,C

40.000

HRiTE{(2,8) PS1GiXF



L INE NUMBER

C THIS PROGRAM TESTS THE SUBROUTINE RAPAL BY SOLVING THE -RADIAL
TEXT PAGE

41.000
42 .000
43.000

44 .000..

45.000
46 .000
47.000
48.000
49 .000.
50.000

£1.000.

52 .000

£3.000.

54.000

55.000.
56.0600"

57.000

- 58+ 000

59.000

60.000.
61.000.

62.000

€35, 000..

€4.000
65.000
66.000

67.000.
68.000. .

69.000

710.600.

11.000
72.000
73.000
14.000
75000
16,000

- 17.000

78 .000

7%.000 .
80:000.

C PRINT. THE . VALUES OF THE. TERMINATION CONDITIONS PSIGHXF3;

c THE:. CALCULAT ION—IS TERMINATED WHEN THE RELATIVE DIFFERENCE BETMEEN

c TWO SUCCESSIVE ESTIMATES OF THE PHASE SHIFT. . IS LESS THAN-OR EQUAL TO
c PSIGy.- OR ‘WHEN THE-POINT X=XF IS REACHED, WHICHEVER COMES FIRST. -
c . .- . .
C

*xxSTARTING..SERIES
All1)=1.0D0
Al 2) VCOEFFII)I(Z.ODO*(Lflll
W=VCIEFFL2)-E -
Al3)= (VCDEFF(I)*A(23+W)I(4*L+6)
Al4)=0:VCOEFF(1)*A(.3) + WA (2)+VCOEFF(3) )/ (6%L+12)
“Al5)= (VCJEFF(1)*A(4)+H*A(3)*VCJEFF(3J*Al2)+VCOEFF(4))I(8*L+20)
JH=0
AL5=1.0D0/{L+5)
X0=(0e L DOXEPS*EPS/DABS(A{5)) ) %%*ALS :
C THE CHOSEN. VALUE OF "X0. ENSURES THAT THE FIRST NEGLECTED TERM .
C IN THE. TAYLOR EXPANSIDN FOR YO DDES NOT EXCEED. Q. 1*EPS¥*EPS.:
XL=X0Q%%]
IF{L.EQ.0). XL=1.0D0
YO0= lXO*(XO*(XO*A(43+AI3I)+A(2)D+A(IJI*XL*XO
10 X=X0¢H '
C H IS THE FIRST STEPLENGTH TRIED.
Hl12=H¥*H/1.2D01 - - -
XL =Xk
" Yls= (x*(X*(x*(x*A(5)+A(4))+A(3))+A(Z))*A(1)3*XL*X
X2=X#+H .
‘L1l=L*{L+]l)
VN=L1/7{X%X)-E+POT (X, IPS)..
VD=L 1/4 X2%X2)=E+POTI X2 1 PS). -
YIN=2.0D0#*({150D0+54 ODO*HIZ*VN)
Y1D=1.000-H12%VD - -
IFLJH.EQe 1) GO"TO 14 _
C IF "JH=0. CALCULATE: THE CGEFFICIENTS Al6)y—=<9A(9); WHEN. JH=1
c AVBID UNNEC ESSARY: RE-CBMPUTATICN OF THESE- CGEFFICIENTS. :
“DO 12 I=649 - -
IMl=I-1
SUM=0.0D0
DG 11 J=3,1IM1
SUM-SUM+VCOEFF(J]*A(I J)
11 CONTINUE Bt

bTT



¢ 1819 PRULRAM TESID IRL- SPBRUUTINE RAFAL -BY OULVING IHE RAULIAL
LINE.- NUMBER TEXT
81.000 All)= iVCDEFF(l)*A‘I 1)*H*A‘l-2)*SUM)/((I l,*(Z*L*I),
82 .000. 12 CDNTINUE". y
83.000 C Y1 IS CALCULATED AND THE CONTRIBUTION FROM .THE ERROR -IN Y1 T0 THAT
84 .000 C IN Y2 IS ESTIMATED# AND THE STEPLENGTH H IS DECREASED, IF NECESSARY,
85.000 C UNTIL THIS: CUNTRIBUTION IS SUFF[CIENTLY SHALL.
£6.000 14 DO 15 1=6;9 )
87.000 TERM=A{I ) =X**{L+1)
- 88.000 TERML=TERM*Y1hN/Y1lD
89.000 DTERMA=DABS{.TERM1) . i
90.000 IFIDIERM] LT H*EPS) Gﬂ T017"
$1.000  Y1=Y1+TERM >
$2.000 IFl1.EQ.9). GO TU 16 N
93.000 15 - CONT.INUE
$4.000 16 C1—(0.SDO*H*EPS/BTERMI)**O.ZDO
95.000 JH=1
96. 000 H=Cl *H
$7.000 GO TO0 10
98.000 17 Jay=I1-1-
$9.000 AK=DSQRT{(E)
109.000 WRITE(259) X0,Y0,Y1l"
101.000. C PRINT .THE STARTING VALUES XOHYO§Y1
102.000 C.
103.000 . CALL RAPAL(H:XO.X.YO.YI'XF)
- 164000 GO T0 ¢4 "
165.000 C
106.000. 1 FORMAT{5D16.8)
1¢7. 000 2 FORMAT(D123)
1¢8.000. - 3-FDIMAT(I3;4D12.3) . '
109.000. . 5 FORMATA11S5HITEST .RUN2. SOLUTION: OF THE .RADIAL :SCHRODINGER EQUATION. -
110..000. 1 YU'+{E-LAL*L )7/ X%*2=VAX))Y=0 WITH CALCULATIGN Of- PHASE SHIFT/42H A
111.000 2RISING FRDM THE SCATTERING PROBLEM (E>Q))
112.000 6 FORMAT (1HO, 19HPHYSICAL PARAMETERS-7X:6HE =.DL3.6,1H,,ZX.5HL =
113.000 1.13)" CoC S
114.000 7-FORMAT {1H 4 23HSTEP- CONTRUL PARAMETERS’3X.6HEPS =a010o313X11Ha32X'
115,000 15HC =4D1023) - -
116 .000. 8 FORMAT(1H- QZZHTERMINATIUN CGNDITIONS:#X:bHPSIG —1011 4.2x.1H.,2x,5
117.000 LHXF.. =,Dlle%4)"
118.000 9 FORMATL1H s15HSTARTING VALUES:11X.6HX0 - —.011.4,ZX¢1H3.ZX.5HMOP-=
119,000 1,011. ‘l‘,ZX,lH@.ZX.‘fHYI —aDllo4) ’ . : : -

- 120.000

END

0T



LINE NUMBER

SQUDRUUVIEAINE RAFVALLINg AUV A TUg Tl g AN

TEXT PAGE

11.000
122.000
123.000
124.000
125.000

126.000.

127.000
128.000

129.000 .

130.G00
131.000
132.000
133.000

134.000 .

135.000
136. 000
137.000

138 .000.

139..000.
140.000

141 .000
142.000

143.000
144.000
145.000
146 .000
147.000

148.000.

149.000

150.000:

151.000
152.000
153.000

154.000.

155.000
156.000

157.000.
158. 000

159.000
160. 000

o0 (@) [aXnl [a N a}

SUBROUTINE RAPALIH 9X09XsY0;Y1,XF)

THIS SUBRDUTINE SOLVES THE DIFFERENTIAL EQUATION
“YVI=F{X,Y)
BY THE RAPTIS AND ALLISON METHOD WHICH. EXPLOITS THE A PRIORI
KNOWLEDGE OF .THE ASYMPTOTIC FORM OF THE SOLUTION OF THE SCHRODINGER
EQUATION.
THIS METHJID IS A VARIANT OF NUMEROV®*S METHOD- WHERE .NOW THE
COEFFICIENTS OF THE FORMULA- DEPEND ON THE LENGTH BF THE INTERVAL
OVER WHICH INTEGRATION 1S PERFORMED.
H <o IS AN INITIAL STEPLENGTH SUPPLIED BY THE USER. AT EACH STEP
THE LOCAL TRUNCATION ERROR 1S ESTIMATED. IF THIS IS -TOO LARGE
THE CURRENT STEP IS DISCARDED AND A  SMALLER STEPLENGTH IS
CHOSEN. WHEN THE ESTIMATED TRUNCATION ERROR IS SUFFICIENTLY
SNALL THE STEPLENGTH IS INCREASED FOR THE NEXT .STEP. 1IF THE
FIRST ESTIMATE OF THE TRUNCATION ERROR EXCEEDS EPS. THE PROGRAM
PREDICTS. A SUITABLE STEPLENGTH AND STARTS AGAIN AT X0 AT THE
BEGINNING OF THE RANGE OF INTEGRATION.
C oo THE STEPLENGTH IS DOUBLED WHEN THIS CAN BE DONE WITHOUT
EXCEED ING~ THE BDUND EPS.

THE STATEMENTS BETHEEN. LINES OF ASTERI'SKS REFER TO THE SCATTERING
PROBLEM RATHER THAN TGO THE INTEGRATIGN 'OF THE DIFFERENTIAL EQUATION.

IMPLICIT REAL*8(A-H,0-2)

COMMIN/EKLLLI/E sAKsPSIG+EPSCol,ylL1l

COMMON VCDEFF(8):E19),FL8000),XX(8000) 3DL6,7),JY
NINC COUNTS THE NUMBER OF INCREASES IN STEPLENGTH-REQUIRED
ODURING THE CUURSE OF INTEGRATION. : .

"NINC=0
NDEC COUNTS THE NUMBER OF DECREASES' IN STEPLENGTH REQUIRED

DURING THE COURSE OF- INTEGRATION.
NDEC=0

1 GO TO 4
iF. THE INLTIAL VALUE OF H PROVES TO BE TOO LARGE Yi. MUST BE

RECALCULATED MITH THE - NEH He

"2 X=XO0+H

¥



LINE NUMBEA

1£¢1.000
162.000
163.000
1£4.0G60
1€5.000
166.000
167.000
168.000
1€$.000
170.000
171.000
172.000
173.000
174.000
175.000
176.000
177.000
178.000
179.000
180.0C0
1€1.000
182.000
183.000
184.000
185.000
166.000
187 .000
183.00C
189.000
190.000
151.000
162.000
163.000
164.000
155.000
166.000
167.000
198 .00V
156.000
2€0.000

[ o G

c

aNe

OCcCcoc o cocono

[N ol ol o I ol el g’

SUBIRLUTINL ~APALIHXO X YU,Y 1, XF)

XL=X#®x]
Yiz={A%(AR{AR(ARA{S)+A{4) ) +A(3) ) +AL2) )+A(]1) )*XL*X
DU 3 s=0,JY

TERM=A{L ) EXkx(L+1)

Yi=Y1+TERM

CONT LiUE

TERM=a({u¥Y+llkaxx{ +JY+])

DTLRM=CALS{TERM)

IF(OTeivde LT U LODORM¥EPSY Lo TU 22

CUNT UL

L)

DESCRIPTIUN AND INITIALIZATICON CF VARLIABLES RLWLULIKED ~uUR
LLULRN=<ELPINGL ANu ERRUR LLHTRLL.
J 1S 581 Tu 1 wh INITIAL ENTRY 10U SUBLUUTINE ClVDIF.
4 =0
Jz: Tht STePLelhGTH IS INCREASEU £RLM H Tu C*H 1+ FUk 3 SULUESSIVE
S5TeEPS THe PRELICTED TRUNCAT IGI ERROUN W 1TH A STePLENGTH UF L%H I
SUFFILIENTLY SHALL. J2 1S JsecD AS A LUUNTek FLK TRHIS PJRPLSE.
Je=U
JU: wiklh A STEPLENGTH DECREASE i> NECESSARY A Nbw H 1S CHUSEN.
LALLULATIULS MAY SHUw THAT THIL IS InwADEQUATE, SU A& FUKTHEW
fLUULTILN IS REGQUIKED. JU KEcPS TRALK LF Tht STEPLENGTH
LELREASES IR SULLE A CASE. 1T IS INULARLASED BY 1 wiTH EACH
CECRLASE aNL IS ST TS ZERU whibEnn AN ACLePTALLE H HAS BEEN FUUNED.
Ju=0
TL Di1STilbLulsSH BoTwEEN CALLS HADL TU sUbRuLT Ink VIVUIF FOR Tht
CALCULATIULN U ThEt LIVIDEY LIFFEReNULES kREwUIKEL IN Thk eSTIMATE
UF THL TRUNLAT 1UN ERRLAR PER UNIT STZP wNu FUR EXTRALTING THE VALJES
NEEDED FLR TiHe INTERPLLATICN PRLLLSSy ww IS SET TG ZEKRC IMMEUDIATELY
AFTER Thie VALULS rOK The INTeAPULATION HAVe owhilih FOUNG.
INITLALLY UL 1S SLT TL 100« (THIS IS ARLITRARY; TAKNE DU T2 BL ANY
MUN-zLRG VALUL)
bp=1.0vVc
JB 1S INITIALLY zEwrus Jo 1S SET 1L 1 whEw THE CLASSICAL KEGILN
1S Kbalrib aNU wFTER THE CALLULATIGN ULE The MNL. CCEFFICIENT 601
wHith REFLALES B0 Ilv ThE NEXT STEr. ThHL nhaPT1ls ANC ALLISGON METHUGD
1S UstD li, THE REXT STEP; IN THu UPUAT Livu SeCTILN, ELFUkE ENTLKING
THIS oTLP, Jo 1S ST Tu o ANu THIS INLICATES 1L SubRLuUTiwk UIVDIF
TH&T Thi «TH ulVIUED DIFFERERCE TABLE LF (bxY+Y 1) MUST wb SET UP.
ThtrcAFTLR b 1S SET TU 3.

[%2]

ey
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(AxZUx=0-010°T)Y/A=(T+M) 4
X=(T1+¥1IXX
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dAIS IVTLINT#H%%")

B
*IMIOd OMINNAL AWATSSVID 1
JHL TL iN7 SINIIATH430Y LNVLISMON HAT™ ONHLIM AONIMON O] 38N 3M g
9
S s e e 3 ¥ 3k o e e e s olooleok 2 st 3 e e s o sk ol sk o e sk ok s o e o e e sl s s e e o kot okt ok R kR 1
nN=ANNIP
. 1=dr
SA4 INILOANANS JHL NT GAMEVIAXT IV ANNDC AMY dF SMTLIWWNEL HL .0
0=SdI
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0o0°ce?
000 He?
noocee?
coo e’
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000°8272
ono°LZ?
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000°s?Z
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c00°el?
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000°612
0o0° 817
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000°912
000*51?
000° %12
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0ce* 8072
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poC°*s0?
000°%3¢
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LINE NUMBER

SUBROUTINE RAPALLH X0 X,Y0,Y1 5 XF)
TEXT PAGE

241.000
242.000
243. 000
244.000
245.000
246.000
247.000
248.000
249.000
250.000
251.060
252.0400
253.000
254.000
255.000
256. 000
257.000
258.000
¢59.000
260.000
2€1.000
262.000
263.000
264.000
265.000
266.000
267.000
268.000
£69.000
270.000
211.000
272.000
273.000
274.000
275.000
276.000
217,000
278.000
279.000
280.000

alalgNaoXgl

(alalale! o0

(2ol el 2laXala

OO0

BEYGOND THE CLASSICAL TURNING POINT WE LET THE CCEFFICIENTS OF THE
NUMERGY METHOD VARY WITH THE INVERVAL He (SEE RAPTIS AND ALLISOGN:
* EXPUNENTIAL-FITTING METHODS FOR THE NUMERICAL SOLUTION OF THE
SCHROVINGER EQUATION'.)

AKH=AK*H

AKH2=AKH/ 2.0D0

H2E=H2 =E

B0i=({ H2E~ 4.0DO*DSIN(AKHZ)#DSIN(AKHZ))/(4.0DO*H2E*DSIN1AKH2)*DSIN(A

1<H21)

JB=1

25 CONTINUE

AN ESTIMATE UF THE TRUNCATION ERROR PER UNIT STEP IS CALCULATED

FOR K+l.GEe7, USING 6TH DIVIDED DIFFERENCES OF Y IN THE

NUMERJDV METHODs AND TAEREAFTER USING 4TH OIVIDED DIFFERENCES

OF (E*xY+Y*®*) IN THE RAPTIS AND ALL ISON METHOD.
IFIK+1.EQ.7) J=1
IF(K+1.GE.7) GG TC 9
GG 70 8

9 CALL UDIVDIF{DD¢K3JaJdD2IPS9dB)
TRERR=-H*#5%DD/2 «4 D2
DTRERR=DABS( TRERR)

IF TRUNCATIUON ERRGR IS TOO LARGE GO 70 12.

THE PARAMETLER TOL PROVIDES AN ABSOLUTE GR RELATIVE ERRGR CRITERION

ACCORDING RS THE ABSOLUTE VALUE OF F(K+1) IS LESS OR GREATER

THAN ONE.
DF=DABS{F{K+1))
TOL=EPS*DMAX1{1.0D0,0DF)
IFI(DTRERR«GTTOL) GO TO 12

CURRENT STEP ACCEPTED
JD=0
=2

SRR SXBEREE R RRkF R Rk kk Rk Rk fRhhk ke hk bbbk ke e xke o chh bk kb ok
THE PHASE SHIFT 1S5 CALCULATED iF IPS=1, WHILH MEANS THAT X IS
SUFFICIENTLY LARGE.

Hee



LINE NUMBER

SQUDRUUVIANE RAVYALINgAUp Ag TUg T L AT

TEXT

PASE

5

281.000
282.000
283.000
£84.000
285.000
286.000
287.000
288.000
289.000
290.000
251.000
292.000
293.000
294.000
295 .000
2%6.000
257.000
298 .000
255.000
360.000
301.000
302.000
303.000
304.000
305.000
306.000
307.000
3(8.000
309.000
310.000
311.000
312.000
313.000
214.000
315.000
316.000
317.000
318.000
319.000
320.000

IF(1PS.EQel) CALL PS{K3JPsJCCNV)
THE CALCULATION IS TERMINATED IF THE PHASE SHIFT HAS CONVERGED.

IF(JCUNV.EQ.l) GO TU 30
e e e e e gl e e ok gk ok ok dok ok ek ek ok ek bk bk k ok Rk kR R EX R R R e RS Rk LR R R R R

PREDICT TRUNCATION ERROR FOR THE NEXT STEP WITH A STEPLENGTH COF C*H.
IF THIS IS SUFFICIENTLY SMALL, GO TO 13 TO INCREASE THE STEPLENGTH.

DTRERR=DTRERR%*{%%*5
IF(DTRERR LT {0.5D00%T0L)) GO TO 13

J2=0

cCOoCnOm o

STEPLENGTH UNCHANGED FOR NEXT STEP. UPDATE VALUES FOR NEXT STEP
AND RETUKRKN TO BEGINNING OF LOGP.
8 K=K+¢1
H2VF=H2*V *F (K]}
IF{JBeNE. 1) GU TO 14
JB=2
J2=0
GC TO 20
14 BO1=8BO
20 YPKEK=({B0-BO1)*F(K-1)+BO1*YK)/BO
YK={{BO-BOl)*F{K)+BO1*Y}/BO :
BO=801
GO T0 15
C=%%END JF RAPTIS AND ALLISCN LOGP
C S

c
C PRINT THE FINAL VALUES OF K,NINC,NDEC ANU RETURN TO CALLING PROGRAM.

6 WRITE(2518) KyNINC,NDEC
RETURN

22 uRITE{2524)
RETURN

30 WRITE(2,32) K:NINC'NDEC
RETURN

(N N o

THE STATEMENTS BETWEEN LINES OF DASHES REFER TO THE CJDING RELEVANT
T3 THt LHANGE OF STEPLENGTH.

aXalgXalnl

14



LINE- NUMBER

SUDRUUVIAINE RAFALIAsAUSATUTL sAT 4

TEXT ;.

321.000

C

322.000¢ C
C###STEPLENGLH DECREASE

323.000.
224.000

325.000
326.000
221.000

328.000 -

329.000
330.000
331.000
3232.000
333.000
334.000
335.000
336.000
337.000
238.000
339.000
340.000
341.000

342.000

343.000
344 .000
345.000
346.000

347 .000

348.000
349.000
350.000
351.000
352.000
323.000
3£4.000
355.000
356.000
357.000
358.000
359.000
360.000

OO

COoOOnNn0

(g

12 JD=JD*1

Cl= (O.SDO*TDLIDTRERR)*#O ZDO

H=Cl *H

NDEC=NDEC+1
IF. J=0- THIS MNEANS THAT H WAS TOO LARGE IN THE INITIAL STEPS SD IT IS
NECESSARY TO RESTART FROM XO HlTH THE NEW H.-

"IFlJ<EQe0) GO-TG 2

"IF{JBeGTo 1) CALL DIVDIF(DDyKyJsJdDs IPS,JB)
"IF T4AE TRUNCATIGN ERROR PER UNIT STEP AT XX(K+1) IS GREATER
THAN THE TILERANCE, THE STEPLENGTH MUST BE REDUCED TG C*H; -
F{K+1) IS RECALCULATED FROM F{K) AND FPREK1 WITH THE NEW
STEPLENGTHe FPREKL IS FOUND BY CONSTRUCTING THE DIVIDED
DIFFERENCE FORM OF THE STH DEGREE POLYNOMIAL -INTERPOLATING
AT THE POINTS: XX(K):XX(K-I)oXX(K-Z)'XXlK—3).XX(K-4).XX(K—SJ.

X1=XX{ K) -H

FPREK1=D( 6411}

DG 17. 1—135

M=6-1 '

FPREK1=DU{My 1) +{X1-XX{K~1))*FPREK.1
17 CONTINUE T

' H2=H*H
IF{IPS.EQ.1):.60 TO 28
60 T0 29
28 AKH=AK®H .
" AKH2=AKH/2.0D0
H2E=H2%E - -~
' UPDATE. YPREK AND YK

' BO={H2E-4% .ODO*DSIN(AKHZ)*DSIN(AKHZ))I(4.0DO*HZE*DSIN(AKHZ)*DSIN(AK :

1H2})

29 V=L1/({X1%X1)-E+POT{X1,1IPS).
YPREK—FP%EKI*(I ODO—BO*HZ*V)
X=Xi1+d4 .

" V=L1/(X%*X}~ E+PUT(X1IPSJ
YK=F(K)*®(1l. ODO—BO*HZ*VJ .
HZVF—HZ*V*F(K) ’
GG TO 15

lqgﬁ



SQUDRUUVIAINE RAFALITIaAUV2A TUT LI sARS

400.000

LINE NUMBER TEXT
?
3€1.000 C
362 .000 c
363.000 Cx*xSTEPLENGTH INCREASE
364.000 13- J2=J2+1 :
365.000-. IF(J2.LT.3) GO T0 8
366. 000 J2=0
3&67.000 H=C*H
368.000. C2=C*(C
3€9.000 NINC=NINC+1
370.000 H2=H*H -
371.000 IF(IPS-EQ. 1) GD TD 26
372.000 801=8B0.
373.000 GD. TO 27
374.000. 26 AKH=AK%*H
375.000 " AKH2=AKHZ/2.0D0
376.000 H2E=H2*E -
377.000 BOl=(H2E-%. DDO*DSIN(AKHZ)*DSIN(AKHZ)31(4 ODO*HZE*DSINIAKHZJ*DSIN(A
378.000 1KH2) )}~
379,000 27 YPREK=(C2#B0O1*YPREK+{B0-C2*B01J)*F(K-1)2/8B0
3280.000 YK= l»2*801*Y+(BO-C2*8011*F(K*l)lIBO -
381.000. 80=801 ' .
382.000 K=K+l
383,000 H2VF=H2%*V&F(K)
384.000. GO TO 15
385.000 C
386.000 C e
387.000. ¢ o
3£8.000 - 18 FORMAT([#O:SZHTHE END OF THE RANGE OF INTEGRATION HAS BEEN REACHED
389.000 1/39HNUMBER OF INTEGRATION STEPS CARRIED OUT,I16/75HNUMBER OF INCREA
390.000 2SES IN STEPLENGTH REQUIRED DURING THE COURSE IF INTEGRATION,I3/75H
391.000 3NUMBER OF DECREASES IN STEPLENGTH REQUIRED DUR[NG THE COURSE OF IN
392.000 GTEGRAT.ION313,///7)
3%3.000 24 FORMAT(1405113HTHE REQUIRED ACCURACY IN Y1 HAS NOT BEEN ACHIEVED;
394 .000 " LFURTHER uUEFFlCIENTS IN THE EXPANSION UF V(X) ABOUT THE ORIGINII3H
395.000 2 ARE REQUIRED/1H )~
396.000 32 FORMAT.{1HO 46 HPHASE SHIFT - HAS CONVERGED IO~REQUIRED ACCURACY/39HNU
3$7.000 "1MBER UF. INTEGRATION STEPS CARRIED OQUT 916/75HNUMBER-OF INCREASES IN-
398.000 2 STEPLENGTH REQUIRED- GURING; THE . COURSE OF INTEGRATION,I3/75HNUMBER
3$9.000 3 OF DELREASES IN STEPLENGTH REQUIRED OUR ING THE COURSE OF INTEGRAT

4I0N,1397/7/7)

PAGE 7
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L INE NUMBER

SUORUWUIANL VI TULTNIUU sy J:JU’J FoapJugs

TEXT PASE

402.000

403.,000-.

404.000
405.000

406.000 .

407.000

408 .000-

409.000

410.000.

411.000
412.000

413.000.

414. 000
415.000
416 .000

417. 000

418 .000
419.000
420.000
421 .000:

422.000.
423 . 000.
424..000.

425.000
426.000

421.000
428.000-

429.000.
430.000
431.000
432.000
433.000
434.000
435. GO0
436.000
437.000
438.000
439 .000
440.000

" 441,000

cOoCOODNOOOON

COo0 comO0

SUBROUIINE-DIVDIE]DD.K:J%Jb:IPSBJB]

THIS SUBRGUTINE SETS UP .THE-TABLE OF 6TH DIVIDED DIFFERENCES

UF THE SOLYTIOGN Y AT THE POINTS. XX{K+1) 9 XX(KIgXX{EK=1)y XX(K=-2) 4
XXEK-3) s XX{ K=4) sXX LK-5) AS LONG.AS THE -METHOD OF NUMEROY.IS USED;
THE .RETURNED VALUE OF DD 1S THE ESTIMATE OF THE 6TH DERIVATIVE: -

OF "THE SCLJUTION< WHEN .IPS=1.-AND J8>1 THIS SIGNALS THE USE JF THE
RAPTIS AND ALLISON METHOD AND; A TABLE OF 4TH DIVIDED DIFFERENCES

OF (E*Y+Y®®) IS-SET. UP AT..THE PODINTS XX(K*I).XX(K),XX(K-IJ,XX(K-ZI'
XX{K-3); TAE RETURNED VALUE-OF DD IS THE ESTIMATE OF LHE 4TH
DERIVATIVE DF (E*Y+Y")o )

IMPLICIT REAL*S(A—H 0*1)‘
COMMOUN/ECLL 17 E9AK9 PSIGEPS Col oL 1

‘DIMENSIUN X47) 4D1(424)

COMMON VbDEFF(B).A(9].F(BOOO).XX(BOOOJ,le,?),JY
1F (DD« EQe0.0D0)-GO TO 30 -
IFlJB.GT.l.AND.JD.GT 0) GO TO 45

G0 TO 50

‘THIS SECTION IS USED WHEN.A DECREASE IN STEPLENGTH IS REQUIRED
DURING THE USE GF -THE RAPTIS AND ALLISON METHGD.

45 IFLJD.GE.Z).GO T0 51

ENTRIES.IN THE 4TH DIVIDED DIFFERENCE TABLE FGR (E*YfY") ARE
- STORED IN THE ARRAY D1 FOR ‘FUTURE USE.
"DO 46 N=1l,4 -
I=5-N
DO 46 M=1,N.
D1t{1,M)=D(1IsM)
46 CONTINUE e

. A 5TH DIVIDED DIFFERENCE TABLE OF THE SOLUTION Y IS CDNSTRUCTED.

DO 47 1=156" -
DUle1)=F(K+]-6)
" X{1)= XX(K*I-b)
47 CONTINUE :

by



LINE NUMBER

QUDRUUVUILANLE ULVUILITIUVUUINIJ YUY 47 094J0D 2

TEXT PAGE

442.000
443,000
444.000
445.000
446.000

447.000 .

448,000

449.000

450.000

4£1.000.
452.000-

453.000
454.000
455.000
456.000
-457.000

458.000
459..000.

460.000
4€1.000
462.000

4€3.000

4€4.000

465,000
466.000.

467.000

468.000-

469.000
470.000
411.000
412.000
413.000

474,000

4175 .000
476.000

4117.000. .
478 .000.
479. 000
480.000.

. 481 .000

2 Xl als)

OO0

DO 48 N=2,6

" IMAX=T-N

DO 48 1=1,1MAX

DiN, 1)= (DlN-lsI)—D(N I,I*li)I(X(I) X(I*N-l)l :
48 CONTINUE - '

THE VALUES D(141)3D(2¢1) seeeiD{6s1) ARE NEEDED FOR THE
INTERPOLATION:-PROCESS—IN RAPAL - AND' ARE STORED ' IN 0(6:5)90(6:5)oo..,
Dtby1) RESPECTIVELY." DD 1S SET T0' ZERD.

DO 49 1=2,6

D(64,.1)=D(7=1;1)

49 CONTINUE
DD=0.000
RETURN

IF SUCCESSIVE DECREASES IN STEPLENGTH ARE PERFORMED IN THE RAPTIS
AND ALLISON METHOD THE: VALUES OF D{1,1),;D(2s1)sees3D16,1) NEEDED-
FOR THE INTERPOLATION- PROCESS IN RAPAL ARE ACCESSED. : :
51 D0.52 I=1,5
D(I,1)=D{6,7-1)
52 CONTINUE
DD=0.000
RETURN

50 IF{J.NE® 1) GO Tﬂ 1

THE FIRST ENTRY TO DIVDIF SETS UP A 6TH DIVIDED: DIFFERENCE TABLE
OF “THE SOLUTION.AT .THE FIRST SEVEN .MESH POINTS.
DO 2 1=1,7
2 DU1,1)=FLL)
DO 3:N=2,6
1 MAX=8-N
DB 3-I=1,IMAX"
© DNy ) =(DAN=1; T)-DIN=1, I#113/6XX  E)=XX(T4N=1))
"3 CONTLNUE :
' DD=7..2D2#4{D(651)-D( 64 2)) /GXXCLI=XX(TE)..
J=0 e e e :
RETURN-

‘o4t



LINE NUMBER

SUODRUVIANLGE VIiVUATFIUU RS JsJd U9 AT 0248

TEXT

482.000
483.000
484.000
4€5..000
486,000
487.000
488.000
489 .000
490.000
491.000
492.000
493.000
494.000
4$5. 000
- 496,000
497.000
498.000

. ' 499 .000-
- 500, 000.
£01.000.

502.000
5G63.000
504.000
505.000

- 5664000-

507 .000

508 .000.
509.000.

510.000
511..000

512.000 .

513.000
£14. 000
515.000
516000
517.000
518 .000
519.000
$20.000
521.000

cCoo

1

IF{IPS<EQsl «AND+JBaGT 1) GO: TO 30

SUBS EQUENT .ENTRIES .TO DIVOIF:CALCULATE THE: 6TH DI'VIDED DIFFERENCE
TABLE OF 'THE SGLUTIGN AS: LONG AS THE MEIHOD GF NUMERDV 1S USED. -

6

DO 5 1=1,7
D{l,1)=F(K+]I-6)
XUL) =XX{K+1-6)
CONT INUE-

IF(JD.6GT.0)- GO TO 8

DG 6 N=2,6
IMAX=7-N"

DO 6 1=1,IMAX
D(VnIJ—D(NnI*I)

"CONT INUE

IF THE STEPLENGTH. HAS BEEN DECREASED IT IS. NECESSARY TO RECALCULATE
SOME ENTRIES IN' THE- 6TH DIViDED UIFFERENCE TABLE. '~
8 DO 7 N= 2:6

I=8-N -
"DiNg 12=(DIN- 1,1)-D(N-1,I*1))I(X(l) X(7)3

7 CONTINUE-

DD-7.202*(D(6.1)—D(6 2))I(X(1J Xt7))
RETURN

THIS SECT-ION. CALCULATES ENTRIES IN THE 4TH DIVIDED DIFFEREVCE TABLE
"FOR (ExY#YOl), -
30D0 35 I=135

35

X{Ik=XX(K+i-4)
D(1,1)= (Ll/(X(I)*X(I))+POT(X(IJsIPS))*F(K+I—4)

CONT INUE"

IF(JB.EQ.2) GO TO 40
IF(JD.GT.0) GO TG 55

DO 36 N=2:4
IMAX=5=N

"DG 36 I=L;IMAX

D{Ng 1)=D(N; 1+1)

N
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LINE NUMBER e TEXT- PAGE 4
£22.000 36 CONTINUE
523.000 GO TGO 57
524.000 C
€25,000 C  THE PREVIOUS ENTRY TO DIVDIF OBT-AINED VALUES FOR INTERPGLATION
526,000 C IV RAPAL.AND ENTRIES IN THE 4TH DIVIDED DIFFERENCE TABLE FOR-
527,000 C {ESY#Y!) MUST BE RECALLED FROM.THE ARRAY, Dl.
£28.000 55 DO 56 N=l,4 :
529.000 I=5-N
£30. 000 DO 56 M=l N
£31.000 DE1,4)=D1{LsM)
532,000 ' 56 CONTINUE -
£33.000 57.00 37 .N=2,4 -
£34.000 1=6-N
535.000 DNy 1)=D(N=15 1)=DUN=1; E+10)/6X{TI~X( 5)).
536. 000. 37 CONTINUE - --
537.000 © DD=2.4D1#(DL451)-D14,2)) /LXLLI=XI5))
538.000. RETURN .-
535.000 C
540.000 €. CALCULATE 4TH DIVIDED DIFFERENCE TABLE ON. FIRST ENTRY TO DIVDIF
£41.000. C°  WITH RAPTLS AND -ALLISON METHOD. "
£42.000 40 DO 33 N=234" '
543 .000.. IMAX=6-N S
544. 000 ' DO 33 I=l,IMAX - -1 :—
545.000 DINs1) (D(N-l.l)—D(N-l.loli)/(xix)-xtI+N-1))
546..000 33. CONFINUE -
£47.000 ©- 3B=3
548.000- . DD=2.4D1#(Dd %, 1)=D1432)1 /(XC-1)=Xt50)
£49. 000 RETURN
550.000 END

THY
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590.000

IF (PeLTLPSIG) JCUNV=]1 - -~

LINE NUMBER TEXT PASE 1
551.000 SUBROUTINE PS(K,JPsJCONV)
552.000 C
€£3,000 C
554.000 C THIS SUBROUTINE CALCULATES THE PHASE SHIFT FRCM THE SOLUTION OF
555.000 C THE SCHROUINGER EQUATIDON AT TWOD POINTS XM AND X AT LEAST ONE
556.C00 C ATOMIC UNIT APART.
557.000 C Y 1S THE VALUE OF THE WAVE FUNCTION AT X
558.000 C JP=1 UN FIRST ENTRY TO THIS SUBROUTINE AND =2 ON LATER ENTRIES
559.000 C JCGNV .IS SET EQUAL TD ZERO IN THE CALLING PROGRAM. .IT IS CHANGED
560.000 C TO ONE WHEN THE RELATIVE DIFFERENCE BETWEEN TWG SUCECESSIVE .
561.000 C ESTIMATES OF THE PHASE SHIFT IS <=PSIG
562.000 C
££3.000 C COMMON BLOCKS:
564.000 C EKLL1 TRANSFERS ENERGY, WAVE NUMBER, ANGULAR MOMENTUM, THE
565.000 C STEPLENGTH PARAMETER C AND THE TGLERANCE PARAME TERS
566.000 C PSIG AND EPS FROM THE MAIN PROGRAM.
567.000 C PHASE WHICH IS USED ONLY IN THIS SUBROUTINE STORES DATA FROM
£68.C00 C THE PRECEEDING ENTRY TO THE SUBRGUTINE.
569.000 C
570.000 C
571.000 IMPLICIT REAL*8(A—H,0-2)
572.000 COMMUN/ EKLL1/ Eg AKs PSIGSEPSoCol s L L/PHASE/ XM 3 YMs SMaCM,PSM
573.600 CGMMGN" VCGEFF (8) s AL9) sF{8000) 4XX{B000) sD(6+7)4dY -
574 .000 X=XX{K+1)
575.000 Y=F(K+1)
§76.000 IF (JPeEQel) GO TO 1
577.000 C THE FUNCTION GF THE SUBROUTINE ON THE FIRST ENTRY IS TO STORE DATA
578.G00 C WHICH WILL BE USED LATER IN A PHASE-SHIFT CALCULATION.
579 .000 XINC=X=X4
580,000 IF(XINC.LT.1.0) RETURN
581.000 AKX=AK# X
582 .000 S1=REG(AKX,L)
5€3.000 Cl=A1REG(AKX,L)
584 4000 ANJM=Y%SM-YM%S1
585 .000 ADENUM=Y M%C 1-Y#CM .
586.000 A1=ANUM/ADENOM e
587 .000 PSHIFT=DATAN({A1) DA
5&8. 000 WRITE(2+5) X PSHIFT
589 .000 P=DABS{ (PSHIFT-PSM) /P SHIFT)
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LINE NUMBER TEXY PAGE 2
591.000. C
592.000. C STORAGE 3F DATA FOR NEXT PHASE SHIFT" CALCULATIGN
5%3. 000 2 PSM=PSHIFT - -~
£64.000 XH=X
555.000 Y M=Y
596. 000 SM=S1
597.000 ‘CM=C1
568.000. C ' :
559.000 4 FORMATI(1HOy5X31lHX311X311HPHASE SHIFT).
600,000 5  FORMAT.{1H .Dll 4,5X9013.6) "
€Gl. 000 RETURN
602.000.. C
603.000. C THIS SECT-ION IS USED DNLY ON THE FIRST ENTRY
€G4.000. 1 "AKX=AK*X -~ -~ o
605 .000. " S1=REGLALX,L) .
606.000. Cl1=AIREG(AKX;L)
607.000 PSHIFT=0.0D0"
608,000 JP=2
€€S.000. © WRITE(2 ,%4)
610.000 GO TO 2
611.000 . END

e
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LINE NUMoER TEXT P aok .
£12.000 REAL FUNLT LU PLT#B(X,1PS)
€13.000 C
614.000 C  THIS SLBFRIGKAR RETURNS THE valLob UF THe PLTENTIAL VIX).
615.000 LIPS 15> >cT Ewlaw TU LERL IN THE CalLING FRLGKAM ARD 1S CHANGED TU
€16.0G0 I iHEN THo CLASSICAL KTG1CW hnS BZEN WEALHEL.
617.000 ¢
€18.000 C
£19.000 IMPLICIT Wbaoke(A-h,0U-4)
620.000 COMMUN/ e LLEr Lyish s PSIGyEPSsLyLyL 1
€21.0C0 C  EPS 15 Thi TULEKANCE PAKAMETER USLD IN KaPAL.
£22.006 L  PSIG 1S kel USED IN THIS SUBPRLUKAM.
€23.000 V=-2.Uc Uk (1. OUG+1.UUO/X)XLEXP (=2 e ULG*X )
624,000 €  HERE V 15 THL PUTENT1AL FUR Aiv tLeCTRUN aiv Thic STATIC FIELD
€25.000 L GF Tht hYurLoLEN ATULM.
€26.000 A=LL/{A%X)-L
£27.000 IF(A.LT 40 000 e MG LAbLS (V) oLT . (=A)) IPS=1
€28.000 FUi=v
€29 .000 KETUaN
£30.000 ENU

‘G0
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LINE NUMBER TEXT PAGE 1
€21.000 REAL FUNC.TIGN RtG*B(x L)
€32.000. C SPHERICAL - BESSEL -FUNCTION BF THE FIRST KIND.TIMES X.
€23.000 C REGEX k) E=X%JLEX)- IN THE NOTATILICN ' OF ABRAMOWITZ AND.
634.000.° C 'STEGUN.. HANDBDOK . OF - .MATHEMATI.CAL .FUNCTIONS P437. - :
635.000. C IF L :DBES NOT EXCEED X FORWARD .RECURRENCE- IS USED, DTHERWISE
636,000 C BACKWARD RECURRENCE IS USED. WITH STARTING CONDITIONS FOUND AS
637.000 C SUGGESTED .BY CORBATO AND URETSKY Jeo ASSOCe COMPe MACH. VOL 6,
€38.000 C : - = PP 366-375.(1959).
639.000. IMPLICIT REAL#8{A-H,0-21).
£40.000 DIMENSION: PEL40)
€41.000 - IF (L.GT.XL'GU To 3
642.0000 C
£43.000 C FORWARD: RECURRENCE
644 .000 “A=DSIN{X)
645.000 IF (L<EQ.0) GO TO 2
€46.000. B=DCOS{X).. -~ - - -
647..000. FAC=1.0D0/X
€48. 000 X2=FAC+FAC
649.000 DO 1 J=1.L-
650.000 Al=A . .
€51.000, A=FAC%A-B
652 .000 B=A1l s
653.000. FAC=FAC#X2"
€54.000 1 CONTINUE - -
655.000 2 REG=A
€56..000 RETURN
657.000 C :
658,000 C ****#***#*#***###**#**#***#*#***##*#*
£€59.000 C- - =
660,000 C ‘A RELATIVE ERROR- LESS THAN 1.00-7 IS DEMANDED WHEN BACKWARD
661.000 c RECURRENCE IS "USED.~ " IF THE DIMENSION OF THE ARRAY PF IS -
662.000. C. INSUFFICIENT TO- ENSURE THIS ACCURACY A HARNING IS PRINTED.
663.000 = 3 IF (LeGEa40) GB TO 6
€€4.000 © ERLG=23.25D0 - -
665.000 o ERLG IS THE ABSOLUTE. VALUE OF THE LDG TO THE BASE .2 OF DELTA 55
666.000 c WHERE DELTA. IS THE MAXIMUM PERMITTED RELATIVE ERROR IN RtG. ¥
€67.000 C HERE ‘DELTA=.1.00-T%. ¢
668 .000 C NUl IS DEFINED BY-EQN{(31) OF CORBATB_AND URETSKY.
665, 000 U=2.0D0%X/DFLOAT{2%L+1) : P

610.000

‘NUL=L+IDINTLERLG*{.0s 1D0#0.175D0% Uk {2:5.0D0-U%U) /(1 .0DD-U%U}))




LINE NUMBER
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TEXT

PAGE

2

NP‘IDINT(X-O.SDO+DSQRTltRLG*O. 35D0*X)).

671.000

€72.000 IF- (NP.LT-L) GO TO %

673.000 U=2,0D0%X/DFLCAT(2&NP#+1).

674.000 NUP=NP+IDINT { ERLG*(0.1D0+0.17500%U*(2.0D00-U*U}/( 1.0D0-U%U))} )
675.000 ‘BACKWARD RECURRENCE ‘BEGINS- WITH: THE SMALLER GF NU1-AND NUP.
676 .000 IF (NUPLLT.NUL) ‘NUl=NUP -~

677.000 REDUCED ACCURACY WHEN NUL. TOO LARGE FOR- DECLARED ARRAY

€18.000 IF .(INUl«GE.40) GO.TO 7 i

679 .000 PFINU1l¢11=1.0D-10 :

€80.000 FAC=DFLOAT.(NUl1+NUl1+1)/X

681.000 PFINULI=FAC*PFINULl+1)

682,000 X2=2.000/X

6£83.000 Jl=Nul-1

684.000. DO 5 J=1l,s4d1

685.000.. FAC=FAC~-X2

686.000 PFINUL-JI= FAC*PF(NUI*[-J)-PF(NU1+2—JJ

687,000 CONTINUE o

688.000: ‘CRN—(PF(I)IX—PF(Z)B*DCOS(X)+DSIN(X)*PF(1]

689.C000 REG=PFCL*+1)/CRN -~ -

690,000 RETURN

€$1.000.

692.000 . 6 WRITE{(Z2,100) L e

693.000. 100 FORMAT.{1H 43HL=. :13352H TBU LARGE' FOR - ARRAY DECLARED. REG REPLACE
€54.000 10 BY ZERQ) . =
695.000. "REG=0.000

€56.000 '‘RETURN

657.000 '

698.000. - -7 WRITE{2,101)-L,NU1 ) )

€$%. 000 101 ‘FORMAT (1.H . 931HFOR BACKWARD RECURRENCE WITH L=,13,32H THE CALCULATE
700.000 “1D VALUE OF NUX'IS »13524H SINCE -THILS IS 10D LARGEIGSH FOR:-THE- ﬂECL
701.000 . 2ARED ARRAY NUl IS REPLALED BY 39)

102.000 - "NU1=39"

703.000 GO TO 4

1¢4.000 - i END - ' P : i

e
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L INE NUMBER : TEXT.
165.000 REAL FUNCTION. AlREG#BlX:LJ
706..000 C "SPHERICAL. BESSEL. FUNCTION-OF “THE SECOND KIND TIMES —Xe
#(7T. 000 & ATRES I X L) ==X%YL{X) <IN THE NOTATION -OF ABRAMOWIT-Z AND
708 .000 c - STESUN. HANDBOOK. OF . MATHEMATLICAL. FUNCTIONS: P437. -
7G9.000 c CALCULALION 1S -BY FORWARD RECURRENCE»
710.000 C NO OVERFLOW PROTECTION IS"INCLUDED SINCE THIS ROUTINE
711.000 - C 'NILL.VDT BEfCALLED FDR VERY SMALL .VALUES OF X -
712.000. C o
713 .000 IMPLICIT REAL*B(A-H,D Z)
114 .000 - A=DCOS (X3 - -
7115.000 “IF (L.EQ.O) GC TO 2
716.000 ‘FAC=1.0DO/X - -
117, 000.. B=—-DSIN(X)
718.000 " X2=FAC+FAC
719.000 - DO L.Jd=1yL-
120. 000 : Al=A
141 .000- A=FAL¥*A=B
722.000 - FAC=FAC+X2
123.000 - B=al
124 .000 "1 CONTINUE
125 .000 2 AIREG=A
- 126.000 RETURN
727..000 END

$4T



LINE MUMBER

1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
S5.000
10.000
11.000
12.000
13.000
14 .000
15.000
16.000
17.000
16 .000
19.000
20.000
21.000
22.000
23.000
24 .000
25.000
26.000
27.000
28.000
29.000
30.000
21.000
32.000
33.000
34.000
35.000
36.000
37.000
38.000
35.0600
40.000
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SUSKOUTINE DEVOG(H.K2,K3,XF])

INTEGRATES NP SECOND GRDER COUPLED DIFFEKENT 1AL EQUAT IUNS
USING DE VIGELAERE®'S METHOD SUBJECT TUO A SET GF K3 INITIAL
BCUNDARY CCNDITIUNS.

H IS THc STEPLENGTH SUPPLIED BY THE USER.

AT EACH STEP THE LOCAL TRUNCATION ERROR IN EACH CGMPONENT

OF THE SLLJUTIOGN Y{(I,d),I=14y-——yNP,yJ=1y--—,K3 IS ESTIMATED.

IF T41S ESTIMATE FOUR ANY COMPONENT OF Y LS TOU LARGE THE CURRENT
STEP IS DISCARDED AND A SMALLER STEPLENGTH IS CHOSEN. WHEN THE
ESTIMATED TRUNCATION ERRUR IS SUFFIULIENTLY SMALL IN EALH
COMP3INENT JF Y THE STEPLENGTH 1S INCREASED FOR THE NEXT STEP.

KIS THE INDEX NUMBER OF THE BOUND-STATE GRBITAL WHICH IS TG
BE USED TU GENERATE THE KIH INHOMUGENECUS SOLUTION.

K3 1S THE TUTAL NUMBER OF LINEARLY INDEPENDENT SUGLUTIONS
GENERATEU JVER THE RANGE OF INTEGRATIUN; IN THE NUTATIGN GF
CHANDRA (1373) K3=NTOT1=NP+NBND IN THE GUTWARD INTEGRATIUN AND
K3=NTJ3T2=NP+NA+NBND IN THE 1NWARD INTEGRATION. CN EXIT FROM DEVOG
K3 CONTAINS THE NUMBER OF STEPS CARRIED UUT DURING THE COURSE OF
THE INTEGRATION.

XF 1S THE ENDPGINT OF THE RANGE ULF INTEGRATIUON; THE SJLUTIUNS OF
THE JUTWARD ANU INWARD INTEGRATIUNS ARE MATCHED AT XF.

CCMMON O8LOCKS:

CE 2TRANSFERS THE USER SUPPLIED FACTOK C {E.G.2) AND THE
TILERANCE PARAMETER EPS FRUM THE MAIN PRGGRAM.
THE STEPLENGTH IS INCREASED BY THE FACTUGR C WHEN THIS
CAN BE DUNE WITHOUT EXCEEDING THE BUUND EPS WHICH
1S5 AN UPPER BOUND ON THE ESTIMATED TRUNCATIUN ERRUR PER
UNIT STEP IN EACH COMPUNENT OF THE SUGLUTION Y{l,J).
BLCK 1 30N ENTRY TO DEVGG THE INITIAL VALUE GF THE STEPLENGTH
1S HU; ON EXIT HO IS THE STEPLENGTH H USED IN THE FiINAL

S XIAv34dy

bHT
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41.000
42.000
43.000
44.000
45.000
46.000
47.000
48 .000
49.000
50.000
51.000
52.000
53.000
£4.000
55.000
56.000
57.000
58.000
59.000
60.000
€1.000
62.000
£€3.000
64.000
65.000
€6.000
€7.000
€8.000
69.000
i0.000
71.000
72,000
73.000
74.000
15.000
716 .000
77.000
78.000
19.000
80.000
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BLCK 2

BLCK &

BLCK 7

BLCK 8

BLCK 9

PAGE

STEP UOF THE INTEGRATION CGR IF H HAS BEEN DECREASED HO IS
THE VALJE GF H USED IN THE PENULTIMAIE STEP.

NP IS THE TUTAL NUMBER GF CGUPLED EQUATIONS

NA IS THE NUMBER OF OPEN CHANNELS

NBND IS THE TOTAL NUMBER OF BUUND-STATE ORBITALS

GIVING RISE 7O INHOMOGENEOUS TERMS.

wP ARRAY STORES THE ENERGY VALUES (1IN ATCMIC UNITS)

FJR NP EQUATIGONS; FIRST FOR NA OPEN AND THEN FOR NB=(NP-NA)
LLUSED CHANNELS.

LP ARRAY STORES THE ANGULAR MUMLCNTA VALUES FOR NP EQUATIONS.
:X IS THE CURRENT VALUE LF THE MESH PGINT.

YOU1lsdd eI=1y=——,NP,yJd=1l,y,-——,K3 1S THE INITIAL VALJE OF
THE SGLUTION AT XO.

2301 3dd 9l=1y—=—yNP,yJ=1,-——4K3 IS THE INITIAL VALUE

Ur THE FIRST DEK1VATIVE GF THE SGLUTION AT X0e.
FO(I3Jd)plsly—-—=yNPyJ=1l,---,K3 1S THE INITIAL VALUE

UF ThE SECCOND DERIVATIVE OF THE SULUTICGN AT XO.

YUT9Jd) 9 20T 4Jd) 9F(Isd)91=1y———yNPyJ=19y-—-=4,K3 ARE THE
CJRRENT VALUES OF THE SCLUTION AND ITS FIRST AND SECOND
DERIVATIVES RESPECTIVELY.

il ARRAY STORES THE 'MESH PUOINIS wHICh ARE CHUSEN
AJTOMATI1CALLY OVER THE RANGE Or INTEGRATION.
FUN(I,J,K))I=11—‘-1NP9J=19--—1K39K=1;‘—"K0 JdR KI,

WAERE RDOs,KI ARE THE NUMBER OF INTEGRATICN STEPS CARRIED
OQUT IN THE GUTWARD; INWARD INTEGRATIGNS RESPECTIVELY,
STURES THE SULUTION AT THE CURRENT MESH POINT w(K)e.

SKG 1S5S OESCRIBED ABOVE.

NTGUGT1 1S DESCRIBED ABULVE.

FBl(I,Jd) IS THE SCLUTION OF THE ITH EQUATION FUR THE JTH
BOUNDAKY CCNDITION IN THE OUTKLARD INTEGRATION AT XF.
FDR14{I,J) 1S THE DERIVATiVE OF THE ITH EQUATION FGR THE
JTH BUUNDARY CONDITION IN THE OUTWARD INTEGRATION AT XF.
WI{K) STORES THE MESH PUINTS USED IN THE CUTHWARD
INTEGRATIUMN FOR USE IN SUBROUTINE SIMPSN.
FUNU(I)J,K)'1=11—-—pNP’J=1"’—1K3,K=l)—_‘,K0 STORES

THE SGLUTION IN THE CUTWARD INTEGRATIGON AT THE
CORRESPONDING MESH POINT WO{(K) FOR USE IN SUBROUTINE SIMPSN.
:K3 IS DESCRIBED ABOVE.

NTUTZ2 15 DESCRIBED ABOVE.

FB2(1,4) 1S THE SOLUTION OFf THE 1ITH EGQUATION FGR THE JTH

‘05



LINE NUMBER

81.000
82.000
83.000
£€4.000
85.000
86.000
87.000
€8.000
89.000
50.000
51.000
$2.000
$3.000
$4.000
$5.000
56.000
57.000
€8.000
$9.000
100.000
101.000
102.000
103.000
1C4.000
1C5.000
106 .000
1¢7.000
108.000
1¢9.000
110.000
111.000
112.000
113.000
114.000
115.000
116.000
117.000
118.000
119.000
120.000
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TEXT PAGE

BOUNDARY CONDITION IN THE INwARD INTEGKATION AT XF.
FOk2(14J) 1S THE DERIVATIVE CF THE 1TH EQUATION FOK THE
JTH BUUNDARY CCGMDITION IN ThE INWARD INTEGRATION AT XF.
Wl (K) STORES THE MESH PUINTS USED IN THE INwWARD INTEGRATION
FIR USE IN SUBROUTINE SIMPSN.
FONIC(lsdsK)sIl=lg=== NP yJd=1ly=—=9K33K=1, +KI STURES
TAE SOLUTION IN THE INWARD INTEURATICN AT THE CUGKRESPONDING
MESH POUINT Wl{KJ) FUR USE IN SUBRGUTINE SIMPSN.

INFORM sIREAD CURRESPUNDS TU THE UNIT USED FGR CARD READING.
IPRINT CURRESPONDS TU THE UNIT USED FOK CARD PUNCHING.

IMPLICIT REAL*8{A-H,0-1)

DIMENS1UGN FEVEN(5,12) ,FODD(5,12) ,F2115,12),Y00D{5,12)

DIMENSIUN YUDD1i5,1c)sY1{5,12),21(5,12),FEVEN1{5,12) ,F0DD1(5,12)
DIMEMNSION F211(5412),TR1(5,1239TR2{54123,TR21(5+12)5TR3{5,12)
DIMENSIGN TRERR(5,12),DTRERR{5,12),TOL(5,12)

COMMON/CEPS /L,EPS

CCMMON/BLCK 1/HOyX0,RO,RA

COMMULN/BLLK 2/WP{5)3NPsNA;NBND,LP(5)

COMMUN/BLLK 6/X,Y0(5912)420(5412)FO(5512)9Y(5412352(5,12),F(5,12)
COMMUN/BLLK 7/w{2000),FUN(5,12,2000)

CUMMIN/BLCK 8/KOsNTGT1,FB1(5+7) sFDR1{5,7},wC(2000),FUNO{5,12,2000)
CUMMLN/BLCK 9/KI1yNTOT2,FB2{5,12),FDR2{5,12),kI{2000),FUN1{5,12,200
10)

COMMUN/INFORM/ZIREAD»IPRINT

NINC CUUNTS THE NUMBER OF INCREASES IN STEPLENGTH REQUIRED
DURING THE CLUURSE OF INTEGRATIGN.
NINC=0
NDEC CUUNTS ThE NuMBEK UF UDECREASES IN STEPLENGTH REQUIRED
DURING THE CUURSE uF INYEGRATIUN.
NDECL =0
THE INTEGER ISTEP CUUNTS THE NUMBER OF STEPS CARRIED JUT
ISTEP=0

DESCRIPTIUN ANL INITIALIZATIUN OF VARIABLLS REGUIRED FUR
BOOK-KEEPIWNG AND ERROR CONTRLL

57
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121.000
122.000
123.000
124.000
125.000
126 .000
127.000
128.000
129.000
130.000
121.000
132.000
133.000
134.000
135.000
136.000
127.000
138.000
139.000
140.000
141.000
142.000
143.000
144.000
145.000
146 .000
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THE INTEGEK KD 1S INITIALLY SET TU ZERU AND 1S SET TU ONE
WHEN THE ESTIMATED TRUNCATIUN ERROR IN ANY ONE GF THE LGMPULNENTS
UF TAE SLLUTIGN IS TUU LARGE; KD 1S KRESET TO ZERU UNTIL THE ABOVE
CCNDIiTIUN IS KEENCOUNTERED.

KD=0
THE INTEGER JHD IS INITIALLY SET 10 ZeERQ; IF THE NEXT STEP WITH
THE CJURRENT VALUE OF H WOULD TAKE THE CALCULATICN BEYOND XF
A DECREASE IN STEPLENGTH 1S FUGRCED SO THAT THE NEXT STEP ENDS
PRECISELY AT XF AND JHD IS SET TG 1.

JHD=0
THE INTEGER K IS INITIALLY SET TU 1l; w(l) REPRESENTS THE FIRST
MESH PUINT XO AND WEK) REPRESENTS THE MESH PGINT XO0+(X-1)H.

5 K=1
J1 AND J5 REPRESENT KESPECTIVELY THE NUMBER GOF SUCCESSFUL STEPS
CARRLED OUT WITH THE CURRENT H AND THE PREV1OUS
SULLCESSFUL H.
J1=0
JS$=90

JZ: THE STEPLENGTH IS INCREASED FRCM H TOUO C*H IF FOR 3 SUCCESSIVE
STEPS THE PKREDICTED TRUNCATION ERKUR WITH A STEPLENGTH COF C*H 1S
SUFFICIENTLY SMALL. J2 IS USED AS A CGUNTER FOR THIS PURPGSE.

J2=0

JO: WHEN A STEPLENGTH DECKREASE IS NECESSARY A NEW H IS CHGSEN.
CALCULAT IUNS MAY SHUW THAT THIS IS INADEQGUATE, SL A FURTHER
RECUCTIUGN IS REQUIRED. JD KEEPS TRACK OF THE STEPLENGTH
DECREASES IN SUCH A CASE. IT IS INCREASED bBY 1 wlTH EACH
DECREASE ARD IS SET TO ZERU WHEN AN ACCEPTABLE H HAS BEEN FUUND.

JL=0

Ci 1S THi RATIC OF THE CURRENT H TO THE PREVIOGUS SUCCESSFUL VALUE.
Cl=i.000
C2=C1%C1

DO 35 J=1,K3

DGO 35 1=1sNP

TR1(I,J)=1.002
35 CONTINUE

HMAX=(XF-4{1)17/5.0D0
IF A STEPLENGTH GREATER THAN HMAX WERE USED THE TRUNCATIUN EKROR

WOULD NULT Bt ESTIMATED BEFORE XF IS REACHED.

TSt
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LINE NUMBER TEXT PAGE 5
161.000 DH=DABS (H)
162.000 DHX=DABS( HMAX)
163.000 IF{DH.GT JUHX) H=HMAX
164,000 C
1¢5.000 WRITE(LPRINT s 140)
166 .000 WRITE(IPRINT,143) W(1)yHy ((FUNCIoJdsl)si=14NP),J=1,K3)
167.000 C
168.000 C***INITIAL STEP
169.000 H2=H*H
170,000 DU 36 J=1,K3
171.000 DG 36 1=1,NP
172.000 Z(1,J)=H*20(1,J)
173.000 FEVEN(I,J)=HZ*FO(I,J)/3.000
174,000 F2I{1sJ)=FEVEN{1,J)
175.000 Y{1,J)=Y0(1sJ)+Z(1sJd)+Ll.5D0%FEVEN(I,J)
176 .000 36 CGNTINUE
177.000 X=X0 +H
178.000 K=K+1
179.000 WIK) =X
180.000 CALL DRV2(K2,K3)
181.000 DU 37 J=l 4K3
182.000 DG 37 I=1,NP
183.000 FOGUD(1sJ)=4.0DO%H2%F {1,J)/3.0D0
184.000 YiIsd)=Y{1sd)+(FODD(I J) -4 .0DO*FEVEN{I,J))/8.0D0
185.000 37 CONTINUE
186.000 CALL DRV2{KZsK3)
187.000 DU 38 J=1,K3
188.000 DO 38 I=1,NP
185.000 FUNLIpdsKI=YL14J)
196 .000 FODD(Isd) =%« 0D0%H2%F (1,4d) /3. 0DO
191.000 38 CONTINUE
1$2.000 X=X+H
193.000 K=K+1
154.000 W{R) =X
155.000 DC 39 J=1,K3 -
156 .000 DG 39 I=1,NP , 1N
1$7.000 Z101,J0=2{13J)+FEVENII,J) ©
158.000 YA(I,d)=Y0(1sJ)+2.000%Z111,J}+FGDDI1,d)
159.000 39 CONTINUE

200.000 CALL DRVZ2{KZ2,K3)
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240.000

DO 44 J=Ll,K3

LINE NUMBER . TEXT PASE 6
2G1.000 DO 40 J=1,K3
262 .000 DO 40 I=1,NP
203 .000 FUN{1gdsK)=Y{Iyd)
2C4.000 FEVENGI s J)=H2%F(1,J)/3.0D0
205.000 Z(1sd)=2141,J)+FODU( L) #FEVENTL 4J)
206.000 40 CONTINUE
2G67.000 [FI1STEP.GT.0) GU TO 4
2C8.000 DO 41 J=1,K3
269.000 DU 41 1=1,NP
210.000 YODDL1(I+J3=Yl1,d)=2{14J)#11e4DI*FEVEN{L,J)+3.000%FCG0D (I ,4)-2.0D0%F
211.000 121(15J)) %0.250-2
212.000 41 CONTINUE
213.000 X=vi(2)
Z14.000 DO 42 J=l sK3
215.000 DO 42 1=1,NP
216.000 Y (1sd)=YOODL(I,d)
217.000 42 CONTINUE
218.000 CALL DRV2(KZ,Kk3)
219.000 X=r (K)
220.000 DO 43 J=1,K3
221.000 DO 43 1=1,NP
222.000 FODDL{IsJd)=4%+0D0%H2%F(1,4)73.000
223.000 YTsJd)=FUN(Lsd,K)
224 .000 COLD=C1
225.000 Y1ERR=0.75D0% (FUDDL(15J) —FCDD{1,J) )/ H
226.000 DY1eRR=DABS{ Y1ERR}
227.000 DY=DABS{Y{l,dJ)
228.000 TOL{1sJ) =EPS*UMAXL(L.0D0,DY)
229.000 IF(DYLERR .GT.TULIIsd)) KD=1
230.000 IF(DY1EKRGT«TOL(I5d)) CL={0.5D0%EPS/DYLERR)*%0.2D0
231.000 IF(CULD.LT.C1) C1=COLD
232.000 43 CONT INUE
233.000 IF{KD.EWQ.0) GU TU 4
234,000 KD=0
235.000 H=C1 %
226.000 WRITE(IPRINT »142) S
237.000 GO TO 5 F
2384000 4 WRITE4IPRINT 3143) W(K) yHy ({FUNI1yJ9K3sI=1sNP)sJ=1,K3]
239.000 Ji=J1i+1
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280.000

YCOUL(I4J)=YET,d)=2{1,J)+{1.4D1*FEVENLI,J)+3.0D0*%FUDD(1,J)-2.0D0%F

LINE NUMBER TEXT PAGE 7
241.000 DG 44 I=1,NP
242 .000 F21(1,J)=FEVEN(I,J)
243.000 44 CONTIKUE
244.000 ERRFAL=4.000/( 4. 501%H)
245.000 C  ERRFAC IS A FACTOR WHICH APPEARS IN THE TRUNCATIUN-ERRULR ESTIMATE.
246.000 X=X+H
247.000 K=K+1
248.0600 WIK) =X
249.000 C
250.000 ISTEP=1
251.000 C
252.000 C
253.000 Cx***GENERAL DE VUGELAERE LOOP
254.000 3 DO 45 J=1,K3
255.000 DO 45 1=1,NP
2564000 L(153)=2(14J) +FEVEN(L,+J)
257.000 YODU(I,d)=Y(I,d)+Z81,d)
258.000 Y{1,J)=YODD(1,J)+FEVEN{I,J)-0.125D0%FLDD1{1,J)
259.000 45 CUNTINUE
260.000 CALL DRVZ{K2,K3)
261.000 DO 46 J=1,K3
262.000 DO 46 I=1,NP
263.000 FUN{T,d9K)=Y{1,J)
2€4.000 FODD{I 5d) =4« 0DO*H2%F (1,J37/3.000
265.000 46 CONTINUE
266.000 X=X+H
2€7.000 K=K+1
268.000 W K) =X
269.000 DO 47 J=1,K3
270.000 DG 47 I=1,NP
271.000 Z(1,3)=20isJ)+FUDD(I )
272.000 Y(I,Jd3=YI0D{1,J)+Z{1,J}
273.000 47 CONTINUE
274.000 CALL DRV2{K2,K3)
275.000 DO 48 J=1,K3
276.000 DG 48 l=1,NP brg
217.000 FUN(13JeKI=YL(14J) =
278.000 FEVEN{1l,J)=H2*F(1,J)/3.0D0
219.000 Z{1,J)=L(1+J) +FEVEN{1sJ)



QUDKRULI LIZNE VULVUOUDLININCIND 9sAT )

220.000

TRLI{I+Jd3=TR2LII,4J)

LINE NUMBER TEXT PAGE 8
281.000 12I(14J))%6.250-2
282.000 TR2{1,Ji=YOUDL(T1,4J)-FUN{I4J,K~-1)
283.000 TRZL{1,33=TR2(1,J)
284.000 48 CUNTINUE
<85.000 IF{ISTEP.LE.2) GU TO 32
286.000 IF(JlebEWelelRe(J1eEQ.V.AND.JS.EQ.1)) GU TU 30
287.000 GO TU 32
288.000 30 DO 49 J=1,K3
289.000 DU 4S9 1l=14NP
250. 000 TR2(1,J)=BETA*TR21{1,J)
£51.000 IF(Jl.EGeD) TRZ2{1,J)=BETAL*TR21{I,4J)
292.000 49 CONTINUE
£%3.000 32 Cl1=Cl1
294.000 £21=C2
255.00C0 DG 56 J=1,K3
296.000 DG 56 I=L,NP
257.000 CoLb=L1
268.000 TRERR{1,JJ)=4TR2(14Ji-TR1(154))*ERKFAC
299.000 DTRERRL1,J)=UABS(TRERR(I,JJ)
300.000 DY=DABS(YlI,u))
3C1.000 TOLLI »J)=EPS*¥DMAX1(1.0D0,DY)
302.000 IF{(UTRERRII+J)GT.TOLL15J)).AND.ISTEP.GT. 1) KD=1
303.000 IF{{DTRERR(1yJ) eGTaTOL(L9J)) e ANDISTEP.GT.1) C1={0.500%TOL{1,J)/DT
204.000 1RERR (I 9J) ) *%*0.25D0
305.000 IF(COLD.LTC1l) C1=C0LLD
306.000 56 CONTINUE
307.000 ARITEUIPRINT,141) W{K) yHy(IY(I,J) s TRERR(IJ)I=14NP)4J=1,K3)
308.000 C IF TRUNCLATIGN ERRUR IS TGLU LARGE GG TJ 14. THIS DOES NOT APPLY TO
309.000 C THE FIRST STEP SINCE TwWwU STEPS ARE REQUIKED FOR AN ERRUR ESTIMATE.
210.000 C THE PARAMETER TUL PRUGVIDES AN ABSOLUTE UR RELATIVE ERRGOR CRITERION
211.000 C ACCORDING AS THE ABSOLUTE VALUE UF Y IS LESS LR GREATER THAN UNE.
312.000 IF(KD.tQe1l) GC TO 14
313.000 C
214.000 C
215.000 C CURRENT STEP ACCEPTED. DATA STURED FROM PREVIOLS STEP UPDATED.
316.000 JD=0 . S
217.000 J1=J1l+1l g}
218.000 DG 50 J=1,4k3 :
319.000 DL 50 I=1,u0P
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SUBKUUTINE DEVUG{H,K2,K3,4 XF)

F2141,J)=FEVEN(I,J)
Z1013d)=211,d)
FEVEN1(1yJ)=FEVEN{I,J)
FODD1(14J)=FGOD(TyJ)
YLD Jd3=Y(1,44)
50 CONTINUE
1F (JHD.EW.0) HLl=H
UPDATE ERRFAC IF NECESSARY
IF{J1.6T.2) GU TO 31
ERRFAL=4%,0D0/ (4.5D1%H)
IF(J1.EQ. 1) ERRFAC=0.8D0%{C2/H)/13.000%C2+5.0D0%C1+1.0DO)
31 ISTEP=1STEP+1

PREDICT TRUNCATION ERROR FOR THE NEXT STEP wITH A STEPLENGTH OF C*H.
IF THIS IS SUFFICIENTLY SMALL GU TO 13 TU INCREASE THE STEPLENGTH.
10 DO 51 J=1,K3
DG 51 1=1,NP
DTRERR{IsJ)=DITRERRII JI*C**x4
IF(OTHRERR Ll 9J) eGT(0.5D0%TOL{IyJI)) GU TU 25
51 CONTINUE
GG YO 13
25 J2=0
23 IFf{JHDetd 1) GO TO 2
XXF=XF=X
XXF2=XXF/2.0D00
DXXF=DAbS (XXF)
IF(DXXFeLTsla0D-81 GO TO 2
IF THE NEXT STEP WGLULD TAKE THE CALCULATION BEYUNUD XF REDUCE THE
STEPLENGTH; THE QUANTITY {XF-X-2H)JH IS PGSITIVE UNTIL
THE INTEGKATION PROCEEDS BEYOND XFo. EXIT IF X EQUALS XF.
IF((XXF-2 .000%H)*HeGE.0.0D0) GU TO 60
J2=0
JHD=1
Cl=XXF2/H
H=XXF2
L2=L1l=%Ll
GB TG 1¢
STEPLENGTH UNCHANGED FUR NEXT STEP. UPDATE X AND RETURN TU BEGINNING
OF LGuP.

324
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LINE NUMBER TEXT PAGE 16
3¢1.000 60 K=K+1
262.000 K=X+H
3€3.,000 WiK)=X
3€4.000 GG 70 3
2¢5.000 C***END UF DE VUGGELAERE LuUP
366.000 C
367.000 C
2€8.000 2 K3=K
3€69.000 HO=H
370.000 IF{LleLT«1.0UD0) HO=HL
371.000 C PRINT THE FINAL VALUES OF ISTEP,NINC,NDEC AND RETURN TU CALL ING
372.000 C PROGKAM.
373.000 WRITE(1PRINT,112) ISTEP,NINC,NDEC
374.000 RETUKN '
375.000 C
3276.000 C
377.000 C THE CUDING RELEVANT TU THE CHANGE OF STEPLENGTH IS CONTAINED
378.000 C BETWNEEN LINES GUF DASHES.
376.000 C
380.000 ( === e e
2€l1.000 C
382.000 C
383.000 C***STEPLENGTH LECREASE
384.000 14 JD=JD+l
3€5.000 JHD=0
386.000 KD=0
387.000 IF{Jl.EQ. 0} GL TO 20
338.000 JS=J1
389.000 J1=0
350.000 DG 52 J=1,K3
361.000 DG 52 1=1,NP
3%2.000 TR3{1,Ji=TK1 (1,4}
363.000 FlLliyd)=F2111,J)
394.000 52 CCNTINUE
265.000 20 X=X-2.0D0*H
366.000 K=<-2
367.000 WIK)=X
3268.000 H=C1%*H
399.000 NDEC=NDEC+1

400.000 WRITE({IPRINTs142)

85t
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LINE NUMBER TEXT PAGE 11

401.000 C IF I=2 ENTRY TG TH1S SECTIGN MEANS THAT H WAS TUO LARGE IN THE LAST
402.000 C TwO STEFY SU IT IS NECESSARY TU RESTART FRCM XC WITH THE NEW h

403.000 IF{15TEP.EQ.2) 50 TO 5
404.000 DU 53 J=1,K3

4C5.000 OC 53 I=1,4NP

406 .000 Z(I,Ji=2111,J])

407,000 F2i(1,Jd)=F211(1,4)
408.000 FEVEN{Is+J)=FEVEN1{(1,J)
409.000 FCGLL{1,d)=FuUubl(I,J)
410.000 Y{1,J)=Y1(1,yJ)

411.000 53 CONTINUE

412.000 C Cl NGCs BELOMES THE RATIU OF THE NEw H T3 THE LAST SULCESSFUL H.
413.000 Cl=H/H1

414.000 C2=(C1*C1

415.000 C NOW ENTER RESTART SECTION
416.000 GG TJ 1¢

417.000 C

418.000 C

419.000 C**%STEPLENGTH INCREASE
420,000 L NG ALTIUN TAKEN UNLESS J2=3.

421.000 13 J2=J2+1
422.000 KD=2

423,000 IF(J2.LT.3) GU TO 23

424 .000 J2=0

425,000 4S=J1

426.000 J1=0

427.000 XXF=XF-X

428.000 1F { (XXF-2.0D0*(*H)*H.LT-0.0D0) GU TL 15

429.000 DC 54 J=1,K3

430.000 DO 54 I=1,NP

431.G00 TR3(1,J)=TR21{1,J)

432.000 F211101,Jd)=F2101,4)

433,000 54 CONTINUE

434,000 NINC=NINC+1

435.000 c1=C %
436.000 C2=C1%L1 Q
437.000 H=C 1*H :

438.000 GO TO 16

439,000 15 XXF2=XXF/2.0D0

440.000 JHD=1
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480.000

3ER JF DECKEASES IN STEPLENGTH REQUIKED OURING THE COURSE UF INTEGR

LINE NUMBER TEXT PAGE 12
441,000 Cl=XXF2/H
442.000 H=XXF 2
443,000 C2=01%*L]
444,000 C
445,000 C )
446 .000 Cxx*RESTART SECTIuN. THIS PRUGVIDES THE DATA NELESSAKY FOR REENTRY TO
447.000 C THE DEVUGELAERE LGCOP WITH INCREASED 0GR DECREASED H.
443.000 16 HZ2=Hx*H
44%9.000 ALPHA=(2.,000+C1)*C1%*C2/3.00D0
450,000 DC 55 J=1,K3
451.000 DU 55 1=14NP
452.000 Z{1,0d=C1%Z{1,J)
453.000 F2lily3J)=02%F21(1,J)
454,000 FEVEN(12J)=C2*FEVEN{T,J)
455,000 FCDD(14Jd)=C2*FRDD1I,J)
456,000 FOLLUI143J)=6.000%(1.000-CLl)*FEVEN(L,3)+C1*FCOUDI(],J)
457.000 TRI(I ¢ JI=ALPHA®XTR3 (1,44}
458.000 55 CONTINUE
459,000 C SOME DIFFEREMCES OCCUR IF THE PREVIOUS STEPLENGTH WAS USED ONLY ONCE
460.000 IF(JS.EQ.1) GU TO 21
461 .000 GO TG 22
462.000 C THEN LALCULATE APPROPRIATE ERROR TERM WHEN JS=1
463.000 21 ERRFAC=4.8D0*C2*C2L/((C21%{-C2+T7.0D0%C1l+1.2D1)+2.000*%C1l1*{-C2+6.0D
464 .000 10%(C1+1.001)#2.0D0%{C1+2.000))*H)
4¢5.000 1F{JD.EGa1) BETAL=BETA
4¢6,.,000 GG TU 24
467.000 22 ERRFAL=l.o0DO*(C2/H)/ (1.2D1+7.000%C1-L2)
468.000 24 BETA=ALPHA/Z[L&*(C2)
4€9.000 X=X+H
470.000 K=xK+1
471.000 WiIK)=X
472.000 GO 70 3
473.000 C
474.000 ( === e e e e e e e e e e e e —
475.000 C ®a
476.000 C FORMAT STATEMENTS s
477,000 112 FGRMAT(1HOs"THE END CF THE RANGE OF INTEGKATIUN HAS BEEN REACHED'/ )
478.000 1/'NUMBER CUF INTEGRATION STEPS LARRIED GUT',16/'NUMBER OF 1NCKEASES
479.000 2 IN STEPLENGTH REQUIRED DURING THE LUURSE UF INTEGRATIGN'*,I3/°'NuiB
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481.000
4E2.000
483,000
484.000
485.000
486.000

4387.000 "

SUBROUTINE VDEVUG(HyK2 K3y XF)

PAGE

13

4ATICN® 313,//7)
140 FORMAT(1A0s1HX 14X 9y1HHs14X31HY 14Xy 5HTRERR/1HO)

141 FGRMAT (1H

124D0134692X),33(D13.692X¢DLl0.3,2X)/4(D13.632X9D10.3,2X)/4

1{D13.642X4D010.3,2X)])
142 FORMAT{(BHORESTART)

143 FORMAT(LlH
END

120013 e69¢X)33(D13ewy14X)/4{(D13.6414X)/4({D13.6,14X))

197
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488.000
489.000
450.000
491.000
492.000
493,000
494,000
455.000
456.000
497.000
498.000
499 .000
5C€0.000
5C1.000
502.000
£03.000
5€4.000
505.000
506. 000
507.000
5G8.000
509.0600
510.000
£11.000
512.000
515.000
514.000
515.000
£1¢.G600
517.000
518.000
£15.000
£20.000
£21.000
£22.000
523.000
524.000
£25.000
£26.000
527.000

(@}

QUDRUUIINE URVLARZLYNDY

SUBRGUTINE DRVZ2{K2,K3)

THIS ROUTINE CALCULATES THE POTENTIAL FGR ELECTRUN-HYDRUGEN
SCATTERING IN THE STRONG-COUPLING APPROXIMATICN, WHEN ONLY 1S AND 2S
ATOMIC STATES ARE INCLUUDED IN THE EIGENFUMNCTIGN EXPANSION, WITH
EXCHANGE NEGLECTED. THE SECOND DERIVATIVE CF THE SOLUTION AT THIS
MESH PUINT MAY NDw BE CALLULATED AND 1S STGRED IN THE F MATRIX.
BLCK 3 :CN MATKIX STURES THE COEFFICIENTS OF X**{-K-1), K=ls-——,MAXP

IN THE ASYMPTUTIC FORM OUF THE POTENTIAL WHERE MAXP IS

THE MAXIMUM VALUE OF K.

1Z 1S THE NET CHARGES

IMPLICIT REAL*8(A-H,0-2)

CUMMON/BLUK 1/H0O,X0,R0,RA

COMMON/BLLCK Z2/7WP{5) 4sNPyNAJNBND,LP(5)

COMMON/BLLK 3/CNi59594)522,MAXP

COMMUN/BLCK 6/X3Y0{5412)4920(5512)9F015412),Y{(5912),215,12),4F(5,12)
COMMON/BLCK 7/%(2000),FUN{5,12,2000)

COMMUN/BLCK 9/KI 4 NTGI2,FB2{5,12)+FDR2(5,12),1k1{20003,4FUN1(5,12,200
10)

IF(K3.EQa NTUT2.AND. Xe GE.RA) GO TG 3
DB 2 J=1,K3
DU 2 i=1,KkP
FU19dd=Y( 1 J)#{DFLOAT{LPLI)*LPIL)+LP(1))/IX*¥X)}+2.0D0%(~-2ZZ/X-kP( 1))
1)
DO 1 K=1,NP
IF{I NEeK) V=4.000%DSQRT{2.000)1*{2.,0D0+3.0D0%*X)*DEXP1-1.5D0%X)/2.7
101
IF{IeEGe]l sANDaK.EQel) V=—2.0D0*%(1.000+1.0D0/X)*DEXP{-2.000%X)
IFIIEQ+2 eAND K oEWa2) V=-2.0D0%{1.000/ X+ 0. 7500+X/4.0D0+X*X/8.0D0) %
LDEXP{-X]
FLil,Jd)=F{1,J)+V*Y(K,yJ)
1 CONTINUE
2 CONTINUE
RETURN
3 DC 5 J=1,K3
DG 5 i=1,NP

PAGE
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JEJq_ﬁ

NOiLD

=
g24!1 -
K

NUMBER

£28.C00
£29.G00
530.000
£31.000
532.000
£35.000
534.000
535.000
£36.000
537.000
538.000
539.000

3s
~~ 1 _

30N3IDS

SUBRUGUTINE URVZIKZ K3}

FOI3J3=2.000%(-ZZ/X-WPL1))*Y (14J)
DO 4 K=1l,NP
DC 4 L=1,MAXP
FLI,d)=F019Jd)=YIKyJ)*CNIIyKyL)/{X*E(L+1))
4 CONTINUE
IF{K2.6GT.0) GUL TO 6
5 CONTINUE
RETURN
6 WRITE{1PRINT,7)
RETURN
7 FURMAT(53HOEXPRESSIONS FOR THE INHOMUGENEUUS TERMS ARE REGQUIRED)

END

€92
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On de Vogelaere’s Method for y” = f(x, y)

By John P. Coleman and Julie Mohamed

Abstract. Easily calculated truncation-error estimates are given which permit effi-
cient automatic error control in computations based on de Vogelaere’s method.
An upper bound for the local truncation error is established, the interval of abso-
lute stability is found to be |—2, 0], and it is shown that the global truncation
error is of order h4 where h is the steplength.

1. Introduction. Ordinary differential equations of the special form
m y' = fx, ),

and systems of such equations, arise in a variety of physical contexts. Examples in-
clude atomic and nuclear scattering problems, molecular-dynamics calculations for
liquids and gases, and stellar mechanics. A numerical method proposed by de Voge-
laere [3] has been used extensively to solve equations of this type (e.g. [1], [8], [9]
and [12]), and Chandra [2] has published a computer program which uses de Voge-
laere’s method to solve the differential equations arising in a close-coupling formula-
tion of quantum mechanical scattering problems. Chandra’s program makes no at-
tempt to monitor the local truncation error, and leaves the choice of steplength strat-
egy entirely to the user.

A major objective in recent work on numerical methods for nonstiff ordinary
differential equations of first order has been the development of efficient codes which
automatically select steps as large as possible while satisfying some error criterion
specified by the user (see surveys by Shampine et al. [11] and by Lambert [7]).
Adopting this philosophy, our aim has been to improve on existing implementations
of de Vogelaere’s method for the second-order equation (1) by incorporating a meth-
od of truncation-error estimation, and an automatic mesh-selection facility.

For ease of reference, and to establish notation, we present in Section 2 a der-
ivation of de Vogelaere’s method based on Taylor expansions. The estimation of
the local truncation error, on which the choice of steplength depends, is discussed in
Section 3. Despite the frequent use of de Vogelaere’s method we are unaware of any
previous error analysis, or any study of the stability of the method; later sections of
the paper deal with these matters. A bound for the local truncation error is derived
in Section 4, the stability region of the method is established in Section 5, and the
global truncation error is examined in Section 6.

2. Derivation of de Vogelaere’s Method. The differential equation (1) is to be
solved, in some real interval [g, b], subject to the initial conditions
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y(xo) =)o z(xo) =29

where y, and z,, are specified numbers and
-4
z(x) 2

The mesh points, which in general are not evenly spaced, are denoted by x, (n = 0, 1,
.+ . ), ¥, is an approximation to the exact solution y(x,) at the mesh point x,, and
we shall also use the abbreviation

fo =FCn Yn)-
Let h be the initial steplength, so that
x,=xog+h xy3=xo+%2h
Then, by using the equations
h?
hfog =fo =1y + 7.’3 + O(h®)
and
h? h?
o+ fo=1f—fo=¢fo + O

in Taylor expansions about x,, we obtain

n? h* s
¢)) y(xl)=yo+hzo+?(4fo—f_l)+—8—j3+0(h)
and

h? 245
3 y(xx) =yo t 2hzg + T (4f, + ) + Y5 fo + o(h®).

These expressions are valid provided that any errors in f_; and f, are of order h3 and
h*, respectively. '

The de Vogelaere algorithm is obtained by neglecting O(h*) terms in (2) and
O(h®) terms in (3). For a fixed steplength A, its general step, leading from x,, to
Xyp+2 = Xa, + 2h, may be described as follows:

Given Yanr 220 fzn and f2n—l’

2
4) ) Yans1 =Van T hzy, +%(4f2n = fan-1)
(5) () frns1 = Cne10 Yans1)s

; A .
(6) (iil) Yyp4q =Yan + 212y, + ’;_(4f2n+l + 2fsn )
Q)]

(V) fan+2 =fCapi2: Yana2)s

(8) (V) 23,42 =2y, +g(fzn + 40,41 T fansa)-
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The local truncation errors in ¥, , and z,,.., are of order h°, and that in
Y41 is of order #*. This algorithm has some similarity with Runge-Kutta methods,
but it involves only two function evaluations per step whereas a Runge-Kutta method
of the same order requires three (see e.g. [10]). Unlike Runge-Kutta methods, the
de Vogelaere algorithm is not self starting, but, as de Vogelaere [3] suggested, this
difficulty is easily overcome since by taking l

{
h? !
) Y-y =Yo ~hzg + 5 fp i

we can calculate f_, with an error of order h3.

An arbitrary change of steplength can be introduced without additional function
evaluations. If a steplength h, is used as far as x,,,, the quantity f,, _, refers to the
mesh point x,, , =x,, —h,. If we now change the steplength to h, = ch,, f,,,
must be replaced in Eq. (4) by f,,,_,, an approximation for f at x,, — h,. This can
be achieved by defining

(10) Fan-1 =Ffan + lfan_y ~ fan):
which has a local truncation error of order h%.
3. Truncation Error Estimates. Equation (3) shows that the leading.term in

the truncation error in the step from x,, to x,,, ., is

2h5 .
an 25 Fon-

De Vogelaere [3] described a method for estimating this quantity when the steplength
h is constant. To allow us to monitor the truncation error immediately after changes
of steplength, it is necessary to introduce some modifications which are described in
this section. We consider four separate cases.

3.1. Fixed Steplength. Since the truncation error in y,,, ., is of order K4,
and that in y,, , , is of order h%, y(x,,,,) may be estimated more accurately by
Taylor expansion about x,,. By using the equations

hzflz'n+2 =f2n+2 - 2f2r|+l +f2n + 0(h3)

and
—_ 3 1 + h3
hfan+a = §f2n+z ~ o 5f2n o)
to replace the low-order derivatives, we obtain the new estimate
h2
(12) Vin+1 =YVanse2 “hZgpya t 2_4(7f2n+2 + 6fy041 = f2n)s

which has a local truncation error of order A3, Consequently,

A h4 J :
(13) Yin+1 " Yan+r = ?f;n + O(h®).
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Similarly, if the same steplength is used for the next step,

W . s
Yines " Va3 =g f2n+2 T O0F),
and the required truncation-error estimate is given by

2}15
45 2n 45 (f;n +2 on)

8
o 25 [(y;n-'.a ‘}'2,.4.3) - (y;n+l _y2n+l)] :

The truncation error per unit step, which is a more appropriate basis for de-
cisions about the steplength, is approximated by

(14) ag_h[(y;n+3 ~Van+3) =~ Ons1 ~V2ns 1)l

3.2. Immediately Following a Step Change. Let h, be the steplength used in
the step from x,,,_, to x,,,, and in the preceding step. Equations (6) and (8) can
be used to put Eq. (12), with n replaced by n — 1, in the form

1
(15) Yin-1 =Yan-2 T hyZp 5 + 2_4h¥(7f2n—2 + 6fyp_y ~f2n)-
Then

1
(16) Yin-1 ~Y2n—1 = 5_74"?('9f2n—2 + 6f3n—1 = fan t 4f2n-3)

h
f;n— - 2"n -1 +0(h¢ls)'

If the steplength is now changed to h, = ch, for the next step, Eq. (10) combines
with (4) to give

1
(17) Yan+1 =Va2n + hzzzn + Eh;[(3 +C)f2" _con—l]'
Equations (6) and (8) apply with A = h,, and
|
Yiner =Van T hyzgp * ﬁhgnfzn + 6fan+1 ~fan+2):

Steps similar to those used in deriving Eq. (16) then show that

h" 1
(18) ¥3,41 " Van+1 = 24( )fznﬂ (2 +' cz) 2n+1 +0(h2)

and

03n+1 _y2n+1)'%"4( ) ~Yan-1)

O2n
(—1+7+ —2) an + O(RS).

s
=_2_
72
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The resulting estimate of the truncation error per unit step is

8el(v i1 ~Yans1) ~ 003,y ~Y2u-)l ,

19
(19) Sh,(12 + 7¢ - ¢?)
where
(20) % 32 + o).

3.3. The Second Step After a Step Change. If the steplength h, = ch,, in-
troduced for the step [rom x,, to x,,,,, is retained in the next step, the equation
h4 5

h2
Yin+3 “Yain+3 = f;n+3 6 2n+3 + o(hz)

follows directly from (16). This combines with Eq. (18) to give

1 2
§<l +E:)(y;,,+3 ~V2n+3) = O%nt1 ~Van+1)
(21) 5
_ﬁz<3+§+_l) i 4+
- 36 c (.'2 2n+2 )

The local truncation error per unit step is estimated to be

4 (B3, 43 = Yan+3) ~ O3ns1 ~Yan+1)l
Sh,(1 + Sc + 3c?)

-4(+3)

If we now continue to use the steplength h, the results of Subsection 3.1
apply to later steps.

3.4. Two Step Changes in Succession. The alternative to the situation dis-
cussed in Subsection 3.3 is that having completed the step from x,, to x,,,, , with
steplength h, we then adopt a new steplength 4y = ¢, h,. The relevant mesh points
are :

(22)

with

Xan—t =Xan ~hy, Xy, Xons1 = Xan + hy,
Xon42 =Xan T2y, Xyp43 = Xgp40 Yhy Xppi4 =Xapep + 20,

In this case, by analogy with Eq. (18),

h3 h3 3, 1\ m
(23) y;n+3 “Yan+3 = 24 (1 o )f;n+3 36(2 +_ + ) LTE O(hg)

The appropriate linear combination of (18) and (23) is
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BOSn+s ~Yan+3) ~ 03001 ~Vansy)
with

2 |
g= -;—(l +c—_>, o, =-3-c?(2 +¢)).

Our estimate for the local truncation error per unit step is then

24"2"% BO3n+3 ~Van+3) = 0301 = Yans 1)

2% .
Shylc?(12 + 7c, —¢?) +¢(20 + 12¢, — 2%3) + 2, + 4]

4. A Bound for the Local Truncation Error. The error analysis described here
is based on three functionals which are related to the truncation errors in the formulae
(4), (6) and (8). For an arbitrary function y(x), having p + 1 continuous derivatives,
we define the functional

2
(29 LD, Al =y + B - ) - ') - B 14760 - e - ).

By using Taylor’s theorem in the form
, . h)P wtiri
Y(x + jh) = y(x) + jhy'x) + - - + g;!Ly“”(X) + “p—!fo G - s)Py®* (x) ds,
it can be shown that
h4 ! iv,

(26) L o), ) =% fL 6,6 + sk as
with

(1+s), -1<s5<0,

Gl(s) =
(1-93 0<s<l.

Since G,(s) is of constant sign on the interval of integration, Eq. (26) may be written
as

27" L, [¥(x), b} = k%, yV(x +08,h), -1<8,<1,
with
1 1
¢ = gﬂlGl(s)ds =3"
The same approach applied to the functional
2

28) Ly, h] = px + 20) = () - 2y'00) - - [4"Gx + B) + 7 60))
gives

K (2
Lo vx), H] = G5 [y Ga(6¥(x + sh) ds,
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where
Q2-5)*-16(1-5)2 0<s5s<1,

Gz(s) =
(2 -9)?, 1<s<2.

The kernel function G,(s) is of constant sign, and consequently
(29) Ly(x), k] = hPcp¥(x +6,h), 0<6,<2,
with

1 2

2
=53 0 G2(8)ds = 33

€2
The third functional required is

L ! h n n "
(B0) L3Dvex), Bl =y'6x + 20) —y'x) - 3D"0) + 7 + h) +y'(x + 2h)],
and the standard expression for the truncation error in Simpson’s rule gives
hS

@31) Ly[y(x), h] =~ %y"i(x +05h), 0<68,<2

Let y(x) be the exact solution of our initial-value problem. To investigate the
local truncation error in the step from x,,, to x,, ., we suppose that the starting
values at x,, are exact, i.e.

Yan = ¥(X2n), Zan =Y Xgp)s
f2n =_y"(x2n)’ f2n-—l =y"(x2n_l).

Then the truncation error at x,,,, , is

}’(xzn+1) ~Yan+1 = Ll [y(xzn)- h)
=?ylv(x2n+01h)) —l<ol<1'
Also, in view of the assumed starting values,

R W
Lyv(x30), Bl =y 42) = Yon — 225y — 3 [4"2n4 1) + 224),
and the truncation error at x,,,, , is
_ + 4h?
(33)  ¥(X3442) ~Vans2 = Lalv(xy,), Al '3_[)’ C2n41) ~San41l-
To obtain a bound on this error we assume a Lipschitz condition
(34 e, ») - flx, )l <Kl —nl

for all x in the appropriate interval [e, b] and all finite y and n. Then, if
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bVl <M, D'EI<M;, x€ g b,
Eq. (33) gives the bound
zhs Kh6
(35) ly("zn+2)"y2n+2|<75'Ms +"6_M4-

In a similar manner it can be shown that
' 4h
Y'Xanea) ~Zansa = L3(xy,). A + Tb’ *2n41) ~f2n4:1]
(36) 0
+ 3 D" an+2) ~ fans2ls

giving the bound

2Kh®

37 b'(x )-z |<"—5M +l-g—'f(3+Kh2)M + =
2n+2 2n+2 90 6 18 4 135

M,
where
bYix)l <M, x € [a, b].

5. Stability Analysis. If y(x) is the exact solution of the initial-value problem,
the global truncation errors in the function and derivative values at the end of the
nth de Vogelaere step are

y(xZn—l) “Yain1 T esl)’
y(xzn) —yzn = eslz)s
Y (yn) = 23 = €D/
The factor of & in the third definition is introduced to simplify the form of later
equations. Equation (4), combined with the definition of the functional L, gives
(1) = @ 4 o3 4 2
eni1=€n T €, + 3 D exan) _on]
(38)
B
- F Iy (xzn—l) _fzn—ll + Ll [y(xzn)! h] .
Similarly, from Egs. (6) and (8) and the definitions of the corresponding functionals,
) — o2 4 2003 4 M2
Ch+1 = &y + 2, + '3—[}' *2n41) —f2n+l]
(39
2nt
+ _3—Lv (xzn) —fzn] + L2 [y(x2n)’ h]

and

2
(40)85,321 = (3 + h? D" ®30) = fan + 4" 2ns1) ~Fans1} + ®an42) ~fan+al

+ ki, ly(x,,), h].
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In accordance with normal practice (e.g. Lambert [6, p. 257]) the stability of
the method is discussed with reference to the equation

yn — A2y.
In this case our equations for the cumulative errors simplify to
@n Ae, ., =Be, +¢,,,

where e, is a column vector with components e{!), e{?) and e{®), ¢, , , has as its
components the three functionals occurring in Eqgs. (38)—(40), and the matrices 4
and B are

h 2h
1 0 0 % 1+—3— 1
- | -4 - 2k
A= 3 1 0 , B 0 1+ 3 2
_4h _h h
3 "3 ! ° 3 !
with h = A%h2. Since 4 is nonsingular Eq. (41) may be written as
l=Cen +A—l¢n+l’
where
h h
-3 1 +23 1
2h? 8h? ( 2;7)
C= 5 1+2h+ 5 2(1+3
_2m*( . h h( 148 | 8h ) 4n?
9 (l +3) 3 6+ — 3 + 9 1+ 2+ 9

The characteristic polynomial of the matrix C is
p(r, b)) = 6r3 — (12 + 230 + 8h%)r? + (6 - 2h — 4h®)r + h.
The “Schur criterion” described on p. 78 of Lambert’s book [6] can be used to
show that p(r, k) is a Schur polynomial, in other words that all its zeros lie inside
the unit circle, if and only if # € (-2, 0). Thus, the interval of absolute stability of
de Vogelaere’s method is [~2, 0]. The moduli of the zeros of p(r, &) are plotted in

Figure 1 for a range of values of h. The three zeros, though distinct, have the same
modulus when A= —1.732 (to 3 decimal places).

6. The Cumulative Error. Bounds for the global truncation error can be obtained
from Egs. (38)—(40) and bounds established in Section 4. However, the dependence
on a (fixed) steplength h is more readily obtained in an alternative approach described
by Kopal [5, p. 219]. Let y be the exact solution of the initial-value problem

Y=o y),  y(xg) =y  2(xg) =2



760 JOHN P. COLEMAN AND JULIE MOHAMED

FIGURE 1 _
The moduli of the zeros r,, r, and ry of p(r, k). r, and ry are
complex for h € (—1.75, 0), and r, is always real

and z its derivative. Another solution of the differential equation is denoted by ¢ and
its derivative is n. Then, if the squares and higher powers of the differences [£(x) ~
y(x)| and In(x) — z(x)| are neglected,

(42) sa-o=-Le-»n Le-»n=n-=

When this is combined with the adjoint system

N = —(g)—{)y. p'=-x

solved subject to the boundary conditions
R('xzn) = l! u(x2n) = 01

Kopal’s approach [S] gives the truncation-error estimate

(43) Y(X2p) = Van = z": [R(xgi)R; + I‘(xz,')sj] .
=1

Here R; and S; represent the errors in evaluating the solution and its derivative in the
jth step of the de Vogelaere method; more precisely

Ri=t{x;) —pap S = nfxg)) ~ 29

where £,(x) and n; x) are the solutions of (42) on the interval [x,; _,, x,;] satisfying
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the initial conditions
5 2) =¥aj2s  fXy3) = 234y
Regarding the right-hand side of (43) as a quadrature sum we may write
1 *2n
(44) Hoam) = 720 = 5 [ 27 INORG) + IS)) i,

and only the lowest power of A in R and S is required for our purpose. From Eq. (3),
or by retaining only the lowest power of k in (33), we obtain

R(x) = "(x)

The h% contribution to the local truncation error in the derivative comes from two
sources, the first and second terms on the right-hand side of Eq. (36); thus,

h® h® 9
w57 + Ly,
It follows from (44) that the global error is of order 4%,

As an example we consider the initial-value problem

Y==-y y0)=0 Yy@O=1.

S(x) =-

In this case

y(x) =sinx, Ax) =cos(x,, —x), u(x) = sin(x,, —x),
5 5

R(x) = —Zh— cosx, Six)=- %— sin x,

and the global error estimate is

h* (*2n . .
Y(xp,) ~ Vo= 9070 [2 cos(x,, —x)cosx — 7sin(x,, — x)sinx] dx

_ Rk o :

=180 [9x,, cos x,, — Ssinx,, ].

In particular, when x,, = n/2 this estimate becomes —h*/36 which agrees closely with
numerical results.

7. Conclusion. The truncation-error estimates presented in Section 3 provide a
practical means of efficient error control in applications of de Vogelaere’s method.
The error estimates are inexpensive, requiring no extra function evaluations, and only
two function evaluations are lost if a particular step has to be discarded. We have
used this approach in a program for quantum mechanical scattering calculations, al-
lowing the computer to choose the steplength at each step so that the truncation er-
ror per unit step is less, but not too much less, than a specified tolerance.

An important conclusion from our error analysis is that the global error in de
Vogelaere’s method is of order #*. This contrasts with linear multistep methods for
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Eq. (1) which have a local truncation error of order #P*?2 but a global error of order
hP (see Henrici [4, p. 314]). For example, Numerov’s method (Lambert [6, p. 255],
Kopal [5, p. 183]) has a local truncation error of order h® but a global error of or-
der h* like de Vogelaere’s method.
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Added in Proof. We have now established a rigorous upper bound on the global
truncation error, assuming the Lipschitz condition and derivative bounds introduced in
Section 4. For any h > 0, constants a and M exist such that, for all A <h,,,

- -1
ly(x2n) _y2n| <e€ exp[a(xzn - xo)] + exp[a(x2n2a xO)] h4M

where
€ = max{[p(xq) —yol, Aly(x_,) - y_, |, le(xq) — z,}.
In particular, if the initial conditions of Section 2 are satisfied exactly, then
€=hy(x_,)-y_,l,

which is of order % if Eq. (9) is used to compute y _ ;- Details will appear in Julie
Mohamed’s Ph.D. thesis.
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